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INSTABILITY IN SU(2) GAUGE FIELD THEORY 

PhD. THESIS - ALEXANDER TODD GILLESPIE 

ABSTRACT 

Classical solutions to SU(2) gauge theory with a 

static charge source or with wave-like behavior are 

examined. In both cases gauge rotations cause 

instability. A quantum mechanical model with a local 

gauge symmetry is constructed. The quantum numbers of the 

model are constrained by the local symmetry. The S-matrix 

elements of SU(2) gauge theory are analysed in terms of 

angular orientation in gauge space. Most S-matrix 

elements are found to vanish in a way that indicates that 

most states are unstable. This result is due to the 

ambiguity in the time evolution of the states inherent in 

the local symmetry and it indicates that the gauge must 

be fixed in the path integral for a well defined 

dynamical evolution. When the gauge is fixed the result 

reduces to the conservation of quantised isospin. 
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PREFACE 

The subject of this thesis is the Quantum Field 

Theory of a form of instability which occurs in non

Abelian gauge theories. It is found in SU(2) theory 

and should also occur in theories with higher gauge 

groups. In order to be precise we restrict attention to 

su ( 2) • 

The work started in an attempt to understand simple 

classical solutions either with a charge source or with 

wave-like behaviour. Rotations in gauge space are 

fundamental to the stability of the solutions, and are at 

least as important to the theory as angular momentum is 

to the hydrogen atom. 

The first section is a brief account of the relevance 

of classical equations to quantum theories and introduces 

notation and conventions. In the second section, the 

problem of classical solutions for static charge sources 

is examined. The instability of Abelian solutions is 

found to be due to gauge rotations. The contents of this 

section have been published1 • 

The third section deals with simple waves. Here 

again an instability due to rotations in gauge space is 

found. To gain insight into these rotations, a quantum 

mechanical model is constructed in the fourth section. 

This eliminates the complications of dealing with a field 

theory. In the fifth section a method of dealing with 
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these rotations in the full theory is developed. Many of 

the states appear to be unstable as a consequence of the 

local symmetry. This is due to the ambiguity in the time 

development of the theory inherent in the local symmetry 

and which also gives rise to a discontinuity in the form 

of the S-matrix elements. In order to obtain a well 

defined dynamical evolution the gauge must be fixed, in 

which case the analysis in terms of the remaining global 

symmetry generates the global quantum numbers. 



BASIC CONVENTIONS 

The metric tensor for Minkowski space is 

:: ( ' .. J-1 -1) J .) .) 

Unless otherwise stated, all repeated indices 

are summed over. Since SU(2) gauge theory is non-

linear, we have rescaled the fields so that the 

coupling constant is unity. The other fundamental 

constants are taken to be 

1i = I = c 

For typographical reasons, we will distinguish 

between functions and operators by placing the latter 

inside curved brackets, e.g. (f) is an operator 

whereas :I is a function. 

In certain cases it will be convenient to use 

a non-covariant analysis. A tilde below a character 

indicates that it has three spacial components, i.e. 

X= -

-.'' 

6 0 
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1. INTRODUCTION 9 • 

1.1 CLASSICAL EQUATIONS IN THE REAL WORLD 

Under certain conditions, classical equations of 

motion are accepted as being good approximations to real 

physical systems. This is one possible justification for 

examining them. Unfortunately classical equations possess 

difficulties for the description of bound states such as the 

hydrogen atom. A more sophisticated approach is that due 

2 to Feynman • This is the path-integral formulation of 

quantum mechanics and it may be developed to include quantum 

field theory. The path integral formulation asserts that 

the classical solutions to the equations of motion dominate 

the time development of quantum theories over the period of 

time from the distant past to the distant .future. The time 

interval involved must be much longer than any effective 

parameter of time in the theory. 

A slight modification may have to be made to this. 

Some account must also be taken of quantum numbers. These 

can be important if they determine whether a system is stable 

like the ground state of the hydrogen atom, or unstable, like 

the analogous state of positronium. If the classical 

solutions of SU(2) gauge field theory show signs of 

instability it may be fruitful to examine the quantum effects 

of the symmetries. 
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1.2 CLASSICAL EQUATIONS IN QUANTUM MECHANICS 

The role of classical equations of motion in quantum 

mechanics has been discussed at length for the case of the 

simple harmonic oscillator 
2 

• This example prepares the 

ground for the path-integral formulation of quantum field 

theories and many concise accounts of it are found in the 

literature on gauge theories
3

'
4

'
5

. The results are summarised 

below. 

1.2 a) Operators and States 

The system can be described by a position operator 

(G.) 

As positions are real numbers 

(Q.):: (G..)1" ( 1.1) 

Momentum is described by the operator 

(?) = (p)"t ( l. 2) 

These operators are functions of time and obey the 

canonical commutation relationship: 

{; 
( l. 3) 

The operator (Q (t)) is self adjoint and its eigenvalues 

are not degenerate so its eigenvectors must be orthogonal. 

We may standardise the normalisation of these eigenvectors 

to give a complete orthonormal basis of the Hilbert space 

of the theory. We denote an eigenvector of (Gt(~)) by 
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-- ( 1. 4) 

These eigenvalues are continuous so a sum over all eigenstates 

is expressed as an integral and the orthonormalisation of the 

states is expressed in terms of the S -function, i.e. 

(G..Q__.t r G.b_.t> = &fG.q- G.. b)} 
and (1. 5) j ol G..ct < G.c:w_.. t, I Q b.> t;, > = I 

Energy is described by the Hamiltonian operator 

( 1. 6) 

The time development of these operators is determined by 

[(H)~ (G.)] = 
C ( H)J ( P)] = 
[ ( H ) ~ ( H)] = 

. 
-c, . 
-(, 

• -" 
} ( 1. 7) 

1. 2 b) The Path Tntegral 

As the above operators are dependent on time, we are 

implicitly working in the Heisenberg picture. We may remove 

the time dependence to .the states of the theory by working 

in the Schr5dinger picture. The two pictures are related by 

(1. 8) 

and 

(1. 9) 



The eigenstate of the SchrOdinger representation 

corresponding to the state I G-J t;) is the state 

The general form of a matrix element is 

<o<"lo('> ... 

= <o<.,Ct:.'')l e-iCH>tt."-t:.'J/o<' lt')>s 
$ 

12. 

( 1.10) 

=J cl G." o1 G.' ( o< "l t ") 1 G. .. .><~~~ I.e_, ( H)lt''-t:.') I~·> 
. $ 

x <G..' I o< 1 
( t 1 > >s ( Lll) 

The time dependence of the theory is determined by the 

general matrix element 

<<a" 1 e- ~ c H) (t:."- t:/J I G..'> 
=<G.") -r;" J G..'.) -t;-1> 

~II .J-1 
Let "t' = v - c... • For infinitesimal 

element becomes 

<G..") t" I a.'> t 1 > 
~<a"ll-f[CP)a.+ w~(Gt)2.J--r; I G..'> 

( 1.12) 

this matrix 

( 1.13) 

Because of the commutation relations we may use the basis 

provided by the momentum operator (P(~)) to write this as 

( 1.13a) 

Evaluating this expression by steepest descents gives 

( 1.13b) 
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-'\. 

and Na are constants and L is the classical 

action, i.e. 

(1.14) 

J;or finite-time intervals let 

t (0') ;; t I 

t' ... ,=t'+~~ 
t (~): t I+ l'fV '1f;; t;" 

} ( 1.15) 

Then 

<G." tu/G.' t'> 
.) .) 

= j 11..,_ m; 0 ol G/4t.) <G./: 't 11
/ G}~~ 1/ (""'' > (1.16) 

X < G.C"""~ t (""-)I G. C~M..·•: t (...,..,) >x ···X ( G.'0~ t to) I G...~ t '> 
We note 

( 1.17) 

and 

( 1.18) 

As lfV goes to infinity, 

goes to 

N:~. ~ f;. L (-:!: c G.f-A••)- c;t<_.> ::1_. a<-A)) 1:] 
( 1.19) 

as before [(1.13b)]. 

As we take this limit we may rewrite eqn. ( 1.16) 

as 
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~II ~II 

= N f "{, t' .J G.tt) ~ { k"' ~ 1. r&.c~>~ Gl't:J)) 
x 6 c G- "- G- te"~ b [ att)- a./J (1.20) 

A. 

The constant N is formally infinite. 
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1. 2 c) Sources 

There are at least two reasons for adding a source 

term to the functional integral. One is relevant to the 

construction of the states of the theory and the other 

relates to perturbative expansions of more complicated 

systems. 

The position operator obeys the equation of motion: 

( G..) ... w .. ' G. ) = 0 ( 1. 21) 

This equation implies that it may be written in the form 

(1. 22) 

where ( o() is independent of t 

Thus 

(1.23) 

For some energy eigenstate 

If> 

(0() and (o() t are ladder operators for the energy eigen-

states. Note that 

a,1r/W 

c Co<)t]"" = { ~ S Jt e-•t.<,)t: (a £-t>) ],., 
() 

(1. 25) 
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The energy eigenstates are constructed from the lowest 

energy eigenstate by the repeated action of (Q(t)), i.e. 

lif>=Jolt,···Jtm.j(t, .. ·t......,) 
X ( Q l t, ) ) . . . ( G. ( tm,. ) ) I 0 > 

where 

and 

(H)IO> = 
(H)I r> : 

EoiD> 
E'f'IY'> 

E 'I'? Eo 
t, ~ t~~ ... ~ t.~ 

(1.26) 

(1.27) 

Since all states can be written as a summation over 

energy eigenstates, all states can be written in the form: 

lc<> ,. s J t, ... J 1;/IV 1f-< (t:, ... t:,.,) 
x c G. (-e.)) ... & ceht,) J o> 

for some choice of weighting function 

The matrix element 

< o< "l-t ")I o<' tt:'):) 
l s 

can be constructed from elements of the form 

( l. 28) 

These elements can in turn be constructed by adding a source 

term to the Lagrangian. 

Let 

' ------------ --- ---
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Then 

< oH 1 r { ( G ( -e, )J ... (~c-elt\.))] 1 o '> 

= (- i ) , $ '"- z I 
b,o(e,)··· &;t>(t:,.,) .o-=o 

(1. 29) 

where 

z ; z ( ,¢) ::: < 0 II I 0 I> 
calculated for the Lagrangian L I • 

The vacuum-to-vacuum matrix element for the Lagrangian 

J I I 
~ gives us every matrix element for the Lagrangian ~ • 

The second use of a source term is as a means of 

calculating orders in perturbation theory. The same term 

occurs if the Hamiltonian is perturbed to 

( 1. 30) 

where (\/} is a polynominal in (Q) . 

In either of these two cases the paths of interest for 

correspond to solutions to the classical equations 

of motion in the presence of an arbitrary source, i.e. to 

•• G. + w2. G.. :: .,o (t;) ( 1. 31) 
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1. 3 CLASSICAL EQUATIONS IN SU (2) GAUGE FIELD THEORY . 

SU(2) gauge field theory differs from simple quantum 

mechanical systems in two distinct ways. The first difference 

is that it is a multi-component field theory. In the 

Lagrangian there are many operators and these depend on 

both space and time. 

The second .difference is that the various operators 

possess a local symmetry. This may be expressed by the action 

of a unitary operator., defined at. each poi:nt.- 0f- space~t±me, 

which acts on the field operators in a specific way but 

which does not change the Hamiltonian. The interpretation 

of this symmetry is not entirely clear. 

