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ABSTRACT 

This Thesis i s concerned with the computation and interpretation of 

Cerenkov l i g h t pulse shapes from d i g i t i s e d pulses. 

The experiment to measure the c h a r a c t e r i s t i c s of extensive a i r showers 
15 18 

i n the energy range 10 eV - 10 eV was conducted at the University 

of Durham EAS array i n Dugway, UTAH, USA between 1977 and 1980, 

Systematic environmental monitoring of the experiment has been car r i e d out 

to quantify weather conditions and assess data quality. 

Computer programs have been developed and tested to ret r i e v e pulse 

shape information from d i g i t i s e d Cerenkov l i g h t data. Three main data 

f i t t i n g methods are investigated and compared, and the theories underlying 

them are outlined. 

A sample of the Dugway data has been analysed in d e t a i l a f t e r pulse 

shape reconstruction using unimodal quartic s p l i n e s . The measured pulse 

shape parameters are interpreted to show the electron cascade development 

of the extensive a i r showers, and related to a proposed primary energy 

estimator. Suggestions are made for further pulse shape reconstruction 

techniques. 
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CHAPTER ONE 

INTRODUCTION 

1<>1 H i s t o r i c a l Background., 

I n 1900 Co T„ R 0 Wilson, the originator of the Wilson Cloud Chamber, 

observed that an insulated gold l e a f electroscope l o s t i t s charge even 

when the greatest care was taken to insulate i t from known radiations. 

He attributed t h i s residual conductivity to a radiation that ionized 

the gas i n the electroscope (Wilson, 1901). 

A decade l a t e r , Hess (1912) showed from the r e s u l t s of balloon 

f l i g h t s , carrying electroscopes to a l t i t u d e s of a few kilometres, 

that the ionisation decreased with height above sea l e v e l up to 

700m and then increased again to as much as ten times i t s sea 

l e v e l value at ^^9km« The decrease i n ionisation was due to a 

decrease i n the contribution from the Earth's radioactivity^ whilst 

the increase was interpreted as the effect of a corposcular radiation 

coming from outer space. This e x t r a - t e r r e s t r i a l radiation was named 

"cosmic radiation" by Millikan (1939)° Further experiments showed 

that cosmic rays were mainly p o s i t i v e l y charged and were more penetrating 

than gamma-radiation,, the most penetrating radiation known at that time. 

1.2 The Cosmic Radiation. 

Hess's discovery of cosmic rays was important because i t meant 
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that s c i e n t i s t s now had access to a di r e c t sample of matter originating 

from outside our so l a r system. As the radiation i s a highly concen­

trated form of energy, exceeding the energy range of laboratory 

p a r t i c l e accelerators, i t gives evidence to processes occuring i n the 

cosmos that are s t i l l accessible only to speculation. 

The cosmic ray spectrum makes up only a small part of the t o t a l 

radiation spectrum; yet i t s investigation has led to many discoveries 

i n Physics. These include the discovery of the ^ -meson and 

rr-meson. The construction of high-energy p a r t i c l e accelerators, 

around the middle of t h i s century, as sources more convenient and 

controllable than cosmic rays, was larg e l y based on r e s u l t s from 

cosmic ray research. 

I n t e r e s t i n the astrophysical aspects of cosmic rays i s mainly 

centred on possible answers to three main questions : 

( 1 ) What i s the energy spectrum of the radiation ? 

( 2 ) What i s the mass composition of the radiation ? 

and ( 3 ) Where do these rays originate from ? 

Answers to these questions might contribute not only to our under­

standing of the Galaxy and the possible e f f e c t s of the radiation on 

our Planet, but also the history of the universe. 

1.2 .1 The Energy Spectrum. 

I t i s now well established that the cosmic radiation i s made up 

of p a r t i c l e s and photons with an energy range which extends from l e s s 
q 19 than 1CT eV to an upper l i m i t greater than 10 7 eV per nucleon. The 
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i n t e g r a l energy spectrum has been represented by a simple power law 

of the form 

N ( > E ) tx E ~ * 1.1 

The exponent, S , changes slowly with energy from 1.6 i n the 

low energy range 10 eV - 10 3 eV (Grigorov et a l , 1971) to ^ 2 . 4 
15 

i n the steeper region ( a f t e r the "knee") between /~w 3 x 10 eV and 

1 0 1 7 eV. 
The shape of the energy spectrum at the u l t r a high energy region 

18 

( > , 10 eV) i s rather controversial (Krasilnikov, 1973)* As 

Figure 1.1 shows, recent experimental r e s u l t s do not a l l agree on the 

slope of the energy spectrum i n t h i s region. What seems c l e a r i s that 

does not increase s u b s t a n t i a l l y beyond 2.4 i n the high 

energy ranges and might possibly even decrease. This, however, w i l l 

have to be confirmed by further experiments. 

The vast energy range of the primary energy spectrum precludes any 

attempt to study the whole spectrum by a single technique. Figure 1.2 

gives a summary of the different methods used to measure the primary 

energy (Wolfendale, 1975)• At energies below ,-^10^ eV dir e c t 

s a t e l l i t e measurements can be made to y i e l d information about the 

predominantly low mass p a r t i c l e s . 
9 11 Between 10 eV and 5 x 10 eV most of the information about 

the primary spectrum has been obtained by balloon experiments. 
Measurements up to t h i s upper l i m i t have been c l a s s i f i e d , therefore, 



FIGURE 1 .1 

THE PRIMARY ENERGY SPECTRUM ( j u l i u s s o n , 1975) 

FIGURE 1.2 

SUMMARY OF MEASUREMENTS OF SOME OF THE PRIMARY 

COSMIC RAY COMPONENTS (Wolfendale, 1975) 
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as " d i r e c t " , i n contrast to i n d i r e c t measurements on energies above 

5 x 1 0 ^ eV which are obtained by extrapolating r e s u l t s from sea-

l e v e l muons and other p a r t i c l e studies. Above / ~ ^ 1 0 ^ eV, studies of 

Extensive A i r Showers provide a r e l i a b l e means of obtaining information 

on the primary cosmic radiation. 

1.2.2 The Mass Spectrum. 

The mass composition of primary cosmic rays i s not known to the same 

extent as the energy spectrum i s known. Current available data indicate 

that the major constituent of the primary i s a mixture of protons, alpha 

p a r t i c l e s and heavier nuclei (mainly i r o n ) . 

Table 1.1 gives a summary of r e s u l t s from experiments conducted to 

investigate the mass composition of the primary cosmic radiation. These 

observations confirm that heavy nuclei are present up to energies of the 

order of ^ 4 x 1 0 1 4 eV. 

In t e r e s t i n the mass composition of the primary has been stimulated 

by the p o s s i b i l i t y of r e l a t i n g tne mass to t h e i r place of origin. The 

p a r t i c l e s are affected by the media through which they t r a v e l , by i n t e r ­

action as well as deflection i n the g a l a c t i c magnetic f i e l d . Heavy 

nuc l e i may be expected to be shorter l i v e d than protons because of the 

greater probability of suffering c o l l i s i o n s with i n t e r s t e l l a r atoms. 

The mass spectrum would then become more protonic with increasing energy. 

On the other hand iron n u c l e i , with t h e i r higher charge, are l e s s 

magnetically r i g i d than protons and would be expected to be contained 

i n our Galaxy while protons w i l l be expected to escape. An observed 
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TABLE 1.1 

EXPERIMENTAL DATA ON THE MASS COMPOSITION OF THE 

PRIMARY COSMIC RADIATION. 

energy 

(eV) 

t o t a l no 

of events 

percentage 
of protons 
and 
neutrons 

percentage 

Of oC 

p a r t i c l e s 

percentage 

of heavier 

nuclei 

Reference 

11 
3.7 x 1 0 " 46 80 13 7 Malhotra 

et a l ( l 9 6 6 ) 

> 1 0 1 2 112 46 16 38 McCusker 

(1967) 

universal 
composition — 99 <=L 1 < . 0 2 



7 

primary cosmic radiation with predominant protonic fl u x would therefore 

indicate an extra-galactic source. 

1.2.3 Some Theories on the Possible Origin of Cosmic Rays. 

The exact ori g i n of the cosmic radiation i s s t i l l an unsolved problem. 

Any theory on the or i g i n of the radiation must explain both the production 

and the acceleration machanism of the cosmic ray nu c l e i . 

The very high energies observed led to assumptions that the sources 

might be unusual objects. Supernovae seem capable of providing such 

high energies (Ginzburg and Syrovatskii, 1964) and i f cosmic rays were 

confined to our galaxy they would be acceptable as possible sources. 

Other s t a r s and novae, the Sun, Gal a c t i c centre and pulsars have been 

proposed as plausible cosmic rays sources. 

Experimental evidence indicates an a l l - i s o t r o p i c d i s t r i b u t i o n 

pervading space. The main reason for t h i s might be that i n t e r s t e l l a r 

magnetic f i e l d s smear out any large d i r e c t i o n a l anisotropics expected 

of Galactic-originated primaries, although the sources themselves might 

be di s c r e t e . 
11 

Marsden et a l (1976) have reported a high anisotropy around 10 eV -
12 

10 eV i n a direction approximately p a r a l l e l to the s p i r a l arms i n our 

region of the Galaxy. Osborne et a l (1977) explained t h i s anisotropy 

as the effect of p a r t i c l e s from the Vela pulsar. There appears to be, 

therefore, some support for a g a l a c t i c origin for low energy cosmic r a y s 0 

The propagation modes of the primary cosmic rays at higher energies 

indicate that they are unli k e l y to a r r i v e at the Earth i s o t r o p i c a l l y . 
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Pollock and Watson (1975) have reported that there i s some evidence of 
17 

anisotropy for u l t r a high energy cosmic rays near 10 eV. 
19 

Above 10 eV Berezinsky and Zatsepin (1969» 1971) have proposed 

that neutrinos, produced as secondaries of the interactions between 

protons and microwave photons i n the metagalaxy, could be responsible 

for the cosmic radiation. 

The search for the origin of cosmic rays i s intertwined with questions 

on the mass composition, for a firm knowledge of the mass might rule out 

some of the proposed sources„ 
1.3 Extensive A i r Showers. 

There i s strong interaction between the nuclei of atmospheric atoms 

and the primary cosmic ray p a r t i c l e s incident at the top of the 

atmosphere. Such an interaction produces mesons and nucleons which form 

a compact "core" proceeding not f a r from the o r i g i n a l direction of the 

i n i t i a t i n g p a r t i c l e s . 

Further interaction occurs between these secondary mesons and nucleons, 

and the nuclei of other atmospheric atoms at lower l e v e l s of the atmos­

phere. Hence a "chain reaction" i s set up i n which several interactions 

take place while the primary p a r t i c l e i s traversing the 1030 g cm of 

atmosphere before reaching sea l e v e l . This atmospheric thickness 

constitutes about 12 interaction lengths for the nucleons. 

With the atmosphere e f f e c t i v e l y acting as a p a r t i c l e amplifier, the 

r e s u l t i n g nucleon cascade i s very much spread out into a shower of 

p a r t i c l e s , suitably c a l l e d an "Extensive A i r Shower". Figure 1.3 shows 

the development of an extensive a i r shower (Kellerman, 1976). 

The primary p a r t i c l e loses about h a l f i t s i n i t i a l energy at each 
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interaction, (Katano et a l , 1963)9 producing the nuclear-active 

p a r t i c l e s . These are mostly pions together with kaons, nucleons, 

anti-nucleons and other strange p a r t i c l e s . The interaction length of 

pions i n a i r i s short ( ^^120 g cm ) and the pions quickly decay 

into muons, supplying the EAS with i t s highly penetrating muonic 

component. The neutral pions, with a lifetime of 10 ^ s decay even 

f a s t e r than charged pions ( l i f e t i m e of a charged pion i s 2.6 x 10 s ) 

and each resultant gamma-ray i s then capable of i n i t i a t i n g a photon-

electron cascade. 

1.3.1 Cascade Processes. 

The nucleons and interacting pions, known c o l l e c t i v e l y as the hadrons, 

average only about 10% of the shower; but they carry t y p i c a l l y about 

80% of the t o t a l energy. The EAS therefore consists of a large number 

of cascades, comprising a compact hadronic central core surrounded by an 

electron-photon component that i s continuously nourished by decaying 

TT°-mesons . 

Cascade processes i n EAS occur as a dir e c t r e s u l t of the various 

charges residing on the primary p a r t i c l e s , and the electromagnetic and 

other processes of the shower components. A photon i n the EAS, under 

the right conditions of the strong e l e c t r i c f i e l d surrounding an atomic 

nucleus i n the atmosphere 9 can materialize into an electron-positron 

pair. 

An electron of s u f f i c i e n t l y high energy, approaching an atomic nucleus 

in the atmosphere, can also emit electromagnetic radiation. This i s a 

consequence of the interaction of the electron i n the Coulomb f i e l d of 

the nucleus, and i s only possible i f the closest distance of approach 
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i s smaller than the atomic dimensions. 

The effect of these processes of pair production, bremsstrahlung 

and ionization i s a l a t e r a l spread of the EAS and a reduction of the 

energies of the p a r t i c l e s . When the energies are reduced below a 

c r i t i c a l l e v e l at which ionisation becomes the dominant energy loss 

mechanism ( 84 MeV i n a i r ) } multiplication of the electromagnetic 

component ceases. 

1„3«2 Observable Quantities. 

As a r e s u l t of the large l a t e r a l spread of the various components of 

an EAS, ground based p a r t i c l e and photon detection i s possible. A 

t y p i c a l EAS array comprises several p a r t i c l e and/or photon detectors 
2 

spread over a large ground area of several km . These detectors 

measure the t o t a l l i g h t i n t e n s i t y , or p a r t i c l e density, depending on 

which component i s under observation. Measurements are usually recorded 

when the array triggering c r i t e r i o n , often defined as the coincidences 

i n two or more detectors, i s met. 

From the records computation of such shower parameters as the a r r i v a l 

direction of the shower, the accurate a i r shower core, electron number 

and photon density i s made. These parameters contribute, through 

interpolation or extrapolation, to the evaluation of a primary energy 

estimator for the p a r t i c u l a r EAS array. For example, the electron 

number has been used as a primary energy estimator at the Volcano Ranch 

array, whereas the muon number i s used at Sydney. At the Haverah Park 

array the electron densities recorded by water Cerenkov detectors, 

interpolated at ̂ 00m and 600m from the core, are used as primary energy 

estimators. The t o t a l Cerenkov l i g h t i n t e n s i t y at 100m and 150m from 



12 

the core have been proposed as energy estimators at Dugway. The 

philosophy behind t h i s proposal, and the consequences of i t to cosmic ray 

measurements at t h i s array ? w i l l be outlined l a t e r i n t h i s Thesis. 

1.4 Scope of This Work. 

This work i s primarily concerned with the computation and interpre­

tation of Cerenkov l i g h t pulse shapes from the Dugway EAS array. The 

experiment to measure the c h a r a c t e r i s t i c s of extensive a i r showers i n the 

energy range 3 x 1 0 e V t o 2 x 1 0 eV was conducted at the University 

of Durham EAS array i n Dugway, UTAH, USA between 1977 and 1980. 

The author was responsible for analysing the environmental monitoring 

of the experiment from 1978 to 1960. This involved the analysis of sky 

films and keeping up-to-date weather records to determine acceptable data 

prior to an a l y s i s . She also contributed to the an a l y s i s of the data, 

p a r t i c u l a r l y i n the area of pulse shape reconstruction. 

Computer programs have been developed and tested to retrieve pulse 

shape ini'ormation from the d i g i t i s e d Cerenkov l i g h t data from Dugway. 

Three main f i t t i n g procedures have been developed and tested. 

This Tnesis outlines the main data f i t t i n g procedures and compares 

them. The average pulse shape c h a r a c t e r i s t i c s of the Cerenkov l i g h t 

measured at the Dugway array are given, as well as correlations between 

pulse shape parameters and other c h a r a c t e r i s t i c s of the extensive a i r 

showers. 

The measured pulse shape parameters are interpreted to show the casoade 

development of the extensive a i r showers and related to a proposed 

primary energy estimator at Dugway. 



13 

CHAPTER TWO 

ATMOSPHERIC CERENKOV RADIATION 

2.1 Introduction. 

A charged p a r t i c l e traversing a d i e l e c t r i c polarizes the medium i n 

the region of i t s track* Cerenkov (1934* 1937) was the f i r s t to observe 

the radiation that i s emitted as a r e s u l t of t h i s polarization, i f the 

ve l o c i t y of the charged p a r t i c l e i s greater than the phase v e l o c i t y of 

l i g h t i n the medium. His observation was the p r a c t i c a l evidence of the 

c l a s s i c a l electromagnetic theory of the Cerenkov effect proposed by 

Prank and Tamm (1937)« The discussion i n Section 2.2 i s a si m p l i f i e d 

account of the basic principles of the Cerenkov e f f e c t . 

2.2 The Physical Basis of the Cerenkov E f f e c t . 

For a simple case we consider one electron of velo c i t y , v , moving 

through a d i e l e c t r i c medium. The individual atoms of the medium i n the 

region close to the traversing electron w i l l undergo distortion, Figure 

2 0 l ( a ) , as a d i r e c t r e s u l t of the displacement of the negative charges 

of the atoms to one side. Any subsequent displacement of charge r e s u l t s 
» 

i n polarization at a different point, P , say, i n the medium. Hence 

the passage of the p a r t i c l e through the medium w i l l r e s u l t i n a very 

brief electromagnetic pulse at each elemental region of the medium. For 

a slowly moving p a r t i c l e , the resultant polarization f i e l d i s completely 

symmetrical along the axi s and i n azimuth and no radiation occurs. 

On the other hand, i f the ve l o c i t y of the electron, v , i s large 
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compared with the ve l o c i t y of l i g h t i n the medium, the polarization f i e l d 

i s no longer symmetrical along the a x i s , Figure 2 . 1(b). A b r i e f 

electromagnetic pulse i s radiated as a r e s u l t of a momentary dipole f i e l d 

set up by the electron. Figure 2.2 i s a schematic representation of the 

Huygens' construction of the l i g h t wavelets set up i n t h i s s i t u a t i o n . A 

very f a s t p a r t i c l e , t r a v e l l i n g at a v e l o c i t y higher than the phase ve l o c i t y 

of l i g h t i n the medium can therefore set up such wavelets which r e s u l t i n 

a f i e l d i f they are i n phase with one another. 

As shown in Figure 2.2, coherence of the wavelets occurs i f the time 

taken by the p a r t i c l e to t r a v e l the track AB, Ax , i s the same as the 

time l i g h t t r a v e l s from A to C. 

Hence the angle, 8 , at which the wavelets from a l l points 

(such as P , P 5 , P, ) on the track are coherent i s given by 

c o s e = 
n 

2.1 

where n i s the r e f r a c t i v e index of the medium and the ve l o c i t y of the 

p a r t i c l e , v = sc ( c = v e l o c i t y of l i g h t ) . 

Equation 2.1 i s the fundamental Cerenkov r e l a t i o n from which three 

deductions may be mades for a medium of re f r a c t i v e index, n . 

(1) At a c r i t i c a l v e l o c i t y given by 

1 
fi. =-~ 2.2 mm n 

the d i r e c t i o n of radiation coincides with that of the p a r t i c l e . Cerenkov 
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FIGUHE 2o2 

HUYGENS' CONSTRUCTION OF GERINKOV LIGHT WAVELETS. 

Z E 

FIGURE 2.3 

THE FORMATION OF THE CERENKOV LIGHT CONE, AND THE POLARIZATION 

VECTORS. 
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radiation cannot be emitted below t h i s threshold v e l o c i t y . 

(2) There i s a maximum angle of emission 

9 = C o s " 1 ( l ) 2.3 max n 

for an u l t r a - r e l a t i v i s t i c p a r t i c l e , for which p = 1. 

(3) Equation 2.1 can be s a t i s f i e d f o r only the regions of the 

electromagnetic spectrum i n which n > 1. These would be the ultra= 

v i o l e t , v i s i b l e , infrared and microwave regions and preclude the x-ray 

region i n which n i s l e s s than unity. 

I n practice, 8 , i s the semi-vertical angle of a s o l i d cone of 

l i g h t emitted as a r e s u l t of the Cerenkov ef f e c t , Figure 2.3. The l i g h t 

i s polarized such that the e?.ectric vector E i s always at right angles 

to the direction of propagation of the l i g h t and the magnetic vector 3 

i s tangent to the surface of the cone. 

2 .3 Cerenkov Radiation i n Extensive A i r Showers. 

Research i n t e r e s t i n Cerenkov radiation was stimulated by the suggestion 

by Blackett i n 1948 that o p t i c a l photon emission occurs when cosmic ray 

p a r t i c l e s pass through the atmosphere. Blackett calculated the expected 

contribution of Cerenkov radiation to be only -̂~/10 ^ of the t o t a l 

i n t e n s i t y due to s t a r l i g h t and other sources. 

The requirement of a c r i t i o a l v e l o c i t y for the emission of Cerenkov 

radiation (Equation 2.1) imposes a threshold energy as wel l . I n a i r , 

the threshold energies for electrons, muons and protons are 21Mev, 
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4.4GeV, and 39GeV respectively. The main contribution to the l i g h t 

from extensive a i r showers i s , therefore, made by electrons. These 

a r r i v e simultaneously at ground l e v e l i n s u f f i c i e n t numbers to give r i s e 

to a detectable amount of l i g h t . J e l l e y and Galbraith ( 1 9 5 ? » 1955) 

began measurements of t h i s l i g h t oomponent of EAS which were l a t e r 

confirmed by other workers including Nestorova and Chudakov ( 1 9 5 5 ) , Boley 

et a l (1961) and Krieger and Bradt (1 9 6 9 ) . ' 

2.4 Detection of Cerenkov Radiation. 

Since the r e f r a c t i v e index of a i r i s nearly unity, Cerenkov l i g h t 

from an a i r shower p a r t i c l e i s emitted at only a small angle to the 

direction of the p a r t i c l e ( t y p i c a l l y 1 . 3 ° ) • This d i r e c t i o n a l i t y 

of the o p t i c a l photon component can be used to advantage to define the 

a r r i v a l direction of a i r showers quite accurately. 

The wide l a t e r a l and angular spread of the secondary electrons i n the 

EAS gives r i s e to a d i s t r i b u t i o n of the l i g h t over large distances from 

the a x i s of the shower. Thus a single l i g h t detector i s able to detect 

showers whose axes f a l l within a large area around i t . 

I n the l a s t decade, some studies of o p t i c a l Cerenkov radiation were 

carri e d out through measurement, at ground l e v e l , of the l i g h t originating 

at different heights i n the atmosphere from a i r showers of a given energy. 

Such measurements have been used to determine the position of the electron 

cascade maximum i n the longitudinal development of the showers (e.g. See 

Orford and Turver, 1 9 7 6 ) . By extrapolation, information on the electron 

cascade can lead to a knowledge of the growth of the shower, offering an 

insight into the mass of the primary p a r t i c l e . 
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The l i g h t p r o f i l e s of atmospheric Cerenkov l i g h t have also been 

studied for information on extensive a i r showers. The i n i t i a l observa­

ti o n by Boley (1964) of the information on the electron cascade develop­

ment, obtainable through pulse shapes, was followed by measurements by 

Pomin and Khristiansen (1971) and Efimov et a l (1973). The Durham 

group (See Oxford and Turver (1976), Hammond et a l (1976)f Andam et a l 

(19&1) ) has combined d i r e c t observations with t h e o r e t i c a l predictions 

to study i n d e t a i l the pulse shape of atmospheric Cerenkov l i g h t and 

r e l a t e i t to the longitudinal electron cascade development of the EAS. 

Protheroe (1977) has determined t h e o r e t i c a l l y , the densities of 

o p t i c a l photons, electrons and muons i n extensive a i r showers, (Figures 

2.4(a,b) ) . The higher density of o p t i c a l photons reduces the sampling 

problems usually encountered when measuring electrons or i.iuons, and gives 

Cerenkov l i g h t observations an advantage over the study of other 

components of extensive a i r showers at a l l core distances. 

One major l i m i t a t i o n i n the observation of Cerenkov l i g h t i s that 

the experiments have to be performed during c l e a r , moonless nights and 

away from any location that might have intense a r t i f i c i a l l i g h t s . 

Desert regions and mountain a l t i t u d e s give good, c l e a r sky conditions, 

and even i n these locations the experiment can only be run about 10;i 

of the time. 

However, t h i s l i m i t a t i o n i s a small price to pay for the high 

quality data obtainable from opti c a l Cerenkov radiation studies. 

2.5 Computer Simulations of Cerenkov Light i n Extensive A i r Showers* 

The most useful way of checking the v a l i d i t y of measurements on 



FIGURE 2o4(A) 

THE LATERAL DISTRIBUTION AT SEA LEVEL OF PIONS ( TE ) , 

MUONS ( [X ), ELECTRONS ( 6 ) , GAMMA-RAYS ( y ) AND 

CERENKOV LIGHT PHOTONS ( 6 ) (Protheroe, 1977) 

FIGURE 2 ,4(B) 

THE AVERAGE NUMBERS OF PIONS ( TC ), MUONS ( \X ), 

ELECTRONS ( 6 ), GAMMA-RAYS ( Y ) AND CERENKOV 

LIGHT PHOTONS ( 6 ) AS A FUNCTION OF ATMOSPHERIC 

DEPTHo (Protheroe, 1977) 
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extensive a i r showers i s to compare the observations with t h e o r e t i c a l 

predictions. Computer simulations have been made by various workers 

including the Durham group (the most recent being those of Protheroe 

and Turver (1977* 1979) and McCorab and Turver (1981) ) , using models of 

the propagation of cosmic rays through the atmosphere and assumptions 

about the primary p a r t i c l e s . Confidence i n the accuracy of the 

representation of high energy nuclear interactions i s maintained through 

adequate t e s t i n g of the predicted behaviour. The most recent t h e o r e t i c a l 

studies at Durham have been based on Feynman's proposals of s c a l i n g ( f o r 

the pion-momentum d i s t r i b u t i o n ) , (Feynman (19&9) ) with constant p-N 

and 7T-N cross-sections and an iron-nucleus i n i t i a t e d primary. 

Protheroe and Turver (19770 1979) confined t h e i r simulations to 
17 18 

v e r t i c a l showers i n the energy range 1 0 - 1 0 eV. The simulations 

were, i n the main, applicable to the Haverah Park and Volcano Ranch 

experiments. McComb and Turver (1981) have extended t h i s work to cover 
15 18 

primary energies from 10 eV to 10 eV. Their computation uses the 

model atmosphere and the geomagnetic f i e l d c h a r a c t e r i s t i c s appropriate 

to Dugway ( i . e . appropriate to the experimental data analysed i n t h i s 

T h e s i s ) . The simulation data now available from the Durham group, and 

summarJLzed below, cover the zenith angle range 0° - 60° and core 

distance range 25 - 500 metres. 
2.5«1 Simulated Cerenkov Light L a t e r a l Distribution. 

The simulations of McComb and Turver (1981) show that the opt i c a l 

photon density does not depend on the mass of the primary or the model 

used for nuclear interactions. A shower may be c l a s s i f i e d only by the 
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depth of electron cascade maximum. I n Table 2.1, four different showers, 

whose c h a r a c t e r i s t i c s are described below, are l i s t e d according to t h e i r 

depths of maxima. Figure 2.5 shows the l a t e r a l d i s t r i b u t i o n of the 

opt i c a l photon density for these four shower types, spanning the energy 
15 1B 

range 10 eV - 10 eV. There i s a marked flat t e n i n g of the l a t e r a l 

d i s t r i b u t i o n , at a l l energies, as the zenith angle increases. This i s 

more evident for the low energy showers, indicating that for an EAS 

array designed to measure such showers, problems w i l l be encountered 

i n locating accurate core positions for showers more inclined than 
45 

2.5.2 Simulated Cerenkov Light Pulse Shapes. 

Information contained i n the time structure of the simulated 

Cerenkov l i g h t pulse can be used to predict the development of the 

electron cascade. Results from t h e o r e t i c a l studies (See e.g. 

Protheroe and Turver (1977, 1979)) have confirmed that the Cerenkov l i g h t 

pulse shape i s s e n s i t i v e to changes i n shower development. 

The pulse shape parameters which have been studied i n most d e t a i l 

t h e o r e t i c a l l y are : 

(1) the Peak Height ; 

(2) the Rise Time (the time between 10% and 90% of the peak 

height on the leading edge) 5 

(3) the F u l l Width at Half Maximum - FWHM (the time between 

50% on the leading edge and 50% on the back edge) ; 

(4) the Top Time (the time between 90% on the leading edge 

and 90% on the back edge) 5 

and (5) the F a l l Time (the time between 90% and 50% on the back edge). 
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TABLE 2 . 1 

EXTENSIVE AIE SHOWER PARAMETERS FROM COMPUTER SIMULATIONS. 

(McComb and Turver, 1981) 

SHOWER SERIAL 
depth of 
maximum 
(g cm" ) 

depth of 
1 0 % _ 2 

(g cm ) 

s i z e a t 
maximum 
(elect r o n s ) 

A 4 9 5 1 4 0 2 „ 9 8 x 1 0 5 

B 5 9 5 2 0 5 5 . 0 4 x 1 0 6 

C 6 9 5 2 7 0 5 . 0 4 x 1 0 7 

D 7 9 5 5 2 0 2 . 9 9 x 1 0 8 



FIGUHE 2 . 5 

THE LATERAL DISTRIBUTION OF SIMULATED SHOWERS - IRON PRIMARY 

(McComb and Turver, 1981) 



24 

0> o S c o 
tl 
UJ 

vt 

UJ 

CD 
<D<D CD 
i o> oo V3iJV 1 0 to *"~ 

O O O O O 
i 1 1 r 

<D 

11 UJ 
I n 

UJ 
0> 

s it no <X> — to 9 
QO i n 

1 

10 

n 
g UJ 

UJ 
0) v> 

2 11 it u 11 <D 1 I 
vaav «c 10 

i n 

8 -It 

o in 
11 to 11 <D 

i n 
Q 

(,w/suo)oi{d) A^isuap uopqd p j O e i q 



25 

E a r l y s i m u l a t i o n work ( e . g . Gaisser e t a l (1978) , Protheroe and 

Turver (1977) ) have shown t h a t the FWHM and Rise Time vary m o n o t o n i c a l l y 

w i t h depth o f e l e c t r o n cascade maximum. The Top Time and F a l l Time 

e x h i b i t d e v i a t i o n s f r o m t h i s s imple raonotonic behaviour w i t h depth o f 

e l e c t r o n cascade maximum. 

F igu re 2.6 i l l u s t r a t e s the Peak Height l a t e r a l d i s t r i b u t i o n f o r the 

f o u r types o f showers l i s t e d i n Table 2 . 1 . The Peak Height l a t e r a l 

d i s t r i b u t i o n , l i k e the area l a t e r a l d i s t r i b u t i o n (F igu re 2 . 5 ) , shows a 

f l a t t e n i n g f o r i n c l i n e d showers which i s more pronounced f o r s m a l l 

showers ( 1 0 1 5 - 1 0 1 6 e V ) . 

F igures 2.7 and 2.8 i l l u s t r a t e the v a r i a t i o n o f Rise Time, FWHM, 

F a l l Time and Top Time w i t h core d i s t ance f o r the same se t o f showers 

a t f o u r z e n i t h ang les . The FWHM graphs p o r t r a y a d e f i n i t e broadening o f 

the pulse f o r h i g h l y i n c l i n e d showers c lose t o the c o r e . 

The FWHM i s the pulse shape parameter which has been most w i d e l y 

i n v e s t i g a t e d bo th t h e o r e t i c a l l y and e x p e r i m e n t a l l y around the W o r l d . 

F igures 2.9 and 2.10 show the p r e d i c t e d dependence o f FWHM a t 300m on 

z e n i t h angle and depth o f maximum. Computer s i m u l a t i o n s p r e d i c t t h a t 

the s e n s i t i v i t y o f FWHM(300m) t o changes i n depth o f maximum decreases 

w i t h i n c r e a s i n g z e n i t h ang l e . 

Close to the core , the FWHM e x h i b i t s a depar ture f r o m the expected 

v a r i a t i o n . There i s an observed broadening o f the pulse as w e l l as an 

increase i n s e n s i t i v i t y o f FWHM t o v a r i a t i o n s i n depth o f maximum f o r 

s m a l l , i n c l i n e d showers. 

The dependence o f s imula ted pulse Rise Time a t 300m, t . (300m), 

on z e n i t h angle and depth o f maximum i s shown i n Figures 2.11 and 2 .12 . 

F igures 2.13 and 2.14 i l l u s t r a t e the p r e d i c t e d v a r i a t i o n o f the F a l l 



FIGURE 2 . 6 

THE PEAK HEIGHT STRUCTURE FUNCTION OF SIMULATED SHOWERS 

IRON PRIMARY. 
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FIGURE 2 c 7 

VARIATION OF SIMULATED PULSE SHAPE PARAMETERS 

WITH CORE DISTANCE - LOW ENERGY SHOWERS. 
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FIGURE 2,8 

VARIATION OF SIMULATED PULSE SHAPE PARAMETERS 

WITH CORE DISTANCE = HIGH ENERGY SHOWERS. 
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FIGURE 2 „ 9 

VARIATION OF FWHM( 300m) WITH ZENITH ANGLE FROM 

COMPUTER SIMULATIONS. 

FIGURE 2 o 1 0 

FWHM(300m) DEPENDENCE ON DEPTH OF MAXIMUM - PREDICTED FROM 

COMPUTER SIMULATIONS (McCorab and Turver, 1981) 
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FIGURE 2 o 1 1 

PREDICTED VARIATION OF RISE TIME AT JOOm WITH ZENITH 

ANGLE - FROM COMPUTER SIMULATIONS. 

FIGURE 2 . 1 2 

PREDICTED VARIATION OF RISE TIME AT JOOm WITH DEPTH OF 

MAXIMUM - FROM COMPUTER SIMULATIONS. 
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FIGURE 2 d 3 

VARIATION OF FALL TIME AT 300m WITH ZENITH ANGLE - FROM 

COMPUTER SIMULATIONS. 

FIGURE 2.14 

PREDICTED VARIATION OF FALL. TIME AT 300m WITH DEPTH OF 

MAXIMUM - FROM COMPUTER SIMULATIONS. 
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Time at 300m, t^^OOOm), with zenith angle and depth of maximum* 

These two pulse shape parameters ( ^ r i s e ( 5 0 0 m ) and * f a n ( 500m) ) 

exhibit a complex va r i a t i o n with zenith angle and depth of maximum. 

There i s a reduced s e n s i t i v i t y to changes i n depth of maximum f o r highly-

in c l i n e d showers, but t h i s reduction i n s e n s i t i v i t y i s more prominent 

f o r Rise Time than f o r F a l l Time. 

2.5.3 Shower Imaging. 

Theoretical studies have been used by Protheroe and Turver (1977) to 

predict the o r i g i n i n the atmosphere of the l i g h t observed at various 

times i n the pulse. Their method involved d i v i d i n g the electron cascade 

in t o sub-showers with corresponding sub-pulses of the Cerenkov l i g h t . 

The results of t h e i r computer simulations, summarized i n Figure 2.15 

and Figure 2.16 indicate that at core distances greater than 100 metres, 

the e a r l i e s t observed l i g h t originates high i n the atmosphere. The 

Cerenxov l i g h t pulse, measured at ground l e v e l , maps d i r e c t l y the 

development of the electron cascade i n the atmosphere. For example, i f 

the shower fro n t at the 10% l e v e l on the leading edge i s regarded as a 

sphere, the centre of the sphere locates the region where the shower 

reaches 10% of i t s development. 

Orford and Turver (1976) used t h i s observation to reconstruct the 

development of showers through measurements of the percentage points, 

by t r e a t i n g each shower fro n t at the percentage point as a spherical 

f r o n t . This technique of shower imaging i s now employed rou t i n e l y by 

the Durham Group and promises to be an important t o o l i n the study of 

the electron cascade development. 



FIGURE 2.15(a) 

THE ELECTROMAGNETIC CASCADE DIVIDED INTO SUB-SHOWERS. 

(Frotheroe and Turver, 1977) 

FIGURE 2.15(b) 

THE LATERAL DISTRIBUTIONS OF THE SUB-SHOWERS SHOWN IN 

FIGURE 2.15(a) (Protheroe and Turver, 1977) 
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FIGURE 2.16 

THE CEREMOV LIGHT SUB-PULSE PROFILE FROM THE SUB-SHOWERS 

SHOWN lM FIGURE 2.15(A) 

(Protheroe and Turver, 1977) 
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CHAPTER THREE 

THE HUGWAY ATMOSPHERIC CERENKOV LIGHT DETECTOR ARRAY. 

3«1 Experimental Set-Up. 

The construction and commissioning of the Dugway extensive a i r 

shower detector array has been described i n d e t a i l by Shearer (1980). 

The array was located at a longitude of 112° 49' W, l a t i t u d e 40° 12' N 

and an elevation of 1451 metres above sea l e v e l i n the Great Salt Lake 
_2 

Desert, Utah, USA, at an atmospheric depth of 862 g cm . The data 

analysed i n t h i s Thesis were obtained during the periods of September 

1978 to March 1979 and August 1979 to March 1980. During t h i s period 

the array dimension was reduced twice i n order to measure extensive a i r 
15 18 showers i n the energy range 10 eV to 10 eV. 

The array characteristics were modified and updated f o r the Winter 

1978/79 run on the basis of the results of an i n i t i a l run of a si m i l a r 

array during the Winter of 1977/78 (Shearer, 1980)„ Between September 

1978 and November 1979 the array was operated with the configuration 

shown i n Figure 3„1. 

Eight atmospheric Cerenkov l i g h t detectors were i n s t a l l e d ( l a b e l l e d 

f o r l o g i s t i c purposes as detectors 0, 1, 2, 3» 4? 5s 6, 7 )» with 

detector 1 as a central detector, detectors 2, 3» 4 ( the 'outer' 

detectors ) each at 400 metres from i t and detectors 5» 6, 7 ( ^ e 

'inner' detectors ) at 200 metres from the centre. Detector 0 was 

located half-way between detector 1 and detector 2„ The array 
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m inner | Cerenkov light 
• outer J detectors 
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FIGURE 3.1 

LAYOUT OF THE 400 metre RADIUS DUGWAY EAS ARRAY, 
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therefore covered a c i r c l e of 400 metre radius. This layout, according 

to a t h e o r e t i c a l study by Orford (private communication), gave the 

largest number of 7-fold responses with core distances up to 500 metres. 

To determine night sky c l a r i t y and weather conditions the following 

apparatus were i n s t a l l e d : 

(1) A 2-inch diameter photomultiplier viewing the night sky 

d i r e c t l y ; 

(2) A 35 time lapse camera to photograph the star t r a i l s at 

the zenith 5 

(3) Temperature sensors to record the temperature 6 inches and 

5 f t . above ground l e v e l , the underground temperature 6 inches 

below ground, and in d i v i d u a l detector temperatures. 

and (4) A pressure transducer to record atmospheric pressure. 
2 

I n addition, three 1 m pl a s t i c s c i n t i l l a t o r s were located beside 

detectors 0, 1 and 6 to measure the electron density and determine the 

separation of the l i g h t and p a r t i c l e f r o n t s . 

Each detector comprised a portable aluminium casing (60 x 55 x 90 cm) 

which housed a fast response, 12 cm. diameter RCA type 4522 photomulti­

p l i e r and i t s electronics system. The RCA type 4522 photomultiplier 

has been described by Orford et a l (1977). Transmitting cables, 

l i n k i n g the detectors to the central power point, were used to send the 

EAS records and DC monitoring levels from the detectors to the central 

recording station and synchronising pulses to the detectors from a 

coincidence system. The central recording s t a t i o n was a Tektronix 

4051 computer which was used to control the shutters on the photomul-

t i p l i e r s and to store the data to bring back to Durham f o r analysis. 

The photomultipliers were run at anode currents approximately 1% 
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of t h e i r maximum r a t i n g (500 juA), (Chantler et a l , 1979), and the 

output was taken from the 11th. dynode and amplified (xlOO) by 2 LeCroy 

W 100 amp l i f i e r s . According to the records of Chantler et a l (1979) 

t h i s gave a photomultiplier/amplifier gain of 60,000 and a pulse r i s e 

time of /-^2.5 ns. 

The array t r i g g e r i n g c r i t e r i o n was the simultaneous response of a l l 

three detectors making up any of the triangles defined by detectors 2, 

5» 7 » 3» 5» 6 ; 4, 6, 7 ; and 5» 6, 7 or any three of the edge detectors 

i n a row. The average count rate f o r t h i s configuration of detectors 

was 15 events per hour. 

I n January 1980, the array dimensions were halved ; whilst keeping the 

same basic configuration, to a 200 metre radius array. A f u r t h e r 

reduction of the array size to a 100 metre radius array was made i n 

February 1980. These changes were made to reduce the energy threshold 

of the array i n order to measure extensive a i r showers of energy < 10^eV 

The count rate was s i g n i f i c a n t l y increased and was r^>80 events per 

hour f o r the 200m. array and more than 100 events per hour f o r the 100m 

array. 

3.2 Calibrations. 

Shearer (1980) has given a detailed account of the calibrations 

made at Dugway. Six main calibrations were carried out f o r each 

Cerenkov l i g h t detector, namely s 

(1) The photomultiplier gain ; 

(2) The charge d i g i t i s a t i o n 5 

(3) The photomultiplier t r a n s i t time 5 
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(4) The time of a r r i v a l d i g i t i s a t i o n ; 

(5) The detector synchronisation } 

and (6) The detector positions. 

The detector positions had to be known accurately i n order to main­

t a i n detector synchronisation to < 1ns (Chantler et a l , 1979)• 

Each detector's position was c a r e f u l l y measured with an infrared t e l l u -

rometer to an accuracy of about 1cm. (Walley, private communication). 

Because of the need to calibrate detector positions, and test each 

detector's response thoroughly a f t e r i t had been moved, the changes i n 

the array geometry from the ^QOm, array to the 200m. and 100m. arrays 

were accomplished i n stages over a period of several weeks (November 1979 

to January 1980). During t h i s time, separate detectors were moved one 

at a time, (Walley, private communication), and each detector was checked 

a f t e r moving. The intermediate array geometries which resulted from 

these changes are shown schematically i n Figure 3*2, together with the 

three main arrays. 

The f i r s t f i v e calibrations l i s t e d above were made at the beginning 

of each period of observation and repeated p e r i o d i c a l l y throughout the 

run. I t was important to ensure the s t a b i l i t y of the photomultiplier 

gain and the d i g i t i s a t i o n of EAS records as well as the photomultiplier 

t r a n s i t time. To check t h i s s t a b i l i t y an a i r shower was simulated by 

applying a constant current driven LED pulse to each photomultiplier 

and recording the resultant ' c a l i b r a t i o n event' (Shearer, 1980). This 

c a l i b r a t i o n was done a f t e r every 13th. recorded EAS and used to decali<= 

brate the data before systematic analysis (See Chapter 5)» 



FIGURE 3.2 
DIFFERENT ARRAY GEOMETRIES AT DUGWAY. 
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3.3 The Optical Cerenkov Pulse D i g i t i s a t i o n . 

The Dugway experiment was designed to record the characteristics of 

Cerenkov l i g h t pulses ( i . e . the a r r i v a l time, photon density and a 

measure of the pulse shape) i n d i g i t a l format which could be stored on 

magnetic tape. The l i g h t pulse parameters were d i g i t i s e d at each 

detector by means of the electronics system i l l u s t r a t e d i n Figure 3«3 

and the results transmitted to the central computer by cables. 

As soon as an EAS coincidence was registered, a time stretcher with 

a resolution of 0.7ns (Chantler et a l , 1979) was used to record the 

time of t r i g g e r i n g of each detector with respect to the EAS coincidence. 

The t o t a l number of op t i c a l photons, measurable i n terms of the t o t a l 

area of the pulse, was also recorded using an integrator. 

To determine the pulse shape, the charge was measured sequentially 

through the pulse i n narrow time i n t e r v a l s . The amount of charge i n 

each time i n t e r v a l (10ns ) was then stored, to be used i n fu r t h e r 

analysis to reconstruct the pulse shape (See Chapter 4)« This record 

was taken only i f the amplified signal from the detector exceeded a pre­

set discrimination threshold (nominally 20mV). I f the signal exceeded 

t h i s threshold, a series of gating pulses, each of 10ns width, were 

generated to measure the charge over a time i n t e r v a l which depended on 

the in d i v i d u a l detector's position i n the array geometry. I f no coin­

cidence was registered with i n 5ps a f t e r the t r i g g e r i n g of one 

detector (Chantler et a l , 1979)? the d i g i t i s a t i o n system was reset f o r 

the next EAS record. 

For the inner detectors (0, 5» 6, and 7) and the central detector 1 

the pulses were short, as these detectors were often close to the shower 



FIGURE 3,3 

SCHEMATIC DIAGRAM OF ELECTRONICS SYSTEM FOR PULSE 

DIGITISATION. 
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axis. The pulse was therefore measured sequentially over 60 ns. For 

the outer detectors, sampling was started 10 ns before the discrimination 

threshold, and the pulse was measured over 70 ns. The s l i c e configura­

tions f o r the 400 metre array are i l l u s t r a t e d i n Figure 3«4-

Figure 3»5 shows the s l i c e configurations f o r the 200m and 100m arrays. 

The pulses from the 200m and 100m arrays, being of lower energy primaries, 

were expected to be narrow. The pulses were d i g i t i s e d 10 ns before the 

discrimination l e v e l f o r a l l detectors, to account f o r the sharp leading 

edge, and only over a 50 ns time i n t e r v a l ( i . e . a l l detectors now had a 

precursor s l i c e and only 5 instead of 6 s l i c e s ) . The sum of the areas 

of the 5 or 6 slices was sent to the central logging computer. 

Af t e r each EAS was recorded, the anode current, temperature of the 

photomultiplier and the temperature of the electronics system were d i g i t i s e d , 

(Shearer, 1980). During the 1978/79 run only the 2-inch photomultiplier 

reading and the pressure were recorded as atmospheric monitoring i n f o r ­

mation. I n 1979/80 the pressure, sensor box temperature and the ambient 

temperature 6 inches and 5 feet from ground le v e l were a l l d i g i t i s e d as 

part of atmospheric monitoring records. 

5.4 Environmental Monitoring. 

Atmospheric conditions were ca r e f u l l y monitored during each night of 

operation. The information obtained was used to quantify weather 

conditions at the array s i t e and to give an index of data q u a l i t y . The 

suitable periods f o r observation, i n which the moon was below the horizon 

f o r most of the night, covered the la s t few weeks of the Autumn and most 

of the Winter. The array s i t e i s i n a steppe region with r e l a t i v e l y 
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severe seasonal temperature extremes and large diurnal ranges of tempera­

ture. The overnight temperature dropped as low as -20 °C whilst the day 

temperature could go up to > 40 °C i n Summer. 

For example, the temperatures recorded f o r 1978/79 are shown i n Figure 

3.6 . January was the coldest month f o r Winter 1978/79 with an average of 

-10.4 °C and average minimum and maximum of - 1 3 » 0 °C and -6 .6 °C 

respectively. October was the hottest month f o r t h i s period with an 

average diurnal range of 6.2 °C to 13»5 °C. To counteract the 

extreme temperature variations, a l l the detectors were thermostatically 

controlled to operate at a temperature of 20 °C. 

The average minimum pressure recorded f o r Winter 1978/79 was 849 nib. 

i n December. The average maximum pressure recorded during t h i s same 

period was 856 mb. i n November 1978. Figure 3-7 shows the v a r i a t i o n f o r 

the average pressure and the average maximum and minimum pressures f o r 

Winter 1978/79• The curves a l l show a drop i n the pressure from 

November to December and a sharp r i s e from December to January. 

As expected i n t h i s region, the weather during the Winter months 

exhibited a f a i r amount of v a r i a t i o n of cloudiness. The cloud cover was 

ca r e f u l l y monitored throughout each night. Only data from nights when 

the sky was consistently clear of clouds ( q u a n t i t a t i v e l y monitored 

through star t r a i l pictures) were used i n the analysis. 

3»5 Sky Films as a Measure of Sky Brightness f o r Data Quality Control.. 

The greatest importance was attached to establishment of the r e l a t i v e 

c l a r i t y of the sky at the time of each EAS record. To estimate sky 

c l a r i t y , two quantities were measured, v i z ; 

(1) The brightness of the night sky recorded by a 2-inch diameter 



FIGURE 5-6 

DUGWAY - WETTER 1978/79, TEMPERATURE VARIATION. PER MOUTH. 

FIGURE 3-7 

DUGWAY - WINTER 1978/79. PRESSURE VARIATION PER MONTH. 
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photomultiplier a f t e r each event, 

and (2) the sky c l a r i t y monitored from the star t r a i l s on 35 mm time 

lapse camera records. 

Figure 3»8 shows t y p i c a l 2-inch PMT p r o f i l e s . These i l l u s t r a t e , 

broadly, the v a r i a t i o n of the array's performance as the sky clouds over 

and brightens up again during any one night. 

During the Winter of 1978/79 the star t r a i l pictures were taken with 

one camera pointing v e r t i c a l l y . Two additional cameras were used during 

the Winter of 1979/80, giving-three oameras pointing North, South and i n 

the v e r t i c a l direction,, 

The maximum detectable s t e l l a r magnitude ( i . e . the magnitude of the 

f a i n t e s t star) was estimated a f t e r locating the stars i n view during the 

period. For example, at approximately 06V5 GMT (or 234-5 Mountain 

Standard Time) on 24 September 1979* some of the stars i n view at the 

s i t e are shown i n Figure 3o9« I n determining the s t e l l a r magnitudes the 

convention i n the Smithsonian Astrophysical Observatory Star Atlas was 

followed, a low order of magnitude i n d i c a t i n g a bright star and vice versa. 

The highest order of magnitude i n the SAO Star Atlas i s 9 J our p r i n t s of 

star t r a i l s gave a highest order of magnitude of 8 on prime weather nights. 

The time f o r each p r i n t was found from the s t a r t of the f i l m on the 

calculated time i n t e r v a l of 14°5 minutes between adjacent frames. To 

obtain a measure of the sky conditions, a l l the p r i n t s f o r the night were 

scanned. For example, on the night of 24 September 1979 the p r i n t s show 

that at 0750 GMT, the sky clouded over f o r approximately 30 minutes and 

then brightened up again. The p r i n t s f o r t h i s time of the night are 

shown i n Figures 3° 10(.a~d.). Figure 3° 10(d) shows how the clouds have 

chopped up the star t r a i l s when the sky begins to brighten up again. A 



FIGURE 3.8 
2 INCH PKT PROFILES FOR (A) CLEAR NIGHT 

(B) BAD WEATHER NIGHT 
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FIGURE 3.9 

STAR TRAILS FROM NORTH-LOOKING CAMERA FOR THE NIGHT OF 

24 SEPTEMBER 1979, TIME ~ 0645 GMT. 





FIGURE 3.10 

STAR TRAILS FROM NORTH-LOOKING CAMERA FOR THE NIGHT OF 

24 SEPTEMBER 1979 (BAD WEATHER NIGHT) SHOWING CHANGES 

IN SKY CLARITY. 
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night l i k e t h i s p with patches of clear sky and cloud cover, was flagged 

as bad weather night and data from t h i s night were not included i n the 

analysis. 

The atmospheric monitoring records f o r the night of 24 September 1979 

are summarized i n Figure 3 .11. The records show a correlation between 

maximum detectable s t e l l a r magnitude and the PMT current, as well as the 

array t r i g g e r r a t e . This corr e l a t i o n i s i l l u s t r a t e d f u r t h e r i n Figures 

3.12 and 3»13« I n Figure 3° 12 the sky brightness (measured i n PMT 

reading) i s plotted f o r a l l data blocks from August to November 1979<> On 

the same graph, the count rate per data block i s also shown. Figure 3»13 

shows the v a r i a t i o n of count rate with sky brightness. 

Figures 3»11» 3«12, and 3-13 indicate a dependence of observed 

Gerenkov l i g h t on night sky brightness and underline the importance of 

monitoring atmospheric conditions. 



51 

Atmospheric 
Pressure 870 

(mb) 860 
850 

Ambient 28 
Temperature ^ 
CO 2 0 

Detector 
Triggers in 
30 minute , 
periods (*KT) 0 

16 

8 

4 

Maximum 
detectable 
stellar 
magnitude 

All-Sky 
PMT 

current 
(u-A) 

8 
6 
4 
2 
1 

3 
2 
1 

0 

Array Trigger 20 
Rate i o h 
(events/hr) ^ 

e 

6"Air Temp 

2000 2200 0000 0200 
GMT-7 HOURS 

0400 

FIGURE 3.11 

ATMOSPHERIC MONITORING INFORMATION FOR THE NIGHT OF 

24 SEPTEMBER 1979<> 



FIGURE 3.12 

COUHT RATE AND SKY BRIGHTNESS PER DATA BLOCK FOR 

400m ARRAY, 1979/80 
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FIGURE 3°13 

VARIATION OF COUNT RATE WITH SKY BRIGHTNESS„ 

WINTER 1979/80 
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CHAPTER FOUR 

PULSE SHAPE RECONSTRUCTION. 

4 . 1 Introduction. 

4 . 1 . 1 A Review of Methods of Pulse Shape Measurement. 

The accurate determination of pulse shape parameters i s necessary 

because of the important information on cascade development contained 

i n the Cerenkov l i g h t p r o f i l e . To date, most of the measurements on 

pulse shape have been made from photographs of oscilloscope displays of 

the l i g h t pulses. This technique has been used at Haverah Park (Hammond 

et a l , 1 9 7 8 ) , Yakutsk (Kalmykov et a l P 1 9 7 9 ) » and Adelaide (Thornton et 

al„ 1 9 7 9 ) . From the oscilloscope photographs the pulse width and the 

time taken to reach a prescribed height have been measured. 

4 - 1 . 2 D i g i t i s e d Pulses from the Dugway Experiment. 

At the Dugway Extensive A i r Shower array, the pulse shape data were 

obtained i n the form of a set of p a r t i a l l y overlapping slices (See Section 

3 - 5 ) » which made up a histogram representation of the Cerenkov l i g h t 

pulse. The aim of t h i s approach was to store a l l the information i n a 

compact form on magnetic tape to bring back to Durham f o r future systema­

t i c analysis, a f t e r reconstruction of the l i g h t pulse shape. The 

obvious advantage of t h i s technique over measurements from oscilloscope 

displays i s the lack of bulky quantities of printed photographs to handle. 
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and the fact that once the d i g i t i s e d information had been transferred to 

computer discs and magnetic tapes they could be stored i n d e f i n i t e l y . I n 

addition, systematic data f i t t i n g procedures are more reproducible than 

measurements from photo—prints; and, provided a r e l i a b l e method of 

numerical analysis could be evolved, the problem would then reduce to the 

errors of reconstruction which can also be assessed and allowed for« 

4 . 1 . 3 Special Problems i n the Reconstruction of Digitised Pulses. 

The r e t r i e v a l of pulse shape information from d i g i t i s e d pulses i s not 

without i t s own problems, however,. I t i s of c r u c i a l importance to have 

a thorough and up to date record of a l l decalibration constants f o r an 

accurate evaluation of the s l i c e heights and times. 

The d i g i t i s i n g electronics must be checked and calibrated regularly 

to ensure that the sequential charge measurement i s e f f e c t i v e l y done over 

the t o t a l time i n t e r v a l required. I f there i s a missing s l i c e , as a 

re s u l t of malfunctioning of any of the electronic units used i n generating 

the gating pulses, the reconstructed pulses would be d i s t o r t e d , r e s u l t i n g 

i n pulse shapes which are not physically tenable. 

The backbone of any information r e t r i e v a l from the d i g i t i s e d pulse 

shape data i s an ef f e c t i v e data f i t t i n g procedure e The data f i t t i n g 

procedure used should cope with a l l l i g h t pulse sizes. The f i t t e d 

curve should not merely be smooth f o r aesthetic s a t i s f a c t i o n but should 

also enable us to compute e f f i c i e n t l y the parameters of the o r i g i n a l 

Cerenkov l i g h t pulse. 

Hence, given the points s 

1 2 n n + 1 
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and the heights % 

hj p h,~ 5 0 0 0 0 0 0 5 h 

where h^ i s the height over the i n t e r v a l £ x^ , x i + - | » w e r e t i r e 

an approximation that would make the area Ax^ as close as possible 

to the i n t e g r a l of the underlying curve AB over the i n t e r v a l 

£ x i 9 x i + 1 „ (See Figure 4 » 1 ) . 

We define the quantity £ as s 

t = 

* n + 1 
n 

F ( x ) d x - £ h . A x . 4.1 
x 1 i=1 ' ' 

i = 1 ,2 , . . . . , n 

where P(x) i s the smoothing function used,, and choose a data f i t t i n g 
2 

procedure to make £ as small as possible. That i s , we require the 

smoothing fun c t i o n 9 P(x)^ to s a t i s f y the least squares minimization 

condition s 

t2-
r X n + 1 

F ( x ) d x 

2 

n 

1=1 1 1 

4.2 
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FIGURE 4 . 1 

"AREA MATCHING" CURVE APPROXIMATION TO A HISTOGRAM. 
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4 » 1 o 4 Polynomial Approximation to Pulse Shape and i t s Limitations. 

As a f i r s t approximation the function, P(x), may be chosen as 

an n- degree polynomial : 

P(x) = a + a„x + a 0x^ + . . „ + a x n
 4 * 3 v ' o 1 2 n ^ 

Polynomial approximation i s popular because polynomials can be evaluated, 

d i f f e r e n t i a t e d , and integrated easily and i n f i n i t e l y many steps using 

j u s t the basic arithmetic operations; and t h e i r sums, products and 

differences are also polynomials. 

However, i n polynomial approximation, very high order polynomials 

are required to make the f i t t e d curve change rapidly at the peak. This 

introduces smoothing problems? as the very high order polynomials tend to 

f i t the curve to a l l the given points, r e s u l t i n g i n curve o s c i l l a t i o n 

and i n t e r p o l a t i o n at the cost of smoothing. 

Another major l i m i t a t i o n of polynomial approximation i s the analy= 

t i c i t y of polynomials. The behaviour of a polynomial i s globally 

dependent on lo c a l properties i n the i n t e r v a l of approximation. There-

fore, i f the function, P(x), i s badly behaved anywhere i n the i n t e r v a l 

of approximation, then the approximation i s poor everywhere. This 

global dependence on lo c a l properties r e s t r i c t s the use of a single 

polynomial to represent many physical quantities. Most physical quanti­

t i e s have functional forms whose behaviour i n one region of the approxi-

mation i n t e r v a l does not necessarily r e f l e c t t h e i r behaviour througnout 

the i n t e r v a l . Any appropriate f i t t i n g procedure to p r a c t i c a l data must 

therefore be able to allow f o r such variations i n functional form. 
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4 . 2 Use of Moments to Determine Pulse Shape. 

4 . 2 . 1 Second Moment as a Measure of Pulse Width. 

A simple way to evaluate the pulse width from the Dugway data without 

recourse t o elaborate data f i t t i n g procedure i s to f i n d the root mean 

square deviation of the slices about the mean, ( i . e . the square root of 

the second order central moment). 

We define our measure of the width of the Cerenkov l i g h t pulse as the 

square root of the variance of the s l i c e widths, and denote i t by Mg . 

The v a r i a t i o n of with core distance should r e f l e c t the pulse width 

dependence on core distance. 

For our computation, the histogram i n Figure 4 « 1 niay be treated as 

grouped data from a continuous d i s t r i b u t i o n given i n frequency form. I f 

the frequency of the value x i s f ( x ) , then the n moment of the 

d i s t r i b u t i o n , u , may be defined as : 

r 00 
x n f ( x ) d x 

ft = 4 .4 

f (x )dx 

from which the Second Moment i s d i r e c t l y derived as % 

x ' [x dx 
-00 

4.5 

f (x )dx 
.so 
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For a continuous d i s t r i b u t i o n sample ; 

, t o • • » x^ 

of size n , the Second Moment i s s (Pollard, 1 9 7 7 ) 

P2 = — £ x 2 f ( x ) - x 2 4.6 
n a l l x 

where the mean, x , i s 

x = — £ x f (x ) 4 7 
all x 

and the sample size, n , i s : 

n = [ f i x ) 4.8 
all x 

But the variance, t r 2 , i s the same as the Second Order Central 

Moment, ^ « Hence, 

and 
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M 
2 V / 2 

I x 2 f ( x ) 
I f(x) 

£x f ( x ) 
I f ( x ) 4.10 

For our purpose, x , f ( x ) are the s l i c e width i n time, t , and 

corresponding s l i c e height, h ( t ) , respectively. 

Oscilloscope displays of Cerenkov l i g h t show the pulses to have a 

skew d i s t r i b u t i o n with a long t a i l to the r i g h t . The t h i r d order 

central moment of such a d i s t r i b u t i o n would be positive and would give 

a measure of the growth of the pulse ( i . e . a measure of the Rise Time). 

4.2.2 Second Moment of Simulated Pulses Compared with FWHM. 

Computer simulation data have been used to check the v a l i d i t y of 

Second Moment as a measure of pulse width. The computer program 

developed f o r t h i s purpose reads i n pulse heights at given times and 

simulates the s l i c i n g of the pulse, with the s l i c e configuration of the 

p a r t i c u l a r detector under study. The night sky background noise was 

also simulated and added to the s l i c e s . This was done by a random 

number generating subroutine with a Gaussian d i s t r i b u t i o n of RMS 5 mV. 

The RMS of 5mV was chosen from considerations of the night time pedestal 

ca l i b r a t i o n s . The s l i c e heights were rounded to the nearest integer 

multiple of 2mV to account f o r b i t quantisation. 

A matrix of simulated pulses, of d i f f e r e n t widths and heights has 

been investigated. The v a r i a t i o n of the width parameter, M9 , with 
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the simulated pulse FWHM i s shown i n Figure 4*2. The graph does not 

snow a direct one-to-one r e l a t i o n between and simulated pulse FWHM. 

For pulses of FWHM > 16ns i s systematically less than FWHM 

fo r a l l pulse heights. For pulses of FWHM between 6ns and 12ns 

the value of obtained depends on the height of the pulse. This 

v a r i a t i o n i s more evident f o r very narrow pulses (FWHM < 8ns ) . 

Hence, f o r these pulses, Mg » can be used as a r e l i a b l e measure of width 

only a f t e r systematic correction to the measured value. 

4.2.3 An Estimate of Peak Height from Second Moment and Photon Density. 

I n order to determine an alt e r n a t i v e measurement to Peak Height from 

Moments, the quantity i 

has been computed, where ZsL i s the t o t a l l i g h t i n t e n s i t y ( o p t i c a l photon 

density) f o r the simulated pulse. 

Figure 4«3 i l l u s t r a t e s the relationship between Hs and the Peak 

Height of simulated pulses. This relationship shows a consistent over­

estimate of Hs f o r medium to broad pulses, on account of the low value 

of the pulse width shown i n Figure 4°2. For these pulses, the computed 

height parameters^ Hs would need to be corrected systematically before 

they can be interpreted to give a consistent indication of pulse heights. 
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4 o 2 . 4 Limitations i n the Use of Moments as Pulse Shape Estimators. 

The main disadvantage i n the use of Moments i s the c r i t i c a l dependence 

on s l i c e positions. This dependence implies that any loss of information 

due to inaccurate s l i c e position would lead to the evaluation of a width 

that i s too narrow. Furthermore, the evaluation of does not account 

f o r the overlapping of the slices and t h i s can lead to differences i n 

pulse width due mainly to a detector's a b i l i t y to s l i c e up the pulses. 

I t appears therefore, that the use of Moments i s l i m i t e d to only the 

small f r a c t i o n of well measured pulses from detectors whose slices do not 

overlap. For most of the data we require systematic pulse shape recons­

t r u c t i o n techniques that would account f o r the t o t a l pulse area. 

4 . 3 T r i a l Unimodal Functions. 

One p o s s i b i l i t y of reconstructing the pulse shape i s to f i t a unimodal 

f a s t - r i s i n g , slow-decaying function to the observed s l i c e s . Our choice 

of such a function has been guided by the observed shapes of the Cerenkov 

l i g h t pulses from oscilloscope displays. One class of functions which 

s a t i s f y t h i s condition, and are quick to compute, i s the Pearson type 

functions. The use of a Pearson type function has been investigated f o r 

reconstruction of the Dugway data and the results are summarized below. 

4 ° 3 ° 1 Pearson Function. 

The general form of the Pearson type I I I function i s s 
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P ( H <X f c ,

e - t / / 9 4.12 

where 6 and /3 are constants. Equation 4 « 1 2 i s r e a l l y a combination 

of two equations ; the f i r s t part : 

P I H oc f d
 4 1 3 

indicates the growth of the pulse (or the leading edge) while the 

exponential part ; 

P i n o< 4 1 4 

represents the back edge of the pulse. By combining d i f f e r e n t values 

of 6 and p we are able to produce d i s t r i b u t i o n s with varying degrees 

of skewness and kurtosis. The results of t h i s t h e o r e t i c a l study are 

summarized i n Figure 4 « 5 « 

For our computation we have used an equation of the form s 

P i n -- A ( t + - c ) 6 e - ( t + T l / ^ 4.15 

where P(t) i s the pulse height at a given time, t , 

t i s a time-axis parameter to account f o r the d i f f e r e n t s l i c e 



FIGURE 4 » 5 

SOME OF THE DIFFERENT DISTRIBUTIONS OBTAINED BY VARIOUS 

COMBINATIONS OF P AND 6 IN THE PEARSON FUNCTION : 
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configurations of the detectors , 

and A i s a normalisation factor. 

P(t) i s then used as the function F(x) i n the least squares minimization 

c r i t e r i o n i n Equation 4 » 2 . 

To compute P(t) two main options are open to the programmer : 

( 1 ) The values of T , 6 and /3 may be f i x e d at pre-determined levels 

(on the basis of theoretical studies) with the normalisation factor being 
2 

allowed to vary u n t i l £ i n Equation 4 « 2 i s a minimum. 

( 2 ) X , 6 and /8 may be used as variables, with the constraint that 

the i n t e g r a l of the function P(t) over the time i n t e r v a l used should be 

equal to the area under the histogram, (Figure 4 » 1 ) » 

The second option has been used i n tViis work because i t allows more 

f l e x i b i l i t y i n the reconstruction and gives a f i t that i s unique to every 

set of s l i c e configuration. The least squares minimization package 

MIMJIT (James and Roos, 1 9 7 5 ) has been used to vary T 9 6 and p 

between prescribed l i m i t s to s a t i s f y the least squares c r i t e r i o n i n 

Equation 4 . 2 . HINUIT uses a combination of a Monte Carlo searching 

technique and the Simplex method of Nelder and Mead ( 1 9 ^ 7 ) » 

A useful approximation that eliminates the need f o r an int e g r a t i o n , 

and therefore saves computing time, i s : 

x n e - a x d x = 
Hn»1] 

n+1 4.16 

Hence. 

P ( H d t = A 
,n+1 

H n + D 

: t V a t ) dt = A 4.17 
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where n = 6 

a = 1/y9 i n Equation 4 ° 1 5 > 

and. A = area of the pulse 9 used as a normalisation fa c t o r . 

4 „ 3 o 2 Pearson Function Pits to Simulated Pulses. 

Computer simulation pulses of d i f f e r e n t widths and sizes have been 

divided i n t o slices appropriate to the detector characteristics, using 

a technique si m i l a r to that used i n the study on Second Moments (See 

Section 4 . 2 . 2 ) . The histograms formed by the slices have been f i t t e d 

with Pearson type I I I functions as described i n Section 4 « 3 « 1 » 

I n Figure 4 « 6 the Pearson function f i t s to the simulated pulses are 

shown against the expected pulse shapes from the simulation data. The 

graphs are drawn to d i f f e r e n t scales f o r each set of simulated pulse and 

Pearson f i t . 

The results summarized i n Figure 4 ° 6 indicate that Pearson functions 

can cope with the reconstruction of Cerenkov l i g h t pulses of height 

> 5 0 roV and medium width ( >, 2 0 ns ). For narrow pulses, there i s a 

systematic trend to over-estimate the pulse width and under-estimate the 

height. Hence, the Pearson function f i t s to simulated pulses of width 

1 0 ns or less are a l l wider, but have a reduced height, compared to the 

input simulated pulse. This might be due to the strong effect of the 

exponential part of Equation 4 « 1 5 > which causes the f i t t e d shape to f a l l 

before i t has developed along the f u l l length of the leading edge. 

The wide spectrum of pulse sizes and widths expected from our data 

necessitates the use of a f i t t i n g function that i s more f l e x i b l e than 

Pearson type functions. 
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4 » 4 Pulse Shape Reconstruction with Splines. 

In the previous Sections of t h i s Chapter attention has been drawn to 

the l i m i t a t i o n s of polynomials, Second Moments and Pearson functions as 

ef f e c t i v e tools f o r the r e t r i e v a l of pulse shape information from d i g i ­

t i s e d data. 

Second Moments are quick to compute but depend c r i t i c a l l y on the s l i c e 

positions, and give only an approximate determination of the pulse shape. 

Pearson functions give adequate reconstruction of the shapes of medium 

to wide pulses, but are not f l e x i b l e enough to cope with small, narrow 

pulses. 

Polynomials, l i k e Pearson functions, are not f l e x i b l e enough as 

smoothing functions; and they also have the major drawback of a global 

dependence on loc a l properties. 

The most ef f e c t i v e way to represent physical data i s to choose a 

f i t t i n g function that allows f o r the i r r e g u l a r i t i e s i n functional form. 

The set of mathematical functions called 'splines', f i r s t proposed by 

Schoenberg i n 1 9 4 6 , have just t h i s inherent f l e x i b i l i t y . 

Splines are localised f i t s or piecewise polynomials whose segments 

are defined only i n a l i m i t e d range of the independent variable, with 

the constraint that the polynomial segments must have continuity of 

function and derivative at the j o i n t s or 'knots'. This inherent pro­

perty gives r i s e to a function that i s smooth and continuous anywhere 

inside the boundary l i m i t s but vanishes outside the boundaries. 

The s i m i l a r i t y between a mathematical spline and the old draughts­

man's t o o l consisting of a s t r i p of bamboo with lead weights, or the 

modern p l a s t i c 'Flexi-curve' i s not hard to f i n d . 
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This remarkable f l e x i b i l i t y of splines has been put to advantage i n 

the reconstruction of the pulse shapes from the Dugway data ( i . e . the 

function P(x) i n Equation 4 » 2 has been chosen as a s p l i n e ) . I n the 

follo w i n g Seotions, the basic theory of splines i s outlined and the use 

of splines i n our data analysis procedure i s discussed i n d e t a i l . 

4.4.1 B r i e f Theory of Splines. 

For a set of real numbers, s t r i c t l y increasing i n the order ; 

X^ , X2 p e o « 0 0 9 , 

a spline function S(x) of degree m (or order m+1 ) with the knots s 

3̂ 1 p p • o o flop X^ p 

i s a function defined on the e n t i r e r e a l l i n e having the following two 

properties s 

(a) I n each i n t e r v a l ( 2 ^ , x i + 1 ) f o r 

i = Op "19 0 0 0 

S(x) i s given by some polynomial of degree m or less. 

(b) S(x) and i t s derivatives of orders 1 , 2 , . . . , m-1 

are continuous everywhere i n the i n t e r v a l of approximation. 

These properties enable us to divide the curve i n t o sections (See 

Figure 4 ° 7 ) and t r e a t each section as an e n t i t y with the constraint that 

adjacent polynomials must have 

( i ) the same function, F(x) ? 

( i i ) the same slop©(> F"(x) 5 and 

( i i i ) the same curvature, F"(x). 

Hence, i n the f i t t i n g procedure, any suitable spline function may be 

chosen to f u l f i l the least squares minimization c r i t e r i o n i n Equation 4.2. 
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Suitable functions include the exponential function (whose l i m i t i s the 

well-Known Gaussian) and Taylor's series, (Rice, 1 9 6 9 ) • 

I n general, the simplest spline function to s a t i s f y the conditions 

outlined i n ( i ) , ( i i ) , and ( i i i ) above i s a cubic B-spline whose 

basis i s the truncated power function s 

X for X ̂  o 

for X < o 

D e f i n i t i o n s 

Let 

F i x ) = ( x r - x , + 

n-1 

x r ~ x ' , fo r x„ ^ x T 

, for x p < x 

t h 

4.18 

4.19 

Then the B-spline can be evaluated on the r knot position^ x r , 

using t h i s d e f i n i t i o n and the divided differences of F(x) i n x r f o r 

any f i x e d x . 

We define tne f i r s t divided difference of F(x) on x^, and X Q 

as M( x , x 1 ) where 
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F i x . ) - F ( x 0 ) 
M ( x _ , x . ) = J ° - 4.20 

x 1 ~ x o 

The divided difference of order m i s 

M ( x . ; x ... x ) = " ' W - * m ' - M l x i ' V - V l ' 421 j o m v - v 
xm x o 

4.22 

I t follows from Equation 4.21 that 

M ( x . ; x , x j = M ( W - M ( V X o 
J ° 1 x 1 " x o 

and 

M (X j , X j ) = F ( X j ) 4.23 

By expansion of the divided difference formula the localised spline 

of order n (or degree n-1). which we denote here as M . , i s defined 

as s 
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M n j ( x ) = M « ; x o , V . . . , X n ) 

L — 4.24 
i=o T T ( x . - x . ) 

j = o 1 i 
j * 1 

with the property that 

M n j ( x ) d x = - L 4.25 

The re l a t i o n s h i p i n Equation 4«25 can be allowed f o r by using 1 as a 

normalisation factor i n the computation. 

4.4*2 An Algorithm f o r Computing the B-Spline. 

The computer program developed to evaluate the spline i n our f i t t i n g 

procedure has been based on the algorithm proposed by Cox (1972). 

Although B-splines may be evaluated d i r e c t l y from the divided difference 

d e f i n i t i o n , Cox has pointed out that some evaluation may f a i l because of 

cancellation of nearly equal terms. Our computation used hia stable 

method based on the recurrence r e l a t i o n s 
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M_ :(X) 
ni 

( X - X: - n ) M n - 1 , i - l ( x ) ^ X j - x l M n . L j t x ) 

V x i - n 
4.26 

where M n i i s a spline of order n ending on knot x. M 
n - 1 , i - 1 

M n - 1 , i (x) are the ( n - l ) t h divided differences on x and x. 1 1 - 1 

respectively. 

A unimodal quartic spline has been chosen i n t h i s work as the f i t t i n g 

function. There i s a maximum of 7 data points ( i . e . a maximum of 6 

slices plus 1 discriminator l e v e l ) . Constrained by.the 2 end knots, we 

are l e f t with 5 degrees of freedom, j u s t i f y i n g our choice of a quartic 

spline with n = 5 » and 6 knots. 

The use of Equation 4 « 2 6 involves the calculation of a l l backward 

divided differences preceding M ^ ( x ) . For example, f o r a quartic 

spline, ( n = 5 ) i the elements i n the triangular array i n Table 4 » 1 

are computed. 

I t i s worth noting that s 

M.. ( x) 

1/(X. - X 

, for all other values of x 

f or x 

4.27 

Equation 4 * 2 7 therefore reduces the number of individual calculations 

required. 
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TABLE 4.1 

TRIANGULAR ARRAY OF ELEMENTS FOR A QUARTIC SPLINE 

1st divided 2nd divided 3rd divided 4th divided 5th dividec 

differences differences differences differences differences 

M 1 , i - 4 
X i ~ 4 

1,1-3 

M 2 , i - 3 
M 
K 3 , i - 2 

x i - 3 
M 
n 1 , i - 2 

M 2 , i - 2 
M 3 , i - 1 

M 4.i-1 

X i - 2 
n. . . 1,1-1 

M 2 , i - 1 

3»i 

\i 

X i - 1 

1 , i 

M 2 , i 

X. 
i 
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I f , f o r example, x. ^ ^ x < ^ , a l l the terms i n the f i r s t 

divided difference column are zero except i ^ and the triangular 

array (Table 4»1) reduces to Table 4.2. Only the terms i n the rhomboidal 

array i n Table 4-2 then need be computed. 

To compute the spline we set : 

My = M ( H , j = 1 , i - n+1 , i -n+2 i 4.28 

We compute 

M f . ( ^ i - r > " r - 1 , _ l ^ i - t ) " r _ 1 i 4 2 9 

fJ t - t . 
J J-r 

where t . and t . are the times f o r the observed s l i c e heights and J J-r 
t i s any given time, f o r 

j = i-n+r , i-n+r+1 , <,.<>, i 

Then 

M n i (x) = Mn. 4.30 
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TABLE 4.2 

RH0MB0IDAL ARRAY OF ELEMENTS FOR A QUARTIC SPLINE OBTAINED 

BY APPLYING THE RELATION IN EQUATION 4.27 

1st divided 
iifferences 

2nd divided 
differencee 

3rd dividec|4th 
differences 

divided 
difference! 

5th divided 
difference; \ 

i - 5 

i - 4 

X i - 3 

^ i - 2 

X i - 1 

x. l 
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4 . 4 « 3 Splines with Fixed Knot Positions. 

As a consequence of i t s basic d e f i n i t i o n , the shape of a spline does 

not depend on the two end knots but only on the position of the middle 

knots. 

Assuming a unimodal spline f o r the pulse, and no other information 

about the structure of the underlying data, an i n i t i a l choice of closely 

spaced knots around the peak and a rapidly decreasing density of knots 

away from the peak would seem appropriate. This would require a p r i o r 

guesstimate of the turning point i n the pulse, a random and time-consuming 

process. A solution to t h i s i s the use of variable knots. 

4 . 4 * 4 Splines with Variable Knot Positions. 

De Boor and Rice ( 1 9 6 8 ( a ) , 1968(b) ) have shown that approximation 

to data by splines improves greatly i f the knots are f r e t variables. 

This improvement i s i l l u s t r a t e d by t h e i r data (p. 18 of Ref. 1 9 6 8 ( a ) , 

p. 1 5 of Ref. 1 9 6 8 ( b ) ), which have been plotted by t h i s author, i n 

Figure 4 * 8 . These curves show the close approximation of the optimized 

spline, with 7 knots used as variables, to experimental data r e l a t i n g to 

a tnennal property of titanium. Superimposed on the smooth l i t are the 

o s c i l l a t o r y f i t s of a fixed knot cubic spline. 

4 . 4 . 5 Use of KIi\iUIT to Relax Knot Positions. 

The quartic spline i n t h i s work has been computed as a variable-knot 

spline. Tiie knots have been allowed to vary between pre-set boundaries, 

while s a t i s f y i n g non-linear least squares minimization c r i t e r i a , by the 



FIGURE 4.8 
CUBIC SPUME FIT WITH (A) 7 FIXED KNOTS (B) 7 VARIABLE KNOTS 

TO OBSERVED DATA RELATING TO A THERMAL PROPERTY OF TITANIUM 

(de Boor and Rice, (1968 a ) , (1968 b) ) 
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use of MINUIT (James and Roos, 1975)* MINUIT uses three main minimiza­

t i o n techniques, v i z . SEEK, SIMPLEX, and KIGRAD„ The SEEK command 

is used f i r s t i n a Monte Carlo searching technique to obtain an approxi­

mate minimum. This i s followed by the MINIMIZE com.and which incorpo­

rates the SIMPLEX method of Nelder and Mead (1967) and MIGRAI, based on 

the algorithm of Fletcher (1970)» to obtain a more refined minimum. A 

consecutive MINIMIZE command completes the least squares f i t , and the 

optimal knot locations are then used f o r computing the spline. 

4.5 Quartic Spline F i t s to Computer Simulation Data. 

Figure 4-9 shows a set of simulated pulses which have been spline-

f i t t e d o These are the same pulses f i t t e d by Pearson functions, shown i n 

Figure 4«6. The s l i c e positions used here are f o r the same detector as 

in Figure 4.6 f o r easy comparison with the Pearson function f i t s . The 

pulses shown are drawn to d i f f e r e n t scales, but each pulse from the 

s p l i n e - f i t i s drawn to the same scale as the corresponding pulse from 

Pearson function f i t s . Figure 4»9 shows the close approximation of the 

spline to the simulation data over a l l pulse sizes tested and shows that 

the spline can cope with narrow as well as wide pulses. 

Tne computer program has been tested to determine i f s p l i n e - f i t t i n g 

introduces any systematic errors i n the reconstruction of pulse shapes. 

A matrix of simulated pulses, of FWHM between 6.5 ns and 65 ns and 

pulse height 25 mV to 1000 niV have been s p l i n e - f i t t e d . 

F i r s t l y , the pulses have been reconstructed with no noise on them, 

to determine errors due to s p l i n e - f i t t i n g alone. Secondly, tnese pulses 

have been reconstructed a f t e r the addition of random noise to account f o r 
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SKy background noise on the measured Cerenkov l i g h t pulses, (See Section 

4 . 2 . 2 ) . The results of t h i s study are summarized below. 

We denote the t o t a l error between the percentage points (T10-'j, 

T50/o(up), T90Mup) , T100%, T90%(down), T50;t(down) ) of the spline-

f i t t e d pulse and the o r i g i n a l simulated pulse by O f j m e s • Figures 4*10 

and 4«11 summarize the v a r i a t i o n of 0", with simulated pulse peak n times 

height f o r the s l i c e configurations of a t y p i c a l outer detector and a 

ty p i c a l inner detector. These figures show that the errors on the 

percentage points increase sharply i f the pulse height decreases from 

100 mV to 25 mV, but do not increase much above 100 mV. This indicates 

that the background sky noise does not a f f e c t the percentage levels 

s i g n i f i c a n t l y above 100 mV but must be allowed f o r f o r pulses smaller than 

100 mV. 

The effect of sky noise on the peak height of the s p l i n e - f i t t e d 

pulses i s summarized i n Figure 4*12 . The s o l i d l i n e represents the 5 mV 

error l e v e l ; i . e . the percentage change i n the peak height when there i s 

an error of exactly 5 mV on the slices and discrimination l e v e l . The 

spread of the errors about the s o l i d l i n e shows the extent of background 

noise error on the measured pulse heights, and indicates a need f o r a 

correction to the pulse heights. 

Figure 4»15 shows the comparison between FWHF; of the simulated pulses 

and FWHM from the s p l i n e - f i t s f o r pulses of height 50 mV, 500 mV and 1000 

mV. The graph shows good agreement between FWHK from the s p l i n e - f i t s 

and the simulated pulse FWHM f o r a l l the pulse sizes considered. 

Ijetailed errors i n FWHM and Rise Time due to s p l i n e - f i t t i n g alone are 

l i s t e d i n Table 4»3 ancL Table 4«4» Tables 4«5 and 4*6 summarize the 

errors i n FWHM and Rise Time f o r noisy simulated pulses. These errors 



FIGURE 4.10 

VARIATION OF RMS OF PERCENTAGE LEVELS WITH SIMULATED 

PULSE HEIGHTo (OUTER DETECTOR) 

FIGURE 4«11 

VARIATION OF RMS OF PERCENTAGE LEVELS WITH SIMULATED 

PULSE HEIGHT, (INNER DETECTOR) 
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FIGURE 4.12 

VARIATION OF % CHANGE IN PEAK HEIGHT WITH PEAK HEIGHT 

OF SPLINE-FITTED, NOISY SIMULATED PULSES. 
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FIGURE 4 .13 

FWHM OF SPLINE-FITTED PULSE COMPARED WITH THE INPUT 

SIMULATED PULSE FWHM 
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TABLE 4 .3 

COMPARISON BETWEEN INPUT SIMULATED PULSE FWHM AND THE OUTPUT SPLINE 

PIT FOR NOISE-FREE PULSES. Error i n FWHM = (simulation - spline f i t ) 

FWHM of input simulated pulse (ns) 

6.5 8.9 16.3 20.4 36.7 65.O 

25 - 1 . 0 -1.1 - 1 . 7 - 1 . 3 - 0 . 3 +1.4 

35 - 1 . 5 +0.7 - 1 . 0 +1.1 -0.8 - 1 . 6 

50 - 2 . 0 +0.1 - 1 . 3 +0.9 +1.2 +0.8 

100 - 0 . 5 - 0 . 9 -1.8 -1.1 +1.8 - 1 . 2 

500 -2.1 -1.8 - 0 . 2 -0.8 +1.1 - 1 . 4 

1000 -1 .6 - 1 . 2 +0.3 - 1 . 0 + 1.0 +1.3 
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TABLE 4 .4 

COMPARISON BETWEEN INPUT SIMULATION PULSE RISE TIME AND THE SPLINE 

PIT FOR NOISE-FREE PULSES. Error i n Rise Time = (simulation - spline f i t ) 

FWHM of input simulated pulse (ns) 

6.5 8.9 16.3 20.4 36.7 65.O 

25 +4-7 +3.8 +1.7 +3-4 - 4 . 7 +2.8 

35 +2.6 + 3.4 +1.4 + 1.7 -1.8 +2.4 

50 +2.1 +1.8 +1.5 - 1 . 6 +0.5 -1 .0 

100 - 2 . 4 +0.9 - 0 . 6 +1.9 - 0 . 2 - 1 . 3 

500 + 1.0 + 1.1 - 0 . 6 +0.2 - 0 . 4 - 0 . 9 

1000 +0.4 +0.8 - 0 .7 +0.3 - 0 . 4 - 0 . 6 

Rise 
Time ol 
input 
pulse 

8 .3 
ns 

8 .5 
ns 

6.5 
ns 

7.5 
ns 

9.7 
ns 

22.6 

ns 

1 

<D 
+> 

1 
•H 
CO 
+> I 
•H 
<H 
O 

+> •a 
•H 03 XS 

•a 
p. 
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TABLE 4-5 

COMPARISON BETWEEN INPUT SIMULATED PULSE FWHK AND THE OUTPUT SPLINE 

FIT FOR NOISY PULSES. Error i n FWHM = (simulation - spline f i t ) 

FtfHM of input simulated pulse (ns) 

6.5 8.9 16 .3 20.4 36.7 65.O 

25 -8.1 -5.1 +4.4 + 5.8 +2.0 +4.6 

35 -4.8 - 5 .0 +2.8 +3-3 +2.1 +4.1 

50 -3.8 - 2 . 9 +4.4 +2.6 +0.2 +2.8 

100 - 2 . 4 - 2 . 2 - 1 . 4 +2.1 +4.6 +1.6 

500 +1.2 +1.9 - 1 . 2 + 1.7 +2.1 + 1.2 

1000 + 1.1 +0.7 -1 .5 +1.0 +0.9 +0.8 

-a a) +> 

I 
a 

t 
•H 
<H O 
+» 
" f t 
•H 
Q) 
J3 

•a 
P. 
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TABLE 4.6 

COMPARISON BETWEEN INPUT SIMULATED HJLSE RISE TIKE AND TH£ OUTPUT 

SPLINE PIT FOR NOISY PULSES. Error i n Rise Time = (simulation - spline 

FWHM of input simulated pulse (ns) 

6.5 8.9 16.3 20.4 36.7 65.0 

25 +5.3 +4-9 -3.8 +5.1 - 4 . 7 +4.6 

35 +2.8 +3.8 - 3 - 5 +4.1 - 4 . 6 +3.9 

50 +2.5 +2.2 - 1 . 4 - 2 . 0 - 6 . 5 +1.9 

100 +0.5 +2.7 -2.8 - 3 . 0 - 2 . 9 +2.6 

500 +3-7 +0.9 - 1 . 6 -0.8 - 0 . 7 +2.0 

1000 + 1.4 + 1.3 -0.8 - 0 . 7 - 1 . 0 +0.8 

Rise 
Time of 
input 
pulse 

8 .3 

ns 
8 .5 

ns 
6.5 

ns 
7.5 

ns 
9.7 

ns 

22.6 

ns 

<a 
+» nJ 
pH a 
•H m 

I 
o 
+> •a iH « 
J3 
Q) 
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are the combination of random sky noise and systematic error due to 

s p l i n e - f i t t i n g . 

The pulse shape parameter whose determination from s p l i n e - f i t s resulted 

i n the biggest errors i s Rise Time, as Tables 4«4 and 4«6 show. The 

errors i n Rise Time increased systematically with a decrease i n Peak 

Height (Figure 4«14)» Fo r small pulses, the discrimination l e v e l i s near 

the peak. Any loss of information due to sampling at the leading edge 

w i l l position the discrimination level f u r t h e r i n t o the pulse. This can 

lead to a poor f i t , as the spline i s constrained to pass through the 

discrimination l e v e l . 

Overall errors i n the f i t could also be due to the i n a b i l i t y of the 

minimization package, MINUIT, to a t t a i n a unique minimum. 

4.6 Conclusion. 

These results indicate that s p l i n e - f i t t i n g i s adequate f o r reconstruc­

t i o n of d i g i t i s e d Cerenkov l i g h t pulses. The peak height, Rise Time, 

and FWHM are a l l determined accurately from the f i t t i n g procedure. T10% 

i s the least accurately evaluated percentage point. This i s a t t r i b u t e d 

to the s l i c i n g of the pulses. 

The results on s p l i n e - f i t s of simulated pulses j u s t i f y the use of 

quartic splines to reconstruct the Dugway data. The pulse shape 

characteristics determined from s p l i n e - f i t s are given i n the following 

Chapters, with the necessary corrections made to them to account f o r 

reconstruction errors. 
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CHAPTER FIVE 

DATA REDUCTION AND ANALYSIS. 

5.1 Overview. 

This Chapter i s concerned with the detailed analysis of the £AS data 

from Dugway, from the i n i t i a l handling of the raw data to the extraction 

of pulse shape information using a suite of computer programs and the 

pulse shape reconstruction procedures outlined i n Sections 4-4 and 4«5« 

The observed average characteristics of the extensive a i r saowers are 

outlined. The pulse shape parameters (FWHM, Rise Time, F a l l Tinie and Top 

Time) are determined and t h e i r l a t e r a l d i s t r i b u t i o n s are shown. The 

l a t e r a l d i s t r i b u t i o n of the Peak Height i s also shown. 

5.2 F i r s t Stage of the Analysis. 

The f i r s t attempt to understand the data, a f t e r they were brought to 

Durham, involved a thorough study of the environmental conditions as 

outlined i n Sections 3.4 and 3«5« 

After the weather conditions had been quantified f o r the period of 

observation the data were divided i n t o "data blocks", with each block 

consisting of at most 1 night's record and up to 200 events per block. 

Thus 9 whereas data from one night from the 400m array would make up not 

more than 2 data blocks, a t y p i c a l clear night's record from the 100m 

array (with count rate > 100 events per hour) was divided into up to 7 

data blocks. This was necessary i n order to concentrate resources on 
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the analysis of only the data from good weather nights. A t o t a l of 62 

prime weather data blocks was obtained f o r the 40dm array data, from the 

Winter 1978/79 and 1979/80 runs; 29 data blocks were obtained from the 

200m array and the data from the 100m array were divided into 21 data 

blocks. 

The data were then analysed by data block using a computer program 

to generate the following d e t a i l s :-

(1) the event rate per data block, 

(2 ) the frequency of n-fold coincidences, where 3 ^ n 8, 

(3 ) the in d i v i d u a l detector response rates, 

(4 ) the average pedestal values f o r a l l d i g i t i s e d quantities, 

(5 ) a t r i g g e r i n g p r o f i l e to indicate the v a r i a t i o n of the array 

t r i g g e r rate with changes i n say c l a r i t y , 

and (6) histograms f o r each measured EAS parameter f o r each t r i g g e r i n g 

detector. 

Atmospheric monitoring information, which was logged at the central 

recording s i t e at the time of each event, was also analysed at t h i s stage e 

This included :-

( l ) the pressure p r o f i l e f o r the data block, 

and (2) a graph of the night sky brightness as measured by the 2-inch 

photo-tube. 

This additional atmospheric monitoring information and the t r i g g e r i n g 

p r o f i l e were valuable f o r cross=checking the quantitative weather records 

obtained from tiie star t r a i l pictures. 



97 

5.3 Second Stage of tne Analysis. 

5.3-1 Decalibration and Overflowing. 

The next stage of the analysis involved the decalibration of the data, 

a f t e r checking the raw data f o r errors i n each detector's response. 

The raw data were decalibrated by the use of computer programs and 

the c a l i b r a t i o n constants recorded from Dugway. The Cerenkov l i g h t 

pulse area was determined from either the area covered by the decalibrated 

d i g i t i s e d slices (which i s designated here as 'Sigma Slices', ZSL ) , or 

the pulse area recorded by the integrator. In t n i s case, 'Sigma Slices' 

was not merely the t o t a l sum of a l l the s l i c e s . Each sli c e of width 

10ns and given height was taken in t o account, and allowance was made 

fo r the overlap of slices as well as the t a i l end of the pulse where the 

slices were not as close together as at the leading edge (See Figure 3«4)« 

The two measures of the pulse area helped to check the response of the 

integrator and the sequential charge d i g i t i s i n g u n i t s . 

The charge d i g i t i s e r s used at Bugway had an input voltage range 

greater than what our required resolution specified. We required the 

dynamic range of the slices to be 50 - 1500 mVns and f o r the integrator 

to be 250 - 100,000 mVns. The scalers used, with a dynamic range of 

0 - 255 b i t s , could only give us a s e n s i t i v i t y of 60 mVns per b i t i f they 

were used to d i g i t i s e the complete dynamic range of the system. 

To correct t h i s mismatch, and extend the dynamic range of the d i g i ­

t i s e r s , two options were possible. One was to match the ADC maximum 

to PMT/amplifier maximum and have a d i g i t i s e d output reading of 4 mV per 

b i t . The second option, and the one chosu-n i n t h i s work, was to match 
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the ADC maximum t o h a l f o f the PMT/araplifier maximum. This r e s u l t e d i n 

a d i g i t i s e d output reading of 2 mV per b i t and t h e r e f o r e some pulses 

( e s p e c i a l l y l a r g e pulses near the shower core) would r e g i s t e r e x t r a b i t s 

and 'overflow' the b i t counter i n the ADC. These 'overflows' were 

evident i n the d e c a l i b r a t e d data as a d i f f e r e n c e between the i n t e g r a t o r 

reading and the summation of s l i c e s , and were allowed f o r i n the f o l l o w i n g 

way. 

The i n t e g r a t o r response was compared w i t h the summation of s l i c e s f o r 

each d e t e c t o r . I f the i n t e g r a t o r record was g r e a t e r than Sigma S l i c e s 

by more than 4000 mVns, s l i c e s 1, 2, or 5 was 'overflowed' by adding 

4000 - 5000 mVns t o the areas (and d i s t r i b u t i n g the a d d i t i o n evenly on 

the s l i c e s ) t o make the two measures o f pulse area n e a r l y equal. To 

maintain a uniform p a t t e r n of overflows f o r a l l d e t e c t o r s , the t o t a l 

number of overflows was r e s t r i c t e d t o l e s s than 4« Any d e t e c t o r t h a t 

r e q u i r e d more than 5 overflows was flagged and thrown out of the a n a l y s i s . 

I n the f i n a l data s e l e c t i o n f o r pulse shape a n a l y s i s , 'overflowed' 

pulses were l e f t out. This p o i n t i s taken up f u r t h e r i n Section 5*6. 

The design of the experiment allowed f o r the s l i c e s t o overflow long 

before the i n t e g r a t o r . This ensured t h a t the pulse area was w e l l measu­

red. 

5.3»2 E s t i m a t i o n o f the Shower Core P o s i t i o n and A r r i v a l D i r e c t i o n . 

A f t e r d e c a l i b r a t i o n , each event was analysed t o e s t a b l i s h the a r r i v a l 

d i r e c t i o n and core l o c a t i o n . Shearer (1980) has developed computer 

programs f o r t h i s purpose using the non=linear l e a s t squares o p t i m i s a t i o n 

package, MINUIT, by James and Roos (1975). 
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F i r s t l y , the computer program f i t t e d a sphere through the d e t e c t o r 

t r i g g e r i n g times, i . e . the time a t which a th r e s h o l d voltage o f 20mV 

was r e g i s t e r e d by each d e t e c t o r . The l i n e j o i n i n g the array centre t o 

the centre of t h i s sphere gave the a r r i v a l d i r e c t i o n f o r the shower. 

The choice of a s p h e r i c a l f r o n t f i t r e s t e d i n the work of Orford and 

Turver (1976) who showed t h a t the f r o n t s defined by various percentage 

l e v e l s through a Cerenkov l i g h t pulse were c l o s e l y s p h e r i c a l . These 

authors quoted an RhS e r r o r o f 3ns f ° r a non-linear l e a s t squares f i t 

t o s p h e r i c a l f r o n t s o f radius ^,2 x 10^ ns ( o r 7 km) at the 10% 

p o i n t s of the pulses observed by the Haverah Park array of e i g h t 

d e t e c t o r s . 

The l o c a t i o n of the centre of the sphere defined by the l e a s t squares 

f i t t o the d e t e c t o r t r i g g e r i n g times was used t o estimate the depth i n t o 

the atmosphere a t which the shower reached the 20 mV l e v e l . T y p i c a l l y , 

the RMS d e v i a t i o n on the l e a s t squares f i t t o a sphere at the 20mV l e v e l 

was 1.61 ns f o r a radius of 3 km f o r a 5 - f o l d coincidence. 

Secondly, the shower core was determined by e s t a b l i s h i n g the centre 

of symmetry of the Cerenkov l i g h t a t ground l e v e l i n the plane o f the 

shower. Here, the a v a i l a b i l i t y o f the two separate measures of the pulse 

area proved u s e f u l . Sigma S l i c e s was used f o r small pulses ( < 5000 

mVns) when t h i s summation was the more accurate measure, and the i n t e ­

g r a t o r record was used f o r bigger pulses. 

With the shower core and a r r i v a l d i r e c t i o n e s t a b l i s h e d , i n i t i a l 

s t u d i e s could be made of the extensive a i r shower parameters which show 

v a r i a t i o n s w i t h core distance and z e n i t h angle. 

To determine the v a r i a t i o n of o p t i c a l photon d e n s i t y w i t h core distance, 

a f u n c t i o n o f the form ; 
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U H r ) = A ( r + r a f ^ 5.1 

was used, where :-

$[r) i s the photor. d e n s i t y a t core distance, r ; 

A i s a constant unique t o each shower ; 

and r„ was f i x e d at 50 metres. 

Thus, a t t h i s stage i n the a n a l y s i s , each shower h, d a value of rj 

which i n d i c a t e d the d i s t r i b u t i o n o f the Cerenkov l i g h t w i t h r a d i a l distance 

and z e n i t h angle. 

5.4 C r i t e r i a f o r F i n a l A n a l y s i s . 

At the end o f the day, an event t h a t was acceptable f o r f i n a l a n a l y s i s 

had t o s a t i s f y the f o l l o w i n g c r i t e r i a : 

(1) The weather code must i n d i c a t e prime weather c o n d i t i o n s ; 

(2) A l l overflows should be implemented or pulses which could not 

be overflowed should be flagged ; 

(3) A l l d e c a l i b r a t i o n parameters must be given a f i n a l check; 

and (4) The RMS d e v i a t i o n on the a r r i v a l d i r e c t i o n must be < 10ns and 

on the core l o c a t i o n < 1500 mVns. 

A l l events s a t i s f y i n g these c r i t e r i a were stored on d i s c or magnetic 

tape i n a p a r t i c u l a r format t o a l l o w f o r easy access d u r i n g the next 

stage of the a n a l y s i s which i n v o l v e d a great deal of computation, 

i n c l u d i n g :-

(1) The r e c o n s t r u c t i o n of the Cerenkov l i g h t pulse shape from the 

d e c a l i b r a t e d s l i c e s ; 
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(2) A refinement o f the l a t e r a l d i s t r i b u t i o n of the o p t i c a l photon 

d e n s i t y ; 

(3) A refinement of the time of a r r i v a l and stiower imaging ; 

(4) The a r r i v a l d i r e c t i o n s of the extensive a i r showers ; 

and (5) The separation between the l i g h t f r o n t and p a r t i c l e f r o n t o f 

the Cerenkov r a d i a t i o n . 

5.5 Primary Energy Estimators a t Dugway. 

Computer s i m u l a t i o n s o f a i r showers have been used t o p r e d i c t primary 

energy estimators f o r the Dugway a r r a y . Any primary energy estimator 

must be a parameter measurable a t a l l energies and shower sizes and 

showing l i t t l e or no v a r i a t i o n w i t h energy, z e n i t h angle and photon f l u x 

over the range of shower energies and z e n i t h angles f o r the a r r a y . This 

q u a n t i t y can be e i t h e r the o p t i c a l photon d e n s i t y a t a given core d i s t a n c e , 

0 ( r ) , or some other measure of the shower c h a r a c t e r i s t i c s . 

I n i t i a l l y , two measures of the primary energy were evaluated f o r the 

400m a r r a y , v i z : 

(1) the o p t i c a l photon d e n s i t y a t 200m from the shower core, 0(2OOm); 

and (2) the i n t e g r a l o f the l a t e r a l d i s t r i b u t i o n between 50m and 250m, 

L50 0 

250 

0(2OOm) and C^q were proposed as primary energy estimators on the 

basis of the a r r a y boundary requirements and the r e s u l t s of computer 

s i m u l a t i o n s a v a i l a b l e at t h a t time. I n i t i a l samples of the Dugway 3AS 

data have been analysed and i n t e r p r e t e d on the basis of these two primary 

energy estimators by Andam et a l (1979)> Chantler et a l (1979)» and 

Shearer (1980), However, f u r t h e r computer s i m u l a t i o n r e s u l t s have been 
( 2 7 NOV I98I ) 
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obtained, p r o v i d i n g b e t t e r primary energy estimators f o r a l l three arrays 

operated a t Dugway. 

McComb and Turver (1981) have observed t h a t the s i m u l a t i o n o p t i c a l 

photon d e n s i t y depends not only on primary energy, but also t o some extent 

on the depth of e l e c t r o n cascade maximum, a t a l l core distances ( F i g u r e 

5.1). Howeverj f o r a f i x e d energy shower at < 45° » w i t h depth o f 
_2 

maximum 550 - 650 gem , t h e i r r e s u l t s show t h a t the photon d e n s i t y a t 

150m from the core, 0(150m), v a r i e s only s l i g h t l y w i t h depth o f maximum 

( < 10% change f o r 100 gem change). The o p t i c a l photon d e n s i t y 
15 

which changes l e a s t w i t h depth of maximum f o r low energy showers (10 -16 —2 10 eV) maximising a t < 500 gcm~ , was found t o be 0(5OOm). 
The two Dugway £IAS arrays f o r observation of large showers ( 1 0 ^ -

10'° eV) were of r a d i u s 200m and 400m, and f o r these arrays 0(150m) 

was r e a d i l y measurable as an energy estimator. For low energy showers, 

( 1 0 ^ - 1 0 ^ eV), the maximum a r r a y dimension was 100m r a d i u s . Hence, 

0(5OOm) could not be measured w i t h such an ar r a y , and 0(lOOm) was chosen 

as a compromise. 

50 6 The Data Set f o r t h i s Work. 

A sample of snowers from the Dugway data was selected according t o 

the primary energy es t i m a t o r , 0(l5Om), f o r d e t a i l e d a n a l y s i s f o r t h i s 

worK. These consisted of 275 showers from the 200m a r r a y , i n c i d e n t a t 

z e n i t h angle 0° - 60° and 104 showers from the 400m a r r a y , i n c i d e n t 

a t z e n i t h angle 0° - 45^ « The energy range f o r the 400m a r r a y data 

sample was 3.5O < log(0(l5Om)) < 4°50 , a decade of energy wnich 

corresponded to 6.75 x 10 eV % E £ 6.75 x 10 ' eV. The data from 
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FIGURE 5«1 

THE LATERAL DISTRIBUTION OF CERENKOV LIGHT AT (A) DIFFERENT ZENITH ANGLES, 

(B) DIFFERENT DEPTHS OF ELECTRON CASCADE MAXIMA. 

(McComb and Turver„ 1981) 
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the 200m array were f o r showers i n the primary energy range 2.90 

log(0(l5Om)) ^ 5.90 or 1.80 x 1 0 1 6 eV ̂  E p £ 1.80 x 1 0 1 7 eV. 
Figures $.2 and 5»3 show the z e n i t h angle and energy d i s t r i b u t i o n 

f o r the two data s e t s . Only events which r e g i s t e r e d 5 - f o l d or more 

coincidences from n i g h t s o f prime weather c o n d i t i o n s were s e l e c t e d . The 

overlap i n the energy range of the two data sets made i t p o s s i b l e t o cross-
16 

check any a i r shower parameters measured i n the overlap, (1.80 x 10 ;< 

E p < 6.75 x 1 0 1 6 eV). 

For the work presented i n t h i s Thesis, the f i v e or more pulses i n 

each shower were reconstructed by q u a r t i c s p l i n e f i t t i n g , as described i n 

Chapter 4- Only pulses whose h e i g h t was g r e a t e r than the d i s c r i m i n a t i o n 

l e v e l f o r each d e t e c t o r were used f o r the pulse shape a n a l y s i s . For 

very small pulses ( < 40mV) most o f the f r o n t edge w j u l d be l o s t t o the 

d i g i t i s i n g system since s e q u e n t i a l pulse d i g i t i s a t i o n s t a r t e d only a f t e r 

the d e t e c t o r d i s c r i m i n a t i o n l e v e l was reached. 

A f u r t h e r c r i t e r i o n r e l a t i n g t o pulse overflows ( S e c t i o n 5«3«1) was 

inco r p o r a t e d i n the s e l e c t i o n . Pulses w i t h overflows were reconstructed 

merely t o determine whether the i n t e g r a t o r had al s o , i t s e l f , overflowed ; 

i . e . whether a pulse w i t h overflowed s l i c e s became co n s i s t e n t a f t e r over­

f l o w , by checking t h a t Sigma S l i c e s was equal t o the i n t e g r a t o r r e c o r d . 

The s p e c i a l problems r e l a t i n g t o q u a r t i c s p l i n e r e c o n s t r u c t i o n o f 

r e a l pulses from our data, as opposed t o simulated pulses used f o r t e s t i n g 

the computer program, are explained below. 



FIGURE 5.2(a) 

DISTRIBUTION OF log(0(l5Om)) FOR THE 400metre ARRAY DATA 

SAMPLE, 6.75 x 1 0 1 6 eV < E p 35 6.75 x 1 0 1 7 eV 

FIGURE 5.2(b) 

DISTRIBUTION OF log($(150m)) FOR THE 200metre ARRAY DATA 

SAMPLE, 1.80 x 1 0 1 6 eV ̂  E p ^ 1.80 x 1 0 1 7 eV 
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FIGURE 5.3(a) 

DISTRIBUTION OF ZENITH ANGLE FOR THE 400metre ARRAY DATA 

SAMPLE, 6.75 x 1 0 1 6 eV ^ E < : 6„75 x 1 0 1 7 eV 

FIGURE 5.3(b) 

DISTRIBUTION OF ZENITH ANGLE FOR THE 200metre ARRAY DATA 

SAMPLE, 1.60 x 1 0 1 6 e7 S E ^ 1.80 x 1 0 1 7 eV 
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5.6.1 The E f f e c t of System Bandwidth on Pulse Shape Reconstruction. 

The response of a l l detectors were determined from radioactive pulser 

measurements a t Dugway, (Shearer, 1980). Figures 5.4(a-h) i l l u s t r a t e 

the system response for the eight detectors. These show considerable 

v a r i a t i o n i n the shape and s i z e of the undershoot on the individual 

detector output pulses. 

The presence of undershoot on the data has some implications f o r 

pulse shape f i t t i n g which should not be overlooked. The unimodal 

quartic spline w i l l tend to e i t h e r make up f o r the undershoot, giving a 

reconstructed pulse that i s too wide, or ignore the undershoot and r e s u l t 

i n a l o s s of the back edge of the pulse. 

Most of the f i t s f or bandwidth limited pulses (close to the shower 

core) were broader than expected. This could be a di r e c t r e s u l t of 

• s l i c i n g ' and was more evident f o r the 400m array data, since f o r these 

pulses the s l i c e s at the back edge were further apart than those at the 

leading edge, (See Figure 3«4)« 

I n addition to system bandwidth e f f e c t s , the position of the d i s c r i ­

mination l e v e l was found to a f f e c t the f i t . The quartic spline was 

constrained to f i t through the discrimination l e v e l . Therefore, an 

accurate determination of the gain of each detector, which was used to 

estimate the discrimination l e v e l , was necessary. 

With these s p e c i a l problems of pulse reconstruction i n mind, the pulse 

shape parameters? FWHM, Rise Time, Top Time, and F a l l Time have been 

computed and t h e i r average c h a r a c t e r i s t i c s are l i s t e d i n the following 

Sections. 



FIGURE 5»4 (a-h) 

SYSTEM RESPONSE FOR THE DETECTORS USED AT DUGWAY„ 
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5.7 Average Pulse Shape C h a r a c t e r i s t i c s from Dugway. 

The average pulse shape c h a r a c t e r i s t i c s measured a t Dugway are given 

below f o r the two data sets s.nalysed f o r t h i s work. 

The FWHK, Rise Time, Top Time and F a l l Time are l i s t e d f o r the data 
17 

from the 400m array (E = 1.7 x 10 eV), and t h e i r dependence on core 
distance and z e n i t h angle are shown. The v a r i a t i o n of FWHM w i t h core 

— 16 

distance and z e n i t h angle f o r the 200m array data (E = 3 x 10 eV) i s 

also given. Figures 5»5 - 5«10 i l l u s t r a t e the v a r i a t i o n of the average 

pulse shape parameters w i t h core distance and z e n i t n angle, and i n d i c a t e 

t h a t the pulse snape parameters r e l a t e t o core distance through a power 

law of the form : 

Parameter(r) = a + br 1 1 5«2 

where a and b are constants. 

System bandwidth e f f e c t s have been removed from the Rise Times and 

FWHM. This has been done by comparing the observed parameters w i t h 

computer s i m u l a t i o n s e s p e c i a l l y t a i l o r e d to the arrays and Dugway 

atmosphere, from the work of KcComb and Turver (1981). Corrections have 

also been made f o r pulse shape r e c o n s t r u c t i o n e r r o r s , using the r e s u l t s 

of q u a r t i c s p l i n e r e c o n s t r u c t i o n of simulated pulses. 

No attempt has been made t o remove the system response from Top Time 

and F a l l Time a t t h i s stage of the a n a l y s i s . Furtner systematic 

t h e o r e t i c a l s t u d i e s w i l l be re q u i r e d before any u s e f u l attempt at 

deconvolution may be made t o these two pulse shape parameters. 
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5.7.1 The Full-Width-at-Half-Maximum. 

The FWHM, shown i n Figure 5«5 £or the 400m array data and Figure 5.6 

f o r the 200m array data, has been f i t t e d w i t h a power law (equation 5*2) 

w i t h n = 2, t o q u a n t i f y FWHM dependence on core distance. The values 

of a and b are l i s t e d i n Table 5.1. The d i f f e r e n t values of a and 

b, obtained f o r d i f f e r e n t z e n i t h angle b i n s , imply a FWHM dependence on 

ze n i t h angle. There i s an observed f l a t t e n i n g of the FV/HM curves w i t h 

increase i n z e n i t h angle. This i s more evident w i t h low energy showers 

(200m array data, E = 3 x 10 1^ eV) than w i t h high energy showers (400m 
— 17 array data, E = 1.7 x 10 eV). 

For the 200m array data, the FWHM was found t o decrease between 50m 

and 100m and increase again from 1G0n t o 200m. This broadening o f pulses 

close t o the shower core was nore n o t i c e a b l e w i t h h i g h l y i n c l i n e d showers 

(45° - 60°, shown i n Figure 5.6(e) ) than w i t h v e r t i c a l showers. 

5.7.2 C o r r e l a t i o n of FWHM(300m) w i t h Zenith Angle. 

From the r e l a t i o n s h i p 

Fv/HM(r) = a + b r 2 5. 3 

the FWHM a t 300m from the core, FWHM(300m), has been d e r i v e d . FWHH(3Q0m) 
17 

was c a l c u l a t e d f o r 90 showers w i t h mean energy ^^1.7 x 10 eV. Each 

shower selected had at l e a s t one pulse a t core distance :> 300m. This 

c r i t e r i o n ensured t h a t the value of FWHM(300m) was obtained through 

i n t e r p o l a t i o n . 



FIGURE 5.5 

VARIATION OF FWHM WITH CORE DISTANCE FOR THE 400m ARRAY 
1 7 

DATA SAMPLE, (mean energy = 1.7 x 10 eV) 



111 

AO 

20 

(a) s e c 9 1-0-1-1 

5 

J 

(b) s e c 6 M-1-2 

AO 

20 
if 

w 

X (c) s e c 9 1-2- 1-3 

AO 

20 
f 

5 

0 
(d) sec 6 1-3-LA 

AO 

20 5 

0 J _ 

i 

100 200 300 AOO 
CORE DISTANCE (m) 



FIGURE 5°6 

VARIATION OF FWHM WITH CORE DISTANCE FOR THE 

200m ARRAY DATA SAMPLE (mean energy = 3 x 10 
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TABLE 5.1 
2 THE COEFFICIENTS OF THE EQUATION : FWHN(r) = a + br f i t t e d to 

17 \ 
( i ) the 400m array data sample ( I = 1.7 x 10 eV) 
( i i ) the 200m array data sample (£ = ) x 10 1 eV) 

secant 9" 
bin 

a b 

1.0 - 1.1 - 2 . 7 0 9 0 .00038 

1.1 - 1.2 - 4 . 8 4 5 0 .00038 

1.2 - 1.3 - 4 . 4 4 6 0.00031 

1 .3 - 1.4 - 3 . 3 1 8 0 .00027 

secant 0" 

bin a b 

1.0 - 1.1 0 . 6 4 5 0 .0002 

1.1 - 1.2 1.013 0 .00016 

1.2 - 1 .3 1.579 0.00008 

1.3 - 1.4 1.377 0.00006 
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The 90 showers were d i v i d e d i n t o 4 energy bins : 

(a) 3.50 < log(0(l5Om)) ^ 3-75 

(b) 3-75 < log(0(l5om)) ^ 4-uO 

( c ) 4.00 < log(0(l5Om)) < 4.25 

(d) 4.25 < log(0 ( l5Om)) < 4.50 

The average FWHM(300m) v a r i a t i o n w i t h z e n i t h angle i s shown i n Figure 5^7* 

For a l l energy b i n s , FWHM(300m) i s noted t o decrease w i t h increase i n 

z e n i t h angle, suggesting t h a t the pulses become narrower w i t h g r e a t e r 

shower i n c l i n a t i o n . However, i t should be noted from the curves f o r the 4 

energy b i n s , and from the FWHK v a r i a t i o n w i t h core distance (Figure 5«-5)» 

t h a t the FWHM does not depend on z e n i t h angle alone. The FWHM dependence 

on z e n i t h angle, core distance and primary energy are a l l i n t e r - r e l a t e d . 

5.7*3 Rise Time Measurements. 

— 17 

The Rise Times f o r the 400m ar r a y data (E = 1.7 x 10 eV) are shown 

i n Figure 5-8 f ° r "the core distance range 200m - 400m. System bandwidth 

e f f e c t on Rise Time i s more severe than on FWHM, p a r t i c u l a r l y at core 

distances £ 250m. Hence, very c a r e f u l deconvolution of the observed 

Rise Times i s r e q u i r e d . 

Table 5»2 gives a l i s t o f the values of a and b obtained by f i t t i n g 

the Rise Times t o Equation 5»2 w i t h n = 1.5. The value o f 1.5 was 

estimated from l e a s t squares f i t s t o the data p o i n t s . A dependence of 

Rise Time on z e n i t h angle i s shown from the values of a and b , 

although t h i s dependence may be more complicated than the FWHM v a r i a t i o n 

w i t h z e n i t h angle. 
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TABLE 5 .2 

THE COEFFICIENTS OF THE EQUATION : Rise Time(r) = a + b r 1 ' 5 

FITTED TO THE 400m ARRAY DATA SAMPLE, (mean energy = 1.7 x 1 0 1 ^ eV) 

secant Q 

bin 
a b 

1.0 - 1.1 0 . 6 0 5 0 .002 

1.1 - 1 .2 - 2 . 7 0 7 0 .0024 

1.2 - 1 .3 - 3 . 1 5 1 0 .0025 

1 .3 - 1 .4 - 2 . 2 5 6 0 .0019 
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5 . 7 - 4 Top Time and F a l l Time Measurements. 

The average Top Time and F a l l Time f o r the 400m array data (E =» 1.7 x 
17 

10 eV) are shown i n Figure 5*9 a n d 5-10 • From l e a s t squares f i t s to the 

data p o i n t s , the value of n i n Equation 5 .2 was found t o be 1 .5 f o r 

Top Time and F a l l Time. The values of a and b from the power law 

dependence of Top Time on core distance are l i s t e d i n Table 5«3« 

S i m i l a r values 0.1 a and b for F a l l Time are l i s t e d i n Table 5 . 4 . The 

l a t e r a l d i s t r i b u t i o n s of both Top Time and F a l l Time were observed to 

f l a t t e n w i t h increase i n z e n i t h angle. 

5.8 The Peak Height of Cerenkov L i g h t Observed a t Dugway. 

The l a t e r a l d i s t r i b u t i o n s of peak hei g h t are shown i n Figure 5«11 ̂ OT 

4 z e n i t h angle b i n s . The data are from a sample of showers with mean 
17 

energy 1.7 x 10 eV. The l a t e r a l d i s t r i b u t i o n s i n d i c a t e a v a r i a t i o n 

of peak hei g h t w i t h core d i s t a n c e , r , of the form : 

H e i g h t ( r ) - A ( r + r Q ) ^ 5 °4 

where A i s a constant, and r i s f i x e d at a given core distance. 
' o 0 

5 .9 Other Cerenkov L i g h t C h a r a c t e r i s t i c s Measured a t Lufjway. 

The Lugway experiment was performed t o measure not only pulse shape 

c h a r a c t e r i s t i c s , but also the o p t i c a l photon d e n s i t y , the a r r i v a l 

d i r e c t i o n of the shower and the time delay between the Cerenkov l i g h t 

and the p a r t i c l e s . 
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TABLE 5 . 3 

TiiE COEFFICIENTS OF THE EQUATION : Top Time(r) = a + b r 1 ° 5 

FITTED TO THE 400m ARRAY LATA (mean energy = 1.7 x 1 0 1 ^ eV) 

TABLE 5 .4 

THE COEFFICIENTS OF THE EQUATION : F a l l Tiroe(r) = a + br 

FITTED TO THE 400m ARRAY IiATA SAKPLE, 
17 

(mean energy = 1,7 x 10 eV) 
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TOP TIME 

secant Q-

bin 
a b 

1.0 - 1.1 - 1 . 2 9 7 0 .0017 

1.1 - 1 .2 - 0 . 2 7 0.0011 

1.2 - 1 .3 0 .77 0.0008 . 

1.3 - 1 .4 1.36 0 .0009 

PALL TIKE 

secant 
bin 

a b 

1.0 - 1.1 1.120 0.0021 

1.1 - 1.2 -0.417 0.0019 

1.2 - 1.3 1.110 0 .0012 

1 .3 - 1.4 - 2 . 7 6 5 0 .0025 
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Since the Cerenkov l i g h t measurements were made with an array of 

several detectors, accurate shower cores could be determined for each 

shower. This has led to the cal c u l a t i o n of snower a r r i v a l directions, 

(Craig et a l , 1981). 

heasurements of the curvature of the l i g h t front have been carried out 

in p a r a l l e l with the determination of pulse shape c h a r a c t e r i s t i c s , (Andam 

et a l , 1981) and w i l l be reported by Chantler i n d e t a i l (Ph.D. Thesis, i n 

preparation). 

The a n a l y s i s on the Cerenkov l i g h t front curvature was based on the 

philosophy of the pioneer work of Orford and Turver (1976). The percen­

tage l e v e l s of the l i g h t pulse, calculated a f t e r quartic spline reconstruc­

tion, have been used to compute the front curvature of the l i g h t . Such 

computation leads to the derivation of depths of electron cascade maxima 

for the extensive a i r showers. 

The l a t e r a l d i s t r i b u t i o n of the Cerenkov l i g h t has been investigated 

i n d e t a i l at Durham. A preliminary report by Andam et a l (1979) has been 

followed by further r e s u l t s from the work of Chantler et a l C1981). The 

choice of primary energy estimator for these two reports was influenced, 

each time, by prevailing computer simulations. Andan et a l (1979) used 

$(200m) as a primary energy estimator for t h e i r sample of snowers from 

the 4̂ 0™ array. Chantler et a l (1981) have used three sets of data 

samples from the 400m, 200n and 100m arrays, with the primary energy 

estimator if(l50m) used for the 400ra and 200m arrays and 0(lOOm) for 

the 100m array. 

The snape of the Cerenkov l i g h t l a t e r a l d i s t r i b u t i o n has been repre-

sented by a function of the form : 
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0(r) = A ( r + r 0 ) ~^ 

with r Q fixed at 50m. 

The r e s u l t s presented by Andam et a l (1979) were based on the values of 

the structure function exponent, , over the core distance range covered 

by t h e i r sample. I n attempting to interprete the data from a l l three 

arrays, Chantler et a l (1981) observed that the f i t t e d value of f| 

exhibited systematic changes as a r e s u l t of the varying core distance 

d i s t r i b u t i o n s of the responding detectors. Therefore, these authors have 

adopted a new Cerenkov l i g h t l a t e r a l d i s t r i b u t i o n parameter defined as the 

r a t i o j 

where 0(r^) and 0 ( r 2 ) are the op t i c a l photon dens i t i e s at core distances 

r^ and r ^ which are defined by the p a r t i c u l a r array geometry under study. 

The different values of r^ and f o r the three arrays are l i s t e d i n 

Table 5.5. 

The calculated values of R( r-j» r 2 ) have been used to derive depths 

of electron cascade maxima for samples of showers from Dugway. I n Chapter 

6, these derived depths of maxima from l a t e r a l d i s t r i b u t i o n w i l l be compared 

with the depths of maxima derived i n t h i s work from pulse shape parameters. 

The time delay between the Cerenkov l i g h t and the p a r t i c l e front has 

also been studied systematically by the Durham Group. A preliminary 

report was made by Chantler et a l (1979) and further measurements have 
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TABLE 5«5 

CORE DISTANCE RANGE FOR THE EVALUATION OF THE STRUCTURE FUNCTION 

RATIO, R( r y r 2 ) 

(Chantler et a l , 1981) 

Array 
s i z e energy range r1 r 2 

100m 3x10 1 5 eV - 6x10 1 5 eV 50m 100m 

200m 6x10 1 5 eV - 2x10 1 6 eV 75m 150m 

400m 3x1O 1 6 eV - 1 0 1 8 eV 150m 300m 
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been made more'recently by Orford et a l (1981) on 10 eV showers from 
17 

the 200m array and ^N_^10 eV showers from the ^QQm array. 

These r e s u l t s have established the time delay, TD, as a well-behaved 

function of core distance and have shown a correlation between TD and the 

Cerenkov l i g h t structure function r a t i o , R( r ^ , ) . The indications 

are that TD, the time delay between the Cerenkov ligh t and the p a r t i c l e 

front, promises to be a useful measure of electron cascade development 

giving complementary information to shower development c h a r a c t e r i s t i c s 

from pulse shape and opt i c a l photon l a t e r a l d i s t r i b u t i o n studies. 

I t must be emphasised here that the pulse shape data a n a l y s i s , as well 

as the a n a l y s i s on other Cerenkov l i g h t c h a r a c t e r i s t i c s , i s s t i l l being 

ca r r i e d out by the University of Durham Extensive A i r Showers Group. 

There i s optimism that fresh r e s u l t s w i l l emerge from these analyses. 



127 

CHAPTER S I X 

INTERPRETATION OF THE DUGWAY FUISE SHAPE DATA. 

6.1 Introduction. 

In t h i s Chapter comparisons w i l l be made between the observed 

Cerenkov l i g h t pulse shape c h a r a c t e r i s t i c s measured at Dugway and pulse 

shape data from other recent experiments. The data w i l l a l s o be compared 

with up to date computer simulation r e s u l t s from the Durham group. 

A consistent set of computer simulation data i s now available f o r the 
15 18 

primary energy range 10 eV - 10 eV, and for v e r t i c a l as well as 

inc l i n e d showers, from the l a t e s t t h e o r e t i c a l studies by McComb and 

Turver (1981). These data enable us to compare the experimental r e s u l t s 

from Dugway with theoretical predictions, and also to interprete the 

observed pulse shape c h a r a c t e r i s t i c s , p a r t i c u l a r l y i n understanding 

electron cascade development. The computer simulations are based on the 

Feynman scal i n g model for an iron nucleus primary. 

Direct comparison between the Dugway data and r e s u l t s from other 

experiments must be attempted with caution because of the varying 

atmospheric depths of extensive a i r shower arrays around the World, and 

the detector bandwidth at each i n s t a l l a t i o n . Reasonable comparison can 

only be made a f t e r removal of system bandwidth from the measured pulse 

shape parameters, and the resultant values must be normalised to account 

for the atmospheric depth v a r i a t i o n . 
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6 02 Dugway Pulse Shape Measurements Compared with Simulated Pulses. 

6.2.1 Comparison of Observed FWHM with Computer Simulations. 

In Figures 6.1 and 6.2 the FWHM from the Dugway data are compared with 

computer simulation r e s u l t s from McComb and Turver (1981). Figure 6.1 
16 

shows the predicted FWHM for showers of energy 10 eV (appropriate to 
the mean energy of the 200m array data) and zenith angles 0° , 35° » and 

45° • Figure 6.2 shows simulations for the same set of zenith angles for 
17 

10 eV primary energy, which i s close to the mean energy of the ̂ OOm. array 

data. 

Also shown on Figures 6.1 and 6.2 are the average FWHM (without any 

system bandwidth) for given zenith angle and primary energy bins from the 

data analysed i n t h i s work. The error bars represent the standard errors 

for each data point. The data show general agreement with the predictions 

from computer simulations. 

6.2.2 Comparison of Observed Rise Time with Computer Simulations. 

The observed Rise Times from the 400m array data are compared with 

computer simulation r e s u l t s i n Figure 6.3 ( a - c ) . A l l system bandwidth 

ef f e c t s have been removed from the data. 

At core distances l e s s than 250m, the Cerenkov l i g h t pulses appear to 

have slower r i s e times than predicted by simulations. This may be due 

to an instrumental broadening that has not been accounted for yet by the 

current t h e o r e t i c a l studies. Further investigation may be required on 

the deconvolution before t h i s can be confirmed. Another reason might be 

that the quartic spline i s not f l e x i b l e enough to cope adequately with 
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COMPARISON OF FWHM FROM THE DUGWAY DATA, 
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PIGUBE 6 02 

COMPARISON OF FWHM FROM THE DUGWAY DATA, r 

(mean energy = 1„7 x 1 0 1 7 eV) WITH COMPUTER 

SIMUIATIOHSs „ (Iron nucleus, E = 1 0 1 7 
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FIGURE 6.5 

COMPARISON OF RISE TIMES FROM THE DUGWAY DATA, 

(mean energy = 1.] x 10 1^ eV) WITH COMPUTER 

SIMULATIONS, • , ( i r o n nucleus, E = 1 0 1 7 eV) 
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pulses i n t h i s region. 

6.2.3 Observed Top Time and F a l l Time Compared with Computer Simulations. 

Figure 6.4 shows a comparison between the observed Top Time from the 

data sample presented i n t h i s work and computer simulation r e s u l t s from 

McComb and Turver (1981). I n Figure 6.5 the F a l l Times of Cerenkov l i g h t 

pulses measured at Dugway are compared with simulation data from the same 

authors. The Dugway data are from the 400m array and have a mean energy 
17 17 o f 1 . 6 5 x 10 eV. The computer simulations are for 10 eV primary 

nucleus. 

For both Top Time and F a l l Time, there i s an apparent discrepancy 

between the Dugway data and t h e o r e t i c a l predictions. This may be due 

partly to instrumental broadening. No attempt has been made here to 

remove the system bandwidth e f f e c t s from Top Time and F a l l Time because 

of a lack of adequate deconvolution data from computer simulations at t n i s 

time. 

Moreover, the Top Time and F a l l Time depend c r i t i c a l l y on the actual 

shape of the pulse. Unlike the FWHM, which approximates to the Second 

Moment and i s therefore a f i r s t order estimate, Top Time and F a l l Time 

depend upon higher order Moments. Their computation therefore depend 

on more accurate reconstruction of the pulse shape which the quartic spline 

may not be f l e x i b l e enough for. Also, the F a l l Time depends more c r i ­

t i c a l l y on the angular d i s t r i b u t i o n of the Cerenkov l i g h t and consequently 

on the l i n e a r distance between the observation plane and the depth of 

electron cascade maximum. 



FIGURE 6o4 

COMPARISON OF TOP TIME FROM THE DUGWAY DATA, 

(mean energy = 1.7 x 1 0 1 7 eV) WITH COMPUTER 

SIMULATIONS,——, ( i r o n nucleus, E • 10 1 7eV 
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FIGURE 605 

COMPARISON OF OBSERVE]) FALL TIME FROM THE DUGWAY 400m 

ARRAY, iji o (mean energy = 1,7 x 1 0 1 7 eV) WITH 

COMPUTER SIMULATIONS, , ( i r o n nucleus, E = 10 1 7eV) 
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6.2.4 Comparison Between Predicted and Observed FWHM Close to the Core. 

The observed Cerenkov l i g h t FWHM at r a d i a l distances very close to the 

core was given a s p e c i a l mention i n Chapter 5 because of i t s strange beha­

viour with core distance changes. The FWHM increases with decreasing 

core distance at core distances 100m, according to computer simulations, 

and the broadening of pulses close to the shower core i s predicted to be 

more evident f o r low energy showers at highly i n c l i n e d angles of incidence. 

This prediction i s borne out by the data from the 200 metre array 

(mean energy, 3 x 1 0 ^ eV) at zenith angles 45° - 60°. The data are 

compared with computer simulation r e s u l t s from McComb and Turver (1981), 

and agree well with simulations as Figure 6.6 shows. System bandwidth 

e f f e c t s have been removed from the Dugway data, and corrections have been 

made f o r pulse shape reconstruction e r r o r s . 

6.3 Dugway Pulse Shape Data Compared with Results from other Experiments. 

Hammond et a l (1978) have reported recent measurements of Cerenkov 

l i g h t pulses at sea l e v e l , using an array of 8 detectors a t Haverah Park. 

Their r e s u l t s w i l l be compared with the Dugway pulse shape data presented 

i n t h i s Thesis. 

The system bandwidths quoted f o r the Haverah Park array by Hammond et 

a l (1978) are 19 n3 for FWHM and 9 na for Rise Time. Cerenkov l i g h t 

measurements were made at core distances up to 600mo At Dugway ( a l t i t u d e 

862 g cm ) measurements were made i n the core distance range 50m - 40Cm 

with an array of 8 detectors which responded to a delta function of l i g h t 

with a bandwidth of 6.7 ns for FWHM and 6.5 ns for Rise Time. 
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The Haverah Park pulse shape data quoted by Hammond e t a l (1978) 

i n c l u d e t h e i r system bandwidth. The Dugway data reported i n t h i s Thesis 

have been co r r e c t e d f o r system bandwidth e f f e c t s , and pulse shape recons­

t r u c t i o n e r r o r s (See Chapter 5)« Figure 6.7 shows a comparison between 

the Rise Times of the Haverah Park data (Hammond e t a l , 1978) and the 

Dugway data. For t h i s comparison, the Haverah Park measurements have 

been c o r r e c t e d f o r bandwidth e f f e c t s by t h i s author by assuming t h a t the 

system response adds i n quadrature w i t h the measured pulse shape data. 

This assumption may only be approximate b u t , i n the view o f t h i s author, 

w i l l s u f f i c e i n the absence o f any other method of deconvolution. 

The FWHM i s the only pulse shape parameter a v a i l a b l e from Cerenkov 

l i g h t measurements a t Adelaide, A u s t r a l i a , (See e.g. Thornton and Clay, 

1978; Thornton et a l , 1979; Kuhlmann et a l , 1981). Thornton and Clay 

(1978) have reported measurements o f extensive a i r showers of p a r t i c l e 

s i z e rv,/ 5 x 10 (primary energy 10 eV), a t sea l e v e l , over core 

distances up t o 250m. The system bandwidth f o r t h e i r d e t e c t o r s has been 

quoted as 5*3 ns 4»5 ns by Thornton et a l (1979)f and i s removed from 

t h e i r measured s i g n a l on an assumption t h a t the d e t e c t o r response and 

observed parameters add i n quadrature (Thornton and Clay, 1978). The 

FWHM(3C-0m) obtained by these authors from a regression o f t h e i r data on 

the r e l a t i o n s 

FWHM(r) = a + b r 2 6.1 

i s 20 +/- 1 ns, f o r shower size r^j 5-5 10 ( N £ ) . This i s compared 

w i t h the mean value of FWHI^JOOm) wnich i s 20.2 +/- 0.5 ns f o r showers o f 
17 

mean energy 1.65 x 10 eV analysed i n t h i s wort. These showers were 
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selected from the 400m array data i n the zenith angle range 0 - 45 « 

Measurements of the pulse shapes of Cerenkov l i g h t from extensive a i r 
17 

showers of energy r\^10 ' eV made at Yakutsk, USSR, have been reported by 

Efimov et a l (1973)> Kalmykov et a l (1979» 1961), and Grigoriev et a l 

(1978). Grigoriev et a l (1978) quoted the system bandwidth at Yakutsk as 

10 ns for Rise Time and 14 ns for FWHM. Kalmykov et a l (1979) have f i t t e d 

t h e i r data, measured over a core distance range of 30Cm - 600m, to the 

functional form : 

FWHM(r) o< r n 6.2 

with n r^sL 2.0, to obtain a value for FWHK(300m) which was used i n a 

regression to obtain the depth of electron cascade maximum. Like the 

Adelaide group, the Russian group correct f or t h e i r system bandwidth by 

assuming that the observed FWHM and the system bandwidth add i n quadrature, 

(See Kalmykov et a l , 1979). 

I n Figure 6.8(a,b) the Dugway Cerenkov l i g h t pulse FWHN are compared 

with the FWHM quoted by Hammond et a l (1978) from Haverah Park, the FWHM 

data from Yakutsk (Grigoriev et a l , 1978), and the FWHM data from the 

Adelaide array (Thornton and Clay, 1978) 

The Dugway data used for t h i s comparison are for n e a r - v e r t i c a l showers, 

mean zenith angle ^—' 18°. Data from Hamr.iond et a l (1978), Grigoriev et 

a l (1978) and Thornton and Clay (1978) have been c o r r e c t e d by the authors 

to v e r t i c a l incidence. Thornton and Clay (1978) and Grigoriev et a l 

(1978) have corrected t h e i r data for bandwidth e f f e c t s . This author has 

removed the system response from the data of Hammond et a l (1978). 
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6.4 Pulse Shape as a Measure of E l e c t r o n Cascade Development. 

The FWHK and Rise Time measured at Dugway have been i n t e r p r e t e d t o 

give the depths of e l e c t r o n cascade maxima f o r the extensive a i r showers. 

This procedure i s now explained i n the f o l l o w i n g Sections. 

6.4.1 Determination o f Depth of E l e c t r o n Cascade Maximum from FWHK. 

The depths o f e l e c t r o n cascade maxima have been derived from FWHM by 

f i r s t removing the system response from the observed parameters. The 

FWHM from each pulse i n a given shower was deconvoluted t o ' t r u e ' FWHK 

( i . e . w i t h o u t system response) by comparing the observed parameter w i t h the 

FWHM from computer s i m u l a t i o n s a p p r o p r i a t e t o each d e t e c t o r and the Dugway 

atmosphere. Corrections were made for pulse shape r e c o n s t r u c t i o n e r r o r s . 

The data were sub-divided i n t o secant t h e t a bins of 0.1 width and core 

distance bins o f 25m f o r the 200m a r r a y data and 50m for the 400m array 

data. The mean FWHK f o r each z e n i t h angle/core distance b i n ( w i t h 

standard e r r o r ) was then r e l a t e d t o computer s i m u l a t i o n s as shown i n 

Figures 6 . 9 ( a - f ) . i&ch diagram shows the simulated pulse FWHK at given 

z e n i t h angle f o r extensive a i r showers maximising at d i f f e r e n t depths i n 

the atmosphere. 

From these diagrams, the depth of e l e c t r o n cascade maximum f o r the 

average energy of the showers i n each z e n i t h angle/core distance b i n was 

derived. These depths of maxima are l i s t e d i n Table 6.1. The weighted 

average obtained from the 16 measurements from the 400m array i s 682 +/-
-2 17 13 g cm f o r a mean energy of 1.65 x 10 eV. Bandwidth e f f e c t s 

r e s t r i c t e d the core distance range of the 200m array data t o 6 data p o i n t s 
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w i t h adequate s e n s i t i v i t y . These are l i s t e d i n Table 6.2 and give a 
2 16 weighted mean of 563 +/~ 26 g cm f o r the mean energy o f 3 x 10 eV. 

The 20 hig h energy showers from the 2u0ra a r r a y have been t r e a t e d separa-

t e l y t o give a depth o f maximum of 646 +/- 32 g cm f o r the mean energy 

6.5 x 1 0 1 6 eV, (See Figure 6.9(c) and Table 6.2). 

6.4.2 Determination o f Depth of E l e c t r o n Cascade Maximum from Rise Time. 

The Rise Times of Cerentcov l i g h t pulses have been used i n t h i s work 

t o derive depths of e l e c t r o n cascade maxima f o r extensive a i r snowers. 

The procedure f o l l o w e d was the same as t h a t used f o r the FWHM i n t e r p r e t a ­

t i o n i n Section 6.4.1. The observed Rise Times were co r r e c t e d f o r pulse 

shape r e c o n s t r u c t i o n e r r o r s . 

Because of the e f f e c t of system bandwidth on Rise Time, which i s more 

prominent than on FWHM, the Rise Time-derived depths of maxima have been 

r e s t r i c t e d t o core distances of 300m and 350m« Eight values of depths 

of e l e c t r o n cascade maxima have been derived from Rise Times from the 

400m ar r a y data (See Figure 6.10). These values are l i s t e d i n Table 6.3 

and give a weighted average of 696 +/- 27 g cm f o r a mean energy o f 
17 

1.7 x 10 eV, which agrees w i t h the r e s u l t s obtained from FWHM. 

6.4.3 Derived Depths of Maxima from t h i s Work Compared w i t h other Results. 

The v a r i a t i o n of depth of maximum w i t h primary energy i s shown i n 

Figure 6.11, comparing the r e s u l t s from t h i s work w i t h the depths o f 

e l e c t r o n cascade maxima derived from o p t i c a l photon l a t e r a l d i s t r i b u t i o n 

from Dugvay measurements, (See Andam et a l , 1981). I n Figure 6.12 the 
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TABLE 6.1 

DERIVED DEPTHS OF ELECTRON CASCADE MAXIMA. FROM FWHM, 

400m ARRAY DATA. 

secant & 

bin 

mean 

energy 

(eV) 

mean 

sec 0-
mean core 

distance 

(m) 

mean 

FWHM 

(ns) 

derived 

depth of maximum 

(g cm"2 ) 

1.0 - 1.1 2.3X10 1 7 1 .04 193 + 3 11.5+ 1.6 680 + 90 

1.7x10 1 7 1 .03 259 ± 7 23.1+ 3.8 65O + 50 

2 . 3 x 1 0 1 7 

17 
2.0x10" 

1 .05 

1 .05 

308 + 5 

354 + 16 

34-8+ 2 . 9 

43.6+ 3.8 

700 + 40 

690 + 40 

1.1 - 1.2 17 
1 .5x10 ' 

1.6x10 1 7 

1 .17 

1 .15 

202 + 4 

248 + 5 

9.6+ 0 . 9 

20.1+ 2 . 7 

680 + 50 

700 + 60 

1.6x10 1 7 1.16 293 + 5 28 .4+ 2.1 670 + 70 

17 
1 . 9 x 1 0 " 1 .16 347 + 7 40.5+ 2 . 9 720 +60 

1.2 -1.3 1.2x10 1 7 1 .25 213 + 5 7.8+ 1 .7 690 + 60 

1 . 5 x 1 0 1 7 1.26 257 + 3 17 .5+ 2.0 710 + 50 

17 
1.4x10 " 1 .27 305 + 4 23 .4+ 1 . 9 670 + 70 

1.6x10 1 7 1 .27 339 + 7 30.8+ 1 . 9 690 + 60 

1.3 -1 -4 
17 

1.9x10" 1.35 201 + 6 6.8+ 1 . 4 710 + 40 

17 
1.2x10" 1.35 251 + 4 14.8+ 1.9 710 + 50 

17 
1.4x10" 1.39 288 + 4 21.8+ 2 . 0 650 + 50 

1.6x10 1 7 1.35 351 + 9 28.6+ 2 . 5 630 + 80 
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TABLE 6.2 

DERIVED DEPTHS OF ELECTRON CASCADE MAXIMA FROM FWHM, 

200m ARRAY DATA. 

secant Q- mean mean mean core mean derived 

bin energy sec Q" distance FWHM depth of maximum 
(eV) (m) (ns) (g cm 2 ) 

1.0 - 1.1 3 . 5 x 1 0 1 6 1.02 162 + 2 5.4+0.8 570 + 40 

2.4X10 1 6 1.04 200 + 4 9 . 6 + 1 . 6 530 + 80 

5.9X10 1 6 1.03 201 + 7 12.5+3.0 620 + 100 

1.1 - 1 .2 2 . 6 x 1 0 1 6 1.15 161 + 2 4.5+0.9 610 + 70 

3 . 6 x 1 0 1 6 1.14 193 ± 3 7 . 7 + 1 . 5 580 + 70 

6.8x10 1 6 1.15 205 + 5 10 .6+0 .9 690 + 40 

1.2 - 1 .3 2 . 6 x 1 0 1 6 1.25 162 + 3 3 .1+1 .2 600 + 120 

2.4X10 1 6 1.26 190 + 2 5.1+1.9 580 + 120 

6 . 5 x 1 0 1 6 1.28 202 + 6 7.0+1.0 660 + 60 

1 .3 - 1-4 2 . 5 x 1 0 1 6 1.36 162 + 2 2 . 3 + 0 . 4 610 + 100 

2 . 5 x 1 0 1 6 1.37 196 + 6 4 . 2 + 1 . 0 570 + 100 
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FIGURE 6 .10 

DETERMIHATJ ON OF DBFTH OF ELECTRON CASCADE MAXIMUM FROM RISE TIME 

MEASUREMENTS. DUGWAY 400m ARRAY DATA. 
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TABLE 6 . 3 

DERIVED DEPTHS OF ELECTRON CASCADE MAXIMA FROM RISE TIME, 

400m ARRAY DATA. 

secant $ 

bin 

mean 

energy 

mean 

sec 

mean core 

distance 

mean 
Rise 
Time 

derived 

depth of maximum 

(eV) (m) (ns) (g cm"2) 

1.0 - 1.1 1.6x10 1 7 

1 . 3 X 1 0 1 7 

1.05 
1.04 

303 ± 5 

347 + 2 

11 .0+3 .0 

16.8+1.7 

690 + 120 

680 + 60 

1.1 = 1 .2 1 . 9 x 1 0 1 7 1.16 298 + 6 9 .1+1 .9 680 + 70 

1 . 6 x 1 0 1 7 1.18 349 ± 7 13 .2+2 .3 680 + 120 

1.2 = 1 .3 1 . 3 X 1 0 1 7 1.26 301 + 5 9 .3+1 .9 710 + 60 

2 . 2 x 1 0 1 7 1.25 351 + 5 12.6+1 .9 710 + 80 

1.3 - 1»4 2 . 4 x 1 0 1 7 1.36 296 + 4 8 . 9+1 .3 740 + 80 

1 . 4 x 1 0 1 7 1.36 353 ± 5 11.1+1.5 690 + 90 
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depths of electron cascade maxima derived from pulse shape parameters are 

compared with the avai l a b l e data from other recent experiments. These 

include : 

(1 ) Results on depths of maxima from the Haverah Park experiments; 

(a ) The i n f i l l i n g experiment (Craig et a l , 1979)» 

(b) The deep water tank experiment (quoted by L i n s l e y and 

Watson, 1981) 

( c ) The o p t i c a l Cerenkov l i g h t experiment (Hammond et a l , 1978), 

(d) The Muon/Cerenkov experiment (Blake et a l , 1979)* 

(e) The Muon angles measurement (interpreted by McComb and 

Turver (1981) ) 

(2 ) Depth of maximum measurements from the Russians (Antonov ( i n t e r ­

preted by Watson and L i n s l e y (1931), Grigoriev et a l (1978) , 

Glushkov et a l (1979) ) • These measurements were a l l derived 

from Cerenkov l i g h t experiments. 

(3) The depths of electron cascade maxima derived from FWHM measure­

ments at Adelaide (Kuhlmann et a l (1981) , Thornton and Clay 

(197&) ) . 

and (4 ) Other previous interpretations, including those of Bohm and 

Steinman (1979) and Tornabene (1979) . 

The important deduction that may be made from Figures 6*11 and 6.12 

i s that the depths of electron cascade maxima derived from pulse shape 

information i n t h i s work are consistent within the energy range of the 

data and with the depths of maxima derived from l a t e r a l d i s t r i b u t i o n 

measurements from Dugway, as w e l l as r e s u l t s from other experiments. 

The r e s u l t s from t h i s work are a l s o consistent with the computer simula­

tions based on Feynnian s c a l i n g model of an iron nucleus primary. The 



FIGURE 6011 

DERIVED DEPTHS OF ELECTRON CASCADE MAXIMA FROM PULSE SHAPES 

COMPARED WITH DEPTHS OF MAXIM DERIVED FROM CERENKOV LIGHT 

LATERAL DISTRIBUTION„ 

( L a t e r a l d i s t r i b u t i o n data from Andam et a l , 1981) 
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FIGURE 6.12 

DEPTHS OF ELECTRON CASCADE MAXIMA. FROM DOGWAY PULSE SHAPES 

COMPARED WITH RESULTS FROM OTHER EXPERIMENTS „ 

4 t h i s work, FWHM measurement 
t h i s work, r i s e time 
measurement 

Tornabene, 1979 

^ Antonov (interpreted by 
I Watson and L i n s l e y , 1981) 

Kuhlmann et a l , 1981 

)jc Dugway l a t e r a l disto 
(Andam et a l , 1981) 

\ 
p| Eaverah Park o p t i c a l 

Cerenkov (Hammond 
et a l , 1978) 

I 
fVf Haverah Park Muon/ 
^ Cerenkov (Blake et 

a l , 1979) 
I 
^ Haverah Park Muon angles 
' (interpreted by McComb 

and Turver, 1981) 

Thornton and Clay, 1978 

I Haverah Park i n f i l l i n g 
J expt. ( C r a i g e t a l , 1979) 

Q Grigoriev e t a l , 1978 

Haverah Park deep water 
I tank (quoted by L i n s l e y 

and Watson, 1981) 

Glushkov et a l , 1979 



152 

I I 

\ cn 
O 

\ 

CO 
O 

Of 
\ 

0> 

CD 
in 

m \ 

Of 

I I 

cm 

CL 

o I 

8 O CO CO CD LO CO 
( UJO§) HnWIXVW dO Hid3a 



153 

depths of electron cascade maxima derived i n t h i s work are found to be 

independent of zenith angle. 

Figure 6.12 i l l u s t r a t e s the expected v a r i a t i o n of depth of electron 

cascade maximum f o r a pure iron primary, a proton primary and a primary 

radiation with a mixture of nuclei averaging to A ^ . 1 0 . From t h i s , i t 

may be deduced that the results presented i n t h i s Thesis appear to favour 

a primary cosmic radiation comprising a mixture of heavy nuclei and protons 
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CHAPTER SEVEN 

CONCLUSIONS. 

7.1 Overview. 

This work has shown that, with an appropriate data f i t t i n g procedure, 

the Cerenkov l i g h t pulse shape can be reconstructed from d i g i t i s e d pulse 

information. The pulse shape parameters calculated from the reconstruct 

ted pulses have been used to deduce information about the electron cascade 

development of the extensive a i r showers. 

The o p t i c a l photon density at a measurable core distance, 0(l5Om), 

has been, used as a primary energy estimator, and c a l c u l a t i o n s based on i t 

have been found to be i n reasonable agreement with the r e s u l t s from other 

experiments. The a v a i l a b i l i t y of o p t i c a l photon l a t e r a l d i s t r i b u t i o n 

data from the Dugway experiment provides an a l t e r n a t i v e measure of the 

depth of electron cascade maximum which can be used to check the depth of 

electron cascade maximum determined from pulse shape parameters. 

7.2 Implications of Pulse Shape Analysis f o r Cerenkov Light Studies. 

The pulse shape parameters which have been used to deduce the electron 

cascade development of showers i n t h i s work are FWHM and Rise Time. I t 

has been shown9 through the comparison of experimental data with computer 

simulation r e s u l t s , that the FWHM and Rise Time can give a direct measure 

of the depth of electron cascade maximum of the extensive a i r shower from 

which the Cerenkov l i g h t emanates. This has been possible because of 
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the monotonic v a r i a t i o n of the Cerenkov l i g h t pulse width with r a d i a l 

distance from the shower core, and the di r e c t relationship between FWHN 

and zenith angle. 

A knowledge of the depth of electron cascade maximum i s expected to 

lead to information about the primary mass of the shower-initiating 

nucleon. The observed f l u c t u a t i o n of the pulse width can be used to 

predict the mass composition of the primary cosmic radiation and d i f f e r e n ­

t i a t e between a predominantly protonic primary and an i r o n or heavy mass 

primary. 

Computer simulations predict a Rise Time v a r i a t i o n with zenith angle 

that i s not very simple and not yet f u l l y understood. This may be due to 

the v a r i a t i o n i n the development of the shower which w i l l be affected by 

Coulomb scattering and other electronic processes. However, as shown i n 

Section 5*7•2 the Rise Time of the Cerenkov l i g h t pulse, at large r a d i a l 

distances from the core, varies monotonically with core distance. I t has 

been possible i n t h i s work, to deduce the depth of elec;ron cascade 

maximum from Rise Time measurements by choosing very narrow zenith angle 

bins and i n t e r p r e t i n g the observed Rise Time with the use of computer 

simulations. 

The v a r i a t i o n of F a l l Time and Top Time with core distance and zenith 

angle has also been shown i n t h i s work. The F a l l Time depends c r i t i c a l l y 

upon angular d i s t r i b u t i o n of electrons and much less on longitudinal 

d i s t r i b u t i o n . Therefore, F a l l Time i s not of much use i n fin d i n g depth 

of electron cascade maximum, since i t s effects come i n at a constant set 

of angles. This means that, f o r a given core distance, the effects of 

F a l l Time cut o f f the l i g h t seen from below a given a l t i t u d e from the 

array. 
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The peak height of Cerenkov l i g h t pulse has a predicted l a t e r a l 

d i s t r i b u t i o n which i s similar i n shape to the pulse area l a t e r a l d i s t r i ­

bution. This i s borne out by the experimental peak neight l a t e r a l 

d i s t r i b u t i o n (See Section 5«8)» Therefore, the peak height, although 

subject to errors of pulse shape reconstruction, can be used d i r e c t l y i n 

primary energy estimation. Errors due to data analysis techniques can 

be assessed and removed on average from the primary energy estimator. 

From a knowledge of the pulse shapes of Cerenkov l i g h t , the percen­

tage levels of the pulse may be used to reconstruct an image of the f r o n t 

curvature of the l i g h t and to make deductions about the longitudinal 

cascade development of the shower. 

7.5 Suggestions f o r Further Work. 

The pulse shape reconstruction procedures employed during t h i s study 

portray an i n i t i a l attempt at the analysis of the Dugway KAS data. The 

f i t t i n g of a unimodal quartic spline has proved to be successful f o r the 

bulk of the data, but has also shown the special problems involved i n the 

analysis of d i g i t i s e d pulses. In particulars the presence of undershoot 

on the pulse can result i n inaccurate f i t s f o r a unimodal spline, as 

explained i n Section 5 - 6 . 1 . This problem can be overcome i n future work 

by f i t t i n g a number of splines beginning and ending on the knots, and 

taking a weighted spline over the entire i n t e r v a l , (See Figure 7°1)« 

For t h i s purpose, the number of knots w i l l have to be increased 

beyond the range of the data set. Hence i n Figure 7«1» the knots 

T. „ , T. „ are incorporated before the f i r s t knot T. of the data set 1-2 i - 1 1 
while the knots T. . , T. c , T. , are used a f t e r the l a s t knot of the 

1+4 1+5 i+ 6 
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data. Only part of each B-spline whose knots go beyond the data boundary 

w i l l contribute to the f i n a l spline. These sub-splines w i l l have less 

weighting than the sub-splines which span the data set. 

The resultant spline S(t) i s therefore given by : 

S(t) = C.M,.(t) + C. „M.. , ( t ) + C. 0N.. 0 ( t ) + + C M.. ( t ) 
v ' 1 41 i+ 1 4i+1 i+2 4i+2 l+n 41+n 

7.1 

where 

M,.(t) , M.. „(t) , ... , M.. ( t ) 4 i v ' ' 41+' 4i+n 

are the splines beginning and ending on the knots, and 

C . e C • - • • 0. 
1 ' 1+1 i+n 

are the coef f i c i e n t s appropriate to each spline. 

Hence, each sub-spline would be weighted according to the Section of 

the pulse i t covers. Equation 7.1 niay be solved by the matrix equation : 

/ M ^ t ^ MgC^) ... 

/ M.,(t2) 

o 
e 

\ M 1 ( W 

\ M l ( t n ) ... 

M n ( t 2 ) 

M ( t J n x n - 1 / ( 

n v n,' 

7-2 

V n-1i 
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or 

M x C = V 7.3 

M i s a function of the knot positions only. Therefore, any pulse may 

be defined by ; 

Any future work involving pulse shape analysis could extend to exten­

sive a i r shower energies below the primary energy range studied i n t h i s 
15 

work, ( i . e . primary energies down to r^> 10 eV ). The reconstruction 

of these pulses can be accomplished by the use of weighted splines. 

A l t e r n a t i v e l y , since these pulses w i l l be expected to very narrow, a 

reasonable estimate of the pulse width can be made from the two biggest 

s l i c e s . 

The width parameter, » (See Chapter 4) can be used as a fa s t 

method of estimating the pulse width f o r these pulses. M2 has been 

shown to relate closely to FWHM. From a sample of 50 showers from the 

Dugway data ( 0 ° < 6 ^ 35° ; mean energy rsj 5 x 10 1 ^ eV) was 

calculated to f i n d i t s v a r i a t i o n with core distance. Figure 7«2 shows 

the dependence of on core distance. This s o l i d l i n e i s the f i t of 

the data points to ; 

n 
S ( t ) I C. M. ft) 

J J+1 
=1 

7.4 

M - a + /8r 2 7.5 2 

I t might be worthwhile to pursue the evaluation of i n future work, 

because of the computing time i t can save. 



FIGURE 7o2 

VARIATION OF WITH CORE DISTANCE FOR A SAMPLE OF THE 

DUGWAY DATAo ( 0° ^ 9- « 55° 5 mean energy cz 3 x 10 
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Further investigation could also be conducted i n t o the relationship 

between the Cerenkov l i g h t pulse shape and the time delay between the 

l i g h t and p a r t i c l e s , using computer simulations to interprete the measured 

time delay characteristics. 
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