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The S p a t i a l C h a r a c t e r i s t i c s of Low Energy Muons i n 

Cosmic Ray Showers 

A.Io Gibson B.Sc., M.Sc. 

Abs t r a c t 

Previous work on the rnuon component of extensive a i r showers 

i s described and reviewed w i t h p a r t i c u l a r reference t o the muon heights 

of o r i g i n w i t h respect t o the main cascade, Thu mechanical and 

op e r a t i n g d e t a i l s of a s p e c i a l i s t experiment t o determine the hei g h t s 

of o r i g i n of muons are described t o g e t h e r w i t h the r e s u l t s from 

d e t a i l e d computer s i m u l a t i o n s which are t a i l o r e d t o resemble the 

c h a r a c t e r i s t i c s of the equipment. The raw experimental data are 

examined i n d e t a i l as a precursor t o i n t e r p r e t i n g the data from the 

equipment. The f i n a l r e s u l t s from the experiment are given i n d e t a i l 

and t h e i r relevance t c a i r shower cascade development discussed. 

Suggestions are made f o r f u t u r e work i n t h i s and r e l a t e d fields„ 
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Chapter One 

Introduction 

1-1 The Cosmic Rays at the Highest Energies. 

The presence of a universal i o n i s i n g radiation was f i r s t noticed 

i n 1900 when C.T.R. Wilson (the inventor of the Wilson Cloud Chamber) 

observed that a thoroughly insulated gold l e a f electroscope slowly l o s t 

i t s charge. This phenomenon was o r i g i n a l l y ascribed to ionizing 

radiations emanating from rocks i n the earth's c r u s t . When the 

experiments were repeated at sea no change i n the rate of charge l o s s 

was observed which l e d to suggestions that the radiation was extra­

t e r r e s t r i a l i n o r i g i n . This was confirmed i n 1912 when Hess and 

collea.gues made several balloon ascents and found a steady increase i n 

the radiation with a l t i t u d e []Hess ( 1 9 1 2 ) ] . The cosmic radiation as i t 

became known has been responsible for many important and exciting 

discoveries i n both Nuclear Physics and Astronomy. 

Over s i x t y years research work at the earth's surface and above 

the atmosphere has shown the existence of a wide range of radiations i n 

the primary beam varying from soft X rays to atomic n u c l e i . At present 
20 

the upper energy l i m i t for t h i s radiation i s i n excess of 10 eV. The 

study of the primary spectra of both mass and energy have important 

implications to both astrophysics and cosmology and accordingly a great 

deal of time, e f f o r t and money has and i s being expended on these two 

points. 
/ 14 \ 

At low energies (<10 eV) the primary flux i s s u f f i c i e n t for 

d i r e c t measurements to take place at very high a l t i t u d e s from e i t h e r 

balloon or o r b i t a l spacecraft. At such energies i t i s possible to 

c a l i b r a t e detector systems d i r e c t l y by means of p a r t i c l e accelerators 
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and hence the data can be i n t e r p r e t e d w i t h a reasonable degree of 

c e r t a i n t y s With i n c r e a s i n g energies the primary beam weakens and 

d i r e c t observation becomes d i f f i c u l t which i s u n f o r t u n a t e as the most 
18 

ener g e t i c of these p a r t i c l e s (>10 eV) are p o s s i b l y of e x t r a g a l a c t i c 

o r i g i n . I t i s the mass spectrum and a c c e l e r a t i o n mechanisms of these 

p a r t i c l e s t h a t i s c u r r e n t l y of great i n t e r e s t t o a s t r o p h y s i c i s t s , 

F o r t u n a t e l y t h e r e e x i s t techniques by which these h i g h l y energetic 

p a r t i c l e s can be i n d i r e c t l y s t u d i e d w i t h a reasonably worthwhile 

y i e l d of data. 

1-2 The Extensive A i r Shower, 

When a h i g h l y energetic cosmic ray p a r t i c l e impinges upon the 
-2 

earth's atmosphere i t i s presented w i t h approximately 1030gcm of 

m a t e r i a l t o t r a v e r s e before reaching sea l e v e l . Laboratory s t u d i e s 

have shown the p r o t o n t o have an i n t e r a c t i o n l e n g t h of approximately 

80gcm i n a i r ( t h e mean f r e e path f o r a heavy nucleus i s correspondingly 

s h o r t e r ) . Thus, i n passing through the atmosphere a primary i s l i k e l y 

t o i n t e r a c t inelastically w i t h an a i r nucleus producing a shower of 

secondary cosmic r a y s . A c c e l e r a t o r and other experimental data 

i n d i c a t e t h a t the secondaries are pions, strange p a r t i c l e s and heavy 

mesons„ With a s u f f i c i e n t l y energetic primary the secondaries c a r r y 

o f f s u f f i c i e n t energy t o i n i t i a t e f u r t h e r i n t e r a c t i o n s w i t h a i r n u c l e i . 

This atmospheric cascade i s repeated u n t i l the sec-^'idaries decay and 

are no longer e n e r g e t i c enough t o i n i t i a t e f u r t h e r i n t e r a c t i o n s w i t h 

a i r n u c l e i or the ground i s reached. The transverse momentum of the 

secondaries plus Coulomb s c a t t e r i n g i n the atmosphere causes a 

l a t e r a l l y - d e v e l o p i n g extensive shower of p a r t i c l e s covering many-

square k i l o m e t r e s at ground level„ 
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• Due to r e l a t i v i s t i c time d i l a t i o n effects the charged pions 

are more l i k e l y to c o l l i d e with the nucleus of an oxygen or nitrogen 

atom than decay i n the early stages of a shower. As the energy of the 

pions i s reduced i n further i n t e r a c t i o n s the r e l a t i v i s t i c e ffects are 

reduced and more decay (to unions and neutrinos) before they have the 

opportunity to i n t e r a c t . The transverse momentum of the parent pions 

i s transferred to the daughter muons causing the shower to spread 

l a t e r a l l y and the muons to dominate the outer regions. 

Due to t h e i r small i n t e r a c t i o n cross section and long l i f e , 

many of the muons survive to sea l e v e l . Scattering due to Coulomb 

e f f e c t s and interactions with the geomagnetic f i e l d i s modest and well 

understood; thus study of the muon component y i e l d s much information 

about shower development. I n the past work has been mainly concerned 

with the d e f i n i t i v e measurement of the average momentum spectrum, 

a r r i v a l times etc., but current trends are tending towards a study 

of the muon component's origin and development i n individual showers. 

Neutral pions (which are highly unstable) decay almost 

instantaneously giving r i s e to p a i r s of photons. These photons 

na t u r a l l y lead to pair production and the electron-positron p a i r s so 

produced then radiate bremsstrahlung photons leading to more p a i r 

production and a s e l f perpetuating cascade of electrons, positrons and 

photons. E a r l y experimental investigation of the electron photon 

cascade quickly showed that the s i z e of the electron shower was 

d i r e c t l y r e l a t e d to the primary energy. D i f f i c u l t i e s arose i n that 

accurate measurement of shower s i z e i s d i f f i c u l t due to the low 

p a r t i c l e d e n s i t i e s at the greater distances from the core giving 

r i s e to the necessity for large detector areas. Recently t h i s problem 

has been overcome by measuring a ground parameter i n showers which i s 
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p r i n c i p a l l y dependent on primary energy ? shows small f l u c t u a t i o n s 

and may be w e l l measured [see e.g. H i l l a s et a l (19?1)D• 

1-3• The D e t e c t i o n of Extensive A i r Showers, 

I n 1938 Auger arid colleagues working i n P a r i s w i t h a very small 

array of Geiger tubes of extent a few tens of metres recorded many 

simultaneous discharges over the a r r a y . They concluded t h a t the cause 

of these discharges came from the a i r above and were i n f a c t showers of 

f a s t p a r t i c l e s covering l a r g e areas ( s e v e r a l hundred square metres) and 

as a consequence were named Extensive A i r Showers. This p i o n e e r i n g 

work showed the way f o r other workers and the next b i g step, t o 

measure the showers i n d i v i d u a l l y and i n v e s t i g a t e t h e i r c h a r a c t e r i s t i c s 

i n s t e a d of merely r e c o r d i n g t h e i r existence, was made i n 19^8 by 

Williams a t the Massachusetts I n s t i t u t e of Technology,, 

He used i o n i z a t i o n chambers on a 12 metre t r i a n g u l a r a r r a y 

r e c o r d i n g t h e i r response p h o t o g r a p h i c a l l y (from o s c i l l o s c o p e t r a c e s ) every 

time coincidences were r e g i s t e r e d . Knowing the response c h a r a c t e r i s t i c s 

of h i s d e t e c t o r s , he was able t o l o c a t e the impact p o i n t of the shower 

and estimate the number of p a r t i c l e s t h e r e i n . 

Five years l a t e r the basis of 'modern a i r shower d e t e c t i o n ' 

was l a i d down by Bassi, Clark and Rossi a t M.I.T. using widely spaced 

(30m) s c i n t i l l a t i o n d e t e c t o r s w i t h f a s t r e c o r d i n g equipment. With t h i s 

experiment they were able t o make basic i n v e s t i g a t i o n s i n t o shower 

f r o n t s t r u c t u r e and a l s o estimate shower a r r i v a l d i r e c t i o n s from 

s t u d y i n g the time d i f f e r e n c e s between the response of the d e t e c t o r s i n 

the a r r a y . 

By 1956 Rossi and c o l l a b o r a t o r s had set up an array of 15 l a r g e 

s c i n t i l l a t i o n counters covering a square k i l o m e t r e a t Agassiz near 



Boston and wore able to further refine the techniques u n t i l the number 

of p a r t i c l e s i n a shower (and hence the energy of the primary p a r t i c l e ) 

could be estimated to better than 20% an H the d i r e c t i o n a l parameters 

to within a few degrees. As the arrays got bigger so did t h e i r 

a b i l i t y to detect l a r g e r a i r showers and i n 1957 the Agassiz Array 
18 

recorded an event with an energy of approximately 10 eV to the great 

excitement of the astrophysical world. 

The l a t e r a l l y extensive nature of the a i r showers means that 

s u f f i c i e n t data for t h e i r a n a lysis can be obtained by sampling over a 

large area with many detectors and the l a r g e r the array the greater i t s 

c o l l e c t i o n e f f i c i e n c y . The next quantum jump i n a i r shower studies 

occurred i n 1959 when L i n s l e y and S c a r s i commissioned t h e i r giant array 

at Volcano Ranch i n New Mexico, increasing the s e n s i t i v e area over the 

Agassiz Array by a factor of f i f t y . Since then more giant arrays have 

been commissioned at Haverah Park i n Great B r i t a i n . Sydney i n A u s t r a l i a 

and Yakutsk i n the Soviet Union, A l l these experiments are s i m i l a r , 

sampling and making timing measurements over large inter-detector 

distances. With the exception cf the Kaverah Park Array which employs 

Cerenkov radiation i n large area water tanks, s c i n t i l l a t o r s are s t i l l 

used as the detection medium. 

Over the years the large arrays have spawned many p a r a s i t i c 

experiments studying sp e c i a l i z e d aspects of a i r showers. The l a r g e s t 

range of such experiments have been made at Haverah Park. Some have 

used the e x i s t i n g detectors; e.g. r e l a t i n g pulse p r o f i l e s to shower 

development, whilst the remainder ( l i k e the subject of t h i s t h e s i s ) 

require a separate apparatus to be constructed within an exi s t i n g 

array. One of the l a t t e r category of experiments (Night Sky Optical 

Cerenkov emission) has now been developed to the extent that i t can 



Figure 1-1 The Integral Primary Energy Spectrum,from 

P i c k e r s g i l l ( 1973) . 
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stand alone as an a i r shower a r r a y . 

The modern n i g h t sky Cerenkov experiments stem from the work 

of G a l b r a i t h and J e l l e y (1953) which was f u r t h e r r e f i n e d and developed 

at Haverah Park and Yakutsk i n the e a r l y 19?0s. U n f o r t u n a t e l y such 

work i s dependent upon good c l e a r dark sky c o n d i t i o n s which are not 

p a r t i c u l a r l y p r e v a l e n t a t the l o c a t i o n s of many of the e x i s t i n g a r r a y s . 

F o r t u n a t e l y l i g h t d e t e c t o r a r r a y s , although n e c e s s a r i l y complex, are 

very compact and thus e a s i l y t r a n s p o r t e d t o a re g i o n of good sky c l a r i t y 

and favourable weather. As a development o f the Haverah Park work 

[ d e s c r i b e d by Wellby (1977) ] a t o t a l l y independent Cerenkov Detector 

Array has been o p e r a t i n g i n the Utah Desert, U.S.A. f o r t h e p e r i o d 

1977 - 1980. I t i s now almost c e r t a i n t h a t , as a r e s u l t o f t h i s work, 

the previous problems and doubts a r i s i n g from the technique due t o a 

small data sample w i l l be overcome and the p u b l i c a t i o n of the f i n a l 

r e s u l t s i s eagerly awaited. 

The f i n a l and p o s s i b l y d e f i n i t i v e new experimental technique 

r e l i e s on d e t e c t i n g the f l u o r e s c e n t l i g h t produced by the passage o f a 

shower through t h e atmosphere. Unlike Cerenkov l i g h t , fluorescence i s 

emitted i s o t r o p i c a l l y upon d e - e x c i t a t i o n of n i t r o g e n molecules and 

thus, even though i t s i n t e n s i t y i s considerably reduced, i t should be 

pos s i b l e t o d e t e c t i t a t a dist a n c e of many k i l o m e t r e s . As a r e s u l t 

the technique i s _ c u r r e n t l y under development i n Japan and the U.S.A. 

I n the l a t t e r case a device (named 'Fly's Eye') capable of observing 

the e n t i r e n i g h t sky a t once i s under c o n s t r u c t i o n i n the Utah d e s e r t . 

The d e t e c t o r should be capable of r e c o n s t r u c t i n g the t r a c k of an event 

i n a l l t h r e e s p a t i a l dimensions which w i l l give d i r e c t l y the energy 

and a r r i v a l d i r e c t i o n o f the primary p a r t i c l e . Due t o i t s a l l - s k y 

c a p a b i l i t y and a b i l i t y t o respond t o showers at enormous distances 
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i t i s expected t h a t the device w i l l accumulate data on the very highest 

energy events some t e n times f a s t e r than the r e s t of the arrays combined, 

d e s p i t e being constrained t o the same observing c o n d i t i o n s as a c'erenkov 

d e t e c t o r a r r a y . 

1-^ The Primary Composition and Energy Spectrum of the 

Cosmic Ra d i a t i o n 

At energies where d i r e c t observation i s p o s s i b l e the primary 

mass spectrum has been i n v e s t i g a t e d by emulsion stacks f l o w n i n bal l o o n s 
13 

and from o r b i t a l s a t e l l i t e s . Up t o about 10 eV i t has been p o s s i b l e 

t o i d e n t i f y the p r i m a r i e s c o n f i r m i n g the presence of protons and heavi e r 

n u c l e i although the r e l a t i v e abundances remain undetermined a t the 

highest energies. 

I n the a i r shower r e g i o n of the energy spectrum the chemical 

composition of the p r i m a r i e s i s s t i l l l a r g e l y unknown and the 

i d e n t i f i c a t i o n o f the mass spectrum i n these regions i s one of the 

major quests of c u r r e n t research. I n t h e fors e e a b l e f u t u r e i t i s 

u n l i k e l y t h a t much d i r e c t or d e t a i l e d data w i l l become a v a i l a b l e on the 

primary composition but i t may w e l l be p o s s i b l e t o determine e.g. the r a t i o 

o f protons t o heavy n u c l e i a t these energies. A review of the a v a i l a b l e 
10 19 

data i n the energy range 10 - 10 eV has been made by Sreekantan 

(1972) which demonstrates the (present) i n c o n c l u s i v e p o s i t i o n . 

