W Durham
University

AR

Durham E-Theses

Development of an intelligent interactive graphics
terminal

Jones, P. S.

How to cite:

Jones, P. S. (1980) Development of an intelligent interactive graphics terminal, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7635

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7635/
 http://etheses.dur.ac.uk/7635/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

DEVELOPMENT OF AM INTELLIGENT

INTERACTIVE GRAPHICS TERMINAL

ABSTRACT

An intelligent system, based on a
refreshed display device and associated
memory, which permits conversational di-
alecgue with two host systems concurrent-—
ly and has interactive graphics capabil-
ity, 1s described. 1Its use, both as an
intelligent terminal and a graphics dev-
ice, is illustrated within the context
of the Durham Education and Research
Multi Access Network (DERMAN). Details
of the communications aspects, graphics
protocol and display file management are
given. Future lines of development of

the system are discussed.

P.S.Jones
University of Durham

1980

DEVELOPMENT OF AN INTELLIGENT

INTERACTIVE GRAPHICS TERMINAL

A Thesis submitted for the
Degree of Master of Science

in the University of Durham

by

pPaul Sheridan Jones

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

Department of Computing
University of Durham

July 1989

e

ACKNOWLEDGEMENTS

The project described here is part of a continuing
development of facilities within the Durham Education and
Research Multi Access Network. The original nucleus
of software, which provided the basic graphical primitives
from which the current system was developed *, originated
frém the Computing Centre, University of Michigan, USA, to

whom due acknowledgment is given.

Two of the prime tests of a software system are its
usability and adaptability to change. Many of the facili-
ties encompassed by the current system have been ecsta-
blished as a direct result of users' comments and
suggestions. To them many thanks are due. Equally, the
support of my colleague, G.R.Eadie, who provided the origi-
nal 'springboard' for this development, was invaluable dur-
ing the earlier part of this project. Finally, the advice
and encouragement of my supervisor, Mr. J.S.Roper, is grate-

fully acknowledged.

Aspects of the system relating to the main processing

loop, 1local device commands and two session capability,

A '

were the author's original contribution.

-~

e -
".\v_\'\l"“ e v,
/2o AN R
/
\.'.
N EEEI

! ',Z? o (WA

-3 . S

CONTENTS

ABSTRACT

1) INTRODUCTION
1.1 General Introduction
1.2 Operation of the Display Processor
1.3 Screen Layout
1.4 Software Aspects

1.5 The Processing Loop

2) MEMORY MANAGEMENT AND COMMUNICATIONS
2.1 Device Handling
2.2 System'Memory Layout
2.3 Nibble Management
2.4 Character Input and Qutput

2.5 Display File Management

3) DEVICE COMMANDS AND THEIR IMPLEMENTATION
3.1 Summary of Device Commands
3.2 Screen Initialisation
3.3 Scroll Area Adjustment
3.4 System Selection
3.5 Character Editing and Cursor Control
3.6 Immediate Mode Characters
3.7 Unbuffered Input Mode
3.8 Input Tabbing
3;9 Hard Copy Ability
3.10 Local Character Echo Mode

3.11 Visible Character Mode

4) CHARACTER AND GRAPHICS MODE
4,1 Character Scroll Operation
4.2 Graphics Protocol
4.3 Text and Vector Processing
4.4 Light Pen and Tracking Cross Operation

4.5 Utility Routines

5) CONCLUSIONS AND FUTURE DEVELOPMENT
5.1 General Conclusions

5.2 Future Development

APPENDIX
A.l Structured Macros
A.2 BNF Definition of Graphics Protocol

A.3 System Generation

REFERENCES

INTRODUCTION
1.1 General Introduction

This document describes the evolution of a system
develcpment facility wused in the Durham Education and
Research Multi Access Network (DERMAN). It is Dbased on a
refreshed display screen and asscciated memory, controlled
by a dedicated processor. Some of its features were derived
from developments in the 'intelligent' terminal field and
from‘facilities available on more sophisticated devices at
the Northumbrian Universities Multi Access Computer (NUMAC)
central site (ref 1). Other elements in its makeup
derive directly from the need to act as an interactive
graphics display device. This document, although primarily
a record of the project, is-also intended as a part techni-
cal qguide to the system. Consequently, machine reproducible
diagrams and tables are interspersed with the body of text

as appropriate.

The system runs on a PDP 11/14 central processor, and
uses .a VT1ll display processor to display text and graphic
information to the user. An operator's console and communi-
cations interfaces complete the specification. The two com-
munications interfaces provide the route to the host systems
selected, In this case these are uvsually a local UNIX sys-
tgm (ref 2), running on a PDP 11/34 with 128K words of
S£ore, and a remcte IBM 370/168 at NUMAC, running the

Michigan Terminal System (MTS) (ref 3). Terminal access to

INTRODUCTION

the IBM processor is achieved by a PDP 11/20 concentrator in

Durham connected to Newcastle by a 9.6Kb share of a 48Kb

synchronous line. These local PDP-11 processors, together
with other minicomputers and microprocessors on the
campus, represent the hardware of the DERMAN system. This

facility, still in the early stages of development, will
provide resource sharing, file transfer and other distri-

buted computing facilities to machines on the University

site.
UNIX GTX
- I o Ie——————— I
I I I I
I PDP I I pDP I I I
I 11/34 1i- - - - -1 11/18 I--———- I VTl 1
I I I I I-—————-—- I
I--——r = I I-——~m———— I
I |
| f
I I
I l
I I
e E R I
1 I
I I MTS
I I I-————————————
I PDP 11/20 I I ’
I I. « « « « « « « » o1 IBM 370/168
I I I
- I I----—————————-
The Main Components of the DERMAN System
The software of the system, called GTX, allows the

display screen to be shared by two independent terminal
'sessions' in normal text mode or to be completely wutilised
by one of them in graphics mode. Various device commands

provide for adjusting the screen layout, local editing and

INTRODUCTION

printing functions. A feature of the system is the ability
to have a type-ahead line, which is locally buffered. \Users
of the system found this extremely useful, particularly when
using it to access MTS at NUMAC. This system operates in a
half duplex mode and will not allow input from the user un-
til prompted. With type-ahead, a complete line can be esta-
blished 1locally and sent by typing a single carriage return

character when the promplt is received.

The display tube incorporates a light pen, a device by
which an item of character or graphical data
displayed on the screen may be pointed at and recognised by
the display processor. It is thus particularly useful for
applications involving menu selection or picture manipula-
tion. Earlier work with this equipment (ref 4) esta-
blished its capability with an information system housed
within the PDP 11/18 machine. With this current development,
the 'driving' software for the graphics display resides re-
motely and talks to the GTX system by means of a simple pro-
tocol described later. GTX provides management of the
display file structure, for example adding or deleting an
cbject from the screen, énd returns details of interaction
by the wuser with the display as data to the host system.
Such a system might be the Integrated Graphics (IG) (ref 5)
package running in MTS, on which the protocol for:the data
exchange was based, or a graphical ftront end process to the

INGRES (ref 6) data base management system operating under
/

INTRODUCTION
CUNIX.

The equipment on which the system 1s supported con-

sigts of

1) a PDP 11/18 processor with 16K words of memory

2) a VTll display processor

3) a VR17 refreshed display unit with light pen

4) two RK@5 disk units

5) two asynchronous serial line communications interfaces

6) a DECwriter hard copy console unit

In what fecllows, a certain level of familiarity with
the characteristics of PDP-11 processors may be assumed at
various stages. In particular the reader 1is assumed to
understand the operation of a stack, the reference of dev-
ices as normal memory locations and the concept of an inter-—
rupt. A suitable reference which explains these and the
more general features of this particular range of mini-

computers is the manufacturer's handbook (ref 7).
1.2 Screen Layout

The layout of the screen at initialisation is pic-

tured in fig. 1.1

-0

INTRODUCTION

(RS E R RS S SR RAR R R ESEEEE AR SEREEESER SR ESERREREEEREEEEEEREEEREREEREEEEY

* % % % % % ¥ ¥ ¥ %

*

% 3% % % ¥ ¥ O ¥ F

® o W % ¥ Ok N % % % ¥ K ¥ ¥ o % ¥ ¥ O

SYS P ATTN/C EOF/C FLOW/C FLO/H FLO/U COUNT NIRBLE VIS LOCAL

e

b

*

* L - 00@177 00003 000001 00000 00000 ¢PPOC GOU231 PUA0Y Q0OBU*

IR RS S AR E SRS SRR XL SRR SRR SRR R RS R R R R SRR R S E LT SR EEEEE SRR

Screen Layout

Fig 1.1
The dashed line in the centre of the screen divides it 1into
two areas, LOWER and UPPER. These areas hold non-graphic
character data received from the host systems and operate in
a scrolling fashion. That is, when the area becomes full
with text, the top line of text is removed and the whole im-
age shifted wup one line, allowing the next line to be in-
serted at the bottom of the area. The position of the line,
controlling the division of the screen intc the two areas,
can be altered by a device command. Thus it is possible to
haye one system occupying just a few lines whilst the main
area of the screen is available to the other, Characters

from the keyboard are sent to the currently active host,

-1¢-

INTRODUCTION
which is also selectable by a device command.

In normal operation, keyboard characters are buffered
in a type—-ahead line at the bottom of the screen and can be
edited. This line is prefixed by a prompt character (>) and
a blinking underscore character () indicates the position
at which the next character typed will appear in the buffer
line. Editing of the line is performed by cursor con-
trol, allowing deletion or insertion of characters anywhere
“in the line. In addition certain system status information

is displayed in the small area at the bottom of the screen.

In graphics mode the complete screen area is available
for use. When expecting input in graphics mode, from
the keyboard (for tracking cross positioning) or the 1light
pen, the cursor character in the buffer line is changed to a

plus sign '+' or a solid square character respectively.
1.3 Operation of the Display Unit

The VR17 display screen has a viewable area ofr size
1024 by 1024 raster unité. A 6x8 dot matrix is used for the
hardware generated character font and 8 hardware intensity
levels are selectable. A full screen can display 42 lines
of 73 characters each and the 96 ASCII character set, to-
gether with 31 special characters including Greek letters,
i; available. Full details of the configuration of the cen-

tral ©processor, memory and display equipment, known as a

GT48/CT42 in a packaged form, can be found in ref 8. The

-11-

INTRODUCTION

basic operation of this equipment will however be briefly

described.

The central processing unit (CPU) and display proces-
sor both share the memory and essentially operate as autoe-
nomous devices. The display processor unit (DPU) executes a
small set of display instructions and the display file
through which it cycles is usually maintained as a linked
list of display segments. The display file is maintained by
a program executed by the central processor and the display
- procéessor is started by the CPU 1loading a value in the

display program counter (DPC).

