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ABSTRACT

NUMBER THEORETIC TRANSFORM IMPLEMENTATION USING MICROPROCESSORS

Sean C. Martin

Since 1974 considerable interest has been shown in the Titerature
in the topic of number theoretic transforms. These transforms provide
an efficient integer processing technique for convolution,
Microprocessors are suited to integer processing particularly for
applications where the required processing l1oad is small. It was
therefore a natural step to investigate and tailor the properties of
number theoretic transforms to the capabilities of microprocessors to
provide cheap and compact processors using efficient signal processing

algorithms.

It was found that efficient number theoretic transforms could be
defined using the Modulus M = 65521 and this is especially convenient
for a microprocessor implementation. Relevant aspects of modular
arithmetic are investigated. The techniques developed are extended to

allow for complex signal processing.

In conclusion it is shown that number theoretic transforms can be

used to encode and decode Reed-Soloman error correcting codes.
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CHAPTER 1

INTRODUCTION

With recent advances in solid state technology digital signal
processing is becoming more and more important as a substitute for
analogue processing in various areas of communications, control
engineering and general signal processing. Digital components are more
reliable, have a lTower failure rate, can achieve arbitary accuracy and
in certain applications consume less power and occupy less space than
analogue components. But, in order to take full advantage of this,
efficient signal processing algorithms must be developed to suit the
capabilities of the available hardware. Microprocessors combine all
the assets described to provide cheap compact processors for
applications where computation speed is not critical. The aim of this
work has been to adapt recently developed signal processing algorithms

to the capabilities of microprocessors.

Convolution is the basic operation of signal processing; however
a direct implementation of convolution is inefficient. The Fourier
transform possesses a special property known as the cyclic convolution
property (CCP). This attribute identifies multiplication of frequency
domain signals with the convolution of signals in the time domain. It
is well known that the convolution of two signals may be achieved by
taking the Fourier transform of both signals and then taking the
inverse Fourier transform of the product of the frequency domain
signals. With the advent of the fast Fourier transform (FFT)
algorithm, convolution may now be performed considerably more

efficiently by Fourier transform techniques.




The Fourier transform is defined over the complex domain and
during its computation it requires multiplications by complex
irrational roots of unity. With any finite precision these
coefficients cannot be represented accurately and so the Fourier
transform is subject to accumulative round off error. In signal
processing applications data is often sampled using analogue to
digital convertors and therefore without loss of generality such
signals can be considered to be integer with some upper bound and
scale factor applied. One may therefore consider signals appertaining
to the real world to be essentially integer in character. It follows
that in principle, if convolutional signal processing is computed via
the Fourier transform then complex arithmetic has to be employed even
when the data is often purely integer in nature. It is therefore a
natural step to consider performing signal processing by an integer

technique.

Algebraic studies of the Fourier transform reveal that certain
structural attributes are responsible for it possessing the cyclic
convolution property. It is possible to define transforms with these
attributes over finite rings of integers. These transforms are
collectively known as number theoretic transforms (NTTs), and it will
be seen that these transforms have some advantages over the Fourier
transform. Modular integer arithmetic is more attractive than complex
floating point arithmetic for simple computers. This arithmetic is
also exact since no round off error occurs during the computation of
the transform, and it is for these reasons that much interest has been
shown in number theoretic transforms.

0f late microprocessors have become available providing small and




cheap processors. These processors do not offer the sophisticated
facilities associated with more expensive machines and so it seems
that they are more suited to integer arithmetic rather than complex
arithmetic. It was therefore considered worthwhile to try and

implement number theoretic transforms using microprocessor systems.

There are many excellent references on number theoretic
transforms e.g. (1)-(5), which introduce the fundamental concepts of
the topic. However one may find an introduction to number theory
enlightening, for example Ore (68). The reader's attention is drawn
particularly to a fairly recent publication by McClellan and Rader
(122) entitled 'Number theory in Digital Signal Processing'. This book
provides a thorough overview of the topic of number theoretic
transforms. Although not all of the references have been directly

referred to in the text they have been included to provide a fairly

comprehensive 1ist of related work.

Agarwal and Burrus (3),(5) have shown that in order that the
transform support the cyclic convolution property certain structural
constraints 1imit practical choices of number theoretic transform. A
finite field of M elements (ZM) will support only certain values of
transform length (N), and for a given M and N an element a of order N
must be found in ZM° The transform and its inverse are defined by the

following relations:

N-1 .
X(j) = r x(i) o' mod M je (0,N-1)
i=0
(1.1)
g M-l i
x(1) = N I X(3) a I modM  ie (0,N-1)
J:

The particular choices of M, N and a affect the ease of computation of




the transform. These constraints are summarized as follows:

(a) N must divide O(M), where O(M) is defined to be the greatest
common divisor of the set of prime divisors (pi- 1) of M

i.e. where 0(M) = g.c,do(pi - 1)

(b) « must be an element of order N i.e. aN = 1 mod M and

a’ #1lmodM r e (1, N-1).

(c) N'l, a multiplicative inverse of N must exist in the ring ZM°

(d) N should be well factored for fast transform algorithms to exist.

(e) To facilitate fast and simple arithmetic mod M, M must have a
simple binary representation, and to facilitate fast
multiplication by powers of o, a must also have a simple binary

representation.

Agarwal and Burrus have shown that constraint (a) is equivalent
to constraints (b) and (c). Constraint (a) is in a useful form for
finding a suitable modulus for a given transform length, while
constraints (b) and (c) state the conditions which the transform
parameters a and N'1 must satisfy once M and N have been determined.
For this reason both sets of constraints are presented.

Let us consider M = 2k.This modulus does have a simple binary
pattern but obviously it has a prime factor of two and so O(Zk) =1
and hence the maximum transform length is also one.

For M = 2.1 where k is composite, then let k = PQ where P is
prime. It can be seen that ZP- 1 divides ZPQ- 1 and hence the maximum
transform length will be governed by the maximum possible for
M= 2P— 1. Therefore only the primes P need be considered and such

numbers M = 2P- 1 are known as Mersenne numbers. It is this property

that gives rise to the study of Mersenne number transforms.




For M =2%+ 1 where k is odd, then 3 divides 2%+ 1 and so the
maximum transform length is 2; therefore we need only consider even k.
2t s2t

+ 1 divides 2

Let k be sZt where s is odd, then 2 + 1 and the

Tength of the possible transform will be governed by the length
possibie for M = 22t+ 1. Numbers of this form are known as Fermat
numbers and this gives rise to the study of Fermat number transforms.

Both these transforms have moduli and o with simple binary
representations which facilitate fast and simple arithmetic.

However the Mersenne number transforms do not support highly
factored transform lengths and so fast transform algorithms are not
available for this class of number theoretic transform.

The Fermat number transform does however support radix 2 FFT
algorithms and hence this appears to be an attractive transform. The
nature of this transform is examined in more detail in chapter 2 where
it is shown that the transform does suffer from certain limitations
which make it unsuitable for a microprocessor implementation. It is
also possible to perform complex convolutions using Fermat number
transforms using a technique presented by Nussbaumer. In order to
define the nomenclature this technique is presented in chapter 2 as it
will Tater be generalized and used widely in later chapters.

Number theoretic transforms are alike in structure to the Fourier
transform, and hence in principle any fast Fourier transform algorithm
can be applied to number theoretic transforms. Therefore number
theoretic transforms can be computed using standard fast Fourier
transform (FFT) algorithms, which are most efficient for transform
lengths which are a power of 2. In 1976 Winograd (113),(114) and (101)
proposed a new class of Fourier transform algorithms (WFTA) and these

too may be adapted to derive comparable fast algorithms for number




theoretic transforms. Winograd applied field theory to derive short
transform Tength algorithms in the range 2 to 16. He has proposed a
technique for combining these algorithms in a nested structure to
derive efficient algorithms for greater transform lengths. By
employing this technique it is possible to derive transform algorithms
for a wider variety of transform lengths than would be available with
standard radix 2 FFT algorithms.

In a comparison between the Winograd algorithm and the FFT, one
finds that the number of multiplications required to compute the
transform by the Winograd algorithm is reduced below that required for
the FFT while the number of additions required is comparable. This
reduction of arithmetic load is gained at the sacrifice of algorithm
complexity.

There is dispute in the literature as to the relative merits of
the WFTA and the FFT (101),(49). However it is certain that the WFTA
does provide algorithms which are as efficient as comparable FFT
algorithms with the primary advantage that algorithms for a greater
variety of transform lengths are obtainable. It is this last point
which enabled the development of number theoretic transforms which are
suited to a microprocessor implementation and this work is covered in
chapter 3.

Preliminary investigations showed that the Fermat number
transform, which is best implemented using a radix 2 FFT algorithm,
was not particularly suited to a microprocessor system. Since this
class of transform was the optimum choice for the FFT other_c]asses of
transform were considered with a view to utilizing the greater variety
of transform available with Winograd transform algorithms. It was

found that the multiplication coefficients required for these
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algorithms do not have simple binary patterns unlike the corresponding
coefficients for Fermat number transforms. However microprocessors are
becoming available with fast multiply instructions and for those that
do not, hardware multiply chips are available, and this allows fast
general integer multiplications. This property can be seen to relax
constraint (e) that the multiplication coefficients required for the
transform computation need have a simple binary pattern. For such
processors the fact that the Winograd multiplication coefficients do
not have simple binary patterns is not a serious limitation and this

allows wider classes of number theoretic transforms.

A search was made for choices of modulus which would be suited to

Winograd algorithms. Since most microprocessors can efficiently
accomodate only 16 bit arithmetic, without excessive software
penalties, the search was conducted below 216° It was found that the

choice of M = 65521 is optimum.

The technique proposed by Nussbaumer was adapted to allow complex
convolutions to be performed using these number theoretic transforms.
In some cases a given modulus will provide insufficient dynamic range
and a larger modulus should be chosen. A direct implementation of such
a scheme would require arithmetic with greater precision and this
seems unattractive. The Chinese remainder theorem may be employed to
circumvent this problem. If the results of an arithmetic operation are
evaluated with respect to two or more relatively prime moduli then the
result may be determined with respect to the modulus which is the
product of those moduli. This approach is particularly suited to a
parallel processing technique. A search was made for moduli which will

combine with M = 65521 over specific Winograd transform lengths. The

11




material relating to deriving number theoretic transforms suited to a

microprocessor implementation is outlined in chapter 3.

In chapter 4 certain aspects of modular arithmetic are discussed.
The technique of filter design for finite field arithmetic is examined
more closely. As has been previously noted, in cases when the dynamic
range of a given modulus is insufficient to meet the filter design
constraints, then a larger modulus should be chosen. The mechanism by
which the Chinese remainder theorem allows recombination of results
wirh respect to two sub moduli is examined. Preliminary investigations
showed that modular integer arithmetic is considerably slower than
normal integer arithmetic and a hardware modular multiplier was

designed in order to reduce the computational load upon the processor.

Reed, Truong et al have considered defining transforms over
quadratic finite fields. Arithmetic over these fields resembles
arithmetic defined in the complex domain and using this type of
transform it is possible to convolve complex sequences directly. In
the manner previously outlined for simple number theoretic transforms,
a search was conducted for a suitable modulus to support Winograd

algorithms for complex transforms. It was found that the modulus

M = 65519 is an optimum choice.

It was observed that the two optimum choices for modulus, 65521
and 65519, form a prime pair. This result was investigated more
closely and generalized for other bit Tengths. Aspects of complex
transforms relevant to a microprocessor implementation are discussed
in chapter 5.

Recent interest has been shown in employing number theoretic

12




transforms to encode and decode a special class of error correcting
code, known as a Reed-Soloman code. This technique was adapted to use

the algorithms derived earlier. This work is discussed in chapter 6.

Finally in chapter 7 some areas of further investigation are

suggested which did not receive encugh attention in this thesis.

It is shown that microprocessor systems can be used effectively
to provide the hardware for small scale convolution requirements and
therefore such systems can be used wherever digital convolution is
required. The range of possible applications is broad, covering many
areas, from the computation of auto and cross correlation and power
spectra, and non recursive and recursive digital signal processing; to

obtaining the solution of difference equations.

13




CHAPTER 2

FERMAT NUMBER TRANSFORMS

Agarwal and Burrus (1) have shown that exact cyclic convolution
can be performed by using number theoretic transforms defined over
rings of integers modulo Fermat numbers Ft given by Ft = 22t+ 1. Such
transforms can be computed without requiring any multiplications to be
performed but requiring only repeated bit shifts, additions and
subtractions.

These transforms also support radix 2 FFT algorithms and hence at
first sight they would appear to be attractive for signal processing
by transform techniques.

The Fermat number transform is examined in more detail in this
chapter, and when this transform is considered for a microprocessor
implementation two Timitations become apparent. It is found that a
binary representation problem exists and it is felt that an efficient
microprocessor implementation would generate computational errors
which would be Tikely to seriously affect complete data blocks. It is
primarily for this reason that Fermat numbers were considered
unsuitable moduli for a microprocessor implementation.

It is also shown that the transforms lengths available with
Fermat number transforms are limited and therefore other classes of
number theoretic transform were considered for a microprocessor
implementation.

The chapter concludes with a section describing work by
Nussbaumer (51) which enables complex convolutions to be computed via
Fermat transforms. It was felt necessary to inciude this material
inorder to define the nomenclature and to express the subleties of this

technique in a manner which aids further development in chapter 3.
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2.1 FERMAT NUMBER TRANSFORMS (FNTs)

Numbers of the form F. = 22 y1, b= 2t

numbers and Ft is known as the tth Fermat number. Transforms of length

are known as Fermat

N can be defined using Fermat moduli provided an element « of order N
and an element N"1 can be found. The choice of the modulus Ft leads to

the observation that

2b = -1 mod Ft where b = ot
or 22b = 1 mod Ft
and it can be seen that the element 2 is of order 2t+1 in the ring Ft'
For prime Fermat numbers it can be seen that
2t
O(Ft) =2 (2.1.1)

and so these moduli are particularly suited to radix 2 FFT algorithms,
for which the element 2 provides a suitable a with a simple binary
pattern, supporting a transform length which 1is proportional to the
wordlength employed.

Having found that the first four Fermat numbers were prime,
Fermat conjectured that all such numbers would be Tikewise, however no
known Fermat prime above F4 exists. It is now well known (1) that any

prime factors of composite Fermat numbers are of the form (k2t+2

) = 2t+2 for the

+ 1)
and therefore (2t+2) divides O(Ft)° In particular O(Ft
Fermat numbers F5 and F6° It can therefore be seen that Fermat numbers
larger than F4 are also suited to radix 2 FFT algorithms.

In the 1ight of this discussion it can be seen that FNTs support
radix 2 FFT algorithms with the choice of o = 2 and this is a
desirable situation. For Fermat moduli the element 2 is of order 2t+l
and so the transform length for such simple transform algorithms is

proportional to the wordlength employed. This is a limitation of such

15




transforms.

The element 42 is of order 2012

where the symbol v2 denotes the
element for which (J2)2 = 2. With the choice of a = ¥2 the transform
length can be doubled over that available with a = 2. Multiplication
by odd powers of /2 are required in only one half of one pass of the
fast algorithm and in most cases this is not too serious a penalty.

A selection of Fermat moduli, permissible transform lengths and
corresponding as are shown in table 2.1.

In computing the FNT arithmetic is perfomed modulo Zb + 1. In
this arithmetic the allowed integers are 0 .... 2b° However using b
bit arithmetic only integers in the range 0 .... 2b - 1 can
unambigously be represented. Therefore there exists a problem in the
representation of the element 2b which is itself congruent to -1. For
example consider the case of F4 = 65537. 17 bits are required for
unambigous representation of all the valid elements of Z&. However
the most significant bit is required only to represent the element
(-1)s Therefore great redundancy is incurred in the use of 17 bit
arithmetic while 16 bit arithmetic is just inadequate.

Using b bit arithmetic truncation errors will occur whenever the
element -1 is required to be represented. It is worthwhile to
distinguish between two clearly distinct occasions when this
representation error may occur. During initial analogue to digital
conversion the element -1 may be required and the truncation will
generate the representation -2 or 0. This case is not serious since
this can be seen to be just an abnormally large quantisation error and
in any case this situation can be avoided by careful choice of the

input quantisation levels. Serious errors will arise, if during

processing the representation error occures when data values do not

16




TABLE 2.1

PARAMETERS FOR A SELECTION OF FNTs

b F N N N o for
t a=2 a=J2 ma x N
Ma x
8 284 1 16 32 256 3
16
16 216, 1 3 64 65536 3
32 32,1 6 128 128 2
64 M4 1 128 256 256 2
TABLE 2.2

PROBABILITY OF ERROR FOR A LENGTH N FNT CONVOLUTION

t b F p

t a=2 e
4 16 216, 1 32 8.3.1073
5 32 232, 1 64 2.9.10~7
6 64 %41 128 1.6.10718
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have their usual physical significance; but rather they represent
elements of ZF4’ and in such cases a single error in any data value
can seriously affect the entire data block. This is potentially an
area of concern.

During processing itself the carry flag can be used to provide
the extra bit and so the result of each arithmetic operation would be
exact, however unless some provision were made for (b + 1) bit memory
then the possibility of erroneous results is introduced.

If the data are uncorrelated then the probability of this error
occurring is approximatly 2'b per memory write operation. Based upon
this assumption the probability of any error (pe) occuring in a
length N FNT convolution has been estimated and is shown in table 2.2.

For F5 and F6 this probability is small and may be acceptable,
however for F4 the probability of errror is unacceptably high. This
limitation is a serious shortcoming of FNTs particularly for F4 which
is the Fermat modulus perhaps best suited for a microprocessor
implementation.

Agarwal and Burrus (1) have compared the performance and hardware
requirements of the FNT with a fixed point DFT technique with a view
for an implementation on an IBM 370. They observe that the bit length
required to obtain an accurate result using the FNT is roughly twice
that required for the DFT. However for the DFT every data point
requires a real and an imaginary word to represent the complex values
and so the hardware requirement is comparable for the two techniques.
They have shown that the complexity of corresponding addition and
subtraction operations for the two techniques is also comparable. The

-j2% /N

DFT employs multiplications by powers of W = e and this is a

comparatively slow operation and they observe that the bit shift and

18




subtract in carry procedure for the FNT is faster for an IBM 370
machine. FNT algorithms have two other advantages; they do not require
storage of powers of W as is necessary for an efficient DFT algorithm,
and secondly they are not subject to accumulative round off error and
so produce exact results. The only source of error is the initial A/D
quantisation. They report that for the IBM 370 the FNT is faster than
a corresponding DFT by a factor of up to 5.

As has previously been observed the maximum transform lengths for
efficient FNTs are limited and for longer convolution lengths
multidimensional techniques have to be employed. For these long
convolution lengths the multidimensional techniques (2) available at
the time of this comparison (1974) were not efficient and so the
comparison was degraded. Agarwal and Cooley have subsequently
published more efficient technniques specifically for this
application (7).

McClellan has constructed a hardware realization of an FNT
processor for radar signal processing (47). For real signal processing
and particularly with modest convolution lengths (e.g. 64) he has
shown that the FNT requires less hardware than the corresponding DFT
pipeline processor. It can readily be seen that such a hardware
realization of a Fermat number transform would be most efficient if
implemented with a radix 2 FFT algorithm and the choice o=2. This is
enhanced by the use of subtract in carry hardware. However preliminary
invesitgations showed that such an approach would not be efficient for
a microprocessor implementation.

Melhuish (48) has used a minicomputer to perform FNTs in a signal
processing application, with results, which although promising

indicate that the optimum transform length relation with the
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wordlength is a Timitation of such transforms.

It has been the purpose of this section to present the Fermat
number transform as a convolutional technique which is particularly
suited to radix 2 FFT algorithm requiring only bit shifts and
additions for its computation. When compared with the DFT techniques
the FNT provides a fast and potentially efficient scheme particularly
as the general complex multiplications required for the DFT are no

longer needed.

However two limitations have become apparent. The optimum
transform length is restricted and there is a problem of unambiguous
representation of data. The latter can lead to serious errors
affecting an entire data block. This is a greater problem with short
wordlengths and this has been considered to be an unnaceptable
technique for the wordlength of 16 bits which is that best suited to

an efficient microprocessor implementation.

2.2 COMPLEX CONVOLUTION VIA FERMAT NUMBER TRANSFORMS

Nussbaumer has proposed a novel technique for performing complex
convolutions over rings modulo Fermat numbers. The structure of such
rings does not allow the concepts of 'real', 'imaginary' and 'complex'
to be defined in the normal way and hence this is an intruiging

technique.

He observed that with arithmetic over such rings one may find an
element j for which j2 = -1. It is this property which gives a strong
structural relation with the familiar complex field and by utilizing

this property one may impart some complex nature to such rings, and by

20




so doing it becomes possible to perform complex convolutions by Fermat
number transforms.

In section 3.4 this technique is later generalized for moduli
other than Fermat number moduli and this permits complex convolutions
to be performed with the number theoretic transforms which are derived

in chapter 3 for a microprocessor implementation.

For Fermat number moduli it has already been observed that

2b = -1 mod Ft
and so (Zb/2)2 -1 mod Ft
The element Zb/2 we will denote as the element 'j' since it can
be seen that j2 = -1. Therefore this element has the mathematical

properties of the element j in the complex domain. It is this relation
which allows complex convolutions to be performed efficiently with
Fermat number transforms. The mathematical nature of the number

theoretic 'j' will be examined in section 3.4.

Let a; = a; + ag (2.2.1)
Where a 1is a complex sequence

a% = real part of a;

a? = imaginary part of a,

j is an element such that j2 = -1 modM

Consider performing the convolution Yi =X * hi by a direct

technique
y! = x: *hi - x¥ *n!
i i i i i (2.2.2)
wo_ [ " [T [
Yi = X T hy ot h

and this can be seen to require 4 length N convolutions and 2N

additions. By using Golub's algorithm (57) this may be reduced to 3

21




length N convolutions and 5N additions.
Nussbaumer (57) has proposed a new technique for finite field
arithmetic. First form inphase and quadrature components of the

sequences x and h:

agi = % ot j X3 CH hi + hi mod M (2.2.3)
bxi = X - Jj X3 bhi = hi - hi mod M (2.2.4)
and it follows that
1 S *
yi o+ 1 a,; L mod M (2.2.5)
] - s "o *
v} 3y b4 by 1 mod M (2.2.6)
and so
i = -1 * *
yi = 2 [ag; *apg +byq ™ by ] (2.2.7)
" _ . _1 * _ * ° °
yi =(@3) " Day ™ag -by*b, ]

This technique can be seen to require only two length N
convolutions 4N multiplications and 6N additions. Therefore the number
of convolutions required has been reduced from 3 to 2, and since the
bulk of the computational load is incurred by the convolution operator
it can be seen that this technique proffers computational advantages.
These convolutions may of course be computed by transform techniques.

For FNTs the elements 2'1 and (2\]')'1 can be expressed as positive
powers of the element 2 and so fast multiplication technigues can be
applied.

It has been the purpose of this section to introduce the
technique whereby complex convolutions can be efficiently performed by
number theoretic transform techniques by utilizing a structural

property of the rings over which the transforms are defined.
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CHAPTER 3
MICROPROCESSOR IMPLEMEMTATION OF NUMBER THEORETIC TRANSFORMS

Number theoretic transforms can be computed requiring only bit
shifts and additions, however it has been found that such number
theoretic transforms are not particularly suited to a microprocessor
implementation.

Fast multiply instructions available on some microprocessors or
the use of external multipliers relax the basic constraints on the
choice of a particular number theoretic transform, and so other
classes of NTT become practicable.

A search was therefore conducted for suitable moduli and it was
found that the choice of M = 65521 seemed optimal. It is shown how
complex convolutions may be performed by adapting Nussbaumer's
technique. The chapter concludes with a section describing a selection
of moduli which will combine using the Chinese remainder theorem with
M = 65521 over specific transform lengths to obtain increased dynamic

range.

3.1 A REVIEW OF NUMBER THEORETIC TRANSFORMS

Agarwal, Burrus, Rader and others have shown that error free
exact convolutions can be performed using number theoretic transforms.
It is possible for such transforms to be defined so that few or no
generalized multiplications are required for their computation. These
transforms can be performed requiring only bit shifts and additions.
Both the Fermat number transform and the Mersenne number transform are
such transforms. However the transform lengths corresponding to

Mersenne number transforms are not well factored, and as can readily
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be seen it is desirable for the transform lengths which are supported

to be well factored for fast transform algorithms to exist. Agarwal

and Burrus (3) have shown that the following constraints limit

practical choices of number theoretic transforms:

(a) N must divide 0(M), where 0(M) is defined to be the greatest
common divisor of the set of prime divisors (pi- 1) of M

i.e. where 0(M) = g.c.d. (p,

i~ 1)

(b) « must be an element of order N i.e. aN =1 mod M and
o #1mod M re (1, N-1).

(c) N_l, a multiplicative inverse of N must exist in the ring Z,.

(d) N should be well factored for fast transform algorithms to exist.

(e} To facilitate fast and simple arithmetic mod M, M must have a
simple binary representation, and to facilitate fast

multiplication by powers of a, a must also have a simple binary

representation.

Agarwal and Burrus have shown that constraint (a) is equivalent
to constraints (b) and (c). Constraint (a) is in a useful form for
finding a suitable modulus for a given transform length, while
constraints (b) and (c) state the conditions which the transform
parameters a and N_1 must satisfy once M and N have been determined.
For this reason both sets of constraints are presented.

From all these aspects the Fermat number transform provides an
optimum number theoretic transform but as previously discussed this
transform suffers from two 1imitations. For a simple Fermat number
theoretic transform the transform length is proportional to the
wordlength employed. For a microprocessor implementation the optimum
wordlength is 16 bits and as has been seen the corresponding Fermat

number transform suffers from a representation problem which is
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potentially serious for this choice of wordlength.

In conclusion it can be said that for a microprocessor
implementation there is no single class of efficient error free number
theoretic transform which can be computed requiring only bit shifts

and additions.

3.2 A SEARCH FOR NUMBER THEOQORETIC TRANSFORMS SUITABLE FOR

A SIMPLE MICROPROCESSOR IMPLEMENTATION

The concept of the Winograd Fourier transform algorithm has been
introduced. Unlike the Fermat number transform the multiplication
coefficients for this class of transform algorithm do not have a
simple binary representation. Therefore the Winograd algorithms would
not appear to be attractive for a microprocessor implementation.
However microprocessors are becoming available with fast multiply
instructions and for those that do not have this facility, fast
hardware multiplier chips are available (117). These trends allow fast
generalized multiplications and make such operations competetive with
repeated bit shift and subtract in carry operations such as are
required with Fermat number transforms. Therefore for a microprocessor
implementation constraint (e) may be waived allowing binary non-simple
moduli and as and so many more number theoretic transforms become
practicable.