The shape of the primary energy spectrum has posed a problem 

over many regions and c u r r e n t data i n d i c a t e s a slope e q u i v a l e n t t o an 

exponent o f 2*2 i n the i n t e g r a l energy spectrum f o r energies between 

10^ ?nd lO^eV. I n c o n t r a d i c t i o n t o e a r l i e r i n d i c a t i o n s a f l a t t e n i n g 

i n the spectrum i s again suggested a t higher energies. Greisen (1966) 
19 \ 

suggested the existence of a cut o f f a t the hi g h e s t energies (10 eV) 
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a r i s i n g from the inte r a c t i o n between high energy protons and the low 

energy photons of the 3°K background radiation, E x t r a g a l a c t i c protons 

wxth a path length greater than the c h a r e c t e r i s t i c distance for the 

p-y i n t e r a c t i o n should be removed from the primary f l u x . Investigations 

to date have been hampered by the s c a r c i t y of such high energy 

primaries although no evidence for a cut-off has yet been observed. 

1-5 Outline of t h i s Thesis. 

This t h e s i s describes a new experiment b u i l t at the Haverah 

Park A i r Shower array to measure the s p a t i a l angles of muons i n large 

extensive a i r showers. Large-scale computer simulations of the muon 

component are described and related where possible to the experimental 

r e s u l t s . Several other phenomena are investigated, p a r t i c u l a r l y the 

l a t e r a l d i s t r i b u t i o n of muons at two energy thresholds. The mean 

c h a r a c t e r i s t i c s of recorded data are established ard discussed. 

Investigations into fluctuations i n discrete showers have been made 

and are described and discussed. 



Chapter Two 

Muons - A Summary to Date 

2-1 Introductiono 

I n the early investigation of a i r showers i t was soon recognised 

th a t the muon component was of great importance. The very weak 

in t e r a c t i o n of muons with atmospheric nuclei and r e l a t i v e l y long 

l i f e t i r . e s compared to t h e i r parent pions ensured the survival t o sea 

l e v e l of a large proportion, bringing with them d i r e c t information from 

t h e i r source i n the shower cascade. To exploit t h i s , many experiments 

have studied the muon component and a great deal of information i s now 

available, giving much help i n the i n t e r p r e t a t i o n and understanding of 

a i r shower cascades. 

I n t h i s chapter some of the past work on the muon component 

both experimental and t h e o r e t i c a l w i l l be reviewed with p a r t i c u l a r 

reference t o the experimental work with which t h i s thesis i s concerned.» 

As an introduction t o the subject matter of t h i s thesis previous work 

on s p a t i a l characteristics of muons i n extensive a i r showers i s 

described i n some d e t a i l giving an in s i g h t i n t o the design philosophy 

of the new experiment. 

2-2 Lateral D i s t r i b u t i o n Measurements. 

The l a t e r a l d i s t r i b u t i o n of a i r shower p a r t i c l e s i s one of the 

easiest parameters t o measure (and consequently one of the e a r l i e s t 

phenomena investigated) and as a consequence they are well understood. 

The addition of a substantial amount of shielding material t o a 

'standard' a i r shower array detector f i l t e r s out the soft component 

leaving a r e l a t i v e l y pure muon sample. As l a t e r a l d i s t r i b u t i o n s are so 

http://lifetir.es


Figure 2-1 The muon l a t e r a l d i s t r i b u t i o n i n large EAS as 

measured by S t r u t t (1976) and Armitage (1973) 

at Haverah Park, (9 < 2 5 ° ) (From S t r u t t (1976)). 
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easy to measure, they can also serve as a useful check on the 

performance of, and be used as a means of c a l i b r a t i n g a new detector 

or experiment. The consistency of the l a t e r a l d i s t r i b u t i o n of muons 

(due t o t h e i r very weak interactions with the atmospheric nuclei and 

the geomagnetic f i e l d ) makes i t an ideal measure f o r the cross 

c a l i b r a t i o n of d i f f e r e n t a i r shower arrays. As muon physics i s 

comparatively well understood l a t e r a l d i s t r i b u t i o n s are easily derived 

from simulations and thus are a good measure f o r the comparison of 

simulations with observations. 

An up to date composite l a t e r a l d i s t r i b u t i o n f o r both muons 

and s o f t component (0 < 2 5 ° ) i s given i n fig u r e 2-1 and i s derived 

from the s c i n t i l l a t o r data of S t r u t t (1976) and Armitage (1973); a l l 

the measurements being made by the University of Nottingham group at 
_2 

Haverah Park, with a shower size normalized to f̂ QQ = l*2m . I t w i l l 

be seen that at larg e r core distances the muons dominate and t h i s led 

H i l l a s (1971) t o develop the Haverah Park primary energy estimator, 

which was l a t e r refined t o Pd(500) by Lapikens (1977). 

Independently, S t r u t t found a muon structure function exponent 

of 2*9 ~ 0*1 compared to Armitage's value of 2*8 ± 0«06 , the difference 

being ascribed t o the underestimation of muon densities by f l a s h tubes, 

p a r t i c u l a r l y at smaller core distances,, This phenomenon i s discussed 

i n more d e t a i l i n Chapter 4 . 

The l a t e r a l d i s t r i b u t i o n has been c l e a r l y shown to be dependent 

on zenith angle ( f i g u r e 2 - 2 ) , broadening with increasing zenith angle, 

i n d i c a t i n g a receding of the shower maximum i n t o the atmosphere. 

H i l l a s (I969) has observed that at large zenith angles, p a r t i c u l a r l y 

with showers from the North, geomagnetic effects become s i g n i f i c a n t 

s p l i t t i n g the p a r t i c l e s i n t o two subshowers of positive and negative 



Figure 2-2 The zenith angle dependence (Sec 8) of the exponent 

of l a t e r a l d i s t r i b u t i o n s from S t r u t t (19?6) and 

Armitage (1973). 
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Figure 2-3 The muon/deep water Cerenkov signal r a t i o measured at 

Haverah Park by S t r u t t (1976) and Armitage (1973). 
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Figure 2-4 The d i f f e r e n t i a l muon momentum spectrum i n large 

a i r showers as measured by Dixon et a l (197*0 a " t 

Haverah Park. 
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muonk This may cause confusion with the i n t e r p r e t a t i o n of some sets 

of data under certain circumstances, p a r t i c u l a r l y with d i r e c t i o n 

sensitive equipment such as that described i n t h i s thesis. This 

geomagnetic s p l i t t i n g of the muon component was used by Earnshaw et 

a l (1973) i n an investigation of muon heights of o r i g i n - see section 

2-4 . 

I f a muon detector i s located adjacent t o one of the main 

detectors i n an a i r shower array a f u r t h e r useful parameter can be 

obtained, v i z the muon/total charged p a r t i c l e r a t i o ( i n the case of 

Haverah Park the muon/deep water Cerenkov detector signal r a t i o ) . 

Simulations have shown the r a t i o t o be related t o shower development 

and studies of average features and fluctuations i n i n d i v i d u a l showers 

have recently yielded useful information on the l o n g i t u d i n a l cascade 

[McComb and Turver (1981 Private communication)]. 

2-3 Muon Momentum and Energy Spectra. 

Although the majority of the muons occur i n the outer regions 

at a comparatively low density, when integrated over the whole shower 

t h e i r t o t a l number i s large (some 10^ muons i n a shower of energy 
17 18 

1 0 - 1 0 eV). Furthermore, t h e i r average energy i s much greater 

(«lGeV) than that of the shower electrons (10 's MeV) Thus the muons 

i n a t y p i c a l shower at sea l e v e l carry much more t o t a l energy than the 

electron-photon component. 

I t i s clear that at large core distances (>500m) the 

spectrum i s as so f t as that f o r the ever-present natural muon background. 

Of the muons i n and around the shower core (<10m) several per cent are 

s u f f i c i e n t l y energetic to penetrate f a r i n t o the ground and have been 

followed by Barratt et a l (1952) and l a t e r workers t o a depth of 1600m 



12. 

water equivalent. 

The d i f f e r e n t i a l muon momentum spectrum i n large a i r showers 

has been well measured at Haverah Park and reported by Dixon et a l (197^). 

Figure 2-4 shows t h e i r measured momentum spectrum at core distances of 

300 and 500 metres f o r showers w i t h i n 3 0 ° of the zenith and normalized 
2 17 to a ^ ^ 0 0 ) ®'33m (primary energy K 10 eV). Also shown are the 

simulations of Gaisser et a l (1978) using the Landau model with i r o n 

and proton primaries i n v e r t i c a l showers. Good agreement i s seen f o r 

showers ar i s i n g from heavy primaries but i s less evident f o r proton 

simulations p a r t i c u l a r l y at a core distance of 300m where a steeper 

spectrum i s predicted than i s measured. 

2-4 The Heights of Origin of Muons„ 

The r e l a t i v e l y long l i f e t i m e s of the muons together with t h e i r 

weak interactions ensures th a t a substantial proportion survive t o sea 

l e v e l carrying with them data from a l l parts of the shower cascade. 

Accordingly, i f the development of the muon component i t s e l f i s 

investigated i n d e t a i l i t can be expected to mirror the main cascade 

from i n i t i a t i o n t o ground l e v e l . To achieve these ends several 

experiments have been performed together with computer simulations. 

Some of the l a t t e r were with a view to designing a new experiment -

the subject of t h i s thesis - and these w i l l be summarised i n t h i s 

section. 

I t w i l l be appreciated th a t , although weak, the geomagnetic 

f i e l d w i l l under certain conditions have an appreciable e f f e c t on the 

charged p a r t i c l e component of an a i r shower, s p l i t t i n g i t i n t o two 

lobes of oppositely charged p a r t i c l e s . 

I f i t i s assumed t h a t : -



Figure 2-5 The d i s t o r t i o n i n muon charge r a t i o as measured 

by Earnshaw et a l (1973) using the Haverah Park 

Spectrograph, The effect of the geomagnetic f i e l d 

separating the muon component i n t o two oppositely 

charged lobes i s c l e a r l y visible„ 
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(1) the l a t e r a l d i s t r i b u t i o n s and momentum d i s t r i b u t i o n s 

of oppositely charged p a r t i c l e s are i d e n t i c a l , and 

(2) a l l geomagnetic effects on p o s i t i v e l y and negatively 

charged muons are equal and opposite 

then, at a given core distance the r a t i o of the ordinates of 

the two measured l a t e r a l d i s t r i b u t i o n s indicates the expected charge 

ratio„ I t i s obvious that the d i s t o r t i o n s which are seen i n the charge 

r a t i o due t o geomagnetic interactions can therefore be d i r e c t l y related 

t o the heights of o r i g i n . This d i r e c t i o n of research was f i r s t 

followed by Earnshaw et a l (1971-3) at Haverah Park whilst they were 

engaged on making measurements on the muon momentum spectrum with the 

s o l i d i r o n magnet spectrograph. The results from t h i s study are given 

i n f i g u r e 2-5 f o r two categories of showers, one where the shower had 

overflown the spectrograph ( r a t i o less than unity with a negative 

charge excess) and the other f o r those showers f a l l i n g short ( r a t i o 

greater than unity with a positive charge excess). From t h i s i t was 

possible t o estimate the muon heights of o r i g i n and these are shown i n 

figu r e 2-6 . I t should be noted that the data are based on samples of 

single muons averaged over many showers. 

A sim i l a r type of experiment was performed by Burger et a l 

(1975) giving results which are comparable with Earnshaw et a l i n a 

l i m i t e d range of core distances ( r < 100m). As well as charge r a t i o 

d i s t o r t i o n they also attempted t o use measurements of the energy 

spectrum, adapting the production height d i s t r i b u t i o n of pions by 

Hasegawa et a l (1975). At a mean core distance of 30m and with muons 

of energy of 15GeV a mean production height of 0 ° 9 2 ± 0»15 Km f o r 

near v e r t i c a l showers was reported. 

A more straightforward and d i r e c t approach was developed by 



Figure 2-6 Muon heights of o r i g i n from d i s t o r t i o n s of the 

charge r a t i o , from Earnshaw et a l (1973) <• 
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Earnshaw et a l a f t e r t h e i r geomagnetic work ar.d used a simple 

trigonometric technique, d e t a i l s of which are given i n Appendix One, 

Measurements were made of the angle subtended t o the zenith by single 

ibw energy muons (E > 1*0 GeV) i n the upper f l a s h tube trays of the 

Mkll Haverah Park Spectrograph, Transforming these angles t o the shower 

core and knowing the core distance then gives a d i r e c t i n d i c a t i o n of 

the muon's o r i g i n with respect t o the shower's core. Summing over a 

large number of such events enabled the average characteristics t o be 

determined and these are shown i n figure 2-7. A monotonia r e l a t i o n 

between mucn-core angle and core distance i s observed. From these 

r e s u l t s a r e l a t i o n was derived, f o r the height of o r i g i n of a muon 

£K(P,r)3 given a known momentum (P GeV/c) and core distance ( r m) 

[Earnshaw et al (1973)]. 

H(P,r) = H Q + a log 1 ( )P + r/p _ 

where H Q = 1»68 ± 0«15 km 

a = 1.78 ± 0*2 km 

P = 0.263 ± 0-033 
From these and other unpublished results Gaisser et a l (1978) have 

compiled a summary of the mean muon heights of o r i g i n ( f i g u r e 2-8) 

and compared i t w i th recent simulations. Reasonable agreement i s 

observed f o r simulated showers with the cascade development expected 

from i r o n nucleus primaries using the scaling model (other masses/models 

provide equally acceptable p r e d i c t i o n s ) . 

The data produced by Earnshaw et a l was l i m i t e d i n scope, 

being r e s t r i c t e d to confirming the v a l i d i t y of the technique; 

nevertheless i t provided valuable information together with simulations 

f o r the design of a purpose-built experiment. F u l l d e t a i l s were given 



Figure 2-7 Muon-core angle as a function of core distance 

from Machin, Stephenson and Turver (1973) (unpublished). 
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Figure 2-8 The heights of o r i g i n of rauons as measured "by 

several experiments. Also shown are data f o r 

i r o n primaries using a scaling model, (From 

Gaisser et a l (19?8)\, 
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by Turver (1975) and Gibson (19?6). 

The o r i g i n a l simulations used the then ur.iversa3.ly popular 

CKP model f o r the shower cascade and included both the s p a t i a l and 
18 

temporal characteristics of the muon component i n v e r t i c a l 10" eV 

showers. The simulations followed the muons produced i n a small 

z.3iir.uthal segment which contained hypothetical detectors at various 

core distances and of various areas. To simulate a 'real' detector 

the muons were passed through various thicknesses of shielding (lead) 

and then unspecified track delineating devices of high accuracy. The 

output data available f o r each muon were:- a r r i v a l time, height of 

o r i g i n , energy and s p a t i a l angle. I n addition external perturbations, 

f o r example Coulomb and geomagnetic scattering plus scattering i n the 

detector shielding, were considered. 

The results were considered i n three ways whilst designing a 

new experiment:-

a) By assuming that the only data available on p a r t i c l e 

d i r e c t i o n s are those from muon detectors. Such data are presented i n 

fi g u r e 2-9a from a single simulation of a t y p i c a l shower. 

b) By assuming that data from other sourcej ( f a s t timing, 

p a r t i c l e density etc.) exist enabling the shower's a x i a l d i r e c t i o n and 

impact point t o be determined. I n t h i s case the data i n (a) above may 

be considered as angles with respect t o the shower core d i r e c t i o n . 

c) F i n a l l y , t o consider the muon angular data i n one detector 

and compare i t with that recorded by another s i m i l a r detector at a 

d i f f e r e n t core distance. Such data are shown i n fig u r e 2-9b, again 

f o r a single t y p i c a l shower. 