Once running, the DPU accesses memory by non-—
processor requests (NPR) and the CPU need not bhe aware
of the existence of the DPU thereafter. However a means of
communication bet@een the DPU and the CPU is available by
use of the 'display halt' (DHALT) instruction in the DPU.
On executing this instruction the DPU will halt and send an
interrupt to the CPU. Normally the interrupt service
routine (ISR) executed by the CPU will restart the DPU
within a short time and no visible change of the displayed
image will occur. However the ISR can obtain details of
which area or segment 1in the display file caused the
interrupt and use this information to maintain an active
display segment. This is usually performed by placing the
DHALT at the end of a display segment and following it with
tﬂé address of the next segment in the 1list. Thus the

operation of this appears as a display jump (DJUMP) instruc-

-12-

INTRODUCTION

tion to the next segment, with the advantage that the

path of the DPU through the display file is monitored by the

CPU.

The five basic instructions making up the display pro-

cessor instruction set are

1) Set Graphic Mode

2) Jump

3) No-op

~4) Load Status RegisterbA

5) Load Status Register B

~

Instructions 2 and 3 are self-explanatory but the others re-
quire more amplification. The Set Graphic Mode instruction
performs several functions. It primarily establishes the

mode of the subsequent graphic data as one of the following

a) character mode

b} short vector mode
c) long vector mode
Q) point mode

e) graph x mode

f) graph y wode

g) relative point mode

In character mode ASCII data will follow the instruc-
tion, two characters to a word. All vector mode data is re-
-lative, that is an offset from the current beam position,

the distinction between short and long vector mode being

-13-~

INTRODUCTION

that the increments are stored as two in a single word or as

two separate words. Short vector mode allows a 6 bit co-

ordins:

fx

te increment, giving a maximum value of 63 units,
whilst in 1long vector mode 16 bits, representing the full
screen limit of 1@23, is available. Point mode, either ab-
solute or relative, establishes a beam position. Relative
mode uses a single word to store both the beam x and y in-
crements and therefore weach is restricted to a max-
imum of 63 units. Graph x/y modes are available for use in
plotting data where either fhe X or Yy co-ordinate incre-

ments uniformly; this mode is never used by the GTX system.

Other fdnctions contained within the Set Graphic Mode
instruction are an intensity wvalue in the range § to 7,
light or dark vector, blink mode operation; line type selec—
tion and 1light pen interrupt enable. This latter function
can be used to allow certain display segments to be sensi-
tive to 1light pen interaction whilst others are not. That
is, the programmer can decide which areas of the screen or
items displayed are affected by the user pointing the light
pen at them.

The Load Status Register A instructicn <contains bits
to stop the display, select character font type and provide
synchronisation with the line clock. This latter function
may be used to attempt to maintain an image whose intensity
is’ independent of the amount of datawdisplayed. Since the
DPU cycles through the display file, refreshing the display

screen, it would normally produce a dimmer image as more

14~

INTRODUCTION

data 1s added to the display file, since the refresh rate
would decrease. By halting the DPU and restarting it on the
next clock cycle, a 5@Hz refresh rate, resulting in a con-
stant intensity image, can be obtained. However if the cy-
cle time of the DPU through the display file exceeds 2#ms,
then the display will appear to flicker, since the display
will wait till the start of the next clock cycle, that is an
interval of 40ms, before restarting. Thus choice of whether
to employ synchronisation with the line frequency is not al-

ways obvious.

The Load Status Register B instruction is wused for
setting the graphplot increment when graph mode is in opera-

tion. It will not be mentioned further.
1.4 Software Asbects

The system is entirely written in MACRO-11, an assem-
bler for PDP-11 machines running under the RT-11 operating
system. However, the primitiveness of the assembler
language is tempered by the addition of structured macros,
which impose high level control functions on the underly-
ing code. These include simple IF ELSE and LOOP
«o.+. REPEAT macros which generate test and branch type in-
structions. 1In more detail the macros available, arranged

in groups , are :-
g

l) PUSH, POP, LOSE

2) CALL, RETURN

INTRODUCTION
3) IF EQ (LT,LE,GT,GE) <ELSE> ENDIF

4) LooP oo <BREAK (EQ,LT,LE,GT,GE) > ceeo REPEAT

<(EQ,LT,LE,GT,GE)>

The group 1) macros provide for placing items on the stack
(PUSH), taking items off the stack (POP) and dropping items
from the stack (LOSE). A maximum of six arguments is al-

lowed for each macro. They are typically used for saving

registers on the stack as in
PUSH RB,R2

and restoring them after use
pPOP R2,R0@

LOSE is used in a situation where the stack pointer 1is ad-

justed upwards by a number of words, for example
LOSE 3
which will advance the stack pointer by 3 words.

The second pair of macros simply provides for a
high level call/return interface for subroutine reference.

Here they are simply replaced by the following instructions

CALL SUBR

==5 JSR PC,S5UBR

RETURN

==> RTS PC

In a more general case these could be expanded to ©provide
automatic register saving and restoration on subroutine en-

try and exit. 1In GTX most subroutines use only two or three

-16-~

INTRODUCTION

work registers, so the convention adopted is that it is the
responsibility of the called routine to preserve the in-

tegrity of any registers it uses.

Groups 3) and 4) are more substantial undertakings,
given that nesting of these types of control functions is
allowed. 1In essence what is required is a macro variable to
hold the nesting 1level and another variable to store the
generated label sequence counter. The first is incremented
on entry to each IF clause and decremented on exit from each
ENDI% macro. The second is incremented for each IF macro
encountered. ;n the absence of an ELSE alternative, each IF
<condition> statement generates a branch instruction for the
complementary condition, to a label of the form QQn, where n
is the label sequence value. 1In MACRO-11 facilities exist
for wusing a symbol both as a numeric value and a character
string of digits, as well as allowing concatenation of one
string to another. At each ENDIF a label of the form QQOn is
output, to serve as target for the conditional branch of the

corresponding IF statement.

With ELSE capability a little more care is needed. On
encountering an ELSE, an unconditional branch is made to a
label which will appear at the corresponding ENDIF and is
of the form QZn where n is the label sequence. This is fol-
lowed by output of a label QQn, which is the target for the
corresponding conditional branch of the original IF state-

y

ment. The nest level is then negated. All that remains now

is that at ENDIF the nest level is tested. 1If positive a QQ

-17-

INTRODUCTION

label is output as before, but if negative a QZ 1label is

produced. With an illustration the requirements may be a

little clearer.

IF EQ BNE Q01
IF LE BGT 002
ENDIF 002:

ELSE BR Qz1
o © © & © o QQl: . & > 8 0 o

ENDIF QZ1:

Structured Macrec - Instruction and Label Generation

A similar approach is used for the LOOP REPEAT
construction which has the option of a BREAK statement in
the loop body. An example of such a construction 1is shown
here, where a search is being made of a linked list for a

particular item. The list is terminated by a zero link.

MOV HEAD,RO ; pointer to head of list
LOOP

CMP 2 (R@) ,WANTED ; is it the one we want ?
BREAK EQ ;7 yes, get out

MOV (R©) ,R0 ; no, get next list element
REPEAT NE ; and look out for end of list

Appendix A.l contains a complete listing of the structured

macros used.

The GTX system is divided into six modules, each

-18-

INTRODUCTION

separately assembled together with a module containing com-
mon symbol definitions and global declarations. These

modules and their functions are as follows :-—

GTMAIN
the main program. Performs the basic pro-
cessing 1loop and handles communications as-
pects.

GTDEV
deals with device commands

GTSCRN
provides management for the ‘nibble' pool
and handles text characters for the scroll
areas of the screen.

GTGRAF
provides the basic graphical primitives,
handles the display file management includ-
ing the light pen operation.

GTCI

character interpreter. Deals with all char-
acters received €£from the host according to

the IG protocol.

INTRODUCTION

GTUTIL
assorted utility routines for internal to
external conversion, character string output

etc.

The object modules produced by assembling these source
modules are then linked together using the LINK-11 linkage
editor. The resulting image when loaded occupies approxi-
mately 4K Dbytes of memory. The commands necessary to gen-

erate the GTX system are given in Appendix A.3.
1.5 The Processing Loop

The main processing loop in GTMAIN is extremely simple
and relies on a 'polling' of each device input queue to see
if a character is available to be dealt with. By ‘device'
is meant the console keyboard or the host systems to which

the system is connected. 1In essence its operation runs as

follows. 'Examine each device queue in turn looking for a
character to process. If there 1is none, continue with
the next device immediately. Following the last device

update the status display area, if necessary, and continue
again with the first device', Processing thus occurs
on a single character per device basis rather than, 6 dealing
with several characters for a device before proceeding

with the next one.
,
Proceeding to look at this in a little more detail, a

routine CHARIN deals with characters from the keyboard and a

-20-

INTRODUCTION

character interpreter (CI) module deals with characters from
the host systems. The keyboard routine first looks for
characters such as cursor control, interrupt; delete or tab
characters which have special significance. Other charac-
ters are inserted in the type—-ahead line until a carriage
return character is received. At this point the characters
are normally transmitted to the active host system, which is
responsible for echoing of the characters. Short device
.command lines, which specify an attribute of the local sys-—
tem, are scanned for at this stage, that is on line termina-

tion.

The character interpreter module, which deals
with characters from the host systems, functions in two
basic modes, text and graphic. In text mode, characters
received are displayed in a section of the screen set aside
for that particular host and the system functions as a nor-
mal terminal. In graphics mode, characters received are
interpreted according to the protocol wused and normally
display picture data wusing the full area of the screen.
Character reception from the two hosts functions 1indepen-
dently in text mode but not in graphics mode. In the
latter case one host may send a control character which
re-initialises the screen, thereby 1losing any text or

graphics received from the other host.

-21-

INTRODUCTION

The main functions involved in the processing are 1il-

lustrated in fig 1.3.
not yet been mentioned;

as these items are discussed.

INPUT
- 1 I
I keyboard I--->I
Tmem e I I
i I
I main
I processing
I . loop
I
I
I
- I I
Thost linel I--->I
R I I
I
I
I
e bt I I
Ihost line2 I--->I
I I I
I
I
I ______________

GTX Main Functio
Fig 1.3

~2

this diagram should be referred

I I
I-->1 device

I Icommands
I I~
I

I

I

I ______________
I

I

I

I

I

I - ——
I I char-
I-—->Iacter

I I inter-
I Ipreter

I [———————
I

I

I

ns

2 -

Some of the features shown there have

to
ouUuTPUT
I
I
I
I
[e I
--->I to active I
I host I
I--———————— I
I Iemmmmm—— I
1 I hard I
I-->I copy I
I-=]I=—mmmmmmm T
I-1|
I
1l I-—————— == 1
I>I text T
| I scroll I
| I-—~——————— I
|
I
| I———m - I
->1I graphics I
[=mwmmmmm——— I

MEMORY MANAGEMENT AND COMMUNICATIONS

2.1 Device Handling

The basic device components of the system, as shown in

fig 2.1, are required for full utilisation of the systems

capabilities.

