

Durham E-Theses

An investigation into reproductive effort in two successional stages using regression techniques

Wilson, A. M.

How to cite:

Wilson, A. M. (1980) An investigation into reproductive effort in two successional stages using regression techniques, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7653/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

AN INVESTIGAPION INTO REPRODUCTIVE

EFFORT IN TWO SUCCESSIONAL STAGES

USING REGRESSION TRCHNIQUES

A M WILSON

Thesis submitted for
M.Sc. Advanced course
in Ecology.
University of Durham
October IO80

I. INTRODUCTION I
2. OUTIINE OF MAIN MFTHOD 5
3. SITFS 7
4. SPECIES 9
5. MFTHODS IO
5.I Regression Methods IO
5.2 Field and Laboratory Methods I3
6. R ? SuLTs I 5
6.I Regressions T. 5
6.2 Plantago Janceolata I 8
i. Vegetative Dry weight I 8
ii. Keproductive Dry weight 20
iii. Keproductive Effort $2 I$
iv.Germinability 22
6.3 Leontodon hispidus 23
i. Weights and Keproductive Effort 23
ii。Mechanisms 24
7. DISCUSEION 20
7.I Validity of 'lechniques Employed 26
7.2 Contro7 of Flowering 31
7.3 Differences between sites 32
7.4 Succession,Keoroductive Effort and 36
r - and $K-$ selection
8. SUMMAPY 40
ACKNOTRFDGEMFNTS 42
R EFAR TNCTES 43
APPENDICES 48

1. INTRODUCTION

Life histories are partly the result of selection for the optimal allocation of resources to maintenance, growth and reproduction in a particular environment. The manner in which natural selection acts to partition the available resources has been considered from numerous theoretical viewpoints (e.g. Gadgil and Bossert 1970, Wilbur et al 1974) and has given rise to much recent research (e.g. Gadgil and Solbrig 1972, Harper and Ogden 1970, Stearns 1977). A base tenet of this research work is that there is a 'cost' associated with reproduction (see Stearns 1976).

Harper (1967) suggested that colonising species of plants would have higher reproductive efforts (R.E's) than plants of mature habitats. The theory of r - and K- selection as developed by MacArthur (1962), Cody (1966), MacArthur and Wilson (1967), Gadgil and Bossert (1970) and others predicts that in situations where densitydependent mortality is low r-selection will favour genotypes with a high rate of increase. The degree of environmental uncertainty has also been found to be a significant factor in selection for life history strategies (e.g. Southwood et al 1974, Wilbur et al 1974) Gadgil and Solbrig (1972) correlated highly disturbed or uncertain environments with r - selection and less uncertain environments with K- selection. They suggest that r - selected genotypes may have a greater reproductive effort and shorter life span than $K-$ selected genotypes. Grime (e.g. 1974, 1977) has extended and developed the theory of $\mathrm{P}=$ and K - selection to suggest that there may be three main strategies. Plants maj be adapted to competition, stress or disturbance with a range of possible options between these extremes. The majority of previous research on resource allocation has tended to concentrate on one species, either by examining single

speciea populations from various sites (Gadgil and Solbrig 1972, Bradbury and Hofstra 1975, Hickman 1975, Holler and Abrahamson 1977, Roos and Quinn 1977, Raynal 1979) or by assessing the effect of changing one or more environmental variables on the allocation patterns (Harper and Ogden 1970, Ogden 1974, Hawthorn and Cavers 1978). Other workers have studied allocation patterns in a range of closely related species and attributed variations to differences in life strategy. (Gaines et al 1974, Hickman 1977, Pitelka 1977 Bell et al 1979, Bostock and Benton 1979, Primack 1979).

There has been relatively little work on allocation patterns in a range of species over a succession in the field (Newell and Tramer 1978, Abrahamson 1979, Stewart 1979) ("Succession" has been defined by Connell and Slatyer (1977) as the changes observed in an ecological community following a perturbation that opens up a relatively large space (Nevertheless these studies have tended to confirm the r - and K- selection theory, the populations in the earlier successional habitats usually having higher reproductive efforts. Stewart (1979) found that higher population R.E's were primarily a result of greater numbers of flowering individuals rather than higher individual R.E. The suggestion that the number of individuals which flower in a population can vary because of changing conditions is supported by Van Andel and Vera (1977). In the perennial Chamaenerion angustifolium the mumbers of flowering individuals were decreased by reducing mineral supply.

Stewart's (1979) work left several questions about the mechanism underlying variation in RoE. unanswered. He suggests that the observed variation in R.E. is environmentally rather than genetically controlled but has no empirical evidence. Whilst in some cases variations in resource allocation have been found to be genetically determined e.g. by Gadgil and Solbrig (1972), Abrahamson and Gadgil (1973),
others have shown them to be environmentally cued, plastic responses eg. Hickman (1975), Abrahamson and Hershey (1977), Roos and Quinn (1977).

The variation in the number of flowering individuals in Stewart's work prompted queries concerning the mechanisms which determine the decision to flower. In particular the possibility arose that plant size affects the probability of flowering. The method of analysis which is usually adopted in field resource allocation studies, ie. a random sample of individuals taken from a population at one specified time, makes investigation of this mechanism impossible. A method of following individual plants throughout the season is required. Such a method would not only facilitate investigation of the mechanisms determining the decision to flower, but also render the analysis of changes in reproductive allocation over the growing season statistically more rigorous.

In weight determinations of plants in the field, regression techniques have been used in order to avoid destroying the plants under observation. The method works by setting up relationships linking morphological measurements of the plant and plant weight. Hence the plants can be measured several times as they grow to provide estimates of their weight at intervals of time. Goodall (1945) was one of the first to make use of this method to assess changes in weight of the organs of tomato plants. Whittaker and Woodwell (1968) used regression relationships in their analysis of weight and production of shrubs and trees, advocating parabolic volume as the best Hutchings (1975) used height x diameter ${ }^{2}$ to determine weight of Mercurialis perennis but as far as is known only one previous study (Werner 1975) has used the method for a plant with a rosette growth form (Dipsacus follonum).

In this study it was hoped that by using a regression technique, some of the problems encountered in previous work could be avoided and some of the questions which were raised, answered.

2. OUTLINE OF MATN METHOD

Since the object of the study was to examine differences in reproductive effort at different successional stages, two sites were selected as being representative of an early and a later successional stage. These were a quarry site and a grassland site respectively. Two species of plant were chosen which were both present at each site and which were considered most suitable for analysis. At each site 40 Plantago lanceolata plants and 40 Leontodon hispidus plants were randomly selected and permanently mariked. Another 40 Plantago plants and 40 Plantago seedlings were collected from each site and transplanted into pots in a greenhouse.

A11 the marked plants in the field and greenhouse plants were measured at two week intervals for a period of ten weeks. For each plant measurements were recorded of plant diameter, number of leaves, flowering scape length and flowering spike length (Flowering spike length was only recorded for Plantago lanceolata. These parameters were selected as being the most suitable predictors of plant vegetative dry weight (plant diameter and number of leaves) and plant reproductive dry weight (flowering scape length and flowering spike length). This assumption was made on consideration of a set of regression analyses relating the vegetative and reproductive dry weighte of a set of individuals collected from the field to various measurements of their dimensions.

The regression formula which proved most accurate in predicting the dry weights was then applied to the measurements obtained from the marked plants in the field and greenhouse. Thus an estimate of their dry weight was obtained. The most appropriate regression formula was calculated on three occasions throughout the sampling period to account for any differences in the relationship between
dry weight and the morphological dimensions which might occur over the season. Once the measurements from plants in the field and greenhouse had been converted into dry weights using the most suitable formule a value for their reproductive effort was obtained using Hickmans (1975)
formula whereby RE $=$ total plant weight $\times 100$ weight of reproductive parts

3. SITES

The two sample sites chosen were similar to those sampled by Stewart (1979) and were considered to be representative of two seral stages on the magnesian limestone of the Durbam escarpment Bishop Middleham quarry ($N 2$ 3332) was chosen as an example of an early successional stage rather than Wingate quarry (used by Stewart 1979) since the latter was being landscaped throughout the sampling period. Bishop Middleham quarry is a Nature Conservancy Council SSS1 and still retains important plant communities which haxe developed over the past 40 years (Doody 1977). The particular site chosen was typical of much of the area with a large amount of bare ground and a sparse patchy vegetation dominated by Lotus cerniculatus associated with Festuca rubra, Plantage lanceolata, and Agrostis stolonifera (see Table 1). In such an environment there are likely to be extremes of temperature, moisture and nutrient availability. In a limestone quarry in New York Raynal (1979) quotes surface temperatures of $48^{\circ} \mathrm{C}$ during the growing season.

Thrislington Plantation is less than 1 km West of Bishop Middleham quarry (see Map). It is listed as Grade 1 SSS1 (A Nature Conservation Review 1977) and is considered to be the best example of ungrazed magnesian limestone grassland. The vegetation has ine :x: been identified as a Seslerio-Helictotrichetum association by Shimwell (1968) and supports a number of rare species such as Linum anglicum, Antennaria dioica and Epipactis atrorubens (also found at Bishop Middleham). The area is scheduled for quarrying within the next 50 years (Doody 1977) and attempts are presently being made to determine the feasibility of transplantation as a means of maintaining the genetic stock of individual species and perhaps communities.

quativ	LPOLODON	- Lndajud
	Chasmbu mry	

Achilles millefolium
Agrimonia eupatoria
Antajlide vilnemia
Astrulagus danicus
Bel.1is perennis
Campanula róundifolia
Contaurea migra
Cenvaurea scabiosa
Contaurium erythraca
Cerastiun fortanum
Shemernerion angustifolium
Chasonthemam Icucuntheaum 35
Girsium arverise 3

Cirsium vulgare
Conopocium najus
Crawarerus monogra
Grevis capillaris
Dacbjlorchis Lucasii
Zai aciis strorubens $\quad \therefore$
Puphrasia officinalis 20

Galium verum 6
Uenifarella amarella $7 \quad 6$
Gymacionia conopea \quad ? 9
iolianthemum chamecistus 21
Hieracium pilosella 4
hypericum porforatum . ?
ay-ochocris rabicela
igpochoeris auturnalis 91
Lathyrus pratensis 3
Ieontodon hiepidus $28 \quad 26$
binuen cathartioum 3122
Linura anglicum 5
Listera ovata i
Lotus conioulatis 90

11

9 11

8
32
26
31 $\therefore 1$

3

1

5

13
11
2
P

\therefore
\therefore

4
$7 \quad 7$

2
$\therefore 8$

	QUARRY	LBONTODON GRASSLAND SITE	PLANTAGO GRASSLAND SITE
Medicago lupulina	9	7	11
Ononis repens	3		
Plantago lanceolata	50	9	60
Plantago major			4
Plantago media		16	13
Polygola vintgaris	1	9	
Potentilla reptans			15
Potenum sanguisorba	2	10	
Primula veris	1	4	3
Prunella rulgans	29	8	13
Ranunculus bulbosus		5	
Rhinanthus minor		11	3
Ranunculus acris			16
Trifolium repens	1		49
Hosa Canina	P		
Ranunculus repens			6
Rubus fruticosus	2	3	
Scabiosa columbaria	10		
Senecio jacobaea	P	1	P
Senecio vulgeris			P
Silene dioica		P	
Taxaxacum officinale	6		13
Thymus drucei	13	5	
Tragopogon pratensis		3	
Trifolium pratense	15	10	3
Tussilago farfara			
Veronica chamaedrys			P
Viola riviniana		P	
Vicia cracca			5

	QUARRY	IRONTODON GRASSLAND SITE	PLANTAGO GRASSLAND SITE
Agropyron repens			2
Agrostis stolonifera	59	7	72
Agrostis tenuis	1	10	
Anthoxanthum odoratum		13	
Arrhenatherum	P	6	
Brachypodium sylvaticum			1
Briza media		17	6
Bromus crechis	2		
Cynosurus cristatus		13	13
Dactylis glomerata	11	8	22
Deschampsia caespitosa			
Festuca ovina	14		
Festuca rubra	58	34	25
Helictotrichon pratense		2	
Holcus lanatus	6	6	1
Koeleria cristata	4	3	
Lolium perenne		5	6
Phleum pratense			7
Poa pratensis		8	23
Sesleria albicans	2	41	
Carex flacca	12	19	28
Luzula campestris			2
Luzula multiflora			1

[^0]Unfortunately, on examination of the plant communities at Thrislington, it was impossible to find a site which included both of the chosen plant species in sufficient numbers (see later). It was therefore decided to use separate sites of similar size for each species. (see Map). The Leoptodon site was on a gentle 6° slope facing N.W and the vegetation was composed of a large number of species dominated by Seslexig albicans and Festuca rubra. The Plantago site was approximately 250m further N. in a level area of slightly inferior grassland dominated by Agrostis stolonifera and Plantago lanceolata.
4. SPECIES

The 2 species studied were selected using criteria which would enable efficient sampling and analysis. Both Plantago lanceolata and Leontodon hiapidus are herbaceous perennials and are found at both sites. Stewart (1979) found that in both species individual plants are relatively easily distinguished from each other and in both plants the vegetative structures of the plant (ie leaves, stem etc) could be easily discerned from the reproductive structures (ie scape, inflorescence, seeds etc). In Ieontodon the leaves are arranged in a rosette whilst in Plantago the leaves are radical and spirally arranged (Clapham, Putin and Warburg 1959). These similar features facilitated the choice of parameters for use in the regression analyses.

