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ABSTRACT

The formation of a graben has been investigated using finite
element analysis. A new method of modelling faults has been developed
which is based on calculating the shear stresses on the fault and, if
they exceed the frictional strength, applying forces which cause
frictional sliding. Both Newtonian visco-elastic and power law creep
rheologies have been used for the Tower lithosphere. The deformation
patterns seen in the models are relatively insensitive to which one
is used.

Stress amplification is shown to result in normal faulting in the
upper, brittle layer as a result of relatively small stresses of about
20 MPa being applied throughout the depth of the Tithosphere. When a
fault is introduced into the model the stresses adjacent to the fault
are re-orientated and secondary faulting is predicted. The bending profile
associated with the fault deformation results in a weakness where the
stresses are most greatly modified. A second normal fault may form here.
If the fault movement is confined to the upper part of the brittle layer
then the predicted graben width is between 5 and 15 km. For deeper fault
movement and an underlying fluid the predicted width increases to
50 - 55 km. A more realistic rheology for the underlying material is
visco-elasticity. In this case the predicted width is about 25 km.

The fault throw increases as the visco-elastic material relaxes but no
significant change is seen in the width.

The subsidence of a 50 km wide graben wedge has been examined. For
applied stresses of about 50 MPa and coefficients of friction of less
than about 0.1, subsidence of about 1 km is predicted. This does not

include sediment infilling. The subsiding wedge causes large compressive




stresses in the underlying material which may be long-lasting. The
subsidence is controlled by the boundary faults and causes bending of

the block which may result in internal deformation.
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1.1

CHAPTER 1

AN INTRODUCTION TO GRABEN STRUCTURES

Introduction

The basic geometry of a graben is of a downthrown block between
two normal faults, although one fault only may be present. They are
typically much longer (measured along the strike) than they are wide.
These structures can be seen on many different scales and their
importance to geodynamic studies results not only from an interest in
the mechanics ¢f their formation, but also their significance in rift
valley systems, continental splitting, and as initiating mechanisms
for sedimentary basin development.

The occurrence and physical characteristics of graben structures
will be described briefly in this chapter, together with a review of

current theories of their formation.

Jccurrence and Physicai Characteristics of Graben

1.2.1 Occurrence

Graben occur at all scales within continental plates. The large-
scale continental graben are very long and have widths of up to 80 km.
Some of these underlie major sedimentary basins, such as the North Sea
(Kent, 1975; Ziegler, 1975), the Michigan basin and the Chad basin
(Burke, 1976b), and may have acted as depressions for early sediment-
ation which have subsequently led to flexure and major basin formation
(Beaumont and Sweeney, 1973; Beaumont, 1978). Other major graben, in

particular the Rhinegraben, Lake Baikal and the East African rift




system, are situated on uplifted areas and are amenable to geclogical

and geophysical study. The Basin and Range province of North America

is characterised by many graben of typical width between 10 and 20 km
(Wright and Troxel, 1973; Stewart, 1978). It is the possible mechanism

of formation of these large, continental graben that will be investigated
in this thesis.

On a smaller scale, graben with widths of several hundred metres
and occurring at regular intervals are seen in the Canyonlands National
Park, Utah (McGill and Stromquist, 1979), and graben of only a few
metres in width can form as a result of an instantaneous tectonic event,
such as the Alaskan earthquake of 1964 (Voight, 13974).

Graben also occur at passive plate margins. These are often relic
graben and half-graben structures associated with ocean opening. Examples
of these are seen around the margins of the Atlantic Ocean (Burke, 1976a).
These may be reactivated, and new graben formed, as a result of subsidence

and sedimentation on the continental shelf (Bott, 1971; Sheridan, 1976).

1.2.2 Surface features of major continental graben

Continental rift zones are very long and composed of many graben
of different dimensions. The Baikal rift extends for 2,500 km in a
SW - NE direction and the East African rift zone covers a distance of
4,000 km. The largest graben in the Baikal area is the South Baikal
depression which is over 400 km long and up to 60 km wide and was the
site of the earliest rifting in this area, in Middle Eocene times
(Logatchev and Florensov, 1973). The largest graben in the East African
system is the Gregory rift with a width of 60 to 70 km, situated in the
central part of the Kenya rift (Baker and Wohlenberg, 1971). The

Rhinegraben has a length of 300 km and a mean width of 36 km and started



subsiding in Middle Eocene times (I1lies, 1970). Widths of between
30 and 70 km seem to be typical for major graben structures - the
North Sea graben have widths in this range and the Oslo graben has
a width of 40 wum [Ramberq, 1977).

The typical structure of these graben is of a downthrown block,
heavily faulted with tilted fault blocks, between normal faults of
dip 55° to 80", most frequently €0 to 65°. The shoulders form steep
escarpments towards the graben and dip gently outwards at 1° to 3°
(I17ies, 1970). A striking feature of graben structures is the
parallel nature of the boundary fault zones. The maximum shoulder
uplift for all three major structures that have been discussed varies
from 2 to 2.5 km (I1lies, 1970; Kolmogorov and Kolmogorova, 1978;

Baker and Wohlenberg, 1971). The Rhinegraben has a maximum sedimentary
fill of 3.4 km (I11ies, 1970). The boundary faults in the Baikal area
have throws less than 1 km with the exception of the Obruchev fault
which forms the western boundary of the South Baikal depression which
has a throw of at lTeast 6 km (Sherman, 1978). The throw on the boundary
faults of the Gregory rift is 3 to 4 km (Baker and Wohlenberg, 1971).
Figure 1.1 is a block diagram of the Rhinegraben and illustrates the
typical graben structure discussed above.

The amount of extension undergone can be estimated by palinspastic
reconstruction of the fault blocks. This method gives 4.8 km extension
in the Rhinegraben (I11lies, 1970). Extension in the Baikal area is, in
general, a few kilometres, possibly exceeding 10 km in the South Baikal
depression (Logatchev and Florensov, 1978), and in the East African
rift zone is between 5 and 10 km (Baker and Wohlenberg, 1971).

The major rift zones are generally characterised by domal uplifts

which preceded the initial stages of rifting (Kiselevetal., 1978;
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Davidson and Rex, 1980). They are also characterised by a two stage
evolution pattern, consisting of an early period of weak, tectonic
movements and shallow, proto-rift basin formation, followed by a

later stage of rapid activity with faulting and further uplift
(Logatchev et al., 1972; I1lies, 1975; Logatchev and Florensov, 1978).
Volcanism is associated with these areas, although the amount varies.
The Baikal area has approximately 5000 km® of volcanics compared with
500,000 km? in East Africa. Basaltic 1avaé are the typical volcanics,
particularly in the alkaline and intermediate range of composition
(Logatchev et al., 1972; Kiselev et al., 1978). It has been pointed
out that for the Rhinegraben, tast Africa and the Baikal rift volcanism
occurred earlier than graben formation and was associated with the
doming rather than the future graben fault zones (Logatchev et al.,

1972; I1lies, 1977 Logatchev and Florensov, 1978).

1.2.3 Deep structure of major continental graben

The initial development of rift valley graben was probably
controlled by pre-existing lines of weakness in the basement. The
Rhinegraben follows Hercynian and Caledonian basement faults (Il1lies,
1977) and the South Baikal depression overlies a suture between the
Precambrian Siberian platform and the Sayan-Baikal fold belt
(Logatchev and Florensov, 1978). Younger graben developed after the
initial faulting show less dependence and may cut across the structural
grain of the area; for instance the northern part of the Baikal rift
zone diverges from the ancient line of suture into the Sayan-Baikal
fold belt (Zamarayev and Ruzhich, 1978).

Seismic refraction experiments over continental rift valleys

typically demonstrate an upwarping of the Mohorovicic discontinuity




beneath the graben. Griffiths et al. (1971) in a refraction survey
over the northern part of the Gregory Rift found a 20 km thick layer
with P-wave velocity 6.4 kms ' overlying material with a velocity
of 7.5 kms™!, which was interpreted as anomalous, low velocity mantle.
Delays from teleseismic P-wave arrivals suggested a minimum thickness
of 100 km for this material, assuming the velocity contrast remained
the same. Long et al. (1973) pointed out that this low velocity mantle
is confined to the axis of the Gregory rift, and Long and. Backhouse
(1976) concluded that the anomalous mantle thins not only westwards,
away from the rift axis, but also northwards where the rift dies out
in northern Kenya.

The Moho beneath the Baikal area also seems to be upwarped
beneath the major graben to a depth of 35 km, compared with 42 to
46 km away from the rift. The morphology of this boundary is, however,
a complicated surface which is irregular along the rift zone strike
(Puzyrev et al., 1978). A Tow velocity layer in the crust, with a
contrast of 0.2 to 0.3 kms™!, at approximately 12 km has been detected
by Puzyrev et al. (1978) who also suggested that anomalous, low velocity
mantle of 7.6 to 7.8 kms~! underlies the Moho with an average thickness
of 17 km. This was thought to be underlain by normal mantle some tens
of kilometres thick, although they suggested a narrow vertical
connection between the anomalous layer and the deeper, low velocity
zone located along the rift axis. The area of the anomalous mantle
was thought to be 2 to 3 times wider than the Baikal rift zone as
defined from surface geology. From a studyof the delays associated
with teleseismic P-wave arrivals Zorin and Rogozhina (1978) found that
the upper boundary of the low velocity mantle rises up to the base of

the crust only under the rift zone proper and dips away from this area.



Assuming a constant velocity differential of 0.3 kms™!, the lower
boundary was calculated as being 400 km deep beneath the greater part
of the rift zone. This structure seems more reasonable than the 17 km
thick layer proposed by Puzyrev et al. (1978) and has obvious similarities
to the anomalous mantle beneath the Gregory rift.

Refraction studies by Meissner et al. (1970) and Ansorge et al.
(1970) suggested that a 'cushion' of low velocity mantle (7.5 to
7.7 kms~1) with a width of about 180 km existed at the base of the
crust beneath the Rhinegraben at a depth of 25 km. However, this conclusion
was shown to be incorrect by later reversed profiles (Rhinegraben Research
Group for Explosion Seismology, 1974) which showed this boundary to be
an 8.1 kms~! refractor, consistent with 'normal' mantle. A joint
interpretation of all seismic refraction profiles in the southern
Rhinegraben area, using time-term analysis, by Edel et al. (1975)
demonstrated an elevation of the crust-mantle boundary forming an arch
with a span of 150 to 180 km and reaching a depth of 25 km beneath the
flanks of the graben. Beneath the graben proper, a transition zone
was found to be present with a thickness of 4 km and the strongest velocity
gradient at a depth of 21 km. This zone was regarded as a region of crust-
mantle interaction. Away from the Rhinegraben the Moho is at a depth of
30 to 35 km. Figure 1.2 shows the Moho topography and its relationship
to the surface features. A low velocity layer at a depth of 10 km below
the graben proper was found in the crust, extending to about 19 km.
Between 19 and 25 km a laminated, transition structure was assumed on
the basis of the striate character of the observed deep reflections
(Mueller and Rybach, 1974) with, possibly, a thin lTow velocity layer
at the base of the crust.

The Bouguer gravity anomaly over the Gregory rift in East Africa
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shows a long wavelength negative anomaly, 1000 km wide, with an
amplitude of up to -150 mgal, together with a superimposed positive
anomaly over the rift axis of 40 to 80 km width with an amplitude of
+30 to +60 mgal (Fairhead and Girdler, 1972). The small gradients
associated with the negative anomaly suggest that the cause is at
considerable depth and the anomaly has been interpreted as being due
to low density asthenosphere replacing the upper mantle part of the
1ithosphere. The axial positive anomaly is considered to be due to the
presence of a mantle-derived, intrusive zone reaching to within 2 km
of the rift surface. Various models have been proposed to fit this
interpretation and have been summarised by Forth (1975).

Gravity ancmalies in the Baikal region show weak, negative,
regional isostatic anomalies with an extremely deep minimum coinciding
with the Baikal Lake valley (Artemjev and Artyushkov, 1971). Negative
anomalies of lower intensity correspond to other rift valleys in this
area. After correcting for the sediments, and exc]uding the local
minimum, the Baikal region is characterised by a wide relative maximum
in the Bouguer anomalies. This is consistent with an upwarping of the
Mohorovicic discontinuity. The local minimum over Lake Baikal cannot
be completely removed by assuming that the isostatic balancing of the
sediments and water filling the valley is total. This is interpreted
by Artemjev and Artyushkov (1971) as being due to either an incomplete
knowledge of the shape and sediment fill of the valley, or a variation
in crustal thickness under Lake Baikal, or a decrease in upper mantle
density beneath Lake Baikal. The third alternative is consistent with
the general negative regional, high heat flow data, and seismic velocity
decrease in the upper mantle beneath the rift as described previously.

The Rhinegraben is characterised by an asymmetric negative gravity




anomaly of about 30 mgal. Most of the anomaly can be accounted for

by the sedimentary fill. However, Mueller and Rybach (1974) have pointed
out that the observed minimum in the gravity anomaly does not coincide
with the minimum due to the sediment cover. They have interpreted this
as an upward indentation of the sialic low velocity (and presumably low
density) crustal layer into the overlying basement. The effect of the
elevated crust-mantie boundary beneath the Rhinegraben is not seen in
the Bouguer anomaly. Fuchs (1974) has suggested that this may be due

to either a column of Tower Tithosphere heated by conduction (and there-
fore of lower density), or a heating effect as a result of mass transfer
either as a diapiric rise from the base of the lithosphere or as a

zone of low velocity material in the lower lithosphere. The smaller time
constant required for mass transport would make this more Tikely than
heating by conduction.

The Oslo graben has a broad positive gravity anomaly which has
been interpreted by Ramberg (1972) as a shallowing of the Mohorovicic
discontinuity beneath the graben by 7 to 12 km. This is shallower than
was indicated by seismic refraction experiments (Sellevoll and Warrick,
1970), which suggests that the anomaly is partly due to a positive
density contrast in the crust, possibly an intrusive zone. A large
magnetic anomaly is present of the same width as the exposed graben which
supports the idea of intrusion of igneous material.

Studies of the deep structure beneath these major graben thus support
the idea of a slightly upwarped Moho. Anomalous mantle is seen beneath
Baikal and East Africa and a consideration of the gravity anomaly over
the Rhinegraben (Kahle and Werner, 1980) suggests that low density mantle
must be present at depth. The existence of anomalous thermal conditions

beneath these rifts is supported by high heat flow (e.g. Haenel, 1970)
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.3

and whilst they are not now thought to be present beneath the Permian

Oslo graben, the possible presence of intrusive bodies in the crust

suggests that these conditions may have existed at the time of active

rifting.

Theories of the formation of graben structures

1.3.1 The stress regime associated with graben formation

There now seems 1ittle doubt that graben structures originate as
a result of tensional stresses. Early suggestions (e.g. Bullard, 1936)
that they form as a result of compression and are bounded by reverse
faults were shown to be incorrect by geological studies which demonstrated
that graben are bounded by normal faults. Also, calculated Bouguer
anomalies for the Lake Albert rift valley by Girdler (1964) showed that
a normal fault bounded graben gave an anomaly much closer to the
observed gravity than a reverse fault bounded graben. The seismicity
of continental rift zones is important for providing fault plane solutions
which indicate the principal stress orientations. Some graben structures
may not now be subject to the same stress regime in which they first
formed and this must be considered when evaluating fault plane solutions.
The Rhinegraben is now deforming by a predominantly left-lateral, strike-
slip motion and probably ceased to be an active rift valley sometime in
late Miocene to early Pliocene times (I1lies, 1977). Horizontal
stylolites, which form with their long axes parallel to the direction of
maximum compression, have been observed in the Mesozoic strata of
Europe and are consistent with compression parallel to the graben strike
(I11ies, 1977). Figure 1.3 illustrates the differences in stress

orientations in the region of the Rhinegraben in Mesozoic times and the
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10

present day. The Baikal rift zone is seismically very active and
rifting is still taking place, with graben connected by strike-

slip faults which are analogous to oceanic transform faults (Sherman,
1978). The maximum seismicity occurs in narrow beits which are
unguestionably related to the major fault zones (Golonetsky and
Misharina, 1978; Solonenko, 1978). The Baikal depression is actively
widening as demonstrated by subsidence of crustal blocks . associated
with the large earthquakes of 1862 and 1959 (Solonenko, 1978). Normal
faulting is observed to be consistently and overwhelmingly predominant
(Golonetsky and Misharina, 1978) with compressional axes near-vertical
and tensional axes near-horizontal and perpendicular to the strike of
the surface structures (see Figure 1.4). The highest rates of recent
crustal movement in the Baikal area are of 10 to 20 mm yr~! and occur
in the regions of highest topographic elevation differences (Kolmogorov and
Kolmogorova, 1978). Fault plane solutions for earthquakes occurring in
the East African rift system show either strike-slip or normal faulting
with no evidence of compression (Fairhead and Girdler, 1972).

Studies in ali areas confirm the asymmetry of graben structures,
typically with one of the major fault zones being better developed, and
an asymmetric sedimentary fill (e.g. Mueller, 1970; Girdler et al., 1969).
A1l evidence points to periods of activity separated by quiet periods

rather than slow progressive movements (e.g. Solonenko, 1978).

1.3.2 Sources of stress

The formation of graben structures perpendicular to tensional
stress axes is strong evidence for a mechanism involving extension of
the crust or lithosphere by tensile, lithospheric stresses. These

stresses can have a magnitude of several tens of MPa and in some cases
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may exceed 100 MPa (Turcotte and Oxburgh, 1976; Murrell, 1977). The

causes of stress in the lithosphere have been summarised by Turcotte

and Oxburgh (1978) and can be divided into five classes:

1) Stresses due to the driving mechanism of plate tectonics. These
include 'slab pull', 'ridge push' and traction forces occurring as
a result of convection cells within the upper mantle. Particularly
large stresses can accumulate at zones of plate interaction, such
as continental collision zones and transform faults.

2) Thermal stresses as a result of temperature changes.

(O8]
~—

Membrane stresses caused by the movement of plates over the Earth's
surface, which has the form of an oblate spheroid (Turcotte and
Oxburgh, 1973; Turcotte, 1974).

4) Overburden stresses due to erosion or sedimentation.

5) Stresses due to variations in crustal thickness. These have been
calculated analytically by Artyushkov (1973) and by finite element
analysis for continental margins (Bott and Dean, 1972) and plateau
uplifts (Bott and Kusznir, 1979).

Particuiar exampies of stress sources have been suggested for

some specific graben. Mantle plumes, which result in doming, have been

cited as causes of the East African rift system (Burke and Whiteman,

1973) and the trilete systems of North Sea graben (Whiteman et al.,

1975). Oxburgh and Turcotte (1974) have speculated that membrane tectonics

have been responsible for the tensile stresses associated with the East

African rift system (although this is inconsistent with the conclusion

reached by Burke and Wilson (1972) that the African plate has been

stationary for the last 25 M yrs). Molnar and Tapponier (1975, 1979)

have suggested that the formation of the Baikal rift zone is linked to

the very large strike-slip faults resulting from the collision between
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India and Asia. For this to be the primary cause of rifting requires
graben formation to commence in Miocene times rather than Eocene, and
they suggest that the Eocene deposits seen are not related to the present
style of rifting. Bott (1971) has used the stress differences due to

the thickness variation across passive continental margins to account

for hot creep of lower crustal material oceanwards and resultant graben
formation in the brittle, upper crust. Neugebauer (1978) and Neugebauer
and Braner (1978) have used finite element analysis to support their
suggestion that the Rhinegraben formed as a result of rifting due to
doming and later extension, caused by gravitational potential resulting

from the uplift.

1.3.3 Mechanisms of graben formation

I1Ties (1970) suggested that the formation of fault zones along
the axes of uplifted domes is a result of tension induced in the crust
by the doming effect of low density mantle. He suggested that both
master faults started from the same trace at the crust-mantle
discontinuity. Whilst this is in agreement with the depth to the Moho
at the time of initiation of rifting, which is consistent with observed
depths outside the graben, it seems difficult to explain the faulting
starting from the crust-mantle boundary. The increase in confining
pressure and temperature (particularly in the presence of hot, rising
mantle material) with depth suggests that deformation at depths of
about 30 km will be by ductile flow rather than brittle fracture (see
Chapter 2). A more fundamental objection to this mechanism, which was
recognised by IT1lies (1970), is that the observed extension across
major graben structures is too great to be explained by the tension

generated along the crest of the rising dome. Artemjev and Artyushkov
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(1971) demonstrated analytically that, for a plausible shaped dome,
the extension caused will be of the order of hundreds of metres rather
that the observed values of 4 to 10 km. This resulted in the suggestion
that gravity sliding of the crustal blocks down the flanks of the domed
uplift (I11ies, 1970) could explain the extra extension. This has been
challenged by Strobach (1974) who estimated the effective horizontal
stress as a result of this mechanism to be about 0.5 MPa only. Voight
(1974) suggested that gravity sliding over very weak sedimentary
horizons is a feasible mechanism for small, thin-skinned graben such
as those associated with the Alaskan earthquake of 1964, but rejected
the hypothesis of gravity sliding for the Rhinegraben by consideration
of the position of the 'toe' caused by the sliding block.

Vening Meinesz (1950) proposed a mechanism for graben formation
which is illustrated in Figure 1.5. Extension of the crust results in
a normal fault which makes an angle of 63° with the horizontal (Figure 1.5(a)).
Isostatic considerations cause upbending of the block on the upthrown
side (A) and sinking of the block on the downthrown side (B) (Figure 1.5(b}).
Downward bending of the block B resuits in stretching of the upper part
of the crust and the formation of a second normal fault where the
maximum bending moment occurs. If this second fault is inclined towards
the first fault a wedge-shaped block will be formed and will subside
isostatically (Figure 1.5(c)). Elastic beam theory can be used to give
values for the predicted width of the graben and the shape of the uplift
at the flanks, assuming that the crust can be represented as an elastic
beam overlying a fluid. The results only are quoted here but the theory
is developed in Appendix 1. For a crustal thickness of 35 km and
reasonable density values the predicted width of the graben is 65 km

(Heiskanen and Vening Meinesz, 1958). The subsidence of the wedge is
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860 m and the uplift of the flanks is 680 m. Two major objections make
this theory unacceptable. Firstly, the formation of a graben predicts

a crustal root as a result of subsidence of the wedge. This is nowhere
observed. Indeed, the typical situation beneath a major graben is of

an upwarped Moho and crustal thinning. Secondly, the downfaulted graben
block is observed to be heavily faulted and composed of many tilted
fault blocks. The mechanism by which this can occur has no explanation
if the block is simply sinking into the underlying material.

The above objections have resulted in a modification of Vening
Meinesz' theory. Mueller (1970) used the observed width of 36 km for
the Rhinegraben to calculate a depth of 20 km for the fractured part
of the crust. He correlates this depth with the top of the Tamellar
crustal layer which is separated from the upper crust by a low velocity
layer. This mechanism was further developed by Artemjev and Artyushkov
(1971) (Figure 1.6) who suggested that the observed upwarping of the
Moho was a result of neck-shaped strains in the lTower crust, analogous
to those formed in rods and plates as a result of applied tension.

Once a localised decrease in crustail thickness is present the necking
process increases rapidly due to an increase in the flow velocity. In

order for the upper, more viscous layer of the crust to stretch with

the velocity of the lower layer the tensional stresses must concentrate
there. Stress concentration of this type has been observed by Kusznir

and Bott (1977) using finite element models. Once the stresses in the

upper crust exceed the tensile strength a fault develops and necking

of the lower layer increases rapidly. Owing to the high viscosity of

the upper layer it is not able to go down with the same velocity as the

neck forms and is further fractured into blocks. Fuchs (1974), applying this

type of mechanism to the Rhinegraben, suggested that the necking occurred
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inalow velocity crustal layer such as that observed beneath the
Rhinegraben.

The most recent adaptation of this type of mechanism has been by
Bott (1976), wheo applied the wedge subsidence theory of Vening Meinesz
to the brittle upper laver of the crust and a stretching mechanism of
the type suggested by Artemjev and Artyushkov to the Tower crust. His
proposed mechanism consists of a faulting stage, with an incremental
drop in the tensile stress in the brittle layer and subsidence of
the wedge, together with an immediate complementary increase in tension
in the ductile layer resulting in a stretching stage. This increases
the tensile stress in the brittle layer and may lead to the re-initiation
of faulting. For a 10 km thick brittle layer and reasonable elastic
moduli and densities a graben width of between 24 and 48 km is predicted
using elastic beam theory (see Appendix 1), although the downward
convergence of the normal faults and the widening due to subsidence may
increase the surface width by up to 10 km. Bott also calculated the amount
of subsidence that could occur by considering the energy budget available.
This gave a vaiue of over 5 km for a sediment filled graben of 30 to

40 km width, assuming that friction on the boundary faults was small.

1.3.4 Conclusions

Stresses act on the lithosphere as a result of various causes, and,
if applied to a crust which consists of a brittle layer overlying
ductile material, may result in the formation of graben structures
similar to those observed in the field (Artemjev and Artyushkov, 1971;
Bott, 1976). The effect of the anomalous thermal conditions, which seem
to accompany rifting, is Tikely to be to increase the creep rate in the

ductile material, with consequent concentration of stress in the
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brittle layer, and cause graben formation in areas subject to these
conditions. The initial stages of weak, tectonic movements and shallow
basin formation may be a result of stretching of the anomalously hot,
ductile, Tower crust and the later stage of rapid fault movement and

subsidence is probably due to the instability caused by normal faulting.
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CHAPTER 2

BRITTLE FRACTURE AND DUCTILE FLOW IN THE CONTINENTAL LITHOSPHERE

Introduction

In this chapter the material properties of the continental Titho-
sphere are discussed. The first part deals with the composition and
rheological subdivision of the 1ithosphere. Later sections discuss
faulting in the brittle layer and creep in the underlying ductile material.
The physical properties and mode of deformation presented here form the
basis of the finite element models used in later chapters to investigate

the response of the continental lithosphere to applied stress systems.

Composition and elastic parameters

The continental lithosphere can be divided into upper crust, lower
crust and lithospheric mantle. The upper crust has a mean composition
approximately equivalent to granodiorite-diorite with a mean density of
2,750 kg m™? to 2,800 kg m™3 and a P-wave velocity of 5.9 to 6.3 km s~!
(Bott, 1971; Wyllie, 1971). The Conrad discontinuity, where it is present,
is sometimes considered to represent the boundary between the upper and
Tower crust. The lower crust has a mean density of about 2,900 kg m™3
(Bott, 1971) and P-wave velocities between 6.4 and 7.6 km s~! with a
typical value being 6.7 km s™!. [t used to be thought that the lower
crust was of basaltic composition, but investigations of the stable
mineral assemblages at lower crustal temperatures and pressures (Ringwood
and Green, 1966; Green and Ringwood, 1967) together with the observed
P-wave velocities seemed to rule out this idea. It now seems likely

that the lower crust is composed of high pressure forms of granodiorite and
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diorite or, if it is 'wet', of amphibolite (Bott, 1971). The Mohorovicic
discontinuity, or Moho, represents the boundary between the lower crust
and the mantle. A typical depth for this transition for continental
lithosphere is 40 km, although older shield areas commonly have the

Moho at a greater depth and warm regions often have a shallower Moho.
The P-wave velocity just below the Moho is usually about 8.1 km s7!
which is interpreted as being associated with upper mantle material.

Two common rock types have comparable P velocities - eclogite or an
ultrabasic rock such as peridotite. Most evidence suggests that the

Moho is a chemical discontinuity (for summaries see Wyllie, 19715 Bott,
1971) and the mantle is composed of an ultrabasic rock such as peridotite.
Green and Ringwood (1963) proposed a ratio of 1 part basalt to 3 parts
dunite which they called 'pyrolite'. This composition is similar to
peridotite. The mean density of peridotite is about 3,300 kg m-3.

In order to model elastic deformations in the lithosphere it is
necessary to have values for Young's modulus and Poisson's ratio. These
can be determined from the density and the P and S-wave velocities.

S velocities are not as well known as P velocities and to avoid having
to use them a value of 0.25 is assigned to Poisson's ratio. This is a
geologically acceptable value. Substituting for Lamé's parameters

(see Jaeger, 1969) in the equation for the P-wave velocity gives

where Vp 1s the P-wave velocity, o is the density, E is Young‘s\modulus
and v is Poisson's ratio. The calculated values of Young's modulus for

the upper and lower crust and the 1ithospheric mantle are shown in
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Table 2.1. It is generally assumed that these values, which are calculated

from short period deformations, are extrapolatable to the much tonger

periods associated with elastic stress systems.

, _
Vp (km 5= 1) ¢ (kg m™3) E (N m=2)
Upper crust 6.1 2,750 0.85x 101!
Lower crust 6.7 2,900 1.08 x 1011
Mantle 8.1 3,300 1.80x 101!
Table 2.7: Vajues of Young's modulus assuming a Poisson's ratio of 0.25

2.3 Temperature regime and rheological subdivision

Mercier and Carter (1975) compared the mineral assemblages seen

in xenoliths and Alpine-type peridotites with results of high temperature

and pressure studies on mineral systems. On the basis of this work they

Cc eguatioc

ns representing continental, low temperature

oceanic, and high temperature oceanic geotherms. These geotherms

correspond fairly well with the theoretical geotherms of Clark and

Ringwood (1964) and geotherms for the Canadian shield and the Basin and

Range province proposed by Herrin (1972). In order to investigate the

mechanism of graben formation, it is necessary to have a geotherm that

represents the temperature regime at the onset of faulting. The evidence

cited in Chapter 1 suggests that doming and volcanism precede major

graben formation indicating higher temperatures than for a cool, stable,

continental lithosphere such as is represented by the continental

geotherm of Mercier and Carter. On the other hand, it is unlikely that
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the temperature regime at those times was as high as is observed at
present day continental rifts, which satisfy the high temperature

oceanic geotherm. Consequently, the most reasonable geotherm to use seems
to be the low temperature oceanic geotherm of Mercier and Carter which

has the form

T =4.234(P + 8.6) -_11840 + 1340
(P + 3.6)

where P is the pressure in kilobars and T is the temperature in degrees

centigrade. For a lithosphere thickness of 100 km, a reasonable value

for a warm continent, this geotherm gives a temperature at the base of
about 1200°C.

The traditional treatment of the lithosphere as a rheologically
homogeneous body is now recognised to be an oversimplification. A more
realistic model is of a strong elastic Tayer overlying ductile material
and the evidence for this division can be summarised in a number of
points:

1) Laboratory experiments of Griggs et al. (1960) showed that at low
temperaturés and relatively low pressures rocks deform by brittle
fracture whereas at 500 MPa confining pressure and temperatures of
500 to 800°C the mode of deformation is a flow mechanism. Results
of this type have been confirmed by more recent experiments (see
sections 2.5 and 2.8).

2) Intraplate earthquakes are restricted to the upper part of the
Tithosphere. The maximum depth of earthquakes along the Calaveras
fault zone of the San Andreas fault system is 15 km (Bufe et al.,

1977) whereas for older, cooler zones, such as shield areas,
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seismicity extends to depths of 30 to 40 km and in the Russian
platform fault zones extend to about 60 km (Sollogub,Guterch cited
in Vetter and Meissner, 1979). Vetter and Meissner (1979) suggested
a correlation between the temperature regime and the maximum depth
of seismicity with brittle behaviour extending to 15 to 20 km for

a warm lithosphere and 50 to 60 km for a cold Tithosphere.

Studies of lithospheric flexure as a result of surface loading, by

(&%)
—

Walcott (1970), showed that the effective thickness of the elastic
1ithosphere decreases with increasing time scales of loading. He
calculated a value of 20 km for the thickness of the elastic 1itho-
sphere in the Basin and Range province. Calculations by Murrell (1976)
based on published values of flexural rigidity also suggested a
thickness of 20 km for the elastic lithosphere for warm continental
regions. Similar calculations on the flexure of the oceanic 1itho-
sphere (Watts, 1978) suggested an elastic layer thickness of 20
to 30 km for the Pacific oceanic Tithosphere.
It therefore seems reasonable to divide the 1ithosphere into a
20 km thick elastic layer overlying 80 km of ductile material. It also
seems not unreasonable to equate the elastic layer with the upper crust.
Figure 2.1 illustrates the lithosphere model that has been arrived at

in this and the preceding section.

2.4 Theories of Brittle Fracture

2.4.1 The Coulomb criterion

Coulomb's criterion for shear failure in a plane is

’T| = SO + uag 2.]
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where t© is the shear stress, o is the normal stress, S, is the shear
strength or cohesion and y is the coefficient of internal friction.

This can also be written
ft] = S5 4+ ontand’ 2.2
where ¢ is the angle of internal friction. By expressing r and o in

terms of principal stresses and the angle of the fracture plane, o',

the following expression can be obtained

EN |
N —

The sign of o’ can be changed without affecting the analysis which leads
to the important conclusion that there are two possible conjugate planes
of fracture passing through the direction of the intermediate principal
stress and making angles of less than 45° with the direction of the
maximum principal stress. For a more complete description of the Coulomb

2 AY

criterion the reader is referred to Jaeger and Cook (1976).

2.4.2 Mohr's hypothesis

Mohr proposed that when shear failure takes place across a plane,
the normal stress, o and the shear stress, t, across the plane are

related by a functional relation characteristic of the material:

ft] = f(o,) 2.4

Equation 2.4 can be plotted in = - o, space and Mohr circles can be plotted

on the diagram for any stress system. If a Mohr circle touches the curve
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given by equation 2.4 then failure will occur for that particular
stress system. This hypothesis assumes that the value of the inter-
mediate principal stress, o, does not affect failure of the material.
The functional relation 2.4 is normally obtained experimentally
as the envelope of Mohr circles corresponding to failure under a
variety of conditions, and is consequently known as the Mohr envelope.
The Mohr envelope for the Coulomb criterion is a straight Tine and 1is
shown in Figure 2.2. This example and other types of envelope are

discussed by Jaeger and Cook (1976).

2.4.3 The Moditied Griffith Theory

Griffith developed a theory of brittle fracture which assumed that
fracture is caused by stress concentrations at the tips of small
Griffith cracks which are present throughout the material. This theory
has been further modified by McLintock and Walsh (1962) to include the
situation where the Griffith cracks close under sufficiently high
compressive stresses and frictional forces become important. Griffith
theory was developed by studying the variation of the tangential stress
on the surface of a flat elliptical crack. Several good treatments
exist in press (e.g. Murrell, 1964a,b; Jaeger and Cook, 1976) and the
mathematics will not be covered here.

The original theory allowed for two types of failure: tensional
failure and open crack shear failure. The work of McLintock and Walsh
introduced a third regime of closed crack failure. In general, however,
the 1imits of the open crack and closed crack regimes do not coincide.
This is apparent when the Mohr envelope is constructed (Figure 2.3).

In this thesis, the author has chosen to define a transitional regime

between open and closed crack shear failure, which is shown in Figure 2.3.
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The criteria for failure are often quoted in terms of maximum and

minimum principal stress (with compression positive).

Here they are

described in terms of maximum shear stress and mean stress, representing

the radius and centre of the Mohr circle respectively, with tension

positive, in line with their use in the subroutine ELFAIL of the finite

element library FELIB (see Appendix 2). The following symbols are used:

The

0, oy

T - the tensile strength
e - the
OC -
8 - the
(most tensile stress)
oy the mean stress,
L the maximum shear stress,
four failure criteria are

Tensional failure:

If 20m + 1, 2 0,

m

then failure occurs if T

with 8 = 90°

Open crack shear failure:

If 20m + 1y <0

- 2T

and o > o

m

then failure occurs if ™m

: _1 -1
with 6 = 5 cos (Im_)

20m

> T - op

2y -4Tom

coefficient of friction on closed Griffith cracks
the compressive stress necessary to close the cracks

angle between the fracture plane and the maximum stress

e



3) Transitional regime failure:
If 20p + 1, < O
and m gc - 2T
and Sy > O¢ - ZUF Tl - ac)%
T
then failure occurs if Tp? » 4T2(1 - SE) + (o - op)®
T
. ] 1
with ¢ =% tan~! (2T(1 - o./T)%)
OC = Gm
4y Closed crack shear failure:
If 20m + 1y < O
1
and am < O¢c ~ ZUF T(] - C_IE)Z
T
1
then failure occurs if . > 2T . (1 - 0.)% + up
(up2+ 1)2 T (up2 + 1)

with 8 = lz—tan'1

The Mohr envelope for open crack failure is a parabola

12 =

A4T(T - op)

and for closed cracks is a straight line

1
©o= 2T(1 + 0¢)® - woe t woy,

T
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The transitional regime represents all Mohr circles which touch
the envelope at the intersection of the two envelopes. The full

envelope for the Modified Griffith Theory is illustrated in Figure 2.3.

2.4.4 Effect of pore pressure on failure criteria

A porous solid will have an internal pore pressure if the pores
are filled with a fluid. The effect of this pore pressure has been
incorporated into rock mechanics studies using the concept of effective
stress, which was originally introduced for use with saturated soils.

If p is the pore pressure and ¢;, o,, o5 are the total principal

stresses, then the effective stresses are

g, = G: - P i=1,3 2.7

Studies of rock deformation with pore pressures present
(summarised in Jaeger and Cook, 1976) are in general agreement with
this effective stress law.

The Coulomb criterion then becomes

il = So + (o, - p) 2.8

and the effective mean stress in the Modified Griffith Theory becomes

o = - p 2.9

Consequently, for the Mohr envelope representation of a failure
criterion, the shear stress, 1, is not altered by a pore pressure but
the normal stress,o,, is reduced. The effect of this is to move the

Mohr circles towards the origin without affecting their radii. Thus
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failure will be more likely if pore pressure is present or if the pore

pressure is increased.
This concept of effective stress has been used by Hubbert and

Rubey (1959) as a means of explaining how overthrust faulting can occur.

Experimental results on the brittle fracture of rocks

Fractures in rocks can be divided into two classes: extension
fractures involving separation of a body across a surface normal to the

direction of maximum tensile stress, and faults with an offset parallel

to the direction of the fracture plane and inclined at an angle to the princi-

pal stress axes (Griggs and Handin, 1960). Extension fractures require
an absolute tensile stress and, consequently, are not common in
geological situations because of the compressive horizontal component
of the overburden pressure. Faults are seen on all scales and can be
divided into normal, reverse {(or thrust) and transcurrent faults
depending on the relative magnitudes of the principal stresses (Anderson,
1951), as illustrated in Figure 2.4.

Early work on fracture was usually interpreted using the Coulomb
criterion. The angle between the shear plane and the direction of
maximum principal stress (most compressive) is given by

6 = ® (equation 2.3)

-1
4 2

Measured values of ¢ were typically about 36°, though covering a wide
span (summarised in Heiskanen and Vening Meiresz, 1958), giving an

angle of 27° between the shear plane and the direction of maximum stress.
This is in good agreement with the observation that many normal faults

dip at angles of about 63°.
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0
<—— (&) Normal faulting

0
<—— (bl Reverse or thrust faulting

0;
€—— (c) Transcurrent faulting

Fig. 2.4: Classification of faulting
o, = maximum principal stress (most compressive)
o, = intermediate principal stress

minimum principal stress
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More recent work has shown that Mohr envelopes constructed from
failure tests on rocks are generally characterised by straight Tine
envelopes apart from a low pressure region where the envelope is concave
(Brace, 1964; Mogi, 1974). This is in agreement with the envelope
obtained from the Modified Griffith Theory (Figure 2.3). The two-
dimensional theory used here is a reasonable approximation as the value
of the intermediate principal stress has only a small effect on the
fracture (Brace, 1964; Handin, 1969). Further support for the Modified
Griffith Theory is that it is believed to be approximately correct for
other brittle material, such as glass (Griffith, 1921). Also, the
microscopic study of partially fractured material suggests that the
fractures start at grain boundaries which, in the absence of larger
scale features,are interpreted as being Griffith cracks (Brace, 1964).

Although the Griffith theory is generally accepted there are
certain areas in which considerable problems exist. The predicted and
observed tensile strengths of rocks do not agree closely, probably due
to large uncertainties in the theoretical parameters and a large range
of grain diameters (Brace, 1964), and the ratio of compressive strength
to tensile strength is in poor agreement with the theory. The angles of
the failure planes predicted by the theory may be different from those
observed. This is because a crack in a field of compression does not
propagate in its own plane but curves towards the direction of the
compression and dies out (Bombolakis and Brace, 1963; Brace and Byerlee,
1967). The development of compressional fractures is probably caused by
en echelon cracks joining up (Brace, 1964) and, consequently, a crack
array will develop an instant before the fault forms. The effect of
neighbouring cracks on the stress concentration at crack tips is

obviously an important factor, but at the present time little is known
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of this effect.

Despite these difficulties the Modified Griffith Theory seems to
be the most reasonable set of failure criteria available and it is used
Jater in this thesis. In order to use this theory it is necessary to
select values for the tensile strength, T, the coefficient of friction
between the crack faces, = and the stress necessary to close the
cracks. o.. Table 2.2 shows a compilation of tensile strengths that
have been determined for igneous rocks. A reasonable value for a hard,
crystalline rock would seem to be 12 MPa. McLintock and Walsh (1962)
compared experimental data with the theory for p equal to 0, 0.5 and
1 and o equai to 0, -3T and -15T and found a reasonable fit for
up = 1, oc = =3T. Brace (1964) found that experimental data coincided
with the Modified Griffith theory for values of uE between 0.9 and
1.5 and suggested that a value of 1 was probably not unreasonable.

Murrell (1965) suggested, from analytical work, values of up = 1.09

and oc = -4.19T. A value of 1 for ue thus seems to be a reasonable

choice. This value is larger than has been observed in rock-on-rock
sliding experiments {see section 2.6) and it has been suggested by

Ashby and Verrall (1978) that this may be because the crack faces are
serrated and key together when under compression. A value of approximately
-4T for oc, however, seems to be very small since for T = 12MPa the closure
stress is only 48 MPa. Digby and Murrell (1976) showed that a value of

oc = -10T is better and this is in agreement with some experimental
observations (Murrell, 1977). Recent work by Wang and Simmons (1978)
showed that gabbro at a depth of approximately 5.3 km in the Michigan
basin had few open microcracks. Core samples brought to the surface gave

a closure pressure of 145 MPa, approximately equal to the in situ vertical

stress. This value, supposing that the tensile strength lay between




Sample Tensile Strength Reference
(MPa)

Granite 21.0 Bracel, 1964
12.0
12.0

Trachyte 13.7 Jaeger and Cook2,
12.0 1976
24.1
25.2

Granite 14.0 Goldsmith, Sackman
11.4 and Ewert3, 1975
12.5

Table 2.2: Tensile strengths of igneous rocks

1 Range of confining pressure from 30 MPa to 159 MPa

2 Results refer to different types of test; data from Jaeger and Hoskins

(1966)

for 3 directions is 12.6 MPa

Results for 3 different directions under dynamic tension test. Average
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10 and 20 MPa, is in agreement with oc = -10T, which is the value

used in this thesis.

