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TAB TY E FIELD THEORY

PhD. THESIS - ALEXANDER TODD GILLESPIE

ABSTRACT

Classical solutions to SU(2) gauge theory with a
static charge source or with wave-like behavior are
examined. In both cases gauge rotations cause
_ instability. A quantum mechanical model with a local
gauge symmetry is constructed. The quantum numbers of the
model are constrained by the local symmetry. The S-matrix
elements of SU(2) gauge theory are analysed in terms of
angular orientation in gauge space. Most S-matrix
elements are found to vanish in a way that indicates that
most states are unstable. This result is due to the
ambiguity in the time evolution of the states inherent in
the local stmetry and it indicates that the gauge must
be fixed in the path integral for a well defined
dynamical evolution. When the‘gauge is fixed the result

reduces to the conservation of quantised isospin.




PREFACE

The subject of this thesis is the Quantum Field
Theory of a form of instability which occurs in non-
Abelian gauge theories. It is found in SU(2) theory
and should also occur in theories with higher gauge
groups. In order to be precise we restrict attention to
suU(2).

The work started in an attempt to understand simple
classical solutions either with a charge source or with
wave—-like behaviour. Rotations in gauge space are
fundamental to the stability of the solutions, and are at

least as important to the theory as angular momentum is

to the hydrogen atom.

The first section is a brief account of the relevance
of classical equations to guantum theories and introduces
notation and conventions. In the second section, the
problem of classical solutions for static charge sources
is examined. The instability of Abelian solutions is
found to be due to gauge rotations. The contents of this
section have been publishedl.

The third section deals with simple waves. Here
again an instability due to rotations in gauge space is
found. To gain insight into these rotations, a quantum
mechanical modél is constructed in the fourth section.
This eliminates the complications of dealing with a field

theory. In the fifth section a method of dealing with



these rotations in the full theory is developed. Many of
the states appear to be unstable as a consequence of the
local symmetry. This is due to the ambiguity in the time
development of the theory inherent in the local symmetry
and which also gives rise to a discontinuity in the form
of the S-matrix elements. In order to‘obtain a well
defined dynamical evolution the gauge must be fixed, in
which case the analysis in terms of the remaining global

symmetry generates the global quantum numbers.



BASIC CONVENTIONS

The metric tensor for Minkowski space is

Fuv - D,.;.,?, (1, -1,=1,-1)

Unless otherwise stated, all repeated indices
are summed over. Since SU(2) gauge theory is non-
linear, we have rescaled the fields so that the
coupling constant is unity. The other fundamental

constants are taken to be

For typographical reasons, we will distinguish
between functions and operators by placing the latter
inside curved brackets, e.g. (@) is an operator
whereas jﬁ is a function.

In certain cases it will be convenient to use
a non-covariant analysis. A tilde below a character

indicates that it has three spacial components, i.e.

/xv“: (%;,Xz)x_3)
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1. TINTRODUCTION 9.

1.1 CLASSICAL EQUATIONS IN THE REAL WORLD

Under certain conditions, classical equations of
motion are accepted as being good approximations to real
physical systems. This is one possible justification for
examining them. Unfortunately classical equations possess
difficulties for the description of bound states such as the
hydrogen atom. A more sophisticated approach is that due
to Feynman 2. This is the path-integral formulation of
quantum mechanics and it may be developed to include quantum
field theory. The path integral formulation asserts that
the classical solutions to the equations of motion dominate
the time development of guantum theories over the period of
time from the distant past to the distant future. The time
interval involved must be much longer than any effective
parameter of time in the theofy.

A slight modification may have to be made to this.
Some account must also be taken of quantuﬁ numbers. Thesev
can be important if they determine whether a system is stable
like the ground state of the hydrogen atom, or unstable, like
the analogous state of positronium, If the classical
solutions of SU(2) gauge field theory show signs of
instability it may be fruitful to examine the quantum effects

of the symmetries.
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1.2 CLASSICAL EQUATIONS IN QUANTUM MECHANICS

The role of classical equations of motion in quantum
mechanics has been discussed at length for the case of the
simple harmonic oscillator 2. This example prepares the
ground for the path-integral formulation of quantum field
theories and many concise accounts of it are found in the
3,4,5

literature on gauge theories ' The results are summarised

below.

1l.2 a) Operators and States

The system can be described by a position operator

(&)

As positions are real numbers
)= ()7
(&) = (1.1)

Momentum is described by the operator

(P) = (P)T (1.2)

These operators are functions of time and obey the

canonical commutation relationship:

L), (@] = - ¢ (1.3)

The operator (@(€)) 1is self adjoint and its eigenvalues
are not degenerate so its eigenvectors must be orthogonal.
We may standardise the normalisation of these eigenvectors
to give a complete orthonormal basis of the Hilbert space

of the theory. We denote an eigenvector of (@ (%)) by
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|G, t>2: (D lQ,t> = @ |a t> (1.4)

These eigenvalues are continuous so a sum over all eigenstates

is expressed as an integral and the orthonormalisation of the

states is expressed in terms of the 8 -function, i.e.

and

{Qa,t1Qb,t> = S(aq—ab)} s
‘g d@a {Ca,T|lQRL t2 = | '

Energy is described by the Hamiltonian Operator

(H) = £(P)* + ¥ w*(a)* (1.6)

The time development of these operators is determined by

[(H), (G)] = -t (&)
C(H), (PY] = -¢(P) (1.7)
C(H), (H)] = -i (H)=0

1.2 b) The Path Integral

As the above operators are dependent on time, we are
implicitly working in the Heisenberg picture. We may remove
the time dependence to .the states of the theory by working

in the Schrbdinger picture. The two pictures are related by

L(H)T - t
(O(t), = € ¢ (0)g € ECHD (1.8)

and

fo>, = e ">, (1.9)
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The eigenstate of the Schrédinger representation
corresponding to the state l@-, t) is the state

la>: la>= e a, t> (1.10)

The general form of a matrix element is
g« ot !>
= So(u(tu)’ e-a(H)(t"- tI)IO('l‘t')>s
={da" da! gx"t 1 ><Rr et o
x Q' ' (t') | .

The time dependence of the theory is determined by the

general matrix element

<au' e-b(“)(t"‘tl) 'al>

I " ! ’ (1.12)
=<G-)t la)t>

L]
Let Y=z t'-t . For infinitesimal ¥ this matrix

element becomes

<’ t"1al, t'>

=L@t 1-EL(P*+w*(a)1r x> 113

Because of the commutation relations we may use the basis

provided by the momentum operator (P (¥T)) to write this as

. M_Ql - 2 2,972
Irl\,jolpemca Je R TP wta] (1.13a)

Evaluating this expression by steepest descents gives

: _Q-Q'l/r, &') "% |
ﬁz 6""(‘: ’ + ole*] (1.13b)
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A
N
N, and Ng are constants and L is the classical
action, i.e.
. [ [ ] z
L(G, Q) = 3 @* -t w*@Q (1.14)

For finite-time intervals let

t(°)= t‘
tMt'+ A (1.15)
t™:t'+mr=t"

Then

<" t'la’it'>

j T2 o JQ(*) cal e A e > (1.16)

o <a(m> t(,n)' a(ﬂ\,-l) t(“ﬂ'l))x ‘X <a(°?t(°)' & tl> .

We note
<au)$ﬂl a(m)) t(’“—)) = SEQM" a(ﬂ),] (1.17)
and

<t t'> = SLa”- a'l] (1.18)

As v goes to infinity, £ Q('k"i z A2 Q(‘*i t(-k)>
goes to
N 2rpy §iL(£LEH7-@HT, )
(1.19)
as before [(1.13b)].
As we take this limit we may rewrite eqn.(1l.16)

as
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<G‘uJ tul G‘l) t;>

A ull t” ]
: Nf?f.-z:' Aact) f Ld¥ L(Gee, ace))
x Sra-awy] §law-o.] (1.20)
T2y

The constant N is formally infinite.
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1.2 ¢) Sources

There are at least two reasons for adding a source
term to the functional integral. One is relevant to the
construction of the states of the theory and the other
relates to perturbative expansions of more complicated
systems.

The position operator obeys the equation of motion:
(R) +w*(Q) =0 (1.21)

This equation implies that it may be written in the form
(@ () = () e"‘““t +(0()*6"'wt (1.22)

where (&) is independent of 7]

Thus

COAY,e0OT] = w ()T (1.23)
For ‘some energy eigenstate

I¥> © Y IY> = By ly>

(H[EOTI™ 1y > = CEp + med [ T T

(&) and (9()1' are ladder operators for the energy eigen-

states. Note that
2 M/

NCOLTME {‘f#fgdt 3-“07:(@-(?5))}% (1.25)



le.
The energy eigenstates are constructed from the lowest

energy eigenstate by the repeated action of (@&(%)), i.e.

| V’)"’J{‘JiZ"'¢J't/ne (- Tm)

x(Q) - (Q(ta ) 10> (1.26)
where
(H)I 0> = EolO2>
(HIYy> = Eyly>
EE ﬁV ;> Eso» (1.27)

and t‘ 2 t,> >/ T

Since all states can be written as a summation over

energy eigenstates, all states can be written in the form:

%> = oty of 4 (B )

x(G(t)I) .+ Qltm )] O> (1.28)

for some choice of weighting function

The matrix element

<" (") ! (£
S
can be constructed from elements of the form

<ol THA(t)) - ([@l(tad} | O">

These elements can in turn be constructed by adding a source
term to the Lagrangian.

Let

’ *

L! = -E'{&z- w‘aaj + o (t) QL
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Then

<o'IT{(atsa) .. (a(tn)flo'>

Sm.z (1.29)
b0(t,) s E6(ta)d |, .0

s (-2)™

where
Z=Z(s)= <O0"0'>

’
calculated for the Lagrangian L

The vacuum-to-vacuum matrix element for the Lagrangian
4 . ’ . .
L gives us every matrix element for the Lagrangian L .
The second use of a source term is as a means of

calculating orders in perturbation theory. The same term E

<O T f@(t)) (Qta)} 1 0'>

occurs if the Hamiltonian is perturbed to
'Y= % Yrw? (R + A(V)
(H') = T ((P)+w? (&R * (1.30)

where (V) is a polynominal in (&) .
In either of these two cases the paths of interest for
Z @) correspond to solutions to the classical eguations

of motion in the presence of an arbitrary source, i.e. to

é+w=a = o(t) (1.31)
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1.3 CLASSICAL EQUATIONS IN SU(2) GAUGE FIELD THEORY

SU(2) gauge field theory differs from simple quantum
mechanical systems in two'distinct‘ways. The first difference
is that it is a multi-component field theory. In the
Lagrangian there are many operators and these depend on
both space and time.

The second difference is that the various operators
possess a local symmetry.. This may be expressed by the action
of - a unitary Operator, defined at.eachspoint~of~space:time,
which acts on the field operators in a specific way but
which does not change the Hamiltonian. The interpretation
of this symmetry is not entirely clear.

In the following few pages we shall outline the path-

integral formulation of 8SU(2) gauge field‘theory3’4’5 . I

e

This demonstrates the relevance of the classical solutions
to the theory. Problems of stability will arise later
which can be analysed in the path integral formulation and
so it is sensible to. be precise about the framework which

we will later use.

