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Lul Kepli Bin Mohd Desa 

Riemannian Manifolds With Einstein-like Metrics 

Abstract 

1 n this thesis, we investigate propaties of manifolds with 

Riemannian metrics which satisfy conditions more general than those 

of J:'instein metrics, including the Lauer as special cases. 

Fhe /:"instein condition is weU known for being the l:"uln- l.agrange 

equation of a vw iational problem. 

'/'here is twt a great deal of difference between such metrics and 

melrics with Ricci tensor parallel for the Latter are locaUy 

Riemannian products of the former. 

More general classes of metrics considered include Ricci- Codazzi 

and Ricci cyclic parallel. Both of these are of constant scalar 

curvature. 

Our study is divided into thr·ee parts. We begin with certain 

metrics in 4-dimensions and conclude our results with three theorems, 

the first of which is equivalent to a result of Kasner /Kal] while 

the second and pan of the third is ktwwn to Derdzinski / Del,2]. 

Next we construct the metrics mentioned above on spheres of 

odd dimension.'J'he construction is similar to Jensen's /Jell but more 

direct and is due essentiaUy to Gray and Vanhecke /GV}. In this 

way we obtain ,beside the standard metric, the second l:.'instein 

metric of Jensen. As for the Ricci- Codazzi metrics, they are 

essentiaUy Jiinstein, but the Ricci cyclic parallel mell ics seem 

to form a larger class. 

FinaUy,we consider subalgebras of the exceptional Lie algebra 

g2. Making use of computer programmes in 'reduce' we compute aU 

the corresponding metrics on the quotient spaces associated with G2. 
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0.1 Preliminaries 

Let M be a smooth Riemannian manifold of dimension 

n, and let g be the metric tensor of M. We recall that the 

torsion and the curvature operators of a connection D are 

defined by: 

T(X.Y) D Y- D X -[X,Y], 
X y 

R(X,Y) D D -D D -D 
X Y Y X [X,Y] 

where [X,Y] denotes the bracket of two vector fields. 

We also recall that R(X,Y)Z at point p depends only upon 

the values of X,Y and z at p. 
ij 

We denote the contravariant components of g by g and 

'raise and lower suffixes' in the usual way; the summation 

convention is followed. 

The Riemannian connection is the unique connection 

with vanishing torsion tensor for which the covariant 

derivative of the metric tensor is zero. 
k 

We compute the expression of the Christoffel symbols C 
ij 

in a local coordinate system. The computation gives a 

proof of the existence and uniqueness of the Riemannian 

connection. 
k k 

Since the connection has no torsion, c c Moreover 
ij ji 

h h 
D g d g c g c g 0. 

k ij k ij ki jh kj ih 

h h 
D g d g c g - c g o. 

i jk i jk ik jh ij kh 
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h h 
D g = d g - C g - C g = 0, 

j ik j ik jk ih ji kh 

where D denotes the i-th component of the derivative. 
i 

Taking the sum of the last two equalities minus the first. 

we obtain: 

h 
c 
ij 

kh 
g { d g 

i kj 
+d g 

j ki 
-d g f: 2. 

k ij 

For the curvature tensor corresponding to g, the local 

components satisfy 

h 
R 

kij 

h 
d c 

i jk 

h 
- d c 

j ik 

h m 
+ c c 

im jk 

h m 
c c 

jm ik 

We now consider the 4-covariant tensor 

m 
R(X,Y,Z,W)=g(X,R(Z,W)Y) with components R = R g 

hkij kij hm 

The properties of R and the Bianchi identities are 
ijkh 

well known: 

R 

R -R -R R 
ijkh ijhk jikh khij 

+ R + R =0 and D R + D R + D R 0. 
ijkh ikhj ihjk m ijkh k ijhm h ijmk 

A Fiemann curvature tensor is a complicated object. 

By viewing the curvature tensor as a function on the 

Grassmanian of tangent 2-planes we define sectional 

curvature of a 2-plane P,spanned by an orthonormal basis 

{X. Y I. by 

K(P) =g(R(X,Y)X,Y). 
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It is well known that constant sectional curvature is a 

very strict condition on the metric g. In fact for a 

complete Riemannian manifold with constant sectional 

curvature the universal cover of M is isometric either 

to an n-sphere or to the flat Euclidean n-space or to a 

hyperbolic n-space. 

By taking a trace of the Riemannian curvature tensor 

we get the Ricci curvature which is a symmetric 2-tensor 

in view of the first Bianchi identity.Its components are 

k 
R =R 
ij 

.The scalar curvature is obtained by taking the 
ikj 

trace once more.namely R 
ij 

R g 
ij 

Constant scalar curvature is known to be a weak 

constraint on the metric. On a given manifold M. many 

Riemannian metrics have 

example, all homogeneous 

constant scalar curvature. 

constant scalar curvature. For 

Riemannian manifolds are of 

In fact Yamabe conjectured that "on a compact manifold, 

in each conformal class of metrics, there is a metric of 

constant scalar curvature." 

We now return to the Ricci curvature.It also seems 

to be very broad. For example, Willmore [Wi1] in 1956 

questioned the existence of a compact manifold with 

positive definite metric of zero Ricci curvature which 

is non-flat. In 1977 Yau [Ya] gave an example of such a 

manifold. But a homogeneous metric with Ricci curvature 

zero has sectional curvature zero. See Ziller's paper in 

[ WiH] . 
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0.2 Review of Einstein metrics. 

We now consider some constraints on Ricci curvature. 

For example consider the case where the Ricci curvature 

is proportional to the metric.This condition is known as 

the Einstein condition. We notice here that the Ricci 

curvature and the metric g on a manifold of dimension n 

depend on the same number n(n+l)/2 of real parameters.So 

the equations for metrics satisfying the Einstein 

condition looks promising since it involves the same 

number of unknowns as equations. Unfortunately the 

situation is more complicated as we shall see. 

Definition. 

An Einstein metric is a metric for which the Ricci 

tensor and the metric are proportional: 

l ) R (p)=f(p)g (p). 
ij ij 

Contracting this equality ,we obtain f(p)=R(p)tn, which 

is a constant when n>2. Indeed,if we multiply the second 

jm 
Bianchi identity by g ,we obtain: 

j 
D R + D R D R 0, 

ijkh k ih h ik 

ih 
which multiplied by g 

i 
results in D R =2D R .But 

k ik 

contracting the covariant derivative of l) gives 

i 
D R nD R .Hence when n is different from 2, the 

k ik 

scalar curvature R must be constant. 



Einstein came to 

because in his theory of 

5 

the condition named after him 

relativity, he proposed that 

the field equations for the interaction of gravitation 

and other fields take the form 

Ricci - Rg/2 = T 

where g is the Lorentzian metric of space-time and T is 

the energy-momentum tensor which is zero in the absence 

of other fields. This condition is the Euler-Lagrange 

equation of a variational problem.Namely,if we consider 

the total scalar curvature,i.e, the integration over M 

of the scalar curvature R(g) with respect to the volume 

element induced by the metric g, then the Einstein 

tensor Ricci - Rg/2 appears as its gradient. Critical 

points would have to have zero scalar curvature by 

evaluating the trace.One can remedy this by normalizing 

the total volume to be 1. The new Euler- Lagrange 

equation of the constrained functional is now 

Ricci - Rg12 = kg for some real number k. 

See for examples [Pa] and [Mu].In fact this problem was 

studied by Hilbert in 1915. 

It is well known that all 2 or 3-dimensional 

Einstein spaces are precisely spaces of constant 

sectional curvature. Thus Einstein metrics not of 

constant curvature are of dimension at least four. 

Examples of Einstein metrics are : 

spaces of constant sectional curvature . 
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compact rank one symmetric spaces, i.e, real, complex and 

quarternionic projective spaces and also the Cayley plane, 

compact Lie groups with their hi-invariant metrios, and 

many other non-symmetric spaces such as SO(pq)ISO(p)xSO(q). 

It has been suggested [Be] p. 165 that an interesting 

class of manifolds consists of those Einstein manifolds 

that satisfy the additional condition 

2 
R(X,Y) = IRI g(X,Y)/n 

where 

R(X,Y) L R(e ,e .e ,X)R(e ,e .e .Y). 
i,j,k i j k i j k 

We called such manifolds super-Einstein manifolds when n>4. 

Use of the Bianchi identity shows that when n>4, a super-

2 
Einstein manifold has the property that IRI is constant. 

However, the condition for R is satisfied automatically in 

2 
an Einstein manifold when n=4,but in that case IRI is not 

constant in general. For this reason a 4-dimensional 

2 
Einstein manifold is called super-Einstein when IRI is 

constant. 

For example every irreducible symmetric space is a super­

Einstein manifold. This condition has been considered by 

Carpenter,Gray and Willmore. See [GW] and [CGW]. 
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One of the weak points of the Einstein condition 

is that the product of two Einstein manifolds is not 

necessarily Einstein. In fact the product of two 

Einstein metrics is Einstein if and only if the 

Einstein constants of the two metrics are the same. 

This defect can be overcome by considering Riemannian 

metrics with parallel Ricci tensor fields for we have 

" any Riemannian manifold with parallel Ricci tensor 

is covered by a Riemannian product of Einstein 

manifolds." See Theorem 2.1 of [Gr2] p. 262. 



8 

0.3 Review of Ricci-Codazzi metrics. 

A wider class of metrics is obtained by imposing the 

condition that the Ricci tensor must satisfy the equation 

1) D R - D R 0. 
h ik k ih 

An alternative definition is to ask for the condition 

j 
D R 0, 

ijkh 

since for all Riemannian metrics we have the identity 

j 
D R D R - D R 

ijkh h ik k ih 

Such metrics are said to have harmonic curvature.It was 

shown by Bourguignon [Bo3], that this condition is 

equivalent to insisting that the curvature operator, 

viewed as a vector valued 2-form,shall be closed. 

It will be recalled from classical surface theory, 

that the second fundamental form (a ) of an immersed 
ij 

3 
surface in E satisfies the Codazzi equation 

2) D a - D a = 0. 
h ik k ih 

Due to the similarity of 1) and 2). we shall say that a 

metric which satisfies 1) is Ricci-Codazzi. 

We emphasize that the condition of harmonicity of the 

curvature is a third order differential condition on 

the metric. 
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This family of metrios includes Einstein metrics in which 

case equation 1) is trivially satisfied. 

It is also clear that every Riemannian manifold with 

parallel Ricci tensor has harmonic curvature. 

This family of metrics also includes conformally flat 

metrics with constant scalar curvature,for all conformally 

flat Riemannian manifolds of dimension greater than three 

and of constant scalar curvature are Ricci- Codazzi.See 

Theorem 5.1 of [Gr2]. 

A particular example of a metric of this type is given by: 

n 
M={(x , .. ,X ) £ R 

' X >0 with metric 
1 n n 

2 4/(n-2) 2 2 
ds = X (dx + .. +dx } 

' 
n 1 n 

which has non-parallel Ricci tensor and zero scalar 

curvature. 

Derdzinski [De1,2) has given examples of such metrios 

1 
on compact manifolds containing the sphere S as a direct 

factor. 

They are not Ricci parallel nor conformally flat manifolds 

with constant scalar curvature. And this answers in the 

negative the question raised by Bourguignon [Bo4) whether 

or not the only metrics with harmonic curvature on compact 

manifolds are necessarily Ricci parallel. 
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It is also known that a compact oriented 4-dimensional 

Riemannian manifold with non-vanishing signature and 

harmonic curvature is Einstein ( [Bo1] p.32 ) while any 

compact Riemannian manifold with harmonic curvature and 

non- negative sectional curvature is in fact Ricci 

parallel. See Theorem 11.3 of [Gr2J. Furthermore any 

compact Kahler manifold is covered by a product of 

Kahler- Einstein manifolds. See [Bo4]. 

All Ricci-Codazzi metrics are of constant scalar 

curvature. In fact for an arbitrary local frame field 

{e , .. ,e } and a vector field X on M, we have 
1 n 

XR 2:: D R(e ,e ) 
i X i i 

:i::D R(X,e). 
i e i 

i 

On the other hand it follows from the second Bianchi 

identity that 

XR = 2 ~ D R(X,e ) 
i e i 

i 

which is valid for any Riemannian manifold. Hence XR=O, 

i.e, the scalar curvature is constant. 

This class of metrics has been studied by A.Gray 

[Gr2] , U.Simon [Si], Bourguignon [Bo3,4], A.Derdzinski 

[De1,2], C.Shen [DSJ and others. 
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0.4 Review of Ricci cyclic parallel metrics. 

Now let G be a Lie transformation group acting on M. 

Recall that a differential operator ~ is said to be 

invariant with respect to the group G (G-invariant) if 

VCfog)=(Vf)og holds for any smooth function f and any 

element g of the group G. where g is understood to denote 

the action of g on M. 

A well known theorem of Lichnerowicz on the algebra of 

invariant differential operators states that the algebra of 

such operators on a globally symmetric Riemannian space is 

commutative.see [Hel] p.396 or [Wi2] p.226.As a consequence 

another class of metrics called Ricci cyclic parallel 

metrics was studied by Sumitomo in an attempt to answer the 

question "to what extent is a Riemannian homogeneous space 

satisfying the commutativity condition of the algebra of 

invariant differential operators close to being a symmetric 

space?." See [Su] and [Si]. 

One such condition is that the metric shall be Ricci cyclic 

parallel,namely 

D R + D R + D R 0. 
i jk j ki k ij 

However the geometric meaning of this condition remains 

obscure. 

3 
An example of such a metric is obtained by considering S 

as a submanifold of the quaternions.The metric is 

2 2 2 2 
ds = adQ + bdQ + cdQ 

I J K 
where dQ (X)=<X,VN> 

v 
V=I,J,K 
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with at least two of the coefficients a,b,c equal,where 

N denotes the unit outward normal to the sphere. 

This example gives non-parallel Ricci tensor which 

satisfies the Ricci cyclic parallel condition. 

Theorem 11.4 of [Gr2) states that: a compact Riemannian 

manifold with non-positive sectional curvature which is 

Ricci cyclic parallel is Ricci parallel. 

This class of metrics is also of constant scalar 

curvature for at each point of M we have 

XR ~ D R ( e , e ) = -2 I: D R (X , e ) . 
i X i i i e i 

i 

Comparing this with the relation from the preceding 

section which holds for any Riemannian manifold gives 

XR=O. 
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0.5 Relations between the curvature conditions. 

We have [Gr2] 

E ( RP RCnRCP 
( RC 

( RCP 
( RCURCP ( C 

with strict relations all over,where E,RP,RC,RCP and C 

denote respectively spaces satisfying the condition of 

Einstein, Ricci parallel, Ricci- Codazzi. Ricci cyclic 

parallel and constant scalar curvature. 

In particular the second equality says :metrics which 

satisfy both Ricci cyclic parallel and Ricci- Codazzi 

conditions must be Ricci parallel. 

Another generalisation of Einstein metrics has 

been considered by Patterson.In his paper [Pal p.355 a 

certain metric of type E is defined and he immediately 
m 

obtained that E is the same as an E~nstein metric. We 
1 

shall not however pursue this concept which is due 

essentially to Lovelock [Lo] for this generalization 

differs from what we have considered in the sense that 

E does not imply E form greater than 1. 
1 m 

In the following three chapters the summary of 

results are given at the beginning of each chapter. 
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Chapterl. On Certain Riemannian Metrics In 4-Dimensions. 

There are many examples of 4-dimensional Einstein 

metrics. Famous ones are. example of Schwarzchild of zero 

scalar curvature which was later generalized by Kottler 

[Pel] pp. 79-80 and the example of Kasner [Kal,2) which is 

a generalization of De' Sitter's. 

In this chapter we study certain metrics in four 

dimensions and conditions are found for such metrics to 

be Einstein.Conditions are also found for those metrios to 

be Ricci-Codazzi and Ricci cyclic parallel. 

Since the metrics are irreducible we clearly have 

that metrics with Ricci tensor parallel are essentially 

Einstein. 

Results on Einstein metrics are summarised in 

Theoreml p. 24. These results are equivalent to Kasner's. 

See [Kal). 

Results previously obtained by Derdzinski [Del,2) 

for 4-dimensional Ricci- Codazzi metrics here appear in 

Theorem 2 pp. 31-32 as a special case. Part two of Theorem 

3 p. 37 gives a simple example of such metrics. 

We have shown that for a special class of 4-dimen­

sional metrics, Ricci cyclic parallel and Einstein are 

equivalent. In general it seems that for such a metric 

under consideration the Ricci cyclic parallel condition 

seems to be more restrictive than the Ricci-Codazzi 

condition. 
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1.1 Preparation. 

The object is to find the most general form of a 

4-dimensional Riemannian metric of the form : 

2 
ds 

2 
dt 

2u(1) 
+ e dx 

2 2u(2) 2 
+ e dx 

1 2 

2u(3) 2 
+ e dx 

3 

where u(1),u(2),u(3) are functions of the single variable 

t such that one of the following conditions is satisfied: 

a) the space is Einstein ,i.e , the Ricci curvature is 

proportional to the metric, 

b) the space is Ricci cyclic parallel,i.e, 

D R + D R + D R = 0, 
i jk j ki k ij 

c) the space has harmonic curvature which is equivalent to 

saying that the space is Ricci-Codazzi ,i.e .DR 
i jk 

D R 
k ji 

As preparation we express the given metric in terms of an 

orthonormal coframe and compute the connection matrix,the 

curvature matrix and the Ricci tensor in terms of this 

coframe .we also compute the covariant derivative of the 

Ricci tensor in order to study the Ricci cyclic parallel 

and Ricci-Codazzi conditions. 

Let 

1.1 Q 
0 

Then we have 

1.2 dQ = 0 ; dQ 
0 i 

dt 
u(i) 

Q = e dx 
i i 

. u(i) 
u(i)e dt~dx 

i 

i =1.2.3. 

i =1.2,3. 

The first Cartan structural equation with zero torsion 

for the Riemannian connection is 
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3 
1.3 dQ + L"w A Q 0 i=0,1,2,3, 

i j=O ji j 

with 

1. 4 w + w 0 
ij ji 

We now write 

3 
1.5 w I:: A Q 

ij k=O ijk k 

which defines the functions A with the property 
ijk 

A -A We put i=O into equations 1.3 to get 
ijk jik 

{A QAQ +A QAQ +A QAQ I+{A QAQ +A QAQ +A QAQ } 
100 0 1 102 2 1 103 3 1 200 0 2 201 1 2 203 3 2 

From this 

Now take 

we see 

A 
iOO 

A = 
jOi 

i=1 to 

+{A Q AQ + A Q AQ + A Q AQ } = 0. 
300 0 3 301 1 3 302 2 3 

that 

0 for all i=1,2,3, 

A i,j=1,2,3 and i "I j. 
iOj 

get 

dQ + w A Q + w A Q + w A Q = 0 
1 01 0 21 2 31 3 

which, by the second formula of 1.2 and 1.5, becomes 

{u(1)-A }Q AQ +(A -A )Q AQ +(A -A )Q AQ 
011 0 1 210 012 0 2 310 013 0 3 

+ (A -A )Q A Q + A Q A Q 
312 213 2 3 211 1 2 

From this we see that 

+ A Q A Q 
311 1 3 

0. 
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A u(1) 
011 

A A A A A A 
210 012 310 013 312 213 

A A = 0 
211 311 

Similar calculations with i=2 and i=3 give 

A u(2) A u(3) 
022 033 

A A A A A A A A 
120 021 320 023 130 031 230 032 

A A A A 
321 123 231 132 

A A = 0 A A 0 
122 322 133 233 

These can be summarised as follows: 

1.6 A u(i) i=1.2.3. 
Oii 

1.7 A = A i,j=0,1,2,3 and i,j,k distinct, 
jki ikj 

and all other components are zero. 

We now show that all the A's are zero except for A 
Oii 

We have 

A = A -A = -A A = A -A 
jki ikj kij jik ijk kji jki 

using the identity 1.7 together with the skew-symmetry 

property of A with respect to the first two indices. 

From 1.5 we therefore obtain the connection matrix w 

given by 

1.8 w -u(i) Q for i = 1,2.3, 
iO i 

1.9 w 0 for i,j =1,2,3. 
ij 
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The curvature matrix is computed using the second 

structural equation of Cartan ,namely 

l. 10 m 
ij 

3 
dw - ~ w w for i,j=0,1,2,3. 

ij k=O ik kj 

For i=O , we clearly get 

. 2 
m dw = l u( j) + u( j) }Q - Q for j = 1,2,3, 

Oj Oj 0 j 

where the last equality follows from 1.2 and 1.8.For i 

different from j we have similarly 

m 
ij 

-w w 
iO Oj 

. . 
u(i)u(j)Q A Q 

i j 
i,j=1,2,3. 

Note that 

l. 11 2m "" - 1: R Q A Q . 
ij p,q ijpq p q 

We conclude that the only nonzero components of the 

curvature tensor are 

1.12 

1.13 

K 
Oi 

K 

R 
OiOi 

R 
ij ij ij 

u(i) 

. . 