Characteristically Leontodon hispidus has bispid leaves with forked hairs and this feature was useful in identification of the plant, particularly in the quarry site where there were many similar composites. Moreover P lanceolata has a very distinctive seed and seedling (see fig 1) which enables it to be distinguished from other seedlings and pertinently, other Plantage species (Muller 1978). The seeds germinate in Spring and Autumn and seedlings could therefore be collected at the commencement of the sampling period in early May.

Hypocotyl 5－20mm。ロglabrous，herbaceous，slightly woody 。 Seed leaves 2, sessile，strongly sheathed at \pm hairy base，linear $1 \frac{1}{2}-5 \mathrm{~cm}$ ．herb．，glabrous，tip rounded－ angular。Epicotyl absent。Leaves alternate。petiole 7－ 20 mm 。 hairy ${ }^{+}$strongly sheathed at base，lanceolate 。 linear with 3 parallel nerves，base curveate， $2 \frac{1}{2}-4 \mathrm{~cm}$ 。 herbaceous，with long slender sinuate hairs．Tip rounded －angular，entire

Germ。autumn－spring。

5. METHODS

The sampling procedure can be subdivided into two sections: methods were employed to derive regressions relating the dry weight of the sample plants to some easily measurable parameter (s) of the plant; the regression obtained from this procedure was then applied to data derived from field measurements collected at regular intervals over the growing season. Thus, the assessment of reproductive effort was possible throughout the season by means of Hickmans (1975) formula ($R E=$ reproductive dry weight/total dry weight as a percentage).

5.1 Regression Methods

The first sample of plants for the regression analyses was taken one week prior to the commencement of regular field sampling. This meant that the parameters which were most suitable for measurement and provided the beat estimate of plant dry weight could be determined prior to the recording of plants in the field. At each site 40 P _ lanceolata and 40 L . hispidus plants were collected and put into sealed polythene bags to minimise water loss and consequent reduction in plant size. The plants were washed and stored at $5^{\circ} \mathrm{C}$, then measurements were carried out at the earliest opportunity. For each plant vegetative measurements were taken of rosette diameter, number of leaves, total cumulative leaf length, total cumulative leaf breadth and a leaf area index (total leaf lemgth x total leaf breadth). Number of scapes, total cumulative length of flowering spikes were measured, these being possible indicators of reproductive dry weight. The measurement of dimensions was carried out on entire plants since this condition would be obligatory in the field. It was calculated that 40 plants was the least number likely to produce any statistically significant results when the usual flowering percentage of the population was
taken into consideration (Stewart 1979).
The plants were then divided into reproductive matter (scape, flower, fruit seeds etc) and vegetative matter (leaves stem etc), sealed in separate envelopes, labelled and dried at $90^{\circ} \mathrm{C}$ until a constant dry weight was obtained. The dried plant matter was weighed on a Mettler balance to 4-decimal places. Following Abrahamson and Gadgil (1973) and Gadgil and Solbrig (1972) roots were not included in the dry weight determinations. It is extremely difficult to ensure that the entire root biomass has been obtained (Dittmer 1972) and any attempt to procure the root biomass would have made sampling time iapracticable.

Data on individual plant vegetative dry weights and their corresponding dimensions were coded and punched onto computer cards. Similarly data for individual reproductive matter dry weights and the corresponding dimensions were coded. Squared values of diameter were included in these preliminary investigations since Hutchings (1975) concluded that quadratic equations gave a greater predictive accuracy. Scattergrams showing the dry weights plotted against the various measurements together with the relevant regressions and their associated statistics were produced using S.P.S.S. (Nie et al 1975) on the N.U.M.A.C. computer.

The most appropriate index of vegetative plant weight was found to be a combination of plant diameter and number of leaves (see Results). Hence, field data collection of vegetative parameters was restricted to these measurements. Data on both cumulative scape length and cumulative spike length were collected as indicators of reproductive dry weight in Plantagg lanceolata. Leontodon hispidus, however, had not begun to flower at the time of the first regression determination.

Any plant species will exhibit changes in the fresh to dry weight ratio during growth ie the relationship between the measured parameters and the dry weights will change. Consequently a series of regressions should always be used to reduce errors (Hutchings 1975). Ideally a regression relationship should be determined frequently enough to eliminate significant differences between successive regressions. However, the regression analyses tended to be very time consuming and it was decided that a total of three separate regression determinations, one camed out at the beginning of the sample period, one in the middle and one at the ond would be sufficient to account for any significant deviations which might occur.

In the second and third regressions plants were again taken from the field, measured and separated into their component parts, dried and weighed. Some greenhouse plants (see later) were included in the third regression since these plants tended to be larger than many of the field plants. In the second and third regressions measurements taken were limited to those which had proved most suitable in the first regression (see Table 2). By the time the second set of regressions were determined L. hispidus plants had begun to flower and it was found that total cumulative scape length was the most useful predictor of Leontodon reproductive dry weight. The first regression, therefore was applicable to small plants at the beginning of the season whereas the third regression could be applied to larger plants at the end of the season. This was particularly so in $\underline{P}_{\text {. }}$ lancealata where the third regression included many of the large greenhouse plants. (See 'Results' for further details of regression applicability).

GRASS

Plantago	No. of LVES	0.819	89.4 .37	0.00001
Dry Weight with:-	Diameter	0.341	146.6	0.01562
	Diam ${ }^{2}$	0.315	148.1	0.023
	$\mathrm{N} \times \mathrm{D}$	0.908	65.2	0.00001
	$N \times D^{2}$	0.768	99.87	"
	Leaf area index	0.976	33.5	"
	Total leaf Iength	0.942	51.9	"
	Total leaf wicth	0.951	47.8	"
Plantago Reproductive Dry Weight with:-	No. of Scapes	0.900	14.95	11
	Total length of Scapes	0.863	27.35	"
	Total length of Spikes	0.960	9.6	11
Leontodon Vegetative Dry Weight with:-	No. of LVES	0.567	9.666	0.00007
	Diameter	0.312	11.15	0.0249
	Diam ${ }^{2}$	0.294	11.21	0.032
	$\mathrm{N} \times \mathrm{D}$	0.583	9.52	0.00004
	$\pi \times 9^{2}$	0.546	9.82	0.00013
	Leaf area index	0.795	7.106	0.00001
	Total leaf length	0.719	8.15	"
	Total leaf width	0.805	6.961	"
		$\begin{aligned} & \text { erelati } \\ & \text { eificie } \end{aligned}$		

```
standard
error of
estimate
```

probability
of
significance

Plantago Vegetative Dry Weight with:-		GUARRY		
	No. of LVES	0.307	50.9	0.0269
	Diameter	0.689	38.7	0.00001
	Diam ${ }^{2}$	0.693	38.57	
	N x D	0.884	25.01	"
	$N \times D^{2}$	0.835	29.43	"
	Leaf area index	0.965	13.88	"
	Total leaf length	0.909	22.258	11
	Total leaf width	0.904	22.85	"
Plantago Reproductive Dry Weight with:-	No. of Scapes	0.796	10.6	"
	Total length of Scapes	0.880	8.37	"
	Total length of Spikes	0.903	7.577	"
Leontodon Vegetative Dry Weight with:-	No. of LVES	0.652	46.11	"
	Diameter	0.857	31.316	"
	Diam ${ }^{2}$	0.895	27.07	11
	$\mathrm{N} \times \mathrm{D}$	0.909	25.36	"
	$N \times D^{2}$	0.930	22.26	"
	Leaf area index	0.979	12.36	"
	Total leaf length	0.943	19.6	"
	Total leaf width	0.858	31.17	"
		correlation coeffecient standard error of estimate		$\because \because$
			$\begin{aligned} & \text { probability } \\ & \text { of } \\ & \text { significance } \end{aligned}$	

5.2 Field and Laboratory Mothods

At each sample site a permanent plot 10 m by 10 m was identified and marked. The vegetation was recorded using randomly located $100 \mathrm{~mm}^{2}$ quadrats in which the occurrence of species was noted (see Table 1). The specific plants studied (40 Plantago and 40 Leontodon at each site) were identified as those individuals nearest to randompy located points in the 10 m grid. The plants were labelled and numbered using a white plastic peg which also facilitated their relocation.

In order to determine whether any observed differences between the plants at the quarry and grassland sites were genetically or environmentally cued it was necessary to remove plants from environmental influences. Since the sampling time involved in this procedure was great it was decided to restrict this experiment to one species ie Plantago lanceolata. Two weeks before commencement of regular sampling 40 plants from each site were carefully excavated and replanted in potting compost in 6° plastic pots. Environmental effects may well be carried over from one season to the next so in order to eliminate these effects seeds or seedlings should be studied, Since seeds were not available 40 young seedlings of uniform cotyledon size were also collected from each site. The seedlings were placed in sealed plastic tubes to minimise water loss and mechanical damage and were transplanted into potting compost in $6^{\prime \prime}$ pots (one per pot) as soon as possible. The plants and seedlings were kept in the greenhouse in an environment which simulated external conditions as far as possible.

Measurements of plant diameter, number of leaves, cumulative scape length and cumulative spike length were then taken of all these plants (both field and greenhouse) at 2 week intervals commencing on June 1st. Other studies have used sampling intervals of 3 weeks and more on a variety of plants eg Newell and Tramer (1978) and Bostock and Benton (1979) so 2 weeks was considered an adequate time interval. Sampling was subjectively terminated when the majo
ority of Plantago had seeded. (Altogether 5 samples were taken).
In the laboratory measurements of Plantago spike length and number of 2 - seeded capsules were noted and a regression relating the two was computed. It was hoped that this would provide an additional measure of reproductive achievement.

In order to assess the relative germinability of Plantago seeds from each site 25 seeds of each type were placed on damp filler paper in Petri dishes and allowed to germinate. In total there were 6 different types of seed:- Field quarry seed, quarry seed from plants grown for one season in greenhouse and quarry seed from seedlings grown in greenhouse; field grassland seed, grassland seed from plants grown for the season in greenhouse and grassland seed from seedlings grown in greenhouse. The experiment was repeated using Petri dishes covered in foil to exclude light. Three replicate experiments were conducted for statistical validity. The numbers of seeds which had germinated after four weeks were noted.

The number of vegetative rosettes produced by each plant grown for one season in the greenhouse at the end of the sampling period was also recorded.

The data from the field and greenhouse sampling were converted to dry weight using the appropriate regression formula. The results were then analysed using various procedures available with S.P.S.S.

6. RESULTS

6.1 Regressions

Scattergrams of the various measured parameters against the dry weights using the first set of regression dataswere produced and examined. The validity of each parameter as a predictor of plant dry weight was then assessed by means of their correlation coeffica ients. The data were found to be slightly positively skewed and theoretically a transformation should be applied to such data before any correlation or regression analysis. However, one of the principle objects of the study was to predict absolute values of plant dry weight (particularly in considering the mechanisms involved in the decision to flower) and any transformation of the data at this stage would have made this impossible. It should be noted, however, that the slight shewness may make some difference in the absolute values of the correlation coeffients. Nevertheless their relative relationships will not change.

The correlation coefficient is an index which reflects the degree to which changes in direction and magnitude in one set of data (ie the dry weight values) are associated with comparable changes in the other set (ie the measure parameter). Whittaker and Woodwell (1968) have suggested an alternative method for expression of the relative accuracy of predictions made from regressions. The Standard Brror of the Estimate for a Regression.

$$
S E=d\left(\cos ^{2} / n-1\right)
$$

In order to express the relative spread of points from a linear reo gression the Standard Error tas divided by the mean value of the y - observations to produce an estimate of relative error. However, this value is also influenced by skewness and under these circumstances the correlation coefficient was considered to be an adequate index
of the relative accuracy of the predictions.
The correlation coefficients for the various parameters analysed in the first regression sample are shown in Table 2. From this table it is apparent that the best predictors of vegetative dry weight for both Ieontodon and Plantago was the leaf area index (R $=0.98$ for both plants) (see figs 2 and 1 a and b). Unfortunately this parameter was far too time consuming to collect in the field as were total leaf length and total leaf breadth. Consequentily either no. of leaves x diameter ($R=9.3$ for Plantage) or no. of leaves x diameter squared ($R=9.3$ for Leontodon) (see figs 2 iii and iv) were chosen as being most suitable. A composite regression including both the plants from the quarry site and plants from the grassland site was selected because it produced a higher correlation coefficient than either site treated separately.

