

Durham E-Theses

Tau-p mapping and interpretation of seismic reflection data from the western Isles region of Scotland

Lambert, Mark E.

How to cite:

Lambert, Mark E. (1982) Tau-p mapping and interpretation of seismic reflection data from the western Isles region of Scotland, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7683/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

Tau-p Mapping and Interpretation of Seismic Reflection Data
 from the Western Isles Region of Scotland.

Mark E. Lambert.

Department of Geological Sciences,
University of Durham.

The copyright of this thesis rests with the author.
No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.
September, 1982.

13. APP 1984

Seismic data are conventionally recorded, processed and displayed in the X-T domain, where X is the source-receiver offset and T is the two-way traveltime. There are advantages, however, in mapping the same data in a different domain; that of intercept time τ and horizontal ray parameter p. Computer programs written for performing the transformation from $X-T$ to $\tau-p$ were adapted for use with marine data acquired in the western Isles region of Scotland in order to obtain information about the velocity structure in that area. The results obtained are compared with those produced by the more conventional methods of refraction surveying and it is found that the data are of insufficient quality to facilitate a geological interpretation to be made with the $\tau-p$ method alone and that the method is of no use with the poorest quality data. Recourse to the conventional methods is found to be necessary, and the results obtained verify previous results from other work.
1.1. Introduction. 1
1.2. Geology.. 1
1.2.1. The Lewisian Comlex. 2
1.2.2. The Torridonian 3
1.2.3. The Mesozoic Sediments. 4

CHATTER 2
2.1. Historical Background of the Tau-p Method 6
2.2. The General Form of the Traveltime Equation 8
2.3. The Effect of Dipping Layers. 12

CHAFTER 3
3.1. Ray Parameter Stacking 13
3.2. Definition of Stack 14
3.3. Aliasing 15
3.4. Alias Suppression Using the Semblance Function. . . . 16
3.5. Problems Associated with the Method.. 17
3.6. A Modification to the Method. 19

CHAPTER 4
4.1. Program Test Runs.. 21
4.2. Interpretation of the Tau-p Irajectories. 22

CHAITER 5
5.1. Processing Procedure.. 25
5.2. Interpretation. 26
5.3. Results . 27
5.3.1. Line 7. 27
5.3.2. Line 9. 35

CONCLUSION . 37
APFENDIX A - REFERENCES . 38

APPENDIX B - ACKNOWLEDGEMENTS 40

The seismic method of exploration is based on recording the response with time of the subsurface to excitation. Consequently, methods of analysis and interpretation have developed around the observational parameters that may be controlled or monitored: these are the source-receiver offset X, and the two-way traveltime T.

Modern techniques of wide-aperture, multichannel, marine seismic data acquisition to investigate deep crostal structure (Savit, 1977; Stoffa and Buhl, 1980) have resulted in data sets that include both wide-angle reflections and refractions. In shallow crustal studies (hydrocarbon exploration, for example) it is standard practice at the processing stage to mute the refracted arrivals, as it is only the near-vertical incidence reflections which are of interest. In deep ocean seismic surveys, such as deep crustal studies, it is the refracted arrivals which are easiest to obtain. Usually reflections and refractions are treated differently, even when they are both present in the same dataset. It would be preferable from the viewpoints of scientific elegance and practicality, if there existed a method of interpretation that could be applied to both types of arrival simultaneously. This appears difficult to achieve in the $X-T$ plane, primarily because of the fact that for refraction work, T may be a multi-valued function of X .

A new plane which is able to unfold the multiplicities in $X-T$ refraction data by virtue of being a single - valued function of an independent parameter has been suggested by Gerver and Markushevich (1966). The new dependent parameter is the intercept time τ. The ray parameter p may be defined as the inverse of the horizontal phase velocity, or horizontal slowness and by Snell's law may be shown to remain constant along the ray. The intercept time τ, is the value of the intercept on the time axis of a tangent to the traveltime curve of gradient p.

1.1. Introduction

The location of the survey area is between the Outer Hebrides and the Inner Isles of Coll, Tiree and Rhum, with particular emphasis on the Skerryvore and the Sea of the Hebrides troughs. A map of the marine geology is shown (map 1). Seismic reflection surveys were conducted along the tracks shown in figures 17 and 18 , and the locations along the lines from which data were used for this work are indicated by the file numbers shown on the computer print-outs. The locations were selected so that study of three major rock tyoes was possible. These were the Lewisian complex, the Mesozoic sediments and the Torridonian basement.

Maps showing the marine geology of the area are given by Binns et al (1974), and Uruski (pers. comm.) from whom map 1 is taken. All of the rock types described below outcrop enabling field observations to be made. Full accounts of the rock types encountered on the Inner Isles are given by Peach and Horne (1930), Richey and Thomas (1930) and Harker (1941).
1.2. Geology

The major controlling factors on the geology in the region are the Minct, the Skerryvore and the Great Glen (or Dubh :rtach) faults which run approximately north-east to south-west. The Minch and Skerryvore faults form the western margin of two asymmetric troughs that are filled with Unper Falaeozoic and Mesozoic sediments underlain by Frecambrian and Lower Falaeozoic rocks.

There has beer subsequent Tertiary ioneous activity and crossfaultin: that has had considerable effect on the geology, the most obvious result perhavs being the lava flows of Mull and Sk re. It is

this cross-faulting as well as tilting of the faulted Sea of the Hebrides trough that causes the older basement rocks to outcrop in places.

The older rocks are covered by a relatively thin layer of younger sediments with the facies distribution being primarily dependent on the water depth, the degree of exposure to the prevailing south-westerly swell and the relief of the bedrock surface.

The rock types investigated are given below in chronologically ascending order.

1.2.1. The Lewisian Complex.

The Lewisian complex is an extensive formation in north-west Scotland that forms a basement of metamorphosed, intrusive igneous rocks which are mainly gneisses and highly metamorphosed sediments. The older sedimentary formations may be classified as being PreLewisian and include pure and impure calcareous rocks in addition to some pelites and some psammites. The gneisses were collectively termed the Lewisian gneiss by the Geological Survey and apply to the system of rocks that form the basement over which the Torridonian sediments were laid down. The rocks that constitute the Lewisian gneiss are Precambrian and are mainly coarse-grained, outcropping extensively in the north-west Hirhlands, parts of the Inner Hebrides and almost all of the Outer Hebrides to result in a complex of gneisses that were formed by a series of plutonic intrusions. They range from the oldest ultrabasic through to basic and intermediate, to the youngest, acidic rocks. The older basic rocks show mineralogical conversion, such as the altering of pyroxene to horneblende, as well as alteration due to the presence of later, acidic * intrusions.

It was Hutton who originally proposed that the Lewisian gneiss was formed by the crystallisation of sedimentary formations by the action of heat, although this interpretation is now believed to be inaccurate in certain locations.

The rock types that comprise the Lewisian gneiss are banded, and may thus be distinguished and classified as orthogneisss, paragneisses, grey orthogneisses and dark orthogneisses.

Other categories of rock types common in the Lewisian gneiss are feldspar-free rocks, calcified orthogneisses and the younger, coarse pegmatites .

1.2.2. The Torridonian

The Torridonian sequence is composed of Precambrian red sandstones, grits, conglomerates and breccias that lie unconformably on the Lewisian gneiss. The arenaceors rocks that constitute this sequence wre named 'Torridonian' by Nicol, who succeeded in distinguishing them from the Old Red Sandstone formation of the Silurian and Devonian. They outcrop extensively around Loch Tor"idon in west Ross-shire as well as on Rhum and Skye. In the lower parts are flaggy or shaly beds that are succeeded by grey grits with the bulk of the thickness being due to arkoses that are often coarse with pebbly bands. These sediments are believed to have been laid down in continental conditions and the divisions of the Torridonian are described by the Geological Survey and are the Diabaig group, the toplecross grour, and te tultbea group, in ascending order.

1.2.3 The Mesozoic Sediments

This group of sediments lie unconformably on the earlier formations and have remained relatively protected from erosion by the overlying Tertiary lavas. The youngest of the Mesozoic rocks constitute a major part of the Sea of the Hebrides trough, and attain thicknesses of up to three kilometres in places (Binns et al, 1974).