Friction on faults

The frictional strength of a rock can be defined as the shear
stress necessary to cause sliding on a pre-existing fracture or fault
under specified conditions of confining pressure (normal stress),
temperature, pore pressure and loading rate. It has been found by
experimental studies that the frictional strength is, to within + 10
to 15%, independent of mineralogy, temperature and loading rate and the
dominant parameter is the normal stress (Stesky, 1978).

The frictional strength is usually defined as (Byerlee, 1978)

T = UOn

o
)
4
"

A + Bop where v =B + A

although other, more complex, relationships have been proposed (e.g.
Murrell, 1965).

Experiments on rock-on-rock stiding reveal two dominant mechanisms
of slip; stick slip and stable sliding (Byerlee, 1967; Johnson, 1975).
Stick slip movement is characterised by intermittent rapid displacements
accompanied by elastic radiation and has been considered to be the
mechanism of earthquake generation on faults (Brace and Byerlee, 1967),
whereas stable sliding is a steady, uniform movement and may be analogous
to aseismic fault creep. The conditions that determine the type of
sliding are complex, but in general stick slip is enhanced by high

normal stresses, lTow temperatures, the presence of strong brittle
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minerals such as quartz and feldspar, the absence of fault gouge, and
low surface roughness (Stesky, 1978).

Figure 2.5 is a graph of shear stress against normal stress at the
onset of sliding for a variety of rock types and is taken from Byerlee

(1978). The data were best fitted by two equations:

Y
1]

0.85 ap op < 2 kb (1 kb = 100 MPa)

A
Ii

0.5 + 0.6 op 2 kb < g, < 20 kb

giving coefficients of friction

uw o= 0.85 on < 2 kb

and 0.6 + 0.5 2 kb < op < 20 kb

9n

T
i

Clearly, at high normal stresses

Values of between 0.6 and 0.85 are typical for rock-on rock sliding
experiments.

A coefficient of friction of 0.6 will require very high shear
stresses at depth for fault movement to occur because of the high
normal stresses. For movement at 15 km we can consider the normal stress
to be of the order of 500 MPa (due to the overburden). So for slip

to occur

1= 0.6x500 = 300 MPa

If this is the maximum shear stress (the least favourable consideration
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for this discussion) then the stress difference is
ap = 2r = 600 MPa

and this is probably an unrealistically high vaiue. The absence of a
clear heat flow anomaly across the San Andreas fault has been interpreted
to indicate a shear stress on the faults of no more than 20 MPa (Brune et
al., 1969). Considerations of the energy budget available for normal
faulting by Bott (1976) also suggested that the effective coefficient
of friction must be considerably lower than 0.6 for fault movement to
occur.

Consequentliy, it is necessary to propose a method of reducing the
friction coefficient for in situ faults. There are two mechanisms
available for this. Firstly, if a pore pressure is present the friction

law must be modified to deal with the effective normal stress,

T - U(On - p)

where p is the pore pressure. This will obviously result in a lower
fricticnal strength. The second method of reducing the friction
coefficient is the presence, and nature, of fault gouge. The points
on Figure 2.5 marked M,V and I, referring to montmorillonite, vermiculite
and illite, are seen to lie some distance below the best-fit line.
Clearly for these clay minerals the effective coefficient of friction
is much less than 0.6. Recent experiments by Wang and Mao (1979) on
shearing of saturated clays in rock joints at high confining pressure
found that the shear stress required to initiate sliding increases
linearly with effective normal stress, the slope (the coefficient of
friction) being 0.08 for montmorillonite, 0.12 for chlorite, 0.15 for

kaolinite and 0.22 for illite. Thus the coefficient of friction for a
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fault containing a saturated clay gouge is likely to be of the order
of 0.1. Evidence that clay gouge can exist in fault zones at significant
depths has been discussed by Wu (1978) and can be summarised in four points:
1) Pressure / temperature studies suggest that clays are stable at depth
within the upper crust.
2) Clays of the types investigated above have been found in deep mines
and tunnels.
3) Seismic and gravity studies of the San Andreas fault zone are
compatible with laboratory data on clay gouges and suggest that gouge
may exist down to a depth of 10 or 15 km (Wang et al., 1978).

) Clays have been found to be capable of undergoing sudden earthquake-

I
o
v

Tike displacements (Summers and Byerlee, 1977).

Creep mechanisms

The typical creep behaviour of a material undergoing constant stress
at a constant pressure and temperature is shown in Figure 2.6. There is

an instantaneous elastic strain (z,) followed by a period of transient

—

creep (regicon 1) during which the strain rate decreases. The change in

the strain rate is due to changes in one or more of the parameters which
affect the creep process, such as the dislocation density or dislocation
structure. As these parameters become stable a period of steady state
creep (region II) ensues in which the strain rate is constant. Finally,
the strain rate may increase -again prior to failure giving a period of
tertiary creep (region III). Any of these major regions of the creep
curve may be suppressed or enhanced depending on the material and physical
conditions. At a given confining pressure an increase in the stress

difference or the temperature enhances the rates of transient and steady

state creep and favours the steady state (Carter and Kirby, 1978).




Strain

\4

Time

Fig. 2.6: A typical strain-time curve for a creep test.

e, initial elastic strain
I transient creep region
II steady state creep region
III tertiary creep region
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Tertiary creep is favoured in a situation where one or more of the
principal stresses is tensile due to accelerated creep processes
associated with voids (Misra and Murrell, 1965). This is consistent
with the observation that an increase in confining pressure inhibits the
tertiary stage (Carter and Kirby, 1978). Consequently, tertiary creep
would not be expected to be an important factor in deformation in the
Tower lithosphere where the stress regime will, in general, be compressive
due to the overburden.

Transient creep has been described by two empirical Taws (Weertman
and Weertman, 1975; Murrell, 1976). The first of these is a logarithmic
law applicabie for small strains and temperatures less than 0.2Tg,

where Ty is the melting temperature, and has the form

£ = ag 1og (1 + vt) 2.10

where oy and v are constants and other symbols in this section are
listed in Table 2.3. The second empirical law, which applies at higher

temperatures, is of the form
e = Bt" 2.1

where the power index m lies in the range 1/3 (giving Andrade's law)
to 1/2 (Murrell and Chakravarty, 1973). B is a function of stress and
temperature and has been described by Murrell (1976), based on experimental

work, as

=

B = 85 ()" exp (- &) 2.12

where B, is a constant.

The transition to steady state creep occurs when the transient




Symbo1l Material Property
5 strain
¢ strain rate
t time
T temperature in °K
Tm melting temperature
k Boltzmann's constant
o ¢ shear stress, 03 -04
i 7
g differential stress, 9,7 9,
G shear modulus
E activation energy for transient creep
0 activation energy for steady state creep
v activation volume
P pressure
Q atomic volume
d grain diameter
8 thickness of grain boundary diffusion path
b Burger's vector
D diffusion coefficient
Dy pre-exponential diffusion constant
Dy volume diffusion coefficient
Dy grain boundary diffusion coefficient

Table 2.3: Symbols used in creep laws
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creep rate falls to the value of the steady state creep rate. This
situation has bheen seen to occur after strains of about 107 (Goetze
and Brace, 1972; Durham and Geetze, 1977).

The two most important mechanisms for steady state creep are
diffusional flow and dislocation creep. Diffusional flow involves the
mass transport of atoms by diffusional processes from one grain boundary
to another. An account of the mechanics of this process, and of others
mentioned here, is given in Nicolas and Poirier (1976). Diffusion of
atoms through grains {lattice diffusion) is known as Nabarrc-Herring
creep after early investigators of this mechanism. The steady state

equation is [(weerifman and Weertman, 1975)

é = (_Y.DQ - Og 2.13

where o 15 a constant. Temperature and pressure affect the creep rate
primarily through the diffusion coefficient, D, which is given by

(Weertman and Weertman, 1975)

where D, is a constant. Mass transport can also take place along grain
boundaries, through grain boundary diffusion. This is called Coble creep
and its effect can be incorporated in equation 2.13 by replacing the
diffusion coefficient, D, by an effective diffusion coefficient, Deff

(Stocker and Ashby, 1973; Ashby and Verrall, 1978), giving

¢ = 42 Dygf Q.0g 2.15
d2kT
where Dgee = Dy [ 1+ 76 (Dg )] 2.16
d
- (D)
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[+]

Since the strain rate depends linearly on the stress this mechanism

is essentially Newtonian and can be simplified to

c =

_]NCS 2]7
2n

where the viscosity, n, is a function of temperature and pressure:
n = n(T,P) 2.18

Disleocation creep is controlled by the movement of dislocations
and is generally divided into dislocation glide and dislocation climb
depending on the nature of the movement (Weertman and Weertman, 1975;
Nicolas and Poirier, 1976). The mechanisms predict a steady state

creep equation of the same basic form

¢ = A' DGb .(gi) 2.19

kT

where A' is a constant. If the cells between which the dislocations move
are thought of as small grains, then dislocation creep can be interpreted
as a kind of diffusional flow. Since the cell size depends on stress
the creep is no longer Newtonian. Observations on metals show that the
cell size, d, is given by

d = G 2.20

b Og ‘
Inserting this into equation 2.13 for diffusional flow, and using the

relationship

Q@ = bl 2.21

gives equation 2.19 for dislocation creep (Ashby and Verrall, 1978).
The power index, n, can be estimated for olivine by substituting for

the parameters in equation 2.19. n has the value of ~3 for climb-
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controlled creep and ~5 for glide-controlled creep, which occurs at

higher stresses. The constant A' is also different for these two mechanisms.
Since the strain rate for these processes depends on some power

of the applied stress, these mechanisms are often referred to as power

law creep and expressed in a simplified form of equation 2.19

¢ = Aexp (-Q* PV) o 2.22
kT

Experimental results on creep of rocks

Trensient creep parameters for crystalline rocks deformed to
strains less than 1077 have been determined by Misra and Murrell (1965),
Goetze (1971), Goetze and Brace (1972) and Murrell and Chakravarty (1973)
and a useful summary of their results is given in Carter and Kirby (1978).
Transient creep is not used in this thesis (see section 2.9) and their
values are consequently not quoted here.

High temperature, steady state creep in olivine and olivine-rich
rocks has been investigated by many workers. In general their results
have supported a power law creep mechanism and have been interpreted

in the form

Mo

= Aexp (-Q) o" 2.23
kT D

where op is the differential stress. Their results are summarised in
Table 2.4. In order to make references to the original papers easier,
the values are quoted in the traditional units. Equation 2.23 differs
from the previous equation in that the pressure effect is not included
in the exponential term. The activation volume, V, is poorly-known and

experiments are usually performed at a constant confining pressure.
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Weertman (1970) has suggested using the empirical relation

exp (-Q + PV) = exp -g Tm) 2.24

where g is a dimensionless constant and T, is the melting temperature
at pressure P. However the activation energy and volume must still be
estimated in order to calculate g.

Experimental results together with theoretical calculations of strain
rates based on the physical properties of a wide variety of materials
enable deformation maps for olivine to be plotted (Stocker and Ashby,

1973: Ashby and Verrall, 1978). An example of these is shown in Fiqure 2.7,

taken from Stocker and Ashby (1973) and also discussed by Goetze (1978).

Discussion of creep laws for the lower lithosphere

The importance of transient creep in the lithosphere is not well
known. Surface loads, which usually cause small strains, may be relaxed
by transient creep processes (Durham et al., 1979). This throws
considerable doubt on steady state creep results obtained from isostatic
rebound studies. Cathles (1975) has suggested that the Fennoscandia
rebound data are inconsistent with a power law with n significantly
greater than 1. The same data (with different assumptions) were used by
Post and Griggs (1973) to support their power law with n equal to 3.
Weertman (1978) has pointed out that the total strains during rebound
are of the order of 10-3 and consequently should not be considered to
be produced by steady state creep. Goetze and Brace (1972) have suggested
that the extrapolation of transient creep data to the much lower strain
rates observed under Fennoscandia is too great to be reasonable. Strains
resulting from tectonic stresses acting on lithospheric plates may be

associated with an initial transient period. The length of this transient
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will depend on factors such as the amount of pre-straining (Durham
et al., 1979) and other physical conditions (Carter and Kirby, 1978).
Because of this uncertainty, and because of the long term tectonic
stresses considered to be acting on the 1lithosphere, transient creep
will not be used in this thesis,

Two mechanisms of steady state creep will be considered. The first
is Newtonian, and is expressed as

1 o 2.25
2n° S

.
£ =

where tne viscosity, n, i1s regarded as a constant. The experimental
evidence and the deformation map (Figure 2.7) both suggest that
diffusional flow will not be the dominant mechanism in the lower 1itho-
sphere. Nevertheless, considerable numerical work has been done using a
creep law of this form (e.g. Kusznir and Bott, 1977) and since it is
the simplest it is useful for investigating the effect of viscosity
contrasts between the lower crust and the upper mantle, which could be
concealed by a more complex Taw.

The second mechanism that will be used in this thesis is power law

creep of the form

Q) ()" 2.26

e = A exp(
The deformation map of olivine (Figure 2.7) suggests that for the
temperature and stress ranges applicable to the lower 1ithosphere, this is
the most appropriate Taw. For use in the analysis, equation 2.26 must

be written in tensor form (as must equation 2.25) and this is discussed

in Chapter 3. The effect of leaving out the pressure term, exp(-PV),
kT
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in equation 2.26 is not significant for lower lithosphere pressures
when compared to the accuracy of the other parameters. The effective

viscosity can be defined as

"eff T8

[

S 2.27
£

Two power Taws will be used: one based on dry olivine for the
upper mantle and the other based on quartzite for the lower crust. A
value of 125 kcal mol~! (523.25 kJ mo1~1) for the activation energy
for olivine is considered to be a reasonable value (Goetze, 1978).
A value of 2 for the exponent n is a common choice and agrees fairly
well with the experimental data and with theoretical considerations.
The value of the pre-exponential constant, A, is more difficult to
select. Experiments can only be performed at strain rates greater than
about 1077, so for their results to be applied to the mantle extrapolation
of at least six orders of magnitude is necessary (Goetze, 1978). It is
not kncwn how sensitive this extrapolation is and, consequently, the
method used here is simply to assume a value for A which gives realistic
effective viscosities for the lower lithosphere and, in the case of the
mantle, the asthenosphere. Taking a value of 10° s -1 k™ for A in
the creep law for the mantle gives

e =10% exp (-125 kcal mol™!) o2 2.28
kT

which is within the range of values given in Table 2.4. This equation
is plotted in Figure 2.8 for a range of stresses between 1 MPa and
200 MPa (0.01 to 2 kb) and for temperatures applicable to the upper,

central and lower parts of the lithospheric mantle. The enclosed portion
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Fig. 2.8: Effective viscosities derived from the creep law for the
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of Figure 2.8 indicates the likeliest range of effective viscosities
for the lithosphere (Walcott, 1970; Sleep and Snell, 1976) and the
effective viscosity calculated from equation 2.28 in later models
will be censtrained to lie within the Timits 1022 Pas to 102% Pas .
The value chosen for the pre-exponential constant agrees also with
the range of effective viscosities thought to be representative of
the asthenosphere. Taking the asthenosphere temperature to be 1300°C
and the shear stress to be 1 MPa (0.01 kb), equation 2.28 gives an
effective viscosity of 1.2x1020 Pas and this is a typical value
for the asthenosphere (Kirby and Raleigh, 1973).

Assigning values to creep parameters for lower crustal material
is even more difficult. The only data come from Parrish et al. (1976)
for quartzite, and here the wet quartzite data give effective
viscosities that are much too low and the dry data give viscosities
much too high. It also seems likely, from the value of the stress
exponent, that the large stresses used in the experimental work on
dry quartzite (Heard and Carter, 1968) has resulted in a creep mechanism
of the type where n is equal to 5. A value of 64 kcal mol™! {267.90
kd mo1-1) is taken for the activation energy and 3 for the stress
exponent. The constant A is assigned a value lying between the two
values given in Table 2.4. It should be realised here that extremely
large error bars are attached to the tabulated values (Parrish et al.,
1976). The creep law is therefore

e =102 exp (-64 kcal mol 1) ol 2.29
KT

This equation is plotted in Figure 2.9 for a range of suitable temperatures

and stresses. This law gives values which 1ie between the wet and dry
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Fig. 2.9: Effective viscosities derived from the creep law for the
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quartzite laws of Table 2.4. Again, the effective viscosity is

constrained to lie hetween 1022 Pas and 102“ Pas .
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CHAPTER 3

SINITE ELEMENT ANALYSIS

The anzlysis of stresses and displacements in a continuum involves
the solution of differertial equations with prescribed sets of boundary
conditions. If the model is sufficiently simple these can be solved
analyticaily. For geodyrnamic and geophysical problems the material
properties of the continuum and the boundary conditions are often complex,
with both laz=+al and vertical variations, and te solve the equations
analytically usually involves unrealistic simplifications. For this
reason it 15 necessary to use numericail solutions. One of the most useful
techniques, which has been used extensively for engineering problems and,
more recently, in the geological sciences, is the finite element method.
This involves the construction of a set of simultaneous equations based
on the differential equations and the boundary conditions of the problem,
which are then solved using a digital computer. This chapter describes
the use of finite element methods for elastic and visco-elastic
analysis. Finite element programs to perform this type of analysis do
exist at Durham University (Kusznir, 1976; Woodward, 1976), but the author
has chosen to write his own program. This was done for two reasons.
Firstly, it was felt desirable to have the program in the form of a
subroutine library and a master calling program, which allows considerable
flexibility and makes the addition of new subroutines straightforward.

A program of this type was not available. Secondly, the programming of
a finite element package results in considerable insight into the method.

The subroutine library, FELIB, and the calling program, FEGEN, are listed
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and described in Appendix 2 together with a test of the program.

Elastic finite element analysis

3.2.1 Theory
The application of the finite element method in this thesis involves
the study of stress and strain distributions in two-dimensional elastic
continua. This is described in detail by Zienkiewicz (1977) and his
formulation is followed in this chapter. The plain strain approximation
is used, whereby the strain in the direction perpendicular te the plane
of the mode] s cdefined to be zero. This is a reasonabie constraint for
use with cross-sectional models through structures which are very long
in the third dimension. The equations relating stress, strain and displace-
ment in an elastic continuum are described in many texts (e.g. Housner
and Vreeland, 1966; Jaeger and Cook, 1976) and will not be derived here.
If the displacement vector for any point in an elastic continuum

is

T
L

where u,v are the displacements in the two dimensions of the model (x,y),

then the strain tensor {e} is defined as

( a_u 3
€y ax
_ B 3V
{E} = Ey = 5—; $ 3.1
XY ou , av
ay BXJ

since for plane strain ey = yyz = yyz = 0
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The stress tensor {0} is related to the strain tensor by the equation

< |
{o} = a f = [D]({e} = {eg}) + {ag} 3.2
\Txy/
where {eq} is the initial strain tensor, {og} is the initial stress
tensor, and [D] is the elasticity matrix for plane strain given by
' -
1 v 0
{ - T _\)____
] = E(1 - v) =5 1 0 3.3
(1+v)(1-2v)
0 0 1-2v
2(1'\))J

where E is Young's modulus and v is Poisson's ratio. The stress necessary

in the z-direction to maintain plane strain is

>

At one point in this thesis (Chapter 6), the plane stress approximation
is also used, whereby the z-stress is constrained to be zero. In this case

the elasticity matrix becomes
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I[f a system of forces is now applied to the continuum, consisting
of distributed boundary forces, {q}, and distributed internal forces,
(b}, then the governing equilibrium equations for the continuum can be
obtained by minimising the total potential energy of the system with
respect to the displacements caused by the loading. The variational
approach to extremum problems of this type (Lanczos, 1949) is to consider
the virtual quantities §{f} and &{e}:

then
W = j é{f}T {by dV + f s{f}T {q} dA 3.5
Y A

where W is the potential energy of the applied loads, and
sU = J S{E}T {o} dV

where U is the strain energy.

Substituting equation 3.2 into 3.5 gives
. T T T
sU = | 8{e} D) {e} dV - | s{e} (D] {ep} dV + | &{e} {op} dV 3.6
v v v

From equations 3.5 and 3.6

W = [ {f}T {b} dv + J {f}T {g} dA
v A
o= g fe o) e e - [ D g av s [REIRCAE
\ v \%

and the total potential energy, =, is the sum of these,
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(£} {b1dv

=
B
o —

J e} (D] 1}V - J (e} (D] {eqldV + [ fe} {ogHdV +

< e

s (i (A 3.7

I3t

This function must now be minimised with respect to the displacements,

3.8

@

=
1]

o

Q>

=
)

N

For an elastic continuum this is not only a stationary value but
is a true minimum.

In order to solve these equations it is necessary to constrain
the displacement vector {f} to consist of a finite number of parameters.
In the finite element method this is done by subdividing the continuum
into a discrete number of elements which are interconnected at certain
points on their boundaries, termed nodes. The solution of equation 3.8
in the context of nodal displacements will now be described. This is
the displacement method and for a more complete description the reader
is referred to Zienkiewicz (1977).

A typical triangular element, e, with nodes i,j,k at the corners
is illustrated in Figure 3.1. Each node has displacement u in the x
direction and v in the y-direction. If the nodal displacement vector is {d},
then

e

(£1% = IN1® (dy where superscript e refers to element e




v
k

k)

where [N]e is termed the element shape function and its components

are prescribed functions of position within the element:

=
"

(aj + bix + ciy) / 2A

where a. = Xiyk - Xkyj

=

bi = ¥j - Yk

Ci = Xk < Xj
!
| X9 ¥y
26 =11 Xj 0 Y5 T 2 x (element area)
1 Xk yk

are obtained by cyclic permutation.

and N, and N,
\) )
The strains at any point within the element are given by
N M2 l
X 3X 0 e
ey = 3 u e
Ey = O 5‘; = [L] {f}
, 3 3 v
Xy 3y X
Y |
So from 3.9
(e1® = I IN®d® = (B1% (®

where [B1€ is a matrix mapping nodal displacements into strains.
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Fig. 3.1:

Triangular element

Fig. 3.2:

J(0,)
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Mm{X., Ym)

Triangular element with one side subjected to a

linearly varying pressure,
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Evaluating [L] [N € gives

So the strain within the element does not depend on the position
of the point considered,i.e. the element has a constant strain. This is
a consequence of having a linear shape function (equations 3.10). Elements
having mid-point nodes will have a quadratic shape function and will give
rise to linear strain elements. These more advanced elements give more
accurate soiutions but require a considerable increase in computing
time and numerical integration techniques.

The stresses at any point within the element are given by

{0)%= oy = 01° (1) - 160)®) + {0p)®
Txy
with [D}e as given in egquation 3.3.
Substituting for {f} and {e¢} in equation 3.7 and summing over all

elements gives the total potential energy of the system

- [ (d17 1817 (D] [B]{d}dV - [ (d17 (81" (D] {eq3aV + J (@) (8] (og)av +
v \

"
j (T I T iblav + J 11T N1 Teq1dA 3.14
v A

and performing the differentiation of equation 3.8 gives
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(o T T
51" 0] (81 tarav - | (81 (D} (eg)av + J 8] {op1dV + J (N {b1dV +
v \Y Vv

N {q}dA = O 3.15

|
Jf

This can be simplified to the basic equation of the displacement method

(K] (dy = (F} 3.16
where
K] = J 817 0] (8] av
\
{Fy = J 1817 (D] {eg)aV - [ 8] (5p1dV - [[N]T{b}dv - J IN]1q}dA
v v v A
= {F}EO - {F}OO - {F}b - (F}q 3.17

[K] is known as the stiffness matrix.

3.2.2 Application
The use of constant strain triangular elements leads to certain
simplifications in the expressions of equations 3.16 and 3.17. If (k1€

is the stiffness matrix for element e, then

#H

K]® [([B]e)T (01° (8] av

- J (81%)7 0% [B1% ¢t dx dy
A

where t is the thickness of the element and the integration is over the
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element area. If the model is considered to have unit thickness, then
since [B] and [D] do not depend on position,

i

81°% & 3.18

e

K% = (3157 [
where A is the area of the element.

It is usual to form the element stiffness matrices as given by
equation 3.18 and then add them into the global stiffness matrix, [K],
in their correct positions as determined by their node numbers.

Similar considerations lead to a simplification of the element

force vectors due to initial strains and stresses,

(F1S = (815" 01° (eg)® &
0 ot 3.19
P, = (8157 ()% s

and these are added intothecorresponding global force vectors.

Distributed internal forces usually take the form of gravitational

body forces. In this situaticn
0
{bt = { ,} where o is the density of the element and g
_pg _

is the acceleration due to gravity, and

Fy = J ()T {_Sg}rdv

v

e.,T ] O
i (INTT) {-og} dx dy

i
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Therefore, for node i

Ff ° } [ ax ay | 3.20
b L -p9
and from equation 3.10
e 0
F;3 = { } { (a; + bix + CiY)/ZA dx dy 3.21
b - g

Now defining the origin of the element co-ordinates at the centroid
gives
x dy dy = [y dx dy = 0

.

A A
So from equation 3.21

| 0
(F.° —{
b -09

I
—
|
© (@)
«©
N —— S~— N —

A since a; = aj =ag = 24 3.22
3 3

i
"
1
© (aw]
[{a]

and similarly for nodes j and k.
Therefore to apply forces due to gravity it is sufficient to apply

one third of the weight of the element at each node,

-pg/3

F} ¢ = 5
) ~0g/3 | 3.23

-pg/3
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The global body force vector is now formed by adding in all the element
body force vectors,.

The stiffness matrix [K] is symmetric, positive definite and
handed. Consequently, it is not necessary to store the entire matrix.
The finite element grid is drawn so that boundaries between different
material properties correspond to element boundaries. The band-width
of the matrix is dependent on the largest difference between any two
nodes on any element. Careful numbering of the nodes enables the band-
width to be kept as small as possible, which requires less computer
storage. Various methods exist to solve equation 3.16 and can be found
in most numerical analysis program libraries. The method used here is
Gaussian elimination and the basis of this procedure is described in
many texts (e.g. Kreyszig, 1972). The subroutine which performs the
elimination is contained in the HARWELL scientific subroutine Tibrary
(Hopper, 1973) and is very suitable for situations where many solutions

from the same matrix are required.

3.2.3 Boundary conditions

In order to obtain a unique solution from equation 3.16 it is necessary
to prevent rigid body rotations and translations. This is equivalent to
ensuring that the stiffness matrix is non-singular. Rigid body translations
are prevented by prescribing at least one fixed x and y displacement. In \
the event that these are both applied at the same node it is necessary
to prescribe at least one other fixed displacement to prevent rotation.

The best method of prescribing a fixed displacement to a nodal point
is to set the diagonal element of the matrix (K] and the component of
the force vector., {F}, corresponding to that node to a suitable value.

The remainder of that row of (K] is set to zero. For instance, if the
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x-displacement of the ith node is to be set to a, then the above

operation replaces the original equation by
Cdxi = ca where ¢ is a constant.

The routine used in this thesis to solve equation 3.16 requires
the whole band-width of the matrix to be stored. If only the semi-
band-width is stored it is necessary to set the rest of the column to
zero also and adjust the force vector in order to preserve the symmetry
of the stiffness matrix (Hinton and Owen, 1977). The other type of
boundary condition is boundary stresses, for instance a lithostatic
pressure acting on the sides of the model. Then, in order to calculate
the forces that have to be applied at the nodes it is necessary to

perform the integration

Py - J[N]T fq) dA (from equation 3.17)
A
Suppese a linearly varying pressure is to be applied along one
side of an element, e, as shown in Figure 3.2. For this calculation
the origin of the x-axis is defined to iie along the side ij in order
to simplify the integration. The pressure along the side ij is a linear

function of y and can be expressed as

q(y) = (a5 - aj). (¥j - ¥) + g5 Yi >y 2 VY;
(¥Yi - ¥j3)
= ay + B 3.24

where o = gi-q3, 8 = qj¥{-4i¥;j
Yi-¥j Yi-yj
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Now the x-component of the force vector to be applied at node i is

FY = 1 Njq(y) dA 3.25
A
Assuming the model has unit thickness and substituting equations

3.10 and 3.24 into 3.25 gives

Yy
F? = ([(ai + bix + cjy)/2a) (oy + B) dy
¥
Now x = 0 everywhere along side ij so the integral can be simplified to
Yi
-1
F? = 5 J (ciay? + (a0 + ciB)y + a.g) dy 3.26
1 )
- % [%_ (vi® = ¥3°) + (aia + ciB)(yi? - ¥52) +
aiB(yq - Yj)jl 3.27
Now 3 = Xy¥m - XpYj
= -“XmYj since x; = 0
and Ci = Xy T Xy
= Xm

Substituting for a5 Cy» @ and 8 in equation 3.27 gives

Fio= _xp (vi - ¥3)2.(2a5 + aj)
i T?% 1 J i J
and xpl(y; - yj) = 2A = 2 xarea of element

X

Fio= vy - y3)-(205 + qy) 3.28

and similarly
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So these equations give the forces necessary to apply to nodes i,j
to represent the pressure q(y). It can be seen that F§ and F§ added
together are equal to the total pressure applied on side ij, as is
to be expected.

An impertant constraint on some models is the presence of an
underlying fluid. In this situation it is necessary to have an
isostatic compensation effect which dampens the displacements at that
boundary (Dean, 1973). Suppose the base of the model is characterised
by m nodes, b; ----by, where b; is the first node and b, is the last
node. Then, if the displacement of the i th base node in the y-direction
is Vbi and the density of the underlying fluid is op, the isostatic
restoring force on that base node is

F). = oAV
ey, by 'b;

where Ab- is given by
i

(o em3(]x(by) - x(byy)]) =
2
Ao = f eng(]x(bis) - x(b9)] + [x(by) - x(b, )]) 1<i<m
2 2
L apa(x(oy) = x(bsg)) o
2
3.29

In matrix form this is

tFry = [A] {d} 3.30

where all components of [A] are zero apart from the diagonal elements
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which refer to y-displacements of base nodes whose values are given

by equation 3.29 .

force vector in equation 3.16 gives

(K}1{d}

(K] + [A]){d}

{F}
{F}
{F}

+ {F)
- [A] (d)

Incorporating this force vector into the total

So adding the matrix [A]into the stiffness matrix introduces the

required isostatic forces. This addition also removes one set of

Tinearly dependent equations from the matrix

[K] making it no longer

3.31

necessary to prescribe a y-displacement to prevent rigid body rotations

and translations.

3.3 Visco-elastic finite element analysis

In Chapter 2 the importance of visco-elastic behaviour of lower

crust and mantle material was discussed. A method of time-dependent

finite element analysis will be discussed here, firstly for a simple

Newtonian viscosity and then for a power law creep rheology.

An initial elastic solution enables the stress tensor in each element

to be determined. If any deviatoric stresses exist,and the material is

visco-elastic with viscosity n, then the creep strain rate components

are

3.32
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where {c'} is the deviatoric stress tensor

t
ag - g

o)( X m

1
ag c ~ C

t = y = y m o =lO + g + g
{OJ 11—' . 9 m 3( )

| “xy Xy

t
a a - g
\Z J L Z m/

The total creep strain occurring after a time step t is given by
the simple integration

le ) = {ec} t 3.33

The method used in this thesis for visco-elastic analysis is
the initial strain method (Zienkiewicz et al., 1968; Zienkiewicz, 1977)
whereby the creep strains are treated as initial strains and the force
vector corresponding to these strains,{F}EO , 15 added into the total

force vector and the equation solved again to give the new stresses.
{o} = [0] ({e} - {eg})

For the plane strain condition, the total strain €, must be zero.
Since the presence of a deviatoric stress in the z-direction results
in a creep strain (ez)C it is necessary to make the elastic strain

<€z)e1 equal and opposite in sign to the creep strain so that

e, = ledey o) = 0

The initial strain method consists of the following steps:
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1) Apply the load {F} at time t = 0 and calculate the stresses {g,}
using elastic analysis.

2) Assume these stresses and the material properties remain unchanged
during the first time step t1. For each visco-elastic element
calculate the creep strain {ec}e at the end of the time step using
the equations 3.32 and 3.33.

3) Set {eo}e = {ec}e and calculate the initial strain force vector

for each element

(F18 = (88 (01" (eg)® &
where ] o v 0 |
-v 1-v
(01" = E(1-v) M1 v 0
(T+v)(1-2v) | 17V 1-v
0 0 0 1-2v
i 2(1-v) |

Add in the element force vectors to the global force vector

fFr_ = A®
=0 elems 0

and add this into the total force vector to give the new vector

{F}, = {F} + ({F}

€0
4) Using this new force vector resolve the equation and calculate the

strains at the end of the time step setting

(ez)el -

so that «¢ =
z
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Calculate the stresses using

{o};= [D]" ({e} - {gg})

where M v v 0
T-v T-v

“x v 1 v 0
5 T-v 1-v

o}, = ¢ 7 and  [D]" = _E(1-v) v v 1.0

a, (T+v) (1=2v) [T-v T-v
0 0 0 _1-2v
L Xy 2(1-v) |

5) Calculate the mean stress during the time step by averaging the
stress at the beginning (from 2)) and the stress at the end (from 4)).
Use this to recalculate the creep strain during the time step. Repeat
steps 2), 3), 4) and 5) until the mean stress converges to a
reasonable value.

6) Assume these final stresses and the material properties remain
unchanged at the start of the second time step, t,, and continue
as in step 2).

7) Repeat from step 2) for all remaining time steps.

If the time step, t, is too large then deviatoric stresses will
not only be relaxed but will 'overflow' giving incorrect answers.
Consequently, the creep of a time step must not exceed the deviatoric
elastic strain. This condition enables a maximum length of time step

to be calculated: the x-component of the deviatoric elastic strain is

- va!

(ex)er = ii

2y
£ €

.z
E
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and the x-component of the creep strain is

N S
(Ex)c T 2n % t
Equating these gives
t = 2n - 2nu.o. - 2nv.o£
E E Iy £ Oy

and since the stresses are deviatoric,

Similarly the maximum time step calculated from the y- and z-components

will also have this value.

For the xy-component,

(Yx§)e1 = 2(1+v) Tx&
E
(ny)c =1 Tiy t
n
t = 2n(1+v) , as before.
E

So a consideration of all the strain components shows that the

maximum time step is

t = 2n(14v)
E
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The jnitial strain method can also be applied for a power law
creep rheology. The creep equation that will be used has been discussed

in Chapter 2 and is of the form

e=Aexp (-Q) 02
kT

For use in the analysis the equation must be cast in tensor form and

the individual components of strain rate and deviatoric stress must be

related linearly (éii 9y not éij « (01j)n) because steady state

dislocation creep does not alter the volume of material (Stocker and

Ashby, 1973). This is equivalent to saying that the rate of dilatation

ékk (summation convention implied) is zero. The equation is expressed as

.t n-1
81'3' = A exp (- ) (?) O'ij 3.34

Q
kT
where T will be termed the effective deviatoric stress. It is necessary
for 1 to be invariant so that the choice of axes does not affect the

effective viscosity or strain rate. t is chosen to be the sguare root

of the second invariant of the deviatoric stress tensor

T o= (Jz)%
= (1o o.f)% (summation convention implied)
2 13 1]
[ e 12 12 2 2 2 1%
= (Ox+0 +O)+Txy+'[' +'rx]
Referring to principal axes,
— ] 12 [ 12 %
To= [5 (012 + 0% + o3 ﬂ

It can easily be seen that in the event of one of the deviatoric
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stresses being zero, equation 3.34 gives the correct relation between
the strain rate and the deviatoric stress.

Equation 3.34 gives the following creep strain rate components

. —n-1
(¢) = Aexp (-Q) ()" 'o!
x’c LT X
. - _ —n-1
(ey)e A exp ( %) (1) "oy
3.35
. —n-1
(gle = 2R e (-0) ()" s,y
. —n-1
(e,). = Aexp (-Q) (x) 0.
z’¢c T z
So by analogy with equation 3.32, the effective viscosity is
nogs = 1 e (Q) (7)1 3.36
2A kT

The method proceeds as described earliier, except that for each
iteration of each time increment the temperature of the element and
the deviatoric stress tensor are used to calculate the effective
viscosity of that element. As discussed in the previous chapter, this
is constrained to lie within the Timits 1022 Pas (1023 P) and 102* Pas
(1025 P) and, consequently, the maximum length of time increment that
can be used, as calculated earlier, must correspond to a viscosity of

1022 Pas .

3.4 Stress system re-creation

It is often useful in finite element analysis to be able to re-create
a stress system that has been arrived at by visco-elastic analysis over

a long period of time, by an instantaneous elastic solution. This is
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particularly true in this thesis where the development of a graben

is followed through a number of stages involving changes in the

boundary conditions and also in the finite element grid (see Chapter 6).
Suppose a visco-elastic model has been run for some length of

time, t, using the intial strain method as described in the last section.

Then the total nodal force vector at the end of this time period is

equal to the applied force vector plus the sum of the initial strain
force vectors for all the the time increments,

{F = F + {F

} { }app Z }Eo
time
incs

This can be stored after the last time increment. Similariy, the total
initial strain (or creep strain) tensor can be stored.

If an elastic analysis is now performed on the same model using
the total force vector as the applied forces and subtracting the total
initial strain tensor from the calculated strain tensor, then the system
of stresses and elastic strains that existed after time t of the visco-
elastic analysis will be re-created. The stress system will not be
identical because of successive very small differences arising from the
incremental nature of the original solution. However, it is very close
to it, as is demonstrated in Chapter 6.

This method is discussed and illustrated, with reference to small

alterations to the finite element grid, in Chapter 6.
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CHAPTER 4

STRESS AMPLIFICATION AND THE DEVELOPMENT OF NORMAL FAULTING

Introduction

In this chapter finite element analysis is used with a model
derived from Chapter 2 to investigate the response of the 1ithosphere
to tensional stresses. The first part of the chapter discusses the
application of body forces and the types of boundary conditions that
can be used. The remainder of the chapter deals with the long term
response of the lithosphere, using both Newtonian visco-elastic and
power-law creep rheologies, to applied tensional stresses. The failure
criterion discussed earlier is used to predict the onset of faulting,
and the stress system present at the time of faulting will be carried
through the thesis to Chapter 6 where it will be re-applied to a model

containing a fault.

The finite element model

The finite element grid used in this chapter is illustrated in
Figure 4.1. The model is divided into upper crust, lower crust and
lithospheric mantle as discussed in Chapter 2. The physical properties
of the model are summarised in Table 4.1.

The grid used is 4,000 km long, but most of the graphical output
will refer to the central 400 km. In this thesis graben formation within
plates rather than at their edges is being investigated and consequently
it is necessary to have a very long grid so that the bending stresses and
vertical displacements that occur at the edges of the plate in response

to applied horizontal stresses (Kusznir and Bott, 1977) do not affect the
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|
Depth Range 0 v E Rheology
(km) (kg m™3) (Nm~2)
Upper crust 0 - 20 2,750 0.25 | 0.85x1011l Elastic i
Lower crust 20 - 35 2,900 0.25 | 1.08x10tY Visco-elastic %
| |
Mantle 35 -100 3,300 J’ 0.25 | 1.80x101Y Visco-elastic J

Table 4.1: Physical properties of the finite element model.

centre of the model. The central section of the grid is fairly complex.
This is so that a fault can be introduced into the grid, as will be seen

in later chapters. The base of the model is assumed to be underlain by

a fluid of density 3,300 kg m™3 and the boundary condition at the base

is the isostatic compensation procedure discussed in Chapter 3. To prevent
horizontal translation of the model, the central node on the base is fixed
in the x-direction. Since this lies on an axis of symmetry, this prescribed
displacement will not distort the results. The plane strain approximation
is used in Tine with later chapters where the model will represent a
section through a fault or graben which is long in the direction

perpendicular to the plane of the model.

Body forces and the lithostatic stress assumption

The stresses present in the lithosphere can be divided into two
types: stresses due to gravity and tectonic stresses. Residual stresses,
caused by earlier tectonic events, will not be considered here. In this
section the stresses present as a result of the body forces (i.e. gravity)
will be discussed. For a horizontally layered model with a flat surface

the state of stress at a given depth will be constant across the model.
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It seems reasonable that one of the principal stresses will be vertical
and be due to the overburden of material,

h

a, = [ o gdh (y axis is vertical)
0

where p is the density of the overlying material and g is the acceleration
due to gravity. The lithostatic stress assumption is that the two
horizontal principal stresses are also equal to this value.

h
g, = a0, = g, = J’ogdh

0
Since this stress system is hydrostatic (o, = oy = oz) there are no
deviatoric stresses. This assumption has been used by many workers on
rock mechanics (Jaeger and Cook, 1976) and has been discussed by
Collette (1976). It can be argued‘that over long periods of geological
time, creep in the lithosphere will tend to result in this stress
distribution as the deviatoric stresses relax. In situ stress measurements
(Ranalli and Chandler, 1975) are of 1Tittle use when discussing stresses
due to gravity at depth because they can only be determined for depths
to about 1 km and include stresses due to topography and residual stresses.
Surface relief and lateral variations in density result in deviatoric
stresses (Bott and Dean, 1972; Artyushkov, 1973; Bott and Kusznir, 1979)
and in these situations the state of stress due to gravity will not be
lithostatic. For the plane layered model of the lithosphere shown in
‘Figure 2.1 and investigated by finite element analysis in this chapter,
however, the lithostatic stress assumption is considered to be valid.
Clearly, whilst using a horizontally layered model it is not necessary

to incorporate the lithostatic stresses into the analysis since they can
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be easily calcuiated and added into any stress system resulting from
the applied tectonic forces. It is, however, interesting at this point
to examine how a lithostatic stress distribution can be brought about
by the application of body forces.

Figure 4.2(a) shows the principal stresses, plotted to scale
and at their principal orientations, resulting from the body forces with
the sides fixed in the horizontal (x) direction. For this plot, and
all similar plots throughout this thesis, broken lines represent tensile
stresses and full lines represent compressive stresses. The principal

stresses are aligned approximately vertically and horizontally. Since

+

the elements used are constant strain elements (and therefore also constant

C

stress) the stresses shown are those acting throughout the elements. The
vertical stresses are Tithostatic for a point close to the centre of the
element. The horizontal stresses, however, are only approximately one-
third of the lithostatic stress. This situation is a result of the
boundary conditions applied to the edges of the model. By fixing these
in the x-direction the strain in that direction is constrained to be
zero.