It is also evident from Table 2 that there are some interesting differences in morphology between the two species and furthermore, between similar species at different sites. Leontodon has a much better correlation between vegetative dry weight and diameter (0.81) than Plantago (0.53) suggesting that Leontodon has a more compact form. There is also a striking difference between the Leontodon plants at the quarry site, having a good correlation with diameter (0.85) and the grassland plants having a poor correlation with diameter (0.31). Similarly Plantago plants at the quarry site have a higher correlation with diameter (0.68) than those at the grassland site (0.34).

In the first regression analysis the best indicator of Plantago reproductive weight was the total length of the flowering spike. In subsequent regressions, however the total length of the scape was a more accurate predictor. This was to be expected since as the scape enlarged over the season the relative importance of the

FIRST REGRES SCATTERGRAMS
FIG. $2 i$ SCA TTERGRAM OF VEGETATIVE DRY MEIGHT WEIGHT: WITH NO. OF IEAVES X DIAM.

FIRST RETGRES SCATTERIRAMS

STATISTICS..

Flg. 2iii Scattergram of Vegetative 2 Dry weight with No. of Leaves X Diameter
FIQST REGRES SCATTIDBAMA: Leontodon hispidus

terminal flowering spike in the total reproductive weight became less. Total scape length was considered to be the only reliable measure of reproductive dry weight in Leontodon since the flower and fruit altered dimensions throughout the season.

This procedure for selecting regressions was carried out on the 2nd and 3rd samples. The exact parameters which were selected and their associated regression values are given in Table 3. The scattergrams for these regressions are included in the Appendix. The fact that different regressions are necessary over the season indicates that the relationship between the dry weight of the plant and its dimensions does change over the season. All the regression equations were then applied to the field and greenhouse sample data in order to convert these measurements to dry weights. In the case of Plantago the problem of when to apply each regression was resolved subjectively. Since the first regression sample was taken just before commencement of field sampling and growth of the plants at this time was rapid, this regression was only applied to the first field and greenhouse sample. The third Plantago regression included some very large greenhouse plants and when this regression equation was applied to the field data a large number of negative values were obtained (see discussion). The third regression was therefore not applied to field data, only data concerning greenhouse plants.

On examination of the dry weight data for Ieontodon it was evident that the 1 st and 3rd regression equations produced many spurious negative values (see discussion for possible explanations) and it was decided to restrict analysis to the 2nd equation values.

Since some data were again found to be slightly positively skewed a square root transformation was applied before calculation

REGRESSION			
lst. Plantago for Vegetative Dry Weight 2nd. Plantago for Vegetative Dry Weight 3rd. Plantago for Vegetative Dry Weight	-14.93216	$\underline{\text { a }}$	0.13123

lst. Plantago for \quad Total length of
Reproductive
Dry Weight $\quad-5.92718 \quad 2.44766$ Flowering Spikes
2nd. Plantago for Total length of
Dry Height $\quad-59.82900 \quad 0.65728$ Scapes

3rd. Plantago for
Reproductive Total length of
Dry Weight
-159.44195
0.99643

Scapes

2nd. Leontodon			
for Reproductive			
Dry Weight	1.31637	0.76623	Total length of
(Plants were not			
Flowering at time			
of First Regression)			
3rd. Leontodon for Reproductive Dry Weight -12.53409 0.68362			

of t - tests to determine significant differences between species and sites. When values from the first set of field data were plotted on probability paper a square root transformation was the most satisfactory in approximating the straight line characteristic of normal data (see fig 3). The transformation was applied to enable the adoption of parametric methods of statistical analysis which are generally considered to be preferable to non-parametric methods (Sokal and Rolf 1969).

6.2 Plantago Lanceolata

i. Vegetative Dry Weight

The vegetative dry weights of the 3 classes of Plantago are shown in table 4 and fig 4. There is a marked difference in the vegetative weights attained by each class of plant. The greatest weights are achieved by the seedlings which reach an average peak of 5343 mg . in the 3 rd sample week, after which they begin to decline. The transplanted greenhouse plants reach an average peak of 3646 mg . in the 4 th sample week. Although the seediings and plants began the sampling period with highly significant differences in vegetative dry weight ($P<0.001$), this difference becomes less marked over the time period until it becomes unsignificant in the last sample week. The Plantago plants growing in the field have much lower vegetative weights. The Quarry Flantago plants reach a peak of 199.7 mg in the 4 th week then begin to decline slightly. In the fifth week the grassland Plantago plants have mean vegetative weights of 450.8 mg and do not show any evidence of a decline within the sample period. The Rlantago plants in the field always have a significantly different mean vegetative dry weight from the transplanted plants in the greenhouse and hence also from the seedlings.
('Seedlings' is used as a distinguishing term meaning those plants

FTG. 4 DRR WEIGHT OP VRGETATIVE MATEER PLANTAGO LANCEOLATA

- Quarry plants
- Grassland plants

in the greenhouse which were transplanted as seedlings).
In the field Plantago plants, there is always a significant difference in vegetative dry weight between those from the grassland and those from the quarry ($\mathrm{P}<0.001$). The grassland Plantago plants are always larger and this trend becomes more pronounced as the season progresses. In the first two sample weeks there is a difference between the grassland greenhouse plants and quarry greenhouse plants ($P=<0.01$) but this gradually disappears until in the final week the plants can virtually be regarded as coming from the same population ($\mathrm{P}=0.818$). At no time are the seedlings from the grassland and the seedlings from the quarry significantly different.

These figures for vegetative dry weight are based on the data: collected on plant diameter and number of leaves and it is interesting to examine these values separately. The seedlings again have the largest number of leaves with a maximum average/plant of 56.6 in the third week. The greenhouse plants reach a maximum average of 42 leaves /plant in the 4 th week whilst the field plants have a maximum number of leaves at the beginning of sampling (7.7/plant for the grassland and $6.6 /$ plant for quarry). Grassland plants consistently have a larger mean number of leaves in all classes but this is only statistically significant at the end of field sampling and beginning of greenhouse plant sampling (see table 5 and fig 5).

The difference in diameter between the various classes of plant is not as pronounced (see table 6 fig 6). Both seedlings and greenhouse plants reach a maximum in the 4 th week with mean diameters/plant of 549 mm and 442 mm respectively. Field Plantago maxima are in the fourth week at the quarry (173 mm) and fifth week at the grassland (276 mm). The seedlings and greenhouse plants never display any significant difference in diameters at the two sites but in the field populations

FIG. 5 NUMBER OF LEAVES

PLANTAGO LANCEOLATA

$$
\begin{aligned}
& S=\text { Pransplanted seedings } \\
& P=\text { Transplanted plants } \\
& F=\text { Pield plants }
\end{aligned}
$$

O Quarry plants
Grassland plants
the grassland plants are always larger ($P<0.001$). The differences in vegetative dry weight between the two populations in the field can be mainly attributed to differences in diameter. However, towards the end of the season differences in the number of leaves per plant contribute towards determining the vegetative dry weight of each plant.

ii Reproductive Dry Weight

The mean reproductive dry weight/plant is shown for the flowering population in fig 7a and for the total population in fig 7b. There is little difference in the general pattern between these two populations, the total population means being slightly lower in value. In all 3 classes the peak reproductive biomass is in the fimad week and, similarly to the vegetative dry weights, the seedlings have the highest production (5723 mg), followed closely by the greenhouse plants (4482 mg) then a steep decline to the field plants (300mg). It is interesting to note that in the seedlings the steep rise in reproductive biomass between the second and third week is followed by a decline in vegetative production between the third and fourth weeks. Similarly in the greenhouse plants, the steep rise in reproductive production between the third and fourth weeks is followed by a decline in vegetative production between the fourth and fifth weeks.

The difference between the field plants and greenhouse plants in reproductive dry weight is always gignificant, particularly towards the end of sampling but any difference between the greenhouse plants and seedlings is less distinct. At the commencement of sampling the difference between the quarry plants is significant ($P=<0.01$) whilst at the end of sampling the difference between the grassland plants is significant $(P=<0.001)$. Tables 7a and 7b show that although the grassland plants consistently have a greater reproductive production in the field and seedlings this difference is only significant

FIG. 32 MEAN DRY WEIGHT OF REPRODUCTIVE MATTER

FOR FLOWERING PLANTS

PLANTAGO LANCEOLATA

FOR TOTAL POPULATION

PLANTAGO LANCEOLATA

in the field populations.. The quarry greenhouse plants often have a larger reproductive production but the probability of this difference being significant is never greater than 0.08 .

iii Reproductive Effort

The reproductive effort defined as 'the reproductive dry weight as a percentage of the total weight' for all three classes of Plantage is shown in figs 8 a and 8 b .. The curves taken by the greenhouse plants and seedlings are very similar, reaching a mean maximum per flowering plant in the final week at 58.9% and 58.4% respectively. However the greenhouse plants have a significantly higher mean (10.5% as compared with 3.4%) at the commencement of sampling. The field Plantago plants have a significantly higher mean R.E. at the commencement of sampling (19.25%) but begin to lead off in the third week ending with a significantly lower mean (42.5%). At no time is there any significant difference between quarry and grassland plants either in the field, greenhouse plants or seedlings. Nevertheless it appears that in the field grassland plants commence with a higher R.E. and finish with a lower R.E. whilst in the greenhouse plants grassland plants consistently have a lower R.E. and in the seedlings grassland plants consistàntly have a higher mean R.E. The mean population R.E. for the greenhouse plants and seedings closely follows that of the flowering population R.E. shown in fig 8b. This is because virtually all of these plants flowered. The mean population R.E. for the plants in the field, however fluctuates considerably the maxima being at the grassland site - 27.1% in the third week - and at the quarry site -16.2% in the fourth week.

An alternative method for determining reproductive effort might be to look at the numbers of seeds produced by a plant. It would be difficult to count total mumbers of seeds in practise but a regression could be calculated relating a measurable characteristic

PIG. Ba MEAN REPRODUCTIVE EPFORT OF FLOWERING PLANTS PIANTAGO LANCEOIATA

of the flower or fruit to seed number. The obvious characteristic in Plantago lanceolata is spike length and a very good straight line regression was produced relating this parameter to capsule number (see fig 9). Plantago lanceolata produces a number of 2-seeded fruits or capsules which make-up the spike. Hence the number of capsules produced as a direct indication of the number of seeds. The figures obtained for total spike length/plant in the final week were thus converted to mean capsule numbers per plant using this regression. The results are shown in Fig 10 and Table 9. The seedlings have the largest R.E. with a mean of 877.25 capsules per plant. The greenhouse plants have a mean of 708.3 and the field plants 73.65. In both the field plants and seedlings the grassland plants have a greater R.E. but this is only significant in the field ($P=0.031$). The quarry greenhouse plants have a significantly higher output than the grassland plants ($P=0.015$). When these figures were converted to number of capsules produced/gram vegetative dry weight as is done by Primack (1979) some interesting changes in the mean allocations occur. Quarry plants in the field have the largest mean no. of capsules per gram vegetative dry weight (311.8) whereas grassland plants in the field have the smallest allocation (198.66). Greenhouse plants and seedlings from both sites have very similar allocations. (see Table 9 Fig 10)
iv Germinability
The germinability of the seeds could also differ but the results of the germinability experiment are inconclusive (see Table 10). The only significant results were between grassland seedling seeds in the light and dark 12.25 seeds germinating in the light and 7 in the dark ($P: 0.01$) and between grassland and quarry greenhouse plant seeds in the dark, 10.5 grassland seeds germinating in the dark whilst

FIG. 9 SCATTERGRAM SHOWING NO. OF SEED CAPSUIES PER PIANT WITH LENGTH

 OF FLOWERING SITKE: PIANTAGC IANCEOLATA
statistics..

$W \begin{gathered}\text { Grassland } \\ \text { plants }\end{gathered}$
$\begin{array}{llll}\text { Quarry } & & \text { TRANS- } & \text { TRANS- } \\ \text { plants } & \text { FIELD } & \text { PLANTED } & \text { PLANTED } \\ & \text { PLANTS } & \text { PLANTS } & \text { SEEDLINGS }\end{array}$

FIG. IOb

only 5.75 quarry seeds germinated in the dark. These results were rather inconclusive.

A comparison of the number of vegetative rosettes produced by greenhouse plants tas also inconclusive (see Table 9).

6.3 Leontodon Hispidus

i Weights and Reproductive Effort
The vegetative production of Leontodon hispidus at the 2 sites can be seen in fig 11 and table 11. It is obvious that the quarry plants consistently have a much higher vegetative biomass beginning at 143.2 mg plant vegetative dry weight and ending at 202.4 mg whilst grassland plants begin at 85.5 mg plant vegetative dry weight and end at 140.3 mg . The difference between the 2 sites is always significant particularly in the first 3 sample reeks. When this vegetative weight is broken down into its component parts ie number of leaves and diameter (see figs 12 and 13 and Tables 12 and 13) it is immediately evident that this difference is mainly attributable to variations in the number of leaves/plant at each site. At the comencement of sampling each quarry plant has an average of 8.3 leaves whilst grassland plants have 4.9. Even at the end of sampling quarry plants have a mean 8.4 leaves/plant whilst grassland plants have 6.1.