There are two main parts for a search for number theoretic
transforms suitable for a microprocessor implementation. Having
decided upon a transform length, a suitable modulus must be found to
satisfy N | O(M) and secondly an element a in ZM of order N must be

found. Work by Bailey (9) based upon these ideas was performed
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concurrently.

It was therefore decided to implement a computer search for
suitable combinations of N, M, and a. It is apparent that radix 2 FFT
algorithms have already been well dealt with in the literature in this
context and so Winograd transform lengths were considered.
Silverman (101) has presented small-N Winograd algorithms for the
following transform lengths (2, 4, 8, 16), (3, 9), 5 and 7. In
principle it is possible for such algorithms to be derived for other
transform lengths e.g. 11 and 13 however these do not promise to be as
efficient and additionally they have not yet been described in the
literature. Therefore for the existing transform algorithms it can be
seen that any composite transform length will divide 5040 ( which is
the product of 16 x 9 x 5 x 7). Hence any modulus which supports a
transform length of 5040 will also support any of the other Winograd
transform lengths composed of Silverman's algorithms.

Bailey (9) suggested searching over prime p until the condition
N | (p - 1) was satisfied. However the approach which was adopted was
to search over odd values of M until the condition N | O(M) was met.
This is a more general condition allowing composite moduli to be used.
Since data is handled most efficiently in full bytes this search was
conducted from 216 downwards for moduli which would support a
transform length of 5040.

This search quickly revealed that the choice of modulus M = 65521
was optimum for two reasons:

(a) 0(65521) = 13 x 5040 and so this modulus will support any

Winograd transform algorithm

16

(b) 65521 is very close to 2 " and so Tittle redundancy is incurred

in the use of 16 bit arithmetic. (The redundancy is 0.023%).
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By way of interest it may be noted that 65521 is the first prime
below 216°

In order to implement number theoretic transforms with this
choice of modulus an element of order 5040 must be determined.
Elements of orders which divide 5040 can easily be determined from
such an element. Bailey (9) suggests a technique whereby if an element
of order N is required then a search over the elements of ZM should be
conducted until an element is found of an order which is equal to N or
a multiple of N. However a search procedure will be outlined to find a
primitive element in ZM. The order of such an element is given by
Euler's function @(M) ( see (68) ). Much more information is gained
from a primitive element than from an element of arbitary order, since

elements of any order which divide @(M) can quickly be derived from

the primitive element.

Euler's theorem (68) states that for every element b in the

ring Z, which is relatively prime to M the following relation holds:

M
pP(M) -y mod M (3.2.1)
It is easily shown that the order of b must divide @(M) and it is

this point which gives the key to an efficient search technique. First

find @(M) and reduce it to its prime factored form.
L or2 43 r
P(M) # Py e Ppte Py ecse Py (3.2.2)

Then for any non primitive element b, the order of b must divide

one of the following:

g(M) s g(M) 5 p(M) ss  D(M)
P1 P2 P3 P
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Therefore if for an element b the following relations hold
pPM/py _ mod M i e (1,1) (3.2.3)

and provided b is coprime with M then b must be a primitive element
of ZM. From such an element bp an element ay of order N can quickly be
found by:

(3.2.4)
This method is in principle similar to that presented in
reference (122).

The elements of ZM can be scanned from 2 —> M-2 for a suitable
primitive element. The computer search time for finding a primitive
element in ZM where M is of the order of 216 is not prohibitively long
by conventional techniques. However as will be shown in a later
chapter the corresponding search time for a suitable element for
complex transforms is prohibitively long and in such cases use must be
made of an efficient technique such as that described.

In summary, this section presents the ideas behind trying to
derive number theoretic transforms suitable for a microprocessor
implementation. The availability of fast multiply instructions on some
microprocessors relax the basic constraints upon the choice of a
particular number theoretic transform. Since radix 2 FFT algorithms
have already been well exploited, and it has been shown that these
tend to prefer Fermat number transforms, which for the purposes of a
microprocessor are impractible; Winograd transform algorithms were in
principle adopted for a proposed transform technique.

It was found that the choice of M = 65521 was optimum and the
corresponding transform algorithm development will be described in the

next section.
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3.3 WINOGRAD ALGORITHM DEVELOPMENT

Algorithm development was conducted in FORTRAN on an IBM 370
where the mainframe support facilities were found to be benificial.
Before any specific algorithm development could be attempted, certain
simple modular arithmetic routines had to be defined. A selection of
these are shown in Appendix A.

In the search for a suitable modulus to satisfy the condition
5040 | O(M) a routine had to be defined to derive the value of O(M).
This function OH(M) employs an efficient factoring subroutine FACTOR
and these two allowed the basic modulus search to be conducted. Having
found a suitable modulus, modular arithmetic functions had to be
defined. The function MODO reduces an arithmetic value mod M, where M
has previously been declared by the use of subroutine MSET.

It was found in many cases that expressions of the form ab mod M
were required to be evaluated. Direct evaluation of the expression
would often cause integer overflow and so a different technique was
implemented. Let b be represented by

1im

b= ¢ b2 b. e (0,1) 0<b <2 ™Ml (3.3.1)
i=0 ! !
and evaluate the expressions
_ 2 _ : .
Pi = (Pi—l) mod M, Py = 1, ie (1,1im) (3.3.2)
then
b Tim
a = 1t E (b.P;) modM (3.3.3)
i=o U7

where E(0) = 1 and E{x) = x otherwise.
These relations provide an efficient procedure for evaluating ab

mod M and the function EXPM achieves this result.
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A procedure named INV was written to derive the multiplicative
inverse of a number x by an application of Euler's theorem:

U ()

(3.3.4)
and this function employs the routine EXPM.

The short N algorithms presented by Silverman (101) express the
multiplication coefficients in terms of the trigonometrical functions
COSINE and SINE. In modular arithmetic the concepts of magnitude and

phase are not defined and so the meaning of these functions has to be

reinterpreted.
u = cosu + Jjsinu (3.3.5)
ut o= cosu - j sin u (3.3.6)
and so
_ -1 -1
cos u = 2 (u+u™) (3.3.7)
sinu = (2))7! (u-u) (3.3.8)

These relations allow the COSINE and SINE functions to be
interpreted in the number theoretic sense. The function MCOS generates
expressions for cos iu and sin iu, i e (1, 4) and this allows the
Winograd algorithms to be developed.

Since any sbecific-N transform algorithm would be computationally
more efficient than a general N algorithm, various algorithms were
derived for specific transform lengths. However it was found that a
general N program was an invaluable tool for such algorithm
development since during its execution this program derives the
multiplication coefficients, the pointers into workspace arrays and
the permutation sequences required for specific N algorithms.

A modified version of the program was written which when executed
would automatically derive and print out all such useful parameters.

Although not as powerful, this technique is based on the same
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principle of the 'autogen’ software developed by Morris (49) for his

comparison between the WFTA and FFT algorithms. With more design

effort the general N program could have been made completely

autcgenerative.

Certain points are of interest concerning the general N program

and the subsequent specific N algorithms.

(a)

(c)

Since the ultimate aim is to derive algorithms for a
microprocessor environment where memory workspace should be
minimized, the suggestions given by Silverman (101) for reducing
memory requirement were heeded.

Arithmetic for the Fourier transform would generally be complex
because the Fourier transform is defined in the complex domain.
However the algorithms presented by Silverman (101) involve only
purely real or purely imaginary data, and so in the inner stages
of their computation, certain savings are made by keeping flags
to denote the data type. The concepts of real, imaginary and
complex do not strictly apply in the number theoretic sense, and
so it was not necessary for such flags to be kept.

We have already shown how Silverman's trigonometrical expressions
may be interpreted in the number theoretic sense. For the inverse
transform the normalizing factor N'1 may be incorporated into the
multiplication coefficients and by so doing the forward and
inverse transforms are made equally efficient. These two points

have also been made by Bailey (9).

The general N program was run on an [I8M 370 and the results of

convolutions performed by such number theoretic transforms with

modulus M = 65521 were compared with reference techniques. For short
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convolution lengths the reference technique was a direct integer
procedure and for Tonger Tengths a Fourier transform technique was
employed. The Fourier transform subroutine used was from the NAG

library.

The test convolutions were of two types. Preliminary tests were
taken with cross convolutions of simple sequences of sinusiods, square
waves and exponential functions. The later tests involved sampling a
laboratory signal and convolving it with the impluse response of a
band stop filter. In all cases the NTT convolutions gave results in
exact agreement with the direct convolution technique. The Fourier
transform technique produces ‘'real' results subject to round off error
and within the limits of accuracy of such a technique the results of

the NTT convolutions were also in exact agreement.

Specific transform algorithms were written using the autogen
technique described above for the transform lengths of 60 and 240.
These algorithms for M = 65521 are presented in Appendix B. The
length 60 algorithm was transcribed into assembler code for an
Intel 8080 microprocessor using the FORTH programming technique {118).

The source code is presented in Appendix C.

The algorithms have been designed for implementation on a
microprocessor with either a fast multiply instruction or with added
hardware multipliers. However the development system available for the
Intel 8080 had neither facility and the subsequent execution speed
could not be expected to be particularly fast. However this prototype
algorithm gave results in exact agreement with the mainframe computer.

This algorithm was employed in a band stop filtering application.
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3.4 EXTENSION TO COMPLEX FILTERING

Vanwormhoudt (109) has shown that there exist two main classes of
prime moduli. Since all moduli that are useful for number theoretic
transforms are odd the two main classes are those for which M = 1

mod 4 (type A) and those for which M = 3 mod 4 (type B).

Let us consider a prime modulus (MA) of type A. Then by Euler's
theorem
G(MA) = MA -1 =0 mod 4 (3.4.1)
and so 4 | p(My)

This implies that an element of order 4 exists and such an
element (j) will satisfy j° = -1 mod M,.
For a modulus (MB) of type B we see that
Q(MB) = MA -1 = 2 mod 4 (3.4.2)
and so 4} Q(MA)
and this implies that no such element of order 4 exists in ZM .
B
It is this point which provides a basic structural difference
between these two classes of moduli. It is well known that (109) the
Chinese remainder theorem provides a ring isomorphism between a set of
type A moduli and the ring ZM where M is the product of these moduli,
and so we may generalize these results for composite moduli. A
composite modulus whose prime factors are all of type A will also
2

possess an element j such that j- = -1 mod M, whereas if any one

factor is of type B then no such element will exist.

In chapter 2 it was shown how the approach developed by

Nussbaumer (57) allowed complex convolutions to be performed using

b/2

Fermat number transforms using the element j = 2 for which
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j2 = -1 mod Ft‘ Reddy and Reddy (83) have adapted this idea and shown

that a similar procedure allows this technique to be used with other

moduli.

It is proposed that Nussbaumer's algorithm may be employed with
all moduli for which an element 'j' exists, and as has been shown,
such an element will exist when the modulus is either prime and of
type A, or when composite all the prime factors are of type A. the

procedure by which complex convolutions may be performed using number

theoretic transforms is presented:

Let a; = a; + jay (3.4.3)

Where a 1is a complex sequence

o
1]

real part of a,

=)
"

imaginary part of a,

j is an element such that j2 = -1 modM

Two real convolutions are required to compute y where

Yi = % * hi and these are shown in equations (4) and (5).

y.i + j yi = ax_i * ah_i mOd M (30404‘)
y% - Jyy o= bei ¥ by mod M (3.4.5)
Where the following are defined
a = x% + x?, i = h% + h? mod M (3.4.6)
Wi - x; - J x?, bhi = h% - j h? mod M (3.4.7)

Two methods are presented for finding an element j such that

j2 = -1 in the ring ZM“ If a primitive element a is known ( an
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element of order @(M) ) then an element of order 4 can easily be

found by:
i = apw(M)/4 mod M (3.4.8)
It can be seen that this element of order 4 will satisfy
j2 = -1 mod M. An efficient technique has already been presented for

finding a suitable primitive element.
Ore (68) presents an alternative procedure for finding such an

element j for prime moduli. The solution he presents is
5= «r% 1yl nodwm (3.4.9)

Much interest is shown in this chapter in the modulus M = 65521
for which j = 24297 satisfies j° = -1 mod M.

A discussion on the operation counts required by this technique
for complex convolutions will be presented in section 5.4

It has been the purpose of this section to extend Nussbaumer's
algorithm for performing complex convolutions by number theoretic

tranform techniques to classes of moduli other than Fermat moduli.

3.5 EXTENSION TO OTHER MODULI

For a given modulus the output must be Timited to avoid overflow;
hence a compromise exists between the data amplitude and the filter
impulse digitisation. The nature of this compromise is studied more
closely in chapter 4. In general the digitisation will degrade the
filter response, and so for a given choice of modulus there may be
insufficient dynamic range for the filter design to achieve the limits
set. In such cases, a larger modulus should be chosen; however, direct

implementation of such a scheme would involve performing arithmetic
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with greater wordlength. This problem may be circumvented by use of
the Chinese remainder theorem.

This theorem states that if an integer x is such that x = a
mod m., where a set of moduli m is relatively prime, then x may be
determined with respect to the modulus which is the product of these
relatively prime moduli. An interpretation of this theorem shows that
if calculations are performed with respect to two or more relatively
prime moduli (m1 and m2) then by using the CRT the results may be
determined mod (mlmz).

Therefore a search was made for other moduli that would combine
with 65521 over specific transform lengths. The search was conducted

16 downwards for

for various transform lengths by scanning from 2
moduli, other than 65521, for which constraints (a) to (d) would be
satisfied. These results are shown in table 3.1

It can be seen from the last two entries in table 3.1 that the
highest suitable modulus below 216 that will directly support a
transform length of 5040 is M = 55441, The choice of such a Tow
modulus is undesirable, since a great loss occurs of the possible

dynamic range of 216.

Agarwal and Cooley (7) have described how the Chinese remainder
theorem may also be employed to convert a one dimensional cyclic
convolution to a multidimensional convolution which is cyclic in all
dimensions. This may be applied to cases where a given Tong
convolution length is a product of shorter mutually prime convolution
lengths. They cite an example whereby a number theoretic transform
technique can be used for convolution of lengths N and by using the

Chinese remainder theorem in this manner convolutions of length
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TABLE 3.1

TABLE OF DUAL MODULI TO PAIR WITH M=65521 USING C.R.T.

CONVOLUTION DUAL PRIMARY WINOGRAD MULTIDIMENSTONAL
LENGTH MODULUS TRANSFORM LENGTH FACTOR REQUIRED
6 65497 6 -
10 65381 10 -
12 65497 12 -
14 65437 14 -
15 65101 15 -
18 65449 18 -
20 65381 20 -
21 65437 21 -
24 65497 24 -
28 65437 28 -
30 65101 30 -
35 65381 35 -
36 65449 36 -
40 64921 40 -
40 65497 8
42 65437 42 -
45 64621 45 -
45 65449 9 5
48 65281 48 -
56 65353 56 -
60 65101 60 -
63 65269 63 -
70 65381 70 -
72 65449 72 -
80 64081 80 -
80 65393 16
84 65437 84 -
90 64621 90 -
90 65449 18 5
105 65101 105 -
112 64849 112 -
112 65393 16 7
120 64921 120 -
120 65497 24 5
126 65269 126 -
140 65381 140 -
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TABLE 3.1 (CONTINUED)

TABLE OF DUAL MODULI TO PAIR WITH M=65521 USING C.R.T.

CONVOLUTION DUAL PRIMARY WINOGRAD MULTIDIMENSTIONAL
LENGTH MODULUS TRANSFORM LENGTH FACTOR REQUIRED
144 65089 144 -
168 65353 168 -
180 64621 180 -
180 65449 36 5
210 65101 210 -
240 64081 240 -
240 65281 48 5
252 65269 252 -
280 63841 280 -
280 65381 35 8
315 59221 315 -
315 65381 35 9
336 64849 336 -
336 65281 48 7
360 64081 360 -
360 65449 72 5
420 65101 420 -
504 64513 504 -
504 65449 72
560 63841 560 -
560 65281 16 5*7
630 59221 630 : -
630 65381 70 9
720 64081 720 -
720 65089 144 5
840 63841 840 -
840 65353 168 5
1008 64513 1008 -
1008 65089 144 7
1260 59221 1260 -
1260 65381 140 9
1680 63841 1680 -
1680 65281 48 5*7
2520 55441 2520 -
2520 65449 72 5*7
5040 55441 5040 -
5040 65089 144 5*7
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(N . Py o Py o Pg oes pj) may be computed provided N, P1s Py> p3,,pj
be mutually prime.

Efficient algorithms are described in (7) for convolutions of
lengths 5, 7, (2, 4, 8) and (3, 9). Using such a scheme it is possible
to perform NTT convolutions of length 144 and using the
multidimensional mapping technique to derive convolutions of length
144 x 5 x 7 (=5040). Constraints upon the choice of modulus arise only
from the NTT 1ength used and not from the multidimensional factors
employed. Therefore modulus M = 65089 (this is the choice for a length
144 transform) may be used for convolutions of length 5040, even
though this modulus does not support such a transform Tength directly;
by taking NTT convolutions of length 144 and using the CRT mapping
technique to compute the 5040 Tength convolutions.

This technique can be used to factor transform lengths with
inefficient moduli to lengths with more efficient moduli and the other
entries in the table have been derived in similar manner. The Winograd
transform algorithms and the Agarwal and Cooley convolution algorithms
are designed for 1lengths which are a product of short factors. It is
worthwhile pointing out that since only relatively prime algorithms
can be combined with the Chinese remainder theorem the range of
possible combinations is restricted to cases where the
multidimensional factors are relatively prime to the transform
lengths.

It is advantageous if the two moduli to be combined are used with
the same transform lengths, since the same permutation sequences and
essentially the same algorithms are used for both moduli, Tleading to
economy in memory utilisation.

Figure 3.1 shows a scheme where 120 point convolutions may be
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FIGURE 3.1 CONVOLUTION VIA SIMULTANEOUS MODULI
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performed mod (65521 x 65497). The convolution mod 65521 can be
performed directly using a 120 point Winograd transform. The sequences
mod 65497 are mapped to (5 by 24) sequences and a two dimensional
convolution is used. This requires ten 24-point convolutions which may
be calculated by a direct Winograd transform method. The results of
the two dimensional convolution are mapped back to a one dimensional
sequence. Finally the results (mod m and mod m2) are interpreted
mod M by the use of the Chinese remainder theorem.

The complex convolution procedure outlined in section 3.4 and the
Chinese remainder combination procedure for the moduli shown in

table 3.1 have both been compared with reference tecniques in the

manner described previously in section 3.3.
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CHAPTER 4
ASPECTS OF MODULAR ARITHMETIC

Number theoretic transforms provide an integer processing
technique for signal processing. It is therefore prudent to examine
the consequences of using such integer techniques. With fixed and
floating point arithmetic round-off error is of concern, however
integer techniques are entirely accurate provided overflow does not
occur. The criteria for this condition are examined and reliable

design techniques are presented to prevent integer overflow.

In certain cases there is insufficient dynamic range provided by
a given modulus for the design criteria to be met without overflow. In
such cases a larger modulus should be chosen. The Chinese remainder
theorem provides a technique which achieves this without requiring
arithmetic with increased wordlength. The consequences of this

approach are examined in more detail.

Microprocessors handle most efficiently integer data and so it is
relatively easy to program microprocessors to perform modular integer
arithmetic. The general classes of arithmetic are studied in order to

provide efficient programming procedures.

However it has been found that modular multiply by software even
with advanced microprocessors is slow and so a hardware modular
multiplier is described which will easily interface to most

microprocessors.
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4.1 FILTER DESIGN FOR MODULAR ARITHMETIC

In any practical situation when working with digital machines
sampled data is available only with some finite precision. Therefore
without any loss of generality input data can be considered to be
integer with some upper bound and a scale factor applied. If the
results of a digital filtering operation are conveyed back to the real
world then the output is also presented in integer form, since it too
is conveyed with a finite precision. It is therefore a logical step to
adopt an integer technique for signal processing, and as discussed

previously number theoretic transforms provide such a technique.

For a given maximum output of a filter there exists a compromise
between the input data amplitude and the filter impulse digitisation.
The purpose of this section is to examine more closely the criteria

which govern this compromise.

NTTs produce exact results reduced mod M. However, numbers mod M
do not necessarily have any physical significance since the mapping
from ZM to Z, the infinite set of integers, is a one to many mapping.
For this reason we must apply bounds to the output of the convolution

operator.

The maximum output of a convolution, Yimax® is governed by:

N-1
Woax! € *max °1_1.‘0|h1.l (4.1.1)
N-1
|ymax| < hpay o F |xi| (4.1.2)
i=0
If |ymax| is bounded by
|ymax| < M/2 (4.1.3)

then the full dynamic range of M can be utilized without overflow.
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Let
Xoay ¢+ T hg| < M2 (4.1.4)
Thus given an input data amplitude, constraints Timit the absolute
summation of the impulse response.
Let fi be a real filter impulse response derived by conventional
techniques and let
N-1
Fo= 1 |f.| (4.1.5)
i=0 !
We require to digitise the filter coefficients but with as fine a
resolution as possible. If a scale factor (k,k>1) is applied to fs
before digitisation, then the resolution with which the filter

coefficients are digitised has been increased. Let D denote the

operation of digitisation then if we choose km such that

Xogx D (K F) = M/2 (4.1.6)

we have optimised the resolution whilst guaranteeing that overflow
should not occur. k must be less than km in practice since slight
rounding up may occur in the digitisation operation.

Therefore the best filter impulse response can be found by:

hi = D(kfi) i e (0O,N-1) such that k < M (4.1.7)
N-1

2 x % |f.]
maxi_q' 1

The input data amplitude, x plays an important role in this

ma x®
relation and the filter digitisation can loosely be said to be
inversely proportional to the input data amplitude.

By way of example a series of filter frequency responses are
shown in figure 4.1. The curves are derived by taking the Fourier

transform of various digitisations of a set of time domain
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A SERIES OF FILTER RESPONSES (ARBITARY UNITS)
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coefficients. The more deviant curves result from the coarser
digitisation which would be asscocaited with larger input data

amplitudes.

As can readily be seen from figure 4.1 the digitisation of the
filter coefficients tends to degrade the filter response and so for a
given input data amplitude and for a given modulus there may be
insufficient dynamic range to represent the filter response within the
Timits set.

Conventially only the convolution length 1imits the accuracy with
which the desired filter response can be achieved. However when using
modular arithmetic there exists this additional compromise between the
input data amplitude and the filter response. For filter designs these

two effects must be considered together.

It may be that insufficient dynamic range is provided by a given
modulus and in such cases a larger modulus should be chosen. However a
direct implementation of such a scheme would involve performing
arithmetic with greater wordlength. This would neccessarily slow the
processor down. There are two techniques which are suitable for
parallel processing and in such cases the overall speed may not be
impaired if multiple processors are used.

Agarwal and Burrus (1) have described a technique which they have
termed segmentation. This involves taking the input sequences and

segmenting them into shorter blocks and convolving these separatly.

k

Let x(i) = xz(i) + x,{(i)2 (4.1.8)

1

(i)2" (4.1.9)

=
—
—
~—
1l

hz(i) + h1

2k k

where 0 < |x(i)]|, |h(i)] < 2" and 0 < |x2(i)|, [h2(1)| <2
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Then

K 4w *h

+ (x1 *h, + x, *h 9 5

> ’ 1) (4.1.10)

Now since X| s hl’ Xs and h2 have roughly half the number of bits
it is possible to convolve them with aproximatly half the number of
bits. In equation (10) the last term is small compared to the first
and in most cases this term can be neglected. We need to take two
forward transforms for x and two for h. The summation in brackets can
be performed in the transform domain. Finally two inverse transforms

are required one for X1 * h1 and one for (x1 * h2 + x, ¥ hlﬁ

2

An alternative solution to this problem is provided by the
Chinese remainder theorem and it is the purpose of the next section to

study this solution more closely.

4.2 CHINESE REMAINDER THEOREM

If the result of an arithmetic operation is known relative to a
set of coprime moduli then by using the Chinese remainder theorem
(CRT) this result may be determined with respect to the modulus which
is the product of these coprime moduli. Therefore if convolution is
simultaneously performed with respect to two or more such moduli then
the Chinese remainder theorem can be employed to obtain the results
with increased accuracy. It is this property which allows increased
precision to be achieved using a processor structure which is itself

well suited to a parallel technique.

The Chinese remainder theorem states that if an integer x is such
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that x = a; mod m, where a set of moduli m; is relatively prime

(coprime) then

ba M + ...+ ay b] M mod M (4.2.1)

1 ? My i
1
where M = & m,
. i
i=1
The bi are defined such that
b, M = 1 mod m.
i i
i
Let us consider the case for two moduli

X =a; ¢ ot 3, mod M (4.2.2)
Where
¢cp =byM and ¢, =b, M
™ L)

Let x = 1 and so a1 =1 = az, therefore

1. c1 +1. ¢ 1 mod M

2
or

cp * ¢, 1 mod M (4.2.3)

If the two moduli my and m, are both b-bit then in general Cq and
<, would be 2b-bit constants and therfore a direct implementation of
equation (2) would require two b x 2b bit multiplications. By using
the result in equation (3) this requirement can be reduced.

From equations (2) and (3)

X = (1 - Cl) (40204)

= cl(a1 - az) ta, mod M (4.2.5)

However <y is defined by

¢, = bl_ﬂ mod M (4.2.6)
m
1
and therefore
clm1 = b1 M
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or
cym = 0 mod M (4.2.7)
Thus any integer multiple of cymy can be added into equation (5)
without altering the result, hence

X = ¢y (km1 +ay - az) ta, modM ke (4.2.8)

I[f k is chosen such that (km1 + ay - a2) lies in the range zero
to 2b - 1 then only one b x 2b bit multiplication is required to
evaluate equation (2). This operation is all that is required for the
recombination of results with respect to two moduli using the Chinese
remainder theorem.