1.3 a) The'ClassicalﬁhagrangianJFormulation

The Lagrangian density is

auv
d= -+ FuuF ™™ (1.32)

where

‘ b
Fluv = Ju Ay - Q»A/Z + e“b"A/“ Ay
abc € (1,23
M,V € (0,1,2,3) (1.33)
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The action is
50“'1 L
and the equations of motion may be deduced by requiring
the action to be stationary with respect to variations
in the gauge fields i:{g:,} . This leads to the equations

of motion

| » b C MY
%M‘ FQ/'A + éﬂ be A/* F vM = 0 (1.34)

1.3 b) - The Matrix Representation of the Gauge Symmetry
Let e

1¢q = _,é& c,ﬂﬂ

where a‘“. are the Pauli matrices.

We may now define the matrices

- a q
and A/* - /ﬂ/“ T } (1.35)
F;u.v =F o T°

Let
G ='_ggeﬁp {}u)“ 7‘q}’
where {W“} is a set of three real functions of
space and time.

Then

el ]

and (1.36)
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Under the transformation

Au > G—"A/u_ G + 67 G (1.37)

we have

Fuv 2 6™ Fuv G (1.38)
Since

ot = Trr { F;Mv F#v}
we have

L 1 |

(1.39)

The theory is invariant under such a gauge trans-

formation.

1.3 ¢) The Hamiltonian Formulation -

The connection between the Lagrangian and Hamiltonian
formulations is made easily if we use the gauge symmetry to
transform. /40 to zero.

In this case we may define the conjugate momenta

s§L 9
a _°2= . ‘
E} "SDQAQ‘ - | ;0 A} (1.40)

Thus the Hamiltonian density is
= E% 3 A2 - L

= {-2E3EY+ FF 4] (1.4
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1.3 d) - Operators and States

The general form of gquantised SU(2) gauge field theory
can be described in terms of twelve operator counterparts
of the gauge field. The operators are {(’ﬂ/:Q}‘

We require these operators to be self adjoint and to

depend on the four coordinates of space and time, i.e.
' o
(Ad = (AT = (AL (2, 2)) (1.42)

In addition we require the twelve operators to commute

at any.instant.of.time, i.e.
E(A}: (»95’)‘5))) (AvbC#, tN]=o0 (1.43)

The operators at any given instant of time, T say,

have simultaneous eigenfunctions which we denote by
1 {A}, €2
(Au’x, t) | {A},t>

= Au (x) [ {A3, tD

(1.44)

The set éA} is a set of twelve functions of space
corresponding to the eigenvalues of the gauge field
operators at. that particular instant of time. By analogy
with the derivatives of functions we may define the operator

- |
derivatives of the operator (/64~ ), i.e.

(3w Ap D = Lim  § LA (x45x))

§x 0
—(A: (x-%8§x))]+ 530’“3 (1.45)
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From these operators we may construct the field

strength operators

(FEin) = (Qu AL -(59p AZ)

+ é"'bc(A_tw)(Acv) (1.46)

1.3 e)  The Path Integral

To be explicit it is convenient to use the gauge
A L
invariance of the theory to transform C A o (X ,t))

to zero.
The theory is then described by nine operators at

each point of space time,. {(A 1, (29, t)>} The

d

eigenfunctions are then
1{A3,t>

(A% €, e1EA3,t> = ALl {A}t> w.am

and

<EAL tILAY >

= Mx,j,a 5(/3“(%%/\(;“%9 (1.48)

The general matrix element becomes

< {ﬁ“}, t"' {dl}) t1>

For infinitesimal intervals this becomes



N,f’lfﬁ,gi,q d E; cx)_p,,,/.,{oE“c:O[Af <g,93 A Cx)-}j
x (=07 H{ ﬁ}) | (1.49)

where N. is a constant, formally infinite, and H{E/,A}

is the classical energy.

Evaluating the integral by steepest descents gives

Na mz%/ {é ?Jaﬁagg i(%[ﬁ\; ‘-A}@ )% M )}(1 50)

We may integrate this up to the form of the finite-time

interval matrix element.

Then
<fA"st {A'Z,,t?
j" ,j)q OIA-"*')q(_%D
X <{/4"3 toa'{A(n\)} tcm)>
x <187 £ ) { 40, £
o x GAY, £ {4‘} >
C{AL (4]t
= TMyjb § (A}""’(;) - At )

< {414}) t”' {/jM)},‘t(m’>

(1.51)

=Ty b SCAP (= Af Peyd)
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As 2v¥ goes to infinity,

< {A(itl)j) t('h‘“)l {ﬁ(*)}) t’(fluJ>

= Nz%[t?ﬁ/a& f;("‘[/‘fh')a -A; 4@‘,( 2,9 4/4?}%3;/4(%@]}

(1.52)

where N4 is a constant, formally infinite.

As we take this limit we may rewrite egn. (1.51) as
" ] 4 1
<4 Lt'1{a},t'>

| = pd vE =) ‘,q GJI4
: xfio%[ f’azﬁ/; L0 3 A,zc;,w,/?fg,w}
% scA m-/z (x, O] SLA; cx,w-Ac;"cz,qJ

(1.53)

where DJ is a formally infinite constant.

rd‘J 77 2 x /u,qy d/d{LA‘ (x, z)

xm/w{i, al'z:jo/; (3 Ag G2, Ay, )
x A2, t)] J[A;q(g)-»/l;(;)t")] SLA] z,2-Alex)]

(1. 54)

This form of the matrix element can be related to the
general matrix element independent of gauge. This manipu-
lation is well known and will be used later.

The method of steepest descents implies that the

dominating functions in this integral are those which obey
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the classical equations of motion:

%Fa’“”-r e“"c‘A/AbFC"“v: o (1.55)
where
b
F;«p = QMA:“Q;;A/: *GQB%‘/A A; (1.56)

We may wish to include source fields in order to

generate additional matrix elements. In this case the

equation of motion becomes

Ju Fo%4 ey b Fer?y ga» TITT IR —
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1.3 £) Gauge Fixing
q
The gauge fixing term , ﬁﬁ)a)t g EAa (,%,'C)J

occurs naturally here since the connection between the
Lagrangian and Hamiltonian is made in terms of the
conjugate moment of the theory. This obscures the fact
that a general gauge fixing term may be added to gauge
independent path integral to avoid the complication of
integrating over gauge equivalent paths. There are
difficulties in fixing the gauge absolutelyG. If this
..can be done, gauge invariance may require it to include
a further term resembling a Fermion field — the Faddeev-
Popov ghost field'7 .

The important aspect for the latter sections
(especially Sections 4 and 5) is the effect of the gauge
invariance of the theory on the end-points of the path

integral.
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1.4 CLASSICAL EQUATIQNS AND INSTABILITY

Two examples of instability in SU(2) gauge theory
will be described. These are illustrated by two sets of
classical solutions to the equations of motion. The first
set involves solutioﬁs with a static charge source. These
solutions, which are generalisations. of the Abelian solution,
are energetically unstable and can always be perturbed to
give a solution of lower energy.
The second set of solutions behave like waves. These
are derived as generalisations of the Abelian wave solutions
and indicate that the eigenfunctions of the field operators é

corresponding to the Abelian wave solutions are gquantum

mechanically unstable. These solutions are equivalent to
those already found by Coleman 8 .

In both cases the origin.of the .instability lies in
rotation in gauge space. The resolution of the problem
seems to involve the relationship of the quantum numbers

of the theory with the local gauge symmetry.
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2. CHARGE

One of the first problems in electromagnetism is to
determine the field due to a static charge source. This
is so fundamental to our understanding of electromagnetism
that it should be important to examine the. corresponding
problem for classical SU(2) gauge theory.

The equations which we need to solve, in matrix

notation, are

E&k Fﬁﬂ*"= :r.v

where Tv - é‘”o e (2.1)

p= €%x>T?

Apart from the insight into the classical version éf
the theory, these solutions are relevant to the path-
integral formulation of the quantum. theory for states with
no magnetic field. Zero magnetic field means that we need
only consider the operator (Ao) which requires only a

charge source in the exponential term of the path integral.
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2.1 THE PROBLEM

In the equations (2.1) let us take the very simple

case of
ecx) = ST (2.2)
The equations can then be solved by
- '
Ao =25 T

A, =0

(2.3)

This is a simple form of the Abelian solution to
SU(2) gauge theory. It would élso be possible to take a
number of 6 -function sources, all orientated so as to lie
in the’1—' direction of gauge space. This would have a
superposition of the Abelian solutions from the individual
8 -function sources as a solution.

The equations (2.1) allow for the existence of point-
like charged objects interacting via a lﬂrz-force law. In
SU(3) theory the corresponding objects could look 1like
unconfined quarks interacting through a . ) /ar*-force law
in addition to the conventional |} //ra'-forcedue to their
electromagnetic charges. This is so unrealistic that it
has prompted the formulation of a generalisation of gauge
theories in which these_solutions no longer exist 9 .
Rather than take such a large step,. we shall remain in
SU(2) theory and examine the stability of the Abelian

solutions.
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2.2 . STABILITY OF ABELIAN SOLUTIONS

2.2 a) Strong § -Function Source

The stability of the Abelian solution for a strong
§ -function source has already been examinedlo. For
sources equal to a S—funcﬁion source times a large constant
it has been found that certain small variations about the
Abelian solution grow exponentially with time. The constant
describes the strength of the source in comparison to that
of the gauge coupling (here taken equal to unity). Abelian

solutions for strong & -function sources must be unstable.

2.2 h) - More General Sources

It is possible to f£ind the solutions from the analogy

with electrostatics. Let us set

T s §"%acx) T' (2.4)
in equations (2.1).

The Abelian solutions have the general form:

Ao =y T

AL = O (2.5)

where -Vz.f, = y

Apart from these it is possible to find other solutions

which have lower energy and have field strengths which in

11-18,33

comparison are screened . Previous alternative solutions

have limitations. .Instability might be demonstrated-for
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13
strong sources or the lower energy solution may be
18
expressed perturbatively in terms of the source strength .
Unless there is a three-current source in addition to

the charge source of equations (2.1), the magnetic field

does not Vanish15'16’l7; though this does not hold if a

discontinuous transformation has been introducedls’lG.
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2.3 GENERAL PROOF OF INSTABILITY

In this section a general proof that the Abelian
solutions of equations (2.1) are unstable will be de-
veloped. It is valid for all continuous charge sources
which do not depend on time. Many discontinuous sources
can be treated as the limiting forms of series of continuous
sources and the proof is valid for each member of such
series. ' A related treatment of a configuration of § -
funétion sources has also been devéloped.lg.

Solutions to equations (2.1) are related to solutions
of the equations

F:AA!)

Du F7" 72 T®

(2.6)
TYz2 8%° () T' ’

The two sets of solutions are related by a gauge
transformation which is independent of time. In general
this transformation may have a topological singularity'zo.
The Abelian solution to (2.6) is given in egn. (2.5).

New solutions to (2.6) may be generated by‘tprning on a
small additional external current :I;,E , and then
turning it off again. These new solutions have lower
energy and have screehed field strengths. In the extreme
case there is a new solution with zero energy and complete
screening. The proof that the Abelian solutiong are

unstable with respect to these small perturbations is

independent of the strength of the large source.
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2.3 a) General Form of the Perturbation

We shall seek a solution to equations (2.6) which

preserves some of the properties of the Abelian solution

(equations (2.5)).