The rate of increase in vegetative biomass over the sampling period is fairly uniform (approx. 15mg/wk.) which contrasts with the rapid increases and fluctuations in reproductive dry weight (see fig 14 and Table 14). At the highest rate of increase quarry plants increase their reproductive dry wt. by $140 \mathrm{mg} / \mathrm{sample}$ period. Plants were not flowering at either site at the beginning of sampling but quarry plants began in the 2 nd week with a mean of $22.9 \mathrm{mg} / \mathrm{plant}$ and reached $245,8 \mathrm{mg} /$ plant in final week. Plants at the grassland site did not begin to devote resources to reproductive production until

FIG. II DRY WEIGHT OF VEGETATIVE MATGER
LEONTODON HISPIDUS

the 4 th week, with a mean of $27.8 \mathrm{mg} /$ flowering plant and reached 82.1 mg
in the final week. The differences between the 2 sites were therefore significant in the 3 rd , 4 th and 5 th sample weeks. The population reproductive dry weights generally followed the same pattern, but at a lower level since not every plant flowered. They reached maxima of 146.7 mg at the quarry site and 40.5 mg at the grassland site.

These figures were converted into reproductive efforts and the results can be seen in Fig 15 and Table 15. Quarry flowering plants attain a maximum reproductive effort/plant of 47.1% whilst grassland plants reach 32.2%. It is interesting that the quarry flowering plants appear to lead off to a plateau in the fourth week and this plateau is not so marked in the total population R.E. Again, there is a significant difference between the two sites in the 3 rd , 4 th and 5 th weeks.

ii Mechanisms

Unfortunately, since so many of the Plantage plants in the field were flowering at the beginning of the sample period it was impossible to obtain sufficient plants for statistically valid tests on the mechanisms which determined flowering. Similarly, virtually all the greenhouse and seedling Plantago plants flowered, which rendered an investigation into the possible mechanisms determining flowering impossible. Tests were consequently only possible on data concerning Leontodon hispidus.

Treating quarry and grassland plants separately the flowering and non-flowering plants were separated into two groups and their weights at the beginning of the sample period tested. The difference between the two groups was significant ($P \approx 001$) at both sites (see Table 16). Non-flowerers at the quarry site had a lower initial

RIG. 15 REPRODUCTIVE EFFORT

LEONTODON HISPIDUS

- Grassland plants
o Quarry plants

mean vegetative dry weight ($7.5^{2} \mathrm{mg}$) than flowerers ($12.7^{2} \mathrm{mg}$). Moreover non-flowerers at the grassland site had a lower initial mean vegetative dry weight ($7.63^{2} \mathrm{mg}$) than flowerers (10.001 mg). The quarry flowerers had a significantly higher initial vegetative weight than the grassland illowerers ($P<05$) but the difference between the non-flowerers at each site was not significant.

The quarry flowerers were then further subdivided into those which flowered in the 2nd and 3rd sample weeks and those which flowered in the 4 th and fifth sample weeks. Although the earlier flowerers had a higher mean vegetative dry weight ($13.35^{2} \mathrm{mg}$), this was not significantly different from the later flowerers ($11.72^{2} \mathrm{mg}$). If the grassland plants were included as later flowerers (No grassland plants flowered in the second and third weeks) the difference was significant at the .05 level but it must be remembered that grassland plants were generally smaller than quarry plants (see Table 11).

To test whether initial vegetative dry weight was related to final reproductive dry weight a correlation coefficient was computed (see Table 17 and Fig 16). The correlation between the two was significant at the $P \Rightarrow<0.001$ level for the quarry plants but not significant for the grassland plants. When the groups were combined the correlation was again significant at the $P=\zeta 0.001$ level.

FIELD PLANTAGO (F)						
Week		wk 1	wk 2	wk 3	wk 4	wk 5
	$\overline{\mathrm{x}}$	172.1	273.3	333.9	403.4	450.8
GRASS	SD	130.5	162.5	215.8	307.5	430.8
	SE	20.9	27.1	36.5	55.2	77.4
	n	39	36	35	31	31
QUARRY	$\overline{\mathrm{x}}$	91.0	173.3	186.1	199.7	185.7
	SD	71.9	94.2	93.9	134.3	116.7
	SE	11.7	15.3	14.9	21.8	18.7
	n	38	38	40	38	39
T-test	T	3.36	3.1	3.93	3.68	3.68
	df	75	72	73	67	68
	p	0.001*	0.003*	0.000*	0.000*	0.000*

GREENHOUSE PLANTS (P)						
GRASS	$\overline{\mathrm{x}}$	774.2	2211.3	3101.9	3576.2	3102.3
	SD	379	1174.9	1193.6	1446.9	1586.7
	SE	61.6	185.8	188.7	231.7	250.9
	n	38	40	40	39	40
QUARRY	$\overline{\mathrm{x}}$	522.8	1624.1	2852.5	3715.5	3183.4
	SD	293.5	956.1	1078.2	1377.1	1507.2
	SE	46.4	151.2	172.6	223.4	244.5
	n	40	40	38	38	38
T-test	T	3.28	2.45	0.97	-0.43	-0.23
	df	76	78	77	75	76
	P	0.002	0.016	0.665	0.665	0.818

GREENHOUSE SEEDLINGS (S)

GRASS	$\overline{\mathrm{x}}$	1377.8	3639.5	5514.3	4985.4	3933.1
	SD	653.9	1675.8	1857.8	2223.1	2475.6
	SE	103.4	271.4	301.4	365.5	401.6
	n	40	38	38	37	38
QUARRY	$\overline{\bar{x}}$	1286.0	3975.7	5171.4	4947.9	4211.4
	SD	557.7	1693.1	1645.9	2043.3	2268.2
	SE	89.3	267.7	260.2	323.1	363.2
	n	39	40	40	40	39
T-test	T	0.67	-0.88	0.86	0.08	-0.51
	df	77	76	76	75	75
	P	0.505	0.381	0.39	0.939	0.6

TABLE 4 (cont.)

* $\quad=P<0.05$

Difference between $F \& P$ in Wk. 1 GRASS $T=9.2 \quad P<0.001$
QUARRY $T=9.0 \quad \mathrm{P}<0.001$
"
" \quad \& \& S in Wk.l
GRASS $T=5.0 \quad P<0.001$
QUARRY $T=7.58 \mathrm{P}<0.001$
"
"
P \& S in Wk. 5
GRASS $T=1.75$ N.S. QUARRY $T=2.34 \quad P<0.05$

FIELD PLANTAGO						
Week		Wk. 1	Wk. 2	Wk. 3	Wk. 4	Wk. 5
	$\overline{\mathrm{x}}$	7.7	6.8	6.7	6.9	7.2
GRASS	SD	3.2	2.2	1.8	2.8	3.6
	SE	0.5	0.4	0.3	0.5	0.6
	n	39	36	35	31	31
QUARRY	$\overline{\mathrm{x}}$	6.6	6.6	6.4	5.6	5.1
	SD	2.3	2.0	$1 . \%$	1. $\%$	1.7
	SE	0.4	0.3	0.3	0.3	0.2
	n	38	38	40	38	39
T-test	T	1.59	0.30	0.78	2.36	3.32
	df	75	72	73	67	68
	prob	0.116	0.764	0.437	0.021*	0.001*

GREENHOUSE PLANTS						
GRASS	$\overline{\mathrm{x}}$	17.6	27.8	39.8	443.3	38.9
	SD	6.8	11.2	16.1	17.7	16.1
	SE	1.1	1.8	2.6	2.8	2.6
	n	38	40	40	39	40
QUARRY	$\overline{\mathrm{x}}$	13.0	20.6	33.6	39.7	35.1
	SD	5.2	9.0	12.7	14.5	15.2
	SE	0.8	1.4	2.0	2.4	2.5
	n	40	40	39	38	38
T-test	T	3.36	3.15	1.89	1.24	1.08
	df	76	78	77	75	76
	prob	0.81	0.002	0.063	0.218	0.284

GREENHOUSE SEEDLINGS

GRASS	$\overline{\mathrm{x}}$	32.1	44.3	58.8	45.9	41.8
	SD	13.0	14.3	17.4	18.2	18.0
	SE	2.1	2.3	2.8	3.0	2.9
	n	40	38	38	37	38
QUARRY	$\overline{\mathrm{x}}$	27.7	41.4	54.3	44.7	42.8
	SD	8.6	11.2	14.8	14.7	14.9
	SE	1.4	1.8	2.3	2.3	2.4
	n	39	40	40	40	39
T-test	T	1.77	1.02	1.23	0.32	-0.29
	df	77	76	76	75	75
	prob	0.081	0.311	0.222	0.752	0.774
* $=$	0.05					

FIELD PLANTAGO						
Week		Wk. 1	Wk. 2	Wk. 3	Wk. 4	WK. 5
	$\overline{\mathrm{x}}$	174.5	212.8	240.9	269.9	275.5
GRASS	SD	81.9	84.2	91.2	91.6	93.5
	SE	12.9	13.8	15.4	16.4	16.8
	n	40	37	35	31	31
	$\overline{\mathrm{x}}$	117.9	141.3	154.6	172.7	169.3
QUARRY	SD	46.0	59.0	64.4	76.5	80.3
	SE	7.3	9.5	10.1	12.4	12.9
	n	40	39	40	38	39
	T	3.81	4.31	4.77	4.8	5.11
T-test	df	78	74	73	67	68
	prob	0.000*	0.0000*	0.000*	0.000*	0.000 ${ }^{\text {\% }}$

GREENHOUSE PLANTS						
GRASS	$\overline{\mathrm{x}}$	337.4	387.1	397.9	410.9	396.1
	SD	66.7	83.5	70.4	67.9	103.9
	SE	10.5	13.2	11.1	10.7	16.4
	n	40	40	40	40	40
QUARRY	$\overline{\mathrm{x}}$	301.3	371.7	425.1	473.1	451.7
	SD	72.2	71.7	61.8	83.3	92.7
	SE	11.4	11.3	9.9	13.5	14.8
	n	40	40	39	38	38
T-test	T	2.33*	0.88	-1.82	-3.62	-2.51
	df	78	78	77	76	77
	prob	0.023	0.38	0.072	0.001*	0.014

GREENHOUSE SEEDLINGS						
GRASS	$\overline{\mathrm{x}}$	326.0	397.5	472.9	543.5	448.2
	SD	52.2	52.9	71.0	108.6	115.7
	SE	8.2	8.5	11.5	17.6	18.8
	n	40	39	38	38	38
QUARRY	$\overline{\mathrm{x}}$	351.1	429.3	481.8	554.6	478.4
	SD	67.3	54.9	71.5	110.8	141.1
	SE	10.6	8.7	11.3	17.5	22.6
	n	40	40	40	40	39
T-test	T	-1.86	-2.62	-0.55	-0.45	-1.03
	df	78	77	76	76	75
	prob	0.066	0.011*	0.582	0.654	0.939

* $=P<0.05$

FIELD PLANTAGO (F)						
Week		Wk. 1	Wk. 2	Wk. 3	Wk. 4	Wk. 5
	$\overline{\mathbf{x}}$	41.30	184.0	288.4	332.4	387.4
GRASS	SD	32.6	166.0	222.1	265.0	305.7
	SE	5.6	29.4	40.6	54.1	62.4
	n	34	32	30	24	24
QUARRY	$\overline{\mathbf{x}}$	22.7	197.1	177.8	196.2	211.9
	SD	19.7	110.8	149.8	184.8	186.4
	SE	3.5	19.9	26.5	$34 \cdot 3$	35.2
	n	31	31	32	29	28
T-test	T	2.75	2.15	2.31	2.2	2.54
	df	63	61	60	51	50
	prob	0.008	0.035*	0.024^{*}	0.032^{*}	0.014^{*}

Difference $(G) T=2.33 \quad P<.01 \quad G . \quad T=12.29 \quad P<.001$
between $F \& P$ \& $(Q)=4.52 \quad P<.001$
Q. $T=18.18$
$\mathrm{P}<.001$

GREENHOUSE PLANTS (P)

GRASS	$\overline{\mathrm{x}}$	67.7	334.6	1844.6	3891.8	4133.1
	SD	51.2	308.9	862.5	1807.6	1885.7
	SE	9.8	52.9	138.1	285.8	298.2
	n	27	34	39	40	40
QUARRY	$\overline{\mathrm{x}}$	71.5	411.4	1808.7	4419.4	4831.7
	SD	57.6	416.3	1054.2	1474.6	1551.2
	SE	10.2	67.5	171.0	242.4	251.6
	n	32	38	38	37	38
T-test	T	-0.27	-0.88	0.16	-1.40	-1.78
	df	57	70	75	75	76
	prob	0.792	0.382	0.870	0.167	0.079