As the exis t i n g data were obtained from the Haverah Park 

Spectrograph and any future experiment would, i n a l l p r o b a b i l i t y , also 

http://ur.iversa3.ly


Figure 2-9& Individual co^e angles i n a single simulated 

shower recorded i n an ideal detector, 

[from Turver (1975) unpublished]. 

Figure 2-9b A d i f f e r e n t simulated event recorded i n two 

widely spaced ideal detectors, 

[from Turver (1975) unpublished]. 
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be located at Kavarah Park items (b) and (c) would be much closer t o 

r e a l i t y than ( a ) . 

Having now performed a preliminary experiment and f e a s i b i l i t y 

study, i t only remained t o design, construct and operate some s p e c i a l i s t 

equ.ipr.ient» 

http://equ.ipr.ient
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Chapter Three 

• The Experiment 

3-1 Introduction 

The work of Earnshaw et a l described i n the previous chapter 

plus the encouraging predictions of simulations indicated that the 

heights of o r i g i n of the muon component i n a i r showers could be estimated 

from the ground with obvious important consequences f o r the study of 

the cascade development. I n t h e i r work, using data from the Haverah 

Park muon spectrograph, Earnshaw et a l investigated the charge r a t i o 

d i s t o r t i o n caused by geomagnetic effects plus the l a t e r a l and angular 

scatter of muons with respect t o the shower core. Due t o the small 

sensitive area of the spectrograph i t was necessary f o r the r s s u l t s t o 

be averaged over many si m i l a r events. 

Subsequent simulations confirmed that the height of o r i g i n of 

the muon component was d i r e c t l y related t o the cascade development. 

The simulations also indicated a s e n s i t i v i t y t o the mass of the primary 

p a r t i c l e i n that showers which show fluctuations i n t h e i r development 

which are to be expected i f , and only i f , there exist primary protons 

should also show fluctuations i n the height of o r i g i n of muons„ I n 

view of the encouraging nature of t h i s work i t was decided t o go ahead 

with the construction of a detector system at Haverah Park with the 

capa b i l i t y of studying the heights of o r i g i n i n i n d i v i d u a l large 

showers (E p > 10 eV) . 

The termination of the Mkll Spectrograph programme and 

simultaneously the Durham Nuclear Active P a r t i c l e Spectrograph made 

available some 18,000 neon fl a s h tubes of various sizes and i t was 

decided t o re-deploy the f l a s h tubes and ex i s t i n g hardware to b u i l d 
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two new large area detectors. 

The two detectors (a detailed description of which follows) have 

been designed on the basis of f u r t h e r simulation results and are of 

s u f f i c i e n t area to enable 15 - 30 muons to be studied i n a shower of 
17 

primary energy >10 eV, The core d i r e c t i o n resolution available from 

the main array, the trade o f f between the detector sensitive area and 

p a r t i c l e track resolution dictated a designed maximum measurement 

error of 0'5° i n the i n d i v i d u a l muon di r e c t i o n s . 

The larger of the two new detectors i s located on the s i t e of 

the magnet spectrograph i n the centre of the a i r shower array and the 

other approximately 250m away i n a newly commissioned experimental 

area. This l a t t e r s i t e also accom|pdates a muon timing detector 

(operated by the University of Nottingham group). These two detectors 

are f u l l y integrated and use the same shielding material. 

Previous experience of the use of neon f l a ^ h tubes i n a i r 

shower measurements suggested a photographic recording system which, 

once commissioned, would require a minimum of maintenance ensuring 

r e l i a b i l i t y over long recording periods. 

A detailed description of the equipment i s given i n Gibson (1976) 

and only a short resume and report of subsequent modifications developed 

under operational conditions are presented here. 

3-2 The Haverah Park Experimental Array. 

The Haverah Park A i r Shower Array i s described i n d e t a i l by 

Tennent (1967) and Andrews (1970) so only a b r i e f description w i l l be 

presented here. The array i s located at a l a t i t u d e of 53°58"2'n 

longitude l038«l'w and at a mean a l t i t u d e of 220m equivalent to an 
-2 

atmospheric depth of 1016 gm cm . A plan of the array i s presented 



Figure 3-1 The Haverah Park EAS Array„ 

(NoB, The ' I n f i l l i n g Array' i s omitted 

f o r c l a r i t y ) . 
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i n f i g u r e 3-1. 

The detection technique employed (Cerenkov r a d i a t i o n produced 

i n deep water tanks) i s quite unique i n a i r shower work and has the 
2 

great advantage of providing very large area detectors (3^m ) cheaply 

and easily. Detailed descriptions of the water tanks and t h e i r 

performance can be found i n Turver (19&3) •> I n addition to the main 

detectors the 500m array contains another array of small (l*25m ) 

closely spaced water detectors t o study the regions close t o the 

shower cores [see Craig et a l (1979)]• The large area detectors (out 

t o distances of 500m) are li n k e d t o the centre f o r a l l recording, an 

a i r shower being recorded whenever the ten p a r t i c l e l e v e l i n the centre 

detector and two of the 500m detectors i s exceeded simultaneously. I n 

addition t o the main and i n f i l l e d arrays, the Nottingham University 

group operate three muon timing detectors which use shielded l i q u i d 

s c i n t i l l a t o r s . 

3-3 The Muon Angle Detectors. 

3-3.1 The neon f l a s h tube. 

The neon f l a s h tube p a r t i c l e detector was introduced by 

Conversi and Gozzini (1955) and has since been used i n one form or 

another i n many cosmic ray experiments. Flash tubes are i d e a l l y suited 

t o the current experiment where a large sensitive area and good 

p a r t i c l e track delineation i s required. 

The f l a s h tubes used i n t h i s case consist of flat-ended sealed 

glass tubes f i l l e d with neon at s l i g h t l y below atmospheric pressure. 

I n use a layer of tubes i s placed between sheet metal electrodes and, 

when an external t r i g g e r detector records the passage of a charged 

p a r t i c l e a high voltage pulse i s applied across the plates. The tubes 



Figure 3-2 Muon Detector A» 
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through which the p a r t i c l e passed give a f l a s h of l i g h t which can bo 

recorded photographically or e l e c t r o n i c a l l y . 

3-3«2 The Detectors. 

a) Basic mechanical d e t a i l s . 

Simulations by B u l l et a l (I962) showed that the r e l a t i v e 

positions of f l a s h tubes i n a detector had l i t t l e or no bearing on 

the accurate resolution of p a r t i c l e t r a c k s . Thus a simple h a l f - p i t c h 

stagger i n the h o r i z i o n t a l plane and a constant v e r t i c a l p i t c h was 

adopted for both detectors. 

Previous experience with both the Mkl and Mkll spectrographs 

at Haverah Park l e d to a simple, cheap, accurate and r e l i a b l e system 

for supporting f l a s h tubes. Dural bars (durals) are milled with a 

s e r i e s of constant and p a r a l l e l p i t c h s l o t s across t h e i r length £exact 

d e t a i l s can be found i n P i c k e r s g i l l (1973)3• T ^ e cLurals are then 

mounted at the front and rear of each f l a s h tube tray and c a r e f u l l y 

aligned to ensure that the front and rear s l o t s correspond. 

As may be expected the weight of the glass tubes causes 

considerable d i s t o r t i o n along the length of the durals. This problem 

was overcome by mounting v e r t i c a l 6mm perspex s t r i p s along the front 

and rear of the tray at frequent i n t e r v a l s e The durals are then bolted 

to the perspex and, as the operation was performed under controlled 

workshop conditions, exact dural alignment was ensured. 

b) Detector A. 

The l a r g e r of the two detectors i s located at the approximate 

centre of the main p a r t i c l e array on the s i t e o r i g i n a l l y occupied by 

the s o l i d iron magnet spectrograph [^described by Machin (1973) and 

P i c k e r s g i l l (1973)]» Of the spectrograph only the magnet iron 

remains, and t h i s has been degaussed and the hole for the windings 



Figure 3~3 Muon Detector B„ 

/ 
/ 
s 



! ; 
j • 

! 

FLASH TUBE FLASH TUBE ' 

; 

; 

DETECTOR A DETECTOR B 
! 

i j 

j 
i 

>>>>9?J/JS * r * j > r j » f > * j j j j j"j j * * * j j * 

BARYTES SHIELDING 
******* * * ' * * i ' ' r * -r * * -••>>>-->-^->^-<--r.>> 

LIQUID SCINTILLATOR 

DETECTOR A DETECTOR B 

f rry / rt / / 7 r jr/ / 7 / / / /-y / /~r~r 
f ' 

' BARYTES SHIELDING / 
'trssr/ft/ f / / // /////'////// 

L I ...ID SCINTILLATOR 



21 . 

f i l l e d with s u f f i c i e n t lead to give the same approximate thickness 
—2 ' 

(500gcm ) and thus energy threshold (l'OGeV). I t now shields two of 

the or i g i n a l f l a s h tube trays which have been re-located with t h e i r 

axes perpendicular to each other. 

The remainder of the o r i g i n a l f l a s h tubes have been re-deployed 

i n s i x trays each of area s l i g h t l y l e s s than 2'4m shielded by 0"53™ 

of^new barytes concrete. These s i x trays are of s i m i l a r mechanical 

design with v a r i a t i o n s where appropriate to allow for d i f f e r e n t tube 

diameters. Each tray i s divided into two banks of tubes spaced by an 

a i r gap to give the designed (± 0°5 degrees) angular resolution of 

p a r t i c l e t r a c k s . For convenience i n track reconstruction t h i s gap 

i s adjusted to correspond to an exact number of tubes (7 on trays 

containing l:Jcw. diameter tubes; 13 on 0»7cm tube t r a y s ) . A f l a s h 

tube bank consists of f i v e l a y e r s of durals with one l a y e r of f l a s h 

tubes per dural. To prevent inter-tube contamination by photo-

io n i s a t i o n the large tubes are e i t h e r painted black or enclosed i n 

polythene sleeves; the small tubes are a l t e r n a t e l y painted black 

and white and the electrodes covered by a non r e f l e c t i v e black paint. 

The large diameter tubes are a l l located at one end of the 
i 

detector i n four trays of two d i f f e r e n t s i z e s . The smaller trays 

are mounted i n front of and above the ether two (see Figure 3-2). 

The two trays containing 0*7cm diameter tubes are also mounted above 

the ground to enable the lower sub-magnet tray to be photographed. 

I n the early stages of commissioning the experiment i t was discovered 

that excessive r a d i a t i v e pick up generated by the pulsing system 

together with f a i n t images on f i l m rendered "the 0«7cm diameter tubes 

non viable and they were therefore disconnected. 



c) Detector B. 

This smaller detector i s located 250m from and 7«86m above 

the array centre i n a south e a s t e r l y dirbCtion beneath an array of 

l i q u i d s c i n t i l l a t i o n counters operated by the University of Nottingham 

group. Both detectors are shielded by 0«76m of barytes concrete (see 

figure 3-3). 

The thickness of the s h i e l d i n g material, the space requirements 

of the op t i c a l recording system and the limited headroom of the 

enclosing hut caused a compromise to be made between keeping the height 

of the f l a s h tube array as small as possible whilst spacing the f l a s h 

tubes to enable the desired 0-5 degree angular resolution to be 

achieved. With these constraints the following design evolved. 

The detector consists of two f l o o r standing trays giving a 

t o t a l s e n s i t i v e area of 9m involving 6400 black or sleeved l'?cm 

diameter f l a s h tubes (the f l a s h tube lengths are e i t h e r 2.0 or 2,5m)° 

To compensate for the modest area of the detector i t was decided to 

have the. c a p a b i l i t y of viewing the muon tracks i n perpendicular planes, 

thus increasing the azimuthal acceptance. 

Each viewing plane has a depth of twelve tubes which are s p l i t 

into two banks of s i x with a centre separation of 30cm. Three layers 

of tubes i n each bank are mounted on durals as previously described 

and the other three l a y e r s r e s t on top of these i n the gaps between 

tubes. 

3-4 The Electronics and Recording Systems, 

a) E l e c t r o n i c Systems. 

Both detectors are controlled by a simple c i r c u i t (see figure 

3-4) which i s responsible for the correct sequencing of the equipment. 



Figure The E l e c t r o n i c s System 
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Cn receipt of a trig g e r signal from the main array a delay of 

approximately 12 fis occurs (to prevent electronic interference i n 

other transient recording equipment i n the v i c i n i t y ) , A 2 0 l o n g 

high voltage pulse i s then applied to the f l a s h tube electrodes v i a 

thyratons. Subsequently, f i d u c i a l and event i d e n t i f y i n g markers are 

illuminated and the cameras advanced, res e t t i n g the detectors for 

the next event. 

b) Optical Systems. 

To u t i l i s e e x i s t i n g materials and ease construction time the 

f l a s h tube signals are recorded photographically with two Shackman 35m 1 1 

recording cameras i n each detector. The enclosing huts are completely 

darkened and as a consequence no shutters are required i n the cameras. 

As the detectors cover large areas and large numbers of f l a s h tubes 

have to be recorded by each camera a complicated system of mirrors 

was devised to compress the tube images on to the films and give 

s u f f i c i e n t path length to eliminate i n e f f i c i e n c i e s due to polar angle 

e f f e c t s from flashed tubes at the extremities of the f i e l d of view. 

As might be expected when supporting large areas of glass at large 

angles from the v e r t i c a l considerable sagging of the mirrors and 

hence d i s t o r t i o n of the f i l m images occurs. This, however, i s of no 

consequence and i s e a s i l y removed i n the data extraction stages (see 

chapter 4)„ 

3-5 Operation and R e l i a b i l i t y of the System. 

From the outset i t was r e a l i s e d that the manpower available 

for the project would be li m i t e d and once f u l l time operation commenced 

the majority of effort would have to be devoted to an a l y s i s and 

interpretation of the data,, Accordingly strong consideration was given 



to minimise the amount of time spent on routine and other maintenance 

and by and large t h i s objective has been obtained. Routine maintenance 

(performed on an approximately weekly b a s i s ) consisted of changing and 

developing the films, at the same time checking for malfunctions. To 

speed the i d e n t i f i c a t i o n of system f a u l t s a l l f i l m output (which of 

course provides the most r e l i a b l e i n d i c a t i o n of the equipment's health) was 

processed and subjected to a preliminary scan at Haverah Park to check 

for f a u l t s which could be r e c t i f i e d immediately. 

S p e c i f i c f a i l u r e s causing l o s s of data generally f a l l into two 

categories. The most common were camera f a u l t s , s p e c i f i c a l l y loading 

errors and jammed films together with e l e c t r i c a l and mechanical f a i l u r e 

due to the advanced age of parts of the equipment. The other main 

source of f a i l u r e has been due to the f a i r l y short ( « 6 months) l i f e 

of the thyratron valves. A valve f a i l u r e was usually preceded by 

e l e c t r o n i c interference i n nearby equipment and hence the tube could be 

changed before t o t a l f a i l u r e occurred. 



Chapter rour 

Raw Data. Extraction and Processing,, 

4-1 Introduction 

The majority of the experimental r e s u l t s presented i n t h i s 

t h e s i s are based on the data gathered from Detector A during the 

period November 1977 to A p r i l 1979. Detector B became operational 

during the l a t t e r part of t h i s period but i n the f i r s t instance the 

analysis effort was concentrated on Detector A as more data were 

availa b l e and i t would be e a s i e r to extract and inte r p r e t than those 

for the second detector. 