The new solution ha.s the form

Ao }-‘¢f

-I 3.
F
wheré. ? =;(a§) e SV(2) (2.7)

¢ =_~'¢q(§) T

Ag

-Vig = o) 3¢z T g )

These fields obey the equation of motion

P“Fuv = 8000 T' + Tn"

where (2.8)
‘7—»5 = }-‘E o P, ¢J§*
Since ¢= ¢(§’ » JBE = 0O

To make J—DE arbitrarily small, we must restrict the

magnitude of the component of &p¢ which is perpendicular

to ¢ . This may be done by making } vary slowly with
x . In the limit where j is constant we obtain the
L 4

solution (2.5) globally transformed.
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An alternative method is to make ;- vary rapidly

with i(; . As we will see in an explicit example, this

allows us to make v S & arbitrarily small.



35.

2.3 b) A Specific Perturbation

Let us choose ? () to be a rotation about the T's

direction
B2 = Teoo% + 2 T2ain %2
where (2.9)
X = X ()

Equations (2.7) define ¢
&
-7 = oI T'covet + T ado ] (2.10)
This can be solved by
2
¢ - ¢,T"" ¢z T
where "Va"¢. = & coo (2.11)

and -v? ¢&= o aim X

For a given o (%) these equations may be solved using

Green's functions. The external current becomes

& ' !
0}05=T3E¢ 9“¢ ..¢ 9«‘¢3J (2.12)
To give a limit which is symmetric and has continuous

fields we take

= o((‘b"):lﬂmz'/v’ -of 27 ML < (2m+)) 1

= -,amay— J.f (2m+)) TTE AP 2l +1) T0
(2.13)

3
where o= A ~3; iz x".'.xzz...xsa
and os B £ 7

€
The limit in which U‘v goes to zero is that in

which aﬁ; goes to infinity.
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2.3 ¢) Tields and Interaction Terms

The Vector Potential

A;’= 2 3.;;«
= 9y & T3

(2.14)

The Scalar Potential

Ao‘}-.t¢'T'+ ¢3Ta.]3’ - (2.15)

where = Vz¢' 2 O cood
and - V3¢a = ook

We may Fourier decompose MO(

0
L t(V) = 2 . S i Clam+D2]  (2.106)
m. s
where
27
S =, AV oin [(2m+1) 0] sin

e
q'
L
1

R g
x Mﬂ/zfo s i [tmet V22 u]
i cos (%2 cao/“) (2.17)
L CO@P/ZS ol/u. ain[tm+ Y2) u]
“x ain (Pl con )
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§oaprds, = [vid*ds

0
=& Sm § 2 wime [Cam+ DA dg
o0 .
= %:o swj,,.z. ol &0 D (2.18)
Ty aime[ (2 ms DA 23]

where

Yoo
o, &, W) oin §

.

YNAN

Pomope
Grr=§ 019-5
o ¥

N _
If ©° is non-singular so must be ©% (4 . For large

,&, in this case

Tomont
j rioda Flad [ 2m+1) A37%]

Toram,
goes to zero (proof in Appendix 1), i.e.

595 Prds; 20 as A >0 (2.19)

z .
This can only occur if ¢-?O everywhere (proof in
Appendix 2).

Now

5435 [Q& ¢"jz= "jds?é ¢a 72¢2‘ (2.20)

also ' Vz' ¢& l S o

i.e. ’72¢1' is bounded.
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Thus 50‘325 (o, ¢z)t -» O

as A = 0O
ie. WP > 0 as A > © (2.21)

Next let us Fourier decompose €O :

0

cora(V) = C+ & Cm cOd92mp (2.22)
M 3

where.

c=c(p) ";FS dv cova ()

= % mp/zjaivmcp/zmw

T wo p/2 [0 (p/2) + To (-p/2)]

1

coo p/2 Jp (P/z) (2.23)

and

Ca=Cm(p) = ‘:',',‘S; Dooc2m/u cood
am
= % coo /2| A o0 (pa cogu)conmu

+ 5 MF/ZS al/w MC,B/Z coB ) cod MM

(2.24)

If mp 1is even,
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Cm (B) = coop/a { Tm (B/2) + Tm (-p/2)] (O™

= 2({,)""00-:),3/2 I (F/ZJ (2.25)

If AW is odd

Co (P) MF/Z{J'W (F/Z) - %(—F/z)}(&)m--n

2 C&)”""M/e/z T (/2 (2.26)

Jm, are Bessel functions. 7

Por the same reason as before (Appendix 1)

Tomosn

Sr A2 o) coo (2m Aad) =20 as AP0
mimy

Thus —jb,; ¢' JS;, -» c(P)jo‘clagg (2.27)
The Abelian solution obeys
-V*y =0

Thus

[to,p=couplds, »o

ab /ﬁ, > o0 (2.28)
If we define J# = ¢"" C Y then

X0 and 5&%“’Oas /&,—?OO

for the same reason that



P*>0 and QP30 = A > 0
Thus ¢5hﬂ)' C ’V
and o ¢' -2 C 9 SU

ad A = O

We may write the scalar potential as

A°= }~IE¢I -rl + ¢1T233’

wmere @r1ap 0 ; I, PP O
' decy; LB > CoY
ao AQ.-? 7,

If
f=0, c(pd)=|
if T
~ 0O ar - __-L= b
P ) C(pd w_ialv[: % %]
N'—%Pa
if

p=1, cc/e)r-o

40.

(2.29)

(2.30)

(2.31)

r,“,HA*.A____._MUM.
1
|
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The External Current

Tu= Flomd 214
= T-3 { ¢z §M¢'“ ¢l ‘}“¢z} (2.32)

Substituting for ¢ " %/“_ ¢') ¢t %“ ¢a

~gives

P |
T = 0 o A0 » (2.33)

The Magnetic Field

Since A& = 2" Q&?

F;,} =06 | (2.34)

" The Electric Field

Fio= g~ Ca@'T'+ o, @2 TZJ?
- ¢ 3& Y ?#IT'? as ’A" o0 (2.35)

The magnitude of the electric field is reduced by

the factor & (/G) with respect to the Abelian case

12¢3 0
for , (2.36)

osps ™



42,

The Scalar Interaction

This has the form

Hys= -Zjop,’e Tﬂ‘{AaEJ-o*J_aEJ}
= -2fds Tr{g '[9 T+ T 190 T'}
=J‘o‘3;§ [9'o covet + o aim

Sy o cood as A3 2.37)

H;s may also be written as
Hig2 -fd’z [ ¢' Vg + ¢‘ vigi}
= fd’x (B @T*+ [3:9°7%
= 2 Hg
where Hg = "j"‘s% T {LFald*]

i.e. }{E is the energy associated with the electric field. |

,mw____wwum
i

(2.38)

" The Vector Interaction

st-zjalagf, Tr { A 35§
= [’z {2et C¥* 8- 5, 227}
="‘S°,3£.°({¢1 Vz¢:_ ¢|V&¢Z}

-)-cfda% Y « Lok v A3 O (2.39)
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The Hamiltoni

The total energy of the system is
H = -fo/sz Tr [Fo,; Foi + i‘/'”;d' F".d.}
> 3 ¢ [d% (G y)?

as k=«0 (2.40)
from egns. (2.34) and (2.35)

Now the energy of the Abelian solution is
3 2
Hawt = % [ol’x (2 )

Thus as k -» @0

H-> ¢* Hatel
If /3= 0 H = ffaiwl
,3~0 H "’[l;'az/sz] HW (2.44)
ﬁ:?f H=0

from eqn. (2.31)
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2.3 d) Interpretation

In the limit where & ~» 9@ the solution with
,e =2 Q is identical to the Abelian solution. If /6
is small the new solution has an energy close to that of
the Abelian solution, but less than it. We may conclude
from this that the Abelian solution is not clasically
stable. The solutions with lowest energy are those with
/6 =7 . In this case the electric field produced by
the source disappears. The energy of this completely
screened solution is zero.

There is one aspect of the problem of which we have
not taken account. In concluding that the Abelian solutions
are unstable, we have assumed that no conservation law
prevents them from decaying. A spinning top is an example
of a system which, when analysed in terms of energy, looks
unstable but is unable to decay to a state of lower energy
because of the conservation of angular momentum,., It has
been suggested that similar considerations apply to SU(2)21 .
As @ increases the perturbation which we have intro-
duced causes a rotation in gauge space with a frequency
which likewise increases. This could violate the conseﬁvation
of some form of spin in gauge space. This question of gauge

spin will be examined in sections 4 and 5.



46.
3. WAVES

Having discussed charge in SU(2) gauge theory, we
must next discuss waves. The simplest form of wave
solutions are the Abelian waves. These solutions to the
classical SU(2) equationé of motion correspond to dominant
paths in the path integral which lie in an Abelian subspace
of the Hilbert space of the gauge field operators. If there
is a single energy eigenstate in this subspace, then part
of the spectrum of SU(2) gauge theory mimic that of
electromagnetism,

To gain greater insight we will introduce the

additional gauge degrees of freedom. The relevant

solutions are found to be those already discovered by S

Coleman8. These correspond to dominant paths in the

path integral which lie in an extended subspace containing
the Abelian subspace} These paths allow states in the
Abelian subspaée_to decay to states in the extended
subspace outside the Abelian subspace. No state in the

Abelian subspace 1is stable'against‘this form of decay.
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3.1 ABELIAN WAVES

3.1 a) The Abelian Subspace

The Abelian subspace is defined here as the space
spanned by eigenstates of the gauge field operators ‘such

that

(A (x, t) | (A, £

3 3
= Sui §TTA AL T (3.1)
The operator equations of motion for the subspace reduce
to
|
3 -
(a, 90 A, ) - O . (3.2) |
2 A3 2 23 A% -
(36 Al-23, A’-92; A )=o0 (3.3)
3 -
(9,0. A7) =0 (3.4)
3
(9,9, A7) =0 (3.5)

These have the solution
(A3)= joled%{«(% w) @
L Atk wyettet AR
x §[A4,] §Lw*- A*] (3.6)

We denote this subspace by the set of states {1,07}

~ifwtrdox]
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3.1 b)  Matrix Elements

Let us restrict our attention to this Abelian
subspace of the theory, and consider S-matrix elements

between states in the subspace. These elements are

-L(H)t’

<A:l!e 0’}

We may evaluate these by the path-integral method.
The contributions from the various paths are dominated
by those paths corresponding to solutions of the full
classical equations of motion. Let us consider paths

which remain in the Abelian subspace. For these paths
"3 3\2 3\*
(H)= _21_—_SG‘£{<90AI) +(92~Al)

+ (33 A%)*S (3.7)

The classical action for these paths is
I 312 3" %
‘J L.c/t: = -EiS‘quc i’l: QO /4 n:] - EQZ-/qi :]

- [ 33 -Af]z} (3.8)

The dominating contributions, found from varying the

3 _ '

action are paths described by /4, (x, t) which obey
the same equations as gauge field operators but in terms

of functions, not operatdrs , i.e.
3,% A’ = o (3.9)

3 : 3 3
da A= 31 A - LA =0 (3.10)




J,9.A%=0

2, A% =0

It is apparént that if the only paths which
contribute to S-matrix elements between states of
the subspace themselves remain in the subspace, then
the classical limit of the time evolution of the
subspace is the same as for plane electromagnetic

waves.

