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ABSTRACT 

A study was made of a moss taken from a site (Elvina Tailing 

Pileg Missouri) heavily polluted by heavy metals, especially Zn 0 Cd 

and Pb. The dominant form of the moss at this site was protonemal. 

The moss possessed some features of three different species of 

Dicranella (D. varia 0 ~· rufescens and~· staphylina). 

This Dicranella sp. tolerated even higher levels of zinc in the 

laboratory than the environmental levels found in the field. The 

highest levels led to a relatively greater decrease in the production 

of gemmae and leafy shoots than of protonema. The production of gemmae 

and leafy shoots from filamentous protonema was more sensitive to zinc 

than from leafy shoots. 

Increasing zinc levels led to an increase in the formation of 

intercellular spaces in the protonema; a decrease in phosphate levels 

also brought about the same response. 
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1. INTRODUCTION 

1.1 General introduction 

Zinc is ~~ important micronutrient element for plants as it is an 

essential component of a variety of metalloenzymes (Price~ al. 1972). 

If zinc is applied at high levels» however, it may be toxic to the same 

plants. 

Among recent studies concerned with the effect of heavy metals in 

environmental systems» there has been an upsurge of interest in their 

effects on growth and developmental processes in plants. Most studies 

have concentrated on higher plants and algae, with relatively little 

attention being paid to bryophytes. Antonovics ~~· (1971) and Whitton 

and Say (1975) have reviewed research on heavy metals and their toxicity 

to plants, and recently Dhruva !!~· (1977) reviewed the influence of 

heavy metal pollution on lichens and bryophytes. Zinc is one of the 

heavy metals which may be toxic to plants if it occurs in the environment 

at high levels. It may affect organisms ~n various ways, such as a 

reduction in growth rate.or inability to complete a particular stage in 

a life history (Whitton and Say; 1975). It seems from the literature 

that more studies are required in contaminated environments to find out 

the effects of heavy metals on bryophytes such as toxicity, growth rate, 

and developmental processes. 

1.2 Chemistry of zinc 

1.21 Factors influence solubility 

Many factors play an important role in the solubility of zinc. In 

an account of factors which control the concentration of zinc in natural 

watersp Wedepohl (1972) noted that the influence of complexing by inorganic 
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ions in diluted solutions is not well understood, but that it may be 

responsible for preventing precipitation. He noted that inorganic anion$ 

control solubility by their abundance: only sulphide, phosphate and 

carbonate form zinc compounds of low solubility. Other compounds of 

comparatively low solubility are hydroxide and oxide. 

1.211 .£!!. 

pH is a key factor affecting the solubility of zinc, either 

directly or indirectly (Zirino and Healy, 1970; wedepohl, 

1972; Zirino and Yamamoto, 1972; Hem, 1972; Wedow !!!l•• 1973; Frost 

and Griffin, 1977). For instance, Zirino and Healy (1970) found when 

pH of sea water was lowered from pH 8.3 to 5.6 by the addition of C02 

(20% co2 in N2), the zinc and lead increased. A simple chemical equation 

shows how the zinc ion reacts with water under certain pH conditions 

(Bachmann, 1962): 

and a reaction equation· can be written as: 

"' K 

and allows the proportion of zinc as the different ion, to be determined 

for different pH values. In a review of zinc, Wedow !!!!• (1973) noted 

that previous studies showed that with increasing availability of hydroxyl 

ions, a solution containing zinc as the bivalent cation will precipitate 

Zn(OH) 2 at a pH of about 7~8. When the pH exceeds this value the zinc 

2= 
re~enters the solution, but as the zincate anion, zno2 P or the hydrate 

2-zincate anion, Zn(OH) 4 • The reaction is reversible; as the pH of solution 
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decreases the hydroxide is precipitated once again (pH 7-8) and then 

redissolved as bivalent cation with further lowering of the pH. 

At pH 8.3, zinc in sea water was calculated by Zirino and Realty (1970) 

0 2+ 0 to be 75% Zn(OH) 2 , 8% Zn and 4% Znco3 ; at pH 5=6 59% of the total zinc 

2+ was calculated to be present as Zn , 25% as ZnHco3 and the balance was 

+ 0 largely ZnCl and Znc12 • However with decreasing hydroxide ion concentration, 

the abundance of ionic zinc relative to complexed zinc increases. 

In a study of the calculation of the degree of interaction between each of the 

2-metal ions Cl , so4 , HC0
3 

and CO 2- as a function of pH, Zirino and Yamamoto 
3 

(1972) found that all four metals were complexed to a considerable extent in 

sea water, hence only a small fraction of the total metal remains free. 

For example, the percentage of uncomplexed metal ions range from 17% for 

zinc to about 1% for copper. 

Wedepohl (1972) noted that the precipitation of zinc hydroxide is 

restricted to the pH range, 5.5 to about 10.5; Hem (1972) commented that 

precipitation of hydroxide through pH adjustment in water treatment process 

ought to be a feasible means of lowering the zinc content to satisfactory 

levels in raw water excessive. Frost and Griffin (1977) found that the 

exchange - absorption plus precipitation of copper, zinc and cadmium from 

landfill leachate by clay min.erals depended upon the pH and ionic strength 

of leachate. Precipitation contributed significantly to removal of copper, 

zinc and cadmium from leachate above 6.0. Recently Harding (1978) 

measured the extent of precipitation of zinc in an algal culture medium at 

four different pH values and three different concentrations of calcium. 

He found that an increase of pH values above 6.6 led to a decrease in the 

filtrability of zinc. 
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1.212 Alkalinity 

Alkalinity is a measure of the quantity of the strong acid per 

litre required to attain a pH equal to that of a C - molar solution of T 

H2co
3 

(Stumm and Morgan, 1970). In a study of the effect of alkalinity on 

the solubility of zinc, Ernst!!!!· (1975) used three different values of 

alkalinity. The zinc curves with these three values were almost super-

imposed and were strongly pH dependent above pH 7.5. An increase in 

alkalinity led to a reduction in the solubility of zinc. 

1.213 Silica 

Zinc solubility may also be controlled by silicate in some waters 

(Hem, 1972). Hem showed that between pH 7.5 and 10.0 the silicate 

species were likely to be much less soluble than any of the other species. 

1.214 Phosphate 

In a study of the interaction between ZnC12 and NaOH in the 

presence of different concentrations of KH2Po4, Jurinak and Inouye (1962) 

found that at higher concentration of phosphate all zinc was precipitated 

as zinc phosphate. The data indicated that zinc formed the 

1.215 Organic c~mpounds 

The influence of amino acids, together with naturally occurring 

amino acids present in a humic acid hydrolysatep on the solubility of 

some metals (including zinq from their insoluble carbonates and sulphides, 

I 
I 
I 
I 
I 
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has been studied by Rashid (1972). 
-1 

He found that up to 75 mg 1 zinc 

was solubilized by the reagent grade amino acids, from its carbonates, 

but none from its sulphides. However the naturally occurring amino 

acids were able to solubilize 66 mg 1-l zinc from carbonate and 6.0 mg 1-l 

from the sulphide complex. 

Zinc may be concentrated ~n natural environments by its 

incorporation into organic matter, by the formation of complexes of low 

solubility or by the uptake by biota (Hem, 1972). Pita and Hyne (1975) 

have shown that heavy metals such as zinc can be transported in the suspended 

load absorbed on the clay mineral surfaces. The organic component of 

sediments in reservoirs and streams has been shown by Pita and Hyne to be 

the most important fraction which absorbs zinc. Gadd and Griffiths (1978) 

reviewed the toxicity of heavy metals to micro-organisms. In soil, metals 

can be bound strongly by organ~c materials e.g. humic and fulvic acids and 

proteins. Humic acids are especially important and it has been stated 

that practically every aspect of the chemistry of heavy metals in soils, 

sediments and natural waters is related ~n some way to the formation of 

complexes with humic substances. 

1.3 Occurrence of z1nc 

1.31 Zinc resources 

The estimation of the reserves of zinc resources in the world 

9 which are identified is about 1.510 x 10 tonnes, and that of the 

9 undiscovered resources is about 3.575 x 10 tonnes; both identified and 

undiscovered zinc resources are estimated at over 5 x 109 tonnes (Wedow 

~~., 1973). Zinc has been estimated to represent 0.004% of the earth's 
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crust (Vallee, 1959). 

Wedow !!~·noted that zinc is produced from mining operations in 

more than 40 countries, on every continent except Antarctica; some 

potential resources of zinc are also present on the sea floor. 

1.32 General occurrence of zinc in the environment 

Antonovics !! al. (1971) concluded from the literature that zinc 

and other heavy metals can occur under several circumstances. Soil may 

itself contain large quantities of the element and this contamination 

results either from the presence of undisturbed metal ore near the soil 

surface, or from the actual mining of ore bodies. Many waste products from 

mining activities are contaminated with metal at toxic levels and may 

produce large scale pollution. Areas below galvanized (zinc coated) 

fences and pylons may even have a zinc concentration high enough to be 

toxic. 

Pearson !E !!· (1973) determined the average concentrations of 

zinc in rain water in the vicinity of Lake Windermere over a period of 

one year; it was 85 pg l- 1,and 80 ng kg-lin air. A report by Lazrus 

=l !!!l• (1970) gave an average concentration of 107 ~g 1 zinc in rainfall 

collected at 32 points in United States for a period of 4 months. The zinc 

was deposited by rainfall at the amount of 2- 496 g hectare -l month -l;. 

the amount of zinc brought down in precipitation was distinctly greater 

in most of the eastern part of the United States. Determination of the 

concentrations of various elements including zinc in water samples at 

726 locations, mostly riversp throughout the U.S.A. was carried out by 

Durum !,E. al. (1971). Most of the samples contained detectable amounts of 
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zinc 
-1 ( ;:::::,. 10 mg 1 ) • There was a noticeable regional pattern in the 

occurrence of zinc 1n the river water. Concentrations were above the 

detection limit in about 80% of samples from the states east and 65% 

from the states west of the Mississippi River. The median values for 

-1 -1 
zinc and cadmium were 20 pg 1 Zn and 1 pg 1 cadmium, respectively. 

Hem (1972) reviewed the zinc concentrations recorded in both reports 

made by Lazrus ~~· (1970) and Durum ~ ~· He stated that the values 

reported by Durum !!~· would seem to have rather limited significance, 

-1 
but the value of 107 ~g 1 Zn in rainfall (recorded by Lazrus ~!!·) 

implied that rainfall may be a major source of zinc in solution in river 

water. Because the major part of rain does not appear in runoff, Hem 

concluded that considerably more study is needed before these implications 

can be evaluated clearly. 

1.33 Occurrence 1n mining environments 

In a review of study of the effects of mining and milling for lead 

and zinc on the environment of Clark National Forest (Missouri, U.S.A.), 

Jennett et al. (1976) reported data on water quality in Crooked Creek. 

Zinc -1 
was present at 1.62 - 4.90 mg 1 in unfiltered water and 1.60 -

6.80 mg 1-l in filtered water. The level of zinc in sediments was also 

. -1 shown to be relatively high, approach1ng 10 mg g • Weatherley ~ al. 

(1967) studied the pollution of the Molonglo River in Australia. As a 

result of previous mining activity they found a marked tendency for high 

values of zinc in the river immediately below the pollution source, with a 

progressive lowering downstream through dilution and hydrolysis. The 

-1 
highest concentrations in this r1ver were 34.5 mg 1 at station 4, and 

11.5 mg 1-l at station 5 while the lowest values of 3.0 and 0.9 mg 1-l 

zinc were at stations 6 and 10, respectively. Pita and Hyne (1975) made 
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a study on the depositional environment of· zinc, lead and cadmium in 

reservoir sediments at Oklahoma. Despite the presence of low water 

retention dams, intervening reservoirs located downstream from a 

lead-zinc mining and milling area contained higher concentrations of 

zinc, lead and cadmium than reservoirs in other areas. The zinc 

content of the sediment of the third reservoir downstream from the 

· · h F G' b R · d between 38 and 539 mg 1-l m~n~ng area, t e ort L son eservoLr, range 

and was concentrated in the central, former river channel por~ion of 

the reservoir. 

1.4 Zinc tolerance and toxicity 

There have been many studies on zinc toxicity and tolerance; as 

mentioned above, most of these studies have been carried out on higher 

plants and algae, with relatively little work carried out on bryophytes. 

In a review of heavy metal tolerance in plants, Antonovics ~ al. (1971) 

concluded that it is impossible to define precisely what is implied by 

the description "metal tolerant11 because the phrase is generally used in 

two main senses. Firstly it is used to describe any species which cru1 

be found 1n an area of toxicity, while another species can not occur there. 

It may also be used more precisely to refer to specific individuals of a 

species which are able to withstand greater amounts of toxicity than their 

immediate relatives on normal soil. Secondly it refers to a spec1es 

normally non-tolerant but with an ability to evolve tolerant races. 

Antonovics et al. concluded that in the first case it is difficult to 

define what is happening unless further investigation is made to determine 

whether the species is already tolerant throughout its range including 
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uncontaminated sites, or whether it is an example of the second case and 

has evolved tolerant races. A further difficulty ~n assessing past 

studies is in most of the past studies metals have usually been added 

to laboratory media without making any measurement at the commencement 

or during the experiments of the true levels of metal in solutions 

(Whitton and Say, 1975). Even at the present time few studies give any 

clear indication of the extent to which any heavy metal is present in 

true solution or whether in a colloidal or larger particulate form. 

Dhrava!! al. (1977) reviewed the influence of heavy metal 

pollution on lichens and bryophytes; they concluded that on the basis 

of the difference in the physiology and tolerance of the plants with 

respect to zinc, some lichens can be divided into three groups: 1) species 

that display high accumulation of zinc with no apparent injury; 2) species 

whose zinc varied in successive samples; 3) species possessing high amounts 

of zinc but showing pathological changes. A list of lichens, mosses and 

liverworts tolerant of metal enriched environments was included in this 

review. Simola (1976) concluded from the literature that the moss 

Sphagnum fimbriatum seems to be more tolerant to copper and cadmium than 

some higher plants. 

The distribution of bryophytes in streams with high zinc levels 

has been recorded by Say (1977), who found that three groups of species 

emerged from the rearrangement of species in relation to decreasing 

levels of zinc at the stream site. The first group was recognised 

as those which tended to occur at higher concentrations of zinc, species 

which occurred there were included &ryum pal lens, Pohlia nutans and 

Dichodontium pellucidum. The second group of bryophytes occurred throughout 

the whole range of zinc values encountered and included Scapania undulata, 

Philonotis fontana and Dicranella varia. Finally bryophytes restricted 

to the lowest concentrations of the metal included Hygrohypnum ochraceum, 
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Brachythecium rivulare and Bryum pseudotriquetrum. The highest level of 

zinc at which the mosses Bryum pallens, Dichodontium pellucidum and 

Dicranella varia were found was at reach 0107/17 (Recording system held 

-1 
at Durham) with a mean of 8.2 mg l Zn. 

In experimental studies zinc was found to be less toxic than copper 

to both Funaria hygrometrica and Marchantia polymorpha. Toxic responses 

to zinc occur at much higher concentrations. Marchantia gemmalings appear 

-1 
to tolerate levels up to 100 mg l Zn (Coombes and Lepp, 1974). Many 

different environmental factors have been shown to influence the toxicity 

of heavy metals. In laboratory culture media, zinc toxicity to the alga 

Hormidium rivulare was found to be decreased by increases in the levels of 

magnesium and calcium (Say and Whitton, 1977); it was increased by increases 

in pH and cadmium. Sodium, chloride and sulphate showed no detectable 

influence on zinc toxicity. The effect of all these were found to be 

sufficiently marked and it was concluded that they may be expected to have 

considerable importance in the field. 

1.5 Accumulation of zinc 

Whitton and Say (1975) noted that the internal concentration of heavy 

metals as a result of uptake is greater than the concentrations in the 

external environment, and that this appears to be widespread in aquatic 

organisms. They observed that data in the literature were presented in a 

variety of ways causing great difficulty when comparing results. 