- I - I
I I I I
I vrl7 I I decwriter I
I refreshed I I console I
I display I I dl-1l1la I
I I I n
IJ-————mr e I - I
I1 II
IY II
II II -
EE R e e e UNIBUS
IT II II
II II I1
II II I1
I-—rmr e —— I - I - I
I I I ' I I I
I 16K core I I dl-1lc I I dl-1llc I
I memory I I interface I I interface I
I I I I I 1
e - I [-————————— I J———————— I

Basic System Components
Fig 2.1
The cénsole, providing keyboard and hard copy printing func-
tions, is connected to the UNIBUS by a DL-11A interface at
a speed of 30#bps. The two DL-11C interfaces, opegating at
a fixed speed of 2400bps, provide communication with the
host systems required. The combination of the VR17 re-
ffeshed display screen and the core memory is often re-

ferred to as a 'GT4¢', this being the name given to a pack-

-23-

COMMUNICATIONS
aged variant of this equipment by the manufacturer.

Apart from the differing speed, the fuﬁctional specif-
ications of the communications interfaces are very similar
(see ref 1¢). The main difference between the DL-11A and
the DL-11C is that the former is unable to indicate charac-
ter framing errors on reception or to effect a break condi-
tion on transmission. Both the receiver and transmitter
sections of the interfaces have a control and status regis-
ter {(CSR) and a data buffer register (DBR). These registers

are addressed through the following locations :-

| | ITmem e e) I
I device I receive 1 receive I transmit I transmit I
I I CGSR I DBR I CSR I DBR I
| Imm e e R)) I
I k1-11 I 177568 I 177562 1 177564 1 177566 1
- Tmmm e [—mmm e R R I
I d1-11/1 1 175618 I 175612 I 175614 I 175616 I
R R R [-—m e | I
I di-11/2 1 1756280 I 175622 I 175624 I 175626 1
e [m e -~ R | I

Device Register Addresses
Table 2.2

Within a device the relative positioning of the regis-
ters (is identical; thus the only device dependent data re-
quired is the 'base address' of the device, taken to be the
CSR. Full details of the specification and layogt of the

registers can be found 1in ref lﬂ; only those aspects

deemed relevant to this application will be mentioned here.

/
e
/

At this point it may be useful to clarify the opera-
tion of a PDP-11 processor under the influence of an exter-

nal interrupt, such as might occur from one of these dev-

-4~

COMMUNICATIONS

ices. Two internal processor registers play an important
part in this situation. The program counter (PC) addresses
the next processor instruction to be executed. The proces-
sor status word (PSW) holds information about the current
state of the processor; in the case of a PDP-11/20 the ele-

ments of the PSW are as follows :-

T-m—mmm e [mmmm e I I
I UNUSED IPRIORITYI ICONDITION I
I I I I CODES I
R R L R I

The Processor Status Word (PSW)
Fig 2.3
The processor operates at one of eight 1levels of
priority @-7. Devices of a hardware priority less than or
equal to the current priority cannot interrupt the proces-

Sor. Thus the priority scheme provides an effective inter-

rupt mask.

The condition codes contain information on the result

of the last CPU instruction executed and are set as follows

bit 3 (N) - set if the result was negative

bit 2 (Z) - set if the result was zero

bit 1 (V) - set if the instruction resulted in an arith-
metic overflow '

bit # (C) - set if the instruction resulted in a carry

from the most significant bit

When an interrupt occurs the current PC and PSW
values are pushed onto the stack, addressed through a gen-
eral register, and new values for these registers taken

from an area in memory specific to the device concerned.

25

COMMUNICATIONS

This area is known as the interrupt vector for the device
and the program module addressed through the new program
counter 1is <called the Interrupt Service Routine (ISR).
Generally the value of the condition codes in the PSW 1load-
ed from the interrupt vector 1is not of direct conse-
quenceé and can be used for other purposes, as we shall see.
Normally upon completion of the ISR the reverse operation
océurs, i.e. the saved values of the PSW and PC are restored
from the stack, thus continuing the processor from the

‘point at which it was interrupted.

Returning to the devices under consideration, their

interrupt vector locations are as follows :-

[=—mmm - I mm e e I
I device I receiver I transmitter I
I I vector I vector I
[——m I-——— e I e e I
I kl-11 I 60 I 64 I
[-mmmmmm e I-———m e I I
I dl1-11/1 I 300 I 304 I
D [—m—mmmmmmm e I————mm—— I
I dl-11/2 I 310 I 314 I
[——————————— I et I et T I

Device Interrupt Vectors
Table 2.4

As before, the receiver interrupt vector location provides

the device dependency.

"The method used to provide common device support |is

now cutlined. Since the devices are inherently similar,
a common core of device support is clearly feasible; the

question which naturally arises is, can the commonality be

-26-

COMMUNICATIONS

total? That is, can the devices share a single interrupt

service routine ?

If the PSW is used to distingqguish the devices, then
a common ISR can 1indeed be achieved. Since the proces-
sor priority is normally set identically for devices of the
same type, in this case priority 5, the condition code
bits of the PSW are utilised to provide thev device
_separation. They are set to ¢,1,2 for the respective dev-
ices. Thus the minimum information required to specify the

devices is given in table 2.5 :-

I devicel interrupt I base I interrupt I
I I location I address 1 PSW I
I——— = I e I R et I
I k1-11 1 60 I 177560 I 240 I
I————— I Iemm e e e I
Idl-11/11 300 I 175619 I 241 I
I-mme e I e I I I
Idl-11/21 310 I 175620 I 242 I
I-—mm I I-——m e I-mm— e I

Communications Device Table
Table 2.5
This method can be used for a maximum of 16 devices of
the same type. In GTX the above infecrmation is stored in a
device table, together with an area for saving the original

interrupt vectors.

The sequence of events following a receiver interrupt
from one of these devices runs as follows. Firstly, the
hardware saves on the stack the oldvbrogram counter and pro-
‘cessor status word and loads the new values from the inter-

rupt vector for the device. In the interrupt service rou-

-27-

COMMUNICATIONS

tine the new PSW is immediately pushed on the stack, fol-
lowed by the saved registers used in the routine. Then the
codition code bits of the stacked PSW are checked to ascer-
tain which device caused the interrupt. This particular se-
quence of operations is required, since saving the registers
(by a MOV instruction) sets the condition code bits of the
PSW, thereby destroying those used to identify the device.
The stack status during the processing of an interrupt is

pictured below.

stack pointer stack

before interrupt ->

after interrupt -> |old psw]

in interrupt routine -> | 3 |

Stack status during character interrupt routine

-28~

COMMUNICATIONS

2.2 Memory Layout

The GTX system, although essentially a stand alone
system not utilising any of the facilities of RT-11, co-
resides in memory with the resident portion of the RT-11
operating system. In this way an ‘'escape' back into the lo-
cal system is possible. For a fuller explanation of which
.parts of RT-1l1l are resident the reader is referred to refer-

ence'1ll. The layout of memory appears :-

I resident part of
I RT-11 operating
I system

® ® o 06000 000000 @ 6 0000 ¢ 00

graphics 'nibble’
area

~11000

0 ©6© 00 60000 00CD0OC0O Q@O0 S O OO

o B B e Bl o B e B o B o I o W

I GTX program and
I data area
I
1000) S
I
I stack area

e O e T O e I e T e B B e R o B o T o B T e B e B B e B B L e I e B e B |

System Memory Layout
/ Figure 2.6

The GTX code and data area start at octal location

16064, immediately adjacent to the downward extending stack

-29-

COMMUNICATIONS

area. The area of memory between the top of GTX and the
bottom of the RT-11 resident section is allocated to a list
of graphics 'nibbles', each 64 bytes in size. This area is
dynamically shared between graphics elements in use and a
free pool of available élements. The number of free graph-
ics nibbles is displayed in the status area at the bottom of

the screen.

When the GTX system is started, an initialisation pro-
ncedure is undertaken, which stores the interrupt vectors for
the communications devices, as used by RT-11, in a save area
and replaces them with those of its own. This allows an

orderly return to be made to RT-11 at some later stage.

2.3 Nibble Management

The management of the nibble pool is probably the sin-
gle most important part of the system, since it is used not
only for all the graphical and textual information displayed
on the screen but also for input/output buffering functions.
Two primitives exist for bbtaining and returning nibbles,
perforﬁed by the routines NBLGET and NBLGIV respectively.
Both of these routines update a free nibble queue head and a
nibble element count. NBLGET returns a pointer to. the new
nibble obtained, whilst NBLGIV receives a possible chain
of nibbles being returned to the free pool. NBLGIV takes
tWé parameters, the head and tail of the unwanted chain.

This 1is particularly useful when an entire graphics segment

-30-

COMMUNICATIONS
is being deleted, since only two instructions are involved.

Built around these primitives are two 'macros, NBLBYT
and NBLWRD, used by the graphics functions to insert a char-
acter (byte) or a word into an open display segment. They
require as parameters a pointer to the most recently insert-
ed character (word) and a byte count of the space remaining
in the current nibble. These updated values are then re-
turned to the calling procedure, reflecting any changes,
hsuch. as new nibble acquisition, when necessary. If the

latter was required, then chaining of the new nibble to the

display segment is automatically ensured.

2.4 Character Input and Output

On reception from the keyboard or the remote hosts,
. character data is collected by the interrupt service routine
for later processing by the main program loop. The ISR
makes calls to the PUTC routine to perform this function.
In PUTC all buffering is performed dynamically, that is the
buffer extent shrinks and grows as required. There is no
limit on the buffer size allocated to a particular device,
apart from thei inherent memory limitations of the system.
At initialisation no buffer space is allocated. On, recep-
tien of the first character a 64 byte area is obtained from
the hibble pool. Should the rate of arrival of characters
téﬁporarily exceed the processing speed of the main program

loop, then further nibbles may be chained onto the 1initial

-3]-

COMMUNICATIONS
element as required.

As characters are removed from the buffer, by calls to
the GETCHAR routine, any disused nibbles are returned to the
free pool. If the character queue empties completely,
then the nibble containing the last character is like~-
wise returned to the free list. When the queue 1is enmpty,
calls to the GETCHAR character routine, to extract a char-
acter, return with the carry bit of the PSW (fig 2.3) set;
if the carry bit 1is clear, it indicates that a character
was successfully obtained. During extraction of charac-
ters from the queue by GETCHAR, the processor priority is
raised to a level equal to that of the DL-11 devices. This
ensures that character buffering and extraction are mutu-
ally exclusive operations. Two simple macros FREEZE and
THAW, given 1in Appendix A.l, provide the tools for this
mechanism, which is used generally in ‘'critical regions' of

the system.

The device buffer, consisting of a linked list of nib-
bles, 1is accessed by a list head containing the character
count and pointers to the first and last characters 1in the
qucue. This 1list head, in conjunction with a pointer to
the device table, constitute all that is required to drive

that particular device, and together are known as the

device header. Fig 2.7 1illustrates the structure of a
device header. Since the nibble element size is 64 (oc-
tal 100) bytes, a simple 'address arithmetic' test, wusing

a mask value of octal 77, is used to determine when a nib-

-32-

COMMUNICATIONS

ble boundary is being reached.

