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ABSTRACT 

The morphology and nitrogenase activity (ARA) of Gloeotrichia 
pisum Thur.growing on deepwater rice were studied in situ at Sonargaon, 
Bangladesh, and compared with results from laboratory studies. The alga 
showed obvious similarities and dissimilarities. 

Hairs, gas vacuoles and akinetes, which were found in the field, 
were not found in the laboratory, even though the influences of quantity 
and quality of light flux and nutrient deficiency were tested. 

The response of nitrogenase to changes in light flux was rapid. A 
reduction in flux brought about similar results in the field and in the 
laboratory. Diel changes in nitrogenase activity showed a maximum at 
mid-day in the presence of maximum light flux, but considerable activity 
(3.7% of daily total) took place at night. The activity in a medium free 
of combined carbon by bacteria free ~ pisum indicates that the rate and 
duration of nitrogenase activity in the dark depend on the preceding 
light conditions. 

In batch culture, higher nitrogenase activity was observed when 
dark-grown alga was reilluminated, than the maximum activity ever found 
under continuous illumination. 

The variation of nitrogenase activity in batch culture was studied 
in relation to the growth characteristics and developm~tt_tal s_tt,ges of 
the alga. Maximum activity (1. 4 nmol C?_H

4 
J,Jg chl a min ) , was 

observed after about one day of growth unaer continuous light. During 
this period, juvenile filaments were abundant (hence maximum heterocyst 
frequency), cyanophycin granules lacking and cultures had the lowest 
chl a : d. wt ratio. Heterocyst differentiation occurred between 14 and 
24 h of growth and cell division was observed only after heterocyst 
differentiation. It appears that the juvenile filament is the most 
active nitrogen fixer during the life cycle of the alga. ~ason~1 for 
low nitrogenase activity of about 0.352 nmol c2H4 J.Jg chl a min in 
the field have been discussed. 

It is estimated from diel ~ange~1 in N2-fixing activity and based 
on ARA of 77.4 nmol C H4 tiller min aEf using -~me approximations, 
that ~ pisum contribu~ea about 4 kg N ha season in deepwater rice 
fields at Sonargaon in 1983. 

A brief morphological study was also included. In the field, 
rapid colonization was observed on freshly submerged rice culms. 
Colonies contained intersheath spaces on their periphery and exhibited 
zonation of filaments, in the larger ones. The mechanism of the 
formation of a radiating colony in the laboratory has been described and 
discussed. Differentiation of a horrnogonium into a filament was studied 
in batch culture. The basal youngest cell differentiated into a 
heterocyst, whilst the rest of cells divided repeatedly, forming several 
groups of cells in a row. Subsequently most of these groups of cells 
were liberated successively as hormogonia. 
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1 INTRODUCTION 

1.1 Introductory remarks 

In Bangladesh deepwater rice is the only crop grown in low-lying 

areas during the monsoon period (Section 1. 2. 3). Its importance is 

evident from the fact that there is no other crop which can be grown in 

these areas during this season and produce a stable yield year after 

year with little or no addition of fertilizer. Brammer (1976, 1983) 

attributed an important part of this fertility to the presence of 

blue-green algae. 

It is well established that some blue-green algae are capable of 

fixing atmospheric nitrogen and that part of this nitrogen can 

eventually be incorporated into the rice plant. Apart from floristic 

reports, there are no eco-physiological studies of blue-green algae in 

rice fields of Bangladesh. Studies carried out elsewhere indicate that 

N
2
-fixing activity by blue-green algae in rice fields is affected 

markedly by light intensity. The present study was therefore planned 

mainly to evaluate the effect of light intensity on N
2
-fixing activity 

by Gloeotrichia pisum in the field as well as in the laboratory. (~ 

pisum is a widespread alga in Bangladesh.) Some morphogenetic studies 

were also planned in order to understand the developmental patterns of 

the alga and to see if there is a relationship between nitrogen-fixing 

activity and developmental stages. 

1. 2 Bangladesh 

1. 2 .. 1 Physical environments 

Bangladesh, a land of 144000 km2 and situated between 20° 35' to 

26° 75' N and 88° 03' to 92° 75' E, stretches from near the foot-hills 

of the Himalayas to the Bay of Bengal (Fig. 1.1). 

The landmass has been formed throughout the Pleistocene and up to 

the present by sediments washed down from the Himalaya Mountains through 

the Ganges, Jamuna (Brahmaputra) and Meghna rivers and their numerous 

tributaries and distributaries (Morgan & Mcintire 1959). In terms of 

the relative age of the landmass, the region may be divided into four 

parts: hilly lands of the Tertiary (and older) in the south-east; 

terrace lands of the Pleistocene in the Barind and Madhupur Jun,gle; 

tippera surface of the early Recent in the median eastern part; the 

extensive floodplains of the Recent in the rest of the country. 

16 
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Fig. 1.1 Bangladesh. showing the major floodplains and 

other physiographic regions (la, Barind lb, 

Madhupur tract ; 2, Meghna depression ; 3, 

Chittagong Hill tracts); inset shows origin 

of rivers. 
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The extensive floodplains of Bangladesh lie almost at the 

sea-level in the south and rise gradually towards the north, with a 

maximum altitude of only about 46m (except hilly areas). A number of 

mighty rivers with their tributaries and distributaries and numerous 

bils (low-lying areas, some holding water throughout the year; tts 

distinct from a chak which has no area of standing water i.n wlnter) all 

over the country, are the most sign:! ficant physlo).t rnph:l r 

characteristics. There are 5 river systems as shown in l•'i g, l. I ( Ahm1,1d 

1968): 

(1) Ganges or Padma and its deltaic streams; 

(2) Jamuna's affluents and channels; 

(3) Meghna and Surma-Kusiyara system; 

(4) North Bengal rivers; the Tista is the most important; 

(5) Rivers of the Chittagong Hill Tracts and adjoining plains; 

the Karnaphuli is the most important. 

Both the Ganges and Jamuna river systems originate from the 

vicinity of the crest of the Himalayas. The Surma and Kusiyara rivers 

unite forming the Meghna, which grows rapidly after confluence with the 

old Brahmaputra. 

south. However, 

All these rivers flow generally from the north to the 
2 out of 15.5 million km catchment area of the river 

system, about 7.5% lies within Bangladesh. The activity and behaviour 

of these rivers is of utmost importance in determining the economic 

conditions of the people (Ahmad 1968). The country suffers from twin 

problems of 

discharge of 
3 only 7 x 10 

flood and drought. From May to October the combined 

rivers totail about 142 x 103 m3 s-l but this dwindles to 
3 -1 m s during the dry season (November to April). About 

2.4 billion tons of sediment is discharged annually (Allison 1975, 

Rashid 1977). 

Flooding is a part of the normal cycle of the seasons. Snow melt 

in the upper Himalayas, rainfall, silting up of river beds, topography 

and configuration of the country are the major factors which contribute 

to the annual flooding (Ahmad 1968, Allison 197 5, Rashid 1977). The 

three major floodplains are the Ganges, Jamuna and Meghna (Fig .1.1). 

Flooding occurs first in the eastern part of the country followed by 

middle and western parts. Rate of water rise is normally 5-8 em per 

day and usually two flood peaks occur, first in July and the second 

higher peak tn early September (AJ Uson 1975). Less than haJ f of the 

country can be regarded as flood-free and this includes the hilly 

areas, Barind and Madhupur uplands. It is estimated that nearly 75% of 
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the floodplains is flooded deeper than 30 em for 3-5 months during the 

rainy season (Brammer 1983). Floods normally affect about one-third of 

the country's cultivable land. 

The climate is characterized by heavy rainfall, high humidity and 

temperature, and fairly marked seasonal variations. The meAn maximum 

temperature during summer is in the range of 32-34° C. Throughout the 

monsoon more or less similar temperature prevails having a maximum of 

30-32°C by day and a minimum of 24-26° C at night time. Mean minimum 

temperature is 9-13° C during January (Manalo 1975, Johnson 1982). 

Ra.infall has vital significance for agriculture (Ahmad 1968, 

Manalo 1975, Rashid 1977, Johnson 1982). Most parts of the country 

during November to February are almost completely rainless. April and 

May are considered as the season of "little rain" and a very important 

time for sowing, seedling establishment etc.(Section 1.2.2). In this 

period and including March, drought is the normal expectancy. June to 

September is the monsoon period and the months of maximum rainfall (80% 

of total precipitation: Allison 1975). During this period the maximum 

rainfall occurs in the north-east and south-east is 3000-5000 mm; around 

2000 mm occurs in the central part and 1200 - 1500 mm in the west part 

of the country. Timing of the arrival of the heavy monsoon rain is very 

important, as it is linked with the fate of two major crops, the~ and 

aman. Heavy early monsoon rains could destroy aus (harvested before 

flooding) by early flooding, while late heavy rains could inundate and 

destroy the deepwater rice (Section 1.2.3). By October rainfall drops 

rapidly. 

Humidity is high throughout the year, reaching over 80% everywhere 

during the monsoon. 

For most of the monsoon period cloudy conditions prevail in marked 

contrast to the rest of the year. Johnson (1982) mentioned almost 

unremitting cloudiness during monsoon but more than ten cloudless days 

monthly from December to March. The hours of bright sunshine are at a 

maximum in January. 

Ahmad (1968) classified soils into eight categories which 

correspond broadly to local names, while Brammer (1971) identified as 

many as 15 soil types throughout the country, based on geological 

origins and properties. In all floodplains, there is a characteristic 

pattern of permeable, usually loamy, soils on the highest parts and 
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impermeable, usually clay, soils on the lower parts (Brammer 1983). 

However, about 25% of the country is non-calcareous floodplain 

(alluvium) soil while about 25% of the total area is occupied by 

calcareous floodplain soil (Johnson 1982 ). 

1.2.2 Agriculture 

The country's economy is predominantly agricultural and about 75% 

of the total population of over 90 million is employed in it. The total 
2 cropped area is about 129000 km (12. 9 million ha). A wide var:f.ety of 

crops are grown and are broadly classified as: 

(a) Bhadoi crops: correspond to the rainy season, grown usually in 

the months of March to May and harvested in July to mid August 

or Npve~ber to January, 

(b) Rabi crops: correspond to the dry season, grown in October to 

December and harvested in mid January to mid April. 

Aus and ~ (transplanted and deepwater rice) paddy and jute are the 

main bhadoi crops, while boro paddy, tobacco, pulses, vegetables etc. 

are the main rabi crops. However, about 80% of the total cropped area 

is occupied by the paddy and this amounts to an area of about 103000 km2 

(10.3 million ha) (Agricultural Yearbook of Bangladesh 1982). During 

monsoon ~ paddy is the only growing crop found in the field (Section 

1.2.3). Details of cropping patterns, crop estimates and land 

utilization have been published recently in the Agricultural Yearbook of 

Bangladesh(l982l. 

Land preparation, sowing, harvesting etc. are mostly done by 

traditional methods using indigenous agricultural tools and appliances 

(Indigenous Agricultural tools and equipment of Bangladesh 1982, Catling 

et al. 1983). Irrigation facilities are limited and farmers mainly 

depend on rain water. Only about 15700 km2 
(1. 57 million ha) of land 

(under different crops) were under irrigation in 1979-80. Urea and TSP 

(triple super phosphate) are the major fertilizers used by the farmers. 

Pesticides of different groups are sometimes used. 

Average rice yield (unmilled) is low: 135 tons/km2 
(1. 35 tons 

-1 
ha ). However some high yielding rice varieties have been introduced. 

Jute is the second most important crop, which together with tea, is the 

leading export crop. 

1.2.3 Deepwater rice 

Deepwater rice is variously called broadcast ~ low-land aman 
• 

and floating rice. There are hundreds of cultivars and these are 
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perhaps physiological races of Oryza sativa L. The distinguishing 

character of this group of rice is that the internode, leaf sheath and 

blade can elongate by increase in cell length with rising water, can 

withstand short periods of total submergence (1-10 days), produce nodal 

roots and tillers, form knees, and when uprooted, float on the water 

surface. 
2 

Deepwater rice is grown in nearly 15700 km (1.57 million ha) of 

land which is about 12.2% of the total cropped area (Agricultural 

Yearbook of Bangladesh 1982). The bulk of the deepwater rice is grown 

in the intermediate 0.91 to 1.83 m normally flooded zone (Allison 1975). 
-1 Total elongation of the stem could be 2.5 to 25 em day (Choudhury & 

Zaman 1970). Zaman~ al. (1975) showed linear increase of culm length 

despite fluctuation of flood levels occurring. 

Pure strands of deepwater rice are grown in about 49-67% of 

fields, while in the rest the plant is mostly grown mixed with Aus and 

rarely with other crops (Catling et al. 1983). Land preparation, 

sowing, weeding and harvesting are usually done during March and April, 

late March and April, May and June, and end of October and November 

respectively. Land preparation and sowing thus could be affected by 

possible drought (Section 1.2.1). Overall mean yield is about 225 
2 -1 tons/km (2. 25 tons ha ) • Cat ling et al. (1983) identified four 

factors associated with higher yields of deepwater rice 

(1) the Meghna floodplain having higher early rainfall and a milder 

flooding pattern; 

(2) high yielding varieties, e.g. Khama, Pankaish, and Kartik Sail; 

(3) maximum water depths of 1.5 to 1.8 m; 

(4) pure strands of deepwater rice. 

It is believed that the stable yield of deepwater rice is 

maintained by an annual deposit of alluvium from the seasonal flood and 

certainly by biological activity in the floodwater itself, specially 

that of blue-green algae (Brammer 1976, 1983, Martinez & Catling 1982). 

Catling ~ al. (1983) reported that fertilizer is applied in about 

21% of all deepwater rice fields. No significant difference in yield 

was observed between fertilized and non-fertilized fields. ln less than 

1% deepwater rice fields, insecticides are used before (for rice-borer) 

or after flood recession (for ear-cutting caterpiller). 

1.2.4 Aquatic vegetation and algal flora 

Biswas (1927) made a detailed study of the aquatic macrophytes of 



what is now Bangladesh and West Bengal in India. He recorded 60 

different taxa including pteridophytes, discussed ecological aspects and 

classified the water body into four zones: bottom zone (blue-green 

algae, resting spores etc); zone of phanerogams (rooted plants forming 

an aquatic meadow); intermediate zone (algae and submerged floating 

phanerogams); surface zone of micro- and macro-plankton. Recently Islam 

& Paul (1978) and Islam et al. (1980) surveyed the aquatic vegetation of 

a ~ at Sylhet and a bil at Rajshahi district respectively. A total of 

52 macrophytes were recorded from Sylhet during the monsoon period, with 

the following six taxa as dominant Eichhornia crassipes, Hydrilla 

verticillata, Ipomoea aquatica, Pistia stratiotes, Nymphoides indicum 

and N. cristatum. Islam and co-workers have published lists of aquatic 

algae covering almost all the districts of Bangladesh and recently 

Catling et al. (1981) surveyed algae associated with deepwater rice. 

Algae which occur commonly as epiphyteson rice and other hydrophytes are 

Gloeotrichia pisum, ~ natans, species of Anabaena, Nostoc, Microchaete, 

Oedogonium, Bulbochaete, Coleochaete, Chaetophora, Gomphonema etc. 

among the free-living forms, commonly occurring taxa are G1oeotrichia 

natans, Anabaena spp., Aulosira fertilissima, species of Spirogyra, 

Rhop-alodia, Fragilaria etc. , and among benthic forms are species of 
......... 

Chara and Nitella (Islam 1972, 1973, Islam & Sarma D. 1968, 1976, Islam 

& Sarma P. 1976, Islam ~ al. 1980, Islam & Begum 1981, Catling et al. 

1981). On the deepwater rice cu1ms, Anabaena occurred most commonly 

followed by Gloeotrichia, Oscillatoria, Chroococcus, Nostoc, Lyngbya and 

Microchaete in decreasing order (Martinez & Catling 1982). They also 

observed periodicity of blue-green algae in deepwater rice fields, being 

abundant during the early part of flooding and decreasingwith the 

receding of floodwater. 

1.3 N
2
-fixation by blue-green algae in rice fields 

N2-fixing blue-green algae grow abundantly in tropical and 

subtropical regions and are particularly common in rice fields (Watanabe 

& Yamamoto 1971). Since De (1939) provided evidence, while working on 

blue-green algae of (present day) Bangladesh, that these organisms are 

the main agents for N
2
-fixation in the rice field soil, an enormous 

volume of material on this subject has been published from various 

countries (Singh 1961, Venkataraman 1972, Roger & Kulasooriya 1980, 

Roger & Watanabe 1982). However, so far, no study has been reported in 

Bangladesh on the N2-fixing activity of blue-green algae in rice fields. 

23 



24 

The probable importance of blue-green algae in the nitrogen economy of 

Bangladesh deepwater rice fields has been stressed by several authors 

(Brammer 1976, 1983, Cat ling ~ al. 1981, Martinez & Cat ling 1982). 

Compared to lowland or other rice fields, very little work has been done 

on N2-fixing activity by blue-green algae in deepwater rice fields 

(Kulasooriya et al.l980, 198la, 198lb, Watanabe & Ventura 1982). 

Maintenance of natural nitrogen fertility of r:fce fields has been 

explained by the blue-green algal N2-fixation, its slow mineralization 

and accumulation in soil, and that the rice plant influences increased 

N2-fixation and reduces loss (De & Sulaiman 1950, Hirano 1958, 

Subrahmanyan ~ al. 1965, Watanabe 1965, App ~ al. 1980, Tirol ~ al. 

1982). 

Under a 

tate of 10-20 

of 5.1 JJmol N 

relatively low light intensity (800 lux) a N2-fixation 
-1 -1 

Kg N ha crop (extrapolating nitrogen fixing activity 
-1 -1 plant h based on two determinations at heading and 

maturing stages of plant, by ARA technique) has been observed in 

deepwater rice fields mainly due to epiphytic Nostoc, Anabaena, 

Calothrix and Gloeotrichia (Kulasooriya et al. 198la) and this value 

corresponds closely to that found by App et al. (1980). The blue-green 

algae attached to submerged weeds also play a positive role in nitrogen 
-1 -1 cycling by fixing 2 Kg N ha crop under rice cultivation and 4 Kg N 

-1 -1 
ha crop under fallow land (Kulasooriya ~ al. 198lb). In lowland 

rice fields, variable N2-fixation rates have been found and a 
-1 -1 contribution in the range of 20-30 Kg N ha crop appears to be 

typical (Agarwal 1979, Venkataraman 1981, Roger & Watanabe 1982). The 

presence of blue-green algae can lead to a 10-15% increase in grain 

yield in the total absence of chemical fertilizer (Agarwal 1979, Roger & 
15 Watanabe 1982). Recently, Watanabe & Ventura (1982) found by N study 

in a deepwater rice plot that about 15% of the total nitrogen in 

deepwater rice had been supplied by blue-green algal N2-fixation, though 

they suggested that elsewhere this value was likely to be higher. 

N
2
-fixation in rice-fields can be influenced by a variety of 

factors, the cumulative effect of which determines the ultimate nitrogen 

gain (Sethunathan et al. 1981). The most important are likely to be 

light intensity and nitrogenous compounds in the surroundings. The rate 

of N2-fixation is usually light dependent (Fogg 1974, Roger & Reynaud 

1979). Deficiency of light limits N
2
-fixation, e.g. highest activity 

was recorded when the plant canopy gave the least cover (Watanabe, Lee & 
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De Guzman 1978, Boddey & Ahmad 1981) and during cloudy weather, higher 

activity in unplanted fields than in planted fields (Yoshida & Ancajas 

1973). On the other hand, high light intensity may inhibit N
2
-fixation 

(Reynaud & Roger 1978). Asymmetric curves of ARA with a maximum either 

in the morning (with a low decreasing activity in the afternoon) or in 

the afternoon, recorded by Alimagno & Yoshida (1977), have been 

explained by Roger & Reynaud (1979) as the inhibitory effect of high 

light intensity and optimal light intensity in the afternoon 

respectively. However, no study has so far been made on N
2
-fixation by 

blue-green algae in deepwater rice fields down the water column or with 

respect to diel and seasonal variation. 

In the presence of nitrogen fertilizer, blue-green algal N2-fixing 

activity is inhibited or at least affected (Roger & Kulasooriya 1980). 
-1 -1 are fixed 

Alimagno & Yoshida (1977) estimated about 18-33 Kg N ha crop ~in the 
-1 -1 

unfertilized lowland rice soil compared to 2.3-5.7 kg N ha crop in 

the fertilized one. In contrast, it has been estimated that the 

efficiency of N2-fixa.tion does not seem to have been affected even when 
-1 

algae were applied in combination with 75 kg N ha chemical fertilizer 

and that highest increase in grain yield was obtained in the third 

season, suggesting that the benefits accumulate over the years 

(Mudholkar et al. 1973). It has been estimated that about 14% 

additional energy yield (in terms of nitrogen contribution in the range 
-1 

of 20-30 kg ha ) could be obtained by blue-green algal complementation 

with nitrogen fercllizer (Venkataraman 1981). Seasonal variation in 

N
2
-fixing activity has been attributed to the succession of blue-green 

algae (Watanabe, Lee & Alimagno 1978), shading by the plant canopy 

(Yoshida & Ancajas 1973, Boddey & Ahmad 1981), or a predominant effect 

of light intensity in relation to both season and plant canopy (Roger & 

Reynaud 1979). In the wet season N2-fixing activity can decrease to 20% 
-1 -1 (3 kg N ha crop ) in the flooded rice field compared to the dry 

-1 -1 
season (15 kg N ha crop ) (Yoshida & Ancajas 1973). Two peaks have 

been observed by Watanabe, Lee & De Guzman (1978), one at an early st~ge 

of rice cultivation and another after harvesting, in both dry and wet 

seasons, which the authors considered as the light effect. However, 

peak N
2
-fixing activity may occur at any time during the cultivation 

cycle (Roger & Reynaud 1979). 

A considerable increase of N
2
-fixation by blue-green algae in the 

presence of the rice crop due to the increased co2 supply, has been 



documented in a laboratory study (De & Sulaiman 1950). Little or no 

information is available on the effect of changes of pH (with the change 

of C02) and 02 in the rice field on N2-fixing activity by blue-green 

algae. Rarely, temperature could be a limiting factor for blue-green 

algal N 2-fixation, particularly in deepwater rice fields which are 

relatively well temperature buffered, but in dryland, under weak plant 

cover, a high temperature in the middle of the day may inhibit 

blue-green algal N2-fixation (Roger & Reynaud 1979). 

1.4 Growth and development in Rivu1ariaceae 

1.4.1 Growth pattern and trichome development 

Trichomes of members of Rivulariaceae are broad at one end while 

toward-s the other they taper more or less markedly and are commonly 

produced into a colourless multicellular hair (Geitler 1925, 1932, 

Fritsch 1945). Tiwari et al. (1979) described the rivularian trichomes 

as unidirectional and monopolar with a basal heterocyst and gradual 

tapering end and this unidirectionality results in the corresponding 

modes of cellular growth, division and ultimate trichome morphology. 

Schwendener (1894) studied development of Gloeotrichia pisum, Rivularia 

polyotes and some other members of Rivulariaceae. He described an 
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obvious change at the terminal end of the filament, by the formation of a 

hair and the meristematic zone behind it, where the most frequent 
a 

divisions take place. This type of growth initiated by~meristem at the 
th& 

base of~hair has subsequently been described as trichothallic (Geitler, 

1925, 1932, Fritsch 1945). Schwendener observed changes throughout the 

filament and found that long before the hair has completed its 

development, the division proceeds gradually towards the base and 

extends finally to the cell next to the heterocyst. Poliansky (1930) 

observed in Gloeotrichia natans, intensive divisions after akinete 

formation, in the lower vegetative cells of the trichome, and 
the 

disappearance of J.. intercalary meristematic zone (narrowing of meristem 

cells and at the same time losing its function), which makes the 

predominant intercalary growth into predominantly basal. Total lack of an 

intercalary meristem had been observed in G. ghosei (Singh 1939). 

However, most authors have described the growth of Rivulariaceae members 

as meristematic, the meristcm lying just below the hair as shorter and 

wider disc-like cells (Schwendener 1894, Geitler 1925,1932, Fritsch 

1945, Desikachary 1959, Jeeji-Bai 1977, Fogg~ a1. 1973, Chang 1979a, 

1983, Cmiech ~ a1. 1984). Following the division pattern of a cell in 



the meristematic zone, Schwendener (1894) found as many as 8-16 cells 

descending from a mother cell. A sheath develops around the developing 

trichome after the development of hair which does not take part in the 

sheath formation, and as a result lies free in the surrounding water 

(Schwendener 1894). Cell length and breadth varies tremendously 

depending on position and the stages of growth, being markedly long and 

narrow at the base of trichome while below the hair, cells may be 

considerably shorter and wider or like the cells in the basal part 

(Schwendener 1894, Poliansky 1930). However, Schwendener (1894) 

observed all the above phenomena while checking various representatives 

of the Rivulariaceae. 

