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ABSTRACT

Constituent and current quark models are emploved to discuss many of
the SU({3) and SU(2) violating strong and electromagnetic properties of pseudo-
scalar and vector mesons. The conventional ground state isoscalar meson
mixing models are reviewed and extended to include radial excitations
in the mass matrix. A phenomenological analysis of symmetry breaking in
the models allows a successful simultaneous description of both the vector
and pseudoscalar mass spectra, although attempts made to include the high
statistlics Crystal Ball result for the ratio p = T{¢ > n'y)/T{¥ = ny}
= 5.88 + 1.46 fail. A detailed description of meson radiative decay processes
and the ratio of strong production amplitudes ¢ (n p* n'n)/ o(7 p*nn) in a
linear radial mixing model indicates that a consistent description cf iso-
scalar meson properties can be made when p = 3.1, a value considerably less
than the Crystal Ball result but in agreement with that obtained by the Dasp
collaboration. The model parameters obtained in this analysis allow a
satisfactory description of strong two.body vector to pseudoscalar meson
decays, and subsequent prediction of relationships between amplitudes for
similar decays of the radial states. The model does not, however, provide
an adequate account of the I # 0 D, D*, F, F* and to a lesser extent K and
K* meson states, a failing shared by all similar constivuent models which are
examined. Deficiencles in this description of meson structure which may
explain the discrepancies are discussed.

The linear mass model used to predict p = 3.1 provides an ideal frame-
work for an examination of isospin vieclating meson properties. The pheno-
menclogical addition of strong and electromagnetic isospin violating parameters
to the mass matrix allows the prediction of pseudoscalar aﬁd vector isoscalar-
isovector mixing angles and isomultiplet mass differences. A satisfactory des-
cription of these mass differences and the branching ratio B(w + 27) results,

however, a prediction made for the ratio R = T(y'~» now)/r(¢'+ n ¢) is much



ii

smaller than measured values. The importance of contributions to these
results from the isospin violating strong interactions is stressed.

A current algebra apprcoach to the ratios p and R is also undertaken.
Axial Ward identities which include contributions from the triangle anomaly
vield relations between the pseudoscalar meson masses and decay constants.
These are included with equations describing P + 2y decays and the ratio p
which together are solved for the decay constants and topological charge
components of the ﬁo,n and n'. These allow a prediction for the ratio R
which agrees with that obtained using the constituent quark model approach

but is only half the magnitude of present experimental measurements.
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CHAPTER 1

1.1 PARTICLE CLASSIFICATION AND THE NON-RELATIVISTIC QUARK MODEL

The present theories of the electroweak {Weinberg—Salam(l)) and
strong {(Quantum Chromodynamics(z)) interactions have been used with reason-
able success to describe the dynamical behaviour of many physical systems.
However, in certain regimes the dynamical predictions of these theories
break down,and in such conditions recourse is often made to a study of their
invariance properties. This is particularly true in the case of quantum
chromodynamics (QCD) where the perturbative techniques applied in the high
energy regime to explain such processes as deep inelastic lepton-proton
scattering cannot be used to describe the nature of bound states at low
energies. A study of the properties of such states is the purpose of this
investigation where symmetry principles and, when available, techniques
peculiar to the non-relativistic quark model are used to derive relationships
between amplitudes describing many of the strong and electromagnetic inter-
actions of bound states, particular attention being paid to the way in which
the various symmetries are broken.

The classification schemes of hadron states in particle physics have
a long history. The earliest known hadrons, the proton and neutron, were
observed to have very similar masses and strong interactions, properties which
suggested they form a doublet, which was later recognised as a multiplet of
the 3U(Z) algebra of isospin which transforms these states into one another.
In the course of time further particles were discovered which, like the proton
and neutron, were also classified in isospin multiplets, each multiplet contain-
ing states with approximately the same magss and similar strong interactions but
differing in their electromagnetic properties. With the discovery of an

’/’T‘:F-:}:\
increasing number of elementarg}p%%ﬁig?agi ame the recognition that groups of
"1 0mAY 1982 G\

SECTION

\ Library

.



isospin multiplets with different values of strangeness, but with the same

eigenvalues of all other guantum numbers conserved in the strong interactions,
could be collected to form larger multiplets of particles with roughly similar
masses. The symmetry algebra which correctly described this larger multiplet

(3)

structure was suggested independently by Gell-Mann and Ne'eman in 1961 to

be that of SU(3).

Of interest here are the spin zero and spin one pseudoscalar and
vector mesons, which, in the SU(3) classification belong to one of only two
multiplets, a singlet or an octet. This scheme is well explained in terms of

(3,4,5,6)

the non-relativistic quark model in which hadrons are regarded as

composites of a fundamental triplet E_Of quarks and/or a triplet E_of anti-
quarks(7). Conventionally these quarks are denoted u, d and s where the
three different types are said to have different flavours. The observed
hadrons are constructed such that baryons are bound states of three quarks
while mesons are composed of a quark-antiguark pair such that, with the
assigned quark properties in Table 1.1, the hadron classification scheme which
results reproduces that observed experimentally. The pseudoscalar and vector

mesons are then formed by combining quarks and antiquarks in different arrange-

ments to fill the multiplets of the SU(3) preduct representations given by
383 =8 & 1 (1.1)

Table 1.1 : Quark quantum number agsignments

1 1
Quark ‘ Isospin Strange- Hyper- Charge Baryon Spin-Parity
, Flavous SOSPL ness charge o} Number Jp
' I 13 S Y = B+ S B
u L 4k o 1/3 2/3 1/3 172"
+
d b -k 0 1/3 -1/3 1/3 1/2
s 0 0 -1 -2/3 -1/3 1/3 12%




It is useful, for future applications, to write the meson wavefunctions
in terms of their underlying quark structure. The full wavefunction is formed
from a product(4'5'6) of four parts :

{i) The spatial wavefunction, whose structure depends upon the detaijled
dynamics of the quark motion inside the hadron. The information required for
its construction is unknown at present, however, a simplifying assumption is
frequently made which involves giving a common spatial wavefunction to all
members of a given multiplet such that their overlap integrals, which appear
in many guark model applications, can be set equal to unity.

4
(ii) The spin wavefunction( ). The pseudoscalar mesons are spin

singlet states with
0, 0> = L[ o> 4t >:l (1.2)
2

while the vectors with spin one form a triplet

|1, 1> = |+

|1, o> = = [|++> +] 44> J 1.3
V2

|1,-1> = J4e>

where the notation [S,53> with S the total spin and 53 its third component
is used to define the spin states.
11ii) The unitary spin wavefunction, which provides the explicit guark

structure of a hadron state. The SU(3) pseudoscalar and vector mesons have



unitary spin wavefunctions

| > | 77> |=">

= ]ua> - L lua—da> = |du>

R /5 §

'D > |D > [p >
[k+> |k > |E0> |k">

=|us> = !d§> = |sd> = |su> (1.4)
|k*+> Ik*0> IE*9> lk*_>

|a>=-f% lua +a@-2s5 > |1 > = & |uG+ad + s5 >
6 V3

where |8> and |l> denote the 5U(3) octet and singlet states respectively,

(iv) The colour wavefunction. Various theoretical and experimental
arguments have been proposed for the inclusion of colour degrees of freedom
in the guark model. The symmetric nature of the space-spin-unitary spin
wavefunctions assoclated with ground state baryons requires such a proposal(s'e)
if quarks are to obey Fermi-Dirac statistics, the additional colour wave-
function having the reguired anti-symmetric form. Theoretical calculations of
F(ﬂ°+ 2Y§9)and R,_. = c(e+e- -+ hadrons)/l(J(e+e_+ u+u_;8)when compared with

e e
experiment suggest that each quark flavour (u,d or s) should come in three
different colours, denoted here by red (R), green (G) and blue (B). The
absence of coloured hadrons has led to the hypothesis that all physical
observs-les .are colour singlets, thus assigning the colour degrees of freedom
to a colour group, SU(B)C, the colour singlet wavefunction for mesons is formed

from

3e3 = 1e38
where the singlet state is given by

1> = | RR+ GG + BB > (1.5)

S (e



By treating guarks as dynamical objects and assigning each a half

, . . (10}
integer spin the internal symmetry group SU(3) was conveniently extended
{by the inclusion of SU(Z)spin} to SU(6). Meson states now fall into multi-

plets given by

6 @ 6 = 35 @ 1 (1.6)
where the Eé'representation of SU{(6) is decomposed into

5%+ + 71 (1.7)

The 38 and 31 contain the vector mesons (the superscript corresponds to
2s + 1) while the l8 and singlet 1l of (1,6) contain the pseudoscalar mesons.
In addition to their intrinsic spin the quarks forming a qa pair
within a meson can have a non-zero orbital angular momentum f, the total spin
of the meson being given by 3 =f +§. Higher spin systems with L # O will
also fall into the SU(3) classification scheme and occupy 8 and 1 multiplets,
however, only the properties of L = O states are discussed here.
1.2 THE ADDITION OF CHARM AND HIGHER SYMMETRIES

b and others(lz), working on the

In 1964 Bjorken and Glashow
assumption that a quark-lepton symmetry may exist in nature, suggested
the introduction of a further guark to the (u,d,s) trinlet to match the
four leptons (e, ve,u,vu) which were known at the time. This new guark,
the ¢- -ark, and asscociated quantum number, charm(13), required that the
8U(3} classification scheme should be enlarged to SU(4) and hence that
many new hadron states containing the c-quark should exist. The idea was
given further theoretical support in 1970 when it was noted by Glashow

(14}

et al that the introduction of the charmed quark to the Weinberg Salam

model of electroweak interactions would eradicate the unwanted strangeness



changimrg neutral current present in the theory, however it had to wait
until 1974 for experimental verification, when the first state to fit into
e . (15) .
the proposed SU{4) classification, the J/¢ was discovered.
The u,d,s and c-quarks form the fundamental representation 4 of

SU(4) while the pseudoscalar and vector mesons occupy the product representa-

tions given by

Y

4 @ = 15 e 1 (1.8)

where the SU(3) content of the 15 is given by

158 ol 8363 (1.9)

The 8 and 1 of SU{3) containing the '©¢ld’' mesons have charm, C = O while the
3 and E'which contain the new D and F pseudoscalars, or D* and F* vectors
have C = -1 and + 1 respectively.

The discovery(IB) of further narrcw width meson states in the mass
region 9.46 GeV and above in 1977 has necessitated the extension of SU(4) to
SU({5) with the introduction of another guark, the b-quark, with asscciated

quantum number beauty. Mesons states, as before, occupy the product representa-

tions given by

5 @ 5 = 24 @ 1 (1.10)

Working on the principle of a quark-lepton symmetry the discovery of a i
17

further charged lepton( ), the T, and the expected existence of its associated

neutri- . vT, suggests that six quarks should exist. The additional sixth

quark, the top quark, will reguire the extension of SU(5) to SU(6).

1.3 THE QZI RULE

The considerable symmetry breaking observed in the SU(3) (and higher)
multiplets induces the unitary spin wavefunctions of the I = Y = 0 mesons to

mix. The mixing observed in the pseudoscalar nonet is of a cemplicated nature,




and is discussed in detail in subsequent chapters, however, the mixing
amongst the vector, octet and singlet states is believed to be much simpler,
the physical @ ané ¢ which result consisting of almost pure quark configura-

tions,

[ w > = | uu + da>

"‘hh—»

{1.11}

| o > = 55
Both of these particles have finite widths decaying principally via the
strong interactions into pseudoscalar mesons, for example, both the w and
¢ decay into three pions. Their partial decay widths for this mode are quite
different, however, that of the w being wmwore than an order of magnitude
larger than that of the ¢, Just why these partial widths are so different
is explained qualitatively by the Okubu, Zweig, Iizuka (0ZI) rule(ls).

The 0ZI rule is most simply formulated in terms of guark-line diagrams
in which a quark (or an anti-quark) is described by a line upon which the
quantum numbers of the quark remain the same. Its essential ‘content is then
the statement that 0ZI allowed processes are described by connected diagrams,

as in Fig 1.1(a), while disconnected diagrams, Fig 1.1l(b), represent processes

which are 0ZI forbidden.

a
] -
q

a q’
q' g
q

Fig 1.1{a): &An OZI allowed process Fig 1.1(b) : An 02I forbidden process



The decay modes of w and ¢ to 3n are then described by Fig 1.2.

(——#——-U + +

7 hil
3 d

u > J S o 5 d TO

)
|
F N
a
—
™
1
1
=
=y
|

|
i

o

|

Fig 1.2 : Quark line diagrams for w =+ 31 and ¢ -+ 3 decay.

With the quark structure given in {(l1.11) w + 37 is seen to be an allowed
process while ¢ » 31 is forbidden by the 0ZI rule, which thus qualitatively
explains its relative suppression.

The small, but non-zero value observed for the decay width T{d > 3m)
{and T (¢ =+ wy) and other OZI forbidden processes) indicates that the quark
structure of the w and ¢ given in (1.11) does not represent the whole picture.
An admixture of u and 4 quarks in the ¢ wavefunction is necessary to explain
these non-zero rates. Just how such deviations from the mixing scheme of
{1.11}) arise is described in chapters 2 and 3.

1.4 POTENTIAL MODELS

Although the exact nature of the forces which bind a quark and an
antiquark to form a meson are unknown.they are often approximated by assuming
a spec’ "¢ form for the binding potential V(r} and employing non-relativistic
methods, identifying the bound qa gquarkonium states as eigénstates of the
Schrédinger equation. Such a non-relativistic description is usually applied

(12,20)

to the heavy quark systems, for example to the cc and bb families where

it has met with great success, however, it has also been used for the lighter

- 21
ss guark system( ) where predictions of many as yet unidentified quark states
are made.

Several functional forms for the potential v(r) have been investigated,



the most common examples are,

(i) Power-~Law potentials of the form
m
vir) = ar (1.12)

Several examples corresponding to different values of n. have been analysed
in detail(zo),
(a) m = 2, the harmonic potential. It is possible to solve the non-

relativistic equation of motion corresponding to this tential exactly giving

the energy eigenvalues

E = {(2n + ¢ + 3/2)w (1.13)

where w is the angular fregquency of the motion. The values taken by the
principal quantum number n and orbital quantum number § denote the degree of
radial angd orbital excitation respectively, of the system.

(b) m = 1, the linear potential. This is a popular choice of potential
in quark confinement schemes where it is assumed to apply at large distance
scales.

{(c}) m = -1, the Coulomb potential. This is a further commonly used
potential which is assumed to simulate the qa interaction at short distance
scales. Cases (b) and (c) are often used collectively to provide an inter-

action potential
vir) = a.t + a.r (1.14)

which describes how the force between quark and antiquark varies with their

separation. The parameter a1 is frequently set at al = -4/3 o and o and a2
s s
determined by fits to the spectrum of states. In this manner the Yy and W
(20}

systems have been successfully reproduced
A quantity which will be of considerable value in later applications
is the variation of the non-relativistic wavefunction evaluated at zero

separation of the qq palr with radial quantum number n. This is given for



1o

2
the power-law potentials by( ol

2
| wn(o)l no(n - 174y @)/ (m2) 0 <m< o
and {1.15)
) (m-2) / (2+)
(L + m)
|¢'n(0)| v H-Wmﬁgy -2 <m<O

(ii) The logarithmic potential. It has been suggested by Quigg and
(20)

Rosner that the empirical observations in the ¥ and % systems
= = '-M_and M''* - M = M'' - M
My T My T M T My v v v 9
could have important implications for the inter-quark potential. They

exploited this weak dependence of level splitting upon the reduced mass H

of the constituent q& pair to derive

v(r) = C ln(r/ro) (1.16)

{which is the unique form for which level spacing is independent of u).
Setting the interaction strength C * 3/4 GeV reproduces the level structure

of both the ¢ and < families in reasonable agreement with experiment.

2
For this potential the variation of |wn(o) ] with n is given by
2 .
n ]wn(o) I = constant (1.17)
1.5 QUARK MODEL DETERMINATION OF HADRON PROPERTIES

The guark model hypothesis has been exploited in many applications
to derive hadron properties in terms of those of the underlying quarks.
Two approaches can be taken. The quarks can be treated as a useful mnemonic
for classifying the numerous elementary particles and hadron properties

investigated by exploiting the group structure of the classification scheme



11

or, the quarks can be treated as dynamical obhjects, the interactions of
which determine the properties of the particles they compose. Both of
these appreoaches will be used here.

1.5.1 Radiative Decays in the Quark Model

One of the most basic assumptions which recurs in many applications
of the non-relativistic guark model is the additivity assumption(4) which
allows a particular property of a composite hadron to be described by the
sum of contributions from the constituent quarks or antiquarks. 1In a quark
model description of radiative decay processes this assumption is incorporated
by writing the operator which causes a transition between mesons V + P 4+ vy

as a sum of operators causing single quark transitions aQ —»-qa+ vy, Fig 1.3.

o
a, r q, Fig 1.3 : Radlatlve.t%an§1tlon in the
_ non-relativistic quark model.
a,t N Qe
Thus,
®+yfov> = <@ & oy |v> (1.18)

a
where Oa(y) is responsible for the spin-flip process a4, —4~qa + y and

V> and ]P> are the meson wavefunctions described in section 1l.1.

4
Following Kokkedee( ) the interaction operator Oaty) is written in
non-relativistic form as
e N S
O fy) =u -2 5. (kxe eFTa (1.19)
a a e a

-

where ea/e gives the magnitude of the quark charge in units of e, o, is the
quark spin operator, ”a is a scale parameter closely connected with the quark
magnetic moment and ; and E are the photop momentum and polarisation respect-
ively. Unlike the treatment of reference 4 SU(3) symmetry breaking effects
are included in the operator through the flavour dependence of ua. The

matrix elements (L.18) are calculated by substitutinoc meson wavefunctions
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(1.2), (1.3) and (1.4) and assuming that (i) the overlap of spatial wave-

[ A
functions occurring in {(1.18) equals unity and (ii) k.r << 1, that is
[ N Y
ik.r
e T = 1 {the long photon wavelength approximation;}. Squaring the results

obtained, summing over photon polarisations and averaging over the initial

vector meson polarisations yields the required squared matrix element

2
iM . | . Including the relevant phase space factors gives the partial
v* pYy
width
2 k
V- P = . T 1.20
r( Y) L R (1.20)
with
o -
k o= R (1.21)
v

Precisely the same result is obtained in all cases by applying the

more convenient form

3 2
v =>py) = 35— |a | (1.22)
1
= £ —_ - =
where A p |E I oueoa, | v ; s, =0 (1.23)

and 03a represents the third component of the spin operator. Denoting

general vector and pseudoscalar wavefunctions by

iV,s_=0> = ”a lua > + Blaa » + y|ss >-’ .£(|M>+ lea> )
3 L A2
. . I (1.24)
P> = a|uu >+ b ldd >+ c[ss > = (|+§ > - [++ > )
V2

-

the matrix element (1.23) gives
A =

2
7 (2u, aa - Mg BD = W o)

The ua are related by noting that the individual quark magnetic moments are
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inversely proporticnal to the quark mass, thus,

in
_a . b (1.25)
m
a

ivi
giving o

L (2 aa - Bb - 53 ye) (1.26)
S

e
f
W | o

g is determined from an evaluation of the proton magnetic

i
=

where =
uu ud

moment to give p = q = 2.7%/2M .
P P

As an example of the application of (1.22) and (1.26) consider the

transition w »+ noy for which (assuming | w> is given by {(1.11) )
1/

a=R =a=-b= %2 and y=0C=0. Thus A=p and T(w »71y) = 1.1l MeV.
Experiment(22) suggests T(w + 7y } = 0.87 + 0.08 MeV, in reasonable agree-
ment with the predicted width.

The decay processes P-— Vy are calculated using

3 2
re ~» vy ) = - |a | (1.27)

where A is again given by (1.23) and

kK = & ¥ (1.28)

(v - Py) differs from T'{P —Vy) by a factor of 1/3 because of the average over
the spin components of the initial state vector meson in the former case.

"n analysis of the extent to which the assumptions made in the
derivation of (1.22) hold true has been performed by Ba:nes(23), who finds
that the straightforward calculations are significantly changed by

(i) relaxing the long photon wavelength assumption. Bag model calcula~

(23)

tions suggest that the decay rates given above could be reduced by a factor

of approximately 0.7 if this assumption is not made.
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{(ii) including recoil effects of the final sta*e meson. Feynman,

o . (24} . .
Kislinger and Ravndal have investigated these effects in a relativistic

harmenic oscillator quark model and find

3

T{(v ~ Py, with recoil) = P EEe— I'iv - Py, without recoil)
v P (1.29).

This correction factor may have a considerable effect when MV>> Mp.

1.5.2 Inelastic Meson Baryon Scattering

A combination of the ideas inherent in the non-relativistic quark

medel and the additivity assumption have been used quite successfully to

predict relations between cross-sections for various high energy elastic (25)
. . {26) . . ;
and inelastic scattering processes. Of particular interest here are
sum rules relating the amplitudes for inelastic reactions of the type
A + B —+ C + D (1.30)

where A and C are mesons and B and D are baryons. The target and incident
particles are assumed to have a composite quark structure, the quarks of the
incident particles scattering coherently on quarks in the target such that

the total scattering amplitude is simply the sum of all possible guark scatter-
ing amplitudes. The transition matrix element describing (1.30} is thus

(26)

written as R
q q = q g .D> .31
<(q, @,.) B [tq q ) D>= <q BlaD>s, , +<q,Blq,D>8  (1.31

This form implies that any process requiring a simultaneous change in the
state of both the guark (qa) and antiquark (aa,) in meson A is forbidden,
so any process involving the exchange of more than one unit of charge and/or
strangeness is not allowed.

The additivity assumption applied to meson baryon scattering, as

represented in (1.31}, is only expected to work in the high enerqgy (s » =)
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and small scattering angle (t — Q) limits. Generally, the inelastic
processes (1.30) are strongly peripheral, their differential cross-sections
are dominated by forward diffraction like peaks in jus* the region where
the additivity assumption is expected to hold. Thus, meaningful comparisons
of the model predictions can only be made if peripheralism is exhibited
in all the processes considered.

As an example of the application of (1.31) to physical processes the

strangeness exchange sum rule

o(k X — nx") + ok x — n'x") = ok xnox) + olr x -+ x%x')
{1.32)
is derived, where X and X' are initial and final state baryons and 6
represents the square of the transition amplitude. The required meson wave-
functions are given in (1.2) and (1.4) with the addition that those of the
physical n and n' mesons are linear combinations of the octet and singlet

wavefunctions given in (1.4) such that {(see chapter 2 for a full discussion)

| n>= cos o | 8 > + sin® | 1>
(1.33)
| n'> = -sin 9 I g > + cosb l 1>
Comparing (1.31) and (1.32) reguires the identification
g = s; 9 =u : g, =u ; g, = s (1.34)

so that, including spin wavefunctions, the strangeness exchange transition
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amplitudes are

<« x| nyt > = %_ cosh sind Sl . 1 sin@  2cosf } s
24/ /3 2 4/3 e 2
— l N
<« xln'x' > = > cos@ _ sind Sl + %_ cos® | sin@ 52 (1.35)
Yy 3 Y © v 3 Yy 6
- 1
<k x‘ﬁox' > = Sl
2y 2
- o, 1
< = =
" x|x"x" > 5 S,
where
S1 = < {s+)x|(u 1! >+ < (5+)X|(u x>
(1.36)
s, = < whxles Hx >+ < whxls x>
Thus ~
sk ' T vory = L 2 2
U(kx->nx)+c(kx+nx)-8 s1 +2s2

- .- - - 0
= ok X »mox') 4 3% x + k°ox")
independent of the octet-singlet mixing angle, as required.

1.6 QUANTUM CHRCOMODYNAMICS

1.6.1 Introduction

Quantum Chromodynamics(z) is a non-abelian quantum field theory of
the strong interactions which embodies the two fundamental concepts cof quarks
and colour. The spin = 1/2 quarks which carry fracticnal charge each form
colour :riplets of SU(3}C, which is assumed to be an exact symmetry. The
strong interactions between the coloured quarks are mediated by an octet
of coloured vector gluons, one gluon associated with each generator of the
group SU(3)C. Further, all physical observables are assumed to be colour
singlets (the confinement hypothesis) so the fundamental fields do not
appear as physical states. The connection between the fundamental world of

quarks and gluons and the real world of interacting h:.drons is unknown at
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present but is expected to be established with an understanding of the
confinement problem(27).

The quark fields q: {x) carry two types of indices, o the colour
index, @« = R, G, B, and 1 the flavour index, i = uv, d, s, ¢, b,....., while
the gluon fields Ai(x) carry space-time (u) and SU(B)C {a) indices and do
not couple to flavour. By requiring the SU(3)c gauge symmetry to be a local

symmetry the Lagrangian of QCD is written as (8)

e
Ci. - ¥V — y 5
(x) =-= F () F {x) + 1 & x) v o) &
QCD 4 uv a i " aB i
i=1
n
- - i gauge fixing and (1.37)
) EE:: m 4y %) q (x) +) Fadeev-Popov terms
i=

where (i} Fiu {(x), a=1,...8 are the Yang-Mills field strengths constructed

from gluon flelds and their derivatives

a a a b C
Fu“ {x) = auAv(X} avhu (x}) +g fabcAu (%) Av {x} (1.38)
with £ the SU(3) structure constants
abc c
a b c
Y A . A
=5 = i fabc > (1.39)

and g the QCD coupling constant. Aa/2 are the eight generators of the SU(3)
C

algebrs.

(ii) (DN)GB is the covariant derivative

(D) op = Sy 8 19 % %— A:B Ai (x) (1.40)
and (iidi) mi are the bare quark masses. The quark-gluon coupling g and

the masses mi of the quarks are the only free parameters contained in the
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Lagrangian {1.37}.

Quantizing(a'sz

the theory in a covariant manner gives rise to the
gauge fixing term in (1.37}). Requiring that the resulting Lagrangian remain
locally gauge invariant forces the introduction of the Fadeev-Popov term.

The first term in (1.37) contains expressions describing the self

interactions of the gluon fields represented in Fig 1.4, while the second

a,aA
Fig 1.4: Gluon self inter-
actions inveolving (a) 3 gluons
and (b) 4 gluons.
(a) g ( g

contains an expression describing the guark-gluon interaction, Fig 1.5. Aan

Xl
Fig 1.5 : The quark-gluon
igyu1a interaction.
aB
B o

important feature of these interactions is that their strengths are all
characterised by just one universal coupling g.

The gluon self coupling represented by Fig l1.4(a) is responsible for
a further important feature of this theory - asymptotic freedom(zg) - by
which the effective interaction strength é becomes smaller with decreasing
separa”. n (R) such that the theory becomes free, i.e. 5 —+ 0 as R — O.
Thus, while the strong interactions are 'strong' at some distance scale set
by, for example, the pion mass, at shorter distances the interactions become
weaker allowing the dynamics of many physical systems {for example e+e-

(30)

annihilation and deep inelastic lepto-production ) to be described uding

a perturbation expansion in the effective coupling.
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1.6.2 Symmetry Properties of the QCD lagrangian

When the quark mass term mi is set equal to zero the Lagrangian (1.37)

is invariant under the following set of global gauge transformations

{a} qgix} —

(b) glx) —

(c) q(x) —

(d) qix) —

A
where w and w are

flavour group SU(n).

@ v° (x)
u

{b} AA {x)
u

() v (x)
y

(@) A (x)
u

exp (-1 T q (%) (1.41)
exp(-imgTAYS)q(x) (1.42)
exp{-iw }g(x) (1.43)
exp(-inYS)q(x) (1.44)

Y
constant gauge parameters and T are generators of the

The associated Noether currents ar=

= ai(X)YuTi? @ (x) (1.45)
= ai(x)YuYSTi? @ (1.46)
= q; (x)y,q, (%) (1.47)
= q; (0Y,v.q, (0 (1.48)

Vﬁ(x) and Aﬁ(x) are the usual vector and axial vector currents, which,

in this limit, are conserved and have associated charges

o

[

3 A
d x Vo(x,t) (1.49)

Ex Ag(;,t) (1.50)
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which satisfy the commutation relations,

i ]

oy, g:zB(t:)a = 1£PBCC g
o™y, Qg(t) - ifABCQ: (£ (1.51)
QAS(t), QE(t) = 1M%%% (1)

Vu(X) in {1.47) is the conserved baryonic current whose associated charge

=

3 a
dax Vo (x,t) (1.52)

@]
]

is the generator of the UB(l) group, while Au(x) in (1.48) is the axial
(31)

baryonic current which is not conserved, even in the m. > 0 limit, due
1

(32)

to the presence of anomalies arising from the triangle graph Fig 1.6,

0000000,
Fig 1.6 : Triangle graph

assoclated with the axial

anomaly.

i
0000000
Following the usual procedure, the charges (1.49) and (1.50) can be
. A A . . (33) .
arranged into left-handed, QL  and right-handed, QR , combinations which
are generators of the chiral SUL(n) X SUR(n) symmetry, a global symmetry of
the QCD lLagrangian in the absence of quark mass terms. There are two posgsible

s (34)
reglig~, - _ons

of this chiral symmetry group on physical states corresponding
to whether the charges which generate the symmetry annihilate the vacuum or not.