49.

(3.11)

(3.12)
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3.1 c) - Energy Eigenstates

To gain insight into the true time developmént of the
Abelian subspace we go back to the operator equations
(3.2) to (3.4).

Suppose there is an energy eigenstate in the Abelian

subspace, i.e.

Ly >: (H) Ly> = Eplyd>; 1y> €710>F (313
Now: .

C(r), (A2)]=-i (30 A2) (3.14) |

So

CHV)(“(/,&,W))*I Y > =‘(E(,,+w)(°<(/ﬁ.)w))rl V> (.15)
and

(H)(x (A, wDly>= (Ey - WX (A, W) y> (5 16

Since energy is positive definite its eigenvalues must
have a lower bound. The subspace must contain a minimum
energy eigenstate if it contains an eigenstate at all. call

this lowest state

| 02,
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The operators & (/ﬁ,) w) T and X (wg:) w)
are creation and annihilation operators for the energy
eigenstates of the Abelian subspace. They have the same
form as those for plane polarised photons in electro-
magnetism. The state |0  is then the vacuum of

the Abelian subspace.
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3.1 d)  Conclusions

The dominant paths in the path integral which lie
in the Abelian subspace are described by the same equations
as plane polarised electromagnetic waves. In addition
the operator equations of motion.on the subspace have
solutions whose Fourier components may act as creation
and annihilation operators as in .electromagnetism. It
follows that if there is an energy eigenstate in the
Abelian subspace SU(2) gauge.theory should contain the

spectrum of plane polarised photons in electromagnetism.
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3.2 . NON-ABELIAN WAVES

It is possible to find more general wave-like
solutions to the free equations of motion by expanding
the form of the Abelian waves to .take account of all
three gauge degrees of freedom. These solutions
correspond to those found by Coleman 8, and are
seen to be the dominating paths in a second subspace
of the theory. This subspace contains the Abelian
subspace defined in. Section 3.1.

The dominating paths allow transitions between
states of the Abelian subspace and states of the new
subspace outside the Abelian subspace, i.e. they allow
states of the Abelian subspace to decay into states

outside it.
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3.2 a)  The Expanded Subspace

The expanded subspace is spanned by eigenstates

of the gauge field operators such that

(AL (2,8 | {AS, T2

= S AT I{AL TS

The operator equations of motion on the subspace

reduce to

(3,9, A7) + € P (AP (A =0
(36 A" =3 A- a5 A7) =0
(3, 3, A7) + et (A°)(Af)=0

(3, 9, A%) + €t (AP (a5 A5)=0

(3.

(3

(3.

(3.

(3.

17)

.18)

19)

20)

21)
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3.2 b)  Classical Solutions

In the path-integral formulation we may once
again consider paths which remain in the subspace.
The dominant paths are then described by functions
which obey the same equations as the operators on the

subspace, i.e.

330 A% + € AL A =0 (3.22)
3:/4,0' - 9:/4,0"'9: /4,q = O (3.23)
2, az A,q + Eqbc/],b 92/4,&= ) (3.24)

d, I3 A.q + eQbCA,b 93A,°= o (3.25)

In order to solve these equations we first transform

/4, to zero. The equations now become

a
9> A, =0 (3.26)

c b N

80 9, Aaq + &qb AO a[ AO
o b c
~ 0z 9 A;’ ~- & bcAz d A,

b c
=039, Ay - €% A3 9 A =0 (3.27)

2 ,q
9, A, = O (3.28)
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u
0O

3% A,"

(3.29)

where

Al = g7 € (o, 2, 3) (3.30)
Lu F o F fm‘/u )%,

a
[ /4. is now zero].

Equations (3.26), (3.28) and (3.30) imply that

o
A = =%, 205 + Bl (3.31)
where
a‘ o(/“a = O = “'q
and (3.32)

Let

3 /x,-o = h | (3.33)

= apa_ - ’ 3.34
fu= fT = h duh 220
[from egn. (3.30)].

Equation (3.34) implies that we may gauge transform

/§*¢ to zero without loss of generality, i.e.
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/']/ua= ;"Q«gz %o'r-/u & (0,2, 3 (3.35)

/ﬂﬂz = —upc,cf;:

where

a a
9,0(/4 = O = X,

(3.36)

Egn. (3.35) implies that

Su Ay = 3y A + [ A, 4] =0
for M, P E (0,2,3) (3.37)

Substituting from eqgn. (3.36) gives

=%, [ u "(»q - Jy "‘/“QJ

b
+%e " ot = 0 (3.38)

forum,» €(0,1,2,3)  now,

b b o _
"%, K, =0 (3.39)
and

u Xy - 9y, =></«.=O (3. 40)



Egn. (3.39) implies that

a _ a
G€A4 = c§A4 Ve &>
where
mem?=|

Substituting into eqgn:. (3.40) gives

L ou oty "av"(/“J m*

+Loumeofy = o, mix,,] =0

and
du MUKy ~ 9, M %, =0

Egn. (3.44) implies that

and egn. (3.45) implies that

Su M= Nl

58.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

41)

42)

43)

44)

45)

46)

47) -
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Substituting eqns. (3.41), (3.46) and (3.47) into

eqn. (3.36) gives

and

Substituting eqgn. (3.48) into (3.27) gives

2
[ o2 «x - 3,5 X = I, d]/ﬂ«q

+ [{0ox}*- { .~ {35292 A = o

Using eqn. (3.50) gives
2 & 2
aod"‘ 920<"' 830(""0

and

[Iox] = [0,4]*-Casx]*= 0

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

,,,,,,,,,,
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Using eqn. (3.49) gives
du 9 = 0
and
[oua][%=] = ©
Eqgn. (3.54) implies that
o (%) =jol"’f> e P& (py §Cp
Note that this means that
Ea((x)]z=JJ+P 0/1'7 g PrErx

x X (p) X (;) S(/oz) 5(;‘)

= (d% d*h et F 50w

(3.54)

(3.55)

(3.56)

x SCA*- z/o‘zﬁ,)é?(/:) 2’((43;-'/:)

= [d*4 e""&'x{jcll',: §(p®

K §(A-2p- AIXPIX AP 57
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Substituting egn. (3.56) into egn. (3.55) gives

oxfdpdy py TP

X 5<c/o> & (;) J(/o‘) J(;*)

=jol",o d "4k p-A e‘*"‘ac,am (4-p>
x §(p*) 5(/&2-2_/0-/&)

<[dth et L 2] [l scpv

xS(/ﬁ.z—vaﬁ)o?(/O);( (/ﬁ—/o)} (3.58)

Fourier decomposing eqn. (3.58) gives
/szo/"’/o 5(/0‘) S(A?- z/o%)

x&'('p)d(/ﬁ.*/v) =0 (3.59)
Comparing eqns. (3.57) and (3.59) indicates that the only

values of /&. which contribute to [;<Ax)]2‘ through

the term
fa/l;o S(p";)c?(/k"-— 2/0'/&) o?(/ODS'( (4670)

AR
are those for which =0 ; l.e.
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2/0-/& =0 (3.60)

> p= LA (3.61)

The simultaneous solutions to both (3.54) and (3.55)
are characterised by a specific direction of propagation.
We'éhbse this to be the 3-direction. In this case, we
may substitute the solution of (3.54) and (3.55) into eqgn.

(3.48) to give

o

Au = =2 m* Qu X (T) | (3.62)
where

T = i?-Jfa

and (3.63)

n= ni(x)

This has the same form as the solutions already found by
Coleman 8
These solutions may be gauge transformed to the gauge

where only /4}q are non-zero. In this gauge
- a q 4=

A, = 4T = ?9,?

AP AN AeS

= -, X(¥)m(r)T? (3.64)
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3.2 ¢) ' Halpern Coples

Let us consider two solutions of the form given by

egn. (3.64). The first is

A/u""" g/ul ; al;-’

where ; =?(7‘:) ) : ;-I a‘z’; ==X, "(a('b) Tq (3.65)

The second is

A A A

/4/4.‘ 5/0";9!;

-1

where ;" -.-;f‘ (x,,7) :J!‘-larj = - X, 8(«(?:) T (3. 66)

and

XUDT=h (v %) T4 (1) (3.67)

for some gauge transformation /k(?f)

Eqgn. (3.65) gives
Q q -
Fo, = g X)) T ? = -~ Fa, (3.68)

and eqn. (3.66) gives
A -

Fo, = §§“<t>T“§" =;”,Aa<°cr)T°‘/A‘;,

N
= - Fy, (3.69)
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It is clear from eqns. (3.68) and (3.69) that the
field strengths of the two solutions may be gauge
transformed into one another.

The gauge fields themselves cannot in general be
transformed into one another. To see this we note that it
is possible to gauge transform the first solution to the

form

Bu = Suo Bp + Euz B3 = I’I"A/uh + h7'du h

where }
Bo = =~ ﬁga 2 —;z,,4£c{q T"{4€-'+ ¢4Q 92{—4@
if (3.70)
h:i%d

We may transform the second solution to the form

A A A A A A, A
f;a s §/40 Ago + é;us 433 = 0?'1<iu<é? + C? éL‘
' where
;éo = -}§3 = -—:Z,é?q 7—q
- -, AT A (3.71)

The X, and 7 dependance of /3/“ and ,8/« implies that they

are not gauge equivalent unless 5‘345 =Q or /;&'("rq/&.;a(qr.v
If /éa and /gu are not gauge equivalent, the two

solutions are Halpern copies (ref. 22). In general,

Halpern copies have field stengths which are identical or

can be made so by a gauge transformation, but which arise

due to gauge fields which are not gauge equivalent.
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3.2 d) Decay of Abelian States

Let us choose a particular example of two Halpern

copies. The first solution is

A = Gur A,
where

A= é’“"/_«zcw

?-la‘t’;' = —-1.,0(“(’8) T°
where

K2(7T) = gq3 afF

This is an Abelian solution corresponding to a
dominant path in the Abelian subspace.

The second solution is

A/u = g/uz ;\ al 7”
where

A A
da‘ = }?“(x,) z) ;"977 = =2, R TURCTE)
and wh.e’re/k () is a gauge transformation such that

hom  A=2TI ; bm Iy Az o

t -9 =00 -0

Tt is clear that as € -—2=90 +the two solutions

converge. The first solution is a dominant path in

(3.72)

(3.74)

(3.75)



the Abelian subspace, whereas the second solution
is a dominant path in the extended subspace starting,

at T = -0 + in the Abelian subspace.

66.
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3.3 CONCLUSIONS

It is clear from Section (3.2d) that the dominant
paths in the extended subspace correspond to Halpern
copies of the Abelian solutions propagating along defined
rays in space. Each such Abelian solution corresponds to
a dominant path in the Abelian subspace, and corresponding
to each such path there are an infinite number of Halpern
copies which approach it asymptotically as © ~» = e@
but which diverge into the extended subspace at later
times.