Therefore e =0= -

x0T vy vy
E E E

Now, for the plane strain condition

and since v = 0.25
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oy = ‘%'cy as observed.
This stress system is unreasonable because of the very large deviatoric
stresses present near the base of the lithosphere (Figure 4.2(b)).

Figure 4.3(a) illustrates the stress system resulting from the
body forces with horizontal lithostatic stresses applied at the edges.
As can be seen, the in-plane principal stresses are more nearly equal,
although considerable deviatoric stresses still exist near the base (Figure
4.3(b)). There is, however, a more serious objection to this approach.

Suppose edge stresses were applied such that the in-plane stresses were

equal,
h
Oy = Oy = [pgdh
Then °
az = v(ox + oy) (plane strain condition)
h
= ZvJogdh
0
So, for v = 0.25 h
o =%ngdh

0

Consequently, even if the in-plane stresses were equal, considerable
deviatoric stresses would still exist because of the value of the
z-stress necessary to maintain plane strain. Clearly, in this situation,
the plane strain approximation is inadequate for an elastic model held
by stresses at the edge. This is not surprising - the effect on a plate

of uniform stresses around its perimeter'wou1d be expected to approximate
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more closely to an axi-symmetric situation. Thus it is not apparent how
an elastic solution thatgives a lithostatic stress distribution can be
obtained.

It should be pointed out, at this stage, that it is possible to
get a lithostatic stress field by considering the whole model to be
visco-elastic. This is done by using the first type of boundary condition
(sides held) and allowing the model to relax so that the deviatoric
stresses are dissipated by creep. Figure 4.4(a) shows the stress system
resulting after 10 M yrs for a visco-elastic model with viscosity 1023 Pas
and body forces applied. The sides were fixed in the x-direction. The
principal stresses are aimost exactly lithostatic with values corresponding
to the centres of the elements. As can be seen from Fiqure 4.4(b), the
deviatoric stresses are very small, having largest magnitude of 0.6 MPa.
_ For the remainder of this thesis, body forces are not included in
the models. Any errors that this may introduce will be discussed in the
final chapter. The lithostatic stresses are explicitly added in to the
calculated stresses for the purpose of determining whether an element
will fail, since for failure mechanics the total stress system must be

used.

Stress vs. displacement boundary conditions

Horizontal tensile stresses can be introduced into a finite element
model of the 1ithosphere by two different types of edge constraint. The
first of these is to prescribe displacements to the edges such that the
model is strained in the horizontal direction. This is equivalent to an
instantaneous deformation. The second type of boundary condition is to
apply tensile stresses at the edges. The method of determining the nodal
forces to be applied on the edge nodes has been described in Chapter 3.

This type of constraint is equivalent to a constant stress over time.
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These two types of boundary condition have a fundamentally different
effect for the situation where the lithosphere consists of an elastic
layer overlying ductile material, as has been pointed out by Kusznir
and Bott (1977). If a tensile stress is introduced into the model by
displacement boundary conditions (i.e. constant strain) and the visco-
elastic material is allowed to relax over time, then no amplification
of stresses in the elastic layer occurs. This is illustrated in Figure
4.5 for an applied strain of 0.5 millistrains and a viscosity for the
lower crust and mantle of 1023 Pas . However, if constant stress boundary
conditions are used then relaxation of the stresses in the visco-elastic
material resuits in amplification of the stresses in the elastic layer,
as has been demonstrated by Kusznir and Bott (1977). It is this phenomenon
which will be investigated in the remaining sections of this chapter.
Consequently, it is important to apply the type of boundary
condition which is most suited to the situation being modelled. The
sources of stress which may act on lithospheric plates have been discussed
by Turcotte and Oxburgh (1976) and briefly described in Chapter 1. Of
these, the most relevant in applying tectonic tensile stress are stresses
due to the driving mechanism, stresses due to variations in crustal
thickness and membrane stresses. Thermal stresses are important in the
cooling of the oceanic lithosphere but are probably only a minor constituent
of the stress field in the continental lithosphere, although they may be
significant in the region of rift valleys where anomalously high thermal
gradients are present.
Stresses due to the driving mechanism will result from some
combination of 'slab pull' at subduction zones, 'ridge push' at mid-ocean
ridges, and traction forces from convection cells in the asthenosphere

(Turcotte and Oxburgh, 1976). Clearly these stresses are best modelled as
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a constant stress over time,i.e. by stress boundary conditions. It also
seems likely that these stresses are applied over the whole depth of the
1ithosphere.

Stresses due to variations in crustal thickness have been shown
to exist analytically by Artyushkov (1973) and by finite element analysis
(Bott and Dean, 1972; Bott and Kusznir, 1979). Crustal thickness variations
exist over long periods of time (as can be seen by the presence of very
old mountain belts) and are thus also best represented by the stress
boundary condition. These types of stresses are clearly not produced in
the models used here since there are no lateral density variations. The
depth of the iithosphere over which these stresses act depends on the
isostatic compensation mechanism. If surface relief is compensated for
by a crustal root, then the stresses will exist mainly in the crust.
Compensation by low density mantle at some greater depth, however, will
result in the stresses extending through a greater depth of the 1lithosphere.

The importance of membrane stresses to rifting is not clear. Oxburgh
and Turcotte (1974) suggest that this source may be responsible for the
East African rift system. Their calculations show a tensile stress of
up to 60 MPa being produced as a result of northward movement of the
African plate over the Tast 100 M yrs. Thus if these stresses are
important, they also are best modelled as a constant stress over time
rather than an instantaneous deformation.

Consequently, although the relative contributions of different
stress sources to the tectonic stress system is not known, the boundary

condition best suited to these sources is the stress boundary condition.
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4.5 Stress amplification: Newtonian visco-elastic rheology

The concentration of stresses in an elastic layer as a result
of plastic flow in underlying material has been commented on by
Artemjev and Artyushkov (1971) in their discussion of the formation of
the Baikal rift. More recently, Kusznir and Bott (1977) have used finite
element analysis to demonstrate this phenomenon for a two layer model
with uniform Young's modulus. In this section their work will be
extended to a three layer model with different Young's moduli which is
more realistic. The effect of a viscosity contrast between the lower
crust and the upper mantle will be investigated. In all cases the
prediction of fauiting in the upper crust as a result of stress amplification
will be studied since this can be considered to represent the first stage
of graben formation.

Many major faults and graben are situated on previous zones of
weakness. In Chapter 2 it was shown that the tensile strength of
crystalline rocks probably lies with the range of 10 to 20 MPa. In this
chapter the lower 1imit of 10 MPa will be used in order to simulate a
weak zone in the centre of the model.

For a multi-Tayer model, the stresses in the layers, at sufficient
distance from the edges, are related to the applied stress by the

expression
n
L= ) 0.8, 4.1

n
where o = } 2

and ppp is the applied stress, o; is the stress in the i th layer and

29 is the thickness of the i th layer. The stresses in the Tower crust
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and mantle, which are visco-elastic, will decay exponentially to zero
and the stress in the elastic upper crust will therefore increase

towards the limit

“ue T A0 4.2

uc —.
e APP

where e is the stress in the upper crust and Luc is the thickness of
the upper crust. If this value is greater than the stress necessary to
cause failure, the amplification of stresses in the elastic layer will
result in faulting after some period of time.

Figure 4.6 shows the time period for faulting to occur for a range
of applied stresses from 20 to 150 MPa and a viscosity of 1023 Pas for
the Tower crust and lithospheric mantle. If the viscosity is reduced by
an order of magnitude, then the failure times are also reduced by an order
of magnitude. The reverse is true for an increase in viscosity. For all
values of the applied stress, open-crack shear failure is predicted to
occur in the shallowest elements, by the Modified Griffith criteria, with
a fault hade of approximately 30°. The centres of these shalliowest elements
is at 3.33 km, and the value of the horizontal stress in the upper crust
when failure is predicted is about 86.5 MPa. This is in excellent agreement
with a direct calculation made from the theory. For the open-crack regime,
failure will occur if

2 > -4Toy

where 1t is the maxi shear str - . g
T aximum ar stress, Smax " Cmin® m 1S the mean stress,

2

Omax + Tmin® and T is the tensile strength. Note that the mean stress

must include the Tithostatic stress, which can be explicitly added in.
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Applying a tensile stress in the x-direction results in the x-stress
being the largest. The y-stress can be considered to be negligibly
small and the z-stress is the intermediate stress, which has no effect.

Therefore,

T = UX
2
h
moT x4 fogdh
2 0

For the shallowest elements, the lithostatic stress at the centre

(3.33 km depth} is -89.9 MPa, so for a tensile strength of 10 MPa

oy = 40(89.9 - o)

4 2

2 4+ 0oy - 14384 = 0

', OX
which gives

oy =86.4 MPa

For a thickness of the upper crust of 20 km and of the lithosphere of
100 km, as used in the finite element model, the minimum value of the

applied stress for faulting to occur can be calculated from equation 4.2,

oppp = 86.5 = 17.3 MPa
It is obvious from equation 4.2 that for a thinner elastic layer this
minimum value for faulting will be less and the time for faulting to
occur will also be less for all values of applied stress. The reverse

is true for a thicker elastic layer. Consequently, faulting will be
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more likely in areas of 1localised elastic Tayer thinning, such
as the Basin and Range province, than in old shield areas with thick
elastic layers. This was also noted by Kusznir and Bott (1977).
For the remainder of this chapter an applied tensile stress of
20 MPa will be used. This is within the stress levels thought to be
caused by the stress sources discussed earlier (Bott and Dean, 1972;
Artyushkov, 1973; Turcotte and Oxburgh, 1976; Bott and Kusznir, 1979).
Figure 4.7 shows the variation of stress with time in the three
layers, at the centre of the model, for a viscosity of 1023Pas for the
Tower crust and mantle and an applied stress of 20 MPa. The instantaneous
elastic stresses generated in the three layers are not equal. This is
because the layers have different Young's moduli. The relationship
between the stress in any layer and the applied stress, near the centre,

is given by

o; = Ei . Sppp 4.3

3

where o and E; are the horizontal stress and the Young's modulus for

layer i respectively, and E is a weighted mean Young's modulus given by

E = E.e. 4.4

where ¢; is the thickness of the i th Tayer. This relationship clearly

satisfies equation 4.1. For the physical parameters used in the finite

element model (listed in Table 4.1),
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FE = 1.502x101!Nm—2

and the stresses near the centre are

cue = 11.3 MPa
oo = 14.4 MPa
sy = 24.0 MPa

which are in exact agreement with the values calculated from the finite
element analysis for the centre of the model and shown in Figures 4.7
and 4.8(a). This is the explanation of the fact that although a stress
of 86.5 MPa in the elastic layer is sufficient to cause failure, an
applied stress of 86.5 MPa would not cause instantaneous failure.

The smallest value of the applied stress that would result in immediate

failure can be calculated from equation 4,3,

9APP T S

E

= E x86.5 MPa
uC

t

153 MPa

This is in good agreement with Figure 4.6 where an applied stress of
150 MPa requires only 2,000 yrs for failure to occur.

The stresses in the central section of the model for an elastic
solution are shown in Figure 4.8(a). Figure 4.8(b) shows the surface
displacement of the whole model. The reason for using a long grid now
becomes apparent. Because the upper layers have smaller Young's moduli
than the lower layer, they are able to stretch more in response to the

applied tension. This results in a downward bending of the model near
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the edges, which modifies the stresses slightly from the values given
above for the centre of the model. This bending effect extends into
the model for a distance of about 1700 km. The displacements have a
maximum value of 6.4 m at the edges of the model. The central section,
which is unaffected by the edge effects, subsides by 4.2 m.

Figure 4.7 shows that as the visco-elastic material relaxes,
the stress in the upper crust increases until failure occurs after
1.19 M yrs. The stresses in the lower crust are initially slightly
increased and then decrease at the same rate as the stresses in the
mantle. The initial slight increase is because the instantaneous stresses
in the mantie are greater than in the lower crust, and, consequently,
the mantle initially relaxes more rapidly and causes a small amount
of amplification in the lower crust until the stresses are approximately
equal when they both relax at the same rate, as would be expected since
they have the same viscosity.

The stresses at the time of failure, after 1.19 M yrs, are illustrated
in Figure 4.9(a) where the result of the stress amplification can be
clearly seen. The stresses in the upper crust have reached a value of
86.5 MPa whereas the stresses in the lower crust and mantle have values
of 3.6 MPa and 3.3 MPa respectively. Figure 4.9(b) shows the surface
flexure for the whole model after 1.19 M yrs. The edges of the model
are now bent upwards. This is because the lower part of the model has
been allowed to flow outwards, in response to the applied tension, and
can deform more than the upper part which is elastic. The effect has been
commented on by Kusznir and Bott (1977), who point out that it could
be a significant source of vertical movement near plate boundaries. The
edges have subsided by 68 m and the centre of the model, away from the

edge effects, has subsided by 81 m. The maximum amount of subsidence
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has occurred about 500 km in from the edges with value 90 m. The
stress system illustrated in Figure 4.9(a) will be reapplied, in
Chapter 6, to a model containing a fault.

[t is interesting at this point to examine the effect of a viscosity
contrast between the Jower crust and the mantle. Figure 4.10 shows the
variation of stress with time in the three layers, at the centfe of the
model, for an applied stress of 20 MPa and viscosities of 1023 Pas for
the mantle and 1022 Pas for the lower crust. The initial elastic stresses
are, of course, the same as those in Figures 4.7 and 4.8(a). The stresses
in the lower crust relax very rapidly, because of its lower viscosity,
and after oniy 50,000 yrs have fallen from 14.4 MPa to 4.5 MPa. The
effect of this is to cause the stresses in the upper crust to increase
more rapidly than in Figure 4.7 and also to amplify slightly the mantle
stresses from an initial value of 24.0MPa to a maximum of 25.0 MPa. This
effect is small because the thickness of the lower crust is considerably
less than the thickness of the lithospheric mantle. Following this slight
amplification, the stresses in the mantle relax at a similar rate to

the constant viscosity case, as can be seen in Figure 4.12. Because of

O

the more rapid amplification rate of stresses in the upper crust,
failure occurs after a shorter time period. Failure is predicted after
0.99 M yrs, when the stress in the upper crust has a value of 86.5 MPa
and the stresses in the lower crust and mantle have fallen to 0.4 MPa
and 4.1 MPa respectively.

Figure 4.11 shows the variation of stress with time, at the centre
of the model, for an appiied stress of 20 MPa and viscosities of
1023 Pas for the mantle and 102% Pas for the lower crust. The stresses
in the mantle relax more rapidly than in the two previous cases, as can

be seen in Figure 4.12, and in the process amplify both the lower crustal
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and upper crustal stresses. Initially the stresses in the lower crugt
are amplified slightly more rapidly than in the upper crust. After about
0.57 M yrs, when the stresses in the mantle have fallen to 5.3 MPa, the
lower crustal stresses reach their maximum of 43.6 MPa and start to
decrease. The rate of decrease of the lower crustal stresses, and the
corresponding rate of increase of the upper crustal stresses, is fairly
small and even after 2Myrs failure has not occurred. The stress in the
upper crust after this time has a value of 74.6 MPa and is increasing
only at the rate of 0.1 MPa in every 10,000 yrs. Thus to reach the
failure value of 86.4 MPa will take at least another 1.18 M yrs. In fact
it will probably take considerably longer than this because the
amplification rate decreases with time. |

In order to compare the stress - time curves for the three situations
described above, Figures 4.7, 4.10 and 4.11 are plotted on the same
diagram in Figure 4.12. It can be concluded from these diagrams that
a lower viscosity lower crust results in a slightly shorter time for
failure to occur than for the constant viscosity case, whereas a higher

viscosity lower crust results in a much greater time for failure.

Stress amplification: power law creep rheology

In Chapter 3 the power law creep equation was defined as

T

n-1 ]

Gy o= Aex(-B( e

and for each element the creep strain vector is calculated from the
temperature and the stress tensor for the element. An important point
here is the calculation of the temperature. If the temperature of each

element is calculated, at its centre, from the pressure and the geotherm
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given in Chapter 2 and the analysis is run through time, then peculiar
flexures occur throughout the model. These are illustrated in Figure 4.13.
A long, regular grid has been used (Figure 4.13(a)) to show the simple
nature of these displacements. This flexure is an artifact of the method
and is caused by caiculating the temperature of each element at its
centre. Consider the section of grid illustrated in Figure 4.14. The
effective viscosity on the vertical 1line a-a can be considered to be
the same as that of the elements A and A' to which it belongs.
Similarly, the effective viscosity on b-b is that of elements B and B'.
Now the elements A,A' have their centres at different depth from B and
B' and so their temperatures, calculated from the geotherm, will be
different. Consequently, their viscosities will be different and so

the effective viscosity of the line a-a will be different to that of
b-b. The effect of this is to make some sections of the grid more
resistant to creep than others. This causes the flexure seen in Figure
4.13(c). The 'highs' correspond to the vertical sections labelled a-a
in Figure 4.14 and the 'lows' to sections g-g. This result is obviously
physically incorrect. Since the stresses and temperatures, in the model
used here, are constant at a given depth, the viscosities should also
be constant at that depth. So the effective viscosities along lines a-a
and b-b should be equal.

This artificial effect can be avoided by assigning a temperature to
each horizontal layer. Then elements A,A',B and B' will all have the
same viscosity (providing their stresses are equal) and the effective
viscosities on the lines a-a and b-b will be equal. Returning to the
grid that has been used for the chapter so far, and will continue to
be used (Figure 4.1), there are three horizontal layers, in the ductile

material, that extend across the model. It will be assumed that the
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temperature of all elements in any one layer is constant. This temperature
is calculated at the centre of the layer using the geotherm given in
Chapter 2 (Mercier and Carter, 1975). Table 4.2 lists the temperatures
and depth ranges of these layers together with their creep parameters
which have been discussed in Chapter 2.

Figure 4.15 shows the time period for faulting to occur for
a range of applied stresses and a power law creep rheology for the

lower crust and mantle. Comparing this plot with Figure 4.6 shows that

Depth Range | Temp Q A n
(km) (°C) [(kJ mol1=1) (MPa-3s-1)
Lower crust 20 - 35 676 | 267.904 107 3
Upper lithospheric'@ 35 - 60 906 | 523.250 103 3
mantle
Lower lithospheric! 60 - 100 1122 | 523.250 103 3
mantle

Table 4.2: Creep parameters for the lower lithosphere

at stresses above about 25 MPa the time period before failure occurs
is greatly reduced. For an applied stress of 150 MPa it is only 200 yrs.
For stresses below about 25 MPa it is greatly increased, and for 20 MPa
it is 3.608 M yrs. This is to be expected with a stress-dependent
viscosity where high stresses result in low viscosities and vice-versa.
Figure 4.16 shows the variation of stress with time for an applied
stress of 20 MPa. There are now four distinct 1ayers'1n the model
corresponding to the elastic upper crust, the lower crust, the upper

Tithospheric mantle (35 to 60 km) and the lower lithospheric mantle
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(60 to 100 km). The stresses for the initial 200,000 yrs are plotted on
a larger time scale in Figure 4.16(b) so that their early variations
can be better seen. The stresses in the upper crust increase in a
similar manney to the previously discussed constant viscosity models
up to a value of 86.5 MPa when faulting is predicted. The lower crustal
stresses increase initially to a value of 18.3 MPa after 14,000 yrs and
then decrease. The stresses in the upper part of the lithospheric
mantle increase significantly to a maximum of 43.3 MPa after 40,000 yrs.
The lower Tithospheric mantle stresses decrease very rapidly at first,
and then more slowly. Comparing these effects with those seen in earlier
models suggests that the lower lithospheric mantle has the Towest
viscosity, followed by the lower crust and then the upper lithospheric
mantle. This is confirmed by Figure 4.17 which shows the variation of
effective viscosity with time in these three layers. It must be remembered
that the effective viscosity has been constrained to lie between 1022 Pas
and 102% Pas . After 3.608 M yrs, when failure is predicted in the upper
crust, the stresses in the lower crust, upper lithospheric mantle and
lower lithospheric mantle have fallen to 4.1, 7.5 and 0.8 MPa respectively.
It is interesting at this point to investigate the effect on stress
amplification in the upper crust of a thermal anomaly in the lower 1itho-
sphere. Figure 4.18(a) shows the central section of .the finite element
grid with the region of anomalous temperature shaded. A1l the elements
in this shaded region have their temperatures raised by 50°C. With this
model faulting is predicted after only 828,000 yrs. This large decrease
in failure time is due to the decreased viscosity in the central region,
where the temperature is higher. Figure 4.18(b) shows the surface
displacement of the central 400 km of the model at the time of faulting.

For the constant temperature situation the subsidence was uniform (dashed
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Tine in Figure 4.18(b)), whereas in this case there is a marked area
of increased subsidence directly overlying the higher temperature
material. This is a result of the decreased viscosity in that region.
This flexure 2ffects the stresses in the upper crust to a small degree.
On the flanks of the subsided area the near-surface tensional stresses
have been slightly increased because of the nature of the bending,
whereas in the centre they have been slightly reduced. Consequently,
faulting is predicted to occur on the flanks, at the positions marked
'F' in Figure 4.18(b).

It should be realised here that only the effect on the viscosity
of the thermal anomaly has been considered. Other more important effects,
particularly with regard to the flexure, will be due to thermal expansion
and to density variations and the probable effect, if all the parameters
are considered, will be for doming and plateau uplift to occur. The
stress distribution that would be associated with uplift of this type
has been investigated by Bott and Kusznir (1979). Nevertheless, the
significant change in the time for failure to occur does suggest that
faulting will happen preferentially in areas where anomalously high
temperatures exist. This is in agreement with the observations noted
in Chapter 1 that major graben development is often preceded by doming

and volcanism.

Summary

The main conclusions of the work described in this chapter will

now be summarised in point form:

1) Stress boundary conditions, which are the most realistic, result in

amplification of upper crustal stresses as the lower crust and
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lithospheric mantle relax. This was pointed out by Kusznir and Bott
(1977). Provided the applied stresses are sufficiently large, which
depends on the relative thicknesses of the layers, failure will
eventually occur in the upper crust. For a tensional stress system
the failure will take the form of normal faulting with a fault dip
of about 60°.

If Young's modulus varies with depth, then different magnitude
stresses are developed in the different layers by a uniform applied
stress. A Young's modulus that increases with depth, which is
supported by the increase in P-wave velocity with depth, results

in lower stresses near the top of the lithosphere and higher stresses
near the base. Consequently, an applied stress greater than the value
necessary for faulting may not result in instantaneous failure.

The time period for faulting to occur depends on the viscosity of

the ductile material and the magnitude of the applied stress.

If the elastic upper crust is locally thinned, then stress amplification
will occur more rapidly in that region and failure can occur for a
smaller value of applied stress. Consequently, faulting is more iikely
in areas of crustal thinning, such as the Basin and Range province,
than in stable shield areas with thick crust.

If the viscosity of the lower crust is decreased by an order of
magnitude, then the time to failure is slightly decreased. If its
viscosity is increased by an order of magnitude then a large increase
in the time to failure occurs. Some stress amplification in high
viscosity material will occur initially as a result of the rapid
relaxation of the low viscosity material.

A power.law creep rheology for the lower lithosphere results in a

similar pattern of stress amplification to that of a Newtonian
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visco-elastic rheology. The time to failure depends greatly on the
value of applied stress. High stresses, which result in Tow
effective viscosities, lead to rapid failure. Low stresses give

high viscosities and very long periods of time are necessary before
faulting will occur.

The variation of stress with time in any layer is dependent on the
effective viscosity of the layers. Layers with high viscosities have
their stresses initially amplified as the low viscosity layer relaxes.
This is consistent with the results obtained using a Newtonian visco-
elastic rheology.

A thermai anomaly giving localised higher temperatures results in
more rapid stress amplification in that region, because of the
decreased effective viscosity, and hence a shorter time to failure.
The lateral variation in viscosity leads to differential subsidence
of the surface, and stresses associated with this flexure will

lead to preferred positions for faulting to occur. Although there
are other important effects due to the thermal anomaly, it seems
Tikely that faulting will occur preferentiaily in areas where the
geothermal gradient'is anomalously high. This is supported by the
observations that major graben formation is often preceded by doming
and volcanism, for example in the Rhinegraben, the Baikal rift and
East Africa (I1lies, 1977; Logatchev and Florensov, 1978; Davidson
and Rex, 1980).
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CHAPTER 5

FAULT MODELLING USING FINITE ELEMENTS

Introduction

In order to continue investigating the development of graben

structures it is necessary to have a method of modelling faults in

the context of the finite element analysis used here. Deformation associated

with faulting arises from two sources. The first of these is the difference

in elastic properties between the fault zone and the surrounding material.
This effect is incorporated into the stiffness matrix. The method of
Goodman et al. (1968), with certain minor modifications, is used for
developing the fault stiffness matrix. The second, and most important,
source of fault movement is the result of frictional sliding on the fault
caused by shear stresses exceeding the frictional strength. In this
chapter a new method of modelling frictional siiding is described. The
method allows the use of a variety of friction Taws to determine the
frictional strength. In the presence of deviatoric stresses, and
particularly after long periods of time, fault movement as a result of
shear stresses dominates the elastic effect of a weak fault zone.

The first section of this chapter is devoted to a brief discussion
of previous methods of fault modelling using finite elements. The
remaining sections describe in detail the proposed method, which will be
used in Chapters 6, 7 and 8. The programming is performed in two sub-
routines, FORMKF and FSHEAR, of the finite element subroutine library

FELIB and is listed in Appendix 2.
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5.2 Previous methods of fault modelling

The representation of a fault as adiscontinuity with the nodes
across the fault joined by pin-ended straight members was suggested by
Anderson and Dodd (1966). Normal compressive stress was transmitted
across the fault in a satisfactory manner, but in the event of tensile
stress the straight members had to be removed and the analysis
performed again. Apart from the disadvantage of having to adjust the
grid, possibly in the middle of a time-dependent solution, their method
of modelling the fault offered no resistance to movement parallel to
the fault. Service and Douglas (1973) suggested modelling a fault as a
band of arisotropic elastic elements having weak elastic parameters
in the direction of the fault plane. The major disadvantage in this
method is that of deciding by how much to reduce the elastic parameters.
Whilst the mechanism of fault movement is not well understood, there
seems to be no justification for assuming that it can be simulated by
making the fault behave as a weak elastic body. A secondary disadvantage
is that the weak elements will deform rapidly, which may result in
having to recalculate the stiffness matrix during time-dependent solutions.
This operation results in a large increase in computing time and expense
and should be avoided if possible. Despite these disadvantages this
method has been used for studying 1ithospheric deformation (Neugebauer
and Spohn, 1978). A similar approach has been used in time-dependent
analysis whereby the fault is represented by elements having lower
effective viscosities than the surrounding material (Bird, 1978;
Neugebauer and Spohn, 1978).

A more sophisticated method for modelling a discontinuity was
described by Goodman et al. (1968). They developed a stiffness matrix

for a joint of zero width which involved only the Tength of the joint
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and the unit normal and shear stiffnesses. The stiffness matrix
derivation of Goodman et al. will be discussed in the next section.
Their method has been used by Bischke (1974) to model a thrust fault
at a convergent plate margin. In his work, the amount of fault
movement was controiled by adjusting the normal and shear stiffnesses.
This is equivalent to altering the elasticity of the fault zone.
Consequently, this method still does not allow for the most important
effect of fault slip due to high shear stresses which exceed the
frictional strength. The modelling of joints has been further developed
by Goodman (1976) to include iterative procedures for allowing opening,
closing and stiding of the joints. A considerable amount of detailed
1nbut data is required which makes this method suitable for near-surface
geological engineering studies, for which it was designed, since many of
the properties can be measured in the laboratory. For the modelling of
deep faults, extending to 20 km, say, there are problems with assigning
values to the parameters. In particular, the shear stiffness is very
important in Goodman's method because the shear stresses on the fault
are calculated from it. For deep faults, which die out at depth, the
shear stiffness is not known. Indeed, it cannot be accurately estimated
since, in cases where it has been determined in the laboratory, it
displays a strong scale effect (Barton, 1972). Consequently, an
alternative method is developed here whereby the calculation of the
shear stress on the fault is dependent on the stress levels in the

surrounding material rather than the shear stiffness of the fault.

Proposed method

The fault is represented as a plane boundary between a number of

element pairs and is characterised by 'dual nodes' which initially have
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the same spatial co-ordinates, but belong to different elements and

can move independently along the fault plane. Fault deformation can

arise from two sources. These are the elastic properties of the fault,

and frictional sliding due to large shear stresses. This is illustrated in
Figure 5.1. A stiffness matrix is formulated for each section of the fault,
based on the work of Goodman et al. (1968), and depends only on the normal
and shear stiffnesses. Incorporating these matrices in the global stiffness
matrix allows for the effect of the elastic strength of the fault. By
assigning a high value of normal stiffness the fault can be constrained

to remain closed. Frictional sliding is dependent on the shear stresses
acting on the fault. The stresses in surrcunding elements are calculated
by an eiastic solution of the finite element equations and the normal

and shear stresses on the fault are calculated from these. The amount of
shear stress that can be maintained on the fault plane without slip

(the frictional strength) is determined from the normal stress on the
fault and an appropriate friction law. The pore pressure in the fault

can be included at this stage. If the shear stress on the fault plane
exceeds the value of the frictionail strength, then the excess shear stress
is converted to forces which are applied at the nodes on the fault and the
finite element equations are re-solved. An iterative procedure is fo]]owed
until the shear stress on the fault falls to an acceptable value. A
detailed description of how these operations are performed will now be

given.

5.3.1 Fault representation

The fault is represented in the finite element model as a plane
boundary between several element pairs, and is divided into sections

between the nedes lying on this boundary (Figure 5:2). The nodes on the
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fault are termed dual nodes because they have two node numbers assigned
toc them. The two node numbers belong to the elements on each side of
the fault. In order to maintain the basic element geometry, the fault
piane must be continued in the same direction beyond the base of the
fault so that differential movement of the dual nodes at the fault

base does not result in misshapen elements or 'holes' in the grid.

5.3.2 Stiffness matrix for a fault section

For each fault section it is necessary to construct a local stiffness
matrix which is incorporated into the global stiffness matrix. This allows
for the effect of the elastic properties of the fault. The usual method
of calculating element stiffness matrices (Chapter 3) cannot be used
since the fault sections have zero area in the plane of the model. The
method used here is taken from the work of Goodman et al. (1963). However,
there are certain differences in the derivation here which will be
discussed where they occur. The local co-ordinate system for this section
is different fromthat of Goodman ef al., which results in a different
ordering of the stiffness matrix from that given in their work.

Figure 5.3 shows a fault section of zero width in its local
co-ordinate system. Using a variational approach, as in Chapter 3, and

considering the virtual quantity &{w},

W = ( d{w}T {p} dA 5.1

.

A
where W is the stored energy, {w} is the relative displacement vector

given by
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Fig. 5.3: Fault section of zero width in local co-ordinates.
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and {p} is the force per unit area vector. This is eguivalent to

>

saying that the stored energy in the fault section is due to the applied

forces acting through the displacements and summed over the fault section.

Now, since the finite element model has unit thickness, equation

5.1 can be written as

2/2

T
AW = ! S{w} Ip} ds

- %/

where (p} is now the force per unit length vector given by

py=
Ps

P

{p} has been expressed by Goodman et al. in the form

{p} = [K] {w}
v 0
where (k1 = i f 1
0 ksJ

They call kpand kg the unit normal and unit shear sziffnesses.

alternative way of expressing {p} is

5.3

5.4

5.5

5.6

An
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{p} = j_[k} {w} 5.7
£
where ;—kn 0 ‘]
! = | 5.8
B l |
S Ky

and here k, and k¢, are the normal and shear stiffnesses for the fault
section. These have the correct units for stiffness of force per unit
length. This equation (5.7) will be used here and the differences in
the stiffness matrix developed here from that of Goodman et al. will
be discussed after the remainder of the analysis.

Substituting eguation 5.7 in 5.3 gives

12
T
W = { J.8{w} [k {w} ds 5.9
)
“/2
and so Lo
W= 1_J Wi Tk ) ds 5.10
2%
77

If u;' and vi' are the displacements of node i in the s and n

directions, then the displacements {w} may be expressed in terms of the

nodal displacements by a linear interpolation formula,

[, (LHS)] e 0 1 -2 o (u;’
) . ’ ’ 2 Vil 5.
| | | uj'
LW (LHS)J o 1+ 2s 0 1 - 25 |3,
; L . L vj
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and
. - _ukl\
(i (RHS) | 1 - 25 0 1e2s 0 (]S
- S ’ . Kb 5.2
7 U | '
{ws (RHS)[ 0 1-25 0 1eas| |
’ ) 2 m ./
Substituting these into equation 5.2 gives
( 1
us ')
vi'
u'I
(<A 0 B 0B O A O VJ'IL
1| J 5.13
wr o= 3 L 1y’
0 -A 0 -BO B 0 A )
Vk
Up,'
LYm )
where A = 1+2s, B = 1-2s
% %
This can be written as
W= % (L) td') 5.14

where [L] and {d'} are given by equation 5.13. [L] is equivalent to a
shape function matrix and {d'} is the nodal displacement vector in the
local co-ordinates s,n.

Substituting equation 5.14 into equation 5.10 gives



T k) L) rd' ds

Now,

:
- ; 0 (-A 0 -B 0B O ADO
NN PSR N

D
|
o]
—
=~
=

0 k§i L 0 -A 0 -B0 B 0 Aj

kA2 0 kpAB 0 -kpAB 0 -kpAZ 0

0 keA2 0 kAB 0 -kgAB 0 -kgA2

kA8 0 kB2 0 -kpB2 0 -k AB O

0 keAB 0 kB2 0 -kBZ 0 -k AB
-kpAB 0 -kpB2 0 kB2 0 kAB 0

0 -kAB 0 -kB2 0 kB2 0  KkAB
kA2 0 -k AB 0 kAB O kA2 0

0 -kA2 0 -kgAB 0  Kk(AB O kA2

The only terms in equation 5.15 that vary with s are A2, AB and B2,

and these integrals can be evaluated:
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5.17




Yo /2
f

( A% ds = i (1 +2s)2ds = 4g

J ' [ 3
~Ls £

%/_ 7

| AB ds - o (1 - 4s?) ds = 2y 5.18
i i 8¢ 3

%z ?4

(B2ds = 1 (1-28)%7ds = 4

J J e 3
-Lh ~in :

Substituting equations 5.17 and 5.18 into 5.15 gives

_J
—

> fd" [K%] id"} 5.19

where {Kgl is the stiffness matrix for the fault section, in local

co-ardinates, given by

0 |

Kl == 5.20
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This matrix is different from that of Goodman et al. in two ways.

Firstly. the row ordering is different. This is just the result of

using a different local co-crdinate system. Secondly, their stiffness

matrix is myltiplied by 2, the th of the joint element {they call

D
=
u2

t a joint elementi rather than a

wd

fault section). This is because of

-+

the different definitions of k. and ks used here, which are stiffnesses

n
rather than unit stiffnesses. 1t is felt that the matrix developed here

is preferable to theirs for modelling deep faults. This is because

normal and shear stiffnesses can be assigned to the whole fault and the
stiffress matrix is then not dependent on the length of the fault sections.
This is anaiogous to stiffness matrices for elastic continua which are
unchanged by scaling the dimensions of the model if the elastic

parameters ave kept constant. To use their stiffness matrix and obtain

3 solutien which does not depend on the number of fault sections reguires

a knowledge of the variation of unit stiffness with the length of section.
This is not known for deep faults. However, for the results to be
meaningful , the variation must be such that it cancels out the effect

of the length in the stiffness matrix. By using total stiffness instead

[«3]

of unit stiffness this problem is overcome and gives a method that is
consistent with the assigning of elastic parameters to finite element
models of elastic continua.

Equation 5.19 can now be rotated to global co-ordinates (x,y) by

using the rotation matrix [R] where,
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{cos 6§ -zin 9 0 0 0 0 0 0 |
|sins cos 0 0 0 0 0 0 |
% 0 0 «cos @ -sing O 0 0 0

i 0 0 sine cosa O 0 C o

Rl = | ; 5.21

0 n 0 ¢ cos g -sins O 0
Y e 0 0 sing coss O 0 ;
i 0 0 0 0 0 0 cos 8 -sin eg
g C 0 0 0 0 0 sin e cos ej

and 6 is {ne hade of the fault measured anticlockwise from the y-axis
(Figure 5.1).

;:_l*‘l"! b

W= = {dr IK! (dy 5.22

where

{d; R] {d'}

1

| ' T
{Ke3 (R] [KF 1R 1

Minimising the energy with respect to the nodal displacements, as in

Chapter 3, gives

] {dy = 0 5.23
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and this must be added into the equations for the whole body

(equation 3.16) giving

[K + K] fd} {F} 5.24

F

So the stiffness matrix for each fault section is added into the global

stiffness matrix in a similar manner to the element stiffness matrices.

5.3.3 Calculation of fault stresses

An elastic solution for the finite element model with the fault
present gives the stresses and displacements throughout the model. These
include the effect of the elasticity of the fault, since the stiffness
matrices for the fault sections have been incorporated into the global
stiffness matrix. However, they do not include any changes in the stresses
and displacements caused by slip on the fault which occurs when the shear
stress exceeds the frictional strength. In order to account for these
it is necessary firstly to calculate the normal and shear stresses on
the fault. The method proposed here involves calculating these from the
stresses in the surrounding elements. This is considered to be preferable,
for this situation, to the method of Goodman (1976) where the stresses on
the fault are calculated from the normal and shear stiffnesses of the
fault, since these are not known for deep faults which die out at depth.
The elastic solution gives the stress tensor for each element. For the
element pairs which form the sides of the fault, the stress tensors

are rotated by the rotation matrix

cos 9 sin o
. [ |

sin © cos OJ




where 6 is the hade of the fault, to give the normal and shear stresses

acting in the elements on a plane parallel to the fault plane. The

+

stresses on the fault are now calculated from these. Unfertunately,

[aF)

digplacement method approaches to finite element analysis have

her

(o]

discontinuous stress fiela al element boundaries. This is true for hi

4

order strain elements as well as the constant strain elements used here
(Hinton ard Cwen. 1977). Various methods of stress smeothing have been
proposed {e.g. Hinton and Campbell, 1974), but the most economical ang

simple method of calculating stresses at boundaries is to average the

tre

(V2]
wn

ses in the adjoining elements. If these elements are of approximately

the -7z method works well for the type of piane sirain

[¥a}

ame size -
analysis used here. Consequently, the normal and shear stresses in each
pair of elements across the fault are averaged to give the stresses on
the fault (Figure 5.4).

The fault is likely to be percolated by fluids which will give
rise to a pore pressure. This is subtracted from the normal stress on
the fault in line with the effective stress law which was discussed in

Chapter 2. 0f course, the pore pressure has no effect on the shear stress.

5.3.4 Calculation of excess shear stress on the fault

The excess shear stress on the fault is defined here as the total
shear stress on the fault minus the frictional strength. The frictional
strength is calculated from the normal stress across the fault and an
appropriate friction Jaw. Nur (1978) has shown that the main first-order
features of active faulting can be explained by spatial variation in the
frictional strength, and one advantage of the method proposed here is
that different sections of the fault can each have different friction

Taws or coefficients of friction if required.




Fig. 5.4: Averaging of rotated element stresses to give fault plane

stresses
T(AB) = Tl +12
T(BC) T

and similarly for the normal stresses.



Frictional relationships between normal and shear stresses for

rock~on-rock sliding have been summarised by Byerlee (1272} and wars

s in Chapter 2. The simplest of these is
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where u is the coefficient of friction, opn is the normal stress across

the fault, and «. is the frictioral strength. For each fauylt sectior the

¢

fricticral strength is calculated from the normal stress and the

t+
s
W
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coefficient of fricticn for that section. The excess shear stress on
section, which w*'1 result in slip, is then given by subtracting the
frictional strength from the value of the shear stress given by the

analysis,

where 7ys5 s the excess shear stress and = is the shear stress

FE
calculated from the finite element solution. Clearly, if the frictional
strength is larger than the calculated shear stress there is no excess

shear stress and slip will not occur. This operation is performed for

each fault section.

5.3.5 Conversion of excess shear stress to nodal forces

The excess shear stress on each section of the fault can be
converted to a force by multiplying by the area of the fault section.
Since two-dimensional finite element models have unit thickness, this
is equivalent to multiplying the excess shear stress by the length of the

fault section,
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the lergth of the fault section, This

gives the force actirg on cne side of the fault. It will., o7 course
act in the direction of the fault plane. The other side of the fauix
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The finite el
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ment equations are now solved again using the modified

T s on the fault, the excess shear stress, and

force vector., Tne stress

D

the nocal force vector are recalculated as described above. The forces

due to the fault are added into the global force vector and the equations
re-solved. This iterative procedure is continued until the excess shear
stress on the fault falls to an acceptable value. A suitable criterion

is when the shear stress for each section of the fault approaches
sufficiently close to the frictional strength for that section. The
Timiting value for this approach is taken to be 0.1 MPa in this thesis.

After each iteration the convergence criterion described above is tested,
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Fig. 5.5: Conversion of excess shear stress on the fault to nodal forces.

(a) Excess shear stress on the fault
(b) Nodal force distribution
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The method has peen found to converge for all situations that have heen
tried. Clearly, the number of iterations necessary before the corvevgence
crizerion iz satisfied will depend on how resistart the fault i< io

movement. This. in turn, deperds on the shear stiffrness o “he faule T+

U‘J

has heen fourd trat tha number of iterations can be greatly reducsd by
muitiplying the force vector for the fault ncdes by some factor,f. Th's
factor s decendent cn the shear stiffness of the fault. An explicit
retaticnsnip betwaern f and the shear stiffness, k., has rot beer “rund.
but the factor can be estimated on a simple 'trial-and-e-rov' bhas’s for

elastic model. This value of f can then be used for all further
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Application to time-dependent anaiysis

The Tithosphere is often considered, in deformatior prohiems, as

f a brittle upper layer overlying ductile material {e.o. Boit
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The modelling of faults in the upper layer can be easily incorp
into a time-dependent model where the underlying material deforms by a
flow mechanism. The method described above is followed for each time
increment of the analysis, such that at the start of the next increment

the fault has no excess shear stress acting on it. Using the facter, f,

pes

described in the last section, it has been found that the procedure is
not prohibitive from the viewpoint of computing time and cost.