Brooks et al. (1973) reported that "Bryophytes have an extraordinary 

capacity to concentrate elements from substrate upon which they are growing 

and moreover will tolerate extremely severe ecological conditions". 
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In this respect the best known of the bryophytes are so called 'copper

mosses'". Skaar et ~· (1973) chose mosses for their study because 

they accumulate heavy metals in concentrations which are toxic for 

other groups of plants. Czarnowska and Crochowska (1974) supported 

this when they found the contents of the iron, manganese, z1nc and 

copperwere several times higher than analogous values reported for 

vascular plants. They concluded that mosses are an interesting material 

for research since they possess specific traits not noted in other 

plants. In a study of the tolerance of heavy metals in the rivers 

Ystwyth and Clarach, Wales, McLean and Jones (1975) found in general 

lower levels of iron, lead and manganese in the liverwort Scapania as 

compared with the less tolerant moss Fontinalis squamosa. During 

transplant experimen~an increase in lead, copper and zinc occurred in 

this moss within 6 weeks whilst the moss began to decay after 18 weeks 

when transplanted into polluted sites. 

In the review of heavy metal tolerance by Antonovics !!!l· 

(1971), they noted that plants may have an exclsuion mechanism to 

enable them to survive on contaminated soils, but that the tolerance 

mechanism of zinc must be internal. A study carried out on Dicranella 

varia occurring on old mine spoil heaps in the Pennines (Shimwell and 

Laurie, 1972) showed that most of the lead and zinc is excreted from the 

gametophytes and in periods of summer drought forms a powdery crust on 

the moss carpet. The analysis of this precipitation occurring on the 

moss produced abnormally high values for zinc (5250 and 6150 mg 1-1). It 

was suggested that theoretically, the absorption and precipitation of 

heavy metals by p. ~might prove a possible naural method 

of detoxification of spoil heap soil. This moss,which lacks a cuticle 

and absorbs water all over its gametophytic bod~ was shown to have a 



higher heavy metal content than Philonotis fontana which has a more or 

less continuous cuticle. The absorption was shown to take place mostly 

towards the base of the gametophyte. 

Ward!! al. (1977) determined the range of heavy metal concentrations 

-1 
(expressed in pg g dry weight) in bryophytes from two mining areas in New 

Zealand. They found that near the dusty treatment plant, all bryophytes 

had higher metal concentrations when compared with the substrata. The 

range of zinc concentrations in the moss Hypnum cupressiforme found in 

this area. and other values for the same species from a background 

locality in Sweden are compared here: 

Location 

New Zealand 

Mineralized areas (range) 

Treatment Plants (range) 

Background areas (mean) 

Sweden 

Lowest background (mean)~ 

-1 Zn (HI g dry weight) 

112 - 156 

126 = 167 

+ 
17.2 = 3.3 

82 ! 13 

w 
data from Ruh1ing and Tyler (1971) 

1.6 Morphological and physiological effects of iinc 

The effects of zinc on the morphology and physiology of 

bryophytes are still understood poorly. Most research has been carried 

out on higher plants. Hampp ~ al. (1976) made a study on extracts of 

higher plants. They showed that co2 ~ fixation by isolated chloroplasts 

of spinach (Spinacia oleracea) was inhibited by zinc and cadmium at all 

concentrations investigated (10 to 1000 ~M). DeFilippis and Pallaghy (197~) 
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found that both photosynthesis and respiration were inhibited by zinc 

in Chlorella. Zinc led to a sharp reduction in pigment content, rates 

of cell divisions and metabolic activity. Coombes and Lepp (1974) were 

able to show that both copper and zinc produced deviations in the growth 

pattern of Funaria hygrometrica from those observed in control cultures. 

-1 
The presence of 10 mg 1 produced numerous rounded cells containing 

reddish granular inclusions in the protonema. Protonemal growth was also 

poor and distorted. In Marchantia polymorpha the authors observed no 

noticeable changes in gemmalings grown in zinc-containing media. 

1.7 Aim of project 

It was decided to investigate the effects of zinc on the growth 

and development of strains of representative species from sites polluted 

by zinc. Initially the blue-green alga Plectonema gracillimum and the 

moss Dicranella were chosen. It did not prove possible to obtain either 

in bacteria-free culture. It was decided eventually to restrict the 

study to only one organism. 

Dicranella was chosen for the following reasons: 

(i) Contaminant bacteria seem likely to play a less important role for 

a moss than a blue-green alga 

(ii) Rapid growth could be obtained in laboratory conditions 

(iii) Morphological changes can be observed in the moss more easily 

than in Plectonema 

(iv) Standard inocula of moss are easier to obtain than with Plectonema 
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2. MATERIALS AND METHODS 

2.1 Collection and storage 

The materials were collected from Elvina Tailing Pile (see · 

3.1) by B. A. Whitton on 21 June 1977, and stored at room 

temperature in a plastic bag. Soon after return to the Durham 

laboratory they were cultured into both liquid and solid Chu 10 D 

-1 medium (Section 2.32) with 10 mg 1 Zn. Incubation was carried out 

0 in a plant growth room at 25 C and 2200 lx. The remaining materials 

were stored in a polythene beaker at room temperature and in a dark 

place. 

On 22 August 1979, similar materials were collected again 

from the same site by B. A. Whitton. They were stored by the above 

method. 

2.2 Isolation and purification 

2.21 Physical isolation 

Enrichment cultures were examined carefully with a microscope 

to determ~ne the organisms present (Section 3.3). The following 

method was used for isolation. Areas which appeared to contain an 

extensive growth of the organism were marked. W!th two fine needles» 

the organism was then moved to an area without any growth; such areas 

were cut and removed together with a small block of agar. This method 

was found suitable for isolating the moss from the associated Plectonema 

after two or more repeats. Initially attempts were made to remove 

heterotroph& with antibiotics (Section 2.221); when these failedp 
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physical methods were tried; the moss was eventually freed of fungi 

by dilution and repeated subculturing. 

2.22 Purification with antibiotic 

2.221 Fungi 

Enrichment cultures were treated with cycloheximide and 

griseofulvin in an attempt to kill the fungi; both antibiotics were 

-1 added (lg 1 ) to the agar medium, each as individual treatment. The 

cycloheximide was dissolved in distilled water and griseofulvin dissolved 

in alcohol. The solutions were sterilized by passing the solution through 

0.22 ~ Millipore filter. Each solution was added to the media before 

pouring the agar, at about 40°C. Both were found to be ineffective in 

suppressing the growth of fungi. 

2.222 Bacteria 

Several antibiotics were tried (penicillin, tetracycline, 

neomycin, polymixin, streptomycin, chlorotetracycline and oxytetracycline) 

in an attempt to obtain an axenic culture. One bacteria (rod) was killed 

by penicillin, but the moss still remained bacterized. 

2.23 Purification with chemical 

An attempt was made to grow the moss in pure culture by dipping 

the whole leafy shoots of Dicranella sp. in different concentrations of 

(up to 5%) sodium hypochorite solution for a few seconds, and then 



placing them either on basal solid medium or ift basal liquid medium, but 

the moss still remained bacterized. 

2.3 Culturing 

2.31 Culture vessels 

The vessels used for all the tests carried out in liquid media 

were either 100 ml conical flasks or 50 ml boiling tubes, both of Pyrex 

glass. The conical flasks were used for long term experiments, and 

the boiling tubes used for shorter tests. The vessels used for solid 

media were petri dishes made either of Pyrex glass or pre=sterilized 

plastic. 

All the glassware was cleaned and soaked in 10% HCl for 24 h and 

then rinsed directly in an automatic rinsing machine for 3 minutes with 

distilled water. 

2.32 Culture medium 

In preliminary tests different media were tested in order to 

obtain relatively rapid growth of the moss. A modification of the No. 

10 medium of Chu (1942) proved suitable. The modifications included 

-1 increased levels of calcium, nitrate, the addition of 0.05 mg 1 Ni 

and the inclusion of EDTA (ethylenediaminetetra-acetic acid) as chelating 

agent. All media were prepared using "Analar" grade chemicals. The pH 

was buffered at 7.0 with HEPES (N-2 hydrozyethyl-1, piperazine=N'ethanesulphonic 

acid). This pH value lies near the field values found in 1977, being 0.1 pH 

unit above the mean. Nickel was added to the basal medium because preliminary 
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tests showed that some enhancement of growth occurred in media with 

this element. The composition of the media is shown in Tables 2.1 and 2.2. 

Zinc was omitted from the microelement stock. Analysis by atomic 

absorption spectrophotometry showed that the level of zinc in the basal 

-1 
medium was less than 0.04 mg 1 . Where further zinc was added a stock 

solution of Znso
4

p 7H
2
o (lg 1-l Zn) was used. For all routine assays 

50 ml medium was used with 100 ml conical flask or 10 ml of medium with 

50 ml boiling tube. For solid media agar was used at a concentration of 

1.8% (W/V). The technique for obtaining exactly 25 ml of solid medium 

was carried out by melting the agar in a beaker with continuous stirring 

by glass rod; it was then dispensed on to the plates using a 50 ml plastic 

syringe then left until solidified. Five plates were fixed together 

with aluminium foil and moved to the autoclave. Sterilization for all 

media and glassware used for culturing was done by autoclaving at 

121°C (= 10.35 KN m- 2 ) for 15 minutes. Subculturing and further 

inoculation were made under aseptic conditions. 
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salts Chu 10 Chu 10 D basal medium 

Ca(N03) 2.4H2o 57.59 172.77 

Ca(N03)2 40 

KH2Po4 7.8 7.8 

K2HP04 10 or 5 

MgS04.7H20 25 25 25 

NaHC03 15.85 15.85 

Na2co3 20 

Na2Si03.5H2o 25 10.9 10.9 

NiC12.6H20 0.203 

ZnS04o7H20 2 0.072 5.0 

FeC13 0.8 

Fe (as ferric iron 0.5 0.5 
ethylenediamine tetra-acetic 
acid chelate) 

"C" stock of Kratz and Myers (1955) 0.25 ml 0.25 ml 
(with zinc) (omitting zinc) 

-1 Table 2.1 Composition of media (mg 1 ), based on salts added. 

' ,, 
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element Chu 10 Chu 10 D basal medium 

B 0.35 0.125 0.125 

Ca 9. 77 9.77 29. 31 

Cd 

Co 0.25 0.0025 0.0025 

Cu 0.01 0.01 

c 2.27 8.23 8.23 

Cl 0.52 0.57 0.57 

Fe 0.28 0.5 0.5 

Pb 

Mg 2.47 2.47 2.47 

Mn 0.4 0.012 0.012 

Mo 0.0025 0.0025 

Ni 0.05 

p 1. 78 or 0.89 1. 78 1. 78 

K 2.27 or 1.124 2.24 2.24 

N 6.83 6.83 20.49 

Si 3.31 1.44 1. 44 

Na 14.43 6.7 

s 3.25 5. 71 5. 71 

Zn 0.45 0.072 

Table 2.2 
-1 Composition of media (mg 1 ), based on total concentrations of 

elements present. 
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2.33 Inoculation 

a) Liquid cultures 

Two fine needles were used to help get as uniform inocula of 

the Dicranella as possible. A small inoculum was also preserved in 

iodine in a specimen bottle in order to compare and adjust the other 

inocula against its size. 

b) Solid cultures 

The method for obtaining a uniform inoculum from solid cultures 

is more accurate and easier than that from liquid cultures. The 

inoculum was made as uniform as possible by cutting small equal blocks 

from the solid culture; this was achieved with the aid of paper with 

black lines and an inoculation knife (flattened needle). The process 

of cutting was achieved by passing the knife on the lines which were 

2 
crossed making small squares 0.09 em • A source of light from beneath 

was used to help to identify the lines. 

2.34 Incubation 

a) Liquid cultures 

All the boiling tubes were incubated in a tank which provided 

0 the cultures with constant temperature (25 C) and moderate shaking, 

the tubes were placed in a rack at an angle, and illuminated from 

beneath with 2500 lx continuous cool white fluorescent light. Long 

term experiments were carried out in conical flasks without shaking, 

with continuous illumination from above with 2500 lx continuous cool 
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0 0 fluorescent tubes (2500 lx) at 25 C or 15 C. 

b) Solid cultures 

All experiments with solid media were carried out in the same 

plant growth rooms as those used for standing liquid cultures. Long-

term experiments with solid medium were carried out in pre-sterilized 

plastic petri dishes and the short experiments carried out in Pyrex 

glass petri dishes. These experiments were all carried out at 15°C. 

2.4 Measurement of growth 

2.41 By area 

Assessment of growth in solid cultures was attempted by 

measuring the area occupied by the moss. This was carried out by 

measuring the mean diameter of the area occupied by moss and, from 

this, calculating the surface area. 

2.42 Chlorophyll a 

Assessment of growth was also carried out by determination of 

the chlorophyll a in the cultures (section 2.52) 
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2.5 Analytical Method 

2.51 Fractionation of zinc in medium 

2.511 Apparatus 

1) Filtration system (Millipore) 

2) 0.22 pm Nuclepore filters 

3) Specimen bottles 

4) Pyrex glass 50 ml boiling tubes 

All the glassware was cleaned as described in 2.31, with the 

exception that the Millipore filtration system was left to dry at 

room temperature. 

2.512 Method 

Zinc was added to the media either before or after autoclaving 

into the basal liquid media and the pH was buffered at 7.0 with HEPES 

(section 2.32). The zinc solution added after autoclaving was 

sterilized separately. An estimate of the extent of zinc precipitation 

in the media was carried out by filtering the solution through the 

Nuclepore filters and receiving the filtrate solution in the acid 

washed specimen bottles. Soon after filtration, zinc was measured using 

a Perkin-Elmer 403 atomic absorption spectrophotometer. The solutions 

were shaken vigorously before measurement. Measurement of total zinc 

in the original solution was made both before and after acidification. 

This was because most readings of the total zinc indicated lower values 

than were known to have been added to the solution. 
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initial _
1 

observed reading when 'initial' Zn observed reading when 'initial' Zn 
Zn (mg 1 ) fraction added before autoclaving added after autoclaving 

(n = 4) (n = 4) 

- -
X s.d. X s.d. 

T 0.01 0.002 0.01 0.002 

0 AT 0.01 0.002 0.01 0.003 

F 0.02 0.009 0.02 0.010 

AF 0.02 0.008 0.02 0.014 

T 4.30 0.15 5.04 0.09 

5 AT 5. 30 0.35 5.53 0.41 

F 3.73 0.18 3.85 0.26 

AF 3.93 0.20 3.95 0.21 

T 7.08 0.40 8.68 0.11 

10 AT 9.23 1.25 10.35 0.21 

F 7.18 0.68 8.55 0 . 30 

AF 7. 38 0 . 76 8.63 0.27 

T 18.7 0.37 21.58 1.19 

20 AT 21.62 1.23 23.07 o. 72 

F 12.20 . 0.10 14.13 0.54 

AF 12.46 0.17 14.23 0.54 

T 28.03 0.80 30.18 1.20 

30 
AT 30.80 1. 39 31.33 0.41 

F 20.18 
- 0.44 24.53 0.40 

AF 20.30 o. 39 24.70 0.43 

T 36.48 0.95 40.63 1.46 

40 
AT 41.65 1.04 41.70 - 1.10 

F 26.63 0.61 36.38 o. 72 

AF 26.75 0.60 36.50 0.74 

T 43.9 0.24 47.88 0.29 

50 
AT 50.05 0.94 50.00 o. 70 

F 34.08 . 2 .04 41.50 0.75 

AF 34.15 2.02 41.58 0.78 

T 50.98 1.54 57.50 0.98 

60 
AT 59.88 2.17 60.05 1. 75 

F 40.40 0.95 50.85 1.10 

AF 40.40 1.06 51.02 1.11 

T 57.85 0.08 64.58 2.48 

70 
AT 66.45 2.10 69.98 1. 77 

F 46.20 0.30 59.45 0.59 

AF 46.28 o. 38 59.53 0.56 

. 
T 66.33 1.97 78.52 o. 32 

80 
AT 77 .63 3.05 80.15 1.49 

F 55.10 3.29 67.88 1.35 

AF 55.18 3.31 68.00 1. 31 

T 72.78 1.45 88.45 0.45 

90 
AT 82 .85 5.00 90.38 0.41 

F 59.85 2.25 76 . 00 0.91 

AF 59.95 2. 31 76.10 0.85 

T 71.45 0.53 97.40 2. 71 

AT 103.75 0.83 102.27 2 .25 
100 

F 62.33 2.30 83.63 1.13 

AF 62.38 2.31 83.73 1.18 

Table No. 2 . 3 Influence of 3 diff er ent fac tors : f i ltration , acidif i ca t i on, and autoc l aving on s olubility of 
zinc (Zinc concentrati ons in mg 1- 1; n = 4 ) 

T t otal ; AT = acidi f i ed unf i lter ed solution; F = f i l trat e ; AF = aci d i f i e d fil t r ate solut i on 
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2.513 Result 

Most of the zinc was in solution when added after autoclaving; 

the extent of precipitation increased when the zinc was added to the 

media before autoclaving (Table 2.3). Acidification showed that the 

"missing" zinc was really still present. 

