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ABSTRACT

The stress regime at subduction zones has been modelled using a
visco-elastic, quadratic isoparametric finite element model. An
isoparametric model is used because it performs more accurately than
constant strain triangular elements (CST) and also allows curved sided
elements to be intrcduced.

A method for modelling the frictional sliding on isoparametric fault
elements has been developed by extending Mithen's (1980) CST model. _The‘
resulting method is suitable for modelling the deformation on both éiane
and listric, normal and thrust faults. Graben widths prad:cted by normal
fault models agree with analytic solutions and this implies that Mithen's
CST models failed to do so because they were too stiff.

Applicaticen of this model to subduction zones demonstrates that the
slab pull force induces tension in the subducting plate and compression in
the overlying plate. Part of the lateral wvariation 1in stress which 1is
observed at all subduction zones is therefore inferred to arise from the
slab pull force. Differences in the magnitude of these stresses at
different subduction zones may therefore be accounted for by local
variations in the magnitude or dip of the slab pull force, and also by the
extent of the coupling across the plate koundary.

Various forces account for the stress regime in back arc regions.
Tensional stress 1s generated by lateral density variations, and the
heating and shearing caused by slab induced convection. Compressive
stress, arising from the slab pull force, 15 superimposed upon this. The
magnitude of the compression, however, 1is dependent upon the dip and size
of the slab pull force and also the degree of mechanical coupling between
‘the plates at the subduction zone fault. Local variations in the magnitude
of the compressive stress may therefore explain why the stress regime is
observed to be so variable in "‘back arc regions, and is more commonly

tension than compression.
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On the first day they had gone up fto the
mountains and had a picnic in the pine forest.
'We got a course 1n picnicking at this university,'’

said Dr. Bourbon.

"

'It's called geology, but it's really picnicking’

M. Bradbury
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CHAPTER 1

AN INTRODUCTION TO SUBDUCTION ZONES

The a;m of this thesis is to use the finite element method to model
the lateral variation in the str2ss regime at subduction zcnes. The finite
element methods are developed in chapters 2 to &, and they are applied to
Asubduction zones in chapter 7. This chapter 1s therefore an introduction
to current ideas on the location, structure, stress regime, sources of

stress and the physical processes occuring at Ssubduction zones.

Some of the most active tectonic provinces in the world are located in
the vicinity of the deep sea trenches which border the Pacific Ocean, the
Scotia Sea, the Antilles, the Aegean and JavazSumatra. Deep sea trenches
are typically V-shaped depressions in the ocean floor which are persistént
for thousands of kilometres and are associated with the largest known
negative 1sostatic ancmalies in the world. These regions are the most
seismically active in the world and release over 90% of the global
earthquake strain energy. This earthquake activity, which occurs mainly
landwards of deep sea trenches, 1s characterised by diffuse shallow seismic
activity and by deep and intermediate earthquakes concentrated on planes
which dip at around 45 degrees away from the oceans. These planes are
known as Benioff-Wadati zones. Another characteristic feature of these

areas are the active andesitic volcanic chains which occur at around 150 km

landwards of the deep sea trenches and above the Benioff-Wadati zone.




During the last twenty years it has been realis=d rthat rthe rtectonic
activity which cccurs at deep sea trenches originates from a common cause,
the subduction of oceanic lithosphere. In the subduction hypothesis deep
sea tfenches are considered to be the sites at which two lithospheric
plates are converging with the result that an oceanic plate 1s thrust
beneath the other plate and recycled into the mantle. This concept forms

an integral part of the theory of plate tectonics.

The evidence which supports the hypothesis that subduction occurs at

deep sea trenches 15 discussed in the next section.

1.1 Evidence For Subduction

The concept that the oceanic lithosphere 15 being subducted arises
from two important geophysical observations. The first ¢of these is that
new rigid plates of oceanic lithosphere are being created at mid ocean
ridges by the process of sea floor spreading (Vine and Matthews, 1963).
The second piece of evidence, which has recently been reviewed by Bott
(1982a), 1s that the earth is probably not expanding by any significant
amount. The logical consequence of these two observations is that oceanic
lithosphere must be continucusly recycled (i.e. subducted) back into the

mantle somewhera.

This process 1s probably occuring at deep sea trenches. The
observations which supgart this hypothesis are mainly seismological but
other geophysical evidence has been 1important in demonstrating the

feasibility of this concept.




1.1.1 Seismological evidence

The most convincing evidence which supports the hypothesis that

subduction occurs at deep sea trenches 1s based on the following

seismological observations (Isacks et al, 1968):

(L")

Almost all deep and intermediate earthquakes are spatially

concentrated at deep sea trenches.

The hypocentres of these =sarthquakes fall on a plane which dips at
30-80 degrees away from the trench and towards the volcanic arc
(Benioff, 1954; Svykes, 1966; Isacks and Barazangi, 1977). This

plane is known as the Benoiff-Wadati zone.

The Benvoff-Wadatl zone intersects the eartﬁg surface close to the

axis of deep sea trenches (Sykes, 1966..

TQe Benioff-Wadati zone 1s located 1in the upper 30 km of an
anomalous region of high Q 1in an otherwise low Q uppef mantle
(Oliver and Isacks, 1967). This tongue of high Q is approximately
100 km thick and 1is continuous with, and has similar properties
to, the oceanic Llithosphere (Figure 1.1). This feature was
initially observed in the the Fiji-Tonga region but i% has
subsequently been observed at other subduction zones (e.qg. Utsu,

1971).

Recent investigations have demcnstrated that a regicn of
extremely low Q occurs immediately above the high Q tongue

(Barazangi and Isacks, 1971).

Additional evidence, which was reviewed by Isacks et al (1968),

comes from the focal mechanism solutions of the sarthgquakes in
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Figure 1.1: variation of Q In the top 700 km of the earth {Barazangir and
Isacks, 1971).




subduction zones. The shallow earthquakes have two types of focal
mechanisms. These ara tensional in the subducting plate and
compressive 1n the overlying plate. This syggests that

underthrusting 1s occuring in these regions.

Intermediate and deep earthquakes have thelr -axes of maximum
and minimum principal stress aligned down  the dip of the
Benioff-Wadati zone and intermediate principal stress parallel and
horizontal to the strike of the Benioff Zone. These obsarvations
are consistent with the release of stress which would occur within

a sinking plate of oceanic lithosphere (Isacks and Molnar, 19693).

Double planed Benioff-Wadati zones have been observed tetween
100 and 150 km depth at some, but not all, subduction zones
(Fujita and Kanamori, 198l). The earthquakes on the upper plane
are located near to the top of the subducting plate and have
compressive focal mechanisms. About 30 km beneath this a lower
plane of earthquakes with tensional focal mechanisms is observed.
This stress regime may be caused either by thermal stress
(Woodward, 1975), an unbending (Samowitz and Forsyth, 198l) or a

sagging of the subducting plate (Sleep, 1979).

This evidence suggests that at deep sea trenches a plate of rigid

oceanic lithosphere 1s recycled 1nto the weak upper mantle.

1.1.2 Qther gecphysical evidence

There are four main other gecphysical observations which support the

subduction hypothesis. These are:




ra

In some seismic reflection profiles across the accretionary prism
the «convex surface of the oceanic basement can be seen dipping at
5 to 10 degraes tcwards the volcanlc arc (e.g. Seely et al, 197%)
Some of the most striking examples of this have been obtained in

the Lesser Antilles island arc (Westbrook, 1982) whera the oceanic

basement can be traced for over 50 km from the trench axis.

The magnetic lineations 1n the North-East Paciiic are discordant
with, and truncated at, the axis of the Aleutian trench (Pitman
and Hayes, 1968). This suggests that the oceanic lithosphere of

the Pacific plate has been subkducted at the Aleutian trench.

The positive geoid anomaly which occurs landwards of deep sea
trenches 15 partially explained by the presence of a high density
slab of subducting oceanic lithosphere at depth (Davies, 1981,

Chapman and Talwani, 1982).

The geometry of the présent day plate motions can be described as
the rotation of a series of rigid plates on a sphere {(McKenzie and
Parker, 1967; Morgan, 1968). The pole of rotation and the
relative angular velocity between each pair of plates can be
determined by inverting the observed rate and direction of
sea-floor spreading, the orientation of transform faults and the
direction of the slip vectors of the thrust earthquakes at
subduction zones {(Le Pichen, 1968; Minster et al, 1974; Minster
and Jordan, 1978). These studies demonstrate that several pairs
of plates are converging at deep-sea trenches (e.g. the Pacific
and Eurasian plates, and the Nazca and South American plates).
This <crustal shortening must be walinly accomodated by subduction.

It 1s therefore predicted that the average rate of subducticn at




the deep sea trenches which border the Pacific is about 9 cm/vr.

1.2 Morphology And Deep Structure Of subduction Zones

In this thesis the term subduction zone 15 used in its broadest sense
to describe the wide range of features which are produced by, or associated
with, the subduction of oceanic lithosphere. Subduction zones have
characteristic morphological features which are continuous for thousands of
kilometres along their strike. The major structural unitg will therefore

be defined by describing a cross section through a typical subduction zone.

The evidence discussed in Section 1.1 suggests that a subduction zone
is formed where two lithospheric plates, of which at least one is oceanic,
are converging. These two plates are referred to as the subducting and
overlying plates. The subducting plate is defined as the plate which is
bent into the mantle, whilst the overlying plate is the one which overrides
the subducting plate and suffers 1little vertical displacement. The
subducting plate 1s always composed of oceanic lithosphere. This 1is
because continental lithosphere has a thick low density crust which 1s too
buoyant to be subducted (McKenzie, 1969). The overlying plate, howevar,
can be composed of either oceanic or continental lithosphere. Where the
overlying plate 1s oceanic we refer to it as an island arc subducticn zone,
and where the overlying plate is continental we refer to it as an active
continental margin subduction zone. Isiand arcs are common in the West
Pacific whilst active continental margins are common in the East Pacific.
The detailed morphology and deep structure of island arcs (figure 1.2) and
active continental margins (figure 1.3), however, is similar and therefore
the description which is given below Ls commoh to both types unless stated

otherwise.
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The topography of the subducting plate in the vicinity of the rtrench
exhibits remarkable similarity between different geographic regiens (Héyes
and Ewing, 1970). The characteristic features.are a dep;ession known as
the deep sea trench and a positive deflection of the sea flcor known as the
outer rise. The outer rise has a maximum amplitude ¢f 300-500 metres akove
undisturbed sea floor at 120-150 km from the trench axis. Between the
outer rise and the trench ax:is the sea floor i1s convex and dips gently
downwards at 2-5 degreses reaching its maximum depth at the tranch axis.
The bottom of the trench is'generally covered by a thin layer of undeformed
sediment, although up to 2 km thick accumulations occur in the Chile trench
(Rulm et al., 1977) and much thicker deposits occur in the Lesser Antilles
arc where the trench 1s swamped (Westbrook, 1975). Gravity profiles across
the trench-outer rise system mirror the topography and typically have a
positive amplitude of about 50 mgal over the outer rise and a low of about
-200 mgal over the trench (Watts and Taiwani, 1974). This correlation

between the topography and gravity is generally attributed to the flexura

of the subducting oceanic lithosphere as it approaches the trench.

The subsurface geometry of the subducting plate 1i1s 1inferred from
earthquake hypocenters. At shallow depths these occur in the interplate
shear zone and.the wedge of the overlying plate. At intermediate and great
depths they occur near the top of the subducted slab. Isacks and Barazangi
(1977) reviewed the distribution of hypocenters at major subduction zones
and demonstrated that above 150 km they are located on a curve with a
radius of 150-300 km, while below this depth they lie on a plane with a
constant dip of 30 to 80 degrees. This suggests that tha subducting plate
is bent in the vicinity of the interplate shear zone but descends into the
mantle as a planar body. The deepest earthquakes in the Benioff-wWadati

zones varies between 150 and 68C km.

~d




A forearc complex lies landwards of the trench and seawards of =the

~
w

volcanic arc at all subduction zones (Dickinson and Seely, 1979). It
composed of two mailn units, an accretiocnary wedge and a forearc basin. The
accretionary wedge lies petween the overlying plate and the trench. It is
bounded at depth by the subducting plate, and is mainly composed of oceanic
sediments scraped off the subducting oceanic plate. This unit Ls
characteristically 50-150 xm wide ana 10-25 km thick at 1its contact with
the overlying plate. The forearc basin lies between the volcanic arc and
the accretionary wedge and it 135 composed of terriginous sedimzants

deposited on the overlying plate.

A volcanic arc lies 150-250 km landwards of the trench axis and
100-150 km above the subducting plate (Isacks and Barazangi, 1977). The
volcanic arc 1s characterised by andesitic volcanism and the emplacement of
plutons at depth. This causes the arc to develop L1nto a mountain belt or a
chain of mountainous islands. The volcanic arc 1is absent in Peru and
Central Chile, possibly due to the absence of an asthenospheric wedge
between the sulbducting plate and the overlying plate because of the low dip

of the Benioff zone in this region (Isacks and Barazangi, 1977).

The morphology of the region behind the arc at active continental
margins 1s generally dominated by cordilleran mountain chains. At island
arc subduction zones the back arc area is composed of oceanic lithosphersas
which forms marginal seas. A back arc basin exists behind the voicanic arc
at some subduction zones. Back arc basins are- characterised by thin
sediment cover, active shallow seismic activity, high heat flow, and
magnetic lineations. They often separate the active wvolcanic arc from an
inactive remnant volcanic arc (Karig, 1971). This suggests that back arc

basins are usually formed by episodes of 5ea floor spreading.




1.3 Thermal Structure Qf Subduction Zones

The concept that the oceanic lithosphere is subducted into the mantle
along deep sea trenches has two important implications for the thermal
structure of subduction zones. The first of these relates to the
temperature distribution within the subducting oceanic lithosphere and the
second relates to the thermal regime 1in the overlylng plate ind

asthenospheric wedge.

1.3.1 Thermal structure of the subducting plate

McKenzie (1969) demcnstrated quantitatively that the subductad oceanic
lithosphere must remain significantly cooler than the surrounding hot upper
mantle down to considerable depth because of the low thermal conductivity
of the 1lithosphere. Realistic thermal models of the subduction process
have subsequently been developed to include the effects of shear heating
along the slip zone at the slab-mantle contact and the effect of phase
changes in the subducting lithosphere (Minear and Toksoz, 1970 a, b; Hasbe
et al, 1971; Toksoz et al, 1971, 1973; Turcotte and Schubert 1971;
Griggs, 1972; Schubert et al, 1975; Toksoz and Hsui, 1979). All of these
models show the same general pattern of geotherms (figure 1.4) in which the
supducting plate retains its relatively low temperature to great depths and
the coolest part of the slab lies between its top surface and its centre.
These models indictate that the temperature regime in the subducting plate
1s a function of 1its thermal conductivity, descent velocity, thickness

(i.e. age) and angle of descent.

Part of the success of this model is that it explains some of the
seismological observations at deep sea trenches. The first is that the
presence of a cool oceanic plate explains the high Q tongue which is

observed  beneath most subduction zones. The second i1s rhat the
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Benioff-Wadati zone of selsmicifty occurs 1n the upper section of the
subducting plate because temperaﬁures remain low enough [0 =napble brittle
fracture to occur. Finally, the variation in the depth of the deepest
earthquakes at different subduction zones can be qualitat;vely explained by
the depth at which the subducting plate reaches a «critical temperature

above which brittle fracture cannot occur :Molnar et al., 1979; Wor:tel,

1982).

An important implication of these mcdels 1s that the subducting plate
has a large negative buoyancy. This arises because the subducting ocesanic
plate 1is cooler, and consequently denser, than the surrounding
asthenosphere and also because some phase changes to denser mineralogiss

occur at shallower depths within the slab than in the adjacent mantle.

1.3.2 The thermal regime of the overlying plate and the asthenospheric

wedge .

The volcanic arc and back arc region of the overlying plate are sites
of active volcanism, high heat flow (Watanbe et al, 1978) and are underlain
by a region of very low Q (Barazangl and Isacks, 1971; Barazangl et al,

1975). These observations suggest that the asthensophere is hot in these

regions and there 1s an associated thinning of the overlying lithosphere.

The possibility that this hotazregion is caused oy the subducting plate
inducing a wviscous drag convective flow in the overlying asthenospheric
wedge was initially proposed by McKenzie (1969). He demonstrated that such
a flow woull cause upwelling of hot material in pack arc regions which has
the combined effect of shearing and heating of the overlying plate. More
sophisticated @odels of this flow have raecently been developed but they

mainly confirm the potency of this mechanism in producing the obsarved heat




flow in back arc regions (e.g. Toksoz and Hsui, 1978). These authors have
implied from these models that this flow could also orovide the major

driving force of back arc spreading.

An additional prcocess which may contribute tc the development of the
hot, very low Q zone in the asthenospheric wedge and the surface andesitic
rolcanism  i1s the relmase oL water from the subducted oceanic crust

(Ringwood, 1977).

1.4 The Observed State Of Stress At Subduction Zones

The first aim of this section is to review the observed state of
stress at subduction zones. These observations will be used to constrain
the models which will be developed in chapter 7. Tha second aim 1is to
review current 1ideas on the origin of the stress regime at sukduction

zones-.

The present-day state of stress in the the 1lithosphere can be
determined by three main methods. The first is to infer the principal
stress orientations from the focal mechanisms of earthquakes. This method
can only be used in limited areas, such as new plate boundaries, which are
seismically active. The second hethod is to infer the principal stress
orientation from stress sensitive geological structures. This methed
requires reliable dating of the structures and 1s restricted to
geographically accessible areas, but it is useful in regions where focal
mechanism studies are absent. The third method is to evaluate the strass
regime using in situ techniques (McGarr and Gay, 1978). These methods are
restricted to geographically accessible areas and have not been applied at

subduction zones.




The subducting plate and the leading edge of the overlying plate are
both seismically active and consequently thelr stress regime can generally
be inferred from seismic focal mechanism solutions. The zack arc area,
however, 15 1less seismically active and consequently the stress regime i3

principally inferred from stress sensitive geological features.

The statz of stress is cbserved to be regionally cons;stent along the
strike of subduction zones. The stress regime at subduction zones can
therefore be adequately modelled in two dimensions. The observed state of
stress is consequently described in this section as a two dimensional cross

section through the tectonic provinces of a subduction zone.

1.4.1 Trench-outer rise system

Seismic reflection profiles show that the seismic basament and
overlying sediments 1in the trench-outer rise system are dissected by
numerous normal faults (Ludwig et al, 1973). The earrhquakes in this area
are located at depths of less than 25 km and are inferred from their focal
mechanism solutions to be produced by horizontal tensional stresses which
are orientated normal to the trench axis (Chapple and Forsyth, 1979). This
stress pattern is generally considered to result from the £flexurs o¢f the
oceanic lithosphere as it 135 bent into the subduction zone (e.g. 'Watts and

Talwani, 1974).

Recently, however, Christensen and Ruff (1983) have presented evidence
which suggests that the state of stress in this region may be more
complicated. They demonstrated that a small number of compressional
earthquakes are observed 1in the shallow portion of the subducting plate
prior to major subduction zone earthquakes. This evidence suggests that

horizontal compressive stress may build up 1in the trench-outer rise




immediately before major underthrusting occurs.

1.4.2 The leading edge of the overlving plate

The leading edge of the overlying plate, which comprises the region
between the trench axis and the volcanic arc, 1s the most selsmically
active environment in the world. It 1s characterised by numercus shalleow
earthquakes. Kanamori (1977) demonstrated that ten great earthquakas
(magnitude greater than 7.5) releasing over 90% of the worlds total seismic
energy occurred in this region between 1904 and 1976. He also demonstrated
that these earthquakes occurred predominantly on low angle thrust faults.
The numeroué smaller magnitude earthquakes which occur in this region are
also considered to be produced by thrust faults (Stauder, 1968; 1975).
Seismic reflection profiles across the sedimentary wedge have also shcwn
that the major structural features in this region are landward dipping

thrust faults (Dickenson and Seely, 1979).

The observation that the deformation at the leading edge of the
overlying plate occurs almost exclusively on low angle thrust faults
suggests that the principal stress 1in this region 1s predominantly
horizontal compressicn orientated perpendicular to the trench axis. It is
generally considered that this stress regime 1s caused by the relative
motion of the two converging plates (e.g. Isacks et al, 1968). This

interpretation 1is supported by the observed surface deformation which

follows large thrust earthquakes (e.g. Plafker, 1965).

Kanamori (1977) demonstrated that the magnitude of the compression 1in

this region may vary between subduction zones. He has shown that:




1. Great thrust earthquakes are spatially concentrated at certain

subduction zones.

[\]

At the subkduction zones where great thrust =sarthquakes occur :(e.g.
Chile, Alaska, the Aleutians and Kuril-Kamchatka) the seismic slip
rate {estimated from the displacement on the rupture plane and the
recurrence time) 1is equal to the displacement predicted by the
kinematic plate motions. These subduction =2ones ccrrelate with

strong regional compression in the overlying plate.

3. At subduction zones where great earthgquakes do not occur (e.g the
Marianas, Izu-Bonin, Java-Sumatra and Tonga-Kermadec), the seismic
slip rate is less than the displacement predicted by the kinematic
models of plate motion. These subduction zones are characterised
by tensional stress in the back arc areas.

Kanamori has explalned these observations by a model 1in which the
degree of mechanical <coupling of the plates varies between subduction
zones. He suggested that where the coupling is strong great earthquakes
occur and the stress 1s regional compression, but where the coupling is
weak great earthquakes are absent and tensional stresses may occur in the
back arc areas. This model suggests that the mechanical coupling between
the plates controls the amount of compression which 1s transmitted into the

overlying plate.

Ruff and Kanamori (1983a, 1983b) demonstrated thai the thrust
earthquakes at coupled subduction zones have relatively larger asperities
(regions resisting motion on the fault plane) than those at uncoupled
subduction zones. They suggested that the mégnitude of the horizontal
compressive stress at the leading edge of the overlying plate Ls
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proportional to the ratio of the area of the asperitas to the total area of

the fault plane.

1.4.3 Subducting plate

Intermediate depth earthquakes occur within the cool, elastic pgortion
of the descending lithospheric plate (Isacks et al, 1963; Stefani et al,
1982). Isacks and Molnar (1969; 1971, demonstrated that the focal
mechanisms of these earthquakes indicate that the principal axis of either
tension or compression is aligned down the dip of the subducting plate.
The dominant downdip stress in the slab i1s spatially variable (fig 1.5)
which Isacks and Molnar explained in terms of the depth to which the
subducting plate penetrates (Fig 1.6). In this model tensional stresses
dominate short slabs because they sink under their own weight without
encountering significant resistance from the surrounding asthenosphere.
Slabs which penetrate into and beyond the mantle transition zone, howeve;,

encounter progressively more resistant mantle so that comprassion is

transmitted up the subducting plate.

The results of a recent survey of 1i1ntermediate £focal mechanisms by
Fujita and Kanameri (198l) are shown in fiqure 1.7. There are two
significant differences between these results and those of Isacks and
Molnar. The first 1s the recognition that double seismic zones occur at
intermediate depths in some, but not all, subducting slabs. Tha second 1is
that recently available focal mechanisms for the 650 km deep subducting
plates in the Marianas and and Kermadec areas are pradominantly tensional.
Fujita and Kanamori pointed out that these results do not agree with the
depth of penetration model and proposed that the dominant factors which
control the stress regime in the descending plate are the convergence rate
and the age of the subducting lithospheare (figure 1.8):
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1. 0ld and slow slabs: The state of stress in old slabs with a low
convergence rate is dominantly tensional. This is becauses the old
lithospnere has a large negative puoyancy and therefore tends to
sink 1into the mantle faster than the plateSare converging. This
causes the subducting plate to 'pull’ itself into the mantle and

therefore tensional streses dominate 1it.

2. Cld ard fast, and young and slow: These conditions £favour the
development of double seismic zones. This 1s because the
convergence rate 1s almost equivalent to the age controlled rate
at which the slab is sinking into the mantle and therefore local
effects such as unbending (Engdahl and Scholz, .1977), sagging
(Sleep, 1979), or thermal effects (Veith, 1977) dominate the
stress in the slab and produce double seismic zones.

3. Young and fast: Under these conditions compression dominates the
sinking plate. This 1s because ghe convergence rate 1s faster
than the speed at which the slab is sinking due to 1its negative
buoyancy, and therefore, the subducting plate is pushed into the

mantle and is consequently dominated by compressional stresses.

1.4.4 Back arc regions

Because of the limited seismic activity 1n the back arc areas of
subduction zcnes, the stress reqgime has tc be principally inferred from
stress sensitive geological features and marine observations. These
observations have shown that, unlike other provinces associated with
subduction zones the dominant horizontal principal stress in back arc areas

varies from region to region (Table 1.1).




SUBDUCTION ZONE STATE OF STRESS REFERENCE

Island arcs

Tonga-Kermadec Tensional Welssel (1981}

New Hebrides Tensibdéi Karig & Mammerickx (1972)
Ryukyu Ten;ional Weissel (1981)

Marianas .Tensional Bipee et al (1980)
Izu-Bonin ' Tensional Karig (1974)

Japan Tensional Nakamura & Uyeda (1980)
Kuril-Kanchatka ? England and Wortel {(1980)
Alaska Compressive Lathram et al (1974)
Aleutian Tensional Nakamura & Uyeda (1980)

S. Sandwich Tensional Barker & Hill.{198l>

Aegean Tensional Le Pichon & Angelier (1980)
Caribbean ? Molnar and Atwater (1978) )

Active continental margins

Chile Tensional Megard & Phillip (1976)
Peru Compressive Stauder (1975)

Central America Tensional Mclnar and Sykes (1969)
Cascades ?

Java ?