The sequences that make up the rather complicated Mesozoic geology are given below in ascending order.
(a) Lower and Middle Triassic

This group consists of thin beds of red sandstones and cornstones with conglomerates and breccias. It rests unconformably on the Moine Schists and is found to be best preserved in down-faulted basins and hollows.
(b) Upper Triassic

This roup is comprised of thin beds of sandy or calcareous limestones with some yellow sandstone present.
(c)

Lower Jurassic.
This group contains tho distinct rock types:
(i) Brondford Peds:- the lower divirion of the Lower Jurassic. The beds are mainly calcareous, consisting of herdened shales and thin beds of compact limestone.
(ii) Fabba beds:- a thick series of sandy, well-bedded shales containing scattered flakes of wite mica.

Both types are particularly fossiliferous in olaces.
(d) Middle Jurassic

White, fine-grained and well-bedded sanlstores make up this group. The beds are well baked in places showine no evidence of fossils.
(e) Upper Jurassic

Included in this group are fine-grained, block, fissile sales, calcareous shales, mudstones, fossiliferous limestones and yellow or
red sandstones.

UNCONFORMITY
(f) Upper Cretaceous

This group is represented by a thin series of marine dedosits and white, desert sandstone, with some chalk present, that rests unconformably on the eroded Jurassic surface.

CHAPTER 2

2.1. Historical Background of the Tau-p Method

The derivation of ray parameter θ, in terms of T and Δ, the angular distance, from a spherically stratified earth model and the inversion of observational data to give velocity distributions as given by Bullen (1963) is a useful starting point to an account of the history of the method.

The function $\tau(p)=T(p)-p X(p)$, is introduced by Gerver and Markushevich (1966) in their formulation of the solution of the problem of determining the velocity-depth function from traveltime curves, which is a generalisation of the Herglotz-Wiechert method (Herglotz, 1907; Wiechert, 1910) to a medium with low-velocity zones.

Gerver and Markushevich (1967) state the conditions required for the existence of a unique solution to the inverse problem, except in the low-velocity zones themselves. The conditions are that an infinite amount of perfectly accurate traveltime data at all distances from sources above and below all the low-velocity zones is present.

Given a finite amount of data, Backus and Gilbert (1967) show that the number of velocity profiles that fit the measured data is either zero or infinite, and they also provide a method of selecting suitable profiles that is not affected by many of the limitations of the Herglotz-Wiechert method, as well as considering observational errors. Following the arguments of Brune (1964), it may be shown that errors in $\tau(p)$ due to ernors δp, in p are of second order in $\delta \mathrm{p}$.

Taner and Koehler (1969) describe a method of estimating r.m.s. velocities by employing hyperbolic searches for semblance among appropriately gathered arrays of traces and discuss the principles
for calculating velocity spectra displays.
Johnson and Gilbert (1972) apply the function to a linearised inversion method and use it to examine core and mantle velocity structure using teleseismic ray data.

Bessonova et al (1974) use the tau method for inversion of traveltimes obtained from deep seismic sounding data by assuming spherical symmetry and a lower limit for the velocity in lowvelocity zones (from the results of Gerver and Markushevich, 1966). Bessonova et al (1970) also consider the transformation of limits for $\tau(p)$ into limits for $Y(p)$ - the velocity-depth function, and also obtain estimates of $\tau(p)$ from given traveltime data using their graphical method of parallelograms.

A different method of estimating $\tau(p)$ from traveltime data is introduced by Bates and Kanasewich (1976). For each branch of the traveltime curve, they fit T observations to a family of second order polynomials in X and then map the curves into the $\tau-p$ plane. The method is modified to handle reflection data by Kennett (1977) whose method also allows bounds to be placed on the velocity-depth function in the reflecting region.

Diebold and Stoffa (1979) develop the exact form of the common mid-point traveltime equation in terms of X, τ and p, and show that the resulting equation is valid for all vales of X. They also show that the inherent averaging of slowness in a multi-layered example in their formulation gives rise to distinct advantages over other methods in the presence of dip as well as presenting a method of deriving a velocity-depth function which is applicable to both reflected and refracted arrivals. This method is particularly relevant with respect to modern techniques of wide-angle, multichanrel, seismic data acquisition where data sets containing wide-angle reflections and refractions have been obtained (Stoffa and Buhl, 1980). For
the large offsets present in this form of data set the more conventional methods of velocity analysis are invalid.

Direct mapping of data in the X-T plane to the $\tau-p$ plane is aohieved by Stoffa et al (1979) who uses wave stack and semblance calculations across common mid-point gathers. Semblance is also used to derive a windowing filter to eliminate aliasing by setting an arbitrary threshold level of semblance below which the data are muted.

Bowen (1980) suggests that this method of choosing arbitrary thresholds is unsatisfactory, and describes a modification to the 'anti-aliasing stack' calculation by automatically excluding aliased portions of the summation trajectories from the stack. This more elegant method is shown to produce less waveform distortion and better alias discrimination.
2.2. The General Form of the Traveltime Equation

The following is a brief account of the basic principles and assumptions of the $\tau-p$ transformation. A more formal and detailed account is given by Diebold and Stoffa (1979) from which the following summary is taken.

The most general form of the traveltime equation is developed and is shown to be equally valid for reflections and refractions, as well as for all values of offset and all commonly used experimental geometries.

Consider a plane wave travelling in a homogeneous medium of velocity v as shown in figure 1.

The total distance travelled in time $\Delta t=v \Delta t$
Resolving the distance into components yields

$$
\begin{align*}
& \Delta X=v \quad \Delta t \sin i \tag{1}\\
& \Delta Z=v \quad \Delta t \cos i
\end{align*}
$$

The traveltime may also be resolved into component form:

$$
\Delta t=p \Delta X+q \Delta Z
$$

where $p=\sin i / v$
, and $q=\cos i / v$
Here, p is the horizontal ray parameter, or horizontal slouness, ard q is the vertical ray parameter, or vertical slowness ('slownoss' is equivalent to the inverse of velocity).

If the slowness of the wave is u, where
$u=1 / v$,
tren it is simple to show that
$u^{2}=p^{2}+q^{2}$

Substituting for v from equations 4 and 5 into equations 1 and ? yielis
$p \Delta x=\sin ^{2} i \Delta t$
(7) and
$q \Delta Z=\cos ^{?}$ i Δt
combinir: equations 7 ad 2 produces

$$
\begin{equation*}
p \Delta X+q \Delta Z=\Delta t \tag{9}
\end{equation*}
$$

If n stack of n homogeneous, horizontal lavers of thickness
Z_{i} is considered, then the total two-way traveltime may be exrressed as the sum of cortrivutions from each layer (figure 2).

i.e. $T=2 \sum_{i=1}^{n} \Delta t_{i}$

$$
\begin{equation*}
=2 \sum_{i=1}^{n}\left(p_{i} \Delta X_{i}+q_{i} Z_{i}\right) \tag{10}
\end{equation*}
$$

From Snell's law, it may be shown that p is constant for waves across a horizontal interface since

$$
\begin{align*}
\sin i_{1} / v_{1} & =\sin i_{2} / v_{2} \quad \text { and therefore } \\
p_{1} & =p_{2} \tag{11}
\end{align*}
$$

Therefore equation 10 may be re-written as

$$
\begin{align*}
T & =p X+2 \sum_{i=1}^{n} q_{i} z_{i} \\
& =p X+\tau \\
\tau & =2 \sum_{i=1}^{n} q_{i} z_{i} \tag{13}
\end{align*}
$$

Equation 12 is the equation of a straight line in the $\mathrm{X}-\mathrm{T}$ plane with gradient p and intercept time τ, which is tangential to the traveltime curve at the point (X, T). It is valid for all reflections and refractions.

For a single layer case equation 13 simplified to

$$
\begin{align*}
\tau & =2 q Z \\
& =2 Z\left(u^{2}-p^{2}\right)^{1 / 2} \tag{14}
\end{align*}
$$

conse fuently, the contribution to τ from a single layer may be written as

$$
\begin{equation*}
\tau_{i}=2 z_{i}\left(u_{i}^{2}-p^{2}\right)^{1 / 2} \tag{15}
\end{equation*}
$$

The physical meaning of τ is now recognisable as the aggregate of vertical slowness-thickness products as described by Bessonova (1974). It is clear that all information about layer thicknesses is contained in τ.

