

Durham E-Theses

Applications of microprocessors in digital high frequency radio communications

Isaac, D. R.

How to cite:

Isaac, D. R. (1981) Applications of microprocessors in digital high frequency radio communications, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/7532/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

APPLICATIONS OF MICROPROCESSORS

IN

DIGITAL HIGH FREQUENCY RADIO

 COMMUNICATIONSby
D.R.Isaac, B.Sc.

A thesis submitted for the degree of Doctor of Philosophy in the University of Durham, 1981.

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

Applications of Microprocessors in Digital High Frequency Radio Communications

D R Isaac

Abstract

This thesis describes the application of VLSI devices to channel evaluation and communication techniques over ionospheric radio paths. Digital signal processing techniques using microprocessors and charge coupled devices are described in detail. A novel method for observing interference and fading patterns on HF channels is described. Error control coding schemes and digital modulation techniques are combined in a design for an adaptive modem for use over HF radio links. Results of narrow-band interference measurements, error patterns and coding performance are presented.

Adknowledgements

Firstly, I wish to thank Professor G.G. Roberts for the opportunity of studying in the Applied Physics and Electronics Department in the University of Durham, both as an undergraduate, and as a postgraduate student.

I am particularly grateful to Dr C.T. Spracklen for his help in securing equipment, and for his consistent guidance and advice during the project. Special thanks are due to my girlfriend, Leena, who has provided never-ending encouragement and support throughout the work.

Thanks are also due to Professor E.D.R. Shearman, of the University of Birmingham, for the loan of equipment, and to the Science Research Council for providing a three year studentship.

Glossary of Terms

ACIA	Asynchronous Communications Interface Adapter
A/D	Analogue to Digital
ADC	Analogue to Digital Converter
AM	Amplitude Modulation
ASCII	American Standard Code for Information Interchange
ASK	Amplitude Shift Keying
BCH	Bose Chaudhuri Hocquenghem
BER	Bit Error Rate
BFO	Beat Frequency Oscillator
BS	Charge Coupled Device
CCD	Central Processing Unit
CPU	Chirp-Z Transform
CZT	Carrier (or Continuous) Wave
CW	Digital to Analogue
D/A	Digital to Analogue Converter
DAC	Data Direction Register
DDR	Integrated Circuit
DFT	Fiscrete Fourier Transform
EOF	End of File
EPROM	Erasable Programmable Read Only Memory
FEC	Forward Error Correction
FFT	FSK

IRQ
LSI Large Scale Integration
MPU Microprocessor Unit
MSI Midwest Scientific Instruments
MUF
NMI Non Maskable Interrupt
PDR Peripheral Data Register
PEP
PIA
PROM
PSK
QPSK
RAM
RES
ROM
R/W
RX
SSB
SSI
SWTPC
TFDM
TTL
TX
VDU
VHF
VLSI
VMA

Interrupt Request

Maximum Useable Frequency

Peak Envelope Power
Peripheral Interface Adapter
Programmable Read Only Memory
Phase Shift Keying
Quatenary Phase Shift Keying
Random Access Memory
Reset
Read Only Memory
Read / Write
Receiver
Single Sideband
Small Scale Integration
South West Technical Products
Time to Frequency Division Multiplexing
Transistor Transistor Logic
Transmitter
Visual Display Unit
Very High Frequency
Very Large Scale Integration
Valid Memory Address

CONTENTS

Glossary of Terms

CHAPTER 1

Introduction
1.1 History
1.2 The Ionosphere
1.3 Problems of the HF channel
1.4 Multipath propagation
1.4.1 Overcoming multipath problems
1.5 Noise
1.5.1 Overcoming noise problems
1.6 Microprocessors and HF radio systems
1.7 Conclusion

CHAPTER 2 Spectral Analysis Techniques

2.1 Introduction
2.2 The Microprocessor
2.3 Cassette Interface
2.4 The Discrete Fourier Transform
2.5 FFT Algorithm
2.5.1 Bit-reversal shuffling
2.6 CZT Algorithm
2.7 Implementations
2.8 FFT implementation in BASIC
2.9 FFT implementation in Assembler
2.10 CZT implementation
2.10.1 Post-multiplier unit
2.10.2 Post-multiplier design
2.10.3 Test results
2.11 Multiply/divide unit
2.12 Comparison of algorithms
2.13 Conclusion

CHAPTER 3
 The HF Spectrogram

3.1 Introduction
3.2 System principles
3.3 System implementation
3.3.1 The lowpass filter
3.3.2 The analogue to digital converter
3.3.3 The digital to analogue converters
3.3.4 Software
3.4 Experimental results
3.5 Conclusion

CHAPTER 4

4.1 Introduction
4.2 Principles of operation
4.3 Implementation4.3.1 Block select logic4.3.2 Address multiplexers4.3.3 Data bus buffers
4.3.4 Control latch
4.3.5 Clock drivers
4.3.6 Memory
4.3.7 Interfaces
4.4 Test results
4.5 Construction
4.6 Conclusion
CHAPTER 5 Error-control coding
5.1 Introduction
5.2 Block codes
5.3 Cyclic codes
5.4 The BCH codes
5.4.1 Decoding BCH codes
5.5 Code implementation
5.5.1 Encoder
5.5.2 Decoder
5.5.3 Galois field operations
5.6 Results
5.7 Burst error correction
5.8 Conclusion
CHAPTER 6 HF Interference pattern measurements
6.1 Introduction
6.2 System operation
6.3 Hardware
6.4 Software
6.5 Experimental Results
6.6 Conclusion
CHAPTER 7 The HF Data Modem
7.1 Introduction
7.2 System philosophy
7.3 Transmitter
7.3.1 Data acquisition
7.3.2. Encoding
7.3.3 Modulation
7.3.4 Channel evaluation \& subchannel selection
7.3.5 Synchronisation patterns
7.3.6 Construction
7.3.7 Transmitter testing
7.4 Receiver philosophy
7.5 Receiver implementation
7.6 Phase detection
7.7 Conclusion
CHAPTER 8 Error Patterns \& Coding Performance
8.1 Introduction
8.2 HF Equipment
8.3 Computing equipment
8.4 Data format
8.5 Transmitter
8.5.1 Bootstrap loader
8.5.2 Carrier frequency synthesis
8.5.3 Modulation
8.5.4 Morse code transmission
8.6 Receiver
8.6.1 Demodulator
8.6.2 Synchronisation
8.6.3 Deinterleaving \& decoding
8.6.4 Error counting
8.6.5 Error pattern recording
8.6.6 Disc management
8.6.7 Real-time clock
8.7 Data analysis
8.8 Experimental results
8.8.1 Analysis of error patterns
8.8.2 Assessment of coding performance
8.9 Conclusion
CHAPTER 9
Conclusion
APPENDIX 1
References
APPENDIX 2Program Listings
APPENDIX 3Publications

CHAPTER 1

Introduction

1.1 History

The High Frequency (HF) Radio Band is that part of the electromagnetic spectrum extending from 3 to 30 MHz . Signals transmitted within this frequency range are predominantly propagated via single or multiple reflections from ionized regions within the upper atmosphere. These ionized regions are generally found at heights of $100-400 \mathrm{~km}$. and are collectively known as the ionosphere. The phenomenon of ionospheric propagation has been used for long-distance communication since the pioneering work of Guglielmo Marconi carried out at the beginning of the century. Although the physics of the ionosphere has been studied extensively, the characteristics of the HF channel are often unpredictable. Nevertheless, the ionosphere provides an effective transmission path for a variety of communication traffic and is still widely used to communicate over long distances using a minimum of equipment.

The first successful experiments involving wireless information transmission using electromagnetic waves were based on digital signal representations for reasons of simplicity of the transmitter and receiver structures. This type of communication, called wireless telegraphy, was of great importance during the first half of the 20 th century and still exists for certain specialised applications. The invention of electron valves, and later the transistor, gave rise to the development of wireless analogue transmission systems, and, with the discovery of different modulation schemes, the modern
wireless networks for information interchange were evolved; by radio relay, satellite, and ionospheric propagation methods.

The discovery that it was possible to transmit analogue signals by pulse code modulation led to a revival of interest in digital transmission. The successive change from analogue to digital circuits has given rise to the need for digital transmission over wireless networks (1). Considerable efforts are at present being made to investigate the performance of wireless channels in different frequency ranges with respect to digital signal transmission, the HF band being no exception.

Because of the problems associated with digital transmission over HF radio links, this medium has not been used successfully for reliable communication of medium- and high-speed data traffic. Certain investigations and experiments were carried out, mainly in the United States, during the 1950's and early 1960's (5,6), but were largely abandoned in favour of satellite communication links which yield higher bit rates with a reduced probability of error. However, many users, faced with problems of the cost and vulnerability of satellites, are prepared to tolerate a reduction in bit rate in exchange for economical systems using a virtually indestructive communications medium. Indeed, for mobiles operating over long-distance circuits, such as ships and aircraft, the HF path is almost the only alternative to satellite communication.

The recent advances in digital integrated circuit technology have enabled substantial reductions to be made in both the size
and the cost of communication systems (2) and it seems only logical that HF radio systems should also benefit from such developments. The work described in this thesis is concerned with the applications of VLSI (Very Large Scale Integration) technology to channel evaluation and data communication using the HF radio path. It is shown that systems which previously required large amounts of expensive analogue equipment can be realised at lower cost and with increased flexibility using nearly all digital techniques.

1.2 The Ionosphere

An effect of solar radiation is to cause ionisation of certain regions of the earth's atmosphere. This ionisation of gas molecules results in an electron density profile which is non-uniform with height. The region of the atmosphere having the highest electron density is known as the 'ionosphere', and it is this region which is responsible for the phenomenon of ionospheric propagation.

When a radio wave transmitted from the surface of the earth encounters a region of intense ionisation, it will be diverted from its original path by a refractive mechanism. The wave will also be considerably attenuated. At certain frequencies the refractive process is sufficient to 'bend' the wave through an angle exceeding 180°, at which point the attenuated wave will be returned to earth. The frequencies at which this phenomenon most commonly occurs lie within the range $3-30 \mathrm{MHz}$ (the HF radio band). Because the refractive process appears to be one of reflection, this phenomemon is often referred to as 'ionospheric
reflection', a term which is subsequently used in the text.

The vertical electron density profile is non-linear; there are regions of ionisation which are more intense than others. The heights of these regions depend on many factors, one of which is the intensity of the solar radiation which varies from day to night, and with the seasons. In the long term, they are dependent on variations of the solar (sunspot) cycle. There are, however, three regions of chief importance, referred to as 'layers'. These are the E-layer at 120 km . (all figures are approximate), the F1-layer at 200 km ., and the F2-layer at $300-400 \mathrm{~km}$. At night, and in mid-winter, the F1 and F2 layers combine to form a single F-layer at 250 km . Below the E-layer there is a D-layer (at $50-90 \mathrm{~km}$.) which is generally more important as an absorber than a reflector of radio waves since the attenuation at this altitude is somewhat greater than at higher regions.

Figure 1.1 is a simplified representation of a typical HF propagation path showing the ionosphere comprising two ionized layers, the E-layer and the F-layer. The signal is returned to earth via a single-hop E-layer mode together with single- and double-hop F-layer modes. Consequently, a short transmitted pulse will have three components when detected at the receiver, each component itself exhibiting time dispersion which causes a corresponding broadening of each received pulse. This latter form of dispersion is due to the fact that the transmitted energy illuminates the ionospheric layers over a relatively large area rather than at a single point; thus the energy of a given

Figure 1.1 Simplified HF Propagation Path
received component can be considered as being made up from the energy of a large number of elemental returns, each with a slightly different propagation time, integrated over an appropriate area of the ionospheric layer.

There are many problems concerning the communicator who wishes to use the ionosphere as the transmission medium. Attempts have been made to model the HF channel (3), but the (largely unpredictable) time variation of the channel characteristics considerably increase the difficulties. Some of the problems are now discussed, and suggestions are included for some ways of combating the detrimental effects of the channel.

1.3 Problems of the HF channel

The problems associated with digital communication via ionospheric propagation may be classified into two broad categories:
(1) Multiple reflections from different layers in the ionosphere give rise to differential time delays in the received signal which results in intersymbol interference and fading.
(2) Noise, both natural and man-made, causes errors in the transmitted data stream.

Both problems are of equal concern in that they corrupt the received data to a sometimes considerable extent. Each will now be discussed separately.

1.4 Multipath propagation

The problem of intersymbol interference is inherent in any digital communications link but is especially important over HF radio links due to the comparatively long relative time delays introduced by multipath (or multimode) propagation. For a typical HF link of, say, 1000 km ., the time delay between the shortest and the longest propagation path may be in the order of 2 to 3 milliseconds, the effect of which is to cause intersymbol interference of such severity as to considerably reduce the maximum allowable transmission rate. The time variations of the amplitudes and phases of the individual modes will be independent and any one mode may be dominant at a particular instant. In addition, phase cancellations may cause fading of the received signal. The result of multipath propagation, in any event, is to introduce errors in the transmitted data. Whether or not it is possible to recover these errors is dependent on the interpretation of the data at the receiver.

1.4.1 Overcoming multipath problems

Broadly speaking, the detrimental effects of multipath propagation may be reduced in four ways:
(1) Choice of a suitable operating frequency
(2) Time-to-frequency division multiplexing
(3) Channel equalization
(4) Diversity techniques

The highest frequency at which ionospheric propagation is possible for a given range is termed the Maximum Useable

Frequency (or MUF) and varies with the time of day and with the seasons as well as being severely affected in an unpredictable manner by solar flares etc. For an $H F$ radio link, as the frequency of operation is increased, the number of propagation modes is reduced until single-mode propagation results at a frequency just below the MUF. It is possible to predict the MUF on a long-term basis, but the short-term fluctuations may considerably alter the prediction figure (4). However, if a large number of channels is available to the user, considerable improvements can result from the correct choice of operating frequency.

Time-to-frequency division multipexing (TFDM) is a technique used to increase the transmission rate while keeping the signal element duration (frame rate) constant $(5,6)$. The data stream is divided into short blocks for transmission over a number of frequency-parallel sub-channels, all contained within the allocated voice channel, and orthogonally spaced to avoid co-channel inteference. Because the frame rate is constant, the signal element duration can be greater than the multipath spread, and the data rate may be increased by a factor which is the number of sub-channels that can be fitted in to the available channel capacity.

Channel equalization involves the construction of a matched filter to combat the degrading effects of the channel. Such a filter normally consists of a tapped delay line, whose tap outputs are weighted and summed to provide the filter output. Convolution of the received signal with the impulse response of
the filter should result in the original signal. Because of the time-varying nature of the HF medium, such an equaliser must be adaptive in nature, the number and position of the delay-line taps being continuously updated to allow for changes in the transmission medium (7). In practice, adaptive equalisers are difficult to implement and can be extremely costly.

Diversity may be employed in time, frequency, or space. A simple time diversity technique is simply to send the message more than once, thereby increasing the probability of correct reception. Dual frequency diversity requires transmission over two channels simultaneously. In one method, both channels are monitored and the channel which yields the most favourable error performance is selected. Two channel filters are therefore required at the receiver and the transmitted spectrum is doubled in width resulting in inefficient spectrum utilisation. Space diversity is the technique most commonly employed (8) and is based on the (usually correct) assumption that the time-variation of the phase cancellations at one point in space will be different to those occurring at another point which is located at a distance away which is comparable to the transmission wavelength. This method is quite effective but requires two receivers and two antennas. In all diversity techniques the problem of designing efficient combiners is a considerable one, and in any case a doubling of the resources is required in some sense.

1.5 Noise

The other major source of errors is noise, which may be naturally occurring, or which may arise from some sort of man-made disturbance. This latter type is often a result of congestion within the $H F$ spectrum creating narrow-band interference from other users of the HF medium. A channel may be allocated to several users, who may interfere with each other if there is propagation between them. Serial data transmission systems (eg. radio telegraphy) suffer considerably from this type of interference (9). Broad band noise may be caused by machinery operating in the vicinity of the receiver although this sort of disturbance is normally localised in nature. A more common source of broad-band noise is that resulting from electric storms or other ionospheric disturbances which may generate a considerable amount of radiated energy in the HF spectrum. This type of noise generally occurs in bursts and is especially prevelant during the summer.

1.5.1 Overcoming noise problems

The detrimental effects of noise on the channel may be dealt with in a number of ways. Front end linearity in the analogue portion of the receiver is an important consideration when attempting to receive signals in the presence of heavy interference. Space diversity may assist in combating localised interference while time and frequency diversity may be effective in avoiding broad- and narrow-band noise respectively. A technique closely associated with TFDM is known as frequency agility which has been found to be effective in combating the effects of narrow-band noise (10) whereby a sounding technique is
used to select the "quietest" channel or in-band subchannel for subsequent data transmission. Sounding techniques are also used to select the best channel from a set of allocated channels by transmitting a sounding signal on each of the channels (11). The receiver then assesses the suitability of each of the channels for data communications and advises the transmitter via a feedback link.

Diversity methods imply some redundancy in their respective domains. A binary system may employ time diversity by the addition of redundant bits to the transmitted data. The redundancy may then be used as an aid in reducing the detrimental effects of noise on the transmitted bit stream.

A trade-off must first be made between the degree of fidelity required in the received data and the resulting reduction in the transmission rate caused by the addition of redundancy. Once this has been determined, the redundant bits can be added in a systematic manner which will then enable certain statistical categories of errors to be corrected and/or detected (12). As an example, one method is to use a block coding scheme in which the data stream is divided into a number of blocks each of which is k bits in length, and each of which is mapped into a 'codeword' of n bits ($\mathrm{n}>\mathrm{k}$) by adding a number $\mathrm{n}-\mathrm{k}$ bits which are the results of $n-k$ modulo-2 additions (or parity checks) on the original k data bits. The resulting codewords then form part of a linear block code which obeys a fixed set of parity-check rules. If the parity checks do not agree on reception, errors have occurred and the appropriate bits may be corrected. Some of
the most powerful block codes known are of length $\mathbf{n}=2^{\mathbf{m - 1}}$ (m is an integer) and are capable of correcting up to t random errors occurring within a code word and require, at most, the addition of mt check bits (13). Errors occuring on HF radio links are generally greater than one bit in length and it is therefore preferable to use codes which can correct bursts of errors. However, random-error-correcting codes can be used very effectively to correct bursts of errors by interleaving groups of codewords such that a burst of consecutive errors is distributed over several codewords, the errors appearing as random to the decoder.

In general, then, the ionosphere can be considered to be an anisotropic time-varying medium which causes the HF path to exhibit error rates far greater than those found in other communication systems (14). The results of multipath propagation and noise are to introduce large numbers of random and burst errors which may sometimes be so great as to render the channel virtually useless. Indeed, to an outsider, communicating via such a medium may seem a near impossible task. However, it seems that adaptive schemes combining several of the above-mentioned techniques may yield substantial performance improvements. Until recently, adaptive schemes have been complex and costly to implement, and almost all systems described in the literature have not had adaptive capability (15).

1.6 Microprocessors and HF Radio Systems

One of the most significant products of the VLSI technology previously discussed is the microprocessor. This is a monolithic device which is obtainable at low cost and which may be made to perform a wide variety of processing tasks by the choice of a suitable sequence of instructions stored in a read-only memory (ROM) unit. The system is configured such that the microprocessor may access the stored instructions and execute them accordingly. Major system changes may be implemented by simply modifying the instruction sequence (the 'software'). A microprocessor system may be made adaptive by determining that the order of execution of the instruction sequence is dependent on previous and/or present events.

This thesis describes the applications of microprocessor techniques to several aspects of digital communications over HF radio channels. The next chapter discusses the implementation of several discrete-time signal processing techniques which are used in subsequent chapters in this thesis. An HF "spectrogram" sounding technique is described in chapter 3, from which a visual display of the time-frequency characteristics of an HF voice channel may be obtained. Information from the display may subsequently be used to determine the suitability of the channel for data transmission.

During the course of the project, it became evident that the data processing requirements for some applications exceeded the capability of a single microprocessor unit. It was for this reason that a multiprocessor system (chapter 4) was developed, in
which several 'slave' processor units operate under control of a central, or 'master' processor. This configuration allows a considerable increase in data throughput over a single processor system. Various error control coding schemes were investigated (chapter 5), leading to the implementation and subsequent field testing of several software-based schemes for the correction of errors occurring over HF radio data links. Chapter 6 presents some results obtained from a detailed investigation into interference phenomena observed in an HF communications channel; the implications for the design of data modems are discussed.

The ideas and results obtained from previous chapters in this thesis were combined in chapter 7 to implement an adaptive HF data modem for data transmission over HF radio links. Signal processing, error-control coding and multiprocessor techniques are used in a low-cost system for medium-speed communication which attempts to overcome the detrimental effects of the HF channel. Some results obtained using the equipment are described in chapter 8.

1.7 Conclusion

The last decade has seen a resurgence of interest in communication via the ionospheric medium. The problems associated with data transmission via this unpredictable channel are considerable, and many techniques have been developed in attempts to combat the degradation imposed on the propagated signal. Some of these techniques have been utilised in systems which have been designed exclusively for $H F$ radio data transmission, but have been complex and costly to implement.

Microprocessors have made substantial inroads in several fields of digital data communications and are well suited to systems requiring adaptability. This thesis describes some applications of these devices to data transmission over HF radio links and shows that considerable savings in hardware requirements may be made by using a primarily software-based approach to system design.

CHAPTER 2

Signal Processing Techniques

2.1 Introduction

The emergence of digital signal processing as a major discipline began in the mid-1960's when high speed digital computers became available for research and development work (16). Many concepts that form the theoretical basis of digital signal processing, such as the z-transform and Fourier analysis, had been familiar, however, to engineers for a long time. In the ensuing years, the field has matured considerably and its development is intimately tied with technological advancement in device design and fabrication.

Many of the signal processing requirements of HF radio communications systems may be realised using digital techniques implemented with the aid of microprocessors. In general, an analogue signal is sampled using an analogue-to-digital converter, the resulting set of samples is processed by a microprocessor-based system, then converted back to analogue form by a digital-to-analogue converter. The efficiency and accuracy of the signal processing depends to a great extent on the design of the system software.

This chapter introduces the microprocessor chosen for the subsequent work described in this thesis. The design and operation of a novel system used for data storage on magnetic tapes is then discussed. More complex techniques are then introduced, based on the Discrete Fourier Transform (DFT). The DFT plays an important role in the analysis, the design, and the
implementation of digital signal processing systems concerned with HF radio systems and is used in several of the applications described in following chapters. Software and hardware implementations of efficient algorithms for the computation of the DFT are investigated and compared. An assessment is made of the suitability of such implementations for demodulation and spectral analysis in HF radio systems.

2.2 The Microprocessor

The choice of a suitable microprocessor was a primary consideration in the development of the project. A device was required having a comprehensive instruction set, fast execution speed, and for which support facilities were available. The Motorola M6800 (17) satisfied these requirements and was chosen in view of the following merits:
(1) The M6800 has a powerful and versatile instruction set (72 basic instructions and 7 addressing modes).
(2) Several economical and flexible development systems were available.
(3) A cross-assembler and simulator were available on the university computer.
(4) Software packages, ancillary components, and documentation were readily available.
(5) Execution time is fast (nominal clock frequency $=1 \mathrm{MHz}$; average instruction time $=4$ cycles (approx.)).

The M6800 is a monolithic microprocessor having an 8-bit data bus and a 16 -bit address bus. It has six internal registers: the A accumulator (8 bits), the B accumulator (8
bits), an index register (16 bits), a program counter (8 bits), a stack pointer (16 bits) and a condition code (status) register (8 bits). The device requires a non-overlapping bi-phase clock for normal operation.

Two systems based on this device were constructed for the development of software during the project (18). Each system consisted of (1) a "motherboard", with 7 card slots available on the main bus (called the SS-50), and with 8 slots available on the I/O bus (called the SS-30), (2) a CPU card containing the microprocessor, crystal oscillator, baud rate generator, ROM (containing a monitor program), and 128 bytes of "scratchpad" RAM, (3) two 16 kbyte RAM cards, and (4) a serial interface card enabling the system to be controlled from a teletype or a VDU. An EPROM programming card was available, allowing machine code programs (object data) to be transferred from RAM to 2 kbyte EPROMs under software control.

The only mass storage system available during the first few months of the project was a teletype paper tape punch/reader having an operating speed of 110 baud. An editor and an assembler were available as aids to program development; each of these packages, however, required approximately half an hour to load into memory using the paper tape reader. It became evident that a more efficient means of mass storage was necessary if reasonable progress was to be made. It was for this reason that a magnetic tape storage system was subsequently adopted. A novel interface to the tape unit was developed which required a minimum of additional hardware (only $21 / 0$ lines of a Peripheral

Interface Adapter (PIA) IC were needed). The design of this interface is discussed in the following section and is also described in the publication to be found in Appendix 4 (reference 19).

2.3 Cassette interface

The "Kansas City" standard is commonly regarded as an internationally accepted standard for data recording on audio cassettes. The baseband data signal is used to modulate carriers of 1400 Hz and 2800 Hz using FSK at a rate of 350 bps ., ie a $\operatorname{logic} \quad ' 0$ ' is represented as 8 cycles of the higher frequency and a logic ' 1 ' as 4 cycles of the lower frequency. It was initially decided to design an interface based on this standard but this was later developed into a higher speed system.

The PIA (Peripheral Interface Adapter (20)) is a device which provides an interface between the 6800 microprocessor bus and two external data ports of 8 lines each (the ' A ' and the ' B ' ports). Each of the 16 lines is compatible with standard TTL logic families and may be programmed for input or output by setting the state of the corresponding bit in an internal "data direction register". For the cassette interface, line A_{7} was programmed for output and line B_{7} for input. Assembly level software was written which would take data from a specified region of memory and generate the appropriate FSK signal at the output line A_{7}. Cycle timing of the rectangular modulated signal was achieved using software timing loops and data was transmitted in byte format using a ' 0 ' start bit and a ' 1 ' stop bit. The TTL level FSK output was connected directly to the
microphone input of the cassette recorder, which incorporated an automatic record level preamplifier. On playback, the audio output from the extension speaker socket was connected directly to the input line B_{7} which was continuously sampled by the processor. The period of a waveform cycle was determined by comparing the number of ' 1 ' samples counted with a mean threshold value. If the number of samples counted exceeded this value the cycle was of 1400 Hz ; if less it was 2800 Hz . The sampling rate was approximately 12 kHz . A decision as to the state of a demodulated data bit could be made after receiving the appropriate number of cycles. The average error rate from this system on playback was found to be better than 1.5×10^{-6}. (ie. less than 1 error per 40 minute recording)

Some experimentation was carried out with adjustment of the recording frequencies and number of cycles per bit. A reliable and much faster system was found to result from using only single cycles of the original two frequencies; ie. a logic ' 0 ' takes only half the time of a logic ' 1 ' to load and store. An example of the signal generated for the data sequence 10110 is shown in figure 2.1. If the data contains equal numbers of 1 's and 0 's, the mean bit rate is 1600 bps , more than 5 times that of the Kansas City standard.

It was decided to incorporate error checking by recording the data according to the Motorola "MIKBUG" standard format for recording object data on punched paper tape (21). This format requires data to be transmitted in ASCII character records arranged as in figure 2.2. All information in the record is

PHOTO 2.1. SHOWING POST-MULTIPLIER UNIT INTERFACED TO CCD EVALUATION MODULE.

Figure 2.1 Cassette Data Format

Figure 2.2. "MIKBUG" Tape Format
represented as hexadecimal data. The beginning of the record contains the record type (S1), a byte count which covers all the bytes that follow, and the start address of the data block. Data bytes follow which represent the object data to be stored in memory beginning at the block address and stored in sequential memory locations that follow. At the end of the record is a checksum, which is the l's complement of the summation (mod 256) of all data bytes in the record, plus the byte count and block address. This value is checked as data is loaded and a '?' is printed if an error is encountered. The tape can then be rewound a few blocks and the faulty block reloaded. The end-of-file (EOF) terminates the data and consists of the characters " S 9 ". The EOF terminates a tape load function.

An assembly listing of the tape store and load programs is included in the published article at the end of this thesis (Appendix 3). The high-speed interface showed error rates at least as good as the Kansas City version, and was used successfully for several months before the purchase of a flexible ('floppy') disc drive and interface board.

During the second year of the project, a triple disc drive and interface board were obtained to facilitate faster file access. Each flexible disc could contain 80 kbytes of storage; it was therefore possible to have access to 240 kbytes of data at any one time. Commercially available software was obtained, including a co-resident assembler, editor, and BASIC interpreter, to assist program development. The teletype was replaced with a VDU for communication with the development system and hard copy
output was obtained from a thermal printer attached to an additional serial interface card connected to the SS-30 bus.

2.4 The Discrete Fourier Transform

It has already been mentioned that the DFT plays an important role in the analysis and processing of $H F$ radio signals. The DFT of a finite length sequence, $\{x(n)\}$, is defined as

$$
\begin{equation*}
X(k)=\sum_{n=0}^{N-1} x(n) w_{N}^{k n}, \quad k=0,1, \ldots, N-1 \tag{2.1}
\end{equation*}
$$

where $W_{N}=\exp (-j 2 \pi / N)$.
The resulting sequence, $\{X(k)\}$, is the Fourier representation of the original input sequence. The following sections of this chapter discuss efficient microprocessor implementations of the DFT using software alone, using hardware arithmetic, and with a Charge Coupled Device (CCD), each of which was used in a different application. A description of the algorithms is given, followed by a discussion of the implementations, and finally a comparison of the implementation efficiencies.

2.5 FFT Algorithm

The direct computation of the DFT requires $4 N^{2}$ real multiplications and $N(4 N-2)$ real additions, or, equivalently, N^{2} complex multiplications and $N(N-1)$ complex additions (22-24). The number of multiplications required is generally accepted as being a meaningful measure of the complexity, or, of the time required to implement a computational algorithm. The amount of computation required to evaluate the DFT directly is approximately
proportional to N^{2}; the computation time required to compute the DFT by this method therefore becomes very large for large values of N .

It is possible to reduce the number of computations required to evaluate the DFT by decomposing the sequence $\{x(n)\}$ into successively smaller subsequences. Algorithms based on this principle are called "decimation in time" algorithms (22,23). If N is an even number, we can consider computing $\mathrm{X}(\mathrm{k})$ by separating $\{x(n)\}$ into two $N / 2-p o i n t$ sequences consisting of the even- and odd-numbered points in $x(n)$.

We then obtain

$$
x(k)=\sum_{n \text { even }} x(n) w_{N}^{k n}+\sum_{n \text { odd }} x(n) w_{N}^{k n}
$$

Substituting $\mathrm{n}=2 \mathrm{r}$ for n even and $\mathrm{n}=2 \mathrm{r}+1$ for n odd gives

$$
\begin{aligned}
x(k) & =\sum_{r=0}^{(N / 2)-1} x(2 r) W_{N}^{2 r k}+\sum_{r=0}^{(N / 2)-1} x(2 r+1) w_{N}^{(2 r+1) k} \\
& =\sum_{r=0}^{(N / 2)-1} x(2 r)\left(w_{N}^{2}\right)^{r k}+w_{N}^{k} \sum_{r=0}^{(N / 2)-1} x(2 r+1)\left(w_{N}^{2}\right)^{r k}
\end{aligned}
$$

but $W_{N}^{2}=\exp (-2 j(2 \pi / N))=\exp (-j 2 \pi /(N / 2))=W_{N / 2}$

$$
\begin{aligned}
x(k) & =\sum_{r=0}^{(N / 2)-1} x(2 r) W_{N 2}^{r k}+w_{N}^{k} \sum_{r=0}^{(N / 2)-1} x(2 r+1) W_{N 2}^{r k} \\
& =G(k)+w_{N}^{k} H(k)
\end{aligned}
$$

Each of the sums in equation 2.2 is recognised as an $\mathrm{N} / 2$ point DFT. If N is an integer power of 2 , each of the sums may be decomposed further into two ($\mathrm{N} / 4$) point DFTs and so on until the
stage is reached where there are N/2 2-point DFTs (or "butterfly" computations) to be performed. There will be $\log _{2} \mathrm{~N}$ stages of decomposition in all. The basic butterfly computation is illustrated in figure 2.3 and is described by the following equations:

$$
\begin{aligned}
& x_{m+1}(p)=x_{m}(p)+w_{N}^{r} x_{m}^{(q)} \\
& x_{m+1}(q)=x_{m}(p)-w_{N}^{r} x_{m}^{(q)}
\end{aligned}
$$

Only one complex multiplication is involved in mapping the point $X_{m}(p)$ and $X_{m}(q)$ to $X_{m+1}(p)$ and $X_{m+1}(q)$ respectively. Figure 2.4 shows a graphical representation of the evaluation of an 8 -point DFT using the butterfly computation of figure 2.3 .

The total number of multiplications required for the above algorithm is ($N / 2$) $\log _{2} N$ compared with N^{2} multiplications required for direct evaluation of the DFT. The algorithm was derived by Cooley and Tukey in 1965 (25), and is often referred to as the Fast Fourier Transform algorithm (FFT). A flow diagram for the FFT decimation in time algorithm is shown in figure 2.5. Three variables, i, m, and and 1 , are required to index through the complex array $A(*)$. There are $r=\log _{2} N$ stages of computation and $\mathrm{N} / 2$ butterfly computations to be performed at each stage.

2.5.1 Bit-reversal shuffling

If the above algorithm is to be used to produce an output sequence in sequential order, it is necessary to store the input data in non-sequential order. In determining the position of $x(n)$ in the input array, the bits of the binary representation of the index n must be reversed. For example, for a 16 point transform,

Figure 2.3. Basic Butterfly Computation

Figure 2.4. Flowgraph of 8-point DFT using butterfly computation of figure 2.3 .

All multiplications are complex.

$$
w^{k}=e^{-j\left(\frac{2 \pi}{N}\right)^{k}}
$$

FIGURE 2.5. FFT ALGORITHM FLOWCHART
four bits are required for each index and an index $\left(b_{3} b_{2} b_{1} b_{0}\right)$ becomes ($\left.b_{0} b_{1} b_{2} b_{3}\right)$. The necessity for bit-reversal shuffling of the sequence $x(n)$ is a result of the manner in which the DFT computation is decomposed into successively smaller DFT computations. Figure 2.6 shows the flowchart of an algorithm which will shuffle the contents of the array $\mathrm{x}(\mathrm{i}), \mathrm{i}=0,1,2 \ldots \mathrm{~N}-1$ in bit-reversed order; the result will be contained in the same array. Each of the numbers $x(i)$ may be complex. Three integer variables, i, j, and k are used to index through the data and the complex variable X is used as a temporary storage location. This algorithm was implemented in BASIC and assembly level language for use with the respective FFT programs.

2.6 CZT Algorithm

Another algorithm for evaluating the DFT, called the "chirp-z" transform (CZT), was derived in 1969 by Rabiner and Schafer (26), and is not restricted to integral powers of N as is the FFT. The expression for the DFT in 2.1 is:

$$
x(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi n k / N} \quad, k=0,1, \ldots, N-1
$$

where both $x(n)$ and $X(n)$ may be complex. Using Bluestein's identity (27)

$$
n k=\frac{1}{2}\left[n^{2}+k^{2}-(k-n)^{2}\right]
$$

FIgURE 2.6. BIt-REVERSAL SHUFFLING
we obtain

$$
\begin{align*}
x(k) & =\sum_{n=0}^{N-1} x(n) e^{-j \pi n^{2} / N} e^{j \pi(k-n)^{2} / N} e^{-j \pi k^{2} / N} \\
& =e^{-j \pi k^{2} / N} \sum_{n=0}^{N-1} g(n) e^{j \pi(k-n)^{2} / N} \quad, k=0,1, \ldots N-1 \tag{2.3}
\end{align*}
$$

Equation (2.3) is the expression for the CZT. Three stages of computation are required
(i) Multiply each term $x(n)$ by the complex factor $\exp \left(-j \pi n^{2} / N\right)$ to produce a new sequence $g(n)$.
(ii) Perform a discrete convolution between the sequence $g(n)$ and the sequence $\exp \left(j \pi n^{2} / N\right)$.
(ii) Multiply the resulting output sequence by the factor $\exp \left(-j \pi k^{2} / N\right)$ for each point of $X(k)$.

The sequences $\exp \left(-j \pi n^{2} / N\right)$ and $\exp \left(-j \pi k^{2} / N\right)$ can be thought of as complex exponential sequences with linearly increasing frequency. Such signals are called "chirp" signals; hence the name "chirp-z" transform. A method for implementing the CZT using a charge-coupled device is described later in this chapter.

2.7 Implementations

Four methods for implementing the DFT using the two algorithms described were investigated and used in various applications described elsewhere in this thesis:
(i) Implementation of FFT algorithm using a co-resident BASIC interpreter
(ii) Assembly-level implementation of the FFT using software
arithmetic
(iii) Assembly-level implementation of the FFT using hardware multiply/divide unit
(iv) Hardware implementation of the CZT using a charge coupled device

28 FFT Implemenation in BASIC

A program to evaluate the DFT of an N -point real sequence is shown in the listing in appendix 2. The following results may be obtained from this program: printout of input data, printout of output data (real \& imaginary components), plot of output data (real \& imaginary), printout of power spectrum and plot of power spectrum. A window function may be applied to the input data if a power spectrum is required. A special feature of this program is that the DFT of the original N -point input sequence is evaluated by performing a single $\mathrm{N} / 2$-point FFT computation. The spectrum of a purely real sequence exhibits complex conjugate symmetry and it is therefore only worthwhile computing the positive frequency half of the spectrum.