. 2 
u(i) for i 1,2,3, 

u(i)u(j) ; i,j=1,2,3 and i4j. 

The Ricci tensor can now be computed and we obtain 

the nonzero components: -

1.14 

l. 15 

R 
00 

R 
ii 

3 .. 
L u(i) 

i=1 

3 . 2 
L: u( i) 

i=l 

. 3 . 
- u(i)- u(i)l L:u(j)l for 1=1,2,3. 

j =1 

The scalar curvature is 

l. 16 R 
. 2 

= - 2 { :r: u( i) + L: u( i) + 
. . 

L: u( i )u( j)} . 
i1j 
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For metrics of the form 

2 
ds 

2 2u(l) 2 
dt + e dx + 

1 

2u(2) 2 2u(3) 2 
e dx + e dx 

2 3 

where u(i) are functions of the single variable t ,we 

have computed the components of the Ricci tensor and we 

can now study the possibilities of the metrics being 

Einstein. 

The Einstein equations are 

2 
2.2 2:: u(i) + I. u(i) - u/4 

2.3 u(i) + u(i) L u(j) u/4 for i 

where u is the constant scalar curvature. 

Summing 2.3 for all i 

2.4 2: u( i) + 

where v=-u. 

1,2,3 gives 

2 
L: u( i) ) 

This,together with 2.2, implies 

a o o o o 

2.5 u(l)u(2)+u(2)u(3)+u(3)u(l) 

3v/4 

v/4. 

1,2,3 

We now solve the differential equations 2.2 and 2.3 assuming 
2 

that the constant v is positive. We write 3v/4 = A and denote 

L u(i) by a .Equation 2.4 now gives 

2.6 a + a. 
2 2 

A . 

Clearly the gradient of each solution curve is negative in 

the region 1a1, IAI while in the region 1a1' IAI it is positive. 
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We rewrite this as 

da 2 2 

2 2 
A - a 

dt , provided that A f a . 

2 2 
i) For 1a1' IAI, i.e, A -a 0 we write a=Atanh# with 

2 
da=Asech(#)d# to obtain #=A(t-k) for some constant k. 

2 2 2 2 
We notice that the gradient is A -a = A sech # ' 0. 

2 2 
ii) For 1a1 > IAI, i.e, A -a ' 0 we write a=Acoth# with 

2 
da=-Acosech(#)d# to obtain #=A(t-K) for some constant K. 

2 2 2 2 
In this case the gradient is A -a = -A cosech # , 0. 

Hence 

2.7 
a = { AtanhA(t-k) , 

AcothA( t-K) , 

lal < IAI 

I a I > I A I , tfK. 

Now observe that a=±A is also a solution of the equation. 

There appear to be a possibility that there may be some 

2 2 
t for which a(t) = A although this does not hold for all 

t. However,a general uniqueness theorem for differential 

equations guarantees that this cannot happen,and we have 

in fact obtained all solutions of equation 2.6. 

a(t) 

a(t)=IAI 

a(t)=-IAI 

a(t)<-1~ 
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Multiplying the first, the second and the third equations of 
. . . . 

2.3 by u(2)u(3), u(3)u(l) and u(l)u(2) , respectively, and 

summing yields 

2.8 
d . . . . 
- lu(l)u(2)u(3)}+3u(l)u(2)u(3)L u(i) 
dt 

v . . 
~ u(i)u(j). 

4 i*j 

Denote u(l)u(2)u(3) by band use relations 2.5 and the first 

part of 2.7 (i.e for Jal' IAI) to get 

4 
2.9 b + 3bA tanh A(t-k) A 19. 

Recall that the integrating factor of the differential 
3 

equation 2.9 is cosh A(t-k) .On multiplying both sides 

of this equation by this integrating factor and then 

integrating with respect to t ,we obtain 

3 3 
A 3 A 3 

bcosh A(t-k) - sinh A(t-k) + - sinh A(t-k) + B 
27 9 

from which we finally get 

3 3 
A ·3 A 2 3 

b= -tanh A(t-k)+ 
27 

-tanh A(t-k)sech A(t-k)+ Bsech A(t-k) 
9 

where B is constant of 
3 

sinh3x=3sinh(x) +4sinh x 

integration. We also use : 

and 
3 

cosh3x=4cosh x -3cosh(x). 
2 

From equations 2.4,2.5,2.8 and the relation 3v=4A we see 
. . 

that u(l),u(2) and u(3) are roots of the cubic equation 

2.10 
2 3 

3 2 A A 3 
y-y AtanhAt+y- -l- tanh At+ 

3 27 

3 
A 2 
-tanh(At)sech At+ 
9 

3 
Bsech At}=O. 

( Notice that we can carry out the transformation t'=t-k 

and then work in terms of t'.) 



21 

Similarly for 1a1, IAI we obtain that u(i) are roots of 

2 3 3 
3 2 A A 3 A 2 3 

y-y AcothAt+y- -{- coth At--cothAt.cosech At+Ccosech At}=O, 
9 3 27 

for non-zero t. 

We remember that in obtaining the above equations ,we have 

assumed that the scalar curvature is negative. When it is 

positive we obtain that u(i) are roots of 

2 • 10 I 

3 2 A 
y-y Acot(At)-y-

3 

2 3 
A 

-{ -cot 
27 

3 
At-

3 
A 2 3 
-cot(At)cosec At+ Dcosec Atl=O. 
9 

The next case to consider is when the scalar curvature 

is zero.In this case the differential equation 2.6 becomes 

2 
2.6 1

, a + a 0 

with the general solution a= 1/(t-k),whence 

the differential equation 2.9 is reduced to 

2 • 9 II b + 3b/(t-k) = 0. 

It is quite clear that the general solution of this equation 

-3 
is given by b E(t-k) for some constants E and k. 

Thus in the case of zero scalar curvature, u(i) are roots of 

2 • 10 I I 

3 
y 

2 -1 
y t 

-3 
Et 0 . 

Again we have carried out the transformation t'=t-k. 

The only case left is the case when a =A +0. 
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We have from 2.2 and 2.4, 

2 2 . 2 
2.2' '' u(1) + u(2) + u(3) 

2.4' '' u(1) + u(2) + u(3) A. 

We have the identity 

2 . 2 2 
(u(1)-A/3) + (u(2)-A/3) + (u(3)-A/3) 

2 
A/3 

. 2 . 2 
~ u(i) - 2A(L u(i))/3 + A /3. 

Using 2.2''' and 2.4''' we see that 

2 2 2 
(u(1)-A/3) + (u(2)-A13) + (u(3)-A/3) = 0 

and hence 

. . . 
u(1)=u(2)=u(3)=A/3. 

We have seen that the study of Einstein metrics on a four 

dimensional Riemannian manifold with metrics of the form 

2 
ds 

2 
dt + 

2u(1) 2 
e dx 

1 

2u(2) 2 2u( 3) 2 
+ e dx + e dx 

2 3 

where u(1),u(2),u(3) are functions of the single variable 

t ,is reduced to the study of solutions of the following 

cubic equations: 

2.11 

2. 12 
3 

y 

3 
(y - A/3) 

2 -1 -3 
y t - Et 

0 ' 

0 ' 
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2.13 

2 3 3 
3 2 A A 3 A 2 3 

y -y AtanhAt+ y- -{ -tanh At+ 
3 27 

-tanh(At)sech At+ Bsech At)=O. 
9 

2 3 3 
3 2 A A 3 A 2 3 

y-y AcothAt+y-
3 

-{-coth At--coth(At)cosech At +Ccosech At)=O, 
27 9 

2.14 
2 3 3 

3 2 A A 3 A 2 3 
y -y Aoot(At)-y-

3 
-{ -cot At-

27 
-oot(At)cosec At +Dcosec At}=O. 
9 

The cubic equations 2.12,2.13 and 2.14 can be 

reduced to the following: 

3 -2 -3 -1 
2.12' 3x - xt - Lt 0 x+t /3 = y, 

3 2 2 3 
2. 13' 3x + xA sech At - Msech At =0 X+A(tanhAt)/3 =y, 

,. 3 2 2 3 
3x - xA cosech At Nooseoh At =0 X+A(cothAt)/3 =y, 

2.14' 3x - xA cosec At - Pcosec At 0 x+A(cotAt)/3 =y, 

where L,M,N,P are all constants. 

Using a familiar method of solving cubic equations. it 

is not difficult to prove that the solutions of 2.12' ,2.13' 

and 2.14' are respectively given by: 

y =A(i)/t ,A(tanhAt)/3-B(i)sechAt .A(oothAt)/3+C(i)cosechAt 

and y =A(cotAt)/3 +D(i)cosecAt. 

Moreover, in view of 2.13 and 2.14 ,the constants B(i),C(i) 

and D(i) must satisfy the relations: 

2 
LV(i)=O , LV(i)V(j)= -A /3 for V=B,C,D. 

i*j 
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We prove the following theorem which is equivalent 

to a result of Kasner [Kal]. 

Metrics of the form 2.1 could only be Einstein if 

and only if one of the following conditions holds: 

1) u(i)= tA/3+b(i) where A and b(i) are constants.In this 
2 

case the sectional curvature is constant -A . 

2 
2) u(i) = A(i)logt with the relations L A(i) L A(i) =1. 

This is the case for zero scalar curvature. 

3) a) u(i) = A(tanhAt)/3 + B(i)sechAt with the relations 

2 2 
LB(i) = 0 and that L B(i) = 2A /3 .This is the case when 

2 
the scalar curvature is negative and it takes value -4A/3. 

2/3 2C(i)/A 
b) exp{2u(i)} = sinh (At)tanh (At/2) with the relations 

2 2 
L C(i) = 0 and that L C(i) = 2A /3 .This is the case when 

2 
the scalar curvature is negative and it takes value -4A/3. 

2/3 2D(i)/A 
4) exp{2u(i)} = sin (At)tan (At/2) with the relations 

2 2 
~ D(i)=O and that L D(i) =2A/3. This is the case when the 

2 
scalar curvature is positive and it takes value 4A /3. 

1) Clearly in this case u(i)=A/3 ; i=1,2,3. They are roots 

of the cubic 2.11.More over from 1.12 and 1.13 we see that 

2 
the sectional curvatures are all constant and equal to -A . 
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2) When u(i) = A(i)logt, i.e, u(i) A(i)/t ,we have 

L u(i) 
-1 

L A(i)t and 
. . 

L u(i)u(j) 
-2 

L A(i)A(j)t . 

In order to satisfy 2.12(which corresponds to the case 

of zero scalar curvature) we must have L A(i) = 1 and 

2 
~ A(i)A(j) = 0 , which imply L A(i)= L A(i) = 1. 

It is not difficult to see that this is impossible 

if exactly one of the coefficients is zero. 

2/3 2C(i)/A 
3)b) For the case exp{2u(i)} = sinh (At)tanh (At/2). 

it is not difficult to get 

A 
u(i) -coth(At) + C(i)cosech(At). 

3 

2 
We have also seen that 1C(i)C(j) -A /3. Multiplying 

this negative constant by four we see from 2.5 that 

2 
the scalar curvature is -4A /3. 

3)a) . 4) These are proved by the similar method above. 

In case 2) we can take for example. A(i) are just 

cyclic permutations of {2/3,2/3,-1/3}. In this case 

the sectional curvatures given by 1.12 and 1.13 give 

-2 -2 
K A(i){1-A(i)}t K -A(i)A(j)t for i=1,2,3. 

Oi ij 
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Thus this example gives Ricci flat nonflat spaces. The 

second example when A(i) are cyclic permutations of 

{1,0,0} would give flat spaces. 

In case 3) we can take for example, B(i) are cyclic 

permutation of {2.-1.-1} with A=3.0ther simple example 

of B(i) are given by cyclic permutations of {-2,1,1} 

with the same A=3. 
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In order to be able to consider the Ricci-Codazzi and the 

Ricci cyclic parallel conditions we compute the covariant 

derivative of the Ricci tensor using the usual formula: 

l::R <\) dR !:" w R .L w R 
ij,s s ij ip pj jp ip 

In our case the metric is diagonalized and the formula 

reduces to 

rR Q 
ij,s s 

dR 
ij 

w ( R - R ) 
ij j j ii 

Making use of the equations 1.19 ,1.10 ,1.15 and 1.16 we 

obtain 

ZR Q 
OO,s s 

dR 
00 

-{ I:: u(i) + 2 :Z u(i)u(i) Q 
0 

L: R <\) = dR - { u ( i ) + u ( i) L' u ( j ) + u ( i ) L' u ( j ) Q , 
ii,s s ii 0 

L R Q = -(R -R )w u(i){ R -R } <\) for i= 1,2,3, 
00 ii i Oi,s s ii 00 Oi 

L:R <\) = 0 for i,j=1,2,3 and ~ # j. 
ij,s s 

Thus the only nonvanishing of D R are given by: 
i jk 

3.1 D R R -I:u(i) - 2 Z u(i)u(i) 
0 00 00 

3.2 D R R - u(i) - u(i)l:u(j) - u(i):Lu(j) 
0 ii ii 

3.3 D R u( i) { R - R for i=1,2,3. 
i Oi 00 ii 
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We now consider the case of Ricci-Codazzi,namely 

D R D R for all i 0,1,2.3. 
i jk k ji 

Clearly the identity is automatically satisfied for the case 

i = k .We also see from 3.1 ,3.2 and 3.3 that the identity 

is trivial for the cases when i,j.k are distinct.So we have 

only to consider whether or not D R is equal to D R 
i ij j ii 

Again this is trivial when i=j . Hence the only cases to be 

considered are: 

D R D R for i 1,2,3, 
i 00 0 Oi 

D R D R D R DR D R DR 
0 11 1 10 2 11 1 12 3 11 1 13 

D R D R D R D R D R D R 
0 22 2 20 1 22 2 21 3 22 2 23 

D R D R D R D R D R D R 
0 33 3 30 1 33 3 31 2 33 3 32 

All these cases are trivial except for the three conditions, 

D R 
0 ii 

D R 
i iO 

i 1,2,3. 

We therefore have the following result~ 

Consider metrics of the form 

2 2 2u( i) 2 
ds d t + L' e { dx l 

i 

where u(i) are functions of the single variable t . 

Necessary and sufficient conditions for Ricci-Codazzi are 

R 
ii 

u(i){ R - R 
00 ii 

for i = 1,2,3. 
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(If the space is Einstein then the above condition is 

automatically satisfied.) On substituting the values of 

the Ricci tensors the conditions become: 

. . . 2 . . 2 
3.4 u(i)+ u(i){Iu(j)+u(i)J+ u(i)Lu(j)- u(i)ruCj) =0 

for i 1,2,3 

We now consider the condition for Ricci cyclic 

parallel, namely 

D R + D R + D R 
k ij 

0 for all i,j,k=0,1,2,3. 
i jk j ki 

Since the only nonzero components of the derivative are 

D R , D R , D R 
0 00 0 ii i Oi 

we have only to consider 

DR = 0 and DR +DR +DR 0 for i=1,2,3. 
0 00 0 ii i iO i Oi 

We have therefore obtained the following result. 

Necessary and sufficient conditions for the space 

to be Ricci cyclic parallel are : 

. . 
R is a constant and R + 2u(i){R- R } =0 for i=1,2,3. 

00 ii 00 ii 

These conditions are equivalent to 

3.5 I u(j) + 2 LU(j)u(j) 0 

. . . . . 2 . 2 
3.6 u(i)+ u(i){2u(i)+u(j)+u(k)}+ 2u(i){u(j)+u(k)} 

. 2 . . . 
- 2u(i){u(j)+u(k)}+ 3u(i){u(j)+u(k)} = 0, 

where i,j,k in 3.6 are cyclic permutations of 1,2,3. 

We have been unable to tackle both problems of 

Ricci-Codazzi and Ricci cyclic parallel in general 

because of the nature of the differential equations. 
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We now simplify our problem considerably by considering 

the case when u(1)=u(2)=u(3)=u,say. 

In this case the solutions of the Einstein equations 2.2 

and 2.3,which now reduce to 

. 2 
3u(t) + 3u(t) = v/4 and 

must be u(t) = 0 . 

2 
u(t) + 3u(t) v/4, 

The Ricci cyclic parallel conditions 3.5 and 3.6 are now 

just 

u(t) + 2u(t)u(t) =0 and u(t) + 10u(t)u(t) =0 

which clearly imply u(t) 0 .Thus we have: 

Ricci cyclic parallel spaces with metrics of the form 

2 2 2u(t) 2 2 2 
ds = dt + e ~~ + dx + dx } 

1 2, 3 

are necessarily Einstein spaces of constant curvature. The 

spaces are flat when u is just a constant function and we 

shall always exclude this trivial case from our discussion. 

The proof is immediate from part 1) of theorem 1. 

Lastly the Ricci- Codazzi conditions 3.4 reduce to 

. 2 
u(t)+4u(t)u(t) =0, i.e, u(t)+2u(t) =k . 

where k is a constant. 

Clearly the solution u =0 of the Einstein equations satisfy 

the differential equation above. In general we have to 

consider three cases : 
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case(1): k =0. In this case it is quite easy to see that 

1 . 2 
u(t)= -loglt-cl 

2 
is a solution of u(t) + 2u(t) =0. This 

solution does not come from a Ricci parallel metric. See 

equation 3.1. 

case(2): k is positive, say k=K/2. 

We write 

2u 
2e p ,i.e. 2u = log(p/2) ; 2u pip 2u pip 

.2 
4u . 

. 2 
These together with u(t)+2u(t) =K/2 give p -pK =0 with 

a solution 

1/2 1/2 
p(t) aexp{tK } + bexp{-tK } 

where a and b are constants. So in this case we have 

2u(t) 1/2 1/2 
e Aexp{tK } + Bexp{-tK } 

where A and B are nonnegative arbitrary constants not both 

equal to zero. 

case(3): k is negative.We obtain a similar result as above. 

From the three cases above we obtain the following 

theorem which is known to Derdzinski [De1,2]. 

Metrics of the form 

2 2 2u(t) 2 2 2 
ds dt + e { dx + dx + dx 

1 2 3 

2u 
are Ricci-Codazzi if the function e is given by: 

2u(t) 
1) e = t . 



2u(t) 
2) e 

l/2 
Aexp(tK ) 
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l/2 
+ Bexp(-tK ), 

and the one which comes from the Einstein space u(t)=O. 

The fact that this particular metric is not a good 

candidate for the study of Ricci cyclic parallel metrics 

can be seen by the following more general results. 

Derdzinski[Del] has considered the following construction· 

M N 
Let (M,h ) and (N,h ) be Riemannian manifolds and F is a 

positive function on M.Define the F-warped product M>< N 

of M 

with 

and N to be the Riemannian manifold (M.XN,h 

M N 
(h X h ) (U+X,V+Y) 

F (x,y) 

M N 
h (U,V) + F(x)h (X,Y) 

X y 

F 
M N 

X h 
F 

where U,V and X.Y are respectively tangent vectors of M 

and N at points x and y. 

) 

The local coordinate expressions for some geometric 

quantities when M is of !~dimension are given as follows: 

Let I be an interval of real numbers. considered with its 

standard metric ,F a positive smooth function on I and 

(N,h) an (n-1)-dimensional Riemannian manifold. Denoting 

by g the F-warped product metric of IX N and by R its 
F 

Ricci tensor, and letting the indices i,j,k run through 

1 .. ,n-1 we get for a given chart t=x(O).x(l), .. ,x(n-1) of 

I~ N with g = l, g = 0 and g = Fh , the non-zero 
F 00 Oi ij ij 

components of the Ricci tensor and its derivative, namely 
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1-n 2 
R ---{2 q + (q ) } 

00 4 

q 
e 2 

R -p { 2 q + (n-1)(q ) }h 
ij ij 4 ij 

and 

1-n ... 
D R ---{ q + q q } . 

0 00 2 

q 
e 

D R -q p { q + (n-1) q q}h 
0 ij ij 2 ij 

2-n q .. 
D R -q p /2 + ---e q q h 

i Oj ij 4 ij 

D R D'p 
k ij k ij 

where q=logF and D' .p denote the Riemannian connection and 

Ricci tensor of (N,h). respectively,while the components of 

h, p and Dp are considered with respect to the chart 

x(1), ... x(n-1) of N . 

If F is non-constant and n t 3 ,then Ix N has harmonic 
F 

curvature if and only if (N,h) is an Einstein space and the 

n/4 
positive function f = F on I satisfies the ordinary 

differential equation 

nk 1-4/n 
f - f bf 

4(n-1) 

for some real number b,k being the constant scalar curvature 

of N . 
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2u 
In our case we have n=4 and k=O. Futhermore f=F=e so that 

.2 
f = bf becomes u + 2u = b which agrees with our result for 

the case of Ricci-Coda.zzi. 

The case of the Ricci cyclic parallel spaces which 

n-1 
are the F-warped products of the form r~ N is as follows: 

F 

The conditions D R 0 . D R + DR + D R 
0 00 0 ij i jO j Oi 

respectively implies 

q(t) + q(t)q(t) = 0, 

q(t)p 
ij 

2-n q . q 
---e q(t)q(t)h - e {q(t) +(n-1)q(t)q(t)}h 

4 ij ij 

and these two together give 

2-n q 
p --- q(t)e h 
ij 2 ij 

which means N is an Einstein space. 