2.52 Chlorophyll a 

2.521 Extraction 

Extraction of chlorophyll ~ was carried out with methanol as 

an extracting agent. Marker (1972) suggested that methanol is much more 

effective in extracting pigments than acetone; moreover degradation of 

chlorophyll in methanol is less than in acetone. The method used for 

the extraction of chlorophyll ~ is similar to that given by Talling and 

Driver (1963). The details are given below. 

a) Liquid cultures 

The moss was harvested by vacuum filtration through Whatman GF/C 

glass fibre paper. The moss and solvent (95% methanol) were then 

placed in 30 ml McCartney bottles and incubated for 5 min. in a waterbath 

0 at 70 C, with occasional shaking, and filtered again through the glass 

fibre paper; this procedure was then repeated one or more times. The 

final filtrate was made up to a standard volume. The chlorophyll peaks 

were read immediately after extraction using a Perkin-Elmer 402 Ultraviolet -

visible spectrophotometer. Absorption spectra were read at 665 nm. 

Extracts were then acidified by one drop of 1 N Analar HCl in the 



- 40 -

optical cell and carefully mixed in with a paste.ur pipette; the 

absorbance at 665 nm was then read again. 

Neutralization of the extracts with magnesium carbonate was not 

used because preliminary tests to compare the effect of neutralization 

by magnesium carbonate on the absorption spectra showed little effect 

on the final peaks. 

b) Solid cultures 

The method of analyzing chlorophyll ! in solid cultures was 

similar to that in liquid cultures, but here 100% methanol was added 

for extraction. The moss occurred both on and in the agar; the presence 

of agar led to a slight dilution of the methanol. A special glass pestle, 

which can be inserted into the McCartney bottle,was used for crushing 

the material. Five or more extractions were required for some samples. 

2.522 Estimation 

Chlorophyll ! was calculated from formula given by Marker (1972), 

but here a different "acid factor" derived constant has been used. This 

formula has been written as follows: 

Chl 

A a 

v 

1 

13.1 

v 
a (~g/sample) = 2.56 (~ ~ Aa) X /1 X 13.1 

m absorbance at 665 nm before acidification 

Q absorbance at 665 nm after acidification 

= volume of extract (ml) 

= light path of optical cell (em) 

= Constant, assuming a specific absorption coefficient of 

~ 1 -1 chl a in 95% methanol of 76.07 1 g em 
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2.56 =Constant derived from an acid factor of 1.621 (mean) 

The acid factor was calculated from 75 samples of the moss and is 

+ 1.64 (s.d = - 0.26). It was calculated according to the method of Marker 

(1972): 

absorbance at 665 nm before acidification 
absorbance at 665 nm after acidification 

Using the mean of the acid factor, a constant of 2.56 was derived for use 

in the chlorophyll a equation. This constant was derived as follows: 

Constant = acid factor 
acid factor - 1 

2.6 Technique of Sectioning 

2.61 Sectioning 

1.64 
1~- 1 

= 2.56 

Sectioning was carried out, using a technique modified from 

Peacock (1940). 

The moss was fixed overnight in Rawling's Fluid (formal-acetic-

alcohol). The moss was washed in 70% alcohol, then the following 

procedure was used: 

1) 907. ethanol 2 min 

2) absolute ethanol 2 min 

3) absolute ethanol 2 min 

4) absolute ethanol/xylene 1:1 2 min 

5) xylene to clear 2 min 

The moss was then placed in a fresh change of xylene and enough 

paraffin shavings were added to saturate the xylene. 

0 The container was placed overnight in an oven at 57 C; more wax 
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was added gradually until the mixture was approximately 3/4 wax. 

The moss was next transferred to pure melted paraffin wax and kept 

at 57°C for 2 h. It was then placed in fresh paraffin wax kept 

molten in the oven (the melting point of the wax is 54°C). Fresh 

melted wax was poured into a mould and the moss placed in it and 

aligned for cutting on the microtome; after the wax block had solidified 

it was trimmed and attached to a wooden block to enable it to be 

sectioned The sections were cut 7.5 pmthick. 

The sections were mounted in the following manner. A thin layer of 

Mayers albumin was smeared on a clean slide. Section was floated on 

warm water at 35°C to stretch it and then picked up on the slide. The 

slide was then dried thoroughly. 

2.62 Dewaxing and staining 

Dewaxing and staining was carried out in the following 

sequence: 

1) dissolve wax in xylene 10 min 

2) fresh xylene 5 min 

3) xylene/ethanol 1 1 2 min 

4) absolute ethanol 2 min 

5) 90% ethanol 2 min 

6) 70i. ethanol 2 min 

7) safranin, light green in Cellosolve 1 min 

8) wash in 70i. ethanol 

9) wash in 907. ethanol 
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10) wash in absolute ethanol 

11) wash in xylene 

12) mount DPX Mountin Mediump(Raymond A. Lambp London) 

2.7 Measurement of cross-wall angles 

The angles of cross-walls of the filamentous protonema were 

estimated from photographs. Large prints were used and the angles 

measured with a protractor. The line of the cross-wall was extended 

by pencil in order to help the measurement. 
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3. ELVINS TAILING 

3.1 Location and description of site 

Elvins Tailing Pile lies in the Old Lead Belt, Missouri, U.S.A. 

It is located about 113 km south of St Louis, entirely within the confines 

of St Francois County. Bordered between latitude 38° OO' and 37° 49'15" 

and longitudes 90° 37'3d' and 90° 28'45", this century old mining region 

covers a land area of approximately 285 square km and comprises about 10% 

of the Big River Basin (Kramer, 1976). 

Elvins Tailing Pile (Fig. 3.1A), bordering the northern side of Elvins 

City, is located in the northeast quarter of section 12, Township 

36 North, Range 4 East. The deposit covers a land area of approximately 

0.6 square km and is generally level with an extremely steep southeastern 

face. Grassy-type vegetation grows at its extreme north and northeastern 

edges. A shallow lake of approximately 1.2 ha borders the northern tip 

of this tailing accumulation. Another lake of about 1.0 ha borders the 

southwestern corner of this deposit. At the base of the southeastern face 

of Elvins Tailing Pile, there is a seepage (Fig. 3.1 B) which flows through 

a series of three small dams before eventually reaching Flat River Creek. 

3.2 Composition of water 

Water samples were collected from Elvins Tailing Pile both on 21 June 

1977 and 22 August 1979. Results of the analysis of these water samples 

are presented in Tables 3.1 and 3.2. The water was about neutral when 

collected in 1977, but at a slightly lower pH when collected in 1979. 
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Fig. 3.1 Elvins Tailings Pile, Missouri.on 22 August 1979: 

(A) general view (B) source of stream 9014 
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unfiltered filtered 
element 

21 June 77 22 August 79 21 June 77 22 August 79 

Al 0.10 0.13 0.10 0.10 

As 0.02 

Ca 368 309 360 271 

Cd 0.107 0.078 o.lo 0.081 

Cl 5.1 

Co 0.46 0.46 0.48 0.44 

Cu 0.021 0.027 0.23 0.008 

F o. 72 

Fe 0.09 1.06 0.07 0.15 

Pb 0.196 0.28 0.204 0.14 

Mg 80 67 80 55 

Mn 0.020 0.215 0.019 0.010 

Si 0.65 

Ag 0.02 0.02 0.02 0.02 

so ~s 
4 260 

Ni 0.42 0.45 0.42 0.43 

K 14.6 ll.8 14.1 ll.8 

Na 6.8 5.2 7 0 4 5.8 

Zn 19.1 22.8 19.1 21.0 

Table 3.1 Element composition of Elvins Tailings Pile water in 1977 and 1979 



30 July 75* 

0 temperature C 

pH 7.35 

total alkalinity 
(mg 1-l Caco

3
) 

119 

;Table No. 3.2 Properties of Elvins Tailings Pile water. 

(* from Kramer, 1976) 

21 June 77 

24.5 

6.9 

11.0 

22 August 79 

21.5 

6.1 ~ 
()) 
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Kramer (1976) recorded the pH of the water at this site during July and 

August 1975 to be slightly alkaline. Kramer showed that hardness of this 

water consisted primarily of the non-carbonate forms. 

3.3 Biology of site 

a) Algae 

When the Dicranella used for the present study was collected in 

1977 from the site shown in Fig. 3.1B, only two species of algae were 

found. These were Plectonema gracillimum (Zopf) Hans~ and Stichococcus sp. 

Growth of these algae was studied briefly in the laboratory. The growth 

of Plectonema was very poor when subcultured into Chu D, AD, AC (see 

Sinclair, 1977), and Bold's medium (see Bold 1942), both in liquid and 

solid media. The basal medium (Table 2.1) developed was found to permit 

much better growth for culture of Dicranella (Section 2.32). The growth 

of Stichococcus was faster than Plectonema when grown in Chu 10 D medium. 

Other algae were recorded in 1979, but they were not studied further. 

b) Bryophyte 

One bryophyte, provisionally identified as Dicranella varia 

(Hedw.) Schimp• was the dominant photosynthetic organisms in the material 

collected. 

c) Bacteria 

Four different growth media (yeast extract, beef, malt and nutrient 

media) were used for partial characterization of the bacteria. Three 

species grew in all media; two formed white and one formed yellow colonies 
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on agar. Microscopic inspection showed that two were motile and one 

non-motile. All were gram-negative. They were very resistant to 

antibiotics (Section 2.22), although the yellow colony was killed by 

penicillin. 

d) Fungi 

Three species of fungi were present with the materials: Alternaria 

sp., Fusarium sp. and one not identified:(The generic identifications 

were made G.H. Banbury.) Growth of all three fungi was rapid, a whole 

plate being colonized within a few days. 

e) Animals 

Protozoa and nematodes were found with the materials collected 

from the site. These organisms did not rersist repeated subculture of the 

plant. 
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4. MORPHOLOGY AND GROWTH 

4.1 Morphology of field materials 

Materials collected from the field were inspected carefully, 

both in order to aid identification and also as a basis for later 

experiments in the laboratory. 

a) Materials collected in June 1977 (see 2.1) 

Shoots 8 - 13 mm tall, branched at the base but rare, leaves 

lanceolate, tapering to acute apex, those of upper part of shoot 

longer (0.5 - 1.0 mm long, 0.18 - 0.21 mm wide at the broadest 

part just above the base) than those of lower part (O.e - 0.4 mm 

long, 0.12 mm- 0.17 mm wide) (Fig. 4.1); margin plane, with a few 

obscure teeth near apex; nerve ending in apex, occupying 1/6 to 1/5 

of width of base, defined in section with two rows of cells (Fig. 

4.3C); cells more or less rectangular, but some walls oblique 

(Fig. 4.2 B-C), 8- 12 ~min mid-leaf. Perichaetial leaves with 

sheathing base, longer than stem leaves (2.0- 3.5 mm long) recurved 

to squarrose (Fig. 4.10E). Rhizoidal gemmae variable, typically 

40- 50 x 25- 31 pro, pale brown (Fig. 4.8A-G); more or less spherical 

gemmae also present, both rhizoidal and protonemal, dark brown 

(Fig. 4.9 F-G). Sporophyte unknown. Old stems and rhizoids become 

dark brown. 

b) Materials collected in August 1979 (See 2.1) 

These materials were similar to those collected in 1977, but 

differed in height of shoots, arrangement and length of leaves. The 

shoots were usually longer (10- 25 mm); the leaves were usually 
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erecto-patent (whereas those of 1977 were spreading) and longer; 

upper leaves 1.3 mm long, 0.35 mm wide; lower leaves up to 0.44 mm 

long, 0.18 - 0.22 mm wide. 

4.2 Comparison with various descriptions of Dicranella species 

The Elvins moss was named provisionally as Dicranella varia 

(Hedw.) Schimp., but differs in various respects from the descriptions 

of this moss given in Watson (1968) and Smith (1978). According to the 

descriptions the leaves of D. varia are longer than those of the Elvins 

moss (Table 4.1); they are usually erecto-patent to slightly secund 

in D. varia, whereas in the Elvins moss they are patent to spreading; 

the cells are smaller in D. varia. The perichaetial leaves of ~· varia 

are not differentiated from the stem leaves. Irregular rhizoidal 

gemmae occur in~· varia, but the dark brown more or less spherical 

rhizoidal and protonemal gemmae of the Elvins moss have not been noted. 

The Elvins moss also resembles Dicranella rufescens (With.) 

Schimp. in some respects such in shape of stem leaves, dimensions 

of cells, but D. rufescens differs from the Elvins moss in the 

following ways. The shoots are much shorter than those of Elvins moss; 

perichaetial leaves in~· rufescens are similar to the uper stem leaves, 

whereas in the Elvins moss they are clearly differentiated from them 

(Fig. 4.10E). D. rufescens has red pigment in the old rhizoids and 

stems, but these parts are brown in the Elvins moss. Both mosses have 

rhizoidal gemmae, but these are not alike. 
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The moss seems to be more closely to Dicranella staphylina Whitehouse 

than any other species of Dicranella, with a close resemblance in 

features such as shoot branching, leaf shape, perichaetial leaf 

shape, cell dimensions, and colour of the old stems and rhizoids. 