A flow chart to achieve this algorithm for two 16 bit moduli is
shown in figure 4.2

Heindel and Horowitz (32) have introduced a concept which they
have termed the parallel Chinese remainder algorithm (PCRA). This is
best illustrated by example. If there are four coprime b bit moduli
for which results are to be combined then using the analagous form of
equation (2) it can be seen that four b x 4b bit multiplications are
required by the conventional iterative Chinese remainder algorithm
[Garner's algorithm, (32), (27)]. By using the PCRA the four moduli
are paired as follows:

P P

(P (P

1, 2) 9 3! 4)

and these pairs are individually combined using the Chinese remainder
theorem. There now exist two moduli P1P2 and P3P4 for which results
can subsequently be combined. The factorisation by two of the
combination operator achieves computational savings if there exist
efficient techniques for the two modulus combinations. The technique

described in equation (8) is therefore well suited to the PCRA. If the
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FIGURE 4.2 FLOWCHART TO PERFORM CRT COMBINATION.
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four b bit moduli are combined using the PCRA and the two modulus
combination technique, it can be seen that only two b x 2b bit and one
2b x 4b bit multiplications are required and this technique is
therefore more efficient than Garner's algorithm. This composite
algorithm promises to be an efficient technique when the number of
moduli to be employed is chosen to be a power of 2. Such a technique

is well suited for parallel processing.

It has been the purpose of this section to introduce the Chinese
remainder theorem and to show how it may be used to derive results
with greater precision. This promises to be the technique best suited
to a multiprocessor system. Processors can be dedicated to determining
results for one of the chosen moduli and a further processor can be
used for the PCRA combination for the final presentation of the
results.

[t is interesting to note that for filter design with such
systems the filter coefficients need only be determined with respect
to the final composite modulus M. For each sub modulus processor the
filter coefficients are reduced mod m. and so do not have any physical
significance, though they still have to be determined. It is only at
the final Chinese remainder combination that physical significance is

restored to the processed data.

4.3 MICROPROCESSORS AND MODULAR ARITHMETIC

The modluli previously described are optimally close to 216 and

therefore only a small duplicity arises if all 16 bit binary patterns
are allowed on input and output with an arithmetic procedure. In all

examples in this section the choice of M = 65521 will be taken.
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a: Additiion mod M
When two numbers are added together they may or may not generate
anoverflow. If there is no overflow then the result of the addition

is returned.

If x = a+b = ¢+ carry (4.3.1)
= ¢+ 20 (4.3.2)
B 16
= ¢c+ (2707 -M) mod M (4.3.3)
= ¢+ 15 mod 65521 (4.3.4)

Therefore if a carry is detected, 15 must be added into the
partial sum. This may generate a futher carry, but will not generate
more than a total of two carries. An example of suitable coding for

such an operation is given for an Intel 8080 microprocessor.

PLUS DAD D
RNC
LXI D, 15
JMP PLUS

This subroutine will add mod 65521 the two 16 bit numbers in

register pairs (DE) and (HL) returning the answer in (HL).
b: Subtraction mod M.

For microprocessors with 16 bit subtraction instructions the 16
bit addition instruction in the previous example may be directly
replaced by such an instruction. However few 8 bit microprocessors
have such instructions, and so for the majority a byte orientated

subtraction should be used.
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(i1)

Multiplication mod M

This operation can be classified into subdivisions.

Multiplication of a 16 bit number (x) by an 8 or 16 bit
constant (k).

This can be considered to be a mapping from a 16 bit number
to another 16 bit number. Since multiplication is a distributive
operation then the mapping may be achieved by treating separatly
the Tow and high bytes of x and finally using a modular add to
combine their respective outputs together. Figure 4.3 shows how
such a mapping may be achieved. The obvious design requires two
28 x 16 bit patterns which may conviently be read only memory

(ROM) and the read operations can be controlled by the

microprocessor.

For the multiplication by an 8 bit constant the memory can
be restructured to be byte orientated and in so doing a saving is

obtained since part of the memory R

is duplicated in R,. The

1 2°
minimized structure is shown in figure 4.4. ROMs R are read once
only and ROM R' is read twice. This memory reduction scheme seems
well suited to 8 bit processors. However for 16 bit processors
exta software effort would be required to implement the byte
orientated scheme. The possible memory saving is offset by
necessarily slowing down the execution speed of such processors

and since memory 1is dropping in price this does not seem

worthwhile.

Multiplication of a 16 bit number (x) by a 32 bit constant.
This operation is required when combining the results of

arithmetic procedures with two 16 bit moduli by using the Chinese
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FIGURE 4.3.  MULTIPLICATION BY 8 BIT FIXED CONSTANT.
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remainder theorem. This class of operation can be considered to
be a mapping from a 16 bit number to a 32 bit number. By adopting
a similar scheme and treating the low and high bytes of x
separatly the mapping may be achieved with two 28 x 32 bit
patterns which can also be ROM. A final 32 bit modluar add is
required to derive the final output. This operation can be

performed in an analogous manner to that described in section

4.3.a.

(1ii) Multiplication of two 16 bit variables mod M

The multiplication of two 16 numbers generates a 32 bit

answer.
Let y = ab = 216.yh + Y 0 < a,b,yh,y1 < 216 (4.3.5)
_ (olb
- (2 = M)")'h + .y]
=15 ., Yy * N mod 65521 (4.3.6)

Therefore a general 32 bit intermediate answer may be partially
reduced mod M by a multiplication of Yy by the fixed constant

16

(27" M). This can be achieved by the scheme described in

4.3.c part (i).

(iv) Multiplication by 21
This is the analogous operation to division by 2.
Let y = 2 . X (4.3.7)
By applying a shift right to x we may determine from the
carry flag if x were even or odd. If x was even then we have
already determined y. If x was odd then y may be derived by
adding in (M + 1)/2.
The procedures described cover the general classes of arithmetic

required for convolution performed within the ring ZM where M is a
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TABLE 4.1
SUMMARY OF MEMORY REQUIREMENTS FOR MULTIPLICATION

LOOK-UP TABLES

Memory required

pages
For each For 2
modulus moduli
Real convolutions Generalized
Multiplications 3 6
C.R.T combination - 8
Total 3 14
Complex convolutions Generalized
Multiplications 3 6
Multiplication by j 4 8
C.R.T. combination - 8
Total 7 22
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product of 65521 and one of the moduli shown in table 3.1.

Table 4.1 summarizes the memory requirements for the
multiplication Took up tables. The unit of one page is used to denote
a quantity of memory of 256 bytes. In the case of multiplications of
two 16 bit variables 3 pages are required for the table to derive the
term corresponding to the multiplication of the higher 16 bit

intermediate answer with the fixed constant (216—

M). The
multiplication by 'j' can be most efficiently performed by the
technique described in section 4.3.c part (i) and this requires an

additional 4 pages.

4.4 A HARDWARE MODULAR MULTIPLIER

The algorithms described in chapter 3 have been designed for an
implementation on a microprocessor with fast multiplication. As has
been described in this chapter, number theoretic transforms require
modular integer arithmetic, and so when two 16 bit variables are
mu1tipiied the intermediate 32 bit product must be reduced mod M. This
requires a multiplication of the high 16 bit part of the product by

16

the fixed constant (2° - M) and this is followed by a modular

16

addition. It has been shown how the fixed multiplication by (2" - M)

can be achieved by a memory look up technique.

As has been outlined the procedure for general modular
multiplication is involved. Preliminary timings show that for the
TEXAS 9900 microprocessor such operations take in the order of 90 us.
This compares poorly with the 19 us required for an 16 x 16 bit
unsigned integer multiplication on the same machine.

Davies and Fung (117) have described how a hardware multiplier
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may be attached to a microprocessor system in order to increase its
performance. It therefore seems a logical step to append a fast
modular integer multiplier to such systems and this should greatly
increase the throughput of such systems.

[f the modular operations of add and multiply are compared with
their integer equivalents, it is apparent that the modular addition is
relatively easy to accomplish in software and there seems little point
in designing specific hardware to achieve this function. However as
has been described this operation is required during the computation
of a modular multiply and so hardware will be described to perform the
modular additions required.

When a modular add is performed between two 16 bit quantities a
carry may be generated. If this is so then (216— M) must be added into
the sum. This addition may generate a further carry. However only a
total of two such carries may be generated by this action. This
situation can be achieved by the addition of for example FFFF and FFFF

65521 or 210 - M = F.

(in hexadecimal) with M

Then:

FFFF (= 14)
+FFFF

1C (= 28)

The hardware described in figure 4.6 performs the modular add

16_

operation. The value of (2 M) is stored in lTatch 1 and this is fed
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FIGURE 4.5 MODULAR ADDER.

C =a + b mod M.

16
P 16 .
b 16 +M
B C—
i!16
Ml
FIGURE 4.6 MODULAR ADDER HARDWARE.
8 16 16 16
|+ + + m’“?
e aalRY. > A3
‘0’ C. EP C H? .
in out 0E in out o in
T8 TB
aa I =
M i16 L1

CE L - Latch TB Tri state buffer.

A -Adder 59




FIGURE 4.7 MODULAR MULTIPLIER
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to tri-state buffers 1 and 2. These buffers provide a switchable

16_ M)' operation. If a carry out is generated by

'on carry add in (2
the first adder then tri-state buffer 1 is enabled and no carry is
passed to the second adder. If no carry is generated from Al then tri-
state buffer 1 is disabled and so the inputs to A2 will flioat to

logic 1 and this corresponds to adding in '-1'. However a carry-in is
also present and so effectively '0' is added in. This procedure is
repeated for the second adder stage. This hardware provides a fast

asynchronous modular adder.

Figure 4.8 describes the hardware for the modular multiply
operation. Hardware multiplier chips are becoming available to provide
a fast multiplication of two 16 bit variables to produce a 32 bit
product. However of those that are available, the outputs and inputs
tend to be multiplexed together. When tri-state buffers 1 and 2 are
enabled from the microprocessor the multiplier chip is also enabled.
After the input phase the multiplier chip multiplies the two 16 bit
variables and outputs the 32 bit product towards the adders

+M1 and +M2.

The high 16 bit part of the product is separated into two 8 bit
address lines for read only memories Pl and P2, These two memories

perform the multiplication by the fixed constant (216 -

M). However to
allow for the use of two moduli for Chinese remainder combination each
of these two memories can effectively be split into two parts, one for
each modulus. These can be considered to be 9—>16 bit memories.
The 9N address line of the input is a 'modulus select' signal. Since

the two moduli must differ by at least one binary bit this address

line can be taken from a selected data 1ine of the modulus latch (L1).
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The read only memories generate two 16 bit words which must be
added with the Tow 16 bit part of the 32 bit product. This requires a
total of two modular adders described earlier. The two modular adders
can both be driven from the same modulus latch. Tri-state buffer 3 can
be enabled by the microprocessor when it requires to read back in the

result of the modular multiply.

After the initial input phase the multiplier, which has been
described, is completely asynchronous and the final output would be
derived within about 5 us; during which time the processor will be
able to store the last result and be accessing new data for the
multiplier. If the microprocessor is faster than the multiplier then a
small degree of pipelining may be achieved by the use of latch 1. The
value for the next multiply operation can be loaded into latch 1
before the result of the previous multiply has been calculated. As
soon as this has occured the result may be read and the other input,
b, may be loaded and this reinitiates the multiply cycle. If the
multiply is slower than the microprocessor then this will increase the
throughput.

The hardware which has been described in figure 4.8 will perform
fast modular multiplies and this will greatly increase the processor
throughput. The cost of this hardware is in the order of £300 at 1980

prices.
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CHAPTER 5
COMPLEX TRANSFORMS

The major part of this work has been to consider arithmetic over
a finite integer field ZM with a view to deriving efficient algorithms
for signal processing using a microprocessor. Reed (86) has shown that
the finite Galois field GF(qZ) may also be used for efficient signal
processing. This field has intersting similarities with the familiar
complex field and using GF(qz) it is possible to define number
theoretic transforms which are structurally identical to those defined
over ZM° The number theory of complex quadratic rings will be
unfamiliar to non-mathematicians, and inorder to introduce the
relevant nomenclature a brief introduction to the topic of number
theoretic transforms defined over such rings is 'presented in
section 5.1.

In chapter 3 it was shown that microprocessors are suited to
moduli which are just less than 216, and so the same techniques are
applied in this chapter to find finite fields GF(qz), which are suited
to a microprocessor implementation of complex number theoretic
transforms.

In order to perform transforms of length N it is neccessary to
find elements (a) of order N. Since it is in principle difficult to
find such elements over GF(qZ) the search procedure and results are
presented.

A novel convolution procedure is proposed in which complex
convolution is performed simultaneously over GF(q2) and over ZM using
related M and q.

The chapter concludes with a brief discussion on real and complex
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transform techniques and it is shown that number theoretic transforms
have a structural advantage over the Fourier transform for convolution
since both real and complex number theoretic transforms can be

defined.

5.1 INTRODUCTION

Vanwormhoudt (109) has shown that there are two main classes of
prime moduli useful for number theoretic transforms. There are moduli
for which M = 1 mod 4 (type A) and those for which M = 3 mod 4
(type B). It is easily shown that for type A moduli there will exist
an element 'j' such that j2 = -1 mod M, and that no such element will
exist for type B moduli. This observation indicates a key structural
difference between these two classes of moduli.

This structural difference can be formulated by stating that the
polynomial

P(x) = x"+1=0 (5.1.1)
has a solution in ZM [or GF(M)] for type A moduli and it does not have

a solution in ZM for type B moduli. Reed (86) has shown that a root

2

(i') of this polynomial will exist in an extension field GF(MB

) for

type B moduli. The Galois field GF(q2) is composed of the set

GF(q®) = [ a+i'b] a,be GF(q)

where 1' is a root of equation (1) satisfying (0 + 1')2 = (-1 + 0i")

in GF(q2).

If x2 + 1 =0 is not solvable in GF(g) then i' e GF(qZ) plays a
similar role over the finite field GF(q) that -1 plays over the field
of rationals. A mapping from a set of complex integers

[ ( a+1ib) a,b are integers, such that -(q - 1)/2 < a,b < (q - 1)/2 ]
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to GF(qZ) may be defined by:
@: (a+1ib)—> (a+i'b)

This mapping in 'one to one and onto'. Under this mapping a complex

integer number and an element of GF(qz) can be used interchangebly.
For example suppose that a + i'b and ¢ + i'd are elements of GF(qz)
then
(a+i'b) * (c+i'd) = a +xc+ i'(bz*c) (5.1.2)
(a+i'h) . (c+i'd) = ac+i%bd+ i'bc+ i'ad
= ac - bd + i'(bc + ad) (5.1.3)

These are these exact analogues one might expect if (a + i'b) and
(c +i'd) were complex numbers. However it is of interest to
demonstrate an important property of the Galois field GF(qZ) which the
fields of complex rational numbers does not have. If
%)

x =a+ i'be GF(q~) and x # 0 then

2 2
1o g+ i)alog in 6F(q°) (5.1.4)

which is a special case of the result an'l = 1 for all non zero xin
GF (q")

Pollard (72) suggested that the Fourier transform may be
defined in finite fields of the form GF(p") of which the number
theoretic transforms amplified in chapters 2 and 3 are a special case.
It is apparent that transforms over GF(qz) are also a special case.
However, as has been shown, the arithmetic over GF(qz) does bear

interesting parallels with the normal complex domain arithmetic.

Agarwal and Burrus (3) postulated criteria which must be

satisfied for a length N number theoretic transform, which supports
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the cyclic convolution property, in GF(p) to exist. Such transforms

are of the form.

N-1 .

X(k) = £ x(3) i (5.1.5)
j=0
N=1 )

x(i) = N1z x(k) oIk (5.1.6)
k=0

These criteria are that

(a) a be an element of order N ( in each Z' 1 of the factors of M, for

(b)

j
composite M)

N'1 must exist.

Let a composite modulus M be reduced to its prime factored form

M = p{l, pgzo pg3,°.. p;1 (5.1.7)

Since the Chinese remainder theorem provides a ring isomorphism

the study of ZM can be limited to the case where m = p:i. In
Zpri the 'maximal order' of elements is p:i'l(pi - 1). Since a
.i

transform over ZM can be considered to be simultaneous over each
Zp:i, the greatest order for which the first criterion will be
satisfied, will be given by the greatest commom divisor of such
terms. Using this approach Agarwal and Burrus have shown that
criteria (a) and (b) are equivalent to the following:

N | 0(M) where O(M) = g.c.d. [ pj-1, py-1,, py-1]

2) the

By adopting a similar approach for the quadratic field GF(q
corresponding criterion is that
_ 2 2 2
N | OC(M)where OC(M) = g.Cod.[ p1-1, pz-l,, p]-l]
provided that all the primes P; be of type B.

For the special case of GF(qz)

N | (q

where q is a prime of type B then

2 1)
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This result follows since the 'maximal order' of elements in
GF(qz) is q2 - 1 and this in turn explains the result given in

equation (4). The properties of these structures have been

thoroughly examined by Vanwormhoudt (109).
Reed (86) has proposed the use of quadratic Mersenne transforms over
GF(qZ) where q is a Mersenne prime of the form

qg=2P .1 q,p prime

He has shown that unlike their simple counterpart these
transforms support radix 2 FFT algorithms, and so seem attractive for
efficient computation. By way of example it can be seen that the
Mersenne prime M7 = 127 supports a quadratic transform over GF(1272)
of length 256. However the corresponding o are not simple and so the

ease of computation is lost. None the less these provide a promising

class of complex transform.

5.2 MICROPROCESSOR IMPLEMENTATION OF COMPLEX TRANSFORMS

It has been shown how fast transform algorithms may be performed
requiring only bit shifts and additions. However constraints limit the
choice of a particular number theoretic transform. For some
microprocessors no penalty is incurred by allowing more general
multiplications and this relaxes the basic constraints. It is apparent
that short wordlength processors are best suited to moduli which are
just less than the convenient word sizes. By employing Winograd
transform algorithms, new classes of transform are possible and it has
been found that the choice of modulus M = 65521 is optimal. This
modulus supports a transform length of 5040 and hence it supports any

Winograd transform length. In so doing it incurs little redundancy in
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the use of 16 bit arithmetic.

[t is therefore a logical step to apply the same search
procedures for complex transforms. The corresponding constraints for
these transforms are as follows:

(a) an element (a) of order N must be found.

(b) N'1 must exist

(c) N must divide OC(M) = g.C.d.[ pi-l, pg-l,, pf—l]

(d) M, and its factors if composite, must all be of type B

io€e P; = 3 mod 4.

Agarwal and Burrus (3) have shown that constraint (c) is
equivalent to constraints (a) and (b). A search was conducted
initially for a prime modulus (p) which would support a transform
length of 5040 according to the following restrictions.

() p=3mod4
(f) 5040 | (p° - 1)

It was found that the choice of the prime modulus M = 65519
satisfied these constraints. Since this modulus is also very close to
216 no search was conducted over composite moduli to satisfy
constraint (c) instead of constraint (f). It 1is apparent that
M = 65519 is close to M = 65521 which is the choice for simple
transforms, and the relation between these two moduli is examined in
more detail in section 5.4.

Since it has been found that the choice of M = 65519 is optimal
for complex transforms a complex integer subroutine library was
written to enable complex transforms to be developed using the
mainframe facilities. A selection of these procedures is described in

Appendix D.

Complex integer arithmetic is not supported in FORTRAN and so
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basic operations had to be written. FORTRAN is obviously not suited to
this arithmetic, while other languages ( for example PASCAL) can
adapt much more easily. However the complex algorithm development was
conducted in FORTRAN because using this language no problems would be
encountered in interfacing to the existing modular arithmetic
subroutine libraries (see Appendix A). A complex integer has twice the
wordliength of an ordinary integer and so a passing convention was
adopted of treating such variables as double precision ( REAL*8).

In the familiar complex field there is a choice of techniques for
performing complex multiplications. It is possible to perform such
operations requiring 4 real multiplications and 2 real additions. It
is also possible to achieve this requiring only 3 multiplications and
5 additions. In finite complex integer fields these techniques are
directly applicable. The method which should be chosen for a
microprocessor implementation is that which takes the least time to
perform. For a machine with software multiplication it seems 1likely
that the (3 + 5) method will be faster, but for a machine with the
external hardware modultar multiplier described in section 4.5 it
seems likely that the (4 + 2) method would be faster. This choice is
obviously machine dependant. For the algorithm development on the
mainframe the (4 + 2) technique was adopted.

It has been described in chapter 3 how the general-N program was
employed to derive specific algorithms for the transforms of lengths
60 and 240. It is apparent that any transform algorithm can be
considered to be an efficient decomposition of the transform matrix,
while the arithmetic of the algorithm is exactly that employed in the
definition of the matrix. Therefore the algorithms developed for

transform lengths of 60 and 240 presented in Appendix B may be
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directly transcribed to derive corresponding algorithms for the
complex transforms of lengths 60 and 240.

The differences between these algorithm classes are that all the
arithmetic operations are reinterpreted in the complex sense.
Therefore normal modular addition is replaced by complex modular
addition and likewise for other operations. The multiplication
coefficients must also be reinterpreted as trigonometrical expressions
of powers of an element of order N. The method by which an element of
order N may be determined is described in the next section. The
multiplication coefficients presented by Silverman (101) require only
purely real or purely imaginary multiplications, and so when these
coefficients were interpreted in the complex number theoretic sense it
was found that they too were either purely real or purely imaginary.
These complex multiplications require therefore only two real modular
multiplications and no additions, instead of the 4 and 2 additions or
(3 and 5 additions) which would be required for more general complex
multiplications. This also implies that the memory size required for
the storage of these coefficients need be no larger than that required
for the corresponding real number theoretic transform algorithms
provided flags be kept to denote whether a particular coefficient is
either real or imaginary.

The algorithms for the complex transforms for the lengths of 60
and 240 are presented in Appendix E. These algorithms have been tested
in simulation with reference techniques in the manner prescribed in
section 3.3. They provided accurate results.

Reed and Truong (87) have suggested how the Chinese remainder
theorem may be applied to complex transform algorithms to increase the

possible dynamic range. They proposed convolutions over a direct sum
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of quadratic Mersenne number fields. This technique may be applied for
any sets of quadratic fields in the manner in which the Chinese
remainder theorem was applied in section 4.2 to perform simultaneous

convolutions over pairs of simple rings.

A computer search was therefore performed to find other moduli
which would combine with M = 65519 over specific Winograd transform
lengths. The search was conducted initially for prime type B moduli

below 216. The results of the search are shown in table 5.1

It can be seen from table 5.1 that five different prime moduli
satisfy the entire range of Winograd transform lengths. The lowest of
these moduli is 65071 and even this is efficient, utilizing 99.3% of
the dynamic range possible with a 16 bit wordlength. It is therefore
not necessary to have to employ multidimensional convolution
techniques using shorter transform lengths as was the case with simple
transform structures. In comparison with the selection of dual moduli
for simple transforms few moduli are required. This is because the
terms q2 - 1 tend to be more easily divisible by transform factors
than terms of the form p - 1. Since the search for prime moduli
revealed a set of efficient moduli the search was not extended for

composite moduli.

The combination algorithms presented in section 4.2 may be

applied to complex transforms using these moduli.
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TABLE 5.1

°
—

TABLE OF MODULI TO PAIR WITH M = 65519 USING

TRANSFORM
LENGTH

10
12
14
15
18
20
21
24
28
30
35
36
40
42
45
48
56
60
63
70
72
80
84
90
105

THE CHINESE REMAINDER THEOREM

DUAL
MODULUS

65479
65479
65479
65479
65479
65447
65479
65479
65479
65479
65479
65479
65447
65479
65479
65179
65479
65479
65479
65323
65479
65447
65479
65479
65179
65479

TRANSFORM
LENGTH

73

112
120
126
140
144
168
180
210
240
252
280
315
336
360
420
504
560
630
720
840
1008
1260
1680
2520
5040

DUAL
MODULUS

65479
65479
65323
65479
65447
65479
65179
65479
65479
65323
65479
65071
65479
65179
65479
65323
65479
65071
65071
65479
65071
65071
65479
65071
65071




5.3 A SEARCH FOR PRIMITIVE ELEMENTS

The previous section has described how various prime moduli in

the range of 216

may be used to define compiex number theoretic
transforms. In order to find a modulus suitable for a transform of
lTength N it was necessary to scan over prime moduli until the
following conditions were met:

(e) p= 3 mod4

and having found moduli to satisfy these criteria it is now necessary
to find elements (o) of order N in the corresponding quadratic fields.
This may be accomplished by several techniques. If an element g
of order kN is already known then an element o of order N can easily
be derived from
a = B (5.3.1)
However in general no such elements were known for the derived
moduli. It was shown in chapter 2 that the number of elements of order
N in given field is @(N), whereas the number of elements in GF(pZ)
is pz. Therefore if N is small compared with p2 then a direct
sequential search procedure for an element of a given order N will not

be efficient.

2

The number of primitive elements is given by @{p“- 1) which is

the maximum possible number of elements of a given order in GF(p2) and
so it seems worthwhile to perform initially a search for a primitive
element. Once a primitive element has been found then elements of
arbitary orders which divide p2 - 1 can easily be found by applying
equation (1).

In chapter 3 an efficient procedure for finding primitive

elements was outlined. For simple rings where the 'maximal order' in

74




the order of 216 it is possible to adopt crude searching techniques.
However for these quadratic fields where the ‘maximal order' is in the
order of 232 efficient search procedures must be employed since crude
techniques were found to be too slow. Let p2 - 1 be reduced to its

prime factored form.

2
p" - 1 =prl. py2. pide... py! (5.3.2)
then Euler's theorem shows that for non zero a, if

2

a(p '1)/pi #(1+0i") in GF(p2

) e (1,1)

then must be a primitive root in GF(pZ).

A function CPRIM was written to scan over the elements (1 + ki')
in GF(pz) until these conditions are met. This routine employs an
efficient exponentiation function (CEXPM) over GF(pZ)° These routines
are described in Appendix D. Once a primitive element has been found
then an element (a) of order N may be determined. Table 5.2 shows
these primitive elements and corresponding a for the six moduli

presented in section 5.2.

It can be seen that the primitive elements which have been found
are fairly close to (1 + 0i') and it was found that the procedure

which has been described was fast in execution.

For Winograd transform lengths other than those presented in

table 5.2 the corresponding a can again be derived using equation (1).
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MODULUS

65519
65479
65447
65323
65179
65071

TABLE 5.2

TABLE OF PRIMITIVE ELEMENTS

PRIMITIVE

ELEMENT

281’
47!
2§
2i!
5!

157"

ALPHA

16768
18289
8080
30782
-4900
-10665

16

+

+

+

229014
25118i"
313414
233614

54831 '
271924

5040
1680
144
504
360
5040




5.4 PRIME PAIR MODULI

It has been found that the choice of modulus optimal for simple
number theoretic transforms is M = 65521 and the chioce for complex
number theoretic transforms has been found to be M = 65519. It is the
purpose of this section to derive a relationship between these two
choices of moduli and to propose a new scheme for complex convolution
using this relation.