We therefore have 

2-n q(t) S 
-- q(t)e 

2 ·n-1 

o. 

/4 

where S is the scalar curvature of N. Thus a. necessary 

condition for the warped product Ix N to be Ricci cyclic 
F 

parallel is 

q(t) 

and 

28 -q(t) 
+ ------- e 

(n-1)(n-2) 
0 

q(t) + q(t)q(t) 0. 

n ~ 3 
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But these are exactly the conditions for the Ricci tensor 

of the warped product Ix N to be parallel.See Derdzinski 
F 

[De2] p.147.So we see that the warped product of this type 

is not a good candidate for studying the Ricci cyclic 

parallel case. In fact in our case we have S=O and hence 

q(t) = 0 which is the solution of the Einstein equations. 

The next simplest case to consider is when metrics 

take the form 

2 
ds 

2 
dt + 

2a( i) 2 
r (t-k) dx 

i 

where a(i) and k are just constants. In this special case 

we have 

a(i) . . a(i) 2a(i) 
4.1 u(i)=a(i)log(t-k); u(i)=- ;u(i)=- -- ;u(i)= -----

t-k 2 3 
(t-k) (t-k) 

and the Einstein spaces correspond to part (2) of theorem1 
2 

with the relation L a(i) = L a(i) = 1. 

Moreover we have seen that the scalar curvature is zero. 

In the case of Ricci cyclic parallel it is not 

difficult to see that the space is necessarily Einstein 

2 
for condition 3.5 implies that ~ a(i) = r a(i). 

Summing up equation 3.6 for i=1.2.3 and using 3.5 gives 

. . . . . 
u(1)u(2)+u(2)u(3)+u(3)u(1) = c 

for a constant c .But then we must have 

4.2 a(1)a(2)+a(2)a(3)+a(3)a(1) = 0. 

2 
Now it is clear that the relation 1a(i)=Ia(i)=1 is essential. 
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For the case of Riooi-Codazzi ,we substitute u(i),u(i) 

and u(i) from 4.1 into equation 3.4 to get 

2 
4.3 a(i){2 -(~a(j)+a(i)) +a(i)Ya(j) -Ya(j) } = 0 ; i=1,2,3. 

If all a(i) are different from zero we must then have 

the relation 

4.4 d = 2 - o + a(i)(o - 1) for all i = 1,2,3 

2 
where o,d denote L a(i), z a(i), respectively. Summing for 

i = 1,2,3 in 4.4 gives 

4.5 
2 

3d = 6 -40 + c. 

On the other hand we also have 

4.6 :L u(i) + I.- u(i) Z u(i) + Zu(i)u(i) = 0 

obtained by summing up the three Riooi-Codazzi conditions of 

3.4 .This together with 4.1 would imply 

4.7 
2 

d = 20 - c . 

Eliminating d from equations 4.5 and 4.7 would give 

2 
2o -5o +3 = ( 2o-3)( o-1) =0. 

When c=1, dis equal to 1 and when c = 312 ,dis equal 

to 3/4 .The first case is none other than the Einstein 

solution while the second one does not even give Ricci 

parallel. For example we take a(i) to be {1/2,1/2,1/2}. 

In fact this is the only solution for the second case: 

for from Ia =3/2 
i 

and 

2 2 

2 
Ia =3/4, we easily see that 

i 

Z(a -1/2) ~a +3/4 -~a =0. 
i i i 



37 

If however only one of the coefficients say a(1) is 

nonzero then condition 4.3 reduces to a(1)=1.This is just 

a flat space. 

Now suppose a(k)=O but a(i),a(j) are different from 

zero .From 4.4 we obtain 

2 
4.8 2d = 4 - 3c + c 

On eliminating d from 4.7 and 4.8 we get c=1 or 4/3.When 

C=1, dis equal to 1 and when c =4/3, dis equal to 8/9. 

But the only solution of the first case is either a(i)=O 

and a(j)=1 or the other way round (which is absurd), 

while for the second case we must have a(i)=a(j)=2/3. 

We can now conclude : 

There are metrics of the form 

2 2 2a(i) 2 
ds = d t + :2: ( t-k) dx , 

i 

which are Ricci-Codazzi but not Einstein. These are given 

by: 

1) a(i) = 1/2 for all i=1,2,3. 

2) {a(1),a(2),a(3)} are just permutations of {2/3,2/3,0}. 

Note that the first part is similar to part 1 of Theorem2. 
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Chapter 2. Metrics On Certain Odd Dimensional Spheres. 

In this chapter we shall use the Cartan 

structure equations to compute curvature .This 

method is similar to Jensen's but more direct. 

See [Jel 1. [Grl] and [Ne]. 

We explain our notation in 1) while in 2) we 

consider a naturally defined 2-parameter family 

2n+l 
of metrics on the spheres S and the curvature 

is then computed. The same is done in :3) for the 

4n+:3 
4-parameter family of metrics on S 

In 4) and 5) we discuss the possibilities of 

those metrics being Einstein, Ricci- Codazzi or 

Ricci cyclic parallel on those spheres. 

In particular we obtain the ~instein metric of 

Jensen [Jel] beside the standard one. 

We conclude our investigation in Theorem4 

p. 66 ,TheoremS p. 68 and Theorem6 p. 70. From 

these theorems it seems that on a homogeneous 

space the Ricci-Codazzi condition is more strict 

than the Ricci cyclic parallel condition. 

The non-associativity of Cayley numbers prevent 

8n+7 
us from generalizing the method to S to obtain 

the third Einstein metric of Bourguignon and 

Karcher [ BK] . 
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2 . 1 NQIAIIQN 

Let M be an n-dimensional Riemannian manifold with 

_2 - -
metric ds .In a neighbourhood of each point let Q .... Q 

be 1-forms which orthonormalize the metric, 

i.e 
_2 

ds 
_2 _2 
Q + .. + Q 

1 n 

-

1 n 

The connection forms w's are the unique solutions of the 

structural equations of Cartan 

- - -
1.1 dQ L: w ~ Q i=1, .. ,n 

i j ij j 

with 

1.2 w + w 0 i,j=1, .. ,n. 
ij ji 

The curvature forms m are given by the relation 
ij 

- -
1.3 dw m + L" w w i,j _1, ..• n 

ij ij k ik kj 

where our connection and curvature forms w ,m correspond 
ij ij 

j j 
to the w , JL ,respectively of Kobayashi and Nomizu [KN1]. 

i i 

- -
The components of the curvature tensor lrelative to Q , ..• QI 

1 n 

are given by 

- - - -

1.4 2m I R Q A Q 
ij k,l ijkl k 1 
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The sectional curvature ,Ricci curvature and scalar 

curvature are respectively given by 

- - - - - -
1.5 K R R :LR R L: R 

ij ijij ij k ikjk i ii 

We also recall that the manifold M is of constant sectional 

curvature k if 

- -
1.6 m -k(\) ~ (\) ; i. j 1, ... n. 

ij i j 

See [KN1] p.204. 

-
Let D be the Riemannian connection of an n-dimensional 

n 
unit sphere S and let {E , .. ,E } be the local orthonormal 

1 n 

- - -
frame field dual to {Q , .. ,(\) .Then the connection D and 

1 n 

the connection forms w are related by the formula 
ij 

- n 
1.7 w (X) 

ij 
<D E , E , for all vector fields X on S. 

X i j 

n n+1 
We regard S as the unit sphere in R and let N be a 

n 
globally defined unit normal vector field to S .Thus if 

n+1 
{u , .. ,u denote the natural coordinate functions on R 

1 n+1 

we have 

1.8 N L: u a idu 
i i i 



for 

n+1 2 
) (u ) 

i=1 i 

n 
1 on S 
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n+1 
Let D be the Riemannian connection of R ,the formulas of 

Gauss and Weingarten are 

D y 
X 

-
D Y + h(X,Y)N 

n 
X,Y are tangent vector fields to S 

X 

j_ 

D N - A (X) + D N 
X N X 

where h is the second fundamental form,while A 
N 

..L 
and D N are 

X 

the tangential and normal components.The second equation 

reduces to 

1.9 D N 
X 

X 

..L 
for from <N,N> 1 we get <D N,N> 

X 
0 and hence <D N,N>=O. 

_l 

Since D N is is a scalar multiple of N ,we must have 
X 

n 

X 

l 
D N=O 

X 

at each point p of S .Moreover we have A 
N 

-Id for our 

sphere is of radius 1.See Kobayashi and Nomizu [KN2] p. 30. 

This can also be shown by a straight forward calculation 

using the fact that the Riemannian connection of Euclidean 

space is flat . 
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2n+1 
2.2 ME~BICS_QN_SEHEBES_S 

_2 2n+1 
Let ds denote the standard metric on S with sectional 

2n+1 2n+2 
curvature 1 and we regard S as the unit sphere in R 

2n+2 
R has a naturally defined almost complex structure I, 

( i.e, at every point, I is an endomorphism of the tangent 

2 
space such that I = -Id where Id is the identity 

transformation) which is compatible with the metric in the 

sense that <IX,IY>=<X,Y> for all vector fields X,Y.We then 

2n+1 
have a globally defined tangent vector field IN to S 

for <IN,N>=-<N,IN> implies IN is perpendicular toN. 

2n+1 
For each point p in S ,let {E , .. ,E be an 

1 2n+1 

orthonormal frame field defined in a neighbourhood of p 

such that 

2.1 E IN 
2n+1 

and 

2.2 IE E IE -E for i=l, .. ,n. 
i i+n i+n i 

-

Denote by {(\) ' .. ,Q ,Q} the 1-forms dual to {E , .. ,E ,IN} 
1 2n I 1 2n 

and we write 

- - - -
2.3 Q Q Q -Q for i=l, .. ,n. 

I(i) i+n I(i+n) i 
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We therefore have 
_2 

ds 
_2 _2 _2 _2 
Q + ... + Q + Q + ... + Q 

_2 
+ Q . 

1 n I(1) I(n) I 

Denote by w 
ij 

and m the connection and the curvature forms 
ij 

_2 
of ds relative to the frame field {E , ... E .IN}. 

1 2n 

The connection forms w satisfy 
ij 

- -
2.4 w Q w Q i=1, .. ,n, 

ii I(i) I(i)I i 

2.5 w w w -w ;i,j=1, .. ,n. 
I(i)I(j) ij I(i)j ii(j) 

-
Let D and D denote the Riemannian connections of 

2n+1 2n+2 -

S and R respectively .Then D and w 
ij 

are related by the formula 

-
2.6 <D E ,E > 

2n+1 
w (X) for all vector field X on S 

We have 

X i j 

w (X) 
ii 

ij 

-

<D E , IN> 
X i 

-<E ,IX> 
i 

-
w (X) =<D IE ,IN> 
I(i)I X i 

<DE ,IN> 
X i 

<IE ,X> 
i 

<D IE ,IN> 
X i 

i. j = 1 ... , 2n+ 1. 

-<E ,D IN> 
i X 

Q (X) 
I(i) 

-<IE ,DIN> 
i X 
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-

-<IE ,IX> -<E ,X> -Q (X) 
i i i 

-
w (X) =<D IE ,IE >= <D IE .IE >= <D E ,E , 
I(i)I(j) X i j X i j X i j 

w (X) 
I(i)j 

-
=<D E .E , 

X i j 

-

w (X) 
ij 

<D IE ,E >= <D IE ,E , 
X i j X i j 

=-<DE ,IE >= <E ,D IE ' 
X i j i X j 

<IDE ,E > 
X i j 

w (X) 
I(j)i 

In the calculation above we used the fact that the almost 

2n+2 
complex structure I of R is parallel. 
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2n+1 
Now consider metrics on S of the form 

2 2 _2 _2 _2 _2 2_2 
ds =A { Q + .. + Q + Q + .. + Q l + a Q 

1 n I(1) I(n) I 

where A and a are non-zero constants. 

If we write 

2.7 

and 

2.8 

then 

-
A Q 

i i 

Q 
I 

-
a Q 

I 

i=1, .. ,2n 

2 2 2 2 
ds Q+ .. +Q +Q. 

1 2n I 

Let w 
ij 

and m (1 ~ i,j { 2n+1 ) be the corresponding 
ij 

connection and curvature forms respectively. We have the 

- -

relations between w,w and Q as follows : 

2.9 w w w w ;1~i.j~2n,j~I(i), 
ij I(i)I(j) ij I(i)I(j) 

-2 2 2 
2. 10 w w + A ( a - A )Q ; 1' i "2n, 

ii(i) ii(i) I 

-1 -1 -
2.11 w A aw A aQ ; 1 { i ,, 2n. 

ii ii I(i) 



2.12 dQ 
I 

On the other hand 

-

46 

-

A 'L w 
Ij 

-
2. 13 dQ = d(a Q ) = a dQ a Zw 

I I I j Ij 

Comparing 2.12 and 2.13 we have 

2. 14 w 
ii 

-1 
A aw 

ii 

-1 -
= A aQ 

I(i) 

-
A Q 

j 

-
A Q 

j 

where the last equality is obtained from the first equality 

of 2.4 .This proves 2.11. 

dQ .L w A Q + w A Q + w A Q 
i j ij j ii(i) I(i) ii I 

- - -1 2_ -
2.15 AL"w AQ+Aw AQ +A aQ AQ 

j ij j ii(i) I(i) I(i) I 

On the other hand 

dQ 
i 

2. 16 

Using the 

d(A Q ) 
i 

-
= A 'L:w 

j 

A Lw 
j 

ij 

ij 

uniqueness 

equation we get 

2. 17 w 
ij 

-

A dQ 

-A 
Q 

j 

-A 
Q 

j 

of 

w 
ij 

i 

-
+ A w A 

Q + 
ii(i) I(i) 

-

+ A w A 
Q + A 

ii(i) I(i) 

the solution of Cart an 

for j 1 I(i), 

which satisfy 2.9 Furthermore 

-
A w A Q 

ii I 

- -
Q 

A 

Q 
I(i) I 

structure 
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equations 2.15,2.16 and 2.17 would give 

- -1 2_ 
Q ~{-A w + A a Q }= Q ~{-A w + A Q } 

I I(i) ii(i) 

from which we obtain 

w 
ii(i) 

and completes the proof. 

I I(i) ii(i) 

-2 2 2 -
w + A ( a - A ) Q 
ii ( i) I 

We now compute the curvature forms m using identities 
ij 

2.9.2.10 and 2.11 .For j j I(i) 

ro dw L w w -w w -w w -w w 
ij ij k ik kj ii(i) I(i)j ii(j) I(j)j ii Ij 

- - -2 2 2 -
dw :Lw w - { w + A (a - A ) Q } ~ w 

ij k ik kj ii(i) I I(i)j 

-2 2_ -
+ w ~ { w + 

-2 2 2 -
A (a - A ) Q 

I 
+ A a Q A Q 

ii(j) ji(j) I(i) I(j) 

- -
2.18 ={dw -LW w -w w -w w -w w } 

ij ik kj ii(i) I(i)j ii(j) I(j)j ii Ij 

-2 2 2 -2 2 2 -
+ A (a - A )Q ~ Q - A (a - A )Q ~ { w + w } 

I(i) I(j) I I(i)j ii(j) 

but the last term is zero by the second equality of 2.5. 

hence 

-2 2 2 
2.19 m ro +A (a- A) Q ~Q ;l~i.j~2n;jji(i). 

ij ij I(i) I(j) 
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_2 
We now use the fact that the metric ds is of 

constant sectional curvature 1, i.e, 

- -

m - Q ~ Q . 1{i,j{2n+1 
ij i j 

and we finally obtain 

2.20 m 
ij 

-2 
= - A Q 

i 
~ Q 

j 

2 2 -4 
(A -a )A Q ~ Q 

I(i) I(j) 

by using the identity 2.7 .Similar method of calculation 

would give 

-4 2 2 -4 2 2 
2.21 m -A (4A -3a )Q ~Q LA (A -a ) Q ~Q 

ii(i) i I(i) kli k I(k) 

{ notice here that k does not take values i or I(i)l 

2.22 m 
ii 

2 -4 
a A Q ~ Q , i=1, .. ,2n. 

i I 

From three identities 2.20,2.21 and 2.22 .we obtain the 

components of the curvature tensor together with sectio-

nal curvatures and Ricci tensors 

2 2 -4 
R (A - a )A /2 1{i,j~n j'li,I(i), 
iji(i)I(j) 

2 2 -4 
R (A - a )A /2 l~i. j~n i'lk, 
ii(i)ki(k) 

-2 
K A 1~i.j~2n j'fi,I(i), 
ij 
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2 2 -4 2 -4 
K (4A -3a ) A K a A 
ii(i) ii 

2 -4 2 2 -4 
R 2na A R 2((n+l)A - a )A , 
II ii 

i=l, .. , 2n. 

2 
The scalar curvature of the metric ds is given by 

2 2 -4 
R 2n((2n+2)A - a ) A 
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2.3 METRICS_QN_S 
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2n+1 _2 
We generalize the method used on S Let ds be the 

4n+3 
standard metric on S with constant sectional curvature 1 

4n+3 
and we regard S as the unit sphere in the right 

n+1 
quaternionic vector space H Let I,J and K denote the 

n+1 
transformation on H which are left multiplication by the 

quaternions i,j and k, respectively. Then I,J and K are 

n+1 
quaternionic linear on H Thus if N is the unit normal 

4n+3 
vector field to S we have three tangent vector fields 

4n+3 
IN.JN and KN to S which are globally defined. For 

4n+3 
each point p of S ,let { E , .. ,E } be an orthonormal 

1 4n+3 

frame field defined in a neighbourhood of p such that 

3.1 IE = E JE = E KE = E ,i=1, .. ,n 
i n+i i 2n+i i 3n+i 

and 

3.2 E IN E JN E KN. 
4n+1 4n+2 4n+3 

Writing 

3.3 E E E E E E 
n+i I(i) 2n+i J(i) 3n+i K(i) 

we clearly have the following relations 

3.4 IE 
I(i) 

JE 
J(i) 

KE 
K(i) 

-E , i=1, .. ,n. 
i 
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Now let 

- - - - - - - - -

{(\) .. ,(\) ,(\) ... (\) , . ,(\) .. ,(\) .(\) .. ,(\) ,(\) ,(\) ,(\) } 
1 n I(l) I(n) J(l) J(n) K(l) K(n) I J K 

be the 1-forms dual to {E , .. ,E }. 
1 4n+3 

We set 

- -

3.5 V(V(i))=-i and(\) -(\)for all V=I,J,K and all i=l, .. ,n. 
-i i 

So we have the metric 

_2 
ds 

_2 
2:: .(\) 
i i 

+ 
_2 

2::. (\) + 
i I(i) 

_2 _2 _2 
:2::"(\) + 5::: (\) + (\) 
i J(i) i K(i) I 

_2 
+ (\) 

J 

_2 
+ (\) . 

K 

Following the notation of the preceding section we let w 
ij 

and m be the connection and curvature forms of the metric 
ij 

_2 
ds relative to the frame field { E ... ,E }. 

3.6 

3.7 

3.8 

w 
iV 

w 
ij 

w 
V(i)V 

-

(\) 
V(i) 

w 
V(i)V(j) 

-
(\) 

i 

1 4n+3 

for all V=I,J,K , 1=1, .. ,n, 

for all V=I,J,K . l4i,j~n , 

w 
U(i)V 

-

(\) 
W(i) 

-
w (\) 

U(i)W V(i) 

where U,V,W are cyclic permutations of I,J,K. 

3.9 

3.10 

w - w 
iU(j) U(i)j 

w 
IJ 

-
(\) 

K 
w 

JK 

- w w .l~i.j~n. 
V(i)W(j) W(i)V(j) 

-
-Q 

I 
w 

KI 

-
-Q 

J 
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We prove 3.9 . 

The first equality is the second equality in 2.5 while 

- -
w (X) ' D VE ,WE > = -<DE ,VWE , 

V(i)W(j) X i j X i j 

which proves the second part of 3.9. 

From above we also get 

- - -

-w (X) 
iU(j) 

<DE ,VWE , = <D WE ,WVWE ' <D WE ,VE > =w (X) 
X i j X i j X i j W(i)V(j) 

and completes the proof. 

All the others can be proved similarly. 

Recall that we have the metric of constant sectional 

curvature l 

_2 
ds 

_2 
L:Q 
i i 

_2 _2 _2 _2 
+L"Q +t:Q +2::"Q +Q 

i I(i) i J(i) K(i) I 

_2 
+ Q 

J 

Now consider metrics of the form 

2 2 - 2 2 2 _2 2 2 2 2 
ds A ds + (a(I)-A )Q + (a(J) -A )Q + (a(K) 

I J 

which clearly equivalent to 

2 _2 _2 - 2 - 2 2_2 2_2 

_2 
+ Q . 

