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INTRODUCTION.

Much of the ecological research done to date has been descriptive
in nature, trying to quantify those processes at work in the environment.
Predictive ecology is one of the newest and most exciting fields in this
rapidly expanding science. This project is set in the latter vein,
being concerned with modelling the evolution of spatial pattern in plant
communities, based on the theoretical principles of population genetics,
and comparing the predictions of that model with observed spatial patterns
in field popuiations. The model used was a computer program called SPEV,
short for spatial evolution, written in Algol¥W, by Dr. J.T. Gleaves,
It was intended to study segregation, that is the separation of plant
populations into discrete single species groups. It was hoped to test the
hypothesis that as a result of genetic interactions between individuals of
two species, where their hybrids are infertile or inviable, plant
populations containing both species will aggregate into groups of one
species or the other. This hypothesis was tested using computer
simulation results and also comparing these results with field data

collected on spatial pattern in populations of Senecio squalidus L. and

Senecio viscosus L., two species of contrasting breeding system.

S.squalidus being an outbreeder, and S,viscosus, an inbreeder. A variety
of field techniques were used, as were a range of statistical treatments

of the data collected and some discussion of each is given.

“\\]“HAM UNIVER&/rr

- SFEB 1982
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2 METHODS .

2.1 INTRODUCTION

Two very different approaches were used in the study of spatial

patterns in plant populations.

2.1.1 Computer Simulation

Populations of plants were simulated using SFEV on the NUMAC
computer, The effect of selection, competition, gene flow and seed
dispersal were modelled for a simulated population., The impact of
these parameters on spatial pattern in the model population, was studied.

This will receive thorough discussion in the next chapter.

2.1.2 Pield data.

Spatial pattern in field populations of Senecio viscosus L., and

Senecio squalidus L. was studied. These two species were chosen

because of (a) their relative commonness, and (b) their similar niches.
Both plants are common plants of derelict land, especially on old
railway lines, and the sites of derelict buildings. (Spatial pattern

data was also collected for Senecio jacobaea L., a common plant of

derelict agricultural land, this data is included in Appendix A).

Senecio squalidus L. is described by Clapham, Tutin and Warburg,

(1959) as:
"Overwintering annual, rarely longer lived with more or less

glabrous, tough, diffusely branched ascending stems, 20 to 40



_

cm high. Lower leaves narrowed into a winged stalk, upper half
clasping; all usually deeply pinnatifid with oblong entire or
toathed lobes,...., Heads 1.5 to 2.5 cm diameter in an irregular
loose corymb. Involucre bell shaped,...., inner bracts 21;

outer 5 to 13; very short; all conspicuously blacked tipped,
Spreading rapidly on old walls, waste ground, railway banks,
bombed sites etc., throughout England to Yorkshire and Lancashire,

being rare in Scotland."

S.squalidus was first introduced to the Botanic Gardens at Oxford

in 1699, being recorded in the environs of Oxford in 1794, (loc cit

in Lousely 1943,1947). Since that time, especially with the advent

of the railways in the last century, S.squalidus has been progressively
extending its range throughout the country, such that by now it is
common in most vice counties except in the North and West of Scotland,
where it is rare. It is a large conspicuous plant whose life cycle is
certainly overwintering annual, and arguably longer lived. Gibbs, Milne
and Carillo (1975) in their study of the breeding systems of members of
the genus Senecio, record S.squalidus as a cross pollinating species,
with large showy flowers, high pollen counts, and low recombination
index, all characteristics of a cross pollinating species. Individuals
in the Durham sites studied were found in flower in late May, and were

still in flower in mid-September.

Senecio viscosus I, is described by Clapham, Tutin and Warburg

(1999) as:
"Annual, foetid, with erect very viscid glandular hairy stems,

10 to 60 cm high. Leaves dark green, glandular and very viscid,



deeply pinnatifid with nearly equal toothed or pinnatifid lobes;

lower obovate in outline, short stalked, upper oblong and sessile,
Heads 8 mm in diameter, long stalked, in a large irregular rounded
corymb. Involucre ovoid-conical, densely glandular, its outer bracts
almost half as long as the inner ray florets Ray florets c¢,13,

short revolute,.., Probably native. Waste ground, railway embankments
and tracks, sea shores etc. Locally common throughout lowland

England."

S.viscosus is probably a native of cliffs and costal regions in the
British Isles, (Lousley, 1943), having expanded onto road and railway
works in the last century. S.viscosus is a self pollinating species
whose characteristics are very unlike those of S.squalidus, having less
conspicuous flowers, low pollen counts and high recombination index,

(Gibbs, Milne and Carillo, 1975).

S.squalidus is native of the southern Mediterranean, its classical
habitat being on the slopes of Mount Etna, (Lousley, 1943), thus in its
natural environment it is very unlikely to encounter S.viscosus, a species
restricted to wetter climes in western Europe. However, since the escape
of S.squalidus from the Botanic Gardens at Oxford, and particularly during
the last war, which left many areas of derelict land in Britain's major
cities, both species encountered one another, on a large scale, for the

first time, As a result, a hybrid Senecio xlondenensis Lousley.,

intermediate in characters between the two parent species, was found,

occurring at low frequencies, where populations of the parents met,



S.squalidus, S.viscosus and S.xlondenensis provided useful subject

material for the study of segregation and spatial pattern, since both
parents are relatively common plants, (although the hybrid is less common,
unless there are large populations of both parents), and the environments
in which they are found are relatively homogeneous waste ground.

Spatial pattern was studied in single and mixed species populations,

and a brief site description is given for each of the sites at which

field measurements were collected,
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Table 1.

Site description.

No Site Name

1 Gilegate
Builders

yard Durham

-2 Stockton &
Darlington

01d Railway

3 Abandoned
Field

Pittington

4 014 Quarry
Entrance

Coxhoe

5 01d Field
Quarrington

Hill

Abbreviations: Smpln
T.sq

Smplng
frame

No.

1,2

3-6

21,22

18

10-11

16

12-15

foul
o

T

Species
present

8q vis

Species
sampled
sq vis
+
+ + o+
! + o+
S.jacobaea
S.jacobaea
+ +
+ +
+

Smplng

me thod

T.sq

T.sq

T.sq

T.sq

T.sq

Environment

Builders rubble
tiles, slates,

waste ground.

Disused railway
line, and

embankment,

Over grazed

pasture

Rubble,

road aggregate.

Derelict
cultivated

field.

sampling, sq = S.squalidus, vis = S,viscosus
square, Qrdrt = grid of guadrats.



Table 1. (Contd.) Site description

Smplng Species Species Smplng

frame present sampled me thod
No ©Site Name No. sq vis sq vis Environment

6 Belmont
Viaduct 17 S.Jjacobaea T.sq Overgrazed
Field . field,

T Derelict Derelict factory
land, 19, 20 + + T.sq land. Rubble
Darlington loose top soil.