Any asymmetric function may be formed as the sum of two functions, symmetric about some suitable axis, one posessing even and the other odd symmetry. Using this fact it is possible to simultaneously compute the spectra of two $\mathrm{N} / 2$-point real sequences using only one $N / 2$-point complex FFT. One sequence $y(n)$ is entered as the real components in an N/2-point complex array; the other, $z(n)$, is entered as the imaginary components. The transform, $X(k)$, of the sum $x(n)=y(n)+j z(n)$ is asymmetric but it is possible to use the symmetry property to obtain the spectra
$Y(k)$ and $Z(k)$ of $y(n)$ and $Z(n)$ respectively by a manipulation of the sequence $X(k)$. If the sequences $y(n)$ and $z(n)$ are the even and odd numbered points respectively of an \mathbb{N}-point real input sequence, it is possible to obtain the spectrum of this sequence from $Y(k)$ and $Z(k)$. This method is described in reference (24).

The even-numbered points of the real input sequence are entered as the real components of the complex array $A(2, N / 2)$, and the odd-numbered points are entered as the imaginary components. An N/2-point DFT is performed by the subroutine at statement 1500 which shuffles the data in bit-reversed order, then evaluates an N/2 point FFT. The subroutine at statement 520 manipulates the transformed data to obtain the spectra of the two real sequences. The positive half of the spectrum of the original input data sequence is then found using the subroutine beginning at statement 130. Real and imaginary components of the spectrum may be listed and/or plotted if required. The power spectrum of the transform is found by evaluating the square root of the sum of the squares of the real and imaginary components of each point in the output sequence.

2.9 FFT Implementation in assembler

The FFT algorithm of figure 2.5 was implemented in M6800 assembly language in order to obtain an increase in computation speed over a high level language implementation. A listing of the program is given in appendix 2 and is capable of evaluating the DFT of \mathbf{N} complex data points where N is an integer power of 2 between 8 and 256 inclusive. The real and imaginary components of each point are quantised to 8 bits each but arithmetic operations
are carried out to 16 bit accuracy to eliminate quantisation errors introduced between stages of the decimation-in-time implementation. 1 kbyte of memory was therefore necessary to accomodate 256 complex points as 2 bytes were required for each of the real and imaginary components. Data is arranged in the table as follows:

address	data
DBASE $+4 n$	$\mathrm{f}(\mathrm{n})$ (real) MSB
DBASE $+4^{*} \mathrm{n}+1$	$\mathrm{f}(\mathrm{n})$ (real) LSB
DBASE $+4^{*} \mathrm{n}+2$	$\mathrm{f}(\mathrm{n})$ (imag) MSB
DBASE $+4^{*} \mathrm{n}+3$	$\mathrm{f}(\mathrm{n})$ (imag) LSB

To avoid computing the sine and cosine values for the weighting factors, a table of lookups was used. Values in the table corresponded to the functions:

$$
\begin{array}{lc}
W_{R E}(n)=\cos (2 \pi n / 256) & n=0,1,2, \ldots \\
127 \\
W_{I M}(n)=-\sin (2 \pi n / 256) & \prime \prime
\end{array}
$$

Each complex point was stored as two 16 bit 2 s complement numbers in a similar format to the data storage format described above. 512 bytes were therefore required for lookup table storage. The binary representations of the weighting factors were as follows:

W	binary
+1	0100000000000000
0	0000000000000000
-1	1100000000000000

The program is invoked by first loading the data into the data table, loading $r\left(=\log _{2} N\right)$ with a value between 3 and 8 and executing the call "JSR FFT". The data is first shuffled in
bit-reversed order by the subroutine SHUF which is a direct implementation of the flow chart of figure 2.6. Successive butterfly computations are then performed in-place each of which involves 4 real 16×16 bit multiplications, 3 real $16+16$ bit additions and 3 real 16 - 16 bit subtractions.

Two implementations were evaluated; the first used a software multiplication routine based on the Booth algorithm of reference (28); the second used a hardware multiply/ divide unit, described in section 2.11. Execution times for both implementations are tabulated in section 2.12. A further improvement in computational efficiency can be obtained by observing that the weighting factor W^{0} has real and imaginary coefficients of 1 and 0 respectively and no multiplications are required for this case. The total number of real multiplications required for the N -point DFT therefore reduces to

$$
4 \times\left((N / 2) \log _{2} N-(N-1)\right)
$$

2.10 Implementation of the CZT

As discussed in section 2.6, the CZT algorithm involves three stages of computation: pre-multiplication, convolution, and post-multiplication (29). The block diagram of a complete transform based on the CZT algorithm is shown in figure 2.7. Pre-multiplication is accomplished by the multipliers to the left of the diagram and post-multiplication by those on the right. The major computing task is the convolution portion; the Reticon R5601 quad chirped transversal filter (30) has been designed to perform this task. This device contains two separate 512-stage MOS charge coupled devices which are used to implement four transversal

filters using a split-electrode weighting technique (31). The filter weighting coefficients and internal circuit connections are configured so that the device, in conjunction with additional off-chip components, can implement the CZT algorithm to calculate a 512 -point $\operatorname{DFT}(32,33)$.

An evaluation module containing the R 5601 device was available, which included additional circuitry necessary to compute the power spectrum of an analogue input signal. No phase information is obtainable with this module, as the post-multiplier unit is replaced with a hypotenuse function which recovers the spectral amplitude from the component cosine and sine terms. From (2.3), the squared spectral amplitude of a sequence $x(n)$ can be expressed as:

$$
\begin{equation*}
|X(k)|^{2}=\left|\sum_{n=0}^{N-1} x(n) e^{-j \pi n^{2} / N} e^{j \pi(k-n)^{2} / N}\right|^{2} \tag{2.4}
\end{equation*}
$$

The final phase multiplier term, $e^{-j \pi k^{2} / N}$ has unit magnitude and has therefore been omitted from the above expression. The input data is stepped each time a new spectral component is calculated. Equation (2.4) then becomes:

$$
\left|x_{s}(k)\right|^{2}=\left|\sum_{n=0}^{N-1} x(n+k) e^{-j \pi n^{2} / N} e^{j \pi(k-n)^{2} / N}\right| 2
$$

The notation $X_{s}(k)$ indicates a "sliding" CZT.

A futher simplification is possible if the input is purely real, as it is in this case. The imaginary input is always zero so that two of the input multipliers may be deleted and the input
circuit simplified. A block diagram of the evaluation module is shown in figure 2.8. The real (analogue) input signal is buffered and converted to discrete-time samples by the input sample-and-hold, then split into the direct and quadrature channels. The sample values are multiplied by the appropriate chirped waveform using multiplying digital-to-analogue converters. The digital inputs to these converters are derived from two 512-by-8 bit ROMs which contain the sampled chirped sine and cosine waveforms. The sampled analogue products are then used for input to the R5601 four- channel convolution filter. Outputs from the filter are sampled and held to give time coincidence of all outputs, and then combined on an rms basis to give the spectral density of the input waveform.

Four clock phases are required by the filter device to propagate the discrete signal packets through the CCD channels. These are designated T1CL, T2CL, T3CL and T4CL, and are generated by a multi-phase clock generator circuit incorporated in the evaluation module which may be driven either from a 1 MHz internal oscillator or from an external trigger source. The sample rate with the on-board oscillator is a nominal 100 kHz , but lower rates are attainable with external triggering. The "address advance" pulse increments a 9 bit counter which addresses the weighting factor PROMs.

FIGURE 2.8.

2.10.1 Post-multiplier unit

A post-multiplier unit was designed and constructed, enabling the real and imaginary components of the signal spectrum to be determined. The weighting factors for the algorithm illustrated in figure 2.7 are the sine and cosine chirp signals $e^{-j \pi k^{2} / N}$. However, because the transform is sliding and not stationary, the coefficients $X_{s}{ }^{(k)}$ Re and $X_{s}(k)_{I m}$ do not provide a true measure of the input signal phase. A correction factor must be applied if the phase is to be restored. Consider the examples illustrated in figure 2.9 where the 8-point DFT's are evaluated of two sinusoids of frequencies $4 . \pi n / N$ (solid line), and $2 . \pi n / N$ (broken line).

The stationary DFT of an input sample sequence $\{x(n)\}$ is derived from the time samples $x(i), 0 \leq i \leq N-1$. The stationary DFT of the first signal in the example results in an output spectrum of -4 j at $\mathrm{k}=2$ and +4 j at $\mathrm{k}=6$, while that of the latter results in an output spectrum of similar coefficients at $k=1$ and $k=7$. The sliding DFT, however, is derived from time samples $x(i)$, $\mathrm{n}+\mathrm{k} \leq \mathrm{i} \leq \mathrm{N}-1+\mathrm{k}$. The sliding DFT results in an output spectrum of $+4 \mathrm{j}(\mathrm{k}=2)$ and $-4 \mathrm{j}(\mathrm{k}=6)$ for the first signal, and $(\sqrt{8}-\sqrt{8} \mathrm{j})(k=1)$ and $(\sqrt{8} \mathrm{j}-\sqrt{8})(\mathrm{k}=7)$ for the latter. Although the magnitude of the power spectrum is the same as for the stationary DFT, the sliding transform imposes an additional phase shift of $2 . \pi \mathrm{k}^{2} / \mathrm{N}$ radians, which must be corrected for by multiplying the output spectrum by $\mathrm{e}^{-\mathrm{j} 2 \cdot \pi \mathrm{k}^{2} / \mathrm{N}}$.

It has been stated that, in the case of the CZT implementation, the post-multiplication coefficients are the chirp

SIGNALS

4

4

FIGURE 29 SLIDING PHASE CORRECTION.
waveforms given by $e^{-j \cdot \pi k^{2} / N}$. For the sliding $C Z T$ implementation, the overall post-multiplication coefficients must be the product of these chirp waveforms and the phase correction factor. ie.

$$
e^{-j \pi k^{2} / N} \cdot e^{-j 2 \pi k^{2} / N}=e^{-j 3 \pi k^{2} / N}
$$

2.10.2 Post-multiplier design

A circuit was required which could evaluate the complex multiplication $(a+j b) e^{-j 3 \pi k^{2} / N}$. The coefficients a and b are the direct and quadrature channels respectively from the transversal filter and are available from the evaluation module as sampled analogue voltages. The cosine and sine chirp waveforms could be stored in PROMs as 8-bit digital words. The transform length was fixed by the filter to be 512 points and each PROM was therefore required to have a 512-byte capacity. It was decided to use Intel 2716 type 2 kbyte EPROMs for two reasons: these devices were readily available at low cost, and a programming facility was already installed in the MSI 6800 development system. Two such EPROMs were programmed with the required chirp waveforms, which were generated using the co-resident BASIC interpreter and converted to offset binary format prior to writing to the device. Four real multiplications and two real additions were required to evaluate the complex multiplication described above. Each multiplication involved finding the product of a sampled bipolar analogue voltage and an 8-bit digital word. A circuit for performing this operation is shown in figure 2.10 and is described as follows:

FIGURE 2.10(a). POST-MULTIPLIER UNIT (EPROMs and MDACs).

FIGURE 2.10(b). POST-MULTIPLIER UNIT (Summation amps, multiplexer, A-D converter).

The DAC-08 is an inexpensive monolithic digital-to-analogue converter with an 85 ns settling time, which provides an output current which is the product of an 8-bit binary word and an input reference current, $\mathrm{I}_{\text {REF }}$. The output current, I_{0}, for a binary input word, W, is given by:

$$
I_{o}=\frac{256}{W} \times I_{R E F}
$$

Two complementary current outputs are available, which allow the device to be connected in a "symmetrical offset binary" output configuration by converting the currents to voltages and summing using an operational amplifier. Full scale positive and negative voltage outputs are then obtained for input words of $\$ F F$ and $\$ 00$ respectively. The output voltage is proportional to ($W-128$), where W is the input word.

Two input configurations are possible to cater for positive or negative reference voltages. For the circuit of figure 2.10(a), current flows into pin 14 of DAC 1 when $V_{\text {IN }}$ is positive, but no reference current is available to DAC 2. If $V_{\text {IN }}$ is 1 V , the reference current is 1 mA and the output voltage from the buffer amplifier is $-4.7 \mathrm{~V} x$ W. If $V_{I N}$ is negative, current flows in to pin 14 of DAC 2 and the output voltage is positive. The output voltage is therefore given by

$$
V_{o}=+\frac{4.7(W-128)}{128} \times v_{\mathrm{IN}}
$$

Table 2.1 shows the experimentally obtained output voltages for 5 analogue input voltages and 4 digital words presented to the multiplier from a PIA attached to the 6800 development system.
digital word

input voltage	V_{i}	\$00	\$7F	\$80	\$FF
	+1V	-4.79V	-0.01V	0.01V	4.79 V
	$+0.5 \mathrm{~V}$	-2.49V	-0.01V	0.01V	2.49 V
	0	0	0	0	0
	-0.5V	2.49 V	0.01 V	-0.01V	-2.49V
	-1V	4.79 V	0.01V	-0.01V	-4.79V

Table 2.1

The peak voltages $a t a$ and b on the evaluation board were measured for a fixed frequency sinusoidal input and were found to be $\pm 0.5 \mathrm{~V}$. The two non-inverting input buffer amplifiers on the post-multiplier board were arranged to have adjustable gains of between 1 and 3 in order to provide suitable variable references to the multipliers.

The eight output lines from the cosine chirp EPROM were connected to two multiplier circuits to give the products $-\mathrm{a} \cdot \cos 3 \pi \mathrm{k}^{2} / \mathrm{N}\left(\mathrm{V}_{\mathrm{TP} 3}\right)$ and $-\mathrm{b} \cdot \cos 3 \pi \mathrm{k}^{2} / \mathrm{N}\left(\mathrm{V}_{\mathrm{TP} 6}\right)$ and those from the sine chirp EPROM were connected to multiplier circuits to provide $\operatorname{a.} \sin 3 \pi \mathrm{k}^{2} / \mathrm{N}\left(\mathrm{V}_{\mathrm{TP} 4}\right)$ and $-\mathrm{b} \cdot \sin 3 \pi \mathrm{k}^{2} / \mathrm{N}\left(\mathrm{V}_{\mathrm{TP} 5}\right)$. The latter product was obtained by using the output buffer amplifier in the non-inverting configuration. The two real products were summed in a wideband summing amplifier to give $X(k)$ (real) and the two imaginary products were summed to provide $\mathrm{X}(\mathrm{k})$ (imaginary). Using the component values shown in the circuit diagram, the output voltages were

$$
\begin{aligned}
& v_{o}(\text { real })=-(10 / 39) \cdot\left(v_{\mathrm{TP} 3}+v_{\mathrm{TP} 5}\right) \\
& \mathrm{v}_{\mathrm{o}}(\text { imag })=-(10 / 39) \cdot\left(v_{\mathrm{TP} 4}+v_{\mathrm{TP} 6}\right)
\end{aligned}
$$

The output voltage range in each case was $\pm 4.8 \mathrm{~V}$.

The summing amplifier outputs were connected to two inputs of a CMOS analogue multiplexer, the output of which was connected via a variable gain buffer amplifier to a high speed (2μ s conversion time) bipolar input 8-bit analogue-to-digital converter. Interface to the 6800 microprocessor system was via a single PIA. Four pairs of multiplying D-A converters, as in figure 2.10(a) were necessary to evaluate the four real multiplications required to find the complex product.

The complete circuit was constructed using wirewrap techniques on a 6.5×4.4 ins. circuit board. The $\pm 20 \mathrm{v}$ supply to the RC5601 evaluation board was reduced to $\pm 15 \mathrm{v}$ to supply the post-multiplier by using one 7815 and one 7915 voltage regulator IC. A photograph of the board together with the $C C D$ evaluation board can be seen in photo 2.1.

2.10.3 Test Results

A series of tests were performed on the post-multiplier board and the results compared with theoretical predictions to ensure that the circuit was functioning correctly. The sine and cosine chirp waveforms generated by the unit are shown in photos 2.2 and 2.3. The EPROMs were addressed directly from a PIA installed in the 6800 development system and the digital outputs from the A-D converter were read for a variety of DC analogue inputs and a variety of weighting factors. The results of these tests are shown in table 2.2. a and b are analogue input voltages, ADDR is the EPROM address, COS and SIN are the cosine and sine outputs from the EPROMs. R and I are the real and quadrature output voltages respectively ("ex" and "th" indicate experimental and

PHOTO 2.2. SINE CHIRP WAVEFORM

PHOIO 2.3. COSINE CHIRP WAVEFORM.
theory respectively).

a	b	COS	SIN	$\mathrm{R}(\mathrm{ex})$	$\mathrm{R}(\mathrm{th})$	$\mathrm{I}(\mathrm{ex})$	$\mathrm{I}(\mathrm{th})$	ADDR
-0.5	-0.5	$\$ 40$	$\$ C 0$	1.18	1.175	0	0	$\$ 08$
+0.5	+0.5	$\$ \mathrm{C} 0$	$\$ 40$	1.18	1.175	0	0	$\$ 10$
-1.0	-1.0	$\$ 7 \mathrm{~F}$	$\$ \mathrm{FF}$	2.37	2.35	-2.36	-2.35	$\$ 0 \mathrm{E}$
-1.0	+1.0	$\$ 00$	$\$ \mathrm{FF}$	0	0	-4.71	-4.70	$\$ 04$
+1.0	-1.0	$\$ \mathrm{FF}$	$\$ 7 \mathrm{~F}$	2.35	2.35	-2.36	-2.35	$\$ 16$
-1.0	-0.5	$\$ \mathrm{FF}$	$\$ C 0$	-1.75	-1.76	-2.73	-2.75	$\$ 17$
-0.5	+1.0	$\$ 00$	$\$ 00$	3.54	3.53	-1.19	-1.18	$\$ 00$
-0.5	+0.5	$\$ \mathrm{FF}$	$\$ 00$	0.01	0	2.36	2.35	$\$ 14$

Table 2.2

The $C C D$ evaluation module was interfaced to the microprocessor system and to the post-multiplier unit as illustrated in figure 2.11. The 9 address lines from the on-board counter were connected to the post- multiplier EPROMs, and the "a" and "b" outputs from the filter output buffers were connected to the real and quadrature inputs respectively of the postmultiplier system. The $\overline{T 3 C L}$ clock line was connected to the CAl control line of the PIA and the "in sync" input was derived from the CA2 line. The CA2 line was also connected to the "gate enable" input of a pulse generator having a gated output; the latter set to deliver 500 ns wide pulses at a repetition frequency of 20 kHz into the "ext trig" input of the evaluation board. This enabled the system to operate at a sample rate of 20 kHz . The CB2 control line was configured such that a "write to B side data" instruction causes a short pulse to occur immediately after the instruction. This pulse was used to initiate an A-D conversion.

The sinusoidal output from a function generator was connected to a frequency counter and to a comparator, whose output was
clamped with a 5.1 V zener diode and fed to the PB7 line of the post-multiplier PIA.

Two programs were written to test the functioning of the post-multiplier unit. The first was not synchronised to the input signal, and the second was synchronised to the zero crossings of the input signal, as detected by the comparator. A description of the operation of the two programs is as follows.

CA2 is initialised to ' 0 ', which disables the pulse generator output and holds the on-board 9-bit memory address counter in "reset". A counter within the microprocessor system is then initialised to a value of 512, and the CA2 line is brought to a logic 'l', thereby beginning the sampling process. Each transition of $\overline{T 3 C L}$ causes an interrupt to be generated which is used to decrement the microprocessor counter. After 512 interrupts have been counted, this counter is set to zero and the CCD filter is full (it is a 512-stage device). During the next 256 transitions of $\overline{T 3 C L}$, the $C C D$ evaluation module outputs frequency samples in the Nyquist band; therefore another 256 interrupts are counted. The real and imaginary outputs from the post-multiplier unit are then read by the microprocessor system using the analogue multiplexer and the $A-D$ converter. The results are stored for further processing.

The sampling frequency was set to 20 kHz and a sinusoidal input of approximately 4.5 kHz was applied to the $C C D$ evaluation module. Sampling was initiated at random intervals and the results were stored in two 256 byte tables in memory. An examination of the results showed that the energy associated with a single

FIGURE 2.11 POST-MULTIPLIER TEST CIRCUIT
frequency carrier tended to be spread over several frequency bins due to the effect of the Hanning window applied to the $C C D$ split electrode weightings.

The experiment was repeated and the resulting coefficients around the frequency of interest were printed on the terminal (in decimal) on each occasion. Figure 2.12(a) shows the results obtained from successive readings of the real and imaginary coefficients. Five pairs of coefficients are printed for each reading; the centre coefficient is that corresponding to the frequency bin of the input signal.

Next, the spectrum analyser was synchronised to the incoming signal by initiating the sampling process only on a positive transition of PB7 (corresponding to a zero-crossing of the input data signal), so as to obtain samples of a sinusoid with zero phase shift. The real and quadrature coefficient magnitudes around the frequency of interest were printed as before, and the experiment was repeated a number of times. A correlation was observed between successive results, as shown in figure 2.12(b).

The differential inputs to the comparator were then reversed, and the experiment was repeated, without varying the magnitude or the frequency of the input signal, to obtain samples of a sinusoid with 180° of phase shift (a negative sinusoid). An examination of the output coefficients around the frequency of interest revealed that the signs of the coefficients were reversed, although the magnitude of the spectrum remained constant. In fact, the coefficients for the first case were predominantly

$\stackrel{\mathrm{RE}}{ }$					IM9 $=$				
－2	－26	－6． 4	－31	-1	－1	－9	－21	－39	\square
0	12	43	41	0	－1	－94	－5． 1	－19	\square
2	34	53	15	0	0	8	21	34	1
0	－4	Ξ	27	9	0	－24	－55	－40	－
0	25	5	39	3	0	－4	－9	－	\square
0	－23	－59	－ミア	\square	0	－5	－30	－93	1
0	－9	－	19	\square	a	－2e	－54	-45	－
2	23	53	33	1	0	－3	－9	－4	1
0	2	11	3	0	1	10	35	3	\square
0	－7	－10	3	0	0	15	3 S	54	$三$
1	13	45	z	0	0	－	－35	$-\Xi$	0

¢E91－
$===$
imaginary and negative and for the second case were predominantly imaginary and positive. These results corresponded to the spectrum obtained from samples of a sinusoid and a negative sinusoid respectively, although several unwanted components (with incorrect signs) were also present due to the effect of the Hanning window weighting of the filters.

Several further tests were carried out on the post-multiplier unit to confirm that it was functioning correctly. By using the analogue multiplexer it was possible to select (using software) the real coefficient, the imaginary coefficient (and hence the phase), or the power spectrum, for each frequency bin.

2.11 Multiply-Divide Unit

The hardware multiply-divide unit (34) used in the software FFT implementations is now described. The RCA-CDP1855C is an 8-bit monolithic multiply/ divide unit (MDU) which performs multiplication and division operations on unsigned, binary operators. It is based on a method of multiplying by add and shift right operations and dividing by subtract and shift left operations. The device is structured to permit cascading of identical units to handle operations up to 32 bits.

Two MDU's were cascaded to permit the following operations:
(i) a 32 -bit by 16 -bit divide yielding a 16 -bit result and a 16-bit remainder.
(ii) a 16 -bit by 16 -bit multiplication yielding a 32-bit result

Each MDU has 8 bi-directional tri-state data lines, a read/write input, a clock input, a reset input, a chip enable input and 3 register select lines. Interface to the MSI 6800 system was provided via I/O port 7 on the system I/O bus. The chip enable signal from the bus was inverted and connected to the CE and RA2 lines on the MDU's. The data lines, the reset line and the R / \bar{W} line from the bus were connected directly to the corresponding pins on the MDU's. RSO and RSI were connected to RAO and RA1 respectively. The addresses of the MDU registers were then as follows:

\$F538	X
\$F539	Z
$\$ F 53 A$	Y
$\$ F 53 B$	Status $(R / \bar{W}=1)$

The circuit diagram of the cascaded MDU system is shown in figure 2.13. Interconnections were made using wirewrap on a 0.1 in. matrix circuit board.

For two cascaded MDU's each of the registers X, Y and Z is two bytes wide although each occupies only a single address. Each MDU contains a "sequence counter" which enables registers to be loaded or read sequentially. When the counter matches the chip number (CN1,CNO lines) the device is selected. For example the first selection of register X for loading loads the most significant MDU , the second selection loads the least significant.

FIGURE 2.13. MULTIPLY-DIVIDE UNIT

To execute a multiply or a divide operation, the data is simply loaded into the appropriate registers, and a control word is written to define the required operation. The results of the operation can then be obtained by reading the appropriate registers.

If N MDU's are cascaded, all operations require $8 \mathrm{~N}+1$ shift pulses. For 2 cascaded devices operating at a frequency of 1 MHz therefore, the time taken for a multiplication or a division is 17 us. This is a substantial improvement over a purely software implementation, and was found to provide a considerable improvement in execution time for the Fast Fourier Transform algorithm implementation.

2.12 Comparison of algorithms

The four DFT implementations previously described were compared mainly from point of view of memory requirement and execution time. The first implementation (using a high-level language interpreter) was obviously poor in all respects except for ease of programming and shall not be considered further. The assembly language implementation was quite efficient in terms of memory utilisation and was two orders of magnitude times faster than the BASIC routine. More efficient memory use could have been obtained by computing the butterfly weighting factors only when required; however, this would have led to a considerable increase in execution time. The maximum permissible transform length was 256; if this length had been increased, many single-precision operations would have required double precision, again increasing the required time.

A considerable improvement in execution speed was obtained by using a hardware multiply-divide unit (described in the previous section). This unit was used to (a) multiply the input data sequence by a time window (if required), (b) perform all weighting factor multiplications during the butterfly computations, (c) compute the squares of the Fourier coefficients (if a power spectrum is required) and (d) compute the square root of the sum of the squares of the coefficients using the Newton-Raphson iteration formula (which requires division operations). Table 2.3 below shows figures for execution times for the various algorithms.

N	BASIC	ASSM(1)	ASSM(2)	CZT
8	1.2 s	19 ms	5.1 ms	-
16	2 s	54 ms	14.2 ms	-
32	4.7 s	164 ms	37.5 ms	-
64	10 s	429 ms	96 ms	-
128	22.8 s	1.01 s	219 ms	-
256	48.3 s	2.5 s	501 ms	-
512	105.2 s	-	-	5.12 ms

Table 2.3
$\operatorname{ASSM}(1)$ and $\operatorname{ASSM}(2)$ refer to the assembly level FFT routines with and without the hardware multiplier, respectively.

The hardware implementation of the CZT using the charge coupled device was by far the most efficient in terms of execution time. The device itself is primarily for use in power spectrum estimation, and the evaluation board contains peripheral circuitry to evaluate the power spectrum of a fixed-length (512 point) transform. It has been shown that it is possible to use additional circuitry to evaluate the Fourier coefficients, which may
subsequently be used to determine the phase of an input signal.

2.13 Conclusion

The microprocessor chosen for the work in this thesis has been introduced and some preliminary work has been demonstrated on the transfer of data to and from magnetic tapes using a novel software interface. The implementations of efficient algorithms for spectral analysis have been described and investigated. Phase information may be obtained from an analysis of the Fourier coefficients resulting from the Discrete Fourier Transform of an input time signal. This phase information may be utilised to implement a demodulation process in phase modulated data transmission systems for HF radio communications. However, the execution time involved for the algorithm computations may sometimes be excessive and a hardware approach may sometimes be more favourable. An investigation into Fourier transformation using charge coupled devices has been demonstrated which has led to the design and construction of a "post-multiplier" unit for determination of the Fourier coefficients under control of a microprocessor system. This work has formed the basis for a demodulator design for a multitone phase modulated signal for HF data transmission.

The spectral analysis techniques discussed in this chapter have been used extensively in applications described elswhere in this thesis.

CHAPTER 3

The HF Spectrogram

3.1 Introduction

It has been mentioned that the problems associated with digital data communications over HF radio links generally arise from one of two major causes:
(i) Multipath propagation caused by multiple reflections from the ionosphere.
(ii) Noise; originating from both natural and man-made sources.

The phenomenon of multipath propagation can give rise to intersymbol interference if the signal element duration is of insufficient length, and can also cause fading of the received signal resulting from destructive interference. The received signal may also be corrupted by noise, which may be broad- or narrow-band, and which can severely degrade the fidelity of the detected data.

Because of the predominance of analogue traffic over HF radio links, the 3 kHz "voice" channel has become accepted as the standard communications channel for such a medium, and requests for frequency allocations are normally granted on condition that the radiated signal shall not occupy a bandwidth which exceeds this figure. This restriction applies even when the information is digital in nature and it therefore becomes the task of the communications engineer to design efficient systems for data links operating over such channels.

It is worthwhile observing the effects of fading and noise on a signal confined to a 3 kHz bandwidth in order that the predominant disturbances may be identified. The results may yield clues which could be used to improve system performance by better design, or, if implemented in real time, a number of the available channels may be monitored, and the best chosen for subsequent transmission of data.

3.2 System principles

This chapter describes a system which provides a pictorial display of the time-varying spectral properties of a chosen voice channel. Frequency, on a linear scale from 0 to 3 kHz , is displayed along the y-axis, and time, from $t=0$ to chosen value, is displayed along the x-axis. The intensity of the display at a particular pair of coordinates indicates the strength of a signal (or noise) which occurred at that particular time and at that particular spot frequency. Because of the digital nature of the system, both time and frequency are quantised, and the display actually consists of a two-dimensional array of points of varying intensity. However, these points can be arranged to be close enough together to provide a quasi-continuous pictorial representation of events occurring within the voice channel over a chosen time interval.

[^0]mainframe computer. A display was presented on a facsimile receiver coupled to a digital to analogue converter. Disadvantages of the system were cost, complexity, and the time delay necessitated by the pre-recording of the received data. The microprocessor-based system described in this chapter is fast, versatile, and uses a storage oscilloscope to present the spectral information. Such a system could be developed into a small, economical unit suitable for portable operation.

A description of the operation of the system is presented, followed by details of the hardware and software employed in the implementation. Finally, some results are presented, together with suggestions for further development.

3.3 System implementation

Figure 3.1 shows a block diagram of the system. The audio output from an HF receiver is filtered, and then sampled by the A-D converter and microprocessor system. A set of N samples (N is a power of $2,8 \leq \mathrm{N} \leq 256$) is stored in RAM and the Fast Fourier Transform (FFT) algorithm is used to compute the power spectrum of the set which is displayed as a single vertical line on the storage oscilloscope. This line is quantised into $N / 2$ discrete points and the intensity of the display at each point is a measure of the magnitude of the power spectrum at the corresponding frequency. The vertical spacing between each point is therefore $2 \mathrm{~h} / \mathrm{N}$ cms., where h is the height of the oscilloscope screen. The beam is returned to the x axis and is moved to the right by w / N_{t} cms., where w is the width of the screen and N_{t} ($8 \leq N_{t} \leq 256$) is the number of lines to be plotted. A new set

Figure 3.1
HF Spectrogram Block Diagram

Figure 3.2 Example Display

Figure 3.3 S-Plane Representation of Filter
of N samples is then acquired from the receiver and a second line is plotted. This procedure continues until the display is complete. An illustration of the kind of display which might be obtained is shown in figure 3.2.

3.3.1 The lowpass filter

The lowpass filter used in the system was required to have a cutoff frequency of 3 kHz to eliminate out-of-channel noise. The attenuation characteristic was designed to be uniform over the passband, and with a steep rolloff above the cutoff frequency. A two-pole filter would have been sufficient for this application; however a five-pole filter could be realised with little additional complexity and was found to be useful in a later application where a sharp cutoff was essential.

The general form for the squared-magnitude function of a Butterworth filter is given by:

$$
|H(j \omega)|^{2}=\frac{1}{1+\left[\frac{\omega}{\omega_{0}}\right]^{2 n}}
$$

where n is the order of the filter and ω_{0} is the cutoff frequency. The s-plane pole locations which correspond to the denominator polynomial for a fifth-order filter are given by:

$$
H(s) \cdot H(-s)=\frac{1}{1+\left[\frac{s}{\omega_{0}}\right]^{2 n}} \text { (n even), } \frac{1}{1-\left[\frac{s}{\omega_{0}}\right]^{2 n}} \text { (n odd) }
$$

This function has 10 poles equally spaced around a circle of radius ω_{0} in the s-plane; the n poles to the left of the imaginary axis define the filter (figure 3.3).

The design of the filter was based around the Datel universal hybrid active filter component, model FLT-U2. This dual-in-line package contains four operational amplifiers and a number of passive components. The first three amplifiers are "committed" in the sense that they are internally interconnected with a number of resistors and capacitors in such a way that it is possible to implement a second-order transfer function using the state-variable active filter principle, with the addition of a few external components. The fourth "uncommitted" op amp can be used as a buffer, or to add an independent real pole to the filter characteristics.

For this application, two filter units were cascaded to realise the five-pole Butterworth filter. Each trio of committed amplifiers was used to provide two poles, the uncommitted amplifier in the first unit was used to provide a buffer between the two units and the final, uncommitted, amplifier was used to provide the remaining (real) pole.

The conjugate poles P_{1} and P_{2} were implemented with the first filter unit.

```
damping factor, \(d_{1}=\cos \emptyset_{1}=0.309\)
\(Q_{1}=\frac{1}{2 d_{1}}=1.618\)
```

Appropriate components were chosen by consulting the manufacturer's data sheet for the FLT-U2. Two sets of tables are provided, one each for the inverting and non-inverting filter configurations. The first filter was operated in the non-inverting
mode and Table 3.1 shows the recommended, calculated, and actual values used in the implementation:

	recommended	calculated	actual
R_{11}	∞	∞	∞
R_{12}	$316 \mathrm{k} / \mathrm{Q}$	195 k	180 k
R_{13}	$100 \mathrm{k} /(3.16 \mathrm{Q}-1)$	24.3 k	24 k
R_{14}	$5.03 \times 10^{7} / \mathrm{f}_{0}$	16.7 k	16 k
R_{15}	$5.03 \times 10^{7} / \mathrm{f}_{0}$	16.7 k	16 k

Table 3.1.
The uncommitted operational amplifier was wired as a unity-gain non-inverting amplifier to be used as a buffer between the two filter units.

The conjugate poles P_{2} and P_{4} were implemented using the second filter unit.

$$
\begin{gathered}
\text { damping factor, } d_{2}=\cos \emptyset_{2}=0.809 \\
Q_{2}=\frac{1}{2 d_{2}}=0.618
\end{gathered}
$$

Unit 2 was operated in the inverting mode and Table 3.2 shows the recommended, calculated, and actual component values used in the implementation.

	recommended	calculated	actual
R_{21}	100 k	100 k	100 k
R_{22}	∞	∞	∞
R_{23}	$100 \mathrm{k} /(3.16 \mathrm{Q}-1)$	75 k	75 k
R_{24}	$5.03 \times 10^{7} / \mathrm{f}_{\mathrm{o}}$	16.7 k	16 k
R_{25}	$5.03 \times 10^{7} / \mathrm{f}_{\mathrm{o}}$	16.7 k	16 k

Table 3.2.

The real pole, P_{3}, was implemented using the remaining "uncommitted" op amp. A gain of -1 was required, which defined $R_{7} / R_{6}=1$. This pole was set to 3 kHz by using the capacitor, C, across the feedback resistor R_{7}.

$$
C=\frac{1}{2 \pi f R_{7}}
$$

Suitable values were found to be $C=4700 \mathrm{p}$ and $R_{7}\left(=R_{6}\right)=11 \mathrm{k} \Omega$.

A circuit diagram of the complete filter is shown in figure 3.4. The filter was constructed using a piece of copper strip board, and each of the two cascaded units was tested separately before testing the complete design. The plot of figure 3.5 shows the results obtained for each unit together with the overall response.

FIGURE 3.4
FILTER CIRCUIT DIAGRAM.

FILTER MAGNITUDE-FREQUENCY RESPONSE.

3.3.2 The analogue to digital converter

An 8-bit analogue-to-digital converter was required having a conversion time of $166.6 \mu \mathrm{~s}$ or less. This figure is the conversion time required for a sampling rate of 6 kHz , which is twice the highest frequency component of interest. The conversion system was based around a component (the ZN425E) containing an 8 -bit A to D converter together with an 8 -bit binary counter, allowing the construction of a successive approximation A to D conversion system with the addition of an external voltage comparator. The clock input to the counter was provided by the \varnothing_{2} clock of the microprocessor system. For a 1.8 MHz clock, this allowed a conversion time of $2^{8} / 1.8 \times 10^{6}=142 \mu \mathrm{~s}$, which was adequate for the purpose.

Interface to the microprocessor system was provided by a 6821 Peripheral Interface Adapter (PIA) which has two 8-bit peripheral ports which may be software configured for either input or output. The 8 -bit digital output from the converter was connected to the ' B ' port of this device and the CB2 control line was used to provide the 'convert' command. In order to fully utilise the I / O capabilities of the PIA, it was decided to construct a D-A converter on the same board connected to the ' A ' side of the PIA which could then be used to provide the control signal for the oscilloscope Z modulation. A second ZN425E and an operational amplifier were used to construct the D to A system.