These Halpern copies provide paths for the decay of
states in the Abelian subspace. In the quantum theory we t
would expect these paths to .provide mixing between states ]
in the Abelian subspace and other subspaces of the same -

form but set at different orientations in gauge space.



|

68.
4. QUANTUM NUMBERS IN A LOCAL GAUGE THEORY

~ A QUANTUMLMECHANICALZEXAMPLE -

The classical solutions describing static charges
and plane waves are seen [Sections 2 and 3] to be
complicated by the effects of rotations in gauge space.
It seems sensible then to examine the quantum numbers
associated with such rotations and this is simplified
if a quantum mechanical case is examined. A more general
approach will be developed in Section 5.

In this section we will construct a quantum .
mechanical model which possésses a local [i.e. time-
dependent] symmetry. This avoids the complications due
to a field theory. The techniques used in the three-
component harmonic oscillator provide the basis for
analysing the model. The gauge symmetry is found to
give a.constraint on the quantum numbers. This is to
be expected from the Lagrangian which is required to
include a term resembling a Lagrange undetermined

multiplier.
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4.1 THREE COMPONENT HARMONIC OSCILLATOR

This system is simple and straightforward but has
the additional factor of spin which is not present in

the one-component theory. The Hamiltonian is
2 2
(H) = ${ (7" )*+ w*(E°)*} (4.1)

This corresponds to a classical action of

L=3{3°8"- w* 3T (4.2)

The operators (77%) and (]Eq) are time-
dependent, self-adjoint and act in some Hilbert space.

In the classical three-component harmonic oscillator
we obtain the equations of motion by requiring the
variation of the action with respect to the fields to be
zero. In the quantum theory we obtain the equations of
motion by imposing commutation relations on the operators.

These are .

. cab
L), (B en]=-i 6
(4.3)
COmeee (Me)] = 0= [(Zed), (B°(e))]
and
LOH), ()] = =i (93"
(4.4)

C(H), (] = =i (3T



Equations (4.3) and (4.4) lead to

(77‘“) z (9 ﬁq)
( a;.jz-i) - - 002'(3§q)

Up to this point the only change from the
one-component theory is the additional index on
the operators.

Spin can now be introduced. Define
($%) = e*be (FEH) (T

Equations (4.4) and (4.5) imply that
[(H), (5] = =i(3,5D =0

In addition, equation (5.3) allows us to write
COs™), (s*)] = -% €%%° (s9)
Defining

($)*= (S5™)(SV)
we conclude that
L(S)? (s*)]=0

C(s) (H)]=o0

70 .

(4.5)

(4.6) i

(4.7)

(4.8)

(4.9)

(4.10)
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Since ( 7Tq) and (gfq) are self adjoint
SO are (H), (sq) and (5)2 . Equations (4.7),
(4.8) and (4.10) imply that we may choése (F1>, (-53)
and (5)1 to have simultaneous eigenfunctions.

We may also introduce the ladder operators
: . ~2
¢S¥) = (8') *i(S?) (4.11)

By considering the effects of these operators on
the simultaneous eigenfunctions we may deduce that the
2 2
eigenvalues of (S) and (53) are discrete

We may write these eigenfunctions as

| A, o, £3>

where

(H)| A&, 0, 03> = Egol K, .0,.0%>
(S| 4,0, 0%>= 006+ R, 0, 0%> (4.12)

(S A, 0, 62> = 0| 4k, 0,03

The labels A and A2 are both either integral

or half-integral, and

0§ 03K 0
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- 4.1 a) ' Fourier Decomposition

aQ
We may Fourier decompose (£7) :

-cta b : '
(ED = (k) e T, (x)teiwt (4.13)

Equations (4.3) and (4.5) then imply

ab
C(x®), ()t ] = 0 S (4.14)

The operators (X“) and (&%)T allow us to
construct a Fock space. We expect to build energy
eigenstates by the action of . (dq)‘r on the wvacuum.

Equations (4.4) and (4.13) imply that

E(H)) (x*)] = ~w (O(.q)
(4.15)

LH), (x)T] = o (x)T

This implies that

w (DT 0> + (xDTH)I0>
(4.16)

(H) (x*)T ] 0>

(w+ EQ) (X)) 10>

where 102 is the vacuum state and has energy E,
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4.1 b) Spin in the Path Integral

We may gain more insight by rewriting the
Hamiltonian in terms of spin (see ref. 24 and 25).

Set

() = (B)(m*)
where

(m)(m?*) = T

<§ ) and ( /fba) have simultaneous eigenvalues
q
which are obtained from the eigenvalues of (f )

Then

(5)* = (8) (9, m*)( 3o m?)
Let

(1) = (3, &)

From equations (4.2),(4.18) and (4.19)
(M) =3 {()*+ w* (B)+ (5)°/(2)§

The path-integral formulation for § -matrix

elements between states of the form | R , D, 032

~gives stationary action for paths which obey the

equation of motion

(4.17)

(4.18)

(4.19)

(4.20)
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9o & = - wW*FE + o(o+) /B? (4.21)

This is in agreement with the equations of motion
for qu .

This discussion of spin_is gquite general. It
is a consequence of introducing three components into
the harmonic oscillator. There would be no distinction
drawn here between the quantisation of angular momentum

or of isospin.
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4.2 - THE Q-MODEL

There are three major differences between SU(2)
gauge theory and the three-component harmonic oscillator.
SU(2) gauge theory is non-linear, possesses a local
symmetry and has operators dependent on all four space-

time variables. In this section we construct a model

which enables us to examine the first two of these three

differences. By limiting dependence of operators to the
time variable alone, we can examine the quantum behaviour
of the theory through canonical quantisation. We shall
call this model the Q-model because of the similarity
of certain spin operators to the charge operator of other
systems.

We shall examine first the structure of this model
in a global form before making the symmetry local and so
creating the Q-model. The Q-model has the property that

it is equivalent to spacially invariant SU(2) gauge theory.
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4.2 a) The Global Model

Classical Definition

The classical system of interest here has

the Lagrangian

@ aw
L= - iﬁ Qbuz: G
] ] a
Q&Av P Gy = - é%;av
and (4.22)
a - 9
G oL ~ <ao fsg

a abe b c

There is a deliberate notational similarity to
SU(2) gauge theory. At present we shall ignore this

and examine the model as defined by eqgn.(4.22).

' Classical Solutions

Eqgn. (4.22) gives rise to the classical

equation of motion

a bc b ~¢
ac G.QJ - eq B& G"‘J‘ i (4.23)
The theory has an 0(3) x SU(2) global symmetry
with corresponding constants of motion.
The: quantities

4
Q' = €°b° B'Z Go: (4.24)

v
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will be particularly important. From eqns.(4.22) and

(4.23) we see that
a
00 & = O , (4.25)

The triplet of constants ZQ“} we shall call
Q-spin.
We may find a solution to eqn. (4.23) by using the

ansatz
a _ 9 Paf
B A € H }3 (4.26)
Substituting egn. (4.26) into egn. (4.22) gives
q a P «
Gob"e& aOPP

(4.27)
a

- + 0 a 2
Guj= B
Substituting egn.(4.27) into egn. (4.23) gives

éaLF 3:/8” - - EGL} F%/@*/Bf' (4.28)

or

% pr = -pFLpI" (4.29
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Egn. (4.29) is the equation of motion for an

anharmonic three-component oscillator.

Substituting egn. (4.26) into eqgn. (4.24) gives

a'= et e eVl p?

(4.30)
- =
= & P?’/@f’aa/gz
We may further simplify eqn.(4.29) by writing
/gl° s g//rzf’
where (4.31)
mPlf= |
Substituting egn. (4.31) into egn. (4.29) gives
2
aoX/l’LP-f— 2 aoyaonp
(4.32)
2
ty 9o ml = -y3imf
i.e. ;:X r y mfos mP = -y?® (4.33)

and e""cfzaoym,f&om?+{m’°&:m7’}=O (4.34)

Egn. (4.34) is equivalent to egn. (4.25) with this

ansatz.
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Substituting eqgn. (4.31) into eqn. (4.30) gives
€Nt nfo,m? = GL“/XZ
Since eqn.(4.31) implies that
n¥ o, m¥=o0
eqn. (4.35) implies that
30 Nn° = e¢avu° qu’qzvyﬁrz
Thus

n°3: ne = ETN o, nT Qa/&(z

u

- Gl“¢5tq/2yf4

[using egn. (4.35).]

Substituting into eqgn.(4.33) gives

Wy s Pty

where
;Za' = qu<3Lq
2; is also a constant of the motion.

The classical Hamiltonian corresponding to egn.

(4.22) is

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)
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$06.:1" +4 LoyT
H=3 [Gocd + % EG“"J (4.40)

Substituting eqns. (4.22),(4.26) and (4.31)

into eqgn. (4.40) gives
E = (a,,(y)“ + ?‘/f‘ t Tyt (4.41)

where E 2 14 is the energy of a solution. Naturally,

for a solution,
0, E = 0O (4.42)

Thus solutions which obey the ansatz, egn. (4.26)
are characterised by energy and Q-spin. They may be

written as

B%, = e f P
where /3
/sf =y nl : mPnf = |
and l (4.43)
t :jol{fE-'é(y"-;‘fzf'/z
4 nfa, nt = Q"'/Jz
with
Q’a’ = ‘2;2 Py Q% = o y

a @3
For simplicity we could choose Q. = S
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Quantum Mechanical Form

The Hamiltonian opérator of the quantum mechanical

form of the global model is

(H)= #2(D31(P%) + (@'Eﬁ(ffqaj)}
where (4.44)

(6%) = €77 (B)(BY)

The canonical quantisation conditions are

[(pgcen, (B} (e)] = -i5"5,
L—(P'Zét)))(P;(t))] = O (4.45)

CCBY (), (B ()] = ©

The time development of the theory is determined

by

[CH), (B5)] = -1 (2 B))
and (4.46)

L), (P = (o, 7;)

These lead to the operator equations of motion

(Di)=(9031>
and (4.47)

(2 B%) = (B(B)(BY)
- (B(B5B.)
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The global model has quantum numbers associated
with the full 0(3) x SU(2) symmetry. In particular

the operators for Q-spin are

(@ - cabe (5;.)( P;) (4.48)

Eqns. (4.47) imply

C(H), (@] = =i(3R°% = 0 (4.49)

Eqns. (4.45) imply
- b
e (@®)]= "5 €° “(as) (4.50)

If we deflne (a)z- (aq)(aq) then equatlons

(4.49) and (4.50). imply that

C(a)* (@®)] =0
and ’ (4.51)

C(RE (H)I =0

In exact analogy with the three-component

2
~harmonic oscillator we may arrange for (H),(Q), and

3
(Q ) to have simultaneous eigenfunctions . We

shall denote these by

| A, 2, 2°

where
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1]

(H)| 4, 9,2°> % Epg Ik, g, 2°>

"

(G.)ﬂxk,?, 23> }(zﬂ)l' zk,?,g?’? (4.52)
(a®| 4,9, 7”? =;3 | /k,;, ;3>

With

-Z .§?3\<? (4.53)

The labels ? and ;3 are again both
integral or half-integral.

In this model Q-spin is a manifestation of the
global SU(2) symmetry in the same way that the angular
momentum is a manifestation of the rotational invariance
of the three-dimensional harmonic oscillator or of the
hydrogen atom. It should similarly play an important

part in our understanding of this system.
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4.2 b) The Q-Model

In order to make the global symmetry of
section 4.2a) into a local symmetry, we must
introduce quantities which have indeterminate
time development into the Lagrangian. These
guantities have some of the properties of Lagrange
multipliers. There are three of these, which we
shall call Boq and introduce by changing the

a

definition of 6‘55_ in egns. (4.22).