Equation 15 describes an ellipse in the τ-p plane. This may be readily show as follows:

$$
\begin{align*}
\tau_{i}^{2} & =4 z_{i}^{2}\left(u_{i}^{2}-p^{2}\right) \\
\Rightarrow l & =p^{2} / u_{i}^{2}+\tau_{i}^{2} / 4 z_{i}^{2} u_{i}^{2} \tag{16}
\end{align*}
$$

For the single layer case,

$$
\tau_{1}(0)=2 q Z
$$

where $\tau_{1}(0)$ is the two-way, normal incidence traveltime for the single layer. (The horizontal phase velocity is zero for normal incidence). Thus equation 16 may be re-written as

$$
\begin{equation*}
\mathrm{p}^{2} / u_{1}^{2}+\tau_{1}^{2} / \tau_{1}^{2}(0)=1 \tag{17}
\end{equation*}
$$

where $\quad \tau_{1}(0)$ and u_{1} are the semi-minor and semi-majrr axes respectively.

For the quadrant defined by positive τ and p, ore quarter of a complete ellipse is mapped, as shown in figure 3.

For the multi-layered case each layer may be consi ered as contributing one quarter of an ellipse to the ourve in the $\tau-p$
plane. The ellipses are then summ d to sive the complete trijectory. A thpical, three-layer case is shown in figure 4.

The wide-angle reflections are characterised by high energy arrivals as little energy escapes into the lower layers. This leads to the well-defined outer limits.

From equation 12 it is apparent that
$d \tau / d p=-X$
So, for normal incidence,

$$
\begin{equation*}
d T / d p=0 \tag{19}
\end{equation*}
$$

For a horizontally proparatine wave (at grazing incidence), the condition is

$$
\begin{equation*}
d p / d \tau=0 \tag{20}
\end{equation*}
$$

2.3 The Effect of Dioping Layers

In the presence of dip, the form of the general traveltime equation is modified (Dieboid and Stoffa, 1979) and may be written as
$T=X_{a} p_{a}+X_{b} p_{b}-\sum Z_{i}\left(q_{a i}+q_{b i}\right) \quad$ (2I), where $p_{a}=\sin a / v_{1} ; p_{b}=\sin b_{1} / v_{1} ; q_{a i}=\cos a_{i} / v_{i} ; q_{b i}=\cos q_{i} / v_{i}$

An example of a possible structure for which this equation is apolicable is shown in figure 5, and a complete derivation is miven in Diebold and Stoffa (1979).

Using tre common-deptr-point, or C.D.P., geometry as in figure 5 where sources and receivers rogress at equal speed ir opposite directions whilst mintaining a common mid-voint is advantageous over tre use of commor source or common receiver arrays because the inherent averaging of urdio ard dom-dio slonnesses in the traveltime equ cior leads to reiter accuracy in the determinotion o the velocitydepth function.

Fig. 4

Fig. 5

This chapter is concerned with the method of transforming a data set in the $X-T$ plane to that of $\tau-p$.

3.1. Ray Parameter Stacking.

The method of Stoffa et al (1979) uses an automatic ray parameter stacking method and is employed by Bowen (1980) and Smith (pers. comm.) their computer programs to perform this transformation.

It is apparent from equation 12 for the plane, horizontal layer case that a straight line such as that from a refracted arrival in $X-T$ is transformed to a point in $\tau-p$ and vice versa.

Ray parameter stacking involves the discrete summation of data in $X-T$ of a C.D.F. gather by taking linear trajectories of gradient p and intercept time τ. The value at the point (p, τ) will be the sum of all $X-T$ data that are intercepted by this trajectory. By taking many values of τ and p it is possible to obtain a complote mapping.

The process is only an approximation of the 'true' values in $\tau-p$ however, because of the finite length of the observational data in $X-T$ and the finite sampling density. Even so, the main problem in ob aining good resolution is inherent in the linear trajectory summation process. For refracted events which occur as straight lines in $X-T$, there will be a large value of ray parameter stack at the single point, say (p, τ), which defines the straight line over which the event occurs. Hence, a refraction gives a clearly defined maximum amplitude point in $\tau-0 . \quad$ Reflectiors will occur as aproximately hyperbolic events in $X-T$ and will, therefore, map not as sirgle points in $\tau-p$, but as ellipses as shown previəusly.

Thus, in $X-T$, no sirgle, linear trajectory will accurately describe the whole of a reflected wavefront, but rather a range of
different trajectories is required. It is essentially a problem of attempting to model a curve by a series of straight lines. The method of Stoffa et al (1978) relies on the assumption that it is possible to obtain a value of stack at the point corresponding to tangency that is significantly larger than the values obtained from non-tangential trajectories. The validity of this assumption depends on the curvature of the wavefront at the point of tangency, amongst other factors.

3.2. Definition of Stack

Stacking is a well-known method of signal enhancement and multiple suppression and is comrrehensively described by Mayne (1962). The concert of slant stacking is suggested by Schultz and Claerbout (1978) in order to synthesize wavefronts and estimate velocities, and is applied to common shot data to transform into a r-gather which is similar to the methods employed in the nrograms used in this work. Henry and Orcutt (1980) describe a method of slant stacking data at a number of ranges in order to synthesize the $\tau-p$ curve.

The metrod of stacking assumes that trere is some constant value, called the datum level, to which random noise has been zdded and from tris assumption it follows that
Stack, $S=\frac{1}{M} \sum\left(f_{i}+n_{i}\right) \quad$ where
$f_{i}=$ datum level or arithmetic mean of the series
$n_{i}=$ random noise
$M=$ number of elements
Furtrer,
$S=\frac{1}{M}\left(\sum_{i} f_{i}+\sum_{i} n_{i}\right)$
$=\frac{1}{M} \sum_{i} f_{i} \quad$ (for random noise)
$=M f_{i} / M$
$\therefore S=f_{i}$

It is thus permissible to regard the stack as a filter passing only the mean level or D.C. component of the series. Since the D.C. level is zero for purely random noise, a separation of signal from noise is achieved.

A linear stack along a refraction will be well represented by the model described above, sut a curved reflection wavefront clearly will not. This is not the only problem with the method of transformation of Stoffa et al (1979).
3.3. Aliasing

Aliasing is the most serious practical problem in the method of ray parameter stacking previously described, and is inherent in the approximate nature of the transformation. In the stroking process, significant energy may be obtained from summations along trajectories that are not tangential to any arrival in $X-T$ but intersect the arrival non-tangentially. This effectively reduces the signal to noise ratio thus diminishing the resolution. In extreme cases, aliasing from large energy arrivals may completely overwhelm the targential contribution from a low-energy arrival.

An example of the way that aliasing results from ray parameter stacking is shown in figure 6.

The contribution from trajectory \hat{A} gives an aliased result, while the trajectory B gives the re uired contribution to the stack.

For a curved event in X-T, the aliased contribution will increase with the curvature of the event, and for small offset reflections, the alised contribution may be indistinguishable from the targential one.

For a lirear evert in $\mathrm{X}-\mathrm{T}$, the difference betweer the contribution from the tangential trajector: and an alinsed cortribition will be a factor of N, where N is the number of chanyels over thich the

summation is performed, since the true targent will 'intercept' the event N times while the alias will only intercent once.

A typical curved event in $X-T$ and its transform to $\tau-p$, as shown in figure 7, illustrates the region in which aliasing is likely to occur (indicated by shading), This area is defined by all trajectories that intersect the $X-T$ curve.

Aliasing is thus seen to arise because of the anoroximations involved in the actual transformation anl is inherent in the method. A way of suppressing the effects of aliasing ought therefore to be found.

3.4 Alias Suppression Using the Semblance Function

The semblance function, although originally developed for use in velocity analysis, is nevertheless useful for the suppression of aliasing because of its property of emphasising coherent arrivals over several adiacent channels with moderately low signal to noise ratios. Tangential trajectories will show similar values and characteristics of stack across channels whereas aliases generally appear as single high values superposed onto the background noise. This suggests that semblance can be used as a 'window' function which will produce unaliased data in $\tau-\mathrm{p}$.