In the following few pages we shall outline the path-

integral formulation of 3 4 5 
SU(2) gauge field theory ' ' 

This demonstrates the relevance of the classical solutions 

to the theory. Problems of stability will arise later 

which can be analysed in the path integral formulation and 

so it is sensible to be precise about the framework which 

we will later use. 

1. 3 a) The Classical Lagrangian Formulation 

The Lagrangian density is 

(1.32) 

where 

~A:- c)~A~ + e"'bc. A~ 
e r ') 2.J 3) 

c (o .. 1) 2.., 3) (1.33) 
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The action is 

and the equations of motion may be deduced by requiring 

the action to be stationary with respect to variations 

i.n the gauge fields [A;!. J . This leads to the equations 

of motion 

(1.34) 

1. 3 b) The Matrix Repre·sentation of the Gauge Symmetry 

Let 
• 

1'" = --i O'q 

where (7 01 are the Pauli matrices. 

We may now define the matrices 

and } 

Let 

6- "' .vxf { w• tq] 
where [ W qJ is a set of three real functions of 

space and time. 

Then 

and 

(1.35) 

(1.36) 



Under the transformation 

we have 

Since 

t = In- t ~u F~~J 
we have 

The theory is invariant under such a gauge. trans

formation. 

].. 3 ·c) The Hamiltonian Formulation · 

20. 

(1.37) 

(1.38) 

(1.39) 

The connection between the Lagrangian and Hamiltonian 

formulations is made easily if we use the gauge .symmetry to 

transform Ao to zero. 

In this case we.may define the conjugate momenta 

.. -

Thus the Hamiltonian density is 

J:f = E J iJo AJ - l, 

= iF f - ~ E j E 4J + F :; F q ;_; ] 

( 1. 40) 

(1. 41) 
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1. 3 d)· · Ope·r·ators and States 

The general form of quantised SU(2) gauge field theory 

can be described in terms of twelve operator counterparts 

of the gauge field. The operators are 

We require these operators to be self adjoint and to 

depend on the :f;our coordinates of space and time, i.e. 

(1.42) 

In addition we require the twelve operators to commute 

at any instant of time, i.e. 

(1.43) 

The operators at any given instant of time, t say, 

have simultaneous eigenfunctions which we denote by 

I [A)_, t; > 

The set [A] 

• • 

is a set of twelve functions of space 

corresponding to the eigenvalues of the gauge field 

CL 44) 

operators at that particular instant of time. By analogy 

with the derivatives of functions we may define the operator 
Cf 

derivatives of the operator ( Afo ) , i.e. 

~ { [(A~ca (~+4Sx )) 
• X. ..... 0 

-(A : ( X. - y2. ~X)) J.;. ~ x.""' J ( 1. 4 5) 



From these operators we may construct the field 

strength operators 

( ~v) = (~A )Jot) - (;)» A~) 

+ e""e(A~)(A'l)) 

1. 3 e) The, Path ·Integral 

22. 

(1.46) 

To be explicit it is convenient to use the gauge 

invariance of the theory to transform ( A "o Cz
1 
t)) 

to zero. 

The theory is then described by nine operators at 

each point of space time, [C A j (~J t)) }. The 

eigenfunctions are then 

• • 

(A j c~. t>) I [ dJ~ t > = A;"cz>l fdtt> (1.47) 

and 

(1. 48) 

The general. matrix element becomes 

For infinitesimal intervals this becomes 
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N, J 71f!:,J. q J E/(~) .enf { L E;"c;p[ Aj"c~~- A)"~~j 
x ( 1- t.1:' H {£~~ J) (1.49> 

where N1 is a constant, formally infinite, and H {.@J~J 
is the classical energy. 

Evaluating the integral by.steepest descents gives 

We may integrate this up to the form of the finite-time 

interval matrix element. 

Let tfo) = t, 
t (../c):: t; I + ~ "1: 
t ("""): tIT ~ 1::": t'' 

Then 

< [ ~"J) t'tl {~'l)t•> 
-J 11'"" rr J A (..,_,q - -«-~o ~Jj) elf ot ; (z) 

J< < l~"JJ 't"l { dc~'J_, tt""->> 
J( < [ ~ (~)J) t C~) I l d ( ,.,.,) J > t (,.,.,) > 
J( • '. X <{d. (O)J) t(O)' [dll.) t'> 

< l ~to> J.) t to' I [ ~ 'J J t '> 

-., tt)~o A'., ) 71#-JJ)& ; ( AJ <1) - 'J '1) 

( l. 51) 
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As '711 goes to infinity, 

where N a is a constant, formally infinite. 

As we. take this limit we may rewrite eqn. (1.51) as 

< f ~II].) t l I f ~I j) -t I> 
t" 

= N f1f.t· 7f~.J:1 o. JA/c~, t) 
¥ ~ [ ~. rJ ?:'I"'' '-( ~ A.t.~. "'' 1:), A}c;. ?:)j 
X s [. A~'q(") -A .ffl (~.> t")] $ c: Alq (3!_, t')- A~4 (2$~J 

q - (j "' 0 (1.53) 

where N is a formally infinite constant. 

t'' 
= Nj ~t' 1f~J~JQ J~ l~_,t) 

t" 

X Mjv{ i.}. J?: J Ji l. ( Jll A~'" lJ· ?')) A:u.CJ> 1:))] 

~ 6[ A;(~.) t)]J'[A~;·t~>-A1qc~_,t".il ~[ 1l(~_,t?-{-i~~ 
~ fF (1.54) 

This form of the matrix element can be related to the 

general matrix element independent of gauge. This manipu-

lation is well known and will be used later. 

The method of steepest descents implies that the 

dominating functions in this integral are those which obey 
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the classical equations of motion: 

(1.55) 

where 

(1.56) 

We may wish to include source fields in order to 

generate additional matrix elements. In this case the 

equation of motion becomes 

(1.57) 
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1.3 f) Gauge Fixing 

The gauge fixing term , 

occurs naturally here since the connection between the 

Lagrangian and Hamiltonian is made in terms of the 

conjugate moment of the theory. This obscures the fact 

that a general gauge fixing term may be added to gauge 

independent path integral to avoid the complication of 

integrating over gauge equivalent paths. There are 
6 

difficulties in fixing the gauge absolutely • If this 

can be done, gauge invariance may require it to include 

a further term resembling a Fermion field 

Popov ghost field 7 

the Faddeev-

The important aspect for the latter sections 

(especially Sections 4 and 5) is the effect of the gauge 

invariance of the theory on the end-points of the path 

integral. 
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1.4 CLASSICAL EQUATIONS AND INSTABILITY 

Two examples of instability in SU(2) gauge theory 

will be described. These are illustrated by two sets of 

classical solutions to the equations of motion~ The first 

set involves solutions with a static charge source. These 

solutions, which are generalisations of the Abelian solution, 

are energetically unstable and can always be perturbed to 

give a solution of lower energy. 

The second set of solutions behave like ~laves. These 

are derived as generalisations of the Abelian wave solutions 

and indicate that the eigenfunctions of the field operators 

corresponding to the Abelian wave solutions are quantum 

mechanically unstable. These solutions .are equivalent to 
8 

those already found by Coleman 

In both cases the origin of the instability lies in 

rotation in gauge space. The resolution of the problem 

seems to involve the relationship of the quantum numbers 

of the theory with the local gauge symmetry. 
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2. CHARGE 

One of the first problems in electromagnetism is to 

determine the field due to a static charge source. This 

is so fundamental to our understanding of electromagnetism 

that it should be important to examine the corresponding 

problem for classical SU(2) gauge theory. 

The equations which we need to solve, in matrix 

notation, are 

where 

~ f,Mo~ = ;r l) 
'T))~&VOf 

E' = ~GIC~) Tq 

( 2 .1) 

Apart from the insight into the classical version of 

the theory, these solutions are relevant to the path-

integral formulation of the quantum theory for states with 

no magnetic field. Zero magnetic field means that we need 

only consider the operator ( Ao) which requires only a 

charge source in the exponential term of the path integral. 
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2. 1 THE PROBLEM 

In the equations (2.1) let us take the very simple 

case of 

(2.2) 

The equations can then be solved by 

( 2. 3) 

Al, = o 

This is a simple form of the Abelian solution to 

SU(2} gauge theory. It would also be possible to take a 

number of & -function sources, all orientated so as to lie 

in the 1i 1 direction of gauge space. This would have a 

superposition of the Abelian solutions from the individual 

G -function sources as a solution. 

The equations (2.1) allow for the existence of point

like charged objects interacting via a 1 /tr~force law. In 

SU(3) theory the corresponding objects could look like 

unconfined quarks interacting through a I ;~&-force law 

in addition to the conventional ;,..a.-force due to their 

electromagnetic charges. This is so unrealisti.c that it 

has prompted the formulation of a generalisation of gauge 

theories in which these solutions no longer exist 9 • 

Rather than take such a large step, we shall remain in 

SU(2) theory and examine the stability of the Abelian 

solutions. 
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2.2 STABILITY OF ABELIAN SOLUTIONS 

2.2 a) Strong o -Function Source 

The stability of the Abelian solution for a strong 

G -function source has already been examined
10

• For 

sources equal to a & -function source times a large constant 

it has been found that certain small variations about the 

Abelian solution grow exponentially with time. The constant 

describes the strength of the source in comparison to that 

of the gauge coupling (here taken equal to unity). Abelian 

solutions for strong G -function sources must be unstable. 

2.2 b) More General Sources 

It is possible to find the solutions from the analogy 

with electrostatics. Let us set 

in equations (2.1). 

The Abelian solutions have the general form: 

where 

Ao = a.y T' 

A c. = o 
- va. r = cr 

(2.4) 

(2.5) 

Apart from these it is possible to find other solutions 

which have lower energy and have field strengths which in 

. dll-18,33 p . lt t' l t• compar~son are screene . rev~ous a erna 1ve so u 10ns 

have limitations. Instabili.ty might be demonstrated for 
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13 strong sources or the lower energy solution may be 

18 
expressed perturbatively in terms of the source strength . 

Unless there is a three-current source in addition to 

the charge source of equations (2.1), the magnetic field 

. 15 16 17 does not van1sh ' ' ; though this does not hold if a 

discontinuous transformation has been introduced15 , 16 • 



2.3 GENERAL PROOF OF INSTABILITY 

In this section a general proof that the Abelian 

solutions of equations (2.1) are unstable will be de-

32. 

veloped. It is valid for all continuous charge sources 

which do not depend on time. Many discontinuous sources 

can be treated as the limiting forms of series of continuous 

sources and the proof is valid for each member of s.uch 

series. A related treatment of a configuration of l -
f . . h 19 
unct~on sources as also been developed . 

Solutions to equations (2.1) are related to solutions 

of the equations 

} ( 2. 6) 

The two sets of solutions are related by a gauge 

transformation which is independent of time. In general 

this transformation may have a topological singularity 20 • 

The Abelian solution to (2.6) is given in eqn. (2.5). 

New solutions to (2.6) may be generated by turning on a 

........ ' small additional external current '-' ;.,.. , and then 

turning it off again. These new solutions have lower 

energy and have screened field strengths. In the extreme 

case there is a new solution with zero energy and complete 

screening. The proof that the Abelian solutions are 

unstable with respect to these small perturbations is 

independent of the strength of the large source. 
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2.3 a) General Form of the Perturbation 

We shall seek a solution to equations (2.6) which 

preserves. some of the properties of the Abelian solution 

(equations{2.5)). 

