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The pr1enornenological applications of strangeness chant;ing 

neutral currents, particularly the i\
0

- ~ transition, are reviewed. 

In the Standard :iodel there are three possible contributions to this 

transition: the box diagran, the double penguin and the long distance 

dispersive arnpli tudes. The results obtained fran·, a phenomenological 

study of the E
0

- i:' ar:.pli tude are shown to depend critically on the 

assumptions made about the relative magnitudes of each of these 

contributions. 

Upper and lo\oJer bounds on the size of the hadronic matrix eler.Jent 

(B) of the box diagrarr. amplitude are derived, assuming that this 

amplitude is the dorr,inant contribution to the K
0

- rro transition. ];o 

interesting upper bound can be derived under other assumptions. 

I·ieasurements of the B-meson lifetime and partial decay widths 

are used to restrict the allowed ranges for the parroneters &
2 

and &
3 

of the quark mixing 1~1atrix. This information is used, together with 

an analysis (under various assumptions) of the l~0- jzO mass matrix, to 

derive lower bounds on the mass of the t-quark (mt) as a function of 

the parameter B. These bounds can also be regarded as lower bounds on 

B as a function of mt. 

'l'he information from B-meson decays is used to determine the box 

diagram contribution to the ~- KS mass difference. For B < 1 this is 

significantly less than the experimental result. The double penguin 

ar.-:pli tude is also estimated and a possibly large contribution to &m 

is found. There is no compelling phenomenological reason to include a 

substantial contribution to ~n from long distance dispersive roDplitudes. 
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THE S'I'AEDARD ;.;QD.sL 

1.1 Gauge Theories - QED and QCD 

The strangeness changing neutral currents ]; 0
,. n-rr, :;.L +)A--r_JA-- and 

particularly !~0* '!Z0 
have been, in the past, a useful source of 

information about weru~ interactions. In the standard model these 

transitions are understood to occur as a result of the mixinc between 

the quarks which are the basic constituents of hadrons. In this wori~ 

a study is Dade of the information about quarks and their relation to 

hadrons that can be gained through a phenouenological analysis of 

such transitions. Ti1e reliabil ty of this information is also 

investigated. 

All known particle interactions are now thought to be described 

by gauge theories, which have risen to pre-eminence in particle 

physics as the result of two factors. The first is their renormaliz-

ability (i.e. that divergences in non-lowest order calculations can 

be removed in a well defined way); the second is the remarkable 

success of one particular gauge theory, namely Quantwn Electrodynamics 

(QED). The agreement of the QED prediction for the anomalous r.Jagnetic 

moment of the muon with the experir:Iental result is better than 1 part 

in 105. 

QED describes the interaction of a spin~~ ferr;;ion with a spin-1 

photon. The Lagrangian for this theory is 

( 1 0 1) 
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where yis the fen:ion field, Al4-is the pl1oton fielcl and t'rvJ.s 

the electromagnetic field strength tensor 

This Lagrangiru1 is invariant under global (position independent) 

phase transforrnations 

This invariance implies that the phase oe. has no physical rneanlng 

and can, therefore, be chosen arbitrarily. However, it is unnatural 

to fix C( uniquely over all space and time and it is more satisfactory 

to have the possibility of choosing it locally, i.e. to require the 

Lagrangian to be invariant under 

"f' ? exp (=i«(x)) 'f' 

This invariance is obtained if A,. transforms under the local phase 

transforrr.ation as 

which is the usual gauge transformation for the electromagnetic 

vector potential. 

The requirement of local gauge invariance has two important 

consequences. 'rhe first is that the coupling of the photon to the 

fermion is restricted to be of the "minimal" form given above. The 

second consequence is that a mass terr:1 for the photon of the type 

tiA,.AfJ.. is forbidden. The masslessness of the photon leads to the 

1/r form for the coulomb potential. The impressive success of QED 

in describing the interaction of electrons and photons leads one 

to believe that the gauge invariance of QED is not only a formal 

property of the theory, but is an essential ingredient of it. 

Consequently, it is natural to attempt to describe weak and strong 
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interactions in terr:s of a gauge theory. 

The principle of local gauge invarlance was generalized by 

Yanc; and hills /1/ ln 1SJ54. In Q:SD one is dealint; with the very 

simple gauce symr.,etry of the abelian U(1) group whose generators 

are constants. The original Yang-l,lills theory was a theory of strong 

interactions with the SU(2) group of isospin as the gauge syrwnetry, 

involving the proton and neutron as fundamental fermions. The 

modern version of this theory is QuantuDJ Chron,odynan;ics (QCD) /2,3/ 

in which the fundamental fermions are quarl-:s lying in a triplet 

representation of an SU(3) group called colour. The SU(3) group 

has eight generators Ta(a=1,8) which have representations as 

traceless 3x3 matrices and forn, a Lie algebra 

'fab r-lc 
j l 

c 

where the f are the structure constants of the algebra. 
abc 

The basic Lagrangian of QCD is 

'i 
-4 ( 1. 2) 

where qk(k=1,3) is a colour triplet of quarks of mass rn; ~(a=1,8) 

is an octet of massless vector gauge bosons called gluons with 

a 
field strength tensor G,Mv; g lS the dimensionless strong 

interaction coupling constant. Since SU(3) is a non-abelian 

group, the gauge transformations are more complicated. The QCD 

Lagrangian is invariant under the infinitesimal gauge transformations 

k k 
q + q ifl..a(x) (T )k .qj 

a J 

a a a b c a 
A,.,.+ A/'4 + f bcf:l.. (x)A,. + .:!_~oc (x) 

g 

if the field strength tensor is given by 
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:F'ror;: this equation it can be seen timt the gluon :~inetic energ:y 

term, G;vc;v, contains triple and quartic gluon interactions. ln 

this self-coupling of the gauge bosons (which is a consequence of 

the non-abelian nature of the gauge group) QCJ) is very different 

from the abelian QED. 'I':ese gluon self-interactions are important 

because their existence ensures the uni tari ty of so~ne basic 

scattering processes, e.g. qq + gg ancl ,_;,·; + :r~ (1-:here, here, "g" 

represents a gluon). 

Higher order corrections to the basic quark-gluon coupling 

leads to the idea of a "running" coupling constant, i.e. the 

coupling g depends on mor:·:entum in a very definite way. The 

coupling "constants" 0( = g2/4f('at two different rnor.1entum scales 
s 

Q
2 

and t-t2 
are 

where 

related by 
2 

0( s '~" ) 
- 2 2 

1 + ~0 C( (u.c:)ln (Q If" ) 
4lf" s ,.-

A = 11 - ~nf ~0 

and nf is the number of fermions. If nf~ 16 Cf!J
0 
> 0) then 

2 2 2 2 . 
O(s (Q ) < ~s C14 ) for Q > f4 • Th1s property is known as asymptotic 

( 1. 3) 

freedom since Ol (Q
2 ) ~ 0 as Q

2 +OO. It is this property of QCD 
s 

which enables sensible perturbative calculations to be performed 

at high Q2 
despite the fact that at long distances « is not small 

s 

(preswnably leading to the confinement of quarks and gluons 

inside hadrons). The running coupling constant can also be 

expressed as 

( 1. 4) 
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where 1\. is a :<Jo;:,entw:i scale which (approxir.latel:;) delineate.= 

the boundary of the non-perturbative regime. The value of 1\ can 

be extracted fro; __ data on deep inelastic scattering /4,5/ wiLi-, 

some uncertainties, and is in the range 

0. 1 ~ 1\( Ge 'J) ' 0. 5 

Higher order calculations in QCD produce corrections which 

n2 n22 2 
are proportional to at s c ~ )ln CQ If ) where f is the renort;~alisation 

scale. Vlhen only the terms with n=r,:+1 are retained the calculation 

is in the"leading logarithm approximation". In O(<l ) calculations 
s 

the leading logaritruns can be absorbed by replacing ~scr2 ) with 

the running coupling constant~ (Q
2). 

s 

Like QED, QCD has performed well (though less spectacularly) 

when confronted by experiment /3/. This leads to the hope that weak 

interactions are also described by a gauge theory. However, in the 

case of weak interactions the postulated vector bosons are massive, 

as demonstrated by the short range of the interaction, and gauge 

in variance forbids an explicit mass term of the form rlA,.Af4. So, 

if weak interactions are to be described by a gauge theory, a 

more subtle method of introducing a vector boson mass must be 

found. This can be achieved by the (ad hoc) method of spontaneous 

symmetry breaking. 

1. 2 Spontaneous Symmetry Breaking and the GWS llodel 

The existence of massive vector bosons implies that the gauge 

symmetry of weru< interactions has been broken. A simple way to 

describe this symmetry breaking would be to add explicitly non-

invariant terms to the Lagrangian, such as the mass term given 

above. However, this method destroys some of the important features 

of the original gauge theory - its unitarity and renormalizability /6/. 



An alternative way in which the gauge syn1metry can be brov.en, 

referred to as spontaneous symmetry breaking, gives masses to 

the vector bosons and yet retains the inportant properties of 

the ori~;inal theory. The idea is to have a theory where the 

Lagrangian is still exactly syr:1metric under the group transformations 

but it gives rise, for dynaraical reasons, to a ground state which 

is not invariant. Non-invariance of the ground state (vacuum) 

leads to a well defined pattern of symmetry breaking effects. 

Glashow /7/ was the first to propose that the underlying 

field theory of weak interactions was an SU(2)xU(1) gauge theory 

which included QED as well. 'rhis idea was taken up later by 

\-/einberg /<3/ and Salam /9/ who included the Higgs mechanism /10/ 

for spontaneous sym~:1etry breaking. The resulting theory lS 

referred to as the Glashow-V!einberg ... Salam (GWS) theory, and it lS 

renormalizable /11/. 

The Lagrangian of a basic SU(2)xU(1) gauge theory involving 

four vector bosons (one for each generator of SU(2)xU(1)) coupled 

to an SU(2) doublet of complex scalar fields is 

( 1. 5) 

where a F,_., (a=1,3) is the field strength tensor for the triplet of 

gauge fields cw;) corresponding to the SU(2) group and G
14

v is the 

tensor for the gauge field (B,u) of the U(1) group. The "covariant 

derivative" of the scalar field (¢) is given by 

where t are the three Pauli matrices. The two coupling constants 
a 

g and g' are independent since the gauge symmetry is a direct 

product of the two groups. The scalar potential is given by 
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where)\> 0 so that '·/ is bou.TJded fror. below, but the s:isn of Jl is 

. 2 l lU1deternined. Iff" represents the usua r:.ass ter;, for a scalar 

field, i.e. f"- 2 > 0, then \1 has a i:.inimur:: at ¢+¢ = 0 and the groill1d 

state is invariant ill1der the full gauge group. !iowever, if r 2 < o, 

then V has a minir~ill! when ¢+ ¢ = v 2 
/2 with v

2 = = 1l / >. • vJhen the 

particle content of the theory is deterr.;ined with respect to this 

vacuurn it is found that three of the scalars have become the 

longitudinal components of the gauge bosons which have gained 

masses. 

Defining 

¢(x) = _2 ( 0 ) -./2 v + ~(x) 

such that rX = v 112 as above .. the terc: in the La00"rangian l"vacuwr IV 

involving the covariant derivatives of the scalar field gives 

(D,-¢)+(Dt"¢) ::: -}(drcr) (cr<r) + ~(~gv) 2 (W~v.1; + vp·!~) 

+ -a-c.a-v) 2 ((g'>~ ... g'B~)(g\·J;- g'B.-)) 

+ higher order ter~s 

Defining 

+ ;1 ( 1 . 2) v1- = '~~ 2 vJ + l vJ r p.- fA 

and 

z = 3 
sin&H BfA JA cos&H vlfA -

A = 
JlA 

sin&vJ w~ + cos&vl BJ!4 

with 

tan&\~ = g '/g 

gives 



c:u ¢) + c:utA-0) = 
~ 

- <'...: -

+ 

+ l·l~ cz,..z,.) + higher order tern·ls 

'.!:'his shows that two of the gauge bosons have gained a coLJr:;on 

whilst a third has a mass 

and a fourth is n;assless. This last boson is identified with 

the photon and the others are the weak interact on bosons 

+ (H-, Z). 'I'he identification of A t4 with the photon leads to the 

relations 

g sine;~/ = e = g' cos&,:! 

The existence of a massless gauge boson ( the photon) 

demonstrates the presence of an unbroken U(1) symmetry as 

required by QED. 

Equation (1.6) contains the usual kinetic term for a 

scalar particle (6). This is the Higgs scalar and its mass is 

given from V(~¢) to be ~~~2 o This mass is not determined by 

the theory and is left as a free parameter. 

Fermions are introduced in left handed doublets and right 

(1.6) 

(1.?) 

(1.0) 

( 1. 9) 

handed singlets of the SU(2) group, e.g. for the leptons e and ~ 

For this reason the SU(2) group is labelled with a subscript L: 

SU(2\· The fermions each have a U(1) hypercharge quantum number 

Y and, after spontaneous symmetry breaking, the combination 



Q=-;;-CL+Y) 
) 

is identified as the electric charge of the ferr:,ion. The fermions 

are given a Yukav;a coupling to the scalar )11 which, after 

spontaneous symmetry breal:in[i, glves a nass to the fermions 

(an explicit mass term is forbidden by the chiral nature of the 

gauge group). The case of quarks is complicated by the fact that 

the mass eigenstates are not identical to the weak interaction 

eigenstates, but are related to them by a unitary transformation. 

This is discussed in Chapter 2. 

The amplitude for the decay 4A + e-)i V. as given by the G\•!S 
1 e ,.-

th t l t t f (k2 " 2 ) . (tl F l eory a ow mornen ur.1 rans er << J';· ls 1e eynr~.an ru es 
..J 

for the G\1/S theory can be found in ref. /12/) 

which coincides with the (V- A) current x current prediction if 

= 
2 

g 

8f\~ 
Using this and equation (1.9) leads to an expression for the 

W-boson mass, with c( = e2 /4-tr 

and consequently 

B z = = 

= 37.3 GeV 
sine-...,

1 

74.6 GeV 
sin2&w 

Measurements of sin&\1! give /13/ 

. 20. 
Sln u-\,J = 0.229 + 0.010 

(1.10) 
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v;nich leads to:\:= 7c_. '-~;el/ and ''z = :;'-~ .:e\'. ,;::~adiat::.ve corrections 

alter these esti:.Jates to give /14/ 

''\; = d2 + 2.4 GeV 

l l•z = 93 + 1. 6 GeV 

These vector bosons have been discovered at the p~ collider 

in CERil. Their masses have been neasured to be /15,16/ 

1\, = 80.9 + 1.5 GeV 
(1.11) 

n z = 95.6 + 1.4 GeV 

which are in remarkable agreement with the theoretical predictions. 

The G\'JS theory of weak and electromagnetic interactions is 

in good agreement with experiment both at low /17/ and high /15,16/ 

energies. Nevertheless, the theory contains some unsatisfactory 

features: 

i) the ad hoc introduction of scalar particles to induce 

the spontaneous symmetry breaking; 

ii) the couplings of these scalars to the fermions in the theory 

must all be different so that the fermions obtain different 

masses after the symmetry breaking. These couplings are a priori 

undeterr.1ined in the theory; 

iii) the observed parity violation of weak interactions is put 

in by hand - the fermions left and right handed pieces transforni 

differently under the SU(2) gauge group. 

In an attempt to overcome these problems people have been led to 

consider extensions of the standard model. Some of these extended 

theories are described in the next section. 
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1.3 oeyond the .Standard Jicdel 

The Standard hodel is based on an SU(3)xSU(2)xlJ(1) gauge 

theory which has been successful 1n describing observed interactions. 

However, a number of theoretical probler~.s have motivated the 

construction of many theories which contain the Standard l•1odel 

as a low energy approximation. 

One fruitful approach is grand unification: at energies 

greater than some scale 1\ particle interactions are described by 

a gauge theory based on (in most cases) a single group. This group 

contains the standard SU(3)xSU(2)xU(1) as a subgroup and a simple 

example is the SU(5) theory of Georgi and Glashow /18/. The extra 

degree of symmetry in these theories provides relations between 

some of the free parameters of the Standard Hodel. For example ,L:·1e 

quantity sin&\oJ is predicted in the SU(5) model mentioned above and 

the result is in reasonable agreement with experiment /19/. 

The technique of spontaneous symmetry breaking is also used in 

Grand Unif:iied Theories (GUTs). At a scale 1-1,. the GUT symmetry is 
}. 

broken, either directly or indirectly, to the standard group. This 

is effected by a set of scalar particles which are introduced ln 

addition to those used to break the GWS group down to U(1) • e.m. 

The gauge bosons which are not associated with the generators of 

the standard SU(3)xSU(2)xU(1) group gain masses ~MX. In the SU(5) 

model EX is about 1015 GeV. 

In GUTs quarks and leptons sit in the ~e multiplets of the 

gauge group. One consequence of this is that the bosons with masses 

fV hX after the first symmetry breaking can cause transitions which 

violate baryon number. The SU(5) theory of Geo~gi and Glashow 
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. . . _2G 31 
predicts that protons should decay w:.. th a llfetH.e 1: 'V 10 co 1u 

p 

years in a dominant decay mode of p -t- e+ffo /20/. Zx:periments to 

detect proton decay are in progress /21/ and the results of tile 

Il·ill experirr:en t /22/ give a lower bow1d on r which :is at the upper ll! 
p 

of the range in the SU(5) model. 'I'his r.iay indicate that the simplest 

SU(5) model is ruled out. If this is the case, one n;ust turn to 

other groups, such as S0(10), or toa •. ore coQplicated Higgs structure. 

One feature of low energy weak interactions which is not 

explained either in the Standard l"iodel or in the SU(5) GUT ~s 

parity violation. A possible solution to this probler:. is found in 

left-right symmetric models (LRS models) based on the gauge group 

SU(2)RxSU(2\xU(1) /23/. These !.;odels contain an extra three gauge 

bosons related to the generators of the SU(2)R group (vi~ , Z~ ) • 

The standard gauge bosons are labelled H~, v1
1

, Z~, 'l' and the three 

neutral particles (Z~, Z~, ~) are mixtures of the basic gauge 

bosons as in the standard GVJS theory. 

At high energies this theory is parity conserving and parity 

violation is introduced via spontaneous syumetry breaking. The 

symmetry breaking occurs in two stages: first the full group is 

broken down to the G1;/S group at a scale i'\._r , then the GWS group is 
R 

broken at the usual scale }~ "'80 GeV. The observed parity violation 
L 

arises as a consequence of }1 > t·~ • Present data on beta decay and 
viR v11 

non-leptonic kaon decay require i''\v ~ 300 GeV /24,25/. 
R 

it 

LRS theories are compatible with grand unification. In particular 

the GUT group S0(10) contains SU(2)xSU(2)xU(1) as a subgroup. The 

more natural incorporation of parity violation together with the 

recent results on proton decay perhaps make an S0(10) theory a 

better candidate for a GUT. 
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'I'he existence of scalar particles in all the theories 

described above poses a number of tl1eoretical problems. (me suc':l 

probleL, is the need to L~aintain a heirarchy of mass scales 

(L <<l-i ) when higher order corrections are included. Supersymr;1etrJ' 
\r! X 

/26/ has been proposed as a solution to those problems • 

.SupersyDmetry is a theory which relates bosons to ferr,iions.'This 

has the tmforttmate consequence that each boson and fern;ion in 

a standard theory must be given a partner differing by half a tmit 

of spin to make the theory supersymmetric. That is, the existence 

of squarks (scalar quarks), sleptons (scalar leptons) and gauginos 

(spin-~ gauge particles) is predicted. If supersymmetry were exact 

each of these new particles would have the same mass as its standard 

counterpart. As this is experimentally not the case, supersymmetry, 

if it exists, must be broken. 

Supersymmetry also provides the possibility of including 

gravitational interactions in the form of Supergravity /27/. Such 

theories can have interesting consequences at low energies, 

particularly for the phenomenon of spontaneous symmetry breaking/26/. 

Supersymmetric theories of weak interactions can be constructed /29/. 

In conclusion, the standard model of weak interactions based 

on an SU(3)xSU(2)xU(1) gauge theory agrees well with low energy 

experiments. Nevertheless, this theory has some theoretical problems 

and solutions for these are sought by extending the G\'!S theory in 

various directions. The possibility exists that some alternatives 

can be ruled out by consideration of low energy data. 



- 14 -

CiiAPTEli 2 

The Hecessary r;'op Quark 

2.1 Flavour Changing Neutral Currents 

As mentioned in Chapter 1, the quark sector of the GWS theory 

of weak interactions is complicated by the fact that the weai( 

eigenstates are not identical with the mass eigenstates. Prior 

to the discovery of the J/"f resonance, low energy hadron spectroscopy 

required the existence of three quarks: u, d, s /30/. Vleak 

interactions couple the u-quark to the con<bination /31/ 

d = cos& d + sin& s w c c 

where & is the Cabibbo angle, the magnitude of which is given 
c 

by /32/ 

cos& = 0.9737 ~ 0.0025 c 

This device also allows the retention of a universal low energy 

coupling constant /32/ 

G - (1.16632 _+ 0.00002) x 10-5 Gev-2 
F -

(2.1) 

(2.2) 

(2.3) 

This Cabibbo mixing is satisfactory for all charged current 

interactions (involving the exchange of a W- boson). However, it 

causes some problems in the neutral current sector (involving, 

0 at lowest order, the exchange of a Z ). Here the Cabibbo theory 

leads to amplitudes N GF sin& cos& for flavour changing neutral 
c c 

currents (FCNCs), (e.g. K
0 

• 14+ fJ. •, K +1TvY, K
0 + tr, K +-rr Y'Y, 

K -+ 1( e +e-) which contradicts the observed /33/ suppression of 
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such processes. 

The standard remedy for this failure was proposed by :.;lashow, 

Iliopoulos and Laiani (GH:) /34/. '/hey introduced a fourth quarL -

the c-quark - which couples to the coffibination of d- and s-quarks 

s = cos& s w c 
sin& d 

c 

which is orthogonal to equation (2.1). In the GVJS theory the 

gauge boson W~ couples to a quark current associated with the SU(2) 

generator t
3

• This current is 

J -!A - ( ; ~ (1 - '15) u 

+ ( c ~ (1 - 1'5) c 

= ( ; 1,_ ( 1 - 1'5) u 

+ c c ~ c 1 - r5 ) c 

cr r .... c1- ,.
5

) d ) 
w , . "' 

sw 1'{'4 (1 - 1'5) sw 

cr r" c 1 - r5 ) d ) 
:sr,. c1 - r

5
) s 

which is diagonal in the mass eigenstates. As the current coupled 

to the Z
0 

is a linear combination of J t' and the electromagnetic 

current, which is also flavour diagonal, FCNCs are forbidden at 

tree level. This suppression is natural in the sense of Glashow 

and Weinberg /35/ in that it is independent of the value of & . 
c 

FCNCs are also suppressed to O(GF(() by the Glh mechanism 

provided that me<:< HW, where m c and 1\J are the masses of the c-quark 

and the W boson respectively. Gaillard and Lee /36/ used this 

property in the context of the strangeness changing neutral 

current K
0 ++ ~to estimate rn. Their result was m -1.5 GeV 

c c 

which is approximately half the mass of the J/~ (cc) resonance. 

In the quark sector of the Glt/S theory the analogues of the 

lepton - neutrino doublets are 

(2.4) 
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In these doublets the weai: eigenstates of the charse Q = +~~ quar~~s 

are identical with the r;mss eigenstates, and the d- and s-quarks 

are Llixecl. Identical results would be obtained if the L.ass 

eigenstates of the d- and s- quarks had been used and the U= and 

c-quarks had been mixed. The form of equation (2.4) is the 

conventional choice. 

In principle, there could be a similar Cabibbo mixing ln the 

leptonic sector. Hm-Jever, there is no experimental evidence /37/ 

for such a n;ixing, which has no physical significance if the 

neutrinos are massless. Only one experiment has reported a 

positive result for a neutrino mass measurement /38/ but the 

results are inconclusive /37/. 

Kobayashi and l\lasl;awa (KH) extended the idea of Cabibbo mixing 

to six quarks in order to produce CP-violation /39/. A new pair 

(t, b) of quarks is introduced and the Q = -i quark (b) mixes 

with the d- and s-quarks: 

(::) l' v Vub) (:) ud us 
= vcd v v b cs 

v:b vtd vts 

+ where the mixing matrix V .. is unitary (V V = 1). In general a 
lJ 

3x3 unitary matrix can be parametrized by three angles ( ~ ) and 

one complex phase ( ~ ) • Such a parametrization is 

c1 s1c3 s1s3 

v -i' -i& (2.5) = -s1c2 c1c2c3 + s 2s
3

e c1c2s3 - s 2c
3

e 

-i& =iS 
=S1S2 c1s2c3 = c

2
s

3
e c1s2s3 + c2c

3
e 

where c. = cos&., s. = sin&., i = 1,2,3. In the limit e-
2 = &3 = ~ = 0 

l l l l 
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this :~:atrix reduces to tl1e Cabibbo :~:atrix with g.
1 

= g. • 
c i1on-zero 0 

gives rise to CF·-violation. 

Many other parametrizations of the quark mixing matrix sir.-,ilar 

to the above exist in the literature /17,39 = 41/. They are related 

to the matrix given above by various transformations such as 

&. ~ =El. and ~ + b +11'. These differences have no physical 
l l 

significance but once the form of the Klvl matrix is fixed the angles 

are constrained by 0' &. f.-rT/2 and the phase is allowed to vary over 
l 

the whole range 0~ ~ ~ 21(. 

The I\l·i parametrization keeps the definition that cos& is the 
c 

ratio between a d ~ u transition and the purely leptonic process 

Jl- + y. In the four quarl<. model the ratio of s .I)- u transitions to 

d + u transitions is tan& but this definition is no longer true 
c 

in the six quark model. An alternative parametrization which 

retains the definition of tan& is given by 1'-laiani /42/. The matrix 
c 

then appears as 

c,_c8 c, se s~ 

v i6 i& ic\ (2.6) = -s,_c8 si!l e sec4r c,-ce - s,s,s8 e s.,c, e 

-icS -ib 
-spc7c8 + s,-~e -c7s,s8 - s7c8e c,.c, 

where the phase$ is not identical with the phase in the KM 

parametrization. Although the t·laiani form has the advantage for 

recent phenomenology that the couplings of the b-quark are simple, 

the KH type parametrization of equation (2.5) will be used in this 

work because it is more familiar and widely used. 

The unitarity of the KH matrix ensures that an extended version 

of the GH! mechanism operates. That is, FCNCs involving the b-quark 

are suppressed to O(~u). The dicovery of the 1rCbb) resonance /43/ 



and subsequent observation of the deca;ys of b-flavoureci 11adrons /44; 

has tested this feature of the .Standard i iodel. :?or exar1ple, if the 

b-quark were in a weaL SU(2) sin;;let (i.e. had no t-quarl: partner), 

0 + -then the tree level decay b ~ d Z ~ d l l would be allowed. 

E.ane and Pesbn /45/ have shown that this would lead to the bound 

rc B.- 1 +1-X 

rc I3.,.. 1+vx 
~ 0.12 

Data tal;.en by the CLEO collaboration at CESR yields the upper 

bound /45/ 

rc B + 1+1-x 

rc B + l +ll X 
( 0.027 (906 c.l.) 

(2.7) 

( 2. (i) 

This convincingly excludes the possibilty that the b-quark is in 

a left handed singlet, thus furnishing evidence for the existence 

of its part"ner the t-quark. 

The observed suppression of FCNCs r.1akes them a useful area 

for testing the Standard i'-lodel and possible extensions. In 

particular, the values of the l~H matrix elements and the mass of 

the t-quark can be constrained. This type of analysis is discussed 

in Chapter 4, together with some constraints on left right 

symmetric and supersymmetric extensions of the GWS theory. 

2.2 Experimental Constraints on the Quark Hixing t1Ja.trix 

The experimental constraints on the Kl·l matrix elements 

(prior to the information from B-meson decay) are summarized by 

Kleinknecht and Renk /46/ and by Pakvasa /47/. The additional 

constraints coming from the observation of B-meson decays are 
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dlscussed in Cha~ter ~. 

'l'he coupling parameter r·udl can be deterr:;ined fro:!. a cor::parison 

of nuclear beta decays with the muon decay rate. ·~e result is 

Kaon semileptonic decays glve IV l = 0.219 + 0.003 whereas hyperon us -

semileptonic decays give 0. 223' }v us I ~ 0. 230 • 'l'he discrepancy 

between these results is probably due to a lack of theoretical 

understanding of SU(3) symmetry breaking. A crude average of the two 

results gives 

IV I = 0.224 + 0.006 
us 

The unitarity limit on IVcdl from fVudl above is fVcdl (0.24. 

A lower bound can be obtained from data on charm production in 

deep inelastic scattering. This bound is lvcdl) 0.2 • Summarizing 

Analysis of the same data provides a conservative lower bound 

jVcsi~0.59, while a much stronger bound of jVcs\)0.8 can be 

obtained from D+ +- ~ e + }I • Including the uni tari ty limit from 
e 

The unitarity limit for IVcbl from these estimates of JVcdl and 
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Finally, the uni tari ty of the Kll rr.atrix can be used to lin.i t 

the elen,ents IV til • The results are 

0 < \Vtd\ < 0.13 

0 < \Vts1<0.56 

o. 82 < lv tb { < 1 

A summary of the constraints on the elements of the iG"l matrix 

prior to results from B-meson decay is 

l vI = 

0.9737 .:. 0.0025 

0.22 + 0.02 

0.065 .:. 0.065 

0.224 + o.oo6 

0.89 .:. 0.09 

0.28 + 0.28 

0.05 .:. 0.05 

0.28 + 0.28 

0.91 .:. 0.09 

(2.9) 

This form is based on the assumption that there are only three 

generations of quarks. If there were four or more generations then 

the lower bounds coming from the unitarity of the KH matrix would 

be relaxed. In particular, IVtbl = 0 would be allowed. The 

observations of B-meson decays provide much tighter constraints 

on the elements of the Klvl matrix. These constraints are given in 

Chapter 4. 

2.3 Anomalous Ward Identities 

An argument within the GWS theory for the existence of the 

t-quark is that the theory is aesthetically more pleasing if all 

the fermions appear in SU(2) doublets. A more mathematical 

statement of this is the requirement that the triangle anomalies 

must vanish. 
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v/ard Identities (i.e. relations ueh1een ~ireen's funcLcns) 

can be derived quite generally in quantw:1 field theories. These 

relations J:.ight be expected to hold in all orders of perturbation 

theory, which ls the case in QED. liowever, Jn theories \·Jhere 

fermions have an axial coupling (containing a r5), it can be shown 

that an anor1alous term appears in a ',}ard Identity when it lS 

calculated at particular orders in perturbation theory /43,49/. 

The ano;,laly appears when divergent Feynnan diagrarJs are considered 

since there lS no regularization procedure which respects axial 

symrnetries. That the anor;~aly is real and not just a calculational 

artefact is shown by the Current Algebra calculation of the width 

0 
for TT + 1''¥. VIi thout the anomalous teru in the \·lard Identity 

this width is zero /50/. With the anomalous term included the 

correct result is obtained /51/. 

Although the anomaly is welcome in Current Algebra, its 

existence in a spontaneously broken gauge theory is disasterous. 

Gross and Jackiw /52/ have shown that, if anomalies are present, 

such a theory is not renormalizable. Therefore, the anomaly must 

vanish in a realistic theory. 

In a gauge theory the coupling of fermions (~) to the gauge 

fields ( w; ) , where a is the group index, is of the form 

+ (2.10) 

T+ and T- are hermitian matrices which define the group structure 
a a 

of the vertices, and T+ -1 T- in general. The diagrams which give 
a a 

rise to the anomaly involve a fermion triangle (Fig. 2.1 ). By 

taJdng the trace round the fermion triangle and summing the 

contributions from each diagram, one finds that the total anomaly 
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The diagrams for the triangle anomaly in·a general gauge theoryo 
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A b a c 

is proportional to 

= A abc 

= 22 = 

Evidently the theory will be anomaly free if A b = 0 which 
a c 

can happen in three ways /53/: 

(2.11) 

i) A+= A- I 0 • The right and left handed anomalies cancel if 

T+ and T- are related by a unitary transformation. 
a a 

ii) A+ = A- = 0 • A representation of a Lie algebra is "safe" if 

its generators T satisfy this condition. 'I'he Lie algebras which 
a 

have only safe representations have been listed /53/ and a gauge 

theory based on one of these will be anomaly free. 

iii) Conditional cancellation. This case occurs when the condition 

A+ - A- = 0 places a restriction on the allowable quantum numbers 

for the particles in the theory. The G':IS theory of weak interactions 

belongs to this class /54/. The condition for the GWS theory is 

l:Q. = o 
. l 
l 

where the sum extends over all the particles in left handed 

doublets. This condition is satisfied by all the quarks and 

(2.12) 

leptons within one generation ( provided that the quarks come in 

three colours). Thus, if the G\IJS theory contains a third generation 

lepton Cr) with associated neutrino, then the b-quark must have 

a partner with Q = +~ (i.e. the t-quark). 

2.4 Experimental Evidence for the t=Quark 

Searches for the t-quart have been made both in e+e~ and pp 

collisions. At PETRA the ratio 



+ e e +- hadrons 
= 

+ e e 
= L Q 2 

. l 
] 

(2.~3) 

has been measured up to a centre of uass energy of 45.2 ·}e1i /55/. 

Up to this energy there is no evidence either for a tt resonance 

or for the increase in R expected once the t-flavour threshold 

is crossed. As a result a lower bound on the t-quark uass has 

been derived /55/ 

r'\ ) 22.0 GeV ( 90 % c.l. ) (2.14) 

A lower lir~,i t on the mass of a further Q = -j- quark is also given: 

m ) 21.0 GeV 
q 

The absence of positive evidence for the t-quark in e+e- collisions 

has led to many attempts to place bounds on rr,t from other information 

(see Chapter 4) and to models without a t-quarl(. These latter models 

are severely constrained by observations of B-meson decays 

(section 2.1 ). 

At the pp collider the t-quark may be produced by QCD fusion, 

p p ~ t t , or via the \'/, p p • \<! + t b • By considering the 

decay mode t ~ b e + v Barger, 11artin and Phillips /56/ showed 
e 

that early UA(1) observations /57/ of an electron with jets and 

missing energy could be interpreted as being due to a t-quark with 

mass 25 to 40 GeVo Recently, the UA(1) collaboration have presented 

evidence for the t-quark in the\'!+ t b channel and place its mass 

in the range 

(2.15) 
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This determination of r\ will be useful for low energy weak 

interaction phenoLienology which, until now, has had to accommodate 

an unknown value with correspondingly less certain results. 



- 25 -

CHAPTER 3 

THE L
0 

- ~ TRAhSITION AJ1;pLITUDE 

3. 1 Formalism 

The neutral kaon system can be described in essentially two 

ways /59 - 61/. The first is as a pair of states \lfhich are 

eigenstates of the strangeness operator. These are the states I i~0 ) 

with strangeness +1 and l~)with strangeness -1 which are produced 

in strong interactions, for example 

- 0 0 
1r +p-+A +K and K 

In terms of quark content these states are I K0> = I d;-) and I~>= 

Ids) • The action of the combined operation of parity and charge 

conjugation in this basis is given by 

"12 = 1 

A conventional choice /60/ is'= +1. The basis of CP eigenstates 

is then given by the linear combinations 

where JK
1
') has CP eigenvalue +1 and IK2) has CP eigenvalue -1. This 

is the particle mixture theory of Gell-Viann and Pais /59/. 

The CP conserving picnic decay products of these states are 

K
1 

+ 2-rr and K
2 

+ 31T. The first of these decays has a high Q 

value and so K1has a short lifetime /33/ 
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"'C = ( 0.0923 + 0.0022 ) X 10=1
(j s 

1 -

'i'he second decay has a lo\v Q value leading to a lont~ lifeti:·-.e 

for 1~ 2 /33/ 

~2 = ( 0.5183 + 0.0040 ) X 10-7 
S 

In 1964 Christenson, Cronin, Fitch and Turlay announced /62/ 

their discovery that the long-lived component of neutral kaons 

also decayed into two pions with a small probability ( branching 

fraction 0.297 .±. 0.023 5~ /33/). This result was confirmed by the 

observations of Abashian et al./63/. Following these results the 

kaon decay eigenstates were modified to include the effects of 

CP-violation 

(3.2a) 

and 

(3.2b) 

where f is a small parameter measuring the amount of the "wrong" 

CP component in the decay eigenstates. In terms of the strong 

interaction eigenstates these are 

= 1 

and 

I KL} = 1 

\/'2( 1 + J p1 2
) 

(3.3b) 
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rJ'he b:ne dependence of the t\.10 co.·~ponent }:acn stnte vector 

is given by /60,61/ 

with 

'. !'1 . . 
lJ 

and 

f!. 
lJ 

= c ~-:. 0- ir.),. 
lJ 2 1J J 

= < K . I H I K 0 ) + [_ (i·~ . I I 1 I n ) ( n I ll 1 K . ) 
1 J n --~l--------~----~-

rr.1. - E ._ n 

= 21T [ (Ei l H \ n)(n IF lKj)~CEn- mK.) 
n 

(3.4) 

(3.5) 

In terms of these matrices the CP-violation parameter pis given by 

f = -i( Imlol12 - (i/2)Im ~2) 

(m1 - m2) - (i/2) ( ~ - 'Y2) 

= -i( Imh12 - (i/2)Im r;
2

) (3.6) 

(ms - mL) - (i/2)(~ - 1"L) 

where 

m. = Mo . 'f'. = r. 
l ll l ll 

are the masses and widths of the decay eigenstates. 

The CP conserving K1 +- 2..,.. amplitude is defined /60/ by 

and the CP-violating amplitude by 



= 2u -

where &. is the two pion final state strong interaction nhase shift 
J 

for a state with isospin I = j. Using these amplitudes, two complex 

observables can be defined: 

= (TtTT- IT I i,1 ') = 

<rr+,.,.- 1 T 1 rz~ > 
u 

E. + E I 

'Joo=(7ToT1oiTJKL)= £-2E' 

('1To 1(o J T I Ks) 

where 

E. = p + i ( ImA / ReA ) 
0 0 

(3.?) 

(3. 8) 

The parametrization of CP-violation given above is redundant. 

There are four theoretical parameters ( ImL
12

, Im ~2 , ImA
0

, ImA2 ), 

but there are, in fact, only three independent real experimental 

observables since the two complex observables ~ and~ are ,+- (00 

related by 

Re ( ( 11 - n ) exp ( -i ( ~2 - ~ ) ) ) = 0 
(+- (00 0 

A standard convention /60/ given by \r!u and Yang is to set ImA = O. 
0 

In certain models the phase convention may be determined naturally 

so that a non-zero value of ImA arises. However, a phase transformation 
0 

can always be performed to recover the \Vu=Yang convention. In this 

convention 

f.=(l (3.9) 
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3. 2 Experir:~ental Infor::;ation 

The non-conservation of strangeness in weak interactions allows 

,o :-;-o 
h ~ '' transitions, and the rnixinz; of two degenerate states 

results in a mass splitting. 'J'he CF ei[;enstates ,,.
1
') and J;;

2
) 

would have definite masses and lifetimes if CP invariance were a 

good symmetry. In fact this invariance does not hold but the 

corresponding corrections to mass and lifetin1e are negligibly small 

giving 

= = 

This mass difference is measured experimentally using the 

phenomena of interference and regeneration. Interference is a 

characteristic prediction of the particle mixture hypothesis. 

Asswne that at time t = 0 a pure K
0 

meson bean; is produced, for 

example, in the reaction 1T- + p ~ "!..
0 

+ /\
0

• no ~ mesons are 

(3. 10) 

present at t = 0. The particle mixture hypothesis predicts that an 

initially pure K
0 

state will become, after a time t 

l~Ct)) = 1 (IK
1
) exp(-i~ 1 t) + IK

2
) exp(-i~2t) ) 

/2 
= 1 (JK0

) ( exp(-i~ 1 t) + exp(-i~2t) 
2 

where~- = m. - (i/2)~ • The probability of finding a ~at time t 
~ ~ ~ 

is thus given by 

p(j<O ,t) = i;-( exp(= r
1
t) + exp(-12t) 

= 2 exp(=~C'; + '2)t) cosCm2 = m1)t ) 

The oscillatory time dependence represented by the last term can be 

detected in either of two ways. The first, advocated by Fry and Sachs 
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/64/,is by directly measuring the strangeness oscillation of a 

neutral kaon bear., as a function of time through the detection of 

strong interactions which could only be induced by ~, for exa:::ple 

:-:or': + p -. "
0 

+-+. Th d th d t d b l · h /o'5/ . -r ,, e secon me o , sugges e y Ze vdolc 

and by Treiman and Sachs /66/, is through the observation of semi-

leptonic (K
13

) decays of neutral kaons. The 4Q = 6S selection rule 

forbids the decays K0 ~ e + -o + -y fT' and K + e lltr and allows 

only K0 + e + ,rr- and ~ + e- ~ rr+. The oscillations of strangeness 

can, therefore, be detected by observing the number of electrons or 

positrons produced in Ke
3 

decays. 

The method of interference yields only the magnitude of the 

mass difference, leaving the sign undetermined. However, experiments 

based on the phenomenon of regeneration can be used to find both the 

magnitude and the sign of the mass splitting. Regeneration is a 

result of the differences in the nuclear properties of K0 and ~ 

mesons. Assume that at t = 0 there is a beam consisting of K
0 

mesons 

only. Decays K
1 

+ 21(will tate place in this beam during a time 

t" t:"1 = 1/11 • These decays will stop after "C1 <~ t ,.,-t; where 

~2 = 1/~, since all K1 mesons will decay and leave a pure beam of 

K
2 

mesons. If the beam is now directed at, say, a copper plate, K 1 ~~7.f 

decays will reappear behind the plate. What happens is the regeneration 

of K
1 

mesons in matter. 

Denoting the amplitude of the K
0 (~) meson scattering on a 

nucleus by f (f), a K
2

_ meson transforms after scattering into a 

linear superposition of K
2 

and K
1 

IK
2
) = Jf ( IK0

)- I~)) scatt~ ./f' (f/K'} ""fj~)) 

= iCf + I)fK2) + iCf- I)jK1) 
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\,lhile if mesons are stront;ly absorbed by nuclei via processes such 

as ~ + p -+- 1\ 0 
+ -rr + 

--o 0 0 0 
and K + n +A +~ , E mesons can only 

undergo elastic and charge exchange scattering (due to baryon 

nwr1ber and strangeness conservation) and therefore interact with 

appreciably smaller cross-sections. Thus I I f and a component of 

K
1 

mesons has been regenerated in a beaM of K
2 

mesons. 

\-!hen the regenerated 1·~ 1 mesons travel at a non-zero angle with 

respect to the incident beam, regenerabon on different nuclei in the 

plate is incoherent. If ,however, a K
1 

r:1eson travels forward, the 

runplitudes of regeneration on nuclei along the beam axis add up 

coherently. Heasurc;nent of the ratio of coherent to incoherent 

regeneration intensity makes it possible to deteriiiine sl:'i with high 

accuracy. The interference of K
1 

Iiiesons regenerated in two (or more) 

plates can be used to find the sign of £rn. Such experiments have 

established that Sr•i = r.1
3 

- mL < 0 /67 I. 

The most precise value for ~m obtained so far is /33,68/ 

= -(0.5349 ~ 0.0022) X 1010 -1 
~ s 

corresponding to 

= -(3.521 ~ 0.001) x 10-14 GeV (3.11) 

The discovery of CP-violation in 1964 was made when Christenson 

et al. observed the decay of the long lived component of a neutral 

l·~aon bemn into two pions. A bear1 of 11K
2

11 mesons was allowed to regenerate 

a K
1 

component in a bag of helium. Christenson et al. observed an 

+ -excess of "K • 17 -rr 11 events in the forward direction over the 
2 

number expected from coherent regeneration (K2 ~ E
1 

+ TT+if=). 

They , therefore, concluded that they had observed the direct decay 

of the long lived neutral kaon into Tr+1f- with a branching ratio 
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R(K
1 

+ all charged modes) 
= (2.0 ~ 0.4) x 1C-3 

Using this result they estimated that 

J(l = 2.3 X 10-3 (3.12) 

K
1 

+ K
2 

mixing (CP-violation) results in a charge asyrametry 

in the semi-leptonic decays of the K
1 

meson 

(' (KL + e + YfT-) - r(K
1 

+ e- vtt) 
f' (KL -+ e + ,,-) + r(K

1 
-+ e- v•+) 

0 -- + Using the AQ = AS rule which forbids the decays K • e 11fT and 

~ + e + yf(" and taking into account the equality r (K
0 -t e + "Y11-) 

= r (jzO + e- ;, 1T+) the asymmetry is given by 

= 2Re £ 

The world average experimental measurement for this asymmetry is /33,68/ 

~ = (3.30 ± 0.12) X 10-3 

giving 

Re l = (1.65 ± 0.06) x 10-3 

From this result and the estimate of Christenson et al. the phase 

of E can be determined 

A ~ 1.1..20 2 20 rg ~ = ~ + • (3.14) 

In addition to the parameter f which describes the amount of 
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"wrong" CP cor:1ponent in the l:aon decay eigenstates, til ere is 

another quantity, E 1 , characterizing CP-violation. ':'his describes 

CP-violation in the direct K
2 

+ 21( (I = 2) cha:mel, and ~-s given 

by 

= i (ImA
2

/A ) exp(i(~2 - 6 )) ;2 0 0 

The phase of £ 1 is, therefore 

Argf 1 = -}11 + ~ -~ 2 0 
= (3. 15) 

using the experimentally r:1easured values for the T("f( phase shifts /68/. 

A suitable combination of the experimental observables ~ and 
f+-

'YJ yieldS the ratiO Of the magnitudeS Of ! and e I (oo 

I~· I = I 1+- -1Jool 
2 ~- + '?oo 

~ 0.02 (3.16) 

This ratio is a significant quantity for weal-~ interaction phenomenology 

as will be shown in Chapter 5. Experiments are now in progress to 

determine this ratio more precisely /69,70/. 

The experimental parameters dm and £ of the neutral ]{aon systerr; 

are related to a theoretically calculable transition amplitude by 

simple expressions. In the K
1 

- K
2 

basis the mass matrix hij can 

be written /60/ 

( K. I T I K.) 
~ J =( rr.1 

-im' 
im') 

m2 

where the off-diagonal elements, .±. iu', are the CP ... violating K
1

+1-K
2 

ar:Jplitudes. The K
0 ~ ~ transition amplitude ·is then given by 



= ~- < ;: 1 - ;,2 I I I ;c 1 + ;~ 2 ) 

= -~(m 1 - r;-,
2

) + iL:' 

Sii:iilarly' the r ~ }-~0 ar;:pli tude lS 

Thus 

2Re < ~ 1 T 1 l~ 0 
) = 2Re < i~0 I T I ~ > 

= r.;s - mL = b m 

and 

= m' = Im!i
12 

Tal~ing the real part of equation (3.6) gives, in the \Vu-Yang 

convention ( £ = p): 

= Re E ( &P + 2cSrr.) ~m 
21rn "lif 

= -2 &rr. Re£ ~ -;rm ~2 

+ 

(3.17) 

using the experimental result 'm ~ ~~-~1'. Iiow, the kaon semileptonic 

decays Ke3 give /68/ 

lim ~2 ~ ' < 0.02 
Iml·J12 

Therefore 

(3. 18) 

The relations expressed in equations (3.17) and (3.18) will be 

used extensively in the following chapters. 
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Before the G~S theory of weak interactions was accepted there 

were :nany at ter~pts to calculate the ::, ... l;S mass difference. As the 
.w k 

standard current x current weak liamil tonian contained only (lS = 1 

interactions, the direct 1~0 ... ~ transition vias set to zero. 

Contributions to the mass difference occured through decays to non-

strange intermediate states, represented by the summation tero in 

M .. ( equation(3.4) ). Possible dispersive contributions are 
lJ 

o K:-:o K ++71e 'V_.. 

0 :-:() 
K ~ p , k) , A

1 
.... 1\ 

0 :-:() 
K ~ n'"J'(" (n > 1 ) ++ K 

If the AS = AQ rule were exact the semileptonic intermediate 

states would not contribute to c5m at all since one of the vertices would 

necessarily have to involve AS = -AQ· Even if the 4S=AQ rule is not 

exact, experiments indicate /68/ thatAS = -AQ transitions have much 

smaller amplitudes than AS = AQ transitions. Therefore, the contributions 

of ser.1ileptonic modes to &m can be neglected. 

Vector meson (r,LJ, A
1

) contributions are assumed to be small. 

For example, Oneda finds /71/ that the contribution of the r meson 

is only around ~fo of the observed value due to angular momentum 

effects. Similarly one expects all vector meson contributions to be 

suppressed. 

The first attempts to calculate the KL- KS mass difference were 

made by considering the two pion intermediate state /72 ~ 76/. The 

sign of this contribution can easily be understood. Neglecting the 

effects of CP-violation /77/ 
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= 

therefore, the h1o pion contribution lS Sl ven by 

I (h1 I H' 217)12 

since 1~2 ~ 21'f is forbidden. This contribution can have either 

sign, being positive when E2TT < mK and negative when E2 TT > !JK. 

The sign is determined, in principle, by the relative strengths 

(3.19) 

of the parts above and belo\v the pole. The authors of references 

72 to 76 consider the two pion, I = 0, intern;ediate state and 

neglect the I = 2 contribution because of the AI = ~- enhance"~ent 

in weaL interactions. A summary of their results is 

- 3.0 (3.20) 

A recent evaluation of the t\.10 pion contribution /77/ using 

a subtracted dispersion relation for the self energy obtains the 

result lmJ 2lf= (0.64 to 1.4) x Smexpt •• Donoghue et al. /77/ also 

obtain the result aml
2

1f'= (1.4 to 2.8) X ~mexpt. based on a chiral 

perturbation theory calculation. Both these results are sensitive to 

the UV cut off employed, but both indicate that the part above the 

pole is stronger leading to an overall negative 1r1fcontribution 

to ~r.1. That is, the two pion contribution has the same sign as the 

experimental result. 

An estimate of the one particle pseudoscalar (;r0 ,~, ~') 

intermediate states was first obtained by Itzyl~son et al. /70/. In 

order to elirJinate the unknown matrix element < K0 I H I JT
0 > they 



cor:iputed the quantity 

~mfno,"' 
r (l,: 1) = 

16 

7'/ 
- _..,..!( ...... 

4n~ - 3r;,~ - r::;. 

2 2 2 
(171, m_.) 

j·, .. 

So, the V
0
,' contribution to Sm is g1ven by deviations fror71 the 

Gell-Hann-Okubo r:1ass formula 

0 

Inserting the experimental values for the masses gives 

or 

= 

0.7 

- 1.4 bra t exp • (3.21) 

which has the wrong sign. }~owever, this result depends on the exact 

(flavour) SU(3) expression 

= 

If, to allow for some SU(3) breaking, this is modified to 

= 

then, with f ~ 0.25, the correct mass difference is obtained. 

Greenberg /79/ and Donoghue et al. /77/ have pointed out that 

in the exact SU(3) limit the octet state 1B should be used in place 

of the physical state '7 . The Gell-Hann-Okubo mass relation is then 

satisfied, g1v1ng 

= 0 
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The Su(3) octet (~;:) and singlet CJ
0

) states :'Jix to produce be 

physical 7 and "1' states. 'l'al:ing this mixing into account, which 

is equivalent to including the-,· as an intermediate state, gives /77/ 

2 
= (0.20 + 0.78 p ) 

where p is defined by 

= 

r = 1 is suggested by the quark model and the A I = ~- enhancement of 

we~: interactions, leading to 

2 Srn t exp • 
(3.22) 

Fran these estimates it appears that the one particle pseudoscalar 

intermediate states give a contribution to 'm of roughly the correct 

magnitude but of the wrong sign when compared to the experimental 

result. 

The contribution from the two pion intermediate state has the 

correct sign. This, together with the undetermined three pion 

0 contribution, could be enough to overcome the-yr ,.., , "'/' contribution 

and reproduce the experimental result. The semileptonic and vector 

meson intermediate states are neglected due to their suppression 

by the AS =AQ rule and angular momentum effects respectively. A 

summary statement is that the sign of the total dispersive 

contribution to the KL - KS mass difference is undetermined, and 

its magnitude is consistent with either the experimental result or 

zero. 

In the standard current x current theory of weal: interactions 
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with less than three generations of quar~s there is no CP-violation. 

Therefore, in the years before the l·:o bayashi-Laskawa (Lii) model /39/, 

CP-violation vtas thought to occur as a result of a new "superweak" 

interaction /60/, whose coupling constant was G IV 1c=
6 ,::; 

superweak F" 

llow that there are three or r:~ore generations of quarks, CP-violation 

finds a natural place in standard wea;·: interactions through a phase 

in the I:i·i quark uixing r~1atrix. For this reason 11 superweai-: 11 theories 

are not discussed here. 

3.4 .K
0 

- ~ Amplitude: The Box Diagran; 

In the G'v!S theory of weak interactions there is an effective 

local /80/ AS = 2 Haniltonian in the form of the box diagram /36/ 

(Figure 3.1). The free quark transition ruY~plitude ( s d ~ d s 

is computed using the Feynman rules /12/ producing a function 

r.mltiplied by a quark operator. This transition amplitude is then 

taken to be an effective l~miltonian for the K
0 

- ~ transition. 

The free quarl-. amplitude is given by 

= - I' 
) ( sL "'( dL ) 

i,j = u,c,t (3.23) 

where the A. are products of KM matrix elements A. = V'! V. d e The 
l l lS l 

B .. are known functions /81, 82/ of the quark masses 
lJ 

B .. = X: c + (1 
1 

6 2)- ~( xi y J.J. 

- x:) (1 - x.) 1 X. 
l l J. 

B .. = x.x. 

~ (xj 

1 r+ 6 3 ) lJ ~ 2 
4 

= X.) (1 .,. X.) (1 - X.) 
l J J 

+ ( X. ~x.) 3 
J J. 

(1 - x. ) ( 1 
l 

X.) 
J 

ln (x. ) 
J. 

ln (x.) 
J 

~ 



d 
u,c,t. 

s 

w. w 

... -s u.c.t d 

Figure 3.1 

The box diagraHJ amplitude for the K
0

- ~ transition. 
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Perturbative QCD corrections to this free quark transition 

amplitude have been evaluated in the leading logari thri. approximation 

by Gil!T!an and \'lise /83, 8LJ/. The effect of these corrections is to 

multiply each of the functions L. 0 by a number 70 oO The values of 
lJ lJ 

these nwr.bers depend on the QCD scale A in an effective four quark 

theory, \'Jhich is the quantity extracted fror:; QCD analysis of deep 

inelastic scattering data. The results of this calculation are 

shown in table 3.1 below. 1f.. 0 is symmetric and 11 . = 1 for all 
flJ /UJ 

j = u,c,t • 

A 2(GeV2) 
'Y/cc ltt 'let 

0.01 0.69 0.59 0.41 

0.1 0.99 0.60 o.4o 

Table 3· 1 QCD correction factors for the s d ~ d s transition. 

The K
0 

- ~ transition amplitude is given by 

= 

= (3. 24) 

where QB is the hadronic matrix element 

= 

The calculation of this matrix element requires non-perturbative 

techniques not yet available. Instead, Q
8 

must be estimated in a 

r.10del. The first estimate was made by Gaillard and Lee in the 

vacuum saturation (factorization) approximation. In this approach 
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a cm-plete set of states is inserted between tl!e twc currents ano 

the vacuurr, state is assumed to saturate the matrix ele:.,ent 

= 

The factor 8/3 results from the four possible Wic~ contractions 

and the two types of contraction of quark colour indices. Using 

PCAC this g1ves 

= 

where f 1 ~ = 1.23 m1f' is the kaon decay constant obtained /85/ from the 

K+ ~ I"'+ V decay width with the Pi r.iatrix elen·.ent fVusl = 0.219. The 

factor of (2mK)-
1 

arises fran the normalization of the kaon states. 

There is, however, no theoretical justification for this method. 

Shrock and Treiman /85/ have estimated the one pion contribution to 

this matrix element and find that it is roughly comparable to the vacuum 

state contribution but opposite in sign. Although VysotsKii's /86/ 

estimate is somewhat smaller, this raises serious doubts about the 

reliability of the vacuum saturation method. As a consequence the 

matrix element has been estimated in a variety of other ways. The 

result is usually expressed as 

= (3. 25) 

which is normalised to the vacuum saturation estimate of B = +1 • 

There are three other types of determination of the hadronic 

matrix element: the quark model approach /37/ which includes the 

HIT bag /85/, the use of SU(3) and PCAC /80 - 91/ and a general 

r:1ethod which views the matrix element as a scalar form factor and 

which leads only to an upper bound /92/. 
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Both the QCD correction coefficients 7· . and the hadronic 
lJ 

matrix element Q
13 

depend on the renormalization point ~ and this 

dependence should cancel ln the product. Only the coefficients 7ij 

can be evaluated as a function of f4, while the ~~-dependence of the 

matrix element is unknown since it is calculated in a quark rwdel. 

However, the fA-dependence of the coefficients fij is rr,ild and the 

final result is approximately ~-independent. 

Shrock and Trein;an /85/ used the i.JI'l' bag model of hadrons /93/ 

to estimate Q
13

• This model incorporates quark and gluon confinement 

as an assuraed property and has achieved a number of successes in 

describing the static properties of low lying hadrons, such as 

L·1asses, magnetic moments, charge radii and axial vector coupling 

constants. The model depends on a set of arbitrary parameters which 

are determined by a fit to various hadron properties. These 

determinations have resulted in three different sets of values for 

the parameters (labelled A, I3 and C). Set A yields a prediction for 

the kaon mass which is in very good agreement with experiment, and 

it is this set that Shrock and Treiman use in their determination of 

the matrix element. They find 5 = 0.42 and infer, from the known 

accuracy of bag model calculations of K +- 211' decays, that this 

result is accurate to within a factor of two. 

Colic et al. /87/ have repeated the bag model calculation. In 

determinations using each of the sets of bag model parameters they 

found B = -0.42, 0.055 and 0.34. Trampeti~/94/ has noted that the 

first calculation is the same as that of Shrock and Treiman with 

the exception of the sign of the result. 

In addition to the bag model Colic et al •. /87/ studied three 

models based on harmonic oscillator potentials. The first model, 



called simply the llarrr.onic Oscillator (:;u) model, is non-relativistic 

and treats the interquark potential as a harmonic oscillator potential. 

This model gives i-~ = 2. o6 • In the Relati vi zed Harr:.onic Oscillator 

(lliiO) model, relativistic corrections are estit;tated by replacing the 

Pauli spinors by Dirac ones. '!:he term 11relativized11 is used instead 

of "relativistic" because full relativistic invariance is not achieved. 

The RHO model gives 13 = 1.44 • In the liarmonic Oscillator Shell (HOS) 

model the quarks move relative to a harmonic oscillator potential 

which is fixed at the centre of the coordinate system. This model 

gives J3 = 0.46 • Of these three models the RHO model is most stable 

with respect to changes of input parameters. The HO rr.odel always 

gives the same sign for B but the result is strongly dependent on the 

input parffineters • For some values of input parameters the result of 

the EOS model changes sign in a way which is similar to the behaviour 

of the HIT bag model. 

Another method uses SU(3) and PCAC to relate the AS = 2 matrix 

element under study to experimental information on the 4 I = 3/2 

+ + 0 8 K- .... n- 1f decay. The current algebra approach I 8/ yields J Bl = 0.33 

with an estimated 50% uncertainty /77,89/. The sign of the K ~ 2Tr 

amplitude cannot be deduced from experiment and hence the sign of B 

is not determined. However, a model dependent determination of the 

K + 211" amplitude predicts a positive sign for B. Both Colic et al. 

/95/ and Dupont and Pharo /90/ have noticed that it is difficult to 

reproduce the observed K.:!:. -+'11".:!:. .,r amplitude unless the A I = 3/2 

operator is suppressed by more than the short distance coefficient 

c
4 

= 0.4. This extra suppression would increase the value of B found 

by Donoghue et al. 

This result has been rederived within the framework of chiral 



perturbation theory rather than current alge'ora. In the lir:lit r_ = f" 
, t, 

Ginsparg and \.Jise /91/ obtain 0 = 0.33 • Dupont and Phan /90/ 

calculate the E -t- 2-rf a,:1pli tudes in chi.ral perturbation t!1eor,y with 

f_ = f,. and find the san;e result as •JJould be obtained using the 
II I\ 

factorization approxir.ation in this limit. Using the SU(3) relation 

to obtain the matrix elernent of the AS = 2 operator then gives 

= 

Taking this literally yields G = 0. 66 . However, the irr;plication is 

that the factorization (vacuum saturation) method is supported by this 

analysis and consequently f1f should be replaced by fK to give :G = 1 /90/. 

The vacuum saturation approximation is also supported by a 

prelir;;inary evaluation of the matrix element Qr within the framework 
.D 

of lattice QCD. Cabibbo, Hs.rtinelli and Petronzio /96/ find I3 -1.3 

by this n:ethod. 

The final approach is that of Guberina et al. /92/ who claim that 

there is, at present, no reliable calculation of QB • They adopt a 

general method which treats the /lS = 2 natrix element as the value 

of a scalar form factor F(t) at t = 0 • After sor.•e extensive 

manipulation a bound of IB I ~ 2.0 .±. 0.~ is proposed. 

What emerges from all of these calculations is that there is no 

obvious value for B as estimates range from 0.055 to 2.86 and the 

sign is undetermined. Therefore, the calculation of the K
0 

- ~ 

transition amplitude has a large uncertainty due to this factor. 



- 45 -

3.5 1·;
0 

- ~ Ar:1pli tude: Louble Penguin Liagrar:; 

In the box diagram amplitude QCL effects were included in the 

pararneters ?/ ..• however, with the introduction of stro11g interactions, 
flJ 

new effects arise /97/ due to the exchange of gluous. In particular 

there is a contribution to the i-:
0 + 211"(1 =C) an·.plitude frorr these 

"penguin" diagrams (Figure 3.2). As a result of the unusual 

(V - A) x (V + A) structure of the quark operators arising from these 

diagrams their matrix elements are thought to be large enough to 

overcome the small short distance coefficient c
5 

= 0.12 and give an 

important (possibly dominant) contribution to the K0 
o+ 2-rf(I = 0) 

amplitude. Since these diagrarns are purely AI = ~ , a dominant 

contribution frow them is a possible explanation for the A I = ~ 

enhancement in weak interactions. !~wever, Guberina and Peccei /98/ 

have shown that this expectation is rather unrealistic. 

Hochberg and Sachs /99/ have pointed out that the inclusion of 

strong interactions leads to a new contribution to the K
0

- jzO 

transition amplitude which they call a "double penguin diagram" 

(Figure 3.3). In the same way as the box diagram calculation the free 

quark transition amplitude is used as an effective Hamiltonian for the 

kaon transition. The K0
- ~ amplitude due to this penguin Hamiltonian 

is estimated /99/ to be 

f··J = p (3. 26) 

where t" is an infra-red cut off in the quark = H boson loop which is 

taken to be f'\"" 1 GeV ( a typical hadronic scale at which the effects 

of confinement might become important). Due to renormalization 

effects the strong interaction coupling constant is evaluated at the 



s d 

d d 

Figure 3.2 

The penguin contribution to K
0 ~ 2TT decays. 



w 

·w 

Figure 3·3 

The double penguin amplitude for the K
0

- ~ transition. 
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scale fA v1here O(s (#") = 1 /9o/. Qp is the :r,atrix element of a quarL 

operator 

= 

Since the matrix element is tai,en between colour singlet states, only 

the colour blind part of the operator, having the san.e structure as 

the box diagram operator, will contribute and it can be expressed in 

terms of the box diagram r.1atrix element /99/ 

= (3. 27) 

The double penguin diagram, therefore, has the same uncertainty 

associated with the non perturbative matrix element as the box 

diagram. It also contains another uncertainty in the IR cut off ~ 

which controls the cancellation of the two logarithms in the 

coefficient function. There is no a priori reason why this 

contribution should be small, particularly since it depends 

quadratically on the t-quark mass. 

The three contributions to the K0
- ~ transition amplitude 

described above - the dispersive terms, box diagram and double 

penguin amplitudes - have been used extensively in weak interaction 

phenomenology. These applications are described in the next chapter. 
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PHENO!-IEHOLOGICAL APPLICATIOHS Oi 'l'EE i\
0

- ~ TRANSI'l'ICi. 

4.1 Pllenon1enology: 1966 - 1983 

The first application of the K0
- ~ transition a:.1pli tude to 

phenomenology was rnade by T.lJ.Truong /73/ in 1966. Assuming that 

the dominant contribution to the KL- !\~ nass difference carr.e fron: 
0 

the 21f (I = 0) intermediate state, he derived a relation between the 

r:1ass difference and the pion phase shift 

= ( 4. 1) 

The experimental result 2"'Cc Sm • -1 then gives h (rr1~) ~ 45° 
u 0 J\ 

which is in very good agreement with the experimental measurement 

/68/ ~ = 46 .:!:. 5° for this phase. This information was then used to 
0 

infer the existence of an s-wave di-pion resonance above the mass of 

the lr..aon. Unfortunately, corrections to this fortnula, derived by 

Rockmore and Yao and by Kang and Land·/74,75/, remove the agreement 

with experiment. 

In 1974 Gaillard and Lee /36/ estimated the mass of the c-quark 

from the KL-KS mass difference by considering the AS = 2 box 

diagram amplitude. They calculated the hadronic matrix element 

using the vacuum saturation approximation ( B = +1) and determined 

that the mass of the c-quark was m ~ 1.5 GeV. This prediction was 
c 

remarkably confirmed in 1974 with the discovery /100,101/ of the 

J/~ resonance at 3.1 GeV and its subsequent interpretation as a 
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cc r:,eson. 

Follov1ing the success of Gaillard and Lee, phenomenological 

l . t" f l _o --o app lea lons o t 1e i\ - !~ transition aJ,!pli tude \vere r:ade using 

only the direct AS = 2 part of the ~iauil toni an in the form of the 

box diagrar~l. The dispersive (AS = 1 )
2 terms were assumed to cancel 

out to a large degree. Since in the box diagrru:, the loop integration 

was taken down to h = 0 the remaining small 71' 
0

, "'J , 21f", etcetera 

contributions were thought to be included by a quark - hadron 

duality /102/. That is, the uu intermediate state of the box diagram 

could be thought of at low energies as a 7T
0 or~, or with the 

insertion of a dd quark loop as a TT+7T- state. There were no 

penguin contributions as they had not yet been thought of. 

Using this method information on the Kobayashi-haskawa (K~!) 

mixing angles was extracted from the K
0

- ~amplitude by many authors 

/86,103 - 106/. The box diagram amplitude l"1B contains five unknown 

parameters ( &
2

, &
3

, 6, mt and B which can be related to two 

r.1easurable quantities ( cSm and f. ) via equations (3.17) and (3. 18) 

= 

Re E = 

2 ReN 
B 

Iml-~/ 2Om 

(4.2) 

(4.3) 

These two equations can be solved to find information about two of 

the unknowns in terms of the remaining three. A standard way of 

presenting these results is to determine sin&2 and sinS as functions 

of sin&
3

, mt and B. The results of this analysis are shown in 

Figures 4.1 and 4.2 for mt = 35 GeV. The solutions are labelled by 

quadrant in which ~ appears using the convention for the Kl·1 matrix 

given in Chapter 2. As m is increased solutions 1 and 2 move down 
t 

while solution 4 moves to the left. A simple consequence of these 
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solutions '-s that the b-quar;~ is expected /1U3, 104/ to decay in a 

cascade fashion, b + c ~ s,d at least as often as the decay b +- u. 

This result has been strii:in~l:i confirr;ed by recent measurer. ents on 

b-neson decay which ~ive /107/ 

reb • u) 
r (b .... c) < 0.055 (90 % c.l.) (4.4) 

Buras /82/ derived an upper botmd on the t-quar\; mass using the 

box diagram calculation of ~rr: together with a calculation of the 

short distance dispersive + -KL +- ,..,. fA amplitude. One loop diagrams 

contributing to this process in the unitary gauge are shown in Figure 

4 3 ~ al. · t th d 1-:+ ..... u +,!.. the hadronl· c r,~,atrl· x • • !.JY norm 1z1ng o e ecay . ......,... r ... i-"· · 

element is eliminated by 

giving the ratio of branching fractions for each process to be 

(neglecting the mass of the muon) /108/ 

B (KL + 1/ t'-) sd 

+ + 
B(K + ~ v,.) 

where /~ 1 , 82, 109/ 

~ci 
1f ln (x.) 

X. 

G(x.) + ~ + = l 
l 4 X. 4 

l 

with X. = m~/~c and "/ i is a QCD correction. 
l 

3 X. 
~ 

4 1 X. 
l 

G(x.)n·) 
l 11 

The branching ratio B(K+ .!)> t' +y) is known ( 63.50 .±. O. 16 % /33/) 

+ -and an upper bound on D(KL of> foA fA ) can be found if the assumption is 

made that the dispersive KL +1'1'+JA+fA- contribution is negligible. 
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+ -r r in unitary gauge. 
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This upper bound is /02/ 

_c.; 
~ 5.6 x 1C ·' 

which then leads to the inequality 

fRe At( G(xt) '7 

tv us I 

where k = 0.65 x 10-2 
/82/ and '1 = "/t • The contributions of the u

and c-quarks have been neglected because they are orders of magnitude 

smaller than the right hand side of the inequality. 

The box diagrarr, amplitude is used to derive ~m gl Vlng /82/ 

Re ~ ~ ~. j\j 1 ij C) 

i L) 

J 
= 4.44 X 10-5 

i,j = u,c,t 

This expression together with the inequality from consideration of 

the decay yields an upper bound on the t-quark rr.ass as 

a function of the parameter B. Since these equations contain three 

unknown para1[1eters &
2

, &
3 

and ~ it might appear that by making a 

suitable choice for their values an arbitrarily large t-quark mass 

would be allowed. However, this is not the case. Consider the 

(hypothetical) situation where the box diagram is dominated by the 

tt intermediate state then the above equations give 

Since the function G
2

(xt)/Dtt increases monotonically with increasing 

xt ( in the small xt limit G (xt) "" xt and Btt ,.., xt ) an upper bound 

on mtcan be obtained. The upper bound obtained by Buras /82/ is 
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r\ ~ 33 GeV at B = 0.42 (the original bag J<iodel estir.,ate for the L0
- ~ 

hadronic matrix element). For D ,.., 1, mt is much larger than ~\.,· 

Barger et al. /110/ have questioned the assumption that the 

dispersive two photon contribution to lS negligible. 

They argue that the ratio of dispersive to absorptive two photon 

contributions is the same for K
1 
~ fA+ r = + -as for ?J ~ foA fA . The 

magnitude of the absorptive contribution is YJlOWn in each case from 

+ -uni tari ty arguments. Since the purely weak contribution "/ + Z + f' r 
is known to be at most 10-4 times the experimental rate it can be 

ignored and,therefore, the dispersive two photon contribution can be 

determined from the experimental i • fA+~ rate. Unfortunately, 

there are two separate measurements of the '1 + "'+ r- rate which do 

not agree. The branching fraction as given by Hyar:1s et al. /111/ is 

(2.2 ~ 0.0) x 10-5 , whereas that given more recently by Dzhelyadin et 

al. /112/ is (6.5 ~ 2.1) x 10-6 • The Particle Data Group /33/ adopts 

the more recent measurement. Due to a sign an;biguity in the derivation 

each of these measurements eventually leads to two values for the 

parameter k of equation (4.3). For the original measurement the values 

are ', - (1 24 + 0•57 ) 10-2 
K - • - 0.48 X 

more recent one the values are 

and (2.62 

k = (1.38 

+ 0.57) 
0.48 x 10-2 ; for the 

+ 0.54) X 
0.33 and 

( + 0.57) -2 0.00 _ o.oo x 10 • Barger et al. /110/ conclude that the upper 

bound on mt is relaxed, with mt < 75 GeV for B = 0 .. 4 • 

As Bergstrom et al. /113/ have pointed out, the comparison of 

with may not be correct since the former is 

a I4Sl= 1 transition for which there can be extra pole contributions 

to the amplitude. Because of these uncertainties it is usual /105,114/ 

to take the ratio of dispersive to absorptive two photon contributions 

as an unknown parameter. Until this parameter is better known, no 
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interesting bounds result frorr: the consideration of 

decay /114/. 

In the context of left - right synmetric models (LR.S JWdels) the 

box diagram contains additional contributions arising fror< the 

exchange of one or more gauge bosons (v!R) associated with the extra 

gauge group sue2)R (Figure 4.4). Equating the real part of the total 

transition amplitude to half the v.
1

- KS mass difference Beall, Bander 

and Soni /115/ deduced a lower bound on the mass of the \'/R boson 

This calculation was performed using the vacum,J saturation estimate 

for the matrix elenents of the two distinct quark operators which 

arise. Trampeti<!' repeated /94/ the calculation using hiT bag model 

and harmonic oscillator estimates for the matrix elements and arrived 

at a similar conclusion. 

~iohapatra, Senjanovic and Tran /117 I noted that LRS models 

necessarily contained a neutral Higgs particle which changed flavour 

leading to a tree level contribution to the K
0

- ~ amplitude. 

Cancellations between this term and the contributions involving W 
R 

lead to a lowering of the bound to 

f\ ~ 300 GeV 
R 

This result depends upon particular values of the Kl'i mixing angles 

being allowed. Recent data from the CUSB collaboration /107/ shows 

reb ... u e v) 

reb .. c e v) 
< 0.055 (90 % c.l.) 

which rules out the particular values required and the lower bound 



d 
u,c,t 

s 

-s u,c.t 

Figure 4.4 

\•JL - VIR box diagram contribution to K
0 

- ~ in an 

SU(2)R x SU(2)L x U(1) gauge theory. 
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returns /118/ to the value of Jeall et al. /115/ and 'j'rar petit /';)4/. 

As an exar.;ple of the type of bounds 'vlhich can be derived fror.~ 

rare l~aon decays in supersyr.::::etric r.todels, Lahanas and J:anopoulos /110/ 

have repeated the analysis of Guras /'62/. They find that, in a locally 

supersymmetric theory, the t-quark mass is inversely related to squark 

masses. If the masses of squarks are greater than 20 GeV as indicated 

by searches at PETRA and PEP, then the t-quark mass must be less 

than 100 GeV. This calculation is, of course, subject to the sarr.e 

uncertainties as the original calculation in the standard model by 

Buras. 

4. 2 B-l·ieson Decay 

A major uncertainty in the calculation of short distance effects 

in rare kaon transitions is the value of the quark mixing angles 'vlhich 

appear in the amplitudes. However, recent measurements on B-meson 

decay provide a means of determining these angles. The experimental 

data consists of lifetir.1e measurements, an upper bound on a ratio of 

partial widths and measurements of the semileptonic branching ratios 

for B-meson decay. 

In 1982 the JADE experiment at PErRA determined an upper bound on 

the lifetime /119/ of 

- 4 -12 ~B ( 1. x 10 s (90 % c.l.) (4.6a) 

Recently two experiments at the PEP accelerator have measured the 

B-meson lifetime. 'rhe results are 

= (1.8 ~ 0.6 ~ 0.4) X 10- 12 
s (4. 6b) 

from the NAC detector group /120/ and 



-t: = (1 20 +0. 4~ 0 301 X 10- 12 
S 

D • -U.30 .:!:. • / (4.Gc) 

fror., the LAm: II detector group /121/. 

Experiments at the Cornell Electron ,C,torage Ling (C~.SR) have 

f.Jeasured the ratio of partial widths r(b + Uelo' )/r(b. cev) 

and the sernileptonic branching ratio. !'he source of i'-r::esons is tne 

T (4S) ( or 'Y' 1 1 1
) bb state which is just above flavour threshold. 

In semileptonic decays the rr.on•entwr spectrwn of the final state: 

electrons is harder in the case of b ..., uey than in the case of 

b +- cev • Using the model of Al tarelli et al./122/ for ser.1ileptonic 

B-meson decay, the CUSB collaboration /107/ find that the spectrum 

agrees well with that predicted for b • cev • They find no evidence 

for the decay b +- uev • From this they obtain the upper limit 

reb+ u e v 

reb + c ell 
< 0.055 ( 90 % c.l. ) 

Based on the analysis of Altarelli et al. /122/, the CUSL 

(4.4) 

collaboration have also measured the semileptonic branching ratio 

for B ~ e v X and obtain /107/ 

B(B + e 'Y X) = (13.2 .:t. 0.8 + 1.4) % (4. 7) 

This agrees well with the results of the CLEO collaboration who 

find /123/ 

B(B +- e v X) = (12.7 + 1.7 .:t. 1.3) % 

and 

B(B + r 'V X) = (12.2 + 1.7 + 3.1)% 
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A theoretical analysis of ,_;,·.esc:<1 decay can be JLade :in two ways. 

The first involves a calculation of the total decay width. Since the 

b-quarE is heavy co:;.pared to the scale of strong interactions, ,,-;::eson 

decay can be approxirr.ated by the decay of a free b-quark (~'igure L,.s). 

Then 

r = r (b • c) + r (b .. u) 

\·1here /124/ 

reb +- c) = ro,vbc\2 f1.11 + 1.53"/o CIVudl2+ lVusl2) 

+ 2 2 ~ 0 ·57 '7o qvcdl + lvcs\ ) 

and 

reb +- u) r tv '2 ~ 2.33 
2 

lvusl
2

) = + 3,0 (IV ud l + o bu 

2 
1Vcsl

2
) ~ + 1.53 '/o qvcdl + 

In each case the first term in the brackets comes from the semileptonic 

decay into e, f' or't'. ~ = ( G~ m~ /19211 3 ) and "!o is a QCD 

correction whose value is /124/ jr
0 
~ 1.1 • This approximation is 

good to the extent that non-spectator diagrams (Figure 4.6) contribute 

to the decay. However, it is not easy to calculate non-spectator 

effects reliably, as is shown by the unsuccessful attempts to calculate 

the semileptonic branching ratio /125/. Penguin contributions to 

B-meson decay are thought to be negligible /126/. 

The second method, which avoids the problems of non-spectator and 

penguin diagrams, is to calculate only the semileptonic width and use 

the experimentally measured branching ratio to determine the lifetime 

/122,125/. The analysis of Altarelli et al. /122/ involves free b= 

quark decay with corrections for soft gluon and bound state effects. 
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Free b-quarl{ decay (spectator diagrru:Is). 
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Non-spectator contributions to 13=-meson decays. 
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'I'he consequences of the b-quarl: being in a bound state are uodelled 

by giving the spectator quark a gaussian momentum distribution with 

mean spread Pp• This :~;ethod gives good agree:i'ent "'i t!1 the observed 

spectrum in :O...rneson decay for 0 .$ pF ~ 380 1-:e V /122/. 

The B-meson li fetiJ-:-:e is calculated frorr, 

= 

where E
51 

is the semileptonic branching ratio and ~L lS the 

semileptonic width given by /122/ 

r 
0 

(4.S) 

Z and Z are phase space factors, calculated by Altarelli et al. /122/, 
u c 

which depend on the arnount of Fermi motion given to the quarks in the 

B-meson: 

z = 0.94 z = 0.46 for Pp = 0 i1ieV 
u c 

z = 0.86 z = 0.41 for PF = 150 l··'ieV 
u c 

z = 0.73 z = 0.33 for PF = 300 !1eV 
u c 

Taking the phase space factors for pF = 150 l·ieV, the above 

expression for the semileptonic width can be used to translate the 

CUSB result on the ratio of partial widths into a bound on a ratio of 

KM matrix eletr.ents 

= 

(4. 9) 



- 57 -

'.i'his bound together with the measure''ents of the iO.-r.1eson l:i fet:ii'le 

can be used to restrict the !~l'J angles e-
2 

and e-
3 

to a sn:a11 ranr;e 

/127,120/. Sjnce the b + u contribution is so si:ial1 it can be 

neglected and equation (4.6) can be used to determine f\'cb\· h'.1th 

r''b = 5 GeV and 1.4 x 10-12 > "t"
13

(s) > 0.6 x 10-12 
an allowed range 

is derived 

0.05 < fvcbJ < 0.076 

From equation (4.9) this gives 

~ 0.012 , 0.008 
~ 

for the upper and lower linits respectively, or 

Using (for small s
2

, s
3

) 

= = 

it can be shown that s
2 

is bounded by 

'

v 1 - s cb 3 

or 

(4.10a) 

The CP-violating phase ~ cannot be determined from this information. 

Combining these results with the other data given in section 2.2 

leads to the following determination of the Kt-1 matrix elements /129/ 

I vI = 

0.9723 - 0.9737 

0.228 - 0.234 

0.003 ... 0.016 

0.228 .. 0.234 o.ooo - 0.008 

0.9704 0.9726 0.042 - 0.067 

0.041 = 0.066 0.9977 - 0-9991 



where the uni tari ty of the rl·i matrix has been used vJ.i th the assw.,ption 

of six quari·: flavours. In the generalized case v1i th n;ore than slx 

flavours, the ranges of values for IVijl are given by /129/ 

0.9709 = 0.9757 

0.27 

o.oo- 0.12 

0.222 - 0.234 

0.78 1.00 

o.oo - 0.58 

o.ooo 

0.042 

0.013 

0.067 

o.ooo - 0.999 

'l'he new information from B-meson decay is important for this work 

because it gives independent constraints on two of the variables in 

the JC
0

- ~ transition ar.1pli tude. This reduces the uncertainty in 

determinations of the remaining parameters. 

4.3 Phenomenology: 1983 - 1984 

4.3.1 Limits on B 

The calculation of the hadronic matrix element in the K0
- ~ 

transition amplitude requires non-perturbative techniques not yet 

available. Instead,the matrix element is calculated in a model with 

the vacuum saturation approximation (B = +1) being used to set the 

scale and sign. Colic et al. /87/, using a variety of models, have 

found values of B ranging from 2.86 to 0.055. The HIT bag model 

calculation had given /85/ B = 0.42 but a repetition of this 

calculation by Coli~ et al. showed it to be unstable in magnitude 

and even in sign with one calculation giving B = -0.42 • Although 

it is clear that B ( 0 will not reproduce the correct sign for 

cS m = ms= mL in the four quark model, the extra freedom in the six 

quark model means that such solutions cannot, a·priori, be ruled out 

/105/. 



In atter;;pts to bound the t-quari: :r.ass tl1e decay 

is considered together with ~ m and E • In addition to the problem 

with the electromagnetic contribution to the dispersive part of 

+ -K1 + r fA , both 3uras /32/ and 3arger et al. /110/ stressed the 

sensitive dependence of their calculations on D. Once n;t is fixed 

the size of B becor.~es the most significant phenomenological lssue ln 

the study of the perturbative K
0

- ~transition runplitude. The 

experinental constraints on the :r:r.: matrix elements can be used to 

bound B above and below and to resrict its sign /106/. 

The data to be fitted are the 1~ 1 - K
5 

mass difference and the 

CP-violation parameter. Following the success of Gaillard and Lee /36/ 

in determining r.1 and of the many determinations of the quark r:;ixing 
c 

angles /(>6, 103 = 106/, these are related to the real and imaginary 

parts of the box diagram amplitude l'i_, by 
!_) 

~r.J = 2 Rer,;n 
D 

(4.2) 

Ret = Imi1B/ 2 £m 

The value of 51 is fixed at s
1 

= 0.228 and s
3 

is varied in the range 

of 0.0 to 0.5 • For each s 1, s
3 

pair chosen there are up to four 

s
2

, s1 pairs which fit the data for B positive or negative. The 

solutions are labelled by the quadrant in which & appears. 

In reference 106 the t-quark mass was taken to be mt = 35 .!.. 5 GeV 

following an analysis of UA1 data /57/ by Barger et al. /56/ which 

indicated that this was a likely value. The QCD corrections were 

taken to be ?uj = 1, j'cc = 0.99, 1tt = 0.60 and 7ct = 0.40. The 

solutions for these values of the parar:;eters and B positive are 

illustrated in Figures 4.1 and 4.2. They are found in quadrants 1,2 

and 4 and there are two solutions in quadrant 4. 
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As positive ;; decreases fror:; B = 1 the trend is that t'1e s~ curve::, 
c:. 

for solutions 1 and 2 r.;ove up and sol uti on 4 moves to the right until 

by - ~0.5 no nart of solution 4 remains in the acceptable rnnge 

s
3 

< 0.5. A characteristic of solution 1 in this re~ion is that s
2 

is 

always larger than s
3 

and for both solutions 1s1 \ is snall except for 

sn·,all values of s
3

• 

As B increases from D = 1 the s
2 

curves fall for solutions 1 and 

2 and solution 4 moves to the left until B .::t 1.3 when the solution 4 

curve starts to move to the right as L continues to increase. By about 

B = 1.4 in solution 1 s
2 

becomes equal to s
3 

for some values of s
3 

and by B = 2 s
2 

is ah1ays less than s
3

• A characteristic of both 

solutions 1 and 2 is that the minimum value of s
3 

corresponding to 

1s1 \ = 1 increases as B increases until it moves beyond s
3 

= 0.5 in 

solution 2 for D = 1.7 and in solution 1 it is about 0.28 for B = 3.0 

(Figure 4.7). 

The negative B solutions are presented in Figure 4.8 for B = -0.4. 

Four solutions are found, two in the first quadrant and two almost 

identical ones in the fourth quadrant. As in the case for positive B 

the solutions move to the right as IDI decreases. These solutions 

illustrate how easy it is to fit the data in this model, but as the 

value of lVub/Vcbf in all cases never drops below 0.35 they are 

eliminated by the experimental bound (Vub/Vcb\ < 0.16. The predicted 

ratio does decrease as IB( decreases but the solutions move outside the 

acceptable s
3 

range before the experimental value is reached. 

The bound on fVub~/cbl is important as it eliminates solutions 4 

for positive Bas well as negative B and it establishes an upper 

bound on Bin solutions 1 and 2. Before seeing·how B is bounded, it 

is instructive to examine the ratio 
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B plotted against the minimum value of s
3 

• For solutions 1 and 

2 only, the minimum s
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corresponds to 1s61 = 1 0 
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The two first quadrant solutions for s
2 
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for B = =0.4 • The two fourth quadrant 

solutions are essentially identical to these. 
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\ ~ :: I = 

There are three areas of interest and t o · f in the \v ar1se or s
2 
~ s

3 
region where Js~/ is sr.1all. For solution 1 this arises for 1_; > 1 and 

the ratio can be very larr;e indeed ( unless 1s 1 1 -1 ) and the solution 

is easily eli~inated in this reg1on. For solution 2 can 

occur for any value of 3 but as & is in the second quadrant the ratio 

becomes .., -j-s 1 = 0. 114 • 'I'he third case arises for solution 2 with S > 1. 

As B increases the values of s
2 

becoue very small and the ratio 

approaches s
1 

= 0.220 • The importance of the experimental bound 

f"! ub/V cb 1 < 0.16 in eliminating these solutions and in bounding B is 

clear. 

For a particular value of B the bound on the ratio of !G1 matrix 

elements places an upper bound on the allowed values of s
3

. As B 

increases the maximw~ value of s
3 

allowed decreases as illustrated in 

Figure 4.9 • By B :t 1.23 in both solutions 1 and 2 the r;,axlmur.. value 

of s
3 

allowed coincides with the r1inimum value of s
3 

at which ls&l = 1 

and that is the upper bound on .::::;. No solution with larger I3 satisfies 

the bound on the ratio. 

If the bound on the ratio \Vub/Vcb I were to fall the bound on I3 

would be slightly reduced. If an earlier bound of (Vub/Vcb/ < 0.4 were 

used the upper bound would move to B < 3.0 for solution 1 and for 

solution 2 it would be B ( 1.5 which emphasizes the importance of the 

present value. 

This analysis has been repeated /130/ for 20 ~ mt (GeV) ~ 300 

and there is essentially no change in the upper bound on 3 over this 

range. Eo,Jever, the upper bound is sensitive to the values of the QCD 
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B plotted against the maximum value of s
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constraint on IVub/Vcbl· No fourth quadrant solutions are 

permitted. 
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corrections '1i j • If these are E;i ven the values for 1\ QCl ~ (j. 'i ·;e \1 

( "Jcc = 0.69, '7tt = 0.59, ict = 0.41) then the upper bound is as 

high as E < 1.'( • 

A lovJer bound on i_: lS harder to establish than tne upper one as 

the ratio fVub/VcbJ is not restrictive and other information on the 

h;,; matrix elerr,ents r;mst be used. c:_'he bound C. 2 < 1'': c d \ < 0. 24, for 

example, restricts 13 to .'3 > 0.05 for solution 1 but to limit solution 

2 requires the combination of fVcd 1 > 0.2 and \Vcs \ > 0.8 to give 

B > 0.04 • If the lower bound on fics 1 is closer to the CDHS value 

of 0.59 then the (V cd \ bound alone gives I3 > 0.02 • The lower bound on 

E is quite sensitive to the lower bound on IVcd \with 1-) > 0.04 for 

\ V cd l > 0. 21 • '.i.'he most general conclusion /106/ is that the lower 

bound on l3 is E > 0.04 from the experimental data on the EL matrix 

elements. 

Another way of looking at the lower bound on i3 is to use the 

pararr;eter k arising in the analysis of the decay (equation 

(4.5)). Barger et al. /110/ estimate k by cor.1parison with the decay 

+ -1 ... f r . The more recent experimental determination /112/ of the 

branching fraction for this decay yields the two values k = (1.38 +0 ·54 ) x 10-2 
-0.33 

( +0.57) -2 ' 
or k = 0.00 ...O.OO x 10 due to a sign arnbiguity. By the reverse of 

the argument that Buras /82/ used to bound mt , these values give the 

bounds 0.1 < B < 0.4 and 0.7 < B < oO respectively for mt = 35 GeV. 

In summary, eJ..-perimental data on the KJ-1 matrix elements places 

1 
. 0 ~ 

bounds on the size and sign of the hadronic matrix e ernent J.n the K = K 

transition amplitude. B < 0 is eliminated together with the possibility 

of having the phase bin the fourth quadrant for B positive or negative. 

For the solutions with ~ in the first or second quadrants, B is bounded 

by 0. 04 ~ B ~ 1. 7 • This last result depends critically on the starting 



assumption that the box diagra~ is the dominant contribution to the 

real part of the K0
- C' transition a;:iplitude. 

4. 3. 2 Bounds on t-Quar}: :-;ass 

Experimental information on D-meson decay /107,11')- 121/ 

together with standard calculations of &m and f. can be used to place 

a lower bound on the mass of the t-quark /114,124,127,128,130/. This 

is in contrast to the (uncertain) upper bound which resulted from 

consideration of decay. 

In reference 130 a lower bound on the t-quark mass mt is derived 

as a function of the parar:1eter B assuming that the box diagram is the 

dominant contribution to both the real and imaginary parts of the kaon 

n1ass matrix. The 13-meson lifetime is calculated using the expression 

of Altarelli et al. /122/ for the semileptonic width and the 

experimentally measured branching ratio. The phase space factors are 

allowed to vary over the ranges 0.73 ~ Z 4o 0.94 and 0.33 {. Z 4 0.46 u c 

calculated /122/ for 0 ~ pF ~300 GeV and the branching ratio for 

B ~ X e ~ is varied over the experimentally allowed range /107/ 

0.108 $ DSL 4 0.154. Additionally the mass of the b-quark is allowed 

to vary over the reasonable range 4.8· ~ mb (GeV) ~ 5.2 • 

The lower bound on mt is obtained as follows. For fixed mt the 

K
1 

- KS mass difference bm and the CP-violation parameter £ are 

used to find solutions for the Kl'-\ parameters sin&
2 

Cs
2

) and sin~ (s&) 

as a function of sin&
3 

(s
3

). The experimental constraint IVbu/Vbc\ ( 0.16 

is then used to eliminate B > 1o23 , B < 0 and solution 4 (using the 

QCD corrections for 1\QCD = 0.33 GeV). These results were originally 

obtained /106/ for mt = 35 ± 5 GeV, however they do not change in the 

range 20 $ mt (GeV) ~ 300 o This ratio of Kl1 matrix elements also 



places an upper bound on s_ 1n the re;nai ning solutions •. ht···ures Lf. 1U 
) - ' 

and 4.11 show this limit for R = 1 and a range of mt • As G decreases 

this bound becones less restrictive as shown in Figure 4. ';! • '['here is 

also a lower bound on s., which is the value at which js~f = 1 • This 
./ 

does not change appreciably with B in the range considered. 

For the allowed values of s
3 

the K!'i r.1atrix elements are calculated 

and used to find the B-r.-1eson lifetirr.e ~. Taking into account the 
D 

theoretical and experimental uncertainties, a range of predictions for 

1rB is obtained. For solution 1 ~decreases with decreasing s
3

, but 

for solution 2 ~l decreases with increasing s
3 

. Therefore, an 

experimental lower bound on <E deterrr,ines a minimum s in solution 1 . 3 

and a maxirnum s
3 

in solution 2 • The lirr.i ts on ~ are "C'B <. 1.4 x 10-
12 s 

from JADE /119/ and 'C
3 

> 0.54 x 10-
12 

s frorr. HARK II /121/. 

In solution 1, for small mt' the ~inimum s
3 

allowed by the GARK li 

result lies above the maximum s
3 

deterr:~ined by the ratio (Vub/Vcb' <. 0.16 • 

As mt increases the minimum s
3 

falls until it meets the maximum s
3

: 

this determines the smallest allowed value form._ in solution 1. This .. 
situation is illustrated in Figure 4.10 for B = 1 • As B is decreased 

the maximum s
3 

curve rises and the curve for the minir;;urn s
3 

allowed 

by ~ moves to the right. The conbined result is that the minimum 

value of mt increases. 

The case for solution 2 is slightly different: for large mt, the 

maxim urn s
3 

allowed by the B-meson lifetime is above the minimum s
3 

by 1sa \ = 1 (Figure 4.11). As mt is decreased this maximum 

decreases until it meets the r.1inimum s
3

: this determines the minimum 

defined 

mt for solution 2 • As B decreases the trend is for the max1mum s
3 

curve to move to the right, leading to an increased lower bound on 

mt. There is no significant change in the rf:inimum s
3 

curve for the 
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range of J considered. 

The results for the lower bound on n as a function of B are 
t 

shown J_n :f'igures 4.12 a.'ld 4. 13 • For -::'izure 4.12 the Qc;: ccrrections 

( A= 0.33 GeV) to the r: 0
- j70 transition arnpli tude have been included. 

1'he corresponding result where these corrections have been on i tted are 

shown in Fi~ure 4.13 • A comparison of the two fi~ures shows that the 

bound on n:t is sensitive to the presence or absence of such corrections. 

If the QCD corrections for A= 0.1 GeV were used, the curves would be 

shifted to the right until 3 = 1.'? r:iax 

Alternatively, if the sass of the t-quark were known, these 

results would determine an allowed range for B • For example, mt = 40 GeV 

would restrict the size of the hadronic matrix element to 0.8 s B 41.2 • 

There is a limit on the t-quark mass of mt ~ 300 GeV /131/ from 

consideration of radiative corrections to the parrur.eter r = 1\~/llz 2cos
2

&vl 

/132/. From Figures 4.12 and 4.13 it can be seen that this result 

places a lower bound, B ~0.2, on the size of the hadronic matrix 

element. 

It is possible to obtain an upper bound on mt by considerations 

similar to those used to find the lower bound. However, the result is 

much larger than the limit derived from radiative corrections to p . 
The results of this calculation are sensitive to changes in the 

semileptonic branching ratio and the lower limit on the B-meson 

lifetime. The lower bound on mt would be strengthened if the maximum 

possible branching ratio decreased or if the minimum allowed lifetime 

increased. For example, for BSL ~ 0.12 and "t'"B ~ 1.0 x 10-
12 

s the 

lower bound on mt in Figure 4.12 would rise to 160 GeV for solution 1 

and 4oO GeV for solution 2 at B = 1.0 • 'i'he corresponding results when 

the QCD corrections are omitted from the K
0

- ~transition amplitude 

are 85 GeV and 210 GeV. 
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Figure 4o12 

The minimum value of mt in solutions 1 and 2 when the constraint 

S m = 2 Rel·IB is satisfied· (QCD corrections Yjij are included). 

The upper bound on the size of the hadronic matrix elerr.ent (B ) 
nax 

is also showno 
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&m = 2 ReH., is satisfied (QCD corrections 7/.·. are omitted). 
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These results illustrate an observation or1.cinally ''ade bj' Ell1 s 

and iiagelin /133/ that for small i, ( "-0.4) the short distance 

contribution to c\r from the box diagran; is tctally inadequate unless 

the t-quark mass is very large indeed. }~r this reason it is tnought 

/124/ that the real part of the transition ar;lpli tude may be don:inated 

by the long distance dispersive contributions of section 3.3 • 

However, the imaginary part of the 1~0 - ~ mass r:atrix lS not greatly 

affected in the convention in which the K
0 

+T7'1f'(I = 0) amplitude 

is real and a significantly less constraining lower bound can be 

obtained by consideration of the CP-violation parameter only /114,124, 

127' 128/. 

Ginsparg, Glashow and \'.'ise /124/ derived a lower bound on rr: t as 

a function of "j
3 

using this method. 'Jhey tOOJ'. the size of the hadronic 

matrix element as given by n = 0.37 • This analysis was extended to 

1 ? 4/ cover B = ~' 3, 1 by Buras et al. /11 who also included the small 

effect of CP-violation in the K0 _.,.,.(I = 0) amplitude (A ) from 
0 

penguin diagrams. As a result of penguin contributions A is not real 
0 

in the Ki·l model. In order to regain the V,Ju-Yang convention in which 

A
0 

is real a redefinition of kaon fields by a phase Sis performed. 

This redefinition changes the relation between the CP-violation 

parameter and the K0 
- ~ transition amplitude to 

(4.11) 

Buras et al. use ~ = -0.54s
2
c

2
s

3
s6 as found by Gilman and Hagelin /134/. 

The effect of this extra term is to slightly increase the lower bound 

on mt ( see Figure 4.14), but this is much less than the effect of 

including the constraint 'm = 2 Rel·1
13 

• 
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'~'he phase ~ is responsible for CP-violation in the i,l·: n1odel and 

the terni 11maxjmal CP-violation" describes the case where lscSI = 1 

Analysis of the l\
0 

- ~ mass r;,atrix, based on the box diagran. ar,·,pli tude 

only, revealed /103, 105, 106/ that this situation occurs for s
3 

very 

small unless ~3 >1.2 or 6 is in the fourth quadrant. ':.ath these 

cases are ruled out by the experimental bound on the ratio IVub/Vcb\· 

By including contributions from double penguin amplitudes and 

low energy dispersive terms, Hochberg and Sachs /99/ find that large 

s
3 

can be consistent with ffiaximal CP-violation. Taking B = 0.5 and 

nit = 30 GeV they find that ( s 1 
0 -2 -= 0.23, s 2 = 0.1u x 10 , s

3 
= 0.2~, 

s6 = 1 ) is a consistent set of the Ki•: parameters. However, the small 

value of s 2 in this solution and similar ones ensures that IVub/Vcbl 

is approximately given by 1s
1 

1 = 0.228 and these solutions can, 

therefore, be ruled out. The lower bound on the 1"3-meson lifetime, 

-12 rB )'O. 6 X 10 s from l·iARK II' eliminates such a large value for s3 

anyway. 

The constraint ~Icl = 2 Rei'·L, has a significant effect on the 
.b 

phenorr.enological analysis of the neutral kaon mass matrix, as is 

shown in the preceeding sections. If this constraint is dropped 

the bounds derived are considerably weakened. It is, therefore, of 

interest to attempt to discover the relative sizes of each of the 

possible contributions to the K
0 

- ~ transition amplitude. Such an 

analysis is performed in the following chapter. 
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Al~ALYSIS ()F THE F
0

- ~ TRAIJSITION A)>;pLI'l'U1E 

5.1 Introduction 

The K
0

- ~ transition a~plitude has been a useful source of 

information about weak interactions. The first phenomenological 

success was the prediction of the c-quark mass by Gaillard and Lee /36/. 

This success was followed by several analyses placing bounds on the 

parameters /91,99,103,104,106,134,135/ of the Kobayashi-i-1askawa (i:U 

matrix /39/ and attempts to deterniine the mass of the t-quark (rr,t) 

/82,110,114,124,130/. These analyses are based on different assumptions 

about the 1\.
0

- jzO mass matrix which leads in sorTie cases /114,124,130/ 

to a large variation in the result. For this reason a better understanding 

of the 1<
0

- if mass matrix itself is desirable. 

In general the J•t- ;::o transition amplitude can be writ ten /60/ as 

the sum of a local AS = 2 }Iamil tonian (H
2

) and the time ordered 

product of two local AS = 1 Hamiltonians. ( H
1

): 

M = (5. 1) 

Following Gaillard and Lee, one method is to consider only the direct 

AS = 2 part in the form of the box diagram and to assume that the 

dispersive (AS= 1)
2 terms cancel outo Eowever, calculations of 

individual dispersive terms /71 - 79,99/ indicate that they are 

substantial which makes such a cancellation seem unlikelyo There is 
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also a possibly lar~e additional contribution to the ~E = 2 

Hamiltonian from a penguin operator /99/. As a result this approach 

has been questioned /99,114,124,136,137/. 

l-ieasurements of the :3-r:Ieson partial decay widths /107/ and 

lifetime /119 - 121/ can be used to determine the contribution to the 

transition amplitude from the flS = 2 ilamiltonian /127,120/. ln this 

way the large theoretical variation in the size and sign of the 

dispersive contribution can be lir.1i ted phenomenologically. 

It is sometimes stated that the dispersive amplitudes must give 

a positive contribution to the K
1

- KS mass difference /7'7,127/ 

("positive'' means here a positive contribution to (-,r.:)>O). This 

statement is based on the assumption of a sGiall value for the K
0

- 1f 

hadronic matrix element and the absence of penguin diagran;s. However, 

if the matrix element is given a larger value (such as occurs in the 

Relativized I~rmonic Oscillator model /87/) and/or penguin contributions 

are included, it can be shown that situations exist within the Standard 

Hodel where the dispersjve amplitudes r:1ust give a negative contri-

bution /128/. 

5.2 The Box Diagram Contribution 

In the GWS theory of weak interactions there is an effective 

local As = 2 Hamil toniru1 in the form of the box diagram /36/ (Figure 

3e1). In the approximation where the masses and momenta of the external 

quarks are neglected, the K0
- ~ transition amplitude due to this 

Hamiltonian is given by 

E G2 1·~ 2 L A.,\. D. i-113 = - fK r.IK fij F l J lj 
(5.2) 

12 7T
2 i,j = u,c,t 
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where the L .. are i:nown functions of the quarJ.. r.·.asses /01,02/. The 7· . 
lJ lJ 

are the perturbative QCD corrections due to ,::;jhian and 1fise /d4/ and 

are nur,bers less than or equal to one. 

The ~- are products of Kl···J matrix eler::ents, 
l 

>.. = v• \f. 
' 

which 
l lS ld 

are a major uncertainty ln the calculation of the As = 2 ziamiltonian. 

Hovtever, E-meson decay data provide a r:,eans of restricting the 

variation in the quark r..ixing angles to the very small range /127, 120/ 

sin&
2 

< 0.13 

sine-
3 

( 0.05 
(5.3) 

The number B parar.ietrizes the size of the hadronic rr.atrix element 

of a quar~: operator 

= 

= (5.4) 

The result is no~1alized to the vacuum saturation approximation (B = +1) 

of Gaillard and Lee /36/. Various approaches have been used to 

estimate this matrix ele:nent /85 - 92,96/ but there is no general 

agreement on a best value for B. In general B is positive and lies in 

the range 0.055 .f. B ~ 2.86 • However, the MIT bag model with one set 

of input parameters gives B = ..0.4 /87/. A theoretical upper bound 

on the magnitude of the matrix element has been derived by Guberina 

et al. /92/ who find I B 1 ~ 2.0 .:!:.. 0.5 • In what follows B is normally 

taken to be positive with I3 ""2.5 , but B <0 is considered at various 

points. 

In standard notation the CP ... violation parameter E is given by 

Re E = - Im!-:/2 Srn (5.5) 
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where i. is the L
0

- i::o transition amplitude which is not yet identified 

with that arising fror:J the box diagrar~. rl'he KL- KS mass difference is 

related to the ;';
0

- ~ transition ar:-:pli tude by 

= 

Hith the identification Iml•i = Im~;B the constraints on the 1·~i·1 

angles from B-meson decay imply a lower bound on the t-quark mass as 

a function of B /114,124,127,130/. Up to the inclusion of penguin 

diagrarns this is a good approximation since long distance contributions 

to Im!:i are limited by the experimental bound on IE.'/t l (section 5.3). 

rl'he function Rel·!B can now be calculated for allowed combinations of 

E and mt and for all values of s
2 

and s
3 

in equation (5.3) . The result 

is presented in Figure 5. 1 • The ratio RB = 2 ReH.,.,/ cS rn is shown for 
' n 

-12 12 
0.6 x 10 s '"t"B 4 1.4 x 10- s and 20 ~ mt (GeV) ,$ 80 and is 

independent of these variations. The reason for this is that the f)..rYJeson 

decay data (even in their least stringent form) constrain s
2 

and s
3 

to 

be sufficiently sr:lall that the t-quark decouples and an effective four 

quark theory remains: 

r.'J B a; f~ . 2& 2 lm2} • 2 
2 

2 2 

ln tn ~ = mK s1n cos & m m m 
B c c c cc u u c 

12Tl 
2 2 

m - m c u 

(5.7) 

In equation (5.7) the quark mixing has been restricted to a 

d d & = 9- & and the functions B .. have been epen ence on 1 c = Cabibbo lJ 

written in the approximate form F5,103/ valid for m ,m << !·\, . u c . 

Figure 5. 1 shows RB ~ 0. 8 x B which is obtained from equation (5. 7) 

using m = 0.3 GeV, m = 1.5 GeV and '11 = 0. 99 /84/. The effect of 
u c ICC 

changing any of these parameters is easily calculable from equation (5.7) • 
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The contribution of the box diagrar.1 to the lC
1

- K
5 

mass difference 

6 -12 / e ~ for 7:8 ~ 0. x 10 s • R, = 2 Relin orr, where om is the 
.b .J 

experimental value. 
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The sicnificance of the lon£; _-meson lifeti1ne ("C. ~0.6 x 10-12 
s) 

..:.:: 

is demonstrated by Figure 5.2 • ~'ith -c:_ = 0.1 x 10-
12 

s the i:i-! angles 
~j 

are not so restricted and a significant variation in r._ 1s allowed. 

This is due to the effect of the t-quar~ which increases the value of 

~/E . 'l'he reason for the dramatic increase in the lower bound on mt 

when the constraint &m = 2 Re!L is included /130/ is clear: for small 
jj 

values of :G, rr;t must be r:mch larger than i·i in order to overcome the 
\·.: 

smallness of the mixing angles. 

For the choice of quark r:1asses and QCD corrections given above, 

the box diagrar.; reproduces the experin;ental K -L 
mass difference when 

B %1.2 • This is the source of the upper bound on B derived in refethce 
1\ 

106 (recall, the contribution of the t-quark is positive ) • If Dis 

sr,~aller than this value the box diagran is insufficient, but for l) at 

its theoretical upper limit (:C = +2.5) the calculation gives twice the 

experimental result. 

For B positive the EH CP-violating phase ~ is excluded from the 

region lf<S<2V by equations (5.3) and (5.5). However, forD 

negative the phase is excluded from 0 < & < 1f • The solutions of equation 

(5. 5) with 3Tr/2 <. cS < 2 T1 and 7T < ~ <311/2 for B < 0 are identical to 

the solutions with 0 < 6 <. 1Tj2 and Tf/2 <.. 0 <. T1 respectively for B > 0. 

This corresponds to 13sin~) 0 as found by Gilman and Hagelin from 

1£'/EI /134/. B<O, of course, gives the wrong sign for the mass 

difference. However, contributions frorr. other sources such as long 

distance terms and penguin operators may be enough to compensate for 

this. 
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The contribution of the box diagrarr. to the ~ = K
5 

mass difference 

~ =12 
for ~B = 0.1 X 10 s 0 The shaded region is allowed. 
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5.3 Penguin Diasra~ Contributions 

In the box diagrar:-~ ar;Jpli tude QCL effects were included in the 

paraDeters 'f/ . .• :iowever, witl1 the introduction of stron,; interactions, 
PJ 

new effects arise 1971 due to the exchange of glucns. These are the 

penguin diagrams. 

In particular there is a CP-violating contribution to the 

K
0 

• 2TT(I = 0) amplitude 190,1381 fror:; such diagrams (Figure 3.2). 

In order to regaln the l:!u-Yang convention 1601 where this decay 

ar:;pli tude is real, a redefinition of the ;:aon fields by a phase S is 

performed (IK
0

) + e-ill!-~0); I~)+ ei~l~)). This redefinition 

changes the relation beh,reen the CP-violation parar.1eter and the K
0

- i(O 

transition ar:,pli tude to 

I I 
-ill: 

vthere ~ < 0 135 • '.l'his redefinition also introduces a phase e ;, to 

the K
0 + 211 (I = 2) ru::plitude A2 giving Ir;1A2 ~- \IA2 ' and hence 11341 

If I = Is I IA2IA
0 

1 ~ 15.6 1~ 1 
PIEI 

where the experimental values of lA
2
IA

0
) = 1120 11391 and IE I= 2.27 x 10-3 

have been used. '.l'he experimental result· 1681 f'IE = -0.003 ~ 0.014 

gives IiI ~ 10-3. 

Although this redefinition of fields has a significant effect on 

the lower bound for the t-quart mass 11141, the result of section 5.2 

concerning ReHB is not changed. This is a consequence of the smallness 

of the mixing angles ~2 and ~3 which ensures that the c-quark 

dominates the real part of the 1\
0

= ~ transition amplitude. 

Hochberg and Sachs 1991 have pointed out that the inclusion of 
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stronc :interactions leads to a ne\-1 contribution to the ll ::_: = 2 

tlanil toni an whici1 is topologically distinct fror.i the box diagran;. 'l'his 

is the double pengmn diacrar·: (Figure 3.3). The 1: 0
- ;:-:a transition 

arnpli tude due to this part of the 1!amil toni an is esti::;ated to be /99/ 

= 

(5. 10) 

where t" is an infra red cut off taken to be f'A"" 1 GeV. Although the 

amplitude is only logarithmically dependent on the cut off, it is 

quite sensitive to the actual value of~ which controls the cancellation 

of the two logarithms. For t4 = 1 GeV the cancellation is quite good, 

but for fA= 0.7 GeV the penguin auplitude becomes much larger. However, 

this effect can be reduced by a simultaneous adjustment of the 

effective c-quark nass. 

The double penguin amplitude has a real part which contributes 

to the KL- KS mass difference and an imaginary part which contributes 

to the CP-violation: 

(5.11) 

where the S-term from single penguin diagrams has been neglected. The 

lower bound on mt obtained from this equation and the constraints 

fran B-meson decay are shown in Figure 5.3 as a function of the 

parameter B. 'fhis can alternatively be viewed as a lower bound on IBI 

as a function of mt. For t' = 1 GeV and me = 1.5 GeV, the lower bound 

on r:'t is significantly lower in the region of small B than the value 

obtained from the box diagram alone (cor:lpare Fig;ure 4. 14). The difference 

is about 10 GeV at B = j- for "i =. 1.0 x 10-
12 

s • 'rhis is due to the 
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relative i:.:portance of tJ1e double _rJenguLn dia_sra:: ;n this reg~c'n, 

arising fro~ its quadratic dependence on ~t and the large value for 

this para~eter needed to fit the o~served CF-violatjon. 

The prediction of the real part of the box diaz;ra! (Figure 5.1) 

lS unchanged due to the c-quarL dor:·.inance cf this a::plitude. :iowever, 

the double penguin amplitude provides ru1 additional contribution to 

the mass difference of 2 Pe;.;p • !'he ratio Hp = 2 Peilp/ ~rr is shown 

in Figures 5.4 and 5.5 for 111 = 25,40,60 ,'.reV,,,, = 1.5 C\eV and two 
t c 

values for fA. mt = 25 GeV is just above the current FE'rRA lower bound 

/55/ of The result is independent of -r:, (equivalently 
u 

&
2 

and &
3

) over the allowed range. 

It can be seen that the double penguin amplitude gives a large, 

possibly dorr,inant, contribution to the AS = 2 Earr,il tonian of the sarne 

sign as the box diagrar:!. 'lhe sur; of the box diagra•:1 and double penguin 

a1;:plitudes reproduces the observed J\
1

- K.S ::.ass difference for B in the 

range 0.3 to 1.0 • If 0 is negative, then a very large positive 

contribution fror;r long distance dispersive terr:1s is required to 

compensate for this. The long distance contributions are considered in 

the next section. 

5. 4 Dispersive Contributions to 'rr, 
In the K

0
- j(:l trru1sition amplitude, equation (5.1), there is a 

piece which is the time ordered product of two AS = 1 transitions. 

It is this piece which contains the "long distance" dispersive 

amplitudes: K0 ....,111f~;:o; K
0

4+1f
0 ,"J, '7'~j'(l; K

0 ...,f,t...), A1...,j.(O; 

etcetera. These amplitudes were previously negl~cted on the assmfiption 

that their sum is small. As shown in the previous sections, it is easy 
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The contribution of the double penguin amplitude (fA= 1o0 GeV) 
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to the ~- KS mass difference. 
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to reproduce the observed value of &·-· \•li L1out :i ncl udin1; an,y lon:~· 

distance pieces. iiowever, estimates of the separate contributions 

/71 - 79/ indicate that their ragnitudes are uf the sare order as 

the observed r:,ass difference (see section 3-3). Although contributions 

of both signs occur, the large magnitudes of the individual terms 

indicates that an exact cancellation is tmlikely. 

The calculation of the amplitude from one particle pseudoscalar 

intermediate states by Itzy\son et al. /78/ gives a contribution 

opposite in sign to the observed mass difference. In terms of the 

ratio RD = 2 Re!l(dispersi ve )/ cSr: , they find RD = -1.4 • The negative 

sign is supported by the analysis of Donoghue et al. /77/ who give 

RD ( 1T
0

, '1, "7') ::t -2 • The contribution of the two pion interr:.ediate 

state is uncertain in nagnitude out is probably positive /77/. Using 

a subtracted dispersion relation for the kaon self energy, Donoghue 

et al. /77/ find RD(~~) = 0.64 with an ultra violet cut off of 

1\ = 0.7 GeV rising to RD(11'1T) = 1.4 for/\= 1 GeV. A perturbation 

theory calculation leads to a somewhat larger result, being RD(1r11) = 1.4 

for/\= 0.7 GeV and RD(f71T) = 2.8 for A= 1 GeV. The contributions 

due to one particle vector interr~ediate states are thought to be small 

/71/ due to angular momentum effects. 

In the standard approach involving the box diagram an integral 

over a loop momentum k is performed. For small k the contribution of 

the u-quark accounts for at least part of the low energy dispersive 

terms. To avoid double counting an IR cut off, A ~1 GeV, should be 

introduced. The main effect of this is to remove the u-quark contribution 

from Ret·t.) • As the overall contribution of the u~quark is negative, 
lJ 

the contribution of the box diagram to the KL- KS mass difference is 

increased by ,.., 20 % • It is possible that the dispersive contribution 
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is negative reflecting tl1is variation on the quarL level, as :._s 

0 
indicated by the large negative contri i:Jution fror,- the T1 , "1, 'l' 
inter:1ediate states /77, ?8/. 

C. T. Eill /137/ assur1ed penguin don;inance of the A c. = 1 

~~arr;il tonian in order to obtain a clear separation of short distance 

box diagram and long distance dispersive contributions to s; . \'.'i th 

the introduction of the AS = 2 penguin operator this separation of 

long and short distance effects is no longer clear. The variation 

of the double penguin aMplitude with IR cut off r appears to 

corr.pensate the opposing variation of the two pion long distance 

contribution with UV cut off 1\. t:owever, as all the cut offs are 

independent (being artefacts of specific calculations), these effects 

are only qualitative. 

It is usually stated that the dispersive amplitudes must give 

a positive contribution to the 
,,.0 
h.- ~ transition /77,127/. This 

statement is based on the assumption of a sr:1all value for I3 and the 

absence of penguin diagrams. 5:owever, if the matrix elen,,ent is given 

a larger value V3uch as occurs in the Relativized Harraonic Oscillator 

(REO) model) and/or penguin contributions are included, it can be 

shown that situations exist within the standard model where the 

dispersive amplitudes must give a negative contribution. 

Donoghue et al. /88/ find B = 0.33 with an estimated 50% 

uncertainty /77,89/ by relating the As = 2 matrix element to the 

AI -- 3/2 K+......._ 11+T1° l't d I th b f "'S 2 . u ~ amp 1 u e. n e a sence o u = pengu1n 

contributions this determines RD "'+0. 7 • However, in the case where 

there is a large penguin contribution, RD< 0 is a possibility even 

for such a small value of B. For exrunple, 

and mt = 60 GeV leads to RD 'V -0.3 • 

fA= 0.7 GeV, m = 1.5 GeV c 
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Coli~ et al. /95/ and Dupont and Fha, /9C/ have noted that ~ t : s 

difficult to reproduce the experimental r\+ +- Tt "f1"0 
amp1i tude unless 

the b. I = 3/2 operator is suppressed by li:ore than the short dJ stance 

coefficient c4 ~ 0.4 • 1'his vJOuld tend to increase the value for 3 

obtained by Donoghue et al. /88/. For this reason a larger value for 

B should not be ruled out. A larger value for 3 is given by the RHO 

model of Coli~ et al. /87/ ( f', = 1.4 ) • 'l'his model is the I'JOst stable 

of those considered. Its results are supported by a preliminary 

evaluation of the matrix element on the lattice /96/ ( u ,.., 1.3 ) and 

by an analysis of the AI = 3/2 K+ +1F+ -rr0 
anpli tude by Dupont and Phan. 

/90/ ( B~1 ). For l3 = 1.4 and rr, = 40 GeV, r:·: = 1.5 GeV, "= 1 GeV, the t c r· 

observed KL- K
5 

mass difference is reproduced when }iD ~ -0.6 , and 

much larger (negative) dispersive contributions are possible. 

5.5 Conclusions 

In the Standard I-iodel the K
0

- ~ transition amplitude is the swr. 

of three contributions: the box diagrar:i, the double penguin and the 

(AS = 1 )
2 

dispersive terms. Recent data on B-meson decay can be used 

to determine the magnitude of the box diagram contribution as a 

function of the parameter B. The box diagrar.1 alone is sufficient to 

reproduce the observed J~- K
5 

mass difference for B ""1.2 to 1.5 • 

The double penguin awplitude also gives a possibly large contribution 

to &m which depends on mt and an IR cut off f· If B is small and 

the penguin contribution is not large, then the dispersive contribution 

to ~m must be positive (i.e. RD>O) as is usually stated. However, 

when the magnitude of the hadronic matrix eleme.t:lt is given by the RHO 

r,1odel (B = 1.4), the sum of the box and penguin amplitudes is too 

large and the dispersive terms must supply a negative contribution. 



Improved Eleasurer..ents of the t-quar,: mass and .--~:.eson li feti' .e 

would place better lir~.i ts on the r.Jatjni tudes of the box diagra;E and 

penguin a•~:t;li tudes by deten>ininc_·· a r:·.ini:·,w!. value for I -'·l· ';'his 

would then give a better indication of the magnitude and sign of the 

dispersive anpli tude. For exarr,ple, the present r::easurements of 

rnt ~ 50 GeV /5'6/ and ~:: > 0.6 x 10-
12 

s /121/ give 131 ~ 0.1 

whereas r.1t = 40 GeV and "!"; = 1.4 x ·w- 12 
s gives li1l ~ 0.5 which 

leads to RD < 0.4 for 13 > 0 • On the theoretical side the nost important 

advance would be an accurate and generally accepted calculation of the 

hadronic raatrix elenent. 

Due to these large tmcertainties in the calculation of the ~, K
3 

mass difference, it is difficult to obtain useful constraints on new 

theories of wealc interactions from this parameter. An optimistic 

approach t1ight be to apply the criterion that R. = 2 Ren(new contribution)/6'm 
1\ 

should be bou."lded by F\~ I' 1 • On the whole, more reliable constraints 

would be obtained by considering the new contributions to CP-violation 

in the theory. 
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COI:CLUSIOliE:· 

In the preceeding chapters the significance of the strangeness 

changing neutral currents and 

been discussed. These processes are the part of the general class of 

flavour changing neutral currents (FCNCs) which is presently the most 

useful due to the availability of experimental data. The observed 

suppression of FCUCs could lead, in principle, to precise phenomenology 

in weal; interactions, since small changes in the theory could lead to 

large changes ( on this scale ) for the predictions of FCBC amplitudes. 

Unfortunately, this possibility is not realised in the case of the kaon 

amplitudes mentioned above. The problem occurs in the necessity of 

relating theoretical predictions which are given in terms of quarks 

to experimental data on hadrons. 

The most widely used FCNC is the 1\.
0

- if transition amplitude, 

l'l(K
0

- if), and possible contributions tG this amplitude from Standard 

i"lodel (SU(3)xSU(2)xU(1)) sources were reviewed in chapter 3· The 

contributions fall into two classes: "long" and "short" distance. 

The short distance contributions are the box diagram and double penguin 

amplitudes, which are given initially in terms of a quark transition 

amplitude. The relation between this and the hadronic K0
- ~ transition 

amplitude is parametrized by a number B which i.s derived from the 

hadronic matrix element of a four quark operator. A perturbative 
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calculation of this L'atrix element is not possible and so it is 

estimated in a variety of models. These give a range 0.05 ~ Ti' 2. (_} 

and in one case :3 < 0 • 'Lhere is also a theoretical upper bound of 

'DI,2.CJ + 0.5 • As no consensus on a preferred value for ,_,has been 

reached, it was left as a free parameter in most of the phenon·,enological 

analyses described in chapters 4 and 5. The long distance ar:1pli tudes 

involve only hadrons from the outset, and so their contribution to 

1-1 (K
0

- j<O) is correspondingly uncertain. 

'i'heoretical calculations of l·i (K
0

- if) can be related to two pieces 

of data. The real part of the amplitude is equal to half the VL- K
8 

r.1ass difference ( 6m) and the imaginary part is proportional to the 

CP-violation parameter (E). From these relations one can attempt to 

determine the values of any unknown pararT,eters in the theoretical 

prediction. The results can be used to checL the consistency of the theory 

for describing other weak interaction processes. 

One way of proceeding is to assume that the short distance box 

diagram dominates both the real and imaginary parts of the amplitude. 

This assmaption was pioneered by Gaillard and Lee, who used it to 

successfully estimate the mass of the c-quark. Buras, also following 

this method, placed an upper bound on the t-quark mass. He used the 

box diagram calculation of ~m together with a short distance calculation 

for the dispersive + = !),+ t' f amplitude to obtain the bound mt'-33 GeV 

at B = 0.4 • The result depends sensitively on Band for B = 1 the 

upper bound is above ~~- However, even if 3 = 0.4, various uncertainties 

in the calculation of the + -!), .. fA r arr:pli tude raise the bound to 

above 1-1 • This, together with the uncertainties in the calculation of vi 
cSrn, means that a reliable upper bound on n\ cannot be obtained by this 

method. 



l'his calculation has been repeated in the ccmtext of a su)'Jer-

syrdnetric theory, givins r\ < 100 ';e\/ • however, thcLS calculation is 

subject to the sar',e uncertainties as the one j n the .Standard ::odeJ. 

Leasurer:.ents of the j-::eson lifeti:!.e and partial decay widths 

can be used to place bounds on the eler~ents of the quarL J:.ixing c;atrix 

as shown in chapter 4. 'I'his in for. at ion, in conjunction with a 

al l t . f t' ,.O ~ t . . ld l b d th t c cu a lOn o ne lc - •• mass ilia rlx yle s a ower oun on e -

quark mass. This lower bound depends critically on the assumptions 

made for the calculation of the '~0- ~ amplitude. 

If only the ir-:1aginary part of the amplitude is considered to be 

dominated by the box diagran, then the lower bound on r:\ lies below 

i' for \J 4 -12 ( "t'D < 1. x 10 s the upper limit fron·, JADE) and 

The minir,;um value of mt reaches the lower bound from P:S"l'RA 

(rnt > 22 GeV) for " ~ 1 and ~ .E- 1.0 X 10-12 s j_) . 
'-• 

I~ > 0.33 . 

data 

This calculation was repeated in chapter 4 with the additional 

constraint that the K
1

- KS mass difference was given by the real part 

of the box diagram amplitude. For 3)1, the lower bound on mt is 

comparable to the results of the previous calculation. However, for 

values of B much less than this, the lower bound is dramatically 

increased. For example, mt > 150 Ge'J at B = 0.4 • This result may 

indicate that the real part of the K0
- ~transition amplitude is 

dominated by long distance contributions. 

Penguin diagrams affect these calculations in two ways. Firstly, 

the relation between f and the imaginary part of ii(l\
0

- ~) is defined 

in the Wu-Yang convention where the K0
.- 2Tf'(I = 0) amplitude is 

realo Penguin diagrams give an imaginary contribution to this decay 

amplitude which can be rotated away by a suitable redefinition of the 

kaon fields. This affects the calculation of Iml-l(K
0

- ~) and gives a 
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slight increase in tLe lo\ver bound for mt • .Secondly, including the 

contribution to rm;.;(v
0

- lf) froc the double penguin diagram lowers 

the :-:,inimun value of r\ as shown in Chapter 5. ·~·he addition of the 

real part of the double penguin aupli tude also ma~;es it easier to 

reproduce the experinental value for &n at small B without any long 

distance contributions. 

Under the assumption that the box diagrarr, was the dominant 

contribution to both parts of l'i (!:
0

- ~), an upper bound on the para.r.1eter 

B was obtained in Chapter 4, using the constraints on the quark mixing 

from B-meson decay. This upper bound was D (1.2 to 1.7 depending on 

the magnitude of the QCD corrections to the box diagram amplitude. The 

maximum value for B occurs when the t-quark contribution (which is 

always positive) is entirely suppressed by small mixing matrix elements 

and the c- and u-quarh contributions reproduce the experimental value 

for 5m. No phenomenological upper bound (below the present theoretical 

upper bound of B '- 2.5) can be obtained under other assumptions. 

Before the results from CESR and PEP on B-meson decay were 

available, there was a considerable freedom in the allowable values for 

the quark mixing angles. Analyses of the K
0

- if mass matrix, based on 

the box diagram calculation alone, determined that the decay b ~u 

would be less frequent than the decay b +c • This prediction was 

confirmed at CESR. In these analyses the CP-violating phase S was 

restricted to lie in the range 0 <. tS < 'Tf"" or in a small region in the 

fourth quadrant, which was subsequently excluded by the experimental 

result reb - u)/ ret - c) < 5-5 % . 

These results were obtained for B>O which was required by the box 

diagram calculation of 6m. If a large contribution to im from long 

distance amplitudes is present, B<O is possible. The constraint on S 
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fror:: Ir:i·i (l<
0

- ~) is then l:Jsin~ ') 0 • 'l'his result is not affected by tne 

introduction of the double penguin amplitude. 

'i'he analyses described above are based on differen.t assur. ptions 

about the K
0

- ~ mass matrix which leads in sorne cases (such as the 

lower bound on r\) to a large variation in the result. For this reason 

a better understanding of the 1<:
0

- ~ mass r.1atrix itself is desirable. 

The possible contributions to &m from Standard iiodel sources were 

exarr.ined in Chapter 5. 

The data on the 3-ueson lifetir1e and ratio of parb al widths 

restricts the quark r.1ixing angles e-
2 

and e-
3 

to be sufficiently sn1all 

that the t-quark decouples from the box dia~::;-ra1~r. The box diagram 

contribution to brr. is then given by the four quar~: model calculation. 

The major uncertainty in this is the value of B • For B in the ranz;e 

1.2 to 1.7 (depending on the QCD corrections to this ar.lplitude) it was 

found that the box diagram alone gave the experimental value for Sr:i. 

The Relativized Harmonic Oscillator (RHO) model gives D in this range 

(B = 1.4). 

The double penguin amplitude gives a contribution to the }~- KS 

mass difference which is the same sign as the box diagrar.!. Its 

contribution is uncertain in magnitude but is possibly substantial. 

The sum of these two short distance amplitudes was shown to give the 

correct value for &m when ~3 was in the range 0.3~B'-1.0. 

From these results it can be seen that there is no cor.1pelling 

phenomenological reason to include a large contribution from long 

distance dispersive amplitudes. However, if B is found theoretically 

to be small ("'0.3 say) and the double penguin amplitude is negligible, 

then the dispersive contribution (to - Sr.1) mu~t be positive and relatively 

large. If, on the other hand, B is nearer to the RHO result of 1.4 and/or 
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the penguin contr:i buL_cn is lar~e, then the di spers:i ve a':'pJ :it udes :mst 

give a negative contribution. r~th these possibilities are allowed by 

the theoretjcal calculations of the lone distance a: pl t 1Jdes. 

Due to these lar;:;e uncertainties in the calculatic;n of ~Ll, niore 

reliable constraints on unknown para1:.eters can be obtained by considering 

only the CP-violating, imaginary part of !-l(i\
0

- ~). 1iowever, an 

opt:i rr:istic approach, in the case of extensions to the Standard l·,odel, 

might be to assmie that the r;agn:i. tude of new contributions to &r.l should 

be snaller than the experimental result. In the case of the Left-Right 

Symr .. 1etr:i.c model, this would lead to a lower bound on the mass of the 

new gauge boson being !'\I ~ 1. 6 TeV as given in Chapter 4. 
R 

'i'he usefulness of the K
0

- rr rr.ass matrix as a constraint on vJea:_ 

interaction physics would be considerably in1proved by an accurate and 

generally accepted calculation of the hadronic matrix element (3). On 

the experimental side, more precise measurements of the .u-meson lifetime 

and the t-quark mass would be advantageous. Data on other FCNCs, such 

as Bo_ ~B · · · l 't d mlxlng ls eager y awal e • 
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