The semblance function may be defined as:

$$
\begin{equation*}
\text { Semblance, } K=\sum_{\text {gate }}\left(\sum_{\text {channel }} f_{i}\right)^{2} / M \sum_{\text {gate }} \sum_{\text {chamel }} f_{i}^{2} \tag{23}
\end{equation*}
$$

where the gate is the time windo: over which the function is calculated.
If only one sample per channel is considered, then it is straightforward to show that semblance may be expressed as a normalised innut to output energy ratio since

$$
\begin{align*}
K & =\left[\sum\left(f_{i}+n_{i}\right)\right]^{2} / M \sum\left(f_{i}+n_{i}\right)^{2} \\
& =M^{2} f_{i}^{2} /\left(M^{2} f_{i}^{2}+M \sum n_{i}^{2}\right) \\
& =1-\left[\left(\sum n_{i}^{2}\right) /\left(M \sum f_{i}^{2}+\sum n_{i}^{2}\right)\right] \tag{4}
\end{align*}
$$

Thus the maximum value of semblance is unity, when there is no noise present. When the semblance is calculated over a time gate, the

result is an average value over the gate-length and a high value is indicative of waveform similarity across channels.

This function is calculated over hyperbolic trajectories in the velocity analysis of reflection data, but linear trajectories are used here since values of semblance are required for particular values of ray parameter. As aliased summations tend to show less uniformity of waveform character over adjacent channels than tangential summations, the value of semblance ought to be lower for the aliased summations. It is therefore theoretically possible to discriminate against aliasing by arplying a windowing filter based on some arbitrary threshold level of semblance below which $3 l l$ data are set to zero.

Computer programs were written by Bowen (1980) and Smith (pers.comm.) which automatically transform data from $X-T$ into $\tau-p$ and perform semblance calculations for alias suppression. The C.D.P. data sets with which the programs were run were provided ry synthetic seis ogroms rather than real field data. This enabled a control to be kent over the input data and meant that t'e results shtained for the velocity structure could be directly compared to the original motel from which the synthetic data was calculated.

```
3.5. Problems Associated with the Method.
Amongst the problems associated with interpretation of the \(\tau-p\) diagrams are:-
```

(a) The complete trajectory in the $\tau-p$ quadrant is not observed because the input data does not start at zero offset or continue to an infinite value of offset.

A typical $\tau-p$ trajectory for a sirgle reflector is shown in figure 8.

The missing portions at either end of the trajectory corresnond to zero offset where $p=0$ and infinite offset where $p=1 / v$.
(b) The character of the waveform in $\tau-p$ varies along the trajectory. This is because at the more curved regions of the $X-T$ trajectory (at nearoffset) less of the chanrels are intercepted by the summation trajectory and therefore the waveform is less well defined thar at large offsets where the $X-T$ event is more linear. Also some trajectories appear not to detect the $X-T$ event at all. This is due to the way that the data are discretely samoled.
(c) In the simple stacking program with no alias discrimination, aliasing is present even for well-defined $X-T$ curves with relatively high signal to noise ratios. Using semblance threshold levels is a means o:
windowing the data, improvements in the signal to noise ratio in $\tau-p$ are observed, but at the expense of a decrease in resolution, particularly at small values of p.

3.6. A Modification to the Method

The more sophisticated programs written by Bowen and Smith utilise a method of alias discrimination originally proposed by Schultz and Claerbout (1978). Since it is only the tangential summations that are required, it is clearly preferable to perform the stack calculation across the tangential channels only, ignoring the contributions from other ckannels that may intercert events non-tangentislly. Again the semblance function is employed but in a different manner. Since the semblance should be higher along a trajectory in a region of tancency, it ought to be possible to identify this region by calculating the semblance for individual sections along the trajectory and tren calculating the stack for the region of highest semblance only, ignoring the rest of the trajectory. The metrod of achieving this computationally is to calculate the values of the semblance and stack over a certain number of channels along the trajectory (the scan or window) then ste the vindow along to the next position, re-calculate the functions, compare the new semblance value with the old and retain the value of the stack corresnondig t the largest value of semblarce, which will hopefully be the tangential part, if there is one, of the trajectory. Figure 9 shows a diagrammatical representation of the window.

The results obtained with the modified program are corsizerably
improved. There is better identificatior of reflected everts in X-T, less distortion of waveform character in $\tau-p$ and greater resolution. Program outouts showing $T-p$ plots for synthetic de'a illustrate these points and are given by $B o w e n(1980)$ and in chapter 4 of this thesis.

Listings of the programs are also given by Bowen (1980) and Smith (pers. comm.) and were written for use with the PDP1l/34A/F.P.S. Array Processor Computing system owned by the Department of Geological Sciences, University of Durham.

CHAPTPER 4

4.1 Program Test Runs

The simple ray parameter stack programs and the modified antialias programs were tested using synthetic data created by a program (ANSEI) which produces C.D.P. gathers by calculating the normal moveouts at selected offsets for a given stacking velocity structure, and convolving the resultant impulse response function with a Ricker wavelet, assuming plane, parallel, homogeneous layers. An example of the data used is shown in figure 10, with the input parameters indicated in figure 11.

Bowen's simple program (ABFAN) was run with this data and the resulting output obtained is shown in figure 11 , where the values along the p-axis are in milliseconds per metre. The predicted ellipsoidal trajectories are visible, but so are the features of waveform character distortion, limited resolution at large values of p and aliasing. These are all to be expected because of the discrete sampling and the finite range of offset.

Bowen's anti-alias program (ABSCAN) was then run with the same data. In order to reduce the running time, values of stack and semblance at large values of τ and p were automatically zeroed. The result, shown in figure 12, shows increased resolution, greater waveform character consistency across adjacent channels and slightly extended trajectory range.

Smith's program (MSTAUF) was run on a similar data set produced from a three-layer model with slightly different parameters, and the results obtained are as expected. In figure 13, the simple program has produced an output that suffers from all the faults of ABPAN. In addition to the inconsistency of waveform character along the trajectories the amplitude is also seen to vary. Aliasing is prevalent, the individuel streaks corresponding to aliased trajectories

being visible, particularly for the lower ellipse where it intersects the τ-axis. This form of aliasing is partly due to the truncation of the data and is termed the 'end-effect' by Schultz and Claerbout (1978). It may be suppressed by extrapolation of the data beyond the axis, as well as by the methods already discussed.

Figure 14 shows the result of running Smith's anti-alias program with the same data. The increase in resolution and particularly in signal to noise ratio is just as dramatic as with Bowen's programs, althongh the consistency of waveform character leaves room for improvement with both anti-alias programs. The limited extent of the $\tau-p$ trajectories, particularly at large values of p, is due to the small range of offset used in the model data set.

The two anti-alias programs are similar in the way that they nerform the transformation and so the similar results are to be expected. Smith's program has, however, a significantly smaller average running time which makes it more practical. The program was completed in Auglust, 1982, by which time all of the data processing had been completed. Therefore, all of the $\tau-p$ plots shown in Chapter 5 are vroduced from either Smith's simple program, or from Bowen's programs.
4.2. Interpretation of the Tau-p Trajectories

Interpretation of the obtained results was attempted 7 nd the limited range of the $\tau \sim$ p trajectories was found to be a problem. The ellipses are difficult to follow at small values of τ and this is the region of the trajectory where the velocity information is directly obtained (see figure 4). None of the obtained plots clearly show the upner ellinse actually intersecting the p-axis to give the horizontal slowness of the upper layer, and neither the second nor third ellipses are clearly seen to intercept the ellipse above them. It requires extrapolation by eye, with the knowledge that the trajectory becomes asymntotic to the normal a.t the point of intersection, to estimate the correct value of p. This

problem is simply due to the fact that the $X-T$ data do not extend to an i: finite offset.

If the data have a particularly small range of offset then the extent of the $\tau-p$ trajectory may be so limited, such as in figure 15 , that it may be difficult to accurately deduce the velocity structure by merely extrapolating the trajectory by eye.

In this situation it may be necessary to assume that the trajectory is a true ellipse and then attempt to model it with a set of different ellinses until a goo fit is found. A ternatively it is
possible to obtain a unique solution to the required ellipse knowing only two points that lie on it. This is apparent from the general equation of an ellipse:
$\frac{x_{2}^{2}}{a}+\frac{y^{2}}{b^{2}}=1$
, where
$a=$ intercept on the x-axis and
$\mathrm{b}=$ intercept on the y -axis

Since there are only two unknowns, a and b, in the equation, any two points on the ellipse will uniquely define it.