The new solution has the form 

where 

Ao = }·•r; 3' 

A~ =~-~d,j' 

! =I(~> e s v (1) 

¢ = ¢"<~' Tq 

These fields obey the equation of motion 

PAA- ~)) = &»o 0"(~) T 1 + J' ~ 1 

where 

3'.11 E : ) _, c d.~~ ; J ¢ J ~ 

Since ¢ :: ¢ C 1!J) J J"o 1 = 0 

( 2. 7) 

( 2. 8) 

E To make Jr~ arbitrarily small, we must restrict the 

magnitude of the component of ~~~ which is perpendicular 

to ¢ . This may be done by making 3' vary slowly with 

~ • In the limit where J- is constant we obtain the 

solution (2.5) globally transformed. 



with 

An alternative method is to make 

34. 

vary rapidly 

;c. - • As we will see in an explicit example, this 

allows us to make arbitrarily small. 
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2.3 b) A Specific Perturbation 

Let us choose ~ (~) to be a rotation about the lJ 

direction 

+ 2. T 3 AAhv o</.a. 
where 

D( (X) -
Equations (2. 7) define , 

This can be solved by 

where 

and 

¢ ~ tp'r' + r;a r~ 
- v~ ¢ ' = cr ~ ot 

- va ,~ = , ~o( 

( 2. 9) 

(2.10) 

( 2 .11) 

For a given c< (X) these equations may be solved using -
Green's functions. The external current becomes 

(2.12) 

To give a limit which is symmetric and has continuous 

fields we take 

o(:: o< ( V') = p ~,_N' vlj 2.111; 1r~ V( (2m.+ I) 11 

= -a ..wn,t~- v ;J. ( 1. nv .,. I) 1f-' ~ < .1. c nv + 1) rr r , <2.13> 

where ~ : _J_ .3 H' 3; ,-a : X,a. + Xa3.+ :x.f 
and 

-r .. ~ £ The limit in which v ~ goes to zero is that in 

which ~ goes to infinity. 

;----



2.3 c) Fields and Interaction Terms 

The. Vector Potential 

A;, = ~~-~ ~(; r 
= ~;, o( T 3 

The Scalar Potential 
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(2.14) 

A 0 = 1·• C fJ 1 T '+ f/J a T l. J 3' ( 2 .1s > 

-
17~ A. t = ~ ,. -.Jit. -' where r 'I' '-" ~ V\ 

and - V' </J.a = o-~o( 

.A~•MI. J We may Fourier decompose ~,v~ 

.0 
~o<Cv) = ~ s"" ~ccanv+f,l)] (2.16> 

'""' =C) 

where 

2.11' 

s~ =~1 JlJ~[c2.m..+l)l.>J ~o< 
0 

2.17' 

= -ff K ~N:L~ 9 ,M.,[(,.,.,-tY2.~ 
,: ~ ( 81a C()-0~) (2.17> 

+ v x co-op/~ 1 y ~r,~ ... y~~J 
ox ~ ( ~/s (..Ot)~) 



37. 

s ;)~?a. d S;, = s va ¢:t J1z 

: L"" S..., S ~ ~ [< 2.nv+ 1).,. 3,-~ o/%, 
"":o 

ol) ...,..~ 

= ~ = o s~ S 17"" a. J ,- o- ( /1") < 2 • 18 > 

,.-~X .4Vtv(l2.~+ f)~) 17"~ 
where 

~~ r~ 

G-<n-J .. s d 9- 5 0' (d) 9-j 'f) ~ 9' 
,.~ Y"~ 

.A 
If CJt# is non-singular so must be cY (~ . For large 

~ in this case 

~~ s ,.~Jd ~(~) ~[(2.hV-tl),l3,3J 
..,........w... 

goes to zero (proof in Appendix 1), i.e. 

This can only occur if ¢~ 0 everywhere (proof in 

Appendix 2) • 

Now 

also 1 v~ ¢~ I ~ t:r 

i.e. / ~a (J2.J is bounded. 

(2.19) 

(2.20) 
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aoAt,~oD 

i.e. d~ rpa ~ 0 a..o 4 ~ o(') ( 2. 21) 

Next let us Fourier decompose C:..OOOC( : 

.0 
~ oe c lJ) = C ..,. l: Cm, "<"0 2. *""" l,) ( 2. 22) 

~=· 
where 

and 

.,., 
C.=CCp)=1f5 Jl) ~otC.l>) 

0 ~ 

= '=If U>-O ~/1 j J )) ce-o C PI~ cc-o lJ) 
~ 

= T GOO f3/2. [-To (f3/2.) + .J;(-~/~)J 

: ~ p/l. \Tt> ( p12.) (2.23) 

1f 

c....,: c,.., Cp) = ~ ~ J l> c.o-o ~ nvlJ C(X)o( 

~1t 

= fr r.oc P/1 £ o!fo ceo ( p/2. U>O,/'f-) coo~ 
2,.11 

+'W ~ p12J_ ~ ~Cp/2. ~) c.ooNV..M 
~ (2.24) 

If ~ is even, 
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G~Cfo) = ~,~~ [ ~~CP/~) -t v~(-p/2)]tt,)~ 

= 2. (~)~ c.<>O f/2 J"Ht.- (f!/~) (2.25) 

If If" is odd 

c"" qa) = Ainv p12.[ .r,.,.. Cp/2.)-~ (-f312.)j<lJ'"'-• 

= 2.(l)~-·~p1~ (JnvCf~i/2..) (2.26) 

Jr~ are Bessel functions. 

For .the same reason as before (Appendix 1) 

..,.~ -l . ,. a. o/1'1' a. ( ~) c,.o.o 0 """" ...A-1'1' l) ~ 0 c:&O ..A. .. co() 
~ 

The Abelian solution obeys 

Thus 

f(d~,¢•-c~~..r)Js~, -..o 

~-+oO 

If we define X = ¢ ,_ c r then 

for the same reason that 

(2.28) 
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Thus ¢ •-+ C 'f 

(2.29) 

we may write the scalar potential as 

where ¢ a .... 0 ..; ~;,. ¢ '1 ~ 0 ( 2. 30) 

¢•...,.cr; d~¢·.-.c~._y; 

(U) ~~ oO 

Tf 

p = o) c cp) = 1 

if 

if 

' = 1( ) c c f) = 0 



The External Current 

E 

~=;··c~¢1 ¢1 1 
:: Tl [ ¢~ ~ ¢ t _ ¢• ? ¢a] 

Substituting for 

. gives 

Since 

F~;:: o 

F~o = j"' [ dL ¢' i 1t- d;, ¢'~- T'"](' 

-+ c. d~ r ,-, r·1 Q-0 ~ .. o0 

The magnitude of the electric field is reduced by 

the factor G t> with respect to the Abelian case 

I~ G ~ 0 
for 

41. 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 
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The Scalar Interaction 

This has the form 

H 1 $ = - 2. J ol'~ T,. { Ao [ J"o i" ~r;.,S J] 

= -2Jol':f TH{f'Cti'T';.¢>"'T~]~O"T'] 

= J ol a~ [t/' a- CoO¢ c< -1" ¢:a. 0"' ~ o< J 
~ cJ r ~ c..o-oo< G\.6 ~ .. flO 

H • & may also be written as 

H,s= -SJ1~ [tp•v2¢• +¢a va.¢aJ 

: s all~ tw~ ¢~:a. 1- L dL ti aJ:ll 
= 2 H1 

where HE = - J J~~ T, [ C Fol,Ja J 

(2.37) 

(2.38) 

i.e. ~~ is the energy associated with the electric field. 

· The Vector Tn:teraction 

H,v = -2. j J3
l, Tn- [A c. J'~; s J 

= J J .. ~ { ac.o( c~~ p,.;·- ¢• ()~ ~2.1] 

=-s J3~o( r ¢• vl ¢'- ¢• va. ;a] 

' -- --------------



The Hamiltonian 

The total energy of the system is 

H: - j J3~ 7:r { Foi Foi. + i F >j F<j j 

--?> i c 2 j ol 3~ (;)~ if' )
2 

from eqns. (2.34) and (2.35) 
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as k-;).0 (2.40) 

Now the energy of the Abelian solution is 

Thus as k -7' c<; 

H= HaA,.l 
H ""' [ 1- i f3 2

] H~ (2.44) 

H=o 

from eqn. ( 2 • 31) 
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2.3 d) Interpretation 

In the limit where the solution with 

p::o is identical to the Abelian solution. If )9 
is. small the new solution has an energy close to that of 

the Abelian solution, but less than it. We may conclude 

from this that the Abelian solution is not clasically 

stable. The solutions with lowest energy are those with 

• In this case the electric field produced by 

the s.ource diaappears. The energy of this completely 

screened solution is zero. 

The.re is one aspect of the problem of which we have 

not taken account. In concluding that the Abelian solutions 

are unstable, we have assumed that no conservation law 

prevents them from decaying. A spinning top is an example 

of a system which, when analysed in terms of energy, looks 

unstable but is unable to decay to a state of lower energy 

because of the conservation of angular momentum. It has 

d . '1 d ' 1 toSU(2} 21 been suggeste that s1m1 ar consi erat1ons app y 

As increases the perturbation which we have intro-

duced causes a rotation in gauge space with a frequency 

which likewise increases. This could violate the conservation 

of some form of spin in gauge space. This question of gauge 

spin will be examined in sections 4 and 5. 
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3. WAVES 

Having discus sed charge in SU ( 2) gauge theory, we 

must next discuss waves. The simplest form of wave 

solutions are the Abelian waves. These solutions to the 

classical SU(2) equations of motion correspond to dominant 

paths in the path integral which lie in an Abelian subspace 

of the Hilbert space of the gauge field operators. If there 

is a single energy eigenstate in this subspace, then part 

of the spectrum of SU{2) gauge theory mimic that of 

electromagnetism. 

To gain greater insight we will introduce the 

additional gauge degrees of freedom. The relevant 

solutions are found to be those already discovered by 
8 

Coleman . These correspond to dominant paths in the 

path integral which lie in an extended subspace containing 

the Abelian subspace. These paths allow states in the 

Abelian subspace to decay to states in the extended 

subspace outside the Abelian subspace. No state in the 

Abelian subspace is stable against this form of decay. 
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3.1 ABELIAN WAVES 

3.1 a) The Abelian Subspace 

The Abelian subspace is defined here as the space 

spanned by eigenstates of the gauge field operators such 

that 

( 3 .1) 

The operator equations of motion for the subspace reduce 

to 

( 3. 2) 

( d4 A 3
- ""2. A 3 - d2. A?.)= o 0 I 0'2, I 3 I (3. 3) 

(3. 4) 

( d, J~ A ,3
) = o (3. 5) 

These have the solution 

(An= JJwJd3-! {o<(-i:) w)e-•Cwt+--!·~] 
o · [w't.,. ,A·x]} 
+ o{ ;-(--!) w) e"' - "'"' 

x 6[At,] ~[w~-,/~/·] (3. 6) 

We denote this subspace by the set of states 
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3.1 b) Matr·ix Elements 

Let us restrict our attention to this Abelian 

subspace of the theory, and consider S-matrix elements 

between states in the subspace. These elements are 

< ...o " I e- t.. crt> t I ~ ' > 

We may evaluate these by the path-integral method. 