1.4.2 Hormogonia 

Hormogonia are short lengths of trichome with rounded ends and 

without differentiation of cells; they secrete mucilage during their 

movement and eventually develop into trichomes (Fritsch 1945). 

Hormogonia are produced from the intercalary meristematic zone after the 

hair portion is thrown off (Desikachary 1959, Chang 1979a., 1983). On 

the other hand, it has been observed in Calothrix parietina that in the 

medium used, hormogonia release may be continued typically producing 

successively about five gas vacuolated hormogonia per filament, 

ultimately leaving only a short basal length of trichome with the 

heterocyst (Livingstone & Whitton 1983). Fritsch (1945) described the 

delimitation and liberation of hormognia by the modification and 

ultimate death of occasional cells in the trichome. Lemont (1969) 

observed that the necridium ensures trichome breakage. Hormogonia are 

without any definite sheath and cell division (Schwendener 1894). Singh 

& Tiwari (1970) observed in Gloeotrichia ghosei fragmentation of the 

hormogonium into small pieces, having granules and gas vacuoles. 

Highly gas-vacuolated hormogonia with abundant cyanophycin and 

polyphosphate granules have been reported in Calothrix (Wood 1984). The 
-1 

maximum net rate of movement has been recorded to be about 0.06 ~m s 
-2 -1 

over a period of 16 h under uniform light of 150 ~mol m s 

(Livingstone & Whitton 1983). Hormogonia are usually 45-60 ~m long 

(Darley 1968, Livingstone & Whitton 1983) consisting of usually 8-16 

cells (De Bary 1863, Schwendener 1894, Wood 1984). A terminal cell 

differentiateF; into a basal heterocyst after the hormogonium Aettles 

down (Schwendener 1894, Singh & Tiwari 1970) and then disappearance of 

gas vacuoles (Livingstone & Whitton 1983) or both gas vacuoles and 
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granules (Singh & Tiwari 1970) occurs. The life span of a hormogonium 

from the time of liberation to germination is ca 24h in C. parietina 

(Livingstone & Whitton 1983) while Rai .!!.!. al. (1978) found heterocyst 

formation within 12-14 h in ~ brevissima, when ammonium nitrogen-grown 

undifferentiated filaments were transferred to a medium without 

nitrogen, maximum heterocyst frequency being obtained after 48 to 72 h 

of incubation. 

1.4.3 Heterocysts 

Heterocysts are characterized by having a well defined thickened 

wall and homogeneous and pale yellow cell contents with polar nodule(s) 

adjoining the adjacent vegetative cell(s) (Tyagi 1975). In the 

trichomes of Rivulariaceae the most typical condition is the possession 

of a single basal heterocyst, but further basal and or intercalary 

heterocysts may also be produced (Geitler 1932). Tiwari .!!.!. al. (1979) 

described the basal heterocysts of Rivulariaceae as unidirectional and 

monopolar and this unidirectionality results in the corresponding modes 

of cellular growth, division and ultimate trichome morphology (Section 

1. 4 .1). Terminal heterocysts may also develop in an intercalary 

position, particularly in association with the production of false 

branches (Fritsch 1945, Jeeji-Bai 1977, Rai ~ al. 1978). Heterocysts 

may be produced alternating with the akinete (Poliansky 1930, 

Desikachary 1959) or at both ends of the trichome (Claassen 1973). Two 

basal heterocysts followed by an akinete were also observed in 

Gloeotrichia natans (Poliansky 1930). Weber (1933) and Chang (1983) 

observed many successive basal heterocysts in Calothrix fusca and 

Gloeotrichia echinulata respectively and each developed with the death 

of the preceding heterocysts. 

al. (1979) also observed a 

In a mutant form of ~ ghosei, Tiwari et 

chain of basal heterocysts. However, 

heterocysts are extremely variable in shape and size, even in the same 

colony of natural population of~ natans (Poliansky 1930). Germination 

of heterocysts has been observed in several taxa, liberating motile 

hormogonia (Desikachary 1946, Singh & Tiwari 1970). The latter authors 

concluded that the controlling factor for heterocyst germination appears 

to be the concentration of ammoniacal nitrogen in the medium. 

1. 4. 4 Hairs 

The hair of the Rivulariaceae is a region of the trichome where 

the cells are narrow, elongated. highly vacuolated and usually 

apparently colourless (Sinclair & Whitton 1977). These authors found 
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that the phosphorus deficiency in the environment leads to the 

development of hairs at the end of trichomes of many members of this 

group. Schwendener (1894) observed the development ofa hair in 

Gloeotrichia pisum from the early stage of trichome formation and 

described it as follows: 

"One can observe the clear stretching of the filament at the 

terminal end where the hair will develop. At this period the end cell 

stretches first and then 2-3 cells behind it. In each case, the 

stretching is accompanied by simultaneous narrowing. Somewhat later, 

when the participating members have developed double the original length 

or even longer, the first new cross wall appears usually first in the 

end cell and then in the neighbouring cell. Afterwards there follows 

further stretching of the component cells until reaching to the manifold 

of its cross diameter. With that the construction of the hair end 

finishes: later the contents become more faded and at the same time more 

vacuolated and at the end contents disappear completely .. " 

Recently, hairs have been shown to develop from apical cells which 

taper to a colourless multicellular hair, and arise through considerable 

elongation and vacuolization (Livingstone & Whitton 1983, Cmiech ~ ~· 

1984). Sinclair (1977! 157, Fig. 5.4 a-c) observed in two Calothrix 

strains that the transition between the chlorophyll-containing 

vegetative cells and the adjacent hair cells was abrupt, an examination 

of the figures of Schwendener (1894:Fig. 21), Desikachary (1959:Pl. 117, 

Fig. 9), Fremy (1972: Pls 42 and 44) & Chang (1983) also gives this 

impression. However, contrary to the formation of hair as a response to 

phosphorus deficiency, Sinclair 
a. 

containing hightconcentration of 

~ ghosei and Rivularia sp. 

Gloeotrichia echinulata hairs, 

(1977) observed many hairs in media 

phosphorus in Gloeotrichia echinulata, 

Following an ultrastructural study of 

Cmiech et al. (1984) stated that 

progressively older cells display increased thylakoidal disorganization, 

a loss of cytoplasmic matrix, marked vacuolization and rupture of 

plasmalemma, and considering all these facts, they suggested that the 

hair cells are more indicative of "degeneration" than "differentiation". 

1.4.5 Akinetes 

Akinetes are specialized whole cells usu~lly larger with thicker 
than vegetative cetrs 

cell walhand highly granular cytoplasmA,representing the usual method 

of perennation (Nichols & Carr 1978, Nichols & Adams 1982). 



Gloeotrichia and several species of Calothrix have the ability to 

produce an akinete usually next to the heterocyst (Geitler 1932). Three 

modes of akinete formation have been recognized : 
a 

(a) the cell next totheterocyst undergoes repeated division, of 

which the lowermost cell gradually increases in size to many 

times the length of other cells, forms a thick wall and 

converts into an akinete (Desikachary 1959); 

(b) more than one vegetative cell may take part in akinete 

formation by the decomposition of cross walls (Geitler 1925, 

Claassen 1973); 

(c) transformation of cells into akinetes alternating with 

heterocysts (Desikachary 1959, Chang & Blauw 1980). 

Simultaneous with the formation of the akinete, a thick sheath 

begins to form, particularly around the akinete and its adjoining 

vegetative cells (Desikachary 1959, Claassen 1973). 

No clearly defined environmental trigger has been reco~nized for 

akinete formation although many nutrients have been implicated (Adams & 

Carr 1981, Nichols & Adams 1982). Roelfs & Oglesby (1970) noted that in 

Gloeotrichia echinulata spores seemed to be produced when the colony 

reached a particular size, even when conditions were apparently 

favourable for growth in nature and growing logarithmically. In the 

laboratory, organisms may not develop akinetes (Singh & Tiwari 1970, 

Maxwell 1974) or the akinete may not express the same shape and size as 

in nature (Chang 1979a, 1983). Forest & Khan (1972) while discussing 

morphological plasticity of Rivulariaceae noted that akinetes were never 

found in the planktonic alga traditionally known as ~ echinulata, in a 

well known natural habitat. In G. ghosei, a deficiency of iron 

decreased akinete frequency (Nichols & Adams 1982). However, light is 

expected to have considerable influence on akinete formation by the fact 

that decreasing the light intensity results in akinete development at a 

lower cell density and vice versa (Nichols & Adams 1982). No work has 

been done on the effect of light on akinete formation of Gloeotrichia. 

1.4.6 Gas-vacuoles 

30 

Gas-vacuoles are bundles of gas vesicles within the protoplasm and 

appear as irregular and indefinite reddish structures under the light 

microscope (Smith & Peat 1967, Fogg 1972). These are produced more 

abundantly at low than at high light intensities and provide a buoyancy 

regulating mechanism (Walsby 1969, 1978, Fogg 1972, Walsby & Booker 

1980) rather than light shielding (VanLiere & Walsby 1982). 



31 

In Gloeotrichia echinulata, the gas vacuoles could occupy 0.7-0.8% 

of the cell volume which enablesthe alga to just float in water (Klebahn 

1922) or 22% which would make the alga extremely buoyant (Smith & Peat 

1967). Highly gas vacuolated hormogonia have been recorded in~ ghosei 

(Singh & Tiwari 1970) and Calothrix parietina (Livingstone & Whitton 

1983) in the laboratory condition. It has been pointed out that in some 

forms of blue-green algae, isolated gas vesicles may remain in cells. 

these have so far remained undetected by light microscopy (Whitton 

1972). 

1. 4. 7 Colonies 

Species of Gloeotrichia and Rivularia form ordered colonies in 

nature where the component tapered filaments are radially arranged with 

the basal heterocysts directed towards the centre and hairs extending 

beyond the colonial mucilage (Schwendener 1894, Geitler 1932, 

Desikachary 1959). In most cases this filamentous organization forming 

an ordered colony does not appear in the laboratory (Darley 1968, 

Maxwell 1974, Chang 1979a, 1983), other than in a few cases described by 

DeBary (1863), Schwendener (1894) and Singh & Tiwari (1970). Tiwari et 

al. (1979) observed that in the presence of combined nitrogen a mutant 

strain of Gloeotrichia ghosei showed complete suppression of 

heterocysts and developed into a spindle-shaped colony rather than a 

radiating pattern like the parental clone. 

De Bary (1863) described the early stage of Rivularia colony 

formation. He observed grouping of several hormogonia side by side 

forming a small bundle as the first sign of colonization. Later, 
ed 

heterocysts developl and trichomes elongated giving a sort of radiating 

appearance with heterocysts at the centre. However, the mechanism which 

controls the aggregation of hormogonia is unknown (Lazaroff & Vishniac 

1964). 

In nature, heavy colonization by Gloeotrichia has been reported on 

the older, submerged plant parts (Kulasooriya ~ al. 198lb). 

1.4.8 Morphological variations by the laboratory strains 

From the preceding sections it will be apparent that species of 

Rivulariaceae may exhibit a wide range of morphological forms both in 

the laboratory and in the field Rs a result of their rather complex life 

cycle (De Bary 1863, Schwendener 189'•• Poliansky 19:.10, Singh & T:f.wari 

1970, Maxwell 1974, Chang 1983). In addition to the inherent 

variability, some forms may also show morphological variations in the 
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laboratory which seem not to be apparently directly related to the 

normal developmental cycle. However, the need for the study of 

morphological variability has been emphasized, particularly in solving 

taxonomic problems and understanding the phylogenetic affinities of a 

taxon (Prowse 1972, Desikachary 1973). One obvious change in morphology 

is the production of mostly single or sometimes double false branches in 

old cultures (Jeeji-Bai 1977). Rai et al. (1978) noted that the 

formation of false branches is dependent on nutritional condi.tions 

(particularly presence of low level ammonium nitrogen) and seems to be 

correlated with the presence or absence of heterocysts, and suggested 

that false branches emerge due to the hitherto unrecognized pattern of 

the localization of rapidly dividing cells along the algal filament and 

the integrity of algal trichomes with the surrounding sheath. 

In the older cultures increase in thickness of sheath as well as 
(s) 

looplike twisting trichome~within the sheath and also helically twisted 

"ropes" of filaments are usually evident (Pearson & Kingsbury 1966. 

Lange 1975, Jeeji-Bai 1977, Chang 1983). 

1.5 Influence of light on morphology 

Gas vacuolation (Walsby & Booker 1980), akinete formation (Wolk 

1965, Fernandes & Thomas 1982) ano heterocyst differentiation (Kale 

1972) have been shown to be influenced by light. It is well established 

that at low light intensity gas vacuole formation is most active while 

at high light intensity they collapse (Walsby 1969, 1972, Fogg 1972). 

Incandescent light, but not fluorescent, greatly stimulated 

sporulation, suggesting possible involvement of red light in the akinete 

differentiation in Anabaena torulosa (Fernandes & Thomas 1982). They 

observed enhanced sporulation with the increasing incandescent light 
an 

intensities of 1000, 3000 and 5000 lux. Wolk (1965) reported inhibitory 
J. 

effect of high light intensity on akinete formation. 

No information exists about the effect of light on the morphology 

of hairs. 

1.6 N
2
-fixation by blue-green algae 

Heterocysts are the site of N2-fixation under aerobic conditions 

(Fay~ al. 1968, Stewart ~ al. 1969, Van Gorkom & Donze 1971) and the 

nitrogenase activity is not manifest until heterocysts are fully 

differentiated (Lang 1965, Kulasooriya et al. 1972, Wolk 1 9fH). In 
-maximum - -

batch culture,Lnitrogenase activity occura during logarithmic growth and 

is fairly directly correlated with highest heterocyst frequency (Jewell 
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& Kulasooriya 1970, Chang 1979b, Antarikanonda & Lorenzen 1982). On the 

other hand, Stewart & Lex (1970) found in Plectonema boryanum. a 

non-heterocystous blue-green alga, that the peak specific nitrogenase 

activity occurred when the phycocyanin content decreased markedly but 

the exact implications of this phenomenon in relation to N2-fixation is 

not known. Phycocyanin may be used as a source of nitrogen during 

periods of nitrogen starvation (Allen & Smith 1969) or may degrade (Van 

Gorkom & Donze 1971, Schenk~ al. 1983). Reformation of this pigment 

showed that the organism was no longer deficient in nitrogen (Van Gorkom 

& Donze 1971). Studies with two colonial types of Gloeotrichia 

echinulata (a Rivularia-like young and active short trichome with high 

heterocyst frequency which forms a mesh, and a typical Gloeotrichia-like 

long trichome with a low heterocyst frequency which forms cluster-like 

colonies) in axenic culture indicated that N
2
-fixing activity is 

variable in different developmental stages, being higher in the 

Rivularia-like mesh (Chang & Blauw 1980). They obtained a rate of about 
-1 -1 0.3 nmol c2H4 mg d. wt min at 3 klux intensity by the 6 week old 

algal mesh. 

The rate of N2-fixation by blue-green algae is usually 

light-dependent and has close relationship with photosynthesis (Fogg 

1974, Bothe 1982). The electrons and ATP for N2-fixation are generated 

via photosynthesis (Lex & Stewart 1973) and both the rate and duration 

of nitrogenase activity in the dark are affected by the rate of 

photosynthesis and assimilation during the light period (Dugdale & 

Dugdale 1962, Stewart ~ al.l967, Fay 1976). Lex & Stewart (1973) 

demonstrated that in cells with high carbohydrate reserves, DCMU 

(3'-[3,4-dichlorophenyl]-1' ,1'-dimethylurea) did not affect ARA but upon 

depletion of these reserves, inhibition progressively appeared. ATP can 

be supplied to nitrogenase either by photophosphorylation or by terminal 

respiration, but in carbon starved Anabaena cylindrica, it is the 

reductant rather than ATP which limits the rate of ARA (Lex & Stewart 

1973, Donze ~ al. 1974). Upon carbon starvation, the formation of 

reductant becomes progessively more dependent on light and in severely 

starved cells almost all reductant can be generated via photosystem I 

(Donze et al.l974). 

Axenic strains of Anabaena showed different saturating light 

intensities for ARA, some at about 5 klux (Chen 1983) while others at 

about 15 klux (Antarikanorida & Lorenzen 1982). In the field condition 

also the saturating light intensity for N2-fixing activity is variable, 
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-2 -1 e.g. 2000 jJmol m s for a thermal Calothrix (Wickstrom 1980), 900 
-2 -1 jJmol m s for Nostoc muscorum (Coxson & Kershaw 1983), and~ 5 klux 

for Gloeotrichia in a rice field (Roger & Watanabe 1982). N
2
-fixing 

response of light grown algae to darkness is variable, e.g. ca 4% of the 

Ught ARA after 60 min dark incubation by ~ echinulata (Stewart et al. 

1967), 10-25% of light ARA after 60 min dark incubation by~ echinulata 

in culture (Chang & Blauw 1980) and about 50% loss of ARA after 100 min 

dark incubation by intertidal lagoon blue-green algae (Potts & Whitton 

1977). However, in freshwater bodies the N2-fixing activity varies with 

depth, with inhibition at the surface in full sunlight, a maximum some 

way below the surface and light limitation below this (Dugdale & Dugdale 

1962, Goering & Neese 1964, Horne & Fogg 1970, Lewis & Levine 1984). 

1. 7 Aims 

Field observations at Sonargaon from 1981 to 1983 revealed that 

abundance of Gloeotrichia pisum varies from year to year and from field 

to field. In 1983 H occurred abundantly, smothering deepwater rice 

tillers in some fields. The literature about the biology of this 

organism is scarce. The present study was therefore planned to increase 

understanding of the biology of G. pisum in the field and in the 

laboratory. Though the morphology of ~ pisum D613 (Section 2.2.2.1) 

differs in some respects from that of field ~ pisum, it was decided to 

consider this strain for laboratory study. 

The literature reviewed in Section 1.4 indicates that members of 

Rivulariaceae show a wide ra.nge of morphologies. It was thus of 

interest to study the developmental characteristics of the alga from 

the natural populations with the hope of understanding the pattern of 

growth of colonies, filaments and akinetes. 

Though plenty of research has been done elsewhere on N2-fixation 

by blue-green algae in rice fields, no work has been carried out on 

N2-fixation by blue-green algae associated with deepwater rice in 

Bangladesh. All reports in the literature have shown that N2-fixation 

by blue-green algae is related to light (Sections 1.3, 1.6). In the 

deepwater rice field ecosystem, where at any one time light quantity 

varies markedly, the organism's ability to respond to changes in light 

flux may have a significant impact on N2-fixation. It was therefore 

planned to estimate changes in N2-fixing activity due to changes in 

light flux in the field. 
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Several reports in the literature have shown that some important 

morphological characters which occur in the natural habitats, such as 

colonies and akinetes. usually do not appear in the laboratory (Section 

1. 4). Early studies (De Bary 1863) noted the initial aggregation of 

hormogonia and formation of colony, but the mechanism which controls 

aggregation is not known. Detailed morphological studies of ~ pisum 

D613 were therefore planned to elucidate colonization, and filament, 

akinete and hair formation. Some morphological changes, such as akinete 

formation have been shown to be affected by the light. It was thus of 

interest to examine the effect of qua.ntity and quality of light flux on 

the formation of hairs, gas vacuolesand akinetes. 

Nitrogen-fixing activity may vary with developmental stage 

(Section 1.6). As G. pisum D613 produces colonies at an early stage, it 

seemed worthwhile to make a subjective estimate of different 

developmental stages along with other cytological changes and compare 

this with the nitrogenase activity. It was hoped that this may also 

reflect the N2-fixing capacity of G. pisum at different stages of the 

developmental cycle in nature. A detailed laboratory study was planned 

to quantify changes in ARA due to changes in light flux. 



2 MATERIALS AND METHODS 

2.1 Field 

2.1.1 Description of study area 

All in situ studies were carried out at Sonargaon, which is 

situated at 23° 29 1 25" N and 90° 35 1 15" E, in the old Meghna 

floodplain (Figs 1.1, 2.1). The area has moderate to deep floods (SO% 

over 1 m to 30% over 2 m during peak flood in 1983) and is part of an 

extensive deepwater rice growing region. As the appearance and 

disappearance of Gloeotrichia pisum colonies and perhaps N
2
-fixing 

activity in deepwater rice fields appears to be related to flooding, the 

detailed pattern of flooding was studied (Table 2.1, Fig. 2.2). Like 

most years (Section 1. 2 .1), two flood peaks were observed in 1982 and 

1983. 

Table 2.1 Flooding at Sonargaon 

flooding conditions 

started 

1st peak 

2nd peak 

receded 

1982 

22 Jun 

early Aug 

mid Sep 

2.1.2 Collection and preservation of algae 

1983 

23 Jun 

ca 7 Aug 

ca 20 Sep 

early Nov 
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For morphological and taxonomic studies G. pisum colonies, 

epiphytic on deepwater rice or other hydrophytes, were collected and 

preserved with 4% buffered (pH 7.0) formalin immediately after 

collection. Live algal materials for culturing or morphological study 

were kept in an ice box for transfer to the laboratory. Collection of the 

alga for ARA is described in Section 2.1.4. 

2.1.3 Physical variables 

In order to specify the effect of light in relation to other 

physical variables, water temperature, light, pH and o
2 

were measured 

and cloud cover was estimated during the collection of alga for ARA. 

Light attenuation was measured using a Biospherical light meter (model 

QSP-170A) and underwater probe (model QSP-200), lowered to the desired 

depth. When measurements were made from a boat,care was taken to avoid 
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Fig. 2.1 

Fig. 2.2 

Sonargaon showing the study site ( ~). 

Flooding pattern at the study site, Sonargaon 

during 1983. 
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any shade by the boat. Surface light flux was measured simultaneously by 

putting the reference probe (model QSP-240) on the boat or on the soil 

(during incubation of alga for ARA). Light flux during ARA was measured 

at 10 min intervals and the value integrated to calculate the mean light 
-2 -1 experienced by the alga. Light flux is expressed as ~mol photon m s 

PAR. 

Surface (-1 to -5 em depth) water temperature, pH and o2 were 

measured by lowering a thermometer, pH probe or 02 probe directly into 

the water. For measuring these parameters at greater depths, water 

samples (about 500 ml) were collected from that depth using screw-capped 

polypropylene bottles. pH was measured using an Orion (Model 407A) 

pH/specific ion meter fitted with GX electrode 91-05. Dissolved 0
2 

was 

measured using the same meter, fitted with an Orion oxygen probe (Model 

97-08). 

2.1.4 Acetylene reduction assay 

N
2
-fixation was studied using acetylene reduction assay (Hardy et 

al.l973). ~ pisum colonies were collected from usually -20 to -40 em 

depth, along with parts of the rice plant, and immersed into chak water 

contained in a 2 1 plastic beaker. The collected material was kept away 

from direct sunlight. To estimate the rate of N2-fixation by the alga 

or plant part, G. pisum colonies were scraped (except for one 

experiment: Section 4.3) from the rice plant parts whilst immersed. For 

most experiments, about 0.1 ml of algal material was incubated in 8.0 ml 

serum bottles containing 1 ml chak water. For larger samples, McCartney 

bottles (26.0 ml capacity) or transparent plastic pots (180 ml capacity) 

were used. 

After inoculation, the incubation vessels were sealed with rubber 

lined perforated screw caps or suba seals (W. Freeman & Co. Barns ley, 

U.K.). c2H2 gas was injected with plastic syringes (Bee ton-Dickinson 

Co., Ireland). After gassing, the incubation vessel was shaken lightly 

and the gas pressure was equilibrated by another needle. The 

concentration of c2H2 in the gas mixture was kept above 10%. Care was 

taken to keep the gas phase similar, in different sets of experiments. 

c2H2 gas was carried to the field in football bladders (filled every 

day), with the adaptor temporarily removed. Collection and preparation 

of the alga, injection of c
2
H

2
, equilibration and start of incubation 

altogether required about 30 min. Material was collected afresh for 

each incubation. Incubations were made in a channel by the main road, 

except for one experiment (Section 4.1). 
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The alga with c2H2 gas was incubated under two light regimes -

full light (just beneath water surface) and attenuated light (using 

neutral density filters or incubating vessels to a certain depth) to 

give approximately the same PAR as colonies at the original field 

sites; dark incubations were wrapped in several layers of aluminium 

foil. In all cases incubation was done under water for 60 or 90 min 

with the tube held on wire racks. Mid-time of incubation was considered 

as the time for nitrogenase activity. 