The only modification that may be necessary, in the case of 3
Targe amount of fault slip, is in the averaging of stresses in adjacent
elements to determine the stresses on the fault plane. At the start of

any time increment the fault may already have moved considerably with

respect to the length of its individual sections, such that what were
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originally dua: nodes now occupy significantly different spatial positions.
The average shear stresses between nodes on the fault are calculated as
.before and the average shear stress for each section (i.e. the part of

the fault ferming the edge of an element) is now calculated by weighting
these values by the appropriate fault lengths between ncdes. This is
iliustrated in Figure 5.6. [f reasonable sized elements are used it has

been found unnecessary to use this modification. Indeed, it can be

argued that if this weighting is necessary then the amount of fault
movement that has occurred ought to make it necessary for the global
stiffness matrix to be recalculated, and this is usually cost-and time

prohibitive.




Fig. 5.6: Averaging of rotated element stresses after significant
movement has occurred.

©(AB) = t(Aa) + t(aB)
= 0+ T3 +T,.0, (Aa is a free surface)
«(8b) + (oc}
= T2 +T3 &3- T3+T!I
2 Ly 2 5
and similarly for t(ab), t(bc) and for the normal stresses.

t(BC)

f—
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CHAPTER 6

NORMAL FAULT DEFORMATION AND THE DEVELOPMENT OF ASSOCIATED
FAULTING

Introduction

In this chapter a fault will be introduced into the finite element
model using the method described in the previous chapter. The stresses
and displacements associated with the fault will be examined by finite
element analysis and the Modified Griffith criteria will be used to
predict the occurrence of further faulting. In the first part of the
chapter a simple model of the elastic layer underlain by a fluid will
be used. This enables the results from the finite element analysis to
be compared with theoretical work based on elastic beam theory. For
the second part, the full lithosphere model described in Chapter 4
will be used. The stress system at the time of faulting will be reapplied
to the model, with a fault present, and the analysis continued through

time using both Newtonian visco-elastic and power Taw creep rheologies.

Finite element model of the elastic layer

In this section the deformation resulting from a fault in the
elastic layer will be investigated. The elastic layer is assumed to be
underlain by a fluid. Although this assumption is geologically naive, it
means that the model predictions can be compared with earlier analytical
work based on elastic beam theory (Heiskanen and Vening Meinesz, 1958;

Bott, 1976).
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6.2.1 Comparison of bending with elastic beam theory

Before comparing the deformation resulting from the fault with
predicted results from beam theory, it is necessary to show that
simple bending of a finite element model of an elastic continuum
agrees reasonably with elastic beam theory. The finite element model
and parameters used for this are shown in Figure 6.1. Results from this
model can be compared with elastic beam theory for a downward force, P,
applied at the origin of a continuous beam. The full equations of
elastic beam analysis are developed in Appendix 1. The relevant

equation for this situation is

v = P . exp (-x).(cosx + sinx)
2opp9 a a a

where v is the vertical displacement, x is the horizontal distance,

s P is the density
|

of the underlying fluid and g is the acceleration due to gravity. The

o is the flexural parameter (defined in Figure 6.1)

theory assumes that the beam is underlain by a fluid, and this is taken
into account in the finite element model by using the isostatic compensation
procedure, described in Chapter 3, at the base.

The displacement profile given by the above equation is plotted
in Figure 6.2, together with the finite element solutions for plane
stress and plane strain. These solutions refer to the central line of the
model, Tabelled N-N in Figure 6.1, which represents the neutral fibre.
Beam theory implies plane stress, but the models used in this thesis
are best suited to plane strain. Consequently, the model has been tested
for both situations. In fact, it can be seen from Figure 6.2 that the
plane stress and plane strain solutions are very similar, and they both

agree well with the theoretical solution. Figure 6.3 shows the plane
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strain solutions for the neutral fibre, the top surface of the model

and the base of the model. These are in excellent agreement except in

the immediate vicinity of the load. It is felt that the agreement

between the finite element analysis and the beam theory equations is
sufficiently close to permit the comparison of the finite element results

with beam theory calculations.

6.2.2 Model parameters

The finite element grid used in this section is shown in Figure 6.4.
The grid represents a 1,000 km long section of the elastic layer. The
parameters for the elastic layer are the same as have been used previously:
its thickness is 20 km, Young's modulus is 0.85 x 10!! Nm~2, Poisson's
ratio is 0.25, and the density is 2,750 kg m™ 3. The elastic layer is
assumed to be underlain by a fluid of density 2,900 kg m™3 and the
isostatic compensation procedure is taken to be the boundary condition
at the base. The right-hand edge of the model is constrained to have
zero horizontal displacement to ensure uniqueness of the solution. Although
this implies an axis of symmetry, it is sufficiently far from the centre
of the model to have no effect. Different values of tensile stress are
applied to the left-hand edge of the model. Since the model is completely
elastic and has uniform elastic parameters, there are no edge effects of
the type discussed in Chapter 4 and, consequently, it is not necessary
to use such a long grid.

In Chapter 4 it was shown that a tectonic, tensile stress regime
will eventually cause faulting, provided that the stresses can attain
a suitably high value. The dip of the fault plane predicted by the
Modified Griffith theory was about 60°. The fault used in this finite

element grid extends throughout the layer and has a dip of 63.43°. This
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value agrees well with the previous prediction and with observations
of naturally occurring normal faults (e.g. Illies, 1970), many of
which are observed to have dips of between 60 and 65 degrees. The exact
value of 63.43 degrees is chosen because the tangent of this angle is 2.
This makes the construction of the finite element grid straightforward.
The local stiffness matrix for each fault section, described in
the previous chapter, depends on the normal and shear stiffnesses. It is
not possible to obtain experimental values for these for faults of the
size used here. Consequently, it is necessary to assign values to these
parameters. It is considered reasonable that the initial value for the
shear stiffness of a fault is similar to the stiffness of the surrounding
material. This is because the fault will initially be locked by
asperities (Goodman, 1976; Byerlee, 1978). The shear stiffness will
probably decrease with time, as the fault moves, due to the grinding
away of these asperities. This effect is ignored in this thesis because
it necessitates recalculation of the stiffness matrix. This is not a
significant omission, as will be shown later in this chapter, because
the deformation resulting from the shear stiffness is very much less than
that resulting from frictional siiding, which is independent of shear
stiffness in the method used here and developed in Chapter 5. Examination
of the global stiffness matrix reveals that the stiffness terms for the
surrounding elastic material are of the same order of magnitude as the
Young's modulus, i.e. about 10! Nm~2. Consequently, the shear stiffness
is assigned a value similar to this. Figure 6.5 shows the surface
displacement of the finite element model for an applied stress of 50 MPa
and a range of values of the shear stiffness. These disp]acgments are
only those resulting from elastic deformation of the fault ] displacements

caused by frictional sliding are not included. It can be seen from this
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of the fault for an applied stress of 50 MPa.
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figure that the displacements are small, ranging from 9 m for a stiffness
of 1010 Nm-1 to 1 m for a stiffness of 1011 Nm~1l. When these are
compared with total displacements, which include those due to frictional
sliding (Figure 6.9), these are seen to be very small indeed. Consequently,
the choice of shear stiffness is not important. A value of 5x 1010 Nm~!
will be used in this thesis. The normal stiffness is taken to be 10!5 Nm™!.
This very high value ensures that the fault remains closed. This is
desirable since shear faults are not extensional fractures and will be
closed at all depths, except possibly the top few hundred metres, because
of the lithostatic pressure.

In order to model the deformation caused by large shear stresses on
the fault, it is necessary to know the frictional strength. The frictional

relationship used here is

A valueof 0.11istaken for u, the coefficient of friction, based on the
work of Wang and Mao (1979). This assumes that wet fault gouge containing
clay minerals is present. Friction laws and coefficients of friction
have been discussed in Chapter 2. Throughout this thesis, a lithostatic
stress distribution has been assumed to exist in the model as a result
of the body forces. This is justifiable because there are no lateral
density contrasts. Consequently, body forces have not been included in
the finite element force vector. It is therefore necessary to add the
Tithostatic stress into the normal stress when calculating the frictional
strength. It is likely that the fault plane is percolated by water,

which will give rise to a pore pressure. It is assumed here that the

pore pressure on a fault section is equal to the overburden pressure of
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the water. This pore pressure is subtracted from the normal stress, as

described in Chapter 5.

6.2.3 Fault deformation and subsequent failure

Figures 6.6 to 6.10 show the deformation of the model in response
to increasing applied stress. In each of these figures, diagram (a)
shows the principal stress vectors plotted at their principal orientations,
at the centres of the elements, for the central 80 km of the grid.
Dashed lines represent tensile stresses and full Tines represent compressive
stresses. These plots do not include the lithostatic stresses. Diagram (b)
shows the surface displacements for the central 400 km of the model. It
should be realised that the disparity in the horizontal and vertical
scales in these displacement diagrams results in an apparent vertical
displacement where the fault intersects the surface of the model. In fact,
the displacement is along the fault plane, which dips at approximately
63°. The position of the element closest to failure, determined using
the Modified Griffith Theory, is also marked on these diagrams.

Some generalisations on the deformation can be made from a study
of these figures. Firstly, the displacement plots show that the fault is
indeed a normal fault. Note that this was not assumed in the method since
the sense of the fault movement is dependent on the sign of the shear
stress. Normal faulting is, of course, what would be expected with
horizontal, deviatoric tension (Anderson, 1951). Secondly, deformation
on the fault results in changes of the stress distributions in the
material immediately adjacent to the fault. The principal stresses become
aligned approximately parallel and perpendicular to the fault plane. This
is a result of the low frictional strength of the fault and is a well-

known phenomenon (Anderson, 1951; Ramsay, 1967). For all applied stresses
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the model predicts compression parallel to the fault on the downthrown
side and tension on the upthrown side. Thirdly, as the applied stress

is increased the frictional strength is exceeded at successively greater
depths on the fault. For an applied stress of 20 MPa (Figure 6.6) the
frictional strength is exceeded only on the upper 5 km of the fault.
Between about 30 and 40 MPa the depth of frictional sliding increases

to 10 km, and from 40 to 60 MPa it reaches 15 km. At stresses greater
than about 60 MPa the frictional strength is exceeded throughout the
depth of the fault. The large increases in the throw of the fault which
are associated with this propagation of fault slip are apparent in
Figures 6.6 to 6.10. The throw ranges from 11 m for an applied stress

of 20 MPa to about 870 m for an applied stress of 60 MPa. Also associated
with this is a fundamental change in the shape of the displacement profile
on the downthrown side of the fault. This will be discussed Tater.

For all applied stresses up to 40 MPa the element closest to failure
is the one adjacent to the fault on the downthrown side (Fiqures6.6 to
6.8). The development of subsidiary fault systems along the margins of
a Major fault is known as secondary faulting and has been discussed by
Ramsay (1967) and King (1978). McKinstry (1953), Moody and Hill (1956)
and Chinnery (1966) have all performed calculations on wrench faults
which show that secondary faulting will occur, although they are not in
agreement about the mechanism. For a tensile strength of 12 MPa (see
Chapter 2) open crack shear failure has been predicted in this element.
One of the two conjugate fault planes for this new fault is predicted
to dip towards the master fault at an angle of about 85°. This is the
fault plane that is considered most likely to develop and agrees well
with possible second order faults deduced by Ramsay (1967) from the

stress trajectories'around a major fault. This secondary faulting will
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intersect the major fault plane close to the surface and its effect
on the deformation pattern is likely to be very localised. Consequently,
no attempt is made to model the secondary faulting.

As the applied stress is increased, the near-surface stresses at
some distance from the fault are modified by the fault movement. These
stresses are approximately horizontal, but the tensile stresses on the
upthrown side are reduced and those on the downthrown side are increased.
This is a result of the bending, which compresses the upthrown side and
stretches the downthrown side. For applied stresses greater than 40 MPa
the element closest to failure shifts to a distance of 50 to 55 km from
the original fault. For a tensile strength of 12 MPa, open crack shear
failure is predicted with a new fault plane dipping at about 70°. Although
this faulting is a result of movement on the major fault, it is not
strictly secondary faulting, since it is a considerable distance away.
The stress system here is one of horizontal deviatoric tension, which
has been increased by the bending, and, consequently, another normal
fault will be formed. The new fault plane will either dip towards the
existing fault or be approximately parallel to it. In the former case a
graben will be formed, and in the latter case a tilted fault block will
result. These two possibilities are illustrated in Figure 6.11.

In this thesis, the former situation will be considered to occur
and a graben of width 50 to 55 km will be formed.

Earlier in this section, the change of displacement profile with
applied stress was mentioned. This will now be discussed in detail. For
Tow applied stresses, the downthrown side is characterised by a 'bulge'
situated about 10 km from the fault. As the applied stress is increased
the shape of the bulge changes slightly and becomes relatively smoother.

At high applied stress the profile becomes much smoother and more
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similar to flexure associated with bending. It would be expected that
the tensile stresses at the top of the bulge would be increased because
of the severe curvature in that region. The results for the models
illustrated in Figures 6.6 to 6.10 have been examined and this is found
to be the case. The position of the element closest to failure changes
as the bulge becomes smoother. For applied stresses up to about 30 MPa
the weakest element is situated 5 to 10 km from the fault. Note that the
weakest element refers to the one closest to failure; all elements have
the same tensile strength. For applied stresses of about 40 MPa the
weakest element is 10 to 15 km from the fault, and for stresses greater
than 45 MPa it is 50 to 55 km from the fault. In this discussion,
failure in the element adjacent to the fault is not considered since,
as was discussed earlier, this is secondary faulting resulting from the
re-orientation of the principal stresses in the immediate vicinity of
the fault. The tensile strength seems important, therefore, for determining
the position of failure. Low values will give failure at 5 to 15 km
from the fault and higher values will give failure at 50 to 55 km from
the fault. It is very interesting that elements between 15 to 50 km and
further away than 55 km are never the closest ones to failure. There
seems to be a definite transition from failure in the range of 5 to 15 km
to failure at about 50 km. These two positions for failure to occur
correspond to the two different types of displacement profile. The weak
elements at 5 to 15 km are connected with the bulge that occurs at low:
applied stress, and the weakness at about 50 km is connected with the
smooth bending profile seen at high applied stress. An explanation for
these results will now be proposed.

For low abb]ied stresses, the frictional strength has only been

exceeded for tﬁé uppér part of the fault. Consequently, the situation
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is not one where the fault movement is opposed by an isostatic restoring
force. Instead, the shape of the flexure is determined by the elastic
response of the underlying material. This will be termed the elastic
restoring force. At an applied stress of 40 MPa the fault movement
extends to 10 to 15 km and there is, consequently, a smaller thickness

of elastic material beneath the active part of the fault as well as
larger forces acting along the fault plane. At this point, movement

into the fluid becomes significant. Now a more recognisable type of
bending profile is seen (Figure 6.8), although there is still a slight
bulge at about 10 km from the fault. This is due to the elastic restoring
forces. At applied stresses greater than 50 MPa (Figures 6.9 and 6.10)
the fault movement extends to 15 km and, eventually, through the complete
depth of the elastic layer. For these situations the movement into the
fluid completely dominates the bending and a smooth bending profile, with
the weakest element at 50 to 55 km, is seen.

If the above explanation is correct, then the thickness of the
elastic layer will determine at what values of applied stress the
displacement profile becomes smooth. A thicker layer will require higher
applied stresses before fault movement will occur throughout the Tayer.
The reverse will be true for a thinner layer. This hypothesis has been
tested by varying the thickness of the elastic layer, and has been found
to be correct. The position of the weakest element is shown in Table 6.1
for different values of the layer thickness and the applied stress. For a
10 km thick layer all applied stresses of about 30 MPa and greater give
a smooth bending profile and the weakest element again at 50 to 55 km.
Consequently, even Tow values of the tensile strength predict faulting
at this distance. For a 30 km thick layer, applied stresses of about

80 MPa are necessary before a smooth profile is obtained. The weakest




Elastic Tayer

Applied stress

Depth of fault

Distance of weakest

thickness (km) (MPa) movement!(km) element from faultZ(km)

10 2.5 5-10

20 5.0 10 - 15

10 30 7.5 50 - 55
40 10.0 50 - 55

50 10.0 50 - 55

20 5.0 5 - 10

30 10.0 5~ 10

40 10.0 10 - 15

20 45 15.0 50 - 55
50 15.0 50 - 55

60 15.0 50 - 55

70 20.0 50 - 55

80 20.0 50 - 55

20 7.5 5-10

40 7.5 5-10

60 15.0 10 - 15

30 70 15.0 10 ~ 15
80 22.5 50 - 55

100 30.0 50 - 55

140 30.0 50 - 55

Table 6.1: Depth of fault movement and position of weakest element

for a range of elastic layer thicknesses and applied

stresses.

1. Defined as the depth to the base of the deepest fault section on
which the frictional strength is exceeded.

2. Not including possible secondary faulting adjacent to the original

fault.
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element is, surprisingly, once more at 50 to 55 km from the original
fault. In this case, high tensile strengths are necessary to obtain

faulting at this distance.

6.2.4 Discussion of results

Assuming that the approximations of beam theory are not too severe,
the predicted width of a graben can be calculated theoretically to lie
between two values, representing situations of maximum and minimum

constraint at the fault.The theory is given in Appendix 1. The limits are

where o is the flexural parameter. The calculated values for different
thicknesses of the elastic Tayer and the elastic parameters used in the

model are given in Table 6.2.

Elastic layer thickness Flexural parameter | Predicted width, w
(km) (km) (km)
10 32.1 25.2 < w < 50.4
20 54.0 42.4 < w < 84.8
30 73.2 57.5 < w <115.0

Table 6.2 Predicted graben widths from beam theory for varying elastic

layer thicknesses.

For the finite element models that have been described above,

situations where the predicted width (the distance of the weakest element
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from the fault) is obviously the result of elastic restoring forces are
clearly not applicable to beam theory. This leaves the cases where there
are smooth bending profiles. For all thicknesses of the elastic layer
these have given graben widths of 50 to 55 km. This result is very
surprising and is at variance with the beam theory results given above.
It is not clear why this is. The finite element models are sufficiently
long for the boundary conditions at the edges not to affect the results,

as can be seen in the diagrams. One possible reason for the discrepancy

is that bending problems are not adequately modelled by the finite element
technique used here, and the reasonable fit for a 20 km thick beam, shown
in Figure 6.2, is coincidental. To show that this is not the case, simple
bending models with the same elastic parameters as the earlier model have
been run for thicknesses of 10 and 30 km. The results are illustrated in
Figure 6.12. The agreement with the beam theory is not exact because the
theory makes assumptions about the stresses which are only approximations
(see Appendix 1), and also the use of constant strain triangles is not
conducive to accurate solutions of bending problems (Zienkiewicz, 1977).
Nevertheless, the agreement is sufficiently close to suggest that

altering the thickness would result in a different graben width, if

the other parameters remained constant. Another possible reason for the
poor agreement is the nature of the 'load' acting at a fault. The beam
theory calculations assume a vertical downward force at the origin. However,
the force applied along a fault is in the direction of the fault plane,
which is not vertical, and also varies with depth. Clearly the true
situation is much more complex than the theory assumes. The tentative
conclusion that can be drawn from this is that, even in the situation
where fault movement occurs throughout the elastic layer, the use of

simple beam theory to predict the distance to the second fault is inadequate.




(b)

Fig. 6.12: Comparison of model bending with elastic beam theory
for different thicknesses; elastic parameters as in
Figure 6.1,

@ Plane strain finite element solution
+ Solution from elastic beam theory
(a) 10 km thick layer

(b) 30 km thick layer
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This may be due to the complex nature of the fault movement.

Of more interest, with regard to the rheology of the lithospherei
is the situation where elastic restoring forces are important. These will
be discussed in the next section, where a more realistic model of the

lithosphere will be considered.

Full lithosphere mode]

In this section the analysis on the full 1lithosphere model used
earTier will be continued with a fault extending through the top 20 km
of the model. The stress system existing at the time of failure, which
was described in Chapter 4, will be re-applied to the model with a fault

present and subsequent deformation will be investigated.

6.3.1 Model parameters

The elastic parameters, dimensions and rheology of the model are
the same as those discussed in Chapter 2 and used in Chapter 4. The
fault parameters are those that were used in the first part of this
chapter: it dips at an angle of 63.43°, extends to é depth of 20 km,
has normal and shear stiffnesses of 1015 and 5x 1010 Nm~! respectively,
has a coefficient of friction of 0.1, and has a pore pressure equal to

the overburden of water. The finite element grid is shown in Figure 6.13.

6.3.2 Stress system at the time of faulting

It was shown in Chapter 4 that if an applied stress of 20 MPa
acted throughout the depth of the lithosphere, then relaxation of the
stresses in the visco-elastic material of the lower part of the litho-
sphere would result in the amplification of stresses in the elastic

layer and eventual faulting. After 1.19 M yrs, with a Newtonian visco-
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elastic rheology, faulting was predicted in the elastic layer. This
situation was shown in Figure 4.9. To re-create this stress system, the
method described in the final section of Chapter 3 was used. This involves
applying the total forces that existed at the end of the time period of
the earlier model to the nodes, and subtracting the creep strains from
the total strains to give the elastic strains. Performing this operation
with the grid used in Chapter 4 resulted in a stress system that agreed
with that shown in Figure 4.9 to within 0.2 MPa. The introduction of

the fault, however, necessitates some alteration of the grid. Three of
the nodes in the elastic layer are replaced by dual nodes. To re-create
the stress system of Figure 4.9 with this model, the forces that existed
at the nodes which have become dual nodes were divided equally between
the two node numbers. To verify that this stress system is indeed the
same as that found earlier, the faultwas 'sealed' by assigning high
values of normal and shear stiffness (101> Nm™1) so that the model
approximated to a continuum. The stress system obtained by doing this
was the same as the re-created stress system for the continuum model of
Chapter 4: in other words, it agreed with the stress system at the time
of faulting (Figure 4.9) to within 0.2 MPa. Consequently, changes in

the stresses and displacements given by the stress system at the time

of faulting when applied to the model with the fault present will

represent the changes in deformation caused by the faulting.

6.3.3 Fault deformation and subsequent failure

The immediate deformation pattern resulting from the faulting is
shown in Figure 6.14. The fault has behaved as a normal fault with a
throw of 53 m. The horizontal deviatoric tensions in the elastic layer,

away from the immediate vicinity of the fault,have been reduced by this
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fault movement. The principal stresses adjacent to the fault are aligned
approximately parallel and perpendicular to the fault. Compression exists
parallel to the fault on the downthrown side and tension on the upthrown
side. A deviatoric compressive stress of 130 MPa develops parallel to

the fault plane in the lower crustal material immediately beneath the

downthrown side, and a deviatoric tensile stress of 115 MPa develops beneath

the upthrown side. The relief of horizontal, deviatoric tensile strain

in the elastic layer by the fault movement has resulted in a small increase

in the horizontal, deviatoric tensile stresses in the underlying visco-
elastic material.

For values of tensile strength between 10 and 15 MPa, failure is
predicted immediately at a distance of about 20 km from the original
fault. This is the position where the deviatoric tensile stresses have
been most greatly increased by the bending. Immediately before faulting
the horizontal deviatoric stress was 86.5 MPa. The fault movement has
resulted in it increasing to about 97.0 MPa. Open crack shear failure
is predicted with a fault plane dip of about 60°. If this new fault dips
towards the original fault, a graben of width 20 km will be formed. For
tensile strengths greatér than 15 MPa, the model was allowed to relax
through time until failure was predicted. A Newtonian visco-elastic
rheology was used for the lower crust and 1ithospheric mantle with a
viscosity of 1023 Pas. The results for tensile strengths in the range
10 to 20 MPa are listed in Table 6.3. There is an increase in predicted
graben width to 25 km for a tensile strength of 17 MPa. 70,000 yrs must
elapse before this failure occurs. For higher tensile strengths, which
require longer times, there is no change in the predicted width. To check
that this result holds even for very long time periods, the model was

run for a tensile strength of 30 MPa. A period of 430,000 yrs was




Tensile Strength

Time to predicted

Throw of fault

Distance of predicte

(MPa) faulting (x 103 yrs) (m) fault from original
fault (km)
10 - 15 0 53 20
16 30 58 20
17 70 63 o5
18 100 68 25
19 120 70 25
20 150 73 o5
30 430 102 25 - 30
Table 6.3: Predicted faulting for varying tensile strengths with a

Newtonian visco-elastic rheology. Viscosity of lower crust
and mantle is 1023 Pas .

Tensile Strength

Time to predicted

Throw of fault

Distance of predicted

(MPa) faulting (x 103 yrs) (m) fault from original
fault (km)
10 - 15 0 53 20
16 6 58 25
17 12 61 25
18 18 64 25 -
19 28 66 25
20 40 69 25 - 30
30 630 98 25 - 30
Table 6.4: Predicted faulting for varying tensile strengths with a

power law creep rheology for the lower crust and mantle.
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necessary before faulting was predicted, but again this was at a distance
of about 25 km from the original fault.

As the model is allowed to relax through time, there is an increase
in fault throw which results from the amplificationof stresses in the
elastic layer caused by creep below.This can be seen by comparing Figure
6.14 with Figure 6.15, which shows the deformation at the time of
subsequent failure for a tensile strength of 20 MPa (i.e. after 150,000 yrs).
The fault throw has increased from 53 m to 73 m and the maximum horizontal
deviatoric tensions near the top of the elastic layer, which are situated
about 25 km from the original fault, have increased to 107 MPa. The
stresses in the underlying material have become more nearly hydrostatic,
although the magnitude of the stresses parallel to the fault plane
remains about the same. The possible consequences of these stresses beneath
the base of the fault are discussed in the next section.

The same models have been run for a power law creep rheology using
the creep equations for the Tower crust and mantle that were given in
Chapter 2. The results are shown in Table 6.4. Again, even for high
tensile strengths, the predicted graben width was 25 km. The only
significant difference between these results and those obtained using
a Newtonian visco-elastic rheology are in the times necesséry for
subsequent failure to occur. For tensile strengths up to 20 MPa, the
power law creep rheology results in much shorter times. Figure 6.16
shows the situation at the time of failure for a tensile strength of
20 MPa (f.e. after 40,000 yrs). The stresses in the underlying material
are closer to a hydrostatic state than in Figure 6.15. For a tensile
strength of 30 MPa the time necessary is much longer. This is because
the effective viscosity is stress dependent. When the deviatoric stresses

are large the viscosity is Tow, but as the stresses are relaxed the viscosity
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is increased. Similar results on the differences between Newtonian
visco-elastic and power law creep rheologies were shown and discussed

in Chapter 4.

6.3.4 Discussion of results

The stress pattern in the elastic layer as a result of fault movement
is the same as that seen in the first section of this chapter. The use
of the full lithosphere model, however, allows the stresses in the
material underlying the elastic layer to be investigated. It has been
shown in Figures 6.14 to 6.16 that the material beneath the fault is
subjected to Targe stresses paraliel to the fault plane. It seems likely
that this concentration of stress at the base of the fault will result in
propagation of the fault plane. The mechanism of this propagation is not
clear. Brittle failure seems unlikely because very large deviatoric
stresses would be needed at these depths as a result of the overburden
pressure. It is possible, however, that large, localised stresses
concentrated at the fault tip will lead to dynamic recrystallisation
and superplastic flow. Superplasticity involves grain-boundary sliding
and requires reasonably high temperatures (greater than about half of the
melting temperature) and very small grain sizes (Nico]és and Poirier, 1976).
If the recrystallisation is to a sufficiently small grain size, then the
temperature at depth is likely to be within the regime of superplasticity.
Ball (1980) has shown that the onset of superplastic flow will result in
a large increase in the shear strain rate. The resistance to shear will
be small, and the recrystallisation to fine-grained material may result
in fabrics similar to mylonites, which are associated with shear zones.
The orientation of the principal stresses beneath the fault in Figures

6.14 to 6.16 suggests that the fault may not continue in the same
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direction since the shear stresses will be concentrated on planes lying
between the principal axes, and the principal axes are aligned with

the fault. This may result in Tistric faulting, although this is highly
speculative since it is the concentration of stresses around the crack
tip that leads to fault propagation and this cannot be determined with
the type of finite element analysis used here.

The results obtained 1in this section show that the deformation
associated with a normal fault extending to a depth of 20 km resu1t&<//
in the formation of a second normal fault at a distance of about 25 km
form the original fault. The width of the graben seems to be relatively
independent of the length of time for which the underlying visco-
elastic material is allowed to relax. Consequently, it appears that
the predicted graben width is mainly dependent on the depth of faulting.
The results, however, are significantly different from those predicted
by elastic beam theory. This is probably because of approximations
made in beam theory calculations. Firstly, the underlying material is
treated as a fluid which gives rise to an isostatic restoring force
beneath the fault. A more realistic rheology for the lower lithosphere
is visco-elasticity; indeed, whatever the true rheology, it must involve
a component of elastic behaviour since both P and S waves are observed
to propagate through the lower lithosphere with finite velocities. The
elastic part of the rheology results in dilatational stresses which
cannot be relaxed by creep (Chapter 3; Stocker and Ashby, 1973). The
deformation of the visco-elastic material beneath the fault gives rise
to elastic restoring forces rather than simple isostatic forces, and these
seem to give a different bending profile. The second significant
approximation used in predicting the range of graben widths by elastic

beam theory is that the fault can be represented by a vertical load.
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As was pointed out earlier in this chapter, the true situation is
likely to be much more complex with forces acting in the direction of
the fault plane. These forces will probably exist throughout the fault
depth and will vary with depth because of the variation in fricticnal
strength. In view of these observations, it does not seem so surprising
that the predicted graben widths from the finite element analysis do
not agree well with simple beam theory calculations.

The prediction of a 25 km wide graben seems to follow on from the
results of the first section for the situations where fault movement
occurred for depths less than 20 km. The predicted graben widths in
those cases were from 5 to 15 km. This suggests that the development
of wider graben may be a response to deeper faulting than has been
considered here. This possibility will be investigated in the next

chapter.
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CHAPTER 7

PREDICTED GRABEN WIDTHS FOR VARIABLE DEPTH FAULTING

7.1 Introduction

In Chapters 4 and 6, the development of normal faulting and then
of graben formation was investigated for a model with a 20 km thick
elastic layer. The fault was considered to extend to 20 km only, and
the predicted graben width was about 25 km. In this chapter a line of
weakness will be assumed to be present and to extend to 50 km. Fault
movement will not necessarily extend to 50 km, however, since the
frictional strength must be exceeded for slip to occur. Tensile stresses
will be applied to the edges of the model and the visco-elastic material
of the lower lithosphere will be allowed to relax with time. This should
result in fault movement to a maximum depth of 50 km. Instead of looking
at failure for particular values of the tensile strength, as was done in
the previous chapter, the position of the element closest to failure will
be used to determine the predicted graben width for particular depths of

fault movement.

7.2 Finite element model

The finite element grid used in this chapter is illustrated in
Figures 7.1 and 7.2. It is necessary to use a very long grid, as
discussed in Chapter 4, to avoid edge effects. The grid used here is
6,000 km long. The Tithosphere is taken as being 100 km thick and is
underlain by a fluid of density 3,300 kg m™3. In this chapter, the
possibility of fault movement extending down to 50 km will be investigated.

For this to occur it will be necessary to have fairly large stresses at
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depth. Consequently, the model is defined in this chapter to consist of
two layers: an elastic layer extending down to 50 km and a ductile
layer from 50 to 100 km. The physical properties of these two layers
are 1isted in Table 7.1.

The fault has a dip of 63.43° and has the potential to extend
down to 50 km. It is divided into six sections. The normal and shear
stiffnesses are taken to be 10!°Nm~! and 5x10!0 Nm~!, as in Chapter 6.
A pore pressure equal to the overburden pressure of water is assumed

to exist on the fault.

T

Depth £ v 0 Rheology
Range(km) | (Nm~2) (kg m~3)
Elastic Tayer| 0-50 1.0x101! 0.25 2,900 Elastic
Ductile layer|50-100 1.8x1011 0.25 3,300 Visco-elastic

Table 7.1: Properties of the finite element model

In order to satisfy the non-singularity of the stiffness matrix,
the central node on the base is fixed in the x-direction. If the fault
was not present, this node would 1ie on an axis of symmetry. There is no
axis of symmetry in this model. However, it has been found that the
fault is sufficiently far away from the fixed node for the results to
be unaffected by this prescribed displacement. This can be seen in the
stress diagrams shown later in this chapter, in which there are no
anomalous stresses in the vicinity of the fixed node.

A tensile stress of 50 MPa is applied to the edges of the model.
In the absence of the fault, this permits a maximum value of 100 MPa
to develop in the elastic layer. The equations which govern this

amplification have been discussed in Chapter 4.
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7.3 Fault deformation

A value of 0.1 has been taken for the coefficient of friction
on the fault. This value is representative of a fault containing a
wet clay gouge (Wang and Mao, 1979) and was used in the previous
chapter. A Newtonian visco-elastic rheology has been used for the
ductile layer, with a viscosity of 1023 Pa s, and the stresses in the
visco-elastic material have been allowed to relax with time. The results
for this model are shown in Table 7.2 and in Figures 7.3 to 7.7. The
depth of fault movement has been taken to be the depth of the base of
the deepest fault section on which the frictional strength has been
exceeded. In Table 7.2, the elements adjacent to the fault have not been
considered from the point of view of being the closest to failure. This
is because failure in these elements leads to secondary faulting which
will intercept the original fault close to the surface. In fact,
secondary faulting is predicted to be the first occurrence of failure
for time periods up to 100,000 yrs. Beyond this time, failure will
occur first in the elements where the deviatoric tensile stresses have
been most greatly increased by the bending. These are given in Table 7.2.

Several points are apparent about the results. As the visco-elastic
material relaxes, the stresses in the elastic layer are amplified which
results in an increase in the shear stresses on the fault. As these
exceed the frictional strength, fault movement propagates down the line
of weakness. Associated with this propagation of fault movement is an
increase in the throw of the fault. There is also an increase in the
distance to the weakest element. Normal faulting will occur in the
weakest element if the tensile strength is sufficiently small. If
the new fault dips towards the original fault a graben will be formed.

Consequently, the distance of the weakest element from the fault can




Time Depth of fault T Throw of fault Distance of weakest

(x 103 yrs) | movement (km) (m) element from fault (km)
o 10.0 13 15 - 20

100 20.0 34 15 - 20

200 27.5 49 20

300 27.5 62 20

400 27.5 70 20 - 25

500 35.0 77 20 - 25

700 35.0 86 20 - 25

1000 35.0 95 25
Table 7.2: Fault deformation with time for an applied stress of

50 MPa, a coefficient of friction of 0.1, and a Newtonian

visco-elastic rheology for the ductile material
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be regarded as the predicted graben width. The changes in the stresses
around the fault and in the displacement profile can be seen in

Figures 7.3 to 7.7. The extent of the fault on which slip has occurred

is marked on the stress diagrams, and the position of the weakest

element (ignoring possible secondary faulting) is marked on the
displacement profiles. As was seen in the previous chapter, the

principal stresses in the immediate vicinity of the fault are rotated

so that their principal axes are approximately parallel and perpendicular
to the fault. This is a consequence of the low frictional strength of

the fault. Deviatoric compressive stresses exist on the downthrown side
and deviatoric tensile stresses on the upthrown side. The increase in
horizontal, near-surface, deviatoric tension on the downthrown side, and
the decrease on the upthrown side, are apparent, particularly in

Figures 7.6 and 7.7. This is a result of the bending, as described in
Chapter 6. Stresses are developed beneath the base of the active part

of the fault; compression on the downthrown side and tension on the
upthrown side. These stresses, however, do not aid the propagation of

the fault since they are aligned parailel to the fault. As was mentioned
in the previous chapter, the orientation of these stresses may suggest
listric faulting, although this is largely speculative since insufficient
information is available about the concentrations of stress at the

crack tip, and it is these that determine how the fault will propagate.
It can be seen that, for this model, fault movement has only extended

to a depth of 35 km. This is because the stresses in the elastic layer
have not been large enough at Tower depths to exceed the frictional
strength, which increases with normal stress. Furthermore, it is

apparent from Figure 7.7 that after 1M yrs the deviatorié stresses in the

ductile material are very small (less than 2 MPa) and further amplification
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of the stresses in fhe elastic layer will be insignificant. The maximum
predicted graben width for this model is still only about 25 km.

In order to obtain fault movement down to greater depths, it is
therefore necessary to do one of two things. Either the applied stresses
on the edges of the model can be increased, or the frictional strength
of the fault can be decreased by lowering the coefficient of friction.

It is felt to be unlikely that stresses greater than 50 MPa are acting
throughout the depth of the lithosphere. This leaves the second alternative.
There is evidence that the frictional strength on the San Andreas fault
may be extremely small. Brune et al. (1969) estimated a shear stress of
no more than 20 MPa on the fault from a study of the heat flow anomaly.
More recently Zoback and Roller (1979) have taken stress measurements,
below the region of stress relief, at varying distances from the fault.
Their results suggest that, even at depths of 15 to 20 km, the shear
stresses on the fault reach only about 10 MPa. They suggest that high
pore pressures may exist in the fault zone. To reduce the frictional
strength on the fault to the very small value that they infer would
require huge pore pressures. [t is difficult to imagine pore pressures

of this size. Another possible explanation for the low frictional strength
may be in the mechanism of fault movement at depth. It méy be that, at
considerable depth, the nature of the fault is different from that nearer
the surface. One possibility is that superplasticity controls the
continuation of brittle fracture at depth. This idea has been discussed
by Ball (1980). Superplastic flow may occur with very small resistance

to shear (Ball, 1980) and consequently the apparent frictional strength
would be very small and would presumably measure the resistance to grain-
boundary sliding in the very fine grained material that would need to be

present. Whatever the mechanism of fault movement at depth, it seems
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Tikely that the effective frictional strength may be very small. The
effect of this will now be investigated by decreasing the coefficient

of friction.

Effect of reducing the frictional strength

The same model has been re-run, but with a coefficient of friction
of 0.05. The results are shown in Table 7.3 and Figures 7.8 to 7.13.
The same stress pattern is seen as before, but now the fault propagates
to greater depth because of the reduction in the frictional strength.
After 300,000 yrs fault movement has propagated to its maximum depth of
50 km. The increase in depth of fault movement 1s a result of the relaxation
of the deviatoric stresses in the visco-elastic material, and consequent
stress amplification in the elastic layer, and is well shown in Figures 7.8
to 7.13. The throw of the fault is greater than in the earlier model and
after 1M yrs the throw is 236 m. The increased depth and throw of the
fault has resulted in an increase in the predicted graben width to 30 km.
Although faulting has, in this case, reached a depth of 50 km it
appears that the frictional strength on the lowest fault section has only
just béén exceeded. In Figure 7.12 it is apparent that relatively small
stresses have developed in the visco-elastic material immediately beneath
the fault, although the whole fault has moved. This suggests that the
forces resulting from the shear stresses on the lowest fault section are
small.
In order to determine whether there is any significant change in
the deformation pattern when larger shear stresses act on the fault, the
coefficient of friction has been reduced further to 0.01. The results,
again using a Newtonian visco-elastic rheology with a viscosity of 1023 Pas,

are shown in Table 7.4 and Figures 7.14 to 7.17. The frictional strength




Time Depth of fault Throw of fault Distance of weakest
(x 10% yrs) | movement (km) (m) etement from fault (km)
0 | 20.0 18 15 - 20
50 ! 27.5 34 20
100 35.0 49 25 - 30
200 L 42.5 78 30
300 50.0 104 30
400 | 50.0 129 30
500 50,0 151 30
700 | 50.0 189 30
1000 I 50.0 236 30
Table 7.3: Fault deformation with time for an applied stress of

50 MPa, a coefficient of friction of 0.05, and a Newtonian

visco-elastic rheology for the ductile material
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has been exceedz=d immediately on all sections of the fault, as can be

seen from Figure 7.14. As the visco-elastic material relaxes and increases

the deviatoric tension in the elastic layer, the fault throw increases

until after 1M yrs the throw is 408 m. Because of this greater fault

movement, larger stresses are generated in the underlying material. The

deviatoric components of these stresses relax with time and cause stress

amplification in the elastic layer, particularly in those stresses adjacent

to the fault at the base of the elastic layer. These stresses become large,

as can be seen in Figure 7.17, and attain values of several hundred MPa.
The predicted graben widths for these models, based on the distance

from the original fault of the element closest to failure, shows a

significant change from that of the previous models. As the time is

increased the predicted width decreases. This is the opposite to the

situation for the earlier models. For times up to 50,000 yrs the

'predicted graben width is between 40 and 45 km. As the model is run

through time, the width decreases to between 30 and 35 km after 1M yrs.

This is probably because of the low frictional strength of the fault.

Fault movement occurs throughout the whole depth of the fault immediately,

giving the sharp displacement profile seen in Figure 7.14. Now, as the \

visco-elastic material relaxes, the deviatoric stresses beneath the fault W

relax and cause a general 'smoothing-out' of the profile. This effect is

well seen in the displacement diagrams of Figures 7.14 to 7.17. As the

profile is smoothed out, so the element Which is most affected by the

bending (which is the weakest element) migrates slowly back towards the

original fault. Clearly, if failure occurs fairly soon after the

development of the first fault, then a graben of width 40 to 45 km will

be formed.

So far in this chapter, the models have assumed a Newtonian visco-




Time Depth of fault Throw of fault | Distance of weakest
(x 103 yrs) movement (km) (m) element from fault (km)
0 50 40 40 - 45
50 ! 50 72 40 - 45
100 ; 50 100 40
200 | 50 149 40
300 50 191 35 - 40
400 50 230 35
500 50 265 35
700 50 328 30 - 35
1000 50 408 30 - 35
Table 7.4: Fault deformation with time for an applied stress of 50 MPa,
a coefficient of friction of 0.01, and a Newtonian visco-
elastic rheology.
Time Depth of fault Throw of fault | Distance of weakest
(x 103yrs) movement (km) (m) element from fault (km)
0 50 40 40 - 45
5 50 68 40 - 45
10 50 91 40
20 50 131 35 - 40
30 50 165 35
50 50 2N 35
100 50 343 30 - 35

Table 7.5: Fault deformation with time for an applied stress of 50 MPa,
a coefficient of friction of 0.01, and a power law creep

rheology.
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elastic rheoclogy for the lower lithosphere. It would be expected,

from the results of earlier chapters, that a power law creep rheology
would not significantly change the deformation pattern. To verify this,
the last set of models, with a coefficient of friction of 0.01, have been
re-run using a power law creep rheology for the ductile layer. The

creep equation used was that for the lithospheric mantle, given in
Chapter 2. The results are shown in Table 7.5. Once again, the only
significant difference between these and the earlier results is in the
times necessary to bring about a particular amount of deformation. It

can be seen by comparing Table 7.5 with Table 7.4 that similar displace-
ments require absut one-tenth of the time for a power law creep rheology.
This suggests that for the creep values used here, the state of stress in
the Tower lithosphere in these models results in an effective viscosity
c1oser?to 10%2 Pa s than the value of 1023 Pa s used in the Newtonian
visco-é]astic rheology. Figure 7.18 shows the deformation using the power
law cr?ep rheology after 20,000 yrs. Comparing this with Figure 7.15 shows
that tﬁe basic stress pattern and displacement profile are relatively

unaffected by assuming a different rheology for the ductile Tayer.