The contributions from the various paths are dominated 

by those paths corresponding to solutions of the full 

classical equations of motion. Let us consider paths 

which remain in the Abelian subspace. For these paths 

( 3. 7) 

The classical action for these paths is 

( 3. 8} 

The dominating contributions, found from varying the 

action are paths described by A 1 ~ l ~, t) which obey 

the same equations as gauge field operators but in terms 

of functions, not operators , i.e. 

d I -;.>f) A ,3 
:: 0 ( 3 • 9) 

d2.A 3
-o I 

2.A;?. "\:z.A 1 d:1 1 - o 3 1 = 0 ( 3. 10) 

c 
~-----



;) 1 c)'l. A , 3 = o 

a,d~A,~=o 

It is apparent that if the only paths which 

contribute to S-matrix elements between states of 

the subspace themselves remain in the subspace, then 

the classical limit of the time evolution of the 

subspace is the same as for plane electromagnetic 

waves. 
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( 3 .11) 

(3.12) 



'·' 
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3.1 c) ·Energy Eigenstates 

To gain insight into the true time development of the 

Abelian subspace we go back to the operator equations 

(.3.2). to (3.4). 

Suppose there is an energy eigenstate in the Abelian 

subspace, i.e. 

( 3 .13} 

Now·. 

- t.. ( 3. 14} 

So 

and 

fH)(o<l-!)w))lr/'= (Er.y-w)(c~.(-!,)w))J'f> (3.16> 

Since energy is positive definite its eigenvalues must 

have a lower bound. The subspace must contain a minimum 

energy eigenstate if it contains an eigenstate at all. Call 

this lowest state 

I O>..c 
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The operators and 

are creation and annihilation operators for the energy 

eigenstatesofthe Abelian subspace. They have the same 

form as those for plane polarised photons in electro-

magnetism. The state 1 o>...o is then the vacuum of 

the Abelian subspace. 
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3.1 d) Conclusions 

The dominant paths in the path integral which lie 

in the Abelian subspace are described by the same equations 

as plane polarised electromagnetic waves. In addition 

the operator equations of motion on the subspace have 

solutions whose Fourier components may act as creation 

and annihilation operators as in electromagnetism. It 

follows that if there is an energy eigenstate in the 

Abelian subspace SU(2) gauge theory should contain the 

spectrum of plane polarised photons in electromagnetism. 
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3.2 NON-ABELIAN WAVES 

It is possible to find more general wave-like 

solutions to the free equations of motion by expanding 

the form of the Abelian waves to.take account of all 

three gauge degrees of freedom. These solutions 

correspond to those found by Coleman 8 , and are 

seen to be the dominating paths in a second subspace 

of the theory. This subspace contains the Abelian 

subspace defined in Section 3.1. 

The dominating paths allow transitions between 

states of the Abelian subspace and states of the new 

subspace outside the Abelian subspace, i.e. they allow 

states of the Abelian subspace to decay into states 

outside it. 



3.2 a) The Expanded Subspace 

The expanded subspace is spanned by eigenstates 

of the gauge field operators such that 

54. 

(3.17) 

The operator equations of motion on the subspace 

reduce to 

(3.18) 

(d2. A cc- d2.A 01 - '2.A") = o 
0 I 2. I 03 I ( 3 .19) 

(3.20) 

( 3. 21) 
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3.2 b) · Classical Solutions 

In the path-integral formulation we may once 

again consider paths which remain in the subspace. 

The dominant paths are then described by functions 

which obey the same equations as the operators on the 

subspace, i.e. 

d I do A' q + e Gf p c A I b do A I c. ::: 0 (3.22) 

"',_A q- '2.A "-~2.A" 
Oo I 0'2. I 0'3 I = 0 (3.23) 

(3.24) 

;) d A q -t e:';f~cAb "'Ac.= o 
I 3 I I 0'3 I 

(3.25) 

In order to solve these equations we first transform 

A 1 to zero. The equations now become 

( 3. 26) 

'"' h ..4b\Ac do d1 A o 't e ~ c. no o, o 

(3.27) 

(3.28) 



where 

A Cll -

/<A- -

where 

and 

Let 

then 

A_...." = r' ~ 3-- j-./"' e ro, :z., 3) 
[ A 1 Cl is now zero] • 

Equations (3.26), (3.28) and (3.30) imply that 

q 
0 ::o<, 

[from eqn. (3 .30)]. 
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(3.29) 

(3.30) 

(3.31) 

(3. 32) 

(3. 33) 

(3.34) 

Equation (3.34) implies that we may gauge transform 

~./" to zero without loss of generality, i.e. 



where 

01 
0 = o<, 

Eqn. (3.35) implies that 

r ~ 6 {0~ 2, 3) 

~ Av- JJ) A/"' -rCA~.., Av] = o 
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(3.35) 

( 3. 36) 

for ~ J 2/ e ( 0_., 2...1 3) ( 3 • 3 7) 

Substituting from eqn. (3. 36) gives 

(3.38) 

for~,. l) c ( 0.> 1.~ 2.J 3) now~ 

i.e. 

( 3. 39) 

and 

( 3. 40) 
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Eqn. (3.39) implies that 

( 3. 41) 

where 

(3.42) 

Substituting into eqn. (3. 40) gives 

(3.43) 

i.e. 

(3.44) 

and 

( 3. 45) 

Eqn. (3.44) implies that 

(3.46) 

and eqn. (3. 45) implies that 

( 3. 4 7) 
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Substituting eqns. (3.41), (3.46) and (3.47) into 

eqn. (3.36) gives 

where 

and 

d o< = 0 
' 

Eqn. (3.42) implies that 

Substituting eqn. (3.48) into (3.27) gives 

Using eqn. (3.50) gives 

and 

(3.48) 

(3.49) 

(3.50) 

( 3. 51) 

(3.52) 

(3.53) 
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Using eqn. (3.49) gives 

(3.54) 

and 

(3.55) 

Eqn. (3.54) implies that 

(3.56) 

Note that this means that 

S ~Cf+CJ)·X 
[e<Cx)] 4

: J'~-p o/+1 B 

X ~ Cf) ~ (J) $(fa) b(f-1.) 

= J J ""p ol"...! e • ..ft."-$ c p•) 

X S( ~l- 2.f·~) ~(f) ~(~-f) 

= J J"At 8i~·Xl5 atp $(,&) 

X U .J.1
- 2 f.--A.)~(f)« (-k-p)}3.571 
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Substituting eqn. (3.56) into eqn. (3.55) gives 

0 = 5 ol '"r ol ;. f "1 e " ( f '1) . :X 

X O((f) ~ 1) ~(f') <f(,~) 

5 J4 olltfJ. IJ. 'L~·X- - P.. f) = OJ r /TV f . """' e o( (f) o< ( /('(. -

X g (f'") rS ( ~ ,_- 2-f·~) 

=fJ+-~ e•-l·'"'t--ft_,_{ Jai""r $(p>) 

x J ( //J}·-2.r·~J~ {f)~ ( ~-r)J (3.58) 

Fourier decomposing eqn. (3.581 gives 

~ '-j d 'r f d ( f 2.) ~ ( ~ 2 - :;_ f . .Jt.) 

~ 0Z(f)d. ( ~- p) = 0 (3.59) 

comparing eqns. (3.57) and (3.59) indicates that the only 

values of .Jt which contribute to [o<(:x,)] 2 through 

the term 

are those for which ~~O,i.e. 

' ----------------
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(3.60) 

( 3. 61) 

The simultaneous solutions to both (3.54) and (3.55) 

are characterised by a specific direction of propagation. 

We chose this to be the 3-direction. In this case, we 

may substitute the solution of (3.54) and (3.55) into eqn. 

(3. 48) to give 

AQ= 
.YA 

where 

and 

( 3. 6 2) 

} (3.63) 

This has the same form as the solutions already found by 

Coleman 8 • 

These solutions may be gauge transformed to the gauge 

A" where only 
1 

are non-zero. In this gauge 

(3.64) 

> 
'--------------

' 
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3. 2 c) · Halpern copies 

Let us consider two solutions of the form given by 

eqn. (3.64). The first is 

where J ::! (x,.J 'Y): J _, ~"t"' 1 =- x, o("("C') rt)f (3.65) 

The second is 

""Q 01 - x. o< t'1:') T (3. 66) 

and 

(3.67) 

for some gauge transformation .,lt(?::). 

Eqn. (3.65) gives 

(3.68) 

and eqn. (3.66) gives 

A A A"(..,....) T q A -I ,1\ 4 ,../ q( "'V) Tq 8. _, /\ _, 
Fot = j a< t.. ~ = (/ /f<- ~ '- ~ !' 

A 

= - Fa 1 ( 3 • 6 9 ) 
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It is clear from eqns. (3.68) and (3.69) that the 

field strengths of the two solutions may be gauge 

transformed into one another. 

The gauge fields themselves cannot in general be 

transformed into one another. To see this we note that it 

is possible to gauge transform the first solution to the 

form 

where 

Bo = - t3 3 = - :x., ~ o<" Tq .,J,. -I + A d?:' At -J 

if (3.70) 

We may transform the second solution to the form 

where 

-83 = - ~, ~~ Tq 
:: - :x, ~ t:X" ret~_, (3 0 71) 

"\ 

The :Z1 and ~dependance of ~ and ,.8,.-u implies that they 

are not gauge equivalent unless ~~J. := o or ~oto T".)t .. ~o<ct r'; 

""' If f~ and p_.,M are not gauge equivalent, the two 

solutions are Halpern copies (ref. 22). In general, 

Halpern copies have field stengths which are identical or 

can be made so by a gauge transformation, but which arise 

due to gauge fields which are not gauge equivalent. 
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3.2 d) Decay of Abelian States 

Let us choose a particular example of two Halpern 

copies. The first solution is 

where (3. 72) 

i.e. 

I_, ;;'t'? q ) _,- Clf = - :X:. I o( ( 'C" I 

where (3.73) 

o<"l1:) = GQ3 a~ f 

This is an Abelian solution corresponding to a 

dominant path in the Abelian subspace. 

The second solution is 

(3. 74) 

-:X. I ~ ("t')ci..CI T~( 1:) 

and where ,,t (~) is a gauge transformation such that 

( 3. 7 5) 

I.t is clear that as 't.....:.;.- fJ() the two solutions 

converge. The first solution is a dominant path in 

:____ ------ -----
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the Abelian subspace, whereas the second solution 

is a dominant path in the extended subspace starting, 

at t=-~ , in the Abelian subspace. 
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3.3 CONCLUSIONS 

It is clear from Section (3.2d) that the dominant 

paths in the extended subspace correspond to Halpern 

copies of the Abelian solutions propagating along defined 

rays in space. Each such Abelian solution corresponds to 

a dominant path in the Abelian subspace, and corresponding 

to each such path tnere are an infinite number of Halpern 

copies which approach it asymptotically as t -7 - aO 

but which diverge into the extended subspace at later 

times. 

These Halpern copies provide paths for the decay of 

states in the Abelian subspace. In the quantum theory we 

would expect these paths to provide mixing between states 

in the Abelian subspace and other subspaces of the same 

form but set at different orientations in gauge space. 
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4. QUANTUM NUMBERS IN A LOCAL GAUGE THEORY 

- A QUANTUM MECHANICAL EXAMPLE -

The classical solutions describing static charges 

and plane waves are seen [Sections 2 and 3] to be 

complicated by the effects of rotations in gauge space. 