A complete circuit diagram of the A-D/D-A system is shown in figure 3.6. The system was constructed on a board measuring 13.5 $x 9$ cms. fitted with three 10 -way edge connectors, which allowed

FIGURE 3.6 DIGITAL TO ANALOG / ANALOG TO DIGITAL CONVERSION SYSTEMS
the board to be plugged directly onto the $S S-30 \mathrm{I} / \mathrm{O}$ bus of the microprocessor system. Printed circuit board techniques were used to define soldering pads for the IC's and all interconnections were made using wirewrap. The A to D converter was tested for linearity and conversion efficiency by plotting digital output against analogue input voltage at a 6 kHz sampling rate using software timing. Linearity was found to be better than 0.1%, and a similar figure was obtained from the D to A system, plotting analogue output voltage against digital input.

3.3.3 The digital to analogue converters

Three D to A converters were required for the system; one to provide each of the analogue voltages required to define the coordinates for the display. The system used to define the z-modulation has already been described; two more converters were required for the x and y axes.

The two converters were constructed on the same board and were based around the AMD DAC-08 8-bit D to A converter IC. This component was chosen on grounds of economy ($\sim \notin 3$ per chip) and has the added advantage of having an faster settling time (80ns) than many other converters of higher cost. The DAC-08 is a current output converter and requires external resistances to define an analogue output voltage. The internal reference amplifier requires a reference current which can be derived from a stabilised voltage source using an external resistor.

For this application the reference currents were derived from the +5 V regulated supply using two $5 \mathrm{k} \Omega$ resistors. This provided output currents in the range $-1 m A \leq I_{0} \leq 0$. Inverting op-amp
circuits using $5 k \Omega$ feedback resistors were used to convert the output currents into voltages in the range $O \leq \mathrm{V}_{0} \leq 5 \mathrm{~V}$ which were used as the output signals for the x and y axes.

3.3.4 Software

All software for the spectrogram system was composed using the microprocessor assembly language. Assembly-level programming is preferable for real-time applications where speed is of considerable importance. Efficient memory utilisation is possible, which cannot be acheived using a high-level language compiler. Programs were edited and assembled using the microprocessor development system together with the disc-resident editor and mnemonic assembler packages. The software can be divided into 4 parts:
(1) sampling and windowing
(2) computation of the Discrete Fourier Transform (DFT)
(3) power spectrum estimation
(4) plotting of results

Each of these will now be discussed in turn:

In order to estimate a power spectrum in the range $0 \leq f<1 / T$ Hz , it is necessary (by Nyquist's sampling theorem) to sample a signal at a rate of $2 / T \mathrm{~Hz}$. In this application the frequency band of interest was in the range $0 \leq \mathrm{f}<3 \mathrm{kHz}$, necessitating a sampling rate of 6 kHz . The sampling routine employed a software timing loop to define the interval between the acquistion of
samples from the A-D converter. This routine was used to acquire N 8-bit samples for each vertical line on the plot which were collected over a period of $\mathrm{N} /\left(6 \times 10^{3}\right.$) seconds ($8 \leq \mathrm{N} \leq 256$, $\log _{2} N=$ integer). Each sample was converted to its 2's complement representation, scaled down by a factor N , and stored as the most significant byte in a dual byte storage location.

Where a finite length sequence of N samples is used to represent an infinite sequence, the finite sequence is the result of multiplying the infinite sequence by a rectangular 'window' sequence consisting of N samples of unity magnitude. The Fourier Transform of the resulting sequence is then the convolution of the transform of the infinite sequence with the transform of the rectangular window. The latter is of $\sin (x) / x$ form and produces undesirable side lobes in the power spectrum. These side lobes can be reduced by using a window which has unity magnitude at its centre but tapers to zero at each end. One such window is the 'Hamming' window, which was chosen for this application. For the rectangular window the first side lobe is only 13 dB down from the main peak, whereas it is 40 dB for the Hamming window (see figure 3.7). This extra suppression of the side lobes is acheived at the expense of a slightly wider main lobe.

The Hamming window is defined by the following equation:

$$
w(n)=0.54-0.46 \cos \left[\frac{2 \pi n}{N-1}\right], \quad 0 \leq n \leq N-1
$$

Figure 3.7(a). Fourier Transform of Rectangular Window.

Figure 3.7(b). Fourier Transform of Hamming Window.

It is sometimes referred to as a 'raised-cosine' window. Multiplication of the input sequence by the window was achieved by storing samples of this function in a table in memory and multiplying each of the input samples by the corresponding stored window sample.

Evaluation of the DFT of the windowed input sequence was implemented using the Cooley-Tukey Fast Fourier Transform algorithm. This algorithm requires only $(N / 2) \log _{2} N$ complex multiplications per transform, as opposed to $4 \mathrm{~N}^{2}$ multiplications for a direct implementation of the DFT equation. A detailed description of this algorithm and its implementation has been given in chapter 2. The DFT of a sequence $\{x(n)\}$ of N samples is given by:

$$
X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}, \quad k=0,1, \ldots, N-1
$$

The resulting complex sequence $\{X(k)\}$ was stored in a table of 4 N bytes; two bytes were allocated for each of the real and imaginary components of the $X(k)$.

The power spectrum of the sequence $\{x(n)\}$ is defined as $\{|X(k)|\}$. The modulus of each of the $X(k)$ was calculated by finding:

$$
|X(k)|=\sqrt{X(k)_{R E}^{2}+X(k)_{I M}^{2}}
$$

The squares were computed using a 16 by 16 bit multiplication routine (using Booth's algorithm (16)) and the square roots were estimated using the Newton-Raphson recursion formula.

3.4 Results

Vertical calibration of the spectrogram was checked by applying sine waves of different frequencies to the system input and noting the vertical positions of the horizontal lines produced on the display. Each of the eight 1 cm divisions on the y-axis represented 375 Hz on a linear frequency scale. Gains of the x and y display ampifiers were adjusted to allow the display to fill the storage oscilloscope screen. A DC level produced a horizontal line across the bottom of the screen; a 3 kHz sinusoidal input produced a horizontal line across the top. Figure 3.8 shows the display obtained with a $1.5 \mathrm{kHz}, 5 \mathrm{v}$ pk-pk sinusoid with a 3 v superimposed DC level.

The audio output from a Racal RA17 HF receiver was filtered and used as the input to the spectrogram system. Unfortunately the receiver was found to have a slightly unstable BFO , which tended to spread the signal in the frequency domain. For all of the following results time is quantised along the x axis into 2^{7} points, and frequency is quantised along the y axis into 2^{6} points. This produces a display of 8192 discrete points in time-frequency space. The delay loop parameter was adjusted to produce a complete frame in 15 seconds.

Figure 3.9 shows the display obtained while monitoring a high-speed ($\sim 40 \mathrm{wpm}$) morse code transmitter centred on approximately 4.7 MHz . Some intermittent narrow-band noise can be seen at the high frequency end of the channel (ie. at the very top of the display). Fades of up to one second were observed which are indicated by gaps in the displayed signal. Occasional

FIGURE 3.8

FIGURE 3.9
wide-band noise bursts are displayed as vertical lines traversing the whole channel.

Figure 3.10 is the display obtained while monitoring a voice channel containing two high-speed ($\sim 40 \mathrm{wpm}$) CW transmitters both of which were of equal average strength and separated in frequency by approximately 1 kHz . It was found difficult to audibly decode either signal using a 3 kHz receiver bandwidth. The two signals can be clearly seen on the spectrogram display. Frequency selective fades were observed audibly and can be seen on the display; ie. the horizontal positions of a gap in one signal (indicating a fadeout) do not always correspond to gaps in the other. A few broad-band noise spikes are again evident as thin vertical lines across the display.

The next two displays were the result of monitoring two 2-tone FSK signals of different data rates. The first (figure 3.11) shows the display resulting from observation of an estimated l50bps signal. The two tones can be clearly seen; short fast fades and bursts of noise are visible and were confirmed by audible monitoring of the receiver output. The display of figure 3.12 illustrates a 2-tone FSK signal of a higher data rate, estimated at 300 bps . The frequency spreading is greater than for the slower-rate signal, although in both cases the spread was larger than expected, mainly due to the BFO instability. Frequency selective fading is evident from the virtual disappearance (for the first 4 seconds of the display) of the higher frequency tone. Broad-band noise was more severe than for the previous signal.

FIGURE 3.10

FIGURE 3.11

FIGURE 3.12

FIGURE 3.13

Figure 3.13 shows the spectrogram obtained from an $A M$ broadcasting station centred on 7.42 MHz observed during the early evening. The station was broadcasting orchestral music and was therefore broad band. Very deep frequency-flat fades were observed which can be identified by the large vacant areas in the display.

3.5 Conclusion

This chapter has described an economical microprocessor-based system for evaluation of an HF radio voice channel. The pictorial representation of the time-varying spectral properties of the channel enables the predominant disturbances to be identified. Broad-band noise bursts and narrow-band interference may be observed and fades on a known signal may be identified as frequency-flat or frequency-selective. The microprocessor implementation allows the system to present information in real time, which an operator may use to assess the suitability of a radio channel for data transmission.

Use of the spectrogram over a period of weeks indicated that the predominant disturbances tended to be narrow-band interference from other users of the channel. In most cases the spectral occupancy was limited to less than 20% of the overall bandwidth; this is examined in more detail in chapter 6. The results from the spectrogram would tend to indicate that benefit may be obtained from either (a) dynamic channel selection, where a change of channel frequency is made, or (b) dynamic in-band frequency allocation, where the spectrum of the transmitted signal is arranged to occupy the interference-free regions of the channel.

Frequency-selective and frequency-flat fades were observed from spectrograms of known signals. Frequency selective fades were observed to traverse the channel completely, usually in a short time ($<2 \mathrm{~s}$). Broad band noise bursts encompassing the whole of the channel spectrum were frequently observed. A data communications system for use over HF channels should therefore provide protection against long-term narrow-band interference phenomena and short-term broad-band fading and noise.

CHAPTER 4

The Slave Processor System

4.1 Introduction

It has been mentioned in the introductory chapter that the data processing tasks for some applications described in this thesis exceeded the capability of a single microprocessor unit. An example is the parallel HF modem transmitter, to be discussed in chapter 7, in which a modulated multitone waveform is to be generated digitally while simultaneously encoding and interleaving incoming data. The modem receiver is required to demodulate the received signal waveform and to decode the demodulated data. The serial processing capability of a single microprocessor is not sufficient to complete the required programming tasks in the available time.

As a result of these requirements, a small, self-contained microcomputer unit was developed which could perform a proportion of the processing tasks required by the overall system. This unit is connected into the system in a "master-slave" configuration such that the central (or "master") processor can assign tasks to one or more local (or "slave") processors. The slave processors then operate transparently to the central processor freeing the latter to perform other system tasks, returning at a later stage to restart or reallocate tasks as necessary. This form of distributed processing is useful where many of the system operations are repetitive, and can be implemented in microprocessor systems at low cost and with a considerable increase in overall processing power. This chapter describes a system implemented using the Motorola 6800
microprocessor which has subsequently been used in the HF transmitting and receiving equipment to be described in later chapters.

The task to be performed by the slave unit is loaded by the master into a localised 1 kbyte of RAM to which only the master and the slave concerned have access. Parameters to be processed by the task are also transferred into the slave processor's RAM and the task is initiated by a reset sequence on the slave processor which is under control of the master. Several slaves may be initialised by the master in this way, which are later checked using status bytes located within the RAM area to ascertain that the allocated tasks have been successfully completed. The results of a processed task are extracted from the slave memory and the task restarted using a different set of parameters, or a new task may be allocated. Because of the way in which the hardware is configured it is also possible for the master to dynamically access the slave memory without disturbing the flow of execution of the slave program. This can be useful when the slave is performing a task which is to be executed continuously, such as the generation of a voltage waveform in real time.

As an example of an application for such a system, suppose it is required to generate a sinusoidal waveform of which the frequency, amplitude and phase may be varied. The frequency parameter may specify the length of the steps to be taken through the lookup table so that if every sample is selected the frequency is f, if every 2 nd sample is taken (step length $=2$) it
is $2 f$ and so on. The samples may be multiplied by a factor, A, to determine the amplitude, and the phase can be modified by specifying the starting point in the table. The selected sample values are converted into a real waveform by addressing a parallel interface connected between the slave processor unit and a digital-to-analogue converter. This is one example of many applications for such a system. Some of the system requirements and principles of operation are now discussed, followed by a description of the implementation.

4.2 Principles of operation

The master-slave interface requires that the slave processor unit appears to the master as a continuous area of memory which may be read from, or written to, by the master processor regardless of the operation of the slave. Another requirement is that the master may have access to the more important slave processor control lines. It was decided that this may be most easily accomplished by assigning the lowest address of the slave memory area to a write-only control latch which is available only to the master unit. In this way the reset and interrupt sequences may be controlled by the master.

The requirement that the master and slave processors may attempt to simultaneously access a common area of memory may lead to conflicts when both are attempting to access the same byte. Possible ways of resolving address conflicts may be found by examining the requirements for the 6800 microprocessor clocks: A biphase clock of frequency not greater than 2.0 MHz must be provided in which the two phases are non-overlapping. The phases
are designated \emptyset_{1} and \emptyset_{2} and are used to synchronise all data transfers to and from the microprocessor. The processor sets up an address during \emptyset_{1} which becomes stable during the first half of θ_{1} and is stable throughout \emptyset_{2}. Data transfer (in a direction determined by the state of the read-write line) occurs during the fall of \emptyset_{2} when the byte of data on the data bus is latched into the microprocessor or into memory. In the normal system configuration recommended by Motorola (38), the memory is allowed at least half of \varnothing_{1} and all of \emptyset_{2} in which to respond. Two possible methods of arranging the clock signals to avoid addressing conflicts in the master-slave system are shown in figure 4.1 and are described in the following two paragraphs.

If a conflict is to occur, it will begin during \emptyset_{1}, when an address is set up which is inside the slave memory area. This may be avoided by suspending execution of the slave processor program until access by the master is complete. This can be achieved by holding, or "stretching" the clock line to the slave processor while at the same time removing the slave from the busses by multiplexing the address lines and placing the data lines in high-impedance (tri-state) mode. However, because the internal registers of the 6800 CPU are dynamic, the clock may be stretched only to an upper limit of $4.5 \mu \mathrm{~s}$, beyond which destruction of internally held data may occur (39). In the situation where the slave RAM is being continually accessed by the master processor this limit may inadvertently be exceeded. It is for this reason that the following alternative method for avoiding conflicts was adopted in the final system.

(a) Clock Stretching

SLAVE CLOCKS

(b) Antiphase Operation

FIGURE 4.1 ADDRESS CONFLICT AVOIDANCE

PHOTO 4.1(a). SLAVE PROCESSOR PROTOTYPE BOARD (TOP).

PHOTO 4.1(b). SLAVE PROCESSOR PROTOTYPE BOARD (UNDERSIDE).

By running the two processors in antiphase, the slave processor is in \emptyset_{2} when the master is in \emptyset_{1} and vice versa. Furthermore, the address bus is multiplexed so that the address lines corresponding to whichever processor is in \emptyset_{2} are always connected to the slave RAM. The master may access the RAM provided the block is selected by decoding the high order address lines of the master processor address bus. Memory access is permitted only during \emptyset_{2} of either processor, which places an upper limit on the memory access time of one half of the clock period, since only \emptyset_{2} is available for memory address set-up. Nevertheless, static RAM with a sufficiently short access time is available at reasonable prices and this latter method for avoiding address conflicts was chosen in preference to clock stretching.

This completes the description of theoperating principles of the master-slave configuration, the constituent components of which are now discussed in more detail.

4.3 Implementation

Implementation of the slave processor system is outlined in the block diagram of figure 4.2 in which the various functions are grouped into a set of distinct units:
(1) block select logic
(2) address line multiplexers
(3) data tri-state buffers and enable logic
(4) control latch and enable logic
(5) clock drivers
(6) memory and enable logic

PHOTO 4.2. SLAVE PROCESSOR UNIT. PRINTED CIRCUIT BOARD IMPLEMENTATION

(7) PIA enable logic

The functions and implementation of each unit are discussed separately and reference should be made to the circuit diagram of figure 4.3 ((a) and (b)).

4.3.1 Block select logic

Each of the two inputs of six exclusive-OR gates are connected to a switch and to one of the six high-order address lines respectively. The other sides of the switches are grounded and the gate outputs are combined using two NOR gates and a single NAND gate. The switches may be used to manually locate the lkbyte of memory anywhere on a 1 k boundary within the available address space. VMA and $\bar{\emptyset}_{2}$ are also included in the decoding to ensure that the address received is a valid one. In a system which uses more than one slave processor, each may be switch selected to reside within a different segment of memory.

4.3.2 Address multiplexers

The ten low-order address lines from the master processor and the R / \bar{W} line are multiplexed with the low-order slave processor address lines into the local memory address bus. The local ϕ_{L} clock is used to control the address routing.

4.3.3 Data bus buffers

The data bus interface is provided by two bi-directional tri-state buffers. The two control lines, Transmit Enable ($\overline{T E}$) and Receive Enable ($\overline{\mathrm{RE}}$), allow three possible functions: Data is passed from the master processor data bus to the slave data bus, or from the memory to the master data bus, or both sides of the

FIGURE 4.3(a). SLAVE PROCESSOR SYSTEM. (address multiplexers, block select, PIA select.)

FIGURE 4.3(b). SLAVE PROCESSOR SYSTEM (Data buffers, memory, control latch).
buffers enter the high impedance state thereby preventing interaction between the two busses. This latter state is required to isolate the slave unit from the master when the master is accessing a memory location outside the boundaries of the slave address space. $\overline{\mathrm{RE}}$ and $\overline{\mathrm{TE}}$ are derived from NAND operations of $B S$ with $\overline{R / \bar{W}}$ and R / \bar{W} respectively and determine the direction of data flow (if any).

4.3.4 Control latch

Two quad latches are selected to reside at the base of the slave processor address space by using ten inverters on the low order address lines to detect the 'zero' address. BS has been included in the select logic to uniquely identify a particular pair of slave latches within the overall system and R / \bar{W} is used to ensure that the latches are "write-only". The four ' Q ' outputs from one latch are connected to the $\overline{\mathrm{RES}}, \overline{\mathrm{NMI}}, \overline{\mathrm{IRQ}}$, and HALT control lines of the slave processor, and the outputs from the second latch are left unconnected, to be user defined at a later stage. Data may be written to, but not read from, the control latch by the master processor. Because the latch is invisible to the slave processor, the bottom memory location in the RAM may by freely used by the slave and may also be read by the master.

4.3.5 Clock drivers

The clock signals required for the 6800 microprocessor are not TTL compatible and need to be derived using open-collector drivers with pullup resistors. The antiphase operation of the slave unit (with respect to the master) requires that the clock
signals from the master bus be inverted. This is acheived using a NAND gate as an inverter and an exclusive-OR gate with one input grounded. The latter has been included to equalise gate delays which might otherwise cause unacceptable overlapping of the two clock phases.

4.3.6 Memory

Two RAM IC's, each having a capacity of $1 k \times 4$ bits and an access time of 150 ns were used to provide 1 k bytes of continuous memory capable of operating with clock frequencies in excess of 2.0 MHz. The enable lines were tied together and to the output of the chip enable circuitry. The memory must be enabled (a) when the master processor addresses the slave memory block, (b) when the slave processor addresses the lowest 1 k bytes of its address space, and (c) when the slave processor addresses any of the eight top locations of its address space (\$FFF8-\$FFFF) which contain the interrupt and restart vector pointers. Two external chip enable lines are provided to enable two 6821 Peripheral Interface Adapters (PIA's) which must remain inactive during memory access cycles. The truth table of table 4.1 determines the select logic required for memory enable decoding. Implementation was acheived using four NAND gates and one inverter. VMA and \emptyset_{2} were included to permit only valid addresses.

4.3.7 PIAs

The PIA select circuitry allows the inclusion of two 6821 chips in the slave processor system. Each PIA occupies 4 addresses and address lines A12, A11, A10 and A2 were decoded to
locate the PIAs at $\$ 0 \mathrm{C} 00$ to $\$ 0 \mathrm{C} 03$ and $\$ 0 \mathrm{C} 04$ to $\$ 0 \mathrm{C} 07$. Address lines AI and AO were used to reference the internal PIA registers. The truth table (table 4.1) determines (1) that the memory is disabled when selecting a PIA, and (2) that the PIAs may be addressed by the slave processor only.

A_{15}	$\mathrm{~A}_{10}$	$\mathrm{~A}_{9}$	$\mathrm{~A}_{8}$	$\overline{\mathrm{CE}}$	$\overline{\mathrm{PIAS}}$	
0	0	X	X	\emptyset_{2}	1	Internal RAM
0	1	0	0	1	1	
0	1	0	1	1	1	
0	1	1	0	1	1	
0	1	1	1	1	0	PIA select
1	X	X	X	\varnothing_{2}	1	Reset vector

Table 4.1

This completes the description of the functional blocks of the slave system. The prototype was constructed on a standard wirewrap board measuring 6.5×4.5 ins. and included a single PIA. Photos 4.1(a) and 4.1(b) show top and underside views of the assembled system. SSI components were chosen from the 74LS' series of IC's, and high frequency versions of the LSI chips were used for 2 MHz . operation. Connection to the master system was via a 32-way ribbon cable approximately 0.5 m in length. Initial tests on the system proved unsuccessful when operating at a clock frequency of 2.0 MHz ; however a successful series of diagnostics were performed at 1.0 MHz which will now be described.

4.4 Test Results

The switches on the slave processor board were set to locate the RAM at addresses $\$ \mathrm{C} 000-\$ \mathrm{C} 3 \mathrm{FF}$. This is acheived by the following combination, where a ' 1 ' indicates a closed switch:

Since the latch is always located at the base address of the slave RAM, its global address in this case was $\$ \mathrm{C} 000$. The data format of the latch was defined by the system hardware to be:

$$
\begin{array}{cccccc}
\mathrm{d} 7 & \mathrm{~d} 6 & \mathrm{~d} 5 & \mathrm{~d} 4 & \mathrm{~d} 3 & \mathrm{~d} 2 \\
\mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{X} & \frac{\mathrm{~d} 1}{\mathrm{HALT}} & \frac{\mathrm{~d} 0}{\text { NMI }} \\
\mathrm{IRQ} & \\
\text { RES }
\end{array}
$$

The following diagnostics were performed to ensure that the slave system was functioning correctly. The assembler written programs referred to in the text were assembled using the co-resident mnemonic assembler.
(1) Memory diagnostic. The slave processor was halted by using the system monitor to write $\$ 00$ to the slave latch. The memory diagnostic program 'CDAT-1', written by John Christenson of Motorola Inc. (Appendix 2), was used to test the slave memory (with the exception of the latch address) for faulty bits and convergent address problems. Successful execution of this test ensured that the memory was working satisfactorily.
(2) Reset/interrupt sequence testing. The program listed in Appendix 2 was used to test the slave reset and interrupt operations. For a base address of $\$ \mathrm{C} 000$, the reset and interrupt vector pointers reside at the following global addresses:
\$C3F8-9 IRQ
SC3FA-B SWI
\$C3FC-D NMI
\$C3FE-F RES
The local addresses of the interrupt and reset sequences were loaded into the corresponding vector locations and each sequence
was checked by toggling the appropriate interrupt/reset line to initiate the appropriate sequence. Toggling was done by using the system monitor to write to the slave latch. Each test sequence was designed to write a particular byte into global location \$C001 (local address $\$ 0001$). This number could be read by the system monitor to check for correct execution and could also be dynamically altered without affecting execution flow of the slave program.
(3) Parallel processing. The third diagnostic was used to demonstrate the parallel processing capability of the master-slave configuration. The example chosen was to evaluate the expression:

$$
(a \times b)+(c \times d)
$$

where a, b, c and d are 2-byte 2 's complement numbers. The program listed in Appendix 2 uses two multiplication routines; one in master RAM, the other in slave RAM. The two numbers a and b were used as arguments for the slave; b x c was evaluated by the master. A comparison of the execution times required for evaluation of the expression by the master only, and by the master-slave configuration showed a two-fold increase in speed by the latter over the former, as would be expected. Note that in programs which require a slave system stack, as in this example, it is necessary to define a local stack pointer; initialising the pointer immediately below the vector space allows the stack to extend downwards through the slave memory.

4.5 Printed circuit construction

The slave circuit was transferred onto a dual sided printed circuit board designed to fit onto the SS-50 bus using standard

Molex connectors. The artwork was drawn twice full size using transfers and tapes, then photo-reduced to a correctly dimensioned "positive" image. The front and back images were carefully aligned and fastened together at two sides to enable the blank board to be slid in between before exposing to ultra-violet light and etching in the usual way. The printed circuit version of the system was found to perform satisfactorily with a 2.0 MHz . clock frequency and three such boards were produced from the original mask. Photo 4.2 shows the printed circuit board implementation.

4.6 Conclusion

The design and implementation of a distributed microprocessor system has been discussed, in which a number of "slave" microcomputer units are controlled by a "master" processor. The master processor designates tasks to the slave units, and instructs them to execute those tasks when required. Parameters may be passed to and from the slave memory in much the same way as parameters are transferred to and from subroutines. However, by operating the slave processors in antiphase to the master, the slave memory may be dynamically accessed by the master, without disturbing execution of the slave program. The increase in processing power which may be achieved using such a system has been demonstrated with the use of examples; this advantage will become further evident in later chapters.

CHAPTER 5 Error-control coding

5.1 Introduction

From a technical point of view, a generalised data communications system may be regarded as consisting of three basic blocks: the transmitter, the channel and the receiver. The transmitter has the task of assigning an analogue waveform to each possible sequence of digits received as input from the data source. This is the process of modulation. The analogue waveforms are propagated through the channel and are then interpreted individually at the receiver so that the output of the receiver detector is a sequence of digits representing best estimates of the transmitted data. The channel in this case is known as the "modulation channel".

The above generalised communications system may be viewed in its entirety as a strictly digital channel. In the binary case this channel accepts 0 's and l's at its input and usually reproduces them at its output. Occasionally, however, because of noise and other channel impairments, the output digits do not agree with the input digits and errors have occurred. Each message is associated with a sequence of bits to be passed through the digital channel. In order that they may be distinguished, it is desirable to associate with messages bit sequences which are as different as possible from one another. This may be achieved by adding redundant bits to each message sequence so that a message sequence of k bits is transmitted as a block of n bits, where $n>k$. The communications system may now be regarded as having the form of figure 5.1 , where the "encoder"

FIGURE 5.1 CODING CHANNEL MODEL
adds redundant bits to the source data in a systematic manner. The "decoder" removes the redundancy after transmission over the digital channel (known as the "coding channel") and may attempt to detect or correct errors introduced by the channel.

The components of the coding channel in HF radio systems are the HF transmitter, the HF radio path and the HF receiver. The transmitter and the receiver include the digital modulator and demodulator respectively. As a first step towards minimising the errors, close attention should be paid to the modulation scheme to reduce the effects of intersymbol interference and noise. However, the short-term variations in the characteristics of the HF channel are largely unpredictable, and the channel impairments often result in extremely high error rates. It is therefore desirable to add redundancy in the manner described if these errors are to be eliminated.

This chapter discusses the microprocessor implementation of block coding schemes for random error correction, and shows how the blocks may be interleaved to correct bursts of errors, such as those observed on the HF coding channel. Field test results are discussed in a later chapter.

5.2 Block codes

If the redundancy added to the message digits is to be utilised by the decoder for error control, the redundant bits must be added in a systematic and predetermined manner. An effective way is to use a parity check block coding scheme in which a number ($n-k$) of modulo-2 sums of (or parity checks on) various digits of a k-bit message digit sequence are computed and
appended to the information digits. The n-bit block is then shifted out onto the channel. The data rate is reduced by a factor k / n, known as the "code efficiency". After transmission through the coding channel, the same parity checks are computed at the decoder; if they do not agree, then errors must have been introduced by the channel. In the binary case, if it is possible to locate the errors, they may be corrected.

An (n, k) block code is defined as the collection of 2^{k} n-tuples produced by encoding all possible k-tuples according to some pre-determined set of parity-check rules. The encoding of a data block into a code word can be represented mathematically as:

$$
c=d G
$$

where c is an n-bit code word represented as an n-place row vector (n-tuple), and \mathbf{d} is a k-bit data block represented as a k-place row vector (k-tuple). The $k-b y-n$ matrix G is the generator matrix of the code and has the form:

$$
\mathbf{G}=\left[\mathbf{I}_{\mathrm{k}} \mathbf{p}\right]
$$

where I_{k} is the identity matrix of order k, and \mathbf{P} is an arbitary $k-b y-(n-k)$ matrix. The leftmost k symbols of c are therefore identical to the corresponding symbols of \mathbf{d}, while the rightmost $n-k$ symbols are modulo-2 sums of, or parity checks on, various symbols of d.

In order that a code may detect up to t errors per codeword, the minimum Hamming distance between words in the code must be at least $t+1$. If the code is to correct up to t errors per
codeword, the minimum Hamming distance between codewords must be increased to $2 t+1$. The problem is to choose the matrix \mathbf{P} to maximise the minimum distance between codewords.

5.3 Cyclic codes

Much of the research in coding theory has been concentrated on a small subclass of block codes, the cyclic codes (40). These codes possess a fair amount of mathematical "structure", allowing codes to be designed having good error-correcting properties and which may be implemented with a minimum of hardware or software. A cyclic (n, k) code, a linear block code of length n having k information symbols, has the property that every cyclic shift of a code word is another code word.

That is if:

$$
c=\left\{c_{n-1}, c_{n-2}, \cdots, c_{o}\right\}
$$

is a code word, so are:

$$
\begin{gathered}
\left\{c_{n-2}, c_{n-3}, \cdots, c_{n-1}\right\} \\
\left\{c_{n-3}, c_{n-4}, \cdots, c_{n-2}\right\} \\
\vdots \\
\left\{c_{o}, c_{n-1}, \cdots, c_{1}\right\}
\end{gathered}
$$

The elements of each code word can be treated as coefficients of a polynomial of degree $n-1$. The codeword can be represented as a code polynomial; that is,

$$
c(x)=c_{n-1} x^{n-1}+c_{n-2} x^{n-2}+\cdots+c_{1} x+c_{o}
$$

That $c(x)$ is a code word implies that $x^{i} c(x)$ modulo- $\left(x^{n}+1\right)$ is also a code word for all i . The polynomial representation of the
bottom row of the matrix G defined earlier is known as the "generator polynomial", $g(x)$, of the code. All other rows in the matrix of a cyclic code are multiples of this polynomial; given the generator polynomial of the code, it is possible to construct the generator matrix (41). Since $g(x)$ has degree $n-k$, there are 2^{k} polynomials, ie. those of degree less than k, which can be multiplied by $g(x)$ to yield a polynomial of degree less than n. Clearly, there is a one-to-one corres,ondence between these polynomials and the 2^{k} words in the code. It may be proved (12) that the generator polynomial, $g(x)$, is always a divisor of $x^{n}+1$.

It may be shown (41) that encoding a k-bit data block by multiplying it by the generator matrix G is equivalent to the following polynomial operation. The polynomial representation of the information block, denoted by $\mathrm{d}(\mathrm{x})$, has degree less than k ; therefore $\mathrm{x}^{\mathrm{n}-\mathrm{k}} \mathrm{d}(\mathrm{x})$ has degree less then n . Also

$$
\begin{equation*}
\frac{x^{n-k} d(x)}{g(x)}=q(x)+\frac{r(x)}{g(x)} \tag{5.1}
\end{equation*}
$$

where $q(x)$ has degree less than k and $r(x)$ has degree less than $n-k$, the degree of $g(x)$. Thus the polynomial $c(x)=x^{n-k} d(x)+$ $r(x)$ is divisible by $g(x)$ and is a code word in the code generated by $g(x)$. This word consists of the unaltered k-bit information block followed by $n-k$ linear combinations of the
information bits.

If c is a code word in the code generated by the matrix G defined previously, then

$$
c\left[\begin{array}{l}
P \\
I_{n-k}
\end{array}\right]=0
$$

Hence, any n-tuple e that is not a code word gives:

$$
\mathbf{e}\left[\begin{array}{l}
\mathbf{p} \\
\mathbf{I}_{n-k}
\end{array}\right]=\mathbf{s} \neq 0
$$

The vector s is an ($n-k$)-tuple referred to as the "syndrome" of the n-tuple. Every n-tuple has one, and only one, syndrome. The syndrome is obtained by encoding the information section of an n-tuple and adding (modulo-2) the resultant check bits to the corresponding bits of the parity section of the n-tuple.

Let $e(x)=e_{d}(x)+e_{p}(x)$ where $e_{d}(x)$ and $e_{p}(x)$ are the data and parity sections of the n-tuple $e(x)$ respectively. The syndrome $s(x)$ is given by:

$$
s(x)=e_{p}(x)+r(x)
$$

where $r(x)$ is the residue obtained by dividing $e_{d}(x)$ by $g(x)$. But since $e_{p}(x)$ has degree less than $g(x)$, this is identical to the residue obtained by dividing $e(x)=e_{d}(x)+e_{p}(x)$ by $g(x)$. That is,

$$
s(x)=\operatorname{rem} \frac{e(x)}{g(x)}
$$

Since $g(x)$ divides every code word $c(x)$, the syndrome is identical
to that of $e(x)+c(x)$.

5.4 The BCH codes

The BCH (Bose-Chaudhuri-Hocquenghem) codes (42) are a class of cyclic codes of particular interest. They are defined in terms of the BCH bound, a statement of which is given later. The proof of this bound may be found in reference (12).

The "primitive" BCH codes are of length $2^{\mathrm{m}}-1$ (m integer) and require, at most, mt check bits to correct up to t errors per codeword. It has been shown that every binary cyclic code of length n is completely determined by its generator polynomial, $g(x)$, a divisor of $x^{n}+1$. The polynomial $x^{n}+1$ with binary coefficients may be factored into n linear factors:

$$
\left(x+\alpha_{1}\right)\left(x+\alpha_{2}\right) \ldots \quad\left(x+\alpha_{n}\right)
$$

where the roots, α, are elements of some larger field. These n roots can be shown\$to form a cyclic group under the operation multiplication. That is, for some (primitive) root, α, the n roots can be expressed as

$$
\alpha^{1}, \alpha^{2}, \ldots, \alpha^{n-2}, \alpha^{n-1}, \alpha^{n}=1=\alpha^{0}
$$

The lowest-degree polynomial with binary coefficients which divides $x^{n}+1$ and of which α^{i} is a root is referred to as the minimum polynomial of α^{i}, and is designated $m_{i}(x)$. If such a polynomial is considered to have integer coefficients, all coefficients of the polynomial $m_{i}^{2}(x)-m_{i}\left(x^{2}\right)$ are even. In the binary case:

$$
m_{i}^{2}(x)=m_{i}\left(x^{2}\right)
$$

and if α^{i} is a root of $m_{i}(x)$, so are $\alpha^{2 i}, \alpha^{4 i}, \alpha^{8 i}$. . The number of roots is the degree of $m_{i}(x)$. Tables exist for values of n to determine which roots of $x^{n}+1$ are roots of a given divisor of $x^{n}+1$, or equivalently, which polynomial is the minimum function of a given root of $x^{n}+1$.

The BCH bound can now be stated as follows: The minimum distance of the code generated by $g(x)$ must be greater than the largest number of consecutive roots of $g(x)$. (the j roots α^{i+1}, , ..., α^{i+j} are "consecutive" for $0 \leq i \leq n-1$.) Since $g(x)$ has degree $n-k$, exactly $n-k$ of the roots of $x^{n}+1$ are roots of $g(x)$.

Encoding the BCH codes is a straightforward procedure, and obeys the general rules for encoding of cyclic codes. The data polynomial is multiplied by x^{n-k} and divided by the generator polynomial. The residue of this division is added to the data polynomial to form the code word.

5.4.1 Decoding BCH codes

A decoding algorithm for BCH codes that can be implemented with a reasonable amount of equipment or software has been devised by Peterson (43).

The basic decoding problem may be outlined as follows. Consider a code word $c(x)$ transmitted through a noisy channel. Let $e(x)$ denote the error polynomial added to $c(x)$ by the channel. Decoding consists of determining $e(x)$ from $s(x)$, the syndrome calculated from the received polynomial $r(x)=c(x)+e(x)$. Then $c(x)$ is determined by adding $e(x)$ to $r(x)$.