Table 1.1: Observed state of stress in the back arc region of subduction zones
? signifies subduction zones where neither tensional or compression
stresses are dominant,



The strass regime behind some 1sland arc subduction zones 13
considered t0 be tensional Dbecause marine geological and geophysical
observations have demonstrated that active sea floor spreading 1S currently
occuring. This phenomena 13 known as back-arc spreading. Examples of
presently active back arc basins are the Marinas basin (Karig et al, 1978;
Bibee et al, 1980), the Scotia sea {(Barker and Hili, 198l), the Lau basin
(Weissel, 1977) and possibly the Andaman sea (Eguchi et al, 1979) and the
Aegean (Le Pichon and Angelier, 1981l). Recognisable symmetric magnetic
anomalies hive also heen identified in other marginal seas (Weissel, 1981)
which suggests that back arc spreading was ccmmen in the past. Figure 1.9
summarises the location of past and present areas of back arc épreading and
demonstrates that it 15 spatially and temporally episodic. Nakamura and
Uyeda (1980) have also proposed, on the basis of stress sensitive
geological features, that the stress regime in Japan and the Aleutians 1is
presently tensional even though back arc spreading is not currently active

in these regions.

Geological observations of faulting in the Cordilleran mountain chains
of the Pacific American coast suggest that these regions were formed during
the Quaternary by dominantly tensional processes. The focal mechanism
solutions for Peru and North Chilz (Stauder, 1975) and Alaska, however,

suggest that these regions are presently under compression.

In the back arc areas of Java-Sumatra, Kuril-Kamchatka, the Cascades,
Central America, and the Caribbean subduction zones the present day stress
regime is not observed to be dominated by either tensional or compressive

stresses.
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Because the Kkinematics of the subduction process predicts that
subduction zcones are sites of crustal shortening they would be predicted to
5e sites of reglicnal comprassion. The observations reviewed i1n this
section, hcowever, demonstrate rthat tension 1s more common in pack arc
regions. Several models have been proposad ro =2xplain the origin - ¢f this

tensional stress:

1. Slab induced convection. Several authors have procosed that the

tension 1in back arc basins, and more specifically the force
driving back arc spreading, is produced by the combinaticn of
heating and shearing which 1s associated with slab induced
convection (Figure 1.10). This mechanism should produce tensional
stresses at those subduction zones where the slab penetrates
deeper than several hundred kilometres. Because the
Ruril-Kamchatka and Java-Sumatra subduction zones have deep slabs
but are not tensional, this prediction 1is not supported by
observations. A further limitation of this model is that it does
not provide a satisfactory mechanism to stop back arc spreading

other than by cessation of subduction.

2. Negative buoyancy. Observations indicate that compression 1is

dominant in regions where vyoung slabs are being subducted and
tension where old slabs are being subducted. This suggests that
the stress regime in the overlying plates may be controlled by the
age of the subducting plate because of the 1ncreasing negative
buoyancy of the oceanic lithosphere as it ages (Molnar and
Atwater, 1978; England and Wortel, 1980). Because the stresses
are tensional at some subduction zones where very young slabs are

being -subducted (e.g. Chile) and are not tensional where every
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old plate 1s being subducted, however, this model dces not agree

completely with observations.

3. Coupling of the plates. It has been proposad that the degree of
mechanical coupling of the subducting and ovarlying plates at the
subduction zone fault controls the stress regime in the overlying
clate (Karamori, 1977; Uyeda and Xanamari, 1979). This model
suzgests that where the plates are hithy coupled the éverlyinq
plate 1s characterised by regional compression but where the
plates are weakly coupled the overlying plate is characterised by
tension. Some subduction zones which are considered to be
strongly coupled (e.g. the Aleutian and Tonga-Xermadec), however,

are observed to have tensional stresses in the back arc regions.

This model therefore does not completely explain observations.

4. Absolute motion of the overlying plate. Several authors have

suggested that back arc spreading only occurs where the overlying
plate 1s retreating from the trenchline in an absolute reference
frame (Chase, 1978; Uyeda ard Kanamori, 1979). This observation,
however, only explains why tensional stresses are present in the
Marianas and Scotia arcs. It does not explain why the stresses in

many other back arc regions are observed to be tensional.

There is consequently no current model which can satisfactorily
explain the spatial and temporal episodicity of the tensional stresses in

the back arc area of subduction zones.
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1.5 Sources Of Stress

_Stresses are produced in the lithosphere by the action of boundary and
body Eforces. The stress regime which these forces produce, 1n garticular
their response over time, 1s con:rolled by the rheology of the lithosphere.
The rheology of the 1lithosphere 1is reviewed 1n chapter 2 and it is
therefore the aim of this section to review the sources of lithospheric

stress.,

The sources of stress in an elastic 1lithsophere were reviewed by
Turcotte and Oxburgh (1976). They considered that the lithospheric strass
regime is the product of the system of bPoundary and body forces which
presently act upon it and the initial strains which were produced by
earlier tectonic events. Since then, however, several advances in our
knowledge of the time dependent nature of the rheology of the lithosphere
have improved our understanding of the sources of tectonic stress. These
advances led Bott (1982a) to reclassify the sources of lithospheric stress
into renewable or non-renewable stress systems. Renewable sources of
stress are pr.:duced by forces which continuously regenerate strain energy
(e.g. body forces and plate driving forces). Non-renewable stresses are
produced by 1initial strains which do not continuously generate strain
energy (e.g. thermal and bending stresses). Un}ike non-renewable stress,
renewable stresses are not relieved by transient creep and they are
consequently subject to stress amplification in the upper elastic layer of
the lithosphere (Kusznir and Bott, 1977; Bott and Kusznir, 1979). The
forces which generate renewable stress are therefore the major sources of

tectonic stress in the lithosphere.

The main sources of stress in the lithosphere are:

_Zl_



Plate driving forces. These forces, which are a renewable source

of stress, are of plate tectonic origin (Forsyth and Uyeda, 1975).

They include;

1. Ridge push. Which results from the continucus upwelling of

hot, low density material beneath mid ocean ridges.

2. Slab pull. Which arises from the large negative buoyancy of

the cool, and consequently dense, subducting slab.

3. Trench suction. This is a force which pulls the overlying

plate towards the subducting plate (Elsasser, 1971). The
origin of trench suction 1is not well understocd. It may
possibly result from the roll-back of the subducting plate
(Chase, 1978; Molnar and Atwater, 1978) or the shear stress

arising from siab induced convection (Richter, 1975).

These forces, which are probably the largest of plate tectonic
origin, are resisted by viscous drag along the interface of the
plates with the mantle and by frictional resistance along

interplate boundaries.

Loading forces. Body forces, resulting from the weight of the

lithosphere, produce large stresses in the lithosphere. Important
deviatoric stress regimes are produced where there are local
changes 1in the magnitude of loading forces, either resulting from
lateral variations in the density of the lithosphere or from

changes in the magnitude of topographic loads:

1. Topographic surface loads with a short wavelength (_ess than

half the thickness of the lithosphere) do not result in



significant bending, and produce local deviatoric tension 1in
the lithoéphere beneath the load and compression at its edges
(Bott, 1971). Although these stresses aras of relatively low
magnitude thevy may. be tectonically significant’  when

superimposed upon regional stress regimes.

z. Isostatically compensatc loads groduce lecal deviatoric
tension in the lithcsphers (Bott, 1971; Artyushkov, 1973).
This occurs because the downthrust of the topographic lcad 1is
balanced by an equal upthrust from the compensating regicn,
which may be either a thickened crustal root or a low density

region resuting from a thermal anomaly.

Both of these types of stress system produce renewable stress in

the lithosphere which is subject to stress amplification.

Bending stresses. Long wavelength 1isostatically uncompensated

loads cause flexure of the lithosphere. The bénding stresses
produced by lithospheric flexure are tensional on the convex side
and compressive on the concave side. Although very large bending
stresses are produced by lithopheric flexure they do not appear to
cause significant tectonic activity. Bending stresses are
the{efore probably relieved by creep and are therefore

non-renewable.

Thermal stress. This is caused by the thermal wvolume changes

which result from the heating and cooling of the lithosphere, e.g.
due to the cooling of the oceanic lithosphere as it moves away
from a mid ocean ridge (Kusznir, 1976). Thermal stresses,

however, are probably relieved by transient c¢reep and they are

_23_



therefore non-renewable.

S. Membrane stresses. These are causad by the motion of the

lithosphere over an =allipscidal earth (Turcotte, 1974). The
stresses produced by this mechanism, however, are non-renewaple

and are almost certainly relieved by transient craep.

1.6 Aims Qf The Thesis

There are two aims of this thesis. The first 1s to determine the
origin of the lateral wvariation 1n the stress regime which 1is observed
between the subducting plate and the leading edge of the overlying plate at
all subduction zones. The second is to determine tne origin of the various
stress regimes which are observed in the back arc areas of different

subduction zones.

The stress regime at subduction zones is modelled in chapter 7.
Before gquantitative models of the stress regime can be constructed,
however, it 1s necessary to obtain a predictive rheolcogical model of the
lithosphere (Chapter 2) and to develop two modelling techniques. The first
of these is a numerical method which is capable of accurately modelling the
complex geometry and physical processes occurring. at subduction zone
(Chapters 3 and 4). The second is a method which can model the deformation

assoclated with the curved sided subduction zone fault (Chapters 5 and 6).
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CHAPTER 2

THE RHEOLOGY OF THE LITHOSPHERE

2.1 Introduction

A rheological model describes the deformation which a material
undergoes in response to loading. The initial problem. in stress analysis
is to define this model. It can subsequently be used to predict the stress
regime which will be produced by a specified system of boundary conditions

and body forces.

The rheology of a material 1is definad by inverting 1its observed
stress-strain behaviour in response to loading. The stress-strain responsa
at depths greater than several kilometres cannot be sampled in situ in the
eargh, and consequently, its rheology has to be inferred from seismological

observations, rock mechanics and 1i1ts observed response to persistent

geological loads.

3

A consenus model of the rheology of the near surface layers of the
earth is beginning to emerge from such analyses. This model suggests that
there is a mobile near surface layer of strength, known as the lithosphere,
which overlies a weaker layer, known as the asthenosphere. The cobserved
response of the lithosphere to loads of different durations, however,
suggests that this layer can be subdivided into two units. The first is an
upper layer which responds in an elastic-brittle fashion to loads of all
durations. The second is a lower ductile layer which responds elastically
to short term loads but which creeps in response to loads of a 1longer
duration. The thickness of both layers is observad to increase with the
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age of the lithosphere. This 1s because the rheological properties of the

lithosphere are cdominantly thermally controlled.

There are two aims of this chapter. The £first L1s to reviaw the
evidence upon which this rheological model 1s based. The second 1s o
define its mechanical properties as a function of deptn. This rheolcgical
mocel fzrms  the basis for the mathematical models which are developed in

subsequent chapters.

2.2 Rheological Response Of The Earth To Persistant Geclegical Leads

The concept that the outer layers of the earth are divided 1into a
strong elastic lithosphere overlying a weak asthenosphere was initially
introduced by Barrell (1914) to explain the observation that persistent
short wavelength 1loads, such as deltas, are isostatically uncompensated
whilst persistent long wavelength loads, such as mountain chains, are
isostatically compensated. In this rheological model the lithosphere 1is
definad as the strong near surface layer which supports long term short
wavelength loads, while the asthenosphere is defined as the weak underlying

layer which flows in response to long wavelength loads.

A recent justification of this model has been provided by plate
tectonics. This theory postulates that the outer layar of the earth is
divided into a number of lithospheric plates which move relative to one
another. These plates suffer little internal deformation which suggests
that this outer layer behaves as a rigid (i.e. elastic) layer which acts

as a stress guide (Elsasser, 1969).



2.3 Seismological Evidence

Seismic sources locally stress the earth and preduce elastic waves
which propagate through it. The typical time span of seismic disturbances
is 1-100 seconds and they consaquently provide information on the

rheological response of the earth to short term loads.

Seismological cbservations grovide direct evidenca for a seismic
lithosphere~-asthenosphere subdivision. They also provide information on
the variation of elastic properties of the lithosphere with depth, and
demonstrate that the top of the seismic lithosphere deforms anelastically

by brittle fracture.

2.3.1 Seismic evidence for the lithosphere and asthenosphere

A hajor change in the seismological properties of the upper mantle 1is
observed between 100 and 200 km depth (e.g. Bott, 1982a). The principal
seismological characteristics of this zone, which distinguish it from the
overlying region, are that it has a low velocity to S waves and a low Q.
There have been many attempts to explain this obsarvation, but the most
widely accepted vwview is that it represents the region where the mantle is

closest to its melting point.

The low velocity zone 1s generally considered to provide direct
evidence for the existence of an asthenosphere. The seismic definition of
the lithosphere is therefore as the region which lies above the low

velocity zone (Le Pichon et al, 1973).

Much attention has been directed to establishing the thickness of the
seismic lithosphere. Surface wave analyses have demcnstrated (Figure 2.1)
that the oceanic lithospheré increases in thickness from 25 km at S million
years to 90 km at 100 millicn vears (Leeds et al, 1974; Forsyth, 1977).
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These observations suggest that the lithosphere increases in thickness as
it cools. The continental 1lithosphere 1s generally thicker than the

oceanic lithosphere.

2.3.2 Variation of elastic parameters with depth

The wvelocity of seismic waves are dependant upon the elastic
properties and density of the medium through which they travel. The well
known velocity and density distribution 1n the seismic 1lithosphere can
consequently be inverted to yield the variation in Ycung's modulus, E, and
Poisson's ratio, v, with depth (e.g. Mithen, 1980). This procedure yields
a different profile of elastic parameters in the continental and oceanic
lithospheres because of the differences 1in their wvelocity distribution.
The wvariation 1in the elastic parameters with depth in the oceanic and
continental lithosphere which were calculated by Park (198l) £from their
average velocity and density distribution are shown in figure 2.2. These
parameters will be used in subsequent chapters to model the lithosphéric

stress regime.

2.3.3 Non-elastic deformation

Earthquakes are natural seismic sources which arise from the
non-elastic deformation of the earth. The radial distribution of
earthquake foci, outside of plate c¢ollision zones, 1s obsarved to be
restrgted to the upper 10-30 km of the seismic lithosphere (Vetter and
Meissner, 1979). This observation suggests that the lithosphere has a
finite strength and deforms as a brittle solid in the near surface when the

load exceeds the strength of the rocks.
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2.4 Lithospheric Flexure

The lithosphere responds to vertical loads, such as those at seamounts
and deep sea trenches, by bending. The charactaristic featurss of thié
flexure are an uparching of the seafloor <(known as the outer rise at
trenches and the peripheral bulge at seamounts) some 100-150 km from the
load and a downwards displacement towards it. This flexure originates at
seamounts from a static volcanic load, while at trenches it results from
the dynamic forces associated with plate convergence. Although the forces
causing flexure at trenches and seaﬁounts are different the implications
for the the mid to long term rheology of the 1lithosphere ars similar.

. These implications are reviewed in this section.

The lithospheric flexure seawards of trenches and seamounts has been
successfully modelled using thin elastic plate theory (Walcott, 1970, 1976;
Hanks, 1971; Watts and Talwani, 1974; Watts and Cochran, 1974; Watts et
al, 1975; Parsons and Molnar, 1976; Caldwell et al, 1976; Watts, 1978).
This model represents the lithosphere as an elastic layer and the
asthenosphere as a fluid substratum. The two major results which have been

obtained from these models are (figure 2.3):

1. The mechanical thickness of the elastic layer which supports the
load 1is between a half or a third of the seismic thickness of the

lithosphere.

2. The thickness of the elastic layer increases with age and follcows

the 300-700°C isotherm of Parsons and Sclater (1977).

These results have been interpreted as demonstrating that the entire
seismic thickness of the lithospheré does not support long term loads and
therefore that the seismic lithosphers 1is divided 1i1nto an elastic upper
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Figure 2.3:
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layer and a ductile lower layer whose position 1s thermally controlled.

Recent models of the topography of these features have shown that
pettaer fits to profiles which have a large curvature can be obtailned using
a rheology which allows some non-elastic deformation ¢ occur 1i1n  the
elastic layer }(ngdoo et al, 1978; Turcotte et al, 1975; Bodine and
Watts, 1979;- Chapple and Forsyth, L1979), These models nse an
elastic-plestic rheolcgy for the lithosrhere which yields plastically when
the stresslin the elastic layer exceeds the yield strength of the rocks.
The ;dvantages of this model are that it produces much more realistic

stresses in the =lastic layer and i1s compatible with the observations of

rock mechanics.

The continental lithosphere, however, has not been subjected to such
exhaustive modelling. This 1is becaQse it 1s less homogenéous than the
oceanic lithagphere and because suitable loading étructures do not readily
occur. The available evidence, however, demonstrates'that the continental
lithosphere behaves like the oceanic lithosphere in that the mechanical

thickness o©of the -elastic layer is thermally controlled and substantially

thinner than the seismic thickness (Karner et al, 1983).

2.5 Rock Mechanics

Rock mechanics can be used to measure the stress-strain behaviour of
various lithospheric constituents at different pressures and temperatures
to simulate their physical behaviour at depths within the earth. Such
experiments provide informaticn on the physical mechanisms of deformation
within the lithosphe;e and help to explain 1its observed time dependent

response to loading.
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2.5.1 Brittle fracture: modified Griffith theory

The great number of micro- and macro-fracturss which are obsarved 1in
crustal rocks demonstrates that neon-elastic deformation occurs near to the
earths surface. The hypocentres of the earthquakes which occur in the
upper elastic lithosphere demonstrates that this brittle fracture extands

to depths of 10-30 km.

These observations are inn  agre2ment with the known behaviour of
lithospheric rocks in laboratory experiments conducted at low temperatures
and pressures. These analyses show that rocks have a finite strength and

fracture when the magnitude of the load exceeds a critical value.

Mathematical descriptions of the failure of rocks have peen proposed
by Coulomb, Mohr and Griffiths and are reviewed in Jaeger and Cook (1977).
For reasons discussed in Mithen (1980), it iLs generally accepted that a
modified form of the Griffith fracture criterion fits best with laboratory
experiments and with the observed failure of lithospheric rocks. This

failure criteria has been used in this thesis.

It 1s convenient to describe the modified Griffith failure criteria in

terms of the mean stress,G, , and the mean shear stress,¥ which are

m !
defined
G+
G;‘:
2
9%
Ty =
2

where O and o; are the maximum and minimum principal stresses (with the
convention that tension 1is positive). The modified Griffith failure
criteria can then be defined in terms of the tensile strength of the rock,
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T, the stress required to close the Griffith cracks, o, and the
coefficient of internal friction on these cracks,/uF . It 1s also

convenient to define a dimensionless parameter, C, which assessas the

degree by which the rock has failed ¢(Park, 1981}, and is defined oy

_ Xm

r

c= 1

where r is the wvalue of T% at which failure occurs. This factor is useful
because it give an impression of the degree of failure within the body: if
C is positive failure has not occured, but when C 1s egual to zero fallure

occurs and increases strongly as C becomes more negative.

Using these parameters it 15 possible to define the four regimes of

the modified Griffith failure criteria as follows:

1. Tensional failure. This occurs in the regien

ﬂ'\t S |Tml

Failure is predicted when
Tw2 T - On

where B,the angle between the fracture plane and the minimum

principal stress, 1s equal to zero.

The degree of faillure is defined by

T -o

T - o

2. Open crack shear failure. This occurs in the region

l2ell > IRl whee a7 & -2T,




Failure 1is pradicted when
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The degree of fallnre 1is
/"(:m
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Intermediate failure: This occurs in the ragion

el > %]

where
a & >0 -2 u(T - T2
O < %2T and G >0 -2 u(T -9 T)

Failure is predicted when

R S
T > (g-g) + 4T(T-q)

where
1 4T(T-C7)
© = - arctan { ———
2 & - o

The degree of failure is

Tm

((O,-q)  + 4T(T -g))

Vo,

Closed crack shear failure: This occurs in the ragion

2g > 1%,

where
2 YVa
On < % -2 4 (T -6, T)

Failure is predicted when
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To use the modified Griffith theory to test for failure in the finite
element models it 1is necessary to assign values to the tensile strength.
The average tensile strasngth of the 1ignecus rocks 1in the upper crust
appears to be 12 MPa (Goldsmith et al, 1973) whilst an average value of 50
MPa appears to be appropriate for the rocks in the lower crust (Service and
Douglas, 1973). The wvalue of OZ, the stress to close the cracks was taken

as -10T (Ashby and Verall, 1978) and the value of /MF, the coefficient of

internal friction of the cracks, is taken as 0.1 (Brace, 1964). o

2.5.2 Ductile behaviour

Metals deform by creep at stresses above their elastic limit. Kirby
(1983) has reviewed recent experimental work on possible upper mantle
constituents which suggests that creep is also likely to be the dominant
deformation process in the asthenosphere and the lower part of the seismic
lithosphere. The results of these experiments are conveniently summarised
in the form of a deformation map for olivine (figure 2.4). This figure
demonstrates that the rheology of olivine 1is strongly temperatursas
dependent. Three creep mechanisms are thought to control this observed

behaviour:
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Low temperature plastic £flow: This style of deformation 1is

controlled by the motion of dislccations on their glide planes and
occurs at temperature less than 0.5 Tm, where Tm 1s the absolute
melting temperature. It 15 thought that this mechanism is the
dominant style of deformation below the brittle-ductile transition
and occurs where the temperaturs 13 tOo0 low for power law 5féep to

be the dominant process (Carter, 1976).

Power law creep: This is a form of steady state creep and occurs

when dislocations are able to move both on.énd normal to their
glide planes. Power law creep 1s observed in olivine at
temperatures between 0.5 Tm and 0.9 Tm and its onset corresponds
with a sudden loss of strength. Considerable work, which 1is
reviewed by Kirby (1983), has shown that in this behaviour the
strain rate, é , 15 dependent wupon the power law of the

differential stress, q; , and has the form

- (Q+PV)

KT

where Q 1s the activation energy, P is the pressure, V 1is the
activatieon wvolume, k 1s Boltzman's constant, T i1s the temperature
in degrees Kelvin, and A is some constant for the material. The
value taken by the power law exponent, n, is considerad to be 3 at

low stresses and 5 at high stresses.

Diffusion creep: This behaviour has not been directly observed in

lithospheric materials but it is well established in metals. This
style of deformation has not been observed in experiments because
it is not possible to recr=2ata the low creep rates and
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temperatures under which it would occur. Diffusion «creep takes
two forms in metals Known as cobble creep and Nabarro-Herring
creep and it is assumed that similar processes >ccur in the =arth

at temperatures around 0.9 Tm.

Because of the high temperature conditions (greatsr than 0.3 Tm) 1in
the lower seismic lithosphere the ductile flow in this ragion is probably
dominated by power law creep. This 1is supported' by tha dislocation
structures observed in peridotite nodules originating from the mantle

(Nicholas and Poirier, 1976).

There are, however, some uncertanties in the application of power law

creep to the earth. These are:

1. All of the -experiments which have been performed on likely
lithospheric constituents have been conducted at strain rates
which are several orders of magnitude higher than actually exist
in the earta. The extrapolation of the results of these
experiments to the much lower strain rates 1in the lithosphere
consequently depends on the validity of the assumed constitutive

equation for power law creep.

2. The chemical environment, particularly the presance or absence of
water, has an important 1nfluence on the creep rates and therefore

on the parameters of the constitutive equation.

3. The effect of pressure on the parameters in the power law creep

equations is alsoc poorly understood.



It is therefore clear that a.though power law creep is considered toO
be the dominant deformation mechanism 1in the lower seismic lithosphere
there is still considerable uncertainty apout the values to assign to the

parameters in the constitutive equation.

2.6 Conclusion: A Rheolcgical Mcdel Of The Lithosphere

In this thesis the lithosphere 1s defined as the relat-vely strong
layer above the low vwvelocity zorz2. The observations which have been
reviewed in this chapter suggest it is subdivided 1into two layers whose

boundary 1s gradational and thermally controlled (Figure 2.4):

1. The upper elastic-brittle lithosphere. This Ls the region above

the 300-700° C isotherm which responds elastically to long and
short term loads. The top 10-30 km of this region, however,
deforms non-elastically by brittle fracture when the load exceeds
the elastic strength of the rocks. The brittle fracture 1S

’

described by modified Griffith theory.

2. The lower ductile lithosphere. This layer lies between the upper

elastic-brittle lithosphere and the asthensophere. The lower
lithosphere responds elastically to short term loads but deforms
by ductile «creep in response to loads of a longer duration. The
dominant deformation mechanism in the lower lithosphere 1s power
law creep. Because of current uncerum&nties about the
extrapolation of experimental strain rates to those in the earth
and about the influence of pressure and the chemical environment
on the physical parameters in the constitutive equation it 1is

necessary to make many approximations to use a power law creep
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rheology to model deformation 1in the lower lithosphere. aAn
alternative and simpler approach is to use a Maxwell visco-elastic
rheology to mcdel deformation in  this la?er. Recent studias
(Mithen, 198¢C; Melosh and Raefsky, 1980) have demonstrated that
the final stress regime using either power law creep or a
visco-elastic rneology with a viscosity of l.OxlOzaPa s are almost
identical. The major difference Dbetween thesa two deformation
meéhanisms 1s that higher deviatoric stress2s 1lnitially relax
faster in a power law creép material. The defcormation predicted
by these two rheological models, however, converges once
equilibrium 1is reached and both mechanisms produce stress
concentration 1in the upper elastic lithosphere (Bott and Kusznir,
1979; Mithen, 1980). In this thesis the deformation of this
layer will consequently be modelled by - a visco-elastic substance
with a viscosity of l.OxlOzaPa s. It is 1important, however, to
appreciate that this is just a convenient simplification to model

the stress regime at subduction zones.