8 Disused
sidings 23=27 + o+ + o+ T.8q Railway
Croft. Qrdrt aggregate,

The grid of contiguous guadrats laid out at site 8, covered four of the
T-squares sampling frames (numbers 24 to 27), and the positions of the sampling
frames on the grid of quadrats are given so that a comparison of the data from

T-square sampling, and the layout of the plants on the ground may be made~*.
Spatial pattern was studied using both distance and quadrat methcds,

ion of thése, and the statistical approach to the data collected,

is given in the following text:

* See section 6.3, Figure 22.



Distance methods. Besag and Gleaves (1973) propose T-square sampling,
a density independent distance method, as a quick 'pilot' technique for
assessing spatial pattern in plant populations. T-square sampling is

described at length in section 2.2.

Quadrat methods. These are discussed by Greig-Smith (1964). Two uses
of quadrats are described, (1) using random quadrat throws, and (2)
using a grid of contiguous quadrats. The amount of information to be
obtained from random quadrats is limited, since this only provides
information about spatial pattern at the scale of one quadrat size or
less, A grid of contiguous quadrats will provide information about
spatial pattern at more than one scale. Both techniques are described

in section 2.6.

2.2 T-SQUARE SAMPLING.

This method, proposed by Besag and Gleaves (1973), involves measuring

the distances between a random point and its nearest plant, and that nearest

plant and its nearest neighbour within a given arc,

T-square sampling theory.

Besag and Gleaves (1973), Diggle, Besag and Gleaves (1976).

"Let S denote a sampling frame, containing many events chosen

to lie slightly within the region of interest, A, so as to



eliminate edge effects. Let P denote a randomly selected point
in S (see fig. 1), and define U to be the squared distance from
P to the nearest event Q. Let PQT denote the perpendicular to
PQ passing through Q, and define VT to be the squared distance
from Q@ to the nearest event, excluding those which lie on the
same side of PQT as does P itself. Choosing m random points,
the sample u and vt of observations on the variate U and VT

are obtained."

The Test statistics are defined below, together with their distributions
under the null hypothesis of spatial randomness. All the tests are

summations over the range i=1,...,m .

2.2.2 The Normal Test.

(Besag and Gleaves, 1973).

t = qu w, / {u; + 0.5 V‘ti})

tN has an approximately normal distribution with mean, 1/2, and

variance, 1/12m.

2.2,3 Further Tests.

Diggle, Besag and Gleaves (1976) describe a further test:

ty =Zli / (ui + 0.5 vt, )
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Figure1 T-square sampling

Figure 2 Two tape point location method
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which has a B(m,m) distribution under the null hypothesis. (This may
easily be transformed to an F(2m,2m) statistic, since F tables are more
readily available). Cormack proposes another test (Cormack, 1979),
however, this test was not used in this project. Each of these test
statistics was evaluated for each of the field populations for which

T-square data was collected.

THE LOCATION OF RANDOM POINTS IN THE SAMPLING FRAME

The location of random points in the sampling frame, S, was very
much simplified by the use of "two-tape" methods (Gleaves, personal
commnication). Two 30m. tape measures were fixed to the ground a known
distance, C, apart, and set back a distance, D, (D = ¢/5), from the edge
of the sampling frame. Charts had previously been prepared for scoring
the data, and on these the x and y co-ordinates of random points within
the sampling frame were printed. In addition, two distances, A and B,

were calculated and printed on the data charis where:

A =\[x2+(D+y)2

and

B =\/(c~>c)2+(13+y)2

These two distances were measured out, one from each tape measure,
and used to locate each random point. This is best explained by fig. 2.

This technique reduced the amount of time taken to locate random points,
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and also the inaccuracies inherent in setting up a grid, of strings or

tapes, over the sampling frame, as had previously been used.

COLLECTION OF THE FIELD DATA.

Most of the sampling frames in the field were of 5m., x 5m. dimensions,

and in most cases, except where the population was sufficiently small to

count the number of individuals present, an estimation of the population

size was made by placing 13, 0.2m. random quadrats. (Thirteen random
quadrats were used since this meant that approximately 1/10th of the
sampling frame was enumerated. This was considered to be sufficient to
obtain an estimate of the population size in the sampling frame).

An estimate of the population in the sampling frame was obtained since,

if the sampling intensity, m, exceeds n/6, where n = the population size,
then the independence of each pair of T-square measurements may be lost.
(piggle, Besag and Gleaves suggest that a sampling intensity of n/10 should
be both reasonable and practicable). T-square sampling is density
independent so a fixed number of random points per sampling frame could
have been used." It was decided to sample at n/6 regardless of the
population size; thus allowing for the data to be reduced after collection,
The distances measured were from a random point to its nearest plant, and
from that plant to its T-square neighbour. In all data was collected from

27 sampling frames;, for 7 of thesc Twsquare data was collected for both

S.squalidus and S.viscosus,
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2.5 SEGRECATION DATA.

As well as collecting data relevant to the spatial pattern of plant
populations, data was also collected relating to the degree of association

between Senecio viscosus and S.squalidus in field populations. (A model of

two interacting species was to be the eventual aim with SPEV, modelling
populations in which there was hybrid infertility, and equal fitness of

the two homozygotes (one of which was a self pollinating species, the other
a cross pollinating species) ). At the seven sites where T-square data could
be collected for both species from the same sampling frame, data about the
nearest neighbour of a random plant was collected., In practice, those plants
located using the two-tapes technique, and from which the distance to
nearest neighbour would be measured, were also used as "base" plants for
a§sociation data. The species of the base plant, and that of its nearest
neighbour were recorded, in this case, the nesrest neighbour copld be either
species, whereas with T-square sampling, the nearest neighbour was the

nearest plant, excluding those behind the 'T', of the same species.

