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Abstract
of
A Regge-based model for the elastic scatteringAhadrons at
all angles is developed, which combines the best features of a
conventional Regge model with those of a quark interchange model.
As t tends to -« the meson Regge trajectories approach negative
integers, while their residues vary like negative integer powers of

t, the sum of the two integers being such that the Dimensional Counting

Rule is satisfied.

Within this framework nucleon-nucleon differential cross
*

sections, polarizations and spin correlation parameters, and n p
differential cross-sections are studied. It is found that the Regge
pole terms dominate for -t <1 (GeV/c)Z; Regge cuts become important
at intermediate t values, but at large angles the meson-Reggeons (with
trajectories now approaching integers) re-emerge as the most important
contributions. Fits are presented which give a good account of the
experimental data at all angles for the pp, pn and pp differential
cross-sections, polarizations and spin correlation parameters {(where

+
available) and the n"p differential cross-sections.
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Introduction

Hadronic interactions are usually viewed in one of two ways,
depending on the degree of momentum transfer (PT) involved. When 'PT'
is small a hadron behaves as a single particle of finite size, but as
,PTI increases more detail can be resolved until the hadron looks like
a collection of point-like constituents. In a similar way small
momentum transfer reactions are most simply described in terms of
exchange of Regge trajectories on which lie composite hadrons, while
large momentum transfer phenomena are best explained by exchange of
the constituents. In between there lies a grey area where both

viewpoints become complicated.

Thg aim of this work is to develop a Regge-based picture of
elastic hadronic scattering throughout the angular range from 0° to
90° centre of mass scattering angle. This model will embody the
strengths of traditional Regge phenomenology at small angles and the

properties predicted by constituent models at large angles.

Chapter 1 reviews the Regge and constituent models. These
are developed into the basis for an all angle model in Chapter 2,
which is then applied to studies of p-p, n-p and pp differential

cross-sections (Chapter 3), pp, n-p and pp Polarization and spin

+
correlation parameters (Chapter 4) and n p differential cross sections
(Chapter 5). The definitions and conventions used throughout the
thesis are given in Appendix A. The figures are located at the end

of each chapter.
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CHAPTER 1

THEORETICAL BACKGROUND

1.1 Introduction

In High Energy Physics, interactions between particles are
usually described as occurring via the exchange of field quanta. In
most such theories (e.g. Quantum Electrodynamics) calculation of
observable quantities can only be performed for diagrams and sums of
diagrams containing a limited number of exchanges. Where the coupling
of the quanta to the physical particles is small, a theory (if
renormalisable) can make a precise prediction of an observable by the

summation of relatively few contributing diagrams.

In the strong interaction, however, the couplings need not be
small. Quantum Chromodynamics (Q.C.D.), the currently favoured hadronic
theory, predicts a renormalised coupling of coloured quarks and gluons,

2 2

which is dependent on kinematical variables; for Q >>QO

2
( 2) ) as (Qo ) (1.1.1)
g Q = (11.N <2.N_) 2
1 = F a, (Q Z)In Q.
* 12xn S o 2
QO

where NC = number of colours (=3) and Np = number of flavours; Q2 is a
(4-momentum transfer)2 variable and QO2 is the renormalization point
(see e.g. Politzer (1974)). For processes involving large QZ, a (Qz) is
much less than one and quark scattering amplitudes are easy to calculate.
Since quarks are confined, however, estimation of physical observables
involves making assumptions about the effects which bind the hadrons
together, so that the predictive power of Q.C.D. is limited even at large
2

Q". When Q2 is small, aS(QZ) is large, so diagrams involving many

elementary exchanges are important and the situation becomes much too

Q\“\HAM UNIVEHS,’,‘},
complicated to calculate in perturbative Q.C.D. 4

\ 50CT 98z
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These multiple exchanges may however be regarded as being
combined into particles. For large as(Qz) they are bound into colour
singlet states corresponding to mesons, baryons and perhaps ''glueballs',
In this view, the small Q2 region is simplified, being governed by the
exchange of Regge pole trajectories. But at larger Q2 the picture is

complicated by multiple particle exchanges i.e. Regge cuts.

Hadronic scattering at small angles and high incident energy is,
thus, described simply in terms of Regge theory, and at large angles and
high energy by the exchange of elementary quarks and gluons. This first
chapter is concerned with a more detailed discussion of the theoretical
situation, prior to the proposal of a model to account for the elastic
scattering data over the whole angular range. Section 1.2 looks at the
Dimensional Counting Rule, which successfully predicts the energy
dependence of elastic differential cross-sections at fixed large-angles.
The large-angle experimental results are outlined in Section 1.3, while
Section 1.4 discusses the merits of various quark and gluon exchange
scattering mechanisms. In Section 1.5 we turn to small angle scattering
and describe the particular Regge model to be used later as a basis for

fitting this kinematical region.

1.2 The Dimensional Counting Rule

At large centre of mass scattering angles (Gcm), hadronic 22
scattering differential cross sections, when multiplied by an integer
power of s, are found to scale (i.e. are independent of any dimensional

variable). Thus it is found that

N do t
] — (AB—~CD) = f[—] ‘ 1.2.1)
ae S (S,t}u ave Mundelstam variables _seeﬂpp.ﬁs

where f[g} is independent of dimensional variables. The power of s for

a given reaction is predicted by the Dimensional Counting Rule:




- 1.3 -

N 2 n-2=n, +n, +n, +n0., - 2 (1.2.2)

where 0, = number of elementary (quark) constituents of hadron i

(1 = A, B, C, D) (See e.g. Brodskyet al (1975a)).

A simple, naive derivation of the rule is as follows. Postulate
that the incident and final state hadrons are each composed of n,
elementary constituents which have their momenta aligned with that of
the hadron (a reasonable assumption in the infinite momentum frame).
Assume that the interactions between constituents of the same hadron
or between constituents of different hadrons are scale invariant, though
not necessarily the same. Such an interaction might be gluon exchange
between quarks (see fig. (1.2.1)). The amplitude for this diagram is

- 8 v VvV -
A= ulp )" Glpy) (——5—2— ulpg)y” G(py) (1.2.3)
pA—pC) +ie

where the u(pi) are the wave functions of the free quarks in momentum
space. At high energy each wave function contributes a factor
proportional to (momentum)% to this amplitude. The gluon propagator
(guv/(PA'PC)Z + ieg) contributes a factor proportional to (momentumyz,

so that if all momentum variables are scaled by a factor, A, say, then

the amplitude is independent of XA and is said to be scale invariant.

Returning to the derivation, herd scattering now occurs between
two elementary constituents of the incident hadrons (fig. (1.2.2)).
Further exchanges (of number m, say) occur among the constituents to
bind them into the final state hadrons. Since the interactions between
contituents are scale invariant, the only dimensional variables entering

2

the scattering amplitude will be a factor of q (q2=(momentum transfer)z)
for each of the internal constituent propagators (marked with —e— in

fig. (1.2.2) of which there are m, so that




will be

so that

and the
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q

1" _(t
amplitude, A « {—TJ F{—] (1.2.4)

~

The leading contributions to the amplitude at large q‘

the diagrams with the lowest value of m,

m . = n +n, - 2 (1.2.5)

for qz large
n_+n,=2
A = [LZJC d FH (1.2.6)
q S

Note that for q - q scattering as in fig. (1.2.1), nC+nd=2

. . 2
amplitude is scale invariant as expected. Since q <« S and

C D
do 1 2 1 2|t
— « == lal « F LJ (1.2.7)
I sl
dt SZ Sn-Z S
with n=Zn, +n_, +n, +n

The Fock-space components of the initial and final state hadrons

which give the leading behaviour as s—» can be seen to be those containing

the smallest number of constituents, so from now on n, is assumed to be

the number of valence constituents of hadron i. The behaviour of dg/dt

in N-N and n-N elastic scattering are thus predicted to be

do 1 t
d—t (NN g NN) « ;ﬁ fNN ['S—]
(1.2.8)
do 1 t
it (aN - N) « 35 an [;]

S

at large t and s.

(1.2.8) only gives the leading behaviour at high energy and large

angle, of course. At smaller values of s corrections proportional to

-(n+i)
s

(i=1,2,3) must be added, making do/dt more strongly dependent upon

s at fixed angle in this energy region.
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The Dimensional Counting Rule, then, gives very definite
predictions for the behaviour of elastic scattering data, provided high
enough energies are studied. In the following section, these

predictions are compared to the available experimental data.

1.3 Large Angle Scattering Data

A. Differential Cross Sections

Measurements of large angle differential cross sections are
available up to s = 50 (GeV/c)2 for p-p scattering over a wide range of
energies (see Fig. (1.3.1)). Other reactions are less well studied
(see e.g. Figs. (1.3.2-4)), but nevertheless provide a good test of the

predictions of Section (1.2). The form of (1.2.1) has been fitted to

experimental data and some of the results are summarized in Table (1.3.1).

Those results marked "own fit" are described in more detail in Section
2.2 and depicted in Figs. (2.2.2) and (2.2.3). The Dimensional Counting
Rule predictions give generally excellent agreement with the data,
especially considering their asymptotic nature and the limited energy

ranges so far covered by experiments.

B. Spin Measurements

Recent experiments at the Z.G.S. at Argonne have produced large
angle measurements of pp spin-spin asymmetry parameters which, together
with polarization measurements, can give further insight into the

underlying scattering process.
The polarization parameter is defined by

_do/dt (1) - dojdt ()
P = o7ar (1 7 do/ac (D) (1.3.1)

(either beam or target polarized)
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and the spin-spin correlation parameters by

o =z dofdt (t,t) + do/dt (44) - do/de (1)) - do/de (41) (1.3.2)
ij T do/dt (t,t) + do/dt (44) + do/dt (t}) ¢ do/dt (4t) U

where t | refer to the polarization state of the beam and target, and
i, j refer to the directions relative to which the beam and target

polarizations are measured.

i, j=n, 1, s

where n = normal to the scattering plane

—
]

longitudinal (along beam direction)

"sideways' (perpendicular to n and 1).

73
|

Polarization and Arm measurements are available over the complete
angular range in p-p at pjzp = © GeV/c and 12 GeV/c and other Aij at
Plap = 6 GeV/c (Figs. 1.3.5-7). Additionally there are 90%m data for
A between these two energies (Fig. (1.3.8)).

Because of the symmetry of pp—pp scattering, P must vanish at

90%cm independent of the model; and this, of course is confirmed by the

data. In contrast in np-np at Plap = 6 GeV/c, P= -.4 at 90° (Fig. (1.3.9)).

At pp = 11.75 GeV/c Arm is seen to rise steeply to ~ 0.6 at
90°cm, corresponding to

do(tt) do

' T (= 3.9% - (1.3.3)

1.5
-1.0
This value is surprisingly large considering the smallness of Ann at
lower angles, and provides a test of theoretical models. It is impossible
to tell from the available data whether Ann is continuing to rise to 90%cm

or levels off before this point. The amazing similarities between Figs.

(1.3.6) and (1.3.8) should be noted.
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A, and A show a much smoother rise in magnitude than A _,
11 ss nn

and Ass seems to be effectively zero throughout the angular range.

The various asymmetry parameters thus exhibit a number of
features, which should help in deciding upon the nature of the large

angle scattering mechanism.
To summarise this section, any successful model for hadronic
elastic scattering at large angles must:

a) predict a fixed angle energy dependence for the differential
cross section in accordance with the Dimensional Counting

rule.

b) reproduce the angular dependence of the differential cross

section at fixed energy.

¢) account for the relative signs and magnitudes of the

asymmetries, Aij’ at large angle.

d) explain the relative magnitudes of amplitudes in related

processes.
e) be compatible with theories of small angle scattering.
In Section 1.4 various possible mechanisms are discussed and

the most likely one chosen.

1.4 The Nature of the large angle scattering mechanism

So far, nothing has been specified about the exchange between
the composite hadrons except that it must be scale invariant. The two
most obvious candidates to compose such an exchange are quarks and gluons.

Consider first gluon exchange.
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A. Exchange of a single gluon between the hadrons

In the spirit of the parton model the qqg coupling is taken to
be small for large momentum transfer processes, due to asymptotic freedom.
If colour confinement is neglected for the present, the dominant
contribution from gluon exchanges will come from single gluon diagrams
(see Fig. (1.4.1) for a typical leading contribution to N-N scattering).
q-q scattering via a gluon is scale invariant so that hadron-hadron

scattering by this mechanism obeys the Dimensional Counting Rule.

Redrawing Fig. (1.4.1) as Fig. (1.4.2) and comparing with

Fig. (1.4.3), it becomes obvious that

do do 2 2
T (AB~AB) = C T3 (qq-qq) Fyo (t) Fo (t) + u channel exchange

(1.4.1)

where FA and F_ are the electromagnetic form factors for hadrons A and

B

B, and C 81 is a factor counting the number of coherent diagrams.

Now, at Piap = 11.75 GeV/c and ecm = 90°
expt.
3—3 (pp~pp) = 107> mb/(Gev)® (1.6.2)
(from Crabb et al (1978))

which, when substituted into (1.4.1) together with a proton electromagnetic
form factor Fp(t) ~ t-2 gives

d expt

297 (qa=qq) » 100 mb/(Gev)? (1.4.3)

compared with the naive Q.C.D. prediction

QCD

49" (qqaq) = -3
ac qq—qq) =

usz(t) ﬁ% ~ 1073 mb/Cev? (1.4.4)
t

FSYTN

with us(-lO) ~ 0.15.
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Not only is the naive QCD prediction much smaller than the
experimental value, but single gluon exchange between colour singlet

states, such as the physical hadron, is forbidden. At least two gluons

must be exchanged between the quarks so that the hadrons remain colourless,

thus at least two extra powers of as(t) are needed in (1.4.4) making the

Q.C.D. estimate even smaller.

Furthermore, if the data are fitted with a single effective Regge

pole, i.e.

R

20‘eff

1 (t) 2
© = s | B(e) | (1.4.5)
]

Q—I&
tia

the effective Regge trajectory aiff(t) in Fig. (1.4.4) is obtained. It
has been argued (Coon et al (1978)) that the form

R
2a () 2
« _12_ o off | B(t) | (1.4.6)
s

Q.o
ctjaQ

is a better one to use to obtain aiff(t) in which case Fig. (1.4.5)

(t) is seen to fall below -1,

R
results. In either case, at large -t O ff

whereas exchange of vector gluons would produce uiff ~ 1. Thus, apart
from the Dimensional Counting Rule there is little evidence in the
differential cross section data for gluon exchange being the dominant

mechanism, and plenty against it. It may, however, have a place in

describing large pT jet phenomena.

B. Landshoff triple-gluon exchange

The above arguments make it unlikely that gqq—qq scattering via
vector gluons is responsible for large angle elastic scattering of
hadrons. Landshoff (Landshoff (1974)) put forward an alternative
mechanism whereby, instead of one large momentum transfer occurring
between one quark from each hadron, several transfers of lesserpT occur

between different pairs of nearly on shell quarks. In N-N scattering




- 1.10 -

(see Fig. (1.4.6)) each quark would scatter through an angle 8 so that
the three quarks from each nucleon would emerge in the same direction,
eliminating any need for further gluon exchange in leading order
diagrams to rebind the quarks into their parent particles.

The amplitude for this reaction is given by

2
i 3
A(pp-pp) = R— A" (qq—qq) (1.4.7)
(stup?)?

where pz is a hadronic scale size (see e.g. Farrar and Wu (1975)). This

corresponds to

do 1 t u

it (pp) = ;8' f[;, ;] (1.4.8)
The pinch singularity caused by multiple exchange of gluons between the
protons gives rise to a slower energy dependence than given by the
Dimensional Counting Rule, so that this amplitude would dominate at

-8
high energy. This s energy dependence however, is not seen at currently

accessible large angles.

As in section A the effective Regge trajectory for this process
must be asz = 1. This, again, is in contradiction with the available
large angle data which exhibit ® e < -1. Thus, although the triple
scattering mechanism may be important to large angle scattering at very
high energies, there is no sign of it being present at the moment.
Furthermore, Brodsky et al (Brodsky et al (1979c)) have shown that when
Sudakov form factors are included in the qqg vertices of Fig. (1.4.6),

the Landshoff contribution is asymptotically damped, so it may never be

significant.

The highest energy pp data currently available are the Cern
I.S.R. measurements. These are at largelt', but at energies such that

|t|<<S. In this regime the triple scattering formula (1.4.7) gives
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do (pp~pp) = L , (1.4.9)
dt 8
t
independent of s, assuming asz = 1. This agrees very well with the

data at large |t| (see Fig. (1.4.7), but being a real contribution,

cannot interfere with the almost totally imaginary Pomeron (dominant at small
ftl) to give the observed sharp dip at t = -1.4. The whole of this region
can, however, be explained by models using a Pomeron plus a Pomeron @
Pomeron cut (again see Fig. (1.4.7)) which accurately reproduce the

dip structure.

Another point against the triple scattering mechanism in the
I.S.R. region is that Landshoff and Pritchard (Landshoff and Pritchard
(1980)) have calculated the effect of gluon exchange across the qqg
vertices in Fig. (1.4.6). These modify 1.4.7 in the limit s — =, |[t]

large but <<s by a factor

exp [-— 2 b1 logs logt + bzlogzt—‘ (1.4.10)
2
g2 g2 (NC +1)n
with bl = == NCn ; b2 = 5 N 5
8n 8n c

Nc = no. of colours (=3) and n = no. of multiple scatterings (=3 for
pp). The resulting behaviour of do/dt is no longer able to describe
the I.S.R. data. There is, thus, little phenomenological evidence that

the Landshoff mechanism contributes to hadron-hadron scattering.

C. Quark interchange

(1) Energy dependence and form factors
Having discussed and rejected gluon exchange the other constituent-
level candidate from which to compose thelarge{t|inter—hadronic exchange
is the quark. One of the principal objections to the gluon exchange
mechanism discussed in part A of this section was that the predicted

magnitude of the differential cross=sectionis much smaller than that
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observed. This is because a gluon of the high momentum required

couples only weakly to the valence quarks of the hadrons. Now, most of
the momentum of a high energy hadron is possessed by its valence quarks.
Transfer of a valence quark from one hadron to another would, then, also
involve a large transfer of momentum. At least two quarks must be
involved in the exchange so that all initial and final states may be

colour singlets.

Fig. (1.4.8) shows a leading order (in ms) quark interchange
diagram contributing to nucleon-nucleon scattering. Notice that this
contains the same number of qqg vertices as does the gluon exchange
diagram of Fig. (1.4.1). However, as it is the two quarks in Fig. (1.4.8)
that transfer the high momentum, the (running) strong coupling constant
can be greater than in the earlier diagram, in which case this
contribution to the scattering amplitude will also be greater. The
possibility thus exists that such quark interchange diagrams account

for the major part of the large angle scattering amplitudes.

The quark interchange mechanism is used by Brodsky et al in
their Constituent Interchange Model (CIM) (e.g. Brodsky et al (1973a),
(1973b), (1977) and also Brodsky et al (1979b) for a description in
terms of Q.C.D.). In Brodsky et al (1977) the magnitude of the large
transverse momentum diffe;ential cross section for a variety of
processes, both elastic and inelastic, are fitted successfully within
CIM, using only two parameters. These are constant couplings for the
baryon-quark-diquark and meson-quark-antiquark vertices. There is thus
no reason to suppose that the quark interchange mechanism cannot account

for the size of the large-angle differential cross-sections.

The fixed angle energy dependence of a diagram such as Fig.

(1.4.8) can be determined from (1.2.4), here rewritten with s replacing

2
q
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A & — F [%J (1.4.11)

where m is the number of internal quark propagators (marked as —e— ).
Comparing Fig. (1.4.8) with Fig. (1.2.2) it can be seen that the value
of m is the same in both cases, and a short investigation soon reveals
that the lowest value of m possessed by an interchange diagram for a

given process is determined as in (1.2.5). Thus the quark interchange

mechanism obeys the Dimensional Counting Rule.

A lowest order quark interchange diagram contributing to a

process AB—CD may be factorised in the following way (see also Fig.

(1.4.9a))

A(AB—~CD) = A(Aq—Cq) . FBD(t) (1.4.12)

where FBD(t) is the lowest order contribution to the electromagnetic
form factor. The validity of this is further illustrated by Fig.
(1.4.9b) which compares the appropriate lowest order contribution to
FNN(t) with the bottom vertex in Fig. (1.4.8). Calculation of the form
factors, and of the appropriate vertices of interchange diagrams gives

the following behaviour

1

FBD(t) < =5 (1.4.13)
t
where N = {(number of valence quarks and antiquarks in hadrons B and D)-1
i.e. N =1 for mesons

2 for baryons.

Good fits to the measured electromagnetic form factors are obtained

with -1

Fmeson(t)

and (1.4.14)

Fnucleon(t) = ] .9




- 1.14 -

where rnp is the mass of the p meson (see Collins et al (1978)). These

agree with (1.4.13) in the limit at t — -® as expected.

The Drell-Yan-West relation (preill and Yan {1970), West (1970))
can be used to predict the behaviour of the deep inelastic electron-
proton scattering structure functions Wl and vW2 from (1.4.16). This

. -p 2p-1
states that if F(t) ~ |t for large |t|, then Wl(x), vwz(x) ~ (1-x)
for x close to 1 (x being the fraction of the momentum of the parent
hadron formed by the longitudinal momentum of the struck constituent).

So, from (1.4.13) and Drell-Yan-West

Wl(x), vwz(x) ~ (l-x)3 as x — 1 (1.4.15)

for deep inelastic scattering of electrons off protons. The distribution
of momentum among the valence quarks of a proton is found to agree well

with this prediction.

(2) Angular dependence of the differential cross-section,
Gluon exchange fell down heavily in its prediction of the

effective Regge trajectory, a Quark interchange is now examined

eff”

for consistency with experiment in this regard.

Looking at (1.4.12) one sees that aR

off of a quark interchange

diagram for a process AB—CD is determined by A(Aq*Cq) (or by A(Bq*Dq),

whichever gives the highest a ). The form of this quark-hadron

R
eff
scattering amplitude is highly dependent on the precise model used.

For instance, in most papers describing CIM“, Brodsky et al find

(u)

Any (Aq»Cq) = Fq

1
« = (1.4.16)
u

*Note: The three CIM results quoted here all relate to the version
of the model which represents the proton as three g state rather

than a q + core state) and hence obey the D.C.R.




1 for mesons

where N

2 for baryons

1

Which yields in the Regge limit (s = ®, t fixed)

1 1
ACIM (AB—CD) 5 R €1.4.17)
S t
and hence
o} - N (1.4.18)

CIM

In contrast, Brodsky et al (1977) contains the results

- N l s u
— (np = np) « ~ T+ B 73 (1.4.19)

(where the two terms in the brackets correspond to the two
interchange topologies (see Fig. (1.4.11)) present in np
scattering and a and B are constants given by simple quark

counting).

and
do 1 52 + t2 32 + u2
dt (pp~pp) = - 5 + 75 (1.4.20)
S t u t u
These yield
R R
o CIM(PP) = o ooy (p) = -1 (1.4.21)

A third result for p-p scattering is quoted in Coon et al (1978):

2

do 1 s
It (pp pp) = =33 (1.4.22)

S tu

. o R )
which again gives a CIM(pp) = -1.
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The above results are all considerably closer to the uReff's
extracted from the data (Figs. (1.4.4),(1.4.10)) than were the

predictions of the gluon exchange models. Nevertheless, in the pp

: R
scattering case, where the data is most abundant and a gg Can best be

pinned down, the theoretical values seem too high at large |t|.