A primitive BCH code has the generator polynomial:

$$
g(x)=\operatorname{LCM}\left[m_{1}(x), m_{3}(x), . ., m_{2 t-1}(x)\right]
$$

ie., $m_{1}(x), m_{3}(x), \ldots$, and $m_{2 t-1}(x)$ divide $g(x)$ and hence $c(x)$. For the Peterson decoding algorithm it is necessary to compute t partial syndromes by dividing $r(x)$ successively by $m_{1}(x), m_{3}(x), \ldots, m_{2 t-1}(x)$. The residue obtained by dividing $r(x)$ by $m_{i}(x)$ is denoted S_{i}, and is called the ith partial syndrome. The first partial syndrome can be obtained by dividing $r(x)$ by $m_{1}(x)$

$$
S_{1}(x)=\operatorname{rem} \frac{r(x)}{m_{1}(x)}
$$

But $r(x)=c(x)+e(x)$ and since $m_{1}(x)$ divides $c(x)$, this gives

$$
S_{1}(x)=\operatorname{rem} \frac{e(x)}{m_{1}(x)}
$$

If $e(x)$ has only one nonzero term, that is, $e(x)=x_{i}, 0 \leq i \leq n-1, S_{1}(x)$ is the unique residue corresponding to that value of i. If j errors occur, $S_{1}(x)$ is the sum of the residues corresponding to the various errors. That is, if β_{j} represents the residue corresponding to the j th error,

$$
S_{1}=\beta_{1}+\beta_{2}+\ldots+\beta_{j}
$$

The are known as the error-locator numbers. If it is possible to determine each of these numbers it is possible to correct the errors since each number is associated with a particular position in the word. The set of residues form a Galois field, and arithmetic operations must be carried out within this field.

There are 2^{m} residues in the field, each of which is m bits in length; the field consists of 2^{m} m-tuples obtained by dividing $x^{i}, 0 \leq i \leq n-1$ by $m_{1}(x)$.

The "elementary symmetric functions", σ, are related to the error locator numbers as follows:
$\sigma_{1}=\beta_{1}+\beta_{2}+\cdots \cdots+\beta_{t}$
$\sigma_{2}=\beta_{1} \beta_{2}+\beta_{1}+\beta_{3}+\cdots+\beta_{t-1} \beta_{t}$
$\sigma_{t}=\beta_{1} \beta_{2} \beta_{3} \cdots \beta_{t}$

Having determined the partial syndromes, it is possible to find the elementary symmetric functions. The error locator numbers may then be found by substituting field elements in the equation:

$$
\sum(x)=\left(x+\beta_{1}\right)\left(x+\beta_{2}\right) \ldots\left(x+\beta_{t}\right)=0
$$

The binary representations of the exponents of the field elements then point to the bits in error which may subsequently be corrected (44).

5.5 Code Implementation

Several hardware and high-level language implementations of the BCH coding/decoding algorithms have been described in the literature (45-48). This section discusses the microprocessor implementation of these algorithms for real-time operation. It will be shown that the necessary Galois field arithmetic operations may be performed without difficulty using the 6800 microprocessor. Codes of several lengths were investigated; however, special reference is made to the $(15,7)$ dual error correcting code, subsequently employed in the HF modem/codec discussed in chapter 7.

5.5.1 Encoder

It has been shown that a k-bit data block may be encoded into an n-bit cyclic codeword by performing the polynomial operation of equation (5.1) and adding the residue $r(x)$ to the original data block. Encoding therefore simply consists of determining $r(x)$.

The polynomial division was implemented in software (see "BCHCOD", appendix 2), using the "EOR" (exclusive-OR) and the "ASL" (arithmetic shift left) microprocessor instructions to simulate the operation of a shift register implementation.

The (15,7) code has the generator polynomial

$$
\begin{aligned}
g(x) & =m_{1}(x) m_{3}(x) \\
& =\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)
\end{aligned}
$$

Encoding a data polynomial $d(x)$ is equivalent to finding

$$
c(x)=x^{8} d(x)+\operatorname{rem} \frac{x^{8} d(x)}{g(x)}
$$

Multiplication of $d(x)$ by x^{8} simply involves shifting the 7 -bit data block 8 places to the left; ie. transferring it to the next highest byte.

Modulo-2 division by the generator polynomial was implemented as follows. The binary representation of $g(x)$ is

111010001

This is stored as a left justified double byte which is lined up with the two bytes containing the product $\mathrm{x}^{8} \mathrm{~d}(\mathrm{x})$. A bit-by-bit EXclusive OR operation is then performed and the result is shifted left until left justified. The result becomes the new
dividend and the procedure is repeated until a total of eight shifts have been performed. The final result is the residue of the division of $x^{8} d(x)$ by $g(x)$, which is added to $x^{8} d(x)$ to produce the 15 -bit code word.

5.5.2 Decoder implementation

Section 5.4 .1 has discussed the operations necessary to implement the Peterson decoding algorithm for BCH codes. Three stages are required:
(1) Computation of the partial syndromes
(2) Calculation of the elementary symmetric functions
(3) Determination of the error locator numbers

Software was written to implement this algorithm for the (15,7) code. (see "BCHDEC", appendix 2) Two partial syndromes are required, S_{1}, and S_{3}. These were obtained using polynomial division operations, computed in a similar manner to the encoding procedure. Steps (2) and (3) required operations to be performed in the Galois field. Arithmetic operations in the field may be easily implemented on a microprocessor system as the following section describes.

5.5.3 Galois field operations

Arithmetic operations were to be performed in the Galois field of $2^{\mathrm{m}}(=15)$ elements. A representation of this field can be formed using the primitive polynomial $m_{1}(x)=x^{4}+x+1$ (a factor of $g(x)$) and is shown in figure 5.2. The field consists of all polynomials of degree $m-1$ or less; the field elements can be repesented as 4-bit binary numbers.

$$
\begin{aligned}
& a^{0}=1=1000 \\
& a^{1}=a=0 \quad 1000 \\
& a^{2}=\quad a^{2}=0 \quad 0 \quad 1 \quad 0 \\
& a^{3}=\quad a^{3}=0 \quad 0 \quad 0 \quad 1 \\
& a^{4}=1+a=1100 \\
& a^{5}=a^{2}+G^{2}=0110 \\
& a^{6}=\quad a^{2}+a^{3}=0 \quad 011 \\
& a^{7}=1+a+a^{3}=1101 \\
& a^{8}=1+a^{2}=1010 \\
& a^{9}=a+a^{3}=01001 \\
& a^{10}=1+a+a^{2}=1110 \\
& a^{11}=\quad a+a^{2}+a^{3}=0111 \\
& a^{12}=1+a+a^{2}+a^{3}=1111 \\
& G^{13}=1+a^{2}+a^{3}=1011 \\
& a^{14}=1+a^{3}=1001 \\
& a^{15}=1=a^{0}
\end{aligned}
$$

FIGURE 5.2 REPRESENTATION OF GALOIS FIELD GF (24).
eg. the field element α^{8} can be represented as 0101. Methods for implementing operations in the field are described as follows:
(i) Addition. Field elements may be added (modulo 2) term by term in the ordinary way.
(ii) Subtraction. Subtraction of field elements is the same as addition.
(iii) Multiplication. The rule for multiplication is to multiply in the ordinary way, reducing the answer modulo-2 and modulo- $m_{1}(x)$ to a polynomial of degree $m-1$ or less. This is done by considering the equation $m_{1}(x)=0$ and using the equation to eliminate terms of power greater than $\mathrm{m}-1$. Implementation on a microprocessor can be done using tables of exponents and field elements. Two tables are arranged in memory; the addresses of table 1 correspond to the exponents of $\boldsymbol{\alpha}$, and the data corresponds to the field elements. The addresses of table 2 correspond to the field elements and the data corresponds to the exponents. To multiply two field elements together, the exponents of the elements are found from table 2 , added together modulo-15, and the product field element is determined from table 1. For example, suppose it is required to multiply together the field elements $(1+\alpha)$ and $\left(1+\alpha^{2}\right)$. These elements correspond to the hexadecimal numbers 03 and 05 . From table 2, the exponents are found to be 04 and 08 . The sum of the exponents is $O C$, and the product of the field elements is determined (from table 1) to be OF, which corresponds to the polynomial $1+\alpha+\alpha^{2}+\alpha^{3}$.
(iv) division. Division is performed in a similar manner to multiplication, except that the exponents of of are subtracted and not added.

Having computed the partial syndromes S_{1} and S_{3}, it is possible to find the partial syndrome S_{2}

$$
s_{2}=s_{1}^{2}
$$

The error locator numbers are found from:

$$
\begin{aligned}
& S_{1}=\beta_{1}+\beta_{2} \\
& S_{2}=\beta_{1}^{2}+\beta_{2}^{2}
\end{aligned}
$$

and the elementary symmetric functions are:

$$
\begin{aligned}
& \sigma_{1}=\beta_{1}+\beta_{2} \\
& \sigma_{2}=\beta_{1} \beta_{2}
\end{aligned}
$$

We find that

$$
\begin{aligned}
& \sigma_{1}=s_{1} \\
& \sigma_{2}=s_{2}+\frac{s_{3}}{s_{1}}
\end{aligned}
$$

If field elements are substituted into the equation

$$
x^{2}+\sigma_{1} x+\sigma_{2}=0
$$

the errors may be located, and hence corrected. A flowgraph of the complete decoding procedure is shown in figure 5.3. An assembler listing of the implementation of this algorithm is shown in the listing BCHDEC in appendix 2.

5.6 Results

The software implementation of the decoding algorithm was tested by encoding all possible 7 -tuples, adding all possible 15-bit error patterns to the resulting codewords, then decoding the corrupted words and comparing with the original codewords to

FIGURE 5.3 DECODING PROCEDURE FLOWCHART
determine if the errors had been corrected. For a t-error-correcting code there are:

$$
\sum_{i=1}^{t} \frac{n!}{i!(n-i)!}
$$

correctable error patterns. For the (15,7) dual-error-correcting code there are 120 correctable patterns of which 15 contain single errors and 105 contain double errors. We may also consider the all-zero 15 -tuple to be an allowed error pattern as it results in an uncorrupted word. The test results indicated that all single and double errors were corrected but that correction was not possible for error patterns having a weight exceeding 2.

Measurements were taken of the time required to encode a 7-bit data word and of the time required to decode a received word containing 0,1 , or 2 errors. A slave processor unit was used to time the procedure to the nearest $10 \mu \mathrm{~s}$. In each case the average time taken for all codewords was measured, together with the best (shortest) and worst times. Best and worst times corresponded to the all-zero and the all-ones codewords respectively. The results are tabulated in table 5.1.

	best	average	worst	
	encoding	0.11 ms	0.12 ms	0.13 ms
decoding with:	0 errors	0.31 ms	0.59 ms	0.85 ms
1	error	1.33 ms	1.56 ms	1.79 ms
	2 errors	1.68 ms	1.87 ms	2.08 ms

Table 5.1. Execution times.

The limitation on the maximum possible data throughput for this coding scheme was determined by the worst case decoding time for 2 -error correction. If the maximum decoding time for an n-bit codeword is $t_{\text {max }}$ and the code rate is r, the maximum data throughput is:

$$
\frac{\mathrm{rn}}{\mathrm{t}_{\max }}=\frac{0.47 \times 15}{2.08 \times 10^{-3}}=3.36 \mathrm{~kb} / \mathrm{s}
$$

Memory utilisation was found to be only 25 bytes for the encoder and 272 bytes for the decoder (including lookup tables).

5.7 Burst error correction

So far, the codes discussed have been cyclic block codes capable of correcting up to t random errors in a block of n bits. Many channels do not exhibit random error characteristics; it is known that HF radio channels are primarily subject to "bursts" of errors. The random error correcting codes described may therefore not always be effective over links using the HF channel. In general, three methods are known for combating the effects of burst errors:
(i) Long, random-error-correcting codes may be designed to have large minimum distance, enabling a large number of errors to be corrected per block.
(ii) Specialised "burst-trapping" codes may be used $(49,50)$.
(iii) Codewords in a random error correcting code may be interleaved to spread the errors over a large number of codewords.

Method (i) necessitates a large amount of hardware or software at the decoder. If the code is to be used purely to
correct burst errors, the random error correcting capability of the code is effectively wasted. This is intuitively obvious if it is considered that there are many more ways of arranging t random errors in a block of n bits than there are ways of arranging t consecutive errors. Codes having large minimum distance have low efficiency; consequently the data rate may be considerably reduced.

Method (ii) requires a good knowledge of the channel statistics. This is not usually possible for HF links (51). If both random and burst errors occur over the channel, such codes may be ineffective.

Method (iii) appears to be the most favourable for data transmission over the HF channel. The method of interleaving can be illustrated as follows. d codewords in a t-error-correcting cyclic (n, k) block code are arranged as rows in a matrix (figure 5.4). The coefficient $c_{i, j}$ represents the j th bit of the ith codeword. The matrix is transmitted as the transpose, ie. column by column, so that a burst of consecutive errors will be spread over more than one codeword. Provided that no more than t errors occur per codeword, all the errors may be corrected at the decoder. The burst correcting ability, b, of the interleaved code is $b=d t$ and d is known as the "interleaving depth". If the length of the error burst is less than dt some random errors may also be corrected. Note that if exactly b errors occur, no more errors may be corrected in that matrix. On average the burst correcting ability of the interleaved code is subject to there being an error-free interval or "guard time" of at least dn bits, thus

FIGURE 5.4 ILLUSTRATING INTERLEAVING OF CODEWORDS TO COMBAT BURST ERRORS.
ensuring that the number of errors does not exceed the error correcting capablity of the code (52).

Bit interleaving of block codewords may easily be implemented in microprocessor systems using software as will be illustrated in a later chapter.

5.8 Conclusion

This chapter has discussed several properties of cyclic block codes and has shown how these codes may be interleaved to eliminate the burst errors experienced over HF radio links. In particular, a microprocessor implementation of a coding/decoding scheme for the Bose-Chaudhuri-Hocquenghem codes has been discussed in depth. The finite field arithmetic operations required for the decoding algorithm for this code may be easily implemented in real time using conventional microprocessors and allow medium-speed data transmission with a high degree of error protection. Microprocessor implementations of error control are attractive in an adaptive coding environment, as the coding scheme may be changed by simple modifications to the system software.

CHAPTER 6 HF Interference Pattern Measurements

6.1 Introduction

Many of the errors occurring over HF radio data links may be attributed to interference caused by other users of the spectrum (53). A reduction in the error rate is possible if the spectrum of the transmitted signal is arranged to avoid those regions of the channel which contain interference (54). For optimum performance, the spectral distribution of the signal must be adapted to suit the prevailing interference conditions.

An experiment is described in this chapter, in which microprocessor data logging and analysis techniques were used to investigate the fine-grain structure of interference occurring within an HF voice channel. Spectral analysis of the channel was achieved using a charge coupled device to evaluate the chirp-z transform algorithm discussed in section 2.6 of this thesis. The interference measurements were based on an estimation of the power density fluctuations in each of 64 equal-width frequency windows contained within the channel. Results are presented showing the distribution of the occupancy of the windows by interfering signals, and the probability of the occurrence of interference over an interval of time.

6.2 System operation

The system was based around the RC5601 power spectral density board, described in chapter 2. This is an evaluation module based around a CCD quad chirped transversal filter and can be used to calculate power spectral densities from a 512-point
transform by the chirp-z transform algorithm. The module forms a discrete-time spectrum analyser, selecting and outputting the magnitude and frequencies of the spectral components of an analog input waveform. The analysis band extends from zero to the Nyquist frequency (one-half the sample frequency). A mirror image also appears extending from the sample frequency down to the Nyquist frequency. The resolution bandwidth is (1/512) of the sample frequency.

For this application the $C C D$ evaluation module was externally clocked to provide a sampling rate of 6 kHz . The analysis band therefore extended from 0 to 3 kHz , and the resolution bandwidth was 11.7 Hz . The 256 frequency points were reduced to 64 frequency "windows" by combining the energies present in 4 adjacent points. Adjacent windows overlapped because of Hanning windowing of the $C C D$ filters which tended to spread a spectral line over more than 1 point. The overall effect was to produce a series of 64 overlapping bandpass filters. The amplitude-frequency characteristics of the equivalent filters are shown in figure 6.1, and were derived from the following considerations. A computer simulation using the Hanning window equation applied to the CCD transversal filters showed that a sinusoidal input of frequency f_{1}, coincident with a spectral point, k_{1}, has its energy distributed as 50% at k_{1} , 24% at $k_{1}+1,24 \%$ at $k_{1}-1$, and 2% outside this region. As shown in the diagram, only 75% of the energy is captured by the filter encompassing k_{1}, the remainder falling outside the range of the summation. The response at frequency f_{1} is therefore $20 \log _{10}(0.75)=-2.5 \mathrm{~dB}$. The overall response of the

equivalent filters was computed from similar considerations.

At a sampling rate of 6 kHz , a complete transform is computed in $\left(512 / 6 \times 10^{3}\right)=85.3 \mathrm{~ms}$. For this experiment, the sucrer
power spectrum within the windows was integrated over 2.7 s every 16s. This required 32 transforms to be evaluated and averaged at 16 s intervals. The output for each spectral point was sampled by an 8-bit analogue-to-digital converter and averaged over the 32 transforms. Each point was then quantised to 16 levels of amplitude, assigned 0-F (hexadecimal). After each $16 s$ interval, the level for each of the 64 points across the frequency range $(0-3 \mathrm{kHz})$ was printed on the terminal, together with the current time of day. Results were also routed to a floppy disc file for subsequent analysis. A 1 Hz signal source was used to interrupt the processor at 1 s intervals to allow a real-time clock to be maintained within the system.

6.3 Hardware

Figure 6.2 shows a block diagram of the equipment used in the experiment. An inverted-V half-wave dipole antenna was cut to resonate at 4.7925 MHz and was mounted 25 m above ground, in a north-south orientation. The antenna was connected to a synthesised communications reciever (the RF-505A), whose audio output was connected to the analogue input of the CCD evaluation module. The $C C D$ module was externally triggered from a signal generator set up to provide pulses of 500 ns duration with a pulse repetition frequency of 6 kHz . The module was synchronised to the microprocessor system by generating an interrupt after each output sample. The output samples were converted to digital

Figure 6.2. Equipment Block Diagram
form using an 8-bit analogue-to-digital converter, and the resulting digital signal was processed as described in the next section. The 1 Hz real-time clock signal was derived from an external digital clock module.

Two 600Ω independent sideband audio outputs are available from the RF-505A receiver. The lower sideband output was selected and was attenuated through a potential divider network to be used as input to the $C C D$ evaluation module. This module accepts an input time signal of $1 V$ peak-peak maximum and produces a spectral output of 4 V maximum. The output voltage peak for a constant frequency sinusoidal input will be proportional to the input voltage over this range, as the module computes the rms spectral density of the input signal.

The maximum audio output from the RF receiver was obtained by applying a sine wave from an $R F$ signal generator to the antenna terminal of the receiver and using the BFO to generate a beat note. The attenuator was then adjusted to produce a maximum undistorted output from the evaluation module at the beat note frequency. Following this, the signal generator was removed and the antenna was reconnected to the receiver. The background noise was observed at the output of the $C C D$ evaluation module and was found to produce an average noise output (in the frequency domain) of 0.17 V . The dynamic range of the spectral density output was therefore $20 \log _{10}(4 / 0.17)=27.4 \mathrm{~dB}$. This is somewhat less than the dynamic range of signals received at the front end of the receiver; however, the receiver AGC results in a dynamic range reduction in the audio stages.

The voltage output from the $C C D$ evaluation module was linearly quantised to 16 levels using software (described in the next section). The first quantisation level therefore represented an interference level of $20 \log _{10}(0.25 / 0.17)=3.3 \mathrm{~dB}$ above the background noise level. This is the interference threshold; ie. the threshold above which a frequency window may be said to contain interference.

6.4 Software

The system software was required to (a) read the sampled analog output data from the $C C D$ evaluation module, (b) find the average magnitude of each group of 4 consecutive frequency bins, (c) average the results over 32 transforms and (d) quantise each averaged magnitude to 16 levels. Routines were also written to store, on flexible disc, the time of day and the number of windows containing any interference.

After system initialisation, the real time clock parameters were set up by entry from the system terminal. At this point, the "in sync" (to the CCD module) and the "gate enable" (to the pulse generator) signals were held at logic ' 0 ' by the CB2 output line from the PIA. This caused the 9-bit address counter to be reset. When this line was brought to a ' 1 ' state, the sampling clock (6 kHz pulse generator) was enabled, and the address counter was automatically incremented on each clock pulse. The T3CL output from the evaluation module is phase 3 of the 4 -phase clock required to transport the charge packets along the CCD. The transition of $\overline{\mathrm{T} 3 \mathrm{CL}}$ coincides with valid output data and was used to cause an IRQ interrupt sequence to be generated by the

PIA.

The first 512 clock periods served merely to load the filter. The Nyquist frequency band was available at the output during the next 256 clock periods, but no output data was sampled until the following 256 clock periods, during which time the signal band was available. It was then necessary to introduce a delay of 256 clock periods, during which time the next Nyquist band appeared at the output. The filter was then operating in a continuous serial mode, outputting one sample in the frequency domain for each sample clocked in the time domain. The process was continued until 32 sets of frequency-domain samples had been collected.

The results from the 32 transforms were averaged and quantised to 16 levels for each frequency window. At each 16 s interval, the time of day and the averaged results were printed as a single line of output on the hard-copy terminal. The number of windows in which any interference had been observed was written as a single byte to a flexible disc file, using the disc file management system. The time of day was also stored on the disc, as three binary-coded-decimal numbers. Each disc record therefore contained four bytes of data. The disc file records were subsequently analysed and used to produce the results discussed in the next section.

6.5 Experimental Results

A typical printout of the results obtained during the experiment is shown in figure 6.3. Each printer column to the right of the time corresponds to one of the 64 frequency windows. The magnitude of the response obtained for each window is printed as a single hexadecimal digit in the range 1-F. A magnitude of 0 corresponds to a clear window, for which nothing is printed. Two narrow-band interfering signals can be seen at 1550 Hz and at 2480 Hz . Another (weaker) signal appears at 2300 Hz .

Data for each half-hour interval was analysed and the results were plotted of the number of windows in which any interference was detected during the half-hour period. ie. in which the interference level exceeded the previously defined threshold. The results (figure 6.4) are plotted as a percentage of the total number of windows vs. Universal Time for a 24 hour period. For example, between 0330 and 0400, interference was detected in 70% of the total channel bandwidth at some time during the half hour. The data for this experiment was collected during the period 10th-17th March, 1980.

The distribution of interference within the channel was observed to vary considerably over the 24 hours. A high proportion of the channel was occupied during the hours of darkness, when the receiver was subjected to interference from distant sources. A "quiet" interval of about 4 hours was observed around mid-day when no interference was detected.

FIGURE 6.3. OUTPUT DATA PRINTOUT.

The stored data was analysed to determine the proportion of time that the channel was completely free from interference; ie. (subject to propagation being available) the proportion of time that the channel could be used for transmission to its full capacity. The results were plotted for half-hourly intervals and ar shown in figure 6.5. eg. between 0430 and 0500 hrs the channel was found to be completely free from interference for 25% of the time. Interference was heavy during the night amd the channel was occupied to some extent for $>95 \%$ of the time. There appeared to be a steady improvement in the interference- free time between 0400 and 0630 , followed by a slight deterioration and another improvement leading to the 4 hour "quiet" time. This was followed by a gradual deterioration after 1430, probably caused by a lengthening of the skip distance. A noticeable characteristic of the plotted results is that the changes from one half-hour to the next are gradual, with no abrupt transitions.

The stored data was again analysed, to obtain more information on the spectral distribution of the interference within the channel. The proportion of time during which n or more frequency windows were occupied are plotted, for each half-hour interval, in figures $6.6 \quad(\mathrm{n}=1,2,3)$ and $6.7 \quad(\mathrm{n}=4,5,6)$ (both plots are on the same scale). Note that the result for $n=1$ is simply the inverse of the result of figure 6.5. The percentage falls off rapidly as n increases and becomes very small for $n>6$. This is indicative of the predominance of narrow-band interference. The results were combined to produce an overall probability of spectral occupancy against bandwidth

FIGURE 6.6. WINDOW OCCUPANCY

PERCENTAGE OF TIME DURING WHICH WINDOW WAS OCCUPIED.

(figure 6.8). Because of the finite width of the frequency windows, the results are plotted as bar graphs, with discrete points at $\mathrm{n}=0$ indicating the probability of a completely free channel. The results appeared to fall into two distinct regions; low interference levels were observed for an eight-hour interval during the daytime; high interference levels were observed during other times, when the skip distance was greater. Resulds were plotted for these two extremes ie. "day" (0600-1430), and "night" (1430-0600), respectively, and also for a 24 hour average. It can be seen that the probability of a clear channel is much greater during the day, and that at night there is a high probability that narrow-band interference will be present.

6.6 Conclusion

This chapter has described an experiment undertaken, using a microprocessor system and a charge coupled device, to observe the characteristics of interference occurring in an HF radio voice channel. It has been shown that there is a high probability that the channel will contain interference of a narrow-band nature, and that the interference distribution may vary considerably with time, becoming quite severe during the night hours. It is highly probable ($\mathbf{> 9 7 \%}$) that the bandwidth of the interference will be narrow ($<200 \mathrm{~Hz}$); however, the distribution of the interference is likely to change rapidly, especially during the night. This confirms the view that benefit may be obtained by using a frequency-agile transmission system to avoid those regions of the transmission channel containing interference.

FIGURE 6.8 PROBABILITY OF SPECTRAL OCCUPANCY

CHAPTER 7

The HF Data Modem / Codec

7.1 Introduction

The resurgence of interest in digital communications via HF radio links has led to a renewed search for low-cost modems suitable for data transmission over ionospheric paths. As previously discussed, signals propagated over the HF path are plagued by noise and multipath distortions which may often result in intolerably high error rates (55). The time-varying nature of the disturbances imply that some form of adaptive control is required if the errors are to be eliminated.

The suitability of microprocessor systems for the implementation of signal processing and coding techniques has been demonstrated in chapters 2 and 5. Microprocessors are also extremely attractive for use in an adaptive environment as the course of execution of machine instructions may be made dependent on previous and current events. Non-adaptive modems based on these devices have been demonstrated in the literature (56-59), as have some adaptive schemes which require feedback links from the receiver to the transmitter (60).

This chapter describes the design and development of a medium-speed adaptive HF data modem/codec, based on microprocessor-implemented signal processing and coding techniques, which does not require the use of a feedback link. Results from earlier chapters were considered when formulating the design, which may be implemented at an appreciably lower cost than previous systems.

It has been shown that a primary source of errors over HF radio links is narrow-band interference from other users of the spectrum. The spectral distribution of the modulated output signal from the modem is arranged to occupy the interference-free regions of the radio voice channel. Forward error correction is applied in an attempt to combat transient broad-band disturbances. The modem is described in the published paper of Appendix 3 (reference 61).

7.2 System philosophy

It has been shown $(62,63)$ that the optimum frame (signal element) duration for transmission over a dispersive medium is equal to $\sqrt{L / B}$, where L is the time spread introduced by the medium and B is the frequency spread. For $H F$ channels, both the time spread caused by multipath and the frequency spread caused by Doppler shifting may vary considerably and may depend on the time of day and on the operating frequency. For a medium haul HF link, the time spread may be in the order of several milliseconds, and the Doppler shifting may be of the order of a few Hz . Insertion of typical values in the above formula yields frame rates in the order of tens of Hz . A frame rate of 75 Hz has been found to be a reasonable compromise; the signal element duration is of sufficient length to combat the effects of multipath distortion, yet is short enough to ensure that minimal phase distortion occurs over a single frame. Serial binary-modulated data transmission schemes are therefore limited to a data rate of 75 bps , which does not fully utilise the available bandwidth.

It is possible to increase the transmission rate while preserving the frame rate by time division multiplexing the data for transmission over a number of frequency-parallel subchannels, orthogonally spaced within the voice channel. The data rate is increased by a factor equal to the number of subchannels employed. The spectral distribution of the transmitted signal then depends on the location of the subcarriers. Capacitative coupling and other band-limiting effects inherent in conventional HF radio equipment usually restrict the useable region of an HF voice channel to between 300 Hz and about 2.8 kHz . Sixteen orthogonally spaced slots were allocated within this region for the location of the subcarriers, ie. from 450 Hz to 2700 Hz , with 150 Hz spacings.

It would be possible to utilise the channel to its full capacity by employing subcarriers at all adjacent orthogonal frequency slots. However, results from chapter 6 of this thesis and from work in the literature (53) indicate that there is a high probability that the channel will contain interference, and it is therefore preferable to distribute the signal spectrum in the noise-free regions only. It has been shown that the interference is predominantly narrow-band, but that its distribution may vary rapidly with time. In view of this, a 50\% spectral occupancy was adopted, the subcarriers occupying one-half of the available subcarrier slots.

It is also possible to increase the transmission rate while preserving the frame rate by employing a Q-ary modulation scheme (64). In the binary case, it is practical to use only values of
Q which are integer powers of 2 , for which the transmission rate is increased by a factor $n=\log _{2} Q$. The penalty paid is the increase in vulnerability to noise, which (for PSK) is calculated to be 3 dB and 8.5 dB for $\mathrm{Q}=4$ and $\mathrm{Q}=8$ respectively (65). 4-phase modulation (QPSK) can therefore be used to to double the effective data rate with only a small reduction in tolerance to additive noise (66) and has been used successfully for data transmission over HF links (67-69). However, because of the phase perturbations observed over such links (70), coherent detection of such a signal becomes virtually impossible and differential phase encoding must be used. This imposes an additional degradation of 2.3 dB for QPSK (71) resulting in a total of 5.3 dB degradation over the optimum coherent biphase detector. The differentially modulated QPSK signal (DQPSK), however, has a spectral occupancy identical to a serially modulated biphase system and gains an advantage in this respect.

The results presented in chapter 6 have indicated that a reduction in the error rate might be obtained if the signal spectrum is adjusted to suit the prevailing channel interference conditions. A system in which the frequencies of the signal carriers are dynamically adjusted is called a "frequency agile" system. A serial in-band frequency-agile FSK modem has been demonstrated by Darnell (54), and has been found to yield improvements over the standard tone allocations. The modem described in this chapter estimates the spectral distribution of the interference present in the voice channel at intervals, and reallocates the distribution of the subcarriers accordingly. An assumption was made that, over medium distances (1000 km . or
less), the interference characteristics at the receiver will be roughly similar to those observed at the transmitter. This assumption was later proved to be correct, as will be demonstrated. The noise estimation may therefore be carried out at the transmitter site, and no feedback link is required. The receiver must be advised, however, as to the new distribution of the transmitted spectrum. This is achieved by transmitting a high-redundancy "advisory sequence" on a set of subcarriers having a fixed frequency allocation.

The receiver demodulator must distinguish the transmitted tones and extract the phase information for each tone. It would be possible to use a bank of conventional narrow-band filters to perform the demodulation process. However a frequency agile system would require a large number of filters, of which only a few would be in use at any one time, making the system uneconomical. It is preferable to use digital processing techniques to implement matched filter detection by means of the Discrete Fourier Transform. Phase information for each subchannel may be obtained by observation of the complex coefficients of the DFT slots corresponding to occupied subchannel frequencies. Comparison detection allows the differential phases (and hence the data) to be extracted without the need for a pilot tone or a locally generated reference phasor.

The design, construction and testing of the transmitter is now described, followed by a discussion of the receiver design.

7.3 Transmitter

A block diagram of the transmitter is shown in figure 7.1, the constituent components of which are discussed in this section. The master processor system includes a 6800 CPU, 4 kbytes of RAM and 2 kbytes of EPROM containing the system software, a listing of which may be found in appendix 2.

The tasks performed by the transmitter fall into four broad categories:
(1) data acquisition
(2) encoding for error control
(3) modulation
(4) channel evaluation \& subchannel selection

It was found that a single 6800 microprocessor system was not able to perform all of the required tasks in the available time. One of the main reasons for this was that the modulating waveform must be generated continuously, while simultaneously encoding incoming data. Time-sharing of tasks would inevitably lead to breaks in the analogue signal if this was generated in software. In view of this, a 'master-slave' configuration was used, as described in chapter 4. A 'slave' processor unit was allocated the task of modulation, and the remaining tasks were performed by the 'master'. The advantages of this approach have already been discussed.

FIGURE 7.1. TRANSMITTER BLOCK DIAGRAM.

7.3.1 Data acquisition

An asynchronous serial interface IC was available which allowed 7 -bit characters having start and stop bits to be received and transmitted at a variety of data rates. This IC was used in the system to accept characters at a rate of 600 bps. The interface control register was programmed by the system software such that an interrupt was generated on receipt of a complete character. Each 7-bit character was mapped into a $(15,7) \mathrm{BCH}$ codeword (see chapter 5), and was further processed to allow interleaving of 16 codewords along each of the 16 data subchannels. It was necessary to receive 256 characters before transmission could commence (because of the interleaving requirement), after which time characters were accepted continuously via the interrupt driven input.

7.3.2 Encoding for error control

The forward error correction scheme chosen for this system was a (15,7) block code interleaved to depth 16 along each of the 16 data channels. The code has been fully described in chapter 5 of this thesis and the improvement in error rate obtained in practice using this scheme will be demonstrated in the next chapter. Each data character received through the serial interface was coded on receipt and the resulting codeword was loaded into a table of 16 codewords contained in 32 bytes of memory. When the table was full, the bits were interleaved and the whole table was transferred to one of 16 tables containing data ready for transmission via the modem. Each one of these 16 tables corresponded to each of the data channels; a pair of tables therefore corresponded to one subchannel frequency, the
bits in the tables being used to\$select the differentiel phase for each signal element. The organisation of the data in time-frequency space is shown in figure 7.2. , where $c_{i, j}$ is the jth bit of the ith codeword.

7.3.3 Modulation

Differential four-phase (quatenary) shift keying (DQPSK) was adopted as the modulation scheme for the system. The z-plane representation of a suitable phase encoding scheme is shown in figure 7.3 where the axes form the decision thresholds and the bit-pairs corresponding to the phases are arranged in a Gray code around the unit circle to minimise the bit error probability.

Each subcarrier conveys two bits of information per signal element and there is a total of eight subcarriers to be located in a possible 16 orthogonally spaced frequency slots. 16 bits are therefore transmitted per signal element, which are divided into 8 pairs; a pair of bits determines the phase on the corresponding sub-channel. The signal over one element may be described as:
$f(t)=\sum \cos \left(\omega k_{c} t+\theta_{c}\right), \quad 0 \leq t<13.33 \mathrm{~ms}$.
where $\omega=2 \pi 150 \mathrm{~Hz}, \mathrm{k}_{\mathrm{c}}$ is an integer\$between 3 and 18 and \varnothing_{C} is the phase corresponding to subchannel c (C is an integer). \varnothing_{C} may have values $\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4$.

The composite modulating signal was to be generated digitally, then low-pass filtered to confine the spectrum to the

DATA BITS

$$
\begin{aligned}
& 7\left\{c_{255,14}, c_{254,14}, \ldots c_{240,14}, c_{255,13}, c_{254,13} \ldots c_{240,0}\right. \\
& \mathrm{c}_{239,14}, \mathrm{c}_{238,14}, \ldots \mathrm{c}_{224,14}, \mathrm{c}_{239,13}, \mathrm{c}_{238,13}, \ldots \mathrm{c}_{224,0} \\
& 6\left\{\begin{array}{l}
c_{223,14}, c_{222,14}, \ldots c_{208,14}, c_{223,13}, c_{222,13}, \ldots c_{208,} \\
c_{227}
\end{array}\right. \\
& c_{207,14}, c_{206,14}, \ldots c_{192,14}, c_{207,13}, c_{206,13}, \ldots c_{192,0} \\
& 5\left\{\begin{array}{l}
c_{191,14}, c_{190,14}, \ldots c_{176,14}, c_{191,13}, c_{190,13}, \ldots c_{176,0} \\
c_{175,14}, c_{174,14}, \ldots c_{160,1}, c_{175,13}, c_{174,13}, \ldots c_{160,0}
\end{array}\right. \\
& 4\left\{\begin{array}{l}
c_{159,14}, c_{158,14}, \ldots c_{1,4,14}, c_{159,13}, c_{158,13}, \ldots c_{144,0} \\
c_{143,1 / 4}, c_{142,14}, \ldots c_{128,14}, c_{143,13}, c_{142,13}, \ldots c_{128,0}
\end{array}\right. \\
& 3\left\{\begin{array}{l}
c_{127,14}, c_{126,14}, \ldots c_{112,14}, c_{127,13}, c_{126,13}, \ldots c_{112,0} \\
c_{111,14}, c_{110,14}, \ldots c_{96,14}, c_{121,13}, c_{110,13}, \ldots c_{96,0}
\end{array}\right. \\
& 2\left\{\begin{array}{l}
{ }^{\circ} c_{95,14}, c_{94,14}, \ldots c_{80,14}, c_{95,13}, c_{94,13}, \ldots c_{80,0} \\
c_{79,14}, c_{78,14}, \ldots c_{64,14}, c_{79,13}, c_{78,13}, \ldots c_{64,0}
\end{array}\right. \\
& 1\left\{\begin{array}{l}
c_{63,14}, c_{62,14}, \ldots c_{48,14}, c_{63,13}, c_{62,13}, \ldots c_{48,0} \\
c_{47,14}, c_{46,14}, \ldots c_{32,14}, c_{47,13}, c_{46,13}, \ldots c_{32,0}
\end{array}\right. \\
& 0\left\{\begin{array}{l}
c_{31,14}, c_{30,14}, \ldots c_{16,1 / 4}, c_{31,13}, c_{30,13}, \ldots c_{16,0} \\
c_{15,1 / 4}, c_{14,14}, \ldots c_{0,14}, c_{15,13}, c_{14,13}, \ldots c_{0,0}
\end{array}\right. \\
& t \longrightarrow
\end{aligned}
$$

FIGURE 7.2. DATA ORGANISATION IN TIME-FREQUENCY SPACE.