2.5.1 Statistical analysis of Segregation field data.

Firstly, a measure of segregation, S, where:

S =1- m{ b+c)

{arb). (b+d) + {c+d).{c+a)

if 5=0, the species are not segregated; if S=+1, the two gpecies
are completely segregated; and, if S=-1, the two species are associated,

that is the nearest neighbour is always the other species. (After Pielou, 1961).,
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Secondly, Krebs (1978) proposes a chi-squared test, testing the null
hypothesis that two species are independently dispersed, This test is
designed for use with quadrat data, where the presence of two species in

the quadrats has been scored,

Species One
Species Two + - Total
+ a b a+b
- c d c + d
Total a+cb+d m
i m(ad ~ be)

(a+b). (c+d).(a+c).(b+d)

Figure 3. Two by Two Contingency Table for

Segregation Data

As with T-square statistics, it is important that over-sampling
should be avoided, this was the reason why the random plants located for

Twoquare samplluyg were used as base plants in this method,



2.6

2.6.1
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QUADRAT METHODS

Random quadrats

Randomly placed quadrats were used, as described in section 2.4,
to obtain population estimates for those sampling frames whose populations
were too large to enumerate by actual counts. Random quadrats may be used
in the detection of spatial pattern, however, if the distribution of
individuals in the population is non random, then the amount of information
to be obtained from them is limited (Greig-Smith, 1952). Several statistical
approaches are available for testing data collected from randomly placed
quadrats to determine the intensity of spatial pattern, and these are
detailed below, Firstly, the observed quadrat data may be compared with
a Poisson distribution of the same mean. By scoring the numbers of quadrats
containing 0,1,2,3... individuals, and calculating the mean number of
individuals per quadrat, M, the expected numbers of individuals may be

derived using the following expansion (Greig-Smith, 1952, Hopkins, 1954):
oM , Me ™M , Mze'M/2! , MBe-M/ | S

Observed and calculated values of these terms may be compared, and the
significance of any deviation of the observed from expected values

measured using a chi-squared test, with n-1 degrees of freedom. Two

problems arise with this technique, tirstly, that any indication of spatial
pattern applies only to one scale (that is to the size of one quadrat alone),
and secondly, if the mean M is low, then only the first two or three terms of
the series will have an expected value of greater than 5 (which is generally

accepted as the lowest expectation permissible for a chi-squared test).
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2.6.2 Grid quadrat me thods .

Greig-Smith (1952, 1964) proposed that a grid of contiguous quadrats
could provide information about pattern in plant populations, at scales
other than just the quadrat size. Kershaw (1957) proposed that a transect
of gquadrats could be used, instead of a grid, requiring less labour,

This latter method is very appropriate for the detection of linear pattern,
however, the amount of information it will yield about the area of patches
in a plant population over the whole study area is limited, When a
contiguous grid.of quadrats is used, each side having a number of quadrats
‘that is a power of 2, that is 16 x 16, 32 x 64, etc., neighbouring

quadrats may be added together to form blocks of 2,4,8,16... grid units,
(the even powers of 2 being square blocks, the odd powers of 2 being oblong
blocks), in order to detect spatial pattern at more than one scale in the
environment. Consequently, in the field, a grid of 32 x 64 contiguous
quadrats, each O.18m2 in area, was laid in an area containing large

populations of both Senecio viscosus, and S. squalidus, The numbers of both

species (and their hybrid, S.xlondenensis), were scored in each quadrat.

From this data maps of plant populations were produced, Statistics
relating to the amount of spatial pattern in each species, and the amount

of association between them, were derived,

2.6.3 Statistical treatment of the contiguous quadrat data.

As was described in the section above, grids of contiguous quadrats
are useful in detecting the scale of spatial pattern in plant populations.
Greig-Smith (1952) presupposes an area divided by means of a grid of

quadrats or plots of identical size and orientation. The whole grid is
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divided into half and the sum of squares of the halves calculated,

Each half is then divided into quarters, and thec sum of squares of quarters
is calculated. This process of halving blocks within the grid is repeated
until the original quadrats are reached. Let Bm(i) be the total of the
ith block of size m, where m is the number of plots in the block, and the
blocks are arbitrarily ordered. The sum of squares corresponding to the

blocks of m, nested within blocks of 2m is:

n/m n/.’lm
2 2
§s = E Bm(i) / m - Bzm(l) /2m
L=1 i=l

for each size, until the original plots are reached, that is m=1,

The mean square, MS, of each block is:

Ms =SS / (n/m)

[}

where n total number of quadrats

m= current block size.

If the distribution of plants over the whole area is perfectly random, the
mean square of all the block sizes should be the same, that is the
variance/mean ratio, should be unity. If the distributien is aggregated
then the variance 4o mean ratio will rise, up to that block size
equivalent to the area of the patches, If the patches are themselves
random, the variance/mean ratio will maintain these levels, if the patches

are regular, variance/mean ratio will fall, Kershaw (1957)

demonstrated the reliability of a subjective estimate of the position of

peaks in the variance/mean ratio against block size curve
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to define different scales of pattern, because the statistical proof of
different scales of pattern in a grid is complicated because even though
the variance/mean ratio should have an F-distribution under the null
hypothesis, once the existence of non-randommess has been proved, the
F~test is no longer valid. This is not the only problem with this type
of analysis. Pattern at one scale, using this method, is not wholly
independent of pattern at another smaller one. Zahl (1974) points to a
further problem of this method of grid sampling. In Greig-Smith's
description of Sums of Squares, blocks are restricted to being non-
overlapping. Thus, any cluster that is astride two or more blocks of a
given size has less effect on the sum of squares than the same cluster

wholly contained within one block.
The lack of statistical verification of the tests discriminating
between pattern at different scales has led to a series of papers

proposing so-called randomisation techniques,

2.6.4 Mead's Analysis. Randomisation methods for contiguous

quadrat data

Mead (1974) proposed a 2-within—4 randomisation test, for use with
contiguous quadrat data, which avoids many of the difficulties inherent
in the original method proposed by Greig-Smith, and allows independent
testing for spatinl pattern at different scales., Meadis analysis was
originally designed for use with a transect of quadrats as proposed by

Kershaw (1957). Besag (1977) proposes a Mead's analysis technique for
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grids of quadrats, using a "4's-within-16's" randomisation test, and also
using a Monte Carlo randomisation (which uses a random sample of the total
randomisation of 4s-within-16s, Hope (1968) ). This version of Mead's
analysis requires that contiguous quadrat data are successively partitioned
into 1,4,16...groups, each consisting of 4 x 4 blocks. For each partitioning
of the grid, the null hypothesis is that within each group, the observed
counts on the four associated 2 x 2 sub-groups form a random sample within
the total possible number of randomisations. A test statistic is calculated
for the observed data, and 99 (say) values obtained from Monte Carlo
randomisations, which are then ranked, the rank of the observed statistic
being its exact probability, (e.g. an observed statistic ranked first of 99
randomisations would have a probability of 0.01). The use of different
partitions of the grid provides an independent test of spatial pattern

at different scales, An analogous procedure may be adopted for the
detection of spatial association between two sets of contiguous quadrat
counts over a single region (Besag, 1977), i.e. data collected for two
species over the same quadrat grid., For each partitioning of the data

a statistic measuring the association between corresponding counts within
pairs of blocks is calculated, and ranked with Monte Carlo randomisations
of the data as before. The mean Spearmans Rank Correlation Coefficient
between counts within pairs of blocks, may also be used to give an estimate
of the association between two species for which data has been collected
over the same grid., The contiguous quadrat data was treated in this way,
and the results and usefulness of this technique are fully discussed in

chapter 6,
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2,6.5 Mead's Analysis Technique.