There are however some differences between D. staphylina and the 

Elvins moss. The shoots are much shorter in~· staphylina. The 

nerve ends below the apex in ~· staphylina, whereas in the Elvins 

moss it ends at the apex. The perichaetial leaves of ~· staphylina 

are shorter than those of the Elvins moss. The irregular rhizoidal 

gemmae of the Elvins moss are much more similar to those of 

~· staphylina than those of E.· varia, although they are smaller 

(40- 50 x 25- 31 pm); the dark brown more or less spherical 

rhizoidal and protonemal gemmae have not been noted in D. staphylina. 



plant sex and features 
of leafy shoots 

arrangement 

collected in 1977 I dioeci ous I erecto-oatent to 

8 - 13 nnn tall 
patent when dry, 

I spreading when moist 

collected in 1979 I dioecious I erecto-patent 

D. varia 

D. rufescens 

D. staphylina 

10 - 25 mm tall 

dioecious 

2 - 10 (-30) mm 
tall 

dioecious 

shoots are much 
less curved to 
one side 

dioecious 

dioecious 

up to 10 mm tall, 
often r eddish 
tinge 

I 
when moist 

straight to slightly 
secund when dry, 
credo- patent to 
slightly secund when 
moist 

not noted 

secund 

erect to flexuose -
secund when dry, 
secund when moist 

smallest species l not noted 
of the genus (in 
U.K.); recognized 
by reddish organs; 
colour accentuated 
on drying 

red pigment in old 
stems and 
rhizoids 

apparently 
dioecious 

plant up to 5 mm 
tall 

usually secu.nd (up t o 
2 mm long) 

erect when dry , 
erecto-patent to 
spreading, rarely 
secund 

normally dioecious, , erecto-spreading to 
but plant pseudo- spreading , not secund 
dioecious in or only slightly so 
cultivation, about 
5 nnn tall, 
branched at base; 
old stem and 
rhizoid become 
brown 

leaf 

shaoe 

I lanceolate, tanerino to acute aoex 
base not sheathing (Fia. 42A) , upper 
leaves (0.5 - 1. 1 mm lonq), lower 
leaves (0.3 - 0.4 mm long) (Fiq. 4.1) 
perichaetial leaves with sheathinq 
base, longer than stem leaves 
2 - 3.5 mm long, (Fig. 4 . 10E) 

~ 

lanceolate , tapering to acute apex, 
base not shedding upoer l eaves uo 
to 1, 3 mm long; lower leaves shorter 
up to 0.4 mm long 

uooer leaves linear - lanceolate 
aradually tanerina from insertion 
to acuminate aoex, base not 
sheathing ; lower l eaves shorter , 
wider; oerichaetial leaves similar 
in shaoe to stem leaves 

lanceolate, curved and taoerinq and 
up to 3 mm l ong; oerichaetial 
leaves not noted 

lanceolate , not sheathing ; 
oerichaetial l eaves not 
differentiated from upper leaves 

narrowly lanceolate; base not 
sheating, gradually tapering to 
acuminate to subulate apex; 
perichaetial leaves similar in shape 
to upper stem l eaves 

not noted 

narrow outline ; perichaetial leaves 
similar to upper stem leaves in 
shape 

lanceolate, tapering to acute apex; 
perichaetial leaves with sheathing 
base , ± abruptly narrowed to long 
flexuose or squarrose limb 

lanceolate 0.6 - 1.0 mm long and 
about 0.25 mm wide at the widest 
part just above the base; base not 
sheathing the stem; perichaetial 
leaves 1.25 - 2.5 mm long, with a 
wide sheathing base; narrowed 

maroin 

nlane, with a few obscure 
teeth towards aoex 
(Fig. 4.2 A, B) 

olane, with a few obscure 
teeth towards aoex 

usually narrowlv recurved, 
entire or minutely toothed 
near aoex , sharoly defined 
in section with two rows 
of guide cells with scattered 
stereids above 

lack the shar?l y saw- edqed 
tio; narrowlv revolute for 
much of their l ength 

recurved margin a regular 
feature of the large leaves 

plane; denticulate, at 
least above 

plane 

plane throughout and with 
more conspicuous teeth near 
apex 

plane or recurved be l ow, with 
a few obscure teeth towards 
apex 

often plane, but sometimes 
recurved below in l arge leaves 
with a few obscure teeth 
near apex 

cells 

± rectangular, but some end-
walls oblique 8 - 12 ~ wide 
(Fig. 4 , 28-C) 

± rectangular, but some end-
walls oblique 8 - 12 ~ wide 

basal cells ± rectangular, 
i ncrassate, smaller near 
margin; above narrowly 
rectangular to linear, 
unistratose throughout 
4 - 9 ~ wide in mid-leaf 

even in the upper part of 
the leaf, are l ong and 
narrowly rectangular 

lamina cells 5 - 9 ~ wide 

basal cells irregular, 
rectangular; 8 - 14 ~ wide 
in mid- leaf 

not noted 

not noted 

~ rectangular 10 - 14 ~ 
wide in mid- leaf 

± rectangular, but some end
walls oblique; 30 - 70 x 
10 - 14 ~m with walls 2 ~ 
thick 

nerve 

thin, ending at the 
apex , occupies 1/6 to 
1/5 width of the base 
(Fig. 4.2A) 

thin , ending at apex, 
usually 1/6 to 1/5 
width of base , rarely 
2/3 width 

ending at apex or ex
current , about 55 - 85 
(-1 00 ~) wide at leaf 
base, occupying 1/ 5 
of width of base 

occupies about 1/6 of 
the breadth of l eaf 
base 

strong 

nerve thin ending at 
apex or excurrent 

not noted 

not noted 

thin, ending below 
apex 

rather weak, about 40 
40 ~ wide at base , 
ending just below apex 

I 

I 

sporophyte 

unknown 

unknown 

seta deep reddish
brown; capsule 
inclined ovoid, 
gibbous smooth when 
dry 

red seta and caosule ; 
smooth (not furrowed) 
curved capsule 

not noted 

seta deep red; capsule 
erect, ellipsoid, 
symmetrical, smooth; 
lid with oblique beak 

not noted 

not noted 

unknown 

unknown 

gemmae 

irregular or regular 
outline ; cell 
rhizoidal (Fiq . 4 . 8A-D 
and Fig. 4 . 9) 

·- L 

irregular or regular 
outline; rhizoidal and 
rarely alRo protonemal 

author 

irregular , pale borown, (Smith (1978} 
rhizoidal 100- 140 
(250} X 60 - 95 ~ 
often present 

not noted 

variable in size and 
shaoe , pale brown 
100 - 140 (- 250) ~; 
rare to frequent 

rhizoidal, comoosed 
of I - 3 large cells; 
occasional , especially 
in senescent plant 

not noted 

consist of two mu.ch 
enlarged cells, e,ach 
70 - 100 ~ in diameter 
and red in colour·; 
occasionally 3 - 4 eel£ 
in the gemma arranged 
i n a row 

brownish rhizoidal 
gemmae , 80 - 100 x 
SO - 80 ~ always 
present 

rhizoidal, irregular 
in shape , but often 
more or less 
isodiametric, 80 - 100 
x so - 80 ~ a 

•atson (1968) 

t.lhitehouse 
(1 966 ' 1969} 

Smith (1978} 

Watson (1968) 

~<'hi tehouse 
(1969) 

Smith (1978) 

''lhi tehouse 
(19$9) 

Table 4.1 c o mparison of t he studied mos s wit h descript i on s o f three s pecie s , Q. varia, D. r ufe sce ns a nd D. staphylina f r om t h e lit e r atu re . 

(Jl 

.p. 
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Fig. 4.1 Leafy shoot grown in laboratory, showing the 

arrangement of leaves 

Fig. 4.2 Leaf structures: (A) leaf showing vein; 

(B) apex; (C) cells in mid-leaf 

Fig. 4.3 Leaf shape: (A) young leaf; (B) adult leaf; 

(C) cross-section in adult leaf. 
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4.3 Morphological features 

4.31 Filamentous protonema 

a) Shape and dimensions 
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The filamentous protonema collected from the field in August 

1979 were quite similar in width (Fig. 4.4B) to those collected 1n 

June 1977, but the cells were shorter than those of the latter. 

However when the filaments were grown in agar, they became similar 1n 

shape and dimensions of those collected in 1977 (Fig. 4.4A). In the 

laboratory there were slight differences in shape and dimensions of 

filaments when grown in liquid and when grown in agar. The filamentous 

protonema grown in liquid were thinner (Fig. 5.4 A) than those grown on agar 

(Table 4.2). The protonema grown on agar became slightly thicker and 

the cells, especially those of the branches, became shorter (Fig. 4.5A) 

Young filamentous protonema grown either in liquid or solid media were 

muc~-branched (Fig. 4.6A), with abundant chloroplasts; older protonema 

had fewer chloroplasts and the cross-wall was generally oblique. 

Table 4.2 Dimensions of field and laboratory protonemal filaments 

environment width of filament length of cells 

field materials collected 1n 1977 24 - 28 ym 42 104 'fm 

field materials collected 1n 1979 24 = 28 rm 32 - 56 pm 

culture on agar 24 ~ 28 pm 42 - 104 pro 

" " II 16 - 20 pm 79 - 145 pro 

culture 1n liquid 16 - 20 pm 79 - 145 pm 
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Fig. 4.4 Filamentous protonema from field 

.100 pm. 
(A) 1977; (B) 1979 
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b) Origin 

The filamentous protonema usually originated as a result of 

growth and branching of the main filament. In addition the gemmae 

also germinated as filamentous protonema (Fig. 4.9 B-C). Stout 

protonemal filaments may grow out from the stem of the leafy shoots, 

usually above the insertion of a leaf. 

4.32 Intercellular spaces 

Spaces between the cells of the protonemal filaments were seen 

only in cultures grown in the laboratory. The frequency in a filament 

varies markedly and some filaments have no intercellular spaces. 

Typically they occurred every 5 to 12 cells (Fig. 4.6B) but sometimes 

they occurred beside adjacent cells. They occurred especially in 

filamentous protonema grown in liquid media, being rare on solid 

media until the agar started to dry out. The intercellular spaces 

resulted from a separation of the two opposite cross-walls of two 

adjacent cells, with a space gradually developing. Filaments with 

these spaces tended to break easily at this position (Fig. 4.7). 

4.33 Gemmae 

a) Occurrence and shape 

Gemmae were rarely present in plants taken from the field; 

examples were however seen both on rhizoids and filamentous protonema 

Only rhizoidal gemmae were observed in the materials of 1977. Two 

kinds of gemmae were observed on rhizoids: pale brown with an 

irregular outline (Fig. 4.8A-C) or dark brown gemmae with a more 
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regular outline (Fig. 4.9A-C). The outline of the protonemal gemmae 

was always regular. In the laboratory, gemmae were always formed 

profusely on filamentous protonema, but the rhizoidal gemmae were 

formed only in old cultures. These gemmae with an irregular outline 

were small and always occurred in the final filaments of rhizoids 

(40- 50 x 25 ~ 31 vm). Gemmae with a more regular outline were 

larger (96 - 140 x 70 = 88 pm) and were quite similar to those 

occurring on filamentous protonema; both form-as solitary gemmae. 

b) Germination 

The gemmae usually germina~ed (in a lateral or terminal position) 

to produce a protonemal filament, (4.9B) but rarely another gemmae 

formed at the terminal end. 

4.34 Rhizoids 

a) Development from leafy shoots 

Rhi~oids were usually developed from the lower part of the 

leafy shoot and grew towards the substratum. Two. kinds of rhizoids 

had been observed on the leafy shoots in both field and laboratory. All 

leafy shoots collected from the field in both 1977 and 1979 produced 

quite similar rhizoids from the basal portion of stem and along the 

shoot. Those rhizoids originating from the basal portion were stout 

and dark brownp while rhizoids from the upper part of shoot were 

usually pale brownp short and less branching. Shoots grown in the 

laboratory produced both these kinds of rhizoids (Fig. 4.10 E)p but 

they differed slightly in dimensions and shape (Table 4.3). In liquid 



moss grown in substrate main filament of rhizoid 

of rhizoid 
origin width 

field in 1977 soil basal part of 1. sh. 20 - 28 and 1979 

stem of 1. sh. 20 - 24 

agar medium agar basal part of 1. sh. 20 - 28 

a1r stem of 1. sh 16 - 24 

agar protonema 12 - 16 

liquid medium liquid basal part of 1. sh. 20 - 28 

glass stem of 1. sh. 20 - 24 

liquid protonema 12 - 16 
II II 16 - 20 

Table 4.3 Dimensions of the rhizoids (~) of populations from different sources 

length colour 

120 - 608 dark brown 

120 - 608 II II 

120 - 256 " II 

120 - 608 pale or dark brown 

80 - 200 dark brown or 
colourless 

120 - 608 dark brown 

120 - 608 pale or dark brown 

80 - 200 colourless I 

20 - 88 dark brown ' 

1. sh ~ leafy shoot 

0' 
w 
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Fig. 4.5 Protonema in laboratory : (A) filamentous protonema grown 

in solid medium; (B) rhizoid originated from filamentous 

protonema 
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media, leafy shoots developed both in and on the liquid. The shoots 

developed on the liquid produced rhizoids along the stem and very 

rarely grew out from the apex of the shoot in the air zone. They were 

stout, with a brown colour; when these rhizoids were attached to the 

wall of the conical flask, they became longer and more branched. On 

agar the rhizoids were similar to those produced in the field and on 

the surface of the liquid medium; they vere however formed sparingly on 

the stem. 

b) Development of rhizoids from filamentous protonema 

Filamentous protonema produced branching rhizoids, colourless 

or brown, with oblique cross walls (Fig. 4.5B). The frequency of 

rhizoid production was variable in liquid medium, but relatively constant 

in agar medium. 

4.35 Leafy s~oot plants 

4.351 Development on protonema 

Leafy shoots were developed on the filamentous protonema 

(Fig. 4.8 Hand 4.9 E), both in liquid and solid media (Section 4.51). 

These shoots produced perichaetial leaves which differed in shape to stem 

leaves (4.2) and developed rhizoids along the stem. 

4.352 Development on stem 

Secondary leafy shoots often developed along the stems (Fig. 4. 9D) similar 

in shape to the original shoot. These shoots usually occurred at 
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Fig. 4.6 Features of protonema ~n laboratory: (A) branches arising from the 

main filament; (B) two adjacent intercellular spaces in protonemal 

filament grown in liquid; (C) intercellular spaces formed in protonemal 

filaments grown in solid medium allowed to dry outl 

Fig. 4.7 Formation of intercellular space : (A-C) early stages; (D) filament 

breaking at position of space; (E-F) stages showing the enlargement of 

the space; (G) last stage showing position at which filament break 

when the intercellular space has ready formed. 

Fig. 4.8 Reproductive structures : (A-E) irregular outline rhizoidal gemmae 

formed in rhizoids of moss grown in laboratory; (F-G) irregular 

outline rhizoidal gemmae formed in rhizoids of moss grown in field; 

(H) bud of leafy shoot originating from green filamentous protonema 

(grown in liquid) 

Fig. 4.9 Development of vegetation structures : (A) brown protonemal gemma; 

(B) germination of filamentous protonema from the apex of 

protonemal gemma; (C) filamentous protonema developed from protonemal 

gemma; (D) bud of leafy shoot originating from stem of an adult leafy 

shoot; (E) bud of leafy shoot originating from thick brown 

filamentous protonema (grown in solid medium) 

Fig. 4.10 Growth of moss : (A) solid medium showing most of the formation of 

leafy shoots near the center of the plate (diameter of plate is 

8.5 em); (B) liquid medium, showing the brown mat; (C) leafy shoot 

from field; (D) leafy shoot grown in field and laboratsry; 

(E) leafy shoot grown in laboratory. 
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the insertion of the leaf. Rhizoids developed on the basal portion 

of these shoots when they became older. 

4.4 Production of gemmae and leafy shoots 

The production of each of these structures was variable from one 

culture to another. Gemmae and leafy shoots were often found to be 

present in the same culture, but either could be dominant. Sometimes 

only gemmae or leafy shoots were found in a particular culture. The 

number of gemmae usually exceeded the numbers of leafy shoots (Fig. 4.11). 
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Fig. 4.11 Production of gemmae and leafy shoots after four weeks. 

all originated from filamentous protonema except II 
0 

which originated from leafy shoot : shaken, 25 C, 2600 lx. 

(Total volume used for experiment was 10 ml, but data 

expressed per ml) 
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4.5 Influence of environmental factors 

4.51 Liquid v. Solid 

In liquid media, the growth and development of gemmae and leafy 

shoots not only occurred inside the liquid, but often also formed a 

mat on the surface of the liquid (Fig. 4.10B). With solid (agar) media 

leafy shoots always occurred both in and on the agar (Fig. 4.10A); 

gemmae were not found with solid media. The production of leafy 

shoots was much more abundant in liquid than solid media. The shoots 

inside the agar were usually curved or slightly contorted, with much 

reduced leaves. Secondary leafy shoots developed along the stems in 

liquid media more than those developed on solid media. In the latter 

case they occurred only on the surface. 

4.52 Shaking v. Static 

A slight difference in the morphology of the moss was observed 

between shaken and static cultures. The growth of shaken cultures was 

faster than that of static liquid cultures. Static cultures survived 

for much longer periods than shaken cultures. 