I _____________________________
-——=>1 device address
| R it
[I interrupt vector address
| I e
[I new interrupt vectors
| I——m e
| I old interrupt vectors
| I e e
I
|
I~ I |
I device table ptr. I----}|
I I
I character count I
I e e I
I first pointer I-———|
I—— e I |
I last pointer I-| |
I I | |
|
. I-—--1
] | IlinkI---|
|1 I--—-I |
[I I I
| | -—=>1I I . |
| I I |
| I I] character queue
I I-—--1 |
I I
I I-—--1
| IlinkI---|
| I———-1I |
I 1 I |
I I I I
I I I I
I I I I
| I----1 |
| I
I |
| |
! -1
I I 01
I I----1
I I I
| —m o >1 I
I I
I I
I----1

Structure of Device Header
Fig 2.7

-33-~

COMMUNICATIONS

In the standard mode of operation the system is capa-
ble of recelving from both hosts concurrenﬁly, with little
buffering of characters being required. That is, the main
loop 1is able to extract and process characters faster than
the rate at which characters are arriving. However if the
console printer is being used as a hard copy device, as well
as text appearing on the display screen, then flow control
‘becomes an important factor. This is because the printer is
limited to 3d@bps whilst each remote 1line 1is rated at
24¢@bps. Flow control ccould be effected manually but this
is tedious and almost impossible if a long listing 1is re-
quired. With this possibility some form of automatic flow
control was decided upon, which would appear to the user as
though no buffering was occufring. This control mechanism
occurs irrespective of whether a hard copy listing is being
produced, that is, it is opefative all the time. In essence

the character flow is controlled at two points, as follows.

Firstly, the arrival of characters from the host |is
governed by a low and high 'water mark', associated with the
number of characters queued for that line. When the charac-
ter count rises above a pre-determined ‘high water mark', a
flow control character is sent to the host, causing‘ it to
cease transmitting. When the level falls below a
corresponding 'low water mark', another flow control
character 1is sent, providing resumbtion of the paused out-

put. This process is completely automatic and the user has

-34-

COMMUNICATIONS
no control over it.

Secondly, the extraction of characters from the device
queue 1is governed by the state of an 'internal' switch,
which is controlled by the wuser typing the flow control
character on the keyboard. Thus when the user pauses the
flow to the screen or printer, by changing this switch, it
may well be that the 'external' flow from the host is still
continuing (and vice-versa). When the internal flow is off,
kattempts to get a character from the device queue by GETCHAR
always fail. The state of both flow switches 1is presented

in the status display, for example

FLOW/H FLOW/U

177777 000000

indicating that flow from the host is paused, whilst that to
the user is on. Note that a single flow control
character,set by a device command, is used for limiting both
the external and internal flow of characters. Failure to
set the correct flow character may 1lead to malfunction,

since the system will eventually run out of buffer space.

With this buffering in operation, a little more care
is needed in dealing with the interrupt character. As well
as paésing this character immediately to the host, which in
thé case of both UNIX and MTS has the effect of switching on

character flow if it was off, it 1is also necessary to

COMMUNICATIONS
"flush' the internal buffer of characters already stored.

Output to the hosts and keyboard is performed without
interrupts. That is, when a character is to be output, the
output routine PUTCHAR simply waits for the device to come
to a ready state before transmitting the character. This is
done by monitoring a bit in the device control and status
register. When local character mode, described in Chapter
3, is in operation, PUTCHAR simply passes the character to

PUTC directly, without addressing the device.

As characters are extracted from the keyboard buffer,
they are displayed in the type-ahead line at the bottom of
the screen. On reception of a carriage return character the
line 1is output to the host system. If the line being typed
fills the width of the screen, the full line is sent
and the diﬁplay line <cleared ready for the rest of the

line to be entered.

2.5 Display File Management

The display file through which the VT1l1l display pro-
cessor cycles is constructed as a list of distinct segments
or sub-pictures, each bearing an identity tag and other
releQant information 1in a header block. Each dispiay seg-—
ment consists of at least one and possibly several nibble

e%ements, the first of which contains the header informa-

tion. Thus a typical display segment would appear :-

-36—~

COMMUNICATIONS

v
v

Lo B o B o B o B s B B B B e B e B B B B o
o H e e HH

segment
header

segment
data

Lot B o B o B s B s B o B o B B o R B o B]
L Bt B oo B o B T B o T o o T o B e B e T o T
Lo B e O e T e T e T e B N o T o B o B o B |

-
I
1
|
|
|
|
{
|
i
!

4

—

i

-
lw/}
<
c
=
T
—~
—
lw]
<
c
=
(3]
—~
—
[}
o]
™
[
=3

I
—————————— I to next
I-—-- I-—=->>
I-———— e I I-—————=——- I [-—————— I segment

=
|
|
1
!
|
|
i
|
[
|
4
=
=

—

-t
—
-
]
i
!
l
(|

Display Sggment Structure
Fig 2.8

Each nibble in the segment except the last ends in a
display JUMP instruction to the next nibble. The 1ést nib-
ble in the segment ends in a display HALT instruction fol-
lowed by the address of the next segment header in the chain
of display segments. This latter feature allows the system
to maintain a 'currently active' display segment, since the
display HALT instruction generates a processor interrupt on
the PDP 11/16, as well és halting the VT1ll display proces-
sor.

Knowledge of the active display segment 1is required
for operations 1involving the light pen, for instanée using
the tracking cross or selecting a particular item from
amongst those currently displayed. ih addition when manipu-
lations on a display segment are being performed, it may be

necessary to wait until the display processor has left that

-37-

COMMUNICATIONS

active segment before making the adjustments. The five word

segment header contains the foéllowing information :-

%——Egé;;—”—-% - lést y coordinate drawn in this segment
i——;;;;;———_i - last x coordinate drawn in this segment
%géaﬁﬁ—éaﬁé—i - current mode (text or vector)
%—Egg;-gggg—i - last used address in segment chain
ig;;gig‘égéii - bytes remaining in last nibble
- I + segment number

"Display Segment Header
Table 2.9

Most of these are self explanatory; one or two require
elaboration. LASTX and LASTY are stored so that if vector
information is appended to the display segment, a choice of
a short or long vector can be made, dependent on the current
mode. LAST ADDR and BYTE# are used when inserting data into

the graphics nibble by the nibble management macros.

All the graphics display segments are dynamically
created and 1linked 1into the display chain, which contains

the following permanent segments :-

1) a 50 cycle synchronising segment which causes the
display processor to wait and restart with the next
clock'signal

2)/a fixed status line at the bottom of the screen

(fig 1.1) which contains fields giving

a) the currently active system and printer status

-38-

COMMUNICATIONS

b) the attention character for the active system

c) the end-of-file character for the active system
d) the flow control character for the active system
e) the external flow status

f) the internal flow status

g) the count of characters in the type-ahead line
h) the number of free nibbles

i) the visible character mode indicator

j) the local character echo indicator
3) a keyboard type-ahead line of 72 characters

The upper and lower scrolling text segments are creat-
ed early on in the initialisation process and rg—created on
subsequent 'clear screen' commands. They grow and shrink
dynamically as required but have allocated at least one
graphics nibbie each. A fuller description of the operation

of these segments is deferred till later.

At any instant there may exist an 'OPEN' display seg-
ment which is currently being created, appended or deleted.
This is not to be COnfusea with the ACTIVE display seg-—-
ment, which identifies the display segment the display pro-
cessor is currently cycling through. The 'OPEN' segment is
governed purely by the protocol of the characters.sent to
the system from the host. When a segment becomes the 'OPEN'
segmeﬁt, the segment header is copied to a set of open file

variables, which are used in all subsequent references to

COMMUNICATIONS

the segment whilst it is open.

The primitives used in managing the display file are

CREATE

APPEND

DELETE

CLOSE

create a new display segment and make it

the open segment

add data to an already existing segment,

leaving it as the open segment

delete the segment from the display file

close the open segment. This involves
copying the open file variables to the

segment header.

Other auxiliary graphics functions are performed by

the following routines :-

MOVE

DRAW

move tc point (x,Yy)

draw to point (x,vy)

—h -

VECTOR

TEXT

_ FINDSEG

FINDNEXT

FORCEMODE

VRSTOP

VRLPEN

COMMUNICATIONS

make vector to point (x,y), deciding on

short or long vector mode

insert text character into open segment

find segment header address given segment

number

find next segment in display chain

force a display segment into desired mode

interrupt routine for display halt in-

struction. Maintains active segment.

interrupt routine for 1light pen inter-

rupts. Controls tracking cross position.

-4]1-

DEVICE COMMANDS AND THEIR IMPLEMENTATION

3.1 Summary of Device Commands

Characteristics of the system are altered by the use
of device commands. These 1include selecting the active
host, setting tab positions and controlling the extents of
‘the scroll areas. A device command is recognised by the ap-
pearénce of the device command character, by default the es-
cape characte;, atl the beginning of & line. A summary of
the device commands available to a user of the system Iis

given below

Ac
set the attention (interrupt) character for
the active system to c. This and two other
'immediate mode' characters are sent immedi-
ately when typed.

Dc
set the device command character to ¢ .

Ec

set the end-of-file character for the active

system to c.

-4

Hn

1{u/L]

Oc

pPlU/L]

DEVICE COMMANDS

set the inter scroll line height to n. This
establishes the relative proportion of the
screen allocated to the character areas.
Initially 19, this parameter should lie

within the range 1-37 inclusive.

initialise Qisplay. If no parameter is
given this removes all text from both scroll
areas and any graphics displayed. If the
parameter U or L 1is given, the text from

that scroll area only is removed.

local mode switch. 1In local mode characters
sent from the type-ahead line will be local-
ly echoed to appear on the input stream,

without being sent to a host.

set the output flow <control character for

the active system to c.

printer switch. Is used to produce hard
copy output on the console typewriter in ad-

dition to the refreshed display. The param-

-43-

Rc

S[{U/L/R]

™nl,n2,n3..

DEVICE COMMANDS

eter specifies which host stream 1is to be
copied; if no parameter is given then print-

ing is disabled.

set the rubout (delete previous) character
to 'c'. Typing this character will cause
the character to the left of the cursor ¢to

be deleted.

select active system to which keyboard char-
acters are sent.

U - upper system

L - lower system

R —- RT-11 (local) system

The system currently active is displayed in
the statistics area at the bottom of the

sScreen.

set input tab positions at columns nl,n2 ...
etc, which are expanded with space$ on in-
put. Up to twenty tab positions are al-
lowed. Tab characters received beyond the
largest tab setting given are replaced by a
single space. Specifying T alone disables

tab expansion and the tab character has no

-44-

DEVICE COMMANDS

special significance.

u
set unbuffered input mode. Every character
typed is forwarded to the host directly and
not buffered or 1interpreted 1locally. The
device command character still assumes sig-
nificance however.

\'

visible character mode switch, In visible
mode all characters received are printed as

ASCII octal codes on the console printer.

All alphabetic characters in device commands may be given in
either upper or lower case. A line beginning with the dev-
ice command character, but not interpretable as a device

command, is sent to the host.