, R
However, the quantities a

CIM obtained above are not the best quantities

to compare with the large angle experimental results — ugIM being
appropriate for s = ® at fixed t (and hence s>>-t), whereas at large

angles, t is of the order - % . A more valid comparison may be made

using the parameter

s 2 |62 49 o1y
— Os dt
®oc L (1.4.23)
o = P
CIM 2 dOCIM
S
dt

The three versions of CIM quoted above each yield EEIM(pp) = -4 at
90ocm, which for s = 38 (GeV/c)2 corresponds to t = -19 (GeV/c)Z.

(pp) at s = 38 (GeV/c)2 with results obtained

. AR
A comparison of Aam

from data in the range (20 g s g 50 (GeV/c)2 is shown in Fig. (1.4.12).

Note that at large Itl uR

of f is extracted only from data at the higher

end of this energy range. Although agreement is not perfect, the
theoretical curves are sufficiently close to the experimental results
at large -t for the discrepancy to be made up by minor changes to the

assumptions used in the calculations or by higher order corrections.

(3) Helicity amplitudes and crossing relations
The spin-flavour part of the proton helicity wave function is

given by




JI8|p,+) = 2|u,e)|u,+)|d,-)+2|u, ) |d, =) |u,+)+2[d, ) |y, ) |u,+)
“lue) fu, =), ) - o, ]d, ) Ju, =) - ld, ) e, +) fu, =)
S, u, o) d,e) - Ju, ) Ju, o) Ju, ) - |dy ) [u, =) u, e

(1.4.24)
- Vi8lp,-) = 2|u,-)|u,)[d, )2 |u, ) |d,+) |u,-)+2]d,+) u, =) |u,-)

-lu,-)lu,+)|d,-)- [u,-)]d,-)lu,+)- ld,-)lu,-)lu,+)

-‘u,+)'u,-)|d,-)- |u,+)|d,-)|u,—)- Id,—)!u,+)|u,—)

where.lq,k) signifies the wave function of particle q of helicity

A(=%%). The importance of the order of the quark wave functions reflects
the three possible values of the colour quantum number. Each quark must
have a different colour so that the proton is a singlet under SU(3)colour'

The neutron wave function may be obtained by substituting |u) - -'d) and

[d) = |u).

Using the ?, notation outlined in Appendix B, and @i to denote
the "forward" scattering amplitude only (i.e. prior to incorporation of
Fermi statistics), the experimentally measured N-N helicity amplitudes
are derived below within the framework of a simple quark interchange model.
Since the elementary exchanges between the consitutent quarks are via
spin-1 gluons, it is assumed that the quarks do not flip helicity. It
is further assumed that the amplitude of an individual diagram is
independent of the flavour and helicity of the interchanged quarks, and
of the nucleon flavour and helicity. Similar assumptions will be made
for mesons when these are considered later. Note that only quarks of

the same colour may be interchanged.

The wave functions, (1.4.25), and simple counting give, for pp

scattering (see e.g. Brodsky et al (1979a))




@l = [ %? + % + é + % ] f(s,t,u) = %%-f(s,t,u) i
)
~ 14 )
= 37 f(s,t,u) )
) (1.4.25)
. -17 )
(PQ = Tf(s,t,u) )
)
) o )
q)z = (PS = 0 )
where f(s,t,u) is independent of the baryons involved.
Similarly for np = np
~ 14 )
¥ = 7 f(s,t,u) )
)
~ 22 )
(p3 = T f(s,t,u) )
) (1.64.26)
- 8 )
(Pa = § f(s,t,u) )
)
_ - )
(PZ = q)s = O )

Fermi statistics may be incorporated into the full scattering
amplitudes by combining the forward and backward scattering amplitudes
according to the rules given in Appendix C. The full amplitudes are

then, for pp

9, = % [31 f(s, t, u) + 31 £(s, u. t)] ;

1 )

9; = 3 [14 £(s, t, u) + 17 £(s, u, t)] )
) (1.4.27)

9, = -é [17 £(s, t, u) + 14 £f(s, u, t)] §

)

(p2 = (ps = O )

and for np-—np

9 = % (14 £(s, t, u) + 17 £(s, u, t)] )

)

93 = % [22 f(s, t, u) + 25 f(s, u, t)] ;
. ) (1.4.28)

% = 3 [8f(s, t, u) + 8 £f(s, u, t)] i

)

= 0

NS
"
P
i
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The pp amplitudes are obtained from (1.4.28) by crossing

o, = %[17 flu, t, s) + 14 f(u, s, t)] g
o5 = 5031 £, £, &) + 31 £(u, 5, ©)] )
) (1.4.29)
9, = %[14 f(u, t, s) + 17 f(u, s, t)] ;
9 = 95 = 0 ;

Table (1.4.1) compares predictions of the three types of model
discussed in this section for the helicity amplitudes at 90%m.
Derivations of the Landshoff scattering amplitudes may be found in
Farrar and Wu (1975). The predictions given by Farrar and Wu are more
exact than those quoted in Table (1.4.1), which are approximations

obtained using a simplified version of the model.

The spin averaged differential cross-section, in terms of the

helicity amplitudes is

do 2 2 2 2 2
i |¢1| + |¢2| + I¢3| + |¢4| + 4|@5| K(S) (1.4.30)
where K(S) is a kinematical factor independent of nucleon flavour. The

quark interchange prediction for the ratio of do/dt (ap-np) to da/dt

(pp—~pp) at 90%m is

do o

Te (npmp;90Tem) o 6L+ w? L ae)?

Io = = 5 5 5 = 0.59  (1.4.3)
T (pp=pp;90 cm)QI (62)° + (31)° + (31)

In the triple gluon exchange model, this ratio is = 0.31, while in the
single gluon exchange model it is = 0.33. These are compared with
experiment in Fig. (1.4.13). All three predictions are in qualitative
agreement with the data, the gluon scattering figures being rather better,
but the data is at relatively low energies (s<25(GeV/c)2), where pre-

asymptotic corrections may be needed to all the theories.
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The ratio do/dt (pp~pp)/do/dt(pp-pp) is not well determined
experimentally at high energy and large angle. At Plab = 5 GeV/c
and 90%m its value is ~1/100 (Chabaud et al (1972)). The only 90°%m
measurement at higher energy is from preliminary data at 12 GeV/c
(de Bellefon et al (1978)) which yields < ;b . Single gluon exchange

predicts the ratio to be 0.068 at 90ocm, while the Landshoff mechanism

gives 0.39. The CIM prediction is

-4
do - o] s L oa=b
it (pp) i (pp) = {—] = 2 =~ 0.063 (1.4.32)

u

although this ratio is very sensitive to the angular dependence of the
pp scattering amplitudes, and other interpretations of quark interchange
give different answers. No firm conclusions can be drawn from these

results, but experiment seems to favour theories which predict %% (pp) to

be much larger than %% (pp).

The asymmetries, Aij’ and polarization are easily determined from
the predictions summarized in Table (1.4.1) using their definitions in
terms of helicity amplitudes from Appendix B. These are compared with
the experimental values at 90%cm in Table (1.4.2) (see Figs. (1.3.5-7) for
data). In general, quark interchange, gluon exchange and Landshoff
predictions are all in qualitative agreement with experiment or else
plausible excuses can be found why this is not so. It is thus impossible
to discriminate between the mechanisms using spin data alone.

Measurements at higher energies would be welcomed as tests of these

constituent models.

The relations between np elastic scattering amplitudes are
easier to derive because pions have spin zero and hence there is only
one helicity wave function for each type of pion. The charged pion

helicity wave functions are
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" = X [:la+>|u'> - |c-i_)lu+):l

2 (1.4.33)
7y - JL_ I:ld )37y - la5 e J

2

The quark interchange predictions for 1 p elastic scattering helicity
amplitudes may be obtained using (1.4.25) and (1.4.34) and simple

. + +
counting. These are, for n p—»n p

nonflip 12 6 (1.4.34)
9 = 37 F(s,t,u) + 36 F(u,t,s)
wflip -0
and for n p—mt p
¢nonflip ;g F(s,t,u) + %é F(u,t,s) (1.4.35)

where F(s,t,u) is independent of the flavour of the external particles.

The ratio of the cross sections at 90%cm is again strongly
affected by the angular dependence of the amplitudes. Brodsky et al

[Brodsky et al (1973a)] find that

F(s,t,u)
FT“E‘;TEEE = 4 at 90%m
Ui Sey

leading to a prediction of

do + o+ do , - - 81
2 (xpn p)CIM///EE (x"p=1"p) = 3z = 2.25 (1.4.36)

The large angle data at present contains no clearly discernible
. + - . . .
difference between n p and n p differential cross-sections, however, the

6

error bars are such as to tolerate easily ratios of the order of (1.4.3*3.

In this section three alternative models for large angle elastic
scattering of hadrons have been considered and assessed in the light of
the criteria listed at the end of Section 1.3. Exchange of gluons between
one quark from each hadron was excluded because it could not account for

the magnitude of the large angle differential cross section nor its
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angular dependence. Triple gluon exchange does not reproduce the DCR
prediction and encounters the same problem with the angular dependence.
The quark interchange mechanism, however, does not meet with these
difficulties, and gives predictions for crossing relations between
different processes, and between different helicity amplitudes of the
same reaction, which are always at least in qualitative agreement with
the data. For these reasons, the quark interchange mechanism will be
assumed to be the correct model for elastic scattering in the limits of
ecm -~ 90° and s ~ ®. A review of many of the topics discussed in this
section can be found in Brodsky et al (1979a). Having now dealt with
large angle scattering, Section 1.5 will be concerned with the small

angle regime. Ways in which these two kinematical regions may be linked

by a single theory will be examined in Chapter 2.

1.5 A Regge model for small angle scattering

The Regge theory approach to small angle scattering is well
established and very successful. A Regge amplitude is composed of
contributions from exchanges of trajectories on which lie the physical
hadrons. A trajectory, a(t), is the path across the complex angular
momentum plane traced by a singularity in the scattering amplitude.
When a trajectory passes through either an even or an odd (dependent
on it signature) positive integer for a positive value of t, there is
a pole in the amplitude corresponding to a resonance of mass vt and
with the quantum numbers of the trajectory. Extrapolated to negative
values of t, the trajectory governs the behaviour of its contributions
to the scattering amplitude. A pole trajectory yields a contribution

of the form

a_ (£) a. ()

n
1 iz g R (1.5.1)
AR = ]:1] TR () e s

where Tp (t) is a real function and the factor of 1 or i depends on
whether the signature of the trajectory is +1 or -1. (1.5.1) is valid in

the limit as s—=® with t fixed.
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If sufficiently large energies are taken, only a few
contributions like (1.5.1) should be necessary to approximate an
amplitude. These are the ones whose trajectories are highest lying at
the value of t being considered. 1In elastic scattering amplitudes it
is the vacuum quantum number Pomeron (P ) trajectory, with uP(O) =1
which dominates at highest energy and -t<l. At lower energies the next
highest lying trajectories become important. For small |t|, these are
the natural parity meson poles, p, A2, w, £, with ap (0) = 0.5. At
larger |t|, cuts (multiple exchanges), whose trajectories have smaller
gradients than those of the poles which compose them, should become
significant. The Regge picture, thus becomes more complicated as one
moves from small ’t’ to large ft|, as more and more cuts become involved.

A comprehensive review of Regge-physics is found in Collins (1977).

The model adopted here as a basis for small angle scattering
is the Reggeon Photon Coupling Analogy (R.P.C.A.) of Collins et al
(Collins et al (1978 a,b,c)). This predicts relationships among the
couplings of the leading exchanges, P, ,, AZ’ wy, £+ The pairs f, w
and A2, p are considered‘as approximately exchange degenerate (EXD).
Exchange degeneracy requires that the two exchanges, one of each
signature, have the same couplings, residues and trajectories, so that
their sum constitutes a purely real amplitude as required by duality in
processes where the s-channel quantum numbers are exotic. The P and f

couplings are related by the f-Dominated Pomeron hypothesis, and the

isoscalar to isovector meson couplings by the Vector Dominance hypothesis.

Within the R.P.C.A. model, trajectories are assumed to be

straight lines. The Pomeron trajectory is determined to be

UP(C) = 1.067 + 0.1 ¢ (1.5.2)
by fitting to do/dt (pp~pp) at very high energies. The meson trajectories

are fitted as
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O‘f(t) = 0.50 + t g
)
a,(t) = 0.40 + 0.96 t )
) (1.5.3)
O‘Q(t) = 0.51 + 0.85 t g
)
o (t) = 0.42 + 0.85 t )
A, )

using data from a variety of processes.

The contribution of a pole trajectory, o is written in the

R
form
A ~A o=
A A A a=rel [Apg=2p|
AC 2V -t 2 J-t 1
A (AB=CD; R) = - . «R(t)-
Asrp ™y Mg Mo (e
A A
B % C (acip).B, | (BDR)—E—— .
B'D 1 - =oo
- 0.9}
-SF %R () YR (D)
e s (1.5.4)

where the A's are the helicities of ‘the initial and final state hadrons;
N is the number of BB R or BB P vertices to allow for the difference between
baryon and meson electromagnetic form factors, N = O for nn—=nn, N = 1

for np—np, N = 2 for pp-pp;

1 )
R(t) = for signature +1 exchanges)
2sin(na(t)/2) )

) (1.5.5)
i )
and = for signature -1 exchanges)
2cos(na(t)/2) )

The B's are real and in general are functions of t.

A small EXD-breaking term is introduced between the couplings of
the f and %ﬁ to baryons, so that B(baryon baryon;f;t=0) = {(1+0.14).
B(baryon baryon;w;t=0). The following changes are made to allow for
absorption in the helicity non-flip amplitudes due to the presence of

cuts:
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a) A factor of 0.435.[1 - 5251 is included in the real and

imaginary parts of the p and A2 amplitudes.

b) The factor of uo(t) in the imaginary part of the

amplitude becomes
t 1.9t £
up(O) [l + 0.19] e [l - 5?5}

¢) The factor of um(t) in the real and imaginary parts of

(1.5.6)

the w amplitude becomes

2
t t
@, (0 [1 + _0.19] [1 - _‘0.9]

This model provides a good simultaneous fit to many reactions for

R N N O W N N W N W N AL N U W .

s > 10 (GeV/c)2 and |t] <1 (GeV/c)2 as illustrated by Figs. (1.5.1).
Further details relevant to particular processes will be described

where necessary.

Models have now been established for both large and small angle
scattering. The problem of integrating these into a single model

covering all angles will be dealt with in Chapter 2.

1.6 Conclusion

In this chapter, hadronic elastic scattering has been examined
from two view points. In the Regge theory view, small |t| scattering
at high energy is simply described in terms of the exchange of a small
number of pole trajectories. At large |t|, the picture is complicated
by the presence of multi-particle-exchange cuts - more and more cuts
becoming important as t becomes more negative. Conversely, if the
interaction is seen as the exchange of elementary quarks and gluons,
it is the large-momentum-transfer region, where the strong coupling,
a 1is small, that presents the simple picture. The small angle regime, where
o 1is large, is complicated by the importance of diagrams involving very

large numbers of elementary exchanges.
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The quark interchange mechanism has been selected as the most
likely model for large angle scattering after comparison with other
elementary exchange mechanisms. In Chapter 2 quark interchange and
Regge models will be examined more closely with particular reference to
the no-man's-land of intermediate angle. A model will then be
formulated to describe hadronic elastic scattering across the whole
angular range. This model will be refined and applied to various

processes in the ensuing chapters.
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Table (1.3.1)

Reaction D.C.R. value Fitted n Data range and reference for fit
of n
np-np 10 10.40 £ 0.34() 10 < s < 22.4 (GeV/c:)2
| 9.81 £ 0.05 (Stone et al (1977))

9.7 £ 0.5 all pp data for |t|, |u|

PP~-PP 10 > 2.3 (GeV/c)2
J (Landshoff and Polkinghorne
1973))
9.9 + 0.3 all pp data £ Itl > 2.5,
s < 50 (GeV/C)2
(Own result)
n p-1 p 8 8 + 1 ]
n+p-1t+p 8 7 £ 1
K p-K'p 8 8 + 1
> Brodsky et al (1973c))
KLp-KSp 8 8.5 = 1.4
+
Kop-'n A 8 7.4 £ 1.4
+
K p-1"3 8 8.1 *+ 1.4 |
t +
np-np 8 8.0 £ 0.5 (Own result; angular form taken

from Brodsky et al (1973a) fitted

for 19 < s < 60, large angle)




Table (1.4.1)
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CIM Triple gluon Single gluon

PP—PP

¢ Q,say L,say S,say

? 0 0 0

P Q/2 3L/8 ]2'—38- S

P -Q/2 -3L/8 - % S

P 0 0 0
np-~np

P Q/2 L/2 S/2

P 0 0 0

¢ 49Q/62 3L/8 % S

P 16Q/62 0 0

? 0 0 0
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Fig. (1.2.1)

Quark-quark scattering via a single gluon exchange
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[}
A
.

Fig. (1.2.2)

A typical diagram contributing in leading order to N-N scattering by

a process obeying the Dimensional Counting Rule. The dots indicate
the off mass shell fermion propagators which contribute to the scaling

behaviour in (1.2.4).
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Experimental measurements of P(pp) at large angles
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Fig. (1.4.1)

A diagram contributing to N-N scattering via single gluon exchange
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Fig. (1.4.2);

Fig. (1.4.1) redrawn in terms of electromagnetic form factors
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Fig. (1.4.3)

An electromagnetic

form factor, FB(t)
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Effective Regge trajectory (with tolerance band) for pp scattering

in the range 20 ¢ s g 50 (GeV/c)z; aeéff(t) defined by (1.4.5)
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Effective trajectory (with average tolerance band) for pp scattering

with plab<3o GeV/c; aReff(t) defined by (1.4.6)

{Taken from Coon et al (1978))
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Fig. (1.4.6)

Landshoff triple gluon scattering
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Fig. (1.4.8)
A leading order Quark Interchange Diagram (N-N scattering)

The dots indicate off mass shell fermion propagators
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Contribution of the nucleon electromagnetic form factor to a Quark

Interchange diagram
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Effective

10 <Py,

Regge trajectory for m p scattering in the range

< 50 GeV/c; mﬁeff(t) defined by (1.4.5)
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The two interchange topologies contributing to np scattering
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Fig. (1.4.12)

Comparison of &RIM for pp at s = 38 (GeV/c)2 with effective

Q

trajectory data
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CHAPTER 2

THEORETICAL DEVELOPMENT

2.1 Introduction

The purpose of this chapter is to form an integrated picture
of hadronic elastic scattering at all angles. Section 2.2 looks at
fits to large angle data using parametrizations based on the QI
mechanism and examines the possibility that simple additive
combination of these with small angle Regge fits can adequately account
for the intermediate angle transition region. Section 2.3 considers
the possibility that Regge and constituent-exchange views are not
distinct, but are each simplifications of the complete picture, valid
in their own kinematic region. Plausible identifications are made
between sums of certain quark- and gluon-exchange diagrams and
sums of Regge exchanges and an outline for an all-angle Regge model 1is
formulated. Section 2.4 then looks at the properties required of the

Regge terms at large angles.

2.2 Fit to large and small angle data

Before forﬁulating a model to account for elastic scattering
at all angles, it is important to look more closely at the R.P.C.A. and
quark interchange models, which so successfully describe the small and
large angle regimes respectively. Valuable information may be gained
from an examination of these models, of their strengths and weaknesses,
of the extent of the regions of their appropriateness and for what reasons

they fail outside these regions.

In Section 1.5 it was shown that R.P.C.A. accounts very well for
the differential cross sections of numerous processes for pygzp = 10 GeV/c
and above, and -t<l (GeV/c)2 (see Figs. (1.5.1)). Additionally, %% (pp~pp)
for Piab 2 100 GeV/c is well fitted out to very large -t by the inclusion

of a Pomeron @ Pomeron cut. When these Regge fits, extrapolated to large




- 2.2 -

angles, are compared with pp and np elastic differential cross section data,
2
in each case the fit below Plab ~ 50 GeV/c breaks down for -t = 1 (GeV/c) .

This is particularly apparent for d¢/dt (pp—pp) (see Fig. (2.2.1)).

At high energy (plab > 100 GeV/c), this large |t| region of
do/dt (pp—pp) is dominated by the P@P cut. This contribution, however,
is much too small to account for the lower energy data. Moreover, the
effective trajectory for 10 < Piap S 50 GeV/c,-t>1 (as witnessed by
Fig. (1.4.4) lies well below that expected for P@® P which (having an
intercept =41 and a very small slope) should be close to +1 out to
relatively large lt]. Further trajectories more cuts or grossly
flattened Reggeon pole trajectories, must be introduced to fit the data
successfully (see Collins and Gault (1976a)). Furthermore, in order to
obtain the power law behaviour of the Dimensional Counting Rule results,
and hence describe well large angle scattering (i.e. close to 90°cm), a
conventional Regge model involving straight line trajectories would need
to embody fixed poles at negative integers for which there is no other
evidence. Such an explanation would lose the elegance and simplicity of
the constituent view of large angle scattering and gain little in return.

Fig. (2.2.2) presents a fit to %% (pp~pp) for t > 2.5 (GeV/c)2

5€0p & 24 GeV/c using a power law scaling parametrization similar

lab
to that suggested in Brodsky et al (1973a):

do 1 1 .
3¢ (ppmPR) = A e R e (2.2.1)
(s+s,) (z,7-2%)
1 1
where 2z = cos © =1 + ——EE——
cm 2
s=-4m
P
z, = 1 + Ztl
1 s-4m 2
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A, n, m, s, t, are free parameters of the fit whose values are
given in Table (2.2.1). t and 1 allow for corrections to power law
scaling at other than higher energies and large angles. The account of
the data is a good one, especially considering the wide angular range
covered. Similar fits to n+p and n p are shown in Fig. (2.2.3) using

the parametrization

49 (ptpep) = A L+z o g1e)7? 4 12
dt n 4
s (1-z)
(2.2.2)
do (e p~np) = A lrz (4(l+z)-2 + 2)2
dt n 4
s (1-2)

The angular dependence is taken from Brodsky et al (1973a) and is
predicted by CIM. The fitted values of the magnitude and the energy

dependence are shown in Table (2.2.2).

The large angle regime is well described in terms of forms
suggested by quark interchange models and the D.C.R. But it is not
clear how to extend the predictive power of constituent models away
from large |t| and s. Purely real terms, such as (2.2.1) and (2.2.2)
cannot by themselves account for interference phenomena such as are

2 , do 2,
observed at 1 < -t < 2 (GeV/c)” in =r3 (pp) and at t = -3 (GeV/c)™ in
do

I (rp). Such power law scaling predictions are, of course, completely

at odds with the Regge behaviour observed at small angles.