4.53 Light v. Dark 

Although growth and production of gemmae were inhibited completely 

in the dark the moss remained alive (in shaken liquid cultures at 25°C) 

for at least 4 weeks. Such cultures were able to grow when .transferred to 

the light (25°C, 2600 lx, with shaking). 
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Those cultures incubated directly in the light showed the first 

appearance of gemmae at the lower light intensities (1300 and 2600 lx) 

in the third weekp while at higher light intensities (4000 ~ 7000 lx)P 

gemmae were formed in the second week (Table 4.4). High ligh.t intensity 

enhanced the subsequent pToduction of gemmae and leafy shoot~. 

Chlorophyll! reached a maximum in the third week (Pig. 4.13). 



time 1 2 3 4 
(weeks) 

hght 
intensity gemmae l.s.h. int.s. ge. l.sh. 

(lx} 
int, s. ge 1. s'h. int. s. ge. l.sh. int.s. 

1300 0 0 0 1.4 0 0 4.8 0 0 21.8 0 3.4 

2600 0.03 0 0 1.4 0 0 8.7 0 0 30.0 0.4 3.4 

4000 0 0 0 1.9 0 0 9.1 0 0 35.8 0.1 3.5 

5200 0 0 0 1.5 0.1 0 10.1 0 0 41.2 0 3.5 
i 

6300 0 0 0 2.3 0 0 10.8 0.2 0 45.6 0 3.6 

7000 0 0 0 2.7 0 0 12.8 0 0 37.8 0 3.5 

- ------- - ---- --·-

Table 4.4 Influence of light intensity on the production with time of gemmae (ge) leafy shoots (l.Sh) and intercellular 
spaces (int s) in shaken liquid medium at 2soc. n=2 except for 2600 lx where n = 4; details given in Table 4.7 
(Total volume = 10 ml, but data expressed per ~1). 

i 
I 

I 

I 

-...J 
00 
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Fig. 4.12 Influence of light intensity on production of chlorophyll ~ 

0 
with time : shaken, 25 C, 2600 lx; n = 2, except at 2600 lx 

where n = 4. (Total volume used for experiment was 10 ml, 

but data expressed per 1) 
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4.6 Influence of chemical factors 

4.61 Iron 

4.611 Materials and methods 

Materials were moved from the liquid basal medium and incubated 

in iron-free liquid medium for four days prior to the experiment. 

Inoculation was made as the method described in 2.33. Tubes were 

incubated with shaking for four weeks at 25°C and 2600 lx. All media 

were buffered as described in Section 2.32. 

4.612 Results 

Gemmae and leafy shoots were still produced abundantly at the 

lower concentrations (Table 4.5). Gemmae and leafy shoots occurred in 

the same culture, but the ratio varied markedly. The total combined 

number of gemmae and leafy shoots is expressed graphically in Fig. 4.13. 

The frequency of intercellular spaces was greater in these lower concentrations 

of iron. 



gemmae ml-1 leafy shoots ml-1 intercellular spaces ml-1 
-1 Fe (mg 1 ) - - -

X s.d. X s.d. X s.d. 

0 12.2 10.8 5.7 5.7 6.5 1.0 

0.5 11.0 11.1 7.6 3.8 3.0 0.6 

1.0 2.8 3.3 14.3 1.0 2.9 0.5 

2.0 3.8 16.7 1.2.7 1.5 2.6 0.5 

4.0 12.8 10.7 3.8 2.6 2.3 0.6 

8.0 12.5 12.3 3.6 3.6 2.2 0.6 

~ -

Table 4.5 Influence of iron on the production after four weeks of gemmae, leafy shoots and intercellular spaces in 
shaken liquid medium at 25°C, 2600 lx. n = 4 (Total volume = 10 ml, but data expressed per ml) 
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4.62 Phosphate 

4.621 Materials and methods 

Materials were moved from the liquid basal medium and incubated 

in phosphate-free liquid medium for four days prior to the experiment. 

KCl was used to maintain the level of K in the medium and it was 

buffered as described in 2.32. Incubation was made for four weeks at 

25°C and 2600 lx with moderate shaking. 

4.622 Results 

Deficiency of phosphate led to a marked reduction of gemmae and 

leafy shoots production, (Table 4.6). The total combined number of 

gemmae and leafy shoots is expressed graphically ~n Fig. 4.14. The 

formation of intercellular spaces was stimulated. 



. ·. 

ge1111J1ae ml-1 leafy shoots ml-1 intercellular spa~es ml-1 

PO -P 
4 one two three tour one two three four one two three four 

(mg1_-1) week weeks weeks weeks week weeks weeks weeks weeks weeks weeks weeks 
- - - - - - - - - -
X s.d X s.d. X s.d. X s.d. X s.d. X s.d X s.d. X s.d X s.d. X s.d. X s. d. X 

0 0.2 0.02 3.1 0.9 10.6 2.1 25.4 

0.1 0.2 0.1 1.0 0.3 2.3 1.0 9.6 1.7 ~4.3 

0.2 0.3 0.1 2.1 0.5 2.0 1.0 7.5 2.5 20.3 

0.3 0.9 0.2 3.6 0.6 1.3 0.5 6.8 1.5 18.9 

0.4 1.0 0.2 3.5 o. 7 5.3 1.3 15.8 

0.6 o. 5 0.2 2.0 0.6 4.8 0.9 2.3 1.0 9.5 

0.8 o. 7 0.2 5.2 0.8 12.2 1.8 o. 2 0.1 6.3 

1.0 o. 7 0.2 7.9 1.2 19.3 3.0 0.5 2.2 5.8 

1.2 1.1 0.3 8.7 0.9 28.0 3.6 0.4 0.3 0.4 0.3 4.2 

1.4 p.o3 0.04 1.6 0.4 ~0.7 1.2 29.0 3.1 0. 5 0.2 o. 7 0.5 3.7 

1.6 p.l 0.1 2.5 0.5 ~3.3 1.9 32.6 3.1 0.4 0.2 1.7 0.6 .3. 5 

1.8 p.l3 0.08 3.7 0.5 ~8.4 1.8 35.6 2.3 ! 0.5 0.3 1.6 0.6 3.2 

Table 4.6 Influence of phosphate on the production with time of gemmae, leafy shoots and intercellular spaces in 
0 

shaki~ liquid medium at 25 C and 2600 lx. n = 4 (Total volume = 10 ml, but data expressed per ml) 

·~- :'.;J. :_._ • . . - : .: ~ . .. 
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Fig. 4.14 Influence of P04-P on total gemmae and leafy shoots with 

time: shaken, 25°C, 2600 lx; n = 4. (Total volume 

used for experiment was 10 ml, but data expressed per ml) 
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4.7 Growth 

4,71 Growth form 

4. 711 Liquid cultures 

a) Static 
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Soon after subculture into liquid medium, an inoculum grew and 

produced a new protonemal branch. After about 5 weeks, profuse growth 

was apparent; protonemal gemmae and leafy shoots appeared in the l~quid, 

and when the cultures becgme still older rhizoidal gemmae were formed. 

Numerous filamentous protonema developed at the surface of the liquid. 

Soon after their appearance there, they usually turned brown; they 

continued to produce new brown branches which formed a thick brown mat. 

Both the filaments of the protonema in the liquid and those of the 

brown mat eventually produced more leafy shoots. The brown mat expanded 

until it touched the glass wall of the conical flask (Fig. 4.10B); then 

some filaments of the protonema and leafy shoots grew upward into the air, 

although sticking to the glass wall. Leafy shoots growing in liquid 

produced numerous green filaments of protonema along their stems, whereas 

those of the brown mat produced only brown rhizoids. 

b) Shaking 

The growth form was similar to that in static l~quid cultures, 

but all growth was restricted to the liquid. Some filaments of the 

protonema developed on the surface of the liquid, forming a thin brown 

mat; they did not produce any gemmae or leafy shoots. 
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4.712 Solid cultures 

The inoculum produced new branches of filamentous protonema soon 

after inoculation. Most initial protonemal growth was restricted to 

the agar block of the inoculum and the subsurface region of the plates. 

After about three weeks, growth occurred profusely at the surface of the 

agar; after about four weeks, numerous leafy shoots appeared on the agar 

surface and also a few inside the agar (Fig. 4.10A), These leafy shoots 

often became longer than those on the surface (4.51). Finally the cultures 

appeared to become dormant and remained so until the cultures died. 

4.72 Growth rate 

a) Liquid cultures 

Assessment of growth was carried out by determination of 

chlorophyll ! (See Fig. 4.12). Estimates were also made of gemmae and 

leafy shoots (Table 4.7); changes during growth of the combined totals of 

these two structures are shown in Fig. 4.15. 

b) Solid cultures 

Assessment of growth on solid cultures was attempted, both by 

estimates of the area occupied by the moss and by determination of 

chlorophyll! (Fig. 4.16). The numbers of leafy shoots per culture is 

shown in Table 4.8. 

'•. 
; I 

I .· 

,· 



time (weeks) 1 2 3 4 

- - - -
X s.d. X s.d. X s.d. X s.d. 

gemmae 0.1 0.08 1.4 0.4 8. 7 1.6 29.9 2.9 

leafy shoots 0 0 0.1 0.08 0.4 0.5 

intercellular 
spaces 0 0 0 3.4 o. 7 

-·------

Table 4.7 Influence of time on the production of gemmae, leafy shoo~and intercellular spaces in shaken liquid 
medium at 25°C, 2600 lx. n = 4 (Total volume = 10 ml, but data expressed per ml) 
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!Pg ch1 ~ 
-2 ~eafy shoots -2 

leafy shoots culture time em em per 
(weeks) 

- -
X s. d. X s.d. 

1 13.2 0 0 

2 15. 1 0 0 

3 19.6 0 0 

4 16.3 0.1 0.06 1 o. 7 

5 10.0 0.1 0.05 2 1.1 

6 4.6 0.3 0.1 9 4.5 

7 ~'( 2.9 1.0 0.1 25 4.5 

Table 4.8 Influence of time on the production of leafy shoots and chl ~ 
in solid medium at 25°C and 2600 1x. No gemmae or intercellular 
spaces present. n = 4. 

* growth of the moss colonized the whole agar plate, but the agar became 
contracted i.e. total agar surface was reduced. 
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Fig. 4.16 Comparison of chlorophyll ~ and area occupied by moss during 

growth: 0 solid medium, 25 C, 2600 lx; n c 4. 
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S. INFLUENCE OF ZINC 

5.1 Toxicity_ 

5.11 Toxicity test 

In preliminary tests for zinc toxicity, a wide range of zinc· 

concentrations (0, 5, lOp 20 •••• 100 mg 1=1)in liquid media were 

used. The method for culturing carried out in this assay has been 

described in 2.3, but a brief description is included here. Inocula 

as protonema or leafy shoots were added to media to which any zinc has 

already been added, and tubes were then incubated in a tank shaker at 

25°Cp 2600 lxp with moderate shaking for the remaining 24 h • The 

initial pH of the medium in the tubes did not drift any more than 0.05 pH 

unitsduring the period of the experiments. 

Growth in the tubes was compared visually at weeks lp 2p 3 and 

4, both against preserved replicates of the original inocula, and also 

against other tubes. Observations were recorded on each occasion 

according to the procedure of Whitton (1970): 

1. maximum concentration causing no inhibition 

2. mintmum concentration causing slight inhibition 

3. maximum concentration at which moss is alive 

4. minimum concentration at which moss is killed.· 

At the end of the fourth week the moss was moved for counting 

gemmae and leafy shoots and other microscopic inspection. Table 5.1 

showe the effect of zinc on these structures. There was a elight 

difference in the production of protonema between the values observed for 

1 and 2 when they were produced by either the protonema themself or by the 



Production of filamentous Production of gemmae and 

Observations 
protonema by leafy shoots by 

filamentous leafy filamentous leafy 
protonema shoot protonema shoot 

maximum concentration causing no 20 15 0.04 2 
inhibition 

minimum concentration causing 25 20 1 5 
slight inhibition 

maximum concentration at which moss 70 70 10 25 
is alive or showing marked inhibitim 
in producing gemmae and leafy shoots 

minimum concentration at which 80 80 15 30 

moss is killed or stopped 
producing gemmae or leafy shoots 

Table 5.1 Influence of zinc (mg 1- 1) on the growth and the production of gemmae and leafy shoot of the moss 
in liquid medium at 25°C and 2600 lx 

\[) 

cr-. 
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leafy shoot plants, and there was no differences in the protonemal 

growth between the values observed for 3 and 4 by the same former 

mentioned structures; but a great difference has been shown in values 

of the production of gemmae and leafy shoots between those which were 

produced by the protonema and the others which were produced by leafy 

shoots. Only very poor protonemal growth developed from the surface 

-1 
of the leafy shoot added to media containing 70 mg 1 Zn. 

5.12 Observations 

Several processes were investigated with regard to possible 

effects of zinc: production of protonema, gemmae and leafy shoots 

and intercellular spaces (Tables 5.2, 5.3, 5.4 and 5.5). It is 

apparent that zinc at higher concentrations inhibited the growth of 

Dicranella. The moss was killed in the highest concentration of 

-1 
zinc (100 mg 1 -) after about 5 days, while it remained alive in 

-1 media containing 80 mg 1 Zn for about one week; both protonemal 

filaments produced either by the growth and branching, or springing from 

the stem of the leafy shoot which occurred in the high levels of zinc, 

were very poor and short; the production of gemmae and leafy shoots was 

also inhibited, but at much lower concentrations of zinc. Variable results 

for the production of the intercellular spaces was observed (5.22 and 

5.23). No other noticeable morphological changes occurred at the 

higher zinc concentrations. 

5.13 Assays 

From the results of the toxicity tests, it soon became apparent 

that higher levels of zinc were needed to inhibit protonemal growth and 
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much lower concentrations of zinc affected the production of gemmae and 

leafy shoots as is mentioned in 5.12. 

5.2 Morphological effects 

5.21 Production of gemmae and leafy shoots 

a) Liquid cultures 

In these studies, the effect of z1nc on the production of both 

gemmae and leafy shoots formed either by the filamentous protonema. 

or by the leafy shoots.was investigated (Tables 5.2 & 5.3). Zinc 

inhibited considerably the production of gemmae by protonema more 

than that by leafy shoots; 10 mg 1-l Zn inhibited the production of 

these structures produced by the filamentous protonema, but much 

higher levels of zinc (25 mg 1- 1) were needed to inhibit their 

production by leafy shoots (Table 5.3). The effect of zinc with 

filamentous protonema as the inoculum is shown in Fig. 5.1. In the 

case of the production of gemmae "which were the dominant" it was 

-1 observed that even the lowest concentration of zinc (1.0 mg 1 ) 

had an inhibitory effect on their production (Table 5.4). The effects 

of zinc became more marked with time (Table 5.5). -1 Thus 5 mg 1 Zn 

reduced the production of gemmae approximately 17% in 2 weeks compared 

with the control, but by 4 weeks the number -1 of gemmae in 5.0 mg 1 Zn 

wa·s about 117. of the control. 

b) Solid cultures 

The effect of zinc on the production of gemmae and leafy shoots in 

agar media is shown in Table 4.6. The highest concentration of zinc 

(10 mg 1- 1) had a slight inhibitory effect on the production of leafy 



-1 . -1 -1 

z~l 
gemmae ml leafy shoots ml intercellular spaces ml 

(mg 1 ) - - -
X s.d. X s.d. X s.d. 

0 30.2 2.8 2.2 0.6 3.3 0.5 

5 2.9 0.8 0.03 0.04 4.9 0.6 

10 0.1 0.08 0 7.4 1.5 

15 0 0 9.6 1.3 

20 0 0 20.5 3.4 

25 0 0 19.2 3.8 

30 0 0 5.4 l.l 

35 0 0 0 

Table 5.2 Influence of zinc on the production after four weeks of gemmae, leafy shoots and intercellular spaces by 

filamentous protonema in shaken liquid medium at 25°C and 2600 lx; n = 4 

(Total volume = 10 ml, but data expressed per ml) 

! 
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gemmae ml leafy shoots ml intercellular spaces ml 

Zn _
1 

(mg 1 ) - - -
X s.d. initial X s.d. X s.d. 