In the former case, with

Plos=0 i g |lo>=o0 (1.53)

a Wigner-Weyl realisation is obtalned where the physical states are classified

according to irreducible representations of the group generated by the charges
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35
{Coleman's Theorem( ) }. Then, in the limit mi -+ 0O mass degenerate parity

doublets would be expected in the physical spectrum. The alternative

possibility where

A A

" lo>40 ; ¢ |oo 4o {1.54)
5

results in a Nambu-Goldstone realisation where a spin zero massless particle

is associated with each generator which does not annihilate the vacuum

(36) .

{Goldstone's Theorem)

The physical picture appears to be a mixture of these two possibilitijes

with

o fo> =0 ana Q? lo> £ o ( 1.55)

so that physical states are observed in degenerate multiplets corresponding to
the Wigner-wWeyl realisation of the group generated by QA together with a
number of massless Goldstone bosons, one for each generator Qg which does

not annihilate the vacuum (there will be nz-l such generators for SU(n) ).

In reality massless Goldstone bosons and degenerate Su(n) multiplets
are not seen in the hadron spectrum and the chiral SU(n)x SU(n) symmetry of
the QCD Lagrangian is broken by the appearance of non-zero quark mass terms.
This Lagrangian contains just two free parameters, the bare coupling g and

(37)

the quark masses mi. It is believed that the non-zero quark masses mu, m

d
ana m —an be treated perturbatively (ignoring higher mass m, terms) to a
good approximation leaving the theory with just cone dimensionless parameter g
and hence no parameter which can define a scale for dimensional quantities.
Such a scale is usually set by the arbitrary renormalisation parameter U
(which is used to define the renormaliséd coupling g), its magnitude being

taken, in general, as a few GeV. The smallness of the gquark mass terms mu,

md and mS compared to u reflects the observation that SU(3) x 5U(3) remains
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an approximate symmetry of the strong interactions.
Accepting SU(3) x SU{(3)as an approximate symmetry of the hadron
spectrum allows the observed symmetry breaking to be explained in terms

of the relative magnitudes of m md and m_ . The breaking can be thought

of as occurring in three stages(BB). Firstly, with mu = md = 0 and mS % 0
the degeneracy of the hadron multiplets will be lifted, the splitting depend-
ing upon the number of strange quarks contained in each hadron. Also, the
Goldsteone Kacon and eta will obtain masses but the non-strange pi triplet

will remain massless. Secondly, setting mu =my + O will shift the multiplet
and n and X levels slightly and give the 7 a mass, thus breaking the
previous SU(Z) x SU(2) symmetry down to SU(2). The observed splittings
within SU(2) multiplets can then be accommodated by setting m, * My Fig 1.7.
This is the pattern of symmetry breaking originally suggested by Gell-Mann,

Oakes and Renner(38).

MassAA

N
+
I
Zl=1m™ [']
'y

n
_ X
o,8 -
Ny
SU(3) xSU(3) SU(2)xSU(2) Su(2) u(1) if

Lagrangian Symmetry

Fig 1.7 : Symmetry breaking in the hadron spectrum.



23

CHAPTER 2

ISOSCALAR MESON MIXING

I.GROUND STATE MIXING MODELS

2.1 INTRODUCTION

The non-relativistic quark model in which quarks are considered
to be the fundamental building blocks of hadronic matter provides an
excellent framework in which many quantitative predictions of meson
properties can be made(d). The picture presented here describes the mesons
as composite particles constructed from a quark and an anti-quark which
are strongly bound {confined) by the exchange of ccloured gluons.

The description of the quark structure of mesons presented by the
spin-unitary-spin wavefunctions of Chapter 1 (equations (1.2), (1.3) and
{1.4) } assumes that the only forces acting between the guark and anti-

quark are those which leave SU(6) ( SU(3) ® 5U(2) . ) an unbroken
flav spin

symmetry. In nature this is not so, however for considerable splittings
are observed both between the central masses of the pseudoscalar and vector
octets and between the masses of isospin multiplets within these SU(3)
multiplets. The symmetry violating forces which produce these effects are
also responsible for isoscalar meson mixing, the subject investigated here.
Some of the initial problems encountered with mixing schemes
develorad in the non-relativistic quark model revolved around the question
of whetner the mixing should be described in terms of linear or quadratic
masses. The construction of early models favoured a quadratic approach and
many arguments have been suggested to justify this choice, for example,
since free mesons propagate according to the Klein-Gordon equation, which

is quadratic in mass, it would perhaps be more appropriate to treat the

mixing problems of mesons in terms of quadratic masses. The point is well
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summarised by Dalitz(s), "it is a matter of experience that the discussion
.... works best in terms of (mass}2 ".

The approach to mixing schemes has been revised in recent years
with the inclusion of further terms, describing the possible annihilation
of a qa pair contained in an isoscalar meson, in the basic Hamiltonian(39),
and in most recent models allowance has been made for the possible mixing
of ground-state wavefunctions with their radial excitations (Chapter 3). The
view taken here is that the failure of the early linear mixing models was
due to theilr simplistic construction and the problem of whether mixing should
be described in terms of linear or quadratic masses is left open.

A drawback in all the mixing prescriptions described is their non-
relativistic nature. At best, the models to be proposed can only give an
average description of meson properties, and it is hoped that relativistic
effects will,to some extent, be included in the parameters of the model(éo)
which are fiwxed by fitting to the physical properties of the systems they
describe. The favourable predictions of the more sophisticated models may

bear witness to this.

2.2 CONVENTIONAL MIXING IN THE NON-RELATIVISTIC QUARK MODEL

When states in SU(6)multiplets have the same eigenvalues of all
guantities conserved in the strong interactions they can be mixed by symmetry
breaking forces. This is the case for the octet and singlet pseudoscalar
and vector mesons which are mixed when SU(3)is broken (note, however, that
nen-strange mesons with different spin have different G-parity so there will
be no :xing between the vectors and pseudoscalars). As a result, the
wavefunctions of the physical I = Y = O mesons will not be those given by
{1.4) but will be the resultants of linear combinations of these wave-
functions(4)'

To investigate the degree to which mixing occurs,an analysis is

made of quark model predictions for meson masses, For convenience, the
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strong binding forces which act between quark and anti-quark are separated
into three groups,

(1} Strong forces which confine the quarks to the hadrons but leave
all the mesons within SU(6)multiplets degenerate in mass. With just these
forces acting the quarks will also have equal masses.

(ii) Spin dependent forces which lift the degeneracy between SU({3)
(4,39}

multiplets within SU(6)multiplets. The part of the Hamiltonian operator

describing these interactioﬁs is expected to take the form B Ea.a for quarks

b
a and b, where B characterises the strength of this hyperfine interaction.
{iii) sU(3) breaking forces which produce mass differences between
isospin multiplets. These forces are assumed to be manifest entirely in the
m_m quark mass difference(4).
When these foreces act together the mass of a meson A (in the regime

of linear masses) is given by

M, = <y (a) | Zma +B<§a.6b | ¢ @) > (2.1)

where V{A) represents the product of spin, unitary spin and spatial wave-
functions for meson A and m is the mass of a quark of type a. In order to
investigate quadratic mass mixing ma is replaced by mi.

The conventional analysis of isoscalar meson mixing follows a set
procedure,

(a) Firstly write down the masses of SU(3) states as given by (2.1),
incluc’—g their mixing elements. For the pseudoscalars these are,

M =2 m + aB

T u

=m +m + aB
u s

M = g-(m + 2m ) + aB (2.2)
8 3 u s
_ 2
Ml =3 (jfp + ms) + aB
_ 2v2 _
My =~ 3 mymy!
&M = M =0

81 1w
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where HS and Ml are the masses of the octet and singlet states respectively.
Similar expressions are obtained for the vectors by making the replacements

m =+ p and k - k* and noting that a, the eigenvalue of the Ea.a operator

b
takes on the values a = - g-for the pseudoscalarsand + 1/4 for the vectors.
Note that the hyperfine interaction lifts the degeneracy between SU{3)multi-
plets but does not mix states within an SU(3) multiplet. The overlap of
spatial wavefunctions occurring in the mixing element GMBl is assumed, for
the present to be unity.

{b) Write the unitary spin wavefunctions of the physical I =Y =0

mesons as linear combinations of the octet and singlet states,

| n> cos0 sind |8>
= (2.3)
fn'> -sin® cosB | 1>
{c) Obtain the mass matrix in the basis of physical states by
diagonalising the mass matrix in the SU(3) basis (MSU(3‘) with the rotation
I
matrix given in (2.3), where
" M My
80(3) (2.4)
Mgy M)

(2} Requiring the off diagonal elements of the physical mass matrix

to be zero yields an expression for the mixing angle

—26H8
can’20 = ——2h— = 2/2 (2.5)
1 8
giving 0 = 35.30. With a Hamiltonian operator as given in (2.1) this mixing

angle will be the same for both vectors and pseudoscalars, it corresponds to

the angle for ideal or magic mixing where the meson wavefunctions contain



27

purely non-strange or purely strange quarks,

| n'> or |u>== (ua + ad)
V2
{(2.6)
| n>or [¢>=ss
ard the corresponding masses have the following values (in GeV),
M' =M = 0,14 M = ZMR“M = 0.86
n il n b1
(2.7
M =M = 0.77 M, = 2M *-M = 1.01
(| I $ " p °

Predictions for the vector masses agree well with their experimental values,
but the model fails completely for the pseudoscalars where even the pattern

of mass breaking M < Mk< M < M ' is not reproduced.
ut n n

Related to this problem is that of the prediction of the ms-mu mass

difference given by

-m = * - = 116
ms mu Mk MD 1 MeV
(2.8)
d -m = - M = 354 Mev
an ms mu Mk - e
Attempts were made to solve this discrepancy(4) by treating the problem in
terms of (mass) 2 rather than linear masses giving
2 2 2 2 5
m,-m. =M, - Mp = 1.93 x 10 MeV
(2.9)
2 2 2

2.24 x lO5 MeV

2
T

Y
o]
foh
8

)
=]

H

which appear to be mutually consistent, adding weight to arguments in favour
of a quadratic rather than a linear mixing formalism. The view is taken here,
however, that the failure of the model to produce a consistent mass difference

in (2.8) is not due to its linear mass nature but due to the inadequate
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description of hadronic structure afforded by (2.1). The apparently
consistent prediction in {2.9) thus appears fortuitous. In later investi-
gations both quadratic and linear mixing procedures are investigated.

(41)

A phenomenological analysis of the meson mass spectrum in terms

of the Gell-Mann/Okubu mass formula leads to the mixing angles in Table 2.1.

Jp Nonet Members © (Linear) g (quadratic)

o m, X.,n,n' -24° —ll0

1" b, k*,u,é 36° 39°
Table 2.1 : Linear and Quadratic octet-singlet mixing angles.

4)

The non-relativistic quark model can reproduce these values( , but to do
so it is necessary to replace the hyperfine interaction by a general inter-
action U which takes on different wvalues when operating on singlet and octet

states. The meson mass is then

<
Moo= < q;m)l&a)ma + u(a) | p(a)> {2.10)

where & = 1 or 8 corresponding to whether U opesrates on singlet or octet
stater -=2spectively. Diagonalising this mass matrix, and allowing for a
possible spatial wavefunction overlap integral less than unity yields the

results in Table 2.2 which agree well with those in Table 2.1.
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Pseudoscalars Vectors
Linear Quadratic Linear Quadratic
I 0.45 0.48 1 1
) ~23° ~10° 38° 40
Table 2.2 : Overlap integral (I} and mixing angle (Q,results of the mass

matrix (2.10).

2.3 THE ANNIHILATION INTERACTION

The attempt to understand the mass spectrum and mixing angle of
the pseudoscalar mesons using the simple gquark model in section 2.2 has

39,42,43,44
failed. The situation can be improved( 142,43, ), however, and the

pseudoscalar mixing angle(43) 'explained' by assuming that the strong
interactions binding a q& pair in a meson are described by QCD. The
Hamiltonian operator of the simple guark model must now be modified to
allow for the possible annihilation (in isoscalar mesons) of q& pairs into
gluons which may subsequently hadronize to produce a different qa pair.
Representing the annihilation amplitude by A, and assuming for
the moment that this amplitude is SU(3)invariant then in the subspace of
states uG, dd and ss its contribution to the interaction Hamiltonjan takes

4
the form( 2

=1 = A a A (2.11)
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Changing into the basis of SU(3)states glves

H = o o 0 {2.12)

This interaction contributes only to the mass of the singlet in the Sy(3)

basis, thus
[ 2 4 ]
g(mu+2m5) + aB - —-—(mu-m,)I
=

M = /18 {2.13)
SuU(3) 4 5

- —(m -m)I — (2m +m) + aB + 3A

/Iﬁ' 5 3 u s

where I Is the overlap integral of the spatial wavefunctions. The condition
in (2.10) that the general interaction U(B) ¢ U(l)is thus equivalent to
adding the annihilation interaction to the basic model,.

This is very similar to the linear mixing model introcduced by

de Rujula, Georgi and Glashow(Bg). In its quadratic form it also resembles

the model of Isgur(43)

where the hyperfine splitting term Baa.ab is replaced
by a parameter g which takes on different values in the pseudoscalar and
vector nonets. Both of these models are discussed in detail in Chapter 3
where they are extended to include mixing between the ground-state lsoscalars
and their radial excitations.

The magnitude of A can be obtained by equating the trace of (2.13)

with that of the physical mass matrix to yield, for the pseudoscalars (P)

and vectors (V},

A = 173 MeV A = 7 MeV
p v
in the linear case, and
2 . 2
A = 243 MeV A = 21 MeV
P v

in the gquadratic case. The mixing angles in Table 2.2 are cbtained as before.
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These values of Ap and Av are in qualitative agreement with the expectations
{44) J° - =
of QCD where =1 (0 ) states couple to no fewer than 3(2) glueons

in the virtual annihilation process, Fig 2.1.

— ST —— —-*T'UUDUB'UD'O“'—'*—

- \QQ_O.QQ.QQS’JI o

—<— 00000000 *—et-- ——<—-J¥051QQQ_Q_QJ-——4—-
AV Y a3 Ap ar u2

Fig 2.1 : Annihilation of qa pairs in 1 and O isoscalar states.

The annihilation amplitudes, while only playing a small role in the vector
nonet where the predominant symmetry breaking interaction is that causing
the ms—mu mass difference, are cruclal to our understat.ding of the n and
n' masses.

2.4 FLAVOUR DEPENDENCE OF THE ANNIHILATION PARAMETER

The introduction of ideas from QCD, in particular the annihilation
mechanism, has provided a much firmer theoretical basis for mixing models
of mesons and also a possible explanation of the pseudoscalar mixing scheme.
Thus far the annihilation term has been assumed to be independent of gquark
flavour, however, a more realistic approach, which produces improved results

43,45
for the meson mass spectra( d ), is to break this SU(3)invariance.

An analysis of the two gluon decay of a J‘p = 0 state has been made

4
by Barbieri et al(46), who find( 7),
- Og 2
Lo M = —5 |y (o) | (2.14)
M

where ag defines the strength of the quark-gluon coupling, M is the mass of
the decaying meson and Y (r} is the nen-relativistic wavefunction for the o

Q0
2 2
state normalised to J r l ¢S(r)| dr = 1. Assuming that the annihilation
0



32

term will have a similar dependence, the proposal

o’ ,
A v — |y (o) (2.15)
P M2 s
- 2 4 3
is made. For Jp = 1 decay, o is replaced( 8) by o

Equation (2.15) can be simplified considerably by noting the empirical
{49)

+ -
observation for vector (V} to e e decay,

riv-+ e'e’)/e? = const. (1l KeV) (2.16)
q

which holds for p,w ¢ ,¥ and "T° where eq is the charge of the quark of

flavour g (in units of e) contained in V. The Van Royel.-Weisskopf formula(so)
gives
+ 16wa2 2 2
rvse'e) = =5— | plo)| ‘e (2.17)
gq
M
v
2 2
thus | v} | a M (2.18)
A similar observation can be made for the charged pseudoscalars(5l) {(where

[y (o)|2 is determined from the leptonic decay to v ), Fig 2.2.(2.15) then

implies

(2.19)
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/2

lv(o) | (10> (Mev) 372

6 1

1 2 3 Meson Mass (GeV)

Fig 2.2 : A plot showing the linear dependence of |¢(o)[ On meson mass.

These relations are often written in terms of the constituent quarks

which comprise the mesons(sz)

AP , Voo (m2 ) (mz.)
aa s a s a
(2.20)
3/2
a’ . Et (mz) & (mz,):|
aa s a s a
. . . {53)
a behaviour which suggests that Aaa‘ factorises
2
A = {2.21)

1 A A 1 [}
aa aa a'a

The flavour dependence of the annihilation term is then given by the variation
of @ with mass scale. This variation is not known precisely but evidence from,
for example, ¢, ¥ and T leptonic decays suggests a decrease with increasing
mass in "ine with the idea of asymptotic freedom, which is embodied, in first

order QCD, in the fo.lrmula(39

)
25 M -
GS (Mz} = 1 - 'J—:?-_; GS(Ml}ln E;‘ GS(Ml) {2.22)

(39)

Also, an investigation by de Rujula, Georgi and Glashow in the opposite

limit as M — O has suggested that A ~ M2 leading to an overall variation with



mass along the lines of that shown in Fig 2.3.

2 (M)
M
Fig 2.3 : The expected variation of Annihilation parameter with mass scale.
2.5 MIXING WITH A FLAVOUR DEPENDENT A

The simple mixing model of section 2.3 is extended to include the

flavour dependence of the annihilation interaction(52).

The paucity of
cuantitative estimates of the variation of as with mass scale implies that
the SU(3) violation of A must be determined phencmenclogically by introducing
a new parameter Aaa' in each sector of the mass matrix such that, assuming
isospin symmetry is not violated, the previcus parameter A is replaced by

A = A_.., A and, including charm states, ACC. Off diagenal elements such

uu dd ss

as Aus are determined using (2.21)., This increase in the number of parameters
in the model necessitates the introduction of new constraints upon which their
values can be fixed. The merits of different constraints are discussed with
reference to their effect upon the variation of Aaa' which is required to
comply qualitatively with that discussed in section 2.4, The properties of

quadratic and linear mass matrices are analysed separately.

2.5.1 The Quadratic Mass Matrix

{a) The Pseudoscalars

The quadratic mass matrix is

= 2 - 2
<qa'qb' IM | 94% - Mab 6aa‘6bb' * Aaa'(sabsa'b' (2.23)

with A | the mass contribution from the annihilation term and Mib the
aa
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contribution from quark masses, and the hyperfine splitting term which is
understood to contribute only to the common mass of the multiplet under

2
consideration. In what follows Mab is determined phenomenologically, taking

on different values in different multiplets.

2
Assuming isospin conservation, the values of Mab can be determined from

the observed particle masses

2 2
M2 = M2 = M = 0.0182 Gev
uu dd 7O
(2.24)
M2 = 2M2 - M2 = 0.4778 GeV2
55 kO 7O

An analysis of the mixing problem is made in several stages

(i) By confining the problem to just u, d and s quarks and ignoring

the flavour dependence of the annihilation term, i.e. Aaa, A, the physical
n and n' masses are determined solely by the value of &, all other mass
contributions being fixed in (2.24). Making an isospiu transformation on
the 3x3 mass matrix (2.23) gives an I =1 7° state and a 2x2 I = O submatrix,
equivalent to (2.13) with quadratic masses, and the overlap of spatial wave-

functions set equal to unity. A can be determined either from the trace

condition
2 2 2
+ = 2.
M 3a Moo+ M, (2.25)
or the determinant condition
2 2 2 2
’M2 + 2A) (2Mk -M +A) -2 = M Mz' {2.26)
il m nn

giving A = 0.24 GeV2 or 0.27 GeV2 respectively. By substituting either of
these values back inte (2.23) and diagonalising, the n and n' masses are given
to within 20% of theilr experimental values.

(ii) The fit to the n and n' masses can be made perfect by including

2
the flavour dependence of A. Assuming that A factorises then Auu = 0.28 GeV
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and Ass = 0.17 Gevz. A trend of decreasing annihilation strength with
increasing mass scale is observed in agreement with the concept of asymptotic
freedom in QCD.

The assumption that the annihilation term factorises can be seen to be
reasonable by following a similar analysis of the problem which has been made
by Fritzsch and Jackson(45). They do not impose factorisation and thus introduce

an additional unknown, Aus' which is determined by using the pseudoscalar mixing

angle as a third constraint. The n and n'states can be decomposed as follows

|n> cosaINS> + sino|s > [n'> = -sinalNS> + cosa|S> (2.27)

where |NS> a |uu + @@ > and |s > = |ss > , or

cos@|8 > +sin@|l > : In'> - —sin@|8 > + cos@|1> (2.28)

[n>

where § = BI +q —ﬂ/2 and the ideal mixing angle BI = sin_l(‘l//§)= 35.30.
Fritzsch and Jackson performed two fits corresponding to the mixing angles
o o o o .
a =45 {0 = -9.7 ) and & = -11 (e = 43.7") which gave Auu = 0.29, Aus = 0.21,
A = 0.13 Gev2 and A = 0,30, A = 0.21, A = 0.12 GeV2 respectively.
ss uu us S5
In both fits A o is reasonably close to the value expected from factorisation.
u
{iii) Thus far the charmonium state Dt has been excluded from the
. 2
analysis. Since A/Mcc << 1 (with Mcg =9 GeV2) including this state will

2
have little effect on the n-n' mixing pattern. Mcc can be found in the same

manner as M to give
ss

2 2 2 2 2
Mo =M, - M, = (2.63)° Gev (2.29)

This determination raises a fundamental problem, however, for assuming
factorisation, a fit to the mass spectrum yields A = 0.36, A . = 0.22 and
uu s

2
ACC = 1.74 GeV which does not follow the expected variation with mass scale.
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The problem is intractible, unless the view is taken that the model
description of hadron structure is, in general, too simpie and that it is
unable to cope with meson states which are constructed from guarks with
unequal mass. This is not an unreascnable proposal, as will become clear in
future analyses. The mass contribution Mqé‘ to hadron masses has a depend-

ence upon the hyperfine splitting term described in section 2.2 such that

In this particular model B is taken to be a constant throughout a given SU(4)
multiplet, however, such a proposal is incorrect and, as will be seen B takes
different values in different sections of the mass matrix. Following this
reasoning, the result Acc > Ass when McC = 2.63 GeV can be ignored and a
new phenomenoclogical determination of Mcc made using different constraints.
However, if the description of Mcc in (2.29) is not to be trusted, the value
of Mss quoted in (2.24) must also be in doubt, so a different determination
of this parameter is made.

In order to find the value of Mss' Mcc and Acc' additional constraints
are required. Considering first the situation with just u, d and s quarks
and assuming factorisation of the annihilation terms, Mss can be fixed by a
fit to the pseudoscalar mixing angle, @ = -llo, This gives Auu = 0.29,

Ass = 0.16 and Msz = 0,460 GeVz, that is a decrease of 4% from 0.478 GeV2
given in {2.24). Following this trend, if Hci is alsc lower than the value
detern: :ed in (2.29) there will be no hope of consistency with perturbative
QCD which requires Auu > A > ACC so the value of & = ~llo is discarded.

S8

Another constraint is provided by the ratio of radiative ¢ decays,

I'(gp > n'vy)
p T ———— {2.30)

e +n vyl



38

which can be written as(45,52)

3 2
' 3
po= kn P (2.31)

where k represents the centre of mass photon momentum in ¢ + Py and
p
£,e' give the amount of cCc in the n and n' unitary spin wavefunctions
. e}
respectively. With a strange/non-strange mixing angle & = 45 € and €'

can be expressed as

2a -a
ue sC

l/¢2 (M2 + M2 ) - Y2 M 2
n N cc
(2.32)

Y2A +a
uc sSC

V5 o o+ W,y - V3m 2
n n cc

so their ratio e'/e is independent of Mcz. This independence is lost when
a% 450, however, a 10% variation in MCE' about MCc = 3.0 GeV produces very
little effect in ¢' /€.

Many experimental determinations have heen made for p, not all of
which are mutually consistent (see discussion in Chapter 4). For the
purposes of this analysis the Crystal Ball result(54) p = 5,88t 1,46 is
chosen, giving e'/e = 2.66 * 0.,31L. By fixing Mcc = 2.98 Gev this result
for p ztermines Msz = 0.51 £ 0.03 GeV2 which gives a mixing angle of
0 = -(16 i2)0. Requiring consistency with perturbative QCD such that
Ass > Acc limits Mcc to the range 2.98 - 2.97 GeV where the first value

corresponds to Acc = 0. The magnitude of Acc is fixed by fitting to the

individual decay rate I'(y + n'y), which can be expressed in the non-
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relativistic quark model as

e
T(V > Py) = {-59-} x> g-ii } a°
3 m

where e and m

of spatial wavefunctions, taken to be unity in most applications.

decay ec = 2/3 and o is taken as 1.53 GeV.

Ty +n'

which fixes A
cc

{2.33)

are quark charges and masses, and §l is the overlap integral

54
Crystal Ball( )

Y) = 460 t 110 eV

2
at 0.01l1 Gev .

For {

data gives

To summarise, if the inability of the model to cope with meson states

made up of guarks of unegqual mass is accepted,
pseudoscalar mass spectrum and the radiative ratio ¢

consistent with perturbative QCD.

uu

which imply the

[n >

Int >

i

In_>

Ignoring the cc

a =

38.4°

0.261 Gev> : A = 0.173 GeVv® : A = 0.0l1 Gev®
S8 cc
2 2 2 2
M = 0.507 Gev H M = 8.8B4 GeV
SS CC

following unitary spin wavefunctions,

0.784 |Ns > + 0.621]s> + 3.7 x 10 ° |cc >
~0.621 |NS > + 0.784]s> - 1.0 x 1072 et »

~9.1x10 > |Ns>+ 5.5x10 |3+ 0.999 |ce >
contributions, thesé give the n-n' mixing angles

o = -16.3°

it is possible to fit the

in a way which is

The parameters obtained from the fit are

(2.34)

(2.38)

(2.36)
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which are in reasonable agreement with 8 = ( -18,2 * 1.4)O obtained from the

- - 55
ratio of differential cross-sections for 7 pn'n and n p> nn( ?

(h) The Vector Mesons

The gross features of the mixing of vector mesons are well described
in the simplest mixing models where the w-¢ mass mixing elements are determined
solely by the SU(3) viclating quark mass difference ms—mu. The annihilation
ceontributions will thus be small, an chservation which is suppeorted by QOCD
where a q& pair which comprises a vector meson must annihilate into three
gluons, rather than two as in the pseudoscalar case, so that Aaa u ai. Problems
are encountered when the fine details, that is, the relative magnitudes of the

annihilation terms are investigated.

' 2
Following the previous analysis Maa could be determined by

2 2 2
M =M =M = .

uu 14 o 0.602 Gev
M2 =2M2* - Mzo = 0.990 Gev2

55 k

2
where again Maa represents the sum of quark mass and hyperfine splitting terms.
It is clear that the mass contribution to the I = O states from the annihilation
terms need only be very small in orxrder to reproduce the experimental masses.

2 2 2
A fit to Mw and M , assuming factorisation of Aaa" gives Auu = 0.008 GeV

¢

2
and A__ = 0.050 Gev .