The measure of accuracy of this method depends on the validity of the assumption that the $\tau-p$ trajectory is well represented by a true ellipse, and this may be difficult to assess accurately without direct knowledge of the velocity structure.

The approximations that are inherent in the transformation process which have been discussed arise from the method of modelling a curved event in X-T by a series of linear trajectories. The further problems of aliasing, loss of resolution, distortion and limited trajectory range have all been considered. The major problem in estimating the velocity structure using synthetic data is the one of limited trajectory range but, as will be seen, the other limitations of the method may become more apparent when using real data.

CHAFTER 5

5.1. Frocessing Procedure

The survey lines from which data are taken are shown in detail in figures 17 and 18 , where the numbers marked on the lines refer to the magnetic tape file number on which the C.D.P. gathers were recorded. The raw field data which were recorded in the form of twenty-four channel common shotpoint gathers, were demultiplexed and sorted to obtain the required twenty-four fold C.D.P. gathers. With the data in this form it was decided to use only tre first four seconds of record as only the nearsurface geological features were of interest. An example of a typical C.D.P. gather is shown in figure 21. The initial of ${ }^{\text {© set }}$ is 245 metres and the hydrochone spacing is 100 metres.

The data were then processed in order to increase the signal to noise ratio. The processes were nerformed in the following order: (a) Bandpass filtering. High frequency noise was evident on the traces, so a bandpass filter with a cosine bell taper of width 10 Hz was applied. This filter passed frequencies :iithin the range $20-50 \mathrm{~Hz}$ without attenuatior.
(b) Trace edit. Some chanrels in the recording equipment were faulty and large glitches, or peaks, along the trace due to amplifier switching faults were found to completely obscure the required sigral. Those channels were zeroed.
(c) Polarity reversal. During the connecting of the hydroohones, some instruments \%ere comected with their polarities reversed with rescect to the others. This ic orrected by annlying a polarity reversal down the length of the troce. In practice it was found necessary to reverse four chanels for line 7 and five charnels for line 9.
(d) Normalisation of each trace to unit amplitude enabling arriv?ls to be directly comparable across the gather.

$1 \quad 1111$

1 ルH11
山いいい
田田畳異
LULULIL
1 LIL＿L

Lل\｜\｜\｜\｜！！
Lall
Conerearald

－remereveporaverdadillllllllll
－

The general poor quality of the data is readily seen from the unprocessed C.D.P. gather shown in figure 19. Of the 42 files on which the $\tau-p$ programs were run, only 17 were of sufficient quality to be interpreted and are shown in table l. On average, at least two or three channels from every gather had to be zeroed due to glitches. A less extreme example of a glitch is shown on channel 17 in figure 22, which is one of the best quality gathers. For comparison, figure 21 shows the same gather before processing. The noise is particularly evident on the furthest channels and tends to mask the data, even when the bandpass filtering has been applied. Generally, it is of high frequency and hence appears as an approximately constant high frequency signal. Similarly, the more extreme cases of glitching where whole portions of traces up to about one quarter of a second lonf are swamped by a continuous signal, result in a constant frequency signal after the bandpass filtering has been applied. How extensive this amplifier fault is, and its effect on the data is shown in figure 19 which is an example of the quality of the majority of data. In most cases, the only arrival to be seen clearly and that could be followed along the channels was the first refracted arrival.

5.2. Interpretation

When interpreting refracted arrivals, the effect of dio should be taken into account. For the case of a uniformly dipping bed as shown in figure 20 , the observed (or apparent) velocity may be corrected to give a true value.

$$
\begin{aligned}
& \text { Traveltime of ray } S_{1} R_{1}=t_{s_{1}}+t_{R_{1}}+\frac{X \cos \varnothing}{V} \text { and } \\
& \text { Traveltime of ray } S_{2} R_{2}=t_{S_{2}}+t_{R_{2}}+\frac{(X+\alpha) \cos \varnothing}{V_{1}}
\end{aligned}
$$

where $t_{s_{1}}, t_{R_{1}}, t_{S_{2}}$ and $t_{R_{2}}$ are the delay times below the indicated points to the refracting boundary.

Γ
N
ल
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad ___

\qquad

Line 7 . File 487
After Processing

Parameters used:

1.UNIT AMPLITUDE NORMALISATIO
2.POLARITY REVERSAL: 1, 2,5,10,12,20
3.BANDPASS FILTERING: $20-50 \mathrm{~Hz}$

Velocity of $A=5.6 \mathrm{~km} /$
(assuming no dip)

Fig. 20

The apparent velocity V_{1}^{\prime} is given by
$V_{1}^{\prime}=d /\left(t_{s_{2}}+t_{R_{2}}+\frac{(X+d) \cos \varnothing}{V_{1}}-t_{s_{1}}-t_{R_{1}}-\frac{X \cos \phi}{V_{1}}\right)$
But it may readily be shown that
$t_{s_{1}}+t_{R_{1}}=t_{s_{2}}+t_{R_{2}}$
Therefore,

$$
\begin{align*}
V_{1}^{\prime} & =\frac{d}{d \cos \varnothing / V_{1}} \\
& =V_{1} / \cos \varnothing \tag{27}
\end{align*}
$$

This derivation is still valid if the source and receiver positions are interchanged.

So, for a dip of 8°, the apparent velocity is
1.11 times the actual value. For dips of less than 8° the correction will be negligible and for the dats in tables 1 and 2 no corrections are needed.

5.3. Results

5.3.1. Line 7

The data were processed from file 352 mwards as the first few hundred files were recorded while the ship was changing direction, and
a velocity analysis was rerformed on every fifteenth file.
From the file 352 to file 607 , the basement is Lewisian and the first refracted arrivals are seen on the C.D.P. gathers. Further down the time axis, the traces are very noisy, especially those at large offset, and result in very noisy $\tau_{-\mathrm{p}} \mathrm{p}$ plots, examples of which are shown in figures 23 and 24. As it is the furthest channels wrich are the major contributors of noise, it was decided to zero all of them from an arbitrarily chosen channel, in this case channel 12, onwards and to re-calculate the $\tau-p$ plot to see if any improvement was made. However, the fact that the total offset was so severely reduced meant that any elliptical trajectory present would have been reduced in extent, and also the random noise did not cancel out to the same degree as it would have done had the full twenty-four channels been present. Overall there was no significant improvement and it was decided to retain the full twenty-four channels, even though the $\tau-p$ plots showed no welldefined, elliptical trajectories. Even the point of local maximumstack that corresponds to the refracted arrival through the Lewisian is not apparent. This is hardly surprising when the ampl:tude of this arrival is compared with the amplitude of the other reflected arrivals or the noise. Since the rock is very hard and dense relative to the overlying water layer, most of the seismic energy is reflected from the sea floor rather than transmitted through it.

The value of semblance in the $\tau-p$ plane was plotted (figure 25). The data are contoured, which seems to show the maxima rather more cle:rly. It would perhaps heve been preferable if a program had been written to present the value of stack in the $\tau-p$ plane in contoured form, but in view of the time available this was considered impractical. The values of semblance in $\tau-p$ should theoretically resemble the elliptiaal trajectories of stack.
\qquad

NO. OF CHRNNELS $=24$
SAMPLES PER CHANNEL $=1024$
SAMPLE DELAY $=0$
LEVEL OF INTERPOLATION = 1
CHANNEL 1 OFFSET $=245.0$
CHANNEL SPRCING $=100.0$
SAMPLING INTERVAL MS $=4$ START OF RNALYSIS MS $=4$ END OF ANALYSIS MS $=1500$ TIME STEP MS = 8
OPERATOR GATEWIDTH MS $=8$ START AAY PAR. $S / K M=0.00$ END RAY PAR. $S / K M=0.70$
BAY PAR. STEP S/KM $=0.03$
Min. CONTOUR VALUE $=0.10$
CONTOUR INTERVAL $=0.05$

Although the elliptical trajectaries are not apparent it is possible to see local maxima..In figure 25 the maximum (a) probably corresponds to a refracted wave. The maxima directly below it with identical p-values are either multiple arrivals or spurious effects due to noise. In most cases the pulse will be extended in the τ-direction duf to the nature of the source and the proximity of both the pource and the detector to the water surface which may cause unwanted reflections..This leads to ambiguity in the T-Nalue chosen to represent the event and results in an error of $\pm 0.05 \mathrm{milli}-$ seconds in τ. The beginning of the pulse (its smallest τ value) is taken for simplicity and consistency,although taking the centre of the event may also be justified since the discrete sampling density of the data, random noise and correlation with the original $X-T$ data are all factors which may affect the final choice of τ-value.