Difference G. $T=1.02=N S \quad G . T=3.45=P<.001$
between P \& S Q. $T=2.63=P<.01 \quad$ Q. $T=1.66=$ NS

GREENHOUSE SEEDLINGS (S)						
GRASS	$\overline{\mathrm{x}}$	56.0	821.6	4554.1	5704.7	5745.7
	SD	34.2	570.4	1671.0	2127.3	2214.9
	SE	5.9	93.8	274.7	345.1	359.3
	\underline{n}	33	37	37	38	38
QUARRY	$\overline{\mathrm{x}}$	40.3	680.0	3866.9	5658.3	5700.5
	SD	935.8	567.2	1990.2	2871.6	2862.3
	SE	6.0	90.8	314.7	454.0	458.3
	n	35	39	40	40	39

FIELD PLANTAGO						
Week		Wk. 1	Wk. 2	Wk. 3	Wrs. 4	Wk. 5
	$\overline{\mathrm{x}}$	34.2	151.1	238.6	244.0	286.4
GRASS	SD	34.5	175.7	239.5	285.8	328.3
	SE	5.5	28.9	40.5	51.3	58.9
	n	40	37	35	31	31
	$\overline{\bar{x}}$	16.2	72.9	130.3	135.6	135.3
QUARRY	SD	21.1	119.8	164.7	195.0	200.1
	SE	3.3	19.2	26.0	31.6	32.0
	n	40	39	40	38	39
	T	2.81	2.28	2.31	1.87	2.38
T-test	df	78	74	73	67	68
	prob	0.006*	0.026*	0.024*	0.066	0.02^{*}

GREENHOUSE PLANTS						
GRASS	$\overline{\mathrm{x}}$	43.8	275.4	1794.5	3891.8	4133.1
	SD	54.4	317.9	908.4	1807.6	1885.7
	SE	8.6	50.3	143.6	285.8	298.2
QUARRY	n	40	40	40	40	40
	$\overline{\bar{x}}$	56.0	387.8	1758.3	4298.9	4703.7
	SD	60.2	418.6	1086.9	1633.3	1726.7
	SE	9.5	66.2	174.0	264.9	276.5
	n	40	40	39	38	39
T-test	T	-0.95	-1.35	0.16	-1.04	-1.4
	df	78	78	77	76	77
	prob	0.343	0.18	0.872	0.301	0.165

GREENHOUSE SEEDLINGS						
GRASS	$\overline{\mathrm{x}}$	45.2	776.4	4430.1	5704.7	5745.7
	SD	39.1	389.1	1817.0	2127.3	2214.9
	SE	6.2	94.3	294.8	345.1	359.3
QUARRY	n	40	39	38	38	38
	$\overline{\mathrm{x}}$	34.5	661.5	3866.9	5658.3	5700.5
	SD	36.8	572.0	1990.2	2871.6	2862.3
	SE	5.8	90.4	314.7	454.0	458.3
	n	40	40	40	40	39
T-test	\pm	1.25	0.88	1.3	0.08	0.08
	df prob	$\begin{aligned} & 78 \\ & 0.214 \end{aligned}$	$\begin{aligned} & 77 \\ & 0.382 \end{aligned}$	$\begin{aligned} & 76 \\ & 0.196 \end{aligned}$	$\begin{aligned} & 76 \\ & 0.936 \end{aligned}$	$\begin{aligned} & 75 \\ & 0.939 \end{aligned}$

TABLE 8a. PLANTAGO REPROD. EFFORT. TOTAL POPULATION.

GREENHOUSE PLANTS						
GRASS	$\overline{\mathrm{x}}$	9.6	14.9	37.3	50.7	56.5
	SD	6.8	13.9	16.0	16.6	19.0
	SE	1.4	2.4	2.6	2.7	3.0
	n	25	34	39	39	40
QUARRY	$\overline{\bar{x}}$	11.4	18.7	37.4	54.6	61.3
	SD	6.1	15.4	13.9	12.2	14.8
	SE	1.1	2.5	2.3	2.0	2.4
	n	32	38	38	37	37
T-test	T	-1.05	-1.07	-0.01	-1.18	-.1.24
	df	55	70	75	74	75
	prob	0.03	0.289	0.995	0.243	0.218
G. $T=2.68$ Q. $T=7.6$		P<0.001*		$T=1$.	$=$ NS	
GREENHOUSE SEEDLINGS						
GRASS	. $\overline{\mathrm{x}}$	4.0	18.0	45.5	53.3	60.0
	SD	2.8	11.6	11.8	18.2	20.1
	SE	0.5	1.9	1.9	3.0	3.3
	n	33	36	37	37	38
QUARRY	$\overline{\mathrm{x}}$	2.8	13.6	41.8	52.3	56.8
	SD	2.0	8.9	14.1	19.6	22.3
	SE	0.3	1.4	2.2	3.1	3.6
	n	34	39	40	40	39
T-test	T	1.88	1.85	1.26	0.23	0.66
	df	65	73	75	75	75
	prob	0.064	0.068	0.212	0.818	0.512

TABLE 8b. PLANTAGO REPRODUCT IVE EFFORT. FLOWERING POPULATION

FIELD PLANTAGO						
Week		Wk. 1	Wk. 2	Wk. 3	Wk. 4	Wk. 5
	$\overline{\mathrm{x}}$	14.7	19.0	27.1	23.2	24.9
GRASS	SD	28.6	39.6	38.1	39.2	38.7
	SE	4.6	6.6	6.4	7.0	6.9
	n	39	36	35	31	31
	$\overline{\mathrm{x}}$	8.9	11.9	15.9	16.2	11.4
QUARRY	SD	15.9	53.6	52.3	52.3	58.4
	SE	2.6	8.7	8.3	8.5	9.4
	n	38	38	40	38	39
	T	1.1	1.55	1.04	0.62	1.11
T-test	df	75	72	73	67	68
	prob	0.274	0.126	0.304	0.536	0.271
Difference between F \& P.		G. $T=1.81=N$ Q. $T=0.07=N$			$\begin{aligned} & \mathrm{T}= \\ & \mathrm{T}= \end{aligned}$	$\begin{array}{lll} \hline 7 & \mathrm{p} & 0 . \\ 2 & \mathrm{P} & 0 . \end{array}$
GRTENHOUSE PLANTS						
GRASS	$\overline{\mathrm{x}}$	6.1	11.8	36.1	50.7	56.5
	SD	7.4	15.2	17.7	16.6	19.0
	SE	1.2	2.4	2.8	2.6	3.0
	n	38	40	40	39	40
QUARRY	$\overline{\mathrm{x}}$	8.7	17.2	36.2	53.1	59.6
	SD	7.7	16.3	15.5	15.2	17.9
	SE	1.2	2.6	2.5	2.5	2.9
	n	40	40	39	38	38
T-test	T	-1.55	-1.53	-0.04	-0.67	-0.76
	df	76	78	77	75	76
	prob	0.125	0.131	0.971	0.506	0.451
GREENHOUSE SEEDLINGS						
GRASS	$\overline{\mathrm{x}}$	3.1	16.9	44.3	53.3	60.0
	SD	3.2	12.2	13.9	18.2	20.1
	SE	0.5	2.0	2.3	3.0	3.3
	n	40	38		37	38
QUARRY	$\overline{\mathrm{x}}$	2.4	13.2	41.8	52.3	56.8
	SD	2.2	9.1	14.1	19.6	22.3
	SE	0.3	1.4	2.2	3.1	3.6
	n	38	40		40	39
T-test	T	1.15	1.53	0.79	0.23	0.66
	df	77	76	76	75	75
	prob	0.255	0.131	0.432	0.818	0.512

TABLE 10. NUMBERS OF GERMINATING SEEDS IN VARIOUS CONDITICNS.

FIELD PLANTAGO				
GRASS		Light	Dark	
	$\overline{\mathrm{x}}$	5.25	4.0	
	SD	2.5	1.4	$T=0.87$
	SE	1.25	0.707	$\mathrm{df}=6$
QUARRY	n	4	4	prob $=0.418$
	$\overline{\mathrm{x}}$	7.25	5.25	
	SD	0.96	2.2	$T=1.66$
T-test	SE	0.47	1.109	$\mathrm{df}=6$
	n	4	4	prob $=0.149$
	T	-1.49	-0.95	
	df	6	6	
	prob	0.186	0.379	

GREENHOUSE PLANTIS				
GRASS	$\overline{\mathrm{x}}$	6.25	10.5	
	SD	3.403	1.732	$T=2.23$
	SE	1.702	0.866	$d f=6$
	n	4	4	prob $=0.068$
QUARRY	$\overline{\mathrm{x}}$	7.5	5.75	
	SD	3.0	3.5	$T=0.76$
	SE	1.5	1.75	$d f=6$
	n	4	4	prob $=0.476$
T-test	T	-0.55	2.43	
	df	6	6	
	prob	0.602	0.051	

GREENHOUSE SEEDUINGS				
GRASS	$\overline{\mathrm{x}}$	12.25	7.0	
	SD	0.957	2.708	$T=3.66$
	SE	0.479	1.354	$d f=6$
	n	4	4	prob $=0.01^{*}$
QUARRY	$\overline{\mathrm{x}}$	9.75	8.0	
	SD	4.646	1.633	$T=0.71$
	SE	2.323	0.816	$\mathrm{df}=6$
	n	4	4	prob $=0.504$
T-test	T	1.05	-0.63	
	df	6	6	
	prob	0.332	0.55	

TABLES 11, 12 \& 13. LEONTODON HISPI DUS.

Week		Wh.l	Wk. 2	Wk. 3	Wk. 4	Wk. 5
	$\overline{\mathrm{x}}$	85.5	105.3	117.1	132.6	140.3
GRASS	SD	47.3	51.4	49.1	53.5	61.8
	SE	7.5	8.1	7.8	8.8	10.4
	n	40	40	40	40	40
QUARRY	$\overline{\mathrm{x}}$	143.2	184.6	190.5	189.9	202.4
	SD	123.1	164.4	152.1	147.0	149.1
	SE	19.5	26.0	24.0	24.2	24.5
	n	40	40	40	37	37
T-test	T	-2.77	-2.91	-2.91	-2.23	-2.28
	df	78	78	78	72	70
	prob	0.007*	0.005*	0.005*	0.029*	0.025*

TABLE 12: NO. OF LVES.						
GRASS	$\overline{\mathrm{x}}$	4.9	5.2	5.5	5.8	6.1
	SD	1.5	1.4	1.3	1.01	1.4
	SE	0.2	0.2	0.2	0.2	0.2
QUARRY	n	40	40	40	37	35
	$\overline{\mathrm{x}}$	8.3	8.6	8.4	8.0	8.4
	SD	3.4	3.5	2.9	2.8	3.3
	SE	0.5	0.6	0.5	0.5	0.5
	n	40	40	40	37	37
T-test	T	-5.89	-5.58	-5.75	-4.64	-3.94
	df	78	78	78	72	70
	prob	0.000*	0.000*	0.000*	0.000*	0.000*

TABLE 13: DIAMETER (m.m.)						
GRASS	$\overline{\mathrm{x}}$	129.6	146.5	155.6	162.3	161.4
	SD	39.5	40.9	48.8	44.0	44.7
	SE	6.2	6.4	7.7	7.2	7.6
	n	40	40	40	37	35
QUARRY	$\overline{\mathrm{x}}$	111.7	135.7	146.2	155.9	159.2
	SD	53.1	64.0	66.4	68.2	68.1
	SE	8.4	10.1	10.5	11.2	11.2
	\underline{n}	40	40	40	37	37
T-test	T	1.71	0.89	0.72	0.48	0.16
	df	78	78	78	72	70
	prob	0.09	0.374	0.473	0.633	0.874

REPRODUCTIVE BIOMASS. (FLOWERING POPULATION. m.g.)

Week		Wk. 1	Wk. 2	Wk. 3	Wk. 4	Wk. 5
	$\overline{\mathrm{x}}$	0.0	0.0	0.0	27.8	82.1
GRASS	SD	0.0	0.0	0.0	24.1	68.6
	SE	0.0	0.0	0.0	12.1	16.6
	n	0	0	0	4	17
QUARRY	$\overline{\mathrm{x}}$	0.0	22.9	56.4	185.3	245.8
	SD	0.0	52.0	96.1	134.2	178.4
	SE	0.0	16.4	24.8	32.5	38.1
	n	0	10	15	17	22
T-test	T	0.0	-1.39	-2.27	-2.30	-3.58
	df	0	9	14	19	37
	prob	1.0	0.197	0.039*	0.033*	0.001*

TABLE 14b. LEONTODON HISPP US.
REPRODUCTIVE BIOMASS. (TOTAL POPULATION.)