The Q-model has the classical Lagrangian

and " (4.54)

In the matrix notation

-

B/«_"B/MQTQ

The local gauge symmetry of the Q-model can be

expressed by the transformations

B, - 9" BL?
Bo 2§ BeG T g

ere = g(t) € SU(2)
wh ; ;()

(4.55)
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These transformations do not alter the
classical Lagrangian.

The Hamiltonian operator is
(H) = 21‘,.{ 2(D%)P%) + (G‘QLJ)(G”T;J)} (4.56)

The absence of conjugate momenta for the Boq
and gauge transformation of egns.(4.55) cause
difficulties for canonical quantisation. These
are eliminated if we choose the gauge where B: = O,

In this gauge the canonical quantisation relations

are

ab
E(P;“(t)))(sd‘.’(w)] = - 808,

[cod (e) (P;(t))-] = O (4.57)

[B2% (t)), (3; (] = 0

TheSe'are'equivalent to egns. (4.45).
Time dependence of the o@erators are determined
by eqns. (4.46) leading to the equations of motion (4.47).

In this gauge we may define Q-spin by
a abc b °)
(a%) = € (BJ)(PJ\ (4.58)

which is identical to eqn.(4.48). The arguments used in
Section 4.2a) imply that we may choose to describe the

energy eigenstates as
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| £, z, 3%

which obeys eqns. (4.52.)

This provides a valid description of the
quani:um version of the Q-model in the gaucje where
(B,) =0 . As the physical content of the
theory is independent of the choice of gauge, it is
at first sight identical to the physical content of

the global model of Section 4.2a). The difference

- is due to the classical equations of motion which

arise from variations in the classical action caused
. » » " ’ q
by variations. in the - Bo- .

In operator form this equation of motion is

abe b ) =
e (B})CQOBJ) o

ie. (A%) = O (4.59)

Thus the energy eigenstates must be of the form

| 4&, 9g=0,3%=0>



87.

The constraint imposed when the global SU(2)
invariance is made into a local SU(2) invariance
is exemplified when classical solutions are sought
‘which obey the ansatz given in eqn. (4.26). The
solutions for the global symmetry correspénd to
solutions to a three-dimensional anharmonic oscillator
fean. (4.29)] with Q-spin corresponding to angular
momentum [eqn. (4.30)]. TFor the local symmetry the
equations of motion can be made identical to egn. (4.29)
but with angular momentum, i.e. Q-spin, limited to
Zero.

Since the Q-model is identical to spacially
invariant SU(2) gauge theory, a corresponding
constraint should be expected in the general form

of SU(2) gauge theory.
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4.2 ¢) Interpretation

The Q-model is one of the simplest systems with
a local SU(2) symmetry. Because the operators depend
only on time, we can quantise by imposing canonical
commutation relations. (egns.(5.24)) in the gauge where
the eigenvalues of = ( Bg ) are zero.

Once this gauge has been chosen it is possible to
define the quantum operator for Q-spin. This is
quantised for the”samé reasons that spin in the three-
component harmonic oscillator is quantised and is a
manifestation of the global SU(2) invariance. The
additional complication that this global symmetry is
one aspect of a local symmetry means that the eigenvalues
of Q-spin are zero (eqns.(4.59)). .

The Q-model has been chosen to be equivalent to
SU(2) gauge theory with gauge fields independent of
space. In other theories spacial independence is taken
to imply that we are dealing with a system in its rest
frame 26 .. For SU(2) gauge theory the question of its
rest frame is complicated by the fundamental Lorentz
covariance.

However, the Q-model does describe the large
coupling limit of SU(2) gauge theory. If we reintroduce
the coupling constant by rescaling the gauge fields and
take the limit where size of the terms in the coupling
constant swamps the spacial variations, we obtain the
spacially invariant theory. The derivative with respect
to time must be retained in order that the conjugate

momenta may still be defined.
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The constraint imposed whenbthe global SU(2)
invariance is made into a local SU(2) invariance is
exemplified when classical solutions are sought which
obey the ansatz given in eqn.(4.26). The solutions for
the global symmetry correspond to those for a
3-dimensional anharmonic oscillator [eqn.(4.29)] with
Q-spin corresponding to angular momentum [eqn.(4.30)].
For the local symmetry the equations of motion can be
made identical to eqn.(4.29) but with angular momentum,
i.e. Q-spin, limited to zero.

Since the Q-model is identical to spacially
invariant SU(2) gauge theory, a corresponding constraint
should be expected in the general form of SU(2) gauge

theory.
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In quantum mechanics a global symmetry may be used
to relate S-matrix elements, with important consequences
for the structure of the theory. Likéwise in SU(2) gauge
field theory we expect S-matrix elements to be related by
the gauge symmetry.

In Section 5.1 the general form of the S-matrix
elements is obtained. There is little new in this and the
section is included only for completeness. In Section 5.2
the equality of certain S—-matrix elements is deduced as a
consequence of the gauge symmetry. This is a more
powerful result than for a global symmetry'as could be
expected.

The equality of these S-matrix elements allows for
simplification. When analysed in terms of angular
dependance in gauge space most S-matrix elements seem to
vanish. This is demonstrated in Section 5.3. The states
with non-zero S-matrix elements have a simplified form
which has a similar structure in gauge space as the
hydrogen atom's s=0 states in real space. This effect is
due to the ambiguity in the time evolution of the states
inherent in the local symmetry and indicates that the
gauge must be fixed in path integral calculations in
order to obtain a well defined dynamical evolution.

In section 5.4 the effect of the global symmetry is

examined and in section 5.5 a comparison is made with



electromagnetism.

The results are summarised in Section 5.6

90.
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5.1 GENERAL FORM OF S~MATRIX ELEMENTS

We may write the general S-matrix element in the

gauge where {(A:)} is zero [cf. eqn.(1.54)]

<f/,ﬂ"}) t“] {/j'f) t'>
S 44
=NJ| T W,)Ma ,,//}: (%, t) ;,74,1:4: S{AT]

t=t' =

¢ SLAS 0] §[ A" - Al iz, )]
XZ‘S [_-AJ“?ZC,) - AJ "(;g, t,>J

Let us choose some gauge transformation

(5.1)

hex, ) @ hex,t") = 1T = hiz,t’)
(5.2)

o h(x,2")= O =05 h(x, t")

and define

th) _ (Wa a
Bu'= Bu " T

h"B/u h +h"§«h

1

(5.3)

- 4

Egn.(5.2) implies that
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(5.4)

Substituting egns. (5.3) and (5.4) into eqgn.(5.1)

gives

<{iA"} t"lf/‘f'})t?
N [T A BAEnenf [ 55 8YY]

e=t’ x, Ma

x §[ Bz, 0] SLB, (x,t']

le'S[A “ex) - J(x t")_]ng (%, t') = A 2]

<t (h) b
b SEBo (?) /t)j (5.5)

xT
>t P



P! o~ . PR — SR

(h)q q
Now the integral over 1sj77‘ o/

as the Jacobian of the 'transformatlon is unity and

the classical action is also invariant so we may

write

CTAS t"1{A') >

93.

NS Mo e o 8 B0 (2,8) anfl [ 51871

X §[/§;“(x) - Bu (x,t")]

x §LAu"(x) - Ba (2, ¢9]

<t“

h) b
X ’Z‘;;t' 77;_5 5[5 (;,’L‘)_-]

Since A;q(f_@) =0 = /40" "(;3,':)

oy
Let us define A as

<t

A f 7Tc/w (x,t) 5[83‘752: )]
et %,

Where

x, 8> = 2ok f gt TF

(5.7)

FFF —
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We may write Bo(g) as
B, 7’ = (A3 2, (/&f)

for some gauge transformation /ﬁ(}lﬁ, t).
In addition, as integrating over db%a integrates
over the entire gauge volume, it is irrelevant whether
. o a
we integrate over o/w; or o/&{ *’07) .

Thus we may rewrite eqgn. (5.7) as

<8 5
-/ = P i -] Q 1
a gt, Tx, a o/w; (x, t) S[Kj ao;f ] .
|
A is now seen to be independent of B: L

We may also note that

< t"

/4 Myb of i ® <fA"Lt | §A'S 'S

Ty t!

= KL{AS " FA5 D (5.9)

since the matrix element is independent of the
integration. Substituting egn. (5.9) into (5.6) we

obtain



95.

(fﬁ"}) t”[{d’]) tl>

£
= K“N‘ ZT: a, u 0/5 (z,%) ‘W%V[“ ‘S{B}J

~J

x § [Atz)- Ba x, )] §LAL ) ~ Bu (8]
<tll

x |\ T "/70%5 0/6045(;;}?:) 5[3“':5(},?)]

T>t

K-JA“’ N, 77 ﬂﬂ,q 0/4:(5} t) %[0 SZA.U

=t X

) S[Auq(x) /iu‘q(%,f“)]

X 5[%q(%?“4qqfi.‘,t'>] (5.10)

fusing edgn. (5.3)].
as K and A are constants they may be

absorbed into the normalisation so that we may write

STAS,t'IEAS,
J’?f Mo A A 2,80 anf [ 5147

(5.11a)

X 5[/4/4'0'25 ,4/:(1,‘5").7

« SLAL @ - 45 (2,8

i
i

'
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We may generalise this by defining

CTA"LE"I{A'L >
. ﬁjﬁ‘tf@%a oA Au (2,8) -%%L—L S§AF]
X S[A/M"q(5> -—/i: (x,2")]

X S[A/’ua(?é) - /}/Z (Zéat')] (5.11b)

Egn. (5.11b) is the general gauge independent form
of the S-matrix elements. As this form containg an
implicit sum over all gauges, it is not useful for

conventional path~integral calculations.
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5.2 EQUALITY OF S—-MATRIX ELEMENTS

Let us choose some general gauge transformation

and define

B/“?) = B/Z’)‘" T

1]

783t g9

A/u (5.12)

Substituting into egn. (5.11 ) gives

<r{r/4|t}) tJll f/4l})z:u>

A ¢
ST Ty o 8P, £ of [057B89]]

X §[z§,zi"(zg) - Bu?x, "]

' I q 7)4 /
X S[A/u (x) - B “(x, ¢t")]
(5.13)
Once again we note that the Jacobian of the gauge

transformation is unity and that the action is gauge

invariant, so eqn.(5.13 ) gives
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CTA"L t" 1 { A}t >

t”
S AT Ty s dBE 2 suh [15183]
X 5[/‘1‘,:’“(35)—- B/q(?)q(fs)t“)j

X 5[/‘;‘2“(%) - B/ﬁ)q(g,t')_] (5.14)

Let

Au (X) = Zf?"/f’;“”(z);_*i'@“;”pt"
(5.15)

and
Au @ = {3 A g 2572 g 3 s

Now

6L A 2 = BT (x,27]

= 77’75[{;‘@,#’)[@::“( B (x 73"’-7;"‘ tQ}J(s 16)

The right-hand side of egn.(5.16 ) is zero unless

’\U L
A equats Bu'x, ), 1.e
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WS AL x> - BuPlz, "]

= ’qu[/l:«“q(?é) - 5 (z,t")] (5.17)

Substituting eqgn.(5.17 ) into (5.14 ) gives

<‘{/4lti)t:llé:4; t'j >

t” = ] .
Z{,tl7Té)/”ﬁa1 0/63 (%)Z:) ~z??{[1£~52¥351
x8§[ A x> - Bacz, t“)j S[/I () - Bz t]

arE -
- N]gt,ﬂgj/%q oA A 2, 8) auf [i5245]
xS[/é\.,”"(z) J(x, t )ch Aut2) - /ﬂzfi", ¢2(s. 1)

Comparing eqn.(5.18 ) with egn.(5.11 ) gives

CEADTIEAS 2>
= <A EAT D (5.19)

where the eigenvalues of the initial and final eigenstates

are noted by eqn. (5. 15).

r,,.,__.._.,_‘__w“w,‘.
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F - ~MATRIX ELEME
Let us choose a function Z(;g/t) such that

30;/,;”, = aaflt,tu =0 (5.20)

In this case the effect ofayzz;t) at t=t'and ?=t¢"may be

expressed in terms of functions of space, i.e.

Gt wp LT ] e [T ] enf [y Te ]
and (5.21)

02, 80 ek L T] ol Cp T D anf Ly 73]

Following eqgns. (5.15) and (5.19) we may define the

states

L EA“F ot g5yt 27> [£A4"3, ">

(5.22)

and

[EA' L, By 20> = 11473205 (5.23)

The functions a(,",(/'/s:’/s,’d"' and y’ are defined by a« (x,2)

which obeys egn (5.20) but is otherwise arbitrary. Thus
we may treat these functions as arbitrary functions of
space. These functiohs define sphetical rotations so we
may decompose states in egns. (5.22) and (5.23) as

typically
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[EA'S, < 85y 2>

l

7T f’(z) micx), rn’(:t) p,m m’(“’(z) ’[“)/J ("())
! / /
x [ {AS, L' m!), m'; T2

(5.24)

where ,('fz),rm’zz) and m%x) are integer valued functions of
space and each coefficient,Fui”‘at each point in space is
a matrix element of the rotation operator between

eigenstates of spin (ref. 35).

Inverting eqn. (5.24) gives

| {A'3 L, m) »n'; z'>
f77' of A ') o/[wo/ﬁ )] de’zx) [-”x)ﬂ

p*‘(/(w)m'(z) (0(’(%),/3'(3)/1'(%))

’/ ¢
x | EAS < plys 2>
(5.25)
where the integral is over
OLXUXIL2T; O SPURICT ; Oy xI<2T
4 o(’(gc)//s’(ac)) J’(g,c)

This form of transformation is quite common. A

similar device is used in the discussion of vacuum
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tunnelling (refs. 27,28 & 29). The state 1 {4 'J,fé:/mjm"t'>
s

is the weighted sum over all states with eigenvalues

related to f4f by a gauge transformation obeying eqn.
(5.20).

The state |f4"] 4 m a%?5>is constructed analogously
so that

VEAS, 45 s e, 27>
=j77_2‘ »((9‘) +IJ 0/0( ) o/[‘mﬁ”(x)] 0/{”("‘)

%L "ex)
XP7 ite mveyy (% x>, BRI, ytx))

X [EA™S ot g4 s 27> (5. 26)

Forming the S-matrix elements of the states in

egqns. (5.25) and (5.26) gives

SIAS, L m' m, 8V V€4S, £ o, m’;t'>
=jﬂ; Aot (X2 o/[:oo,@ "ez)] a/J/”(gg)

X ofx’cx) o/[cm/s’(z)] o/dv’(z)

2L x)u I’f"”’ v y oon
(4 J [ ”/}‘L" (d)ﬁ J/)

X P*f,.:'m' (] By 2 (5.27)
X <f,4",o(,/s, ENEAS By 20>
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Substituting eqns. (5.22) and (5.23) into eqn.
(5.18) gives

<{A"} 2 XL Byt I A BLyuit'>
- < {AHJJ t”' {A’j) t'> (5.28)
Substituting eqn. (5.28) into eqn. (5.27) gives

CEA'3, £ my s EVEAS, 2, miymt ;20>
= K {AS; L AT >
xf?f of o ) a{aoo/é”zx)] o//”(xJ ['( NH']
X ofx’cx) a/[m/& ‘ex)] o/J [ % QOH]

(5.29)

x V7. ,’,6,”/")ﬂ s & B y7)

AKX = mrex)
Mnx) =m’cx) = O

o, unless .£7x)
rm’(z)

. . a
by orthogonality and using Poo = |
4 /7 ) /
The states [I{A j, A, m,mn’; z >}
form a complete basis for the Hilbert space. According to
eqn. (5.29) the only states with non-zero S-matrix

elements are superpositions of the states

{l{A}l'Orm =0, m'=0 t>}
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We relabel these states in general as

|1{A3, 0,t> = | fA3, £=0, m=0,m=0 ;>

= [ Wy odetex dlecnpezr] o yexo
[ge(gho}a-l
b

8 r

x 1£A%, %, 8, x5 t> (5.30)

where
(Auex, tDIEAS,, p, ys >

= [;"A/ub(z’r) T”; +Z-:9/,ij° /t
x [{AS % By, T2 (530

and

glo = 22 [« Ts] waf [T] aaf Ly T
902’/{; =0

(5.32)
At first sight eqn. (5.29) may seem to violate
S-matrix unitarity. This is resolved in Appendix 3 where
this is seen to be a consequence of the inclusion of the

gauge degrees of freedom in the Lagrangian.

If the only valid states of the theory were to be of
the form given in eqn. (5.30) there would be serious
consequences. Lt is apparent that these states are a
gauge invariant superposition of states related by gauge

transformations. If the entire system of operators and
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states is gauge rotated then only the operators would
change. It follows that the expectation values of both
the field operators and of gauge covariant operators
between states of the form given in eqn. (5.30) would be
zero.

The flaw in this result is manifest in the
discontinuity in eqn. (5.29) as Z”’goes to Z’which is a
consequence of the similar discontinuity in egn. (5.19).
These discontinuities are due to the ambiguity in the
dynamical evolution of the states due to the local
symmetry. This ambiguity must be removed in order to
obtain a well defined theory.

In Appendix 3 the gauge degrees of freedom were
removed from the Lagrangian by a change of variable. In
SU(2) gauge theory the gauge dégrees of freedom may be
removed either by adding a gauge—fixing term to the
Lagrangian or by placing a restriction on the physical

states (refs. 3,4 & 5).
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5.4 EFFECTS OF GLOBAL SYMMETRY

If the arbitrary dynamical evolution is removed by
eliminating the gauge degrees of freedom then only the

global symmetry remains. The general form of a global

rotation is:-

.az,y{z[d Tsl ﬂ/,%/[/B Tz]ﬂ/yc[a’ T3] (5.33)

The coefficients d,/B&d/ are now constants. Following

eqn. (5.22),

I{A} %, B,y |
= (6o p,p)lf/l},t? Y [§A43;t> (5.38)

(G'(OQP,J)) is the rotation operator.
Eqns. (5.15) and (5.22) now give

SEA"I; T'EA'T, > v
'-'-<[/1"}a(,,8,1)2"1((/4'f°(ﬁ,{)2'> (5.35)

or <£/4:/}Ie-c(l'/)(t Z)l{”A 'Z>
= <A (6)T eI L6 EARS (530

T

or

(6)T(H) (&) =(H)

or

L), (6] =0 (5.37)

As expected the rotation operator commutes with the

Hamiltonian,

Following eqn. (5.24) let us write

[EAL Byt = Zpmm Pl Koy
x| tA3, £, m, m;t>

(5.38)
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Inverting egn. (5.38) gives
| EA3, £ m, o t>
7 v 27
[ o | dleaopd [ dy

Lt+)

X D% iy [ 77

x |§A3, o, B, 5 >

[ A< [ drmpd [ Ay
x P¥ (o gy [ 57
x (G (B ) | {AF; L2

(F:mn) If/?}j z> (5.39)

]

where
2n r (XU

L+

(Phn) = fdu [dlenpd | dy [T5
x D e 4 B2 (664 py)) (5.40)
Substituting (5.40) into (5.37) gives

. .
[cHD, (P )_7 (5.41)
Thus '

(H) (P ) EAT; 2> = (Pl )(HIEALED(5.02)
The labels 1,m and n do not change with time and so

must be associated with constants of the motion.
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Consider an eigenstate of the isospin operator
associated with the global symmetry, ’fl}/}/_,("/n?, which

has total isospin/[£4<£'+1)] with isospin m'along Ts.

(Plpn) lEy3, L >
a7 ™ 27
joaIO( i "I[”"/G]Sa a/()/

e+l

X 877-] p*tm.m (dzlszy)

X Zp Do () 1 E93, L, m >

St 8 St S 1 EWI, Ll me>
= § S | E43, £, m>

n

(5.43)
" Now |{A};t> may be decomposed in terms of the
eigenstates of the isospin operator. From eqn. (5.43) it
follows that ’{A?,/,A‘t,,«)is a superposition of states
with total isospin A/[.l[l-fl)] and isospin m along 73and is
constructed from components of |§A3;Z2 with total
isospin #LL(£+)] with isospin m along Ts-

1.e.

<iy3, L/ m ) EAY bom, m ;2>
=<yl 4 ml TAT; > 85 L

Thus IfA}/,/,/m’m>must itself be an eigenstate of

i1sospin
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5 PAR E GNET

Similar consequences to those in Sections 5.1 to 5.3
apply to electromagnetism, but with different
consequences. The same general arguments which lead to
egqn. (5.19) still apply but now there are no gauge
indices and the gauge rotations belong to U(1l).

The appropriate elements of U(l) are [cf. eqgns.

(5.20) and (5.21)]

7% z): 90; ’¢.¢l= 9:7’1::;:" =0 L (5.44)

cwlex)

dm(gg, z') = e (5.45)

FEEM VR giwnixd

The eigenstates of the gauge field operators are
1EA%, t>

(A (2, ) EAT TS
= Au (2 | {AS, 2

(5.46)
These may be relabelled in terms of the gauge
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rotations [cf. egns.(5.22) and (5.23)] as

1{ A} eo, t> : (4«(;5,'&))1{/1}, w, T2

z /E«lz) |£ A}, 0, T2 (5.47)
where
») ' 1 3ug |
é ,,,c;,o:a/}«m)-rf w3t

i.e. (5.48)

Egns. (5.47) and (5.48) give the general form of
the end-points with gauge rotations obeying eqns. (5.44)
and (5.45).

In analogy with eqn. (5.25) we may define the states

I{A}, A&, t>

e R X)) w(x)

s A"\ M dwezy € [{ALw, v>  (5.49)

The gauge symmetry implies that
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<{A"} o t"|{A'S wi t'>

s L{A"} T {A',@ t'> (5.50)

Egqns.(5.49) and (5.50) imply [cf. eqn.(5.29)]

CEAT], AT LAY AL ED |

A < fAR L ITA} D

n

2 f T ot of ez %é A txye'cx) - At} s o,

The only non-zero S-matrix elements occur between

states of the form

1A}, Azo,t> = K [L dwa 1§ A} w0, 8> an

States of this form are independent of gauge
transformations whose time derxivatives at time 17

vanish. By fixing the gauge we may examine the time
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development of the individual states which are summed
over in eqn. (5.52). Summing over these states does not
invalidate the results of computations in a specific
gauge., Since the non-zero S-matrix elements occur between
states of the form given in eqn. (5.52) , the energy
eigenstates must be independent of gauge transformations
whose time derivatives vanish at time t . Equation (5.50)
exhibits a similar discontinuity as t” goes to t/to that
in eqn. (5.19).