For a preliminary investigation to ve r i f y that the instrument 

f u l f i l l e d the design c r i t e r i a and to t e s t the proposed data extraction 

and a n a l y s i s techniques a sample of some 100 showers of a l l energies, 

core distances, zenith angle and impact positions was taken. A b r i e f 

investigation of the l a t e r a l d i s t r i b u t i o n was encouraging. The angle 

data required carefu l consideration and involved s t r i c t l y r e s t r i c t i n g 

the azimuthal and core impact requirements of showers to be studied. 

A further improvement was obtained by systematically correcting the 

a r r i v a l directions from the University of Leeds Data Analysis to take 

account of a non-planar shower front. 

This chapter describes i n d e t a i l the s e l e c t i o n and analysis 

procedure and i s i l l u s t r a t e d with data from t y p i c a l events. Together 

with an examination of the basic data t h i s gives an understanding of 

the detector response for comparison with simulations i n Chapter 5° 

4-2 Event Selection and C l a s s i f i c a t i o n . 

From the r e s u l t s of the study of the i n i t i a l sample i t was 



Figure 4-1 Event C l a s s i f i c a t i o n Diagram showing the ground 

impact parameters for events analyzed. 
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Figure k-Z D e f i n i t i o n of over and undershot events. 
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obvious t h a t great care was necessary t o o b t a i n a clean, meaningful 

data sample. I t w i l l be appreciated t h a t the angles t o the z e n i t h ( f ) 

recorded i n the viewing plane of the d e t e c t o r w i l l need c o r r e c t i n g t o 

the plane of the shower before they make any sense (as described i n 

Appendix l ) . As the angle between the measuring plane (7Q and the 

azimuthal angle (ft) increases the p r e c i s i o n w i t h which *f can be 

measured decreases (due t o the muons passing more o b l i q u e l y through 

the f l a s h e d t u b e s ) . Thus i t i s necessary t o r e s t r i c t the selected 

showers t o narrow azimuth ai.d impact p o s i t i o n bands perpendicular t o 

the r e c o r d i n g plane of the instrument. Two bands have been u t i l i z e d . 

The f i r s t ( s e r i e s 1 events) i s 30° wide and gives a small but very 

h i g h p r e c i s i o n set of measurements. The second ( s e r i e s 2 events) i s 

50° wide, s l i g h t l y l e s s p r e c i s e than s e r i e s 1 but contains a much 

l a r g e r data sample (see f i g u r e 4-1). 

I t i s necessary t o subdivide the i n i t i a l c l a s s i f i c a t i o n s s t i l l 

f u r t h e r i n t o events, the cores of which have f a l l e n s h o r t of ( c l a s s A) 

and those which have overflown the d e t e c t o r (class B ) . Due t o the 

above azimuthal requirements w i t h showers a r r i v i n g from e i t h e r n o r t h 

or south a f u r t h e r r e c l a s s i f i c a t i o n i s p o s s i b l e . However, as w i l l be 

seen from f i g u r e 4-2 events of class A^ and B g are d i r e c t l y e q u i valent 

t o each other as are A and B . 
s n 

Due t o the array geometry and the o r i e n t a t i o n of the muon 

de t e c t o r s i t i s a l s o necessary, where p o s s i b l e , t o r e f i n e the basic 

shower parameters. I n the basic shower a n a l y s i s 9 and ft f o r each 

shower are de f i n e d by a plane f r o n t f i t t e d through t h r e e of the 500m 
d e t e c t o r s . A c o r r e c t i o n was devised by Dennis (1962) and has been used 

here although employing the more recent measurements of the shower 

f r o n t curvature made by B a r r a t t (19?6). Without these s e l e c t i o n 



c r i t e r i a and corrections the muon angle measurement gets t o t a l l y masked 

i n the experimental noise. 

The evolved event selection procedure i s as follows. The 

analyzed shower information (supplied by the University of Leeds as 

a computer l i s t i n g ) i s scanned by eye f o r events s a t i s f y i n g the 

selection c r i t e r i a 0 The appropriate muon f i l m s are then scanned f o r 

the event and i f a s i g n i f i c a n t number of muon tracks are v i s i b l e (>5) 

the event i s marked f o r measurement. Once an event has been selected 

the relevant photographs are printed on t o a large format paper 

(30»5 x 40"6cm) and allowed t o dry thoroughly f o r several days t o 

eliminate any measurement error due- to paper shrinkage. 

4-3 Data Extraction and Analysis. 

The data recorded on the muon f i l m s consist of a series of 

dots representing the end windows of flashed'tubes« As the p o s i t i o n 

of each tube i s accurately known i n r e l a t i o n t o i t s fellows, a two 

dimensional picture of the tracks of muons through the detectors can 

be obtained with a track being defined by a minimum of f i v e flashed 

tubes. When selecting tracks i n a tray p a r t i c u l a r a t t e n t i o n was paid 

t o the i d e n t i f i c a t i o n and elimination of p a r t i c l e s emanating from 

bursts i n the shielding material. This i s straightforward as bursts 

are easily i d e n t i f i e d by t h e i r much greater localised densities. 

The tracks are enumerated from the p r i n t s by means of c a r e f u l l y 

prepared transparent overlays which were themselves prepared from 

c a r e f u l l y exposed 'daylight' p r i n t s , thereby incorporating the effects 

of d i s t o r t i o n s due to the mirror systems. The flashed tube coordinates 

so obtained are then computer processed f i r s t l y t o translate the 

measured coordinates t o 'real space' and then the p a r t i c l e track i s 



calculated by means of a least squares optimization technique. The 

output from t h i s i s printed by the machine as a facsimile of the tray 

of the detector i n question together with the f i t t e d track. Errors i n 

track selection and those produced by misread tubes are thus easily 

seen and corrected. 

Data Samples. 

The data used i n t h i s thesio has been rigorously selected 

and refined to give as r e l i a b l e a sample as possible so that well 

established average characteristics can be derived. These w i l l 

enable fluctuations to be investigated at a l a t e r date when the nature 

of the data i s f u l l y understood and a larger sample i s available. 

The angle data from several t y p i c a l events are displayed i n 

fig u r e 4-3• Indicated on the diagrams are the mean muon-core angle 

( A ) and standard deviation (o-). Early i n the investigation of the 

data i t was discovered that <r was strongly influenced by the leading 

and t r a i l i n g components of the angle d i s t r i b u t i o n which contain the 

lower energy and hence more scattered (by the l o c a l absorber) p a r t i c l e s . 

A p o t e n t i a l l y more meaningful measure was found t o be the standard 
7 5 

deviation of the middle q u a r t i l e s i n the d i s t r i b u t i o n ( S ' t ) . I f the 
muon signal i s considered as a pulse i n angle (see f i g u r e s i m i l a r 

75 
t o that observed i n time by a s c i n t i l l a t o r f o r example, S'-i i s analagous 

t o measuring the f u l l width h a l f maximum. A furt h e r measurement can 

be extracted from such considerations, namely the peak value of the 

'pulse' or the median angle i n the d i s t r i b u t i o n (A ) . 

A complication i n the angle measurements i s what has been termed 

a 'crossed track'. These appear as completely decorrelated p a r t i c l e 

tracks varying from the mean d i r e c t i o n by some 90° . Fortunately they 



are quite rare and usually occur singly with extremely rare p a i r s . 

There are several possible explanations f o r crossed tracks. 

(1) Totally unconnected particles„ As f l a s h tubes have a 

long 'event memory' i t i s possible f o r a sporadic p a r t i c l e from the 

cosmic ray background which passed through the detector many micro 

seconds before or actually during an event to be recorded. Tests 

performed by random pulsing of the central detector showed that such 

random p a r t i c l e s are recorded i n 2% of a l l events. 

(2) Severely scattered low energy shower p a r t i c l e s which 

have been deviated by very large angles i n the atmosphere and shielding 

material. These cannot be eliminated but may be allowed f o r i n 

rigorous simulations. 

(3) 'Knock on' and p a r t i c l e s r e s u l t i n g from interactions 

in the shielding material. 

I t i s i n t e r e s t i n g t o note that the- incidence of cross track 

events i s approximately halved under the i r o n shielding i n d i c a t i n g that 

h a l f of the p a r t i c l e s responsible have energies between 0°3 a-nd l»0GeV. 

Naturally, f o r every crossed track there w i l l be a corresponding 

percentage of tracks ' l o s t ' i n the main beam and these have t o be 

treated as noise on the true s i g n a l . Where spurious tracks of type ( l ) 

can be detected they are excluded from any f u r t h e r analysis. 

As well as recording angle data the equipment i s capable of 

making l a t e r a l d i s t r i b u t i o n measurements simply by counting the number 

of v i s i b l e tracks (obtainable s t r a i g h t from the f i l m record) and 

amending the area presented by the detector to the effects of varying 

zenith angles. The very rigorous selection of showers described 

above i s not necessary f o r l a t e r a l d i s t r i b u t i o n measurements which 

can be made with showers landing at a l l points i n the array. The 



Figure k-3 Sample events at a selection of core distance, 

zenith angles and primary energies. Each v e r t i c a l 

bar represents a measured muon„ 

Note T h e s e a r e " c l e a n e v e n t s (no c r o s s e d t r a c k s ) 

Figure k—k Muon Angle P r o f i l e s f o r the events i n Figure k-J. 
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results of simulation (Chap iter 5) had predicted a new cascade 

sensitive measure obtainable from such measurements i n the central 

detector, the r a t i o of densities beneath the barytes absorber (0"3GeV) 

and that under the steel absorber (0'8GeV) (<A//L). 

The remainder of t h i s chapter considers the raw experimental 

data. Comparisons w i l l be made, where possible, with e x i s t i n g 

data i n an attempt t o understand the workings and performance of the 

equipment before attempting any major physical i n t e r p r e t a t i o n of the 

re s u l t s . 

The measurement c a p a b i l i t i e s and shortcomings are assessed so 

that the data eventually used f o r a i r shower i n t e r p r e t a t i o n are as 

free as possible from any effects a r i s i n g from the equipment i t s e l f . 

A l l the parameters the experiment was designed to measure are 

considered i n detail„ 

4-6 The Lateral D i s t r i b u t i o n of Muons. 

measurements and the centre detector, with i t s two d i f f e r e n t 

thicknesses of shielding, can also give a two point energy spectrum 

for low energy mubns. 

The muon density measurements are made on some 2000 consecutive 

showers spanning the middle of the operational period considered f o r 

t h i s thesiso As angle information i s not required the instruments 

can record i n an omnidirectional mode increasing the data acquisition 

rate manyfold. To be consistent with other Haverah Park data the 

results were binned i n bands of zenith angle (6) and the shower 

4-5 Introduction t o the ExperimentalResults. 

The experiment i s i d e a l l y suited t o l a t e r a l d i s t r i b u t i o n 
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energies were normalised t o Fd(500) = l«0n; (corresponding t o an 
18 

energy of approximately 10" eV). To ar r i v e at the measured l a t e r a l 

d i s t r i b u t i o n s several corrections t o the raw data were required„ As 

these add up t o some kQ$> a b r i e f summary and description i s i n order, 

Blake et a l (1971) described a technique f o r coping with the 

f i n i t e track resolving power of visual detectors. This i s p a r t i c u l a r l y 

relevant t o f l a s h tube detector arrays because of the r e l a t i v e l y large 

area 1% with t h i s experiment) of each f l a s h tube compared to the 

total area of the detector exposed t c incident p a r t i c l e s . Two 

particle tracks passing through adjacent or the same tubes are easily 

counted as one p a r t i c u l a r l y as the i n t e r n a l e f f i c i e n c y of the tubes i s 

of the order of 80$ and not every tube crossed by each track w i l l have 

flashed, The other major correction factor required i s due to the 

fact that the in d i v i d u a l f l a s h tube trays are t h i c k (unlike the 

s c i n t i l l a t o r ) and a track has to appear i n both upper and lower parts 

to be recordedo This i s dependent on the zenith angle of the recorded 

shower and dramatically affects readings f o r zenith angles greater 

than 40°. 

The minor effects which influence the measured densities 

include human errors i n measurement (a fac t o r which w i l l probably be 

neutralized with a large enough data sample), the in t e r n a l efficiency 

of flash tubes i n responding t o the passage of a p a r t i c l e and 

fluc t u a t i o n s i n the f i l m development conditions r e s u l t i n g i n some 

flashed tubes becoming f a i n t and d i f f i c u l t t o see by eye. F i n a l l y 

there i s a d i s t i n c t dependence of core distance range upon the primary 

energy of showers recorded because of the main detector array geometry 

and the recording instruments. At small core distances smaller showers 

predominate (the f l a s h tubes saturating i n large showers) and at large 



mean 

Figure 4—5 The r e l a t i o n between core distance and/primary 

energy f o r the showers i n the data sample used 

f o r the l a t e r a l d i s t r i b u t i o n measurements„ 
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core distances small showers are not detected by the main array 

(fi g u r e 4-5) . 

Figure 4-6 shows a ful±y normalised l a t e r a l d i s t r i b u t i o n f o r 

muons i n v e r t i c a l showers beneath both barytes and s t e e l . Also shown 

i s the l a t e r a l d i s t r i b u t i o n measured by S t r u t t (1976) using 

s c i n t i l l a t o r detector data. Reasonable agreement i s seer, f o r core 

distances above 200m but at core distances below t h i s our recent 

measurements indicate a f l a t t e r structure function. This effect has 

been remarked upon before [ S t r u t t (1976)] and i s clear evidence of the 

f l a s h tubes beginning to saturate. Similar effects are evident f o r 

measurements at larger zenith angles and are shown i n figures 4-7 and 

4-8. As expected, the densities beneath the barytes are greater than 

those under steel and the p o s s i b i l i t y of some high energy electron 

contamination should not be discounted. Good agreement with both the 

simulations and the results of S t r u t t i s seen. The s l i g h t differences 

i n density compared t o S t r u t t ' s work are easily accounted f o r by 

differences i n thickness of shielding and hence thresholds i n the two 

experiments. 

Electron conta toination i s c l e a r l y v i s i b l e when the A /A r a t i o 
S D 

(the r e l a t i v e response of detectors covered by steel or barytes) i s 

considered - see fi g u r e 4-9<> Here the r a t i o i s p l o t t e d f o r 3 zenith 

angle bins and also shown are the results of a simulation f o r a 10^eV 

v e r t i c a l i r o n primary i n i t i a t e d shower„ I t i s noticeable that there 

i s good agreement with v e r t i c a l showers at the larger core distances 

(>300m)0 Below t h i s distance a large discrepancy develops when 

compared to the simulation data f o r muons alone. I f i t i s assumed 

that the p a r t i c l e s observed beneath the i r o n contain an extremely 

small number of electrons _ born out by the Mkl and Mkll Spectrograph 
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results - the observed discrepancy must arise from the sub-barytes 

measurements. The results are compatible with the presence of many 

electrons at the smaller core distances. 

I f near v e r t i c a l showers are considered (see figure 4-10) and 

binned by energy, the contamination i s again evident as a turning 

point in the curve and, as would be expected, the c r i t i c a l distance 

recedes with increasing energy. 

The presence of t h i s contamination does not, however, negate 

the usefulness of any of the l a t e r a l d i s t r i b u t i o n measurements provided 

tha t i t i s allowed f o r i n the i n t e r p r e t a t i o n and also i n any simulations. 

The Muon/Cerenkov Patio 

As the central muon detector i s adjacent t o the central deep 

water detector another common parameter (the muon/Cerenkov signal 

r a t i o ) could be easily measured. Armitage (1973) has shown i t t o be 

independent of primary energy over a wide range. As a consequence 

i t provides another possible way of i n t e r c a l i b r a t i n g d i f f e r e n t arrays, 

besides being a serviceable parameter f o r t e s t i n g simulation models 

and equipment. The muon/Cerenkov r a t i o has been investigated i n depth 

by the University of Nottingham group at Haverah Park [ S t r u t t (1976)] 

and as i t s only purpose here would be another t e s t of the muon angle 

equipment i t w i l l not be discussed f u r t h e r . 