S8
2 .
If, as in the pseudoscalar case, this determination of Maa is taken
. *
to be iradequate because of the models inability to cope with k states, and
2
a 5% increase in MSS is made {(comparable to the increase regquired for the
pseudoscalars) then Ass will be reduced essentially to zero. When this treat-
ment is extended to the charm sector the pattern observed with the pseudoscalars
2 2

recurs here and an increase of about 28% in the wvalue Mcc = 2MD* = M_Q is

required if Acc is to be less than Ass' This suggests again that the model

cannot cope with meson states composed of quarks with unequal mass.
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2.5.2 The Linear Mass Matrix

(a) The Pseudoscalars

The linear mass matrix which describes the mixing of pseudoscalar

states is (52)

Q.q ., |1 |qaq b7 T My S A6 (3.37)

It is possible to determine Maa as before

M, =M, = Mo = 0.135 Gev
M =2Mo - Mo = 0.861 Gev (2.38)
55 kil
M =2Mo - Mo = 3.592 Gev
co D m

Ignoring the charm sector and accepting (2.38), a fit to the n,n' masses
gives Auu = 0.236 GeV and Ass = 0.043 GeV which imply a linear mixing angle
e = —320, compared with the standard mixing angle of —240. As in the
quadratic case,MCc obtained from (2.38) will not allow the nc to be included
in this analysis, but the problem here centres arcund Mcc being too large
rather than too small as before. Again, this indicates that the model
cannot accommodate meson states composed of quarks of different flavours,

and further constraints are required to fix thé wvalues of Mss and Mcc'

1

By fitting to E/e = 2.66 * 0.3), T(Y » n'y} = 460 = 1lloO ev(54) and

the n 22 n' masses and requiring Mn = Mcc + Acc the following parameters
c

are obtained,

A =0.321GeV : A = 0.065Gev : A = 6.3 x 10 ° Gev

uu ss ec

(2.39)
M = 0.669 Gev : M = 2.979 GeV
S8 cc
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which imply the wavefunctions

0.668 |Ns > + 0.744 | 5§ > + 3.6 x 107% |cc >

In > =
ln'> = -0.774 INS > + 0.668 | § > - 9.5 x 107 |cC > (2.40)
n> =-9.5x 10’3lns > + 3.7 x 10°° |8> + 0.999 |cC >

(b} The Vector Mesons

The linear model of the vector mesons suffers from the same problems
as the quadratic model, the annihilation terms being sufficiently small to
make even a gualitative comparison with QCD expectations difficult. The
results are essentially the same as those of {2.13) with I = 1 and the

annihilation terms set equal to zero.
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CHAPTER 3

ISOSCALAR MESON MIXING

II. THE INCLUSION QF RADIAL EXCITATIONS

3.1 INTRODUCTION

The incorporation of ideas abstracted from QCD in ground-state
mixing models has led to the addition of further terms to the mass matrix,
the annihilation terms described in Chapter 2. A phenomenclogical analysis
of the isoscalar mixing problems indicates that these terms are relatively
much smaller in the vector meson case than in the pseudoscalar meson case
in agreement with the predictions of first order perturbative QCD where,
naively, AV(Mz)m aS(Mz)AP(Mz) at some mass scale M. The smallness of Av
implies only a slight deviation from ideal mixing, while the larger Ap
forces the non-ideal mixing pattern on the JP = 07 isoscalar states. This
simple picture presents an explanation of why the mixing schemes for 17 and
0 states are so different.

Problems with these ground state mixing procedures were noticed in

{56)

1977, however, when Lipkin made an analysis of measurements of various
production cross-sections. Relations between different charge exchange and
strangeness exchange cross-sections near the forward direction have been
derived using the quark model additivity assumption for scattering ampli-

(26)

tudes to give, for the pseudoscalars,

o(r p »1n) + g(m ps>nn) + of(m p + n'n)
(3.1)

= ok nx%p) + a(x p + k°n)

otk p*n A) + otk pn'A) = o(n p > kOA) + alk p +n"A) (3.2)

where E, which is proportional to the square of the transition amplitude




must be multiplied by phase space factors before a compariscn is made with
experiment. Similar relations hold when vector mesons occur in the final
state, and are given by making the replacements w + p, n > w, n*' + ¢ and
k + k., Lipkin found that such sum rules are well satisfied for the
vectors, but fail for the pseudoscalars where contributions to {3.1) and
(3.2) from the n and n' are consistently too small. An extensive, comple-
mentary, analysis of (3.2) made by Marzano et al(57) over the range
O g |t'| £ 1.5 (GeV/c)2 has confirmed this result. The breakdown of these
sum rules for the pseudoscalars but not for the vectors has been taken as
evidence to suggest that the conventional pseudoscalar mixing schemes used
to derive the rules are inadequate. The consistently small contributions
from the n and n' indicates that the wavefunctions of these particles may
contain inert components(SG) which do not contribute to the overlap with
the initial state meson.

Several hypotheses have been made to explain the physical structure
of such components, for example, Capps(sa) has suggested the mixing of the
n and n' with a tenth gluonic meson would lead to a significant inert glue
component in the n' wavefunction. This idea is not pursued here because of
lack of evidence for a tenth pseudoscalar. An alternative sclution to the
problem, suggested by Lipkin(56), involves the mixing of radial excitations
of the isoscalar mesons with their ground-states. That ground-state mixing
alone is unjustified becomes apparent when charmonium states are included in
the analysis, mixing cc states solely with the ground-states of the lower
mass mesons will only provide a partial description of the problem since
many radial excitations of the light quark mesons are expected (section 3.2)
to exist in the mass range 1-3 Gev.

The extent to which the excitations will mix with their ground-states
depends upon the type of symmetry breaking interaction which causes the mixing.

In the vector case the predominant interaction is that causing the ms-mu mass

difference which has no radial dependence, so the mass mixing elements due
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to this interaction between the ground-states and radial excitations will
contain an overlap of spatial wavefunctions, which is expected to be small.
Thus, the vectors should be well described by ground-state mixing schemes,

In the pseudoscalar case, however, the annihilation interaction competes with
the ms-mu mass difference in breaking the symmetry. e mass mixing element
derived from this interaction does not contain a spatial wavefunction overlap
between initial and final states but instead has a dependence on the wave-
function near the origin which may allow significant mixing. Radial excita-
tions can hence be expected to play an important role in the pseudoscalar
mixing problem, particularly in the case of the n' where experiment indicates
that the mass difference between the lowest mass, first radially excited iso-
scalar and the n' is of the same order as that between the n and n'. This
will be seen to explain the discrepancies encountered in the production cross-
section analyses mentioned earlier.

Models describing the mixing between ground-states and their radial
excitations have been constructed, based on both 1ogarithmic(52'59) and
harmonic(so) confining potentials. The properties of both quadratic and
linear versions of the former are investigated in detail in section 3.3,
but firstly a review is made of the present experimental status of meson
radial excitations.

3.2 RADIAL EXCITATIONS - THE EXPERIMENTAL SCENE

Within the quark model framework radial excitations of a ql&2 pair
are expected for all quarks of flavour qi. Many such excitations are aléeady
well cotermined in theV and ¥ spectra, excitations up ton =4 (n = 1 for
ground-state} having been cobserved in the case of theV , however, evidence
of the existence of the excitations of light quark mesons is such that only

1
one state finds a firm place within the Particle Data Group talbles(6 ), all

other assignments being tentative, and many unconfirmed(sz).

The experimental status of radially excited states can be conveniently

grouped intoc two sections. Firstly, the excitations of the vector mesons for
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which, despite the lack of firm evidence, there are a great wmany experimental
results, and secondly the pseudoscalars whose excitations have only been
observed in four experiments at the present time.

3.2.1 Heavy Vector Mesons

The excitations of the charmonium and upsilonium systems are well
established and will not be discussed here. cCandidates for those of the
o, w and ¢ are ;

(1) p'{1250)

The existence of a radial excitation of the p at approximately 1250
MeV has been hinted in many experiments but the assignment of a vector
resonance at this mass has still to be confirmed. Strong evidence for this
state has been given by the SLAC-LBL photoproduction experiment(63) which
examined the reaction yp * pv+ﬂ- + neutrals. A broad peak (I' = 150 MeV) is
observed centred at 1250 MeV in the ﬂ+ﬂ~ missing mass plot, however, a spin
analysis of the resonance could not be made so its gt assignment is uncertain,
it may possibly be the l+ B(1235) state. Observation of the interference
pattern of the e+e_ final state in yp > e+e_p by a Degy-Frascati experi-

64 -
ment( ) has led to the positive a® = 1l assignment of an enhancement centred

at 1266 + 5 MeV with width 110 + 35 MeV. Another aP =1 assignment has been

claimed for an enhancement observed in the Daresbury photoproduction experi-

65 + -
ment( ) in the yp »n 7 nowop channel with mass approximately 1.3 GeV and

width 0.3 GeV. Further evidence is given by a CERN experiment(GB) which
studied the same reaction and found M = 1.25 GeV and T = 0.3 GeV. Other,
oclder oobservations can be found in reference 67.

Definite evidence for an enhancement in the M = 1250 MeV mass region

exists, however its interpretation as a p' (1250) is uncertain. Analyses are

+
complicated by the effects of the JP = 1 B meson with mass 1235 MeV.




47

(ii) p' (1600)

This is the only light radial excitation which is sufficiently well
establiished to be included in the Particle Data Group tables. Many observa-
tions of its mass and width have been made in e+e~, photoproduction and “_p

+ - + - 0o + -

. . . + -
experiments where, in most cases, its decay towm mw"®m , wwwmnmw or T n is

observed. Most recent experiments give the following results,

+ 24 + 98

(a) M = 1598 _ 29 Mev, T = 175 _ 53 MeV obtained from a phase shift
analysis(sa) of ﬂ_p +ﬂ+ﬂ_ n.

(b) M = 1666 + 39 Mev, T = 700 + 160 MeV obtained from e+eh +ﬂ+ﬂ—ﬁfﬂ_
experiments(69).

(c) M = 1540 + 30 Mev, T = 478 + 135 MeV obtained by a Daresbury

- 4 -

65
group( ) investigating yp »>n 7 T ¥ p.

(d) M = 1600 + 10 MeV, ' = 283 + 14 MevV obtained from a Fermilab(7o)

+ - + - 4+ -
experiment studying " v and w ¥ wiw final states in yC photoproduction.

+ -
(e) M = 1590 + 20 MeV, T = 230 + 80 MeV obtained in a yp>r 7 7 p

71
CERN experiment( )

(iii) w Excitations

Experiments performed in the mid 1970's to identify such states all

obtained evidence for an w' in the mass region 1780 Mev,

(a) M = 1780 Mev' %) () M =1792 * ﬂ Mev, T =79 " ;é ey (73)
(c) M= 1778 + 14 MeV, T = 150 + 40 Mev' %),

_ ) + - + -+ -0 :
where 1 enhancements were obhserved ine e > n w1 7™ 1 processes. Later
. (75) . . . . .
exper iments . which analysed the same decay mode of the excitation but in

+ - + - 0o
a different production process, ypr w " T T T p, have obtained a slightly lower

mass of

M = 1700 MeV, r 500 Mev
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{(iv) ¢ Excitations

As in the w case evidence for such excitations is scarce and the
picture is confused. Reference 76 gives M = 1690 Mev, T = 120 MeV for a
possible ¢ enhancement observed in yp+ k+k-p. The k*kﬁ channel in the
same experiment also shows an enhanced peak at M = 1.9 GeV with T =~ 0.4 GeV.
Evidence for the lower mass enhancement has also been noted in e+e- and
photoproduction experiments where 3w and 5% final states are observed.
Such 0ZI violating decays have been explained by deviations from the
ideal w'-¢' mixing scheme. The enhancements cbserved can be interpreted
as possible candidates for both w and ¢ excitations, but their narrow

width (50 - 100 Mev) indicates that a ¢ assignment is preferable, The

results are(75)
+ -
M = 1652 + 17 Mev, I'=42 + 17 MeVv from e e —+ 31 mode,
+ - + o
M = 1665 + 6 MeV, =37 + 21 Mev from e e =+ 4m—n mode,
+ o
M = 1660 Mev, T = 50 MeV from yp -+ 4m—7m p and

1690 Mev, ' ~ 130 MeV from yp -1 7 nop.

=
12

The interpretation of these vector meson results is not straight-
forward. Barring complications with the JP = l+ B{1235) state there
appears to be a first excitation of the p at about 1250 MeV with width
= 100 MeV, and another, presumably second, excitation at about 1600 MeV
with width = 300 MeV. The isospin assignments of these states appear
to be ¢ .ear cut, which raises a problem with their w and ¢ partners.

If the excitations are taken to mix ideally then an w' (1250} would be
expected, but no such state has been observed. Similarly, there is little
evidence for an w''{(l600}, only the most recent experiment suggests a

value of about 1700 MeV, all previous results producing w candidates with

masses around 1780 MeV. Also, assuming an ideal mixing pattern, a ¢'

il

would be expected at 'M¢' Mp' (1250) + 2(ms- mﬁ}

1

1530 mev
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Only one tentative identification(77) has been made for such a state, which
has not been confirmed by other experiments. Following similar lines the
second ¢ excitation which would partner the p''(1600) is expected at
M¢" = 1880 MeV. Such a state is observed in the photoproduction experiment
of reference 76 ,but this identification leaves a difficulty with the inter-
pretation of the lower mass I = O states at about 1650 MeV. Their mass fits
in well with the expected w'', however, their narrow width presents a puzzle,

Accepting all the uncertainties associated with these states in the

mass range 1200-2100 MeV, the following assignments are suggested,

Mp' = 1250 MeV Ref.63,64,65,66,67.
Mp"2 1600 MeV Ref.65,68,69,70,71.
Mw"= 1650 Mev Ref.75.
M¢"= 1900 Mev Ref. 76.

3.2.2 Pseudoscalar Meson Excitations

Evidence for JP = 0 excitations is rare, only four experiments

having made speculative identifications at the present time. Firstly, an

- +_
investigation of the reaction ¥ p +nm ™ n at B8.45 GeV/c by Stanton et a1(78)

has revealed an 1J¥ = 00 state with M = 1275 Mev an@ T' = 70 MeV, with

evidence for a second excitation at about 1400 Mev.

A second experiment(79) examining n_p -+ 3mp has suggested the

existence of a 7' with M = 1275 + 50 MeV and T = 508 + 100 Mev. An

(80)

examir-:ion of the same channel in an independent study has found

evidence for a O excitation at approximately 1400 MeV with width = 600 Mev.

Finally, a recent experiment performed by the Crystal Ball group(sl)

has provided evidence for a possible isoscalar radial excitation observed

+ 20

MeV and
- 15

. + -
in g > vk k ﬂo. Preliminary results indicate M = 1440

+
20 MeV with a J°° = o assignment. The resonance is observed

-+
=170 - 30
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todecay predominantly via Gﬂo {(with subsequent & -+ kk or § = nm decays)

as expected for an isoscalar radial excitation(sg). Evidence for a first

radially excited nc candidate is also given with M = 3592 + 5 MeV and

' < 9 MevV (95% confidence level), where the decay ¢' -+ n'cy is observed.
Despite the lack of experimental data radial excitations of the

pseudoscalars are just as firmly defined within quark models as are those

of the vectors. The mixing models to be discussed in sections 3.3 and

3.4 make 'predictions for these states which could help to clarify the

present sitoation.

3.3 MODELS WITH RADIAL EXCITATIONS

3.3.1 General FPeatures

The inadequacy of ground-state mixing models, &s indicated by

investigations of the n and n' contributions to charge exchange and
. . (56) .

strangeness exchange production cross-sections . and a desire to include
charmonium states in the mixing analyses has prompted the construction of
rhenomenoclogical models which take into account the effects of the ad-
mixture of radially excited components in ground-state meson wavefunctions.
Three fundamentally different types of model have been constructed ;

(i} a linear mixing model due to Graham and O'Donnell(eo)

based
upcn a confining harmonic oscillator potential,

(ii) a quadratic model in which simple modifications are made to
the conventional ground state mixing model of Isgur{43), and

(iii) a linear model which involves the extension of ideas
develcped by de Rujula, Georgi and Glashow(39) to inciude radial excita-
tions. The comparatively simple phenomenclogical models of Cohen and
Lipkin(sg) in {(ii) and (iii) are of intergst here, the more complicated
ideas of Graham and O'Donnell, which involve a large number of free para-
meters are not pursued.

In order that significant predictions could be made by (ii) and

(iii} the number of parameters they contain was kept to a minimum by




51

constructing the mass matrices with constituent quark mass and simple
phenomenological interaction terms. 'The matrices were formulated in a

qa basis with q = u,d,s, the diagonal elements being calculated explicitly
in terms of quark masses with a phenomenological addition describing the
splitting between the ground-states and their excitations, while the off-
diagonal elements contain the interaction terms which are responsible for

radial and ground state mixing.

The mass matrices, introduced by Cochen and Lipkin(sg) are, in the
quadratic case,
<q , q ,n’ |M2[ qqn>= & 6 . .6 (m +m +E )2 + 5
N a'b aa' bb' nn' a b n
A
+ 6ab6a'b"nn' (3.3)
and in the linear case,
<q_,q.n' M| a.qn> = 8 §__,(m ) + 6.8 A
a' I adb aa'*bb' Onnt (B, 1R, ab®a'b’ ,
mamb,fnn
BS .9
a b |
aa'dbb' ] (3.4)
m_m nn
ab

As before A and B are annihilation and hyperfine splitting strengths,
qa&bn> is a state containing a quark of flavour a and an anti-quark of
th
flaver » which are in the n radially excited state, where n = 1 represents
: " TR (43)

the ground-state. S is a quark "scattering" interaction strength

~- +
representing gqg binding mediated by gluons as depicted in Fig 3.1, S and

m_ are the spin and mass of a quark of flavour a and En are the excitation

th
energies of the n radial excitation.
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Fig 3.1 : Gluon exchange between a quark and an anti-quark.
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These excitation energies are determined by setting El = 0 to
recover the predictions of the ground-state models, E2 = 0.59 GeV to
reproduce the Y'-¢ splitting and E3 = 0.91, E4 = 1.13 GeV are obtained from
the results of a logarithmic potential model developed by Quigg and Rosner(zo)
which describes the excitations of the charmonium system. n is allowed to
run fromn =1 to n = 4.

The log. potential model also provides guidance on how the annihila-
tion terms in {3.3) and (3.4) and the hyperfine splitting term in (3.4) behave
with increasing level of excitation. The radial contributions are expected
to decrease in significance as n is increased, which is just the behaviour
predicted by the model. Both A and B are assumed to be associated with short
range interactions and to depend upon the wavefunction at the origin wn(o),
which in the log.potential model is proportional to l//;. This decrease in
the st -.ngth of the interaction terms ensures that the mixing of ground state
configurations with radials is adequately described by the inclusion of just
the first three excitations.

The interaction terms of the quadratic model are flavour independent,
while those in the linear model violate SU(3) (or SU(4;, including the C-quark)
through the inclusion of their inverse mass dependence. They do not exhibit

the full symmetry breaking expected, as outlined in Chapter 2.
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The constituent guark masses appearing in (3.3) and (3.4) are
deduced, for the light quarks, from the proton magnetic moment to give
m o= mg = 0.337 GeV, and, for the s gquark, from the equal spacing in the
baryon decuplet giving m, -omo= 0.140 Gev and hence m_ = 0.477 Gev.

Physical particle masses are calculated by diagonalising the

relevant sections of the mass matrix. For instance, the p and 7 masses

are obtained in the linear model by diagonalising

m s L . p = =1 =
m /2 m Y3 m 2m
¥ u u
anB aB aB aB
2 an_
5 2 "y T TE, 5
7 m 2m Y6 m Y8 m
u 1 u u
aB2 aB2 om + ap + E3 apB -
/3 m Jg.m U3 m ¥12 nm
u u u
aB2 aB2 ak > am + aBz +E
2m 8 m Y12 m U am 4
u u u u

where a = 1/4 for the vector states and -3/4 for the pseudoscalars, and B
is fixed by fitting to the p-w mass difference. By diagonalising this
sector of the mass matrix with n =1, thenn = 2, 3 and 4,it is possible

to see how the sugceessive radials contribute to the p and # masses(in Gev)

n =1 p = 0.833 T = 0,199 B = 0.072 GeV3
n= 2 p = 0,795 T = 0.1l6l B = 0.063 GeV3
n=3 p=0,783 7 = 0.149 B = 0.059 GeV3
n=4 p = 0.776 T = 0.142 B = 0.056 GeV3
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As expected, the masses and interaction strength B converge to limiting

3
values as n increases with B = 0.05 GeV T = 0.14 GeV and
4 iim * "lim

plim = 0.77 GeV. The low mass prediction for the pion is an attractive
feature of this linear model which is not shared by the other models
discussed.

The value of S, the counterpart to B in the quadratic model, must
be determined separately in the pseudoscalar and vector nonets. Its value

is fixed for the pseudoscalars by fitting to the ﬁo, and for the vectors

‘by fitting to the p. An encouraging result of these fits is

s = - (}/3) s (3.9)
v p

that is, almost the entire gluon exchange interaction appears as a hyper-

> >
fine interaction proportional to Oa- This lends credence to the con-

oy
>

struction of the linear model where Boa.ob//”ngnb which replaces S5,

reproduces (3.5}).

Wny (3.5) holds so well is indicated by the nature of the quark
mass parameters mu, md used in the models. These masses are obtained from
the proton magnetic moment by identifying this with the quark Dirac magnetic
moment e/2mu. The masses which appear in this expression depend upen the

. . . (4,50,59)
nature of the potential which binds the gquarks . If the guarks
are bound by a Lorentz four-vector potential (a Coulomb potential, for
example) then the magnetic moment’ would be that corresponding to free
parti. =5 (that is, switching on a lLorentz 4-vector potential does not
change the magnetic moment) and the quark mass weculd not include the effect

of the interaction potential. However, if the binding is due to a scalar

potential this will add to the mass term in the Dirac equation

El
-+
<+
4
<
I

E + V f 4=
{ v)xowq or a 4-vector potential Vv

E for a scalar tential Vv
vowq ar po s

N
I



55

and the mass in the magnetic moment expression will be mq~vs. The Cohen
and Lipkin fit to meson masses, which produces reasonably good predictions
{Table 3.1} could suggest that the apin independent confining potential
which contributes to the guark masses is Lorentz scalar in nature. The
spin dependent interaction terms characterised by S and B have a vector
character and hence do not appear in the magnetic moment., which explains
their explicit presence in the mass matrices.

In both of the models (3.3) and (3.4) the annihilation interaction
strength is determined for the pseudoscalars by fitting to the n' mass, while
for the vector mesons 1ts value is set equal to zero. With the resulting

parameter values the mass predictions exhibited in Table 3.1 are made.

Pseudoscalar Mass (GeV) Vector Mass (GeV)
Model
*
n k n n’ p k u ®

Quadratic 0.14(fit) 0.48 0.53 0.9 (fit) | 0.77 0.90 0.77 1.03
Linear 0.15 0.47 0.53 0.96(fit) | ©.77 0.89 0.77 1.01
Experimental | 0.14 0.49 0.55 0.96 0.77 0.89 0.78 1,02
Value

Table 3.l: Masg predictions for the Cohen and Lipkin Quadratic and Linear

Mixing Models.

1

The ve<~>r meson results for the quadratic model are derived with the
assumption that (3.5) is a good approximation. Predictions for the masses
of the excited states are-also produced. Cohen and Lipkin quote their
results for the n= 2 isoscalar pseudoscalar states which, in the quadratic
model have masses 1260 MeV and 1420 MeV and in the linear model 1310 MeV
and 1490 MeV. The lightest of these excitations is to be compared with the

state observed by Stanton et a1(78) with mass 1275 MeV.
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The linear model of reference 59 was extended to include ce states
with the aim of predicting a mass for the n.r which then had an anomalously
low experimental value of 2.83 Gev. Taking the ¢ quark mass m_o= M[1’/2 gives
the result M = 3.1 Gev, that is, the nc has a mass essentially degenerate
with that of ihe ¥. This prediction arises from two competing effects,

{1} the hyperfine interaction (which is reduced considerably in
strength by quark mass factors when compared with its value in the uu
sector) splits the ¢ and nc states, bringing the nc below the V,

(ii) the annilhilation interaction makes a peositive contribution to the
nc mass, essentially annulling the hyperfine splitting and leaving it almost

coincident with the y.

3.3.2 Extending the Cohen and Lipkin Models

2
The experimental value of the nc mass is presently fixed at 2.98 GeV(B ),

a substantial increase on its previous magnitude but still approximately 0.12
GeV below that of the § and much smaller than the value predicted by Cchen and
Lipkin. The inability of their model to produce a w—nc splitting can be
understood by reconsidering the interaction terms which are responsible for
the mixing of q& states. The annihilation term in the quadratic model is
flavour independent while that coentained in the linear model includes a flavour
dependence given by the guark masses. The expected variation of the full
annihilation contribution

n 2

a v (]

A n = (3.6)

L)
aq -
qq

{with n = 2 for pseudoscalars and n = 3 for vectors) is not included in
: . {(83)
either case. Taking as(3 GeV) = 0.19 from ¢y decays, and as(l GeV) =

0.22 from the asymptotic freedom formula (2.22), and noting the empirical

relation

2
q4q

(3.7}

|wq(0)wq.(0) | oM™
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-
where M q' represents the magnitude of the gq element in the mass matrix,
the additional dependence given to Aqq' in (3.6) would appear to imply that
the nc mass should be raised to a larger value than that of the §, however,
a compensating dependence of the hyperfine splitting strength reverses this
trend.

(29)

The one gluon exchange approximation in QCD suggests

2
B v oo [¥ ()] (3.8)

thus, the original variation of the hyperfine splitting contribution with

mass scale given by

. 2 0+ 1/ 2 = 22 : 11 .
l/mﬁ l/m /m 1 1
s C

will now be much less violent, (3.8) implying
-2 - 2 1 -2
as(uu)Muu = as(ss)MSS o as(cc)Mc

10 c

where typical parameter values, as given above have been employed. The
hyperfine splitting strength B is fixed in the model by the p-7 mass
difference, that is, a mass difference associated with the uu sector, there-
fore the additional variation given in (3.8) would substantially increase
the predicted splitting between the Yy and N compared with the Cohen and
Lipkin result., The dependence (3.8) is similar to, but more rapid than
(3.6} 30 their combined effect would be expected to produce a Y- .

splitting with M > Mn .

‘p C
The approach taken here involves accounting for the symmetry
breaking in the interaction terms in a manner similar to that used for

ground-state mwodels such that the n_ mass can be accommodated while still

maintaining a variation among the aprameters which is consistent with the
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expectations of perturbative QCD. The number of parameters in each model is
necessarily increased so further constraints are required to fix their
values. To this end the ratio p = T +n"y) /T +ny) is used as
before.

The mass matrices take essentially the same form as in (3.3) and {(3.4).

Whereas the same values for mh and My are assumed the s and ¢ quark masses

are varied in order to provide a satisfactory description of the ¢, ¢ and

M
- The value of m can be upper bounded by ﬂg g ¢/2 = 0.510 GeV and,

if the smallest of the baryon decuplet splittings is taken, underbounded at

0.474 Gev. Similarly the charmed quark mass can be upperbounded by

m £ M¢/2 = 1.550 Gev but must be less than this if the n. is to be fitted.

3.3.3 The Extended Quadratic Model

Including symmetry breaking of the interaction'terms, the mass
(52)

matrix is

A
- 2 - 2 aa'

' =

<qu. %, (M [q,q 0 > Maonn' Saar Sppt O * . Sanlarn:
{3.9)
where

= (m_ + + E )2 + 3.1

Mabnn‘ - ma mb n S (2.10)

Consider firstly the n = 1 case for the pseudoscalars. As before S is fixed
by the pion mass at & = -0.43 Gev2 to give a reasonable prediction for the

k mesor mass (0.48 GeV) with ms set initially at ms = 0.477 Gev. The
flavour dependent annihilation terms are fitted to the n and n' masses to
give Auu and Ass values close to those cobtained in the ground-state mixing
model of section 2.5.1. Charmonium states can be included by fitting m, and
Acc to the n, mass and T'{y ~» n;y) decay rate as before. Comparing the cc
components mixed into the n and n' gives the prediction p = 7 for the

radiative ratic. As before, decreasing this value to match the Crystal Ball
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(54)

result of p # 5.88 involves an increase in ms from 0.477 to 0.487 GaV,
The annihilation terms and wavefunctions are essentially 1dentical to the
quadratic fit of section 2.5.1.