The method used in Mead's analysis is described, to clarify the

usefulness of the technique,

Firstly, testing for spatial pattern in one species only.
The data is divided into contiguous groups of 16, and each group of
16 into four sub-groups of 4. Four sub-group total were calculated
from the sum of the blocks in that sub-group. Consider the numerical
example:
16 Observed Block Scores Sub group totals Test statistic

42 14 9 29

38 21 44 12 115 ‘ 94 940

62 44 92 29 339 ‘ 320

126 107 }139 60

Pigure 4. Meads analysis of Observed Quadrat Scores,

The Meads test statistiec caleulated from these is the sum of the six

absolute values of the pairwise differences between sub group totals

within blocks. In this case, this is:
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(1115-94})+(1 115-320[ ) +(] 115-339)+(] 94-320 |)+(| 94-339|)+(] 320-339]) = 940
This value is then summed over all groups. The positions of the 16
observed data bdlocks are then randomized (see below), and a new value

for the test statistic is calculated.

16 Randomised Block Scores Sub block totals Test statistic

42 29 38 29

107 92 44 12 270 l 123 556

9 44 21 139 193 I 282

126 14 62 60

Figure 5. Meads analysis of Randomised Quadrat Scores,

If the rank of the observed test statistic is less than fifth, (out of
the 100 randomised+observed statistics), then the null hypothesis is
rejected, Sub-group totals are then treated as individuals and the
analysis is repeated, at a scale four times that preceding it, until

the group size equals the grid size,

Secondly, testing for scales of interaction between plants in a grid
of contiguous quadrats. Given the counts for each species over 2 2 x 2

squared grid, the data are viewed successively as 1,4,16,....etc. blocks,
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each comprising four (aggregate) counts in a 2 x 2 arrangement (see Besag,
1977). Using Monte Carlo methods, we may apply the null hypothesis of no
association of counts within corresponding pairs of blocks. In this case
the test statistic is the summed product of the observed counts at each

position within each 2 x 2 block. Once again using a numerical example:

Species One Species Two
42 14 9 29 37 19 4 13
38 21 44 12 49 40 11 4
62 44 92 29 54 72 14 10
126 107 139 60 100 58 35 8
174 126 162 120 78 47 23 4
44 123 78 148 26 60 17 9
36 50 50 91 60 30 12 12
30 9 35 100 60 4 24 14

Figure 6. Testing for association between two species (1).

Using Observed Quadrat Data.
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For the first 2 x 2 block the leads test statistic is evaluated as:
(42 x 37) + (14 x 19) + (38 x 49) + (21 x 40) = 4522
summed over all eight 2 x 2 blocks, the observed test statistic may be

calculated as = 82022.

If the observed values for one species only are then randomised

within 2 x 2 blocks, a new test statistic may be calculated as = T73011.

Species One Species Two
21 42 44 29 37 19 4 13
38 14 9 12 49 40 i 4
126 107 92 60 54 72 14 10
62 44 139 29 100 58 35 8
126 123 78 162 78 47 23 4
174 44 120 148 26 60 17 9
36 9 50 91 60 30 12 12
50 30 35 100 60 4 24 14

(Randomiced) (A5 before)

Figure 7. Testing for association between two species (2)

Using Randomised Quadrat Data.

Again the test statistics are ranked,
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Thirdly, using Spearmans rank correlation coefficient to test for
association between two species at various block sizes. The menan rank
correlation coefficient between counts within corresponding pairs of
blocks within fours is calculated over the whole block, tied ranks being
resolved by Monte Carlo randomisation methods, (in the example below

tied ranks are halved).

Species One

42(1) | 14(4) 9(4) 29(2)
38(2) 21(3) 44(1) 12(3)
62(3) 44(4) 92(2) 29(4)
126(1) 107(2) 139(1) 60(3
S 174(1) 126(2) 162(1) 120(3)
44(4) 123(3) 78(4) 148(2)
36(2) 50(1) 50(3) 91(2)
30(3) 9(4) 35(4) 100(1)

Figure 8. Ranking Observed data within 2 x 2 blocks (1),



25

Species Two

37(3) 19(4) 4(3.5) 13(1)
49(1) 40(2) 11(2) 4(3.5)
54(4) 72(2) 14(2) 10(3)
100(1) 58(3) 35(1) 8(4)
;8(1) 47(3) 23(1) 4(4)
26(4) 60(2) 17(2) 9(3)
60(1.5)  30(3) 12(3.5) 12(3.5)
60(1.5)  4(4) 24(1) 14(2)

Figure 9. Ranking Observed data within 2 x 2 blocks (2).

Ranks for corresponding fours are multiplied together, and then summed

together within each four:
for block 1, R=(1 x 3)+(4 x 4)+(2 x 1)+(3 x 2) = 27

The expected value of R for any one block is
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R (exp) = (1+243+44) x (1424344)/4 =25

The maximum value of R for any one block, i.e. one in which the two apecies

are perfectly correlated is:
R (max) = (1 x 1)+(2 x 2)+(3 x 3)+(4 x 4) = 30

The minimum value for R in any block, i.e., the two species are disassociated

is:
R (min) = (1 x 4)+(2 x 3)+(3 x 2)+(4 x 1) = 20

In order to obtain a value of Spearmans rank correlation coefficient

between -1 and +1,

rho = (R - R(exp))

((R(max) - R(min)) / 2)

which in this case is evaluated as:

(27 - 25)/((30 - 20) / 2)

= 40,4

rho

[}

The mean value of rho is calculated by summing over all the blocks of
fours, and dividing by their number, N. A value of the standard deviate

is calculated, and its value looked up in tables of the normal distribution,
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to test the significance of the rho.