FIGURE 7.3. Z-PLANE REPRESENTATION OF QPSK.
required signal band. A lookup table stored in the slave memory was used to generate samples of this signal. The table consists of N samples of a cosine waveform, equally spaced in time, each of which is stored as an 8-bit 2 's complement number. If consecutive samples from the table are output at a sampling rate of f_{s}, the fundamental frequency of the resulting waveform is $\mathrm{f}_{\mathrm{s}} / \mathrm{N}$. Multiples of this frequency may be generated by stepping through the table at different rates, so that if the step length is 1 , the frequency generated is $\mathrm{If}_{\mathrm{s}} / \mathrm{N}$. The table may be regarded as circular; the index of the current sample is always calculated modulo-N. Nyquist's sampling theorem requires that at least 2 samples per waveform cycle must be available to define a frequency, implying that the sampling rate must be at least twice the frequency of the highest component. For this application a sampling rate of 6 kHz is sufficient to guarantee this condition, and if frequencies are to be generated in multiples of $f_{c}=150$ Hz (to satisfy the orthogonality constraint), the length of the lookup table must be $\mathrm{N}=\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{c}}=40$ samples.

The frame rate of the transmitted signal is one-half of the frequency spacing so that a complete frame is generated using 80 samples at the 6 kHz sampling rate. The phase of a particular subchannel is determined by the starting point in the lookup table. Phases of $n \pi / 4 \quad(n=1,3,5,7)$ are required, corresponding to the dibits $00,01,11,10$ respectively. The required phase is generated by starting at sample number $n N / 8=5 n$.

As an example of the preceding discussion, suppose it is required to generate a subchannel on 900 Hz having a phase of
5. $\pi / 4$ radians. The step length is $900 / \mathrm{f}_{\mathrm{c}}=6$ and the starting point in the table is 25 . The first 10 indices of the 80 samples required to generate the subchannel are then:

$$
25,31,37,3,9,15,21,27,33,39
$$

Modulator circuit

Consideration was given to the possibility of generating the composite multitone waveform using a purely software approach. One method would be to use an interrupt processing routine to generate a new sample of this waveform at each sampling period. However, the overhead required in adopting this method represented a considerable proportion of the overall processing time, and it was not possible to complete the required processing in the available baud time of 13.33 ms . Additional hardware was therefore designed and built to reduce the computational requirements of the modulation process. Operation of the modulator hardware is described in this section. A circuit diagram is shown in figure 7.4.

The modulator circuit is interfaced to the slave processor via two PIAs (Peripheral Interface Adapters). That to the left of the circuit diagram is referred to as the 'input PIA' and that to the right is the 'output PIA'. Twelve of the $16 \mathrm{I} / \mathrm{O}$ port lines from the input PIA are connected to the inputs of four hex tri-state buffers, arranged as two pairs. The buffer outputs are connected to the inputs of six quad 80 -bit static shift registers, arranged as two sets of three, subsequently referred to as SR1 and SR2. The shift register outputs are connected to six 8-to-4 line multiplexers, also arranged as two sets of three. The outputs

from the first set of multiplexers are connected to twelve I/O lines of the output PIA, and the outputs from the second set are connected to the inputs of a 12-bit digital to analogue converter. The output from a 6 kHz square wave generator (implemented using a crystal oscillator and a divider circuit) is connected to the input of two cascaded 4-bit binary counters. The Q_{A} and Q_{D} outputs from the most significant counter are NANDed together and are used to 'set' a D-type bistable on the count of 80 . The output from this bistable then resets the counters and is used to interrupt the slave processor unit via the CAI line on the input PIA. The remaining bistable in the 7474 IC is used to enable the 6 kHz sampling clock to the input of a multiplexer. The inverted signal from the CB2 line of the input PIA is also connected to the input side of this multiplexer. The multiplexer is configured so that the $1 Y$ output is derived from the CB2 line while the $2 Y$ output is derived from the sampling clock, and vice versa.

The enable lines to the data buffers are inverted with respect to each other so that while one pair is enabled, the other is not. The outputs of the pair that is not enabled are pulled to (aubturich be, esy ans) logic ' 0 ' by the resistors. λ The select lines' on the multiplexers are also inverted with respect to each other so that the outputs from the shift registers whose inputs are derived from the enabled data buffers are routed to the output PIA, while the outputs from the other shift registers are routed to the D/A converter. The 'shift' signal for the former is obtained from the CB2 output line of the input PIA, via the remaining multiplexer, and the shift signal for the latter is derived from the sampling clock.

After loading, the slave processor memory contains the program for control of the modulation, a 40-point cosine lookup table, and two 8 -byte tables containing the step lengths and starting points for each subchannel. Operation of the circuit is as follows:

The multiplexers are switched so that the PIA output lines are routed into the input of register SR1 and the outputs of SR1 are routed into the input PIA. Samples for the first subchannel are selected from the lookup table using the corresponding step length and starting point. Each sample is written into the eight least significant bits of SR1; the register is full after 80 "write" instructions. The first sample entered is then read from the shift register output, added to the first sample of the next subchannel and the result (now 9 bits) is written back into the shift register. After 80 shifts the register contains the sum of the samples for the first two subchannels. The procedure is continued for all eight subchannels. The multiplexers are then switched so that the "shift" line to SR1 is derived from the 6 kHz clock and the shift line for SR2 is derived from CB2. The output from SR1 is now routed to the D to A converter and the register contents are shifted out at the sampling rate of 6 kHz . During this time the register $S R 2$ is loaded with samples for the next frame in a similar manner. When SR2 is full, the multiplexers are again switched and the contents are routed to the D to A converter. During one frame, therefore, the contents of one register are shifted out to the converter at the sampling rate while the slave processor is constructing samples for the next frame using the other shift register. When all the samples in a
register have been shifted out, the counter is used to interrupt the processor which then switches the multiplexer select line and begins to construct the next frame.

The frequencies and phases of the subchannels for each frame are determined by the contents of two 8-byte tables which contain the step lengths and starting points respectively. There are actually two pairs of tables; the contents of one pair are used by the slave to compute samples for the frame currently under construction, while parameters are loaded into the other pair from the master for use by the slave during the following element. During one frame, therefore, the master has control of one pair of tables while the slave has control of the other. Upon receipt of an interrupt from the slave (indicating completion of transmission of a frame), control of the tables is reversed.

To summarise the preceding discussion, three processes occur simultaneously during one signal frame. Samples for the current frame are shifted into the D-A converter from one set of shift registers by the 6 kHz sampling clock; samples for the next frame are computed by the slave in the second set of shift registers with phase and frequency information obtained from one pair of tables. Frequency and phase information for the third frame is passed from the master into the second pair of tables in the slave.

7.3.4 Channel evaluation \& subchannel selection

Following each message transmission, the HF transceiver is switched to the 'receive' mode (by means of a $T x / R x$ reed relay), and the audio output of the receiver is sampled by the A-D converter. 64 samples are acquired at a sampling rate of 9.6 KHz and an in-place FFT is computed (see chapter 2). The resulting DFT frequency slots are therefore in multiples of 150 Hz , and the power spectrum of the slots from 450 Hz to 2700 Hz inclusive (the 16 available subchannel slots) is estimated from the phasor magnitudes. The sampling and transformation processes are repeated 8 times and the resulting power spectra are averaged to provide a reasonable estimation of the noise present in each subchannel slot over an observation interval of approximately 3.5s. This represents only 2% of the overall transmission time and therefore does not significantly affect the data rate. A number sorting routine (CHSORT) is then used to select the eight "quietest" slots for subsequent transmission. The quietest slots are taken to be thoose those eight which exhibit the least average interference from the total of sixteen available slots. A typical distribution of the signal spectrum is illustrated in figure 7.5.

In order that the receiver may be advised as to the subchannel frequencies to be used for subsequent data transmission, a coded sequence containing this information is transmitted immediately before the frequency change is effected. The sequence comprises eight $(15,7) \mathrm{BCH}$ codewords; the information section of each is formatted as follows:

$$
n_{2} n_{1} n_{0} s_{3} s_{2} s_{1} s_{0}
$$

FIGURE 7.5. TYPICAL SPECTRAL DISTRIBUTION OF SUBCHANNELS.

The vector $n=\left(n_{2} n_{1} n_{0}\right)$ represents a subchannel number in the range $0-7$ and the vector $s=\left(s_{3} s_{2} s_{1} s_{0}\right)$ represents a subchannel of frequency $(450+(s x 150)) \mathrm{Hz}$. A code vector c is found from the matrix operation:

$$
c=\{n s\rceil G
$$

where G is the code generator matrix.

The code is fully described in chapter 5 . The set of 8 code vectors are arranged in time-frequency space as illustrated in figure 7.6, where $c_{i, j}$ is the j th bit of the ith codeword. It can be seen that pairs of codewords are interleaved to depth 2 along each data channel allowing correction of 4 errors per data channel. Because of the 4 -phase modulation scheme there are two data channels per subchannel frequency, resulting in a total of 16 data subchannels. For each signal element, the differential phase transmitted on a subchannel is determined by the corresponding dibit. There is a four-fold spectral redundancy in the transmitted data which compensates for any narrow-band interference which may be present. The advisory sequence is always transmitted on a set of subchannels having a fixed frequency allocation. Transfer to the new subchannels occurs immediately after the advisory sequence transmission. If a fixed frequency allocation was not used, a situation might arise where an error occurs in the decoding of the advisory sequence, resulting in the loss of all subsequent messages. The fixed allocation allows the receiver to recover after a single message block, since the location of the subchannels for the advisory sequence is always known.
$2550\left\{\begin{array}{l}c_{7,14}, c_{6,14}, c_{7,13}, c_{6,13} \cdot \cdots \\ c_{5,14}, c_{4,14}, c_{5,13}, c_{4,13}, \ldots, c_{7,0}, c_{6,0} \\ c_{5,0}, c_{4,0}\end{array}\right.$
$2250\left\{\begin{array}{l}c_{3,14}, c_{2,14}, c_{3,13}, c_{2,13} \ldots, \\ c_{1,14}, c_{0,14}, c_{1,13}, c_{0,13}, \ldots\end{array} c_{3,0}, c_{2,0}, c_{0,0}\right.$
$1950\left\{\begin{array}{l}c_{7,14}, c_{6,14}, c_{7,13}, c_{6,13}, \ldots \\ c_{5,14}, c_{4,14}, c_{5,13}, c_{4,13}, c_{6,0}\end{array}\right.$
$1650\left\{\begin{array}{l}c_{3,14}, c_{2,14}, c_{3,13}, c_{2,13} \ldots \\ c_{1,14}, c_{0,14}, c_{1,13}, c_{0,13} \ldots \\ c_{3,0}, c_{2,0} \\ c_{1,0}, c_{0,0}\end{array}\right.$
$1350\left\{\begin{array}{l}c_{7,14}, c_{6,14}, c_{7,13}, c_{6,13}, \ldots \\ c_{5,14}, c_{4,14}, c_{5,13}, c_{4,13}, c_{6,0}\end{array}\right.$
z)
$1050\left\{\begin{array}{l}c_{3,1 / 4}, c_{2,14}, c_{3,13}, c_{2,13} \ldots \\ c_{1,14}, c_{0,14}, c_{1,13}, c_{0,13}, c_{2,0} \\ c_{1,0}, c_{0,0}\end{array}\right.$

$$
750\left\{\begin{array}{l}
c_{7,14}, c_{6,14}, c_{7,13}, c_{6,13}, \ldots \\
c_{5,14}, c_{4,14}, c_{5,13}, c_{4,13}, c_{6,0}
\end{array}\right.
$$

$$
450\left\{\begin{array}{l}
c_{3,14}, c_{2,14}, c_{3,13}, c_{2,13}, \ldots \\
c_{1,14}, c_{0,14}, c_{1,13}, c_{0,13}, c_{2,0} \\
c_{1,0}, c_{0,0}
\end{array}\right.
$$

FIGURE 7.6. ADVISORY SEQUENCE FORMAT IN TIME-FREQUENCY SPACE.

FIGURE 7.7(a). TRANSMITTER HARDWARE (SIDE).

7.3.5 Synchronisation patterns

In order that the receiver may gain element synchronisation, a sequence of phase reversals is transmitted on alternate subchannel slots prior to the frame synchronisation sequence. The phases are equal for each subcarrier during a signal element. The phase reversal sequence is sent over each transmitted subchannel frequency. The element synchronisation pattern is followed by a frame synchronisation pattern, comprising a 31-bit m-sequence pattern. This pattern is transmitted in parallel on all subchannel frequencies. The receiver must attempt to correlate the received synchronisation pattern with the stored sequence.

7.3.6 Construction

The basis for the construction of the transmitter system was以 the SWTP 6800 development system. The monitor PROM: from the "motherboard" of this system was modified to allow insertion of a 2 kbyte EPROM containing the transmitter software. A slave processor unit (see chapter 4) was also mounted onto the motherboard and was interfaced to the modulator wirewrap circuit board via a length of ribbon cable. The A-D conversion system (used to sample the receiver audio output) was constructed on a wirewrap board having a 30 -way edge connector to allow insertion onto the I/O bus on the motherboard. A serial interface board was also mounted on this bus, as was an additional board containing a PIA and two reed relays to control (a) enabling of the D-A output signal and (b) the $T x / R x$ relay on the $H F$ transceiver. The analogue filter (see chapter 2) was constructed using copper stripboard and later was mounted on the back panel of the system. Photographs of the transmitter system hardware are shown in
figures 7.7 (a) and (b).

7.3.7 Transmitter testing

Because the transmitter is entirely software controlled, it is possible to implement any of the three digital modulation schemes (ASK, PSK or FSK), using up to 8 subcarrier frequencies, by simple software modifications.

To test the transmitter operation, the software was initially set up to generate a phase reversal sequence on a single frequency of 600 Hz . The photograph of figure 7.8 shows the transmitter output signal on the upper oscilloscope trace and the modulator counter reset signal on the lower trace. It can be seen that one signal element comprises 8 cycles of the subcarrier, as expected, and that the counter reset signal appears at the end of a signal element, indicating to the slave processor (via the interrupt routine) that the element is complete. The CCD spectral evaluation module (see chapter 2) was used to display the power spectrum of the voiceband signal, the result of which is shown in figure 7.9. A single peak can be seen in the signal band output, and also in the CCD Nyquist band region.

The software was then configured to permit transmission of sequences using 2,4, and 8 subcarriers. The power spectra obtained from these signals is shown in figures 7.10 (a), (b) and (c) respectively. For the latter case it can be seen that the envelope of the spectrum is not flat and that the transmitted Nyquist band is evident, in addition to the required signal band. These problems were later overcome by improved filtering of the

FIGURE 7.8. SINGLE SUBCARRIER PHASE REVERSAL SEQUENCE

FIGURE 7.10(a). 2 SUBCARRIER POWER SPECTRUM

FKGIRE 7.1O() . 8 SURCARRIFR FOWER SPECTRUN.

D-A converter output signal using the 5-pole filter described in chapter 2, which provided a flat response over the voice channel and a steep rolloff above the 3 kHz band edge.

Although some difficulties were experienced with the receiver demodulation (to be discussed later), it was possible to test the effectiveness of the frequency agility of the transmitter over an HF link. An SSB HF transceiver was available (Collins, type KWT-6), which was installed at the Leicester university field site at Oadby, near Leicester. The antenna socket was connected to an east-west orientated inverted-V half-wave dipole (cut to resonate at 4.7925 MHz) with the apex mounted at a height of approximately 30 ft above ground. An HF receiver (RF Comm. Inc., model RF-505A) was located at Durham; the antenna socket was connected to an east-west orientated half-wave dipole mounted at approximately 100 ft above ground.

The transmitter computing equipment was connected to the HF transceiver as follows. The $T x / R x$ reed relay in the microprocessor system was wired to the $T x / R x$ switch in the transceiver. The 'transmit' or 'receive' modes could then be controlled automatically. The audio output of the transceiver was connected to the analogue input of the A / D converter. Some difficulty was experienced at first, as the audio gain in the receiver section of the transceiver tended to decrease during the first hour after switching on, after which time the gain remained stable. The gains were therefore set up after the initial "warm-up" period. It was also found necessary to introduce a 0.5 s delay after switching from "receive" to "transmit", to allow the

- ansceiver internal relays to "make" correctly before commencing transmission.

The spectrum of the received signal at Durham was monitored using the HF spectrogram described in chapter 3. Following this, the "quietest" subchannels at the receiving station were noted during intervals of no transmission. During this time, the transmitter itself was estimating the optimum subchannel slots for subsequent transmission. By observing the radiated spectrum from the transmitter during the next message (ie. by determining the subchannel slots occupied by the signal), it was possible to compare the prediction at the receiving station with that at the transmitting station. Qualitative observations indicated that the prediction at the transmitting site was generally in agreement with that at the receiver.

Observations indicated that a much greater level of agility occurred during the evening, when the interference level was higher, than during the early afternoon (when no detectable interference was observed). On no occasion were more than 4 subchannels reallocated after each message block (transmission time of 3.4 mins), the most frequent number being 2. However, during noisy channel conditions, a reallocation was made on approximately 1 out of every 2 occasions. During midday, little interference was observed, and the frequency allocation remained fixed for more than one hour. The subchannel allocation was observed to coincide with the optimum, as noted at the receiver, on approximately 90% of occasions, indicating that interference observations made at the transmitter site are usually coincident
with those made at the receiver.

7.4 Receiver philosophy

Conventional parallel data modems use narrow-bandpass filter banks to separate out the subcarrier frequencies on reception. This technique suffers from two disadvantages. The cost of constructing a bank of such filters is extremely high and, in a frequency-agile environment, the centre frequencies of the filters must be made adaptive or extra filters must be added, both of which still further increase the cost.

It is possible to use digital techniques to perform matched-filter detection of the received multi-subchannel signal. The Discrete Fourier Transform (DFT) of a finite set of samples may be evaluated and, if it is ensured that the samples all pertain to one signal element, the response of the DFT frequency slots may be arranged to match the spectrum of the transmitted signal. If phase modulation is used, then the Fourier coefficients corresponding to a matching frequency slot (or "bin") will allow determination of the phase for the received signal element. That is, if at the end of a received signal element, the DFT of the sampled version of that element is evaluated, the DFT slots corresponding to the transmitted frequencies may be used to extract the phase for each of the subcarriers.

The functions of the demodulator are twofold: (i) to ensure that all the samples for the DFT calculation pertain to a unique signal element and (ii) to determine the phase from the computed Fourier coefficients. The first criterion may be ensured by observing the variation of the phasor magnitude (for a matched
frequency slot) as the DFT is computed for successive sets of samples over a sequence of phase reversals. The magnitude of the phasor as a function of time is a triangular wave as shown in figure 7.11. The peaks of this waveform then indicate the correct synchronising instants. The second function may be obtained by observing the signs of the real and imaginary coefficients, once synchronisation has been achieved. If the phases are permitted to take on 4 possible values, as in figure 7.3, then, for example, a positive real component indicates that the phasor is located in the right-hand half of the complex (z) plane, and a positive imaginary component indicates a position in the upper half of the plane. This determines a differential phase of $\pi / 4$, and the data may be obtained by finding the dibit corresponding to the phase difference between this phase and the phase determined for the preceding signal element (because of the differential PSK modulation scheme).

Once element synchronisation has been achieved, it is a fairly simple matter to obtain frame synchronisation by correlating the demodulated data with a start-of-message synchronisation pattern. This pattern must exhibit good correlation properties when preceded by a sequence of keying inversions. In other words, the correlation coefficient should exhibit a large peak at the synchronising instant and a small amplitude at other instants. A 31-bit m-sequence is known to yield good correlation properties and was chosen as the frame synchronising sequence.

FIGURE 7.11. PHASOR MAGNITUDE VARIATION OVER PHASE REVERSAL SEQUENCE.

In addition to performing the demodulation and synchronisation processes, the receiver must be capable of de-interleaving and decoding the demodulated data. The implementation of these operations has been described in chapter 5.

7.5 Receiver implementation

The computational requirements in the receiver system for the data modem were considerably greater than for the transmitter. The major problem was the demodulation process for which it was necessary to compute the DFT of samples of successive signal elements. A frequency resolution of 150 Hz was required because the available subchannel slots were integer multiples of this frequency. Since the highest permitted subchannel frequency was 2700 Hz it was necessary, at least (by Nyquist's sampling theorem), to compute a transform of length (2700/150)x2 $=36$ points. A decimation in time FFT algorithm is suitable for evaluation of transforms of length 2^{m} (m integer), therefore m was required to be at least 6. The required sampling rate is therefore 9.6 kHz and the resulting DFT slots are integer multiples of 150 Hz from 0 to 4.8 kHz . (The slots above 2.70 kHz are therefore redundant.) It has been shown in chapter 2 of this thesis that the computation time required for a microprocessor implementation of a transform of this length, even using hardware multiplication, far exceeds the signal element duration of 13.33 ms. Consideration was therefore given to a hardware implementation of the DFT using equipment discussed in chapter 2.

A Charge Coupled Device (CCD) was available which, with additional circuitry, could compute a fixed length (512 point) DFT in 5.12 ms or more, depending on the clock rate. The device contains two 512-stage MOS "bucket-brigade" devices which are used to implement four transversal filters using a split-electrode weighting technique. The filters are are used in a "chirp-z" implementation of the DFT algorithm and the device is supplied with circuitry which allows the power spectrum of an analog input waveform to be evaluated. It is necessary to include additional circuitry if, as in this case, the Fourier coefficients are required. The device, its operation, and the design and construction of a module suitable for extracting the complex coefficients from the resulting transform, have been discussed in chapter 2. It has also been shown that the phase of an input signal may subsequently be determined. Reference should be made to this chapter in the subsequent discussion. A receiver design was attempted which utilised the device and its associated circuitry to perform the demodulation process. However, in the course of experimentation, several difficulties became apparent.

At a clock rate of 38.4 kHz , it is possible to acquire 512 samples in precisely the baud time, ie. 13.33 ms . At this sampling rate the ,frequency domain resolution is 75 Hz . Adjacent subchannel frequency slots are therefore separated by 1 frequency bin and this scheme appears to present a possible solution to the demodulation problem. However, because of the weighting applied to the split electrodes in the $C C D$ filters, a time window is applied to the incoming signal which effectively spreads the power in each frequency bin over several adjacent bins. There is
therefore considerable overlapping between adjacent frequency slots, rendering it impossible to determine the Fourier coefficients using the chosen sampling frequency. It is possible to increase the resolution by decreasing the sampling frequency. However, to ensure that all samples pertain to a single element, it is then necessary to reduce the transform length, which in this case is impossible as the length is fixed by hardware.

To overcome the problem of overlap of nearby frequency bins, the possibility of spreading the input signal spectrum over the frequency range of the $C C D$ was considered. A greater separation between subchannel frequency bins could then be achieved. The CCD operates in a serial fashion; one sample in the time domain is clocked into the device as one sample in the frequency domain is clocked out. To evaluate the DFT of a set of 512 samples of an input signal, it is necessary to enter a replica of the input signal into the device as the frequency domain samples are clocked out, if the true spectrum is to be obtained. To spread the spectrum of the input signal from the $H F$ receiver over the frequency range of the $C C D$ it was necessary to (a) sample the input signal and store the resulting samples, (b) enter the samples into the $C C D$, then replicate the samples until the $C C D$ was full, (c) obtain the spectrum from the CCD output while entering further replicas of the input signal. It was calculated that, even if the samples were entered into the device at the specified maximum rate of 100 kHz (using a direct memory access (DMA) arrangement), the total time required for all operations was in the order of 20 ms , which was greater than the signal element
duration. These problems therefore precluded the use of the device for the demodulation process. It is envisaged, however, that the advent of new bit-slice microprocessors will permit the computation of the DFT in the required time.

7.6 Phase detection

Some experimentation was carried out into phase demodulation of a single tone carrier using the technique of maximising the phasor magnitude, mentioned in section 7.4. Details of this work are now descibed.

An experiment was set up to demodulate a PSK modulated carrier using software. The transmitter routines were modified to provide, at the transmitter output, a sequence of phase reversals on a 1200 Hz carrier. The signal was sampled by the receiver at a rate of 4800 Hz , resulting in 64 samples for each signal element. The 64 samples were reduced to 32 samples by averaging samples $x(n), x(n+32)$, and a 32-point DFT was computed for each element, as described below. The bandwidth of each of the DFT slots in this case is 150 Hz , which matches the spectrum of the transmitted signal. If a 32 -point DFT is computed on 32 successive samples, the received signal will be contained within the DFT slot at $\mathrm{k}=8$.

For the 32 point DFT:

$$
F(k)=\sum_{n=0}^{31} f(n) e^{-j 2 \pi k n / 32} \quad k=0,1, \ldots 31 .
$$

and

$$
\begin{gathered}
F(8)=\sum_{n=0}^{31} f(n) e^{-j \pi n / 2} \\
=\sum_{r=0}^{7} f(4 r)-\sum_{r=0}^{7} f(4 r+2)+j\left[\sum_{r=0}^{7} f(4 r+3)-\sum_{r=0}^{7} f(4 r+1)\right]
\end{gathered}
$$

The computation of the DFT slot at $k=8$ therefore requires 16 additions and 16 subtractions. No multiplications are needed. The magnitude of the function is:

$$
|F|=\sqrt{\left[\sum_{r=0}^{7} f(4 r)-\sum_{r=0}^{7} f(4 r+2)\right]^{2}+\left[\sum_{r=0}^{7} f(4 r+3) *-\sum_{r=0}^{7} f(4 r+1)\right]^{2}}
$$

The receiver system for the tests employed 2 slave processors. The first was used simply to interrupt the second at intervals of 13.33 ms , ie. at the signal element duration. The received analog waveform was sampled by the second slave processor using an 8-bit A-D converter and PIA. Computation of the Fourier coefficients was implemented using the master processor. To locate the correct sampling instants, the magnitude of the current phasor (at $k=8$) was compared with the magnitude of the previous phasor. If the current phasor magnitude was greater than the previous, the timing was advanced or retarded by appropriately adjusting the counter in the first slave. If the previous adjustment was a retardation, then a further retardation was made,
the aim being to maximise the phasor magnitude. Similarly, if the previous adjustment was an advancement, a further advancement was made. If the current phasor magnitude was less than the previous, the timing was made opposite to the previous adjustment.

Once the correct synchronising instants were located, the phase was determined by observing the signs of the Fourier coefficients. It was necessary to make a trade-off between the maximum time required for synchronisation and the amount of tolerable phase jitter. If the timing step adjustment (for a retardation or an advancement) is large, then the time taken to synchronise will be small (because it will take less time to reach the point where the phasor magnitude is maximised), but the jitter will be large because a continual adjustment is being made around the point of maximum magnitude. For a 4-phase system, the amount of tolerable jitter must be less than one-eighth of the period of the highest frequency subcarrier. In the case of the multi-subchannel modem, the highest frequency subcarrier is 2700 Hz , so the maximum tolerable jitter is $46 \mu \mathrm{~s}$ either side of the correct sampling instants. A more realistic figure in a noisy environment might be $20 \mu \mathrm{~s}$. If the step length is set to this figure, the worst case synchronisation time must then be $(13.33 \mathrm{~ms} / 20 \mu \mathrm{~s}) \times 13.33 \mathrm{~ms}=8.88 \mathrm{~s}$. This is an excessively long time and will result in a considerable reduction in data throughput owing to the long phase reversal sequence required. It is preferable to begin with a large step length and then to reduce the step length as an improvement is observed. A method that was found to be successful was to double the step length if a
deterioration in sync was observed (up to a maximum of 2.5 ms) and to halve the length if an improvement was noticed (down to a minimum of $20 \mu \mathrm{~s}$). The jitter is then minimised, and phase lock is achieved in a much shorter time (worst case was observed to be 0.19 s).

7.7 Conclusion

This chapter has described the design of an adaptive modem for use over HF radio channels which are subject to multipath distortion and noise effects. It has been shown that several modem techniques (TDFM, FEC and frequency agility) may be combined in one system which may be implemented at very low cost by employing nearly-all digital techniques. The use of microprocessors in such designs allows major system changes (such as a change in the modulation or the coding scheme) to be effected by simple software modifications. The use of VLSI technology also allows the physical size of the system to be kept to a minimum.

The transmitter has been described in detail and has been shown to operate successfully over a real HF link. An novel aspect of the transmitter system is the slave processor/ shift register hardware used to generate the modulated signal. However, some difficulties were encountered with the receiver implementation which have been discussed in section 7.5.

Many designs for HF modems have been described in the literature, some of which have been mentioned at the beginning of this chapter and in other areas of this thesis. However, most are extremely costly and non-adaptive, and for these reasons have not presented an economically viable alternative to satellites for
long-distance communications. This chapter has discussed the design of an economical adaptive modem based on discrete signal processing techniques which attempts to overcome many of the problems encountered with previous systems.

CHAPTER 8 Error patterns \& coding performance

8.1 Introduction

Radio signals propagated via single or multiple reflections from the ionosphere are frequently subjected to severe levels of amplitude and phase disturbances. The effects on a serial data stream are to cause large numbers of errors which will considerably degrade the fidelity of the received data. The signal distortion arises from (i) intersymbol interference caused by multipath propagation, and (ii) additive noise from natural and man-made sources. The errors which result from these effects are, to a large extent, unpredictable, and will result in a wide range of error rates for a given channel. The error rates may vary by several orders of magnitude even over a relatively short time span. The error distribution is often distinctly non-random in nature, and clusters of errors may occur as a result of noise or fading.

This chapter describes an experiment undertaken to investigate the statistical properties of the error patterns observed over a medium-haul HF radio data link and to assess the performance of the real-time error correction scheme described in chapter 5, with and without interleaving of the codewords. It will be shown that errors occurring over the link are significantly non-random in nature and that bit-interleaved short-length random-error-correcting codes can be effectively used to combat such errors. Results are presented showing the deviations from the theoretical random distributions and the apparent time-varying nature of the error statistics.

Some work on the applications of coding in HF communications systems has been described in the literature (72-75). Much of this, however, has involved recording of the received data; the analysis being performed later using a mainframe computer. The work in this chapter uses microprocessor techniques to perform decoding and error-pattern recording in real time.

8.2 HF Equipment

Experimental tests were carried out over a 250 km south-north path between Leicester and Durham using an HF data link centred on 4.7925 MHz . Permission to use this frequency for data transmission was granted by the Home Office subject to the station callsign (G9BLD) being transmitted in morse code at regular intervals. The HF transmitting equipment comprised a Collins KWT-6 single sideband suppressed carrier transceiver tuned to output 40 W PEP into an east-west orientated half-wave dipole antenna situated at a height of approximately 10 m above ground level. The transceiver uses valve technology and is constructed in modular form; the synthesised VFO, sideband generator, power amplifier, receiver, and tuning unit are located in separate sections. The audio input frequency response of the transmitter was plotted in the laboratory. The results are shown in figure 8.1 and indicate that the response in reasonably flat within the voice channel spectrum.

The receiving equipment at Durham comprised an inverted-"V" half-wave dipole antenna with the apex situated 25 m above ground level (also orientated east-west) feeding into an $R F$ Communications Inc. RF-505A synthesised HF communications

FREQUENCY (Hz)

FIGURE 8.1. KWT-6 TX AUDIO INPUT FREQUENCY RESPONSE
receiver. This receiver uses transistor and IC technology and has 3 kHz wide independent sideband outputs, as well as $C W$ and $A M$ reception facilities.

8.3 Computing Equipment

All of the computing equipment used for the experiment was based around the Motorola 6800 microprocessor. The transmitting equipment hardware was that described in the previous chapter. It comprised a master CPU board with an EPROM containing the transmitter software, a slave processor unit (described in chapter 4), modulator board and filter unit. The software was configured to produce a binary amplitude modulated audio-frequency carrier at 75 bps at the output of the filter which was then used as input to the HF transmitter. The ASK modulation scheme was chosen to ensure a statistical independence of the errors at the detector. If a differential PSK system was used, the errors would tend to occur in pairs, as the differential detector requires a recovery time of one signal element following the detection of an erroneous bit. The basis of the receiving system was an MSI 6800 microprocessor development system containing two slave processor units, and interfaced to a triple minifloppy disc drive. A real-time clock facility was incorporated within the receiving system which is fully described in section 8.6.7.

The test data format is now described, followed by a more detailed discussion of the transmitter and receiver configurations. Test results are then presented and discussed.

8.4 Data format

Message sequences of 896 bits were used as data for the tests, comprising four consecutive sequences of 32 random 7-bit characters. Two reasons for choosing the 7-bit character format were (a) that each character could conveniently be encoded into a $(15,7)$ codeword and (b) the increasing popularity of the 7 -bit ASCII character set as a replacement for the 5-bit BAUDOT code. The transmission format was as follows:
(1) A sequence of 128 characters, each preceded by a "1" start bit and terminated by a "0" stop bit.
(2) The same sequence, with each character forming the information section of a 15-bit error correcting codeword
(3) The sequence of codewords transmitted in (2), but interleaved to a depth of 16 .

Each of the above sequences was preceded by a synchronisation preamble consisting of a series of amplitude inversions, a 15-bit m-sequence and a 7-bit message identification pattern. The m-sequence allowed 3 random errors to occur before synchronisation failure and the identification pattern permitted 1 error before recognition failure.

```
As mentioned previously, it was necessary to transmit the station callsign in morse code at frequent intervals. The transmitter software included an automatic morse code transmission routine used to transmit the message " DE G9BLD" (the allocated call-sign) at a speed of 12 wpm, approximately every 20 minutes.
```


8.5 Transmitter

The microprocessor controlled transmitter system hardware has been described in chapter 7. The software may be categorised as follows:
(1) System initialisation \& main procedure
(2) Slave processor bootstrapping
(3) Carrier frequency synthesis
(4) Modulation
(5) Data encoding and bit interleaving
(6) Morse code transmission

All software for implementing the above processes was written in M6800 assembly language and assembled into object code format using the co-resident mnemonic assembler. An EPROM programmer, connected to the SS-30 bus of the microprocessor development system, was used to transfer the contents of the object code file onto a single 2 kbyte EPROM. A listing of the transmitter software is shown in the listing in Appendix 2, and a system memory map is shown in figure 8.2. The transmitter routines reside in the EPROM which occupies the top 2 kbytes of the memory address space. The highest two locations contain the program start address (or "reset vector"). The slave processor memory has the (master) address space $\$$ C000-\$C3FF; the slave control latch is therefore at address $\$ C 000$, ie. at the bottom of the slave address space. The master system RAM occupies the 4 kbyte space from $\$ 0000-\$ 0 F F F$ and a single PIA is located at addresses $\$ 8010-\$ 8013$. The two least significant bits of the "A" side of this PIA are used to control a pair of reed relays, one of which determines the transceiver operating mode ($T x$ or $R x$); the other

FIGURE 8.2 TX SYSTEM MEMORY MAP
is used to gate the filtered synthesised audio output signal to the transmitter audio input circuitry.

Reference should be made to the transmitter software, listed in Appendix 2. The main procedure begins at the label "INITLSE". The transceiver is initially set to "receive" mode and the filter output is not gated to the transmitter. The slave processor "reset" line is brought low and the slave processor routines are loaded into the slave RAM using the bootstrap loader subroutine. The phase and frequency parameters are then set up in the appropriate tables in slave memory (see chapter 4, section 4.3 .6 , for details) to initialise all subchannels to a phase of radians relative to the start of a signal element, and having a frequency of 1500 Hz (centre of the voice channel). The slave processor is then brought into reset by writing a "I" to the slave reset line, the transceiver is switched to "transmit" and the station callsign is transmitted in morse code at a speed of 12 wpm by the morse code transmission subroutine. The first sequence consisting of the uncoded message, followed by the coded message, and finally the coded message with bit interleaving are all transmitted twice. Transmission of the three sequences is repeated in this manner 8 times before the station callsign is transmitted again. 75 bps.

8.5.1. Bootstrap loader

The bootstrap loader routine simply maps the slave processor control program from the EPROM into the slave RAM area. Slave processor execution is suspended during this procedure by holding the slave reset line at logic ' 0 '. The beginning and end
addresses of the area to be mapped are contained in $\mathrm{Y}, \mathrm{Y}+1$ and $z, z+1$. The index register points to the start address of the area into which the data is to be mapped.

8.5.2 Carrier frequency synthesis

Synthesis of the AF carrier is performed by the slave processor and the modulation board containing the shift registers and D/A converter. The synthesis of a multitone carrier using this system has been described in chapter 4. For this experiment a single tone was required, and all eight subchannels were set to the same frequency and phase. The first 40 bytes of the slave memory contained (after bootstrapping) the lookup table required for carrier generation, consisting of equally spaced samples of a sinusoid. The slave reset vector is located in the top two bytes of the slave address space, ie. at local (slave) addresses \$03FE and $\$ 03 \mathrm{FF}$, and the local IRQ vector is located at $\$ 03 \mathrm{~F} 8$ and $\$ 03 \mathrm{~F} 9$. An IRQ is initiated by the modulator circuit immediately following the transmission of samples for a complete signal element.