0 0.3 o. 2 0.1 8.0 1.3 2.8 o. 7 

5 0.1 0.1 0.1 6.8 1.0 4.1 0. 7 

lO o. 2 0.4 0.1 3. 1 0.6 7.1 1.3 

15 0.8 0.6 0.1 1.7 0.4 9.1 0.8 

20 0.6 0.6 0.1 1.2 0.4 14.3 2.1 

25 0.1 0.5 0.3 9.9 1.4 

30 0.1 3.4 0.9 

35 0.1 

----

Table 5.3. Influence of zinc on the production after four weeks of gemmae, leafy shoots and intercellular spaces by 
0 

leafy shoots in shaken liquid medium at 25 C and 2600 lx.n = 4 (Total volume= 10 ml, but data expressed 
per ml) 
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-1 -1 -1 
Zn . gemmae ml leafy shoots ml intercellular spaces ml 

(mgl-1) 
- - -
X s.d. X s.d. X s.d. 

0 26.0 5.1 4.6 3.5 3.3 o. 7 

1 19.7 2.1 1.6 0.6 3.5 o. 7 

2 8.3 4.3 3.6 4.8 3.6 o. 7 

3 6.5 0.8 0.6 0.2 3.9 o. 7 

4 4.1 0.7 0.2 0.08 4.2 1.1 

5 2.7 o. 7 0.1 0.07 4.8 1.2 

6 1.7 0.3 5.1 1.1 

7 0.9 0.3 5.6 1.2 

8 0.4 0.1 5.9 0.9 

9 ·' o. 2 0.08 6.9 1.6 

10 0.1 0.08 8.3 1.8 

Table 5.4 Influence of zinc on the production after four weeks of gemmae, leafy shoots and intercellular spaces produced 
by filamentous protonema in shaken liquid medium at 25°c and 2600 lx ; n "" 4 (Total voluaie = 10 ml, but data 

~- expressed per ml) 
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Fig. 5.1 Influence of zinc on total gemmae and leafy shoots produced after four 

weeks by filamentous protonema: shaken, 25°C, 2600 lx; n = 4. (Total 

volume used for experiment was 10 ml, but data expressed per ml) 
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Fig. 5.3 Influence of zinc on total gemmae and leafy shoots produced in successive 

weeks by filamentous protonema: 0 
shaken, 25 C, 2600 lx; n : 4. (Total 

volume used for experiment was 10 ml, but data expressed per rnl) 



gennnae ml -1 leafy shoots ml 
-1 intercellular spaces ml -1 

Zn_
1 

(mg 1 ) week 1 week 2 week 3 week 4 week 1 week 2 week 3 week 4 week 1 week 2 week 3 wee/: 4 

x s.d. lt s.d. i s.d. x s.d. x s.d. x s.d. x s.d. x s.d. x s.d. x s.d. x s.d. x 

0 o. 1 0.118 1. 8 0.3 10.7 1.4 32.4 3.5 0 0.1 0.03 0.2 0.2 2. 1 0.6 0 0 0 3.1) 

1 0 1.2 0.3 6. 1 0.8 21.2 3.6 0 0.03 
i 

0.04 0.03 0.04 2.1 1.4 0 0 0 3.2 

7. 0 0.9 0.2 3.4 0.6 11.9 2.4 0 0 (I 1.0 0.3 0 0 0 J.S 

3 0 0.7 0.2 2.3 {).5 7.9 1.6 0 0 0 0.5 0.2 0 0 0 4. 1 

I 
4 0 0.4 0.3 1.7 0.5 4.6 1.2 0 0 0 0 0 0 0 I tl.3 

5 0 0.3 0.1 1.1 0.4 3.5 1.0 0 0 (I 0 0 0 0 4.9 

6 0 0.1 0.07 0.8 0.3 2.3 0.8 0 0 (I 0 0 0 0 5.2 

7 0 0.03 0.04 0.5 0.2 1.1 0.4 0 0 0 0 0 0 0 5.9 
' i 

8 0 0 0.1 0.04 0.8 0.3 0 0 0 0 0 0 0 6.0 

9 0 0 0 0.3 0.02 0 0 0 0 0 0 0 6.7 

10 0 0 0 0.2 0.05 0 0 0 0 0 0 7.9 

-

Table 5.5 Influence of zinc on the production (with time) of gemilae, leafy shoots and intercellular soaces produced by filamentous protonema in shaken 
liquid medium at 25°C and 2600 lx. n = 4. (Total volume = 10 ml, but data expressed :oer ml) . 
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Fig. 5.2 Comparison of influence of zinc on total gemmae and leafy shoots 

produced after four weeks by filamentous protonema and by leafy shoots: 

0 shaken, 25 C, 2600 lx; n = 4. (Total volume used for experiment was 

10 ml, but data expressed per ml) 



Zn_ 1 (mg 1 ) 

0 

1 

2 

3 

4 

5 

i 
6 

7 

8 

9 

10 

time (weeks) 

1 2 3 4 5 6 7 * 

area 1. sh. area l.sh area 1. sh. area 1. sh. area 1. sh. area 1. sh. area 1. sh. 

o. 7 0 3.3 0 6.5 0 12.8 2 22.2 4 34.8 9 26.7 30 

0.6 0 3.2 0 6.8 0 12.2 2 23.2 4 35.0 11 26.0 29 

o. 7 0 3.2 0 6.8 0 12. 1 1 22.5 3 33.2 9 26.0 22 

o. 7 0 3.2 0 6.3 0 12.4 2 21.3 3 27.8 6 26.0 30 

o. 7 0 3.2 0 6.3 0 12.1 1 22.3 2 32.2 9 25.6 27 

0.6 0 3.2 0 6.2 0 12.3 1 22.1 3 31.9 9 26.0 30 

o. 6 0 3.1 0 6.5 0 12.4 0 22.3 2. 32.2 9 25.8 19 

o. 7 0 3.1 0 6.4 0 11.7 1 21.5 2 32.2 9 26.4 15 

0.6 0 3.0 0 6.4 0 11.5 1 20.6 1 32.2 9 25.6 19 

0.6 0 3.1 0 6,3 0 11.9 0 20.4 1 31.2 6 26.0 21 

0.6 3 0 6.0 0 11.1 0 20.6 2 31.3 8 26.0 18 
------- -

Table 5.6 Influence of zinc on the production (with time) of leafy shoots in solid medium at 25°C, 2600 lx. 
No gemmae or intercellular spaces present. 

* growth of the moss colonized the whole agar plate, but the agar contracted i.e. total agar surface 
was reduced. 

' 

I 

1-' 
0 
0' 



~ 107 -

shoots. No gemmae could be observed among zinc concentration. The 

effect of zinc on the production of these structures did not become 

less marked with time. 

5.22 Crossawall of protonemal filament 

A comparison was made of the angle of the cross-wall in materials 

both without and with zinc enrichment of the medium. Details of the 

cultures used for these observations are as follows. The cultures were 

taken from liquid basal medium with shaking at 25°C and 2600 lx when 

they were 4 weeks old; the medium was buffered at pH 7.0. The results 

are summarized in Table 5.7. 0 65% of the walls were oblique ( 80 ) in 

the presence of the high level of zinc as opposed to 47% in the absence 

of 0 extra•·zinc. 



Zn _
1 

(mg 1 ) 

angle of cross-wall 

20 - 30 31 - 40 41 - 50 51 - 60 61 - 70 71 - 80 81 - 90 

0 1 2 10 6 11 17 53 

70 5 2 8 15 14 21 35 

Table 5.7 Influence of zinc on angle of cross wall of filamentous prontomema; measurement made in each case on 
100 cells.; (90°is a typical cell-wall at right angles to outer surface) 
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Fig. 5.4 Cross-walls in filamentous protonema grown in : (A) liquid 

medium without zinc; (B) liquid medium at high levels of zinc. 
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6. DISCUSSION 

6.1 Zinc toxicity and its effects 

6.11 Field observations 

The moss used for the study reported here, Dicranella sp., was taken 

from a heavily polluted site, Elvins Tailing Pile (Section 3.1). The water 

near the source of the main flow showed zinc was at very high levels 

(19.1 - 22.8 mg 1-l Zn). Dicranella sp. was widespread and sometimes abundant 

at this site, with the protonema especially conspicuous. It was the only moss 

present at this site, but a few algae such as Plectonema gracillimum and 

Stichococcus sp. were found in association with it (Section 3.3) 

As mentioned in Section 1.4, Say (1977) recorded that Dicranella varia, -
together with Philonotis fontana and Scapania undulata, were found to occur 

throughout the whole range of zinc values tolerated by bryophytes in the stream 

studied by him. The concentrations of zinc in the present study area were 

-1 however higher than the upper limit (8.2 mg 1 Zn) reported for these 

bryophytes by Say. From the present study it is clear that Dicranella sp. 

tolerateseven higher concentrations of zinc than recorded by Say and that the 

upper limit shown in his stream may have been influenced by other factors. 

6.12 Comparison between laboratory and field observations 

When the Dicranella sp. from Elvins was brought to the laboratory, it 

was again resistant to zinc (Section 5.1). It tolerated in fact much higher 

levels of zinc than recorded in the field. The higher levels did however 

bring about different responses in different structures. There was selective 
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inhibition of the formation of gemmae and leafy shoots. From the results 

of the effects of zinc on the production of both structures, there was 

evidence that leafy shoots were more resistant to zinc in producing gemmae 

and leafy shoots than those produced by filamentous protonema. A level of 

-1 10 mg 1 Zn caused a slight inhibition of the production of gemmae and 

leafy shoots when they were formed from other leafy shoots. The same level 

caused a much greater inhibition, when they were formed from filamentous 

protonema. The inhibition of filamentous protonema from either .source 

nevertheless needed much higher concentrations of zinc than the formation 

of gemmae and leafy shoots (Table 5,1). However there was a prob1em which 

neeGs to be solved in order to explain the effect of zinc on the formation of 

gemmae and leafy shoots. This was the variability of the ratios of the two 

structures; usually both structures were formed in the same culture, but 

either could be dominant (see Fig. 4.11). Some other factors seems to alter the 

pattern of the development, such that a protuberance formed on the protonema 

can develop either into gemmae or a leafy shoot bud; these possible factors 

have not been discovered yet, Chopra and Rawat (1973) found that Bryum 

klinggraefii was not able to produce garnetophytic buds, but always produced 

gemmae. The authors suggested that the cultural conditions were apparently 

unfavourable for the initiation of gametophytic buds and a short circuit 

of perennating structures is therefore established in which development 

takes place from gemmae to gemmae. They were not able to offer the fartors 

which were responsible for the alternative types of development, but they 

reported that experiments were under way to study various physical and 

chemical factors which will alter the pattern of the development; these are 

apparently still unpublished. Lewis (1974) has studied the effect of heavy 

metals, including zinc, on 36 samples of Eurhynchium riparioides collected 

from various parts of an unpolluted stream (Nant Beg, an upland stream running 
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through Forestry Commission land). The highest level of zinc in the 

-1 waters was 0.06 mg 1 . She found that zinc and certain heavy metals did 

not seem to inhibit lateral shoot production, for levels ranging from 0.01 -

-1 . 10 mg 1 Zn no significant difference in the results. Other studies have 

been carried out by Coombes and Lepp (1974) on the effect of copper and zinc 

on the growth of Marchant,ia polymorpha and Funaria hygrometrica in solid medium. 

Their results showed that toxic responses to zinc occurred at even higher 

concentrations than those used in the present studies. Marchantia gemmalings 

-1 -1 tolerated quite well levels of zinc up to 100 mg 1 • 10 mg 1 Zn reduced 

only slightly both germ tubes of Funaria hygrometrica. Much higher concentrations 

of zinc were required before inhibition became apparent. 

The present results were compared with those of Lewis (1974). In 

-1 Dicranella sp., 20 mg 1 Zn inhibited the production of gemmae and leafy 

shoots developed by leafy shoots, while this level caused a slight inhibition 

in the production of lateral shoots of Eurhynchium. However Lewis did not 

study higher concentrations of zinc which might inhibit this production of 

lateral shoots. The dissimilarity between the present results and those of 

Lewis may perhaps be explained by Eurhynchium being more tolerant to heavy 

el 
.metals than the Dicranella sp. Eurhynchium showed no inhibition at 1 mg 1 Cu; 

this may be compared with the results of Coombes and Lepp (1974) who found with 

the same level of copper that buds of Funaria were only formed sparingly. 

Higher copper concentrations inhibited completely bud formation. This suggests 

that Eurhynchium is very resistant to the heavy metals studied, particularly 

zinc, lead and iron. Bazzaz ~ al. (1977) studied some effects of cadmium on 

the growth of bryophytes and found that the spores of the same strain of Funaria 

used by Coombes and Lepp (1974) were able to germinate in excess of 82% in 

-1 5 mg 1 Cd. On the basis of their results, it would appear that for the 
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strain investigated, zinc is somewhat less toxic to propagules than 

either copper or cadmium. 

Intercellular spaces were formed abundantly in Dicranella sp. with 

-1 increasing the levels of zinc up to 30 mg 1 ; higher concentrations 

inhibited completely the formation of these structures. This may have been 

due simply to the fact that increasing zinc levels in the solution led to an 

inhibition in growth, On other hand increasing zinc levels in solution led 

to an increase in precipitation of phosphate as zinc phosphate (Jurinak and 

Inauge, 1962) making a deficiency of this ion in solution, This may be an 

important factor in the formation of these structures (see Section 6.222). It 

can be concluded that these structures can be formed under unfavourable conditions. 

6.2 Comment on influence of environmental factors in laboratory 

6.21 Physical factors 

6.211 Light 

From the results of Section 4.53 it can be seen that the production of 

gemmae and leafy shoots was increased by increasing the light intensity, but 

it would appear that the highest light intensity of 7000 lx inhibited the 

production of both structures slightly. These results may be compared with 

studies on Funaria hygrometrica and Phascum cuspidatum made by several previous 

authors noted by Szweykowska (1963), Funaria hygrometrica and Ceratodon purpureus 

made by Szweykowska and Mackowiak (1962) and by Szweykowska (1963), Marchantia 

nepalensis made by Chopra and Sood (1970) and Eurhynchium riparioides made by 

Lewis (1974). Their results confirm that generally an increase in light 

intensity leads to an increase in the production of vegetative reproductive 

structures. Szweykowska and Mackowiak (1962) observed that liquid cultures of 
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Ceratodon purpureus produced buds only occasionally and after prolonged periods 

of cultivation when the cultures were grown under only two fluorescent tubes 

(low light intensity). Chopra and Sood (1970) found that at light intensities 

of 500 - 1000 lx there was no production of gemma cups in Marchantia nepalensis, 

but at 2000 lx gemma cups and gemmae were formed; production was increased by 

increasing the light intensity. The influence of different light intensities 

was very pronounced upon the production of lateral shoots of Eurhynchium as the 

number of laterals was very poor at the lowest light intensity (350 lx) and none 

developed in the dark. Although the reduction in light intensity decreased the 

production of gemmae and leafy shoots of the Elvins Dicranella sp., but they were 

still formed in relatively large numbers in the lowest light intensity tested 

(1300 lx). From all these studies it can be seen that vegetative reproductive 

structures may occur in the low light intensity only sparingly or may be 

relatively abundant. It can however be concluded that bryophytes generally 

increase the production of vegetative reproductive structures with an increase 

in the light intensity. 

The effect of light in the reproduction of chlorophyll ~ by the Elvins 

Dicranella sp. showed that no significant differences between the all cultures 

grown in different light intensities (1300 - 7000 lx) in week 1 and week 2, but 

in week 3 and week 4 the production of chlorophyll ~ was increased relatively 

at the lowest light intensity (1300 lx). The Eurhynchium studied by Lewis (1974) 

showed that the production of chlorophyll a was increased by increasing the 

light intensity. The present results are thus dissimilar to those given by Lewis. 