4-7 Angle Measurements:- Introduction. 

In an experiment such as the one under consideration i t i s 

important t o know the uncertainties and major sources thereof i n the 

basic a i r shower data. The accuracy with which they can be determined 

i s dependant upon three factors:-



Figii^re ^-6 A f u l l y normalized l a t e r a l d i s t r i b u t i o n f o r 

muons i n v e r t i c a l showers normalized to 

^(500) = l»0m"2 with 6 ̂  30°, Also shown 

are the results of measurements by S t r u t t (1976) 

and computer simulations using a Landau type 

model. 
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Figure 4-7 As f o r f i g u r e 4-6 but with 30°< 9 < 40 
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Figure 4-8 As for figure 4-6 but with 40 < 6 < 50 
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Figure -̂-9 The r a t i o of measurements made under s t e e l and 

baryx-es absorber (& /^\ p )binned, by zenith angle. 
17 

Also shown are the predictions from a 10 eV iror 

primary i n i t i a t e d simulated shower. 
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Figure ^4—10 ^ S/^B a S a ^ u n G'''^ o n °^ c o r e distance binned by 
17 

primary energy compared with a simulated 10 eV 
iron primary i n i t i a t e d shower. 



I I 

4 
V 

o 

J 4 o o s> 
m V V O 

V o o O O en 
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(1) The design and geometry of the main shower detector 

array. 

(2) Uncertainties i n the l a t e r a l d i s t r i b u t i o n and the 

consequent ef f e c t s upon the analysis of showers. 

(3) Timing and density measurement fluctuations occurring 

during the sampling of a shower by widely spaced detectors. 

The e f f e c t s of these uncertainties have been investigated by 

Evans (1971). In a s e r i e s of simulations he randomly bombarded the 

array imposing fluctuation e f f e c t s upon the detector responses. 

Re-analysis of the shower using the new d e n s i t i e s gave an indication 

of the errors that may be present. I t was discovered that the cores 

of Qjfo of the events were l i k e l y to be located within 20m of the 

correct core position. The determined core position i s s e n s i t i v e to 

the shape of the d i s t r i b u t i o n function; i n practice t h i s i s known to 

be better than 10% so that systematic changes are probably of the 

order of 5"l0m, which r e a l l y only becomes important for measurements 

made close to the core (<100m). 

The parameters used to estimate the primary energy are 

determined simultaneously with the core position and so the 

uncertainties i n both are i n t e r - r e l a t e d . Andrews (19?0) has shown 

that for R<500m the errors i n P̂ QQ decrease with increasing shower 

s i z e . This i s confirmed by McGomb (private communication) who finds 

showers with Pd(500) > 0«6m" to be well measured. 

At large zenith angles the showers become more muon r i c h and 

the overall d e n s i t i e s are smaller; the sampling fluctuations therefore 

increase, leading to correspondingly poorer determinations of core 

positions and primary energy. 

For the present experiment uncertainties i n the a r r i v a l 



\ 

Figure ^j—11a The rela t i o n s h i p of the mean muon-eore angles (A) 

i n the two halves of detector A« 

Figure 4-1lb The standard deviations of muon-core angles 

i n the two halves of detector A. 

Note The r e s u l t s i n these figures cover a l l core 

distances, zenith angles and energies„ 
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d i r e c t i o n are the most important and these have been investigated by 

Hollows (1969) and were expressed as 

66 = 2°5sec6 0°< 8 < 75° 

I n studying the angle data from the present experiment i t 

was confirmed that a greater degree of uncertainty existed i n zenith 

angle when one of the 500m detectors recorded a very small p a r t i c l e 

density (hence was very uncertain i n i t s timing measurements)„ 

Accordingly, great care was exercised i n the analysis of events of 

t h i s nature with no h e s i t a t i o n over r e j e c t i n g those having doubtful 

d i r e c t i o n s . 

k-8 The Angles made by Muons to the Shower Gore, 

As the central detector offers data with d i f f e r i n g energy 

thresholds (due to i t s barytes and iro n s h i e l d i n g ) , i t i s as well i n 

the f i r s t instance to consider the two sets of data separately. This 

w i l l avoid systematic errors a r i s i n g from e.g„ d i f f e r e n t amounts of 

s c a t t e r i n g i n the shielding of the detector„ Experimental r e s u l t s 

show that the measurements i n the two sections of the detector show 

a strong re l a t i o n s h i p to each other i n both average angle to the core 

and standard deviation measurements (figure ^ - l i ) , the effects of the 

d i f f e r i n g thresholds being c l e a r l y seen,, The 'barytes muons', because 

of t h e i r proven electron contamination and the greater l o c a l s c a t t e r i n g , 
a 

w i l l tend to give long t a i l s to the angle d i s t r i b u t i o n and a f f e c t the 
75 

mean angle. The t a i l can be eliminated by using the quantity A ^ but, 

as figure k~l2 shows, i t then f a l l s between A (barytes) and A (steel)„ 

Unfortunately i t i s not possible to make t h i s measurement with a l l 

events simply due to the small number of muons recorded i n some cases„ 

For the events considered i n t h i s treatment a very strong 



Figure 4-12 The dependence of A ^ ^ , A?| and A s t e e l on 

core distance for 0 < 35°, • P d'(500) > 
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c o r r e l a t i o n "between A and. core distances i s seen ( i t was o r i g i n a l l y 

predicted i n the early simulations) and i s shown i n figure 4-1.2 for 

near v e r t i c a l showers, A s e n s i t i v i t y of approximately one degree per 

hundred metres i s seen for the barytes muons and s l i g h t l y l e s s than 

t h i s for measurements made beneath s t e e l . 

Results of simulations have indicated that the median muon/core 

angle i s possibly a better measure than A„ To be ef f e c t i v e i t i s 

r e a l l y necessary to have a large area detector (30m +) to give a 

s u f f i c i e n t l y large s i g n a l . With the present experiment only the 

la r g e s t of the showers or those f a l l i n g close to the detector permit 

such measurements to be made. At the time of writing only a few 

such showers e x i s t and so i t i s not worthwhile to consider t h i s factor 

here but i t may y i e l d valuable information when the f u l l data set i s 

av a i l a b l e . 

4-9 The Standard Deviation of the S p a t i a l Angles of Muons 

i n the Detector, 

The standard deviation of the muon angles i s r e a d i l y a v a i l a b l e 

and i s a useful measure to obtain from t h i s experiment. I t s main 

advantage i s the independance of errors and fluctuations i n the 

analysis of the shower a r r i v a l d i r e c t i o n by the main array. By contrast 

the measurement of the mean muon angle was much affected by systematic 

errors i n a r r i v a l d i r e c t i o n measured by the main array. 

As was described e a r l i e r the standard deviation of a l l the 

muon angles under barytes proved disappointing and i t was not u n t i l 
75 

the measure was refined to that the data were well behaved and a 

better c o r r e l a t i o n was made with core distance (figure 4-13). When 

these 'refined' r e s u l t s are compared with a pure standard deviation 



Figure 4-13 The standard deviation of mean muon/core angles 

as a function of core distance for near v e r t i c a l 
o 2 

showers (0 < 35 )» p d ( 5 0 0 ) m " * 
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measured beneath the s t e e l shielding i n figure 4-13 reasonable 

agreement i s seen. This can be understood as the r e s u l t of the 

elimination of the very low energy, highly scattered ( i n the 

atmosphere and Barytes) muon-electron component which does not 
75 

penetrate the s t e e l • However, as with the number of events to 

which t h i s could be applied are limited and therefore i t s value i s 

not great. I t should be emphasised that t h i s low energy contamination 

of the signal does not reduce the value of the angle data as the 

increased s c a t t e r i n g of the p a r t i c l e s only broadens the luaon pulse 

and does not s i g n i f i c a n t l y a f f e c t the value of the mean angle. 

4-10 Summary. 

In t h i s chapter the experimental data have been explored 

and a valuable insight into the performance of the equipment obtained. 

On the whole i t i s seen that the desired experimental parameters have 

been measured and i t i s now possible to understand the basic data 

and t h e i r implications. Knowing now the operational parameters and 

having a pool of data on which to draw, attention may now be turned 

to the physical interpretation with respect to known and postulated 

a i r shower phenomena. But f i r s t i t i s necessary to study the r e s u l t s 

of more rigorous and l i f e l i k e ( i n the context of t h i s chapter) 

computer simulations of the muon component. 



Chapter Five 

Computer Simulations 

5-1 Introduction. 

The study of extensive a i r showers and t h e i r d i r e c t and 

immediate understanding i s f a r from easy. The nuclear i n t e r a c t i o n s 

producing the observed p a r t i c l e s have occurred under f a r from i d e a l 

and controlled conditions i n an unfavourable l o c a t i o n . This i s 

compounded by the very high energies involved (many orders of magnitude 

greater than available even now i n the laboratory) and thus i t can 

only be assumed that i n t e l l i g e n t extrapolations of the known laws of 

nuclear physics apply i n these i n t e r a c t i o n s . 

A possible solution to understanding the observed data l i e s i n 

comprehensive modelling of a i r showers. By these means hypotheses of 

the interactions and the myriad independent and inter-dependent 

variables can be investigated u n t i l simulation r e s u l t s can be brought 

into agreement with available data and hopefully a f u l l e r comprehension 

of the a i r shower cascade obtained„ The magnitude of the simulation 

task has long been r e a l i s e d but only comparatively recently (with the 

advent of very powerful computer f a c i l i t i e s ) i n the history of cosmic 

ray studies has i t been possible to approach the s i t u a t i o n confidently 

and i n d e t a i l . 

I t i s now possible to construct a i r shower models using 

Monte-Carlo simulation techniques which agree reasonably well with 

many aspects of the observed data. The s i t u a t i o n i s by no means 

complete and i s s t i l l surrounded by controversy, p a r t i c u l a r l y over 

the choice of hypothesis for the nucleon cascade (which governs the 

exact nature of the shower as seen at ground l e v e l ) , see for example 



G a i s s c r et a l (1978). 

The controversies mentioned above are r e a l l y outside the scope 

of t h i s t h e s i s and the role of simulations i n understanding observable 

parameters is cf more i n t e r e s t . Simulations are very important i n 

the interpretation of t h i s experiment due to the many varied and 

d i f f e r e n t parameters involved. This chapter therefore considers 

simulations of the muon component with p a r t i c u l a r application to 

understanding and inte r p r e t i n g the experimental work described i n the 

preceeding chapter. 

5-2 Simulation Techniques. 

Given a model or hypothesis for the nuclear reactions occurring 

i n an a i r shower (of necessity based on known and extrapolated work 

from accelerators) the modelling f a l l s into several discrete sections. 

The f u l l procedure has been l u c i d l y described by Gaisser et a l (1978) 

and Protheroe (1977) and only a summary w i l l be given here. 

The f i r s t part of a shower to be considered i s the hadron 

cascade which generates d i f f e r e n t spectra of pions at varying depths 

i n the atmosphere. As the various interactions i n the atmosphere are 

of a random nature, a Monte-Carlo technique coupled with various 

a n a l y t i c methods (to economise on computer time where possible) i s 

the most appropriate. A l l nucleons and pions of the highest energy 

are followed throughout the shower's development using Monte-Carlo 

techniques, the energies of the leading nucleons and pions being 

sampled from appropriate d i s t r i b u t i o n s . The lower energy p a r t i c l e s 

are treated by numerical integration techniques based on the d i f f u s i o n 

equations. The neutral pions i n v a r i a b l y decay before i n t e r a c t i n g and 

therefore only a f f e c t the electromagnetic component. Other p a r t i c l e s 



produced i n the ha&ron cascade are, f o r s i m p l i c i t y , not considered 

i n d i v i d u a l l y but t h e i r e f f e c t s are i n c l u d e d i n w i t h the nucleons and 

p i o n s e 'This approximation i s assumed t c have l i t t l e e f f e c t on the 

o v e r a l l cascade but may a f f e c t s p e c i f i c components of t h e shower; 

f o r example separate treatment of kaons may increase the muon f l u x 

but have l i t t l e e f f e c t on the angle distribution„ 

An important aim of s i m u l a t i o n s i s t o a s s i s t i n the 

i d e n t i f i c a t i o n of the mass of the i n i t i a t i n g p a r t i c l e i n r e a l showers 

and t h e r e f o r e a range of p r i m a r i e s from protons t o very heavy n u c l e i 

have t o be considered. The simplest approach i s t o assume t h a t the 

shower produced by a heavy nucleus of mass A and energy E i s eq u i v a l e n t 

t o the sura of A nucleoli i n i t i a t e d showers each of primary energy E/a. 

This so c a l l e d s u p e r p o s i t i o n model has been shown by Dixon and Turver 

(197'0 t o underestimate f l u c t u a t i o n s i n cascade development. A more 

r e a l i s t i c treatment can be had by using the f r a g m e n t a t i o n data of 

F r e i e r and YJaddington (1975) • 

I t has been assumed t h a t i n the f i r s t ' i n t e r a c t i o n the 

heavy primary s h a t t e r s i n t o i n d i v i d u a l "nucleons, a p a r t i c l e s and • 

l a r g e r fragments plus some pions from i n t e r a c t i o n s between a p r o p o r t i o n 

of the nucleons and the f i r s t a i r nucleus. Tomaszewski and Wdowczyk 

(1975) suggested t h a t the percentage of nucleons i n t e r a c t i n g i n t h i s 

way would be ^50% f o r heavy n u c l e i i n c r e a s i n g t o some 75% f o r l i g h t e r 

n ucleic The a c t u a l depth of the f i r s t i n t e r a c t i o n i s u s u a l l y sampled 

from a mean f r e e path d i s t r i b u t i o n s p e c i f i e d by Cleghorn et a l (I968). 

To simulate average shower c h a r a c t e r i s t i c s the s u p e r p o s i t i o n 

model i s u s u a l l y s u f f i c i e n t j however, f o r more d e t a i l e d s t u d i e s of 

f l u c t u a t i o n s the choice of fragmentation model (and. t h a t of cascade 

model) are v i t a l l y i m p o r t a n t . 
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Once the main hadronic cascade has been set up a t t e n t i o n can 
be tur n e d t o those p a r t s of a shower a c t u a l l y seen and recorded a t 
ground l e v e l . As the propagation of these components (muoriF 
p a r t i c u l a r l y ) have a d i r e c t relevance t o the experimental data 
presented elsewhere i n t h i s t h e s i s , a s l i g h t l y niore s p e c i f i c d e s c r i p t i o n 
o f t he s i m u l a t i o n techniques employed w i l l be g i v e n . 

For the muon component the development of the cascade i n space 

and time a r i s i n g from p i o n decay i s f o l l o w e d t o the r e c o r d i n g l e v e l , again 

using Monte-Carlo techniques. I n the f i r s t case t h e transverse 

momentum of the parent p i o n i s sampled from a d i s t r i b u t i o n w i t h the 

form:-

F ( P t ) d P t = 25«0Pt exp(-5'0P t)dP t ...... 5.1 

and a l l or some of t h i s i s t r a n s m i t t e d t o the daughter muon w i t h 

v a r i a t i o n s a r i s i n g from the exact circumstances of decay. A d d i t i o n a l 

f a c t o r s a f f e c t i n g the transverse momentum of t h e unions a r i s e froia 

Coulomb s c a t t e r i n g i n the atmosphere and i n t e r a c t i o n s w i t h the 

geomagnetic f i e l d . 