8.5.3 Modulation

An ASK modulation scheme at 75 bps was used for the experiment. The transmitter software was configured to generate an on-off keyed audio tone at 1500 Hz . Because of the "lookup table" method of carrier synthesis, the phase at the start of a transmitted signal element is always constant. The modulation process is carried out by the subroutine "SNBITS", which transmits N left-justified bits contained in the A accumulator, where the bit count, N, is contained in the B accumulator. If a
bit is " 0 ", the step lengths in the slave processor subchannel table are all set to zero, thereby inhibiting carrier transmission during that element. If the bit is " 1 " the step lengths are all set to 20 and the element comprises 20 cycles of a 1500 Hz sinusoid.

8.5.4 Morse code transmission routine

This routine is used to transmit the message "DE G9BLD" when called. The output gating relay is keyed according to the bits in a stored sequence which represents the message. The relative timing of the elements comprising the morse characters was arranged to conform to the following internationally accepted schedule (9):

dash	$=$	3 dots
element space	$=$	1 dot
letter space	$=$	3 dots
word space	$=$	6 dots

The key is initially set to "open" - ie. the carrier is not gated to the transmitter. Bits are read sequentially from the sequence "MMES" and if the bit that is read is a " 1 " the state of the key is switched; if it is " 0 " nothing is done. After each bit has been read, and the key switched if necessary, a fixed delay is introduced which governs the overall transmission rate of the morse message. The sequence required to transmit the characters "DE G9BLD" is shown in figure 8.3.

FIGURE 8.4. MORSE CODE TRANSMISSION SEQUENCE

0.6 Receiver

The receiving equipment consisted of the HF radio receiver with dipole antenna, ASK demodulator unit, MSI 6800 development system with 2 slave processor units (see chapter 4), triple floppy disc drives, and printer. The hardware configuration of the system is shown in figure 8.4. One slave processor was required for real-time decoding and de-interleaving of the received data, the other was used as a timer to locate the correct sampling instants on the demodulated signal. The floppy disc drives were used to store statistical information about the received data for later analysis. The receiver functions may be categorised as follows:
(1) demodulation
(2) synchronisation
(3) de-interleaving \& decoding
(4) error counting
(5) error pattern recording
(6) disc management
(7) real-time clock

Each function is now described in turn.

..6.1 Demodulator

The circuit of figure 8.5 was devised to permit incoherent envelope detection of the received signal. The USB audio output from the HF receiver was buffered and half-wave rectified by the diode. The envelope was extracted by low-pass filtering using C and R_{1}, then buffered and finally converted to a rectangular baseband signal using the Schmitt trigger. The latter was preferred to a straightforward comparator in order to minimise

(a) Transmitter (Leicester)

FIGURE 8.3. HARDWARE CONFIGURATION

FIGURE 8.5. DEMODULATOR
CIRCUIT
noise effects. The output data signal was then fed to the most significant bit of one port of a PIA interfaced to the main processor system.

8.6.2 Synchronisation

The preamble sequence transmitted immediately before each message was used to obtain element and frame synchronisation. The purpose of element synchronisation was to ensure that each signal element was sampled as near as possible to its mid point. The first part of the preamble consisted of a sequence of amplitude inversions which was used by the receiver to locate the correct sampling instant to within 2% accuracy. Once synchronised, a software timing loop in the second slave processor unit was used to interrupt the master processor at the centre of each signal element.

Frame synchronisation was achieved using a 15-bit m-sequence which was known to yield good correlation properties when preceded by the amplitude inversion sequence. The cross-correlation between the stored m-sequence and the synchronisation preamble is shown in figure 8.7(a). The autocorrelation property of the same sequence is illustrated in figure 8.7(b). During synchronisation, each received bit is shifted into a 2-byte buffer (SNPAT) and a correlation is performed with the stored sequence (MSEQ) by finding the Hamming weight of the result of an exclusive-OR operation between the low-order 15 bits of SNPAT and the sequence MSEQ. A low weight indicates a good correlation. A correlation factor - 8 indicates detection of the synchronisation pattern. The distance from the detection threshold to the correlation peak is 7

FIGURE 8.7. m-SEQUENCE PROPERTIES
which allows up to 3 random errors in the sync pattern before the receiver fails to detect it. (This is because a distance of at least $2 t+1$ is required if t errors are to be corrected.)

The message identification pattern was transmitted immediately following the m-sequence, and consists of one of three codewords from an m-sequence of length 7 , the codeword indicating whether the message is uncoded, coded, or coded and interleaved. The distance between different words in this code is 4 , which allows correction of a single error.

8.6.3 De-interleaving \& decoding

Slave processor 2 was used for real-time de-interleaving and decoding of the received data. Operations by the slave were carried out on one of two pairs of tables containing the data while operations on the other pair were performed by the master. One table in each pair contained data for de-interleaving (if required); the other contained received words for decoding. Two control parameters were passed to the slave from the master indicating (a) which pair of tables were to be operated on (TBFLAG), and (b) whether or not de-interleaving was required. A pictorial representation of the operations is shown in figure 8.8. The de-interleaving process was executed by the subroutine DINTLV and the resulting words were entered into the appropriate decoding table as they were extracted. On completion of this operation, the 16 received words in the decoding table were decoded using the algorithm described in chapter 5. Each decoded word was returned to its corresponding position in the table. A count of the total number of errors corrected during decoding was kept in the

FIGURE 8.8 DIAGRAMMATIC REPRESENTATION OF DE-INTERLEAVING \& DECODING PROCEDURES.
two-byte counter "ERRCOR".

While decoding and de-interleaving operations were performed by the slave, the newly received data was entered into the inactive pair of tables in slave RAM. Coded but non-interleaved data was entered directly into the decoding table. When the slave operations were complete, the decoded data was offloaded by the master and the tables were switched to allow the receiving process to continue.

8.6.4 Error counting

The number of errors in a decoded message was determined by cross-correlating the decoded words with a stored table of correct characters. This cross-correlation was performed by implementing an exclusive-OR operation between the decoded word and the corresponding stored character. The least significant 7 bits of the result were then shifted out into the carry flag, in turn, and if the flag was set, the bit was found to be erroneous. The total number of corrected errors was obtained from the slave processor on completion of the decoding procedure.

The total number of errors in the received bit stream (before decoding) was determined by a similar correlation procedure and the statistical properties of the error patterns were recorded as described in the next section. Results of the error counts and the number of errors corrected were stored on disc.

8.6.5 Error pattern recording

As each bit was received a test was made to determine whether or not the bit was erroneous. This was done by correlating the received data with the stored (correct) bit pattern. Three tables of stored patterns were required; one for each of the uncoded, coded and coded and interleaved sequences. A flag (PREV) was used to indicate if the bit immediately preceding the current bit had been received correctly, thereby allowing the number of consecutive erroneous bits to be recorded. A count of the number of consecutive correctly received bits was recorded as a positive number (1 or 2 bytes) on the disc and a count of the number of consecutive errors was recorded as a 2 's complement negative number. A complete record of the error pattern information for one received sequence therefore consisted of alternate positive and negative values which could be later retrieved for analysis. A 2-byte "start-of-message" marker (\$FFFF) was recorded at the beginning of each data set to distinguish the records. Because it was often necessary to record on disc a large number of bytes for each received sequence, 2 disc drives were used to store the information. When the disc in drive 1 was full, the file (ERRPAT.000) was closed and a new file (with the same name) was opened on drive 2. The file capacity was therefore increased from 80 kbytes to 160 kbytes and allowed a useful quantity of data to be collected ($\therefore 24$ hours) without exceeding the disc storage capacity.

8.6.6 Disc management

The disc file management software allowed sequential access disc files to be created, written, read and destroyed by the system user and is described in reference (76). Two files were used to store information on the received data; therefore two file control blocks (FCBs) were required. A file on disc drive 0 (called 'ERRDAT.000') was used to record the following parameters in sequential order:
(a) time of day (three 2-digit BCD numbers)
(b) message type (1-uncoded, 2-coded, 3-interleaved)
(c) no. of errors in decoded message (2 bytes)
(d) total no. of errors in received bit stream (2 bytes)
(e) total no. of corrected errors (2 bytes)

A second file (called 'ERRPAT.000') was created, initially on drive 1 , to store error pattern data on the incoming bit stream.

8.6.7 Real-time clock

A real time clock was kept within the processor system memory by using the M6800 interrupt capability. A 1 Hz timing reference was derived from a digital clock unit installed in the receiver rack to display the current time of day. The 1 Hz TTL output from this unit was connected to the CAl control line of a PIA which was configured to cause an interrupt to be generated on detection of a negative edge on this line. If bit 0 of the control register is set to a ' 1 ' and bit 1 is set to a ' 0 ', a negative edge on CAl will cause an interrupt to be generated by setting the IRQA1 flag (bit 7), which causes the IRQ line on the processor to be brought low. The system monitor interrupt routine then causes a jump to the address stored at the lowest two locations in the monitor RAM.

This address is the start of the clock routine. The clock routine updates the time of day which is stored in BCD format in four bytes located on page 0 , one each to hold seconds, minutes, hours and days. The penultimate instruction in the clock routine clears the IRQAI flag by reading peripheral data register A. A 'return from interrupt' instruction then restores the stack and execution of the interrupted program is resumed. The fastest execution time for the clock interrupt routine is 31 machine cycles; the slowest is 84 cycles.

8.7 Data analysis programs

The experimental results were based on data collected during the week of $10 / 7 / 80$ to $16 / 7 / 80$. Propagation conditions were found to be similar from day to day. Two programs were written in BASIC to analyse the data. The first was used to obtain the following information from the file ERRDAT.000, averaged over each hour of the observation period:
(1) BER averaged over all received messages. $\quad\left(e_{\text {int }} \quad h_{i}\right)$
(2) BER averaged for each of the three received sequences.
(3) BER after decoding for each of the 2 coded sequences.
(4) Proportion of errors corrected for serial and interleaved codeword sequences. ther

The second program was used to obtain statistical information on the error patterns stored in the file ERRPAT.000. The following information was obtained from this program:
(1) Frequency of occurrence of consecutive errors.
(2) Frequency of occurrence of error free intervals.
(3) Frequency of occurrence of error bursts.

Assembler-written routines were called by the BASIC user function, USR(X), to control the reading of data blocks from the disc files.

8.8 Experimental Results

The results section of this chapter is divided into two subsections:
(1) Statistical analysis of error patterns.
(2) Analysis of coding performance.

The coding performance results will be seen to correlate with the error pattern analysis.

8.8.1 Analysis of error patterns

Distributions of consecutive errors, consecutive error-free intervals, and burst error occurrence were obtained from the recorded results.

For a random error distribution, the theoretical probability, P_{e}, that n consecutive errors occur when the average probability of a bit error is p , is given by:

$$
P_{e}(n)=p^{n}(1-p)
$$

This function is tabulated in table 8.1 for two chosen values of BER. For a BER of 10^{-2} it can be deduced that 99% of tive errors should occur singly; for $\mathrm{BER}=2 \times 10^{-2}$ the figure is 98%.

n	1×10^{-2}	2×10^{-2}
0	9.9×10^{-1}	9.8×10^{-1}
1	9.9×10^{-3}	1.96×10^{-2}
2	9.9×10^{-5}	3.92×10^{-4}
3	9.9×10^{-7}	7.84×10^{-6}
4	9.9×10^{-9}	1.57×10^{-7}

Table 8.1

The error performance of the HF link is plotted in figure 8.9 for a 24 hour observation period. The averaged raw BER (without coding) per hour was observed to vary between 3.2×10^{-3} and 1.94×10^{-2}. Two hourly observation periods were chosen having BERs close to those used to compute the theoretical distributions; these were the periods $2300-0000 \mathrm{hrs}$. and $1400-1500 \mathrm{hrs}$. which corresponded to average bit error rates of 0.98×10^{-2} and 1.94 $\times 10^{-2}$ respectively. (figures $8.10(\mathrm{a})$ and (b)). The results indicated that around 75% of the errors were single, and 15% occurred in pairs. It can be seen that the measured distributions deviated substantially from the theoretical random estimation, but that the measured distributions appeared similar for both values of BER. In other words the consecutive error distribution appeared to be independent of error rate. It was also noted that the distribution appeared to be exponential. A regression analysis showed that a function conforming closely to the measured distribution is given by:

$$
f_{0}(n)=74 e^{(-6.2(n-1))}
$$

where $f_{0}(n)$ is the frequency of occurrence (\%) of n consecutive errors. The results indicated that the errors were tending to cluster and that the size of the clusters was independent of the average error density.

The cumulative distribution of error-free intervals was plotted for the two hourly periods analysed above and compared with the theoretical random distributions. The theoretical probability, $P_{f}(n)$, of an n-bit error-free interval assuming random error statistics is given by:
Δ performance with coding
performance with coding and interleaving

Fig.8.9. TYPICAL ERROR PERFORMANCE OF HF LINK

FIGURE 8.10. DISTRIBUTIONS OF CONSECUTIVE ERRORS.

$$
P_{f}(n)=p(1-p)^{n}
$$

where p is the probability of a bit error. Again, the results (figs 8.11 (a) and (b)) indicate substantial deviations from the random distribution, and appear to be independent of error rate. For a BER of 10^{-2}, the random distribution predicts that only 10% of the errors should be separated by a gap of 10 bits or less, whereas the measured figure was 76%.

An error "burst" is defined in a paper by Brayer (77) to be a region of the serial data stream where the following properties hold. A minimum of 2 errors are contained in the region and the minimum density of errors in the region is Δ. The burst error must always begin with a bit in error and end with a bit in error, and must be immediately preceded and followed by an interval in which the density of errors is less than \triangle.The burst density criterion Δ in this paper was chosen to be 0.05 . This definition of an error burst did not appear to be entirely satisfactory as the following example illustrates.

Suppose that the first 5 and the last 1 of 120 consecutive bits are received erroneously. The error density is therefore $6 / 120=0.05$ which is exactly the minimum density required to define a burst. The data would be logged as containing a burst of errors of length 120 even though there is an error-free interval of 114 bits. It would intuitively seem more reasonable to suppose that the errors were distributed as a burst of length 5 followed by a single random error occurring 114 bits later.

FIGURE 8.11(a). DISTRIBUTION OF ERROR-FREE INTERVALS.
($\mathrm{BER}=0.98 \times 10^{-2}$)

FIGURE 8.11(b). DISTRIBUTION OF ERROR-FREE INTERVALS. $\left(B E R=1.96 \times 10^{-2}\right)$

It is proposed that the following constraint be appended to the above definition: All errors contained within the burst must be separated by an error-free interval of w bits or less where $w=$ 2/ $\Delta-1$. This ensures a more even distribution of errors within the burst. In this experiment, Δ was chosen such that an error burst would cause consecutive character errors to occur in an uncoded 7-bit ASCII character stream. For characters preceded by a single start bit and terminated with a single stop bit the burst error density criterion is $2 / 9=0.22$.

The distribution of error bursts complying with the amended definition was plotted for data averaged over a 24 hour observation period and is shown in figure 8.12. It can be seen that the distribution is an exponential decay apart from a noticeable peak at $b=10$. The unusually high proportion of error bursts of this length was attributed to regular noise bursts from locally situated machinery which were consistently observed throughout the period. Observations on an oscilloscope indicated that these were of 0.14 s in duration, ie. approximately ten times the signal element duration. The averaged measured BER over the observation period was 1.35×10^{-2}.

8.8.2 Coding performance

The performance of the HF data link in terms of bit error rate has been plotted in figure 8.9 for a 24 hour observation period. The results shown illustrate the performances obtained with no coding, with forward error correction (FEC) and with FEC and interleaving of the codewords to a depth of 16 . It can be seen that the improvement with interleaving exceeds the
improvement with coding alone. Figure 8.13 shows the time distribution of the proportion of total errors corrected, with and without codeword interleaving, for a different observation period. The performance with interleaving always exceeds the performance with coding alone, but the relative improvement gained is not constant. This is also evident from fig 8.9. We shall define the "interleaving gain" as:
$20 \log _{10}\left(\mathrm{c}_{\mathrm{i}}(\mathrm{t}) / \mathrm{c}_{\mathrm{c}}(\mathrm{t})\right)$
where $c_{i}(t)$ and $c_{c}(t)$ are the percentages of total errors corrected with and without interleaving respectively. A plot of this variable against time together with a plot of BER (figure 8.14) shows that it is not necessarily dependent on error rate. The interleaving gain varies between 0.2 dB and 7.2 dB . It appears from these results that the nature of the error structure varies with time and, for the observation period chosen, the errors tend to cluster during the night and are of a more random nature during the day. The apparent increase in the burst nature of the error structure during the night is attributed to an increase in the skip distance which exposes the receiver to static bursts and interference from further afield. During the day, short noise spikes were observed which gave rise to an increase in the number of random errors.

Plots were made of the proportion of errors corrected against bit error rate (figure 8.15), (a) for no interleaving of codewords and, (b) for an interleaving depth of 16 . The same data (over 24 hours) was used for each plot. It can again be seen that the performance with coding and interleaving exceeds the performance

Fig. 8.13. TYPICAL DISTRIBUTION OF ERRORS CORRECTED

FIGURE 8.14 TIME VARIATION OF INTERLEAVING GAIN AND BER.

(a) interleaving depth $=1$ (no interleaving)

(b) interleaving depth $=16$

FIG 815. DISTRIBUIIONS OF ERRORS CORRECTED PER MESSAGE
with coding alone, as the points tend to cluster towards the top of the plot in the latter case, and are more widely dispersed for the former.

Theoretical distributions were plotted, using the recorded data, of the proportion of errors that would be corrected for different depths of codeword interleaving. Three curves were plotted from data obtained from three intervals of 1 hour, each of which exhibited a different BER. The results were based on the assumption that if two or fewer errors occurred in a 15 -bit codeword the errors would be corrected otherwise none would be corrected. Points were plotted for five values of bit interleaving. It can be seen that the relative improvement gained by using greater interleaving depths tends to decrease with increasing depth and that the curves tend to flatten for low values of $B E R$ (figure 8.16). As the interleaving depth is increased, the delay before decoding is increased. An interleaving depth of 16 appears to present a reasonable compromise between error-correcting ability, decoding delay and implementation complexity.

8.9 Conclusion

This chapter has described an experiment using microprocessor techniques undertaken to investigate the error patterns occurring over a medium-haul HF data link. The results have confirmed the view that the error statistics are significantly non-random in nature and a comparison has been made indicating precisely the deviation from the theoretical random distributions. It has also been shown that the distribution of consecutive errors and error

FIGURE 8.16. PROPORTION OF ERRORS CORRECTED FOR VARYING DEPTH OF CODEWORD INTERLEAVING.
free intervals appears to be independent of error rate. An investigation of error burst statistics for this experiment has shown that the distribution of burst lengths is exponential but that bursts of a fixed length may occur more frequently than expected.

An error-correcting coding scheme has been investigated using real-time encoding and decoding procedures implemented on a low-cost conventional 8-bit microprocessor. A substantial improvement in error performance was acheived by interleaving successive codewords, but the improvement in error rate was not proportional to interleaving depth. Also, the benefit gained by interleaving codewords may not be constant, indicating that the error structure is time-varying. The (15,7) BCH code interleaved to depth 16 was found to be a good compromise between error-correcting ability over the HF channel, decoding delay, and implementation complexity. In view of this, the code was chosen as the forward error correction scheme for use with the HF data modem described in chapter 7.

CHAPTER 9

Conclusion

Shortly after the advent of digital communications over wire links, investigations were carried out into the possibility of using the refractive properties of the ionosphere as a medium for data transmission over long distances. By the early 1950's, telegraphy and telephony were well established methods for communication via HF radio links, but considerable difficulties were encountered when attempts were made to use the ionospheric medium for digital data transmission.

Acceptable error rates could be achieved only if the transmission rate was severely restricted to avoid the intersymbol interference caused by long differential multipath delays. Even so, it was found that the effects of noise, often tolerated by telephony and telegraphy systems (which are highly redundant), were to introduce large numbers of errors, occasionally of such severity as to render the channel useless for many communications purposes.

Attempts were made to find techniques which could, to some extent, overcome the detrimental effects of the HF channel. Coding, diversity, time-to-frequency division mutiplexing and equalisation were all found to be effective in reducing the error rate under certain conditions, and are techniques which have been adopted in a variety of systems. Development work on systems which exhibit a certain degree of tolerance to the channel distortions was carried out in the 1950's and 60 's, mainly in the U.S., and resulted in the production of a number of HF
communications terminals for military applications, notably Kineplex (5), Kathryn (6) and Codefy (15). These systems were highly complex, buiky and extremely expensive to produce, and their performance was not entirely satisfactory.

Following the introduction of satellite communications during the 1960's, work in the HF field was largely abandoned in favour of this more attractive medium, which could provide reliable, high-speed data communications over long distances, albeit at high cost. However, the subsequent development of sophisticated weaponry and jamming systems led to a realisation that the satellite medium was an extremely vulnerable one, and attention was again turned to ionospheric data communications, which was often the only alternative to satellites for mobile communication over long distances. Much of the new work was concentrated on sounding techniques (11), in order to gain a better understanding of the effects of the HF channel on a digital signal. Adaptive techniques were investigated (60) to cope with the time-varying properties of the transmission medium.

The revolutionary developments in electronics technology over the last decade, notably the advances in digital electronics, have considerably eased the burden of designing complex systems for data communications (1,2). Additionally, the economic benefits to be gained using VLSI techology are often considerable. It is only in the last five years that attention has been concentrated on the possibility of implementing real-time signal processing techniques using microprocessors although such techniques have been applied mainly to line and to

VHF/UHF transmission systems (56-58). Relatively little work has been published on the direct applications of microprocessors in the field of HF data communications, which is suprising, as the inherently flexible nature of microprocessor systems make them extremely suitable for $H F$ radio systems, where a high level of adaptability is often required.

This thesis has described an investigation into the applications of microprocessors in a variety of HF radio communications techniques. A real-time channel evaluation system has been described whereby an HF radio voice channel may be assessed as to its suitability for communication over a link. The implementation of forward error correction schemes suitable for overcoming the effects of burst errors occurring over a link have been investigated and demonstrated. This has led to the development of an adaptive modem, which uses a technique of adaptive time-to-frequency division multiplexing, together with forward error correction, to implement a low-cost system in which all the signal processing techniques have been implemented digitally. The real-time processing requirement has resulted in the development of a novel distributed processing arrangement in which a number of subsidiary ("slave") processors are under control of a central ("master") processor; the overall processing power of the system is thereby increased. Some considerable attention has been paid to the signal processing requirements of HF systems, for spectral analysis, modulation, and demodulation. This has included investigations into Fourier transformations and matched filter detection using microprocessor techniques, in addition to a study of the chirp-z transformation using a charge
coupled device.

It is hoped that this thesis has illustrated the potential of the applications of VLSI technology to the implementation of effective, low-cost systems in the field of digital HF radio communications. The complex signal processing techniques required for channel evaluation and communication over the HF medium may be realised at low cost using primarily software-based techniques. It is anticipated that further advances in the field will result in a considerable resurgence of interest in long-distance communications over HF links.

Note on publications by the author:-
"Software Cassette Interface for the SWTP 6800 Microprocessor System". Isaac, D.R. Personal Computer World, August 1979.
"Real-time Adaptive Coding of Ionospherically Propagated Data". Isaac, D.R. and Spracklen, C.T. IEEE Zurich International Seminar on Digital Communications, March 1980.
to be published:-
"A Microprocessor Implemented Trackside Recorder for British Rail". Isaac, D.R., Spracklen, C.T. \& Manning, J. Journal of the Permanent Way Institution. December, 1981.
"Error Patterns and Real-time Correction Procedures for Data Transmission over HF Radio Links". Isaac, D.R. and Spracklen, C.T. IEE Conference on HF Comm. Systems and Techniques, 15-16 February, 1982.

APPENDIX 1

REFERENCES
(1) "Digital Transmission for Radio Systems". Colavito, C. Telecomm. journal. vol. 45, July 1978.
(2) "LSIs in Data Networks". van der May, J.E., Forney, G.D. \& Stearns, R.W. Data Processing journal. April 1977, pp. 30-31. (3) "Experimental Confirmation of an HF Channel Model". Watterson, C.C., Juroshek, J.R., \& Bensema, W.D. IEEE Trans. Comm. Tech. Vol. COM-16, no. 6. December 1970.
(4) "Real-time Updating of MUF Predictions". Jones, T.B., Spracklen, C.T., \& Stewart, C.P. AGARD Conference Proceedings no. 238 , pp. 17-1 to 17-10.
(5) "Kineplex. A Bandwidth Efficient Binary Transmission System". Mosier, R.R. \& Clabough, R.G. AIEE Trans. Comm. \& Electron. vol. 76 pp. 723-728. 1958.
(6) "The AN/GSC-10 (KATHRYN) Variable Data Rate Modem for HF Radio". Zimmerman, M.S. \& Kirch, A.L. IEEE Trans. Comm. Tech. vol. COM-15 part 2. pp. 197-204. 1967.
(7) "Equalisation of Radiolink Channels with Multipath Propagation". Castel, A., Henry, M., Rolland, P., Proc. International Seminar on on Digital Comm. IEEE cat. no. 80CH1521-4 COM. Zurich, 1980.
(8) "Telecommunications". Brown, J., \& Glazier, E.V.D. Chapman \& Hall, 1974.
(9) "Radio Communication Handbook". RSGB publications, 1979.
(10) "The Improvement of Slow Rate FSK by Frequency Agility and Coding". Gott, G.F. \& Hillam, B. Proc. IEE Conf. of Recent Advances in HF Communications Systems \& Techniques, Feb. 1979, pp. 19-24.
(11) "CW Sounding and its use for control of HF Adaptive Systems". Betts, J.A., Ellington, R.P., Jones, D.R.L. Proc IEE, vol 117 no. 12, December 1970. pp. 2209-2215.
(12) "Error Correcting Codes". Peterson, W.W. \& Weldon, E.J.
(13) "Introduction to the Analysis and Processing of Signals". Lynn, P.A. Macmillan Press, 1973.
(14) "Medium-speed Digital Data Transmission over HF Channels". Darnell, M. Loughborough Conference on Digital Processing of Signals in Communications. Sept. 1977. pp. 293-402.
(15) "A Combined Coding and Modulation Approach for Communication over Dispersive Channels". Chase,D. IEEE Trans. Comm. Tech. Vol. COM-21, no. 3, March 1973.
(16) "Digital Signal Processing". Peled, Liu. Wiley Inc., 1976.
(17) "Motorola M6800 Microprocessor Programming Manual". Motorola Publications, 1978.
(18) "SWTP Computer Systems". South-West Technical Products, San Antonio, Texas.
(19) "High Speed Software Cassette Interface for the SWTP 6800 System". Isaac, D.R. Personal Computer World, August 1979. pp. 39-43.
(20) "Microcomputer Components". Motorola Publications, 1979.
(21) "Engineering Note 100". Motorola Publications, 1978.
(22) "Digital Signal Processing". Oppenheim, A.V. \& Schafer, R.W. Prentice-Hall Inc. 1975.
(23) "Digital Signal Processing". Stanley. Reston, 1975.
,24) "Introduction to Digital Filters". Bogner, R.E. \& Constantinides, A.G. Wiley Press, 1975.
(25) "An Algorithm for the Machine Calculation of Complex Fourier Series". Cooley, J.W. \& Tukey, J.W. Math. Computation, Vol. 19, 1965, pp. 297-301.
(26) "The Chirp-Z Transform Algorithm". Rabiner, L.R., Schafer, R.W., Roder, C.M. IEEE Trans. Audio Electroacoust., Vol. AU-17, June 1969.
(27) "A Linear Filtering Approach to the Computation of the Discrete Fourier Transform". Bluestein, L.I. IEEE Trans. Audio Electroacoust., Vol. AU-18, December, 1970.
(28) "M6800 Microprocessor Applications Manual". Motorola Publications, 1975.
(29) "Comparison between the CCD Chirp-Z Transform and the Digital FFT". Buss, D.D., Broderson, R.W., Hewes, C. Proc. 1975 Naval Electronics Lab. Center Int. Conf. on Applications of CCDs.
(30) "A 500-stage CCD Transversal Filter for Spectral Analysis". Broderson, R.W., Hewes, C.R., Buss, D.D. IEEE Trans. Electronic Devices vol ED-23 pp. 143-152. Feb. 1976.
(31) "The ABCs of CCDs". Kosonocky, W.F. \& Sauer, J. Electronic Devices, vol. 23 pp. 58-63, April 1975.
(32) "Real Time Spectral Analysis using Hardware Fourier and Chirp-Z Transformations". Benjamin, R. "Radio \& Electronic Engineer". vol. 49, no. 2. pp. 101-107. Feb. 1979.
(33) "Communications Applications of CCD Transversal Filters". Buss, D.D., Broderson, R.W., Hewes, C.R., Tasch, A.F. IEEE Nat. Telecomm. Conf. Record, vol. 1. Dec. 1-3, 1975. pp. 1.1-1.5.
(34) "Interfacing a Hardware Multiplier to a General-Purpose Microprocessor". Davies, A.C. \& Fung, Y.T.
(35) "A High-Speed FFT Processor". Zaheer, M. Ali. IEEE Trans. Comm. Vol. COM-26, no. 5. May 1978.
(36) "The Fadeogram, a sonogram-like display of the time-varying frequency response of HF SSB radio channels". Filter, J.H.J, Arazi, B., Thomson, R.G.W. IEEE Trans. Comm. June 1978 pp. 913-917.
(37) "The Fadeogram - Applied to analysing HF data modem performance". Thomson, R.G.W. \& Filter, J.H.J. Proc. IEE Conf. on Recent Advances in HF Communications Systems \& Techniques. Feb. 1979. pp. 19-24.
(38) "M6800 Microprocessor Applications Manual". Motorola Publications, 1975.
(39) "The M6800 Microprocessor Unit". Motorola Data Sheet.
(40) "Cyclic Codes for Errror Detection". Peterson, W.W., Brown, D.T. Proc. IRE Jan. 1961. pp. 228-235.
(41) "Principles of Data Communications". Lucky, R.W., Salz, J., Weldon, E.J. McGraw-Hill, 1968.
(42) "Further Results on Error Correcting Binary Group Codes". Bose, R.C. \& Ray-Chaudhuri, D.K. IEEE Trans. Inf. \& Control. Vol. IC-3, 1960. pp. 279-90.
(43) "Encoding and Error Correction Procedures for the BCH Codes". Peterson, W.W. IRE Trans. Inf. Theory. September, 1960. pp. 459-470.
(44) "Cyclic Decoding Procedures for BCH Codes". Chien, R.T. IEEE Trans. Inf. Theory. October, 1964. pp. 357-363.
(45) "On Decoding Binary BCH Codes". Berlekamp, E.R. IEEE Trans. Inf. Theory, vol. IT-11, no. 4. October, 1965.
(46) "Computer Implementation of Decoders for Several BCH Codes". Michelson, A.M. Polytech. Inst. of Brooklyn int. symposium on computer proc. in comm. April, 1969.
(47) "Practical Algebraic Decoders". Berlekamp, E.R. IEEE Trans. Inf. Theory.
(48) "Processor Implemented Decoders for Block \& Convolutional Codes". Michelson, A.H. \& Boyd, T.H. Proc. EASCON '74. pp. 353-360.
(49) "Generalised Burst-Trapping Codes". Burton, H.O., Sullivan, D.D., Shih Yung Tong. IEEE Trans. Inf. Theory. Vol. IT-7, no. 6, Nov. 1971.
(50) "Burst-Trapping Techniques for a Compound Channel". Shih Yung Tong. IEEE Trans. Inf. Theory. Vol. IT-15, no. 6. Nov. 1969.
(51) "Improving the Reliability of HF Data Transmissions". Sloggett, D.R. Proc. Conf. on Recent Advances in HF Comm. Systems \& Techniques. Feb. 1979. pp. 74-78.
(52) "Improved Signal Design for Fading Channels by Coding". Chase, D. CNR Inc. Newton, Mass..
(53) "Characteristics of Interfering Signals in Aeronautical HF Voice Channels". Gott, G.F., Staniforth, M.J.D. Proc. IEE vol. 125, no. 11. Nov. 1978. pp. 1208-1212.
(54) "An HF Data Modem with in-band Frequency Agility". Darnell, M. IEE Proc. Conf. on Recent Advances in HF Communications Systems \& Techniques. Feb. 1979. pp. 19-24.
(55) "Data at Twice the Speed Eases HF Traffic Jam". Porter, G.C., Gray, M.B., Perkett, C.E. "Electronics" journal. October 1967. pp. 115-120.
(56) "A 4800 bps Microprocessor Data Modem". Watanabe, K., Inoue, K., Sato, Y. IEEE Trans. Comm. Tech. vol. COM-26 no. 5. May 1978.
(57) "An Experimental Microprocessor-Implemented 4800 bps Limited Distance Voiceband PSK Modem". Stroh, R.W. IEEE Trans. Comm. Tech. vol. COM-26, no. 5. May 1978. pp. 507-512.
(58) "Microprocessor Implementation of Tactical Modems for Data Transmission over VHF Radio". Davies, B.H. \& Davies, T.R. "Radio \& Electronic Engineer", vol. 49, no. 4. pp. 204-210. April, 1979.
(59) "Microprogrammed HF Modem". Smith, S.D., Dimond, K.R., Farrell, P.G. IEE Conference on the Impact of new LSI techniques on Comm. Systems., Oct. 1980.
(60) "Data Transmission with Variable-Redundancy Error Control over an HF Channel". Goodman, V.M.F. \& Farrell, P.G. Proc. IEE. Vol. 122, no. 2. February, 1975.
(61) "Real-time Adaptive Coding of Ionospherically Propagated Data." Isaac, D.R. \& Spracklen, C.T. Proc. International Seminar on Digital Communications. IEEE cat. no. 80CH1521-4 COM. pp. G5.1 - G5.6. March 1980.
(62) "Selective Fading Limitations of the Kathryn Modem and some Design Considerations". Bello, P.A. IEEE Trans. Comm. Tech. vol. 13, no. 3. September 1965.
(63) "Field Test Results of the AN/GSC-10 (KATHRYN) Digital Data Terminal". Kirsch, A.L., Gray, P.R. Hanna, D.W. IEEE Trans. Comm. Tech. Vol. COM-17, no. 2. April, 1969.
(64) "Voiceband 4-Phase Data Set for Global Communications". Horlacher, R.L. \& Schroeder, H.C. IEEE Trans. Cmm. Tech. Vol. COM-17 no. 3. June 1969.
(65) "Error Performance of Quadrature Pilot-tone Phase Shift Keying". Bussgang, J.J. \& Leiter, M. IEEE Trans. Comm. Tech. Vol. COM-16. no. 4, August 1968.
(66) "Digital Angle Modulation". Thompson, R. \& Clouting, D.R. "Wireless World", December 1976. pp. 71-76.
(67) "An Integrated HF Error-Controlled Modem". deLellis, J. \& Michelson, A. Proc. 11th International Conference of Communications. San Fransisco, Calif. June 1975. pp. 13-6 to 13-10.
(68) "A Program Controlled HF Modem Implementation". deLellis, J., Fast, D., Michelson, A., Carmichael, W.. EASCON '74 Record, Washington D.C. October 1974. pp. 349-352.
(69) "Design and Performance of a new Adaptive Serial Modem on a Simulated Time-variable Multipath HF Link". IEEE Annual Conference Record, Boulder, June 1975, pp. 769-773.
(70) "Use of Pilot Tones for Real Time Channel Estimation of HF Data Circuits". Betts, J.A., Broom, R.S., Cook, S.J., Clark, J.G. Proc. IEE, vol. 122, no. 9, Sept. 1975.
(71) "Principles of Digital Data Transmission". Clark, A.P. Pentech Press, 1976.
(72) "The Improvement of Digital HF Communications through Coding". Brayer, K. IEEE Trans. Comm. Tech. Vol. COM-16., no. 6. Dec. 1968.
(73) "Application of Forward-Error Correction to a Rayleigh Fading Communication Channel". Treciokas, R. Proc. IEE, Vol. 125, no. 3. March, 1978.
(74) "Effective Application of Forward Error Control Coding to Multichannel HF Data Modems". Pierce, A.W., Barrow, B.B., Goldberg, B., Tucker, J.R. IEEE Trans. Comm. Tech. Vol. COM-18, No. 4, August, 1970.
(75) "Soft-decision Error Control for HF Data Transmission". Farrell, P.G. IEE Proc. Vol. 127, pt. F. no. 5 October 1980.
(76) "Disk Systems" manual. Smoke Signal Broadcasting Corporation, Westlake Village, Calif., USA.
(77) "Error Patterns Measured on Transequatorial HF Communications Links". Brayer, K. IEEE Trans. Comm. Tech., Vol. COM-16, no. 2. April, 1968. pp. 215-221.

