W Durham
University

AR

Durham E-Theses

Quark mixing and Kaon transitions

Webb, James

How to cite:

Webb, James (1984) Quark mizing and Kaon transitions, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7578/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/7578/
 http://etheses.dur.ac.uk/7578/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

QUARK MIXING AND KAON TRANSITIONS



The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

QUARE MIXING AND KAOH TRANSITICHS

THESIS SUBMITTED TO

THE UNIVERSITY OF DURHAM

BY
JAMES WEBB, B.Sc. (DURHAM)

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS

DURHAM UNIVERSITY AUGUST 1984

-5 KOV 1954



CONTENTS

Page
Acknowledgements iii
Abstract iv
Chapter 1 The Standard Model 1
1.1 Gauge Theories = QED and QCD 1
1.2 Spontaneous Symmetry Dreaking
and the GWS Model 5
1.3 Beyond the Standard Fodel : 11
Chapter 2 The Necessary Top Quari 14
2.1 TFlavour Changing leutral Currents 14
2.2 Experimental Constraints on the
Quark Mixing HMatrix 18
2.5 Anomalous Ward Identities 20
2.4 TExperimental Evidence for the
t=-Quark 22
o =0 . .
Chapter 3 The K = K Transition Amplitude 25
%.1 Formalism 25
%.2 Experimental Information 29
3.3 Ko= Ko Amplitude: Dispersive
Contributions ’ 35

3.4 K% K Amplitude: The Box Diagram 39

3.5 K% K° Anplitude: Double Penguin

Diagrar. 45



Fane

Chapter 4 Phenomenclogical Applicaticns cf the

1%~ F° Transition Ly
4.1 Phenorienclory: 1966 - 1983 4
L,2 B=lleson Tecay 53
4.3 Phenomenclogy: 19¢3 ~ 1984 53
4.3.1 Limits on 3 5¢
4,3,2 Bounds on t=Quark lMass 63
4.3.3 Haximal CP~Violation 67

Chapter 5 Analysis of the k%= 7 Trans tion

Anplitude O
5.1 Introduction 66
5.2 The Box Diagram Contribution 6Y
5.3 Penguin Diagran Contributionsl 7%
5.4 Dispersive Contributions to &m 75
5.5 Conclusions 76

QO
O

Chapter 6 Conclusions

oo
o

References



o 111 e

N
ACKHIIOVLEDCE: 4018

1 would like to thank IFred Gault for his collaboration, advice
and support throughout the period in which this research was under=
talien. My thani's go to hin and to Alan lMartin for reading the
ranuscript.

I anm also grateful to V.3arger and J.Trampetié for useful
comments and to L,=L,Chau for useful telegrams. I thanlt the members
of the particle physics group at Durham - Fred Gault, Alan bartin,
Peter Collins, like Pennington, Stuart Grayson, Tim Spiller, Anthony
Vorrall, igel Glover, Anthony Allan, NNeil Speirs, King Lun Au,
rartin Carter and Tony Peacocl: - for theilr various views on particle
physics in pgeneral and this work in particular.

I am grateful to the SERC for financial support.

Finally, I would like to dedicate this thesis to my parents,

without whom it would not have been possible!



ST —
BETRACT

The pnenomenological applications of strangeness changing
neutral currents, particularly the KO- ?0 transition, are reviewed.
In the Standard iiodel there are three possible contributions to this
transition: the box diagram, the double penguin and the long distance
dispersive amplitudes. The results obtained from a phenomenological
study of the 10- 1° arplitude are shown to depend critically on the
assumptions made about the relative magnitudes of each of these
contributions.

Upper and lower bounds on the size of the hadronic matrix element
(B) of the box diagrar amplitude are derived, assuming that this
amplitude is the dominant contribution to the K%a ﬁo.transition. Ivo
interesting upper bound can be derived under other assumptions.

Measurements of the B-meson lifetime and partial decay widths
are used to restrict the allowed ranges for the parameters 92 and 93
of the quarl mixing matrix. This information is used, together with
an analysis (under various assumptions) of the K°= K_ mass matrix, to
derive lower bounds on the mass of the tequark (mt) as a function of
the parameter B. These bounds can also be regarded as lower bounds'on
B as a function of m e

The information from B-meson decays is used to determine the box
diagram contribution to the KL- KS mass difference. For B ¢1 this is
significantly less than the experimental result. The double penguin
arplitude is also estimated and a possibly large contribution to &m

is found. There is no compelling phenomenological reason to include a

substantial contribution to &m from long distance dispersive amplitudes.



THE STAIDARD :ODEL

1.1 Gauge Theories = QED and QCD

The strangeness changing neutral currents Koo nﬂ',liquui/['and
particularly K?ﬁ)KO have been, in the past, a useful source of
information about weak interactions. In the standard model these
transitions are understood to occur as a result of the mixing between
the quarks which are the basic constituents of hadrons. In this wori
a study is made of the information about quarks and their relation to
hadrons that can be gained through a phenomenological analysis of
such transitions. The reliabilty of this information is also
investigated.

All known particle interactions are now thought to be described
by gauge theories, which have risen to pre—eminence in particle
physics as the result of two factors. The first is their renormaliz-
ability (i.e. that divergences in non-lowest order calculations can
be removed in a well defined way); the second is the remarkable
success of one particular gauge theory, namely Quantum Electrodynamics
(QED). The agreement of the QED prediction for the anomalous magnetic
moment of the muon with the experimental result is better than 1 part
in 10°.

QED describes the interaction of a spin-z fermion with a spin=1
photon. The Lagrangian for this theory is

L =\?(i1"( du+ ieh,) = my = 2FF, (1.1)




where 1fis the fermion field, A,‘is the photon field and F)uvis

the electromagnetic field strength tensor
F,uv = avA,« = -‘)I‘*Av

This Lagrangian is invariant under global (pcsition independent)

phase transformations

'\}' > exp(=ie) ‘\P

This invariance implies that the phase o has no physical meaning

and can, therefore, be chosen arbitrarily. However, it is unnatural
to fix ¢ uniquely over all space and time and it is more satisfactory
to have the possibility of choosing it locally, i.e. to‘require the

Lagrangian to be invariant under

Vo> exp (=iet(x)) v

This invariance is obtained if A , transforms under the local phase

’(

transformation as

A, A, +

“ o.u(x)

por 138
which is the usual gauge transformation for the electromagnetic
vector potential.

The requirement of local gauge invariance has two important
consequences. The first is that the coupling of the photon to the
fermion is restricted to be of the 'minimal' form given above. The
second consequence is that a mass term for the photon of the type
MaA,A”’is forbidden. The masslessness of the photon leads to the
1/r form for the coulomb potential. The impressive success of QED
in describing the interaction of electrons and photons leads one
to believe that the gauge invariance of QED 1is not only a formal
property of the theory, but is an essential ingredient of 1t.

Consequently, it is natural to attempt to describe weak and strong



interactions in termns of a gauge theory.

The principle of local gauge invariance was generalized by
Yang and 111ls /1/ in 1954. In QED one is dealing with the very
sinple gauge sym.ietry of the abelian U(1) group whose generators
are constants. The original Yang-iills theory was a theory of strong
interactions with the SU(2) group of isospin as the gauge symmetry,
involving the proton and neutron as fundamental fermions. The
rmodern version of this theory is Quantum Chrowodynamics (QCD) /2,3/
in which the fundamental fermions are quarks lying in a. triplet
representation of an SU(3) group called colour. The SU(3) group
has eight generators Ta(a:1,8) which have representatioﬂs as

traceless 3x3 matrices and forn a Lie algebra
a b . .ab C
[, " - ir T

where the fa o are the structure constants of the algebra.

b
The basic Lagrangian of QCD is
L = aj(ir"(sjk du + ig(Ta)jkA";) - méjk)qk - L e, (1.2)

where qk(k=1,3) is a colour triplet of quarks of mass m; @i(az1,8)

is an octet of massless vector gauge bosons called gluons with

field strength tensor Giu,; g is the dinmensionless strong

interaction coupling constant. Since SU(3) is a non-abelian

group, the gauge transformations are more complicated. The QCD

Lagrangian is invariant under the infinitesimal gauge transformations

k k . k ]

g > q - i (x)(T.) q°

a J
a - a a b c a
Ay A+ £ & (x)Ay + T3ec (%)
g

if the field strength tensor is given by

a a a a b,c
Gy = O Ay = A, = BTy AR,
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From this equation it can be seen that the gluon kinetic energy

LA gAY : . . . . -
c” , contains triple and quartic gluon interactions. 1n

term, Gauv a

this self~coupling of the gauge bosons (which is a consequence of
the non=abelian nature of the gauge group) QCD is very different
from the abelian QED. Tlhese gluon selfainteractions are important
because their existence ensures the unitarity of some basic
scattering processes, e.g. Q4 & gg and . . {(where, here, "g"
represents a gluon).

Higher order corrections to the basic quarkegluon coupling
leads to the idea of a "running" coupling constant, i.e. the
coupling g depends on morrentum in a very definite way. The
coupling "constants" og = ga/hﬂ'at two different romentus scales

Q2 and Pz are related by

e( (,\2)
(@) - T Bon O EnD (1.3)
Bl (10 QU
where

and n_ is the number of fermions. If n_g 16 (B 0) then

bl bl o

2 2 2 2 . . .
NS(Q )(NS(H ) for @ >N This property is known as asymptotic
freedom since o%(QZ) » O as Qz-yoa. It is this property of QCD
which enables sensible perturbative calculations to be performed
at high Q2 despite the fact that at long distances a% is not small
(presumably leading to the confinement of quarks and gluons

inside hadrons). The running coupling constant can also be

expressed as

ak (8 : (1.4)

2
& (Q7) =
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where A is a morentum scale which (approximately) delineates
the boundary of the noneperturbative regine. The value of A can
be extracted from data on deep inelastic scattering /4,5/ witn

some uncertainties, and is in the range
0.1 £ NGeV) € 0.5

Higher order calculations in QCD produce corrections which
are proportional to<12(pg)lnm(Q2/F?) where FZ is the renormalisation
scale. When only the terms with n=m+71 are retained the calculation
is in the"leading logarithm approximation". In o(u ) calculations
the leading logarithms can be absorbed by replacing & (F ) with
the running coupling constant O( (Q ).

Like QED, QCD has performed well (though less spectacularly)
when confronted by experiment /3/. This leads to the hope that weak
interactions are also described by a gauge theory. However, in the
case of weak interactions the postulated vector bosons are nmassive,
as demonstrated by the short range of the interaction, and gauge
invariance forbids an explicit mass term of the form HaAﬂA#. So,
if weak interactions are to be described by a gauge theory, a
rmore subtle method of introducing a vector boson mass must be

found. This can be achieved by the (ad hoc) method of spontaneous

symmetry breaking.

1.2 Spontaneous Symmetry Breaking and the GWS lodel

The existence of massive vector bosons implies that the gauge
symmetry of weak interactions has been broken. A simple way to
describe this symmetry breaking would be to add explicitly none
invariant terms to the Lagrangian, such as the mass term given
above. However, this method destroys some of the important features

of the original gauge theory - its unitarity and renormalizability /6/.



An alternative way in which the gauge synmetry can be brolen,
referred to as spontaneous symmetry breaking, gives masses to
the vector bosons and yet retains the inportant properties of
the original theory. The idea is to have a theory where the
lagrangian is still exactly symmetric under the group transformations
but it gives rise, for dynamical reasons, to a ground state which
is not invariant. Non=invariance of the ground state (vacuum)
leads to a well defined pattern of symmetry breaking effects.
Glashow /7/ was the first to propose that the underlying
field theory of weak interactions was an SU(2)xU(1) gauge theory
which included QED as well. This idea was taken up later by
Weinberg /8/ and Salam /9/ who included the Higgs mechanism /10/
for spontanecus symmetry breaking. The resulting theory is
referred to as the Glashow-WeinbergwSalam (GWS) theory, and it is
renormalizable /11/.
The Lagrangian of a basic SU(2)xU(1) gauge theory involving
four vector bosons (one for each generator of SU(2)xU(1)) coupled

to an SU(2) doublet of complex scalar fields is
+ a .
L= (@) Oy - V(P - %;F,w;;" - 3G, GMY (1.5)

where Fi“,(a=1,3) is the field strength tensor for the triplet of
gauge fields (Wi) corresponding to the SU(2) group and(%uvis the
tensor for the gauge field (Qﬂ) of the U(1) group. The '‘covariant

derivative'" of the scalar field (@) is given by

DJ = ( + 1g-}ta\-1"; + ig'%Bb )

where ta are the three Pauli matrices. The two coupling constants
g and g' are independent since the gauge symmétry is a direct

product of the two groups. The scalar potential is given by



Ve = p e N

where A » O so that ¥V is bounded fror: below, but the sign of PB is

. ! 2
undetermnined. 1ff* represents the usual wass ter: for a scalar
field, i.e.lka) O, then V has a nlnimus at Q+¢ = 0 and the ground
state is 1lnvariant under the full gauge group. iowever, iff42< 0,
o + 2 . 2 2

then V has a minimun when @ g% = v©/2 with v- = =P,/) . When the
particle content of the theory 1s detersiined with respect to this
vacuut it is found that three of the scalars have become the

longitudinal components of the gauge bosons which have gained

nasses.
Defining
1 0
#(x) a2 (v + G(x))
such that @ = VvA/2 as above, the ter: in the Lagrangian

vacuumn

involving the covariant derivatives of the scalar field gives

D) (OFD) = 3@Bu0) 5) + H(en)®(f + W2

+ 2GR - 5B (g5 = &'BM)

+ higher order terms

Defining
+ 1 1 -
V= =z (W + iV )
M Vel e W,
and

Z, = cosH, w3 - Sineh B

M WM #
o e 5
AN = 51n9w WN + cosew BM

with
_ 1
tanew = g'/g

gives



oy A N _52 b B = B
(87 (DY) = 2@ue) B¥e)  + 1o (gt + il

5 " (1.6)
+ I-’;?(ZFZ ) + higher order terms

Yhis shows that twoc of the gauge bosons have gained a conmron

mass
., _ 1 .
“‘.r! = gV (1.7)
whilst a third has a mass
i = Jif - O
InZ .w/cosGW (1.0)

and @ fourth is massless. This last boson is identified with
the photon and the others are the weak interact on bosons
(W=, 7). The identification of A}‘with the photon leads to the

relations

1 — = '
6 sing, = o = g' cose, (1.9

The existence of a massless gauge boson ( the photon)
demonstrates the presence of an unbroken U(1) symmetry as
required by QED.

Equation (1.6) contains the usual kinetic term for a
scalar particle (6). This is the Higgs scalar and its mass is
given from V(¢+¢) to be|H|2 . This mass is not determined by
the theory and is left as a free parameter.

Fermions are introduced in left handed doublets and right

handed singlets of the SU(2) group, e.g. for the leptons e and

R

(—%(1 "75)‘2) RS ATEERECRS ALY
3 - 7)e

For this reason the SU(2) group is labelled with a subscript L:

SU(2)L° The fermions each have a U(1) hypercharge quantum number

Y and, after spontaneous symmetry breaking, the combination



Q = %(t5 + Y)

is identified as the electric charge of the fernion. The fermions
are given a Yukawa coupling to the scalar ¢ which, after
spontaneous symmetry brealiing, gives a mass to the ferwmions

(an explicit mass term is forbidden by the chiral nature of the
gauge group). The case of quarks is complicated by the fact that
the mass eigenstates are not identical to the weak interaction
eigenstates, but are related to them by a unitary transformation.
This is discussed in Chapter 2.