For muons which reach ground l e v e l , the muon parameters -

core d i s t a n c e , s p a t i a l angle, time of a r r i v a l , energy e t c . , are w r i t t e n 

on t o magnetic tape. The data bank thus created can then l a t e r be 

scanned and binned f o r parameters of i n t e r e s t ; t h i s procedure saves 

a considerable amount of machine time,, At the same time other important 

e f f e c t s , f o r example a s p e c i f i c d e t e c t o r response, can be f o l d e d i n 

and v a r i e d a t w i l l . 

Other e f f e c t s of p o s s i b l e relevance have been considered -

mention has already been made of kaon decay. Of recent i n t e r e s t has 

been t h e e f f e c t on the muon f l u x of photoproduced pions described by 

McComb et a l (1979)» This channel gives r i s e t o a d d i t i o n a l very 
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lew energy muons. The e f f e c t i s energy dependant and could become 
18 

important a t primary energies >A0 eV a t the l a r g e s t core d i s t a n c e s . 

Even then- l a r g e area d e t e c t o r s would be necessary t o make f e a s i b l e 

e x p e r i m e n t a l l y the t e s t i n g o f the hypothesis and they are a l i t t l e 

o u t s i d e the scope o f the present experiment. 

The electromagnetic cascade i s considered using Rossi and 

Griesen's (I9W) Approximation A ( f o r energies >75GeV) and a Monte-

Carlo cascade ( f o r energies <?5GeV) w i t h methods developed from those 

of Butcher and Messel (I96O). The l a t e r a l d i s t r i b u t i o n of t h i s component 

i s generated mainly from geomagnetic e f f e c t s and Coulomb s c a t t e r i n g . 

I n t e g r a l w i t h t h e e-b" cascade i s the treatment of the Cerenkov l i g h t 

emission, see Protheroe (197?) and McComb and Turver (1981a). 

5-3 Models of the Nucleon Cascade. 

The s i m u l a t i o n s performed i n p a r a l l e l w i t h the experimental 

work of the previous chapters have been based on S c a l i n g and Landau -

type models, i n accordance w i t h past and present work at Durham. The 

d i s p a r i t i e s between these and other l o n g e s t a b l i s h e d models are w e l l 

documented. Although d i r e c t comparison between other 'standard' models 

and t h i s muon angle work w i l l not be made, i t would not be impossible 

knowing the way i n which s c a l i n g compares w i t h other experimental work. 

To a l a r g e e x t e n t ' t h e p r e c i s e model(s) used are not p a r t i c u l a r l y 

r e l e v a n t i n the context of t h i s t h e s i s - what i s r e q u i r e d are 

p r e d i c t i o n s from p l a u s i b l e models t o a i d i n the i n t e r p r e t a t i o n o f the 

experimental r e s u l t s . However, t o place the r e s u l t s i n context w i t h 

other work and s i m u l a t i o n s , a summary of the nucleon cascade models 

used i s i n order. 
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The; fundamental tenet of Feynman S c a l i n g [Feynman (1969)] was 
t h a t the p r o d u c t i o n cross-sections scale w i t h primary energy. 
This enables one t o s t a r t a t the h i g h e s t a c c e l e r a t o r energies 
and scale t o the energies found i n a i r showers. The 

d i s t r i b u t i o n s f o r tne nucleon/charged p i o n cross sections are d e r i v e d 

from Fishbane et a l (197^) and Gaisser (197^). I n a c c e l e r a t o r work 

many workers £e.g« Amaldi et a l (1973. 1977)1 have observed the p r o t o n -

proton c r o s s - s e c t i o n t o increase beyend 2000GeV w i t h an assumed 

corresponding increase in cr . „ I t i s p o s s i b l e t o extend the data 1 p - a i r 
i n v a r i o u s ways t o a i r shower energies w i t h consequent e f f e c t s on 

i n t e r a c t i o n l e n g t h s of the c o n s t i t u e n t s i n the nucleon cascade. 

The Landau Model [ Landau (1953)] i s c h a r a c t e r i s e d by an energy 

dependent p i o n number such t h a t < n > a E \ i n comparison w i t h < n > a Ln E 

i n Feynman S c a l i n g . The model approximates t o S c a l i n g i n the 

f r agmentation r e g i o n [ C a r r u t h e r s and Minn (1973)] and good agreement 

w i t h data a t a c c e l e r a t o r energies i s noted ^Andersson et a l (19?6)]. 

The model improves on Sc a l i n g i n many aspects but s t i l l i s an unacceptable 

r e p r e s e n t a t i o n of many EAS phenomena i f we assume proton p r i m a r i e s . 

For i r o n p r i m a r i e s , however, t h i n g s are b e t t e r , the muon component i s 

increased and i t s energy dependance on shower s i z e i s i n b e t t e r 

agreement w i t h the experimental d a t a . Changing the pion m u l t i p l i c i t y 

t o increase s t i l l f a s t e r w i t h energy (aE 3) Improves agreement w i t h 

experimental data s t i l l f u r t h e r e To summarize, a l l f a c t o r s of l a r g e 

showers which agree w i t h S c a l i n g a l s o agree w e l l w i t h the Landau model , 

5-/4- Simulations of the Muon Component of EASc 

On the basis of the design study s i m u l a t i o n s f o r t h i s 
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experiment, Turver (1975) showed t h a t the s p a t i a l and temporal 
c h a r a c t e r i s t i c s of muons i n EAS are d i r e c t l y r e l a t e d . Accordingly 
t h e r e w i l l be some reference t o muon a r r i v a l t i DIGS clS ci complement t o 
the muon angles contained i n t h i s s e c t i o n . 

The s i m u l a t i o n s have been r e f i n e d and updated from those made 

by Turver and adjusted t o c l o s e l y resemble the experiment i n terms of 

s h i e l d i n g and d e t e c t o r response. To i l l u s t r a t e the e f f e c t s o f s h i e l d i n g 

on the muon angle s i g n a l many of the f i g u r e s r e l a t i n g t o t h i s s e c t i o n 

show p r e d i c t i o n s f o r the two d i f f e r e n t absorbers i n the equipment 

(barytes and s t e e l ) . 

The f i r s t parameter t o consider i s the l a t e r a l d i s t r i b u t i o n ; 

i t i s a known and understood measurement and thus sets the scale f o r 
17 

any s i m u l a t i o n s . Shown i n f i g u r e 5-1 are the r e s u l t s o f 10 eV 
i . 

s i m u l a t i o n s f o r both i r o n and pro t o n p r i m a r i e s using Landau E 4 and 

s c a l i n g models r e s p e c t i v e l y ( r e p r e s e n t i n g a muon r i c h and a muon poor 

s i m u l a t i o n as described i n the previous s e c t i o n , thus co v e r i n g the 

t y p i c a l muon content of a l l c u r r e n t models). A l l r e s u l t s are the 

average over many showers t o remove the e f f e c t s of f l u c t u a t i o n s on t h e 

c a l c u l a t i o n s . The data are compared w i t h e x p e r i m e n t a l l y d e r i v e d r e s u l t s 

of S t r u t t (1976) and good agreement i s seen, p a r t i c u l a r l y f o r t h e s i m u l a t i o n 

f o r heavy primaries„ I n many of the r e s u l t s from t h e new experiment 

a s t r o n g dependence on z e n i t h angle i s seen. I n i t i a l l y s i m u l a t i o n s of 

i n c l i n e d showers d i d not e x i s t ; however f o r the f i n a l a n a l y s i s of a l l 

t h e data such work w i l l be necessary. 

The r a t i o of the d e n s i t i e s under s t e e l and barytes (&S/&B) arises 

as a d i r e c t consequence of the muon l a t e r a l , d i s t r i b u t i o n s as does 

the muon/deep water s i g n a l r a t i o ( f i g u r e s 5-2 and 5~3)» The 

measurements of the l a t t e r q u a n t i t y are compared w i t h the r e s u l t s of 



Figure 5-1 The simulated muon l a t e r a l d i s t r i b u t i o n f o r 

10^eV showers with proton and iron primaries. 

Also shown are the experimental r e s u l t s of Strutt (1976) , 

(from McComb,private communication). 
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Figure 5-2 The S t e e l to Barytes r a t i o (AS/AB) as a function 

of core distance f o r two d i f f e r e n t primaries. 
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Figure 5-3 The muon/deep water s i g n a l according t o the 

r e s u l t s of S t r u t t (1976) compared t o s i m u l a t i o n s 

of showers w i t h t h r e e depths of cascade maximum. 
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Figure 5-̂ - Simulated muon 'angle p r o f i l e s ' at d i f f e r e n t 

core distances showing the d i s t r i b u t i o n about 

the mean angle (McComb,private communication). 
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Figure 5~5 Simulated time pulses for the same core distances 
17 

as figure 5-^ i n a 10 eV iron primary shower, 

(McGomb, (Private Communication)). 
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Figure 5-6 The muon/core angle (A) w i t h d i f f e r e n t s h i e l d i n g 
1 7 

as a f u n c t i o n of the core d i s t a n c e , 1 0 eV, A = 

(McCornb, p r i v a t e communication) 0 
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S t r u t t {19?6), I t should be noted t h a t the experimental r e s u l t s 

shown i n f i g u r e 5~3 may i n c l u d e e f f e c t s of the d e t e c t o r and s h i e l d i n g 

not included i n the simulations„ 

Having e s t a b l i s h e d the trustworthyness of the si m u l a t i o n s 

through comparison w i t h r e c e n t l y measured known q u a n t i t i e s , t h e i r 

p r e d i c t i o n s f o r the s p a t i a l p r o p e r t i e s can now be approached w i t h 

confidence. Looking f i r s t a t t h e muon/core angle f o r v a r y i n g core 

d i s t a n c e s , these are best d i s p l a y e d as a pulse p r o f i l e i n angle 

( c f . f i g u r e s and 4-4-). With the s i m u l a t i o n s a much l a r g e r muon 

sample can be considered than i s a v a i l a b l e from the experiment and 

a much c l e a r e r s i g n a l i s t h e r e f o r e obtained. Figure 5-^ compares 

the p r e d i c t e d angle p r o f i l e s f o r the two s h i e l d i n g l e v e l s i n the c e n t r a l 

d e t e c t o r . The s i m i l a r i t y between angle and time pulses ( f i g u r e 5-5) 
7 ^ 

i s c l e a r and t h i s l i k e n e s s l e d t o the i n v e s t i g a t i o n of ( c f . Chapter 

4) as a useable parameter. The s c a t t e r i n g of t h e lowest energy muons has 

been shown (Chapter 4) t o d i s r u p t t h e standard d e v i a t i o n s as measured 

by the experiment and i t s o r i g i n s are now c l e a r l y seen. 

Figure 5-6 shows the e f f e c t of g r e a t e r s h i e l d i n g on the mean 

core angle as a f u n c t i o n of core d i s t a n c e , t h i s can be seen t o increase 

s l i g h t l y w i t h core d i s t a n c e ; the muon-core angle increases, due t o the 

muons passing through an i n c r e a s i n g amount of s h i e l d i n g , s u f f e r i n g 

more s c a t t e r i n g and a b s o r p t i o n en route as the t o t a l path l e n g t h 

increases, A s i m i l a r e f f e c t i s v i s i b l e f o r the standard d e v i a t i o n 

( f i g u r e 5-7). 
75 

Comparing f i g u r e s 5-7 and 5-8 enables S_-> t o be b e t t e r 

appreciated w h i l s t d i f f e r e n c e s s t D l e x i s t between the t r u e s i g n a l 

and t h e observed i t i s a l i t t l e more s e n s i t i v e t o core distance 

a l b e i t w i t h a smaller s i g n a l . As was shown i n chapter ^ the measure 



The v a r i a t i o m o f the standard deviation of the muon/core 

angle (cs~) with increasing shielding and core distance 
17 

10 eV, A = 56 (McComb,private communication),, 
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75 
Figure 5-8 S'-i as a function of core distance and '25 

shielding thicknesses„ 
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Figure 5-9 Time of muon pulse peak as function of core 

distance; 10 *eV, A = 5o. (McComb,private 

communication)„ 
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Figure 5-10 F u l l width h a l f maximum of muon pulse as seen 

by a 'perfect' detector; 10 eV, A = 56 . 

(McComb, private communication), 
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becomes more u s e f u l w i t h a. s m a l l e r d e t e c t o r when, w i t h a much s m a l l e r 

sample ( t y p i c a l l y 10 - 15 muons as against 150+ w i t h these s i m u l a t i o n s ) 

one or two muons i n the extremes of the s i g n a l t a i l can have a more 

dramatic broadening e f f e c t on the s i g n a l . This could be negated w i t h 

a l a r g e r data s e t . 

I t i s worthwhile comparing these s i m u l a t i o n s w i t h p r e d i c t e d muon 

a r r i v a l times f o r the same showers. Looking a t both the time o f pulse 

maximum and f u l l w i d t h h a l f maximum ( f i g u r e s 5~9 and 5-10 r e s p e c t i v e l y ) 

i t w i l l be seen t h a t both time parameters increase r a p i d l y w i t h core 

d i s t a n c e as the distances f l o w n increases. I t should be noted t h a t t h i s 

t i m i n g data i s raw, i . e . no allowance has been made f o r s h i e l d i n g or 

d e t e c t o r and r e c o r d i n g system losses i n band-width. 

I f the data are binned by core d i s t a n c e a c l e a r s e n s i t i v i t y t o 

depth of cascade maximum i s i n d i c a t e d w i t h both A and standard d e v i a t i o n 

( f i g u r e s 5-H and 5-12). Given a l a r g e enough data sample i t i s t o be 

hoped t h a t t h i s e f f e c t w i l l be seen i n t h e experimental data and i f 

so, would perhaps be the most va l u a b l e o v e r a l l c o n t r i b u t i o n o f the 

experiment. 

5-5 Summary. 

Having now examined the s i m u l a t i o n p r e d i c t i o n s i n the l i g h t of 

Chapter k several- i n t e r e s t i n g and encouraging p o i n t s can be noted. 

F i r s t l y , the primary aim of the experiment t o study s p a t i a l angles may 

be achieved and the data so obtained should show average values and 

f l u c t u a t i o n s of relevance t o estimates of the development of a i r showers. 

By t a k i n g the examples of muon poor and muon r i c h showers d i f f e r e n c e s 

between models are apparent. Secondly, the simple two t h r e s h o l d energy 

measuring c a p a b i l i t y of the c e n t r a l d e t e c t o r can perhaps y i e l d u s e f u l 



\ 

Figure 5-11 ^he s e n s i t i v i t y of muon/core angle A to depth 

of maximumo (McComb, private communication). 
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Figure 5 - 1 2 'J-'he s e n s i t i v i t y of the spread.in muon/core 

angles to depth of maximum, (McComb, private 

communication) 
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4 ? 
information of a form which can be compared d i r e c t l y with other workers 
simulations. F i n a l l y , there e x i s t s the p o s s i b i l i t y of e a s i l y measured 
parameters r e l a t i n g d i r e c t l y to the cascade development 0 



4®. 

Chapter Six 

An I n t e r p r e t a t i o n of the S p a t i a l Angle Data 

6-1 I n t r o d u c t i o n 

The i n t e r p r e t a t i o n of data from any a i r shower experiment i s 

never straightforward„ There are a great many c o r r e l a t e d v a r i a b l e s 

and t o e l i m i n a t e these and i s o l a t e the u n d e r l y i n g physics i s a major 

task i n i t s e l f and only then can sore reason be a t t r i b u t e d t o the observed 

phenomena. Thus, (as was demonstrated i n Chapter k) i t i o r e l a t i v e l y 

easy t o understand the 1 behaviour 1 of an experimental system which 

conceals many e f f e c t s , but a t o t a l l y d i f f e r e n t matter t o i n t e r p r e t the 

data. 

I n t h i s chapter the var i o u s aspects of the muon s p a t i a l angles 

measured by the equipment are considered and attempts are made t o r e l a t e 

them t o a i r shower development and other experimental data by means of 

customized s i m u l a t i o n s . The o r i g i n a l aims of the experiment are pursued, 

not t o o s u c c e s s f u l l y but a good estimate of the mean depth of e l e c t r o n 

maximum i s obtained. 

6-2 The Muon Angle Measurements 

Chapter Four showed t h a t the muon-core angle s i g n a l measured 

by the equipment was reasonably w e l l behaved beneath both barytes and 

s t e e l s h i e l d i n g . I n the former case the attempted refinement o f the 

s i g n a l by trimming the l e a d i n g and t r a i l i n g edges of the angle d i s t r i ­

b u t i o n does not a l t e r the s i g n a l s i g n i f i c a n t l y when used w i t h a l a r g e r 

data sample; i n any case the number of events t o which t h i s measure 

could be a p p l i e d i s l i m i t e d . Using now an expanded data set 

(« ?00 events) than Chapter k the b i n widths can be reduced and 

more data p o i n t s obtained. 



Figure 6-1 The r e l a t i o n between mean muon/core angle ( a ) ( a t an 

energy threshold of 0«3 Ge^ and core distance f or 

near v e r t i c a l showers and a mean primary energy of 
17 

~3 x 10 eV compared with simulation results. 
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Figure 6-2 As for the previous diagram,but f o r higher energy 

muons (> 0.8 GeV). 
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49. 

The muon-core angle undei' barytes and s t e e l as a f u n c t i o n of 

core d i s t a n c e are shown i n f i g u r e s 6-1 and 6-2 r e s p e c t i v e l y . I n each 

case data from a 10 eV Landau E 4 A=56 s i m u l a t i o n i s a l s o shown. I t 
P 

should be noted t h a t the s i m u l a t i o n data are f o r v e r t i c a l showers, w h i l s t 

the data extend t o a z e n i t h angle of 25° some d i f f e r e n c e s are thus 

i n e v i t a b l e and t h i s i s c l e a r l y shown i n the diagrams. 

A search f o r some s e n s i t i v i t y t o z e n i t h angle and hence 

l o n g i t u d i n a l development of the cascade was made by comparing the 

muon/core angle i n v a r i o u s core d i s t a n c e bins and, o v e r a l l , proved 

d i s a p p o i n t i n g w i t h the most s i g n i f i c a n t r e s u l t s appearing i n the 

200 t o 300 metre band. These are shown f o r both barytes and s t e e l 
17 

r e s u l t s i n f i g u r e s 6-3 and 6-4 t o g e t h e r w i t h a 10 eV Landau A=56 

s i m u l a t i o n . I t i s c l e a r l y obvious t h a t the h i g h e r energy data resemble 

p r e d i c t i o n more c l o s e l y but i n n e i t h e r case can the agreement be s a i d 

t o be good or i n the case of lower energies p a r t i c u l a r l y c o nvincing. 

I t c ould be and most probably i s the case t h a t the e x t r a atmospheric 

depth t r a v e r s e d w i t h i n c r e a s i n g z e n i t h angle i s becoming more m a n i f e s t l y 

apparent i n the form of increased s c a t t e r i n g of the low energy component. 

A s i m i l a r search through the data was made f o r an energy 

dependence and, as i s shown i n f i g u r e 6-5, t h e r e i s only a very weak 

dependence evident f o r near v e r t i c a l showers i n the core distance band 

200 t o 300 metres. For comparison a s i m u l a t i o n curve i s also shown. 

As the s i m u l a t i o n s described i n chapter f i v e were s p e c i f i c a l l y 

t a i l o r e d t o the experiment i t i s p o s s i b l e t o r e l a t e the data t o some 

of t h e more important cascade parameters, i n p a r t i c u l a r the depth of 

the e l e c t r o n cascade maximum ( t ) „ The s i m u l a t i o n s i n genera!! show 
s max7 0 

a unique r e l a t i o n s h i p between the observable muon parameters and t 
IP.clX 



Figure 6-3 The muon/core angle (A^) (E^ > 0«3 GeV) as a function 

of zenith angle (Sec 6) for a core distance range of 
17 i 

200 < r < 300mo Also shown i s a 10 reV Landau Ep1* 

simulation (A «* 56)« 
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Figure 6-̂4- The muon-core angle (A ) (E ^ 0*8 GeV) as a function 
s |i 

of zenith angle (Sec 0) for a core distance of 
17 -

200 < r < 300mo' Also shown i s a 10 feV Landau Ep 4 

(A = 56) simulation. 
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50. 

However, the d e r i v e d values are very dependent on the choice of model 

and t h e r e f o r e the values of t quoted i n t h i s chapter could be biassed 
max r 

by the s c a l i n g based Durham models used f o r i t s d e r i v a t i o n , 

A c c o r d i n g l y the value of t at the average energy of the data 
max 

17 -2 
a v a i l a b l e (3 x 10 eV) of 717 ± ^Ogcrn has been d e r i v e d f o r muons w i t h 

-2 
E >0«3 GeV and 672 ± 49gm cm f o r muons beneath the i r o n s h i e l d i n g . 
M-

These f i g u r e s are obviously c o n s i s t e n t w i t h other experimental work 

i n t h i s energy r e g i o n . 

The weak energy dependence of the s p a t i a l c h a r a c t e r i s t i c s a t 

present precludes the making of any convincing estimate of an e l o n g a t i o n 

r a t e . This s i t u a t i o n might be improved upon by a much l a r g e r data 

sample but i s probably u n l i k e l y w i t h the c u r r e n t trends i n d i c a t e d by 

the d a t a . 

6-3 Measurement of the Spread i n Muon/Core Angles,, 

As was shown e a r l i e r the spread i n muon/core angles i s a 

p a r a l l e l measure t o the angle d e t e r m i n a t i o n s . U n f o r t u n a t e l y i t does 

not appear t o be as s e n s i t i v e as s i m u l a t i o n s have p r e d i c t e d and t h i s i s 

c l e a r l y demonstrated i n f i g u r e s 6-6 a.nd 6-7 f o r low and h i g h e r energy muons 

r e s p e c t i v e l y and i s p a r t i c u l a r l y evident a t g r e a t e r core distances (>200m) , 
A reduced s e n s i t i v i t y i s a l s o seen i n the higher energy component (but 

not i l l u s t r a t e d h e r e ) . The improved measurement of standard d e v i a t i o n 
75 

described i n chapter 4̂- does not seem t o o f f e r any s u b s t a n t i a l 

improvement w i t h an increased data s e t . The i n h e r e n t f l u c t u a t i o n s 

e l i m i n a t e d by i t e a r l i e r are themselves smoothed out w i t h the b e t t e r 

s t a t i s t i c s associated w i t h a l a r g e r data s e t . 

No evidence of any s t r o n g c o r r e l a t i o n was found w i t h primary 

energy or z e n i t h angle, an example of the l a t t e r being shown i n f i g u r e 6-8, 



Figure 6-5 The energy dependence of A g (E ^0-3 GeV) i n near 

v e r t i c a l showers i n the core distance band 200 < r < 300m„ 
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Figure 6-6 The spread i n muon/core angles (E ^ 0°3 GeV) as a 
17 

function of core distance together with a 10 eV, 

Landau E 4, A = 5& simulation. 
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Figure 6-7 The spread o f muon/core angles (E ^ 0»8 GeV) as a 
17 i 

f u n c t i o n of core d i s t a n c e w i t h a 10 eV̂  Landau E4, 

A = 56 s i m u l a t i o n . 
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Figure 6-8 The spread i n muon-core angles (E^ > 0°3 GeV) 

as a f u n c t i o n of z e n i t h angle (Sec Q), The 

l a c k of s e n s i t i v i t y t o z e n i t h angle i s c l e a r l y 

seen 0 



co 
CO 
(H 
tsD 
C 
< 
CO 
u X-—V 

o o CO 
c — ' 
o to CO 

• p 

o £7 
c PP o PP 
•H 
-P -P 
a aj 
•H Q) 
> c 

a) « pp 

n3 
•s 
ClJ 
-P 
CO 

8 . 

2 -

Sec 6 



I t v.ras suggested by McComb (pi-ivate communication) that the standard 

deviation of muon/core angles i s independent of the shower impact point 

or azimuthal angle and thus the size of the data sample could be 

increased. When an enlarged data set i s created by using t h i s technique 

no s i g n i f i c a n t improvement i n s e n s i t i v i t y i s obtained as i s shown i n 

fig u r e 6-9 f o r the higher energy muon sample. I t must therefore be 

concluded that the shape of the muon angle signal i s independent of 

zenith angle e f f e c t s . 

Relating the standard deviation data t o simulations i n a s i m i l a r 
—2 —2 

way to the angle data, values of ?45 ± 60gm cm and 580 ± 57gw cm" f o r 
the depth of the electron cascade maximum are obtained f o r the 

low and high energy component respectively. The lack of s e n s i t i v i t y t o 

core distance of the high energy component i s probably the cause of the 

large difference between t h i s better r e s u l t and the other values. 

6-k Results from Contemporaneous Muon Experiments at Haverah 

Park f o r Comparison with the Muon Angle Data 

The density measurements possible with the experiment described 

i n t h i s thesis were comprehensively described i n Chapter 4 and are there 

subject t o some bs.sic analysis. They were shown t o be i n agreement 

with other work using other measurement techniques. Refinement of the 

simulations t o resemble the experimental conditions leads t o good 

agreement (figures 4-6 and 6-10). 

Two other experiments at Haverah Park have been running 

concurrently with the Durham Spatial Angle Experiment (The ' I n f i l l i n g 

Experiment' operated j o i n t l y by the Universities of Durham and Leeds 

and the University of Nottingham muon timing experiment) and results 

of both of them are of great i n t e r e s t f o r comparison with the present 



Figure 6-9 The spread i n rauon-core angles w i t h an enlarged dataset 

( f o l l o w i n g the suggestion of McCorab - p r i v a t e 

communication)', E > 0°8 GeV. 
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experiment. 

The I n f i l l i n g Experiment comprises 30 small deep water d e t e c t o r s 

(area zs lm ) on a c l o s e l y spaced a r r a y w i t h an aim of measuring the 

l a t e r a l d i s t r i b u t i o n o f shower p a r t i c l e s i n the range 50 - 500m w i t h 

great precision„ The Array and i t s c h a r a c t e r i s t i c s have been described 

by Edge et a l (197?) and an a n a l y s i s o f the r e s u l t s has been published 

by C r a i g e t a l ( 1979 ) . The data has subsequently been s u b j e c t t o 

f u r t h e r a n a l y s i s by McComb and Turver (1981a) and an e l o n g a t i o n r a t e 
-2 — 1 17 18 of 75 ± 15gcm decade over the energy range 3 x 10 - 10 eV i s 

quoted. 

The U n i v e r s i t y o f Nottingham experiment has been described by 

Blake e t a l (1979) and uses t h r e e w i d e l y spaced l i q u i d s c i n t i l l a t o r 

d e t e c t o r s beneath d i f f e r e n t thicknesses o f s h i e l d i n g ( g i v i n g muon energy 

th r e s h o l d s o f ̂ 26MeV, 481MeV and 306MeV). The equipment was designed 

t o i n v e s t i g a t e the muon pulse shape and measures the i n t e g r a t e d r i s e 

time of t h e muon s i g n a l w i t h a d e l t a f u n c t i o n response o f 32"5ns . 

Mann (1980) quotes r e s u l t s f o r the i n t e g r a t e d s i g n a l r i s e time between 
70 

the 10$ and 70$ l e v e l s ( t ^ ) and these are shown f o r the two extremes 

o f the energy s e n s i t i v i t y i n f i g u r e s 6-11 and 6-12 ( i t should be noted 

t h a t t h e r e s u l t s have been c o r r e c t e d t o the v e r t i c a l ) , McComb and 

Turver (1981b) have expanded t h e i r muon s i m u l a t i o n s t o i n c l u d e the 

response c h a r a c t e r i s t i c s and s h i e l d i n g o f the Nottingham experiment 

and these r e s u l t s are al s o shown on t h e diagrams, Agreement between 

the data and the s i m u l a t i o n s i s seen a t the lower energy t h r e s h o l d but 

i t i s obvious t h a t , l i k e the muon angle work, f u r t h e r s i m u l a t i o n data 

i s needed t o f u l l y understand the hi g h end of the spectrum. I t i s very 

encouraging however t h a t the Nottingham muon t i m i n g data and the muon 

s p a t i a l angle data both on the whole agree w i t h s i m u l a t i o n s ( a t lower 



Figure 6-10 The l a t e r a l d i s t r i b u t i o n of muons beneath t h e barytes 

( S > 0«3 GeV) and s t e e l ( E > 0-8 C j V ) absorbers compared (I u 
1 7 

w i t h a 1 0 eV Landau s i m u l a t i o n . 
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F i g u r e 6-11 The r i s e time ( t ^ ) o f t h e lowest energy muon pulses 

recorded by Mann (1980) compared w i t h t h e s i m u l a t i o n s 

o f McComb and Turver (1981). 
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F i g u r e 6-12 The r i s e t i r a e ( t ^ Q ) o f the highe s t energy muon pulses 

recorded by Mann (1980) compared w i t h the s i m u l a t i o n s 

of McGomb and Turver (1981b). 
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energies) and are therefore reasonably consistent with each other,, 

Other work i n recent times has also been consistent, when 

in t e r l i n k e d through simulations, A useful l i n k i n g measure i s the 

elongation rates measured by various experiments. Protheroe and Turver 

(1978) deduce a value of 85 ± 37gcm~ decade - J" from the Night Sky 

Cerenkov data of Hammond et a l (1978). From an an a l y s i s of r i s e time 

measurements i n the Haverah Park deep water detectors L i n s l e y and 

Watson (1981) are at some variance with the accepted values by 
- 2 - 1 

Obtaining a value of 50 g cm decade at the highest energies. 
The simulations of McGomb and Turver (1981b) used f o r the a n a l y s i s of 

-2 -1 

t h e muon angle data predict values of 80 - lOOgcm decade for the 

Scaling and Landau type models employed. This general agreement with 

other work adds encouraging strength to the an a l y s i s of the Durham data. 

6-5 Fluctuation Measurements 

One of the o r i g i n a l aims of the experiment was to es t a b l i s h 

the mean parameters of muon s p a t i a l angles so that f l u c t u a t i o n studies 

between individual showers could be undertaken with the hope of throwing 

some l i g h t on the primary mass spectrum,, 

McGomb and Turver (1981a) propose that a shower observable P 

could be represented by a r e l a t i o n of the form 

P = a + a, (Sec0 - 1) + a„ log._ E + 0= o l v 2 10 p 
where E^ = Primary Energy 

6 = Zenith Angle 

6° = Total effects of 

fluctuations plus 

measurement e f f e c t s . 

Thus, provided r e a l i s t i c estimates of measurement errors can be achieved 



and t h e energy and z e n i t h angle terms are genuinely independent, r e a l 

changes i n t h e l o n g i t u d i n a l cascade should manifest themselves as 

r e s i d u a l f l u c t u a t i o n s , Simulations o f the muon cascade i n the 

atmosphere f o r i n c l i n e d showers were performed by the authors t o 

i n v e s t i g a t e t h e independence o f the primary energy and z e n i t h angle 

terms and the o v e r a l l e f f e c t s o f f l u c t u a t i o n s on the muon s i g n a l . They 

have c l e a r l y demonstrated f o r t h e two p r i n c i p a l experimental measures 

f o r the experiment a r e l a t i v e l y s t r a i g h t f o r w a r d connection w i t h primary 

energy but a very complex r e l a t i o n w i t h z e n i t h angle. 