D = rho x "(3 x N)
where N = The number of blocks of fours,

In the example given, the mean Spearmans rank correlation coefficient,
rho, is +0.4375, with a standard deviate of 2,1433, (N = 8), which is
significant at P 0.017. Meads analysis is discussed thoroughly in Mead,

(1974), Besag, (1977), and Besag and Diggle, (1977).
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3 MODELLING THE EVOLUTION OF SPATIAL PATTERN

SPEY is a complicated suite of procedures, written by Dr. J.T. Gleaves
in Algol¥W, to model the evolution of spatial pattern in plant populations.
The original version of the program had been written to model the evolution
of spatial pattern in comminities of lead tolerant plants, where there was
strong selection for lead tolerance within the community, and strong gene
flow of non-tolerant genes from populations outside the area of high soil
lead concentrations, SPEV not only modelled the impact of selection and
gene flow on spatial pattern, but also had parameters for seed dispersal

and competition. Each of these processes will be discussed directly,

3.1.1 Summary of the program.

SPEV simulates the development of spatial pattern in a plant population,

(within a mapped area), based solely on genetic effects,

Starting from a randomly dispersed population of plants, usually with
a gene frequency of 0.5, the pollination of each plant is simulated,
The plants in the model are considered to be wind pollinated (although it
is thought that the model would hold for insect pollination as well), the
amount of pollen received by each plant from every other being a reciprocal
power function of the distance between them. As well as pollen received from
plants within the population, a parameter, RAIN, is added to the total pollen

of each plant representing gene [low from recessive homozygous plants outside

the mapped population. For each plant the amounts of 'A' and total (+RATN)
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pellen were accumulated, the gene frequency in the pollen being later used

to determine the genotypes of the offspring of that parent plant,

The distances between each plant ana every other are also used to determine
the intensity of clustering in the population and alsoc the number of
competitors for each plant., If the distance between two plants is less

than the expected neighbour distance (assuming a random distribution), then

a variable counting the number of neighbours in the population is incremented'
by 1. This is used to calculate the mean number of neighbours per individual
(MNNHBR), a statistic reflecting the intensity of clustering in the
population. (Large values of MNNHBR indicate a highly aggregated population),
Also, if the distance between two plants is less than the competition
distance, DCOMP (which is initialised at the start of the program so that

the intensity of local competition can be varied), then the number of
competitors of both plants is incremented by 1. The number of competitors

of a given plant is used to determine the fecundity of that plant.

From the gene frequencies in the pollen of each plant, the frequencies
of the offspring genotypes of that plant are calculated., The fitnesses of
the offspriné genotypes are 1,1-D*¥S and 1-S respectively for 'AA', 'Aa' and
'aa', where D = Dominance of 'A' over 'a', and S = Selection coefficient,
both of which are initialised at the start of the program by the user.
Selection acts in the program on differential offspring fitness, not on the
parent plants themselves, Offspring survivorships for each parent plant are
calculated by multiplying the trequency of a given offspring genotype (tor
a given parent plant) by the fitness of that genotype. The fecundity
(that is the number of offspring that a given parent plant produces) of a

plant is regulated by the number of plants with which it is competihg,
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such that, as the number of competitors increases, so fecundity decreases,
The fecundity of each plant was modified by a density dependeﬁt factor which
maintained the population size at approximztely that of the initial

population,

Using the fecundity of each parent plant and the survivorships of its
offspring, appropriate offspring are generated and dispersed from each
parent plant., The direction that an offspring plant is dispersed from its
parent is completely random, and the dispersal distance from its parent
has a normal distribution, centred on that parent plant, the standard
deviation of which is the seed dispersal distance, SIGMA, (which is
initialised by the user at the start of the program), The offspring
plants then become the parent plants of the next generation from which
statistics relating to the spatial pattern of the modelled population are

obtained, and the cycle is restarted.

SIMULATING PLANT POPULATIONS USING SIPEV.

.Having briefly described the processes by which the program generates
and maintains a model population, the remainder of this chapter will be
devoted to describing the results of simulations, using the initial version
of SPEV. The results will, where possible, be augmented with the use of
graphs. MNNHBR was used in every cese as a statistic of clustering. A value
of expected number ol neighbours = 0.7853, was derived assuming a randowm
distribution of plants; and is drawn for comparison on each graph where MNHBR

is plotted.
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Selection (S).

When the value of selection coefficient was high, say $=0.8, the 'a!
genes were rapidly eliminated from the gene pool (see Graph 1.). However,
the speed at which 'a' was eliminated from the gene pool was dependent on

two factors:

Dominance (D). If D had a low value, say D=0.3, then the fitness of the
heterozygote would be nearly equivalent to that of the 'AA' homozygote.

A5 a result of this, 'a' genes would remain in the gene pool for a
considefable time, in the heterozygote. Graph 2. plots results for

D=1.0, 0.5, 0.3 at S=0.8. The number of heterozygotes persistently
increases as D decreases, and the recessive genes in the gene pool are thus

protected in the population, as would be expected,

Pollen rain (RAIN). If RAIN was intense, then the flow of 'a' genes from
outside the gene pool would be sufficient to maintain 'a' genes in the
population. The effect of RAIN on the spatial pattern of populations.

was profound, since those individuals which were sufficiently isolated

to receive most of their pollen from the background rain, would, if selection
were intense, fail to produce viable offspring. This point is thoroughly
discussed in section 3.2.3. Graphs 3(a) and 3(b) plot the frequencies of
heterozygotes and recessive homozygotes, when RAIN = 10,0 and 5.0.

In general, the higher the levels of gene flow from outside the population,
the 16nger heterozygotes and recessive homozygotes will persist in the

population.

As Selection decreases, so the gene frequencies in the population become

stable, at 5=0,5 the effects of RAIN and selection hold one another in
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balance, eventually becoming unstable again as 5=0.0, see Graph 4.

The elimination of 'A' from the gene pool, is a result of the effect of
RAIN effectively increasing the total pollen available to a given plant,
whilst thus reducing the relative availability of 'A' pollen. This fits
well with the situation which the model was originally designed to study,
in that in an environment where lead tolerance was of no advantage,
migration would lead to the loss of lead tolerance genes, in much the
same way as selection for them had led to the elimination of 'a' genes in
highly polluted soils. A very stable population, whose gene frequency, P,
remained near its original value, was obtained by setting S=RAIN=0,
(results of this simulation are plotted on Graph 5.). The effect of RAIN
may be seen by comparing Graphs 4 and 5, in the former, the population
goes to fixation, whilst in the latter, stable gene frequencies are

maintained.

The impact of selection on spatial pattern is indirect, having its

effect via gene flow, this is thoroughly explained in section 3.2.3.

3.2.2 Seed dispersal (SIGMA).

Seed dispersal has a direct effect on the spatial pattern of a given
population, since a low root mean square seed dispersal distance, SIGMA,
will result in the offspring of a given plant always being located close to
it. IfVSIGMA is low, this can lead to the formation of point clusters, that
is many small, highly intense clusters, each containing only a few individuals,
(see Figure 10). If SIGMA is high, this will lead to more random distribution
in the population, depending on the values of S and DCOMP, The‘results of

similations of SIGMA= 0,05., 0.25, and 0.5 are given on Graph 6,
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Key to the symbols used in Figures 10, 14, 15, 16, 18 and 19.

+ = 'aa' individual
H = 'Aa' individual
* = "AA' individual
2, 3, 4... = more than one individual at the same

location.
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3.2.3 Pollen dispersal.