For the first arrival marked on figure 25, the correspondirg wave his a velocity given by the inverse of its p-value (1.73 milliseconds per metre) which is $5.8 \mathrm{~km} / \mathrm{s}$. This value assumes that the refracting layer is a plane, horizontal layer. The average value of dip was calculated for this sather and found to be less than 0.2° which did not significantly affect the final result. This value agrees with the calculated velocity of the first arrival marked A on the C.D.P gather in figure 22 to within the limits of accuracy of the results. The value of dip for the file from which figure 22 is taken is also negligible. Since this arrival is the first to be seen on the gather (the water wave is considerably slower) the measured velocity corresponds to the velocity of the Lewisian basement. From the calculations performed on all of the rood qual: ty C.D.P gathers and $\tau-p$ semblance plots up to file 607, the velocity of the Lewisian
appears to lie within the range of 5.1 to $5.8 \mathrm{~km} / \mathrm{s}$ (see table l). Using the table of velocit留s for different rock types within the Lewisian complex given by Hall and Al-Haddad (1976), the Lewisian in this area appears to have a mainty addition of some pegutidites and amphibolites. The value of 4.4 ± 0.3 k_{m} / s calculated fromfile 517 should also be noted. It was not used to calculate the average velocity of the Lewisian quoted in table 1. This is justifiable, on both statistical and geological grounds, although it is impossible to interpret this one result as definitely representing an isolated area of lava, even though they appear to exist in the area. The errors quoted in table 1 arise from :-
i) the error in the calculated velocity of sea-water. The values calculated from the few $X-T$ and $\tau-p$ semblance plots on which the event representing the direct water wave was visible were within a range of $0.2 \mathrm{~km} / \mathrm{s}$. This is because of the difficulty of distinguishing the event from noise.
ii)errors in the velocities calculated from the X-T and $\tau-p$ plots due to the difficulty of distinguishing the events, undulations in the sea-bottom which give rise to changes in τ (these errors are small since the events appear to be generally wellaligned in $X-T$), errors in the measurement of dip angle (this is also of minor importance as the error in the calculated dip is negligible ($\pm 0.4^{\circ}$) and the actual value was small enough to ignore any dip correction) and inaccuracies or inconsistencies in the experimental arrangement due to speed or direction changes of the boat.

Second arrivals due to reflécted waves from within the Lewisian were not seen, verifying the observations of Binns et al (1974).

TABLE 1

FILE	$\begin{gathered} \text { VELOCITYさS.E. OF } \\ \text { FIRST ARRIVAL }(\mathrm{km} / \mathrm{s}) \end{gathered}$	OBTAINED FROM:	AVERAGE VELOCITY $(\mathrm{km} / \mathrm{s})$	$\left(\begin{array}{c} \mathrm{S} \cdot \mathrm{D} \cdot \dot{\mathrm{~s}}) \end{array}\right.$	ROCK TYPE
337	5.8 ± 0.4	SEMB.			
352	5.1 ± 0.4	C.D.P.			
397	5.5 ± 0.4	C.D.P.			
412	5.7 ± 0.4	C.D.P.			
442	5.4 ± 0.4	C.D.P.			
457	5.2 ± 0.4	C.D.P.		0.28	LEWIS
517	4.4 ± 0.4	C.D.P.	- - - -	- - -	-IAVA?
547	5.8 ± 0.4	SEMB.			
577	5.5 ± 0.4	C.D.P.			
607	5.1 ± 0.4	BOTH			
652	4.3 ± 0.4	BOTH			
667	4.3 ± 0.4	C.D.P.	4.4	0.12	LAVA
697	4.5 ± 0.4	SEMB.			
712	2.8 ± 0.4	BOTH			
847	2.3 ± 0.4	SEMB.			
892	2.5 ± 0.4	SEMB.	2.5	0.21	MESOZOIC SEDIMENTS
952	2.5 ± 0.4	SEMB.			

S.E. $=$ standard error
S.D. = standard deviation

SEMB. = semblance
$B O T H=G . D . P$. and semblance

Some events corresponding to first refracted arrivals were observed an some of the $\tau-p$ semblance plots. No single, unique event could be seen to represent the second arrival. In figure 25 the events marked b_{1}, b_{2} and b_{3} appear with velocities $2.5,2.7$ and $2.9 \mathrm{~km} / \mathrm{s}$ respectively. They are unlikely to represent real arrivals in view of their large intercept times and are most probably spurious effects due to the poor quality of the data. On comparison with the original $X-T$ data , no corresponding events could be detected.

No other clearly defined events were distinguishable on any of the plots. The event marked (c) in figure 25 is probably a spurious effect produced by noise on the traces. Certainly "it is unlikely that there would be any layers of lower velocity beneath the Lewisian that would be visible on a seismic record. This, and the fact that the event appears to be an isolated occurence not appearing om any other semblance plots, leads to the conclusion that it is a spurious effect and should be treated as so in an interpretation.

The values of stack in $\tau-p$ shown in figures 23 and 24 are difficult to interpret as the data are so noisy. The ellipse representing the reflection from the Lewisian is impossible to detect amongst the noise although there is a local maximum in figure 24 at a p-value of about $0.4 \mathrm{~ms} / \mathrm{m}$ (velocity= $2.4 \mathrm{~km} / \mathrm{s}$) and is labelled (b) infigure 25. This event is probably spurious as it is more likely that event (a) is real rather than event (b) in view of the large τ-value of event (b) , and the fact that the velocity of (a) is nearer to that to be expected for the Lewisian.

Figures 23, 24 and 25 are typical examples of the program outputs generated during this work. In most cases the data are of insufficient quality for interpretation from the $\tau-p$ plots of the types shown in figures 23 and 24 and velocities were picked from the semblance plots as shown in figure 25 or calculated from the C.D.P. gathers as shown in figure 22. Some typical plots of files up to number 562 are shown in figures 26-29. The axes, as on all the plots shown in this thesis, are as labelled in figures 23, 24 and 25.

From file 607 to file 697 there is a change in velocity of the first refracted arrival to a value of $4.4 \mathrm{~km} / \mathrm{s}$ (see table 1). This is the region of the Minch fault zone. This normal fault forms the western boundary of the Sea of the Hebrides trough and divides the Lewisian from the Mesozoic rocks. The program outputs were studied to see if the effects of the fault were visible, but most of the files in this relatively small region were of too poor quality to yield any useful information. This was due to the overall low quality of the data and a reduction in the number of usable channels because of a change of recording tape. The first arrival on file 652 confirmed that the fault zone had been, or was being traverse and that refractions were now being detected from rocks withi the trough.

From files 652 to 952 there appears to be three distinct velocities visible on the semblance plots. Files 652 to 697 show a series of events corresponding to refractions at velocities of 4.3 to $4.5 \mathrm{~km} / \mathrm{s}$. This event is best seen on the semblance plot of file 652 (figure 30). For comparison, figu 31 shows the value of stack in $\tau-\mathrm{p}$ for the same file. It is apparent that there is an event with a p-value around 0.25 ms / m but the exact value is more difficult to pick.

The semblance plot of file 697 (figure 32) appears to sho
all three of the events mentioned above. The $5.5 \mathrm{~km} / \mathrm{s}$ arrival is most probably a spurious effect because of its very early arrival time which is inconsistent with the measured water depth in that area. File 697 is the last file to show an event wit a velocity of $4.5 \mathrm{~km} / \mathrm{s}$. This event is probably a spurious effec as implied by the large τ-value. Comparison with the $X-T$ plot is inconclusive to decide definitely. If the $5.5 \mathrm{~km} / \mathrm{s}$ event is ignored, it could conceivably have the following causes:
i) There is a compressed layer of Mesozoic rocks in this area produced by the movement in the fault zone.
ii) The underlying Torridonian (McQuillan and Binns,1973) has outcropped in this locality through faulting.
iii)There has been an intrusion of Tertiary lava.