Switching on radial excltations up to n = 4 changes the value of ¢
radically. Using the same value of S to give the ™ mass and again setting
m, = 0.477 GeV initially the flavour dependent annihilation terms are
determined by the n,n' and nc masses to give Auu = Add = 0.672 Gevz,

Ass = 0.542 GeV2 and Acc = B.68 x 10_3 Gevz. Mixing the ground-state with
radial excitations lowers the ratio p from 7 for n = 1 to p = 3.3 for n = 4,
well below the Crystal Ball result but in good agreement with the Dasp(84)

result of p = 3.54. Mass predictions are essentially the same as for the

flavour independent model with

M =1.08 GeV ; M = 1.29 GeV ; M = 1.42 GevV ; M = 3.58 Gev
T2 Ny L N2

where the subscript indicates the n = 2 excitation. Wavefunctions for the

ground-states are

0.688 |NS> + 0.714| s> + 1.8 x 10 °|cé >

In > =
[n'> = -0.401 {Ns> + 0.517| s> =~ 3.6 x 1073 ce > (3.11)
In> =-0.018 s> + 0.012] s> + 0.999 lce »

The predicted magnitude of p can be increased to the Crystal Ball value if
mS is reduced to 0.457 GeV which lies below the estimated underbound for this
param: 2r, however, the predicted kaon mass is then reduced to an unsatisfactory
value of 0,44 GeV. This model can clearly explain the pseudoscalar masses in
a manner consistent with the expectations of QCD but the ratio p = 5.58 cannot
be accommodated if a satisfactory kaon mass is required, a smaller value being
preferred.

The pattern of masses for the vector states is well explained in this

model by setting Adq = 0 in all sectors of the mass matrix and fixing S with
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2
the p mass to give S = + 0.148 Gev ., Then

Mk* = 0.90 ; Mw = 0.77 ; M =1.03 ; M = 3.07 GeV

In the upsilon region Abb can be reliably set equal to zero and
the particle masses determined essentially by the mass of the b quark.
2
Withxnm = 9,46 Gev and Sv = 0.148 GeV then Mb = 4,73 GeV, and hence

the 1, is predicted with a mass M = 9.4 Gev.

LY
3.3.4 The Extended Linear Model

b

The linear model of Cohen and Lipkin(sg) is simply extended(52) by

allowing for the full symmetry breaking amonst the annihilation and hyper-

fine splitting strengths. Their expected variation wiih mass scale is given

by(47)

2 2 n, 2 2
as(ma)}wa(o)I as(ma)lw(o)l
B . A v
aa o aa m2
m_ a

where n = 2 for pseudoscalars and n = 3 for vectors. These dependencies
are taken as a general guideline to the expected behaviour of the inter-

action terms but are not imposed upon the model. The mass matrix is

Mpnn'Saarfop * = Sapdarp (3.12)

<q_»a ' |ulqgn >

with Mabnn‘

m +m +E)6 , +0 .0 . (3.13)
a b n° nn
l//— . . .
where the |y n(o)| N n dependence predicted by the log. potential is
explicitly included and the quark mass terms present in the original model
(3.4) are absorbed into the interaction parameters.

Equation (3.12) differs from the quadratic model through the

2
lW(o)l dependence cof B which allows the mixing of radially excited

ab

components in the ground state I # Q0 as well as the I = O sector. This
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mixing successfully explains the low pion mass by changing the initial

hyperfine splitting between o and 7 of (-3/4, + 1/4) B in the undiagonalised
uu

mass matrix to an enhanced value v (-5, +1)Buu in the physical basis.

v

In the uG and ca sechbors B , B , A P
uu cc ce

and ACC are essentially
determined by the nature of the model. Taking a value of mu = 0.337 Gev

from the original Cochen and Lipkin treatment allows Buu to be determined by
the I = 1 p-7 mass splitting, since the states in this sector do not depend
upon the annihilation interaction. Its wvalue, Buu = 0.4978 GeV, gives good
predictions for the p and nm masses, as before. Bcc is fixed by the w—nc
splitting and by noting that A for the vectors is very small so that including
Av% uz allows Azc = 0 without producing any noticeable change in the particle
mass spectrum. The range of charmed quark mass is limited by assuming BCC<Buu
to give“ﬂg = 1,50 GeV for Bcc = Buu and HE = 1.54 GeV for Bcc = 0.1 Gev.
Choosing m, = 1.535 GeV fixes BCC = 0.120 GeV to give the required ¥ mass and

a low nc mass which is raised to its experimental value by setting Agc = 0.002

Gev.

. v P ;
Determining Buu' Bcc, ACC and Acc in this manner leaves the remain-

ing parameters AP ' Ap
uu ss

v v ,
' Auu' ASS and Bss to fit the n, n',w ,¢$ masses and
the radiative ratio p which will allow the ratio of cc compenents mixed into
the n' and n to ke fixed. The n and n' masses are independent of Av and
uu

P and AP

A while p
i ss

A:S, and similarly the w and ¢ masses are independent of
depends upon all the remaining five parameters, As in the simpler Cohen and
Lipkin treatment, the particle masses can easily be accommodated in the model,
howeve: . the Crystal Ball value of p = 5.88 + 1.46 cannot as it pushes BSS
against its maximum allowed value as determined by the mass of the ¢ .
Lowering m from 0.477 GeV allows a possible solution to the problem but
produces annihilation terms inconsistent with the expectations of QCD, so

its present value is maintained. Fits with Bss = 0.249, 0.299, 0.339 Gev

give valuetof p = 1.4, 3.3, 5.5 respectively, of which the latter,

with the largest ¢ , is chosen. The full set of parameter values is
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then,

aF = 0.420, AP - 0.108, Y = 2x10° Gev

uu (=1 cC

v -3 v -4 v

A =4 x 107, A = 4 x 10 , A = 0.0 GeV (3.14)
uua 585 CcC

B = 0.498, B = 0.339, B = 0.120 GeV

ua 55 cC

giving ground-state unitary spin wavefunctions,

-+

In > = 0.472 |Ns> + 0.826 [s> 2.5 x 10°° [c >

|n'> =~0.750 |NS> + 0.383 |s> 6.2 x 10° |ce > (3.15)

I"c> = -0.052|NS> + 0.021 |8> + 0.987 lcc >

and the following mass predictions for the first radial excitations,

3.62 Gev

I
I
Il

=
1

=1.13 Gev ; Mn 1.38 Gev ; Mn 1.47 Gev ; Mn

{3.16)

1.33 Gev ; M 1.59 Gev ; M 3.68 Gev

¢2 2

=
I

1.32 Gev ; M
w

In the I # 0 sector the annihilation independent k, k*, D, D*, F and
F* masses are determined, in principle, by Buu' Bssand Bcc through factorisa-
tion, .owever, their predicted splittings Xurn out to be larger than the
corresponding experimental values and mass predictions are poor. The failure
of the model for states constructed from unequal mass quarks can be attributed
to many causes., The simplificaticns made to the original model of de Rujula,
(39)

Georgi and Glashow may be too drastic, a more sophisticated model being

required. Also, higher order corrections to the form of the Hamiltonilan
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predicted by DGG may be important and it is likely that the dependence
of Bab upon n may be different in different sectors of the mass matrix.

The variation of Iwn(o)l with n as predicted by a log, potential
and imposed in (3.12) could be cne of the principal deficiencies of the model.

Assuming that A and B decrease with n as l/f nn' for both heavy and light

states is clearly simplistic as is indicated empirically in the § and T

2 2
spectra. The ratio ]w2(o)| //iw l(o)l can be calculated from
+ - 5
vector — e e decays using the Van Royen/Welskopf formula( o to give,
2 2
. - '4’2 (o) | Ty eteTy. My
v, () | rv +e'e) Mi

for ™ and ¢ this ratic is 0.3 and 0.6 respectively, to be compared with the
predicted value of 1/2. Also, identifying the I = 1 state at 1600 MeV with
the p" allows the prediction(60) r = 1.1 + 0.3 compared with 1/3 expected in
the model. Experimental evidence indicates that |w (o)lzfor the lighter

states falls off less rapidly with n than for the heavier states indicating,

in a potential model framework, that the lighter relativistic quarks experience

(20)’¢

2
more of the linear confining potential which predicts n(o)| & const.

than the heavier quarks which may experience more of the short range l/r
Coulomb-like potential which results from one gluon exchange and predicts(ZO)
Iwn(o) |2 ~ l/n3. The differences in the variation of |¢(o)| with n in
different sectors of the mass matrix has important consequences for the mixing
patterr. For the lighter states it is possible that more than three radial
excitations would be required to correctly account for their contributions to
the ground-state wavefunctions, and consequently the (-5, +1) splitting which

fits the o and 7 masses would change necessitating the assumption of a different

value for m if good predictions for MTT and Mp are to be maintained.

Despite these problems and inadequacies a reascnable average descrip-

tion of meson properties may be expected. The model can fit the ground state
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pseudoscalar and vector masses in a manner consistent with the expectations
of lowest order QCD and with Mn = 2.98 Gev. A problem remains with the
Crystal Ball value of p , howeer, which is too large for the model to cope
with in a consistent manner. The matter is pursued in Chapter 4 where this
ratio and many other meson properties are investigated using the wavefunctions

obtained upon diagonalization of (3.12).
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CHAPTER 4

THE LINEAR MIXING MODEL AND MESON PROPERTIES

4.1 INTRODUCTION

The radial mixing models reported in Chapter 3 adequately describe
the pseudoscalar and vector meson mass spectra in a way such that the
variation of their parameters with mass scale is in broad agreement with
that expected from QCD. More exacting tests of the relevance of such
models as descriptions of hadron structure can be made by examining their
predictions for other meson properties which are sensitive to the structure
of the unitary spin wavefunctions. The purpose of this chapter is to apply
such tests and investigate the model predictions for radiative and hadronic
decays and isoscalar meson production processes.

The examination of meson properties is conducted with the extended
linear mass mixing model described in 3.3.4. This model is chosen in
preference to the extended Isgur model because of its ability to mix radial
excitations in the I # O sectors of the mass matrix, an exclusive facility
which allows the prediction of a small pion mass.

The first problem to be resolved is that of the magnitude of the
radiative ratio p . Difficulties were encountered in 3.3.4 when an attempt
was made to fit the Crystal Ball measurement of this quantity, r» = 5.88,

In the following treatment fits are made to the variams values of p and for
each value predictions are made for other radiative decay widths which are
compared with experiment, allowing a preferred magnitude tc be selected.
The wavefunctions obtained from the chosen fit are used to examine the
discrepancy in the strangeness exchange sum rule (3.2) and the predictions
for ratiés of meson production amplitudes. Finally, a simple method for
the examination of hadronic vector decays is formulated and predictions are

made for ratios of decay wldths of radially excited vector mesons.
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4.2 RADTATIVE DECAY PREDICTIONS AND THE VALUE OF p

In the previous chapter_the linear mass mixing model of Cohen and

Lipkin(sg) was extended(sz) to lnclude the flavour dependence of its vardious
parametgrs and to see if it could successfully accommodate the pseudo-
scalar and vector meson mass spectra and the recent Crystal Ball measure-
ment(54) of p =5.88 in a way consistent with first order perturbative QCD.

The mass matrix, including symmetry breaking amongst its parameters is

A _,6.6
- - _ aa' ab a'b’
(qalqbln |HI qaqbn > - Mabnnlﬁaalﬁbbl + /_l
(4.1)
> Bab
v = + —
where LR (ma tm o+ En)ﬁ Wt 0, o ;

The pseudoscalar and vector meson mass spectra are easily reproduced but the

(52) in that it pushes the

Crystal Ball measurement of p provides a problem
parameter BSs against its maximum allowed value, given by the ¢ mass. 1In
this subsequent analysis the magnitude of the s quark mass, which to a large
extent determines the pattern of n-n' mixing is seen to be very sensitive to
the imposed value of p, and predictions of the model for quantities which
are strongly dependent upon n-n' mixing are used in a comparison with
experiment to find a preferred value for this ratio.

The experimental status of p is, at present, unclear as can be seen

from Table 4.1. While the measurements of B(y + ny) are in broad agreement,

Experiment B(w+ny)xlon3 B(wén'y)xloia p
(85)
Desy/Heidelberg 1.3 + 0.4 2.4 + 0.7 1.8 + 0.8
pasp (°® 0.8 + 0.2 2.2 + 1.7 2.8 + 2.3
pasp (%4 0.82 + 0.10| 2.9 + 1.1 | 3.54 + '1.4
(87) :
Mark II 0.9 + 0.4 3.4 + 0.7 3.8 + 1.9
(54}
Crystal Ball 1.2 + 0.2 6.9 + 1.7 5.9 + 1.5

TARTRE 4.1 : Existine Branchinag Ratios for ¢ <+ n{n')y Radiative Decays.
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the high statistics Crystal Ball determination of B(y + n'y) is clearly
incompatible with other measurements, being a factor of two or three larger.
It is suggested(87) that the discrepancy between the Crystal Ball and Mark II
results may, in part, be explained by the uncertainty in the relative branch-
ing fractions of the observed decay modes of the n', the Crystal Ball
collaboration(54) detect n'+ 2y while the Mark II group(87) observe n'~+ poy.
This argument may also apply to the other high statistics determination of
B(y + n'y) performed by the Desy-Heidelberg collaboration(es) who also observe
the n'—+ pOY decay mode, however, the disagreement is large while the un-
certainties in B(n'—+ poy) and B(n'+2y) are comparatively small.

The purpose of this analysis is to exploit the sensitive dependence
of R~n' mixing on p by comparing model predictions of meson properties which
are dependent upon the structure of this mixing with their experimental
values in order to, within the capacity of the model, point to a preferred
value of p . Five fits are made corresponding to the five wvalues of p in
Table 4.1, 1In each case, the gross variation of the quark masses (which are
treated as free parameters), hyperfine splitting strengths and annihilation
terms are determined by the vector and pseudoscalar mass spectra, leaving the
"fine tuning" of the parameters to be resolved by radiative decays, which
are sensitive indicators of the structure of meson unitary spin wavefunctions.
In the pseudoscalar sector the remaining parameters are determined by fitting
to p and the corresponding radiative decay width T(y =+ n v}.

In order to determine the magnitudes of the 0ZI violating annihilation
agplitudes {in the vector meson sector} which are respensible, for example,
for uu and dd mixing in the ¢ wunitary spin wavefunction, a fit is made to the

radiative decay rates T'(¢ ﬂOY) = 5.7 + 2.0 Kev(se) and T(¢ -+ HOY)=

84
4.6 + 3.0 ev( ). A problem is encountered here, however, for there is a
competing mechanism which contributes to these decays, that of the isospin

o
violating mixing of 7 -n-n'. Such mixing may be induced by both the strong
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A . (48) el
and electromagnetic interactions, as noted by Isqur , leading toa m

state with small, but non-negligible s& and cc components (see Chapter 5).
[v> =|r> + aln> + 8[n' > (4.2)
u u

where |n3>, Inu> and [né> are the pure isospin pseudoscalar states and a
and B give a measure of the mixing. The values of o and B have been determined
{references 48, 89 and Chapter 5) so it is possible to estimate the relative
effects the 0ZI viclating (but not isospin violating) and isospin violating
mixing will have on the ¢ + 7y and ¢ -+ my decay rates. It is found that
in both cases the ss and cc conponents in the wo wavefunction produce,
approximately, a 15% contribution to the decay amplitudes. These corrections
are included in the analysis.

In each of the five fits corresponding to different values of ¢p the

aF - 0 and 1 mass spectra are reproduced, giving the ground~-state masses

{in GevV)
M = 0.140 : M =0.549 : M =0.958 : M = 2.98'5%
mo n n nc
(4.3)
M = Q770 : M =0.782 : M = 1,019 : M = 3.096
po w ¢ L

Diagonalisation of the mass matrix produces unitary spin wave-

functions in the basis of gq states, as shown in Tables 4.2 and 4.3.



values of p. Ground

wo wavefunction which is independent of p

(uu~-dd) .

Value of p Particle wWavefunction
[n> = 0.493 (uu + dd) - 0.669 ss - 0.0037 cc
0 1.8 In'> = 0.456 (uu + dd) + 0.607 ss - 0.0055 cc
lnc> = 0.013 (uu + dd) + 0.0ll ss + 0.993 cc
In > = 0.427 (wu + dd) - 0.748 ss - 0.0029 cc
o 2.8 - - - -
|n'> = 0.492 {uu + dd} + 0.50% ss - 0.0054 cc
|nc> = 0.019 (uu + dd) + 0.0l4 ss -~ 0.992 co
In> = 0.392 (uu + @d) - 0.783 ss - 0.0030 cc
o 3.54 ln'> = 0.508 (uwu + dd) + 0.462 ss - 0.0062 cc
|nc> = 0.027 {uu + @d) + 0.019 ss + 0.991 cc
|n > =0.382 (uu + ad) - 0.792 ss - 0.0031 cc
o 3.8 In'> = 0.513 (uu + dd) + 0.449 ss - 0.0067 cc
|nc> = 0.030 (uu + ad) + 0.719 s5 + 0.990 cc
In > = 0.318 (uu + ad) - 0.842 ss - 0.0036 cc
o 5.9 |n'> = 0.532 (uu + d4d) + 0.365 ss - 0.0097 cc
|nc> = 0.076 (uu + dd) + 0.041 ss + 0.96B cc
TABLE 4.2 ; Pseudoscalar unitary spin wavefunctions for the various

state components only are shown. The

is

no>= 0.652
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value of p Particle Wavefunction
lo > = 0.697 (uu-dd)
o > = 0.693 (uu+dd) - 0.052 ss
p=2.8 o _
|¢ > = 0.030 (uu+dd) + 0.991 ss
v > = 0.999 cc
TABLE 4.3 : Vector unitary spin wavefunctions are virtually independent

of p. A typical fit is shown above. BAgai. only ground-state
components are exhibited.
In order to make a comparison of the structure of n and n' wavefunctions with
those obtained in more conventional schemes they can be re-expressed in a

(90) (ignoring the cc contri~

hyperfine interaction perturbed SU(3) basis
butions) and hence written in terms of octet and singlet components

{(Appendix 2}. In this new SU(3) basis the ground-state basis vectors contain
radial excitations (the radial expansion being defined by the no) such that
they will diagonalise the mass matrix (4.1) with Ass = Auu' Bss = Buu and

ms = mu. The octet-singlet structure of the n and n' is shown in Table 4.4
for each of the five fits, together with similar wavefunctions obtained using
the conventional ground-state mixing schemes for guadratic (0 = ~llo) and
linear (6 = -240) mass matrices. As p 1s increased the n' loses more of
its wavefunction to higher radial states while the n retains its ground-state
components losing relatively much less of its wavefunction to higher radials.
Note that the singlet |nl>lshows a slight variation with the value of p due

to its dependence upon Auu' its structure for p = 2.8 is quoted in Table 4.4.

(90)

Predictions are made as before for the masses of the radial
excitations of the vector and pseudoscalar mesons, although they must be

treated tentatively in view of the manner In which excitation energies taken




Model Unitary Spin Wavefunction Structure
s In> = 0.972[ng>, + 0.188|nl>l
"—
In'>= -o. 212|n8>l + o.955|nl>l
[n> = o. 986|n8 L * o 093|nl N
p = 2.8
LI
In'>= -o. 119[n8 Lt o.955|nl>l
In> = o. 988fn8 .+t o 050|n1>l
p = 3.54
] — —
In'>= o.ov4|n8>l + o.950|nl>l
n> = o.937ln8>l + 0.0391n1>l
p = 3.8
LT -
[n'>= -0.062|n;> + o.950|n > .
D s |n> = o. 979|n8 Lt o o3o|n1 L
In'>=  -o. 011[n8 Lt o.935|n1>l
|n> = 0.982|n8> + 0.191|n1>
0 = -11°
In'>= ~o.191\n8> + 0.982‘nl>
‘n> = 0.914]n8> + 0.407lnl>
o = - 24°
Int>= -0.407|n8> +  0.914|n >
TABLE 4.4 : The 'ground-state' octet-singlet structure of pn and n'

unitary spin wavefunctions. The octet and typical singlet
basis vectors (in the ground-state) are L
ng>, = O 376 (uu+dd) -0.753 ss and |n,>. = 0.493(uu+dd+ss)
The subscript 'l' indicates ‘ground-state’
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from the charmonium spectrum are applied directly to the low mass particles.

The masses predicted for the flirst radial excitations (n = 2) are (in GeV),

M =1.14; M =1.36; M, =150 ; M = 3.63
ﬂ2 ﬂ2 n 2 ]c2
(4.4)
M =1.33; M = 1.34 ; M = 1.59
o ¢
p2 2 2

The pseudoscalar predictions are to be compared with a possible nz candidate

with mass 1.28 Gev(78), a tentatively jidentified ﬂ2(79) at 1.27 Gev and a
recently observed nc(Bl) with mass 3.59 GeV as outlined in section 3.2.2,
2

The strongest candidate for a p, has a mass of approximately 1.25 GeV

2
(identifying the I = 1 state at 1.6 GeV with the 03) to be compared with
1.33 Gev. No excited I = O vector state has yet been observed around the
predicted mass of Mw = 1.34 GeV, however, such states with a narrow width
have been cbserved 12 e+e_ and photoproduction experiments around 1.66 GeV
(section 3.2.1). Their narrow width has suggested their association with
the ¢2(75) in close agreement with the model prediction.

The predicted mass values of the n = 3 excitations are (in GevV)

M =1,55; M =1.72 ; M, =1.82 ; M = 4.00
o n n n
“3 3 3 c3
{4.5)
M
o = 1.66 ; Mw = 1,67 ; M¢ = 1.93 ; MW = 4,03
P 3 3 3 3

There ¢ =, at present, no experimental candidates for the pseudoscalar
excitations, however, prospective n = 3 vectors may have been identified.

A firm p excitation, which is associated here with the pg , has been

observed in numercus experiments with masses ranging from 1.54 1_0.03(65)

(69)

to 1.67 + 0.04 GeV which coincide with the model prediction. The only

sighting of an w excitaticn in the mass region given in (4.5} is that due

75
to Cosme et al( ! with mass approximately 1.7 GeV, all other candidates
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having higher masses in the region 1.78 - 1.79 GeV. A tentatively
identified ¢3 has been ohsexved in yp + X*k7 p(76) with mass 1.9 GeV in
agreement with the 1.93 GeV prediction above.

Predictions of the masses and wavefunctions of the k, k*, D, D*, F
and F* mesons are obtained by diagonalising the relevant 1 # O sectors of
the mass matrix, where the only unknown parameters are the mixed quark
hyperfine splitting strengths qu,. In each case these are evaluated by
fitting to the relevant V-P mass difference so that, for example, BUB is
determined by requiring it to reproduce the k*-k mass splitting. The
problem encountered with the ground state mixing schemes recurrs here,
particle mass predictions being consistently lower than their experimental

values. Typical parameter values and mass predictions for the ground and

first radially excited state mesons are (in GeV)

B = 0.329, B = 0.130, B = 0.103
us
= 0.48 ; = 1.31 ; M. = 0.8 ; = 1.45
* *
Mxl MKz X MKz
(4.6) |
M. = 1.76; M_ = 2.43 ; M. = 1.90 ; M. = 2.49
* *
Dy D, %y D*,
MFl = 1,92 ; MF2 = 2,57 ; MF* = 2.03 ; MF*z = 2,62

while the wavefunctions for these mesons are exhibited in Table 4.5.

The unitary spin wavefunctions obtained upon diagonalisation of the
mass matrix (4.1) in both I = @ and I # O sectors can be used in a simple
quark model analysis to predict the widths for the radiatiw transitions
V+ Py and P -+ Vy . In the past conventicnal quark model mixing schemes
producing ideally mixed vector states have encountered difficulties when

trying to explain 0ZI rule violating decays such as ¢ > woy.
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IK;:> = 0.956] u§>l + 0.236|u§>2 |KZ>>= 0.270|u§>l - o.940|u§>2
|K*~+> = 994| us>, - 0.096|us>, : lx*+>= 0.089|us>. - 0.989|us>
W= o us?y -076jusz, ¢ 2 . °1 : 2
+ - - + - -
o] > = 0.991] c@ + o0.108lcd>, : [p, >= 0.116|cd> - 0.987]cds,
Ip.*> = 0.999| c@>. - 0.038|cd, : |D.T>= 0.037|cd>, - 0.998|cd>
1 ’ 1 : 27 2 . 1 ; 2
Is'ir > = 0.994] cs> + 0.087|cE.>2 |F; >= <:v.o92l<:§-,>l - o.992|c§>2
|F*+> = 0.999] cs> - 0.030|cs>, : IF*+>= 0.030,¢c8 - 0.999]|cs>
1 ’ 1 : 2 - 2 TEEENER ) 2
TABIE 4.5 : I # O Meson unitary spin wavefunctions.

Later ideas, abstracted from QCD accounted for such processes by allowing

. - .. (56,91) . .
them toc go through the annihilation of qq pairs as shown in Figs 4.1
and 4.2 where the couplings of the gluons to quarks of the ¢ are presumed

to be small, allowing the processes to be treated perturbatively, so only

two or three gluon intermediate states need be considered.
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Fig 4.1 : ¢ - ny radiative transition Fig 4.2 : ¢ + ny radiative
occurring via a 3 gluon transition occurring via a 2
intermediate state. gluon intermediate state.
{90)

The problem is treated slightly differently here , however, the
annihilation process is understood to cause mixing of, for example, uu
and dd in the ¢ wavefunction, allowing the ¢ to decay directly into a
m as shown in Fig 4.3 where the box represents the meson as described by

the mixing program of eguation {4.1).

Y
q L.

¢ — ™
g

Fig 4.3 : ¢ > 7y decay as described by the mixing scheme of equation (4.1).
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Note that in this scheme decays such as that shown in Fig 4.3 are 0ZI
allowed as they proceed via connected gquark diagrams but are suppressed
relative to, for example, n'+ py because of the small annihilation amplitudes
inherent in the vector mixing scheme.

Radiative decay widths are calculated by modifying the conventional

quark model approach to include radial excitations, ylelding the following

expressions,
X} 2
T spy) = 3= | AV oepn) |
(4.7)
< 2
TP +vy) = —— | A »vy)|
L
where Kl and K2 are the centre of mass photon momenta, given by
2 2
M° - M M2 _ M2
K = Y_p K = -RP__ ¥
1 ZMV 2 2M : (4.8)
p

The amplitudesA(V-+ Py} and A(P+ Vy} in which the effects of radial
excltations appear are essentially the overlaps of meson unitary spin
wavefunctions with the coupling of the photon to the guark charge added.
Denoting general wavefunctions for the vector (V) and pseudoscalar (P)

isoscalars by

p
—

=

i

I¥

Q

v

1l
M

a d 5 c L
ailuu>i + Bifddzvi vy s§>. + diICC>i (t4+44)

i=1 V2
Lo - {4.9)
— —
P> = EE: a luu> + b, |dd 5 c L o(py-
. iqu . a4 e fss> 4 di!cc>i (44-44)

tv2

'—l
I
=

—
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a typical amplitude will take the form

n =
E mu mu
- - —— + 2 —_— .
1 2uiai Bibi Y.ci " Gidi (4.10)}

2
3 i=1 g c

A(V > Py) =

To describe decays between 13 # O states, denote their wavefunctions by

n
- 1
V,8. =0 > = E flq > — (44 + 1)
3 e N
n {4.11)
P>» = g l q & > L ('f'i' - 4“”
i’ "a’b 1 /2
1=1
then the amplitude for a typical decay is
n
= - f 4,12
A(V > Py) (uaea Hoe, ) E 194 (4.12)
i=1

where ea is the charge of a quark of flavour a in units of e and ua represents
the Dirac magnetic moment of the quark. Using the notation uu = 1y where pu
is the proton maghetic moment, as described in Chapter 1, then in general

m

m
a

Predictions for the various transitions given by the wavefunctions of (4.1)
{full v -vefunctions are displayed in Appendix 3) are calculated for the
fits to different values of p and cowmpared with experiment where data is
available. The results are exhibited in Table 4.6 with typical parameter

values in Table 4.7.