Week		Wk.l	Wk. 2	Wk. 3	Wk. 4	Wk. 5
	$\overline{\mathrm{x}}$	1.3	1.3	1.3	4.2	40.5
GRASS	SD	0.0	0.0	0.0	10.8	62.4
	SE	0.0	0.0	0.0	1.8	10.5
	n	40	40	40	37	35
	$\overline{\mathrm{x}}$	1.3	6.7	21.9	85.9	146.7
QUARRY	SD	0.0	26.7	63.6	129.0	182.7
	SE	0.0	4.2	10.1	21.2	30.0
	n	40	40	40	37	37
	T	0.0	-1.28	-2.05	-3.84	-3.26
	df	78	78	78	72	70
	prob	1.0	0.205	0.043*	0.000*	0.002*

```
* = P<0.05
```

REPRODUCTIVE EFFORT. (FLOWERING POPULATION)

Week		Wk.1	Wk.2	Wk.3	Wk.4	Wk.5
	\bar{x}	0.0	0.0	0.0	15.0	32.2
GRASS	SD	0.0	0.0	0.0	12.7	24.8
	SE	0.0	0.0	0.0	6.4	6.0
	n	0	0	0	4	17
	\bar{x}	0.0	4.6	12.8	43.1	47.1
QUARRY	SD	0.0	6.9	10.7	20.1	21.7
	SE	0.0	2.2	2.8	4.9	4.6
	n	0	10	15	17	22
	T	0.0	-2.1	-4.67	-2.65	-2.01
	df	0	9	14	19	37
	prob	1.0	0.065	0.000^{*}	0.016^{*}	0.052^{*}

TABLE 15b. LEONTODON HISPDUS.

REPRODUCTIVE EFFORT. (TOTAL POPULATION)

Week		Wk.1	Wk.2	Wk.3	Wk.4	Wk.5
	\bar{x}	2.1	1.5	1.4	2.7	16.3
GRASS	SD	1.6	0.8	1.0	5.7	23.1
	SE	0.3	0.1	0.2	0.9	3.9
	n	40	40	40	37	35
QUARRY	$\overline{\mathrm{x}}$	1.8	2.5	5.7	20.5	28.6
	SD	1.6	3.9	8.5	25.0	28.2
	SE	0.2	0.6	1.3	4.1.	4.6
	n	40	40	40	37	37
	T test	1.04	-1.48	-3.21	-4.23	-2.01
	df	78	78	78	72	70
	prob	0.301	0.144	0.002^{*}	0.000	$0.048 *$

[^1]TABLE 16. COMPARISON OF VEGETATIVE WEIGHTS AT BEGINNING OF SAMPLING FOR THE LEONTODON FLOWERS AND NON-FLOWERS

$\sqrt{\text { Vegetative }} \mathrm{Wt}$. $\sqrt{V \mathrm{Eg.Wt}}$. Wk.I Quarry. Wk.I Grass						
Flowers$\overline{\mathrm{x}}$ SD SE n$\|$	$\begin{gathered} 12.7 \\ 4.12 \\ 0.878 \\ 22 \end{gathered}$	$\begin{aligned} & 10.007 \\ & 2.73 \\ & 0.683 \\ & 16 \end{aligned}$	Quarry $\overline{\mathrm{x}}$ Flowers SD SE n	$\begin{aligned} & 12.7 \\ & 4.12 \\ & 0.878 \\ & 22 \end{aligned}$	Quarry x Non- SD Flowers SE n	$\begin{aligned} & 7.5 \\ & 2.15 \\ & 0.574 \\ & 14 \end{aligned}$
\bar{x} Non- SD Flowers SE n	$\begin{aligned} & 7.5 \\ & 2.15 \\ & 0.574 \\ & 14 \end{aligned}$	$\begin{array}{\|l} 7.63 \\ 1.8 \\ 0.436 \\ 17 \end{array}$	Grass $\overline{\mathrm{x}}$ SD Flowers SE n	$\begin{gathered} 10.007 \\ 2.73 \\ 0.683 \\ 16 \end{gathered}$	Grass x Non- SD Flowers SE n	$\begin{aligned} & 7.63 \\ & 1.8 \\ & 0.436 \\ & 17 \end{aligned}$
$\begin{array}{ll}\text { T-test } & \\ & \text { df } \\ & P\end{array}$	$\begin{gathered} 4.68 \\ 34 \\ 0.001 * \end{gathered}$	$\begin{aligned} & 3.78 \\ & 31 \\ & 0.001 * \end{aligned}$		$\begin{aligned} & 2.406 \\ & 36 \\ & 0.05^{*} \end{aligned}$		$\begin{aligned} & 0.1403 \\ & 29 \\ & \text { NS } \end{aligned}$

Comparison of Vegetative Weights of flowers one week before flowering and non-flowers at end of sampling.

Comparison of Vegetative Weights of early and late flowers.

		If Grass Plants are Included
Quarry Flowers $\overline{\mathrm{x}}$ Wks. $2 \& 3$	$\begin{aligned} & 13.35 \\ & 4.08 \\ & 1.13 \\ & 13 \end{aligned}$	
$\overline{\mathrm{x}}$ Whs. SD $4 \& 5$ SE n	$\begin{gathered} 11.718 \\ 3.972 \\ 1.32 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 10.623 \\ 3.33 \\ 0.66 \\ 25 \\ \hline \end{gathered}$
T T-test df P P	$\begin{gathered} 0.9 \\ 21 \\ \text { NS } \end{gathered}$	$\begin{aligned} & 2.707 \\ & 37 \\ & 0.05 \end{aligned}$

* $=P<0.05$

QU ARR

$$
\begin{aligned}
& \mathrm{r}=.7098 \\
& \mathrm{t}=4.507 \\
& \mathrm{df}=21 \\
& \mathrm{P}<.001
\end{aligned}
$$

GRASS \quad| $r=$ | .5515 |
| ---: | :--- |
| | $t=1.0913$ |
| | $d f=15$ |
| | |

TOGETHER $\quad \mathbf{r}=.559$
$t=4.045$
$\mathrm{df}=37$
$\mathrm{P}<.001^{*}$

7 DISCUSSION

7.1 Validity of Techniques Employed

The majority of the regressions employed give an expected error range of between 15% and 130% (see Appendix) using Whittaker and Woodwell's (1968) estimate of relative error ie.

$$
\begin{aligned}
& \forall\left(\frac{\left.\Sigma d^{2} / n-1\right)}{y} \quad \text { where } \begin{array}{l}
d
\end{array}=\right.\text { deviation } \\
& y=\text { mean observed weight }
\end{aligned}
$$

This is similar to the values obtained by Hutchinson (1975) using data on Mercurialis perennis. He also found that quadratic regressions gave the greatest predictive accuracy. In this study, however, it was found that the use of quadratics with some data (particularly the Leontodon data) can lead to excessive generation of negative values. This difficulty, which occurs when using polyhomials has been explained by Mead (1971). In biological situations, polynomials can give ridiculous values of ' y ' the dependent variable for particular values of the independent variables. This occurs at the extremes of the possible range and explains why certain regression formulae predict plant dry weights to be negative. Hence quadratics seem to be of limited value in biological situations where the whole range of possible predicted values is not known.

As a result of this problem, the first and last regressions determined for Leontodon hispidus had to be discarded and the second regression was applied to the field data throughout the season. This has probably slightly increased the error in these predictions at the beginning and end of the season since Hutchings (1975) showed that Mercurialis perennis exhibited changes in dimension and weight relations throughout the season. The extent of these changes is debatable and many workers have ignored them. Kuroiwa (1960) states that his regression was made 34 days after sowing but applies it to estimate plant weights from $0-40$ days after sowing. Nevertheless,
the fact that different regressions give better estimates over the season for Plantago lanceolata tends to support Hutchings' conclusions. Moreover, this is undoubtedly the case for reproductive dry weight since scape length in Plantago lanceolata is unimportant at the beginning of the season but becomes the major predictor of reproductive dry weight at the end.

Of the plant dimensions which could feasibly be measured in the time available, plant diameter and number of leaves were found to give the best predictive estimates. Not surprisingly diameter is a common parameter utilised in predictive regressions since diameter squared gives some indication of plant area. It has been applied successfully as part of a regression equation by Whittaker and Woodrèll (1968) in assessment of tree and shrub production and by Hutchings (1975) to predict the dry weight of Mercurialis perennis. In the majority of previous studies, however, the plants studied have been distinctly three-dimensional in character so the regression provides a factor to convert volume to weight eg Hutchings use h^{2} where $h=$ height and $d=$ diameter. A rosette plant, however can virtually be regarded as two dimensional and empirical measurement of its thickness would be an impractical procedure. Werrer (1975) uses a regression based on diameter as an indicator of weight for a rosette plant (Dipsacus follonum). This work on Plantago lanceolata and Leontodon hispidus suggests that a possible parameter to indicate the thickness of a rosette plant might be number of leaves, particularly when the rosette lies close to the ground surface.

For plants such as Leontodon and Plantago where the scape is a major component of their reproductive structures, measurement of its length provides an adequate indication of total reproductive weight. However, this relationship may not be so good at the commencement of reproductive resource allocation as has been shown
for Plantago. It might be argued that when reproductive effort is under consideration this parameter ignores the most vital components ie the fruit and seeds. However, if the previous definition of reproductive effort is accepted (ie $R E=$ dry weight of all reproductive organs as a percentage of the total dry weight), the sole use of this parameter is valid.

In addition to errors caused because of changes in dimension and weight relations throughout the season possibly the largest source of error is that attributable to random variability in the material itself (Sprent 1972). Thus, genotype may effect the relationships between morphological dimensions and mass as will environment e.g. an elongate plant with few leaves, growing in a shady environment may have the same biomass as a stocky plant growing in a light environment. This factor is of particular relevance to this study. Although it was found that plants from the two sites did have slightly different dimension and weight relations, the overall error of the predictions was reduced by combining the two populations in computation of the regression. Moreover this also reduced the number of calculations necessary and differences in morphology of the plants from the two sites could be determined from consideration of the data on rosette diameter and number of leaves.

Other sources of error may have been in weighing and measuring observations and in variations in the amount of water vapour present in each plant. Nevertheless, care was taken at all times to minimise this type of error. Evans (1972) gives examples of evidence for increases in respiration rate and consequent reductions in weight increments caused by disturbance of plant tissues. He indicates that if the time intervals between measurements are long it is unlikely that alterations in respiration rate will persist from one time of measurement to the next. As, similar measurements were taken from
each plant it is unlikely that this phenomenon would differentially effect the plants in one group.

Some difficulty was experienced in delimiting root stock tissue from stem stock tissue in Plantago and this may have been a source of error in the dry weight determinations. Finally, some error may have resulted from the transformation of the data (Hutchings 1975). However it was considered preferable to tolerate this slight error which would enable the use of parametric methods of statistical analysis rather than resort to non-parametric methods which are considered to be less efficient (Sokal and Rolf 1969).

More accurate regressions would undoubtedly have been achieved if several of the more discerning parameters were selected and combined in a complicated multiple regression programe. One of the principle aims of the study, however was to provide a guiak simple method of assessing plant weight in the field rather than time-consuming destructive sampling. A laborious field measuring progranme would have defeated this object. Taking all of these factors into consideration the regressions provided a useful predictive tool with reasonably accurate estimations. Random variability and the error factors mentioned prevent the possibility of making completely accurate predictions of the values of biological variables. Nevertheless in the subsequent analyses mean plant weights are used, and since individual errors in prediction are normally distributed aoout the true values, these errors will probably cancel themselves out in the determination of a mean weight based on a large enough sample of individuals.

One of the major assumptions of the study was in the me chod of assessment of reproductive effort. The limitations of the popular method of R.E. determination oy using the weight of reproductive parts as a percentage of total weight (Harper and Ogden 1970) which do not consider the physiological costs of producing such structures have
been pointed out (Hirshfield and Tinkle 1975). Nevertheless, no research technique has proved superior for field studies requiring a large sample size (Primack 1979). The alternative method of assessing final reproduction by determining the number of capsules produced per plant, which was attempted here, shows a similar pattern of allocation to that indicated by the traditional method of R.E. determination. Nevertheless the differences between some sets of plants are more significant and this illustrates the need for caution when interpreting R.E. determinations Hickman (1975) suggests that seed allocation is appropriate for assessing the relative contribution of different plants to the next generation whereas reproductive effort (Harper and Ogden 1970) is a measure of energy cost to the parental generation of making certain seed energy contributions. The difficulty here, is in determining which organs are reproductive e.g. the scapes of P. lanceolata and L. hispidus, being photosynthetic, also have a vegetative function but in this study this is considered as being subsidiary to their reproductive function.

The need for careful examination of possible measures of R.E. is also evident when the data on no. of capsules/unit vegetative weight are examined. The quarry plants in the field have by far the greatest value supporting the r - and K - selection paradigm. Seed output can be used as a measure of the relative fecundity of a species but the germinability of the seeds contributes to this fecundity. The study of germinability of the seeds under different conditions of light and dark was intended as a measure of this factor but the results from this experiment were inconclusive

7.2 Control of Flowering

The decision to flower or not to flower must be a crucial one. In this study it appears that Leontodon is more capable of governing its population RE than Plantago since Leontodon shows a much larger variation in population R B between the two sites. It is probable that this decision is influenced by the size or nutritional status of the plant. Plants must achieve a certain 'ripeness to flowering' before thay are capable ofres,ponding to the environuental factors which induce the formation of flowers (Hillman 1962). Species of Plantago are induced to flowering by long days (Snyder 1948) and Primack (1979) suggests that in annual species of Plantago this threshold of the 'ripeness to flowering' seems to have been lowered enough so that the stimulus to flowering produces a response in every individual regardless of every size and age. He proposes that in perennial species selection may have acted to raise the threshold so that only plants in the 'best condition' flower.