It seems sensible then to examine the quantum numbers 

associated with such rotations and this is simplified 

if a quantum mechanical case is examined. A more general 

approach will be developed in Section 5. 

In this section we will construct a quantum 

mechanical model which possesses a local [i.e. time

dependent] symmetry. This avoids the complications due 

to a field theory. The techniques used in the three

component harmonic oscillator provide the basis for 

analysing the model. The gauge symmetry is found to 

give a constraint on the quantum numbers. This is to 

be expected from the Lagrangian which is required to 

include a term resembling a Lagrange undetermined 

roultipliere 
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4.1 THREE COMPONENT HARMONIC OSCILLATOR 

This system is simple and straightforward but has 

the additional factor of spin which is not present in 

the one-component theory. The Hamiltonian is 

( 4 .1} 

This corresponds to a classical action of 

( 4. 2} 

The operators ( 71ct) and are time-

dependent, self~adjoint and act in some Hilbert space. 

In the classical three-component harmonic oscillator 

we obtain the equations of motion by requiring the 

variation of the action with respect to the fields to be 

zero. In the quantum theory we obtain the equations of 

motion by imposing commutation relations on the operators. 

These are 

( 4. 3) 

and 

} ( 4. 4) 



Equations (4.31 and. (4.4) lead to 

} (/1<~~)::: (;;o~Q) 

( doa ~ q) :: - w2. (~q) 

Up to this point the only change from the 

one-component theory is the additional index on 

the operators. 

Spin can now be introduced. Define 

Equations (4.4) and. (4.5) imply that 

In addition, equation (5.3) allows us to write 

Defining 

we conclude that 

[ ( s) 1) ( s q) J = 0 

[CS) 1
.) (H)]= o } 
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( 4. 5) 

(4.6) 

( 4. 7) 

( 4. 8) 

( 4. 9) 

( 4 .10) 
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Since ( 1rq) and ( 7:"Q) 
~ are self adjoint 

so are (H), (Sq) and (5)~ Equations (4.7), 

(4.8) and (4.10) imply that we may choose (H), ( ss) 

and ( 5 )
1 

to have simultaneous eigenfunctions. 

We may also introduce the ladder operators 

( 4. 11) 

By considering the effects of these operators on 

the simultaneous eigenfunctions we may deduce that the 

eigenvalues of ( S ) 2. and ( S a ) 23 
are discrete • 

We may write these eigenfunctions as 

where 

( 4 • 12) 

The labels ...0 and ,.03 are both either integral 

or half-integral, and 
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4. 1 a)· · Fourier De:composition 

(TQ) ·. We may Fourier decompose ~ 

Equations (4.3) and (4.5) then imply 

The operators (o<"') and ( c< 0
) 1" allow us to 

construct a Fock space. We expect to build energy 

eigenstates by the action of ( o(t:f) t on the vacuum. 

Equations (4.4) and (4.13) imply that 

} 
This implies that 

(4.13) 

( 4. 14) 

( 4 .15) 

(H) ( o<q)t I o> = w co<•)-r I o> + (o<"Y'"(H) I o> 
( 4 0 16) 

where · I 0 ') is the vacuum state and has energy E0 

' -----------
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4.1 b) Spin in the Path Integral 

We may gain more insight by rewriting the 

Hamiltonian in terms of spin (see ref. 24 and 25 ) • 

Set 

where 

( ~")( m") = I 

('£) and ( m./') have simultaneous eigenvalues 

which are obtained from the eigenvalue~ . of {§q). 
Then 

Let 

( 71 ) ::: ('do :f) 

From equations (4.2), (4.18) and (4.19) 

The path-integral formulation for 5 -matrix 

elements between states of the form 

. gives stationary action for paths which obey the 

equation of motion 

(4.17) 

(4.18) 

( 4 .19) 

( 4 • 20) 



This is in agreement with the equations of motion 

rot . for .%. 

This discussion of spin is quite general. It 
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is a consequence of introducing three components into 

( 4. 21) 

the harmonic oscillator. There would be no distinction 

drawn here between the quantisation of angular momentum 

or of isospin. 
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4. 2 THE Q-MODEL 

There are three major differences between SU(2) 

gauge theory and the three-component harmonic oscillator. 

SU(2) gauge theory is non-linear, possesses a local 

symmetry and has operators dependent on all four space

time variables. In this section we construct a model 

which enables us to examine the first two of these three 

differences. By limiting dependence of operators to the 

time variable alone, we can examine the quantum behaviour 

of the theory through canonical quantisation. We shall 

call this model the Q-model because of the similarity 

of certain spin operators to the charge operator of other 

systems. 

We shall examine first the structure of this model 

in a global form before making the symmetry local and so 

creating the Q-model. The Q-model has the property that 

it is equivalent to spacially invariant SU(2) gauge theory. 

I ~ 
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4.2 a) The Global Model 

Classical Defin~tion 

The classical system of interest here has 

the Lagrangian 

q q Q 

6-.-M),) ~l,) = - 6-_,..M .v 

and (4.22) 

" do /3~q (T 0 ~ --
Q € Qb~ Bb· Be.. rr .. = I;J " . d 

There is a deliberate notational similarity to 

SU(2} gauge theory. At present we shall ignore this 

and examine the model as defined by eqn.(4.22). 

Eqn. (_4.22) gives rise to the classical 

equation of motion 

-- (4.23) 

The theory has an 0(3) x SU(2) global symmetry 

with corresponding constants of motion. 

The. quantities 

(4.24) 
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will be particularly important. From eqns. (4.22) and 

(4.23) we see that 

\ .... "ct -- 0 01.., '-'C. (4.25) 

The triplet of constants [ Qq] we shall call 

Q-spin. 

We may find a solution to eqn. (4.23) by using the 

ansatz 

Substituting eqn. (4.26} into eqn. (4.22) gives 

q Q P" sf 
(r 0 ;, :: c i.. t:Jo r 

Substituting eqn. (4.27) into eqn.(4.23) gives 

or 

(4.26) 

(4.27) 

(4.28) 

(4.29) 
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Eqn. (4.29) is the equation of motion for an 

anharmonic three-component oscillator. 

Substituting eqn. (4.26) into eqn. (4.24) gives 

(4.30) 

We may further simplify eqn.(4.29) by writing 

P ~ = r /YI..f } 
where 

m f' /ft,f = I 
( 4. 31) 

Substituting eqn. (4.31) into eqn. (4.29) gives 

CJ0~ '( 17Lf ;- 2 ;)o d d0 nf 
(4.32) 

+ a ~: rn f = -0 3 /Yl f 

Eqn. (4.341 is equivalent to eqn.(4.25) with this 

ansatz. 
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Substituting eqn. (4.31) into eqn. (4.30) gives 

(4.35) 

Since eqn.(4.31) implies that 

(4.36) 

eqn. (4.35) implies that 

( 4. 3 7) 

Thus 

(4.38) 

fusing eqn. (.4.35) .] 

Substituting into eqn.(4.33) gives 

(4.39) 

is also a constant of the motion. 

The classical Hamiltonian corresponding to egn. 

(4. 22) is 



.J. [ Cll]l. I q ]4 
H = 2. 6-oi. + 7; [ G- &J 

Substituting eqns. (4.22) 1 (4.26) and (4.31) 

into eqn. (4.40) gives 
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where E ~ H is the energy of a solution. Naturally, 

for a solution, 

Thus solutions which obey the ansatz, eqn. (4.26) 

are characterised by energy and Q-spin. They may be 

written as 

Bq -. -I; 

where 

For simplicity we could choose 

(4.40) 

( 4. 41) 

(4.42) 

(4.43) 
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Quantum Mechanical Form 

The Hamiltonian operator of the quantum mechanical 

form of the global model is 

where 

(f:r"o;> = eabeca:)(BJ) 
(4.44) 

The canonical quantisation conditions are 

~ abc [ c v; (t)).) (a J ('e,)J = - ~ $ d;;J 

[ ( v: lt))) ( p j {t))] = 0 (4.45) 

c c a~(t)).J c ej <t))J == o 

The time development of the theory is determined 

by 

[(H)) ( 8 j )] = - L ( ;;o 8j) 
and ( 4. 46) 

[ ( H)) ( 1? j ) ] :: -i ( (jfJ () j ) 

These lead to the operator equations of motion 

( V~) = (do Sere.) 

~d b 
( ;;o,. B ql ) = ( B j) ( B ~ ) ( 8 J) 

- ( Bq)( B'j)(B j) 

(4.47) 
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The global model has quantum numbers associated 

with the full 0(3) x SU(2) symmetry. In particular 

the operators for Q-spin are 

u4.48) 

Eqns.(4.47) imply 

[ ( H)) ( ~(a) J = - (; ( ~o G.. a) = 0 
(4.49) 

Eqns.(4.45). imply 

(4.50) 

If we define then equations 

(4.49) and (4.50) imply that 

and (4. 51) 

[(G.)~ (H)] = 0 

In exact analogy with the three-component 

harmonic oscillator we may arrange for (H), (G)~ and 

to have simultaneous eigenfunctions We 

shall denote these by 

where 
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(H) I ~) 1 ~ 1 3 > :: E .-AJ 1-- I ,-k:J f') P 3 > 

(G. i I A) 'I~ r; 3 > :: J ( p t I) I )t.) '?~ ~ 3 > 

c G. 3 J I .At J 'I) r; 3 > :: J 3 I ~.) rp ~ 13 > 
With 

The labels and are again both 

integral or half-integral. 

In this model Q-spin is a manifestation of the 

global SU(2) symmetry in the same way that the angular 

(4.52) 

(4.53) 

momentum is a manifestation of the rotational invariance 

of the three...;dimensional harmonic oscillator or of the 

hydrogen atom. It should similarly play an important 

part in our understanding of this system. 



4.2 b) The Q-Model 

In order to make the global symmetry of 

section 4.2a) into a local symmetry, we must 

introduce quantities which have indeterminate 

time development into the Lagrangian. These 

quantities have some of the properties of Lagrange 

multipliers. There are three of these, which we 
q 

shall call 13 0 and introduce by changing the 
Q 

definition of G-oi. in eqns. (4.22). 

The Q-model has the classical Lagrangian 

L= 
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where is antisymmetric in ~ and 2.) 

1': q ~ a~ L:. ~be. a" a~ 
\7o i.. = 0 0 ~ t,.. + ~ P o t-J c.. 

and 

t:..Cf -
\T L. -d 

In the matrix notation 

The local gauge symmetry of the Q-model can be 

expressed by the transformations 

where J :: j (t) 6 5 U{2.). 

(4.54) 

(4.55) 



These transformations do not alter the 

classical Lagrangian. 

The Hamiltonian operator is 

.ooq The absence of conjugate momenta for the t;J 

and gauge transformation of eqns.(4.55) cause 

difficulties for canonical quantisation. These 
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are eliminated if we choose the gauge where s: = 0. 

(4.56) 

In this gauge the canonical quantisation relations 

are 

[(l?l•(-t)J, cBJ(t))] = ·• ,Q~.~"J 

[ ( P1 Ct)~ ( 1?
1
? (t))] :: o (4 .57) 

[(B C: ( t:) )_.~ ( B J ( t))] = 0 

These are equivalent to eqns. (4.45). 