Experimental Model Predictions {KeV)
Process Rate (KeV) |
p=1.8 p=2.8|p= 3.54l p=3.8| p=5.9
T(p > ny) 67 + 7° 88 88 88 88 88
o > av) 0t 13: 66 52 43 aa 29
76 + 15 :
T(w + my) 889 + 57 808 812 | 813 813 812
T(w -+ ny) 3.0 ? %:Bb :
. 7.0 5.0 4.1 | 3.9 2.5
29 + 7 !
T(d -+ ny) 5.7 + 2,0 5.7 5.7 5.7 ¢ 5.7 5.7
T (¢ > ny) 62 + 11 96 117 127 1' 129 144
T'(¢ + n'y) - 0.32 0.22 0.18 0.17 0.11
T(y + mv) (4.643.0)x10™° | 4.6x10"° |4.6x10 > | 4.6x107>4.6x20"> | 4.6x10">
'y + ny) (93) 0.054 0.082 0.050 0.052 0.056 0.075
Pap » ntyf o) 0.160 0.151 0.139| 2.183 | 0.214 0.435
T >y - 2.6 2.6 2.6 2.6 2.5
r(n'+ py) 83 + 30 150 176 189 | 191 206
I (n'> wy) 7.6 + 3.0 17 19 20 | 20 22
F(nc+ pY) - 37 &7 135 167 1090
F(nc+ wy) - 3.2 6.7 13.4 16.6 107
F{ne> ¢v) - 3.0 4,2 6.9 8.3 37
Fie Tkt <74.1434.6° 99 98 g | o8 97
Mg k") 75 + 35 170 171 172 | 172 173
ro tspty) - 1.9 1.9 1.9 1.9 1.9
o %+p°y) - 35 | 35 35 35 35
T(F +Fy) - 0.2 | 0.2 0.2 0.2 0.2
olwpzr’n) 0.65+0.13° 0.38 ' 0.59 0.75 0.80 1.2
o{n p-nn) - |
TABLE 4.6 : Model predictions for radlative transition rates and the ratio

of n,n' production amplitudes. All widths are quoted from
ref. (6l) unless otherwise specified and those underlined are
fitted.

a. Ref. (92)

b. Constructive interference solution d. Ref. (93}

c. Destructive interference sclution €. Ref. (94)
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Parameter Value Parameter Value
aP 0.341 A’ 0.0099
uu uu
P v
Add 0.341 Add 0.0099
p v
A 0.1l12 A 0.0144
sSs S5
-4 -5
aP 8.5x10 a’ 2.1x10
[ole ce
B 0.493 m 0.334
uu u
B 0.287 m 0.472
8s s
B 0.112 m 1.535
cc c
TABIE 4.7 : Parameter values for the p = 2.8 fit, AP and Av are the

annihilation parameters corresponding to the pseudoscalar and

vector sectors respectively. Off diagonal annihilation

amplitudes are given by the factorisation relation(52)
2

A, =A_A ,. All parameters have dinensions of Gev.
aa aa a'a

The predictions for the processes p -+ ny and w + 7y are virtually
independent of p,l'{w + my) being consistently smaller than experiment while
'(p = my) is consistently larger. As all form factors and overlap integrals
are ar-umed to be unity in these calculations this former result is somewhat
disappeinting since radial mixing is expected to give values less than unity
for these quantities which will further reduce the magnitude of the predicted
decay widths. The predicted values of T'(n'+ py) and I'(n'~+ wy) alsoc exceed
those measured, however, there is some uncertainty in the value of the n'

(61) (96,97)

total width used to calculate the experimental results, only two

determinations of this quantity having been made at the present time. ©Of the
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remaining measured widths, those of the processes w *+ ny and p -+ ny

provide a choice of values corresponding to the destructive and constructive
(98)

interference solutions of the experimental analysis . A clear preference
is shown for the constructive solution. These two decays and that for

¢ -+ ny are strongly dependent upon the magnitude of the uu, dd and ss
components of the n wavefunction, and hence upon the value of p. Comparing
the predictions displayed in Table 4.6 with the corresponding experimental
values, indicates an overall preference for a value of p smaller than the

5.9 Crystal Ball determination, although this value is not entirely ruled out.

(90)

A further experimental indicator of the structure of n-n’' mixing

is provided by the ratioc of the squares of the amplitudes for high energy n

and n' production in the processes w-p+ n n and ﬂ_p+ r' n, that is,

E(ﬂ—p »n'n)
- - (4.14)
gi{n p #n n)

Such processes are calculated in the radial mixing model in much the same
manner as the ground state mixing model. Using the wavefunction notation

described in (4.9) and (4.11} the amplitude for a general charge exchange

process Plx -+ sz (where Pl and P2 are pseudoscalar mesons and X and X'

appropriate baryons) is

. . _ l
A(P1x+P2x) = 3 Ei gibinl+giaiA2 (4.15)

where Al and A2 are amplitudes describing the possible quark transitions

@d->u and u - d. Isospln conservation implies a; = bi so the ratioc of

amplitudes corresponding to (4.14) can be written

- ]
"a'_‘
i i
LA ¢

A(n p + n'n) %

L

Alm p + ?
(mp+nn ; 9y 3

g
{(4.16)
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assuming that the amplitudes Al and A2 are independent of radial ex?itation
quantum number n.

The predictions for the ratio (4.14), which reflects the magnitude
of the non-strange components of the n and n' wavefunctions are compared
with experiment in Table 4.6. The value quoted here is a determination by
Stanton et al(gg) at PL = 8.45 GeV/c where an extrapolation is made for
this ratio from t' > 0 to t' = O as required by the quark model analysis.
This result severely limits the values of p allowed, the p = 2.8 and
p = 3.54 fits alone being compatible with experiment. A value of p = 3.1
would produce exact agreement, a conclusion which is in line with the
inferences drawn from the evidence on radiative transitions, The model
predictions for radiative decays and the ratio of production processes (4.14)

thus indicate a preference for a smaller rather than larger value of p .

4.3 HADRONIC INTERACTIONS

The validity of the description of meson structure given by the
linear mass mixing model is tested further by making a comparison of model
predictions for isoscalar meson production and strong decay processes with
present experimental data. Methods for calculating amplitudes for the strong
decay mechanisms V + PP and V + VP are developed using a simple additive
quark model approach and their precision tested with the known experimental
vV + PP widths. Subsequent predictions are made for ratios of decay widths
for the first radially excited vector mesons.

4.3.1 Isoscalar Production Processes

The disagreement between the predictions of conventional ground-state

mixing models and experimental measurements for sum rules involving strong

56)

production processes has been used as evidence( for the possibility of

radial mixing in meson wavefunctions. The modifications made by such
mixing have subseguently been analysed in the framework of both linear and

59
gquadratic models by Cohen and Lipkin( ). They find, for the linear model
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(which is of interest here)}, that the conventicnal strangeness exchange

sun rule (1. 32) becomes,

Gtk p+ An) +1.7 otk p +An') = 0.9 gtk p> A1)+ L.1a(n p> AKD)

{4.17)
. N - N (59;99)
Taking experimental values for the ¢'s found by Aguilar-Benitez et al

- - 2
ok p > An) = 236 + 55 ub/Gev
Gk p+ An) = 469 + 73 ub/Gev>

- (4.18)
G(k'p > A0y = 576 + 52 b /Gev”

545 + 28 ub/GeV2

a(n p + Ax")

these modifications are seen to be just those required to produce agreement
between the left-hand side (l.h.s) and right-hand side (r.h.s) of (4.17).

The results can be summarised as follows,

{a) Conventional sum rule (1. 32) : l.h.s. = 705, r.h.s. 1121

1129.

1

{(b) Modified sum rule (4.17) : 1l.h.s. = 1033, r.h.s.
The magnitude of the l.h.s. of the sum rule is increased by the factor 1.7
which multiplies E(k—p + An'), while the r.h.s. remains relatively unchanged.
The inclusion of symmetry breaking in the annihilation and hyperfine gplitting
strengths changes the sum rule further, again increasing the r.h.s.,to give

(for th=e p = 2.8 fit)

Gk p *An)+ 1.9 o(k p> An’)= 0.9 o(k prAT )+ 1.1 o(v p + Ak") (4.19)

The result is a further improvement, with l.h.s. = 1127 ub/GeV2 and

r.h.s. = 1118 ub/GeVz.
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Other sum rules have not been analysed so closely and at present
experimental data is unable to distinguish between the results of the
conventicnal ground-state and radial mixing schemes, Additional relation-
ships between isoscalar production amplitudes are amenable to investigation,
however, the ratio E(n_p+ n'n) / E(R-p % nn) being one such example. The
magnitude of this quantity and its relationship to the radiative ratio p
have been analysed in detaill :in section 4.2, where, for p = 2.8

a(mp > n'n)

— = 0.59 (4.20)
o(n p> nn)

Calculations of similar ratios for n' te n production amplitudes in other
charge exchange processes follow an identical pattern to (4.20) allowing

a universal constant for all processes to be defined(loo)

oM + X »n'X")

= X (4.21)

oM + X+ n X*)

where M is the incident meson and X and X' are initial and final state

baryons which partake in the reaction. This process iandependent relation is
only true when M, X and X' do not contain strange quarks, the values of the
individual amplitudes being determined by the overlap between M and the
non-strange components of the n and n' wavefunctions. The model determination

of (4.21) is chosen from the p = 2.8 fit to be

K = 0.59
p

Experimental values of Kp are avallable for a variety of procegses, the most

significant result being that for E(n-p+ n‘n) / a(ﬂ~p+n n) due to Stanton

(94)

et al , who find thisa ratioc to be constant at Kp = 0.65 + 0.13 over the
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% momentum range PL = 3,8 - 200 GeV/c. Other experimental results are(loo),
0.40 + 0.1811%) 5 = 365 gev/c
-+ s - L
olmp ~n'A ) (102)
= 0.24 + 0.11 , P_ = 5,45 Gev/c
- L
=+ A++) (103)
clmp>n 0.70 + 0.40 , P, =8.0 Gev/c
a(n p+ n'a%) (104)
= 0.25 + 0.025 S, P = 7.1 GeV/c
- = o - L
g(n p*n A7)
a(ﬁfn+n'p) 0.27 i.O.OG(lOS), PL = l.06 -~ 2.10 GeV/c
a(ﬂ+n+ np) 0.56 1_0.28(105), PL = 2,10 - 2.22 Gev/c

Again, agreement with the model prediction is reasonable in most cases,
however, higher energy determinations of these quantities would provide
a more reliable test of (4.21).

Analogous ratios have been calculated for vector meson production
processes, where the ratio of ¢ to w production amplitudes also defines

a universal constant,

OV +X> ¢ +X")
K = — (4.22)
V GiV4+ X+ w4+ X)

where V is the incident vector meson and X and %' the initial and final
state baryons. The model evaluation of this quantity is again determined
by the overlap of the non-strange components of the initial and final state
meson wavefunctions but unlike Kp' Kv is virtually independent of p. It
is, however, very sensitive to the magnitude of the vector annihilation

strengths and, as pointed out by Okubu(loo)

provides a uvseful measure of

02I rule violations. Its value is predicted as

-4
K = 7.4 X1
v 7 0
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an order of magnitude smaller than most present experimental results,

o(n"p> ¢ n)
—_— = 0.0035 1% 4 o.0015
o (rp + wn)
s(fnr o p) = 0.021 197 +0.01l, P = 1.54 - 2.6 GeV/c
_— ¢ 0.02M198 o - 51 gev/c
o(m n> w p) (109)
< 0,06 ’ P = 5.4 GeV/C
st pr 68" < 0.0033M0 5 _ 3.7 gev/e
sntp> wa™y = o0.0228111) = 8.0 GeV/c

4.3.2 Strong Decay Processes

The two body final state hadronic decay processes of both ground-
state and the first radially excited state vector mesons are investigated
with a view to determining relationships between the decay amplitudes of
the excited states. A naive procedure is adopted in which the quark model
additivity assumption is used to decompose the mescon decay amplitudes in
terms of a sum of quark amplitudes describing strong gq production sub-
processes. As an example, consider p -+ 27 decay which can proceed via

strong uu or dd production as shown in Fig. 4.4. The amplitude for the

decay
u + T
- u u
d
2 d
o o
C G po_
d
d u +
- m 3 T
u

Fig 4.4 : Possible quark sub-processes describing p + 2n

is given by : —

o _+ -

< |nm > <uu| (ud) (du)> -< dd| (ud) (au) > (4.23)

i
V2
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where, for simplicity the particle wavefunctions

po = i (uﬁ - da)

V2
* = ud (4.24)
T = du

have been assumed and <u£|(ua)(da) > and <da](ua)(da)) represent
amplitudes describing the strong production of dd and uu quark combinations
respectively. In the radial mixing model the coefficients accompanying
these amplitudes will take on different values but it is assumed that the
amplitudes themselves will remain unchanged. This property is exploited
by first calculating relations amongst the amplitudes using meson vertex
and SU(3) selection rules and then using these relations in the radial
mixing approach. In this manner a quantitative estimate of the effect of
radial mixing upon vector meson decay rates can be made.

The procedure adopted in the following analysis will be to firstly
test this method of calculation by its application to the known decay
couplings gpﬂ“, g¢k§ and gk*kﬁand then, accepting its validity calculate
relations between (i} V'+> PP couplings and (ii) v'+ VP couplings. It is
unknown at present how the amplitudes for the processgses (i) and (il) are
related 5o each case must be treated separately.

(i) V. > PP

The relations required between quark pair creation amplitudes
which will allow quantitative predictions of V + PP meson couplings are

obtained by examining the properties of SU(3} wavefunctions, denoted in




the usual manner by,

+ o -
n i 1 - - T _
o ud = = {uu-dd) = du
+ o V2 -
(o] b ¢
+ -— -—
X x° K° K
= us = ds = sd = su (4.25)
e * -o% —*
K KD K K
g 1 _ . _ "o 1 - - -
=== (uu+dd-2ss) = = {(uu + dd -2ss)
wg 3 w Y3
o

With this notation the G-parity violating coupling g ; _ gives
Wl

g+~ = O implies <uu | (ud) {(dw)> = - <ad | (ud) (du) > (4.26)

Similar relations are obtained fram other couplings, in particular

g =g o = O implies

¢
WA T wmw na

<uu |(ua) (uu) > = <d@d|(ad (dd)> = o (4.27)

Amplitudes involving the production of ss guark pairs can be

investigated by noting that the U-spin (and Vv-spin) singlet state mocannot

(112) o-o

decay into k k or k+k-,

T ke O implies <uu |(u§)(sﬁ)> = - <s§|(u§)(sﬁ)>
o (4.28)

O implies <dd |(ds)(sd)> = - <ss|(ds)(sd)>

]
]

gm kO }‘ZO
o
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= - - ivi
Isospin allows these to be connected through gw8k+k' gwakoko giving

<ss |(us) (su)> = ~ <ss |(ds) (sd)> {4.29)

The amplitudes of (4.26) involving just u and 4 quarks are related to those

of (4.28) involving s quarks through symmetry properties,thus the SU({3)

results(ll3)
* - - - -
<k O] k%% > = —/%'<Do|ﬂ+ﬂ > : <k O| k ﬂ+> -1 <00[ﬂ T o>
V2
o + - 1 o V3 -
< |mm> = 2¢ 5 p+—2—m8|kk>
give _ _ _ _ _ _
<ds| (d@s) (ad)> = <uu | (ud) (du)>
<sd| (su) (ud)> = -<uu | (ud) tdu)> (4.30)
and <dd| (ud) (dw) > = -<ss [{us) (su)>

raspectively. Also, the isospin relations

k'n >

0

«x"n> = - /7 <k k%° - o KO

imply <ds|{ds)(dd)> = <ds |(us)(au)> = - <us |(ds) (v@) > (4.31)

Denoting <da| (ua)(da)> = A the assignments in Table 4.8 can be made.

<uu |(ud) (@) > = - & < ddf(ud) (qu)> =
<gs |(us)(su) > = -~ A < uu|(us)(su)> =
<ss |(ds)(sd) > = A < dd| (as) (s@)> = -A
<ds [(ds)(@d) > = - A < sd|(su) (ud)> = A
<ds |(us)(dw) > = - A < us|(ds)(ud)> =

TABLE 4.8 : Quark production amplitudes for v -~ PP processes.
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That the results of Table 4.8 are correct can be checked using the SU(3)

predictions(llz'lla)
2
B I S N P P T R PR R L %|<p°|1r+n_>|
73
/3 <0 k%%> = <u |x%K°> : <w8[k+k_> = —<ug [k%° > (4.32)

/3 oy + -
- <p lﬂ m >

+ -
<wg |x" x> >

which are all reproduced by these amplitudes.

In order to find connections between the couplings of physical vector
mesons it 1s necessary to assume that all the symmetry breaking involved in
transforming from an SU(3) basis to the physical basis is manifest in the
coefficients appearing in the particle wav e functions and that the q& produc-—
tion amplitudes as expressed in Table 4.8 remdin unchanged. To what extent
this assumption is correct can be gauged by examining predictions for the
vector to pseudoscalar decay widths. With the wavefunction notation of

(4.9) and (4.11) the allowed V + PP couplings can be expressed as

Q
+
t
I
1
(X
<
P
e}
»
- ¥
o
-]

pm W i

+ 2
- _ ¢ _ ¢ k
9 4 - = Z"fi oy {‘Ji} a (4.33)

ok k

— *+ o _+
= k m
* + = = -
g, "0, Zf]: g, a;, A /2 gk*+1;+n°
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The radial mixing model wavefunctions for the p = 2.8 fit (Appendix 3) give

the numerical results

g 4 - =-1.16 A
pT T

g ,_ = - 0.87 A (4.34)
¢k k

g . + = 0.87 A
k +koﬂ

predicting couplings in the ratio

I i g
+ - : + - ) *+ o 4+
om T ok k X Kom

= 3.6 : 2,0 : 2.0 (4.35)

In a ground-state, ideal mixing model these ratios are 4.0 : 2.0 : 2.0.

4
The decay width for V -+ PP processes is given by(ll )

(4.386)

where K, the centre of mass momentum of P is

2 2 2| [ 2 .2 2
k® = l:Mv (M, + M2):| Ev (M uz)]/mv (4.37)

with M. and M2 the masses of Pl and P2. Predictions for the allowed tywo-

*
body decay widths of the p, ¢ and k can now be made in terms of the as yet

unknown amplitude,

2
T(p + 2m) = 5.54 A

T(¢ »x'% )= 0.076 a° (4.38)

*4 + 2
T +x°n')= 1.20A
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2 6l
Determining A from the » width,Ptot(p) = 158 + 5 Mev( ), to be

2
A 28.5 {4.39)

provides the numerical results

T(6 >k k J 2.17 MeV

*

+
Tk T k1)

(4.40)

34.20 Mev

6 + - * *
E@HMmgl)ﬁmsﬂ¢+kk)leMdeTm +M)2Fmgkh5m3mm
For the processes considered here this latter value is constructed from the

sUum

* + LES + *
Ik T »kon) + T(k '+ %k 1°) = %I‘(k "5 k%Y = 5103 Mev (4.41)

in this model. In a ground-state, ideal mixing model the results would have

been

1.95 Mev

rip > X'k )
(4.42)

46.2 Mev

* *y
rk T k% rik F e xS

These predictions are sufficiently close to experimental values to justify

a further investigation of the decay of radial states, using the same method.
' ' +, - *4! o_+

The two body decays p' + 27 , ¢' -k k and k + k ® are treated in

Jjust the same manner as their ground-state counterparts to give

o + 2
n
g =_2§ ai (gi) A
p 1
' ! + )2
k
g . _— Y¢-a¢ g a (4.43)
+ - L1 i i
¢ k k T
gV
fk+ ko 1r+
9 x4 o 4 § s g 9 A
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Again, the p = 2.8 results give numerical values
g , =—0.27 A
p o
g, = -0.13 A Yz = OUA (4.44)
‘¢ kk
g enr s+ = 0151
k * kon
which, with the predicted masses Mp| = 1.33 Gev, M¢, = 1.59 Gev, M 1= 1.45 Gev
k
give the ratio of decay widths
' v 1 *4! o_+ 1 i
P(p'+ mm) : T(¢" »kk) : TI(k +k°n) : T{w-kK)
= 6.6 : 1 : 1.5; o4 (4.45}

{ii) vV > VP
The approach to V -+ VP decay widths follows that of the previous
V » PP treatment. Amplitudes for quark subprocesses are first related using

G-parity and SU(3) results. The G-parity violating couplings g o + - and

ppT
ive
gmmﬂ g

<uu | (ud) (du)> <dd| (ud) (au) >

{4.46)
and con | (uw) (wn)> = <dd|(4ad) (@a)>
respectively, while the required SU(3) result
+ - e -
<w8[p T > = 2 < ma [ kK k > (4.47)

relates the uu, dd and ss production amplidues

<uu| (us) (su)> = < ss |(us) (sw)> = -<uu |(ud)(du)> (4.48)




0

. . + - o 0
The final connection is given by isospin where <w8|p > o= - <m8|p >
results in

<uu | (ud) (du) > = ~ <uu |(uu) (uu)> (4.49)

As before these amplitudes can be expressed in terms of a common amplitude
Av to give the assignments of Table 4.9. These can be checked with the

SU(3) results

<p|k**k—>

/5 <m8|k*+k‘ >
(4.50)

1

and q%]p " o> = - <molk*+k' >

which are reproduced in this notation.

<uu (ud) (dw)> = A <ad| (ud) (@w> = A,
<un| (uu) (ww)> = A <dd|(ad) (@d)> = - A,
<uu| (us) (su)> = - A, <ss| (us) (su)> = - A

TABLE 4.9 : Quark production amplitudes for V + VP processes.

Assuming, as before, that when the transition is made to the basis
of physical states these amplitudes remain unchanged allows relations to
- l *
be derived between the decay widths for p'-» mﬂo, w +ﬂ+ﬂ and ¢ > k k.

These .idths are calculated from the V' * VP couplings using

3,

12n  Cy'vp (4.51)

F{v' » vp) =

with the centre of mass momentum

2 2 2 2 21 2
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With the predicted masses M | = 1.33 GeV, Mm = 1. 34 Gev, M¢ = 1.59 GeV
o}
and following the procedure developed in (i) the decay widths are found

to be in the ratio

—_ [} * —_
T(p' +wm) : Pw'>p'n ) :T(d >k k) =2.6:5.0:1.0 (4.53)
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CHAPTER 5

ISOSPIN VIOQOLATION - THE CONSTITUENT QUARK

MODEL APPROACH

5.1 INTRODUCTION

The notion of isospin has been used extengively in the theory of
nuclear interactions, where it was pointed out by Cassen and Condon(lls)
in 1936 that the ideas of charge independence and charge symmetry (the
equality of proton-proton and neutron-neutron interactions) could be neatly
encapsulated within the SU(2) algebra of isospin. The idea is simply
expressed by saying the strong interactions of the hadrons are invariant
with respect to the SU(2) isospin transformations, and so the masses of
hadrons belonging to the same isospin multiplet would be identical if all
interactions other than the strong interaction could be switched off. Any
splitting amongst the masses is then associated with the effects of the
electromagnetic interactions which are not invariant under SU({2) trans-
formations.

The principles associated with isospin are repeated at the next
level of hadronic structure, that is, at the quark level. The pregently
known quarks u, d, s, ¢, b are grouped into isospin multiplets such that
{u,d} form a doublet and all the other quarks are isospin singlets. If
isospin symmetry is exact the u and d quarks will have equal masses and
will behave identically in their strong interactions.

The idea that isospin 1is a good symmetry of the strong interactions
has been challenged by many authors(116-123) in recent years. Such a
symmetry violation would be manifest in theldifference expected between the

u and 4 guark masses, the magnitude of this difference rcpresenting directly

the magnitude of the violation. 1In section 5.2, the definitions of the
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term "quark mass" are examined in terms of the current algebra and
constituent gquark pictures of hadronic structure and their possible
connection is outlined. This is followed by an account in 5.3 of present
quantitative estimates of the isospin violating mass difference A = md“mu
which in 5,4 is intrcoduced to the linear radial mixing model where its
magnitude is confirmed by making a comparison of the model prediction for
pseudoscalar isomultiplet mass differences with experiment, This deter-
mination allows a prediction for the isospin vieclating ratio T(¢'+ ﬂow)/
F(y'+> n ¢) to be made.
5.2 UARK MASSES

Of the many different attempts made to describe hadronic structure
those involving the constituent quark model and current algebra techniques
are of interest here,. Before the advent of QCD as a viable theory of the
strong interactions these two approaches produced mass relations among the
quarks which were quite incompatible. The PCAC techniques of current

algebra can be used to predict the gquark mass ratio(121_123)

m +I]1d M_’zI
u = — = 0.04 (5.1)
2m 2
s "

curr.
however, constituent quark masses, as determined by the radial mixing

model, for example, give the quite different value of

=
o1
11

0.7 {5.2)

constit.

The incompatibility of these pictures led to the distinction between current

and constituent masses.
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Conventionally a particle mass is defined by a pole in the particle
propagator, however, there is a problem when dealing with quarks, for they
may be confined, in which case their masses will not be directly measurable
by experiment and must be inferred by using an indirect approach, for
example, by examining the properties of bound states and their interactions.
The mass determined in such a manner will be dependent upon the model used
for the analysis.

The constituent quark mass is difficult to define precisely(lzl)for
this wvery reason ; it depends upon the dynamical gdetails of the models in

which it is used. It can be taken, in an approximate sense, as the mass of

a quark as it makes its appearance in a hadron in a free quark model, then

constit. constit. 1 1l
] a2 — o — ~ 3 .
mu my 5 Mp 3 MP 30 Men

constit.

1
ms = E M¢ = 510 MeV
(5.3)
poonstit., 1, > 1.55 Gev
c 2 ¢
constit._ 1
[ o .7
5 MT 4 Gev

In contrast current quark masses can be given a precise definition in terms

. . 3
of the divergences of the vector and axial vector cun:'e?.nts(3 ),

a

U oo T 1
évn(x) = ig(x) [M 7 V[ at
(5.4)
U o 4 1l .« :
o Au(x) = dq{x) ) M, 5 Ay qlk)
where a(x)
q(x) = d(x)

s (x)
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and M is the quark mass matrix

m O 0
0
M = O m 0
a
&) O m
s

In order to examine the differences and any connection between theae
definitions a framework is required in which to discuss them ; such a frame-
work is provided by QCD. The quark mass term which appears in the QCD
Lagrangian(l,37) is the bare current quark mass and is the only term which
explicitly breaks the chiral SU{n) x SU(n) symmetry (with n flavours), while
still maintaining renormalisability(124). In any renormalisable theory the
mass of the quark depends upon the energy at which it is defined. In perturb-
ative QCD this variation with energy is described as a funétion of Q2

(momentum transfer) by(lzs)

m (QZ) = Zm {5.5)

where mi is the bare mass which appears in (1.37) and Z-l iz the factor
which renormalises aq in the massless theory(l26). When treated perturbatively
in this manner the masses take on the role of additional effective coupling

constants which appear in the renormalisation group equation, giving, to first

126
order(” 2
M o_ - -
3t m Ym(g, m/y) {5.6)
where L2 -1
1 o g C 0y
t = - En{ 2} . 3 &% - 1 + 5.7
2 /y T 2m 2 .7
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Also, to first order, the dimensionless coupling is given by

2
2 48 (5.8)

2
(33*2nf)£n(Q /AZJ

for nf quark flavours, where A sets the renormalisation group invariant

scale.

The solution of (5.6) depends upon the values taken by g and mi at

the renormalisation point p . If these boundary conditions are fixed at(126)

mu(u) o md(u) = 0.02 GeV ; ms(u) = 0.4 Gev ; mc(u) = 1.5 Gev {5.9)

2
for uy= 3.0 GeV, giving g (U)/4n = 0.5 then the solution of (5.6) appears as

shown in Fig 5.1(127). Since this result is produced from lowest order

perturbation theory, its implications should be treated with caution as

2
g /4ﬂ becomes large.

Quark g
masses 4
vy
(MeV) n
c
11.5
1000 ¢
m
s
o 1.0
-
100 % \ 2
\ 2
\411’
\ J
\ 0.5
~ m
10 L ‘ u'’g
4 0.0
1 10 100 1000

Q(Gev)

Fig 5.1 : variation of quark mass with energy.




97

A further problem arises at low Q2. As has been noted, in a
massless theory the QCD lagrangian is invariant under chiral SU({3} x SU{3)

transformations, however, this symmetry appears to be spontansously

(121,128)

broken with <O’§q|0> taking on non-zero values. The full quark

(129) which is found to

mass then receives a non-perturbative contribution
be important only for small values of Q2. The quark mass, including both

the explicit symmetry breaking term given by first order perturbative QCD

and the non-perturbative contribution is then(lzg)
2 2 2
mi(Q y = mPi(Q ) + mNP(Q ) (5.10)
_ 5 —15/t33-2nf)
) -12/(33-2n) <0|qalo> (2np®) |
where Illpi Q) ~ mOi{SZ.nQ ) and %P'b Q2 |

with m o mi, the explicit mass term appearing in the QCD Lagrangian.

i
12
{(5.10) represents the full quark mass term which is interpreted 1oosely( 9
12
as the constituent quark mass. Accepting (5.10) Politzer( ?) has made

rough estimates of the relative sizes of the two terms at finite walues
of Qz.