At the end of the incubation, the gas mixture was collected in 5 

ml evacuated blood collection tubes, ( Ezee-draw, England). Analysis of 

the gas was carried out at the University of Durham, England, about 1-1~ 

months later (see Section 2.2.8). 

After evacuation of the gas mixture, the incubation vessels plus 

algae were kept in the ice box for transfers to the laboratory where 

they were then stored in the deep freezer until chl ~ assay (Section 

2. 2. 7). On the day of chl ~ a.ssay, the samples were thawed and the 

supernatant was decanted as much as possible to minimize the possible 

dilution of methanol used in extraction. Absorbance was measured using 

a Perkin-Elmer spectrophotometer at Bangladesh Rice Research Institute 
-1 (BRRI), Joydebpur, Dhaka. ARA is expressed as nmol c2H4 ~g chl ~ 

-1 
min • 

2.2 Laboratory 

2.2.1 Physical variables 

Temperature was measured using a thermometer. Light flux as PAR 

was measured by Macam light meter (model QlOl) and is expressed as pmol 
-2 -1 photon m s In order to compare results with the existing 

literature, light flux (as lux) has also been measured in the shaker 

tank simultaneously with PAR. PAR used in the present study and 

corresponding lux values are shown in Table 2. 2. In both cases light 

was measured by cutting the bottom part of a flask and placing the 

respective probe inside. Light attenuation was achieved by wrapping the 

flask with different grades of neutral density filters. Green and red 

light was obtained by using the respective filters (Lee Filters Ltd). 

pH was measured using an EIL pH meter (model 7050) fitted with a Pye 

Unicam combination electrode (type No.401). 



light 
Table 2.2 PAR and corresponding lux value;provided by warm white 

I. 
fluorescent tubes in the 

PAR (pmol photon m 

200 + 10 

150 + 8 

105 + 7 

100 + 5 

80 + 5 

50 + 2 

25 + 1 

12.5 + 0.5 

6.3 + 0.5 

2.0 + 0.5 

2.2.? E~perimental materials 

2.2.2.1 Origin of cultures 

-2 -1 s ) 

tank(±= variation due to position) 

lux 

19000 ± 1100 

14500 + 900 

11000 + 750 

9400 + 700 

8000 + 500 

5800 ± 250 

2300 + 150 

1250 + 100 

700 + so 
180 ± 50 

The strain Gloeotrichia pisum D613 was obtained from a dry nodal 

root (with colonies which appeared as black beads) of a deepwater rice 

plant, collected on 29 November 1981 from Sonargaon (Figs 1.1, 2.1). 

Other blue-green algae were obtained from the same area and also from 

other regions (Appendix A). The enrichment cultures were brought to 

Durham and subsequently many of these were made bacteria-free (Section 

2.2.2.2). 

2.2.2.2 Isolation and purification 

The algae were inoculated on the day of collection (Section 

2.2.2.1) into petri dishes containing Chu lOD-N liquid medium and 

incubated on a window sill (out of direct sunlight), Department of 

Botany, University of Dhaka, Bangladesh, at .£! 15-26°C in ca 10: 14 h 

light and dark periods. After about 7 days different forms of algal 

growth (including greens) were visually obvious. Among blue-greens three 

distinct forms appeared in one petri dish: (i) Fischerella sp., (ii) s_ 
pisum as aggregates and (iii) Calothrix sp. as free-living filaments. 

No further attempts were made to isolate these forms till 

1 April 1982, when this culture (and others, Appendix A) wa.fl brought to 

the University of Durham and subsequently isolated and purified by the 

following methods: 

Repeated subculturing on agar medium alternating with the liquid 

medium (Section 2.2.5.3) and selection of colonies resultingin quick 

41 
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separation of .Q.:_ pisum D613 as unialgal isolate. In order to obtain 

clonal D613, young (2-3 day old), liquid-grown cultures were transferred 

to the agar medium and observed after 24 h with Nikon (type 102) 

dissecting microscope. Many isolated hormogonia were found away from 

the parent inoculum. A single hormogonium was picked up on a small agar 

block and inoculated into the liquid medium. The resulting clonal 

culture had only one type of associated bacteria. In order to obtain an 

axenic strain, care was taken to transfer an apparently bacteria-free 

hormogonium on a small block of agar to the liquid medium. Repeated use 

of similar techniques with alternating liquid and agar media led eventually 

to axenic culture. 

2.2.3 Morphology and taxonomy 

2.2.3.1 Microscopy and photomicrography 

Samples were mounted in a drop of the medium or liquid in which 

organisms had been growing 

teased apart with needles 

Gloeotrichia pisum D613 is 

or preserved. 

and covered 

They were then spread or 

with No.1 cover slips. As 

it was difficult to achieve colonial 

sufficient separation of the filaments without causing them to break, 

which caused problems for trichome measurement and morphological study. 

The dissection of G. pisum colonies (collected from field) for 

morphological study has been described in Section 2.2.2. Morphogenesis 

of D613 on agar medium was studied by mounting the agar plates directly 

on the microscope stage after covering the material with cover slips. 

Light was provided from the inbuilt light source or from an anglepoise 

lamp. 

All drawings were done by camera-lucida (Nachet, France) fitted on 

to a Vickers microscope. Materials for drawing were mounted on a drop 

of 4% glycerine, at least 15 min before study to settle down on the 

slide. 

Photomicrography was done using Nikon Fluophot (type 109) 

microscope fitted with autoexposed Nikon (M-350) camera. Kodak 

"Ektachrome" 50 (Tungsten) slide films were used for this. 

isum 

For detailed morphologica ~ pisum colonies were 

sectioned in two ways : 

(i) The colony was placed on a grooved potato tuber block and 

gently sect:! oned by hand ufdng a rnzor h 1 ade, so that co 1 on tal 

organization wns not deformed. A nt£>d1an Rectlon w;uJ mounted rtnd Htudic•d 

as in Section 2.2.3.1. 
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(ii) The preserved material (Section 2.1.2) was dehydrated by 

passing through a graded ethanol series of 25, 50, 7 5 and 100%, with 

three changes of 15 min at each concentration. The material was then 

infiltrated for 24 h with a 50:50 mixture of 100% ethanol Spurr epoxy 

resin followed by two changes of 24 h each, in 100% resin. It was then 

embedded in Spurr resin in plastic capsules and hardened for about 15 h 

at 70°C (Spurr 1969), cut on LKB "Ultrotrome" into 1 j.Jm thick sections, 

mounted on glass slides and stained with toluidine blue (1% in 1% 

borax). 

2.2.3.3 Morphogenesis of Gloeotr1chia. pisum D613 

Almost all morphogenetic studies were made in standing condition 
-2 -1 

at 32° C, 60 j.Jmol m s in Chu lOD-N (liquid or agar) unless stated 

otherwise. Study of growth stages was initially done by picking up 

algal filaments from the surface of the liquid medium with a wire loop 

after 1-5 days growth. These were mounted and studied as in Section 

2.2.3.1. Subsequently detailed developmental study was carried out on 

agar plates. 

2.2.3.4 Taxonomy 

Algae were identified by matching the descriptions, diagrams and 

ecological conditions with the existing literature (Schwendener 1894, 

Geitler 1932, Fritsch 1945, Desikachary 1959, Starmach 1966, Islam and 

Uddin 1973). 

2.2.4 Scoring morphological characters 

2.2.4.1 Heterocyst frequency and density 

Heterocyst frequency and density were studied during the studies 

of morphogenesis and ARA. Heterocyst frequency is defined as the number 

of heterocysts per total number of cells and is expressed as a 

percentage. Heterocyst frequency at a particular stage of filament 

growth was studied by counting total number of cells per intact 

filament, while during growth and ARA studies, heterocyst frequency and 

density were counted in sonicated material using a haemacytometer 

(improved Neubauer ruling, 0.1 mm depth) as follows: 

An aliquot of algal sample was transferred to a snap-cap vial and 

preserved in 4% buffered (pH 7. 0) formalin. The alga was sonicated 

(Soniprep 150, MSE) nt 20 ~ru amplitude, 5-10 times (depending on culture 

age) each of 45 s durati.on, nt nne min interv11ls (during which v·JalH 
the 

were kept on ice). The mater:l al was then ohserved under~-, micnmcope to 

check whether the one-celled condition was achieved. A few 2-J celled 



fragments were always present. When this sample was sonicated again, 

fragmentation of the individual cells occurred, resulting in a false 

increase in the number of cells, so cells were counted without further 

sonication. About 0. 05 ml of suspension was pipet ted (Finnpipette) to 

each chamber. Only cells with distinct polar nodules and a thick wall 

were considered as heterocysts. 

2.2.4.2 Cell inclusions 

Cyanophycin granules were usually identified without staining by 

their characteristic refractive appearance. To confirm the presence of 

granules in the young filaments they were stained with Schneider's 

acetocarmine (saturated solution of carmine in 45% acetic acid). Two 

drops of a.cetocarmine were placed over a drop of dense algal suspension 

and kept for 5 min for post vital staining. After placing cover slips 

cyanophycin granules were examined at high magnification (XlOOO). 

Polyphosphate granules were identified by the staining method of 

Ebel et al. (1958) with minor modifications, using fresh material 

without pre-fixation. Samples on a slide were soaked for 15 min in 10% 

(weight/volume) Pb(N0
3

)
2 

in 0.1 N HN0
3 

(concentration reduced from 1.0 N 

in the orig1.nal method). The treated material was washed thoroughly 

(about 5 times) with distilled water and treated with 10% (NH
4

)
2
so4 for 

30 s and again rinsed thoroughly. Polyphosphate granules were stained 

dark-brown to black. 

2.2.5 Culturing 

2.2.5.1 Culture vessels and glassware 

100 ml Erlenmeyer flasks were used unless stated otherwise. The 

flasks were plugged with non-absorbant cotton wool stoppers(see Appendix 

B). Pre-sterilized plastic petri diRhes (Sterilin, England) were used 

for solid media. All glassware was of Pyrex glass, unless stated 

otherwise. 

2.2.5.2 Cleaning glassware 

The flasks were cleaned by scrubbing to remove all algal materials 

and washed with detergent. They were then rinsed with tap water and 

soaked in 10% HCl for at least one hour. Other glassware was soaked 

directly in 10% HCl for the same period. Glassware for phosphate 

analysis was cleaned with tap water (without detergent) and then soaked 

in 10% H
2
so

4 
solution for at least one hour. In all cases glassware wa.s 

rinsed with distilled water 8 times and then oven dried at 100° C. 
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2.2.5.3 Media 

The water chemistry of the original location (Section 2.1.1) was 

taken into consideration when developing growth media. Of the available 

media, Chu lOD (Sinclair & Whitton 1977) was most suited to the water 

chemistry in the field. As the laboratory study was planned mainly to 

investigate the nitrogen fixation rate, a nitrogen-free version of Chu 

lOD, with some other modifications (Table 2.3) was used for all 

experiments (basal medium), unless stated otherwise. This was done by 

substituting CaC12. 2H20 for Ca (No
3

) 
2

. 4H
2

0 and omitting Na
2
Si0

3
• 5H

2
0 (Na 

concentration was compensated by adding more NaHC0
3
). Na

2
Si0

3
.5H

2
0 was 

omitted for two reasons : (i) HEPES was used for buffering medium, (ii) 

Na 2Si0
3 

might form complex compounds in the medium. Chu lOD was a 

modification of the formulation of Gerloff et al. (1950). The 

composition of the present medium and also concentration of each 

element, in relation to Chu lOD and the medium of Gerloff et al. (1950) 

are shown in Tables 2.3 and 2.4. Iron and EDTA was added as a single 

solution. Stock solutions were stored in a refrigerator. Medium was 

made up freshly as required using glass-distilled water. 
o£ 

To prepare 1 litret..medium, .0!__ 600 ml distilled water was taken in a 

1 litre volumetric flask and stock solutions were then added. 250 rn] 

distilled water was then buffered with 0.6 g HEPES :in n beaker. pH 

dropped to ca 4.4 and this wa.s adjusted to 7.2 by adding~ 1.48 rnl 1M 

NaOH. This buffered aliquot was then mixed with 600 ml mineral medium 

in the volumetric flask and then adjusted to 1 litre final volume by 

adding distilled water. The medium in the culture flasks was sterilized 

immediately (Section 2.2.5.4), stored in the dark and used between 12 

and 24 h after autoclaving. pH remained the same after autoclaving. 1% 

agar (weight/volume) medium was also autoclaved, cooled to ca 50° C, 

poured into petri dishes aseptically, solidified and stored in the 

refrigerator. 

Thus, the liquid medium used in this study is not an absolute inorganic 

medium hut with two organic compounds, the EDTA as a chelatinR agent and 

HEPES as a huffer. ln addition to the basnl medium, a modified Chu 

lOD-N, with 0.5 mg 1-l Fe and 0.9 mg l-Ip (Chu IODX
2

Fe
0

_
5
P

0
.
9
-N) was 

also used (Section 5.5). 

2.2.5.4 Sterilization 

Medium, pipette tips (wrapped with aluminium foil and plugged with 

cotton wool) and other glassware were sterilized by autoclaving at 

121° C (10.35 K Pa) for 15 min. 
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Table 2.3 
-1 Composition of medium (rng 1 of salts) used in the present 

study and comparison with Chu 10D (Sinclair & Whitton 1977) 

and medium of Gerloff~ al. (1950). 

salts medium used in Chu 10D Gerloff 

the eresent stud}: et al. (1950) 

Ca(N03) 2 40.0 

Ca(N0
3

) 2 .4H20 57.6 

K2HP04 
10.0 

KH2Po4 7.8 7.8 

MgS04 .7H20 25.0 25.0 25.0 

Na2Si0
3

.5H20 10.88 25.0 

NaHC0
3 23.73 15.85 

Na2co
3 

20.0 

CaC1 2.2H20 35.84 

FeC1
3

.6H20 2.42 2.42 

Na EDTA. 2H
2
0 3.18 3.18 

Ferric citrate 3,0 

Citric acid 3.0 

MnC12.4H20 0.045 0.045 

Na Mo0
4

.2H20 0.007 0.007 

ZnS04 .7H20 0.056 0.056 

CuS04 .5H20 0.02 0.02 

CoS0
4 .7H20 0.01 0.01 

H
3

B04 0.72 0.72 

NaOH * ca 59.0 

* added as 1M NaOH solution (~ 1.48 ml 1-l medium) during buffering 

with HEPES to pH 7.2. 
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Table 2.4 Composition of medium (mg 1-l of elements) used in the 

present study and comparison with Chu lOD (Sinclair & Whitton 

1977) and medium of Gerloff et al. (1950). 

elements medium used in Chu lOD Gerloff 

the 2resent study et al. (1950) 

N 6.83 6.83 

p 1. 78 1. 78 1. 78 

K 2.24 2.24 4.49 

Na ca 40.0 * 6.69 14.1 

Ca 9.78 9.78 9.78 

Mg 2.47 2.47 2.47 

s 3.25 3.25 3.25 

Fe 0.5 0.5 0.5 

Si 1.44 3.31 

C1 17.26 0.016 

Mn 0.012 0.012 

Mo 0.0028 0.0028 

Zn 0.013 0.013 

Cu 0.005 0.005 

Co 0.002 0.002 

B 0.125 0.125 

* Na concentration increased from 6.69 to 40.0 
-1 

mg 1 due to the 

addition of 1 M NaOH solution (ca -1 1.48 m1 1 ) during buffering with 

HEPES to pH 7. 2. 
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2.2.5.5 Maintenance and subculturing 

Stock cultures were maintained in 50 ml liquid medium incubated 
0 -2 standing in the 25 C growth room under continuous light (ca 40 ~mol m 

-l --
s ). Subcultures to fresh medium were made after about three months. 

Stocks for experimental purposes were maintained at 32° C in the shaker 
-2 -l 

under continuous light of 105 )Jmol photon m s PAR, unless stated 

otherwise. 
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Subculturing for stock cultures was done by picking up a small 

aliquot of the alga with a. wire loop and inoculating to fresh medium 

aseptically using a laminar flow cabinet (Microflow Pathfinder). 

Subculturing for experiments was done by inoculating a standard amount 

of homogenized algal material. The alga was scrubbed from the glass 

surface using a glass rod fitted with rubber tube presoaked in absolute 

alcohol for one hour. The algal mass with the parent medium was then 

homogenized by taking it in sterile plastic syringes and passing through 

50, 25 and 16 mm sterile needles (Gillette Surgical Ltd, U.K.) till an 

almost homogeneous algal suspension WflS attained. The homogenate was 
a 

then taken in a sterile beaker containing magnet and placed over a 
/.. 

magnetic stirrer. Depending on the algal concentration in the 

homogenate, 0.5 to 1.0 ml was pipetted at a concentration of 6-8 mg d. 

wt 1-l and inoculated in each flask by automatic pipette fitted with 

sterile pipette tips. The flasks were randomized during inoculation of 

alga to have approximately equal inocula for all flasks. 

2.2.5.6 Incubation 

Experiments were carried out in batch culture under continuous 

light, unless stated otherwise. In the growth room illumination was 

provided by white fluorescent tubes above or below the alga AlJ 

N
2
-fixation experiments were carried out i.n the thermoRtatically 

controlled tanks illuminated from below by warm white fJuorescent tubes. 

Darkness was achieved by wrapping flasks with aluminium foil and black 

polythene. 12:12 h light and dark conditions were provided by 

Gallenkamp cooled incubators (model lH-270); illumination from above 

supplied by white fluorescent tubes. The flasks were usually randomized 

at 12 h intervals. The temperature was 32° C (+ 0.5). Flasks in the 
-1 -

tank were shaken at 60 oscillations min and at an amplitude of ~ 30 

mm. The gas phase of the incubated flasks varied from experiment to 

experiment. All N2-fixation experiments were conducted in the Erlenmyer 

flasks with 123.8 ± 1.1, n = 30) ml gas volume with the cotton wool or 



suba seal fitted. The gas phase of flRsks with 25 ml medium was 

therefore about 99.0 ml. 

2.2.5.7 Tests for purity 

Purity of the organisms was tested following the test media 

described by Hoshaw and Rosowski (1973) and also by examining materials 

by phase-contrast microscopy (Nikon, Fluophot, type 109). 

2.2.6 Chemicals and gases 

All chemicals used in medium were of Analar grade and obtained 

from British Drug House Ltd (BDH), Poole, England, except HEPES (Sigma), 

Agar (Difco Laboratories) and potassium persulphate analoid compressed 

tablets (Ridsdale & Co.Ltd, Middlesbrough, England). 

Acetylene used in Bangladesh was supplied by Bangladesh Oxygen 

Co. Ltd, Dhaka, while in Durham, acetylene was supplied by British 

Oxygen Co., Ltd, and ethylene (99.8%) by BDH Laboratory gas service. 

2.2.7 Estimation of growth 

Both dry weight and chl ~ have been used to estimate growth. 

During early stages of growth the whole contentsof each flask were used 

for either dry weight or chl ~· In the growth curve experiment, equal 

numbersof replicates were therefore taken to estimate biomass after 0, 

12 and 24 h. Subsequently a single flask could be used for both 

estimates, the contents being homogenized (Section 2.2.5.5). The 

homogenate was adjusted to 25 ml final volume and placed on a magnetic 

stirrer. Equal aliquots pipet ted for both dry weight and chl a and 

collected on glass microfibre filters (GF /C, Whatman) by vacuum 

filtration. 

A sample for dry weight was collected on a pre-weighed GF/C filter, 

kept in a glass petri dish and oven dried at 105° C for about 24 h. The 

dried sample was then placed in a desiccator, cooled to room temperature 

and re-weighed using a Mettler H51 balance. 

Samples for chl ~ were deep frozen for about 24 h. Chl a was 

estimated by following the procedure based on the recommendations of 

Marker et al. (1980). Extraction was done with 5-10 ml 90% hot (70°C) 

methanol for 10 min. Extracts were then cooled down, kept out of direct 

light, filtered through GF/C filters and absorbance was measured at 665 

and 750 nm using a Shimadzu digital double-beam spectrophotometer 

(UV-150-02). Absorbance was again measured at 665 and 750 nm after 
-3 

acidification with 0.1 M HCl (final concentration of 10 HCl) for 60 
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min and chl a was calculated from the following equations: 

)Jg chl a 
R 

----xKx 
R - 1 

v 
L 

where ~ = extract absorbance at 665 nm before acidification deducting 

absorbance at 750 nm 

A extract absorbance at 665 nm after acidification deducting 
a 

absorbance at 750 nm 

R maximum acid ratio (~/A) 
K = 1000 x the reciprocal of the specific absorption coefficient 

(SAC) of chl ~ at 665 nm in 90% methanol 

v = volume of solvent used to extract chl a in ml 

L = path length of the cuvette used in em 

Marker et al. (1980) recommended a specific absorption coefficient 

of chl a in 90% methanol of 77, and a maximum acid ratio of 1.59 for 90% 

methanol in 10-3 M HCl. 

IJg chl a= 34.94 (Ab-A) x V/L. 

Growth rate has been expressed :fn termB of the relative growth 

constant or specific growth constant (k') (Fogg 1975): 

t 

where t = time in days, from the time of incubation 

N = biomass after t days 
t 

N = biomass at zero-time, i.e. at the time of 
0 

incubation. 

Maximum growth rate is defined as the maximum growth rate under 

light saturation at a specified temperature. The mean generation time 

or doubling time (G) has been calculated from specific growth conAtant 

K' 

0.301 
G = 

K' 

-1 day 
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2.2.8 Acetylene reduction assay 

N
2
-fixation rates were estimated using the acetylene reduction 

assay technique (Hardy ~ al. 1973). The alga was always kept and 

maintained in the parent medium and flask, so that it did not experience 

a major shift in environmental variables. A shift of light during c
2

H
2 

injection and equilibration, could not be overcome because of the ARA 

technique itself. 

The cotton wool stopper was replaced by a suba seal immediately 

prior to gassing. 15 ml of acetylene was injected into each flask and 

was shaken slightly before equilibration of pres~ures by another needle. 

After equilibration, flasks were incubated in the experimental 

conditions. This step took about 45 s. A control, with autoclaved 

medium only, was used to estimate c
2

H
4 

contamination. 

After incubation with c2H2 for 60 min, the gas mixture was 

collected in a 7 ml Vacutainer (evacuated blood collection tube, 

Becton-Dickinson Co., New Jersey, U.S.A). Analysis of the gas mixture 

was made by injecting 1 ml into the Varian Aerograph 1400 gas 

chromat=:ograph equipped with a hydrogen flame ionization detector. N2 -1 
was used as the carrier gas at a rate of 45 ml min through a 3.0 mm x 

2. 0 m column packed with ''Porapak" R (Waters Associates Inc, U.S. A). 

Other operating conditions were: detector temperature, 150° C; column 
-1 

temperature 105° C; air and hydrogen flow rates were 300 and 30 ml min 

respectively. c
2

H
4 

and c
2

H
2 

(as a check of accuracy of method) peaks 

were recorded from chart recorder, identified by the retention time. The 

gas chromatograph was calibrated on each day of use, with high purity 

ethylene standards. As in situ ARA was expressed as nmol c
2
H

4 
).Jg chl 

a - 1 m-ln-l and on the h h d 1 b t · t d • ot er an 9 a ora ory exper~men s were centre on 

the effect of light flux (which might affect chl ~) on ARA, the results 

of laboratory ARA were expressed on the basis of chl a as well as dry 

weight. 

2.2.9 Chemical analytical procedure 

2.2.9.1 Phosphorus fractions in medium 

Analysis of the phosphorus fractions in the medium, termed 

"filtrable reactive phosphorus" and "filtrable total phosphorus" 

(organic and orthophosphate) were made according to the modifirations nf 
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Eisenreich et al. (1975) by D. Livingstone (pers. comm.). In a 

suitably acidified solution, sodium molybdate and potassium antimonyl 

tartrate react with orthophosphate to form molybdo-phosphoric acid which 

is then reduced to the intensely coloured molybdenum blue complex by 

ascorbic acid and determined spectrophotometrically at 880 nm 

wavelength. In all cases absorbance was measured strictly after 12 min 

(as absorbance increased with time); a 5-cm cell was used. 