This model is summarised in figure 2.5.



CHAPTER 3

THE ISOPARAMETRIC FINITE ELEMENT METHOD

3.1 Introduction

To obtain realistic models of the stress regime at subduction zones 1t
is necessary to wuse a solution technique which 1is capable of giving
accurate and predictive aaswers to problems involving:

1. Flexure of the lithosphere.

2. Bodies with various material types.

3. Bodies with complex geometries.

4. Complex boundary conditions.

5. The curved discontinuity of the subduction zone fault.

6. Elastic and time dependent rheologies.

Analytic solutions to problems ¢of this complexity are impracticable. It is
therefore desirable to use digital computers to obtain approximate
solutions using numerical mathematical techniques. Cne numerical method
which has been extensively and successfully used in stress analysis is the
finite element method. This technique will consequently be used in this

thesis to model lithospheric stress regimes.

The first step in the finite element method is to divide the body into
a number of finite elements which 1interconnect at é series of nodes.
Assumptions are then made about the behaviour of the major variables within
each element. The main assumption is the <choice of the order of the
displacement function, which defines the variation of the displacements

within each element. Once this function has been chosen it is possible to
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express the displacement of a general point within an element as an
interpolation of its known nodal values. Expressions can then be obtained
for the stress and strain at a general point within an element so that, by
considering the energy of the system, an equilibrium equation can be
derived which relates the displacement and the applied forces at the nodes

to the stiffness of the body.

The finite elements used by previotis researchers at Durham (Dean,
1973; Kusznir, 1976; Woodward, 1976; Mithen, 1980; Park, 198l; Linton,
1982) were based upon a linear displacement function. This results 1in a
constant strain within each element. This 135 the simplest of the two
dimensional finite elements and its major advantage is that it allows an
explicit expression to be derived for the stiffness of the body. For
reasons discussed in Chapter 4, however, this element does not perform well
in many elastic and visco-elastic problems where the strain gradient 1Ls

high.

Because of these limitations a higher order finite element, which 1s
based upon a quadratic displacement function, 1s used in this thesis.
Since the strain varies linearly within these elements they should perform

better in regions with a high strain gradient.

The simplest two dimensional finite element which 1s based upon a
quadratic displacement function 1is the plane sided triangular element
(Felippa, 1966; Desai and Abel, 1972). The advantage cf this elemgnt is
that an explicit expression can be obtained for the stiffness of the body
by using a special local co-ordinate system. This approach provides a
simple transition between the linear :nd quadratic displacement function

methods but it cannot be used to introduce curved sided elements.
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Another technique which 1s based upon a quadratic displacement
function 1s the 1isoparametric finite element metﬁod (Zienkliewicz, 1977;
Cook, 1981). This method allows curved sided finite elements to be
introduced, and consequently, it 1s wused in this thesis to model

lithospheric stress regimes.

In this chapter the thecry cf the iscoparametric method in e2lastic and
visco-glastic problems 1is given £ar both triangular and quadrilateral
finite elements. A computer program (ISOFELP) which 15 based upon this

technique is described in the Appendix.

3.2 The Local Co-ordinate System

When curved sided isoparametric finite elements are being used it 1is
convenient to perform the necessary mathematical operations in a simple

local co-ordinate system.

3.2.1 Local co-ordinate system for triangular elements

The triangular element which will be used in this thesis has a total
of six nodes, three of which lie at the vertices and three at the midpoints
of the sides of the triangle. The nodes of the element are numbered
clockwise or anticlockwise around the element starting with one of the
nodes at an apex. Figure 3.1 illustrates<§he geometry of this element and
figure 3.2 shows how the global element geometry is mapped onto the local
(s,t) space. It can be seen that the curved sides of the element in global
co-ordinates are transformed to straight sided sections of unit length in

the local reference system, which has its origin at node 1.

_41_



Ny

g 5("5 ’.753

i 2 (%5, )y
(xl’,,l) (x‘,yl)

Figure 3.1: The global <(x,y) co-ordinate system for the triangular
Lsoparametric elemerc.

O

1 2 5
(0,0) (1,9) (1,0)

Figure 3.2: The local (s,t» co-ordinate system for the triangular
isoparametric element.



3.2.2 Local co-ordinate system for quadrilateral elements

The quadrilateral element has eight nodes in total, four of which lie
at 1ts corners and four at the midpointé of the sideé of the element. The
nodes of the element are numbered clockwise or anticlockwise around the
element starting with one of the corner nodes. Figure 3.3 illustrates the
geometry of this element and figure 3.4 shows how the glcobal element
geometry 1s mapped onto the local (s,t) co-ordinate system. The curved
sides of the element in global co-ordinates are transformed to straight
sided sections of72 units length in the local reference system. The origin

of the local co-ordinate systam is at the centroid of the element and the

axes pass through the midpoint of each side.

3.3 The Isoparametric Concept

The displacements and the co-ordinates (i.e. geometry) of a finite
element are” defined at its nodes. We may consequently define the
co-ordinates and displacements of a general point within a finite element
by 1interpolating from ‘the known nodal wvalues using the element shape

functions, [(L].

To illustrate these properties we define the displacements of a
general point within an element, (&}, as

u

1)

$)
v
where u and v are the components of displacement in the x and y directions.
The displacements of this point may then be written in terms of the nodal
displacements of the element, {d}, using the displacement shape functions,
[Lg], as
(61 = [Lg] {a} 3.1
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Figure 3.4: The local (s,t) co-ordinate system for the quadr.lateral
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The variation of displacement within an element is therefore dependent

upon the order of the displacement shape functions.

Similarly, we may cdefine the global co-ordinates of a general point
within the element, (g}, in terms of the known nodal co-ordinatas, {c},

through the geometric shape functions, [LS], as

{g} 1 {c} ‘ 3.2

I}
-4
W
A . N gl
1}
=
(o

The variation of geometry within an element is therefore dependent upon the

order of the geometric shape functions.

A finite element becomes isoparametric 1in the special case when the
displacement shape functions are equal to the geometric shape functions,
that is

[Lg]l = [Lq] 3.3

®

In this thesis the shape functions, which will be derived in the next
section, are quadratic and this allows us to introduce curved sided finite

elements.

3.4 Shape Functions

In this section a general method for obtaining expressions for the
shape functions in terms of the local co-ordinates is presented. This
approach is used 1in subsequent sections to obtain the geometric and

displacement shape functions of triangular and quadrilateral elements.



3.4.1 General definition and evaluation of shape functions

Shape functions, NL, define the value of an arbitrary function, £, az

any point within an element through an interpolation of the known nodal

values, f£,, of the function.
We may define the shape functions N (s,t), N,(s,t),..... o NS, b))y of
an m-noded finite element with nodal wvalues [, £ c..., £ of the

2 13
functicn f such that its valu= at a general poin%t, £(s,t), within the
element 1is given by

f(s,t) = N, (s, t) f‘ + Nz(s,t) f2 oo + Nm(s,t) fn,1 3.4

We must also choose'the shape functions for the i-th node such that

£ (s,/ty) = £, and therefore we define

!
NL(SL'tL) = 1
Ny(s,ty) = 0 it

Expressions for the shape functions can be obtained by defining the
way in which the function f varies within an element. The most general
representation is by a polynomial chosen such that

- 2 9
£(s,t) = a, +a,s +a,t +a st ... + a sVt 3.5

where the coefficients of the polynomial, a,, are constant for any element.

Equation 3.5 can be rewritten in matrix form as

£ = [Q] (a} 3.6
where
(@} = [ 1 s t s stV
and
T
(a} = (a, a, ag...... apm )
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We now seek to solve equation 3.6 for the unknown constants {a}.
Examination of equation 3.6 demonstrates that the value takeﬁ by the
function f is dependent upon position in the element, and therefore,
because the position of the nodes are known 1t 1S possible to usSe this

equation to obtain expressions for the nodal values of the function .

5 - Y. .4
f|<°\'tl> = a, + a,s - aat' +.o.. .. +at's,
£, (s, ,t,) = + S + at, + v oa V¥

(s, 1ty a, as, ajt, teo.. A, Sy
- Y _ 9
fm(sm,tm) = a v a5 ¢ astm o * AntmSm

These nodal values, [fn}, of the function £ can be written in matrix

form as
{£,} = [a] {a} 3.7
where
[ 1 s, ot ... ;Tt? ]
A - L5,y eeeeeens syt¥
A T sved |

We can therefore obtain expressions for the coefficients, f{a}, by
inverting equation 3.7. This gives
-1
{a} = [a] (£} 3.8
An expression for the value of the function £ at a general point can
now be obtained by substituting the above squation into equation 3.6,
giving

-1
£ = [Q] [a] (£a) ' 3.9

Recalling equation 3.4, we are seeking shape functions, N{, such that



which may be written in matrix form as
g = IN] (£ . 3.10

where

Comparing equations 3.9 and 3.10 we may write the shape functions as

-1
vl - 20 (2] 3.11

=

We can therefore obtain expressions for the shape functions 1if we can

obtain an inverse of the matrix [A].

3.4.2 Shape functions of a triangular element

We now proceed to evaluate the shape functions for a six noded

triangular isoparametric finite element.

3.4.3 Displacement shape functions

The displacement shape functions can be evaluated by defining the way
in which the displacements vary within the element. 1In this thesis a
quadratic displacement function has been chosen and we may therefore
express the components of the displacements of a general point, using the

quadratic form of the polynomial (ejuation 3.5), as

5
u(s,t) = a, + a,s + a,t + a s * a t’ + agst
s 2 3.12

v(s,t) = b' + bzs + b3t + b4s + bst + b‘,st
where the u component of displacement may be written in matrix form as

u = ([Q] {a} 3.13
in which

Q] = (1 s t s t st]
and

T
{a} = a, a, ay 3, ag 3 }




Since the displacement is a function of position

and the local co-ordinate of each node 1is

evaluate equation 3.12 at each node, giving

u‘( o, 0) = a,
1
uQ( -, 0) = - (4a| + ZaL + a4 )
4
u; €1, 0) = a + a, * ag
-y - = (4a, + 23, + 2a, + a, + ag +
2 4
u (0, 1) = a, *+ag+ag
u (0, =) = - (da, +2a,+ag)

which may be written in matrix form as

(u,} = [a] {a}
where °
(4 0 0 0 0 o0 ]
4 2 0 1 0 0
1 4 4 0. 4 0 O
(a] = -
4 2 2 1 1 1
4 0 4 0 4 O
L4 0 2 0 1 o0 |
and
T
lun} = (u, u, uy uy ug ug 'l

We can obtain expressicns for the coefficients,

equation 3.14, which gives

-1

{a} = [a] (uql
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{a},

the

known (figure 3.1)

by

element

we can

3.14

inverting



where it can be verified that

4 -4 0 -4 0 -4 |

We may now write an expression/for‘the displacement of a general point
by substituting equation 3.15 into&equation 3.13, which gives
-1
u o= Q] (Al (uy) 3.16
We now recall that we are seeking shape functions, N , such that
u = Nyou, + Nzuz + Nsu3 + N4u4 + Nsus + Nyug

which may be written in matrix form as
u = [N] {up,} 3.17 .
where

(N] = [N N N

} 2 N3 N

4 N5 Ng |

Comparing equations 3.16 and 3.17, and using the fact that they must
be wvalid for any nodal displacements, we may define the desired shape
functions as

-1
(N] = [Q] [a]

The desired shape functions for the triangular finite element can therefore

be found by evaluating the right hand side of this expression. This gives

2

N' = 1 - 3s - 3t + 2§' + 2tT + 4st
N = 4s - 4s® - 4st
7
Ns = 252 - 5
3.18
N4 = 4st
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N, = 2t5 -t

4t - 4t2 - 4st

=4
I

Identical expressions for the shape functions <can be found by

considering the v component of displacement.

3.4.3.1 Geometric shaoe functions

In order to obtain an isoparametric representation we must define the

geometric polynomial as a quadratic function

]
Y]
+
2]
wn
+
o)
r
+
7]
wn
+
[\
r
+
[

x(s,t)

1}
o
+
o

y{s,t)

The procedure to obtain expressions for the geometric shape functions
is 1identical to that of the preceeding section. The resulting geometric
shape functions are identical to those which have been found for the

displacement function (equations 3.18).

3.4.4 Shape functions for quadrilateral elements

In this section we find expressions for the displacement and geometric

shape functions for the eight noded quadrilateral finite element.

3.4.4.1 Displacement shape functions

The quadratic displacement function for a quadrilateral isoparametric

finite element may be written

2 r3 z
u(s,t) a *a,stagtrastattasts aTSzt + agt's

v(s,t)

2 Z 1 2
b‘+bﬁ~+%t+pﬁ-+%t+k%ﬂ-+%st<+%ts

where the u component of displacement may be written in matrix form as
u = [Q] {a} 3.19
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in which

[o] = [ 1 s t 2 t* st s t t s ]
and
T
{a} = { a2, a3 3, ag a4, ag}
We can evaluate equation 3.l9 at each of the nodes, which gives
{uyd = [a] {a}
where
[1 -1 -1 1 1 1 -1 -1]
1 0 -1 0 1 0 0 0
1 1 -1 1 1 -1 -1 1
1 1 0 1 0 0 0 0
(Al =
1 1 1 1 1 1 1 1
1 0 1 0] 1 0 0 0
1 -1 1 1 1 -1 1 -1
L1 -1 0 1 0o O o0 o
and
T
{ugd = (uy u, ugy uy ug u up ug )

Inverting this equation we obtain

-1
(a) = (a] (uy)

where it can be verified that
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We may now write an expression for the displacement of a general point

by substituting these values of {a} into equation 3.19. This gives

u

-1
- [Q] [a]

{uy?

and therefore we may write the shape functions of a quadrilateral element

as

= - ( -1
- (1
2
1

= - (—l
4

= - ( 1
2
1

= - (—l
4

= - ( 1
2

£+t st - 2t - tFs )

t - sz+ stt )

2 2
sPr 5 - st - st + tls )

S

2
t
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N7=-’\
4
1
2

It can be verified that the shape functions for the v component of

displacement are identical to those given above.

3.4.4.2 Geometric shape functions

As a result of the isoparametric formulation used in this thesis the
geometric shape functions for the quadrilateral element are identical to

the displacement shape functions (equation 3.20).

3.4.5 Summary

It is useful at this point to generalise the results which have been
obtained 1in the previous section and also to examine the properties of the
quadratic shape functions which have been obtained for the triangular and

quadrilateral isoparametric finite elements.

The displacement of a general point, {5}, within a finite element may

be written

&1 = (L] {4} 3.21

where for an m-noded finite element the global displacement vector, {d}, is
defined
T

{a} = { U, vV, U, YV, ... Uy Vi )

and the shape function matrix, [L], is defined




(L] = 3.22

in which the necdal shape functions, NL , are given for triangular and

quadrilateral elements by equations 3.18 and 3.20 respectively.

For an isoparametric finite element the global co-ordinates, {5}, of a

general point within the element can be written

-

X
{g} = = [L] {c} 3.23

Y
where the nodal co-ordinates, {c}, of an m-noded finite element may be
written

T
{c}

1]
—
"
<
=
N
N’<
x
3
=~
3
L

and the shape function matrix, [L], is defined by equation 3.22.

We may rewrite equation 3.23 as

Examination of these equations reveals that if the sides of the element are
straight the x and y co-ordinates vary linearly over the element. For
example, consider a straight sided triangular element, such that the x
co~ordinates of the mid-point ncdes are

X + X X*’Xs X + X

Substitution of these expressions and equations 3.18 1into eqguation 3.24
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gives

X = x (l-s-t) + XB(S) + xs(t>_
which is a linear interpolation of the corner nodal values.

Equations 3.24 also have the property that if the global co-ordinates
of the nodes on a side of an element do not fall on a straight line a
quadratic function will be fitted through them. This is the property which

allows us to introduce curved sided finite elements.

Consequently, the formulation given here is a general purpose one anc

can be used to model plane or curved sided finite elements.

3.5 Differentiation And Integration Of The Shape Functions

In some calculations in the finiﬁe element method we are required to
differentiate or integrate the shape functions, which have been defined in
terms of the local (s,t) co—erdinate system, with respect to the global
(x,y) reference frame. Ie this section we obtain expressions which allow

these calculations to be performed.

3.5.1 Differentiation: The Jacobian matrix

We may write the derivatives with respect to the local reference frame

&,

as
d 9% 7 E-D'A.
> 25 ox  2s %y
> 2x 2 dy
T

which may be expressed in matrix form as



(5 ) (>
s dx

b o= [J] o 3.25
P d

tbtJ \BYJ

where [J] is the Jacobian matrix and is defined

[ - dy |
g ds
(71 = 3.26
dx Dy
| Ot 2t

We may therefore obtain expressions for the global derivatives by

inverting equaton 3.25, which gives

( b 3 r B 3\
dx -1 ds
4 = [J] s s 3.27
d ?
\By J ¥bt J
where
[ 2y dy ]
-1 I Y 1 dt ds
(J] = | = : 3.28
r; s det J _B_x 3_x
| 2t ds |

This expression can be evaluated by substitution of equations 3.24.

3.5.2 Integration: Numerical integration

If the integrand gﬁ(s,t> is expressed in local co-ordinates but the

integration 1s with respect to the global co-ordinat :s then we must apply

_55_



the following transformation

[ = Gis,n) dxdy = ¢(s,t) det J ds dt 3.29

where det J is the determinant of the Jacobian matrix.

The integral in equation 3.29 can be evaluatsd numerically and it 1is

desirable to rawrite it for this purpose as
) -t .
o= %.Zb,wéwqusé,ty 3.30

and t:. are the location of the 1integration points and WL and

J
Wj are the weighting

where SL

functions of these points. The location of the

integration points and the wvalues of the weights for triangular and

quadrilateral elements are given in tables 3.1 and 3.2 respectively.

A more detailed discussion of numerical integration techniques in

finite element applications is given in Cook (1981).

no. of location of Gauss points weight of Gauss points
Gauss

points S E; W WJ
4 .577350269 .57735026 1.0 1.0
-.577350269 .57735026 1.0 1.0
.577350269 -.57735026 1.0 1.0
-.577350269 -.57735026 1.0 1.0

9 .774596669 .77459666 .555555555 .55555555

.774596669 -.77459666 .555555555 .55555555

-.774596669 -.77459665 .555355555 .55555555

-.774596669 .77459666 .5%3555555 .55555555

0.0 .77459666 .383888888 .88888883

0.0 .77459666 .888888888 .883888888

0.0 0.0 .888888888 .88888888

.774596669 0.0 .555555555 .88888888

.774596669 0.0 .555555555 .88888838

Table 3.1: Numerical integration

points for quadrilateral finite elements.




no. of location of Gauss points welight of Gauss points
Gauss ‘
points s . t-J W WJ
4 .3333333333 .333333333 -0.28125 -0.28125
0.6 0.2 .260416667 .26041667
0.2 0.6 .260416667 .26041667
0.2 0.2 .260416667 .26041667
6 .8168472729 .091576313 .05497587 .05497587
.0915763135 .091577°.73 .03497587 .05497587
.0915763135 .816847273 .05497587 .05497587
.1081030181 .445948490 .1116907 .1116907
.44594843909 .108103018 .1116907 .1116907
.4459484909 .445948490 .1116907 .1116907
Table 3.2: Numerical integration points for triangular finite elements.

3.6 Evaluation Of The Stiffness Matrix

We now proceed to evaluate

finite elements.

so that it can be applied to either triangular or quadrilateral elements.

3.6.1 The strain matrix

For two dimensional problems it is convenient
tensor,Eﬁj, which is defined in terms
displacements as

1 Bu-\ bUJ
&"J = - — + —
2 be bXL

as a two component column vector

the
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matrix

to write

for

The method which i1is given in this section is generalised

the

of the derivatives

isoparametric



([ ) f du
€y g—
X
dv
-t E o = ~ _— - 3.31
J >y
du dv
Yy — -
l_ J kBy sz

where

XX\/ = €X7+ ny

For a point within an m-noded element we may write the derivatives of

the displacement in the x directicn, using equation 3.24, as

bl.l bZ:' N;UL
3% dx
3.32
n
dv 'bEZ N.v.
-— = —L:-! ‘e
dx dx

and we can also write similar expressions for the derivatives 1in the vy

direction
mM
BU B_Z_.IN;.L]"‘
dy Dy
3.33
m
dv B L=,N‘VL
oy dy

From these expressions we can write the strain at a general point
within the element, (£}, in terms of the nodal displacements, {d}, by
substituting équations 3.32 and 3.33 into equation 3.31l, which gives

€ = (8] (d) | 3.3

where



[ 3 )
— 0
dx
(8] = 0 2 (L] 3.35
7
)
__ay BX .

and [.] is the shape function metrix defined in equati»n 3.22,

-

Since the element shape functions have been defined in terms of the
local co-ordinate system we must use the Jacobian to avaluate the global
derivatives required in equation 3.35. Recalling the Jacobian, equation

3.28, we may write

~ - r . 3
b— 0 rl-) r\-Z 0 0 — 0
dx ds

? 2 0
o — | = o o 0, [, at
dy ; 3
d B BS
Lby Bxd LI; E; J ﬁ; | 0 é_
L bt i

and therefore the strain matrix, equation 3.35, may be written

- ~

Per
— 0
) . ds
0 0 3
G0 T 2
ot
(B] = 0 0 " l";_l ;2 (L] 3.36
s
,]:| [Zi U VA D
O —_—
\ at)
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This expression can be evaluated 1f the appropriate shape functions,

equation 3.22, are substituted into it.

3.6.2 The elasticity matrix

For two dimensional problems it is convenient to write the stress

tensor, which 1is defined in terms of the strain trhrough Hooke's law as

T Lo+ 2 ..
GG A6 &ﬁ }181

where A and F are Lame's constants and é;j 1s.-the Kroneker delta function,

as a two component column vector

The strains may be written in terms of the stresses, 1including any

initial strains, €5, in terms of Poisson's ratio, ¥ , and Young's modulus,

E, as

1

E. = - (& -V - VG )+ E
1

&y 7 [ (YR TH VG T gy,
2 (1+y)

= ——T
XXY e X+ nyo

For the two dimensional case of plane strain the stress in the =z
direction is
€ = v(g+o) - Eog

which upon substitution into equation 3.37 gives
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€, -y -y 0 o £y + Vg

EY = -y 1l-p 0 0:[ + Ey + vsi‘

Yey o 0 2 Ty ¥

Yo

This equation can be inverted to give an expression for the stresses

in terms of the strains

{} = [c] (e} - (gD 3.38

where [C] is the elasticity matrix and is defined by

E
[c] = — gy Ll-» o 3.39
(1+y) (1-2¥)

and the initial strains, (€&,}, are defined by

& V8, :
(&) = £y, +\’£z° 3.40
T

If initial stresses, {OF}, are present in the body equation 3.38 may be

Yo

written

{o~} = [c] ({g} - (&} + (g} 3.41

o

3.6.3 The stiffness matrix

The governing equilibrium equation for the continuum can be obtained
by minimising the total potential energy of the whole body with respect to
the displacements, {8}, induced by intermal forces, ({b), and external

boundary forces, {ql.
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~We therefore define the total potential energy, T, of the

as
I o= W+ U
where W, the work done by the applied loads, is defined

T . T
W= &y (o} dv + {8} {q} da

and U, the strain energy, is defined

1 T
u = - (g} (o} av

To obtain the total potential of the continuum we sum the

continuum

equations

3.21, 3.24 and 3.41 over all of the elements of the body and substitute the

resulting equations into equation 3.42, which gives

1 T T T T
M = - (@} (8] (c] (B] {d}av - {d} (B] [c] (&} av
2
\' \'4
A T T T T
+ (@} (B] f{og} av + {a} (L] {b} av
v
% v
A T T
+ {d} [u] {q} a4aa 3.43
v
A .
which must be minimised with repect to the global displacements
>y
—_— = 0 3.44
2{d}

Substituting equation 3.43 into 3.44 gives



e 8] {o)av o+ | (L]

n T
s
|

A

{q} da

(b}

dav

This may be rewritten in a simplified form as

(k] {a} = (F}

where [K], the global stiffness matrix, is defined for

the z direction as

T
(k] = (B]

a

and the global force

(c] (B] dx dy

vector, (F}, is defined

(F) = (g ) - (g ) - (£, - (£g)

where for unit thickness

n
(g ) -
U
A
N
(tg) =
J
A
N
{fb} =
| J
A
A
(fﬂr} =
. U
S

T
(8] [c] (&)

dx dy

thickness

.46

.47

.48

.49

.51




Therefore we may solve equation 3.45 for the displacements if we can

evaluate the global stiffness matrix, [K].

The procedure which is generally adopted to obtain [K] is to eavaluate
the stiffness of each 2lement of the body, [Ke], which from equation 3.46

may be written (using equation 3.29) as

r T
J (8] [C] [B] det J ds dt 3.52
J

(k%]

This matrix can be evaluated_usinq numerical integration.

The global stiffness matrix [K] can then be =valuated by summing the

element stiffnesses, equation 3.52, over all the M elements of the body,

A more detailed description of this assembly procedure 1is given 1in

most texts on finite elements (e.g. Cook, 1978).

3.7 Nodal Representation Of Forces

The effect of distributed surface tractions and body forces can be
incorporated into the finite element model by calculating equivalent forces
which act at the nodes of the pody. To make these forces compatible with
the 1isoparametric finite element method it is necessary to calculate them

by evaluating equations 3.50 and 3.51.

In this section expressions for the nodal loads due to bedy forces,

surface tractions and isostatic restoring forces are obtained.




3.7.1 Body forces

The bedy force vector, {b}, due to gravity, g, ({(directed down the
negative y axis) acting upon a material of density A 1s given by

0
(b} =
_/Og

Therefore if we ewvalua*-2 thn glcbkal body fnrce vector, {fb}' given v

equation 3.50, at each elemert cf the body we may obtain the element bod--

force vector, (£%}, which is defined

T 0
(£%) = (L] det J ds dt 3.53

_ng
which must be evaluated by numerical integration.