There was no significant difference between the production of intercellular 

spaces in the lowest and highest light intensity. This seems to suggest that 

the factor of light intensity has no fundamental role to the formation of these 

structures. 
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6.22 Chemical factors 

6.221 Iron 

From the results on Table 4.5 it seems that there is no significant 

difference between the effects of the low and high concentrations of iron; 

the variability of the production of gemmae and leafy shoots however causes 

a muddled picture. (This problem has been discussed in Section 6.12.) However 

the total combined number of gemmae and leafy shoots gives a more clear picture 

of the influence of iron on the production of both structures (Fig. 4.13). 

Similar studies by Lewis (1974) showed that iron had no influence on the 

production of lateral shoots. It seems that iron does not play a special 

role in the production of gemmae and leafy shoots, other than the presumed 

requirements for ordinary growth. 

More intercellular spaces were formed in the absence of iron than in 

its presence. This phenomenon confirms that intercellular space formation 

occurs under unfavourable conditions 

6.222 Phosphate 

From the results in Table 4.6, it c~n be seen that sufficiency of 

phosphate led to an increase of the production of gemmae and leafy shoots. 

Deficiency of this ion led to a reduction of the production of gemmae and 

leafy shoots and none were formed in the absence of phosphate. Lewis (1974) 

showed for Eurhynchium riparioides a marked reduction in shoot length and 

the absence of lateral shoot production at the lowest concentration of 

-1 phosphate (1 mg 1 P). The concentrations which she used were much higher 
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than those used in the present study, but an impression can nevertheless be 

gained. Sufficiency of phosphate can lead to an increase in the production 

of these structures and the levels of phosphate which influence this 

production depends on the organism tested. Lewis (1974) suggested that the 

absence of lateral shoot production in the lowest level of phosphate which 

she used may have been due to the fact that the phosphate ion became 

depleted during the course of the experiment. Phosphate is an important 

nutrient for growth; buds cannot be developed to leafy shoot if the 

synthesis of an appropriate store of nutrient in the protonema cannot take 

place (Bopp, 1961). 

Deficiency of phosphate led to a considerable increase in intercellular 

spaces. As the results of other experiments showed that the intercellular 

spaces only formed when the cultures got older, this may indicate the 

phosphate had been exhausted from the medium. 

6.3 Comment on experimental studies 

It was evident during the experiment studies that the materials 

gave variable results. Further, while all the experiments on effects of 

zinc were repeated four times, those on iron and light intensity were 

carried out only once. For instance the numbers of gemmae found in 

-1 
0.5 mg 1 Fe in the medium differ in the experiments summarized in 

Tables 4.4 and 4.5. Future research requires intensive study of the 

factors giving rise to the variable results. In particular more studies 

are needed on the patterns of development leading either to gemmae or 

leafy shoot buds. 
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6.4 Taxonomy 

From the description of the Elvins moss in Section 4.2 and 

Table 4.1, it can be seen thot it possessed some features of Dicranella 

varia and some of D. rufescens and ~- staphylina. This made it difficult 

to give a specific name. The Elvins moss was identified provisionally 

as D. varia as it was similar to it in many respects. The descriptions 

obtained from the literature (Table 4.1) however reveal some differences, 

particularly the differentiation of the perichaetial leaves and the stem 

leaves and the enlargement of the leaf cells. Those features of the 

Elvins moss which differed from those of D. varia and D. rufescens were 

similar to those of ~- staphylina. The resemblance of such features 

particularly the differentiation of the perichaetial leaves with stem 

leaves, branching of shoots, leaf cells and colour of the old stem and 

rhizoids make the Elvins moss close to ~· staphylina. These differences 

of the Elvins moss from any of the three species of Dicranella made it 

difficult to give it a specific name and it is perhaps better to refer 

to it simply as Dicranella sp. It seems possible that some of these 

differences may be due simply to the influence of the environment. 

Further investigations and comparisons should be carried out to make 

firm conclusions. 



- 119 -

SUMMARY 

(i) A study was made of a moss which had been taken (by B.A. Whitton) 

from Elvins Tailing Pile, Missouri, U.S.A., a site heavily 

polluted with heavy metals (especially Zn, Cd, Pb). In spite 

of the high levels of zinc (19.1 - 22.8 mg 1-l) the moss formed 

a conspicuous cover at this site though mainly as protonema. 

(ii) It proved difficult to give the moss a specific name, because 

it possessed features of three different species of Dicranella 

(~. varia,~· rufescens and~· staphylina). It is called simply 

Dicranella sp. in the present account. 

(iii) Experiments in the laboratory showed that Dicranella sp. could 

tolerate even higher concentrations of zinc than found in the 

field. 

(iv) There were differences in the sensitivity of different structures. 

The production of gemmae and leafy shoots was more sensitive than 

the production of filamentous protonema. The production of gemmae 

and leafy shoots formed from filamentous protonema was more 

sensitive than that formed from other leafy shoots. 
. -1 

10 mg 1 Zn 

inhibited markedly this production when produced by filamentous 

-1 
protonema, while this inhibition occurred at 25 mg 1 Zn. 

(v) The formation of intercellular spaces in the protonema increased 

with increasing zinc levels. 

(vi) The influence of light intensity (1300 - 7000 lx) on the 

production of gemmae, leafy shoots, intercellular spaces and 

chlorophyll ~ was investigated. An increase in light intensity 
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increased the production of gemmae and leafy shoots and not 

increased the intercellular spaces 

-1 (vii) The influence of iron (0 - 8 mg 1 ) on the production of 

gemmae, leafy shoots and intercellular spaces was investigated. 

An increase in iron concentrations did not increase the 

production of gemmae and leafy shoots and decreased slightly the 

production of intercellular spaces. 

(viii) The influence of phosphate (0 - 1.8 mg 1-l P) on the 

production of gemmae, leafy shoots and intercellular spaces was 

investigated. An increase in phosphate increased the production 

of gemmae and leafy shoots. Decrease of phosphate increased 

the production of intercellular spaces. 
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APPENDIX 

Appendix I Individual readings of Tables and Figures of Chapter 4 

I.l Production of gemmae, leafy shoots and intercellular spaces 

individual readings of 

reference age factor -1 -1 -1 
(weeks) studied geumae ml leafy shoots m1 intercellular spaces ml 

1 2 3 4 1 2 3 4 1 2 3 4 

Table 4.4 light intensity ...... 
N 

(lx) '-oJ 

l 2600 0.1 0 0 0.2 0 0 0 0 0 0 0 0 

2 1300 1.6 1.2 0 0 0 0 

2600 0.9 1.9 1.5 l.ll. 0 0 0 0 

4000 2.3 1.5 0 0 0 0 

5200 2.2 0.8 0 0 0 0 

6300 2.8 1.8 0 0 0 0 

7000 3.1 2.3 0 0 0 0 

3 1300 6.1 3.5 0 0 0 0 

2600 7.8 11.1 8.9 6.9 0 0 0 0 0 0 0 0 



I. L contd. 

reference age 
(weeks) 

4 

Table 4.5 4 

factor 
studied 

4000 

5200 

6300 

7000 

1300 

2600 

4000 

5200 

6300 

7000 

-1 
Fe(mg1 ) 

0 

0.5 

individual readings of 

gennnae ml -1 

1 2 3 4 1 

9.4 8.8 0 

12 .o 8.2 0 

12.3 9.3 4 

13.1 12.5 0 

22.9 20.7 0 

34 28.2 26.5 30.9 0 

41.1 30.5 0.2 

43.9 38.5 0 

51.3 39.9 0 

44.1 31.5 0 

1.5 0.9 2.9 1.9 

10.3 12.7 24.5 30.5 8.9 

leafy shoots ml -1 intercellular spaces ml -l 

2 3 4 1 2 3 4 

0 0 0 

0 0 0 

0 0 0 

0 0 0 
~ 
N 

0 3.6 3.2 
co 

0.5 1.1 0 4.2 3.2 2.3 3.9 

0 3.5 3.5 

0 3.9 3.1 

0 4.1 3.1 

0 3.3 3.7 

7.8 6.1 5.2 6.9 

5.5 o. 8 1. 7 3.9 3.1 2.3 2.8 



1.1 cont. 

individual readings of 

factor -1 reference age gemmae ml leafy shoots ml -1 
intercellular spaces ml 

-1 

(weeks) studied 

1 2 3 4 1 2 3 4 1 2 3 4 

1.0 2.7 3.1 19.3 28.9 13.5 11.4 5.1 2.1 2.7 3.2 3.6 2.2 

2.0 2.5 4.6 7.8 1.1 12.3 14.2 9.5 10.7 3.1 2.9 2.5 1.8 

4.0 27.1 29.7 19.6 32.2 2.6 1.4 3.7 1.3 2.8 3.0 1.9 1.6 

8.0 31.5 29.6 27.1 31.7 - - 1 1 3.0 2.5 1.4 1.9 ...... 
N 
..0 

8 

Table 4. 6 1 PO -P 
4 -1 

mg 1 

0 - 1.2 No structure has been formed at this time 

1.4 - - 0.1 

1.6 0.2 - - 0.2 

1.8 0.2 - 0.2 0.1 

2 0 3.6 2.7 1..8 4.1 

0.1 1.8 0.9 3.6 2.7 

0.2 1.8 3.6 1.0 1.8 



1.1 contd. 

individual readings of 

reference age factor -1 -1 -1 
(weeks) studied 

gemmae ml leafy shoots ml intercellular spaces ml 

1 2 3 4 1 2 3 4 1 2 3 4 

0.3 0.9 0.9 1.8 1.8 

0.4 

0.6 0.4 0.3 0.9 0.4 

0.8 0.8 0.5 1.0 0.6 
1-' 

1.0 0.4 o. 7 1.0 0.7 w 
0 

I 

1.2 0.8 1.1 0.9 1.5 

1.4 1.2 1.5 1.9 1.8 

1.6 2.4 1.7 2.7 3.2 

1.8 3.2 4.5 3.9 3.3 

3 0 10.8 7.2 12.6 11.7 

0.1 0.1 0.1 0.3 0.2 10.8 7.2 11.6 9.0 

0.2 0.2 0.3 0.5 0.1 5.4 10.7 4.8 9.0 

0.3 1.2 0.8 o. 7 1.0 9.0 5.4 7.2 6.4 

0.4 1.1 1.3 0.7 0.9 4.8 3.6 7.2 5.4 



L1 contd. 

individual readings of 

reference age factor -1 -1 -1 
(weeks) studied 

·gemmae ml leafy shoots m1 intercellular spaces m1 

1 2 3 4 1 2 3 4 1 2 3 4 

0.6 2.4 1.6 1.2 2.7 0.9 1.8 3.6 2.7 

0.8 5.2 4.8 6.4 4.3 

1.0 7.6 8.1 9.6 6.4 

1.2 9.3 7.6 9.9 8.0 0.8 - 0.4 0.4 
...... 
(,.) 

1.4 12.1 10.3 11.2 9.2 0.4 0.9 0.3 0.4 ...... 

1.6 11.6 12.1 13.1 16.4 0.8 0.2 0.4 0.3 

1.8 15.5 16.4 14.6 12.5 0.9 o. 7 0.3 0.2 

4 0 0.4 - 0.2 - 30.6 18.2 23.4 28.8 

0.1 0.8 0.5 1.2 1.4 18.0 30.6 25.2 23.4 

0.2 1.9 1.5 2.8 2.3 18.0 25.2 ll.4.4 23.4 

0.3 2.9 3.3 4.6 3.7 19.8 16.2 25.2 14.4 

0.4 3.6 3.1 2.7 4.5 17.6 18.0 ll.9.8 12.6 

0.6 5.9 4.4 3.6 5.2 12.-6 9.0 7.2 9.0 

0.8 11.8 14.7 12.6 9.7 - 0.4 0.2 0.1 9.0 5.4 6.3 4.5 



1.1 contd. 

individual readings of 

reference age factor -1 -1 -1 
(weeks) studied gemmae ml leafy shoots ml intercellular spaces ml 

1 2 3 4 1 2 3 4 1 2 3 4 

1.0 24.1 28.8 28.4 16.0 0.6 0.8 0.4 0.2 4.5 5.4 7.2 6.3 

1.2 26.9 25.2 31.6 32.4 0.4 0.8 0.3 - 4.4 3.6 3.9 4.9 

1.4 30.1 27.6 22.3 31.9 0.9 0.6 1.4 - 3.6 4.8 2.4 4.0 

1.6 30.8 37.6 29.6 32.4 2.7 0.9 1.8 1.5 4.6 3.2 2.4 3.8 
I 

1.8 34.8 36.3 31.6 38.0 1.0 2.3 0.8 1.5 3.2 1.6 4.8 3.2 
t-' 
w 
N 



0 133 -

I.2 Total combined number of gemmae and leafy shoots 

reference age factor individual readings of total femmae and 
(weeks) studied leafy shoots ml ~ 

1 2 3 4 

Fig. 4.13 4 -1 Fe(mg1 ) 

0 1.5 0.9 2.9 1.9 

0.5 19.2 18.2 29.6 32.2 

1 16.4 14.5 24.2 32.6 

2 14.8 18.8 17.3 11.8 

4 28.5 33.4 23.3 33.5 

8 31.5 29.6 28.1 32.7 

Fig. 4.14 1 -1 P04-P(mg1 ) 

()o-1. 2 No structure formed at this time 

1.4 0 0 0.1 0 

1.6 0.2 0 0 0.2 

1.8 0.2 0 0.2 0.1 

2 0-0.4 No structure formed at this time 

0.6 0.4 0.3 0.9 0.4 

0.8 0.8 0.5 1.0 0.6 

1.0 0.4 \0.7 1.0 0.7 

1.2 0.8 1.1 0.9 1.5 

1.4 1.2 1.5 1.9 1.8 

1.6 2.4 1.7 2.7 3.2 

1.8 3.2 4.5 3.9 3.3 
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Io 2 continued 

reference factor individual readings of total femmae and age leafy shoots ml ~ (weeks) studied 

1 2 3 4 

3 0 0 0 0 0 

0.1 o. 1 0.1 0.3 0.2 

o. 2 0.2 0.3 0.5 0.1 

0.3 1.2 0.8 0.7 1.0 

0.4 1.1 1.3 o. 7 0.9 

0.6 2.4 1.6 1.2 2.7 

0.8 5.2 4.8 6.4 4.3 

1.0 7.6 8.1 9.6 6.4 

1.2 10.1 7.6 10.3 8.4 

1.4 12.5 11.2 11.5 9.6 

1.6 12.4 12.3 13.5 16.7 

1.8 16.4 17.1 14.9 12.7 

4 0 0.4 0 0.2 0 

0.1 0.8 0.5 1.2 1.4 

o. 2 1.9 1.5 2.8 2.3 

0.3 2.9 3.3 4.6 3.7 

0.4 6.3 3.1 2.7 4.5 

0.6 5.9 4.4 3.6 5.3 

0.8 11.8 15.1 12.8 9.8 

l.O 24.7 29.6 28.8 16.2 

1.2 27.1 26.0 31.9 32.4 

1.4 31.0 28.2 23.7 31.9 

1.6 31.7 38.5 31.4 33.9 

1.8 35.8 38.6 32.4 39.5 
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reference age factor 
individual readings of total gemmae and 

(weeks) studied 
leafy shoots ml-1 

l 2 3 4 

Fig. 4.15 influence 
of time 

l 0.1 0 0 o. 2 

2 0.9 1.9 1.5 1.1 

3 7.8 11. 1 8.9 6.9 

4 34.0 28.7 27.6 30.9 



1.3 Production of chlorophyll a and area occupied by moss 

a) Chlorophyll ~ 

--· 
individual readings of ch1oropayll ~ m1 

-1 

reference age factor studied 1 2 3 4 
(weeks) 

Fig, 4.L:~ 1 ·fight intensity 
(lx) 

·-- 1300 1.6 1.8 

2600 1.6 2.0 2.1 1.9 

...... 
4000 2.1 2.3 (,..> 

a-

I 

5200 1.8 2.4 

"-
6300 2.3 1.5 

7000 2.7 1.9 

2 1300 3.4 2.4 

2600 3.4 3.3 3.2 3.2 

4000 3.2 2.2 

5200 3.4 3.0 

6300 3.2 2.8 

7000 3.0 3.0 



-1.3 contd. 

reference age 
(weeks) 

3 

4 

factor stuided 

1300 

2600 

4000 

5200 

6300 

7000 

1300 

2600 

4000 

5200 

6300 

7000 

individual readings of chlorophyll~ ml-l 

1 2 3 4 

11.7 7.7 

7.9 7.3 7.2 7.2 

7.1 7.3 

7.9 6.7 

7.3 5.1 
I 

5.9 7.5 
t-
w 
....... 
. 