K 

2 - 2 
-A )Q 

K 

2_2 
A :n Q + Q + Q + Q ) + a(I) Q + a(J) Q + a(K) Q 

i i I(i) J(i) K(i) I J K 

where A,a(I),a(J),a(K) are constants. These metrics are 

4n+3 
globally defined for at each point p € S ( represented as 

the quotient spaces Sp(n+l)/Sp(n) ) ,the tangent space 

decomposes into the direct sum of a 4n-dimensional subspace 

and a 3-dimensional subspace. each invariant under the 

linear isotropy representation of Sp(n). Furthermore the 
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action on the three dimensional subspace is trivial. 

We then write 

3.11 

and 

3.12 

-
A Q 

i i 

-

a(V)Q Q 
v v 

2 

for i 

for V 

Then the metric ds can be written as 

2 2 2 2 2 2 
ds = Q + .. + Q + Q + Q + Q . 

1 4n I J K 

1, .. ,4n 

I,J ,K. 

As before we also denote by w . m the corresponding 
ij ij 

connection and curvature forms .Now we find the relations 

-

between w ,w (and Q) making use of the identities 3.11 

and 3.12 . 
4n 

3.13 dQ = ~ w A Q + w A Q + w ~ Q 
I i Ii i IJ J IK K 

4n _ 
A 2.. w ~ Q 

i Ii i 

On the other hand 

3. 14 dQ = d(a(I) Q ) 
I I 

- -

+ a(J) 

-

a(I) dQ 
I 

-w A Q 
IJ J 

-

-
+ a(K) w ~ Q 

IK K 

-
a(I)Lw AQ + a(I) w A Q + a(I) w A Q 

We take 

3.15 w 
Vi 

i Ii i 

-1 -
A a(V)w 

Vi 

IJ J 

-1 -
A a(V)Q 

V(i) 

IK K 

V=I,J,K, 
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where the last equality follows from the first equality of 

3.6 .We must then have 

3.16 a(J)w ~Q 

IJ J 

-
+ a(K)w ~Q 

IK K 

- -
a(I){ w ~Q + w ~Q 

IJ J IK K 

Using 3.10,the right hand side of 3.16 becomes 2a(I)Q ~Q 
J K 

Unique solutions of 3.16 are now given by 

3. 17 

3. 18 

[check: 

3. 19 

w 
IJ 

w 
IK 

2 2 2 
{a(I)+a(J)-a(K)}_ 
---------------w 

a(I)a(J) IJ 

2 2 2 
{a(I)+a(K)-a(J)f_ 

a(I)a(K) 

-

w 
IK 

2 2 2 
la(K)-a(I)-a(J)I_ 

------------- Q 
a(I)a(J) K 

2 2 2 
la(I)+a(K)-a(J)}_ 
-------------- Q 

a(I)a(K) J 

a(J)w ~ Q + a(K)w ~Q 
IK K 

- - 2 2 2 
Q A Q { a(K)-a(I)-a(J) 

K J IJ J 

2 2 2 -
-(a(I)+a(K)-a(J))}/ 2a(I) Q ~ Q .] 

a( I) J K 
4n 

dQ = ~ w ~ Q + r w A Q + L w ~ Q 
i j#VIilij j V iV(i) V(i) V iV V 

4n _ 
A { L w ~ Q +l::w ~Q } 

j 'i'VIilij j V iV(i) V(i) 

+ a(I)w AQ + a(J)w ~Q + a(K)w ~Q 

ii I iJ J iK K 

On the other hand 

-
4n _ _ _ _ 

3.20 dQ AdQ A{Iw AQ+I:w ~Q +L:w ~Q}. 

i i j 'i' Vli l i j j V i V ( i ) V ( i ) V i V V 
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Comparing both identities , we can take 

3.21 w w for 1~ j ~4n and j *V(i) V=I,J,K. 
ij ij 

Equating the remaining terms of the equations 3.19 and 3.20 

and using identity 3.15 we get 

-2 2 2 
3.22 w 

iV(i) 
w + A {a(V) A }Q ;V=I,J,K; i=1,. ,4n,. 

v iV(i) 

Now 

dQ ~ w ~Q + w ~Q + L. w ~Q + L: w ~Q 

I(i) j*i I(i)j j I(i)i i V I(i)V(i) V(i) V I(i)V V 

- - - 2 2 -2 - - -
A 2:: w ~Q +A[w ((a(I) -A )A )Q ]~Q +Aw ~Q 

j*i I(i)j j I(i)i I i I(i)J(i) J(i) 

- 2 - 2 - 2 -
+Aw ~Q + a(I)/ w ~Q +a(J)/ w ~Q +a(K)/ w ~Q 

I(i)K(i) K(i) A I(i)I I A I(i)J J A I(i)K K 

by 3.11,3.12,3.15 and 3.22. On the other hand 

- - - - - - - - -
dQ =AdQ =A[ L w ~Q +w ~Q +Iw ~Q +1w ~QJ. 

I(i) I(i) j#i I(i)j j I(i)i i V I(i)V(i) V(i) V I(i)V V 

Cancelling like terms of the above two identities we get 

- - 2 2 -2 
- AQ ~ Q ta(I) -A }A + A{w -w }~Q 

I i I(i)J(i) I(i)J(i) J(i) 

- 2 2 -
+ A{w -w }AQ + {a(I)-A }/ w ~Q 

I(i)K(i) I(i)K(i) K(i) A I(i)I I 

2 .2 - 2 2 -
+ {a(J)-A }/ w ~ Q + {a(K)-A }/ w ~ Q 0. 

A I(i)J J A I(i)K K 
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The first and fourth terms cancel by the first identity 

of 3.8.We later use the second and the third identities 

of the same equation for the last two terms to obtain 

- -1 2 2 - -

{Aw -Aw A (a(K)-A )Q l ~ 

Q + 
I(i)J(i) I(i)J(i) K J(i) 

- -1 2 2 - -
{Aw -Aw + A (a(J)-A )Q l ~ 

Q 0. 
I(i)K(i) I(i)K(i) J K(i) 

So we have 

-2 2 2 -

3.23 w w + A {a(W)- A }(\) 
U(i)V(i) U(i)V(i) w 

-2 2 2 -
3.24 w w A ( a(V)- A )Q 

' U(i)W(i) U(i)W(i) v 

where U,V,W are cyclic permutations of I,J,K. 

We now list all the relations that we have obtained 

3.25 W =W 
ij V(i)V(j) 

-1 -
3.26 w A a(V)w 

iV iV 

w ; i,j=1, .. ,4n and j fV(i), 
ij 

-1 -
A a(V)Q ,V=I,J,K,i=1,. ,4n, 

V(i) 

-2 2 2 -
3.27 w -w w + A {a(U) - A }Q 

3.28 

3.29 

w 
uv 

iU(i) V(i)W(i) iU(i) U 

2 2 2 2 2 2 
{a(U)+a(V)-a(W)}_ -{a(U)+a(V)-a(W)}_ 
--------------- w -------------- Q 

a(U)a(V) UV a(U)a(V) W 

-2 2 2 -
w w + A {a(W) - A }Q 
U(i)V(i) U(i)V(i) W 
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Identities 3.27 to 3.29 are for all cyclic permutations of 

I,J,K. We now check the relations that we have obtained. 

Firstly 

dQ ;: w ~ Q + L w A Q + L w A Q 
i kjV(i) ik k V iV(i) V(i) V iV V 

2 2 2 
- - _ a(V) - A_ _ a(V)_ _ 

=A 2.:' w AQ + A{L w + -------Q }A Q + L w AQ 
k ik k V iV(i) 2 V V(i) V A iV V 

A 

2 2 2 2 
a(V) - A a(V) - A -- - -

A dQ + L Q A 
Q + <:""""" w A Q ------- L -------

i v A v V(i) v A iV v 

Notice that the last two terms cancel.Secondly 

dQ = L w ,. Q + L w A Q 
I j Ij j V IV V 

2 2 2 2 2 2 
- - a(I)+a(J)-a(K)_ - a(I)+a(K)-a(J) _ _ 

r a(I)w AQ + -------------w AQ + w ~Q 

j Ij j a(I) IJ J a( I) IK K 

2 2 2 2 2 2 
_ a(I)+a(J)-a(K) _ _ a(I)+a(K)-a(J) _ _ 

=a(I)dQ +{ --------- -a(I)}w AQ +{ --------- -a(I)}w AQ 
I a(I) IJ J a(I) IK K 

2 2 2 2 
- a(J) -a(K) - - a(K) -a(J) - -

a(I) dQ Q 
~ 

Q + ---------- Q 
A 

Q --------

I a( I) K J a( I) J K 

which clearly give a(I)dQ since the last two terms cancel. 
I 

Lastly 

dQ 2:: w ~Q + w A Q + L w AQ + L w AQ 
I(i) jli I(i)j j I(i)i i V I(i)V(i) V(i) V I(i)V V 
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2 2 2 2 
_ _ _ a(I)-A_ _ a(K)-A_ _ 

=AL w ~Q +A{w - ---- Q }~Q +A{w + -----Q }~Q 
j I(i)j j I(i)i 2 I i I(i)J(i) 2 K J(i) 

-
AdQ 

I(i) 

-

AdQ 
I(i) 

+ 

A A 

2 2 
a(J)-A_ _ 

A{w - -----Q }~Q + 
I(i)K(i) 2 J K(i) 

A 

2 
a(J) - -

2 
a(I)_ _ 

w ~ Q 
A I(i)I I 

2 
a(K) _ _ 

+ w ~Q ~ C\ + ---- w "'{ 

2 2 
a(I)-A_ _ 
------Q ~Q 

A I i 

A I(i)J J 

2 2 
a(K)-A_ _ 

+ -----Q ~Q 
A K J(i) 

2 2 
a(J)-A_ _ 

Q ~Q 

A K( i) J 

A I(i)K K 

2 2 
a(J)-A 

A 

- -
Q ~Q 

J K(i) 

2 2 
a(K)-A_ _ 

+ Q ~Q 

A J(i) K 

for the second ,third and the fourth terms cancel with the 

fifth .seventh and the sixth terms ,respectively. 

We compute the components of the curvature tensor of the 
2 

metric ds using the second structural equation of Cartan. 

For each i ,let j be different from I(i),J(i),K(i), then 

m dw ~ w ~w ~w w ~w w Iw ~w 

ij ij k ik kj V iV(i) V(i)j V iV(j) V(j)j V iV Vj 

( note here that k is different from V(i).V(j).) 

-
dw 

ij 

2 2 
a(V) -A_ 

L {w + ----- Q ~~ 

V iV(i) 2 V 
A 

w 
V(i)j 
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2 2 2 
- a(V) -A - a(V)_ 

- :Lw ~ { w - ----- Q } - L w w 
v iV(j) V(j)j 2 v v 2 iV Vj 

A A 

which then reduces to 

2 2 2 2 
a(V) -A_ _ a(V) -A_ _ 

m =m - L: ------Q ~ { w +W } + 2::" ------Q ~Q 

ij ij V 2 V V(i)j iV(j) V 2 V(i) V(j) 
A A 

The second term vanishes by identity 3.9 while identity 

3.11 and the fact that the original metric is of constant 

sectional curvature 1 ,imply 

3.30 

Next 

m 
ii(i) 

Thus 

3.31 m 

m 
ij 

-2 
-A Q ~Q 

i j 

2 2 
a(I) -A_ 

2 2 
A -a(V) 

2::------ Q ~Q .1~i.j~4n,jtV(i). 
V 4 V(i) V(j) 

A 

-
d{w + ------Q } ~w ~w 

2 
a(V)_ 

1::--- w w 
VI(i) ii(i) 2 I k ik ki(i) V 2 iV 

A A 

2 2 2 2 
a(J)-A_ _ a(K)-A_ 

{w + ------Q }~{w - ------Q } 
iJ(i) 2 J J(i)I(i) 2 K 

A A 

2 2 2 2 
a(K)-A_ _ a(J)-A_ 

{w + ------Q }A{w + ------Q }. 
iK(i) 2 K K(i)I(i) 2 J 

A A 

2 2 2 2 
a(I)-A _ a(J)-A_ 

+ dQ Q 
~ w m ----

ii(i) ii(i) 2 I 2 J J(i)I(i) 
A A 
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2 2 2 2 
a(K)-A_ a(K)-A_ 

+ (\) ~ w -----w 
2 K K(i)I(i) 2 

A A 

-
~Q + 

iJ(i) K 

2 2 
a(J)-A_ 
-----w 

2 
A 

2 2 
a(V)-A_ 

-
~Q 

iK(i) J 

2 2 
a(J)-A 

- 2. -----
2 

2 2 
a(K)-A_ _ 

-----Q ~ (\) 
2 J K 

A 

}- ~ w w . 

A 
V 2 iV VI(i) 

A 

We know that 

- -

m 
ii(i) 

Q ~Q 
i I(i) 

-

dQ 
I 

- - - -
+ 1: w ~Q + 2:: w ~Q 

V IV(i) V(i) V IV V 

- - - - - - - -
L Q ~Q + 2Q ~Q + 2Q ~Q + 2Q ~Q 

k k I(k) i I(i) J(i) K(i) J K 

by using 3.7,3.8 and 3.10 .The third expression 

in 3.31 now becomes 

2 2 2 2 2 2 2 2 
a(J)-A_ _ a(K)-A_ a(J)-A a(K)-A_ _ 
----- Q ~Q - ---- w ~Q -2.----- Q ~Q 

2 J J(i)I(i) 2 iJ(i) K 2 2 J K 
A A A A 

2 2 2 2 
a(K)-A_ a(J)-A_ _ 

+ -----Q ~w + -----w ~Q 

2 K K(i)I(i) 2 iK(i) J 
A A 

which,after cancelling the first with the fifth by the 

identity 3.9 and the second with the fourth,simplifies 

to 

-4 2 2 2 2 
-2A {a(J)-A }{a(K)-A }Q ~Q 

J K 
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Furthermore making use of the identities 3.6 and 3.8, 

2 2_ 2 2 2 2 -
L. {a(V)-A)w Aw {a(I)-A }w Aw + {a(J)-A }w Aw 
V iV VI(i) ii II(i) iJ JI(i) 

2 2 - -
+ {a(K)-A }w Aw 

iK KI(i) 

2 2 - - 2 2 2_ -
{A -a(I)}Q AQ + {a(J) +a(K) -2A}Q AQ . 

i I(i) J(i) K(i) 

Finally equation 3.31 reduces to 

3.32 m 
ii(i) 

- - -2 2 2 - - - -
-Q AQ +A {a(I)-A}{ r Q AQ +2Q AQ 

i I(i) kii k I(k) i I(i) 

- - - - -4 2 2 2 2_ -
+ 2Q AQ +2Q AQ 

J(i) K(i) J K 
+2A {a(J)-A}{a(K)-A}Q AQ 

J K 

-2 2 2 2_ - -2 2 2_ -
- A {a(J)+a(K)-2A}Q AQ +A {a(I)-A}Q AQ 

J(i) K(i) i I(i) 

-4 2 2 -4 2 2 2 
-A {4A-3a(I)}Q AQ + A {2a(I)-a(J)-a(K)}Q AQ 

i I(i) J(i) K(i) 

2 2 2 2 2 2 
-4 2 2 2{A(a(I)-a(J)-a(K))+a(J)a(K)} 

-A {A-a(I)}r Q AQ + ________________________ Q AQ 
k~i k I(k) 4 J K 

a(J)a(K)A 

Similarly we have 

m 
ii 

dw - L. w Aw 
ii kii ik ki 

L: w w 
V iV(i) V(i)I 

:L w Aw 
V iV VI 

which after quite a lengthy calculation reduces to 
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Lastly 

3.34 

m 
ii 

m 
IJ 
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2 2 2 2 2 2 
-4 2 a(I)a(J)-A{a(I)+a(J)-a(K)} 

-A a(I) Q ~Q - ----------------------- Q ~Q 
i I 4 J K(i) 

a(I)a(J)A 

2 2 2 2 2 2 
A{a(J)-a(I)-a(K)}-a(I)a(K) 

4 
a(I)a(K)A 

2 2 2 2 2 2 
a(I)a(J)+A{a(K)-a(I)-a(J)} 
---------------------- L Q ~Q 

4 k k K(k) 
a(I)a(J)A 

4 4 4 2 2 2 2 2 2 
3a(K)-a(I)-a(J)+2a(I)a(J)-2a(I)a(K)-2a(J)a(K) 

+ ----------------------------------------- Q ~Q 
2 2 2 I J 

a(I)a(J)a(K) 

From identities 3.30,3.32,3.33 and 3.34 we see that the 

sectional curvatures are given by : 

3.35 

3.36 

3.37 

3.38 

-2 
K A for 1Ei,j~4n and j#V(i) V=I,J,K 
ij 

-4 2 
K A a(V) 1-i i ~ 4n 

iV 

-2 2 -4 
K 4A -3a(V)A 1~ i, 4n 
iV(i) 

K 
uv 

4 4 4 2 2 2 2 2 2 
a(U)+a(V)-3a(W)-2{a(U)a(V)-a(U)a(W)-a(V)a(W)) 

2 2 2 
a(U)a(V)a(W) 

where U,V and Win the last identity are cyclic permutations 

of I,J,K; while the other nonzero components of the curvature 
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tensor are 

-2 2 -4 
3.39 R R ={A -a(V)A )/2,l~i.j~4n,jtV(i) 

3.40 

3.41 

3.42 

3.43 

ijV(i)V(j) iV(i)jV(j) 

-4 2 2 2 
R A {a(V)+a(W)-2a(U)}/2 

iU(i)V(i)W(i) 

R 
iU(i)VW 

R 
iUW(i)V 

R 
iUWV(i) 

2 2 2 2 2 2 
{A (a(V)+a(W)-a(U)) -a(V)a(W)} 

4 
a(V)a(W)A 

2 2 2 2 2 2 
A {a(U)+a(V)-a(W)} - a(U)a(V) 

4 
2a(U)a(V)A 

2 2 2 2 2 2 
A {a(U)+a(W)-a(V)} - a(U)a(W) 

4 
2a(U)a(W)A 

i=l, ... 4n 

i=l, ... 4n 

i= 1 .... 4n 

i=l, .. , 4n. 

Notice here that the last four identities are for all cyclic 

permutations of I,J,K .For example 

R + R + R R R - R 
ii(i)JK iJKI(i) iKI(i)J ii(i)JK iJI(i)K iKJI(i) 

2 2 2 2 2 2 2 2 2 2 2 2 
A(a(J)+a(K)-a(I))- a(J)a(K)} {A(a(J)+a(K)-a(I))-a(J)a(K)} 

4 
a(J)a(K)A 

4 
2a(J)a(K)A 

2 2 2 2 2 2 
{A(a(K)+a(J)-a(I))-a(K)a(J)} 

4 
2a(K)a(J)A 

by consecutively using the identities 3.41, 3.42, 3.43 ;and 

the above clearly vanishes and satisfies the Bianchi identity. 
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We then compute the components of the Ricci tensor and 

write for the nonzero components 

3.44 

3.45 

R 2-:R + 2-:R + L: R 
ii V iViV V iV(i)iV(i) j ijij 

-4 2 -2 2 -4 -2 
~A a(V) + I{4A -3a(V)A I + (4n-4)A 
v v 

-2 -4 2 2 2 
(4n+8)A 2A {a(I)+a(J)+a(K)}, 

R K + K + L K 
II IJ IK i Ii 

4 4 4 2 2 
2{a(I)-a(J)-a(K)+2a(J)a(K)I 

2 2 2 
a(I)a(J)a(K) 

2 -4 
+ 4na(I)A 

The other components R and R can easily be read off from 
JJ KK 

the second identity above. Lastly the scalar curvature is: 

3.46 
-2 -4 2 2 2 

R 16n(n+2)A 4nA (a(I)+a(J)+a(K)) -

4 4 4 2 2 2 2 2 2 
2{a(I)+a(J)+a(K)-2a(I)a(J)-2a(J)a(K)-2a(K)a(I)} 

2 2 2 
a(I)a(J)a(K) 
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2n+l 
2.4 DisQ~ssiQn_Qf_met~iQS_Qn_s 

2n+l 
We now study the possibilities of the metrics on S 

constructed in section two of being Einstein ,Rioci-Codazzi 

or Ricci cyclic parallel. 

We first consider the Einstein case.Since 

-2 2 -4 2 -4 
R 2{(n+l)A a A } and R 2na A 
ii II 

it is easy to see that the metric is Einstein if and only 
2 2 

if a = A .This is just the standard metric with constant 
-2 

sectional curvature A 

As for the other two cases we first have to compute 

the components of covariant derivative of the Ricci tensor 

using the usual formula 

I:'H Q 
s ij's s 

dH + 2.: H w 
ij p ip pj 

+ 2: H w for any 2-form H, 
p pj pi 

where ' denotes the covariant derivative. 

In our case ,we have 

-2 
LR Q 
s ii's s 

(R - R )w aA (R - R )Q 
II ii Ii ii II I(i) 

where the last equality follows from 2.7 and 2.11. 

The other non-trivial equations are 

-2 
2: R Q (R R )w - aA (R - R )Q 
s II(i)'s s ii II I(i)I ii II i 
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where the last equality follows from the second identity 

of 2.4 and 2.ll.Thus the only nonzero components of the 

derivative of the Ricci tensor are 

4. l R 
ii'I(i) 

R 
II(i)'i 

-6 2 2 
= 2aA (n+l)(A- a ). 

All the metrics constructed in section 2 are Ricci cyclic 

parallel while the Ricci-Codazzi metrics are necessarily 

Einstein 

The theorem is immediately proved in view of 4.1. 
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4n+3 
2.5 DisQYSSiQn_Qf_tne_met~iQS_Qn_S 

Following the results in section 3 we write down the 

Einstein equations ,namely 

5.1 

4 4 4 2 2 
a(U)-a(V)-a(W)+2a(V)a(W) 

2 2 2 
a(U)a(V)a(W) 

2 -4 
+ 2na(U)A c. 

where U,V,W are cyclic permutations of I.J.K; 

-2 -4 2 2 2 
5.2 (2n+4)A -A la(I)+a(J)+a(K)f =c. 

From the first three equations (obtained by cyclic 

permutations of U,V,W in 5.1) we get 

5.3 

4 4 2 2 2 2 
a(U)-a(V)+a(V)a(W)-a(U)a(W) 

2 2 2 
a(U)a(V)a(W) 

-4 2 2 
nA la(V)-a(U)}, 

!again here U,V,W are cyclic permutations of I,J,Kf 

which can be simplified to 

2 2 2 2 2 -4 2 2 2 
5.4 la(I)-a(J)}{a(I)+a(J)-a(K)+nA a(I)a(J)a(K)} 0, 

2 2 2 2 2 -4 2 2 2 
5.5 la(J)-a(K)}{a(J)+a(K)-a(I)+nA a(I)a(J)a(K)f 0, 

2 2 2 2 2 -4 2 2 2 
5.6 {a(K)-a(I)J{a(K)+a(I)-a(J)+nA a(I)a(J)a(K)) 0. 

2 2 2 
If a(I),a(J),a(K) are all unequal ,we must then have 
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2 2 2 -4 2 2 2 
a(I)+a(J)-a(K) + nA a(I)a(J)a(K) 0, 

2 2 2 -4 2 2 2 
a(J)+a(K)-a(I) + nA a(I)a(J)a(K) 0, 

2 2 2 -4 2 2 2 
a(K)+a(I)-a(J) + nA a(I)a(J)a(K) 0, 

2 2 2 
which imply a(I)=a(J)=a(K),contradicting our assumption. 

2 2 
If however two of the constants are equal,say a(I)=a(J), 

then from 5.6 we see that we must have 

2 -4 4 
a(K){l + nA a(I) } 0. 

which is absurd . 

So the only other possibility is when all the 

2 
coefficients are equal,say a .In this case the Einstein 

equations reduce to : 

-2 2 -4 -2 2 -4 
5.7 a + 2na A (2n+4)A 3a A c. 

4n+3 
There are two Einstein metrics on S obtained by 

the construction above.One is the standard metric and the 

other is of non-constant sectional curvature. 

The Einstein equations 5.7 can be reduced to 

2 2 2 2 
(A - a ){A - (2n+3)a } 0 . 
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2 2 
The metric with A = a is just the standard metric with 

-2 2 2 
sectional curvature A .The other metric with A =(2n+3)a 

is of non-constant sectional curvature taking values 

-2 -1 -2 -2 -2 
l(2n+3)a} ,(2n+3) a ,(8n+9){(2n+3)a} and a .Clearly the 

maximum and minimum sectional curvature are respectively 

-2 -2 
a . 1(2n~3)al and thus this Einstein metric has pinching 

-2 
(2n+3) .This metric was discovered by Jensen [JEl). 

On computing the derivative of the Ricci tensor we 

obtain 

l:R Q 
s IJ's s 

2 2 2 
a(K)-a(I)-a(J) 

(R - R )w ____________ lR R }Q 
II JJ IJ a(I)a(J)a(K) II JJ K 

(in view of 3.28); which then reduces to 

2 2 2 2 2 
4{a(I)-a(J)}{a(K)-a(I)-a(J)} 

2R Q ________________________ { 
s IJ's s a(I)a(J)a(K) 

2 2 2 
-4 a(K)-a(I)-a(J) 

nA - _____________ }Q 
2 2 2 K 

a(I)a(J)a(K) 

Similarly ,we write other nontrivial relations 

2::: R Q (R R )w 
s ii's s ii II ii 

4 4 4 2 2 2 2 2 2 2 2 
a(J)+a(K)-a(I)-2a(J)a(K) 2n{a(I)-A}-4A+a(I)+a(J)+a(K) 
[ -------------------- ------------------------ J2a(I)Q 

2 2 2 2 6 I(i) 
a(I)a(J)a(K)A A 

-2 
'LR Q (R R )w a(I)A (R -R )Q 
s II(i)'s s ii II I(i)I II ii i 
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From these equations we list the nonzero components 

2 2 2 
a(W)-a(U)-a(V) 

R ____________ (R R ) 
UV'W a(U)a(V)a(W) UU VV 

where U,V,W are cyclic permutations of I,J,K; 

-2 
R a(I)A (R R ) for V==I,J,K, 
iV'V(i) VV ii 

R - R for V=I,tT,K. 
VV(i)'i iV'V(i) 

We now study the conditions for Ricci cyclic parallel 

and Ricci-Codazzi. 

Metrics constructed in section 3 are Ricci-Codazzi 

if and only if they are Einstein .However the metrics 

obtained by this construction are Ricci cyclic parallel if 

2 2 
and only if at least two of the coefficients a(I),a(J) 

2 
a(K) are equal. 

R 
II(i)'i 

Part one follows quite clearly since we have 

-2 
R and R a(V)A {R - R }. 
ii'I(i) iV'V(i) VV ii 

As for the second part we first see that the relation 

R + R + R 0 for V=I,J,K. 
iV'V(i) VV(i)'i V(i)i'V 
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is automatically satisfied for the third term is zero while 

the first and the second terms cancelled out each other.The 

only other condition to consider is: 

R + R + R = 0. 
IJ'K JK'I KI'J 

But the cyclic sum above can be shown to be 

2 2 2 2 2 2 
- 16{a(I)-a(J)}{a(J)-a(K)}{a(K)-a(I)} 

3 
{a(I)a(J)a(K)} 

which completes our proof . 

We note that the previous analysis uses the fact that 

2 2 2 2 
a(I),a(J),a(K) and A are constants, but the argument goes 

2 2 
through if for example we replace a(I) by -a(I) on pages 45 

and 52. We have therefore also constructed indefinite 

2n+l 4n+3 
metrics on S and S having the required property. 

The corresponding isometry groups for the metrics 

of Theorem4, Theorem5 and Theorem6 can all be read off from 

Ziller's paper [Zi]. 
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Chapter 3. Metrics On Homogeneous Manifolds 

Associated With The Exceptional Group G2. 

We explain our notation in the first five 

sections. In section 6 we describe the set of all 

G-invariant metrics on G/H, where G is a compact 

connected Lie group and H a closed subgroup such 

that G acts effectively on GIH. 

Formula for computing the curvature is given in 

page 84. In section 8 we consider the exceptional 

Lie algebra g2 with all its subalgebras. 

We check our programmes in "reduce" by 

7 3 
applying them to S and CP and compare the known 

results on Einstein metrics. See [Je2] and [Zi]. 

Finally we consider the possibilities of the 

quotients spaces associated with G2 admitting the 

Einstein metric, Ricci cyclic parallel metric and 

Ricci-Codazzi metric. From this investigation,it 

seems that in this case the class of Ricci cyclic 

parallel metrics forms a larger class. 
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3 . 1 Re.fle.oti.on_itLEY.olidea.ILSPa..OfLQf_d.imensiQILn 

n 
Geometrically, a reflection in E is an invertible 

linear transformation of order 2 leaving pointwise 

fixed some hyperplane (subspace of oodimension one) 

and sending any vector orthogonal to that hyperplane 

into its negative. Evidently it is 'orthogonal', 

preserving the inner product. Let A be a non-zero 
n @ n 

vector in E and let A ={ x £ E I <X,A•=O be its 

orthogonal complement called the reflecting hyperplane. 

The projection of a vector B into the reflecting 
@ 

hyperplane A is to be B-rA, where a. real number r is 
@ 

to be chosen so that B-rA is in A . So we must have 

0 = <B - rA, A• = <B,A• - r<A,A• 

and hence r = <B,A>/<A,A• . 
@ 

Clearly then the reflection of B in A is given by an 

explicit formula. : 

T (B) = B- 2rA = B- 2A<B,A>/<A,A•. 
A 

@ 

(it sends A to -A and fixes all points in A.) 

For orthogona.lity,we see that 

<A,B> <A,C• 
<T (B),T (C)• = <B-2 ___ A , C-2 ___ A• 

A A <A,A• <A,A• 

<A,C> <A,B• <A,B> <A,C> 
<B,C• -2. ___ <B,A• -2. ___ <A,C• -4 _______ _ 

<A,A> <A,A> <A,A> 

which is just <B,C>. 

The number 2<B,A>/<A,A> will be abbreviated by (B,A) 

which is linear only in the first variable. We shall 
n 

also write E for E . 
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A subset Q of the Euclidean space E is called a root 

system in E if the following properties are satisfied: 

a) Q is finite, spans E and does not contain 0 ; 

b) if A is in Q,the only multiple of A in Q other than 

A itself is -A ; 

c) if A is in Q, the reflection T leaves Q invariant; 
A 

d) if A,B are both in Q then (B,A) is an integer. 

For n is less than 3 we can describe the root system Q 

by simply drawing a picture. 

There is only one possibility in case n=l, for in view 

of b, we must have Q={A,-A}. 

There are exactly four possibilities in case n=2 .This 

is because the property d,limits severely the possible 

angles occuring between pairs of roots. 

Recall that the cosine of the angle t between vectors 

A,B in E is given by the usual formula <A,B>=IAI 1B1oost. 

Therefore 

2 
(B,A)=2<B,A>/<A,A>= 2cost. IBI/IAI and (A,B)(B,A)=4cos t. 

Since (A,B) and (B,A) are integers then the last number 

2 
4cos • is also integer.Moreover since 

2 
Ieos tl ~ 1 and (A,B),(B,A) have like sign 

the following are the only ones when Af±B and IBI ~IAI: 
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. . (A B) (B A) Angle * 
2 2 

IBI I IAI 

0 0 lT/2 arbitrary 

1 1 'tt/3 1 

-1 -1 2n13 1 

1 2 11/4 2 

-1 -2 311/4 2 

1 3 11!6 3 

-1 -3 51l/6 3 

The above angles and relative lengths are portrayed in 

figure 4.1 below: 

A X A 
1 1 

B 
2 

A 
2 

G 
2 

We will consider the fourth diagram in more detail 

later on. 



76 

A Lie group G is a group which is at the same time 

a differentiable manifold such that the map GxG- G, 
-1 

defined by (a,b)~ ab ,is differentiable. 

Left translation by an element g of G is the map 

L :G-.G. defined by L (p)=gp.p~:G. 
g g 

If a vector field X on G satisfies 

(dL )X = X for all g in G, 
g 

then X is called a left invariant vector field.Thus if 

X is left invariant.then it is uniquely determined by 

X(e), where e is the identity element of G.Conversely 

a tangent vector X at e gives rise to a left invariant 

vector field X(g)=(dL )X(e). 
g 

Similarly,a covariant tensor field B of order r on G 

is left-invariant if 

(dL ) B = B. 
g 

We remark that if {X , .. ,X } is a basis of smooth left-
1 r 

invariant vector fields, then B(X , .. ,X ) is constant. 
1 r 

We also have similar properties for right translation 

by an element g of G denoted by R . 
g 

We define Ad X 
g 

-1 
dR o dL (X) . Clearly 

g g 

-1 

Ad 
gh 

Ad Ad . 
g h 

Since for each g, the map h~ghg is an automorphism 

of g ,Ad [X,Y] =[Ad X,Ad Y]. 
g g g 
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Set ad =d(Ad), i.e, the differential of the adjoint 

representation ;then ad Y=[X,Y]. 
X 

Moreover, every Lie group has a left-invariant Riemannian 

metric, while on a compact connected Lie group a bi-inva-

riant Riemannian metric always exists. 

Let '., be a left invariant metric on G and let X.Y.Z be 

left invariant vector fields.Denote by D the corresponding 

Levi-Civita connection.Then 

i) D y 
X 

l [X,Y] - (ad )*Y 
X 

(ad )*X}/2, 
y 

where A• denotes the adjoint of the linear transformation 

A with respect to '. '• 

ii) <R(X,Y)Z,W> <D Z,D W> - <D Z.D W> - ' D Z,W'. 
X Y Y X [X,Y] 

By left invariance we have 

0 X ,y,z, <D Y,z, + <Y,D z) ' 
X X 

0 y <X,Z > <D X,Z> + <X,D z) . 
y y 

0 z <X,Y> <D X,Y' + <X,D y,. 
z z 

Subtracting the third of these equations from the sum of 

the first two and using 

D W 
v 

D V - [V,W] 
w 

0 
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yields 

2 <D Y,z, <[X,Y],z,- <Y,[X,z],- <X,[Y.z], 
X 

from which i) readily follows. 

By left invarianoe ,X •D Z,W>= O.Therefore 
y 

·D D Z,W' 
X y 

- <D Z,D W· 
y X 

•D Z,D W, 
X y 

- ·D Z,W' = -<D Z,W 
[X,Y) [X,Y) 

Adding these equations gives ii). 
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A vector space p over a field F,is a Lie algebra if 

in addition to its vector space structure it possesses a 

product, that is a map PxP-P taking the pair (X,Y) to 

the element [X,Y] of p which has the following properties: 

i) [X,Y] is bilinear for all X,Y in p, 

ii) [X.X] = 0 for all X in p, 

iii) [X,[Y,Z]]+[Y,[Z,X]]~[Z,[X,Y])=O for all X,Y,Z in p. 

Property iii) is called the Jacobi identity.We note that 

[X, [Y,Z]] is not necessarily equal to ((X.Y] ,Z]. thus the 

bracket product is not in general associative.As a simple 

consequence of properties i) and ii) ,we have 

0 = [X+Y.X+Y] = [X,X)+ [X,Y]+ [Y,X)+ [Y.Y] = [X,Y]+ [Y,X]. 

Thus [X,Y)=-[Y,X] showing the bracket is anticommutative. 

assuming F has characteristic~2. 

Conversely,if the characteristic of F is different from 2. 

the anticommutativity of bracket implies ii). 

Let p be a Lie algebra and let m,h be subspaces of p. 

Let [m,h] be the subspace of p spanned by elements of the 

form [X,Y) ,XEm,YEh. If [m,m] is in m then m is called a 

subalgebra of p. 

If [h,p] is contained in h,then h is called an ideal of p. 

The derived series of p is the decreasing sequence of 

ideals 

0 1 0 i+ 1 i i 
D p,D p, .. of p defined inductively by D p=p,D p=[D p,D pl. 

The descending central series of p is the decreasing 
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0 1 
sequence of ideals C p .c p ... of p defined inductively by 

0 i+1 i 
C p=p . C p=[p.C pJ 

i i 
Evidently D p ( C p The Lie algebra p is ~bel~~n if 

1 
D p 

i 
o .n~lpQtent if c p 0 for some i and SQlYable if 

i 
D p = 0 for some i .Every Lie algebra has a unique maximal 

solvable ideal.called the rad~Qal of p .A Lie algebra p is 

said to be sem~s~mple if its radical is zero. A Lie 

algebra is said to be s~mple if it is not abelian and has 

no non-zero ideal other than p itself. 

A subalgebra h of the Lie algebra p is called a C~rtan 

s~balgebra if it is nilpotent and it does not contain as 

an ideal in any larger subalgebra of p. 

i.e. if [X.Y] is in h for all Yin h .then X is in h. 

The dimension of a Cartan subalgebra h of p is called the 

rank of p. A theorem states that all such subalgebras have 

the same dimension. 

A real semisimple algebra p is said to be QQIDpaQt if its 

Cartan-Killing form is negative definite,where the Cartan­

Killing form is a symmetric bilinear form on p defined by 

Kil(X,YJ =Trace( ad oad ) ; X,Y in p 
X y 

Furthermore a connected. complex semisimple Lie group G is 

compact if its Lie algebra is of compact type ([KN2]p.252). 

We remember that the Cartan-Killing form is associative, 

in the sense that Kil([X,Y],Z)=Kil(X.[Y,Z]) since we know 

that Trace([X,Y]Z)=Trace(X[Y,ZJ). See Humphreys [Hu] p.19. 
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Let h be a Cartan subalgebra of the complex Lie 

algebra g and let a be a linear function on h. Let g 
a 

denote the linear subspace of g ,invariant under ad . 
h 

given by 

g = { YEg I (X,Y] = a(X)Y ;for all x~h }. 
a 

If g is not the zero element. the linear function a 
a 

(an element of the dual space of h ) is called a root of 

the Lie algebra g with respect to h and such g is called 
a 

a root subspace.The collection of all nonzero roots form 

a root system and Theorem 4.2 of [Hel] p.141 gives: 

i) g =h + ~ g summation is over all nonzero roots, 
a a 

ii) for each nonzero root a,g is of complex dimension 1, 
a 

iii) the only roots proportional to a are -a,O,a. 

It is not difficult to see that a root system of a 

compact semisimple Lie algebra is a 'root system' in the 

sense discussed earlier.See for example (Ma] pp. 108-112. 
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A metric on M is called Riemannian homogeneous if 

there exists a group G of isometries acting transitively 

on M.If we fixed a point p of M and let H be the isotropy 

group (the subgroup of isometries leaving p fixed) then M 

is diffeomorphic to GIH. 

Let G be a compact connected Lie group and H a 

closed subgroup such that G acts effectively on G!H,i.e, 

H contains no non-trivial normal subgroup of G. 

We denote by g,h the Lie algebra of G and H, by Ad the 
G 

adjoint action of G on g and by ad its derivative,i.e, 

ad (Y) = [X,Y] for all X.Y in g. 
X 

Let B be the negative of the Cartan-Killing form 

of g. We choose a complement m of h in g such that 

g= h $ m and [h,m] (m which always exists since H is 

compact. 

Then m can be identified with the tangent space of GIH 

at the coset eH where e is the identity element of G. 

Corollary 3.2 of [KN2] pp. 201-202 gives a one-to-one 

correspondence between the set of G-invariant Riemannian 

metrics on GIH and the set of Ad -invariant inner 
H 

products on m. 

To describe the set of all G-invariant metrics on 

G/H,let m = m + m + .. +m be the decomposition of minto 
~ 1 r 

H-modules where m is the submodule of m on which H acts 
0 

as identity and m , .. ,m are irreducible H-modules. 
1 r 



83 

Such a decomposition is not unique if some of the 

representations of Ad 
H 

on m are equivalent to each 
i 

other. But the subspace m and the numbers d = dim m 
0 i i 

are independent of the chosen decomposition. 

We decompose m further into B-orthogonal 1-dimen 
0 

sional subspaces m = m , .. ,m :s-r>1 to get 
0 r+1 s 

m m + .. + m + m + .. + m .For each decomposition there 
1 r r+1 s 

is the family of Ad -invariant diagonal metrics: 
H 

) = X Bj 
1 m 

1 

+ .. + X Bl 
s m 

s 

X ·0. 
i 

Conversely,every Ad -invariant inner product on m belongs 
H 

to the family of Ad -invariant diagonal metrics of some 
H 

decomposition of m .In fact, for a given Ad - invariant 
H 

inner product ' on m ,we can diagonalize with 

respect to B to obtain a decomposition of m into 

eigenspaces of ' which are orthogonal with respect to 

both Band', >.These eigenspaces are Ad -invariant and so 
H 

can be decomposed into irreducible summands which are 

orthogonal with respect to Band','· Then,.> has the 

form above with respect to this decomposition. where x 's 
i 

are the eigenvalues of , , with respect to B. 
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The Levi-Civita connection of the metric on m 

is given by 

D y 
X 

1 

2 [ X,Y Jim+ U(X,Y) 

where U is a symmetric 2-form on m determined by 

2, U (X, Y) . Z' = - 'X, [ Y, Z ] ' - < [X, Z ] , Y' ; X, Y, Z in m. 

See Nomizu [No] p. 52 or [KN2] p. 201. 

The curvature tensor is then computed by the formula: 

R(X,Y)Z = D D Z - D D Z - D Z 
X Y Y X [X,Y] lm 

See [No J p. 47. 

In suffix notation (without summation convention),we have 

2C 
hjk 

M 
hjk 

M g I g 
jkh hh kk 

M g I g 
hkj jj kk 

R =LC C g -IC C g -~M C g -LM M g 
hpqk j pqj hjk kk rn hqm pmk kk s hps sqk kk s hps sqk kk 

where the last sum is over all generators of h and for 

simplicity ,the metric considered is diagonalized. 

We have written 

D X(j) 
X(i) 

L C X(k) 
k ijk 

<R{X(i),X(j)}X(k),X(h)> = R 
ijkh 

and M denotes the k-th component of the bracket product 
ijk 

[X(i),X(j)] . 
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Let V be a 2n-dimensional vector space over F.Let f 

be a nondegenerate skew-symmetric form on V given by 

the matrix 
s 

0 I 
n 

-I 0 
n 

Denote by sp(2n.F) ,the symplectic algebra .which by 

definition consists of all endomorphisms x of V 

satisfying f(x(u),v)=-f(u.x(v)).In matrix terms, the 

condition for 

n 
;m,n,p,q € gl(n,F) 

q 

t t t t 
to be symplectic is that sx=-x s,i.e,that n=n,p=p,m=-q. 

A basis of this algebra say sp(2,C) is given by . 

e = e - e e = e - e 
1 11 33 2 22 44 

e = e e = e e e + e 
3 13 4 24 5 14 23 

e = e e = e e = e + e 
6 31 7 42 8 32 41 

e = e - e e = e - e 
9 12 43 10 21 34 

where here and in the sequel e is the matrix having 1 
ij 

in the (i,j) position and 0 elsewhere. See for example 

Humphreys [Hu] page 3 .The bracket product is computed 

using the relation 

e . e ] 
ij kl 

o e 
jk il 

- & e 
li kj 
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which follows from the relation e e ~ e 
ij kl jk il 

The bracket product is given by table 1 below. 

l'a.ble_l 

e e e e e e e e e e 
1 2 3 4 5 6 7 8 9 10 

---- ----- ----- ----- ------ ----- -----

e 0 0 2e 0 e -2e 0 e e -e 
1 3 5 6 8 9 10 

---- ------ ----- -----
e 0 0 0 2e e 0 -2e -e -e e 

2 4 5 7 8 9 10 
----- ----- -----

e 2e 0 0 0 0 e 0 e 0 -e 
3 3 1 9 5 

·--- -----

e 

e 

e 

e 

e 

e 

e 

----- ·----- -----
0 2e 0 0 0 0 e e -e 0 

4 4 2 10 5 
----- ----- -----

-e -e 0 0 0 e e e +e -2e 2e 
5 5 5 10 9 1 3 4 

----- ----- ----- -----

2e 0 -e 0 -e 0 0 0 e 0 
6 6 1 10 8 

----- ----- -· ----- -----

0 2e 0 -e -e 0 0 0 0 e 
7 7 2 9 8 

----- ----- --- -- -----

e e -e e-e 0 0 0 2e 2e 
8 8 8 9 1 2 7 6 

----- ----- -·- --- -----

-e e 0 e 2e -e 0 -2e 0 -e 
9 9 9 5 3 8 7 1 2 

----- ----- ----- -----

e -e e 0 2e 0 -e -2e -e +e 0 
10 10 10 5 4 8 6 1 2 

----- ----- ----- ------------

The Killing metric is computed and we list the non-zero 

components: 

Kil(l.1)=Kil(2,2)=Kil(5,8)=Kil(9,10) 12, 

Kil(3,6)=Kil(4,7)= 6. 
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Since the algebra needed is compact we now diagonalize 

the metric and make it negative definite by taking : 

E =ie E =ie 
1 1 2 2 

E =i(e + e ) E =e e E =i(e + e ) E =e e 
3 3 6 4 3 6 5 4 7 6 4 7 

E =i(e + e ) E =e e E =i(e + e ) E =e e 
7 5 8 8 5 8 9 9 10 10 9 10 

Clearly we have: 

Kil(1,1)=Kil(2,2)=Kil(7,7)= ... =Kil(10,10)=-24, 

Kil(3,3)= =Kil(6,6)=-12. 

The bracket product is now given by table 2 next page. 

It is not difficult to see that in this case we have the 

subalgebra sp(1,C) of sp(2,C) generated byE ,E and E 
1 3 4 

under which action the quotient sp(2.C);sp(1,C) is split 

into : 

3-dimensional m generated by E .E and E 
0 2 5 6 

4-dimensional m generated by E ,E .E and E 
1 7 8 9 10 

7 
The corresponding homogeneous space is known to be S . See 

for example [Je1Jp.599.We now consider metrics of the form 

g where h is an arbitrary metric on m . 
0 
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Ta..bltL2 

E E E E E E E E E E 
1 2 3 4 5 6 7 8 9 10 

--- ---- ----- ------ ------- ------- -------

E 0 0 2E 2E 0 0 -E E -E E 
1 4 3 8 7 10 9 

---- ---- ---------- ------------- ------- -------

E 0 0 0 0 2E 2E -E E E -E 
2 6 5 8 7 10 9 

------ ------- ------- ·-------

E 2E 0 0 2E 0 0 -E -E E E 
3 4 1 10 9 8 7 

----- ------- -------

E -2E 0 2E 0 0 0 E -E -E E 
4 3 1 9 10 7 8 

----- ------- -------

E 0 2E 0 0 0 -2E E -E E -E 
5 6 2 10 9 8 7 

-- -- ---- ----- ----- ---- ----- ----- -------- ------- -------

E 0 -2E 0 0 2E 0 E E -E -E 
6 5 2 9 10 7 8 

---- ----- ----- ----- ----- ----- -------- ------- -------

E E E E -E -E -E 0 -2E -2E 2E +2E -2E +2E 
7 8 8 10 9 10 9 1 2 4 6 3 

--- ---- ----·- ----- ----- ----- ----- ------- -------

E -E -E E E E -E 0 -2E-2E -2E +2E 
8 7 7 9 1 9 10 3 5 4 

--- ---- ---- ---- ----- ----- --------- ------- -------

E E -E -E E -E E -2E-2E 2E +2E 0 -2E +2E 
9 1 1 8 7 8 7 4 6 3 5 l 

---- ----- ----- ----- --- ------- --------

E -E E -E -E E E 2E -2E 2E -2E 2E -2E 0 
1 9 9 7 8 7 8 3 5 4 6 1 2 

-------- ----- ----- ------- --- -· ----- ------- -------

i.e. g(2,2) 12a g(5,5) = 12b g(6.6) = l2c 

g(7,7) g(8,8) = g(9,9) = g(lO,lO) = 24d 

We now examine the result enclosed in the appendix!. 

The Einstein equations are 
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2 2 2 2 2 2 2 2 2 
a be +2a. d -2b d +4bcd -20 d =bod (12a.z), 

2 2 2 2 2 2 2 2 2 
a.b 0 +2b d -20 d +4a.cd -2a. d =a.cd (12bz). 

2 2 2 2 2 2 2 2 2 
abc +20 d -2a. d +4a.bd -2b d =a.bd (12cz), 

-a. -b -c +12d d(24dz). 

If two of the first three coefficients are equal,say a.=b, 

the first two equations would imply a=b=c ,while if all 

a,b,c are distinct ,subtracting the second by the first 

equation would give 

2 2 
abc + 4d (a.+b) - 4cd 0. 

Similarly we have 

2 2 
abc + 4d (a.+c) - 4bd o. 

2 2 
abc + 4d (b+c) - 4a.d 0. 

which then give 

2 
3abc + 4d(a+b+c) = 0 ,which is absurd. 

So the only possibility left is when a.,b,c are all equal, 

say a. .In this case the non-zero components of the Ricci 

tensor are : 

R(i,i) 

R(i,i) 

2 -2 
2 + a. d 

12 - 3a./d 

for i=2,5,6, 

for i=7,8,9,10. 

Eliminating the constant of the Einstein equations would 

give a./d = 2 or 2/5 . The Einstein metric with a/d = 2 
7 

corresponds to the standard metric on S with constant 

sectional curvature l/12a,i.e, the metric is of constant 
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sectional curvature 1 when a is taken to be 1112 . 

The second metric with a/d =2/5 has non-constant positive 

sectional curvature taking values 1/300a.17;300a and 1112a. 

Thus the second Einstein metric has pinching 1125. This 

metric was first discovered by Jensen [Je1] pp. 612-613. 

See also [ Je2] . 

The result enclosed in the appendix also confirms that a 

Ricci cyclic parallel metric is obtained when at least two 

of the coefficients are equal while Ricci- Codazzi spaces 

are necessarily Einstein. Compare our results in chapter 2. 

3 
We now consider the projective space CP written as 

Sp21Sp1><-U1 in which case the splitting of m is given by 

m = m + m ,where the 
1 2 

2-dimensional m is generated by E and E while the 
1 5 6 

4-dimensional m is generated by E ,E ,E and E 
2 7 8 9 10 

Following the preceding procedure we consider metrics 

with 

g(5,5) 

g(7,7) 

g(6,6) 12a, 

g ( 10, 10) = 24b 0 

From the result enclosed in appendix we have the nonzero 

components of the Ricci tensor : 

R 
ii 

R 
ii 

2 2 -2 
(a +4b )b 

-1 
2(6b - a)b 

for i=5,6, 

for i=7,8,9,10. 
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The solutions of the Einstein equations are easily found 

to be alb =2 or 1. The Einstein metric with alb =2 is the 

3 
standard metric on the complex projective space CP .On 

substituting a=2b we found that the sectional curvatures 

take values 1/6b and 1/24b,i.e,the maximum and the minimum 

sectional curvatures are respectively 1/6b,1/24b .Thus the 

metric has positive sectional curvature with pinching 1/4 

as we might have expected . 

For the other Einstein metric the sectional curvature takes 

values 1148a ,5/48a ,1/6a and 1/3a,i.e, the maximum and the 

minimum sectional curvatures are 1/3a ,l148a ,respectively. 

Thus the second metric with a=b also has positive sectional 

curvature but the pinching is 1/16. It can also be shown 

that this metric is naturally reductive even though such a 

n 
metric on CP is not naturally reductive for n different 

from 2. This kind of metric was first discovered by Ziller 

[Zi] p. 358. 

It is also clear that that the Ricci-Codazzi metrics 

obtained by this method are essentially Einstein for we need 

2 2 
a - 3ab + 2b = 0 , i.e, a = b or a = 2b. 

However the Ricci cyclic parallel metrics seem to be less 

restrictive since all the metrics considered are automati­

cally Ricci cyclic parallel. 
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It is known that the 14-dimensional Lie algebra of type 

g2 is a subalgebra of so(7).The following construction can 

be found in Humphreys [Hu] pp 103-104. 

The two dimensional Cartan subalgebra h of g2 is 

3 
h I a d such that La = 0} 

i=1 i i i 

where d e -e .Obviously {d ,d } form a basis 
i i+1,i+1 i+4,i+4 l 2 

of h. 

Corresponding to the six long roots in g2 we choose certain 

root vectors g (i is different from j) of so(7) relative 
i,-j 

to h as follows 

t 
g g e - e 
1,-2 2,-1 23 65 

t 
g g e - e 
1,-3 3,-1 24 75 

t 
g g e - e 
2,-3 3,-2 34 76 

while for the short roots .we take 

t 
g -g = .v'2(e - e ) - (e - e ) ' 

1 -1 12 51 37 46 

t 
g -g = .J2(e - e ) + (e - e ) . 

2 -2 13 61 27 45 

t 
g -g = ,J2(e - e ) - (e - e ) . 

3 -3 14 71 26 35 
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We notice here that each of the twelve vectors listed 

above is a common eigenvector for adh and none of them 

centralizing h. As for the Lie bracket product we have 

See table 3 

[ g . g ] 
i,-j k,-p 

g ,g 
i -i 

g 
k 

,g 
i.- j 

g g 

g 

-k i,-j 

g . g 
i j 

g 
-i -j 

g . g 
i -j 

next page 

] = 

for 

~ g 
jk i.-p 

3d - ( 
i 

g 
ik j 

- b g 
jk -i 

+ 2g 
-k 

+ 2g 
k 

3g 
j,-i 

details 

-

d + 
1 

i 

of 

root diagram of g2 is given by 

g 
1,-3 

g 

g 
1,-2 

g 
3 

-1 

g 
2 

g 
2,-3 

g 
3,-2 

g 

g 

g 

-3 

Root diagram of g2 

~ g 
ip k,-j 

d + d ) . 
2 3 

i.j.k are cyclic 

permutations 

of 1,2,3 

=I j. 

the product. The 

g 
2.-1 

1 

g 
3,-1 

On computing the Killing metric,the non-zero components 

are given by : 



TABLE 3 

g g g g g g e "'d -d e :d -d g g g g g g 
1 ,-2 3,-1 2 -3 2,-3 1 7 1 3 B 2 3 -1 3,-2 3 -2 1.-3 2,-1 

g 0 -g 0 0 g -g -g g 0 0 0 g 0 e -e 
1 ,-2 3,-2 1 ,-3 2 1.-2 1.-2 -1 7 8 

g g 0 0 0 -g e 2g g g 0 -g e -e e 
3,-1 3,-2 2.-1 3,-1 3,-1 -3 1 7 

g e 0 e 3g g -2g e g 3g 0 2g -e +2e 0 g 
2 3,-2 3 -3 2 1.-2 -1 7 B 1 

g 0 0 -3g 0 -9 -3g g g 29 e e +e -2g -9 0 
-3 3,-2 -2 3,-1 -3 -3 2 7 B 1 -1 

g -9 9 -g g e 0 -g -29 e e e e 0 e 
2.-3 1,-3 2,-1 3 -2 2.-3 2,-3 8 

g g e 29 3g e 0 9 e 2e -e 0 -29 3g g 0 
1 2 -3 3,-1 1 7 8 -2 2.-1 3 

e g -2g 0 -g 9 -9 0 e 9 -9 9 e 2g -g 
7 1.-2 3,-1 -3 2,-3 1 -1 3.-2 3 1,-3 2,-1 

e -g -g -g -g 2g 0 0 0 0 -2g g g 9 g 
B 1 ,-2 3,-1 2 -3 2,-3 3,-2 3 -2 1,-3 2.-1 

g e -g -3g -2g 0 -2e +e -g 0 0 e -3g 2g 0 -g 
-1 -3 1.-2 2 7 B -1 1,-3 3 -2 

g 0 e e 0 -e e g 2g 0 0 -g g -9 g 
3,-2 B 3,-2 3.-2 2 -3 1.-2 3,-1 

g e g -2g -e -e 0 2g -9 -g 3g g e 3g 0 0 
3 1 -1 7 8 -2 3 3 1,-3 2 2,-3 

g -g 0 -e -2e 2g e -3g e -g -2g -g -3g 0 0 0 
-2 -1 7 8 1 2.-1 -2 3 -3 2.-3 

9 e e 0 g e -g -2g -g 0 g e 0 0 -g 
1 ,-3 7 -1 3 1,-3 1.-3 1.-2 2.-3 

g -e +e e -g e e 0 g -g g -g 0 e g 0 
2.-1 7 8 1 2,-1 2,-1 -2 3,-1 2,-3 



Kil(g , g ) 
i,-j j,-i 

Kil(d - d ,d -d ) 
1 3 1 3 

Kil( g g ) 
i -i 

94 

Kil(d - d , d - d ) 
1 3 2 3 

Kil(d - d ,d - d ) 
2 3 2 3 

-24. 

8 . 

16, 

Since the semisimple algebra of type g2 is compact and the 

Killing metric should be negative definite .we choose a 

basis of g2 denoted by 

lg' ,g 1 ,g 1 ,h' ,h 1 

} ;j,k=1,2,3 and j is different from k 
j -j j,-k 1 -1 

where 

i) g' =(g + g )/2 
j j -j 

and g~ =(g - g )!2i 
- j j - j 

ii) gl =(g +g ) /2i and gl =(g - g 
k.-j k,- j j,-k j,-k k.- j 

for j=1,2,3, 

)/2 for j >k, 
j,-k 

iii) h' =(d -d + d -d )/2i and hi (d -d -(d -d )}/2i. 
1 1 3 2 3 -1 

It is quite easy to see from i) that 

-

which in 

4Kil(g' 'g I) = 2Kil(g ,g ) . 
j j j -j 

4Kil(gl . g') =-2Kil(g ,g ) . 
-j -j j -j 

Kil(gl ,gl )= 0 
j -j 

view of relations earlier on 

Kil( g I • g') 
j j 

Kil(g' . g I) 
-j -j 

1 3 2 3 

give 

-12. 
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Similarly ,from ii) and iii) we obtain 

Kil(g' ,g' )= Kil(h' ,h' )=-4 and K i 1 ( h ' . h ' ) =- 12 
i,-j i,-j -1 -1 1 1 

while all other components are zero. 

Writing h' ,h' ,g' ,g' ,g' ,g' ,g' ,g' ,g' ,g' 
1 -1 1 -1 2 -2 3 -3 1,-2 2.-1 

g' ,g' ,g' ,g' respectively by e ..... e 
1,-3 3,-1 2,-3 3,-2 1 14 

the Lie product is now given by table4 next page. 

The nonabelian subalgebras of g2 as listed in D'Atri 

and Ziller [DZJ page 60 are 

so( 4) ( g2 su( 3) ( g2 

u(2)=so(2)eb1 ( so(4) ( g2 

b1 ( g2 b1'( g2 

so(3) ( g2 

u(2)'=so(2)~b1'( so(4) (g2 

b ( so(4) ( ~5"2. 

Here so(4) = b1 m b1'; b1 ~ b1'~ so(3) is the splitting 

of so(4) into simple ideals and b ( so(4) is the usual 

imbedding of so(3) in so(4).The two imbedding of u(2) in 

g2 and b1,b1' in g2 are not conjugate and the subalgebra 

so(3) ( g2 is maximal . 

Futhermore .su(3),so(4) and maximal so(3) ( g2 act 

irreducibly on their complements.See [Wol] and [Dy]. 

We can take e .e ,e ,e .e and e as a basis of 
1 2 7 8 9 10 

so(4) which splits into two ideals, namely e .e .e and 
1 7 8 

e .e .e 
2 9 10 

Another basis of so(4) is given by {e ,e .e ,e .e .e l. 
3 5 7 10 12 14 



TABLE 4 

e e e e e e e e e e e e e e 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

e 0 0 -1/ e 1/ e -1/ e 1/e e -e 0 0 -3/e 3/e -3/e 3/e 
1 2 4 2 3 2 6 2 5 8 7 2 12 2 11 2 14 2 13 

e 0 0 -1/ e 1/ e 1/ e -1/e 0 0 -e e -1/e 1/e 1/e -1/e 
2 2 4 2 3 2 6 2 5 10 9 2 12 2 11 2 14 2 13 

e 1/ e 1/ e 0 -1/e -3/e e -3/e -e -3/e -e -3/e e -3/e 1/e 1/e 1/e 1/e 0 e 
3 2 4 2 4 2 1 2 2 7 2 10 8 2 9 5 2 12 6 2 11 2 6 2 5 2 8 2 7 

e -1/ e -1/ e 1/e +3/e 0 -e +3/e -e-3/e e +3/e e -3/e -1/e 1/e -1/e 1/e 0 0 
4 2 3 2 3 2 1 2 2 8 2 9 7 2 10 6 2 11 5 2 12 2 5 2 6 2 7 2 8 

e 1/ e -1/ e -e +3/e e -3/e 0 3/e-1/e e -3/e -e -3/e 1/e -1/e 0 0 1/e 1/e 
5 2 6 2 6 7 2 10 8 2 9 2 2 2 1 3 2 14 4 2 13 2 4 2 3 2 8 2 7 

e -1/ e 1/ e e +3/e e +3/e 1/e -3/e 0 -e +3/e -e -3/e -1/e -1/e 0 0 -1/e 1/e 
6 2 5 2 5 8 2 9 7 2 10 2 1 2 2 4 2 13 3 2 14 2 3 2 4 2 7 2 8 

e -e 0 e +3/e -e -3/e -e +3/e e -3/e 0 e 0 e 1/e -1/e 1/e -1/e 
7 8 5 2 12 6 2 11 3 2 14 4 2 13 1 2 4 2 3 2 6 2 5 

e e 0 -e +3/e -e +3/e e +3/e e +3/e -e 0 0 0 -1/e -1/e -1/e -1/e 
8 7 6 2 1 1 5 2 12 4 2 13 3 2 14 1 2 3 2 4 2 6 2 6 

e e e -1/e 1/e -1/e 1/e 0 0 0 -e -1/e 1/e -1/e 1/e 
9 10 2 6 2 5 2 4 2 3 2 2 14 2 13 2 12 2 11 

e 0 -e -1/e -1/e 1/e 1/e 0 0 e 0 -1/e -1/e 1/e 1/e 
10 9 2 5 2 6 2 3 2 4 2 2 13 2 14 2 11 2 12 

e 3/e 1/e -1/e 1/e 0 0 -1/e 1/e 1/e 1/e 0 -1/e -1/e -1/e -1/e I 
11 2 12 2 12 2 8 2 7 2 4 2 3 2 14 2 13 2 1 2 2 2 10 2 9 

e -3/e -1/e -1/e -1/e 0 0 1/e 1/e -1/e 1/e 1/e +1/e e 1/e -1/e 
12 2 11 2 11 2 7 2 8 2 3 2 4 2 13 2 14 2 1 2 2 2 9 2 10 

e 3/e -1/e 0 0 -1/e 1/e -1/e 1/e 1/e -1/e 1/e -1/e 0 -1/e+1/e 
13 2 14 2 14 2 8 2 7 2 6 2 5 2 12 2 11 2 10 2 9 2 1 2 2 

e -3/e 1/e 0 0 -1/e -1/e 1/e 1/e -1/e -1/e 1/e 1/e 1/e-1/e 0 
14 2 13 2 13 2 7 2 8 2 5 2 6 2 11 2 12 2 9 2 10 2 1 2 2 

- ~- - --~---
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We now consider the subalgebras of g2 which do not 

act irreducibly on their complements, namely u(2),u(2)' ,bl, 

bl' and b. 