For the light u and 4 quarks, the constituent masses should be
approximately the same, irrespective of whether SU(2)x SU(2) is exact or
slightly broken by an explicit mass term. Then mNP(Qz) = 300 MeV for
Q = 700 Mev, In contrast, for the heavier ¢ quark in the region
Q0 = 3.0 GeV the non-perturbative contribution is dwarfed by the much larger

2 2
explicit mass term giving mc(Q )y o= my, (0 ). The s quark lies in between
c

these two extremes, having a small but non-negligible spontaneous contri-

it.
bution. Taking mgonst to be approximately 500 MeV, Politzer finds

mPS = 375 MeV.
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5.3 ISOSPIN VIOLATING MASS DIFFERENCES

The search for evidence of isospin viclation has been motivated

117
by the suggestion that isospin is an accidental symmetry( +123)

that at the current quark level the bare u and d quark masses are sub-
stantially different, while at the constituent level (which provides a
reflection of hadron symmetry), upon addition of the non-perturbative

contribution, mu and m_, are approximately equal, leading to an apparent

d

isospin symmetry. The pseudoscalar mass spectrum which, in current algebra,
results from the explicit breaking of SU(3)x SU(3) provides a natural

domain in which to search for noticeable effects of an isospin asymmetry.

2
The meson masses are calculated using PCAC technigues to give(1 3

2
M =

" a3xayeo| A% (x,0) , [ af 3.0, H—‘ | o> (5.11)

o J

™l
SN

where the standard definitions
22 ) = Q) L% a=1,....8 (5.12)
u g Yu YS 2 q ' TEEE .

and

<0| Aﬁ InBp> = 1iF (5.13)

P 4§
T u af
have been employed. Assuming that the vacuum expectation values of the

bilinear products of guark fields are flavour independent,that is

<oltu |0 > = <olddlo> = <olss o> = v (5.14)

and writing the Hamiltonian, as suggested by QCD, as
H = H_ +muu +mdd +m ss (5.15)
o u d s

where Ho is sU{(3) x SU(3) symmetric and the masses provide the symmetry

viglation, the commutator on the right-hand side of (5.11) is evaluated
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to give (Appendix 4)

2 1 2 i 2 1
M = - 4 + : = - = + ; = = e
. 5 (mu md}v M+ 5 (mu mS)V Mo 5 (md+ms)v
F F F
L T m
{(5.16)
. {38)
which were first derived by Gell-Mann, Oakes and Renner .
2
As they stand these meson (mass) terms do not include possible
{125)
electromagnetic contributions. In general
2 2 2
= M + M 5.17
Mg p y ( )

where up represents the physical particle mass and MY the electromagnetic

2
mass contribution. These MY terms can be eliminated from the problem by

appealing to Dashen's theorem(l30) . which states that, in the chiral limit
2 o 2 o 2 -0
M (nm = M (k = M (k =0 5.18Ba
Y( ) Y( ) Y( ) ( )
and
2 t 2
M(n) = M (k) {5.18b)
Y Y

{5.16) and (5.18) allow the ratios of current guark mar~ses to be evaluated,

S .
d o + T+
o - _2 2 2 2 = 1.8 (5.19)
u 2MT|'0+ M.k+-MkO_ M'ﬂ‘+
2 2.2
B Mpot Mt M, = 20 (5.20)
m - 2 2 . 2
d Mo~ Mt M,

{5.19) has also been estimated from experimental data of the baryon mass

(121) (122)

spectra and n + 3n decay (md/mu = 2.6) and p -w mixing (md/mu = 2.1}

Although there is some discrepancy between these values they do indicate
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the isospin symmetry seen at the constituent level of hadron structure is
an accidental symmetry and not a reflection of any symmetry at the more
fundamental level of current quarks. The apparent symmetry is manifest at
the constituent level because the u and 4 quarks pick up a spontaneous
contribution to their masses which, in the energy regiou where non-strange
hadrons are ochserved, is much larger than the current quark mass.

If the non-perturbative contribution to the constituent guark mass

is assumed to be flavour independent then,writing(lls)
constit. 2 curr, 2 2
m. ) = m, Q) + mNP(Q ) (5.21)
t i - L
he difference (md mu)constit. can be estimated by not.ng
m _-m m_~ m
d_u = 4. = 0.0234 (5.22)
Ms™Ma curr. Mg~ T constit.

using {5.19) and (5.20). Taking constituent quark masses as determined by

the radial mixing model gives

(md - m ) = 3 Mev (5.23)
U constit.

cur

where it has been assumed that the Q2 dependence of mi r'(QZ) is

independent of i.

5.4 ISOSPIN VIOLATION IN THE RADIAL MIXING MCDEL

Observed 1sospin violations in the spectrum of mesonic states are
investigated here in terms of the interactions between their quark
constituents in the framework of the radialmixing model developed in Chapter 4.
The model is easily extended for this purpose by making the isospin

violating additions of

{i) the strong constituent mass difference A& = my mu and
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(ii) electromagnetic Coulombic and hyperfine interaction terms
to the Hamiltonian operator._ An estimate of the magnitudes of these
additions is made by comparing model predicticons for the pseudoscalar
isomultiplet mass splittings - ﬂo, k+ - x© and D+ - p° with their
relatively well determined experimental values. The consequent changes
induced in the meson unitary spin wavefunctions are examined by treating
{i) and (ii) as perturbations and diagonalising the relevant mass matrices
to give isospin violating mixing angles in terms of these additions. The
mixing angles allow subsequent evaluation of T (w +2m) and the ratio of
SU(2) to SU(3) violating processes TI'({'+ wow) /T ).

5.4.1 Isospin Vielating Mixing

The linear mass mixing model which was used successfully to
describe the mass spectra and decays of vector and pseudoscalar mesons in

Chapter 4 is extended by including

(i) A = md - mu and
> 5
\ eaeb 1 8n Ua.ub 3
(i1) Hem = aem 2 ;__ N 5_- m 8 (rab)
ab amb
+ >
oa“ob
z e eb a + b —— (5.24)
: Dol
in the mass matrix
A § 8
= \ - _ aa' ab a'b'
<qa|qbln |M|qaqbn> = Mabnnlﬁaaldbbl + /_T
m mb nn
a
L Bab
with Mab , = (m_ + mb +E)8§ , +0 Ub —_ {5.25}
nn a n nn a. mamb Jont

(\'_;_m. Un:vU! ,
Q7 SCIENCE T
- .. .
77 1 0 MY 1982
N SECTION
librar‘f
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is the inter-quark separation and a and b

where ei are the guark charges, T.b

are parameters characterising the strengths of the electromagnetic Coulomb
and hyperfine interactions respectively. The form of the mass matrix (5.25)
differs from that of (4.1) by the inclusion of the explicit dependence of
Bab and Aaa' on quark mass. To allow quantitative preaictions the various
parameter values cobtained in the p = 2.8 fit, as displayed in Table 4.7, are
employed here with the necessary modifications.

The inclusion of (i) and (ii) in (5.25) allows isospin violating
isoscalar~isovector mixing between ﬂo—n,ﬂo -n', ﬂo— nc and p~o and p - ¢
to be described. This mixing is produced not only through the straightforward
additions of (i) and (ii) but also by the effect of A on the hyperfine and
annihilation interaction terms(ll6) which are proporticnal to l/mamb. This
inverse mass dependence is expleoited to give the relevant terms a A depend-
ence through the first order substitution l/md = (1 -A/mu)/mu. It is assumed
that this is the only substantial effect that isospin violations will have on

these interaction texms so that the values of the parameters Bab and Aaa' will

remain unchanged. The ground-state mass matrix in the q& basis is then

2m + 4a + 4bg.c
m
A A
: _ud §, _ 4 2as _uc_
B 2 m, m o m m
+ uu ;mg + uu u u c
2 : 2
m, o >
v Y bo.a
2m +2A+a+ 2 +t — 1- —_—
m
u
1216 l—A— de de A}dc{l A_}
m My + ——1?!1 - u mumc mu
u 2
m
a ]
by .o
2m +a+ g'
A A m A
us ds ), _ b8 s sC
m m_ m, o m . m_m
+B 0.0 A
ss , S8
2 2
m m
s s
4b'+'+
om +4a+ 3pO.0
a Ad Asc c mz
uc 8¢ §y; -4 — c.
mm m m m 5
uc uc Q ¢ . Bec » +, _cc
2 g.g —'—'2
b D Be
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with g.g = - 3/4 for the pseudoscalars and + 1/4 for the vectors.
In order to find the isospin violating mass mixing elements in the

pure isospin basis the product

M = UM U 5.27

sU(2) aq ( )
is formed, where qu is the mass matrix in the q& basis and U is the matrix
of elgenvectors obtained from the p = 2.8 fit in Chapter 4, which would
diagonalise qu if the isospin violating additions (i) and(ii) were absent.

The resulting mass matrix in the ground-state is then

6
o !
mn ™ nnc
6 M 0] 0
™ n .
M = 5.28
SU(2) ( . )
§ O M, 0
m n
Gﬂ Q O M
ﬂc nC

where the isospin violating mixing of n-n' —nc is ignored since its effects
o
on the ™ wavefunction, which is of primary interest here, are negligible. The

off-diagonal mass mixing elements in (5.2B} contain terms linear in A, a and

P

P P
b which are multiplied by the appropriate wavefunction coefficients aj bi' <y

P
and di » in the notation of (4.9). The corresponding mixing elements for the
o o)
vectors are obtained by making the replacements ™ p , n *+ w, n' + ¢ and

+ L
n,
The relatively large widths of the vector states, particularly the
p, are responsible for further contributions to the mixing scheme which are

not observed in the pseudoscalar case. Including these effects in the mass matrix



invelves rewriting (5.28)

which allows the investigation of p-w interference effects.

~

6p¢

T
b.&p - 2
$

puw
6pdb.
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{116)

as

8 8

puw pe

11'm

M- o (5.29)
ir
__ ¢
0 Md) > J

In practice

O and can be safely ignored in future applications.

Vector mixing is further complicated by the presence of electro-

magnetic annihilation contributions to the mass matrix via the process

pFry>p, 0>y +rwand >y > w.

A(

p>y)

Denoting the amplitude for p + vy by

a, v < plal o> (5.30)

where J is the electromagnetic current operator responsible for the transition,

then by noting that J couples to a q& pair proportional to the charge of the

quark q(131

)

the amplitude for w + y can be evaluated as

A(w +y) =

in the notation of (4.9). Taking az and a? values from the p

Alw -+ ¥)

=]
p— -,
wm wn

+ (- 1/3}

(5.31)

[

Ll e B | i |
R

a
- (- 1/3)} n

2.8 fit gives

0.342 a (5.32)
n




105

Thus the electromagnetic annihilation contribution to the vector mass

matrix is

a 0.342 a2 p
n

Moo= (5.33)

0.342 a2 0.117 a2 W
n n

— —

vwhere 5 and w are the pure isospin states.

Eigenvectors in the physical basis, which are obtained by diagonali-
sation of MSU(Z)' can be expressed in terms of isovectcr-isoscalar mixing
angles defined by

7% = |7% + o, |n> +¢p|ﬁ'> X ﬁc>
In> =|n> - o, 70>
(5.34)
In'> = |n'> - 4 (%>
|nc> = lﬁc> - X ;°>

where the barred symbols indicate pure isospin eigenstates. Unitary spin

wavefunctions for the vectoers are constructed in a similar manner. Diagonalisa-

tion of MSU(2) with (5.34) produces pseudoscalar mixing angles
)
1 6nn' e
0 = = ——— $ = - ——— ; x = - —=—— {5.35})
- - -M
P M M P Mn, M1T P Mﬂé -

and the vector mixing angle of interest here

4 © + 0.342 aﬁ
0 - _p 5 {(5.36)
M~M+ 0.883a + 1i/2 (T -T")
0 w n w p
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Substituting particle masses and parameter values gives

op = - (3.02 x 100)A + (2.16 x 10 )a - (2.25 x 10 )b
-4 -4 -9
¢p = {(2.48 x 10 )A - (8.27 x 10 ")a + (3.41 x 10 )b (5.37)
X, = S(1.21 x 1008 - (1.38x 10 7)a + (1.33 x 10 )b
.o . . . (116)
The annihilation contribution to OV has been calculated by Isgur ., who

2 .
finds a = 1.4 MeV giving

o
Ov = [:0.74A - 1.50 a - (2.20 x lo_e)b + 0.479j]x l4.26x10_3 ei(94)

(5.38)

The predicted p~w phase angle agrees well with experimental values which

5 6 + ©
range frcom(l 9 ({85 i_lS)O to (160) (100 ;2 }

5.4.2 Isomultiplet Mass Differences

The magnitudes of A, a and b can be determined by comparing model
predictions for isomultiplet mass differences, for example ﬂ+ —ﬂp, with their
experimental values. Few such mass differences are well determined
experimentally. Where sufficient information is available Particle Data

Group averages are used,

M - M = 4,604 + 0.004 Mev M -M o = -4.,01 + 0.13 MeV
w m° k k

M “ M, =" 4.31 %0.62 Mev (5.39)




ic7

+ LN *,
The D - D~ and D -D differences have been determined by Peruzzi

et al(l6l) wha quote
M + M o = 5.0 + 0.8 Mev M y M o 2.6 + 1.8 {5.40)
D D b D
Also M - M = -.2.4 ¥ 2.1(162)
p+ po -

Model predictions of these quantities are given by diagonalising

the I # O sectors of the mass matrix,

2
M L M = - g-a + 3— 225 (a")
m ™ 2m
u
3 3b k2 3 Ba A k.2
M -M = - A-3a + > (@aH-= S, = (a) (5.41)
+ o) 4 mm 4 mnm m
k k us u s u
3 6b D2 3 Ba A D2
- = - +_ —
MD+ MDO A-6a 4 mm (a) 4 mm m (a)
uc u
for the pseudoscalars, and
9 1l 9b p 2
- M = - = - - - -28048' -0
Mp+ 0o 2 a a 2m2 {(a’) a VG ou VMLu
u
* 2 B * 2
1 k
M, -M, = -A3a-1 3 Gk, 1 d A Kk, (5.42)
¥4 *0 m m 4 mm m
k k u s u s u
* 2 B * 2
6b D 1 A D
M . -M_, = A Ha - = (a” )y - = cd — {a )
+ o 4 mm 4 mm m
D D u C u c u
P p/— ' _ 2
for the vectors where a = I (an/ n), & ow Gpw+ 0.342 a2~ and the strong
n=1 n
2
contributions to M 4 M o' which are proportional to (mixing angle) are
T 1

ignored. By substituting model parameters, A , a and b are determined from
{5.41) with (5.39) and (5.40Q) to give
b = 2.78 + 0.07 MeV ; a = -0.047 + 0.13 MeV

3 {5.43})
b= (8.32 4 1.19) x 10~ MeV
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where the errors quoted correspond to the changes induced by the errors

on M . M o = 5.0 1_0.8 MeV.
D D
differences
M -M = -2.84 MeV : M -M,
p p k k

= ~2,41 MeV : M

M *o

2.59 Mev

Predictions are made for the vector mass

{5.44)

The contributions to these isomultiplet mass differences from each of the

isospin violating interactions are displayed in Table 5.1(in MeV).

The

strong contribution to M + M o can be estimated using the parameter values
n 7
in {(5.43) to give
* o * *
Mass Difference ﬂ+ - k+-k0 D+—D0 o+_oo +—k © +—D °©
Strong (4) 0.04 -6.02 3.80 -1.09 -2.25 2.54
e/M Coulombic (a) 0,21 0.14 Q.28 0.21 0.14 0.28
e/M Hyperfine (b) 4,39 1.88 0.92 -0.57 -0.31 -0.22
Other Q 0 Q ~1.4 4] 8]
Total 4.6 -4.0 5.0 -2.84 ~2.4 2.6
Experiment 4.6 -4.0 5.0 -2.4 -4.3 2.6
TABLE 5.1 : Strong and electromagnetic contributions to isomultiplet mass

differences.

(M + M

O
m m

) =2
strong

All values are gquoted in MeV.

i 2
P

02t - M) +Z (M M)+ (M -M E]—e M
nom Tpon'wm pon W

24 —o%
Pn o pn

From (5.37) and (5.43) Op = ~0.011, ¢P = 0.00l and xp = —0.22x10H4 thus

2
"R M
p C

(5.45)
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(M - M 0) = Q.04 MeV, much less than the electromagnetic contribu-
" T strong

tions, justifying its omission in the earlier calculation.

5.4.3 w + 21 Decay

The parameter values obtained in (5,43) allow the magnitude of Ov

and hence T'(w -+ 2n) to be estimated. Writing the physical w as
= Iy - —> 5.
w> w > ev p (5.46)

the isospin violating decay width is given by

3 2
Pw Mp 2
T'fw + 2w)= ¢ P N Ov T(p > 2m (5.47)
p [0
, 2 2 2
where the pion centre of mass momentum Pv = (Mv - 4‘M")/4 and T{p +2mw)=158 MeV.
61
The Particle Data Group average value( ) for this decay rate is quoted as

B(w -+ 27) = 0.0133 + 0.0027, however results taken from individual experiments

+ .
vary considerably from a maximum(l35) B(w + 2m) = 0.04 _ g gg to a minimum(l36)
B(w +2w) = 0.01 + 0.00L. The parameter values of (5.43) give levl = 0.034

and hence B(w - 2m) = 0.018 in close agreement with the PDG average.

5.4.4 The Isospin Violating Decay ¢ '~ 77y

{137,138 n two

The ¢’ +ﬂ°¢ partial width has been ocbserwved
experiments performed by the Mark II and Crystal Ball collaborations. They
quote *eix results as a ratic of this SU{2) viclating width to that of the
SU(3) violating T(y'+ n ¢} giving {'40 + 10) x 10”3 and (60 + 20) x 10_3
respectively.

A study of the isospin violating process §'-+ #° in the constituent
quark framework requires a knowledge of the cc component in the 1° wave-

function, which is responsible for the decay, Fig. 5.2. This component

o o o . .
arises from both =® -, and 1 -n , T -n' mixing, since the QZI rule violating
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annihilation amplitudes produce significant mixing of cc in the n and n'

wavefunctions(sz'go).
c
_ ¥
c
'C
Voo
c
€ ° Fig 5.2 : Strong production of a
c

- . . o
cc palir in y's+ n) decay.

Using the expansion for the 7 in (5.34) the amplitude for this process is

A 1%9) = A 1Y) + 0p AV’ T+ 6 R(Y'> AW 4X AW’ ) (5.48)

The quark model allows this to be rewritten in terms of an unknown amplitude
involving the quark sub-process which describes the strong production of a ce
pair, Fiqg. 5.2+. This unknown amplitude is eliminated by dividing (5.48) by

the amplitude for the SU(3) violating process y¥'+ np to give

A'orCy) L ORI NI G AN AT X AL T )

AV > nb) A(p'>  ny)
- -0.0l1 - 2.0l x 10> —0.017 (5.49)
= -0.030

. . Q o .
Contributions corresponding to 7 mixing with the n,n' and nc are shown

explicitly. u
=¥
u
, u
" -
u
1_1 © Fig 5.3 : Strong production of a
u

- ©
uu pair in '+ 7w ¢ decay.

T The other possible process leading to this decay, shown in Fig 5.3, is strongly
suppressed compared to that in Fig.5.2 due to the very small mixing of uu
compeonents into the §' and ¢ wavefunctions. This is a reflection of the
pseudoscalar quark annihilation amplitudes being in general an order of
magnitude larger than the vector annihilation amplitudes.
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Previous analyses of this ratio have only included the effects of mixing

(118,120)

SALT0 e

n and n' with the no, however, this deter-
mination indicates that although the no- nc mixing angle xp is two orders of
magnitude smaller than Op the relative proportion of cc in the nc and n
wavefunctions annuls this suppression leading to centributions from ﬂo~nc
and ﬂo—n mixing which are roughly of equal importance.

The ratio (5.49) can be re-expressed to indicate the centributions
arising from the strong and Coulombic and hyperfine electromagnetic inter-~

actions respectively

RA = -~0.036 + 3.27 x fl.O-4 + 0.0062 (5.50)

Equation (5.50) indicates that the isospin viclating strong interactions are
predominantly responsible for the ¢' = now decay process, contributions to
the amplitude from the electromagnetic interactions are much smaller in
comparison and of opposite sign thus reducing the absolute magnitude of
{(5.50). This is just as observed in w* 2% decay where the amplitude is
proportional to GV. In this case 85% of the amplitude arises from the
contribution due to the strong interaction while the remaining 15% results
from the effects of the electromagnetic Coulombic, hyperfine and annihilation
interactions. Both strong and electromagnetic contributions are of the same
sign.

Multiplying (5.50) by the relevant phase space factors yields the

requirec ratio of decay widths

Tig'=> 7°9) i
R = ——— = 1Bx 10 {5.51)

Py~ nin

a factor of two or three legs than the present experimental determinations.

Agreement could be improved by increasing A and decreasing a and b in
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magnitude, however, such changes would spoil the satisfactory picture of
isomultiplet mass differences described in section 5.4.2.

In conclusicn, upon addition of the isospin violating contribu-
tions (5.24) to the interaction Hamiltonian, this constituent guark model
which involves full symmetry breaking amonst its parameters can provide a
reasonable description of both isomultiplet mass differences and the
branchingratio B{w -+ 2m}. The prediction for R given in (5.51) is smaller
than its experimental values determined by the Mark IT and Crystal Balil
collaborations. However its evaluation raises the interesting problem of
the relative importance of contributions from ﬂown,ﬂo-n' and n°- nc mixing.
The relative suppression of ce components in the n and n' wavefunctions
compared with those iﬁ the nc implies t+hat the latter n°- nC mixing contri-
bution is the dominaﬁ£ contribution to R.

The mixing scheme described by (5.34) has the effect of changing
the relative importance of the uu and 4d components of the unitary spin

wavefunctions. In the ground state the pseudoscalar and vector wavefunctions

are
1% = 0.657 ua - 0.647 43 + (7.72 x 10 ")ss
|ln > = 0.420 wu + 0.434 ad - 0.748 ss (5.52)
In'> = 0.491 uu + 0.493 a3 + 0.509 ss

lo > = 0.695 [(1 -0 )uu - (L +0)dd) |
[ -y v ] (5.53)

o> = 0.695 [(1+6)uu + (1-6)ad ]

Thus for the pseudoscalars the uu component of the I = O state is increased

relative to the dd component while the reverse is true for the I = 1 states.
L s (L16,117) .

This is just as observed by Isgur et al , with the result that their

conclusions, for example,

re® >%y) = 1.09 I'(p'> 7'y

{(ca’. lated using {(5.52) & (5.53) ) are reproduced here.




5.4.5 A Note on Isomultiplet Mass Diffeiaences

The strong and electromagnetic contributions to isomultiplet mass differences
quoted in table 5.1 are the result of a three parameter fit constrained by the
nt - ﬂo, K' - K” and D" - D° mass splittings and the form of the lHamiltonian(5.24).
The magnitudes of the electric and magnetic contriputions obtained in this manper

;
do not agree with those found by other authorsll6’164

whose explicit calculations
indicate that the Coulombic component is consistently larger than the hyperfine
component. Matching the terms containing a and b in the expressions (5.41) and

(5.42) for the isomultiplet mass differences with theircalculated values given in

refs, 116 and 164 indicates

a=-0,25MeVand b =1 x 10£l MeV3

that is, a and b are expected to have substantially different values from those

4

obtained in the simple fit (a = - 0,047 MeV, b = 8.34 x 10 MeVB) of section 5.4,2,

Accepting A = 3 MeV these revised values of a and b allow the following predictions

1

Mo, =M= 1.7 MeVs Moy - Mg = - 5.6 MeVy My, - My = 5.7 MeV

(5.54)

=
<+
1

=

1’

- 2,3 Mev; MK*+_MK*0 * =1.7 MeV; MD*+ - MD*o: 4.7 MeV

B(w+2m) = 0.029 R = 27 x 103

While the Myt - Mo and b%+ - Mbo predictions are satisfactory M - M, and
MK*+ - M ko are too small and MK* - MKO and MD*+ - MD*O are too large. B{w+21) is
again predicted with a value close to those obtained experimentally while an improved
estimate for R is indicated. The poor predictions for the hadron mass splittings in
(5.54) imply that the form of the electromagnetic Hamiltoniangiven in (5.24) does not
represent the whole picture. A relativistic calculation of the pion mass difference
performed by Coleman and Schnitzerl65 gives My - Mo = 5 Mev. Relat.ivistic effects

could also be of considerable importance for the isomultiplet splittings of the higher

mass states,
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CHBAPTER 6

THE CURRENT ALGEBRA APPROACH TO p =T (y + n'y) /T(y + ny)

AND R = T(y'+ 719} /T(§'> np)

6.1 INTRODUCTION

The breaking of the SU(2) (iseospin), SU(3) and SU(4) unitary
symmetries has been analysed in detail in Chapters 2 to 5 in terms of a
non~-relativistic quark model where the symmetry breaking was introduced
explicitly by giving a flavour dependence to the conséituent quark mass
and interaction terms occurring in meson mass matrices. The pseudoscalar
particles were of particular interest where the n-n' mixing pattern
provided, through model predictions, a sensitive indicator of SU(3) vioclating
effects, and the construction of the ﬁo wavefunction, in particular its
I = 0 components resulting from ﬂo-n ' ﬂQ—n' and n°- nc mixing allowed a
measure of isospin violation in hadron processes. With this in mindg, a

close study was made of the two ratiocs

. w oy I SN o)
T T orny) TOTWrn )

where p is particularly sensitive to SU{(3) violations and R is determined

redomi tly by th - i
P ominantly by e (md mu)constit_mass difference.

The magnitudes of these ratios can also be estimated using current
algebra techniques(33), applied within the framework of QCD2. As noted
in Chapter 1 in the limit of Hero quark masses (mi + 0) the QCD Lagrangian
possesses a U(nf) X U(nf) symmetry (ignoring ancmalies in the axial divergence)
where ng is the number of flavours in the theory. This symmetry is retained

in an approximate sense, when the quarks are allowed to take on non-zero

m
values provided the condition i/u <<1 holds where y is the renormalisation
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peint. This is certainly true for m and md, and more approximately so
for w, SO the QCD Lagrangian has an approximate U(3) x U(3) symmetry.
This symmetry is believed to be spontaneously broken, the axial
part being realised in a Nambu-Goldstone fashion such that the pseudo-
scalar mesons appear as Goldstone excitations {in the limit m, = Q) in
; (139) .
the particle spectrum. (It has been shown in the large NC limit
of QCD, where NC is the number of colours, that the chiral symmetry is

indeed spontaneously broken). Thus nine pseudoscalar Goldstone bosons

are expected which acquire a mass when m, agsume non-zero values, PCAC

{(partial conservation of axial current) techniques allow these masses to b

be evaluated as shown in (5.11),

2 a b
s oo Tup = 1 [2% 2% o] | o>

(6.1)

where the Hamiltonian operator is given in (5.15) and Qa are the generators

of the broken symmetry. The vacuum to pseudoscalar particle matrix
elements of the axial vector currents have been redefined here to allow

for possible symmetry breaking in their wvalues,

a .
<o| A lp > =iF_q

fini ., 2 F §, £ i, = ceae =
Defining Fi] 2019 or i,3 1, 8 and Foo Fo the results of

(5.16) are reproduced together with

M2 Fz - -1 ( + + 4
a8 = 3 mu md ms)v
M2 FFr ( + 2 v
= - —— (m m_ - m
80 o JiB u a s
M2F2— 2—( + +m )
oo o ~ T3 My Thg T g v

(6.2)

(6.3)
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Although evidence from current algebra suggests that isospin is
strongly broken at the current quark level, it is instructive to assume,
for the moment, that this symmetry is not violated and analyse the con-
sequences of (5.16) and (6.3). In this way a strong analogy can be drawn
between the shortcomings of this procedure and those of the corresponding
calculation in the constitient quark framework (Chapter 2}. The isoscalar

mass elements are rewritten as

2 1 2 2
M = = {4M -
88 3 (4M -M )
2 2v2 2 2
= —r—— - 6-4
Moo 3 a (Mk Mﬁ) (6.4)
2 2
2 2 2 M
= - + 2
Mo T 5 T2
. F : ; . (140)
where o = w/FO. The eigenvalues of this mass matrix are given by
2 4
2 3 M M-
2 _ i 2 Qa 2 2 _ m T
Ml = 3 Mk {1 + 5 } +0 (Mﬂ) : M2 = 5 + 0O {—ME-} (6,5)
L+ 2)
In the limit a + O, Mi + 4/3 Mi + the Gell-Mann/Okubu value, allowing M1

to be associated with the physical n , however a problem arises with the
interpretation of M2 which has mass

M, <73 M (6.6)

(The wWeinberg bound(l40)

} since no such light particle is observed in the
meson spectrum. This mass puzzle, why the particle associated with the
U(l) axial current is predicted to have a low mass asg given in {(6.6) when
it is expected to be of the order of the n'(258) mass is the origin of the

]
u(l) problems(125'14‘).
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The deficlencies encountered in this approach are precisely those
of the conventional constituent quark mixing model described in section 2.2.
Indeed, the results encountered there can be reproduced here by setting
F = Fﬂ, the eigenvalues of the mass matrix now correspond to those

O

expected in the ideal mixing case,

2 2 2

= y - = 6.
M ZMk M1T and M2 M“ (6.7)
If isospin conservation is not assumed and mu and md are allowed to take

different values, as indicated by current algebra, diagonalisation of

the mass matrix yilelds physical elgenstates which are the pure quark

combinations(123) ua, ad and ss with masses
2 m 2 mg 2 m
u
Voo 5V : 5 v (6.8)
F F F
m T T

Thus, not only is an unwanted light isoscalar particle predicted but also

observable isospin violations of the order

W2, 2

nt n° Mg T By

5 3 v ————— = 0.3 (6.9)
Mo * Mo g Ty

both of which are not manifest in the spectrum of states.