The global body force vector CFb} can be evaluated by summing equation

3.53 over all the elements of the body.

3.7.2 Surface traction

In this section expressions for the nodal representation of ZIorces due
to surface loads are obtained. These forces, by definition, act only upon
an edge of an element and it is convenient if we perform the required

calculations in a special local co-ordinate system.

3.7.2.1 The local co-ordinate system

Consider the edge of an element formed by ncdes 1, 2 and 3 which have

the nodal co-ordinates (x‘,y|>, (x and (XB’Y5> respectively. Then we

21Y1 ’
may let this edge define the local co-ordinate s-axis which has its origin

at node 2 and its positive axis directed towards node 1 (figure 3.5).
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Figure 3.5: The local co-ordinate system for an lsoparame-ric Line
element,

7y

v ax

Figure 3.6: The normal and shear components of force acting at an edge of
a finite element.

ds

dx

Figure 3.7: An infinitessimal Segment of the edge of a finite element.




It 1s possible to define the quadratic shape functions of this system

as
_ S 2s
N, = - -—_ o+ 1
t g
_ 4s?
NZ = 1 - TL'L 3.54
_ s ( 2s \ .
N = - — + 1
3 e\ ¢ J

where | is the length of the side.

We may use these shape functions to express the cartesian co-ordinates
(x,y) of a general point on the edge in terms of its nodal values as

X

= (L] {c} 3.55
Y

where the shape function matrix is

=
(@]
=z |
o
Z |
O

O
zZ |
o
Z |
O
2 |

and {c}, the nodal co-ordinate vector, is

It is also necessary to use a different numerical integration scheme

when using this local co-ordinate system such that

qb(s). ds

i

%; W, gb(s£> 3.56

where the location of the integration points and their weights are given in

table 3.3.



no. of
Gguss S, WL
points
2 .5773502691 1.0
-.5773502691 1.0
3 .7745966692 .5555553555
-.7745966692 .5555555555
.0 338883838388

Table 3.3: Numerical integration points for a line element.

3.7.2.2 Nedal representation of forces due to a surface traction -

The nodal forces arising from a surface traction are defined by
equation 3.51. This may be rewritten in terms of the local co-ordinate
system as

_T
(fql) = (L] {q} as 3.57

where the global components of the nodal force vector, [fq}, are

= £ £ £ £ £
{fq'} { £« v, fx, By, fx, \,3}
and the global components of the nodal tractions, (g}, are
T

tab = C(a, ay Ix, 9y 9y, qYS}

In general {g} is unknown, and therefore, it must be evaluated from
the known values of the normal and shear traction at the boundary, [an},
which are defined

T

lagat = {qsl 9, 94

9. 4. !
' Z 2 53

N3

We must therefore find relationships between the global components of the

traction and the local normal and shear components.
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Using figqure 3.7 we may write the relationship between these at a

general point as

-~

9y cosgl -—sing d4
= 3.538
qy sing cos L dn
From figure 3.8, however, we know that
dg = cos £ ds
dy = sin £ ds
and therefore we may rawite equation 3.58 as
dy 94
= (R"] 3.59
dy K
in which
[ dx dy ]
ds ds
(R'] =
dy dx
| ds ds j

Evaluating equation 3.59 at the three nodes on the boundary we obtain

{q} = [R] (q,.} 3.60
in which
[R'] O 0
(R] = Q [R'] O
0 0 (R']

We therefore obtain the desired force -equation by substituting equation
3.60 into equation 3.57, giving

T

(f%} = (L] [R] {an} ds 3.61

which must be evaluated by numerical integration.
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3.7.2.3 Isostatic compensation -

The situation where the body is bounded by a f£luid is now considered.
In this case the displacements of the body are resisted by hydrostatic

restoring forces (Dean, 1973).

The pressure in a fluid, g, resisting a vertical displacement, v, 15

q= -pPyv

where P is the density of the fluid and g 1s the acceleration due to
gravity. This restoring force acts normal to the boundary of the element,
and therefore, we may write the normal and shear force vector, {qsn}, as

{a, .} = pg {d} 3.62

sn

where
(ay = (0 v, 0 v, 0 v,
We therefore obtain the desired expression by substituting equation

3.62 into equation 3.61, giving

{£q}

g (k.1 {a) : 3.63

where

(K

[}
—
c
[
L
el
—
o7

wn

-

which may be incorporated as a force in the global stiffness equation
(equation 3.453)
(F+ifa) = (k] {d}
so that by substitution of equation 3.6l we obtain
{F+ [k 1I0dh = [k] {d}
and therefore
{Fr} = [K - &] (4}
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We can consequently lncorporate isostatic restoring forces 1in the

model by subtracting the isostatic matrix from the global stiffness matrix,

(K].

3.8 Thermal Stresses

The =2ffect of thermal volume changes can De incorporated into the
finite element model using the initial strain approach (Ceck, 198l). For

plane strain we can therefore write the initial strain, (&}, as

Ex, X AT
(&) = € = (1+v) q«LAT
XxYo O :

where & is the volume coefficient of thermal expansion and AT is the

temperature change.

These initial strains can be 1incorporated into the finite element
calculations by ewvaluating the initial strain force vector (equation 3.48).
Solution of the stiffness equation then yields the strain in the bedy, so
that the thermal stress can be calculated from

{0} = [c] (e} - (€D
where, for plane strain,

G = V(Ko - E<AT

3.9 Visco-elastic Analysis

Visco-elastic behaviour can be incerporated into the finite element

method by using the initial strain aproach (Zienkiewicz et al, 1968).
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The strain rate tensor, (€,.}, at a general point in a Maxwell body

with viscosity,fl , 1s

) (L9 1 ,
(.} = & v — O 3.64
R g J 2N J

{
where CF 1s the devitoric stress tensor which 1s defined

J
01'" = 5 - S OKK)
.\ } -\ - 3

Tre second term on the right hard side of equatinon 3.64 is the wviscous

creep rate [é}c which is defined at a general point in the body as

(%) (&5 - =,
(€.} 1 o - o
. Yle h
(g}c = - . o= —_ 47 -
{K\f}g zkl thy
(&), ] % - o)
where c; , the hydrostatic stress, is defined
1
c; = ; (a;i.o:{»foz)

Because of the existence of the deviatoric stress the z component of
creep (&} is not zero. Consequently to fulfill the condition of plane

strain it is necessary that the total strain 1in the 2z direction equals

zero, that 1is

(03 - o) (1+v)
- h &
2 E J

It is now possible to evaluate the total creep strain (€} over a

timestep t by the simple integration
(€), = (€L t
which may be written as an initial strain

(g,) = (€

°

and incorporated as a force due to the initial strains
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T
(F) = - | 13 (el (&) axay

This must be evaluatad by numerical integration and added to the
global force vector. The stiffness equation can then be resolved using
this new force vector, which gives the stress at the end of the time
incrament, and therzfore a new =2astimet= of the creep strains and the
initial gtrair. force vector. Tha ctiffneass equation is then resolved using
this new force vector and the procedure 1is repeated until the creep stress

at the end of the time increment falls to an acceptable level.

A more complete discussion of this algorithm is given in Park (1981).
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CHAPTER ¢

COMPARISON OF FINITE ELEMENTS

4. Introducticn

In this thesis it is proposed to use the isoparcametric finite element
method to model lithospheric stress regimes. Previous attempts to model
the stress in the lithospnere, however, have successfully used constant
strain finite elements which are based upon simpler mathematics. It 1is
therefors the aim of this chapter to compare the performance of these two
finite element methods so that 1t can be assassed whether the use of the
mathematically complex isoparametric finite element 15 justified. In order
»to investigate this problem the performance of the constant strain and
isoparametric elements are compared with analytic solutions to elastic

tlexure, body forces, and the case of a pressurised visco-elastic cylinder.

4.2 Constant Strain Elements

Two types of constant strain finite elements have been used at Durham

University to model the lithospheric stress regime;

1. The -osnstant strain triangle

This element, which has been extensively wused (Dean, 1973;
Kusznir, 1976; Wwoocdward, 1976; Mithen, 1980; Park, 1981), 1is
triangular with three nodes lying at its wertices (figure 4.1).
Each trianqular element 1is based upon a linear displacement
function and therefore the strain is c¢onstant in each element.

This element is consequently known as the constant strain tr.angle




(CST). The CST is the simplest of the two dimensional finite
elements and its main advantage is that an explicit expression can

be derived £or its stiffness matrix. The solutions for the CST

models which are shown 1in this chapter were obtained with the
computer program of Park (1981).
The constant strain quadrilatecral

This eleinent, which was used by Linton (1832}, 1is a

quadrilateral which has four ncdes located at its corners (figure
4.2). The stiffness matrix of each quadrilateral is assembliasd by
a procedure xnown as condensation of internal degrees of freedom.
The 1initial process 1in this approach 1is to divide each
quadrilateral into four CST sub-elements which are formed by the
four vertices of ‘the the quadrilateral together with an assumed
common node at the centroid of the element (figure 4.2). The
stiffness of the quadrilateral *s then found by calculating the
stiffness of the four CST sub-elements and condensing internal
degrees of freedom. This progedure eliminates the dependence of
the stiffness matrix on the assumed lnternal nodes and consequently
the displacements are only solved at eaqh corner ncde. Finally,
the stress 1s evaluated at the centroid of the quadrilateral by
reccovering the displacement of the internal ncde and averaging the
stress in the four CST sub-elements. This results in a constant
strain in each element and this technique is therefore Kknown as

the constant strain quadrilateral method (CSQ).
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Figure 4.1: Geometry of the CST element.

Iy

Frouee 2 ggngCry of the CSQ element. Node C is the condensed internal
e.



4.3 Cantilever Bending

In this section the (ST, CCSQ and isoparametric finite element
solutions to the problem of the flexure of a cantilever are compared to thes

analytic result.

4.3.1 Analytic solution

Consider a cantilever of unit width, length £ and thickness 2c which
is fixed at its right hand =dge and acted upon by a downwards orientsd
force of magnitude P at its free left hand edge (figure 4.3). It can be
shown (Timoshenko and Goodier, 1970) that the vertical displacement, v,
along the neutral fibre of éhe cantilever 1s given by

px3 Pe*x pe?

v = —_ -

6EI 2EI 3EI

+ —_—

where E 1s Young's Modulus and I i1s the moment of Lnertia which is defined

as

It can also be shown that the stress in the x direction is given by
3P

Ox = - = XY 4.1
2c3

Examination of this equation reveals that at a particular distance
along the cantilever there 1s a linear variation of this stress in the vy

direction.

4.3.2 Finite element solutions

In the first part of this section the three finite element solutions
will be compared using meshes »f similar complexity, and therefore, each

grid has been discretised so that it has 27 nodes. The iscparametric grid




P . //
Z

Flgure 4.3: Geometry of the cantilever problem.



has 8 triangular elements with & Gaussian integration points {(figure 4.4),
the CST mesh has 32 elements (figure 1.5) and the CSQ mesh has 16 elements

figure 4.6). All the meshes are 10 inches long and 2.5 inches thick.

-~

T

The material oroperties which wera used 1n the calculaticns are

, cn a= AT
teel, which has a Ycung's modulus of 0.33x10 N @ and a

wi

rspresentative of
Poissons ratio of 0.35. The boundary conditions are that tho right hand
04

adge of the mcdel 1is fixed and a force of magnitude 5.0x127psi acts

wvertically downwards at the free left nand edge of the mcdel.

The vertical displacement profile of the neutral fibre of the finite
element meshes are compared with the analytic solution in figure 4.6. The
most accurate solution is obtained with the 1isopararztric finite element
model, which predicts almost 1identical displacements to the analyric

solution,

The solutions using the constant #train models are less accurate than
the isoparametric one. The least accurate results are obtained with the
CST model. The displacements predicted by this model are consistently less
than the analytic solution, and the maximum displacement is only 58% of the
exact value. This 1s because the finite element mesh 1s too stiff and
consequently resists bending. The solution using the CSQ madel is an
improvement upon the CST one because 1ts assembly procedure has the effect
of making the mesh less stiff. The maximum displacement <f the CSQ model,

however, is only 83% of the analytic valuye.

Accurate soluticns to flexural problems can therefore be obtained
using simple Lisoparametric meshes. This 15 Dbecause the strain varies
lineacly within isoparametric elements, and therefore the linear strain

profile within the flexed cantilever (equation 4.1) can be modelled with a

~1
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Figqure ¢.4: The geometry of the 27 noded isoparamertcic [inite element mesh
used in the cant:lever flexure probiem.

Fiéure 4.5: The geometry of the 27 noded CST mesh used in the cantilever
flexure problem.

Figure 4.6: The geometry of the 27 noded CSQ mesh used in the cantilever
flexure problem.




Figure ¢.7:

Figure ¢.8:

Figure ¢.9:
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mesh which is only one element thick. The constant strain element meshes
behave too stiffly because an insufflicient number of elements were used to
mcdel the linear strain gradient. Accurate solutions to this problem can
therefore only ©»De obtained Dy lncreasing the complexity of the constant

strain element meshes. They were therefcre redesigned until they gave

ry

asults which fell within 5% of the analytic solution.

The CST mesh {figure 4.10), which predicts displacements within 5% of
the analytic solution (figure 4¢.8), has 288 nocdes and 496 elements. The
CSQ mesh (figure 4.11) which gives a comparable solution (figure 4.9) has

85 nodes and 64 elements.

These results demonstrate that the meshes which are required to obtain
accurate solutions to flexural problems with constant strain elements are
considerably more complex than isoparametric ones. There are consequently
two practical disadvantages with using constant strain elements to model
problems with a high strain gradient. Firstly, a relatively greater time
is required to design, input to the computer, and eliminate any errors from
the mesh. Secondly, a greater computational time 1s required to obtain an

accurate solution (table 4.1).

METHOD SOLUTION TIME
(CPU seconds)

Isoparametric 1.269
QST 2.845
CST 12.192

Table 4.1: Comparison of the CPU time required tc¢ obtain displacements
within 5% of the analytic solution with different finite
element methods.




There 1s, however, a more important disadvantage in using the constant
strain element tc model lithosphe;ic stre-5 regimes. This is that we can
only be sures the model 1s giving an accurate solution Dby Literatively
redasigning the mesh until conveargent solutions are obtained, This
procedure, however, 1s rarely adcoted in practise because it is wvery time
consuming. It 1s therefore always possible that constant strain medeals

will act too stiffly.

It is consequently desirable to use the lsoparametric <finite element
method to model complex lithospheric stress distributions because it gives

accurate results with a relatively simple mesnh design.

4.4 Body Forces

The stresses in the lithosphere resulting from the action of body
forces are generally of greater magnitude than those from other sources.
It is therefore important that the finite element method which is adopted

can accurately model these stresses.

In this section the solutions using the three finite element methods
are compared with the analytic solution for the problem of body forces

acting upon a flat constrained region.

4.4.1 Analytic solution

Consider a flat region, constrained for zero horizontal displacement,
of uniform density, fD , acted wupon by gravity, g. Because there is no
horizontal displacement anywhere in the body the strain. in the x direction

is zero, 1i.e.

Ex = O




Using this boundary condition it can be shown that the stress 1n the vy

direction 1is qiven by

q = P9y 4.2
so that, for the case of plane strain, the stress in®the x direction is
Q -
ox = —— o, 4.3
(1-v)

Because there is no horizontal displacement anywhere in the body 1t
can be shown that the maximum and minimum principal stresses are in the y

and x direction and their magnitude 135 defined by equations 4.2 and ¢.3.

For the case of plane strain we may express the strain in the vy

direction, using equation 4.2, as

DV (1+v) (1-2¥)
€& = — = ——— pgay
dy E(LlL-v)

which may be integrated to obtain an expression for the vertical component

of displacement at depth h

(1+v) (1-2v) h#*

E(Ll-V) 2

4.4.2 Finite elemant solutions

The finite element mcdels were assumed to have a Poisson's ratio of

, 10 ~2 . -3
0.25, Young's modulus of 9.0x10 N m, and a density of 2800 kg mT The
acceleration due to gravity was assumed to be 9.8l m 5? All the finite
element meshes are 10 km square and have 9 nodes. The boundary conditions

ware:
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Figure 4.12: The geometry of the isoparametric finite element mesh used in
the body force test.
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Figure 4.14:

Figure 4.15:
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The geometry of the CST element mesh used in the

test.
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Fiqure 4.16:
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irregularities in the stiffness of the finite eslement mesh. Doubling the
number of CST elements in the mesh (figure 4.17) gives the :
correct surface dispacement but does not significantly 1mprcove the
predicted stresses {(figure 4.13). Skewed stress vectors are also common in
other Dbody force problems which have been mcdelled with CST elements
{(Mithen 1980, figure 4.3; Park 1981, figure 4.53. There ars twWwo problems
with this behaviour which could potentially be encountered when attempting
to model the more complex problems of gacdynamics. The first is that the
skew could obscure any true rotations of the»stress vectors which are
caused by lateral density variations. The second 1s that because the
magnitude of the stress due to body forces is generally larger than that
from other sources the skew will be present 1in the total or deviatoric

stresses.

The CSQ mesh has nine nodes and four elements (figure 4¢.19) and the
deformation predicted by this model (figure 4.20) is in exact agreement
with the analytic solution. This result is surprising because the CSQ
element 1s assembled from CST elenents (sectlion 4.2). The CSQ model,
however, predicts accurate displacements because it is assembled from a set
of four CST sub-elements (figure 4.17) which correctly model the
displacements (figufe 4.19). The stress vectors at the centroid of each

Hwey arz
quadrilateral element are also calculated correctly because A obtained
by averzging the stress in the four (ST sub-elements. The CSQ element

therefore performs better because its assembly procedure averages out the

stiffness irreqularities which occur in CST models.
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Figure 4.17: The geometry of the 13 noded CST mesh.
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Figure 4.18: The principal stress vectors and the displacement of the top
surface of the 13 noded CST mesh. '



Figure 4.19: The geometry of the 9 noded CSQ finite element mesh used iIn

Figure 4.20:

the body force test.
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4.5 Visco-elastic Cylinder

It is important when modelling lithospheric stress ragimes that the

adopted finite element technique performs accurately 1in visco-elastic

problems.

In this section the features of the CST and 1isoparametric finite
element solutions are ccaparacd «ith tha analvtic soluticon to the c2s2 of a
pressurised visco-eilastic czylinder. The (SQ element can not b2 madelled (ny
this section because the available program (Linton, 1982) dcoes not have a

visco-elastic capability.

4.5.1 Analytic solution

The time dependant nature of the stress distribution in an infinite
hollew cylinder of visco-slastic material encased in a thin elastic shell,
due to an applied internal ‘pressure, has been solved analytically by Lee
et al. (1959). They demonstrate that the principal stresses in thg plane
of a cross section through the cylinder are oriented radially, O, and
tangentially, 6;, and that their magnitude is a function of time, t, and

radial distance r. The radial and tangential stresses are defined as

k3

rO
oo (r,t) = -p(f(t) + — g(t))
v 2
r
I
o, (r,ty = =-p(f(t) - — g(t))
€ 2
r

where p is the internal pressure applied at time t=0, r, is the outer
radius of the visco-elastic cylinder, and f and g are functions which are

related to the material properties of the cylinder.




4.5.2 Finite element solufions

In the computations the visco-elastic cylinder was assumed to have an
inner radius of two inches and an outer radius of four inches. The elastic
shell was assumed to be 4/33 of an inch thick. The material properrties
which were used in the «calculations are summarised in table 4.2. The

functions f£(t) and g{t) for these material propertias are

f(t) = 1.0 - 0.005363 exp(-0.9849t) - 0.6331 exp(-0.3523t)
g(t) = 0.001341 =xp(-0.9849t) - 0.1583 exp(-0.3528t)
Material Young's modulus Poisson's ratio Viscosity
(ps.0) (p-s.0)
Elastic 3.0x107 0.3015 -
Visco- s
elastic 1.0x10 0.3333 0.375x10°

Table 4.2: Material properties of the visc--elastic cylinder.

Because of the symmetry of this problem it 1s only necessary to mcdel
a quadrant of the cylinder. The isoparametric mesh which was used to medel
this problem (figure 4.22) is composed of curved sided £finite elements
which reflect the <cylindrical nature of the boedy. The CST ﬁesh (Eigure

4.21) is composed of plane sided finite elements.

The displacement boundary conditions of the finite element models

reflect the symmetry of the problem:

1. The left hand edge of the model is constrained to move vertically.






2. The base of the model is constrained to move horizontally.

. o 3 . . . : : .

A uniform pressure of 1.0x10 psi was applied to the hollow lntericr of

the model at ftime =0 and the elastic solution was obtained. Subsequent
solutions were obtained at some time following the application of the

pressure so that the nistory of the stress distribution could ke

investigated.

The stress history predicted by the isoparametric model (figqure 4.23)
agrees well with the analytic solution and shows the approach of the radial

and tangential stresses to a hydrostatic state with time.

In the CST solution {(figqure 4.24) the radial stresses are 1n close
agreement with the analytic results. The tangential stresses, however, are
reqularly scattered about the analytic solution. The scatter 1s dreatest
in the elastic solution. It decr=ases to a negligible amount as the
stresses become hydrostatic. The scatter in the magnitude of the stress
vectors is related to the topology of the finite element mesh. Elements of
topology a in figure 4.21 consistently predict stresses which are more
compressive than those of the analytic solution, whilst elements of
topology b predict stresses which are more tensional than the analytic
solution. The reason for this is that the nodes at a given radius do not
have the same radial component of displacement (e.g. at a radius of two
inches, with t=0, the radial‘ displacement at nodes i in figure ¢.21 is
0.01386 inches whilst it is 0.01349 at ncdes J) because some nodes are
stiffer than others. The oscillation in the tangential stresses therefore
occurs because the CST element mesh is unable to accurately model the high
stress gradient close the inner boundary of the cylinder. Improved

results to this problem could therefore cnly be obtained by increasing the
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complexity of the finite element mesh.

Zienkiewicz et al (19637 piloneered the algorithm which has bpeen used
to model visco-elastic probliems in this thesis. They tested this algoricnm
using an identical CST mesh to the 2ne which has béen used 1n this section.
Their tangential stress vecrors, hcowsver, agr=e with the analytic solution
and do noc exhibit any oscillaticn i1n magnitude. Ce-ailed compariscn <of
their resualts with those Ln figure 4.24, howevar, shoews that the corract
solution was obtained only because they averaged the stress 1in adjacent
elements (a and b in figure 4.21). Their model therefors obscures the true
oscillation i1n the stress vectors because the stiffness 1rregularities of

the CST mesh have been averaged out.

A similar averaging procedure has been adopted by previous researchers
who have modelled this test case (Kusznir, 1976; Woocdward, 1976; Mithen,

1980; Park, 1981). This procedure, however, has not been adopted in their

subsequent models, which explains why some of their visco-elastic solutions |

have oscillating stress vectors even after several million years relaxation

(e.g figure 4.13 of Park, 1981; figure ¢.4 of Mithen, 1980).

It is therefore desirable to adopt the isoparametric finite element
method to model visco-elastic stress regimes because this method does not
exhibit oscillation of the stress vectors.

>
=

4.6 Summary And Conclusions

The major requirement of the finite element method which is adopted -0
model lithospheric stress regimes 1s that 1t should be sufficiently
versatile to give accurate and predictive solutions to a variety of elastic

and visco-elastic problems.




It has been shown in this chapter that the CST element exhibits two

undesirable features which restrict 1i:s accuracy and predictiveness;
1. It pehaves too stiffly if the mesh is not optimally designad.

2. It has a tendancy to give skewed or oscillating stress vectors in

regions where the strain gradient 1s high.

The isoparametric finite element, however, gerforms accurataly 1in elastic

and visco-elastic tests using relatively simple meshes.

It is therefore concluded that it 1s desirable to use the

isoparametric finite element method to modal lithospheric stress regimes.




CHAPTER 5

THE ISOPARAMETRIC FINITE ELEMENT FAULT MODEL

5.1 Introduction

A fault is a plane of discontinuity along which relative displacements
have occurred. A fault originates as a fracturé plane which develops when
the lithospheric stress regime exceeds the elastic strength of the roeks.
Slip subsequently occurs along the fracture plane. This causes relative
displacements in the previously continuous rock mass and a redistribution

of stress.

Following this period of instantaneous deformation the fault either
continues to move as a result of creep or it becomes locked for a periocd of
time, during which stresses are transmitted across the fault plane, until
the stress becomes large enough to initiate another period of instantaneous
slip.

Consequently, when faulting occurs along a major fault plane it
modifies the stress regime which existed prior to fracture. To build
realistic models of the lithospheric stress regime, it is therefore
necessary to have a method for modelling the deformation associated with

faults.

In this chapter a method to model the first order effects of faulting,
which have been described above, 1is developed using the isoparametric
finite element method. This technique is a modification of the dual node
method which was developed by Mithen (1980) to model frictional sliding in
constant strain finite elements. The advantage of a fault model based upon
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the isoparametric finite element method is that it allows the frictional

sliding on curved faults to be medelled.

The first section of this chapter reviews previous methods which have
been proposed to mcdel faults wusing finite elements, following which a
method to obtain the stiffness and model the fricticnal sliding along the

fault plane is described.

5.2 Review Of Finite Element Fault Models

Service and Douglas (1573) have suggested that a fault may be modelled
in finite element computations by introducing elements with weak elastic
properties. Mithen (1980) has pointed out that this approach suffers from
two disadvantages. Firstly, the amount by which the elastic parameters
should be reduced by is not known. Secondly, it can not be justified
that a fault actually behaves in this way. Consequently, this technique

will not be used in this thesis.