APPENDIX 2

PROGRAM LISTINGS
listings for chapter 2
(1) BASIC FFT
(2) Assembler FFT
空定完


```
:520 0.1,NM=(1,1)
```



```
\y%M-3
```



```
:O2) EミY シ4,I=ELE COMDLETE
```



```
    =Zマ I=1 T2 ?
    \:=2`!1-1,
```



```
    O:=1
\hdashline-% %=ーコミ1205
```



```
    B:=2:1,足
    ==A, =-L
!0):!=-(1-12+1)
1509 =:=-1-0-2-2
```



```
    *こロLシール=さミータ
    VE!:
    :-2500-ミ1*S0
    S10-0+rj-T0
\00}=0=
```



```
1コ2:
M,
*ミ% =3: รコミ13 1330
```



```
#n+! ==!MT
```



```
\゙,=EIvT EEAL yIN=-:M3
```



```
\because%==:%T
```



```
#1: =EINT -FEQL nata-
```



```
2:̇G FJo I=1 TJ S+:PRIMT -.::ONEMT I:PRINT
```



```
2!0=70 I=1 Tコ Y
```


2210 PRINT TAB（M2）；＂．＂；TAB（A（1．I））；－＊－
2220 NEKT I

SE30 PRINT＂IMAS DATQ－
2EOT FDP I＝1 TO S

330 MEINT
2400 GัSUE 1990
3410 INPUT－PQUER SPECTRUIM PRINTOUT＂：A3

$24+0$ PRINT－IN＇VALID REPLY－：gOTO 2410

3470 HEYT I
245 1F AT＝＂NO＂THEN 2590
4.76 GOSIE 1930

2430 PRINT＂POINER SPECTRUM PRIMTDIJT＂
2500 DRINT－N＂，＂PGUER＂，＂N＂，＂POUER－
5510 PRINT
$530 \mathrm{~K}=1$
ESt0 PFINT $K, A(1, K), K+1, A(1, K+1)$
$2550 k=k+2$
E550 IF KN THEN 2590
3570 GOTO 354

2501 IFA5＝＂YES THEN 2625
2510 IF GFT＂NJ．THEN 3000
ES20 PRINT＂IN＇MQLID REPLY： $\operatorname{gOTOS590}$
SES 50：UR 1990
ES30 PRINT＂PDNER SPECTRUM PLDTIUT：
3690 PRINT
2e60 M1＝－1E6：MP1E6
6．70 FOR I＝1 TO M
2530 IF $A(1$, IVM1 THEN M1＝9（1，1）

3707 HEKT
2ア10 PRINT－SCALING DATR＂
ETED PPIN
740 PRINT＂IR $\times=$－
740 PRINT－MIN＝＂：M
37S0 PRINT－SYMBDLS USED．．．PDWER》）＞（E）－
2？クD PRINT－AXIS＞＞＞くく，－
TBO DPINT－PDEER－

$300 \mathrm{~L}=\mathrm{M1}-\mathrm{m} 2$
310 FRR $1=1$ TO $N: A(1, I)=(A(1,1)-M 2)+54 / L 1:$ NEXT
$320 \mathrm{ME}=9 \mathrm{BS}(\mathrm{M} 2 / L 1): M 2=M 2+54$
3330 Fap $I=1$ T0 M
 ESSD PFINT TAB（M2）；－．＂；TAB（A（1，I））；－E
2370 1ESKT I
830 GJร．1R 1970
3000 RETIRM

[^1]

		 					气GEGO
				\％			
陑宁		\bigcirc	Ese		是量	要畐	$\begin{gathered} 8980 \\ 0 \end{gathered}$

\dot{i}	亿号
（f）	
8	
－	
	¢ 1 ¢
－4	＂
0	1
－1	n
m	\rightarrow
『	
c 0 O $0 \rightarrow \therefore \rightarrow 0$	

listings for chapter 3

(1) The HF Spectrogram

HF SPECTRAGRAM					SSE MNEMUMIC ASSEmbler
0190	eq	130：		FCC	\cdots－＊＊SL SPECTPDSRGM＊＊＊
0188	04	131：		FCE	4
0169	0 I	13き：	TRES	Frg	ti，fa
91EP	15	133：		FCE	
0153	1.4	134：		fCE	4
015	010	135：	HMES	FC：	55， 39
0108	43	186：		FCC	＇HDURS ？
MaE	1.4	197：		FCE	4
QEE	01	139：	MTES	FCE	1上，za
O1ES	411	189：		FCO	＇MINE ？
O1EE	1，	1F0：		FCE	4
回1E	0 I	131：	SMES	Fre	35， 3 9
O1EE	53	1きこ：		Fer	－ミごら？
O1F4	$0 \cdot 1$	1F3：		FCS	7
01F5	0	194：	RPEQ	FCE	15，54， 39
affe	4 C	$135:$		FCC	＇Lagcern ？＇
0201	0.4	195：		FCE	4
tene	OI	19？：	SFED	FCE	I上，3F，\％a
dens	$4{ }^{\circ}$	195：		Fer	－Disero ？
O20E	0.4	190：		FCE	4
asor	0n	200：	IFES	FCE	
－12	44	201：		Fer	＇DEIAT M MITS ？＇
吅1F	$0 \cdot 4$	E0：		FCE	4
0 O 0	0 L	こ0：	PMES	Fr ${ }^{\text {c }}$	35， 19
¢ミここ	41	20．4：		FCS	－AMDTHER PLIT ？
Qe31	0.4	205：		FCE	4
0ese	00	20：	TMES	FCE	
0ここ	54	こ07：		fec	TIME＝
Qes	0.	Ene：		FCE	4
		20：	－＋＋＋＋	＋＊＊＋＋＋	
		F10：	－FRIT	1 － C E	35月5：
		\％11：	＊＊＊	－＊＊	－
或90	His 00	$21 亏$	PRIMT	LIA A	（
02F	6104	$\underline{12}$		Ste a	E4 DESMMTEP ？
0 CH	2705	こ14：		EES	feind
$0 \cdot 43$	ELEDD1	215：		152	DUTCH SEINT IT
0 O 45	61	215：		1 HK	
924？	20 F 4	217：		8 F	PRIMT
024	39	219：	Primi	PTz	
		219：	－＊＊＊＊	＊＊＊＊＊＊	
		E2！	－FIM	2＾aco	C．
		E1：	－＊＊＊＊＊	＊＊＊＊	
Ve4＊	97 06ep	をここ：	EXP	STA H	TEMF
$0 \mathrm{C}+\mathrm{n}$	ce 01	323：		LITA E	± 1
924F	4 F	ごせ		Cle	
0 059	5.5	Ees：	EfP1	－ 5	
0 ES	4	2こ5：		¢O．	
0 ces	PA Deje	¿こ「：		DE C	TEMP
0.5	as F9	2こ5：		E：SE	E×ア1
aes？	35	こご，		ロTさ	
		230：	＊＊＊＊＊	－＊＊＊＊＊	＋＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
		231：	＋FIND	\because and	7 INCPEMENTE：
		23き：	＋＊＊＊＊		
0253	Ce 01	233：	IMCS	LIH 3	£1
1054	9515	ミ34：		Lifa	$\underline{1+1}$
nese：	274	ころ5：		EED	140
OES	5	ES：	INCI	OSL E	
asor	4	こ37：		Hit	
0 cog	EFO	こ3s：		ENE	INC1
10EE	0712	Es3：	Ince	STAE	GINS

0.453			540：	Pota				
0.454	CE	0426	541：		LD\％	fderse		
0.457	IF	0	542：		STX	： T SMP		
0459	［12	00	543：		fid	XTEME＋1		
0458	99	0	544：		AIC	XTEMP		
04511	39		545：					
			545：					
			547：	 －this zuefoutine evfluates the newton－faphedf				
			$543:$					
			54：	－FECHESIDM FDemila： 				
			550：					
			551：	，，HEFE XO IS a EETTEP GPPDOM1MATIJM TD THE				
			53：					
			553：	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊t＋＊＊＊＊＊＊＊				
$045 E$	PF	063A	554：	SORT	EL．	FLHS－CLEFAP PPECISIDM IMEICATDR		
0.461	B？	0530	555：		zTA			
0464	F7	0635	5．5：		－TA	$-5+2$$-5+3$		
0457	PF	$0 \cdot 38$	557：		CLF	5		
615 ${ }^{\text {A }}$	PF	0 Oc	5se：		CLE	$5+1$		
04 Cl	E7	0526	553：	こ0RT1	こTA	A ${ }^{\text {a }}$	PUT IN ：MALIELIER	
0450	$E 7$	08	5si：		こTA		AHI MuLTIPLICHND	
	F？	002？	5e1：		STA	$\overline{7}+1$		
0475	F？	0 0 29	56：		ITA	M1titic		
0473	50	09F4	5s3：		IER			
0475	E5	DE．EC	554：		Lef	$p \rightarrow 2$		
（147F	Fs	nez	5s5：		Lim	P＋3		
04 E	F0	6ese	565		SUE	$\mathrm{E}+3$		
0465	E2	1030	567：		3EC	$5+2$		
01438	57	0 O 35	563：		डTA	$5 \mathrm{SKDMm}+3$	RESUL In dividend	
$0 \cdot 6 \mathrm{E}$	E？	9\％ 5	59.		STA	KRDMSI＋		
04 EE	Fs	9\％	570		したへ	P＋1		
0.91	Es	18\％	571：		Lit	P		
0.94	F？	10	57E：		TEL	$5+1$		
0.97	E：	dese	573：		TEC	5		
0．19m	F？	0 CJ	574		三Tf	XKDVND＋1		
045 T	B？	1032	575：		gTa	KKDUD		
04 CO	F́：	0 ce	E75：		L LH	$\geq+1$		
0．143	E．	ate	57		Ltia	EM FIND $2 \times \times 0$		
0.485	53		57e：		FTL			
$0.14{ }^{\text {a }}$	4		57：		FOL	F．FIND E＊×0		
04AE	E？	1950	5e0：		ztf	KKVF $K K V S R+1$	PIJT inf ingisio	
94 AF	5	0.31	531：		STH			
0 OHE	ED	055	58こ：		12 E	DryIns		
0.51	Fs	0.52	Es：		Lila			
04E4	F_{6}	06E	584：		Lef	2＋1		
$0 \cdot 10$	FO	4030	5s：		211E	MgMOT＋3		
0．15\％	： 2	129	5¢\％：		2EC：	$\geq \mathrm{Cl}$		
CHET	E1	0ese	5\％：		CitF		MSEYTE EAME ？	
0 HCO	こ6	AE	5s：		EHE	30FT1	asal：4	
040	35		5 E		FSH	A	SRVE MESTTE	
0.145	Es	0503	530		LGA	こ＋1		
0.40	19		¢ヲ1：		こEA		：actib－20（rybu）	
$19+7$	81	01	59E：		CMP A	1.1	IF DIFFER－HT EY 1	
0.40	27	08	593		5EO	zupte	DP EDIMA LHEN TEST	
0．4CE	31	0.0	5% ：		Cite	4 E	FOR PEECISIDA LEVEL	
04C	E？	$0 \cdot 4$	5% ：		EEO	ここロTき		
1045	3		596		Pul			
$11+510$	T	10＋50	597		MF．	SRRT1		
（1） 1 ¢	3		553：	302TE	Plll		EESTOEE MSETTE	
$14+14$	7	1934	593：		TST	F！．AS		

\qquad
HF SPECTRDGRAM
SSB MHEMONIC ASSEMBLER PRGE it

062 F	20.13	730:		ERA	Hap	
0 0.31	ED 045E	-31:	SQPC0T	JSR	Sopt	
0534	de OC	ree:	MロP	LIE:	:TTEMP	
0536	A? 90	733:		STA	A	
0635	E? 01	784:		zTA	511%	
9)3A	350	785:	14:LCC	LJf	RTEMP	
des	[10 05	7es:		LDF	E $\$ KTEMP +1 & \hline 9es & CE 94 & 787: & & f00 & $\underline{E 4}$	
$0 \cdot 40$	$8 \% 09$	Tes:		fict	F E	
- 0 - 4 E'	97	res:		:TH	A STEMP	
06.4	17 00	700:		STA	E STEMP +1	new Palmiter
0 ec	33	731:		Fll	E	
0 CH	5	7*2:		IEC	B	
$0 \mathrm{E}+5$	¢5 E4	7\%3:		EPM	PGMER 1	
0 O 44	39	794:		F's		
		795:	-			
		75:	- FFT	fouti	INES:	
		79?:	*			
0648		793:	FFT	EOU	*	
		799:		Erdo		

nos:

listings for chapter 4

(1) Memory diagnostic
(2) Vector diagnostic
(3) Parallel processing diagnostic

PAFALLEL PROCESSING TEST RDUTINE ADD E P2+LATCH +3

listings for chapter 5

(1) BCH Encoder
(2) BCH Decoder

listings for chapter 7

(1) Transmitter software

옥
容

 м

GDMID STEP LENGTH LAVE PRDGRAM DRIGIN SPREE FQF LDOKIJPS

E禹

EAEB

GTESESESE

家 \rightarrow 白

甘

ת

π	$\boldsymbol{\pi} \boldsymbol{\omega}$	
ת	$\mathfrak{U}=\underset{\infty}{\infty} \underset{\infty}{\infty}$	$\ddot{*}$
\pm		

ज 白

Enco

品

	会					免
				\pm		$\because 6$
				m	湤品	
	吕！		品以！！！！！－	107	是足景：	\because

J515	5	1090：		OLR 3	ACCB IS MSB IF SCALED DATA
－1．	4	1931：		－8i 9	RITTATE DATA LEFT
9－15	59	！03：		F3L B	MSEIT TA MECB
$\therefore=17$	43	195：		4\％－9	
$9 \mathrm{\square}$	5.7	1937：		89L 3	
9	4791	195：		STA A 1． 2	2AME LSE DF SCRLED JATA
\bigcirc	65 9	：035：		SIT E E\％00000010	－リE
9－：	\therefore at	1937：		345	YES：BRAMCH
9 ¢1	$29 \quad 13$	1035：		359 SLl	
9 F	\％F口	1957：	－4E5	EgR B £ \％11111100	SET EEMAINING BITS
1585	91	1970：		17 P	UAFIT EXTPA TIME
9 O	EP 90	101：	SCL1	ETA B	HU STIRE MS
吹ご	\therefore 92	1932：		OR こ．	CIEAR IMAG EOMPONENT
9 F	S 93	1092：		GR 3n：	
$9=$	C0	1074：		\Ja 5 E？	TIMITM Lap
TEe	54	1095：	31PL3	コE「3	UAIT COR FIIL PERIDD
T	2j FD	1055：		E4E SMロL3	THKE UP TD 136 C＇PCLES
$\bigcirc \bigcirc$	3	1077：		c！ul	GET SOMATER OFF STACK．
95	$5:$	1053：		1 ＋6	Fly 51 mb IT
15	$\because 140$	10\％：		C1P E 5 4	FITİH50 ？
915	259	1100		シHE MFL1	HD：GET HEXT SAMPLE
1930	39	1101：		\％TS	＇ES：PETJEM：BUFFER FULL．
		110：	$\cdots+\infty$	＋$++*++++++*+* * *$	＊＊＊＊
		1103：	－23H	T MUTIFI＇r Br lank	JF
		1194：	＊＊＊＊＊＊	＊＊＊＊＊＊＊＋＊＋＊＊＊＊＊＊＊＊＊＊	＊＊＊＊＊＊
がら3	JE 35	1195：	－1711－T	－J\％SIHJく	BUTTERFLY
OFS4	5E 90	1：05：		－5 ？	Data goes oirecti＇
F\％	IF 33	1107		OT：REFL	IHTJ＂PEAL＂
953	9\％ 35	1193：		13\％EI4D：	4H0＂IMAら＂
9R：9	5E 9E	1109：		－ご	＇UITHIUT HEED FOR
TF\％	IF 3A	1110：		इT＇：IMAら	
		111：	＊＊＊＊＊	＋＊＋＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊	＊＊＊＊
		111こ：	－FINT	三 MEW FDIPT 3 FRIM	－J
		1113：	－．＊＊＊	$\rightarrow+\rightarrow+$＋+ ＋+++ ＋+ ＋＊＊	＋＊＊＊＊＊
TF＋4	TE 34	1117：	HUDATA	LD：3140\％	GET OIRRENT DATA PTP
9 O	4530	1115：		－Ja ${ }^{\text {a }}$	FES：CDMPINENT
$9-4$	三501	1115：		$\therefore 24819 \%$	
9：5	730	1117：		डTA 4 i	＇i＇IS TEMP STDRE
$3{ }^{2}$	373	1113：		STA 3 \％$\quad 3$	
	9537	1119：		9953 PEPL +1	GII TG REAL PRODJCT
jres	7333	11ご号		GICC A SEAL	
1053	7780	11こ1：		T9\％	SAPE IN DIMREENT PDSITIDN
9594	$\because \bar{F} 31$	11こe：		TG 31.8	
955	450	1129：			GET IMAG DATA
1053	「5 93	11これ：		－24 3 3，	
$y=54$	3735	1：こち：		TG $4 \geq$	$\geq \mathrm{IS} \mathrm{TEMP} \mathrm{STORE}$
955\％	$3 \mathrm{~S}=$	1125：		T9 5 $3+1$	
y－5	9E 35	11こ7：		4an e［1495＋1	AID TD ITAS PROD：JCT
OFS	973	112引：		－50］ 4 I1495	
「下ロこ	J5 34	1129：		－J？EIHJ？	
9F\％ 4	7－32	113！：		$3 T 9=2.2$	SAYE IN DJPREMT PGSITIDN
95\％	ET 13	1131：		TTA 530	
90\％	4 32	113こ：		－Ј4 7 ＇${ }^{\text {c }}$	GET GLJ DATA（REAL）
$9-54$	5－39	1133：		－54 3 $\quad i+1$	
1 \％	35	1134：		こリヒ 3 EEML＋1	SIBTRAST PEAL PRDTUCT
	4235	1： 55 ：		こria EEFHL	
9	9 3	115\％：		〕J：-150%	SUTTERELY DATA PDINTER
962	A ${ }^{\text {a }} 9$	113？：			2H：\％EEfR SESULT
9－4	ET ${ }^{1}$	1153：		STA $51 . \therefore$	
yer	359	1137：		W147	SET ILJ Jata＜imas）

listings for chapter 8

(1) Transmitter software
(2) Receiver software

SSB MNEMOMIC ASSEMBIER PAGE 3

TRANSMITTER SACTMARE

 , ת.

w
多 等
 $\begin{array}{ll}i j & 1 \\ i\end{array}$

 SSE maEmINIC gSsembler page 5

0 ac 3	3181	＋20：	TST1	cmp a	A $£ 1$	01？				
10．5	2503	4き1：		ENE	TこT2					
070	8619	＋ここ：		LDA	9 £ 27	YES；01－：27				
MOE	3	423：		CTS						
9H0：	31 15	42．	TETE	Che	P \ddagger					
DACC	2¢ 03	4ご：		BHE	TET3	$19 ?$				
Whes	$3{ }^{3}+3$	＋es：		しอี	4 ± 6 ？	YES；10－＞57				
2H0\％	3 3	＋こ7：		PT3						
0 OLI	35 ミF	4ご：	TST3	LDF	f $\ddagger 47$	$11-347$				
940 2	33	＋ご：	CTV							
		430：								
		431：	－MAIT TIL SLFME FINISHED TGSKS：							
		432：	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊							
9 arat	75 cona	43：	1，4 19	TET	FLAG＋LitTCH					
0 CHI	37 FR	434：		ES	，4\＃IT					
Qeris	PF COOL	＋35：		CLE	F．AStLATCH					
THEC	39	456								
		73？：								
		43：	－idmd mbl Chantels with specieisd phaies：							
		439：								
0911	CS cosp	＋40：	CLDAH IIT		SCHMTEL LATSH＋E					
0960	A 700	＋41：	Clohd	TA						
CRE？	03	4．93：		OF：						
OFE 3	3c．cos？	＋43：			ECHTTEL＋LATCH＋1E					
QMES	25.5	4．4：		ENE	glafi					
OMES	37	＋4E：	－FTE							
		4t5：								
		＋47：	－gootatear iquiee far sla\％e pegiesigr ojulines：							
		＋4\％：								
		＋45：								
0 099	CE F350	＋56：	＊－＊＊＊＊＊＊＊＊		ESLVROT + 2AES					
0 HEC	DF 05	45：		T：						
OAEE	ce f9ez	＋5こ：		LI\％	£ SLYEC－1＋BASE					
DAF 1	DF 0	t53：		こT：	\geq 边					
Dif\％ 3	ce cior	454：		LIC	\＆SLDFG＋LATOH EAEE GF DEETIMATIOM					
OAFs	3515	＋55：		5こ\％						
0953	C5 F923	＋5\％：		LIT	$\begin{aligned} & \text { EDIT10 } \\ & \text { E:LVEC ERE SOT FOUTIHE } \end{aligned}$					
045	If 195	457：		3 T ¢	Y					
gifo	CE FFご	453：		ET：						
OE09	II． 0	45\％：		51\％	こ	109 g＝ $20 \leq 50$				
9502	CE CPS	4\％0：		＋1\％						
0 O 05	8010	＋¢1：		ESE						
980？	LE Peod	＋ここ：		$6 \mathrm{~F}:$	SこLVLKF＋ERSE					
0 ODF	If 05	463：		－T：	\％	EASE OF 2 DOS				
0ent	CE FedF	454：		1－3：	£こルイKP＋79＋EFEE					
gety	Lf 0？	455：		ST：						
9811	ce coor	46：		LI！	ELKUF1＋LATCH EASE DF DESTIMATIDA					
951．4	Et 01	＋57：		ETE	EOJT	ミココ L LJokle TMELES 1M．				
0 ta	3	453：	 －EEGIHATHE MITH seEg．							
		43：								
		$\begin{aligned} & 470: \\ & 4>1: \end{aligned}$								
		＋5：								
9817	1150	473：		5T\％		ご！				
0.19	7 CO	474：	gout 11	1\％	こ＋1					
4 P 15	晾 0	＋5：		－ 10	$?$					
981E	Etor	$45:$		\％						
ase	39	177：		SEO	zoge					
Sez	4500	＋73：		LIM	－	ミニT ：E゙TE				
yes 4	0	4－3：		1 1 \％						

FPGNEMITTER SOFTUAPE

\section*{3ses $2=35 \quad$ t30:}	

 $3 T R$
LJK
STA
IMR
STK
SRA
T12 STS
EOUENCE (1) ERROE (S: IETECTED

$$
\text { SSB MNEMINIC ASSEMBLER PAISE } 9
$$

$\ddot{9}$
$\stackrel{9}{9}$

		50：	－				
$\begin{aligned} & \text { F532 } \\ & \text { F530 } \end{aligned}$		51：	919	E0U	3F532		
		62：	ciat	E01	$\mathrm{F}=530$		
		E3：	－EESIN MAIN PRDCEDJRE：				
		$64:$					
		55：					
0100		Es：		コャ5	50190		
0103	CE	57：		－5：	25990．		
0103	CF FS3ミ	\％：		－T：	PIM		
0105	09	59		Inc			
0107	－F F539	？ 0		Tr	PIAT		
0109	0	71：		SEI			
0195	EL Prert	？き：		19\％	コロ＝M		
0105	CE 943？	？		－5	EFCE9	בEEA S¢M	
0111	20 0e93	74：		J\％	geryfil	geen fite ay jefue j	
011．	2501	？ 5		－［1－ 9	$9 \leq 1$		
0115	EP 0831	？ 5		こ「7 A			
0119	ct pesf	77：		15．	tFict		
0115	E．1 MED	7s：		－2	gorlit	gest flee gy telye 1	
0115	20 09゙き	79：		Јご		－4J EESHEST T1ME＝0，TEOMIMA，	
012 2	宊	30：		ClI		EMAEE 14Z．ことゴK 	
013	$312 ?$	31：	SE5IN1	Es？	14\％sE		
0135	E14372	33：		cme 9	A IDET1	1こT MEここのSシ	
0133	こ5 f9	33：		EtS	こミ「141	15T MEEVG5E	
0134	E51033	3．4：		Jこe	1－5E1		
4！こ9	Et 0190	35：		1：\％	5159T9		
0139	$3 \square 19$	35：	SEGIHE	9 P	$\begin{aligned} & I N T: S \\ & I D=T E \end{aligned}$		
0132	E1 1933	97：		Ge 4			
015	ご FF	35：		ENE	EESIte		
013		39：			ロッ大き		
0134	50 191980	70：		－	GTIFTA		
0131	3505	91：	EEGIN3	22R	IMTESE		
0135	21 1937	Fこ：		IMP A	－1mat3		
0142	こ5 F＇	93：		E『E	5テ51！		
914．	50 \％sts	94：		158	TSE 5		
0147	50.190	F5：		15	STSATA		
$014+4$	2087	75：		E54	E5514：		
		97：	＋＊＊＊	＊			
		73：	－INIT	1F－15	HFIGELES ETR．：		
		99：	＋＋＊＊＊＊	－＊＊＊＊＊			
0140	35 FE	109：	INTLEE	LIT 7	£5FE	STJF EOTH ご柜	
9145	8， 76000	101：		－TA 4			
0151	\＆ 9000	10ミ：		こTG	－ 147041		
0154	508178	103：		1%	こロas		
0157	E 7 D00\％	10.4		Sth 4	45.45		
015	EE 0000	195：		LII；			
0159	IF 9 ¢	105：		STC			
9155	$\underline{5} 519$	107：		इT\％			
0151	$=5$ coot	103：		ST：			
0154	ES 0su？	109：		－ H ¢	£5b¢Su		
0157	If 9 F	110：		こT：	STTPIO		
0153	¢F 010	111：		$\because 8$	\because	OTVTE	
0158	－F 01	11こ：		C15	1，	E40 בF rastミ̌ Clas	
9159	35	113		LIG A	－¢fE		
0115	C7	1：4：		こT7 4	守		
0171	FF bous	115：		1．9	Fray304		
917\％	En 1 ？ 31	116：		15			
0177	ED 0230	117：		150	ITPFT	SET 1．J．：NMES\％	
1174	3	113：		PTS			
		119：	－0．＊＊	＊＊＊＊	＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊	

$$
\begin{aligned}
& \text { 为 } \\
& \text { 而家出 }
\end{aligned}
$$

量量 畐
 41
$\boldsymbol{~} \boldsymbol{\perp} \quad$ よ

ORINT TIME STRINIS
PRINT ETRRS

	名品

[^2]

PECEIVER SDFTUARE

 ール

[^3]


```
las=9 62 3001 439:
```

las=9 62 3001 439:
l30: :135
l30: :135
3 TST
3 TST
STFLAF+LATCH
STFLAF+LATCH
MIFIAS
MIFIAS
M,
M,
\1%**
\1%**
NA A STFLAG+LATCH
NA A STFLAG+LATCH
OTS
OTS
-****************+*+*+
-****************+*+*+
- SET 1% SPEMJ

```
    - SET 1% SPEMJ 
```



```
    M\TE3: 5-4 3
```

 M\TE3: 5-4 3
 M5:50510
M5:50510
050, 3
050, 3
M= =3コ =こ43
M= =3コ =こ43
Ms, := 403:
Ms, := 403:
M5:3 =504
M5:3 =504
C5%
C5%
\#5:-3
\#5:-3
65:=603
65:=603
M5 3%

```
M5 3%
```



```
%E=33
```

```
%E=33
```



```
        Ma-7,
```

 Ma-7,
 0e30 \#2 0.0.0
0e30 \#2 0.0.0
8%74=
8%74=
05E54
05E54
05%方=7
05%方=7
CESE A?
CESE A?
05%% 9?
05%% 9?
MOM

```
            MOM
```



```
    \% N-5=31
```

 \% N-5=31
 M-I7 = Ez
 M-I7 = Ez
 MマR
 MマR
 BN
 BN
 8けE Mシ5Eこ9
 8けE Mシ5Eこ9
 losen

```
losen
```



```
55%
```

55%
0: 435:
0: 435:
430: :
430: :
< ()
< ()
10

```
10
```

SSB MNEMUNIC ASSEMBLER PAGE 9

RECEIVER SOFTUARE
SSE MNEMOHIC RSEEMBIER COEE :

0909		900：		Pula				
0908	39	901：		RTS				
		202：	－＋＋＊＋＊＊	－＊ャ＊＊＊	－+ －＊＊＊	－＊＊＊＊＊	＋＊＊＊＊＊＊＊－＊	
		903：	－REFL	TIME	CLDCK			
		904：	＋＊＊	－		－	＋	
0900	DE 04	905：	IROPEC	LD：	scount			
090E	03	905：		ITH：				
090 F	DF 04	907：		こT\％	900．jat	SECD：4D	COUNTE？	
0911	9080	90：		－DA A	－ここにう			
0913	es 01	909：		ctid	4 ± 1			
0915	19	910：		［1\％				
0915	\％？ 12	711：		こげ 9	9 こEC3			
013	3150	习1き：		cite a	－ Ef f			
0917	25 22	913：		Ety	IPopta			
0916	TF＠⿴囗才	314：		CLP	secs			
091F	95 91	315：		Lİ a	9 91：48			
9シミ：	SP． 01	F15：		astia	f ≤ 1			
923？	13	917：		－14\％				
0934	9761	919：		STA 9	9 MINz			
092	3180	919：		－m a	－£			
¢93	2s 14	きミロ：		Eve	IPGety			
DミミA	TF minot	3こ1：		OLF	Mins			
9295	Fi9	きミこ：		－1\％ 9	－ 4 H JPS			
OEF	3801	きご：		And ${ }^{\text {a }}$	4 ± 1			
0931	19	984：		ごィ				
093	\％ 70	955：		こta	9 houps			
0334	31 24	まここ：		－me a	－¢ ¢ 24			
935	250	93：		Sts	IRgeti4			
093	TF 0000	シ3：		Cle	4כues			
093	769003	9こ3：		140	5\％\％			
093	Ee Fs30	933：	IRARTN	Lit a piat				
0941	35	931：						
		93：	＊+ ＋．＊＊	－ $0 .$.	．+ ＊	－	－+ －＊	
		733：	－FETCH	TIME				
		924：	－		－＊＊＊＊＊			
92.2	CE HPIE	935：	FETTIM	－II？	ICSLF			
9945	BD EDTE	35：		18	Pdatig			
9943	CE 19？	335：		－5\％	〔Tサリジ			
$99+5$	EDE日它	933：		128	Finta			
OYE	ED 193	939：		J\％	IESTM			
055	900	940：		こTA	－ 4 DOS			
0 ys	ED E173	941：		1－7	1 ＋6\％			
095	31 做	942：		Cote a	－£			
0953	$\because 5$	943：		EtE	EETT：M			
0954	Et 9993	944：		」！	：ECHM			
0950	94	9．45：		こTテ 2	2 ：1ivs			
935	ED ETYB	945：		－17	104			
095	313	947：		che a	$41^{\prime}:$			
0954	2 c 0	343：		EMS	fetrim			
035	E5 1933	243：		1－6	［ESMm			
09%	9 O	950：		ITA R	－こEにう			
－9\％5	ce ople	951：		LD：	ECRLF			
dese	En Elire	35：		Jer	PIGTA			
$09 ?$	75003	35：		O－R	Iに：			
99\％	30	954：		FT				
995	45	95s：	TMMES	Fr：	EMTE	ge Dir	（ $\mathrm{H}^{\text {¢ }}$ ：MM： 35 ）	
คヲき	0	F5：		Fr：	4			
		957：	－＊＊＊＊＊	\rightarrow－	＋＊＊＊＊＊＊	＋＊＊＊＊	＋＊＋＊＊＊＊＊	
		95\％：	－FETC	DEC！	IMni＿			
		F5？：	－＊＊＊＊＊	＊＊＊＊＊＊	＊＋＊＊＋＊＋＊＊	＋＋＋	＋＊＊＊＊＊＊＊	

STB MNEMDNIC ASTEMBLER PQGE 17

	950：decma	JFP	inhes
	Э51：	คゴ ${ }^{\text {a }}$	
13：${ }^{-1}$	93こ：	ヘミー	
1223＋3	Fs3：	スミ゙ ${ }^{\text {a }}$	
5－5 + \％	Эミャ：	－${ }^{\text {a }}$	
\therefore ¢\％	E5：	¢98	
	－35：	139	INCEX
$\because 213$	35%	759	
ふご ミ3	シsis	－5	
	Fうこ： $0 \cdot \cdots+\cdots$	＋．．＊＊＊	－＊＊＊＊＊＊＊＊＋＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
		elate	ถคт＇：
	371：＊＊＊＊＊＊	＊．．．	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
9050 $=30405$	？ 2 ：		ESUFF FECEIVED DGTA PCINTER
\therefore ロ3 $2=$	－rs：	ご：	YTEMP
$\therefore=5=0.4$	ジャ：	－da E	¢f messbic counter
1F－0 0：3	－75： 1	$\square 7$	EOATA
$\because: ニ \mathrm{H}$ 9 0	7－3：	cre	TEMP！
○－\％	9－－： 1 －${ }^{\text {ase }}$	－	TTEMD
3－-3	93：	－29	\cdots
	コア：	M0	t ${ }^{\text {e }}$ ．
	930：	צ50	Eldita
13） 9	\％ 3 ：	14：	
¢3ミ5 9\％05	ว3ร：	ごく	STEMP1
	э3s：	$\bigcirc \mathrm{S}^{5}$	：TEM9
〇ES -1	93．：	$\bigcirc 10$	\because
	935：	ES	； 4 ¢8¢
ソご \because ジ	33：	5：\％	9：5Rp
○\％	315：YERQ	－${ }^{\text {¢ }}$	
¢	939：	こT：	¢TEMP
コロご，	535：	E6F	Lอコアコ
$0 \mathrm{~F}+5$	\＃7：Eminta	ESC B	
	37：	2\％	L：
$\because 3$	ますこ：	Frs	
$\therefore: 3 \leq 4$	三33：74ta	$=0$	＇THEQUICKBRDWIAFOXAMTPSOVERTHELAEYE＇
	三？．f：＊＊－．．．0．	－．．＊＊＊	
		唯た	
	\％：＋．．．＊＊＊		
	F\％इ：	ミว่	\because
92－	37	5is	1%
こミミが		Fac	
ミ5： 3	191：	＝－4	
ソ3： 3 24 3	10：	\cdots	ISERFE
－9ミ ？：	1035：	L5－4	＇1ERR＋1
	13：	429	E1
	105：	5－7	
\therefore－＝－	1935：	ミTテ A	1EPP＋ 1
¢アニッ ！！？	100\％：	－	：IEPP
	100：	a）：	10
$\therefore=913$	199：	ごッ	
－\％－：	：11？：	59 7	MEPR
	1011：MEEf93	F！	
2－	1913：	DES E	
－ミミミコ	1915：	ご吅	12EPP1
$\cdots+3$	：314：	＝ 1 S	
$\bigcirc \bigcirc$	135：	¢T＊	
$\bigcirc \div$	19：う：EyFF	518	137
\because	1917：Fces	－ 4 ¢	？
－\％ 3	10：	＝ 65	4
$\therefore 545$	1915：	50	EFRUGT00

PECEIVEP SCFTURPE
SニB MNEMDNIC ASSEME：ER FGSE 13

－：	27	：930：		550	Sayst	
－：$=$	ミロッ	：93i：		－ 08	ETSOESt	if 3 O THEN SELECT
－：19	3013	： 3 3：		S＝a	SRYE	
：：$=$	EE 295	：935：	ごAvE1	1－9x	ETSOET0	OThErusise select
：：ミ	2010	：93．4：	SLAYE3	STM	traect	TECOQ？
C！	$\therefore 3 \mathrm{Br}$	：935：		ris	1NFLPG	LE－INTERLEA\％IUG REDUIPED ？
\because	$\because 11$	1935：		SE	ごデミ3	EK：P NEST SECTION IF NDT
： 23	－2 93	： 3 －：		「こ\％	T 27695	test tasle flag again
－：	ミ，	1935：		ミこ0	ごくらご	
－：	ご，	： 030 ：		$\therefore \mathrm{E}$	ETSITM1	
	9	：15：		E\％A	ごッサミ1	
：：	－ 315	1 1\％：	$こ-720$	13：	ETsiato	
$\because:$	$=13$	103ミ：	S－Ave1	ご『	t5aivt	
こ： 3	3\％	： $033:$		3：R	JINTA	IE－INTERLEAVE Data
－：	59 25	1931：	ミ－AvE3	ミミマ	25CJ3E	DECODE DATA
$\because: 3$	F－ 50 ：	1935：		$\because \cdot \mathrm{F}$	－¢FLAS	TELL MASTER WE－RE DENE
$\because: ~=~$	$20=$	105：	וכבP	ミマッ	LOTF	
		193：	－．．．．．	．．．	－．．．＊＊＊	＋＊＋＋＋＊＊＊＊＊＊＊＊＋＊＊＊＊＊＊
		1393：	－sE－1	TEマLE	Eris 39 Br	dF tata fram admress contained
		！os？	－1N	274．	GYD EMTE	
		：109：	－ 42	－ 12	S34talve	4 TSaECa：
		1101：	－．．．．＊			
©：1	58：	：1：13：	2Intiv	Lご	TETH4	GTDFESS de ImTERLEAVED BLDCK
：$:+3$	3 F	：10s：		〒「；	－TEMFこ	
－：45	－	110．：		LIT S	81	id infgrmation gits
C：－	TE 19	1105：		$\therefore \mathrm{O}$	tsocer	
¢：	3\％ 3	：10\％：		：T：	－TEM＝	
Cis	393	110\％：		Se	al：4TL1	
$\because 4$	\therefore こ	：193：		－07 5	！ 5	IT PARITY CHECK BITS
¢：$=$	9E 19	：119：		－	troect	
こ：	－	1119：		1－9		
：	$=93$	：11：		－ 1 ：	STEM	
C：	33	：112：		530	Hintil	，
\therefore－	3	1113：		Fis		
		1114：	－	－．．．．	＋	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
$\therefore 5$	3	1115：	INTSL	F5 3		
－：5	ワミ 13	11！ 5 ：		－\％	：TEMP	
\therefore ：	I＝ S_{4}	1117：		\bigcirc	STEMPI	
－：	20 5	1119：		5 S	OINTLE	
－： 5	33	：117：		Fill S	\％	
$\bigcirc 15$	¢．a	1：30：		DE：	E	
\therefore ：\％	こち $=5$	1121：		¢サE	3INTL	
－15	37	115ミ：		Frs		
		1123：	－＊．＊．	－＊＊＊＊		＋＋＊＊＋＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
$\because:$ こ	$\therefore 02$	1124：	Qint－z	－97 9	¢ $£$	INTERLEAYE DEPTH $=2 \times 3$
：$: 5$	3	：1こ5：	RINTL	P： 3	8	
C：－	$\therefore 513$	11ミこ		－59 9	3：3	
	－	112？	IINTLA	15：	こTEMP？	
$\bigcirc: 14$	530	113：		$=3$	8	E：itract a bit
：$:=$	こ三	113：		13：	2TEMP1	GHII ENTER INTD
－：	530	115：		－3．	¢	YES TASLE
-1.7	d	：13：		！		
\bigcirc	こミ	113：		114：		
$\because \cdots$	こ＝引	1：35：		－T：	STEME1	
	S－	112：		SEC y		EIT COUNTER
－5	ミテ＝	1135：		ごき	Dintic	
	ワ三 \because	115：		－ 0 \％	YTEMPS	
：－-	3	13：		19：		
－	\＃	：15：		：T：	Sranz	
	0	115：		$2 \cdots$		

APPENDIX 3

PUBLICATIONS

(1) "High Speed Software Cassette Interface for the SWTP 6800
System"
(2) "Real-time Adaptive Coding of Ionospherically Propagated
Data"
(3) "Microprocessor Controlled Trackside Recorder for British Rail"

HIGH-SPEED SOFTWARE CASSETTE INTERFACE FOR THE SWTP 6800 SYSTEM

David R. Isaac
Dept. of Applied Physics \& Electronics, University of Durham

This article describes a software approach to the problem of :: terfacing a microprocessur system (in this case the SWTP 6800 system) to an audio cassette used for data storage. This alternative to the more conventional hardware methods offers several distinct advantages. Since the system is software based (the only hardware requirements being the cassette player and two ports : a P(A), its most obvious attraction is low cost. Unlike dedicated hardware cassette interfaces, total control over speed is availuble and the system is capable of data transfer rates up to about 2000 baud. With the parameters given in the listings, a rate a: 1600 baud is obtainable

Figure 1 illustrates the hardware configuration. A PIA is plugged into row 4 in the motherboard and output to the mic. socket of the cassette recorder is taken directly via a screened lead fron the most significant bit of the 'A' side of the PIA. Incoming data from the cassette player is received via another screened lead connected from the extension speaker socket to the most significant bit of the ' B ' side. Good results were obtained using medium quality audio cassettes and with the volume and tone controls on the cassette player both set to maximum

Data is stored on the cassette as a frequency shift keyed signui. Logic levels ' 0 ' and ' 1 ' are stored as single cycles of 2800 and 1400 Hz respectively which represents an average bit rate of 1600 oaud. Data is sent as a MiKBUG formatted tape headed by a string of 200 ASCII nulls and terminated with an ASCII 'S9' tad of flie , rattern. The 'save' and 'read' programs are shown in + igures 2 and 3 respectively, and have been given arbitrary origins, although both programs are fully relocatable. By storing the piograms in PROM, the risk of overwriting them is eliminated.