Time dependence of the operators are determined 

by eqns. (4.46) leading to the equations of motion (4.47). 

In this gauge we may define Q-spin by 

( Q. ") = (4.58) 

which is identical to eqn. (4.48}. The arguments used in 

Section 4.2a) imply that we may choose to describe the 

energy eigenstates as 



which obeys eqns. (4.52.) 

This provides a valid description of the 

quantum version of the Q-model in the gauge where 

• As the physical content of the 

theory is independent of the choice of gauge, it is 

at first sight identical to the physical content of 

the global model of Section 4.2a). The difference 

is due to the classical equations of motion which 
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arise from.variations in the .classical. action caused 
q 

by variations. in the 8 0 • 

In operator form this equation of motion is 

€ Q b c. ( 8 J ") ( ~0 8 j ) = 0 

i.e. ( G..Q) = 0 

Thus the energy eigenstates must be of the form 

(4.59) 



The constraint imposed when the global SU(2) 

invariance is made into a local SU(2) invariance 
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is exemplified when classical solutions are sought 

which obey the ansatz given in eqn. (4;26). The 

solutions for the global symmetry correspond to 

solutions to a three-dimensional anharmonic oscillator 

[eqn. (4.29)] with Q-spin corresponding to angular 

momentum [eqn. (4.30)]. For the local symmetry the 

equations of motion can be made identical to eqn.(4.29) 

but with angular momentum, i.e. Q-spin, limited to 

zero. 

Since the Q-model is identical to spacially 

invariant SU(2) gauge theory, a corresponding 

constraint should be expected in the general form 

of SU(2) gauge theory. 
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4.2 c) Interpretation 

The Q-model is one of the simplest systems with 

a local SU(2) symmetry. Because the operators depend 

only on time, we can quantise by imposing canonical 

commutation relations (eqns. (5.24)) in the gauge where 

the eigenvalues of ( 8: ) are zero. 

Once this gauge has been chosen it is possible to 

define the quantum operator for Q-spin. This is 

quantised for the 'same reasons that spin in the three-

component harmonic osci.llator is quantised and is a 

manifestation of the global SU(2) invariance. The 

additional complication that this global symmetry is 

one aspect of a local symmetry means that the eigenvalues 

of Q-spin are zero (eqns. (4.59)). 

The Q-model has been chosen to be equivalent to 

SU(2) gauge theory with gauge fields independent of 

space. In other theories spacial. independence is taken 

to imply that we are dealing with a system in its rest 
26 

frame For SU (2) g·auge theory the question of its 

rest frame is complicated by the fundamental Lorentz 

covariance. 

However, the Q-model does describe the large 

coupling limit of SU(2) gauge theory. If we reintroduce 

the coupling constant by rescaling the gauge fields and 

take the limit where size of the terms in the coupling 

constant swamps the spacial variations, we obtain the 

spacially invariant theory. The derivative with respect 

to time must be retained in order that the conjugate 

momenta may still be defined. 
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The constraint imposed when the global SU(2) 

invariance is made into a local SU(2) invariance is 

exemplified when classical solutions are sought which 

obey the ansatz given in eqn.(4.26). The solutions for 

the global symmetry correspond to those for a 

3-dimensional anharmonic oscillator [eqn.(4.29)] with 

Q-spin corresponding to angular momentum [eqn.(4.30)]. 

For the local symmetry the equations of motion can be 

made identical to eqn.(4.29) but with angular momentum, 

i.e. Q-spin, limited to zero. 

Since the Q-model is identical to spacially 

invariant SU(2) gauge theory, a corresponding constraint 

should be expected in the general form of SU(2) gauge 

theory. 
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5. A SIMPLIFICATION OF SU(2) MATRIX ELEMENTS 

In quantum mechanics a global symmetry may be used 

to relate S-matrix elements, with important consequences 

for the structure of the theory. Likewise in SU(2) gauge 

field theory we expect s-matrix elements to be related by 

the gauge symmetry. 

In Section 5.1 the gen-eral form of the S-matrix 

elements is obtained. There is little new in this and the 

section is included only for completeness. In Section 5.2 

the equality of certain s-matrix elements is deduced as a 

consequence of the gauge symmetry. This is a more 

powerful result than for a global symmetry as could be 

expected. 

The equality of these S-matrix elements allows for 

simplification. When analysed in terms of angular 

dependance in gauge space most S-matrix elements seem to 

vanish. This is demonstrated in Section 5.3. The states 

with non-zero S-matrix elements have a simplified form 

which has a similar structure in gauge space as the 

hydrogen atom's s=O states in real space. This effect is 

due to the ambiguity in the time evolution of the states 

inherent in the local symmetry and indicates that the 

gauge must be fixed in path integral calculations in 

order to obtain a well defined dynamical evolution. 

In section 5.4 the effect of the global symmetry is 

examined and in section 5.5 a comparison is made with 
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electromagnetism. 

The results are summarised in Section 5.6 

L---~----



5 .1 GENERAL FORM OF S-MATRIX ELEMENTS 

We may write the general S-matrix element in the 

gauge where {<A:)J is zero [cf. eqn. (1.54)] 

. t" 
= N,f i( 11:x. hf q J A; ( ~:1 t) f)_Nj, [ L s l A]] t=t' _,/-') / _7 ..... 

x S [A," C:'!J tJ] b[ A,/'qt~)- A/ c~J t ''J] 

/It~ [A/(~l) - A. q(X t') 1 
J (F -- 'd ...,.] '.J 
Let us choose some gauge transformation 

and define 

Eqn.(5.2) implies that 
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( 5 .1) 

( 5. 2) 

( 5. 3) 
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B(h)(:X. t") = 8 (X t'? } ~ -J ~ ,...,.) 

and 

J3 Ch)(x t') = 8 (x t') 
~ .-;J ~ .--vJ 

( 5. 4) 

Substituting eqns. (5.3) and (5.4) into eqn.(5.1) 

gives 

< { -d 11 1~ t "I [A ']J t I> 

(5.5) 
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'I (l,)q j q I q 
Now the integral over 1f';J~ is .. 7r ot ~ · · 

as the Jacobian of the transformation is unity and 

the classical action is also invariant so we may 

write 

t" 
= N, J J:t' if~,/'f,a c/ ~ (~J t) ~ [iS [ 13]] 

X ~[~a(~)- ~q(~.>t")] 

~ $ [ ~Cf(~)- ~ c*J t')] 

< t II 

)( 1f 
~> t' 

Since 

A-1 Let us define · ~ as 

Where 

!(*, t> = ~~ w/r?JJt) rq] 

( 5. 6) 
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We may write Ut) B0 Q as 

for some gauge transformation ~ (~J t). 

In addition, as integrating over o/~a integrates 

over the entire gauge volume, it is irrelevant whether 

we integrate over or 

Thus we may rewr:i te eqn. ( 5. 7) as 

a~ is now seen to be independent of o .... 

We may also note that 

< t'' 
J 7l 71 b J w lo < [A II 7 t" J [A I] t I> 

1;') t:' '1.) h J..J J 

;:: K < {A"].) t ,, I {A ']J t l > 

since the matrix element is independent of the 

integration. Substituting eqn. (5.9) into (5 .• 6) we 

obtain 

( 5. 8) 

(5.9) 
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< [ ~ "].) t ,, I { -d 'L t I> 
t" 

= 1< .. , N J1r 71x Gf J ~ C~.) t) o~l.. [l 5[ B]] 
t t ~ t' -.J ;.)" _./.., 

X {, [~'t~)- ~ (~J t'')] 6 [~/'(~)- ~ (~.) t')] 

<t" 

x J~t' 71!-,b Jw4\fJ1::) $[8c";h(J,?:')] 

t ,, 

= K-' £:::. ... 1 N, j 11 T{ JA.Mq c~.J t) n-1 [ i st A J] 
t: t' ~J~) q 7 -.,7" 

X G [A; c,(~) -1u q(~J t 11J] 

)( 6[ ~ q(~)- ~ Cf(~) t')] (5.10) 

[using eqn. (5. 3)]. 

As K and A are constants they may be 

absorbed into the normalisation so that we may write 

< { d 1/ j ;1 t 11 J l ~ I].) t I > 
t'' 

= N J Kt• 71~,/-'J Cl J~q (*J t) ~[i S{A]] 
(5. lla) 

"er q '1 X~[~(~)-~ (~Jt'')_.l 

x $ [ ~ "(z)- ~ c*Jt'J] 
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We may generalise this by defining 

< fA ••]) t ,, I {A'].) t I> 
-c" 

= N J ]It'~Aa o/~ {~>t) ~[i- S[A]] 

x ~ [ ~'"c~) -A.,; (~.J t ''J] 

X ~[~a(~)- ~(~:Jt')] 
(5.llb) 

Eqn. (5 .llb) is the general gauge independent form 

of the s-matrix elements. As this form contains an 

implicit sum over all gauges, it is not useful for 

conventional path,..integral calculations. 
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5. 2 EQUA:LTT·Y. OF. S-MATRIX ELEMENTS 

Let us choose some general gauge transformation 

and define 

B <3> - B)!)q Tot -~ 

- ?-'~i + :~-l~? -

- ~ (5.12) -
Substituting into eqn. (5.11 ) gives 

< [ A II J) t ,, J I A I t t I> 
t" 

= N J P'.t· 1T~,,/"',Cf ol ~~>"c~J tJ~ [i S[B~>]] 
v &[A"GII(X)- B CJ)ct(:x t"J] 
" )/"~ .-- ~ -J 

(5.13) 

Once again we note that the Jacobian of the gauge 

transformation is unity and that the action is gauge 

invariant, so eqn.(5.13) gives 
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- J t" - N y=t;' 1f~,--"·"' de;',.c!:,t) ~£/-S£1311 
X ~ [ ~/ q (:f. ) - ~ (~) rJ ( ~ J t 11

)] 

X ~[~Q(*)- 8///3)q(~->t'J] (5.14) 

Let 

A; c~) = f;r•~"ci5>J -t ;-·~;J/t,t" 
and 

A;(~)= f;-'-f; (?S)J "',J''g,..JJ/t.=t" 
(5.15) 

Now 

1f "tf [ ~" (¢) - 8.//"~)q (~.} t"J] 

= 7TqJ'[{~-'c~-' t"J[ 1;Qc~)- ~ c~~ t">1;c~_)-e"J]:J,5.16) 

The right-hand side of eqn.(5.16 ) is zero unless 

A""""" B a c t") ~ (;5) equals 1-jM ~-' , i.e. 
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1Tct ~ [ ~· (jf(~) - ~(3)(~.) t'')] 

= 1T" ~ [ A;:'"c~) - ~ Cf (~J -t")] (5.17) 

Substituting eqn.(5.17) into (5.14) gives 

t'' 

= N J ITt' 71~,/"J GJ d y. (~, t) ~[ i S!AJ] 

x ~ [~''"ti!) -~~ (?!J t '')] t[A;"c~)- ~ (~j t')lcs.ls) 

Comparing eqn. (5.18 ) with eqn. (5.11 ) gives 

< {A '1 t II I {A '] t I> 
'.) J 

:: < {A~ ":L t ,, I {A' 'l t I> 
(5.19) 

where the eigenvalues of the initial and final eigenstates 

are noted by eqn. (5. 15). 
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5.3 SIMPLIFICATION OF NON-ZERO S-MATRIX ELEMENTS 

Let us choose a function~(~ .. t) such that 

(5.20) 

In this case the effect of~{~, t) at t=t' and t=t" may be 

expressed in terms of functions of space, i.e. 

and (5.21) 

Following eqns. (5.15) and (5.19) we may define the 

states 

I [A "} o( ,, B II y II • t II > 
I "r'o ..,~ 

and 

"""-= llA"].J t"> 

I [A 11 I & I I t.. = I {A~ '1.~ t '> )o<,,,tf'; .> 

(5.22) 

(5.23) 

The functions«:~;~;/>;/" and o' are defined by ! (;51 t) 

which obeys eqn (5.20) but is otherwise arbitrary. Thus 

we may treat these functions as arbitrary functions of 

space. These functions define spherical rotations so we 

may decompose states in eqns. (5.22) and (5.23) as 

typically 
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X l [A '1 ,L I mt I /It J • t '> 
) ) J J 

(5.24) 

where .l'r;tJ,I'J'If'(~) and rn~;t) are integer valued functions of 

space and each coefficient P~~ at each point in space is 

a matrix element of the rotation operator between 

eigenstates of spin (ref. 35). 