Much interest has been shown in the use of the Chinese remainder
theorem to derive results with respect to the modulus (mlmz) given
results mod my and mod Mo, provided that my and mo be relatively
prime. It is necessary that both moduli support the same transform
length for a simple application of the Chinese remainder theorem for
convolution.

A scheme for convolution is proposed whereby the results are
determined with respect to two moduli p and q such that p is a type A
modulus and q is a type B modulus. The restrictions upon the allowable

transform lengths can be seen to be:

Transforms mod p : The transform length N must divide p - 1

i.ee N | (p-1)

2): The transform length N must divide q2 -1

2

Transforms in GF{q

teee N | (g7 - 1)

2 _ 1) must both be

It can be seen that N | (p - 1) and N | (q
satisfied for the same transform length to be directly supported for
both moduli.

The proposed scheme is to utilize two prime pair modulj

( 2 primes p, q such that ( |p - q] =2 ). It can be seen that one of

the pair (p) must be of type A and the other (q) must be of type B.
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For a transform length N, N must divide p - 1 and if p = q + 2 then it

is shown that N divides q2 - 1.

If N|(p-1)—>N|(q+1) since p=q+2

2

If N|(g+1)—>N]| (g -1) since ¢“-1=(q+1)(q- 1)

Therefore if modulus p supports transforms of length N then
modulus GF(qz) also supports the same transform length provided
p=q+2andp-=1mod4,

Since both 65521 and 65519 are prime this is obviously the
criterion which implies that if modulus 65521 supports a transform of
length 5040 then modulus GF(655192) also supports the same transform
length and so both moduli can be seen to support any Winograd
transform length.

It is shown in this chapter how complex transforms may be defined
over GF(qz) to perform complex convolutions, and it is shown in
chapter 3 how complex convolutions may be performed over Zp using an

extension of Nussbaumer's technique. Therefore the proposed scheme can

be used directly for complex convolutions.

The technique can be extended for other prime pairs. For
efficient use of b-bit processors moduli must be below andclose to
2b. A search was made for prime pair moduli to support general
Winograd transform lengths and additionally which would make efficient
use of b-bit processors. Such processors can conviently be constructed
using bit slice technology. A figure of efficiency (p) is derived,

1/2 ,-b

2 ~, which denotes the usable dynamic range of a

given by p = (pq)
b bit register with the prime pair moduli p and g. For certain b

values the most suitable moduli were relatively inefficient and so
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12
14
16
18
18
20
20
22
24
26
28
30
32

TABLE 5.3

PRIME PAIR MODULI FOR b-BIT PROCESSORS

4021

16141
65521
241921
259381
957601
1048573
4163041
16763041
66900961
268390081
1073656081
4294841041
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WNma x

60
60
5040
5040
180
5040
252
5040
5040
5040
5040
5040
5040

1.5. 1072
2.4, 1074
7.7. 1072
1.1. 1072
8.7. 1072
3.8. 1070
7.5. 1073
8.4. 1074
1.1. 1073
1.7. 1074
8.0. 107°
2.9. 107




alternative pairs were found which would support restricted Winograd
transform lengths, but with a higher p . These results are shown in
table 5.3 where the prime q is given by q = p - 2 and wNmax denotes
the maximum Winograd transform length allowed for that choice of

modulus.

It is worth while to compare the operation counts incurred in
performing convolutions by the two different techniques. Let MN and AN
denote the number of real multiplications and the number of real
additions/ subtractions required to perform a real N point Winograd

transform algorithm.

For complex convolutions to be performed using Nussbaumer's
technique with type A moduli it has been seen in section 3.4 that

2 N-point convolutions, 2N multiplications by 'j', N multiplications

1 Ny (25)7! and 4N additions are required. Let Ty @nd Toy

denote the total number of real multiplications and real additions

by 2~

required to perform a complex convolution by Nussbaumer's technique

then

T 4M, + 6N (5.4.1)

MN N
TAN 4AN + 6N (5.4.2)

For arithmetic over GF(qz) it can be seen that a complex addition
requires two real additions. For complex Winograd transforms over
GF(qZ) it has been observed that the multiplication coefficients are
either purely real or purely imaginary and so these complex
muliplications require two real multiplications and no additions. The
general multiplications in the transform domain require either (4 + 2)

or (3 + 5) real multiplications and additions respectively.
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Let TMC and TAC denote the total number of real multiplications

and real additions required to compute a complex convolution by a

direct transform method over GF(qZ):
TMC = 4MN + 4N (5.4.3)
The = M+ 2N (5.4.4)
for (4 + 2) multiplication or
TMC = 4MN + 3N (5.4.5)
TAC = 4AN + 5N (5.4.6)

for (3 + 5) multiplication.

In equations (1) to (6) the terms M, and AN dominate and so it

N
can be seen that the direct complex transform technique is marginally
more efficient. Therefore savings may be made in utilizing a dual
complex transform technique with one of the moduli described in
table 5.1. However this will result in a slight loss of the dynamic

range possible with the choice of M = 65521 and so there appears to be

a small trade off acting between these two parameters.

A novel technique has been proposed for complex convolution by
number theoretic transform techniques. This technique has been
extended to cover other classes of prime pair moduli for use with b
bit, bit slice processors. It has also been shown that the
computational load required for complex convolution by Nussbaumer's
technique compares well with the direct transform techniques proposed

in this chapter.
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5.5 COMPLEX TRANSFORMS AND REAL TRANSFORMS

It has already been pointed out that in signal processing
applications data is sampled using analogue to digital convertors, and
so input signals are essentially integer in character. If the results
of the processing are to be conveyed back to the real world then
digital to analogue convertors are often employed and so output

signals can also be integer in character.

There are many examples of such systems, and when the Fourier
transform is used for convolution it can be seen that a complex
transform technique is being employed to process integer information.
There has been much interest in the literature in designing Fourier
transform algorithms which are suited to integer {(or purely real)
signals. For example Silverman (101) describes such a technique for
the Winograd Fourier transform algorithm. As has previously been
observed the Winograd multiplication coefficients are either purely
real or purely imaginary and so these multiplications with real data
give answers which are also either purely real or purely imaginary.
Hence certain computational savings are possible by keeping flags to
denote the data types. It seems that when a complex transform
technique is used for real signal processing then the algorithm

complexity is increased in order to reduce the processing load.

Brigham (14) has outlined how the complex Fourier transform may
be used to perform the transform of two real transfoms simultaneously.
If it is desired to compute the discrete Fourier transform of the real

time functions h(k) and g(k) then first form.

y(k) = h(k) + i g(k) (5.5.1)
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Compute the Fourier transforms of y(k) and split into real and

imaginary parts
N-1
R(n) + 1 I(n) = 1 y(k)
k=0

g~J2mnk/N ne (0, N-1) (5.5.2)

then the transforms of h(k) and g{(k) are given by H{(n) and G(n)

respectively where

X
—
3
~——
i

1/2 ( [ R(n) + R(N-n) 1 + i [ I(n) - I(N-n) 1) (5.5.3)
1/2 ( [ I(n) + I(N-n) 1 - i [ R(n) - R(N-n) 1) (5.5.4)

[ep]
—
=
~—
u

This procedure has been interpreted in the number theoretic sense:
and been shown to work correctly for the simultaneous transform of two
real sequences using a complex number theoretic transform. However as
has been seen this procedure requires N multiplications by 2'1 and 2N
additions per N point sequence in addition to the transform and so it
cannot he as efficient as a purely real transform technique.

It is logical to attempt to employ a purely real {(or integer)
transform technique for the processing of real signals. However the
maximum transform length available for a Fourier type transform
defined in the real domain is limited to 2 with the choice a = -1.

Inconclusion it can be said that when data is purely real ( or
integer) then a real transform technique should be employed and when
data is complex then a corresponding complex transform technique
should be employed. As has been described it is possible to define
both real and compiex number theoretic transforms. In this respect
number theoretic transforms have an advantage over the Fourier
transform for convolution. This implies that it is not neccessary for
special techniques to be employed for processing of one signal type
with a transform defined over a different type of domain and this

leads to algorithm simplification for number theeoretic transforms.
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CHAPTER 6
ERROR CORRECTING CODES AND NUMBER THEORETIC TRANSFORMS

[f information is transmitted over a noisy channel then errors
will occur in the received signal. By adding redundant symbols to the
transmitted information and by using appropiate error-correcting codes
it may be possible to recover the original information without error.
It can therefore be seen that such codes are useful when it is

inconvenient for a retransmission of information to be performed.

The theory of error correcting codes is beyond the scope of this
work. However there are many excellent text books on the subject
(10),(70),(104),(121), and a brief introduction to this topic is
presented in Appendix F inorder to define the relevant nomenclature
and relate this subject to the theory of number theoretic transforms.
The purpose of this chapter is to show how a certain class of error
correcting code may be encoded and decoded using number theoretic
transforms. Several techniques are presented and each is illustrated

by a numeric example.

Reed, Truong and Welch (93),(98) have shown that number theoretic
transforms may be used for both encoding and decoding a particular
class of error correcting code known as a Reed-Soloman (RS) code. A
variant on this procedure was used to decode information from the
Mariner and Viking space probes (93). Reed et al have proposed RS
codes over fields modulo Fermat numbers using radix 2 FFT algorithms.
The earlier work in this project has shown that the choice of modulus
M = 65521 with Winograd fast transform algorithms is suited to a

microprocessor implementation. Therefore Reed's technique has been
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adapted to using this modulus with appropiate block lengths.

Reed has also shown that non-systematic RS codes are
computationally more efficient and these are explioted particularly
for longer block Yengths with M = 65521. He has also defined codes
over complex fields and this approach has also been adapted for a

microprocessor implementation.

6.1 THE FAST DECODING OF REED-SOLOMAN CODES USING

NUMBER THEORETIC TRANSFORMS

Justensen (38), Reed, Truong and Welch (93),(98) have shown that
number theoretic transforms over GF(FN) of integers modulo a Fermat
prime can be used to encode and decode Reed-Soloman codes. In

reference (98) a general procedure for this technique is presented.

Let the code length for the RS code be N, and let a codeword be

represented by f(x) a polynomial of degree N - 1 over GF(FN). The
generator polynomial of f(x) is defined by g(x):
d-1 i
g(x) = 7 ( x-a) (6.1.1)
i=1

where d~-1=n -k and a is an element of order N. The resultant RS
code with N symbols, f(x), is a multiple of the generator polynomial
and is composed of d - 1 check symbols and the N - (d - 1)
information symbols. If t is the number of errors the code will

correct, then for an RS code it has been shown that

d> 2t +1 (6.1.2)

N-1

Suppose that the code f(x) = f_ + f.x + .. + fN-lx is

0 1
transmitted over a noisy channel. The received code
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r(x) = Po ¥ ryXx+ oot rN_lxN'1 is composed of the original code with

the addition of possible errors. i.e.

r{x) = f(x) + e(x) (6.1.3)

N-1

where e(x) = e, terx + .t ooy X is the error locator polynomial.

1
Upon receiving the message r(x) one may start to decode the message

symbols by forming the syndrome by taking the transform over GF(FN) of

r{x).

N-1 .
S(k) =z r(i) ¥ (6.1.4)
i=
N-1 o Nel .
= 1 (i) o'+ 1 e(i) oK
i=0 i=0
- F(k) o+ E(K) (6.1.5)

Since F(x) is a multiple of g(x) then f(ai) =0 for i e (1, d-1)
and hence S(k) = E(k) for k e (1, d-1). It is this result which gives
an easy technique for determining the error locator polynomial from
the syndrome S(k).

It is shown in reference (98) that the transform of the error
locator polynomial E(k) must satisfy the following relation.

)t

S- = )\103

j+t + (-1

At@sj

AtoEj =0 for j<«<t (6.1.7)

iape1 P 0 for j <t (6.1.6)

t

and E + (-1)

j+t - Alan"'t-l + 00

Berlekamps iterative algorithm (99), (112), (10) may be employed
to determine the A4 from equation (6) and these may be subsituted in

equation (7) to derive the transform of the error polynomial.

The error locator polynomial may then be determined by taking the
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inverse transform of Ek and then finally the corrected codeword r. may

be obtained using
r (x) = r(x) - e(x) (6.1.8)

An example of the procedures required is presented for a two
error correcting (16, 12) Reed-Soloman code defined over GF(17).

In GF(17) the element o = 6 is of order 16 and hence the

corresponding generator polynomial can be seen to be

a(x) = 2 +2x +xX -1 + & (6.1.9)

Given the information polynomial I(x):

I(x) = 5x4 + 6x5 + 7x6 + 8x7 - 8x - Tx

el o st ad2 o83 L df L A5 (6.1.10)

Then the corresponding codeword f(x) may be determined by

dividing g(x) into I(x) and subtracting the remainder from I(x) to

give f(x).
Hence
f(x) = -3 + X - sz - 6x3 + 5x4 + 6x5 + 7x6 + 8x7
—8ﬁ-—7ﬁ -GQO -591 -492 —3%3 -2%4 - QS
or
_ 2 3
f(x) = I(x) + (-3 + x - 5x° -6x” ) (6.1.11)

This procedure guarantees that f(x) is a multiple of g(x). Let

two errors occur during transmission:

r(x) = -3 + x - 2x2 - 6X

9 10

3 40t 46X

12

+ 7x6 + 8x7

11 13 _, 14 15

- 7x - b6x - 5x - 4x - 3x
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or

r(x) = f(x) + (3 + 5t (6.1.12)

At the receiver the transform of r{(x) is taken to give R{x):

R(x) = 2 =-8x + 7x2 + 4x3 + 2x4 + 3x5 - 5x6 - 4x7
-x8 +x9 +8Q0 —6;1 -6%2 _763 +7Q4 +6Q5
(6.1.13)

If r(x) were a valid codeword then R(x1) i e (1,4) would have been
zero. As this is not the case the A in equation (6) must be

determined. From (98), if two errors have occured then

A = (S(1) . S(4) - 5(3) . 5(2) ) . p-! (6.1.14)
and Ay = (S(2) . s(4) - s(3)2) . p} (6.1.15)
where D= s(1).5(3) - s(2)% (6.1.16)

If only one error has occured then D is zero and M is given by

A = S(8) . (5(3) y-1 (6.1.17)

Therefore the calculation of D given in equation (16) shows
whether one or two errors have occured and the appropiate xi may be
determined. In this particular example A o= 6 and Ay = 8 and so the

transform of the error sequence E(x) may be derived.

3 4 5 7

E(x) = 8 - 8x + 7x2 + 4x + 2x - 3x + 7x

8 9 X10 11

+ 2x12 _ 3x13 + 7x15
(6.1.18)

+ 8x - 8x + 7 + 4x
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By taking the inverse transform the error locator polynomial is

obtained.

e(x) = 3x2 + 5x4

and so both errors have been successfully corrected.

Reed, Truong and Welch (93), (98), (99) have observed that two
problems arise when using Fermat number transforms in this type of

application.

In order to represent a number in GF(FN) ZN + 1 bits are

required, and as has been shown previously, ZN bits are not sufficient
for a unique representation of the elements of GF(FN)o Reed and Truong
suggest that the information symbols be restricted to the range
0 to 22N-1° After encoding the check symbols occur in the range
0 to 22N. If the symbol 22 ﬁs required then it should be deliberatly
corrupted, for example to zero. The transform decoder will correct
such an error automatically. These errors deliberatly decrease the
codes error correcting capability, but as they point out the

probability of such occasions is Tow.

While retaining simple arithmetic for the computation of the
transform it has been shown that the transform lengths available with
Fermat number moduli are restricted and this constrains the

permissible block lengths for this technique.

It should be observed that for a microprocessor implementation of
Fermat number transforms truncation errors can still occur during the
computation of the transform itself, and this would lead to serious

errors in the decoder algorithm.
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The technique of using number theoretic transforms for decoding
Reed-Soloman codes over GF(q) can be applied for moduli other than
Fermat numbers. However the example has shown that during the
computation of the A in equation (6) multiplicative inverses are
required. For composite moduli not all non-zero elements have
multiplicative inverses, and for this reason Reed and Truong suggest

that only prime moduli be considered.

In the Tight of the preceeding work for developing algorithms
suitable for a microprocessor implementation the technique was adapted
to using the prime modulus M = 65521 with Winograd fast transform
algorithms. (16, 12) and (60, 56) two error correcting RS codes were
developed in FORTRAN on an IBM 370 using the fast transform algorithms
previously derived. These were tested and found to correct errors

successfully.

The use of the modulus M = 65521 does represent a slight loss of
dynamic range possible with 16 bit arithmetic. This limitation would
not appear to affect drastically the transmission of character
information where it is unlikely that all 256 8 bit patterns would be
required, however this may cause a problem for the transmission of
pure binary data. It is apparent that since M = 65521 supports any
Winograd transform length then the block length restriction of Fermat

number transforms is removed.

This application of number theoretic transforms to decoding RS
codes relies upon valid codewords generating appropiate zeros in the
transform domain. When this is not the case then the transform domain

information gives an efficient technique for determining the error
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locator polynomial. It is apparent that in this context, number
theoretic transforms are not being used for the convolution of signals
with physical significance. Therefore the discussions presented in
section 4.1 on the techniques to avoid modular overflow do not apply
in this context, and this allows the free use of the entire dynamic

range of the modulus.

These codes are designed to correct errors in the codeword
symbols. Since each symbol contains 16 bits it can be seen that these
codes have good burst error correcting ability. Provided that the
error bursts are not too prolonged then this technique is superior to
a bit orientated code where bit matrix transpositions have to be

employed to give good burst error correcting ability.

Reed, Truong, Welch (99), and Scholtz (112) have shown how the
determination of the Ai in equation (6) by Berlekamp's algorithm may
be performed by a continued fractions technique and this applies
particularly for codes designed to correct a large number of errors.
The programmed examples with modulus M = 65521 were designed only for
a maximum of two error corrections as the determination of the A;
becomes more difficult when a larger number of errors are required to

be corrected.

The encoding procedure requires a division of a polynomial of
order k by a polynomial of order n - k and this is not a trivial
operation. Number theoretic transforms can be used for polynomial
multiplication and division. However these general procedures cannot
be applied in this case since the generator polynomial can be
considered to be a 'zero divisor', as it contains zeros in the

transform domain. Hence a full polynomial division algorithm has to be
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employed.

It has been the purpose of this section to show how number
theoretic transforms can be used for decoding Reed-Soloman error
correcting codes. The technique has been adapted to make it more
suitable for a microprocessor implementation using the modulus

M = 65521 with fast Winograd transform algorithms.

6.2 NON SYSTEMATIC REED-SOLOMAN CODES

Reed, Truong and Welch (98) have shown that non-systematic Reed-
Soloman (NSRS) codes can also be defined over GF(q) where q is prime.
This class of code is defined in reference (70), however it is hoped
that the example which is presented is sufficient as explanation.

Let us consider the information polynomial i(x) with coefficients

() =iy + dpex + ceue + ikl a0k + Lo 00 (6.2.1)

As can be seen this polynomial has k information symbols and the

coefficients for xk to xn'1 are zero. Let us take the transform of
i(x)
N-1 ”
I(k) = £ i(j) o (6.2.2)
j=0

It was observed in the previous section that the generator
polynomial can loosely be termed a 'zero-divisor' because for
systematic Reed-Soloman (SRS) codes valid codewords have zeros in the
transform domain. This result arises because the generator polynomial
defined by g(x):

d-1

g(x) = 7 (x-a') (6.2.3)
'l:
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is composed of factors which are zero for powers of a. It is therefore
not surprising that these factors interact with the transform operator
to produce zeros in the transform domain. Although it is not proved
here, this result does imply that the transform function I(x) is also
a multiple of the generator polynomial and so I(x) is also a valid
Reed-Soloman codeword. This type of code is called a non systematic

Reed-Soloman code.

The systematic Reed-Soloman codes presented in the previous
section have the message symbols of valid codewords identical with the
corresponding symbols in the information polynomial. However non
systematic Reed-Soloman codes do not normally have any message symbols
identical with the corresponding information polynomial symbols. This
makes the NSRS codes unfamiliar, but as will become apparent,

computational saving may be made by this approach.

The polynomial I(x) is transmitted over the channel. Let the

received polynomial be R(x) where

R(x) = I(x) + E(x) (6.2.4)

where E(x) will be seen to be the transform of the error polynomial

e(x). The syndrome is formed by taking the inverse transform of R(x)

giving
sy = ry = ij e (6.2.5)
However ij = 0 for j e (k, N-1) and so
Sj < & je (k,k N-1) (6.2.6)
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The same procedure may be now adopted as for SRS codes. Determine

the Ai from

SN-j = A1eSN-j-1 toeeee ? (-1)tkt'sN—j-t = 0 for j <t (6.2.7)

and substitute in

eN_j - XleeN_j_l + coee T (-l)txt-eN_j_t = 0 for J >t (6o2-8)

to obtain the error pattern. This may be substituted in equation (5)
to give

i, = ro-e (6.2.9)

An example is presented for a two error correcting (16, 12) NSRS

code defined over GF(17). Let the information polynomial i(x) be

2 3 4 5

i(x) = 1 + 2x + 3x + 4x + 5x + 6X

+ 10 v 8 -8 -7 - exd0 - o5yl (6.2.10)

The encoded sequence I(x) is formed by taking the transform of i(x)

I(x) = -7 - 6x f 78 - 3+ & £330 e 48y

6x8 + 8x0  +8x0 -2l &+ A2 _gyd3 214 4 2,5
(6.2.11)

Let two errors occur during transmission and so R{x):

R(x) = -7 =-4x +7x8 +33 +&xF +30 + 7.8 + 84
- 68+ 8 480 _odl 4 12 _gd3 _ 514 515
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R(x) = 1(x) + ( 2x + 4x3) (6.2.12)
The syndrome is formed by taking the inverse transform of the

received sequence

s(x) = -5 +7x =78 -4 -3t w6 -ad 40X

- Zﬁ-fsﬂ +4§0 +3Q1 +8x12 +0£3 -2&4 +8x15

(6.2.13)
The Ai in equation (7) may be determined from

A = (s(z) « s{z+3) - s(z+2).s(z+1)). D'1 (6.2.14)
- 2 -1

Ay = (s(z+1).s(z+3) - s(z+2)°).D (6.2.15)

where D = s(z) .s(z+2) - s(z+ 1)2 and z = N - 4

If only one error had occured then D would be zero and M is
given by
A = os(z+3) . (s(z+2))7! (6.2.16)

It should be observed that equations (14) to (16) are of the same
form as the corresponding equations (6.1.14) to (6.1.17) for
systematic Reed-Soloman codes. In both cases the xi are determined
from the elements where four zeros are expected ( elements 1 to 4 in
the transform domain for SRS and elements N - 4 to N - 1 in the 'time'

domain for NSRS codes).

In the example two errors have occured giving M -4 = Ago From

this the error sequence may be determined.

e(x) = -6 + 5x + 7x2 - 8x3 - 8x4 + Ox5 + 2x6 - 8x7
+ 6@-—5; -7%0 +8x11 +8x12 +0x13 -2%4 +8x15
(6.2.17)
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The information polynomial may now be recovered using
i(x) = s(x) - e(x) (6.2.18)

It can be seen that NSRS codes only require a number theoretic
transform for encoding and the decoding requires an inverse transform
and a determination of the error polynomial using Berlekamp's
algorithm. In comparison SRS codes require a polynomial division for
encoding and both a forward and an inverse transform for decoding, in
addition to a similar determination of the error polynomial. Therefore
the NSRS codes require less computational effort and are thus more
attractive.

This class of error correcting code has been implemented with the
modulus M = 65521 in FORTRAN on an IBM 370. The following two error
correcting codes have been developed and tested with accurate results
(16, 12), (60, 56), and (5040, 5036). The transform algorithms have

used the Winograd general N transform program described in chapter 3.

6.3 REED-SOLOMAN CODES OVER COMPLEX FIELDS

Reed, Truong and Welch (98) have proposed both systematic and
non-systematic Reed-Soloman codes over quadratic Mersenne fields.
These fields support radix 2 FFT algorithms (86) and hence they can be
used to provide an efficient error correcting code technique. Since
Mersenne numbers do not suffer the truncation problems of Fermat
number moduli, this class of transform seems promising.

A numeric example is presented for a two error correcting
(16, 12) NSRS code defined over GF(72)° The general procedure followed

is identical to that presented for NSRS codes over GF(q).
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Let the information polynomial be i(x):

i(x) = (1-17") +(2-2i")x + (3 -3i")x" + (-3 + 3i")x
sz 42Kt #1400 + (0 + 010 4 (1 -0i")X
w22 2000 (323100 + (<34 31960 4 (<2 + 24)xH]

(6.3.1)

Take the transform of i(x) over GF(72) with « = ( 2 + 3i') which is an

element of order 16.

I(x) = (1-1i") +(3+0i)x +(1-1i)% +(1-2i")s
FL0 =200 + (2-0i +(2-2i")¢ + (0-3i9)¥
F 1 - 1iNsS + (-1 + 080 + (2 - 2% + (1 + 0')xt
s 2+ 0i0x %+ (0 - 0Nkt (1 - 0t 4 (0 +0i7)x!5
(6.3.2)
Let two symbol errors occur during transmission and so
R(x)= T(x) + (2 +0i')x + (4+0i')x (6.3.3)

The syndrome is formed by taking the inverse transform of the

received signal

s(x) = (=3+0i') # (<1 +2i')x + (-1 +0i')x% 4 (1+0i")x

(10 (s34 08 + (0 +0i')® + (24 2i)K

#1318+ (10 # (1 - 01980 4 (1 - 3t

#1402 % (24013 4 (0 - 0i)dt + (o1 + 390
(6.3.4)

The A; may be determined using equation (6.2.7) with arithmetic

defined over GF(72)° This gives A= (2 -2i'Yyanda, = (0 + i'),

2
The error pattern may now be calculated in the manner of equation

(6.2.8) giving
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e(x) = (340i') +(<3-3i")x +(3-31"0 + (-3 -2i")x

4
F (1= 0% + (2-0i)x + (0+0i')x6 + (1-3i")x
# (=3 - 0%+ (34 31)x7 4+ (=3 + 3060+ (34219
#1400+ (24 00+ (0 - o)t 4 (c1 4 3900
(6.3.5)
and finally the information polynomial may be recovered using
i(x) = s(x) - e(x) (6.3.6)
In chapter 5 it was shown that transforms over GF(655192) are

particularly suited to a microprocessor implementation of complex
number theoretic transforms using Winograd fast transform algorithms.
It has been shown that NSRS codes require less computation than SRS
codes and so algorithms were developed using the mainframe facilities
for the following two error correcting NSRS codes (16, 12) and
(60, 56) defined over GF(655192). The algorithms were tested and found
to correct errors successfully.