A simple and effective method for introducing faults into finite
element calculations has been described by Melosh and Raefsky (1981). This
technique is known as the split necde technique and requires that the
relative displacements of the nodes lying on the fault plane are known.
These displacements are then introduced as prescribed relative
displacements by modifying the force vector. Consequently, solution of the
stiffness equation allows the stresses due to the prescribed displacements

to be evaluated.

The split node technique has the adavantage that a fault can be
introduced at any node of the body without having to make any alterations
to the finite element mesh or to the stiffness matrix. The disadvantage of
the method 1is that it can not be used to model the deformation on deep
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faults where the displacements are generally unknown. Consequently, this

method will not be used in this thesis.

An alternative approach to model the deformation asscciated with
faulting‘ nas been proposed by Mithen (1980), and is known as the dual nocde
method. This technique is an adaptation of the method developed by Goodman
et al (1968, to mcdel rcck joints. The dual node Tethod assumes that the
location of the fault plare 1s known, so that initially two separatz bodies
can be considered to exist to the right and left hand sides of the fault
plane. The finite element mesh 1s then discretised for these two bodies
during which it is ensured that the nodes which fall on the fault plane are
dual nodes, that is, they are formed by two nodes which are present at the
same spatial locations, but which belong to the elements on opposite sides
of the fault plane (figure 5.1). The stiffness of the bodies on either
side of the fault are then calculated and incorporated into the global
stiffness matrix< in the normal way. The stiffness matrix therefore
contains the elastic properties of the two separate bodies and it 1is
consequently necessary to link them by defining the elastic properties of
the fault. Solution of the stiffness equation therefore vyields the
displacements of the fault and the surrounding material under a particular
set of boundary conditions. From these displacements the sheér stress on
the fault plane can be calculated and, 1f it is greater than the frictional
strength o¢of the fault, slip is allowed to occur on the fault plane until

equilibrium is achieved.

The dual node method is compatible with the apprcoach which is to be
adopted 1in this thesis because it allows the displacement of the fault and
the resulting stresses to be computed for various types of boundary

conditions. Consequently, the dual node method will be modified in this
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chapter to make it compatible with the i1soparametric approach.

5.3 Local Co-ordinate System For A Fault Element

It 1s convenient when dealing with an isoparametric fault element to
perform the necessary marthematical operations 1n a local co-ordinate

system. This will be defined in this section.

Consider the line elemen£ formed by the three dual nodes which liz on
a section of the fault plane formed by nodes 1, 2 and 3 of an element on
the left hand side of the fault and nodes 4, 5 and 6 of an element on the
right hand side of the fault (Figqure 5.1). The local co-ordinat=s system is
then defined such that its origin is at the mid point dual node, its s-axis

lies along the fault and its n-axis lies normal to it (Figure 5.2).

We define the shape functions for the nodes in this local co-ordinate

_ _ S 2s
N = N, = E ( ij + 1

system as

_ _ 4s?

N, = Ng = 1 - T 5.1
_ _ S 2s

Ny = Ny = i -(— + 1

where { is the length of the fault section.

The X co-ordinate of a general point on the line element can therefo:=z

be defined by an interpolation of its nodal values, i.e. as

ELXL = Z ELX\.

1 i=4

X =

3 6
i=
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Figure 5.1:

Figure 5.2:

The geometry of the isoparametric fault model.

The local (s,n) co-ordinate system of an isoparametric

element.
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Similar relations hold for the y co-ordinate and the components of
displacement, The numerical integration scheme for this system 15 given
in equation 3.56 and the locaticon of the 1ntegration points are given 1in

table 3.3.

5.4 Stiffness Of An Isoparametric Fault Element

We now proceed to evaluate the stiffness of the fault uasing the
concept of a linkage element (Ngo and Scordelis, 1967). It 15 necessary to
use this approach as the method developed in chapter 3 1s 1inapplicable

because the fault has zero area.

Using the variational approach of chapter 3 we may write the stored
energy W of a fault element of unit thickness as

@Q
1 T
W = - {w)} {p} as 5.2

[\8]

._g& o

where, following Mithen (1980), (p} is the force per unit length vector

which is defined as

ps- 1
{p} = = - (K] (w} 5.3
pﬁ

TS

where

in which k, and ks are the normal and shear stiffnesses of the fault

element.

_91_




The relative displacement vector, {w}, in equations 5.2 and 5.3 1is
" defined at a general point as

) We US(RHS) - uS(LHS)
{w)

1}

1}
w
=N

{ — ,
Wy un\RHS) un(LHS>

where u,and ug are the local displacements 1i1n the normal and shear

s

directions. We can rewrite equaticn 5.4 to express the relative
displacement of a gerneral pcint through an interpolation o0f the nodal

values of the local displacement. This gives
{w}y = [u] (4"} 5.5
where the local nodal displacement vector, {d'} is defined as

T
{a'}y = ¢ ug U, U

(L] = 5.6

o
=z

in which the nodal shape functions have been defined in equation 5.1.

Substituting equations 5.3 and 5.5 into equation 5.2, and using the
fact that the local displacements are nodal quantities and are therefore
constants of the integration, we may write,

Q/Z

o
-

W = - {a'} [K;] ds {a'} 5.7

N

-¢/2

where the local fault stiffness matrix, [K:], is defined by

1
(el = g (L] (k] (L]
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which can be evaluated and expressed as a partitioned matrix

(K]

where

[ N’k O
0 Nk
NI
0 NN,
N, Nk, 0
L O N N k

172 s 13
0 NNk, 0
o s
Nﬁ S Nst
0 Nk, O
- — 2
N,N;kg 0 Ngk

To obtain the global fault stiffness matrix it is necessary to express

equation 5.7 in terms

of the global displacements, {d}, and we now seek

relationships between these and the local displacements (d'}.

Using figure 5.3

point in terms of the

u Ccos o<
v ) sin &
but since
dx = cosa& ds
dy = sino( ds

we may invert

= (r]

we may write the global

local displacements as

-sine ug

cos X Un

equation 5.8 and rewrite it as
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Figurg 5.3: The local components of displacement at a point .on

of an isoparametric

ds

fault element.

Figure 5.4: An infinictess.mal

dx

segment Of the fault =lement.

the

edge




[ dax dy ]

as  as

[RF] dy dx
e as

The global nodal displacement can therefore be obtained by evaluating

equation 5.8 at the nodes, giving
(@'} = [Rr] (4}

where [R] is defined

[(Ry] 0 0o o0 o0 o0

o o0 o0 [Rg] o0 0

o o o o [Ry] ©

o 0o 0 o 0 [r]]

Substituting equation 5.9 into 5.7 we may write,
1 T
Wo= - {d) (k] (@)
2

where the global fault stiffness matrix, [KF], is defined

Y.
T
(K] = [R] [K.] [R] ds
-

which must be evaluated by numerical integration.

Minimising the energy of the system with respect to the

displacements we obtain

DWW
— = [Kg] {4}
°{d}
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which can be added into the global stiffness equation to give
(K + k] {a} = (F) ' 5.10

Consequently, the elastic properties of the fault can be introduced
into the computations by adding the fault stiffness to the global stiffness

matrix.

5.5 Modelling Qf Frictional Sliding

Solution of the sfiffness equation (equation 5.10) yields the elastic
displacements of the model and includes -he displacements which occur as a
result of the elastic properties of the fault. This solution, however,
does not 1include any displacements which are induged in the body as a
result of frictional sliding on the £fault plane. The contribution of
frictional' sliding to fault deformation is likely to pe larger than that
whifh is due to the elastic properties of the fault, and therefore, it 1is

necessary to have a technique for modelling this process.

Mithen (1980) proposed a method for modelling frictional sliding in
constant strain finite elements and his approach is modified in the
following sections so that 1t may be used with the Lsoparametric elements

of this thesis.

To model frictional sliding it is necessary to be able to calculate
the stress on the fault plane. This cannot be found directly in the finite
elemént method because the stress between adjacent elements is
discontinucus, and therefore, the stress on the fault plane, which is
formed by the boundary of two elements, 1is -also discontinuous; The
simplest way of calculating the stress at an =lement boundary is to average
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the stress in adjacent elements. This approach was used by Mithen (1980)
who represented the stress on the fault plane by averaging the stress in

the two constant strain elements which lie on opposite sides of the fault.

In the 1isoparametric method the dJquadratic displacement function
results in a linear variation of strain within each element, and therefore,
che stress can be calculated au any pousiticn within the element. The most
obvious way to raeprasent wie stress on the fault plare in an isoparametric
element is therefore as a linear function which is calculated by obtaining
the stress at each node on either side of the fault and then averaging the
stress at each dual node. This method, however, proved unsatisfactory in
practise because the stress is poorly defined at the edges of any linear
strain element (Zienkiewicz, 1979; Barlow, 1976). An  alternative
technique must therefore be developed £for evaluating the stress on the

fault plane.

occura\'c\:

The stress in an isoparametric finite element is mosgxdefined at 1its
centrdid, because it represents the average stress in a linear strain
element. The method which has been used to represent the stress on the
fault plane 1is therefore to average the stress at the centroid of the
elements on the left and right hand sides of the fault. This stress must

be assumed to be constant along this section of the fault plane.

We therefore write the stress at the centroid of the element on the
left hand side of the fault, GE(LHS), as
O;(LHS)
o (LHS) = O3, (LHS) = [c] (B] {d(LHS)}

"G LHS)
(which is evaluated at s=1/3, t=1/3). A similar expression can be written
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for the stress at the centroid of the element on the right hand side of the
fault plane, Of (RHS). We may therefore write the stress on the fault

plane,{oﬁ, as the average of thesa components

oy . &, (LHS) + GO, (RHS)
= g, = - - (
Lo;} v ; c:/(LHS) a—ngHS)
(LHS) + (RHS
Ty Tey(LHS) + B (RHS)

We can nhow Zind expressions for the normal stress, €, and ¢hear

stress, & , on the fault plane

o
T

Ox coB + sy sin®@ + Zt;“’cose sin©

(Og—c;)sinecose + ’C;Y(cosze - sin®*@)

where 9 is the hade of the fault and is defined

) dx
9 = arctan |- —

dy
where
3
dx ax N x;
dx ds ds
dy ) dy i EL._(—EC '
ds ds

which is evaluated at the midpoint dual node on the fault segment as this

represents the average hade of the fault element.

If body forces have not been included in the model 1t 1s necessary to
modify the normal stress componenty and for a lithostatic stress
distribution this may be written

& = 6 + P9 Ym
where /o 1s the density, g Ls the acceleration due to gravity and Ym 1s the
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y co-ordinate of the midpoint node of the fault element which can be found

by evaluating the following exprassion at s=0

Y = Ny o+t Ny, v Nuy,

If the fault is assumed to be percolated by water i1t 1s necessary to
subtract the pore pressure from the normal component of stress which is

Jefined above.

5.5.2 Slip conditions

To determine whether frictional sliding will occur on the fault plane
we must define the fricticnal strength ¢f the fault,t% . The simplest
expression for this (Mithen, 1980) is

,tF = Mo

where S 1s the coefficient of friction and ¢ is the normal stress defined

by equation 5.11 or 5.12.

Frictional sliding will therefore occur when the shear stress on the
fault plane exceeds the frictional strength, i.e. 1if

T > Te 5.12

No frictional sliding will occur, however, if the shear stress on the
fault plane is less than the frictional strength, i.e. 1if

(AR s 5.13

5.5.3 Calculation of the excess shear stress and faul: force vector

If slip is predicted by equation 5.12 then we must have a method for
calculating the amount of slip which must occur until equilibrium (equation
5.13) is attained. One method to estimate this is to evaluate the excess

shear stress,?, , on the fault (Mithen, 1980), which is defined
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For the isoparametric formulation it is assumed that the excess sheaf
stress 1s constant along the fault plane, which allows an expression for
the equivalent nodal forces that result from the excess shear stress.
Therefore, for the model developed here, we define these forces, using

equation 31.61, as

[ dx W
T ds
(fa} = -T (T] A b ds 5.14
9 x$ dy
ds
U \ J
_ 92

where [L] is the shape function matrix, defined in equation 5.6 and (f%} is
the fault force matrix which is defined
T ]

[f$} = { £, £, ¢ £ £ £ £ £ £ £ £ £, )

These forces must be evaluated by numerical integration.

5.5.4 Iteration to remove the excess shear stress

The fault force vector, equation 5.14, must be added into the global
force vector (F}. The stiffness equation can then be resolved to obtain
the displacements and the stresses in the model following frictional
sliding. From these a new estimate of the excess shear stress, and thus
the forces which are requirad to attain equilibrium, can be obtained. This
procedure is repeéted until the shear stress on the fault becomes less than

the frictional strength.
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CHAPTER 6

FRICTIONAL SLIDING ON PLANE AND LISTRIC FAULTS

-

In this chapter the isoparametric fault mecdel (chapter 3) is used to
analyse the deformation whicn results from frictional sliding on plane and

listric faults.

There are three aims to this chapter. The first 1s O examine the
characteristics of the mcdel by examining 1its response to frictional
sliding on plane normal faults. The second aim 1s to extend this analysis
to predict the deformation which occurs on listric normal faults. The

final aim is to examine the deformation which occurs on thrust faults.

6.1 Fricticnal Sliding On A Plane Sided Normal Fault

The deformation following frictional sliding on a plane-sided normal
fault has been previously modelled by Mithen (1980) using constant strain
finite elements. The aim of this section 1is to compare and contrast the
deformation of Mithen's models with those obtained using the isoparametric

formulation.

6.1.1 Description of the finite element mesh

The finite element mesh (figure 6.1) represents a 1000 km long section
through the upper 20 km of the elastic lithosphere. The fault, which is

located at the centre of the mesh, dips at 63.43 degrees.
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The mesh is formed from 100 triangular isoparametric elements, =ach
naving six Gaussian integration points. The elastic properties are

summarised in table 6.1. The following boundary conditions were applied:

1. The right hand edge was constrained to move verrticallvy.

it
(D
jo]
w
e

—

D
ul
t
ry
b
w)
uy
L
wi

2. The left hand edge was free, Sso that wvarious

could be applied.

3. The base was assumed to be underlain by a fluid with a density ot

-3
2900 kg m .

This finite element mesnh has identical dimensions and physical parameters

to that used by Mithen (1980).

PARAMETER VALUE

" -2
Young's modulus 0.85x10 N m
Poisson's ratio 0.25
Density 2750.0 kq m >

Table 6.1: Values assigned to elastic parameters of the finite element
model.

6.1.2 Response of the finite element model to flexure

The models of Mithen (1980) predict that the deformation preduced by
frictional sliding on a plane-sided fault is dominated by lithospheric
flexure. It is cbnsequently desirable to compare the resgponse of the
finite element model (section 6.1.1) with the analvtic solution for the
flexure of a thin elastic Dbeam underlain by a £{luid substratum. fhe

analytic solution to this problem is well known (e.g. Mithen, 1980).




So that the analytic and finite element solutions could be compared

the following additicnal boundary conditions wer=2 initially applied to the

model :

—

The left and rignt hand edges of the medel wera constrained to

move wvertically.

rm

2. The normal and shear stiffness of the fault were set to a high

5 - .
value of 1.0x1d°N m'so that the modal approximates a continuum.

12 .
3. A vertical force of 2.0x10 MPa was applied to the central ncde (P

in figure 6.1) of the finite element mesh.

The vertical displacement profiles for the two solutions are comparad
in figure 6.2. The displacements are almost identical. This shows that
the finite element mesh 1s correctly designed and is suitable for
predicting the deformation associated with lithospheric flexure. It also
shows that the value of l.OxldsN m' assigned to the. normal and shear
stiffness of the fault has the desired effect of making the model behave as

an elastic continuum.

This test was applied to all of the finite element meshes of this
chapter to <check that no errors had been introduced in the computational
description of the model and to verify that the mcdel was sufficiently well

defined to give accurate solutions to flexural problems.

6.1.3 Initial elastic deformation of the model

IZ was assumed in the develorment of the fault model {Chapter 5) that
deformation would proceed in two phases. Firstly, by an initial elastic

displacement arising from the contrasting elastic properties of the fault
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and the surrounding lithosphere, and secondly, by frictional sliding in
order to reduce any =2xcess shear stress on the fault. This section
1llustrates the primary stage of fault deformation, the initial elastic

response, and contrasts the solutions with those of Mithen (1930).

Befcre it is possible to model any fault deformation, nowever, 1t 13
necessary to assign values to the ncrmal and shear stiffnesses <of Che
fault. These parameters canrot be measured at depth 1in the earth and

consequently the wvalues assigned to them must pe chosen to conform with

obsarved fault behaviour.

The walls of the fault would be =xpected to be closed at depth because
of the 1lithostatic pressure. The value chosen for the normal stiffness
should therefore simulate this behaviour. The value of l.OdesN ﬁqassigned
to the stiffness of the fault in the previous section had the effect of
closing the sides of the fault and making the model behave as an elastic

continuum. The normal stiffness of the fault was therefore assigned a

value of 1.0x10°N m?

1

Because the fault would be expected to Dbe 1initially locked by
asperities, Mithen (1980) proposed that the value of the shear stiffness of
the fault should be approximately the same as the stiffness of the
surrounding lithosphere. He therefores modelled deformation on the fault
using a shear stiffness of S.OxldoN m1 In c¢rder to compare the
isoparametric model with the CST model, the same value has been used 1n
this section. The effect of changing the shear stiffness 1is considered

later.

Figure 6.3 shows the vertical displacement and stress in the central

section of the model when a 50 MPa tensional stress is apolied to its left
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hand adge. The deformation which the model undergces can be summarisad as

ftollows:

1. The contrast between the =lastlc propertiess of the fault and the
surrounding lithosphere causes relative displacements along the

fault discontinuity.

2. The left and the right hand sides of the fault ars upthrown and
downthrown respectively. The fault 1s <consequently a normal
fault. This type of fault would be expected o develop in
response to horizonta: tensional stress (Anderson, 195L; Mithen,

1980).

3. The local displacements along the fault result in flexure o¢f the
adjacent -lithosphere. The top of the lithosphere on the upthrown
and downthrown sides 1s flexed upwards and downwards respectively.

4. The lithosphere at the edges of the model is unaffected by flexure
and has subsided by 3.7 metres. This dilatation is controlled by

the value of Poisson's ratio assigned to the model.

The effect of reducing =-he shear stiffness of the fault from
1.0x10"N o' to 1.0x10“N 5'on the vertical displacements of the top surface
of the model is shown in figure 6.4. These models demonstrate that
reducing the shear stifiness Lncreases the relative displacements at the
fault and in the surrounding lithosphere. The value assigned to the shear
stiffness of the fault therefore scales the deformation of the. mcdel.
Because the aim of this chapter is only to illustrate the general effacts
of fault deformation 1t was considered appropriate to assign a value of

5.0x10°N m'to the shear stiffness of the fault.
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The only difference between these solutions and those of Mithen (1980)
15 that larger relative vartical displacements occur in the isoparametric
models. A possible explanation of this is that the CST element mesh is too

stiff and therefore resists bending. A fuller discussion >f this =ffect,

however, 1s given in section 6.1.7.

6.1.4 Frictional sliding in response to a 50 MPa tension

The aim of this section is to describe the second phase of faglt
deformation; frictional sliding. The properties which-have been assigned
to the elastic parameters of the fault are summarised in table 6.2. The
deformation following frictional sliding in response to a 50 MPa tensional
stress is shown in fiqure 6.5. The following differences can be observed
between this model and that of the initial elastic deformation of the

fault:

1. The relative vertical displacement on the fault has increased by

600 metres.

2, The principal stresses above the fault have been modified by
frictional sliding. There 1s now compression parallel to the
fault plane on its downthrown side and tension on 1its upthrown

side.

3. The amplitude of the flexure in the mocdel adjacent to the fault

has also increased.

4. The horizontal tensional stress adjacent to the fault is wmodified
by the flexure. The horizontal tensional stresses at the top of
the downthrown side has increased by 40 MPa, and decreasad by the

same amount at its base, because of the flexural uparching of this
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region. The opposite pattern 15 observed on the upthrown side of

the fault.
PARAMETER VALUE
. - 10 —
Shear stiffness 5.0x10 N m
Normal stiffness l.Oxldsh m
Coefficient of frictiocn 0.1

Table 6.2: Values assigned to the fault model.

6.1.5 Convergence factor

The model described in section 6.1.4 required 1023 1iterations before
the excess shear stress on the fault plane was redistributed and
equilibrium attained. Because of the large amount of CPU time required to

o
obtain this solution it 1is desirable‘fpeed the convergence of the model.
Mithen (1980) found that multiplication of the fault force vector by a

convergence factor speeded the solution. When a similar scheme was adopted

the following effects were observed:

1. The optimum convergence factor depends on the wvalue assigned to

the shear stiffness of the fault.

2. The optimum convergence factor for a shear stiffness of S.Oxld°N m“l

is 15. Using this value the number of iteraticns is reduced from

1023 to 76.




3. Convergence factors greater than this produced divergence and
oscillation, whilst lower values increasad the number of

iterations required to attain =squilibrium.

A convergence factor was consequently used in this thesis to speed up
the solution. There are, however, a number of limitations wifth this
approach. Firstly, the optimum convergence factor can only be found by
trial and error. Secondly, considerable CPU time 1s still required to
attain a  sclution. The simple technique which has been édopted is
therefore not necessarily the optimum method and convergence might be

further speeded using an advanced algorithm.

The deformation following frictional sliding after reducing the
tensional stress to 40 and 30 MPa is shown in figures 6.§ to 6:F. The

following generalisations can be made from an analysis of these results:

1. Reducing the tensional stress from 30 to 30 MPa decreases the
depth to which frictional sliding occurs from 20 km to 10 km.
This is because the depth at which the excess shear stress on the
fault exceeds the frictional strength 1is reduced when the

tensional stress Ls lower.

2. Consequently, the relative wvertical displacement on the fault
decreases from 620 to 26 metres. This is because the magnitude of
the excess shear stress on the fault is lower in the 30 MPa model
and consequently 1les:s deformation has to occur 1in order to

redistribute these stresses.
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3. The amplitude of the flexurs in the model adjacent to the fault is
reduced. This decreases the magnitude of the horizontal tensional
stress at the too of the model on the downthrown side of the

fault.

4. At low tensional stressss a short wavelength upwards £flexurs

wn

occurs on the downthrown Sside of the fault. This flexure, which
has its axis at 15 xm from the fault plane, has previously been
noted Dy Mithen (1980)- This flexure c:zcurs when frictional
sliding has not penetrated throughout the elastic layer and it 1is

the result of flexure above a continuous elastic substratum.

These results are qualitatively similar to those obtained by Mithen
(1980) who performed identical tests with CST elements. The major
difference 15 that the relative displacements of the isoparametric model
are consistently higher than than those of the CST model: for 50 MPa the
throw of the fault in the Lsopgrametric models» is 100 metreé greater.
Larger tensions consequently occur at the top of the downthrown side of the
fault in the isoparametric model. The implications and origins of these
differences are discussed in the next section.

6.1.7 Predicted graben widths i

The models presented in section ©6.1.6 demonstrate that larga near
surface horizontal tensional stress occurs on the downthrown side of the
fault because of the flexure prcduced by frictional sliding. A consequence
of this is that tensional failure 1s likely to occur on the downthrown side
of the fault. The modified Griffith theory 1s therefore used in this
section to predict the distance from the fault where failure is most likely
to occur. This distanca will be referred to as the predictad grapen width.
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ELASTIC THICKNESS TENSIONAL STRESS GRABEN WIDTH
(km) {MPa) (km)
10 20 22.5
30 26.5
40 27.2
50 27.2
20 20 15.0
40 15.0
60 45.5
80 45.5
30 40 10.5
60 17.0
80 57.5

Table 6.3: Graben width predicted for different elastic thicknesses
and tensional stressas.

The predicted graben widths for a 10, 20 and 30 km thick lithosphere
are cocmpared 1in table 6.3. Some generalisations can be made from an

analysis of these results:

1. Two gracen widths are predicted for a given salastic thickness
The maximum width is predicted when the appli=d tensional streass
is sufficiently large for frictional sliding Lo penetrate
throughout the elastic layer and the deformation on the downthrown
side of the fault is dominated by the long wavelength flexure.
The minimum width, which 15 gradicrzed at icwer applied tensicn,
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occurs when frictiocnal sliding has not penetrated through the
elastic layer and the defcrmation 1is dominated by the short

wavelength flexure.

2. Increasing the thickness of the welastic layer 1increases the

maximum graben width.

The graben widths for @diffzrenl thicknesses »f the elastic laver
calculated by thin elastic beam theory (Mithen, 1980) are summarised in
table 6.4, These analytic solutions predict that increasing the thickness
of the =elastic layer increases the grapben width. The graben width
predicted by the isoparametric finite element mcdels agree with the lower
bound of these analytic solutions. Both the analytic and isoparametric
sclutions predict that wider grabens occur as the thickness of the elastic

layer increases.

ELASTIC THICKNESS JREDICTED WIDTH
(km) (km)
10 25.2 <w< 50.4
20 42 .4 <w< 84.0
30 - 57.5 <w<115.0

Table 6.4: Graben widths predicted by analytic thecry (Mithen, 1980)

Mithen (1980), who performed identical analyses with CST elements,
predicted a constant graben width of 50-55 km for all thicknesses of the
elastic layer. - These models :onsequently disagr=e with the analytic
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sclutions. Mithen (1980) proposed that this discrepancy arose because the
approximations made in the thin elastic beam solutions oversimplify the

true complexity of the problem.