Reagents: 

1. Acid-antimony-molybdate reagent 

0.57 g potassium antimony tartrate,K(Sb0)C4H 4 o6~H20 was dissolved 

in 500 ml distilled water and 45 ml of cone. H
2
so

4 
(sp. gr. 1.84) was 

added, with continuous mixing. 8.52 g sodium molybdate (Na
2

Mo0
4

.2H
2

0) 

was dissolved in 400 ml distilled water in another volumetric flask. 

The two solutions were then mixed, cooled and adjusted to 1000 ml with 

distilled water. The solution was stored in a dark bottle, refrigerated 

and used within 4 weeks. 

2. Sulphuric acid, H
2
so4 , lN 

3. Potassium persulphate, K
2
s2o8 , 0.7 g analoid compressed 

tablets. 

4. Phosphate standard solution, K
2
HP0

4
, 4.39 g dissolved and made 

-] 
to 1 litre with distilled water; contains 1000 mg 1 P. 

5. Mixed reagent: 0.62 g L-ascorbic acid was dissolved in 100 ml 

of acid-antimony-molybdate reagent (reagent 1) on the day of 

analysis. 

Procedure: 

I. FRP 

A suitable aliquot of sample was diluted to 25 ml with distilled 

water in a 125 ml conical flask. Then 5 ml of mixed reagent was added 

and mixed thoroughly. 

II. FTP 

A suitable aliquot of sample was diluted to 100 ml with distilled 

water in a 250 ml conical flask. 5 ml IN H
2
so4 was added to the 

diluted sample and one persulphate tablet was added . The flask top wa.s 

covered with aluminium foil and autoclaved at 12l°C (10.35 K Pa) for 30 

min. The sampJe was cooled to room temperature and 5 ml of the mixed 

reagent was added. 



Calibration curves were prepared by treating two series of 

phosphate standards, as for FRP and FTP. 

2.2.9.2 Total algal phosphorus 
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Total algal phosphorus was determined according to Batterton & Van 

Baalen (1968), with the following modifications : 

Algal material was separated from the growth medium by 

centrifugation of an aliquot of algal homogenate for 15 min at 5000 x g, 

and washed three times to remove salts by resuspending in distilled 

water and centrifuging as before. The washed algal pellet was 

transferred to an acid-washed, pre-dried and pre-weighed snap-cap glass 

vial and dried for 24 h at 105°C. After estimating dry weight (to 

express algal-Pas ~g P mg d. wt- 1
), 10 ml distilled water was added to 

the vial, followed by the addition of one persulphate tablet (o. 7 g). 

The sample was then autoclaved as with FTP (Section 2. 2. 9 .1). After 

cooling to room temperature the digested sample was transferred to a 125 

ml conical flask and the volume was made to 25 ml witl1 distilled water. 

5 ml of mixed reagent (Section 2.2.9.1) was added to the above solution. 

A calibration curve was prepared by treating a series of phosphate 

standards, as for the algal material. 
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3 MORPHOLOGY OF FIELD Gloeotrichia pisum 

3.1 Introduction 

The literature reviewed in Section 1.4 indicates that, in nature, 

species of Gloeotrichia can show distinct morphological changes during 

development, which can in turn lead to taxonomic confusion. Apart from 

detailed cytological studies by Palla (1893), few studies have been made 

on the developmental sequence of colonies, filaments and akinetes of G. 

pisum from natural habitats. The developmental stages of this alga from 

natural populations were therefore studied in the hope of understanding 

the pattern of growth of colonies, filaments and akinetes. 

3.2 Structure and development 

3.2.1 Colonies 

~ pisum colonies epiphytic on deepwater rice and Myriophyllum sp. 

were studied. All materials were collected from Sonargaon during the 

period 24.7.83 to 25.8.83 (Section 2.1.2). 

The colony is typically firm, blackish-green to dark-brown, 

hemispherical or spherical and is attached to submerged aquatics 

(Fig. 3.1A-C). 

larger colonies. 

On a few occasions colonies were found epiphytic on 
-2 

In a small area (e.g. 1 em ) colonies of a range of 

sizes and ages were commonly found. 

Colonies have a slimy opal-like appearance when young, which 

becomes rough when filaments transform into akinetes. Colonies are 

usually 0. 5-1.5 mm in diameter, but may sometimes reach 4. 5 mm. The 

trichomes in the smaller colonies are compact, gradually tapered with 

their heterocysts near the centre of colonies (Fig. 3.1F), but in larger 

colonies (> 2mm) there is a distinct zonation (Fig. 3.1C), with a 

central pole zone of loosely packed, narrow, very long trichomes and a 

peripheral zone of shorter densely packed, tapered trichomes; usually 

with akinetes (Fig.3.1D-E). 

The mucilage has a. leathery texture. The hairs extend beyond the 

thick mucilage (Fig.3.1F-G). A section through the periphery of a 

colony revealed a thick mucilage sheath around the trichome and 

intersheath spaces between the mucilage sheath (Fig.3.3H). 

The appearance and disappearance of G. pisum colonieA at Sonargaon 

were studied during the flood perjod in l9H3 (Table ?.1, F1~. 2.2). 
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Fig. 3.1 A-K. Morphology of field Gloeotrichia pisum. 

A. Colonies on submerged parts of deepwater rice 

tillers; sections from -50 to -60 em depth after 

about 50 days of flooding (14.8.83). 

B. Colonies on young parts of rice tillers which 

have been exposed due to receding of flood water 

after about a week of submergence ; photographed 

on 14.8.83. 

C-E. Anatomy of large spherical colony epiphytic on 

Myriophyllum. 

C. Showing zonation of filaments. 

D. Showing central very long and narrow and 

peripheral short and tapered filaments. 

E. Peripheral filaments, enlarged. Note very long 

akinetes (a) and grouping of cells along trichomes. 

F-G. Anatomy of small spherical colonies mounted in Indian 

ink. 

F. Showing compactness of tapered filaments. 

G. Showing hairs (hr), gas vacuoles (g.v.) and 

protrusion of trichomes out of the mucilage (m). 

H-J. Heterocysts variation in sha.pe, size, number and 

position in the same colony. 

H. Spherical and rod-like heterocysts (h). 

I. Two basal heterocysts of different shapes. 

J. Terminal type of heterocyst (h) in between 

a.kinetes (a). 

K. Developing akinete (d.a.); note participating 

cells. Embedded in Spurr low viscosity resin. 

(scales A-B = 10 rom ; C,D,F = 300 ~m ; 

E,G-K = 20 J.Jm) 
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Fig. 3.1 



.s_ pisum colonies became abundant ("first flush" of growth) within 

two weeks of flooding, i.e. on 6 July when the water depth was about 

-100 em. After about a month of flooding (on 24.7.83) when the water 

depth in the field was about 130 em, the distribution of colonies down 

the tiller was studied. Colonies were found from just below the water 
-2 surface to about -100 em. Dense colonization (about 25 colonies em ) 

was found at -10 to -60 em depth. Colonies were absent at -100 to -130 

em. 

There was continuous heavy rain on 5 and 6 August and by 7th 

August the water depth had increased by about 70 em. The density of 

tillers in the rice field was about 130 m-2 and the canopy was about 30 

em. On 7-10 August there was no rain, but there was cloud cover of 

about 40-70% throughout the day. The surface light flux was in the range 
-2 -1 of 2225-2280 ~mol m · s at about mid-day. Numerous small pale 

blue-green and soft colonies were observed ("second flush" of growth) on 

the freshly submerged parts of the rice tiller on 9th August, i.e. after 

three to four days of submergence. By 14 August these colonies had 

attained about 1 mm. By that time, the water column dropped by about 10 

em and as a result the ~ pisum colonies that had colonized 8-9 days 

earlier on the freshly submerged tillers were exposed as distinct black 

beads (Fig. 3.1B). 

Colonies were abundant up to the 1st week of September (i.e. for 

about two months) after which there was a rapid decline with few 

colonies from then till the end of the flood period (Section 2.1.1). 

3.2.2 Filaments 

Filaments are extremely variable, depending on their age, their 

position in a colony and the size of the colony. A developing trichome 

consists of a basal heterocyst nnd a row of vegetative ce] ls which may 

terminate in a long hair (Fig. 3.2A-C). ln this filament distinct 

groups of cells are found starting from the base of a hair towards the 

heterocyst. Each of these groups is usually composed of 5-9 cells and 

appears as a hormogonial segment (Fig. 3.2C). An old filament consists 

of a basal heterocyst followed by a long cylindrical akinete and 

vegetative cells. These filaments had no hairs (Figs 3.1E, 3. 2G-H). 

Filaments with mature akinetes may have few hormogonia-like segments 

(Fig. 3.3A-B) or an empty sheath (Fig. 3.3C) next to the akinete. On a 

few occasions filaments were found with two terminal heterocysts at the 

base or with a single terminal heterocyst next to a mature akinete 

(Figs. 3.11-.J, 3.3D-E). Heterocysts are mostly Apher1cn1 and someUmes 

ellipsoidal to very long and rod-like (FigA J.lfl, ],21-K). 
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Fig. 3.2A-K.Developmental stages and morphology of filaments of 

field Gloeotrichia pisum. 

A. Young filament with hair. 

B. Cell next to the heterocyst dividing. 

c. Two more divisions in cells next to the heterocyst 

forming a group of cells with abundant granules ; 

filament consisting of several groups, each with 4-9 

cells. Note the absence of granules in the rapidly 

dividing group of cells ; sharp differences in 

granulations between basal cells of the hair and the 

group of cells immediately below, and the appearance 

of sheath around basal cells. 

D-H. Differentiation of akinete. 

D. Group of five enlarged cells next to the 

heterocysts where the basal cell has enlarged 

more than the rest. Note abundant gas vacuoles 

(g.v.) in cells below the hair (hr). 

E-F. Much enlarged developing akinetes. 

G. Long akinete. Note faint cross walls (arrows) 

of cells next to the akinete. 

H. Very long akinete with visible cross wall (c.w.) 

in the upper half. Note the cells next to the 

akinete with abundant granules (as in the 

akinete) and also faint cross walls (arrows). 

1-K. Heterocysts : variation in shape and size from the 

same colony. 
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Fig. 3.3A-H.Developmental stages and morphology of filaments 

and the colonial morphology of field Gloeotrichia 

pi sum. 

A-C. Fully matured akinetes, delimited by thickened cross 

walls. Note liberating hormogoni~ in 'B' leaving 

empty sheath in 'C'. 

D. Akinetes (A) alternating with terminal 

heterocysts (h). 

E. Dead basal heterocyst followed by empty sheath. 

Note terminal heterocyst and developing akinete 

within the parent sheath. 

F. Filament from old colony with gigantic akinete 

surrounded by stratified sheath. Note the deeply 

constricted cross walls next to the akinete. 

G. Very long and narrow filament having long and 

less pigmented cells at the basal end compared 

to the terminal ones. 

H. Peripheral section of a spherical colony showing 

thick sheath(s) around trichorne(t), and inter

sheath spaces(i,s,), Embedded in Spurr low 

viscosity resin. 
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The sheath is hyaline, firm and thin (2.6-5.0 ~m) at the basal end 

(becomes stratified in old filaments: Fig. 3.3F) and very thick 

(8.5-20.0 ~m) at the terminal end (Fig. 3.3H). Cells of the narrow, very 

long filament type have less pigmentation and cyanophycin granules at 

the basal end compared to the terminal end (Fig. 3.3G). Cells of the 

tapered filament (except very young: Fig.3.2A) have abundant cyanophycin 

granules except in the hair cells and in the rapidly dividing portion of 

a filament (Fig. 3. 2C). Gas vacuoles occur in cells below the hair 

(Figs 3.1G, 1.2D). 

Tapered trichomes are usually up to 350 pm long and may be more 

than 520 pm in large colonies. Trichomes are 5-7.7 pm in diameter at the 

base during the vegetative phase. Dimensions of vegetative cells are 

extremely variable along the trichome. Akinetes are usually 8-8.6 ~m in 

diameter (without sheath) and 60-125 pm long. The akinete in a.n old 

colony may attain a length of more than 240 pm. Spherical heterocysts 

are 5.5-12.8 pm in diameter. Rod-like heterocysts vary from 20 to 105 

pm in length. 

3.2.3 Akinete formation 

A vegetative trichome consists of a basal heterocyst and a chain 

of vegetative cells which may terminate in a long hair (Fig. 3.2A). At 
the onset of aktnete formation the cell next to the heterocyst enlarges 

and divides (Fig. 3. 2B). The process continues, producing a group of 

5-7 cells, larger and denser than the rest nf the trichome (Fig. 

3.2C-D). Subsequent changes seem to take place in one of the following 

ways 

(i) The cell next to the heterocyst appears to elongate, 

accumulate granules and form a thick wall delimiting it 

from the rest of trichome ; this is the mature akinete 

(Fig. 3.3A-C,F). It is not clear whether this long 

akinete is the product of elongation of a single basal 

cell or of several cells in a group. Vegetative cells 

next to the akinete may be released as hormogonia 

(Fig. J.JA-C). 

(if) The akinete is not delimited from thP rest of the 

trichome hy a thick wall. The cell next to this akinete 

is usually as wide as the adjacent akinete with faint 

intervening wall and abundant granules (Fig. 3.2G-H). In 

a few cases a cross wall was observed in the upper half 



(iii) 

of a long akinete (Fig. 3.2H). It appears that this 

akinete is the product of two independent cells 
the 

where~mother cross wall still remained. 

A variant of the first method of akinete formation occurs 

by the formation of a heterocyst next to an akinete. In 

this case cell(s) thereafter transform into an akinete 

resulting in a chain of akinetes alternating with hetero

cysts (Figs 3.1J, 3.3D). 

(iv) During the early stage of filament development, the 

trichome next to the heterocyst occasionally becomes 

dissociated and the basal cell subsequently transformed 

into a heterocyst. The cell next to this new heterocyst 

may transform into an akinete (Fig. 3.3E). 

3. 3 Summary 

A large colony from the field shows distinct zonation of 

filaments. On the periphery of the colony, intersheath spaces exist 
the 

in between I- thick hyaline mucilage sheaths. Rapid colonization of s_ 
pisum may occur on freshly submerged and young rice culms. The alga was 

much more abundant during the first half of the flood period. 

Cell divisions are not restricted to the base of a hair. Trichomes 

are seen to be composed of several groups, each with usually 5-9 cells. 

There are indications of participation of more than one cell in akinete 

formation. Akinetes may be formed alternating with heterocysts. 

Heterocyst shape, number and position are variable. 
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4 ARA (NITROGENASE ACTIVITY) BY Gloeotrichia pisum 
AT SONARGAON 

4.1 Introduction 

The literature reviewed in Sections 1.3 and 1.6 indicates that the 

rate of nitrogenase activity by blue-green algae can Le influenced by 

environmental factors such as light flux. In Bangladesh light flux may 

charige very rapidly during the monsoon period (Section 1.2.1). Inside 

the deepwater rice fields light flux varies markedly according to 

density of rice plants, depth of water, presence of hydrophytes 

(floating or submerged), centre or edge of a field etc. and hence G. 

pisum colonizing the rice plant also experiences marked differences in 

light flux with time and space. Experiments were therefore planned to 

investigate the influence on ARA of light flux and distribution of ARA 

down the water column. Studies of the diel changes in ARA and 

environmental variables were also included. 

4.2 Influence of light flux on ARA 

The alga was incubated for 90 min in serum bottles within 30 min 

of collection (Section 2.1.4). Light attenuation w~s achieved by 

wrapping the incubation vessels with neutral density filters. The 

influence of light flux on ARA is shown in Table 4.1. Transfer from high 

to lower light flux brought about a marked reduction in ARA during the 

first 1.5 h incubation. A reduction of light flux by 39 and 74% brought 

about a reduction in ARA by 30 and 62% respectively. (A dark incubation 

for 1 h resulted in a decrease of ARA by about 83% (result not shown : 

see Whitton 1984).) 

4.3 ARA down the water column 

Colonies of G. pisum were quite conspicuous on deepwater rice in a 

number of fields for about two months (July and August) during 1983. In 

the first half of August no other visible algal growths were noticed on 

tillers. Experiments were therefore planned to estabU sh the 

distribution of ARA on submerged parts of tillers due to~ pisum alone. 

The experiment was carried out on 10.8.83 during peak flood (-2 m, Fig. 
-2 -1 2. 2). Surface PAR during the incubation was about 2255 ).Jmol m s 

with ca 10% cloud cover. A tiller (deepwater rice cultivar duli ~ ) 

was cut into 20-30 em long sections, each consisting of one node and one 

internode. Each section was further divided into an internode (with or 

without leaf) and nodal root mass. Each individual section was 

incubated at approximately the same depth from which it originated. 
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Table 4.1 Relationship between changes in light flux and ARA for ~ pisum in situ (n = 6) 

date mid-time -2 -1 light flux (~mol m s ) -1 -1 ARA (nmol c2H4 ~g chla min ) 

full reduced (% reduction) full light reduced light 

(h) (at -4cm) ± - ± X X - - - -

29.7.83 1115 1847 1121 39 0.234 0.083 0.163 0.027 
II 1645 1289 526 59 0.256 0.038 0.164 0.020 

7.8.83 1045 1825 475 74 0.352 0.090 0.133 0.025 
II 1245 1890 443 77 0.276 0.044 0.138 0.022 

22.8.83 1345 985 394 60 0.161 0.030 0.086 0.010 

%of full 

light 
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Table 4.2 Distribution of ARA on individual sections of a tiller with 

~ pisum, of deepwater rice and changes down the water 

column on 10.8.83 at 1030 h (mid-time). (i) internode 

-1,-2 etc. are nodal root masses. -1 being just below the 

water surface ; each section was incubated at approximately 

the same depth from which it originated ; n 1 

section 

of tiller 

_:} 
i 

-2 

i 

-3 

i 

-4 

i 

-5 

i 

-6 

i 

-:} 
-8 

whole tiller 

* partitioning of ARA between 

all internodes = 49.59 nmol 

all nodal roots = 27.85 nmol 

= 

internodes and 

C2H4 
-1 

min 
-1 

C2H4 min 

2.46 

3.38 

0.24 

10.12 

6.02 

9.10 

11.67 

18.72 

6.75 

6.80 

1. 69 

0.20 

0.31 

nodal roots: 
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Table 4.3 Changes of ARA down a tiller with attached ~ pisum, and changes in the physical environment down 

the water column on 10.8.83 at 1030 h. Physical variables were recorded in the water column, 

where alga was incubated. The rates are expressed for section of a tiller which 

include node with the internode immediately above 

depth (em) light flux temperature o2 E!! ARA(nmol c2H4 -2 -1 -1 -1 ) incubation at sample from sections of a tiller 

-10 0 to -50 node -1 + internode and leaf 

-75 -51 to -75 node -2 + internode and leaf 

-85 -76 to -85 node -3 + internode and leaf 

-90 -86 to -90 node -4 + internode 

-130 -91 to -130 node -5 + internode and leaf 

-155 -131 to -155 node -6 + internode 

-180 -156 to -200 nodes-7 & -R + 2 internodes 

()Jmol m s ) (°C) _(mg 1 ) 

1885 32.7 9.1 

210 31.5 9.5 

178 31.5 9.5 

178 31.0 9.0 

106 31.0 8.6 

53 31.0 7.9 

27 30.7 8.0 

6.40 

6.35 

6. 30 

6.30 

6.25 

6.20 

6.10 

min 

2.46 

3.62 

16.14 

20.77 

25.47 

8.48 

0.51 

0"1 
-..J 
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Fig. 4.1 Distribution of ARA on a tiller with ~ pisum 

and changes of environmental variables down the 

water column on 10.8.83 at 1030 h (the ra.tes 

are expressed for section of a tiller which 

includes node with the internode immediately above). 
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Incubations were done in plastic pots for 60 min (Section 2.1.4) inside 

the deepwater rice field. 

Distribution of ARA on individual sections of a tiller with G. 

pisum and changes down the water column are shown in Tables 4.2, 4.3 and 

Fig. 4.1. During the period of study, ARA was quantitatively important 

down to node -6 and depth -155 em. The total ARA for internodes (with 

or without leaves) was higher than that of nodal roots (Table 4.2). 

An experiment was planned to measure the percentage contribution of 

ARA by ~ pisum on rice internode~. Six tillers were collected from the 

same area w:f th approximately equal S pisu~ cover. Internode between 

nodes -3 and -4 was used, cut into 2 em sections and incubated (treated) 

as described in Table 4.4. Care was taken during scraping of the alga 

not to damage the internode or to leave visible G. pisum colonies on the 

internode. Incubations were done in McCartney bottles in a channel by 

the main road. 

The relative contribution of ARA by ~ pisum on a section of rice 

internode is shown in Table 4.4. The alga constituted 91% of the total 

ARAby the rice internode with attached~ pisum (cf. treatments 1 and 

3). 

Table 4.4 Relative contribution of ARA by G. pjsum on a section of rice 

internode on 7.8.83 at 1300 h (mid-time)(34° C; surface light 
-2 -1 flux 2230 )Jmol m s , with ca 707. thin cloud 

-2 -1 cover;incubation light at 443 )Jmol m s ; n = 6) 

materials incubated 

(treatment) 

1. internode 

with attached G. pisum 

2. scraped G. pisum 

3. internode 

without G. pisum 

a 

biomass
3 ARA 

d. wt (mg) chl a (JJg) 

521 35.28 

(internode) (~ pisum) 

35.28 

521 

12.12 

5.31 

0.9Y 

little differences were found in d. wt and chl a determinat:Jons of 
different treatments. Values quoted here are corrected to compare 
different treatments. 
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4.4 Diel variation in ARA 

Diel changes in ARA and environmental variables were studied in 

situ over 24 h on 20/21.8.83. ARA was assayed at 30 min intervals 

incubating with c2H
2 

for 60 min in serum bottles (Section 2.1.4). 

Incubation vessels were covered with neutral density filters to give 

approximately the same light flux as colonies at -30 em in the field. 

Incubations were done in a channel beside the main road at -4 em, The 

diel variation in ARA and environmental variables are shown in Fig. 4.2 

and Table Cl. The diel variation in ARA was marked and usually the 

higher the light flux, the higher activity was observed (Figs 4.2, 4.3) 

although there was still considerable ARA at night (3.7% of the total 

ARA). 

4.5 Summary 

Transfer of G. pisum to reduced light brought about a marked 

reduction in ARA during the first one and half hours incubation. The 

nitrogenase activity ranged from 0.234 to 0.352 nmol c
2

H
4 

JJg chl a-l 
-1 min at around mid-day, by the alga being scraped from the rice tillers 

(Table 4.1). Within the deepwater rice field, ARA was quantitatively 

important down to about -155 em and node -6 of a rice tiller. About 91% 

of the total ARA was due to the ~ pisum. Usually the higher the light 

flux, the higher ARA was observed. At night, 3. 7% of the total ARA 

occurred. 
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Fig. 4.2 

~·. 

'I 

Diel variation of environmental variables a.nd ARA 
H 

for G. pisum in situ on 20/21.8.83. Temp., o2 and p 

at -30 em, the depth from where alga originated; 

PAR at incubations (each point is the mid-time of 

incubations; n==6 ). 
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Fig. 4. 3 Relationship between ARA and light flux during 

the course of the day (on 21.8.83) ; light flux 
l:.he was 

is for the point wherehalga~incubated (derived 

from Fig.4.2). 
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5 MORPHOLOGY OF Gloeotrichia pisum D613 

5.1 Introduction 

The field studies (Section 3.2) showed that ~ pisum could form a 

colony. hair, gas vacuole and akinete, and that cell division was not 

restricted to the base of a hair. Developing filaments of field G. 

pisum were composed of several 5-9 celled groups, which looked like 

hormogonia (Fig. 3.2C). Whether these groups subsequently act as 

hormogonia is not known. Akinetes may be formed in different ways 

(Section 3.2.3). The significance of participation of several cells in 

the formation of a long akinete is also not known. However, from the 

literature review (Section 1.4.5) and from studies on field material, 

the following questions arise: 

(i) 

(ii) 

(iii) 

(iv) 

does a meristematic zone exist ? 

which portion of a trichome develops into a hormogonium ? 

which cell of a trichome is "sacrificed" for the release 

of a hormogonium ? 

which cell of a hormogonium differentiates into a 

heterocyst ? 

(v) how are akinetes and hairs formed ? 

(vi) how does colonization take place ? 

5.2 Structure 

5.2.1 Hormogonia 

The alga was grown in the liquid medium, in the standing condition 
-2 -1 and under continuous light flux of 60 pmol m s (Section 2. 2. 5. 6). 

Three to four day old culture was studied (unless stated otherwise). 