Since the amount of pollen received by each plant, from every other,
is a distance related phenomena (see section 3.1), (the exception to this
rule being the case where K=O1), plants will tend to receive more pollen
from those plants nearest to themselves, Therefore the genotype of the
offspring of any plant will reflect firstly the genotype of its parent,
and secondly that of those plants that are nearest to it., Any isolated
individual in the population is certain to find a large proportion of
its total pollen being composed of background RAIN, the pollen of other
plants in the population playing a lesser part. It is at this stage that

selection plays its part in determining spatial pattern.

If the selection coefficient, S, is low, say 0, then the offspring of
each genotype have an equal chance of survival, each having the same

fitness, Two situations may now arise:

If RAIN was zero also, then the population would tend to

maintain a stable gene pool, as in Graph 4.

If RAIN is large, then, as has been previously explained,

'A' will be lost from the population, as in Graph 5.

1 This models a random mating population, since the amount of
pollen received by any plant will be a constant
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If the selection coefficient, S, is high, (say 0.8), then the
survivorship of 'Aa' and 'aa' offspring would be greatly reduced,
The importance of this relates not only to heterozygous and recessive
homozygous plants in the population, but also to isolated dominant
homozygous individuals which receive more of their pollen from RAIN,
tAa' and 'aa' individuals than they do from other 'AA' individuals.
In their case the chances of their offspring surviving are reduced,
resulting in the loss of theose isolated homozygous plants from subsequent
generations. In order that 'AA' plants should swvive in the model
environment, spatial patterns should develop in such a way as to maximise
the quantity of 'A' pollen received by 'AA' plants, and yet not reduce
their fecundity (by being so close together as tc compete with other plants).
The result of these processes is that, (according to the limits defined by
the competition distance, DCOMP), where selection is intense, there will be
a strong tendency towards aggregated spatial patterns in the model
populations, brought about by the elimination of 'Aa' and 'aa' plants and
also those 'AA' individuals isolated from other 'AA' plants, because of the

low survivorship of thelr offspring.

3.2.4 Competition (DCOMP).

DCCMP represents the degree of local competition in the population,
If DCOMP is large local competition is increased, and if DCOMP is small
local competition is decreased, {allowing for more intense clustering in
the population). The results of a series of simulations of DCOMP=0,1,
0.25, 0.5 are given on Graph 7. The effect of increasing DCONP is to

increase the number of competitors that a given plant may have (for the
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same population size). When DCOMP is high plants that aggregate into
clusters would tend to be lost since, although this would secure an
abundance of pollen of the same genotype, the number of 6ffspring that

each plant in the cluster would produce would be reduced. Conversely, if
DCOMP is low, then plants may aggregate, thus gaining a pollen advantage

by being closer together, without any loss of fecundity. One problem with
representing competition in this way is that, when local competition (pcomp)
was low, plants would tend to aggregafe into one very large cluster, a model
not wholly representative of natural pdpulations. For this reason the model
was developed to include a tesselation, which represented competition in

terms of the resources of each plant. (see section 4.1).
SIHIMARY L]

Each of the processes outlined in the preceding sections act independently
of one another, yet the populations that arise as a result of the simulations
are a complicated mixture of the effects of each. It is hoped that this
chapter has clarified the originzl form and operation of the model, without

having clouded its methods with a surfeit of detail.
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4 DEVELOPMENT OF SPEV: THE DIRICHLET TESSELATION.

4.1 A WEW VERSION OF SFEV.

Although DCOMP had been a useful and quick tool for describing plant to
plant interactions in SPEV, it was rather clumsy, and a more sensitive
analysis of these interactions was required. An alternative method of
assessing plant fecundity is to allocate fecundity according to the
resources of a model plant. Fach plant was allocated a tile, that is
that portion of the mapped area nearer te that point than to any other
(see section 4.1.1), and the area of this tile was taken as a measure of
its fecundity, relative to the sum of the areas of all the tiles of the
plants in the population., These tiles were produced using a very efficient
algorithm for producing a Dirichlet tesselation written by Green and

Sibson (1977).

4.1.17 The Dirichlet Tesselation.

The Dirichlet Tesselation is defined most simply as

"a subdivision of the plane determined by a finite set of
points, each point has associated with it that region of

the plane that is nearer to that point than to any other.

Bach lile, T

N
bounded by the perpendicular bisectors of the lines joining

, is the intersection of the half open planes

PN, with each other PM."
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(see Figure 11). Green and Sibson (op cit) have produced a suite of
programs in ANSI FORTRAN, called TILE, which will produce for an array of

m points a Dirichlet tesselation of T, tiles, each corresponding to point R“.
Using this tesselation, various statistics about each tile can be derived

in SPEV, the area of each tile was to be the crucial statistic,

4.1,2 Disadvantages of the Dirichlet Tesselation,

The major assumptions of the Dirichlet tesselation, particularly in the
way in which it was to be implemented in SPEV, are that (1) each individual
has the same ability to use the resource that is describing its fecundity,
and (2) that this resource, in this case tile area, is the sole determinant
of the fecundity of a given individual., Selection is operating on offspring
survivorship, and not on parent plants, once these are established, therefore
in the model established parent individuals are equally fecund, The latter
point, that the area of the tile should be the sole determinant of the
'strength' of an individual is discussed by Cormack (1979), who stresses that
this is biologically misleading, since a number of other factors, such as
relative growth rate, or germination time might have an equally important
effect on the success of an individual. However, for the purposes of a
spatial pattern model, where the growth rates of individuals are not
considered, and all germination events are assumsd as happening instantaneously,
the use of the Dirichlet tesselation would represent a considerable incresse
in the flexibLilily ol the model. Cormack (op cit) discusses alternative
forms of tesselation, but disregards each on the premise that none is as
efficient or reliable as the Dirichlet tesselation proposed. (One final
assumption is that the borders of a tile are clear cut, i.e, there is no

interaction between plants in neighbouring tiles once they have encountered
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one another at their borders. This, of course, ig incorrect biologically,
since, considering for example the root systems of neighbouring plants,
these are intertwined to a very large extent. However, this objection,

although noted, was not considered in the model).

4.1.3 Implementing the Dirichlet Tesselation in SFEV.

The fecundity of parent plants that had originally been determined by
the number of plants with which it competed, was now evaluated according to
the area of the tile allocated to that plant. Initially the totél area of
the tile was used as a plant resource, however (as is explained in the next
section) this was replaced with a more subtle tesselation in which only part
of the tile is used, The area of each tile, and the tesselation itself,
were computed by using a set of subroutines called TILE written in ANSI

FORTRAN by Dr. P.J. Green.

4.1.4 Modification of the Dirichlet Tesselation,

In the initial implementation of the Dirichlet tesselation in SPEV
the entire area of the tile was used as the resource available to that plant.
Howiever, since the area of a tile may be very irregular, or specifically
‘needle' shaped, it is conceivable that, were this the area available to a
real plant, the plant would be unable to utilise a considerable part of the
tile, To explain this, if a plant's maximum growth radius is R, then it is
possible that the distance from the centre of the plant to the border of the
tile in one direction may be less than R, whilst in another it may be

considerably greater than R (see Pigure 12). Thus a plant may be unable to
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utilise its resources in one direction, whilst being restricted by the
presence of another plant in another, As a result of tnis problem the
subroutine that calculates the area of the tile was altered, such that,
only that area which lay within both the maximum domain radius and the tile,

was treated as the resources available to the plant (see Figure 13).

This modification is again based on assumptions that need to be pointed
out, Firstly, it is assumed that a maximum growth radius can be defined
for a given plant, in a given set of environmental conditions, spanning a
set time period. Secondly, it is assumed that plants do not direct their
growing points into those areas with available, unexploited resources,
whether they be light, soil, space, or any other, This is a difficult
assumption, since it is well demonstrated that plants may direct the growth

of their organs.

This new tesselation, based on the o0ld, was considered to be a further
improvement on the flexibility and realism of the model, since it allowed
for variable maximum domain radii to be used, allowing for (1) variation
in the degree of local competition and, (2) partial or complete use of the

tesselation.

RESULTS OF SIMULATIONS USING THE DIRICHLET TESSELATION.

CFEV was now re-—run many times using a range of values of maximum
domain radius, R. These results are plotted out on graphs 8a to 8h,
The mean number of neighbours is plotted out for three runs of thirty
generations, for each R value. Simulations were done at R = 0.1, 0.15,

0.2, 0.25, 0.375, 0.5, 1.0, 10.0. On each of the graphs the selection
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coefficient, S, was fixed at 0.8, in general as the maximum domain radius,
R, increased so the intensity of clustering in the population decreased,
It is interesting to note that, once the maximum domain radius, R, increased
to about the same value as the seed dispersal distance, SIGMA, (usually
given the value of 0.25), there was no further decrease in clustering in
the population (Graphs 84 to 8h), although the mean levels of clustering
observed were above the expected mean number of neighbours. Maps of model
populations after 30 generations when R = 0.1, 1.0 and 10.0 are given on
Figures 14, 15 and 16 respectively. The domain radius, R, is related to
the degree of local competition. When R is larger than the average tile
size (in general when R is greater than 1.0), then the intensity of local
competition is increased, since plants are interacting at the borders ol
their respective tiles, Thus the formations of clustered spatial patterns
is inhibited because, any reduction in tile area for a given plant, will
result in a loss of fecundity for that plant. This situation can be
averted by the formation of many small clusters containing only a few
plants (see Figure 16 and 17). Small clusters may enable plants to
maintain their fecundity (when R is large), and receive most of their po%len
from plants of the same genotype in the cluster. This is discussed rather
more thoroughly in chapter Five. When R is small, local competition is
diminished, and the tesselation is ignored (hecause in general R is less
than the average tile size). In this case, plants will tend to become
aggregated into a single large cluster; as had happened when DCOMP was

small in the original version of SPEV,
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Figure 17 Point clusters when R is large.
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4.3 SUMMARY.

The application of the Dirichlet tesselation to SPEV increased the
amount of central processor time required per generation of the program
by 50%, yet it is justified as a useful, efficient method of modelling
spatial interaction between plants, as well as providing a versatile tool
for varying the intensity of spatial pattern in the population; by varying
the maximum domain available to each plant, The reneral conclusion from
the model is that spatial pattern is a rescurce related phenonmena,

If selection is intense, and demand for ‘'resources! low, th spatial
9 ' b

aggregation may arise. If model plants have high 'resource' demands, that
le R is large, then the degree to which spatial pattern may develop is

reduced,
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SEGREGATION.

DEVELOPMENT OF SPEV TO MODEL SEGREGATION.

Once the model had been developed this far, the final model was within
sight. The aim of the final version of SPEV, in this project, wus to molel
the outcome of a system where two homozygous species, "AA' and 'aaot,
one self-pollinating (TAA'), the other cross-pollinating {'za'), coexict

in the same spatial area, but where hybrids are inviable,.

The aim was fto model the spatial patterns that were anticipated in
the two species of Senecio for which the field data had been c¢ollected.
In order to model this situation it was once again necessary to make some
alterations to SPEV, and these will be described first, followed by the

results of simulatlions using the program as it now stands,

FINAL ALTERATIONS TO SP=V TO MODEL SEGREGATION.

The model was altered to represent two species, 'AA' and 'aa', the
hybrid 'Aa' being inviable., The self-pollinator, ir this case "AA', had
SELFPOL added to its 'A' pollen. (SELFPOL was initialised at the start
of the program, representing the amount of pollen Lhe cell-pollinator
received from its own anthers). Also RAIN was considered to consist of
pollen of both species; whereas previcusly i1+ had connioted only of 'sa®
pollen., Selectlion and dominance were no longer used as porameters in the

¥

program, the fitnesses of 'AA', 'Aa' and 'aa' being {fived as 1, 0 and

Py
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respectively. Finally, the mean number of neighbours, MNNHBR, was calculated

for each species independently, so that the intensity of clustering of boith

species could be compared,

5.3 RESULTS OF SIMULATING SEGREGATION,

5.3,1 SELFPOL.

If SELFPOL was greater than 0, then the population would zenerzlly o

C

to fixation leaving only the self-pollinating species, The reason for thic
was the same as that for the model in which RAIN had led to the loss of ‘A7
from the population., When SELFPOL is added to the 'A' pollen counts of 'AAY
only, these have a pollen advantage which increases the [requency of 'AA!
offspring, which, after the passage of a few gurnerations, led to iLhe
elimination of ‘'aa' planits., This effect is depenien® cn severul fuctors,

If HAIN is increased, whilst R and SIGNA are reduced, bthen the rate at which

cross pollinating ‘aa' planis are eliminated, is decreascd, and the intensity

%

[N

of epatial pattern of both speciews is increased, This ic demoncirated on
Graphs 9 and 10, plotting the frequency of both species, und the intensity
of clustering in both species when RAIN is 10,0, and 100,00 respectively.

o

(On both graphs R = 0,15, SIGMA = 0,05, and SELFFOL = 19,07,

5’-332 SELE‘POL = Oo

If SELFPOL and RAIN were both zero, then the outcaome of the cimulation

was random. Two general cases were observed:

Firstly, the population would go to fixation, that is either one apecies

or the other.


http://ciraulati.cn

Number of plants.

oA
O

30

0

0

L,o 4
o
&
=
&
=

2.0 7
0.0

¥

0

Graph Nine (a).

The Numbers of plants of each
'species' per fGeneration when
SELFPOL = RAIN = 10.0

AT = e

—— —— et s, e— et —— —

Graph Nine (b).

The intensity of clustering of

each ‘species' per Generation

when SELFIFOL = RAIN = 10.0

AR = T 'aa'! = =D

10

I |

20 Generations. 20



w0
22
&
¢4 66
0
E
5 e
Z 0
60 —
Graph Ten (aj,
30 The number of plants of each
'species' per Generation when
SELFPOL = 10.0, RAIN = 100.C
0 I | I
0] 10 2'0 Generations. 30
)
o [
&
Z ]
X
(=3
4,0 )
(O
C
]
O @ ) Graph Ten (b).
/ The intensity of clustering of
200_.4 . .
(] - each 'species' per Generation
@
O when SELFPCL = 10,0, RAIN = “CO0.,C
YAAY =} taa' =—O—
0.0 I T T
0 10 20 Generations. 30



67

Secondly, and more interestingly, the population would segregate into

two discretely clustered groups.

+

The first result was often observed because at the

cutse !l of the program

one *species' chasnced to be slightly more zggrepated thor the othe-r, this

would go. The second, and more interesting resull

L

SRS Yy
CRoe WNnore

the seed dispersal distance and maximum domain »adius were Airiniched, ao
p 9

that tight clusters could develop, If an 'AAT
a cluster of 'aa',

poellen it received from its cloze neighbours, resulting In the

it would tend to he lost, because o the wnount of 'as

of fspring. The converse effect is observed with
1)

there being strong pressure to form mutually excln:d

16 and 19 demonsirate this effect,

1

an' in olus

. .
crs of YhsY,

LD Lt

Ve ¢

the randomly dispersed population at

ceneration 0, has aggregated into discrete clugsters by gsenorabtion 20,
l=] § O (S v L&

One final subtle chanze to BPEV was made rather exuperimentally.
pel e J

RAIN in the segregating version of SPEV had been pollen of both npecics,

this was reverted
was the pollen of
different amounts

species, RAIN is

to the same situztion as the origirz] model where RAIN

one genotype only., The reason

I3
4

or bLhis was bte mo Liyee

ol pollen produced by self pollinating crnd cross pollirating
.p p s 3 4 1)

used in this instance to model

produced by the cross pollinating species. The

+
L

resulte of zimol

he oxecess of pollen

s hions

dene in this way showed that the crossz pollinating specice would eliminate

the self pollinator, unless SELFPOL was 3 tinmes

{

the population appeared stable, the intenzity of

pollinating species was increased, vhereas the cross pollinating specieg
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maintained a more random dispersion. Graph 11 plots the mean number

of neighbours of both species, where RAIN = 10.0, and SELFPOL = 1000.0.

The results of simulating two differing breeding systems has shown
clearly that self-pollinators have an advantage over cross=pellinators,
which led to the extinction of the latter. This advantage could be reduced
by increasing RAIN, effectively swamping the advantage of self-pollination.
Also if RAIN was pollen of one species only then this would counteract the
advantage of self pollination, and in both cases discrete single species
groups would arise, If SELFPOL and RAIN were O then the population would
segregate, as had been expected, into single species groups because of the
loss of plants of one species within clusters of the other., However, it
should be stressed that, in a model in which the hybrids are inviable, the
only stable population is one containing one species or the other, i.e. one

species will always eventually be eliminated.
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RESULTS OF THE FIELD STUDY OF SPATTAL PATTERN IN POPULATIONS

OF S.VISCOSUS AND S.SQUALIDUS

T-SQUARE FIELD DATA.

Data was collected from a total cf sixteen sampling frames for

o

S.viscosus, and 13 sampling frames for 5.squalidus. At each site

the population was estimated, and the number of random sample points
adjusted accordingly. (This is in theory unnecessary, since T-square
sampling is independent of the density of the population, and a fixed
number of sample points per sampling frame could have been used),

The data for each sampling frame has been summarised as values for

tN and tB’ as well as their respective probabilities under the null
hypothesis of random distribution. Also for each site where the null
hypothesis is accepted, M/C (Diggle, 1977) is also calculated,

An asterisk marks those sampling frames where data was collected for

both species, (Significant probabilities only are given),
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Table 2: Senecio sgualidus T-square sampling data.
Sampling N ty Pty ty Pty M/c Py/c
frame.
1 24 0.8300 0,001 0.6974 0.001
2 11 0.8164 0,001 0.7603 0,001
12 6 0.7095 0.6149 8.0566
13 6 0.3791 0.5960 3.2332
14 7 0.6135 0.5877 2.5005
15 8 0.5670 0.4988 6.7245
29 ® 8 0.4950 0.5013 2,9605
22 * 5 0.5781 0.4552 1.8090
23 * 20 0.7530  0.001 0.6438 0,012
24 *# 40 0.5036 0.5693 23,4421
25 * 12 0.9030 0,001 0,6443 0,042
26 * 17 0.4984 0.6293 45.8047  0.001
27 # 12 0.4161 0.4594 8.7701
Abbreviations: PtN .
Pty probabilities of t, tp, and M/C under the

PM/C

null hypothesis
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Table 3: Senecio viscosus T~square sampling data,
Sampling N ty Pty ty Pty M/C
frame
3% 16 0.5230 0.5614 7.8670
4 * 17 0.6825 0,014  0,5001
5 @ 11 0.6970  0.028  0.6837 0.017
6 * 9 0.8487 0,001 0.8340 0,001
10 40 0,5133 0.4277 25.0008
1 48 0.7379 0.001 0.5596 0.05
16 35 0.7748 0,001 0.6298 0.004
19 8 0.7344  0.025  0.5919
20 14 0.3529 0.5653 20.9458
29 # 8  0.6348 0.5536 5.2432
22 ® 7 0,6920 0.4953 8.7955
23 * 20 0.4602 6.5174 27.6846
2l * 27 0.5236 0.5924 0,048
o5 * 20 0.9252 0,001 0.7284 0.001
26 ¥ 6  0.3423 0.5221 5.7563
27 * 13 0.6517  0.058  0,6882  0.009

The T-square data collected for S.jacobaea is given in Appendix A.

T~ sam

Mk

thie lesl slallstics yielded a signiticant result,

Pu/c

that is F<0.05, the null hypothesis was rejected, and the population

was considered

to bhe agsr

egated,

On this basis

the data was

condensed:
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Table 4: Summary of the T-gquare sampling data.

Random Norn-random
S. squalidus 9 4
S. viscesus 7 9

This was further brokemn down into tables summarizing the numbers of sampling

frames showing clusterimg for S. squalidus and S. viscosus when;

1. In the same area as a population of the other species

(sympatric populations).

2. In isolated populations of ome sps