Some of these device commands are sufficiently ex-
plained by the above. However, a few of them will be dis-

cussed and elaborated in the following sections.

-45—

DEVICE COMMANDS

3.2 Screen Initialisation

The 1initialise screen command re~establishes the
screen to its original layout with one exception, that the
currently existing division between the two scroll areas |is
maintained. That 1is the dashed line shown in fig 1.1 is
left at its current position. This is possible because the
‘adjust scroll height command updates the scroll table infor-
mation as well as the segment headers themselves. A fuller

explanation of this appears in Chapter 4,
3.3 Scroll Area Adjustment

The relative amount of the screen taken up by the
lower and upper scroll areas can be adjusted. At initiali-

sation each scroll area is established by reference to a

scroll table containing the following information

I e - I
I Attribute I Word I
I——————————————————e e I-————— I
I segment number I 2 I
I X coordinate I 1 I
I Y coordinate I 2 I
I maximum number of lines I 3 I
I current number of lines I 4 I
I number of characters in line I 5 I
I number of characters per line (width) I 6 I
I-—— e I-—————= I
s Scroll Table
Table 3.2

-46-

DEVICE COMMANDS

The X,Y coordinate pair define the position at which
the first character to enter the scroll area-will appear and
are referred to only at screen initialisation. Reference to
the other quantities 1s made as characters are received by
the scroll processing routines, in order to effect scrolling
and line wraparound. 1In addition a variable holds the value
of the scroll area divider height, expressed as a line
count. When the scroll adjustment device command is given,
this.value is directly updated and the maximum line count
and the (X,Y) coordinates in the scroll table are changed.
In addition one of the scroll areas is reduced in size and
the origin of the upper scroll modified. This can bhest be
seen by an example. Consider the screen at A) being changed
to the screen at B) , where the lower scroll area is extend-

ed further up the screen.

I I I e I
I line ul I I line u5k I
I line u2 I I line u6 1
I line u3 I I -~ - = = = - - - - - -1
I line u4 I I I
I line ub I I I
I line u6 I I I
I- = = - = = = = = = - = I I I
I line 11 I I line 11 I
I line 12 1 I line 12 I
- e - I - I
A B

Fig 3.3 Scroll Height Adjustment
Firstly the maximum line counts in the scroll tables

are modified by adding the appropriate value to the lower

and subtracting from the upper. This amount is calculated

-47-

DEVICE COMMANDS

by the difference between the newly specified line position

and the curently stored value.

Then the upper scroll is 'shrunk' by sending it a null
character. This is ignbred but forces the scroll routine to
re-examine the status of the current number of lines in the
scroll against the now modified maximum line count. It then
proceeds to reduce the area in size by repeated scrolling as
described in Chapter 4. That is, the text now starts at a
position several lines down from the top of the screen,
What remains to be done is to move this start position back
up, by adding an appropriate amount to the Y co-ordinate,
thereby 1lifting the reduced area back up to the top of the
screen, Apart from the 1line count modification, nothing
further is required for the lower scroll, which will contin-
ue to expand upwards until the new line 1limit 1is reached,

when scrolling will be re-activated.

An identical method is used for the opposite situa-
tion, that of an expanding upper and shrinking lower area,
except that in this case the contents of the upper scroll
area is shifted down the screen, so that the last line of

text remains immediately above the division line.

-48-~

DEVICE COMMANDS

3.4 System Selection

Selection of the active system, that is the system to
which the characters from the type-ahead 1line will be
transmitted, is simply implemented. Since a common routine,
PUTCHAR, outputs a character to a device and expects two
parameters (the character and the device header), it simply
"involves passing the active device header, which is stored
in a variable ACTDEV. This wvariable is changed by the
<esc>S device command and the currently active system is

displayed in the status area as

SYS

-=X

where X is L,U or R for 1lower,upper and RT-11 systems
respectively. When a return to the RT-11 operating system
is specified, the previously saved interrupt vectors for the
devices are restored. Subsequently typing two control/c
characters will effect an- escape back to RT-11l. When the
active system 1is changed the 'immediate mode' characters
(see 3.6) for the selected system are automatically
displayed in the status line. 1If local mode is in opera-
tion, the active system establishes the apparent host from
which- the characters will be echoed. PUTCHAR tests for lo-
cal mode and ,if specified, places tﬁe character on the in-

put queue of the active device.

—49—~

DEVICE COMMANDS

3.5 Character Editing and Cursor Control

As a normal character is typed on the keyboard, it |is
placed 1in the type-ahead line and the cursor, consisting of
a‘blinking underscore character, is moved one position to
the right to indicate the position at which the next charac-
ter typed will be entered. When the rubout (delete previ-
.bus) character is typed, the character to the immediate left
of the cursor is removed from the screen and the cursor
moved one positioﬁ to the 1left. Tnhus successive rubout
characters will delete a sequence of characters from right

to left.

Without cursor control, typing errors may require the
rubout of several characters to correct an error, followed
by the retyping of the correct characters Jjust 'deleted.
With cursor control it is possible to move the cursor to any
position on the line and then insert or delete an arbitrary
number of <characters, giving full line editing capability.
The control characters used to position the cursor are
control/1l and control/r for left and right adiustment

respectively.

[}

One point bears mentioning here. Throughout the
description it has been assumed that the input record termi-
nator is a carriage return character and cannot be changed.
Therefore it seems sensible to allow a carriage return char-

acter to flush the type ahead line even when the cursor is

DEVICE COMMANDS

not at the extreme right of the line; that 1is, a carriage
return character typed during insert or delete mode will
cause the contents of the line, upto the rightmost character

displayed, to be transmitted.
3.6 Immediate Mode Characters

Normally as characters are typed they are buffered in
‘the type-ahead 1line and are not processed further until a
carriage return character is received. Howevever there is
usually a requiremént that some characters are acted upon
immediately tﬁey are typed, for instance to send an inter-
rupt to the host. These characters are called immediate

mode characters.

By means of device commands the host dependent immedi-

ate mode characters can be altered. For the MTS and UNIX
systems to which the terminal is normally connected, the im-

mediate mode characters and functions are as follows :-

I-——mmm e T-—m—————— I-————— I
I function I UNIX 1 MTS I
I———mmmmmm e I-—mmm I it I
I to interrupt the I I I
I current task I break I break I

—
|
!
!
|
|
i
|
i
|
|
|
|
|
|
i
|
|
|
|

[y
t
|
|
i
|
i
]
|
|

H
|
I
|
|
1
|
|
|
|

—

I to indicate an I I I
I 'end of file' I cntrl/d I cntrl/c I
I condition I I I
I e - I-———————— - I
1 to pause the I I I
I output to the I I I
/ I terminal I cntrl/o I cntrl/a I
I (flow control) I I I
I J-——————— J-—~————— I

 Immediate Mode Characters
-Table 3.1

-5]1-

DEVICE COMMANDS

Many systems use the 'break' key to signal an inter-
rupt condition to the host (in MTS break is the default key
for an attention interrupt, whilst in UNIX either break or
delete can be used). However since the DL-11A interface is
not capable of indicating when the break key on the console
keyboard has been depressed, some other character must be
used to indicate this function, if it is required to send a
‘break to the remote system. In this case the delete charac-
ter Qas chosen, so that attempting to transmit an ASCII
<177> would cause thé break condition tou be generated on the

DL-11C for a suitable period.

3.7 Unbuffered Input Mode

For those applications which require character at a
time working, an unbuffered input mode can be specified. 1In
this case every character typed is immediately sent to the
host with one exception. If the device command character is
typed, then the line is processed normally in buffered mode.
This bermits device commands to be scanned for, thus allow-
ing, for example, a switch back to unbuffered mode to be

made.

-~52~

DEVICE COMMANDS

3.8 Input Tabbing

Adjustable tab positioning was felt to be very useful
particularly when inputting assembly language , structured
language source or data where a reqgular format or indenta-
tion 1is required. The implementation of tabbing is quite
straightforward and is performed recursively by internal
“calls to the 'character in' routine with the space character

as parameter.
3.9 Hard Copy Ability

OQutput to the printer of the console is performed us-
ing the same routines as output to the host systems, the ad-
justable parameter being the device header. When a charac-
‘ter received from a host is processed by the GTCI routines,
an additional call to PUTCHAR , with the console device
header specified, 1is all that 1is required for hard copy
printout. This occurs in addition to the normal display
functién. The print state is displayed in the status line
as either U, L cr - ; indicating that hard copy of the upper
or lower system is occuring or that the hard copy function

is disabled,

DEVICE COMMANDS

3.18 Local Character Echo Mode

The local mode command was originally installed as a
debugging aid. It allows the system to function, at least
in character mode, without the need to be connected to a
host computer. What it does is to 'feed' the characters
from the type-ahead line, which would normally be sent to a
Hhost, into its own input buffers, thus simulating an immedi-
ate character echo. This allowed debugging of the software
vesponsible for séreen area scrolling and adjustment to be
performed in a controlled and reproducible manner. However,
having seen it demonstrated, one user soon utilised this for
establishing a 'ruler', consisting of a repeated sequence of
the digits @ to 9, in the lower scroll area; this can then
be used to position information accurately or identify a

particular column quickly.
3.11 Visible Character Mode

for debugging purposes and at other times when it 1is
required to 'see' all the characters transmitted to the sys-
tem from the host, a 'visible' character mode can be, speci-
fied. In this mode all characters received are printed as
ASCII octal codes on the console, This mode can be speci-
fiéd in addition to hard copy print, in which case by typing

the string '1234' the following output would occur :-

1<061>2<862>3<063>4<064>

~54-

CHARACTER AND GRAPHICS MODE

4.1 Operation of the Scfoll

The operation of the scroll areas and their interac-
tion with the display file management will now be described.
As stated in Chapter 2, each display segment has a segment
header at the beginning of the first nibble of the segment.
In the case of the scroll areas the rest of the first nibble
is unused, except for the initial (X,Y) coordinates of the
first text character. That is, the text for the scroll al-
ways starts at the beginning of the second nibble in the
segment. This facilitates the implementation of the scrol-
ling mechanism, as we shall see. The body of the text for
the scroll segments will generally contain 1line feed (LF)
characters and extend over several nibbles as shown in fig

4.1

GRAPHICS

I« I I I [e I

I 1 ->>1 I ->>1 I

I segment I | I I I ! LF I

I header I | I LF ! I | I I

I I | I I ! I 1
U | | I I | I I

I APNT I | I I | I I

I X I | I ! LF I | I I

I Y I | I I | I LF ! I

I TEXT I | 1 I | I I

I.. null ..I | I LF ! I oI I

I.. null ..T | I I | I ! LF I
I I | I-——————- I | I-——mm———— I

I DJUMP I | I DJUMP I ! I DHALT I
I~ i | I-—---——— I | I———oe——— I to next
1 I--—— I I-——— I I-—==>>
- e = I I e e I I-———————— I segment

Scroll Segment Structure
Fig 4.1
The APNT point mode instruction in the first nibble
establishes the starting position of the text of the scroll.
The TEXT 'set character mode' instruction defines all data
following as character data. 1In character mode, the null
charaéter (ASCII zero <@@@>) produces no effect on the
screen and can be viewed as a text mode no operation (NOP).
The rest of the first nibble, up to the display Jjump in-
struction, is filled by such null characters. This is a by
product of the initial CREATE call made to establish the
scroll segment, which zeros the nibble as it draws it from

the free pool. Thus the first nibble contains no display-

able text data.
/,/
As character data is received by the scroll routine,
it simply adds it to the next free space in the last nibble,

chaining in a new nibble as required. When a line feed

-56-

GRAPHICS

character 1s received, the current character count in the
scroll header 1is set to zero and increménted whenever a
character other than LF is received. Should the <character
count exceed the maximum stored in the scroll header, the
routine provides for software 'wraparound' by generating an
internal 1line feed/carriage return sequence. Without this
feature, long lines of text would be truncated at 72 charac-

ters.