If complex RS codes (CRS) defined over GF(655192) are compared
with those defined over GF(65521) (RRS) it can be seen that the symbol
bit length for the complex transform is twice that of the normal
transform. Therefore provided errors occur in bursts, the error
correcting ability of a t error correcting length N CRS code has
comparable correcting ability with a 2t error correcting length 2N RRS
code. Since the determination of the A for t errors is much simpler
for than for 2t errors it can be seen that the complex codes are
suited to correcting longer error bursts than the normal codes. It may

also be deduced that the normal code is more suited to cases where the

errors occur in more frequent shorter bursts.
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CHAPTER 7
CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

Previous work has shown that the Fermat number transform has
certain optimum properties. These transforms can be computed by radix
2 FFT algorithms requiring only bit shifts and additions and can

effectively be implemented with subtract in carry hardware.

However two limitations have become apparent. Fermat moduli
contain 2b+ 1 elements and since only 2b distinct elements can be
retained in b bit memories there exists a representation problem. If
one wishes to store the element 2b then a truncation error will occur.
However elements of the finite rings over which number theoretic
transforms are defined do not have physical significance, and so a
truncation error could generate serious errors in an entire data
block. The probability of error for 16 bit processors was found to be
unnacceptably high and so alternative number theoretic transforms were
considered for a microprocessor implementation. Fermat number moduli
also suffer from the limitation that the optimum transform length is
proportional to the wordlength and for certain applications this
transform Tength is too short. For a purely hardware realization of a
Fermat number transform the hardware should be of the subtract in
carry type. It was quickly realized that if one tried to imitate this
mode of arithmetic with a microprocessor implementation then the

resultant computation would not be efficient.

Microprocessors are now becoming available with fast multiply
instructions, and for those that do not have this facility multiply

peripheral chips may be attached. This trend leads toward a
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reappraisal and relaxing of the basic constraints which govern the
choice of a particular number theoretic transform. Therefore broader
classes of number theoretic transform were considered allowing non

simple arithmetic.

White work was being conducted in this area a new class of
efficient Fourier transform algorithms were published. These Winograd
algorithms provide efficient algorithms for a selection of transform
lengths between 2 and 5040. Since the Fourier transform and number
theoretic transforms are alike in structure, then in principle any
Fourier transform algorithm may be appliied to number theoretic
transforms. Therefore it was considered feasible to apply the Winograd
algorithms to number theoretic transforms. Bailey was working

concurrently using this idea.

A search was conducted for moduli which would support Winograd
transform lengths. The search revealed that M = 65521 supports all the
transforms lengths achievable by combinations of the published
Winograd short length transform algorithms. This modulus additionally

incurs 1ittle redundancy in the use of 16 bit arithmetic.

A general N Winograd number theoretic transform program was
written and this was found to be a very useful tool for the
development of algorithms for specific transform lengths. Transform
algorithms were developed for lengths 60 and 240. The multiplication
coefficients required in the computation of these transform algorithms
are not as simple as those required for Fermat number transforms.
However for microprocessors with fast multiply instructions this is no
longer a 1imitation. Therefore such microprocessor systems would

appear to be able to compute such transforms without serious penalty.
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A length 60 transform algorithm was implemented on an Intel 8080
microprocessor. Since this microprocessor does not have the fast
multiply instruction, nor was a fast multiplier chip available, the

transform computation was slow.

Preliminary investigations have shown that even on a 16 bit
processor with hardware multiply such as a Texas 9900 the added
computational load required for performing modular arithmetic can be
a serious penalty when compared with simple integer arithmetic

16)

(i.e. modulo 27 ). Therefore a special hardware modular multiplier was

designed to interface to such processors.

The main application of number theoretic transforms is for
convolution of signals with physical significance. Provided modular
arithmetic be employed throughout then the final answers will be exact
mod M. However it is neccessary that the final answer also has
physical significance and so the dynamic range of the input signals is
constrained. This Timitation tends to degrade the filter response
obtainable with a given modulus, and it is possible that the filter
response may not achieve the design limits set. In such cases a larger

modulus should be used.

A direct implementation of a larger modulus requires arithmetic
with greater precision. An alternative solution is provided by using
the Chinese remainder theorem to combine the simultaneous results with
respect to two or more relatively prime moduli. This is a practicable
solution which lends itself to a parallel processor architecture.

Therefore a computer search was conducted for moduli which would

pair with M = 65521 over specific Winograd transform lengths. In cases
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where the dual modulus incurs great redundancy in the use of 16 bit
arithmetic, Agarwal and Cooley's multidimensional convolution may be
employed using shorter transform lengths with more efficient moduli.
Reed and Truong have described how number theoretic transforms
may be defined over complex fields and fn particular over complex or
quadratic Mersenne fields. These fields support radix 2 FFT algorithms
and so, unlike their simple counterpart, they are efficient. In the
light of the previous work a search was conducted for complex moduli
which would be suitable for a microprocessor implementation using
Winograd fast transform algorithms. The search reveled that GF(655192)
is the most suitable modulus. A search was made for dual complex
moduli which can be combined with 65519 using the Chinese remainder

theorem.

The optimum moduli for these two classes of number theoretic
transform are 65521 and 65519. It was noted that these constitute a

prime pair and this result was generalised for other bit lengths.

This thesis concludes with a chapter describing how number
theoretic transforms may be used to encode and decode a class or error
correcting code known as Reed-Soloman codes. It is shown that this

provides an efficient technique.

In summary microprocessors have been shown to be suitable
processors for the computation of number theoretic transforms. Since
the price of microprocessor systems is dropping it can be seen that
they can provide cheap and efficient signal processors using number
theoretic transforms for convolution. Since it has not been possible
to implement the algorithms using a processor for which they have been

designed no details of execution time are available.
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SUGGESTIONS FOR FURTHER WORK

During the course of this project various signal processing
algorithms have been designed and tested for an eventual
implementation on a microprocessor with either a fast multiply
instruction or fast multiplier peripheral chips. However there was
insufficient time for these algorithms to be fully implemented. It is
therefore suggested that this be accomplished. Preliminary trials
indicate that modular integer arithmetic is substantially slower than
normal integer arithmetic particularly for the multiply operation.
Therefore a fast modular multiplier has been desgined to alleviate

this problem and if it proves necessary this should be used.

The transform algorithms have been designed with a single host
processor in mind. However in certain circumstances it has been shown
that use can be made of the Chinese remainder theorem in order to
effect a modulus with greater dynamic range without the neccesity of
extended precision arithmetic. This technique is particularly suited
to a parallel processor architecture. Let us consider a two modulus
procedure. Two fast processors may conviently conduct the signal
processing, one for each modulus, and a slower processor would be
sufficient to perform the Chinese remainder combination of the results

using the memory look up technique which has been described.

The transform algorithms can also be reconfigqured to suit a
multiprocessor architecture. The basic Winograd algorithm can be
divided into the following stages. After an initial permutation, input
additions and subtractions are performed and this is followed by a

series of multiplications. Output additions and subtractions are then
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performed and finally another permutation is required. The bulk of
the processing occurs in the three inner stages. The entire process is
well suited to a pipeline architecture where single processors can
conviently perform the tasks at each stage. It is therefore suggested

that this avenue be explored.

Agarwal and Cooley's multidimensional convolutional algorithms
may be used to compute convolution directly. One may therefore either
compute convolution by transform techniques or by using these
algorithms. In a comparison between these 2 techniques it is apparent
that in operation count terms the direct method would be more
efficient for short convolution Tengths than the transform technique.
Similarly for greater convolution lengths the transform technique is
more efficient. There therfore must exist a crossover point beyond
which the transform technique would become more effecient. It is
interesting to note that the modulus for the transform technique is
constrained to guarantee that the transform support the cyclic
convolution property. With number theoretic transforms moduli which
are a power of 2 cannot be used and so full modular arithmetic has to
be employed. For rectangular convolution this restriction does not
apply and so ordinary b bit integer arithmetic may be used. It has
been seen that a penalty is incurred when using modular integer
arithmetic and this would therefore affect the comparison between the
two techniques. It is suggested that this relation be examined more

closely.

Attention is drawn to the fact that normal b bit integer
arithmetic is in fact arithmetic modulo 2P. Some of the rectangular

algorithms require division by 3, 5, 7 and 9. These operations may be
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replaced by multiplication by the elements 3'1, 5'1, 7-1 and 9-1
modulo 2P. This does not result in any truncation error. However
divisions by 2, 4 and 8 must be accomplished by normal shifting
techniques since these elements do not have multiplicative inverses
modulo 2P, This will result in a truncation error but Agarwal and
Cooley reason that this error would be less than for a corresponding
fixed point arithmetic. This whole area needs to be examined more
deeply particularly with a view to a short convolution length

implementation using microprocessors.

It has also been shown that number theoretic transforms may be
used to encode and decode Reed-Soloman error correcting codes. Reed,
Truong and Welch claim that such a technique provides the fastest
procedure for such coding. In the 1ight of this it seems worthwhile
that this whole topic be explored perhaps in a more mathematical and

rigorous manner than was adpoted in this work.

The major part of this work is concerned with developing a
suitable microprocessor implementation of number theoretic transforms
with moduli in the order of 216, Microprocessors will soon become
available with the ability to perform efficient 32 bit integer
arithmetic. It is therefore suggested that this work be reviewed for

an implementation with such processors.

It can be deduced from table 5.1 that the 32 bit moduli would be
more efficient than the 16 bit moduli derived earlier. However the
main advantage will be that unlike the 16 bit moduli such moduli will
not suffer from the limitation of insufficient dynamic range for

typical signal processing tasks. The techniques of Chinese remainder
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combination with dual moduli would therefore appear to be redundant.
However the applications of the Chinese remainder theorem are
certainly wubiquitous, and it is felt that the Chinese remainder
theorem would still make an effective contribution to signal
processing, perhaps more in the realm of algorithm development. In
particular in the field of error correcting codes there would still be
distinct advantages to employing the Chinese remainder theorem to
achieve better correcting ability for comparable decoder complexity.

This is an area which would benifit further investigation.

Eastwood and Jesshope (25) have shown that number theoretic
transforms may be applied to solving partial differential equations;
and Derome (21) has shown that number theoretic transforms are suited
to the convolving of long arrays as required in picture processing and
electron microscopy in particular. It is suggested that both these

topics be explored more thoroughly.
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APPENDIX A

C************************************************************
C
C MODULAR ARITHMETIC SUBROUTINE LIBRARY
C
C**********-k*************************************************
C
C THIS SUBROUTINE SETS UP THE CURRENT MODULUS
C IN COMMON BLOCK /MD/
C

SUBROUTINE MSET (M)

IMPLICIT INTEGER(A-Z)

COMMON/MD/HMD,MD2

MD=i4

MD2=M/2

RETURN

END

AR EEEEREEREEEEEEEEEEEEEELEREEEESEESEEEEERESEREREREEEESERLES]

FUNCTION MCDO(F)

THIS I35 THE BASIC HMODULO ARITHMZTIC FUNCTION

ann

INTEGER F
COMMON /HD/MD,MD2
J=0
IF(F.LT.0)J=-1
J=J+F/MD
MODC=F=J*MD
IF(MODO.GT.MD2) MODC=MOD0O-MD
RETURN
END
Chhk kR kR IR R I KK IR KRR KRR KRR KRR AR AR KRRk Rk khhkk kR hhhkhhxhhkhkk*
INTEGER FUNCTION INV({X)
C THIS FUNCTION RETURNS THE MODULAR INVERSE OF AN INTEGER
C USING INV(X)=X**E-1, WHERE E IS THE VALUE OF EULER'S
C FUNCTION FOR THE MODULUS ™D
C
IMPLICIT INTEGER(A-Z)
COMMON/MD/MD,MD2
INV=EXPM(X,EULER(MD)-1)
IF(MODO(INV*X) .EQ.1) RETURHN
PAUSE ' ERROR IN InV'
INV=(
RETURN
END
Sl R R R R R R R R R R R R E R
C THIS FUNCTION RETURNS ALPHA**X MQOD ™
C IT USES A QUICK TECHNIQUE FOR DETERAINING THE POWERS
~

INTEGER FUNCTIOWN EXPHM(ALPHA,X)
IMPLICIT INMTEGER(A-Z)

Y=X

S5Um=1

PROD=MCDO (ALPHA)
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100 IF(MOD(Y,2).NE.C)SUA=MODO (SUM*MOD (Y, 2)* PROD)
Y=Y/2
PROD=MODO (PROD*PROD)
IF(Y.GE.1)GOTO 190
EXPM=SUM
RETURN
END
C**********************************************k*************
ol
C THIS FUNCTION RETURNS THE VALUE OF O(i) (THE BIG O FUNCTIOW)
C AS DEFINED BY AGARWAL & BURRUS
C
INTEGER FUNCTION OH (i)
IMPLICIT INTEGER(A-2)
INTEGER FAC(2,255),GFAC(2,255) ,HFAC(2,255)
LOGICAL FLAG(255)
COMMON/ MFACT/ FAC
COMMON/UPS/HFAC, FLAG, i
CALL FACTOR(M,FAC,F)
IF(F.ED.1)GOTO 949
CALL FACTOR(FAC(1,1)-1,HFAC,H)
DO 100 I=2,F
CALL FACTOR(FAC(1l,I)-1,GFAC,G)
DO 200 J=1,H
FLAG(J)=.TRUE.
DO 300 K=1,G
IF(HFAC(1l,J).EQ.GFAC(l,K))GOTO 359
300 COWNTINUE
FLAG(J)=.FALSE.
GOTO 358
350 IF(HFAC(2,J) .GT.GFAC(2,K))HFAC(2,J)=CGFAC(2,K)
350 CONTINUE
200 CONTINUE
CALL UPSET
IF(H.£0.0)GOTO 910
100 CONTINUE
OH=FPWR (HFAC, H)
RETURN
99§ OH=FAC({1,1)-1
RETURN
910 OH=1
RETURN
END
C***********************************************************-,’c
C
C THIS SUBROUTINE IS USED IN Oil ()
C
SUBRCUTINE U
IMPLICIT I.T:
INTEGER HFAC(:
LOGICAL FLAG(
COMIACN/UPS/ HEA
J=9
DO 19¢ I=1,d
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100 IF(FLAG(I))J=J+1
IF(J.82.0)COTO 529
H2=H-1
DO 299 I=1,H2
IF(FLAG(I))GOTO 199
DO 308 K=I,H2
FLAG(K)=FLAG(K+1)
HFAC(1,K)=HFAC(1,K+1)
HFAC(2,K)=HFAC(2,K+1)
300 CONTINUE
199 CONTINUE
200 CONTINUE
560 H=J
RETURN
END
kAR AR A AR IRk R AR AR AR AR AR KRR R AR R AR AR R A AR AR ARk Ak khkhhkh ok hkhk*
THIS FUNCTION IS USED IN OH(s)
INTEGER FUNCTION FPWR(FAC,F)
INTEGER FAC(2,255),F
FPWR=1
DO 14C I=1,F
FPWR=FPWR*FAC(1,I)**FAC(2,1)
130 CONTINUE
RETURN
gND
Chhdh kR khhkkk kR R Ak k KK AR R KKK KKK AR KKK AR R AR KRR KRR KA AR Rk hhkkkkkk kK
C THIS FUNCTION INTERPRETS Id THE NUMBER THEORETIC SENSE
C THE TRIGONOMETRICAL FUNCTIONS COSINE AND SINE
c

C*
C

INTEGER FUNCTION MCOS(U,P)
IMPLICIT INTEGER(A-Z)
COMMON/MCOSSN/LASTU, VAL, RES
COMMON/J/J
INTEGER VAL(4,2),POWER(4) ,RES(9)
ROW=1
GOTO 19¢
ENTRY MSIN(U,P)
ROW=2
190 IF(U.EQ.LASTU)GOTO 3239
POWER(1)=U
DO 150 I=2,4
150 POWER(I)=MODO(POWER(I-1)*U)
INV2=INV(2)
INV2I=INV(2*J)
DO 200 I=1,4
VAL(I,1)=MODO(INV2* (POWER(I)+INV(POWER(I))))
VAL(I,2)=M0DO (INV2JI* (POWER(I)~-INV(POWER(I))))
20¢ CONTINUE
LASTU=Y
302 MCOS=0
IF(P.LE.4)MCOS=VAL (P, R0OW)
MSIN=MCOS
RETURHN

END
log
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C
c
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IR R E RS RS R R R EE R RS EEEE R R R RS RS R R R R AR RS R AR EEERENEEERSEESESEREEEN]

THIS SUBROUTINE PROVIDES A QUICK FACTORING

199

200

349

[l ol el e e o B S e Sy e

SUBROUTINE FACTOR(Y,FAC,F)
IMPLICIT INTEGER(A-Z)
INTEGER FAC(2,255)
INTEGER*2 PRIMES(1583)

5,

DATA PRIMES/ 2, 3,

19, 23, 29, 31, 37,
59, 51, 57, 71, 73,
101, 103, 187, 129, 113,
149, 151, 157, 163, 157,
193, 197, 199, 211, 223,
241, 251, 257, 253, 2899,
293, 397, 311, 313, 317,
353, 359, 357, 373, 379,
499, 41°, 421, 431, 433,
451, 453, 457, 479, 487,
521, 523, 541, 547, 557,
587, 593, 599, 501, 587,
541, 543, A»47, 553, 4559,
591, 761, 709, 719, 727,
757, 1761, 1769, 773, 787,
823, 327, 8329, 339, 853,
381, 883, &7, %¢7, 6S1l1,
947, 953, 957, 971, 977,

[F(Y.GE.1009000)PAUSE 'INPUT
X=

SCAN=0

F=1

IF(X.EQ.1)GOTO 490
FAC(2,1)=0

IF(X.EQ.1)GOTO 500
LIM=IFIX(SORT (FLOAT(X)))
SCAN=SCAN+1

FACT=PRIMES (SCAN)
IF(FACT.GT.LIM)GOTO 490
IF(MOD(X,FACT) .NE.G)GOTQO 200
FAC(1,F)=FACT
FAC(2,F)=FAC(2,F) +1

X=X/FACT

IF(MOD(X,FACT) .£D.€)GOTO 300
F=F+1

FAC(2,F) =9

GOTO 100

FAC(Ll,F)=x

FAC(2,F)=1

RETURN

F=F-1

RETURN

END

110

TO

TECHNIQUE

7, 11, 13,
41, 43, a7,
79, 33, 39,
127, 131, 137,
173, 179, 181,
227, 229, 233,
271, 277, 281,
331, 337, 347,
383, 389, 3¢7,
439, 443, 449,
491, 499, 583,
543, 559, 571,
513, 617, 519,
551, 573, 577,
733, 739, 1743,
797, 809, 211,
357, 359, 353,
919, 929, 937,
833, 991, 997/

17,

53,

a7,
139,
191,
239 2
283,
349,
491,
457,
599,
577,
531,
5383,
751,
821,
277,
941,

FACTOR GREATER THAM 19¢0,000°
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S EREEEEEREEERE RS R SRR REEEEEEEEEEEEREEEEEREEEREEEERERERESRERE

C

C SUBROUTINE LIBRARY FOR WINOGRAD REAL ALGORITHMS

C FOR LENGTHS 50,2490 MOD 55521

c

LR R R R R s
C Ay

C LENGTH 50 ALGORITHM

C

SUBROUTINE W50 (Y,FWD)

IMPLICIT INTEGER(A-2)

INTEGER Y(59),X(59) ,S(13),TS(5)

INTEGER RF(50) ,RFI(50) ,ARROW(12,2) ,COEFS(72)

DATA RE/ a, 35, 12, 48, 24, 45,
1 21, 57, 33, 9, 33, 5, 42, 18,
1 54, 15, 51, 27, 3, 39, 49, 15,
1 52, 23, 4, 25, 1, 37, 13, 49,
1 19, 45, 22, 58, 34, 55, 31, 7,
1 43, 19, 29, 55, 32, 3, 44, 5,
1 41, 17, 53, 29, 50, 25, 2, 38,
1 14, 35, 11, 47, 23, 59/

DATA RFI/ g, 12, 24, 35, 43, 15,
1 27, 39, 51, 3, 30, a2, 54, 5,
1 18, 45, 57, 9, 21, 33, 29, 32,
1 44, 55, 3., 35, 47, 59, 11, 23,
1 59, 2, 14, 25, 38, 5, 17, 29,
1 a1, 53, 449, 52, 4, 15, 28, 55,
1 7, 19, 31, 43, 19, 22, 34, 45,
1 58, 25, 37, 49, 1, 13/

DATA ARROW/ 3, o, g, 5, 12, 12,
1 12, 18, 24, 24, 24, 34, 35, 35,
1 35, 42, 48, 43, 48, 54, 53, 58,
1 508, 55/

DATA COEFS / 1,15379,13375,54390,45385,48547,41224,

113991,5308089,25563,10375,22581,32759, 8192,45457,34457,
128794,25311, 35685,11774,13758,25509,49957,64259,49434,
136489,55773,45080,23174,64056,33074,55939, 32, 5797,
128795,17202,54429, 1355, 4591, ¢347, 4687,50514, 3581,
111779,30785,35388, 4541,54897, 1538,36713,25874,1799¢,
125739,55271,27239,15092,52194,12439,25949, 1471,58145,
1 9220,13250,44432,50519,27275,50734, 2041,30577,46338,
160673,45578/
POINT=1
50 X(I)=Y(RF(I)+1)
DO 1499 I=1l,2¢C
T=MODO (X (20+L)+X{(42+1))
A(I)=10DO(X(I)+T)
X(49+1)=MODO(X (204+1) =X (43+1))
X(22+1)=T
109 CCouTINUZ
BO 259 TIMES=1,3
INDEX=20* (TIMES-1)
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po 290 I1=1,5
T=MODO (X (INDEX+I)+X(INDEX+10+1))
T2=MODO (X (INDEX+5+1)+X{INDEX+15+1))
X({INDEX+1541)=M0DO(X(INDEX+5+I)-X(INDEX+15+1))
X(INDEX+10+1I)=MODO(X(INDEX+I)-X(INDEX+10+I))
X(INDEX+5+4+1)=M0DO(T-T2)
X(INDEX+I)=MODO(T+T2)
200 CONTINUE
C GOT TO REPEAT T4, 3 TIMES
DC 300 TIMES=1,12
INDEX=5* ({TIMES~-1)
TS(1)=MODO(X(INDEX+2)+X (INDEX+5))
TS(2Y=MODO (X (INDEX+3)+X (INDEX+4))
S(5)=MODO(X (INDEX+2)-X (INDEX+5))
S(5)=MODO (X (INDEX+4)-X(INDEX+3))
S(4)=MODO(S(5)+S5S(5))
S(3)=MODO(TS(1)-TS(2))
S(2)=MODO(TS(L)+TS(2))
S(1)=MODO(X(INDEX+1)+S(2})
DO 258 I=1,5 .
250 S(I)=MODO(S(I)*COEFS(ARROW(POINT,FWD)+I))
POINT=POINT+1
TS(1)=MODO(S(1)+S(2))
TS(2)=MODO(TS(1)+S(3))
TS (3)=M0DO(S(4)-5(5))
TS(4)=M0ODO(TS(1)-5(3))
TS(5)=M0DO(S(4)+S(%))
X(INDEX+5)=MODO(TS(2)-TS(3}))
X(INDEX+4)=M0DO(TS(4)-TS(5))
X (INDEX+3)=MODO(TS(4)+TS(5))
X (INDEX+2)=MODO(TS(2)+TS(3))
X(INDEX+1)=5S(1)
300 CONTINUE
DO 499 TIMES=1,3
INDEX=20* (TIMES-1)
DO 499 I=1,5
T=MODO (X (INDEX+10+I)+X (INDEX+15+I))
X(INDEX+154+I)=MODO(X(INDEX+10+I)-X(INDEX+15+1I))
X(INDEX+10+I)=X{INDEX+5+1I)
X (INDEX+5+I)=T
400 CONTINUE
0O 500 I=1,20
T=MODO (X (I)Y+X(20+1))
T2=MODO(T+X (40+1))
X(40+I)=MODO(T-X(42+1))
X(2041)=T2
CONTINUE
DO /388 I=1,50
Y(REFI(I)+1)=X{(1)
RETURN
END
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Ca’g*********************************************;&*************

C
C LENGTH 249 ALGORITH4

C
SUBROUTINE W249(Y,FWD)
IMPLICIT INTEGER(A-Z)
INTEGER Y(240) ,X(250) ,T(25),5(5) ,TS(5)
COMMON/XARRAY/COUNT, X
C 240= 3,15, 5,
INTEGER RF( 243) ,RFI( 249%)
DATA RF / a9, 95, 192, 48, 144, 225, 31,
177, 33, 129, 219, 55, 152, 12, 114, 195,
51, 147, 3, 99, 1890, 346, 132, 228, 34,
155, 21, 117, 213, 59, 150, 5y 192, 198,
54, 135, 231, 837, 183, 39, 129, 215, 72,
158, 24, 195, 281, 57, 153, 9, 99, 185,

42, 138, 234, 75, 171, 27, 123, 219, 59,
155, 12, 188, 264, 45, 141, 237, 93, 139,
39, 125, 222, 78, 174, s, 111, 297, 53,

159, 146, 15, 112, 238, 54, 145, 1, 97,
193, 49, 134, 225, 32, 178, 34, 115, 211,
67, 163, 19, 160, 194, 52, 148, 4, 85,
181, 37, 133, 229, 79, 155, 22, 118, 214,
55, 151, 7, 183, 199, 43, 135, 232, 38,

134, 25, 121, 217, 73, 149, 10, 105, 292,
53, 154, 235, 91, 187, 43, 139, 2249, 75,
172, 28, 124, 285, 51, 157, 13, 109, 199,
45, 142, 233, 94, 175, 31, 127, 223, 79,
89, 175, 32, 128, 224, 55, 151, 17, 113,

2929, 50, 145, 2, 93, 194, 35, 131, 227,
83, 179, 20, 118, 212, 58, 154, 5, 101,
197, 53, 149, 239, 354, 182, 38, 134, 215,
71, 167, 23, 118, 299, 55, 152, 3, 184,