In many studies of reproductive allocation eg Stewart (1979) an examination of plant weight and its relation to flowering is impossible because of the method of sampling. The relationship be tween plant size and the decision to flower is only valid when the same plants have been followed throughout the season. The use of regression techniques enabled this relationship to be studied. In Leontodon hispidus flowering appears to be controlled by plant size at the beginning of the season supporting Stewarts (1979) theory and Werners (1975) findings for Dipsacus fullonum Not only is the decision to flower governed by plant size but the level of reproductive biomass is positively correlated with the vegetative weight
at the beginning of the season. Hickman (1975) found a negative correlation between reproductive allocation and dry weight in the annual Polygonum cascadense. Other workers have found that the decision to flower may be influenced by nutrient status (Van Andel and Vera 1977) or the development of a sizeable root biomass (Raynal 1979).

Stewart (1979) found no association between leaf dry weight and flowering when samples were taken simultaneously and suggests that this may be because increase in reproductive biomass is at the expense of growth in vegetative biomass. This response is suggested by the decrease in vegetative weight soon after the onset of flowering shown in the curres for P. lanceolata and L . hispidus. This response is also implied in the percentage allocation diagrams for Senecio vulgaris (Harper and Ogden 1970) and Tussilage farfara (Ogden 1974). The fact that there was no significant difference between the vegetative weights of flowerers one week before flowering and nonflowering at the end of the sampling period whilst there was a difference at the beginning of the season supports this theory (see table 17) Stewart (1979) appears to have been right in saying that weight mast be measured before flowering and this might explain why Hickman (1975) found a negative correlation between dry weight and reproductive allocation when he sampled after flowering.

7.3 Differences between Sites

Each of the two species shows a different reaction at each site in terms of its reproductive effort. L. hispidus has a significantly higher RE for three of the four sampling occassions when the plant was flowering. This difference was significant for both mean flowering individual RE and mean population RE ie not only did more of the plants flower at the quarry site but also those which did flower allocated
more of their available resources to flowering than at the grassland site. This decrease in reproductive allocation in a more moderate environment concurs with work by Hickman (1975) on Polygonum cascadense. Reproductive allocation was found to decrease significantly along a moisture gradient so allocation was greatest in the successively harsher and more open habitats. Hickman attributes this environmentally cued response to the short term unpredictability of the environments in which the species grows. Whigham (1974) found the RE of Urularia perfoliata wassimilarly effected by environmental conditions.

Differences in the level of RE attained by L. hispidus in the earlier sampling periods can be partly attributed to the marked variation in the time of anthesis at the two sites, also noted by Stewart (1979) at Thrislington comon and Wingate quasry. Thus the Leontodon plants in the harsher quarry environment where summer drought is likely to de a major mortality factor, flower earlier and devote more resources to sexual reproduction. Law et al (1977) compared populations of Pog annua experiencing either predominantiy density-dependent or density-independent regulation. They found that the two populations showed genetically determined life-history differences. Selection under density-independent regulation produced individuals that had a shorter pre-productive period, a higher seed output earlier in life and shorter lives in general. These results are similar to those of Abrahamson and Gadgil (1973) who noted that populations of Solidago from successionally less mature sites flowered earlier and had a greater reproductive allocation Roos and Quinn (1977). found significant differences in the mean dates of the first anthesis of Andropogon which were environmentally induced.

In contrast P. lanceolata plants display no significant differences in either mean flowering individualidRE or total population RE between the two sites. Despite a considerable and highly significant depression in vegetative and reproductive dry weights at the quarry site the
levels of flowering individual $R E$ renain constant. Hawthorn and Cavers (1978) find a similar response in Plantago major when density was increased and they interpret this as an adaptation to exploitation of frequently disturbed sites by producing seeds 'at all costs'. Constancy inindividual sexual RE under differing conditions has been noted by several workers for annuals eg Harper and Ogden (1972) for Senecio vulgaris, Primack (1979) for annual Plantage spp. and perennials eg Bradbury and Hofstra (1976) for Solidago canadensis, Holler and Abrahamson (1977) for Fragaria virginiana, Ogden (1974) for Tussilago farfara and Raynal (1979) for Hieracium florentimum. Some of these studies have indicated changes in vegetative reproduction under different environmental conditions but this factor was not recorded for Plantago and Leontodon in the field. Measurements of the transplanted greenhouse plants indicated that there were no significant changes in vegetative reproduction between plants from the two sites.

Similarly there are no significant differences in population RE between the two sites although there is a consistent trend towards grassland plants having a larger mean population RE (more plants flowered). Stewart (1979) found a variation in the population RE but at his quarry site (Wingate quarry) the population $R E$ was higher than at the grassland site (Thrislington common).

Nevertheless both flowering individual $R E$ and mean population RE vary in the greenhouse plants and seedlings, although again there is no difference between sites. Mean population and mean flowering individual RE reach approximately 59% in the greenhouse seedlings and plants but only 42% per flowering individual and 19% per member of the population in the field samples. This variation in the number of individuals which attempt to flower accords with Van Andel and

Vera's (1977) findings for Chamaenerion angustifolium. More individuals were stimulated to flower under better soil conditions. With P. lanceolata it appears that the difference in environmental conditions between the grassland and quarry sites is not sufficient to stimulate any differences in $R E$ but the difference in conditions between the field Plantago plants and those grown in the greenhouse is sufficient.

The fact that flowering individual $R \mathbb{R}$ and mean population $R E$ are very similar in the greenhouse populations whereas these figures vary in the field populations suggests that any field differences in the populations are phenotypic responses to environmental conditions rather than genetically inherited characteristics. Although there are no differences in $R E$ between sites for P. lanceolata the fact that the size differences of plants in the field disappear in the greenhouse suggests these differences are environmental. The significant differences in the vegetative and reproductive dry weights of plants from the quarry and grassland throughout the sampling period is not found in the seedlings from both sites, grown in the greenhouse. For the first two sample weeks transplanted plants in the greenhouse show significant differences but these become less distinct until at the end of the sampling period the two populations can be regarded as being synonymous. Thus, the effect of external conditions is overcome when the plants are grown in a homogeneous environment. Moreover there is a significant difference between transplanted plants grown in the greenhouse for part of their life and seedlings grown there for their entire life, suggesting that environmental factors which have influenced a perennial plant in one season effect the plant's production in the following season. If so, this tends to raise queries concerning the validity of research based on cransplanted plants rather than seeds or seedlings.

Hickman (1975), Roos and Quinn (1977) and Raynal (1979) have found differences in $K E$ to be environmental in origin although Roos and Quinn (1977) did find some evidence of genetic differences. Primack (1978) quotes work in which he found differences in P. lanceolata FE to be both genetically and environmentally determined whereas Gadgil and Solbrig (1972) identified two distinct biotypes in Taraxacum officinale.

Unfortunately, no greenhouse experiments were carried out on L. hispidus, which was the species displaying significant differences in $R E$ between the two sites. However the fact that there is no significant difference between the size of the non-flowerers in the quarry and the grassland (see Table 16) suggests that the differences are environmental. Differences in the mean size between the flowerers are to be expected since the quarry plants are larger. This suggests that the quarry and grassland Leontodon plants are similar in the size that must be attained to initiate flowering. Comparison of the actual levels of $R E$ attained by Leontodon at the end of the sampling period must be treated with caution since the level of FE in the grassland was still steeply rising at the end of the study.

7.4 Succession, Reproductive Effort and r - and K - selection
 Plantago and Leontodon have very different responses to the

 variation in environmental conditions occurring in succession. In the field Plantago has a phenotypically lower weight in the early successional stage with a constant $R E$ at both sites. Leontodon, however has a significantly higher plant weight, flowering individual $R E$ and population $R E$ at the earlier successional site. The difference in behaviour of the two species at Thrislington common might be partly because of differences in the sample site used for each species. These effects, however are likely to be negligible since the vegetationat both sites was the same density and height and was on similar soil.
Succession does not merely involve a change in one or two environmental factors but is a combination of effects which may operate at varfing intensities at different stages. Moreover, the type of succession which has been studied in previous work varies. The conditions which operate under a succession from arable fields to deciduous forest as studied by Newell and Tramer (1978) are presumably very different from those operating in a succession from quarry floor to grassland as considered by Raynal (1977) and in this study. The majority of successions which have been studied are of a secondary nature, that is occurring in a gap in an already existing community. The succession studied here has many of the features of a primary succession (that is one which occurs in a pristine unaltered environment), particularly high stress at the beginning of the succession.

Not only must the variety of different factors involved in succession be taken into account but also the variation in species response. Annuals have been found to have higher RE's than perennials eg Pitelka (1977) and this has been interpreted as an adaptation to their life style and typical habitat. It seems therefore not unreasonable to infer that within each group there may be a range of reproductive strategies. Hence, Leontodon has a strategy adapted to the quarry environment (where it is more common) whereas Plantago is more adapted to the grassland. Each species and in fact biotype may show different responses to changes in the environment and it is inadvisable to infer that other species have similar reactions. Hickman (1977) found a diversity of responses by closely related species along the same environmental gradient and warns againsc incautious application of proposed general explanations of energy behaviour such as $r=$ and $K-s e l e c t i o n ~ t h e o r y . ~$

Grime (1977) has proposed a model of succession in terms three strategies ie stress tolerant species, competitors and ruderals. Since succession begins with a disturbance ruderals will tend to predominate (ruderals, characteristically have high RE's) As succession proceeds competitive plants will become more successful until in the climax community stress - tolerant individuals will be most prevalent. The exact nature of the sucsession however, will depend on the nature of the substrate on (see Fig. 17). Thus on a poor substrate such as the quarry floor some ruderals may have to be adapted to resist the adverse conditions. High RE is a good adaption to frequent disturbance but not stress. Vegetative and Reproductive dry weights are lower in the grassland.

Leontodon is a slow growing (${ }^{R} M A X=0.89$ see Grime and Hunt 1975) stress-tolerator and cannot tolerate competition at closed sites such as the grassland. The low RE values obtained for Leontodon here are prooably an adaptation related to the high density dependent mortality. At high total vegetation cover more energy will be proportionately allocated to support tissues which maximiae eq plant's competitive ability for light. Abrahamson and Gadgil (1973) and Gaines et al (1974) found a direct correlation stem allocation and total stand cover. The relative elongation of the grassland Leontodon leaves is shown in table 2. These typical responses to density in the form of the dry weight of plants parts have been well documented eg by Palmblad (1968) as have leaf area responses to shade (Grime 1977). A slow growth rate is typical of stress-tolerators and the plant rosette is well adapted to reduce water loss. Thus Leontodon is physiologically and morphologically better adapted to the quarry site.

Plantago lanceolata is a competitive ruderal (${ }^{R} \mathrm{MAX}=1.7$) typically of productive and relatively open sites. It has many

features of an annual eg a high growth rate and in particular a tendency to maintain its $R E$ under adverse conditions. This factor accounts for the lack of difference in RE between the two sites although it clearly does better at the grassland site. Reproductive and vegetative dry weights are higher here and it seems unable to attain the same levels of biomass in the stressful quarry site. Hence the different response of each species in terms of their reproductive effort at each site can be explained in terms of the individual species strategy and the nature of the succession under consideration.

8. SUMMARY

1. Regression techniques were found to be useful in predicting mean weights of populations. However, where very accurate results are required the measurement of suitable parameters in the field is too time-consuming and the applicability of such techniques is limited. The relationship between the plant dimensions of Leontodon hispidus and Plantago lanceolata did change throughout the season so more than one regression analysis was necessary.
2. The method of assessing RE was by determining the dry weight of the reproductive parts of the plant as a percentage of its total weight. Two alternative methods of assessing reproductive allocation by determining the number of seed capsules/plant and seed capsules/ unit vegetative weight were tried. These methods gave slightly different results and illustrate the need for caution when choosing a suitable method of assessing RE.
3. A greater number of individuals of L. hispidus flowered at the quarry site, that is this site had a larger population RE. The vegetative weight of the plant at the beginning of the season was found to be related to this decision to flower. The larger the plant was at the beginning of the season the more likely it was to flower. Moreover the level of vegetative weight at the beginning of the season was found to be directly related to the level of reproductive dry weight achieved. There was a decline in vegetative weight immediately after flowering in both species.
4. Keproductive effort of P . lanceolata was similar at both sites in the field however, $R E$ of L. hispidus was greatest, (and the date of first anthesis was earlier) at the early successional quarry site. Although the level of RE attained by P. lanceolata in the greenhouse was higher there was again no difference between plants from each site.
5. The two species did differ in biomass and morphology at each site. L. hispidus produced larger plants with longer, wider leavea at the quarry site. P. lanceolata produced larger plants at the grassland site. These morphological differences disappeared when P. lanceolata was grown in a homogeneous environment implying that they were phenotypic responses to environmental variables. Since quarry and grassland L. hispidus plants are similar in the size that unst be reached to initiate flowering, this suggests $R E$ and morpivlogical differences in this species are also environmentally cued.
6. The different response of each species at each site in terms of their reproductive allocation is explained in terms of their individual species strategy, the nature of succession, and the special characteristics of the particular succession under consideration.