Having two models, each successful in its own region of validity,
but with grave shortcomings away from it, the next step must be to try
to combine them in order to obtain a good account of the data at all angles.
The most obvious way in which to try and do this is simply to add together

the amplitudes i.e.

Atotal = ARegge * AQI (2.2.3)
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At first glance, this approach seems promising. For example in %% (pp—pp)
for 10§plabs25 GeV/c, the RPCA model is good for |t] g l(GeV/c)2 and
the QI form (2.2.1) works well for [t| » 2.5 (GeV/c)z, while both models
are small (relatively) away from their regions of validity. Interference
between the two would only be expected between ,t| of 1 and 2 (GeV/c)z,
which is just where it is observed. Unfortunately, the energy dependence
of this interference does not match what is seen in nature as will now

be shown.

The experimental %% has a sharp dip at t = -1.4 (GeV/c)2 at
energies 3 Plab of 200 GeV/c. This region is well accounted for by the
sum of the Pomeron and a Pomeron @ Pomeron cut each with very flat
trajectories near o = 1 and hence the amplitude is virtually entirely
imaginary, while at lower energies conventional Reggeons add an important
real part. Between 10 g Plab $ 25 GeV/c the dip is replaced by a
shoulder and by Pi.ab = 5 GeV/c there is a smooth transition between small
and large angles. Thus the interference is greatest at high energy énd
steadily decreases (or is masked) with decreasing energy. Now the Q.I.
term is purely real, and to reproduce the shoulder shape at intermediate
energies it must have the opposite sign to the real part of the Regge
term. At lower energy Re(ARegge) grows compared to Im(ARegge) and hence

the interference between ARegge and A becomes more severe; the

QI

opposite behaviour to that seen experimentally.

It is not surprising that such a simplistic attempt as (2.2.3)
has failed. The Regge and constituent models are pictures of hadronic
elastic scattering from different view points. But there is no reason
to suppose that they are pictures of entirely different mechanisms, and
there may well be a large degree of overlap between ARegge and AQI' If so,
simple addition of the two terms involves double counting. The following

section will develop a picture in which the constituent view melds smoothly

and naturally into the Regge one, rather than adding to it.




- 2.5 -

2.3 The link between small and large angle scattering

Regge models describe the small angle scattering of hadrons in
terms of the exchange of particles, which, though once thought to be
elementary, are now known to be bound states composed of quarks, antiquarks
and gluons. Large angle scattering, on the other hand, is best seen as
the exchange of these ''more elementary'" constituents. Could it be, then,
that the Regge and constituent models are the same mechanism seen in
different kinematical regions? The two interchanged quarks of a QI
diagram such as Fig. (2.3.1) could be identified with the valence quark
and antiquark of a meson-Reggeon, the difference between the two
situations being the strength of the quark-gluon coupling and hence the

amount of binding or '"dressing" of the valence pair.

Consider, for example, a lowest order QI diagram for baryon-baryon
scattering (Fig. (2.3.1)). For large momentum transfer, where the strong
coupling, @, is small, such diagrams are a valid approximation to the
complete amplitude, but they form only the first term in a perturbative
expansion (Fig. (2.3.2)). @ becomes stronger for smaller momentum

transfer, and diagrams involving more and more gluon exchanges become

important. At small ft|, as is large, and the most important diagrams
are those with many gluons coupling to the exchanged quarks, binding and
dressing them. The perturbative view is then no longer valid and all the
diagrams must be summed. Such sums of diagrams have been shown to lie

on Regge trajectories in certain field theories (see e.g. Collins (1977)

pp 94-99).

In the above reference a Born amplitude

AB ~ if as s - ; I is an integer (2.3.1)

S t fixed
3

is iterated to form a series of ladder diagrams see Fig. (2.3.3). In ¢

field theory an n-rung ladder is found to behave as
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1

A - (K()1ns)? L (2.3.2)
n (n-1)! SI
where K(t) - 0 as t — -
Summing the ladders gives
A = E A - ;L-exp (K(t)lns) (2.3.3)
tot n I
n=1 S

i.e. the total amplitude behaves like a Regge pole with trajectory
¢ (t) = - I + K(t) (2.3.4)
Since K(t) * 0 as t — -=

the energy dependence of Ato at large -t will be the same as that of

t

the Born amplitude A In Brodsky et al (1973b) an iterative series

B*
generated by applying the Bethe-Salpeter equation to a quark interchange
kernel is summed with results again of the form (2.3.4). It will be
necessary to understand the confinement problem properly before series
such as Fig. (2.3.2) can be summed exactly, but it is reasonable to hope

that the total amplitude will be a sum of Regge pole and cut terms with

trajectories behaving as (2.3.4).

Assuming this to be so, the sum of all diagrams in Fig. (2.3.2)
in which one valence quark from each hadron ends up in the other hadron, can
be identified as the sum of all meson pole trajectories contributing to
the process in question. Note that this sum contains the Q.I. kernel
diagram, Fig. (2.3.1), so that it is the large momentum transfer limit
of meson-type Reggeon (£) exchange which results in the observed

behaviour of the elastic differential cross sections at large angle.

Those diagrams which contain two or three pairs of valence quarks
being exchanged between the hadrons sum to produce R ® R and E@R@® R cuts
respectively. It may be seen that if each exchange of a valence quark
pair is replaced by a single meson line coupling to a quark in each hadron,

the result is non-planar - the hallmark of a Regge cut.
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All the exchanges in Fig. (2.3.2) involve at least one pair of
valence quarks being interchanged. Baryon-baryon scattering diagrams
in which gluons transfer the momentum (and hence no flavour is exchanged)
are illustrated in Fig. (2.3.4). The sum of diagrams in which all the
inter-baryon momentum transfer is between one quark from each baryon may
plausibly be identified with the flavourless Pomeron (FP) exchange (see
e.g. Nussinov (1976a)). Diagrams involving two or three such exchanges
between different pairs of valence quarks sum to P® P and P® P ® P cuts

respectively.

Additionally, diagrams such as those shown in Fig. (2.3.5) will
contribute to the total scattering amplitude. Fig. (2.3.5)a) is part
of a P® R cut, Fig. (2.3.5)b) of a P® P® R cut and Fig. (2.3.5)c) of
a P® R® R cut. There are other diagrams which are more difficult to

interpret in terms of conventional Regge amplitudes such as Fig. (2.3.6).

Although only baryon-baryon scattering has been discussed above,
the same principles of interpretation may be applied to meson-baryon and
meson-meson scattering. There would, in general, be two quark interchange

topologies involved rather than the one in the baryon-baryon case (see

Fig. (2.3.7)).

Now that these identifications have been made, certain properties
of the Regge amplitudes at intermediate and large angles can be deduced.
At small |t| the conventional view of scattering via Regge pole exchange
is valid. The trajectories of these poles are found to be approximately
rectilinear in thisregion. At large |t{ but with s>>’t|, cuts may become
important because their trajectories are flatter and so will be higher
than those of their component poles (see equation (3.3.1)). The
residues of these cuts, however, should rapidly decrease as ltl increases,
since at large angles (i.e. It' of the order of s) it is the meson-type

poles which should dominate, summing as they do to the Q.I. kernel.
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Assuming the Reggeon trajectories behave as (2.3.4), at large
-t they must tend to the integer corresponding to the energy dependence
of the appropriate kernel diagram. Some evidence that Reggeon
trajectories do indeed bend at large -t from the rectilinear shape seen
for t > 1 (GeV/c)2 may be found in Barnes et al (1978). 1If a trajectory
takes an integer value the Regge pole amplitude is either purely real or
purely imaginary. Since the Q.I. kernel amplitude with vector gluon
exchange is real, the residues of those meson-Reggeon poles which become
imaginary as t —= -®, must vanish at large -t. The residues of the remaining
poles must be such as to give the DCR-predicted power law energy dependence
at fixed angle. Building the amplitude from Regge contributions does not
restrict the angular dependence in this power law scaling region since
many daughter trajectories (displaced by negative integers from the
parent trajectories) may contribute to the leading fixed angle term (i.e.
the term corresponding to the Q.I. kernel). The residue of such a
daughter with trajectory, say a« - M M=1,2...®) would have to

parent

differ from that of its parent by tM to preserve the DCR behaviour.

At large angles the amplitude will then take the form

uparent t ct2 L
A~ s a+ b ; + :T oo (-t) (2.3.5)
L e
parent dauéhters

where L is an integer and a,b,c are real constants.

Rewriting this'gives

o
A~ s parent+L F {g] (2.3.6)
where F[&] is a scale-independent function giving the angular dependence

of the amplitude. Comparing (2.3.6) with (1.2.7) yields that

L = - (N-2)/2 (2.3.7)

a
parent
with N defined by (1.2.2). Note that for s>>]tl only the parent term

(with coefficient a) in (2.3.5) is significant.
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A Regge model based on the R.P.C.A, including

1) a Pomeron, important at small lt!

2 t
2) wvarious cuts, possibly important for t 3 l(GeV/% , but 5 << 1

3) meson-Reggeons including daughters with trajectories tending to
integers as t — -® and residues chosen so as to give DCR-power

law scaling at large angles

should be able to give a good account of hadronic elastic scattering
processes throughout the angular range from Oocm - QOocm. Further large
angle properties of such a model are investigated in the following

section.

2.4 The Structure of the Regge Ampiitudes at Large Angles

In order to establish the behaviour of the meson-Reggeon terms
at large -t it is necessary to take a closer look at the angular
dependence of the QI amplitude. In particular it is vital to determine

its effective Regge trajectory, since it is to this value that the

uR
QI’
leading meson trajectories will tend as -t becomes large. Now, an

amplitude which obeys the D.C.R. is constructed of terms of the form

A s u t (2.4.1)

where a+b+c = - (NEZ) with N defined by (1.2.2).

In the Regge limit (s - =, t fixed) this becomes

a+b _c

ADCR ~ 8 t (2.4.2)

and hence

R _ _ o (N-2)
“er - &t b = - —— (2.4.3)
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It was shown previously that the contribution to the hadron-hadron
scattering amplitude of a QI diagram can be rewritten as the product of
a quark-hadron amplitude and a hadron electromagnetic form factor (see
(1.4.12)). The form factor depends only on t and at large ]t| varies
as an inverse power (see 1.4.13). The simplest assumption is that no
further t dependence is introduced by the quark-hadron amplitude in which

case the power ¢ is determined entirely by the form factor. So, from

(1.4.13)
C = -1 for a meson vertex
C = -2 for a baryon vertex
R ;
gy can then be obtained from (2.4.3):
R )
GQI = -1 for meson-meson scattering
(2.4.4a)
agI = -2 for baryon-baryon scattering
Meson-baryon scattering receives contributions with o« = -1 and -2,

however the term with the higher lying trajectory will dominate for

large s, hence

a.., = -1 for meson-baryon scattering. (2.4.4b)

QI
These values agree with the result (1.4.18) which was obtained within
CIM using a similar line of reasoning to that given above (see e.g.

Brodsky et al (1973c)).

As noted in Section 1.4(2), however, predictions for angular
behaviour in CIM depend strongly on assumptions made during the
calculations. Results quoted from Brodsky et al (1977) and Coon et al
(1978) in equations (1.4.19-21) and (1.4.22) respectively were obtained
using quark-hadron amplidues dependent on t. Each of these versions

predicts
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M(meson-baryon)= aR

R
(meson-meson) = g e

1 IM(baryon-baryon) = -1

R
CcIiM
(2.4.5)

There are good reasons (expounded below) for supposing ugl to

be the same in all three cases and hence for preferring models yielding

results such as (2.4.5) to those giving (2.4.4).

a) The close connection between the electromagnetic form factor
and one of the vertices of a QI diagram has already been noted: the lower
vertices of the two diagrams in Fig. (2.4.1), for instance behave as do
the meson and baryon form factors respectively. Now the upper vertices
in Fig. (2.4.1) differ from each other in the same way as do the lower
vertices. It is reasonable, therefore, to suppose that the ratio of
the upper vertices is simply the ratio of the form factors, at least to

leading order in % Hence, using (1.4.13)

A(BB~BB) ~ % A(MB-MB) -~ iz A(MM=M) (2.4.6)
t
and so
R R R
ogr (BB) = o, (MB) = ey (m0) (2.4.7)

b) At small It' the most important meson-Reggeon contributions
to do/dt (np) and do/dt (pp) are made by the same group of trajectories,
the leading natural parity trajectories, f, w, p, AZ' (All four are
exchanged in pp scattering, but w and A2 are forbidden in np scattering
by G parity conservation). It is reasonable also to suppose that if a
set of trajectories is important at large ltl in pp scattering, then it
will also be important at large |t| for np. Then, since it is argued
that the QI kernel diagrams correspond to the large |t| limit of sums of

meson-Reggeon exchange diagrams, the effective trajectory a should be

R
QI
the same for pp as for np. This argument can be extended to reach once

again the conclusion (2.4.7).
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¢) There is a family of lowest order Q.I. diagrams for which
the value of ugl may be readily determined. This is the family in which
momentum is transferred between the interchanged quarks. A typical
baryon-baryon diagram of this type is shown in Fig. (2.4.1). In such
cases the quark-hadron amplitude can be expressed as the product of the

quark-quark amplitude and the electromagnetic form factor of the hadron

(1.4.12) then becomes

A(AB-CD) = A(qq—qq) - FAC(t) FBD(t)

t :
i~ FAC(t) FBD(t) as s - o t fixed (2.4.8)

agl is then -1 regardless of the nature of hadrons A, B, C, D.

The link between the QI mechanism and meson-Reggeon exchange is
particularly well illustrated using this type of diagram. Iteration of
the gluon exchange between the interchanged quarks of Fig. (2.4.1)

produces a set of ladder diagrams which sum to give a Regge-behaved

amplitude (see Fig. (2.4.2)).

oRee)

(£) s (2.4.9)

w >
o O

@©
} A, (AB=CD) = a®  (aB-cD) ~ B
. 1 tot
i=1 s - ®
t fixed

Each of the terms in the sum can be factorised, in the same way as the
kernel term, into hadron form factors and a quark-quark scattering

amplitude, and hence so can the sum (see Fig. (2.4.3)).

© © R
- . qq a (t)
izl A, (AB~CD) = F, (1) Fp (¢) g A, (qq=qq) ~ F, (£) Fo (t) qu s
(2.4.10)

Clearly, then, the effective Regge trajectory of the sum is independent
of the nature of A,B,C,D. By the arguments of Section 2.3 aR(t) will

tend to -1 (the value obtained for the kernel alone) as -t becomes large.




- 2.13 -

It should be noted that Brodsky et al specifically exclude
diagrams such as (2.4.1) from CIM calculations. They argue that the
couplings of the gluons exchanged between quarks of the same hadron are
amplified by the hadron wave function, whereas those of the gluon
exchanged between the interchanged quarks are not. Thus Fig. (2.3.1)
(which is included in CIM) is claimed to make a larger contribution to
the scattering amplitude at large angles than does Fig. (2.4.1). Since
both diagrams obey the DCR, if this is true at one energy and scattering

angle it is true at all energies for this same angle.

Conversely, however, it is argued in Shijong Ryang (1978) that
CIM diagrams involve a greater number of large momentum transfer gluon
exchanges than do diagrams such as Fig. (2.4.1). Since the strong
interaction (running) coupling decreases with increasing momentum
transfer this means that CIM diagrams would be expected to contribute

less to the total scattering amplitude at large angles.

It is, for the purposes of determining a« immaterial which, if

R
QI
either, of the above lines of reasoning is correct. Diagrams of the type
illustrated by Fig. (2.4.1) must contribute to hadronic elastic
scattering and, as shown above, behave like % as s - ® with t fixed.

The total QI contribution to MM, MB or BB scattering cannot therefore

have an effective trajectory lower than -1.

The consensus of the above arguments is that

R
aQI (MM) = aQI (MB) = aQ

BB = -1

r (BB)

and hence from now on it will be accepted that the leading meson-Reggeon

trajectory tends to this value as -t becomes large. This is not to say

that lower lying trajectories are not important at large angles. Any number
. .1 . t

of daughter poles can contribute to the same order in Py at fixed T as

shown in (2.3.5). It is to be hoped, however, that an adequate account of

the data can be obtained using a relatively small number of Regge pole terms.
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In Fig. (2.4.4) the differential cross-sections corresponding
to several amplitudes of the form (2.4.1) are compared with the pp
elastic scattering data at Piap = 19.3 GeV/c. The expressions for the
theoretical curves are symmetrical about 9o°cm as required by the identity
if the scattered particles, and are all normalized to agree with the
data at 900cm' None of the curves give a good account of the data over
a large range of t. The curves with aR = a+ b= -1 and hence ¢ = -3
(using the notation of (2.4.1)) tend to fare better at smaller angles,
while those with aR = -2 (c = -2) seem more appropriate at large angles,
although these trends also depend on the value of b. This indicates that
lst daughter Reggeons may well make important contributions to do/dt

as the scattering angle becomes large.

The required properties of a meson-Reggeon term are then, as

follows:

a) For t > -1 (GeV/c)2 the term must behave approximately like
the corresponding term in the RPCA model. The trajectory must be almost

a straight line, a typical expression for which would be
a = 0.5 +0.9 ¢

in the case of a leading natural parity trajectory.

b) At large -t the trajectory must approach a constant value
(-1 in the case of a leading order trajectory). The residue must, in
this region, behave approximately like

B(-t large) = t° (2.4.11)

where ¢ = -a(t = -®) - £§%gl

with N defined as in (1.2.2).
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2.5 Conclusion

A basis has been proposed for the interpretation of elastic
hadronic scattering amplitudes at all angles, in terms of a Regge model.
For t > -1 (GeV/c)2 such a model must approximate to the traditional
Regge picture - straight line trajectories, Pomeron dominant but with
meson-Reggeons important at lower energies, etc. As Iti becomes larger,
but still with |t]<<s, cuts may become important (e.g. the P®P cut is
evident in pp scattering at ISR energies). At large angles, however,
the principal contribution to the differential cross section comes from the
meson-Reggeons. The meson trajectories approach integer values at large
-t, the leading ones tending to -l. Their residues are such that

do/dt approximately obeys the DCR at large angle.

In the following chapters experimental data for N-N and np
scattering processes are examined using this model. Chapter 3 deals
with do/dt (NN), Chapter 4 with NN spin asymmetries and Chapter 5 with

do/dt (n*p).
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Table (2.2.1)

A = 4.56 X 108

tl = 0.20 (GeV/c)2
n = 10.02

sy = -0.56 (GeV/c)2
m = 7.52

Table (2.2.2)

448.0

>
]

n = 7.97
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Fig. (2.3.1)

A lowest order baryon-baryon quark interchange diagram
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The perturbative series of baryon-baryon quark interchange diagrams
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Sum of ladder diagrams in ¢3 field theory
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Fig. (2.3.6)

A contribution
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to a POFR cut with interlinked components
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Fig. (2.3.7)

The two QI topologies involved in meson-meson scattering
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Fig. (2.4.1)

Lowest order baryon-baryon and meson-meson QI diagrams in which
momentum is transferred between the interchanged quarks. The dots

indicate off mass shell fermion propagators.
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Iteration of gluon exchange between interchanged quarks in Fig.

(2.4.1) giving Regge behaviour
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Iteration of gluon exchange between interchanged quarks in factorising

kernel diagram giving factorising Regge behaviour
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CHAPTER 3

NUCLEON-NUCLEON ELASTIC DIFFERENTIAL CROSS-SECTIONS

3.1 Introduction

The ground has now been prepared and the tools assembled for an
attempt at constructing scattering amplitudes which reproduce the measured
values of the physical observables in elastic hadronic scattering processes
across the complete angular range. A model has been proposed, which
combines traditional small angle Regge theory with, at large angles, the
Quark Interchange mechanism. This present chapter is concerned with
applying this model to the differential cross-sections of N-N scattering

processes.

By far the largest amount of elastic scattering data, spanning
the greatest range of s and t, is available for the pp—pp process.
%% (pp~pp) has been measured out to 900cm at energies up to s = 40
(GeV/c)z. Large -t (but not large Ocm) data is available from the Cern ISR
up to s = 4000 (GeV/c)Z. In contrast to this abundance, the only other
NN—-NN measurements performed for t < -1 (GeV/c)2 are for pp—pp and
pn—-pn. The highest energy large [tl pn data is at

s =~ 25 (GeV/c)z, while pp data is now available at s = 400 (GeV/c)2

although the latter does not extend to large angles.

Both Regge theory and the QI approach are valid asymptotically
as s—+®, so that the proposed combined model should be tested using the
highest energy all-angle data available. Data for a range of energies
must be used to determine the energy dependence of the scattering
amplitudes and to study the evolution of structures in the differential
cross-section. If this range extends to too low an energy, however,
the risk is run of leaving the region of validity of the theory. Data

of s = 10 (GeV/c)2 and above will be fitted here, which allows %% for
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pP, pp and pn to be compared over an s range of about 15 (GeV/c)z,
while hopefully remaining in the regions where low energy effects

are not too prominent. Due to the greater abundence and wider range
of pp data, it will be this process which will determine the energy
dependence of the main asymptotic features. pp and pn will play a
large role in examining the isospin and charge conjugation properties

of the contributions to the scattering amplitudes.

The signs of the isospin and charge conjugation eigenstate
amplitudes referred to in this and later chapters are defined according

to phase conventions such that

A(pp-pp) = (I=0, C=+) + (I=0, C=-) + (I=1, C=+4) + (I=1, C=-) )
)
Alpn—pn) = (I=0, C=+) + (1=0, C==) - (I=1, C=4) - (I=1, C=-) ;
)
A(pp—pp) = (I=0, C=+) - (I=0, C==-) + (I=1, C=4+) - (I=1, C==-) )

where (I,C) represents the sum of the contributions with isospin I

and charge conjugation C.

The R.P.C.A. model of Collins et al (see Section 1.5) will
form the basis of the fit at small angles. This region is examined
in Section 3.2. Section 3.3 looks at the intermediate angle region
(¢ < -1 (GeV/c)z, -t<<s up to s = 50 (GeV/c)2 paying particular
attention to the role of cuts. The large angle region is considered
in Section 3.4. Here the behaviour of the model is determined by the
predictions of the QI mechanism. 1In Section 3.5, the final fits
will be presented, coVering the whole range of angles and energies

and incorporating the lessons learnt in the preceding sections.

(3.1.1)
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3.2 The model at small angles

As mentioned earlier the RPCA model of Collins et al gives
a good account of several hadronic scattering processes at small
angles. To avoid wasteful repetition of work already performed the
RPCA will be adopted as the starting point of the all-angle Regge
model. By ensuring that deviations from RPCA become small as t—-0
and as s~ with t fixed a good fit to the data in these kinematical
regions should be guaranteed. The RPCA model was described in general
terms in Section 1.5. 1Its application specifically to NN processes
will be discussed here. The fits presented in this section are taken

from Wright (1978).