The p r e d i c t e d f l u c t u a t i o n values are s m a l l , t y p i c a l l y 1*3° 

and 2*5° i n muon angle and standard d e v i a t i o n r e s p e c t i v e l y per decade 

i n energy and 1«3 and 1*5 per lOOgcm change in depth o f cascade maximum. 

The consequences o f these f i g u r e s f o r the experimental r e s u l t s of t h i s 

t h e s i s are not good. A perusal of t h e muon/core angle and muon core 

angle standard d e v i a t i o n diagrams elsewhere i n t h i s chapter shows, i n 

a l l cases, a h i g h l e v e l o f noise mixed i n w i t h t h e s i g n a l and any 

genuine f l u c t u a t i o n s of t h i s magnitude would be l o s t completely. 

Unless a d i f f e r e n t approach t o f l u c t u a t i o n measurements i s 

discovered and supported by s i m u l a t i o n s which show a t l e a s t a f a c t o r 

o f two increase i n the s i z e of expected f l u c t u a t i o n s i t would probably 

not be worth processing the c u r r e n t l y a v a i l a b l e angle data t o search 

f o r meaningful f l u c t u a t i o n s . Whether or not i t would be worthwhile 

t o consider an improved experiment f o r f l u c t u a t i o n s t u d i e s i s a 

d i f f e r e n t matter and hinges very much on t h e c l e a n l i n e s s and r e s o l u t i o n 

o f the data recorded. An important f a c t t o be borne i n mind i s t h a t an 

angle experiment o f t h i s nature has i n e v i t a b l y a noisy s i g n a l s i m p l y 

due t o i n t e r a c t i o n s w i t h the atmosphere and s h i e l d i n g m a t e r i a l before 

any q u i r k s o f the equipment are i n c l u d e d . Thus, t o be sure o f success, 



\ 

Figure 6-13 Fluctuations i n mean muon-core angle recorded i n the 

two halves of the central detector. 
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the expected fluctuations should be shewn t o be r.uch la r g e r than those 

introduced by the atmosphere, shielding and equipment,, Even then, 

unless the experimental equipment had a much larg e r sensitive area 

than at present any f l u c t u a t i o n signal would c t i l l only be marginal„ 

Nevertheless, and despite the previous section a search was 

made through the available data seeking any co r r e l a t i o n between 

fl u c t u a t i o n s i n i n d i v i d u a l showers„ Some s l i g h t e f f e c t i s noted when 

fl u c t u a t i o n s between muon/core angles at the two energy thresholds 

are considered - f i g u r e 6-13. I t was o r i g i n a l l y hoped t o correlate 

data on flu c t u a t i o n s from the present experiment with other experiments 

at Haverah Park B This, however, even i f there were a strong signal 

present, would be a very long term task i f the extremely selective 

nature (of a i r shower events) of the equipment were to be overcome and 

reasonable s t a t i s t i c s accrued„ 

6-6 Conclusions 

The s p a t i a l angle data investigated so f a r has shown i t s e l f 

to be analysable when a l l i e d with dedicated simulations although i t 

i s not as sensitive to changes i n the a i r shower cascade as was 

o r i g i n a l l y hoped. The hoped f o r f l u c t u a t i o n measurements are not 

rea d i l y apparent, being l o s t i n the noise t o t a l of the experiment and 

the shower's development« To advance on the present s i t u a t i o n would 

require an improvement of at least a f a c t o r of two i n the resolution 

and a corresponding increase i n the statistics„ 

A useful estimate of the depth of electron cascade maximum i s 

however obtained from the muon s p a t i a l angles themselves and t h e i r 

spread f o r two muon energy cuts, the overall average value of 68̂ - ± 
_2 

30,,gem being i n good agreement with other work i n the same energy 



range. Unfortunately an estimate of the elongation rate i s not yet 

possible (and may not be) due to a lack of energy s e n s i t i v i t y i n the 

experiments data. I t i s a pity,as there are now many measurements 

and estimates of t h i s parameter and i t would add extra weight t o the 

angle measurements i f a value agreeing with contemporary work were t o 

be obtainedo 

Overall, the current Durham simulations are i n broad general 

agreement with the muon s p a t i a l and temporal c h a r a c t e r i s t i c data 

currently available. However, at higher muon energies, there i s some 

residual discrepancy between the observed and predicted values„ This 

agrees with the findings of Suga et a l (1979) t h a t Scaling models 

cannot account f o r a l l the observed characteristics of muons i n a i r 

showerso I n part i c u l a r , there i s a consistent underestimation of the 

t o t a l number of muons f o r any given shower primary energy. 
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Chapter Seven 

Conclusion 

7-1 Introduction 

The experiment and i t s data have now been thoroughly investigated 

and i t i s f u l l y understood "both w i t h i n i t s e l f and i n the context of 

other experiments. P r a c t i c a l l y a l l aspects of the data have been 

explored with varying measures of success and with the data presently 

available there i s probably not a great deal more tha t can be obtained. 

I n view of the knowledge gained from t h i s experiment suggestions 

f o r the next generation are made i n t h i s chapter as there i s c l e a r l y a 

l o t of information on the muon cascade s t i l l t o be had and i f the 

suggested improvements i n s e n s i t i v i t y can be achieved a big step forward 

could be made. 

7-2 The Relation t o Other Work 

There are many other sources of work world wide available f o r 

comparison with the present data set, a l l of which paint a s i m i l a r 

p i c t u r e . The average characteristics are now well understood and well 

measured. Much attention i s now being turned t o in v e s t i g a t i n g 

fluctuations from the mean and other s e n s i t i v i t i e s t o primary mass 

are now also being sought with vigour. However, these would s t i l l 

appear t o be some way o f f . 

Many comparisons with other data, both experimental and 

the o r e t i c a l have been made i n previous chapters and only a summary w i l l 

be given here. Many interpretations of experimental data now exist 

which are i n broad agreement and a convincing picture of the depth of 

electron cascade maximum i s beginning t o emerge. To t h i s data can now 
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be added the i n t e r p r e t a t i o n of the University of Nottingham muon/Cerenkov 

r a t i o data [.Blake et al ( 1979) ] by McGomb and Turver [P r i v a t e 

Communication (1981)~], Their work shows values f o r t ranging from 
max 

- 2 -2 17 19 
720 gen to 850 gem over the primary energy range 1 0 - 1 0 eV. 
No errors on the measurements are quoted by Blake et a l , so an estimate 

_2 
of some IO7& was made and t h i s leads t o an error i n t of ± 30 gem 

max 
-2 - 1 

An elongation rate i s also derived and i s 65 ± 30 gem decade , When 

a l l the t data i s considered together (Figure 7-1) over the primary 
JHclX 

energy range of 1 0 ^ - lO^oV good agreement i s seen r i g h t across the 

range including the Durham results from the s p a t i a l angle experiment. 

I t i s noticeable however that the depths from the Nottingham data are a 

l i t t l e high. There i s also broad agreement with the much e a r l i e r data 

of Gaisser et a l (1978) reported i n chapter 2 which gave mean heights 
17 

of o r i g i n of muons as between 2>5 a-nd 4 Km with showers i n the 10 
18 

10 eV range. 

The majority of the available experimental data agree with 

the simulations, the only discrepancies occurring i n the muon timing 

data, although the l a t t e r i s consistent w i t h i n i t s e l f (between Ghacaltya 

and Haverah Park), there are consistent differences with the simulations. 

Although t h i s i s possibly an experimental effe c t a r i s i n g from the 

r e l a t i v e l y new nature of the data ( u n l i k e l y i f both experiments are 

consistent) i t i s more l i k e l y t o be a defect i n the modelling. Either 

some secondary effect i s being overlooked or the current generation of 

models i s wrong i n i t s fundamental assumptions and t h i s i s only now 

becoming apparent i n the muon timing data. 7-3 The Achievements of the Experiment i n Relation to the 

Original Aims. 



Figure 7-1 The depth of electron cascade maximum from various 

experiments compared as a function of primary energy. 

From McComb and Turver (1981c) 
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The o r i g i n a l aim of the Durham Muon Experiment of producing 

large area detectors (on a l i m i t e d budget) t o properly investigate 

phenomena o r i g i n a l l y studied on a very Small scale has o v e r a l l , been 

met„ The equipment has been shown i n Chapter Four to perform t o the 

design specifications and produce measurements t o the degree of accuracy 

o r i g i n a l l y intended. The only area where i t f e l l short was i n the 

rate of data capture p a r t i c u l a r l y with the higher energy events, 

The v a l i d i t y of the observations has been confirmed by 

comparison with well understood and measured parameters at the same 

tir.e g i v ing a thorough understanding of the workings of the experimental 

equipmento The ultimate aim of the experiment, t o investigate 

fluctuations i n the shower cascade has not been met, but average 

characteristics have been determined which are always an essential 

pre-requisite of any such study. These are also i n good agreement 

with e a r l i e r work. I n addition, and unexpectedly, a s u r p r i s i n g l y 

good value f o r the depth of electron cascade maximum i s obtained. 

The f l a s h tubes and t h e i r o r i e n t a t i o n with respect t o the main 

E o A o S . array (governed by the geometry of the enclosing hut) are 

responsible f o r giving a much poorer data rate than was o r i g i n a l l y 

hoped. I t i s also unfortunate that the l o c a t i o n of the i n f i l l i n g array 

i n practice prevents any i n t e r l i n k i n g of the data. Any future 

experiment should pay greater a t t e n t i o n t o d e t a i l s of t h i s nature 

i f any s i g n i f i c a n t advance i s t o be made over the present data. 

7-4 The Way Ahead 

At some time during the l i f e of an experiment i t becomes necessary 

to review i t s performance and consider improvements to the next 

generation of equipment. The results from t h i s muon experiment show 
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many areas f o r improvement. The data sample recorded i n a detector 

i s small and hence very prone t o non physical s t a t i s t i c a l f l u c t u a t i o n s 

a r i s i n g booh externally and i n the detector i t s e l f . An increase i n 

the resolution (the o r i g i n a l design figure was ± 0-5°) would also be 

an advantage as refined dedicated simulations ha^e shown the hoped f o r 

shower dependent fluctuations to be much smaller than previously 

estimated and hence probably out of reach of the present experiment. 

As well as a large increase i n the sensitive area and resolut i o n 

of the detectors the other major improvement t o be made would be to 

remove the constraint (imposed by the f l a s h tubes) cf only being able 

to use a very small percentage of the t o t a l data recorded by the main 

array. Such a large area omnidirectional detector probably could not 

use f l a s h tubes and some of the more esoteric techniques practised at 

accelerators, would probably have t o be used. I n any case the 

measurement of the raw data has, with the present equipment, shown 

i t s e l f t o be very labour intensive and so any future experiment should 

preferably be on l i n e t o a mass data storage system. Even so, the data 

i s s t i l l very dependent (perhaps more so than any other cosmic ray 

experiment yet attempted) on the precision with which the parent a i r 

shower array can measure the shower parameters, p a r t i c u l a r l y zenith 

and azimuthal angles. I t may be that the only way to achieve such 

accuracy i s with the shower imaging technique described by Orford and 

Turver (1976) f o r night sky Cerenkov l i g h t but t h i s of course brings 

with i t a dramatic reduction i n the data rate and the necessity to 

operate i n regions of good seeing. 

Simulations have shown that as much information on the muon 

cascade could be available from f a s t timing experiments (capable of a 

few nanoseconds time r e s o l u t i o n ) . McComb and Turver (1979) have 
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suggested t h a t , given a large enough detector system, i t would be 
possible to image the muon cascade i n a s i m i l a r way t o that described 
by Orford and Turver. Such a large area detector (>30m ) would not 
be as prone t o i n t r i n s i c fluctuations and because i t would be omni­
d i r e c t i o n a l should be capable of acquiring data from the majority of 
events. Furthermore, such an experiment would be easy to operate on 
l i n e and thus y i e l d usable data quickly which would also be easier t o 
analyse. 

The way ahead i s f a i r l y clear, the 'basic a i r shower' i s well 

understood but many aspects s t i l l need c l a r i f i c a t i o n . F i r s t and 

foremost, simulations, without which a f u l l understanding w i l l never 

be reached. The present inconclusive scenario needs much more work, 

p a r t i c u l a r l y to the development of refined models which can encompass 

more of the observed phenomena together. The next steps as t o u l t r a 

high energy interactions w i l l no doubt be indicated by the results from 

the next generation of accelerators. Once t h i s i s achieved the long 

term aim of i d e n t i f y i n g the primary mass spectrum would follow more 

easily. 

7-5 Conclusion 

The o r i g i n a l aim at the s t a r t of the work covered by t h i s thesis 

has been modified with hindsight and p r a c t i c a l discoveries. The 

v a l i d i t y of the technique has been amply confirmed and an unambiguous 

measurement of a single a i r shower phenomenon obtained. The f a c t that 

the equipment has recorded a single facet of the muon component i s 

probably why there i s such good agreement with simulation. 

The straightforward determination of t a l b e i t the only 
max 

measurement of d i r e c t relevance to a i r shower physics i s both timely 
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and useful. The o r i g i n a l l y hoped f o r flu c t u a t i o n s have been shewn 

by simulations to be beyond the reach of the equipment as i t stands 

and i t i s up to the next generation of experiments t c develop the 

accuracy necessary t o measure them. The ultimate question of the 

origin of the highest energy primary p a r t i c l e s i s s t i l l very elusive 

and i s l i k e l y t o remain so f o r some considerable time yet. 
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Appendix I 

The Heights of Origin of Muons i n EAS from a 

Simple Trigonometric Approach 

The height of o r i g i n of a muon can be derived from elementary 

dynamics and i s represented i n figure ( A l ) 0 An energetic muon of 

momentum P (and transverse momentum P^) originating from a height H 

landing a distance r from the shower core must obey:-

(1) 
P t 
P H 

Scattering e f f e c t s (Coulomb and Geomagnetic) on p a r t i c l e s 

below a momentum of lOGeV/c cause deviation from t h i s r e l a t i o n , but i t 

i s s t i l l broadly correct„ 

The experimental work i s constrained by the geometry of the 

recording instrument, i n case of the present experiment recording i s 

e s s e n t i a l l y r e s t r i c t e d to one plane. Thus,- as the muons' angles of 

incidence i n t h i s plane are known, a l l other measurements need to be 

transferred to t h i s plane. The angle to the zenith made by the shower 

core i n the instrument measuring plane (f^ ) i s given by:-

tan(Y ) = tan ( e ) , cos(jtf+E) (2) 

where s- 0, f& are zenith and 

azimuthal angles 

respectively measured 

by the main array and 

E a r i s e s from orient­

ation of the instrument 

recording plane wrt the 

main array. 

From the rotation of the axes the core distance r ^ from the 



Figure Al (a) The r e l a t i o n between muon momentum, 

core distance, height of o r i g i n and 

transverse momentum„ 

(b) The r e l a t i o n used t o determine the 

height of o r i g i n of a muon a f t e r 

p r o j e c t i n g the shower a r r i v a l d i r e c t i o n 

i n t o the spectrograph measuring plane„ 
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instrument i s given by;-

r j . = Ycos(E) - Xsin(E) (3) 

wheres- X,Y are core 

coordinates. 

Study of figure Alb enables the following relationship to 

be derived:-

H = rJLcos(r p) cos (y p) 

sin(T p-Y 0) 

r j . 

or — - tan(y p) - tanOfJ (5) 

Simulations and experimentally obtained data have shown that the 

angle between the muon and core directions - f ^ ) ^ s usually small 

(10° or l e s s ) , thus errors i n heights of o r i g i n are mainly dependant 

on errors i n Of -*Y ) . 
P ° 
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