The amplitude for the decay ,[-) '%;f“ as given by the GWS

e
2 .2y .
theory at low momentum transfer (k <<134) is (the Feynman rules

for the GWS theory can be found in ref./12/)
A= (P - I W GL( =7V /&b
=8 % 5 P » T 957 % rj‘.'.’

which coincides with the (V = A) current x current prediction if

2
bp - & (1.10)
VZ g

M\x’

Using this and equation (1.9) leads to an expression for the

Weboson mass, with o = 62/4Tr

1
M, =[ T&A¥ 1 = 37.3 GeV
L 1/25; 8in6 sing,

W
and consequently

ol = M - o Y
I J.v J 74 6 Ge

cos6,, sin2d,

Measurements of sinew give /13/

sin, = 0.229 3 0,010



e
= 1 =

wnich leads to I, = 7e GeV and 1., = oY eV, Radiative corrections
7
LY i

alter these estimates to give /14/

= 32 + 2.4 Gev

I

b, = 9% + 1.6 GeV
These vector bosons have been discovered at the pp collider

in CERN. Their masses have been measured to be /15, 15/

B, = 80.9 + 1.5 GeV
{(1.11)

95.6 + 1.4 GeV

which are in remarkable agreement with the theoretical predictions.
The GWS theory of weak and electromagnetic interactions is

in good agreement with experiment both at low /17/ and high /15,16/
energies. Nevertheless, the theory contains some unsatisfactory
features:

i) the ad hoc introduction of scalar particles to induce
the spontaneous symmetry breaking;

ii) the couplings of these scalars to the fermions in the theory
rmust all be different so that the fermions obtain different
masses after the symmetry breaking. These couplings are a priori
undeternined in the theory;

iii) the observed parity violation of weak interactions is put
in by hand = the fermions left and right handed pieces transform
differently under the SU(2) gauge group.
In an attempt to overcome these problems people have been led to
consider extensions of the standard model. Some of these extended

theories are described in the next section.
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1.% Beyond the Standard ricdel

The Standard lodel is based on an SU(3Z)xSU(2)xU(1) gauge
theory which has been successful in describing observed interactions.
However, a number of theoretical problerms have motivated the
construction of many theories which contain the Standard Model
as & low energy approximation.

One fruitful approach is grand unification: at energies
greater than some scale MX particle interactions are described by
a gauge theory based on (in most cases) a single group. This group
contains the standard SU(3)xSU(2)xU(1) as a subgroup and a simple
example is the SU(5) theory of Georgi and Glashow /18/. The extra
degree of symmetry in these theories provides relations between
sorie of the free parameters of the Standard Model. Tor example,ihe
quantity sinew is predicted in the SU(5) model mentioned above and
the result is in reasonable agreement with experiment /19/.

The technique of spontaneous symmetry breaking is also used 1in
Grand Unified Theories (GUTs). At a scale My the GUT symmetry is
broken, either directly or indirectly, to the standard group. This
is effected by a set of scalar particles which are introduced in
addition to those used to break the GWS group down to U(1)e.m.°

The gauge bosons which are not associated with the generators of

the standard SU(3)xSU(2)xU(1) group gain masses ~ Moo In the Su(5)
5

model P, 1s about ‘IO1 GeV.

X
In GUTs quarks and leptons sit in the same multiplets of the
gauge group. Cne consequence of this is that the bosons with masses
R:MX after the first symmetry breaking can cause transitions which

violate baryon number. The SU(5) theory of Georgi and Glashow



predicts that protons should decay with a lifetine Z;'VWCEQ o 1031

yYears in a dominant decay mode of p # e+-11'o /20/. ixperiments to

detect proton decay are in progress /21/ and the results of the

IMB experiment /22/ give a lower bound on z; which is at the upper luiwit

of the range in the SU(5) model. This may indicate that the simplest

SU(5) model is ruled out. If this is the case, one must turn to

other groups, such as S0(10), or tca .ore complicated Higgs structure.
One feature of low energy weak interactions which is not

explained either in the Standard lodel or in the SU(5) GUT :s

parity violation. A possible solution to this problem is found in

left=right symmetric models (LRS nodels) based on the gauge group

SU(2)RxSU(2)LxU(1) /23/. These models contain an extra three gauge

bosons related to the generators of the SU(2)R group (w% , Z; ).

The standard gauge bosons are labelled w*, '

o
L ZL’ ¥ and the three

o}
L

bosons as in the standard GWS theory.

neutral particles (ZE, 2.,7) are mixtures of the basic gauge
At high energies this theory is parity conserving and parity
violation is introduced via spontaneous syrmietry breaking. The
symmetry breaking occurs in two stages: first the full group is
broken down to the GWS group at a scale PM , then the GWS group 1is
R

broken at the usual scale Mw ~ 80 GeV. The observed parity violation

L
arises as a consequence of Mw > Mw . Present data on beta decay and
R L
non-leptonic kaon decay require Mw 2 300 GeV /24,25/.

kR
LRS theories are compatible with grand unification. In particular

the GUT group S0(10) contains SU(2)xSU(2)xU(1) as a subgroup. The
more natural incorporation of parity violation together with the
recent results on proton decay perhaps make an S0(10) theory a

better candidate for a GUT.
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The existence of scalar particles in all the thecries
described above poses a number of theoretical problems. (ne such
probler: 15 the need to iaintain a heirarchy of mass scales
(LM<<MX) when higher order corrections are included. Supersymmetry
/26/ has been proposed as a solution to those problers.

Supersymmetry is a theory which relates bosons to fermions.This
has <the unfortunate consequence that each boson and fermion in
a standard theory must be given a partner differing by half a unit
of spin to make the theory supersymmetric. That is, the existence
of squarks (scalar quarks), sleptons (scalar leptons) and gauginos
(spin-7+ gauge particles) is predicted. If supersymmetry were exact
each of these new particles would have the same mass as its standard
counterpart. As this is experimentally not the case, supersymmetry,
if it exists, must be broken.

Supersymmetry also provides the possibility of including
gravitational interactions in the form of Supergravity /27/. Such
theories can have interesting consequences at low energies,
particularly for the phenomenon of spontaneous symmetry breaking/26/.
Supersymmetric theories of weak interactions can be constructed /29/.

In conclusion, the standard model of weak interactions based
on an SU(3)xSU(2)xU(1) gauge theory agrees well with low energy
experiments. Nevertheless, this theory has some theoretical problenms
and solutions for these are sought by extending the GUWS theory in
various directions. The possibility exists that some alternatives

can be ruled out by consideration of low energy data.
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CHAPTER 2

The lHecessary Top Quark

2.1 Flavour Changing Neutral Currents

As mentioned in Chapter 1, the quark sector of the GWS theory
of weak interactions is complicated by the fact that the weak
eigenstates are not identical with the mass eigenstates. Prior
to the discovery of the Jﬁ* resonance, low energy hadron spectroscopy
required the existence of three quarks: u, d, s /30/. Vleak

interactions couple the u-quark to the combination /31/
d =cos® d + sin® s (2.1)
W c c

where eb is the Cabibbo angle, the magnitude of which is given

by /32/
cos®_ = 0.9737 # 0.0025 (2.2)

This device also allows the retention of a universal low energy

coupling constant /32/

2

= (1.16632 + 0.00002) x 10~ GeV™ (2.3)

GF
This Cabibbo mixing is satisfactory for all charged current
interactions (involving the exchange of a W boson). However, it
causes some problems in the neutral current sector (involving,
at lowest order, the exchange of a Zo)o Here the Cabibbo theory
leads to amplitudes ﬁ'GF sinOb coseb for flavour changing neutral

currents (FCNCs), (e.g. K9 'A+'A-, K vy, K >77, K 3w 77,

K 1 e’e”) which contradicts the observed /33/ suppression of
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such processes.
The standard remedy for this failure was proposed by 3lashow,
Iliopoulos and iaiani (GIF) /34/. They introduced a fourth quari -

the c=quark - which couples to the combination of d= and s-quariks
s = cos® s = sing d
W c c

which is orthogonal to equation (2.1). In the GWS theory the
gauge boson Wi couples to a quark current associated with the SU(2)

generator t_. This current is

3

(u 7;(1 - 75) u - dw
+ (¢ 7;‘(1 -’)’5) C - Swrf‘“ -75) 5, )

<y
1]

7.1 -75) d )

1]

(57’”(1-75)11 - E?’Fm-'fs)d)
+ (RO -7 e = %O -T)s)

which is diagonal in the mass eigenstates. As the current coupled
to the ZO is a linear combination of J“and the electromagnetic
current, which is also flavour diagonal, FCNCs are forbidden at
tree level. This suppression is natural in the sense of Glashow
and Weinberg /35/ in that it is independent of the value of Gb.
FCNCs are also suppressed to O(Gf&) by the GIM mechanism
provided that mc<<Mw, where mc and HW are the masses of the ceguark
and the W boson respectively. Gaillard and Lee /36/ used this
property in the context of the strangeness changing neutral
current K°e>» K° to estimate m e Their result was mc~1°5 GeV
which is approximately half the mass of the J/jl(gé) resonance.

In the quark sector of the GWS theory the analogues of the

lepton = neutrino doublets are

)



In these doublets the weal: eigenstates of the charge § = +5 quaris
are identical with the mass eigenstates, and the de and s=quarks
are mixed. ldentical results would be obtained if the nass
elgenstates of the d- and s« quarks had been used and the u- and
c-quarks had been mixed. The form of equation (2.4) is the
conventional choice.

In principle, there could be a similar Cabibbo mixing in the
leptonic sector. However, there is no experimental evidence /37/
for such a mixing, which has no physical significance if the
neutrinos are massless. Only one experiment has reported a
positive result for a neutrino mass measurement /38/ but the
results are inconclusive /37/.

Kobayashi and Maskawa (KlM) extended the idea of Cabibbo mixing
to six quarks in order to produce CP-violation /39/. A new pair
(t, b) of quarks is introduced and the Q = =3 quark (b) mixes

with the d- and s=quarks:

dw Vud Vus Vub d

sw = Vcd cs Vcb s
7

b Vea Vs Vep b

where the mixing matrix Vij is unitary (vtv = 1). In general a
3x3 unitary matrix can be parametrized by three angles ( & ) and

one complex phase (& ). Such a parametrization is

c, 5,03 5,85
vV = ~1d C.C. S, = 5,C e-is (2.5)
= ] =54%  ©4%pCfz * Sy82€ 1°2°%3 7 °2¥3 :
5.8,  ©5,C5 = CoBe C8585 + C 058

where c. = cos®,, s = sin®, i = 1,2,3. In the limit &, = &, = S-0

2 3
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this matrix reduces to the Cabibbo matrix with 91 = Gc. lion-zero &
gives rise to CP=violation.

Many other parametrizations of the quark mixing matrix similar
to the above exist in the literature /17,39 = 41/. They are related
to the matrix given above by various transformations such as
Gi > =Gi and & » & in. These differences have no physical
significance but once the form of the KM matrix is fixed the angles
are constrained by Osg,ls /2 and the phase is allowed to vary over
the whole range Og 56 27 .

The KM parametrization keeps the definition that cosGC 1s the
ratic between a d 9 u transition and the purely leptonic process
'A = %. In the four quark model the ratio of s & u transitions to
d 3 u transitions is tan@-c but this definition is no longer true
in the six quark model. An alternative parametrization which
retains the definition of tan@-c is given by Maiani /42/. The matrix

then appears as

CQ:G % 5o | 5p B
vV = -..s’cosae1 - SgCy CpCy = szxspsoel s.‘,c’el (2.6)
~id -l
- PCYCB + By59@ -C7S’SO - svcee C7CF

where the phase & is not identical with the phase in the KM
parametrization. Although the Maiani form has the advantage for
recent phenomenology that the couplings of the b=quark are simple,
the KM type parametrization of equation (2.5) will be used in this
work because it is more familiar and widely used.

The unitarity of the KM matrix ensures that an extended version
of the GIM mechanism operates. That is, FCNCs involving the bequark

are suppressed to O(GFG). The dicovery of the T (bb) resonance /43/
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and subsequent observation of the decays of beflavoured hadrons /ih/
has tested this feature of the Standard liodel. rfor exarmple, il the
bequark were in a wea!: SU(2) sinzlet (i.e. had no tequark partuner),
then the tree level decay b & d Z° 4= d 117 would be allowed.

liane and Peskin /45/ have shown that this would lead to the bound

(B 1717X)
' (

2 0.12 (2.7)

cd
]
=

Data taken by the CLEC collaboration at CESR yields the upper

bound /45/

(B> 3N 600 (905 cu1n) (2.6)
M2 a1tV
This convincingly excludes the possibilty that the bequark is in

a left handed singlet, thus furnishing evidence for the existence
of its partner the t-quark.

The observed suppression of FCNCs makes them a useful area
for testing the Standard Model and possible extensions. In
particular, the values of the KM matrix elements and the mass of
the tequark can be constrained. This type of analysis is discussed

in Chapter 4, together with some constraints on left right

symmetric and supersymmetric extensions of the GWS theory.

2.2 Experimental Constraints on the Quark Mixing Matrix

The experimental constraints on the KM matrix elements
(prior to the information from B-meson decay) are swimarized by
Kleinknecht and Renk /46/ and by Pakvasa /47/. The additional

constraints coming from the observation of B-meson decays are



discussed in Chavter 4.
1he coupling paramveter |Tud| can be deterriined from a comparison

of nuclear beta decays with the muon decay rate. "he result is
Ivud’ = 0.9737 + 0.0025

Kaon semileptonic decays give qusl = 0.279 + 0.003 whereas hyperon
semileptonic decays give 0.223 ¢ lvus| € 0.230 « The discrepancy
between these results is probably due to a lack of theoretical
under standing of SU(3) syrmmetry breaking. A crude average of the two

results gives

|Vg| = ©-22 + 0.006

The unitarity relation lvudl2 + 'VuS'2 + ,Vub‘a = 1 then gives

|vub| < 0.1

The unitarity limit on chd' from 'vudl above is lVCd‘<_O.24 .
A lower bound can be obtained from data on charm production in

deep inelastic scattering. This bound is chdl >0.2 . Summarizing
0.2¢ |vcd| < 0.24

Analysis of the same data provides a conservative lower bound
|Vcs|b 0.59 , while a much stronger bound of Ivcs‘).O.S can be
obtained from D' 3 K° &F V_ - Including the wnitarity limit from
then

'vcd,’

0.8 <|vcs|<o,98

The unitarity limit for lvcb‘ from these estimates of lvcdl and

IVCS' is



lvcbi< 0-57

¥Finally, the unitarity of the KM matrix can be used to linit

the elenents 'vtil . The results are

0 <« |th‘ < 0.13
0 ¢ ‘Vts‘ < 0.56

0.82 « lvtbl < 1

A summary of the constraints on the elements of the KM matrix

prior to results from Bemeson decay is

0.9737 + 0.0025 0.224 + 0.006 0.05 + 0.05
lv] = 0.22 + 0.02 0.89 + 0.09 0.26 + 0.28 (2.9)
0.065 + 0065 0.26 + 0.28 0.91 + 0.09

This form is based on the assumption that there are only three
generations of quarks. If there were four or more generations thén
the lower bounds coming from the unitarity of the KM matrix would
be relaxed. In particular, |th| = 0 would be allowed. The
observations of Bemeson decays provide much tighter constraints
on the elements of the KM matrix. These constraints are given in

Chapter 4.