The leading trajectories exchanged in NN scattering are P, f,
w, p, AZ' All of these possess natural parity, and hence it is
expected that at high energies the unnatural parity amplitudes should
make only small contributions to do/dt. (See Appendix B for a
discussion of the five independent NN amplitudes and for a definition

of the notation). In the RPCA, the P, w, f exchanges, which make the

most important contributions at small |t| to the natural parity

helicity non-flip amplitude, N have very small couplings to nucleons

O)

at helicity-flip vertices. Also, the p and A,, which make the major

2’

contributions to flip amplitudes are predicted to have couplings at
flip vertices only one third of the f and w non-flip couplings. A
factor of V-t, demanded by kinematics at each flip vertex further

lessens the ratios of N, and N

1 to N, at small |t| . The dominant

2 0

contribution to do/dt is thus expected to come from NO. This

conclusion is supported by the polarization and spin asymmetry (Aij>

data, these parameters being small (< 0.2) except at large [t]| (see

Figs. (1.3.5)-(1.3.9). In this chapter it will be assumed that at
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small and intermediate angles, the whole of do/dt is accounted for by
NO. The consistency of this assumption will later be checked using

fits to N N

10 Ny UO’ U2 obtained in Chapter 4.

The RPCA p, A,, w, f and P contributions to N, (pp-pp) may
be obtained by substituting (3.2.1) in (1.5.4) and using the linear

trajectories, then making the modifications (1.5.6).

na'w
B%_%_ (pp,w) = f(.t) 5 g
)
)
J/na'w )
B%% (pp;f) = f 5 1 + eB) g
)
)
fuJ J/na‘p )
)
)
fw o’ )
)
)
na‘u} at t -j(| )
B%% (pp;P) = fw 5 Ge 1 - E (1 + eB) ;

where a'R is the slope of the appropriate linear trajectory from

(1.5.3); £ =17.10, ¢

B = 0.14, a=0.6, t =0.74, G = 0.47 are fitted

parameters. Note that for natural parity exchanges

1 i_1
2 -2=

B%_%_ = B = B 2 = 8

[N
Nofr

1
-5 -

NO (pp~pp) and No (prepn) may be obtained by reversing the signs of

the appropriate contributions as specified in (3.1.1).




The total cross sections for the three processes can be obtained

from the above via the optical theorem.

6. = '3393 Tm (A(£=0)) (3.2.2)

Di?repancies between the theoretical and experimental curves at low ‘
energies indicate the need for an extra term with isospin 0, charge
conjugation + and a low lying trajectory. This is most readily

interpreted as a daughter of the f with trajectory

and its contribution parametrized as for the f except for an extra
multiplicative constant, whose value (-8.1) has been determined by
fitting to the data. The RPCA curves for the three total cross
sections are compared with data in Fig. (3.2.1). Note that the
majority of free parameters in the model are determined from fits to

CT.

At larges, P is almost entirely responsible for the total

cross sections, and it is this term, with its trajectory intercept

greater than one, which causes the rise in o, with increasing s in

T
this region. The flatness of cT(pp) and oT(pn) compared to cT(ﬁp)

at low energies is explained by the approximate exchange degeneracy

of the p, A2 and f,w pairs - an exchange degenerate pair makes a

total contribution to the pp and pn scattering amplitudes which is
real, and so has no effect on (ﬁ‘in these processes. The small
difference between GT(pn) and OT(pp) is accounted for by the relatively
weak couplings of the I=1 p and A

The steeper fall of g, at very low

2° T

energies is explained by the presence of the f-daughter term.
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Turning now to the differential cross sections, from Fig. (1.4.7)
it is seen that do/dt (pp) is virtually independent of energy for s > 200
(GeV/c)z. This indicates that the scattering amplitude is almost
entirely composed of contributions with trajectories near one. For !t|<1,
dg/dt in this region can be satisfactorily described by a P alone. At
t ~-1.4 (GeV/c)z, however, a deep interference minimum is observed, and
beyond this the variation of %% with t becomes much slower. This large
|t| region is interpreted as being due to a P@®P cut (see Collins et al
(1978b)). The dip at t = -1.4 (GeV/c)2 is then caused by interference
between the cut and P itself. The depth of the dip depends on the
relative phases of P and P@P and hence on the difference between the
two trajectories at this point, The cut trajectory is obtained from that

of the peole;

o = 1-2¢ (t=0) 4 — (3.2.3)
P@Pp P 2

(This assumes that ot is determined by the position of the branch
point).

Since the value of o, (t = 0) is determined from the 0., data, a%

T

is given by the depth of the dip, aP(t) and aPOP(t) are thus strongly

constrained and little freedom is left for adjustment.

The cut used in the RPCA papers is based on that described in
Collins et al (1978b) eqn (8), but with an additional ad hoc term which
compensates in the dip region, for changes made to the Pomeron.
However it was found that a better overall fit is obtained by reverting
to the cut parametrization of Collins et al (1978b). Accordingly
the P must also be modified. This was done by replacing the t dependent

factors in the Pomeron coupling described in (3.2.1), by
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eEE / ]:(1 - x) + xebt]

and by making the replacement (3.2.4)

1 1
REO: Ty =M= 9 ety

R R N N I P N N

in the notation of (1.5.4). This procedure yields the Pomeron t
dependence used in Collins et al (1978b) while retaining the RPCA
coupling at t = 0. The Pomeron and cut together give an excellent
account of the very large s data over a wide range of energies. The
RPCA fit is shown in Fig. (1.4.7). All the P and P®P parameters are
determined in this energy region. The almost complete lack of variation
with energy of the data allows no sizable contribution to come from
lower lying trajectories at these high energies. Any extra terms
required to describe the lower energy data must, therefore, fall off

rapidly as s increases, so as to be small in the ISR region.

The natural parity meson-Reggeons w and f (p and A2 have
smaller couplings) make a sizable contribution to do/dt for s < 60
(GeV/c)2 at |t] <1 (GeV/c)z. This observation is borne out by a
comparison of aeff(expt.) in this region (intermediate between
Pomeron and meson-Reggeon trajectories) and the same parameter at very
high energies (close to the Pomeron trajectory) - see Fig. (l.4.4.).
As can be seen in Fig. (3.2.2), the RPCA fit gives a reasonable
account of the pp data for 0 > t > -1 (GeV/c)2 down to s = 10 (GeV/c)z.
The model agrees well with the data around t = -.8 (GeV/c)2 at Py, = 24
(GeV/c), lies below at 5GeV/c but in between it is rather too high.
This indicates the need for modifications to the detail of the energy

dependence in this region.
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Fig. (3.2.3) shows the RPCA prediction for %% (pp). The shape
of the dip at t = -0.5 (GeV,/c)2 in the plab = 5 GeV/c data is
reproduced well, although the theoretical magnitude is rather too
large. At higher energies, however, the dip persists in the prediction,
while it rapidly disappears in the data. Clearly some refinement of

the model is required here.

Due to the small values of the p and A2 couplings, the RPCA

do do
prediction for I (pn) is very close to that for It (pp). As can be
seen in Fig. (3.2.4), this is in agreement with the data for el <1
(GeV/c)Z. The pp and pn differential cross sections separate, however,

as Itl grows larger.

The RPCA model thus gives an excellent account of the pp, pn
and pp total cross section data, using P, w, f, p, A2 and f-daughter
exchange terms. Addition of a P®P cut enables the very high energy
pp differential cross-sections to be fitted extremely well. %% for
[e] <1 (GeV/c)2 is described reasonably well for all three processes
right down to s = 10 (GeV/c)Z. There are indications (e.g. the
evolution of the dip in %% (pp) at t = -.5 (GeV/c)z) that, even at these

low |t| values, further terms are becoming significant. These will

be discussed in Section 3.3.

3.3 The need for Regge cut terms at medium angles

Looking at the pp differential cross section (Fig.(1.3.1)) a
quite abrupt change of behaviour is observed at t = -1 to -1.5 (GeV/c)2
2 do 2
for 20 < s < 50 (GeV/c)". The steep fall of I for [t] <1 (Gev/e)
changes to a much more gradual decline for ]t| > 2 (GeV/c)z, the two
regions being linked by a very flat ''shoulder'". The similarity between
this change and the one observed in the ISR data may immediately be

seen. In each case a transition occurs from a steeply sloping region to

a much flatter one via some form of interference phenomenon.
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There can, however, be no simple identificaEZOn between the
P®P cut seen at very high energies and what is observed for 20<s<50
(GeV/c)Z. If the predictions from the small angle RPCA model described
in Section 3.2 are plotted against the data in this latter energy range
Fig. (2.2.1) results. For t < -1 (GeV/c)2 the theoretical curves are
well below the experimental points. The trajectory of the P@P cut is
quite firmly determined over a wide range of high energy data. The
data does not allow sufficient freedom for both high and low energy
regions to be fitted by the cut without major modifications to the

parametrisation of its energy dependence.

This problem is illustrated clearly by Fig. (3.3.1), which
demonstrates the energy dependence at fixed t in this region. An
abrupt change of slope may be seen in the data between p,,, = 100 and
200 GeV/c. At energies above this the slope corresponds to o > 1

eff

while at lower energies o (t = =2.4) = 0.15. The evidence thus

eff
indicates that a Regge term with trajectory lower lying than that of
the P@P cut is important for t < -1 (GeV/c:)2 and py,, < 150 GeV/ec.

aeff in this region has a slope of about 0.35, indicating that the

trajectory of the extra term is flatter than those of traditional

meson-Reggeons, but steeper than that of P or the PP cut.

More information about this as yet unidentified contribution
(henceforward called C, for ease of reference) can be obtained by
comparing %g (pp) with %g (pn) and %g (pp). On first examining the pn
data (Fig. (1.3.2)) one is struck by similarity in structure to pp.
Clearly, then, the physics of the two reactions must be similar. At
medium angles, however, %g (pn) is lower by approximately a factor of 2.

If C is the principle contribution in this region, it must, therefore

have mixed isospin properties.
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Turning to %% (pp), (Fig. (3.3.2)) at low energies the
complicated interference phenomena make conjecture about the nature of
individual contributions difficult. The recent measurements at
Plap = 50, 100 and 200 GeV/c however, enable interesting comparisons
to be made with %% (pp). This data exhibits a sharp dip structure at
t = -1.4 very reminiscent of that seen in pp at high energies. In pp,
however, this dip is not seen until p,,, = 200 GeV/c. In fact %% (pp)
at 50 GeV/c bears an uncanny resemblance to %% (pp) at 1495 GeV/c and
presumably arises from the same origin. Unfortunately, there is no
large |t| pp data at 50 GeV/c, but interpolation from Fig. (3.3.2)
yields a value for %% (pp) at t = -2.4 five times the pp value. It
appears, then, that whereas the C term adds greatly to the pp differential
cross section at this energy, its contribution to pp is much smaller,

and perhaps of a different phase. C, therefore, seems to possess mixed

charge conjugation as well as isospin properties.

This complicated crossing behaviour indicates that C is probably
not a single term, but rather a sum of 4 contributions; C(I=1l, C=+),
C(I=-1, C=+), C(I=1l, C=-) and C(I=-1, C=-) each with similar energy
dependences. This rules out it being a pre-asymptotic contribution
to either P or P@®P as both of these are purely I=0, C=+. The next
possibility to consider is that C could be a combination of the four
leading natural parity mesons, f, w, p and A2. It has already been
suggested that the meson trajectories tend to integer values as -t
increases. Could they, then bend in such a way as to account for

the energy dependence attributed to C?
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The trajectories of p and A2 are well determined for t > -1
(GeV/c)2 from analysis of %% (x p— w°n) and %g(n_p - non). (see e.g.
Collins (1977) p.189). In this region they are indistinguishable
from straight lines with intercepts at about 0.5 and gradients
approximately 0.9. (The results of Barnes et al (1978), however
indicate possible flattening for t < -1 (GeV/c)Z). The w trajectory
is less well known, and the f can never be isolated from the

Pomeron, but it is reasonable to expect that these will be similar to

the p and A2'

Thus, the available evidence indicates that the p, AZ, f and
w trajectories have fallen to a value of a=-0.4 at t = -1 (GeV/c)z.
The data indicates that o is close to zero at t = -2, and subsequently
falls with a slope of about .35. If a single trajectory were required
to behave like aP,Azi,w for t > -1 (GeV/c) and like o« for t < -2
(GeV/c)2 it would have to possess a double kink between these two
regions. Since Regge trajectories are required to be Herglotz
functions (i.e. all derivatives must be positive; see Collins (1977)
p. 81) except when trajectories cross, such behaviour is more or less

forbidden. It is thus unlikely that p, A2, f, w are responsible for

the behaviour attributed to C.

As none of the terms used explicitly in the RPCA model is
capable of being modified so as to account for the N-N differential
cross-sections for t < -1 (GeV/c)2 at medium energies, a new
contribution (or contributions) must be introduced. This must possess
natural parity, a trajectory intermediate between that of the Pomeron
and the traditional straight line meson trajectories, and mixed isospin
and charge conjugation properties. A promising candidate is a
combination of f¥P, wypP, pRP, A2®P cuts. The likely properties of

such a combination are discussed below.




If the trajec
the branch peoint (see

composed of two poles
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tory of a Regge cut is given by the position of
eg Collins (1977), Chapter 8), then for a cut

with trajectories

o o
al = ul + alt and az = uzt + uz t
a. o,
o o 1 2
S e T Mt - 1 = % t (3.3.1)
1+t %
Thus, denoting f, w, p or A , by R, and taking
ap = 1.07 + 0.1 t and ap = 0.5 + 0.9 t, the R@P branch point
trajectory is expected to be
* = 0.57 + 0.09 ¢ 3.3.2
“r@P * ( )
This gives %?sz(t = -2.5 (GeV/c)z) = 0.345 which is slightly higher

than desired for C. Also the slopeof (3.3.2) is somewhat low

. expt
compared with a Nevertheless

ef? in the region under consideration.

(3.3.2) is far closer to the C trajectory than anything previously
considered.

Perhaps the dominant region of the branch cut is not,

in fact, the branch point.

e
w

Even if ?R becomes flatter at large -t, (3.3.2) remains a good

approximation. For example if ap= 0.5 + 0.9 t for, say t > -1

=0.1 +0.5¢, o will be given by (3.3.2)

0.05
0.6

and then becomes a

R RXP

(&4

for t > -60. For t < -60 it will be given by 0.1 + t (ie. (3.3.1)

with a 0.1 + 0.5t).

1 %2
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The contribution of an A@P cut to the non-flip scattering
amplitude is (again see Collins (1977) Chapter 8)
p(t)/2

A =
R&P

[ﬂ F(t) saRxP(t) e—maRx
where F(t) is a real function free of kinematical singularities, d is
a constant (in general complex), and the initial factor is 1 if R

has signature +1 and i if R has signature -1. The charge conjugation
and isospin of the cut are the same as for . The energy dependence

is largely determined by the trajectory except for d = -lns. The

phase of (3.3.3) is

- EZ'aR@P(t) [+ l] +’I‘an_l { I;S—IT(%ETJ (3.3.4)
For |d|>>1ns, (3.3.3) thus becomes
(£) —i[l o o (t) -<p]
AR@P = [1] F(t) SGRQP e 2 "RxP . 1 (3.3.
t d*d

where = ta -1 = Im(d)

¢ - n Re(d)

If it is assumed that the four R®PF cuts have similar
trajectories and t dependences but different couplings and complex
constants, d, the R®PFP contribution to the p-p amplitude can be

written as

I

AmP(PP-PP) [Gfp o 5P Lic Pl MMP LG el(pt’P] £(t)s

wP Ayp pP
Similarly -
I3 1] 0 I3 u’ -I—
Apgp(PR-PR) = |G e Lic PP g PP i el"’@PJ £(t)s NBF, 2
) fp w P A,p PP
and

1]

Am(ﬁp—ﬁw

wp Asp

a AL (t)
RxPe ZquP

[Gfpe“"“’ -ic e ig Ay -iGppel‘Pe"] f(r)s REP, 2 REP

(1n s+d)™1  (3.3.3)

5)
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Thus, in.each of the three reactions, the R®P term can be taken to

be multiplied by a different complex constant.

g% (pp-pp) can be fitted out to t = - 4.5 (GeV/c)2 in the intermediate
energy range (10 < p;,, < 24 GeV/c) using the RPCA terms plus an R®P

term of the form

iEw (t%d app(T)
s

|
A’R@P (pp-pp) = -G f(t) e Z RP (3.3.7)

with aRP(t) = 0.5 + 0.3 ¢
and ¢ = % .

Interference between the RPCA terms, dominant at small [t| and the R®P
term enables a reasonably good account to be obtained of both the
shape and energy dependence of the '"shoulder'". The need to reproduce

this shape is a strong constraint on the value of ¢.

Now if C were composed of pole contributions (which would not
include a factor (lms +d)—l) of similar trajectories, the value of ¢
obtained by fitting cdl_cz (pp-pp) would enable the charge conjugation

properties of C to be deduced directly, since then

ag(t) - iz al(e))
AC_pole(pp-pp) = [G(C=+) + iG(C==)]1f(t) s o 2 ;
)
an )(3.3.8)
- - a0 (t)  -i 5 a,(t) ;
AC_pole(pp-pp) = [G(C=+) - iG(C==)1f(t) s e )
with the G's real, i.e.
*op T 7% | (3.3.9)

PP PP
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The result Qpp = -;— would thus indicate that C is approximately odd
charge conjugation. Adding to the RPCA prediction for pPp a term of
the form (3.3.7) with parameters obtained from the fit to pp, but with

g ,- -
¢ = -9, results in a prediction for g_t (pp-pp) which shows a completely

different interference structure to that observed experimentally.

It seems, then, that it is correct to parametrize C as a sum
of cut terms rather than of poles. As to whether these are p, A2, f
and w®P, the evidence is not conclusive. They do, however, appear to
be the most likely candidates, even though the C-trajectory is then
not exactly what would be expected from theory. As a working
hypothesis, it will be assumed from now on that C = f@Pi‘w@P:tA2®Pi'p@P-
This identification is especially attractive in that small |t| and

medium angle N amplitudes show an analogous behaviour with energy.

0
At small |t| and high energy, the Pomeron is dominant, while at lower
energies the leading meson-Reggeons are also important. For t < -2
(GeV/c)2 the high energy data can be reproduced using only a PQP
cut, but at lower energies R® P cuts give the largest contributions
to the scattering amplitude. This relation between the dominant
contributions in these two angular regions helps explain why the
interference features observed at high and medium energies in %% (pp)

are so similar both in nature and in position. The detail of the

parametrization of the R@Pcuts will be discussed in Section 3.4
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3.4 Reggeon behaviour at large -t

In Chapter 2 it was proposed that the dominant contribution
to %% at large angles, should, in Regge terms, come from meson-Reggeon
exchange. At small |t|, the behaviour of the leading terms of this
type is given by the RPCA model, while many large angle properties
may be deduced from QI models. This present section is concerned

with developing a parametrization suitable for use throughout the

angular range.

For t > -1 (GeV/c)2 the meson-Reggeon trajectories are known
to approximate to straight lines of gradients about 0.9. The leading
trajectories of this type (f, w, Ay, p) have intercepts near 0.5.

From Chapter 2, we expect that at large -t these leading trajectories
will tend to -1 asymptotically. A function is needed, therefore,
which is approximately linear for t 2 -1 (GeV/c)2 but which bends
smoothly to approach an integer value as t becomes more negative.

A suitable function is defined by

6 - — = 1t + b (3.4.1)
a+1

where a, b, 1 and I are constants chosen to give the desired
asymptotic properties. Inverting (3.4.1) and choosing the positive

square root solution yields

al{t) = th_+2_b_-_l)+ lz‘/ [(I-lt-b)2+4(a+llt+lb):l (3.4.2)

For t large and positive, lt+b is much greater than I and so

a(t) =1t + b (3.4.3)
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and the traditional linear form is obtained. As t - « (3.4.2)

becomes
alt - -@) 2 - I (3.4.4)

i.e. o is constant as required to match QI predictions. Thus, 1, b
and I determine the behaviour of o at either end of the t spectrum.
The remaining parameter, a, governs the rate of change from the
linear to the constant regions; a small = rapid change, a large =

gradu al change.

The arguments presented in Chapter 2 lead to the choice of
I = 1 for the leading family of trajectories. «(0) for p, Ay, w and
f are precisely known from previous work with the RPCA model. Using

the notation

aRPCA (t) = a4 a't (3.4.5)
we therefore set
a(0) = « (3.4.6)

Similarly 1 is set equal to a'. All that now remains to be done to
fully define oa(t) is to choose a value for a (b is then determined

by the condition (3.4.6)).
A small value for a is desirable on two counts:

(1) The linear approximation for « used in RPCA is good

down to t = -1 (GeV/c)z. Here aRPCA

= -0.4, which is not far off
the asymptotic value a(t?»-=) = -1. The trajectory must therefore

bend quite sharply.
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{(2) Power law scaling fits give a good account of the large
49 (pp) data d 5 GeV/c, at which 6 = 90°
angle 3T (PP ata down to py,, = 5 GeV/c, at which energy cm =
corresponds to t = - 3.5 (GeV/c)Z. Thus a(t) seems already to be very

flat by at least, say, t = -2.5(GeV/c)2.

The transition, therefore, between ''traditional Regge'" and ''consituent!
t regions is expected to be quite sharp. It is interesting to note

that the meson trajectories extracted by Barnes et al (1978) using
triple-Regge theory do in fact exhibit an abrupt flattening at

t = -1 (GeV/c)2 (¢ 2 -0.2 to -0.5). On the other hand it would be
unrealistic to expect a change of behaviour to occur over a t region
much less than the typical hadronic scale of 1 (GeV/c)z. A reasonable
compromise is achieved by choosing a = 0.1. A typical leading natural
parity meson Reggeon trajectory is shown in Fig. (3.4.1). The parameter

values used for this figure are I=1, a=0.1, 1=0.9, b=0.433.

With the trajectory evolved above, the p, AZ’ w, f possess,
at large -t, the fixed -t energy dependence expected of the leading
Regge contribution to the QI mechanism. A suitable t dependence
must now also be found so that, at large -t, these terms should
exhibit power law scaling behaviour in accordance with the DCR. The
successful RPCA parametrization should, however, be retained at
small ltl. To separate these two requirements the residues will be

rewritten in terms of function BR(t) and BQ(t) such that

Q Rip) = . .
B¥(t) + B (t) = B(NANC,R) B(NBND,

R) (3.4.7)
(LHS notation is as in (1.5.4), B's are t dependent)

where BR(t)<<BQ(t) for t < -2.5 (GeV/c)2 and BQ(t)<<BR(t) for t > -1

(GeV/c). It is convenient then to write BR(t) in the form




BR(

t)

so that when s

reproduced. Choo

fit at small |tl.

(@¥]
o]

( - a(t))

RRPCA %rpealt’

. (3.4.8)

(t)

s and BQ(t) = 0, the original RPCA term is exactly

sing a suitable s should then ensure a satisfactory

Inserting (3.4.7) in (1.5.4) yields for non-helicity flip at
large -t
o . Lim -1 Q 1 1
A(NANB NCND,R) * 151 TOT B*(t) R(-I) tz S (3.4.9)
where R(-1) = 1 for signature +1 (f, AZ)
L [aD
sin|
and = L for signature -1 (p, w)
xl
cos |7
Thus
A(NANB*NCND;f or A2) 0 ;
2 Q 1 ) (3.4.10)
while A(NANB~NCND; wor p) = ~ B (t) ;;7 ;

Note that the van
contribution when
duality diagram f
channel exchange,
be real.

N-N processes.

The const

should obey the D

ishing of the otherwise imaginary signature + 1
a=1 is due to the demands of duality. The

or pp scattering has a crossed line in the t

therefore the sum of meson-Reggeon exchanges must

Crossing then requires that f and A2 also vanish in other

raint that at large angles the meson-Reggeons

CR gives
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Q R | s
st s

and hence BQ(t) ~ % for -t large (3.4.11)

BQ must, therefore
1. be small for t > -1 (GeV/c)2
2. behave like t-l for -t large
3. be free from singularities, since the presence of

these would imply poles in the 5 channel.

The following form was found suitable for the non-flip f, uw, AZ’

-exchange terms

I8 .
) = 1 e Zl Bl.(-t)a(t) (3.4.12)
B 1+B

1 + 22 2
1+t

B. and B2 may take different values for each exchange degenerate pair

of trajectories. No significance should be read into the employment
of a(t) except that it gives the expression the desired properties.
In general, any number of daughter trajectories may contribute at

, 1 . t
large angles to the same order in p at fixed 3 as do the parent
trajectories. These may most easily be included in the model by

replacing BQ(t) in (3.4.7) by BQ(t).b{§] where

2
b [EJ = 1+b §+b . (3.4.13)
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In the previous sections of this chapter it has been sufficient
to consider the nucleon-nucleon differential cross sections as being
due to the helicity non-flip natural parity amplitude NO' This
assumption is not valid at large angles as witnessed by the relatively
high values measured for some of the spin asymmetry parameters in this
region (See Figs. (1.3.6) and (1.3.7)). 1In Appendix D the QI model is
used to establish relationships among the total meson-Reggeon
contributions at large s and -t to the five independent amplitudes
(NO, Ny, Ny» Ups UZ) of the pp~pp, np-np and pp—pp processes. These

relationships are used to define the asymptotic (s—= % fixed) ratios

of the amplitudes in the parametrization presented here.

Note that although the backward scattering terms in (D.4) and
(D.5) etc. are not readily interpretable in terms of forward scattering
Reggeon exchanges, account will have to be taken of them in the final
parametrization if a reasonable fit to the data is to be obtained.
In the case of pp—pp scattering the symmetry properties required by
Fermi-Dirac statistics will have to be built into the complete

amplitudes, the final state hadrons being identical Fermions.

To complete this section, there follows a summary of the
prescription which will be used to form natural parity non-flip meson-

Reggeon amplitudes applicable at all angles.

1. Start with the approximately exchange degenerate pairs of
Reggeon amplitudes as given by (1.5.4) together with (1.5.3) and

(3.2.1). The couplings (3.2.1) may be factored by exponentials in t.

2. Change the linear trajectories for ones of the form

(3.4.2) with I = 1.
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3. Replace the product of the couplings by a function of the
form given by (3.4.7), with BR(t) given by (3.4.8) and BQ(t) given by

(3.4.12).

4.  Apply to BR(t) the absorptive corrections detailed in

5. Multiply BQ(t) by a function of % of the form (3.4.13)

to allow for daughter terms becoming important at large angles.

Other refinements applicable to individual exchange terms will
be detailed as necessary. A similar procedure will be followed for helicity-

flip and unnatural parity contributions. This will be described in Chapter 4.

The parametrization of %% (NN-NN) has now been discussed in

the contexts of three main kinematical regions, i.e.

1. tz -1 (GeV/c)2 where %% is dominated by the Pomeron
pole, but where meson-Reggeon pole contributions are also important

at lower energies.

2. t < -2 (GeV/c)z, but - %} << 1, where cuts have been
found to be important. The PP cut dominates for plab » 200 GeV/c

and a combination of R®P cuts does so for plab ¢ 50 GeV/c.

n 2 5 .
3. - 2} of the order of 1, where mé}n-Reggeons with

trajectories tending asymptotically to -ve integers govern the behaviour
do

Ofd—t-.

In the following section these regions will be linked together and
fits to the data over the angular range 0 - 90° om will be

presented.
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3.5 Fits to %% (NN-NN) over the angular range 0 < ecm < 90°
. do do do ,- = ,
The fits to I (pp~pp), I (pn~pn) and I (pp—pp) shown in

Figs. (3.5.1)-(3.5.3) were obtained using the parametrization described

below. The values of the parameters are given in Table (3.5.1).

To simplify the problem of ensuring the correct symmetry
properties each naturality amplitude will be split into two parts;
a "Q" part consisting of those portions of the meson-Reggeons

Q(t) (or BQ(u)) and an "R" part consisting of everything

proportional to B
else. The full "R'" amplitudes will be obtained from the forward

parts as described in Appendix E. Similarly the full "Q" amplitudes
will be constructed using (D.l) (subject to certain pre-asymptotic
modifications detailed in Chapter 4). The "Q" and "R" contributions
will then be summed. An analogous procedure will be applied to the
"Q" components of the n-p and pp amplitudes via (D.2) and (D.3). The
equivalent relations for the '"R" parts are not known, however, since
these depend on the properties of the pn and pp charge exchange
amplitudes which are not studied here. The "R'" plots of the pp and

pn amplitudes will thus be approximated by the forward contributions

only.

The parametrization of the forward part of NO for the
reactions pp-pp, Epﬂﬁp and pn—pn will now be detailed. The other
naturality amplitudes will be described in Chapter 4, but these are
only important as regards do , at large centre of mass scattering

dt

angles.




- 3.24 -

The Pomeron and P P cut terms used to obtain Figs. (3.5.1)-
(3.5.3) are as described in Section 3.2. The f, w, p, A2 contributions
are formed according to the prescription given in Section 3.4 with

the following modifications and parametrizational details

a) The f and w trajectories are based on a linear trajectory
slope a' = 0.85 rather than the RPCA values of 1 and 0.96. The RPCA
values are still used in the couplings, however (see (3.2.1)). This
change slightly improves the fit, while making the f, w, p, A2

trajectory parametrizations identical except for the intercepts.

b) Prior to the absorptive corrections BR(t) for f and w

is written

- (o +0.85t-a(t))
- o

BR(e) = e 3 BRPCA () (3.5.1)
while for p and A2
(a +0.85t-a(t))
R -0
B(t) = s (3.5.2)

c) Only the parent and first daughter terms of (3.4.13)

are used, i.e. (3.4.13) becomes

b H = 1+b t (3.5.3)
s

£

d) The f-daughter term is the same as the £ except that
(1) afd(t) = af(t) -1
(2) the f-daughter coupling differs by a factor of -8.1

(3) B?d (t) = 0, since the large -t part of the f-daughter

contribution is already included via (3.5.3).
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The Rg P cut term in pp scattering is as given by (3.3.7),
with
a2t
l+XRPe EL +a t-ao (tz]
o agt - ORP RP RP

f(t) = t° e s (3.5.4)
1 + X RP

The factor of t2 ensures that the total cross-section and very small

-« fits are as for the RPCA. The equivalent contributions in the pn

and pp cases differ in the values of G and ¢, but use the same f(t).

The R P, w@®@ P, PR P, AZ@P components cannot be separated out without
do

information from a similar fit to I (pn pn), data for which is

unavailable.

A further term is needed to account for the behaviour of %%
(pp) for 0.3 < t < 1.3 (GeV/c)Z. The sharp dip observed in the data
at t = 0.5 (GeV/c)2 at prp = 9 GeV/c dies away rapidly as energy
increases. The RPCA terms predict the dip at low energy and also give
a good account of the data at p;,, = 50 GeV/c and above for 'tl s 1
(GeV/c)z. However, the change with energy of the shape of the %%
curve is not well described between these values. The extra term has
a phase and energy dependence closely constrained by the evolution of
the 0.5 (GeV/c)2 dip structure. It has been parametrized here as a
logarithmic correction to the R®@P cuts :-
2 3%2' - tza'

- - G' t
AR®P(pp) -'AR®P(pp) i Pl (3.5.5)

The logarithmically varying term is important only for -t < 1.5
2 - -
(GeV/c)™. 1t appears only in the pp—pp scattering case and hence

consists of equal even and odd charge conjugation parts.
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The R® Ptrajectory, ac(t) has been altered from the linear
linear ! : < . -

form app (v) = Sogpp * v} RP t in the same way that the meson-Reggeon
trajectories have been. That uRP(t) should tend to -1 as t = -® can
be seen from the following simple argument: From the reasoning of
Section 2.3, the R® P contribution at large -t can be regarded as a sum
of diagrams of the type shown in Fig. (3.5.4). The trajectory of the
gluon exchange component is constant at +l, while that of the quark
interchange component is -1. Substituting @, = +1, @, = -1 into
(3.3.1) yields ST -1, hence aRP(t) is expected to approach -1

at large -t. The aRP(t) curve used for the final fits is shown in

Fig. (3.5.5).

The data confirms that aRP(t) must approach a constant value
or at least that it falls slowly at large -t. If the trajectory
continued to fall, the phase of the contribution would rotate as -t
increased, so that at some value of t, the meson-Reggeon and RxP
terms would be in antiphase. There would be a range of energies where

the magnitude of the two contributions would be similar at this value

of t and hence an interference minimum would occur in the data. For
instance, using the linear trajectory quoted in (3.3.7) and ¢ = % ,

the R® P phase is real and opposite in sign to the Reggeons when

= -3 i.e. when t = -12 (GeV/c)z. Were this the case some structure

would te observed in %% (pp) above about p;,, = 18 GeV/c. No interference

Agp

dip is seen, however.

Comments

Overall the fits presented in Figs. (3.5.1) - (3.5.3) give a
good account of the NN differential cross-section data, over a very

large range of energies and angles. Because of the wide range covered,
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compromises have inevitably had to be made to obtain the best description
of the data as a whole, without unduly complicating the parametrization.
As might be expected from an asymptotic model, the standard of
agreement with data 1s least good at the lowest energies covered,

where lower order terms become important.

%% (pp) has been the primary source of information as to the

structure of the nucleon-nucleon natural parity non-flip amplitude

due to the relative abundance of data for this process. The energy
dependence of the amplitude for t < -1 (GeV/c)2 has been derived almost
entirely from this source, and it was primarily this information which
showed the necessity for the term identified as the sum of R@P cuts.
The trajectory and phase of this term are heavily constrained by the
variation with energy of the shape and magnitude of %% (pp) so that
although the interpretation of this contribution is open to argument

its properties are well defined.

The shape of the experimental curve for %% (np) is
remarkably similar to that obtained for pp indicating that the reaction
mechanisms are closely related. This similarity is reflected in the
simple way that the theoretical curve for %% (np) is obtained from
the parametrization used for pp. At small -t the two fits are
essentially the same, the difference being caused by the change in
sign of the I=1 p and A2 terms, which have small helicity ngn—flip
couplings as predicted by RPCA. At large angles and large |£| the
ratio %%(np) / %%(pp) is fixed at the value predicted by the QI
model. As can be seen from Table (3.5.1), the only parameter that
has been freely varied. to achieve the np fit has been the real

coupling constant of the R®P term. No use has been made of the

freedom to alter the R® P phase, and no modifications of the t
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dependence were necessary. From Table (3.5.1) the relative strengths

of the I=0 and I=1 components of the R®P cut can be determined:

1
A-RXP (1=0) B G(pp)+G(pn) _ 1+m B 2.41 _ < ag
(1=1) ~ G(pp) - G(pn) 1 - 0.41 C 7
ApxP -7
(3.5.6)

The situation in respect of pp is r‘ather more complicated.
The shape of the j—: (pp) curve is significantly different from
%% (pp). Not only is it rich in interference structures, but the
shape also alters rapidly with energy. The recent results at

Plap = 50, 100 and 200 GeV/c have helped to clarify the situation

as regards the shape of % at high energy.

Nevertheless the information available for -t > 1 (GeV/c)2
is sufficient to conclude that both the phase and magnitude of

the R®P term are changed from their values in pp

in 0.75
(pp) -
:AR_XP_Z_Y - & (3.5.7)
App(PP 2.0
inQ.75 .
(C=+1) N -t o050
:EXP(C_ o - e =z 4t (3.5.8)
xP ==

The R® P parameters in pp are only loosely determined, however.
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Also, as mentioned previously, the rapid disappearance of the
interference minimum at t = -0.5 (GeV/c)2 requires the presence
of an additional term important for -t < 1.5 (GeV/c)2 which is
apparently not present in np and pp scattering and which has been

parametrized as a logarithmic modification to the R®P cut.

Because of the lack of large -t, large angle pp data, the
d

behaviour of that part of 3% governed by the QI mechanism cannot
effectively be studied. The steep drop observed in the p|qp =
5 GeV/c data for t < -3 (GeV/c)2 is probably due to interference

between forward and backward scattering components as there is no

evidence of such behaviour at these t values at higher energies.

The model has been based on the small angle RPCA model of
Collins et al, and extended to account for the behaviour at large
angles predicted by quark interchange models. The desirable
properties of each of these models have been retained in the
appropriate kinematical regions and a smooth transition between
the two has been successfully achieved. It has been necessary to
introduce extra terms (notably the R®P cut terms), but in each
case the additions have been required by the data, and in most

instances the properties of these additions are well determined.

3.6 Conclusions

In this chapter the model for elastic hadronic scattering
proposed in Chapter One has been prosecuted successfully. The
mechanism for reproducing the large angle behaviour of dg/dt using
Reggeons whose trajectories approach negative integers has been

shown to work very well. The intermediate angle region has been
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studied and found to be dominated by Regge cuts for [t| > 1 (GeV/c)z,
by a P® P cut at high energy and by at least four R®P cuts at lower

energies.

The pattern of the non-flip N-N helicity amplitude has been
firmly established: Reggeon and Pomeron poles dominant at small,
Regge cuts for [t]| > 1 (GeV/c)2 and the Reggeons re-emerging at large
angles. In Chapter 4 other N-N helicity amplitudes will be studied
through the Polarization and Correlation Parameter (Aij) data. The
focus of attention turns to n-p scattering in Chapter 5 where do/dt
(nfp) will be examined to see if the pattern revealed in N-N

scattering is repeated there.




Table (3.5.1)
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Parameter values for amplitudes NO(NN*NN)

Applicable to

Contribution Parameter Reference equation: process: Value
e x 5o
meson-Reggeons | r (f,w) (3.5.1) all 0.158

s (3.5.1/2) all 37.86
B1 (f,w) (3.4.12) all 22.95
By (p,8,) (3.4.12) all Bl(f,w)/9
B, (f,w,p,4,) (3.4.12) all 30
bl (3.5.3) all -4.24
R®P cut G (3.3.7) PP 99.7
5p 99.7/2
pn 99.7/1.4
@ (3.3.7) PP, PN .839
PP .089
dopp (3.5.4) all 0.30
a'pp (3.5.4) all 0.31
a1 (3.5.4) all 1.12
a, (3.5.4) all -1.01
Xgp (3.5.4) all 0464
Spp (3.5.4) all 38.6
G! (3.5.5) pp only 714
?' (3.5.5) 5p only 0.73
a' (3.5.5) pp only 1.99
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Fig. (3.2.1)

RPCA fits to pp, pp, pn total cross sections (from Wright (1978))
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Fig. (3.2.2) : RPCA fits to g% (pp)
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Fig. (3.2.4)
Radio of np to pp differential cross sections at Plap = 10 Gev/c

(from Stone (1978))
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A typical Reggeon trajectory modified to approach -1 as t tends

to minus infinity
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Fig. (3.5.4)

Diagram contributing to an A@P cut
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R@P trajectory tending to -1 at large -t
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CHAPTER 4

NUCLEON-NUCLEON POLARIZATION AND SPIN CORRELATION PARAMETERS

4.1 Introduction

In this fourth chapter, the Regge-based model for hadronic
elastic scattering proposed in Chapter 2, will be applied to the
nucleon-nucleon helicity flip amplitudes as revealed in polarization

and spin correlation data.

Expressions for the NN natural parity, helicity non-flip

amplitudes, N_. were obtained in Chapter 3 by fitting to the

0

differential cross sections and now these will be used as input to
determine Nl’ NZ’ UO’ UZ' As establighed in Chapter 3, NO is much
larger than the other amplitudes except at large angles. Even at
90°Cm the QI model predicts that the magnitude of No(pp) is three
U

times that of N and UZ’ while N, = 0.

2> 70 1

The expression for the polarization parameter P, is given in
equation (B.5). For NO much greater than the other amplitudes this

simplifies to

2 *
POINGIT = - 2 Im]:NO N, :’ (4.1.1)

and hence N1 may be determined from the polarization data.

Similarly (B.6), (B.7), (B.8), (B.9) reduce to

2 *
AnnlNo‘l ~ - 2 Re(NON2 ) (4.1.2)
2 *

ASSINO( ~ 2 Re(NOUZ b (4.1.3)
A |Ng|P = 0 (4.1.4)
sp !0 - e

2 *
A, Mol = -2 Re(N U (4.1.5)
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enabling NZ’ U2 and UO to be deduced. The full expressions must,
however, be used for the final fits as the approximations may not

always be valid, especially at large angles.

The amplitudes will be constructed in an analogous way to NO.
The t = 0 couplings of the natural parity contributions will be taken

from the RPCA model. The closely related Reggeon-'Weakon'" Coupling
Analogy model (Collins et al (1978c)) gives predictions for unnatural
parity couplings, but detailed studies of scattering processes in terms

of this model have not been performed. Instead, the work of Irving, Berger
et al (Irving (1975), Berger et al (1978)) will be used as a basis for

the structure of the unnatural parity exchange contributions. The
trajectories will be based on those of Berger et al, but modified to
approach integer values in the same way as the natural parity
trajectories. At large angles and large -t the meson-Reggeon
contributions will be constrained in accordance to the Q.I. model. It
will be assumed that meson-Reggeons appear in approximately exchange
degenerate pairs (though the exchange degeneracy may be weakened by

absorptive corrections). Contributions other than those from the

RPCA and Berger et al models will be introduced if required by the data.

4.2 Polarization

As remarked in Section 1, a study of the polarization parameter
data should elucidate the structure of the N1 amplitude. Polarization,
P, is the helicity observable for which the greatest amount of data is
available, principally because only the beam or target need be
polarized, not both. Nevertheless large lt' data is scarce, and

large angles are covered only at low energies.
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Good polarization data sets ;cross the complete range Ocm-900Cm
are available for pp elastic scattering at or near Plap = 6 GeV/jc and
12 GeV/c. At the same energies pn data exists, though only at 6 GeV/c
does it extend to large angles. Thus a limited isospin decomposition
may be made at these energies. The quality of the pp data is poor,

so the charge conjugation breakdown is less well determined. 1In
addition, pp data for t > -2 (GeV/c)2 is available at energies up to

Piap = 300 GeV/c. Summaries of the data are shown in Figs. (4.2.1)-

(4.2.3).

At the lower end of the energy scale, the pp polarization is
everywhere positive and exhibits two clear peaks. The first is at

-0.3 (GeV/c)z, and the second, higher than the first, is at

14

t
t @ -1.5 to -2.0 (GeV/c)Z. The small magnitude of the data reflects

the correctness of the assumption that NO>>N1'

The first peak is present throughout the energy range, and
its height decreases with increasing energy indicating that N1
falls off more rapidly with energy than does NO. In this small t region
it is to be expected that the most important contributions come from
pole trajectories, and indeed the energy dependence of P(pp) is consistent
with N1 (>-1 (GeV/c)Z) being the sum of a leading natural parity
meson-Reggeon (f, w, A,, p) trajectory exchange and exchange of a daughter

trajectory (a - 1). (See e.g. Kroll et al (1979) and

Daughter = %Parent

A
Berger et al (1978). This is illustrated by Fig. (4.2.X) which compares

the energy dependence of the small -t P(pp) data with thatnaively

N -.5 -.8
expected if N1 were dominated by a parent ﬁl " s - s or a
N 1.5 - 0
daughter ﬁl " s L. -+ s 1.8 pole.

0
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The secondary peak also decreases in height between Py =
6 GeV/c and 12 GeV/c so that in this region also, N1 appears to have

a lower effective trajectory than N At very high energies this

0"
secondary peak structure is lost, however, and the dominant feature

for t < -1 (GeV/c)2 becomes a sharp dip at t = -1.2 (GeV/c)2 (See

in particular the p,,, = 150 GeV/c data).

P(pn) at p,,, = 6 GeV/c exhibits a very similar structure to
that seen in P(pp) at this energy, but shifted downwards on the scale.
Thus the shape of the polarization curve is determined by the I = 0
part of the N1 amplitude. The I=1 part, in contrast, seems to be
structureless, at least for -t < 1.5 (GeV/c)z. Little can be deduced
about the shape of P(np) from the data at 11.8 GeV/c. An isospin
decomposition of P(NN) at p,,, = 6 GeV/c for t > -1.4 (GeV/c)2 can be

found in Kroll et al (1979).

A good fit to P(pp) and P{(pn) for t 2 -1 (GeV/c)2 can be obtained
using the following meson-Reggeon contributions to Nl: exchange
degenerate f, w and A2, p pairs together with a lower lying I = O
trajectory (referred to here as f-daughter) see e.g. Berger et al
(1978). The behaviour of the contribution to P of such an exchange
degenerate term in N1 (in this case the Ay, P term) is illustrated in
Fig. (4.2.5). The term is as given by (1.5.4) with

'
r,t Gp _+a t-a (L

8" (pp~pp; A,, ) B, (PP~PP; Ay, P) =93 e ! 5( N

(4.2.1)

The t = 0 couplings of the A2, p are those given by the RPCA model.
The RPCA predicts a zero coupling of the f and w at a helicity-flip
vertex whereas the data requires a substantial I = O term. Thus,

either (1) the RPCA is wrong or applies strictly only at very small

x
It’, or (2) ¥he leading I = O term is not in fact f + w.
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A resolution to this problem is proposed below. Since the QI model
predicts Nl = 0 at large angles, no term corresponding to BQ(t) in
(3.4.7) has been introduced in (4.2.2).

A parameterization based on exchange degenerate pairs of
contributions cannot, however, be used to fit the data at larger -t
(see e.g. Kroll et al (1978) and (1979)). 1In the pp and pn reactions

such a parameterization of Nl would be entirely real. Thus, from (4.1.1)
P = Im(N )Ny (4.2.2)

Now in the p,,, range 6-12 GeV/c Im(NO) changes sign around t = -1
(GeV/c)2 (see Fig. (4.2.6)) where cuts replace the P pole as the
dominant contribution. If N1 were real, the polarization would be

zero at this point (See e.g. Fig. (4.2.5)). The highly structured
portion of P due to the I = 0 part of N1 does seem to possess a zero

in this region, and hence Nl(I=O) could be approximately real. The

I=1 part clearly does not, however - the 6 GeV/c pp and pn data do not
cross or even approach each other - so Nl (I=1) must have a significant

imaginary part.

Thus, there is a term, important for —t?l(GeV/c)2 (i.e. the
region of the second peak in P(pp)), which is not governed by exchange

degeneracy. This is just the region in which N, is dominated by the

0
R®F cut. It seems likely, then, that a similar phenomenon is
contributing to the single flip amplitude. The alternative
explanation would be to propose large scale strong-exchange-degeneracy
breaking between meson-Reggeon pairs in Nl' (As noted earlier, N1 is

varying faster with energy than N., so that a term with a high lying
0

trajectory, such as a flip-Pomeron can be immediately excluded).
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The general form expected of a cut is given by (3.3.3). The
R®P trajectory has been determined in Chapter 3 during consideration
of %%, but some freedom remains through choice of the parameter, d.
An energy dependence consistent with the observed behaviour of the
polarization is obtained with |d]| = %. The data is insufficient to
allow discrimination between this power/logarithm energy dependence
and the pure $% dependence of a Regge pole. Since the concept of
exchange degeneracy has been found to work well in a variety of
situations, and because of the similarities in the structure of the NO
and N1 amplitudes, the exchange degeneracy breaking term will be

parametrized here as a combination of single-helicity-flip R®P cuts

rather than an extra meson-Reggeon exchange term.

There are four leading A ®F cuts which may be contributing to
Nl(NN); f®P, w®P, A2® P, p®P, each having a different combination
of isospin and charge conjugation properties. If, for simplicity,
it is assumed that the trajectory and d parameter are the same for all

four terms, the total RA®P contribution may be written, from (3.3.3)

U
SaRxp(t)e-LT G.Rxp(t)

ARQP(pp) = E"O+(t) + iFO_(t) + Fl+(t) + iFl_(t):] (4.2.3)

(lns+d)

where the F's are real and the subscripts indicate isospin and charge
conjugation. Figs. (4.2.7) and (4.2.8) show the contribution to P of
such terms. Fig. (4.2.7) represents a C = + contribution with
2V-t
m

P

x (-2.11) x el'gt (4.2.4)

F (e)2 Fy (£) + Fy_(£) = Gf(t) x

where f£(t) is the t-dependence function of the R@p component of Nos

defined by (3.5.10) and G is the corresponding coupling factor.

Fig. (4.2.8) represents a C = - contribution with

F (t) = G £(r) x 22 x (-0.352) x e 19t (4.2.5)
- m
P
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The parameter d is chosen to be + %; .

The C = + contribution (Fig. (4.2.7)) possesses features seen
in the P(pp) data. It has a minimum at t = -0.7 (GeV/c)2 at Py,p =
6 GeV/c, which becomes deeper and moves to larger -t values as the
energy increases (t = -1.2 (GeV/c)2 at Py, = 150 GeV/c). At t = -1.5
(GeV/c)2 a large peak occurs after which the contribution rapidly tends
to zero as -t increases. Thus much of the structure in the data is
consistent with being due to a C = + F&PF cut. As noted earlier
P(pp) and P(np) data have similar shapes (atleast at Plap = 6GeV/c)
and hence the structure can be associated with I = 0 exchanges. Thus
it is reasonable to assume that this C = + cut has I = 0 and hence is

f® P (though some admixture of A,& P cannot be excluded).

The principle feature present in the data, but missing from
the f&PF cut contribution is the peak at small -t. The change in height
of the I = 0 component of this peak indicates the presence at small

-t of a low lying trajectory exchange contribution in N; (I = 0). It

1
is thus proposed that the I = 0 component of the N1 amplitude is composed
principally of f-daughter exchange (important for small -t) and f@P

cut exchange. This is consistent with the RPCA model prediction of

a zero fNN helicity flip coupling.

Turning now to the I = 1 component of the polarization, it may

readily be seen, that a combination of p + A, and C = - A&P cut

2
terms can give a contribution which is roughly constant between t = -0.1

(GeV/c)2 and t = -1.5 (GeV/c)2 as required by the 6 GeV/c P{pp) and

P(pn) data.
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Thus, most features of the polarization data can be reproduced
using an N1 amplitude composed of two I = 0 contributions (£®QP cut
and f-daughter) and three T = 1 contributions (p&P cut and exchange

degenerate p and A2 pole§.

There is one notable region, however, where this is not the
case — p, . = 6 GeV/c, t < -2 (GeV/c)Z, particularly in pn scattering.
Here, the Minnesota pn data rapidly decreases from zero at t = -2
(GeV/c)2 through ~ -.3 at t = -5 (GeV/c)2 (900cm) to ~ -.45 at
t » -8 (GeV/c)zj‘ Unfortunately, higher energy large -t pn data is not
available to establish the energy dependence of this feature. Nor is
its isospin behaviour clear, as Nl(pp) {and hence P(pp)) is constrained
by Fermi statistics to be zero at 900cm, so that all contributions
must cancel at this point. If a term similar to that giving the large
negative contribution to P(pn) were present in Nl(pp), its effects
near 900cm would be disguised by the cancelling contributions.

Direct comparison of P(np) and P(pp), thus yields little information.

Large -t data for pp is, of course available at higher energies.
If the large t term is a) present in pp scattering and b) has a
relatively slow s dependence at fixed t (i.e. is a '"forward" scattering
tefm), then it should make its presence felt in P(pp) at 12 GeV/c. The
data at this energy, however, remains close to zero (< .08) for t< -2.5
(GeV/c)z. Neverthless, there does appear to be a change in curvature
of the -t side of the secondary peak between 6 GeV/c and 12 GeV/c,

which is not explained by the f®PF cut in N This could be an indication

1°

that the term producing the large negative values

+ This is particularly interesting in that the QIM predicts that the

polarization, in both pp and pn scattering, should be zero to leading

order at large -t and large angles.
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a) 1is present also in Nl(pp) (but cancelled at large angles
by terms with more rapidly varying fixed t energy

dependence - '"backward" terms)

b) has a relatively low lying trajectory, so that its

Il

. i
importance decreases rapd{ly with increasing energy.

One of the premises upon which the model is based is that the

asymptotic behaviour of the scattering amplitudes at large angle is
as given by the Quark Interchange model. In nucleon-nucleon scattering,

the leading QIM contributions to the amplitudes behave like Jz at
S

fixed large angle. Now the QIM predicts that N, = 0 to this order.

1

Thus to maintain consistency with QIM any large angle terms in Nl must

have a fixed angle variation with energy which is faster than 1/84.

To model the large angle pn behaviour an extra, low-lying,
term has been introduced into the parametrization. For convenience
its structure has been based on that of the #®P cut. To obtain the
necessary antisymmetry of Nl(pp) about 9Oocm’ the term is again divided
into "forward' and 'backward" parts (as 'in (3.5.6)). To account for

the large difference between P(pp) and P(np) at large -t, = 6 GeV/c,

Plab

it is assumed that the "forward'" part is I = 1, while the 'backward"
part is written as I = 0. The "forward" parametrization is obtained

from (4.2.3) by replacing the total F(t) by

-G
1 X rﬂ ((+
;7 Fx(t) = -ST X(t) 92— ‘tA’]P .G;J’(t) (4.2.6)

a. .t

4
where X(t) = [l - e X ]
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The factor X{(t) has been introduced so as to give the required

rise iﬂ magnitude of P(pn) at large angles and low energy, while
retaining a positive total (ie. forward plus backward) X contribution
to P(pp) for ecm < 90°. The 8-2 factor gives the necessary low lying
trajectory (ax(t)*-3 at t—-») while the exponential t-dependence of f(t)
ensures that the fixed angle energy dependence is more rapid than the

QI power law form.

The curves shown in Fig. (4.2.9) - (4.2.11) are obtained using
P, AZ’ f-daughter, f®F and p®P terms together with the X term just
described. As may be seen, a good account of the data is obtained over

the whole range of energies and angles considered.

The p and A, terms used are as given by (4.2.1) and (1.5.4).
The f&PF and p&P are as given by

(4-2.3)’ with

a3t

Fegp (t) = GE(t) x 2 }/4—;—_{ K E a (K, | - Fx(t)/242 (4.2.7)
® P (-t)
a.t

Fp@E’(t) = Gf(t) x 2 %;E . K,y.e 3_ (1 + 2t) (4.2.8)

P

Note that (4.2.7) is not in fact singular at t = 0 since f(t) « tz.

The changes from (4.2.4) and (4.2.5) have been introduced to give
better agreement with the data in the region t < -1.5 (GeV/c)2 ie. the
large 'tl side of the second peak. The function ut(t) is obtained by

following the trajectory bending procedure from Chapter 3 starting

0 /

with a linear form defined by @, = 1, @ = 1. Thus at(O) = 1 and
at(-m) = -1. The structures of (4.2.7) and (4.2.8) are a product of
the history of the parametrization - it is the shapes of F (t) and

f@f

Fpﬁf (t) that are important not the way they are written down. The

simpler forms were used earlier so as to make clear, in particular,




- 4.11 -
that the dip-peak structure seen in Fig. (4.2.7) arises naturally,
and is not the result of an artificially imposed t-dependence.
The f-daughter term takes the form

T AT (pp;f)
De X — = (4.2.9)
B" (pp-pp;£)B  (pp-pp;f)

(5] Lol

+—
AL, (pp-pp;f-daughter) =

where A:: (pp-pp;f) is as given by (1.5.4). The fitted parameters are

listed in Table (4.2.1).

Note that Nl(pp) must be antisymmetric about ecm = 90°. This
has been ensured by adding a '"backward'" part of Nl(pp) to the
"forward" part described above, as prescribed by equation (3.5.6).
The curves presented in Fig. (4.2.9) are obtained using the full
expression for the polarization parameter, P, (see B.5) rather ghan
the approximate form, (4.1.1). The parametrization of N2 used, is
that obtained (along with UO and UZ) in Section 4.3, which now follows.
In practice, neglecting NZ is found not to affect greatly the

polarization parameter results.

4.3 Spin-Spin Correlation Parameters

In section 4.2, polarization data was used, in conjunction

with a previously formulated expression for N to obtain information

O)

about the single helicity flip amplitude, Nl' In a similar way the

correlation parameters, A__, A and A, can be used to shed light on
nn Ss 11

the structure of the NZ’ U2 and UO amplitudes respectively (see

equations (4.1.2) to (4.1.5)). Unfortunately, data for these

parameters at moderate and large -t are far from abundant, being

limited, principally, to pp scattering at or below Pap = 12 GeV/ec.
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Ann(pp) data at 6 and 12 GeV/c are shown in Fig. (1.3.6),
together with two points representing recent measurements of Ann(pn)
at 6 GeV/c. The most prominent feature is the rapid rise which
occurs for -t>4 (GeV/c)Z, leading to peak values of around 0.6

(p = 11.75 GeV/e, 7 5 -t £ 10.2 (GeV/c)z. NB 900cm corresponds

lab
at this energy to t = -10.19 (GeV/c)Z). For -t < &4 (GeV/c)z, A is
small which is consistent with the assumption that N2<<NO except at
large -t. This apparent split into two t-regions fits in well with

the philosophy (outlined in Section 3.5) of parametrizing the

scattering amplitudes in "Q" and ""R" parts, with

R R R R R
N N T
NOQ
and —3 (t=-») etc. given by the Q.I. model.
N

2

With such a parametrization one would expect Ann to be small in the
low -t region ("R" parts of the amplitudes dominant), but approach
the QI-predicted value of % as Gcm~'900, s large. It is interesting
to note that the data, in fact, exceeds % at 900cm’ plab = 11.75
GeV/c. Clarification of whether this indicates Fhat the QI model

needs modifying, or merely that '"'large' energies have yet to be

reached, will have to await future experiments at higher energies.

At small to medium -t, Ann exhibits a double peak structure
reminiscent of that seen in the polarization parameter. The first
peak occurs about t = -0.7 (GeV/c)z, and is seen clearly both at
6 GeV/c and 11.75 GeV/c. At 11.75 GeV/c this is followed by a sharp
dip (¢t = -0.9 (GeV/c)z), then the second peak at around t = -1.8
(GeV/c)Z. This dip-second peak structure is much less obvious at 6

GeV/c.
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For t between -1 and -3 (GeV/c)2 Ann appears to be slowly

increasing with increasing energy. This indicates either that
a) INZI/lNll is increasing with energy, or b) The relative phase of

N2 and N1 is changing. These possibilities will be discussed in more

detail later.

F1g.(L3J) shows data for All’ AS1 and ASs at 6 GeV/c. There
is no medium to large -t data available for these observables at higher
energies and all have low values at small -t as expected. At larger
angles the data is reasonably consistent with an approach toward the

values predicted by the QI model at 9o°cm (For more detailed comment

refer back to Table (1.4.2)).

As was the case for the NO and N1 amplitudes, in this model
the behaviocur at small -t of the Regge pole terms contributing to
N2, UO and U2, will be based on traditional Regge models. All meson-
Reggeon contributions will be constrained to give the behaviour

predicted by the Quark Interchange model at large s and -t.

As noted above, the double polarization observable for which
most data is available is Ann’ and it is to this parameter that
attention is first turned. From equation (4.1.2) it may be seen that
Ann'D (Appendix B) is approximately proportional to the product of
those parts of NO and N2 which are in phase. The RPCA model predicts
that the dominant Regge-pole contribution to N2 at small -t should
come from the (approximately) exchange degenerate p and A2
trajectories. (The helicity flip couplings of the P, f, w to NN are
predicted to be zero). Fig. (4.3.1) shows the contribution to Ann(pp)
made by a p+A, term in Nz(pp) whose '"R'" part (see Section 3.5) is given

by (1.5.4.) with
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.- R _[0.5140.85t=n5(t)]

[B (PP;D,AZ)B+_(PP;D,A2)] -3 § (4.3.1)
At t = 0, this reduces to the RPCA coupling.
Comparing this picture with Fig.U.ﬁ@it is readily seen that although
the magnitude of the p+A2 contribution for -tgl (GeV/c)2 is comparable

with that of the data, it has the wrong sign.

Clearly, either the RPCA prediction of the Reggeon helicity
flip coupling strengths is grossly wrong, or else another term (or
terms) is present which gives a positive contribution to Ann(pp) at

small -t, of roughly twice the magnitude of that of p+A The

9°
model of Berger et al (1978) does, in fact include such a positive
contribution. This arises from the introduction of absorption
corrections to the 1 and B exchange amplitudes (These are found
necessary to explain the forward spike in np pn scattering). The
corrections are applied using the Williams prescription (Williams

(1970)) as follows: The basic Reggeon exchange amplitude in the

Berger et al model is given by

A XA X=X A A
A c (AB-CD;R) = + E ‘ ¢ A’ —E l D AB‘E»A C(AC;R)B (BD; )
*g*p b

?_mN ZmN /\B

S -ino 1-2
%[1+(-1) R e le‘(ER-aR)(a’) R(QL'S)OR (4.3.2)

where SR and ER are respectively the spins of exchange  and of the
lowest occurrence on the exchange degenerate trajectory uR(t). See

Table (4.3.1) for parameter values. For an exchange degenerate pair

the amplitudes sum to give (4.3.2) with the signature phase factor



- 4.15 -

(square bracket) replaced by 2. To obtain the absorbed z+B amplitude

the further replacement

(n+x)/2 n/2 2 x/2
-t -t mﬁ

2 - ) 2
AmN QmN th

(4.3.3)

is made, where n = ‘xc—x - +AB| and n+x = |XC-AA|+lAD—AB|

A "D
— +- . - 4
Now, for ¢, (z A+_), n =0 and n+x = 2, while for 9, (= A_+)
n = 2 and n+x = 2. Because ¢;’B/¢:’B # 1, the absorbed n and B

exchanges do not have definite naturality, and hence contribute both
to N, and to UZ(See table B.3). In the case of N, the =x+B term

contains the factor (corresponding to (4.3.3))

N
[

SR (6.3.4)

Nf

while in U2 this becomes

—t _ _= (4.3.5)

N+

The above prescription gives only a rough and ready approximation
to the true absorptive effects, but it should provide a reasonable
guide, at least small ]tl. Fig. (4.3.2) shows the contribution to
Arm of an absorbed n+B term in NZ' This term is as described above,

except in that

a) the linear trajectory used by Berger et al (see Table
(4.3.1)) has been modified so as to tend to -1 at t-=-®. The same

prescription has been used as for f, w, p, A, (see Section (3.4)).
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b) An extra factor of

ryloao, - o' - a (t]] (4.3.6)
E e

with E = 1.4 and ry = 2.0

has been used to modify the Berger et al coupling product, B+-B+_ in

order to improve agreement with the data.

The effects of this modification are felt mainly at large -t, where
the accuracy of the Williams prescription is uncertain anyway. A
comparison between Figs. (4.3.1) and (4.3.2) shows that the P+, and
7+B terms are capable of producing a "hump" for -t<l (GeV/c)2 such

as is seen in the data. The positive contribution of the m+B
dominates at very small -t, but the negative p+A2 gains in importance
with increasing ~-t. The sum of the terms is zero at t = -1.3 (GeV/c)2

for py p = 6 GeV/c.

It seems, then that the behaviour of Ann for -t ¢ 1 (GeV/c)2
can be explained reasonably well in terms of a n+B term with absorbtive
corrections plus a p+A, term (perhaps even by a ®n+B term alone). It
is unlikely, however, that this combination can successfully account
for A in the region 1 < -t < 3 (GeV/c)z. As was mentioned earlier,
the available data in this region indicates that Ann is growing with
increasing s, implying, at least superficially, that the effective
trajectory of the N2 amplitude is higher lying than that of NO.

Note, however, that this conclusion applies only if the relative
phases of N2 and NO at a given t value vary little over the energy

range under consideration.
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Now in this intermediate t region, the most important

contribution to NO is from the A®FP cut terms. The growth with energy

of Ann could thus be explained if N2 were dominated by a contribution
with a much higher lying trajectory. The only pole term which fulfils

this requirement is the Pomeron, P. If it is assumed that NO>>N1, N2,

U 8] then

0 "2

2
Arm « Re(NONZ)/‘NO| (4.3.7)

Further assuming that NO and N2 are each dominated by a single Regge

pole, then at fixed t

Oy O
Nog N2
nn 2a =
N
S 0

Qpar. = O
Ny = "No (4.3.8)

Replacing aNz by ap and aNO by(ﬁzof” then in the t-region under
consideration Ann is expected to vary roughly as s+l, Thus, between
Prlas = 6 GeVic (s = 13.2 (GeV/c)?) and piay = 12 GeV/c (s = 24.4
(GeV/c)z), Ann would increase by a factor of 2, which for 1< -t<3

(GeV/c)2 is reasonably consistent with the data.

Pomeron exchange, having even charge conjugation and a
trajectory near +1 is mainly imaginary. Since Ann is approximately
proportional to Re(NONz), the P contribution to Ann depends on
the product Im(NO) NZP. As may be seen from Fig. (4.2.6) Im (NO)
has a zero at about t =-1.2 (GeV/c)2 in the energy range being
considered. A P contribution to Ann would thus be expected to
change sign near this value of t. Notice that the Plab = 11.75 (GeV/c)
data has a minimum at t = -0.9 (GeV/c)Z. This could well originate
from a near cancellation between the p+B (absorbed) and p+A,
contributions, together with a small negative value from Re(NON2 ).

The combined meson-Reggeons would give the required positive Ann for

_t<.9(GeV/c)2 and N2P would be responsible for the maximum seen at
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t ~ -1.8 (GeV/c)z. The negative Pomeron contribution at small-t
would have to be small so that an unreasonably large n+B term is not

needed to reproduce the positive experimental results.

The above arguments make a plausible case for the existence of
a double helicity flip P contribution. There are, however, several

reasons why this interpretation of the data is unattractive

(1) Comparison of the two available Ann(pn) data points (at
plab = 6 GeV/c) with the pp results indicates the presence of a large
isospin 1 component which is positive in pp. The p+A2 and n+B
contributions are both I = 1, but have opposite signs, producing a
small net effect compared with the observed pn values. The Pomeron
is I = 0, hence whether or not P is present, a further I =1

contribution would still be needed.

(2) In the RPCA model, the helicity flip coupling of the
Pomeron is zero. This prediction is bormeout by the lack of evidence
for a Pomeron term in Nl' If factorization holds for P its

contribution to N2 should be even smaller than to N,.

1

(3) Although a cancellation between the p+A2 and n+B terms
in N2 together with the sign change in Re(NO) and the imaginary nature
of P can explain the minimum at t = -.9 (GeV/c)2 in Ann at py,, =
12 GeV/c, this mechanism will also produce a similar minimum at
Plap = 6 GeV/c. Thereis some evidence for a dip at Piap = 0 GeV/c,
but it is much shallower and does not occur until t = -1.3 (GeV/c)z.
This shift is too large to be caused by a change with energy of the
relative magnitudes of n+B and p+A2, since the two trajectories are

close together in this t region.
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(4) Throughout this work it has been observed that Regge pole
contributions are large at small itl, becoming relatively small for
-3zt >-1 (GeV/c)z. (The meson-Reggeons do re-emerge at large
angles, however). It thus seems strange that a Pomeron pole
contribution to N2 should grow significant in just that region where

in NO it becomes very small. The N2 contribution could of course

be re-interpreted as a PP cut term.

(5) A Pomeron term in N2 of appropriate strength to account

for the Ann(pp) data would have a noticeable effect on the pp differential

cross section at very high energy. Because the Pomeron trajectory

is near +1 its contribution to do/dt falls very slowly with increasing
energy, and INZP,Z is found to be sufficiently large partly to fill

in the interference minimum which occurs in the [NO|2 term at t = -1.4
(GeV/c)Z. It may be possible to compensate for this by an adjustment
of the NO fit parameters, but it seems unwise to draw conclusions
about this very high energy region from such’a small amount of low

energy data.

There is an alternative interpretation of the Ann data which
circumvents most of the difficulties encountered with the Pomeron.
When considering both NO and Nl’ the most satisfactory explanation of
the behaviour of the data in the intermediate t region was in terms
of R®P cuts. Since, in the same region, N2 also exhibits properties
which are difficult to understand in terms of Regge pole terms, it
is sensible at least to consider the possibility that this helicity
amplitude also contains an important A®PF contribution. An immediate
problem with this hypothesis is that GRX pas determined from studies
of do/dt is similar to OLeff(NO) for -t > 1.5 (GeV/c)Z, and thus from

trajectory considerations the R®F contribution to Ann is expected to

be roughly constant.
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Notice from (3.3.3), however, that the energy dependence of
the XF term depends not only on its trajectory, but also on the
factor (1ns+d)_l. It was found necessary previously to choose a
different value of the complex constant dl for NO and Nl' Some
freedom in the energy dependence still exists, therefore, through the
choice of d appropriate to NZ' If d is chosen to be a complex
number with a negative real part, then for lns < -Re(d), the effective

trajectory of the term is raised relative to the actual trajectory.

The asymptotic properties are of course unchanged.

Fig. (4.3.3) shows the contribution to Ann from an A®F

term in N2 of the form (4.2.3) with

Vo 2 a, t io
F, (£)+F_(£) = GE(t) x (ZMJ xK3e“ e

[ o J (4.3.9)
6 = -0.161 ; d = -3.18 +% ; Ky = 0176 ; a, = 1.0

As before Gf(t) refers to the t-dependence function of the non-flip
R®P term described in Section 3.5. As may be seen, the phase of this
term at p1ab = 12 is such as to produce a minimum close to where one
is observed in the data. Furthermore, as well as raising the
effective trajectory, the logarithmic factor introduces an energy
dependence to the phase. At pj,, = 6 (GeV/c) the phase is such that
no minimum appears in the F&PF contribution to A - Note that the
shape of the contribution is similar to that of the data for 1g-tg3
(GeV/c)2 and that this is achieved using a simple modification to the

t-dependence found necessary to reproduce the do/dt data.

An estimate of the ratio of the strengths of the I=1 to I=0
R®PFP terms can be obtained by comparing Ann(pp) and the available two
Ann(pn) points at p, . = 6 GeV/c. It appears that the F®P contributions

to the NZ(DP) and Nz(pn) are in the proportions 1 : 4, hence
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N
N

(R®P;1=1)
(R® P;1=0)

2
2

3
-z (4.3.10)

Turning now to the large -t region, it is expected from
previous arguments that this will be dominated by meson-Reggeon
contributions, the asymptotic (s =, % fixed) behaviour of which are
predicted by the Quark Interchange Model. A first attempt at
reproducing the large -t Ann data is shown in Fig. (4.3.4). This
picture was obtained by taking the 'Q'" parts of the 'forward'" and
"backward'" contributions to NO, and scaling them by factors predicted
by QIM to produce the "Q'" parts of the other helicity amplitudes (see
Appendix D). The full expression for Ann is used, as N, U, and U

2 72

cannot be said to be << NO' All terms in NO are included.

0

There are two obvious deficiencies in this first attempt.

Firstly, the QIM predicts a value for Ann of + at ch = 90° and high
energy. The curve in Fig. (4.3.4) is always close to this value for
-t>6 (GeV/c)z, whereas the data rises to about 0.6 - the experimental
values also grow more rapidly. This difficulty may be resolved if some
t dependence is introduced into the ratio of the forward "Q'" type

parts of N0 and NZ. Secondly, the 'backward" component of N, (which

2
ensures the behaviour required by Fermi statistics) is
having a large effect on the theoretical curve at Piap = 6 GeV/c for
-t > 2 GeV. [Note that this backward component comprises not only
the crossed "Q"-type parts of various helicity amplitudes, but also
upon the "R"-type part of No (see Appendix E)]. If the "forward"
component alone were present, then the shape and position (in t) of

the rise in the theoretical curve would be similar at the two

energies, but this is not the case in Fig. (4.3.4).
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The situation is clarified by referring to equation (D.1)
which shows that QIM predicts the "forward'" and '"backward!'' parts of
N2 to be of the same order at 9Oocm' Since the forward part of N2
is still rising at t = -5 (GeV/c), (as indicated by both the prediction
and the data for A L at Pigp = 11.75 GeV/c), the implication of (D.1)
is that at py,p = 6 GeV/c with ecm large, but <90° the 'backward"

part of N, is, in fact, larger than the "forward" part.
2 ’

It is clear, then, that modifications need to be applied both
to the '"forward' and "backward' parts of N2. Equation (E.2) gives the
structure of N2 in terms of the 'unsymmetrised' helicity amplitudes,
$i’ in accordance with the requirements of Fermi-Dirac statistics.

From this equation it can be seen that the most economical way to effect
such improvements while retaining asymptotic agreement with QIM, is
to introduce a suitable non-zero ¢2 (¢2 = 0 to leading order by QIM),

which falls off more quickly than ¢l’ ¢3, as s, % fixed. Since

b
b is symmetric under interchange of t and u (see (E.l1)) this results
in the same increment being applied to both forward and backward parts

of N2 at a given t. If ¢2Q is written as follows, using the same

notation as in (D.1)

0,0 = 1% [m,u)-l] [f(s,t,u) . f(s,u,tii

with Y(t,u) = Y(u,t), then the modified QIM prediction for the pp

naturality amplitudes are given by Table (4.3.2).
A form for Y(t,u) which solves both problems outlined above is

(2.72+-t)2 (2.72-+u)2

) [? + (3.9+t)2] . i} + (3.9+u)2] @24

Y(t,u)
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As t and u tend to - cO

2 2

-+

t
N
CIC
N
[

thus agreement with DCR and asymptotic QIM predictions is retained.
Similarly in the Regge limit (s>, t fixed) Y(t,u) ™ Y(t) and hence
the leading Regge trajectory is unaltered. Since Y(t,u) can be
expanded in the form
z
Y(t,u) ¥ Y (t) {-1 + a g +b Ef eaen } s>, t fixed (4.3.12)
s

all that has been done is to introduce extra Regge-daughter terms.

Fig. (4.3.5) is obtained using an N2 composed of P+A,
("R"™ + "Q") , £ + w ("Q" only), and R®P terms as discussed above.
The '"backward R' part of N2 is defined via (E.5). Note that Nl’ UO’
U2 also contribute to Fig. (4.3.5). Nl is as given by Section 4.2,
the parameterizations of U0 and U2 are discussed below and are summarized
together with that of N2 at the end of this section. The theoretical
curves give a good account of all the features and trends of the data.

It will be interesting to see whether future experiments at higher

energies confirm the deductions made in the above account .

The parametrization of the unnatural parity amplitudes U, and

0
UZ’ used here is based at small -t on the work of Berger et al and

at large -t on the predictions of the Quark Interchange model. Berger

et al consider UO to comprise three components as follows

+ Z term of the form

(ao +C‘v t)
Alz AIZ

a) An exchange degenerate A

1

2 1
Uy(pp3pp; Al+2) = - L. 1A - aZlZ-GAIZt) (0.9s)

(4.3.13)
with linear trajectory defined by

o ]
uAlZ + aAlZ t = -0.19 + 0.9 t
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In the spirit of the meodifications applied previously to other Reggeon
terms, this is transformed into the "R" part of the A1+Z term used

here by (1) replacing the straight line trajectory by o, Z(t) + -1 as
1

t > -», obtained using the prescription of Section (3.4), and
o ' .
o +a p-a  _€t)
(2) multiplying by s Az MZT Az with s = 30 (4.3.14)

(GeV/c)2 to ensure that the "R" part is small at large -t.

b) An imaginary EXD-breaking term important at small -t
and parametrized as

4e , “a
-126 e (o s) 71
A

(4.3.15)

c) A non-asymptotic (but non-negligible) ''contamination" of
U0 by N0 (UO has definite naturality only to leading order in %).

This takes the form

Uo ("contamination') = %% NOR (4.3.16)

Only the "R" component of NO is used in (4.3.16) as the

derivation is strictly valid only for small -t.

The t-dependence of the forward Q-type part of the UO amplitude
is obtained by factoring the "Q' part of NO by the QI prediction for
the ratio of these amplitudes, as specified in Table (4.3.2). The
backward R and Q parts of UO are defined by equations (E.5) and
Table (4.3.2) respectively. Since all the leading meson-Reggeon
trajectories (natural and unnatural parity) tend to -1 at large -t,

UO/NO approaches the value predicted by QI as s*w,_g fixed.




- 4.25 -

Berger et al hold that the dominant contribution to U2 at
small -t originates from the same absorbed rr+B term that appears in
the parametrization of N, (see equations (4.3.2) and (4.3.5)). This
term is used here to approximate the forward "R'" part of UZ' The
forward Q-type part is obtained by analogy to NO, with an extra

factor of

= [2 - ve,w)] (4.3.17)

(see Table (4.3.2)). The backward R and Q parts of U, are also

defined by equations (E.5) and Table (4.3.2) respectively.

The resulting curves for All’ ASl and Ass (pp) are compared
with the available data in Fig. (4.3.6). The overall standard of

agreement is good, especially considering that no adjustment of the

model was made to improve its account of these parameters.

Summary of NZ’ UO and U2 parametrization

N2 (forward): The parametrization of N2 may be divided into three

t regions with dominant contributions as follows

a) -t <1 (GeV/c)Z:-

(1) "R"-type part of absorbed T+B term defined by (4.3.2)

modified by (4.3.4) and (4.3.6) and with o (t) » -1 as t >-=. (2) "R"-

type part of p+A, term defined by (1.5.4) and (4.3.1).

b) 1< -t g3 (GeV/c)Z:-
An F@®P cut term defined by (4.2.3) and (4.3.9). The I=1

and I=0 component of this term are roughly in the ratio -3 : 5.
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2
c) -t > 3.5 (GeV/c)
A "Q'-type Reggeon term obtained by factoring the "Q"
contribution to NO by the amount predicted by QIM, and then

multiplying by Y(t,u) (see (4.3.11) and Table (4.3.2)).

Uy (forward): This amplitude is written as three terms

a) An A, + Z term with real part defined by (4.3.13) and

1

(4.3.14) with the linear trajectory replaced by aAlz(t) >-1l as t>-0Qo;

and imaginary part, important at small -t, defined by (4.3.15).

b) A non-asymptotic 'contamination'" of UO by NO written as

(4.3.16).

c) "Q"-type Reggeon term obtained by analogy to the "Q"-type

part of NO factored by the amount predicted by QIM.

U2 (forward): This is written in two parts

a) An "R"-type +B (absorbed) contribution : see equations

(4.3.2) and (4.3.5).

b) A "Q" type Reggeon term obtained by analogy to the "Q"

part of N. factored by (4.3.17).

0

The requirements of Fermi statistics are satisfied by adding
"backward'" Q and R parts to the amplitudes. These are obtained via

Table (4.3.2) and equation (E.5) respectively.
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4.4 Conclusions

Examination of polarization and spin correlation parameter
(Aij) data has yielded information on the structures of the naturality

amplitudes N N2, UO’ UZ' Regge exchange models have been constructed

l)
for each of these scattering amplitudes, which when used together with
the model for NO described in Chapter 3 reproduce the data well. The

models are based on the philosophy which was evolved in Chapters 1

and 2 and applied to do/dt (NN) in Chapter 3.

The structures of Nl’ NZ’ UO’ U2 seem to follow closely the
pattern established for NO: Conventional Regge pole terms are important
at small -t. The meson-Reggeon trajectories bend for t < -1 (GeV/c)2
to approach ~1 as t—> -, At large angles these meson-Reggeons again
dominate the amplitudes (except for Nl) and exhibit the behaviour

predicted by Dimensional Counting as s-~, t/s fixed. As in N, an

0

extra term is found necessary at intermediate angles in N, and N2’ In

1

each case the most likely source is a sum of A®P cuts.

The study of 00-900cm elastic scattering will next be extended

to the mp system.
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Table (4.2.1)
Contribution Parameter Ref. equation Value
Ps AZ Ty (4.2.1) 0.79
f-daughter D (4.2.9) 23.6
r, 1.37
ft&p Kl (4.2.7) -1.61
ay 1.738
Ky C.o0l9
P®P K2 (4.2.8) -0.351
X Gx (4.2.6) 21
a 0.7
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Table (4.3.1)

Parameters from Berger et al (1978) for use in eqn. (4.3.2)

ap = ay = 0.9 (t - mnz)
aAl = @, = -0.19 + 0.9 ¢
B (pp;n) = B™ (pp;B) = 25.2
B++(pp;Al) = B++(pp;2) = 4.4

L )\)ﬂﬂ!\fn SR '53\
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Table (4.3.2)

Naturality amplitudes for pp scattering as predicted by QIM modified

by including a non-zero <p2:-

17

%, = 1§ fy(t,u)-1] [{£f(s,t,u) + f(s,u,t)]

with Y(t,u)

t .. . .
Y(u,t) =1 as s—=, 5 fixed and negative i.e. t,u- -o,

NOQ = %8. 45 f(s,t,u) + 48 f(s,u,t):]
Q _
Nl = 0
Q -1
N,© = 5 [17 f(s,t,u) Y(t,u) + f(s,u,t) {17Y(t,u)-3}]
UOQ = Tl§ [17 f(s,t,u) + 14 f(s,u,t)]

v, - =L [17 f(s,t,u) {2 - Y(e,u) } + f(s,u,t){ =17 Y(t,u) + 31}:]
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The contribution to Ann(pp) of the "R'"-type part of the p+A2 term in N2
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The contribution of Ann(pp) of

I"75 Ga\//c,

the absorbed n+B term in N
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Fig. (4.3.3)

The contribution to Ann(pp) of the R®P cut term in




- 4.50 -

N
-3 4
An
= 5 L’\g\/
2 A Hab ° /h
-1
O \/ 1 T T T 4
-2 —3 _4- -5 srN2T
t [(& 2\e)
A
.5 -
Aup
2 - F’an: ”73 CL?"/A'C
a’ -
|
O \/‘ ] v | T v
O -9 -2 oy -5

Fig. (4.3.4)

The contribution to Ann(pp) of the '"Q"-type Reggeon terms scaled

from No




/

02
Ann
0-)-

O+
0-0

- 4.51 -
Fernow(1974)  Krisch(1979)
* PP Hicks (1979, Ratrer (1977) Ofallon (17
Crabb(1979)

Piab= 6 GeVe -
a pn
3
3

-0l
-0-2 -

O

g

~
1

L

\

/]
O-4-
Ann O-71
(tr) 0.l
0.5..
0-4-
03+
02-
O -
00

\

rom Abe(l776))M;ettinen<‘777),
Cr‘abb(lqﬁg)/O’FaHon (l 977)

Py = 11175 GeV/e ; data f

A

-0

r.

4

I ' ] T ] T T T
2 3 4 -5 -6 7 -§ -9 -0 -1

\

Fig. (4.3

The fit to A
nn

t (G

/

.5)




- 4.52 -

! 5 t [GeVe)]

0.0' aaeal 14 -2 ,’j’_ , t [(GeVe)]
’\&&yr? ‘"—4-‘._;

00 -! X -% 5 t [(&QV/C)Z]

Fig. (4.3.6)

The fits to All’ Asl and ASS




CHAPTER 5

PION~PROTON ELASTIC DIFFERENTIAL CROSS-SECTIONS

5.1 Introduction

In Chapters 3 and 4 a Regge model has been developed that
describes all available N-N elastic scattering data for s > 10
(GeV/c)z. The philosophy behind this model will now be applied to
a study of g¢p scattering to test the conclusions of the previous
chapters and in the hope of throwing further light on the underlying

reaction mechanisms.

The np elastic scattering system is potentially simpler to
study than the NN system. Quantum number conservation restrictions
limit the types of Regge exchange which may occur - e.g. of the leading
natural parity meson-Reggeon trajectories f, w, A2 and p only the f
and p may be exchanged. A further simplification is that there are
only two independent helicity amplitudes (helicity flip and non-flip,
both natural parity) compared with the five in NN scattering. It

will be assumed here that the total,I = 1 plus I = 0, helicity flip

amplitude, A; ?% is everywhere small compared to the total non-flip
amplitude, Agz. Justification for this may be found in the small
magnitude of the polarization data and the QIM prediction of no
helicity flip scattering at large angles (see (1.4.34) and (1.4.35).

The differential cross-section data will, therefore, be interpreted

in terms of a single amplitude - helicity non-flip.

Section 5.2 will describe the available %g Cntp) data for
plab > 10 GeV/c and compare these with the unaltered RPCA model and
C.I.M. Improved fits to the data for O < ecm < 90° will be developed

and presented in Section 5.3. Every attempt will be made to maintain

consistency with
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a) RPCA at small -t
b) the Quark Interchange model at large angle.
¢) the parametrization developed in preceeding chapters to

describe N-N scattering.

5.2 An Examination of the Data

A representative selection of "tp differential cross section
data over a wide angular range is shown in Figs. (1.3.3) and (1.3.4).
For -t between O and 1 (GeV/c)z, do/dt falls rapidly in a similar way
to that for pp and pn in the same t range. This kinematic region is
accounted for reasonably well by the basic RPCA model (see Fig. (1.5.1)),
but for -t > 1 (GeV/c)2 a large discrepancy develops. There is a change
in slope of the dg/dt at t = - 0.9 (GeV/c)z. This new slope prevails
until t = -3 (GeV/c)Z, and in this region there is no discernible

difference between dg/dt (7'p) and do/dt (7 p).

Fig. (5.2.1) shows the variation with s of the data at -2.0
(GeV/c)% It isclear from the non-linear nature of this log-log plot
that at least two Regge-trajectories are being exchanged. The small
variationwith energy of de/dt for Plab between 50 GeV/c and 200 GeV/c
shows that one of the trajectories must be the Pomeron. Identification
of the other contributing term or terms is less easy. The likely

candidates are
a: p-pole
b: f-pole

c: R@®P cut.
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Of these, a and b are already known to be exchanged at small -t, while
¢ was discovered to be important in N-N scattering for -t > 1 (Ge\/'/c)2
below about Plap = 100 GeV/c. (ie. in just the kinematic region

where an extra term is now needed in 7p scattering).

In order to narrow down the range of possibilities, the
following investigation was performed: The scattering amplitude was
assumed to be composed of two pole contributions, one of them being
due to Pomeron exchange. Thus do/dt could be written (for a given value

of t) as

(1-c_ )/2 -i - o
dg _ £ e, g i X o (ax ap) g x (5.2.1)

Y E]

where Cx is the charge conjugation of exchange X, and f and g are real
constants. Curves were then obtained for the three options, ax = dp,
%, ap p at t = -2.0 (GeV/c)Z, with £ and g chosen independently each
time so as to agree with the data at Plap = 200 GeV/c and 10 GeV/c*.
Note that there are two possible solutions for f and g which satisfy

these conditions (g > 0 and g < 0), thus 6 sets of calculations were

carried out. The results are shown in Fig. (5.2.1).

Clearly, the p (I = 1) can be immediately eliminated since its
phase relative to the Pomeron is such that it would produce a
substantial difference between do/dt (n°p) and do/dt (*”p) in the

energy range where both contributions were of comparable magnitude.

* C = + was assumed because of the similarity of the ﬂ'Jcp data.
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It is more difficult to discriminate between the other two
candidates, however. The phases of the f and R® P contributions are
such that, although their energy dependences are different, in
combination with the Pomeron they produce similar results for do/dt.
This last statement does not apply, of course, to the case where the
f and Pomeron interfere desctructively. The best agreement with the
data in the middle energy range is achieved by the curve produced by

RQP and the Pomeron with slight destructive interference.

Although the above evidence is inconclusive and the precise
shape of curves such as shown in Fig. (5.2.3) depends strongly on the
relative phases of the contributions, there are two reasons why the

R®P option is preferred to the f:

1. The sign of its couplings at small -t means that unless
the residue of the f exchange contains a zero for 0 < -t < 1 (GeV/c)Z,
the £ and P contributions actually interfere destructively in the t region
being considered. No evidence for such a zero was seen in the preceding

study of N-N interactions.

2. The ideas of duality require that the total Reggeon-exchange
contributions to the scattering amplitudes of processes such as pp-pp
with exotic s channels must be real. In the belief that this concept
is, to a good approximation, valid, the Reggeon terms in the model have
been constructed in exchange degenerate pairs (modulo absorptive
corrections and small differences in trajectory). The f and w exchanges
form such a pair. Now the f term is purely imaginary and the w term
purely real when their common trajectory passes through an odd integer.
Thus for the combination to be real in pp, the f residue must contain
a zero at these points. While there is no such constraint applying

to mp scattering factorization requires that
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Alrpsnp;f) Algpsrnp;f)

INCT =TT IED) (5.2.2)

A(ppspp;f) =

and hence the zeroes are present in A{yp>rp;f) and A(nm+nr ;f) unless
a pole occurs in A(wmomm;f). Now for -t > -Z(GeV/c)2 o is close to
-1lsee Fig. (3.4.1) and thus close to a zero in the residue. It
thus seems unlikely that the f contribution can be large in this
region unless either the parametrization of af(t) is inaccurate, or

the assumption of exchange degeneracy or factorization of the Reggeons

is invalid.

A further change in the behaviour of the data is observed at
-t = 3-4 (GeV/c)z. At larger -t values than this the slope of de/dt
is smaller. At low energies (plab = 10 GeV/c and below) the transition
is marked by a sharp dip. A similar structure is also visible in the

recent 200 GeV/c measurements, though at t = -4 (GeV/c)Z.

In the light of what has been said in the previous chapters
it is logical to attempt to interpret the large angle region in terms
of quark interchange scattering, or in Regge 1anguaé§ exchange of
meson-Reggeon trajectories which approach negative integers as t>-e«.
The leading trajectories of this type which contribute to m-p
scattering are the p and the f, which tend to -1. Now since the f
has even charge conjugation, and hence its contribution is imaginary
when o = -1, by argument 2 above it must have a zero in its residue
at this value of the trajectory. Thus at large -t and large angle,
the most important contribution is expected to be from exchange of

the I =1 p.

Now the Dimensional Counting Rule (1.2.7) predicts that the

large angle meson-baryon differential cross-section behaves like
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dg . 2 _)
40 (up) ~ Lo ¥ ( (5.2.3)

and hence the corresponding scattering amplitude,

A(MB) - % F [3] (5.2.4)
s
S
To agree with this prediction, the p residue must vary as (-t)-.2
as t-w, so that
1
A(MB; p) ~ —5 as to-e (5.2.5)

st
Fig. (5.2.2) shows this behaviour to be in reasonable agreement with

the data.

A further term is needed, however, to explain the behaviour of
the data in the region of the interference at -t = 3-4 (GeV/c)Z. This

term must:

(a) possess a similar phase, but opposite sign to the R@P
term which dominates -t < 3 (GeV/c)2 in order to produce the interference

observed in the data.

(b) have I = 0, since there is no consistent difference between

t
the measurement of %g (r p).

(c) have a similar energy dependence to the amplitude at
lower -t as the position of the interference changes little with

energy.

(d) fall off more quickly with energy at constant § than

does the large angle p term, to preserve the agreement with the D.C.R.
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Points (a) and (b) rule out the possibility of a modification
to the p being the extra term. Both the f pole and I = 0 g@P (ie.
f@P) cut satisfy the first three requirements (the fourth merely
restricts their t dependence properties) . Furthermore,
the f and also the f®F (provided that the phase of this contribution
is close to that given by its trajectory) are out of phase with the
p at large -t, when all three trajectories are close to -1. This
means that despite the I = 1 nature of the p no difference between
dg (ntp) would be expected where the contributions of the p and the

dt

extra term are of comparable magnitude (see point (b) above).

The lack of precision of the data and the proximity of the f
and R@P trajectories at large -t mean that the two candidates cannot
be discriminated on grounds of energy dependence. However, since by
argument 2. from the preceding discussion, the f term is expected to

be small when ap(t) = -1, (and also to ease the parametrization) the

extra term will be written as part of the f&P cut.

The recent Plab = 200 GeV/c T p data indicates that a term
with a higher lying trajectory becomes important at high energy for
-t >4 (GeV/c)Z. Such a term is needed to explain the similarity
in magnitude of the large -t measurements at 50 and 200 GeV/c. It is
very likely that this term is a P®P cut. This conclusion is consistent
with argument (c) above since at high energies the Pomeron, (whose
energy dependence is similar to that of the P®P cut) dominates the
scattering amplitudes at smaller ]tl values. It is interesting to
notice the similarities between this interference minimum at t & -4

2 . do ,_- 2 . .
(GeV/c)™ in T3 (v p) and those at t = -1.4 (GeV/c)“ and high energies
._dag do - . . )
in 37 (pp) and 3T (pp) which are also believed to be due to interference

between the Pomeron and the P®P cut.
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5.3 The Fit to the Differential Cross-Section

+
The examination of the available g% {(n"p) data in the preceding
section identified three regions of behaviour. These are
(1) 0g-tg1l (GeV/c)2 where the experimental results can be

explained in terms of conventional (linear trajectory) P,

f and p exchanges.

(2) 1 ¢ -t g 3.5 (GeV/c)2 where an extra term, tentatively

identified as an f@P cut, is required.

and (3) -t 2 3.5 (GeV/c)2 where the Dimensional Counting Rule is
obeyed (modulo some pre-asymptotic modificatioms). A
P®P cut is probably also present, becoming important for

large s and -t, but with ecm << 90°.

It is convenient to divide up the description of the

parametrization in a similar way.

(1) Regge pole contributions at small -t

The three leading Regge pole trajectories exchanged in Tp
scattering are the P, £ and p. As was the case in the analysis of N-N
scattering it is convenient to write each meson-Reggeon residue in terms

of two functions, BR(t) and BQ(t) such that

B(Trt'rri;}?) 8(pp;R) = ER(t) + BQ(t)] (5.3.1)
with notation as for (1.5.4) and (3.4.7); such that

BR(t) << BQ(t) for -t > 3 (GeV/c)2 and

Q R 2

B*(t) << B (t) for -t < 2 (GeV/c)" . Note that the B's are
in general different for each exchange and need not be the same for
mp as for N-N scattering. The RPCA model may then be used to deduce
properties of BR(t) and the QIM to determine properties of BQ(t). The
parametrization of the Pomeron and R-type parts of the p and f will now

be specified.




- 5.9 -

The RPCA model predicts the ratio of the Pomeron contributions
to mp and pp helicity non-flip amplitudes to be (see (1.5.4) and the

following description)

A(rp+1p;P) . BGmip) f; _ _t_
NE=r) Byoeie) L7 09
RPCA, non-flip 2 (5.3.2)

2 1 t

IXTI [1WJ
where [1 - 6%3) is an approximation to the ratio of electromagnetic
form factors, and the 1.14 is the f/w EXP-breaking factor which is
applied only at baryon vertices. It was found, however, that better
agreement with the higher energy %% (np) data could be achieved by

mul tiplying the pp Pomeron (defined by (1.5.4), (3.2.1) and (3.2.4))

by the modified factor

A(mprrp; P 2 1 t 2 1.7t .
Alppspp; P 3 " I.14 [ - O‘QJ +2.09 t" e (5.3.3)

which reduces to (5.3.2) at t = 0 and as t =+ -,

Similarly, the "R'" type parts of the p and f contributions by
multiplying the parametrization used for No(pp) by the ratio of the

mtR to pp RPCA vertex couplings and by the ratio of the e-m form

t

factors, [l - 6_5)' The ppR vertex couplings are given by (3.2.1).

The 7wR couplings are

1
RPCA 2 Tay,
B (rmf) = T fu -5
(5.3.4)
RPCA (mmi0) = E £ Moy ( +1 for ﬂjp scattering
8 L 2 " (-1 for 71 p scattering

(notation as in (3.2.1)). It was also found necessary to modify the
absorptive correction to the p (see 1.5.6) by multiplying the real

part by (1‘53-6t)68t. This is to prevent substantial differences arising
between %% (m*¥p) in the range -1>t>-3 (GeV/c)z. This modification makes

only a slight difference to the NN fits presented in Chapter 3.




- 5.10 -

(2) 1< -t < 3.5 (GeV/c)?

As discussed in Section 5.2 an extra I = 0 term is needed
for -1 <t < -3.5 (GeV/c)2 in addition to the P, f and p of the RPCA
model. This is likely to be an f®P cut, the general form for which
is given by (3.3.3). The same R®P trajectory is used here as in N-N
scattering. Making the assumption that d>>Ilns in the fitted energy

range, a suitable t dependence is achieved with

. ,
F(t) _ _105.1 13t 3 (agp + agpt - agp(t))
d = - - e . RP

(5.3.5)
(notation as for (3.5.10)).

(3) t < -3.5 (GeV/c)?

It was argued in Section 5.4, that an I = 0 term withl
properties consistent with an f® P cut is necessary to explain the
behaviour of the measured differential cross section on the large -t
side of the interference phenomenon at t = -3.5 (GeV/c)Z. This is
included in the parametrization by adding an extra term to the t

dependence of the £® P cut, thus

(5.3.5) + (5.3.5) - 1 - 1 x82.4 xel-00t [i+o.047 e-O'éﬂ
) 7
15 1 + 15
1+ 5
1+t (5.3.6)

The exponential factor ensures that the f®P cut, which does not
contribute to the Quark Interchange kernel diagrams (see Chapter 2)
falls off faster as s-w, %fixed than the s-s Dimensional Counting
Rule behaviour. This means that the p (to be described next and which

obeys the DCR) is the leading term in this limit.
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A good account of the large angle TTJ'rp data is obtained with
the following parametrization of the "Q" part of the p. A suitable
t dependence, consistent with the requirements of the D.C.R. (see
(5.2.5)), is achieved by multiplying the t dependence of the Q type
part of the p contribution to NO(pp) by a constant times the ratio of
the electromagnetic form factors of the pion and proton ie. by

substituting

B™(t) = BPP(¢) x 0.90,(+1 for *p (5.3.7)

Q Q (-1 for p
into (1.5.4) via (5.3.1) with N = 1 for wp-mp. The value of the

constant has been defined by fitting to the data.

As noted in Section 2.3 any number of daughters may contribute
to leading order in % as s=« with 5 fixed, becoming important at
large scattering angles. The effect of such daughter terms is to
multiply the parent contribution by a polynomial in % (see (2.3.5)).
That such daughters must be present can be seen by noting that ﬂ+p
and 7 p scattering are related by crossing s<+u, and that the p exchange
has C = -1 and so contributes with opposite sign to W+p and T p
scattering. The e contribution must therefore be antisymmetric under
interchange of s and u. This condition cannot be satisfied if only

the parent contribution occurs.

The parametrization of the p contribution is completed by

replacing
™ TP t
BgP (€) > 57 (t)xb&]
(5.3.8)
where - 2
bH—l 1+ — R I R
s 2 t 2 s s
1 +=
s
In the region where s, -t, -u are all large, the p amplitude then

behaves like




A(np;p)‘-l—z- 1+ 1t
st 1 + =
S
(5.3.9)
Ll [_1_ ;]
2 s  u
t

since u = -(s+t). The @ contribution is therefore approximately
antisymmetric under s+ u at large angles and high energy. This
particular antisymmetric form was chosen as it gives a slightly

improved fit to the large angle data.

Using this parametrization a good description is achieved of
all the data except for the recent = p at Piap = 200 GeV/c. The
theoretical curve does not posses the minimum observed at t = -4
(GeV/c)'2 or the subsequent maximum, but continues to fall rapidly

with increasing -t.

This shortcoming can readily be rectified if a P®P term is
added to the parametrization , together with a modification to the
Pomeron t dependence at large ~t. These contributions can be

successfully written as

. T . T
-i =a_ + 0.8t a -isxa +0.05¢
-1.59 saP e 2 P + -—IL S Fer e 2 " ReP
.(lns- i %] (5.3.10)

where ap = 1.067 + 0.1t and a = 1.134 + .05t (see equation (3.3.1)).

PP
The first term is an addition to the previously described Pomeron which

is important only for -t > 3 (GeV/c)2 and the second term is the AR P

cut. These interfere destructively to produce the required minimum.

The final fits to %% (ntp) are shown in Figs. (5.3.1) and (5.3.2)

and give a good overall account of the data.
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5.4 Conclusion

In this chapter the philosophy of hadronic elastic scattering

developed in Chapters 1 and 2 has been applied to the study of the
. . . : dg %

m p differential cross-seciton data. A good fit to Ir (T p) has been
obtained with a parametrization based on those evolved in Chapters 3
and 4 to account for the experimental measurements of the various
N-N elastic scattering observables. Indeed the structure of the
helicity non-£flip ntp scattering amplitudes is found to be remarkably

similar to that deduced earlier for the N-N helicity amplitudes.

i.e. 1. for -t <1 (GeV/c)2 the principal contributions come from
Regge pole terms - the Pomeron which dominates at high energy,
supplemented by meson-Reggeons which gain in relative importance as

energy falls.

2. for -t >1 (GeV/c)z, but with ecm still not large Regge
cuts are important, although the evidence for these is less clear cut

in the mwp system.

3. at large centre of mass scattering angles meson-Regge pole
terms are again important. At these large -t values their trajectories
are approaching integers — the leading ones, -1l-—and their residues
are such that the fixed angle energy dependence is in accordance with

the Dimensional Counting Rule.
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Fig. (5.3.2) : The fit to %% (np)



Conclusions

A Regge model for the elastic scattering of hadrons at all
angles has been developed, which combines the best features of a
conventional Regge model and a constituent exchange model. The Regge
pole model for small angles is based on the Reggeon-Photon Coupling
Analogy (RPCA) of Collins et al. The Quark Interchange mechanism of
Brodsky et al has been selected as best able to describe large angle
elastic scattering. (This results in power law scaling behaviour
given by the Dimensional Counting Rule). It is a{Tuad that the Quark
Interchange kernel diagrams provide the large -t limit of meson-Reggeon
exchange, and that the highest lying of these trajectories approach -1
as t—=-o. The RPCA trajectories have been modified accordingly.
Similarly the Reggeon residues are constrained to result in Dimensional
Counting Rule behaviour in the limit s-= €§ fixed. The ratios of
helicity amplitudes in this limit are as predicted by the Quark

Interchange model.

This structure has been applied to the study of nucleon-nucleon
differential cross sections, polarizations and spin correlation
parameters, and the np differential cross sections. A consistent
pattern has emerged which is at its clearest in do/dt (pp). For
-t <1 (GeV/c)2 conventional Regge pole terms dominate. In this

region their trajectories approximate to straight lines.

For -t > 1 (GeV/c)z, but with i} still small, cut terms become
important. Clear evidence now exists for the presence of a[P@fP cut in
the natural parity helicity non-flip amplitudes of the pp, pp and T p

processes. Minima caused by Pomeron —IPEDE)interference are observed at




3

t =~ -1.4 (GeV/c)z, Plab = 200 GeV/c and above in do/dt (pp); at
t = 1.4 (GeV/c)z, Plap = 50 GeV/c and above in do/dt (pp); and at
t = -4 (GeV/c)z, Plab = 200 GeV/c in do/dt (= p).

In this intermediate t region at lower energies all observables
for which there are significant amounts of data have shown the need
for an extra term or terms with properties inconsistent with those of
the meson-Reggeons, Pomeron orIPg?m cut. This contribution has been
successfully parametrized as a combination of ﬂlﬁchuts (a single
f®[P cut in the case of 1p scattering) with a common trajectory
intermediate between the Reggeons and the Pomeron, but with different

factors of the form (d + lns)-l, where d is a complex number.

At large angles, the meson-Reggeons re-emerge to become the
dominant contribution resulting in power law scaling behaviour. Fits
have been presented which give a good overall account of the
experimental data at all angles for pp, pn, pp differential cross-
sections, polarization and spin correlation parameters (where

available) and n p and u+p differential cross-sections.

To conclude, it has been demonstrated that all the available
data on elastic scattering of hadrons can be explained in terms of
the exchange of Regge poles and cuts, provided that the trajectories
and residues of the meson-Reggeons are coastrained to give Dimensional

Counting Rule behaviour at large -t.
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Appendix A : Definitions and Notation

Fig. (A.l) demonstrates some of the notation for 2-2

scattering processes used throughout this work. 1 and Ai (i = A, B,

C,D) are respectively the 4-momentum and the helicity of particle 1i.

As only particles of spin % and spin zero are dealt with,ki takes
Aarc

one of three values, + (for +%), O,or - (for -%). B (AC;R)

illustrates the notation for the coupling of a Regge exchange,R ,

to the vertex AC.

An helicity amplitude for such a diagram would be written

AAAB
A
¢'p

A (AB—CD;R)

Frequent use is made of the Mapdelstam variables; s,t,u;

which are now defined

t = (pA - pc) (A.1)

The incident momentum in the laboratory frame, is often used

p].ab’

to label a data set.

Natural units are used throughout this work, with energies

given in GeV and cross sections in millibarns.

A differential cross section in this sytem of units is

obtained thus for large s

0.3893|a(s,t)]?
16 usz

do (mb/(GeV/c)z) =

it (A.2)
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and a total cross section thus

o, (mb) = 9@1‘“ [A(s,t=0)] (4.3)
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Appendix B : Helicity amplitudes and spin observables for nucleon-nucleon

scattering

Jacob-Wick helicity conventions (Jacob and Wick (1959)) are used

throughout.

Before imposing symmetry laws upon the system there are

. ALA
C
sixteen independent N-N helicity amplitudes AXAA . Parity invariance
B*D
relates certain of these, reducing the number of independent

amplitudes to eight:

AL\ A, =X
Al ¢ _ A A ¢ (B.1)
Aprp “Ag-Ap

These are further reduced to six by applying time reversal invariance:

AL XA
A"C C*A
A = Al N (B.2)

Aptp

identical particle

Additionally, for scattering

+

(B.3)

> >
t
>
+

(nucleons are identical for this purpose). The above relations are
summarized in Table (B.l1). The five independent N-N amplitudes are
conventionally named ¢i (i =1,2,3,4,5). These are defined in Table

(B.2).

It is frequently convenient to use helicity amplitudes which
are purely natural or unnatural parity. The natural parity amplitudes
NO’ Nl’ N2 and unnatural parity amplitudes U0 and U2 are given in terms
of the @'s in Table (B.3). The subscripts of the N's and U's refer
to the number of flip vertices in a diagram contributing to the
amplitude. Note that there is no single flip unnatural parity

amplitude.
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In terms of helicity amplitudes, the differential cross section

(spin averaged) is given by

do

2 2 2
dg _ %K(s)[|¢1| . 10,12 + |0,

+ | 2 . 4|¢5|2] (B.4)

4!

2 2 2 2 2
K(s) [lNol ol )2 v 1% e fugl? [, ]

K(s) D

where K(s) [: 0.3893 in the units used hereJ is a kinematical factor.

16 s
The spin dependent observables used in this work are now given:

Polarization (or analysing power), P, by

PD = - Im [[¢1+¢2+¢3'¢4]¢5*]

(B.5)
= -2 Im]:(NO - N2) Nl:]
Correlation parameters Aij’ by
* ¢ * 5 2
App D = Re ["’1‘”2 - 9 4]* |95 |
(B.6)
% * 2
= -2 Re [NONZ -UOU2]+2|N1|
D R ¢ ) ¢ *
Ass = € [¢l 2 ° ¢3 4 } (B.7)
= 2 Re [NO UZ* - v, NZ*]
A . D R ® *
sl = Re| 10 + @) -03+0,/ 0 (B.8)
= 2 Re [[UO + UZ] Nl’]
Y 2 2 2 2
Al]. D = 3 [' |¢1| - I¢2' + '¢3' + '¢4| J (B.9)
* *
=2Re[U2N2-NOUO]

The definition of the Aij in terms of experimentally measured quantities

may be found in Section 1.3.
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Table (B.1l)

The independent N-N helicity amplitudes

AYt - AT
++ --
Attt o ATt
+- -+
Rl
- ER
S
- ++
Do Sl
all equal for C and D
+ " . . identical particles
++ ++ -- -

Table (B.2)

Definition of ¢i's for N-N scattering

b = A
¢, = A::
¢, = N
9, = Af;
¢ = A:f

Table (B.3)

The Natural and Unnatural Parity Helicity Amplitudes

Ny, = (¢1 + ¢3)/2
Np = 95

N, = (¢4 - ¢2)/2
U, = (¢4 + ¢2)/2
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Appendix C : Implications of Fermi-Dirac statistics for nucleon-nucleon

helicity amplitudes

Since all the external particles in proton proton elastic
scattering are identical fermions the pp helicity amplitudes (see

Appendix B) must obey the following relations

PP PP
¢1 (8) = ¢1 (n-8)
PP PP
¢2 (e) = ¢2 (’t-e)
(c.l)
PP PP
¢3 (8) = -9, (n-8)
PP PP
¢5 (8) = -¢5 (n-8)

(6 is the centre of mass scattering angle)

Considering protons and nutrons to be identical except for
the value of the I3 quantum number, similar relationships apply to

combinations of np—-np and np-pn scattering amplitudes. Defining

¢1’ - Q)rilp_'np . ¢2P"Pn
(€.2)
- np-np np—pn
and ¢i = ¢i - ¢i
these are
¢{ (8) = ¢{ (1-8)
w; (8) = mg (1-8)
+ + (c.3)
¢3 (8) = -¢4 (n-8)
9; (8) = -0 (x-8)



and

o4 (8)
¢, (©)
¢3 (8)

¢ (&)

- GC.2 -

(x-6)

(n-8)

(r-0)

(r-8)

(C.4)
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Appendix D : Relationships between contributions to the NN helicity

amplitudes in the Quark interchange model

The natural and unnatural parity amplitudes are given in terms

of the @'s in

amplitudes (1.

N =

Similarly for

(p.1)

amplitudes

Appendix B, Table B.3. Inserting the pp QI helicity

4.27) into these relations yields

11—8 [45 f(s,t,u) + 48 f(s,u,t)]

0 (D.1)
= -U_ = -l 17f(s,t,u) + l4f(s,u,t)
Y2 0~ 18
np—np
) M
15 [36 f(s,t,u) + 42f(s,u,t):l

} (0.2)

U2 = -UO = -l% ]:8f(s,t,u) + 8f(s,u,t):|

J

— [48f(u,t,s) + 48f(u,5?t)]

0 (p.3)

U, = -UO:% [14 f(u,t,s) + l7f(u,s,t):l

N

and (D.2) can be combined to produce I = 0 and I =1
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Ny (I =0) =% [No(pp) + No(pn):] = 3i6- 81f(s,t,u) + 90f(s,u,t):’
Ny (I =0)=3% [Nl(pp) + Nl(pn):] =0 (D.4)
N, (I1=0) = U,(I=0) = -U.(I=0)=%|N,(pp)+N,{(pn) -k 9f(s,t,ui+6%( t\-I
9 NiIT = Upll= = -Up\i= =2 2PP+2\l'ﬂ _36 - y L, 1/ +0E 18,1, ‘_i

J
NO(I=1) =3 [&o(pp)-No(pn)] = gg- [9f(s,t,u) + 6f(s,u,t)]

D.5

N (1=1) = I:Nl(pp)-Nl(pn):l -0 (£.5)
N2(1=1) = u2(1=1) = -UO(I=1) =3 Nz(pp)-NZ(pn)] =.;g{:ZSf(s,t,u)+22f(s,u,ta

Now, at large s and -t the forward scattering parts of these
isospin amplitudes can be identified with meson-Reggeon exchange
contributions as follows

Natural parity, I=0, forward — f + w + daughters

Unnatural parity, I=0, forward ~— ‘)g + Z + daughters

Natural parity, I=1, forward < A2 + p + daughters

Unnatural parity, I=1, forward < = + B + daughters
Thus, from (D.4) and (D.5) the forward Reggeon components are related by

Ao(f+w) = -9A2(f+w) = -9A2(A1+Z) = 9AO(A1+Z)
(D.6)
81 81 81
= 9Ao(p+A2) =- 75 A2(0+A2) =-37 AZ(K+B) = + 35 AO(T[+B)

A similar recombination of pp and pp amplitudes to separate components
of different charge conjugation is much less useful since the relation
between f(s,t,u) and f(u,t,s) depends on the detailed structure of the

parametrization chosen.



- E.1 -

Appendix E : Symmetry properties of the pp helicity amplitudes assuming

NO to be dominant

The pp helicity amplitudes must have certain symmetry properties
determined by Fermi-Dirac statistics (see Appendix C). In consequence

the amplitudes can always be written in the form

~ ~

B, = 0, (s,t,u) + 6 (s,u,t)
9, = B, (s,t,u) + P, (s,u,t)
¢3 = (53 (s,t,u) - (;)4 (s,u,t) (E.1)
9, = 9, (s,£,0) - 9, (s,u,t)
B = B (s,t,u) - B, (s,u,c)

Combining these to form natural and unnatural parity amplitudes

o-%ﬁlu¢m>+%@¢ﬂﬂ+%@1um¢>-@um¢ﬂ
Ng = 5; (s,t,u) - 55 (s,u,tj

N, = % E@;(s,t,u) - 62(s,t,u)- -

=z
[

_63(s,u,t) + 52(s,u,t)

(N

~ (E.2)

e}
1]

N

N

_61(S,t,u) 5)3(5,11,11)—‘ + _él(s,u,t) + 64(5,11,':)—

[
It

'
(S

- ~ - - » -
@, (s,t,u) + @,(s,t,u) | -7 | P,(s,u,t) - @,(s,u,t)
—4 b 2 ? _ _3 ) 2 b Bl ] J
Since the proposed model is a Regge one, it is convenient to

choose

-~

@i (s,t,u) > ¢i (s,u,t) as s—o t fixed (E.3)

Thus, for instance, the P, p, Ay, w, f poles, the P®P and R®P cuts
discussed in CEOF&F 3 all contribute to %[¢1(s,t,u)+¢3(s,t,u)],

which, for convenience will be referred to as the forward part of NO'
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Now, except at large angles NO is much larger than other

naturality amplitudes. Hence, away from this region, the following

approximations can be made

-

NO >> UO=% ¢1 (s,t,u) = ¢3 (s,t,u)

0

¢}

Substituting back into (E.

N¢ = ¢1 (s,t,u) +
N, = -
Nl =0

u, * .
U2 = -

Thus, for NO much

of Fermi-Dirac statistics

N. > N1=> ¢5 (s,

~

Ny >> Ny, U, = ¢2 (s,t,u), ¢4 (s,t,u) << (Dl (s,t,u) (E.4)

t,u) << él (s,t,u)

2) gives

N

9, (s,u,t)

¢1 (S,U’t)

w

(E.5)

¢1 (s,u,t)

Nl

~

¢1 (S,u,t)

N

greater than the other maplitudes the requirements

can be satisfied to a good approximation, by

adding to the forward parts of the helicity amplitudes crossed terms as

follows
forward
N, = ﬁo (s,t,u)
N, = ﬁl (s,t,u)
N, = &2 (s,t,u)
Uy = ﬁo (s,t,u)
U, = 62 (s,t,u)

This procedure is

backward

+ % No (s,u,t)

- Nl (s,u,t)

- % N (s,u,t) (E:,G)
o b b

+ % &O (s,u,t)

DURHAN UNiVERg>

4
S 0CT 1982
WENCE |1pRARY

- %’NO (s,u,t)

used to define the total "R'"-type contributions

to the helicity amplitudes from their forward parts.