We have lemmas 2.5.1 and 2.5.2 of [Val which give a one to 

one correspondence between the set of all subalgebras of g2 

and the set of all connected Lie subgroups of G2. All these 

subgroups must be compact since a simple Lie group with a 

noncompact subgroup must itself be noncompact. See [Gil 

p.330. Proposition 4.2 of [KNll p.43 enables us to consider 

homogeneous spaces G2/W,where W is one of the Lie subgroups. 

The components of the curvature tensor are computed 

using the formula on page 84. Moreover we investigate the 

possibilities of the homogeneous spaces admitting the 

Einstein. Ricci- Codazzi or Ricci cyclic parallel metrics. 

From this investigation it seems that the class of Ricci­

Codazzi metrics is more restrictive than the class of Ricci 

cyclic parallel metrics. 
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G2LIU 

In this case b1 is generated by e ,e and e .The 
1 7 8 

splitting of rn is 

3-dimensional rn is 
0 

8-dimensional m is 
1 

We consider rnetrics 

m = m + rn ,where the 
0 1 

generated by e ,e and 
2 9 

generated by e .... e .e 
3 6 

with 

g(2.2)=4a. g(9,9)=4b. g(10,10)=4c; 

e 
10 

... ,e 
11 

g(3,3)= ... = g(6,6)=12d. g(11, 11)= ... =g(14, 14)=4d. 

The Einstein equations are 

2 2 2 2 2 2 2 
a be + d (a - b - c ) + 2bcd 2bcd .4av, 

2 2 2 2 2 2 2 
ab c + d (b - c - a ) + 2cad 2cad .4bv, 

2 2 2 2 2 2 2 
abc + d Co - a - b ) + 2abd 2abd .4cv. 

- a - b c + 16d 8d.4dv. 

For a=b=c ,the equations above reduce to 

4 2 2 2 2 
a + a d 2a d .4av. 

-3a + 16d 8d.4dv, 

which on eliminating v yields 

2 2 

14 

7a/d - 16a/d + 4 = (a/d - 2)(7a/d - 2) = 0 . 

For the first case a=b=c=2d the sectional curvatures take 

positive and negative values while for the second metric 

the sectional curvatures are non-negative.They take values 
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{l/224d,ll/224d,l/16d,89/672d,35/32d}.Thus the Einstein 

metric with a=b=o=2d/7 has pinching l/245. 

All Riooi-Codazzi metrics for the case a=b=o are 

2 2 
Einstein since we need 7a -16ad +4d =0. 

It is not difficult to show that there are no solutions 

of Einstein equations in the case when exactly two of the 

coefficients a,b,o are equal. For example, when a=o the 

equations reduce to 

3 2 2 2 
a +2ad -bd 2ad.4av, 

2 2 2 2 2 2 
a b + b d 2a d.4bv, 

16d -2a -b 8d.4dv. 

Multiplying the first by b and subtracting the second 

yields 

2 2 
b(a-b)( a + 2d ) =0, which is absurd unless a=b. 

When the coefficients a,b,c are distinct we 

obtain from the first three equations: 

2 
(a-b) {abo + 2d (a+b-c)} 0, 

2 
(b-o){abo + 2d (b+o-a)} 0, 

2 
(o-a){abo + 2d (o+a-b)} 0, 

from which we get 

2 
3abc + 2d (a+b+o) 0 ,which is absurd . 
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For the space to be Ricci cyclic parallel we need 

2 2 2 2 2 2 
ab +be +Ca -ac -ba -cb = 0, 

which can be written as 

(a-b)(b-c)(c-a)=O. 

Thus,for an arbitrary d,the space is Ricci cyclic parallel 

if and only if at least two of the coefficients a,b,c are 

equal. But all such metrics are Ricci parallel. 
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G2LIU' 

In this case b1' is generated by e ,e and e .The 
2 9 10 

splitting of m is given by m = m + m + m where the 
0 1 2 

3-dimensional m is generated by e ,e and e ' 
0 1 7 8 

4-dimensional m is generated by e ,e ,e and e . 
1 3 4 5 6 

4-dimensiona.l m is generated by e ,e ,e and e 
2 11 12 13 14 

We consider metrics with 

g(l,1)=12a . g(7,7)=12b . g(8,8)=12c ; 

g ( 3 . 3 ) = . . . = g ( 6 . 6 ) = 12d g(ll,ll)= ... = g(l4,14) =4f. 

The Einstein equations for a.=b=o and d=f are 

4 2 2 4 2 4 
lOa. d + 2a. d 4a. d . 12a.v, 

2 2 3 2 2 
48a. d - 15a. d Ba. d . 12dv. 

which on eliminating v gives 

l/2 2 2 
35a. /d 48a/d + 4 0 ,i.e . a./d = {24 ± 2(109) }/35 

In this case (a=b=c and d=f) all the metrics considered 

are automatically Ricci cyclic pa.ra.llel.while all Ricci-

Codazzi metrics are necessarily Einstein. 

It can be shown that there are no solutions of the 

Einstein equations for d=f unless a=b=c. 
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As for Ricci cyclic parallel (when d=f) we need 

(a-b)(b-c)(c-a)=O 

and 

2 2 
b +be +2ad -2ab -bd -cd =0 and c +be +2ad -2ac -bd -cd =0. 

If a=b then we must have a=b=c,the case already considered. 

2 
If b=c,we need b +ad -ab -bd =(b-d)(b-a) =0. 

Thus b=c=d=f with arbitrary a gives Ricci cyclic parallel 

metrics.But there is no Ricci-Codazzi metric for such case. 
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G2LB 

In this case b is generated by e .e and e 
10 12 14 

The splitting of m is given by m = m + m + m .where 
1 2 3 

5-dimensional m is generated by e .e .e ,e .e 
1 1 2 9 11 13 

3-dimensional m is generated by e .e .e 
2 3 5 7 

3-dimensional m is generated by e .e and e 
3 4 6 8 

We consider metrics with 

Ki(1,1)=12a. Ki(2,2)=4a , Ki(9,9)=Ki(l1,11)=Ki(l3,13) = 4a, 

Ki(3,3)=Ki(5,5)=Ki(7.7)=12b and Ki(4,4)=Ki(6.6)=Ki(8,8)=12c. 

The Einstein equations are 

2 
a 

2 
b 

2 2 
18ac + 2ab 

2 
c + Bbc 4bc.4av, 

2 2 
5ca + 5cb 

3 
5o 

2 2 3 

2 
4ac . 12bv. 

2 
- 4ab 5ca - 5cb + 5o + 24abc 4abc. 12cv. 

For b=c the equations reduce to 

2 2 
a + 6b 

2 
16b av 

2 
and -5a + 20ab 

which has no real solution. 

2 
48b av. 

In fact in this case (b=c).Ricci-Codazzi conditions 

2 2 
reduce to 4a -lOab +9b =0, which has no real solutions. 

Similar case holds for a=c or a=b. 

However all metrics (with b=c) are Ricci cyclic parallel. 
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u2 is generated by e .e ,e and e .The splitting of 
1 2 7 8 

of m is given by m = m + m ,where the 
1 2 

8-dimensional m is generated by e ... ,e ,e .... e 
1 3 6 11 14 

2-dimensional m is generated by e and e 
2 9 10 

We consider metrics with 

g(3,3) 

g(9,9) 

.. = g ( 6 . 6) = 12a 

g ( 1 0 . 1 0 ) = 4b . 

g ( 11 . 11 ) = •• = g ( 14 . 14) = 4a 

The Einstein equations are 

8a - b = 4a.4av. 

2 2 2 
2a + b = 2a .4bv, 

which on eliminating v gives alb = 112 or 312 . 

For the Einstein metric with a/b=112 the sectional curvature 

takes both positive and negative values.while for the second 

metric the sectional curvature is non-negative. It takes 

values {1196a,1132a,1/16a,1112a.11196a,1'4a,318a}. Thus the 

second Einstein metric with 2a=3b has pinching 1136. 

All Ricci-Codazzi metrics are necessarily Einstein for 

we need 

2 2 
4a -8ab +3b 0 

which gives alb 112 or 312. 

However all the metrics considered are automatically 

Ricci cyclic parallel. 
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In this case u2' is generated by e .e .e and e .We 

have the splitting of m given by m 

4-dimensional ID is generated by e 
1 

2-dimensional ID is generated by e 
2 

4-dimensional m is generated by e 
3 

We consider rnetrics with 

1 2 9 10 

m + m + m ,where 
1 2 3 

.e .e and e 
3 4 5 6 

and e 
7 8 

.e ,e and e 
11 12 13 14 

g(3,3) = 

g(ll,11) 

g(6,6) = 12a ; g(7.7) 

= g(l4,14) = 4c . 

g(8,8) 12b 

The Einstein equations are 

3 2 2 2 
3a - 3ab 3ac + 24abc 4b c 4abc. l2av, 

2 2 2 3 2 2 
2b c + 3ab - 3ac - 3a + 8a c 2a c. l2bv. 

2 2 2 
8ab - a - b + c = 4ab.4cv . 

It is not difficult to show that there is no solution 

of Einstein equations for a=c. In fact in this case 

there are no Ricci-Codazzi rnetrics for we need 

2 2 2 2 2 2 
4a -24ab +l7b =0 4a -24ab +15b =0 4a -32ab +17b =0, 

which has no solutions. 

Similarly there are no solutions for a=b or b=c.In fact 

for b=c the above equations reduce to 
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3 2 3 2 2 
3a + lBao - 40 4Ba o v. 

3 2 3 2 2 
-3a + Boa + 20 24a o v. 

2 2 
Bao - a 16ao v. 

From which we obtain 

3 3 2 2 
6a -4o -24oa +lBao 0, 

3 3 2 
3a -4o + Boa 0, 

with no solution in common. 

A necessary and sufficient condition for Ricci cyclic 

parallel metric is a=b=o. 
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7 
APPENDIX1 : RESULTS ON S 

1$Log Output: MAN3, 16:52:27 Wed Apr 03/85 

$RUN ETC:RDC2.LISP SCARDS=•SOURCE•+•MSOURCE• PAR=R=250P 
Execution begins 16:52:29 
STANDARD LISP INITIAL CORE ALLOCATION: FREE CELLS= 83490, BPS 

REDUCE 2 (Apr-15-79 {MTS Aug-18-80)) 

LINELENGTH{90); 
120 

IN S7ABC; 

86016, PDS 

COMMENT ----1)This programme wi I I compute the components of the curvature 
tensor of any given homogeneous manifold. We shal I also compute the 
sectional curvature, Ricci curvature, the covariant derivative of the 
Ricci tensor and the cyclic sum of this derivative together with the 
Ricci-Godozzi condition; 

COMMENT 2)We represent the k-th component of the brocket product 
[e{i),e(j)) by M(i ,j,k) 
In the case of S(7) obtained from Sp(2)/Sp(1) we hove seen that 
the splitting of m is given by m = m(0) + m(1) ,where the 
3-dimensional m(0) is generated by e(2),e(5),e(6) while the 
4-dimensional m(1) is generated by e(7),e(B),e(9) and e(10). 
From the table of the brocket products of the elements of sp(2) we 
now list all the non-zero components of M(i,j,k) involving only 
e(2) ,e(5), e(6), e(7), e(B) ,e(9) and e( 10). We on I y need to I i st the 
lower triangle elements since the brocket product is skew-symmetric; 

N:=10; 

N 10 

ARRAY M(N,N,N); 

M( 5, 2. 6) := 2$ M( 6, 2. 5) :=-2$ M( 6, 5, 2) := 2$ 
M( 7, 2, 8) := 1$ M( 7, 5,10) :=-1$ M( 7, 6, 9):=-1$ 
M( 8, 2. 7) :=-1$ M( 8, 5, 9) := 1$ M( 8, 6,10) :=-1$ 
M( a· 7. 2) := 2$ M( 9, 2,10) :=-1$ M( 9, 5, 8):=-1$ 
M( 9, 6, 7) := 1$ M( 9, 7, 6):=-2$ M( 9, 8, 5) := 2$ 
M(10, 2, 9) := 1$ M(10, 5, 7) := 1$ M(10, 6, 8) := 1$ 
M( 10, 7, 5):=-2$ M( 10. 8, 6):=-2$ M(10, 9, 2) :=-2$ 

COMMENT----3)We now state the skew-symmetry property of the brocket 
product namely, M(i,j,k) = -M(j,i,k) for all i,j,k=2,5,6,.,10; 

FOR ROW:=2: 10 DO 
FOR COL:=2:ROW-1 DO 

FOR K : =2 : 10 DO 
IF NOT M(ROW,COL,K)=0 THEN M(COL,ROW,K) := -M(ROW,COL,K); 

COMMENT--4)The metric on m obtained from the Killing metric on Sp(2) 
by the method described in page 83 is given by; 

3000. 
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ARRAY Kl (N); 

K I (2) ·= 12•A $ K I (5) ·= 12•8 $ K I ( 6} .- 12•C $ 
K I (7} ·= 24•D $ K I (8) 24•D $ K I (9) := 24•0 $ 
Kl(10}:= 24•D $ 

COMMENT--5}The inverse metric is then; 

ARRAY HI (N); 

Hl(2) :=1/(12•A)$ 
Hl(7) :=1/(24•D)$ 
HI ( 10) :=1/(24•0)$ 

HI ( 5) 

Hl(8) 
:=1/(12•8)$ 
:=1/(24•D)$ 

HI ( 6) 
HI (9) 

:=1/(12•C)$ 
:=1/(24•D)$ 

COMMENT--6)We now compute the Christoffel symbols of the Levi-civito 
connection given in page 84, making use of the fact that 
the "array" M is rather sparse. This is done by single 
pass through the orroy M; 

ARRAY C(N,N,N); 

FOR H : =2 : 10 DO 
FORJ:=2:10DO 

FOR K : =2 : 10 DO 

IF NOT M(H,J,K) = 0 THEN<< 
C(H,J,K) .- C(H,J,K) + M(H,J,K)/2 
C(K,H,J) C(K,H,J)- M(H,J,K)•KI(K)•HI(J)/2 
C(H,K,J) .- C(H,K,J) - M(H,J,K)•KI(K)•Hl(J)/2 

>>; 

COMMENT -7)We wi II now compute the components of the curvature tensor given 
by the formula in p. 84. We first compute the sum of the first three terms. 
Again we exploit the fact that both arrays M and Core rather sparse, i.e, 
we make single posses over the arrays accumulating "information" only when 
we hove non-zero elements; 

COMMENT-8)1n order to be able to compute the components of the curvature 
tensor we hove seen from the last term of the lost term of the formula 
that we need where now i,k toke values either 1,3 or 4. We denote these 
components by MC(i,j,k); 

ARRAY MC(N,N,N); 

MC( 7, 1. 8) := 1$ MC( 7, 3 ,10) := 1$ MC( 7, 
MC( 8, 1, 7) :=-1$ MC( 8, 3, 9) := 1$ MC( 8. 
MC( 9, 1. 10) := 1$ MC( 9, 3, 8) :=-1$ MC( 9, 
MC(10, 1, 9) :=-1$ MC( 10, 3, 7) :=-1$ MC(10, 
MC( 8, 7, 1) := 2$ MC( 9, 7, 4) :=-2$ MC( 9. 
MC( 10, 7, 3) := 2$ MC( 10, 8, 4) := 2$ MC( 10, 

COMMENT-9) We also hove the skew-symmetry property ; 

FOR ROW =1: 10 DO 

FOR COL:=1 :ROW-1 DO 

FOR K : = 1 : 10 DO 

IF NOT MC(ROW,COL,K)=0 THEN 
MC(COL,ROW,K):=-MC(ROW,COL,K); 

4, 9) :=-1$ 
4 ,10) := 1$ 
4, 7) := 1$ 
4, 8) :=-1$ 
8, 3) := 2$ 
9, 1) := 2$ 



ARRAY R{N,N,N,N); 

FOR P := 2:10 DO<< 
FOR Q := 2:10 DO 
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FOR J : = 2 : 10 DO 
IF NOT C(P,Q,J) = 0 THEN<< 

FOR H : = 2 : 10 DO 
FORK := 2:10 DO<< 

IF NOT C{H,J,K) 0 THEN 
BEGIN 

SCALAR TEMP; 
TEMP := C(P,Q,J) • C(H,J,K) • KI(K); 
R(H,P,Q,K) := R(H,P,Q,K) + TEMP; 
R(P,H,Q,K) .- R(P,H,Q,K) - TEMP; 

END; 

IF NOT M(H,K,P) = 0 THEN 
R(H,K,Q,J) := R(H,K.Q,J) - M(H,K,P)•C(P,Q,J)•KI(J); 

>>; 

FOR H:=2:10 DO 
FOR P : =2 : 1 0 DO 

FOR L : = 1 : 4 DO 

>>; 
>>; 

IF NOT MC(H,P,L) = 0 THEN<< 
FOR 0:=2: 10 DO 

FOR K : =2 : 10 DO 
IF NOT MC(L,Q,K) = 0 THEN << 

BEGIN 
SCALAR TEM; 
TEM := MC(H,P,L)•MC(L,Q,K)•KI(K); 
R{H,P,Q,K) := R{H,P,Q,K) - TEM; 

END; 
>>; 

>>; 

COMMENT-10)We can now compute the sectional curvatureS; 

ARRAY S ( N . N) ; 

FOR P: =2 : 10 DO 
FOR K:=P+1: 10 DO 
BEGIN 

S{P,K):=S(K,P):= R(K,P,P,K)•HI(P)•HI(K); 
IF NOT S(P,K)=0 THEN WRITE 
"S(",P, "" ,K, ")=S{",K, "," ,P, ")= ",S(P,K)$ 

END; 

2 
S(2,5)=S(5.2)= {A - 2•A•B + 2oAoC + 

2 
S(2,6)=S(6,2)= (A + 2•A•B -

2 
S(2,7)=S(7,2)= A/(48•D) 

2oAoC -

2 2 
B + 2•B•C - 3oC )/(12•A•BoC) 

2 2 
3•B + 2•B•C + c )/(12•A•B•C) 



2 
5(2,8)=5(8,2)= A/(48•0 ) 

2 
5(2,9)=5(9,2)= A/(48•0 ) 

2 
5(2,10)=5(10,2)= A/(48•0) 
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2 2 2 
5(5,6)=5(6,5)= ( - 3•A + 2•A•8 + 2•A•C + 8 - 2•8•C + C )/(12•A•8•C) 

2 

5(5,7)=5(7,5)= 8/(48•0) 

2 
5(5,8)=5(8,5)= 8/(48•0 ) 

2 
5(5,9)=5(9.5)= 8/(48•0 ) 

2 
5(5,10)=5(10,5)= 8/(48•0) 

2 
5(6,7)=5(7,6)= C/(48•0) 

2 
5(6,8)=5(8,6)= C/(48•0 ) 

2 
5(6,9)=5(9,6)= C/(48•0 ) 

2 
5(6,10)=5(10,6)= C/(48•0) 

2 
5(7,8)=5(8,7)= (- 3•A + 8•0)/(48•0) 

2 
5(7,9)=5(9,7)= ( - 3•C + 8•0)/(48•0 ) 

2 
5(7,10)=5(10,7)= (- 3•8 + 8•0)/(48•0) 

2 
5(8,9)=5(9,8)= ( - 3•8 + 8•0)/(48•0 ) 

2 
5(8,10)=5(10,8)= (- 3•C + 8•0)/(48•0) 

2 
5(9,10)=5(10,9)= (- 3•A + 8•0)/(48•0) 

COMMENT-11)The Ricci tensor is given by; 
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ARRAY RICCI(N,N); 

FOR P: =2 : 10 DO 
BEGIN 

RICCI(P,P) :=(FOR 0:=2:10 SUM S(P.O))•KI(P) $ 
IF NOT RICCI(P,P)=0 THEN WRITE 
"RICCI (" ,P. ,P, ")= ",RICCI (P ,P)$ 

END; 

2 2 2 2 2 2 2 2 2 
RICCI(2.2)= (A •B•C + 2•A •D - 2•B •D + 4•B•C•D - 2•C •D )/(B•C•D ) 