Inverting eqn. (5.24) gives 

)( I [A 'L o(~ ~~ 0 1
) t '> 

(5.25) 

where the integral is over 

o ~ f>('t~) < 2 1T j o ~ p 't~) < rr j o$ 0 'tJK) < 2 1T 

This form of transformation is quite common. A 

similar device is used in the discussion of vacuum 
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tunnelling (refs. 27,28 & 29). The state I{A'] L'41t'/X 1·t'> 
I I I .1 

is the weighted sum over all states with eigenvalues 

related to !A1 by a gauge transformation obeying eqn. 

(5.20). 

The state 1 fA''], .L ~ ;m; At;· t')is constructed analogously 

so that 

I { A '')) L 1
: /11t. I~ tn "; t II> 

j 7T. [..(f~) + '] ) II 
:: ?! 8 '1r Of o( C"?f.) 

x I t A 1'1 o( ,, A , r, . t, > " .~r.~ .I (5.26) 
Forming the S-matrix elements of the states in 

eqns. (5.25) and (5.26) gives 

< [A "] L II AI! ,, t?Z- II. t" I {A 11 .,{, I An I /11.- I • t I> 
I I I ,1 J I I .,1 

= j ~ o/o( ''t?f) o/ [ too('"c;O) ./ rf"C?O 

x ola I C*.J cl [ ~; 'r;r J] J a 't~) 
[ .f

11

ot) +'] { .f 1tx) '*''] /? .t '' 
X 8-:, B 'IT AK"m." (o<~~: f") 

X 
rJ+f.ll /' I ~ I I ) 
Y Att.';n' '(;( / r "0 ./ (5.27) 
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Substituting eqns. (5.22) and (5.23) into eqn. 

(5.18) gives 

< {A "] o( " 13 II y II . t II I {A '] o( I A I y I • t I> 
J "t "o .,.) ,} 1 r"o .J 
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: < [A II 1; t 11 I {A I] J t I> 
(5. 28) 

Substituting eqn. (5.28) into eqn. (5.27) gives 

< r A 'I J L ,, /1n ,, ;n. , . t "I {A '1 L ' 4n ' ,n ' . ..,. '> l. ) I ) .) I I .I ,) (.; 

=o unless ~(~) = ~~?!) =mt''~?!) 
c 4Jt ~~~) = /1'1. '"(~) = I7Z "t?f_) ~ 0 

by orthogonality and using p: 
0 

= / 

The states {I£A 13, J~ .tm.;4t'; i'>} 
form a complete basis for the Hilbert space. According to 

eqn. (5.29) the only states with non-zero S-matrix 

elements are superpositions of the states 



We relabel these states in general as 

I E A 1.~ o, t > 
= J 7T;! 

: I[A1.~L=O,mr,-=-0,fll,c0;t> 

o/C7(t~) d [ ~;sc~J] ol ot~) 

[{Lt~)=o] + I] 
X 87T 

\. 
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(5.30) 

where 

(A~ q c ~/ t)) 1 £A 1 I d, f~ cr,; t > 

= [j"'A_,./c?O T/ + !-'~J]" /t 

and 
x } { A J_~ o<.~ f3 / (; t > 

!It= ~ £(1(13] 

;;,1 It = o 

(5.31) 

(5.32) 

At first sight eqn. (5.29) may seem to violate 

S-matrix unitarity. This is resolved in Appendix 3 where 

this is seen to be a consequence of the inclusion of the 

gauge degrees of freedom in the Lagrangian. 

If the only valid states of the theory were to be of 

the form given in eqn. (5.30) there would be serious 

consequences. It is apparent that these states are a 

gauge invariant superposition of states related by gauge 

transformations. If the entire system of operators and 
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states is gauge rotated then only the operators would 

change. It follows that the expectation values of both 

the field operators and of gauge covariant operators 

between states of the form given in eqn. (5.30) would be 

zero. 

The flaw in this result is manifest in the 

discontinuity in eqn. (5.29) as thgoes tot'which is a 

consequence of the similar discontinuity in eqn. (5.19). 

These discontinuities are due to the ambiguity in the 

dynamical evolution of the states due to the local 

symmetry. This ambiguity must be removed in order to 

obtain a well defined theory. 

In Appendix 3 the gauge degrees of freedom were 

removed from the Lagrangian by a change of variable. In 

SU(2) gauge theory the gauge degrees of freedom may be 

removed either by adding a gauge-fixing term to the 

Lagrangian or by placing a restriction on the physical 

states (refs. 3,4 & 5). 
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5.4 EFFECTS OF GLOBAL SYMMETRY 

If the arbitrary dynamical evolution is removed by 

eliminating the gauge degrees of freedom then only the 

global symmet~y remains. The general form of a global 

rotation is:-

(5.33) 

The coefficients o<, f &O are now constants. Following 

eqn. (5.22), 

let 
JfAJ,o<,f,o,; t> 
= ( (;rc«,p, 0 >> I [ A1; t) \( llA J; t) 
(f:Tt~p/0)) is the rotation operator. 

(5.34) 

Eqns. (5.15) and (5.22) now give 

< fA ''].; t "f fA I J; t'> 
= < l A '1 J o<, f3 /0; t II I {A I 1, o( I p J (f; t I> ( 5 • 3 5 ) 

or <fA"] I e-i(lf){.t''-t') I {A'1 > 
= <EA"]/(&)Te-'(H)tt"-t'J(&)J{A1> (5.36) 

or 

(&)"~"(H) (6-) =(H) 

or 

(5.37) 

As expected the rotation operator commutes with the 

Hamiltonian. 

Following eqn. (5.24) let us write 

' l A J, ot., f, 0; t > = ~,AK,M. /?~~ (o<, f,o) 

X I f AJ, ~~ ,m,, m; t> 
(5.38) 
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Inverting eqn. (5.38) gives 

I l A J, ..1, /WI. I m.,; t > 
7..., 1( 1 71 

= f do< f J [ ~ f3] j dt 
0 0 () 

~.( [-l+l] 
)(' /) 1m h\. ( o(l f J 0 ) -g;;; 

>< ll. A 1~ ot1 f" tf _; t > 
= f:lo( {7ro~[~f1 fdo 

nlf' ../ [ .l"f'l] 
X V ,.m.~ ( ~ f~~) 8'"iT 

x r 6- tct, f~o)) , rAJ~ t > 
= ( f ;.,_~) If A]; t > (5.39) 

where 
z~ ~ Z" 

( P :,..,.. ) =I ,/o( i ,/£ 4?<>fJ i a~ a I W J 
" p'~~:_ht r~ t~o) r 6- c~ P~o )) (5.40) 

Substituting (5.40) into (5.37) gives 

(5.41) 

Thus 

The labels l,m and n do not change with time and so 

must be associated with constants of the motion. 
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Consider an eigenstate of the isospin operator 

associated with the global symmetry, 1(1J1]
1

.i',l?t'), which 

has total isospin,/[.l't.t'.,.l)] with isospin m' along '13· 

-- (' .1, ..{, I (' , I [ 7 ~ > a ~ ~ .-n l.f J 1 ,c., ; A>'Yl 
(5.43) 

Now I ( AJ; t> may be decomposed in terms of the 

eigenstates of the isospin operator. From eqn. (5.43) it 

follows that J fAJ,.J,.II"t-,A4)is a superposition of states 

with total isospin ,/{..ltL+tJ] and isospin Aft along '73 and is 

constructed from components of J fAJ; t> with total 

isospin ,/[.fl.f+l)] with isospin m. along T 3 • 

i.e. 

Thus J [A],~Aft,At)must itself be an eigenstate of 

isospin 
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5.5 COMPARISON WITH ELECTROMAGNETISM 

Similar consequences to those in Sections 5.1 to 5.3 

apply to electromagnetism, but with different 

consequences. The same general arguments which lead to 

eqn. (5.19) still apply but now there are no gauge 

indices and the gauge rotations belong to U(l). 

The appropriate elements of U(l) are [cf. eqns. 

( 5 • 2 0) and ( 5. 21) ] 

(5.44) 

(5.45) 

c.w••(.7) r ::r. t '') = e ;;:. I -J 

The eigenstates of the gauge field operators are 

(~(?5~t))IEA1Jt> 

= ~ (~:> I { AJJ t > 
(5.46) 

These may be relabelled in terms of the gauge 
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rotations [cf. eqns. (5.22) and (5.23)] as 

(5.47) 

where 

i.e. } (5.48) 

Eqns. (5.47) and (5.48) give the general form of 

the end-points with gauge rotations obeying eqns.(5.44) 

and (5.45). 

In analogy with eqn. (5.25) we may define the states 

(5.49) 

The gauge symmetry implies that 



<{A"} to" t'' I [A'] l0 1 t'> 
J .J .I .J 

J: < [A,, 1 t, I { A '} t I> 
.) J 

Eqns. (5.49) and (5.50) imply [cf. eqn. (5.29)] 

:: A .. 2 < {A"}.) t" J [A']., t'> 

The only non-zero S-matrix elements occur between 

states of the form 

I {AJJ ~==o_, t;> = X .. 'J?£ olwc~; J[A}_, w_, t> -
States of this form are independent of gauge 

transformations whose time derivatives at time ~ 

vanish. By fixing the gauge we may examine the time 
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(5.50) 

(5.52) 
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development of the individual states which are summed 

over in eqn. (5.52). Summing over these states does not 

invalidate the results of computations in a specific 

gauge. Since the non-zero S-matrix elements occur between 

states of the form given in eqn. (5.52) , the energy 

eigenstates must be independent of gauge transformations 

whose time derivatives vanish at time t. Equation (5.50) 

t q t' exhibits a similar discontinuity as goes to to that 

in eqn. (5.19). 

A critical difference between electromagnetism and 

SU(2) gauge theory is that when the gauge is fixed in 

electromagnetism there is no remaining global symmetry 

for the gauge fields. This corresponds to the observation 

that SU(2) gauge fields carry isospin, whereas photons 

are uncharged. A second difference is that since the 

electric and magnetic fields are gauge invariant their 

matrix elements between states of the form given in eqn. 

(5.52) are not forced to be zero. 
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5.6 SUMMARY 

In this section we have seen that the SU(2) symmetry 

relates S-matrix elements of the theory. This allows a 

simplification of the S-matrix elements. Most of these 

seem to vanish in a way that suggests that most of the 

states are fundamentally unstable. The matrix elements of 

the gauge field operators and of gauge covariant 

operators between the remaining states vanish. 