9.3 6.9 

5.8 6.4 6.2 6.2 

5.9 5.5 

6.2 5.2 

6.4 4.6 

5.5 4.5 

$ 



I. 3 contd. 

b) Area and Chlorophyll ~ 

individual readings of chlorophyll ~ ml-l 

reference factor studied age area cm=2: chlorophyll ~ per culture leafy shoots per culture 
(weeks) 

1 2 3 4 1 2 3 4 1 2 3 4 

Fig. 4.16 influence of time 1 0.5 0.8 0.6 0.6 29.3 31.9 34.4 32.9 0 0 0 0 
on area occupied 
by moss during 0.6 0.7 0.4 0.4 0 0 0 0 
growth and prod-
uction of 0.5 0.6 0.6 0.6 0 0 0 0 
chlorophyll ~ 

0.5 0.6 0.6 0.7 0 0 0 0 1-' 
w 
(X) 

2 2.4 3.6 4.2 2.7 40.2 53.7 57.0 41.9 0 0 0 0 

3 5.9 6.6 6.9 5.5 117.4 134.1 125.8 100.6 0 0 0 0 

4 12.3 11.1 12.0 11.1 209.6 185.0 185 .o 176.0 1 1 2 0 

5 23.8 16.6 20.4 22.1 209.0 185.0 230.6 201.2 3 0 2 2 

6 35.8 35.8 34.8 36.3 167.7 150.9 146.72 188.6 7 15 5 10 

* 7 26.4 24.6 26.0 25.1 83.5 62.9 79.7 67.1 31 22 26 19 



Appendix II Individual readings of Tables and Figures of Chapter 5. 

11.1 Production of gemmae, leafy shoots, and intercellular spaces 

individual readings of 

-1 -1 -1 
reference age factor gemmae ml leafy shoots ml intercellular spaces m1 

(weeks) studied 
1 2 3 4 1 2 3 4 1 2 3 4 

Table 5.2 4 -1 Zn(mgl ) 

0 27.2 28.0 31.6 34.0 2.4 1.5 2.9 3.1 3.5 3.8 3.1 2.6 

5 3.2 4.1 2.4 2.0 0 0.1 0 0 4.1 5.8 4.7 5.1 ...... 
w 
.0 

10 0.1 0.2 0 0.2 0 0 0 0 9.7 6.8 .7.3 5.6 

15 0 0 0 0 0 0 0 0 10.5 7.8 11.2 8.9 

20 0 0 0 0 0 0 0 0 18.0 24.1 23.5 16.4 

25 0 0 0 0 0 0 0 0 19.0 16.2 25.2 15.8 

30 0 0 0 0 0 0 0 0 5.8 6.9 4.1 4.8 

35 0 0 0 0 0 0 0 0 0 0 0 0 

Table 5.3 4 0 4.5 0 1.4 0 6.6 8.9 7.1 10.3 1.9 3.8 2.9 2.7 

5 0 0 0.9 0 8.3 6.4 5.8 6.9 4.3 5.1 3.7 3.3 

10 0.6 0 1.5 1.0 2.8 3.9 2.3 3.3 9.3 6.3 7.1 5.8 

15 0.9 0 0 1.3 1.6 1.9 1.1 2.1 7.8 9.4 10.1 8.9 



-
II.l contd. 

individual readings of 
-1 -1 -1 reference age factor gemmae ml leafy shoots ml intercellular spaces ml 

(weeks) studied 
l 2 3 4 1 2 3 4 1 2 3 4 

20 0 0 0 0 1.3 1.0 1.8 1.7 15.4 11.3 13.9 16.9 

25 0 0 0 0 0.6 0.3 0.9 0.2 9.1 11.8 8.1 10.7 

30 0 0 0 0 0 0 0 0 3.7 4.8 2.3 2.9 

35 0 0 0 0 0 0 0 0 0 0 0 0 

Table 5.4 4 0 28.5 31.1 7.4 27 .o 2.1 3.3 10.7 2.4 4.1 3.3 3.6 2.1 

1 18.9 20.2 16.8 22.8 1.6 0.9 2.5 1.3 4.1 3.9 2.3 3.5 
...... 2 11.7 9.8 10.9 0.9 1.2 0.6 o. 7 11.9 4.4 3.2 2.6 4.2 ~ 
0 

3 6.0 7.6 5.6 6.9 0.5 0.5 0.9 0.3 4.8 3.6 4.1 2.9 

4 3.8 3.0 4.5 4.9 0.2 0.3 0.1 0.1 4.1 5.8 3.9 2.8 

5 3.0 2.3 3.6 1.8 0.1 0.2 0.1 0 4.1 6.1 5.8 3.1 

6 1.7 1.2 2.1 1.9 0 0 0 0 4.2 3.9 6.3 5.8 

7 0.8 0.6 0.8 1.3 0 0 0 0 4.8 4.2 7.2 6.3 

8 0.3 o. 7 0.3 0.5 0 0 0 0 7.2 5.2 4.8 6.3 

9 0.1 0.3 0.2 0.1 0 0 0 0 7.2 6.3 9.0 4.8 

10 0 0.2 0.2 0 0 0 0 0 9.0 7.2 6.2 10.8 

Table 5.5 1 0 0 0.2 0.1 0 0 0 0 0 0 0 0 0 

1-10 No structure formed at this time 





II.l contd. 

individual readings of 
-1 -1 -1 

reference age factor germnae ml leafy shoots ml intercellular spaces ml 
(weeks) studied 

1 2 3 4 1 2 3 4 1 2 3 4 

5 0.8 1.2 1.7 0. 7 0 0 0 0 0 0 0 0 

6 0.9 0.5 1.1 0.5 0 0 0 0 0 0 0 0 

7 0.8 0.4 0.3 0.6 0 0 G 0 0 0 0 0 

8 0.1 0.1 0.1 o. 2 0 0 0 0 0 0 0 0 

9 0 o. 2 0.1 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 
~ 

-"' 
N 

4 0 28.1 33.1 37.6 30.9 2.3 1.9 2.9 1.3 3.9 3. 0 3.3 1.8 

1 21.2 27.6 30.7 29.2 3.1 3.7 0.9 0.5 4.0 3.6 2.0 3.2 

2 15.8 10.1 9.6 12.1 0.9 1.5 1.1 0.6 4.4 3.2 2.8 4.1 

3 10.3 7.2 5.8 8.1 0.8 0.3 0.6 0.4 4.6 5. 1 4.3 2.7 

4 6.1 3.1 5.7 5.4 0 0 0 0 4.1 5.8 2.9 4.4 

5 3.8 4.9 2.2 2.9 0 0 0 0 4.3 6.2 5.8 3.3 

6 1.1 2.1 3.3 2.8 0 0 0 0 4.5 3.9 6.6 5.9 

7 o. 7 1.2 0.9 1.5 0 0 0 0 5.4 4.2 7.3 6.7 



11.2 contd. 

individual readings of 

reference factor 
-1 -1 intercellular spaces ml-l age gemmae ml leafy shoots ml 

(weeks) studied 

1 2 3 4 1 2 3 4 1 2 3 4 

8 1.1 0.8 0.4 o. 7 0 0 0 0 7.2 5.8 5.7 6.0 . 
9 0.3 0.1 0.2 0.3 0 0 0 0 7.4 6.3 4.8 8.1 

10 0.1 0.2 0.1 0.2 0 0 0 0 8.4 9.5 7.6 5.9 
1-' 
~ 
w 
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11.2 Total combined number of gemmae and leafy shoots 

-1 
total combined number of gemmae and leafy shoots ml 

reference age factor 
(weeks) studied 1 2 

-1 
Zn (mgl ) 

Fig. 5.1 4 0 31.0 34.4 

1 20.5 21.1 

2 12.9 10.4 

3 6.5 8.5 

4 4.0 3.3 

5 3.1 2.5 

6 1.7 1.2 

7 0.8 0.6 

8 0.3 0.7 

9 0.1 0.3 

10 0 0.2 

Production from 

Fig. 5.2 4 0 29.6 29.5 

5 3.2 4.2 

10 0.1 0.2 

15 0 0 

20 0 0 

25 0 0 

30 0 0 

Production from 

0 11.1 8.9 

5 8.3 6.4 

10 3.4 3.9 

3 4 

28.1 29.4 

19.3 24.1 

11.6 12.8 

5.9 7.2 

4.6 5.0 

3.7 1.8 

2.1 1.9 

0.8 1.3 

0.3 0.5 

0.2 0.1 

0.2 0.1 

filamentous protonema 

33.3 37.1 

2.4 2.0 

0 0.2 

0 0 

0 0 

0 0 

0 0 

leafy shoots 

8.5 10.3 

6.7 6.9 

3.8 4.3 
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II.2 oonti~ed 

=1 
reference factor total gemmae and leafy shoots ml 

age 
(weeks) studied 1 2 3 4 

=1 

5.2 
Zn(m'~ ) 2.5 1.9 1.1 3.4 

20 1.3 1.0 1.8 1.7 

25 0.6 0.3 0.9 0,2 

30 0 0 0 0 

5.3 1 0 0 0.2 0.1 0 

1-10 no structure formed at this time 

2 0 1.3 2.1 2.1 1.7 

1 1.7 1.1 o. 7 1.2 

2 1.1 0.5 1.0 0.8 

3 0.5 o. 9 o. 7 0.5 

4 0.2 0.6 0.4 0.2 

5 0.2 0.1 0.4 0.3 

6 0.1 0.2 0.1 0 

7 0.1 0 0 0 

8 0 0 0 0 

9 0 0 0 0 

10 0 0 0 0 

3 . 0 12.0 9.3 8.3 13.8 

1 6.0 7 .o 4.9 6.6 

2 3.4 2.4 4.1 3.9 

3 2.1 2.9 1.8 2.4 

4 1.8 1.4 2.3 1.1 

\ 
5 0.8 1.2 1.7 o. 7 

' 
\ 
\ 6 0.9 0.5 1.1 0.5 

7 0.8 0.4 0.3 0.6 
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II o 2 cmntinued 

-1 
total gerrunae and leafy shoots ml 

reference. age factor 
(weeks) studied 

1 2 3 4 

-1 Zn(mg1 ) 

5.3 8 0.1 0.1 0.1 o. 2 

9 0 o. 2 o. 1 0 

10 0 0 0 0 

4 0 30.4 35 40.5 32.2 

1 24.3 31.3 31.6 29.7 

2 16.7 11.6 10.7 12.7 

3 11.1 7.5 6.4 8.5 

4 6.1 3.1 5.7 5.4 

5 3.8 4.9 2.2 2.9 

6 1.1 2.1 3,3 2.8 

7 o. 7 1.2 0.9 1.5 

8 1.1 0.8 0.4 o. 7 

9 0.3 o. 1 0.2 0.3 

10 0.1 0.2 0.1 0.2 
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11.3 Area occupied by moss 

individual readin~s of 
factor -2 leafy shoots reference studied area em age 

(weeks) 1 2 3 4 

Table No. 5.6 1 Zn (mg 1-1) 

0 o. 7 o. 6 o. 7 0.6 

1 0.6 0.6 o. 7 0.6 

2 o. 7 0.6 0.9 0.6 
'"d 

3 0.6 0.6 0.6 0.8 ~ 
1-< 
0 

4 0.6 o. 6 o. 7 0.8 4-! 

~ ~ 
0 ...... 

5 0.6 0.6 o. 7 0.8 0 l-J 
..c:: 
(!) (/) ...... 

6 o. 7 0.6 0.9 0.6 >...c:: 
4-! ~ 
!1l 
Q) ~ 

7 0.6 0.6 0.9 o. 7 ,_..j !1l 

0 z 
8 o. 6 o. 5 o. 7 0.8 

9 o. 6 0.5 0.9 0.5 

10 0.6 0.5 o. 7 0.6 

2 0 3.5 3.2 3.4 3.4 

1 2.2 2.9 3.3 3.4 

2 2.9 3.2 3.4 3.4 

3 3. 1 2.8 3.3 3.4 
'"d 

4 3.3 2.9 3:4 3.2 ~ 
1-< 
0 

5 3.2 2.8 3.4 3.4 4-! 

~ 
0 Q) 

6 2.8 3.2 3.5 2.9 0 13 ..c:: ...... 
(/) l-J 

7 3.5 3.8 2.9 3.2 :>,(J) 
4-! ...... 
cu..c:: 
Q) l-J 

8 3.4 2.9 2.6 3.2 ,_..j 

l-J 
0 !1l 
z 

9 3.5 2.9 2.8 3.3 

10 3,8 2.6 2.5 3.0 
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II. 3 continued 

individual readings of 

reference age factor 
(weeks) studied -2 

leafy shoots I sample area em 

l 2 3 4 l 2 3 4 

3 Zn (mg l ) 

0 6.6 5.8 7 .o 0 0 0 

1 7 .o 7.6 7. l 0 0 0 

2 6.6 7.1 7 .o 0 0 0 

3 5.4 6.6 7.1 0 0 0 

4 7.1 7.3 7.6 0 0 0 

5 7.6 6.8 7.1 0 0 0 

6 7.1 6.0 6.6 0 0 0 

7 7.6 5.1 6.6 0 0 0 

8 7.1 6.6 5.1 0 0 0 

9 7.3 50 l 6.8 0 0 0 

10 5.7 7. l 5.1 0 0 0 

4 0 13.7 12.0 l 2 

l 11.1 13.4 1 2= 

2 12.3 11.9 2 2 

3 13. 7 11. l 1 l 

4 12.0 12.3 2 1 

5 12.3 12.3 1 1 

6 13.7 11. 1 l 0 

7 12.3 11.1 0 0 

8 ll.l 12.0 0 1 

9 11.9 12.0 0 0 

10 11. 1 11.1 0 0 
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II o 3 continued 

5 0 22.9 21.4 

1 22.6 23.8 

2 22.1 22.6 

3 20.4 22.6 

4 23.7 20.9 

5 22.1 22.1 

6 23.8 20.8 

7 22.1 20.8 

8 20.8 20.4 

9 11.9 12.0 0 1 

10 11.1 11.1 1 2 

6 0 35.7 33.2 12 9 

1 34.2 35.8 10 11 

2 32.3 34'.:8 7 9 

3 23.9 31.6 13 6 

4 33.1 31.3 9 9 

5 34.7 29.1 7 10 

6 31.3 33.1 5 12 

7 31.3 33.1 8 9 

8 33. 1 31.5 11 6 

9 30.7 31. 7 5 7 

10 31.4 31.2 4 11 
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II. 3 continued 

7 0 26.0 27.4 27 32 

1 26.4 25.5 25 ~3 

2 24.6 27.4 26 17 

3 27.4 24.6 32 27 

4 26.4 24.6 27 26 

5 25.5 26.4 34 26 

6 26.0 25.5 13 24 

7 21.4 25.6 9 21 

8 26.6 26.6 25 13 

9 24.6 27.4 28 13 

10 25.5 26.4 8 27 