ACKNOWLEDGEMENTS

My grateful thanks are due to the following people for their help and advice in preparing this thesis.

Dr K Thompson. Lecturer, Dept. of Biological Science, Plymouth Polytechnic who supervised the study.

Mr D Rogers. Dept. of Environmental Science, New University of Ulster who gave much help with computing.

Mr A Stewart who gave advice about research methods.
and many others in the department of Botany at Durham University who offered advice and constructive criticism.

登qugergos

 Arso 3. EOt 65 72-79.

 Bus. sorroy Bot. clu包 104, $860 \mathrm{mb4}$

 6510661.

 macer nutriezong 3. Eecl. $65747-758$.

 cosers. J. 8208. 62 721-707.

Ercebury. Z

 2740840

Papoby dop 8 87

 Sersoc

LMosorengen (cont.)
 of natural gotoceson Am. Eat. 304 1-24.

 Deprotuctivo etratogioc and grooth paeqozne in cunflowora (HoLianshac). Au. Mat. 108 289-894.
 young tomats plant. J. Dry forght changoc o8 tho various

 otrotogion。 $\begin{gathered}\text { taturo } 252 \\ 26-32 .\end{gathered}$

 theory. ation sut.

 393 races.
 sondon.
 f. Eect. 52 247 70 .
finfigr J.

 Qen. J. Est. 56 2953-2597.

Reforences. (cont.)
Killman, W.S. 1962. The phyatology of flovering. Holt, finehart and Winston. N.I.

Hipehfield, M.E. and D.W. Tinkle. 1975. Natural selection and the evolution of reproductive efsort. Proc. 其at. 1. Acad sci usa 72 2227a2231.

Holler. L.C. and W.G. Abrahamson. 1977. Seed and vegatative reproduction in relation to density in Rragana virginiana (Rosaceae).

Hutchinge, M.J. 1975. Some statistical problems associated with determinations of population paramoters for herbaceous plants in the field. New Phytol. 24 349-363.

Kuroima. S. 1960. Intraspecific compotition in artificial sunflower communities. Bot. Mag. (Tokyo) 23300.

Law, R. and A.D. Bradehaw and D.B. Putwain. 1977. Lifo history variation in poa annua. frolution 31 233-246.

Hacarthur, R.H. 1962. Some generallsed theoroms of natural selection. Proc. natn. Acacl. Sci 48 1893-7.
flacarthur, RoH. and EoO. 隹Isan. 1967. The theory of island blogeogrephy, Princeton finversity press. Princeton, N.J.

Mead, Re 1971. A note on the use and misuse of regression models in ecology. J. ECol. 22215.

Nature Conservancy Council. 1977. A nature conservacion review. Ed. D. Ratcliffe Vol.2.

Huller, F.M. 1978. Seedinge of N. Western European Lowland: a flora of seodlings. The Hague. Pub, Junk.

Mie, N.H. and C. Hadat Hull, J.Go Jenking, K. Steinbreuner, D. M. Bont. 1975. S.P.S.S. Manual. Pub. Mceraw Rill.

Wevell. S.J. and E.J. Tramer. 1978. Reproductive strategios in herbaceous glent communties during succession. Ecology 59 228-234.
ogden n_{D}. J. 1974. The reproductive strategy of higher plants. II. The reproductive atrategy of Tusgilago farfars L. J. Ecol. 62 291-324.

palmblat. 3.0. 1968 Ecologs 42 26-34.
Compotition in experimeatal populetiono of geoin vith oaghagat on the regulation of popriation sizo.

Primeck, 2.B. 1979. Reproductive efrort za annual and peronnial apecios of Plantage (Plontngnocono). Am. Nat 114 51-62.

 3. Appl Ecol . 16 287-298.
 allocarion in Angroperon seppaxiug (orand noc) populationc In comanatioo or different auceoealonal otages. facer. J. Bot. 64 335 -540.

 OL Lentano lonceghaty. Am. J. 20t. 35 520-525.
sakel, ReR. and Rolf, Fid. 1969. Bonotry. Froenand and co., Ben Zramerece. GA.
 Ecalogacal btratogien and popalation pargeoters. An. Fac. $106798-804$.
 28, 23.

 Dicas apechoo 24 rolotion to a ancecocioncl comon.

Reserences. (cont.)

 rosetione of ereeo ond garubo in tho broothomon Foroneg DOE ROSH. do ECol. 56

Appendix I SCAPE IENGTHS FOR LEONTCDCN HISPIDUS AND PLANTAGO LANCE LATA

FIELD PLANTAGO						
Week		Wh. 1	Wk. 2	Wk. 3	Wk. 4	Wk. 5
	$\overline{\mathrm{x}}$	19.3	371.0	529.7	597.1	680.4
GRASS	SD	13.3	252.6	337.9	403.2	465.1
	SE	2.3	44.66	61.7	82.3	94.9
	n	34	32	30	24	24
	$\overline{\mathrm{x}}$	11.6	254.0	361.6	389.6	413.5
QUARRY	SD	8.1	168.6	227.9	281.1	283.5
	SE	1.4	30.3	40.3	52.2	53.6
	n	31	31	32	29	28
	T	2.75	2.15	2.31	2.2	2.54
T-test	df	63	61	60	51	50
	prob	0.00	0.0	0.02	0.0	0.014*

GREENHOUSE PLANTS						
GRASS	$\overline{\mathrm{x}}$	30.1	600.1	2011.3	4065.8	4307.9
	SD	20.9	469.9	865.6	1814.1	1892.5
	SE	4.0	80.6	138.6	286.8	299.2
	\underline{n}	27	34	39	40	40
QU ARRY	$\overline{\mathrm{x}}$	31.6	716.9	1975.2	4595.2	5009.0
	SD	23.5	633.3	1057.9	1479.9	1556.7
	SE	4.2	102.7	171.6	243.3	252.5
	n	32	38	38	37	38
T-test	T	-0.27	-0.88	0.16	-1.40	-1. 78
	df	57	70	75	75	76
	prob	0.792	0.382	0.870	0.165	0.079

GREENHOUSE SEEDLINGS						
GRASS	$\overline{\mathrm{x}}$	25.3	1341.1	4730.5	5885.1	5926.3
	SD	13.9	867.9	1677.0	2134.9	2222.8
	SE	2.4	142.7	275.7	346.3	360.6
	n	33	37	37	38	38
QUARRY	$\overline{\mathrm{x}}$	18.9	1125.6	4040.8	5838.6	5880.9
	SD	14.6	863.0	1977.3	2881.9	2872.5
	SE	2.5	138.2	315.8	355.7	459.9
	n	35	39	40	40	39
T-test	T	1.85	1.08	1.63	0.08	0.08
	df	66	74	75	76	75
	prob	0.069	0.282	0.106	0.936	0.939

[^2]w. $\mathrm{I}=$ Mean spire lenath per plant

FIELD PLANTAGO						
Week		Wk. 1	Wk. 2	Wk. 3	Wk. 4	Wk. 5
	\bar{x}	16.4	320.9	454.1	462.3	526.8
GRASS	SD	14.1	267.4	364.4	434.8	499.4
	SE	2.2	43.9	61.6	78.1	89.7
	n	40	37	35	31	31
	$\overline{\mathrm{x}}$	9.1	201.9	289.3	297.3	296.9
QUARRY	SD	8.6	182.3	250.5	296.6	304.4
	SE	1.4	29.2	39.6	48.1	48.7
	n	40	39	40	38	39
T-test	T	2.81	2.28	2.31	1.87	2.38
	df	78	74	73	67	68
	prob	0.006^{*}	0.026	$0.024^{\text {x }}$	0.066	0.020°

GREENHOUSE PLANITS						
GRASS	$\overline{\mathrm{x}}$	20.3	510.1	1960.9	4065.8	4307.9
	SD	22.2	483.7	911.7	1814.1	1892.5
	SE	3.5	76.4	144.2	286.8	299.2
	n	40	40	40	40	40
QUARRY	$\overline{\bar{x}}$	25.3	681.1	1924.6	4474.3	4880.6
	SD	24.6	636.8	1090.8	1639.1	1732.9
	SE	3.9	100.7	174.7	265.9	277.5
	n	40	40	39	38	39
T-test	T	-0,95	-1.35	0.16	-1.04	-1.4
	df	78	78	77	76	77
	prob	0.343	0.180	0.872	0.301	0.165

GREENHOUSE SEEDLINGS						
GRASS	$\overline{\mathrm{x}}$	20.9	1272.3	4606.0	5885.1	5926.3
	SD	15.9	896.3	1823.5	2134.9	2222.8
	SE	2.5	143.5	295.8	346.3	360.6
	n	40	39	38	38	38
QUARRY	$\overline{\bar{x}}$	16.5	1097.5	4040.8	5838.6	5880.9
	SD	15.0	870.3	1997.3	2881.9	2872.5
	SE	2.3	137.6	315.8	455.7	459.9
	n	40	40	40	40	39
T-test	T	1.25	0.88	1.3	0.08	0.08
	df	78	77	76	76	75
	prob	0.214	0.382	0.196	0.936	0.939

*w. $I=$ Mean spike length per plant

TOTAL LENGTH SCAPES.			FLOWERING POPULATION		Whe. 4	Wk. 5
Week		Wk. 1	Wk. 2	Wk. 3		
	$\overline{\mathrm{x}}$	0	0	0	34.5	105.4
GRASS	SD	0	0	0	31.5	89.5
	SE	0	0	0	15.7	21.7
	n	0	0	0	4	17
QUARRY	$\overline{\mathrm{x}}$	0	28.2	71.9	240.2	319.1
	SD	0	67.8	125.4	175.1	232.9
	SE	0	21.5	32.4	42.5	49.7
	n	0	10	15	17	22
T-test	T	0	-1.31	-2.22	-2.3	-3.58
	df	0	9	14	19	37
	prob	1.0	0.221	0.0440	0.033*	0.001*

TOTAL LENGTH SCAPES. TOTAL POPULATION

Week		Wk. 1	Wk. 2	Wk. 3	Wh. 4	Wk. 5
GRASS	$\overline{\mathrm{x}}$	0	0.0	0.0	3.7	51.2
	SD	0	0.0	0	14.1	81.4
	SE	0	0.0	0	2.3	13.8
	n	40	40	40	37	35
QUARRY	$\overline{\mathrm{x}}$	0	7.1	26.9	110.4	189.8
	SD	0	34.9	83.0	168.4	238.5
	SE	0	5.5	13.1	27.6	39.2
	$\underline{\mathrm{n}}$	40	40	40	37	37
T-test	T	0	-1.28	-2.05	-3.84	-3.26
	df	78	78	78	72	70
	prob	1.0	0.205	0.043	0.000	0.002

[^3]APPENDIX SCATTERGRAMS FOR REGESSIONS

statistics..

THE REGRESSITJN LINE CUTS THE MARGINS IN: THE MMOT AI

THIHU REGRES SCAT：
0.11917

0.34104

には．7から14
CUR以RLATION（R）－
STO ERaf OF FST－

\therefore ： a OUARE：
INTFRC：RT（A）－
－ 7 号

a valuF ilf $7403765: 3$ ON THE TIJH MAKGIN．

MISらINL VAL．い；

thizd Regres scats Reproductive Dry Weight with Total Length of Scapes

THIRD REGRES SCATS
STATISTICS..
CORRFLATION (R)-

-••••••

THE PEGRESSION LINF CHTS THE MADGINS OF THF DI.GT at
A VALUE OF

of grten val
thirn regres scais Reproductive Weight with Total Length of Scapes.

THE REGRESSION LINE CUTS THE MARGINS DF THE PLOT AT
A VALUE OF

plotted values -
77
にxc.unfor valufsFirst Plantago
Vegetative 5.45
Second Plantago
Vegetative13.35
Third Plantago
Vegetative 48.06
First Plantago
Reproductive I. $2 I$
Second Plantapo
Reproductive 14.27
Third Plantago
Reproductive 40.6
Second Lenntodon
Vegetatire 5.7
Second LeontodonReproductive3.9Relative Error \%

[^0]: $P=$ present but not recorded in quadrat
 Total number of species $=\quad 6054$

[^1]: * $=P<0.05$

[^2]: * $=P<0.05$

[^3]: * $=\mathrm{P}<0.05$