135, 41, 137, 233, 3¢, 17¢, 25, 122, 218,
74, 155, 11, 107, 293, 59, 140, 235, 92,
188, 44, 125, 221, 77, 173, 29, 119, 205,
62, 158, 14, 95, 191, 47, 143, 239/

DATA RFI / 0, 48, %5, 144, 192, 15, 53,

el e e I I T e R ol Tl T el o = e SR Sy

1 11ii, 159, 207, 39, 78, 125, 174, 222, 45,
1 93, 141, 189, 237, 50, 198, 155, 204, 12,
1 75, 123, 171, 219, 27, 94, 138, 136, 234,
1 42, 105, 153, 281, S, 57, 120, 158, 216,
1 24, 72, 135, 183, 231, 39, 87, 156, 193,
1 5, 54, 192, 165, 213, 21, 59, 117, 188,
1 228, 33, 34, 132, 195, 3, 51, %%, 147,
1 210, 13, 55, 114, 152, 225, 33, gL, 129,
1 177, 35, 123, 175, 224, 32, ¢, 143, 191,
1 239, 47, 119, 1583, 265, 14, 52, 125, 173,
1 221, 29, 77, 143, 188, 235, 44, 92, 155,
1 283, 11, 59, w47, 179, 2132, 25, 74, 122,
1 135, 233, 41, 29, 137, 234, 2, S5, 144

1 152, 215, 23, 71, 1is, 157, 234, 33, 25,
1 134, 132, 5, 53, 1201, 149, 197, 25, 58,
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1 115, 164, 212, 35, 83, 131, 179, 227, 59,
1 98, 145, 194, 2, 55, 113, 151, 209, 17,
1 156, 20¢, 15, 54, 112, 175, 223, 31, 79,
1 127, 199, 233, 45, 94, 142, 205, 13, 51,
1 189, 157, 220, 23, 75, 124, 172, 235, 43,
1 91, 139, 187, 19, 58, 1vs, 154, 202, 25,
1 73, 121, 159, 217, 40, 83, 135, 134, 232,
1 55, 143, 151, 199, 7 79, 118, 155, 214,
1 22, 85, 133, 181, 229, 37, 196, 148, 195,
1 4, 52, 115, 153, 211, 19, 57, 138, 178,
1 225, 34, 32, 145, 193, 1, 49, 97/
DO 50 I=1,250

59 X(I)=9
IND=1
COUNT=1

IF(FWD.NE.1)COUNT=55
DO 190 I=1,2490

100 X(I)=Y(RF(I)+1)
DO 2060 INDEX=1,890
TEMP=MODO (X (30+INDEX) +X (150+INDEX))
X(159+INDEX) =MODC (X (S0+INDEX) =X (153+INDEX))
X (30+INDEX) =TEMP
X (INDEX)=MODO (X (INDEX) +TEMP)

200 CONTINUE
DO 30¢ ROUND=1,3
DISP=33* (ROUND-1)
DO 400 T3CNT=1,5
SLIDE=DISP+T3CNT
T(1)=MODO(X(SLIDE)+X(SLIDE+47))
T(2)=MODO(X (SLIDE+26)+X (SLIDE+50))
T(3)=MODO(X(SLIDE+10)+X (SLIDE+50))
T(4)=MODO (X (SLIDE+10)-X(SLIDE+50))
T(5)=MODO (X (SLIDE+30) +X (SLIDE+7%))
T(5) =MODO (X (SLIDE+30)-X(SLIDE+70))
T(7) =MODO (X (SLIDE+5) +X (SLIDE+45))
T(3)=MODO(X (SLIDE+5)-X (SLIDE+45))
T(9)=MODO(X (SLIDE+15)+X(SLIDE+55))
T(12)=MODO (X (SLIDE+15)-X (SLIDE+55))
T(11)=MODO(X (SLIDE425) +X (SLIDE+55))
T(12)=MODO (X (SLIDE+25)-X (SLIDE+55))
T(13)=MCDO(X (SLIDE+35)+X(SLIDE+75))
T(14)=MODO (X (SLIDE+35)-X(SLIDE+75))
T(15)=MODO(T(1)+T(2))
T(15)=MODO(T(3)+T(5))
T(17)=MODO(T(15)+T(15))
T(18)=MODO(T(7)+T(11))
T(12)=MODO(T(7)~-T(11))
T(29)=MODO(T(9)+T(13))
T(21)=MODO(T(9)~-T(13))
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T(22)=MODO(T(18)+T(29))
T(23)=MODO(T(S)+T(14))
T(24)=MODO(T(3)-T(14))
T(25)=MODO(T(10)+T(12))
T(25)=MODO(T(12)-T(19))
X(SLIDE+50) =MODO(X (SLIDE+283)-X (SLIDE+50))
X (SLIDE+20) =MODO (X (SLIDE)-X(SLIDE+4¢))
X (SLIDE)=MODO(T(17)+T(22))

X (SLIDE+5)=MODO(T(17)-T(22))

X (SLIDE410)=MODO(T(15)-T(15))

X (SLIDE+15)=MODO(T(1)-T(2))

X (SLIDE+25) =i10DO(T(19)-T(21))

X (SLIDE+30)=MODO(T (4)-T(5))

X (SLIDE+35)=MODO(T(24)+T(25))

X (SLIDE+48)=MODO(T (24))

X (SLIDE+45)=MODO(T(25))

X (SLIDE+50) =MODO (T (13)-T(29))

X (SLIDE+55)=MODO(T(3)-T(5))

X (SLIDE+65)=MODO(T(19)+T(21))

X (SLIDE+78) =+0DO(T(4)+T(5))

X (SLIDE+75)=MODO(T(23)+T(25))

X (T3CNT+243) =MODO(T(23))

X (T3CNT+245)=MODO (T (25))

CONTINUE

DO 508 TIMES=1,15

CALL W240US5(DISP+5* (TIMES-1))

CALL W240U5(249)

CALL W242U5(245)

DO 500 T3CNT=1,5

SLIDE=DISP+T3CNT
T(1)=MODO (X (SLIDE+15)+X (SLIDE+25))
T(2)=MODO (X (SLIDE+15)-X (SLIDE+25))
T(3)=MODO(X (SLIDE+55)+X (SLIDE+55))
T(4)=MODO(X (SLIDE+55)-X (SLIDE+55))
T(5)=MODO(X (SLIDE+20)+X (SLIDE+30))
T(5)=MODO (X (SLIDE+20)-X (SLIDE+39))
T(7)=MODO(X (SLIDE+40)-X (SLIDE+35))
T(8)=MODO (X (SLIDE+45)-X (SLIDE+35))
T(9)=MODO(T(5)+T (7))
T(10)=MODO(T(5)=-T (7))
T(11)=MODO(T(5)+T(3))
T(12)=MODO(T(5)-T(8))
T(13)=MODO(X(SLIDE+59)+X (SLIDE+70))
T(14)=MODO(X (SLIDE+50)-X (SLIDE+70))
T(15)=MODO (X (SLIDE+75)+X (T3CNT+249))
T(16)=MODO(X (SLIDE+75)-X (T3CNT+245))
T(17)=MODO(T(13)+T(15))
T(13)=MCDO(T(13)-T(15))
T(12)=MODO(T(14)+T(15))

115




5990
3¢90

900

950

P T el e e

APPENDIX 2

T(20)=MODO(T(14)-T(15))

X (SLIDE) =X (SLIDE)

X (SLIDE+50) =MODO (X (SLIDE+10) -X (SLIDE+57))
X (SLIDE+40)=MODO (X (SLIDE+5))

X (SLIDE+20) =MODO (X (SLIDE+19) +X (SLIDE+50))
X (SLIDE+5)=MODO(T(9)+T(17))
X(SLIDE+10)=MODO(T(1)+T(3))

X (SLIDE+15)=MODO(T(12)-T(20))

X (SLIDE+25)=MODO (T (11)+T(19))

X (SLIDE+30)=MODO(T(2)+T(4))

X (SLIDE+35)=MODO(T(10)-T(18))

X (SLIDE+45) =M0DO (T (18)+T(18))

A (SLIDE+52)=MODO(T(2)-T(4))

X (SLIDE+55)=MODO(T(11)-T(19))

X (SLIDE+55)=MODO(T(12)+T(23))

X (SLIDE+70)=MODO(T(1)-T(3))

X (SLIDE+75)=MODO(T(9)-T(17))
CONTINUE

CONTINUE

DO 909 INDEX=1,39
TEMP=MODO (X (INDEX) +X (30+INDEX) )
TEMP2=MODOQ (TEMP-X (150+INDEX) )

X (80+INDEX) =MODO (TEMP+X (150+INDEX) )
X (150+INDEX) =MODO (TEMP2)
CONTINUE

DO 954 I=1,2490

Y(RFI(I)+1)=X(I)

RETURN

END

SUBROUTINE W240U5(INDEX)
IMPLICIT INTEGER(A-2Z)

INTEGER X(258),S(5),TS(5)
COMMON/ XARRAY/COUNT, X

INTEGER POINT( 108

DATA POINT / a, a, 2, g, G,
12, 18, 24, 30, 39, 39, 35,
48, 54, 59, 50, 59, 53, 50,
72, 78, 34, 94, 90, 29, 95,

ips, 114, 129, 120, 120, 129, 120
132, 138, 144, 159, 158, 150, 155,
148, 174, 130, 182, 139, 130, 189,
12, 1¢8, 2904, 219, 213, 219, 2146,
2285, 234, 240, 249, 2483, 249, 240,
252, 258, 294, 279, 273, 27¢, 275,
288, 294, 3¥0, 363, 392, 399, 3908,
312, 318, 324, 339, 336, 334, 339,
348, 354, 2, 3, 5, 7 11,

19, 23, 29, 31, 37, 41, 43,

59, 51, 57, 71, 73, 79, 33,
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191, 13, 17, 109, 113, 127, 131, 137, 139,
149, 151, 157, 153, 167, 173, 179, 181, 191,
i93, 197, 129, 211, 223, 227, 229, 233, 239,
241, 251, 257, 263, 259, 271, 277, 281, 2383,
293, 3¢7, 311, 313, 317, 331, 337, 347, 349,
353, 359, 357, 373, 379, 383, 389, 397, 491,
409, 419, 421, 431, 433, 439, 443, 449, 457,
461, 453, 457, 479, 487, 491, 499, 503, 509,
521, 523, 541, 547, 557, 553, 5%9, 571, 577,
587, 593, 599, 601, K07, 513, 517, 519, 531,
541, 543, 547, 653, 559, 651, 6573, 577, 533,
591, 701, 7¢9, 719, 727, 733, 739, 743/
DATA WCOEF / 1,156379,13375,54390,45385,43647, 131,
115154,52300,57373, 8997,25293,35219, 5117,58875, 4379,
153743,55585,43121,280¢0¢, 5133,43294, 2018,52472,27317,
147755,47295,30335,53947,58598,41224,13991,530699,256503,
113375,22581,57571,42573,28553,332015,43458,42959,7157,
122955, 1355,55943,24331,25327, 5581, 2154,32753,25283,
152857,12361,35374,54354,35433,25337,45103,68955,32759,
1 8192,45457,34457,23704,25311,32489,41290,37592,12222,
119255,50342,45453,25835, 9959,25542, 2557,14%04,33500,
123521,25051, 536,53494,52334,5730%5,25649,50398,5279%4,
117351,42995, 3585,11774,13753,25509,49957,54258,11775,
134422,55437,48759, 319,33843,27545,53849,30713,334749,
151710,69291,22889,53290,49152,53357, 3931,17309,12450,
149945,45p957,586275,56188%, 5349,49434,35439,56773,45080,
123174,54055,35698,52409,54537,34875, 1158,52440,57555,
142718,49451,33159,35530,34713,43821,20875,47410,17452,
125283,55503, 768,54551,51492,4858%5,45777,13926,334574,
155939, 32, 5797,23795,17202,23983,19152, 5792, 921,
135917,34075,539900,54792,55391, 38715,5703¢,39550,13339,
1551565,22371,57913,40727,55943,53853,53797, 3931, 9822,
123845, 42¢01,55248,49482,17528,13842,17552,45389,15143,
145386,27550, 3310,31904,25284,15800,44521,45291,55231,
138774,39354,21747,21957,40153,25482,25721,41278,11853,
1 1564,50429,39459,50827,37430,50951,19325,55837, 8847,
150275,32582,19143,25212, 700,28803,58958, A452,31745,
142220,45040,53508,27129,390955,27546,63849,30713,32051,
1 3811, 523¢,25515,17247,55272,28225,53¢59, 1519,33170,
156819,39229,37258,39193,30193,41359,52953,24181,60555,
117565,27595,49321,31590,30345, 435, 7350, 5490, 14¢,
155345,38952,27298,58290, 3594,14981,53175,22538,390393,
122041, 9376,23199, 3773,13025,19499,55528,15648, 4945,
127703,64471,55077,43955,54843,50664, 2191,53482,35539,
157588,51849,24202, 2508,52212,50295,27944,57575,50089,
1 5890,48134,55944,11178,30332,53577, 2305,35073,11198,
1290635, 5819,59352,24079,42534,44918,13555,54851,52995,
154797, 2797,52232,52939,238%5,2737¢,54069,35293,28553,
142967,49372,13151, 4,35322, ©435,1739%,53941,12595,
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149551,56785,10077,54309,44155, 4741,10454,55809,548790,
142712,64014,11141, 2454,27252,20439,54353,13485,13979,
131657,51591,19683,45422, 6045,356251,35575,45594,50555,
123105,33015/

TS(1)=MODO (X (INDEX+2)+X (INDEX+5))
TS(2)=MODO (X {INDEX+3) +X (INDEX+4))
S(5)=MODO (X (INDEX+2) -X (INDEX+5) )
S(5)=MODO (X (INDEX+4) -X (INDEX+3) )

S(4)=MODO(S(5)+S(5))

S(3)=MODO(TS(1)-TS(2))

S(2)=MODO(TS(1)+TS(2))

S(1)=MODO (X (INDEX+1)+5(2))

DO 250 I=1,5

S(I)=MODO(S(I)*WCOEF(POINT(COUNT)+1I))

COUNT=COUNT+1

TS(1)=MODO(S(1)+S(2))

TS(2)=MODO(TS(1)+S(3))

TS(3)=MODO(S(4)-S(5))

TS(4)=M0DO(TS (1) -S(3))

TS(5)=MODO(S(4)+S(5))

X (INDEX+5)=MGDO(TS(2)-TS(3))

X (INDEX+4) =0DO (TS (4)-TS(5))

X (INDEX+3) =MODO (TS (4)+TS(5))

X (INDEX+2)=MODO (TS (2) +TS(3))

X (INDEX+1)=S(1)

RETURN

END
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( LENGTH 50 TRANSFORM ALGORITM FOR INTEL 8¢80
USING PROM LOOK UP MULTIPLICATIONS
WRITTEN IN FORTH )
50 ARRAY RF 60 ARRAY RFI 24 ARRAY INDEX 12 ARRAY S
128 ARRAY FILTER 120 ARRAY WKSP 144 ARRAY COEFS
120 ARRAY X 120 ARRAY Y 120 ARRAY Z
§ INTEGER .X @ INTEGER .Y @ INTEGER .INDEX 0 INTEGER .H
RF FILLB

0 72 24 95 48 99 42 114 66 18 50 12 84 35 108
36 182 54 5 78 80 32 124 545 3 590 2 74 25 98
20 92 44 116 68 110 52 14 85 38 42 112 54 15 88
18 82 34 105 58 189 52 4 75 28 70 22 94 45 118
RFI FILLB

g 24 43 72 95 39 54 73 102 5 650 34 108 12 356
9¢g 114 18 42 55 43 54 88 112 16 79 94 113 22 45

100 4 28 52 75 1p 34 58 82 105 80 104 8 32 556
119 14 38 5 856 28 44 58 92 116 50 74 98 2 25

INDEX FILLB
C 9 ¢ 5 12 12 12 13 24 24 24 30 35 35 35 42 43 48 48 54
50 58 50 55
COEFS FILL 1 15379 13375 54390 45385 48647 41224 13991
53009 255608 10375 22681 32759 3192 45457 34457 238704 25311
3585 11774 18768 25509 49957 654250 49434 35489 55773 45080
23174 54055 33074 56939 32 5797 28795 17282 54429 1355
4591 9347 4587 53514 3531 11779 35735 35333 4541 54337
1538 30713 25874 17990 25736 55271 27239 15092 52194 12439
25949 1771 58145 9220 13250 44432 59519 27275 50734 2041
30577 40308 58573 45573
FILL 50 @ DO DUP I DUP + + I SWAP ! LOOP DROP ;
INNER 6 @ DO DUP I DUP + + @ , LOOP DROP ;
DUMP 60 @ DO DUP I DUP + + INNER CRLF 5 +LOOP DROP ;
CODE RFSWAP 118 B LXI 59 A MVI BEGIN RF H LXI E A MOV 0 D MVI
D DAD E 4 MOV .X LHLD D DAD E M »0V H INX D i MOV WKSP H LXI
B DADM E MOY H INX M D MOV C DCR C DCR A DCR FM END RET
CODE RFISWAP 118 B LXI 59 A MVI BEGIN WKSP 4 LXI B DAD E # MOV
H INX DM MOV D PUSH E A MOV 0 D MVI RFI H LXI D DAD E 4 MOV
.X LHLD
D DAD D POP M E MOV H INX 4 D MOV C DCR C DCR A DCR FM END RET
CODE +M BEGIN D DAD RNC 15 D LXI UC END
CODE -M 241 A MVI E SUB E A MOV 255 A MVI D SBB D A MOV
$ +M JNC A E MOV 15 SUL E A MOV A D MOV 0 SBI D A MOV
$ +M JMP
( +M INPUT I HL+DE OUTPUT IN HL, -M SAME OUTPUT=HL-DE )
: :GETI 4 LXI B DAD E M MOV H INX D M MOV ;
:STOREI H LXI B DAD M £ MOV 4 INX M D MOV ;
: ~MACRO :GETI D PUSH :GETI H POP [ $ -M STK ] CALL XCHG
:STOREL ; ( 3 2 1 —MACRO == X (3+I)=X(Ll+I)-X(2+I) )
;STORE H LXI # E MOV 4 INX @ D MOV ;
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;GET H LXI E M MOV H INX D M MOV ;
CODE T3 38 B LXI BEGIN WKSP 40 + :GETI D PUSH
WKSP 8C + :GETI H POP $ +M CALL H PUSH H PUSH WKSP
:GETI H POP $ +M CALL XCHG WXSP :STOREI WKSP 40 +
:GETI D PUSH WKSP 80 + :GETI H POP $ -M CALL XCHG
WKSP 280 + :STOREI D POP WKSP 40 +
:STOREI C DCR C DCR FM END RET
CODE IT4 BEGIN PSW PUSH WKSP :GETI D PUSH WKSP 29 + :GETI H pOP
$ +M CALL H PUSH WKSP 10 + :GETI D PUSH WKSP 30 + :GETI H POP
$ +M CALL H PUSH WKSP 39 + WKSP 30 + WKSP 1¢ + -MACRO
WKSP 26 + WKSP 20 + WKSP -sMACRO
D POP H POP H PUSH D PUSH $ +i1 CALL XCHG WKSP :STOREI
D POP H POP $ -M CALL XCHG WXSP 1¢ + :STOREI
C DCR C DCR PSW POP A DCR FZ END RET
CODE T4 5 A MVI 8 B LXI $ IT4 CALL
5 A MVI 48 B LXI $ IT4 CALL
5 A MVI 88 B LXI $ IT4 JMP
CCDE *MG B D MOV C E MOV 0 D LXI
15 A MVI BEGIN $ HLDE*2 CALL FC IF XCHG B DAD XCHG FC IF
H INX THEN THEN A DCR FZ END D PUSH B8 H MOV
14 H MvI D @ MOV H INR E M MOV D PUSH L B MOV
Do MOV 13 HMVI E M MOV H PCP $ +M CALL D POP
$ +M CALL RET : *MGB PPH PPD *MG PSH ;
( MULTS REQUIRES INDEX FOR FWD OR INDEX+12 FOR REVERSE TRAN
STORED IN .INDEX BEFORE STARTING )
CODE MULTS S H LXI XCHG .INDEX LHLD A ¥ MOV RLC H INX
.INDEX SHLD COEFS H LXI C A MOV 0 B MVI B DAD
5 A MVI BEGIN PSW PUSH
C M MOV H INX B M MOV H INX H PUSH XCHG E M MOV H INX D o MOV
H PUSH L C MOV H B MOV $ *MG CALL XCHG H PCP & D MOV H DCX
M E MOV H INX H INX XCHG H POP PSW POP A DCR FZ END RET
CODE U5 9 B LXI 12 A MVI BEGIN PSW PUSH WKSP 2 + :GETI D PUSH
WKSP 8 + :GETI H POP $ +M CALL H PUSH WKSP 4 + :GETI D PUSH
WKSP 5 + :GETI H POP $ +M CALL D POP D PUSH H PUSH $ +M CALL
XCHG S 2 + ;STORE D PUSH WKSP :GETI H POP $ +M CALL XCHG S
;STORE D POP H POP $ -® CALL XCHG S 4 + ;STORE WKSP 2 + :GETI
D PUSH WKSP 8 + :GETI H POP $ -M CALL XCHG S 10 + ;STORE D PUSH
WKSP 5 + :GETI D PUSH WKSP 4 + :GETI H POP $§ -M CALL XCHG S 8 +
;STORE H POP $ +M CALL XCHG S 6 + ;STORE B PUSH $§ MULTS CALL
B POP S ;GET WKSP :STOREI D PUSH S 2 + ;GET H POP $ +M CALL H
PUSH S 4 + ;GET H POP H PUSH D PUSH $§ +M CALL H PUSH S 6 + ;GET
D PUSH S 8 + ;GET H POP $ -M CALL D POP D PUSH H PUSH $ +M CALL
ACHG WK3P 2 + :STOREI D POP H POP $§ - CALL XCHG WKSP 8 +
:STOREI D POP H POP $ -M CALL H PUSH S 6 + ;;GET D PUSH S 18 +
;GET H POP $ +M CALL D POP D PUSH H PUSH $ +M CALL XCHG WKSP 4 +
:STOREI D POP H POP $ -M CALL XCHG WKSP 5 + :STOREIL
A C 40V 19 ADI C A MOV PSW POP A DCR FZ END RET
CODE IS4 BEGIN PSW PUSH WKSP 28 + :GETI D PUSH
WKSP 30 + :GETI H POP $§ +¢ CALL H PUSH
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WKSP 30 + WKSP 39 + WKSP 20 + -MACRO
WKSP 10 + :GETI WKSP 20 + :STOREI D POP
WKSP 10 + :STOREI
C DCR C DCR PSW POP A DCR FZ END RET
CODE S4 5 A MVI 8 B LXI $ IS4 CALL
5 A MVI 43 B LXI $ IS4 CALL
5 A MVI 83 B LXI $ IS4 JiPp
CODE S3 38 B LXI BEGIN WKSP :GETI D PUSH WKSP 40 + :GETI
H POP $ +M CALL H PUSH WKSP 89 + :GETI H POP H PUSH D PUSH
$ -M CALL XCHG WKSP 80 + :STOREI D POP H POP $ +M CALL XCHG
WKSP 49 + :STOREI C DCR C DCR FM END RET
TRAN .X ! IF 12 ELSE @ THEN INDEX + .INDEX !
RESWAP T3 T4 U5 S4 S3 RFISWAP ;
CCODE XHMULT 113 B LXI BEGIN .4 LHLD B DAD E M MOV H INX D M MOV
D PUSH .X LHLD B DAD E M MOV H INX D M MOV XTHL B PUSH $§ *MG
CALL B POP XCHG 4 POP M D MOV H DCX 4 E MOV C DCR C DCR FM END
RET
CONVOLUTION .X ! .H ! INMDEX .INDEX ! RFSWAP T3 T4 US 54 S3
REFISWAP XHMULT RFSWAP T3 T4 U5 S4 S3 RFISWAP

.
7




APPENDIX D

ChhkhhkhkhhhhhkhhkhhkkhhhkhrhhkhkkbrhhdAhhhkhahhh A dhhhhhhhhbdhhhhhrrhdsk

COMPLEX INTEGER LIBRARY

COMPLEX INTEGER STORED AS TWO I*4 IN ADJACENT FULL WORDS
APPEARS TO FORTRAN AS REAL*3.

QOO0 nN

REAL FUNCTION CM*8 (R1,R2)
COMPLEX INTEGER MODULAR MULTIPLY

[oNe®!