A critical difference between electromagnetism and
SU(2) gauge theory is that when the gauge is fixed in
electromagnetism there is no remaining global symmetry
for the gauge fields. This corresponds to the observation
that SU(2) gauge fields carry isospin, whereas photons
are uncharged. A second difference 1s that since the
electric and magnetic fields are gauge invariant their
matrix elements between states of the form given in eqn.

(5.52) are not forced to be zero.
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5.6 SUMMARY

In this section we have seen that the SU(2) symmetry
relates S-matrix elements of the theory. This allows a
simplification of the S-matrix elements. Most of these
seem to vanish in a way that suggests that most of the
states are fundamentally unstable. The matrix elements of
the gauge field operators and of gauge covariant
operators between the remaining states.vanish.

The origin of this result is the ambiguity in the
time evolution of the states due to the local symmetry.
This ambiguity gives rise to a discontinuity and must be
removed in order to obtain a well defined dynamical
evolution, leaving the global symmetry and associted
quantum numbers,

Similar considerations apply to electromagnetism but
here the matrix elements of the electric and magnetic
fields are not forced to vanish when the dynamical
evolution is not properly defined and there is no
remaining global symmetry of the electromagnetic gauge

fields once the gauge is fixed.
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6. CONCLUSIONS

The classical solutions to SU(2) gauge theory for
static charges and for plane waves are associated with
instabilities due to rotations in gauge space. The
quantum numbers for these rotations can be examined in a
special quantum mechanicél model. The local nature of the
gauge symmetry in the model gives rise.to a constraint on
the quantum numbers.

In the full theory stable states seem to be
constrained to be gauge invariant due to the way the
gauge symmetry relates S-matrix elements. This would
force matrix elements of gauge field operators and of
gauge covariant operators to vanish., This result is due
to the ambiguity in the dynamical evolution of the
theory inherent in the local symmetry which causes a
discontinuity. When the ambiguity is removed, the global
symmetry remains and is associated with its quantum
numbers.

Although a corresponding analysis can be carried out
for electromagnetism the matrix elements do not vanish in
a corresponding way énd there is no remaining global
symmetry of the gauge field operators once the ambiguity

in dynamical evolution is removed.
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APPENDIX 1

Proof that J(Q;_¢"JSL -2 0 as /&"?’0

0 Tomar
595, Prds; = Z_ Sp 5 T2 &) sim(2mr 1) A3 A

Tovin,
Let 273=4 ' Flr)=8cH); 0"(14) cannot

be singular so

o0
4
ocu) = z..:cr»o o

This series will always converge. Thus

- - o
ja,-, ¢2a,5b=%_'5m, o/ué o;eu ainC2m+1) B3y
- Umin

Let m= (2m+1)

Aom. o/u M‘M/m/ﬁ3 ( A>0)
A >0

/{WD ('m./ﬁ} ""f {Salqrar'ee”"’}

i, A I § d -t e
RO (0

1

;) ,
' =L =1 (Yt (uta-“dul
i (e A4 I { @47 5

Lim (A B aimt LT

& —50

L]

(&

Thus

ja.-. $2Jds; > O s A->00
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‘APPENDIX 2
Proof that @P%* «» @ as A >0
Assume that as /ﬁ,—)'o ' ¢z develops

a discontinuity. This means that ’V2¢tl must
increase indefinitely at some point. But | V2¢z' £ 101
which is finite. As we take the limit (2
cannot develop a discontinuity.
Next assume that as ,ﬁ,‘?‘o, ¢z develops

a local maximum on some region R . R can be
a single point. This maximum cannot be a discontinuity,
so there must exist an equipotential surface & around

R with ¢=Is = '¢alg_5¢a., We can always choose a
surface close enough to R that ¢"> ¢21$ inside S ’
and that Ifai ¢zo/ Si. I >O . This contradicts
the reéult of Appendix 2 that fa,: ¢z0/$£ -» O . Thus
¢2 cannot have a local maximum. Equipotentials of
¢2 must extend to infiriity.

H
At infinity ¢2 is zero. Thus¢"?0 everywhere.
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APPENDIX 3

S=Matrix Unitarity

Equation (5.29) seems to violate S-matrix
unitarity. To gain insight into this problem we

examine the quantum mechanical form of the CP(1)
model34.
The corresponding classical Lagrangian is
[z ¥Zs Zu][ 2 *Z,Z.]"
L= 2 EZL"- 2%3 P x:]EZZx —Zar Zay «
where (A3.1)
“ - . ) ‘.
Z¥Ziz ) o(,,s,d/éf:,zj

The quantum theory has operators (Z4(t)) and

(.zg(t))* . The eigenstates of these operators may

be written as f)x,)xz)#,)f“- t?} where

(Zx ()|, X,, S g5t
=[x +i 'a(Jlx:, xz;fui’z} >

and ' (A3.2)

(Zoe)t | 2, 2, 7 05
=Ex,¢-i;,(:llz., zz,y,,fzﬂ»

The classical Lagrangian is invariant under

the gauge transformation:
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A 4
Za 2 Z4= € Zy4
Zi ¥ Z2X= eV (A3.3)
where ® = @(t)

To make use of this symmetry in the quantum

theory we relabel the eigenstates in terms of the

angular coordinate 9‘ r 1l.e,

where

P2, 22, y') yzy 9} t,>’ = ’iléﬁz)fu il‘z)' z2

(p3.4)
Equations (A3.l),(A3.2) and (A.34) imply that

" ” 7] ”w ” ” ? ! ’ / / ’
<x')12)f1)/2)r9}°z,xl)ﬂleil.);zl 9jt>

<Az, 40 G EA, 2,490,405t
NjZL, d %, A 2,0 ol 51D oG, 23

x m/-/ EIAAZ);

§C2,(80-2) S(Ry ()= £/ 65,6 -5
 $(G(80- 5) 5(Z,(1) - 21 5 (2,()-3,)
< § (j,(t')-f,') S(;“,(t')-;;z')

where "

Scene): [ ot L0220 20 22
tl
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= Njﬁ‘ odx, (2) o=, (t) oly,(t) aiiz(t)

t=t'

x oxh fi S z')}

x §(x,(t)-x,") §(x,(t") - x;") X7 (t's’—/,”)
x § (4, (1) 'ﬁ’ (2, (V)-x") §(x,(t")-=x,)
x 5(}, zz')-/,') §(4, (%) 7,’)

where

2 () = Xy (T) coo B(T) - Yu (L) aim $(T)
gx(t) = Xu (t)am 9'(t)fy.,((t) coo 9 (t)
- and : ‘

G(t"")-'-‘  90}° 9(t1) - 9!

X cOd B -%,(" in 9"

_xo(n . 9/!+id1lm9”

b
- x\
u

N

z'/

. . *

sceie) s [ ot L(Ze,22 zu,22)
tl

= " ” ” ” " ’ y ’ ) ’ _
<z’)lef'/;2jt’zlzxz;/ufz,'z> (A3.5)
Since ® is an angular variable we may write

-iem @
/Z,) X,, ;,) 72) 9'} t> = Z/m'e i lx')zbyv/umjt>
(A3.6)

Inverting equation (A3.6) gives

’xl) xZ);,) yz} mj. t>
27 (A3.7)

5| do e ™% x, 2, Y1, 41, 955

o
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Equations (A3.5) and (A.37) imply that
<x, " ;’,,72,/»1” r’ lx,,xz); ;,,m z'>
-5 jwh» e f-LLm "= ' ]]
x <x," x, 7z y f’” , 8 ;”l x,' ;) y,’, yz g 9’,-t'>
<x," "z",;”;z"; 2" x,, 7,)/2/
< (5)’ /0/9"[0/59 h il D mj

= <x/)xz)/,)fz J tlllz,,zz)/,/izj t > 5/))1."0 Sm o)
(A3 8)

Equation (A3.8) like equation (5.29) seems to imply
that the S-matrix violates unitarity. The exXplanation
becomes apparent if we write
e+ X)
Z' = el ¢

-t x)
z¥: " on @
5 (13.9)
; -X .
Z, = 6Lw/ Msﬁ

el Y -%) .
zz’(r‘e ¢ M¢

The angular variables ¥, X and W allow us to

relabel the eigenstates so that

1x,, X, 2, 2 = 1 o X, ¢, t> (A3.10)



Equations (A3.4), (A.39) and (A3.10) imply that

'le xz; yl) yz) 9}. t> = Iy/‘f?) x) ¢). t>
Since 99 is an angular variable
Ly, %, @;t> = Z e i, x, ¢ty

and so

lm, X, §;t> - z—‘irfolye"”‘”zy,x P, t>

Equation (A3.7),(A3.11) and (A3.12) imply that

'a:L>J[2;v I)éyZ)'mn’Zb;>

—(m)J A9 e 12, %, 4,4, 952>
L) f 0/9 e"”‘919w9 X, @;t>

(zw)szZ/y et g x, Pt

e Im, X, §; t)

It

Substituting (A3.14) into equation (A3.8) gives

el:[/mhy/”"’”’l"/'/j
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(A3.11)

(A3.12)

(A3.13)

(A3.14)

" n ”" n ’ 4 l. 7
<fm)?é,99/-tlzm,)24,¢/t>

(A3.15)

=<y X, @it !, X, @D Sm” o Smio
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Let
2m

| X, @5, > = ?171fo/‘/’l$’67‘/9%t> (A3.16)
(<]

Equation (A3.15) implies that

<yl PLElyl X e
(A3.17)

(XL PL e X, PLe>

Equation (A3.17) implies that the apparent
violation of S-matrix unitarity corresponds to the
elimination of the 9? ~degree of freedom in the S-
matrix elements. Substituting equations (A3.9) into

the Lagrangian verifies this by giving
L= 7f [PT% [X]°[1- mZ;ﬂ]} (A3.18)

From this it is obvious that the S-matrix elements
must be independent of the ¥ -degree of freedom. No
informafion concerning this degree of freedom is preserved
as the states evolve and the S-matrix appears to violate
unitarity.

The energy eigenstates of this model must have
periodic time evolution and so must have non-zero S-
matrix elements. They must be composed of states of

form | X, ;ﬂj' L7 . The matrix elements of the
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operators ( Zx (t)) and ( Zy (t))f between such

states are zero, e.q.

<Kx", gt (z, (e x, ,t'>

( ) 0/%,,/ o/y/, ei(y/’+x')wﬂ¢/

oyl Xt @ty X, @lie>

from egn. (A3.16)

e e Pl Pt I, Pt
2m

X ("2"77)[ 0/5//’ C;'V/ from egn. (A3.17)
()

- ©

The other three operators behave similarly. This
means that the Fourier components of these operators
cannot be creation and annihilation operators for the
quanta of the model.

In SU(2) gauge field theory no information
concerning the gauge degrees of freedom is preserved
as the states evolve.'-The loss of this information is
the origin of the apparent violation of unitarity. A

similar result to equation (A3.19) also holds.

127.

(A3.19)
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