Conclusions

The predicted graben width has been found to increase slightly with
the depth of faulting, although this would not seem to be the only factor.
The graben width from the first model used, with a coefficient of friction
of 0.1 (Table 7.2), was the same as that of the last chapter. This was
despite the fact that faulting extended to 35 km rather than 20 km. This
may be because the throw of the fault was similar in both cases, up to
about 100 m. If this is true, it would suggest that not only is the

displacement profile dependent on the depth of faulting, but it is also
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dependent on the throw of the fault. This conclusion has been supported,
to some extent, by the results for the later models with lower
coefficienté of friction. Although faulting extended to 50 km in both
cases (Tables 7.3 and 7.4), the predicted graben width was greater for
the situation with lower frictional strength. The throw of the fault was
also considerably greater in this case.

[f the effective coefficient of friction is very low, it has been
shown that a graben of width 40 to 45 km can be formed, providing that
the second fault develops fairly soon after the first fault. Whether
the coefficient of friction can be that small so soon after the fault
has formed is debatable. It may be, however, that the laboratory
experiments on frictional sliding discussed in Chapter 2 are not
applicable to the mechanism of fault movement at any but shallow depths.
It also seems somewhat unlikely that the brittle layer of the 1lithosphere
can extend to a depth of 50 km in the typically warm regions of the

lithosphere where major graben form.
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CHAPTER 8

SUBSIDENCE OF A GRABEN WEDGE

8.1 Introduction

In the previous chapters of this thesis the formation of a typical
graben wedge bounded by normal faults was investigated. It was found
that if the second normal fault is dependent on the deformation caused
by the first fault, then the development of wide graben of about 50 km
is difficult to explain unless very weak faults extending to great depths
are present, and these seem unlikely in the warm regions where wide graben
generally form. A fuller discussion of these problems is reserved for the
final chapter. Nevertheless, wide graben do exist, and in this chapter
the subsidence of a 50 km wide graben wedge bounded by normal faults

extending to 20 km depth will. be investigated.

8.2 Finite element model

In this chapter the model of the continental 1ithosphere arrived
at in Chapter 2 (Table 2.1, Figure 2.1) is used. The rheological division
is a 20 km elastic layer overlying 80 km of visco-elastic material. The
model is of a 4,000 km long section of the Tithosphere with a 50 km wide
graben at the centre. This model is symmetrical and, consequently, only
one half of the model needs to be considered. The finite element grid is
shown in Figures 8.1 and 8.2. The right-hand edge of the grid is constrained
to have zero horizontal displacement, thus satisfying the symmetrical
properties of the model. The model is considered to be underlain by a
fluid of density 3,300 kg m™3 and the isostatic compensation routine

described in Chapter 3 is used for the base. A fault which dips at 63.43°
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and extends to a depth of 20 km is present at 25 km from the right-hand
end of the grid (thus giving a 50 km wide graben). The normal and shear
stiffnesses of the fault are again taken to be 1015 and 5x 1010 Nm~1,
respectively, and a pore pressure equal to the overburden pressure of
water is assumed to exist on the fault. A tensile stress is applied

to the left-hand edge of the model and the visco-elastic material

allowed to relax with tjme.

Wedge subsidence

A tensile stress of 20 MPa was appliied to the edge of the model.

This is the same value that was used in Chapters 4 and 6, where the
development and later deformation of normal faulting was investigated.

A value of 0.1 was used for the coefficient of friction on the fault.

This also is in line with the earlier work in this thesis and is
representative of a fault containing a wet clay gouge (Wang and Mao, 1979).
A Newtonian visco-elastic rheology was used for the lower crust and
lithospheric mantle, with a viscosity of 1023 Pa s.

The results for this model are illustrated in Figures 8.3 to 8.7.
These figures show the principal stresses around one half of the graben
(not including the lithostatic stresses), and the surface displacements.
For the stress plots, the scale is given in terms of both 100 MPa and
the largest stress. This is useful in later diagrams where the stresses
become very large. Once again dashed lines represent tensile stresses and
full lines represent compressive stresses. Figure 8.3 shows the deformation
for an instantaneous elastic solution. The stresses in the elastic layer
are only about 11 MPa and are not sufficiently large to cause frictional
sliding on the fault. The surface displacements across the fault are
only 0.8 m and are due to elastic deformation of the fault resulting from

its shear stiffness. The deformation pattern after 200,000 yrs is shown
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in Figure 8.4. The amplification of the stresses in the elastic layer
as a result of creep in the underlying visco-elastic material has
resulted in the frictional strength being exceeded on the upper part
of the fault, and the throw of the fault is now about 15 m.

The situation after 500,000 yrs is shown in Figure 8.5. The rim
uplift which is characteristic of most graben (e.g. I1lies, 1970) is
apparent and is a result of the fault movement, which now extends
throughout the depth of the fault and results in a throw of 40 m. The
stresses in the visco-elastic material have relaxed to a large extent
except beneath the wedge, where compression is produced as a result of
subsidence of the wedge into the ductile material of the lower crust.

It is very interesting that the wedge does not subside uniformly. This
1s because the subsidence is caused by frictional sliding on the faults,
and it is the edges of the wedge that subside more than the centre. This
causes bending and deformation within the wedge itself. The bending
amplifies the deviatoric tensions in the uppermost part of the wedge

and the elements there are much closer to failure than any others in the
model. Failure adjacent to the fauit is likely to result in secondary
faulting, as discussed in Chapter 6. A1l the elements across the wedge
are weak, however, so that faulting is also Tikely to occur further into
the wedge. This may be the cause of the typical, heavy faulting, with
antithetic fault blocks, seen in many graben (e.g. I1lies, 1970). This
prediction of faulting within the wedge is very interesting and contradicts
the conclusions of Artemjev and Artyushkov (1971) that no large stresses
or surface relief can exist in a wedge-shaped block after its formation.
Their argument supposes that the block sinks uniformly. However, the
subsidence of the block will be controlled by frictional sliding along

its boundary faults. For a wide block, this will cause the type of
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bending seen here. For narrower graben, it seems likely that the
amount of bending will be less, because the boundary faults are closer
together, and will probably result in less faulting within fhe‘wedge
and , possibly, relatively undeformed Qraben blocks.

Figure 8.6 shows the deformation pattern after 1M yrs. The compressive
stresses beneath the downthrown block have increased in magnitude as a
result of the increased throw of the fault, which is now about 85 m, and
these are the only large stresses remaining in the ductile material. The
stresses in the wedge caused by the bending are larger than in Figure 8.5,
as a result of the increased throw, and this supports the suggestion above
that faulting wil! occur within the wedge. This faulting is likely to be
confined to fairly shallow depths since the lower part of the wedge is
subjected to compression due to the bending, and this will inhibit the
development of faulting at depth within the block. These inferences on
the nature of the faulting within the wedge agree well with observations
(e.g. I1lies, 1970), as can be seen in the diagram of the Rhinegraben
shown in Figure 1.1.

After 5M yrs (Figure 8.7) the throw of the fault has increased to
250 m. The compressive stresses beneath the block have also increased
and the largest has magnitude of about 364 MPa. Although these values
are fairly large, it must be realised that they are not deviatoric
stresses. The principal stresses are close to being hydrostatic, and the
stress difference is only about 13MPa .

The series of figures shown here demonstrates that the compressive
stresses beneath the wedge increase as the wedge subsides, but they
become closer to the hydrostatic state because of the creep in the lower
crust which always tends to relax the deviatoric stresses. The surface
displacements of Figures 8.3 to 8.7 show the increase in the subsidence

of the wedge as the stresses in the visco-elastic material relax. The
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flanks of the graben remain differentially upthrown throughout, and

the downthrown block is deformed by bending even after very long periods
of time. The total throw on the boundary faults was only about 250 m
after 5M yrs. Furthermore, 85 m of this occurred in the first IM yrs

and only 165 m in the next 4M yrs. Therefore, it seems likely that even
if the model was run over longer periods of time, the amount of subsidence
would not reach the value of several kilometres that is observed in many
of the large graben (Il1lies, 1970; Sherman, 1978; Baker and Wohlenberg,
19771). Sedimentary infilling of the depression would slightly increase
the subsidence, but for a typical sediment density of about 2,000 kg m=3
and a depth of depression of only about 200 m, the additional subsidence
is likely to be very small.

There are two possibilities for bringing about a larger amount of
subsidence. The first is that the frictional strength of the fault is
very small. This was discussed in the previous chapter with reference
to the estimates of the shear stress on the San Andreas fault (Brune
et al., 1969; Zoback and Roller, 1979). The second possibility is that
stresses larger than 20 MPa are acting on the 1ithosphere. Bott (1976)
has investigated wedge subsidence by a consideration of the energy
bUdget, and his results suggest that an increase in stress will have a
greater effect than a reduction in the frictional strength. The effect

of these two parameters on the deformation pattern will now be examined.

Effect of decreasing'the frictional strength

The frictional strength of the fault can be reduced throughout its
depth by decreasing the coefficient of friction. The model has been re-run
using a coefficient of friction of 0.01 and the results are shown in

Figures 8.8 to 8.12. The frictional strength is now exceeded immediately
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for the entire depth of the fault, although the instantaneous fault

throw is only about ém (Figure 8.8). As the visco-elastic material is
allowed fo relax, the same pattern of deformation is seen as before.

Both the rim uplift and the bending of the wedge are apparent in

Figures 8.8 to 8.12. The basic difference between this model and the

one described previously is in the amount of subsidence and, assbciated
with this, the magnitude of the compressive stresses beneath the wedge.
After TM yrs (Figure 8.11) the throw is 115 m and this increases to

345 m after 5M yrs (Figure 8.12). This is greater than in the earlier
model, although perhaps not significantly so. The compressive stresses
beneath the wedge increase to about 550 MPa after 5M yrs, although they
are again close to hydrostatic and the maximum stress difference between
the principal stresses is only 20 MPa. In fact, the same pattern is

seen as in the previous models: the hydrostatic component of the stress
field beneath the wedge increases whilst the deviatoric components siowly
decrease. It is not clear how long this situation will continue for, but
the relatively small deviatoric stresses will result in low creep strain
rates, and the large pressure differences are likely to exist for a long
period of time after the applied stress has ceased to act. This is an
important point as it highlights the difference between visco-elastic and
viscous rheologies. For a purely viscous material these pressure differences
could not exist, whereas for a visco-elastic material they are caused by

volume changes and cannot be directly relaxed by creep.

Effect of increasing the applied stress

In order to investigate the effect of increasing the applied stress,
the same model has been used as in the first section of this chapter,

but the applied stress has been increased from 20 MPa to 50 MPa. The
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coefficient of friction was taken to be 0.1. The results are shown in
Figures 8.13 to 8.17. The instantaneous stresses (Figure 8.13) are
only sufficient to cause sliding on the upper section of the fault. After
200,000 yrs the frictional strength has been exceeded throughout the
depth of the fault and compressive stresses develop beneath the wedge.
This situation is shown in Figure 8.14. As the visco-elastic material
relaxes the same pattern is seen as before and the hydrostatic component
of the compressive stress beneath the wedge increases. The large applied
stress results in much greater subsidence than either of the previous
models. This is in agreement with the work of Bott (1976). After 1M yrs
the fault throw is about 275 m and after 5M yrs it has increased to
813 m. The compressive stresses beneath the fault have attained a
value of nearly 1270 MPa, although the stress difference is only 50 MPa
which is geologically reasonable (Murrell, 1977). The high pressures
beneath the wedge may result in phase changes in the lower crust.

It seems 1ikely that, for coefficients of friction less than about
0.1 and applied stresses close to 50 MPa, fault throws of greater than
1 km can occur. These may become considerably larger if the graben is
filled with sediment. Bott (1976) has reached similar conclusions on
the amount of subsidence that can occur by a consideration of the energy
budget. He showed that the gravitational energy loss resulting from the
subsiding wedge must exceed the gain in gravitational energy caused by
rim uplifts, the gain in strain energy caused by normal faulting
(providing absolute tension does not exist), and the energy dissipated
by friction on the fault. The results presented here qualitatively
support this energy budget since it fs apparent from the displacement
profiles (e.g. Figure 8.17) that the loss of gravitational energy
resulting from the wedge subsidence considerably exceeds the gain in

gravitational energy caused by the uplifted rims. This excess is
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available to overcome the dissipation of energy associated with the

normal faulting.

8.6 Summary

The main conclusions reached in this chapter will be summarised in

point form:

1)

Subsidence of the graben block increases with time as the stresses

in the visco-elastic material relax and amplify the stresses in

the elastic layer. Associated with the subsiding wedge are rim

uplifts at the flanks of the graben.

The process of wedge subsidence is stable from the energy viewpoint
(Bott, 1976) since the loss in gravitational energy resulting from

the downthrown block greatly exceeds the gain in gravitational energy
caused by the rim uplifts.

Subsidence of the wedge results in the development of compressive
stresses immediately beneath the wedge. The hydrostatic component
increases as the block subsides, although the deviatoric components
are relatively small. This may lead to significant pressure differences
in the underlying, Tower crustal material and the possibility of phase
changes.

Decreasing the frictional strength of the fault or increasing the
applied stress results in a greater amount of subsidence. The effect
of a larger stress is much greater than the effect of a weak fault.
For a coeff{cient of friction less than about 0.1 and an applied
stress of about 50 MPa, subsidence of 1 km or greater seems likely,
particularly if the graben is filled with sediment.

The wedge does not subside uniformly. This is because it is controlled

by frictional sliding on the boundary faults. The greatest amount of
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subsidence occurs near the faults and the wedge is subjected to bending
stresses which increase the deviatoric tension near the top, but
decrease it near the base. This is likely to result in shallow, normal
faulting within the downthrown block, which is observed in many graben
(e.g. 11lies, 1970). A narrower graben would be expected to have smaller

bending stresses and, consequent]y, less deformation within the block.
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CHAPTER 9

DISCUSSION

9.1 Discussion of the results

In this thesis, the formation of graben structures has been
divided into three stages. The first stage has been considered to be
the development of normal faulting in the upper part of the lithosphere.
The results from Chapter 4 show that this is possible when comparatively
small stresses act throughout the depth of the lithosphere. If these
stresses do not vary significantly with depth, then failure wil]
probably occur near the top of the lithosphere where the overburden
pressure is small. It will presumably not occur very close to the
surface because of stress relief associated with joints and weathering
(Zoback and Roller, 1979). The models used assumed that the shallowest
depth for faulting to commence was 3.33 km (the centre of the shallowest
elements). The models showed that an applied stress of 20 MPa was
sufficient to cause faulting after suitable time periods. The mechanism
by which this occurs is stress amplification, which has been investigated
previously by Kusznir and Bott (1977). The results presented here agree
well with their work. Of particular interest, with regard to the
development of graben structures, is the conclusion that warm regions
of the lithosphere are more susceptible to faulting. This is a result
of localised thinning of the brittle layer and a decrease in the
effective viscosity of the underlying material. A good example is the
Basin and Range province. The tensile stresses which act on the litho-
sphere may be a result of the driving mechanism of plate tectonics, in

particular, the effect of the downgoing slab at subduction zones.
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Another important source of tensile stress is likely to be due to
compensated plateau uplifts (Bott and Kusznir, 1979). In some areas
this may be the principal source. It is significant that most regions
where major graben have developed were subjected to doming and
volcanism prior to the faulting episode (Kiselev et al., 1978; Davidson
and Rex, 1980), which would give rise to these stresses. The position
of the normal faulting in these regions was probably dependent on
ancient lines of weakness (I1lies, 1977; Logatchev and Florensov, 1978).
The hypothesis that the second normal fault develops as a result
of the deformation caused by the first fault, which was first suggested
by Vening Meinesz (1950), has been found to be feasible. The results
presented in Chapters 6 and 7 show that a significant weakening near
the top of the crust occurs where the stresses are most greatly modified
by the bending profile of the first fault. In the event of a homogeneous
upper crust, it seems probable that normal faulting will occur at this
.position of weakness. For situations where the fault movement occurs only
in the upper part of the elastic layer, because of the frictional
strength of the fault, graben of widths between 5 and 15 km were predicted.
If the elastic layer is underlain by a fluid, then when fault movement
extends through most of the elastic layer the predicted graben widths
increase to between 50 and 55 km. A large increase in the fault throw
also results. When fault movement extends throughout the elastic layer
the throw increases further, although there is no change in the
predicted graben width. These results are interesting when compared with
elastic beam theory calculations (Heiskanen and Vening Meinesz, 1958;
Bott, 1976), but are not considered significant with regard to the true
nature of graben formation. This is because the assumption that the

underlying material is a fluid is considered to be too unrealistic.
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A much more realistic rheology for the lower part of the
lithosphere is visco-elasticity. When faulting extends throughout
a 20 km thick elastic layer overlying visco-elastic material, the
predicted graben width is about 25 km. This seems to follow on from
the 5 to 15 km widths which were predicted for shallower faulting.
These conclusions are in good agreement with observed structures in
several areas. The Basin and Range province is characterised by many
graben with typical widths of between 10 and 20 km (Stewart, 1978), and
faulting in this region may be confined to the uppermost 15 km of the
lithosphere since focal depths of earthquakes are typically less than
this (Smith and Sbar, 1974). Other narrow graben, such as the Levant
graben which have widths of 5 to 10 km, may also be explained by this
mechanism. The development of graben of widths of about 50 km, which
are typica]]y‘associated with rift valleys, can not be explained by the
results in this thesis. The widest graben that has been predicted by
this work is of 40 to 45 km. However, this requires a very weak fault
and a brittle layer extending to 50 km depth, and this seems very
unlikely since wide graben, such as Lake Baikal and those of East
Africa, typically form in warm areas where the brittle layer would be
expected to be fairly thin. One possible explanation of the development
of these wide graben is that the second normal fault is also controlled
by basement weaknesses. The South Baikal depression overlies an ancient
suture (Logatchev and Florensov, 1978) and the Rhinegraben follows
Hercynian and Caledonian basement faults (I1lies, 1977). The asymmetry
of the sediment fill and the gravity anomaly associated with the Rhine-
graben (Mueller and Rybach, 1974) may suggest that the first fault to
form changed from being the eastern boundary to being the western

boundary, and this could indicate the possible importance of basement
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control. Another possibility is that there is another mechanism
acting in these areas which has not been considered in the models.
It is possible that this could be connected with the deep structure
beneath the rifts.

In this thesis, only a brief investigation of the subsidence of
the graben wedge has been possible. The results, which were described
in Chapter 8, suggest that subsidence of at least 1 km can occur if
the applied stresses are about 50 MPa and the coefficient of friction
on the fault is less than about 0.1. This is in agreement with
calculations made by Bott (1976). In the time available for this
research, it has not proved possible to inciude the effect of sedimentary
infilling of the graben. This is likely to increase the amount of
subsidence considerably (Bott, 1976). Two other interesting effects
of the subsiding graben block were seen. Firstly, very large compressive
stresses build up beneath the wedge. The deviatoric components associated |
with these stresses are relatively small and, consequently, these
pressure differences are likely to exist for long periods of time. It
is possible that these could cause phase changes in the lower crust.
Secondly, the subsiding wedge is likely to be heavily deformed by
faulting. This is because the wedge does not sink uniformly, as
assumed by Artemjev and Artyushkov (1971), but is controlled by frictional
sliding on the boundary faults. It seems likely that narrower graben
will suffer Tess deformation because the amount of bending of the wedge

will be smaller.




146

9.2 Limitations in the modelling

The limitations in the models presented in this thesis fall into
two classes. The first of these are those resulting from the finite

element method used here and can be summarised in a number of points:

1) Constant strain elements have been used in all of the models. These
are not particularly suitable when large stress gradients exist.
Higher order elements would be more useful, especially in the vicinity
of the fault where stress concentrations are likely to occur.
Nevertheless, it is felt that these elements do give a reasonable
approximation to the stress system and, of course, are relatively

simple to use.

2) The plane strain approximation is probably not a severe constraint
on the models presented here, since they all represent sections

through structures which are very long in the third dimension.

3) The application of body forces in finite element models is always
a problem because of the boundary conditions (see Chapter 4). A 1itho-
static stressdistribution has been assumed for all of the models
in this thesis. This will not introduce significant errors when
the differential surface displacements are small, which is the
situation for most of the results presented here. It is only in the
final model, when the graben wedge has subsided considerably, that

the body forces may be important.

4) It is not clear how accurately the fault modelling technique which

has been developed in this thesis reflects the true behaviour of a
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. fault. This is likely to be the case with any fault modelling
procedure since the mechanism of fault movement, particularly at
depth, is not well-known. The method developed here has the
advantage that it is based on the concept of frictional sliding
which is, probably, by far the most significant cause of fault move-
ment, at Teast at shallow depths. This is supported by laboratory
studies (Byerlee, 1978) and by investigations into the features of
active faulting (Nur, 1978). It would be very interesting to use
the fault modelling method developed in this thesis, together with
higher order elements and variations in the frictional strength, for
the purpese of investigating stick slip behaviour and the mechanism
of earthquake generation.

When the fault modelling method is used with constant strain
elements, as is the case here, it is only possible to model plane
faults. Listric faults have been described in several areas (e.g.
Proffett, 1977; Montadert et al., 1979) and may give rise to
significant differences in the displacement profiles and stress
distributions associated with movement on them. The method developed
here could probably be adapted to model listric faults by using
curved, isoparametric elements (Zienkiewicz, 1977).

Evidence that the method does give reasonable results is that
certain effects, such as the re-distribution of stresses adjacent
to the fault and the development of secondary faulting, which the
model predicts, are observed on naturally occurring faults (Ramsay,

1967) .

The second class of limitations that affects the model is concerned

with the current state of knowledge about the lithosphere. Uncertainties
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about the mechanism of fault behaviour have already been mentioned.
The stéfe of stress at depth is largely unknown, as is the rheology.
The models that have been run in this thesis suggest that the deformation
pattern is not significantly altered by the type of creep mechanism
used, assuming it is uniform throughout the layer. Local variations
in the stress system, however, may result in significant variations in
the rheological behaviour. One example of this, which has been discussed
earlier in this thesis, is the possibility of superplastic flow at the
base of faults (Ball, 1980).

These problems are 1ikely to confront research workers dealing

with geodynamics problems for many years.
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APPENDIX 1

ELASTIC BEAM THEORY

A brief explanation of elastic beam theory, with particular
emphasis on its geophysical use, will be given here. For a more complete
description the reader is referred to one of several texts on stress

and deformation which cover this subject (e.g. Housner and Vreeland, 1966).

Al.1 The basic beam eguation

Consider a beam in the x-y plane which is slender in the z-
direction. The shearing strains will be very small. In the technical
theory of bending, the shearing strains are assumed to be zero and
deformation of the beam is considered to be a result only of the

bending strains. This implies the following:

e = 0

Yy

Yy = 0

€2 T Yyz T Yxz ° 0

The radius of curvature, r, is given by

1 = M Al.1

r El
where M is the bending moment at the point where r is measured, E is
Young's modulus, and I is the moment of inertia per unit width. If V
is the vertical displacement (in the y-direction), then, provided the

beam has small slopes,
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El d2v = M A1.2
dx?
Now, M =V where ¥ is the shear force per unit width
dx
and dv = -q where g is the restoring stress per unit width

dx

where D is the flexural rigidity, given by

D = EI = ET3
12
where T is the thickness of the beam.
Note: For thin plate theory, the basic equation is
D'VYV + g = 0

where D' is the flexural rigidity of the plate,

D' = EI where v is Poisson's ratio

1-v2
and
v = %+ 234 + 9t
ax® 3x2322 Azt

The flexural rigidity for a thin plate is often used in bending problems

pertaining to the earth.
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A1.2 Flexure due to vertical loading

Consider the brittle, upper part of the lithosphere to be an
elastic beam and the underlying, ductile material to be a fluid.
Then the restoring stress, q, is given by

q = opgV Al.6

where pp is the density of the underlying fluid and g is the gravitational

constant.

Then the basic equation becomes

Dd*V + popgv = 0 A1.7

Ak

WA

The solution of this equation is of the form

V = exp(-g) (A cos é + B sin é) + exp(é}(Ccos§»+ D sin g) A1.8

where o is the flexural parameter, given by

() K
.Dmg

At great distance from the applied load there will be zero displacement,

-
1l

exp(-é) (A cos §~+ B sin 20 A1.10

This equation can be differentiated to obtain the following useful

equations:
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dv = exp (1) ((B-A) cos ¥ - (A+4B) sin %) A1.T1
N o a a
dx o
4 =2exp (-2) (-B cos X + A sin & AT.12
—_— 63 o o -
dx 2 a?

X X . X
d¥ = 2exp {-2) ((A+B) cos 2 + (B-A) sin 0) A1.13
— a
dx 3 N : ¢

Equation A1.10 can also be solved for two cases:

Case 1

Continuous beam with a downward force P applied at the origin.
Since the beam is horizontal at the origin the following boundary

condition holds:

9! = 0, x = 0
dx

So from equation Al.11
B-A=0
- B o= A A1.14

Now, the force P is carried by both the left and right sides of the beam.

~¥=P, x = 0 and V=0Dd3

. giy = P ,x =0
dx3 2D

So from equations A1.13 and Al1.14,

= P
g 2D
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A = P A1.15

2a€5mg
- the displacement curve is given by

V = P exp (-%) (cos%+ sin-x(;) A1.16

2apm9

Case 2

Vertically fractured beam with the origin at the fracture. Downward
force P applied at the origin, working on one half of the beam.
The boundary condition is now that there is no moment acting at

the origin.

~M = 0,x = 0

. from equation Al1.2

gf! = 0, x =0
dx?

So from equation Al.12,
B = 0 A1.17

For this case, the force is carried all on one side of the crust,

- = P,bx =0

and
v - Dy
dx3
LA
dx3 D
= 4p

atong




So from equations A1.13 and A1.17,

2A = 4p

al a“omg

A = 2P
aem9

-.the displacement curve is given by

V = _2P exp (—2) cos %%

03
omg

A1.3 Predicted width of a graben
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A1.18

A1.19

If a fault in the brittle layer of the lithosphere can be regarded

as a vertical load, then equations Al.16 and Al.19 give the displacement

profile for the situations of maximum constraint (continuous beam) and

minimum constraint (vertically fractured beam).

If the second fault, on the downthrown side, is related to the

deformation caused by the first fault, then it is likely to develop

where the bending moment is a maximum,

i.e. where .93! = 0.
dx3

Using the above condition, the width of the graben, X, can be

calculated for the two cases.

Case 1
Continuous beam.

From equations Al.13, A1.14 and Al.15,
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2P exp Qg) cos gﬂ = 0
* Ppd
cos Jw = 0
a

So taking the first value of Xy o

Xy = o A1.20

Case 2

Vertically fractured beam.

From equations A1.13, A1.17 and A1.18,

X, X X X "
4P exp (-=) (cos ZW - sin My = 0, - cos Zw = sin W
a [0 Qa a Q

apmg

So taking the first value,
X =3% A1.21
Now, case 1 represents a situation of maximum constraint and case 2

represents a situation of minimum constraint. Therefore the predicted

graben width can be considered to 1ie in the range

and substitution of appropriate values of o allows limits to be placed on Xyg*
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APPENDIX 2

FINITE ELEMENT PROGRAM

A2.1 Program Structure

The finite element program described here has been written by the
author in the form of a library of subroutines and a master calling
program. The programs are written in FORTRAN IV and double precision
is used for all real characters except those starting with X to Z. The
calling program is stored in the file FEGEN and Tists all the common
blocks, which “ransfer data among the subroutines, together with calls
to every subroutine in the library. Subroutine calls that are not
required for a particular job are prefixed by a letter 'C' in the first
cotumn which results in the calls not being executed. The subroutines
are stored in the file FELIB. The purpose and calling order of these
subroutines are illustrated in the form of flow diagrams in Figures A2.]
and A2.2. Two additional libraries are necessary when the program is run.
These are *HARWELL, which contains the subroutine MAQO7BD, and *GHOST,
which contains plotting subroutines. These two libraries are available
at most computing centres.

The data within the program is stored in eight common blocks. In
general, each of the common blocks contains information relevant to a
certain part of the program. Consequently, only the necessary common
blocks need to be passed to each subroutine. The contents of the common

blocks refer to the following:



Time-dependent
solution required?

//// YE%\\

/
/

NO

Calculate creep
strains and
final stresses
S/R CREEP

U,

/

Cutrout required
for re-creating
this stress system?

//// YES\\\

{ Write out final
NO i forces and creep
| strains

AN | S/R FINFOR

N

Calculate principal |
stresses
S/R PRINCS

|

Test for failure
in brittle elements
S/R ELFAIL

[

Write out results

S/R OUTPUT
|
|

Deviatoric stresses
to be written out?

YES
///// Write out
NO deviatoric
stresses
S/R DEVOUT

.
NS

Graphical output

required?
///NO YEQ\\
See flow
STOP diagram
Fig. A2.2

Fig. A2.1: Flow diagram for the main section

of the finite element program.




Plot of finite
element grid
requijred?

/ \
YES
// RN

NQ' | S/R GRDPLT

\\\ e
Plot of central

section of grid
required?

VES
AN

N | S/R GRDPLC

AN //
AN P
AN

Plot of principal
stresses required?

YES

AN

S/R STRPLT

/

/

Plot of principal
stresses for central
section required?

T
N

S/R STRPLC

/L

Plot of deviatoric
principal stresses
required?

S
NO S
N

NO

RN

NO

S/R DEVPLT

%

Data file for
shear contours
required?

YES

AN

S/R SHSCON

NO

/ \

Data file for
maximum principal
stress contours
/required?

YES
AN

S/R PRSCON

/

/s

Plot of surface
flexure required?

///// N
YES
AN
S/R SFLEX

/

Plot of surface
flexure for central
section required?

NO

D

NO

YES

A

NO S/R SFLEXC

/

STOP

Fig. A2.2: Flow diagram for the graphics section of finite element program
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COM 1 : element information

COM 2 : nodal information

COM 3 : forces and displacements

COM 4 . stiffness matrix

COM 5 : strains and stresses

COM 6 : principal stresses and failure information
COM 7 : creep information

COM 8 : fault information

The calling program and the subroutine library are listed at the
end of this appendix. It is not felt to be necessary to describe each
subroutine in detail here since the programs contain comment cards which

adequately describe the operations being performed.

Description of input

The input data is read into the program via three channels. These

are attached to the following device numbers:

device number 1 : data on the elements, nodes and physical properties
device number 4 : data on the fault (if present)
device number 5 : title of the job

The input data will now be described in detail. The formats are given

in brackets.

Device number 1

NNOD (I1@) : number of nodes.
I, X(I), Y(I) (11@, 2E20-6) : node number, x and y co-ordinates (m).
One card for each node.

NEL (IT@) : number of elements.
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I, (NELTOP (I,J), J=1,3) (411@) : element number, element topology
(numbers of the three nodes defining the element). One card for
each element.

EUCRU, NUUCRU, ROUCRU (E18-3, F19-3, E1@-3) : Young's modulus (Nm~2),
Poisson's ratio, and density (kg m~3) of the upper crust.

ELCRU, NULCRU, ROLCRU (E19-.3, F1@.3, E1@.3) : Young's modulus (Nm=2),
Poisson's ratio, and density (kg m™3) of the lower crust.

EMANT, NUMANT, ROMANT (E1@-3, F1@-3, E19-3) : Young's modulus (Nm~2),
Poisson's ratio, and density (kg m™3) of the Tlithospheric mantle.

VISCR, VISMAN (2E71@.3) : viscosities of the lower crust and mantle (Pa s).

NBF (I1@) : number of nodes at which forces are applied.

I, FORCE (2*I-1), FORCE (2*I) (11@, 2E25-15) : node number, x and y
components of applied force (N). One for each node which has an
applied force.

NPDX,NPDY (2I11@) : number of nodes with prescribed x displacements,
number of nodes with prescribed y displacements.

I, DISP (2*I-1) (I1@, E1@-3) : node number, prescribed x displacement (m).
One for each node fixed in x direction.

I, DISP (2*I) (119, E18-3) : node number, prescribed y displacement (m).
One for each node fixed in y direction.

MAXIT, MAXINC, TINC (211@, F1@-4) : maximum number of iterations per
time increment, maximum number of time increments, length of each
time increment (secs).

T, COEFF (E1¢-3, F4-2) : tensile strength of brittle material (Nm~2),
coefficient of friction on closed Griffith cracks.

IBF (I1@) : body force marker.

IBF = 0 body forces not included
IBF # 0 body forces included
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IPS (I19) : piane stress marker
IPS = 1 plane stress

IPS # 17 plane strain

ICR (119) : creep marker.
ICR = 0 Newtonian visco-elastic rheology
ICR = 1 Power law creep rheology
CLC, QLC (E1@-3, F1@2-3) : pre-exponential constant and activation energy

for lower crust. Only necessary if ICR = 1.
CM, QM (E1@-3, F1§-3) : pre-exponential constant and activation energy
for Tithospheric mantle. Only necessary if ICR = 1.
ITEM (11@) : temperature anomaly marker
ITEM = @ no anomaly
ITEM # @ anomaly
Only necessary if ICR = 1
NTEM (118) : number of elements with anomalous temperature. Only
necessary if ICR =1 and ITEM # 0.

NELTEM (I) (I3) : element number. One for each element with an
anomalous temperature. Only necessary if ICR = 1 and ITEM # §.
ANTEMP (F5-1) : magnitude of temperature anomaly (°C). Only necessary

if ICR = 1 and ITEM # 0.

Device number 4

THETA (F1@-3) : hade of fault (measured anti-clockwise from positive
y axis).
KN, KS (2E1@ -3) : normal and shear stiffnesses for the fault (Nm-1).
NFS (I1@) : number of fault sections.
NUP (I,J), NDN (I,J) (211@8) : node number on upthrown side, node number

on downthrown side. Two cards for each fault section: first is for
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dual node at the top of the section, second is for dual node at
the base of the section. One set of two cards for each fault section.
NELF (I,1), NELF (I,2) (211@) : numbers of the two elements adjacent

tn the fault section. One card for each fault section.

NUMIT (1,1@) : maximum number of iterations allowed in subroutine
FSHEAR.

FMU (F1@-3) : coefficient of friction on the fault.

FAC (F18-3) : convergence factor.

Device number 5

TITLE (5A4) : title of job. Device number 5 defaults to xSOQURCEx and

program prompts for input of title.

Description of output

Output from the program is possible via four channels. These are

attached to the following device numbers:

device number 6 : this informs the user of the state of the program by

writing a message when each subroutine has finished, together
- with the amount of CPU time currently used by the program. Device

number 6 defaults to *SINK* and need not be assigned.

device number 7 : written results.

device number 9 : graphical results.

device number 2 : a data file for use with the CALCOMP package GPCP to
produce a contour map of the maximum shear stress.

device number 3 : a data file for use with the CALCOMP package GPCP to

produce a contour map of the maximum principal stress.
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The written results are presented in the following form:

A. Echoed input data:
1. Nodal co-ordinates, applied forces and prescribed dispiacements.
2. Element topologies and physical properties.
3. Creep data.
4. Failure criteria data.
5. Fault data (if fault present)
B. Results:
1. Information on which fault sections have had the frictional
strength exceeded (if fault present).
2. Time through which the solution has been run.
3. Nodal displacements.
4. Element stresses and failure information.

5. Deviatoric stresses (if subroutine DEVOUT was called).
The graphical output that can be generated is apparent from
Figure A2.2. These subroutines are not general and it may be necessary

to adjust the annotation for different models.

A2.4 Additional input/output for re-created stress systems

I[f a long job is run and it may be helpful to be able to re-create
the results at a later time by an elastic solution, then additional output
is written out via the following device numbers:
device number 8 : the node numbers and total x and y components of the

forces at the end of the solution are written in format 119, 2E25-15
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device number 0 : final creep strains for each element are written

unformatted.

These operations are performed in subroutine FINFOR.

When the stress system is re-created, the output from device
number 8 is incorporated into the data file attached to device number 1.
The final creep strains are read in as input, again via device number O,

for use in subroutine CRSMIN.

Program Test

The visco-eiastic finite element program has been tested against
an analytical solution for the time-dependent, visco-elastic deformation
of a hollow cylinder of visco-elastic material subjected to applied
internal pressure and enclosed within an elastic, steel casing. The
analytical solution is given by Lee et al. (1959). The f{nite element
model used is shown in Figure A2.3. It is only necessary to model one
quarter of the cylinder because of the axes of symmetry, which are

constrained for zero tangential displacement. The material properties
p

of the model are listed in Table AZ2.1.

Young's Poisson's Viscosity
Modulus, E Ratio, v n
Visco-elastic material 10° 1/3 3/8 x10°
7 o
Steel 3x10 1//1—]—

Table A2.1: Material properties of the test model
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The tangential and radial stresses from the finite element
solution (normalised with respect to the applied pressure) are plotted
against the analytical solution in Figures A2.4 and A2.5 for varying
time periods. The times have been normalised with respect to the
relaxation time constant, which is  2(1+v)n .

It is clear from these diagrams thatEthe finite element results

agree well with the analytical solution.
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Fig. A2.4: Comparison of the analytical solutions and the
finite element results for the tangential stresses.
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FEL:EN

(s
[
(
C
1 380 336 o8 Rk ok ok e ol ok 8 KKK O3 S 3K ORI K 3RO OK K K 3 3 KO8R 80K K K K 3K O OIOIOK 0K 3 3O SOKOKOK K KK K K 30K %0
[
e THIS FROGRAM WAS WRITTEN BY U.F.MITHEN » 1978-1980
(. THE SUEBROUTINES REFERRED T aARE CONTAINED IN FELIR
[
£ 95 s 0l ol 333 KON KK 3O 3 K ROKOKOK KO KSR ONOK KON R KKK KK KK IR O KK K K K 3 KK K KOOI ROKOK KOK KOK X KK X KN
C
[
C
IMPLICIT REAL X*8(A-HyQ-W)
REAL X8NUCSLO) vy NUF s K(H00+ 2001 yRKEL (Hv 67 vy NUCRUS e NUMANT yKF (89 8) y KNy K¢
COMMONZCOMLZECHLOY sNUyROCHLOY s TITLE (S s VISCELIO) vy TIMs Ty COEFF»CL.Coy
1 ALCyCHMs QMy ANTEMF o NEL o NELTOF (510, 3) s IRHEQCEL10) s TRE
2 LCALL y INSy IFSy ICRy ITEMy NTEMy NEL.TEMCL0OO0)
COMMON/COM2/7X{300) s Y(300) s XPL () s YPLCZ) y XS (300 y YE(Z00) s NNOL s NNOINZ
COMMON/COMI/FORCECAHO0) yFORCEL(H00Y s DISF (H00) v STORNCS00) vAvAAY TINC,
1 GISFLCH00) sNEBF s NFIOXyNFDY s MAXIT e MAXINC Yy TFAs IFDIM(4)
COMMON/COMA/ Ky RKEL sBTC(Hs3) vy IB(Zv6) 5
1 FELLIBCHLIO) v FIGOS 100 v EGNODCLO0) s KEBW» KORUW
COMMON/( ()M'"J/Il( I3 s RBI3vS) v LIB(E v v S510) yBLIBCErHvH10) s DISPFEL(6) 9
1 STRAINCS10v4) v STRESS(S51L0v4 ) v STRINCELO ¥ 3) s BTSH(H)
CUMMUN/[UMn/PhLNHT(11093)9UEUfh(|109§)vﬁlfHﬁ(llO)vPﬁ[l(JIO)V
1 FUAL CHLO) yFPHIC(ILO) s FLoeF2s ITYPE(H10)
COMMON/COM?7 /STRBEG(S10y4) y STRENDC(S109s4) v HBTRAVCEHLO94) 5
1 CREEFS(S51024)y N1 (3¢ 4y e INLCCE) v FISTEL(SH) y PRESTR(SG1094)
2 FISTCH00) s DEVIA) yCRETROF1094) yCRGTRL(G1 0 4)
3 DEVEND(S10s4) y DEVBEGC(S10-4) s PREDEV (31040 v
4 CRISTCG10s4) s EFFROEVCSLO) s TEMF(SH10)
COMMON/COMB/7SNORM (69 2) s SHEAR(G6 v 2) v SHAV(H) v SNAV (L) s SHAUXS (A) » THETAS
1 FMUyFACsR(ByB)yRT(BsB) s KFyRKF (878) yRKFRT(8v8) s NN(B) »
2 NELLF(As2) s NUF (Ao 2) s NIINCSH e 2) y NUMITeNFSy TIT (6D

CALL TIMEC(O»1)
CALL INFUT
caLl. ECHD ‘ -
CALL FORMK :
0 CALL RODYF
CALL IS08
CALL PDISP
CALL FORMKF
CALL SOLN
CAlLL STRES

( CALL CRSMIN
Catl. FSHEAR

G CaLL CREEP

C Call. FINFOR

CALL FPRINCS
Call, ELFATL
CaLl. OUTFUT

" CALL DEVGUT
o
call PAFERCL)
( Call. GRODOFLT
0 Coll FRAME

[ CALL GRIDPLC
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CALL FRAME
CaLl STRPELT
C Call. FRAME
CALL STRFLE
ALl FRAME

T 0

» CALL DEVPLTY

C Call FRAME

» Cal.l. SHSCON

& Catl. PRECON

C CALL SFLEX(G.0)
G CALL FRAME

CAaLl, SFLEXC{O.0)
CALL GREND

STOF
ENI
C
G
¢
BLOCK DATA
IMFLICIT REAL X8(A~Hy0-W)
COMMON/COM3/FORCE (600) y FORCEL (600 s NTEF (6000 y STORD(600) r Ay AA» TINC »
1 LISFLC600) y NEF y NFIX s NFIY s MAXT Ty MAXING y TFA s TFIIMC6)
COMMON/COMS/FRINST (5105 3) y BEVFRCS109 30 v ALFHA CSL0) yFATL (5100
1 FUAL (5100 s FHI(510) yFLyF2y ITYPE(510)
DATA A/ FREE’/yF1//NO//yFR/77YES’ /v AR/ 'NO/
C
C
G
C
c
C
C
C
ENI
C
C
" ‘
C |

(3R o oK RO Kk oK K K 3K 0K K K K 38 K 3K oK 0K s oK K k3 ok st o 30K 350K oK 3 K oK K 3K K OK 30K 30OK SOK 3OKSOKMOIOK JOKK 0K K o
{ ‘

C THIS PROGRAM WAS WRITTEN BY DL.F.MITHEN » 1978-1980

0 THIS FROGRAM CONTAINS SUEROUTINES TO FERFORM FLANE STRAIN FINITE
e ELEMENT ANALYSIS

C THERE 18 ALS0 THE FACILITY TO FERFORM FLANE STRESS ELASTIC

G SOLUTIONS

C THESE ROUTINES WORK IN §.T., UNITS AND AKE FOR TRIANGULAR 3-NODEI
0 ELEMENTS

C X-AXIS I8 FROM LEFT TO RIGHT

C Y~AXIS 18 VERTICALLY UFWARDS

C MAX. NO., OF ELEMENTS = 510

G MAX. NO. OF NODES = 300

@ ~THESE CAN BE VARIED BY ALTERING THE ARRAY DIMENSIONS

C

£ KRR AR AR A KKK KRR KSR O H R AR K AR KR SKOK R ORI HOKIOK ORI IR HOROK AR OK K RO KK
C

C

C

€ UESCRIFTION OF SUBROUTINES:

® -

C INFUT -~ KEADS IN DATA FROM CHANNEL 1
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C
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G

-

Iy

{
(
{
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{
t
{
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{
(
L
{
(
{
l
l
{
t
l
{
L
C
0
{
(
t
(
{
(
l
(
1
(
(
(
{
(
L
(
(

G
C
(

[
G
C

C
C

1

f')

ECHO
FORMK

RODYF

1508

FOIsk

FORMKFE

SOLN

HTRES

CREMIN

FSHEAR

CREEF

FINFOR
FRINCS
ELFATL
QUTFUT
DEVOUT
GRIFLT
STRPLT
DEVPLT
SGHECON -

FRSCON -

SFLEX
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ECHOES INFUT DATA TO CHANNEL 7

FORMS THE GLORAL STIFFNESS MATRIX Ky UIA THE
ELASTICITY MATRICES Dy THE STRAIN MATRICESyERy AND
THE ELEMENT STIFFNESS MATRICESsKEL

INCORFORATES ROLIY FORCES INTO FORCE VECTOR
COMPFENSATES FOR FLULD UNDERLYING THE MODEL RY
ODAMPING THE DISFLACEMENTS AT THE RASE

INTRODUCES PRESCRIRBED DISFLACEMENTS BY MUORIFYING
THE FORCGE VECTOR AND THE JTIFINL“U MATRIX

- FORMS THE STIFFNESS MATRICES FOR THE FAULT SECTIONS

AND ADDS THEM INTO THE GLOERAL STIFFNESS MATRIX.
FAULT DATA IS READ IN FROM CHANNEL 4

SOLVES FOR THE DISPFLACEMENTS FOR A STATIC SOLUTION
USTNG THE XHARWELL SURROUTINE MAOZRD

- CALCULATES THE STRESSES FROM THE DISFLACEMENTS VIaA

THE STRAINS

SUTRACTS INITIAL CREEF STRAINS FROM TOTAL STRAINS,
INTTIAL CREEF STRATINS ARE REATDY IN FROM CHANNEL ©
REMOVES EXCESS SHEAR STRESS ON THE FaAULT RBY
TTERATIVELY MODIFYING THE FORCE APFLIEI ON THE

FAULT NODES

INCORFORATES THE EFFECT OF  VISCO-ELASTIC STRESS
RELAXATION IN THE LOWER CRUST AND MANTLE USING
ETTHER NEWTONIAN VISCO-ELASTIC OR FOWER AW
CREEF RHEOQLOGIES

S WRITES OQUT FINAL FORCE VECTOR TGO CHANNEL 8 AND

FINAL CREEF STRAINSG T0O CHANNEL ©
CALCULATES THE PRINCIFAL STRESSES
TESTS FOR FATLURE USING THE MORDIFIED GRIFFITH CRITERT

= WRITES RESULTS TO CHANNEL 7
- WRITES DEVIATORID STRESSES TO DHANNEL 7
- PLOTS GRID USING %GHOST GRAPHICAL SUBROUTINES

FLOTS FPRINCIFAL STRESS VECTORS AT ELEMENT CENTRES
USING XGHOST GRAFHICAL SURROUTINES

FLOTS DEVIATORIC STRESS VECTORS AT ELEMENT CENTRES
USTING XGHOST GRAFHICAL SUBROUTINES

GENERATES A FILE FOR PLOTTING MAX. SHEAR STRESS
CONTOURS USING %GFCP. FILE IS ATTACHED TO CHANNEL 2
GENERATES A FILE FOR FLOTTING MAX. (MOST FOSTTIVED
FRINCIFAL STRESS CONTOURS USING XGFCF. FILE IS _
ATTACHED TO CHANNEL 3

- FLOTS SHAPE OF SURFACE FLEXURE USING XGHOST

GRAFHICAL SURROUTINES

i******#**********#*****#****************************#******#***********

UBRUUT[NE INFUT

IMFLICIT REAL

X8 CA~Hy (1-W)

REAL X8 NUCSL10) y NUUCRU » NULTRU y NUMANT

COMMON/COMLZECS10) s NUs ROCSLO) » TITLECE) sVIS(E10) » TIMy Ty COEFF s CL.C s
QLCyCHMy QM y ANTEMF » NEL s NELTOF (510 3) ¢ TRHED (5100 s TRF »
TCALL » INSy TFSy ICRs ITEMe NTEMy NELTEMC1L00)

COMMUN/LUM’/X(500)vY(300)vXF[(ﬁ)vYFLk))vK‘f500)v\b(§00)vNNUﬂvNNUU&
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COMMON/COM3AFORCE SO0 s FORCEL (L6000 « DISF (H0D) » STORDIA00Y s As AAY TINC »

GTEPL CADOY » NRF s NFPOXy NFDY s MAXI T s MAXINC vy IFA TFDIM (&)
READ TN TITLE OF  JJOER30KNKOKOMHOK SR KRR 30OKKOKKOKNCK O NOK K IOKKSOIORKOKOICKKOIOR RO KK

WRITE(&HG9)

FORMAT (/9 “READR IN TITLE OF J0OR (UF TO 30 CHARACTERS) 73
READCSy9BITETLE

FORMAT (3A8)

READ TN NODED TNFORMAT LN kol ko 38l okokoR - R KORKOK KO NR 30K 03CROKKOR K0 0K

READCL 97 )NNOD

FORMAT (11O

0 49 Ni=1»NNDOD
READCL»P6) L« XL v (1D
FORMAT CLL1Oy 2E20.60

READ IN ELEMENT INFORMATION 0k ok ok ok ok ok ok koo okl ok kok kel siokok kokokok sk kokook X

READCLy 97 )NEL

DO 48 NZE=1 e NEL
READCLy P50 Ly (NELTOFCI v D) v =Ly 30
FORMAT (41102

READCLy 24 ELCRU s NUUCRU s RDUGRU
READCLy 24 ELCRUy NULCRU » ROLCRU
REATCL e Q45 EMANT y NUMANT s ROMANT
FORMAT(ELO .3+ F10,35E10.3)

00 47 N3=1sNEL

PLl=NELTOF (M3 1)

T2=NELTOF (N3 2)
I3=NELTOF{NAy3)

LAYERS O TO 2020 TO ~35y-35 T ~100KM
CRUST(BRITTLE » LOWER CRUST AND MANTLE

ASHUMES MODEL HAab THREE
AND THESE REFPRESENT UFPFER

YOON=-20.0E3

YMUHU~~5 OE3

YELAB=~50, O3

DEFTH=(YCTL)EY CI204YCI3Y) /3.0
IF (DEPTH.GT.YDONY ITRHEO(N3) =0
IF (DEPTHLTYCON,ANDLDEFTH.GT . YMOHO)Y ITRHEQ (N3 ) =1
IF (DEFTH.LT . YMOHD) TRHEQ(N3) =2
IF (IRHEQ(NI) JNE.2) GO TO 100
E{NZ)Y=FEMANT

NU N3 ) =NUMANT

KO NS ) =ROMANT

GO TO 47

IF (IRHED(N3) JNE.1) GO TO 104
F(N3)Y=FLCRU

NU (N3 ) =NUL.CRU

ROCN3) =ROLCRU

GO TO 47

E(N3) =EUCKLU

NUCNSZ )Y =NULIC R

ROCN3) =ROUCRY

CONTINUE

hlhﬂ(lvGH)UlSCRyUISMﬁN
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TF (IRHEQINS S ULECND Y=A0

TF (IRHEQON® R 1) VISIND)=VIGLR
TF O CIRMEQONS Y dEQ.2Y VISING Y =UTEMAN
CONTINUE

REALD TN BOUNDARY FORCE  TNFORMAT LN kol o or ok ook ok ko sk sorofkoroiokosk lokok kol

NNOD2=NNOTGE

0o 446 Na=1l» 600

FORCE (N43=0,0
REALICL o @7 IYNRF
TFOONBFEQ. 0 GO TO 101

FORMAT CI10y 2E25, 12
CONT ENUE

N0 37 NN=1 ¢ NNOD2
FORCEL (NN) =FORCE (NN)

READ IN PRESCRIBED DITSPLACEMENTE  dokok ok ok ook ok ok ol ke ok okorkosk dokkoikoloko)oskokok ookl

READCLy P2INPIK s NFIY
FORMAT (2110
00 44 NG=1NNOD2

T ONFOXEQ.O) GO TO 102
D0 43 Né=1yNFDX
READNCL 210 Ty DIGF(2%T~1)
FORMAT(I10,EL10.3)

ITF (NPDY.EQ.0) GO TO 103
[0 42 N7=1yNFDY
READCL QL) T DTS (2%

00 40 N9=1yNNODZ
DISEL NS Y =DISF (NG )

READ IN CREEF ITERATION DIATA  FK 0k kRO) KKK % K AOKMOK K K KKK KOKOKIOR IR O Kok kN

READCL 2OIMAXTIT s MAXINC s TINC
FORMATC(2T10»F10,4)

READ IN FATLURE DIATA  Sokakoksomromokokororokokokok skokoiokok ok kokok ook sk sokolokokok XOromoromokor kool

READ{L1 85T COEFF
FORMAT(ELO 3y F4,2)

READ IN BODY FORCE MARKER S0000KIOORO0KMO0KK KKK KKK IORK KKK KKK K Kok koK K Kk
IF IBF=0 RODY FORCES NOT INCLUDED

READ(Ly97) IRBF

READI IN FLANE STRESS MARKER IF REQUIRED skooxokokokokkkokokoiokokokokokksokokokoskokko
IF IFPS=1 PLANE STRESS ¢ OTHERWISE FLANE STRAIN

READCLy 7)) TG

REALD TN CREEF MARKER KKK K k80K 3O 308Kk K k0K KK koK R 0Kk sk k oK 3 HOK K KKK KOIOK )
IF ICR=0 NEWTONIAN » IF ICR=1 FOWER L.AW

READCL 7Y TCR
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Cooksk IF FOWER LAl READ TN CONSTANT AND ACTIVATION ENERGY  okdorkdoloks ook
Gk UNITS ARE ACUGKREAS AND KCALZHOL
e
IF (ICRGEQ.OY GO TO 105
L
Chokdok LOWER CRUST UalUEs

""" ANy B4 CLEyQLC
&4 IlM\MﬁIQL”h)eJrFﬂi)+d)

Gk MANTLE VALUES
READCL « 842 0Hy M

Coolok READ TN TEMPERSTURE ANOMALY  MAFIKER 30k 30k 3080k 30kokokokokokoeok kool ok ok ok kolok ook
Cookxk TF ITEM=0 » NI ANOMALY

READCL 972 TTEM
IF CITEM.EQ.OY GO TO 105
C
Coackoksk READ FLEMENT MUMEBERE  sokolofokokorok fokorolekokokokskokokok ok kool 3olokoko sokkoelokolokok ook fokok

READCLyP7INTEM

L0 36 T=1yNTEM
36 REAT(L 83 )NELTEMCT
83 FORMAT(IZ)

Gk READ VALUE OF ANOMALY (DREGREES G dokeokokokokolokoek dorekok ok ok soiokokioroslokoior ok k ok

READNCL s B2 )ANTEME
82 FORMAT(FG. 1)

10% TCALIL=0
TFA=0
ING=0
TIM=0,0
TIM=0.0
WRITE(&y93)
3 FORMAT (/A "SURBEOUTING INFUT COMPLETED )
Call. TIMECLy1)
RETURN
END

CGoOoOGTo

SUBRUUTINL EGHO

o~
LI

IMFLICIT REAL X8{A~Hy0-W)
REAL %8 NUCE10)
COMMON/COMIZE(SLOY s NUyROCHL0) y TETLE(S) yVISCH10) » TIMy Ty COEFF » CLC »
1 QALCyCMy QMy ANTEMP y NEL Yy NELTOF (5109 3) vy TRHEQ(S100 » TRF 5
2 TCALL y INSyIFSyICRs ITEMy NTEMy NELTEMCLOO)
COMMON/COM2/X(300) yY (3000 ¢y XFLAOZ) » YFL (3D p XE (3007 s YSTF00) » NNODI s NNOD2
COMMON/COM3/FORCE (600 y FORCEL(H00) s NISF (H00) » GTORDCAE00) s Ay AA» TINC »
1 LDIGFLCE00) s NEF » NFDXy NFDY s MAXTTy MAXINC s TFA IFIIM(6H)
(W
Cackclok WRITE OUT TITLE OF  JORskeiokokok ok ook ok Kok ok oK kok K koK K K k0K O Sokok 0K 0k Kok ok ¥
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WRITECZy@9)TITILE

FORMAT CLH v 5ia8)

WRITE(7y%8)
FORMAT CLHO» 7XSOKACKINFUT OATA IS8 7))

WRTITE QUT NOUHE UTNFORMATLON 30Kk 30RO OK KOROK R OKOK K OR KK K OIOROKNKIOR K KK NOKKOK KOO KK

WRITE CZy 97 YNNOT

FORMAT CiH~y "NUMRER OF NODES = 7y 13)

WRITE (7 ¢P&2

FORMAT CLHOy “NOLE NO. 795Xy X CO-0RD 2 OXe Y CO-0ORDOL 7y OXy "X FORCE 7
1 Xy 7Y FORCE S 85Xy 7 X DISF. v 5Xy Y DISF, 7D

Lo 49 lulyNNUU

I TEGRC2

1

Y EQ.ALAND OIS 2%T 0 JEQ.A) WRITE(Ze 2521y XCI YY)y
)y!UhLL(d*I)yUIbP&J*l 1)y DTGP (2%
YLEQeAANDDISF 2RI oNE.A)Y WRITE(Z24) Ty XTI) s YT
Yy FORCEC2RID s DISF (2% T~10 p DIGF C2%T)

YeNE cACAND . DISFC2XID) L EQ.A)Y WRITE(Zy23)T X L)Y (L) y
)

»

)

IF (DISE %
1 FORCE C2%T -
IF (OIS (2% -
1 FORCE (2%T
ITF CnLosP (I -
1 FORCE (2% T
FORMAT (LM

12y FORCE (2KI) » ITSF (2T ~1) » DTSF (2KT)
GME AL AND L DTSF C2KT ) JNELAY WRITEC(?y 92T o X (LY e YLDy
yFORCE C2KD) y DTSF (2%T~1) y DIGF C2KT) ‘

P EL0. 33X EL0, 3y 2(2%XsEL10.3) o 5X v A4y 8X s AS) i
FORMAT ¢ 1H L3y 7XrELO 3y BXyELOL 3y 2ORXELO3) v 5Xs A4y 6XvEL043)
FORMAT CLH v 32X 37X ELOL By BXELO By 22X ELO 3 vy AXyELO, 393X A4)
FORMAT CLH v 2Xy T3s 7XsEL0 39 3XsE10» 3y 2COXyE10 30y 2%y (X ELO.3))

WRITE OUT ELEMENT TNFORMATION okokokeokor sorokoslok ko fkor korok skokoiokok ok iomkslokokokok koskok

WRITE(7 91 ) NEL

FORMAT CLH~y *NUMBER OF ELEMENTS = /7y 13)

WRITE (7 »90)

FORMATCLHO » “ELEMENT NOJ 2 p3Xy TELEMENT TOPOLOGY 7 25Xy “YOUNGS MO, 7y
1 X POLISSONG RATIO v OXe "TENSTTY 2 pOX e " TRHEQ » 55Xy

00 48 1=1»NEL 7

ITF (UISCIY EQ.AAY WRITEC(Zy84)Ts (NELTOF (T sy o =l e 32 s ECT )Yy NLUCT) 5
1 ROCIYp IRHEQDCTY s VIS

TF (VESCDYWNE.an) WRITECZ 8901 (NELTOFCT v )y =L sy v ECI) o NUCT) »
1 ROCI) s TIRHEQCT ) yVES (T

FORMATCLH »a4Xs I3y 9Xp 333X s 1XsEL10.3v8XsF1043y7XsE104376Xv 11y
1 LOXsa4)

FORMAT(1IH 54X e LTE v Xy 3(I3v3X) v IXeEL1O 39 BXyF10.3v7XsE10.376X511 5
1 BXyE10.3)

WRITE OUT CREEF TTERATION TATA  sokooiokokiokokokoksorokokok solorskok skokokok ok sokok ik sokokok

IF (ICRGEQ.0) GO TO 100

WRITE(7¢7%)

FORMAT CLH~» FOWER LAaW CREEF RHEOQLOGY ")

IF CITEM.EQ.O) GO TO 101

WRITE (7 78)ANTEMF

FORMAT CLHO» “ TEMPERATURE ANOMALY (HIGH) 0OF “oFO. 1y "DEGREES C. 7))
WRITEC(7y77)

FORMATCLH » 7 IN ELEMENT NUMBERS:

WRITEC(Zp 760 (NELTEMOL)Y y Tl y NTEM)

FORMAT CLH »201T3)

GO 7O 101

WRITE (7807

FORMAT CLH=y “NEWTONTAN VISCO-ELASTIC RHEQLOGY
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87

364
85
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CRkokok

G
Cxokxox
"

1 QLCyTMe QM y ANTEME y NEL.
2 TOALL y INSe TIPSy TCRy ITEMs NTEMy NELTEMCLQ0)

1 STRAIN{S1L0v4) v STRESS (5109 4) vy STRINCHIOs3) vy BTE (S
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WRITE(Z»87IMaXLT

FORMAT (LM~ “HAX. NO. OF ITTERATIONS PER. TIME INUREMENT = 1D
WRITE (786 MAXLING

FORMATCLHO "NO. OF TIME INCREMENTS = 7,14)

WRITECZy8I3)TINC

FORMAT CIHOs "VALUE OF EACH TIME INCREMENT = “yEILL.49/SECS, ")

WRITE QUT FATLURE TNFORMAT TN 50K ORR K0 30K 3O 0K ORIk o0k KoKk Mol ke seolokol ok ko

WRITE (78207
FORMAT (CLH=» “ TENSTLE STRENGTH OF UFFER CRUST =°yE10.3¢ "NABR, M7
WRITE 7y 81 COEFF

FORMAT CLHO» “COEFFICIENT OF INTERNAL FRIDYION = ‘sFa,2)

WRITE Cés88)

FORMAT (/¢ 7 SUBROUTINE ECHO COMPLETED )

Call. TIMEC(Ls1)

RETURN

E NI

)lJI¥I\()lJ TINE FORMK

IMPLICIT REAL %BCA-H¢O-W)

REAL X8 NUCSLOY v NUF e K (OO0 2000 oy KEL (69 )
COMMON/COMLZECS10) o NUyROCSLO) « TITLEC(E) yVTIHCEH10 v TIMy Ty COEFF s CL.Cy
pNELTOF CHEL10s 30 » TRHEQ LG » TRF

COMMON/COM2/7X{E00) s Y L3000 v XPLAE) s YPL (3 » XS (300 s YECIF00 ) » NNOD sy NNOLN2
COMMON/COMA/KyRKELy BT (v 3) vy IR (Zv b)) »

1 DELLIBCHEL0Y s FISOSCLOOY » TENODCL00) y KEWs KERW

COMMON/COMS/ D330 2 BI396) y THLTR(E 395100 v BLIRC3 965100 s DNIGFEL (&)

TO CALCULATE THE BAND-WIDTH OF THE GLORAL STIFFNESSE MATRIX MOKX¥OKK)

MAXND=0

DO 1 J=1yNEL

NDL=TARS (NELTOFCIy 1) -NELTOF (200
ND2=TARS(NELTOF ()20 -NELTOFCJs 330
NDO3=LARS (NELTOR (s 3)-NELTOFCJ 100
MAXND=MAXO (NINL o« NDI2» NDE s MAXNID
KERW= C2XMAXNIND +2

KBW= C2KERW ) ~ 1

IF (IFS.EQ. L) WRITE(Z5020

FORMAT CLH-~»s “FLANE STRESS )
WRITE(7»98)KEW
FORMAT (C1H»-y “BANL-WIDTH OF STIFFNESS MATRIX =713

TO INITIALISE THE GLORAL STIFFNESS MATRI X Skookokokoskokkokok ok orkIor Ok

DO 2 Jl=1y NNODR

no 2 J2=1yKRW
KEJLeJ2)=0.0

00 3 I=1yNEL

IF CIFS.EQ. 1) GO TO S00
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Crsocky TO FORM THE CLaSTICITY MATRIX oDy FOR FLANE STRATN  OKS00K K0k K0K K 30K K0k K
G

CONSTL=FECLYRCL O-NUCTY /0L OANUCTY XL o O-2XNUCT )0

CONST2=NUCLY ACLO-NUCTY )

DLy LY==

DL 2 =CONSTLREONSGT 2

DELy3)=0,0

L2y 1) =CONSTURCIONG T2

DE2e2y=CONST

D(2¢3)=0.0

HC3v 1) =0,0

N(3s23=0.0

DCEp By =CONSTIRCL . 0-CONST2) 72,0

GO 70 Hol

6***$ TO FORM THE ELASTICITY MATRIX oIy FOR FLANE STRESS  SORIORKNOKOK KOO

FOO CONGTE=ECL) /0L 0~ CNUCTIXNUCTY )
ICLe L) =CONSTS
LDCLy2)=NUCTYNRCONSTI
DCLy3)=0.0
D2 Ly =NUCT Y RCONST S
DC2e 2y =CONSTS
DC2v3)=0.0
{3+ 1)=0.,0
D{E3e2)=0.0
DNE3e 3= (Lo O-NUCTYYRCONSTEY 72,0

Crookk TO FORM THE STRATIN MATRIX o B R0 K ORKOROKK KRR 0K SO KR 30K K Rk 0K X o

G01 DXL=XANELTORCLy1 )
DX2=X (NELTOF (L 20
DX3=X (NELTORF (T y3) 0
DY LY ONELTORCE v 130
LY Z2=Y (NELTOF{(122))
DY 3=Y (NELTOFCL»3) )
DELTAL= CINCLXDY 224 COX2ROY I )+ COXIRNY L)~ COY LKDX2 )~ COY2RIXE )~ (NY3%IX1)
L
CRook¥ DELTAZ I8 TWICE THE AREA OF THE FELEMENT ***************ﬁ*#*********
& i
Bl=ADYR2-DY3) /DELTAZ
RI=(OY3-0Y 1) /ZDELTARZ
BE=(OYL1-DY2) /LELTAR
Cl=(DX3-NX2) NELTAR
CR=(NX1-NX3) /DELTAR
CE3={DX2-OX1) /ADELTAR
B(1ls1)=E]l
B(1s2)=0.0
B(les3)=R2
B(Llsy4)=0,0
BCls5)=R3
B(ls6)=0.0
B(2y1)=0.0
B(2e2)=01
B(273)=0.0
B(2y4)=02
B(2y50=0.0
B(2s6)=03
B(Ey1 =01
B(3p2)y=FRit




BCRy X)=(2
BC3y4)=R2
B3R 5)=03
R(3vbr=R3

CXEok GTORE DELTAZ » Iy B OFOR EACH ELEMENT TN LIRRARTES  SORROKEOKKKOKIOK KKK

DELTA2=0aR5 COEL YA
DELLEIRCT y=DELTAZ
no 4% Ni: &
10 49 N2=1e3
A% UL TBONL v M2 el
nn 48 N3=1s3
0o 48 N4=leé
A8 BLIRBINIyNAy L) =RINI»N4)

XYk TRANGFOSE B TO BT skokaokokolkok sieiokstok iR kool ik ok iokok rokoro kR R OIORSOR KK KKK ORS00

Doy 47 Mils=ly32
00 47 M2=1vé
47 RTM2yMLY=RIOML e M2

ﬁ**** MULTIFLY It BY BOTD GIVE TR sokook SOk skok Hokok R OR Mok O S3oOketoko ookl olok ok oksiooks

no 46 Kil=1s3
0 46 KZ2=1+6
45 DROKL K2y = (NIRRT 1D RRCLy K2 DA (OCR L e 2)ERC2 02 Y HCNIKL p 3 KROZ K2

b**** MULTIFLY BT OBY DR TO GIVE REL  detoiomok ook kol ok ok ok ko ok okl skokosiok ok k ok ko

N0 4% K3=146

N0 4% K4=1vé

KEL CKZy KA m RT3y 1) KIE Ly KA ) CBT (KE 9 2) KIR (20 K4) ) 4

1 CHTORE e 3)KOE (KA )
C
Crgdok MULTIFLY KEL EY ELEMENT AREA TO GIVE ELEMENT STIFFNESS MATRIX
G

5 OKEL KBy KA =KEL K3y K4)KOELTAZ/ 2.0

C
CHRAK TO FORM THE GLOEAL STIFFNESS MATRIX Rkkkkook ko iok k)R KRk oK™
v L2

[0 44 NNi=1y3

Lsel, 242

00 44 NND=d e

LA

0 44 NN3Z=1 3

L=l g4

IO 44 NNA=1y2

NX=NELTOF ¢ Ty NN

N KN X2 4 NN

NY=NELTOF ( Ty NNZ)

NY = 2KNY -2 4+ NN4

NXNEW=NX~NY +K G B

TF CNXNEW LT, 1.0k NXNEW. GTKEW) GO TO 100

M1=11+NN4

M 2 NNG

44 KINY s NXNEW) =K (NY » NXNEW) +KEL (M1 y M2)
3 CONTINUE
GO TO 101
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Cxdokk CALCULATE THE TOTAL BODY FORCE DUE TO ELEMENT T kokksiokokodkkoeolokokodork S

"

Cadokx Aann 173 OF THE ROLOY FORCE TO EACH NODE OF ELEMENT 1T dokokokokokokokkokxokokk f

oo oo

=
L
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LOO WRITE (&y97)

97 FORMAT (1HOy * SERRORX A COMPONENYT OF THE GLOBAL STIFFNESS MATRIX
1 LIES OUTSTDE THE ROND-WIDTH <1 OR =KEW) 7))
STOF

LO1 WRITE (L6

P6 FORMAT (/¢ “SURRKQUTINE FORMK COMPLETED )
Call, TIMECLy 1)
RETURN
ENI

SUBROUTINE RODYF

IMPLICTT REAL X8aA-Hy0-W)

REAL X8 NUCELO) yKTAHOO 200 yKEL (&Hv &)

COMMON/COMLZECELOY o NUyROCEGLO) » TITLECE) yVIS(S10) v TIMe Ty COEFF 2 CLC »

1 QLECyCMy AMy ANTEMF e NEL o NELTOFCS103) ¢y TRHEQCE10) » TRFy
o TOALL y INSy TIPSy TORy TTEMe NTEM« NELTEMCL00)

COMMON/COM2/ X300 s Y(I00) » XPL I p YPLCE) o XE (00 s YS (3000 » NNOL e NNO2
COMMON/COMI/FORCE CHO0) s FORCE L CHO0) y DISF CHO0) y STORD(AH00) y Ay AAy TINC »
1 DESFL 600 s NBF s NFDOX s NFOY v MAXTT y MAXTNC s TFOy TFIIM 6D
COMMON/ZCOMAARy KEL s BT (O 3) v OR(Ev 60y

1 LELLIBCELO) »FIS0S 0100 y TGNODCLOO) v KRW e KSRW

00 1 Y=l e NEL

DELTA2=DRELLIRCD)
BF=-(DELTAZ/2, 00 XROCI ) %9 .81

NLY=NELTOF Ly 1) %2
N2Y=NELTOF CL v 20 %2
N3Y=NELTOF (L y3)%2
FORCE(N1Y)=FORCE(NLYY+(BF/3.0)
FORCE(N2Y ) =FORCE(N2Y Y+ (BF /3,0

1 FORCE(NIY ) =FORCE(NIY )Y H(BF/X,00
L0 2 J=1yNNODZ

2 FORCEL (D) =FORCEC.))
IRF=1
WRITE(6:99)

99 FORMAT (/5 “SUBROUTINE RODYF COMPLETED?)
CALL TIME(Ls1)
RETURN
ENTI

QUHRDUTINE 808

IMFLICIT REAL X8CA~Hs0-W)
REAL X8 K600, 200) vyKEL (b b
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COMMONACOME /X CEGO e YCZ00) » XL O3 v YL CZY « XGO300 Yy YE (3OO0 « NNOLy NNQDI2
COMMONACOMA A Ry KEL s BT CHs 33y DB e by
i)

ASHBUMES NODE HUMRBERING INCREASES FROM LEFT TO RIGHT  sokokkokokskokkxkk
DENSITY OF UNDERLYLING MANTLE = 3.3E3 KG./7CU.M, 3K 3K KKK KK KOK KKK

TO FIND THE BEaSE NODEDS SRR KOO HOIOKROKOOK K 0K OIOR NCHKOK K IO OIORNOKIOR 30K X K

YMIN=QO.0

[) 49 1=1yNNOD
YMIN=AMINL Y (L s YMIND
NODCNT =0

no o 48 I=1KNNOD

IF (YD) oNESYMEINY GO 70 48
NODCNT=NODONT + 1

TESNOD CNOLDICNT 2= ]

CONT INUE

TO CALCULATE FIS0S FOR ENID NOLUS  sokokokokolok ok sk skok ok sseior geRok k- xkok kodokokok

NL=TSNOI{L)

N2=TSNOD{2)

FISOS (L ya= (XIN2)-XINLY Y /72, 00%3 . 3E3%9 . 81
NM=NODCNT -1
N3=TSNOI(NM)
NA4=TSNODNINODCHT
FISOSNODONT 3= (XINAY - X (N3 ) /2,00 %3, FE3%9 . 81

TO CALCULATE FIS0S FOR OTHER RASE NODES SRR KRR OO EOK 3OO KKK KD

DO 47 Tl=2yNM
NMN=T1 -1
NFL=I141
NG=TGNODNCNMN)
N6=TSNOD CNFL. )

FFISOS(TI)=((X{NSY~=XINEIIY /2., 00%3,3E3%9.081

TO INCORFORATE FIS0S INTO K sokokokokokokok sk okokok K okokok ko kok sk kokok ok ko kokskokokok xokokk:

[0 46 I2=1NODUNT

NY=2XTSNODCT2)

KINY s KEBW Y =K (NY s KSRWI HFISOSCT2)
WRITE(699)

FORMAT (/5 "SURROUTINE 1808 COMPLETED)
CALL TIMECLy1l?

RETURN

END

SUBRODUTINE FIDISF

IMPLICIT REAL %8(A-HyO-W)

REAL %8 K{600s200) yKEL (656D
COMMON/COM2/XCE00) s Y CE00) o XPLAE) y YL (3 2 XS (300 y YE(300) v NNOD » NNODI2
COMMON/COM3/FORCE CHQ0) » FORCE T (H00) s IS CAH00) y STORDCAO0) vAsAA» TINCy
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NISFL(H00) y NEF y NFDXy NFDY e MAXT Ty MAXINC e TFAs TF M (&)

COMMON/COMAS Ny KEL s BT (A 3) s DB(35 ) 5

1
"

"

48
49

P9

1

DELLIBCSLOYyFISOSCL00) y IGNODCL00) s KRW s KERW

CHdok¥x FIND THE FRESCRIBED DISPLACEMENTES 30k KKK O KOK AOKROICKONOKROROK 0K K 30K K0k X

0o 49 I=1yNNOD

IX=2%1~1

Ly =2%1

no 48 J=1Xs 1Y

TF (uIsSPloh ERQapY GO TO 48

FPINIDD AND ADGUST ELEMENTS IN THE SAME ROW OF K OSOREORAORKK KKK KKK KOK K X0K

N0 45 N1y KRW

T K CIsNI=0,0

ADJUST THE DIAGONAL ELEMENTS AND THE FORUE VECTOR ORB0KkkK ok 3 kokokok ok kX

FORCE (D =NTSFLC)ix1 0EL]
KOy KSEBWI =1, 011
FORCEL () =FORCE D)

CONT INUE

CONTINUE

IF CICALLEQ. 1) RETURN
WRITE(&6299)
FORMAT O/ P SURRDUTINE POISKH COMPLETED )
CALL TIMECLy 1)

RETURN

ENID

SUBROUTINE FORMKF

IMPLICIT REAL %8C(A-~H.0-W)

REAL XB8RK{H00y200) yKEL (O &) s KF (8s8) s KNy KS

COMMON/COM2/ X300 p Y300 v XFLCE) » YFL(EY vy X5(300) » YS(300) » NNOD s NNODIZ

COMMON/COMA/ Ky KEL s BT (623) v DB(3v b0y
DELLIBOS1IO) »FIS0SC1L00) » ISNODCLO00) » KBWy KSEW

COMMON/COMB/GNORM (6 2) s SHEAR (S v 20 » SHAV (E) s SNAV (L) y BHAUXE (6 » THET A
FMUsFACYyR(Be8) yRT(ByB) s KF s RKF (85 8) y RRKFRT (B0 8) s NN(E) »

2 NELFCHs2) yNUF (A2 y NINCH» 2 s NUMIT e NFSy TTT(6)

FI=4,0%ATANCL.O)

READ IN HADE OF FAULT (MEASURED ANTICLOCKWISE FROM +VE. Y-AX1S Xk
READNC4sR6)THETA

FORMAT(F10.3)

RTHETA=THETAX(FL/180.0)

AL=NCOS(RTHETA)

AL=NSTINC(RTHETA)

FORM ROTATION MATRIX » R » AND TRANSFOSE » RT sekokokokolokoksorkok kool sokok

DO 46 KS=1,8
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0o 446 Ké=158
RIKSyK&I=0.0
No 45 K7=1.8
ROR7y K7D =01

D0 44 K8=1,y7y2
RORByKB+L)=-A2
00 43 K9=2y982
RIKPy K91 ) =02
0o 42 Kio=1.8
[0 42 Kil=1.8
RT(K1OsKEL)=RIKLL s K1O)

REALN IN NORMAL AND SHEAR STIFFNESGES  soksokdoroksoRokoroior ok sokokokookokokok ok sokox

READNC4y PP IRNy RS
FORMAT(2E10.3)

READ IN NUMRBER OF FAULT SECTIONS okk ok dokokok dkolok ok ok kokokor Kk skkok doOr 3010008 kok0!

READ (4 28)INF G
FORMATCTLO)

READ TN NODE NUMBERS FOR EACH FAULT SECTION  S0KK0K KK KOK K KK KKK MK XK 30k0k0b
NUF ARE NODES ON UFTHROWM SIDE 5 NDN ARE NODES ON DOWNTHROWN SIDE

RO 1 I=1yNFS
0o 49 J=le2
READ(AsP7INUF (Lo ) s NONCL v )
FORMAT (21T10)

FORM FAULT SECTTION STIFFNESS MATRIX s KF O RKKEORKROOIK KKK KKK K OK R X0

N0 48 Ki=1,8

Do A8 K2=1.8
KF(KLyK2)=0,0
KF Ly 1 )=20 O%KN
KF (130 =KN
KE(Lp3H)=~KN

KF Ly 7)==-20 OXKN
KF(292)=2,0%KE
KF (29 4)=KS
KF(2s6)=-KS
KF(2y8) =2, 0XKS
KF (341 )=KN
KFCE 3y =2, OXKN
KF(ZsG) =20 OXKN
KF (3970 =~KN

KF (4y2)=KE
KF(4s4) =2, 0%KS
KF(4s6) =2, 0XKE
KF (458)=-K8

KF (G591 )=-KN
KF(Gs3) =2 OXKN
KF (G930 =20 OkKN
KF {5y 7)=KN

KF (&9 2)=-KE

KF (hy )=, OKKE
KFChHy6) =2 OXKE
KF (69 8)=K5

RF 7910520 OKN




38
39
40

C
CHolox
G

178

KF (793)=-KN

KF (75 %) =KN

KF (757 =2, OXKN

KF (8y2) -2, OXKE

KF (8 4) =K

KF (876)=KS
KE(8r8) =2, OXKE

B0 47 K3=1y8

D0 47 Ka=1,8

KF (K3 v K4)=KF (KEyKA) /6.0

ROTATE KF T GLOBAL CO-ORIENATED  RokokskokoRok KO- ROK 80K 30K K k0K Ok S0kokox sokosokox

po 41 Ll=1+8

DO 41 L2=1,8

RRF L L22=0.0

ERRFRTOLLy L2 =00

o 40 L3=1+8

DO 39 L4a=1s8

ng o3¢ Ll =18

RKF L3 LAY =REF LAy LAY F CROLEy LLIYRKF CLL Ly 14D )
CONTINUE

CONTINUE

Do 37 LS=1+8

Do 36 l.é=
o 3% 2=l

RRKFRT(LS v LE) =RRKFRT (LS L&) HCREF (LG LL2IXRT CLL2y L&D D
CONTINUE

CONTINUE

ADD RKFRT INTO GLOBAL STIFFNESS MATRIX dokskookokkoksksoroiokokokdoriolokok s OO0k

NNCL Y =2%NUFCEy L)~ 1

NNC2)=2%NUF Ty 1)

NN(3)=2%NUF (T e22 -1

NN(4)=2%NUFCTy2)

NNCS ) =2RNDNCT v 2 1

NNCOH)=2-NONCT» 2)

NNCZ)=2%NINCTy 101

NNCE)=28NONCT e 1) -
o 34 Ji=1+8

oo 34 J2=1+8

SI=NNCILY-NNCIZ2D

KONNCIL) s KEBW-J )y =E (NN CJIL) y KERW- D) FRKFRT CJ1 e J2)
CONTINUE

THE FOLLOWING DATA IS FOR USE IN SUBROUTINE FSHEAR RKkkiokkdokIOKOk K ¥
READ IN ELEMENT NUMBERS ADJACENT TO THE FAULT  SokokokodClororosOIOIOIOIIOK X

no 2 I=1yNF$
REAINC4s Q7ONELF (Iy LYy NELF(Ly2)

READ TN MAXTMUM NUMRER OF TTERATTONS sooksokolokoorok skokokokok okl sk sokokotok oloiok
REATIC4y P8INUMIT
READ IN COEFFICIENT OF FRICTION FOR THE FAULT S0RKk0KKOKIOKRKIOK K IOKK KKK k)

REALICA» 26 FMU




179
£
UKok READ TN CONVERGENCE FACTOR k050)3 Kk IOK KKK 30K NKOKK 0K OKOKOKOK 0K K K 30K K K0K 0K 35K K CK0KOK
L
READC4y R62FAL
C
Caoksox WRITE OUT RELEVANT FAULT LATA  RK0KRKNOK K KR KK K 3OIOKROROK 0O OK 30K K 38 50k 0k
0
NRTTF(?y“O\THVTﬁ
PO FORMAT CIH-y “HADE OF FAULT= “»F&.2)
NhlfL(/vﬁﬁ)FMU
9 FORMATCIHO "COEFFICIENT OF FRICTION= 7 oF4,.2)
WRITE (7 y8BIKNyKE
88 FORMATCLHOy "NORMAL STIFFNESS= "y 10,387 7 SHEAR STIFFNESS="yE10.3)
WRITE(Z,87)FAL
87 FORMATCLHOy “CONVERDLENCE FACTOR= “»F10.,3)

WRITE (Ay 950
P9 FORMAT (/y " SUBROUTINE FORMKF COMPLETED? )
Catl TIMECLy 1D
RETURN
FANT)

S e o o
D A |

SURBROUTINE SOLN

IMELICTIT REAL XB8CA-Hy O~W)

REAL %8 K600y 200) s KEL (&v &) s NUCSHLO)
COMMON/COMLZECSLIOY o NUyROCHLGY » TITLE (S s VIS (HELO s TIMe Ty COEFF » CL.Cy

1 QLECCMryQAMy ANTEMP s NEL y NELTOF (G103 y TRHEQCS 10 » TRF
2 FOALL y INSs IFPSy TORy ITEMy NTEMs NELTEM(100)
COMMON/COM2/X (300 s Y (300 v XPLCE) s YFLOZ) v XE(300) y YE(Z00) s NNODs NNOTI2
COMMON/COM3/ZFORCE (A00) s FORCE L (L0 s ISP (S00Y y STORICSE00) yAv 3Oy TINC »
1 RDIGFLCH00) s NRF y NFDXy NFPDY yMAXTI Ty MAXINC s TFAs TFDM (6D
COMMON/COMA/ RNy RELyBTLAH 30y DBy éD

1 DELLIBCGLIO) »FISDSC100) » ISNODCL00) » KRW KSEW

Chdook THE EQN. KXDISP=FORCE IS SOLVED USING HARWELL ROUTINE MAOVRI XXX
Cxxdck 157, DIMENSTON OF K IS NUM CENNODR2 OR =NNOD2)D KK
Ckdokx 2ND. DIMENSTON OF K MUST EBE = OR = ((3XKBW)Y+1)/72 KKK

70 FORMATC(ELG .3
FT=1,0
IF (IFaEQ.1) PT=0.0
IF (ICALLVEQ.L) PT=0,0
NUM=600
CALL MAOZRD (K s FORCE s NUMy NNOTI2 s KEW P T)
DO 49 Is=1yNNOD2
49 DISFCLY=FORCECT
I CIFAEQ. 1) RETURN
IF CICALL . EQ. 1) RETURN
WRITE(Z?:99)FT
29 FORMATCLH-y "EQUATION SOLVED Y GAUSSIAN ELIMINATIONSSMALLEST PIVOT
Al VALUE USED = “wE10.3)
WRITECSHs98)
8 FORMATC/y SURROUTINE SOLN COMPLETELDR?)
CALL TIMECLe1)
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RETURN
END

SUBROUTEINE STRES

IMPLICTIT REAL X20A-Hy D~-W)

REAL %8 NUCESLO

COMMONA/COMLAECEL0Y o NUYyROCELO) o TITLE G e VISEL0) v TIMs T« COEFF»CLC s

1 QLCyCMy AMy ANTEMEF v NEL o NELTOF (510 3 o TRHEO VL0 » TRV
2 TCALL s INS v IFSy TCRe TTEMy NTEMe NELTEM 10O
COMMON/COMIAFORCE(CHQO) s FORCE L (KO0 sy RIS CHOQQY y BTORDCHO0O) vy Ay AAy TINC ¢
1 DESFLCHQ0Y s NBF o NFOX sy NFIDY sy MAXTIT s MAXTHC e TFAy TFIIM 6

COMMONZCOMS /TN (Ee 32 e B v S o LI Ey Zp D000 v BLIBCE v & S10) e DLISPELCAHY v
1 GTRAINCSLO 4 vy STRESS(H10 A4 o BTRINCG1LO v 32y BTE(HD
0O oL =l e NEL

UNLUALE I ARD B MATRICES FROM LTRRARTES  HCR0kokokolornsoloiolok sokolor ok Sokokok oo

[ 49 Nl=1e,3
[} 49 N2=1ys3
INONL e N2 =DLITROMLy N2y 1D
00 48 N3=1,3
D48 Na=leé
BONZe NG =RLITRBINZNA9T)

FAIND DESFLACEMENTS FORELEMENT T 30K 8ol om0k orioR RSO NOK kol kokok % of

JY L =2%NELTOFCT ¢ 10
JX L JY )
SYZ2ANELTOF (T« 29
SX2m JY 2
SYJ2RNELTOF L 3D
JXF= Y31

DISFEL CLY=DISF CIX1)
DTSFELC2)=NTSF(JY1)
DESPEL (3 =DTSF (X2
DISFEL () =DISF CIY2)
DISPELCHY=DTEF (IX3)
DISFEL () =DIGF (JY3)
D0 47 lL=1-4
STRATINCTI s L)=0,0
STRESS(TyL)Y=0,0

CALCULATE STRAING FROM DIGFLATCEMENTS Okokoloksokoiok ok ok ok sksokolokokokok skokookokokoky

o 46 Ll=1s3
ne 46 L2=1lyé
STRAINCIyLL)=STRAINCT L L)+ (BALL L2 XDTSPEL (L2))

CALCULATE STRESSES FROM STRATNEG  sokolokorokok sk ok skokokokok ok ok kokorokok ok skokok ekok

[ 4% Ml=ded
0 4% M2=193
STRESE Ty ML) =STRESSCIy ML) CTML e M2IXETRATNCL s M2 3
STRESE (T » 4y =S TRESE (T » %)
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Aok

100

Ckokok

49

Caodokok

48

47

46

GTRESS Ly

IF CIRSEQ. Lr B
GTHRATNCY » 40 =8

STRAINCIL
CONTINUE
T CIFALE
I LAk
WRITE (S 9
FORMAT (/y
Cald. TIME
RETURN
EINTI

SUBROUTIN

TPl TCET
REAL KON
( OMMON/CO

)
.

COMMON/CO
1

COMMON/CO
1

COMMON/TO

SN

ING=1
T CICALL
T CIFAGE

READ IN X
0o 4 Ne=ilo
READCOY (0
ng 2 I=l.
SUBTRACT

Lo 49 Jl=
STRAINCT »
FORM 1 M

no 48 Ni=
0 48 N2=
THONTL y N2 D=
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Frapl O L R (BTRESS (L, L YRETRESE (T 200
RESS Ly 300
FTRATINCT » 30

)
LY

3.

(e )y RETURN

SEC LY RETURN

)

CHURRQUY INE STRES COMPLETED )
(lLes12

ECREMIN

REAL xS -y QW)

(1O

ML A CSTO Ty NUyROCELO Y vy TITLE CEY o VISCHLOY o TIMe Ty COEFF 2 CL.Cy
QLG UMy QMy ANTEMP o NEL vy NELTOFCS1Qe 33y IRMHEQCELO) » TRF ¢
TUALL sy INSe IFSEy TUR e ITEMe NTEMe NELTEMCLOO)

MEAFORCECAOO) y FORCEL(HO0) v DTG LAOCQ Y ¢y GTORDCHSO0) vy s AM TINC v
DISEFL (H00) s NEF sy NFOX s NFOY o MAX LTy MAXING y TF Ay IFDMOED
MESANCEv3) vy BCRs by DLIRCZs 393102 v BLIRBCAv Sy SH10Y s DLSPEL CH)

STRAIME10yA) s STRESS (S510v 40 s STRINCEGLO v 32y BTE (&)
M ’”)II:' FE(S10 v 4) v STREND(SETOvA) y GTIRAV(H1O»4) v
EEFSOE1I0s 43 v DLLZo 4 s DITCE) o FISTEL CE) vy PRESTRIG10+4)
l I )Tkuk)())vIlE”(/%Jvll‘ TROHLOy 41y CRETRLLES10v 40
DEVERDCGE10y 4 y IHEVREGOS10 vy 41y PREIEV (5100405
CRISTS10v ) o EFFREVCHLIOY y TEMPCSH10)

------

SEQLLY BO TO 100
Q.12 GO TO 100

NITIAL CREEF STRAINS FROM CHANNEL O okookokokooksorok sokkokokok ook k
NEL.

RISGT(Ng Yy J=lyvaq)

NEL.

CREEF STRATNS FROM ELASTIC STRATINS sokokioxsolooksolkorsokorfokoxekok

1v4
JEY=EGTRAINCT s JL)~CRIST (D 01

ATECT X dooreokolokstokokolok ook ook skorskokokorok ok ok kokok ookl ok ok Sokciokioiciorekokor
Le3

1s3
OLIBONLyNZy I

g 47 N3=14s3

N0 47 Na=
Ul(N3vN4)
00 46 Nb=
DLCNG 9 4)

Ly
rl(NlﬁvN‘?’)

U(Nbvﬁ)
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DLl Rd=0] CF e
D2 3d=D) (L w2
RIC323)=0.0
0o 4% NN=l o4
45 SBTRESS(LyNN)=0, 0
[
CXAOk CALCULATE REMNANT ELASTIL STRESS Rk 0ko) R 050)0KGR 3008008 0R00K 0K ¥k o)0k K
o
DO 49 Ml=le 3
VoA M2=led
ALl

y (T eI YL CMIL o M2 XS TROINCT y M2
GHUL3)
”**NU&IJ*(HYhn[N'Iul“‘lhn!N(Tv FACCLLO-NUCT Y
FOTHRAINCL s Z)Y ANUCT» 2 7CCL L O0FNUCTY )Ya.Le\) (2, 0N
2 )
2 CONTINUE
TF O CIFa.EQ L) RETURN
TF O CTuall «dEQ. Ly RETURN
WRITECHy 9P
FOFORMAT Ay "SURROQUTINE CREMIN COMPLETEL )
Call TIiMEOLy1
RETURM
BN

P B e
ERR

~ Mg
o

Lo

SURBROUTINE FSHEAR ‘

—

IMPLICIT REAL X8{A-HO~Wi

REAL FOBNUELQY s KF (8 8)

CDMMUN/CUMI’F“?TO)vNU ROCSLOY » TITLECE) » VIS 510 s TIMs Ty COEFF » CLCy
1 RLECy LM QM s ANTEMP o MEL y NELTOF (31030 » TREHEQ (S s TR
< flﬁltleﬁvaSsIth[T[M NTEMy NELTEMCLOO)
LUMMUN/(UM’/X(%OO)yY(BOO)yXIL(ﬁ)v(IL(ﬁ)yX%\KOO)vY‘(500)yNNDUrNNOU’
COMMON/COMB/FORCE (600)Y y FORCEL(AO0Y s DISF (SO0 y STORDICEO0Y v Ay ARy TINC v
1 DISFLCH00) » NBF y NFDIX s NFIY » MAXT T s MAXINC» LFAy TFIIM(6)
COMMON/COMEZD(3s B s B A) s DLIBCI s 305100 v BLIBC(3 06+ E10) y DISFEL CHT

1 HTRAIMNCEL0r4) » GTRESS(S10s4) v STRINCELO» 3) v BTH (6D
COMMOM/COM? Z78TRBEG (G104 ySTREND (510 ) 2 STRAV(EL O 40 »

1 CREEFS(S10y4) oy DL Ay A) vy DLC ) y FISTEL (&) y PRESTROG10 40
2 FISGTCH00) s DEV(AY y CRETROS1L Q94 yCRETRI (G109 4)

3 DEVEND(S10,4) s DEVREGCELOy4) y FREDEV(S1054) 4

4 CRISTCH10»4) y EFFREV(S10) s TEMF(S10)
COMMONZCOMB/GNORM (&9 2) s SHEAR (& 2) » SHAV (S) s SNAV(H) » GHAVUXE (4D s THET A »
i FMUs FALsRBy By RT(ByB) o KF s RKF (898 s RKFRT(Bv8) s NNC(B) »

2 NELFCOHs2) s NUFCEHs 20 yNDONCAH 2 s NUMITeNFEy LIT (6D

FL=4,0%ATANCL, 0)

TFA=1

IT=1
RTHETA=THETAX(FL/180.0)
AL=D00S CRTHE T ) 3ok
A2=DOTNORTHETAY $02
AZ=NCOSCRTHETAYXDSEN CRTHETA)

i
ook INTTIALTSEE TFDM AND DT sekorkodosorsokon ok ok oioekojor sotsiol soloskokokoesokok kokor kokokoloio;
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N 4% =1y NFD
TFOM D) =0

49 TITC N =0

106 L 1 I=1yNFS
no o2 J=ls2

Caokdok CALCULATE NORMAL STRESS TN ALDJATCENT ELEMENTS SRR KKK KRR X

SMORMET s Jre= CSTRESSINELF e J2 v 12 XAL M CETRESS INELF (T v JY v 2)XA2) 4+
1 (2 O0XSTRESS(NELF CLe 1) 2 A2XARD

o

CROkR AND IN LITHOSTATIC PRESSURE LF NECESSARY 30RO 3O KOO OKOIOK KOO OK XOK X %0

{

TF (IBRFNE.OQY GO TO 100

FLaNELTOFONELF (Lo dd sl

T2=NELTOFINELFOLy DY v

TR=NELTOF(NELF (L) e 3

DEFTH=(Y L1 Y T2+ Y (L3 ) /73,0

SLITH=DERTHYRONELF (T 1) 2% . 81

SNORMCTL vy D) =SNORMOT v JY4HSLTTH

{
CR¥oK CALCULATE SHEAR STRESS TN ADRJAUENT ELEMENTE  S0kROROR O OIOK KK kO 30k ok Kk
L
100 SHEAR(Ly D)= (C-SBTRESSCMELF CLe D) p 1IHETRESE INELF (v D) v 22)XA3 4+
1 {STRESGINELF (T J) v ddkinl-n20)
2 CONTINUE

G
Gk AVERAGE EACH PaATR OF ELEMENTS ACROSS THE FAULT  sokekookolorkolololorksororsiokks
(I

SHAV (L) = (SHEARCT s L)4HSHEAR (T 203720

SNAV D = CONORMOT y LYHSNORMCT 2200 72,0

Cxxxx CALCULATE FORE PRESSURE ON FAULT SECTION sokskokxskskokdoioriok ook ook
Cook RASED ON QUERRBURDEN FRESSURE OF WATER
C

FROEPTH= (Y INURFCL 2 XYY CNUP (T v 2053 /7200

FOREF=FDEFTHXL . OE3%9 ., 81

CCxkkk SUBTRACT FORE FRESSURE FROM NORMAL STRESS  Kokokokskokok kokomokok $olkok ook ok ok o
SNAV () =6NAV D) ~FORER
Cadoox CALCULATE FRICTIONAL STRENGTH OF FAULT SECTION 30kl okoioksok ok sk 5ok ok ok ko

IF (SNAVCI) GT.0,0) SNAV(L)Y=0,0
FROE=FMUXDARS (GNAVCT)Y D

Ckaokk CALCULATE EXCESS SHEAR STRESS ON FAULT SECTION  sokokokokskoksorokskokokok ko skokoky

IF (FRS.GE.DARSISHAV(T) ) GO Y0 101
103 IF (SHAV(D) (LT.0.0) GO TO 102
SHAVXS (D) =8HAV (T ~FRE
GO TO 107
102 SHAUXS (D) =GHAaV L HFRE
GO TO 107
101 IF (IT.EQ.L) TITCD)=]
IF (IITCL)EQ.Q) G0 TO 103
SHAVXE(I)=0,0
107 IF CIT.NE.LY GD YO 2
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TFCSHAUXS (LY dNE OO TFIM(L 2=
CONTINUE

NEGATIVE GHEAR TS THEXTRAL  SHE AR 3OKKO0K K KO KO KON SOOIk 0k 30K 30k X080k
FOSTITIVE SHEAR TS SINISTRAL  GHEAR  30kkokookookoskosoko sokokok ok skokorkskokoskokok Jok ko

CHECK CONVERGENCE OF EXCESS SHEAR STRESS TO ZERD OKRORKIOKNNOK KKK KOO X

DO 48 K=lyNFS
IF (DARS(SHAUXS (K1) 6T 1. 0ES) GO TO 104
CONT INUE

IF CICALLEQ. 1) RETURN

WRITE (6y99)

FORMAT (/v * SUBROUT INE FSHEAR COMPLETED )
CALL TIMECLy1)

RETURN

CaLCULATE SHEAR FORCE ON FAULT BETWEEN NOIES  Jokkookskkolokkokkokok kokokkokk:

DO 3 I=1yNFS

FOIST=S5QRT CCOXONUPF (T 1) ) -XINUFCTy 200 3RX2) 4+ COYCNUPF (Lo 1))~
YONUF (T2 2%%2))

HFORCE=SHAVXS (1) XFOIST

DIVIDE FORCE BETWEEN NODES AND MULTIFLY BY CONVERGENCE FACTOR sk
SFORCE=(SFORCE /2. 0)%FAL
ROTATE FORCE TO GLOBAL CO-ORDINATE COMPONENTS Sokokokokskok ok olokokoksok ok ko

FORCEX=SFORCEX(~DISIN(RTHETA) )
FORCEY=SFORCERADUCDS (RTHETA?Y

AND FORTES INTO GLOBAL FORCE VECTOR kaokskoloksoloiskoiolokiololekokoroiork ok okok ko

FORCEL(NUF (T 1) X210 =FORCEL(NUF (L 12%2-1)~FORCEX
FORCEL(NUF (T 10X2)=FORCEL (NUF (I 1)%2)-FORCEY
FORCEL(NUF(Ly2)%2-1)=FORCEL{(NUF(I+2)%2-1)~FORCEX
FORCEL (NUF (T »2)%2)=FORCEL(NUF(I¢2)%2)~FORCEY
FORCEL(NIDNCT » 1) %2-1)=FORCEL(NONCI »12%2-1)+FORCEX -
FORCELNIDNCT» LOX2)=FORCEL(NDNCT y LY X2 4FORCEY
FORCEL(NDNCT » 20%2-1)=FORCEL (NDNCT 2 %2 1) +FORCEX
FORCEL(NINCI 20 %2 =FORCEL(NDONCT ¢ 2) X2 +FORCEY
CONTINUE

00 4 K=1yNNOD2

FORCE (K)=FORCEL (K)

RESOLVE EQN. AND CALCULATE STRESSES  sokokokodokokskkskololokokok sokokok sokolokoiordokk ko

CaLL SOLN
CalL STRES
IF (INS.EQ.1) Call CRSMIN
IF (TIM.EQ.0.O) GO TO 108

SUBTRACT CREEF STRAING FROM TOTAL STRAING kolokofok ok skkokorsor ok skokokokok ks
DO % Il=1yNEL

no 47 J=1s4
STRATINCTIT o DB TRAINCTI Ly JY-CRETRCOLI Ty D
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.é
%
=3
k.3

FORM DL MATEL 0K ORI R 3 KOKSOKOIOR IR OK0KOKOICKOKOKOKOK RO RKOR KOK XORKOOKKOK

—

D) 44 Nl=1le3
00 46 N2=is3

46 THINLeN2Y=DLIRINL « NSy T
00 45 N3=1+¢3
D A% Ng=l e d

A5 DLIN3 N4 =D INIy N4
00 44 NG=1+3

44 INLINSy 4= IlkN'JvL':".iL
Dbcis30=00 Ly 22
D1¢2y3)=11 (L2
LRy Z) =0, 0
DO 43 Né=1y4

43 STRESH(ILy NS =00

Caoksok CALCULATE ELASTIC STRESSES  SOKIOKAOIOKKHOK ORI KO SEOIOKK K kK O 0K KO 3OK K KOK X

Do 42 Mi=1.3
00 42 M2=1s4

42 STRESS (I Lo M) =8TRESS (I Ty MEY DL MLy M20XETRATM (T Lo M2
STRESS (LT y A0 =S8TRESS (LT3
STRESS Iy 30 =TI ANUCT L)X CSTRAINCTIL y LY HETRAINCI T s 20 4
1 CCLeO-NUCTI I RETRAINCIT o 30 /NUCETY 20 /700,04
2 NUCTL) )X L O~ (2 OXNUCTT Y)Y

S CONTINUE

("
Caokokx CHECK NUMBER OF ITERATIONS TUONE 5Kk 0K okolokok ol skok sokok R Kk Kokt ok Ok kR Ok kok Kok
-
108 IF (IT.EQ.NUMIT)Y GO T0O 10%
IT=T741
GO TO 106
105 WRITE(&Hy98)
8 FORMAT(/» "EXCESS SHEAR STRESSES ON FAULT T0O0 LARGE ")
STOR
ENI

eI an I G I A g

SUBROUTINE CREEF

—
L

IMPLICIT REAL ¥8{A-Hs(-W?2
REAL X8K (4009 200) yKEL (&6 s NUCTLO)
COMMONZCOML/ZE (5100 yNUsROCSLOY vy TITLE(S) s VIS(ELO) v TIMe Ty COEFF s CL.C »

1 ALCsCMy QMe ANTEMF s NEL o NELLTOF (510 3) s IRMEQ(E10) v TRFy

2 ICALL s INSy IFSs ICRy ITTEMy NTEMy NELTEMCLGO)
COMMON/ZCOM2/XC300) s Y (300 o XL (XY sy YFL I3 o XS5 (300) s YE{300) » NNOL s NNOLIZ2
COMMON/COMI/FORCE(H00Y s FORCEL (H00) s IS (H00) s STORICAOO) s Av ARy TINC

1 DISEFLCH00) s NEF s NFDIXs NFDY s MAXT Ty MAXINCy TF Ay IFIIM ()
COMMON/COMA/ KeRELyRT (A 3) s DR(Z5 &) s DELLIB{(S10) vy FISOSCLO0)

1 TONODCL00) y KBWy KEEW
[(]MMUN/L(JM’}/II( Se3)yB(3eb) vy DLIRBCEy3» 5100 yI?l IBC(EvbeSL0OYy DISFEL(H) y

1 STRAIN(S10:4) s STRESS (5109 4) y STRINC(SGLO v 3) s BTE(H)
COMMON/C UM//S.)II\BE..[J( J1094) y ¢ )Tl‘\FNIl(ulf)v/%) v\ )IR(W( 11()v4) y

1 CREEF

2 F1TeT ] '.".300) s DIV C 4 ) v l.,'\&.\ Tk ( ‘.I.I. () y <) V[.,I\L.\ ] l\.f. % .l. Oyad)y

3 NEVEND(SELOy4) y DEVREGCHLOy4) s FRETHV (51045
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4 CRISTOSL0,4) o EFFREVC(EL0) » TEMF (3100
COMMON/COMG/FRINST CHLOy 3y DEVFROG10: 32 v ALFHACTLOY v FATLLCOLO ) »
1 FUAL CETOY s PHICSLO) s FLyF2s ITYFE(SLOD

TIM=0.0

NINC=]

I1=0

O 999 I=1eNEL
0o 999 d=le4a
CRETR(L s J2=0.0
CRETR1IC(LJ2=0.0

STORE STRESSES AT BEGINNING OF ITNCREMENT IN STREEG sckdololeksokskolorsorokx

no 1 T=1yNEL

ng 49 J=1v4

STRRBEGCL v J2=8TRESS (e D)

STROV(T v Jo = STREBEGOL » 0D
SIGMA={STREEGCT v TXHSTRREEG Ly 2248 TREEGC(Ly3)) /38,0
o 44 JJd=1s3

DEVEEGCL » JD)=STRRBEG (L y JJ) -5 TEMA
DEVEEGCL y 4 =8TREBEG(L vy 4)

CONTINUE

CALCULATE UREEF STRATNG ROKKHORN RO R KOKAOK KR KCKOR MR OKOROOK KRR KOKOKIOKK KK

DO 997 N1y NNODR2

FISTINY=0.0

N0 2 Il=1yNEL

IF O CIRHEGCTLY JEQ.0) GO TO 101

CALCULATE DEVIATORITIC STRESSES

GIGMA=(ETRAVIT Ly IDDASTRAVCLL e DYHSTRAVCT L2303 /73,0
DO 48 Nl=1s3

DEVINL) =8TRAVITILy N1 ~SIGMA

DEV(4)=8TRAV(L L+ 4)

DETERMINE CREEF MECHANTSM TO BE  USETH skekokokdokokok ko kol ik s okook OOk ek oK Kok

IF (ICR.ER.OY 60O TO 133

AGHIGN TEMPFERATURE OF FELEMENTS dooksoksorkokokorskokdokokok korsokokorokokok
BASED ON LOW TEMPF. OCEANIC GEOTHERM OF MERCIER AND CARTERCL?Z70)

ABSUMES MANTLE HAS TWO LAYERSS 35 TO 60y AN ~460 TO ~LOOKM kKKK X

IF (IRHEQCI1) EQ.1) GO TO 134

DEFTH= (Y CNELTORCILy D)) HYINELTOF CTLy 2) )Y (NELTOFCEL»3) ) /3.0
IF (DEFTH.GT.~60,0E3) TEMF(IL)=9046.,0

ITF (DEFTH.LT . ~60.0E3) TEMP(I1)=1122,0

GO TO 1335

TEMF(I1)=676,0

ADJUST FOR TEMFERATURE ANOMALY ITF FRESENT R0 K KOOk Ok ok ok ok okt kol ok o
IF (ITEM.EQ.O) GO TO 136

N0 3 KK=1yNTEM

IF (TEWNE NELTEMOKKY) GO TO 3

TEMPCTLY=TEMP CELY4ANTEMF



187

A CONTINUE
C
Cxdocky CALCULATE EFFECTIVE DEVIATORIC STRESS KK AOKOINRK N 3OK K K K koK k0K KoKk
C
136 EFFOEV I =DSQRT CCO SR CONEV LR CIEV 2K+ T DEV R k2 ) 3
1 +COEV 4%k 00
-
Cadod CALCULATE EFFECTTIVE VIGCOSTTY  20RO00M0MOR0ROK KK OKKORNOK MO NS K KO0 K K ROk
C
IF (IRHEOCTL) cECG.2) GO TO 137
AC=CLC
Q=00
GO TO 138
137 Aal=0CM
(=M
138 UTISATLy= L, Q072 0KACI IXDEXF ((AX4184.0) /(8. F1X(TEMPCL1)+273.0)))
1 KL OACEFFDEVCTI)XN22 21 . 0E24
TF VIS LT 1 OER2) VISCLL =1, 0122
IF (VIS L1y G« 1. 0E24) VIS(IL)=1,0E24
133 D0 47 N2=1le4
47 CREEFSCILy N2 = (DEVIND) /2. 06VTIECIL) ) IXTING
CREEFSCILy 4 0=2 cOXCREEFS (LT 542

C
CRrXkK CALCULATE FITSTEL kol dolckok o ok skokolkolok ok sk ok ook ko skok kol kiokokokor sofokokok ok ok ok ok
ook FORM D1 MATRIX (3%4)
C
DO 36 Ll=1+3
N0 36 L2=1+3
36 DL 2= TROLL L2y T
[H) 385 L3=1-,3
[ 3% LA=1y2
A8 DLAL3s . 4)=DL3vl 40
0 34 LG=1,3
34 DL 42=D0L53)
L CLy3o=D1ClLed)
1C293)=T11 Cle2)
N1C393)=0.0

C**** FORM BT MATRIX

00 33 Lé=ly3
O 33 L.7=1y6
3X BOLG&LZ2)=RLIBCLAs L7911
00 32 1.8=1+3
No 32 1.9=1s6
32 BTL?5L.82=R{LB LD

C**** MULTIFLY Ttl RY CREEFS TO GIVE Di1C

no 31 Ml=1,3
SL DICMLY=DL MLy IDDRCREEFS (I L s L4+ AML s 2K CREEFS(TL o 2)4+D1L (ML vy 32 %
1 CREEFPSCTL 30401 (ML 4)XCREEFS (11 74)
(o
Caoxxx MULTIFLY BY RY DLC AND MULTIFLY BY ELEMENT AREA TO GIVE FISTEL
G
L0 30 MEZ=lsé
FISTELMD) =BT (M2 LIXDICCLIFRT (M2 20KDIC 2 HRT (M2 32 K0LC (3D
30 FISTELAM2)=FISTEL(M2OXDELLIBCTILY /2.0
"
CHxxk ADD ELEMENTS OF FISTEL TNTO FIET  sookldoroiorsoiolorikossor ok ol ok ORROKKK K ook
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STCONELTYOF XL L2y 0s=F IETOONELTOR DL e D32 Y -1 24HFISTEL CL)
Si(NLLTUF(IIaI)i‘,wFIST(N LTORF(TLy Ly X204HFTIHTEL (2D

ST CONELTOR CE Ly 232y 1 ) b TOONELTOFCTL s 202210 4FISTEILLC3)
STONELYORCTL v 2032y =FTET CNELTOP CL Ly 22 %20+F LSTEL (42
FLaTONELTORPCTL 3082y -1y =F IS8T OUNELTORCEL y 322~ 10 4F LSTEL C5)
FEETONELTOFCTL » 30k20=F LRT (RELTOF (T Ly 3Y X2 4FISTEL (&)

GO TO 130

0o 23 Ta=lea

CREEFPSCI)Ly LLY=000

i
%
[
pet]

F s
F1e
X
FIf

UFDATE TOTAL CREERF STRATN  AooiorsoksoR dokolokok:solofoekolosokokokoiolor dokookkoriolokoiorokok ek

o 998 =14
CRETRODL » Jy=0RSTRLCTL e JIACREEFSCLL 9 00
CONT TNUE

MODNEEY FORCE VECTIR 30kEckoloksokokjokokokoiko:kok dkesoiolkotok olotoskoiolor solokok siokolonolkokokolokor ok
ANJUST FIST FOR FPRESCRIBED GLOBAL. DISPLACEMENTS

0 1% MM=l « NNOD2

TF DTSRI MM S NE oA FIET (MM =G, 0
0o 29 N1y NNODR
FORCECN)Y =FORCE LMY AP TST N

REGOLVE EQN. ANI CALCULATE MEW STRATNG  Sclokolokok sl siokok sk ook ok jor ok okok

TCALL =

Cakl S0LN

CALL STRES

TEOCING Q. 1 Oall. CREMIN

CALCULATE STRESS AT END OF TIME TNC.e doliolololororRiokokoiokkeskololorkok ook
o % L4=1yMNEL
MOGTFY STRAIN VECTOR

0 28 Nl=ls4 -
GTRAINCTA s NL)Y =BTRAINCT4y NL) ~CRSTR(T4yNL)

FORM D1 MATRIX (3%x4)

neg 27 N3=ly 3

L 27 N2=1s3

DONZy N3 =DLIB{N2y NIy L4
ng 26 N4ﬁ1v3

g 26 No=
IH(N"NNLJ) IHN y N
o 2% Né=1v3

NI (NG 4 =0{NSy3)
DL Lo 3=l ¢l e
D23 )=01CLe
NiCEe32Q,0

ng 21 NNN=Le 4
STRENDNCT4 y NNNY=(

CaLCULATE STREND
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00 24 NZ=1e3
DO 24 N@=lys
24 BTRENDCL Gy M2 =8TH
STRENMDCT 4 4
STREMNINC LA 35
1 ¥ETHATINCT 4y

& AN
GIOMA=CSTREMICTAy L tGTRENDS DA 2FHETREMDILIA X3 73,0
nn 20 1=l 3
20 DEVENDCTA.JD
DEMNEND OIS e Ay =i

DT Ay WNEIA DL OMNZ e NP YO TREAINC T4y N? YD

e a3

CETRATHOT A L EETRAINCT Ay 204+ C0LO-NUCTA))
AVANUCLAY Y )00l QANUCTAY XNl o O (2 OXNUCT 47

G TRENDCTS e L)Y 5 TEMA
TREMT OISy

é*$** COLCULATE  MEad STRESE OO MR ROKOKKOKKOIOKKOKOR S0 SO KORORSOR K SORRO K NOK K

o 23 Nl d
QEOBTRAONCTA N2 s COTREEGOTA v NS HETRENDCT Ay NS 2 72,0
SOCONTINLIE
124 17=1T41
LE (T EQ. 1Y GOTO 11S

(-
Cdolokok CHECK CONVERGENUE  sokosolsoieiaoioniok ook ook soloioioionioioiainsioioiokokoeiokoko
{

0o 6 L=y NEL
TFOCTRHEQ OIS EQ Gy GO TO 4
0o 17 Jahe=l e d
TF O COARS CREEMD O TSy SO - FREDEVCTS L3 0 LE L OES)
G0 To 1Ly
GOOTO 11y
13 CONTINUE
& CONTIMNUE
130G TIM=TIM+TING

CAck¥se UPDATE FORCETL AMD CRSTRL cholokorsiooriokaokorskdokok kool ooiol soiokiok,ek

ne 99y
POE FORCE |
0o $9a
oo 994 A
9P CRETRL(IT2y D) =CRETRCITRy )
no & 7=y NEL
N0 8 J2=ls4
8 GTRESS (175 J2) =STRENDCT7 4020
IF CIFAWNE. 1) 60 T0 132

Cookdok TTERATE TO REMOVE EXCESS SHEAR STRESS ON FAULT  soraok ook solskolololokk
CALL FSHEAR
Codook CHECK TF O THERE HAS REEN FATLURE AND STOPF S/R TF THERE HAS sk

LE2 CALL FRINCS
Call ELFATL
[HY 14 Is=1yNEL
IF (TWLE.44, 0R T GEL283) GO TO 14
TFOCTRHEDCTY o NELOY GO TO 14
PFOCFATL DY GEQ. 2y 60 T0 118

14 CONTINULE

LASOOK CHECK NUMBER OF  TIME INCREMERTS  DONE 50ROk 225000k %0k 3 3050k 0k SOKSOR KOK %0k
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TFOONING EQMAaxINGY G0 7O 118
NINLleNl#I

oy Gz ]y ML

ll[] | 2 | ] N ,f.}

ﬁ?IMND(lvaI'
1 2. & ] RBEGOTS 12

LSy LIPETREBEGOI S Z24+ETREBEG I LA« 32 ) /75,0

STRBEGCT &0 000 =51 G
CREG (6 4)

TT=0
GOoTo 1w
118 LCall=Q
WRITE (& 950
SEOFORMAT O THURROUTINE CREEF COMFLETED
Cald., TIee ol 4o
RETURN

Lie D0 9 T8=1ynNEL
oo SRS
T DaBS COEVEND TR o JE)-DEVREGOTEy J3 2 o LE 1. 05
G0 T 9
GOOTO 1ad

Y CONTINUE

GO TO 120

121 00 11 L%l e WNEL
DIET I A N R

L1 PREDEVOIYy JAI=DEVENDCL?  J4)
GOTO 1LY

A7 IF IV LTMaxITy GO 70 121
WRITE (69872

Fa FORMAT (S TSTRE
HT0F
ENT

CHOHAVE NOT CONVERGED WITHIN 1 Eak)

SUBROUTINE FINFOR

IMPLICTIT REAL X8 (A-Hs W)
Rrhl XONLCSE1L0)
COMMONACOMLZE S0 yNU»ROCS10 o TITLECE s VIS CH10) y TIMe Ty COEFF s CLC x

l QLCyCMey QM ANTEMP o NEL s NELTOP (510, 3) y IRHEQ (5100 v TRy
2 FCALLy INSy IFSy TURy TTEMyNTEMy NELTEM (100
COMMON/COM2/ X300 s YLZ00) o XFLOEY oYL CZ) v XECE00 2 » YSCZG0 7 » NNODy HMNODIR
COMMON/COM3AFORCECSO0) » FORCEL CHOO0 s ISP CAQGQ) s STORDAHQO Y vAv Ay TINC Y
1 LESFLCAOQ) y NEF o NFIRCy NFIY » MAX T T s MAXINC » TF A TFIM &)
COMMONACOMP /8TR SISOy A y GTRENDOELO» 4y GTRAVIESLGr A0y

1 CREEFS(E10y 40y DL CZy )y DO (A s FISTEL CHY e FRESTROS1O v 4 )y
o FISTOHOO0 Y p DEVCAY s CRETR(G1 G2 A) s CRETRL (51094
3 CHEVENDCSLOy 40 y DEVREG (G102 40 y PREDEV (51040 4
4 CRISTE10G 4 y EFFIEVOSLO) s TEMF (510D

w
CHkkk WRITE OUT FIMNAL FORCES TO CHANNEL 8 Sookololorolork 4ok koorok ook ko ook ook
¥
D0 1 Tl NNOD
FLEFORCEL (28T 1 34 FTET (2% T 1)

WCEL (2T HFTHT (2%




CYey
£ of

"
ook
L

)

&
o RACkK
:

100

G
Caceckok
-

1G1

(}) lf,;)

1 QLC DMy BMy ANTE
P TOAL L e INSy LFSG e YOR IT

1

1
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WRITE(S 2931511
FORMAT CLLO e 20700 100
U2 Nl e MEL

WRETE DUT FINaL CREEF STRATNS TO CHANNEL O dokokoekoksok Sokooiolok¥okkor kokok

WRITECOY CCRETR (N e J1pJu=lya)
WRITE (4598

FORMAT (/v - SUBRDUTINE FINFOR CORPLETED
CALL TIMECL»1)

FE TURN

FNII

SURROUT TNE

FECA~H e 01

3B
L4

TMFLTCET REA]
RE@L kB MU
COMMONACOMLAZE CBLO Y oy NU v RIS

GLOYy TITLE (5w UTHECH100 s TIMe T e COEFFy CLC y

PEy NEL  NELTOF (510530 y TRHEQ (510 o TRF »

My MTEM e NELTEM 100

s 5107 v BLTRCE0 & 5100y DISFEL (67
TRATNCS104) s STREGS (51040 STRINIS1053) s BTE(6)

FEINST (51003 s DEVFR (51003 y ALFHA G100 s FATL (5100

FUAL (5100 0 FHT (5100 v Ly F2e TTYFE (510)

.COMMUN/COMﬁfﬂ(Xvﬁﬁyﬂ(ﬁv&)yﬁl Lo

COMMONSCOME S

Fl=4, 0%aTaNdL, 00
ey 1 Yl e NEL

CALCULATE THE ANGLE OF ROTATTOM okckoksololok sk ok ok okl oKk 0RO SoORokok Kok kS

IF (BTRESSCT 10 EQGETRESS 20 GO 7O 100 ‘
ALFHACTD ) = (2 O BTRESS (T2 ) A(STRESSG (L s 1) ~GTRESS CLv 2 ‘
ALFHACT Y =0, S (A0 O/ (2K T ) 3 DATANCALFHA LY )

TF CALFHACT) LT 0.0 ALFHACT Y =ALFHACI) 490,00

BETA=ALFHACT 3% (2, 0%F LY /3600 ﬂ
GO TD 101

ALFHACT ) =45

BETA=0,7854

CALCULATE THE PRINCIFAL STRESSES sokdolokotsoksolokck ok olokokoloksolokokiok ok koo

AL=D008 CRETM 3ok

AZ=DSTNCRET A ) K02

AB3=RGINCD OXBETAS

FRINSTC(I» D)= (STRESS Ly 1AL HISTRESS (L vy 2Y XA H (ETRESS (L e 40 %A30
FRINST(Iy2) = (BTRESSOT » LIKAZIH(ETRESS (I 20XALY ~ (STRESS (T v 42 %A%
FRINST (L 3y =08TRESS (T » 35

CONTINUE

ITF CTOALLVER. 1LY RETURN

WRITE (A P9)

FORMAT (/7 “GURROUT INE PRINCES COMPLETED )

Call, TIMEC Ly 1)

RETURN

ELNT
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SUBROUTINE ELFATL

IMPLICET REAL
REAL %E NULEL]
”VMMUN/CDle“.hL

KA O

th"YllllfU‘vUT;(“lO)u\lﬂu y COEFFyCLC s
-+ M --Nl...l...TLJP (! xi“y v TRHEQOSLO ¢ TRE -
o T (100
SCI0CY YECE0O0) s NNQOQD s NNOTI2
IH( BIOYy AL CE1OY

P

2 2 NG TF
UUMMON’VUMif ,“‘\T(JOO),““M )
COMMON/COMS AFRTNST OO0 30 s VPR
1 FUNLCEL Oy PHECSHL O o F Lo 75

Frled, OXaTANL.0)
(Trh" e L L DX

o IHIU'I’QHEQQ) GO 1O 1

Cadoky Aann ON LITHOS

TaTll STRESS FIELD IF RBRODY FORCES NOT TNCLUDED skl
Ol LITHOSTATIO & 3

ARE HYDROSTATICy =ROXS . GLXDEFTH

IF (IBF.EQ.1y GO TO 100

L=NELTORCTy 1)

LT T el

A TORCT .
NEITH:'Y{llJ.“(”*i+Y(I$))ﬁ30Q
FIYD=ROCL Y %9, 8L XDEFTH
FST! RINGTCL e LY MY
FOT2=PRINST O 20 +HYD
GO TO 101

OO PETL=PRINST Ly 1)
FOT=PRINGT (20

Caoook CALCULATE MEAM STRESS AND MAX, SHEAR STRESS sokokdoklokkekdoiokkokokoskonkokok

101 PMAX=DMAXLIFSTLFETI) -
FMIN=IOMINLCPSTLyFET2)
STMEAN= CFMAXAFPMINI/2.0
TORMAX= CFMAX--PMEINY 2.0
Fall. (1)=F}]
FHTCT ) =

1 ]
ER)

SRR TEST FOR TENSTONAL FallLURE  Sokooksokokokseokoksk doksoloiokoskolorsioioioksloolololorlorniokkx

—
P

TF 2. 0%ETMEAN Y TORMAX ) LT 0. 00 GO TO 102
FUALCL Y=L o O~ CTORMAX ./ (T GSTHE AR Y

FTYPECT Y =1

ITEFOCFVAL D) G700 GO TO )

Fall (ny=F2

FHICE)=90.0

GO TO 1

C¥dclok TEST FOR OFEN CRACK FaTLURE  sokbokokkokosokoloiolookokk sk soraioioksoloioloksoloiokooioioook ek

1G22 TF (BTHMEAMN LT (8TORIT-(2.0%T30y GO TO 103
VAl el el o Qe CTORMAX Y (2 OXDNEUART C-5THEANKT ¥ ) 3
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TUTEE (L=
TF (FVAL T
FATL Ty =FD
FT LY s SR DARCOS ¢ 02, OXDBRRT C-STHEANKT ) 2/ {2 OXETHEAN) » ZRAT
GOOTO L

caT 0Oy GO OTO 1

-
CHok3ok TEST FOR TRANGITION REGLION FOTLURE  sookkokot ok o)k ol sonkolox ol Sokokoloniok ook
o

a2y GOOTO 104
¥22HCCETORIT-ETMEANYXK2 Y)Y )

105 C=2 0 0%TRDEERT L Q- CBTURTITS T
TFCSTME AN Ilv(SI R CLDEFF
FOALCT e g Qo OV ORMAX S DSQRT
TTYPECLy=3
I 'iUﬂl'l‘,hTeoeﬁ) GO Yo oL
FAarl. oo !
FHT O =0 ORDATAN O CSTORTT-STHMESN Y Y SRAD
FHICD b= 00 O PHE (1
O 0

Dk TEST FOR CLOBED CRACK FalLURE D soioksolofolooiolkosokolok ol ook ol ol ksokololoior ook

1o TF (8THEANGE  CHBTCRIT- CCOEFFXCY Y GO TO 105
FUAL L po=l o0 CCTORMAXKDSQRT CCODEFFRX2 4+ L e O Y ACCH (COEFFXISTCRT T
1 STMEANTY YY)
TTYFE{(L)=4
1 \i“ﬁL\l)oGT*OeOB GO TO 1L
FATLCL)=F2
FHT CDY =0 580ATAaNCL GAC0EFF  ARA1
FHECT ) =90, O-FHIT 1
1 CONTINUE
TF Croall By RETURN
NRITE(u;“”J
@ FORMAT Sy "SURBRGUTINE ELFALL COMPLETEI
Call, TIME L«
RE TR
1OS WRITE (&R ]
D8 FORMAT y TERRORD STRESSES FOR ELEMENT v I3y "ARE NOT CLASSIFIEDR
ST0R
ECNI

—
EO I

ERR A

T ETED RS

SURKROUTINE OQUTEFUT

IMFLICTIT REAL *8CA-Hy3-W)

REAL 8 NUCEL0)

COMMON/COML/ZE (5100 o NUy RO (5 IP)yTTTlEfWWyUT“(W10)yTTMyTyVUFFFvF]"u

1 QLCy CMy QM y ANTEMP  NEL y NELTOF CSL0 30y TRHED (S0 v TRF
2 TOALLy INSy LFSs TOR» TTEMy NTEM s MEL. TEM (100

COMMON/COM2/7X 3003 e Y CB00 o XL CR 3 YL A s XE 3003 » YEC300) y NNOTIy NNOTI2
COMMON/COMB/FORCE (SO0 e FORCEL CA00 Y y DTEF(H00) s STORDCSO0) r Ay AAy TINGy
1 DEGELCAHOC) » NRF o NFIX s NFPOY s MAXTI Ty MAXING y IFAy TFIMCH)
COMMONZCOMAO/ZFPRINGT(S1L0e 30y EVFROEL0y 3 v ALFHACELO ) o FATL (5100

1 FUAL (ELOY o PHICEL O » FL s FRo ITYPECELOD

WRITEC? 74

74 FORMAT CLHL e 7 XXHARESULTS ARE S )

C
GG WRITE QUT DEFTH OF FAULT MOMEMENT TF RELEVANT ookl ook orioreorRooooo
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IFoCIFaGNE1L G0 T 103
WRITECZy 733
FEOFORMAT CLH- ¢ “FaULT MOVEMENT Hah QCOURRED NS 7D
I 47 sl s é
TEOCTFDMOLY JEQ Oy WRITE (T 7320
TF OCTFOMCIY EQ Ly WRITECH P10
A2 FORMATCLH ¢ THECTION e ller N
ALOFORMATCOLH (R AU T AU N B YESG
47 CONTIMNUE

E*$*$ WIRETE TOTAL TIFE USED FOR SOLUTTON  sokokolokorokokokodokok kor okl ok Sokosokokoskor okokok
103 TIMY=TIMA (3 LEa¥] OQE7
WIRITEL? 1007 Y

100 FORMATCLH- “¥GDLUTION HAS RBEEN GENERATED THROUGH “+ELL.47 YEARE')

"
CoAokick WRITE NODAL DISPLACEMENTS soloisokssiolsoiolsoreioieionerioioloiioioloiorRkosior ook sokokoook
"
108 WRITE(Zy99)
DO FORMAT CLH-» “¥NODAL DISPLACEMENTS TN METRESX )
WRITE(Z 08
8 FORMAT CLMHOy 7 X015 TS FROM LEFT TQ RIGHT )
WRITECY 27
PYOFORMATCLH ¢ 7 ¥-AaXTES 1% VERTICALLY UFWARDS )
WRITE(7 9965
Pé FORMATCLH-e 18X e "NUDE NO. 799Xy "X~-DIGF .7 p 13X 7Y -DIGF, 7))
DO A9 =1y MNOD
MEES MES)
J b
A WRITECZ » Q52 e DISF Oy DISFJY
QU FORMAT CIHO 20Ky T3+ 2C1LO0Xy 1030

ﬁ**** WRTTE ELEMENT STRESSES AND FALLURE MARKERS sookiokokiolorsksoiooiookekkooorsioky

WRITE(T 94

24 FORMAT CLHL ¢ " RELEMENT STRESSHES IN N/7SQ.M AND FATLURE INFORMATIONY )
WRITE(?»93)

P23 FORMATCIH-» 7 187, STRESS2ND. STRESS ARE THE IN-FLANE FRINCIFAL ST
IRESSES AT THE CENTRE OF THE ELEMENT’)
WRITE (7 78)

78 FORMATCLHO © 2 STRESS 1S THE STRESS NECESSARY TO SATISFY FLANE
1 STRAIN )
WRITE(Z»92)

P2 FORMAT(1HOy 7 ALFHA IS THE ANGLE OF THE 18T, STRESS MEASURED FROM T |
THE +VE X-aAXIS5 TO THE +VE v-AX1S7)
WRITE(?»91)

L FORMATCLIHO 7 FALL SHOWS WHETHER OR NDT THE ELEMENT HAS FATLED?)
WRITE(Z 90D

YO FORMATCLHOy 7 AMOUNT 186 A DIMENSTONLESS VARIARLE INDICATING: )
WRITEL(?»8%)

89 FORMAT(1H » ~HOW NEAR THE ELEMENT I8 TO FALLURE (IF -VEY )
WRITE(7,88)

88 FORMATCIH =HOW MUCH I7T HAS FATLED RY (IF +VE) )
WRITE(?y84)

86 FORMATCLHO Y TYPE INDICATES THE TYFPE OF FATLURE! )
WRITE (7 »88)

85 FORMATOIH o L=TENSTONAL FALLURE ")
WRITE L7840

G4 FORMATCLH o S=0FEN CRACK COMPRESSTONAL (SHEARY Fall.URE ")

~
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WRITE(?»82)

8% FORMATOLH » J=TRANSTITIONAL COMPRESSIONAL (SHEAR) FAILURE )
WRITE(?78)

79 FORMATCIH o A=CLOSED CRACK COMPRESSTIONAL (SHEARY FATLURE )
WRITEC(?:82)

G2 FORMATCLHO» 7 FHI TG THE ANGLE RBETWEEN THE FRACTURE FLANE AND THE
1 LARGER STRESS )
WRITE (7810

81 FORMAT CLM-» ZELEMENT NO. 70 &6Xe 7187, STRESS o 9X e "2NI. STRESS » 10Xy

CLOBTRESS v L1Xy "alFHA 88Xy lﬁlL 2 PX 0 TAMOUNT 7w 52X “TYFE s 3X e "FHI ")

HU A48 =1y MEL
I (TFHFU(T‘ EQR.s0 GO 70 101
WERITE(Z » 7S Ly PRINGT O DY s PRINST CL s 22 v PRINSTCLy 32 s ALFHACTD

7 & ¥UthTfIHUs P e TRy ZCLOXPELO 3 v 1OX G 20
GOTO 48

101 TF (FHICI Y EQUFLY WRETECZ » 770 Ty PRINGT (Y 12y PRINST (L9320
TFRINSTOLy 3 v ALFPHACT) » FATLCL Yy VAL Ty ITYFECLY y PHI (L)

FEOFORMATCLHO e X e TR e FCLOXyEL O Ry LOX»FE 208Xy A4y Xy FEQ EyS5Xy Ty 5Xy
1ad)
TF O OFHI DY o MEF L) WRITECZ vB8OYLyPRINSTOL 1) s FRINSET (T2
TFRINGTOL 3 o ALFPHACLY s FALL DY s FUALCT 3 TTYPECIY o FHICT )

B0 FORMATOLHG e AX v T3y 310Xy ELO F0 v LOXs FEH 208X oAy SX o ED R BXy T1e5X0
1TFS.2)

A8 CONTINUE
WRITE (&2 7F9)

79 }UhMﬁTffv’“HHhUU]lQL OUTEFUT COMFLETET )
Call, YIMECLe1
RETURN
ENTD

SURROUTINE DEVOUT
C A

IMPLICET REAL %82 0A-Hy 0~W)
REAL X8 NUCSH10)
COMMON/COMLZECSLOY s NUsROCELO) y TITLECS) yVIS(EL10) s TIMs Ty COEFFyCLCy
1 QLCy CHp QM y ANTEMP s NEL y NELTOF (51033 » IRHEQ G313 s IBF »
& TOALL y ING e IFESy TURy ITTEMy NTEMy NELTEMC100)
COMMON/COME /fthHY(;lOyﬁ)le”lh(JlOvﬁﬁyﬁlFHm( 1O o FATL (5100 y
1 FUALCEL0Y o PHECSLO) » F Ly F2y ITYFECS10)
(9
Cooksx WRITE QUT DEVIATORIC STRESSES okolokokok sksor ok tooh ok soiolororokok ok Sor ok dokokokor
G
WRITE(?s99)
P9 FORMAT (LML “3DEMTIATORIC STRESSES IN NASQ. MY
WRITE(7,98)
P FORMAT CLH~» TELEMENT NO. 7 v dXe 7187 STRESS 7y 99Xy “2ND, STRESSH 510Xy
172 STRESS » 11Xy "ALFHA
DO 1L T=1 s NEL
HMYD= CFRINGTCLy DO AFRINST (T y 20 4HFRINST (19300 /73,0
O 2 U=l 3
2 DEVEROLy Jo=PRINST Ly J)~HY D
LWRITECZy 7)1y (DEVPROLsKI s K=l 32 s ALFHACT )
Y7 FORMATCIHO s AX e T3 s FCLOXsEL1O0 30 o LOXsFE 2D
WRITE(Ae26)
Ga FORMAT (A CSURBROUTINE DEVOUT COMPLETEL
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Call, TIMECLyd)
RETLRM
EWD

SURRODUTINE GRUFLT

TMPLICTT REAL XEA-MH TO-W)
REAL 8 NUCELO)
COMMONSCOMLAECSL00 o NU e ROCELOY o TITLE (S s VIS CH1L0) v TIMs Ty COEFF v OLC s

1 DL O e QM ANTEMP o NEL o NELTOF (510 3) p IRHEQUST10 Y » TR

LTEABLLy INSy TIPSy TORy TTEM e NTEM « NELTEMC 100

COMMONACOMZ/ X E00) o Y (Z00) v XL ) v YPLLE) v XS L300 o YE (3000 v NNODy NNOD2

LR AW TTHED GIRCT 2R kool ok okok Ok ok otoRoloR iR KR SKOK 0Kl IOK SKOROK sk Ok AR OK SO KOR KON K K K K K

Call, FEPACECO.OZSv 1 075,y (J 325y 007
Call, MAF(O. 0002 0F&y 1 :

CAall, MAP{(2. 84y e Ahy
e 49 Is=1 v NEL
IT“NELTUI:Iyl>
I’*NF'TUP(Iv

YELCLY=Y (L1
FRLAAE =Y (12
YRLO3) =Y (13)
CALL PTRLOTCXFL e YPLy Le3y 10

ABSTEN ELEMENT MUMBEFRS iR AOR A0k Ok 3k Sk 0kokokokok kol okl siokokok ok kokokok Koksok sokok ok

XC= XTI )X T2+ XCTEY /3, 042, OEF

YCﬂ(Y(11)+Y(”"J+Y(15))/040

Catl. CTRMAG(Z ) -
Call ITalLiccl)

CaLl PLOTNICXC Y0y 1

Call ITALICO)

AGHTEN NODE NUMEBERS ook ok kiR ok ko skokoOKSHOKKOK 0K OK KOk IR OROICIORSK R JOKROIOK KKK X

CALL FSPACE(C.OR2Es1.21y0,0550.75)

Call, COEPACE(O . 028y 1,210,055 0,75)

Call MAF (-0, 05ES s 10 08FES» -0, SSESy 0, 0GES)
L0 48 J=1NNOD

XP=X 043, Q3

YP=Y(0)+1,0E3

Call CTRMAGOE)

Coll FLOTNICXF Yy )

ASSTGN DIMENSTONS OF GRID DN KMS.  soksoroiopromkororokkokekorokokok skokokokokoskkolokokokokokokosk
Call MAF(O. 0285, 1,21,0,05,0.75)

Call CTRMAGCOLE)
Call, FLOTNICG.0?Sy0.57040)
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CAall, FLOTNI (G, 105, 0.600, 440

CALL FLOTNI(L L0ESy 060535400

CaLl PLOTNICL 142057020000

CAaLL FPLOTNICO,0FE, G320, 1000

CAall, CTRMAG{R?

CAat.l FLOTCS(0. 0420, 4875 “MOHD " v 4)

WRETE T TTVLES  sokook ok ok kolok SORSORNHOR ORK ROk SOROH NeIROR R lostolok 3okolokok okooiokoxookskok:

Call. CTRMAGOLD)

CALL PLOTCS O 0750675y TITLE 40

CAaLl CTRMAGCOLO)

ALl PLOTCS0, 07y 0,65y "DIMENSTONS OF GRID ARE IN KM&. 7 ¢30)
CaLL FLOTCSCO 1%« 0027 "NODES AND ELEMENTS NUMRBERED »27)
Call, BORDER

WRITE (e P90

FORMAT S “HUBROUTINE GROFPLT COMPLETED )

Call, TIMECLy 1D

RETUHRN

ERI

SUBROUTINE GRIOFLC

IMPLICTY REAL *¥8Ca-HyO0-W)
REAL XE NUCELO)
COMMON/COMLAECSLO) s NUsROCSLO) » TITLE Sy VTETLIO y TIMy Ty COEFF s CLCy
1 RLCyCHMy QM y ANTEMP » NEL » NELTOF (5103 » TRHEO (510 v TRF «
2 TCALL s INS ITFGy TORy TTEMy NTEM s NELTEM(100)
COMMON/COM2/ X300 » Y C300) v XL (R 2 YPL B o XE (300 » YS(I00) y NNODy NNOD2

DRAW  THE GRIT dckeookolokolok ko skokok ok ok skok ok ol fok ok kiorokoik sk Sokokoioissokokokokokok ok ok ik soko

CALL FPSFACECO.OV50.575¢0,07520,.700)
CALL MAP(L.22E602:00E6y 1. 0EE»0.0)
CaLL MAF(L.8E6s 2 2E62 L OES»0,0)
49 T=1yNEL
T=NELTOP Ly 1)
T2=NELTOPCT » 23
T3sNELTOF L 3)
XEL ALy =X L)
XFL A2 y=XC12)
L O3y =X (T30
L CL Y=Y (L)
YFPLA2)=Y(T2)
YPLOZ =Y (13)
CALL PTFLOTOXFL YLy le3s 1)

AGHS TGN ELEMENT NUMBERS ok ololor ok ok 5Ok 5Ok 3 0k 50K KR K 0K 380K 0K 3OK 3OK RO OROK KOk K0k X0

XC= (X CTLIAXCI2Y4X (I3 ) /300420 0E3
YC=CY(LIIHYCE2YHY (L3 ) /73,0

CALL CTRMAG ()

CALL ITaLICcoL)

CALL PLOTNLOXC» YOy 1

Call ITALICCO:
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AOETEN NOTE MUMEEFS  B0R0K KOk k3K 30K OK K KKK 3Ok SR 3CIOI KKK 0K OKOK0K K080K K OK X KK K K

Call.
Call CEPAC f¢ ()
Calll. Fﬁr\} (- t\ LR (
N0 48 sl « NNOD

XEr X O 438 1
YFw=Y L 04,1
Cakl CTRMAG S

Cald, FLOTNL (X e YF e D

ASHTIGN DIMENSTONS OF GRIDD TN KMS ¢ 30RIOK 3RO 30K 30OKOCR KR OIOIOIOK SO K XXX

CaHLL PHFATE IO, O2G,0.700,0.02550,80)
Call. CSPALECC, 1) TQ09 0 OQUvUoUb)
Al Mﬁb\0¢0“7:09/00v” Q25,0,85)
CAaLL CTRMAGOLDE)
NI IIUTPI'UcO’bvoob“UyO)
Catl PLOTNICO, 1050 91”’0)
Catl, FLOTNT (O 60, $ 2000

1

{

Coall PLOTNICO, O .OQO/JyIOOJ
CAlL CTRMAGE)
Call FLOTCS(O. 0404875 "MOHO » 4)

WRITE TITLES esooloolokokokskokok kol koroksoiokokokolokssotoliook ool ok soiol:skolol sokoolorokok ok ok

CAal.l, CTRMAGCLE)

ALl FPLOTCS (0075, 0,825 TITLE»40)
ALl CTRMAG(LO?
Catl. PLOTECS Q7S Gy "DIMENSTONSG OF GRIT ARE IN KHMS. 72300
Call. FLOT GrQ F 7y TNORES ANl ELEMENTS NUMBERED . 27)
Cal.l. BORDER
WRITE (4590
FORMAT O/ ZHURROUTINE GROPLC COMPLETED )
EALL TIME Lol

FETURN

FNY

SUEROUTINE STRPLT

IMFLICIT REAL X8(A~HsO~W)

REAL %8 NUST)
COMMON/COMLZECEL0) sNUSROCHELO) » TITLEC(S) s VIS (S10) o TIM» Ty COEFF s CLC»

1 RLCyCMy My ANTEMP » NEL s NELTOF (510, 3) s IRHEO(510) » TRF 5
2 TCALL y INSy TIPSy ICRy TTEMy NTEMy NELTEMC100)
COMMON/COM2/XC300) y Y (300) v XPLC3) 2 YFL CZ) p XE (300 s YECIZ00) s NNOIIy NNOII2
(UMHUN’(UM&’IhINHY( 10y 3y DEVFRAS1I0» 3Dy ALPHACS IO s FATL (510D »
L FOALCELO s FHICHIO) vy F Lo F2y TTYPECHLO)

Fle=4,0XATANCL.0)
CALL FSPFACE(D.O7%5s 1. 07%s0,325y0,.%97%)
CAall MAFC 4, 48y S 4ES y -2, 0E 0 '\)v(:')

CHLOBLATE MAOXTIMUM STRESS g iokokokokoskokokorokok ok ik sob ok olokoiokoiosol solokokokolokokoks




498

FRR S

*%**

SRR e RS
L S N Y

WP $ 0084

199

YUEXm3 .0

STMAX=0 . 0

N0 A% J=leNEL
. NARW(FRTN*W’
A T

CONT INH

FLOT FPRINCTPSL STRESSES AT ELEMENT CENTRED 30 N0RNOKS0OMSORNOKNOKORSOK OKOK N

[H) 48 T=1 .« NEL

| )ol T:.0.0) lll‘”l
' 1
PRIHSTCL, 1)

P OFRIN Iy RI?'”(Tvﬁ)

(Lo 0 X0COS CALFHACT 1 COXPLAZA0L, 00 1%2 . 0E3/5TMAX
"HINH!kly1?$DSIN(ﬁLPHﬁ(I)3 40$F$‘”éOQO!)*noOhﬁ/bTMﬁx
FINST D e 22X DE TN (ALFHACT 2 (2, GRPTA3460, 00 X2 0EZ/8TMAX
'RIN‘Tklvﬁ)*ﬁCUS(ﬁLPHﬂ(I)#(RQQ*Pf/%éH:GJ'?JQWE3JSTMQX

ACHYR

oY (o YL

X CAXE R

3 X0 XF 2

YCAYRD

YL YER

CALL FOSTTNCXFLAY YPLA)

IF (IFL.EQ.0) CALL BROKEN(3r403y4)
CALL JOIN(XFLSy YF18)

CALL POSTTN(XPR6y YFRS)

IF (IFL.ER.0) CALL FULL

IF (IF2,E0,0) CALL BROKENCIr4r3v4)
CALL JOINCXF2Sy YF2A)

IF (IF2.EQ.0) CALL FULL

CONT INUE

CALL BORDER

CALL FOSITNCI . BE6,~20. 0E3)

CALL JOINC2, 2E&y~20,0E3)

CALL FOSITNG2.2E6 35, 0E3)

CALL JOINCL.8ESy 35, 0E3)

WRITE TITLES soktssoksookkoksokorsookokokosor siorskokokolokokokok ok solokooresioroiornRiorokoiooloiok ook

CAall FSPACE Q0291 . 12350050, 750
CALL CSFACE(O. 025y ,12%50.05v0.75)
CAall MAF(O . 025, 11280050753

ASETGN MODEL DIMENSTONG

CALL CTRMaG LS
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SHEIHLEG WA FLYINDRD koo
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PACEH TN T

(OO0 704G 070455 Q45200240645 190D

(O TYNYLYRO =1

COTR A LT A A T A COTEY THA S COTE YN 1
SCOTLY YA COTE)YHATY S CEAOTEIMANILA CLAOTE) LENTY A/ CHOD/NOWWO?)

GXRACED) Tl h A CED X 8 COOLTAA CO0E)

XATHODNOWKAD

(UOLJNJlIJN‘NHLN‘HHLI“HJI“SMI‘SNI‘WWUQI &
ST COTEYOAHMI A CEA0TE Y AOLTAN S "IN S AWHLNY S W0 4 WD 40718 T
AN AAAQT AL AW LA COTEYSINASCEIATLT LA COTY

1 4

CEe

£ AL TTWOD)

LrBEALEAMLS

ATTTEHNEL

Ml TN O

S

CONALEYTOE

£

(!
Oy

LT LS

NI HIIUWI

SCIHOW ¢

M AL
(G LET0

D OMANNAS COTE

(M 0] 6 8

AT LS AMTLNOMANS

SERELY
(1

(o0
STy

(tr4 .”IU PN

O

L0 w0

God Bt (08

SRRV RO

O QIEDILOTEE TR

A THODNOWKOD
COTRIN & YN
KOTIEIEN LT TAWE

[ R

N
NMMLEH
CTATY SAWIL "

ANTLAOMENS - 52 LYWM0d 64

CEAFPIDLTYNM
A T3 "
1Y)
WIUI

AL TI9
L)
T OINTOr g
3 OINLTS0 T
2HG 5 OANTEGT
T
'HIﬁJJHWII T
b 0 T190
1Y)
1Y
DO CYNLIEO 1190
CRTIOUNALD 10

i
CEDYOYRALD TTIY0D
PEOYINLO A T
.[°I)IHiOWd 0
Ero IR T
I

SO G TNLOT TR
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C
X0
G

201

PHL'UﬁUWCPKT
STMAX=IMAX ] (

QIHAX A XL RS

CONTINUE

STC e 20
MAX)
TMAX)

FLOT PRINCIFAL STRESSES AT ELEMENT CENTRES  osor 8ok sk ok #okosok ok fokskokoxkokok

DO 48 T=leNEL

ThaNELTOFC e 1)

T2=NELTORCT 20

TRaNELTOF (e

K= XTI P20 +XCL30 73,0
Y=Y CTLYY L2004y (L3 735.0
TFL=0

PR =0 ,
IF (PRINST(Iy1We!T.O Q) IF1=l
TF OORRINSGT Ly 20 70,00 11
FoCIFLJEQ LD !LleTklvl): RINST (L1 02

TFOCrF2 EQ. LY PRINGT (L 2 m-PRINST (L2

AP L=FREINST (e LIXDCOSCALFHACT IR (2, 0% L/ 360 002 %2 . 0E3/5THMAX
CPRINST Ly Ly HDSETINCALFHA (T )X (2 OXFP T /360,00 2 %2 OE3/5TMAX
CRINSTCLy 20 DEINCALFHA T 22, OXP L/ /360,00 382 ¢ 5T
FRINGT Ly 2030008 (ALPHACT )X (D2 O0XPLA/A340,. 00 0%, (
XFLa=XCHXFL

X LG=X 0 X1

YFELA=Y Y
: YC-YF
s XX

rlfift( (13
Call, POSTTN(XFLAYYPLA)

EOCTFLEQRGY Call, BROKENCEZy 4345

Call., JOINCXPLIS»YFL1G)

CAall, POSTTNCAP26y YF25)

TF CIFLEQ. O Call. Full

IF CIF2.EQ. 0) Fﬁll BROKENC(EZy 453245

Coll, JOINCXF2S5YF2A)

IF ﬁllﬂ+hu00) Call. FULi

CONTINUE )
CALL BORDER

CAatl, FOSTITNCL.92EEy 20, 0E3)

CaLl JOINCZ.00E&y ~20,0E3)

ALl FOSITNCR . OOE&y ~B5 0%

CALL JOINCL P2 S -35, 0130

WRITE TITLES dkokolokok aokokskormkokok ok korok sk skolokokolkokoloik sl ok ok skolodosk ok skolk lorsiolok skokok ok okok

CalLL. PﬁPﬁCE(O¢”?W000?0070.0”Wv“¢3J)
CALL COSPACELC . O25,0.700+0,0250,8%5
Call. MAF(O 025,00, 700y0.02%5,0.85)

AGSTON MODEL DIMENSLTONS
SALL CTRMAGCLE )

(2]

CAall FLOTNICO.07Gy0.469850)
AlL. FLUTNIfﬁ.LOUVO./Jﬁvl?BO)
LAl

A

A

CAll. flUTNI(U«éOUvO y 2000
ALl FLOTNI (O O0PS» 0,075y 1007
ALl CTRMAG LG



G

CHckokok

G

CALL FLOTCS 0,027 e 0L A8320 7
Cal.l.
CalLL.
Cabl
CAlLL
Call
Gl
Cal.l.

186 TVE
CAall
il
STHMAX
!hH

CTRMAG L)

FOSTTNCD Q7O 0,.820)

TYH SOOVECTOR FLOT OF

TYF CTETLE 400

FOSTTHIO.OP0,0,8)

CTRMAG OO
G ¢ R OKEM

)

L INES

v &

e 0 FEE)

FOSTTNCO, O
JUIN(Oe

1 e i
Lo 27280

w17
Ty d)

L Q0. 0
XK=, 020X (RS
XKL =00 34+XX
Akt PUQTTN(”QIPO
CALL JOTNCXXL .
CAalL l\lENifhsI’
CALL TYRECS
Call, BORDER
WRITE (4 99)
K FORMAT(/y "SURBRAUT INE
CALL TIME (1le.17
RETURN
END

STMAX)D

STRFMLE

SURROUTINE DEVFLTY

IMFLICTT REAL %8 (A
REAL %8 NUCE10)
COMMONZCOML (”EJO) s MU ROCS

Hoy O—UW>

FRINCIFAL

TENS TLE

202

MOMHD " v 4D

¢ A4

GTRESSES S

STRESSES ¥ FULL LINES COMPRE

COMELETET

1O) s TITLECS Y s VIS(S10Y » TIMey Ty COEFF o CLC s

1 QLECyCHy QMy ANTEMF » NEL y NELTOF (510232 y TRMEQ(510) » TRF «
2 TEALL v INSy IFS s TURy TTEMy NTEMy NELTEM(100)

COMMON/COM2
COMMON/COMS
1 Fual ol

=4, OKATANCL L O
L FSFACE (O O75 1 .
MAF (L &S0, 45,y

CALCULATE MAXIMUM STRESS
YVEX=2,0
HTMAX 0.0
N0 49 =1 NEL
ITF (. LE.44,0R D GE,283) GO
FRI=DARS (DEVFR e 1)
PR2=0DABS (NEVFR D22 0
HTMAX:= DMﬁXlk%hleYMﬁA)
STMAX=DMAX L (FR2  ETHMAX )

4G CONTINUE

AXCEO0) vy Y (300 r XP
AFRINGT CELO v Zr y DEVFRCS1093) s ALFHACE1L0)Y s FATL (510
FLOY e PHICELOY b F Ly F2y

(A YRLO3 )y XE(EOQ) v YE(Z00) s NNODIy NNO LI Z

ITYPE(S10)

O7%5e Q325 G,.575)

2 GEAs 0L, 0)

33CACROIOKKOR AR AOKOKOROMOK kO KKK sl OKOKOROIOKOK SROKOIOR0KO)

TO 4y
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Cokyox
G

40

FLOT PRINCIPSL STRESSES AT ELEMENT

00 a8 T=le ML

F (T LE 44,08 T GE . 223)

Ta=NELTORCL 12
NELTORFCE« 20

ELYOFCY » 30
CXCTL) X1

Y(ll)%fk

ll (HEUPR(IleeLT.O
TF CHNEVPFRCT s 22 0T 0
F CIFLEQ. Ly 1
TF (IF2.E0.1)

SO IF

MEVFR (T 1)
TEVFR Ly 2)

LENVE l:\(lv’) e
XFLa=DEUVRROD 1 2XBCOS (AlLPHACT Y02,

VPR y D2 RDETNCALFHA T ) R 02,
VPR Ty 2GS TN CALFHACT 12X
WEVFR Oy 200005 CALPHACT V02,
:X€+XP1

OKFT/Z3460 .00 %2

b

.l wY( FYE

3 (YR L

XN

XPJSMY[ - XF
A=Y Y2

DY YR

CALL FOSITNIXFLAYFLA)

TFOCIFLLEQR.O) CALL BROKEN(3s 4y

COLL JOIN(XFLGYPLS)

CALL FOSITN(XP2A: YFP26)

IF CIF1.EQ.0) Call FULL

TF (IFR2.EQ.0Y CALL BROKEN(Z- 4434 4)

CALL JOTNCXFR2E . YF2A)

IF CIF2.ER,0) CALL FuLL

CONTINUE

CaLl BORIER

CALL FOSITNC(L.8E&y~20,0E3)

CALL JOINC2.2Eés =20, 0E3)

CALL FOSITN(2.2E6y ~35.0E3)

CALL JOINCL.8E&y -~ 1560E3)

REEN

WRITE TITLES
Call.
CAall.
CAal.L

FSFACE (Q. 0251 ,12550.05+0.79)
Lﬁlh(h(o Oﬁﬂytolﬁjvu.OJvO.TS)

AGSTIGN MODEL DIMENSTONS
CaLl.
(T
Call.
CaAt.l.
CaLl
CALL
Lall.

CTRMAG(15)
FLOTNIC(O.07E5 0370500
FLOTNIC(O.10550,6085:160)
FLOTNICL.10%50.605,240)
FLOTNI (D 0700.325920)
CTRMAG(8)

FLOTES (0. 04904825,y "MOHO v 4)

Call. CTRMAGOLS?

QXL 3460, 0%,

203

3NN CROKH N OR HOR FOKNOKK ORS00

OE3/STHMAX
DEZ/STHAX

SO T/360.0) %2 0E3/5THMAY
QL /72460,0) %2,

OLEZ/5THMAX

N KON Rk s Ok K K KR SRR AR KOROKOR KoK ok koKt ke stoloskok skoROKIOKICK XOK ROk X0k
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Call FOSTITMIO, 0750,

CAaLL, TYFPECSC "VECTOR FLOT OF DEVIATORIC STRESSEL: 7350
Coall TYPECSITITLE 40)

CALL FPOSTTNIQ. Q7S 0.8675)

CAall. CTRMAG (L0

VﬁLL TYPECE

TENSTLE STRESSES 5 FULL LINES = COMFRE

1.,r\l...L.. I l]BL]NN) ("”’i"iv\hu 5 )
CALL JOINCQ. 08
HTMAX=STMAXS I
ALl TT’I F'NI (BTMAXs 1)
Call. FECSOT MO e 40

G CALL RORDER
WHITE (& 99)

P FORMAT (7 “SURRQUTINE DEVFLT COMPLETED? )

oLl TIME (1le12
RETURN
MY

SUBROUTINE SHSCON

TMPLICIT REAL ¥8(A-HyO-W2
REAL %8 NUCGL1O0
COMMONACOMLAE CS102 o NUROCHLO0 Y » TITLE (S yVIG(EL0 o TIMy TyCOEFFyCLCy

1 A CCMy QM ANTEMF y NEL »NELTOF(S10s 30 y IRHEQ CS10Y » TRF »

2 TEALL » INSy TIPSy TOR TTEMy NTEMy NEL TEMC 100

COMMONSCOMZ/XC300 o Y CR00) v XL OA) » YPLCZ) p XE (300 » YS (3000 » NNOL s NNOTI2
COMMON/COMEAFRINSTCEL 0030 s DEVRFROS1 0o 20 v ALFHACSLO ) s FAIL(SL1G) »

1 FUSLCGLOY o FHI (L) o L F2y ITYPECS10)

[
Caoloks FORME A DATa FILE FOR USE WITH XGFCF TO FLOT 10 CONTOURS 3ooksorsrdxxy
[
WRITE(2y99)
@8 FORMAT (7 JOR  SHEAR STRESSHS CONTOURSZ D
WRITE (298D )
PO FORMAT (/STZE 20,0 200 0.0 0.0 0079 7Xy" 5.0 400,07 ¢5Xy "~100,
14Xy " 5,0 0,070
WRITE (227
S7 FORMATC UNTL Q.00 0,007 53Xy 707 ydXy 727)
GHMAM =1 QL0
GHMIN=1, OI20
0 49 T=1yNEL
FEAX=DMAXT CFRINET(Ly L)y PRINST (L2200
PMIN=DMINL(FRINGT (L 10 o PRINST T v 330 |
GHEAR= (FMAX-PMINY/2.006
SHMAX=0MAX L CSHENE » SHMAX)
SHMIN=OMTINL CSHEAR» GHMIN
TL=NELTOR Ly 1)
T2=NELTORCT 220
I L TOF O30 '
PC=CXCTL X L2 X L300 /3 083
Y=Y (LI HY CL204Y (X3 /3. 0E3
49 WRITEC(2:960XCr YL SHEAR
Q& FORMAT CFONTL © AR 10X
WREITE 2y 90D
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QU FORMAT (7 BEND 7 ?
WREITE (2893
89 FORMAY 7 ROLD 272
CONGF A CGHMA X - SHMINY /L0 0
WRITE (2, 94y CONSFA
YA FORMAT O RBLEY 7 e 0.
WRITE (2932
3 |Uhﬁh!\ BROE )
Ml!]l(;v‘ Y TETILE
26 FORMAT S )YMI{ v
WFTTEfz
g8 }!IMﬁT'

1.

..........

0 DD &G0 O 0020 F0L07 LUKy TRONTOURSE OF MAX

20 S0 A 0.0 0020 1007y 1Ny TOIN MPAY )

V2 FORMaYT O ERD
WRITE(H 91
QL FORMAT(SXy "DATA FILE FOR SHEAR STRESE CONTOURING HaAS BEEN FORMED
(- GHOSCONIIATAY )
WRITE (& P00
SO OFORMAT (/v PSUBROUTINE SHECON COMPLETED?}
CALL TEHECL « 13
RE T URMN
LMD

i

SURROUTINE PFRECON

TMPLYCTIT REAL X8 CA-Hy 1-W)
REAL %8 NUCGLO:
COMMONSCOML AR CEL0Y o NUs RO CELOY « TETLECS Y o MISGL0Y v TIMy Ty COEFF s CLCy

1 QLCyCMy QM e ANTEMEP o NEL s NELTOPCS105 30 » IRHEQ(S10) » IRF »

& TCALLy INS» TFGy TCRy ITEMy NTEMy NELTEMC1002
COMMON/COM2/XL3002 » Y (300 oy XFLCEY» YPL(3) o XEC300) y YECI00 ) s NNOI» NNODI2
COMMON/COM&E/PRINST(S10y 3 v DEVPR(S10y 3y ALPHACSLOY s FATILL (510 -

1 FUALCHL0 v PHTCEL0) yF Ly F2y ITYFE (G110

L,
CaXAk FORMS A DATA FILE FOR USE WITH XGFRCP TO FLOT 10 CONTOURS okskokdokkokokd
C
WRITE (3,99
¢ FORMATCZJOR  PRING, STRESS CONTOURS )
WRITEC(Z98)
$8 FORMATC/SIZE 20,0 20,0 0.0 0.0 0.,0737Xy 71040 200,07 y5Xy " =100.07y
14X+ 710.0 0.0
WRITE (3,27
97 FORMATC/ONTL, 0.03 0,067 ySXy 717 54X 737
FEMAX=-1, 0114
FPOMIN=1,004
na 4% L=l e NEL
FMAX=DIMAXT CFRINST (L e LY o PRINST L2271 . 0005
T1=NELTORCI» L)
LTaaNELTOR (T 2)
T3=NELTORCT 3D
FOMaX=NMaxX ] CFSMaXy FMaX
FEMIN=OMINL CFEMIN FMAX)
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EADECR @ S QU RN O SN DCI I S U G, 1 B Tt B I
FOm Y CLL YAy o2y MY L3y Y A3, 083
A9 WRITE(3 v P60 X0y YU FMAX
P& FORMATCONTL 7 3F10.3)
WRITE (3952
BEOFORMAT L RENDT
CONSP A= (PHMAX S

WRITE (3 @4 CONSFA
Y FORMAT O RBLEY v S0
WRTTE (3530
YR FORMAT ¢ RRIOE )
WRITE (3890 TITLE
B FORMATC/S8YME 75X 70 0,0 &% 0.0 D020 30,07 LEXEAR)
WRITE(3,88)
B8 FORMATCOSYMEB7 v 53Xy 70 0,0 &0 0.0 020 27,0718y "CONTOURE OF MAX
e (MOST +VED 73
WRITE (3,87
87 FORMAT O BYME » 5 70 H.d &0 0.0 Q.20 27,07 » 18Xy "PRINCIFAL STRES
1S (IN RBRARS) )
WRTITE (3,929
P2 OFORMAT C ENDN
WREITE (4ol
YL FORMAT (SXy “HaTa FTLE FORE PRINCIFAL STRESS CONTOURING HAS REEN FORM
TED (~PRECONDATAY 7D
WRITE (& 90)
PO FORMAT /7y " SURROUTINE FRECON COMPLETED )
CAOLL TIMECL LD
RETURN
NI

SURROUTINE SFLEXCYDATUM)

IMPLICTT REAL X8CA~HyO~W)
REAL k8 NUCHLG)
COMMON/COMLZECS10Y o NUyROCELO) s TITLEC(E) s VIS(S1LO0O) y TIMy Ty COEFF s CLC s

1 ALy CHMy QM ANTEMF » NEL » NELTOFC(S L0 3 y TRHEOQ(S10) » IRF »

2 TCALL s INGs TFPSe TCRy ITEMy NTEMy NELTEM{L100)
COMMON/COM2/XCE00) o Y (E00 ) vy XFL AT Y o YPL CEY o XECF00 2 YE(I00) » NNOINy NNODI2
COMMON/COMIAFORCE (A0 yFORCE L CLOO) y DTEF (H00) y BTORIICHOO0Y v Ar ARy TINEC »

1 I1 LS00 Y y NRF o NFPUXy NFDY » MAXTT y MAXINC» ITF A IFIM(S)
YD=YOATUMKL , OF 3

CALL PSPFACECO. 125102550, 075 0.325)
Cal.l. COPACECQ. 028112550, 0250.7)
TCOUNT =0

XMIN=1 QL QS

XMAX=0,.0

YMIN=0Q,0

YMAX=~1  OEF

[0 49 T=1 s NNOD

IF (L LE30.O0RGTLGYLE0Y GO TO 49
TFOoOY DY o NE CYDATUMY GO 1O 4%

IXe=2% D1
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Tya=2%1
TEQUNT=LO0UNTY S 1
XGCLTOOUNT Y PYy+0lsk oIy 1 0ES
YOOCTCOUNT Y= OOy CD A0TSR CLY b Y I TUM D
XMIN=AMINL XS CTCOUNT Y » XM T
XMAX=AMAXLOXE CTDOUNT 3 » XMAX)D
YMIN=AMINL TCOUNT ¥ YMIND
FHAX=AMAXLOYS CTCOUNT Y » YMAX)

A CONTINUE
FFoOyMaX o LT 0000 YMAX=0, Py MAE
TFOYMAX L GE OO YMAX=L o LR YMAX
TFOOYMINGLE CoD) YMIN=11LXYMIN
TF O OYMINLGGT 0000 YMIN=0.PXYMIN
Call, MAF CXMIMNy XMAX e YMIMNy YMAX D
CALL NSCURV XSy YSy Ly TOOUNT 3
CAall. AaxXiESs

€
0N WIRTTE TITLES  sokokstorolol kol ot kol kolkosol ok kol stoiom kol ook kol JCiololok SO KoK sk sorokok ko) ook
£

DR,

CALL FEPACE(D.
CaLl. "ACE . s
Call, MAF IO :I<I““9U O’;vO«:l
CALL CTRMAG C15)
CAll. FOSTTNCO. 1780, 45)
TFOOYDEQ 0 Calll, TYPECS C/SHARE OF SURFACE FLEXURES 2
TF YD GEQ.-3%, 03 Cal.l. TYPECSC SHAFE OF MOHO FLEXURE D 22
CALL TYFECS(TITLE »40)
Call POSTTNGG.17%50,4)
CAll., CTRMAGCLG)

€ CaALL TYFECSC DIMENSTONS OF BOTH AXES ARE IN KMS. 7y 35

I CALL BORDER
WRITE (AH»?9)

P FORMAT(/» "SUBROUTINE SFLEX COMPLETED?

CALL TIMEC(L:1)
RE TLRN
ENI

SUBROUTEINE SFLEXCOYIATUM)

IMPFLICTT REAL X20A-HyD-W)

REAL X8 NUCELO)

COMMON/COMLAE CO10 y MUy ROCSLOY » TITLE (S y VISCEHLOY v TIMe Ty COEFF y CL.C s

1 QLCyOMy QMy ANTEMF vy NEL o NELTOF (5109 3) « IRHEOQ (510 » TRF
a3 I(hll;TNHvIISvIIlvlTIMyNTFMyNﬁLTFM&IOO)
COMMON/COMZ2 /X (300 e Y CE00 7 v XFLOE p YPL LAY 9y XS (300 o YEC300) s NNOD y NNODIZ
CUMMUN’LUMMJIUhLL(éOQJvFUhLEi(&OO)vUI&I(LOO)vqTULH(éOO)yﬁyﬁﬁvTINCv
1 DISFLCEO0) e NBF y NFIDCONPDY y MAXT T e MAXINC y TF A TFIM 6D
YO=YIATUMKYL . OFE32

(-
Caookk FLOT SHAFE OF  FLEXURE SO0 0ROk O OK K0k ok lok sk kokolkolkokokokok ok sokoskoioloiorololkok kok sof
i

CALL POSFACECO. 175y 0. 8250, 07%,0,275)

call © ‘“F ACECQ. 025y 112540, 020G 70

TEOUNT =

XM Nz iOQUW
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XMAX=Q, 0

YMIN=Q, O

YMAY =1  QES

DO 49 L=y NNOD

TF T LT bl JORTGT 133 GO TD aw
FF oY oDy sNE cYDaTlMy GO 170 4@
TXa2d L

Tym2dl

TROUNT=LCOUNT I
XGECTCOUNT b= 0O HDTISFCTXY Y AL, O3
YSLCICOUNT Y = (Y L4+ DTSF LYY 2 -YIATUM
XMIN=AMINI (XS CTTOUNT Y » XMIN2
XMAX=AMAXT (XS TTCOUNT )Y » XMAX)
YMIN=AMINIOYSOLTOOUNT Y y YMIND
YMAX=AMAX L OYS CTCOUNT Y » YMAX D
CONTINUE

TF YMAXGLT Q0 YMAX=0,PXYMAX
TF O OYMAXGE L OLD) YMAX=1  LXYMAX
TFOOYMINGLE Q.0 YMIN=L. EYMIN
TFOOYMINLGT 000 YMIN=0,9¥YMIMN
Caltl, MAFRCMIN XMAXy YMIM e YMAXD
CALL NGECURV Gy Yhe Ly TODUNT S

CAll AaxEs

WRTTE TEITLES srnknosolookorokiokokokiokokoloekoiokok Sofok ook sk fokoiokosior sesiololokokok kR Xk S

Call. FEFACE (O, 025 &

CALL CBEFACECO, 0201, 1250,02850
CAalL MAFTO. 025y 1 . 120,0, 025,050
CoLl. CTRMAG LS

CALL POSTTNCG, 170,00 45)

TF Y G, G0 Call, TYPECS(
IF (YD ER, ~3%, OF
CAL.L. TYFECSCTITL
CALL POSTTNCO. .
Catl, CTRMAG.LO:

CAall TYFECSO DIMENSTONG OF ROTH aXES aRE TN KMSE. 7359
Catl RORDER
WRITE(&Sy99)
FORMAT (/7 " SURBROUTINE SFLEXC COMPLETED )
Call, TIMECLs12

RETURN

ENI

SHARE OF SURFACE
30 CALL TYPECSO SHAFE OF MOHO
s 400
FAVERORYD
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