REAL*3 R1,R2,R3,R4,RS5
INTEGER IR3(2),IR4(2),IRS5(2)
EQUIVALENCE (R3,IR3(1l)),(R4,IR4(1)),(R5,IR5(1))
R3=R1
R4=R2
IR5(1)=MODO(IR3(1)*IR4(1)-IR3(2)*IR4A(2
IR5(2)=MODO(IR3(1)*IR4(2)+IR3(2)*IR4 (1
CM=RS
RETURN
END

Chh kR Rk R AR KRR IR KRR KRR AR KR AR AR ARk khhk kA Kk kA Rk khkkkhkhkhkk kK & &

REAL FUNCTION CA*3{R1,R2)

))
)

c
C COMPLEX INTEGER MODULAR ADD
C
REAL*S R1,R2,R3,R4,R5
INTEGER IR3(2),IR4(2),IR5(2)
EQUIVALENCE (R3,IR3(1l)),(R4,IR4(1)),(R5,IRS(1))
R3=R1
R4=R2
IRS5(1)=MODO(IR3(1)+IR4(1))
IR5(2)=MODO(IR3(2)+IR4(2))
CA=R5
RETURN
END
C************************************************************
REAL FUNCTION CS*38(R1,R2)
C
C COMPLEX INTEGER MODULAR SUBTRACT
C
REAL*3 R1,R2,R3,R4,RS
INTEGER IR3(2),IR4A(2),IR5(2)
EQUIVALENCE (R3,IR3(1)),(R4,IR4(1)),(R5,IR5(1))
R3=R1
R4=R2
IR5(1)=+M0ODO(IR3(1)-IR4(1
IRS(2)=4MODO(IR3(2)-IR4 (2
CS=RS
RETURA
END

))
))
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Chhkkhk kR Ak kKRR AR KR A AR A AR AR KRR R AR A A A AR AR AR F A A AR kA Ak kk kAR Rk k& &
REAL FUNCTIOWN CSET*3(I,J)
C
C COMPLEX INTEGER C=CHPLX(I,J)
c
REAL*3 A
INTEGER AI(2)
ECUIVALENCE (A,AI(1l))
AI(l)=1I
AI(2)=3
CSET=A
RETURN
END
ChAakhhkh bk hh kAR A ARk kAR AR Ak kAR AR AR kAR KRR AR AR AR Rk A kAR KA R AR A AR K K &

CEXPM=ALPHA**X

OO0

REAL FUNCTION CEXPM*3 (ALPHA,X)
IMPLICIT REAL*3 (A-H,0-2) .
Y=X
CEXPM=CSET(1,5)
PROD=ALPHA
190 ¥Y=Y-DMOD(Y,1.0D0)
IF(DMOD(Y,2.9D6) .NE.G.ODU) CEXPM=CM(CEXPM,PROD)
Y=Y/2.0D0O
IF(Y.LT.1.5D0) RETURN
PROD=CM (PROD, PROD)
GOTO 199
END
LR R R T R
C
C CINV RETURNS A TO THE POWER M**2-2
C
REAL FUNCTION CINV*3 (A)
IMPLICIT REAL*3 (A-D)
COMMON/MD/#D,MD2
AM=MD
AM=AM**] -2 ,0D0
CINV=CEXPM(A,6AN)
IF(CM(CINV,A) . NE,CSET(1,0))PAUSE 'CINV ERROR'
RETURN
END
SRR R e R R R RS L

CPRIM RETURNS A 'PRIMITIVE' ROOT OF ORDER M**2-]

OO0

REAL FUNCTION CPRIM*3 (WASTE)
IMPLICLIT REAL*3 (A-D),INTEGER (E-2)
INTEGER AI(2) ,FAC(2,255)
EQUIVALENCE (A,AI(1))
COMMGW/ 4D/ 4D, AD2

Ad=pMD

AMl=AM*AM -1.2D0




a0 o

50

100

200

IR XS EEEE R RS XS SRS SRR SRR E R ER SRR R R RREREEEREREEESEEEEEEESEERSE]
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CALL BIGFAC(A#,FAC,F)

DO 5¢ I=1,F

AB=AM/FAC(1,1)

FAC(1l,I)=AB

CONE=CSET(1,0)

A=CSET(1,0)

AT (2)=MODO(AI(2)+1)

IF(AI(2) .E0Q.0) PAUSE "CPRIM NO ROOT'
TEST=1

CTEST=CEXPM(A,DFLOAT (FAC(1,TEST)))
IF(CTEST.EQ.CONE)GOTO 104
TEST=TEST+1

IF(TEST.LE.F)GOTO 200

CPRIM=A

RETURN

END

COMPLEX COS AND SIN FUNCTION

100

150

2049

390

REAL FUNCTION CMCOS*S(U,P)

IMPLICIT REAL*3 (A-D),INTEGER (E-2)
COMMON/MCOSSN/LASTU, VAL

COMMON/JJ/J

REAL*3 VAL(4,2) ,POWER(4) ,U,LASTU, INV2,INV2J,J
ROW=1

GOTO 190

ENTRY CMSIN(U,P)

ROW=2

IF(U.EQ.LASTU)GOTO 309

POWER(1)=U

DO 159 I=2,4

POWER (I)=CM(POWER(I-1) ,U)
INV2=CINV(CSET(2,9))
INV2J=CINV(CM(CSET(2,0) ,J))

DO 268 I=1,4

VAL(I,1)=CiM(INV2,CA(POWER(I) ,CINV(PONER(I))))
VAL(I,2)=CM(INV2J,CS({POWER(I),CINV(POWER(I))))
CONTINUE

LASTU=U

CMCOS=0

IF(P.LE.4)CMCOS=VAL (P, ROW)

CMSIN=CHCOS

RETURN

END

124
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CrhkrhhkkkhhhhhhhhhkhhkhhhhhrhhdhhhhhkhhkhkAdhhkh A Ak hdh bk hhrhhkhkk

OO n

SUBROUTINE LIBRARY FOR
FOR LENGTHS

WINOGRAD
60,249,

MOD

COMPLEX ALGORITHMS
5551¢

Chkhhkhhkhkkhhkhhhhkhkhhdhhkdhhhhrdhhkhhhhh bk hhhdhkhkhhdohhhhhkhhhkhhhkhkhhhhkxrk

C

C LENGTH 50 ALGORITH

C

SUBROUTINE Cs0(Y,FWD)
(A-D) , INTEGER(E-2)
REAL*3 Y (50) ,X(50) ,S(18),TS(5) ,COEFS(72),T,T2
INTEGER RF(59) ,RFI(50) ,ARROW(12,2),ICOEF(144)
EQUIVALENCE (COEFS (1) ,ICOEF (1))

IMPLICIT REAL*Z

DATA Rb/ 0, 35,
1 21, 57, 33, S,
1 54, 15, 51, 27,
1 52, 23, 4, 25,
1 13, 45, 22, 53,
1 43, 19, 29, 55,
1 41, 17, 53, 29,
1 14, 35, 11, a7,

DATA RFI/ 0 12,
1 27, 39, 51, 3,

1 18, 45, 57, a,
1 a4, 55, 3, 35,
1 59, 2, 14, 25,
1 41, 53, 40, 52,
1 7, 19, 31, 43,
1 58, 25, 37, 49,

DATA ARROW/ a, 9,

1 12, 18, 24, 24,
1 35, a4z, 48, 43,
1 50, 55/

DATA ICOQEF / 1, ¢,49138,
157700, 0,540397, 0, 42145,
1 8,54206, 7819, 0,11422,
1 0,57331, 0,34729, g,
1 0,52195, n,327583, a,
1 8,433385, 5, 65324, g,
1 0,24543,57561, 9,53557,
1 5,14243, 0,40871, g,
1 0, 9984, 1292, 0,54154,
128873, 8,24214, 0,47977,
1 ©,57397,20878, 0,24214,
1 7,343¢7, 8,54035, a,
1 0,25313, 8, 1533, 7,
1 n,29123, 1,25313, g,
1 2,12593,23291, 0, 8522,
1 3,3¢313, 1,12593, b,
1 0,30130/

2OINT=1

DO S50 I=1,450

12, 48, 24, 45,
30, 5, 42, 18,

3, 39, 44, 15,

1, 37, 13, 49,
34, 55, 31, 7
32, g, 44, 5,
59, 25, 2, 33,
23, 59/

24, 35, 45, 15,
33, 42, 54, 5,
21, 33, 290, 32,
47, 59, 11, 23,
38, 5, 17, 25,

4, 15, 23, 55,
10, 22, 34, 45,

1, 13/

o, 5y 12, 1z,
24, 35, 36, 35,
48, 54, 59, 50,

0,54205, 0, G,
a, 1, 6,49138,
0,51303, 9,32758,
0,4448¢8, £,17133,
57331, ©9,34729,21031,
9,375056, 0,51271,
9, 6434, 6,27913,
9,57551, g,58527,
3, 7522, g, T
2,54427, 3, 13735,
0,47977, 9,53881,
0n,34202, 5,29193,
30712, 1,11433,34202,
9,14351, 9,32313,
3,25359, g,14551,
8,41523, 1,55897,
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50 X(I)=Y(RF(I)+1)
DO 100 I=1,20
T=CA(X(20+4I) ,X(40+1))
X(I)=CA(X(I),T)
X(40+41)=CS(X(2C+1) ,X(40+1))
X(28+4+1)=T
100 CONTINUE
DO 208 TIMES=1,3
INDEX=20* (TIMES-1)
DO 280 I=1,5
T=CA(X({INDEX+I) ,X(INDEX+19+1))
T2=CA(X(INDEX+5+I) ,X(INDEX+15+I))
X(INDEX+15+I)=CS(X(INDEX+S+I) ,X(INDEX+15+1))
X(INDEX+10+I)=CS(X(INDEX+I) X(INDEX+19+I))
X{INDEX+5+I)=CS(T,T2)
X (INDEX+I)=CA(T,T2)
C GOT 10 REPEAT T4, 2 TIHES
200 CONTINUE
DO 388 TIMES=1,12
INDEX=5* (TI{ES~1)
TS(1l)=CA(X(INDEX+2) ,X(INDEX+5))
TS(2)=CA(X(INDEX+3) ,X(INDEX+4))
S(5)=CS(X(INDEX+2) ,X(INDEX+5))
S(5)=CS(X(INDEX+4) ,X{INDEX+3))
S(4)=CA(S(5),S(3))
S(3)=C5(TS(1),TS(2))
S{2)Y=CA(TS(1),TS(2))
S(1)=CA(X(INDEX+1),5(2))
DO 250 I=1,5
250 S(I)=CM(S(I),COEFS(ARROW(POINT,FWD)+1))
POINT=POINT+1
TS(1)=CA(S{1),5(2))
TS(2)=CA(TS(1),S5(3))
TS(3)=Cs5(S(4) ,S(5))
TS(4)=CS(TS(1),S(3))
TS(5)=CA(S(4),S(3))
X(INDEX+5)=CS(TS(2) ,TS(3))
X(INDEX+4)=CS(TS(4) ,TS(5))
X{INDEX+3)=CA(TS(4) ,TS(5))
X{INDEX+2)=CA(TS(2),7T5(3))
X (INDEX+1)=S(1)
360 CONTINUE
DO 4098 TIMES=1,3
INDEX=20* (TIMES-1)
DO 404 I=1,5
T=CA(X(INDEX+10+I),X(INDEX+15+I))
X(INDEX+1S+I)=CO (X (INDEX+10+I) ,X({IJNDEX+15+1))
X(INDEX+10+I)=X(INDEX+5+1)
X (INDEX+5+41)=T
400 CONTINUE
DO 580 I=1,20
T=CA(X(I) ,X(20+1))
T2=CA(T,X(49+1})
X(48+I)=CS(T,X(47+1))

126
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X{20+I)=T2
500 CONTINUE
DO /80 I=1,50
500 Y(RFI(I)+1)=X(I)
RETURN
END
AR E RS RS R R R R R R R L LR TR R Y
C
C LENGTH 240 ALGORITHIA
C
SUBROUTINE C240(Y,FwD)
IMPLICIT REAL*3 (A-D) ,INTEGER(E-Z)
REAL*3 Y(249) ,X(250),T(25) ,5(5),TS(5) ,TEMP,TEMP2
INTEGER COQUNT,DISP
C 240= 3,16' SI
COMMON/CARRAY/X,COUNT
INTEGER RF( 247) ,RFI( 249)

DATA RF / 0. &5, 192, 43, 144, 225, 31,
177, 33, 129, 2149, 56, 162, 18, 114, 195,
51, 147, 3, 29, 130, 35, 132, 223, 34,
155, 21, 117, 213, 59, 1509, 5, 1v2, 193,
54, 135, 231, 87, 183, 39, 120, 215, 72,
158, 24, 195, 291, 57, 153, S, 99, 185,

42, 138, 234, 75, 171, 27, 123, 219, 50,
156, 12, 193, 294, 45, 141, 237, 93, 189,
30, 126, 222, 78, 1741 15, lll, 2{)7[ "31

159, 159, 15, 112, 298, 54, 145, 1, 97,
13, 49, 139, 226, 82, 178, 34, 115, 211,
57, 1583, 19, 100, 195, 52, 148, 4, 35,
1381, 37, 133, 229, 79, 155, 22, 118, 214,
55, 151, 7, 1983, 199, a9, 136, 232, 33,

184, 25, 121, 217, 73, 159, 19, 185, 292,
58, 154, 235, 91, 187, 43, 139, 220, 75,
172, 28, 124, 295, 51, 157, 13, 1069, 1909,
45, 142, 233, 94, 175, 31, 127, 223, 79,
8¢, 175, 32, 128, 224, 65, 151, 17, 113,

269, 50, 145, 2, 98, 194, 35, 131, 227,
83, 179, 20, 1l1s, 212, 58, 154, 5, 141,
197, 53, 149, 236, 86, 182, 33, 134, 215,
71, 157, 23, 119, 290, 56, 152, 8, 1a4,

135, 41, 137, 233, 8%, 170, 25, 122, 218,
74, 155, 11, 197, 283, 59, 140, 235, 82,
188, 44, 125, 221, 7, 173, 29, 119, 2095,
52, 158, 14, 35, 191, 47, 143, 239/

DATA RFI / 0, 48, 95, 144, 192, 15, 53,

el e N el el o o e e e e el i I =l S SEy Ny SV

1 111, 159, 287, 30, 78, 125, 174, 222, 45,
1 %3, 141, 1329, 237, 59, 168, 155, 294, 12,
1 75, 123, 171, 21¢, 27, sd, 138, 135, 234,
1 42, 105, 153, 201, 9, 57, 128, 1358, 215,
1 24, 72, 135, 133, 231, 39, 87, 150, 193,
1 X 54, 122, 155, 213, 21, 39, 117, 183,
1 223, 35, 24, 132, l,,, 3, 51, s2, 147,

Loo21a, 13, 55, il4, 152, 225, 33, 3l, 129,
1 177, s, 123, 175, 224, 32, 95, 143, 1°1,

127




190

200

il ol el e e I e I i N T
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239, 47, 118, 153, 234, 14, 52,
221, 29, 77, l14¢, 183, 235, 14,
203, 11, 5%, 107, 170, 213, 25,
185, 233, 41, 39, 137, 290, g,
152, 215, 23, 71, 119, 157, 230,
134, 182, 5, 53, 191, 149, 197,
116, 164, 212, 35, 83, 131, 179,
98, 146, 194, 2, 55, 113, 161,
159, 298, 16, 54, 112, 175, 223,
127, 199, 238, 45, 94, 142, 295,
109, 157, 220, 28, 75, 124, 172,
91, 139, 137, 13, 58, 15, 154,
73, 121, 159, 217, 409, 88, 135,
55, 103, 151, 199, 7, 9, 112,
22, 85, 133, 191, 229, 37, 160,
4, 52, 115, 153, 211, 19, 57,
225, 34, 82, 145, 193, 1, 49,
DO 50 I=1,25¢
L(I)=9
IND=1
COUNT=1

IF(FWD.NE.1)COUNT=55

DO 108

I=1,24¢0

XK(I)=Y(RF(I)+1)

DO 239 INDEX=1,30
TEMP=CA(X(3J+INDEX) ,X(150+INDEX))
X(L50+INDEX)=CS(X(3C+INDEX) ,X(1l50+INDEX))
X(30+INDEX)=TEMP

X(INDEX)=CA(X{INDEX) ,TEAP)

CONTINUE
DO 300 ROUND=1,3
DISP=30% (ROUND-1)
T3CNT=1,5
SLIDE=DISP+T3CNT
T(1)=CA(X(SLIDE) ,X(SLIDE+49))

DO 4490

T(2)=CA(X(SLIDE+23) ,X(SLIDE+58))
T(3)=CA(X(SLIDE+10) ,X(SLIDE+58))
T(4)=CS(X(SLIDE+10) ,A(SLIDE+58))
T(5)=CA(X(SLIDE+30) ,X(SLIDE+70))
T(5)=CS(X(SLIDE+39) ,X(SLIDE+7C))
T(7)=CA(X(SLIDE+5) ,X(SLIDE+45))
T(3)=CS(X(SLIDE+5) ,X{SLIDE+45))
T(9)=CA(X(SLIDE+15) ,X{SLIDE+55))
T(10)=CS(X(SLIDE+15) ,X(SLIDE+55))
T(11)=CA(X(SLIDZ+25) ,X(SLIDE+55))
T(12)=CS(X(SLIDE+25) ,X(SLIDE+35})
T(13)=CA(X(SLIDE+35) ,4X(SLIDE+78))
T(14)=CS(X(SLIDE+35) ,X(SLIDE+75))
T(15)=CA(T(1),7T(2))
T(15)=CA(T(3),T(5))

T(17)=CA(T(15),T(15))
T(13)=CA(T(7),T(11))
T(12)=C3{0r(7),T(11))
T(29)=CA(T(2),T(13))

128

125,
92,
74,
56,
38,
20,

227,

209,
31,
13,

235,

202,

184,

155,

148,

1301
7/

173,
155,
122,
1c4,

85,

Q
60,

50,
17,
79'
51,
43,
25,
232,
214,
195,

173,




400

504¢
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T(21)=C5(T(9) ,T(13))
T(22)=CA(T(18),7T(2¢))
T(23)=CA(T(8),T(14))
T(24)=CS(T(3),7T(14))
T(25)=CA(T(10),T(12))

T(256)=CS(T(12),T(10))

X (SLIDE+50)=CS (X (SLIDE+20) ,X(SLIDE+5%))
X (SLIDE+20)=CS(X(SLIDE) ,X(SLIDE+40))
X (SLIDE)=CA(T(17) ,T(22))

X (SLIDE+5)=CS(T(17),T(22))

X (SLIDE+10)=CS(T(15),T(1l5))
X(SLIDE+15)=CS(T(1),T(2))

X (SLIDE+25)=CS(T(1S),7T(21))

X (SLIDE+3%)=CS(T(4),7(5))

X (SLIDE+35)=CA(T(24) ,T(25))

X (SLIDE+40)=CMOD(T(24))

X (SLIDE+45)=CrMOD(T(25))

X (SLIDE+50)=CS(T(18),T(29))

X (SLIDE+55)=CS(T(3) ,T(5))

X (SLIDE+55)=CA(T(19),T(21))

X (SLIDE+70)=CA(T(4),T(5))

X (SLIDE+75)=CA(T(23),T(25))

X (T3CHT+240)=CMOD(T(23))

X (T3CNT+245)=CMOD (T (25))

CONTINUE

DO S0@ TIMES=1,15

CALL C246US(DISP+5*% (TIMES-1))

CALL C240U5(249)

CALL C240U5(245)

DO 509 T3CNT=1,5

SLIDE=DISP+T3CHT
T(1)=CA(X{SLIDE+15) ,X(SLIDE+25))
T(2)=CS (X (SLIDE+15) ,X(SLIDE+25))
T(3)=CA(X(SLIDE+55) ,X(SLIDE+A35))
T(4)=CS(X{SLIDE+55) ,X(SLIDE+55))
T(5)=CA(X(SLIDE+23) ,X(SLIDE+31))
T(5)=CS(X(SLIDE+20) ,X(SLIDE+30))
T(7)=CS(X(SLIDE+4¢) ,X(SLIDE+35))
T(8)=CS(X(SLIDE+45) ,X(SLIDE+35))
T(9)=CA(T(5),T(7))

T(1l8)=CS(T(5) ,T(7))
T(11)=CA(T(5),T(3))
T(12)=CS(T(5),7(3))
T(13)=CA(X(SLIDE+349) ,X(SLIDE+7G))
T(14)=CS(X(SLIDE+59) ,X(SLIDE+70))
T(15)=CA(X(SLIDE+75) ,X(T3CNT+240))
T(15)=CS(X(SLIDE+75) ,X(T3CNT+245))
T(17)=CA(T(13),T(15))
T(12)=CS(T(13),T(15))
T(19)=CA(T(14),T(13))
T(29)=CS(T(14),T(1G))

X (SLIDE)=X (SLIDE)
((DLqu+3G)=CS(X(bLIDE'l&),K(SLIDE+5G))
L {(SLIDE+A43)=CiOD (X (SLIDE+5))
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X(SLIDE+29)=CA(X(SLIDE+1C) ,X(SLIDE+50))
X(SLIDE+5)=CA(T(9),T(17))
X(SLIDE+18)=CA(T(1),T(3))
X(SLIDE+15)=CS(T(12),T(29))
X(SLIDE+25)=CA(T(11),T(19))
X(SLIDE+30)=CA(T(2),T(4))
X(SLIDE+35)=CS(T(1¢),T(18))
X(SLIDE+45)=CA(T(19),T(18))
X(SLIDE+50)=CS(T(2).,T(4))
X(SLIDE+55)=CS(T(11),T(19))
X(SLIDE+455)=CA(T(12),T(20))
X{(SLIDE+70)=Cs(T(1),T(3))
X{(SLIDE+75)=CS(T(9).,T(17))

CONTINUE

CONTINUE

DO 990 INDEX=1,30
TEMP=CA (X (INDEX) ,X(30+INDEX))

TEMP2=CS (TE“P,X(150+INDEX))

X (30+INDEX)=CA(TEAP,X(150+INDEX))

X (150+INDEX)=CMOD (TEAP2)

CONTINUE

DO 950 I=1,249

Y(RFI(I)+1)=X(I)

RETURN

END

SUBROUTINE C240US(INDEX)

IMPLICIT REAL*3 (A-D),INTEGER(E-Z)

REAL*8 X(259),5(5) ,TS(5)

INTEGER COUNT

COMMON/CARRAY/X , COUNT

INTEGER POINT( 108)

DATA POINT / 0, 9, g, g, 9, 5, 5,
112, 18, 24, 30, 39, 39, 35, 33, 42,
1 48, 54, 50, 50, 50, 50, 69, 56, 56,
1 72, 78, 84, 9%, 99, 90, 95, 95, 172,
1 148, 114, 120, 128, 120, 120, 128, 126, 123,
1 132, 1338, 144, 150, 150, 159, 155, 155, 152,
1 1%, 174, 18¢, 189, 1389, 180, 183, 1386, 185,
1 192, 198, 294, 216, 21¢, 219, 215, 215, 222,
1 228, 234, 240, 240, 249, 240, 240, 246, 245,
1 252, 258, 254, 279, 279, 276, 275, 275, 282,
1 283, 294, 393, 300, 399, 300, 300, 3495, 305,
1 312, 318, 324, 339, 330, 330, 335, 335, 342,
1 348, 354/

INTEGER CCOEF(  720)

DATA CCOEF / 1, 0,49138, 0,54205, a, 9,
1577203, 9,54297, 5, 4215, 4850, 9,50444, a9,
139432, 9, g, 4sg, 0,49192, 0,47332,52133,
1 0,15573, 9,16595, a, 9,33455, 8,57335,
1 n,55245, 9509, ¢,37253, 5,28312, G, 3,
113194, 9,13794, 5,57335,29333, 3,51305, 7,
1 4373, 5, 3,53715, 5,31949, ©,54555, a1,
1 1, £,49133, 0,54205, 7319, 5,11422, g,
151303, c, 0, 4853, 0,59444, 0,39532,54339,
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1 f,15327, 0,17537, 9, 0,22845, 09,20533,
1 0,12217,29261, 0,38932, #,63929, &, 9,
12¢338, g,51505, a, 4372,11303, G,344745, 0,
1108594, a, g, 65a¢, 0,37253, 1,28812,52325,
1 0,45815, g, 7584, M,32758, 0,57331, a2,
134729, g, 0,444338, 0,17133, 8,59195,53229,
1 0,41872, 0, 5995, g, 3,64499, 0,57250,
1 3,59290,208n4, 9,40514, a, 7367, 0, oy
148095, 0,44584, 0,13911,18495%5, 0,42399, 0,
122331, 9, 6,45728, 9,37453, 9,11526,21512,
1 0,38529, 0,53952, g, 0,50454, 4,517a5,
1 3,15265, 0,32753, ¢,57331, $,34729,21031,
1 0,48385, 9, 5324, 0, 0,58229, 0,41872,
1 9, 5995, 1020, 9, 8259, 3, 5229, 3, 9,
154911, ¢, 1885, 0,14434, 2353 9, 7121, ‘-
1l 2385, C, 9,21512, 9,38529, 9,58952,15055,
1 2,13314, 9,49223, a9, 0,13495, 9,42399,
1 0,22391,1%791, 0,28055, 0,53993, 0, J
137585, 0,51271, 9,24543,57551, 3.58587, 9,
1 2934, 3, 0,3265¢, 9, 3303, 0,26545,45349,
1 3,14513, 0,53953, 9, 3,34329, 0, 5228,
1 G, 3095,52527, g,460142, 9, 407, G, 0.,
158271, 2, 9053, 9,15359, 1823, 8,29350, g,
125714, g, O,lﬂ387, g, 3399, 9,55340,37912,
1 0,50924, 9,40619, 3,27913, 0,14248, g,
1439871, J 4,57551, 9,53637, 9, 9034,323540,
1 0,5721%5, 0,44971, 9, 3,4584¢9, 6,14613,
1 2,53953,41577, 0,n2587, %,52245, 2, g,
114715, 2,54737, 9,25387,55132, 9,52123, o,
112179, D 6,37912, 0,50924, 3,40619, 7248,
1 §,55459, 3,4915%, 3, g, 13823, %,29356,
1 9,25714, 273, 8,48798, 8,34555, g, O,
137973, 0,33813, 3,23374,15400, 0,45019, a3,
122551, g, g,10917, 0, 1979, 5,45664,23335,
1 3,30099, g, 9524, 0, £,39445, 3,55451,
1 0,42089,407156, 0,14524, 9, 3396, a9, 8,
1 1583, 0, 4290, 9, 1124,15955, 9,45574, g,
115352, 9, 0,11738, 9,41993, 0,17517, 0,
165245, 9,16 721, ¢,30854,37979, 9,38813, 3,
128374, g, g,4911¢, 8,2959¢, h,42953,10917,
1 3, 1979, 8,45654, g, ¢,53139, 0,15475,
1 g, 5228,27557, 0,14358, J,24553, 9, 3y
149553, 3,19945, 0,49657,11788, 0,41093, 0,
ll7517, 9, 5,24803, 0,59895, 4,562123, 1583,
5, 42993, g, 1124, 5,32356, £,57341, G,
1432 1, S, c.,41319, ¢,40959, 2,22858,449919,
1 5,33759, 3,54452, g, 9,15384, 3,29791,
1 9,52542,23015, 0,53130, 0,51933, 0, 3,
135111, 9,15132, 9, 2399, 4445, ",43533, a9,
150425, 3y 2,3033%, 9,590u4, 5,%3%833,41535,
1 9,52577, 5,41741, 9, 5,473 37, 3,3553¢
1 G, 54%4, %,32139, a, 7673, 3,10235,413119,
1 , 40059, T,2295%, a, g,24500, 1434759
1 &, 1037,15334, 9,2%791, 5,52542, Gy 3,
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11357¢, g, 9547, 0,55177,55793, 0,43982, q,
151434, g, n,23934, g, 2842, 3,23778,47837,
1 0,35539, 0, 54384, a, g,651074, 0,21935,
1 7, 5094,39335, n,59034, 8,%3333, 9, 0,
1268045, ¢,24083, ¢,19553,55112, 8,34915, 0,
155729, 0, 0,57466, 0,25445, a,250638, 2543,
1 0,53299, 6,52913, g, 0,52919, n, 3259,
1 g, 5812,13510, 0,17093, 0,45592, g, a,
113134, 09,15342, 0,52074,39045, 9,21952, 3,
1 9389, 0, 3,47135, 0,55577, 9,27059,563493,
1 0,12224, 8,15275, 8,20045, 0,24083, ¢,
116553, g, 0,18407, 0,30604, 0, 9790,57465,
1 0,25445), 6,25939, 9, 0,52371, 9, 7319,
1 84,12505,15734, 0,13092, ¢,45252, 3, 9,
144983, 0,505659, §,35203,47135, ¢,55677, a,
127959, g, g, 2825, 9,53295, 0,49243,13134,
1 6,16342, 3,52974, o, 0,25473, 0,43557,
1 0,55130/

REAL*3 DCOEF( 350)
ENUIVALENCE (DCOEF (1) ,CCOEF (1 ))
TS(1)=CA(X (INDEX+2) ,X (INDEX+5))
TS(2)=CA(X (INDEX+3) ,X (INDEX+4))
S(5)=CS (X (INDEX+2) ,X (INDEX+5))
S(5)=CS (X (INDEX+4) ,X (INDEX+3))
S(4)=CA(S(5),5(5))
S(3)=CS(TS(1),7TS(2))
S(2)=CA(TS(1),TS(2))

S(1)=CA(X (INDEX+1),S(2))

DO 250 I=1,5

S(I)=C(S (L) ,DCOEF(POINT(CCUNT)+I))
COUNT=COUNT+1
TS(1)=CA(S(1),S5(2))
TS(2)=CA(TS(l),S(3))
TS(3)=CS(S(4),S(5))
TS(4)=CS(TS(1),S(3))
TS(5)=CA(S(4),S(5))

X (INDEX+5)=CS(TS(2),TS(3))

X (INDEX+4)=CS(TS(4) ,TS(5))

X (INDEX+3)=CA(TS(4) ,7S(5))

X (INDEX+2)=CA(TS(2),TS(3))

X (INDEX+1)=S(1)

RETURN

END
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APPENDIX F
ELEMENTARY THEORY OF ERROR CORRECTING CODES

The material presented in this appendix introduces the basic
nomenclature of error correcting codes and serves to relate the
material presented in chapter 6 to the work described in the main part

of the thesis.

Digital communication is generally achieved by pulse code
modulation where each sample of the signal is represented by a
codeword of n symbols. For binary systems the symbols are binary bits.
These symbols are transmitted and the role of the receiver is to
recognise each code word in order to reconstruct the appropiate
samples. However errors may occur in transmission as a result of
noise. One way to improve the reliability of communication in the
presence of noise is to increase the signal to noise ratio. An
alternative is to add extra symbols, at the expense of an increase in
bandwith, and then detect and possibly correct the errors.

Let a given codeword contain k message symbols and r check
symbols. The total number of symbols per word is given by n:

n=k+r (AF.1)
and such a code is referred to as an (n,k) code. The code rate
efficiency is defined as k/n and this is an indication of the
information rate of the code.

For example it can be seen that an effective error detecting code
can be formed by adding an extra symbol at the end of each codeword.
This extra symbol is called a parity bit. The simple parity check code

is a (k + 1, k) code having a rate efficiency of k/(k+1). It offers a
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simple and effective method for error detection when the probibility
of an error occurring is low. When an error does occur a
retransmission can be requested. It should be noted that an error in
two symbols of a binary codeword is not detected.

In certain cases it is not possible to request a retransmission
of data; however it is possible to add sufficient redundancy into the
code so that errrors are not only detected but also corrected.

Let us consider a binary repetetion code which transmits three
zeros for every '0' and a sequence of three ones for every 'l'. This
is an example of a (3,1) code. If we can be certain that not more than
one error will occur in each codeword then the following codewords
001, 010, 100 will be decoded as 000 and 110, 101, 011 will be decoded
as 111. In this case a majority voting rule may be used for decoding.
However if two errors occur in a codeword then the codeword would be
incorrectly decoded. Thus a single error correction code is most
useful when the probability of error is low.

The distance between two codewords Sq and S, can be defined as
the number of symbols in which Sy and So differ. For example the
distance between the two codewords in the 3 bit repetition code is
three and it can be seen that the decoding procedure is obtained by
choosing the valid codeword with the minimum distance from the
received codeword.

It can be seen that in the Tight of this example that if a given
code is capable of correcting t errors then the minimum distance
between codewords must satisfy:

d>2t +1 (AF.2)
In general it is possible to say that a valid codeword will

satisfy r (r = n - k) linear independent equations. These equations
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can conveniently be expressed in terms of an (n x 1) column matrix v
representing the codeword and a rectangular (r x n) check matrix h
and hence
h.v=0 (AF.3)
Let the received codeword be r which may or may not be equal
to vo If h.r =0 we know that r is a valid codeword and most 1ikely
it is the transmitted codeword. If however h . r # 0 then r is not a

codeword and at least one error has been made.

Let the matrix e denote an error vector, such that
r=yvte (AF.4)

hence if e contains all zeros then no error has been made.

In order to correct the errors we need to determine e. Let us
first determine a matrix s, called the syndrome, from the received
codeword and the check matrix

S:

|=

. r (AF.5)

I
|=>
+
|=
1)

s = e (AF.6)

|=
L]

The task of the decoder is to select one of the several error
sequences which are associated with a given syndrome. Ordinarily this
selection is based on a minimum distance criterion and codes are
usually designed so that the computation of s gives an easy technique
for determining the error locator sequence e, and from this, the
original codeword v may be determined.

The literature on error correcting codes shows much interest in
designing codes where each symbol is composed only of a single binary
bit. From an algebraic viewpoint such codes can be said to be defined

over GF(2). However processors handle data most efficiently in full
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bytes and so interest is increasing in defining codes over other
fields i.e. over GF(qn).

Reed, Truong and Welch (93) and Justesen (38) have defined Reed-
Soloman (85) error correcting codes over GF(q) which can be encoded
and decoded using number theoretic transform techniques. MacWilliams
and Sloane (121) have shown that Reed-Soloman (RS) codes are maximum
distance separable (MDS) which means that an (n,k) RS code will have a
minimum distance (d) between codewords of

d

n-k+1 (AF.7)
where r is the number of check symbols in the codeword. It can

therefore be seen that such codes can correct t errors provided

2t +1<r+1

or 2t <r (AF.9)

Therefore a Reed-Soloman code with r check symbols can correct
upto int(r/2) errors.

The encoding and decoding procedures for such codes are discussed
in chapter 6 where it is hoped that the examples presented are

sufficient to illustrate the techniques involved.
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Microprocessor implementation of number
theoretic transforms

S.C.P. Martin and B.J. Stanier

Indexing terms:

Computerised signal processing, Transforms

Abstract: Consideration is given to the suitability of microprocessor systems for the fast impiementation of
number theoretic transforms (n.t.t.s). Fast-multiply instructions available on some microprocessors, or the
use of external multipliers, relax the basic constraints on the choice of a particular n.t.t. A search was made
for suitabie moduli which allow fast computation of n.t.t.s using Winograd's algorithm. The search was
extended for other moduli which allow increased dynamic range when combined using the Chinese remainder
theorem. Finally, a description is given of how modular arithmetic may efficiently be performed using micro-

Processors.

1 Introduction

A numerical procedure important in digital signal process-
ing, the convolution operator, is defined by the relation

N-1
yi =) hiyx; 1€0,N—1) ()
i=0

and is denoted by
Yi = hi*x;

Certain transforms (7") possess the cyclic-convolution
property (c.c.p.) which may be stated as

T(y) = T(h) x T(x) (2)
where x denotes pointwise multiplication, or
y = TTHT () x T(x)}

Hence an isomorphism exists between the convolution
operator and the pointwise multiplication operator under
such transforms as 7.
Transforms with the d.f.t. structure possess the c.c.p.
Let X, = T(x;) and hence x; = T"'(X},), then

X, éNZl ot KEQON-1)
i=0
N-1
x; & N7 kZOXka'j" JEQO,N—1) (3)

where « is an element of order NV. It has been shown? that
the d.f.t. is the only such transform defined in the complex
domain. However, many such transforms exist which are
defined in finite rings of integers (Zy). These transforms
are collectively known as number theoretic transforms
(n.t.ts). Agarwal and Burrus® have shown that constraints
limit practical choices of n.t.t.s and for clarity they are
cited here:

(@) N must divide O(M), where O(M) is defined to be
the greatest common divisor of the set of prime divisors
(p)ofM,ie O(M) 2 gecd. (py)
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(b) o must be an element of order N,ie.a™ =1 mod M
ando" #1modMVre(l,N-1)

(¢) V7', a multiplicative inverse of NV, must exist in the
ring Zy; .

(@) N should be well factored for fast algorithms to
exist.

(e) To facilitate fast and simple arithmetic mod M, M

must have a simple binary representation, and to facilitate
fast multiplication by powers of @, a must also have a
simple binary representation.
Considerable interest has been shown in the literature in
at least two classes of numbers as choices for moduli.
Using Fermat numbers,!"*5:!7 which are numbers of the
form F,=2% +1, it is possible to perform transforms
requiring only bit-shifts and additions. However, such
moduli do suffer from disadvantages: microprocessor
systems handle most efficiently data in multiples of 8
bits (full bytes). By their definition Fermat number moduli
may require an (8k + 1)th bit. During processing this
may be supplied by a carry flag, but for data storage
in memory this requirement can cause embarrassment.
For Fs and larger moduli, it is generally acceptable to
ignore the extra bit since it has only a low probability of
being required. Finally, the maximum transform length
available for use with Fermat moduli is severely limited by
the constraint upon a simple binary representation of «.

Mersenne numbers® (numbers of the form 297!, q prime)
have also been considered for moduli. However, corres-
ponding sequence lengths are not factored and so do not
have fast algorithms comparable to the f.f.t.

Recently, a new class of potentially fast and efficient
Fourier transform and number-theoretic transforms are
algorithms (w.f.t.a.), have been described.” "' Since the
Fourier transform and number theoretic transforms are
alike in structure, then any Fourier-transform algorithm
may in principle be applied to n.t.ts.

Winograd has shown how short-N transforms may be
performed efficiently. He suggests a technique whereby
short-V algorithms may be combined to provide an
algorithm for a transform whose length is a product of the
short-Vs, provided the short-Vs be relatively prime. Let

XN = TNxN (4)
where, as is well known!'?

N = NNy, (N, Ny) = 1

TN = pzTN‘® TNII).[,
. (5)
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and e denotes the Kronecker product of matrices and
P, P, are permutation matrices.

Silverman® has described short-NV algorithms for
N=5,7,(3and 9), (2, 4, 8 and 16). and using the nested
nature of eqn. 4 various transform lengths are possible
between 2 and 5040. Reference 8 shows how the permu-
tation matrices P, and P, may be derived. In a micro-
processor implementation the permutation sequences may
conveniently be stored in read only memory.

2 Microprocessors and n.t.t.s

Integer arithmetic can be performed on microprocessor
systems more easily than real arithmetic, and using such
systems n.t.t.s are in principle easier to implement than the
Fourier transform for convolution. Further, microprocessors
are becoming available with fast-multiply instructions, and
for those that do not have this facility, fast hardware
multiplier chips are available.'® These trends allow fast
generalised multiplications, and make such operations
competitive with repeated bit-shift and subtract in carry
operations such as are required with Fermat number
transforms. By waiving constraint (e) and allowing non-
simple moduli and as, many more n.t.t.s become practicable
for microprocessor implementation.

A search was made, as outlined in Reference 10, for
suitable moduli that would satisfy constraints (a) to (d)
and additionally would support general Winograd transform
algorithms, allowing nonsimple Nth roots of unity. Since
data is handled most efficiently in full bytes, this search
was conducted from 2'® downwards.

It was found that the modulus M = 65521 satisfied all
the constraints, and in particular it has two desirable
properties:

(@) 0(65521) = 65520 =(5x 7x 9 x 16) x 13. As can
be seen, this modulus will support any Winograd transform
length from 2 to 5040.

(b) Arithmetic would generally be complex because
so little redundancy is incurred in the use of 16-bit
arithmetic.

Since any specific-V transform algorithm would be
computationally more efficient than a general-V algorithm,
we derived various algorithms for specific transform lengths.
However, it was found that a general-V program was an
invaluable tool for such algorithm development, since the
program derives the multiplication coefficients, the pointers
into workspace arrays and the permutation sequences
required for the specific-V algorithms. This design tech-
nique allows rapid development of the specific-V algorithms.
Certain points are of interest concerning the general-V
program and the subsequent specific-V algorithms.

(@) Since the ultimate aim is to derive algorithms for a
microprocessor environment where memory workspace
should be minimised, the suggestions for reducing memory
requirement given in Reference 8 were heeded.

(b) Arithmetic would generally be complex because
Fourier transform is defined in the complex domain.
However, the algorithms described in Reference 8 involve
only purely real or purely imaginary data, and so in the
inner stages of their computation, certain savings are made
by keeping flags to denote the data type. The concepts of
real, imaginary and complex do not strictly apply in the
number theoretic sense, and so it was not necessary for
such flags to be kept.

(c) The points given in Reference 10 concerning the
interpretation in the number theoretic sense of the

trigonometrical expressions referred to in Reference 8, and
the incorporation of the N ™' normalising factor into the
multiplication coefficients for the inverse transform, were
also heeded. '

The general-V program was run on an IBM 370, and the
results of convolutions performed by such n.t.ts were
compared with reference techniques (direct-integer
convolution with short lengths, and a Fourier transform
technique for long-convolution lengths). In all cases, the
n.t.t. convolutions gave results in exact agreement with
the direct-convolution technique. The Fourier-transform
technique produces ‘real’ results subject to roundoff error,
and within the limits of accuracy of such a technique, the
results of the n.t.t. convolutions were also in exact agree-
ment.

A transform of length 60 was written for an Intel 8080
microprocessor using the FORTH programming technique,**
and this algorithm was employed in a real-time bandstop
filtering application.

3 Extension to complex filtering

Vanwormhoudt'® has shown that there exist two main
classes of moduli. Since all moduli M that are useful for
number theoretic transforms are odd, the two classes are
those for which M = 1 mod 4 (type 4) and those for which
M =3 mod 4 (type B). In Reference 16 it is shown that for
type A moduli there exists an element j in the ring Zy,
such that j2=— 1 mod M. This is an alternative to showing
that there exists an element of order 4. It is also shown that
no such element exists for type B moduli.

In References 15 and 17 it is shown that complex
convolutions can be efficiently performed through two real
convolutions. The ideas expressed in References 15 and 17
can be generalised for any type 4 modulus.

Leta; & a; +ja;

Where ¢ = complex sequence
g; = real part of g;
a; = imaginary part of g;

j = element such thatj2 =—1 mod M

The two real convolutions required to compute y where
Yi =Xx; * h; are given in eqn. 6:

yi+ iy
yvi _]j)l = bxi*bhi mod M (6)

a.; * ap; mod M

where the following are defined:

. = i‘. +]XA‘ mod M, api = ;li +]il, mod M

bxi = .)‘e,‘ _]i, mod M, bhi = h,' ”'],:l, mod M (7)
In this paper much interest is shown in the modulus
M =65521 for which the element j= 24297 satisfies
j?=—1mod M.

4 Extension to other moduli

For a given modulus the output must be limited to avoid
overflow; hence a compromise exists between the data
amplitude and the filter impulse digitlisation.? In general,
the digitisation will degrade the filter response, and so
for a given choice of modulus there may be insufficient
dynamic range for the filter design to achieve the limits
set. In such cases, a larger modulus should be chosen;
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Table 1: Table of dual moduli to pair with M = 65521 using c.r.t.

Convolution fength Dual modulus Primary Winograd Multidimensional
transform length factor required
6 65497 6 —
10 65381 10 -
12 65497 12 -
14 65437 14 —
15 65101 15 —
18 65449 18 —
20 65381 20 -
21 65437 21 —
24 65497 24 —
28 65437 28 —
30 65101 30 —
35 665381 35 -
36 65449 36 -
40 64921 40 -
40 65497 8 5
42 65437 42 -
45 64621 45 -
45 65449 9 5
48 65281 48 —
56 65353 56 -
60 65101 60 -
63 65269 63 -~
70 . 65381 70 —
72 65449 72 —
80 64081 80 —
80 65393 16 5
84 65437 84 —
20 64621 90 —
90 65449 18 5
105 65101 105 —
112 64849 112 -
112 65393 16 7
120 64921 120 -
120 65497 24 5
126 65269 126 -
140 65381 140 —
144 65089 144 —
168 65353 168 -
180 : 64621 180 -
180 65449 36 5
210 65101 210 -
240 64081 240 -
240 65281 48 5
252 65269 252 —
280 63841 280 —
280 65381 35 8
315 59221 315 —
315 ) 65381 35 9
336 64849 336 —
336 65281 48 7
360 64081 360 -
360 65449 72 5
420 65101 420 —
504 64513 504 -
504 65449 72 7
560 63841 560 -
560 65281 16 5*7
630 59221 630 -
630 65381 70 9
720 64081 720 —
720 65089 144 5
840 63841 840 -
840 65353 168 5
1008 64513 1008 -
1008 65089 144 7
1260 59221 1260 -
1260 65381 140 9
1680 63841 1680 -
1680 65281 48 5*7
2520 55441 2520 -
2520 65449 72 5*7
5040 55441 5040 —
5040 65089 144 57
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however, direct implementation of such a scheme would
involve performing arithmetic with greater wordlength.
This problem may be circumvented by the use of the
Chinese remainder theorem (c.r.t.).!’ This theorem states
that if an integer x is such that x =a; mod m; where a set
of moduli m; is relatively prime then

M M M

x = al(bl —-)+a2 (bz—), .o, ta, (b,,—)modM
m, ms my

(8)

where

N
M=l_lm,'.

i=1

The b; are defined such that

My _
b,(r—n—l) = | mod m; )

An interpretation of this theorem shows that if calculations
are performed with respect to two or more relatively
prime moduli (m; and m,), then by using the c.r.t. the
results may be determined mod (m,m,). This technique
has great potential for utilising a parallel processing tech-
nique.

Let us consider the case for two moduli

X = a,¢y +ayc, mod M (10)
where

¢, = blr% and ¢, = bgr%
Let

x=1 andso a, =1 = a,
therefore

ley +1cy = 1 mod M
or

¢y ¢y = 1 modM (an

This result will be discussed later.

A search was made for other moduli that would combine
with 65521 over specific transform lengths. The search was
conducted for various transform lengths by scanning from
2'% downwards for moduli, other than 65521, for which
constraints () to (d) would be satisfied. These resul{s are
shown in Table 1.

It can be seen from the last two entries in Table 1 that
the highest suitable modulus below 2'¢ that will directly
support a transform length of 5040 is M = 55441. The
choice of such a low modulus is undesirable, since a great
loss occurs of the possible dynamic range of 2¢.

Agarwal and Cooley® described how the c.r.t. may
also be employed to convert a 1-dimensional cyclic
convolution to a multidimensional convolution which is
cyclic in all dimensions. This may be applied to cases where
a given long convolution length is a product of shorter
mutually prime convolution lengths. They cite an example
whereby a number-theoretic-transform technique can be
used for convolution of length N, and by using the c¢.r.t.

in this manner, convolutions of length (Np,p, ...pP;)
may be computed provided N,p,,p,, .. .,p; are mutually
prime. Efficient algorithms are described in Reference 3
for convolutions of lengths 5 and 7 (2, 4, 8) and (3,9).
Using such a scheme, it is possible to perform n.t.t. con-
volutions of length 144, and using the multidimensional
mapping technique it is possible to derive convolutions of
length 144 x 5 x 7 (= 5040). Constraints upon the choice
of modulus arise only from the n.t.t. length used, and not
from the multidimensional factors employed. Therefore,
modulus M = 65089 (this is the choice for a length 144
transform) may be used for convolutions of length 5040,
even though this modulus does not support such a transform
length directly, by taking n.t.t. convolutions of length 144
and using the c.r.t. mapping technique to compute the
5040 length convolutions.

This technique can be used to factor transform lengths
with inefficient moduli to lengths with more efficient
moduli. The other entries in the Table have been derived
in a similar manner.

It is advantageous if the two moduli to be combined
are used with the same transform lengths, since the same
permutation sequences and essentially the same algorithms
are used for both moduli, leading to economy in memory
utilisation.

5. Microprocessors and modular arithmetic

The moduli previously described are optimally close to
2'6 and therefore only a small duplicity arises if all 16-bit
binary patterns are allowed on input and output with an
arithmetic procedure. In all examples in this Section the
choice of M = 65521 will be taken.

(a) Addition mod M: when two numbers are added
together they may or may not generate an overflow. If
there is no overflow then the result of the addition is
returned.

If

x =a+b = c+carry

= ¢+ 2
=c+(2" —M
= ¢+ 15 mod 65521 (12)

Therefore, if a carry is detected, 15 must be added into the
partial sum. This may generate a further carry, but will
not generate more than two carries. An example of suitable

coding for such an operation is given for an Intel 8080
microprocessor.

PLUS DAD D

RNC
LXI D #15
JMP PLUS

This subroutine will add mod 65521 the two 16-bit num-
bers in register pairs (DE) and (HL) returning the answer
in (HL).

(b) Subtraction mod M: for microprocessors with 16-bit
subtraction instructions, the 16-bit addition instruction in
the previous example may be directly replaced by such an
instruction. However, few 8-bit microprocessors have such
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instructions, and so for the majority a byte-orientated
subtraction should be used.

(c) Multiplication mod M:
classified into subdivisions:

(i) Multiplication of a 16-bit number (x) by a 16-bit
fixed constant (k).

This can be considered to be a mapping from a 16-bit
number to another 16-bit number. Since multiplication is
a distributive operation, then the mapping may be achieved
by treating separately the high and low bytes of x, and
finally adding their respective outputs together. Fig. 1
shows how such a mapping may be achieved. The obvious
design requires two 2% x 16-bit patterns which may be
conveniently be read only memory (r.o.m.). If, however,
the memory is restructured to be byte orientated, then a
saving is obtained since part of the memory R,; is
duplicated in R,. This minimised structure is shown in

_ Fig. 2. R.O.Ms R are read once only and r.o.m. R’ is read
twice. The read operations are controlled by the micro-
processor. A final modular add operation is required to
bound the output within the 16-bit range.

this operation can be

Bui__[8-16] 16
R
X L : *M '_s_D y
8-16
80 |R, 16

Fig. 1 Multiplication by fixed constant

-8
R |Bw

16

— y

+M

810

8-~8

8w

Fig. 2 Memory minimisation for fixed constant multiplication

32

+M

80 32

Fig. 3  Multiplication of 16-bit number by 32-bit constant
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(ii) Multiplication of a 16-bit number by a 32-bit
constant.

When combining results using the two moduli, the
Chinese remainder theorem requires that calculations
be performed of the form

(13)

where a; and a, are results mod m; and modm,,
respectively, and ¢, and c, are 32.bit constants derived
using the c.r.t. Therefore, this class of operation is useful
for deriving results mod M(M = m;m,) given the results
mod m; and mod m;. A memory reduction similar to that
described previously can also be applied. A suitable structure
for performing this operation is shown in Fig. 3. ROMs
R are read once and r.o.ms R are read twice. A final
modular add is required to bound the output within the
32-bit range. This can be achieved using the same principle
as has been described for the 16-bit modular add operation.

In general, two such operations would be required for
multiplications by ¢; and c¢,. However, if the result of
eqn. 11 is recalled, then it will be seen that

1 =

x = a,c; taycq

¢y +c; modM

x = a,cy taz(l —cy)
= ¢,(@, —a,)+a, mod M (14)
from eqn. 8 it can be seen that
cymy = 0mod M
and so
x = ¢,(km, +a;, —a,) +ta, mod M (kEN)( 5
1

If k is chosen such that (km, +a, ~a,) lies in the range
zero to 2'®, then only one 16 x 32-bit multiplication is
required to derive x-from eqn. 15. A flowchart to achieve
this condition is shown in Fig. 4.

(iii) Multiplication of two 16-bit variables mod M.

The multiplication of two 16-bit numbers generates a
32-bit answer.

Lety = ab = 2'%y, +y,
Q' ~Myn +y,

15y, +y; mod 65521

0<a,b,yn.y <2'

(16)

Therefore, a general 32-bit intermediate answer may be
partially reduced mod M by a multiplication of y;, by the
fixed constant (2'® —M). This can be achieved by the
scheme described in (c), part (i).

(iv) Multiplication by 27!,

This is the analogous operation to division by 2.

Lety = 27'x

By applying a shift right to x we may determine from the
carry flag if x was even or odd. If x was even then we have
already determined y. If x was odd then y may be derived
by adding in (M + 1)/2.

The procedures described cover the general classes of
arithmetic required for convolution performed within the
ring Zy, where M is a product of 65521 and one of the
moduli shown in Table 1.

(d) Table 2 summarises the memory requirements for
the multiplication look-up tables. The unit of one page is
used to denote a quantitv of memory of 256 bytes. In the
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case of multiplications of two 16-bit variables, 3 pages
are required for the Table to derive the term corresponding
to the multiplication of the higher 16-bit intermediate
answer with the fixed constant (2! —M). The multi-
plication by j can be most efficiently performed by the
technique described in Section 5, (¢), part (i), and this
requires an additional 3 pages. '

input a,,a,

Fig. 4 Flowchart to perform c.r.t. combination

Table 2: Summary of memory requirements for multiplication
look-up tables

Memory required

pages
Foreach For 2
modulus  moduli
Real convolutions Generalised
multiplications 3 6
C.R.T. combination - 5
Total 3 11
Complex Generalised
convolutions multiplications 3 6
Multiplication by 3 6
C.R.T. combination — 5
Total 6 17

6 Conclusions

With a view to utilising a_microprocessor-based system for
convolution, we have considered the constraints which
e -

govern the choice of a particular number theoretic trans-
form (n.t.t.). We have found that recent hardware develop-
ments relax these basic constraints, allowing fast
computation of much wider classes of n.t.t.s. In particular,
the Winograd Fourier transform algorithm (w.f.t.a.) can be
applied to n.tts and the work in this paper has been
concerned with implementing the w.ft.a. using moduli
just less than 2'¢. The modulus 65521 was found to have
very desirable properties from this aspect since it will
support any Winograd transform length. We have also
considered other moduli to combine with 65521 using
the Chinese remainder theorem for applications which
require a greater dynamic range.

It can be seen that microprocessor systems can be used
effectively to provide the hardware for small-scale
convolution requirements, and therefore such systems can
be used wherever digital convolution is required. The range
of possible applications is broad, covering areas from the
computation of auto and cross correlation and power
spectra and nonrecusrsive and recursive digital signal
processing and obtaining the solution of difference
equations.
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