The origin of this result is the ambiguity in the 

time evolution of the states due to the local symmetry. 

This ambiguity gives rise to a discontinuity and must be 

removed in order to obtain a well defined dynamical 

evolution, leaving the global symmetry and associted 

quantum numbers. 

Similar considerations apply to electromagnetism but 

here the matrix elements of the electric and magnetic 

fields are not forced to vanish when the dynamical 

evolution is not properly defined and there is no 

remaining global symmetry of the electromagnetic gauge 

fields once the .gauge is fixed. 
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6. CONCLUSIONS 

The classical solutions to SU(2) gauge theory for 

static charges and for plane waves are associated with 

instabilities due to rotations in gauge space. The 

quantum numbers for these rotations can be examined in a 

special quantum mechanical model. The local nature of the 

gauge symmetry in the model gives rise to a constraint on 

the quantum numbers. 

In the full theory stable states seem to be 

constrained to be gauge invariant due to the way the 

gauge symmetry relates S-matrix elements. This would 

force matrix elements of gauge field operators and of 

gauge covariant operators to vanish. This result is due 

to the ambiguity in the dynamical evolution of the 

theory inherent in the local symmetry which causes a 

discontinuity. When the ambiguity is removed, the global 

symmetry remains and is associated with its quantum 

numbers. 

Although a corresponding analysis can be carried out 

for electromagnetism the matrix elements do not vanish in 

a corresponding way and there is no remaining global 

symmetry of the gauge field operators once the ambiguity 

in dynamical evolution is removed. 
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APPENDIX 1 

Proof that 

be singular so 

This series will always converge. Thus 

"~ tJ() 

5 CJL ¢" J s. = 2._#0 sm..tJ ol u £ <:r..e u-'~c2/fi,,..,)..J. 3t~ 
" tn.=' .l,::o 

(,f~ 

Let m, ::: ( 2. m,. .,.. I ) .. 
lA 

./Nm. 5 Ju u.t~,_~3u (...t:,o') 
~ ...:, fJ() () . 

.. ' 00 .. • 

: ~ (m,ft1 )-.i.•l ~~[ 5 dv'lr..t ei."'} 
4. ,_:;, ,() 0 

,f' 

= ~ ·c~ ..li.3 )--t-• lm.. f- Jo ol v v.l e c.·'~~"] 
~_,-o i..O 

= ~ ·. ~l)~~-, im,{Ci)..t.+•·J· ~-.le-u Jl.lj· 
~ -51~ ( mL- C) 

= ~ ( m..:A,s)-l-1 ,l J .4int,f.J.TT 
*'A -9110 . . 

:::0 

Thus 
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APPENDIX 2 

Proof that t/J'- -+ C> as 

Assume that as 4_,..,. .0 ¢'- develops 

I -V2~ ... , must a discontinuity. This means that ~ 

increase indefinitely at some point. But J V'- f/; 2
/-' I tTl 

which is finite. As we take the limit t/Ja 
cannot develop a discontinuity. 

Next assume that as .,4-+tiO, fjJA develops 

a local maximum on some region R R can be 

a single point. This maximum cannot be a discontinuity, 

so there must exist an equipotential surface S around 

R with ¢ 2/s = ¢"/R-G¢~ We can always choose a 

surface close enough to R that r/J'> ¢>"/s inside S 

and that / J di, (J 2o/ S;, / >- 0 This contradicts 

the result of Appendix 2' that I a;,¢& ol 5;, .... 0 . Thus 

¢2. cannot have a local maximum. Equipotentials of 

~2. must extend to infinity. 

At infinity ¢ 2 is zero. Thus (J~o everywhere. 



APPENDIX 3 

S-Matrix Unitarity 

Equation (5.29) seems to violate s-matrix 

unitarity. To gain insight into this problem we 

examine the quantum mechanical form of the CP(l) 

model 34 • 

The corresponding classical Lagrangian is 

L = 1 [ Z#. - Z; Z p Z o<] [ Z ,( - Z; Z! Z .1.] * 
where 

. 
J 

The quantum theory has operators ( Zc( ('t)) and 

( Zo~.. (t) )T The eigenstates of these operators may 

be written as 

( Z« (t)) J.x.., J X 2 _, (1 1 , ~z; t > 
= C:xD( + ijotl I x,, x2_, 1'' !2; t > 

and 

{ Zot {'t))T I x,, :x,) (') !2; t) 
= c XtJ( - i J't~~ J I % ,_, :X 2 J ~~ J 12; t > 

The classical Lagrangian is invariant under 

the gauge transformation: 
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(A3 .1) 

(A3. 2) 



"' ZDC ~Zoe = 
'* "' '+1-ZD( ~z« = 

where " :: r;r {:t) 

To make use of this symmetry in the quantum 

theory we relabel the eigenstates in terms of the 

angular coordinate ~ , i.e. 

I "'J Xz) (/') #z~ ttr; t > = 
where 

Xo< = xo< ~ ~ - (fo<. ~ f)' 
ifJ( :: Xo< ..oAm, <&- + tot. ~ <i}-

Equations (A3.1), (A3.2) and (A.34) imply that 

< , II II " 'f? II ,, I I I ' I I t '> x, J Xz. J ,, J Jlz J . ; t .x, J :x2, 1' "~ ~2' f1 j 

~ < ;.,-~ ;;·) ;,.~ j."; t" ,.x:, x;, ;. ~ ;,·; t · > 
t" 

~ N J lft' J :X, {t) of X. {t) ol j. (t) ol jz {t) 
X .vxf f i., 5 C: t: t') J 
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(A3. 3) 

(A3. 4) 

A (" ( A ') A II) A , \ A 
x S ( x, { t ") - ::x, ") o xl { t" - x 2 cS ( j, ( t '/ -)I '') 

X J ( j 2 { t ") - jz'') d ( i, { t ') - X, I) $ { Xz ( t') - x2 ') 
x & rj, tt'J -j, ') s (;2(-t')- fo'J 

where -t ,, . . 
s ct~ t') = J o~t L t ~) z:) z:., 2t1(~) 

t' 
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t" 
= N J R t' ol x, (t) ol :X2 Ct) o/1, {t) J d2 (t) 

X .vxf f i S { t 1~ t ') J 
X 6 (:X I { t ") - :X1 

11

) £ (:X 2 { t ") - :X z") b (~1 ( t '')-, ") 

x S (~z (t")-yz") S ( :x, {i')- x,') cS (x1 (t')-::x2
') 

x S (~1 tt ')-?' ') [, ( f 2 (t')-;/) 

where 

Xo<{t) =Xol(t)~ '9-(t)- f_~(t) M.m., 9/{t) 

jet ttJ = xo( tt)M.m.- 'lf(t) t~o< tt) C<r.' 'P' t.t) 
and 

9- { t 11) : 1J' II , ,. ( t I) : f7' I 
..) 

.x,;; :: X~ ~ 9'' - !Ia( If~$" 
j.t = :x.~' ~ rp. ,, +fa<" CA::'"O ~ ,, 

and t'' 

set~ t'J = J, olt L ( ic(, iJ: zo<} z:) 
t 

= < " II ,, II t ,, I X I I I I t ' :x,J:X2JJ't/jt2) I;Xz,,J;z_; > 
Since ~ is an angular variable we may write 

Inverting equation (A3.6) gives 

(A3.5) 

(A3. 7) 



Equations (A3o5) and (Ao37) imply that 

Equation (A3o8) like equation (5o29) seems to imply 

that the S-matrix violates unitarityo The explanation 

becomes apparent if we write 

-.!oo ; ( 1/-' + X) d) "'• = e ~., 
~ e-i('f+'X) tp z :: ~ I 

i. (if'- X) o A) 
z 1 = e .,4..(hL. 1 

J -i.(lf -X) . f z.,...=·e ~ z 

The angular variables if , ~ and tj} allow us to 

relabel the eigenstates so that 
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(A3 o 9) 

(A3 olO) 



Equations (A3.4), (A.39) and (A3.10) imply that 

Since ~ is an angular variable 

and so 

2.7T 

'17V, x, f; -t > = hr J ol 'f e i"' '~, '/J x., tp; t > 
0 

Equation (A3.7) ,(A3~11) and (A3.12) imply that 

I x,) x2, ~, 1 /z, mt; t )' 
2..7f 

= {-fn) J J ~ e'mtfrJ x,, :Xz, 'd,, Y2 , ~; t/ 
0 2.1r (/ (/ 

= (fr,J I o1~ e'mt~ llfr f}) x, cp; t> 
0 

= {f;,) J;'z"ot f e ;,.._( f- 'f) I ({-, X, cf; t> 

= e - ~ mt."" 1 mz..., .x, rjJ; "t / 

Substituting (A3.14) into equation (A3.8) gives 
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(A3.11) 

(A3 .12) 

(A3.13) 

(A3.14) 

e i£ /YYL'' '~"'"- ..,_, tr'l < "YfL" ~, /'() ". t "I ' ;t:, dJ'. t'> 
J )f.l -rn, ,y..l 

(A3 .15) 
II II tf) ,, t II I I 'V I d) I t '> c {' = < }V 1 X , r ; 'f ' ,/\- 1 ; , 0 mr. '~ o a mt ~ o 



Let 
2."1f 

I X_, p; "t > = ~ S o1 tf I tf', 'X 1 (J; t > 
0 

Equation (A3.15) implies that 

< IV ,, X , l"f) II. t: ,, I lb I X I d) I • t I> 

TJ ,// T1 JY'.J 

Equation (A3.17) implies that the apparent 

violation of S-matrix unitarity corresponds to the 

elimination of the SV -degree of freedom in the s

matrix elements. Substituting equations (A3.9) into 

the Lagrangian verifies this by giving 
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(A3.16) 

(A3.17) 

(A3.18) 

From this it is obvious that the S-matrix elements 

must be independent of the $~"' -degree of freedom. No 

information concerning this degree of freedom is preserved 

as the states evolve and the S-matrix appears to violate 

unitarity. 

The energy eigenstates of this model must have 

periodic time evolution and so must have non-zero S-

matrix elements. They must be composed of states of 

form /X, f; t> The matrix elements of the 
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opera tors ( ztJ(. (t) ) and ( z o( (t)) t' between such 

states are zero, e.g. 

< X ,~ f: t ,, I ( z, ( t ')) I X; tjJ; t '> 
2. 7T l., 

~ (in)Z 1 d ¥' u f d if' e ;{If''+":>~-') C<Y-J f I 

0 0 

X < tv " X ,, dJ ,, . t " I U/ ' X ' dJ I. t '> 
7 J ,'!'./ /J ./'/'./ 

from eqn. (A3 .16) 

= e i X I r/J I < X. I I /1) ,, . t I I X I AJ I • t; I > 
~>" !'/'/ J'i'/ 

27T 

X {fir) i ollf'' eLy-' from eqn. (A3 .17) 

0 

= 0 (A3.19) 

The other three operators behave similarly. This 

means that the Fourier components of these operators 

cannot be creation and annihilation operators for the 

quanta of the model. 

In SU(2) gauge field theory no information 

concerning the gauge degrees of freedom is preserved 

as the states evolve.· The loss of this information is 

the origin of the apparent violation of unitarity. A 

similar result to equation (A3.19) also holds. 
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