As a line feed character is received, the Y coordinate
stored in the first nibble is updated and the current line
count is incremented. The latter is then compared with the
maximum in the scroll header. If it is exceeded; a scrol-
ling operation is performed as follows. The second nibble
of the segment 1is accessed and characters are set to null
(zero) until the first line feed is encountered. This char-
acter 1s then also cleared, and the Y coordinate and line
counts decremented. If, in searching for a line feed, the
end of the nibble 1is reached, it is returned to thé free
pool and the reference from the first nibble updated to

point to the next nibble in the segment.

In normal operation, as one line enters at the bottom
of the area, one line disappears off the top. Howevér, when
the scroll area is being adjusted to a reduced size by a
d%yice command, this operation is repeated several times,
removing lines from the top of the area. In this special
Situation, a null character is passed to the scroll routine,

which is not displayed but merely forces the 1line count

GRAPHICS
check and subsequent scrolling operations to be performed.

When a character is passed to the scroll routine, an
initial <check is made to see if the scroll segment is the
currently open display segment. Since characters output
from the two host systems may be interleaved, it may be
necessary to close the previously open scroll segment asso-
ciated with one host and open the scroll segment of the oth-
‘er. 1In the situation of maximum interleaving, where alter-
nate‘ characters come from the same host, this closure and
opening operation wiil occur for each character. However,
in a more likely situation, where a burst of characters from
one host may be followed by a group from the other host,
each scroll segment will remain open for several characters

at a time.

If the scroll is not already open, a call to APPEND is
made, which will close the currently open display segment
and open the specified one. Opening the segment essentially
copies the segment hea@er to a set of open file variables,
of which the 1last wused nibble address is particularly
relevant, The latter defines the position of the next free
space in the last nibble of the segment. As a character is
received, the scroll routine inserts it at this poéition by
calls to the nibble mwmanagement macro NBLEYT, which will

chain in a new nibble if required.

.v/

Clearing a scroll area of all displayed text is
achieved by passing the scroll routine a special character (

ASCII <#25>), or by calling an entry point within the rou-

~58—

GRAPHICS

tine which has the same effect. This makes a CREATE call
for the segment, wusing the (X,Y) values éurrently in the
header for the scroll origin. When CLOSE is called, it will
automatically delete a segment of the same name as that
currently OPEN, thereby destroying any old wversion of the

scroll.
4.2 Graphics Protocol

Since GTX allows the system to function as a simple
terminal, the protocol it uses for controlling the graphics
primitives is based on a small group of control <characters
at the 1lower end of the ASCII character set. In normal
operation, the character interpreter (CI), which deals with
characters received from the hosts, watches for these con-
trol characters and branches to an appropriate section to
perform the required action., 1If the character is not a con-
trol, the CI is said to be functioning in terminal mode and
the outcome 1is simply to pass the character to the text

scroll routine.

Reception of certain control characters may cause the
CI simply to perform an action, such as clearing the screen,
and revert immediately to terminal mode. Whilst the action

is being performed, the CI can be thought of as existing in

a ,transitory state, for example 'clear screen state'.

Other control characters may have the same basic ef-

fect, except that the duration of the state is dependent on

GRAPHICS

external events, such as the user typing a character on the
keyboard., Nevertheless, the next character processed by the

CI will be seen in terminal mode.

There also exists the situation where a control char-
acter can switch +the CI to a different state, in which it
continues to process received characters, before eventually
returning to terminal mode. It may even exist in various
sub-states within the main state. In this situation, a
mechanism must be established to allow the next character
received by the CI to be directed to the correct state sec-
tion, since the main processing loop sees the CI as a single
state 'black box'. Before going on to look at the specific
control characters wused in this system and the states they
induce, it isApertinent to examine how the (€I deals with

control characters and the state switching mechanismn.

Once a character has been processed and the CI wishes
to prepare for receiving the next character, it does so by
providing a single exit path from the routine for all
states., This exit path ié called as a subroutine, using the
prdgram counter as the link register, with the result that
the address of the instruction following the subroutine call
is placed on the processor stack. The exit routine 'pops'
this address to a safe place and itself does a normal sub-
roptine return, thereby returning to 1its callers caller,

S
that is the main processing loop.

On the next entry to the CI, it simply uses the saved

return address in a jump instruction to ensure the character

-60-

CRAPHICS

is received by the appropriate state section. In this way a
'stepped’ access to the various parts of the module, accord-

ing to the underlying protocol, is achieved.

One specific assumption made within the CI is that all
sections, which call 'exit' to get the next received charac-
ter, do so on the understanding that any control character
(less than ASCII <P40>), will arrive at the saved return ad-

‘dress, whilst normal characters will appear at one word past

this location. For example

¢ 0 ® 0000 0 0 ¢

CALL EXIT ; exit to get next character
BR CON ; control characters will come here
coevs e ; and normal characters here

The five 'non terminal' states identifiable within the

character interpreter are as follows :-

1) Initialise (clear) the screen

2) Transmit status response (answer back)
3) Enable light pen interaction

4) Enable tracking cross positioning

5) Enter data into display segment
)
The first four states are triggered by reception of a single

character as follows :-

1) ASCII FF (form feed) <@14>

-61-

GRAPHICS

2) ASCII ENQ (enquiry) <@g#5>
3) ASCII DC2 <822>

4) ASCII DC4 <@24>

The fifth state, that of entering data into a display seg-
ment, 1is achieved by a sequence of control characters. The

form of this is
<soh><segment no.><stx><..... assumed TEXT data>

where <soh> is the ASCII 'start of header' character and
<stx> 1is the ‘start of text' character. The value of the
segment number transmitted is arranged to be a printing
(i.e. non-control) character by the addition of a suitable
constant. This is a general feature of the data contained
in the dialogue between IG and the GT4#, where only a very
small set of control characters are legitimate and are used

to change the state of the character interpreter.

Initially, the data following the <stx> is assumed to
be text data, To switch to vector mode an ASCII SO <@16>
character is inserted ana followed by the vector data, suit-
abiy transformed to be non-control. To revert back to text
mode, a leading SI <@P17> character is used in the same way.
Any other control character is considered invalid and the
state is restored to terminal mode. A formal definition of

the display segment protocol is given in Apendix A.2.

-62—

GRAPHICS

4.3 Text and Vector Processing

Text characters, whether destined for the scroll areca
of the screen or as part of a graphics display segment, are
processed by the TEXT routine in the GTGRAF module. One of
the first things it does is to test if the current mode is
.already text. 1If not, it must first insert a character 'set
graphic mode' instruction into the nibble and update the
current mode indicator in the open file variables. Then the
character 1is 1inserted 1into the nibble, using the nibble

management macro NBLBYT.

"Non control characters cause the X coordinate 1loca-
tion, stored 1in the open file variables, to be incremented
but certain control characters are treated specially. A
line feed character causes the current Y location to be in-
cremented and a carriage return effects a =zeroing of the
current X location. A backspace character causes the X lo-
cation to be decremented. Other control characters are sim-
ply sfored in the segment but cause no change to be made to

the current (X,Y) location.

The processing of vector data falls into two parts.
Firstly, the vector data, in the form of (X,Y) coordinates,
and a move/draw qualifier are extracted from the characters
sént by the host. Secondly, this data is passed to the vec-

tor routine proper, which will optimise the storage re-

quired, whether short or long vector, knowing the current

~63-

GRAPHICS
(X,Y) location of the segment,.

In order to minimise the amount of data sent to the
GT40, a compression scheme, which utilises the non-data part
of the transmitted characters, is employed. This makes use
of the possibility that only one of the coordinates may
change or that the change in one may be small. The maximum

value of an (X,Y) coordinate, which may be specified in long

"vector mode, occupies 10 bits of a 16 bit word. We can

divide this 1into two parts, LO and HI, each requiring 5
bits, and name these parts of the (X.Y¥) coordinate pair

x1l,xh,yl,yh.

The choice of which of the options 1is selected Iis
governed by bits 6 and 7 of the first character transmitted
(bits 1-5 are data).

@1 - update x1,xh
1¢ - update x1,xh,yl

11 -~ update x1,xh,yh,vyl

The values in the high order bits of the subsequent
bytes and their meaning are as follows :-
1 - a draw operation and this byte is the last byte.
10 - a move operation and this byte is the lasF byte,

11 - more bytes follow before last byte.

The sequences transmitted for particular commands are sum-—
,

marized below, with 1lower case characters indicating co-

ordinate value bits.

-64 -

Move
Draw
Move
Draw
Move
Draw

Command

x1 xh
x1 xh
vl x1
vyl x1
vl vh
vl yh

xh
xh
x1 xh
x1 xh

GRAPHICS

byte 1

Pllxxxxx
PGOIXXXXX
Alayyyyy

Blayyyyy

0llyyyyy
PlLIyyyyy

4.4 Light Pen and Tracking Cross

In an interactive graphics system, one

byte 2

Plixxxxx
PPlxxxxx
Bllxxxxx
Jllxxxxx

Bllyyyyy
AlL1yyyyy

Operation

byte 3

BlOxXxxxX
gOIXXXXX
Pllxxxxx
PlIxxxxx

of the

byte 4

PlOXXXXY
POlxxxxx

basic

functions required is the ability of the user to identify an

object displayed and to indicate an

the

a particular

disp

item or specify the corners of an area

fied

described as

screen

layed,

or S

using an

both these functions are controlled by a '"light pen'.

with

terminating in a phono plug

wher

use, by pointing the pen at

such

/

disp

with

The light pen consists of a

arbitrary position on

. The former would be used to select an item, or

whilst

hown

object

a ‘light

e a

a si

layed.

If light pén interrupts are enabled, by setting a

in a Set Graphic Mode instruction,

module

gnal

part

'picking’

known as a

sensing

amplifies

come

an item,

from

amongst

several

latter might be used to position an

in greater detail.

narrow

'tracking cross'. In

cylindrical

phototransistor at one end.

the screen,

from

connects to

any signal produced.

the

the

the light

then

VR17

In

which will be magni-
The identifying mode is
and the positioning mode is performed

the GT4¢

tube

A lead

display

normal

producing

phosphorescent image

bit

a light pen hit

GRAPHICS

will cause the display processor to halt and interrupt the
PDP-11. In the interrupt service routine two pieces of in-
formation are directly available, The display program
counter (DPC), at location 172800, contains the address of
the instruction following that on which the 1light pen hit
occufred. The X and Y positions of the display at that time
are obtained by reading locations 172084 and 172086. In ad-
diﬁion, because of the way the display chain is implemented
in GTX, also available at this point is the active display

segment, whose existence was described in Chapter 2.

When a display segment is created, it is automatically
made light pen sensitive, i.e. light pen interrupt enable is
specified in the first graphic mode instruction. Thus all
segments are always light pen sensitive. However, the
IG/GT40 protocol defines when such light pen interaction de-
tails should be returned to the host system. The alterna-
tive to this would be to have all segments insensitive by
default and to enable those which may be 'picked' by sending
control characters to the GT48 for each. This vould clearly
be excessively verbose for a display with many pickable ob-

jects.

On reception of an ASCII DC2 <#22> character, the com-
mand interpreter indicates toc the user that a light pen pick
operétion may be performed. It does this by changing the
cdfsor character in the type-ahead line to a solid square
.character (ASCII DEL <177>). Internally it sets a 'light

pen want' indicator and a flag indicating that if a keyboard

GRAPHICS

character is typed in the meantime, the light pen wait is to

be aborted.

If a pick operation with the light pen 1is performed,
the interrupt service routine first looks to see if a light
pen hit is wanted. 1If it is, it further checks to see if a
light pen hit has already been registered. If not, it sets
the flag to 'light pen hit' and saves the (X,Y) hit coordi-
nate and the active display file. In all other cir-
‘cumstances the hit is simply ignored. In the main process-
ing loop, a check is made to see if a light pen hit has oc-
curred. 1If so, a call to the CI is made with a null charac-

ter.

If, however, the pick operation is aborted by the user
typing a character, this character is simply passed to the
CI. Since a null character is a control, the two return
points within the CI will be different and allow the two
possibilities to be distinguished. 1In the 1light pen case
the display segment and the (X,Y) hit coordinate are sent to

the host as a five character sequence
<seg#><high x><low x><high y><low y>

where the 10 bit coordinate data is broken down into two 5
bit 1items., 1In the abort case a single control character is

transmitted.
/

In GTX the positioning function is performed with a
tracking cross, which resembles a trapezium whose diagonals

form a pair of cross wires. The design of the cross used is

-67-

GRAPHICS

shown below.

Fig 4.2

Tracking Cross

This cross is positioned with the light pen which ‘drags'
the cross, or more exactly the cross 'tracks' the light pen,
by applying a series of small x and vy increments to the

cross centre.

All of the lines in the cross are sensitive to light
pen interaction and a typical hit point is indicated at po-
sition (%x,y). The hit will cause a processor Iinterrupt
thro@gh location 324 and as befcre the interrupt service
rgutine reads the x and y hit coordinates from memory loca-

‘tions 172004 and 1728896. As mentioned previously, an ac-

tive display segment is maintained by the display interrupt

~-68-

CRAPHICS

routine. If this segment corresponds to the tracking cross,
the following simple transformation is applied to the cross
centre coordinates. Firstly the quadrant in which the hit
occurred 1is found. Then the centre coordinates (X,Y) are
changed by an amount (dx,dy), dependent on this quadrant.
Tybically, dx and dy are a few raster increments and define

the fineness with which the tracking cross can be posi-

tioned.

Normally, the tracking cross is not 1linked 1into the
display chain but on reception of an ASCIl DC4 <@24> charac-
ter, the tracking cross is inserted into the display chain
and becomes visible on the screen. 1In addition a further
modification is made to the flow of the display processor
through the dispiay segments, This causes the tracking
cross to appear significantly brighter on the screen and
enhances the tracking capability of the cross, which other-
wise may track poorly when a lot of graphical data 1is
displayed on the screen. What is done is to arrangé that
the display processor spends more time in the tracking seg-
ment Eompared to the other parts of the display file. 1In
the display halt (DHALT) interrupt routine a check 1is made
to see 1if the next segment to be displayed is the tracking
cross. If so, then the DHALT address in the tracking seg-
ment ~ is set to point to itself and a counter initialised to
cohtrol the number of 'tight loops' made within the tracking
‘segment. Subsequently whenever the next segment to be shown
is the tracking segment, the counter is decremented until it

reaches zero when +the initial 1ink 1is restored and the

-69--

GRAPHICS

display processor continues with the other segments in the
display file. The algorithm, expressed in a pseudo

language, runs as follows :-

if next segment == tracking segment
if dhalt word of tracking segment != tracking segment
save dhalt word - -
dhalt word = tracking segment
initialise counter
else
decrement counter
if zero
restore dhalt word
endif -
endif
endif

In addition the cursor character in the type—ahead
line 1is <changed to a plus sign (+), chosen to resemble the
cross wires of the tracking cross. 1Internally a flag is set
indicating that any character typed will be made available
immediately to the CI. This will occur when the wuser has
satisfactorily positioned the cross and wishes its co-
ordinates to be sent to the host. As before, the co-
ordinates are sent to the host as a five character sequence,
where the first character is the keyboard character typed by

the user,

<keyc><high x><low x><high y><low y>

-0~

ered

pede

GRAPHICS

ty Routines

Various commonly used utility subroutines were gath-

together into a single module (control section) and

made available to other modules, by declaring the routine

names

in a .GLOBL directive in the module containing common

definitions.

These utility functions are :-

1) PRINTNO

print an internal value as an octal number

on the console.

2) PRINTAS
print an ASCII string on the console, The
string must be terminated by a null charac-
ter.

3) I2D
convert an 1internal value to a decimal
numeric string.

4) 120

convert an internal value to an octal numer-

ic string.

-71-

GRAPHICS

5) D2I
convert a decimal string to an internal

value,

6) 02I
convert an octal string to an internal

value.

PRINTNO calls I20 to convert the internal value‘to an
'octai string and then uses PRINTAS to output the string.
D2I and 021 arc called via a common name which decides which
of them to wuse by .looking at the first character of the
string. If this is a zero tﬂen the number is assumed to be
octal, 1if not decimal, Both octal and decimal conversion
routines terminate when a value outside the allowable range

is encountered.

4

CONCLUSIONS AND FUTURE DEVELOPMENT

5.1 General Conclusions

With the expansion of micro-processor based devices
and the impact of what is loosely termed distributed comput-
ing, it is clear that the tools and techniques are ripe for
the ~evolution of a series of intelligent terminals. To a
large extent the development of this GT4f based system has
been overtaken by the impact of cheaper and, in many cases,
more sophisticated devices which are now becoming available.
Clearly there can be no economic case made for the acquisi-
tion of this expensive equipment solely as an intelligent
terminal system.' However, given that the hardware was
available, it was considered worthwhile to develop such a

system.

No strong defence can be made of the use of assembler
language in this project, apart from easy availability. A
possible candidate, which is available under the UNIX sys-
tem, is the programming language MODULA (ref 12,13). A sys-
tem could be written in MODULA, compiled and 1linked under
UNIX, and down 1line loaded into the PDP 11/10. Primarily
designed as a multi-tasking language for process control,
MODULA provides many high level data and programming struc-—
tures, features very suited to this application. However,

Wirth, the author of MODULA, describes the difficulty of

handling the GT4¢ in one of his case studies (ref 14). Oth-

CONCLUSIONS

er work, using the language, has controlled the GT48 with a

certain amount of success (ref 15).

In any substantial programming project the elements of
fault finding, diagnostic testing and error analysis, col-
lecﬁively known as 'debugging', should not be overlooked.
In many ways this is a more difficult exercise than the pro-
ject itself. At several points in the development, the need
for some form of debugging sub-system seemed to arise. 1In
practice a combination of diagnostic print and information
logging in memory, for later post-mortem examination, was
used in an ad-hoc fashion for each non-trivial error encoun-
tered. This might be éonsidered a symptom of the need for a
high level language implementation, where debugging aids and
diagnostic information are more directly available. Howev~-
er, several of the high level languages considered suitable
for system programming have quite large run time require-
ments, for example PASCAL (ref 16). MODULA on the other
hand, has a minimal run time support, but provides no debug-
ging facilities. It is certainly true that one of the nmost
difficult errors to isolate in GTX, which required a specif-
ic combination of factors within the system in order to ap-
pear, could not easily have been located by a facility such

as breakpoint debugging.

' One question which begs itself is 'just how useful is
a ” dual session terminal?'. It is true that for most users
the two host capability was a luxury and use was mainly made

of the extra facilities to a single host. However, for sys-

/-

CONCLUSIONS

tems programming and communications work, the dual connec-
tion was of great benefit, One such example was in the
midst of the development of a file transfer facility between
UNIX and MTS. At that stage both of these systems main-
tained detailed logs of information about the transfers and,
whén a tranfer had failed, it was necessary to look at both
logs to determine the cause of failure. In this cir-
cumstance the two session feature was most useful and al-
i;Qed'the two logs to be compared adjacent to one another.
Indeed had this capability been available earlier in that
project, it may have led to a more interactive testing fa-
éility, with commands to both ends of the transfer link ori-

ginating from the 'same' terminal.

Testing of the basic functioning of the system as a
two 'session' terminal was performed as it was developed, by
connecting it to two host systems., Use was sometimes made
of the 'local' mode, to echo characters locally, when nei-
ther of the hosts was available or when reproducibility was
important. The graphics -side of the system was exercised by
the gfaphics package *IG in MTS, using the example programs
in IG:EXAMPLES, or by test programs running in UNIX, which
together tested the vector generation, light pen‘and track-

ing cross functions.

CONCLUSIONS

5.2 Future Development

One of the greatest shortcomings of attempting to use
standard equipment, as supplied with the system, was the
lack of programmed function keys on the terminal keyboard of
the LA36 DECwriter. It would be feasible, if somewhat irk-
sohe, to arrange for the use of more control characters to
perform the equivalent functions. The disadvantage is that
two key depressions are required and difficulty 1is encoun-
tered in remembering the keys involved, since special mark-
ings are not available. With a certain amount of rewiring,
it may be possible to arrange for the usually unused numeric

keypad on the DECwriter to generate control codes.

The use to which such function keys might be put are
varied. One use might be to enable character strings to be
defined and subsequently be recalled into the type-ahead
window with a single keystroke. Thus often used commands
may be sent with a minimum of typing. Another wuse 1is to
provide wvertical scrolling through the 'session', so that

earlier text could be 'replayed' on the screen,

Additional cursor control could be provided to allow
the wuser to 'mark' a line on the screen and have it avpear
in the type-ahead window. This ‘'line re-entry' would Dbe

useful for resubmitting a previous command.

In the current system, the 2 RK@5 disk units, of 2.5Mb

capacity each, are unused. Clearly they provide ample

-76~—

CONCLUSIONS

secondary storage for several possible uses. One of these
might be to hold the output sent fo the system, so that ear-
lier 'pages' in the sessions could be recalled and reviewed,
In combination with a line re-entry facility, this would be
a useful addition. A second more obvious use is simply to
use the disk as a filestore, and provide a means for
redirecting the host output and input, to or from one of
thése local files. This would provide a simple means of
file transfer and would allow, for example, local editing of

remote files to be performed in visual mode under RT-11.

To a large extent the system evolved, rather than
déveloped toward a sbecified end product, which is a mixed
blessing in some ways. Certainly the evolution was suffi-
ciently flexible to respond to users recommendations and ex-
periences, which made for a sense of ‘'usefulness' in the
project. Equally, the possible enhancements which have just
been mentioned, may.impress a feeling of a project not vyet

fulfilled.

e

A.l1 Structured Macros

.macro push
.harg zzzcnt
.iif gt zzzcnt-6
.iif ge zzzcnt-1
Liif ge zzzcnt-2
.iif ge zzzcnt-3
.iif ge zzzcnt-4

r.iif ge zzzcnt-5
+iif ge zzzcnt-6
.endm push
.macro pop

.narg zzzcnt
.iif gt zzzcnt-6
.iif ge zzzcnt-1
.1if ge zzzcnt-2
.iif" ge zzzcnt-3
.iif ge zzzcnt-4
.iif ge zzzcnt-5
+iif ge zzzcnt-6
.endm pop

;

.macro lose n
Jiif le n
if eq n-1

serror

APPENDIX

.error
mov
mowv
mov

mov

mov

mov

.error
mov
mov

mov

“mov

mov

mov

n; arg

zzzcnt;

argl,
arg2z,
arg3,
arg4d,
args,

arge6,

zzzcnt;

(sp)+,
(sp)+,
(sp)+,
(sp)+,
(sp)+,

(sp)+,

for

-78-

'lose!

argl,arg2,arg3,arg4,arg5,arg6,err

too many cells pushed

- (sp)
- (sp)
- (sp)
- (sp)
-(sp)

- (sp)

argl,arg2,arg3,argd,arg5,arg6,err

too many cells popped
argl
arg?2
arg3
argd
argbs

argé

<1

APPENDIX

tst (sp)+ ; drop onevitem from stack
.mexit
.endc
.if eq n-2

cmp (sp)+, (sp)+ ; drop two items from the stack
;mexit
fendc

add #n+n, sp

.endm lose

.macro call subr
jsr pc,subr

.endm call

.macro return
rts pc

.endm return

.macro blkon
.mcall loop,break,repeat,if,else,endif,blkoff
.mcall $setlp,Sgetlp,S$setbn,S$getbn,$conbr,$genlb

zzzzzn = § ; this is the nest level (if-endif and loop-repeat)

zzzlbn g ; label sequence number for if ... endif

zzzlpn = @ ; label sequence number for loop ... repeat

.endm blkon

/s

.macro blkoff

.i1if ne,zzzzzn .error ; unclosed block in program

APPENDIX

.endm Dblkoff

.macro loop
Liif ndf,zzzzzn .error

27227ZZn = z22Z2zZz2n+l

zzz2zzl

il

zzzlpn zzzlpn+l
$setlp zzzlpn,%$zzzzzl
$genlb ax,%zzz1lpn

.endm loop

.macro break cond

Liif ndf,zzzzzn .error

.iif le,zzzlpn) .error
$getlp rln,%zzzzzl
$conbr cond,qy,%rln,x

.endm break

e

.macro repeat cond
iif ndf,zzzzzn .érror
.i1if le,zzzlpn .error
$getlp rln,%zzzzzn
Sconbr cond,gx,%rln,x
$genlb qy,%rln
Séetlp B,%zz222n
227222Zn = 2zz2zZznh-1
z2z222) = zzzzz1l-1

.endm repeat

.
14

zzzzzn ; for 'break®

.
’

’

.
[

-
[

no blkon preceding loop

nested inside if ... endif

no blkon preceding break

break illegal outside loop

no blkon preceding repeat

repeat has no preceding loop

~80-

APPENDIX

.macro $setlp lpn,;bn
zzqx'bn = lpn

.endm S$setlp

.Macro Sgetlp lpn,bn
lpn = zzqgqx'bn

.endm $getlp

.macro 1if cond
L1if ndf,zzzzzn .error ; no blkon preceding if
2222ZNn = 2222zn+1
zzzlbn = zzzlbn+l
$setbn zzzlbn,%zzzz2zn
Sconbr cond,qq,%zzzlbn

.endm if

.macro else

Liif ndf,zzzzzn .error ; no blkon preceding else
$getbn rbn,%zzz?zn

.iif 1t,rbn .error ; else follows else with no endif or if

.iif eq,rbn .error } out of sync

.if gt,rbn

S$conbr ,dz,%rbn
Séenlb qq,%rbﬁ
’ $setbn <-rbn>,%zzzzzn
.endc

.endm else

-81-

.macro endif
Liif ndf,zzzz
Li1if le,zzzzz
Sgetbn
Liif gt,rbn
.iif 1t,rbn
;iif eq,rbn
~ $setbn

2222720 = 222727

.endm endif‘

.macro Ssetbn
zzqq'bn = 1lbn

.endm S$setbn

.macro S$getbn
lbn = zzqq'bn

.endm S$getbn

.macro $conbr

+if b,<cond>
br pref'bn

JfE

if nb,<x>

“ brcond

JAfE

.iif idn,<con

APPENDIX

zZn .error ; no blkon preceding endif

n .error ; endif unmatched by if

rbn,%zzzzzn

$genlb qq,%fbn
$genlb qgz,%<-rbn>
.error ; out of sync

B,%z22222n

n-1
lbn,bn
lbn,bn
cond,pref,bn,x
pref'bn
d>,<eq> bne pref'bn

-82-

.iif idn,<cond>,<ne>
L1if idn;<cond>,<1lt>
.iif idn,<cond>,<ge>
.iif idn,<cond>,<gt>
.iif idn,<cond>,<le>
Jiif idn,<cond> ,<pl>
fiif idn,<cond>,<mi>
.1if idn,<cond>,<cs>
rulijf idn,<cond>,<cc>
.iif idn,<cond>,<hi>

Liif idn,<cond>,<lo>

Liif idn,<cond>,<his> blo

Liif idn,<cond>,<los> bhi

.endc
.endc

.endm Sconbr

.macro $genlb
pref'rbn:

.endm $genlb

.macro freeze

.nNarg argcnt

mov @#psw,—-(sp)
.iif eg,argcnt mov
,.11f eq,argcnt-1 mov

.endm freeze

.macro thaw

APPENDIX

beq pref'bn
bge pref'bn
blt prefibn
ble pref'bn
bgt pref'bn
bm1i pref'bn
bpl pref'bn
bcc pref'bn
bcs pref'bn
blos pref'bn
bhis preffbn
pref'bn
pref'bn
pref,rbn
. pri
#340,Q#psw
pri,@#psw

-83-

APPENDIX

mov - (sp) ,@#psw

.endm thaw

-84~

APPENDIX

A.2 BNF Definition of IG/GTAG Proteccol

<file>
<head> :
<segif>
<data>
" Kstext>
<vec>
{text>
<char>
<{s0>
<si>
<soh>

<stx> :

]

fi

]

]

<head><data>

<soh><seg#><data>

<char>

<stext>[<Kvecd><text>] | <stext>[<Kvec><text>]<vec>
[<char>]

<so>[<char>)}

<si>[<char>]

<é4ﬂ>|<@41>|<@42> eeeses <175>[<176>1<177>
<#l6>

<B17>

<Q@l>

<882>

Square brackets [] enclose elements which can be repeated an

arbitrary number of times, including zero.

-85

APPENDIX

A.3 System Gencration

Generation of the GTX software can be obtained by typ-

ing the following commands to the RT-11 operating system :-

R MACRO
*GTMAIN
*GTDEV
*GTSCRN
*GTGRAF
*GTCI
*GTUTIL
e

oo

"

R LINK
GTX,GTX =
“C

The resulting

R GTX

GTMAC,GTMAIN
GTMAC,GTDEV
GTMAC,GTSCRN
GTMAC,GTGRAF
GTMAC,GTCI
GTMAC,GTUTIL

GTMAIN,GTDEV,GTSCRN,GTGRAF,GTCI ,GTUTIL

system can then be run by the command

-86~—

1)

2)

3)

4)

REFERENCES

IBM 327¢ Display Station, MTS Volume 4,
"Terminals and Tapes" , University of Michi-
gan.,

"IBM 3278 Information Display System Com-

ponent", form GA27-2749.

"The UNIX Time-Sharing System", D.M.Ritchie
& K.Thompson, CACM, Vol 17 no. 7, (1974) pp.

365-375

"The Michigan Terminal System", D.W.Boettner
& M.T.Alexander, Proc. of JIEEE, Vol 63, No.

6, (1975) pp. 912-918

"Syntactic definition and parsing of molecu-
lar formulae, Part 2: Graphical synthesis of
molecular formulae for data base dueries",
P.G.Barker & P.S.Jones, Computer Journal,

Vol 21 no. 3, (1978) pp. 224-232

-87~

5)

6)

7)

8)

9)

10)

REFERENCES

"Use of *IG in MTS", NUMAC (April 1977).

Michigan Computing Centre Memo no. 299

"The Design and Implementation of INGRES",
ACM Trans. on Database Systems 1,3 (Sep

1976), pp. 189-222

"PDP11 Processor Handbook 1978-79", Models
g4/85/18/35/48/45, Digital Equipment Cor-

poration

"GT40/42 Users Guide", Digital Equipnent

Corporation, EK-GT40-0P-0042

"VT11 Graphic Display Processor", Digital

Equipment Corporation, EK-VT11-TM-001

"Terminals & Communications Handbook 1978",

Digital Equipment Corporation

-88-

11)

12)

13)

14)

i5)

16)

REFERENCES

"RT-11 Software Support Manual", Digital

Equipment Corporation, DEC-11-ORPGA-B-D

"Modula : a Language for Modular Program-

ming", N.Wirth, Software-Practice and Ex-

perience, Vol 7 (1977), pp. 3-35

"Design and Implementation of Modula",
N.Wirth, Software-Practice and Experience,

vol 7 (1977), pp. 67-84

"The Use of Modula", N.Wirth, Software-
Practice and Experience, Vol 7 (1977), pp.

37-65

"An assessment of Modula", J.Holden and
I.C.Wand, Report YCS.16 (1978), Department

of Computer Science, University of York

“"The programming language Pascal", N.Wirth,

Acta Informatica, Vol 1, no. 1, (1971) pp.

35-63

-89

REFERENCES

“The Programming Language
cal", P. Brinch Hansen,
Software Engineering, Vol

(1975) pp. 199-207

-ag-

Concurrent
IEEE Trans.

SE~1, no.

Pas-
on

2,

7y g 1 A,
/ ,;‘.‘““I AT ‘\A
Q Dot e

(300cT 0
AN\ SrCTion {
N

N
a

4

N sz