Of these, ii) and iii) seem most plausible. The observed velocity of $4.4 \mathrm{~km} / \mathrm{s}$ is reasonable for either model. Smythe and Kenolty (1975) quote velocities of 4.1 and $3.6 \mathrm{~km} / \mathrm{s}$ for lavas i the area of the Sea of the Hebrides some 10 to 15 km northwest of Canna, while the sections and maps given by MicQuillan and Binns (1973) suggest that Tertiary lavas are present in the locality. For these reasons it seems more likely that lavas are the more probable of the alternatives if the first arrival of $5.5 \mathrm{~km} / \mathrm{s}$ is ignored.

After file 697, there are no more appearances of events with velocities around $4.4 \mathrm{~km} / \mathrm{s}$, possibly suggesting that this location marks the eastern boundary of the Minch fault zone. The event (c) in figure 32 is spurious due to its large τ-value. Fi_{i} ures 33 and 34 compare both of Bowen's programs.

Although the aliased trajectory indicated in figure 33 is suppressed in the anti-alias plot, there is no other apparent interpretational advantage in using the more sophisticated and computationally more time-consuming program with data of this quality.

From files 697 to 952 (the last to be processed) the first refracted arrival appears with a velocity in the range 2.3 to $2.8 \mathrm{~km} / \mathrm{s}$, which is the result to be expected for Mesozoic rocks (Smythe and Kenolty, 1975). The large τ-values mean that these events are probably spurious. Typical examples of the plots obtained in thịs region are shown in figures 35 to 39 with similar $p-v a l u e d ~ e v e n t s ~ i n d i c a t e d . ~$

No further events are clearly seen below the Mesozoic and the strong reflections and moderate to low velocities agree with the results of Binns et al (1974).

E

NO. OF CHANNELS $=24$
SAMPLES PER CHANNEL $=1024$ SAMPLE DELAY $=0$ LEVEL OF INTERPOLATION = 1 CHANNEL 1 OFFSET $=245.0$ CHANNEL SPACING $=100.0$ SAMPLING INTERVAL MS $=4$ START OF RNALYSIS MS $=4$ END OF RNALYSIS MS $=1500$ TIME STEP MS = 8 OPERATOR GATEWIDTH MS =8 START RAY PAR. $S / K M=0.00$ END RAY PAR. $S / K M=0.50$ RAY PAR. STEP S $/ K M=0.02$ MIN. CONTOUR VAlUE $=0.10$ CONTOUR INTERVAL $=0.05$

STACK FOR
NTAU $=188$ $N P=26$

NO. OF CHANNELS $=24$
SAMPLES PER CHANNEL $=102$ SAMPLE DELAY $=0$ LEVEL OF INTERPOLATION = CHANNEL 1 OFFSET $=245.0$ CHANNEL SPACING $=100.0$ SAMPLING INTERVAL MS $=4$ START OF ANALYSIS MS $=4$ END OF ANALYSIS MS $=1500$ TIME STEP MS = 8 OPERATOR GATEWIDTH MS $=8$ START RAY PAR. $S / K M=0.01$ END RAY PAR. $S / K M=0.50$ RAY PAR. STEP S/KM $=0.02$ MIN. CONTOUR VALUE $=0.10$ CONTOUR INTERVAL $=0.05$

NO. OF CHANNELS $=24$ SAMPLES PER CHANNEL $=102$ SAMPLE DELAY $=0$ LEVEL OF INTERPOLATION =
CHANNEL 1 OFFSET $=245.0$
CHANNEL SPACING $=100.0$
SAMPLING INTERVAL MS $=4$ START OF ANALYSIS MS $=4$ END OF ANALYSIS MS $=1500$ TIME STEP MS = 8 OPERATOR GATEWIDTH MS $=8$ STAAT RAY PAR. $S / K M=0.0$ K END RAY PAR. $S / K M=0.70$
RAY PAR. STEP S/KM $=0.03$ MIN. CONTOUR VALUE $=0.10$ CONTOUR INTERVAL $=0.05$

NO. OF CHANNELS $=24$
SAMPLES PER CHANNEL $=102$ SAMPLE DELAY $=0$ LEVEL OF INTERPOLATION = CHANNEL 1 OFFSET $=245.0$ CHANNEL SPACING $=100.0$ SAMPLING INTERVAL MS $=4$ START OF ANALYSIS MS $=4$ END OF ANALYSIS MS $=1500$ TIME STEP MS = 8 OPERATOR GATEWIDTH MS $=8$ START RAY PAR. $S / K M=0.0$ END RAY PAR. $S / K M=0.70$ RAY PAR. STEP S/KM $=0.03$ MIN. CONTOUR VALUE $=0.10$ CONTOUR INTERVAL $=0.05$

NO. OF CHANNELS $=24$ SAMPLES PER CHANNEL $=10$ SAMPLE DELAY $=0$ LEVEL OF INTERPOLATION CHANNEL 1 OFFSET $=245.0$ CHANNEL SPACING $=100.0$ SAMPLING INTERVAL MS $=4$ START OF ANALYSIS MS $=4$ END OF ANALYSIS MS $=150$ TIME STEP MS $=8$
GPERATOR GATEWIDTH MS $=8$ START RAY PAR. $S / K M=0$. END RAY PAR. $S / K M=0.70$ AAY PAR. STEP $S / K M=0.0$ MIN. CONTOUR VALUE $=0.1$ CONTOUR INTERVAL $=0.05$

5.3.2. Line 9

Data were processed from file 277 to file 652 so as to include the Torridonian and Mesozoic rocks (figure 18). Velocity analysis was performed on every fifteenth file and the average dip for the file was calculated and corrected for, as for line 7. The overall quality of the data from line 9 was poorer than from line 7 and the number of C.D.P. gathers of sufficient quality that were obtained was only fourteen. An example is shown in figure 40. All the results obtained are summarised in table 2. All of the $\tau-\mathrm{p}$ semblance plots were noisy, and the first refracted events were indiscernable. Figure 41 shows a typical example. The events lying between $p=0.60$ to $0.70 \mathrm{~ms} / \mathrm{m}$ represent the direct water wave, but other events are difficult to idertify. The events with p-values of $0.40 \mathrm{~ms} / \mathrm{m}$ and $0.17 \mathrm{~ms} / \mathrm{m}$ may be due to refractions or merely spurious effects - it is impossible to say which.

From file 277 to file 502, the velocity of the first refracted arrival is relatively constant and has an average value of $4.6 \mathrm{~km} / \mathrm{s}$. This is interpreted as being the velocity of the Torridonian and is in fair agreement with the value of $4.8 \mathrm{~km} / \mathrm{s}$ quoted $b ;$ Smythe et al (1972) for the Torridonian around northern Skye, and $b_{:}$Sunmers (pers. comm.).

The data from file 577 to file 652 are of particuiarly bad quality. Several changes of recording tape and the excessive noise from glitches rendered the majority of even the C.D.P. gathers completely useless for interpretation. The only two files that could be interpreted gave velocities for the first refracted arrival as $2.4 \mathrm{~km} / \mathrm{s}$ ard $3.9 \mathrm{~km} / \mathrm{s}$. The former result agrees with the value of velocity calculated for the Mesozoic rocks in line 7, but the latter result does oot. The composition and velocity of the Mesozoic rocks may well differ between the area around line 9 and around line 7 , and there is no reasor to assume that the velocities will agree exactly. Nevertheless, tre value of $3.9 \mathrm{~km} / \mathrm{s}$

TABLE 2

FILE	$\begin{aligned} & \text { VELOCITYさS.E. OF } \\ & \text { FIRST ARRIVAL }(\mathrm{km} / \mathrm{s}) \end{aligned}$	OBTAINED FROM:	AVERAGE VELOCITY (km/s)	$\underset{(\mathrm{km} / \mathrm{s})}{\mathrm{S})}$	ROCK TYPE
277	4.6 ± 0.4	C.D.P.			
292	4.9 ± 0.4	C.D.P.			
307	4.6 ± 0.4	C.D.P.			
322	4.1 ± 0.4	C.D.P.			
337	4.9 ± 0.4	C.D.P.			
397	4.4 ± 0.4	C.D.P.			
412	4.4 ± 0.4	C.D.P.	4.	0.30	$\begin{aligned} & \text { TORRID- } \\ & \text { ONIAN } \end{aligned}$
427	4.1 ± 0.4	C.D.P.			
442	4.4 ± 0.4	C.D.P.			
457	4.9 ± 0.4	C.D.P.			
487	4.9 ± 0.4	C.D.P.			
502	4.4 ± 0.4	C.D.P.			
577	3.9 ± 0.4	C.D.P.	-	-	MESOZOIC SEDIMENTS
592	2.4 ± 0.4	C.D.P.	-		

S.E. = standard error
S.D. = standard deviation
seems inordinately high but because of the lack of good data, reasonable interpretation is impossible. The discrepancy may be due to geological reasons, but is more likely to be merely a reflection of the poor quality of the data and the ambiguity of choosing the first refracted event on the C.D.F. gather, particularly as the amplitude of this event is considerably smaller than the subsequent arrivals further down the trace. These will tend to swamp the first arrival when the normalisation process is applied.