Hormogonia are short segments of filament consisting of a variable 

number of cells, usually 5-8 (x = 7.0, ± 1.6, n = 25), rarely as low as 

2 or as high as 20 (Figs 5 .lA, 5. 2A). The length of hormogonia varies. 

from 30-65 ~m (x = 44, ± 6.7, n = 25) and breadth from 2.5-5.0 ~m (x = 

3.3, ± 0.6, n = 25). The basal cell of a newly liberated hormogonium is 

usually shorter than the tip cell. Hormogonia do not have gas vacuoles 

and polyphosphate granules but do have abundant cyanophycin granules. 

There is no mucilage sheath around the hormogonium, but mucilage i.s 

secreted during its movement (Fig. 5.7C). 

Hormogonia show g.l iding movements by clockwise ( forw;Jrd) and 
-'} -1 

anticlockwise (backward) rotations. On a gJaHH slide at 60 pmol 111 · s 
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light flux and 32° C, newly released hormogonia move at the rate of 1.61 
-1 1 J.Jm s (± 0. 27, n = 25) whilst on 1% agar the rate is 1. 38 1-1m s- (± 

0.17, n = 25). To observe whether or not the basal cell of a 

hormogonium differentiates into a heterocyst,athree day old colony was 

transferred onto the agar with a wire loop. From the time of release, 

the hormogonium was kept under continuous observation until it became 

non-motile, to keep track of the basal cell. The hormogoniumgradually 

became sluggish and then non-motile, 2-4 h after release. No visual 

changes were observed during this period. Within the next 10 h, cross 
ed 

walls became deeply constricted, cvanophycin granules disappea~ and the 
of the parent trichome 

basal cell (which had been towards the heterocys~ differentiated into a 

heterocyst. The time period for heterocyst differentiation varied from 

14 to 24 h (n = 4). Cell divisions do not occur before heterocyst 

differentiation. 

5.2.2 Filaments 

A chain of cells with a fully differentiated heterocyst and the 

same number of cells as in the parent hormogonium can be regarded as a 

juvenile filament (Figs 5 .lB, 5. 2B). Division and redivision of cells 

(filament at this stage, but before hormogonium formation, is regarded 

as developing filament Figs S.lC-E, 5.2C-E) produce a mature filament 

with a hormogonium at the apex (Figs 5 .lF, 5. 2F-G). Mature filaments 

range from 138 to 213 JJm in length (x = 174, ± 18, n = 25) and usually 

appear segmented. In old cultures the filament can be much longer. The 

number of cells in a mature filament is variable ; it depends on the 

sta.te of hormogonia development and release, and ranges from 33 to 48 (x 

= 38, ± 4. 5, n 25). Heterocyst frequency at this stage ranges from 

2-3% (x = 2.73, ± 0.48, n = 25) while at the juvenile stage it was 15.2% 

(± 3.7, n = 25). Cell length and breadth are extremely variable 

depending upon the developmental stage and culture age, being longer and 

narrower in the older culture. Heterocysts are 7-10 J.JID (x = 8.0, ± 0.9, 

n = 25) in diameter and usually spherical to slightly conical in shape. 

The sheath is hyaline and may extend slightly beyond the apex of 

the trichome (Fig. 5.7M). The sheath gradually becomes thicker as the 

alga becomes older. In cultures of more than 30 days old there are 

obvious changes in filament morphology which include formation of false 

branches and bulging of trichomes (Fig. 5. 6A-D). These changes were 
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Fig. 5.1A-F.Developmental stages of filaments of Gloeotrichia pisum 

D613; stages selected from 3-4 day old batch culture (liquid). 

A. Hormogonium; note abundant granulations. 

B. Juvenile filament, with heterocyst. Note enlarged 

cells with constricted cross walls but no cell 

division or granulations. 

C. First division in the tip cell. 

D. Developing filament with two more divisions in 

terminal cells (0 7-o8 & tip cells) producing two 

groups of four cells each. Note that the 06-07 cell 

did not divide but the o5-o
6 

cell has divided; 

granules appeared. 

E. Repeated divisions of cells of each group, 

particularly terminal ones, producing a long and 

distinctly segmented filament. Division pattern in 

each group of cells has been adapted from agar plate 

study (Fig. 5.3 F-G); sheath extended up to the tip 

but only partly shown. 

F. Mature filament with terminal group of cells being 
a 

released as~hormogoniurn, leaving behind the necridium. 

Note the differentiating necridium(arrow) from the 

basal cell of o7-o8 group; cell next to the heterocyst 

(0
1
-02) also undergoing division. 

(0
1

, 02 ••• 0
8 

indicate mother cross walls; successive 

divisions in each group are shown by numerals). 
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Fig. 5.2A-J.Developmental stages of filaments of Gloeotrichia 

pisum 0613 ; stages selected and photomicrographed 

from 3-4 day old batch culture (liquid). 

A. Hormogonium ; note abundant granulations 

B. Juvenile filament with heterocyst ; note much 

less granulation. 

C. In the upper filament, the tip cell (arrow) has 

divided once, whilst in the lower filament, the 

tip cell has divided three times producing a 

terminal group of four cells. Note the cell below 

has divided once (arrow); granules appearing. 

D. Cell division has progressed down to 6th cell 

(arrows). 

E. Three more divisions in the terminal group of cells 

producing a seven-celled group. Note a four-celled 

group below the terminal group of cells. 

F. Long filament with groups of cells in a row, 

virtually similar in length. 

G. Mature filament. Note division of basal cell 

of the terminal group of cells producing necridium 

(arrow) and that cell division has progressed down 

to cell next to heterocyst ; the whole trichome 

appearing segmented because of the deeply 

constricted mother cross walls. 

H. Two terminal groups of cells, showing the 

differentiating necridium (arrow), formed by 

division of basa.l cell of the terminal groups 

of cells. Note the enlargement of cells and the 

unequal cell divisions (d). 

I. Terminal group of cells being liberated as 

hormogonium (ho) leaving behind the necridium (n). 

J. Filament after two subculturings to fresh medium at 

24 h interval. Note that the heterocyst and only a 

basal four-celled group remained after liberating 

all the groups as hormogonia. 

(scale: 10 IJm) 
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presumably due to the in situ germination of hormogonia trapped within 

the thick sheath. Divisions in terminal cells of juvenile filaments 

(see Section 5.3.1) create pressure on the surrounding sheath. 

Ultimately the growing apex comes out by bursting the sheath as a single 

false branch (Fig. 5.6A, C-D). Several hormogonia can germinate in this 

way producing several false branches (Fig. 5.6C). Cells in the median 

region of the developing trichome may divide more than the terminal 

cells resulting in the formation of loops (Fig. 5.6A-C). This happened 

due to the inability of the growing trichome to slide through the thick 

sheath, presumably due to constrictions of the sheath around cross walls 

(Fig.5.6B). However, the basal cell in each case develops into a 

terminal heterocyst and ultimately appears as a tolypothricoid filament 

(Fig. 5.6C). 

In addition to the basal heterocyst, a terminal heterocyst may 

also be developed at the apex (Fig. 5.6G). In old cultures the 

heterocyst is also observed to germinate (Fig. 5.6E-F) . .i\kinetes and 

hairs were not found in the lahoratory. 

5.2.3 Colonies 

Under standing conditions (in the growth room : Section 2.2.5.6) 

the alga forms patch~s of floating colonies which appear as small 

dark-brown beads after about two days' growth (Fig. 5. 7 A). After first 

sub-culturing to the shaking tank, circular colonies appear on the side 

of flasks (Fig. 5.7B) as well as some floating colonies. After several 

more sub-cultures, colonies appear as long "ropes", attached to the 

bottom of flasks. Each small bead is usually larger than 0. 5 mm and 

appears as a distinct radiating structure with hanging "rope" (Fig. 

5. 7H-J). Ropeless conical (in side view) colonies were also observed 

occasionally (Fig. 5.7M). The colonial structure at different stages is 

described and illustrated in detail in Section 5.3.2. 

5.3 Growth and development 

5.3.1 Filaments 

In a four-day old liquid culture (standing, continuous light flux 

f 60 1 - 2 s-1 ) diff f fil d 1 o )Jmo m erent stages o ament eve opment were 

studied (Figs 5.1A-F. 5.2A-J). In young filaments repeated divisions 

(transverse) at the distal end produced several daughter cells and these 

remain together as small groups (Figs 5 .lC-D, 5. 2C-F). Divisions were 
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restricted not only to the tip, but also to cells towards the heterocyst 

(Figs 5 .lF, 5. 2G). In all cases, daughter cells of each parent cell 

appeared to remain together forming several groups in a row (Figs 

5 .lE-F, 5. 2F-G). In a mature filament, the basal cell of a terminal 

group was found to divide producing a basal necridium (Fig. 5.2G-H), the 

death of which resulted in the release of the terminal group as a 

hormogonium (Figs 5 .lF, 5. 21). It was also observed that several such 

groups can be released successively, leaving only a very short section 

of the trichome next to the heterocyst (Fig. 5.2J). However, it appears 

from the above observations that growth in this alga was diffuse i.e. 

there was no meristematic zone ; the hormogonium was a group of cells 

formed by the division and redivision of a single cell of a parent 

hormogonium and the basal cell of each group divided to produce a 

necridium for the release of the rest cells as a hormogonium. The 

developmental sequence of juvenile filaments of .s_ pisum D613 was 

therefore studied on agar plates (Section 2.2.5.3) to confirm these 

observations and also to observe the pattern of cell division that 

formed each group (Figs 5.3A-G, 5.4A-D, 5.51\-C). Incubation was done 
-2 -1 

under continuous light flux of 60 ~mol m s The filament on agar 

was covered with a cover slip to study under high magnification (Section 

2.2.3.1). 

The first obvious change after heterocyst differentiation (Fig. 

5.3A) is the division of distal cells (Fig. 5.3B). The division 

proceeds towards the base, but one intercalary cell remained undivided 

for some time (Figs 5.3B-D, 5.4A-B). Simultaneous division of the basal 

and tip cells is also observed resulting in a row of cells in groups 

along the length of the trichome (Fig. 5.5A-C). Each of these groups is 

separated from the others hy cross walls of the mother cell and in most 

cases both ends are conspicuously constricted, giving a segmented 

appearance to the whole trichome (Figs 5. 3D-C, 5. 41\). The number of 

cells in each group is usually 6-9. One obvious feature is that the 

cell which will divide next is usually distinctly larger than adjacent 

cells and that the division is unequal (see also Fig, 5.2H). 

The cell division in the formation of a group of cells appears to 

follow a definite pattern, at least in the early stage of development. 

The second and third divisions occur in the upper and lower daughter 

cells respectively (Fig. 5.3C), In later stages of growth and 
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Fig. 5.3A-G.Sequential changes during growth and development of a 

trichome of Gloeotrichia pisum D613 grown on agar. 

A. Filament with proheterocyst ; note no cell division. 

B. Young developing filament. Note almost simultaneous 

divisions in some intercalary cells (0
3
-o

4
, o

4
-o

5
) 

and tip cell. 

C. Two more divisions producing three groups of four 

cells each. Note the second and third divisions 

in the upper and lower daughter cells respectively. 

D. Filament with more divisions, producing distinct 

groups of cells with deeply constricted mother 

cross walls (01 , o
2 

etc.). Note that the division 

pattern in the terminal group of cells is not similar 

to the lower groups of cells ; cell division has 

extended up to the base, while one intercalary cell 

(0
5
-o

6
) has not yet divided (see Fig. 5.4A). 

E. Elongation and more division of cells. Note second 

division in the lower daughter cell of group o2-o
3 

(see Fig. 5.4B-C): some blue-green rings appeared 

terminally, perhaps due to > 32° C temperature; 

petri dish was transferred to 25° C growth room; 

note also that the terminal group of cells has 

broken down at 5th division cross wall and that the 

terminal pa.rt is moving away. 

F. Assymmetric divisions in cells of group o
3
-o

4 
and 

also second division in the lower daughter cell of 

group 0
1
-0

2
• Note the portion of filament above 

0
5 

has dropped. 

G. Almost mature filament with more divisions in the 

upper half of each group of cells. Note three-celled 

group next to the heterocyst (see Fig. 5.40). 

(0
1

, 0
2 
••.• 0

6 
indicate mother cross walls ; successive 

divisions in each group are shown by numerals ; cell 

inclusions omitted for simplicity). 
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Fig. 5.4A-D.Photomicrographs of sequential changes during growth 

and development of a trichome of Gloeotrichia pisum 

D613 grown on agar. 

A. Developing trichome consisting of several groups 

of cells. Note deeply constricted mother cross 

walls resulting in segmented appearance of the 

whole trichome (see Fig. 5.3D for division pattern). 

B. More divisions and elongation of daughter cells of 

each group, resulting in elongation of trichome. 

Note division of cells next to the heterocyst. 

C. Second division in the lower daughter cell of the 

2nd group ; terminal group of cells has broken 

down due to ring formation (see Fig. 5.3E for 

division pattern). 

D. Almost mature filament, consisting of four groups 

of cells. Note three-celled group next to the 

heterocyst (see Fig. 5.3G for division pattern). 

(Scale : 10 pm) 
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Fig. S.SA-C.Growth and development of a trichome of Gloeotrichia 

pisum D613 showing that some intercalary groups of 

cells can be formed faster than the terminal group of 

cells. 

D-1. Fate of a trichome of a mature filament grown on 

agar. 

D. Mature filament after transfer to agar from three 

day old liquid culture ; filament at this stage 

is considered as at zero-time. Note the basal cell 

of the terminal group of cells dividing producing 

basal necridium (arrow). 

E. Filament after 14 h; 4th hormogonium (h) being 

released leaving behind necridium (n). 

F. Filament after 24 h ; seven hormogonia released. 

Note very long empty sheath cells at this stage 

had abundant granulations and as a result divisions 

were difficult to observe. 

G. Filament after 36 h ; another hormogonia released. 

Note elongation of all three groups of cells. 

}I. Filament after 50 h ; trichome almost filling the 

sheath. 

I. Filament after 62 h ; trichome filling the sheath 

and is longer than at zero-time (cf. D). Note that 

all the groups of cells have elongated several times 

the length at zero-time. 
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Fig. 5.6A-G. Morphology of Gloeotrichia pisum D613 

in old cultures. 

A. Single fals~ brancp (f. b.); note bulging (arrow) 

of trichome and terminal heterocysts (h) at the point 

of branching. 

B. Bulging trichome; note thick sheath (arrow) around 

trichome. 

C. Repeated false branching (f.b.). 

D. Geminate and single false branches. 

E-F. Germination of heterocysts, in 50 day old culture. 

G. Terminal heterocysts (h) at both ends; note 

paired heterocysts at the base. 

(scale : 20 ~m) 
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particularly in cells towards the base, a second division is observed in 

the lower daughter cell (Fig. 5.3E-F, groups o
2
-o

3 
and o

1
-o2). Fourth 

and fifth divisions usually occur in daughter cells adjacent to the 

first division cross wall (Fig. 5.3D), resulting in three daughter cells 

on either side. However, in the formation of a group of eight or more 

cells, cell division takes place preferentially in the upper half, 

producing an asymmetric group (Fig. 5.3E-G). Further growth and release 

of each group could not be followed, because of the development of a 

large air bubble around the filament. However, in the development of a 

mature filament all cells except the heterocyst undergo division and 

redivision and daughter cells remain together forming groups of cells. 

These groups maintain their identity throughout the growth of a 

trichome. 

A mature filament was then studied on agar (Section 2. 2. 5. 3) to 

follow the fate of a trichome and In particular changeH in the terminal 

and basal (next to the heterocyst) groups of cells wj th the hope of 

understanding hair and akinete formation, respectively (Fig. 5.5D-I). A 

typical mature filament is shown in Fig. 5. 5D. The basal cell of the 

terminal group has divided to form a necridium. The cell next to the 

heterocyst (group o
1
-o

2) has divided once and attained a length of 15 

~m. However, in the following description this filament has been 

considered to be a filament at zero-time. In the first 24 h rapid 

release of hormogonia occurred leaving four groups of cells next to the 

heterocyst (Fig. 5.5F). The eighth hormogonium was released within the 

next 12 h (Fig. 5.5G). Under the present conditions, hormogonia were 

released at a rate of one every 4. 6 h. During th:.f s 36 h period the 

basal group of cells (o
1
-o2) doubJed in length. However, ofter that no 

hormogonia were released but the remaining groups elongated, f 11 U n~ the 

whole parent sheath (Fig. 5.5H-I). The whole trichome was very granular 

with no vacuolations. At this stage the basal group increases its 

length to about five times that at the start. After about 60 h this 

old filament (Fig. 5.51) is longer (298 ~m) than that at zero-time 

(272 ~m). The filament then died and hence further change could not be 

studied. 

5.3.2 Colonies 

The alga was studied on agRr or liquid medium, grown in standing 
-2 -1 

condition and under continuous light flux of 60 JJmol m s (unless 

stated otherwi Re). A hormor,oni um f;ecretes muci 1 ap,e durjnf: ·1 tR movement 
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and becomes surrounded by mucilage of its own after becoming non-motile 

(Fig. 5.7C). Both on agar and a.t the liquid surface few hormogonia 

aggregate and subsequently many more come together and become entangled 

within the secreted mucilage. Aggregation of horrnogonia at the initial 

stage is irregular, parallel to or at right angles to each other, with 

the basal end not always directed towards the centre of a growing colony 

(Fig. 5.7D-F). However, it is observed that in a developing colony the 

central portion is surrounded by colonial mucilage (Fig. 5. 71) out of 

which distal ends of filaments extend (Fig. 5. 7J). The abundance of 

mucilage at the basal end has also been observed in solitary filaments 

(Fig. 5.7K). It is possible that the differentiation of the hormogonium 

into a juvenile filament and subsequent diffuse growth starting from the 

distal end (Section 5.3.1) would result in the protrusion of filament 

tips out of the colonial mucilage, giving a radiating appearance (Fig. 

5. 7H,J ,M). Attachment of horrnogonia always occurred at the centre and 

often underneath the developing colony resulting in a "V"-shaped or 

rope-like pendant structure (Fig. 5. 7G-J). However, it appears that 

hormogonia preferentj_ally attach to tips of these "ropes" (Fig. 5. 71-J). 

Transfer of developing colonies (without "ropes") to fresh media (2-5 

colonies transferred to the liquid surface by a wire loop and the flasks 

placed over aluminium foil) in the standing condition also resulted in 

"rope" formation indicating that the liberated horrnogonia (parental or 

from other colonies) glide over the colonial mucilage and participate in 

"rope" formation. The liberated hormogonia can also aggregate forming 

daughter colonies surrounding the parental colony. When the light 

source from below was removed (wrapping flask base with black polythene) 

a much shorter "rope" was formed. After several subcultures in the 

shaking tank (light from below), long "rope"-like colonies and matted 

growths were found attached to the bottom of flasks. 



94 

Fig. 5.7A-M. Photomicrographs of structure and development 

of colonies of Gloeotrichia pisum D613. Stages 

selected from stan~~ng culture (except B) on 

different days. 

A. Patches of floating colonies. Note beaded colonies. 

B. Individual colonies on the side of flasks after 

first sub~ulturing to shaker from standing 

condition. 

C-M. Stages of colony formation. 

C. Random movement of hormogonia after 12 h of 

growth on 1% agar, lacking P. Note mucilage 

tracks along the path of hormogonia and 

secretion of mucilage around non-motile 

hormogonia. Mounted in Indian ink. 

D. Aggregated hormogonia and juvenile filaments. 

Note irregular arrangement of trichomes, and 

heterocysts not always directed towards the centre 

of the aggregate. 

E-F. Aggregation of more hormogonia ; earlier attached 

ones developed into long fi+aments. 

G. Bigger colony, with many mature filaments giving 

radiating appearance. Note aggregation of 

hormogonia underneath the colony and production 

of hormogonia (arrow). 

H. Fully formed radiating colony. Note the long 

rope-like structure underneath the radiating part 

of the colony. 

I. Side view of a rope, mounted in Indian ink. Note 

colonial mucilage. 

J. Rope, where filament tips are emerging through 

the colonial mucilage. 

K. Single filament showing thick mucilage around basal 

end. Mounted in Indian ink. 

L. Developing colony showing mucilage around the 

central aggregate. Mounted in Indian ink. 

M. Side view of a mature conical colony. Note 

terminal end of filaments protruding out of the 

colonial mucilage ; rope like structure absent. 

(Scale : A-B = 10 mm ; C-M = 40 ~m). 
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5.4 Influence of light on morphology 

~ pisum D613 did not produce hairs, gas vacuoles or akinetes 

in the previous laboratory study (Sections 5.2.2, 5.3.1). Studies were 

therefore planned to investigate the influence of quantity and quality 

of light flux on the formation of these structures. The light variables 

tested are shown in Table 5.1. White light was provided from above. 

Red and green lights were provided from underneath (Section 2. 2. 5. 6)1 

flasks were covered by a wooden box with the bottom removed (treatments 

2-4), The experiment wa.s carried out in the standing condition. No 

hair, gas vacuole or akinete was found under any light conditions used. 

Table 5.1 Quantity and quality of light flux used to induce hair, 

gas vacuole or akinete formation in ~ pisum D613 (control 
-2 -1 white light at 60 ~mol m s ; continuous light) 

treatment 
-2 -1 light quantity (~mol m s PAR) light tra.nsmission 

1 

2 

3 

4 

gradually transferring the culture 

to lower lights on different days: 

from zero-time to I, d (at 60) ---9> 

5 to 6 d(at 40)~7 to 9 d(at 30) 

10 to 12 d (at 20)-. end of 

experiment (at 15) 

15-20 (before passing through 

filter was 130 ± 9) 

15-20 (before passing through 

filter was 105 ± 7) 

7-9, achieved by placing a neutral 

density filter over red filter 

quality 

white 

red 

green 

red 

band (nm) 

> 330 

> 590 

463-570 

and > 700 

> 590 

In another experiment the influence of light and dark cycle (12:12 

h ·. S · 2 2 5 6) h 1 b d White (6.() "mol m- 2 "· -l) ect1on • . • on morp o ogy was o serve . p ~ 

-2 -1 and red (7-9 ~mol m s ; light quantity before passing through filter 
-2 -] 

was 60 ~mol m s ·) light was used. No hair, gas vacuole or akinete 

was found in either treatment. 

The literature (Section 1.6) indicated that gas vacuole formation 

can be enhanced by low light. In another experiment the alga was 

therefore ~:~cclimatized at a range of low values of light flux, under 
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continuous and light and dark conditions, and subsequently subcultured 

to the similar or different light conditions to induce gas vacuole 

formation (Table 5.2). Only newly liberated hormogonia were studied. 

Gas vacuoles were not found under any treatment. 

Table 5.2 Acclimatization of~ pisum D613 in different low light 

conditions and subculturing to similar or different light 

conditions to induce gas vacuole formation 

acclimatization (for 15 d) subsequent growth conditions 

light flux continuous light/ light flux continuous light/ 

()Jmol 
-2 -1 

light and dark (J.Jmol 
-2 -1 

light m s ) m s ) and dark 

(12:12 h) (12:12 h) 

2.5 continuous light 2.5 continuous light 

5.0 II II 5.0 II II 

5.0 II II 2.5 II II 

10.0 II II 10.0 light and dark 

2.5 II II 2.5 II II 

5.0 light and dark 5.0 II II 

10.0 II II 2.5 II " 
20.0 II II 2.5 " " 

5.5 Influence of nutrient deficiency on morphology 

Q.:._ pisum D613 did not produce hairs or akinetes tmder different 

combinations of light quantity and quality (Section 5.4). The influence 

of nutrient deficiency on the formation of these structures was 

therefore investigated. 

In one experiment the alga was grown in media lacking P or Fe, 

under continuous light flux of 60 ~mol m-
2 

s-l No hair or akinete was 

formed. 

In another experiment a slightly modified medium, Chu lODX 2 Fe0 .
5 

P
0

_
9
-N (Section 2.2.5.3) was used. It was hypothesized that an excess 

of some' elements and a deficiency of P or Fe or a combined ef feet with 

one of the light variables (Table 5 .1) may influence hair or akinete 

differentiation. In addition to the continuous light flux, a light and 

dark cycle (12:12 h) was also used. Only one filament was found with an 

enlarged cell, resembling the early stage in akinete differentiation, 
-2 -1 

after 50 days growth under continuous red light at 15-20 )Jmol m s 
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PAR (Fig. 5.8). A similar structure was also observed in a 70-day old 
-2 -1 

culture, grown under continuous light at 60 ~mol m s . No hair was 

observed under any treatment. 