. 14
It is believed( 1) that these connected "U({1)" problems will find

a solution via the inclusion of the anomalous divergence in the U(l) axial
current. The triangle anomaly, Fig 1.6 , allows two distinct currents to
be associated with the U{l) axial symmetry. The Noether current, conserved
in the limit mi—+ O can only be defined in a gauge dependent way(142),

however a gauge invariant current can be constructed which contains the

anomaly contribution in its divergence and thus has the property

buhz 70
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even in the mi »> O limit, The U(l) Goldstone boson discussed above is
associated with the former current while the physical particle observed
in the meson spectrum is assoclated with the latter.

The calculation of the mass of the particle related to the U(l) axial

current involves the integral(lzs) over szF:v where Fay is the dual of the
i
field strength tensor
~d 1 a
F =— € F 6.10
pv 2 UvaA g { )

Before 1976 it was believed that such integrals would wvanish with the result
that a Goldstone excitation would also appear assoclated with the gauge in-

variant current. The advent of instantons(143) however, changed this

conclusion(l44). They implied that the integral over FF could take on non-
zero values with the result that the U(l) pseudoscalar state acquired a mass
contribution connected with the triangle anomaly which was independent of
quark mass, thus eliminating the problem of the light gseudoscalar. The
effective symmetry of the QCD Lagrangian was thus reduced from U(3)x U(3) to
Su(3)x sSU{(3) x UB(l) where UB(l) represents baryon number conservation.

(145) has proposed that the U(l) pseudoscalar

(Note however, that Witten
particle can be treated as a Goldstone boson in the limit NC + )

The anomaly contribution to the mass of the 5U(3) singlet state is
analogous to that provided by the annihilation of qa palrs in the constituent
quark framework. The no, n and n' acquire mass contributions associated with
the anomaly via mixing induced by SU(2) and SU(3) violations, which in turn
imply ceviations from the ideal mixing schemes discussed above. Physical

eigenstates are then no longer pure quark combinations and isospin violations

are reduced to

2 2
- M, o, -m
5‘52__’5‘2__. K @ u . (6.11)

which is of the order of magnitude observed in hadron processes.
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6.2 CURRENT AND DIVERGENCE DEFINITIONS

Using the notatlon of Chapter 1 the QCD Lagrangian is

n n
1l _a uv -a B -0
= - =F F + 1) D -
clfQCD(x) 2 u\,(x) a (x) ;;; q j(x)‘ru( U)ﬂqu(X) ;;;quj(x)qaj(X)
{6.12)
where, for three flavours g(x) is formed from a triplet of quark fields
u
g = a (6.13)
8
The SU(3) axial currents are defined ln the usual manner by
a - 1l .,a
A (x) = (x) = A q(x) 6.14
y q YuYsz q ( )

where o runs from 1 to 8, The definition of the U(l) axial current is
complicated by the presence of the anomaly associated with the triangle
diagram, Fig 1,6 . Problems with the renormalisation of the amplitude

-

agsociated with the diagram. .imply that the U(l) axial symmetry current, Ag '

is not gauge invariant(142),

A = gauge dependent {6.15)

The amplitude can, however, be renormalised in a gauge invariant manner to

give a different operator, AE . with the property

H £ uv ~a
ya = — Lo pVF (6.16)
wo & 32t @ v
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These two operators are related by

o ie) 2nf
A = a0 o+ —= x (6.17)
u Y ?/6— H
142 1
where (144,11 _ —9-5 waBy pa g2 _ L ggdbc,a (6.18)
32m By 3 B Ty
u 2 uv "a
and o k' =L F (6.19)
H 32n @ Y

ku is a gauge dependent vector associated with the trjangle anomaly,

The divergences of the SU(3) axial Noether currents are

N | =

u _ .= o
BuAu(x) = 1q(x); M, = A Eysq(x} (6.20)

where M is the guark mass matrix and & = 1,....8. These are conserved in
the limit mq — 0. The divergence of the U(l) axial current is similarly
defined

Q

- - 1
bnho(x) - 43w 52% ¢ v et - (6.21)

where A“ is replaced by 2° =‘//§:I with I the unit matrix. The divergence
of Az is then given by (6.17), (6.19) and (6.21).

In order to investigate the current algebra predictions for p and
R it will be necessary to evaluate the matrix elements of the divergences
é“ Az between the vacuum and pseudoscalar states which arise in the SU(3)
and U(l) axial wWard Identities(l25). For this purpose the usual definition
{6.2) is employed. Taking the divergence of (6.2) yields the requlred

quantity,

2

1
= M .22
<0 |bu alep> Foolo (6.22)




120
and similarly
ol Al p>= F M (6.23)
u o op P
Then <o| aY [ P > = iq]'l
o op
2n
= <o |a" £ M |p >
© 3
= - 6.24
ig (Fop A} { )
2n
with  <o] =% «" |p>=  iq"a (6.25)
Ve P
. (146)
The notation adopted here is taken from similar treatments by Goldberg
and Williams and van Herwijnen(l47). The two U(l) decay constants are seen

to be related via the matrix element defined by Ap.

In future applications Ap will be associated with the gluon content
of the 13 = O pseudoscalar states which is responsible for deviations from
ideal mixing and hence for 0ZI violating decays. 1Its effect is similar to
that of the annihilation interaction encountered earlier in pseudoscalar
mixing schemes. To calculate the widths of the processes of interest,

Y » Py and ' > Py it is assumed that the decays proceed by the radiation
of the pseudoscalar by the heavy quark state via two intermediate gluons(l48),
Vl+ V2+ GG where Vl and v2 are the cc vector states. The intermediate
gluon state subsequently decays into the required pseudeoscalar. A ratio of

simile: decays is thus given by

A(Vl+ vzpl) ) A(v1+ V2GG) . A(GG +Pl)
A(v,> V,P) A(vl+ VZGG) A(GG ~P,)
<o0| o_|p > :
= _-._.i._._.l__ (6.26)

<o og|P2>
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(149)

where Ogis some operator which causes the transition GG -+ P.
In order to make predictions for such physical procesees numerical

values must be obtained for the pseudoscalar decay constants Fap and Ap.

These will be calculated in section 6.4, however three relations between
these quantities can be found immediately by noting that

(a) F " Fon" F , P describe the mixing between a = 8 and a = ©
o

8n° " 8n'
> a¥ > a 3 A
components of uAa to produce the physical operators lJAn and uAn' and

(b) F F, , F similarly define isospin violating mixing

gn’ Fon’ in” " 3n’
between the a = 3,8 and O components of AHAE which comprise the physical
H [l H
operators ¢ A A and A,
pe Bun bun aun
The singlet and octet divergences can be related to the physical

divergences by defining the physical particle interpolating fields ¢P as(lés)

- — -
gau | r“F M P M P, M B é
uo3 Tow 3nmn n' n' 7o
u _ 2 2 2
BuAa =1 Feun  Tan™n Fan' Mn» o (6.,27)
2 2
2 a¥ F M FoM F_, M, ¢,
U o om m onn on n_J n
L - . .
and o A |p> =F M <o| ¢ _|P > (6.28)
np P P P
where the interpolating field is normalised such that
ol ¢ |p>= 1
P
{6.27) can thus be rewritten as
[~ I TO0 B
y ¥
A 1
3,7 Fan’e Fane/p o 2,
n n
u
a = F F F H
au 8 8n/F 8n/F 8n'/F_, éup‘n (6.30)
m n n
H H
da F F F 3 a ‘
B B 0_4 o'n/FTr on/Fn on /Fn' un )




122

where the physical divergences are just linear combinations of Buag ‘

auag and éup,g. The 3x3 matrix on the right-hand side of (6.30) is simjlar

in appearance to the rotation matrix encountered previcusly in mixing

problems. Assuming (6.30) can be expressed(34’150'151)

— — — : — -
u W
» ) o o]
Bu 3 ™ mm BuAn
3 A" = (A cosG-x__ sinB) cos®  -sin® 3. A" | (6.31)
L 8 ™ mn’ uon
a Au (X sin@+x | cos6) sind cose é Au,
U o N ™ un
] | J L _

where A“n, Aﬂﬂ' and O are the isospin violating #-n , 7 -n' and octet-

singlet mixing angles, the following identifications can be made,

F =-A_ F F = -2 ,F

3n ™ N 3n' ™' n'
FB“ = (Aﬂncosﬁ—k“n,sinG)F" FDTr = (X“nsine + J\nn,cose)FTT (6.32)
F = cos@ F F__, = -sin@F |

8n n 8n n
F = sin@ F F _, = cosOF_,

on n on n

The original eight F have been reduced to the five unknowns x_  ,A ,,0,F
ap m N n

and Fn,. Three relations follow from (6.32) ,
F F__,
.. B (6.33)
F8n Fon'
F_F F
- 3n 8n 3n' 8n’
F8W > + 5 FTT (6.34)
F '
n n
F_F F F
[] 1
Fo= 3n20n + 3n2 on P (6. 35)
T F Fe T
n n
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2 2 2 2 2
where Fn =P + F and F =P

on 8n n on'+FBn" (6.32) to .6.35) will be cambined

with further relations involving the Fap obtained from SU{3) and U(l) axial

Ward identities, to determine their numerical value.

6.3 AXTAL VECTOR WARD IDENTITIES

In many applications of current algebra physical implications of the

theory are extracted by considering matrix elements sucih as (33,152
R S T <0| T{Aa x) 'ab (0)}[ o> (6.36)
u gro ¥ v

where Aﬁ(x) is a current operator and T indicates the time ordering operation.

For this particular analysis the following contraction is required

a*x Q¥ <o| T .Aﬁ x) o A\B) (o); | o> (6.37)

(6.37) 1s evaluated to give “‘he SU(3) and U{l) axial Ward identities,

ax¥d <o | T’Az (x)b"As {0) i | o> (6.38)

d4x <0 I T %‘JAS {x) 6";;5(0) 2 |o > 4+ <o| [Qg,évkﬁ(o] 10 >

for «.%2 = 1,...8 and
d4x au<0 IT ;z (x)é“ Az(o) | o >
(6.39)
= d4x <0| T aug;’ (x)auag (0} o> + <o ég, 8”;3] lo >
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where the gauge dependent sywmetry current appears in the latter identity.

{(6.39) can be rewritten in terms of the gauge invariant operator A;(x)(125,141)
4 N 4 ~, ~
a‘x é”coIT{AE(x)é\’ A, (_o)} lo> = | a"x<olr {éua';’(x) é“Ai(o)} lo>
[~o v -0 2nf 2 4 v_a v o
+ <o\'QS,B Ao)y| o> + —= ——-‘Li a“x <o|T{F“ F2 (x)a"A (o)} lo>
- v 6 321 a uv Y |
_ 4 u “v } "o \vio
= | ax <0 |7 {auao(x) éuAO(o) lo> + <ol ES' p Au“”j [0> (6.40)
~ o 2nf
where the substitution Ao{x) = A (x) - —= k has been used. This re -
H H /E' >

arrangement involves a definition of the time ordering operation applied

to FUV F
a auv

2 ) -
A <01T{F“" F2 (x) 8'2° (o) } lo> = 8”<o|=r{k (x) Q'a° (o)} o>
327 a j1AY v u v

(6.41)
a peint discussed in detail by Crewther, reference 141,
When the chiral symmetry of the QCD Lagrangian is explicitly broken
by the intrcduction of gquark mass terms the pseudoscalar Goldstone bosons
which couple to the physical currents contalned in the left-hand side of
{6.38) and (6.40) acquire a mass, so the terms containing these currents

, . (125,153)
vanish

1

a*x B“<0|T{ Az(x) é"Ag(o)} | o> a*x 8“<o|T{ A]c:(x) 8“5\3(0)} |o>=0

{(6.42)

vielding

H

- <0\E2{5’,é"a€(o):‘ Jo> (6.43a)

a'x <o|w{é“a§tx)é"asto)}|o>
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[

and

a*x <o[T{éPA: ) VA (o)} lo> = <o [?g. 3Va2 (o{] lo>  (6.43b)

In precisely the same manner the "mixed" Ward ildentity can be derived
q u_o v_B av B
a*x <o[T{b A () 3'a; (o ¢ lo> = ~<o| st aj(e) | lo>  (6.430)

These three equations can be re-expressed in a general form,

atx <o|T{éu 3 (%) 5"5 (o) } o> = -<o] ’: Vaf (o)] lo> (6.44)

with o and B now taking on values ¢, B = 0,1,...8, with the two important

conditions
(i) when o = 0O, Qg is replaced by Qg and
. av 8 : A=
{(ii)when 8 = 0, Av(o) is replaced by a Av (o).

The equations involving the required pseudoscalar decay constants
are obtained from (6.44}) by assuming that the vacuum expectation walue on
the left-hand side is dominated by single particle pseudoscalar intermediate
states(33'125'154). Using .the definitions (6.2) and (6.23) and denoting

the intermediate states by P this is evaluated to give

X
4 uoa v B -
d’x <0 |T{a A, ) d a (o) }[o> = 12 MP ap¥ B (6.45)

_ a \
and 12 MoF e " <o Es,gvAB(o] lo > (6.46)

The sum over P contained in (6.46) occurs because of the SU(2) (isospin)
and SU(3) violation observed in the particle spectrum. The SU(3) violating

o 8
mixing of octet and singlet AU and Au to produce the physical p and p'
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8
operators implies that;auau , for example, will connect both the n and
n' pseudoscalar states with the vacuum. Isospin violations produce similar
connections. As an example consider the mixed identity with a = 0, 8 = 8
2 2 2 ~o v, 8

i + M F__ + F = < >

i (Mn FO“FSH n Fon an Mn' F'oq. Bn" 0| E5' d Av (o)]lo

8 o o
whexe:auAu and éuhu connect n, n' and 7 states with the vacuum. The
contributions from the isospin violating Fon and F are much smaller than

Br

gn’ Fgni’ Fop 24 F_, and in

future applications such terms will be dropped.

those obtained from the SU(3) violating F

The only problem which remains is to evaluate the commutator

contained on the right-hand side of (6.46). This is performed in the

standard way by notingt33)

v_B _ B
BAv (o) = i [HSB, o ] (6.47)

and substituting the relevant expression for the symmetry breaking

Hamiltonian HSB In order to keep the number of unknowns in the problem

to a minimum, HSB is written as before

HSB = muuu + mddd + msss (6.48)

and the commutator evaluated in terms of the three renormalisation invariant

125 -
quanti;ies( ) mq <0|qq|o> with q = u,d,s. In the general case the

computator is given by

a Ww,B __iq {,,8,,2, .B.a a B a, B
’:QS. aAv(oﬂ = - ot N e, + 0% m"e m® )da;lq (6.49)

B

where (6.20), (6.47) and (6.48) have been employed and repeated use made
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of the quark field anti-commutation relations

lqi(;'t),

-
(y.t)
o)

RS (¥, 1)
qi XeT), qj Y

In this notation §
. aB

and row vectors obtained from la q and & AB

gquarks of the same flavour.

.'.

6ij

(;!t)f q:(;.t) } = 0]

5 (-3

(6.50)

implies that the corresponding 2lements in the column

must contain quarks or anti-

Substituting the relevant SU(3) Gell-Mann matrices in (6.49) evaluates

the right-hand side of (6.46) yielding the following equations for the

pseudoscalar decay constants,

2 2 - -
= - <au> -+ <dd>»
M F_ (mu uu ot By o)
M2 F° = -(m <au> +m <ss> )
+ k u o] s [a]
k
2 2 - -
M P = -(m.<dd> + m <gs> )
o 'k 4a o s o
k
2 2 2 2 2 2
F + M F =
Mn 8n n Bn n' 8n'
MEF ‘% + M2F ; M? F F =
T Bt o N BN on n' 8n' on’
M2F F M2F F_ + M2 F F =
T on 8 n on 8n n' on' Bn'
+ ] ] ] = -
T OT ON n on on n" on on
M2F F_ o+ MZF F_+ 2 F F =
T 37 8w n 3n 8n n' 3n' 8n°
- > - -~
MF MF_F + M2, , = -
T on n 3n on n -3n' on
2 2
M°F F MF F_ + . JF,, = -
TomTw n on 3n n' on' 3n

win BN S g

N |-

RN fr

™ (M

(6.51)

- 1/3 (m <uu> + m_<dd> + 4m <ss> )
u o a o s o

(m <uu> + m_<dd> - 2m <ss5> )
u o d o s o
{m <uu> + m_<dd> - 2m <ss> )
1 Q a o s o]

{m <uu> + m_<dd> + m < ss> )
u e} [} o s O

{m <au> -m /ad> )
u o d o}
{m <ﬁu> - m <§d> )
u lo] d o

m <uu> - <dd>
{ . uu> md a o)

{6.52)

(6.53)
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where <... >o denotes a vacuum expectation value. Eguations (6.51) in
which isospin viclations in Fﬂ and Fk are neglected, are used in (6.52) to
replace the mq<aq> terms with experimentally determined values Mﬂ, Mk'

o

F“(= 0.093 GeV) and F, (= 0.114 Gev). The four equations in {6.52) are

k

dominated by the products containing the SU(3) violating FBn' FBn" Fon'

~ -

Fon" Fon and Fon' decay constants, the contributions from the isospin
violating Fap are negligible in comparison, their magnitudes being
determined by (6.53).

An analysis of these equations can be convenlently segregated into
two parts comprising (i) the solution of the SU(3) violating equations of
{€.52) to give Aﬂ and An' from which p can be calculated and (ii) the
soluticon of the isospin violating equations {6.53) to give Aﬂ and hence

the ratioc R.

6.4 SOLUTICN OF THE SU(3) VIOLATING EQUATIONS

In order to calculate the ratios p and R a suitable form for the

interpolating operator of (6.26) must be chosen. This is given by(146'148'149)

2
o = —. —5L73 Y op? (6.54)
9 Y 6 32% a uv

where the vacuum to pseudoscalar matrix elements are, from (6.25)

2nf 2 uv  “a 2
o] —=2.9= Y F lp> = M2 (6.55)

. 2
3 327 a uv PP

Thus e ratic of decay widths

3 i a 2
T(V.+ V.P) p P. ‘P
17 271 _ Y 21 1 (6 .56)
v, > V2P2) P, Mp2 Apz

where the relevant phase space factors are included(Pi represent the centre

of mass momenta appropriate to the process).




Equations (6.52) can be rewritten using (6.51) by following the
same procedure adopted in Chapter 2. These previous analyses in the
constituent quark framework uncovered the inability of the models considered
to adequately describe the meson states constructed from quarks of different
flavours (K, D, etc.). Should a similar problem be present in this treatment
the uncertainties expressed in Chapter 2 would also arise here, however,
within the framework adopted their extent is, at present,unknown. Accept—

ing this possible deficiency (6.52) become,

2 2 2 _2 1 2 2
M -2 F M + M - M
n F8n Hn' an! 3 k ( o + ) F
k k
= > 2
Fy M2| anF '=_2_ F2 (Mio + M) - 2MT2|_F§ (6.57)

n n on n n on /]Té' \_ |
2}."’ 3 Mz, 5 ,FB ,=—2— F2 (Mio + nﬁ+ y - 2M°F
n on 8n n' on' 8n /ig | _

- 2 - 1 2 2 2

M = - F + +

n ofm on n' an' on' 3 k (Mko Mk+) M, F ]

These four equations contain six unknown decay constants. Of the two further
constraints reguired for a complete solution, one is provided by (6.33), as

dictated by the mixing scheme of (6.31), the other is obtained from Goldberg's

l46 .
result( ) for the ratic of n + 2v to o 2y decay widths.

The matrix element relevant to the radiative decay P +2y of a pseudo-

4
scala: meson P is given by(ll )

o *B vy *§

o oy Supystl ©1 P2 € (6.58)

M =

where Pi and si are the momenta and polarisations respectively of the two

final state photons. This yields a decay width

M3 a v
T(P » 2y) = g st (6.59)

4T
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Experimental values for such widths are

(61)

(1) n°+2y ;i The particle data group tables give F(ﬁ°+ 2y) =

7.5 + 0.5 ev,

{(ii) n*2y ; Two values are reproduced in the particle data group
tables(al)
(@) T(n +2y) = 1.00 + 0.22 kev'1®> (1) T(n 22y) = 0.32440.046 (15
(6.60)
however, the latter result is quoted as an average.
{146) . '
Geldberg has calculated the ratio of amplitude for n'~+ 2y, m2y
and 7° +2y using low energy theorems to give
s
A :A : A = (F, 5 -F S ):(F S ~F. .S ):({F. F -F F )—3
nf+2y “Tne2yT o2y 8no on 8 " on'"8 Bn'"o " "Bn on' on 8n' F1T
" (6.61)
where (53, 58, SO) = %g'(/‘ ;s 1, 2/5-). The required constraint for a
solution to (6.57) is thus taken as
A {F S. - F S )F
R = 22y . on’ 8. 8n'o = (6.62)
n
A (fF, F ,-F F_ )5
7% 2y 8n on on 8n'° 3

Equations (6.33), (6.57) and (6.62) are most easily solved by

employing the substitutions (6.32) in the equations which do not involve
F or F

, and solving for ©, ¥ and F_,. These will give the required
on on n n

]

Fon and Fon' using the remaining equations and thus An and A”,, the gluonic
components ¢f the 5 and n' mesons. Solutions for Fn' Fn,, An, An, and the
predicted p are plotted as a function of Rn in Fig 6.1. The region of
experimental values for p is superimposed on the plot indicating a preferred
range of values for R_ and hence for the pseudoscalar decay constants.
Choosing a wvalue of p = 4.0 in the centre of its range, corresponding to

Rn = 1.1 gives the following solution (all decay constants in GeV)
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o
F = 0.10 F_, = 0.11 0 = 23
n n
= . F = - 0.
FBn 0.09 an' o4
(6.63)

F = 0.04 F , = 0.10

on on
A = .1 = .07

n Q.10 An, 0.0

This can be compared with results obtained fiom similar analyses

of (i) Goldberg1*®) and (11) williams and van Herwijnen1%”) aisplayea
in Table 6.1.
Decay Constant (1) (ii} Decay Constant (i) {(i1)
F 0.10 | o.11 P 0.10 | 0.1l
8n on
, -0.02 | -0.02 A 0.06 | 0.06
8n n
F 0.02 | -c.02 A, 0.06 | 0.09
on n

TABLE 6.1 : Results for Pseudoscalar decay constants obtained in analyses
by (1) Goldberg and (ii) Williams and van Herwijnen. All

values are quoted in GeV.

The values for FBn and Fon' are similar in all cases, however, the 'mixing'

decay constants which assume zero values in the SU(3) limit are a factor of
x2 larcer in magnitude than those obtained in (i) and (ii). This difference
can be partially explained, for the results of (i), by the choice made for

p. If a larger value of p had been chosen (Goldberg obtains p = 7.3 from
(1) } the wvalues of FBn' and Fon would be reduced. Thé discrepancy between
the value of Fo“ cbtained in (6.62) and that found in (ii) is not so obvious
however, due to the sign difference which has a profound effect upon

-

An( = Fon - Fon ) and hence p (= 11.3 from the results of (ii) ). Williams
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and van Herwijnen obtain their decay constants from a solution of (6.57)

with two further constraints given by the ratios (6.60) whose experimental

values are taken to be A : A A = 1.9 : 1.0 : 1.3 obtained
n's 2y n -+ 2y ™ - 2y
(156) ’ 97 .
from I'(n » 2y} = 0.324 + 0.046 KeV and T'(n"» 2y) = 5.9 + 2.8 KeV with
[(nC+ 2y) = 7.5 + 0.5 ev(sl). The relative signs they find for FBn' FBn"
Fonand F 0 contradict (6.33) obtained from the mixing formalism.
o
Using the value for Ffﬂo+2Y) given above(sl) the solution (6.62)
predicts (with p = 4.0)
T(n » 2y) = 0.61 Kev
(6.64)
I'n=> 2y} = 3.1 KeV
which are to be compared with (6.60) for T'{n + 2y} and
(96)
! = 4 4+ 2,
Fin '+ 2Y)expt. 5 + 1 Kev
(97) (6.65)

= 5.9 + 2.8 Kev

In view of the approximations made in deriving (6.61) these predictions are
taken to be satisfactory.

6.5 SOLUTION OF THE ISOSPIN VIOLATING EQUATIONS

With the definition

M = m_ < 4d- - m <uu> (6.66)

for this isospin viclating quantity the equations (6.53) can be rewritten

as
MF P+ M2F_ F + Mo F F = Loy
w8 n 3n 8n n' 3n' 8n' 3 1
- 5 - -
e F +M¥ F o+ MEF P . = 2y (6.67)
T W OF n 3n on n' 3n' on e 1
M.,2F F_+ M2F F + M2 F F = 2
TTanr N on 3~n n! Onl 3]_]!' - /g Ml




Footnote to page 132

The predictions '{n'+2y) = 3.1 KeV made in the current quark framework is - ’
much smaller (approx. x i) than the experimentally determined width, Electromagnetic
decay widths of the n' predicted in chapter 4 using the constituent quark approach
are, howaver, consistently larger than corresponding experimental widths (approx.x2).
The electromagnetic decays of the n' perhaps allow a distinction between the two

approaches.,
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These equations contain six unknowns F F , ¥ ,F_,F and Ml which

8" “on’ “on’ "3n’ "3pn'

can be reduced, with the aid of (6.32) to give three equations for Aﬁn'

A , and F in terms of Ml. Te obtain a complete solution a further
] oen

constraint is required. This is provided by the estimates of Langacker

and Pagels for the isospin violating ratio (md—mu)/(demu), as shown in

Table 6.2.
Process (md-mu)/(md-mu)
Kaon Mass difference(lzl) 0.565
Baryon Mass differencélzl) 0.339
N+ 3p ‘2L 0.468
p —-uw Mixing(lzz) 0.3213

TABLE 6.2: Estimates for the Isospin violating ratio (md*mu)/(md+mu)

The values guoted are obtained by applying the techniques of chiral

4 7
y(3 1157} to various processes which are sensitive to

perturbation theor
the required ratio. The calculations necessarily assumed SU(3) invariance

of the vacuum expectation values of the bilinear products of quark fields

as in equation (5.14). The magnitude of Ml is obtained by using

2 2 - -
M P = ={m <ua> + m_<dd> ) (6.68)
T W u o d o

from (6.51), with (6.66}) to give

m _~m
_ d u 2.2
Ml = — MﬁFn (6.69)
d u

Equations (6.32), (6.67) and (6.69) provide the required solution,

allowing a determination of R = T{y'> w9y)/ T(p'> n ). The variation of
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R with the input value of M1 is displayed in Fig 6.2, where the range of

values obtained from Table 6.2 is included. To obtain agreement with the

Mark 11(137) and Crystal Ball(l38) determinations of R = (40 + 10) x 10_3

-3
and (60 + 20) x 10 a relatively large value of M is required. Using

1

the values in (6.63) for the isospin conserving decay constants, the largest

-3 -
value of Ml given by Table 6.2 implies R = 32 x 10 ~, a value of R = 50x10 3
consistent with both the Mark II and Crystal Ball results would require
22
Ml = -0.70 MﬂFﬂ , indicating a considerable violation of SU(2) at the
2 2
current guark level. The solution to (6.67) with Ml = =0.70 MHF1T is
_3 . .._3
= 0.034 A = 5.2 x 10 F = 1.7 x 10
il ™ on
F - -3.310 7 F -58x10° F, = 2.7x10" (6.70)
3 = . In' .8 x g . .
= -0.079 A = 0.081
ot T
where all decay constants have dimensions of GeV.
The constituent quark model analysis of the strong isospin
violating quark mass difference A = md~m yielded the value
u
- = 2,
{md mu)constit. B Mev (6.71)
If the constituent quark mass is defined loosely by
constit. 2 curr. 2 2
m, Q) = m Q) +m,Q) (6.72)

and the non-perturbative contributions to the u and @ quark masses are assumed

constit. curr.
to be equal then A = A allowing the difference between current

gquark masses to be set approximately at

(m. - mu) = 2.8 Mev (6.73)

d curr.
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M. in units of ~-M F
1 TN

1.0 }
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Experimental range of values given
i by Table 6.2.