Second refracted arrivals were impossible to discern on all the files along line 9.

As with line 7, the quality of the data has been insufficient for interpretation to be made with the $\tau-p$ mathod alone, and with the lowest quality data the method has been completely impotent. Figure 42 is a typical example. Only the simplest of interpretations has been presented since any further detail is unjustified.

PROCESSING PARAMETERS

NO. OF CHANNELS $=24$
SAMPLES PER CHANNEL = 1024 SAMPLE DELAY = 0
LEVEL OF INTERPOLATION = 1
CHANNEL 1 OFFSET $=245.0$
CHANNEL SPACING $=100.0$
SAMPLING INTERVAL MS $=4$
START OF ANALYSIS MS $=4$
END OF ANALYSIS MS $=1500$
TIME STEP MS = 8
GPERATOR GATEWIDTH MS $=8$ START RAY PAR. S/KM $=0.00$
END RAY PAR. $S / K M=0.70$
RAY PAR. STEP S/KM $=0.03$
MIN. CONTOUR VALUE $=0.10$
CONTOUR INTERVAL $=0.05$

CONCLUSION

The purposes of this work were to investigate the velocity structure of regiors in the Sea of the Hebrides and to determine whether or not the T-p transform is aoplicable to the interpretation. The velocity structure was determined and apoears generally to be consistent with previous work, although some slight differences are apparent. It was found the the τ-p transformation was of seriously limited practical amlicability for this work because of the quality of the data. Noisy chanrels, due to enuipment failure, and the limited offset rendered the $\tau-p$ transformation wholly inappropriate and rec ourse to simpler, conventional methods of interpretation was found necessary. However, the usefulness of the transformation should not be judged solely on the results obtained in this work. bith better quality data, it may rove to be useful not only in interpretation but also in orocessing routines as mertioned briefly by McMechan and Ottolini (1980). A way of utilising the transform is to apply it in the rorm:l way to $X-T$ data, then to remove the unwanted, spuriors effects such as aliasing and finally to apcly the transformation to the $\tau-0$ data in reverse to recorer the origiral X-T data. In this way the firal signal to noise ratio should be increased, since the $\tau-p$ ditasetfocil totes the nortial separation of pure sigral from no:se. This procrss is currently beirf investigated in industry and acears to be successful in improving the quality of C.D.F. gatrers zefore the: are stacket.

REFERENCES

Backus, G., and Gilbert, J.F., 1967, Numerical application of a formalism for geophysical inverse problems, Geophys. J.R. astron. Soc., 13, 247-276.

Bates, A.C., and Kanasewich, E.R., 1976, Inversion of seismic travel times using the Tau method, Geophys.J.R. astron. Soc., 47, 59-72.

Bessonova, E.N., Fishman, V.M., Ryaboyi, V.A., and Sitnikova, G.A., 1974, The Tau method for inversion of travel.times-1: Deep seismic sounding data, Geophys. J.R. astron. Soc., 36, 377-398.

Bessonova, E.N., Fishman, V.M., and Sitnikova, G.A., 1970, Determination of the limits for velocity distributions from discrete travel time observations, Paper presented at the 7 th Upper Mantle Symposium on Geophysical Theory and Computers, Södergarn, Sweden.

Binns, P.E., Mcouillan, R., and Kenolty, N., 1974, The geology of the Sea of the Hebrides, Rep. no. 73/14, Inst. Geol. Sci., H.M.S.O.

Bowen, A.N., 1980, An investigation into the tau-p mapping, M. Sc. thesis, University of Durham (unpubl.).

Brune, J.N., 1964, Travel times, body waves, and the normal modes of the earth, Bull. seismol. Soc. Am., 2099-2128.

Bullen, K. 玉., 1963, Introduction to the theory of seismology, University Press, Cambridge.

Diebold, J.B., and Stoffa, P.L., 1979, The traveltime equation, tau-p mapping, and inversion of common mid-point data, Geophysics, 46, no. 3, 238-254.

Gerver, M.L., and Markushevich, V.M., 1966, Determinatior of seismic wave velocity from the travel time curve, Geophys. J.R. astron. Soc., 11, 165-173.

Gerver, M.L. and Markushevich, V.M., 1967, On the characteristic properties of traveltime curves, Geophys. J.R. astron. Soc., 13, 241 - 246 .

Hall, J., and Al-Haddad, F.M., 1976, Seismic velocities in the Lewisian metamorphic complex, northwest Britain - 'in situ' measurements, Scott. J. Geol., 12, no. 4, 305 - 314.

Harker, A., 1941, The west Highlands and The Hebrides, University Press, Cambridge.

Henry, M., and Orcutt, J.A., 1980, A new method for slant stacking refraction data, Geophys. Res. Lett. Washington., I, no. 12, 1073-1076.

Herglotz, G., 1907, Über das benndorfsche problem der fortflanzungsgeshwindig beit der erdbebenstrahlin, Fhys. Z., 8, 145-147.

Johnson, L.E., and Gilbert, F., 1972, A new datum for use in the body wave travel time inverse problem, Geophys. J.R. astron. Soc., 30, 373380.

Kennett, B.L.N., 1977, The inversion of reflected wave travel times, Geophys. J.R. astron. Soc., 49, 739-746.

Mayne, W.H., 1962, Common reflection point horizontal stacking techniques, Geophysics, 27, 927 - 938.

McMect:an, G.A., and Ottolini, R., 1980. Direct observation of a p-T curve in a slant stacked wave field, Bull. seismol. Soc. Am., 70, no.3, 775 - 789 .
McRuillan, R., and Binns, P.E., 1973, Geological Structure in the Sea of the Hebrides, Nature (phys. Sci.), 241, $2-4$.

Peach, B.N., and Horne, J., 1930, Chapters on the geology of Scotland, Oxford University Fress.

Richey, J.E., and Thomas, H.H., 1930, The Geology of Ardnamurchan, North-West Mull and Coll, Mem. geol. Surv. Scotland, H.M.S.O.

Savit, C.H., 1977, Future trends in geophysical exploration : Oil and Gas J., 15, 129-132

Schultz, P.S., and Claerbout, J.F., 1978, Velocity estimation and downward continuation by wavefront synthesis, Geophysics, 43, no. 4, 691-714.

Smythe, D.K., and Kenolty, N., 1975, Tertiary Sediments in the Sea of the Hebrides, J. geol. Soc. London, 131, 227 - 233.

Smythe, D.K., Sowerbutts, w.T.C., Bacon, M., and Mc uillan, R., 1972, Deep Sedimentary Basin below Northern Skye and the Little Minch, Nature (phys. Sci.), 236, 87-89.

Stoffa, P.L., aid Buhl, P., 1980, Two-ship multichannel seismic experiments for deep crustal studies, J. geophys. Res., 84, 7645-7660.

Stoffa, r.L., Buhl, P., Diebold, J.B., and Menzel, F., 1979, Direct mapping of seismic data to the domain of intercept time and ray parameter - a plane-wave decomposition, Geophysics, 46, no. 3, 255 - 267.

Taner, M.T., and Koehler, F., 1967, Velocity spectra - digital computer derivation and applications of velocity functions, Geophysics, 34, no. 6, 859-881.

Telford, K.M., Geldart, L.F., Sheriff, R.E., and Keys, D.A., 1976, Applied Geophysics, Cambridge University Fress.

Wiechert, E., 1910, Bestimnung des weges der erdbebenwellen in erdinnern, 1. Theoretisches, Fhys. Z., 11, 294-304.