2.% Anomalous Ward Identities

An argument within the GWS theory for the existence of the
t=quark is that the theory is aesthetically more pleasing if all
the fermions appear in SU(2) doublets. A more mathematical
statement of this is the requirement that the triangle anomalies

must vanish.
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Vard Identities (i.e. relations between Green's functicns)
can be derived quite generally in quantum field theories. These
relations night be expected to hold in all orders of perturbation
theory, which is the case in QED. lLiowever, in theories where
fermions have an axial coupling (containing a 7;), it can be shown
that an anormalous term appears in a Yard Identity when it is
calculated at particular orders in perturbation theory /43,49/.
The anoimaly appears when divergent Feynrian diagraris are considered
since there is no regularization procedure which respects axial
symiietries. That the anomaly is real and not just a calculatiocnal
artefact 1s shown by the Current Algebra calculation of the width
for TTO = 77¥. VWithout the anomalous terii in the Ward Identity
this width is zero /50/. With the anomalous term included the
correct result is obtained /51/.

Although the anomaly 1s welcome in Current Algebra, 1its
existence in a spontaneously broken gauge theory is disasterous.
Gross and Jackiw /52/ have shown that, if anomalies are present,
such a theory is not renormalizable. Therefore, the anomaly must
vanish in a realistic theory.

In a gauge theory the coupling of fermions () to the gauge

fields ( W2 ), where a is the group index, is of the form

®
eW¥ 7)) Ty R+ YO -7 Ty (2.10)

T; and T; are hermitian matrices which define the group structure
of the vertices, and T; # T; in general. The diagrams which give
rise to the anomaly involve a fermion triangle ( Fig. 2.1 ). By
taking the trace round the fermion triangle and summing the

contributions from each diagram, one finds that the total anomaly



v

+
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Figure 2.1 d

The diagrams for the triangle anomaly in-a general gauge theory.
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Lvidently the theory will be anomaly free if Aabc: O which
can happen in three ways /53/:
i) AT = A" £ 0 . The right and left handed anomalies cancel if
T; and T; are related by a unitary transformation.
ii)at=a"=0. 4 representation of a Lie algebra is '"safe' if
its generators Ta satisfy this condition. The Lie algebras which
have only safe representations have been listed /53/ and a gauge
theory based on one of these will be anomaly free.
1ii) Conditional cancellation. This case occurs when the condition
A" —« A~ = O places a restriction on the allowable gquantum numbers

for the particles in the theory. The GWS theory of weak interactions

belongs to this class /54/. The condition for the GWS theory is

:E:Qi = 0 (2.12)
1

where the sum extends over all the particles in left handed
doublets. This condition is satisfied by all the quarks and
leptons within one generation ( provided that the quarks come in
three colours). Thus, if the GWS theory contains a third generation
lepton (T ) with associated neutrino, then the b-quark must have

a partner with Q = +% (i.e. the t-quark).

2.4 Ixperimental FEvidence for the teQuark

Searches for the t-quari have been made both in ee” and pS

collisions. At PETRA the ratio



1
n
.

(2.13)

= =
-

+— \
, g (e e hadrons ) < 2
_—_— (+ ++- :JZQi
O’(ee a&-f"‘) i
has been measured up to a centre of nass energy of 45.2 eV /55/.
Up to this energy there is no evidence either for a tt rescnance
or for the increase in R expected once the teflavour threshold

is crossed. As a result a lower bound on the t-quark mass has

been derived /55/
n, > 22.0 GeV (90 % cola ) (2.14)
Alower limit on the mass of a further Q = -4 quark is also given:

my > 21.0 GeV

The absence of positive evidence for the twquark in e+e- collisions
has led to many attempts to place bounds on mt from other information
(see Chapter 4) and to models without a tequark. These latter models
are severely constrained by observations of B-meson decays
(section 2.1 ).

At the pg collider the tequark may be produced by QCD fusion,
P 5 &> t t , or via the W, p 5 > W 3 t b . By considering the
decay mode t 3 b e’ v, Barger, Martin and Phillips /56/ showed
that early UA(1) obserwations /57/ of an electron with jets and
Mmissing energy could be interpreted as being due to a t=quark with
mass 25 to 40 GeV. Recently, the UA(1) collaboration have presented
evidence for the t-quark in the W = t b chénnel and place its mass

in the range

30 ¢ my (GeV) € 50 ’ _ (2.15)
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This determination of iy will be useful for low energy weak
interaction phenomenology which, until now, has had to accommodate

an unknown value with correspondingly less certain results.



CHAPTER 3

THE £ = K° TRAKSITION AMPLITUDE

3«1 Formalism

The neutral kacn system can be described in essentially two
ways /59 « 61/. The first is as a pair of states which are
eigenstates of the strangeness operator. These are the states lho)
with strangeness +1 and"ﬁ°>with strangeness ~1 which are produced

in strong interactions, for example
ﬂ_+p+Ao+KO and K-+p+n+io

In terms cf quark content these states are lKO) = |d§> and H&—O> =
|ds» . The action of the combined operation of parity and charge

conjugation in this basis is given by
CP|K°)=7|}_(O) ;o=

A conventional choice /60/ is 7==44. The basis of CP eigenstates

is then given by the linear combinations
k.Y =v 3 (UK°» +1E%)  and 1K, =v 3 (K° - 1KY G.1)

where ]K1) has CP eigenvalue +1 and lKE) has CP eigenvalue =1. This
is the particle mixture theory of Gell=-Mann and Pais /59/.

The CP conserving pionic decay products of these states are
K, -» 24 and K2 < 3. The first of these de;:ays has a high Q

1
value and so K1has a short lifetime /33/
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T, = (0.6923 + 0.0022 ) x 107" s

The second decay has a low @ value leading to a long lifetire
for Re /33/

2

T, = (0.5183% + 0.0040 ) x 10" s

2

In 1964 Christenson, Cronin, Fitch and Turlay announced /62/
thelr discovery that the longelived component of neutral kaons
alsc decayed into two pions with a small probability ( branching
fraction 0.297 + 0.023 % /33/). This result was confirmed by the
observations of Abashian et al./63/. Following these results the
kaon decay eigenstates were modified to include the effects of

CP=viclation

I

1
[Kgy = (U +1pl®) ™ (e +pIK,») (3.22)

and

-t
IKL) (1 + |P|2) e (|K2> +P|K1> ) (3.2b)

where P is a small parameter measuring the amount of the "wrong"
CP component in the decay eigenstates. In terms of the strong

interaction eigenstates these are

JK> = 1 {(1 +p) 1K° + (1 -p’ lio.)).g (3.3a)
v« 1pt®)

and

LK > = 1 {(1 +p) 1% - (1 -p) uK"})% (3.3b)
V201 + 1pI%) |
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The time dependence of the two component “acn state vector
w = (h,]
I
2

is given by /60,61/

1oda . .

at
with
r.;ij = <K I K lKj) + %(};ﬂ i inYy¢n |i |K£ (3.4)
., = B
K n
and
r7ij = 21T g<}:i| HinY<{n | ¥ z<j>8(En -m) (3.5)

In terms of these matrices the CPaviolation parameter P is given by

1

=i ( Imbi

- (i/2)Im f1‘2)

(i/2)(7,] - 72)

12

P

(m1 - mZ)

= «i( Inb, .. = (i/2>1m[:2)

12 (3.6)

(mS - mL)

(1/2)(‘5 - ‘YL)
where

m=m;7',l=7g;‘);=7L

are the masses and widths of the decay eigenstates.

The CP conserving K1 = 297 amplitude is defined /60/ by

2w, 1= 171K s,/é"exp(iéj) ReA

and the CP=violating amplitude by
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{am, IT=317VE,> :Jé‘exp(iéj) ImAJ.
where £j is the two pilon final state strong interaction vphase shift
for a state with i1sospin I = j. Using these amplitudes, twc complex

observables can be defined:

o= i
s<1TT, ‘J.‘I\.L>

7+- - = £+E'
T | T‘I%;>
(3.7)
0_0, -
'700 =T |1|1<L> = £~ 2¢
o_o0 i
CTea’ Tk
where
E=pP+ i( ImA_/ Reh )
P © © 5 s (3.8)
Vo . \
£ -12%(ImA2/ ReAO) exp( i( ., O))
The parametrization of CP=-violation given above is redundant.
There are four theoretical parameters ( Imhqa, Im':Z, Ion, ImAz),

but there are, in fact, only three independent real experimental
observables since the two complex observables-7 and‘7 are
o 00

related by
Re( (7+= -700) exp(-i(é‘2 - 80)) ) =0

A standard convention /60/ given by Wu and Yang is to set Inh, = O.
In certain models the phase convention may be determined naturally
s0 that a nonezero value of ImAO arises. However, a phase transformation
can always be performed to recover the Wu=Yang convention. In this

convention

£ = P (3.9)
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2.2 Experimental Infeormation

The non=conservation of strangeness in weak interactions allows
.0 -0 . o o
h e=p 1 transitions, and the mixing of two degenerate states
results in a mass splitting. The CF eigenstates (gq) and |£2>
would have definite masses and lifetimes if CP invariance were a
good symmetry. In fact this invariance does not hold but the

corresponding corrections to mass and lifetime are negligibly small

giving
Sii = m =m_ = n_en (3.10)

This mass difference 1s measured experimentally using the
phenomena of interference and regeneration. Interference is a
characteristic prediction of the particle mixture hypothesis.
Assume that at time t = O a pure K° meson beam is produced, for

. . - e) [0} . -0
example, in the reaction ¥ + p 9 K +A . lio Kk~ mesons are
present at t = O. The particle mixture hypothesis predicts that an

initially pure KO state will become, after a time t

\vae)>= 1 (lK1) exp(-i%1t) + |K2> exp(-i)zt) )
V2

= 1 (K% (exp(-ir,t) + exp(-iMt)
2

+ |E°> ( exp(-i)1t) = exp(-iAZt) )

where )i =m - (i/2)3; . The probability of finding a K at time t

is thus given by

P(K°,t) = 2( exp(= 3’1t) + exp(a)ét)

= 2 exp(a%(ﬁq + ?é)t) cos(m2 - m)t )

The oscillatory time dependence represented by the last term can be

detected in either of two ways. The first, advocated by Fry and Sachs
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/64/,is by directly measuring the strangeness oscillation of a
neutral kaon beam as a function of time through the detection of
strong interactions which could only be induced by RO, for exauple
-0 o + ~ e
K"+ p =>A" +1 . The second method, suggested by Zelvdoich /65/
and by Treiman and Sachs /66/, is through the observation of semi-
leptonic (KlB) decays of neutral kaons. The AQ =85S selection rule
. 0 - - 4+ =0 + -
forbids the decays K~ «p e Yo and K =% e yg and allows
-0 + - -0 - =+ ) .
only K- e T and K <9 e <YW , The oscillations of strangeness
can, therefore, be detected by observing the number of electrons or

positrons produced in Ke decays.

3
The method of interference yields only the magnitude of the
mass difference, leaving the sign undetermined. However, experiments
based on the phenomenon of regeneration can be used to find both the

magnitude and the sign of the mass splitting. Regeneration is a
result of the differences in the nuclear properties of K° and K°
mesons. Assume that at t = O there is a beam consisting of K° mesons
only. Decays K,‘ = 2qwill take place in this beam during a time
tg T, = ’I/):l . These decays will stop after f‘l <t “f2 where

1

1/3;_), since all K, mesons will decay and leave a pure beam of

2:

K2 mesons. 1f the beam is now directed at, say, a copper plate, K

1

|\ T

decays will reappear behind the plate. What happens is the regeneration
of K’l mesons in matter,
Denoting the amplitude of the K° (Ro) meson scattering on a

nucleus by £ (f), a K. meson transforms after scattering into a

2.

linear superposition of K2 and K,'

IK2)=\/§(IK°> 1)) icii‘*f;(flﬁ& L E)

=38 + DI + 2(f = KD
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. =0 o
Yhile K~ mesons are strongly absorbed by nuclel via processes such
-0 o) + ~0 O o .0
as K + p 3> A +77 and K + n > AN +9 , K& mesons can only
undergo elastic and charge exchange scattering (due te baryon
nunber and strangeness conservation) and therefore interact with
appreciably smaller crossesections. Thus f Z f and a component of

K, mesons has been regenerated in a bear of K

1 mesonsSe.

2

When the regenerated X, mesons travel at a non=zero angle with

1

respect to the incident beam, regeneration on different nuclei in the

plate is incoherent. If,however, a K1 rieson travels forward, the

amplitudes of regeneration on nuclei along the beam axis add up
coherently. leasurcment of the ratio of coherent to incoherent
regeneration intensity makes 1t possible to determine §i1 with high
accuracy. The interference of K1 niesons regenerated in two (or more)
plates can be used to find the sign of §m. Such experiments have
established that &m = mg =m0 /67/.

The most precise value for ém obtained so far is /33,68/

dm = =(0.5349 + 0.0022) x 1010 g &
corresponding to
Sm = -(3.521 + 0.001) x 10" * Gev (3.11)

The discovery of CP-violation in 1964 was made when Christenson
et al. observed the decay of the long lived component of a neutral
kaon beam into two pions. A beam of "KZH mesons was allowed to regenerate
a K1 coriponent in a bag of helium. Christenson et al. observed an
excess of "K2 4>1T+TT= " events in the forward direction over the
nuriber expected from coherent regeneration (Ké > K1 9-1'r+-1'r'=)°

They , therefore, concluded that they had observed the direct decay

of the long lived neutral kaon inU31r4ﬁr” with a branching ratio



]
AN
[3®]
0

o +_ = 3
RE, > 7) (2.0 + 0.4) x 167

R(KL & all charged modes)

Using this result they estimated that

5

161 = 2.3 x 107 (%.12)

K,I > 1(2 mixing (CPaviolation) results in a charge asymmetry

in the semi~leptonic decays of the KL ineson

M, » ety - DG » e vi)

M » ewva) + @+ e i)
Using the 4Q = 8S rule which forbids the decays K° > e vt and
R > e+ v and taking into account the equality r‘(}(o > e+ vi7)

=[x &> ¢~ YW) the asymmetry is given by

§ L+l - 11-¢&l
|1 +£|2 « |1 =~8j

The world average experimental measurement for this asymmetry is /33,68/
§ = (3.30 + 0.12) x 10~
giving

Re & = (1.65 + 0.06) x 10™2 (3.13)

From this result and the estimate of Christenson et al. the phase

of € can be determined
Arg € = 44.2° + 2.2° (3.14)

In addition to the parameter E which describes the amount of
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"wrong'" CP conmponent in the kaon decay eigenstates, there is
another quantity, §', characterizing CP-violation. This describes
CP=violation in the direct Ke & 21 (I = 2) channel, and is given
by

g = /%_(ImAZ/AO) exp(i(é2 - 50))

The phase of g' is, therefore
Argg' = AW +0, =8 = (37 +6)° (3.15)

using the experimentally measured values for the W phase shifts /63/.
A suitable combination of the experimental observables 7& and

ﬁ7oo yields the ratio of the magnitudes of & and &'

‘ l , 7oo| £ o.02 (3.16)
2,&- Yoo

This ratio is a significant quantity for weak interaction phenomenology
as will be shown in Chapter 5. Ixperiments are now in progress to
determine this ratio more precisely /69,70/.

The experimental parameters dn and € of the neutral kaon system
are related to a theoretically calculable transition amplitude by
simple expressions. In the K, = K, basis the mass matrix Mij can

1 2
be written /60/

— Y ]
(KilTlKj> =f ©, im
-im' n'la

where the off=diagonal elements, + im', are the CP=violating qu-)KZ

anmplitudes. The K° qy-ﬁo transition amplitude -is then given by
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0 - e 4 -- .. —- -
<f\. '-|.> = ‘2’(1;1-:1\2'1'1‘:,"4'112)

%(m1 - mZ) + in!
Siwilarly, the i > K anplitude is

e =0 N .
CET | TILE D> = -;—(m,} -m,) = im'

Thus

2Re ¢RI T > = 2Re¢ i) TIEOD
= m1 - ma = ITAS £ rﬂL = Sm
and
I TIK®D = « In¢K ) TIRKS)
= m! = TIml

Mt

Taliing the real part of equation (3.6) gives, in the Wu=Yang

convention (& = P )

Inli Ref [ &1 28m)6m + Tal' 8m
12 (28“. ‘ 12 5N

it

-2 8m Reg - 2Im l'1'2

(3.17)

using the experimental result 8max -28. liow, the kaon semileptonic

decays Ke} give /656/

Im [

Iml-x,l2

I < 0.02

Therefore

= o o §e = - m
Re £ Imi 1‘2/.2 it m' /28m

The relations expressed in equations (3.17) and (3.18) will be

used extensively in the following chapters.

(3.18)
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3¢5 I . i Amplitude:; Dispersive Contributions

Before the GYS theory of weak interactions was accepted there
were many attenpts to calculate the X = Kg mass difference. As the
standard current x current weak liamiltonian contained onlyv &S = 1
. . . 0 =0 L
interactions, the direct ¥ = K transition was set to zero.
Contributions to the mass difference occured through decays to non=-

strange intermediate states, represented by the summation term in

Mij ( equation(3.4) ). Possible dispersive contributions are

Koi—)'n‘e V«-)PTZO
(0] =0
K Hp,w, A,]«»K

° e 0 (n>1) >

-,0 O =0
h 1T a71’7'4"K

If the B8S = AQ rule were exact the semileptonic intermediate
states would not contribute to &m at all since one of the vertices would
necessarily have to involve AS = =AQ. Even if the 4S=4Q rule 1is not
exact, experiments indicate /63/ that 8S = =4AQ transitions have much
smaller amplitudes than 8S = 8Q transitions. Therefore, the contributions
of senileptonic modes to &mn can be neglected.

Vector meson (f,ua, A1) contributions are assumed to be small.

For example, Oneda finds /71/ that the contribution of the F meson
is only around 2% of the observed value due to angular momentum
effects. Similarly one expects all vector meson contributions to be
suppressed.

The first attempts to calculate the KL- KS mass difference were
made by considering the two pion intermediate state /72 = 76/. The

sign of this contribution can easily be understood. Neglecting the

effects of CP=violation /77/
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D N LS L S d B LGP Y R b (3.19)

n v, o= I M, - 5
v n ¥ n

therefore, the two pion contribution is given by

l<k1|ﬁ|2ﬂ)f

sm‘zﬂ i Ti B
K T 1T

since Ka 9 217 is forbidden. This contribution can have either

sign, being positive when E2ﬂ’< My and negative when EEu’> .
The sign is determined, in principle, by the relative strengths
of the parts above and below the pole. The authors of references
72 to 76 consider the two pion, I = O, intermediate state and
neglect the I = 2 contribution because of the Al = - enhancerent

in weal interactions. A& swamary of their results is

Sml2ﬂ

= 3.0 < 61’:’.

< +3.2 (302())
expt.

A recent evaluation of the two pion contribution /77/ using
a subtracted dispersion relation for the self energy obtains the

result SleH': (0.64 to 1.4) x &m . Donoghue et al. /77/ also

expt.

obtain the result om = (1.4 to 2.8) x Om based on a chiral
,211' expt.

perturbation theory calculation. Both these results are sensitive to
the UV cut off employed, but both indicate that the part above the
pole is stronger leading to an overall negative U9 contribution
to 8&n. That is, the two pion contribution has the same sign as the
experimental result.

An estimate of the one particle pseudoscalar (1To,17, 7')

intermediate states was first obtained by Itzylkson et al. /7&/. In

order to eliminate the unknown matrix element (KO H l'rro> they



computed the quantity

H 2 7.«;2 -,.2
§ugo 16 bl " s
.---.._T.’——_l—..'7 —_ v ® ﬂ' 2 2 2 2 -
r‘(l-\;,l) -7 ‘/(EZ‘( - 41%) (mh - m_v,)c

ol . ) . . .
So, the 7 ,7 contribution to dm is given by deviations fron the

Gellailann-Okubo mass formula

Ay

2 2 i
qu - 3m7 -n. = 0

Inserting the experimental values for the masses gives

Sml_o
Yrom o
n,)

or

Smj"o , = = 1.4 Sme (3.21)

xpt.

which has the wrong sign. lowever, this result depends on the exact

(flavour) SU(3) expression
V3 I{OIHI7O> = <K1ulr’)>

If, to allow for some SU(3) breaking, this is modified to
J3<K°|H|7°> = (1-5)<1<°tﬁ|v°>

then, with £ A 0.25, the correct mass difference is obtained.
Greenberg /79/ and Donoghue et al. /77/ have pointed out that

in the exact SU(3) limit the octet state'?% should be used in place

of the physical state‘7 . The GellslMann=Okubo mass relation is then

satisfied, giving

6m'no,78 = 0
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The SU(3) octet (75) and singlet (7&) states mix to produce the
physical 7 and 7' states. Taking this mixing into account, which

is equivalent to including the v' as an intermediate state, gives /77/

S; O '
Tg"”]"'] = (o.ao+o.78f>2>

where P is defined by

<KL“II70> = -@W/ﬁ)(zf;LlillTr())

P = 1 is suggested by the quark nodel and the 41 = % enhancement of

weal: interactions, leading to

a =2 § (3.22)

Sml“_o, 7 ’ ‘7, M oxpte
Frorm these estimates it appears that the one particle pseudoscalar
intermediate states give a contribution to &§m of roughly the correct
magnitude but of the wrong sign when compared to the experimental
result.

The contribution from the two pion intermediate state has the
correct sign. This, together with the undetermined three pion
contribution, could be enough to overcome the ‘rro,‘y, '7' contribution
and reproduce the experimental result; The semileptonic and vector
meson intermediate states are neglected due to their suppression
by the AS = AQ rule and angular momentum effects respectively. A
sunmmary statement is that the sign of the total dispersiver
contribution to the KL = KS mass difference is undetermined, and
its magnitude is consistent with either the experimental result or

Zero.

In the standard current x current theory of weak interactions



A
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with less than three generations of quarxs there is no CFPeviolation.
Therefore, in the years before the Wobayashi-laskawa (Kii) model /39/,
CP-violation was thought to occur as a resulit of a new ''superweak"

interaction /60/, whose coupling constant was G ~ AT G

superweal Fe

lHow that there are three or more generations of quarks, CP-violation
finds a natural place in standard weax interactions through a phase
in the Kii quark mixing matrix. For this reason '"superweai' theories

are not discussed here.

3.4 K0 - O Amplitude: The Box Diagram

In the GWS theory of weak interactions there is an effectivg
local /50/8S = 2 Hamiltonian in the form of the box diagram /36/
(Figure %.1). The free quark transition amplitude ( 5 d «=% d 5 )
is computed using the Feynman rules /12/ producing a function
multiplied by a quarlk operator. This transition amplitude is then
taken to be an effective Hamiltonian for the K® - K  transition.

The free quark amplitude is given by

Tr - -’12 ‘~2 ‘w ey = P
Berr, = S My j MoNyBy Osp Rdp Vs ¥ia )
(3.23)

where the Ai are products of KM matrix elements Ai = V;svid « The

Bij are known functions /81,82/ of the quark masses

Byy = x [1+ __1 - 6 - 3 N 1n (x, )
C . . 2 2
4 (1 - xi) (1 = xi) 1= x;
Bij = XX, 1 (1 + 6 - 3 ) ln(xj)
—_—l 2
L (Xj - Xi) 1= xj) - xj)
+ ( X5 €PX; ) - 3

(1 - xi)(1 - xj)
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Figure 3.1

1

The box diagram amplitude for the &O= K° transition.
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with X, = mf/ KWZ.

Perturbative QCD corrections to this free quark transition
amplitude have been evaluated in the leading logarithn approximation
by Gilman and Vise /03%,84/. The effect of these corrections is to
multiply each of the functions Eij by a number 7ij' The values of
these nurbers depend on the QCD scale A in an effective four quark
theory, which is the quantity extracted from QCD analysis of deep
inelastic scattering data. The results of this calculation are
shown in table 3.1 below. 73j is synmetric and 7uj = 1 for all

j = U,C,t .

2, .2
ACeV e | Mee | et

0.01 : 0.69 0.59 0.41

0.1 0.99 0.60 0.40

Table 3.1 QCD correction factors for the s d (...,E s transition.

The K° - K° transition amplitude is given by

(3.24)

n
LN
ol =
>
[
y
(]
)

[}
-3
"

[}
O
3

where QB is the hadronic matrix element
_ 7O | = opf = .0
Qg = <K Is?(1-75)ds};‘(1=75)dlh>

The calculation of this matrix element requires non-perturbative
techniques not yet available. Instead, QP must be estimated in a
model. The first estimate was made by Gaillard and Lee 1in the

vacuun saturation (factorization) approximation. In this approach
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a coriplete set of states is inserted vetween the two currents ang
the vacuum state is assumed to saturate the matrix element

Q, = %(;\' I s 7Ha - 7)d10>€015 0 —YS)dI}'aO>
The factor 8/3 results from the four possible Vicl: contractions
and the twoc types of contraction of quark colour indices. Using

PCAC this gives

2 2
Qij - - é f}\ mK
3 ZmK

where fy = 1.23% mTris the kaon decay constant obtained /85/ from the

K* 9 W'V decay width with the i} matrix elerent [V, = ©-219. The
factor of (ZmK)-1 arises from the normalization of the kaon states.
There 1is, however, no theoretical justification for this method.
Shrock and Treiman /85/ have estirmated the one pion contribution to
this matrix element and find that it is roughly comparable to the vacuum
state contribution but opposite in sign. Although Vysotskii's /86/
estimate is somewhat smaller, this raises serious doubts about the
reliability of the vacuum saturation method. As a consequence the

matrix element has been estimated in a variety of other ways. The

result is usually expressed as

Q = -hiom B (3.25)
3

which is normalised to the vacuun saturation estimate of B = +1 .
There are three other types of determiﬁation of the hadronic
matrix element: the quark model approach /37/ which includes the
MIT bag /85/, the use of SU(3) and PCAC /8¢ - 91/ and a general
rnethod which views the matrix element as a scalar form factor and

which leads only to an upper bound /92/.
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Both the QCD correction coefficients 7ij and the hadronic
matrix element QB depend on the renormalization point ® and this
dependence should cancel in the product. Only the coefficients 7ij
can be evaluated as a function of M, while the p-dependence of the
matrix element is unknown since it is calculated in a quark nodel.
However, the y-dependence of the coefficients 7ij is mild and the
final result is approximately M-independent.

Shrock and Treiman /35/ used the HIT bag model of hadrons /93/
to estimate QB' This model incorporates quark and gluon confinement
as an assunied property and has achieved a number of successes in
describing the static properties of low lying hadrons, such as
rnasses, magnetic moments, charge radii and axial vector coupling
constants. The model depends on a set of arbitrary parameters which
are determined by a fit to various hadron properties. These
determinations have resulted in three different sets of values for
the parameters (labelled A, B and C). Set A yields a prediction for
the kaon mass which is in very good agreement with experiment, and
it is this set that Shrock and Treiman use in their determination of
the matrix element. They find B = 0.42 and infer, from the known
accuracy of bag model calculations of K § 27 decays, that this
result is accurate to within a factor §f two.

Colid et al. /87/ have repeated the bag model calculation. In
determinations using each of the sets of bag model parameters they
found B = =0.42, 0.055 and 0.34 . Trampetid /94/ has noted that the
first calculation is the same as that of Shrock and Treiman with
the exception of the sign of the result.

In addition to the bag model Colid et al. /87/ studied three

models based on harmonic oscillator potentials. The first model,



called simply the iarmcnic Oscillator (7)) nmodel, is none=relativistic
and treats the interquark potential as a harmonic oscillator potential.
This model gives # = 2.56 . In the Relativized Harmonic Oscillator
(Rii0) model, relativistic corrections are estimated by replacing the
Pauli spinors by Dirac ones. The term '"relativized" is used instead
of '"wrelativistic'" because full relativistic invariance is not achieved.
The RHO model gives B = 1.44 . In the ilarmonic Oscillator Shell (HOS)
model the quarks rove relative to a harmonic oscillator potential
which is fixed at the centre of the coordinate system. This model
gives B = 0.46 . Of these three models the RHO model is most stablé
with respect to changes of input parameters. The HO model always
gives the same sign for B but the result is strongly dependent on the
input parameters . For some values of input parameters the result of
the HOS model changes sign in a way which is similar to the behaviour
of the MIT bag model.

Another method uses SU(3) and PCAC to relate the AS = 2 matrix
element under study to experimental information on the AI = 3/2
Kt qy1[i 110 decay. The current algebra approach /88/ yields |B} = 0.33
with an estimated 50 % uncertainty /77,89/. The sign of the K & 27T
amplitude cannot be deduced from experiment and hence the sign of B
1s not determined. However, a model dépendent determination of the
K & 2 amplitude predicts a positive sign for B. Both Colid et al.
/95/ and Dupont and Pham /90/ have noticed that it is difficult to
reproduce the observed Kkt =rﬂ'i11'o amplitude unless the AI = 3/2
operator is suppressed by more than the short distance coefficient
CL+ = O.4. This extra suppression would increase the value of B found
by Donoghue et al.

This result has been rederived within the framework of chiral
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perturbation theory rather than current algebra. In the limit ﬁﬂ = fK
Ginsparg and Wise /91/ obtain % = 0.33% . Tupont and Pham /90/
calculate the K & 27 anplitudes in chiral perturbation thecry with
ﬁﬂ = fK and find the same result as would be obtained using the

factorization approximation in this limit. Using the SU(3) relation

to obtain the matrix element of the A S = 2 operator then gives

2
QB = = 4 Ty M

3
Taking this literally yields © = 0.66 . However, the implication is
that the factorization (vacuum saturation) method is supported by this

analysis and consequently f should be replaced by f,, to give b = 1 /90/.

K

The vacuum saturation approximation is also supported by a
prelininary evaluation of the matrix element QB within the framework
of lattice QCD. Cabibbo, Martinelli and Petronzio /96/ find B ~1.3
by this method.

The final approach is that of Guberina et al. /92/ who claimr that
there is, at present, no reliable calculation of QB - They adopt a
general method which treats the AS = 2 matrix elenent as the value
of a scalar form factor F(t) at t = O . After sorie extensive
manipulation a bound of B} £ 2.0 :_0.5 1s proposed.

What emerges from all of these calculations is that there is no
obvious value for B as estimates range from 0.055 to 2.86 and the
=0

sign is undetermined. Therefore, the calculation of the x° - ¥

transition amplitude has a large uncertainty due to this factor.



3.5 10 - 7° Avplitude: Double Penguin Liagrai

In the box diagram amplitude QCL effects were included in the
parameters 7ij . However, with the introduction of strong interactions,
new effects arise /97/ due to the exchange of gluons. In particular
there is a contribution to the i’ 29 (I = G) amplitude fror these
"penguin" diagrams (Figure 3.2). As a result of the unusual
(VaA) x (V+ A) structure of the quark operators arising from these
diagrams their matrix elements are thought to be large enough to
overcome the small short distance ccefficient C5 = 0.12 and give an
important (possibly dominant) contribution to the K°a 2w (I = 0)
amplitude. Since these diagrams are purely Al = %-, a dominant
contribution from them is a possible expianation for the &I = 3
enhancerent in weak interactions. However, Guberina and Peccei /98/
have shown that this expectation is rather unrealistic.

Hochberg and Sachs /99/ have pointed out that the inclusion of
strong interactions leads to a new contribution to the K°- B°
transition amplitude which they call a "double penguin diagram"
(Figure 3.3). In the same way as the box diagram calculation the free
quark transition amplitude is used as an effective Hamiltonian for the
kaon transition. The K°= K° amplitude due to this penguin Hamiltonian

is estimated /99/ to be

2 2 2 2y \ @
GF mt x mc A mt :
M, = In{—=1] = In{ = Q 3.26)
P 18(4!1’)E u FZ t m(Z: P

where p is an infra-red cut off in the quark = W boson loop which is
taken to be 'A«v1 GeV ( a typical hadronic scale at which the effects
of confinement might become important). Due to fenormalization

effects the strong interaction coupling constant is evaluated at the
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Figure 3.2

The penguin contribution to Ko-p 21 decays.
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Figure 3.3

The double penguin amplitude for the kK°= K° transition.
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scale p where ds(p) = 1 /%/. QP is the matrix element of a quark

operator
=0, 6 - it R o} —_ . . 2o
p = «(Tisrta-7) "0 s =T 1 ai®>

Since the matrix element is taken between colour singlet states, only
the colour blind part of the operator, having the same structure as
the box diagram operator, will contribute and it can be expressed in

terms of the box diagram matrix element /99/

Q = 3@ n - 0.8 m B (3.27)
9

The double penguin diagram, therefore, has the same uncertainty
assoclated with the non perturbative matrix element as the box
diagram. It also contains another uncertainty in the IR cut off 7
which controls the cancellation of the two logarithms in the
coefficient function. There is no a priori reason why this
contribution should be small, particularly since it depends
quadratically on the t=quark mass.

The three contributions to the Ko- K° transition amplitude
described above = the dispersive terms, box diagram and double
penguin amplitudes - have been used extensively in weak interaction

phenomenology. These applications are described in the next chapter.
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CAPTEER 4

PHENOMENOLOGICAL APPLICATIONS OF THE K = RA°

TRANSITIC,

4.1 Phenomenology: 1966 = 1963

The first application of the K- T transition amplitude to
phenomenology was made by T.l.Truong /73/ in 1966. Assuming that
the dominant contribution to the KL- Kq nass difference came from

the 297 (I = O) intermediate state, he derived a relation between the

mass difference and the pion phase shift
2'55 n = « cot so(mf) (4.1)

The experimental result 2‘(’8 &m = -1 then gives 60("‘}2\') a 45°

which is in very good agreement with the experimental measurement
/68/ 80 = 46 1_50 for this phase. This information was then used to
infer the existence of an s-wave di-pion resonance above the mass of
the kaon. Unfortunately,corrections to this foriula, derived by
Rockmore and Yao and by Kang and Land. /74,75/, remove the agreement
with experiment.

In 1974 Gaillard and Lee /36/ estimated the mass of the c-quark
from the KL-KS mass difference by considering the AS = 2 box
diagram amplitude. They calculated the hadronic matrix element
using the vacuum saturation approximation ( B = +1) and determined
that the mass of the c=quark was ™ ¥ 1.5 GeV. This prediction was

remarkably confirmed in 1974 with the discovery /100,101/ of the

J/¥ resonance at 3.7 GeV and its subsequent interpretation as a
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cc mescn,

Following the success of Gaillard and Lee, phenonenological
applications of the x°- 70 transition awmplitude were nade using
only the direct AS = 2 part of the Harmiltonian in the form of the
box diagrarm. The dispersive (AS = 1)2 terms were assumed to cancel
out to a large degree. Since in the box diagrar the loop integration
was taken down to k = O the remaining small "A%.7, 21, etcetera
contributions were thought to be included by a guark « hadron
duality /102/. That is, the uu intermediate state of the box diagram
could be thought of at low energies as a 7TO 01“7, or with the
insertion of a da.quark loop as a T N~ state. There were no
penguin contributions as they had not yet been thought of.

Using this method information on the Kobayashi=ihaskawa (KM)
mixing angles was extracted from the K°- K° amplitude by many authors
/86,103 ~ 106/. The box diagram amplitude l_ contains five unknown

B

paraneters ( Gé, 93,6, my and B ) which can be related to two

measurable quantities ( &m and € ) via equations (3.17) and (3.18)

1

&m

Re €

2 ReMB 4.2)

- ImMB/ 28nm (4.3)

These two equations can be solved to find information about two of
the unknowns in terms of the remaining three. A standard way of

presenting these results is to determine sineé and sind as functions

of siné.,, m, and B. The results of this analysis are shown in

3

Figures 4.1 and 4.2 for m, = 35 GeV. The solutions are labelled by

t

guadrant in which 3 appears using the convention for the KM matrix

given in Chapter 2. As i is increased solutions 1 and 2 move down

while solution 4 moves to the left. A simple consequence of these



Figure 4.1

The four possible solutions for 52 as a function of s, for

3
B=1.0 and B = 1.2 .
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Figure 4.2
The four possible solutions for |56| as a function of s3 for

B=10 and B = 1.2 .
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solutions is that the b-quark is expected /103%,104/ to decay in a
cascade fashion, b & c =« s,d at least as often as the decay b <+ u.
This result has been strixingly confirmed by recent measurerents on
B-meson decay which give /107/

Mo + u)

T o o) < 0.055 (90 % c.1.) (L.h)

Buras /62/ derived an upper bound on the t-quark mass using the
box diagram calculation of on together with a calculation of the
short distance dispersive KL > ’A+ r— amplitude. One loop diagrams
contributing to this process in the unitary gauge are shown in Figure
4,32 . By normalizing to the decay K* > 'A+Vr the hadronic matrix

element is eliminated by

- - . - +
Olsq#d+ ARLs K y = \/’2—1(O|s7;.7éu|}( >

giving the ratio of branching fractions for each process to be

(neglecting the mass of the muon) /10&/

B, » M pT) _ <1 TED }_‘_ (Re X,) G<Xi>7i
B + ﬂv,.) o 'vus|2 TE") \i=u,c,t

where /.1,02,109/

2
Gtxj = z _f.l____ ln(xi) +_fj__ + z Xi
i L \x o1 L k1o
* 1

. _ .2 6 . —
with X, = mi/l\J and 7i is a QCD correction.
The branching ratio B(K' » m*¥) is known ( 63.50 + 0.16 % /33/)
and an upper bound on B(KL ¥ '4+r(=) can be found if the assumption is

made that the dispersive K. » 77 > '4+r4- contribution is negligible.
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Figure 4.3

One loop contributions to KL & ,;' f‘; in unitary gauge.



This upper bound is /c2/
+—
RIEN £ x 10
(;\L-yr‘r‘)sd\(/C}\k
which then leads to the inequality

,Re At( G(Xt) ‘7

Vs |
us

e 4.5)

where k = 0.65 x 10-2 /82/ and'7=:7t . The contributions of the u-
and cequarks have been neglected because they are orders of magnitude
srmaller than the right hand side of the inequality.

The box diagram amplitude is used to derive &m giving /82/

Re E )«.XB..7..B - h.4h x 107
175 T li]

i,j = u,c,t

This expression together with the inequality from consideration of
the KL > rf P- decay yields an upper bound on the tequark mass as
a function of the parameter B. Since these equations contain three
unknown paraineters eé, 63 and 3 it might appear that by making a
sultable choice for their values an arbitrarily large t—quark mass
would be allowed. However, this is not the case. Consider the

(hypothetical) situation where the box diagram is dominated by the

tt intermediate state then the above equations give

2 . 2
G (xt) tht Vusl x 1.63
— & —

Biy M

Since the function Gz(xt)/B increases monotonically with increasing

tt

x. ( in the small X, limit G(xt) ~ X

¢ and Btt ~ X, ) an upper bound

t

on m, can be obtained. The upper bound obtained by Buras /32/ is



- 51

m, & 33 GeV at 3 = 0.42 (the original bag model estirate for the £~ 7°

hadronic matrix element). For [ A-1,m is much larger than b%ﬂ

t
Barger et al. /110/ have questioned the assumption that the
dispersive two photon contribution to KL > rq'r— is negligible.
They argue that the ratio of dispersive to absorptive two photon
contributions is the same for KL L. ”+r= as for 11 > f‘+ r.- . The
magnitude of the absorptive contribution is known in each case from
unitarity arguments. Since the purely weak contribution 7’ > Z > 'A+r-
1s known to be at most ’IO-l+ times the experimental rate it can be
ignored and,therefore, the dispersive two photon contribution can be
determined from the experimental '7 &> 'A+'A- rate. Unfortunately,
there are two separate measurements of the ‘q > ff'r- rate which do
not agree. The branching fraction as given by Hyamus et al. /111/ is
(2.2 + 0.6) x 10-5, whereas that given more recently by Dzhelyadin et

al. /112/ is (6.5 + 2.1) x 100

. The Particle Data Group /33/ adopts
the more recent measurement. Due to a sign ambiguity in the derivation

each of these measurements eventually leads to two values for the

paraneter k of equation (4.3). For the original measurement the values

o + 0.57 =2 + 0.57 -2
are k = (1.24 N 0.48) x 10 and (2.62 0.48) x 107° ; for the
.« + 0.54 -2
more recent one the values are k = (1.30 O~33) x 10 and
(0.00 ) x 10 . Barger et al. /110/ conclude that the upper

= 0.00

bound on m, is relaxed, with m, ¢ 75 GeV for B = 0.4 .

t
As Bergstrdm et al. /113/ have pointed out, the comparison of

t

+ - . + = . .

KL > M r& with 7 > M t& may not be correct since the former is

a JASl= 1 transition for which there can be extra pole contributions

to the amplitude. Because of these uncertainties it is usual /105,114 /
to take the ratio of dispersive to absorptive two photon contributions

as an unknown parameter. Until this parameter is better known, no
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interesting bounds result from the consideration of “L"'P+f‘@
decay /1%/.

In the context of left - right symmetric models (LRS nodels) the
box diagram contains additional contributions arising from the
exchange of one or more gauge bosons (WR) associated with the éxtra
gauge group SU(2)R (Figure 4.4). Equating the real part of the total
transition amplitude to half the KL- KS mass difference Beall, Bander

and Soni /115/ deduced a lower bound on the mass of the WR boson

My

R 2 1.6 TeV

This calculation was performed using the vacuum saturation estimate
for the matrix elements of the two distinct quark operators which
arise. Trampetid repeated /94/ the calculation using KIT bag model
and harmonic oscillator estimates for £he rmatrix elements and arrived
at a similar conclusion.

Mohapatra, Senjanovi¢ and Tran /117/ noted that LRS models
necessarily contained a neutral Higgs particle which changed flavour
leading to a tree level contribution to the K%~ K° amplitude.
Cancellations between this term and the contributions involving W

R

lead to a lowering of the bound to
Mw » 300 GeV
R
This result depends upon particular values of the KM mixing angles

being allowed. Recent data from the CUSB collaboration /107/ shows

Mo e uev)
Mo » cew)

€ 0.055 (90 % col.)

which rules out the particular values required and the lower bound
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returns /118/ to the value of Beall et al. /115/ and Tranpetié /ok/.

As an exanple of the type of bounds which can be derived from
rare kaon decays in supersyrietric nodels, Lahanas and lanopoulos /116/
have repeated the analysis of Buras /62/. They find that, in a lccally
.supersymmetric theory, the t-quark mass is inversely related to squark
nasses. If the masses of squarks are greater than 20 GeV as indicated
by searches at PETRA and PEP, then the t-quark mass must be less
than 100 GeV. This calculaticn is, of course, subject to the sarme
uncertainties as the original calculation in the standard model by

Buras.

4.2 B=leson Decay

A najor uncertainty in the calculation of short distance effects
in rare kaon transitions is the value of the quark mixing angles which
appear in the amplitudes. However, recent measurements on DB-meson
decay provide a means of determining these angles. The experimental
data consists of lifetime measurements, an upper bound on a ratio of
partial widths and measurements of the semileptonic branching ratios
for B~meson decaye.

In 1982 the JADE experiment at PETRA determined an upper bound on

the lifetime /119/ of

T, < lhx 10718 5 (90 % c.l.) (4.6a)

Recently two experiments at the PEP accelerator have measured the

B-meson lifetime. 'The results are

Ty = (1.8 + 0.6 + 0.4) x 10712 5 ’ (4.6b)

from the MAC detector group /120/ and



+0.45
=0.35

12

7. = (1.20 + 0.30) x 107 s (4.5e)

B
frow the HARKX II detector grour /121/.

Experiments at the Cornell Flectron Storage ling (CESR) have
reasured the ratio of partial widths (b 4 uev )/ (b » cew )
and the semileptonic branching ratio. The source of i#=nesons is the
T (4S) (or P''') bb state which is just above flavour threshold.
In semileptonic decays the momentum spectrum of the final state
electrons is harder in the case of b 4 uey than in the case éf
b & cey . Using the model of Altarelli et al./122/ for semileptonic
B~meson decay, the CUSE collaboration /107/ find that the spectrum
agrees well with that predicted for b a4 cey . They find no evidence

for the decay b -+ uey . From this they obtain the upper limit

(o uewv)
Mbacewv)

< 0.055 ( 9 % c.1. ) (4.4)

Based on the analysis of Altarelli et al. /122/, the CUSE
collaboration have also measured the semileptonic branching ratio

for B 4 e v X and obtain /107/
B(B4 e wX) = (1%3.2 + 0.6 + 1.4) % 4.7)

This agrees well with the results of the CLEO collaboration who

find /123/

B(B & e ¥ X)

(12.7 + 1.7 + 1.3) %
and

(12.2 + 1.7 + 3.1) %

n

B(B +/4VX)
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A theoretical analysis of .=nesci decay can be made in two ways.
The first involves a calculation of the total decay width. Since the
bequari 1s heavy compared to the scale of strong interactions, i=ieson
decay can be approximated by the decay of a free bequark (Figure 4.5).

Then

= Nbac+ o> u

where /124/

[ » c) = r‘o‘vbc\2 51.11 + 1.5370 (,vudl‘2 + |vus|2)
+ 0.5770 ('Vcdlz * ‘VCS\E) g
and
42 2 2
Mo+ w = Vol i2.33 + 570 Paal® * Yus]®

+ 153y, (oal® * 1Ves) g
In each case the first term in the brackets comes from the semileptonic
decay into e, $ orT. fl = ( G? mg / 19211'3 ) and 7% is a QCD
correction whose value is /124/ ‘70 2 1.1 . This approximation is
good to the extent that non-spectator diagrams (Figure 4.6) contribute
to the decay. However, it is not easy to calculate non=spectator
effects reliably, as is shown by the unsuccessful attempts to calculate
the semileptonic branching ratio /125/. Penguin contributions to
B=meson decay are thought to be negligible /126/.

The second method, which avoids the proslems of non-=spectator and
penguin diagrams, is to calculate only the semileptonic width and use
the experimentally measured branching ratio to determine the lifetime
/122,125/. The analysis of Altarelli et al. /122/ involves free b-

quark decay with corrections for soft gluon and bound state effects.
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lonespectator contributions to B-meson decays.
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The consequences of the b-quari: being in a bound state are nodelled
by giving the spectator quark a gaussian momentum distribution with
mean spread Pre This method gives goocd agreement with the observed
spectrum in Demeson decay for O g P & 300 eV /122/.

The B-meson lifetime i1s calculated from

{B = Bg/ r‘SL

where B is the semileptonic branching ratio and r1 is the

SL SL
semileptonic width given by /122/
NP - v v \°
SL rl ( ch,bc‘ * Zul bu\ ) (4.8

Zu and ZC are phase space factors, calculated by Altarelli et al. /122/,

which depend on the amount of Fermi motion given to the quarks in the

B=meson:
Zu = 0.94 Zc = 0.46 for Py = 0 MeV
= * ) : = - = O ';
z, 0.86 ; ZC C.41 for p_ 150 MeV
Zu = 0.7% Zc = 0.33 for pF = 300 eV

Taking the phase space factors for pF = 150 lieV, the above
expression for the semileptonic width can be used to translate the
CUSB result on the ratio of partial widths into a bound on a ratio of

KM matrix elements

2
IZEE_::_Ei - EE YEE < 0.055
Mo = ¢) Zo Voo
giving
Vv
Lu ¢ 0.6 (4.9)
v



This bound together with the measurements of the p-meson lifetime
can be used to restrict the kM angles Gé and 92 to a small range
/127 ,128/. Since the b + u contribution is so suall it can be
neglected and equation (4.6) can be used to determine ‘Vcbi. With
.y =12 =12

vy, = 5 GeV and 1.4 x 10 > Zg(s) > 0.6 x 10 an allowed range

is derived

0.05 ( ‘Vcb’ ¢ 0.076
From equation (4.9) this gives
0.012 , 0.008

lvubl 3

for the upper and lower limits respectively, or

55 £ 0.05 , 0.035 (4.10a)
Using (for small 55 83)

‘Vcb' = [eqca85 = 5203e-i5| = |53 - sze-is‘
it can be shown that S, is bounded by

Weol=55 € 55 € Vel + 55
or

0.05 ¢ s, & 0.13 (4.10Db)

The CPaviclating phase é cannot be determined from this information.
Combining these results with the other data given in section 2.2

leads to the following determination of the KM matrix elements /129/

0.9723 = 0.9737 0.228 « 0.234% 0.000 = 0.003
lvl = | 0.228 = 0.2%%  0.9704 = 0.9726 0.042 = 0.067

0.003 = 0.016 0.041 « 0.066 0.9977 = 0.9991
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where the unitarity of the Ki matrix has been used with the assu.ption

of six quark flavours. In the generalized case with more than six

flavours, the ranges of values for 'V:jl are given oy /129/
L

0.9709 = 0.9757 0.22¢ = 0.234%  0.000 = 0.013%
,v] = | 0.21 = 0.27 0,78 = 1,00 0.042 = 0.067

0.00 = 0.12 0.00 - 0,58 0.000 = 0.999

The new information from EBemeson decay is important for this work
because it gives independent constraints on two of the variables in
0 =0 s . . . .

the K= K~ transition amplitude. This reduces the uncertainty in

determinations of the remaining parameters.

4.3 Phenomenology: 1983 =~ 1984

4.3.1 Limits on B

The calculation of the hadronic matrix element in the K = K
transition amplitude requires non-perturbative techniques not yet
available. Instead,the matrix element is calculated in a model with
the vacuum saturation approximation (B = +1) being used to set the
scale and sign. Colié et al. /87/, using a variety of models, have
found values of B ranging from 2.86 to 0.055. The MIT bag model
calculation had given /85/ B = 0.42 but a repetition of this
calculation by Colié et al. showed it to be unstable in magnitude
and even in sign with one calculation giving -B = «0.42 . Although
it is clear that B ¢ O will not reproduce the correct sign for
$n=n o m, in the four quark model, the extra freedom in the six

S

quark model means that such solutions cannot, a priori, be ruled out

/105/+



In attempts to bound the teguari mass the decay ::'.L - '4+ P“
is considered together with &m and € . In addition to the problem
with the electromagnetic contribution to the dispersive vart of
KL > F+ 'A- , both Buras /62/ and Sarger et al. /110/ stressed the
sensitive dependence of their calculations on B. Once mt ig fixed
the size of B becomes the most significant phenomenological issue in
the study of the perturbative K°a io transition amplitude. The
experimental constraints on the XM matrix elements can be used to
bound B above and below ang to resrict its sign /1C6/.

The data to be fitted are the KL - KS mass difference and the
CP=violation paraweter. Following the success of Gaillard and Lee /36/
in determining mC and of the many determinations of the quark mixing

angles /06,103 = 106/, these are related to the real and imaginary

parts of the box diagram amplitude i by

dn = 2 Reliy (4.2)

Re& = = Imi-lB/ 28&nm (4.3)
The value of s, is fixed at 8, = 0.226 and 55 is varied in the range
of 0.0 to 0.5 . For each s_, s, pair chosen there are up to four

1773

55, Sg pairs which fit the data for B Positive or negative. The
solutions are labelled by the quadrant in which & appears.

In reference 106 the tequark mass was taken to be m o= 35 + 5 GeV
following an analysis of UA1 data /57/ by Barger et al. /56/ which
indicated that this was a likely value. The QCD corrections were
taken to be 7uj = 1, e = 0.99, 7tt = 0.60 and 7ct = 0.40. The
solutions for these values of the parameters and B positive are

illustrated in Figures 4.1 and 4.2. They are found in quadrants 1,2

and 4 and there are two solutions in quadrant 4.
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As positive » decreases from B = 1 the trend is that the s2 curves
for solutions 1 and 2 nove up and solution 4 moves to the right until
by ¥ ~ 0.5 no nart of solution 4 remains in the acceptable range

5, ¢ C.5. A characteristic of solution 1 in this region is that s. is

3 2

always larger than 53 and for both solutions 's;‘ is small except for

small values of s_.

3

As B increases from B = 1 the 52 curves fall for solutions 1 and

2 and solution 4 moves to the left until B 2 1.3 when the solution &
curve starts to rnove to the right as I continues to increase. By about

B = 1.4 in sclution 1 s, becomes equal to s, for some values of s

2 3 3

is always less than s_. A characteristic of both

2 3
solutions 1 and 2 is that the minimum value of s5 correspending to

|sa‘ = 1 increases as B increases until it moves beyond 35 = 0.5 in

and by B =2 s

solution 2 for § = 1.7 and in solution 1 it is about 0.28 for B

1l
N
O

(Figure 4.7).

5
x

The negative B solutions are presented in Figure 4.5 for B
Four solutions are found, two in the first quadrant and two almost
identical ones in the fourth quadrant. As in the case for positive B
the solutions move to the right as |E) decreases. These solutions
illustrate how easy it is to fit the data in this model, but as the
value of ‘Vub/vcbl in all cases never Arops below 0.35 they are
eliminated by the experimental bound ‘Vub/vcb‘ €< 0.16. The predicted
ratio does decrease as |5| decreases but the solutions move outside the

acceptable s, range before the experimental value is reached.

3
The bound on lvub/vcb| is important as it eliminates solutions &4
for positive Baswell as negative B and it establishes an upper

bound on B in solutions 1 and 2. Before seeing how B is bounded, it

is instructive to examine the ratio



Figure 4.7

B plotted against the minimum value of s, . For solutions 1 and

3

2 ohly, the minimum 53 corresponds to Isgl = 7 -
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The two first quadrant solutions for 5, and |sg| as a
function of 53 for B = =0.4 . The two fourth quadrant

solutions are essentially identical to these.
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¢ 160583 = 5,03

There are three areas of interest and two arise for S, = S, in the

region where 'SSI is small. For solution 1 this arises for 1, » 1 and
the ratio can be very large indeed ( unless |sgj~1 ) and the solution
is easily elirinated in this region. For solution 2 S, % s3 can
occur for any value of = but as 8 is in the second quadrant the ratio
becories ~3s. = 0.114 . The third case arises for solution 2 with 5 >»1.

1

As B increases the values of 5, beconie very small and the ratio

approaches s, = 0.228 . The importance of the experimental bound

1
lvub/vcb' ¢ 0.76 in eliminating these solutions and in bounding B is
clear.

For a particular value of B the bound on the ratio of KM matrix
elerments places an upper bound on the allowed values of 55. As B

increases the maximum value of 53 allowed decreases as illustrated in
Figure 4.9 . By B = 1.23 in both solutions 1 and 2 the maximum value
of s3 allowed coincides with the minimum value of s3 at which Isgl = 7
and that is the upper bound on E. No solution with larger 5 satisfies
the bound on the ratio.

If the bound on the ratio ‘vub/vcg| were to fall the bound on B
would be slightly reduced. If an earlier bound of lvub/vcb, ¢ O.4 were
used the upper bound would move to B € %.0 for sclution 1 and for
solution 2 it would be B € 1.5 which emphasizes the importance of the
present value.

This analysis has been repeated /130/ for 20 § mt(GeV) < 300

and there is essentially nc change in the upper bound on Z over this

range. iiowever, the upper bound is sensitive to the values of the QCD
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Figure 4.9

B plotted against the maximum value of 53 allowed by the

constraint on IVub/V No fourth quadrant solutions are

cb|°
permitted.
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corrections 7ij . Lf these are given the values for AQCL ~ Ul Gev
( 7%0 = 0.69,7tt = 0.59, 7ct = 0.41) then the upper bound is as
high as & <€ 1.7

A lower bound on i 1s harder to establish than the upper one as
the ratio lvub/vcbl 1s not restrictive and other information on the
hii matrix elements must be used. “he bound C.2 <|V0d| < 0.2k, for
example, restricts 3 to 3 > C.05 for solution 1 but to limit solution
2 requires the combination of lvcdl > 0.2 and \Vcs‘ » 0.6 to give
B » 0.04 . If the lower bound on Ivcs‘ is closer to the CDHS value
of 0.59 then the ‘Vcd‘ bound alone gives B » 0.02 . The lower bound on
L is quite sensitive to the lower bound on |Vcd‘ with 8 > 0.04 for
‘Vcdl » 0.21 . The most general conclusion /106/ is that the lower
bound on B is I} » 0,04 from the experimental data on the Kl matrix
elements.

Another way of looking at the lower bound on B is to use the

parameter k arising in the analysis of the K_ T decay (equation
el ol o 4

(4.5)). Barger et al. /110/ estimate k by comparison with the decay

7->-rf14- . The more recent experimental determination /112/ of the

+0.54
8 -0.33

) x 1072 due to a sign ambiguity. By the reverse of

branching fraction for this decay yields the two values k = (1.3

+0.57

or k = (0.00 =0.00

the argument that Buras /62/ used to bound m o these values give the
bounds 0.7 € B € 0.4 and 0.7 < BE< 6@ respectively for m, = 35 GeV.
In summary, experimental data on the KM matrix elements places
bounds on the size and sign of the hadronic matrix element in the K= K°
transition amplitude. B € O is eliminated together with the possibility
of having the phase d in the fourth quadrant for © positive or negative.
For the solutions with ® in the first or second quadrants, B is bounded

by C.O4 § B £1.7 . This last result depends critically on the starting

) x 10

=2



assumption that the box diagran is the dominant contribution to the

real part of the %%~ ¥° transition anplitude.

4.3.2 Bounds on t-Quari iiass

Experimental information on B-meson decay /107,119 - 121/
together with standard calculations of & and & can be used to place
a lower bound on the mass of the tequark /114,124,127,126,130/. This
is in contrast to the (uncertain) upper bound which resulted from
consideration of KL > r+ F- decay.

In reference 130 a lower bound on the t-quark mass miy 1s derived
as a function of the parameter B assuming that the box diagram is the
dominant contribution to both the real and imaginary parts of the kaon
nass matrix. The Be~meson lifetime is calculated using the expression
of Altarelli et al. /122/ for the semileptonic width and the
experimentally measured branching ratio. The phase space factors are
allowed to vary over the ranges 0.73 g Zu § 0.94 and 0.33 g ZC £ 0.46
calculated /122/ for O g Pp & 300 GeV and the branching ratio for
B 4 X ey is varied over the experimentally allowed range /107/
0.108 & BSIf‘ 0.154. Additionally the mass of the b-quark is allowed
to vary over the reasonable range 4.8 g mb(GeV),s 5.2 «

The lower bound on m, is obtained as follows. For fixed m_ the

t t

KL = Ks mass difference &m and the CP-violation parameter g are

used to find solutions for the KM parameters sineé (52) and sind (SS)

] i L] i - i L] 1
as a function of 51n93 (53) The experimental constraint ‘Vbu/vbc‘ ¢ 0.16

is then used to eliminate B » 1.23 , B €« O and solution 4 (using the

QCD corrections for /\QC = 0.33 GeV). These results were originally

D
 obtained /106/ for m, = 35 + 5 GeV, however they do not change in the

range 20 & mt(GeV) € 300 . This ratio of KM matrix elements also
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places an upper bound on 55 in the remaining solutions. rigures 4.10
and 4.11 show this limit for B = 1 and a range of mt . As b decreases
this bound becones less restrictive as shown in Figure 4.9 . There is

also a lower bound on S5 wnich 1s the value at which ‘55‘ =1 . This

-

does not change appreciably with B in the range considered.

For the allowed values of s3 the KM matrix elements are calculated
and used to find the B-rieson lifetime 1%. Taking into account the
theoretical and experimental uncertainties, a range of predictions for

'Cé is obtained. For solution 1 1% decreases with decreasing s but
I

3!

for solution 2 Z% decreases with increasing s, . Therefore, an

3

experimental lower bound on 1; determines a minimum s3 in solution 1
and a maximum s, in solution 2 . The limits on 1% are 1:B < 1.4 x 10-12 5

3
from JADE /119/ and T, > 0.5 x 10" 5 from WARK TI /121/.

In solution 1, for small m,, the minimum s_ allowed by the MARK II

t 3
result lies above the maximum s3 determined by the ratio lvub/vcb‘<(ﬁ.16 .

As mt increases the minimum 53 falls until 1t meets the maximum 53:
this determines the smallest allowed value for m, in solution 1. This
situation is illustrated in Figure 4.170 for B = 1 . As E is decreased

the . maximum s, curve rises and the curve for the minimum s_, allowed

3 3
by t% moves to the right. The combined result is that the minimum

value of mt increases.

The case for solution 2 is slightly different: for large m the

t!

maximum s_ allowed by the Bemeson lifetime is above the minimum 53

3

defined by |58‘ = 1 (Figure 4.11). As m, is decreased this maximum

decreases until it meets the minimum s_: this determines the minimum

3

m, for solution 2 . As B decreases the trend is for the maximum s

£ , 3

curve to move to the right, leading to an increased lower bound on

m There is no significant change in the minimum s3 curve for the
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In solution 1 (2) a minimum (maximum) S5 is determined by a

minimum 1@. The solid line shows the variation of this minimum

(maxirmum) with m, . The dotted lines are maximum s
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range of Z considered.

The results for the lower bound on t, as a function of 2 are
shown in rigures 4.12 and 4.13 . For ¥igure 4.12 the QCI ccrrections
( A= 0.33 GeV) to the K = '° transition amplitude have been included.
The corresponding result where these corrections have been omitted are
shown in Figure 4.13% . A comparison of the two figures shows that the
bound on e 1s sensitive to the presence or absence of such corrections.
If the QCD corrections for A= 0.1 GeV were used, the curves would be
shifted tc the right until BmaX= 17

Alternatively, if the rass of the t-quark were known, these
results would determine an allowed range for B . For example, m, = LO GeV
would restrict the size of the hadronic matrix element to 0.8 B £1.2 .
There is a limit on the teguark mass of mt & 300 GeV /1%31/ from
consideration of radiative corrections to the parameter e = HS/“ZECOSEQW
/132/. From Figures 4.12 and 4.13 it can be seen that this result
places a lower bound, B » 0.2, on the size of the hadronic matrix
element.

It is possible to obtain an upper bound on m_ by considerations

t

similar to those used to find the lower bound. However, the result is

much larger than the 1limit derived from radiative corrections to P .
The results of this calculation are sensitive to changes in the

semileptonic branching ratio and the lower limit on the Bameson

lifetime. The lower bound on my would be strengthened if the maximum

possible branching ratio decreased or if the minimum allowed lifetime

12

increased. For example, for B 0.12 and 7, » 1.0 x 10" '“ 5 the

s ¢
lower bound on m, in Figure 4.12 would rise to 160 GeV for solution 1
and 400 GeV for solution 2 at B = 1.0 . The corresponding results when
the QCD corrections are omitted from the K°~ K transition amplitude

are 05 GeV and 210 GeV.



- 400 |

200

My (MINIMUM)

300

" S
[
o

v
o

20

Figure 4.12

The minimum value of mt in solutions 1 and 2 when the constraint
dm=2 ReHB is satisfied (QCD corrections 7&3 are included).

The upper bound on the size of the hadronic matrix element (Bmax)

is also shown.
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The minimum value of mt in sclutions 1 and 2 when the constraint
Sm =2 ReMB is satisfied (QCD corrections 7&j are omitted).
B is also shown.
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These results illustrate an observation originally rade by Ellis
and hHagelin /133/ that for small & (~0.4) the short distance
contribution to @&r. from the box diagranm is tctally inadequate unless
the t=-quark mass is very large indeed. lor this reason it is thought
/12l4/ that the real part of the transition amplitude may be dowminated
by the long distance dispersive contributions of section 3.3 .
However, the imaginary part of the K0 KO mass matrix 1s not greatly
affected in the convention in which the K° >l = 0) amplitude
is real and a significantly less constraining lower bound can be
obtained by consideration of the CP-violation parameter only /114,124,
127,128/

Ginsparg, Glashow and VWise /124/ derived a lower bound on mt as
a function of z% using this method. They toowx the size of the hadronic
matrix element as given by D = 0.3%7 . This analysis was extended to
cover B = 4, %, 1 by Buras et al. /114/ who also included the small
effect of CP-violation in the K (I = 0) amplitude (A ) from
penguin diagrams. As a result of penguin contributions AO is not real
in the KM model. In order to regain the Wu=Yang convention in which
AO is real a redefinition of kaon fields by a phase S is performed.
This redefinition changes the relation between the CPaviclation

parameter and the kK° - ¥° transition amplitude to

1 B R
= - B —— (4.11)
2\ &n 5 $u

Buras et al. use 'S = =O.5452c25358 as found by Gilman and Hagelin /134/.

The effect of this extra term is to slightly increase the lower bound

on m ( see Figure 4.14), but this is much less than the effect of

including the constraint &m=2 ReMB °
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4.2.% ptaximal CP=vViolation

The phase § is responsible for CP-violation in the hid model and
the term'maximal CPaviolation! describes the case where Isgl = 1.
: w0 T . . , _
Analysis of the X~ = L~ mass matrix,based on the box diagram amplitude

only, revealed /103, 105, 106/ that this situation occurs for s_ very

3

small unless 3 »1.2 or § is in the fourth quadrant. Soth these

cases are ruled out by the experimental bound on the ratioc |vub/vcb\.
By including contributions fromr double penguin amplitudes and

low energy dispersive terms, iochberg and Sachs /99/ find that large

s3 can be consistent with maximal CPaviolation. Taking B = 0.5 and

s 30 GeV they find that ( s, = 0.23%, s, = 0.18 x 10‘2, 54 = 0.28,

1 ) is a consistent set of the Ki parameters. lowever, the small

H

Ss

value of s_ in this solution and similar ones ensures that 'Vub/v

2 cbl

1s approximately given by |51| = 0.228 and these solutions can,
therefore, be ruled out. The lower bound on the B-meson lifetime,
1%;70.6 b 10-12 s from MARK II, eliminates such a large value for s3
anyway.

The constraint &mn = 2 Rei‘-lB has a significant effect on the
phenomenclogical analysis of the neutral kaon mass matrix, as is
shown in the preceeding sections. If this constraint is dropped
the bounds derived are considerably weakened. It is, therefore, of
interest to attempt to discover the relative sizes of each of the

possible contributions to the K° - EO transition amplitude. Such an

analysis is performed in the following chapter.



AKALYSIS GF THE i£°- Ko TRANSITION ANPLITULE

5.1 Introduction

The K°. EO transition amplitude has been a useful source of
information about weak interactions. The first phenomenological
success was the prediction of the c=quark mass by Gaillard and Lee /36/.
This success was followed by several analyses placing bounds on the
parameters /91,99, 103, 104,106, 134,135/ of the Kobayashi-iaskawa (i)
matrix /39/ and attempts to determine the mass of the tequark (mt)
/62,110,114,124,130/. These analyses are based on different assumptions
about the K’ K° mass matrix which leads in some cases /114, 124,130/
to a large variation in the result. For this reason a better understanding
of the 0= K  mass matrix itself is desirable.

In general the K°= 2° transition amplitude can be written /60/ as
the sum of a local AS = 2 Hamiltonian (HE) and the time ordered

product of two local AS = 1 Hamiltonians (H,‘):

Moo= <x"°|u‘2|1<°> +Z<R°|H1|n><n|'ﬂ1:x°> (5.1)
n

mK = En

Following Gaillard and Lee, one method is to consider only the direct
AS = 2 part in the form of the box diagram and to assume that the
dispersive (AS = 1)2 terms cancel out. fowever, calculations of
individual dispersive terms /71 = 79,98/ indicate that they are

substantial which makes such a cancellation seem unlikely. There is



also a possibly larpge additional contribution to the AS = 2
Hamiltonian from a penguin operator /99/. As a result this approach
has been gquestioned /9%2,114,124,1%6,137/.

leasurements of the i3-neson partial decay widths /107/ and
lifetine /119 = 121/ can be used to determine the contribution to the
transition amplitude from the 85 = 2 ilamiltonian /127,12¢/. 1n this
way the large theoretical variation in the size and sign of the
dispersive contribution can be linited phenomenologically.

It is sometimes stated that the dispersive amplitudes wust give
a positive contribution to the K - K, mass difference /77,127/
(""positive" means here a positive contribution to (-€r:)>0). This
statement is based on the assumption of a small value for the RO- ﬁo
hadronic matrix element and the absence of penguin diagrams. However,
if the matrix element is given a larger value (such as occurs in the
Relativized Harmonic Oscillator model /87/) and/or penguin contributions
are included, it can be showﬁ that situations exist within the Standard
Model where the dispersive amplitudes riust give a negative contri-

bution /123/.

5.2 The Box Diagram Contribution

In the GWS theory of weak interactions there is an effective
local AS = 2 Hamiltonian in the form of the box diagram /36/ (Figure
3.1). In the approximation where the masses and momenta of the external
quarks are neglected, the k%= K transition amplitude due to this

Hamiltonian is given by

2.2 .2 .
I = - L . . B. . .. 02
My B GF By Tk "k E Al)\J B3 ¥ (5.2)

12_".2 i,J = u,c,t




- 70 -

where the Bij are inown functions of the quarl. rasses /01,52/. The 7ij
are the perturbative QCD corrections due to Gilman and Yise /d4/ and
are nuribers less than or equal to cne.

The Ai are products of ¥l matrix elements, Ai = V{svid , which
are a major uncertainty in the calculation of the AS = 2 iamiltonian.

However, EBameson decay data provide a rieans of restricting the

variation in the quard rixing angles to the very small range /127,12¢8/

in6 0.
sin 5 < 13

i n6&- C.0
sin 3 14 5

(5.3)

The number B paranmetrizes the size of the hadronic matrix element

of a quarx operator

— E ] o - .0
@y = <K ls 7' - ?g)d s 7;(1 -'Vé)dllx >
— 2 k]
- = % fK mK B (5 . 4 )

The result is normalized to the vacuum saturation approximation (B = +1)
of Gaillard and Lee /36/. Various approaches have been used to

estimate this matrix element /85 = 92,96/ but there is no general
agreement on a best value for B. In general B is positive and lies in
the range 0.055 & B § 2.86 . However, the MIT bag model with one set
of input parameters gives B = ~0.4 /87/. A theoretical upper bound

on the magnitude of the matrix element has been derived by Guberina

et al. /92/ who find |B] § 2.0 + 0.5 . In what follows B is normally
taken to be positive with B & 2.5 , but B<O is considered at various
points.

In standard notation the CP=violation parameter & is given by

Re § = = Imi/28m (5.5)
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where i is the K°= L° transition amplitude which is not yet identified
with that arising from the box diagrar. The KL_ K mass difference 1is
3

related to the 1°- 7° transition armplitude by
Sm = 2 Rel: (5.6)

With the identification Imk = ImM._ the constraints on the Kk

B
angles from B-meson decay imply a lower bound on the tequarik mass as

a function of B /114,124,127,130/. Up to the inclusion of penguin
diagrams this is a good approximation since long distance contributions
to Imk are limited by the experimental bound on |&'/g| (section 5.3).

The function ReI»“:B can now be calculated for allowed combinations of

% and m_ and for all values of s_ and s, in equation (5.32) . The result

t 2 3
is presented in Figure 5.7 . The ratio R13 =2 Reb%g’&m is shown for

_,'] -] o 7
0.6 x 107 1% s Fd Ié $ 1.4 x 10 e s and 20 g mt(GeV) & 30 and is

independent of these variations. The reason for this is that the Be=meson
decay data (even in their least stringent form) constrain S, and 53 to

be sufficiently small that the tequark decouples and an effective four

quark theory remains:

. _ 2 2 . 2 2 2 ,2 e 2
NB = = B GF fK mK sin Gb cos eb mC 7%0 + mu - 2 mu mC 1n TE
12 2 m2 _ m2 m2
w c u u
(5.7)

In equation (5.7) the quark mixing has been restricted to a

dependence on GH = eb = ebabibbo

written in the approximate form /:5,103/ valid for m M <<Pk].

and the functions Bij have been

Figure 5.7 shows R, 2 0.8 x B which is obtained from equation (5.7)
i - = ° : ] = ° 3 °
using m = 0.3 GeV, m 1.5 GeV and 7kc 0.99 /o4/. The effect of

changing any of these parameters is easily calculable from equation (5.7) .
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Figure 5.1

The contribution of the box diagram to the ¥_- K_. mass difference

for 'L'B > 0.6 x 107

experimental value.

12

L~ s
s « K, = 2 Reliy/ 8m where &m is the
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- . . ) : . =12 .
The sipgnificance of the long _=meson lifetime { iQJzO.G » 10 s)

«© -

. . . . ol .
is demonstrated by Figure 5.2 . Vith T. = 0.1 x 10 2 5 the ©ii angles

are not so restricted an¢ a significant variation in w. is allowed.
This 1s due to the effect of the tequark wnlch increases the value of
RB/B « The reason for the dramatic increase in the lower bound on my
when the constraint &m = 2 ReHP is included /130/ is clear: for small
values of 3, m, must be ruch larger than Hw in order to overcome the
smallness of the mixing angles.

For the choice of guarlk masses and QCD corrections given above,
the box diagran reproduces the experimental KL- K. mass difference when

S

B ~1.2 . This is the source of the upper bound on B derived in refeéﬁce
106 ( recall, the contribution of the tequark is positive ) . If B is
sraller than this value the box diagrarm is insufficient, but for B at
its theoretical upper limit (B = +2.5) the calculation gives twice the
experimental result.

For B positive the KM CPaviolating phase d is excluded from the
region MW <842 by equations (5.3) and (5.5) . liowever, for B
negative the phase is excluded from 0K 8 <1 | The solutions of equation
(5.5) with 3m/2 < 8<2% and T <8<3W?2 for BCO are identical to
the solutions with 0< 6 {MW/2 ana W/2 4 dam respectively for B>O.
This corresponds to Bsind»0 as found sy Gilman and lagelin from
le'/e| /134/. B<€O, of course, gives the wrong sign for the mass
difference. However, contributions from other sources such as long
distance terms and penguin operators may be enough to compensate for

this.
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Figure 5.2

The contribution of the box diagram to the KL= KS mass difference

for I% = 0.1 x 1O=12 5 . The shaded region is allowed.
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5.3 Penguin Diagram Contributions

In the box diagram amplitude QCD effects were included in the
pararieters zij' dowever, with the introduction of strong interactions,
new effects arise /97/ due to the exchange of glucns. These are the
penguin diagrans.

In particular there is a CPaviolating countribution to the
K° &> 2Tr(I = 0) amplitude /9¢,135/ from sucn diagrams (Figure 3.2).
In order to regain the VWu=Yang convention /6C/ where this decay
amplitude is real, a redefinition of the xaon fields by a phase § is
performed (JK°y 4 e SOy 5 1% > & B|Z°> ). This redefinition
changes the relation between the CP~viclation parameter and the K% K°

transition amplitude to
Reg = = ( ImHB - ESRGIIP)/28?: (5.5)

wnere '§<O /135/. This redefinition alsc introduces a phase e-l.S to

the ¥ a4 21 (I = 2) amplitude A. giving Tud, & = §|A2\ and hence /134/

2

|£.I = _|sl |1/8| =~ 15-6 18| (5.9)
¢ VZI¢l

where the experimental values of lAZ/Ao' = 1/20 /139/ and |€|= 2.27 x 120=2
have been used. The experimental result /68/ &'/€ = =0.003 + 0.074
gives %} ¢ 1072,
Although this redefinition of fields has a significant effect on
the lower bound for the tegquark mass /114/, the result of section 5.2

concerning Rell is not changed. This is a consequence of the smallness

B

of the mixing angles 92 and 93 which ensures that the ce=quark

doninates the real part of the K°a Ko transition amplitude.

Hochberg and Sachs /99/ have pointed out that the inclusion of



- 7 -

strong interactions leads to a new contribution to the 85 = 2
flamiltonian which is topologically distinct from the box diagram. This
. . . . - 2 . 0 =0 e

is the double penguin diagram (Figure 3.3). The ¥ - ¥ transition

amplitude due to this part of the iHamiltonian is estimated to be /99/

~J

2
c

2 -”2 1r2 r"2 rr‘2 2
iy, = =73 (4 £ v B) P I a Infe A Inft
F — 3- PN — 7 u —~ ] - t -
18 (L) e .
(

5.10)

where r is an infra red cut off taken to be ’4‘\1 eV. Although the
amplitude is only logarithmically dependent on the cut off, it is
quite sensitive to the actual value of P which controls the cancellation
of the two logarithms. For F:: 1 GeV the cancellation is quite good,
but for F = 0.7 GeV the penguin amplitude becomes much larger. However,
this effect can be reduced by a simultaneous adjustment of the
effective cequark nass.

The double penguin amplitude has a real part which contributes
to the K w KS mass difference and an imaginary part which contributes

L
to the CP=violation:

Re€ = = ( Imbiy + Ini(w) )/2 én (5.11)

where the S-term from single penguin diagrams has been neglected. The

lower bound on m, obtained from this equation and the constraints

from D-meson decay are shown in Figure 5.3 as a function of the
parameter B. This can alternatively be viewed as a lower bound on |B}

as a function of mt. For ra: 1 GeV and mc = 1.5 GeV, the lower bound

on ri is significantly lower in the region of small B than the value

obtained from the box diagram alone (compare Figure 4.14). The difference

is about 10 GeV at B = 4 for 1% = 1.0 x 10-12 s » This is due to the
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relative iuportance of the double vengu.n diagrar in tnis region,
arising fror i1ts quadratic dependence on ﬁt and the large value for
this parareter needed to fit the ouserved CP-violation.

The prediction of the real part of the box diagran (Figure 5.71)
1s unchanged due to the c-quari. doiiinance ¢f this arnplitude. .cwever,
the double penguin amplitude provides an additional contribution to
the mass difference of 2 Reiiy, . The ratic Hp =2 Heﬂp/ 1 is shown
in Figures 5.4 and 5.5 for o= 25,40,60 eV, i, = 1.5 GeV and two
values for r - W= 25 GeV 1s just above the current FPETRA lower bound
/55/ of mt> 22 GeV . The result is independent of 1; (equivalently
92 and 93) over the allowed range.