5.6 Summary 

Growth of G. pisum D613 filaments in the laboratory is diffuse, 

i.e. there is no meristematic zone. A trichome is composed of several 

groups of cells attached to the heterocyst. Each group is derived by 

the division and redivision of a single cell of the parent hormogonium. 

Each group appears to have been liberated from the tip of a filament as 

a hormogonium. At the time of release, the basal cell of each group 

divides. The lower daughter cell, the necridium, dies, the hormogonium 

is released and the basal cell (youngest) develops into a heterocyst. 

Under usual experimental conditions (Section 2. 2. 5. 6) akinetes are not 
a 

produced but the cell next to~heterocyst divides producing a group of 

cells. Hairs and gas vacuoles were not found. Attempts to induce the 

formation of akinetes, hairs and gas vacuoles, using different 

quanti ties and qualities of l:f ght, and nutrient deficient media, were 

unsuccessful. During the co]oniz<ttion, the initi;JJ aggregnt:lon of 

hormogonia seems to occur by chance ;md is entangled within the mucilage 

but some other factors may he involved in the subsequent aggregation 

which is always at the centre of a developing colony. The radiating 

nature appears to develop due to mucilage at the basal end and diffuse 

growth usually at the terminal end. 
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Fig. 5.8 Enlarged cell resembling the early stage in 

akinete formation of ~ pisum D613 (grown in 

Chu 10DX2 Fe0• 5 P0 9-N under red light 
0 -2 -1 (continuous) at 15-20 ~mol m s PAR). 
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6 GROWTH CHARACTERISTICS OF Gloeotrichia pisum D613 

6.1 Introduction 

The literature (Section 1.6) indicates that ARA of an alga can be 

related to its growth characteristics, such as developmental stage or 

heterocyst frequency. These are features which change during growth in 

batch culture (Section 5. 3). Experiments were therefore planned to 

characterize the growth rate of this alga, such as influence of light 

flux on growth, morphology of colonies and filaments in batch culture, 

including heterocyst frequency and cel1 inclusions. 

6.2 Influence of light flux on growth rate 

The influence of light flux on growth rate was studietl in standaril 

conditions (apart from light fluY) in the shaker (Section 2.2.5.6) • The 

alga was grown in the respective light flux for two subcultures. It was 

difficult to standardize the inoculum. The range of inocula used was 
-] -1 

from 7.8 to 14.5 mg 1 - dry weight and 0.1 to 0.2 mg 1 chl a. The 

influence of light flux on growth rate is shown in Fi_g. 6.1, Tables 6.1 
-2 -1 

and C2. Light saturation occurred between 50 and 100 jJmol m s 

Because ofalimited number of pofnts on the graph, it was difficult to 

identify the exponential phase of growth. Apart from growth at 25 JJmol 
-2 -1 

m s the alga showed approximately exponential growth from about 

zero-time to two days at all light fluxes(Fig. f>.l). However, in the 

calculation of k' , zero-time to two days and one to two dnys have he en 
-2 -) 

considered and summarized in Table 6.1. At 100 pmol m :-; nntl 

considering yield from zero-time to two days, the a!g<J kH1 D mean 

generation time of about 15 h. 

Table 6.1 
I 

Influence of light flux on specific growth constant (~) and 

light 

flux 

mean generation time (G) of ~ pisum D613 (inoculum eight 

days old ; 32° C; continuous light; shaking) 

d. wt chl a -
k' G(h) k' G(h) 

-2 -1 
(JJrnol m s ) 0-2 d 1-2 d 0-2 d 1-2 d 0-2 d 1-2 d 0-2 d 1-2 

25 0.219 0.289 33.0 25.0 0.241 0.228 30.0 31.7 

50 0.412 0.438 l7. 5 ln.5 0.42 0.509 17.2 14.2 

100 0.41J:' 0.401 I 'i. r, IH.O 0. ltk6 O.'i05 1 L,. 9 11, • 'l 

I ') o O.lt/H ().It! I (, . 'J I/ .l O./J9 1J (). ') }(, 1 1, • ', I ·1. I 

L'OO (). 
1

) ()I, o. sn 1 I, • 'l 1!.6 0.')()/ (). (J}'i It, .l II. h 

~''i . 
I 
l -

d 
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Fig. 6.1 Influence of light flux on growth rate of 

~ pisum D613 (inoculum eight days old 

32° C ; continuous light ; shaking ; n 4). 
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In another experiment, the alga was grown at about 2 ~mol m- 2 s-l 

for three subcultures, under continuous light and shaking. 

showed visually obvious growth by 30 days. 

The alga 

It was then decided to find out the compensation point of the alga 
-2 -1 

by growing at low-light flux (~ 2 ~mol m s ) directly transferring 
-2 -1 

from 60 ~mol m s , The flasks surfaces were covered with aluminium foil to 

avoid any incident light other than that coming from underneath. The 
-2 -1 

alga showed a compensation point at about 1.5 pmol m s (Fig.6.2). 

6.3 Change in morphology and chlorophyll a content during growth 

in batch culture 

A detailed study of the changes in morpho] ogy, chl a content and 

other growth characteristics has he en made in hntch culture. 

experiment was carried out under continuous J ight at 
-2 

(The slight shift from previous light 100 ~mol m 

-'} 
105 pmol m · B 

-1 
s , was due 

The 
-1 

to 

differences in arrangement of illumination in the tank.) Six day old 

alga was used as the inoculum. The growth curve and other growth 

characteristics are shown in Fig 7.1 and Tables 6. 2 and 6. 3. (ARA was 

also measured : Section 7.2.) 

The ratio, chl a : d. wt varied according to the growth phases 

(Fig. 7.1). During "exponential" phase (zero-time to two days) it 

ranged from 0.007 - 0.012 and the lowest ratio was obtained after about 

a day. 

In order to study the developmental characteri~:>ticr; of the .1lga, 

colonies were examined on different days (Tnhle 6.7) nnd other 

morphological characteristics were recorded (Tnhle h.3, see Section 

2.2.4). As the alga is colonial, it was difficult to count individual 

filaments. A subjective visual estimate of dj_fferent growth stages (see 

Section 5.2) of filaments was therefore made at low magnification 

(Section 2.2.3.1). After about a day, colonies appeared, consisting 

mostly of juvenile filaments and attached hormcgonia (Table 6.2). After 

about five days, colonies were composed of mostly mature filaments. 

The culture turned light yellow-green after about a day and dark-brown 

within the next 24 h. 

The highest heterocyst frequency ( ~ 6%: Fig. 7 .1) was obtained 

during exponential growth and this wns due to the abundance of juvenile 

and also developing filaments i11 the popul<1tlon (see Section ').2./). 

The IH.'terocy~H frequency dt·<·l·fncd tlu•r('alter due to th(• incrf':ttwd uumher 

of vegetative n•lJs per f i lam('nt sr-I II C'omhlned with only ont> lu•tt·rocyHt 

(Section 5.3.1). 
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Fig. 6.2 Compensation point of ~ pisum D613 in 

standing condition and continuous light 

flux (growth measured after 30 days ; light 

from underneath ; n = 3). 
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Developmental characteristics and changes in culture colour 

during growth of s_ pisum D613 

developmental characteristics 

colonies composed of long mature filaments; 

juvenile filaments rare 

colonies long, cylindrical a.nd rope-like, 
mostly 

consisting~of juvenile filaments and 

completely surrounded by colonial mucilage,i.e 

without protruding filaments tips ; hormogonia 

also attached to the rope 

part of a colony with mature and developing 

filaments with tips protruding out of the 

mucilage giving radiating appearance, while in 

the rest, juvenile filaments embedded 

within colonial mucilage and hiLVl~ attached 

hormogonia as in day one 

colony with much longer rope, about one half 

of which composed of radiating mature 

filaments, while the other half composed of 

mostly developing filaments, with juvenile 

filaments found only in the extreme tip of 

the rope 

most of colony composed of mature and developing 

filaments with other stages of filaments at 

the extreme tip of the rope 

colonies composed of mostly mature filaments 

while developing filaments and other stages 

of filaments rare 

colonies as in five day old culture but with 

much longer filaments 

culture 

colour 

yellow-

green 

light 

yellow-

green 

dark-

brown 

dark-

brown 

dark-

brown 

greenish 

yellow-

green 
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The occurrence of cyanophycin and polyphosphate granules at 

different stages of filament development is shown in Table 6.3. 

Hormogonia always had abundant cyanophycin granules but mostly lacked 

polyphosphate granules (checked after staining: Section 2.2.4.2). On 

the other hand juvenile filaments were without visible cyanophycin 

granules, but vith abundant polyphosphate granules. Mature filaments in 

4 to 6 day old culturesalways had both granules. 

Table 6.3 The occurrence of cyanophycin and polyphosphate granules 

at different stages of filament growth of ~ pisum D613 

(studied during growth curve for 6 days) 

developmental 

stases 

1. hormogonia 

2. juvenile 

filaments 

3. developing 

filaments 

4. mature 

filaments 

6.4 Summary 

cyanophycin 

always present 

absent 

rarely present at 

stationary phase 

always present, few at 

exponential phase but 

abundant at stationary 

phase 

polyphosphate 

if present, very small 

abundant, gradually 

decreasing distally 

abundant, gradually 

decreasing distally 

abundant, gradually 

decreasing distally with 

few or no granules in the 

hormogonial segments 

-2 -1 Light saturation for growth occurred at about 100 pmol m s , at 

32° C with a mean generation time of about 15 h. The exponential phase 

was about two days. The lowest chl a : d. wt ratio occurred after about 

one day and highest after about three days. Highest heterocyst 

frequency was about 6% and occurred during exponential phase of growth. 

Juvenile filaments were abundant after about a day of growth. These 

were always 'dthout visible cyanophycin granules but with abundant 

polyphosphate granules. 



7 ARA (NITROGENASE ACTIVITY) BY Gloeotrichia pisum D613 
IN THE LABORATORY 

7.1 Introduction 
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The literature (Section 1.6) indicates that ARA can be related to 

environmental factors such as light flux. Assays with s_ pisum at 

Sonargaon indicated (Sections 4.2, 4.4) that usually the higher light 

flux, the higher rate of activity, although there was still considerable 

ARA in the dark. Laboratory studies on ARA were therefore planned with 

the following objectives : 

(i) to quantify changes in ARA and ident1fy possible reasons 

for such changes during hatch culture; 

(ii) to quantify percentage changes and speed of reHponsp due 

to change in light flux; 

(iii) 

(iv) 

to see how pretreatment in the dark influences ARA after 

transfer to light; 

to qua.ntify ARA in the dark 

7.2 Growth and ARA 

ARA was measured parallel to the study of growth characteristics 
-2 -1 at 105 ~mol m s (Section 6.3) in hatch culture. The changes in ARA 

and their relation to growth characteristics are shown in Fig. 7.1 and 

Table C3. Maximum ARA occurred after about one day of exponential 

growth. This was followed by a decrease in ARA (per unit ch1 ~), hut 

with activity still detectable after 20 days. Specific act1vHy and 
-1 -1 

total nmol c
2
H

4 
1 min declined long before the exhaustion of P from 

the medlum (Table CJ). 

7.3 Influence of light flux on ARA 
-2 -1 

The alga was grown at 105 ~mol m s for about 36 h and then 

incubated at lower values of light flux (Section 2.2.5.6). The wrapping 

with neutral density filters, c
2
H

2 
injection etc. required about 45 s. 

The influence of downshift in light flux on ARA, is shown in Tables 7.1 

and 7. 2. A transfer to lower values of light flux and dark brought 

about a marked reduction in ARA during the first hour of incubation. A 

reduction by about 50% of the initial light brought about a reduction in 

ARA hy about 30%. 
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Fig. 7.1 Growth characteristics and changes in ARA 

of ~ pisum D613 in batch culture (inoculum 

six days old; 32° c; 
continuous light flux; 

n = 4). 

-2 -1 105 IJIDOl m S 

continuous shaking; 
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Table 7.1 Influences of downshift in light flux for one hour on ARA 

light 

(J.Jmol 

flux 

of ~ pisum D613 (based on an independent experiment with one 

replicate; inoculum three days old; control of 105 ~mol m-2 

s -1) 

% reduction of light n - % of control ARA 
-2 -1 m s ) range X 

80 20 3 86-93 90 

50 so 3 66-73 69 

25 75 3 37-39 38 

12.5 87.5 3 22-28 25 

6.3 93.7 3 14-17 16 

dark 100 3 11-16 13 

In order to study the speed of response to the downshift in light, alga 
2 -1 grown at 105 )Jmol m- s for 36 h, was incubated at different values of 

light flux for about six hours and ARA was measured. The response in 

ARA to all reduced lights was fast. The values apparently level off 

between one and one and half hours after transfer (Table 7.2). 

In order to study the speed of response to an upshift in light 
-2 -1 flux, the alga was grown initially at 12.5 )Jmol m s for five days 

-2 -1 and then acclimatized at 6. 3 )Jmol m s for one day (considered as 

the control). Growth (as dry weight) at this stage was similar to that 
-2 -1 

obtained after 36 h of growth at 105 ~mol m s in the previous 

experiment. When the alga was transferred to higher light, response in 

ARA was also fast and appeared to level off between 1.5 and 2 h (Table 

7.3). 

7.4 Influence of pretreatment in dark on ARA after transfer to light 

The alga was grown at 105 )Jmol m - 2 s -l for 36 h and then 

incubated in the dark for 12, 24 and 48 h. During dark incubation 

flasks were wrapped first with neutral density filters according to the 

light flux to be used in the subsequent light phase. This ensured the 

alga would not be exposed to higher light during c
2
u

2 
gassing, 

equilibration etc. Flasks were finally wrapped with aluminium foil and 

black polythene. After dark incubation, alga was exposed to djfferent 

light flux and ARA was measured. The influence of pretreatment in the 

dark on ARA in the subsequent light phase is shown in Fig. 7.2. It is 

clear that the shorter the dark period, the quicker the response of ARA. 

This occurred at all values of light flux. SpecHic activity dropped 

markedly within 10 h of light treatment, after reaching maximum between 

four and six hours. Dark incubation of 12 h resulted in a decrease in 



Table 7.2 

light flux 

(JJIDO 1 rn 
-2 

105 

so 
50 

25 

12.5 

6.3 

dark 

Influence of downshift in light flux for periods one 

to six hours on ARA of ~ pisurn D613 (initial growth: 

105 jJID01 ID 
-2 -1 

s for 36 h ; n = 1) 

-1 
ARA (nrnol c

2
H

4 
rng d. wt-l rnin-1 ) after a period of incubation in different light flux (% of control) 

s ) l.Oh 1.5 h 2.0 h 

13.6 (100) 13.7 (100) 12.3 (100) 

12.6 ( 93) 12.3 ( 90) 11.3 ( 92) 

9.9 ( 73) 9.6 ( 70) 10.0 ( 81) 

5.0 ( 37) 5. 2 ( 38) 4.8 ( 39) 

3.2 ( 24) 2.9 ( 21) 2. 9 ( 24) 

2.3 ( 17) 2.2 ( 16) 2.1 ( 17) 

1.8 ( 13) 1. 7 ( 12) 1.7 ( 14) 

2.5 h 3.0 h 

13.3 (100) 14.2 (100) 

12.6 ( 95) 14.5 (102) 

9.9 ( 70) 11.1 ( 7 8) 

6.1 ( 46) 5.0 ( 35) 

3.1 ( 23) 2. 9 ( 20) 

2.3 ( 17) 2.7 ( 19) 

1.6 ( 12) 2.0 ( 14) 

6.0 h 

11.9 (100) 

12.7 (107) 

12.9 (108) 

8.3 ( 70) 

5.0 ( 42) 

3.0 ( 25) 

1.5 ( 13) 

f-' 
f-' 
w 
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Table 7.3 Influence of upshift in light flux on ARA of .Q..:_ Eisum D613 

(control at 6.3 ).Jmol -2 -1 
1) m s n = 

ARA (nmoJ c2H
4 

mg d. -1 wt -1 min ) 

light flux after a period of treatment in different Hght flux 

(.umol 
-2 -1 

l.Oh 1.5 h 2.0 h h m s ) 2.5 3.0 h 6.0 h 

105 9.2 11.5 12.7 11.0 10.6 11.5 

80 8.5 10.5 12.7 11.5 10.3 12.6 

so 7.4 9.8 10.8 10.2 10.2 10.5 

25 7.2 8.2 8.3 9.0 9.7 7.7 

12.5 5.1 5.5 7.5 7.0 6.8 4.11 

6.3 3.1 3.7 2.6 2.7 2.9 2.2 

dark <detec- <detec- <de tee- <de tee- <de tee- <de tee-
tion* tion* tion* tion* tion* tion* 

* Value was not more th;m twice the mean value of hlank. 
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Fig. 7.2 Influence of pretreatment in dark for 12, 

24 and 48 h on ARA, upon reillumination 

by ~ pisum D613 (each point is the mid-time 

of incubation; n = 1). 
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dry weight by about 15% and it remained unchanged after 24 and 48 h 

(Table 7. 4). However, a pretreatment in the dark, resulted in higher 

ARA than was obtained during the growth under continuous light (cf. Fig. 

7.1). An experiment was therefore planned to see how dark treatment had 

influenced higher ARA in the subsequent light phase (Fig. 7. 3, Table 
-2 -1 C4). As in the earlier experiment, alga was grown at 105 ~mol m s 

for 36 h, after which flasks were divided into two series, continuous 

light and dark. After 12 h of dark treatment the alga was exposed to 

the initjal light condition and ARA was measured at regular intervals to 

record maximum ARA. The ARA was also mea.sured during growth under 
tl\e ARA. of 

continuous light to record maximum ARA and compare withtthe dark treated 

alga. Transfer of dark treated alga to the initial light led to much 

higher ARA than was found under continuous light. Dark treatment caused 

ARA per unit d. wt to increase by about 100% in the subsequent light 

phase compared to continuous light (Flg. 7.3) 

Table 7.4 Changes i.n dry weight due to dark incubation for varying 

periods in G. Eisum D613 (n == 5) 

time (h) 

zero-time 12 h 24 h 48 h 
-1 

41.4 d. wt (mg 1 ) :t 1.8 35.9 :t 1.7 36.2 :t 0.4 34.6 ± 1.4 

7.5 ARA in the dark 

In the previous sections (7.3, 7.4) it has been shown that within 

one hour of transfer to dark, ARA declined sharply to about 13% of the 

light control. The decline afterwards was slow (Table 7.2) with 

detectable activity after about 12 h (Table D4). In the present 

experiment the alga was treated in dark for 48 h to see whether dark ARA 

still occurred. The alga was grown at 105 pmol m - 2 s -l for 36 h and 

then dark incubated. At the end of the experiment, the culture was found 

to be axenic. Detectable ARA was found after 24 h of dark treatment 

(Table 7.5). 

Table (nmol 
-1 -1 0613 the dark 7.5 ARA C2H4 mg d. wt min ) by c. pi sum in 

light ARA dark incubation (mid-time) ARA 

zero-time 0.5 h 1.5 h 2.5 h 5.5 h 8.5 h 11.5 h 23.5 h 47.5 h 

14.27 2.28 2.16 2.20 2.39 2.48 0.29 0.30 * 
±0.89 ±0.17 ±0.28 ±0.26 ±0.09 ±0.06 ±0.17 ±0.08 <detection 

n == 5 n == 3 n == 3 n == 3 n == 3 n == 3 n == 3 n == 3 n == 3 

* Value is not significantly different from the blank 
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Fig. 7. 3 Influence of pretreatment in dark for 12 h 

on ARA, upon reillumination by ~ pisum D613 

(each point is the mid-time of incubation; 

n = 4; -o- continuous light, -•- dark, 

-~- reillumination) 
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7.6 Summary 

Maximum ARA occurred after about one day of exponential growth. 
-2 -1 A reduction of initial full light (105 ~mol m s ) by about 50% 

for an hour brought about a decrease in ARA by about 30%. The response 

of AR_A. to change in light (downshift or upshift) tvas fast. 

Dark pretreatment led to ARA per unit d. wt being increased by 

about 100% in the subsequent light phase. The shorter the dark period, 

the quicker the response of ARA. The ARA was detectable after 24 h of 

dark treatment. 
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8 DISCUSSION 

8.1 Introduction 

In Bangladesh, deepwater rice yield is relatively stable year 

after year with little or no addition of fertilizers. An important part 

of this fertility has been attributed to the presence of blue-green 

algae (Sections 1.2.3, 1.3). Of the various blue-green algae, 

Gloeotrichia pisum is one of the most widespread, growing as an epiphyte 

on the deepwater rice. The alga occurred abundantly at Sonargaon in 

1983, when intensive field studies were made. G. pi sum was therefore 

considered for the field studies, whilst for laboratory studies, G. 

pisum D613, an isolate from the same locality (Section 2.2.2.1) was 

used. 

An effort has been made in all parts of this work to coordinate 

field and laboratory studies. The alga showed obvious similarities and 

dissimilarities in morphology and nitrogenase activity in the field and 

the laboratory, and the following discussion deals with some of these 

features. 

8.2 Morphology and growth of Gloeotrichia pisum in the field 

and the laboratory 

Studies of G. pisum from the field showed that akinetes and hairs 

are widespread and that gas vacuolf's were also commonly found In some 

filaments of some colonies. In batch culture these structures were not 

observed under the standard experimental conditions (Table 8.1). These 

structures were not observed even at the beginning of isolation of this 

alga from enriched culture 
or factors 

an 
(Section 2.2.2.2) indicating that~inducible 

factor~(if any) released by the associated organisms, such as bacteria, 

are probably not responsible for their differentiation. 

In the field, hairs were found in filaments during the first half 

of flooding (Figs 3.1G, 3.2A-F). As mentioned earlier, hairs were not 

observed (Section 5. 2. 2) in the laboratory. Hairs in several tapered 

blue-green algae have been shown to be formed in nutrient deficient 

media (Sinclair & Whitton 1977). In the present study the alga die! not 

show any sign of hair formation in media lacking P or Fe or H] ightly 

modified medium (Section 5.5). When the n]ga was grown under diff~rent 

comhinations o1 Ught quantity and quality (Tahle 5.1), no effect WfiA 

observed. 
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In the field, gas vacuoles, when present, were found in cells 
tne 

belowkhair (Fig.J,lG), but were not observed in the laboratory. Whilst 

various tests were done to induce hair or akinete formation, hormogonia 

from young cultures were examined for the presence or absence of gas 

vacuoles (Section 5.4). In addition the alga was grown under low values 

of light flux since it is well known that this enhances gas vacuole 

formation in many blue-green algae (Walsby 1978, Walsby & Booker 1980). 

However, gas vacuoles were not found under any treatment. In standing 

conditionswhen light was provided from above, hormogonia came up to the 

surface and ultimately formed floating mats(the inoculum remained at the 

bottom of the flask). To come up to the surface, hormogonia either need 
a 

gas vacuoles for buoyancy (Walsby & Booker 1980) orLsemi-solid or solid 

surface for gliding movements(Section 5.2.1). It may be that hormogonia 

contain isolated gas vesicles sufficient to float in water (Klebahn 

1922) and these were undetectable with the light microscope (Whitton 

1972). 

Table 8.1 A comparison of field and laboratory morphologies of 

Gloeotrichia pisum 

field 

1. colonies hemispherical or spherical 

with radiating filaments; attached 

2. trichomes tapered,consisting of a 

basal heterocyst, akinete, row of 

vegetative cells in groups and may 

terminate in a hair 

3. trichome's growth diffuse 

4. gas vacuoles present in cells 

below hair 

5. akinetes very long and appear to be 

composed of more than one cell 

6. two heterocysts at the base of a 

trichome,or heterocysts ;~]ternnting 

with akinetes 

laboratory 

colonies not organized as 

in the field; filaments 

radiating; colonies attached 

or floating 

trichomes tapered consisting 

of a basal heterocyst and row 

of vegetative cells in groups 

but without akinetes and hairs 

as in the field 

gas vacuoles not found 

akinetes absent but a group of 

cells next to the heterocyst 

showed much elongation in old 

cultures 

in old cultures, commonly two 

to three basal heterocysts 

were observed; heterocysts at 

both ends observed 

occasionally 



7, hormcgonia liberated successively 

leaving empty sheath at the apex 

of filaments 
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as in the field 

8. colonies appeared about 1 mm diameter colonies appeared maximum size 

after about 8 days growth (0.5 mm diameter) after about 

4 days growth in batch culture 

under continuous light 
the 

In the field,~alga produced very long akinetes and appeared to be 

composed of more than one cell. These were not produced in the 

laboratory under standard conditions (though- see below). Variables 

tested in the laboratory were nutrient deficiency and various 
a. 

combinations of light quantity and quality. Only in slightly modified 
/. 

medium were enlarged cells with slight resemblance to early stages in 

akinete formation observed in very few filaments after 50 days under 

continuous light (Section 5.5, Fig. 5.8). Addition of distilled water 

to this old culture did not induce further development. Akinetes were 

not observed subsequent to subcultureina medium Jacking P or Fe. It 

seems unlikely therefore that akinete formation i_n this alga is a 

response to limitation of either nutrient or light flux. Although no 

akinetes were formed in the laboratory it is worth noting that the cell 

next to the heterocyst divided during trichome growth just as it did in 

field materials (Figs 3.2B-D cf. 5.2G, 5.3E-G, 5.4B-D). 

All Gloeotrichia strains that have been isolated from Bangladesh 

are without hairs, gas vacuoles or akinetes. However, at least one 

Gloeotrichia isolate in culture (Gloeotrichia D636 isolated from a rice 

field in Iraq) shows all three features (A. Al-Mousawi: pers.comm.) 

suggesting the possibility that there is some morphogenetic relationship 

between these features. 
the 

In~field the alga forms hemispherical or spherical colonies, with 

all filaments distinctly radiating and the heterocyststowards the centre 

of colonies (Fig. 3.1A-F). Colonies can increase in size and in large 

colonies zonation of filaments was observed. Tn the laboratory 

colonies with radiating filaments were formed but mature colonies were 

not as organized as in the field, i.e. rope-like structures were formed 

underneath the radiating part of colonies (Fig. 5.7H-J). It is not at 

all clear why hormogonia always got attached at the centre and 

underneath the developing colony. In the beginning of colonization 
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hormogonia appeared to aggregate by chance and become entangled with the secre~ec 

mucilage of their own (Fig. 5.7C-E). After attachment and formation of 

juvenile filaments, rapid divisions occur usually terminally (Figs 

5.1D-F, 5.2C-E, 5.3C-G). The basal end is surrounded by mucilage (Fig. 

5.7K). However, mucilage at the basal end and diffuse growth starting 

from the terminal end results in the protrusion of filaments giving a 

radiating appearance to the whole aggregate (Fig. 5.7F-H). 

In the field, the alga grew ("first flush") abundantly on rice 

tillers within 15 days of flooding and this coincides with the 

observation made by Finke & Seeley (1978) for epiphytic Gloeotrichia in 

lakes near Ithaca, U.S.A. The "second flush" of growth was observed 

after about 45 days of flooding, i.e. at about the time of the first 

flood peak. In this case numerous small colonies appeared on the newly 

submerged rice tillers after three to four days and after about eight 

days colonies attained about 1 rnrn diameter (Fig. 3.1B cf. 3.1A). The 

longer time (15 days) needed for the "first flush" of growth (Section 

3.2.1) might be due to the longer time needed to build up inocula from 

whatever source the Gloeotrichia comes (old Brahmaputra or Meghna river 

flood, tanks, hils, overwintered akinetes or filaments etc.). In the 

laboratory on the other hand the algn appeared <JS small beads after 

about two days and distinct colonies (about 0.'1 mm diameter) after about 
-2 -1 

four days (32a C, 105 pmol m s continuous lir,ht). The :-;JJghtly 

longer period required for the "second flush" in the field might he due 

to the diel cycle of light and dark or lower nutrient level (e.g. P). 

8.3 ARA (nitrogenase activity) by Gloetrichia pisum in the 

field and in the laboratory 

The influence of changes in light flux on nitrogenase activity by 
the 

G. pisum was studied inJ.-field and in the laboratory. The alga 

responded very similarly in some respects under both conditions (Table 

8.2). It showed a rapid response to the changes in light flux and was 

affected similarly due to a reduction of light flux (cf. Tables 4.1 

& 7.1). Transfer to the dark for 1.0 h reduced nitrogenase activity by 

83 to B7% (ffeJd and laboratory re~;rcctively) when compared with 

parallel incubation in the Ught. 'l'hb pcrc<•nte~ge reductJon in activity 

is consistent with some algae rcportc<l in the literature (Section 1.1) 

though Finke and Seeley (1978) ohserved 50 to 66% reduction in activity 
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within 1-2 h dark treatment. Lex & Stewart (1973) demonstrated that 

photosynthesis promotes N2-fixation by producing carbon compounds, which 

act as reductant for nitrogenase. Quick responses and decrease of 

nitrogenase activity due to a shift down in light flux suggest that 

N.,-fixation in the light is dependent upon reductant produced during 
'-

recent photosynthesis (Peterson~ al. 1977). Light flux therefore has 

a tremendous potential influence on the nitrogen input in the deepwater 

rice field ecosystem, where light flux varies markedly depending on 

parts of a field, position in the water column (Fig. 4.1), time of day 

and cloud cover (Whitton 1984). Thus the N2-fixation by S pisum in 
the period 

rice fields during~monsoonJs in constant flux even over a short period 

of time (Stewart et al. 1967). 

The other feature of nitrogenase activity common to field and 
of the alga 

laboratory was the behaviour J.-in the dark. Considerable nitrogenase 

activity was observed during the dark period of about 12 h. This is 

quite similar to the behaviour of Gloeotrichia on Myriophyllum in 

ponds near Ithaca, U.S.A. (Finke & Seeley 1978), except that a brief 

night-time maximum did not occur in the present study. Both the rate 

and duration of enzyme activity in the dark are affected by the rate of 

photosynthesis and carbon assimilation during the light period (Lex & 

Stewart 1973, Fay 1976). The night time ARA has also been attributed to 

the o
2
-scavenging bacteria (Finke & Seeley 1978) or to the utilization 

of suitable organic substances in nature (Fay 1965, 1976). Dark 

nitrogenase activity by bacteria-free .2..:._ pisum (Table 7. 5) indicates 

that these two factors may not be predominant, but rather a pool of 

carbon compounds. 

Table 8.2 A comparison of field and laboratory ARA (nitrogenase 

activity) of Gloeotrichia pisum 

field 

reduction of 1850 Jjmol -2 -1 
1. m s 

light flux by about 40% for about 

1.5h resulted in about 30% 

reduction in ARA 

2. transfer to the dark during day

time (1000 to 1230 h) resulted in 

83% reduction in ARA within 1.0 h 

laboratory 1. 
-2 -1 reduction of 105 J.Jmol m s 

light flux by about 50% for 

about 1.0 h resulted in about 

30% reduction in ARA 

transfer to the dark from 
-2 -1 105 J.Jmol m s light flux 

resulted 87% reduction in ARA 

within 1.0 h 



3. considerable ARA occurred during 

night-time (total period ca 11.0 h) 

4. maximum ARA of about 0.352 nmol 
-1 -1 c

2
H

4 
~g chl ~ min at a light 

_? _, 

flux of about 1825 ~mol m ~ s ~ 

5. not studied 

detectable ARA occurred even 

after 24 h in the dark 

maximum ARA of about 1.4 nmol 
-1 -1 c

2
H

4 
~g chl ~ min at a 

light flux of about 105 ~mol 
-2 -1 

m s 
juvenile filaments appeared to 

be particularly efficient as 

nitrogen fixers 
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In the field maximum nitrogenase activity of 0.352 nmol c
2

H
4 

~g 

-1 -1 
chl a min was observed after about 45 days of flooding by the alga 

being scraped from the rice tillers at a light flux of about 1825 ~mol 
-2 -1 

m s • (A comparison of nitrogenase activity of young and old colonies 

was not studied.) In batch culture, on the other hand, the alga showed 
-1 -1 

a maximum activity of about 1.4 nmol c
2

H
4 

~g chl ~ min after about a 

day~ growth and a value equivalent to the field, after about three days 
-2 -1 

under continuous light flux of 105 ~mol m s The low ARA in the 

field might be due to the alga being scraped from the rice tillers 

(Table 4.4) and thus perhaps damaging colonies (Finke & Seeley 1978) and 

microhabitat and due to mixed population of young and old colonies (see 

below). A preliminary experiment (Section 4. 3) indicated that getting 

colonies by scraping resulted in about 50% reduction in ARA (Table 4.4, 

cf. treatment no. 1 with combined values of treatments nos. 2 & 3). 

Accordingly corrected ARA value in the field after about 45 days of 
-1 -1 

flooding is about 0.7 nmol c
2

H
4 

JJg chl ~ min . 

From the laboratory study of young and mature colonies (from the 

same culture) of G. echinulata, Chang & Blauw (1980) reported much 

higher activity in young colonies than the mature ones. They attributed 

the lower activity of mature colonies to the transport of metabolic 

products being blocked between the vegetative cell and the heterocyst by 

the akinete. Although this cannot happen in ~ pisum D613 because of 

the absence of an akinete, the activity (per unit chl a) decreased by 

about 50% at the end of the exponential phase of growth. Jn the present 

study differences in activity were related to the developmental stage of 

the alga and other growth characteristics (Tables6.2, 6.3, Fig. 7.1). 

Maximum ARA occurred after about one day's growth in batch culture. 

During this period, juvenile filaments were abundant, cyanophycin 

granules lacking and cultureshad the lowest chl a : d. wt ratio. (It 
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appeared a light yellow-green.) The last two features indicate nitrogen 

deficiency (Allen & Smith 1969, Fay 1983). Rapid division of cells 

occursin filamenttonly after heterocyst differentiation (Section 5.2.1, 
t"e 

Figs 5.1C, 5.2C, 5.3B) and when~normal level of pigmentation is restored 

(Allen & Smith 1969). This suggests that nitrogen fixation occurred at 

a high rate at this stage to meet the nitrogen requirement for cell 

synthesis (Jewell & Kulasooriya 1970), As the high fixation rate 

continued, the alga gradually reached a nitrogen-sufficient state. 

However, total ARA and ARA per unit d. wt started to decline after three 

days (Fig. 7.1), when a high chl ~: d. wt ratio and abundant developing 

and mature filaments occurred (Table 6.2). During this period P was not 

exhausted from the medium (Table C3), indicating that P deficiency was 

not involved. It appears from the above discussion that the juvenile 

filament (Figs 5.1B, 5.2B) is the most active nitrogen fixer during the 

life cycle of the alga. It will be important to study nitrogenase 

activity in synchronized cultures to confirm this. 

Diel studies of nitrogenase activity in the field showed maximum 

rates at mid-day (Fig. 4.2). For planktonic blue-green algae in lakes, 

the diel variation of activity with maximum before noon or in the early 

afternoon has been attributed partly to diel changes in light flux and 

partly to diel migration of nlgae (Vanderhoef et ~ 1975, Levine & 

Lewis 1984). However, for epiphytic blue-green algae, ~;;uch ass_ pisu~ 

and considering rapid response of ARA due to chan~e in light flux 

(Section 4.2), the diel variation is probably due mainly to the changes 

in light flux (Fig. 4.2). The data in Fig. 4.2 show that during the 

hours before noon, about 51% of the day's total activity occurred in the 

presence of 49% of the day's total light flux, producing almost a 

symmetric curve (Alimagno & Yoshida 1977). The short term drop during 

early afternoon may be due to the high o
2 

concentration or 

photoinhibition (Goering & Neess 1964, Stewart 1971, Vanderhoef et al. 

1975, Peterson et al. 1977, Roger & Reynaud 1979). 

During the first half of August in 1983, s_ pisum was the only 

visible blue-green alga growing on deepwater rj ce at Sonargaon. Tts 

contribution to N
2
-fixation was estimated from a study on a whole tiller 

(on 10.8.83). Incubations of Hectlons of the tiller with attaclieci G. 

_pisum nt different depths (from where sectJons origjnilted) showed total 
-1 -1 

ARA of 77.44 nmol c
2

H
4 

tiller min . ARA wAs quantitatively important 
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from about -76 to -155 em (Table 4.3, Fig. 4.1). The greater activity 

at these depths was due to the abundance of the alga (Section 3.2.1). 

However, considering effects of scraping (Table 4.4) and changing light 

flux on ARA (Section 4. 2) and variation of Hght flux down the water 

column (Fig. 4.1, see Whitton 1984), the above value represents a true 

situation in the field. Estimation of nitrogen contributed over a 

season based on a single determination becomes difficult because of 

obvious changes in light flux between days, hours of a day, changes in 

biomass, spatial distribution of the alga etc. (Dugdale & Dugdale 1962, 

Vanderhoef ~ al. 197 5, Levine & Lewis 1984). For all the above 

reasons, estimations during the flood season for the whole cha.k were 

made based on visual observations of the abundance of colonies in 

fields, counting tiller density, etc. plus some approxim<~tions 
the 

throughout the flood period. However, in the calculation, l following 

approximations and estimates have been included 

1. Number of days in the flood period 

23 June to 9 November = 140 days 

2. Approximate distribution of ARA during flood period 

3. 

4. 

Days 1-10 negligible 

Days 11-75 = 20% value obtained from experiment on 10.8.83 

(Section 4.3) because of differences of biomass 

between fields and also p8rts of a field. 

Days 76-140 = 20% value obtained for days 11-75, because of 

rapid decline of biomass, differences of light 

flux between days, shading by increased number 

of tillers and kneeing of tillers, etc. 

Estimate percentage of total ARA at 1030 h by the whole tiller 

on 24 h basis, ba.sed on ARA during diel variation (Section 

4.4): this was found to be 12.4%. 
-1 -1 -2 Estimate ARA ha season considering 130 tillers m and 

approximate distribution of ARA (see No.2) throughout the 

flood period. 

5. Estimate ARA by~ pisum alone by deducting 9% of the total 

ARA as a fixation by rice tiller without G. pisum (Section 

4. 3). 

6. Conversion of ARA to N2 fixed, using 5:1 c2H
2

:N
2 

ratio 

(Whitton 1984). 

Fixation of 3.87 kg N ha-l seasun-] by G. pisum ~eems to he n 
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reasonable estimate for Sonargaon in 1983. If the density of colonies in 

the study field (Fig. 3.1A) were similar throughout the chak, including 

changes in abundance during the season (Section 3.2.1), then the 

contribution of nitrogen can be estimated as about 19.4 kg ha-l 
-1 -1 -1 

season This value fits well with 10-20 kg N ha crop reported by 

Kula.sooriya et al. (198la) for a study of deepwater rice at IRRI, 

Philippines. 

Some comparison can be made between values of ARA found in the 

present study and values reported in the literature for Gloeotrichia and 

other blue-green algae. In vivo nitrogenase activity (ARA) in batch 
-1 -1 

cultures, is in a typical range of 1-10 nmol c
2

H
4 

mg protein min 

(Stewart 1973). Assuming that a typical blue-green algal cell during 

exponential growth phase consists of 50% of d. wt as protein (Collyer & 

Fogg 1955) and 1% as chl ~(Fay 1969), then the above value corresponds 
-1 -1 

to 0.05 -0.5 nmol c
2

H
4 

1-1g chl ~- min Accordingly the maximum rate 

obtained in the present study is hi ghcr. Severn 1 Ht rains of hJ ue-green 

algae (other than Gloeotrichia) iHolated from rlce fleldH show high 

rates under optimal growth condition&, ranging from 0.45 to 1.0 nmol 

C2H4 chl 
-1 -1 

(= 9-20 nmol C2H4 
-1 

min 
-1 

1-lg a min mg protein 

Antarikanonda & Lorenzen 1982, Chen 1983). However in the present study 
-1 

the~ pisum showed many times higher ARA (about 13 nmol c
2
H

4 
mg d. wt 

-1 
min Fig.7.1, Table 7.2) than those reported for two day old 

-1 -1 
unialgal culture of Gloeotrichia (0.81 nmol c

2
H

4 
mg d. wt min at 

the 
4000 lux light flux : Finke & Seeley 1978) or J.. axenic culture of G. 

-1 -1 
echinulata (0.61 nmol c

2
H

4 
mg d. wt min : Chang & Blauw 1980). 

One of the most interesting properties of G. pisum D613 

nitrogenase activity (ARA) in the laboratory is the higher activity in the 

dark-grown alga when reilluminated, than the mnximum activity ever found 

under continuous illumination (Fig. 7.]). Meyer et_ al_. (]!Jjfl) provided 

evidence of extremely active biosynthesi~; of enzyme upon rei llumination 

of Rhodopseudomonas capsulata, purple 
a 

nonsulphur bacterium 

(photosynthetic and facultative anaerobes). In~medium free of combined 

nitrogen and carbon, they observed that nitrogenase synthesis proceeded 

at a rate such that within 3-4 h, the activity was equal to that found 

in light grown culturei. They also observed consistently higher activity 

under intermittent illumination and the retention of the ability to 

synthesize nitrogenase over a longer period of time under discontinuous 

illumination. In~ pisum D613 it has been observed following 
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reillumination for 10-12 h that mm~imum n1.trogenase activity occurs 

~·rithin 3-·6 h, after which it declined to the level obtained under 

continuous illumination (Fig. 7. 3). The longer the dark period, the 

slower the response to light. It has been mentioned earlier that in 

this alga considerable ARA occurred during 12 h dark incubation (Table 

7. 5), contrary to Rhodopseudomonas c:::apsulata, where no activity was 

observed in the dark (Meyer et al. 1978). From all these facts it is 

difficult to predict whether the higher activity upon reillumination is 

due to activation of the existing enzymes or fresh biosynthesis (Meyer 

et al. 1978), or both, or due to 02 scavenging by dark respiration 

(Spiller et al 1981). The lower value for maximum nitrogenase activity 

under continuous light might be due to the increa.se in 02 concentration 

in the medium by photosynthesis (Spiller et al. 1981). This also raises 

the possibility that after reillumination the 02 level gradually goes up 

~md an inhibitory level is reached when nitrogenase a.ctivity starts 

declining and ultimately attains the level under continuous illumination 

(Fig. 7.3). 

Intermittent illumination resembles the natural growth conditions; 

this perhaps maintains the nitrogenase activity over a longer period as 

has been observed in the present study. It has also been observed that 

the synthesis of chl ~ continues but d. wt decreased by about 15% within 

12 h of dark treatment. This chl a synthesis in the dark is 

advantageous in allowing rapid transition to photosynthesis and 

N2-fixation (Meyer et al. 1978). 
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SUMMARY 

1. In deepwater rice fields of Bangladesh, Gloeotrichia pisum is one 

of the most common blue-green algae, occurring as an epiphyte on rice 

tillers. Its occurrence varies from year to year, locality to locality 

and field to field. In 1983 it was abundant on deepwater rice in some 

fields at Sonargaon near Dhaka, where all field studies were carried 

out. G. pisum D613, an isolate from the same locality, showed some 
and differences from 

morphological similarities with f...Q:__ pisum in the field. Laboratory 

studies were therefore made on this strain. 

2. In the field, the alga was found to colonize the newly submerged 

rice parts. During the flood period the alga showed obvious changes in 

abundance. The pattern in 1983 was: rapid colonization within 15 days 

of flooding with "second flush" of growth after about 50 days, abundant 

for about two months, rapid decline, with a few colonies remaining till 

the end of the flood period. 

3. Studies on the morphology of both field and laboratory 

Gloeotrichia revealed some features in common: 

(i) trichomes composed of basal heterocysts and rows of 

vegetative cells in groups; 

(ii) growth of trichomes was not obviously localized, L e. 

no meristematic zone occurred ; 

(iii) 

(iv) 

the cell next to the heterocyst divides ; 

due to the release of hormogonia, a section of empty 

sheath is left terminally. 

4. Some of the obvious features such as akinetes, hairs and gas 

vacuoles which were found in the field were not found in the laboratory. 

In the field the long akinete appeared to be formed by the participation 

of more than one cell next to the heterocyst. 

5, During colonization in batch culture, the initial aggregation of 

hormogonia appeared to occur by chance and then they became ·entangled 

within the mucilage. The radiating nature appeared· to develop due to 

the production of mucilage at the basal end and diffuse growth usually 

at the terminal end. 
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6. Four stages of filament development were recognized in the 

laboratory: hormogonia, juvenile filament, developing filament, mature 

filament. 

Detailed developmental studies of trichomes in the laboratory 

showed the following features: 

(i) each group of vegetative cells of a trichome was formed 

by repeated divisions of a single cell of the parent 

hormogonium; 

(ii) these groups were released from the tip of trichomes as 

hormogonia; 

(iii) at the time of release of a hormogonium the basal cell of 

a group divided once and then the lower daughter cell wa.s 

sacrificed for the release of the rest of the cells as a 

hormogonium; 

(iv) the basal (youngest) cell of the hormogonium 

differentiated into a heterocyst. 

7. In batch culture, 

continuous light . occurred 

light 

at 

saturation for 

about 100 ~mol 

growth 
-2 -1 

m s 

under 

under these 

conditions the mean generation tjme was about 15 h. Juvenile filaments 

were abundant after about one day's growth, when the highest heterocyHt 

frequency was also observed. These filaments had no visible ry~nophycln 

granules, but abundant polyphosphate granules. The lowest chl a : d. wt 

ratio was also observed after about a day of growth. 

8. In the field nitrogenase activity measured by ARA showed rapid 

responses to changes in light flux. A downshift of light flux by 40% 
-2 -1 (full light 1850 ~mol m s ) for 1.5 h reduced activity by about 30%. 

Transfer to the dark during day time for 1 h led to 83% reduction in 

activity. 

9. Diel variation in nitrogenase activity in the field was related to 

light, usually the higher light flux, the higher activity. About 4% of 

the daily activity occurred at night. 

10. After 35 to 4'! dayH of flooding, nitrngena~-;e actJvjty by the alg<t 

betng Hcraped from the rlce li llf'rs rnnged from 0./V• to 0. 'jr,/ 111110 I C 11
1 -1 -] I I 

IJg chl ~ min · ilt around mld--dny (l-Ight llux from liP') to IH 1JO p111ol 

-2 -1 
m s ) and at a depth of -4 em. 



133 

11. The alga contributed approximately 4 -1 -1 
kg N ha season ( 140 

days) in the deepwater rice field ecosystem at Sonargaon, Bangladesh in 
-1 -1 

1983 (extrapolating ARA of 37468 nmol c2H4 tiller day and 
-2 considering 130 tillers m and some approximations, based on a single 

determination down the water column at 1030 h after about SO days of 

flooding). 

12. In batch culture, the alga showed maximum nitrogenase activity (ca 
-1 -1 -1 _y-

1.4 nmol c
2
H4 ~g chl ~ m1n or 9.2-12.8 nmol c2H

4 
mg d. wt min ) 

after about one day of growth under continuous light flux of lOS ~mol 
-2 -1 

m s 

13. In the laboratory, the response of nitrogenase to changes in light 

flux (down- or up-shift) was fast. 

when the light flux was reduced by 
-1 s ) for 1 h. At all values for 

Activity was reduced by about 30% 
-2 about 50% (full light lOS ~mol m 

light flux, nitrogenase activity 

following transfer levelled off after about 1.5 h. Transfer to the dark 
-2 -1 

for lh from lOS ~mol m s light led to 87% reduction in activity. 

Subsequent changes in the dark were slow, with detectable activity after 

24 h. 

14. In batch culture nitrogenase activity was much higher upon 

illumination after a period of time in the dark than under continuous 

illumination. The shorter the dark period, the quicker the resumption 

of nitrogenase activity upon illumination. 

15. In the field, maximum nitrogenase activity of 0.352 nmol C2H4 ~g 
-1 -1 

chl a min was observed in the alga being scraped from the rice 

tillers and after about 45 days of flooding at a light flux of 1825 ~mol 
-2 -1 (A comparison of nitrogenase activity of and old m s young 

colonies was not made). In batch culture, on the other hand, the alga 
-1 -1 

showed a maximum rate of 1.4 nmol c2H4 ~g chl ~ min after about one 

day's growth and a value equivalent to that in the field, after about 
-2 -1 

three days under continuous light flux of 105 ~mol m s Nitrogenase 

activity in the laboratory levelled off after about five days, showing a 
-1 -1 

rate of about 0.1 nmol c2H4 pg chl ~ min 
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APPENDIX A 

LIST OF AXENIC AND CLONAL STRAINS ISOLATED FROM DEEPWATER 

RICE (DWR) FIELDS OF BANGLADESH 
(List in order of Durham strain numbers) 

D605 Tolypothrix sp. 

Country of sample Bangladesh 

Grown at 32° Con Chu lOD Cl(l7)-N pH 7.0 + HEPES 

Stored under liquid nitrogen 

Found at Manikganj 

Isolated by A. Aziz 

Made axenic on not 

By A. Aziz 

and clonal on 18/05/82 

Collection 4 inoculum moist soil from DWR field. 

D606 Nostoc sp. 

Country of sample Bangladesh 

Grown at 32° Con Chu lOD Cl(l7)-N pH 7.0 + HEPES 

Stored under liquid nitrogen 

Found at Daudkandi 

Isolated by A. Aziz 

Made axenic on not 

By A. Aziz 

and clonal on 01/06/82 

Collection 14 inoculum Hygroryza root. 

D607 Scytonema sp. 

Country of sample Bangladesh 

On 25/06/81 

On 25/08/81 

Grown at 32° C on Chu lOD Cl(l7) -N pH 7.0 + HEPES 

Stored under liquid nitrogen 

Found at Sonargaon 

Isolated by A. Aziz 

Made axenic on not 

By A. Aziz 

and clonal on 12/05/82 

Collection 18 inoculum floating mat. 

D608 Nostoc sp. 

Country of sample Bangladesh 

On 25/08/81 

Grown at 32° Con Chu lOD Cl(l7) -N pH 7.0 + HEPES 

Stored under liquid njtrogen 

Found at Agrnkhola By A. Aziz On 01/09/Hl 

IHolated hy A. Az1z 

Made axenJc on 18/06/87 and cl mw I 011 O'J/05/H'! 

Collection 28 inoculum nodal roots of DWR. 
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0609 Gloeotrichia sp. 

Country of sample Bangladesh 

Grown at 32° Con Chu lOD Cl(l7)-N pH 7.0 + HEPES 

Stored under liquid nitrogen 

Found at Sonargaon By A. Aziz 

Isolated by A. Aziz 

Made axenic on not and clonal on 03/05/82 

On 06/11/81 

Collection 93 inoculum internode and sheath of DWR. 

D 610 Scytonema sp. 

Country of sample Bangladesh 

Grown at 32°C on Chu lOD Cl(l7)-N pH 7.0 + HEPES 

Stored under liquid nitrogen 

Found at Sonargaon By A. Aziz On 06/11/81 

Isolated by A. Aziz 

Made axenic on 17/03/83 and clonal on 09/05/82 

Collection 93 inoculum internode and sheath of DWR. 

D611 Nostoc sp. 

Country of sample Bangladesh 

Grown a.t 32° Con Chu lOD Cl(l7) -N pH 7.0 + HEPES 

Stored under liquid nitrogen 

Found at Sonargaon By A. Aziz 

Isolated by A. Aziz 

Made axenic on 01/06/82 and clonal on 05/05/82 

Collection 94 inoculum dry stem and roots of DWR. 

The alga resembles~ linckia Born et. Thur. 

D612 Fischerella sp. 

Country of sample Bangladesh 

On 29/11/81 

Grown at 32° C on Chu lOD Cl(l7) -N pH 7.0 + HEPES 

Stored under liquid nitrogen 

Found at Sonargaon By A. Aziz On 29/ll/81 

Isolated by A. Aziz 

Made axenic on 18/06/82 and clonal on 05/05/82 

Collection 95 inoculum dry nodal roots of DWR. 
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0613 Gloeotrichia pisum Thur. 

Country of sample Bangladesh 

Grown at 32° Con Chu 100 Cl(l7)-N pH 7.0 + HEPES 

Stored under liquid nitrogen 

Found at Sonargaon By A. Aziz 

Isolated by A. Aziz 

Made axenic on 11/09/82 and clonal on 12/05/82 

Collection 95 inoculum dry nodal roots of OWR. 

0614 Nostoc sp. 

Country of sample Bangladesh 

Grown at 32° Con Chu 100 Cl(l7)-N pH 7.0 + HEPES 

Stored under liquid nitrogen 

On 29/11/81 

Found at Sonargaon By A. Aziz On 29/11/81 

Isolated by A. Aziz 

Made axenic on 18/06/82 and clonn] on 05/05/82 

Collection 96 inoculum dried leaf sheath of DWR. 

0615 Fischerella sp. 

Country of sample Bangladesh 

Grown at 32° Con Chu 100 Cl(l7)-N pH 7.0 + HEPES 

Stored under liquid nitrogen 

Found at Sonargaon By A. Aziz 

Isolated by A. Aziz 

Made axenic on not and clonal on 05/05/82 

Collection 96 inoculum dried leaf sheath of OWR. 

0616 Nostoc sp. 

Country of sample Bangladesh 

Crown at 32° Con Chu 100 Cl(l7)-N pH 7.0 + HEPES 

Stored under liquid nitrogen 

Found at Sonargaon By A. Aziz 

Isolated by A. Aziz 

Made axenic on not and clonal on 07/05/82 

Collection 96 inoculum dried leaf sheath of OWR. 

The alga resembles N. linckia Born et Thur. 

On 29/11/81 

On 29/11/81 
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D617 Anabaena sp. 

Country of sample Bangladesh 

Grown at 32° Con Chu lOD Cl(l7)-N pH 7.0 + HEPES 

Stored under liquid nitrogen 

Found at Sonargaon By A. Aziz On 29/11/81 

Isolated by A. Aziz 

Made axenic on 01/11/82 and clonal on 12/05/82 

Collection 96 inoculum dry leaf sheath of DWR. 

Pathogen causing lysis ; ? Phage. 

D618 Gloeotrichia sp. 

Country of sample Bangladesh 

Grown at 32° Con Chu lOD Cl(l7)-N pH 7.0 + HEPES 

Stored under liquid nitrogen 

Found at Agrakhola By A. Aziz 

Isolated by A. Aziz 

Made axenic on not and clonal on not 

Collection 28 inoculum nodal roots of DWR. 

D625 Anabaena sp. 

Couritry of sample Bangladesh 

Grown at 32° Con Chu lOD Cl(l7)-N pH 7.0 + HEPES 

Stored under liquid nitrogen 

Found at Sonargaon By A. Aziz 

Isolated by A. Aziz 

Made axenic on 07/03/83 and clonal on 06/06/82 

Collection 98 from moist soil 

On 01/09/81 

On 29 I 11/81 

Trichome lysis frequent; previously identified as Aulosira sp. 

(Whitton 1984). 
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APPENDIX B 

SELECTION OF STOPPER FOR PLUGGING CULTURE VESSELS 

Bl Introduction 

In microbiology laboratories cotton wool stoppers have been used 

for many years. Recently silicon rubber stoppers have been substituted 

for these in order to obtain uniform size, easy handling and 

reusability. In cultures of limited volume, sooner or later exponential 

growth ceases due to limitation by one or other factor (rate of 

diffusion of co
2

, nutrient exhaustion, pH alteration, reduction of light 

by self-shading, autoinhibiton: Fogg 1975). Kratz and Myers (1955) 

pointed out that use of a blue-green alga as a tool organism for 

physiological studies becomes difficult because of the inadequate 

provision of co
2 

inherent in most of the culture methods used. Sinclair 

(1977) observed no differences in growth rate between flasks with cotton 

wool stoppers and metal caps, indicating the absence of any growth 

promoting substance which might be released from cotton wool stoppers 

during autoclaving. She also observed faster growth rate in aerated 

flasks than in the non-aerated ones. Experiments were therefore planned 

to choose the type of stopper which would provide a better yield and 

also to find out possible factors responsible for differences in the 

yield. 

B2 Materials and Methods 

Axenic strains of Nostoc D611 and or Anabaena D617 (Appendix A) 

were used. Yield was measured (Section 2. 2. 7) after 7 and 4 days for 

Nostoc D611 and Anabaena D617 respectively unless stated otherwise. 

T 1 . h fl 1 d 60 1 - 2 -l . d. d. . wo 1g t ux va ues were use , ~mo m s J.n stan 1ng con 1t1on 

under continuous light and light and dark cycle (12:12 h) and 105 ~mol 
-2 -1 m s in the shaking tank. Silicon rubber stoppers (type S28, Sanko 

Plastic Co. Ltd) were cleaned with 2% Decon 90 (Decon Laboratories Ltd, 

England). Differences of light obstruction by the silicon rubber and 

cotton wool stoppers were negligible. During treatment with NaHCo3 , the 

Na concentration in the cotton wool stoppered flasks was adjusted with 

NaCl. 
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B3 Results 

B3.1 Yield under different physical environments 

Under continuous light and standing conditions the yield was 

significantly (P <0.001) higher in the cotton wool stoppered flasks than 

in the silicon rubber stoppered flasks (Table Bl). For Anabaena D617 

differences of growth rate became visually obvious after two days. 

Subsequent studies with Nostoc D611 in standing, shaking and in the 

light and dark cycle (Section 2.2.5.6) also showed higher yield 

in the cotton wool stoppered flasks (Table B2). 

Table Bl Yield and pH shift in cultures of Nostoc D611 and 

Anabaena D617 grown with two types of stopper. 
-2 -1 

(Continuous light at 60 JJmol m s in the standing 

condition; basal medium n = 4 . ' *** = p <0.001) 

stopper Nostoc D611 Anabaena D617 

t;t:Ees chla(mg 1-1) -1 d.wt(mg 1 ) ~ chla(mg 1-1) -1 d.wt(ms 1 ) 

x ± x ± x ± x ± 

cotton *** *** *** *** 
wool 2.678 0.307 339 26 7.40 4.586 0.145 106 4 

silicon *** *** *** *** 
rubber 2.076 0.045 248 9 7.32 3.354 0. 121 R9 7 

Table B2 Percentage increase of yield of Nostoc Doll in the 

~ 

7.38 

7.JJ 

cotton wool stoppered flasks compared to the silicon rubber 

stoppered flasks under three physical conditions; in light 

and dark cycle treatment yield was measured after 10 days; n=4 

yield standing shaking standing 

12arameters (continuous light) (continuous light) (light and dark) 

chl a 

(% increase) 29 19 12 

d. wt 

(% increase) 37 17 15 
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B3. 2 Effect of NaHco
3 

on the yield under different physical 

environments 

The addition of about 1.9 mM NaHC0
3 

in the silicon rubber 

stoppered flasks under continuous illumination and shakfng, resulted 

in a yield similar to the cotton wool stoppered flasks having 0.19 nl}1 

NaHC0
3 

(Table B3). In the light and dark cycle, the addition of 0.47 m}l 

NaHco
3 

in the silicon rubber stoppered flasks compensated the require

ment (Table B4). 

Table B3 Yield of Nostoc D611 under continuous illumination and 

shaking in the presence of different NaHco
3 

concentrations; 

n = 4 

yield 

para-

meter 

chl a 
-1 

(mg 1 ) 

d. wt 
-1 

(mg 1 ) 

cotton 

wool 

silicon 

rubber 

cotton 

wool 

silicon 

rubber 

cotton 

wool 

(control) (0.95 mM (control) (1.9 mM (control) 

2.970 

± 0.094 

359 

± 10 

NaHC0
3

) NaHC0
3

) 

2.555 

± 0.075 

298 

± 20 

2.916 

± 0.075 

355 

± 35 

3.174 

± 0.126 

315 

± 9 

3.100 

± 0.126 

372 

± 18 

silicon 

rubber 

3.470 

± 0.156 

405 

± 18 

Table B4 Yield of Nostoc D611 under the light and dark cycle in 

yield 

para

meter 

chl a 
-=-1 (mg 1 ) 

d. wt 
-1 (mg 1 ) 

the presence of different NaHC0
3 

concentrations; yield was 

measured after 10 days; n = 4 

cotton 

wool 

silicon 

rubber 

(control ) (0. 4 7 mM 

NaHC0
3

) 

3.298 2.752 

± 0.031 

304 

± 48 

± 0.309 

300 

± 9 

cotton 

wool 

(control) 

2.861 

± 0,031 

269 

± 13 

silicon 

rubber 

(0.95 mM 

NaHC0
3

) 

3.516 

± 0. 092 

366 

± 1 

cotton silicon 

wool rubber 

(control) (1.9mM 

NaHC0
3

) 

3.407 3.757 

± 0.370 ± 0.276 

396 454 

± 18 ± 45 

B4 Summary 

A higher yield was obtained with cotton wool stoppers. A lower 

yield in the silicon stoppered flasks was due to the limited diffusion 

of co
2

. 



APPENDIX C 

SUPPLEMENTARY DATA RELEVANT TO FIGURES IN THE TEXT 

Table Cl Diel variation of environmental variables and ARA for 2_. pisurn in _:;itu on 20/21.8.8.3 n = 6 (see Fig.4.2) 

mid-time 
(h) 

1800 
1930 
2100 
2230 
0000 

0130 
0300 
0430 
0600 
0730 

0900 
1030 
1200 
1330 
1500 

1630 
1800 
1930 

-2 -l light flux (~mol rn s ) 
surface at incubation 

72.0 
<0. 2 
< o. 2 
< o. 2 
< (). 2 

< 0. 2 
< (). 2 
<: 0. 2 

129 
581 

1062 
1668 
2208 
1969 
1343 

'') ') 
_)-..::... 

61. (i 

0.2 

35.0 
<0.2 
<0. 2 
< 0.2 
< 0. 2 

<0. 2 
<0.2 
<0.2 
26.0 

116 

212 
334 
442 
394 
267 

62.0 
12.0 

0.2 

0 temperature ( C) 
at -30cm at 

33.3 
31.8 
32.3 
31.9 
31.5 

31.3 
31.0 
31.0 
31.0 
31.0 

31.3 
31.3 
31.6 
32.4 
32.8 

32.5 
32.1 
31.7 

incubation 

32.5 
30.8 
30.0 
30.2 
30.0 

29.8 
29.3 
29.4 
29.7 
29.8 

31.2 
33-3 
34-7 
35-3 
35.2 

32.3 
30.5 
30.2 

-l -1 -1 02 (mg l ) pH ARA { nmol c2H
4 

)Jg chl a. · min ) 
at -30 ern at -30cm 

10.5 
10.5 
9.9 
7.8 
6.1 

3-7 
3.6 
1.5 
0.8 
0.6 

1.2 
2.5 
4.6 
7.6 
7-3 

10.0 
9.6 
9-9 

6.74 
7.50 
7.10 
6.80 
6.50 

6.60 
6.80 
6.50 
6.20 
5.90 

5.70 
6.10 
5.90 
6.10 
6.35 

6.35 
6.20 
6.65 

X 

0.0063 
0.0081 
0.0017 
0.0026 
0.0027 

0.0032 
0.0035 
0.0050 
0.0082 
0.0408 

0.0558 
0.1030 
0.1313 
0.0858 
0.0631 

0.0327 
0.0135 
0.0015 

+ 

(i.li012 
o. 004l"~ 
0. ('1(\('IQ 

0 .l'l''l:-; 
l1 • l1 l11 5 

l"~. l'(111 
(i.l"~('l,~ 

l"~. l"~Lil / 

0.L1027 
ll. L1140 

0. ll(\30 

(i.L1272 
L"~ .l"~,n3 

0.L'll14 

L1. Ol:t8 

O.L'~O . .J.l 
l"~. ('L"~4(1 

l"~. ('l(i('i:; 

I-' 
l5l 
N 



Table C2 Influence of light flux on growth rate of G. pisum D.613. 
Inoculum eight days old ; 32°C ; continuous light flux and shaking ; n = 4 except zero-t:ime (n = 2) 
(see Fig.6.l) 

growth under light flux ( }Jmol m -2 s-1) 

25 so 100 150 200 

time 
d. wt chl a chl a: d. wt chl a chl a: d. wt chl a chl a: d. wt ch1 a chl a: d. wt ch1 a ch1 a: 
( -1) --1 - -1) - -1 - -1 --1 - -1) --1 - -1 . --1) -

(d) mg 1 (mg 1 ) d. wt (mg 1 (mg 1 ) d. wt ( mg 1 - ) ( mg 1 ) d . wt ( mg 1 ( rng 1 ) d . w t ( mg 1 ) ( mg 1 . d . wt 

0 --
14-5 0.204 0.0140 11.0 0.162 0.0150 X 9-3 0.114 0.0120 11.3 0.105 0.0090 7.8 0.097 0.0120 

--
1 X 20.5 0.366 0.0183 26.8 0.347 0.0128 30-7 0.334 0. 0113 30.8 0.311 0.0103 21.2 0.237 0. 0113 

+ 4.8 ('\. 0:20 0.0033 1.5 0.026 0. 0015 6.8 0.159 0.0030 2.4 0.035 0.0010 3-7 0.0022 0.0021 -

2 -
39.8 0.610 X 0.0160 73.6 1.121 0.0153 77.6 1.069 0.0135 81.0 1.043 0.0130 /0.2 1.000 0.0125 

+ 9.8 0.053 0.0030 3-3 0.075 0.0005 2.0 0.058 0.0006 6.3 0.035 0.0008 4-9 0.050 0.0006 --

3 
- 64.4 l. 0.31 0.0168 122 2.092 0. 017.3 115 2.029 0.0173 125 1.878 0.0148 128 1.760 0.0140 X 

+ 11.6 0.118 0.0028 10 0.209 0.0005 7 0.077 0.0005 5 0.197 0.0001 Q 0.130 0.0008 -

4 
-

97-4 1.8)6 X 0.0165 169 2.636 0. 0155 186 2.654 0.0143 200 2.271 0. 0113 1ll6 2.009 0.0103 
+ 14.8 l~ .176 0.0034 28 0.243 0.0026 6 0.125 0.0005 8 0.21.\ 0.0010 10 0.101 0.0010 -

5 
-

194 2.365 X 0.0145 250 3.276 0.0130 260 3-232 0. 0123 276 2.455 0.0090 254 2.266 0.0090 
+ ll 0.167 0.0005 8 0.098 0.0000 22 0.035 0. 0010 5 0.144 0.0005 14 0.056 0.0010 -



Table C3 Growth characteristics and changes of ARA of G. ptsum D613. Inoculum six days old 

32° C ; continuous light flux of 105 ]..!mol m-i-s-l~haking j ·n = 4 (see Fig.7.1) 

time 
(d) 

·o 

0.04 

0.5 

1 

1.5 

') -

2.5 

~ 

" 

d. wt 
( -1 \mg l ) 

- 6.1 X 

+ 0.4 -
- 6.2 X 

+ 0.4 -

x 12.6 
+ 2.1 -

x 25.8 
+ 5.6 -

x 43-7 
+ 6.8 -

x 73-7 
.::: 10.4 

x 91.3 
+ 10.4 

x116.3 
-'- 5.2 

chl a chl a: 

(mg ~-l) d. w~ 

0.080 0.0131 
0.004 0.0012 

0.071 0.0115 
0.003 0.0003 

0.102 0.0083 
0.004 0,0013 

0.171 0.0068 
0.006 0.0014 

0.450 0.0104 
0.056 0.0010 

0.896 0.0122 
0.068 0.0009 

1.529 0.0169 
0.048 0.0020 

:2.248 0.0194 
0.070 0.0009 

heterocyst heterocyst nmol c2H4 nmol c2H4 nmol c2H4 
6 -1 -1 -I -1 -1 -1 frequency number x 10 1 min mg d.wt min ]..lg chl a min 

2.00 2.86 4.6 0.75 0.07 
0.44 1.42 2.2 0.37 0.03 

50.8 3-72 0.49 
11.6 0.71 0.13 

5-78 42.53 233 9.24 1.37 
0.76 4.26 41 1.12. 0.21 

404 9.19 0.92 
93 1.22 0.18 

5-69 150.88 668 8.98 0.74 
1.22 52.93 159 1.36 0.13 

841 9.08 o.ss 
160 1.40 0.14 . 

.f.OS 247-47 726 6.28 0.32 
0.42 66.07 63 0.78 0.03 

FRP 

(mg 1-l) 

1.875 
0.008 

1.655 
0.003 

1.573 
0.011 

1.440 
0.033 

1.240 
0.080 

1.157 
0.033 
i 

0 . .5!~ s 
0 (' ·~· 'Utj. / 

0.232 
0.046 

J..lg algal-P 
-1 mg d.wt 

7.2 
0.2 

41.6 
4.0 

15.0 
3.2 

9-7 
1.7 

14-5 
1.4 

Cont 'd .. 

I-' 
VI 
~ 



Table C3 Cont'd. 

,.., ~ x 141 2.673 0.0195 587 4-17 0.22 0.022 
._).) 10 0.049 0. 0016 30 0.47 0.01 0.007 + -

4 
x 136 3.282 0. 0177 3-24 522.03 541 2.9 0.165 0.004 11.8 
+ s 0.139 0.0004 0.61 110.20 47 0.2 o. 012 0.001 0.3 -

5 
x 224 J.844 0.0172 2.66 618.18 441 1.97 o.n5 <0. 004 8.4 
-l- 7 0. 09.5 0.0008 0.46 105-40 92 0.40 0.026 0.2 -

6 x 281 3.8oo 0.0136 491 l. 75 0.128 
<0. 004 6.8 

- 7 0.156 0.0008 88 0.29 0.023 0.2 -

x 304 3-764 0.0124 423 1.40 0.116 6.3 
I s 0.325 0.0008 46 0.19 0.024 0.2 -

.;; x 363 3-677 0.0107 460 l. 26 0.125 s.3 
~ 8 0.160 0.0011 62 0.16 0.022 0.1 .,. 

-

9 
x 413 3-727 0.0090 440 1.07 0.119 4.6 
-'- 5 0.244 0.0007 58 0.1S 0.021 0.1 -

x 431 3.620 0.0084 508 1.15 0.139 4-.5 
11 -'- 16 0.081 0.0002 20 0 . .06 l). 006 0.3 

13 x 549 3.628 0.0066 446 0.73 l' .123 3-5 
- 8 0.134 0.0003 20 0.18 ('. 009 0.1 -

15 x 575 3-380 0.0059 220 0.39 0.065 3.3 
- 17 0.162 0.0003 19 0.03 0.003 0.1 -

-~"' 
x 706 3-400 0.0048 303 0.43 l'~. 0()0 2.64 I-' 

-l 6 0.199 0.0003 16 0.02 l"'. 006 0.02 U1 
U1 



Table C4 Influence of pretreatment in dark for 12 h on ARA, after transfer to the light by G. pisum D613 (105 ~mol m-2. s-1 
continuous shaking ; n = 4 ; -:~- = P<0.05;-:Hc·:~- = P<O.OOl - ·--

experimental mid-time ( -1 ( -1 nmol c2H 4 }Jg chl ~ -1 . -1 -1 chl ~ mg 1 ) d. wt mg 1 ) m1n nmol c2H 
4

. mg d. wt mil 
conditions (h) - - -

X + X + X + X + - - - -- -- -- -- -- -
continuous light 0.5 0.116 0.003 8.1 1.2 0.09 0.03 1.38 0.60 

(control) 
II 12.0 0.160 0.013 20.6 1.8 0.78 0.04 6.02 0.21 

. II 24.0 0.263 0.012 35-7 2.4 1.38 0.11 10.16 0.52 
II 30.0 0.396 0.013 47.8 3.2 1.46 0.16 12.04 0.63 
II 36.0 0.590 0.052 -:< 66.6 3-5 1.46 0.03 ::::::12.84 0.52 
II 48.0 1.473 0.036 90.0 2.5 0.75 0.06 12.33 0.63 
II 60.0 2.280 0.073 127.5 17.5 0.48 0.05 8.66 0.52 
II 72.0 3.028 0.101 158.5 5.0 0.30 c'.o3 s. 72 0.55 

dark incubation of 36 h 0.5 0.616 0.034 63.2 3.8 0.20 0.03 1.96 0.15 
old culture 

II 1.5 0.622 0.049 68.2 1.8 0.17 0.02 1.51 0.03 
II 2.5 0.656 0.021 69.2 4.0 0.15 0.01 1.39 0.15 
II 12.0 0.750 0.025 48.6 5-9 0.016 0.006 0.26 0.09 

transfer of 12 h dark 0.5 0.792 0.024 53-4 5.2 o. 71 0.14 10.36 1.91 
alga to light 

II 1.5 0.826 0.078 58.4 5-7 1.53 0.13 21.52 0.75 
II 2.5 0.883 0.079 -::·61.0 3-4 1.67 0.13 ::-::·:: 24.02 1.71 
II 3-5 0.975 0.036 63.8 4.6 1.41 0.10 21.54 2.24 
II 4-5 1.032 0.099 67.4 5-3 1.30 0.15 19.73 1.84 
II s.s 1.161 0.070 72.8 6.2 l.ll 0.04 17.68 1.95 
II 6.5 1.229 o.oso 74.6 6.1 1.20 0.04 19.42 1.49 
II 7-5 1.337 0.054 83.2 3.8 0.97 0.04 15.56 0.71 
II n.s l. 775 0.074 109.0 4-7 0.54 0.03 8.75 0.07 

...... 
U1 
0\ 