The agreement between the grapen widths predicted by the analytic

1]

solutions and rthe Llsoparametric mcdels of this thesis, howewver, suggests an
alternative explanarion; the IST meshwes which were used by Mizhen (1980)
are to0 stiff to accurately model lithosgheric flexur=a. This conclusion is
supported by the observations in previcus sections of this chapter that the
displacements of the CST models are consistently less than those of the
isoparametric solutions. As shown in Chapter ¢ this commonly occurs in
flexural problems when the CST finite element mesh is too stiff because an
insufficient number of elements have been used to model the linear strain
gradient. Mithen (1980), however, used realatively c¢oarse CST elerant
meshes to extend his analysis to predict graben widths in much more complex
situations. Those of Mitheh's conclusions which are dependent upon the

flexural response of CST meshes should therefore be treated cautiously until

verified by 1soparametric solutions.

6.1.8 Isostatic compensation on the upper surface of the model

Some of the models in the previous sections show large vertical
displacements of the top surface of the model. In reality isostatic
restoring forces opposa the development of large vertical upward or
downward displacements. An 1lsostatic restoring force equivalent to the
topographic load on the top surface of the model is thersfore introduced in

this section. This compensation procedure is identical to that applied at

the base of the finite element models.
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The effect of introducing this boundary condition to the models which

=

have 30, 40 and 50 MPa tensicon applied tc them is shown in figures 6.8 to
6.10. Comparing these results with the previous solutions (section 6.1.5)
demonstrates that the introduction of the isostatic rastoring forces on the
top surface reduces the large vertical displacements in the 50 and 40 M™Pa
models, but has little =2rffact on the smaller displacements in the 30 MPa
solution. The overall shagp2 of the displacement profile in the surrounding

lithosphere, however, 1S unchanged. Consequently, the predicted graben

widths do not differ from the previous solution.

Because this boundary condition 1s considerad to be realistic it is
applied to the medels which are presented in later sections of this

chapter.

6.2 Listric Normal Fault

¢ The results of section 6.1 demonstrate that the mecdel of frictional
sliding accurately simulates the deformation on a plane normal fault. This
analysis is now extended to predict the deformation on listric normal
faults. This section compares and contrasts the modelled deformation on a

listric normal fault with that on plane normal faults.

6.2.1 Description of the finite element mesh

The central section of the 800 xm long finite =2lement mesh and the
position of the listric fault are shown in fiqure 6.11. The fault hes the

following gecmetry:

1. Between the surface and 10 km it 1s plane and has a dip of 63.43

degrees.
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2. Between 10 and 20 km 1t is defined by a circle with a radius of

21.25 km and its centr= {K,y) at (417.5,0.0).

The elastic propertiess of the finits element mesh and the fault are
summarised in tables 6.1 and 6.2. The pboundary conditions are identical to
those used i1n the plane normal fault mpdel; the right hand side was
constrained to move wvertically, the left hand edge is tree and isostatic
restoring forces are applied to the -top and base of the- model using

3

densities of 2700 kg m> and 2900 kg m respectively. The convergence

factor which was used to mcdel the frictional sliding was 15.0.

6.2.2 Discussion of results

The deformation of the model 1in response to 30, 40 and 50 MPa
tensional stresses 1s shown in figures 6.12 to 6.14. The deformation is

generally similar to that of the plane ncrmal fault model:
*

1. The left and right hand sides of the fault have been displaced
upwards and downwards respectively. The fault 1is consequently a

normal fault.

2. Increasing the magnitude of the applied tension increases the

throw of the fault.

3. The principal stresses are modified close to the fault. Following
frictional sliding tension and compressicn occurs parallel to the

fault plane on its upthrown and downthrown sides respectively.

4. The vertical displacements at the fault plane induce a long
wavelength flexure. At low stress an additional short wavelength

upward flexure of the lithosphere occurs on the downthrcocwn side of
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the fault. This flexure, which has 1ts axis 15 km from the fault

plane, disappears as the applied tensional stress is increased.

5. Increasing the tensional stress 1increases the depth ro which
frictional sliding occurs. At 30 MPa frictional sliding occurs
down to 10 km, whilst at 50 MPa it =xtands throughout thes =slastic
layer. This means that increasingly more deformation 2ccurs on

the listric section of the fault as the tension increasas.

The vertical displacements in the listric fault model are consistently
less than those of the corresponding plane normal fault model. This is
because rotation has to occur on the listric fault plane to maintain 1its

geometry.

6.3 Thrust Faults

The previous sections of this chapter have shown that the model of
frictional sliding can simulate the deformation on plane and listric normal
faults. In this section this analysis 1is extended to model the deformation

on plane and listric thrust faults.

6.3.1 Plane thrust faults

.

The central section of the 1000 km long finite element mesh and the
position of the plane thrust fault are shown in figure 6.15. The thrust
fault has a dip of 26.57 degrees. The elastic properties of tha finite
element mesh and the fault =zre summarised in tables 6.1 and 6.2, The
boundary conditions which were applied to this body were identical to those

used in the normal fault mcdels (section 6.2.1).







The initial elastic deformation of the model in response to a 30 MPa
compressive stress 1is shéwn in figure 6.16. The top surface of this model
to the left and right hand sides of the fault is displaced upwards and
downwards respectively. The fault 1s consequently a thrust fault. This
type of fault would be =axpected to develop in response to horizontal

compressive trass tAnderscn, 1951y . The =e2ffect of these local

wn

displacements along the fault plane is to induce a long wavelength flexure
in the adjacent lithosphere. This effect has been praviously observed in

the normal fault models.

The deformation following frictional sliding on the fault is shown in
figure 6.17. The following generalisations can be made from an analysis of

these results:

1. The relative vertical displacements at the fault plane are

increased by frictional sliding.

LY

2. The stress cleose to the fault 1s modified by the frictional
sliding. Tension occurs parallel to the fault plane on its

overthrust side and compression occurs on its downthrust side.

3. A short wavelength downwards flexure of the lithosphere occurs on
the downthrown side of the fault. This short wavelength flexure,
which has its axis 15 km from the fault, is superimposed upon the
long wavelength flexure which affects both sides of the fault. A
similar short wavelength flexura was observed at low stress in the
normal fault models. This flexure occurs above the fault plane
becau.es frictional sliding is limited to the upper part of the

thrust plane.
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The effect of increasing the horizontal compression from 30 to 50 MPa
15 shown in figuresé6.l7 to 6.18. The deformation in response to increasing
stress follows the same pattern as that for the normal fault models.
Firstly, increased displacement occurs on the fault plane as frictional
sliding penetrates through the entire elastic layer to redistribute the

larger magnitude excess shear stress

D

s on the fault plane. Secondly, the
short wavelength flexural featur=z cn the overthrust side of the fault

disappears as the za7plied stress 1s increased.

An important implication of theses models 1s that although compressive
stresses cannot <c¢zadse a buckling of a homogeneous elastic layer (Ramberg
and Stephansson, 1964), they can prcduce significant deformation when a

fault is present.

6.3.2 Listric thrust faults

The central section of the 700 km long finite element mesh and the
position of ﬁhe listric thrust fault are shown in figure 6.19. The listric
fault plane is described by a circle which has its origin (x,y) at (315 km,
-70 km) and a radius of 71 km. Tha same elastic properties and boundary
conditions which have been used in previous sections were applied to this

model (e.g. section 6.3.1).

The deformation produced by increasing the compressive stress from 30
te 50 MPa 1is shown 1in figures 6.20 and 6.21. The cz2formation of these
models is generally similar to that of the plane thrust fault. The major
differences between these solutions are in the shape of the vertical
displacement profile on the overthrust side of the fault which can be

summarised as follows:
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L. Only several metres of vertical displacement occurs at the top of

the listric fault because of 1ts very low angle near the surface.

2. An upwards flexure occurs above the steeply dipping section of the
listric fault which makes the stresses more tensional at the top
of the overthrust lithosphere,

These ncdals demonstrate that listr.. _.rust faults can be modelled

using the methods of chapter 5. The frictional sliding model is therefore
suitable for analysing the deformation which occurs on the subduction zone

fault.

6.4 Summary And Conclusions
In this chapter the p:rformance of the mcdel of frictional sliding
(chapter 5) has been 2valuated. The most important points can be

summarised as follows: o

1. The tests have demonstrated that the dual node model 1is suitable
for predicting the type of fault and the deformation which is
produced by frictional sliding in response to applied horizontal
stress. These results show that thrust faults are predicted in
response to comprassion and normal faults are predicted in
response to horizontal tension. The model 1s consequently
suitable for predicting the deformation which will occur in
response to any stress regime Lf the geometry of the fault and its

mechanical properties are known or can be assumed.

2. The model is capable of analysing the deformation on both plane

and listric faulfs.




3. The model predicts graben widths which are comparable with the
results which are derivad frem analytic thin elastic beam theory.
The failure to obtain similar results with CST alements (Mithen,
1980) arises because the finite =2lement mesh 15 too stiff as an
insufficient number of elements wera used ro glive accurate
solutions to <fLlexural problems. | f;e conclusions of Mithen's
.
thesis concarning the failure arising from lithoscheric flexurs

should therefore be used with caution wuntil they have been

verified by comparison with results from isoparametric medels.

Despite the general success of the model several limitations have been
identified. Firstly, the iterative algorithm which has been used tc mocdel
frictional sliding on faults is not optimally designed. Future analyses
should therefore attempt to improve this part of the model. Secondly, the
predictiveness of the model is limited because the wvalue of the shear
stiffness, which controls the scale of the fault deformation, is not
constrained by experimental indications. Future analyses should therefore
attempt to constrain the shear stiffness of faults by estimating it from

real world examples.

In conclusion, the model which has been developed 1in chapter 5 is
capable of modelling fault deformation in a variety of tectonic settings.
This model will consequently be used in the next chapter to analyse the

Stress regime at subduction zones.
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CHAPTER 7

THE STRESS REGIME AT SUBDUCTION ZONES

7.1 Introduction

In previous chapters of this thesis an L1soparametric finite element
method has been developed which 15 capable of modelling the deiformation
which occurs at subduction zones. In this chapter this methoed is used to
mcdel the stress regime which 1s produced at subduction zones by lateral
density variations, the slab oull force, the mechanical coupling of the
plates and the slab 1induced convection. The stress regime predicted by
these models is then compared with the observed state of stress at

subduction zones to 1nvestigate why:

1. A lateral variation in stress is observed across the strike of all

subduction zones.

2. The state of stress in the back arc area of the overlying plate is

so variable between different subduction zones.

7.2 Description Qf The Finite Element Mesh

The finite element mesh which has been used to model the stress regime
at subduction zones is shown in figure 7.1. It represents an idealised two
dimensional cross section through the upper 95 km of an active continental
margin subduction zone. The finite element mesh ~as been simplified by
omitting the deep structure of the subducting plate from the model. The
forces which are transmitted to the surface plates by ﬁhe subducted oceanic
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lithosphere will therefore be represented by applying appropriate normal
and shear stresses to the base of the model where the subducting slab is

truncated (position A-A in figure 7.2).

The finite element mesh 1s formed from 23 triangular and 62
quadrilateral 1soparametric finite elements. The finita element
calculations have bacn parfermed using € Czussien integration points in the

triangular elements and %4 integration pcints in the quadrilateral elements.

The assumed positions of the subductinq oceanic and the overlying
continental plate are shown in figure 7.2. The interface between the two
plates is represented in the model by a curved fault plane which is defined
by four 1isoparametric fault elements. The fault plane is defined by a
circle of 300 km radius which has 1its origin (x,yﬂ at (445.456 km,
-305.0 km). These parameters, which are representative of subduction
zones, were chosen so that the subducting plate has a dip of 45 degrees at

the base of the model.

Young's modulus Poisson's ratio Tensile strength Density

(N md (MPa) (kg m>)

Crust 70.85xlo" 0.25 12.0 2922.0
Mantle 1.90x10" 0.25 50.0 3300.0

Table 7.1: Elastic parameters assigned to the crust and mantle.

The subducting oceanic lithosphere at the left hand edge of the model
is 90 km thick and is overlain by S km of water which is assumed to have a
density of 1030 kg m>. The oceanic lithosphere is subdivided into a S km
thick crustal layer which overlies 85 km of upper mantle (Figure 7.3). The

values assigned to theé elastic parameters and densities of these layers are
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summarised in table 7.1. The thickness of the elastic oceanic lithosphere
1s assumed to be 30 km and the lower oceanic lithosphere is assumed to be

visco-elastic with a viscosity of L.OxlozaPa S.

The trench, which is assumed to be 10 km deep, has its axis at 300 km
from the left hand edge of the model. The characteristic flexural profile
of the cceanic lithuspheres seawards of the trench was zalculated from the
universal wlastic trench profile of Caldwell et al (1976.. This relates
the deflection of the sea floor, w, to the amplitude of the bulge, Wiy s and
horizontal distance, x, as

vrx X
w = Wiy N@? sin (———) exp d (l - —)
dxy 4 Xy

where

X' = -

in which the symbols, and the values assigned to them, are defined in table

7.2.

Symbol Definition Value assigned
E Young's modulus 0.85x10" N m™?
v Poisson's ratio 0.25
g acceleration due to gravity 9.8l m 5%
Pen mantle density 3300 kg m >
Puw water density 1030 kg m™3
h elastic thickness 30 km
Wy amplitude of bulge 300 m

Table 7.2: Parameters used to «calculate the universal elastic trench
profile.
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The continental lithosphere, which is assumed to be 95 km thick, 15
divided into a 35 km <crustal layer which overlies a 60 km thick mantle
(Figure 7.3). The values assigned to the elastic parameters and dansitlies
of these layers are summarised 1n table 7.1. The mantle 1s assumed to have

. . 2%) . v
a viscosity of 1.0x10Pa s. The lower 25 km of the continental crust 1s

. . . . 24
also assumed to be visco-elastic and to have a viscosity of 1.0x10 Pa s.

The density of the oceanic and continental crust was assumed to be
2922 kg nﬂa This wvalue was <chosen 5o that the undisturbed oceanic
lithosphere at the left hand side of the model and the continental
lithosphere are in 1isostatic equilibrium. The location of the crustal

layers are shown in figure 7.3.

7.3 Lateral Density Variations

Lateral variations in crustal thickness and density produce 1important
deviatoric stresses 1in the lithosphere. The aim of this section is to
model the stresses which are produced by the lateral density variations

across subduction zones.

There are two major loads which result from lateral density
variations. The first of these arises from the isostaticallyv compensated
loading of the continental or island arc lithosphere relative 10 the
undisturbed oceanic lithosphere. This effect 1s analogous to the
differential loading which occurs at passive continental margins (Bott and
Dean, 1972). The second arises from the 1isostatically uncompensated
flexure of the lithosphere which produces wvariation 1in the water and

sediment thickness over the trench and the outer rise.
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The stresses produced by these two loads will be modelled wusing the
density stripping procedure (Bott and Dean, 1972; Dean, 1973; Kusznir,
1976; Bott and Kusznir, 1979) because it allows the deviatoric stresses to

be seen more clearly than using the actual lithospheric densities.

7.3.1 Description of the finite alement model.

The geometry and material properties of the finite element mesh have

been described in section 7.2.

The density distribution of the model (figure 7.4) was calculated by
subtracting the density-depth profile of the undisturbed oceanic
lithosphere from the model. The density distribution of the model 1is
therefore relative to the undisturbed oceanic lithosphere. The consequence
of this density stripping procedure is that the isostatically uncompensated
loading at the trench and outer rise appears as a relative upthrust and
downthrust respectively, whilst the upper 3 km of the continental crust and
its compensating 'root' appear as an equal relative downthrust and upthrust
respectively. The stresses which are calculated from this stripped density

distribution are therefore relative to those in the undisturbed oceanic

lithosphere.

The nodal forces which result from the stripped density distribution
of the <continental lithosphere were evaluated using the body force
procedure described in chapter 3. The loads arising from the isostatically
uncompensated loading at the trench énd outer rise, however, were input as
boundary forces with a magnitude equivalent tc the pressure on the surface
(egh). These forces are orientated perpendicular to the top of the

lithosphere.
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The other boundary conditions which were applied to this finite
element mesh were as follows; the left and right hand edgas wera
constrained to move vertically and the bkase was constrained to move
horizontally. The normal and shear stiffness of the subduction zone fault

~|

were assigned high values of l.OxlOls N m These values have the effeci of

making the model behave as an =2lastic continuum (Chapter 6).

7.3.2 Discussion of results.

The elastic solution using the model which has been described in the
previous section 1s shown in fiqure 7.5. Two distinct stress regimes can
be identified. The first of these affects the continental crust. The

second affects the subducting oceanic lithosphere beneath the trench.

The continental crust 1s in compression relative to the undisturbed
oceanic lithosphere (figure 7.7). The axes of maximum and minimum
compression are aligned wertically and horizontally. The deviatoric
stresses 1n ;he continental crust, however, are vertical compreséion and
horizontal tension (figure 7.8). The horizontal deviatoric tension has a
maximum magnitude of 22.5 MPa at 5-10 km depth. This stress regime is the
elastic response of the lithosphere to the 1isostatically compensated
surface loading which has squeezed the continental crust and caused it to
displace laterally {gto the 1low pressure region formed by the trench
(figure 7.9). The effect of the lateral variation in loading 1s therefore
similar to the trench suction force (Elsasser, 1971) because it <causes a
seawards migration of the trench axis which induces horizontal deviatoric

tensions in the overlying plate.

R The subducting plate beneath :he trench 1is in vertical tension

relative to the undisturbed oceanic lithosphere (fiqure 7.6). The tension
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has a maximum magnitude of 100 MPa and is produced by the relative upthrust
of the low pressure trench. A small vertical compression of 10 MPa 1is
developed in the subducting plate .beneath the outer rise. These wvertical
stresses affect the whole thickness of the subducting plate because of rthe

zero vertical displacement poundary condition at the base of the model.

The stress reyime after allowiny this model to relex visco-elastically
for 5 million years is shown 1n figure 7.1.. The most obvicus difference
between this and the previous solution is that the horizontal stresses have
decayed in the visco-elastic part of the model and have become concentrated

in the elastic part of the lithosphere.

The stresses in the continental crust are shown in figure 7.13. The
maximum principal stresses are vertical compressions which have the same
magnitude as those in the elastic solution. The minimum principal stresses
are horizontal compressions which are more tensional than those in the
elastic model. This enhanced horizontal tension can be clearly seen in the
deviatoric stresses (figure 7.14). The horizental deviatoric tension at
the right hand edge of the model has increased to a maximum of 38 MPa at
5-10 km depth. This increased horizontal deviatoric tension in the elastic
lithosphere 1is prqduced by the stress amplification resulting from the
creep of the ductile lower lithosphere (Kusznir and Bott, 1977). These
results indicate that the stresses produced by the lateral density
variation are renewable, and therefore, may contribute to the tensional
stress which 1s cbserved in the back arc area of some active continental

margin subduction zones.

The stress regime 1n the subducting plate (figure 7.12) differs
considerably from the elastic solution. In the elastic lithosphere beneath
the trench there are near surface horizontal tensions with complementary

- 125 -




v *UOTIBXRIdI
JT1SP[U-025STA JO SIeak UOTITTW G 19372 (9pow uorieriea AKA3yrsuap

Tereler @yl ut 23erd Butidnpgns ayl ut sassails tedrourad ayy :zicL 2Inb1yg

WX ) IMNVISIO

— P
-— — - - . - -

2011

Y 00t —

( TyNgiSNEL ST (BLi0a )
SY0LI3A SSRULS

*UOTIBXBT2I DTISB[3-01STA JO SIEAX UOTT[TW § J93J®
Tepow uo¥aeTIeA AJTISUSP T[BIBIBT Iyl UT $3sS313s (edrdutad Byl :TT°L 2Inb1g

(W) INviSIO

*

I
e -
It
TR
ny

Yl 001 —

{ TNOJSMIL ST GRULOT )
SM0LI3A SSRUS




*UOTIEXPT3J DTISBII-0DSTA JO sIe3k UuotTlTTW
¢ 131]e T8pow uorietiea K3rsusp terelef 3yl ut 33jeid bHutAriaao
ayl 3o wy gz do3l eyl utr sassai13s [edrourid DJTIOIETASD BUL

P @Inbrd

poo 1 (WY ) FONYLISIO
| A S S A N A C S S S S S S SR S SR
A S R R S A S N LN S S S S S ST S SR
g o ok 1k + ok T oo Vo \ .
+ + + + + + + + -+ + + . . - - - -+
Y& gl ——
{ TYNOISNGL ST (51400 )
SHOLI3A SSIMLS
|
|
"UOT3IERBI3I DTISE[I-0OsTA
JO SIP2A UOTTITW G I@13je T[3pow UOTIBTIEA AlTsuap T1eI23el 3Y)
ut @1e7d ButA{r2a0 2yl JO wy 07 dol Y3 UT SISSDIIS 1edtoutid Byl :€1°L 2Inb14
7§- () IINVLSia
+ +  + + + +  + + X X X X X X X X 4

——
-—r—
- -
-+

e

4+ 4

\

Y 001 —

( TOISAEL SNIT (RUWLI0O )
SUOLI3A SSRUS

-




horizontal compressions below. The opposite pattern 1is observed beneath
the outer rise. This stress regime 15 the result of flexure of the
lithosphere (figure 7.10), and 1is caused by the viscous flow of ductile
material away from the high pressures reglon beneath the outer rise and into
the low pressure region below the trench. This stress regime is the
response of a static subducting oceanic lithosphere to the continuous
application of the forces at the trench and outer rise ovar a period of 5
million years. This stress regime cannot exist 1in practises Decause the
subducting plate 1is not static for such long periods of time.. The stress
regime in the subducting plate in a visco-elastic solution 1is therefore
unrealistic because the static finite element metheds which have been used
in this thesis cannot model the true dynamic nature of the subduction
process. It was not, however, possible to develop a dynamic finite element

model to study this behaviour 1n the time avallable to complete this

thesis.

7.3.3 Further considerations: Other lateral density variations at

subduction zones

.

The models in this section have analysed the stress regime which 1is
produced by the two most obvious lateral density variations at subduction
zones. There are, however, several other lateral density variations which
affect subduction zones. It was not possible to model these in the time
available to complete this thesis, and therefore, the aim of this section
1is to state the origin of these lateral density variations and speculate on

their effect upon the stress regime at subduction zones.

The first, and probably mocst important of these lateral density
variations, affects the back arc area of the overlying plate at subduction
zones. In these regions slab induced convaction causes surface loading
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which 1s 1isostatically compensated by a hot, low density region in the
underlying lithosphere. This load would be expected to produce horizontal
deviatoric tensions which would be amplified in a way analogous to those 1In
regions of plateau uplift (Bott and Kusznir, 1979). Since these stres:as
are renewable this 1loading 1s potentially important in producing the

observed tensional stresses in pack arc regions.

The second lateral darsity .x..ation affects the crust beneath the
volcanic arc. In this region the short wavelength surface load of the
volcanic arc is compensated by an underlying, hot low density region. The
effect of this load would be to produce horizontal deviatoric tensions in
the crust beneath the volcanic edifice (Bott, 1971). This load could
therefore be important in locally medifying the regional stress regime, and
consequently, it may be an important factor in explaining the observation
that tensional failure occurs at the volcanic arc during the initiation of

back arc spreading.

The third lateral density variation which has been neglected affects
the back arc area of the overlying plate at active continental margins.
This is produced by the surface loading of a cordilleran mountain range and
the upthrust of the low density root which compensates the load. The
effect of this loading would be to produce additional horizontal deviatoric
tensions 1in the <crust beneath the mountain range, and these would be

superimposed upon the stresses which have been modelled in this section.
7.3.4 Limitations of the models

There are several limitations of the models which have been dev=aloped.

These are:
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The models have used the density stripping approach rather than
the full lithospheric densities. The major limitation of this
approach 1s that it neglects the contrast in the elastic
properties between the horizontal layers which are stripped (Park,
1981). This limitation, hcwever, 1s unlikely to have a maior

influence upon the results which have pbeen obtained.

The deformaticn arising from the lateral density variakiors at
island arc subduction zones has not been modelled. The results
which have been obtained in this section, however, are applicable
to 1island arcs. This is because although the overlying plate in
these regions 1is mainly oceanic there 1is an isostatically
compensated crustal load 1in the vicinity of the volcanic arc.
This load would be expected to 1induce horizontal deviatoric
tensions 1in the island arc crust. These tensions, however, would
‘not extend i1nto the oceanic lithosphere of the back arc plate at

island arc subduction zones.

The base of the model has been constrained by the zero vertical
displacement boundary condition. The vertical component of the
load applied at the upper surface of the trench-outer rise has
therefore been implicity balanced by equivalent vertical boundary
forces distributed along the base of this region. At subduction
zones, however, it would be expected that the loads at the top
surface of the subducting plate would be balanced by a more
localised system of vertical forces arising from slab pull. The
zero vertical displacement boundary condition therefore does not
correctly model the force distribution arising from the vertical

component of the slab pull force and it also inhibits bending.
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4. A further limitation of the models 1is that they predict that
horizontal deviatoric tension is present throughout the crust of
the overlying plate. This 1s 1lncompatible with the observed
stress regime at many subduction zones and suggests that other

forces act on the overlying plate.

The limitations discussed in points 3 and 4 can be mainly overcome by
introducing a slab pull force to the base of the model This situation is

considered in the next section.

7.4 Slab Pull

The subducting oceanic plate has a large negative buoyancy because it
is» cooler, and consequently denser, than the surrounding mantle and also
because phase transitions to denser mineralogies are elevated 1in the
subducting plate (McKenzie, 1969; Turcotte and Oxburgh, 1969; Minear and
Toksoz, 1970a,b; Hasebe et al, 1970; Toksoz et al, 1971, 1973; Turcotte
and Schubert, 1971, 1973; Griggs, 1972; Schubert et al, 1975). The
possibility that a component of this negative buoyancy force is transmitted
along the subducting oceanic lithosphere to drive the horizontal motions of
the surface plates was suggested by Elsasser (1969). Since then various

independent approaches have demonstrated the importance of this force,

~
=

known as slab pull, in driving the observed plate motions (Forsyth and
Uyeda, 1975; Harper, 1975; Chapple and Tullis, 1977; Richardson et al,
1979). All of these studies have demonstratad that only a fraction of the
gravitational potential of the dense subducting plate is transmitted to
drive the motions of the surface plates, and therefore that a substantial
part of the negative buoyancy force must be balanced by resisting forces.
The resisting forces arise from friction at tbe interplate shear zone and
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from viscous drag at the contact of the subducting lithosphere with the
asthenosphere (Davies, 1980). The net slab pull force which is transmitted
to drive the surface plate motions 1s therefore astimated to be of a

similar magnitude to the ridge push force (Davies, 1983).

Despite the demonstration that the slab pull force 1is important in
driving plate motionec, therz have been no direct attempts to mcedel the
stress regime which this force produces in the near surface plaktes at a
subduction zone. This 1s because the aim of most previous models of the
slab pull force has been to analyse the stress at deep and intermediate
depths in the subducting plate (Smith and Toksoz, 1572; Neugebauer and

Brietmayer, 1975).

The aim of this section is therefore to model the stress regime which
is produced by the slab pull force in the upper 95 km of the plates at a

subduction zone.

7.4.1 Description of the finite element model

The finite element model is described in section 7.2. The left and
right hand sides of this model were constrained to move vertically. The
base of the model is assumed to be underlain by a fluid asthenosphere with

a density of 3300 kg m>

It 1s necessary to introduce this boundary
condition so that the slab pull force can be applied to the nodes at the
base of the model. The subduction zone fault was 'locked' by assigning

values of l.OxlOSN ﬁq to its normal and shear stiffnesses.

The stripped iensity'distribution (section 7.3.1) was applied to this
model to simulate the loads which are produced by the lateral density
variations at a subduction zone. Applying these forces to a model with the
base underlain by a_fluid has two =ffects. Firstly, the vertical forces
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applied to the continental lithosphere are balanced. This 1s because the
surface load acts downwards and is balanced by the equal upthrust from the
low density 'root' which compensates this region. Secondly, the vertical
forces which are applied at the trench-outer rise are unbalanced. The
unbalanced vertical component of this force has a magnitude of 3.95xldzN

and 1s directed upwards.‘

-

Bacause the vertical forces acting at a subdwtiosn zone would be
expected to be b;lanced, the vertical component of the slab pull force was
assigned a magnitude of 8.95xlOuN and directed downwards so that it
balances the forces arising from the i1sostatically uncompensated load at
the trench and outer rise. This force therefore represents the effective
vertical component of the slab pull force which is transmitted to the

subducting plate and which holds the trench out of isostatic equilibrium.

The slab pull force can be resolved 1into vertical and horizontal
components. The vertical component of the slab pull force; Fy, has been
simulated in the models by applying appropriate normal forces to the nodes
at location A-A in figure 7.2, as they represent the position where the
subducted plate has been truncated by the finite element mesh. Applying

this force to these nodes produces a vertical component of stress which is

equal to 51.05 MPa.

The horizontal component of the slab pull force, F has been modelled

X!
by applying an appropriate shear stress to the nodes along the base. The
vertical component of the slab pull force was maintained at the same
magnitude in these models to ensure that the vertical forces at the

subduction zone are balanced. Thus

Fy

.11 .
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where I 1s the dip of the slab pull force.

7.4.2 The stress regime produced by a vertical slab pull force

In this section the deformation produced by the vertical component ot
the slab pull force, together with the lateral density variation ¢section
7.3), is modelled. The elastic scolution is shown in figure 7.15. Thera
are two superimposed stress regimes which can be identified in this model.

The first affacts the lithosphere in the wvicinity of the trench and the

second affects the crust of the overlying plate.

The most obvious stress system in the mocdel affects the subducting
plate beneath the trench and the overlying plate above the base of the
subduction zone fault. In the subducting plate (figure 7.16) there are
near surface horizontal tensions with complementary horizontal compressions
at the base of the lithosphere. The opposite patterr is observed above the
base of the subduction zcne fault. These horizontal stresses have a
maximum magnitude of 110 MPa and are produced because the lithosphere has
been flexed upwards at 75 km seawards of the trench axis and has been
flexed downwards above the base of the subduction zone fault. This
flexure, which <can be observed 1in the nodal displacements of the model
(figure 7.19), arises from the bending moment which is. produced by the
system of boundary and body forces which act at the outer rise, trench and

the base of the subducting plate.

The second stress system 1s produced by the isostatically compensated
surface loading of the continental crust (figure 7.17). This effect is
similar to that which has been discussed in section 7.3 but it has been
modified because of the superimposed bending stresses. The horizontal

deviatoric tensions can therefore only ke seen clearly at the right hand
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edge of the model where the bending stresses are small (figure 7.18). At
this position the maximum horizontal deviatoric tension is 31.5 MPa at
5-10 km depth. This tension 1s about 10 MPa larger than those in the
density stripping model (section 7.3} because it has been superimposed upon
the bending stresses produced by the downwards flexure of this end of the

model.

ule $tress regime after running this model visco-elasticallv Sor S
million years is shown in figure 7.21. The stresses in the overlying plate
have been concentrated in the elastic lithosphers with the result that
large horizontal deviatoric compressions occur apove the base of the
subduction zone fault and gradually become horizontal deviatoric tensions
in the back arc region (figure 7.21). The stress distribution in the
overlying plate is therefore similar to the previous elastic solution and
the major difference 1is that the magnitude of the horizontal stress has
been increased by the effect of stress amplification. The stresses in the
subducting plate (figure 7.22), however, are considerably different to
those which were observed 1in the elastic solution. The stresses are
dominated by a downwards flexure of the lithosphere at the outer rise and
an upwards flexure at the trench axis (figure 7.20). This effect, which
has been previously described in a visco-elastic run of the density
stripped modeli (section 7.3.2), prcbably arises because the dynamic motion

of the subducting plate has not been taken into account.

It has been shown in this section that the introduction of a vertical
slab pull force gives a stress pattern which comes closer to agreement with
the observed state of stress at subduction zones. A more realistic
situation will be considered in the next section by introducing a dipping

'slab pull force.
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7.4.3 Effect of a dipping slab pull force

The gffect of decreasing the dip of the slab pull forcs from 90
degrees to 63, 45 and 26 degrees towards the overiying plate 1is shown in
figures 7.25 to 7.53. The only differences between these models and those
of the previous section 15 that a shear component has been added to the
vertical slab pull force. The stresses produced by this shear component
wi, 11 therefore be superimposed upon the stresses which have been described

1n the previous section.

The following generalisations can be made from a study of these

results:

1. The effect of introducing a dipping component to the slab pull
force 1s to produce a regional horizontal tension 1n the
subducting plate and a regional horizontal compression of a
similar magnitude 1in the overlying plate. This stress regime
arises because the shear compénent of the slab pull force has the
effect of displacing the centre of the model towards the overlying

plate.

2. The effect of decreasing the dip of the slab pull force from 63 to
26 degrees is to increase the magnitude of the regional horizontal
tensions and compressions which are developed in the subducting
and overlying plates by 115 MPa. This stress regime is produced
because decreasing the dip of the slab pull force increases the
displacement of fthe centre of the model towards the overlying
plate. This increase in displacement arises because the magnitude
of the shear component of the slab pull force increases as the dip

of the slab is decreased.
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The deformation after allcwing these models to relax visco-elastically
for 5 million vyears is shown in figures 7.30 to 7.34{ 7.40 to 7.44, and
7.50 tec 7.53. The effect of this visco-elastic model is to concentrate and
amplify the stresses observed 1n the elastic solution into the elastic

layers of the lithosphere.

7.4.4 Discussion

The models which have been presented in this section predict that the
effect of the vertical component of the slab pull force is to induce
horizontal tension in the subducting plate and horizontal compression in
the overyling plate between the trench axis and the volcanic arc. This
lateral variation of the horizontal stress 1is observed at all subduction
zones. The models therefore suggest that the slab pull force contributes
to the observed lateral vafiation of stress across the strike of subduction

zones.

The models show that a horizontal component of slab pull force
produces a regional horizontal tension in the subducting plate and a
regional horizontal compression in the overlying plate. Because the slab
pull force probably acts approximately down the dip of the subducting slab,
it may explain the observed varianidn in the stress regime between the back
arc areas of different subduction zones. The models predict that
subduction zones with a shallow dip should have compression in the back arc
areas whilst - those with high dips should be less compressive.  Thils

prediction is in reasonable agreement with observations.




7.4.5 Limitations of the models

The models in this section have three main limitations.

Firstly, the magnitude of the vertical component of the slab pull

force 1is an upper limit. This is because 1L has peen =s5timated from a 5 km

deep trench which is the largest observed depth of any trench (Grallet and |

Lubo.s, 13882}, The magnitude of the stresses 1n ihe ncdeals are “rerafore
an upper limit on those which the slab pull force produces, Thz2 models
therefore demonstrate the general 1mplications of the slabrpuli force
rather than make specific predictions for the magnitude of the éfresses at
any particular subduction zone. The models imply, however, that for a

lower slab pull force the magnitude of the stress would be reduced.

The second limitation is that mantle drag, which resists the motion of
the subducting plate, has been neglected. It 1s, however, unlikely that
this force could have an important effect on the stress regime which has
been modelled. This is because the resistance produced by mantle drag over

the 500 km long base of the subducting plate would be small.

The third limitation is that the subduction =zone fault has been
assumed to be locked. Stresses 1n these models have therefore been
transmitted perfectly across the fault zone. This is wunrealistic because
it neglects any effect of the elastic properties of the subduction zone
fault. To overcome this limitation the effect of freseing the fault 1is

considered in the next section.

7.5 Effect Of The Subduction Zone Fault

The effect of locking the subduction zone fault is to constrain each

dual node to have 1dentical displacements. The previous models have
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consequently behaved as a single elastic continuum in which stress 1is
transmitted perfectly across the fault plane. They have therefore assumed
that the plates are perfectly elastically coupled at the subduction zone

fault.

Kanamori (1977) suggested that the c¢oupling between the plates at
supduction zones .5 Spattally varoable. He demcnstrated that the seismic
slip rate at subducticn «unes #hich have great thrust earthquakes (e.g.
Chile) 1s comparable with the subduction rate predicted by plate motion
models. Elsewhere, where there are no dgreat thrust earthquakes (e.g.
Marianas), the subduction rate is many times greater than the seismic slip
rate. Kanamori explained this observation by proposing that the degree of
mechanical c¢oupling of the plates varies between different subduction
zones. Kanamori, and more recently Uyeda and Kanameori (1979), also
demonstrated that the subduction zones at which plates are strongly coupled
have cdmpression in the back arc region whilst those which are weakly
coupled have tensional stresses which qivé rise to active back arc

spreading.

These oObservations suggest that the stress regime in the overlying
plate may be controlled by the degree of mechanical coupling between the
plates at a subduction zone. The aim of this section 1s therefore to
investigate the effect of varying the elastic properties of the subduction
zone fault.

7.5.1 Description of the finite element model

The effect of different properties of the subduction zone fault has

been investigated by reducing the shear stiffness of the 45 degree slab

{

pull model (section 7.4.2) to values of 1.0xl0N m ', 5.0x10 N "

and
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~ o . o
l.OxquN m. The fault was assumed to have a coefficient of fricticn egqual
to 0.1 and frictional sliding was allowed to occur. To ensure that both
sides of the fault plane remain in contact during frictional sliding the

e . - , . . 1S, -
normal stiffness of the fault has been assigned a value of L.0x1lO N o

7.5.2 Effect of reducing the shear stiffness of the subduction zone fault

The stress regime which has been calculated after reducing the shear

- )
stiffness of the sulbduction zone fault from l.OxlO°N o

to 1.0x10°N m)
5.0x10°N m” and 1.0x10°N @' is shown in figures 7.35 to 7.39, 7.54 to
7.57, 7.58 to 7.61 and 7.62 to 7.85 respectively. The variation of the
horizontal deviatoric stress with depth at the right hand edge of the

overlying plate and the left hand edge of the subducting plate 1is shown in

figures 7.66 and 7.67.

These results demonstrate that reducing the shear stiffness of the

q -
''to 1.0x10'N m has two effects upon

subduction zone fault from l.OxldsN m
the regional stress regime which is produced by the norizontal component of
the slab pull force. Firstly, it reduces the regional horizontal
compression in the overlying plate by 40 MPa in the mantle and 17.5 MPa in
the crust (the difference being due to the contrasting Young's moduli of
these layers). The magnitude of the regional horizontal compression which
is transmitted into the overlying plate by the horizontal compcnent of the
slab pull force is therefore strongly controlled by the shear stiffness of
the subduction zone fault. Secondly, the regional horizontal tension 1in
the subducting plate is increased by a commeasurate amount. The effect of

reducing the shear stiffness of the subduction zone fault is therefore to

make the horizontal stresses more tensional throughout the model.
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The reason for this response can be seen in the nodal ‘displacements.
When the fault 1s locked (figure 7.39) esach dual Qode 1s constrained to
have the same displacement and consequently the slab pull force acts
equally to deform both the overlying and subducting plates. The result of
this strong coupling of the plates is that the 45 degree slab pull force
pushes the centre of the model to the right, which compresses the overlying
plate and produces tedsions in the subducting plate. Reducing the shear
stiffness of ther fault increases the relative displacement on the dual
ncdes so that the two plates slide past one another (figures 7.68 to 7.70).
This occurs because the horizontal component of the slab pull force acts
unequally on the two plates; more of it is used to pull the subkducting
plate 1into the mantle and less is traqsmitted to compress the overlying
plate. Reducing the shear stiffness consequently decouples the
displacement and the stresses of the two plates. The models therefore
suggest that the degree of mechanical coupling between the plates at a
subduction zone determines the amount of compression which the shear

component of the slab pull force transmits into the overlying plate.

In the final model (figure 7.62), in which the shear stiffness of the
subduction zone fault has been reduced to l.OxquN m? the regional
horizontal compressive stress produced by the shear component of the slab
pull force has Dbeen reduced to less than 5 MPa. 1In this model, however,
near surface horizontal compression of 25 MPa still occurs in the overlying
plate Dbetween the trench axis and the volcanic arc. This is because the
overlying plate is still bending in response to the vertical component of
the slab pull force (figure 7.70). This deformation occurs because the
high value which has been assigned to the normal stiffness of the
subduction zone fault allows a component of the slab pull force to be

transmitted normally across the fault plane to deform the leading edge of
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the overlying plate. Reducing the shear stiffness of the subduction zone
fault therefore does not decr=ase the local horizontal compression which
the wvertical component slab pull force produces at the leading edge of the

overlying plate.

7.5.3 Discussion

Tha models presented in this section demonstrate that the regional
horizontal compression which 1s transmitted into the back arc region by the
slab pull force is strongly controlled by the mechanical coupling between
the plates at the subduction zone fault. The modsls predict that the
stress regime in the back arc regions of subduction zones which are
strongly coupled will be more compressive than at subduction zones which
are weakly coupled. The models therefore explain that the degree of
mechanical coupling 1is an additional factor in explaining why the stress
regime in the back arc regions 1s variable between different subduction
zones. These models quantitatively demonstrate that the decoupling

hypothesis of Kanamori (1971; 1977) 1is plausible.

An important implication of these models is that whatever the coupling
of the plates, near surface horizontal compression occurs at the leading
edge of the subducting plate. This may explain why the stress in this
region 1s consistently observed to be compressive, whatever the state of
stress 1s in the back arc basins. These models demonstrate, however, that
the magnitude of the compressicn 1is lncreased when the coupling between the
plates is higher. This implies that great thrust earthquakes are more
likely to occur at subduction zones which are strongly coupled than at
those which are weakly coupled. This prediction helps to explain why the
tectonic deformation of the overlying plate 1is so variablé between
different subduction zones (Kanamori, 1977).
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The models therefore explain why crustal shortening can occur at

.subduction zones without producing regional horizontal compression.

7.6 Convection In The Asthenospheric Wedge

The possibility tha: the subducting plate 1induces a wviscous drag
convective flow 1n the overlying asiheisoupiierliz wedge which heats and
shears the coverlying plate was inltially c.ooposad by McKenzis (1969) to
explain the high heat flow which 15 observed in the back arc areas of
subduction zones. Following this proposal, Karig <(1970; 1971a, b)
demonstrated that in the island arcs of the Western Pacific the high heat
flow coincides with presently or recently active sites o©of back arc
spreading. This observation stimulated the development of increasingly
sophisticated numerical models of the slab induced convection (Sleep and
Toksoz, 1971; Andrews and Sleep, 1974; Toksoz and Bird, 1977; Toksoz and
Hsui, 1978) which propose that back arc spreading is initiated and. driven
by the combination of shearing and heating of the overlying plate produced

by the viscous flow.

The hypothesis that slab induced convection 1initiates back arc
spreading, however, has recently been challenged because the model cannot
explain the observed spatial and temporal episodicity of back arc spreading
(Chase, 1978; Uyedi and Kanamori, 1979). Hsui and Toksoz 1981), however,
concluded that the one available focal mechanism solution for back arc
areas agrees with their hypothesis (Toksoz and Hsui, 1978&) that-back arc
spreading is 1initiated and driven by slab induced convection. This
assertion 1s obviously based upon an extremely limited data set and
therefore the role of slab induced convection in driving back arc basins

remains uncertain.
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One of the reasons for this uncertainty abou§ the role of slab induced
convection in driving back arc spreading i1s that the stress regime which 13
preduced by this mechanism has only been gqualitatively assessed. The
sophisticated models of slab induced convection, however, make gquantitative
pradictions about the heating and shearing of the overlying plate. The
model of Toksoz and Hsui (1973), for example, predicts that for a slab
dipping at 45 deqrees and subducting at 8 cm/yr the slab induced convecticn
cell will exert a shear stress of 3.5 MPa on the base of the overlying
plate and will raise the temperature of the base of the 1lithosphere by
250°C at 75 million years after the 1initiation of subduction. These
predictions = can therefore be used to quantify the stress regime which 1is

produced by slab induced convection.

In this section the stress rejime produced by the shearing and thermal
volume changes which are predicted by the model of Toksoz and Hsui (1978)
are evaluated. The results will be uséd to test two hypotheses. Firstly,
does the slab induced convection generate sufficient tension to initiate
back arc spreading by failure at the volcanic arc ? Secondly, is the slab
induced convection able to produce the tensional stress observed in many
back arc basins, and which may drive active back arc spreading in some

areas ?

7.6.1 Effect of shear stress

The model of Toksoz and dsui (1978) predicts that the slab induced
convection cell exerts a shear stress o¢of 3.5 MPa on the base of the
overlying plate at subduction zones. The stress regime produced by the

action of this basal shear stress is evaluated in this section.
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The finite element mesh is described i1n section 7.2. The sides of
this model were constrained for zero horizontal displacement and the base

was assumed to be underlain by a fluid asthensophere witnh a - density of

3300 kg ﬁg, A basal shear stress of 3.5 MPa was applied to the 260 km long
base of the overlying plate shown in figure 7.71. The subduction zone
fault was assumed to be locked.

The elastic solution is shown in c.gure. 7.72 to 7.75. The basal

shear stress has two effects., The first is that it displaces the centre of
the model to the left which produces a reg:ional horizontal compression of
4 MPa 1in the subducting plate and a regional horizontal compressicon of a
similar magnitude in the overlying plate. The second is that it induces a
bending moment which causes an upwards flexure of the model about an axis
above the base of the sulbduction zone fault, and a downwards flexure at the
~right hand edge of the model (figure 7.76). The upward flexure produces
near surfate horizontal tensions of 4 MPa with underlying compressions of
10 MPa, and the downward flexure produces near surface stresses of zero
with underlying horizontal tensions of 14 MPa. The effects of the bending
moment therefore dcminates the stress regime in the overlying plate. The
stress associated with 1t, however, 1s insufficient to <cause failure

anywhere in the model.

The shear stress produced by slab induced convection 1s a renewable
source of stress, as long as subduction confinues, and therefore the above
model was allowed to relax visco-elastically for 5 million vyears. The
results of this analysis are shown in figures 7.78 to 7.8l. The major
difference between this and the elastic solution .is that the regional
compression and tension has been amplified in-the elastic layers, but the

superimposed flexural stresses are unaltered and are consequently less
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prominent. Despite this stress amplification, however, failure 1s not

oredicted anywhere in the model.

These results demcnstrate that the shear stress predicted by the slab
induced <convection model o©of Tokscz and Hsul (1973) produces horizontal
sensional stresses in the back arc area of subduction zones. The mcedel
therefore agrees with the suggestion ¢ :these éuthors that this force can
help to drive back arc spreadiny and can account for the tension commonly
observed in these regions. The magnitude of the tensional stress, however,
is insufficient to cause failure of the lithosphere and therefore cannot
solely account for initiation of back arc spreading. In order for the
basal shear stress to cause failure it would therefore either have to be of
a larger magnitude or act over a greater distance. A much more fundamental
problem, however, 1s that the volcanic arc is in compression and therefore
this mechanism cannot account for -why the back arc spreading is initiated

®

by fracture at the volcanic arc.

The slab induced convection causes the overlying plate to be displaced
towards the trench, i.e. to override the subducting plate. This suppcrts
the proposal of Richter (1973) that this force contributes towards the

trench suction effect. The model, however, indicates that the contribution

would be relatively small unless the basal shear stress is much larger.

7.6.2 Effect of thermal volume changes

The model of Toksoz and Esui (1978) predicts that after 75 million
vears the slab induced convection cell causes a 250°¢C heating of the base
of the overlying plate. The stress regime produced by the resulting

thermal volume changes are modelled in this section.
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The finite element mesh 1is described in section 7.2. The sides of
this model were constrained for zero horizontal disolacement and the bas=a
was assumed to be underlain by a fluid asthenosphere with a density of

3300 kg @ >

The temperature anomaly (figure 7.82) which was used 1in the finite
alement calculations 1s cylindrical, with its axis perpendicular to the
strike, and has its centre (x.,y.) at (780.0 km, -123.239 km). The
temperature rise, T, at a point (XP’YP> in the overlying plate was

calculated from the function

(Ve = Ip)ATy
¢

where @, the thickness of the lithosphere was taken as 95 km, ATb, the
temperature rise of the base was assumed to be 250°C, and Tps the radial

distance to the peoint p was calculated from the expression

r, = J(pmx P+ (ypy )*

This temperature anomaly approximates that in the model of Toksoz and
Hsui (1978). The thermal stresses were calculated using the initial strain
method (section 3.8) assuming that the volume coefficient of expansion,&,

is 1.0x10

The elastic solution using this model is shown in figures 7.83 to
7.86. These results demonstrate that the thermal volume changes which are
produced by a heating of the overlying plate by 1 slab induced convection
cell has two effects. The first is to induce a ElEXLCe.Of the overlying

plate with an axis at the centre of the temperature ancmaly (fiqgure 7.87).
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This flexure produces a horizontal tension of 62 MPa at the top of the
crust and a horizontal compression of 130 MPa at the base ©of the
lithosphere. It 1is predicted from these stresses that failure will occur
at 1 km depth 1n the element apove the centre of the temperature anomaly.
Failure 1s not predicted anywhere else in the model. The second effeact is
that the thermal expansion of the overlying plate produces a regicnal
horizontal compression of 60 MPa :n the subducting plate and the region of
the overlying plate above the subduction =zone fault. This compression
results from the zero horizontal displacement boundary condition applied to
the left hand edge of the model. Because compressive stress of this
magnitude 1is not observed at subduction zones it is concluded that this

boundary condition is unrealistic.

These results demonstrate that the temperature anomaly which 1is
produced by the slab 1induced convection model of Toksoz and Hsui (1978)
causes thermal volume changes which produce near surface horizontal
tensional stresses 1in the back arc area of subduction zones. The model
predicts that these stresses will be a maximum above the centre of the
temperature anomaly and therefore agrees with the hypothesis that the
tension driving back arc spreading can be produced by the thermal effects
of slab induced convection. The model, however, does not agree with the
the hypothesis that back arc spreading is initiated by the thermal effects
of slab induced convection because tensional stresses ara not predictaed in

the region of the volcanic arc.

7.6.3 Discussion
The models which have been presented in this section show that both
the basal shear stress and the thermal volu.e changes produce near surface

horizontal tensional strassa2s in the pack arc area of subduction zones.




The model therefore supports the hypothesis that slab induced convection
can cause tensional tectonics 1n the overlying plate and consequently may

orovide the tension to drive back arc spreading.

Both the basal shear stress and the thermal volume changas, howevear,
give rise to either compression or low magnitude fension in the wvicinity ot
the volcanic arc. These results therz2fore suggest that back arc spreading
1s ot initiated by the slab induced convection =zeli, contrary to the
hypothesis of Toksoz and Hsul (1673). Back arc spreading must therefore be
initated by some other mechanism as has been proposed by other authors
{Chase, 1978; Uyeda and Kanamori, 1979). Once back arc spreading has been
initiated, however, the slab induced convection cell can provide additional

tension to drive the spreading.

The medels which have been presented in this section assume a
subduction rate of 3 cm/yr and a dip of 45 degrees. Although these values
are representati&e of several subduction zones there are some important
deviations from this, notably the Marianas where the dip is 80 degrees and
the Chile area where the dip is about 20 degrees. It was, however, not

possible to quantitatively examine the effect of varying these parameters.

An additional limitation of the models of the thermal anomaly is that
it has been assumed that the thermal stresses after 75 million years can be
evaluated using an elastic solution. Thermal strains, however, may be
relieved by creep over a much shorter period because they are
non-renewable. The model of section 7.6.2 consequently represents the

maximum stress which could be produced by the temperature ancomaly.

Another limitation 1s that using the zero displacement boundary

condition at the edges of the model results in the development of
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unrealistically large compressions 1in the subducting plate. A more
realistic solution could possibly he obtained if the left hand boundary was

unconstrained.

The final limitation of the models is rthat they neglect the strass
prcduced by 1sostatically compensated loading over the hot, low density
region .n the back arc ar=as. This may oe a significant scurce of tension

in back arc basins.

7.7 Summary And Conclusions

A consistent stress regime 1S éredicted in the subducting plate and in
the portion of the overlying plate between the trench axis and the volcanic
arc in all of the rmodels which have a slab pull force applied to them.
This stress regime 1is horizontal tension in_ the subducting plate and
horizontal compression in the overlying plate. It has been shown that this
stress system 1s predicted whatever the angle of the slab pull force, the
degree of mechanical coupling of the plates or the magnitude of the slab
pull force are assumed to be. The consistency of these stresses implies
that the lateral variation in the horizontal stress which 1is observed in
these regions at all subduction zones is produced by the slab pull force.
It has, however, been shown that the magnitude o©of the horizontal stress

Magnitude
which 1s produced by the slab pull force is dependent upon the of the
slab pull force, its dip and the degree of mechanical ccupling of the
plates. The observed variation in the dip of the slab and the degree of
mechanical coupling between the plates, thersfore, probably explains the
observed wvariation 1in the tectonic deformation at the leading edge of the

overlying plate at different subduction zones.




v

The state of stress in back arc areas, however, has been shown to Dbe
variable. Both horizontal tension and compression can occur. Horizontal
tension is produced at active continental margins by the isostatically
compensated loading of the crust, Local norizontal tension 1is also
oroduced by heating and shearing associated with slab‘ induced convection
wherever the subducted slab penetrates deep§r fﬁan a few hundred
kilometras. Renewakle horizontal tansion mAay Aalso be generatad bv
isostatically compensatzd loading resulting* from the hot, low density
mantle associated with slab induced conveCﬁion. The tensional stress from

would
these sources j not be expected %o wvary greatly in magnitude between
different subduction zones. Regicnal horizontal compressive stress arising
from the slab pull force may be superimposed upon these tensional stresses.
Their magnitude, however, 1s dependent upon che dip and the magnitude of
the slab pull force. Unlike the tensional stresses, however, the amount of
compression which is transmitted into this region is strongly controlled by
the degree of mechanical coupling of the plates at the subduction zone
fault. The models therefore demonstrate that the state ¢Z stress in back
arc areas 1s critically dependent upon the local interplay between the
processes producing tension and compression. This may explain why the

stress regime is observed to be so variable in back arc areas.

An lmportant implication of the models 1s that the largest magnitude
tensional stresses, and therefore the most fawvourable conditions for the
development of actively spreading back arc basins, will be developed where
the dip of the slab pull force is high and/or the plates are decoupled at
the subduction zone fault. This prediction 1is in good agresement with
observations (Uyeda and Kanamori, 1979). The models do not, however,
provide a clear explanation of how back arc spreading can-be initiated by
failure at the wvolcanic arc. One possibility is thait the compression in
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this region is reduced as a result of a decoupling of the plates at the
subduction zone fault so that the tensional stresses produéed by the short
wavelength load of the volcanic arc can produce fracture in the crust. An
alrernative explaination 13 that the dynamics of tne subduction pracess,
which include roll-back (Chase, 1978; Molnar and Atwatar, 1978) and the
underthrusting resulting from subduction zone earthquakas (Melosh and
Fleitout, 1982) could initiate the rfracture. The factors which cause the
initiation ¢z back arc spreading therefore remain a major outstanding

problem.

The models also make two proposals about the origin of the trench
suction force. Firstly, they suggest that this arises from th= lateral
pressure variations at a subduction zone. This occurs because the trench
is a low pressure region and the overlying crust a high pressurs region.
This pressure gradient causes diplacement of the high pressure overlyilng
plate into the low pressure trench. The effect of this displacement is to
induce horiontal deviatofic tensions in the crust of the overlying plate.
These stresses would be expected to be renewable as long as the trench
remains and therefore could explain why this factor 1s required in all of
the models of the plate tectonic driving force. An additional, although
much lower magnitude, effect is the renewable shear stress produced by the

slab induced convection cell.

The demonstration that the lateral density wvariations at active
continental margins produces a similar effect to the trench suction force
has an important implication for the continental splitting mechanism. This
is because it 1is generally considered that Pangea was almost completely
surrounded by active continental margin subduction zones. The subducted

plate in these regions would probably have a steep dip because it would not




be actively overriden by the supercontinent. In this situation the
compression transmitted 1nto the overlying plate would be of a low
magnitude so that the trench suction force could cause the tension required

to inititiate continental splitting (Bott, 1982Db).

In conclusion, the mocdels are important in demonstrating that crustal
shovtening can occur at supducticn zcnes without necessarily preducing
regional compression in the overlying glate. They explain thar the
observed lateral wvariation 1n stress across the subducting plate and the
overlying plate is caused by the combined effect of Llateral density
variations and the slab pull force. The variation in stress across the
pback arc region of subduction zones, however, has been explained 1in terms

of the local balance of the forces producing tension and compression and

the mechanical coupling of the plates at the subduction zone fault.

The models developed in this chapter have therefore gone some way
towards establishin3 the major sources Of stress at a general subduction
zone. Future analyses should concentrate on analysing the stress produced

by these forces at particular examples of subduction zones.

Despite th= general success of the models which have keen presented in
this chapter there are some shortcomings of the oresent analysis. These

are:

1. The bending stress arising from the <{lexure of the subducting
plate have not been modelled. These stresses would be
superimposed upon the stress regime modelled in the subducting

plate and would therefore locally modify the stress regime.




2. The downpull effect of the viscous drag flow in the asthenospheric
wedge Dbetween the subducting and overlying plate (Tovish et al,
1978) has not been modelled. This effect may contributa to the

comprassion at the leading =dge of the overlying plarte.

3. The dynamic forces arising from the subduction process have ot
been moaelled. The principal dynamic forces are the roll back of
the subducting plate (Zlsasser, 1571; Chase, 1978;  Maglnar and
Atwater, 1978; Kanamori and Uyeda, 1979 and the underthrusting
occuring during earthquakes (Melosh and Fleitout, 1982). These
forces may contribute towards the trench suction effect and may
cause the initiation of back arc spreading by failure at rthe

volcanic arc.

Future analyses should therefore give attention to these effects.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

The isoparametric finitzs element method has been used in this thesls
tc model the stress regime at subduction zones. There have ceen two aims
to this study. The first has been to investigate why a lateral wvariation
of stress is observed between the subducting plate and the leading edge of
the overlying plate at all subduction zones. The second has been to
determine why the stress regilme in back arc regions 1s so variable between

different subduction zones.

Several problems are posed when attempting to model the stress regime
in such tectonically complex areas as subduction zones, and consequently,

much of this thesis has been an attempt to resolve these difficulties.

The initial problem was to chose a realistic rheological model of the
lithosphere upon which the mathematical models can be based. A simplified
rheological model has been used in which the lithosphere is assumed to be
subdivided into an upper elastic layer, which deforms non-elastically by
brittle fracture, and an underlying visco-elastic layer which creeps in

response to long term loads.

The second problem has been to chose aAsuitable mathematical technique
which can realistically model the stress regime in such complex regions as
subduction zones. One technique which has been popular and successful 1in
modelling lithospheric stress regimes is the constant strain triangle (CST)

finite element method. It has been demonstrated in this thesis, however,




that this methed has two disadvantages. Firstly, 1t acts too stiffly if
the finite element mesh is not optimally designed. Secondly, 1t gives
skewed stress and displacement vectors in elastic and visco-elastic
oroplems when the strain gradient 1is high.. These two limitations degrade
the predictiveness and accuracy of CST models. A higher order quadratic
isoparametric finite element, which does not exhibit any of these
undesirabla features, has consequently been wused 1n this thesis. An
additional advantage of this method is that it enakles curved-sided finite

elements to be introduced.

The final problem has been to develop a methcd which 1s capable of
modelling the deformation on the subduction =zone fault. The solution
adopted in this thesis was to adapt Mithen's (1980) CST model of frictional
sliding to the 1isoparametric method. This method was used to model the
deformation following frictional sliding on plane normal faults and
predicted graben widths which agree with analytic solutions. This suggests
that Mithen's CST models failed to agree with analytic solutions because
they were too stiff, and consequently, that the isoparametric methcd should
be used to re-investigate his subsequent analysis of graben development.
Two additional advantages of the isoparametric fault model are that it can
be used to study the deformation on thrust faults, and also on listric
faults. This method 1s consequently suitable for modelling the deformation

on the curved subduction zone fault.

These isoparametric finite el:=ment methods have been incorporated into
a computer program which is suitable for modelling static lithospheric

stess distributions in a variety of tectonic settings.




Analysis of the stress_regime at subduction zones has shown that the
slab pull force causes tension in the subducting plate and compression at
the leading edge of the overlying plate. This force may possibly be the
dominant cause of the lateral variation in stress which 1s observed 1n this
region at all subduction zcnes. The magnitude of the Stréss produced by
the slab pull force, hnowever, 1s dependent upon the dip, age and depth

trass distripution 13 also dependent

w1

extent of the subducted plate. Tha
upon the degree of mechanical coupling between the plates at the subduction
zone fault. Local differences in these factors may therefore explain the
observed variation in the tectonic deformaticon of this region at different

subduction zones.

Several forces produce different stress regimes in the back arc region
of subduction zones. Tension is produced by lateral density variations and
also by the heating and shearing arising from the slab induced convection.
The magnitude of the tensional stress arising from these mechanisms should
be approximately constant at all subduction zones. Compressive stress,'
arising from the slab pull force, 1s superimposed upon the tensional
stress. The magnitude of the compressive stress, however, 1is dependent
upon two factors. Firstly, the dip and the magnitude of the slab pull
force. Secondly, upon the degree of mechanical coupling between the plates
at the subduction zone féyltn It has been shown that if the coupling is
weak, no compression will be transmitted into the back arc region by the
slab pull force. Local differences in these two factors may therefore
explain why the state of stress is so variable in the back arc regions of
different subduction zones, and also why tension 1is more common than
compression. Roll-back of the subducting plate, which has not been
includedﬁ in the models, may be an additional cause of the dominance of

tensional stress in the overlying plate. Future Lnvestigations should




therefore evaluate the stress regime which is produced by this mechanism.

The models which have been produced have accounted for some of the

principal

features of the observed stress regime at subduction zones.

Thera are, however, three major limitations of the present analysis:

A visco-elastic rheology has been used to medel creep 1in the lowar
seismic lithosphere rather than the power law creep rheclogy which
is suggested by rock mechanic experiments. Although this
represents a ma jor simplification, previous analyses have
demonstrated that the stress following relaxation 1s independent
of which rheology is used, and it is therefore unlikely that using
a power law creep rheology would substantially modify the

conclusions of this analysis.

Bending stresses arising from the flexure of the subducting plate
have not been included in the models. Stresses from this source
would be superimposed upon those which have Dbeen modelled and
could cause important local wvariations in the stress in the

subducting plate.

The effect of the dynamic forces associated with the subduction
process have not been modelled. This 1s because the finite
element methods which have been used can only model static stress
distributions. This is a major limitation of the present analysis
because dynamic forces, particularly those arising £from the
roll-back of the subducting plate, may be an important cause of
the trench suction effect and consequently important in generating
the sftress regime in the overlying plate. This may explain why

the present analysis has been unable to explain how back arc




spreading is initiated by a fracture at the volcanic arc.

Our understanding of the origin of the stress regime at subduction
zones could consequently be 1mproved by developing more sophisticated

models of these regicns.




APPENDIX

COMPUTER PROGRAMS

A.l Introduction

The computer programs which have been written to analyse lithospheric
stress regimes are based upon the isoparametric finite element formulation
which has been described in chapters 3 and 5. They are capable of
modelling the elastic or visco-elastic stresses which are produced by body
forces, boundary forces, thermal volume changes and frictional sliding on a

fault.

The programs are written in a modular form in IBM FORTRAN IV and are
stored in two files called ISOFELP and I[SOLIB. ISOLIB is a library file
which contains one subroutine to perform each finite element operation,
such as assembling or inverting the stiffness matrix. ISOFELP is a calling
program through which the user may call any combination of the available

modules in ISOLIB.

There are three steps which must be followed when using these programs
to run a finite element model. The first 1s to modify ISOFELP so that it
calls the desired finite element routines. The second LS to input data
describing the finite element model. The final step is to link and run the

programs. The aim of this appendix is to document each of these procedures

so that the programs can be used to model lithospheric stress regimes.




A.2 ISQLIB: Description Of Subroutines

To keép the programs as flexible as possible each finite element
operation has been coded as a saparate subroutine and stored in a library
file called ISOLIB. 1In addition to these several external subroutines are
called. The aim of this section i1s to describe the function of each of

these subroutines so that the wuSer can construct a calling sequence

(section A.3).

A.2.1 Finite element subroutines

The aim of this section 1s to describe the operations which are

performed Dby each of the finite element subroutines which can be called by

ISOFELP.

READ : reads in all the data which are required to set up a particular
finite element model. The 1i1nput specification for this
subroutine is described in section A.3.

ECHO : prints the data read in by READ on device 5. The function of
this module 1is to allow the user to check that there are no
errors in the data file which was read in by READ.

FORMK : assembles the global stiffness matrix of the finite element
model. It should be called every r~ime an elastic or
visco-elastic stress distribution 1is to be evaluated.

TANOM : calculates the body forces arising from thermal volume changes.

BODY4S: <calculates the body forces arising from the density

distribution of :he model.

ISOS : <calculates isostatic restoring forces at specified nodes of the
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BOUNDS:

ELVIS

FSHEAR:

STRESS:

FAIL

DISOUT:

STOUT

PAMS

GRID

.
.

.

VECPLT:

DISVEC:

D

EV

5

T

.
.

model .

introduces the prescribed displacements of the model by

Bl

modifying the force vector and stiffness matrix (Park, 1931:

This routine shc ild be called in every finite element job.

evaluates the elastic or visco-elastic displacements of the

model by inver:ing the stiffness matrix.

evaluates the displacements produced by frictional sliding on

the fault.

calculates the principal stresses in the model.

uses the modified Griffith theory to test if brittle fracture

has occured in the model.

prints the displacements of each node to device 7.

prints the principal stresses of each element to device 7.

initialises the plotting parameters. It should be called every

time that plotted output 1s required.

plots the finite element mesh.

plots the principal stresses in the model.

plots the vertical displacement profile of specified nodes in

r-

plots the displacement vectors of the model.

calculates the deviatoric stress vectors of the model.
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A.2.2 External subroutines

Three external subroutine libraries are internally rceferencaed in
ISOLIB. The first 1is the MTS system subroutine TIME which evaluates the
CPU time which elapses between specified instructions. The second 15 the
*HARWELL subroutine MAQ7BD which iLnverts a banded coefficient matr:ix. The
third is the *GHOST plotting system. There are numerous calls to routilnes

in this library {e.g. FRAME and GREND).

A.3 ISOFELP: The Construction Of A Calling Sequence

ISOFELP (ISOparametric Finite ELement Package) 1s the main FORTRAN
Wwritten programming segment. This program contains a call to each of the
finite element subroutines which have been described in section A.2.1. In
most finite element Jjobs 1t will not be desired to call all of the
available subroutines. The user must therefore dgfine those modules which
are not to be called by inserting a C in the first column of the relevant

line(s). This has the effect of making the call a comment, which 1is

non-executable during running of the program.

This approach therefore provides the user with a set of subroutines
which can be used to model a wide range of problems simply by modifying the

subroutines which are called.

A.4 Utilisation

Once the user has modified ISOFELP there are two further steps to
complete. The first is to generate a set of input data which describes the
geometry, physical properties and boundary conditioné of the model. The
second step 1s to link and run the programs. These two steps are
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documented in this section.

A.4.1 Input specificatisn: Device %

The data describing the gecmetry, material properties and boundary
conditious 0f the mocel 22 1rput on devic2 4. The _a..meters are 23

follows:

|NOD4S | | FX | [FY |

|NODS |

_________________________________________ *
INDIS | | FNORM | | FTAN |

[NOFIX|IXFIX|XFIX JIYFIX|YFIX |

INITS |

| KN |KS |

(MU |FAC |
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Card 1: General model information

This card defines the general information on the mcdel. It must be
specified for every finite element jJjob which 1s run. The parameter
definitions are as tollows:

NNOD  [I5]: iiic auwi . of nodes in ihe Zinite elament drid. NNOD
must be greater than or equal ro 6. Up to 350 ncodes can
be defined.

NTRI (I3]: The number of triangular finite elements. Up to 300

triangular elements c n be defined.

NQUAD [IS5]: The number of gquadrilateral finite elements. Up to 300
quadrilateral elements can be defined.

NMAT [IS5]: The number of material types. NMAT must be greater than
0. Up to 10 different material types can pe defined.

NFIX [I5]: The number of nodes at which displacement boundary
conditions are to be applied. NFIX must be greater than
0. Up to 100 fixed displacements can be defined.

NDIR [IS5]: The number of nodes at which direct nodal forces are to
be applied.

NSEG {I5]: The number of surfaces over which distributed forces are
to be applied.

NSI (I5]): Flag indicating the units of the nodal co-ordinates.
NSI = 0 Units are kilometres
NSI = 1 Units are metres

NST (15]: Flag indicating whether the model is to be *alculated
assuming plane strain or plane stress.
NST = 0 Plane strain
NST = 1 Plane stress

NFS (I5]: Number of dual nodes. Up to 50 dual nodes can be
defined.

- 163 -




Card 2: Node definition

Field 1-5 6-15 16-25

This card defines the node numper and 1ts co-ordinates in NSI un
There should be NNOD of these cards. The parametar definitions ar
follows:

JNOD [15]: The node number.

X [F10.3]: The x co-ordinate of the node.

Y (F10.3]: The y co-ordinate of the node. This should be negative
for depths beneath sea level.

Card 3: Material Properties.

This card defines the elastic and visco-elastic properties of the
material types. There should be NMAT of these cards. The definition of
the parameters is as follows:

EM (D10.3]: Young's modulus in Nm.

BM (F10.3]: Poisson's ratio.

RHOM [F10.3]: Density in kg m.

™ (D10.3]: Tensile strength in MPa.

ETAM [D10.3]: Viscosity of layer in Pa s. If this is 0.0 the layer
is assumed to be elastic.
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Card 4: Topology of triangular elements
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Field 1-5 6-10 11-13 16-20 21-25

This card defines the topology of the triangular (finita elements.
There should be NTRI of these cards. The nodes must £=2 supplied in a
clockwise or anviclockwise direction. The aevinitlion c¢f thase parameters
is as follaws:

JEL {1s]: The element number.

NODELl [I5]: The number of the first node. This must be a node at
one of the corners of the element.

NODE2 [I5]: The number of the second node.
NODE3 [I5]: The number of the third node.
NODE4 [I5]: The number of the fourth node.
NODES [I5]: The number of the fifth node.
NODE6 [IS]: The number of the sixth node.
ITYP [IS]: The number of the material type for this element.

NGAUS [15]: The number of Gaussian integration points in this
element. This should be either 3, ¢4 or 6.

Card 5: Topology of guadrilateral elements

Field 1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55

This card defined the topology of the quadrilateral finite elements.
There should be NQUAD of these cards. The nodes must be supplied in a
clockwise or anticlockwise direction. The definition of these parameters
is as follows:

JEL [15]: The element number.

NODEL [I5]: The number of the first node. This must be a node at
one of the corners of the element.

NODE2 [15]: The number of the second node.
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NODE3 [I5]: The number ¢f the third node.

NODE4 (IS5]: The number of the fourth node.

NODE5 {I5]: The number of the fifth node.

NODE6 [IS]: The number of the sixth node.

NODE7 [I5]: The number of the seventh node.

NODE8 [I5]: The number of the eigth node.

ITYP (IS]: The number of the material type for this element.

NGAUS (I5]: The number of Gaussian integration Dpoints in this
element, This should be either 4 or 9.

Card 6: Direct nodal forces

Field 1-5 9-20 24-35

This card defines the magnitude of the direct x and y forces which are
to be applied to nodes of the model. There should be NDIR of these cards.
The parameters have the following definitions.

NOD4S [IS]: The node number.

FX ([Fll.3]: The magnitude of the x component of the direct force in
N.

FY ([F1l1.3]: The magnitude of the y component of the direct force in
N.

Cards 7 and 8: Distributed nodal forces

Field 1-5 9-20 24-35
|NODS |
INDIS | | FNORM | | FTAN

This card defines the magnitude of the normal and shear compcnents of
the distributed forces which act upon the surface of the model. The
parameter descriptions are as follows:
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NODS [I5]: The number of nodes at which distributed forces are to
be applied. There should be NSEG of these cards.

NDIS [I5]: The node number.
FNORM [F1ll.3]: The magnitude of the normal component of the force.

FTAN [F11.3]: The magnitude of the tangential compcnent of the
force.

card 9: Prescribel displacements

Field 1-5 6-10 11-20 21-25 26-35

This card defines the dislacement boundary conditions which are to bpe
applied to nodes of the finite element models. There should be NFIX of
these cards. The parameter definitions are as follows:

NOFIX  [I5]: The node number.

IXFIX (15]: Flag which must equal 1 if the x co-ordinate of
displacement is to be fixed.

XFIX {F10.3}: The value of the fixed x displacement in metres.

IYFIX [15]: Flag which must equal 1 if the y co-ordinate of
displacement i1s to be fixed.

YFIX [F10.3]: The value of the fixed y displacement in metres.

Cards 10 to 12: Fault information

Field 1-5 6~-10 11-20

INITS |
| KN |KS |
| MU | FAC |

These cards define the elastic properties and location of the . fault
element. The parameters are defined as follows:
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NITS [I5]: The maximium number of iterations to perform in order to
' reduce the excess shear stress on the fault.

KN [F10.3): The normal stiffness of the fault element in N m.
XS [F10.3]: The shear stiffness of the fault element in N m.
MU [F10.3]: The coefficient of friction on the fault.

FAC [F10.3]: The convergence factor to multiply the faul:t force
vector by.

Card 13: Fault geometry

Field 1-5 6-10 11-15 16-20

These parameters are a list of the number of the dual nodes and the
element which they belong to. There shcould be NFS of these cards.

NELL [(15]: The number of the element on the left hand side of the
fault.

NODL (15]: The number of the dual node on the left hand side of the
fault.

NELR [I5]: The number of the element on the right hand side of the
fault.

NODR [I5]: The number of the dual node cn the right hand side of
the fault.

Cards 14 to 16: Isostatic compensation information

W,

These cards define the isostatic compensation which is to be applied
at a given set of nodes. The parameter definitions are as follows:




NSEG [I5]: The number of segments over which isostatic compensation
1s to be applied.

ment. Thera should be one
G.

NODIC [IS5]: The number of ncdes on a se
of these cards for every NS

[ JYe]

RHO [F10.3]: The compensation density in kg m. There shculd be one
of these cards for every NSEG.

NODI [15]: The ncde numbers at which isostatic compensation 1s  to

be applied. There should be NODIC of these cards for
every HSEG.

A.4.2 Input specification: Device 3

The data defining the thermal anomaly 15 input on device 3. The

following cards are required:

The parameter definitions are as follows:

NNT [(15): The number of nodes with tamperature anomalies. The
maximum number which can be defined is 350.

NODT (15]: The node number. There should be NNT of these cards.

" DELT [F10.3]: The temperature anomaly.
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A.4.3 Input specification: Device 5

General information on the model 1s input on device 5. The following

cards are required.

| TITLE
| XMIN | XMAX |
| YMIN I YMAX |

These cards define the title of the Jjob and the plot scales. The
parameters have the following cdefinitions:

TITLE [8a4]: The title of the job.

XMIN [F10.3]: The minimum X co-orcdinate to plot.

XMAX [F10.3]: The maximum x co-ordinate to plot. ;
|

YMIN [F10.3]: The mimimum y co-ordinate to plot. |

YMAX [F10.3]: The maximum y co-ordinate to plot.

XPLTLEN [F10.3]: The x length of the plot in inches.

YPLTLEN [FLl0.3]: The y length of the plot in inches.

A.4.4 Running the programs
The procedure for running the programs on NUMAC is described in this

section.

Before running any models 1t 15 essential to compile ISOLIB. It has
been found wuseful to store this in a permanent file, OBJISOLIB. This is
because a considerable CPU time is required to compile these subroutines.
This program can then be used for any number of finite elemenz jobs unless
the user wishes to modify the intarnal coding in the subroutines of ISCLIB.
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Once ISOLIB has been compiled there are two Steps 1n  running

programs:

1. Compile ISOFELP. This should be performed whenever the calling
sequence has peen modified. [t 1s performed Dby LsSsulng the

command

SRUN *FTNX SCARDS=ISOFELP SPUNCH=0OBJISOFEL?

2. Link and run the programs. At this stage the subroutines 1in
ISOLIB must be linked with the external routines from the *HARWELL

and *GHOST libraries. The command to run these programs 1s;

SRUN OBJISOFELP+QOBJISOLIB+*HARWELL+*GHOST 3=TEMPS 4=MODEL 5=GINPUT

6=*SINK* 7=RESULTS 8=VISCOUT 9=PLOT 10=FAULTOUT

Where:
TEMPS is an input file described in section A.4.2.
MODEL 1is an input file described in section A.4.1l.
GINPUT is an input file described in section A.4.3.
RESULTS contains the displacements and stress vectors.
VISCOUT contains information on the convergence of the
visco-elastic routines.
PLOT is the plot file.
FAULTOUT contains information on the convergence of the

fault model.
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