2 2 2 2 2 2 2 2 2 
RICCI(5,5)= ( - 2•A •D + A•B •C + 4•A•C•D + 2•8 •D - 2•C •D )/(A•C•D ) 

2 2 2 2 2 2 2 2 2 
RICCI(6,6)= - 2•A •D + A•8•C + 4•A•8•D - 2•B •D + 2•C •D )/(A•8•D ) 

RICCI(7,7)= - A- 8 - c + 12•D)/D 

RICCI(8,8)= - A - 8 - c + 12•D)/D 

RICCI(9,9)= -A- B - c + 12•D)/D 

RICC1(10,10)= (-A-B-C+ 12•D)/D 

COMMENT--12)We now compute the covariant derivative of the Ricci tensor; 

ARRAY DEL(N,N,N); 

FOR L : =2 : 10 DO 
FOR J : =2 : 10 DO 

FOR K:=2:10 DO 
BEGIN 

DEL(L,J,K):=-C(K,L,J)•RJCCI(J,J) -G(K,J,L)•RICCl(L,L); 
IF NOT DEL(L,J,K)=0 THEN WRITE 
"DEL(",L, "" ,J, ,K, "):= ",DEL(L,J,K), 

END; 

3 3 2 2 2 2 2 2 2 3 
DEL(2,5,6):= ( - A •8•C - 4•A •D + A •B•C - 4•A •8•D + 8•A •C•D + A•8 •C -

2 2 2 2 3 2 2 2 2 2 

4•A•8 •D - 4•A•C •D + 4•8 •D - 8•8 •C•D + 4•8•C •D )/(A•B•C•D 

3 3 2 2 2 2 2 2 2 2 2 

A•B 

2 
) 

DEL(2,6,5):= (A •B•C + 4•A •D - A •8 •C - S•A •B•D + 4•A •C•D + A•B •C + 4•A•B 

3 2 2 2 2 2 2 3 2 2 
A•8•C - 4•A•C •D - 4•8 •C•D + 8•8•C •D - 4•C •D )/(A•B•C•D ) 

2 2 2 2 2 2 2 

2 2 
•C 

2 2 
•D 

DEL(2,7,8):= ( - 3•A •B•C - 4•A •D - A•8 •C - A•B•C + 12•A•B•C•D + 4•8 •D - B•B•C•D 

2 2 2 

+ 

2 
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DEL(5,6,2) := 
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2 2 2 2 2 2 2 2 

2 2 2 

2 2 2 2 2 2 2 2 

2 2 2 
•C •D )/(2•B•C•D ) 

2 2 2 2 2 2 2 2 

2 2 2 
+ 4•C •D )/(2•B•C•D ) 

2 2 
A•B •C + 

2 2 2 2 3 2 2 2 2 2 2 
4•A•B •D - 4•A•C •D + 4•8 •D - 8•8 •C•D + 4•B•C •D )/(A•B•C•D ) 

2 2 2 2 2 2 
(A •B •C - A •B•C - 4•A •B•D + A•B•C - 8 

2 2 3 2 2 2 2 2 3 2 2 
•A•C •D - 4•8 •D - 4•8 •C•D + 4•B•C •D + 4•C •D )/(A•B•C•D ) 

2 2 2 2 2 2 2 2 
DEL(5,7, 10):= (A •B•C- 4•A •D + 3•A•B •C + A•B•C - 12•A•B•C•D + B•A•C•D + 4•8 •D - 4 

2 2 2 

•C •D )/(2•A•C•D ) 

2 2 2 2 2 2 2 2 

2 2 2 
+ 4•C •D )/(2•A•C•D ) 

2 2 2 2 2 2 2 2 
DEL(5,9,8) 

2 2 2 
C •D )/(2•A•C•D ) 

2 2 2 2 2 2 2 2 
DEL(5, 10,7).- (-A •B•C + 4•A •D - 3•A•B •C- A•B•C + 12•A•B•C•D- B•A•C•D - 4•8 oD 

2 2 2 
+ 4•C •D )/(2•A•C•D ) 

3 3 2 2 2 2 2 2 2 2 2 2 2 

DEL(6,2,5):= (A oBoC + 4oA oD - A oB oC - BoA •BoD + 4oA •C•D + AoB oC + 4•A•B •D 
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2 2 2 2 3 2 2 3 

DEL(6,5,2}:= - 8 

2 2 3 2 2 2 2 2 3 2 2 
•A•C •D - 4•8 •D - 4•8 oCoD + 4•8•C •D + 4•C •D )/(A•8•C•D ) 

2 2 2 2 2 2 2 2 

2 2 2 
C •D )/(2•A•8•D ) 

2 2 2 2 2 2 2 2 
DEL(6,8, 10):= (A •8•C- 4•A •D + A•8 •C + 3•A•8•C - 12•A•8•C•D + 8•A•8•D - 4•8 •D + 4 

2 2 2 
•C •D )/(2•A•8•D } 

2 2 2 2 2 2 2 2 
DEL(6,9,7):= (-A •8•C + 4•A •D - A•8 •C- 3•A•8•C + 12•A•8•C•D- 8•A•8•D + 4•8 •D 

2 2 2 
- 4•C •D }/(2•A•8•D ) 

2 2 2 2 2 2 2 2 
DEL(6,10,8):= (-A •8•C + 4•A •D - Ao8 •C- 3•A•8•C + 12•A•8•C•D- 8•A•8•D + 4•8 •D 

2 2 2 
- 4•C •D )/(2•A•8•D } 

2 2 2 2 2 2 2 2 

2 2 2 
+ 4•C •D )/(2•8•C•D ) 

2 2 2 2 2 2 2 2 
DEL(7,5,10):= (A •8•C- 4•A •D + 3•A•8 •C + A•8•C - 12•A•8•C•D + 8•A•C•D + 4•8 •D - 4 

2 2 2 
•C •D )/(2•A•C•D } 

2 2 2 2 2 2 2 2 

2 2 2 
C oD )/(2•A•8•D ) 

2 2 2 2 2 2 2 2 

2 2 2 

2 2 2 2 2 2 2 2 
DEL(8,5,9):= (-A •8•C + 4oA •D - 3oAo8 oC- Ao8oC + 12oAo8oC•D- B•A•C•D - 4o8 oD 

2 2 2 
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2 2 2 2 2 2 2 2 
DEL(8,6,10):= (A •8•C - 4•A •D + A•8 •C + 3•A•8•C - 12•A•8•C•D + 8•A•8•D - 4•8 •D + 4 

2 2 2 
•C •D )/(2•A•8•D ) 

2 2 2 2 2 2 2 2 
DEL(9. 2, 10) := (3•A •8•C + 4•A •D + A•8 •C + A•8•C - 12•A•8•C•D - 4•8 •D + 8•8•C•D - 4 

2 2 2 
•C •D )/(2•8•C•D ) 

2 2 2 2 2 2 2 2 
DEL(9,5,8):= (A •8•C - 4•A •D + 3•A•8 •C + A•8•C - 12•A•8•C•D + 8•A•C•D + 4•8 •D - 4• 

2 2 2 
c •D )/(2•A•C•D ) 

2 2 2 2 2 2 2 2 
DEL(9,6,7):= ( - A •8•C + 4•A •D - A•8 •C - 3•A•8•C + 12•A•8•C•D - 8•A•8•D + 4•8 •D 

2 2 2 
- 4•C •D )/(2•A•B•D ) 

2 2 2 2 2 2 2 2 
DEL ( 10. 2. 9) : = ( - 3•A •8•C - 4•A •D - A•8 •C - A•8•C + 12•A•B•C•D + 4•8 •D - 8•8•C•D 

2 2 2 
+ 4•C •D )/(2•8•C•D ) 

2 2 2 2 2 2 2 2 
DEL ( 10. 5. 7) ( - A •8•C + 4•A •D - 3•A•8 •C - A•8•C + 12•A•B•C•D - 8•A•C•D - 4•8 •D 

2 2 2 
+ 4•C •D )/(2•A•C•D ) 

2 2 2 2 2 2 2 2 
DEL(10,6,8):= ( - A •8•C + 4•A •D - A•B •C - 3•A•8•C + 12•A•B•C•D - 8•A•8•D + 4•8 •D 

2 2 2 
- 4•C •D )/(2•A•8•D ) 

COMMENT--13)The nonzero components of RC(i,j,k)=DEL(i,j,k)-DEL(k,j,i) are; 

ARRAY RC(N,N,N); 

FOR L : =2 : 1 0 DO 
FOR J : =2 : 10 DO 

FOR K:=L+1: 10 DO 
BEGIN 

RC(L,J,K) := DEL(L,J,K)-DEL(K,J,L); 
IF NOT RC(L,J,K)=0 THEN WRITE 

"RC ( " , L , " • " • J . , K • " ) : =-RC ( " . K , " " • J . 

END; 
,L, ") ",RC(L,J,K)$ 
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3 3 2 2 2 2 2 2 2 3 

2 2 2 2 3 2 2 3 2 2 2 3 

3 3 2 2 2 2 2 2 2 3 
RC(2,6,5):=-RC(5,6,2):= (A •8•C + 4•A •D - 4•A •8•0 + A•8 •C + A• 

2 2 2 2 3 2 2 3 2 2 2 3 2 

2 

)/(A•8•C•D ) 

2 2 2 2 2 2 2 
RC(2,7,8) :=-RC(8,7,2):= (- 3•A •8•C- 4•A •D - A•8 •C- A•8•C + 12•A•8•C•D + 4•8 •D 

2 2 2 2 
8•8•C•D + 4•C •D )/(2•8•C•D ) 

2 2 2 2 2 2 2 
RC(2,8,7):=-RC(7,8,2):= (3•A •8•C + 4•A •D + A•8 •C + A•8•C - 12•A•8•C•D- 4•8 •D + 8•8 

2 2 2 2 
•C•D - 4•C •D )/(2•8•C•D ) 

2 2 2 2 2 2 2 
RC(2,9,10):=-RC(10,9,2):= (3•A •8•C + 4•A •D + A•8 •C + A•8•C - 12•A•8•C•D- 4•8 •D + 8 

2 2 2 2 
•8•C•D - 4•C •D )/(2•8•C•D ) 

2 2 2 2 2 2 2 
RC(2,10,9):=-RC(9, 10,2):= (- 3•A •8•C- 4•A •D - A•8 •C- A•8•C + 12•A•B•C•D + 4•8 •D 

2 2 2 2 
- 8•8•C•D + 4•C •D )/(2•B•C•D ) 

3 3 2 2 2 2 2 2 2 2 2 

RC(5,2,6):=-RC(6,2,5):= (- 2•A •B•C- 8•A •D +A •8 •C +A •B•C + 4•A •B•D + 4•A •C•D 

3 2 2 3 3 2 2 2 2 2 3 

2 2 
D )/(A•B•C•D ) 

2 2 2 2 2 2 
RC(5,7,10) :=-RC(10.7,5)·= (A o8•C- 4•A •D + 3•A•8 •C + A•B•C - 12•A•B•C•D + 8•A•C•D + 

2 2 2 2 2 
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2 2 2 2 2 2 

2 2 2 2 2 
- 4•8 •D + 4•C •D }/(2•A•C•D } 

2 2 2 2 2 2 
RC(5,9,8}:=-RC(8,9,5}:= (A •B•C- 4•A •D + 3•A•B •C + A•B•C - 12•A•B•C•D + 8•A•C•D + 4• 

2 2 2 2 2 
B •D - 4•C •D }/(2•A•C•D ) 

2 2 2 2 2 2 

2 2 2 2 2 
- 4•8 •D + 4•C •D }/(2•A•C•D } 

2 2 2 2 2 2 
RC(6,7.9):=-RC(9,7,6):= (A •B•C- 4•A •D + A•B •C + 3•A•B•C - 12•A•8•C•D + 8•A•B•D - 4• 

2 2 2 2 2 
8 •D + 4•C •D )/(2•A•B•D ) 

2 2 2 2 2 2 
RC(6,8, 10} =-RC(10,8,6):= (A •8•C- 4•A •D + A•B •C + 3•A•B•C - 12•A•8•C•D + 8•A•B•D 

2 2 2 2 2 
4•8 •D + 4•C •D }/(2•A•8•D ) 

2 2 2 2 2 2 
RC(6,9,7):=-RC(7,9,6}:= (-A •B•C + 4•A •D - A•8 •C- 3•A•B•C + 12•A•8•C•D- 8•A•B•D 

2 2 2 2 2 
+ 4•8 •D - 4•C •D }/(2•A•8•D ) 

2 2 2 2 2 2 
RC(6,10,8):=-RC(8,10,6):= (-A •B•C + 4•A •D - A•B •C- 3•A•8•C + 12•A•B•C•D- 8•A•B•D 

2 2 2 2 2 
+ 4•8 •D - 4•C •D )/(2•A•8•D ) 

2 2 2 2 2 2 2 

2 2 2 2 
8•B•C•D + 4•C •D )/(8•C•D 

2 2 2 2 2 2 
RC(7,5, 10):=-RC(10,5,7}:= (A •B•C- 4•A •D + 3•A•B •C + A•B•C - 12•A•B•C•D + B•A•C•D + 

2 2 2 2 2 
4o8 oO - 4•C oD )/(A•C•D ) 
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2 2 2 2 2 2 
RC(7,6,9):=-RC(9,6,7):= (A •8•C- 4•A •0 + A•8 •C + 3•A•8•C - 12•A•8•C•D + 8•A•8•0 - 4• 

2 2 2 2 2 
8 •0 + 4•C •D )/(A•B•D ) 

2 2 2 2 2 
RC(8,5,9):=-RC(9,5,8):= 

2 2 2 2 2 
- 4•8 •D + 4•C •D )/(A•C•D ) 

2 2 2 2 .2 

RC(8,6,10):=-RC(10,6,8):= (A •8•C- 4•A •D 

2 2 2 2 2 
4•8 •D + 4•C •D )/(A•8•D ) 

2 2 2 2 2 

2 2 2 2 

COMMENT-14)Finally we check whether the Ricci cyclic parallel conditions are 
satisfied. We print non-zero components of 
RCP ( i . j . k )=DEL( i . j • k )+DEL ( j . k. i )+DEL ( k. i . j ) ; 

ARRAY RCP(N,N,N); 

FOR L: =2: 10 DO 
FOR J . = L: 10 DO 

FOR K : =L: 10 DO 
BEGIN 

RCP(L,J,K):= DEL(L,J,K) + DEL(J,K,L) + DEL(K,L,J); 
IF NOT RCP(L,J,K)=0 THEN WRITE 
"RCP(",L, ",", J, ",", K, ") := ",RCP(L,J,K)$ 

END; 

2 2 2 2 2 2 
RCP(2,5,6) (16•( -A •8 +A •C + A•8 - A•C - 8 •C + 8•C ))/(A•8•C) 

2 2 2 2 2 2 
RCP(2,6,5) := (16•( -A •8 +A •C + A•8 - A•C - 8 •C +SoC ))/(A•B•C) 

COMMENT-15)PROGRAMMES IN REDUCE ENDED; 

$ 
SIGNOFF 

ENTER! NG L1 SP .. 

••• END OF DATA 
Execution terminated 16:55:30 T=129.963 RC=0 $8.14 

2 

2 

2 2 
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3 
APPENDIX2 RESULTS ON CP 

COMMENT---Metrics considered are of the form; 

g(5,5) := 12•A $ g(6,6) := 12•A $ g(7,7) := 24•8 $ 
g(8,8) := 24•8 $ g(9,9) := 24•8 $ g(10,10):= 24•8 $ 

COMMENT-The sectional curvatureS is given by; 

S(5,6) := S(6,5) := 1/(3•A) 

S(5,7) 
2 

5(7,5) := A/(48v8) 

2 
5(5,8) := S(8,5) := A/(48•8 ) 

2 
5 ( 5 , 9) : = 5 ( 9 , 5) : = A/ ( 48 • 8 ) 

2 
5(5,10) := 5(10,5) := A/(48•8 ) 

2 
S(6, 7) 5(7 ,6) := A/(48•8 ) 

2 

5 ( 6 , 8) . - 5 ( 8. 6) : = A/ ( 48 • 8 ) 

2 
S(6,9) := 5(9,6) := A/(48•8) 

2 

5 ( 6. 10) : = S ( 10 , 6) : = A/ ( 48 • 8 ) 

S(7,8) := S(8,7) := 1/(6•8) 

2 

5(7 ,9) := S(9, 7) := ( - 3•A + 8•8)/(48•8 ) 

2 
5 ( 7 . 1 0) : = 5 ( 10 . 7) : = ( - 3. A + 8. 8) I ( 48.8 ) 

2 
5 ( 8 , 9) : = S ( 9 , 8) . - ( - 3 • A + 8 • 8) / ( 48 • 8 ) 

2 

S(8,10) := 5(10,8) := ( - 3•A + 8•8)/(48•8 ) 

S(9, 10) := 5(10,9) := 1/(6•8) 
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COMMENT-The Ricci tensor is given by; 

2 2 2 
RICCI{5,5) .- (A + 4•8 )/8 

2 2 2 
RICCI(6,6) (A + 4•8 )/8 

RICCI(7,7) (2•( - A + 6•8) )/8 

RICCI (8, 8) (2•( - A + 6•8) )/8 

RJCCI(9,9) (2•( - A + 6•8))/8 

R I CC I ( 1 0 , 1 0) := (2•{ - A+ 6•8))/8 

COMMENT-The non-zero components of the derivative of Ricci tensor ore; 

2 2 2 

DEL(5,7,10):= (2•(A - 3•A•8 + 2•8 ))/8 

2 2 2 
DEL(5,8,9):= (2•(- A + 3•A•8- 2•8 ))/8 

2 2 2 
DEL(5,9,8).- (2•(A - 3•A•8 + 2•8 ))/8 

2 2 2 
DEL(5, 10, 7) := (2•( - A + 3•A•8 - 2•8 ))/8 

2 2 2 
DEL(6,7,9):= (2• (A - 3•A•8 + 2•8 ))/8 

2 2 2 
DEL(6,8,10) := (2•(A - 3•A•8 + 2•8 ))/8 

2 2 2 
DEL{6,9,7):= (2•(- A + 3•A•8- 2•8 ))/8 

2 2 2 
DEL(6,10,8):= (2•(- A + 3•A•8- 2•8 ))/8 

2 2 2 
DEL(7,5,10) (2•(A - 3•A•8 + 2•8 ))/8 

2 2 2 
DEL(7,6,9):= (2•(A - 3oAo8 + 2•8 ))/8 

2 2 2 
DEL(B,5,9):= (2•(- A + 3•A•8- 2•8 ))/8 

2 2 2 
DEL(8,6,10):= (2o(A - 3oAo8 + 2•8 ))/8 
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2 2 2 
DEL(9,5,8):= (2o(A - 3oAo8 + 2•8 ))/8 

2 2 2 
DEL(9,6,7):= (2o( -A + 3oAo8- 2o8 ))/8 

2 2 2 
DEL(10,5,7):= (2o(- A + 3oAo8- 2o8 ))/8 

2 2 2 

DEL(10,6,8):= (2o( -A + 3oAo8- 2o8 ))/8 

COMMENT-The nonzero components of the difference RC(i,j,k)=DEL(i,j,k)-DEL(k,j,i) ore; 

2 2 2 
RC(5,7,10):=-RC(10,7,5}:= (2•(A - 3oAo8 + 2o8 ))/8 

2 2 2 
RC(5,8,9):=-RC(9,8,5):= (2•(- A + 3oAo8- 2•8 ))/8 

2 2 2 
RC(5,9,8):=-RC(8,9,5):= (2o(A - 3•A•8 + 2o8 ))/8 

2 2 2 
RC(5,10,7):=-RC(7,10,5):= (2o(- A + 3oAo8- 2o8 ))/8 

2 2 2 
RC(6,7,9):=-RC(9,7,6}:= (2o(A - 3oAo8 + 2o8 ))/8 

2 2 2 
RC(6,8,10):=-RC(10,8,6):= (2o(A - 3oAo8 + 2o8 ))/8 

2 2 2 
RC(6,9,7):=-RC(7,9,6):= (2o(- A + 3oAo8- 2o8 ))/8 

2 2 2 
RC(6,10,8):=-RC(8,10,6):= (2o(- A + 3oAo8- 2o8 ))/8 

2 2 2 
RC(7,5,10):=-RC(10,5,7):= (4o(A - 3oAo8 + 2o8 ))/8 

2 2 2 
RC(7,6,9):=-RC(9,6,7):= (4o(A - 3oAo8 + 2o8 ))/B 

2 2 2 
RC(8,5,9):=-RC(9,5,8):= (4o(- A + 3oAo8- 2o8 ))/8 

2 2 2 
RC(8,6,10):=-RC(10,6,8):= (4o(A - 3oAo8 + 2o8 ))/8 

COMMENT-The non-zero components of DEL(i,j,k)+DEL(j,k,i)+DEL(k,i,j) ore; 

$ 
SIGNOFF 
ENTERING LISP ... 
uo END OF DATA 
Execution terminated 20:01:26 T=86.98 RC=0 $5.44 
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