It can be seen that the double penguin amplitude gives a large,
possibly dominant, contribution to the AS = 2 Hamiltonian of the sane
sign as the box diagrar. The suri of the box diagram and double penguin
anplitudes reproduces the observed KL- KS rass difference for B in the
range 0.3 to 1.0 . If B is negative, then a very large positive
contribution from long distance dispersive terms is required to

conipensate for this. The long distance contributions are considered in

the next section.

5.4 Dispersive Contributions to &m

In the K°= K° transition amplitude, equation (5.1), there is a
piece which is the time ordered product of two AS = 1 transitions.
It is this piece which contains the '"long diétance" dispersive
amplitudes: K° <> wesi  ; Kowno,'r’, ' @ Koofl,u, A,Ia-rio ;

etcetera. These amplitudes were previously neglected on the assumption

that their sum is small. As shown in the previous sections, it is easy
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to reproduce the observed value of &= without including any long
distance pieces. llowever, estimates of the separate contributions

/71 = 7%/ indicate that their rmagnitudes are of the sare order as

the observed nass difference (see secticn %.3). Although contributions
of both signs occur, the large ragnitudes of the individual terms
indicates that an exact cancellation is unlikely.

The calculation of the amplitude from one particle pseudoscalar
intermediate states by Itzykson et al. /7&/ gives a contribution
opposite in sign to the observed mass difference. In terms of the
ratio Ry = 2 Reli(dispersive)/ & , they find RD = =1.4 . The negative
sign is supported by the analysis of Donoghue et al. /77/ who give
RD(1TO,17,’7') %= -2 . The contribution of the two pion intermediate
state is uncertain in magnitude but is probably positive /77/. Using
a subtracted dispersion relation for the kaon self energy, Donoghue
et al. /77/ find RD(TFﬂ) = 0.64 with an ultra violet cut off of
A = 0.7 GeV rising to RD('n’ﬂ') = 1.4 for A= 1 GeV. A perturbation
theory calculation leads to a somewhat larger result, being RI%1r11) = 1.4
for A= 0.7 GeV and RD(ﬂTr) = 2.8 for N= 1 GeV. The contributions
due to one particle vector intermediate states are thought to be small
/71/ due to angular momentum effects.

In the standard approach involving the box diagram an integral
over a loop momentum k is performed. For small k the contribution of
the uequark accounts for at least part of the low energy dispersive
terms. To avoid double counting an IR cut off,‘h a1 GeV, should be
introduced. The main effect of this is to remove the u=-quark contribution
from ReMB . As the overall contribution of the u=quark is negative,
the contribution of the box diagram to the KL— K. mass difference 1is

S

increased by ~ 20 % . It is possible that the dispersive contribution
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1s negative reflecting this variation on the quars level, as is
indicated by the large negative contrioution frox the ﬂo,'q, n'
intermnediate states /77,75/.

C.T.khill /1%7/ assuied penguin dominance of the &% = 1
namiltonian in order to obtain a clear separation of short distance
box diagram and long distance dispersilve contributions to S . witn
the introduction of the AS = 2 penguin operator this separation of
long and short distance effects is no longer clear. The variation
of the double penguin anplitude with IR cut off r appears to
compensate the opposing variation of the two pion long distance
contribution with UV cut off A . lowever, as all the cut offs are
independent (being artefacts of specific calculations), these effects
are only qualitative.

It is usually stated that the dispersive amplitudes must give
a positive contribution to the KO- K transition /77,127/. This
statement is based on the assumption of a small value for B and the
absence of penguin diagrams. However, if the matrix element is given
a larger value (such as occurs in the Relativized Harwonic Oscillator
(RHO) model) and/or penguin contributions are included, it can be
shown that situations exist within the standard model where the
dispersive amplitudes must give a negaéive contribution.

Donoghue et al. /83/ find B = 0.33 with an estimated 50 %
uncertainty /77,89/ by relating the AS = 2 matrix element to the
Al = 3/2 KTy 71" W° amplitude. In the absence of AS = 2 penguin
contributions this determines RD A +0.7 . However, in the case where
there is a large penguin contribution, RD< O is a possibility even
for such a small value of B. For example, P::O;7 Gev, My = 1.5 GeV

and m, = 60 GeV leads to RD'V =0.3 .
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Colié et al. /95/ and Dupont and FPhai /9C/ have noted that it ‘s
difficult to reproduce the experimental K+.>1F1ro amplitude unless
the AT = 3/2 operator is suppressed by wore than the short distance
coefficient C4 2 0.4 . This would tend to increase the value for 3
obtained by Donoghue et al. /68/. For this reason a larger value for
B should not be ruled but. A larger value for 3 is given by the RHO
model of Colié et al. /87/ ( B = 1.4 ). This model is the most stable
of those considered. Its results are supported by a preliminary
evaluation of the matrix element on the lattice /96/ ( T ~ 1.3 ) and
by an analysis of the AI = 3/2 IS i o ariplitude by Dupont and Pham
/90/ ( B21 ). For B = 1.4 and = LO GeV, g, = 1.5 GeV, p= 1 GeV, the
observed K.= K _ mass difference is reproduced when E_. 4 «0.6 , and

L S D

much larger (negative) dispersive contributions are possible.

5.5 Conclusions
In the Standard Model the K°- K° transition ariplitude 1s the sum
of three contributions: the box diagrarm, the double penguin and the
(AS = 1)2 dispersive terms. Recent data on B=-meson decay can be used
to determine the magnitude of the box diagram contribution as a
function of the parameter B. The box diagran alone is sufficient to
reproduce the observed KL- KS mass difference for B ~1.2 to 1.5 .
The double penguin amplitude also gives a possibly large contribution

to &m which depends on m, and an IR cut off,;. If B is small and

t
the penguin contribution is not large, then the dispersive contribution
to Om must be positive (i.e. RD>CD as is usually stated. However,
when the magnitude of the hadronic matrix element is given by the RHO

rniodel (B = 1.4), the sum of the box and penguin amplitudes is too

large and the dispersive terms must supply a negative contribution.
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improved measurenents of the teguar:: mass and ‘-ieson lifetiue
would place better limits on the magnitudes of the box diagram and
penguin arplitudes by determining a rminiswrt value for [ :l. This
would then give a better indication of the magnitude and sign of the
dispersive anmplitude. Tor example, the present rieasurements of

-12

my & 50 GeV /52/ and T. » 0.6 x 10 s /121/ give 13} & C.1
i

whereas my = 4O GeV and 1; = 1.b x 10-12 s gives 131 2 0.5 which
leads to IH)<(LQ-fOI‘ES)(). On the theoretical side the most important
advance would be an accurate and generally accepted calculation of the
hadronic matrix elerent.

Due to these large uncertainties in the calculation of the KLa KS
nass difference, it is difficult to obtain useful constraints on new
theories of weai: interactions from this parameter. An optimistic
approach tight be to apply the criterion that RN = 2 ReM(new contribution)/&m
should be bounded by F%J|£1 . On the whole, more reliable constraints

would be obtained by considering the new contributions to CP=violation

in the theory.



CHAPTER O

COLICLUSIONS

In the preceeding chapters the significance of the strangeness
changing neutral currents i €%i_ , R '(+ B and ¥%+ nir has
been discussed. These processes are the part of the general class of
flavour changing neutral currents (FCNCs) which is presently the most
useful due to the availability of experimental data. The observed
suppression of FCHCs could lead, in principle, to precise phenomenology
in weak interactions, since small changes in the theory could lead to
large changes ( on this scale ) for the predictions of FCNC amplitudes.
Unfortunately, this possibility is not realised in the case of the kaon
amplitudes mentioned above. The problem cccurs in the necessity of
relating theoretical predictions which are given in terms of quarks
to experimental data on hadrons.

The most widely used FCNC is the K°- KO transition amplitude,
1(K°= K°), and possible contributions to this amplitude from Standard
Model (SU(3)xSU(2)xU(1)) sources were reviewed in chapter 3. The
contributions fall into two classes: 'long" and "short'" distance.

The short distance contributions are the box diagram and double penguin
amplitudes, which are given initially in terms of a quark transition
amplitude. The relation between this and the hadronic K°- Eo transition
amplitude is parametrized by a number B which i1s derived from the

hadronic matrix element of a four quark operator. A perturbative
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calculation of this matrix element is nct possible and so it is
estimated in a variety of models. These give a range 0.05¢g5g2.9

and 1n one case 3 <¢0 . There is also a theoretical upper bouna of
I5142.0 + 0.5 « As no consensus on a preferred value for .. has been
reached, it was left as a free parameter in most of the phenomenoclogical
analyses described in chapters 4 and 5. The long distance amplitudes
involve only hadrons from the outset, and so their contribution to
(K%~ K°) is correspondingly uncertain.

Theoretical calculations of H(KO— KO) can be related to two pieces
of data. The real part of the amplitude is equal to half the KL- KS
mass difference (&m) and the imaginary part is proportional to the
CP-violation parameter (& ). From these relations one can attempt to
determine the values of any unknown parameters in the theoretical
prediction. The results can be used to check the consistency of the theory
for describing other weak interaction processes.

One way of proceeding is to assume that the shbrt distance box
diagram dominates both the real and imaginary parts of the amplitude.

This assumption was pioneered by Gaillard and Lee, who used it to
successfully estimate the mass of the c-quark. Buras, also following
this method, placed an upper bound on the t=quark mass. He used the

box diagram calculation of &m together with a short distance calculation
for the dispersive KL-)- r+ f: amplitude to obtain the bound mt"BB GeV
at B = O.4 . The result depends sensitively on B and for B = 1 the

upper bound is above Mw. However, even if B = O.4, various uncertainties
in the calculation of the KL > ‘: l‘- amplitude raise the bound to
above Hw. This, together with the uncertainties in the calculation of
6m, neans that a reliable upper bound on my cannot be obtained by this

method.



This calculation has been repeated in the context of a sunere
symmetric theory, giving iy <100 Ge¥ . However, this calculation is
subject to the sare uncertainties as the one in the Standard odel.

lheasurenents of the s=rmescn lifetime and partial decay widths
can be used to place bounds on the elements cof the quars rixing matrix
as shown in chapter 4. This infor..ation, in conjunction with a

. . .0 o . .
calculation of the I = N~ mass matrix yields a lower bound on the te
guark mass. This lower bound depends critically on the assumptions
. L0 =0 .
made for the calculation of the <~ X amplitude.

If only the imaginary part of the amplitude is considered to be

dominated by the box diagrar, then the lower bound on my lies below
2

Pk;for I% € 1.4 x 10-1 s (the upper limit from JADE) and I > C.33 .

The minirmun value of My reaches the lower bound from PETRA data
(, >22 GeV) for 31 and T £ 1.0 x 10712 5 .

This calculation was repeated in chapter 4 with the additional
constraint that the KL- KS mass difference was given by the real part
of the box diagram amplitude. For B >»1, the lower bound on mt is
comparable to the results of the previous calculation. However, for
values of B much less than this, the lower bound is dramatically
increased. For example, my > 150 GeV at B = O.4 . This result may
indicate that the real part of the K°= K  transition amplitude is
dominated by long distance contributions.

Penguin diagrams affect these calculations in two ways. Firstly,
the relation between § and the imaginary part of H(Ko- KO) is defined
in the Wu-Yang convention where the K4 277 (I = 0) amplitude is
real. Penguin diagrams give an imaginary contribution to this decay

amplitude which can be rotated away by a suitable redefinition of the

kaon fields. This affects the calculation of Imii(K°- X°) and gives a
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slight increase in the lower bound for m, . Secondly, including the

t
contribution to Imi(k°= X°) fror the double penguin diagram lowers

the niinimus value of mt as siiown in Chapter 5. The addition of the

real part of the double penguin amplitude alsc manes it easier to
reproduce the expeririental value for 8t at small 5 without any long
distance contributions.

Under the assumption that the box diagram was the dominant
contribution to both varts of M(KO- fo), an upper bound on the parameter
B was obtained in Chapter 4, using the constraints on the quark mixing
from B-meson decay. This upper bound was D €1.2 to 1.7 depending on
the magnitude of the QCD corrections to the box diagram amplitude. The
maximum value for B occurs when the tequark contribution (which is
always positive) is entirely suppressed by small mixing matrix elements
and the c= and u=-quark contributions reproduce the experimental value
for &m. lio phenomenological upper bound (below the present theoretical
upper bound of B & 2.5) can be obtained under other assumptions.

Before the results from CESR and PEP on Bameson decay were
available, there was a considerable freedom in the allowable values for
the quark mixing angles. Analyses of the K°~ K° mass matrix, based on
the box diagram calculation alone, determined that the decay b #u
would be less frequent than the decay bla-c » This prediction was
confirmed at CESR. In these analyses the CP=violating phase 8 was
restricted to lie in the range O% 8 < or in a small region in the
fourth quadrant, which was subsequently excluded by the experimental
result Mb = uw)/ Mo -c¢) € 5.5%.

These results were obtained for B >0 which was required by the box

diagram calculation of 8m. If a large contribution to 8m from long

distance amplitudes is present, B<€O is possible. The constraint on 8
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frow Inii(k%= K°) is then Usind »0 . This result is not affected by thne
introduction of the double penguin amplitude.

The analyses described above are based on different assurptions
about the K°- EO mass matrix which leads in some cases (such as the
lower bound on mt) to a large variation in the result. For this reason
a better understanding of the 0. EO mass matrix itself is desirable.
The possible contributions to §n from Standard liodel sources were
examined in Chapter 5.

The data on the Beneson lifetime and ratio of partial widths
restricts the gquark riixing angles 62 and 93 to be sufficiently small
that the te=quark decouples from the box diagram. The box diagram
contribution to &m is then given by the four quark model calculaticn.
The major uncertainty in this is the value of B . For B in the range
1.2 to 1.7 (depending on the QCD corrections to this amplitude) it was
found that the box diagram alone gave the experimental value for S,
The Relativized Harmonic Oscillator (RHO) model gives 3 in this range
(B = 1.4).

The double penguin amplitude gives a contribution to the KL- KS
mass difference which is the same sign as the box diagram. Its
contribution is uncertain in magnitude but is possibly substantial.
The sum of these two short distance ampiitudes was shown to give the
correct value for 8m when 3 was in the range 0.3&B &1.0 .

From these results it can be seen that there is no conmpelling
phenonenological reason to include a large contribution from long
distance dispersive amplitudes. However, if B is found theoretically
to be small @™0.3 say) and the double penguin amplitude is negligible,
then the dispersive contribution (to = o) muét be positive and relatively

large. If, on the other hand, B is nearer to the RHO result of 1.4 and/or



the penguin contributicn is large, then the dispersive amplitudes nust
give a negative contribution. oth these possibilities are allowed by
the theoretical calculations of the long distance a:nl tudes.

Due to these large uncertainties in the calculation of Sm, rore
reliable constraints on unknown parameters can be obtained by considering
only the CP-violating, imagilnary part of H(KO- RO). nowever, an
optimistic approach, in the case of extensions to the Standard Model,
might be to asswie that the ragnitude of new contributions to &1 shovld
be siialler than the experimental result. In the case of the LefteRight
Symmetric model, this would lead to a lower bound on the mass of the

new gauge boscn being Iﬁi >1.6 TeV as given in Chapter 4.
R

The usefulness of the 1°- Ko rmass matrix as a constraint on wea:.
interaction physics would be considerably improved by an accurate and
generally accepted calculation of the hadronic matrix element (3). On
the experimental side, more precise measurements of the sSemeson lifetime
and the teguark mass would be advantageous. Data on other FCKCs, such

as B°~ B° rixing is eagerly awaited.
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