0.01 0.03 0.05 .07 0.09 0.11 ATT Scale (GeV)
3
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Figure 6.2 : The predicted varjation of ATr and R with M
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With Ml = - 0.70 M F {6.69) determines the individual current quark
masses

m., ® 3.4 MeV, m = 0.6 MeV {6.74)

d 1
and (6.68) gives

<au> = <dd> = <g8> = - 0.039 GeV3 (6.75)

e e} o

This qgquantity has been estimated uSing different methods by Shifman,

Vainshtein and Zakharov(lsa) who find <&q>o = - Q,015 Gev3.

Also, from (6.51})
m, = 80 Mev (6.76)
If a smaller value of Ml had been chosen, for example Ml = -0.50 MiFi

{(corresponding to R = 25 x 10-3) then the following parameter values would

have been cbtained,

- 3
md = 4,2 MeV ; m = 1.4 MeVv ; <qq>o = -0.03 GevV ; m_ = 111 Mev. (6.77)

Thus ,decreasing the level of isospin violation (as measured by Ml) produces
an increase in the quark mass values and a correspornding decrease in <§q> .
o

By demanding agreement with Shifman et al for the quantity <§q> gives
o

m = 3.9 MeV ; md = 6.7 MeV and ms = 207 MeV (6.78)

Althouur these values appear respectable they give a poor value of

R = 10 for the ratio of the sU(2} to SU(3) violating decays of the y'.
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CHAPTER 7

SUMMARY AND QONCLUSIONS

Throughout this work various details of mixing models of the pseudo-
scalar and vector mescons have been analyged, and where appropriate predictions
of meson properties made using the model results. In Chapter 2 the construction
of ground state mixing schemes is examined. The guestion of whether mescn
mixing is best described in terms of linear or guadratic masses is left open
(the failure of early conventional linear mixing procedures being attributed
to their Inadequate description of meson structure) and the properties of both
types of medel investigated. The introduction of the gquark-antigquark annihila-
tion mechanism to the basic models explains qualitatively the differences
between vector and pseudoscalar mixing. In the vector case where the annihila-
tion interaction strength (A) is small compared to the ms—mu mass difference an
ideal mixing pattern results, however, when A and ms—mu are of comparable
magnitude, as in the pseudoscalar case, this pattern breaks down and considerable
mixing occurs between the non-strange, 1//5 (uﬁ + da) , and purely strange,
ss, components. The vectors are well described in such schemes but an accurate
guantitative description of the low mass pseudoscalars requires the annihilation
interaction to take con a flavour dependence.

Including charmonium states 1n the analysis uncovers a deficiency in

the model. The simple additive quark model approach where

M = 2M2 - Mz {quadratic) or M =2M -~ M (linear) {(7.1)
D m cc D ™

requires that the variation of annihilation parameters be such that Acc> Aas'

which does not agree with the expectations of asymptotic freedom. Imposing

Auu > Ass> Acc leads to the conclusion that mesons composed of unequal mass

quarks are not adequately described by these simple models. The required
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variation for Aqq can only be obtained by treating Mss and M c as parameters
c

(54) for the ratio

which are determined by fitting to the Crystal Ball result
p = 5.88 and the nC mass. This approach induces an increase (decrease) in
the maghitudes of Mss and Mcc in the guadratic (}inear) model when compared
with their additive values as given by (7.1).

Mixing cc states in ground state models as out-lined in Chapter 2
cannot produced a complete description of meson structure since the many
radial states which exist between the n' or ¢ and the charmonium levels will
provide important contributions to meson wavefunctions via mixing with their
ground states, Such mixing introduces the inert components in the n and n'
wavefunctions which are necessary to explain the discrepancy in the strange-

(56)

ness exchange sum rule(3.2) The radial mixing models of Cohen and

Lipkin(sg)

, described in Chapter 3, provide a reasonable description of the
low mass mesons but fail, in the linear case, to reproduce the w-nc splitting.
The reasons for this fallure appear to lie in the incomplete description of
the flavour dependence of the annihilation and hyperfine interaction terms.
By including the mass variation of the interaction strengths A and B the w—nc
splitting is easily accommodated, however, such an extension of the model
necessitates the inclusion of further constraints to fix the values of the
increased number of parameters. As with the ground-state models the Crystal
Ball value of p is chosen for this purpose.

Including radial excitations in the mixing model prescriptions has
a radical effect upon the predicted value of p, its magnitude suffering a
consid: -able reduction compared with the ground state model predictions when
the same S guark mass is used. The sensitive dependence of p upon the
magnitude of ms is exploited in the extended radial models described in
Chapter 3 to force the prediction of p to coincide with its Crystal Ball
value, This 1s achieved in both quadratic and linear models by decreasing

m , however, such a reduction produces a poor prediction for the Kaon mass
s
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in the gquadratic case and leads to a mass varlation of the annihilation
strengths inconsistent with that expected from first order perturbative
QCD in the linear case. Analyses of both models in Chapter 3 indicates
that a mixing prescription which would provide an adequate description of
the meson mass spectra in a manner consistent with first order perturbative
QCD requires a value of p less than the Crystal Ball value.

Further problems are encountered when the linear model is used to
describe the structure of the K,K*,D,D*,F and F* stater. Assuming the
hyperfine splitting strengths appropriate to this I # O sector of the mass
matrix are given by factorising the I = O results produces poor mass predic-
tions for these particles. As in the ground-state case this problem could
be caused by an over simplistic description of meson structure. That this
may be the case is indicated by the empirical dependence of Iwn(o)] upon n.
The log potential model, from which the |wn(o)|2W 1/n variation used in the
Cohen and Lipkin models is derived, provides an adequate description of the
charmonium and upsilonium mass spectra, however, it is not clear that such
a variation should be appropriate to the lower mass states. The experimental
results for Vv e+e_ decays quoted in Chapter 3 indicate that the fall off of
| wn(o)| with n is much less rapid for those states with a low mass than for
those with higher masses. 1In the language of potential models this suggests
that the lighter, more relativistic quarks, experience more of the linear
confining potential which gives |¢n(o}|2 " constant than the heavier gquarks
which are influenced more by the 1/r Coulomb potential for which |lbn(o) 12% ]_/n3.

The inability of the extended mixing models described in Chapter 23
to fit both the pseudoscalar masgss spectrum and the Crystal Ball measurement
of p suggests a model preference for a smaller value of the latter quantity.
In Chapter 4 the experimental status of this ratio is reviewed and a linear
mixing analysis conducted to find the preferred value. The magnitude of
is determined by exploiting its sensitive dependence on the structure of

n-n" mixing and hence upon the strange guark mass ms. Thus, when model
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predictions for quantities which also depend strongly upon the n-n'
mixing pattern are compared with experiment for each of the five present
experimental wvalues of p, a model preferred value is determined.

Attention is concentrated on the predictions for the radiative
V> Py and P » Vy decays, of which p #ny,w » ny and ¢ + ny are of particular
interest. The results displayed in Table 4.6 indicate that agreement between
medel predictions and experiment for the widths of these processes is best
for values of p less than the Crystal Ball result. A precise value of
p = 3.1 is determined by requiring the predicted magnitude of a(ﬂ_p+ n'n) /
a(m P> nn) to coincide with its experimental value as given by Stanton
et a1(94).

Predictions are also made for the masses of the radially excited
pseudoscalar and vector states. The first excitations of the n and n'
occur at 1.36 and 1.50 GeV respectively, the former value being close to
that found by a recent Crystal Ball experiment(al). The corresponding vector
excitations of the p, w and ¢ are predicted at 1.33, 1.34 and 1.59 GeV
respectively. Experimental candidates for the p' and ¢' exist, however
no such w' state has yet been observed. The experimentally well established
I = 1 state with M = 1600 MeV is confirmed as the seco.ud radial excitation
of the p.

The unitary spin wavefunctions obtained by diagonalising the linear
mass matrix in Chapter 4 are also used tc determine the changes induced in
the strangness exchange sum rule (3.2). The approximate agreement between

experiment and theory, noted by Lipkin(sg)

. which is achieved by including
radial excitations in the pseudoscalar mixing scheme is further enhanced

when the full flavour dependence of the interaction terms is included in the
model. Also, by using an additivity procedure similar to that encountered in
the derivation of (3.2) the strong two body decay amplitudes of the vector

mesons are expressed in terms of the more fundamental strong qa production

amplitudes. Relations among these are determined by applying G-parity and
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50(3) selection rules, allowing predictions to be made. The close agree-
ment between experiment and the results. obtained for the ground state

V *PP decays justifies an investigation of similar decays of the radially
excited vectors. The relationships between the decay widths for such
processes are determined in Chapter 4. Accepting the uncertainties in the
predictions made in this chapter resulting from the extrapclation of
excitation energies from the charmonium to lower mass regions and the non-
relativistic nature of the calculations, the broed agreement observed with
experiment 1ls taken to be satisfactory.

In Chapter 5 the linear mixing model with wavefunctions and parameter
values as determined in Chapter 4, 1is used as a framework for an investiga-
tion of the suggestion that isospin is an accidental symmetry of the hadronic
spectrum. The violation of isospin by the strong interactions is manifest

in the magnitude of the quark mass difference A = m

d:mu' A and isospin

violating electromagnetic interaction terms are included in the Hamiltonian
appropriate to the linear mixing model. Diagonalisation of the resulting
mass matrix in the vector and pseudoscalar sectors allows the determination
of isospin violating mixing angles and meson isomultiplet mass differences.

The magnitudes of the additions to the Hamiltonian are determined by comparing

model predictions for the mass differences M -M M - M and
+ (o} + o
m L k k
M 4+~ M with experiment to yield a value of 2.78 MeV for the strong
D D
constituent mass difference md—mu. This agrees well with the independent

determ®nation of A = 3 MeV cobtained in 5.3 using a combination of current
algebra and constituent guark model approaches.

The isospin violating parameters found in this manner are subsequently
used to predict the vector isomultiplet mass differences displayed in
Table 5.1, and the magnitudes of B(w -+ 2m) and R = T(§"' - wo¢) S Tt + m).
The predicted value of B(w + 27) = 0.018 is in close agreement with experi-

ment, however, that for the ratio R = 17 x 10_3 is a factor of X2 to X3
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smaller than its present experimental value as determined by the Mark II
and Crystal Ball(l38) collaborations. The calculationcs emphasize the

importance of the strong contribution to these isospin viclating processes.
For both B(w - 2v) and R approximately BO% of the contribution to the
relevant amplitudes is given by the strong isospin violating term 4. A
further interesting point raised in the determination of R concerns the
relative importance of ﬂo—n, ﬂo—n' and no—nc mixing contributions. The
suppression of the ﬂo—nc mixing angle when compared with that for wo—n
mixing is compensated by the relatively greater amount of cc in the n,
wavefunction, to the extent that the ﬁo—ﬂc contribution dominates in the
prediction for R.

A close study of the ratios p and R in the constituent gquark frame-
work has allowed a quantitative estimate of the symmetry violation which
occurs in constituent quark models of mesons. 1In Chapter 6 these ratios
are examined using current algebra and PCAC techniques, and again allow a
measure of symmetry viclation as expressed by the different values assumed
by the various current guark mass and pseudoscalar decay parameters.
Relationships between the pseudoscalar meson masses and decay constants are
derived using axial vector Ward Identities as outlined in Appendix 4. The
poor predictions for the n' mass, Mn, £ /E'Mﬂ and the unAacceptably large
estimates of observable isospin violations (the U(1l) procblems) are avoided
by including the triangle anomaly contribution in the divergence of the
U(1l) axial current and noting that the topological structure of the QCD
vacuum implies that this anomaly will add to the mass of the U(l) pseudo-
scalar, and hence, through symmetry breakigg, to the SU(3) |8> and [ﬂo>
states also.

The equations which relate pseudoscalar masses and decay constants
are conveniently separated inte SU(3) (but not 50(2) ) and SU(2) vioclating
forms. The SU(3) violating equations are solved for the pseudoscalar decay

46
constants, FaP' by including Goldberg's a\nc‘;\lys:i.s(l ) of A(n 27)/A(ﬂo+ 2y}
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and the ratio ¢ in the problem. By using the Particle Data Group average
value for the former ratio and choosing p = 4.0 the magnitudes of FaP
obtained compare favourably with those found by Goldberg in a similar
analysis, and, considering the approximations made provide a satisfactory
prediction of I'(n' + 2y) = 3.1 KeV.

The SU{3) violating FuP are uged in the SU(2) vioclating equations to

predict the magnitude of R. The isospin viclating decay constants are

expressed in terms of

m_ - m
M, = - [ & . u} y?g? (7.2)
1 m_ +m T m
ad u

which has been previously determined from, for example, n -+ 3m decay, or
p—w mixing {see Table 6.2). An average value for Ml = -0.4 Fimi yields
pseudoscalar decay constants which determine R = 16 x qu3, in agreement with
the constituent gquark model predictions of Chapter 5 but a factor of X2 to X3
smaller than present experimental results. If the predicted ratio is forced
to agree with experiment a large degree of isospin violation is imposed on
the model. Ml then equals -Q.7 MiFi , a value much greater than any previous
estimates.

Combining the isospin violating results of Chapters 5 and & allows a
rough estimate of the current quark mass parameters mi(Qz) at a value of Q
appropriate to the problem. It is found that with M, = -0.70 MiFi the mi(Qz)

1

have unusually small values, m, = 0.6, my = 3.4, and o ~ 80 MeV, much less

than estimates by previous authors. Decreasing Ml to values in line with

22
other analyses increases the mi(Q2) to give, for example, for Ml = ~-0.4 MnFn’

mu = 2.1, md = 4.9 and ms= 145 MeV, which are reasonably consistent with
other current algebra estimates. Thus, the approaches of both Chapters 5 and
6 point to a consistent value of the isospin viclating ratio R which is at least

a factor of X2 less than its experimental determination.
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The roles played by the annihilation interaction in the constituent
quark framework and the triangle anomaly in the current quark approaches
t0o meson masses are directly analogous. In Chapter 2 it was noted that in
the absence of annihilation contributions to the mass matrix the n'was
predicted to have a mass coincident with the 7. Likewise, if the anomaly
is ignored in the current algebra treatment in Chapter 6, the n' mass is
upper bounded by Mn' £ JE‘MK. In both approaches the annihilation inter-
action, or anomaly, adds to the mass of the SU{(3) singlet state, thus
increasing Mn, and allowing a description of the pseudoscalar mass spectrum
consistent with experiment. Thegse interaction terms also play an ldentical
role in determining the structure of the unitary spin wavefunctions. In
their absence, and with the condition mu < md < ms, the pseudoscalar nonet
contains three non-strange states with the structure uﬁ, dd and ss. If
such states were manifest in the physical spectrum large violations of iso-
spin would be observed in the particle masses, as noted in Chapter 6. This
problem is circumvented when the annihilation, or anomaly, contributions are
included. The structure of the unitary spin wavefunctions are determined by
the relative magnitudes of the annihilation (or anomaly) mass contributions,
denoted collectively by A, and the difference between the constituent (or
current) quark masses. Three cases are of interest,

(1) If A <<m_ - m << m_ -~ m, the three non-strange nonet states

a u s d

would essentially retain their uﬁ, dd and ss character.

(ii) With My ~ mu<< A << m_- my an approximation to the ideal mixing

situation would be observed. Ideal mixing is obtained when md =m and

B << m -m,_.
s 4

(1ii) md- mu << A = ms-mu, which represents the physical case.
This condition ensures the approximate equality of the magnitudes of uu

and dd contributions to meson wavefunctions and hence the suppression of

obgservable iscospin violations in the mass spectra to their experimental level.
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Thus, it is seen that the annihilation and anomaly contributions in their
respective frameworks are essential to an understanding of the properties

of pseudoscalar mesons.
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APPENDIX 1 - CONVENTIONS

1 2
Contravariant 4-vectors are denoted by xu= (xo,x o ,x3). The

i

corresponding covariant form is x guv x” where the metric tensor is

defined by
Joo = T 931 T "Iy T 933 =1
and
guv O for p# v
(163) . ,
The conventions of Bjorken and Drell are adopted for Dirac vy matrices

which obey the anticommutation relations

u v - u v vy 1RV
t Y oY } = Yy +t vy = 29

k
-y with k = 1,2,3. The matrix is defined by

5
o1
-

I
)
-

W

A

Lo l1l2 3
iyyyy

—

w
-
"

The eight Gell-Mann matrices of SU(3) are

o 1 QO O -i 0 1 0 0]
Al =11 o o Az =f i 0O 0 A3 =l o -1
Q 0 0 0 0O o O 0O ©
o 0o 1 o o -i o 0 0
A4 ={0C O O AS = O o 0 AG =[ © 0 1
¥ 0 o i o] 0 o] 1 o]
O 0o © 0
. 1
A7 = -i AB = —10
Y3
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satisfying the commutation

LA“,)\B] = 2if _ AY
afy

and anti-commutation

o B} _ 4 Y
{ AL =3 SGB + ZdGBY X

relations respectively. The non~zerc antisymmetric fa and symmetric dd

By By
are
V3
f103 = 1 fa58 = fgg T P
£ = -f = f = f = f = -fg =21
147 156 246 257 345 367 2
a = 4 = 4 = -d - L
118 228 338 889 /3
448 558 668 778 —
2v3
da -'d = =-d =d = 4 =4 ..-—‘_—d =d =-l—
146 157 247 256 344 355 366 377 2

Throughout the calculations of Chapter & covariant normalisation of

physical states is chosen such that

B | Bia'> = 2E(2W)363(3-3')53u

-
where p represents the momentum and a all the other quantum numbers necessary
to specify a particular state. With such normalisation the completeness

integrals are

3
ZE:|P>< p | = ._JQ_EE_____
o (2m)~ 2E
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APPENDIX 2 -~ INTERACTION PERTURBED SU(n) BASES

The discussion in Chapter 4 concerning the construction of meson
unitary spin wavefunctions referred to two possible modes of their expression.
The wavefunctions were written filrstly in the qa basis of states as obtained
from the direct diagonalisation of equation (4.1), and then later, in order
to facilitate a comparison with more conventional schemes, in terms of an
interaction perturbed SU(3) basis of states {(ignoring cc contributions) ,
where the particle wavefunction was expressed in terms of 1ts octet and
singlet components. The transposition of the state vectors from one basis
to the other is straightforward once the interaction perturbed SU(3) basis,
which necessarily involves the mixing of higher radial excitations with the
ground state basis vectors, is defined. A convenient definition is provided
by imposing the condition that the required basis states diagonalise the mass
matrix {4.1) with ms = mu, Bss = Buu and Ass = Ahu'

Results for the ground state {(n = 1) are just the usual SU(3) eigen-
vectors given in Chapter 1. Increasing to n = 4 and hence mixing radial

components in the ground state basis states, and vice versa, yields eigen-

vectors of the form

lm> = Foafm>y
s8> = 1 a, 8>,
i 1 1

fr> =31 g |15>,
1 1

for each value of n where, with i = 1,...n

[n> = Y lum-ads, v |85, = - 1| wasad-2ss>. 5 |15, = Llun+ad+sa>
- i i i i

/2 g 3 :

and ai and Bi give the radial expansion of octet and singlet states respect-

ively. Using parameters obtained from the p= 2.8 fit the following results




148

for the ground-state eigenvectors are obtained

0.147

o = 0.922 ; a 0.304 ; a

L1906 ;
Q a4

™
]

0-854 H 82

1 ; -0.468 ; B8 0.189 3]

3 i 4 -0.130

The hyperfine interaction is solely responsible for the non-zerc values of
e u3, 04, however, the mixing of radial components in the ground state

SuU(3) singlet state is caused by both the hyperfine and annihilation inter-
actlons, thus, while the values of ui are identical for all fits performed

those for Bi show a slight dependence upon p due to the variation of the

magnitude of Auu with this quantity.

In a completely analcgous manner an SU(4) basis which includes the
effects of radial excitations can be defined by including cc components in

the mass matrix and diagonalising {(4.1) withm =m_ =m , A =A = A ,
c 5 u cC ss uu

B =B =B . Again, with n = 1 the usual ground state eigenvectors
cc ss uu-

are obtained

1, - - 1 - - -
Ino > = = {(uu-dad) ]n8> = - — (uu+dd-2ss)

2 e

1 - - = - 1 - = - -
|X > = — (uu+dd+ss-3cc) |l > = = (uutdd+ss+ec)

J12 ?

where |n8> and Ix> are isoscalar states belonging to the 15 of sU(4) and

[l> ir the 8U(4) singlet state. For n = 4 the radial expansion of the

ground state 15-plet is again set by that of the 7° with the result

lw > = E o |w >i
ng = oy lngy
x> = bay Ix >,
|1 > = E Bi Il >i




where the ai

8, = -0.140.

4

Although o
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are as above and 81 = 0.808 ; 8, =

i

can be obtained directly from the no

-0.534

2 ¥ B = =0. 206

3 H

wavefunction

it is necessary to dlagonalise the mass matrix to obtain the Bi‘

The transposition of physical wavefunctions from a q& basis to an

interaction perturbed SU(3) or SU({4) basis can be made by noting the

following definitions

phys

where

su(n)

qq

stu (n) qaq

qq

Thus, the required matrix X is given by

X =

UY-l

where both U and Y are known,

{n = 3,4)

Particle wavefunctions of interest are expressed in the SU(3) basis

in Table 4.4.

Including the charmed quark in the analysis gives correspond-

ing wavefunctions in the SU(4) basis as

| n%>
In >
In' >

| 1%

1

It

0.972[q8>l + 0.077|x >+ o.156|1>l

0.213|n8>l - 0.338{x > - o.815|1>l
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UNITARY SPIN WAVEFUNCTIONS

The full unitary spin wavefunctions with radial contributions up
ton =4 as obtained from the p = 2.8 fit are listed for both pseudoscalar
and vector mesons.

(i) 13 # O Mesons

Denoting a general wavefunction for a pseudoscalar or vector meson

- * * *
by E a, qaqb>i the 13 # 0K, D, F, X D and F wavefunctions are constructed

using the coefficients in Table 1.

Meson a, 32 ay a,
L 0,922 0.304 | 0.190 0.147
X 0.951 0.247 | 0.148 0.113
D 0.994 0.091 | 0.050 0.037
F 0.997 0.066 | 0.035 0.026
p 0.985 | -0.142 (-0.068 |(-0.049
K* 0.993 | -0.103 |-0.051 |-0.036
D* 0.999 -0.032 [-0.016 ~-0.012
F* 0.999 | -0.022 |-0.011 |-0.008

TABLE 1 : Coefficients for I_ # O meson wavefunctions

(ii) I, = O Mesons

3

Denoting a general unitary spin wavefunction by

) wa>, +d ldd> + s |ss> o+ cc>
. I:“il g +9ylad +s s+ e ci:|

the particle wavefunctions are constructed using the coefficients in

Tables 2,3 and 4.
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Note that the 7° and p0 coefficients can be evaluated using the charged 1

Q o
and p results in Table 1 where u: = -d:
i =d. .
isoscalar mesons ui i
Meson vy u2 u3 u4
n 0.427 0.050 0.027 0.020
n' -0.492 0.324 0.125 0.086
n, -0.019 | -0.018 | -0.018 |[-0.018
W 0.694 -0.115 -0.055% -0.039
¢ 0.030 | -0.029 | -0.0l0 |-0.007
1/ 0.0 0.0 0.0 c.0
Meson sl 52 53 54
n' -D.509 0.009 0.005 0.004
nc -0.014 -0.014 -0.014 -0.014
w -0.052 -0.008 -0.004 -0.003
] 0.991 -0.101 -0.050 -0.036
] 0.0 0.0 0.0 Q.0
Meson c1 02 c3 c4
n -0.003 -0, 002 -0.001 -0.001
n' 0.005 0.003 Q.002 C.002
nc ~0.992 ~0.091 ~0.049 ~0.037
I 0.0 Q.0 0.0 0.0
¢ 0.0 0.0 0.0 0.0
] 0.999 -0.033 -0.017 -0.012

Ll

a :
i

+

//5. Also, for all

Table 2: uu and a&

coefficients for

I = O mesons.

Table 3 : ss coefficients

for I = O mesons.

Table 4 : cc coefficients

for I = O mesons.
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APPENDIX 4

The method of calculation of meson masses (employed in Chapters &

and 6} in terms of the current masses of their quark constituents using
Current Algebra and PCAC techniques is outlined here. In all cases
considered the meson masses can be evaluated from a mixed Ward Identity

similar to that in (6.38B),

a*x¥ co|T (Aﬁ(x)é" AE(O)) | o>

1

a*x <o| ¢ B”A‘;(x)é” AE(O)) lo> + <o|{:‘;, B“As(o):] lo>

™
1l

where a, 0,1,...8 with the conditions

(i) when g O,Qg is replaced by'ég and

Il

(ii)when B8 0, avAﬁ(o} is replaced by augz(o)

where, as described in Chapter 6,

The left-hand side of (1} is expanded as follows

a%ed¥ <ofT (Az(X) 5VA5(0)) |o>

- | % é“<o|aﬁ(x) 3%l (r06x%) +avA3(o}A3(x)e(—xo) |o>

(L)

(2)
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Inserting a complete set of intermediate states with normalisation

described in Appendix 1 gives

3 .
= Z a’y 43 ¥ <0[A3(o)e*1qx[p><9|BvAi(o)Io> 0(x")

3
P 2EP(2n)
\ i o
+ <o 31\5(0) |p><p| equAu(O)l 0> 0 (-x")
4 d3 4 -ig.x o ig.x )
= dx | —3 — I M r F, (e T + T o -xD)
B (2w)3 P "aP BP
P P
2 -ig.x ig.x 0_—|
+
LE M, F oFap (e + e )8 (x )J
. . , i.P.x ~iP.x e s
where translational invariance, A({x) = e Af{o)e and the definitions
<] a* [p> = iqF (3)
u qu aP

have been invoked. With the identification

f 3 ig x°
| dg Jiax 63(;) e ©

J (2ﬂ)3

this reduces, after integration, to zero. Thus (1) becomes the required

relation

4 , ;
[ a x <0|T(3“A3(x) 3“1;3(0)) lo> = -<of| g, 8"A€’(o) ] lo> (4

J

as given in (6.29). Pseudoscalar masses are obtained by matching the dominant
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one particle contributions to the left-hand side of (4) with the O(mq)
terms obtained from the commutator.

The left-hand side of (4) is evaluated by using the techniques
described above, i.e. inserting a complete set of intermediate states of
which particular single particle contributions are assumed to dominate.

Using translational invariance and the definitions (3)

4 v 2
a x<o|T(b“A3(x) 3 As(o)) jo> = -Zl MF, Fap (5)
P

The evaluation of the right-hand side of (4) is described in

Chapter 6, equations (6.47) to (6.50). The required result is then

2 _ 1= ..o B .o a B a,8
_z MPFaPFBP = 79 I:(A MAT4+ A A M)GBa + (ATMAT + ML) )6016:, q
P

(6)

If the pseudoscalar decay constants are assumed to be SU(3) symmetric
with the octet members taking the wvalue F1T and the singlet Foand the complete
set of Intermediate states is dominated by the relevant octet or singlet
states then the formulae of (6.3) are reproduced. If, however, the SU(3)
symmetry is broken and the left-hand side of (4) is saturated with physical

particle states the formulae (£.51) to (6.53) are obtained.
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