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Zul Kepli Bin Mohd Desa

Riemannian Manifolds With Einstein—-like Meirics

Abstract

In this thesis, we investigale properties of manifolds with
Riemannian metrics which satisfy conditions more general than those
of FEinstein metrics, including the latter as special cases.
I'he Linstein condition is well known for being the luler- lagrange
equation of a variational problem.
There is not a great deal of dif ference between such metrics and
metrics with  Ricci tensor parallel for the latter are locally
Riemannian products of the Jormer.
More general classes of metrics considered include Ricci- Codazzi
and Ricci cyclic parallel. Both of these are of constant scalar

curvature.

Our study is divided into three parts. We begin with certain
metrics in 4—dimensions and conclude our resulls with three theorems,
the first of which is equivalent 1o a resultl of Kasner [Kal] while
the second and part of the third is known to Derdzinski [Del2].

Next we construct the metrics mentioned above on spheres of
odd dimension.l'he construction is similar 10 Jensen's [Jel] but more
direct and is due essentially to Gray and Vanhecke [GV]. In this
way we obtain beside the standard metric, the second Einstein
metric of Jensen. As for the Ricci- Codazzi metrics, they are
essentially  Einstein, but the Ricci cyclic parallel metrics seem
to form a larger class.

Finally,we consider subalgebras of the exceptional Lie algebra
g2. Making use of computer programmes in 'reduce’ we compute all

the corresponding metrics on the quotient spaces associaled with G2.
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0.1 Preliminaries

Let M be a smooth Riemannian manifold of dimension
n, and let g be the metric tensor of M. We recall that the

torsion and the curvature operators of a connection D are

defined by:
T(X,Y) =DY - DX -[X,Y],
X Y
R(X,Y) =DD -DD -D

XY YZX [X.Y)

where [X,Y] denotes the bracket of two vector fields.
We also recall that R(X,Y)Z at point p depends only upon
the values of X,Y and Z at p. .
We denote the contravariant components of g by glJ and
‘raise and lower suffixes’ in the usual way: the summation
convention is followed.

The Riemannian connection is the unique connection
with vanishing torsion tensor for which the covariant
derivative of the metric tensor is zero.

k
We compute the expression of the Christoffel symbols C

1j
in a local coordinate system. The computation gives a

proof of the existence and uniqueness of the Riemannian

connection.
k k
Since the connection has no torsion, C = C . Moreover
i) ji
h h
Dg =dg -C g -C g =20,
k ij k i ki jh kj ih
h h
Dg = d'g_ - C. g‘ - C 0,




- h h
Dg -dg -C g -¢C

g =0,
j ik j ik jk ih  ji kh

where D denotes the i-th component of the derivative.
i
Taking the sum of the last two equalities minus the first,

we obtain:

For +the curvature tensor corresponding to g, the local
components satisfy
h h h h m h m
R =dcC -d4cC + C C -CcC C .
kij i jk J ik im jk jm ik
We now consider the 4-covariant tensor
m
R(X,Y,Z2,W)=g(X,R(Z2,W)Y) with components R = R g .
hkij kij hm

The properties of R and the Bianchi identities are
ijkh
well known:
R -R

-R R

ijkh ijhk ~  jikh  khij

R + R + R =0 and DR + DR + DR = 0.
ijkh  ikhj  ihjk m ijkh k ijhm h ijmk
A Riemann curvature tensor is a complicated object.
By viewing the curvature tensor as a function on the
Grassmanian of tangent 2-planes we define sectional
curvature of a 2-plane P,spanned by an orthonormal basis
{X,Y!, by
K(P) =g(R(X,Y)X,Y).
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It is well known that constant sectional curvature is a
very strict condition on the metric g. In fact for a
complete Riemannian manifold with constant sectional
curvature the universal cover of M is isometric either
to an n-sphere or to the flat Euclidean n-space or to a

hyperbolic n-space.

By taking a trace of the Riemannian curvature tensor
we get the Ricci curvature which is a symmetric 2-tensor
in view of the first Bianchi identity.Its components are

k
R =R .The scalar curvature is obtained by taking the
ij ik}j N
1]
trace once more,namely R = R_'g
1)

Constant scalar curvature is known to be a weak
constraint on the metric. On a given manifold M, many
Riemannian metrics have constant scalar curvature. For
example, all homogeneous Riemannian manifolds are of
constant scalar curvature.

In fact Yamabe conjectured that "on a compact manifold,
in each conformal class of metrics, there is a metric of
constant scalar curvature.”

We now return to the Riccei curvature.It also seems
to be very broad. For example, Willmore [Will in 1956
questioned the existence of a compact manifold with
positive definite metric of zero Ricci curvature which
is non-flat. In 1977 Yau [Yal] gave an example of such a
manifold. But a homogeneous metric with Ricci curvature

zero has sectional curvature zero. See Ziller’s paper in

[WiH].
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0.2 Review of Einstein metrics.

We now consider some constraints on Riceci curvature.
For example consider the case where the Ricci curvature
is proportional to the metric.This condition is known as
the Einstein condition. We notice here that the Ricci
curvature and the metric g on a manifold of dimension n
depend on the same number n(n+1)/2 of real parameters.So
the equations for metrics satisfying the Einstein
condition 1looks promising since it 1involves the same
number of unknowns as equations. Unfortunately the

situation is more complicated as we shall see.
Definition.

An Einstein metric is a metric for which the Ricci
tensor and the metric are proportional:

1) R (p)=f(p)¢ (p).
ij ij

Contracting' this equality ,we obtain f(p)=R(p)/n, which
is a constant when n-2. Indeed,if we multiply the second
Jm
Bianchi identity by ¢ ,we obtain:
J
DR + DR -DR =0,
ijkh k ih h ik
ih i
which multiplied by ¢ results in D R =D R .But
k ik
contracting the covariant derivative of 1) gives
i
DR =nDR .Hence when n is different from 2, the
k ik

scalar curvature R must be constant.



Einstein came to the condition named after him
because in his theory of relativity, he proposed that
the field equations for the interaction of gravitation

and other fields take the form
Ricci - Rg/2 = T

where ¢ is the Lorentzian metric of space-time and T is
the energy-momentum tensor which is zero in the absence
of other fields. This condition is the Euler-Lagrange
equation of a variational problem.Namely,if we consider
the total scalar curvature,i.e, the integration over M
of the scalar curvature R(g) with respect to the volume
element induced by the metric g, then the Einstein
tensor Ricci - Rg/2 appears as its gradient. Critical
points would have to have zero scalar curvature by
evaluating the trace.One can remedy this by normalizing
the total volume to be 1. The new Euler- Lagrange
equation of the constrained functional is now

Riccli - Rg/2 = kg for some real number k.
See for examples [Pa] and [Mu].In fact this problem was

studied by Hilbert in 19185.

It is well known that all 2 or 3-dimensional
Einstein spaces are precisely spaces of constant
sectional curvature. Thus Einstein metrics not of

constant curvature are of dimension at least four.

Examples of Einstein metrics are

spaces of constant sectional curvature



compact rank one symmetric spaces, i.e, real, complex and
quarternionic projective spaces and alsc the Cayley plane,
compact Lie groups with their bi-invariant metriocs, and

many other non-symmetric spaces such as SO(pq)/SO(p)xS0(q).

It has been suggested [Be]l p. 165 that an interesting
class of manifolds consists of those Einstein manifolds
that satisfy the additional condition

- 2
R(X,Y) = IRI g(X,Y)/n

where

R(X,Y) = 3 R(e ,e ,e ,X)R(e ,e ,e .Y).
i.j.k i j k i j k
We called such manifolds super-Einstein manifolds when n->4.
Use of the Bianchi identity shows that when n->4, a super-

2
Einstein manifold has the property that (RI is constant.

PN

However, the condition for R is satisfied automatically in

2
an Einstein manifold when n=4,but in that case IRI is not

constant in general. For this reason a 4-dimensional

2
Einstein manifold is called super-Einstein when IRI 1is

constant.

For example every irreducible symmetric space is a super-
Einstein manifold. This condition has been considered by

Carpenter,Gray and Willmore. See [GW] and [CGW].



One of the weak points of the Einstein condition
is that the product of two Einstein manifolds is not
necessarily Einstein. In fact the product of two
Einstein metrics 1is Einstein if and only if the
Einstein constants of the +two metrics are the same.
This defect can be overcome by considering Riemannian
metrics with parallel Ricci tensor fields for we have
" any Riemannian manifold with parallel Ricci tensor

is covered by a Riemannian product of Einstein

manifolds." See Theorem 2.1 of [Gr2] p. 262.



0.3 Review of Ricci-Codazzi metrics.

A wider class of metrics is obtained by imposing the
condition that the Ricoi tensor must satisfy the equation
1) DR -DR = 0.

h ik k ih

An alternative definition is to ask for the condition

J
D R 0,

ijkh

since for all Riemannian metrics we have the identity
J
DR =DR -DR .
ijkh h ik k ih
Such metrics are said to have harmonic curvature.It was
shown by Bourguignon [Bo3], that this condition is

equivalent to insisting that the curvature operator,

viewed as a vector valued 2-form,shall be closed.

It will be recalled from classical surface theory,
that the second fundamental form (a ) of an immersed
ij
3
surface in E satisfies the Codazzi equation

2) Da -Da =0.
h ik k ih
Due to the similarity of 1) and 2), we shall say that a

metric which satisfies 1) is Ricci-Codazzi.

We emphasize that the condition of harmonicity of the
curvature is a third order differential c¢ondition on

the metric.



This family of metrios includes Einstein metrics in which
case equation 1) is trivially satisfied.
It is also clear that every Riemannian manifold with
parallel Ricci tensor has harmonic curvature.
This family of metrics also includes conformally flat
metrics with constant scalar curvature,for all conformally
flat Riemannian manifolds of dimension greater than three
and of constant scalar curvature are Ricci- Codazzi.See
Theorem 5.1 of [Gr2].
A particular example of a metric of this type is given by:
n
M={(x ,..,x ) € R ; x >0 } with metric
1 n n
2 4/(n-2) 2 2
ds = x {dx +..+4dx  }
n 1 n

which has non-parallel Ricci tensor and zero scalar

curvature.

Derdzinski [Del,2] has given examples of such metriocs

1
on compact manifolds containing the sphere S as a direct

factor.

They are not Ricci parallel nor conformally flat manifolds
with constant scalar curvature. And this answers in the
negative the question raised by Bourguignon [Bo4] whether
or not the only metrics with harmonic curvature on compact

manifolds are necessarily Ricci parallel.
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It is also known that a compact oriented 4-dimensional
Riemannian manifold with non-vanishing signature and
harmonic curvature is Einstein ( [Bol] p.32 ) while any
compact Riemannian manifold with harmonic curvature and
non- negative sectional curvature 1is in fact Riccil
parallel. See Theorem 11.3 of [Gr2]. Furthermore any
compact Kahler manifold is c¢overed by a product of

Kahler- Einstein manifolds. See [Bo4].

All Ricci-Codazzi metrics are of constant scalar
curvature. In fact for an arbitrary local frame field

{e ,..,e }] and a vector field X on M, we have
1 n

XR = S DR(e ,e ) =YD R(X,e ).
i X i i i e i
i

On the other hand it follows from the second Bianchi
identity that

XR = 23D R(X,e )

i e i
i

which is wvalid for any Riemannian manifold. Hence XR=0,

i.e, the scalar curvature is constant.

This class of metrics has been studied by A.Gray
[Gr2] , U.8imon [Si], Bourguignon [Bo3,4], A.Derdzinski

[Del,2], C.Shen [DS] and others.
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0.4 Review of Ricci cyclic parallel metrics.

Now let G be a Lie transformation group acting on M.
Recall that a differential operator D is said to be
in§ariant with respect to the group G (G-invariant) if
?(fog)=(i)f)og holds for any smooth function f and any
element ¢ of the group G, where ¢ is understood to denote

the action of g on M.

A well known theorem of Lichnerowicz on the algebra of
invariant differential operators states that the algebra of
such operators on a globally symmetric Riemannian space is
commutative,see [Hell p.396 or [Wi2] p.226.As a consequence
another class of metrics called Ricci cyclic parallel
metrics was studied by Sumitomo in an attempt to answer the
question "to what extent is a Riemannian homogeneous space
satisfying the commutativity condition of the algebra of
invariant differential operators close to being a symmetric
space?." See [Su] and [Si].

One such condition is that the metric shall be Ricci cyclic
parallel,namely
| DR + DR + DR =0.
i jk J ki k i}
However the geometric meaning of this condition remains

obscure.

3
An example of such a metric is obtained by considering S

as a submanifold of the quaternions.The metric is
2 2 2 2

ds - adQ + bdQ + cdQ wvhere dQ (X)=<X,VN> ; Vv=I,J.K
I J K v
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with at least two of the coefficients a,b,c equal,where
N denotes the unit outward normal to the sphere.
This example gives non-parallel Ricci tensor which

satisfies the Ricci cyclic parallel condition.

Theorem 11.4 of [Gr2] states that: a compact Riemannian
manifold with non-positive sectional curvature which is

Ricci cyclic parallel is Ricci parallel.

This class of metrics is also of constant scalar
curvature for at each point of M we have
XR = D R(e ,e ) = -2 ZD R(X,e ).
i X i i i e i
i
Comparing this with the relation from the preceding

section which holds for any Riemannian manifold gives

XR=0.
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0.5 Relations between the curvature conditions.

We have [Gr2]

( RC
E ( RP = RCNRCP ( RCURCP ( C
( RCP

with strict relations all over,where E,RP,RC,RCP and C
denote respectively spaces satisfying the condition of
Einstein, Ricci parallel, Ricci- Codazzi. Ricci cyclice
parallel and constant scalar curvature.

In particular the second equality says :metrics which
satisfy both Ricci cyclic parallel and Ricci- Codazzi

conditions must be Ricci parallel.

Another generalisation of Einstein metrics has
been considered by Patterson.In his paper [Pal p.355 a

certain metric of type E is defined and he immediately
m

obtained that E is the same as an Einstein metric. We
1 ;

shall not however pursue this concept which is due
essentially to Lovelock [Lo] for this generalization
differs from what we have considered in the sense that
E does not imply E for m greater than 1.
1 m
In the following three chapters the summary of

results are given at the beginning of each chapter.
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Chapterl. On Certain Riemannian Metrics In 4-Dimensions.

There are many examples of 4-dimensional Einstein
metrics. Famous ones are, example of Schwarzchild of zero
scalar curvature which was later generalized by Kottler
(Pel] pp. 79-80 and the example of Kasner [Kal,2] which is
a generalization of De’ Sitter’'s.

In this chapter we study certain metrics in four
dimensions and conditions are found for such metrics to
be Einstein.Conditions are also found for those metrios to
be Ricci-Codazzi and Ricci cyclic parallel.

Since the metrics are irreducible we clearly have
that metrics with Ricci tensor parallel are essentially
Einstein.

Results on Einstein metrics are summarised in
Theoreml p. 24. These results are equivalent to Kasner's.
See [Kall.

Results previously obtained by Derdzinski [Del,2]
for 4-dimensional Ricci- Codazzi metrics here appear in
Theorem 2 pp. 3i—32 as a special case. Part two of Theorem
3 p. 37 gives a simple example of such metrics.

We have shown that for a special class of 4-dimen-
sional metriés, Riceci «cyclic parallel and Einstein are
equivalent. 1In general it seems that for such a metric
under consideration the Ricci cyclic parallel condition
seems to be more restrictive than the Ricci-Codazzi

condition.
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1.1 Preparation.

The object is to find the most general form of a
4-dimensional Riemannian metric of the form
] Q 2u(1) 2 2u(?) Q 2u(3) P
ds = dt + e dx + e dx + e dx
1 e 3
where u(1),u(2),u(3) are functions of the single variable
t such that one of the following conditions is satisfied:
a) the space is Einstein ,i.e , the Ricci curvature is
proportional to the metric,

b) the space is Ricci cyclic parallel,i.e,

DR + DR + DR = 0,
i jk J ki k i)

c) the space has harmonic curvature which is equivalent to

saying that the space is Ricci-Codazzi ,i.e ,D R = DR .
i jk k ji

As preparation we express the given metric in terms of an
orthonormal coframe and compute the connection matrix,the
curvature matrix and the Ricci temnsor in terms of this
coframe .We also compute the covariant derivative of the
Ricci tensor in order to study the Ricci cyclic parallel

and Ricci-Codazzi conditions.

Let
u(i)
1.1 Q = dt ; Q = e dx ;1 =1,2.3
0 i i

Then we have

) u(i) .
1.2 dQ = 0 ; dQ = u(i)de dt"dx = u(i)Q°Q 7 1 =1,2,3.

0 i i 01 :

The first Cartan structural equation with zero torsion

for the Riemannian connection is
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1.8 dQ + > w "~ @Q =0 ; 1=0,1,2.98,

i j=0 ji J
with
1.4 w + W =0

ij ji
¥e now write
3

1.5 w = 3> A

Q
ij k=0 1ijk k
which defines the functions A with the property
ijk
A = —A . We put i=0 into equations 1.3 to get
ijk Jjik

fa QQ+A QQ+A QQ I+{A QQ+A QQ~+A Q@)
10001 10221 103 31 200 0 2 201 1 2 203 3 2

+{A Q "Q + A Q "Q + A Q "Q t = 0.
300 0 3 301 1 3 302 2 O3
From this we see that

A =0 for all i=1,2,3,
i00

A - A ; i,j=1,2.3 and i # j.
jOi 10j

Now take i=1 to get

dQ +w " Q +w "Q +w ~Q =0
1 01 O 21 2 31 3

which, by the second formula of 1.2 and 1.5, becomes

fu(1)-A 1@ "Q +(A -A )Q "Q +(A -A )Q "Q
011 O 1 210 012 O 2 310 013 0O 3

+ (A -A )R T Q + A Q@ ~ Q + A Q@ " Q = 0.
312 213 2 3 211 1 < 311 1 3

From this we see that
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>
]
c".
~
-
s

’

011
A=A . A=A ;A =A
210 012 310 013 312 213
A=A =0
211 311

Similar calculations with 1i=2 and i=3 give

A - u(2) . A - u(3) .,
022 033
A - A A - A A - A A =a
120 021 320 023 130 031 230 032
A = A - = A ,
321 123 231 132
A _ A ~ 0 A - A -0
122 322 133 233

These can be summarised as follows:

—

(o))

>
]

u(i) . i=1,2,3,
0ii

1.7 A - A : 1,3=0,1,2,3 and i,j.k distinct,

and all other components are zero.

We now show that all the A’s are zero except for A
0ii

We have

A =A =-A =-A =A =A =-A
jki ik Kij jik  ijk  kji jki

using the identity 1.7 together with the skew-symmetry
property of A with respect to the first two indices.

From 1.5 we therefore obtain the connection matrix w

given by

1.8 w = -u(i) Q for i = 1,2,3,
i0 i

1.9 w =0 for i,j =1,2,3.

1]
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The curvature matrix is computed using the second

structural equation of Cartan ,namely

3
1.10 m = dw -Tw " w for i, j=0,1,2,3.
ij ij k=0 ik kj
For i=0 , we clearly get
- . 2 :
m = dw = {u(j) + u(j) 1Q -~ Q for j = 1,2,3,
0J 0] o

where the last equality follows from 1.2 and 1.8.For i

different from j we have similarly

n o= v v o=u(du(iQ "~ Q i,j=1,2,3.
ij i0  0j i
Note that
1.11 eam =-TY R Q" Q.
ij P.4 ijpa p g

We conclude that the only nonzero components of the
curvature tensor are ;
2

1.12 K =R - - u(i) - u(i) for i = 1,2,3,
0i 0i0i

1.13 K =R =-u(i)u(j) : i.j-1.2.3 and i+j.
ij ijij
The Riceci tensor can now be computed and we obtain

the nonzero components:

3 .. 3 . 2
1.14 R = - Su(i) - Tu(i)
00 i=1 i=1
.. . 3 .
1.15 R = - u(i) - uw(i))! T u(j)! for i=1,2,3.
ii j=1

The scalar curvature is

.. . 2 . .
1.16 R =-2{ Tu(i) + gu(i) + Zulid)u(j)}.
i+#]
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1.2 Einstein Metrics
For metrics of the form

2 2 2u(l) 2 2u(2) 2 2u(3) 2
2.1 ds = dt + e dx + e dx + e dx

1 2 3
where wu(i) are functions of the single variable t ,we
have computed the components of the Ricci tensor and we
can now study the possibilities of the metrics being
Einstein.

The Einstein equations are

.. . P
2.2 Yu(i) + Y u(i) =- u/4

2.3 u(i) + u(i) L ul(j) =- u/4 for i 1,2,3
where u is the constant scalar curvature.

Summing 2.3 for all 1 = 1,2,3 gives

.. . 2
2.4 Su(i) + { Su(i) } = 3v/4
where v=-u.
This,together with 2.2, implies
2.5 w(Dul2)+u()ul(3)+u(3)u(l) = v/4.

We now solve the differential equations 2.2 and 2.3 assuming
Q
A and denote

that the constant v is positive. We write 3v/4
Y u(i) by a .Equation 2.4 now gives

. 2 2
2.6 a +a = A

Clearly the gradient of each solution curve is negative in

the region lal>IlAi while in the region lali<lAil it is positive.
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We rewrite this as

da 2 P
____ =4t , provided that A # a
2 P

A - a

2 2
i) For lal<lAl, i.e, A -a > 0O we write a=Atanh# with

2
da-Asech(#)d# to obtain #=A(t-k) for some constant k.

2 2 2 2
Ve notice that the gradient is A -a = A sech # > 0.

2 2
ii) For i1al>I1Al, i.e, A -a « O we write a=Acoth# with
2
da=-Acosech(#)d# to obtain #=A(t-K) for some constant K.
2 2 2 2

In this case the gradient is A -a = -A cosech # < 0.
Hence

AtanhA(t-k) , lal<lAl
2.7 a = {

AcothA(t-K) , lal>iA!, t#K.

Now observe that a=:+A is also a solution of the equation.
There appear to be a possibility that there may be some

Q 2
t for which a(t) = A although this does not hold for all

t. However,a general uniqueness theorem for differential
equations guarantees that this cannot happen,and we have

in fact obtained all solutions of equation 2.6.

a(t)
! : a(t)> 1Al
a(t)=1A1 |
) et
a(t)=-1A1 —~/’/AV1 :K
a(t)-l1AI :
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Multiplying the first, the second and the third equations of
2.3 by u(2)u(3), u(3du(l) and u(1)u(2) , respectively, and
summing yields
a . . . . . . . v . .
2.8 - {u(Du()ul3) }+3u(Du()u(3)X u(i) = - T ulid)ulj).
dt 4 i+]j
Denote ﬁ(l)ﬁ(z)ﬁ(S) by b and use relations 2.5 and the first
part of 2.7 (i.e for lai<lAl) to get

. 4
2.9 b + 3bA tanh A(t-k) = A /9.

Recall that the integrating factor of the differential
equation 2.9 is coshSA(t—k) .On multiplying both sides
of this equation by this integrating factor and then
integrating with respect to t ,we obtain
3 | 3
3 A 3 A

bcosh A(t-k) = - sinh A(t-k) + - sinh A(t-k) + B
_7 9

from which we finally get

3 3
A 3 A P 3
b= -tanh A(t-k)+ -tanh A(t-k)sech A(t-k)+ Bsech A(t-k)
27 9

where B is constant of integration. We also use
3 3
Sinh3x=3sinh(x) +4sinh x and cosh3x=4cosh x -3cosh(x).
2
From equations 2.4,2.5,2.8 and the relation 3v=4A we see

that ﬁ(l),ﬁ(z) and u(3) are roots of the cubic equation

2.10
Q 3 3
3 2 A A 3 A 2 3
y-y AtanhAt+y- -{- tanh At+ -tanh(At)sech At+ Bsech At!=0.
3 27 9

( Notice that we can carry out the transformation t’'=t-k

and then work in terms of t’.)
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Similarly for ial:>lAl we obtain that u(i) are roots of
2 3 3
3 2 A A 3 A 2 3
Y-y AcothAt+y- -{- coth At--cothAt.cosech At+Ccosech At}=0,
3 27 9
for non-zero t.
We remember that in obtaining the above equations ,we have

assumed that the scalar curvature is negative. When it is

positive we obtain that u(i) are roots of

2.10°
2 3 3

3 2 A A 3 A 2 3

y-y Acot(At)-y- -{ -cot At- -cot(At)cosec At+ Dcosec At}=0.

3 _7 9
The next case to consider is when the scalar curvature
is zero.In this case the differential equation 2.6 becomes
. 2
2.67° a + a = 0

1/(t-k),whence

Ml

with the general solution a

the differential equation 2.9 is reduced to

2.9 b + 3b/(t-k) - 0.

It is quite clear that the general solution of this equation
-3

is given by b = E(t-k) for some constants E and k.

Thus in the case of zero scalar curvature, u(i) are roots of

2.1077 y -yt - Et =0

Again we have carried out the transformation t’'=t-kK.

The only case left is the case when a =A +#0.
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We have from 2.2 and 2.4,

. 2 . 2 . 2 b2
2.2 u(l) + u(2) + u(3) = A/3 ,
2.4 w(1l) + u(2) + u(3) = A.
We have the identity
2 2 <

(W(1)-A/3) + (u(2)-A/3) + (u(3)-A/3)
X 2 . 2
= T u(i) - 2a(>X u(i))/3 + A /3.
Using 2.2°°" and 2.4°’’ we see that
) 2 ) 2 ) 2
(u(1)-A/3) + (u(2)-A/3) + (u(3)-A/3) =0
and hence

w(1)=u(2)=u(3)=-A/3.

We have seen that the study of Einstein metrics on a four
dimensional Riemannian manifold with metrics of the form
2 2 2u(l) 2 2u(2) 2 2u(3) 2

ds =dt + e dx + € dx + € dx

1 2 3
where u(1l),u(2),u(3) are functions of the single variable
t ,is reduced to the study of solutions of the following

cubic equations:

2.11 (y - A73) =0 ,
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2.13
2 3 3
3 2 A A 3 A P 3
y -y AtanhAt+ y- -{ -tanh At+ -tanh(At)sech At+ Bsech At}=0,
3 7 9
2 3 3
3 2 A A 3 A 2 3
y-y AcothAt+y- -{-coth At--coth(At)cosech At +Ccosech At}=0,
3 27 9
2.14
2 3 3
3 2 A A 3 A b 3
y -y Acot(At)-y- -{ -cot At- -cot(At)cosec At +Dcosec At}=0.
3 7 9

The cubic equations 2.12,2.13 and 2.14 can be

reduced to the following:

3 -2 -3 -1
2.12" 3x - xt - Lt =0 ; X+t /3 = vy,
3 P 2 3
2.13" 3x + xA sech At - Msech At =0 ;. x+A(tanhAt)/3 =y,
r 3 < 2 3
3x - XA cosech At - Ncosech At =0 x+A(cothAt)/3 =y,
2.14° 3x - XA cosec At - Pcosec At = 0 ; x+A(cotAt)/3 =y,

where L,M ,N,P are all constants.

Using a familiar method of solving cubic equations, it
is not difficult to prove that the solutions of 2.12°,2.13"

and 2.14’ are respectively given by:

y =A(i)/t ,A(tanhAt)/3-B(i)sechAt ,A(cothAt)/3+C(i)cosechAt
and y =A(cotAt)/3 +D(i)cosecAt.
Moreover, in view of 2.13 and 2.14 ,the constants B(i),C(1)
and D(i) must satisfy the relations:

2

SV(i)=0 , ¥V(i)V(j)= -A /3 for V=B,C,D.
1+#]
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We prove the following theorem which is equivalent
to a result of Kasner [Kall.
Theorem 1
Metrics of the form 2.1 could only be Einstein if
and only if one of the following conditions holds:
1) u(i)= tA/3+b(i) where A and b(i) are constants.In this
2
case the sectional curvature is constant -A
2) u(i) = A(i)logt with the relations X A(i) = I A(i) =1.

This is the case for zero scalar curvature.

3) a) u(i) = A(tanhAt)/3 + B(i)sechAt with the relations

Q 2
¥ B(i) = O and that ¥ B(i) = 2A /3 .This is the case when
2
the scalar curvature is negative and it takes value -4A/3.
2/3 2C(1)/A
b) expf{2u(i)} = sinh (At)tanh (At/2) with the relations
b P
¥ C(i) = 0 and that ¥ C(i) = 2A /3 .This is the case when
2
the scalar curvature is negative and it takes value -4A/3.
2/3 2D(1i)/A
4) exp{2u(i)} = sin (At)tan (At/2) with the relations
2 2

Y D(i)=0 and that L D(i) =2A/3. This is the case when the

2
scalar curvature is positive and it takes value 4A /3.

Proof

1) Clearly in this case u(i)=A/3 ; i-1,2,3. They are roots
of the cubic 2.11.More over from 1.12 and 1.13 we see that

2
the sectional curvatures are all constant and equal to -A
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2)  When u(i) = A(i)logt, i.e, u(i) = A(i)/t ,we have

. -1 . . -2
su(i) = £ A(i)t and T u(i)u(j) = ¥ A(L)A(j)E

In order to satisfy 2.12(which corresponds to the case
of zero scalar curvature) we must have ¥ A(i) = 1 and

2
Y A(i)A(j) = 0 , which imply ¥ A(i)= ¥ A(i) = 1.

It is not difficult to see that this is impossible
if exactly one of the coefficients is zero.

2/3 2C(i)/A
3)b) For the case exp{2u(i)} = sinh (At)tanh (At/2),

it is not difficult to get
) A
u(i) = -coth(At) + C(i)cosech(At).
3

Q
We have also seen that 3IC(i)C(j) = -A /3. Multiplying

this negative constant by four we see from 2.5 that
2

the scalar curvature is —-4A /3.

3)a) , 4) These are proved by the similar method above.

In case 2) we can take for example, A(i) are just
cyclic permutations of {2/3,2/3,-1/3}. In this case
the sectional curvatures given by 1.12 and 1.13 give

-2 -2

K = A(i){1-A(i)}it ; K = -A(1L)A(j)t for i=1,2,3.
Oi ij
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Thus this example gives Ricci flat nonflat spaces. The
second example when A(i) are cyclic permutations of

{1,0,0} would give flat spaces.

In case 3) we can take for example, B(i) are cyclic
permutation of {2,-1,-1} with A=3.0ther simple example
of B(i) are given by cyclic permutations of {-2,1,1}

with the same A=3.
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1.3 Calculations for Ricci-Codazzi and Ricci c¢yc¢lic parallel.

In order to be able to consider the Ricci-Codazzi and the
Ricci cyclic parallel conditions we compute the covariant
derivative of the Ricci tensor using the usual formula:

ZR Q = dR - Xw R - Xw R
1).8 8 1] ip PJ Jp ip

In our case the metric is diagonalized and the formula

reduces to
TR Q = dR - w (R -R )
ij,s s iJ ij Ji ii

Making use of the equations 1.19 ,1.10 ,1.15 and 1.16 we

obtain

SR Q@ - dR - {rauli) + 2 ruliduli) ) Q
00,8 s 00 0

SR Q@ =dR =- { u(i) + w(i)Tulj) + w@druli) } Q .
ii,s s ii 0

T R Q@ = -(R -R )w = ﬁ(i){ R -R } @ for i= 1,2,3,
O0i,s s ii 00 Oi 00 ii i

LR Q= 0 for i,j=1,2,3 and i # j.
ij,s s

Thus the only nonvanishing of D R are given by:

i jk
3.1 DR = R - -ru(i) - 2 »u(iduli)
0 00 00
3.2 DR = R = -u(i) - wid)rulj) - u(i)r ulj)
0 ii ii
3.3 DR = u(i){ R -R } for i-1.2.3.

i 01 00 ii
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We now consider the case of Ricci-Codazzi,namely
D R = DR for all i = 0,1,2.3.
i jk k ji
Clearly the identity is automatically satisfied for the case
i =k .We also see from 3.1 ,3.2 and 3.3 that the identity

is trivial for the cases when 1i,j.k are distinct.So we have

only to consider whether or not DR is equal to D R
ii] J ii

Again this is trivial when i=j . Hence the only cases to be

considered are:

DR = DR for i = 1,2,3,
i 00 0 0i
DR = DR DR = DR : DR = DR ,
011 1 10 2 11 1 12 3 11 1 13
DR = DR : DR = DR : DR = DR
0 22 2 R0 1 22 2 21 3 22 2 R3
DR = DR ; DR = DR : DR = DR
0 33 3 30 1 33 3 31 2 33 3 32

All these cases are trivial except for the three conditions,
D R = DR ; i=1,2,3..
We therefore have the following result.

Consider metrics of the form
2 2 2u(i) 2
ds = dt + X e {dx |}
i
where u(i) are functions of the single variable t
Necessary and sufficient conditions for Ricci-Codazzi are

R = u(i){ R -R } for i = 1,2.3.
ii 00  ii
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(If the space is Einstein then the above condition is
automatically satisfied.) On substituting the values of
the Ricci temsors the conditions become:

. .. . . . 2 . . . 2
3.4 u(id+ u(id{Zu(jr+uli)}+ uw(i)Tuljd)- u(idyuly)

i
o

for 1 = 1,2,3
We now consider the condition for Ricci cyelic
parallel, namely

DR + DR + DR = 0 for all i,j,k=0,1,2,3.
i jk j ki K ij

Since the only nonzero components of the derivative are

DR , DR , DR )
0 OO0 0 ii i 01

we have only to consider

DR =0 and DR + DR +DR =0 for i=1,2,3.
0 00 0 i1 i 10 i0i

¥e have therefore obtained the following result.
Necessary and sufficient conditions for the space
to be Ricci cyclic parallel are
R is a constant and R + 2u(i){R - R } -0 for i-1,2,3.
00 ii 00 ii

These conditions are equivalent to

3.5  Yu(j) + 2 yu(iulj) = o0

C. .. . . . . . & . 2
3.6 u(id)+ u(i){2udid)+u(j)+ulk)}+ 2ulidtu(jr+ulk)!}

. 2 . . . .. .
- 2u(i){u(jr+ulk)}+ 3u(id{ul(j)+u(k)} = 0,

where 1,j,k in 3.6 are cyclic permutations of 1,2,3.

We have been unable to tackle both problems of
Ricci-Codazzi and Ricci cyclic parallel in general

because of the nature of the differential equations.
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1.4 Special _cases

¥e now simplify our problem considerably by considering
the case when u(l)=u(2)=u(3)=u,say.
In this ocase the solutions of the Einstein equations 2.2
and 2.3,which now reduce to
. . 2 .. .2
3u(t) + 3u(t) = v/4 and u(t) + 3u(t) = v/4,

must be ﬁ(t) =0

The Ricci cyclic parallel conditions 3.5 and 3.6 are now

just
u(t) + 2u(t)u(t) =0 and u(t) + 10u(tdu(t) =0

which clearly imply u(t) = O .Thus we have:
Riceci cyclic parallel spaces with metrics of the form
2 2 2u(t) 2 2 2
ds =dt + e {dx +dx + dx }
1 2 3
are necessarily Einstein spaces of constant curvature. The
spaces are flat when u is just a constant function and we

shall always exclude this trivial case from our discussion.

The proof is immediate from part 1) of theorem 1.

Lastly the Riocci- Codazzi conditions 3.4 reduce to
- .. . .. . &
u(t)+4u(t)u(t) =0, i.e, u(t)+2u(t) =k ,
where k is a constant.
Clearly the solutibn u =0 of the Einstein equations satisfy
the differential equation above. In general we have to

consider three cases
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case(l): k =0. In this case it is quite easy to see that
1 .. .2

u(t)= -loglt—cl is a solution of u(t) + 2u(t) =0. This
2

solution does not come from a Ricci parallel metric. See

equation 3.1.

case(2): k is positive, say k=K/2.
We write

2u . . .. .. .2
2e =p ,i.e, 2u = log(p/2) ; 8u = p/p ;: qu = p/p - 4u

.. . 2 ..
These together with u(t)+2u(t) =K/2 give p -pK =0 with

a solution

1/2 1/8
p(t) = aexpi{tk } + bexp{-tkK }

where a and b are constants. So in this case we have

2u(t) 1/2 1/2
e = Aexp{tk } + Bexpi{-tK }

where A and B are nonnegative arbitrary constants not both

equal to zero.
case(3): k is negative.We obtain a similar result as above.

From the three cases above we obtain the following

theorem which is known to Derdzinski [Del,2].

Theorem 2
Metrics of the form

2 2 2u(t) 2 2 P
ds = dt + e { dx + dx + dx }
1 2 3

Qu
are Ricci-Codazzi if the function e 1is given by:

2u(t)

1) e t
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Qu(t) 1/2 1/2
R) e = Aexp(tkK ) + Bexp(-tkK ),

and the one which comes from the Einstein space u(t)=0.

The fact that this particular metric is not a good
candidate for the study of Ricci oyclic parallel metrics
can be seen by the following more general results.
DerdzinskilDel] has considered the following construction.

M N
Let (M,h ) and (N,h ) be Riemannian manifolds and F is a

positive function on M.Define the F-warped product Mx N

F

M N

of M and N to be the Riemannian manifold (MxN,h X h )

F
with
M N M N
(h x h ) (U+X,V+Y) = h (U,V) + F(x)h (X,Y) ,

F (x,y) X Y

where U,V and X,Y are respectively tangent vectors of M
and N at points x and y.

The local coordinate expressions for some geometric
quantities when M is of l-dimension are given as follows:
Let I be an interval of real numbers, considered with its
standard metric ,F a positive smooth function on I and
(N.h) an (n-1)-dimensional Riemannian manifold. Denoting

by ¢ the F-warped product metric of IXFN and Dby R its

Ricci tensor, and 1letting the indices i,j,k run through
1,.,n-1 we get for a given chart t=x(0),x(1),..,x(n-1) of

IX N with ¢ =1, ¢ =0 and g = Fh , the non-zero
F 00 0i i} ij

components of the Ricci temsor and its derivative, namely
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l1-n .. .2
R = -—-—{2q +(qg) 1},
00 4
q
e .. .2
R = -p - -1{2qg+ (n-1)(qg ) In
ij ij 4 ij
and
l-n ...
DR =-—-{q + qq!
0 00 2
q
. e ... ce.
D R =-gqp --41qg+ (n-1) g gth ,
0 1ij ij 2 ij
. &-n q.. .
DR =-qp /2 + ---e gqqh
1 0] ij 4 ij
DR = D’'p ,

K ij kK ij

where g=1o0ogF and D’,p denote the Riemannian connection and
Ricci tensor of (N,h), respectively,while the components of
h, p and Dp are considered with respect to the chart
x(1),..,x(n-1) of N
If F is non-constant and n > 3 ,then Ix N has harmonic
F

curvature if and only if (N,h) is an Einstein space and the

n/4
positive function f = F on I satisfies the ordinary
differential equation
.. nk 1-4/n
f - -— 7 = bf

4(n-1)

for some real number b,k being the constant scalar curvature

of N
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In our case we have n=4 and k=0. Futhermore f=F=e s0 that

.. .. .2
f = bf becomes u + 2u = b which agrees with our result for

the case of Ricci-Codazzi.

The case of the Ricci cyclic parallel spaces which

n-1

are the F-warped products of the form Ix N is as follows:

F
The conditions DR =0, DR + DR + DR = 0,
0 00 0 ij i jo j o1
respectively implies
q(t) + q(t)q(t) = 0,
. 2-n q . .. q ... e
g(td)p = ---e q(t)g(t)h - e {gq(t) +(n-1)g(t)iq(t)th /4
ij 4 ij ij

and these two together give
&-n .. q
p = --—-g(t)eh
ij 2 ij
which means N is an Einstein space.
We therefore have
2-n .. q(t) S
-- q(t)e = -
2 ‘n-1
where S is the scalar curvature of N. Thus a necessary

condition for the warped product Ix N to be Ricci cyclic
parallel is
étt) + o —————— e =0 ; n o, 3

(n-1)(n-2)

and

0
o

g(t) + q(t)q(t)
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But these are exactly the conditions for the Ricci tensor

of the warped product Ix N to be parallel.See Derdzinski
F

[De2] p.147.So we see that the warped product of this type
is not a good candidate for studying the Riceci c¢yclic
parallel case. In fact in our case we have S=0 and hence

q(t) = 0 which is the solution of the Einstein equations.

The next simplest case to consider is when metrics
take the form
P 2 2a(i) 2
ds = dt + > (t-k) dx
i
where a(i) and k are just constants. In this special case
we have
: a(i) .. a(i) ... 2a(i)
4.1 u(i)=a(idlog(t-k); u(id)= - ;u(i)=— -- u(id)= --———
t-k 2 3
(t-k) (t-k)
and the Einstein spaces correspond to part (2) of theoreml
2
with the relation X a(i) = X a(i) = 1.
Moreover we have seen that the scalar curvature is zero.
In the case of Riceci cyeclic parallel it is not

difficult to see that the space is necessarily Einstein

2
for condition 3.5 implies that ¥ a(i) = I a(i).

Summing up equation 3.6 for i=1,2,3 and wusing 3.5 gives

u(Du(2)+u(2)u(d)+u(3)ull) - c
for a constant ¢ .But then we must have
4.2 a(l)a(2)+a(2)a(3)+a(3)a(l) = O.

2
Now it is clear that the relation Ja(i)=Fa(i)=1 is essential.
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For the case of Ricci-Codazzi ,we substitute u(i),u(i)
and ﬁ(i).from 4.1 into equation 3.4 to get
Q
4.3 a(i){2 -(za(j)+a(i)) +a(i)zxa(j) -za(j) } = 0 ; i=1,2,3.
If all a(i) are different from zero we must then have
the relation
4.4 d =2 -c¢+ a(i)(c - 1) for all i = 1,2,3

Q
where c,d denote ¥ a(i), X a(i). respectively. Summing for

i=1,2,3 in 4.4 gives

2
4.5 3d = 6 -4c + c.

On the other hand we also have

4.6 fu(i) + Yuli) £ uli) + Tulidu(i) =0
obtained by summing up the three Ricci-Codazzi conditions of
3.4 .This together with 4.1 would imply

Q
4.7 d = 2c - ¢

Eliminating d from equations 4.5 and 4.7 would give

2
2¢ -5¢ +3 = ( 2¢-3)( e¢-1) =0.

vhen ¢=1, d is equal to 1 and when ¢ = 3/2 ,d is equal
to 3/4 .The first case is none other than the Einstein
solution while the second one does not even give Ricci
parallel. For example we take a(i) to be {1/2,1/2,1/2}.
In fact this is the only solution for the second case:
2
for from Ta =3/2 and za =3/4, we easily see that
i i
2 2

S(a -1/2) = Ja +3/4 -ya =0.
i i i
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If however only one of the coefficients say a(l) is
nonzero then condition 4.3 reduces to a(l)=1.This is just

a flat space.

Now suppose a(k)=0 but a(i),a(j) are different from

zero .From 4.4 we obtain
2

4.8 2d = 4 - 3¢ + ¢
On eliminating 4 from 4.7 and 4.8 we get c=1 or 4/3.When
c=1, d is equal to 1 and when ¢ =4/3, d is equal to 8/9.
But the only solution of the first case is either a(i)=0
and a(j)=1 or the other way round (which is absurd),
while for the second case we must have 'a(i)=&(j)=2/8.
¥e can now conclude

Theorem 3

There are metrics of the form
2 2 2a(i) 2
ds = dt + > (t-k) dx ,
i

which are Ricci-Codazzi but not Einstein. These are given

by:

1) a(i) = 1/2 for all i=1,2,3.

2) {a(l),a(2),a(3)} are just permutations of {2/3,2/3,0}.

Note that the first part is similar to part 1 of Theoremg.



58

Chapter 2. Metrics On Certain Odd Dimensional Spheres.

In this chapter we shall use the Cartan
structure equations to compute curvature .This
method 1is similar to Jensen’s buﬁ more direct.
See [Jell, [Grl] and [Ne].

We explain our notation in 1) while in 2) we
consider a naturally defined 2-parameter family

2n+1
of metrics on the spheres S and the curvature

is then computed. The same is done in 3) for the

4n+3
4-parameter family of metrics on S

In 4) and 5) we discuss the possibilities of
those metrics being Einstein, Ricci- Codazzi or
RicciAcyclio parallel on those spheres.
In particular we obtain the Einstein metric of
Jensen [Jdel] beside the standard one.

We conclude our investigation in Theorem4
p. 66 ,Theorem5 p. 68 and Theorem6 p. 70. From
these theorems it seems that on a homogeneous
space the Ricci-Codazzi condition is more strict

than the Riceci cycelic parallel condition.

The non-associativity of Cayley numbers prevent

8n+7
us from generalizing the method to S to obtain

the third Einstein metric of Bourguignon and

Karcher [BK].
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2.1 NOTATION

Let M be an n-dimensional Riemannian manifold with

_R _ _
metric ds .In a neighbourhood of each point let @ ,...Q
1 n

be 1-forms which orthonormalize the metric,

The connection forms w’s are the unique solutions of the

structural equations of Cartan

1.1 aQ =Tw " Q ; i=1,...n
i) 1] J

with

1.2 w +w =0 : i,j=1,..,n.
ij ji

The curvature forms m are given by the relation
i

~

1.3 dw = m + Y w W :i,j =1...,n
ij ij  k ik kj

where our connection and curvature forms w ,m correspond

ij 1ij
J J
to the w , ,respectively of Kobayashi and Nomizu [KN1].
i i
The components of the curvature tensor {relative to 6 ,..,é}
1 n
are given by
1.4 2m - - YR Q " Q

ij kK,1 ijkl k 1
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The sectional curvature ,Ricci curvature and scalar

curvature are respectively given by

1.5 K =R , R =2XR : R =5R
i

1] 13ij ij k ikjk ii

We also recall that the manifold M is of constant sectiomnal

curvature k if

1.6 m - -kQ " Q 1,9
ij i J

See [KN1] p.204.

I
-
=}

Let D be the Riemannian connection of an n-dimensional

n
unit sphere S and let {E ,..,E | be the local orthonormal
1 n

frame field dual to {Q .,...Q ) .Then the connection D and
1 n

the connection forms w are related by the formula
1]
n

1.7 w (X) = <DE , E» for all vector fields X on S.
ij Xi j

n n+1l
We regard S  as the unit sphere in R and let N be a

n
globally defined unit normal vector field to § .Thus if

n+1l
{fu ,..,u ) denote the natural coordinate functions on R ,
1 n+1l
we have

1.8 N = 5 ud/du
i i i
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for
n+1l < n
S(a) =1 on 8
i=1 i
n+1l
Let D be the Riemannian connection of R ,the formulas of

Gauss and Weingarten are

_ n
DY =DY + h(X,Y)N ; X,Y are tangent vector fields to S
X X
i
DN=- A (X)) + DN
X N X
1
where h is the second fundamental form,while A and D N are
N X

the tangential and normal components.The second equation

reduces to

1.9 DN =X

1
for from <«N,N> = 1 we get <D N,N> = 0 and hence <D N,N>=0.
X X

Since DlN is is a scalar multiple of N ,we must have DlN=O
X - . X

at each point p of S .Moreover we have AN = -Id for our

sphere is of radius 1.See Kobayashi and Nomizu [KN2] p. 30.

This can also be shown by a straight forward calculation

using the fact that the Riemannian connection of Euclidean

space is flat
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2n+1
2.2 METRICS ON_ SPHERES S

2 2n+1
Let ds denote the standard metric on S with sectional

2n+1 2n+2
curvature 1 and we regard S as the unit sphere in R

2n+2
R has a naturally defined almost complex structure I,

( i.e, at every point, I is an endomorphism of the tangent

2
space such that I = -Id where Id 1is the identity

transformation) which is compatible with the metric in the
sense that «IX,I1IY>=<X,¥> for all vector fields X,Y.We then

2n+1
have a globally defined tangent vector field 1IN to §

for <IN.N>=-<N,IN> implies IN is perpendicular to N.
en+1l
For each point p in S ,let {E ,.. E } be an
1 2n+1l

orthonormal frame field defined in a neighbourhood of p

such that

Q.1 E = IN
2n+1

and

Q.Q IE = E ; IE = -E for i=1,...,n.
i i+n i+n i

Denote by {Q ....Q ,Q)} the 1-forms dual to {E ,...,E ,IN}

1 2n I 1 2n

and we write

2.3 Q = Q ; = -Q for i=1,..,n.
I(i) i+n I(i+n) i
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2 _2 e _R _2
We therefore have ds =@Q +...+ @ + Q tooo+ Q
1 n I(1) I(n)

2

+

I

Denote by w and m the connection and the curvature forms

i] ij
2
of ds relative to the frame field {(E ,...E ,IN}.
1 2n
Lenmma, .
The connection forms w satisfy
ij
2.4 v o= Q Coow - -Q ; i=1,..,n,
iT I(i) I(i)I i
2.5 W = w Dow - -w :i,j=1,...n.
I(1)I(J) ij I(i)j iT(3)
Proof
Let D and D denote the Riemannian connections of
2n+1 2n+2 _ _
S and R respectively .Then D and w
i)
are related by the formula
_ _ 2n+1
2.6 <DE ,E>» =w (X) for all vector field X on S ,
X i j ij
i,j=1,..,2n+1.
We have
w (X) - <DE ,IN> = <DE ,IN> = -<E ,D IN>
iT X i X i i X
- —<E ,IX> = <IE ,X» = Q (X)) ;
i i I(i)
w (X) =<D IE ,IN> = <D IE ,IN> = -<IE ,D IN>

I(i)I X i X i i X
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- —<IE ,IX> = —-<E ,X» = -Q (X) ;
i i i
W (X) =D IE ,IE >= D IE .IE >= <D E ,E >
I(1)I(j) X i j X i j X i j
=DE ,E> = w (X)
X i j i)

w (X) = <DIE ,E >~ <DIE ,E > = <IDE ,E >

I(1)j X i j X i j X i j

-=-<DE ,IE »= <E ,DIE > =w  (X)

X i ] i X I(j)i

In the calculation above we used the fact that the almost

2n+2
complex structure I of R is parallel.
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2n+1
Now consider metrics on S of the form
2 2 _2 2 _2 2 2_2
ds = A { Q@ +..+ Q@ + @ +..+ Q b+ a @
1 n I(1) I(n) I

where A and a are non-zero constants.

If we write

R.7 Q = AQ ; 1=1,...,2n
i i
and
2.8 Q - aQ
I I
then
Q 2 2 2
ds =@ +..+ @ + @
1 2n I
Let w and m (1 ¢ i,j ¢ 2n+1 ) be the corresponding
ij ij

connection and curvature forms respectively. We have the

relations between w,w and @ as follows

2.9 W =W = w =W :1¢i, je2n, j#I(1),
ij ICLICH) ij I(1)1(3)

_ -2 2 2 _
2.10 w = W + A (a-A)Q ;1l¢ 1 <2n,
iI(i) iI(i) I

2.11 w =A aw = A aQ :1¢ i «2n.
il il I(i)
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Proof
2.12 dQ =Yw "~ Q =AYw "~ Q.
I Ij J Ij J
On the other hand
2.13 dQ -d(aQ ) =-adQ -axrw Q.
I I I i Ij j

Comparing 2.12 and 2.13 we have

2.14 w - A aw = A a@ ,
iI iI I(1i)
where the last equality is obtained from the first equality

of 2.4 .This proves 2.11.

~ -~

aQ - . D .
i j ij J iI(1) I(1i) iI I

I
M
€
>
©
+
£
+
€
o

Q .
i i3 iT(i)  I(1) I(i) I

= AYw " Q +AwW ) + Aw " Q
i3 iT(i)  I(i) iI 1

.“ é' + AW - é + A @ - @

2.16 = A .
iy iT(i)  I(4) I(i) 1

£ |

Using the uniqueness of the solution of Cartan structure

equation we get

2.1% w = W for j # I(1i),
ij ij

which satisfy 2.9 . Furthermore
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equations 2.15,2.16 and 2.17 would give

_ -1 2_ _ _ —
Q “{-A w + A aQ t=@ “{-Aw + A Q !}
I(i) iI(1) I I(1) iT(i) I

from which we obtain
_ -2 2 2  _
W = W + A(a -A)Q
iI(4i) iI(i) I

and completes the proof.

We now compute the curvature forms m using identities
ij
2.9,2.10 and 2.11 .For j # I(i)

~ ~ ~ ~

m =dw - Y w W W w -w w -w w
ij ij k ik kj iI(di)  I(i)j iI(3)  I(3)) iI I

_ _ _ _ -2 2 2 _
= dw - Tw " w - {w + A (a-A)Q |} "~ w
k I

ik kj iT(41) I(i)j

- _ -2 2 2 _ -2 2_
+ oW ~ oW +A (a-A)Q } +A ag@ T Q
iI(j) JICH) I I(i) I(3)

2.18 ={dw -Iw "w -w ~w -w ~w W "w )
ij ik kj AiI(i) I(i)j iI(j) TI(j)j iI Ij

-2 2 2 _ _ -2 2 _ _
+ A (a - A )Q TR - A (a-4a)Q "{w + W
I(i) I(j) I I(i)j iI(j)

2

}

but the last term is =zero by the second equality of 2.5,

hence

_ -2 2 2 _ _
2.19 m =m +A (a-4)Q °Q :1¢d, je2n; j#I(1).
ij ij ICi) I())
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_2
We now use the fact that the metric ds is of

constant sectional curvature 1, i.e,

m = -Q " Q . l¢i,j¢2n+l

-2 2 2 -4
2.20 m =-A Q@ " @ - (A -a )A Q QR
ij i j I(1i) I(3)

by using the identity 2.7 .Similar method of calculation

would give

-4 2 2 -4 2 2
2.21 m = -A (4A -3a )Q '@ - LA (A -a ) Q "Q
iI(i) i I(1) k#i k I(k)

{ notice here that k does not take values i or I(i)}

From three identities 2.20,2.21 and 2.22 ,we obtain the
components of the curvature tensor together with sectio-

nal curvatures and Ricci tensors

2 2 -4
R = (A - a )A /2 ; l¢i,jen ; J#1i,I(i),
iJICLIICH)
2 2 -4
R = (A - a )A /2 ; 1¢i,j¢n ; 1iz#k,
iI(i)kI(k)
-2
K = A i l¢d,je2n ; j#1,I(1),
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2 2 -4 2 —4
K = (4A -3a ) A S 4 = a A ;
iI(i) iTI

2 -4 2 2 -4
: 2((n+1)A - a )A ,

o]
i
0
=]
)
>
I
I

II ii
i=1,...,2n.

2
The scalar curvature of the metric ds is given by

2 2 -4
R = 2n((2n+2)A - a ) A
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4n+3
2.3 METRICS ON_S
: 2n+1 _2
We generalize the method used on S . Let ds be the
4n+3
standard metric on S with constant sectional curvature 1
4n+3
and we regard S as the unit sphere in the right
n+1l
quaternionic vector space H . Let I,J and K denote the
n+1

transformation on H which are left multiplication by the
quaternions 1i,j and k, respectively. Then I,J and K are

n+1 :
quaternionic linear on H . Thus if N is the unit normal

4n+3
vector field to S we have three tangent vector fields

4n+3
IN,JN and KN to S which are globally defined. For

4n+3
each point p of S ,let { E ,.. E } be an orthonormal
1 4n+3

frame field defined in a neighbourhood of p such that

3.1 IE = E ; JE = E ; KE = E ,i=1, , I
i n+i i 2n+1i i 3n+i

and

3.2 E = IN ;. E = JN i E = KN

4n+1 4n+2 4n+3

Writing

3.3 E = E : E = E ; B =K '
n+i I(1i) 2n+i J(i) 3n+i K(i)

we clearly have the following relatiomns

3.4 IE - JE = KE = -E , i=1,..,n.
I(1) J(i) K(1) i
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Now let
Q... . ... ,..Q@ ,..Q Q C.Q Q .Q .Q !}

1 n I(l) I(n) J(1l) J(n) K(1) K(n) I J K
be the l1-forms dual to {E ,...E ).

1 4n+3
We set
3.5 V(V(i))=-i and Q = -Q for all V-I,J,K and all i=1,...n.
~-i i

So we have the metric

_2 _2 _2 _2 _2 _R _2 2
ds =2Q + X Q + 2 Q + T Q +Q +Q + Q.
i i i I(i) i J(1) i K(1i) I J K

Following the notation of the preceding section we let w

ij
and m be the connection and curvature forms of the metric
i)
_:
ds relative to the frame field { E ..., E }.
1 4n+3
Lemma
3.6 v o= Q for all v=I,J3.K , 1-1,..,n,
iv V(i)
3.7 v =W for all V=I,J.K , 1l¢i,je¢n ,
ij v(i)v(i)
3.8 5 = - 6 ; ; = - @ ; W = 6 )
v(i)Vv i U(i)v w(i) U(i)wW V(i)
where U,V,W are cyclic permutations of I,dJ,K.
3.9 v - - W - - W = w ,1¢d, jenm,
iu(j) U(i)j v(idw(ji) w(i)v(i)
3.10 v --Q  w = -Q LW - -Q

1J K JK 1 KI J
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We prove 3.9

The first equality is the second equality in 2.5 while

w (X¥) = < DVE ,WE > = —<DE ,VWE > = -w (X)
V(i)W(3) X i j X i j iU(3)

which proves the second part of 3.9.
From above we also get
‘D E ,VWE > = <D WE .WVWE > = D WE ,VE » -w (X)
X i j X i j X i W(i)v(ji)
and completes the proof.
All the others can be proved similarly.
Recall that we have the metric of constant sectional
curvature 1
_2 2 2 2 _R 2 2 _2

ds = YQ + ¥Q + T Q + ¥ Q +Q +Q +Q .
i i i J(i) K(i) I J K

i I(1)

Now consider metrics of the form

2 2 _2
+ (a(k) -A )Q

2 2 _2 2 2 _2 2 2 _2
J K

ds =Ads + (a(I)-A)Q + (a(d) -aA)Q
I
which clearly equivalent to

2 2 _2 2 _2 2_8 2_R : 2_2

AJQ+Q + @ + Q ) + a(I) @ + a(d) @ + a(kK) Q

i i I(1) J(i) K(1i) I d K
where A,a(I),a(Jd),a(K) are constants. These metrics are

4n+3
globally defined for at each point pe S ( represented as

the quotient spaces Sp(n+1)/Sp(n) ) ,the tangent space
decomposes into the direct sum of a 4n-dimensional subspace
and a 3-dimensional subspace, each invariant under the

linear isotropy representation of Sp(n). Furthermore the
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action on the three dimensional subspace is trivial.

We then write

3.11 AQ =Q for i = 1,...,4n
i i
and
3.12 a(V)Q = Q for V = I,d ,K
.V \%
2
Then the metric ds can be written as
2 2 2 2 2 2
ds = Q@ +..+ @ +Q +Q + Q .
1 4n I J K
As before we also denote by w , m the corresponding

ij ij

connection and curvature forms .Now we find the relations

between w ,w (and Q ) making use of the identities 3.11

and 3.12
4n
- < - N -
3.13 dQ = > w Q@ + w Q + w )
I i 1Ii i i) Jd IK K
. 4n _ _ -
= AYw " Q +a(d)w ~Q + a(K)w "~ Q.
J IK K

i Ii i IJ
On the other hand

3.14 dQ = d(a(I) @ ) = a(I) dQ
I I I

- a(l)yw "Q + a(Idw ~Q + a(Idw "~ Q.
i TIi i IJd ) IK K
Ve take
-1 -1

3.15 W = A a(Ww = -4 a(V) . v=I.,d.K,
Vi Vi V(i)
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where the last equality follows from the first equality of

3.6 .We must then have

3.16 Q-
IK K

"Q + a(K)w
Ig dJd

a(Jd)w

Using

a(I){ w

3.10,the right hand side of 3.16 becomes 2a(I)Q "Q .

J K

Unique solutions of 3.16 are now given by

P 2 2
{a(I)+a(Jd)-a(K)}_

IJ a(Ida(Jd)

2 P 2
{a(I)+a(K)-a(d)}_

3.18 w = e m e W e Q .
IK a(I)a(k) IK a(I)a(k) d
_ _ _ _ 2 3 2
{check: a(d)w "~ Q + a(K)w Q@ =Q ~ Q { a(K)-a(I)-a(Jd)
1dJ J IK K K J
e 2 2 _ _
-(a(I)+a(K)-a(d))}/ =2a(I)Q "~ Q .1
a(I) J K
4n
3.19 dQ = Y w " Q + I w " Q +Zw " Q
i j#Vaij J vV o iv(i) V(i) vV 1iv v
4n _ _
= A{Yw ~Q +Lw ) }
J#VGIL J vV iv(i) V(i)
+a(Idw "Q + a(dw "Q + a(Kdw  "Q .
il T id dJ ik K
On the other hand
_ 4n _ - — _ _ _
3.20 dQ = AdQ = A{Y w "Q@ + T w - +Zw T )
i i j#vaij v oiv(i) V(i) Vv iv v

2 2 2
{ta(K)-a(I)-a(Jd)t_

Q .
a(I)a(d) K

2 2 2
fa(I)+a(K)-a(Jd)}_
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Comparing both identities , we can take

3.21 v o= W for 1l¢ j <4n and j #V(i) ; Vv=I,J.K.
ij  ij

Equating the remaining terms of the equations 3.18 and 3.20

and using identity 3.15 we get

_ -2 2 2 _ _
3.22 W = w + A {a(V) - A }Q ;V=I,J,K;1=1,.,4n,
iv(i) iv(i) v
Now
dQ = ¥ w R+ w R+ T w “Q + Iw -
ICi) j#i I(i)j I(id)i i Vv I(i)v(i) v(i) Vv I(i)v Vv
- _ - 2 2 -2 _  _ _
= AYw "Q +Alw - ((a(I) -A )A )Q 1°Q +Aw )
j#*i I(1)j J I(i)i I i I(1)d(i) Ja(i)
_ 2 _ _ 2 _ _ 2 _ _
+Aw "Q + a(l)/ w “Q +a(J)/ w "Q +a(K)/ w “Q
I(i)K(i) K(i) A I(iL)I I A I(1)J d A I(i)K K
by 3.11,3.12,3.15 and 3.22. On the other hand
dQ =AdQ =Al ¥ w “Q +w “Q +Iw “Q +3W Q1.

I(i)  I(4) j#i I(i)j § I(i)i 1 V I(i)V(i) V(i) V I(i)V V

Cancelling like terms of the above two identities we get

_ _ 2 2 -2 _ _

- AQ ~ Q fa(I) -A 1A + Alw -w "Q
I i I(i)JdJ(i) TI(i)d(i) J(i)
_ _ 2 2 _ _
+ Alw -w 1°Q + {a(I)-A }/ w “Q
I(i)K(1i) TI(i)K(i) K(i) A I(LI I

2 .2 _ _ 2 2 _ —

+ {a(d)-A }/ w Q@ + {a(K)-A }/ w " Q = 0.

A I(i)Jd J A I(i)K K
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The first and fourth terms cancel by the first identity
of 3.8.We later use the second and the third identities

of the same equation for the last two terms to obtain

_ -1 2 2 _ _
{Aw -Aw - A (a(K)-A)Q } - @ +
I(L)J(i)  I(i)J(i) K J(i)
_ -1 2 2 _ -
{Aw -AW + A (a(d)-A)Q )} ~ @ = 0.
I(i)K(i) I(i)K(1) J K(i)
SO0 we have
_ -2 2 2 _
3.23 W " + A {a(W)- A }Q ,
U(i)v(i) U(i)v(i) W
_ -2 2 2 _
3.24 W = w - A (a(V)- A)DQ ,
U(i)w(i) U(i)W(i) \%

where U,V,¥W are cyclic permutations of I,J.K.
We now list all the relations that we have obtained

3.25 woo=w - w ; i,j=1,...4n and j £V(i),
ij vV ij

-1 _ -1 _
3.26 w = A a(V)w = A a(Vv)Q ,v=I,J.K,i=1,.,4n,
iv iv V(i)
o -2 2 2 _
3.27 W = —w - w + A {a(U) - A }1Q ,
iU(i) V(i)W(i) iu(i) U
2 2 2 2 2 2
{a(U)+a(V)-a(wW)}_ -fa(U)+a(v)-a(W)}_
3.28 w = e w = e ——m = R .
uv a(U)a(v) uv a(U)a(v) W
_ - 2 2 _
3.29 W = w + A {a(¥W) - A }Q .
U(i)v(i) U(i)v(i) W
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Identities 3.27 to 3.29 are for all cyclic permutations of

I,J,K. VWe now check the relations that we have obtained.

Firstly
dQ = ¥ v T Q + Yw TR + T w T Q
i k+V(i) ik k vV o iv(i) V(i) vV iV \
2 2 2
_ _ a(v) - A_ _ a(Vv)_
=A Tw "Q + A{fw + m—— R I"Q + X -——-w "Q
k ik k v ooiv(i) 2 \% V(i) v A iv Vv
A
2 P 2 2
_ a(v) - A _  _ a(v) - A _
= AdQ + X ———-——- - + e v T
i \% A \ V(i) \ A iv \Y

Notice that the last two terms cancel.Secondly

Q -Yw "Q + Tw °Q
j

I Ij J Vv 1V \%
2 2 2 2 2 2
_ _ a(I+a(d)-a(kK)_ _ a(I)+a(K)-a(Jd) _ _
= Ya(l)w "Q + -———--—-—-———- W OTQ b - v TQ
J Ij 3 a(I) Ig Jd a(I) IK K
2 2 2 2 2 2
_ a(I)+a(d)-a(K) o a(I)+a(K)-a(J) .
=a(I)dQ +{ --—--———- —a(Dlw "Q +{ -——-—----- ~a(D}lw "Q
I a(I) Ig dJ a(I) IK K
2 2 P 2
_ a(J) -a(k) _ _ a(kK) -a(d) _ _
= a(l)dQ - -—-———-———- Q " Q + ———-——-——- R
I al(I) K J a(l) J K

which clearly give a(I)d@ since the last two terms cancel.
I
Lastly

~

dQ = ¥w R+ w TR+ L w Q + LW Q
I(i) j#i I(1)j 3 I(i)i 1 v I(i)V(i) V(i) Vv I(i)v V
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2 2 2 2
_ _ _ a(I)-A_ _ _ a(K)-A _
=AY W "Q +A{w - -——= Q 1"Q +A{w + - QR }'Q
j OICL)j ] I(i)i 2 I i I(i)a(i) 2 K J(i)
A A
2 2 2
_ a(J)-A_ _ a(I)_ _
+ Alw - - Q !°Q + - W -
I(i)K(1i) 2 J K(i) A I(i)I I
A
2 2
a(Jd) _ _ a(kK) _ _
+ =W R+ - W a
A I(i)d Jd A I(i)K K
2 2 2 2 2 2
_ a(I)-A a(K)-A a(d)-A _
= Ad - Qo+ - » . ~
T(i) A I i A K J(i) A J K(1i)
2 2 2 2 2 2
a(I)-A _ a(d)-A a(K)-A
- - QT - - B + —e-- Q
A i I A K(i) d A J(i) K
= AdQ
I(i)

for the second ,third and the fourth terms cancel with the
fifth ,seventh and the sixth terms ,respectively.
We compute the components of the curvature tensor of the
2

metric ds using the second structural equation of Cartan.

For each i ,let j be different from I(i),J(i).K(i), then

~ ~ ~ ~

m =dw - T w "w - Iw W - Xw w - 2w "w
ij ij k ik kj VvV iv(i) V(i)j Vv iv(j) v(3j)j V iv V]

( note here that k is different from V(i).v(j).)
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2 < 2
_ _ a(VvV) -A_ a(v)_ _
- Zw “Aw - - Q! -33 ——-w “w
Vv oiv(i) v(3i)j 2 v vV 2 1iv Vj
A A
which then reduces to
2 2 2 2
_ a(v) -A_  _ _ a(Vv) -A_ _
m =m - L —-—-—-—-- Q “H{w +W | N Q “Q .
ij ij v 2 v v(i)j iv(y) v 2 V(i) Vv(j)
A A

The second term vanishes by identity 3.9 while identity
3.11 and the fact that the original metric is of constant

Sectional curvature 1 ,imply

2 2
-2 A -a(Vv)
3.30 m o= -A Q Q@ - ¥ ---—— Q "Q Jlei, jedn, j#v(1i).
ij i ] \ 4 v(ii) Vv(j)
A
Next
2 2 2
a(I) -A_ o a(v)_ _
m = di{w + - R} - Iw "w - - w “w
iI(i) iTI(1i) 2 I k ik kI(i) Vv 2 iv VI(i)
A A
e 2 2 2
_ a(J)-A_ _ a(K)-A_
- Hw + —-———= Q " {w - Q !
idg(i) 2 J J(i)I(1i) 2 K
A A
2 2 2 R
_ a(K)-A _ a(J)-A_
- {w + - Q 7 {w + ———— Q !
iK(i) 2 K K(i)I(1i) 2 J
A A
Thus
2 2 2 2
_ a(I)-A _ a(J)-A_ _
3.31 m = m + ————d@Q - { -——-- Q@ "W
iI(i) AiI(i) 2 I 2 Jd J(i)I(i)

A A
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a(K)-A_ _ a(K)-A_ _ a(J)-A_
+ = “w - ———— w " + - \" -
2 K K(i)I(i) 2 id(i) K 2 iK(i) g
A A A
2 2 2 2 2 2
a(J)-A a(K)-A_ a(V)-A
S R ——— . m—— " Q - T - w "w )
2 2 J K \Y 2 iv VI(i)
A A A

We know that

~

+ T ow Q + Y w
vV IV(i) V(i) Y%

v v

=TQ Q. +2Q°Q  +2Q "Q o+ 2Q°
k k I(k) i I(1) J(i) K(i) Jd K
by using 3.7,3.8 and 3.10 .The third expression

in 3.31 now becomes

2 2 2 2 2 2 2 2
a(J)-A_ _ a(K)-A_ _ a(J)-A a(K)-A_ _
————— R "Q - =W Q R.-—m——- ——— Q "Q

2 Jd J(1)I(i) 2 id(i) K b 2 Jd K

A A A A
2 2 2 2
a(K)-A_ a(Jd)-A_
+ e Q "w + ————= W "Q
2 K K(i)I(i) 2 iK(i) J
A A

which,after cancelling the first with the fifth by the
identity 3.9 and the second with the fourth,simplifies
to

-4 2 2 2 —

2 _
-28 {a(d)-A }{a(K)-A }Q "Q
Jd K
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Furthermore making use of the identities 3.6 and 3.8,

2 2_ _ 2 2 _ _ 2 2 _ _
S {a{V)-Alw "w = {a(I)-A }lw "w + {a(Jd)-A }tw "w
v

iv vI(i) iTI TI(1) id JI(1)

2 2 _ _
+ {a(R)-A }lw "w
iK KI(i)

2 e . _ 2 2 2_ _
- {Aa -a(I)1Q "Q + fa(d) +a(K) -241Q Q@ .
i I(i) J(i) K(i)

Finally equation 3.31 reduces to

_ -2 2 2 _ _
3.32 m = -Q "Q +A {a(I)-Al Y @ "Q +2Q
iI(i) i I(i) k+#i k I(k) i I(i)

_ — - -4 2 2 2 Q_
+2Q  °Q +2Q "Q | +2A {a(Jd)-Alla(K)-A}Q "Q
J(i) K(1) J K J K

- A {a(3)+a(K)-241Q @ +A {a(I)-A1Q "Q
J(i) K(1i) i I(i)

-2 2 2 2 -2 2 2
)-A}

-4 2 2 -4 2 2 P
= -A {4A-3a(I)}Q "Q + A {2a(I)-a(Jd)-a(K)}Q "R
i I(i) J(i) K(i)

2 2 2 2 2 2
-4 2 2 2{A(a(I)-a(d)-a(K))+a(J)a(K)}
-A {A-a(D)IZQ Q@ + _ e e @ "Q .
k+#i k I(k) 4 J K
a(J)a(K)A

Similarly we have

~ ~ ~

m = dw - Y w w - 3w 1 - 2w v
il iI k+i ik kI v o iv({i) v(i)I Vv iv VI

which after quite a lengthy calculation reduces to
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2 2 2 2 2 2
)-A{

-4 2 a(I)a(Jd)-Af{a(I)+a(J)-a(K)}
3.33 m = -Aa(l) Q "Q - ———-—m—mmmmm— Q "Q
iI i I 4 d K(i)
a(Ia(J)A
2 b 2 2 P 2
Ala(d)-a(I)-a(K)}-a(I)a(k)
e Q" .
4 K J(i)
a(I)a(K)A
Lastly
2 2 2 o] ] P
a(Ila(J)+a{a(K)-a(I)-a(Jd)!}
3.34 M = e T Q "Q
1J 4 k k K(k)
a(Ida(Jd)A
4 4 4 2 2 2 2 b 2
3a(K)-a(I)-a(Jd)+2a(I)a(d)-2a(I)a(K)-2a(J)a(K)
e Q "Q .
2 2 2 I J
a(Ida(Jd)a(k)

From identities 3.30,3.32,3.33 and 3.34 we see that the

sectional curvatures are given by

-2
3.35 K = A for 1¢i,j¢«4n and j+v(i) ; V=I,dJ.K
ij
-4 2
3.36 K = A a(Vv) s l¢ 1 ¢<4n
iv
-2 2 -4
3.3%7 K = 4A -3a(V)A , l¢i¢4n
iv(i)
4 4 4 2 2 2 2 2 2
a(U)+a(v)-3a(w)-2{a(U)a(v)-a(U)a(w)-a(v)a(w)!
3.38 K =  -——-—
uv 2 P P

a(U)a(vya(w)

where U,V and W in the last identity are cyclic permutations

of I,J,K; while the other nonzero components of the curvature
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tensor are

-2 2 -4
3.39 R = R ={A -a(V)A }/2,1¢i,j¢4n, j*+V(i)
1jveidv(i) iv(@idjvey)
-4 2 2 2
3.40 R = A {a(V)+a(w)-2a(U)}/2 , i=1,..,4n
iU(1)V(i)IwW(i)
2 2 2 2 2 2
{A (a(V)+a(w)-a(Uu)) -a(v)a(Ww)}
3.41 R = e e e e e e i=1 4n
iu(i)vw 4
a(vV)a(Ww)A
2 2 2 2 2 2
A {ta(D)+a(Vv)-a(W)} - a(u)a(v)
3.42 R = e e , i=1,..,4n
iUW(1i)V 4
2a(U0)a(V)A
2 2 2 2 2 2
A {a(U)+a(W)-a(V)} - a(U)a(Ww)
3.43 R = ———rm e — s i=1 ,4n
iUWV(i) 4
2a(U)a(W)A

Notice here that the last four identities are for all cyclic

permutations of I,J,K .For example

R + R + R = R - R - R
iI(i)JK 1iJKI(1) iKI(i)d iT(i)JK iJI(i)K iKJI(1)
2 2 2 2 2 2 2 P 2 2 2 2
{ A(a(Jd)+a(K)-a(I))- a(d)a(kK)} {A(a(J)+a(R)-a(I))-a(J)a(K)}
) 4 4
a(Jd)a(K)A 2a(d)a(K)A
2 2 2 2 2 2

{A(a(K)+a(Jd)-a(I))-a(K)a(J)}

2a(K)a(J)A

by consecutively using the identities 3.41, 3.42, 3.43 ;and

the above clearly vanishes and satisfies the Bianchi identity.
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We then compute the components of the Ricci temnsor and

write for the nonzero components

3.44 R = ¥R + SR + 2 R
J

ii vV iviv Vv iv(i)iv(i) ijij

-4 2 -2 2 -4 e
SA a(v) + Y{4A -3a(v)Aa |

% \%

+ (4n—4)A_

-2 -4 2 2 2
(4n+8)A - 2A {a(I)+a(J)+a(K)},

I

4 4 4 2 2
2{a(I)-a(J)-a(K)+2a(J)a(K)!} 2 -4
= e + 4na(I)A
2 2 2
a(Ilda(Jd)a(k)

The other components R and R can easily be read off from
dd KK

the second identity above. Lastly the scalar curvature is:

-2 -4 2 2 2
3.46 R = 16n(n+2)A - 4nA (a(I)+a(Jd)+a(K)) -
4 4 4 2 2 2 2 2 2

2{a(I)+a(Jd)+a(K)-2a(I)a(d)-2a(d)a(K)-2a(K)a(I)}

2 2 2
a(Ida(dJd)a(k)
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‘ 2n+1
2.4 Discussion of metrics_on 8

2n+1
We now study the possibilities of the metrics on S

constructed in section two of being Einstein ,Ricci-Codazzi

or Riceci cyclic parallel.
We first consider the Einstein case.Since

| -2 2 -4 2 -4
R =2{(n+1)A - a A} and R = 2na A
ii . II

it 1is easy to see that the metric is Einstein if and only
2 2
if a = A .This is just the standard metric with constant
-2
sectional curvature A
As for the other two cases we first have to compute
the components of covariant derivative of the Ricci tensor

using the usual formula

> H Q = dH + YH w + >H w for any 2-form H,
s 1j's s 1 p ippj P Pj pi

where ° denotes the covariant derivative.

In our case ,we have
-2

>R Q =(R - R )w =aA (R - R )Q
s ilI‘'s s IT ii Ii ii ITI I(i)

where the last equality follows from 2.7 and 2.11.
The other non-trivial equations are
-2

TR @ = (R - R )w = -aA (R - R )Q
s II(i)’'s s ii IT I(i)I ii IT i
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where the last equality follows from the second identity
of 2.4 and 2.11.Thus the only nonzero components of the
derivative of the Ricci temsor are

-6 2 2

- R = 2aA (n+1)(A - a ).

4.1 R =
iT I(i) II(i)’1i

All the metrics constructed in section 2 are Ricci cyclic
parallel while the Ricci-Codazzi metrics are necessarily
Einstein

The theorem is immediately proved in view of 4.1.
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4n+3

Following the results in section 3 we write down the

Einstein equations ,namely

4 4 4 ] 2
a(U)-a(v)-a(w)+2a(Vv)a(w) 2 -4
51 _________ _ + 2na(U)A = Q,
2 2 2
a(U)a(v)a(w)

where U,V,W are cyclic permutations of I,J.K;

-2 -4 2 2 2
5.2 (2n+4)A - A {a(I)+a(d)+a(K)}

[
@)

From the first three equations (obtained by cyclic

permutations of U,V,.W in 5.1) we get

4 4 Q < Q 2

a(U)-a(v)+a(V)a(W)-a(U)a(w) -4 2 2
5.3  ______ _ _ = nA {a(V)-a(u)},
P 2 2
a(a(Vv)a(w)

{again here U,V,VW are cyclic permutations of I,d,K}

which can be simplified to

2 2 2 b 2 -4 2 P 2

5.4 {a(I)-a(Jd)}{a(I)+a(J)-a(K)+nA a(I)a(Jd)a(K)} = O,
2 2 2 2 2 -4 2 2 2

5.5 {a(Jd)-a(K)l{a(d)+a(K)-a(I)+nA a(I)a(Jd)a(kK)} = O,
2 b2 2 2 2 -4 2 2 2

5.6 {a(K)-a(I)}{a(K)+a(I)-a(Jd)+nA a(I)a(d)a(kK)} = O.

P 2 Q
If a(I),a(d),a(K) are all unequal ,we must then have
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2 2 2 -4 2 2 b4
a(I)+a(d)-a(K) + nA a(I)a(Jd)a(kK) = 0,

2 2 b2t -4 2 e 2
a(Jd)+a(K)-a(I) + nA a(I)a(Jd)a(k) = 0,

2 2 2 -4 2 4] 2
a(K)+a(I)-a(Jd) + nA a(I)a(Jd)a(k) = O,

2 2 2
which imply a(I)=a(Jd)=a(K),contradicting our assumption.

P 2
If however two of the constants are equal,say a(I)=a(J),

then from 5.6 we see that we must have

2 -4 4
a(K){1l + nA a(I) |} = 0,

which is absurd

So the only other possibility is when all the

2
coefficients are equal,say a .In this case the Einstein

equations reduce to

-2 2 -4 -2 2 -4
5.7 a + 2na A = (2n+4)A - 3a A = C.

Theorem 5

4n+3

There are two Einstein metrics on S obtained by

the construction above.One is the standard metric and the

other is of non-constant sectional curvature.

The Einstein equations 5.7 can be reduced to

b 2 2 2
(A - a ){A - (2n+3)a } =0
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2 2
The metric with A = a is just the standard metric with

-2 2 2
sectional curvature A .The other metric with A =(2n+3)a

is of non-constant sectional curvature taking values

-2 -1 -2 -2 -2
{(2n+3)al .(2n+3) a ,(8n+9){(2n+3)a} and a .Clearly the

maximum and minimum sectional curvature are respectively

-2 -2
a .{(2n+3)a}! and thus this Einstein metric has pinching

-2
(2n+3) .This metric was discovered by Jensen [JE1].

On computing the derivative of the Ricci tensor we

obtain
2 2 2
a(K)-a(I)-a(Jd)
Z R Q = (R -R DJdw = {R - R 1Q
s IJd’'s s IT Jdd Id a(I)a(d)a(k) II Jd K

(in view of 3.28); which then reduces to

2 2 2 ] 2 2 2 P
4{a(I)-a(J)}{a(K)-a(I)-a(d)} -4 a(K)-a(I)-a(J)
>R Q = { nA - __ . ___ 1Q .
s Id’'s s a(I)a(Jd)a(k) 2 2 2 K
a(Ida(d)a(k)

Similarly ,we write other nontrivial relations

S R Q@ - (R -R Jw =

s 1I's s ii IT il

4 4 4 2 2 2 2 2 2 P 2

a(Jd)+a(K)-a(I)-2a(d)a(K) 2nfa(I)-Al-4A+a(I)+a(Jd)+a(K)

( __ - 12a(I)Q
2 2 2 2 6 I(i)
a(Ida(d)a(K)Aa A
-2
TR Q = (R -R v - a(I)A (R -R )Q

s II(i)'s s ii IT I(i)I IT ii 1
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From these equations we list the nonzero components

b3 2 2
a(W)-a(u)-a(v)
R = (R - R )

Uv'w a(U)a(V)a(Ww) UU Vv
where U,V,¥ are cyclic permutations of I,J,K;

-2
R = a(I)A (R - R ) for v=I,J,K,
iv'v(i) 'A% ii

R - R for v=I.dJd K.

vv(i) - i. iv'v(i)
We now study the conditions for Riccl cyclic parallel

and Ricci-Codazzi.

Metrics constructed in section 3 are Ricci-Codazzi
if and only if they are Einstein .However the metrics
obtained by this construction are Riceci cyclic parallel if

2 Q
and only if at least two of the coefficients a(I),a(Jd)

P
a(K) are equal.

Proof
Part one follows quite clearly since we have
-2

R = - R and R = a(v)A {R - R }.
II(i)’i iI°I(1) iv/v(i) \'AY ii

As for the second part we first see that the relation

R + R + R

=0 for V=I,J.,K.
iv’v(i) vv(i)‘i v(i)i’'v
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is automatically satisfied for the third term is zero while
the first and the second terms cancelled out each other.The
only other condition to consider is:

R + R + R = 0.
13K JK'I KI'J

But the cyclic sum above can be shown to be

2 P 2 2 2 2
- 16{a(I)-a(Jd)}{a(d)-a(K)}{a(K)-a(I)}

{a(I)a(d)a(K)}
which completes our proof

We note that the previous analysis uses the fact that

2 2 Q 2
a(I),a(Jd),a(K) and A are constants, but the argument goes

2 Q
through if for example we replace a(I) by -a(I) on pages 45

and 52. VWe have therefore also constructed indefinite
2n+1 4n+3
metrics on S and S having the required property.
The corresponding isometry groups for the metrics
of Theorem4, Theorem5 and Theorem6 can all be read off from

Ziller’s paper [2i].
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Chapter 3. Metrics On Homogeneous Manifolds

Associated With The Exceptional Group G2.

We explain our notation in the first five

sections. In section 6 we describe the set of all
G-invariant metrics on G/H, where G is a compact
connected Lie group and H a closed subgroup such
that G acts effectively on G/H.
Formula for computing the curvature is given in
rage 84. In section 8 we consider the exceptional
Lie algebra g2 with all its subalgebras.

We check our programmes in "reduce" by

7 3
applying them to S and CP and compare the known

results on Einstein metrics. See [Je2] and [Zi].

Finally we consider the possibilities of the
quotients spaces associated with G2 admitting the
Einstein metric, Ricci cyclic parallel metric and
Ricci-Codazzi metric. From this investigation,it
seems that in this case the class of Ricci cyclic

parallel metrics forms a larger class.
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3.1 Reflection in Euclidean space 0f dimension n

n
Geometrically, a reflection in E is an invertible

linear transformation of order 2 leaving pointwise
fixed some hyperplane (subspace of codimension one)

and sending any vector orthogonal to that hyperplane

into 1its negative. Evidently it is ‘orthogonal’,

preserving the inner product. Let A be a non-zero
n @ n

vector in E and let A ={ x€E | «x,A>=0} Dbe its

orthogonal complement called the reflecting hyperplane.
The projection of a vector B into the reflecting
hyperplane A@ is to be B-rA, where a real number r is
to be chosen so that B-rA is in A@. So we must have
0= «B -1TA, Ab = <B,A> - T<A A
and hence 1 = «B,A>/ <A A>
Clearly then the reflection of B in A@is given by an
explicit formula
TA(B) = B - 2rA = B - 2A<B,A>/ <A A>.

@
(it sends A to -A and fixes all points in A.)

For orthogonality,we see that

. <A,B> <A,C>
«T (B), T (C)> = <B-2 ___ A, C-2 ___ A
A A <A,A> <ALA>
‘A,C> A,B> (A,B><A,C>
= «B,C» -2 «<B,A>» -2. ___ «<AC> -4 ______
A.A> A A> A, A

which is just <B,C».
The number 2:B,A>/<A,A> will be abbreviated by (B,A)

which is linear only in the first variable. We shall
n
also write E for E
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32. Root_sgystems

A subset Q of the Euclidean space E is called a root
system in E if the following properties are satisfied:
a) Q is finite, spans E and does not contain O ;

b) if A is in Q,the only multiple of A in Q other than
A itself is -A ;

c) if A is in Q, the reflection T 1leaves Q invariant;
A

d) if A,B are both in Q then (B,A) is an integer.

For n is less than 3 we can describe the root system Q
by simply drawing a picture.
There is only one possibility in case n=1, for in view
of b, we must have Q={A,-A}.
There are exactly four poésibilities in case n=2 .This
is because the property d,limits severely the possible
angles occuring between pairs of roots.
Recall that the cosine of the angle # between vectors
A,B in E is given by the usual formula <A,B>=1Al IBicos#.
Therefore

P
(B,A)=2<B,A>/<A,A>= 2008%.|BiI/1Al and (A,B)(B,A)=4c0s #.
Since (A,B) and (B,A) are integers then the last number

2
4cos # is also integer.Moreover since

2
lcos #/ ¢ 1 and (A,B),(B,A) have like sign

the following are the only ones when A#iB and 1Bl yl1Al:
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Q 2
(A,B) , (B,A) |, Angle # I1BI / 1Al
0 0 Ti/2 arbitrary
1 1 T3 1
-1 -1 2M/3 1
1 2 T/4 2
~1 -2 3M/4 2
1 3 n/e6 3
-1 -3 sN/6 3
Table 3.2

The above angles and relative lengths are portrayed in

figure 4.1 below:

A XA A
1 1 F

¥

We will consider the fourth diagram in more detail

later on.
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3.3 Lie Groups

A Lie group G is a group which is at the same time
a differentiable manifold such that the map GxG—G,
defined by (a,b)w— ab_l.is differentiable.
Left translation by an element g of G is the map
L :G»G . defined by L (p)=gp.peaG.
If a vector field X on g satisfies

(dL )X = X for all g in G,

then X is cglled a left invariant vector field.Thus if
X 1is left invariant,then it is uniquely determined by
X(e), where e is the identity element of G.Conversely
a tangent vector X at e gives rise to a left invariant

vector field X(g)=(dL )X(e).
g

Similarly.a covariant tensor field B of order r on G

is left-invariant if

(dL ) B = B.
£
We remark that if (X ,...X } is a basis of smooth left-
1 Tr
invariant vector fields., then B(X ,..,X ) is constant.

1 T
We also have similar properties for right translation

by an element g of G denoted by R .
g

-1
We define Ad X = dR odL (X) . Clearly Ad = Ad Ad .
g g &g gh g h
-1

Since for each g, the map h—ghg is an automorphism

of ¢ ,Ad [X,Y] =[Ad X,Ad Y].
g g g
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Set ad =d(Ad), i.e, the differential of the adjoint

representation ;then ad Y=I[X,Y].
X

Moreover, every Lie group has a left-invariant Riemannian
metric, while on a compact connected Lie group a bi-inva-

riant Riemannian metric always exists.
Proposition.

Let «,> be a left invariant metric on G and let X.,Y,2Z be
left invariant vector fields.Denote by D the corresponding
Levi-Civita connection.Then
i) DY = {[X,¥Y] - (ad )*Y - (ad )*X}/2,

X X Y
where A* denotes the adjoint of the linear transformation
A with respect to «, >,
ii) <«R(X,Y)2,W> = <D 2,DW> - <DZ,DW> - <D Z,¥W.
X Y Y X [X,Y)

Proof.

By left invariance we have

«D ¥,2> + <¥,D 2>,

0 =X «¥,2> =
X X
0=%Y X,20 = <DX,2> + X,D 2>,
Y Y
0=2 X,¥Y» = <DX,Y> + <X,D Y>.

Z b2

Subtracting the third of these equations from the sum of

the first two and using

DW-DV - [V,¥W] =0
v v
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yields

2 DY, 2> = <IX,Y}.2> - <Y,[X,2)> - <X,[Y.21]">
X

from which i) readily follows.

By left invariance ,X <D 2,W>= 0.Therefore

Y
DD Z,W>» = - DZ,DV:
XY Y X
- DD 2,W> = D2Z,DVW
Y X | X Y
- D Z2.W, = —<D 2.V
[X.Y] [X,Y]

Adding these equations gives ii).
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3.4 Lie algebras

A vector space p over a field F,is a Lie algebra if
in addition to its vector space structure it possesses a
product, that is a map pxp—p taking the pair (X,Y) to
the element [X,Y] of p which has the following properties:
i) [X,Y) is bilinear for all X,Y in p,
ii) [X,X) = 0 for all X in p,
iii) [X,[y,211+0y,.[2,X)}+02,(X,Y]]1=0 for all X,Y,2 in p.
Property 1iii) is called the Jacobi identity.We note that
[X,[Y,2]] is not necessarily equal to [[X,Y],2], thus the
bracket product is not in general associative.As a simple
consequence of properties i) and ii) ,we have
0 = [X+Y,X+Y] = (X.X}+ [X,Y)+ [Y.X)+ lY.Y] = [X,Y]+ [Y.X].
Thus [X,Y)=-1Y.X] showing the bracket is anticommutative,
assuming F has characteristic=2.
Conversely,if the characteristic of F is different from 2,

the anticommutativity of bracket implies ii).

Let p be a Lie algebra and let m,h be subspaces of p.
Let [m,h] be the subspace of p spanned by elements of the
form [X,Y] ,Xem,Yeh. If (m,m} is in m then m is called a
subalgebra cf p.

If [h,pl] is contained in h,then h is called an ideal of p.

The derived series of p is the decreasing sequence of
ideals

0 1 0] i+l i i
D p,D p,..of p defined inductively by D p-p,D p=I[D p,D pl.

The descending central series of p is the decreasing
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0] 1
sequence of ideals C p ,C p ,..of p defined inductively by
0 i+l i
Cp=p ., C p=[lp,C pl
i i

Evidently D p ( C p . The Lie algebra p is abelian if

1 i
D p ,nilpotent if C p = 0O for some i and solvable if

I
o

i

Dp O for some i .Every Lie algebra has a unique maximal

i

solvable ideal,called the radical of p .A Lie algebra p is
said to be gemisimple if its radical is =zero. A Lie
algebra is said to be gimple if it is not abelian and has
no non-zero ideal other than p itself.

A subalgebra h of the Lie algebra p is called a Cartan

ggp@;ggng if it 1is nilpotent and it does not contain as
an ideal in any larger subalgebra of p,

i.e, if [X,Y] is in h for all Y in h ,then X is in h.
The dimension of a Cartan subalgebra h of p is called the
rank of p. A theorem states that all such subalgebras have
the same dimension.

A real semisimple algebra p is said to be compact if its
Cartan-Killing form is negative definite,where the Cartan-
Killing form is a symmefric bilinear form on p defined by

Kil(X,Y) = Trace( ad ead ) ; X,Y in p
X Y

Furthermore a connected, complex semisimple Lie group G is
compact if its Lie algebra is of compact type ([KN2]1p.252).
We remember that the Cartan-Killing form 1is associlative,

in the sense that Kil(I[X,Y],2)=Kil(X,[Y,Z]) since we know

that Trace([X,Y]2)=Trace(X[Y,Z]). See Humphreys [Hul p.19.
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3.5 The root_system of a compact semisimple Lie_ algebra.

Let h be a Cartan subalgebra of the complex Lie

algebra ¢ and let a be a linear function on h. Let g
a

denote the linear subspace of ¢ ,invariant under ad ,
h

given by

g =1 Yeg | [X,Y] = a(X)Y ;for all Xeh }.
a

If g 1is not the =zero element, the linear function a
a

(an element of the dual space of h ) is called a root of

the Lie algebra g with respect to h and such g is called
a

a root subspace.The collection of all nonzero roots form
a root system and Theorem 4.2 of [Hell p.141 gives:
i) g =h + ¥ ¢ summation is over all nonzero roots,

a a

ii) for each nonzero root a,g is of complex dimension 1,
a

iii) the only roots proportional to a are -a,0.,a.

It is not difficult to see that a root system of a
compact semisimple Lie algebra is a 'root system’ in the

sense discussed earlier.See for example [Mal] pp. 108-112.
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3.6 Riemannian Homogeneous Metrics.

A metric on M is called Riemannian homogeneous if
there exists a group G of isometries acting transitively
on M.If we fixed a point p of M and let H be the isotropy
group (the subgroup of isometries leaving p fixed) then M
is diffeomorphic to G/H.

Let G be a compact connected Lie group and H a
closed subgroup such that G acts effectively on G/H.,i.e,
H contains no non-trivial normal subgroup of G.

We denote by g.h the Lie algebra of G and H, by Ad the
G

adjoint action of G on g and by ad its derivative,i.e,

ad (Y) = [X,Y] for all X.Y in g.
X

Let B be the negative of the Cartan-Killing form
of g. We choose a complement m of h in g such that
€= h @ m and [h,m] (m which always exists since H is
compact.

Then m can be identified with the tangent space of G/H

at the coset eH where e is the identity element of G.
Corollary 3.2 of [KN2] pp. 201-202 gives a one-to-one

correspondence between the set of G-invariant Riemannian
metrics on G/H and the set of Ad -invariant inner
products on m. ?

To describe the set of all G-invariant metrics on

G/H,let m = m + m +..+m be the decomposition of m into

D 1 r
H-modules where m is the submodule of m on which H acts
0
as identity and m ,..,m are irreducible H-modules.

1 r
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Such a decomposition is not wunique 1if some of the

representations of Ad on m are equivalent to each
H i

other. But the subspace m and the numbers d = dim m
0 i i

are independent of the chosen decomposition.
We decompose m further into B-orthogonal 1l-dimen
0]

sional subspaces m = m ,..,m ;8-r>1 to get
0 T+l 8

m=m+..+m + MW +..+ m .For each decomposition there
1 T T+l s

is the family of Ad -invariant diagonal metrics:

Conversely,every Ad -invariant inner product on m belongs
to the family of Ad -invariant diagonal metrics of some
H

decomposition of m .In fact, for a given Ad - invariant
H

inner product «<,> on m ,we can diagonalize «,> with
respect to B to obtain a decomposition of m into
éigenspaoes of «,»>, which are orthogonal with respect to

both B and «,>.These eigenspaces are Ad -invariant and so
H

can be decomposed into irreducible summands which are
orthogonal with respect to B and <,>. Then «,> has the

form above with respect to this decomposition, where X s
i

are the eigenvalues of «,> with respect to B.
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The Levi-Civita connection of the metric on m
is given by
1
DY = - [ X,Y ] +  U(X,Y)
X 2 lm

where U 1is a symmetric 2-form on m determined by

2:.0(x.,¥).2> = - X,[Y,2 ]> - <[X,2 1,Y> ;X,Y,Z2 in m.

See Nomizu [Nol p. 52 or [KN2] p. 201.
The curvature tensor is then computed by the formula:

R(X,Y)Z2 =DDZ-DDZ -D 2z - [[Xx.,Y]l, ,2].
X v v X X, v, Iy
m

See [Nol]l p. 47.
In suffix notation (without summation convention),we have

2C = M -M g /g -M g /g |,
hjk hjk jkh hh  kk hkj jj  kk

R =3C C g -IC C g -IM Cc g -2M M g .
hpgk j pqj hjk kk m hqm pmk kk s hps sqk kk s hps sqgk kk
where the last sum is over all generators of h and for
simplicity ,the metric considered is diagonalized.
We have written

D X(j) =<C X(k)

X(1i) k ijk

«R{X(1),X(j)}1X(k),X(h)> =R

ijkh

and M denotes the k-th component of the bracket product
ijk

[X(i),X(3)]
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3.7 St_and CP3

Let V be a 2n-dimensional vector space over F.Let f
be a nondegenerate skew-symmetric form on V given by

the matrix

Denote by sp(2n.F) ,the symplectic algebra ,which by
definition consists of all endomorphisms x of V
satisfying f(x(u),v)=-f(u,x(v)).In matrix terms, the
condition for

n n

X= ;m,n,p,q€gl(n,F)

P 9

t t t t
to be symplectic is that sx=-x s,i.e,that n=n,p=p,m=-q.

A basis of this algebra say sp(2,C) is given by ;

e-e -e ;e=-e -e ;
1 11 33 2 22 44
e = e , e = e ;e ~e +e ;
3 13 4 24 5 14 23
e = € , € = € e = e + e
6 31 7 42 8 32 41
e-e -e ;e=-e -e ,
9 12 43 10 21 34

where here and in the sequel e is the matrix having 1
1]

in the (i,j) position and O elsewhere. See for example
Humphreys [Hul page 3 .The bracket product is computed
using the relation

(e ,e 1 =26 e - § e
ij k1l jk il 11 kj
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which follows from the relation e e = $> e

ij k1 jk il

The bracket product is given by table 1 below.

RN R

e e

10 10
S

The

compone

Table 1
e e e e e e e e e
2 3 4 5 6 7 8 9 10
D DO Sl Sl Sebteint Iy Rl B I
0 ke 0 e -ce 0 e e -€e
3 5 6 8 9 10
e Tl SRt RN R AP . A -
0 0 e e 0 -2e -e -e e
4 5 7 8 9 10
IR I I R | SRR I N
0 0 0 0 e 0 e 0 -e
1 9 5
______________________________________________ e
| 2¢ 0 o | o 0 e e e 0
4 2 10 5
S N SR e L i SR SO
-e 0 0 0 e e e +e | -%e [-Qe
5 10 9 1 2 3 4
__________ - - - - - - - - -
0 -e 0 -e 0 0 0 e 0
1 10 8
__________________________ B e e L S
2e 0 -e -e 0 0 0 0 e
7 2 9 8
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ IS A I I A
e -€ -e [e-e 0 0 0 Qe 2e
8 9 100 1 2 7 6
————— --—-——~-t+----+----t----—-t---—-—{- -
e 0 e ce -e 0 -2e 0 e -e
9 5 3 8 7 1 2
_____ T
-e e 0 | Re 0 -e -ce -e +e 0
10 5 4 8 6 1 2
_____ L____s__,__ ____L_____A__“___J__‘___J..__-_______._

Killing metric is computed and we list the non-zero

nts:

Ki1(1,1)-Kil(2,2)=Kil1(5,8)=Kil(9,10) = 12,

Kil(3,6)=Kil(4,7)= 6.
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Since the algebra needed is compact we now diagonalize

the metric and make it negative definite by taking

E =ie E =ie

1 1 2 2
E =i(e + e ) E=e - e ; E-=i(e + e ) E =e - e

3 3 6 4 3 6 5 4 7 6 4 7
E =i(e + e ) E=e - e :; E-=i(le +e ) : E =e - e

7 5 8 8 b 8 9 9 10 10 9 10

Clearly we have:

Kil(1,1)=Kil(2,2)=Kil(7,7)=...=Kil(10,10)=-24,

Kil(3,3)= ... =Kil(6,6)=-12.
The bracket product is now given by table 2 next page.

It is not difficult to see that in this case we have the

subalgebra sp(1,C) of sp(2,C) generated by E ,E and E
1 3 4

under which action the quotient sp(2.C)/sp(1.C) is split
into

3-dimensional m generated by E ,E and E
0 2 5 6

4-dimensional m generated by E ,E |E and E
1 7 8 9 10

7
The corresponding homogeneous space is known to be S . See

for example [Jellp.599.We now consider metrics of the form
g = -dKil + h where h is an arbitrary metric on m

m 0]
1



E E E E
1 2 3 4
S I I I I
E |0 0 |2E |2E
1 4 3
E |0 0 0 0
2
ol N A N N
E [|2E 0 0 }2E
3| 4 1
E |-2E| 0 | 2E 0
4 3 1
B N I I I
E |0 |2E 0 0
5 6
[ R S -
E |0 [-2E 0 0
6 5
E |E E E |-E
7| 8 8 100 9
E |-E | -E E E
8| v 7 9 i 10
E |E |-E | -E E
ol 1 19 8| %
R I R I I
E |-E E | -E | -E
1dq 9 9 7 8
R RN I [, L
i.e, g(2,2) = 12a

g(7.7) = g(8,8) = g(9,9) = g(10,10)

Table_ g
E E E E E
5 6 7 8 9
——— e e -
0 0 -E E -E
8 7 4 10
- 2F 2E -E E E
6 5 8 % 7 10
___________________________ I
0 0 -E -E E
| 10 9 8
——————————— +-—1 1
0 0 E -E -E
9 10 7
_____ g
0 -2E E -E E
2 10 9 8
___________ N
2E 0 E E -E
2 | 9 10 7
-E -E 0 -2E -2E |2E +2E
10 9 1 2 4 6
————— I e B iy
E -E |2E +2E 0 -2E-2E
9 10 1 2 3 5
_____ _Jr___________n___.__ﬁ,____WL____-W_
-E E -2E-2E |2E +2E 0
8 7 4 6+ 3 5
_____ oo
E E |2E -2E |2E -2E 2E -2E
7 | 8 3 5 4 6 | 1 2
; £(5,5) = 12b ; g(6.8) = l2c
= 24d

E
10 J
E
9
{t-—-————- .
-E
9
R i
E
7
I |
E
8
L
-E
7
o |
-E
8
= ———— —
-2E +2E
3 g
| o
~2E +2E
4 g
________ 7
-2E +2E
1
0
| 4

We now examine the result enclosed in the appendixl.

The Einstelin equat

ions are
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2 2 2 2 2 P 2 2 2
a bc +2ad -2bd +4bcd -2¢ d =becd (12az),

P 2 2 2 2 P 2 2 2
abc +2bd -2c d +4acd -2a d =acd (12bz),

2 2 2 2 2 2 2 2 2
abc +2cd -2a d +4abd -2b d =abd (1l2cz),

-a -b -c +12d = d(24d4z).

If two of the first three coefficients are equal,say a=b,
the first two equations would imply a=b=c ,while if all
a,b,c are distinct ,subtracting the second by the first
equation would give

P 2
abc + 44 (a+b) - 4cd = 0.

Similarly we have

2 2
abc + 44 (a+c) - 4bd = O,

P 2
abc + 4d (b+c) - 4ad = O,

wvhich then give
2
3abc + 4d(a+b+c) = 0 ,which is absurd.
So the only possibility left is when a,b,c are all equal,
say a .In this case the non-zero components of the Ricci
tensor are

2 -2
2 + ad for i=2,5,6,

R(i,i)

R(i,1i)

12 - 3a/d for i=7,8,9,10.

Eliminating the constant of the Einsteln equations would

give a/d = 2 or 2/5 . The Einstein metric with a/d = 2
7

corresponds to the standard metric on S with constant

sectional curvature 1/12a,i.e, the metric is of constant
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sectional curvature 1 when a is taken to be 1/12

The second metric with as/d =2/5 has non-constant positive
sectional curvature taking values 1/300a,17/300a and 1/12a.
Thus the second Einstein metric has pinching 1/25. This
metric was first discovered by Jensen (Jel] pp. 612-613.

See also [Jde2l].

The result enclosed in the appendix also confirms that a
Riceci cyclic parallel metric is obtained when at least two
of the coefficients are equal while Ricci- Codazzi spaces
are necessarily Einstein. Compare our results in chapter 2.

3
We now consider the projective space CP written as

Sp2/SplxUl 1in which case the splitting of m is given by

m=m + I ,where the
1 2

2-dimensional m 1is generated by E and E while the
1 5 6

4-dimensional m is generated by E ,E ,E and E .
2 7 8 9 10

Following the preceding procedure we consider metrics
with
£(5,5)
g(7.,7)

g(6,86) 12a,

I
1

g(10,10) = 24b
From the result enclosed in appendix we have the nonzero
components of the Ricci tensor

2 2 -2
(a +4b )b for 1i=5,6,

o]
I

ii

-1
2(6b - a)b for 1i=7,8,9,10.

o]
i

ii
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The solutions of the Einstein equations are easily found
to be a/’b =2 or 1. The Einstein metric with a/b =2 is the

3
standard metric on the complex projective space CP .0On

substituting a=2b we found that the sectional curvatures
take values 1/6b and 1/24b,i.e,the maximum and the minimum
sectional curvatures are respectively 1/6b,1/24b .Thus the
metric has positive sectional curvature with pinching 1/4

as we might have expected

For the other Einstein metric the sectional curvature takes
values 1/48a ,5/48a ,1/6a and 1/3a,i.e, the maximum and the
minimum sectional curvatures are 1/3a ,1/48a ,respectively.
Thus the second metric with a=b also has positive sectional
curvature but the pinching is 1/16. It can also be shown
that this metric is naturally reductive even though such a

n
metric on CP 1is not naturally reductive for n different

from 2. This kind of metric was first discovered by Ziller

[zi] p. 358.

It is also clear that that the Ricci-Codazzl metrics
obtained by this method are essentially Einstein for we need

2 2
a - 3ab +2b =0, i.e, a = b or a = 2b.

However the Ricci cyclic parallel metrics seem to be less
restrictive since all the metrics considered are automati-

cally Riceci cyclic parallel.
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3.8 The Exceptional Lie Algebra g2.

It is known that the 14-dimensional Lie algebra of type
g2 is a subalgebra of so(7).The following construction can
be found in Humphreys [Hul pp 103-104.

The two dimensional Cartan subalgebra h of g2 is

3
h =1{Zad such that ¥ a = 0}
i=1 1 i i
where d = e -e .Obviously {d ,d } form a basis
i i+1,i+1 i+4,i+4 1 2

of h.
Corresponding to the six long roots in g2 we choose certain

root vectors g (i is different from j) of so(7) relative
i,-]

to h as follows

t
g = =e -e
1,-2 2.,-1 3 65
t
g = =e - e
1,-3 3,-1 24 75
t
g =g = € - e
2,-3 3,-2 34 76

while for the short roots ,we take

t
g =-g =J2(e -e )-(e -e ),
1 -1 12 51 37 46
t
g =-g =J2(e -e )+ (e -e ).
2 -2 13 61 27 45
t
g = -g =v2(e - e ) - (e - e ).

3 -3 14 71 26 35
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We notice here that each of the twelve vectors listed
above is a common eigenvector for adh and none of them

centralizing h. As for the Lie bracket product we have

g g 1-5 g -5 g
i,-j k.-p jk i,-p ip k.-j
[ g .g ] =3 - (d+d+4d),
i -i i 1 2 3
[ g .¢g ] -6 ¢
k i.-j ik j
(g . g 1--6g
-k i,-] jk -1 i,j.k are cyclic
[ g . ¢ 1 = + 2g } permutations
i -k
of 1,2,3
g .8 ) =+ 2g
i -j kK
[ g . ¢ ] = 3¢ .14
i - j.-i

See table 3 next page for details of the product. The

root diagram of g2 is given by

Root diagram of g2

On computing the Killing metric,the non-zero components

are given by



TABLE 3

g g g e =d ~d e =d -d q
-3 2,-3 1 7 1 3 8 2 3 -1
e 9 -9 -9 9 (2
1,-3 2 1,-2 1,-2
e -9 e 29 g 9
2.-1 3.1 3,-1 -3
39 g -29 4 g 3g
3,-2 3 -3 2 1.-2
© -g -39 9 29
-2 3,1 -3 -3 2
g e (%] -g9 -29 e
-2 2,-3 2,-3
39 [~ ] g e 2e —-e
3,1 1 7 8
-9 g -9 2 e g
-3 2,-3 1 -1
-g 2g e (] (2} e
-3 2,-3
-2g 0 -2e +e -g 0 0
2 7 8 -1
0 -e 0 g 29 )
8 3.-2 3. -2
—-e —e 0 29 -g -9 39
7 8 -2 3 3 1,-3
2g ? -39 e -9 ~-29
1 2,-1 -2 3
9 e -9 -29 -9 14
-1 3 1,-3 1,-3
0 0 e 9 -9 9
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Kil(g . 8 ) = Kil(d -d ,d -4 ) =8
i,-] j. -1 1 3 2 3

Kil(d - d ,4d -4 ) = Kil(d -4 ,d -d ) = 16,
1 3 1 3 2 3 2 3

Kil( g . g ) = -24.
i -1

Since the semisimple algebra of type g2 is compact and the
Killing metric should be negative definite ,we choose a

basis of g2 denoted by

{g’.g” .¢° ,h’,h" } ;3,k=1,2,3 and j is different from k
Jo-J J.-k 1 -1

i) g =(g+¢g )/2 and g’ =(g - g )21 for j=1,2,3,

J J - -J J -J
ii) g’ =(g +g )/2i and g’ =(g - g )/2 for j-k,
k.-j k,-j j.-k j.-k k,-3 j.-k
iii) h’ =(d -d +d -d )/2i and h’ = {d -d -(d -d )}/2i.
1 1 3 2 3 -1 1 3 2 3

It is quite easy to see from i) that

4Kil(g’ ,g’) = 2Kil(g .g ),
NI Jj -
- 4Kil(g’ .g’) =-2Kil(g .g ).
-3 - NI
Kil(g’ .g" )= 0
J -

which in view of relations earlier on give

Kil(g’ .g’) = Kil(g’ .g’) = -12.
J J -3 -3
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Similarly ,from ii) and iii) we obtain
Kil(g"’ - )= Kil(h’ b’ )=-4 and Kil(h’ ,h’)=-12
i,-j 1i.-3] -1 -1 1 1
while all other components are zero.
Writing h',h’ ,g°'.8 ,g .8 .g£ .8 .8’ 8’
1 -11 -1 2 -2 3 -3 1,-2 2,-1

g’ 8’ 8’ 8’ respectively by e ,....,e
1,-3 3,-1 2,-3 3,-2 1 14

the Lie product is now given by table4 next page.

The nonabelian subalgebras of g2 as listed in D’Atri

and Ziller [DZ] page 60 are

so(4) ( g2 ; su(3) ( g2 ; 80(3) ( g2
u(2)=so(2)ebl ( so0(4) ( g2 ; u(l)’'=so(2)ebl’'( so(4) (g2
bl ( g2 ; bl1’( g2 ; b ( so(4) ( g2.

Here so0(4) = bl ® bl’; bl ¥ bl'T s0(3) is the splitting
of so0(4) into simple ideals and b ( so(4) is the usual
imbedding of so(3) in so(4).The two imbedding of u(2) in
£2 and bl,bl’ in g2 are not conjugate and the subalgebra
s0(3) ( g2 is maximal
Futhermore ,su(3),so0(4) -and maximal so(3) ( g2 act
irreducibly on their complements.See [Wol] and [Dyl.
We can take e .e ,e ,e ,e and e as a basis of
1 2 7 8 9 10

so(4) which splits into two ideals, namely e .e ,e and
e ,e ,e .

2 9 10

Another basis of so(4) is given by {e ,e e ,e ,e ,e
3 5 7 10 12 14



TABLE 4

e e e e e e e e e e e e e e
1 2 3 4 5 6 7 8 9 10 1 12 13 14
2] (-] -1/ e 1/ e -1/ e 1/e e —e -] ] -3/e 3/e -3/e 3/e
1 2 4 23 2 6 25 8 7 2 12 2 1 2 14 213
2] %] -1/ e 1/ e 1/ e -1/e (%] 0 -e e ~1/e 1/e 1/e -1/e
2 2 4 23 26 25 10 9 2 12 2 11 2 14 213
1/ e 1/ e ° -1/e =3/e e -3/e -e -3/e -e -3/e e -3/e 1/e /e /e /e (] 0
3 2 4 2 4 21 22 7 219 8 29 5 212 6 2 11 26 25 28 27
-1/ e =1/ e 1/e +3/e e -e +3/e -e-3/e e +3/e e -3/e -1/e 1/e -1/e 1/e ® e
23 23 21 22 8 29 7 2 1@ 6 2 11 5 212 25 26 27 28
1/ e -1/ e —e +3/e e -3/e 0 3/e—1/e e -3/e -e -3/e 1/e -1/e (] 0 1/e 1/e
5 26 26 7 210 8 29 . 2221 3 2 14 4 213 2 4 23 28 27
-1/ e 1/ e e +3/e e +3/e 1/e -3/e 0 -e +3/e -e -3/e -1/e -1/e %] -] -1/e 1/e
6 25 25 8 29 7 2 1@ 21 22 4 213 3 214 23 2 4 27 28
—e 0 e +3/e —-e -3/e —-e +3/e e -3/e ] e [ ) 1/e -1/e 1/e -1/e
7 8 5 212 6 2 11 3 214 4 213 1 2 4 23 26 25
e @ -e +3/e -—e +3/e e +3/e e +3/e —e -] (] -] -1/e -1/e -1/e -1/e
8 7 6 2 11 5 212 4 213 3 2 14 1 23 2 4 26 26
0 e -1/e 1/e -1/e /e e e ] —-e -1/e 1/e -1/e 1/e
9 10 2 6 25 2 4 23 2 2 14 213 2 12 2 1
-] —-e -1/e -1/e 1/e 1/e 0 2] e ? -1/e -1/e 1/e 1/e
10 9 25 26 23 2 4 2 213 2 14 2 1 2 12
3/e 1/e ~1/e 1/e (% 0 -1/e 1/e 1/e 1/e @ -1/e —-1/e -1/e -1/e
1 2 12 2 12 2 8 27 2 4 23 2 14 2 13 21 22 210 29
-3/e -1/e -1/e -1/e e (] 1/e 1/e ~1/e 1/e 1/e +1/e 0 1/e -1/e
12 2 1 2 1N 27 28 23 2 4 213 214 21 22 29 2 10
3/e -1/e (%] %] ~1/e 1/e -1/e 1/e 1/e -1/e 1/e -1/e (] —1/et+1/e
13 2 14 2 14 28 27 26 25 2 12 2 1" 2 10 29 2122
-3/e 1/e %] %] -1/e -1/e /e 1/e -1/e ~1/e 1/e 1/e 1/e-1/e )
14 213 2 13 27 28 25 26 2 1 2 12 29 2 10 2122
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We now consider the subalgebras of g2 which do not
act irreducibly on their complements, namely u(2),u(2)’,bl,

bl’ and b.

We have lemmas 2.5.1 and 2.5.2 of [Vval which give a one to
one correspondence between the set of all subalgebras of g2
and the set of all connected Lie subgroups of G2. All these
subgroups must be compact since a simple Lie group with a
noncompact subgroup must itself be noncompact. See [Gi]
p-330. Proposition 4.2 of [KN1l] p.43 enables us to consider

homogeneous spaces G2/W,where W is one of the Lie subgroups.

The components of the curvature tensor are computed
using the formula on page 84. Moreover we investigate the
possibilities of the homogeneous spaces admitting the
Einstein, Ricci- Codazzi or Riceci c¢yeclic parallel metrics.
From this investigation it seems that the class of Ricci-
Codazzi metrics is more restrictive than the class of Ricci

cyclic parallel metrics.
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Ge/Bl

In this case bl is generated by e ,e and e .The
1 7 8

splitting of m is : m = m + m ,where the
0 1

3-dimensional m 1is generated by e ,e and e ;
0 2 9 10

8-dimensional m 1is generated by e ,...e ,e ,...,e .
1 3 6 11 14

We consider metrics with

g(2,2)-4a , g(9,9)=4b , g(10,10)-4c;
g(3,3)=...= g(6,6)=12d, g(11,11)=...-g(14,14)=4d.

The Einstein equations are

2 e 2 2 2 2 2
abc+d(a-b -c¢) + 2bcd = 2bcd .4av,
2 e 2 ] p] 2 P
abec+d(b-¢ - a ) + 2cad = 2cad .4bv,
2 2 2 2 2 2 2
abc +d (ec-a - Db ) + 2abd = 2abd .4cv,
- a - b - c + 16d = 8d.4dv.

For a=b=c ,the equations above reduce to

4 2 2 2 2
a + ad 2a d .4av,

-3a + 16d 8d.4d4dv,

I

which on eliminating v yields
2 2
7a/d - 16a/d + 4 = (a/d - 2)(7asd - 2) = O
For the first case a=b=c=2d the sectional curvatures take
positive and negative values while for the second metric

the sectional curvatures are non-negative.They take values
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{1/224d,11/224d,1/164,89/672d,35/32d}.Thus the Einstein

metric with a=b=c=2d4/7 has pinching 1/245.

All Ricci-Codazzi metrics for the case a=b=c are
2 2
Einstein since we need 7a -16ad +4d =0.
It is not difficult to show that there are no solutions
of Einstein equations in the case when exactly two of the
coefficients a,b,c are equal. For example, when a=c the

equations reduce to

3 2 2 2
a +2ad -bd = 2ad.4av,
2 2 2 2 2 2
ab+bd = 2a d.4bv,
16d -2a -b = 84d.4dv.

Multiplying the first by b and subtracting the second
yields
2 2
b(a-b)( a + 2d ) =0, which is absurd unless a=b.
¥hen the coefficients a,b,c are distinct we

obtain from the first three equations:

2

(a-b){abe + 2d (a+b-c)} = 0,
2

(b-c){abc + 24 (b+c~a)} = 0,
2

(c-a)labe + 24 (c+a-b)} = 0,

from which we get

2
3abc + 2d (a+b+c) = 0 ,which is absurd
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For the space to be Ricci cyclic parallel we need
2 2 2 2 2 2
ab +bc +ca -ac -ba -cb = 0,
which can be written as

(a-b)(b-c)(c-a)=0.

Thus,for an arbitrary d,the space is Ricci cyclic parallel
if and only if at least two of the coefficients a,b,c are

equal. But all such metrics are Ricci parallel.



100
G2/B1l’
In this case bl’ is generated by e ,e and e .The

2 9 10

splitting of m is given by m = m + m + m where the
0 1 2

3-dimensional m 1is generated by e ,e and e
0] 1 7 8

4-dimensional m 1is generated by e ,e ,e and e
1 3 4 5 6

’

4-dimensional m 1s generated by e ,e e and e
2 11 12 13 14

We consider metrics with

g(l,1)=12a , g(7,7)=12b , g(8,8)=12c ;

g(3,3)= ...= g(6.6)=12d ; g(11,11)= ...= g(14,14) =4f.
The Einstein equations for a=b=c and d=f are

4 2 2 4 2 4
l10ad + 2a d 4a 4 .1l2av,

I

2 2 3 2 2
48a d - 15a d 8a 4 .12d4v,

which on eliminating v gives

2 2 1/2
35a /d - 48a/d + 4 = 0 ,i.e , a/d = {24 + 2(109) }/35
In this case (a=b=c and d=f) all the metrics considered
are automatically Ricci cyclic parallel,while all Ricci-

Codazzi metrics are necessarily Einstein.

It can be shown that there are no solutions of the

Einstein equations for d=f unless a=b=cC.
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As for Ricci cyclic parallel (when d=f) we need

(a-b)(b-c)(c-a)=0
and
2 2
b +bc +2ad -2ab -bd -cd =0 and ¢ +bc +2ad -2ac¢c -bd -cd =0.

If a=b then we must have a=b=c,the case already considered.

2
If b=c,we need b +ad -ab -bd =(b-d)(b-a) =0.

Thus b=c=d=f with arbitrary a gives Ricci cyclic parallel

metrics.But there is no Ricci-Codazzi metric for such case.




102
Ge/B

In this case b is generated by e .,e and e

10 12 14

The splitting of m is given by m = m + m + m ,where
S5-dimensional m 1is generated by e .e ,e ,e ,e ,

1 1 2 9 11 13

d-dimensional m 1is generated by e .e ,e ,
2 3 5 7

3-dimensional m 1is generated by e ,e and e
3 4 6 8

We consider metrics with

Ki(1l,1)=12a , Ki(2,2)=4a , Ki(9,9)=Ki(11,11)=Ki(13,13) = 4a,

Ki(3,3)=Ki(5,5)=Ki(7,7)=12b and Ki(4,4)-Ki(6,6)=-Ki(8,8)=12c.

The Einstein equations are

2 2 2
a - b - ¢ + 8bc = 4bc.4av,
2 2 2 2 3 2
lBac + 2ab - 5ca + 5%5¢b - 5¢c = 4ac .12bv,
2 2 2 3
- 4ab - 5ca - 5¢b + 5c + 24abc = 4abc.l2cv.

For b=c the equations reduce to
2 2 2 2 2
a + 6b = 16b av and -5a + 20ab = 48b av,
which has no real solution.
In fact in this case (b=c),Ricci-Codazzi conditions

2 2
reduce to 4a -10ab +9b =0, which has no real solutions.

Similar case holds for a=c or a=b.

However all metrics (with b=c) are Ricci cyclic parallel.
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Ge,U2
u2 is generated by e ,e ,e and e .The splitting of
1 2 7 8
of m is given by m = m + m ,where the
1 2
8-dimensional m 1is generated by e ,..,e ,e ,..,e ;
1 3 6 11 14

2-dimensional m 1is generated by e and e
2 9 10

We consider metrics with

i

£(3,3)
£(9,9)

..= g(6,6) = 12a ; g(11,11)=..= g(14,14)= 4a ;

g(10,10) = 4b.

The Einstein equations are
8a - b = 4a.4av,

2 2 2
2a + b = 2a .4bv,

which on eliminating v gives a/b = 1/2 or 3/2

For the Einstein metric with a/b=1/2 the sectional curvature

takes both positive and negative values,while for the second

metric the sectional c¢curvature is mnon-negative. It takes

values {1/96a,1/32a,1/16a,1/12a,11/96a,1'4a,3/8a}. Thus the

second Einstein metric with 2a=3b has pinching 1/36.

All Ricci-Codazzi metrics are necessarily Einstein for

we need
2 2
4a -8ab +3b = O
which gives a/b = 1/2 or 3/2.

However all the metrics considered are automatically

Riceci cyclic parallel.



104
Ge/Ug’
In this case u2’ is generated by e ,e .e and e .We

1 2 9 10

have the splitting of m given by m = m + m + m ,where
1 2 3

4-dimensional m 1is generated by e ,e ,e and e ;
1 3 4 5 6

2-dimensional m 1is generated by e and e
2 7 8

4-dimensional m 1is generated by e .e e and e
3 11 12 13 14

We consider metrics with

g(3.3) = ... = g(6,6) = 12a ; g(7,7) = g(8,8) = 12b ;
g(11,11) = ... = g(14,14) = 4c

The Einstein equations are

3 2 2 2
3a - 3dab - 3ac + 24abc - 4b ¢ = 4abc.llav,
2 2 2 3 2 2
2b ¢ + 3ab - 3ac - 3a + B8a ¢ = 2a c.l2bv,
2 2 2
8ab - a - b + ¢ = 4ab.4cv

It is not difficult to show that there is no solution
of Einstein equations for a=c. In fact in this case
there are no Ricci-Codazzi metrics for we need

2 2 2 2 P Q2
4a -24ab +17b =0 ; 4a -24ab +15b =0 ; 4a -32ab +17b =0,
which has no solutions.
Similarly there are no solutions for a=b or b=c.In fact

for b=c the above equations reduce to
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3 2 3 2 2
3a + 18ac - 4c = 48a cCc v,
3 2 3 2 2
-3a + 8ca + 2c = 24a C Vv,
2 2
8ac - a = lBac v.

From which we obtain

3 3 2 2
Ba -4c -24ca +18ac = 0,

3 3 2
3a -4c + 8ca = 0,

with no solution in common.

A necessary and sufficient condition for Ricci cyclic

parallel metric is a=b=cC.
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7
APPENDIX1 : RESULTS ON S

1$Log Output: MAN3, 16:52:27 Wed Apr 03/85

$RUN ETC:RDC2.LISP SCARDS=#+SOURCEs+«MSOURCE+ PAR=R=250P

Execution begins 16:52:29

STANDARD LISP INITIAL CORE ALLOCATION: FREE CELLS = 83490, BPS = 86016, PDS = 3000.
REDUCE 2 (Apr—15-79 (MTS Aug-18-80))

LINELENGTH(9@) ;
120

IN S7ABC;

COMMENT 1)This programme will compute the components of the curvature
tensor of any given homogeneous manifold. We shall also compute the
sectional curvature, Ricci curvature, the covariant derivative of the
Ricci tensor and the «cyclic sum of this derivative together with the
Ricci—Codazzi condition;

COMMENT ——————2)We represent the k—th component of the bracket product
[e(i).e(j)] by M(i,j,k)
In the case of S(7) obtained from Sp(2)/Sp(1) we have seen that
the splitting of m is given by m = m(@) + m(1) ,where the
3-dimensional m(®) is generated by e(2).e(5).e(6) while the
4-dimensional m(1) is generated by e(7),e(8),e(9) and e(1@).
From the table of the bracket products of the elements of sp(2) we
now tist all the non—-zero components of M(i,j,k) involving only
e(2),e(5).,e(6),e(7), e(8B),e(9) and e(1@). We only need to list the
lower triangle elements since the bracket product is skew—symmetric;

M( 5, 2, 6):= 2% M( 6, 2, 5):=-2% M( 6, 5, 2):= 2%

M( 7, 2, 8):= 1% M( 7, 5,18):=—1% M( 7, 6, 9):=—1%

M( 8, 2, 7):==1% M( 8, 5, 9):= 1% M( 8, 6,10):=—1%

M( 8,7, 2):=2% M(9, 2.10):=—1% M( 9, 5, 8):=—1%

M( 9, 6, 7):=1% M( 9, 7, 6):=—2% M( 9, 8, 5):=2%

M(10, 2, 9):= 1% M(1@, 5, 7):= 1% M(1@e, 6, 8):= 1%

M(10, 7, 5):=-2% M(10, 8, 6):=-2% M(18, 9, 2):=-2%
COMMENT 3)We now state the skew—symmetry property of the bracket
product namely, M{i,j,k) = —M(j,i, k) for all i,j,k=2,5,6,.,10;

FOR ROW:=2:1@ DO
FOR COL:=2:ROW-1 DO
FOR K:=2:1@ DO
IF NOT M(ROW,COL,K)=@ THEN M(COL,ROW,K) := —M(ROW,COL.K);

COMMENT 4)The metric on m obtained from the Killing metric on Sp(2)
by the method described in page 83 is given by,
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ARRAY KI(N);

KI(2) = 12+«A $ KI(5) := 12+B $ KI(6) := 12+C $
KI(7) := 24sD § KI(8) := 24D § KI(S) := 24sD %
KI(10):= 24D $

COMMENT——5)The inverse metric is then;

ARRAY HI(N);

HI(2) :=1/(12sA)$ HI(5) :=1/(12+B)$ HI(6) :=1/(12+C)$
HI(7) :=1/(24sD)$ HI(8) :=1/(24+D)$ HI(9) :=1/(24+D)$
HI(10) :=1/(24+D)$%

COMMENT——6)We now compute the Christoffel symbols of the Levi—Civita
connection given in page 84, making use of the fact that
the ‘"array"” M is rather sparse. This is done by single
pass through the array M;

ARRAY C{N.N,N):

FOR H:=2:1@ DO
FOR J:=2:10 DO
FOR K:=2:10 DO
IF NOT M(H,J,K) = @ THEN <<

C(H,J,K) = C(H,J,K) + M(H,J,K)/2
C(K,H,J) = C(K,H,d) — M(H,J ,K)sKI(K)sHI(J)/2
C(H.,K,J) := C(H,K,J) = M(H,J,K)*KI(K)sHI(J)/2
>>,
COMMENT —7)We will now compute the components of the curvature tensor given

by the formula in p. B4. We first compute the sum of the first three terms.
Again we exploit the fact that both arrays M and C are rather sparse,i.e,
we make single passes over the arrays accumulating "information" only when
we hove non-zero elements;

COMMENT—8)1n order to be able to compute the components of the curvature
tensor we have seen from the last term of the last term of the formula
that we need where now i,k take values either 1,3 or 4. We denote these
components by MC(i,j.k);

ARRAY MC({N,N,N);

MC( 7, 1, B):= 1% MC( 7, 3,18):= 1% MC( 7, 4, 9):=—1%
MC( 8, 1, 7):=—1% MC( 8, 3, 9):= 1% MC( 8, 4,10):= 1%
MC( 9, 1,18):= 1% MC( 9, 3, 8):=—1% MC( 9, 4, 7):= 1%
MC(10, 1, 9):=—1% MC(10, 3, 7):=-1% MC(10, 4, 8):=—1%
MC( 8, 7, 1):= 2% MC( 9, 7, 4):=-2% MC( 9. B, 3):= 2%
MC(1@, 7, 3):= 2% MC(1@, 8, 4):= 2% MC(10, 9, 1):= 2%

COMMENT——9) We also have the skew—symmetry property ;

FOR ROW:=1:1@ DO
FOR COL:=1:ROW-1 DO
FOR K:=1:10 DO
IF NOT MC(ROW,COL,K)=@ THEN
MC(COL ,ROW,K) :=—MC (ROW,COL ,K) ;
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ARRAY R{N,N,N,N);

FOR P := 2:18 DO <<
FOR Q := 2:1@ DO
FOR J := 2:10 DO
1F NOT C(P,Q,J) = © THEN <<
FOR H := 2:18 DO
FOR K := 2:10 DO <<

IF NOT C(H.J.K)

BEGIN
SCALAR TEMP;
TEMP := C(P,Q,Jd) » C(H,J,K) » KI(K);

0 THEN

R(H,P.Q,K) := R(H,P,Q.K) + TEMP;
R(P,H,Q,K) := R(P,H,Q,K) — TEMP;
END;

IF NOT M(H,K,P) = @ THEN
R(H.K,Q,J) = R(H,K,Q,d) = M(H,K,P)+C(P,Q,J)sKI1(J);
>>;
>>,
>>,

FOR H:=2:10 DO
FOR P:=2:1@ DO
FOR L:=1:4 DO
IF NOT MC(H,P,L) = @ THEN <<
FOR Q:=2:10 DO
FOR K:=2:10 DO
IF NOT MC(L,Q,K)
BEGIN
SCALAR TEM;
TEM := MC(H,P,L)*MC(L,Q,K)*KI(K);
R(H,P,Q,K) R(H,P,Q,K) ~ TEM;
END;

@ THEN <<

]

>>,
>>,

COMMENT——1@)We can now compute the sectional curvature S;
ARRAY S(N,N);

FOR P:=2:10 DO
FOR K:=P+1:10 DO
BEGIN
S(P,K):=S(K,P):= R(K,P,P,K)sHI(P)sHI(K);
IF NOT S(P,K)=0 THEN WRITE
"S(L P, MLt LK, M)s=S(ULK, Lt P, )= UL S(PLK)S
END;

2 2 2
S(2.5)=S(5.2)= (A ~ 2+AsB + 29AsC + B + 2¢BsC — 3oC )/(122A2BsC)

2 2 2
$(2.6)=S(6,2)= (A + 20AeB — 2¢AeC — 3¢B + 22BeC + C )/(120A<BsC)

2
$(2.7)=S(7,2)= A/(48e¢D )
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2
S(2.8)=S(8,2)= A/(48+D )

2
S{2,9)=S(9,2)= A/(48D )

2
S(2,10)=S(10,2)= A/(48sD )

2 2 2
S(5.6)=S(6,5)= ( — 3+A + 2sAeB + 20AsC + B — 2eB+C + C )/(12+AsBsC)

2
S(5,7)=S(7.,5)= B/(48D )

2
S(5,8)=S(8,5)= B/(48¢D )

2
$(5.,9)=5(9.5)= B/(48+D )

2
S(5,10)=S(1@,5)= B/(48+D )

2
S(6.7)=S(7.6)= C/(48D )

2
S(6,8)=S(8,6)= C/(48¢D )

2
S(6,9)=S(9.6)= C/(48=D )

2
S(6,10)=S(10,6)= C/(48sD )

2
S(7,8)=S(8.,7)= ( — 3sA + BsD)/(48+D )

.2
3+C + 8sD)/(48eD )

S(7.9)=S(9.7)= (

2
S(7,10)=S(1@,7)= ( — 3B + BeD)/(48sD )

2

S(8,9)=S(9,8)= ( — 3+B + B8sD)/(48+D )

2
S(8,10)=5(10,8)= ( — 3+C + 8¢D)/(48sD )

2
S(9,12)=S(10,9)= ( - 3sA + B8¢D)/(48B=D )

COMMENT——11)The Ricci tensor is given by;



ARRAY RICCI(N,N);

FOR P:=2:10 DO
BEGIN
RICCI(P,P)
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:= (FOR Q:=2:10 SUM S(P.Q))sKI(P) $

IF NOT RICCI(P,P)=0 THEN WRITE

"RICC](“,p. u.u ,P, u)= n
END;
2 2 2 2 2
RICCI(2,2)= (A +BsC + 2+A oD — 2+B D + 4
2 2 2 2
RICCI(5,5)= ( ~ 2+¢A ¢D + AsB #C + 4sAsCaD
2 2 2 2
RICCI(6,6)= ( — 2+A oD + AsBsC + 4+AsBeD
RICCI(7,7)= ( — A - B = C + 12+D)/D
RICCI(8,8)= ( —= A - B ~ C + 12sD)/D
RICCI(9,9)= ( - A - B — C + 12+D)/D
RICCI(10,18)= ( -~ A — B — C + 12D)/D
COMMENT———12)}We now compute the covari

ARRAY DEL(N,N,N);

FOR L:=2:10 DO
FOR J:=2:10 DO
FOR K:=2:10 DO
BEGIN
DEL(L,J,K):=—C(K,L,J)»

IF NOT DEL(L,J,K)=0 TH
"DEL(",L, ll'll ,J, l|'|I
END;
3 3 2 2
DEL(2,5,6):= ( — A #BsC — 4+A sD + A sBsC
2 2 2 2 3
4eAsB oD -~ 42AsC D + 40B
3 3 2 2 2
DEL(2.6,5):= (A *BeC + 43A sD — A sB «C -
3 2 2 2
AsBaC - 42AxC 3D - 4+B =C»
2 2 2 2
DEL(2,7.8):= ( — 3sA sB*C ~ 4sA sD - A»B

2 2 2
+ 4eC oD )/(2+BeCeD )

JRICCI(P.P)$

2 2 2 2
sBeCeD — 2¢C oD )/(BeCeD )

2 2 2 2 2
+ 2¢B sD — 2¢C D )/(AeCsD )

2 2 2 2 2

— 2B sD + 2¢C D )/(AsBsD )

ant derivaotive of the Ricci tensor;

RICCI(J,J) —C(K,J.L)*RICCI(L,L);
EN WRITE

KL "Yi= " DEL(L,J,K);

2 2 2 2

— 4+A +B«D + 82A

2
*CsD + AsB

3
«C — AsB

2 2

2
D

2 2 2 2 2
— 8sB sCeD + 4¢B#C D )/(A=BeCeD )

2
8+A

2 2 2
+B«D + 40A oCe*D + A»*B

2 2 2

«C + 4sA3B D

2

2
D + 8+BsC

2 2
«D

3 2 2
- 4+C oD )/(A+BsCsD )

2
sC — A:BsC + 12sA«B«CesD + 4B

2 2

sD ~ B8sB+CsD

2

«C +



1M1
2 2 2 2 2 2 2 2
DEL(2.8,7):= (3%A #BeC + 42A 3D 4+ Ae¢B oC + AsBsC — 12¢AsBsCeD — 4B sD + B+BsCeD - 4s¢

2 2 2
C D )/(2+BsCe¢D )

2 2 2 2 2 2 2 2
DEL(2,9,10):= (3+A +BsC + 4*A aD + AsB #C + AeBeC - 129A*BeCsD — 42B sD + 8BeBsCeD - 4
2 2 2
*C D )/(2B+CsD )
2 2 2 2 2 2 2 2
DEL(2,10,9):= ( — 3¢A +BsC — 4sA ¢D — AeB sC — A+*BeC + 12:AsBsCsD + 4sB D — 8sBsCsD
2 2 2
+ 4C oD )/(2+B#CsD )
3 3 2 2 2 2 2 2 2 3 2 2
DEL(5,2,6):= ( — A #BsC — 4%A sD + A sBsC — 4sA oBsD + 8sA «CsD + AsB oC — AsB sC +
2 2 2 2 3 2 2 2 2 2 2
4¢A%B #D — 4+AeC D + 44B «D - BeB sCsD + 4sB+C D )/(A+B+CsD )
2 2 2 2 2 2 2 2 k) 2 2 3
DEL(5,6.2):= (A B sC - A sBsC — 49A sBsD + 4sA sCsD - AsB «C + BeAsB D + AsBsC - 8

2 2 3 2 2 2 2 2 3 2 2
#AsC #D — 49B D — 4+B ¢CesD + 4¢B+C D + 4+C =D )/(A+BeCeD )

2 ' 2 2 2 2 2 2 2
DEL(5,7,10):= (A «BsC — 4sA oD + 3sAsB «C + AsB¢C — 125A2BsCsD + 8+AsCeD + 4B »D - 4

2 2 2
#C D )/(2+A+CeD )

2 2 2 2 2 2 2 2
DEL(5,8,9):= ( — A ¢BsC + 42A ¢D — 32AsB oC ~ AsBe«C + 12+AsBsCeD — 83AsCeD =~ 4B oD
2 2 2
+ 4¢C oD )/(2+A=CsD )
2 2 2 2 2 2 2 2
DEL(5,9.8):= (A sBsC — 49A osD + 3%AsB sC + AsBsC — 12:AsBsCeD + BsAsCsD + 40B D - 4»

2 2 2
C sD )/(2#AeCeD )

2 2 2 2 2 2 2 2
DEL(5,10,7):= ( — A sBsC + 4sA oD — 32AsB ¢C — AsBsC + 123AsBeCeD — BsAsCsD ~ 42B oD

2 2 2
+ 4#C D )/(2sAe¢CsD )

3 3 2 2 2 2 2 2 2 2 2 2 2
DEL(6,2,5):= (A »BeC + 42A sD -~ A sB ¢C — BsA sBeD + 42A 2CeD + A=zB =C + 40AeB oD -

3 2 2 2 2 2 2 32 2
AsBsC — 49AsC sD - 4sB oCsD + BeBsC oD — 4sC =D )/(AsB+CsD )



DEL(6.5,2):

DEL(6,7.9):

DEL(6,8,10):=

DEL(6,9,7):

DEL(6,10,8):=

DEL(7,2.8):

DEL(7.5,10):=

DEL(7.6.9):

DEL(8.,2,7):

DEL(8.5,9):

]
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2 2 2 2 2 2 2 2 3 2 2 3
(A sB sC — A *BsC — 49A +BeD + 43A sCeD — AsB sC + 8¢AsB sD + AeBsC - 8

2 2 3 2 2 2 2 2 3 2 2
¢AsC sD — 4eB #D -~ 4B ¢CeD + 4+B=C =D + 43C =D )/(AsBsCeD )

2 2 2 2 2 2 2 2
(A eBsC — 42A sD + AsB sC + 32A*BsC — 12sAeBsCoD + BeAsBsD - 42B «D + 4+

2 2 2
C D )/(2+A*BsD )

2 2 2 2 2 2 2 2
(A »BsC — 42A *D + AeB oC + 32A*BsC — 12sAsBsCeD + 8B+A*BeD — 4B D + 4

2 2 2
*C D )/{(2+AsBsD )

2 2 2 2 2 2 2 2
( — A #BsC + 44A «D — AsB 3C — 33AsBsC + 12+A¢BsCsD — BsAeBsD + 4B oD

2 2 2
~ 43C »D )/(2¢A*B+D )

2 2 2 2 2 2 2 2
( — A #BsC + 45A D — AeB sC — 3+AsBsC + 12+AsBsCsD — BsAsBsD + 4B »D

2 2 2
~ 4C sD )/(2%AsBsD )

2 2 2 2 2 2 2 2
( — 3+A #BeC — 4sA sD — AeB oC — AsBeC + 12+A¢BsCeD + 4B sD — 8sBs(CsD

2 2 2
+ 4+C 2D )/(2+B+CsD )

2 2 2 2 2 2 2 2
(A eBeC — 42A oD + 39AsB +C + AsBsC - 125A+BeCsD + BsAsCsD + 49B oD - 4

2 2 2
*C oD )/(2+AsCeD )

2 2 2 2 2 2 2 2
(A +BsC — 4sA #D + AsB 2C + 32AsBsC — 12¢AsBsC+D + 82AsBeD — 4+B D + 4»

2 2 2
C ¢D )/(22AsBeD )

2 2 2 2 2 2 2 2
(32A #BsC + 4sA 2D + AsB »C + AoBsC — 125AsBsCsD — 438 sD + 8e¢B2CsD - 4=

2 2 2
C oD )/(2+B+C*D )

2 2 2 2 2 2 2 2
( — A sBeC + 4sA sD — 3sAsB =C — AsBeC + 122AsBsCsD ~ B¢A2C:D - 4B <D

2 2 2
+ 4%C =D )/(2¢AsCeD )
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2 2 2 2 2 2 2 2
DEL(8,6,1@):= (A ¢B#C — 4¢A oD + AsB *C + 3¢A*BsC — 12+Ae¢B+CeD + 8+AsBsD — 4¢B «D + 4
2 2 2
+C oD )/(2#AsBeD )
2 2 2 2 2 2 2 2
DEL(9,2,18):= (3#A BsC + 4+A sD + AsB +C + AsBeC - 12+A+BsCeD — 4+B oD + 8sBeC2D - 4
2 2 2
«C D )/(2BsCeD )
2 2 2 2 2 2 2 2
DEL(9,5,8):= (A *BsC — 49A 3D + 33AsB sC + AsBesC — 12+AsBsCsD + BeAsCsD + 4¢B oD - 4s»
2 2 2
C D )/(2+AsCsD )
2 2 2 2 2 2 2 2
DEL(9.6,7):= ( — A #BsC + 4¢A ¢D — A¢B +C — 3+AsBeC + 12+AsBsCeD — BsAsBsD + 43B »D
2 2 2
— 4+C D )/(2+A*BsD )
2 2 2 2 2 2 2 2
DEL(10,2.9):= ( — 3*A »BsC — 49A D — AsB sC — AsBsC + 12+AsBsCsD + 49B D ~— 8sB+CeD
2 2 2
+ 4¢C D )/(2+Bs+CeD )
2 2 2 2 2 2 2 2
DEL(10.5,7):= ( — A *BsC + 45A sD — 32A+B ¢C — A*BsC + 12+AB+CeD — 8+AsCeD — 4B »D
2 2 2
+ 4+C »D )/(29AsCs+D )
2 2 2 2 2 2 2 2
DEL(1©,6,8):= ( — A sB#C + 4+A D ~ AsB +C — 3sA+BeC + 12+A+BsCsD — 8+AeBeD + 4B »D
2 2 2
— 44C D )/(2+AeBsD )
COMMENT——13)The nonzero components of RC(i,j,k)=DEL(i,j,k)-DEL(k,],i) are;

ARRAY RC(N,N,N);

FOR L:=2:1@ DO
FOR J:=2:10 DO
FOR K:=L+1:10 DO
BEGIN
RC(L,J,K) := DEL(L,J.K)-DEL(K,J,L);
IF NOT RC(L,J,K)=0 THEN WRITE
"RC(™, L, ", J, ", K, M) i==RC("LK, MLt L, Lt L, )= “,RC(L,J,K)$
END;
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3 3 2 2 2 2 2 2 2 3
RC(2,5,6):=—RC(6,5,2):= ( ~ A #BeC — 42A oD — A +B sC + 2¢A sBsC + 43A sCsD + 2+AsB «C

2 2 2 2 3 2 2 3 2 2 2 3
— AsB sC — 4+A+B «D — AsBsC + 4+AsC #D + BeB D — 4+B 2CeD — 44C

2 2
«D )/(A«BeCsD )

3 3 2 2 2 2 2 2 2 3
RC(2,6,5):=—RC(5,6.,2):= (A *BsC + 4sA ¢D — 2+A *B «C + A #BsC — 4+A +BeD + AsB +C + As

2 2 2 2 3 2 2 3 2 2 2 3 2
B «C — 4sAsB D — 2+AsBsC + 4sAsC *D + 4B *D + 4¢B+C «D - 8¢C =D

2
)/ (A*B+CsD )

2 2 2 2 2 2 2
RC(2,7,8):=—RC(8,7,2):= ( — 3sA sBsC ~ 43A *D — AsB #C - A*BsC + 12+AsBeCsD + 4B sD -~

2 2 2 2
B8sBeCsD + 4¢C oD )/(2+BsCsD )

2 2 2 2 2 2 2
RC(2,8,7):=—RC(7,8.2):= (3+A ¢BsC + 4+A +D + A+*B *C + AsBsC — 12+A+BesCsD — 44B +D + 848

2 2 2 2

*CsD 4+C D )/(2+B+C»D )

2 2 2 2 2 2 2
(3A *B#C + 4%A *D + AsB sC + AsBsC — 12+A+BeC»D — 4B *D + 8

RC(2.9,10):=—RC(10,9,2):

2 2 2 2
»BsCeD — 44C *D )/(2+B+CsD )

2 2 2 2 2 2 2
RC(2,18,9):=—RC(9,10,2):= ( — 3%A BsC — 4+A ¢D — AeB #C — AsBsC + 12¢AsB+CsD + 4¢B oD

2 2 2 2
— B*BsC*D + 4+C D )/(2+B8+CsD )

3 3 2 2 2 2 2 2 2 2 2
RC(5,2,6):=—RC(6,2,5):= ( — 2%A sBsC — BsA oD + A #B sC + A sBsC + 4sA «BsD + 4sA sC+D

3 2 2 3 3 2 2 2 2 2 3
+ AsB #C — 2+AsB sC + AsBsC + 4sB sD - 43B oCsD — 4¢Bs«C D + 4¢C »

2 2
D )/(A+BeC=D )

2 2 2 2 2 2
RC(5.7,10) :=—RC(10.7.5):= (A #BsC — 4sA oD + 3¢AsB sC + AeBesC ~— 120A2BsCsD + 8sAsCeD +

2 2 2 2 2
4B D — 4+C oD )/(2%AsCeD )
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2 2 2 2 2 2
RC(5,8,9):=—RC(9,8,5):= ( — A sBsC + 4sA oD — 3+AsB +C — A+BeC + 12+A+B+CsD — 8BsAsCsD

2 2 2 2 2
~ 4+B sD + 4+C »D )/(2+AsCeD )

2 2 2 2 2 2
RC(5,9,8):=—RC(8,9,5):= (A ¢B+C ~ 4%A aD + 3sAsB sC + AeBsC -~ 122AsBsCe¢D + BeAsCsD + 4+

2 2 2 2 2
B #D - 44C oD )/(2+ACeD )

2 2 2 2 2 2
RC(5.,10,7):=—RC(7,10,5):= ( — A #BsC + 42A sD -~ 33AsB «C — AsB*C + 12+AsBesCsD ~ 8+AsCsD

2 2 2 2 2
— 4B oD + 4sC +D )/(2%AeCeD )

2 2 2 2 2 2
RC(6,7.9):=—RC(9,7,6):= (A sBeC — 4#A sD + AsB sC + 3sAsBoC — 12+AsBsCeD + BsAsBsD - 4o

2 2 2 2 2
B *D + 4sC D )/(2+A*BsD )

2 2 2 2 2 2
(A #B*C — 4sA 2D + AsB »C + 32AsBeC - 12+A=BsCsD + BsAeBsD -

[}

RC(6,8,10) :=—RC(10,8,6):

2 2 2 2 2
4B sD + 4C »D )/(29AeBsD )

2 2 2 2 2 2
RC(6,9,7):=—RC(7,9,6):= ( — A *BeC + 40A sD — AsB *C — 3+A#BsC + 12¢A«BsCeD — 8B+A+BsD

2 2 2 2 2
+ 4B oD — 4+C oD )/(2#A+BsD )

2 2 2 2 2 2
RC(6,19,8):=-RC(8,10,6):= ( — A sB*C + 4sA #D — As*B sC — 3+AsBsC + 12+AsBeCeD — 8+A+BsD

2 2 2 2 2
+ 49B D — 4+C *D )/(2+A«BsD )

2 2 2 2 2 2 2
RC(7.2,8):=—RC(8,2,7):= ( —~ 3%A *BeC — 4sA oD =~ AsB »C — AsBeC + 12+¢AsBeCsD + 4sB D -

2 2 2 2
8+BsCsD + 42C D )/(BsCeD )

2 2 2 2 2 2
RC(7,5,10):=—RC(10,5,7):= (A *BsC — 4¢A +D + 39AsB ¢C + AsBesC ~ 123AsBsCsD + 82A2CeD +

2 2 2 2 2
4sB ¢D =~ 4oC <D )/(A2CeD )
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2 2 2 2 2 2
RC(7,6,9):=—RC(9,6,7):= (A #BsC ~ 44A «D + AsB +C + 3+A+BsC — 12+A+BsCeD + BoAsBsD - 4»

2 2 2 2 2
B *D + 4+C D )/(A+BsD )

2 2 2 2 2 2
RC(8,5,9):=—RC(9,5,8):= ( — A sBeC + 4¢A D ~ 33AsB »C — AsBeC + 12sAsBeCsD — 8sAsCsD

2 2 2 2 2
— 43B D + 4sC <D )/(AsCsD )

2 2 2 2 "2 2
RC(8,6,10) :=—RC(10,6,8):= (A sBsC — 4%A sD + AsB *C + 3#AsBsC — 12sAsBsCeD + BsAsBsD —

2 2 2 2 2
4+B #D + 4sC D )/(A*BsD )

2 2 2 2 2 2 2
RC(9,2,10):=-RC(10,2,9):= (3sA *BsC + 42A oD + AsB *C + AsBsC - 122AsBsCeD — 44B «D + 8

2 2 2 2
+BeCsD — 4C oD )/(BeCeD )

COMMENT——14)Finally we check whether the Ricci cyclic parcollel conditions are
satisfied. We print non-zero components of
RCP(i,j.k)=DEL(i,j,k)+DEL(j.k,i)+DEL(k,i,j);

ARRAY RCP(N,N,N):

FOR L:=2:10 DO
FOR J.=L:10 DO
FOR K:=L:10 DO
BEGIN
RCP(L,J,K):= DEL(L,J,K) + DEL(J,K,L) + DEL(K,L,J);
1F NOT RCP(L,J,K)=0 THEN WRITE

“RCP(H,L. u,u. J_ ".“, K, n) C= ",RCP(L,J,K)$
END; ‘
2 2 2 2 2 2
RCP(2,5,68) := (16s( — A sB + A 3C + AsB — AsC - B *C + BsC ))/(AsBsC)
2 2 2 2 2 2
RCP(2,6,5) := (16s( — A »B + A sC + A*B — AsC — B sC + B=sC ))/(A+B+C)

COMMENT——15)PROGRAMMES I[N REDUCE ENDED,

$
SIGNOFF

ENTERING LISP. ..

sss END OF DATA
Execution terminated 16:55:30 T=129.963 RC=0 $8.14
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: RESULTS ON CP

3

COMMENT—Metrics considered are of the form;

g(5,
,8)

g(8

COMMENT—The

S(5,

S(5,

s(5,

S(5

s(5

s(s6,

s(s,

S(s,

S{s6,

S(7,

S(7

s(7

s(s,

s(8,

s(9,

5)

6)

7)

8)

,9)

.10)

8) :

9)

10)

8)

.9)

.1e)

9)

19)

10)

fi ]

"

N

24¢B8 $

12¢A $ g(6,6) :=
g(9.9) :=

12¢A  $ g(7.7) := 24+B $
24sB $ g(10,10):= 24+B §

sectional curvoture S is given by;

S(6.5) :

it

5(7,5) 1=

5(8,5) :=

S(9,5) :

= $(10,5) :

S(7,6) :=

1

S(8,6) :=

S(9.,6) :=

;= $(10,6) :

S(8,7) :=

$(9.7)

= 5(10,7)

;= 5(9,8) :=

5(10,8) :

S(10,9) :

1/(3%A)

2

A/(48+B )

2

A/(48+B )

2

A/ (4848 )

2
A/ (4828 )

2

A/(48+B )

2

A/(484B )

2

A/(48+B )

2
A/(48sB )

1/(6+B)

i

(

2
~ 3¢A + 89B)/(48+B )

2
( - 3¢A + 89B)/(48+B )

2
- 3eA + B+B)/(48+B )

2
( — 3sA + 8+B)/(48+B )

1/(6B)
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COMMENT——The Ricci tensor is given by;

2 2 2
RICCI(5,5) := (A + 4sB )/B

2 2 2
RICCI(6,6) := (A + 4<B )/B
RICCI(7.7) := (2+( — A + 6+B))/B
RICCI(8,8) := (2¢( — A + 6+B))/B
RICCI(9,9) := (2¢( — A + 6sB))/B

RICCI(10,10) := (2e(

A + 6sB))/B

COMMENT—The non-zero components of the derivative of Ricci tensor are;

2 2 2
DEL(5,7,10):= (2+(A — 3sAsB + 2+B ))/B

2 2 2
(2¢( — A + 3+AsB - 2+B ))/B

DEL(5,8,9):

2 2 2

DEL(5,9.8):= (2+(A =— 3sAsB + 2¢B ))/B

]

2 2 2
DEL(5,10,7):= (2+( — A + 3+A*B — 2B ))/B

2 2 2
DEL(6,7,9):= (2+(A - 3+AsB + 2«B ))/B

2 2 2
DEL(6,8,10):= (2s(A - 3sAsB + 2sB ))/B

2 2 2
DEL(6.9,7):= (2s( — A + 30AsB - 2«B ))/B

2 2 2
DEL(6,10,8):= (2+( - A + 3sAsB - 2+B ))/B

2 2 2
DEL(7,5.,18):= (2s(A - 3sAsB + 2¢B ))/B

2 2 2

DEL(7.6.9):= (29(A ~— 3eAeB + 248 ))/B

2 2 2

DEL(8,5.9):= (2¢( — A + 3eAeB — 2+B ))/B

2 2 2
DEL(8.6,10):= (2s+(A - 3sAsB + 2B ))/B
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2 2 2
DEL(9,5,8):= (2¢(A - 32A<B + 2B ))/B

2 2 2
DEL(9,6,7):= (2e( — A + 30AsB — 2¢B ))/B

2 2 2

DEL(10,5,7):= (22( — A + 3sA«B - 2¢8 ))/B

2 2 2

DEL(10,6,8): (20( — A + 32AeB — 22B ))/B

COMMENT——The nonzero components of the difference RC(i,j,k)=DEL(i,j,k)-DEL(k,j.,i) ore;

2 2 2
RC(5,7,10):=—RC(1@,7,5):= (2°(A — 3<AsB + 2B ))/B

2 2 2

RC(5,8,9):=-RC(9.,8,5):= (2+( — A + 3eAcB — 2¢B ))/B

2 2 2
3=AeB + 2B ))/B

RC(5.9,8):=—RC(8.,9,5):= (2s(A
2 2 2

RC(5.10,7):=—RC(7,10,5):= (22( — A + 30AcB - 2:B ))/B

2 2 2

RC(6,7,9):=-RC(9,7,6):= (2+(A 39A<B + 2B ))/B

2 2 2
RC(6.8,10):=—RC(10,8,6):= (25(A - 3cAsB + 2B ))/B

2 2 2
RC(6,9,7):=-RC(7,9,6):= (2:( - A + 3cAsB — 2¢B ))/B

2 2 2
(2¢( -~ A 4+ 32AeB - 2¢B ))/B

RC(6,190,8):=—RC(8,10,6):

2 2 2
RC(7.,5.10) :=—RC(10,5,7):= (42(A — 35AeB + 208 ))/B

2 2 2

RC(7.,6,9):=—RC(9,6,7):= (4s(A - 3:A<B + 20B ))/B

2 2 2
(4o( — A + 39AsB — 25B ))/B

RC(8,5,9):=-RC(9,5,8):

2 2 2
RC(8,6,10) :=—RC(18,6,8):= (42(A - 3+AsB + 2:B ))/B

COMMENT—-The non-zero components of DEL(i,j,k)4DEL{j,k,i)+DEL(k,i,j) are;

$

SIGNOFF

ENTERING LISP. ..

+eo END OF DATA

Execution terminated 20:01:26 T=86.98 RC=0 $5.44
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