To save an area of data on cassette tape, first enter the beginning address of the area in locations $A 002$ and $A 003$ and the final address in locations $A 004$ and $A 005$. Set locations A048
and A049 to the start address of the SAVE program, switch the cassette player on to record and enter G. When the transfer of data is complete, the system automatically returns to MIKBUG.

To read data from the cassette, first set locations A048 and A049 to the start address of the READ program, start the cassette rolling a little before the data begins fto allow it to pick up speed) then enter G. When the end of file pattern is read from the tape the system returns to MIKBUG. Should an error be encountered during playback, an ' E ' will be printed on the teletype; the tape should be stopped, rewound slightly and a G should again be entered. Note that there is no need to reset the program counter before doing this.

This cassette system has been used for several months and has been found to be very reliable. The data transfer rate is more than five times that of Kansas City standard system which results in a considerable time saving for long programs. A change of speed can be effected by changing the frequencies of the two FSK tones. This is done by altering the timing loop parameter at location 50D0 in the SAVE program, and the mean number of samples per half-cycle at location 600 B in the READ program.

Figure 1. Hardware Configuration

Real - tinc adaptive - coding of ionospherically propagated data

D.R. Isatac and C.T. Spracklen
Department of Applied Physics and Electronics Durham University
ENGLAND

Abstract

High frequency radio links are time - varying channels which can introduce considerable levels of attemiation and delay distortions. These effects, logether with interference from natural and man - made sources, result in the high error rates observed over the HF channel. This paper describes a novel microprocessor implementation of a data transmission system for use over HF radio, where 16 data channels are used to modulate 8 frequency - agile subcarriers contained within the voice channel. The system attempts to locate the subchannels within the quiet portion of the channel to avoid narrow band interference. Broad - band effects are overcome by using bit - interleaved block codes. The software orientated implementation renders the system both cost - cffective and flexible.

1. Introduction

Information transmitted via high frequency (HF) radio signals reflected from the ionosphere is frequently degraded due to the characteristics of the propagation medium. The high error rates encountered can be attributed to the effects of multipath propagation and interference, both natural and man made.

This paper describes an experiment being undertaken by the Department of Applied Physics and Electronics, Durham University, intended to demonstrate that with the aid of modern electronics technology in the form of microprocessors, it is possible to effect a significant improvement in the error rate.
'The simplest, and often the most effective, way of reducing these errors is to implement some form of channel evaluation system to assess the suitability of a number of channels for transmission over the radio link $/ 1,2 /$, and to choose the channel yielding the best signal - to - noise ratio. This approach may often be unrealistic since a wide selection of frequencies may not be available to the communicator and he may often have to make the best possible use of a frequency far removed from the optimum. However, even for a single assigned frequency, substantial improvements can be obtained by using adaptive techniques based on a 'microscopic' analysis of the channel/3/.

Over recent years there has been a considerable resurgence of interest in communications using the HF part of the radio spectrum. Many users faced with the problems of cost and vunerability of satellite communications, have begun to look again at the prospect of achieving reliable data communications using HF radio links. Indeed, the HF path is the only alternative for long distance circuits involving mobiles such as ships and aircraft. However, the problems are considerable. If we consider signals propagated to outside the skip zone (where ionospheric propagation predominates) then we have the difficulty of communicating via an anisotropic time - varying medium with noise levels greatly exceeding those found in other communications systems. However, there has been considerable progress in the state of electronics technology in recent years, particularly in the digital field, and it seems likely that such a communications system would need to take full advantage of such advances.

2. Design Considerations

Multipath propagation causes time dispersion of the received signal $/ 4 /$ which results in severe intersymbol interference if the signal element duration is of insufficient length. It has been shown $/ 5 /$ that the optimum frame length for transmission over a dispersive mediurn is equal to $\sqrt{L / \bar{R}}$, where L is the time spread introduced by the medium and B is the frequency spread. The time spread caused by multipath propagation, and the Doppler shift introduced by ionospheric perturbations, result in a near - optimum frame rate of 75 Hz . Serial data transmission systems are therefore limited to a data rate of 75 baud, which makes inefficient use of the 3 kHz . voice channel. To utilise the channel more elficiently the data can be time division multiplexed for transmission over a number of parallel sub - channels, orthogonally spaced within the voice channel.

Several such parallel sub - channel modeins have been developed in the past, notably Kineplex /6/, Kathryn $/ 7,8 /$, and Codem $/ 9 /$, for medium speed data transmission over HF radio /10,11/.

A macroscopic investigation of the HF spectrum below the M.U.F. $/ 1,12 /$ reveals that it is very difficult to find a 3 kHz . slot which is completely free of interference and it has also been shown /3/ that much of this interference is narrow - band. It is therefore unwise to attempt to use the channel to its full capacity. Codern uses a spectral redundancy technique to overcome narrow - band interference and fading by using only 16 of its 25 subchannels to carry information, the remainder being used for redundant parity bits. This is effective but inefficient in that the available transmitter power is distributed amongst all 25 channels which may present a disadvantage when working from a mobile transmitter. Gott $/ 3 /$ and Betts /12/ have shown that interference measurements made on the voice channel are often valid for several minutes and occasionally for an hour or more. This suggests that an adaptive system might be used which avoids those subchannels exhibiting poor error performance. Ideally, a revertive link would be used to assess the signal - to - noise ratio on each subchannel at the receiving site by transmitting a sounding signal from the receiver back to the transmitter. In practice, revertive links are costly and often difficult to implement, especially from mobile sites, and the best that can be done is for the transmitting site to evaluate the spectral distribution of interference within the channel in the absence of a signal. It has been shown /3/ that over distances of several hundred miles the interference pattern at the transmitter site is similar to that observed at the recejver and provides a' reasonable criterion for sub - channel selection. Results have also shown /13,14/ that, for a 2 - tone F.S.K. system, the error performance of an ideal frequency agile system greatly exceeds that of a system using fixed frequency allocation.

The system currently being developed uses 16 available equally (orthogonally) spaced sub - channels which accomodate 8 quartenary phase - modulated sub carriers. One possible distribution of the sub carriers is illustrated in Figure 1. A 4 - phase modulated signal occupies the same bandwidth as a bi phase one but carries twice as much information, and was therefore chosen in preference $/ 15,16 /$. Sy'stems employing pilot tone phase referunces have been shown to exhibit poor performance on $\mathrm{HF} / 17,18 /$, so a differential encoding technique is chosen to eliminate the need for an absolute phase reference. The differential phases correspond to dibits arranged in a
de around the unit circle (Figure 2) such that t probable phase error causes only a single bit Selection of the sub - channels to be used for sion is based on the results of a measurement noise present in each of the 16 available sub over an observation period of 3.5 seconds. ure is a compromise arrived at by consideration major factors. Firstly, an observation period too long necessitates a large input data buffer transmitter if overflow is to be avoided. , a period that is too short may coincide with, fadeout of any narrow - band interfering These fadeouts have been observed $/ 19,20 /$ to rer periods of up to 0.5 seconds. Thirdly, as e measurements are based on the results of a analysis using software - implemented Fast Iransforms, sufficient time must be allowed for be evaluated. After each observation period, ubchannels exhibiting the lowest noise levels en for transmission of the next message block. g a preamble of phase reversals used to regain synchronisation, the receiver is advised as to sub - channels to be used for subsequent ion of the data. This advisory sequence has a cy level four times greater than that used fur sion of the message. Results $/ 12 /$ indicate easonable interval between observation periods te order of scveral minutes and each message ce consists of 3 minutes of data.
ors observed on the HF channel predominantly l bursts and it has been shown $/ 20,21,22,23 /$ - interleaved binary block coding provides the tection against these types of errors. As the is to be implemented in real - time at the a code must be used which is a reasonable iise between burst - correcting ability and atation complexity. The (15,7) dual - error g binary BCH code $/ 25$ / is reasonably simple to in real time using software $/ 26 /$, and groups of 's interleaved to a depth of 16 in serial along the 16 data sub - channels can tolerate wide les or noise bursts of up to 0.43 seconds. This a block length (of $16 \times 16 \times 15=3840$ bits) $i n$ total number of 512 errors can be corrected.
nodulation of a parallel sub - channel system is implemented using banks of narrow - band /6/. These are often costly and are it in an in - band frequency agile environment I small number of filters are in use at any one For this reason it was decided to use the Fourier Transform (D.F.T.) for sub - channel in and phase decoding. Because the time to implement the F.F.T. algorithrn using
exceeds the signal element duration, a approach is adopted by evaluating the chirp rm algorithm using charge - coupled - device transversal filters /27/. D.F.T. processors zh devices are capable of evaluating a 512 transform in less than 6 ms .

n Implementation

requirement for system flexibility, together falling cost of microprocessor technology, d that a primarily 'software - based' tation was preferable to a purely hardware 1 approach /28/. Coding $/$ decoding and on f demodulation are controlled almost by the microprocessor system, changes in rformance being effected by simply modifying' ably - level programs. This ensures that the e costs are kept to a minimurn.

A block diagram of the complete system is shown in Figure 3. At the transmitter incoming serial data is buffered and encoded by the Motorola 6800 - based microprocessor system prior to generation of the frequencies and phases required to construct the multi sub - channel baseband signal. The data is frequency division multiplexed for transmission over eight differential quadrature phase shift keyed (DQPSK) sub channels and the resulting composite waveform is low pass filtered to remove components above the signal band which then forms the modulating signal to the single side - band (SSB) suppressed - carrier HF transmitter. During breaks in transmission, the baseband output from the $H F$ receiver at the transmitting site is sampled by the A/D converter and an FFT is performed by the microprocessor to determine the optimum sub - channels for subsequent transmission.

At the receiving station, samples of the filtered baseband signa! are processed by an FFT processor whose output coefficients in the frequency domain are used by the microprocessor system to demodulate the composite waveform. Decoding and re - formatting of the demodulated signal then results in the output serial data stream.

For real - time operation, it was found that single processor systems at the transmitter and receiver sites were insufficient to handle all the required tasks. For this reason, a multi - processor configuration has been developed in which one or more 'slave' processor units (Figure 4) are assigned tasks by a master processor which oversees operation of the entire system. Each slave processor unit includes a single 6800 central processing unit (CPU) and 1 Kbyte of read / write or random access memory ($R A M$), which is used to contain data and program areas. The master processor accesses the slave control lines via a 4 bit latch located at the base address of the slave processor. Once initialised, the slave processor unit is capable of performing tasks completely independently of the master thereby increasing the overall processing power of the complete system.

The transmitter (Figure 5) uses one slave unit for generation of the multitone modulating signal. Serial data at 550 bps is accepted into the serial interface and is loaded into the input data buffer in RAM via an interrupt service routine. Groups of seven data bits are extracted from the buffer and mapped into 15 - bit BCH codewords. A group of seven data bits can be represented as a sixth order modulo - 2 polynomial $d(x)$ which is encoded by finding
$r(x)-x^{8} d(x)+\operatorname{rem}\left(x^{8} d(x) / g(x)\right)$
where $g(x)$ is the generator polynomial
256 of the resulting codewords are assembled into a 16×240 bit matrix to enable interleaving to depth 16 along each of the 16 data sub - channels. On request from the slave processor, pairs of bits are extracted from the matrix and loaded into the slave: RAM, each dibit corresponding to a single frequency division multiplexed sub - channel. For a single sub channel, the absolute phase is determined by the result of an exclusive - OR operation on the current dibit with the immediately preceding dibit for that sub channel, the result being used as an index on an 80 point cosine lookup table in the slave processor -- RAM. Samples for each sub - channel are then added in to one of two 80×12 bit multiplexed shift registers; the complete waveform for a single element is thus formed after eight complete rotations. When one shift register is full, its contents are output to the low pass filter at the appropriate sample rate of 6 kHz .

A message consists of 16,384 codewords, a total transmission time of 3.4 minutes. Between messages, an estimate of the interference present in each subchannel is made by evaluating a 64 - point radix - 2 butterfly Fast Fourier Transform algorithm on the sampled data signal. The 9600 Hz . sampling frequency provides a frequency - domain resolution of 150 Hz . Selection of the sub - channels to be used for transmission of the next inessage sequence is made by finding the eight sub - channel slots exhibiting the lowest power spectral density averaged over eight sample periods. Transinission is then resurined by sending a preamble of phase reversals over the eight sub - carriers used for the previous message. This is followed by an advisory sequence of 815 - bit codewords transmitted with a four - fold spectral redundancy to ensure a high probability of correct reccption. The first three information bits of each codeword relate to a sub channel number in the range 0 to 7 , the last four indicating a frequency slot in the range $0-15$. Transfer to the new frequency slots occurs after the final element of the advisory sequence.

The receiver (Figure 6) uses one slave processor to control element synchronisation of the received signal and one for decoding of the demodulated data. Demodulation is accomplished using a charge coupled device (CCD) to evaluate the chirp - Z transform $/ 29 /$. The chirp - Z transform can be derived from the expression for the discrete Fourier Transform as follows /30/:

$$
\begin{array}{r}
F_{k}=\sum_{n=0}^{N-1} f_{n} \exp (-i 2 \pi n k / N) \quad(D F T) \\
n, k=0,1,2 \ldots \ldots N-1
\end{array}
$$

using the identity $\quad 2 n k=n^{2}+k^{2}-(k-n)^{2}$
we obtain

$$
\begin{equation*}
F_{k}=\sum_{n=0}^{N-1}\left[f_{n} \exp \left(-i \pi n^{2} / N\right) \operatorname{epp}\left(i \pi(k-n)^{2} / N\right] \exp \left(-i n k^{2} N\right)\right. \tag{C2I}
\end{equation*}
$$

e
The implementation involves three operations
(i) the comlex sequence $g n$ is generated by the product of fn with $\exp \left(-i n^{2} / N\right)$
(ii) a discrete convolution is performed between gn and $\exp \left(i \pi(k-n)^{2} / v\right)$
(iii)the resulting sequence is multiplied by exp ($-\mathrm{i} \mathrm{k}^{2} / \mathrm{N}$)

These steps are illustrated in Figure 7. Step (ii) involves four convolutions which are performed by the CCD transversal filters. Steps (ii) and (iii) are implemented by using multiplying digital to analog converters and lookup tables in programmable read only memories which contain sampled sine and cosine 'chirp' waveforms.

For purely real inputs, the analysis band extends from zero to the Nyquist frequency. The CCD device with its associated circuitry implements a fixed length transform of 512 points which, for a frequency resolution of 75 Hz . requires a sampling frequency of 38.4 kHz . The total time taken to acquire 512 samples is thus $512 / 38400=13.3 \mathrm{mS}$, which is the element duration. The required signal band cxtends from 300 to 2550 Hz . which is available in 885 microseconds. The remaining time of 12.4 mS is thus available for processing.

Synchronisation is arhieved by observing the behaviour of the phasor. For a sequence of phase reversals, the locus of the phasor as we traverse along the signal element is a spiral, and its magnitude is a triangular wave (Figure 8), whose maxima cortespond to the correct sampling instants. The magnitude of the phasor can be computed from the Fast Fourier Transform by observing the Fourier cocfficients at the discrete sub - channel frequencies. An estimate of the mean value of the phasor over all sub - channels can be cualuated by finding

$$
|\bar{F}|=\frac{1}{8} \sum_{k_{c}} \sqrt{F_{k_{s}}^{2}(R e)+F_{k_{s}}^{2}(l m)}
$$

where KC is the sample number corresponding to the sub - channel frequency. The values of $\mathbb{F} \mid$ thus obtained indicate the position of the primary sampling instant within the frame and the slave processor then instructs at appropriate change to synchronise the frame.

The demodulated data is entered into a 480 - byte matrix in the slave decoder for de - interleaving and decoding. Peterson's decoding algorithm /31/ is used to recover the seven information bits from each received codeword. Arithmetic operations are implemented in the Galois field of ($\mathbf{1}^{+}$) elements. Addition and subtraction are simply performed modulo - 2, white multiplication and division operations are performed using logarithonic lookup tables. The algorithm used is shown in Figure 9 and can be described as follows

If $r(x)$ is the received word and $g(x)=$ $m_{1}(x) m_{3}(x)$ then the two partial syndromes can be found by calculating

$$
S_{1}=\operatorname{rem} \frac{r(x)}{m_{1}(x)} \quad S_{3}=\operatorname{rem} \frac{r\left(x^{3}\right)}{m_{1}(x)}
$$

If errors have occured, the syndromes will be non zero and the elementary symmetric functions can be found directly from Newton's identities: $S_{1}+\sigma_{1}=0$

$$
S_{3}+S_{2} \sigma_{1}+S_{1} \sigma_{2}+\sigma_{2}=0
$$

in matrix notation

$$
S=M_{t} \Sigma
$$

where

$$
S=\left[\begin{array}{l}
s_{1} \\
S_{3}
\end{array}\right] \quad \sum=\left[\begin{array}{l}
\sigma_{1} \\
\sigma_{2}
\end{array}\right] \quad M_{t}=\left[\begin{array}{ll}
1 & 0 \\
S_{2} & S_{1}
\end{array}\right]
$$

It is then possible to find the $\left(\sigma_{j}\right), j=1,2$ by computing

$$
\Sigma=M_{c}^{-1} S
$$

It is then possible to solve $/ 32 /$ for the error locator numbers (β_{j}) by substituting elements of Galois field (2^{4}) in the equation

$$
\begin{aligned}
\Sigma(x) & =\left(x+\beta_{1}\right)\left(x+\beta_{2}\right) \\
& =x^{2}+\sigma_{1} x+\sigma_{2}
\end{aligned}
$$

This completes the decoding algorithin. The decoded data is stored in the output data buffer and is then converted to serial format by a parallel - to - serial converter.

aclusion

novel implementation of a multi - channel modem ta communications over HF radio links has been d. The use of microprocessor technology reduces and increases system flexibility by using a ly software - based approach. The effects of th distortion are overcome by using a parallel nel system to extend the duration of the signal Narrow - band interference is cornbated by in - band frequency agility to locate the iers within the quiet regions of the voice Because of the time - varying nature of the 1, the subcarrier locations are updated at t intervals; thus the systern adapts itself to evailing interference pattern. Subchannel on and demodulation are accomplished by using coupled devices to evaluate the Discrete Fourier rm , thereby alleviating the need for banks of - band filters which are traditionally used in bcarrier modems. Broad band noise effects are re by using bit - interleaved binary block
view of the flexibility of the system, it e possible, if a revertive link were available, erve fluctuations in the error patterns ned at the receiver, and to modify the cy in the transmitted signal to suit the types s received. The system then becornes fully the redundancy in the signal always being icient to maintain error - free conmunication. is much scope for future work!

References

n automatic HF channel monitoring system',
trell, R.A., Proc trell, R.A., Proc. Conf. on Advances in HF munications systems, IEE, Feb. 79, pp. 57 -
se of pilot tones for real - time channel mation of HF data circuits', Betts, J.A.; m, R.S.; Cook, S.J.; Clark, J.G.; Proc.IE.E,
122, No.9, Sept. 75 122, No.9, Sept. 75.
haracteristics of Interfering signals in onautical HF voice channels', Gott, G.F.; iforth, M.J.D.; Proc.IEE, Vol.125, No.11, Nov. pp. $1208-1212$.
fium - speed digital data transmission over HF: nels', Darnell, M.; Proc. of Conf. on
tal tal Processing of Signats in Comrnumications, ghborough, Sept. 77, pp. $393-402$. xillun rate waveforns for dispersive channels', ner.man, M.S.; Thorison, D.N.; General Atronics May 1964 Philadia, Pa., Report. 1329-98May 1964.
ineplex - A bandwidth - efficient binary
sinission system', Mosicr, RR: Clawowb smission system', Mosicr, R.R.; Claubough, ; AIEE Trans. on Communications and tronics, Vol. 76,1958 , PP. $723-728$. AN/GSC - 10 (KATHRYN) variable rate data m for HF radio', Zimmerman, M.S.; Kirsh, A.L.; Trans. Comm. Tech., Vol. COM-15, Part 2, pp. 197-204.
test results of the AN/GSC-10 (KATHRYN) al data terminal', Kirsh, A.L.; Gray, P.R.; , D.W.; IEEE Trans.' Cormm. Tech., Vol. COM 1969.
:ornbined coding and modulation approach for umpication over dispersive channels', Chase, EEEE Trans. Cornm. Tech., Vol. COM-21, pp. 159 - 174.
gratin controlled HF modern implementation', de , J.; Fast, D.; Michelson, A.; Carmichael, EASCON 174 , Pp. $349-352$. Integrated HF error - controlled modem', de , J.; Mirhelwn, A.; GTE Sylvania, Eastern sinn, Needhum Heights, Mass., 02194. sounding and its use for conterol of HF (3-30
MHz.) adaptive systems for data transmission', Betts, J.A.; Ellington, R.P.; Jones, D.R.L.; Proc. IEE, Vol. 117, No. 12, Dec. 1970.
113/ 'Improvement of slow - rate FSK by frequency agility and coding', Gott, G.F.; Hillam, B.; Proc. Conf. on Advances in HF Communication Systerns and
/14/ 'An HF data modem with in PP band frequacy agility', Darnell, M., Proc. Conf. on Advances in HF Comrnunication Systems and Techniques, Feb. 79, pp. 50 - 54.
115/ Voiceband 4 - phase data set for Global Communication', Horlacher, R.L.; Schroeder, H.C.; IEEE Trans. Com. Tech., Vol. COM - 17, No. 3, June 69.
/16/ 'Error performance of quadrature pilot - tone Phase - shift keying', Bussgang, J.; Leiter, M.; IEEE Trans. Corrm. Tech., Vol. СОM - 16, No. 4, August 68, pp. 526 - 529 .
/17/ 'The Fadeogram: An ionogran - like display of the time - varying frequency response of HF SSB radio Channels', Filter, J.H.J.; Arǎi, B.; Thomison, R.G.W.; IEEE Trans. Comm. Tech., Vol. COM - 26, No.6, June 78.
118/ 'The Fadeogram - Applied to analysing HF data modern performance', Thomson, R.G.W.; Filter, J.H.J.; National Electrical Engineering Research Institute of the South African Council for Scientific and Industrial Research, Johannesburg.
119/ 'Effective Anplication of Forward- Acting Errorg. Control Coding to Multichannel HF data moderns', Pierce, A.W.; Barrow, B.B.; Goldberg, B.; Tucker, J.; IEEE Trans. Comm. Tech., Vol. COM - 18, No. 4, August 1970.
120/ 'Error patterns measured on transequatorial. HF communication links', Brayer, K., IEEE Trans. Comm. Tech., Vol. COM - 16, No. 2, April 1968.
121/ 'Improved signal design for fading channels by coding', Chase, D., CNR Inc., Newton, Mass.
1221 'Application of forward - error correction to a Rayleigh fading communication channel', Treciokas, R., Proc. IEE, Vol. 125, No. 3, March 1978, pp. 173 - 178.
123/ 'The Improvement of Digital HF Communication through coding', Brayer, K., IEEE Trans. Comm. Tech., Vol. COM - 16, No.6, Decermber 1968.
124/ 'HF FSK error rate measurements', Ames, J.W., IEEE: Trans. Comm. Tech.,Vol. COM - 17, August 69, pp. 438 - 442.
1251 'On a class of Error - Correcting Binary Group Codes', Bose, R.C.; Ray - Chaudhuri, D.K.; IEEE Trans. on Information and Control, Vol. IC - 3, 1960, pp. 279 - 290.
/26/ 'Computer Implementation of decoders for several BCH Codes', Michelson, A.M., Polytech. Inst. of Brooklyn International Symposium on Computer Processing in Communications, April 69, pp. 401 413.

127/ 'A 500 - stage CCD Transversal Filter for Spectral Analysis', Brodersen, R.W.; Hewes, C.; Busi, D.D.; IEEE Trans. Electronic Devices, Vot. ED - 23, Feb. 1976, pp. 143-152.
128/ Microprocessor Implementation of Tactical Moderns for Data Transinission over VHF radio', Davis, B.H.; Davis, B.A.; Radio and Electronic Engineer, Vol.49, No. 4, April 79, pp. 204 - 210.
129/ 'Comrnmications applications of CCD Transversal Filters', Buss, D.n.; Broderson, R.W.; Hewes, C.; Tasch, A.F.; IEEE: Nat. Telecomm, Conf. Rec., vol. 1, Dec.1975, Pp. 1.1-1.5.
130/ 'Comparison between the CCD CZT and the digital FFT, Buss, D.D.; Veenkant, R.L.; Broderson, R.W.; Hewes, C.; Proc. 1975 Naval Electronics Lab. Center Int. Conf. on the Application of $\mathrm{CCD}^{\prime} \mathrm{s}$, October 1975, pp. 267 - 281.
131/ Encoding and Error Correction Procedures for the Bose - Chaudhuri - Hocquenghem Codes', Peterson, W.W., IRE Trans. on Information Theory, September 1960, pp. 459-470.
1321 'Cyclic Decoding Procedures for the Bose Chaudthuri - Hocquenghein Codes', Chien, R.T., IEEE Trans. on Information Theory, September 1964.
(:
Pigure 1. One possible distribution of subchannels within the voice channel

Pigure 4. Slave processor system

Figure 3. Transmitter (a) and Receiver (b) systems

Figure 5. Transmitter system

Figure 7. Implementation of Chirp-z transform

Figure 8. Variation of phasor magnitude over phase reversal sequence

Figure 9. Implementation of decoding algorithm

Microprocessor Controlled Trackside Recorder

D.R. Isaac, C.T. Spracklen,
J.R. Manning

Abstract

This paper describes a new trackside train speed recorder designed at Durham University Applied Physics Department for the Chief Civil Engineer, British Rail Southern Region. The new recorder is controlled by a microprocessor unit and is capable of recording train speed, direction, wheel count, and time of day in an electrical memory contained within the system. The recorder is later transported to a microcomputer base station where the data is offloaded and displayed on a line printer. The new unit is entirely electronic in operation and is powered by rechargeable dry cells. The system is lighter, smaller, and more flexible than any previous designs.

History

The interest in the speeds which trains achieve extends beyond railway staff to some sections of the general public. Usually the interest is in the performance of particular trains over various routes and a record of speeds achieved can easily be obtained on board the train. Speed records in this form are of considerable value to railway operators. To be of use to permanent way engineers it is often desirable to obtain the speed of all trains passing over a particular piece of track. A man stood at the trackside using a stopwatch could obtain this information but such a practice is seldom justified.

The use of automatic unattended recording systems would be ideal for permanent way needs. The limited commercial scope for such equipment has tended to restrict development to the adaption to train speed recording of standard commercial data recorders. The few recorders that have been developed tend to suffer from the trackside environment leading to frequent mechanical failures.

Specifications

A small, battery operated unit was required which could be placed at the track side to record data over a period of several days. The following parameters were to be recorded for each train passing during that period: time of day, train speed, wheel count and direction of travel. The recorder unit would then be transported to a base computer for offloading the data accumulated during the recording period and for recharging the dry cells. The unit would then be returned to the track side for further recording.

The unit was required to measure train speeds in the range 1 to 150 mph , and to record the speed rounded down to the nearest 1 mph . Trains travelling at speeds not exceeding 1 mph were to be regarded as stationary and not recorded. The time of day was to be recorded at the instant of arrival of a train, to the nearest minute at least, and the system was to be capable of recording up to 200 axles per train. The overall storage capacity of the system memory was to be sufficient to hold data relating to 1000 trains (based on an estimate of a maximum of 250 trains per day passing over a period of 4 days).

To operate the existing recorder, two switches are mounted on the rail head, spaced 66 feet apart (figure 1). The front wheel of an approaching train causes these switches to close in turn. The train speed is recorded by measuring the time interval between switch closures. The new system was required to operate correctly using the existing track switches but should be adaptable to other spacings.

A single base station may serve a number of trackside units, the overall cost being considerably lower than any previous system.

Design and Construction

Recent advances in silicon integrated circuit technology have allowed complex logic operations to be implemented using very small amounts of hardware. Instructions specifying the operations to be performed are stored sequentially in a "read only" memory. These instructions are read from the memory by a microprocessor and are obeyed or "executed" accordingly. Changes in the operation of the system may be effected by simply modifying the instructions (the "software") in the memory. The new trackside recorder is based on such a system; a block diagram is shown in figure 2.

The system is controlled by the microprocessor unit (a Motorola M6802), whose program is contained in a 2 kbyte programmable read only memory. The Peripheral Interface Adapter (PIA) is used to interface the microprocessor to the track switches, the control pushbuttons, and the base station. A crystal controlled clock IC is used to maintain the time of day. Train data is stored in four CMOS read/write memory ICs, which are powered by a backup battery supply in the event of main battery failure. A Liquid Crystal Display, with its associated interface IC, is included to display the current time, or the speed of the last train recorded.

The system software continuously monitors the track switches for a closure. When a closure is detected, the train direction is known, and the second switch is monitored for closure. The time between closures is measured to an accuracy of 1 ms , and the train speed is computed by dividing a fixed number (which is proportional to the switch spacing) by the measured time. The number of axles is then found by counting the number of successive closures of the second switch (a 15 ms "debounce" time
is allowed for each closure). It is assumed that the train has passed if no switch closures are detected within a time which is inversely proportional to the train speed. After the last axle has passed, the data is stored in memory in the format to be described, and a delay of exactly 15 s is allowed before commencing the search for a new train. If a switch closure is detected within this time, the axle count is regarded as erroneous and is stored as a count of ' 0 '. The search for a new train will not begin until both switches have returned to the rest position.

Data for each train is stored in four or five bytes (8 bits) of read/write memory. The fifth byte is used only if there has been a change in hours since the previous train was recorded. Otherwise the hours are not recorded (to conserve memory). Minutes and seconds are recorded using 7 bits each, direction is recorded as a single bit, speed and axle count occupy one byte each. Up to 254 axles per train are permitted. The maximum memory capacity is 8 kbytes, which allows nearly 1000 trains to be recorded. If a smaller memory capacity is sufficient, the number of memory ICs may be reduced accordingly to save cost.

Eight data lines and two control lines are used to interface the recorder unit to the base station for data offloading. A logic ' 0 ' on one of these lines (from the base station) indicates that the offloading procedure is to begin. Successive bytes of data are then passed from the recorder to the base station on command until the end of the data table is encountered. The batteries may then be changed, and the system time adjusted by depressing one of two buttons located on the inside of the recorder housing for "slow" or "fast" time advance (the time is monitored on the LCD mounted on the front panel).

The major elements of the recorder unit are mounted on a dual-sided printed circuit board, which also contains the backup battery supply. Several pushbutton controls are available inside the housing: Reset, to restart the recording operation; Test buttons, for simulation of the trackside switches; Slow and fast clock advance, for presetting system clock. A single control marked "time" is available outside the unit. Ordinarily, the speed of the last passing train is presented on the liquid crystal display; if the "time" button is depressed, the current system time is displayed until the button is released.

Base station

The system base station was required to offload, print, and if necessary, recall the data from the trackside unit. It was centred around an AIM-65, a small, inexpensive, 8-bit microcomputer system, with an integral printer. The trackside recorder base station program prompts the user to connect the recorder unit to the computer, then prints out the results in the format shown in figure 3. This format may be altered by simple software changes. A change of batteries will normally be made after the data has been offloaded. It is, however, possible to change the batteries before, even while the recorder is in the
field, as the battery backup will protect any existing data.

Field Trials

Laboratory tests have shown the accuracy of the new recorder to be 0.002% at 1 mph and 0.33% at 150 mph with a 66 ft . switch spacing. A comparison with an existing recorder over the full range of speeds showed the new recorder to be considerably more accurate, especially at higher speeds. accurate then the GMT at higher speeds. Tests on a stretch of (third rail) electrified line have shown the system to be immune to the transient effects often produced in a high-intensity electric field environment. Field tests have been carried out using a variety of switch mechanisms. The Silec oil-damped treadles, normally used with the existing recorders, gave good speed results but spurious axle counts due to the long time required for the treadles to return to rest after closure. Removal of the oil damping cures this problem but considerably shortens the life of the treadles. A magnetic proximity-detector type mechanism again gave good speed measurements but generally produced an axle count greater than the true count due to excessive contact bouncing. A pair of pressure-sensitive microswitches advantages of small size and low cost. Work is now in progress to fully develop this type of track switch.

Future Development

Automatic train identification should be possible if a measurement of axle spacing is made in addition to the axle count. The measured data can be correlated with stored data relating to a number of train types. The train type may then be identified with a high degree of certainty. This information would then be printed at the base station, together with the speed, direction and time.

A multiple switch facility would allow a number of switch pairs to be connected to a single recorder unit in order to monitor several tracks simultaneously. This might be especially useful for monitoring train movements over a number of routes at complex rail junctions. A maximum of four switch pairs would be tolerable without major hardware modifications to the current system. However, considerable software modifications would be necessary for this option.

The power consumption of the current trackside recorder system is approximately 1 W ; most of this is due to the M6802 microprocessor. A CMOS plug-in replacement for this device has been announced, which should reduce power consumption, and hence battery drain, by approximately 66\%. It will shortly be possible to replace the other major components, namely the PIA and the EPROM, with their CMOS equivalents which should then allow the unit to operate continuously for several months without the need for battery recharging.

Conclusion

A trackside train speed recorder based on microprocessor technology has been described which presents many advantages over previous designs. A cost effective system is achieved, together with an overall performance improvement. The new recorder unit can be used with a variety of switch mechanisms and switch spacings, and may be operated from a set of dry batteries for several days. Very favourable results have been obtained from tests in the laboratory and in the field. It is anticipated that the falling cost of microelectronics technology will lead to further improvements and cost reductions in the near future.

[^0]: A similar technique was used by R.G.W. Thompson $(36,37)$ to classify $H F$ fading patterns. His analysis was based on observations of a multitone sounding signal from a remote transmitter, and the received data was recorded on an $F M$ tape recorder prior to processing through a spectrum analyser and

[^1]:

[^2]: ここE MNEMGNIC ASEETBLER PREE

[^3]:

