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(1)

ABSTRACT

This thesis is concerned with some algebraic and topological
aspects of group actions on groupoids,w-groupoids and crossed
m

complexes. One of our main aims is to obtain information on

the homotopy groups of orbit spaces.

Let A be a groupoid,w-groupold or crossed complex with an
action of a group G. The algebraic part of the thesis
concentrates on the orbit objects which are universal for
G-morphisms into objects with trivial action. Algebraic
descriptions are given for orbit groupoids and crossed

complexes.

Topological considerations arise as follows. We consider the
fundamental groupoid of a space in dimension one, and the
homotopy crossed complex of a filtered space in higher
dimensions. When the space 1is equip%d with a suitable G-action
there is an action induced on the algebraic invariant. We

prove that, under suitable conditions, the fundamental groupoid
or homotopy crossed complex of the orbit space is the orbit
object of the corresponding invariant of the space. In these
cases the algebraic descriptions of orbit objects give
information on certain relative homotopy groups of the orbit

space.

Finally we consider spaces equid@d with a cover by subspaces,
and various related groupoids. An application of G-groupoids

is given to presentations of groups of homeomorphisms.
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CHAPTER ONE. INTRODUCTION

In [10] R.Brown and P,J.Higgins define categories of w-groupoids
and crossed complexes, and in a companion paper [11] these are
used to give a higher dimensional Seifert - van Kampen theorem.
The main part of this thesis is devoted to a consideration of
group actions in these categories and some of their topologiceal

conNnseguences.,

The categories of w-groupoids ﬁ, and crossed complexes t, are
both higher dimensional generalisations of the category of
groupoids. Both are defined algebraically, but the motivation
for the definitions comes from homotopy thecory. An important
result in the Brown - Higgins theory is that % and & are
equivalent. This enables Brown and Higgins to prove their
higher dimensional Seifert - van Kampen thecorem - the Union
Theorem of [11] - in %, while using the equivalent statement
in € for the applications. This illustrates what is perhaps

a more general guideline. That is, topological problems are
often more easily considered in the category of w-groupoids,
while algebraic ones are more fruitfully studied using crossed
complexes. Although we have chosen € as the setting for our
main topological theorem, there is some evidence to support

this guideline in the work presented here, as we shall indicate.

OQur motivation for considering group actions in q and € was ‘
some work of M.A.Armstrong &,3] and F .,Rhodes BS] on the 1
fundamental group of an orbit space, and a desire to_generalise

these results to the higher dimensional homotopy groups.
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Since the Brown - Higgins theory has been successful in
extending the Seifert - van Kampen theorem it is natural to
use their approach. In order to see how to proceed in higher
dimensions the results in dimension one are first reformulated
using fundamental groupoids rather than groups. The
reformulated results are more natural and indicate the form of

theorems in higher dimensions.

The layout of this thesis is as follows. Chapter two gives the
background results concerning the algebra of groupoids,
w-groupoids and crossed complexes. For the most part the
groupoid results are well-known and the proofs are omitted.
Quotient crossed complexes are defined and studied in some
detail as these are required later, but we have omitted the
study of quotient w-groupoids as the details appear rather
complicated and they are not used iin later chapters. We also
give the motivating examples of these objects. Let

Xz x0 e X1 € ... €x"... be a filtered topological space
such that loops in XU are contractible in X1n We give the
definitions, due to Brown and Higgins, of a homotopy w-groupocid
pX and a homotopy crossed caomplex 7X. This crossed complex
is essentially a classical object - in the case where XD is
a point it is a "homotopy system” of J.H.C.Whitehead. We

conclude the chapter with a description of the Brown - Higgins

Union Theorem for w-groupoids.

In chapter three we consider some of the algebraic aspects of

group actions. Let A be a groupoid, w-groupoid or crossed




complex with a right action of a group G. Motivated by the
definition of orbit space in topology, we define an orbit
object A/[G] by a universal property. A description of the
orbit object is given in the cases of groupoids and crossed
complexes. We prove that, in these cases, A/[G] is
isomorphic to a quotient of the semi~direct product A x G
which is defined in a natural way. Using these descriptions

some properties of the orbit objects are considered.

Chapter four is topological and contains the main result of
the thesis, which generalises the work of Armstrong and Rhodes
to higher dimensions. We begin by describing their results on
the fundamental group and then give the groupoid formulation.
It is shown that under suitable conditions the fundamental
groupoid of an orbit space is simply the orbit object (as
defined in chapter three) of the fundamental groupoid of the
space. Initially Armstrong's results refered to simplicial
actions on simplicial complexes, which is the first case we
consider. Since then, however, Armstrong has made considerable
progress in reducing the conditions under which his;esults hold.

Some consideration is also given here to the more general

actions.

For the higher dimensional cases the fundamental groupoid of a
pair XDS X is replaced by the homotepy crossed complex of a

/I
CW-complex with natural filtration X : xPe x' ¢ cee X1 L.,

We consider filtration-preserving actions so there is an action

induced on ﬂ&. Given this however, the result we prove has the




same type as the groupoid case. Namely, the homotopy crossed
complex of the orbit space is isomorphic to the orbit crossed
complex of 7X. Finally some corollaries and examples are

given.

In chapter five we consider s topological space X with a
cover % by subspaces. In this situation G.Segal [27] defined
the classifying space BW of the cover. We begin by describing
this construction. Razak also considered this situation in his
thesis [18] and we prove, in section two, a modified form of a

conjecture of Razak's,

There is a natural map of BWU onto X which induces & morphism
of fundamental groupoids. We study the nature of this morphism
and, using the groupoid mapping cylinder of R.H.Crowell and
N.Smythe [13] , we relate it to the one-dimensional Brown-

Higgins union theorem.

Finally group actions are introduced into this situation.
Considering actions which preserve the cover we show how our
previous waork relates toc that of A.M.Macbeath [17] and

R.Swan [24] on presentations of groups. In fact, the connection
is made via the semi-direct product construction defined in
chapter three. We also indicate a conection, again via the semi-
direct product, with the Bass - Serre theory of groups acting

on trees [22].




The main results of chapters three and four were presented by
Professor P.J.Higgins at the 1881 Conference on Category Theory
Gummersbach

at Bberwelifaeh and will appear in the proceedings of that

conference.



CHAPTER TWO. GROUPOIDS, w-GROUPOIDS AND CROSSED COMPLEXES

Much of this thesis is concerned with various algebraic objects
which are perhaps 1little known and appreciated. For this

reason we devote this chapter to a brief survey of groupoids
and some of their generalisations and applications. This

survey is necessarily incomplete - we concentrate on those
aspects of the theory which are required later. With minor
exceptions this material is not new. The basic references are

[14] for groupoids and [10] for w-groupoids and crossed complexes.

1. GROUPOIDS

A groupoid is a small category all of whose morphisms are
invertible., To introduce our notation we make the following

definition.

2.1 DEFINITION, A groupoid A consists of a set A of

0
vertices, a set A1 of edges (or arrows) and two maps
0 1 0 , C s
9, 9 : A1—+ AD" For a eA,I R 3 8 1s called the initial

vertex and 81a the final vertex of a. For each \Y; eAD there

is a distinguished edge ev called the identity at v with

initial and final vertex v. There is a partial composition +
on A1 : a+b 1is defined if and aonly if 815 = 3% and in
. o 0 1 1 .
this case 9 (a+b) = 3°a and 3 (a+b) = 3 b. This data
satisfies the following axioms.
(i) (Associativityl. (a+b) + ¢ = a + (b+c) whenever

both sides are defined.,

(ii) (Identityl, Let a é/\,I have initial vertex v




and final vertex w. Then a + ew = a

(idi) (Inverse). For each a eA1 there exists an edge
. o 1-a

-a with a7 (-a) = 2 a for o = 0,1 and such that

a - a = eaoa, -a + a = eaqa.

A morphism of groupoids © : A - B d1is a pair of maps

81 Ai > B1 for 1 = 0,1 preserving all the structure.

We denote the category of groupoids by

notation A is sometimes referred to

/I

vertex set A The set of arrows fraom

Qe

initial vertex \Y; and finael vertex w

Clearly Aq[v] = Aq[v,v]

called the vertex group of A at v.

is a group with respect to +,

In particular,

]

§pd. By abuse of

as a groupoid with

v to w (i.e. with
] is denoted Aq(v,w].
It is

a groupoid

with a8 single vertex is a group and the category of groups 1is

embedded in

§pd.

A is said to be connected if¥f A1[v,w]

and ia totally disconnected if

Aqtv,w]

# B for all V,Ww € A

DJ

= ﬂ \Y # W o We

for

also refer to the components of a groupold with obvious meaning.

A is said to be simply connected if

element for all vV, w€~A .

0

groupoid is called a tree groupoid.

example of a tree groupoid is the unit

Aq[v,w)

has at most one

A connected and simply connected

The simplest non-trivial

interval groupoid with

two vertices 0,1 and two non-trivial edges

an arrow from 0 to1l.

The notion of & subgroupoid is an obvious one.

A_. C

C of A 0 0

is wide if C is =a

a

€ i i .
vV, W CO implies C1[v,w] A1(v,w]

Y, Y where vy 1is

A subgroupoid

full subgroupoid if




There are some immediate differences between the theories of
groups and groupoids. For example, if 6 : A > B 1s a

groupoid morphism the image 0(A) need noct be a subgroupecid of
B. This is illustrated by the morphism of the unit interval
groupoid to the integers (considered as a groupoid with one
vertex) which sends <y to the generator. For reasons such as
this we divide groupoid morphisms 6 +: A>B 1into various

classes. 06 1s called vertex injective if 60; AD > BO is

injective, piecewise injective 1f each induced map

plv,wd : A1fv,w] > 51[90V,90w) is injective, and group
injective if each 6(v) =6(v,v) is injective. Similar

definitions apply with "surjective” replacing "injective”.

i
A subgroupoid N of A dis normal if itiwide and n €N1(v),

a eA1[v,w] implies =-a + n + a eNq(w]. The kernel of

6 + A>»B 1is the set of elements of A which map to identity
elements of B, It is easily seen to be a normal subgroupoid

of A.

2.2 DEFINITION, Let N be a normal subgroupoid of A. The

quotient groupoid A/N and natural projection Tt : A > A/N

are defined by the universal property that any morphism
6 : A>B with ker® 2 N factors uniguely through A/N.

]
The quotient groupoid can be described as follows. Define
equivalence relations ~ on Ai (i=0,1) by v ~w if N1[v,w)
is non-empty (for i=0} and a ~b if a = n + b + m for some
m,n €N, (for i=1). Let (A/N), = A ./ with}f’the class of a

1

denoted &. The compositicn in A/N is given as follows:




a + b 1is defined if and only if there exist a,e€ a, b_.e b

such that a,]+b1 is defined in A, and in this case

a + b = [a1+b1), The proof that t: A > A/N, aw» a satisfies

the universal property of definition 2.2 is given in [14].

2.3 PROPOSITION. Let ® : A > B be a groupoid morphism,

The following statements are equivalent.

(i) The induced morphism A/ker® - B 1is an isomorphism.
{idi) 8 1is vertex surjective and piecewise surjective.
(ididi) 8 1is surjective and for v,w EAO, v = 6w

implies [Kere]qfv.w] #}5.

Proof. (145 Proposition 25, page 88].

]

The morphisms characterised by proposition 2.3 are called

guotient morphisms.

If N is a normal subgroupoid of A then clearly Nq[v] is

a normal subgroup of Aq(V] for any Vv €& NO=AO. If C 1s an

arbitrary subgroupoid of A its normal closure N = C 1is the

smallest normal subgroupoid of A containing C,. I¥f A and C are

both connected and v éCO, then N1(v] is the (group

theoretic) normal closure of Cq(v] in Aq(vl. More generally

we have the following technical lemma which 1is regqguired later.

2.4 LEMMA. Let A be a connected groupoid, N a subgroupoild
containing the vertex * ., The vertex group of the normal

closure N at * , N NnA (*) , 1is generated by

K\/} 2 -a + N1£v) + a3 a eAq(v,*) }
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where V 1s a set of vertices of N containing * and at

least one vertex from each component of N.

Proof. By [ﬂ4; page 95] N is generated by N and its

conjugates =-a + n + a (ae Aq, ne Nq). Let xe N r\Aq[*}.

Then x can be expressed as a word x = X, el * X g

where x,€ N or x, = -a, *+ n, + a,, By inserting identity
i i i i i

elements if necessary we may assume that the word has the

following form:

X = n, + (=a_+m_+a,])] + .. *+ n + [(~a _+m +a ) + n »
1 r r r r r+1

/I
where n.,m.& N, a.€ A,. Since BD(—a.+m.+a.) = 3 (~-a,+m, +a,)
i i 1 i 1 i i i i i i
it follows that n, = g * oeee 20 is a well-defined
element of N,(*), Define A, = n, + ... + n, , for
1 i 1 i

r - ~
i=1,44u,n*1 (50 n, = nr+1]. Then

= ~ - -A AN - + + -A +

X (n,l a1+m,l+a1 n1) + (n2 a,*m, *a, n2) oo s
+ (A -a +m_+a -A I o+ n,
r r r r r
A
= ﬂ + ﬁ * .. * Q + n , where m = ﬁ.—a_+m.+a,-n .
1 2 r * i i

Consider ﬁi, There is an element Vs of V in the component

of N containing °m, = aqm.. Let 2.€N,(v,, 3°m.). Then
i i i 1 i i
m, = (A.-a,-2_) + (L. +m,=2_) + (& +a_ -N_)
i i 1074 i 1T i i i
= - € L * J .
Ci + Py + cy where cy Aq(%, ), pis N1(VJ
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So finally, x = [-cq+p1+01] toaa. ¥ [-Cr+pr+cr] +n,

which expresses x in terms of the generators.

]

In view of the existence of various classes of groupoid
morphisms it is not immediately obvious how to define the

notion of "exactness”". Our choice is the following.

2.5 DEFINITION, The sequence sew 2 A >B > C- eae 1IN

¥pd is exact at B if (i) ker¢ = im0 and (ii) 6 : A > im6

is a quotient morphism.

[

Note that condition (i) of 2.5 implies that img dis a

subgroupoid of B. Let EX denote the trivial subgroupoid

with vertex set X., (The only morphisms of EX are identities).

If N dis a normal subgroupoid of A , then

T
EA —> N &— A —> A/N — E_
0

is a short exact seguence, where * 1is the singleton set.

We end this section by describing some groupoids which arise

in topology. Let XDQ-X be a pair of topological spaces. The

fundamental groupoid aof X relative to XU, ﬂq(X,XU] ,» has

vertex set XO and edges the homotopy classes, relative to
end points, of paths 1in X with ends in XD. Addition is

induced by the usual addition of paths. The groupcid w,(X) =

n1[X,X) is called the full fundamental groupoid of X.
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There is a modification of this. Suppose now that all loops
in XU are contractible in X. Then there is a groupoid

0
p1(X,X ] with vertex set ﬂD[XD] and edges the relative

homotopy classes of paths in X with ends in XD. If

nD[XO) = XU (for example, if XD is discrete) then pq[X,XU)
~ 0
= ﬂ1(X,X ] The groupoid p1(X,XO] has been studied by Brown

and Higgins [9,11] and Razak [18].

One of the early uses of groupolds in topology was a Seifert -
van Kampen theorem for the fundamental groupoid which avoided
connectivity assumptions. See, for example, Brown [6; §8,4].
Groupoids appear to be of use because the fundamental groupoid
is a better algebraic model of the topology than the
fundamental group. This point is demonstrated clearly in our
consideration in §4.2 of the fundamental groupoid of an orbit

space .

In addition, groupoids admit generalisations to higher
dimensions and by modelling arguments used for the fundamental
groupoid new information can sometimes be obtained about

higher homotopy groups. For example, Brown and Higgins [10,11j
have obtained a Seifert - van Kampen type theorem which gives
information in higher dimensions. This, however, is the subject

of the next section.
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2. w-GROUPOIDS AND CROSSED COMPLEXES

The detailed definition of an w-groupoid is lengthy and

technically complicated [10; pp235 - 238]. Essentially though

an w-groupoid A = {A_ | n»0} 4is a cubical complex with
certain extra "degeneracies” Fi : An—1 - An (i=1, eva,n=1)

such that the pair (An, An-1] has n "compatible”" groupoid

structures +j (j=1,44.,n) with identities given by Sj
and initial and final maps given by 3? and 3; respectively,

The extra degeneracies are called connections. The length of

the definition in [10] is due to the relations which the
connections must satisfy, and making the word "compatible”
precise. Since our notation is the same as [10] we refer the
reader there for details. A morphism of w-~groupoids is a
morphism of the underlying cubical complexes which preserves
all the additional structure. The resulting category is

denoted by g.

By forgetting everything above dimension n we obtaein the
definition of an n-tuple groupoid, a category gn of such

. n
objects and @& truncation functor tr : g —> qﬁ' The category

%I is isomorphic to %pd.

The motivating example of an w-groupoid is also given in [10].

0 1 n

Let X7 X € ... X & ... be a filtered space. Let

X
WA

in denote the n~-cube with standard filtration, and let pn&

be the set of filter homotopy classes of filtered maps

[}

H

7 X In [11] Brown and Higgins provethe non-trivial fact
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that under the assumption that loops in XO are contractible

1 .
in X, pX = {pn&_[ n»0} 1is an w-groupoid. A filtered space

satisfying this condition (that loops in XO are contractible
in X1 ] is said to be io—filtered, and pX is called the

homotopy w-groupoid of ﬁf

There is another generalisation of groupoids given by Brown
and Higgins in [10]. It is the notion of a crossed complex

which we now define.

2.6 DEFINITION, A crossed complex C 1s a seqguence

)
5 ) ? 3 3 S,
cee—> L — C —> 4ae —> C_ —> C, > (C
n n-1 2 0
/I
d
satisfying the following axiaoms.
1) (C1’CD] is a groupoid with initial and final
maps 5° , 81 .
2) For n»2 , C_ ='{Cn[v] | ve CO} is a family of

groups, which are Abelian for n# 3. (I.e. Cn

is a totally disconnected groupoid with vertex set CD).

3) C1 acts an Cn (n2» 1) on the right — x¢€ 81(v,w)

induces an isomorphism Cn(v]-+ Cn(w] denoted ak> a’,

4) 3 @ Dn > Cn_1 {(n2»2) 1is a morphism of groupoids
over CO which preserves the action. ( 61 acts
on '{C1(v] | v> CD} by conjugation — y>< = =X + y + x ),
5) 98=0 + C ~» C for n % 3.
n n-2
6) 3C2 acts trivially on Cn for n%»3 and acts by




15

3
conjugation on CZ — a b -b + a +b , for a,b eCZ[v].
The term "crossed complex” is used because for v ECD s
3 CZ(V] > C1[v) is a crossed module as defined by

Whitehead. (See [5] for an expositiocn of the theory of crossed

modules).

A morphism of crossed complexes 6 ¢« C - C' is a family of
maps 68 : C_ > C! such that for n 21 (6 ,6_) 1is a

n n n n 0
groupoid morphism respecting the action of C1 and the

boundary morphisms 9. The resulting category is denoted by g .
As for w-groupoids, ignoring everything above dimensiaon n
gives a definition of n-truncated crossed complex, a

resulting category Bn and a truncation functor tr" :8- Qﬁ

There is the notion of a module over a groupoid. The axioms

(1) — (3) of definition 2.6 can be used to define Cn as a

C ).

module over (Cq, 0

Important examples once again come from topology. Let

X+ X € X & ... €X € ... be a filtered space where now we

suppose WD[XD] = XU. The homotopy crossed complex C = 7% of

X 1s defined as follows. (61,CD] is the fundamental groupoid

-1
T (X1,XU] and for n %2 , vEC_. , C (v) =7 [Xn, x" s V),
1 0 n n
the usual relative homotopy group. The action of 61 on Cn is
the standard one and 9 Cn - Cn-1 comes from the homotopy
n n-1 n-2

sequence of the triple (x ', X , X ).
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It 1is a surprising fact that the categories % and © are

equivalent. Let A be an w-groupoid. An element a eAn is

totally degenerate at veA, 1f a = (81]nv . (Brown and

Higgins use the term "concentrated at v” ). The associsted

crossed complex C = YA is defined as follows. (C,,C.) =

1:Cq
(A1’AD) and for n 22, vE€ Cq
cotv) = {een | ofa = el for a11 (e,1) # (0,1}, so

Cn(v] igs the set of n-cubes of A all of whose faces except

the (0,1)-face are totally degenerate at v. Addition in Cn

is induced by +,; (i »2) oand is independent of i. The

boundary morphism 9 : Cn > Cn—1 is induced by 8? , and the
action of C1 is given by
at = - (En_qx] + a + [En-qx].
n 1 n n 1

In [10} it is proved that AP YA defines functors

Y :% -~ € and Y o: % - £ {n?%»0) each of which is an
n n

equivalence. Furthermore, if z' is a filtered space with

m XD = XO then ypX 1s naturally isomorphic to 7% [10].

It is interesting to note that there are known to be four
gther categories non-trivially equivalent to these. They are
the categories of simplicial T~complexes, cubical T-complexes,
o-groupoids and poly-T-complexes. See [10,12] for references
to the definitions of these categories and the various
egquivalences.

ale
In an w=-groupoid A therexcompositions +i in n "different
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directions” in dimension n. A "word” in An is therefore a
multi-dimensional composable array [a[p]] — see [10]. An

element a eAn (n 71) is thin if it can be written as the

composite of an array where each entry is either of the form
Ejy or EE oo Efmy, Thin elements play a special role in the
theory of w-groupoids. The simplicial and cubical T-complexes
mentioned above are complexes with thin elements which satisfy
three simple axioms. The equivalence between w=-groupoids and
cubical T-complexes says that all the w-groupoid structure

may be recovered from knowledge of the thin elements and the

three axioms.

We now consider normal subobjects and gquotient objects in g
and € . 1In [18] Howie gives definitions in §2 » the category
of double groupoids. A subdouble groupoid N of A dis normal

if (13} ND =AD and (ii) whenever n € N2 , a eA2 are such

that BTa €N and n' = =a +, n +, a 1is defined in A {(for
i 1 i i i 2

i=1 or 2) then n*'€N Howie noted that condition (ii) for

2I
i=1 is eguivalent to condition (ii) for i=2, and alsoc that

A ]D

(N1’ND] is a normal subgroupoid of [Aq’ 0

I+ 6 : A > B is a morphism in gz its kernel K = ker® is
defined as follows. KO = AU and for n=1,2 , Kn is the set of

elements a of An such that ©6(a) 1s totally degenerate in

B.s The kernel of ©6 dis clearly normal in A.

The elements of the gquotient double groupocid A/N can be

described as eguivalence classes Ai/m (i=0,1,2). For i=0,1
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the equivalence relations are those for guotient groupoids

given in the previous section. For i=2,

1 2 5
a v b if a = t b t l
n2 t n4 1
where nie N2 and the t's are thin elements.
Now 1if g + A > B 1is a morphism of w-groupoids, its kernel

can be defined to be the set of elements of A whose image
is totally degenerate. If we then define normal sub-w-groupoid
in an analogous way to Howie's definition in dimension two, it
is clear that the kernel of 6 dis normal in A, However the
equivalence relations used to define the guotient object would

then require complicated multi-dimensional arrays.

The following alternative approach may prove more manageable.

For the morphism &6 : A > B define a "kernel system” K as
follows. K_ = A and K_ = {k* | 4=1,...,n} where

a] 0 n n
Kr = {aeA 6a = e.b , for some beB ,}. Now to define
n n 1 n-1

guotient w-groupoids we could perhaps use "normal systems”
modelled on kernel systems and then use only ane-dimensional
arrays in defining the required equivalence relations.

However the details still appear complicated — we do not know,

for example, the minimal axioms for a normal system.

The situation for crossed complexes is considerably simpler,

as we now describe.
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2.7 DEFINITION, A sub-crossed complex N of C 1s normal if

(i) (N1’N0) is a normal subgroupoid of [C1,CU] ,

(i1) n €N _(w) for all neN (v) , x&C (v,u) ,
v,we-CO and r2>2 , and

(1i1) a" - aenN_(v) for all a ec (v) , men (v,
v E CU and r 7 2.

(]

This definition is a direct generalisation of the definition

of normal sub-crossed modulE {over groupsl) given in [5].

2.8 DEFINITION. Let 6 : C > D be a morphism in © . The

kernel K of 8 1is the sub-crossed complex of C given by

(i) KD = CD )

(i1) K, = {xe¢ C, | 6x = ew for some we DD} , and

(i1i) for ry»2 , veKk, K (v) = {cec (v) [oc 1is the
identity of Dr(eDv]} .

]

It is easy to see that the kernel of 6 is normal in C. We
a
define the gquotient crossed complex byAuniversal property in an

analogous manner to the groupoid case (definition 2.2).

2.9 DEFINITION, Let N be a normal sub-crossed complex of C.

The quotient crossed complex C/N and natural projection

T + C > C/N are defined by the following universal property.

Let 8 : C > D be a morphism in © with ker8 2 N. Then

* *
there is a unique morphism ©6 : C/N > D such that 6 o1 = 6.
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Symbolically, € ——— C/N
*
e\ e’ 8

]

The following description of C/N involves equivalence
relations in each dimension r »0. For r=0,1 the equivalence

relations are those for guotient groupoids given previously

and for r22, a~c if a = Crl + m for some n e N1 s, MmE Nr'
i

Let (C/N]r = Cr/m for r 20 , where the eguivalence classes

are denoted <c> in all dimensions. The partition of Cr {r >2)

into disjoint sets Crfv) , v €C induces a corresponding

0
partition of (C/N]r into sets [C/N]r(<v>]. Define a

composition on (C/N]r(<v>] by <a> + <c> = <a'+c> where
n GN1 and an+c is defined in Cr'

2.10 THEOREM. C/N as defined above, with projection

T :+ ¢r <c> , 1is the quotient crossed complex.,

Proof. The proof consists of three lemmas.

2.11 LEMMA, (C/N]r(<V>] with composition defined above is

a well-defined group and is Abelian for r 2 3.

Proof. We first show that the definition of addition is

independent of the choices made. So let a va'®, c v oc! and

let n, €N, , m.,e& N {1=0,1) be such that a' = a Ty m, ,
i 1 i T

'e N are such that an + c and

Mo
c' = ¢ + m, Suppose n,n ]

v
(a']n + ¢! are well defined in Cru Then

] ’ ] n .
n B a[nq + n'l . m1n y 012 4 m.




N (v}
r

Now is normal in

Abelian and normality for

' n
n' o, "2 .
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Cr(V]’ (For r »3 the groups are

r=2 is easy to establish). Hence

n
= Z .
m1 m2 c + m3 for some m3€ Nr' Therefore
] - [} n
(a']n + c' = a(n,+n ) c 2 s m3
- - n
= (a+ c][ n+*Ni+n’) c[ n+Mq+n') + o 2+ Mq
Since (n + n, * n'e N1 it follows that
- n ’ n
—c( n+nq+n’) c 2 e N by condition (iii) of definition 2.7.
1]
Therefore (a']n + c! an + c , s0 addition is well-defined.

It is easy to check that

For r 2 3, <a> + <c>

This completes the proof.

2.12 LEMMA. The crossed

crossed complex structure

Proof. 3 (C/N]P -~ (C/
the action of (C/N],l is
neN1 is such that cn+x

existence of such an elem

of the equivalence relati

the group structure is inherited.

n
<¢g + g >

n
a

<(g + )] >
<(:-,-r1 + a>
<g> + <a> .,

]

complex structure on C 1induces a
on C/N.
N]r-1 is given by d<c> = <3c> , and
. <X > n+x
given by <c > = <cC > where
is wedd-defined in Crn (The

ent n follows from the definitions

ons) .
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We must show that conditions (1) — (B) of definition 2.6 hold.
(1) is proved in [14], and lemma 2.11 proves (2). That the

action is well-defined is proved in a similar way to lemma 2.11.

(43 3(<a> + <c>) = 3<a' + o>
= <(3a)" +%>
= <ga> + <3c>
= 3<a> + 3<c> ,
s0 3 (C/N]r > [C/N]r—1 is a well-defined morphism of

groupoids,

(5) follows immediately from the same law in C .

(B) Let ¢ eCZ[v] , 4a eCP(w) where Vv ~ w. Choose

3<c >
>

n e N1[v,w] . Then <a <an+ac>

n
<=c+a +Cc> = =<g>+<a>+<c> for r=2

n
<g '> = <a> for r33.

]

2.13 LEMMA. Tt : C > C/N , c+ <c> is a C-morphism

satisfying the universal property of definition 2.9.

Proof. That T 1s a crossed complex morphism is clear from
lemma 2.12. Let 8 : C > D be a morphism in € such that

N € ker8 . Define 8* : C/N > D by 8*<c> = 6c . We must
show that 6* is well-defined. For dimensions 0,1 see [14;

Propositiaon 24],




23

For dimension r 2»2, let ¢ ~ ¢! in C . I.e. c' = cCc + m
for some n enN, |, ﬂlENr. Then 6c¢c' = (ec]en + 8m = 0Oc

since N € kerf.

Therefore 6* is well-defined. It is clearly the unique

morphism such that ©6*et1 = 0 .

L]

This completes the proof of theorem 2.10.

1

2.14. COROLLARY. For r 22, ve CD [C/N]r[<v>] = Cr(V)/Nr(V)'

Proof. We have noted above that Nr[v) is normal in Cr(V]-
Define

Y 1 C (v)/N (v) —= (C/N) (<v>) ) N (v)+c —> <c> .
r r Tr r

The definition is clearly independent of the choice of ¢ ,

and gives a well-defined morphism of groups.

To show ¢ is injective, let w[Nr[v]+c] = <0> , where 0 1is
the identity of Cr(v]. Then ¢ ~ 0 in Cr so ¢ =0 +m,
where m eNr(v], Hence Nr[v]+c = Nr(v) », proving (¢ is

injective.,

To show P is surjective, let <a> G[C/N)r[<v>]n Then
a eCr(w] where w ~ v, Choose n eN1(w,v] « Then ale Cr[v)

n n . . . \
and ¢ : NP(V] + a > <a > = <g@> , proving ¢ 1is surjective.

[]
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The above corollary indicates that our description of the
guotient crossed complex is a generalisation of the description
of a guotient crossed module (over groups), given in [5;p9].

We now describe the normal closure of & sub-crossed complex.

2.175.PROPOSITION., Let B Dbe a sub-crossed complex of C ,

and let N &£ C be the following.

(i) {N,,N_ ) dis the groupoid normal closure of

170
[Bq’ BO] in [C1 ,COJ.
(i1) For r 2, N_ =I{Nr(v] | ve ND} is generated as

a (totally disconnected) groupoid by

X

1 [3

(a) elements b” , for be Br , X € [3,I , and

(b} elements CD+X - ¢ for ce Cr , X € C,I ,p €B
Then N is the normal closure of B in C. (I.e. N 1s the
smallest normal sub-crossed complex of C containing B J.
Proof. Note that for v eND , T %2 Nr[v) is generated as
a group by the elements of type (a) and ftb) where b eBr(w] s
C eCr(w] . P 681(w] and xé—C1(w,v] .
We first show that N 1s a sub-crossed complex of C — i.e.
aNr c Nr-1 and N1 acts on Nr « Let r=2. Then
a[bx) = -x + 9db + x which is an element of N1 since (N1’NO]
is the normal closure of (81,801, Also
B[CD+x - = -« -p *+ d¢c * p - 9c + x. Now 9dc + p - 9dce N1
by normality, hence =-p + dc + p - 9c = nE Nq. Therefore
3cP™ - Y = -x + n + xeN so 9N, & N Now let r ¥ 3.

1 2 1°
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Then 3(b%) = (ab)% and 3(cP X - Xy = (3c)P*™® - (3%

Xa) AN &€ N

It is clear that there is an induced action of N1 on Nr
so N 1dis a sub-crossed complex of C. By its very

construction N is normal and contains B.

It remains to show that N 1is the smallest such sub-crossed
complex, so let ™M be any normal sub-crossed complex of C

containing B. Then (Nq,N ) € (M,,M )« For r22 let

0 1°°°0
c,b,x and p be as above. Then we have (i) bel"lP so ble Mr
since M 1is normal, and (1ii) pe M1 so cP - ce Mr by

+X X
CD -

normality and hence c € Mr' Therefore M € N

which completes the proof.

]
Fimally, we describe the Union Theorem of Brown and Higgins
[11]. This is the generalisation of the Seifert - van Kampen
theorem mentioned previously which contains informatien in all
dimensions. It was in order to formulate and prove this
theorem that much of the theory of w-groupoids was developed.

2.16 DEFINITION., A filtered space X : XD = X1 € ... & x”e

vve © X is said to be homotopy full if for all n2 0 the

induced map NDXD > 1 x" is surjective and for r>n> 0 and

0
0 r n
v € X ﬂn(X , X, v) = 0,
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2.17 THEOREM. (Union Theorem). Let l_ be a Jo-filtered

space and let U = { UA l A€A } be a cover of X such that

the interiors of the UA caver X. For v ¢ An set

u = U Naowon U and let U be U with filtration
\)"] \)n wary) V)

induced from X.

A

Suppose (i) for n=1,2 and all ved  , Y, is J -filtered,

and (ii) for all finite n and all ve A" ,{3v is homotopy

full. Then

——a e
Py T o, > pX

ver? A€

is a coeqgualiser diagram iﬁ? where [_J denotes coproduct
{= disjoint union } , & and b are induced by the inclusions

U,nlU0 <~ U and . nU <> U respectively, and ¢ is
A u A A u U

induced by the inclusions UAC-» X e

]

The usefulness of the Un¢on Theorem lies in the fact that if
WDXO = XO then ypX 1s naturally isomorphic to 7X. Hence
applying the equivalence Y’:’§%-t gives a coequaliser

diagram of homotopy crossed complexes, which has many classical
results as corollaries (see [10,14]]n The fact that the proof
of the Union Theorem takes place in g' illustrates the pocint

made in chapter one that it is often easier to prove

topological results in %- rather than tn
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The truncation functor tr : g > §h has a right (and a left)
adjoint [10], and so preserves colimits (and limitsl). Hence
under the hypothesges of 2.17 we also obtain certain
coequalisers in the categories gm s m»0. For m= 1,2 the
homotopy fullness condition (ii) may be weakened — see [18,9]

for the minimal conditions.
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CHAPTER THREE. G-GROUPOIDS AND GENERALISATIONS

If X 1is a topological space with group action there is an

action induced on the (full) fundamental groupoid ﬂ1[X).

4

Similarly if X dis =a JU-Filtered space with a filtration
preserving group action then the homotopy w-groupoid pX and
homotopy crossed complex 7nX have induced actions. In this
way topological considerations lead us to consider algebraic
properties of groupoids, w-groupoids and crossed complexes

with group actions. This is the subject of this chapter.

1. THE GROUPOID CASE

3.1 DEFINITION, Let G be a fixed group. A G-groupoid A

is a groupoid together with a right action of G. The

automorphism of A corresponding to ge G 1is denoted

aiﬁ-ag, A morphism of G-groupoids or G-morphism is a groupoid

morphism which preserves the action.

[
This defines the category of G-groupoids for a fixed group G.
Allowing variation of the group would give a more general
category of "groupoids with group actions”. In this setting a
morphism from the G-groupoid A +to the H-groupoid B i1is a
groupoid morphism © : A > B and a group morphism o : G > H
such that 6(a®) = (Ga]ag. We shall rarely require such
generality and for the most part restrict our attention to the

category of G-groupolds for fixed G.
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Throughout this section A will denote a G-groupoid.
Motivated by the notion of an orbit space in topology we

seek an analogous definition in the algabraic setting. Simple
examples show that the set of orbits of A need not inherit
a grouppoid structure from A. For example; consider Z;
acting non-trivially on Z considered as a groupoid with a
single vertex. In the topological context the orbit space is

universal for G-maps into a G-space with trivial action. We use

this as the definition for groupoids.

3.2 DEFINITION, The orbit groupoid A/(G) and canonical

projection T : A » A/(G) are defined by the following
universal prpoerty
(i) G acts trivially on A/(G) and =t 1s a
G-morphism.
(ii)] Let B be any groupoid with trivial G=-action and
6 : A>B a G-morphism. Then there exists a
unigue morphism 6*: A/{(G) > B such that 8*t = 0,

]

Symbolically we illustrate (ii) by the diagram

A standard argument shows that, if 1t exists, A/(G) is
unique up to (unigque) isomarphism. Existence may also be
established on "general nonsense” grounds. A/{(G) is the

colimit in ?pd of the diagram whose unigue object is A and
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whose morphisms are the automorphisms of A dinduced by all
the elements of G. The fact that gpd is co-complete [14;

Theorem 3, p7D] establishes the existence of A/(G).

The notation A/(G)} 1is used to distinguish orbit groupoids
from quotient groupgids. (In [15] A//G is used for the orbit

groupoid]l.

The above existence proof for A/(G) 1is not very useful — we
would like to have a description of the orbit groupoid. The
defect noted previously that the sets of orbits of A do not
necessarily inherit a groupoid structure can be remedied as

follows .

Let X denote the orbit of x eA1 and define a relation A
on the set of orbits by X & 9 if x = X4 + x2+ vee ¥ Xn
y = ¥, + Yo Foeee oy in A1 and there exist group elements

g,];---.gn, hq,---,hm such that

It is easy to see that =« 1s an eguivalence relation.

Let <x> denote the equivalence class of x and 81 the set

of such classes., Also let <V > denote the orbit of \Y GAO

and BU the set of arbits. Then B = (BW’BD] inherits a

graph structure from A. If <«<x> , <y> qu are such that
0 1 . 0 g 1
9 <y> = 9 <x> then there exists geG such that d y- = 3 X

in A and we define <x> + <y> = <x + yg>. It is now

/‘
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routine (but tedious!) to check that B 1is thus a well-
defined groupoid and has the universal property characterising
A/(G). These computations are aomitted since this description
of the orbit groupoid is not easy to work with (and its
generalisation to higher dimensions becomes unmanageablel.
Instead, we give a more elegant and useful description via the

semi~-direct product construction A X G.

In [7] Brown considers the case of a groupoid G acting on a
groupoid A "via a morphism w : A —’GD", and he gives a
definition of the semi-direct product A X G. Brown
attributes the definition to Fr8lich and caells it the split
extension (although later in [8] the terminclogy semi-direct
product is prefered). Our situation is a special case of that
considered byBrown and (when modified for right actions) the
definition in [7] reduces to the following.

~

3.3 DEFINITION. The semi-direct product groupoid A X G has

vertex set AD , edge set Aqx G with initial and final maps
Bo(a,g) = 3% , Bq(a,g] = 31ag « If 31ag = 3% then

composition is given by

-1
(a,g) + (b,h) = (a + b® , gh) .
1 g . . .
d a is not ambiguous since

Note that the expression

31 taB) - (3'a38,
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3.4 LEMMA, A X G is a well-defined groupoid with identity

elements ev = (ev, 1) and inverses -(a,gl = (—ag, g-q]a
Proof. Firstly 80((a,g] * fb,h]) = 9% = Bo(a,g] and
-1
1 N
3" (ta,g) + (b)) = (3768 YE" - "M 2 3t m,

Associativity of composition follows from asscciativity in A

and Ge

—
-+
QL
jai}

it
<

.
QL

i

W then

(ev,1) + (a,g) = (ev+a, g) (a,g) , and

(a+ ew® , g) = (a,g) .

~
]
-
o
—
+
—_
M
£
-
-
—
1t

..']]

Finally, (a,g) - (a,g) fa,g) + [-ag, g
= (a~-a, 1)

= eao[a,g] , and

(—ag, g'1) + (a,g)

[t}

—(a,g] + [a:g]

= (~a® + a8, 1)

= 831[a,g) o

U

It may be helpful to think of the edges of A X G as triples

g

fa,g,b) where a® = b in A The diagram below then

1"
symbolises an edge, and it can be seen that the definition of
addition in A X G is completely forced.
Bq(a,g,b]
a h—g—% b

2%ta,g,b)
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Define i : A > A X G to be the identity on vertices and

xe

a v+ (a,1) on edges. Also define p : A G ~ G by
ta,g) + g. In the more general case where G is a groupoid
Brown proves that 1 1is an isomorphism onto ker p and p

is a groupoid fibration. (See, for example, [14; p98] for the

definition of a fibration). Recall that p 1is piecewise

[op]

surjective if, for ge and V,weA there exists

0’
{a,g) E(A X G)1tv,w] such that pla,g) = g« Therefore p

is piecewise surjective if and only if A 1is connected. The
characterisation of quotient morphisms as the vertex
surjective, piecewise surjective morphisms (propofsition 2.3)
gives the following.

3.5 LEMMA. E AL AXe —Posog E is an

A *
]

exact sequence of groupoids if and only if A 1is connected.

[]

This sequence and the exact seqguence for a guotient groupoid

provide our basic examples of short exact seguences of

groupoids.

We now consider some properties of A X G , beginning with the

description of the orbit groupoid A/(G).

~

3.6 THEOREM. Let N be the normal subgroupoid of A X G

generated by elements of the form (ev,g) Ffor ve AD , ge G

Then

~

A/(G) = (A X G)/N .
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Proof. We verify the universal property of definition 3.2.
Let 7 : A %G > (A X G)/N, (a,g) +— <a,g> be the quotient
morphism, and let T : A > {A X GJ/N be the composite

T = wei. Hence <t(al) = <a,1>.

Now G acts on A X G by (a,g]h = [ah, h=Tgh) such that

i and 1w are G-morphisms. Since

~

(where v = 3 a , w = 3 ] the action an (A X GY/N 1is

trivial.

This verifies the first part of the universal property. For
the second part let B be a trivial G-groupoid (i.e. the

action is trivial) and let 6 : A > B be a G-morphism.

Extend 6 to ¢ : A X G > B by defining yla,g) = 0fa.
Since the action on B i1is trivial and 0 d1is a G-morphism

v 1s well-defined. Now ¢lev,g) = Bev which is an identity
of B , so by the universal property of guotient groupoids

(definition 2.2) there is a unigue morphism

8* : (A X G)J/N —> B , such that 68*em = Y.

Therefore we have the following commutative diagram in which

8* 1is unigue for the right hand triangle.
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ip]
>
xR
o]
<
=

O
N

¥
@ < X
<
[wn)
*

Tc complete the proof we are required to show that ©§* is
unigue for the outer triangle. So let & : (A X G)/N — B

be such that Ee1t = 0%,

Since (a,g) (a,1) + (8318, g) we have

g<a,g> = g<a,1> = 8a = Y{a,gl .

That is B8*ewm = £ , so by the unigueness of ©6* in the right

hand triangle we have § = 0* as required.

[]

3.7 PROPOSITION. (i} Suppose G acts freely on A (by

which we mean that no non-trivial element of G Ffixes a

vertex of A ). Then <t : A > A/(G) 1is group injective.
(ii) Suppose G 1is generated by those of

its elements which stabilise some vertex of A. Then A is

a tree groupoid implies that A/(G) 1is also a tree groupoid.

Proof. We use the description of A/(G) given in the

previous theorem.

(i} A vertex element of N 1is of the form =(a,g) *+ (ev,h)

+ (a,g) where h stabilises v = aoa. Since G acts freely

h=1, Therefore N 1s a tree groupoid and
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X

AXG - (AXG)I/N is group injective. But 1 : A > A

is injective so the composite 71 1is group injective.

(ii1) Assume A 1is a tree groupoid and G is generated by
its elements which fix some vertex of A. Let
<a,g>e (A & G)/N have 30<a,g> = <y> = 31<a,g>. Then

(a,g) e (A X GJ1[vgq,vg2] for some g,,g,€ G. Hence

E1q 1

a eA1(w,wh] where w = v and h = gqqug_ . By hypothesis

h = h,h, ... hn where hi stabilises some vertex, vV, say.

Since A is connected we may choose biE Aq[w,vi] for

i =1 Consid b S b "2
= = - + - +
1=1, ecesnu onsider c 1 1 5 5 I
h 1 o h.
+ b =-b ", Since h, stabilises 9 b, and 3 b, 1 =
n n i i i
h h;
wo Teeelloo Bobi+1 , ¢ is well-defined. Now 8°c = w and
1 h’]lllhn h .
d c = W =w , so ¢ and a have the same endpoints.
But A 1is a tree groupoid so a = c. Therefore
h1 hn
(a,g) = (b, - b, "+ .. v b -b_ ", g)
h h h
= - 1 - n
[bq b,l 1)+ el (bn bn ,1) + (ew ,g) .
h'i 1 _’| 8]
Now (b, - b, *+,1) = (b,,1) + (€3 b,,h;') = (b,,1) + (€3 b,,h.)
i i i i’ i i’ 4

which is an element of N. Therefore (a,g)leN so <a,g>

is an identity edge and hence (A X G)/N 1is a tree groupoid.

]

3.8 PROPOSITION, Let B be a full subgroupoid of the

G-groupoid A, with vertex set B0 which is a@ union of orbits
(i.e. G-stable) and contains every vertex of A which has
non-trivial stabiliser. Then B8/(G6) is a full subgroupoid

of A/(G).
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Proof. First note that B 1is G-stable so B/(G) is well-
defined. Again we use the description of the orbit groupoid
given in theorem 3.6. That is we identify A/(G) with

(A X 6)/N and B/(G) with (B X G)/M where M is generated

(as a normal subgroupoid of B X G) by elements of the form

{ev,g) for v eBD.

— A X G,

xR
(ep]

Let j : B - A be the embedding. Then j,: B

(b,g) + (jb,g) is an embedding. Let 8 : B X G — (A X G)/N
be the composite
3. .
6 : BXG6 —— A X6 —— (AKXGI/N.
Since M € kerf there is an induced morphism
o* : (B X c)/Mm — (A %X 5)/n .
To prove 8* 1is an embedding let’ xe N,1 have vertices in BD'

It is sufficient to show X &M, Write x 1in the form
X = X + X * eeas + xn where each xi is of the form {ev,g)
or a conjugate. We may assume that the word x1+x2+...+xn is

minimal in the sense that no intermediate vertex lies in B .

0
If Xq = {ev,g) , then 81><,I = gyb eBD s 80 by minimality
X = x1 eM.
If X, is a conjugate, Xq = (y,h) + (ev,g) - {y,h} , then
1 0 s] . . .
) X, = d x = 9 X eBD , 50 again by minimality x = Xq s

However in this case for x to be well-defined we require

vB = V. The hypotheses now imply v €B so x, €M,

0 1




38
Hence (B X G)/M 1is a subgroupoid of (A % G)/N .

To prove the fullness condition first note that B X 6 is a
full subgroupoid of A 6 . For if wv,w aBD and

L. -1
(a,g) e (A X GJ1[v,w) then a e/—\,](v,wg ) which is an edge

-1
of B since w® € B and B is full in A.

G — (A ¥ G)/N be denoted

Xt

Let the guotient morphism 7 :A
(a,g) V> <a,g> , and let <x> = <a,g> have vertices in

(B X G}I/M . That is 9°x and 81x are N-eguivalent to

vertices U, Vv say 1in BO' Hence there exist nqe N1[U,3DX] »
n2€ N1(81x,v], Let vy = N, * x * n.. Then vy has vertices

in B, and <x> = <y> in (A ¥ G)/N. Since B X G is full
in A X G we have yeB % 6. Therefore <y> = <x> e (B X G)/M.

This proves that (B X G)/M is full in (A X GJ)/N.
It has been pointed out by Higgins that the hypotheses of 3.8
may be weakened to require BU to be G-stable and meet each

component of the fixed point set of every non-trivial group

element (see [15]]=

3.9 PROFPOSITION, Let N be a G-stable normal subgroupoid

of the G-groupoid A, and let H be a normal subgroup of G
which acts trivially on A. Then

(i) G/H acts naturally on A/N ,

(ii) N ¥ H (= N x H) is a normal subgroupoid of A X

~N

and (iii) (A/N) X (G/H) £ (A X G)/(N X H) .

i
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Proof. Let 1t : A > A/N, at— <a> and G » G/H , g r— Hg

be the natural morphisms.

(i) The induced action of G/H on A/N 1is <a>Hg = <a®>,
Te see that this is well-defined, let b = nt*tatm with n,mé& N
and k = hg, heH. Then bK = (n + a + m]hg = n® + a8 + pb

since H acts trivially. Now N 1is G-stable so ng,mg € N,

Therefore <bk> = <ag> so the action is well-defined.

(ii) N X H is clearly a subgroupoid of A X G. For
normality, let (a,gle A X G and (n,h)le (N % H]1(aoa].
Then

+ n® + a , g-1hg1

il
—
i

)]

-(a,g) + (n,h) + (a,g)

1
—
1

ul]

+ n°® + a°%, g_qhg] ,

since H acts trivially. Now g'qhg eH, and (-a+n+a)®e N
since N is normal and G-stable. Therefore

Iod

-(a,g) + (n,h) + (a,g) eN ¥ H , thus proving normality.
(i1ii) Let ® : A X 6 — (A/N) & (G/H) , (a,g) +— (<a>, Hg)
be the natural morphism. 8 1is vertex surjective and we show
it is piecewise surjective,

faod

Let wv,w EAO , and consider (a,Hg) € ((A/N] X (G/H])(<v>,<w>]n
-1
Then o e (A/N){<v>,<wB® >), Since t : A > A/N 1is a quotient
-1
morphism, there exists a eA1(v,wg }]  such that a = <a>.

Now (a,g)e (A ¥ G)1fv,w] and #6(a,g) = (a,Hg)l. Therefore

6 1is piecewise surjective and hence by proposition 2.3 a
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quotient morphism.

Clearly N ¥ Heckere so there exists a unigue merphism

e* + (A % 6)/(n % H) —— (A/n) ¥ (6/H)

~ ~

such that 6*7 = 8 where 7 : A X G — (A X G)/(N X H) is

the guotient morphism., 6* 1is clearly surjective.

To show 8* 1s injective, suppose B*<a,g> = B*<b,k>, Then
<a> = <b> 80 b = n + a + m for some n,meN, and Hg = Hk
so g = hk for some h eH, Then

-

(b,k} = (n+a+m, hg) = (n,h) + (a,g) + (m& ,1) .

Therefore <g,g> = <b,k> soD 6* 1is injective, which completes
the proof.

[]
The following result shows that the action of G on A may
be factored into an action of a normal subgroup H followed
by an action of G/H on the groupoid A/{(H). Armstrong uses
the analogous topological result in the proof of the main

theorem in [3].

3.10 PROPOSITION, Llet A be a G-groupoid and H a naormal

subgroup of G. Then G/H acts naturally on A/[{H) and

~t

(A7eH))/[c/n] = A/(G) .
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Proof. Ltet 1t : A— A/(H) be the natural morphism, and
define a (G/H)-action on A/(H) by (Ta]Hg = t(a®)., This is
independent of the cholice of g € Hg, for if g' = hg where
g’ g
heH then 1la~ ) = 1la }] since T is an

H-morphism and A/(H) is H-trivial. The action is clearly

well-defined.

Let v : A/(H) — (A/(H))/IG/H] be the natural morphism. To

prove the proposition we show that the composite
mor A —— A/(H) —= (A/(H})/[G/H]

has the universal property characterising A/(G) (definition
3.2), Define a G-action on (A/(H])/[G/H] by (ra)® = w(a®) ,
so T is automatically a G-morphism. This action is trivial
because

m(a®) = v[(ra]Hg) = vlital) = n(al.

This verifies the first part of 3.2. For the second, let
6 +: A>B be a G-morphism where B 1is G-trivial. Then B
is H-trivial and € 1s an H-morphism so there 1s a unique
morphism ¢ : A/(H) — B such that ¢er = 6. Now B is also
(G/H)=-trivial and ¢ dis a (G/H)-morphism. Therefore ¢
induces a unique 8* such that B*av = U, The diagram for
this 1is

A — A/(H] —— (A/(H))/[6/H]

0 lw o*

B




42

Finally it is easy to check that 8* is unigue for the
outer triangle.

]
Our interest in the semi~direct product is largely in its use
for describing thé erbit groupeid. However, it appears to be an
interesting construction in its own right. For example, the
following result, which is due fto Brown and Danesh-Naruie [8],
shows that any group extension by G comes from a semi-direct

product groupoid.

3.11 PROPOSITION. If A 1is a connected G-groupoid and

* €AD there is an exact seguence of groups

o—>A1(*]————«+(A§<’631[U > G 0 (+).

Conversely, any extension of groups 0 — B —> 2% =G — 0
is isomorphic to ({+) for some connected groupoid A,

[
Finally in this section we note @ connection with the theory
of groups acting on trees developed by H.Bass and J.-P.Serre
[22}. Let T be an abstract connected graph on which the
group G acts without reversing an edge. Then G acts on
an ,the free groupoid generated by r, and we can form the
semi-direct product T X Ga In this situation Bass and
Serre define a graph of groups (g', I/G) over the guotient
graph TI/G, and its fundamental group ﬂq(g', r’/g, *). The

Bass - Serre group is non-trivially isomorphic to the vertex

group of T ¥ G. Since qu g, r/G, *) 1is an extension by
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G, this isomorphism may be regarded as an example of
proposition 3.11. The connection between semi-direct products
and other groups, including the Bass - Serre group, is

explored more fully in chapter five.

2.THE w-GROUPOID AND CROSSED COMPLEX CASES

In this section some of the results of the previous section
are generalised to the higher dimensional categories g and
g . Here A will be used to denote an w=-groupoid or crossed

complex (as indicated) but always with a right G-action.

For the crossed complex A there is an action of A1 on

An (n>»2) for which the standard notation is a r— ax.

In this case therefore the action of the group will be

denoted a +> a-g,
The definition of the orbit object A/(G) in the categories
§ and € is analogous to the groupoid case. We state it here

for convenience.

3.12 DEFINITION, Let A be a G-w-groupoid (respectively

G-crossed complex). The orbit w-groupoid (resp. orbit crossed

complex)} A/(G) and canonical projection 1 : A — A/(G)
are defined by the following universal property.
(i) A/(G) has trivial G-action and 1t is a G-morphism.

(ii) Let B be any w=-groupoid (resp. crossed complex)
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with a trivial G-action and let 6 : A > B be any
G-morphism. Then there is a unigue morphism

g* : A/(G) — B such that 6* 71 = @4,

Symbelically, A —1 s A/(G)

The above definitions clearly also make sense in the categories
§ and €. Recall that t : A > A/(G) 1is the colimit of a
certain diagram in the appropriate category and that the
. n . -

truncation functor tr g — ﬁj has a right adjoint

n . .
cosk 1 gh > g (and similarly for € and C%). The
truncation functors therefore preserve colimits which proves

the following result.

3.13 LEMMA. Let A be a G-w-groupoid or G-crossed complex.

Then
tr (A/(c)) 2 (tr"A)/(c) .

]

The lemma shows that any description of A/(G) 1in g or G
automatically gives descriptions in the categories gﬁ or f%
(n>1) respectively. The work of the previous section may

therefore be used as a basis for inductive descriptions of

A/LG) .

Recall that the groupoid A/(G) could be defined by using an

equivalence relation on the set of orbits of A. By defining
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different equivalence relations in each dimension this
process can be used to define the double groupoid A/(G).

The computations involved are complicated and largely
uninformative, and there 1s 1little hope of repeating this
proceg¢dure in higher dimensions. For these reasons we make no
further mention of this approach but instead generalise the

semi-direct product description of the orbit groupoid.

We concentrate mainly on the crossed complex case because
guotient objects are easy to handle and the definition of the
semi-direct product turns out to be surprisingly simple. As

was pointed out in chapter two, a definition of normal
sub~w-groupoid would be complicated and so an analogue of
theorem 3.6 would be hard to find. However we do give a
definition of A X G for w-groupoids because it involves an
interesting use of the skeleton functor and because it explains

the simplicity of the definition for crossed complexes.

To motivate the definition recall that the edges of the
groupoid A X G could be regarded as triples (x,g,y) where

xZ =y in A An obvious analogue in dimension two is to

1 o

consider arrays

‘ 2
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. g1 Eo
€ ’ . =1, seay = , =
where a; A2 g, € G (i=1 4) and a, a, a, ag
. o,_ _ o 0
etc. The faces of & are given by 815 = [31a1, 840 81a2]

gtc., It turns out that, provided the additional condition
£,84 "858, is imposed, the set of such arrays form a well-

defined double groupoid. The connection is given by

T'x g e1y ]

Iri(x,g,y) 1

i}
o

e,y 1 Ty

and compositions by

-1
a b h b a o+ pol h ho b
2, 84 2 1 1 2 1 3 Pq g4 87 35 By
&, Byl % Py hat = &5 ; hg
a a b h b b gz h h4 + b
3 Bag 94 3 "4 Pa 23 % P3 84 %4 3 "4

and similarly fer ; » This double groupoid is A X G.

Notice that the array & may be thought of as a pair (a,g],
1

where a = a, € A2 and E'E(SKG]Zu Here sk = sk : §1 > g

is the skeleton functor defined in detail in [10], and G dis

regarded as a groupoid with a single vertex., This observation

indicates how to define A X G in g as follows.

The set of n-cubes (n»0) of A X G is AL x [skB) — with
degeneracies and connections given as products of those in A
and skG. The faces of (a,8)e€ (A % G]n are given by

3%(a,9) = (3%, 87
1 1 1

(tala)vig, 318)

1“0

8) and Blfa,ﬁl
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o o o 1 A 1
where v.0 = 3 cecleosd O {(Cfsa U,08 = B, ceelee.d O
1w 1 N 1w 1 N Ve

defined in [10]). Finally, compositions are given by

(vy )7
(a,g) +; (b,y) = (a + b 1 s 8ty v

The reason that the edges v, X {beginning at 82...32x)

arise in the definitions rather than the edges U, x
{terminating at 81...3;x] which are used extensively in [10]
is presumably because we have chosen to use right rather than

left actions.

Checking that the above definitions satisfy all the axioms
for an w-groupoid is a lengthy process which is omitted since

we shall not use this construction.

Recall that in an w-groupoid an element of dimension n is
totally degenerate 1f it is of the form e?v for some vertex
Ve The elements in dimension n of the associated crossed
complex are those all of whose faces except the (0,1)-Fface

are totally degenerate. Let

and suppose g e y(skG), the associated crossed complex. Then
g8, 7 By T g4 =1, but 8,85 = B8, by hypothesis so g, 1
also, and g ditself is totally degenerate. An inductive

argument shows that this is also true in all higher dimensions.

Therefare in vY(A X G) the presence of group elements
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disappears in dimensions greater than one. This leads to the

Tollowing simple definition of A X6 in the category G.

3.174 DEFINITION, Ltet A be a C-crossed complex. The

semi-direct product crossed complex A X G is defined as

follows.,

(A X G) =

The boundaries, identities and compositions are those of A
for n2>1 and those of the groupoid A X G for n=1 (see
definition 3.3), except 3 : (A X G), — (A % G), which is

given by 9a = (3a,1).

The action of (A X G}, on (A % G~ is given by

a(x,g) = (aX]'g = [a°g](xogJ .
3.15 LEMMA, A X G as given above 1s a well-defined crossed
complex.
Proof. We must verify the axioms (1)—(8) of definition 2.6.

(1) is given in lemma 3.4 and (2} is trivially true.

(3) Let (x,gle (A X ), (v,w) and ae (A X ) (v) for nZ%2.

a(x,g)

Then (aX)eg € (A ¥ C) (w)e If (y,h) € (AKX G) (w,2)

then
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(x,g)+(y,h)) L=
a( = (GX+y & ]-(gh]
((aog](x.g+y))°h

(a[x,g])[y,h]

1l

-defined.

(=5

an (A ¥ 8) i

m
=
1]
[t
[t

Hence the action of (A x )

{4) For n¥3 the fact that 9 + (A % G)n - (A X G]n-1

preserves the action follows from the fact that A is a

G-crossed camplex, For n =2,

B(a[x‘g]) 3((ax)-g]

((Bax]-g, 1)

((-x+3a+x)-g, 1)

-(x,gl) + (3a,1) + (x,gl).

)

{5) follows automatically from A.

(6) Let asael(A X G),. Then da = (3a,1) acts trivially on

(A X B) for n2»3, and if be(A%GJZ we have

= (b Je1 = -a + b + a , as required.

]

The main result of this section is the following generalisation

of theorem 3.6.

3.16 THEOREM. Let A be a G-crossed complex. Then

A/(G) 2 (A % G)Y/N
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where N is the normal sub-crossed complex of A X G
generated by elements of the form (ev,gl€ (A ¥ G}, for

€ € G,
v AO , £ G
Remark . At first sight it may seem remarkable that N 1is
generated by elements in dimension one. However from the
descriptiaon of normal closure for subcrossed complexes
(proposition 2.15) it follows that N does contain non-trivial
elements in higher dimensions., Namely elements of the form
a"* - a*¥ where a eA , neN, and xel(A % G, -
Proof. Once again the proof consists of showing that the
crossed complex (A X G)/N has the required universal

property (definition 3.11). It is similar to the dimension

one case (theorem 3.6).

Let i : A— A X G be the embedding 1= id  (n#1),

i1 a+— (a,1) , and let 7 : A X G — (A X G)/N s X > <x>,

-~

be the natural projection. We let 1 : A — (A X G)/N denote
the composite

A ——n A Y06 —— (A X G)/N.

There is an induced action of G on A X G which is simply
the actian of G on A except in dimension one where it is
given by (a,gleh = (a-h, h_qgh). As in the groupoid case

i +: A— A X G 1is a G-morphism.

Recall that for the quotient crossed complex [(A % G]/N)r =

(A X G)/v where the equivalence relations ~ are defined
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in chapter two. To show that there is an induced action on

(A X G)/N we are required to prove that the action an A X G
preserves these eguivalence relations. The cases r=0,1 are
considered in the proof of proposition 3.6. For r » 2, a ~v b
if a =b + m fTor some n eN

g m ENF. Iin this case for

g € G we have

It is therefore sufficient to show that N is G-stable (for

then neg el meg ENr S0 asg v begl,

1’

Theorem 3.6 shows that (N,,N ) 1is G-stable. For r »?2 Nr

1 0
. nx X
is generated by elements of the form a - a where ae€A_,
neN, and x e (A X GJq. Now (a"” - axl'g =

(a“g](n-g][x-g] (aeg) which is also a generator of Nr’

S0 Nr is G-stable.

Hence there is an induced action on (A X G)/N given by
<a>eg = <aeg>, and 1w is a G-morphism. Thus T : A » (A X G)/N

is also a G-morphism.

To show that (A %X G)J/N 1is G-trivial we must prove that
a v acg for ael(A X G]r' Again the cases r=0,1 are given
a(ev,g]

in the proof of theorem 3.6, and for ry 2 aog

where a eAr(v) S0 a ™~ ac°g.

This verifies the fTirst part of the universal property.




For the second part, let B be a G-crossed complex with

triviel action and ©6 : A > B a G-morphism.

Define ¢ : A X G -~ B by v, = 8, for r#1 and

w1 : (a,g) — eqa. Since the action on B ig trivial ¢
is a well-defined morphism. Now w1(ev,g] = 6,ev is an

identity of B so N € kery. By the universal property of
guotient crossed complexes {(definition 2.8) there 1s a unigue

morphism ©6* : (A X G)/N - B such that ©6*em = 8.

Hence the following diagram commutes and 6* 1is unique for

the right hand triangle.

G —> (A X G)/N

We require 6* to be unique for the outer triengle, so let

n: (A % G)Y/N— B be such that net = 8. TI.e.

n1<x,1> = 61(x] and nr<a> = Gr[a) for r#1.

Now (x,gl)l = (x,1) =+ (aaqx,g] s0 <x,g> = <x,1>. Therefore
n1<x,g> = Gq(x] s0 nemwr = Y. The uniqueness of 0 * for the
right hand triangle in the above diagram now gives n = ©@*

which completes the proof.

]
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3.17 COROLLARY. For r 22 and veA

(A7(B)) (<v>) & A _(V)/P

Ir r
where P is the subgroup of Ar[V] generated by elements
of the form a" - a for a eAr(v] and m = =-x + n + x ,
x € (A X qu(w,v] , N eN1(w].
Proof. By the previous theorem and corollary 2.14 of

chapter 2 we have the isomorphism

(A7te)) tev>) = (A X 6) _(vI/N_(v)

~

where N 1is the normal closure of N o Now (A X G]r = Ar

fer r¥» 2 , and by proposition 2.15, NP[V] is generated as

n+x X

a group by elements ¢ - C where c e Ar(W]’

xe (A X G]q(w,v) and n eNq(v]. let a = c* € Ar(V]' Then
n+x X m

c - C = 3 - a, as above.

O

3.18 CORCLLARY. If G acts freely on A (i.e. no non-

trivial element of 6 fixes a vertex of A} then

(A/(G)]£(<v>] o Ar[V] , for v e AU , % 2.
Proof. This follows from corallary 3.15 since if G acts
freely on A then [N1’ND] is a tree groupoid so m is the

identity element of Nq(vl and hence P 1is the trivial

subgroup.

L]
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Finally we consider the effect of a group action on the
fundamental groupoid of a crossed complex. The definition of
this groupoid, given by Brown and Higgins in [12], is once
again motivated by topology. Let C be any crossed complex.
Then ac is a normal, totally disconnected subgroupoid of

2

C1, and the fundamental groupoid of C 1is defined to be the

guotient cq/acz.

The motivation for this definition is as follows. Let

$x<
=<
N
>
10
in
>
D

.« Bbe a filtered space such that

™ X = XD, and let € = 7mX. Suppose further that X 1is

homotopy full {(see definition 2.16). Then a standard use of
~ 1 2

exact seqguences shows that W1(£,*] & ﬂq[X ,*]/BHZ[X LX %)

for any * EXD. Therefore for homotopy full filtrations

n,C & m_ X.

1 1w

3.19 THEOQOREM. Llet A be a G-crossed complex. Then

~

m, (A/(6)) = (m,A)/(G).

Proof. We show that the canonical morphism A — A/(G) in
€ induces a groupoid morphism nqA ~»—wq(A/[GJ) which has

the universal property characterising orbit groupocids.

Llet B = A/(G) and let both the quotient morphisms A, > 7w A

9 1
and @ > ﬂ15 in gjd be denoted by wv. If
T : A>AYXG +>B is the natural morphism in © then the
T Y
composite £ A1 L 81 - ﬂqB is a well-defined groupoid

morphism.
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Let a eAZ. Then ¢3a = vTP[a] = vB[Tza), which is an
identity of ﬂqB. Therefore BAZ < kerg so & induces a
morphism &£, : ﬂqA - n1B. The following diagram i1llustrates

the situation.

> 4 oo
]

N
MO <« oo

-
~
-
&

1 “E, 1

We verify the universal property of definition 3.2 for
E, ¢ nqA - nqa.

(i) Clearly ﬂ18 is G-trivial (since B 1is), and it is

readily checked that £, 1s a G-morphism.

(i1} Let C be any G-trivial groupoid and 6 : ﬂqA-—» C

any G~-~morphism. Then ¢ = 08v : A1—* C 1is a G-morphism, and
hence induces a unigue morphism ¢, : 51—+ C such that

gb*o'lt,l = Y.

Let a eAZ, Then Tz(ale 82, and every element of 82 is of

this form. Therefore

w*a(rza] = w*rqaa = Yda = 6Bvda ,

which is an identity of C. Hence 3B, € kervy, so ¢,




56

induces a unigue morphism ©8* ﬂ15 — A such that B*ev = Y.

It is readily checked that ©8*g_ = 6, and it only remains to

*

show that ©€* 1is the unigue such morphism. So let

n o an -+ C be such that ng, = 0.

T.e. ng,v = Bv = ¢
ng = v
nvt, = ]

nv o= P, (by the universal property of ¢,)

. n = 6* {by the universal praoperty aof v],

This completes the proof.

]
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CHAPTER FOUR. THE HOMOTOPY GROUPS OF ORBIT SPACES

Let X be a topological space with right G-action, and let
X/G be the orbit space. This chapter concerns the questiaon
what can be said about the homotopy groups of X/G? We show
that under certain circumstances we can give good algebraic

models for the topology of group actions.

Armstrong EZ,B] and Rhodes [19] have considered the case of the
fundamental group. We begin by describing their results which
we present in a slightly modified form. In particular, since
both authors considered left actions some of their definitions

need to be adjusted to fit our setting.

In section two these results are generalised to fundamental
groupoids. Some work is required for this modest generalisation,
but mostly this concerns the algebra of G-groupoids considered
in the previgus chapter. The pay-off is that the results are
more natural and this indicates how to proceed in higher

dimensions.

The higher dimensienal result given in section three deals
with the case where X 1s a CW-complex with a cellular group
action (satisfying anadditional conditionl). The orbit space
has a filtration induced from the standard filtration on X
and we describe the corresponding homotopy crossed complex. As
a consequence information on certain relative homotaopy groups

of X/G is obtained.
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1. THE WORK OF ARMSTRONG AND RHODES

In [2] Armstrong considers a simplicial complex K on which
G acts simplicially. Let X = |K| be its polyhedron.

Armstrong considers the following conditions.

Condition 1 ¢ If x 1is a 1-simplex of K with vertices v

and w then no group element maps v to w.

Condition 2 : If two n-simplexes of K have vertices

,vn,a and v1,...,v , D respectively,

INRRE n

where a and b are in the same G-orbit, then

there exists a group element g such that

v = vi for i=1,...,n and ag = b.

Define a simplicial complex K/G to have vertices the orbits

of vertices of K, and such that the orbits vO"’"’Vn span
a simplex of K/G if and only if Voseee,V  Span a simplex

of K. {That is there exist representatives vi of the

orbit Vi with this property).

4.1 THEOREM. (Armstrong). If conditions 1 and 2 above hold

then X/G = |K|/B is homeomorphic to |K/Gl. Furthermore,
the action of G on the second derived complex K(Z]

always satisfies conditions 1 and 2.

Proof. [2; Theorems 1 and 2].

]
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We alsoc consider the following condition.

Condition 3 : Let H be a subgroup of G, (vD,...,Vn] and
h

(v ©9,...,v
0 n

h
M) simplexes of K where h € H

for 10, 000,00 Then there exists an element

h.
h of H such that \/ih =y, 1+ for 1i=0,...,Nn.

4.2 LEMMA, Condition 3 for H = G 1is equivalent to

conditions 1 and 2.

Proof. Assume condition 3 for H = G. Suppose the vertices

g

Vv,V span a simplex of K. Then (v,v) and (v,v®)

are

both simplexes. Therefore there exists heG such that

h h g g

v = v and v = v°©&, Hence v = v 50 [v,VgJ

is not a
1-simplex of K, so condition 1 holds. Condition 2 is simply

a special case of condition 3.

Conversely, assume conditions 1 and 2, and let [vo,...,vn]

and (v go,...,v gn]
5 n

be simplexes of K where gie G for

1=0,4e.,N. Condition 1 implies that these simplexes have the

same dimension {(i.e. they have the same number of distinct

vertices). We prove condition 3 by induction on n, the case

n=0 being trivial.

€q gn—1]
1

Now [VO,...,V ) and (v s amas V

are simplexes so
n-1 o] n-

by the inductive hypothesis there exists gé&€ G such that

v =\, i , Tfor i1 = 0,0e0,n=7. We now apply condition 2

18 - g

to the simplexes (v ,...,V = (v 5, ...,v. % and
0 n o n
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g g -
(v %, ...,v. M), Since (v g,.,.,v By = (v go,...,v En T,v &)
8] n a] n -1 : n
it follows by condition 2 that there i1s an element h &G
. h .
such that v.gl = v.gl for 1 = 0,...,0=-1 and v gh | v gnn
i i n n
. . gh g4 .
Therefore gheG satisfies \/i = Vi for i = 0,...,N ,

which completes the inductive step.

.

Bredon [4; p116] calls a G-simplicial complex regular if it
satisfies condition 3 for every subgroup H of G. He also

proves the following analcgue of theorem 4.1.

4.3 THEOREM (Bredonl}. If K 1is a regular G-simplicial

complex then |K|/G 4is homeomorphic to [K/G|. Furthermore,

the second derived complex i1s always regular.

]
To prove topological results about X/G we may assume either
regularity or conditions 1 and 2, and work with the simplicial
complex K/G. In particular, for the fundamental group
ﬂq(X/G,*] we may work instead with the combinatorially
defined edge-path group ﬂq[K/G,*]. Using this approach

Armstrong proves the following in [21.

4.4 THEOREM (Armstrong)l. If X 1is connected and simply

connected then

|

nq(X/G,*] 2 G/H

where H 1is the normal subgroup generated by elements with

a non-empty fixed point set.

[]
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Later, in [3], Armstrong generalises this theorem %to the
case where G acts discontinuously on a path-connected,
locally compact metric space X, and more recently [(private
communication) to discontinuous actions on a path-connected
Hausdorff space. Armstrong alse has a recently published
version [M.A.Armstrong, Calculating the fundamental group of
an orbit space, Proc. Amer. Math. Soc. 84 (13982), 267—271]
‘which includes continuous as well as discontinuous group

actions.

Rhodes' approach is some:what different. Given a topolggical
space X (not necessarily a polyhedron) with 6 ~action he
defines a group o = o(X,*,G) for *e€X. It is an extension
of nq(X,*) by G. To define ¢, <consider pairs (p,g)

where gelG and p 1s a path in X from * to *g_1.

Befine an equivalence relation on the set of such pairs by
(p,g) ~ (p',g') dif g = g' and p 1is homotopic to p°
relative to end points. The elements of o© are the equivalence
classes, which are denoted [p,g], with composition

o] + [a.h] = [p + af . gl .

4,5 PROPOSITION (Rhodes). There is an exact seguence of groups

i
0 —> nq[X,*] ———3 o(X,*,G) > G > 0

where 1 : [p]%+ [D.1], and ¢ : [D,g] = g

L]
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4.6 THEOREM (Rhodes]). If G acts simplicially on the

simplicial complex K and X = |K| is its polyhedron, then

ﬂ1[X/G,*] 2 ¢g/o!

where o' is the subgroup generated by elements of the form
[p - pg, g_q], (and of course where g fixes the end point

of the path pl.

]

This result includes theorem 4.4 for if nq[x,*] = 0 then

o % G and o' ¥ H. The group o acts on the universal
»~ ~

cover X of X so that X/o and X/G are homeomorphic.

Theorem 4.6 may be proved using Armstrong's proof of theorem

AV
4.4 for this action on X.

2. THE FUNDAMENTAL GROUPOID OF AN ORBIT SPACE

Rhodes' group of(X,*,G) may appear at first sight to be an
unnatural construction. However it is simply the vertex group

at * of the semi-direct product groupocid Wq[X] X G, where

ﬂ1[X] is the full fundamental groupoid of X. So Rhodes is

really using groupoids. More precisely we have the following.

4,7 PROPODOSITION. The exact seqguence

i
0 — 1w, (X,*) —— og(X,*,G) — G 0
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of proposition 4.5 is the vertex sequence at *e X of the

seguence

given in lemma 3.5.

Proof. The elements of n1[x1 X G are [[p],g) where
[p] is the homotopy class, relative to end points, of a

path p din X. Now BD([p],g] = * = 81([p],g) implies that

~

p runs from * to *g-q’ s0 (ﬂ1(X] X G)(*] is Rhodes'
group ol(X,*,G)}. It is clear that the groupoid morphisms

induce those of proposition4.5.

]

It has been noted by Higgins that the Abelian condition in
theorem 2 of [19] is unnecessary. The groups o[X,xD,G] and
O(X,X1,G] are, in general, isomaorphic if and only if X5

and X4 lie in the same component of the groupoid ﬂ1(X] X G.

This is clearly true in the case where x, = x & since

1 D

[exo,g] has initial vertex ><D and final vertex x1 », where

EX, is the class of the identity path at X The mistake

in Rhodes' example [19; p638] is that G, = {e, gqu} and

not {e} as stated.

It is worth noting here that if T 1is an abstract G-graph
then there is an obvious way to define c = ¢g(l',v,G)
combinatorially for ve FD using edge-paths. Suppose the
action does not reverse edges of T. Then Rhodes' group is

isomorphic to the Bass - Serre group ﬂ1(§', r/G, *) defined
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in [22]. This follows from proposition 4.7 and the remark in
chapter three that ﬂq(? , /G, *)} dis isomorphic to the vertex

group of m, T ¥ 6. (The isomorphism o0 ﬂq[ %, I'/c, v)

may also be established using the Bass - Serre structure

N
theorem. One constructs a tree I'n the universal cover of r

) VoS
and an action of ¢ on ' so that /e ¥ T/G). The

connection between semi-direct products and the Bass—Serre

theory is caonsidered in chapter five.

We now return to simplicial actions on a simplicial complex

K The edge-path fundamental group has a groupold analogue
nq(K,KO] defined as follows. It has vertex set the O-skeleton
k° and generators the 1-simplexes. For every 2-simplex

(v _,v

0 ,v2] there is a relation (v_,v + (v, ,v

0 1) ’ ) = [vD,v ).

1 2

2

The following i1s a groupoid version of a standard result on
the fundamental group mentioned earlier, from which it can

be deduced.

4,8 PROPOSITION. Let X = |K| be the polyhedron of a

Q

simplicial complex Kk, and x% = |k°

. Then

\t4

0 0
W1[X,X ] = ﬂqu,K ).

O

4.9 THEOREM, Let G act simplicially on the simplicial

complex K, and let X = IK . Then

ﬂ1[X,XO]/[G] 2 7H(X/G,XD/G] .

Proaf,. By theorem 4.3 (or theorem 4.71) we may assume K 1is
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regular (or satisfies conditions 1 and 2). It is therefore

sufficient to show
TT1(K,KOJ/(G] ~ n,l(K/G,KO/G].

Since K 1is regular (or satisfies conditions 1 and 2) the
n-simplexes of K/GB are just orbits of n-simplexes of K.

The natural projection =t : K » K/G induces a morphism
o o
T, ! ﬂq(K,K ] —— Wq(K/G,K /G) ,
and we verify the universal property of definition 3.2 for t,.

*

Clearly ﬂq[K/G,KD/G} is G-trivial and = is a G-morphism.
Let A be any G-trivial groupoid and 6 : n1[K,KO] — A

1
any G-morphism. Let xe€eK /G and choose some e K1 covering

x (i.e. 1% = x ). Define 6*(x) = 68(%). The definition is
independent of the chiocce of ¥ for if t(y) = x then
yg = £ for some g e€G so0

6(%) = 8(yB) = (6y)® = ory).

Also if ¢ idis a 2-simplex of K/G which gives rise to a
relation x + y = z 1n ﬂq[K/G,KO/G] then a 1ift 6 of o
gives rise to the relation Xty =z in ﬂq[K,KD],
Therefore

0*(x+y) = 6(x) + 6(y) = 98(z) = 8*(z).
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Hence 6* preserves the relations of w1(K/G,KO/G] and

defines a morphism
6% : m,(K/G,K°/G) —— A .

Clearly ©8%et, = 6 and @8* is the unique such morphism.

]

4.10 COROLLARY. In theorem 4.9 we may replace X° with Y°

which is any G-stable set of vertices containing all the

vertices with non-trivial stabilisers.

Proof. This follows from the corresponding algebraic
result (propesition 3.8).
Theorem 4.8 together with the algebraic description of the

orbitgroupoid (theorem 3.6) gives an isomorphism
m, (x/6, x7/6) 2 (v, (x,x%) ¥ 6)/n,

where N 1s the normal closure of the subgroupoid, M say,
generated by elements of the form (ev,g]) for wveX, ge G
{Here ev denotes the class of the identity path at wv). In

fact M consists entirely of such elements.

Choose a vertex *. We have seen that Rhodes' group

0 = o(X,*,6) 1is precisely the vertex group at * of
n1(X,XD] X G. We now show that the vertex group of N at
*

is Rhodes' group o', and hence we recapture Rhodes'

theorem 4.6, To establish this fact recall lemma 2.4
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which gives generators for the vertex group of a normal
closure of a subgroupoid. This shows that Nq(*) is

generated by elements of the Torm

n = (a,g) + (ev,h) - (a,g) ,
where h stabilises wv. Now n = (a - ak, k™1)  where
k =gh-1g_1 stabilises Bqa. Hence Nq(*] is precisely

Rhodes' group o' as clgimed.

]
We believe that the result is more natural in the groupoid
setting. The content of theorem 4.9 is really that, under the
given hypotheses, the algebra of the fundamental groupoid
accurately models the topology. It also indicates how to
proceed in higher dimensions — the fundamental groupoid is
replaced by the homotopy crossed complex of a suitable

filtered space but the form of the result is the same.

We now consider more general actions, in particular the
discontinuous actions of Armstrong [3], We begin with a few
remarks concerning arbitrery G-spaces. For any G-space X

there is a diagram

m (X)) ——s w0 % G
. s
n ~
™, (X/G) m, (X)/706) = (2, (X) X &)/N

where wq(X] is the full fundamental groupocid, p, 1is
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induced by p : X > X/G , N 1s given by theorem 3.8 and

¢ : (o,g) — <o,g> is the guotient morphism.

1

Define qg: 7m,(X) X 6 — ﬂq[X/G] by qglo,g) p,.la).

1

a well-defined

i)

Since the action on anX/G] is trivial g i
morphism and clearly N &€ ker q. Therefore, by the universal
property of guotient morphisms (definition 2.2), there is a
morphism

g, @ (ﬂq(X) X G)/N — T, (X/G)

induced by g. The purpose of this section is to discover
when g, 1s an isomorphism. (Theorem 4.9 says g, 1is an
isomorphism for simplicial actions). It will always be assumed
that the action is discrete in the sense that the orbit of a

point In X is & discrete subspace of X.

4.11 DEFINITION. A map p : X > Y has path 1ifting up to

homotopy if, given a path Yy :+ I > Y and a point
x e p”1y(0), there is a path ¥ : 1 >X such that ¥(0) = x
and peY is homotopic, relative to end points, to y.

[]

4,12 LEMMA. If X 1s a G-space and p : X - X/G has

path l1ifting up to homotopy, then

g ¢ om, (X X G — m, (X/6)

defined above is a quotient morphism.
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Proof. We use the characterisation of quotient morphisms as
the vertex surjective, piecewise surjective morphisms

(proposition 2.3).

Clearly g 1is vertex surjective — the vertex map of g is

p : X > X/G. Let x,eX and plx) = ?i for i=1,2 , and

let B enq(X/G](TA,;é]. By hypothesis B has a

representative path y which has a 1ift V where ?[D] = X
Let o be the class of Y. Then p*aqq = py(1) = 22 , SO
there is a group element g such that aqag T X Hence

(a,g) € (ﬂq(X] g 6)1[x1,x2] is such that gf{o,g) = B.

Therefore g 1s piecewise surjective which completes the
proof.

]

4.13 DEFINITION, Let X be a G-space. The action is

discontinuous 1i°f

(] the stabiliser of each point of X is finite,

and (ii) each xe X has a neighbourhood U such that if
x& £ x then U nud # &
]

In [3] Armstrong generalises his theorem 4.4 to discontinuous
actions on path-connected, locally compact metric spaces.
Note that if the action is also fixed point free then
O, (Hq(X] % G)/N — n1[X/G) is an isomorphism. To see
this note that p : X > X/G is a covering projection in
this case [[23; theorem 7, page 87]], sa0 we can 1lift
homotopies from X/G to . X. A standard type of covering

space argument shows that ker g is contained in (and hence
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equal to) N and so g, 1is an isomorphism. The isomorphism

also holds under Armstrong’s hypothesis as we now show.

4.14 THEOREM. Ltet X be a path-connected, locally compact

metric space and let G act discontinuously. Suppose egither
(i) X is simply connected, oar
(ii) X is locally connected and semi-locally simply
connected.
Then

n1(X)/(G] = n1(X/G].

Proof. (i) We use Armstrong's trick of factoring the
action into an action of H followed by a free action of
G/H on X/H, where H 1s the normal subgroup of G

generated by the elements with fixed points.

Armstrong shows that X/H dis simply connected, and

proposition 3.7(ii) shows that ﬂq(X]/[H] is simply

connected. Hence wq[X]/[H] & ﬂ1[X/H], The result now
follows from proposition 3.70 and the fact that g, 1s an

isomorphism for free actions.

(id) The hypotheses on X ensure that it has a path-

~ nt
connected, simply connected covering space X. Also X 1is
locally compact and metric (M,A.Armstrong — private

communicationl).

ad
We can take X = costarx ﬂq[X) for some point Xq of X,
0
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with a suitable topology. (See, for example, W.S.Massey
[Algebraic Topology: An Introduction, Graduate Texts 1in
Mathematics 586, Springer 1977]. In fact Massey uses

stary, = (X1, but for our purposes the costar is more

o 1

convenient).

Let g - (ﬂ (X) % G)(XDJ. Then & acts on X by

1
~

G(B,g] = ag + Bg, and X/G is homeomorphic ta X/G (see

Armstrong [3] and Rhodes [19]). In fact this action is

discontinuous and satisfies the hypotheses of part (i). Hence
m,(x/6) %« (X1/(8).

Finally we show nq(X]/[E] ¥ ﬂq(X]/(G]. First note that

~ ~
the groupoids have the same vertex set. ﬂ1[X]/(G) has vertex

a o ~

group iscmorphic to G/H where H 1s the normal subgroup
generated by elements with fixed points. But this is
precisely the group N[xo] where N 1is the normal subgroupoid
of w1(X] ¥ 6 considered above. Hence the vertex groups of
ﬂq(il/[g) and Wq[X]/[G) are also isomorphic. Since both
groupoids are connected, this completes the proof.
We have now proved that g, :ﬂ1(X]/(G] -é-ﬂq(X/G] is an
isomorphism in some special cases. In each case it was
assumed that the space X was reasonably nice, together with
some form of discontinuity assumptiocon on the action. That

some form of discreteness condition is necessary is readily

seen — consider Armstrong's example of the reals acting
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freely on the real line by addition. However the full weight
of the discontinuity assumption (definition 4.13) is not
strictly necessary. The following example indicates that the

finite stabilisers assumption is not necessary.

4,15 EXAMPLE. We first consider the standard action of the

integers on the real 1line by addition modified by adding two

fixed points — one at +« , and one at -w.

More precisely, let the generator of G = Z act on X =[D,1]

by
2t if t €1/3
t
1(1+t) if t 21/3.
Let Xx° = {0,1}. Then nq(X,XO] is the unit interval groupoid

ﬂ and the induced action is trivial since the above map is
homotopic, relative to XD, to the identity. Hence the orbit

groupoid is alsoc the unit interval groupoid.

The action restricted to the open interval (0,1) is
equivalent to the standard action of Z on R . A
fundamental domain for this restricted action is [1/3,2/3]

and the orbit space is a circle.

Hence X/G consists of a circle C (the image of [1/3.2/3])
together with two points which, by a@ slight abuse of notation,
we denote 0 and 1. The topology on the orhit space consists

of the usual open sets on the circle C together with Cufoif,

v, = cvi{n} and v, = C v {17}.
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We use the Seifert - van Kampen theorem to show that X/G
is simply connected. X/G is the union of the open sets
VD and \/1 whose intersection is the circle C which is

path-connected.

For 4i=0,1. Vi is contractible, and hence is path-

connected and simply connected. Define a map

(x,t) »r—

X if t <.

H is clearly continuous and is therefore the required
homotopy from the identity map on Vi to the constant map

at the point 1.

The Seifert - van Kampen theorem now implies that X/G 1is

simply connected.

Hence ﬂ1(X/G, x°/6) is the unit interval groupoid and the
induced morphism g,.: Wq(X,XO]/[G] —> ﬂ1(X/G,XO/G] is an

isomorphism.

In this example the action is not discontinuous since the

points 0 and 1 of X have infinite stabilisers. The second




75
condition of definition 4.13 is satisfied however.

Now let Y = X/6 = Cw{0,1} and let 22 act on Y by
interchanging 0 and 1, and rotating the circle C by w. The
groupoid ﬂ1[Y,YO) is the unit interval groupoid, and the

induced ZZ action sends the generator to its inverse. Hence

ﬂ1(Y,Y0)/[Z%] is isomorphic to Zg.

The new orbit space Y/Z% consists of a circle (the image of

C) with a single additional peoint (the image of v®). The only

open set containing this additional point is the whole space.

A similar argument to the one above shows that Y/Z2 is path-
connected and simply connected. Therefore ﬂq(Y/Z%, YO/ZZ]

is the trivial group and we obtain an example where q,

fails to be an isomorphism.

Note that in this case the condition {ii) of definition 4.13

is not satisfied. Indeed Y d1is not even Hausdorff.

We noted in section one that Armstrong has recently generalised
his theorem 4.4 to discontinuous actions on a connected,simply
connected Hausdorff space X. The groupoid result (that g, is
an isomorphismlcan be deduced from this as in theorem 4.14. To
prove that g, : W1[X]/(G] - ﬂq(X/G] is an isomorphism in
the non-simply connected case some local conditions need to be

assumed.

It would be interesting to know the most general conditions on

the space and the action under which g, 1is an isomorphism.
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3. THE HIGHER DIMENSIONAL CASE

To prove analogous results to those of the previous section
in higher dimensions we use the algebraic machinery of crossed
complexes. We are led therefore to consider filtered spaces
0 1 n < . : . :
XX egXx € ... X & ... X with a filtration preserving
o 0

action and such that wOX = X {or more generally the

filtration is JD]. We restrict attention to CW-complexes.

4,16 DEFINITION, A G-CW-complex is a CW-complex X on which

G acts by cellular homeomorphisms satisfying the following

condition.

(*) If a group element maps a closed cell to itself it
does so by the identity homeomorphism.
]

In the case where G 1s finite this definition is due to
Bredon [Equivariant Cohomology Theories, Springer Lecture Notes
in Math. 34 (1987]]. By a CW-complex we mean the space
together with the characteristic maps of the cells. Bredon
notes that the characteristic maps "may be chosen”
equivariantly, and he appears to assume this. This point is

examined in more detail below.

The concept has been extended to topological groups G
independently by S.Illman [Equivariant Algebraic Topology,
Ph,D, Thesis, Princeton [1972]] and T.Matumoto [Dn G-CW-

complexes and a Theorem of J.H.C.Whitehead, J.Fac.Sci.Univ,




77

Tokyo, Sect.1A 18 (13971), 363 - 374]. These more general
spaces are no longer "classical” CW-complexes. Illman used
these complexes to consider equivariant cohomology theory, and
more recently S.Waner [Trans.Amer.Math.Soc., 258 (19807,

3517 - 368, 358 - 384, 385 - 405] has used them toc develop an

equivariant homotopy theory.

Our definitionm is the case where G 1s discrete. We always

take the standard filtration on the G-CW-complex X. Then X
is JD-Filtered and homotopy full [11]. This situation includes
that of regular G-simplicial complexes as the following lemma

shows .

4.17 LEMMA, Let K be a G-simplicial complex satisfying

condition (1) of the previous section (page 58). Then its

polyhedron X = lKl is a G-CW-complex.

Proof. It is well-known that a polyhedron is a CW-complex
and that simplicial maps induce cellular maps. (See J.P.May
[Eimplicial Objects in Algebraic Topology, Van Nostrand

Mathematical Studies 11 (1967)], for example).

Suppose K satisfies condition (1). Let ¢ be the

realisation of the n-simplex (vo,...,vn] and suppose

% = O. If there is a vertex vi (0D€1g¢<n) such that
vig # Vi then (vi,vig] is a 1-simplex, which contradicts
condition {(1). Hence vig = vy for 1i=0,...,Nn , S50 g

maps o to itself by the identity homeomorphism.

[]
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Let X be a G-CW-complex. We do not assume that the
characteristic maps are preserved by the action. However, the
next result shows that X is G-homeomorphic to a G-CW-complex
where the chersecteristic maps are preserved by the action. We
call this a "re-characterisation”, and it justifies Bredon's
remark that the characteristic maps "may be chosen"”

equivariantly [4; Chapter II, §1].

4.178 PROPOSITIOCN. Llet X be a G-CW-complex. Then there is

a G-CW-complex Y and a cellular G-homegmorphissm k : Y > X

such that the action on Y preserves the characteristic maps.

Proof, We use induction to define Y and &k together. Let
x9 = {Xk ) eAO}. There is an induced action on the index
set AD given by zE = U if xxg = XU' Choose one
index fraom each orbit — the letter £ will denote a chosen
index throughout. Let vo - {yx | A EAD} be a set in
bijective correspondence with XO, the bijection being
KO : vo > x° , Yy he-xgg where A= gg (and & is a
chosen index). This begins the induction.
n-1 n-1 n-1
Suppose now that Y and kn—1 Y — X have been
defined such that kn—1 is a cellular G-homeomorphism and
the action on Y™~ commutes with the characteristic maps.
n n=1 .
Let X - X = {BA Y EAH}, a family of open n-cells.
Also let h, : (1",1") — (e,,e,) be the characteristic
map of the cell ey where By T By " e, We sometimes
’n
denote hAII by 9dh_.

A
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As for n=0, there is an action induced on An’ and we choose

a set of representatives of the orbits. Let A =£EIJ I;
: n
be A disjoint copies of " and let
B = in Define
XEAL T
-n n-1 -1
wx : IA — Y by wx = kn_,}og*oahg

where g 1s the representative of the orbit containing A,
geb is such that zE - £ and g, 1s the homeomorphism
of X induced by g. This definition is independent of the

choice of g, for 1f g! also maps A to & then

g*lex = g;IEA by condition (*) of the definition (4.16) of

a G-CW-complex.

is amap B > Y""'.  pefine Y" to be the

b= A el lpn
n

adjunction space Yn = Yn_1|J A. Then there is a pushout

12

of spaces

|

< L—_— >

(*)

I <«
“— I

We use the universal property of this pushout to extend kn—

1
to Kn. Define
n n -
GA : IX — X by GA g*ohg
where g 1s a representative index and Eg = A Again this

is independent of the choice of g and
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n
eA|IA ST LIS UL P Hence
n
- U A — s X
P SR
n

is such that 0B = kn-1°w' The universal property of (*)
now provides a unique map Kk AL extending Kk .

n-1

Clearly Yn is constructed so that the action commutes with

the characteristic maps. We now show that Kn is a cellular
G-homeomorphism.

A point of A is (t,A) where te€I", xeh . G acts on
A by (t,A8 = (t,28)  and 6 : (t,A) > g,h (t). Let

€
2 €06, Then

o(tt, %) = art,ah

1]

(gz)*ha(tJ since £ = )

= g,g.h (t)
BNy

(ett, )",

Therefore @6 1s a G-map. Now e‘B is a homeomorphism, and

by the inductive hypothesis kn_1 is a cellular
G-homeomorphism, Hence Kn is a cellular G-homeomorphism

which caompletes the inductive step.

Let Y be the colimit of the system vo ¢ Y1 c ... cY'e ...

and let k + Y > X be induced by the maps

v X" e— X, A standard 1limit argument completes the
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It is easy to see that the equivalence relation on Y given
by the group action is a cellular eguivalence in the sense of
A.T.Lundell and S.Weingram [The Topoclogy of CW-complexes, Van
Nostrand (1968), page 321. Hence Y/G is canonically a CW-
complex and the projection T Y > Y/C is a cellular map.
If X denotes the orbit of A €A then the orbit of e,
is an n-cell of Y/G which can be denoted by exe Tts
characteristic map is hx = T°hE where £ 1s the
representative of X. In fact the projection of any

characteristic map of Y is a characteristic map of VY/G.

The G-homeomorphism k¢ Y > X induces a homeomorphism

R : ¥/6 =~ X/6  which exhibits X/G as a CW-complex.

Let mX denote the homotopy crossed complex of X {with
standard filtration). In order to prove our main theorem we
need an algebraic description of wX which we describe
below. This description (theorem 4.18) essentially goes back
to J.H.C.Whitehead and follows from the Union Theorem —

Whitehead considered the case over a single vertex.

The cell structure on X may be considered as (definingl) a
"presentation” of 7% in some sense. (Indeed, for double
groupoids Howie DB] uses CW-complexes to define the notion
of a presentation}. The re-characterisation K = Y > X may
be viewed algebraically as giving a new presentation — one on
whieh the group acts. These remarks will be made more precise

later.
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now describe w7 for an arbitrary

the base point of " and assume t

»

z°.

z

0

map to the O-skeletan

with characteristic map

2

Z7). T

his determines an

n-1

n’z

I vez%},

{7 , V]

A
n

1 o}

and

~h)

(

has a representative
0
81

A
dFA

(I.e. ¥ 7"

A
) (]
= ¥A[31I .

) L

So

n-1

— (z"7 ", 2°

map ), and h

de I"l'_-'}

A {z

element 1 = (z
n-1

A n-
By regarding df (1

n—Z’Z

as a map

n-1

(z » Z it represents an eleme

n--1

4.18 THEOREM. Let Z be a CW-complex

ac Then

N be as defined above.

(i3} For n > 2, i

module on the set

{CA ]

(z"

{ii) is

d

<

T4

Proof. [11; Example 4 of &7, page 33]

element

:.{CA

CW-complax Z. Let O

he characteristic maps

ey be an n-cell of
(", 1" —

FA : R

,0)

C of

A

Let 9N

311 =

‘n o_Nn
(1 - 311 l.
n-1

n ,J )

I,1I

—_—

is homeomorphic to
may be considered as a

ence determines an

n-1

,v)l | ovez®3.

1 n-1

»J )

_—

X}

nt A

of

and let cx,dc and

A

n-1
ﬁq(Z s L

is a free
A€eNn Y,
n

—1,Zn—2]

The morphism

is induced

the free crossed
e
| A Al

1,2 ] given by

[

) -
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Definitions of free module and free crossed module over a
groupoid are given 1in [WZ], They are simply extensions to the
groupoid case of the usual definitions over groups. 1IN [12] a
notion of %ree crossed complex 1is defined and it is noted that
ﬁ% is free in this sense. {(There are, of course, many
forgetful functors with domain € which have left adjoints.
Thus there are several possible definitions of "free" crossed
complex, but the one given in [12] seems the most useful. In
her thesis [5], Bolton considered various types of "freeness”

for crossed modules over groups).

We now have all the machinery required to prove the following

theorem which is the main result of this chapter.

4,20 THEOREM, Ltet X be a G-CW-complex with standard

filtration. Then

(rg)/(G) = n(X/G).

Proof. By proposition 4.18 we may assume that the
characteristic maps of X are equivariant, and hence X/G 1is
canonically a CW-complex. Let T : X > X/G be the natural
projection. We verify the universal property of definition 3.12

for the induced map T, = X — w(X/GJl,

It is clear that G acts trivially on w(X/G) and that 1

*

is a G-morphism.

Let A be a crossed complex with trivial G-action and let
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6 : WX — A be a G-morphism. We use the freeness of 7(X/G)

to define the required morphism 8* : w(X/G) — A.

(x'/6,x°/6) is a (topological) graph so n1(X1/G,XO/G) is
the free groupoid with vertex set X?G;and generators the

1-cells of X/G. Define

(e*,e;) : n1(X1/G,XD/G] —> A by X_ b 08x

>
>

where for 1i=0,1 XX is an i-cell of X/6G and Xk is an

i-cell of X such that TXA = XX. The definition is

independent of the choice of XA’ for if Txu = X_, then
A

there exists ge6G such that xkg = xu and hence

exu = exk.

1
Since ﬂq[Xi/G,XO/GJ is free, (e;,e;) - tr'g* is a well-

defined groupoid morphism, and since n1(X » X ) is also

free it is clear that trqe* is the unique morphism such

that trqe*etqu* = trqe.

We now extend this to a morphism of crossed modules by defining

* 2 1
92 : ﬂz(X /G,X /G) - AZ'

X/G it is sufficient to define 8 on the family ’{au}

By theorem 4,18(ii) applied to

)
£

where au is determined by the characteristic map of a 2-cell

of X/G. That is, au is the class of T°?x for some (indeed

any) A GAZ where uwu 1s the orbit of A, and {A is a

characteristic map of X. We define
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ﬂZ(Xz/G,X1/G) A

> by aU b—> eZCx

where c.e w_(X",X ] is the element determined by FA' As
in dimension one this is independent of the chioce of ).

"
This extends tr ¢ tc a morphism of crossed modules

tre” = (03,87,07) : trn(X/6) —> treA

provided 36%a = plda in A,, where da is defined by
AT 1 U 1 U

odf . But
Te0 \ u

*

805a = 36,0, = 8, [o¢,] = efv,[of,] - 8jda

as required. To show trze*otrzT* = tr26 we again appeal

to theorem 4.19(i1) but this time applied to X. By this

result we need only check the above condition on .{Cx |
It is clear that GET*CA = eZCA by the independence of the

choice of A in the definition of 6;. It is also obvious

that trze* is the unigue morphism with this property.

We now use an inductive argument. For n%» 3, suppose that

er" e s e rixse) — "7 TA

has been defined in f% and is the unigue morphism such that

n=-1 n-1 n-1

tr B etr T, = tr 8. To extend to tr'6* we use

theorem 4.19(i) to define

)\EAZ}.
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* n n-1
6, ¢ nn(X /G, X /G) —— An by au H—e-encx
as in dimension two. We need to verify that 9;_18 = ae:
for trne* to be well-defined. There are two cases.
i . . n-1 o
Case (1) : n?7 3. In this case nq(X /G,X /B) =
ﬂ1[Xn_2/G,XO/G] so  w (x"/6,x"76)  and nn_th”“q/s,x”?s)

are modules over the same groupoid. Therefeore it is sufficient

*

to check 6 _,9 = 86; on the free generators. For these

elements we have

o5
D
o]}

i
[s%)
D
e}

1]
<D

)}
%
(]

il
<D
A

*
e}
9]

1}
D
@
—

*
@}

il
D
Q@
o

as required.

Case (ii) : n=3. Here WZ(XZ/G,XJ/G] i1s a crossed module
. 1 s) 3 2 .
over the groupoid ﬂq(X /G, X" /G} and ﬂB(X /G,X"/G) is

a module over the groupoid
n, (X276, x%/6) 2w, x'/c, XD/G)//BNZ[XZ/G, x1/67.

Let B ﬂq(Xq/G,XO/G] — ﬂq(Xz/G,XO/G] be the quotient

morphism. We also use B to denote A, — Aq/BA the

1 2’

corresponding morphism for A.

5 6: induces a morphism

¢ o n1(X2/G,XO/G] —_ A1/8A2. The situation is illustrated

since 6 (an,(x%/5,x'/8)) S an

by the following commutative diagram.




87

2 e
m, (X°/6,x "' /B) . A,
5 5
6*
1 0 1
(X0 /6,x%/6)  —— A
B 8
2 0 b
m, (X7/6,x7/6)  ———— A /an,

WB[XB/G,X2/G]

As a (totally disconnected) groupoid is
X 2 0
generated by elements au where X Eﬂq(X /G,X"/G) and,
as usual, a is determined by a characteristic map. Now
36*(8 X) = 8({6*a ]wX)
3 u 37u,
61% - -
= (Be*a ) 1% for some x such that Bx = x
37 u e
* 64 x
[62 aul
* X
= 3
92[ au )
= 08*3(a i .
> [au ] as reguired
Hence in all cases (n>»3) we obtain a well-defined morphism

tr'e* : tr'm(x/G) —> tr"A

unigue morphism such that t

completes the inductive step,

morphism 6 * T(X/G)—> A.

which i1s easily seen tog be the

trn

rne*vtrnT* 6. This

and hence we obtain the reguired

[]

Remarks . (1) We noted earl

X may be viewed as

sense.

relations as described by theorem 4.18.

re-characterisation

a presentation (given by Y]

(defining)

(proposition 4.18)

ier that the cell structure on

a presentation of in some

A

The cells and their Boundaries give generators and

The content of the

has

is then that n&

such that the group acts on the
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presentation. Viewed in this way, theorem 4.20 says that the

orbit crossed complex (w7X])/(G) has a presentation obtained
from the presentation of 71X Dby selecting a generator from
each orbit of generators and similarly for relations (when

interpreted appropriately].

(2). The proof of the isomorphism of theorem 4.20 crucially
depends on 1liftability of maps 1" > X/6  to X. This was
achieved by making the fairly strong assumptions that X and
X/G are CW-complexes which meant we only had to 1ift
characteristic maps. We have been unable to establish the
isomorphism under more general hypotheses due to this strong

liftability requirement.

{(3). Recall theorem 3.13 which gives an isomorphism
nq(A/[G)) -4 (WqA)/[G] for the G-crossed complex A, and
note that if A = TmZ for a CW-complex Z then

ﬂ1(Z,ZD] = ﬂ1A, These results together with theorem 4.20
give an isomorphism Wq(X/G,XO/G] g.vu(X,XO]/(G]. Hence
we recapture theorem 4.9 but in the more general context of
CW-complexes.

4.21 COROLLARY. Let X be a G-CW-complex, veX°  and

nYy2. Then

ﬂn(Xn/G,vXn_q/G, Tv)

{4
=
<
>

, VJ/N

where N 1is the subgroup generated by elements of the form

[a°g](xog - ox) a, for a EWn(Xn, Xn—1’ v), X en1(X1][v,w]
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and geG stabilising wex?,
Proof. From corollary 3.17 we have that N is generated by
elements of the form a" - a where a Eﬂn(Xn, Xn_1, v}

/I
and m = -y+n+y, v é(wq(x ,XD] % S](w,v) and n = (ew,h)
where h stabilises w € XD. Now vy may be written

- "I
y = (z,k) where k éﬂ1[X1)[w,Vk ). Then

(-z+k, k™1) + (ew,h) + (z,k)

3
It

n

(-mzek + z«h~Tk, k~Thk)

= {x - x-g’q, g where X = =zek and g = k~Thk.
Therefore
- L] -1
L a(x xeg ',g) -
B (aeg - x) .
= (as-g) - a , as required.

]

In the case where G acts freely the corollary gives

(X", x"1 ). This is a standard

n—1/(3, V)

t4

T (x"/6, X
n

result since, in this case, T ¢+ X — X/G is a generalised
cover in the sense of S.T.Hu EHDmotopy Theory, Academic Press,

1859].

It is perhaps unfortunate that the main theorem does not yield
results about the absolute groups — at least, not directly.
It may be that this is intrinsic to the problem. For example,

in [20] Rﬁodes generalises his group ¢ to higher dimensions

but simple (two dimensional) examples show that the analogue

of theorem 4.6 is false in higher dimensions. In dimensiaon two,
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however, we can glean a little more information, because in

this case the morphism 3 ﬂ2(22,21) _— T [Z1,ZD] which

appears in 1nZ 1s part of the homotopy sequence for the pair

(27,2 ). In particular we have the following.

4,22 COROLLARY., Let X be a G-CW-complex such that

T (X°,v) = o, for vex®. Then 3 r (x2,xTv) — X, v)

2 2 1
is injective and
2 ~ A
T, (X776, tv) Z (n, (X7, X0, v) A K] /N
where 3K = K = KBP(T* : W1[X1,V] —_— ﬁ1(X1/G,Tv]) and N
is defined in the previcus corcllary.
2 1 . .

Proof. From the homotopy exact sequence for (X7,X ) it is

immediate that 9 1is injective. Combining this with the
sequence for [XZ/G,Xq/G] gives the following diagram with

exact rows and columns.

0
0 0 (X276, Tv)
2
0 N Tr2[X2,X1,V] LN ﬂZ(XZ/G,Xq/G,Tv) — 1
9 3
0 — % > n1[X1,v] LN ﬂq[Xq/G,Tv]

r (X2, v) ﬂ1[X2/G,Tv]
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The exactness of the first row follows from corollary 4.21,.
2 2 1 1
Hence ﬂz(X /G, TVv) ker(a : wz(X /G, X /G, 1v) —> n1(X /G,TV]).
Simple diagram chasing now proves the result.
We complete this chapter by iilustrating theorem 4.20 with a

few examples.

4.23 EXAMPLE.  Let X = 8" = {(x_,.u.,x Je R™7T zxiz = 1}
and let G = Z; act by reflection in the eguatorial
hyperplane. I.e. the generator g ek maps (xo,...,xn) to
(xé""’xn—1’—xn]' Caoansider the following cell structure aon
x. x%=x" = ... =x""% <2+ < (1,0,...,0),
Xn-1 = {5_55” | xn=D}, and x" - Xn-1 = 0, uv0_ where
o, = {x eSn | X % 0}. So X has four cells,
£ = n
= * U N
X e 4V 0,V o
Let A = TX. Then A = *, A, = eeu = A = 0,
w o] 1 n-2
A =Z and A = ZxZ. 3 : A — A projects both
n-1 n n n-1
factors of A onto A , and G acts on A by
n n-1 n
interchanging the factors.
Let B = A/(G). Then B = A for r<n, B = Z and

r T n

3 : Bn—~+ Bn is an isomorphism. The orbit space X/6 1is

-1
an n-disc with standard cell decomposition intc three cells.,

Clearly m(X/6) ¥ B.

Although this example 1is essentially trivial, it does

illustrate two points. The first is the point made previously
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that the algebra is an accurate model for the topology.

Secondly, it 1llustrates that theorem 4.20 is false for

arbitrary cell structures. For suppose we give x = g" its
standard cell decomposition with just two cells. Then

A = X has only one non-trivial group, An =Z. The
reflection homeomorphism has degree -1 so Zﬁ acts on An

non-trivially. Therefore B = A/(G) has the group ;ZZ in
dimension n, whereas m(X/G) is trivial. (Here, of course,

5/8 does not have the structure of a CW-complex).
The antipodal action on s is almost as easy. In this case
though we require two r-cells for each r=0,1,.-.,Nn so the

algebra is more complicated.

4.24 EXAMPLE, We now consider the example given by Rhodes in

[20; §9] which shows that the analogue of his theorem 4.6 does

not hold in higher dimensions.

Let X be the torus, obtained from 12 by identifying

\ . 4 2
opposite sides. G = & | g =1 acts on I by
{anticlockwise) rotation and induces an action on the torus.
Let X be the torus with the following cell structure : it

has four 0O-cells, eight 1-cells and four 2-cells.

B £ g % P
Ty v yc U vt
Na By
5 = < s
N @ A B AY
p x a oz P




The diagram gives the following description of

93

/\'—"nn)'(v

{where, by a slight abuse of notation, we use the same letter
to denote a cell and the corresponding generator in A).

A = D 3 .

o {PJQJFI }

A,| is the free groupoid on the following graph.

A2 is the free crossed A1—m0dule on generators a,B,U, Vv

with do = xta-d-y € A1(p], 38 = -z+yth-a € A1(ql,
oy = -b-t+z+c € A1(r), and 3v = d-c-x+t € A1(s]-
The generator g of G acts on A as follows.
AD peg = p, geg = s, reg = r, Seg = Qo
A" Xeg =y, yeg = Z, Zeg = t’ tog = X,

arg = b, beg = c, ceg = d, deg = a.

- -b d X

Az oeg = g Z’ Bog = U R Heg = Vv, Veg = a .,

We restrict to the vertex p

tree in the

which 1s fixed by

above graph has three edges so A

G. A maximal

~J
q(p] = FS’ the
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free group on five generators. Az[p] is the free crossed
A1(p)-module on four generators, namely o =a, B =8-Z,

— ~c-z - -t -, "

u =y s VI (The element 6 1is @ transposed”

to the vertex p by a path in 967 . The boundary morphism

9 Azfp)——+ A, tp) is induced by 88 = z + 38 - z, etc.

1

Az[p] has a presentation, due to Whitehead, with generators

(6,w) for 6€{a,B,u,vl and W eAq(p), and relations
-(B,w) + (P,w') + (B,w) = ($, W'-w+dB+w),

—_ 4 -—
Aq[p] acts on Az(p] by (8,w)¥ = (B, wew') and the

boundary morphism is given by 3(B,w) = -w + 3B + w,
Let B = A/(G]. By corollary 3.17 there is an isomorphism
o
Bz(<p>] &= /\Z(p]/N

where N 1s generated by elements of the form

W' eh - w? _

((5,w) *h) (8,w),

for w' e Aq(p,v] and h et stabilising wv.

Since p 1s fixed by every element of G, taking w' to be
the identity at p shows that the elements (B,wleh - (0,w)
lie in N. Also Aqtp] is easily seen to be generated by the

elements wleh - w', so the elements (Beh,1) - (0,w)
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lie in N (where h depends on w). Combining this with the
element above (for w=1) we see that (e,w) - (5,1) lies

in N 4

Therefore a presentation of Bz(<p>) is obtained from that of

Az(p) by adding the relations (9,1) = (Boh,1) and

(6,1) = (6,w). The generators of Az(p] are all identified,

and the relations of A2(p] are trivial. Hence 52(<p>] x 7.

The orbit space X/G 1is 82 with the following cell structure.

(We use x to denote the orbit of x etc.).

p a

x\
X4 3
q — T
a
. 1 . . 2 1 ~ 2
Since X /G 1is contractible, ﬂz[X /G,X /G,p) 2 wZ(S s ¥)

~nt .
= Z, as required.

This example shows that, even for fairly simple actions, the
algebra can become guite complicated, largely due to the
complicated structure of the second relative homotopy group

as a crossed module.

1

We have been able to establish the isomorphism T(g)/(6) 2
m(X/G) only in the case where X 1s a G-CW-complex. In
view of Armstrong's success in reducing the conditions reguired

for the groupoid result we feel that the isomorphism for
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crossed complexes probably holds more generally (although
much stronger liftability conditions are required in this
casel. It would be interesting to know the most general

conditions under which theorem 4.20 holds.
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CHAPTER FIVE. RAZAK'S CONJECTURE AND RELATED RESULTS

This chapter concerns topological spaces X with a cover

U= {X

A | AE A} by subspaces, and various associated groupoids.
In particular we consider fundamental groupoids of the

classifying space BW of the cover, defined by Segal [21].

Section one gives the definition of the classifying space and
some background results. There are natural projections of the
classifying space onto X and onto the nerve of the cover.
In his thesis [18] Razak made a conjecture concerning the
morphism of fundamental groupoids induced by the projection
of BW onto the nerve. In section two we prove a modified

form of the conjecture.

The morphism ﬂun —> n1X induced by the projection of BUW
onto X was also considered by Razak, In particular, he proved
that the morphism is a homotaopy equivalence of groupoids in the
case where the interiors of the members of U cover X. In
sectlon three we indicate that this morphism is closely

related to the one-dimensional union theorem via a groupoid

construction of Crowell and Smythe [13].

Several authors have considered presentations of groups of
homeomorphisms of a space with a fundamental domain. For
example, see Macbeath [17], Swan [24], and Abels [1]. Section
four applies the modified Razak conjecture, proved in section

two, and the notion of the semi-direct product groupoid to
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this situation.

Finally, we conclude with some general remarks concerning

possible future developments of the theory.

1. THE CLASSIFYING SPACE BY

In this section we give some constructions and results
required later. For the most part this material is well-known
or is due to Razak [18]. We follow the notation and approach

of [18] which i1s the basic reference for this section.

Let U = (X Ae A} be a cover of the space X by

y |

subspaces. We begin by constructing a space BU defined by

Segal [21]. First give the index set A a well-ordering, and

A(n] denote the set {(A

let 1

R YR 3 S B VT P W
n 1 n

Define a simplicial space NU by
(Ny) = L_J X
n

where Xv = X. n ...N X . An element of (Nu)n is
(x, A ,.vee, X ) where x e X , v = (A, ..,x ). The face
v o n

and degeneracy maps are defined in the usual way. The

classifying space BU of the cover % is the geometric

realisation of N, given by

BY - [l__l (N x An]/m

ny0

where A" is the standard n-simplex (iann+1] and "~ 1is the
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usual equivalence relation. BU has a natural filtration by
skeleta

Byt : su® e pu' e ... c U <
There is a natural projection p : BUYU — X induced by the
map NY > X, [x,AO,...,An] > . In [21] Segal proved

that p 1is a homotopy eguivalence in the case where U is a
numerable cover, and Razak showed that the induced morphism

p, : Wun - ﬂ1X is a homotopy equivalence (of groupoids])

in the case where the interiors of the XA'S caver X. In

the proof of his result Razak established the following [18;

Chapter 2, diagram 2.1, page 70].

5.1 LEMMA. The following diagram is a pushout 1in gbd.
n K n-1
T, (X x aA") —Do ﬂq(Bu )
veA(n+1] -
In Jn
n Kn n
T, (X x A7) _— ﬁ1(B% )
VGA[n+1)
where jn,Jn are induced by inclusieons, and kn,Kn are
inducedby the identification map I (N%]n x A" + BYU.
ny0

[

In this chapter we are usually concerned with the full
subgroupoids n1(5u”,5u01 of Wq(Bun]. Tt is convenient,
therefore, to have a version of lemma 5.1 in terms of these

groupoids.
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5.2 COROLLARY. The following diagram is a pushout in gpd,

0
where (An] is the set of vertices (0-skeleton) of An

k
i 1 0 xaa", X x(aM%) —L—s nq(au””, Bu®)
)\eA(n+’|] I
Jn Jn
n n,o Kn n o
m, (X xA, X x(A'})"} ———m—— 7 (BYU , BU ).
Th+1) 1 Vv v 1
AEN

Proof. By [14; Theorem 2] egach groupoid in the diagram is

a retract of the corresponding groupoid in 5.1. The corollary

now fTollows from Brown'sresult [8; 8.6.7] that a retract of a

pushout is a pushout.

Razak defines certain elements ¢AU[X) eﬂq(Bﬂq, BuOJ for
(2)

X & X>n Xu' (A, u) €A . ¢AU[XJ is the class of the map

1 — pu given by  t k> K (x, A, u,t) and has initial

vertex ({x,A), Ffinal vertex (x,u). We extend the definition
2
A .. -

to all (A, ul) e by defining ¢uA[X] ¢AU(XJ for

2 €. The element J2¢AU[X]e Wq(Bu?, BU” ) will generally

be denoted ¢AU[X] also.

u}

5.3 LEMMA. ﬁ1(Bu1, BY”) is generated by J1ﬂ1(8u0] and

the elements ¢KU[X] for X e)()\U = Xxn Xu.

Proof. From corollary 5.2 with n=1 it follows that

ﬂq(Bﬂj, B%D] is generated by the images of J1 and K1.
. 1 1 . q \
Identify w,(X xA , X x3A ) with w, (X 3 x 9 where is
1 Y v 1 v

the unit interval groupoid generated by Y € i[0,1]. Then
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ﬂ1[Xv] X ﬂ is generated by elements of the form (q,0) and

(ex,y) where a e ﬂq[XV) and X € Xv' To emphasise the
role of v = (A,ule A2 we shall usually write (q,0) as
(a,v,0) or C(a,r,u,0) and similarly for (ex,y).
Under the above identification K1 maps (ex,v,y) to J¢>\u[x]
and (oa,v,0) to ik(u] where ik : n1XXC—+ n1(BuP] SN
ﬂq(Buq, auP). Hence ix(a]e quq(B%O] so the images of
J1 and K1 are precisely the stated generators.

]
Razak showed [18; p74] that for  xe Xyun = X3" X, aX  the
relation ¢XU(X] + ¢un(x) = ¢An[X] holds in nq[Buz, BU")
but not in w (8U', BU°). Indeed these relations are the

essential difference between the two groupoids as the next
result shows.
/l

5.4 PROPOSITTION. 3, m, (BU, BU® ) —— nth‘uz. BYU° ) is a

guotient morphism whose kernel is the normal subgroupoid R

generated by elements of the form ¢XU[X] + ¢un(x) + ¢nA(X]
fo X .

r X €& Aun
Outline proof. We shall omit some of the detalls since they

are routine and similar arguments are given in greater detail

later.

Jz is the identity on vertices. From the pushout of

corollary 5.2 with n=2, and the fact that A2 is simply

connected, it follows that JZ is surjective. Hence it is

7 \l"J"‘”‘ .
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piecewise surjective and therefore a qguotient morphism by

propositian 2.3.

We have noted that Razak’'s work shows that R ¢ ker J S0

21

there is an induced morphism

3r s woeu, eu)/R —s n1(Bfu2, By°

2 1 X

The pushout of corollary 5.2 (again with n=2) can now be used

*

;.
]

Finally in this section we recall some facts about the nerve

to construct the inverse isomorphism to J

of the cover U. The nerve K = KU is an (abstract)
simplicial complex whose n-simplexes are (n+1)-tuples

(A eeen ) where X, . =X, N o...oAX, # g .
o n [n] n

By proposition 4.8 the fundamental groupoid W1[K,KO]

{or W1(K2,KD]] has vertex set KO, generators [A,u]

where X)\U # 525 and relations D,u] + [u,n] = [A,n]

where Xkun %/ﬁ.

Also the map NYU — K, (x, A , .o, A ) = (A ,..0.,2 )
0 n o n

induces a morphism ﬂ (8%2, BU°

1 ] — ﬂq(K,KD], where

k°1).  But this is

>

ﬂ1(K,KD) is identified with n1[|K

the subject of the next section.
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2. RAZAK'S CONJECTURE

Let WU = {XA | xe A} be a cover of the space X such that

the interiors of the sets XX cover X. There is a simplicial

£ w ; ive ] (x, | : . .
map For NU — K, given by XA ,nn) — fAO. .
Its realisation BU — |k| which we also denote by f
. X . Z o] ]
induces a groupoid morphism £, n1[Bu , BU) — n1(K,K ).

Here ﬂqu,KD] is the edge-path fundamental groupocid which

is isomorphic to ﬂ1[|K[,|KO{]. Razak shows that f, is

surjective — s generator of nq(K,KO) is [A,u] where
Xxn Xu# ¢, and F*¢Au(X] = [A,u] for any X exllsxu
He makes the following conjecture [18; pBQ].

5.5 CONJECTURE (Razak]). Let N = ker f,. Then N 1is

generated as a normal subgroupoid of W1X by the elements

represented by @ path in at least one of the sets XXU Xu'

L]

First note that the conjecture is not well-posed as it stands.
N cannot be regarded as a subgroupoid of ﬂq(X] as the
vertex set is not correct. Note also that F

« 185 a quotient

morphism if and only 1if each subset XA is path connected.
This follows from the characterisation of gquotient morphisms
given in proposition 2.3. We make this additional assumption.
Razak did not assume this, and he appears to use a weaker
notion of exactness to ours (definition 2.5). The reason for
makingthe assumption is that we then have at our disposal the
universal property of quotient morphisms (definition 2.2},

The following result may be regarded as a modified form of the

conjecture.
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\

5.6 THEOREM. Suppose the sets Xke u are path-connected.

Then N = ker f, is generated as a normal subgroupoid of

T (Bu?, BU° ) by ﬂq(BﬂD] and elements of the form

¢, (x) + 1 (a) + ¢ _(y]), where X,y € X o enq(Xu][x,y]

Au u HA Ap’
o J2J1 2 s]
and i owu X = a_ {(BU) > a, (BUW, BU ).
U 1y 1 1
\
Note. In passing to w1(au2, BuD]/N, the elements of

n1(BUP] have the effect of killing the homotopy which comes

from the XA'S’ and the other generators of N identify

¢XU[X] with ¢Au(y] for X,y € X A picture of these

Ap’

elements is the following.

¢uk(y] ¢Xu[X)
—_ X
a H
Proef. Let M be the normal subgroupoid generated by
ﬂq(BuP] and the elements ¢AU[X) + iu(a] + ¢uk(y]' Since

T is a gquotient morphism it will be sufficient to establish

*

the isomorphism

Tr,][B'le, ®I/m M on

)
1(K, K7).

We first show M e N = ker f,_. If o e ﬂ1(Xu] then

clearly f iu[a] = EU . Also F*¢Au[X] = [k,u] S0

Folo,, 00+ 1 e w0 0] = D] e en s [ = en.

Hence M < N, so f, dinduces a unique morphism ¢ such
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that the following diagram commutes (where <t d1is the natural

morphism).

anauz, pu®) T, 1T,I[B'U.2, BuU®) /M

N

'rr,](K_. SO

We show that ¢y 1is an isomorphism by constructing its inverse
8. Recall that n1(K,KO] has generators [x,u] where

XKU # ¢ and relations [A,u] + [u,n] = [A,n] where
Xkun # ¢. Define B® on vertices by elA) = ix,A) where

X & X

X and on generators by e[k,u] = T¢AU(X] for

x € X To prove that 8 1s well-defined we must show (i}

Au'

that the definition is independent of the choice of the x's

and (143} that 8 preserves the relations of ﬂqu,KD].

(i) If X,y eXx then there is a path in XA from x to
y s0 tix,A) = 1ly,A). If X,y € X)\u then there is an
glement a e[ﬂqxu)(x,y] so

9,00 = T(¢M[x1 MR ¢Mty)] sy )

T¢xu(x).

Therefore the definition of 6 1s independent of the cholces

made .

{ii) By proposition 5.4 the relation ¢XU[X] + ¢UU[X] =
4. (x) holds in o, (BU°, BY®) for xe X . Therefore
An 1 Aun

8 preserves the relations of wq(K,KD].



106

Now we[x,u] = ¢T¢Au[X) = F*¢Au[x) = [X,u] , so U¥B dis the
identity on ﬂq[K,KD]. To show 8¢ is also the identity

recall lemma 5.3 and proposition 5.4 which imply that

2
ﬂq[Bu ,BU)  is generated by ix[a) for a 6ﬂ1[XA] and
o ) v
¢Xu(x; for X & Xau® Now
0f,1,(a) = 0ex = etlx,A) = 7i,(a) , and
8F, 9y, (x) = o[r,u] = Vo, (x].
Therefore of, = T. That is vt = v, so 8¢y is the
identity on 7w [Buz, Bu°)/M. Thus 6 and ¥ are inverse

/'

isomorphisms, which completes the proof.

]

To explain why theorem 5.6 i1s a modification of Razak's

conjecture recall that there is a natural map p : BUWU — X

which induces P, ! ﬂq(BﬂZ, Bu”) — W1(X]. Now ker f, is

generated by elements of the form i, (o) + ¢, (x) + iu[BJ +

A AU

¢

(y). Under p, such an element maps to a+Be m, (X)),

uA 1

which has a representative in XXL)Xp. It should be noted

that the elements of ﬂ1[X] arising in this way have end

points in the same XA' Conversely, any element of nq[X]

with a representative in some X)\UXu is the projection

under p, of an element of ker f, provided it has end

points in the same XA'
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3. CONNECTIONS WITH THE 1-DIMENSIONAL UNION THEOQOREM AND

GROUPOID MAPPING CYLINDER

Let X be a space with a cover U = {X e A} and let

5 |
BY dencte the classifying space. In this section we consider
X 1 .

the morphism P, ¢ ﬂ1[5ﬂ,, BﬂP] **‘ﬂ1(X] induced by the
projection n : BU — X defined in section one. We prove
that ©p, 1s a guotient morphism and give its kernel. This
result is very close to the 1-dimensional union theorem — its
proof uses the union theorem. The connection between the two

results is given by the groupoid mapping cylinder construction

of Crowell and Smythe [13].

The following result follows from the one-dimensional union

theorem (see [9]. [18]].

5.7 THEOREM. Let U = {><A | 2e A} be a cover of X such

that the interiors of the elements of QL cover X. Then the

diagram

_a_ o
| | T (X ] —— l ln (X, ——— 7w _(X)
> 1 Vv b 1 A 1
VEANM Aeh

is a coegualiser in ﬁ%d , where a and b are induced by

the inclusions X =X C— x_, X S X respectively,
v AU A V U

and ¢ is induced by the inclusions XAC—_+ X .

L]

The main result of this section is the following. We now assume

that the (ateciors of the membets o YU covel X,
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5.8 THEOREM. The morphism P, ¢ nq[Buj, pu°) —s nq[X]

defined previously is a gquotient morphism whose kernel is the
normal subgroupoid N generated by the elements ¢A {x) for
u
2
X e X , (A,pul) e ™.

Au
Proof. First note that using the pushout of corollary 5.2

with n=1, p, can be defined by the diagram

k
l I m, (X x aaly 1 7r1[B‘liDJ
\)eA2
N f
1 1
l l 7, (X x A, X x 3A ) — 1w, (X)
5 1 v v

I]
veh &

where f 1is induced by inclusions X, &— X, and with the

A
. Cns . 1 1 o
identification T (X xA , X _x3A') ¥ m (X ) x{ (see lemma
1 v v 1T v
5.3), g is defined by glex,v,y) = ex , gla,v,0) = a.
{(Strictly, gla,v,0) = cala) = cbla), where a,b,c are

given in theorem 5.7).

Let N be as stated. Then N € ker p, since

pD,o U(X] = glex,A,u,0) = ex.

The next step is to prove that p, 1s a quotient morphism.

We use the characterisation of gquotient morphisms given in

proposition 2.3. Let a e ﬂ1(X](x,y] — say o = [z] for
some path ¢ in X. Now ¢ has a subdivision

L = 21 .. F zn such that Qi maps the subinterval
Bi’ ti+1] into XA for some Kié A Define

i
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o eﬂq[Bﬂj, Bu® ) by

A o 1 -
o= [91] ¢x1k2(3 Qq) * [22] * MDY 1An(3 9n—1) L9n]
Now p*(Q) = [21] oL, F [Qn} = a , sc p, is surjective.
Suppose V,WEé B%O are such that PeV = pw. Then

v = [(x,2) and w = [(x,u) for some X EXAu' However
¢Xu(X]e Nq(v,w] & (ker p,llv,w) so v and w 1lie in the

same component of the kernel. Therefore, by proposition 2.3,

P, 1s a guotient morphism.

Since N € ker p, there 1s a unique morphism g such that
the following diagram commutes (where <1t d1is the natural

projection).

n1(au1, BU

To show that g 1s an isomorphism (i.e. ker p, = N ] we

use theorem 5.7 to construct its inverse. Define

r I l ﬁﬂ(xl] —_— ﬁ1[8ﬂ1, Bu°) /N

Aeh
a] J1
= 3 1 N oy
by rlo, A) Tlx(a] (where 1A'W1(XA] ﬂ1(BﬂA] —
n1(Bﬂ1, BuD]]. Let (o, A, u) Eﬂ1(XXu]' Then rala, X, y) =

rlo, ) = Tix[d), and similarly rbla, r,u) = Tiu(a]. Naow



Razak notes [18; p77] that  (a,A) = ¢Au(a°a) + (o, p) +

¢uk[a1a)' Hence Tix[a] = Tiu(a] so ra = rb. Therefore,

by theorem 5.7, r induces a morphism

rt oo (X) — n1t5u1, BY°) /N

/I
such that r*c = r, We claim that g and r* are inverse

isomorphisms.

First note that for {a,r] & ﬁ1[XX]

gr{a,A) = gti. {al) = p*ik(a] = g = cla,A).

A

So gr = ¢ and hence gr*c = c. Therefore gr* = id .
n1(X]
Also r*p*ixfa] = r*(a) = rla,r) = Tix[a] , and
r*p*¢xu(x) = r*ex = T¢AU(X].

By lemma 5.3 the elements of the form ik[u] for ae ﬂ1(XA),
1 al

and ¢y (x) for X € (B , BU ). Hence

X generate o
u Al

/l

r*p, = T SO r*g = id.

Therefore p and r* are inverse isomorphisms, completing

the proof.

[

5.9 COROLLARY (Razak). The morphism p) : ﬂ1(Bu2,BﬂD] >, (X)

induced by p : BY — X is an equivalence of groupoids.




Proo+. There is a commutative diagram
1 0 J2 2 o]
m, (BU . BUT) ———=> ¢ (BU”, BU)
D\ P
ﬁq{X)
where J2 and p, are guotient morphisms. It follows that

p, 1s a guotient morphism whose kernel is the normal

subgroupoid generated by the elements ¢Au[X]’ for X € XA .
u

Hence the components of nq(Bﬂz, Bu®)  and ﬂ1(X] are in

bijective correspondence {given by p; ). Now the kernel

of pL, 1is simply connected since the relation

¢Xu[X] + ¢un(x) + ¢nK(X] holds in nq(Buz, pu%). Therefore
the vertex groups of the corresponding components of
ﬂq[Buz, BuP) and nq[X] are isomorphic. A result of Higgins
D4; Corollary 2, p47] completes the proof.

[]
Note that in general the kernel of p, : ﬂ1(5u1, BU®) — m, (X)
is not simply connected since it contains the non-trivial loop
¢Au[X] + ¢un[X) + ¢nA[XJ where X exlun' We feel that the
above route to corollary 5.9 is slightly simpler than Razak's
proof. By passing to the quotient groupoids the choices
involved in defining a morphism ﬂq(X] - ﬂq[Bﬂz, BU° ) can
be avoided. This is, of course, largely a matter of

presentation — the ideas behind our approach are the same as

Razak's.

We now investigate the connection between theorems 5.7 and 5.8.



We show that n1(8ﬂj, BuU°) is essentially a mapping cylinder
groupoid as defined by Crowell-and Smythe in [ﬁB]. The
following generator-relation description of the mapping
cylinder construction is somewhat different to that given in
DB], and is introduced to avoid the consideration of

equivalence relations on groupoids which are not congruences.

Let r = (Fq,PD] be a directed graph. We adopt our notation

for groupoids and let Box, 81x denote the initial and final

vertices respectively of the edge X qu. A TI'-diagram of

groupoids (#,T) consists of a family A - (pY | ve FO}
9% x qu

of groupoids, and a family {GX i A — A | xe F1}

of groupoid morphisms. (More formally, a I-diagram of groupoids

is a functor F(T) —#>§pd, where F(T) denotes the free

category on TJ}.

5.10 DEFINITION. The mapping cylinder groupoid m = m&J,F]

of a T'-diagram of groupoids 1s the groupoid with vertex set

L_J (AV]O , generators

veTl
0

(i) the elements of AY for vV e FO, and

(ii) elements Yx(w) € mq((w,aox),[exw,aqx]] for

Box
W E (A )o’

and defining relations

(a) the relations of the groupoids A , verT , and

(b g (a) = —YX[BDa] + a + YX[Sqa] for ae€eA , X GIH.




Presentations of groupoids have been caonsidered by Higginsg —

see [14], for example. According to Higgins' work relations

are ordered pairs of groupoid words, so our relations of type

(b) should be written (6 (a), -y (3%a) + a + y_ (3 'a}). 1In
X X X

this case the initial and final vertices of the words are

equal, which is why we can write the relations in the more

familiar form.

One can verify directly that this description gives a groupoid
isomorphic to that of Crowell and Smythe. We omit this
technical argument since the reason the mapping cylinder has
been introduced here is the following result, due to Crowell

and Smythe, which we prove directly.

5.11 THEOREM. Let (A, T) be a diagram of groupoids and

1im(#,T) be its colimit in ﬁpd. Then
lim(# T) 2 mf T)/P
s

where P 1is the normal subgroupoid of m&4,F] generated by

0
the elements Yx(w] for w C—(Aa X)O , xel,.

Note. In the terminoclogy of Crowell and Smythe P dis the

normal closure in mL#,F] of the subgroupoid thqycalled the

core.

Proaof. From the presentation of m#.T) we see that the

guotient mU#,F]/P has a presentation with generators



the elements of AV for v 6PD , and relations (ex[a],a)

0
for a eAa X, x €T together with the relations of AV

1
for v €T

0"
We use this presentation to show that m/P has the universal
property characterising ££§&4,F]. Llet A Dbe the elements

of AY considered as a generating graph for m/P and let

T : A — m/P be the natural morphism.
Let wv : AY — B, v eFO , be a family of groupoid

x 57 x 3]
morphisms commuting with the morphisms 6 : A — A° X,

Then P = {wv} : A — B is a graph map under which the
relations of m/P hold. Hence there is a unigue morphism

Y, + m/P— B such that Yy,eT = Y. This is precisely the
universal property characterising lim&4,?).

[

Now consider the diagram

' _a
l ' m, (X ] I ]ﬂ {(X.]
5 1 \V T 1 A
vel A€
given in theorem 5.7. Let I'' be the 1~-skeleton of the nerve
KL of the cover U = {x | rend, subdivided once. Then

A
I' is a graph with vertex set ALJA(2], and with edges

connecting (X, u) e A(Z] to each of the vertices A,pe h.
Directing the edges from (A,u) to X and from (ix,u) to u,

we see that the above diagram is a T'-diagram of groupoids.

We denote it by (@,T).




5.12 PROPOSITION. ﬂ1(5u1, Bup] is disomorphic to the full

subgroupoid of m(w,T), the mapping cylinder of (w,T),
on the vertex set I l XA'
AEN
Further, under the isomorphism the normal subgroupoid N of
m (BW , B%O] generated by the elements ¢AU(XJ is isomorphic tw
the corresponding full subgroupoid P of m(w,T) given in
theorem 5.11.
A A .
Proof. Let m = m(m, T) be the full subgroupoid of
A
m = m(m,T) on the vertex set L_J XX , and let P be the

Aé A
corresponding full subgroupoid of P.

Now m has generators the elements of Wq[XA]’ A €A, the
elements of ﬂ1[XXU] , (A,u) € A[Z] s and elements
Yy, () €m, ((x, A, u), (x, 0], Brp(x) em, (Cx,a,u), (x,u)).

A diagram for these elements is the following.

>
=
v

A Xku
: (x) ' (x)
) {x, Al YA”1X [/- \BAU\X

< L<f// > {(x,u)




The relations of m are those of the 1w, (X.) and m, (X ),

1 A 1 Al
and
(i} (a,r) = _Y}\]J[X] + (o, A,n) + Y)\U[y]
ii ( ) = - + [ ] » +
(ii) o, ) BAUEX] O, A,u) Bxu[y]
for o 6“1[Xxu)[x’y]'

The subgroupoid f is a retract of m [14; Theorem 2, p47].

For o€ mq[v,w] a retraction p . m - ) is given by
o if v,wevﬁ
0
a + v _(y) if vef , ow = (y,n,Eg)
neg 0

(x,A,u} , we:%o

~~
X
+
[
[
_h
<
]

(y) if v (x,2,u) , w = (y,n,&).

[}
-
>
=
~—
x
4o
R
+

By a result of Higgins [44; Proposition 28, p91] p 1is a
guotient morphism with simply connected kernel. Hence adding

the relations (YAU[X]’ e[x,k]) to those above gives a
presentation for m. This presentation has generators the
elements of the ﬂ1[XA]'S and elements B u(x)e:ﬁq([x,kl,(x,u])

A

The relations are those of the ﬂq[XA]'s and

{a,pu) = -8B, (x) + (a,r) + B, (y] for o €ﬂ1[x

J(x,y).
Au Au U y

A

In particular, % is itself a mapping cylinder groupoid.

We can now define a morphism 8 ﬁ(ﬂ,?]-—+ ﬂ1[BUj, Bu®)
J
by i, ¢ om (X)) E— m (BU") —> w ey’ BUP) and



g u(x) = 0, (x]). That the relations hold in n1(5u1, Bu®)

A u

under 6 follows from a remark of Razak [HB; p77]. Therefore
8 1s well-defined, and 1t easily seen to be an isomorphism

by using corollary 5.2 for example.

A
Finally P is generated by the elements BKU[X] so clearly

0(B) = N.
O
/]

5.13 COROGLLARY. ﬂq[Bu 5 BuO]/N ¥ limlw,T) where N is
=

the normal subgroupoid defined in 5.8.

Proo-f. The corollary follows from 5.11 and5.12 since

comparing the presentations given in the previous proposition
A

shows m/P 2 A/P.

The corollary indicates that the one dimensional union theorem

{(5.7) and theorem 5.8 are essentially equivalent statements.

4, CONNECTIONS WITH MACBEATH-SWAN THEORY

In [17] Macbeath considers coverings of a G-space X which
are the translates, under the action, of a subspace V. Let

U - {Vg | g€ G} be such a covering, indexed by the elements
of G. Macbeath defined a group, which we denote M = M(U),
to have generators (g)] where vn vE # ﬂi geG and
relations (g)(h) = (gh) where VvnavlavE" 4 g (1n fact
we have modified the definition to convert from left actions,

which Macbeath considered, to right actions].



Define ¢ + M > G by ¢+ (g) > g. Macbeath proved

the following [17; Theorem 1].

5.14 THEOREM. Suppose V is agpen in X. Then

(i3 ¢ 1s surjective if X 1is connected, and

(ii) ¢ 1s an isomorphism if X is connected and simply
connected, aeand V 1s path-connected.

There is a generalisation of part (ii)l of the theorem, due to
Swan [24], which deals with non-simply connected X. The

statement of Swan's result involves a morphism

6 : ﬂq[X,*] — M which we now describe. Let * be a base
point in V, and let o €ﬂ1[X,*]. Then o 1s represented
by a loop 2 which may be subdivided L = 21 L., F Qn

such that each path li is contained in Vgi for some gie G.

We always choose B, = B, ° 1. Define
= -1 -1 -1
8{a) [g1g2 ][g2g3 ) [gn—1gn ]
5.15 THEOREM (Swan). Suppose X 1s path-connected and V
is open and path-connected. Then
(i) the above definition of © is independent of the choices
made and gives a well-defined morphism 6 Tr,l[X,*]-"-> G, and

(ii) there is an exact sequence of groups
0 — P o () —— s g 0

where P 1is the normal subgroup of Wq(X,*) generated by

those elements which have representatives of the form p+&-p



where p 1is a path with initial point * and £ 1is a laoop

contained 1in Vggth for some g,heG.

Proof. (i) [24:; Lemmas 1.3 and 1.4]

(i1 [24; Theorem 1.1].

]

We will show that the work of section two together with the
notion of semi-direct product groupoid gives a groupoid
version of Swan's result. This approach is not new. Razak
showed that Swan's theorem was closely related to his
conjecture, although the statement of Razak's theorem 3.2
[18; p91] is not guite correct as we shall explain. Alsc Abels
[1] used semi-direct product groupoids to prove a result
similar to our next theorem,

Let X be a path-connected G-space and let U = {x A ep}

y |
be a G-invariant cover of X. (That is, for geG , A€EA
we have Xxgé?l]. Then G acts on the nerve K = KU and

on the classifying space BW of the cover, and induces actions

on the corresponding fundamental groupoids.

5.16 THEOREM. Let X be a path-connected G-space and

U = {XA ’ A€M} a G-invariant cover by path-connected open
sets. The following is a cOmmutative diagram of groupoids

with exact rows and column (where N and f, are given in

theorem 5.6).
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“gto
N
n
— o (8%, BU%) s ¢ eu?, BY®) ¥ o G E
Buo ,I » ,l » E3
L. lf*x id lid
By, — (K, k%) —— ok, k%) ¥ o G E,
o
E*
Proof. The column 1s given by theorem 5.8, and the rows by

lemma 3.5.

[

5.17 COROLLARY. Under the hypotheses of theorem 5.16 there is

an exact seguence of groupoids

€ gyo N < o8, 8u%) s w (k%) ¥ 6 —> 6 — E,
where & = Jef,.
Proof. This is an immediate conseguence of the theorem since

the composition of guotient morphisms is a guotient morphism.

]

We will show that
Swan's theorem
5.9) which states
quBuz,BuO] and
isomorphic vertex
(cf.

result Abel

(5.

the corollary is a groupoid version of
15). Recall the result of Razak

U

(corollary

that if the cover is open the groupoids

7 (X)

1 and hence have

are eguivalent,
groups. We also require the following

5[1; Proposition 5.3]].
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5.18 PROPOSITION. Let U= (v®B | ge6} be a cover of X.

Macbeath’s group M o= M(U) is isemorphic to the vertex
group of anK,KD] X G at 1 éKO. where 1 is the identity
of G, and K = KW 1is the nerve of the cover.

Proof. n1[K,KO) has vertex set G, generators [g,h]

where VEAV" # @ and relations  [g,h] + [h,k] = [g.K]

where vBn Vhﬁ Vk ? ¢. Let I denote the vertex group aof

m, (K,k%) ¥ 6 at 1€k = 6. An element of § is

-1
[[1,g1J + [gq.gzj oL, [gn,gn+1], gn+1] where
vBia vBL* v o for i=0,1,...,n (and g =1). Such an

element may be written

- -1 -1 -1
([1’g1] * [gq,g2]+...+ [gn—1’gn]’gn ) ¥ [[1’gn+1gn ]’gngn+1)'

An inductive argument now shows that Y 1s generated by
- -1
elements of the form (D,g], g 1) where V nvE 7 ¢

with defining relations

([1.e]. ") « ([.n], p77) = ([1.6e), (hed ™)

it vavBav"® s g The map  ([1.g]. &) > (g )

therefore defines an isomorphism of ¥ onto M.

]

5.19 PROPOSITION. Let U - (ve l g eG} be an open cover

of X where V 1s path-connected. Let *¢V be a base pount.

The vertex sequence
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0 — N(*,1) —> n1(au2.auo][*,1] — (7, (k,k%) X 6) (1) — 6 — 0

of the sequence of corocllary 5.17 is isomorphic to Swan's

exact sequence (theorem 5.15(ii) ).

Proo*. Let p Bﬂ2 — X be the projection defined in
section one. By corollary 5.9 there is an isomorphism

2
Py : n1(5% , BUI(*, 1) — W1(X,*] and clearly

p*[N[*,1]) = P, The previous proposition gives an
isomorphism q : [WJK,KO] 4 G](1] = I — M, Hence we have

a diagram whose vertical morphisms are isomorphisms.

0 — N(*,1) s n1[B’IL2,B?,LO][*,1] £,y 5 — 0

b b b

0 — P e ﬂq(x’*] 5 > M 3 G — O

It remains to show that the diagram is commutative. Clearly
the outside squares commute. For the inside sqguare, let

o ewqtauZ, Bu®) (*,1). Then

o = o + ¢ (81a ] o+ o 4+ (31a ] o+
a] ng1 o] 1 g1g2 1
1
+ QO + ¢ (9 a ) + «o o1
" EnBhnan n
where for i=0,1,...,n+1 , gie G (and go=gn+1=1 ],

g, . g,
o, ¢ m,(V 1), and vBinp yoi+] #ﬁ.
i 1
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Now geglal) = gejef (o)
= a°i([e,o8,] + oo+ 208 ,4])
_ - -1 -1
= (goey ) (g, ) (epe,q)
= pgla + + g )
(@] n
= op,lal.

This completes the proof.
Theorem 5.16 also implies Abels' theorem 5.14 [1], since
BU =~ X in the case where U is G-numerable. Indeed the

above results are similar to those in 85 of [1].

We now consider Razak's theorem 3.2 [18; p91]. This states

that for U = {v& | gec} there is an isomorphism between

Machbeath's group M and the fundamental group of |K|/G

where lK[ is the realisation of K. An example below shows
resulf

that this is false. The correct{is the following, which is

essentially what Razak proves.

5.20 PROPOSITION. It U - (vB | ge G} is a cover of X,

and K dids the nerve then

™, (K, k%) /) 2 M.

Proof. From theorem 3.6 there is an isomorphism

o (e} ~
m (K, K217ty 2 (n (kKDY X B) /N
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where N is the normal subgroup generated by elements of the
form ([g,g], h) for g,heG. Therefore N is a tree

. a] a] ~
groupoid and hence ﬂ1[K,K 1J/7(G)  and ﬂq(K,K )] X G have
isomorphic vertex groups. Now KD/G is a single point so
ﬂ1(K,KO]/[G] is already a group which is isomorphic to M
by proposition 5.18.

-

5.21 EXAMPLE. Let G = Z% act on an open 2-disc by

rotation, and let V be an open neighbourhcod of the

fundamental domain as indicated.

Then K = KU 1is a Z2-simplex (together with its faces]).

K is
simply connected sa ﬂ1(K,KO]/(G) is isomorphic to G = Z%,
and is isomorphic to M by the previous proposition.
Now !Kl is a geometric 2-simplex and G acts by rotation.
The orbit space is homeomorphic to a 2-disc. Hence
W1[|K|/G.*] = 0, so we have a counter-example to Razak's
theorem 3.2.
In fact, Razak actually proves n1[lK/GI, x%/6]) 2 M.
In our example |K/Gl is the CW-complex with one r-cell for

r=0,1,2 , illustrated below.




125

Clearly m (|k/G], [K°/G[) 2 ZB = G.
The problem is, of course, that [K]/G and |K/G| are not
homeomorphic in this case. Conditions under which these

. . . T ASy
spaces are homeomorphic are given in Chapter four. /

Finally we note briefly some connecticns with the Bass-Serre
theory of groups acting on graphs [22]. The Bass-Serre
structure theorem concerns a group G acting on a graph T
so that no edge 1s reversed. The guotient graph T/G

together with the stabilisers of edges and vertices of T
give rise to a "graph of groups” (g, r/cl. This is a diagram
of groups over I'/G subdivided once in the sense of Crowell
and Smythe (see section three, this chapter). For a vertex *
of I'/G , Bass and Serre define the fundamental group of the
graph of groups, wq(g,F/G,*], together with a morphism

b 1T,I(‘§,1"/G,*]'—‘+ G. The definition of the fundamental
group is similar to that of (the vertex group of) the mapping

cylinder given in section three.

The Bass-Serre structure theorem states that there is an

exact sequence of groups

0 — T, (0,8 — w7/, %) b5 — 0

/\ . .
where * is some vertex of ' in the orbit *
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Bass and Serre were primarily interested in the case where
' is a tree, and the theorem may then be regarded as giving
a presentation of 6 1in terms of the stabilisers and certain

other elements arising from circuits in T/G.

In fact, the fundamental group ﬂq(ﬁ,F/G,*] is isomorphic to

A
the vertex group at * of the semi-direct product W1F X G.

More precisely there is an i1somorphism
Yo n1(§,P/G,*] — (N1F X G)(*] such that the following

diagram commutes, where the top row is the vertex seqguence

of the one given in lemma 3.5.

A ~
0 —> m(r,") — (1, T%X6)(*) —> 6 —0
lld lw ild
0 — 1, (1Y) s w (176, — g 0
To prove this it is more natural to use groupoids. ¢ 1is

defined as a groupoid morphism with domain W1F % G and
codomain the fundamental groupoid of (ﬁ,F/G) as defined by
Higgins [The fundamental groupoid of a graph of groups; J.
London Math. Soc. (2), 13 (13976), 145—149]. The details are

long and somewhat uninformative.,.

A few things emerge from the diagram above. The first is that
{a combinatorial version of) Rhodes' group ol(l,*,G) 1is
isomorphic to the Bass-Serre fundamental group. This was
noted in chapter four and follows from the diagram above

together with proposition 4.7.
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Secondly, the earlier parts of this chapter establish a
relationship between semi-direct products and the work of
Macbeath and Swan. Hence there 1s a connection between the way
presentations of groups are obtained in the Macbeath-Swan and
Bass-Serre theories. We are unsure of the precise nature of
the 1link between the two, but it seems fairly strong. It

would be interesting to have a clear formulation of this

relationship.

5. CONCLUSION

In concluding we make some general remarks concerning possible
further developments of this work. There are perhaps two areas

where further investigation may prove fruitful.

The first directly concerns the work of this chapter. In
exploring the various inter-relations between the Brown-
Higgins union theorem, the work of Bass-Serre and Macbeath-
Swan it may be possible to formulate a more general result
incorporating some of their common features. The data for such

a result would involve a G-space X with an invariant cover

o
X

U by subspaces. Suppose that a description of W1X G

could be given in terms of groupoids ﬂqu % GA where the
subgroup GA stabilises xle U and similar groupoids for the
intersections XAA XU. Such a description might involve a

mapping cylinder construction. If the action were trivial this

situation would reduce to that of the 1-dimensional union
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theorem, and if the XA'S were simply connected it would
reduce to that of the Macbeath-Swan theory. In addition,
taking X as & graph with certain canonical choices for the
XA might link up with the results of Bass-Serre.

The second area we have in mind is the establishment of the
isomorphism T(X/G) % nX/(G) of theorem 4.20 under more
general hypotheses. For example, some relaxation might be
achieved by using the union thecorem in the proof rather than
the free description of the homotopy crossed complex (theorem
4.19) which is itself a corollary of the union theorem. To
obtain a significant relaxation of the hypotheses, however,
substantial topological problems need to be resolved. In view
of Armstrong’s success in reducing the hypotheses for the

dimension one result, some progress in dimension two may be

possible, for example.

Finally on a more speculative note, we observe the similarity
between the statements of theorem 4.20 and the union theorem
(2.17). Both take the general form that the functor = from a
certain category of JD—Filtered spaces to the category of
crossed complexes preserves colimits of a certain type. It
would be rewarding to be able to incorporate both intc a
theorem giving fairly general conditions under which m

preserves colimits.
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