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Applications of Microprocessors in Digital
High Frequency Radio Communications

D R Isaac

Abstract

This thesis describes the application of VLSI devices to
channel evaluation and communication techniques over ionospheric
radio paths. Digital signal processing techniques using
microprocessors and charge coupled devices are described in
detail. A novel method for observing interference and fading
patterns on HF channels is described. Error control coding
schemes and digital modulation techniques are combined in a
design for an adaptive modem for use over HF radio links.
Results of narrow-band interference measurements, error patterns
and coding performance are presented.
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Glossary of Terms

ACIA Asynchronous Communications Interface Adapter
A/D Analogue to Digital

ADC Analogue to Digital Converter

AM Amplitude Modulation

ASCII American Standard Code for Information Interchange
ASK Amplitude Shift Keying

BCH Bose Chaudhuri Hocquenghem

BER Bit Error Rate

BFO Beat Frequency Oscillator

BS Block Select

CCD Charge Coupled Device

CPU Central Processing Unit

CzZT Chirp-Z Transform

CwW Carrier (or Continuous) Wave

D/A Digital to Analogue

DAC Digital to Analogue Converter

DDR Data Direction Register

DFT Discrete Fourier Transform

EOF End of File

EPROM Erasable Programmable Read Only Memory
FEC Forward Error Correction

FFT Fast Fourier Transform

FSK Frequency Shift Keying

HF High Frequency

IC Integrated Circuit

I/0 Input / Output



IRQ Interrupt Request

LSI Large Scale Integration

MPU Microprocessor Unit

MSI Midwest Scientific Instruments
MUF Maximum Useable Frequency
NMI Non Maskable Interrupt

PDR Peripheral Data Register

PEP Peak Envelope Power

PIA Peripheral Interface Adapter
PROM Programmable Read Only Memory
PSK Phase Shift Keying

QPSK Quatenary Phase Shift Keying
RAM Random Access Memory

RES Reset

ROM Read Only Memory

R/W Read / Write

RX Receiver

SSB Single Sideband

SSI Small Scale Integration
SWTPC South West Technical Products
TFDM Time to Frequency Division Multiplexing
TTL Transistor Transistor Logic
TX Transmitter

vDU Visual Display Unit

VHF Very High Frequency

VLSI Very Large Scale Integration

VMA Valid Memory Address
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CHAPTER 1 Introduction

i.1 History

The High Frequency (HF) Radio Band is that part of the
electromagnetic spectrum extending from 3 to 30 MHz. Signals
transmitted within this frequency range are predominantly
propagated via single or multiple reflections from ionized
regions within the upper atmosphere. These ionized regions are
generally found at heights of 100-400 km. and are collectively
known as the jionosphere. The phenomenon of ionospheric
propagation has been used for long-distance communication since
the pioneering work of Guglielmo Marconi carried out at the
beginning of the century. Although the physics of the ionosphere
has been studied extensively, the characteristics of the HF
channel are often unpredictable. Nevertheless, the ionosphere
provides an effective transmission path for a variety of
communication traffic and is still widely used to communicate

over long distances using a minimum of equipment.

The first successful experiments involving wireless
information transmission using electromagnetic waves were based
on digital signal representations for reasons of simplicity of
the transmitter and receiver structures. This type of
communication, called wireless telegraphy, was of great
importance during the first half of the 20th century and still
exists for certain specialised applications. The invention of
electron valves, and later the transistor, gave rise to the
development of wireless analogue transmission systems, and, with

the discovery of different modulation schemes, the modern

Unlye.
‘\g\'ﬂ €perN
Q“" SCIENCE KN
2 2FER J§82
SECTION
VLiba'a'l"{_



wireless networks for information interchange were evolved; by

radio relay, satellite, and ionospheric propagation methods.

The discovery that it was possible to transmit analogue
signals by pulse code modulation led to a revival of interest in
digital transmission. The successive change from analogue to
digital circuits has given rise to the need for digital
transmission over wireless networks (1). Considerable efforts
are at present being made to investigate the performance of
wireless channels in different frequency ranges with respect to

digital signal transmission, the HF band being no exception.

Because of the problems associated with digital transmission
over HF radio links, this medium has not been used successfully
for reliable communication of medium- and high-speed data
traffic., Certain investigations and experiments were carried out,
mainly in the United States, during the 1950's and early 1960's
(5,6), but were largely abandoned in favour of satellite
communication links which yield higher bit rates with a reduced
probability of error. However, many users, faced with problems
of the cost and vulnerability of satellites, are prepared to
tolerate a reduction in bit rate in exchange for economical
systems using a virtually indestructive communications medium.
Indeed, for mobiles operating over long-distance circuits, such

as ships and aircraft, the HF path is almost the only alternative

[
£

to satellite communication. i P

VLE e M2

The recent advances in digital integrated circuit technology

have enabled substantial reductions to be made in both the size
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and the cost of communication systems (2) and it seems only
logical that HF radio systems should also benefit from such
developments. The work described in this thesis is concerned with
the applications of VLSI (Very Large Scale Integration)
technology to channel evaluation and data communication using the
HF radio path. It is shown that systems which previously
required large amounts of expensive analogue equipment can be
realised at lower cost and with increased flexibility using

nearly all digital techniques.

1.2 The lonosphere

An effect of solar radiation is to cause ionisation of
certain regions of the earth's atmosphere. This ionisation of
gas molecules results in an electron density profile which is
non-uniform with height. The region of the atmosphere having the
highest electron density is known as the 'ionosphere', and it is
this region which is responsible for the phenomenon of

ionospheric propagation.

When a radio wave transmitted from the surface of the earth
encounters a region of intense ionisation, it will be diverted
from its original path by a refractive mechanism. The wave will
also be considerably attenuated. At certain frequencies the
refractive process is sufficient to 'bend' the wave through an
angle exceeding 180°, at which point the attenuated wave will
be returned to earth. The frequencies at which this phenomenon
most commonly occurs lie within the range 3-30 MHz (the HF radio
band). Because the refractive process appears to be one of

reflection, this phenomemon is often referred to as 'ionospheric
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reflection', a term which is subsequently used in the text.

The vertical electron density profile is non-linear; there
are regions of ionisation which are more intense than others.
The heights of these regions depend on many factors, one of which
is the intensity of the solar radiation which varies from day to
night, and with the seasons. In the long term, they are
dependent on variations of the solar (sunspot) cycle. There are,
however, three regions of chief importance, referred to as
'layers'. These are the E-layer at 120 km, (all figures are
approximate), the Fl-layer at 200 km., and the F2-layer at
300-400 km. At night, and in mid-winter, the F1 and F2 layers
combine to form a single F-layer at 250 km. Below the E-layer
there is a D-layer (at 50-90 km.) which is generally more
important as an absorber than a reflector of radio waves since
the attenuation at this altitude is somewhat greater than at

higher regions.

Figure 1.1 is a simplified representation of a typical HF
propagation path showing the ionosphere comprising two ionized
layers, the E-layer and the F-layer. The signal is returned to
earth via a single-hop E-layer mode together with single- and
double-hop F-layer modes. Consequently, a short transmitted
pulse will have three components when detected at the receiver,
each component itself exhibiting time dispersion which causes a
corresponding broadening of each received pulse. This latter
form of dispersion is due to the fact that the transmitted energy
illuminates the ionospheric layers over a relatively large area

rather than at a single point; thus the energy of a given
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received component can be considered as being made up from the
energy of a large number of elemental returns, each with a
slightly different propagation time, integrated over an

appropriate area of the ijonospheric layer.

There are many problems concerning the communicator who
wishes to use the ionosphere as the transmission medium.
Attempts have been made to model the HF channel (3), but the
(largely unpredictable) time variation of the channel
characteristics considerably increase the difficulties. Some of
the problems are now discussed, and suggestions are included for

some ways of combating the detrimental effects of the channel.

1.3 Problems of the HF channel
The problems associated with digital communication via
ionospheric propagation may be classified into two broad

categories:

(1) Multiple reflections from different layers in the
ionosphere give rise to differential time delays in the
received signal which results in intersymbo!l interference and

fading.

(2) Noise, both natural and man-made, causes errors in the

transmitted data stream.

Both problems are of equal concern in that they corrupt the
received data to a sometimes considerable extent. FEach will now

be discussed separately.
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1.4 Multipath propagation

The problem of intersymbol interference is inherent in any
digital communications link but is especially important over HF
radio links due to the comparatively long relative time delays
introduced by multipath (or multimode) propagation. For a
typical HF link of, say, 1000 km., the time delay between the
shortest and the longest propagation path may be in the order of
2 to 3 milliseconds, the effect of which is to cause intersymbol
interference of such severity as to considerably reduce the
maximum allowable transmission rate. The time variations of the
amplitudes and phases of the individual modes will be independent
and any one mode may be dominant at a particular instant. In
addition, phase cancellations may cause fading of the received
signal. The result of multipath propagation, in any event, is to
introduce errors in the transmitted data. Whether or not it is
possible to recover these errors is dependent on the

interpretation of the data at the receiver.

1.4.1 Overcoming multipath problems
Broadly speaking, the detrimental effects of multipath

propagation may be reduced in four ways:

(1) Choice of a suitable operating frequency
(2) Time-to-frequency division multiplexing
(3) Channel equalization

(4) Diversity techniques

The highest frequency at which ionospheric propagation is

possible for a given range is termed the Maximum Useable

i-6



Frequency (or MUF) and varies with the time of day and with the
seasons as well as being severely affected in an unpredictable
manner by solar flares etc. For an HF radio link, as the
frequency of operation is increased, the number of propagation
modes is reduced until single-mode propagation results at a
frequency just below the MUF. It is possible to predict the MUF
on a long-term basis, but the short-term fluctuations may
considerably alter the prediction figure (4). However, if a
large number of channels is available to the user, considerable
improvements can result from the correct choice of operating

frequency.

Time-to-frequency division multipexing (TFDM) is a technique
used to increase the transmission rate while keeping the signal
element duration (frame rate) constant (5,6). The data stream is
divided into short blocks for transmission over a number of
frequency-parallel sub-channels, all contained within the
allocated voice channel, and orthogonally spaced to avoid
co-channel intgference. Because the frame rate is constant, the
signal element duration can be greater than the multipath spread,
and the data rate may be increased by a factor which is the
number of sub-channels that can be fitted in to the available

channel capacity.

Channel equalization involves the construction of a matched
filter to combat the degrading effects of the channel. Such a
filter normally consists of a tapped delay line, whose tap
outputs are weighted and summed to provide the f{filter output.

Convolution of the received signal with the impulse response of
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the filter should result in the original signal. Because of the
time-varying nature of the HF medium, such an equaliser must be
adaptive in nature, the number and position of the delay-line
taps being continuously updated to allow for changes in the
transmission medium (7). In practice, adaptive equalisers are

difficult to implement and can be extremely costly.

Diversity may be employed in time, frequency, or space. A
simple time diversity technique is simply to send the message
more than once, thereby increasing the probability of correct
reception. Dual frequency diversity requires transmission over
two channels simultaneously. In one method, both channels are
monitored and the channel which yields the most favourable error
performance is selected. Two channel filters are therefore
required at the receiver and the transmitted spectrum is doubled
in width resulting in inefficient spectrum utilisation. Space
diversity is the technique most commonly employed (8) and is
based on the (usually correct) assumption that the time-variation
of the phase cancellations at one point in space will be
different to those occurring at another point which is located at
a distance away which is comparable to the transmission
wavelength. This method is quite effective but requires two
receivers and two antennas. In all diversity techniques the
problem of designing efficient combiners is a considerable one,
and in any case a doubling of the resources is required in some

sense,
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1.5 Noise

The other major source of errors is noise, which may be
naturally occurring, or which may arise from some sort of
man-made disturbance. This latter type is often a result of
congestion within the HF spectrum creating narrow-band
interference from other users of the HF medium. A channel may be
allocated to several users, who may interfere with each other if
there is propagation between them. Serial data transmission
systems (eg. radio telegraphy) suffer considerably from this
type of interference (9). Broad band noise may be caused by
machinery operating in the vicinity of the receiver although this
sort of disturbance is normally localised in nature. A more
common source of broad-band noise is that resulting from electric
storms or other ionospheric disturbances which may generate a
considerable amount of radiated energy in the HF spectrum. This
type of noise generally occurs in bursts and is especially

prevelant during the summer.

1.5.1 Overcoming noise problems

The detrimental effects of noise on the channel may be dealt
with in a number of ways. Front end linearity in the analogue
portion of the receiver is an important consideration when
attempting to receive signals in the presence of heavy
interference. Space diversity may assist in combating localised
interference while time and frequency diversity may be effective
in avoiding broad- and narrow-band noise respectively. A
technique closely associated with TFDM is known as frequency
agility which has been found to be effective in combating the

effects of narrow-band noise (10) whereby a sounding technique is
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used to select the '"quietest" channel or in-band subchannel for
subsequent data transmission. Sounding techniques are also used
to select the best channel from a set of allocated channels by
transmitting a sounding signal on each of the channels (11). The
receiver then assesses the suitability of each of the channels
for data communications and advises the transmitter via a

feedback link.

Diversity methods imply some redundancy in their respective
domains. A binary system may employ time diversity by the
addition of redundant bits to the transmitted data. The
redundancy may then be used as an aid in reducing the detrimental

effects of noise on the transmitted bit stream.

A trade-off must first be made between the degree of
fidelity required in the received data and the resulting
reduction in the transmission rate caused by the addition of
redundancy. Once this has been determined, the redundant bits can
be added .in a systematic manner which will then enable certain
statistical categories of errors to be corrected and/or detected
(12). As an example, one method is to use a block coding scheme
in which the data stream is divided into a number of blocks each
of which is k bits in length, and each of which is mapped into a
'codeword' of n bits (h>k) by adding a number n-k bits which are
the results of n-k modulo-2 additions (or parity checks) on the
original k data bits. The resulting codewords then form part of
a linear block code which obeys a fixed set of parity-check
rules. If the parity checks do not agree on reception, errors

have occurred and the appropriate bits may be corrected. Some of
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the most powerful block codes known are of length n = 21 (m

is an integer) and are capable of correcting up to t random
errors occurring within a code word and require, at most, the
addition of mt check bits (13). Errors occuring on HF radio
links are generally greater than one bit in length and it is
therefore preferable to use codes which can correct bursts of
errors. However, random-error-correcting codes can be used very
effectively to correct bursts of errors by interleaving groups of
codewords such that a burst of consecutive errors is distributed
over several codewords, the errors appearing as random to the

decoder.

In general, then, the ionosphere can be considered to be an
anisotropic time-varying medium which causes the HF path to
exhibit error rates far greater than those found in other
communication systems (14). The results of multipath propagation
and noise are to introduce large numbers of random and burst
errors which may sometimes be so great as to render the channel
virtually useless. Indeed, to an outsider, communicating via
such a medium may seem a near impossible task., However, it seems
that adaptive schemes combining several of the above-mentioned
techniques may yield substantial performance improvements. Until
recently, adaptive schemes have been complex and costly to
implement, and almost all systems described in the literature

have not had adaptive capability (15).
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1.6 Microprocessors and HF Radio Systems

One of the most significant products of the VLSI technology
previously discussed is the microprocessor, This is a monolithic
device which is obtainable at low cost and which may be made to
perform a wide variety of processing tasks by the choice of a
suitable sequence of instructions stored in a read-only memory
(ROM) wunit. The system 1is configured such that the
microprocessor may access the stored instructions and execute
them accordingly. Major system changes may be implemented by
simply modifying the instruction sequence (the 'software'. A
microprocessor system may be made adaptive by determining that
the order of execution of the instruction sequence is dependent

on previous and/or present events.

This thesis describes the applications of microprocessor
techniques to several aspects of digital communications over HF
radio channels. The next chapter discusses the implementation of
several discrete-time signal processing techniques which are used
in subsequent chapters in this thesis. An HF ‘'spectrogram"
sounding technique is described in chapter 3, from which a visual
display of the time-frequency characteristics of an HF voice
channel may be obtained. Information from the display may
subsequently be used to determine the suitability of the channel

for data transmission.

During the course of the project, it became evident that the
data processing requirements for some applications exceeded the
capability of a single microprocessor unit., It was for this

reason that a multiprocessor system (chapter 4) was developed, in
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which several 'slave' processor units operate under control of a
central, or 'master' processor. This configuration allows a
considerable increase in data throughput over a single processor
system.  Various error control coding schemes were investigated
(chapter 5), leading to the implementation and subsequent field
testing of several software-based schemes for the correction of
errors occurring over HF radio data links. Chapter 6 presents
some results obtained from a detailed investigation into
interference phenomena observed in an HF communications channel;

the implications for the design of data modems are discussed.

The ideas and results obtained from previous chapters in
this thesis were combined in chapter 7 to implement an adaptive
HF data modem for data transmission over HF radio links. Signal
processing, error-control coding and multiprocessor techniques
are used in a low-cost system for medium-speed communication
which attempts to overcome the detrimental effects of the HF
channel. Some results obtained using the equipment are described

in chapter 8.

1.7 Conclusion

The last decade has seen a resurgence of interest in
communication via the ionospheric medium. The problems
associated with data transmission via this unpredictable channel
are considerable, and many techniques have been developed in
attempts to combat the degradation imposed on the propagated
signal. Some of these techniques have been utilised in systems
which have been designed exclusively for HF radio data

transmission, but have been complex and costly to implement.
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Microprocessors have made substantial inroads in several fields
of digital data communications and are well suited to systems
requiring adaptability.  This thesis describes some applications
of these devices to data transmission over HF radio links and
shows that considerable savings in hardware requirements may be
made by using a primarily software-based approach to system

design.
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CHAPTER 2 Signal Processing Techniques

2.1 Introduction

The emergence of digital signal processing as a major
discipline began in the mid-1960's when high speed digital
computers became available for research and development work
(16). Many concepts that form the theoretical basis of digital
signal processing, such as the z-transform and Fourier analysis,
had been familiar, however, to engineers for a long time. In the
ensuing vyears, the field has matured considerably and its
development is intimately tied with technological advancement in

device design and fabrication.

Many of the signal processing requirements of HF radio
communications systems may be realised using digital techniques
implemented with the aid of microprocessors. In general, an
analogue signal is sampled using an analogue-to-digital
converter, the resulting set of samples is processed by a
microprocessor-based system, then converted back to analogue form
by a digital-to-analogue converter. The efficiency and accuracy
of the signal processing depends to a great extent on the design

of the system software.

This chapter introduces the microprocessor chosen for the
subsequent work described in this thesis. The design and
operation of a novel system used for data storage on magnetic
tapes is then discussed. More complex techniques are then
introduced, based on the Discrete Fourier Transform (DFT). The

DFT plays an important role in the analysis, the design, and the
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implementation of digital signal processing systems concerned
with HF radio systems and is used in several of the applications
described in following chapters. Software and hardware
implementations of efficient algorithms for the computation of
the DFT are investigated and compared. An assessment is made of
the suitability of such implementations for demodulation and

spectral analysis in HF radio systems.

2.2 The Microprocessor

The choice of a suitable microprocessor was a primary
consideration in the development of the project. A device was
required having a  comprehensive instruction set, fast execution
speed, and for which support facilities were available. The
Motorola M6800 (17) satisfied these requirements and was chosen
in view of the following merits:

(1) The M6800 has a powerful and versatile instruction set

(72 basic instructions and 7 addressing modes).

(2) Several economical and flexible development systems were

available.

(3) A cross-assembler and simulator were available on the

university computer.

(4) Software packages, ancillary components, and

documentation were readily available.

(5) Execution time is fast (nominal clock frequency = |MHz;

average instruction time = 4 cycles (approx.)).

The M6800 is a monolithic microprocessor having an 8-bit
data bus and a lé6-bit address bus. It has six internal

registers: the A accumulator (8 bits), the B accumulator (8
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bits), an index register (16 bits), a program counter (8 bits), a
stack pointer (16 bits) and a condition code (status) register (8
bits). The device requires a non-overlapping bi-phase clock for

normal operation.

Two systems based on this device were constructed for the
development of software during the project (18). Each system
consisted of (1) a "motherboard", with 7 card slots available on
the main bus (called the SS-50), and with 8 slots available on
the 1/O bus (called the SS-30), (2) a CPU card containing the
microprocessor, crystal oscillator, baud rate generator, ROM
(containing a monitor program), and 128 bytes of "scratchpad"
RAM, (3) two 16 kbyte RAM cards, and (4) a serial interface card
enabling the system to be controlled from a teletype or a VDU.
An EPROM programming card was available, allowing machine code
programs (object data) to be transferred from RAM to 2 kbyte

EPROMs under software control.

The only mass storage system available during the first few
months of the project was a teletype paper tape punch/reader
having an operating speed of 110 baud. An editor and an
assembler were available as aids to program development; each of
these packages, however, required approximately half an hour to
load into memory using the paper tape reader. It became evident
that a more efficient means of mass storage was necessary if
reasonable progress was to be made., It was for this reason that
a magnetic tape storage system was subsequently adopted. A novel
interface to the tape unit was developed which required a minimum

of additional hardware (only 2 1/O lines of a Peripheral
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Interface Adapter (PIA) IC were needed). The design of this
interface is discussed in the following section and is also

described in the publication to be found in Appendix 4 (reference

19).

2.3 Cassette interface

The "Kansas City" standard is commonly regarded as an
internationally accepted standard for data recording on audio
cassettes. The baseband data signal is used to modulate carriers
of 1400 Hz and 2800 Hz using FSK at a rate of 350 bps., ie a
logic '0' is represented as 8 cycles of the higher frequency and
a logic 'l'" as 4 cycles of the lower frequency. It was initially
decided to design an interface based on this standard but this

was later developed into a higher speed system.

The PIA (Peripheral Interface Adapter (20)) is a device
which provides an interface between the 6800 microprocessor bus
and two external data ports of 8 lines each (the 'A' and the 'B'
ports). Each of the 16 lines is compatible with standard TTL
logic families and may be programmed for input or output by
setting the state of the corresponding bit in an internal "data
direction register". For the cassette interface, line A, was

7
programmed for output and line B7 for input. Assembly level
software was written which would take data from a specified
region of memory and generate the appropriate FSK signal at the
output line A7. Cycle timing of the rectangular modulated
signal was achieved using software timing loops and data was

transmitted in byte format using a '0' start bit and a 'l' stop

bit. The TTL level FSK output was connected directly to the
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microphone input of the cassette recorder, which incorporated an
automatic record level preamplifier. On playback, the audio
output from the extension speaker socket was connected directly
to the input line B7 which was continuously sampled by the
processor. The period of a waveform cycle was determined by
comparing the number of 'l' samples counted with a mean threshold
value. If the number of samples counted exceeded this value the
cycle was of 1400 Hz; if less it was 2800 Hz. The sampling rate
was approximately 12 kHz. A decision as to the state of a
demodulated data bit could be made after receiving the
appropriate number of cycles. The average error rate from this
system on playback was found to be better than [.5 x 10—6.

(ie. less than 1 error per 40 minute recording)

Some experimentation was carried out with adjustment of the
recording frequencies and number of cycles per bit. A reliable
and much faster system was found to result from using only single
cycles of the original two frequencies; ie. a logic '0' takes
only half the time of a logic 'l' to load and store. An example
of the signal generated for the data sequence 10110 is shown in
figure 2.1. If the data contains equal numbers of 1's and O0's,
the mean bit rate is 1600 bps, more than 5 times that of the

Kansas City standard.

It was decided to incorporate error checking by recording
the data according to the Motorola "MIKBUG" standard format for
recording object data on punched paper tape (21). This format
requires data to be transmitted in ASCIl character records

arranged as in figure 2.2, All information in the record is
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represented as hexadecimal data. The beginning of the record
contains the record type (S1), a byte count which covers all the
bytes that follow, and the start address of the data block. Data
bytes follow which represent the object data to be stored in
memory beginning at the block address and stored in sequential
memory locations that follow. At the end of the record is a
checksum, which is the I's complement of the summation (mod 256)
of all data bytes in the record, plus the byte count and block
address. This value is checked as data is loaded and a '?' is
printed if an error is encountered. The tape can then be rewound
a few blocks and the faulty block reloaded. The end-of-file
(EOF) terminates the data and consists of the characters "S9".

The EOF terminates a tape load function.

An assembly listing of the tape store and load programs is
included in the published article at the end of this thesis
(Appendix 3). The high-speed interface showed error rates at
least as good as the Kansas City version, and was used
successfully for several months before the purchase of a flexible

('floppy') disc drive and interface board.

During the second year of the project, a triple disc drive
and interface board were obtained to facilitate faster file
access. Each flexible disc could contain 80 kbytes of storage; it
was therefore possible to have access to 240 kbytes of data at
any one time, Commercially available software was obtained,
including a co-resident assembler, editor, and BASIC interpreter,
to assist program development. The teletype was replaced with a

VDU for communication with the development system and hard copy
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output was obtained from a thermal printer attached to an

additional serial interface card connected to the S$5-30 bus.

2.4 The Discrete Fourier Transform

It has already been mentioned that the DFT plays an
important role in the analysis and processing of HF radio
signals. The DFT of a finite length sequence, {x(n)}, is defined

as

N-1
k
X(k) = nZ-O x(n)WNn , k=0, .. ,N-1 (2.1

where Wy = exp(-j2n/N).

The resulting sequence, {X(k)}, is the Fourier representation of
the original input sequence. The following sections of this
chapter discuss efficient microprocessor implementations of the
DFT wusing software alone, using hardware arithmetic, and with a
Charge Coupled Device (CCD), each of which was used in a different
application. A description of the algorithms is given, followed
by a discussion of the implementations, and finally a comparison

of the implementation efficiencies.

2.5 FFT Algorithm

The direct computation of the DFT requires 4N2 real
multiplications and N(4N-2) real additions, or, equivalently, N2
complex multiplications and N(N-1) complex additions (22-24).
The number of multiplications required is generally accepted as
being a meaningful measure of the complexity, or, of the time

required to implement a computational algorithm. The amount of

computation required to evaluate the DFT directly is approximately
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proportional to N2; the computation time required to compute the
DFT by this method therefore becomes very large for large values

of N.

It is possible to reduce the number of computations required
to evaluate the DFT by decomposing the sequence [x(n)} into
successively smaller subsequences. Algorithms based on this
principle are called "decimation in time" algorithms (22,23). If
N is an even number, we can consider computing X(k) by separating
{x(n)} into two N/2-point sequences consisting of the even- and
odd-numbered points in x(n).

We then obtain

X(K) = Z x(n)w‘;{‘ . Z x(n)w‘;;‘

n even n odd

Substituting n=2r for n even and n=2r+l for n odd gives

(N/2)-1 (N/2)-1

X() =y x@IWIK Y xareywErk
r=0 r=0
(N/2)-1 (N/2)-1

= Y x@WI)™ e WY xarewi )™
r=0 r=0
but W = exp(-2(2m/N)) = exp(-j2/(N/2)) = Yy/2

(N/2)-1 (N/2)-1

X(k) = X@OWps, + W 3 x@eeDWRS (2.2)
r=0 r=0

= G(K) + w‘gj H(k)

Each of the sums in equation 2.2 is recognised as an N/2 point
DFT. If N is an integer power of 2, each of the sums may be

decomposed further into two (N/4) point DFTs and so on until the
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stage is reached where there are N/2 2-point DFTs (or "butterfly"
computations) to be performed. There will be logzN stages of
decomposition in all. The basic butterfly computation is
illustrated in figure 2.3 and is described by the following
equations:

Xy @) = X (B) + WX (q)

X @ = X_(p) - W X (q

Only one complex multiplication is involved in mapping the
point Xm(p) and Xm(q) to Xm+1(P) and Xm+1(q) respectively.
Figure 2.4 shows a graphical representation of the evaluation of

an 8-point DFT using the butterfly computation of figure 2.3.

The total number of multiplications required for the above
algorithm is (N/Z)logZN compared with NZ multiplications
required for direct evaluation of the DFT. The algorithm was
derived by Cooley and Tukey in 1965 (25), and is often referred to
as the Fast Fourier Transform algorithm (FFT). A flow diagram for
the FFT decimation in time algorithm is shown in figure 2.5.
Three variables, i, m, and and 1, are required to index through
the complex array A(*). There are r=log,N stages of computation

and N/2 butterfly computations to be performed at each stage.

2.5.1 Bit-reversal shuffling

If the above algorithm is to be used to produce an output
sequence in sequential order, it is necessary to store the input
data in non-sequential order. In determining the position of x(n)
in the input array, the bits of the binary representation of the

index n must be reversed. For example, for a 16 point transform,



X (p) 0 =

. "_/de(p)

i -\” X tlq)

"M
Xp (o ="

Figure 2.3. Basic Butterfly Computation

Figure 2.4. Flowgraph of 8-point DFT using butterfly

computation of figure 2.3 .
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four bits are required for each index and an index
(b3b2blb0) becomes (b0b1b2b3)' The necessity for
bit-reversal shuffling of the sequence x(n) is a result of the
manner in which the DFT computation is decomposed into
successively smaller DFT computations. Figure 2.6 shows the
flowchart of an algorithm which will shuffle the contents of the
array x(i) , i=0,1,2 ... N-1 in bit-reversed order; the result
will be contained in the same array. Each of the numbers x(i) may
be complex. Three integer variables, i, j, and k are used to
index through the data and the complex variable X is used as a
temporary storage location. This algorithm was implemented in
BASIC and assembly level language for use with the respective FFT

programs.

26 CZT Algorithm
Another algorithm for evaluating the DFT, called the

"chirp-z" transform (CZT), was derived in 1969 by Rabiner and
Schafer (26), and is not restricted to integral powers of N as is
the FFT. The expression for the DFT in 2.1 is:

N-1 .

X(k) = > x(n)e'JZ“nk/N , k=01, .. ,N-l

n=0

where both x(n) and X(n) may be complex. Using Bluestein's

identity (27)

nk = [n2 v K2 (k-n)z]

BN fr—

2-10



R
e L e )

FIGURE 2.6. BIT-REVERSAL OSHUFFLING



we obtain

X0 - 3 e MIIN ik PIN . i/
n=0
2, N-l 2
- NS oy KN o, N (23)
n:O

Equation (2.3) is the expression for the CZT. Three stages of
computation are required
(i) Multiply each term x(n) by the complex factor
exp(—jnnz/N) to produce a new sequence g(n).
(ii) Perform a discrete convolution between the sequence g(n)
and the sequence exp(jnnz/N).
(ii) Multiply the resulting output sequence by the factor

exp(—jnkz/N) for each point of X(k).

The sequences exp(—jn’nz/N) and exp(-jnkz/N) can be
thought of as complex exponential sequences with linearly
increasing frequency. Such signals are called '"chirp" signals;
hence the name "chirp-z" transform. A method for implementing the
CZT using a charge-coupled device is described later in this

chapter.

2.7 Implementations

Four methods for implementing the DFT using the two
algorithms described were investigated and used in various
applications described elsewhere in this thesis:

(i) Implementation of FFT algorithm using a co-resident BASIC

interpreter

(ii) Assembly-level implementation of the FFT using software
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arithmetic

(iii) Assembly-level implementation of the FFT using hardware
multiply/divide unit

(iv) Hardware implementation of the CZT using a charge

coupled device

28 FFT Implemenation in BASIC

A program to evaluate the DFT of an N-point real sequence is
shown in the listing in appendix 2. The following results may be
obtained from this program: printout of input data, printout of
output data (real & imaginary components), plot of output data
(real & imaginary), printout of power spectrum and plot of power
spectrum. A window function may be applied to the input data if a
power spectrum is required. A special feature of this program is
that the DFT of the original N-point input sequence is evaluated
by performing a single N/2-point FFT computation. The spectrum of
a purely real sequence exhibits complex conjugate symmetry and it
is therefore only worthwhile computing the positive frequency half

of the spectrum.

Any asymmetric function may be formed as the sum of two
functions, symmetric about some suitable axis, one posessing even
and the other odd symmetry. Using this fact it is possible to
simultaneously compute the spectra of two N/2-point real sequences
using only one N/2-point complex FFT. One sequence y(n) is
entered as the real components in an N/2-point complex array; the
other, z(n), is entered as the imaginary components. The
transform, X(k), of the sum x(n)=y(n)+jz(n) is asymmetric but it

is possible to use the symmetry property to obtain the spectra
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Y(k) and Z{(k) of y(n) and z(n) respectively by a manipulation of
the sequence X(k). If the sequences y(n) and z(n) are the even
and odd numbered points respectively of an N-point real input
sequence, it is possible to obtain the spectrum of this sequence

from Y(k) and Z(k). This method is described in reference (24).

The even-numbered points of the real input sequence are
entered as the real components of the complex array A(2,N/2), and
the odd-numbered points are entered as the imaginary components.
An N/2-point DFT is performed by the subroutine at statement 1500
which shuffles the data in bit-reversed order, then evaluates an
N/2 point FFT. The subroutine at statement 520 manipulates the
transformed data to obtain the spectra of the two real sequences.
The positive half of the spectrum of the original input data
sequence is then found using the subroutine beginning at statement
130. Real and imaginary components of the spectrum may be listed
and/or plotted if required. The power spectrum of the transform
is found by evaluating the square root of the sum of the squares
of the real and imaginary components of each point in the output

sequence,

2.9 FFT Implementation in assembler

The FFT algorithm of figure 2.5 was implemented in Mé6800
assembly language in order to obtain an increase in computation
speed over a high level language implementation. A listing of the
program is given in appendix 2 and is capable of evaluating the
DFT of N complex data points where N is an integer power of 2
between 8 and 256 inclusive. The real and imaginary components of

each point are quantised to 8 bits each but arithmetic operations
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are carried out to 16 bit accuracy to eliminate quantisation
errors introduced between stages of the decimation-in-time
implementation. | kbyte of memory was therefore necessary to
accomodate 256 complex points as 2 bytes were required for each of
the real and imaginary components. Data is arranged in the table

as follows:

address data

DBASE+4n f(n) (real) MSB
DBASE+4%n+1 f(n) (real) LSB
DBASE+4%n+2 f(n) (imag) MSB
DBASE+4%n+3 f(n) (imag) LSB

To avoid computing the sine and cosine values for the weighting
factors, a table of lookups was used. Values in the table

corresponded to the functions:

WRE(n) = cos (2nn/256) n = 0,1,2, ... 127

WIM(n) = -sin (2%n/256) "

Each complex point was stored as two 16 bit 2s complement numbers
in a similar format to the data storage format described above.
512 bytes were therefore required for lookup table storage. The

binary representations of the weighting factors were as follows:

W binary

+] 0100000000000000
0 0000000000000000

-1 1100000000000000

The program is invoked by first loading the data into the

data table, loading r (=10g2N) with a value between 3 and 8 and

executing the call "JSR FFT". The data is first shuffled in
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bit-reversed order by the subroutine SHUF which is a direct
implementation of the flowchart of figure 2.6. Successive
butterfly computations are then performed in-place each of which
involves 4 real 16 x 16 bit multiplications, 3 real 16 + 16 bit

additions and 3 real 16 - 16 bit subtractions.

Two implementations were evaluated; the first used a software
multiplication routine based on the Booth algorithm of reference
(28); the second used a hardware multiply/ divide unit, described
in section 2.11. Execution times for both implementations are
tabulated in section 2.12. A further improvement in computational
efficiency can be obtained by observing that the weighting factor
WO has real and imaginary coefficients of | and 0 respectively
and no multiplications are required for this case. The total
number of real multiplications required for the N-point DFT

therefore reduces to

4 x ((N/2)log,N - (N-1))

2.10 Implementation of the CZT

As discussed in section 2.6, the CZT algorithm involves three
stages of computation: pre-multiplication, convolution, and
post-multiplication (29). The block diagram of a complete
transform based on the CZT algorithm is shown in figure 2.7.
Pre-multiplication is accomplished by the multipliers to the left
of the diagram and post-multiplication by those on the right. The
major computing task is the convolution portion; the Reticon R560!
quad chirped transversal filter (30) has been designed to perform
this task. This device contains two separate 512-stage MOS charge

coupled devices which are used to implement four transversal

2-15



2
T
Cos =

N '-
I .
a
- +
()2 —
Y 2
| Cr=IF* - si
' +
+
()2 |
X 4
b .
2 A
mn
Cos N
PREMULTIPLIER CONVOLUTION FILTER SQUARING FUNCTION POST MULTIPLIER

(R5601) (FOR SPECTRAL DENSITY) (FOR FOURIER COEFFICIENTS)

FIGURE 2.7. IMPLEMENTATION OF CHIRP-Z TRANSFORM ALGORITHM.




filters using a split-electrode weighting technique (31). The
filter weighting coefficients and internal circuit connections are
configured so that the device, in conjunction with additional
off-chip components, can implement the CZT algorithm to calculate

a 512-point DFT (32,33).

An evaluation module containing the R5601 device was
available, which included additional circuitry necessary to
compute the power spectrum of an analogue input signal. No phase
information is obtainable with this module, as the post-multiplier
unit is replaced with a hypotenuse function which recovers the
spectral amplitude from the component cosine and sine terms. From
(2.3), the squared spectral amplitude of a sequence x(n) can be

expressed as:

I\il x(n) e‘jﬂnz/N ei"(k-n)z/N 2 (2.4)

I Xk | 2.
n=0

The final phase multiplier term, e"”‘kz/N has unit magnitude
and has therefore been omitted from the above expression. The
input data is stepped each time a new spectral component is
calculated. Equation (2.4) then becomes:

N-1

.2 . 2
Ixs(k) |2 = r& x(n+k)e ™" /N _jr(k-n)"/N |2

The notation Xs(k) indicates a "sliding" CZT.

A futher simplification is possible if the input is purely
real, as it is in this case. The imaginary input is always zero

so that two of the input multipliers may be deleted and the input
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circuit simplified. @ A block diagram of the evaluation module is
shown in figure 2.8, The real (analogue) input signal is buffered
and converted to discrete-time samples by the input
sample-and-hold, then split into the direct and quadrature
channels. The sample values are multiplied by the appropriate
chirped waveform using multiplying digital-to-analogue converters.
The digital inputs to these converters are derived from two
512-by-8 bit ROMs which contain the sampled chirped sine and
cosine waveforms. The sampled analogue products are then used for
input to the R5601 four- channel convolution filter. Outputs from
the filter are sampled and held to give time coincidence of all
outputs, and then combined on an rms basis to give the spectral

density of the input waveform.

Four clock phases are required by the filter device to
propagate the discrete signal packets through the CCD channels.
These are designated TICL, T2CL, T3CL and T4CL, and are generated
by a multi-phase clock generator circuit incorporated in the
evaluation module which may be driven either from a 1 MHz internal
oscillator or from an external trigger source. The sample rate
with the on-board oscillator is a nominal 100 kHz, but lower rates
are attainable with external triggering. The "address advance"
pulse increments a 9 bit counter which addresses the weighting

factor PROMs,
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2.10.1 Post-multiplier unit
A post-multiplier unit was designed and constructed, enabling
the real and imaginary components of the signal spectrum to be
determined. The weighting factors for the algorithm illustrated in
Simk2/N
figure 2.7 are the sine and cosine chirp signals e .
However, because the transform is sliding and not stationary, the
coefficients Xs(k)Re and Xs(k)lm do not provide a true
measure of the input signal phase. A correction factor must be
applied if the phase is to be restored. Consider the examples
illustrated in figure 2.9 where the 8-point DFT's are evaluated of

two sinusoids of frequencies 4 .R"n/N (solid line), and 2. wn/N

(broken line).

The stationary DFT of an input sample sequence {x(n)} is
derived from the time samples x(i), 0 =i sN-1. The stationary DFT
of the first signal in the example results in an output spectrum
of -4j at k=2 and +4j at k=6, while that of the latter results in
an output spectrum of similar coefficients at k=1 and k=7. The
sliding DFT, however, is derived from time samples x(i),
n+k €1 < N-1+k. The sliding DFT results in an output spectrum of
+4j (k=2) and -4j (k=6) for the first signal, and (#8 - &) (k=1)
and (~8j - ~/8) (k=7) for the latter. Although the magnitude of
the power spectrum is the same as for the stationary DFT, the
2

sliding transform imposes an additional phase shift of 2.mMk"/N

radians, which must be corrected for by multiplying the output

. 2
spectrum by g2 K /N.

It has been stated that, in the case of the CZT

implementation, the post-multiplication coefficients are the chirp
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. 2
waveforms given by e ) Tk /N.

For the sliding CZT
implementation, the overall post-multiplication coefficients must
be the product of these chirp waveforms and the phase correction

factor. ie.

. 2 . 2 . 2
I TK /N-e—JZTYk IN  _ 3Tk /N

2.10.2 Post-multiplier design

A circuit was required which could evaluate the complex
multiplication (a+jb)€j3"k2/N.The coefficients a and b are the
direct and quadrature channels respectively from the transversal
filter and are available from the evaluation module as sampled
analogue voltages. The cosine and sine chirp waveforms could be
stored in PROMs as 8-bit digital words. The transform length was
fixed by the filter to be 512 points and each PROM was therefore
required to have a 512-byte capacity. It was decided to use Intel
2716 type 2 kbyte EPROMs for two reasons: these devices were
readily available at low cost, and a programming facility was
already installed in the MSI 6800 development system. Two such
EPROMs were programmed with the required chirp waveforms, which
were generated using the co-resident BASIC interpreter and
converted to offset binary format prior to writing to the device.
Four real multiplications and two real additions were required to
evaluate the complex multiplication described above. Each
multiplication involved finding the product of a sampled bipolar
analogue voltage and an 8-bit digital word. A circuit for

performing this operation is shown in figure 2,10 and is described

as follows:
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The DAC-08 is an inexpensive monolithic digital-to-analogue
converter with an 85ns settling time, which provides an output
current which is the product of an 8-bit binary word and an input
reference current, IREF' The output current, IO, for a binary
input word, W, is given by:

I = 226 x 1

o W REF
Two complementary current outputs are available, which allow the
device to be connected in a "symmetrical offset binary" output
configuration by converting the currents to voltages and summing
using an operational amplifier. Full scale positive and negative
voltage outputs are then obtained for input words of $FF and $00

respectively., The output voltage is proportional to (W-128), where

W is the input word.

Two input configurations are possible to cater for positive
or negative reference voltages. For the circuit of figure

2.10(a), current flows into pin 14 of DAC 1 when Vin s

positive, but no reference current is available to DAC 2. If VIN

is 1V, the reference current is ImA and the output voltage from
the buffer amplifier is -4.7V x W. [f VIN is negative, current
flows in to pin 14 of DAC 2 and the output voltage is positive.

The output voltage is therefore given by

4,7 (W-128) <
128

vIN

Table 2.1 shows the experimentally obtained output voltages for 5
analogue input voltages and # digital words presented to the

multiplier from a PIA attached to the 6800 development system.
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digital word

v, $00 $7F $80 SFF
+1V 4,79V -0.01V 0.01V 4,79v
input +0.5V -2.49v -0.01V 0.01V 2.49v
voltage 0 0 0 0 0
-0.5V 2.49v 0.01V -0.01V -2.49V
-1V 4,79V 0.01V -0.01V -4.79V
Table 2.1

The peak voltages at a and b on the evaluation board were
measured for a fixed frequency sinusoidal input and were found to
be + 0.5V. The two non-inverting input buffer amplifiers on the
post-multiplier board were arranged to have adjustable gains of
between | and 3 in order to provide suitable variable references

to the multipliers,

The eight output lines from the cosine chirp EPROM were
connected to two multiplier circuits to give the products

-a.cosB'ﬂkle (v )} and —b.coankZ/N (VTP6) and those from

TP3
the sine chirp EPROM were connected to multiplier circuits to

provide a.sin3Mk?/N (V.. ) and -b.sin3Tk?/N (V The

TP4 TPS)'
latter product was obtained by using the output buffer amplifier
in the non-inverting configuration. The two real products were
summed in a wideband summing amplifier to give X(k) (real) and the
two imaginary products were summed to provide X(k) (imaginary).
Using the component values shown in the circuit diagram, the

output voltages were

vo(real) = -(10/39).(vTP3 + Vrps )

Volimag) = «(10/39).(vip, + vrpe )

The output voltage range in each case was + 4.8V.
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The summing amplifier outputs were connected to two inputs of
a CMOS analogue multiplexer, the output of which was connected via
a variable gain buffer amplifier to a high speed (2us conversion
time) bipolar input 8-bit analogue-to-digital converter.
Interface to the 6800 microprocessor system was via a single PIA.
Four pairs of multiplying D-A converters, as in figure 2.10(a)
were necessary to evaluate the four real multiplications required

to find the complex product.

The complete circuit was constructed using wirewrap
techniques on a 6.5 x 4.4 ins. circuit board. The #20v supply to
the RC5601 evaluation board was reduced to #15v to supply the
post-multiplier by using one 7815 and one 7915 voltage regulator
IC. A photograph of the board together with the CCD evaluation

board can be seen in photo 2.1.

2.10.3 Test Results

A series of tests were performed on the post-multiplier board
and the results compared with theoretical predictions to ensure
that the circuit was functioning correctly. The sine and cosine
chirp waveforms generated by the unit are shown in photos 2.2 and
2.3. The EPROMs were addressed directly from a PIA installed in
the 6800 development system and the digital outputs from the A-D
converter were read for a variety of DC analogue inputs and a
variety of weighting factors. The results of these tests are
shown in table 2.2. a and b are analogue input voltages, ADDR is
the EPROM address, COS and SIN are the cosine and sine outputs
from the EPROMs. R and I are the real and quadrature output

voltages respectively ("ex" and "th" indicate experimental and
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theory respectively).

a
cr

COS|SIN | R(ex)| R(th) [ I(ex) |I(th) | ADDR

S40 |SCO | 1.18 |1.175]0 0 $08
$COo [$40 {1.18 |1.175{0 0 S10
$7F |SFF | 2.37 |2.35 |-2.36{-2.35|$0E
$00 {SFF |0 0 -4.71 | -4.70 | S04
SFF |$7F | 2.35 | 2.35 |-2.36|-2.35|5816
SFF [$CO|-1.75| -1.76 | -2.73 | -2.75 | §17
$00 [$00 | 3.54 |3.53 |-1.19|-1.18{%00
SFF | 500 | 0.01 |0 2.36 |2.35 [S14

+
+

+

+
O-Po=moP
u,o\nO'oOu\Ul

+

+
i TR
MO OO LW
1

Table 2.2

The CCD evaluation module was interfaced to the
microprocessor system and to the post-multiplier unit as
illustrated in figure 2.11. The 9 address lines from the on-board
counter were connected to the post- multiplier EPROMs, and the "a"
and "b" outputs from the filter output buffers were connected to
the real and quadrature inputs respectively of the post-
multiplier system. The T3CL clock line was connected to the CAl
control line of the PIA and the "in sync" input was derived from
the CA2 line. The CA2 line was also connected to the "gate
enable" input of a pulse generator having a gated output; the
latter set to deliver 500 ns wide pulses at a repetition frequency
of 20 kHz into the "ext trig" input of the evaluation board. This
enabled the system to operate at a sample rate of 20 kHz. The CB2
control line was configured such that a "write to B side data"
instruction causes a short pulse to occur immediately after the

instruction. This pulse was used to initiate an A-D conversion.

The sinusoidal output from a function generator was connected

to a frequency counter and to a comparator, whose output was
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clamped with a 5.1V zener diode and fed to the PB7 line of the

post-multiplier PIA.

Two programs were written to test the functioning of the
post-multiplier unit. The first was not synchronised to the input
signal, and the second was synchronised to the zero crossings of
the input signal, as detected by the comparator, A description of

the operation of the two programs is as follows.

CA2 is initialised to '0', which disables the pulse generator
output and holds the on-board 9-bit memory address counter in
"reset". A counter within the microprocessor system is then
initialised to a value of 512, and the CA2 line is brought to a

logic 'l', thereby beginning the sampling process. Each

transition of T3CL causes an interrupt to be generated which is
used to decrement the microprocessor counter. After 512
interrupts have been counted, this counter is set to zero and the
CCD filter is full (it is a 512-stage device). During the next
256 transitions of 'TBC_L, the CCD evaluation module outputs
frequency samples in the Nyquist band; therefore another 256
interrupts are counted. The real and imaginary outputs from the
post-multiplier unit are then read by the microprocessor system
using the analogue multiplexer and the A-D converter. The results

are stored for further processing.

The sampling frequency was set to 20 kHz and a sinusoidal
input of approximately 4.5 kHz was applied to the CCD evaluation
module. Sampling was initiated at random intervals and the results
were stored in two 256 byte tables in memory. An examination of

the results showed that the energy associated with a single
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frequency carrier tended to be spread over several frequency bins
due to the effect of the Hanning window applied to the CCD split

electrode weightings.

The experiment was repeated and the resulting coefficients
around the frequency of interest were printed on the terminal (in
decimal) on each occasion. Figure 2.12(a) shows the results
obtained from successive readings of the real and imaginary
coefficients. Five pairs of coefficients are printed for each
reading; the centre coefficient is that corresponding to the

frequency bin of the input signal.

Next, the spectrum analyser was synchronised to the incoming
signal by initiating the sampling process only on a positive
transition of PB7 (corresponding to a zero-crossing of the input
data signal), so as to obtain samples of a sinusoid with zero
phase shift. The real and quadrature coefficient magnitudes
around the frequency of interest were printed as before, and the
experiment was repeated a number of times. A correlation was

observed between successive results, as shown in figure 2.12(b).

The differential inputs to the comparator were then reversed,
and the experiment was repeated, without varying the magnitude or
the frequency of the input signal, to obtain samples of a sinusoid
with 180° of phase shift (a negative sinusoid). An examination
of the output coefficients around the frequency of interest
revealed that the signs of the coefficients were reversed,
although the magnitude of the spectrum remained constant. In

fact, the coefficients for the first case were predominantly
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imaginary and negative and for the second case were predominantly
imaginary and positive. These results corresponded to the
spectrum obtained from samples of a sinusoid and a negative
sinusoid respectively, although several unwanted components (with
incorrect signs) were also present due to the effect of the

Hanning window weighting of the filters.

Several further tests were carried out on the post-multiplier
unit to confirm that it was functioning correctly. By using the
analogue multiplexer it was possible to select (using software)
the real coefficient, the imaginary coefficient (and hence the

phase), or the power spectrum, for each frequency bin.

2.11 Multiply-Divide Unit
The hardware multiply-divide unit (3%) used in the software
FFT implementations is now described. The RCA-CDP1855C is an
8-bit monolithic multiply/ divide unit (MDU) which performs
multiplication and division operations on unsigned, binary
operators. It is based on a method of multiplying by add and shift
right operations and dividing by subtract and shift left
operations. The device is structured to permit cascading of
identical units to handle operations up to 32 bits.
Two MDU's were cascaded to permit the following operations:
(i) a 32-bit by 16-bit divide yielding a 16-bit result and
a 16-bit remainder.
(ii) a 16-bit by 16-bit multiplication yielding a 32-bit

result
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Each MDU has 8 bi-directional tri-state data lines, a
read/write input, a clock input, a reset input, a chip enable
input and 3 register select lines. Interface to the MSI 6800
system was provided via I/O port 7 on the system I1/O bus. The
chip enable signal from the bus was inverted and connected to the
CE and RA2 lines on the MDU's. The data lines, the reset line and
the R/W line from the bus were connected directly to the
corresponding pins on the MDU's. RSO and RSl were connected to
RAO and RA1 respectively. The addresses of the MDU registers were

then as follows:

SF538 X

SF539 Z

SF53A Y _
SF53B  Status (R/W = 1)

The circuit diagram of the cascaded MDU system is shown in
figure 2.13. Interconnections were made using wirewrap on a
0.lin. matrix circuit board.

For two cascaded MDU's each of the registers X,Y and Z is two
bytes wide although each occupies only a single address. Each MDU
contains a  '"sequence counter" which enables registers to be
loaded or read sequentially. When the counter matches the chip
number (CNI,CNO lines) the device is selected. For example the
first selection of register X for loading loads the most

significant MDU, the second selection loads the least significant.
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To execute a multiply or a divide operation, the data is
simply loaded into the appropriate registers, and a control word
is written to define the required operation. The results of the
operation can then be obtained by reading the appropriate

registers,

If N MDU's are cascaded, all operations require 8N+l shift
pulses. For 2 cascaded devices operating at a frequency of | MHz
therefore, the time taken for a multiplication or a division is
17 us. This is a substantial improvement over a purely software
implementation, and was found to provide a considerable
improvement in execution time for the Fast Fourier Transform

algorithm implementation.

2.12 Comparison of algorithms

The four DFT implementations previously described were
compared mainly from point of view of memory requirement and
execution time. The first implementation (using a high-level
language interpreter) was obviously poor in all respects except
for ease of programming and shall not be considered further. The
assembly language implementation was quite efficient in terms of
memory utilisation and was two orders of magnitude times faster
than the BASIC routine. More efficient memory use could have been
obtained by computing the butterfly weighting factors only when
required; however, this would have led to a considerable increase
in execution time. The maximum permissible transform length was
256; if this length had been increased, many single-precision
operations would have required double precision, again increasing

the required time.
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A considerable improvement in execution speed was obtained by
using a hardware multiply-divide unit (described in the previous
section). This unit was used to (a) multiply the input data
sequence by a time window (if required), (b) perform all weighting
factor multiplications during the l;utterfly computations, (c)
compute the squares of the Fourier coefficients (if a power
spectrum is required) and (d) compute the square root of the sum
of the squares of the coefficients using the Newton-Raphson
iteration formula (which requires division operations). Table 2.3

below shows figures for execution times for the various

algorithms.

N BASIC ASSM(1) | ASSM(2) | CZT

8 1.2s 19ms 5.1ms -

16 2s 54ms 14.2ms -

32 4.7s 164ms 37.5ms -

64 10s 429ms 96ms -

128 22.8s 1.01s 219ms -

256 48.3s 2.5s 501 ms -

512 105.2s - - 5.12ms

Table 2.3
ASSM(1) and ASSM(2) refer to the assembly level FFT routines

with and without the hardware multiplier, respectively.

The hardware implementation of the CZT using the charge
coupled device was by far the most efficient in terms of execution
time. The device itself is primarily for use in power spectrum
estimation, and the evaluation board contains peripheral circuitry
to evaluate the power spectrum of a fixed-length (512 point)
transform. It has been shown that it is possible to use additional

circuitry to evaluate the Fourier coefficients, which may
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subsequently be used to determine the phase of an input signal.

2.13 Conclusion

The microprocessor chosen for the work in this thesis has
been introduced and some preliminary work has been demonstrated on
the transfer of data to and from magnetic tapes using a novel
software interface. The implementations of efficient algorithms
for spectral analysis have been described and investigated. Phase
information may be obtained from an analysis of the Fourier
coefficients resulting from the Discrete Fourier Transform of an
input time signal. This phase information may be utilised to
implement a demodulation process in phase modulated data
transmission systems for HF radio communications.  However, the
execution time involved for the algorithm computations may
sometimes be excessive and a hardware approach may sometimes be
more favourable. An investigation into Fourier transformation
using charge coupled devices has been demonstrated which has led
to the design and construction of a "post-multiplier" unit for
determination of the Fourier coefficients under control of a
microprocessor system. This work has formed the basis for a
demodulator design for a multitone phase modulated signal for HF

data transmission.

The spectral analysis techniques discussed in this chapter
have been used extensively in applications described elswhere in

this thesis.
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CHAPTER 3 The HF Spectrogram
3.1 Introduction

It has been mentioned that the problems associated with
digital data communications over HF radio links generally arise

from one of two major causes:

(i) Multipath propagation caused by multiple reflections

from the ionosphere.

(ii) Noise; originating from both natura! and man-made

sources.

The phenomenon of multipath propagation can give rise to
intersymbol interference if the signal element duration is of
insufficient length, and can also cause fading of the received
signal resulting from destructive interference. The received
signal may also be corrupted by noise, which may be broad- or
narrow-band, and which can severely degrade the fidelity of the

detected data.

Because of the predominance of analogue traffic over HF
radio links, the 3kHz '"voice" channel has become accepted as the
standard communications channel for such a medium, and requests
for frequency allocations are normally granted on condition that
the radiated signal shall not occupy a bandwidth which exceeds
this figure. This restriction applies even when the information
is digital in nature and it therefore becomes the task of the
communications engineer to design efficient systems for data

links operating over such channels.
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It is worthwhile observing the effects of fading and noise
on a signal confined to a 3kHz bandwidth in order that the
predominant disturbances may be identified. The results may
yield clues which could be used to improve system performance by
better design, or, if implemented in real time, a number of the
available channels may be monitored, and the best chosen for

subsequent transmission of data.

3.2 System principles

This chapter describes a system which provides a pictorial
display of the time-varying spectral properties of a chosen voice
channel. Frequency, on a linear scale from 0 to 3 kHz, is
displayed along the y-axis, and time, from t=0 to a chosen value,
is displayed along the x-axis. The intensity of the display at a
particular pair of coordinates indicates the strength of a signal
(or noise) which occurred at that particular time and at that
particular spot frequency. Because of the digital nature of the
system, both time and frequency are quantised, and the display
actually consists of a two-dimensional array of points of varying
intensity. However, these points can be arranged to be close
enough together to provide a quasi-continuous pictorial
representation of events occurring within the voice channel over

a chosen time interval.

A similar technique was used by R.G.W. Thompson (36,37) to
classify HF fading patterns. His analysis was based on
observations of a multitone sounding signal from a remote
transmitter, and the received data was recorded on an FM tape

recorder prior to processing through a spectrum analyser and
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mainframe computer. A display was presented on a facsimile
receiver coupled to a digital to analogue converter.
Disadvantages of the system were cost, complexity, and the time
delay necessitated by the pre-recording of the received data.
The microprocessor-based system described in this chapter is
fast, versatile, and uses a storage oscilloscope to present the
spectral information. Such a system could be developed into a

small, economical unit suitable for portable operation.

A description of the operation of the system is presented,
followed by details of the hardware and software employed in the
implementation. Finally, some results are presented, together

with suggestions for further development.

3.3 System implementation

Figure 3.1 shows a block diagram of the system. The audio
output from an HF receiver is filtered, and then sampled by the
A-D converter and microprocessor system. A set of N samples (N
is a power of 2, 8= N s256) is stored in RAM and the Fast Fourier
Transform (FFT) algorithm is used to compute the power spectrum
of the set which is displayed as a single vertical line on the
storage oscilloscope. This line is quantised into N/2 discrete
points and the intensity of the display at each point is a
measure of the magnitude of the power spectrum at the
corresponding frequency. The vertical spacing between each point
is therefore 2h/N cms., where h is the height of the oscilloscope
screen. The beam is returned to the x axis and is moved to the
right by W/Nt cms,, where w is the width of the screen and N,

(8 < N, £256) is the number of lines to be plotted. A new set



FLOPPY

DRIVES

Figure 3.1

HF RECEIVER

2.2
~

A-D

§

6800

MICROPROCESSOR
SYSTEM

SYNTH.

g}

STORAGE
0SCILLOSCOPE

HF Spectrogram Block

CLOCK

6KHz OSC.

Diagram



| l,__} Broad-band noise

3KHz iy :
;., ' Narrow-band
K : Interference
) .
I - Fade
frequency B i l
- 3:;;;' ey '} Signal
0
0 ) 15s
time —
Figure 3.2 Example Display
biw
o

Figure 33

S-Plane Representation of Filter



of N samples is then acquired from the receiver and a second line
is plotted. This procedure continues until the display is
complete. An illustration of the kind of display which might be

obtained is shown in figure 3.2.

3.3.1 The lowpass filter

The lowpass filter used in the system was required to have a
cutoff frequency of 3 kHz to eliminate out-of-channel noise. The
attenuation chéracteristlc was designed to be uniform over the
passband, and with a steep rolloff above the cutoff frequency. A
two-pole filter would have been sufficient for this application;
however a five-pole filter could be realised with little
additional complexity and was found to be useful in a later

application where a sharp cutoff was essential.

The general form for the squared-magnitude function of a

Butterworth filter is given by:

IH(jm) |2 = LI
1+ [Q_JZn
2]

where n is the order of the filter and &, is the cutoff frequency.
The s-plane pole locations which correspond to the denominator

polynomial for a fifth-order filter are given by:

1 1

H(s).H(-s) = (n even), (n odd)

1 [§J2n I - [Q]Zn
W, R
This function has 10 poles equally spaced around a circle of

radius W, in the s-plane; the n poles to the left of the imaginary

axis define the filter (figure 3.3).
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The design of the filter was based around the Datel universal
hybrid active filter component, model FLT-U2, This dual-in-line
package contains four operational amplifiers and a number of
passive components. The first three amplifiers are "committed" in
the sense that they are internally interconnected with a number of
resistors and capacitors in such a way that it is possible to
implement a second-order transfer function using the
state-variable active filter principle, with the addition of a few
external components. The fourth "uncommitted" op amp can be used
as a buffer, or to add an independent real pole to the filter

characteristics.

For this application, two filter units were cascaded to
realise the five-pole Butterworth filter. Each trio of committed
amplifiers was used to provide two poles, the uncommitted
amplifier in the first unit was used to provide a buffer between
the two units and the final, uncommitted, amplifier was used to

provide the remaining (real) pole.

The conjugate poles P1 and P, were implemented with the

first filter unit.

damping factor, d; = cos ¢1 = 0.309
!
Ql = — = |.618
2d
1
Appropriate components were chosen by consulting the
manufacturer's data sheet for the FLT-U2. Two sets of tables are

provided, one each for the inverting and non-inverting filter

configurations. The first filter was operated in the non-inverting
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mode and Table 3.1 shows the recommended, calculated, and actual

values used in the implementation:

recommended | calculated actual
R“ 0o o 00
Ry, 316k/Q 195k 180k
R13 100k/(3.16Q-1) | 24.3k 24k
R, 5.03 x 107/ | 16.7k 16k
R, 5.03 x 107/ | 16.7k 16k
Table 3.1.

The uncommitted operational amplifier was wired as a
unity-gain non-inverting amplifier to be used as a buffer between

the two filter units.

The conjugate poles P2 and pq were implemented using the

second filter unit.

damping factor, d., = cos ¢2 = 0.809

2

1
Q2 = — = 0.618

2d2

Unit 2 was operated in the inverting mode and Table 3.2 shows
the recommended, calculated, and actual component values used in

the implementation.




recommended calculated actual
R21 100k 100k 100k
)

R22 fo%) oo
R23 100k/(3.16Q-1) | 75k 7 5k

7
qu 5.03 x 10 /fo 16.7k 16k

7
R25 5.03 x 10 /fo 16.7k 16k

Table 3.2.

The real pole, P3, was implemented using the remaining
"uncommitted" op amp. A gain of -l was required, which defined
R7/R6= 1. This pole was set to 3kHz by using the capacitor,

C, across the feedback resistor R7.

Suitable values were found to be C = 4700pF

and R7 (= R6 ) = llk .

A circuit diagram of the complete filter is shown in figure
3.4. The f{filter was constructed using a piece of copper strip
board, and each of the two cascaded units was tested separately
before testing the complete design. The plot of figure 3.5 shows
the results obtained for each unit together with the overall

response,
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3.3.2 The analogue to digital converter

An 8-bit analogue-to-digital converter was required having a
conversion time of 166.6 ps or less. This figure is the
conversion time required for a sampling rate of 6kHz, which is
twice the highest frequency component of interest. The conversion
system was based around a component (the ZN#425E) containing an
8-bit A to D converter together with an 8-bit binary counter,
allowing the construction of a successive approximation A to D
conversion system with the addition of an external voltage
comparator. The clock input to the counter was provided by the ¢2
clock of the microprocessor system. For a 1.8MHz clock, this

6

allowed a conversion time of 28/ 1.8 x 107= 142 s, which was

adequate for the purpose.

Interface to the microprocessor system  was provided by a
6821 Peripheral Interface Adapter (PIA) which has two 8-bit
peripheral ports which may be software configured foy either
input or output. The 8-bit digital output from the converter was
connected to the 'B' port of this device and the CB2 control line
was used to provide the 'convert' command. In order to fully
utilise the I/O capabilities of the PIA, it was decided to
construct a D-A converter on the same board connected to the 'A’
side of the PIA which could then be used to provide the control
signal for the oscilloscope Z modulation. A second ZN425E and an

operational amplifier were used to construct the D to A system.

A complete circuit diagram of the A-D/ D-A system is shown in
figure 3.6. The system was constructed on a board measuring 13.5

x 9 cms. fitted with three 10-way edge connectors, which allowed
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the board to be plugged directly onto the SS-30 1/O bus of the
microprocessor system. Printed circuit board techniques were used
to define soldering pads for the IC's and all interconnections
were made using wirewrap, The A to D converter was tested for
linearity and conversion efficiency by plotting digital output
against analogue input voltage at a 6kHz sampling rate using
software timing. Linearity was found to be better than 0.1%, and
a similar figure was obtained from the D to A system, plotting

analogue output voltage against digital input.

3.3.3 The digital to analogue converters

Three D to A converters were required for the system; one to
provide each of the analogue voltages required to define the
coordinates for the display. The system used to define the
z-modulation has already been described; two more converters were

required for the x and y axes.

The two converters were constructed on the same board and
were based around the AMD DAC-08 8-bit D to A converter IC., This
component was chosen on grounds of economy (~43 per chip ) and has
the added advantage of having an faster settling time (80ns) than
many other converters of higher cost. The DAC-08 is a current
output converter and requires external resistances to define an
analogue output voltage. The internal reference amplifier
requires a reference current which can be derived from a

stabilised voltage source using an external resistor.

For this application the reference currents were derived from
the +5V regulated supply using two 5k £ resistors. This provided

output currents in the range -ImA < Ios O. Inverting op-amp




circuits using 5k feedback resistors were used to convert the
output currents into voltages in the range OSVOS 5V which were

used as the output signals for the x and y axes.

3.3.4 Software

All software for the spectrogram system was composed using
the microprocessor assembly language. Assembly-level programming
is preferable for real-time applications where speed is of
considerable importance,. Efficient memory utilisation is
possible, which cannot be acheived using a high-level language
compiler. Programs were edited and assembled using the
microprocessor development system together with the disc-resident
editor and mnemonic assembler packages. The software can be

divided into 4 parts:
(1) sampling and windowing
(2) computation of the Discrete Fourier Transform (DFT)
(3) power spectrum estimation

(4) plotting of results

Each of these will now be discussed in turn:

In order to estimate a power spectrum in the range 0<f <1/T
Hz, it is necessary (by Nyquist's sampling theorem) to sample a
signal at a rate of 2/T Hz. In this application the frequency
band of interest was in the range 0 =< f <3 kHz, necessitating a
sampling rate of 6kHz. The sampling routine employed a software

timing loop to define the interval between the acquistion of
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samples from the A-D converter. This routine was used to acquire
N 8-bit samples for each vertical line on the plot which were
collected over a period of N/(6 x 103) seconds (8 £ N =< 256,
log,N = integer). Each sample was converted to its 2's
complement representation , scaled down by a factor N, and stored

as the most significant byte in a dual byte storage location.

Where a finite length sequence of N samples is used to
represent an infinite sequence, the finite sequence is the result
of multiplying the infinite sequence by a rectangular 'window'
sequence consisting of N samples of unity magnitude, The Fourier
Transform of the resulting sequence is then the convolution of the
transform of the infinite sequence with the transform of the
rectangular window. The latter is of sin(x)/x form and produces
undesirable side lobes in the power spectrum. These side lobes
can be reduced by using a window which has unity magnitude at its
centre but tapers to zero at each end. One such window is the
'Hamming' window, which was chosen for this application. For the
rectangular window the first side lobe is only 13dB down from the
main peak, whereas it is #0dB for the Hamming window (see figure
3.7). This extra suppression of the side lobes is acheived at the

expense of a slightly wider main lobe.

The Hamming window is defined by the following equation:

27®n
N -1

w(n) = 0.54 - 0.46 cos [ ] , 0=n=<N-|
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It is sometimes referred to as a 'raised-cosine' window.
Multiplication of the input sequence by the window was achieved by
storing samples of this function in a table in memory and
multiplying each of the input samples by the corresponding stored

window sample.

Evaluation of the DFT of the windowed input sequence was
implemented using the Cooley-Tukey Fast Fourier Transform
algorithm. This algorithm requires only (N/2)log2N complex
multiplications per transform, as opposed to 4N multiplications
for a direct implementation of the DFT equation. A detailed
description of this algorithm and its implementation has been
given in chapter 2, The DFT of a sequence {x(n)l of N samples is

given by:

Xk) = 'y x(n

The resulting complex sequence {X(k)l was stored in a table
of 4N bytes; two bytes were allocated for each of the real and

imaginary components of the X(k).

The power spectrum of the sequence ({x(n)} is defined as
{IX()I} . The modulus of each of the X(k) was calculated by

finding:

"\

_ 2 2
X0 = VXWgp + XKy,
The squares were computed using a 16 by 16 bit multiplication

routine (using Booth's algorithm (16)) and the square roots were

estimated using the Newton-Raphson recursion formula.
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3.4 Results

Vertical calibration of the spectrogram was checked by
applying sine waves of different frequencies to the system input
and noting the vertical positions of the horizontal lines produced
on the display. Each of the eight lcm divisions on the y-axis
represented 375Hz on a linear frequency scale. Gains of the x and
y display ampifiers were adjusted to allow the display to fill the
storage oscilloscope screen. A DC level produced a horizontal
line across the bottom of the screen; a 3kHz sinusoidal input
produced a horizontal line across the top. Figure 3.8 shows the
display obtained with a 1.5kHz, 5v pk-pk sinusoid with a 3v

superimposed DC level.

The audio output from a Racal RA17 HF receiver was filtered
and used as the input to the spectrogram system. Unfortunately
the receiver was found to have a slightly unstable BFO, which
tended to spread the signal in the frequency domain. For all of
the following results time is quantised along the x axis into 27
points, and frequency is quantised along the y axis into 26
points. This produces a display of 8192 discrete points in

time-frequency space. The delay loop parameter was adjusted to

produce a complete frame in 15 seconds.

Figure 3.9 shows the display obtained while monitoring a
high-speed (~40 wpm) morse code transmitter centred on
approximately 4#.7MHz. Some intermittent narrow-band noise can be
seen at the high frequency end of the channel (ie. at the very
top of the display). Fades of up to one second were observed

which are indicated by gaps in the displayed signal.  Occasional
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wide-band noise bursts are displayed as vertical lines traversing

the whole channel.

Figure 3.10 is the display obtained while monitoring a voice
channel containing two high-speed (~40 wpm) CW transmitters both
of which were of equal average strength and separated in frequency
by approximately 1lkHz. It was found difficult to audibly decode
either signal using a 3kHz receiver bandwidth. The two signals
can be clearly seen on the spectrogram display. Frequency
selective fades were observed audibly and can be seen on the
display; ie. the horizontal positions of a gap in one signal
(indicating a fadeout) do not always correspond to gaps in the
other. A few broad-band noise spikes are again evident as thin

vertical lines across the display.

The next two displays were the result of monitoring two
2-tone FSK signals of different data rates. The first (figure
3.11) shows the display resulting from observation of an estimated
150bps signal. The two tones can be clearly seen; short fast
fades and bursts of noise are visible and were confirmed by
audible monitoring of the receiver output. The display of figure
3.12 illustrates a 2-tone FSK signal of a higher data rate,
estimated at 300bps. The frequency spreading is greater than for
the slower-rate signal, although in both cases the spread was
larger than expected, mainly due to the BFO instability.
Frequency selective fading is evident from the virtual
disappearance (for the first 4 seconds of the display) of the
higher frequency tone. Broad-band noise was more severe than for

the previous signal.
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Figure 3.13 shows the spectrogram obtained from an AM
broadcasting station centred on 7.42MHz observed during the early
evening. The station was broadcasting orchestral music and was
therefore broad band. Very deep frequency-flat fades were
observed which can be identified by the large vacant areas in the

display.

3.5 Conclusion

This chapter has described an economical microprocessor-based
system for evaluation of an HF radio voice channel. The pictorial
representation of the time-varying spectral properties of the
channel enables the predominant disturbances to be identified.
Broad-band noise bursts and narrow-band interference may be
observed and fades on a known signal may be identified as
frequency-flat or frequency-selective. The microprocessor
implementation allows the system to present information in real
time, which an operator may use to assess the suitability of a

radio channel for data transmission.

Use of the spectrogram over a period of weeks indicated that
the predominant disturbances tended to be narrow-band interference
from other users of the channel. In most cases the spectral
occupancy was limited to less than 20% of the overall bandwidth;
this is examined in more detail in chapter 6. The results from
the spectrogram would tend to indicate that benefit may be
obtained from either (a) dynamic channel selection, where a change
of channe! frequency is made, or (b) dynamic in-band frequency
allocation, where the spectrum of the transmitted signal is

arranged to occupy the interference-free regions of the channel.
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Frequency-selective and frequency-flat fades were observed
from spectrograms of known signals. Frequency selective fades
were observed to traverse the channel completely, usually in a
short time (< 2s). Broad band noise bursts encompassing the whole
of the channe!l spectrum were frequently observed. A data
communications system for use over HF channels should therefore
provide protection against long-term narrow-band interference

phenomena and short-term broad-band fading and noise.

3-16




CHAPTER & The Slave Processor System

4.1 Introduction

It has been mentioned in the introductory chapter that the
data processing tasks for some applications described in this
thesis exceeded the capability of a single microprocessor unit.
An example is the parallel HF modem transmitter, to be discussed
in chapter 7, in which a modulated multitone waveform is to be
generated digitally while simultaneously encoding and
interleaving incoming data. The modem receiver is required to
demodulate the received signal waveform and to decode the
demodulated data. The serial processing capability of a single
"microprocessor is not sufficient to complete the required

programming tasks in the available time.

As a result of these requirements, a small, self-contained
microcomputer unit was developed which could perform a proportion
of the processing tasks required by the overall system. This
unit is connected into the system in a "master-slave"
configuration such that the central (or "master") processor can
assign tasks to one or more local (or "slave") processors. The
slave processors then operate transparently to the central
processor freeing the latter to perform other system tasks,
returning at a later stage to restart or reallocate tasks as
necessary. This form of distributed processing is useful where
many of the system operations are repetitive, and can be
implemented in microprocessor systems at low cost and with a
considerable increase in overall processing power. This chapter

describes a system implemented using the Motorola 6800

4-1




microprocessor which has subsequently been used in the HF
transmitting and receiving equipment to be described in later

chapters.

The task to be performed by the slave unit is loaded by the
master into a localised | kbyte of RAM to which only the master
and the slave concerned have access. Parameters to be processed
by the task are also transferred into the slave processor's RAM
and the task is initiated by a reset sequence on the slave
processor which is under control of the master. Several slaves
may be initialised by the master in this way, which are later
checked using status bytes located within the RAM area to
ascertain that the allocated tasks have been successfully
completed. The results of a processed task are extracted from
the slave memory and the task restarted using a different set of
parameters, or a new task may be allocated. Because of the way
in which the hardware is configured it is also possible for the
master to dynamically access the slave memory without disturbing
the flow of execution of the slave program. This can be useful
when the slave is performing a task which is to be executed
continuously, such as the generation of a voltage waveform in

real time,

As an example of an application for such a system, suppose
it is required to generate a sinusoidal waveform of which the
frequency, amplitude and phase may be varied. The frequency
parameter may specify the length of the steps to be taken through
the lookup table so that if every sample is selected the

frequency is f, if every 2nd sample is taken (step length = 2) it
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is 2f and so on. The samples may be multiplied by a factor, A,
to determine the amplitude, and the phase can be modified by
specifying the starting point in the table. The selected sample
values are converted into a real waveform by addressing a
parallel interface connected between the slave processor unit and
a digital-to-analogue converter. This is one example of many
applications for such a system. Some of the system requirements
and principles of operation are now discussed, followed by a

description of the implementation.

4.2 Principles of operation

The master-slave interface requires that the slave processor
unit appears to the master as a contihuous area of memory which
may be read from, or written to, by the master processor
regardless of the operation of the slave. Another requirement is
that the master may have access to the more important slave
processor control lines. It was decided that this may be most
easily accomplished by assigning the lowest address of the slave
memory area to a write-only control latch which is available only
to the master unit. In this way the reset and interrupt

sequences may be controlled by the master.

The requirement that the master and slave processors may
attempt to simultaneously access a common area of memory may lead
to conflicts when both are attempting to access the same byte.
Possible ways of resolving address conflicts may be found by
examining the requirements for the 6800 microprocessor clocks: A
biphase clock of frequency not greater than 2.0MHz must be

provided in which the two phases are non-overlapping. The phases

4-3



are designated (01 and !02 and are used to synchronise all data
transfers to and from the microprocessor. The processor sets up
an address during ﬂl which becomes stable during the first half
of Dl and is stable throughout {02. Data transfer (in a
direction determined by the state of the read-write line) occurs
during the fall of ¢2 when the byte of data on the data bus is
latched into the microprocessor or into memory. In the normal
system configuration recommended by Motorola (38), the memory is
allowed at least half of ﬂl and all of (?)2 in which to
respond. Two possible methods of arranging the clock signals to
avoid addressing conflicts in the master-slave system are shown

in figure 4.1 and are described in the following two paragraphs.

If a conflict is to occur, it will begin during ¢1, when
an address is set up which is inside the slave memory area. This
may be avoided by suspending execution of the slave processor
program until access by the master is complete. This can be
achieved by holding, or "stretching" the clock line to the slave
processor while at the same time removing the slave from the
busses by multiplexing the address lines and placing the data
lines in high-impedance (tri-state) mode. However, because the
internal registers of the 6800 CPU are dynamic, the clock may be
stretched only to an upper limit of #4.5ps, beyond which
destruction of internally held data may occur (39). In the
situation where the slave RAM is being continually accessed by
the master processor this limit may inadvertently be exceeded.
It is for this reason that the following alternative method for

avoiding conflicts was adopted in the final system.
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By running the two processors in antiphase, the slave
processor is in @2 when the master is in ﬂl and vice versa.
Furthermore, the address bus is multiplexed sc that the address
lines corresponding to whichever processor is in (52 are always
connected to the slave RAM. The master may access the RAM
provided the block is selected by decoding the high order address
lines of the master processor address bus. Memory access is
permitted only during {02 of either processor, which places an
upper limit on the memory access time of one half of the clock
period, since only wz is available for memory address set-up.
Nevertheless, static RAM with a sufficiently short access time is
available at reasonable prices and this latter method for
avoiding address conflicts was chosen in preference to clock

stretching.

This completes the description of theoperating principles of
the master-slave configuration, the constituent components of

which are now discussed in more detail.

4.3 Implementation
Implementation of the slave processor system is outlined in
the block diagram of figure 4.2 in which the various functions

are grouped into a set of distinct units:

(1) block select logic

(2) address line multiplexers

(3) data tri-state buffers and enable logic
(4#) control latch and enable logic

(5) clock drivers

(6) memory and enable logic
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(7) PIA enable logic

The functions and implementation of each unit are discussed
separately and reference should be made to the circuit diagram of

figure 4.3 ((a) and (b)).

4.3.1 Block select logic

Each of the two inputs of six exclusive-OR gates are
connected to a switch and to one of the six high-order address
lines respectively. The other sides of the switches are grounded
and the gate outputs are combined using two NOR gates and a
single NAND gate. The switches may be used to manually locate
the lkbyte of memory anywhere on a 1k boundary within the
available address space. VMA and az are also included in the
decoding to ensure that the address received is a valid one. In
a system which uses more than one slave processor, each may be

switch selected to reside within a different segment of memory.

4.3.2 Address multiplexers

The ten low-order address lines from the master processor
and the R/W line are multiplexed with the low-order slave
processor address lines into the local memory address bus. The

local ¢1, clock is used to control the address routing.

4.3.3 Data bus buffers

The data bus interface is provided by two bi-directional

tri-state buffers. The two control lines, Transmit Enable (TE)

and Receive Enable (RE), allow three possible functions: Data is
passed from the master processor data bus to the slave data bus,

or from the memory to the master data bus, or both sides of the
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buffers enter the high impedance state thereby preventing
interaction between the two busses. This latter state is
required to isolate the slave unit from the master when the
master is accessing a memory location outside the boundaries of
the slave address space. RE and TE are derived from NAND
operations of BS with R_/_\_!7 and R/W respectively and determine the

direction of data flow (if any).

4.3.4 Control latch

Two quad latches are selected to reside at the base of the
slave processor address space by using ten inverters on the low
order address lines to detect the 'zero' address. BS has been
included in the select logic to uniquely identify a particular
pair of slave latches within the overall system and R/W is used

to ensure that the latches are "write-only". The four 'Q'

outputs from one latch are connected to the RES, NMI, IRQ, and
HALT control lines of the slave processor, and the outputs from
the second latch are left unconnected, to be user defined at a
later stage. Data may be written to, but not read from, the
control latch by the master processor. Because the latch is
invisible to the slave processor, the bottom memory location in
the RAM may by freely used by the slave and may also be read by

the master.

4.3.5 Clock drivers

The clock signals required for the 6800 microprocessor are
not TTL compatible and need to be derived using open-collector
drivers with pullup resistors. The antiphase operation of the

slave unit (with respect to the master) requires that the clock
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signals from the master bus be inverted. This is acheived using
a NAND gate as an inverter and an exclusive-OR gate with one
input grounded. The latter has been included to equalise gate
delays which might otherwise cause unacceptable overlapping of

the two clock phases.

4.3.6 Memory

Two RAM IC's, each having a capacity of lk x 4 bits and an
access time of 150 ns were used to provide lk bytes of continuous
memory capable of operating with clock frequencies in excess of
2.0 MHz. The enable lines were tied together and to the output
of the chip enable circuitry. The memory must be enabled (a)
when the master processor addresses the slave memory block, (b)
when the slave processor addresses the lowest lk bytes of its
address space, and (c) when the slave processor addresses any of
the eight top locations of its address space (SFFF8-SFFFF) which
contain the interrupt and restart vector pointers. Two external
chip enable lines are provided to enable two 6821 Peripheral
Interface Adapters (PIA's) which must remain inactive during
memory access cycles, The truth table of table 4,1 determines
the select logic required for memory enable decoding.
Implementation was acheived using four NAND gates and one
inverter. VMA and ¢2 were included to permit only valid

addresses.

4.3.7 PlAs
The PIA select circuitry allows the inclusion of two 6821
chips in the slave processor system. Each PIA occupies 4

addresses and address lines Al2, All, Al0 and A2 were decoded to
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locate the PIAs at $0C00 to $0CO03 and $0CO4 to $S0CO07. Address
lines Al and A0 were used to reference the internal PIA
registers. The truth table (table #4.1) determines (1) that the
memory is disabled when selecting a PIA, and (2) that the PIAs

may be addressed by the slave processor only.

A 15 AIO A9 A8 CE PIAS

0 0 X X ﬂz 1 Internal RAM

0 1 0 0 1 1

0 1 0 ] 1 |

0 1 1 0 1 1

0 1 l ! 1 0 PIA select

1 X X X ¢2 1 Reset vector
Table 4.1

This completes the description of the functional blocks of
the slave system. The prototype was constructed on a standard
wirewrap board measuring 6.5 x 4.5 ins. and included a single
PIA. Photos 4.1(a) and #4.1(b) show top and underside views of the
assembled system. SSI components were chosen from the 74LS
series of IC's, and high frequency versions of the LSI chips were
used for 2MHz. operation. Connection to the master system was
via a 32-way ribbon cable approximately 0.5m in length. Initial
tests on the system proved unsuccessful when operating at a clock
frequency of 2.0 MHz; however a successful series of diagnostics

were performed at 1.0 MHz which will now be described,

4.4 Test Results
The switches on the slave processor board were set to locate
the RAM at addresses $SC000-$SC3FF. This is acheived by the

following combination, where a 'l' indicates a closed switch:
g s
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SW5 SW4 SW3 SW2 SWI1 SWO
0o 0 1 1 | 1

Since the latch is always located at the base address of the
slave RAM, its global address in this case was $C000. The data
format of the latch was defined by the system hardware to be:

d7 d6 d5 d4 d3 d2 dI  d0
X X X X HALT NMI IRQ RES

The following diagnostics were performed to ensure that the
slave system was functioning correctly. The assembler written
programs referred to in the text were assembled using the

co-resident mnemonic assembler.

(1) Memory diagnostic. The slave processor was halted by
using the system monitor to write $00 to the slave latch. The
memory diagnostic program 'CDAT-1', written by John Christenson of
Motorola Inc. (Appendix 2), was used to test the slave memory
(with the exception of the latch address) for faulty bits and
convergent address problems.  Successful execution of this test

ensured that the memory was working satisfactorily.

(2) Reset/interrupt sequence testing. The program listed in
Appendix 2 was used to test the slave reset and interrupt
operations. For a base address of $C000, the reset and interrupt
vector pointers reside at the following global addresses:

SC3F8-9 IRQ
SC3FA-B SWI
SC3FC-D NMI
SC3FE-F RES

The local addresses of the interrupt and reset sequences were

loaded into the corresponding vector locations and each sequence
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was checked by toggling the appropriate interrupt/reset line to
initiate the appropriate sequence. Toggling was done by using the
system monitor to write to the slave latch. Each test sequence
was designed to write a particular byte into global location $C00!
(local address $0001). This number could be read by the system
monitor to check for correct execution and could also be
dynamically altered without affecting execution flow of the slave

program.

(3) Parallel processing. The third diagnostic was used to
demonstrate the parallel processing capability of the master-slave
configuration. The example chosen was to evaluate the expression:

(a x b) + (c x d)

where a,b,c and d are 2-byte 2's complement numbers, The
program listed in Appendix 2 uses two multiplication routines; one
in master RAM, the other in slave RAM. The two numbers a and b
were used as arguments for the slave; b x ¢ was evaluated by the
master. A comparison of the execution times required for
evaluation of the expression by the master only, and by the
master-slave configuration showed a two-fold increase in speed by
the latter over the former, as would be expected. Note that in
programs which require a slave system stack, as in this example,
it is necessary to define a local stack pointer; initialising the
pointer immediately below the vector space allows the stack to

extend downwards through the slave memory.

4.5 Printed circuit construction
The slave circuit was transferred onto a dual sided printed

circuit board designed to fit onto the SS-50 bus using standard
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Molex connectors. The artwork was drawn twice full size using
transfers and tapes, then photo-reduced to a correctly dimensioned
"positive" image, The front and back images were carefully
aligned and fastened together at two sides to enable the blank
board to be slid in between before exposing to ultra-violet light
and etching in the usual way. The printed circuit version of the
system was found to perform satisfactorily with a 2.0 MHz. clock
frequency and three such boards were produced from the original

mask. Photo 4.2 shows the printed circuit board implementation.

4.6 Conclusion

The design and implementation of a distributed microprocessor
system has been discussed, in which a number of "slave"
microcomputer units are controlled by a "master" processor. The
master processor designates tasks to the slave units, and
instructs them to execute those tasks when required. Parameters
may be passed to and from the slave memory in much the same way as
parameters are transferred to and from subroutines. However, by
operating the slave processors in antiphase to the master, the
slave memory may be dynamically accessed by the master, without
disturbing execution of the slave program. The increase in
processing power which may be achieved using such a system has
been demonstrated with the use of examples; this advantage will

become further evident in later chapters.
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CHAPTER 5 Error-control coding
5.1 Introduction

From a technical point of view, a generalised data
communications system may be regarded as consisting of three
basic blocks: the transmitter, the channel and the receiver. - The
transmitter has the task of assigning an analogue waveform to
each possible sequence of digits received as input from the data
source, This is the process of modulation. The analogue
waveforms are  propagated through the channel and are then
interpreted individually at the receiver so that the output of
the receiver detector is a sequence of digits representing best
estimates of the transmitted data. The channel in this case is

known as the "modulation channel".

The above generalised communications system may be viewed in
its entirety as a strictly digital channel. In the binary case
this channel accepts 0's and 1's at its input and usually
reproduces them at its output. Occasionally, however, because of
noise and other channel impairments, the output digits do not
agree with the input digits and errors have occurred. Each
message is associated with a sequence of bits to be passed
through the digital channel. In order that they may be
distinguished, it is desirable to associate with messages bit
sequences which are as different as possible from one another.
This may be achieved by adding redundant bits to each message
sequence so that a message sequence of k bits is transmitted as a
block of n bits, where n> k, The communications system may now

be regarded as having the form of figure 5.1, where the "encoder"
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adds redundant bits to the source data in a systematic manner.
The "decoder" removes the redundancy after transmission over the
digital channel (known as the "coding channel") and may attempt

to detect or correct errors introduced by the channel.

The components of the coding channe! in HF radio systems are
the HF transmitter, the HF radio path and the HF receiver. The
transmitter and the receiver include the digital modulator and
demodulator respectively. As a first step towards minimising the
errors, close attention should be paid to the modulation scheme
to reduce the effects of intersymbol interference and noise.
However, the short-term variations in the characteristics of the
HF channel are largely unpredictable, and the channel impairments
often result in extremely high error rates. It is therefore
desirable to add redundancy in the manner described if these

errors are to be eliminated.

This chapter discusses the microprocessor implementation of
block coding schemes for random error correction, and shows how
the blocks may be interleaved to correct bursts of errors, such
as those observed on the HF coding channel. Field test results

are discussed in a later chapter.

5.2 Block codes

If the redundancy added to the message digits is to be
utilised by the decoder for error control, the redundant bits
must be added in a systematic and predetermined manner. An
effective way is to use a parity check block coding scheme in
which a number (n-k) of modulo-2 sums of (or parity checks on)

various digits of a k-bit message digit sequence are computed and
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appended to the information digits. The n-bit block is then
shifted out onto the channel. The data rate is reduced by a
factor k/n, known as the '"code efficiency". After transmission
through the coding channel, the same parity checks are computed
at the decoder; if they do not agree, then errors must have been
introduced by the channel. In the binary case, if it is possible

to locate the errors, they may be corrected.

An (n,k) block code is defined as the collection of 2k

n-tuples produced by encoding all possible k-tuples according
to some pre-determined set of parity-check rules. The encoding
of a data block into a code wofd can be represented
mathematically as:
c = dG

where ¢ is an n-bit code word represented as an n-place row
vector (n-tuple), and d is a k-bit data block represented as a
k-place row vector (k-tuple). The k-by-n matrix G is the

generator matrix of the code and has the form:

G = [1P]

where Ik is the identity matrix of order k, and P is an
arbitary k-by-(n-k) matrix. The leftmost k symbols of ¢ are
therefore identical to the corresponding symbols of d , while the
rightmost n-k symbols are modulo-2 sums of, or parity checks on,

various symbols of d .

In order that a code may detect up to t errors per codeword,
the minimum Hamming distance between words in the code must be at

least t+l. I[f the code is to correct up to t errors per
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codeword, the minimum Hamming distance between codewords must be
increased to 2t+l. The problem is to choose the matrix P to

maximise the minimum distance between codewords.

5.3 Cyclic codes

Much of the research in coding theory has been concentrated
on a small subclass of block codes, the cyclic codes (40). These
codes possess a fair amount of mathematical "structure", allowing
codes to be designed having good error-correcting properties and
which may be implemented with a minimum of hardware or software.
A cyclic (n,k) code, a linear block code of length n having k
information symbols, has the property that every cyclic shift of
a code word is another code word.
That is if:

c = {Cn—l’ Chopr = =+ 5 C }

is a code word, so are:

fcn_z, Chozr v v Cn-l}
{Cn-3’ Cocy? * = = 1 Cn-2}
{co, Cocpr + * ¢ cl}

The elements of each code word can be treated as coefficients of
a polynomial of degree n-1. The codeword can be represented as a
code polynomial; that is,

n-1 n-2

c(x) = ¢ ,x + C + ..
n-1 n_2X . + Clx + CO

That c(x) is a code word implies that x'c(x) modulo-(x"+1) is

also a code word for all i. The polynomial representation of the




bottom row of the matrix G defined earlier is known as the
"generator polynomial", g(x), of the code. All other rows in the
matrix of a cyclic code are multiples of this polynomial; given
the generator polynomial of the code, it is possible to construct
the generator matrix (41). Since g(x) has degree n-k, there are
2k polynomials, ie. those of degree less than k, which can be
multiplied by g(x) to yield a polynomial of degree less than n.
Clearly, there is a one-to-one corres,ondence between these
polynomials and the Zk words in the code. It may be proved
(12) that the generator polynomial, g(x), is always a divisor of

n
x +1 .

It may be shown (41) that encoding a k-bit data block by
multiplying it by the generator matrix G is equivalent to the
following polynomial operation. The polynomial representation of
the information block, denoted by d(x), has degree less than k;
therefore xn"kd(x) has degree less then n. Also

x"d(x) () (5.1)

00 - qlx) + )
where q(x) has degree less than k and r(x) has degree less than
n-k, the degree of g(x). Thus the polynomial c(x) = M Kdx) +
r(x) is divisible by g(x) and is a code word in the code
generated by g(x). This word consists of the unaltered k-bit

information block followed by n-k linear combinations of the
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information bits.

If c¢ is a code word in the code generated by the matrix G

Cc =0
In-k

Hence, any n-tuple e that is not a code word gives:

P
el = s #0
n-k

The vector s is an (n-k)-tuple referred to as the "syndrome"

defined previously, then

of the n-tuple. Every n-tuple has one, and only one, syndrome.
The syndrome is obtained by encoding the information section of an
n-tuple and adding (modulo-2) the resultant check bits to the

corresponding bits of the parity section of the n-tuple.

Let e(x) = ed(x) + ep(x) where ed(x) and ep(x) are
the data and parity sections of the n-tuple e(x) respectively.
The syndrome s(x) is given by:

s(x) = ep(x) + r(x)

where r(x) is the residue obtained by dividing ed(x) by g(x).
But since ep(x) has degree less than g(x), this is identical to
the residue obtained by dividing e(x) = ed(x) + ep(x) by g(x).

That is,

e(x)

s(x) = rem =22
g(x)

Since g(x) divides every code word c(x), the syndrome is identical
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to that of e(x) + c(x).

54 The BCH codes

The BCH (Bose-Chaudhuri-Hocquenghem) codes (42) are a class
of cyclic codes of particular interest. They are defined in terms
of the BCH bound, a statement of which is given later. The proof

of this bound may be found in reference (12).

The "primitive" BCH codes are of length 2™-1 (m integer)
and require, at most, mt check bits to correct up to t errors per
codeword. It has been shown that every binary cyclic code of
length n is completely determined by its generator polynomial,
g(x), a divisor of x"+1. The polynomial x"+1 with binary
coefficients may be factored into n linear factors:

(x +0¢, Mx +0;) ... (x +0¢)

where the roots, « , are elements of some larger field. These n
roots can be shown$to form a cyclic group under the operation
multiplication. That is, for some (primitive) root, o« , the n

roots can be expressed as

The lowest-degree polynomial with binary coefficients which
divides x™+1 and of which o' is a root is referred to as the
minimum polynomial of o<i, and is designated mi(x). If such a
polynomial is considered to have integer coefficients, all
coefficients of the polynomial miz(x) - mi(xz) are even.
In the binary case:

miz(x) = mi(xz)
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and if o¢' is a root of mi(x), so are oéli, o(l';, o ? . .. The
number of roots is the degree of mi(x). Tables exist for values
of n to determine which roots of x"+! are roots of a given
divisor of xn+1, or equivalently, which polynomial is the

. e . . n
minimum function of a given root of x +I.

The BCH bound can now be stated as follows: The minimum
distance of the code generated by g(x) must be greater than the
largest number of consecutive roots of g(x). (the j roots oé'“,

, ..y o¢'7are "consecutive" for 0 =i sn-1.) Since g(x) has degree

n-k, exactly n-k of the roots of x"'+1 are roots of g(x).
8

Encoding the BCH codes is a straightforward procedure, and
obeys the general rules for encoding of cyclic codes. The data

polynomial is multiplied by x"K

and divided by the generator
polynomial. The residue of this division is added to the data

polynomial to form the code word.

5.4.1 Decoding BCH codes
A decoding algorithm for BCH codes that can be implemented
with a reasonable amount of equipment or software has been devised

by Peterson (43).

The basic decoding problem may be outlined as follows.
Consider a code word c(x) transmitted through a noisy channel.
Let e(x) denote the error polynomial added to c(x) by the channel.
Decoding consists of determining e(x) from s(x), the syndrome
calculated from the received polynomial r(x) = c(x) + e(x). Then

c(x) is determined by adding e(x) to r(x).
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A primitive BCH code has the generator polynomial:
g(x) = LCM [ml(x), ma(x), « . o m‘_)t-l(X)J

ie., ml(x), m3(x), veey and m (x) divide g(x) and hence

2t-1
c(x). For the Peterson decoding algorithm it is necessary to
compute t partial syndromes by dividing r(x) successively by
ml(x), m3(x), ceny m2t_l(x). The residue obtained by
dividing r(x) by mi(x) is denoted S;, and is called the ith

partial syndrome. The first partial syndrome can be obtained by

dividing r(x) by m (x)

S{(x) = rem r(x)
m(x)
But r(x) = c(x) + e(x) and since ml(x) divides c(x), this gives
Sl(X) = rem e(x)
m, (x)

If e(x) has only one nonzero term, that is,
e(x) = x;, 0= i €£n-1, Sl(x) is the unique residue
corresponding to that value of i. If j errors occur, Sl(x) is

the sum of the residues corresponding to the various errors. That

is, if p; represents the residue corresponding to the jth error,

Slle,+/31+... + Pi

The iﬂ are known as the error-locator numbers. If it is possible
to determine each of these numbers it is possible to correct the
errors since each number is associated with a particular position
in the word. The set of residues form a Galois field, and

arithmetic operations must be carried out within this field.




There are 2™ residues in the field, each of which is m bits in
length; the field consists of 2M m-tuples obtained by dividing

x', 02i<n-1 by m  (x).

The "elementary symmetric functions", ¢~ , are related to the

error locator numbers as follows:

o F + 5 oL + Pt
AR 20 A ¥ T o
o Pipe B - Be

Having determined the partial syndromes, it is possible to find
the elementary symmetric functions. The error locator numbers may

then be found by substituting field elements in the equation:

2 () = (x+p)(x+p) ... krp) = O

The binary representations of the exponents of the field elements
then point to the bits in error which may subsequently be

corrected (44),

5.5 Code Implementation

Several hardware and high-level language implementations of
the BCH coding/decoding algoritﬁms have been described in the
literature (45-48). This section discusses the microprocessor
implementation of these algorithms for real-time operation. It
will be shown that the necessary Galois field arithmetic
operations may be performed without difficulty using the 6800
microprocessor. Codes of several Jengths were investigated;
however, special reference is made to the (15,7) dual error
correcting code, subsequently employed in the HF modem/codec

discussed in chapter 7.
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5.5.1 Encoder

It has been shown that a k-bit data block may be encoded into
an n-bit cyclic codeword by performing the polynomial operation of
equation (5.1) and adding the residue r(x) to the original data

block. Encoding therefore simply consists of determining r(x).

The polynomial division was implemented in software (see
"BCHCOD", appendix 2), using the "EOR" (exclusive-OR) and the
"ASL" (arithmetic shift left) microprocessor instructions to

simulate the operation of a shift register implementation.

The (15,7) code has the generator polynomial
g(x) = m (x) m,(x)

:(xl*+x+l)(x4+x3+x2+x+l)

Encoding a data polynomial d(x) is equivalent to finding

xBd(x)
g(x)

c(x) = x8d(x) + rem

Multiplication of d(x) by x® simply involves shifting the 7-bit
data block 8 places to the left; ie. transferring it to the next

highest byte.

Modulo-2 division by the generator polynomial was implemented
as follows. The binary representation of g(x) is

111010001

This is stored as a left justified double byte which is lined up
with the two bytes containing the product xgd(x). A bit-by-bit
EXclusive OR operation is then performed and the result is

shifted left until left justified. The result becomes the new
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dividend and the procedure is repeated until a total of eight
shifts have been performed., The final result is the residue of
the division of xgd(x) by g(x), which is added to xgd(x) to

produce the 15-bit code word.

5.5.2 Decoder implementation

Section 5.4.1 has discussed the operations necessary to
implement the Peterson decoding algorithm for BCH codes. Three
stages are required:

(1) Computation of the partial syndromes

(2) Calculation of the elementary symmetric functions

(3) Determination of the error locator numbers

Software was written to implement this algorithm for the
(15,7) code. (see "BCHDEC", appendix 2) Two partial syndromes are
required, Sl’ and 53. These were obtained using polynomial
division operations, computed in a similar manner to the encoding
procedure. Steps (2) and (3) required operations to be performed
in the Galois field. Arithmetic operations in the field may be
easily implemented on a  microprocessor system as the following

section describes.

5.5.3 Galois field operations

Arithmetic operations were to be performed in the Galois
field of 2™ (=15) elements. A representation of this field can
be formed using the primitive polynomial ml(x) = xF e x4 1 (a
factor of g(x)) and is shown in figure 5.2. The field consists of
all polynomials of degree m-l1 or less; the field elements can be

repesented as 4-bit binary numbers.
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eg. the field element o® can be represented as 0101.
Methods for implementing operations in the field are described as
follows:

(i) Addition. Field elements may be added (modulo 2) term by

term in the ordinary way.

(ii) Subtraction. Subtraction of field elements is the same

as addition.

(iii) Multiplication. The rule for multiplication is to

multiply in the ordinary way, reducing the answer modulo-2

and n10dulo-n1l(x) to a polynomial of degree m-l1 or less.

This is done by considering the equation lnl(x) = 0 and

using the equation to eliminate terms of power greater than

m-1. Implementation on a microprocessor can be done using

tables of exponents and field elements. Two tables are

arranged in memory; the addresses of table 1 correspond to
the exponents of &« ;| and the data corresponds to the field
elements. The addresses of table 2 correspond to the field
elements and the data corresponds to the exponents. To
multiply two field elements together, the exponents of the
elements are found from table 2, added together modulo-15,

and the product field element is determined from table 1.

For example, suppose it is required to multiply together the

field elements (l+o¢ ) and (l+e¢’). These elements correspond

to the hexadecimal numbers 03 and 05. From table 2, the
exponents are found to be 04 and 08. The sum of the
exponents is 0C, and the product of the field elements is
determined (from table 1) to be OF, which corresponds to the

polynomial 1+ o¢ + ot ol
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(iv) division. Division is performed in a similar manner to
multiplication, except that the exponents of o/ are subtracted

and not added.

Having computed the partial syndromes Sl and 53, it is

possible to find the partial syndrome 52

2
1

The error locator numbers are found from:

S, = B+t P

52:5

1 2
b

S, = B

and the elementary symmetric functions are:

o-, = Pl-' Pz

o_-; = Fl FI
We find that
o = S,
0, = S, + 5

Sy

If field elements are substituted into the equation
x* + ox + o, = 0

the errors may be located, and hence corrected. A flowgraph of
the complete decoding procedure is shown in figure 5.3. An
assembler listing of the implementation of this algorithm is shown

in the listing BCHDEC in appendix 2.

5.6 Results

The software implementation of the decoding algorithm was
tested by encoding all possible 7-tuples, adding all possible
15-bit error patterns to the resulting codewords, then decoding

the corrupted words and comparing with the original codewords to
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determine if the errors had been corrected. For a

t-error-correcting code there are:

t
Z n!
iln-i)!
i=1

correctable error patterns. For the (15,7) dual-error-correcting
code there are 120 correctable patterns of which 15 contain single
errors and 105 contain double errors. We may also consider the
all-zero l5-tuple to be an allowed error pattern as it results in
an uncorrupted word. The test results indicated that all single
and double errors were corrected but that correction was not

possible for error patterns having a weight exceeding 2.

Measurements were taken of the time required to encode a
7-bit data word and of the time required to decode a received word
containing 0, 1, or 2 errors. A slave processor unit was used to
time the procedure to the nearest 10 s In each case the average
time taken for all codewords was measured, together with the best
(shortest) and worst times. Best and worst times corresponded to
the all-zero and the all-ones codewords respectively. The results

are tabulated in table 5.1.

best average | worst

encoding | 0.11ms 0.12ms 0.13ms

decoding with: 0 errors | 0.31ms 0.59ms 0.85ms
1 error 1.33ms 1.56ms 1.79ms

2 errors | 1.68ms 1.87ms 2.08ms

Table 5.1. Execution times.
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The limitation on the maximum possible data throughput for
this coding scheme was determined by the worst case decoding time
for 2-error correction. If the maximum decoding time for an n-bit
codeword is tmax and the code rate is r, the maximum data
throughput is:

m - A7 x 15 L334 Ky,

t 2.08 x 107
Memory utilisation was found to be only 25 bytes for the encoder

and 272 bytes for the decoder (including lookup tables).

5.7 Burst error correction

So far, the codes discussed have been cyclic block codes
capable of correcting up to t random errors in a block of n bits.
Many channels do not exhibit random error characteristics; it is
known that HF radio channels are primarily subject to "bursts" of
errors. The random error correcting codes described may therefore
not always be effective over links using the HF channel. In
general, three methods are known for combating the effects of
burst errors:

(i) Long, random-error-correcting codes may be designed to

have large minimum distance, enabling a large number of

errors to be corrected per block.

(ii) Specialised "burst-trapping" codes may be used (49,50).

(iii) Codewords in a random error correcting code may be

interleaved to spread the errors over a large number of

codewords.

Method (i) necessitates a large amount of hardware or

software at the decoder. If the code is to be used purely to
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correct burst errors, the random error correcting capability of
the code is effectively wasted. This is intuitively obvious if it
is considered that there are many more ways of arranging t random
errors in a block of n bits than there are ways of arranging t
consecutive errors. Codes having large minimum distance have low
efficiency; consequently the data rate may be considerably

reduced.

Method (ii) requires a good knowledge of the channel
statistics. This is not usually possible for HF links (51). If
both random and burst errors occur over the channel, such codes

may be ineffective.

Method (iii) appears to be the most favourable for data
transmission over the HF channel. The method of interleaving can
be illustrated as follows. d codewords in a t-error-correcting
cyclic (nk) block code are arranged as rows in a matrix (figure
5.4 ). The coefficient Ci,j represents the jth bit of the ith
codeword. The matrix is transmitted as the transpose, ie. column
by column, so that a burst of consecutive errors will be spread
over more than one codeword. Provided that no more than t errors
occur per codeword, all the errors may be corrected at the
decoder. The burst correcting ability, b, of the interleaved code
is b=dt and d is known as the "interleaving depth". If the length
of the error burst is less than dt some random errors may also be
corrected. Note that if exactly b errors occur, no more errors
may be corrected in that matrix. On average the burst correcting

ability of the interleaved code is subject to there being an

error-free interval or 'guard time" of at least dn bits, thus
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ensuring that the number of errors does not exceed the error

correcting capablity of the code (52).

Bit interleaving of block codewords may easily be implemented
in microprocessor systems using software as will be illustrated in

a later chapter.

5.8 Conclusion

This chapter has discussed several properties of cyclic block
codes and has shown how these codes may be interleaved to
eliminate the burst errors experienced over HF radio links. In
particular, a microprocessor implementation of a coding/decoding
scheme for the Bose-Chaudhuri-Hocquenghem codes has been discussed
in depth. The finite field arithmetic operations required for the
decoding algorithm for this code may be easily implemented in real
time using conventional microprocessors and allow medium-speed
data transmission with a high degree of error protection.
Microprocessor implementations of error control are attractive in
an adaptive coding environment, as the coding scheme may be

changed by simple modifications to the system software.
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CHAPTER 6 HF Interference Pattern Measurements

6.1 Introduction

Many of the errors occurring over HF radio data links may be
attributed to interference caused by other users of the spectrum
(53). A reduction in the error rate is possible if the spectrum
of the transmitted signal is arranged to avoid those regions of
the channel which contain interference (54). For optimum
performance, the spectral distribution of the signal must be

adapted to suit the prevailing interference conditions.

An experiment is described in this chapter, in which
microprocessor data logging and analysis techniques were used to
investigate the fine-grain structure of interference occurring
within an HF voice channel. Spectral analysis of the channel was
achieved using a charge coupled device to evaluate the chirp-z
transform algorithm discussed in section 2.6 of this thesis. The
interference measurements were based on an estimation of the
power density fluctuations in each of 64 equal-width frequency
windows contained within the channel. Results are presented
showing the distribution of the occupancy of the windows by
interfering signals, and the probability of the occurrence of

interference over an interval of time.

6.2 System operation

The system was based around the RC5601 power spectral
density board, described in chapter 2. This is an evaluation
module based around a CCD quad chirped transversal filter and can

be used to calculate power spectral densities from a 512-point




transform by the chirp-z transform algorithm. The module forms a
discrete-time spectrum analyser, selecting and outputting the
magnitude and frequencies of the spectral components of an analog
input waveform. The analysis band extends from zero to the
Nyquist frequency (one-half the sample frequency). A mirror
image also appears extending from the sample frequency down to
the Nyquist frequency. The resolution bandwidth is (1/512) of

the sample frequency.

For this application the CCD evaluation module was
externally clocked to provide a sampling rate of 6 kHz. The
analysis band therefore extended from 0 to 3 kHz, and the
resolution bandwidth was 1.7 Hz. The 256 frequency points were
reduced to 64 frequency "windows" by combining the energies
present in 4 adjacent points. Adjacent windows overlapped
because of Hanning windowing of the CCD filters which tended to
spread a spectral line over more than | point. The overall
effect was to produce a series of 64 overlapping bandpass
filters. The amplitude-frequency characteristics of the
equivalent filters are shown in figure 6.1, and were derived from
the following considerations. A computer simulation using the
Hanning window equation applied to the CCD transversal filters
showed that a sinusoidal input of frequency fl’ coincident with
a spectral point, kl’ has its energy distributed as 50% at k1
, 249% at k1+l, 24% at kl'l’ and 2% outside this region. As
shown in the diagram, only 75% of the energy is captured by the
filter encompassing k,, the remainder falling outside the range

of the summation. The response at frequency f1 is therefore

20log;,(0.75) = -2.5 dB. The overall response of the
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equivalent filters was computed from similar considerations.

At a sampling rate of 6 kHz, a complete transform is
computed in (512/6x10°)

A
ARTE
24

power~speetrum within the windows was integrated over 2.7s every

= 85.3 ms. For this experiment, the

16s. This required 32 transforms to be evaluated and averaged at
16s intervals. The output for each spectral point was sampled by
an 8-bit analogue-to-digital converter and averaged over the 32
transforms. Each point was then quantised to 16 levels of
amplitude, assigned 0-F (hexadecimal). After each 16s interval,
the level for each of the 64 points across the frequency range
(0-3 kHz) was printed on the terminal, together with the current
time of day. Results were also routed to a floppy disc file for
subsequent analysis. A lHz signal source was used to interrupt
the processor at s intervals to allow a real-time clock to be

maintained within the system.

6.3 Hardware

Figure 6.2 shows a block diagram of the equipment used in
the experiment. An inverted-V half-wave dipole antenna was cut
to resonate at 4.7925 MHz and was mounted 25m above ground, in a
north-south orientation. The antenna was connected to a
synthesised communications reciever (the RF-505A), whose audio
output was connected to the analogue input of the CCD evaluation
module, The CCD module was externally triggered from a signal
generator set up to provide pulses of 500 ns duration with a
pulse repetition frequency of 6 kHz. The module was synchronised
to the microprocessor system by generating an interrupt after

each output sample. The output samples were converted to digital
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form wusing an 8-bit analogue-to-digital converter, and the
resulting digital signal was processed as described in the next
section. The 1 Hz real-time clock signal was derived from an

external digital clock module.

Two 60045 independent sideband audio outputs are available
from the RF-505A receiver., The lower sideband output was
selected and was attenuated through a potential divider network
to be used as input to the CCD evaluation module. This module
accepts an input time signal of 1V peak-peak maximum and produces
a spectral output of #V maximum. The output voltage peak for a
constant frequency sinusoidal input will be proportional to the
input voltage over this range, as the module computes the rms

spectral density of the input signal.

The maximum audio output from the RF receiver was obtained
by applying a sine wave from an RF signal generator to the
antenna terminal of the receiver and using the BFO to generate a
beat note. The attenuator was then adjusted to produce a maximum
undistorted output from the evaluation module at the beat note
frequency. Following this, the signal generator was removed and
the antenna was reconnected to the receiver. The background
noise was observed at the output of the CCD evaluation module and
was found to produce an average noise output (in the frequency
domain) of 0.17V. The dynamic range of the spectral density
output was therefore 2010310(4/0.17) = 27.4dB. This is
somewhat less than the dynamic range of signals received at the
front end of the receiver; however, the receiver AGC results in a

dynamic range reduction in the audio stages.
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The voltage output from the CCD evaluation module was
linearly quantised to 16 levels using software (described in the
next section). The first quantisation level therefore
represented an interference level of 2010g10(0.25/0.17) = 3.3dB
above the background noise level. This is the interference
threshold; ie. the threshold above which a frequency window may

be said to contain interference.

6.4 Software

The system software was required to (a) read the sampled
analog output data from the CCD evaluation module, (b) find the
average magnitude of each group of &4 consecutive frequency bins,
(c) average the results over 32 transforms and (d) quantise each
averaged magnitude to 16 levels. Routines were also written to
store, on flexible disc, the time of day and the number of

windows containing any interference.

After system initialisation, the real time clock parameters
were set up by entry from the system terminal. At this point,
the "in sync" (to the CCD module) and the "gate enable" (to the
pulse generator) signals were held at logic '0' by the CB2 output
line from the PIA. This caused the 9-bit address counter to be
reset. When this line was brought to a 'l' state, the sampling
clock (6 kHz pulse generator) was enabled, and the address

counter was automatically incremented on each clock pulse. The

T3CL output from the evaluation module is phase 3 of the 4-phase
clock required to transport the charge packets along the CCD.
The transition of T3CL coincides with valid output data and was

used to cause an IRQ interrupt sequence to be generated by the
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PIA.

The first 512 clock periods served merely to load the
filter, The Nyquist frequency band was available at the output
during the next 256 clock periods, but no output data was sampled
until the following 256 clock periods, during which time the
signal band was available. It was then necessary to introduce a
delay of 256 clock periods, during which time the next Nyquist
band appeared at the output. The filter was then operating in a
continuous serial mode, outputting one sample in the frequency
domain for each sample clocked in the time domain., The process
was continued until 32 sets of frequency-domain samples had been

collected.

The results from the 32 transforms were averaged and
quantised to 16 levels for each frequency window. At each l6s
interval, the time of day and the averaged results were printed
as a single line of output on the hard-copy terminal. The number
of windows in which any interference had been observed was
written as a single byte to a flexible disc file, using the disc
file management system. The time of day was also stored on the
disc, as three binary-coded-decimal numbers. Each disc record
therefore contained four bytes of data. The disc file records
were subsequently analysed and used to produce the results

discussed in the next section.
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6.5 Experimental Results

A typical printout of the results obtained during the
experiment is shown in figure 6.3. Each printer column to the
right of the time corresponds to one of the 64 frequency windows.
The magnitude of the response obtained for each window is printed
as a single hexadecimal digit in the range 1-F. A magnitude of 0
corresponds to a clear window, for which nothing is printed. Two
narrow-band interfering signals can be seen at 1550 Hz and at

2480 Hz. Another (weaker) signal appears at 2300 Hz.

Data for each half-hour interval was analysed and the
results were plotted of the number of windows in which any
interference was detected during the half-hour period. ie. in
which the interference level exceeded the previously defined
threshold. The results (figure 6.4) are plotted as a percentage
of the total number of windows vs. Universal Time for a 24 hour
period. For example, between 0330 and 0400, interference was
detected in 70% of the total channel bandwidth at some time
during the half hour., The data for this experiment was collected

during the period 10th-17th March, 1980.

The distribution of interference within the channel was
observed to vary considerably over the 24 hours. A high
proportion of the channel was occupied during the hours of
darkness, when the receiver was subjected to interference from
distant sources, A "quiet" interval of about 4 hours was

observed around mid-day when no interference was detected.
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The stored data was analysed to determine the proportion of
time that the channe!l was completely free from interference; Iie.
(subject to propagation being available) the proportion of time
that the channel could be used for transmission to its full
capacity. The results were plotted for half-hourly intervals and
ar shown in figure 6.5. eg. between 0430 and 0500 hrs the
channel was found to be completely free from interference for 25%
of the time. Interference was heavy during the night amd the
channel was occupied to some extent for >95% of the time. There
appeared to be a steady improvement in the interference- free
time between 0400 and 0630, followed by a slight deterioration
and another improvement leading to the &4 hour "quiet" time. This
was followed by a gradual deterioration after 1430, probably
caused by a lengthening of the skip distance. A noticeable
characteristic of the plotted results is that the changes from
one half-hour to the next are gradual, with no abrupt

transitions.

The stored data was again analysed, to obtain more
information on the spectral distribution of the interference
within the channel. The proportion of time during which n or
more frequency windows were occupied are plotted, for each
half-hour interval, in figures 6.6 (n=1,2,3) and 6.7 (n=4,5,6)
(both plots are on the same scale). Note that the result for n=l
is simply the inverse of the result of figure 6.5. The
percentage falls off rapidly as n increases and becomes very
small for n> 6. This is indicative of the predominance of
narrow-band interference. The results were combined to produce

an overall probability of spectral occupancy against bandwidth
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(figure 6.8). Because of the finite width of the frequency
windows, the results are plotted as bar graphs, with discrete
points at n=0 indicating the probability of a completely free
channel. The results appeared to fall into two distinct regions;
low interference levels were observed for an eight-hour interval
during the daytime; high interference levels were observed during
other times, when the skip distance was greater. Resulf§ were
plotted for these two extremes ie. '"day" (0600-1430), and
"night" (1430-0600), respectively, and also for a 24 hour
average. It can be seen that the probability of a clear channel
is much greater during the day, and that at night there is a high

probability that narrow-band interference will be present.

6.6 Conclusion

This chapter has described an experiment undertaken, using a
microprocessor system and a charge coupled device, to observe the
characteristics of interference occurring in an HF radio voice
channel. It has been shown that there is a high probability that
the channel will contain interference of a narrow-band nature,
and that the interference distribution may vary considerably with
time, becoming quite severe during the night hours. It is highly
probable ( >97%) that the bandwidth of the interference will be
narrow ( <200 Hz); however, the distribution of the interference
is likely to change rapidly, especially during the night. This
confirms the view that benefit may be obtained by using a
frequency-agile transmission system to avoid those regions of the

transmission channel containing interference.
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CHAPTER 7 The HF Data Modem / Codec
7.1 Introduction

The resurgence of interest in digital communications via HF
radio links has led to a renewed search for low-cost modems
suitable for data transmission over ionospheric paths. As
previously discussed, signals propagated over the HF path are
plagued by noise and multipath distortions which may often result
in intolerably high error rates (55). The time-varying nature of
the disturbances imply that some form of adaptive control is

required if the errors are to be eliminated.

The suitability of microprocessor systems for the
implementation of signal processing and coding techniques has
been demonstrated in chapters 2 and 5. Microprocessors are also
extremely attractive for use in an adaptive environment as the
course of execution of machine instructions may be made dependent
on previous and current events. Non-adaptive modems based on
these devices have been demonstrated in the literature (56-59),
as have some adaptive schemes which require feedback links from

the receiver to the transmitter (60).

This chapter describes the design and development of a
medium-speed adaptive HF data modem/codec, based on
microprocessor-implemented signal processing and coding
techniques, which does not require the use of a feedback link.
Results from earlier chapters were considered when formulating
the design, which may be implemented at an appreciably lower cost

than previous systems.




It has been shown that a primary source of errors over HF
radio links is narrow-band interference from other users of the
spectrum. The spectral distribution of the modulated output
signal from the modem is arranged to occupy the interference-free
regions of the radio voice channel. Forward error correction is
applied in an attempt to combat transient broad-band
disturbances. @The modem 1is described in the published paper of

Appendix 3 (reference 61).

7.2 System philosophy

It has been shown (62,63) that the optimum frame (signal
element) duration for transmission over a dispersive medium is
equal to «/L—/E\, where L is the time spread introduced by the
medium and B is the frequency spread. For HF channels, both the
time spread caused by multipath and the frequency spread caused
by Doppler shifting may vary considerably and may depend on the
time of day and on the operating frequency. For a medium haul HF
link, the time spread may be in the order of several
milliseconds, and the Doppler shifting may be of the order of a
few Hz. Insertion of typical values in the above formula yields
frame rates in the order of tens of Hz. A frame rate of 75 Hz
has been found to be a reasonable compromise; the signal element
duration is of sufficient length to combat the effects of
multipath distortion, yet is short enough to ensure that minimal
phase distortion occurs over a single frame, Serial
binary-modulated data transmission schemes are therefore limited
to a data rate of 75 bps, which does not fully utilise the

available bandwidth.
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It is possible to increase the transmission rate while
preserving the frame rate by time division multiplexing the data
for transmission over a number of frequency-parallel subchannels,
orthogonally spaced within the voice channel. The data rate is
increased by a factor equal to the number of subchannels
employed. The spectral distribution of the transmitted signal
then depends on the location of the subcarriers. Capacitative
coupling and other band-limiting effects inherent in conventional
HF radio equipment usually restrict the useable region of an HF
voice channel to between 300 Hz and about 2.8 kHz. Sixteen
orthogoﬁally spaced slots were allocated within this region for
the location of the subcarriers, ie. from 450 Hz to 2700 Hz,

with 150 Hz spacings.

It would be possible to utilise the channel to its full
capacity by employing subcarriers at all adjacent orthogonal
frequency slots. However, results from chapter 6 of this thesis
and from work in the literature (53) indicate that there is a
high probability that the channel will contain interference, and
it is therefore preferable to distribute the signal spectrum in
the noise-free regions only. It has been shown that the
interference is predominantly narrow-band, but that its
distribution may vary rapidly with time, In view of this, a 50%
spectral occupancy was adopted, the subcarriers occupying

one-half of the available subcarrier slots.

It is also possible to increase the transmission rate while
preserving the frame rate by employing a Q-ary modulation scheme

(64). In the binary case, it is practical to use only values of




Q which are integer powers of 2, for which the transmission rate
is increased by a factor n:long. The penalty paid is the
increase in vulnerability to noise, which (for PSK) is calculated
to be 3dB and 8.5dB for Q=4 and Q=8 respectively (65). 4-phase
modulation (QPSK) can therefore be used to to double the
effective data rate with only a small reduction in tolerance to
additive noise (66) and has been used successfully for data
transmission over HF links (67-69). However, because of the
phase perturbations observed over such links (70), coherent
detection of such a signal becomes virtually impossible and
differential phase encoding must be used. This imposes an
additional degradation of 2.3 dB for QPSK (71) resulting in a
total of 5.3 dB degradation over the optimum coherent biphase
detector. The differentially modulated QPSK signal (DQPSK),
however, has a spectral occupancy identical to a serially

modulated biphase system and gains an advantage in this respect.

The results presented in chapter 6 have indicated that a
reduction in the error rate might be obtained if the signal
spectrum is adjusted to suit the prevailing channel interference
conditions. A system in which the frequencies of the signal
carriers are dynamically adjusted is called a "frequency agile"
system. A serial in-band frequency-agile FSK modem has been
demonstrated by Darnell (54), and has been found to yield
improvements over the standard tone allocations. The modem
described in this chapter estimates the spectral distribution of
the interference present in the voice channel at intervals, and
reallocates the distribution of the subcarriers accordingly. An

assumption was made that, over medium distances (1000 km. or
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less), the interference characteristics at the receiver will be
roughly similar to those observed at the transmitter, This
assumption was later proved to be correct, as will be
demonstrated. The noise estimation may therefore be carried out
at the transmitter site, and no feedback link is required. The
receiver must be advised, however, as to the new distribution of
the transmitted spectrum. This is achieved by transmitting a
high-redundancy "advisory sequence" on a set of subcarriers

having a fixed frequency allocation.

The receiver demodulator must distinguish the transmitted
tones and extract the phase information for each tone. It would
be possible to use a bank of conventional narrow-band filters to
perform the demodulation process. However a frequency agile
system would require a large number of filters, of which only a
few would be in use at any one time, making the system
uneconomical. It is preferable to use digital processing
techniques to implement matched filter detection by means of the
Discrete Fourier Transform. Phase information for each
subchannel may be obtained by observation of the complex
coefficients of the DFT slots corresponding to occupied
subchannel frequencies. Comparison detection allows the
differential phases (and hence the data) to be extracted without
the need for a pilot tone or a locally generated reference

phasor.

The design, construction and testing of the transmitter is

now described, followed by a discussion of the receiver design.
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7.3 Transmitter

A block diagram of the transmitter is shown in figure 7.1,
the constituent components of which are discussed in this
section. The master processor system includes a 6800 CPU, &
kbytes of RAM and 2 kbytes of EPROM containing the system

software, a listing of which may be found in appendix 2.

The tasks performed by the transmitter fall into four broad
categories:

(1) data acquisition

(2) encoding for error control

(3) modulation

(4) channel evaluation & subchannel selection

It was found that a single 6800 microprocessor system was
not able to perform all of the required tasks in the available
time. One of the main reasons for this was that the modulating
waveform must be generated continuously, while simultaneously
encoding incoming data. Time-sharing of tasks would inevitably
lead to breaks in the analogue signal if this was generated in
software. In view of this, a 'master-slave' configuration was
used, as described in chapter 4. A 'slave' processor unit was
allocated the task of modulation, and the remaining tasks were
performed by the 'master'. The advantages of this approach have

already been discussed.
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7.3.1 Data acquisition

An asynchronous serial interface IC was available which
allowed 7-bit characters having start and stop bits to be
received and transmitted at a variety of data rates. This IC was
used in the system to accept characters at a rate of 600 bps.
The interface control register was programmed by the system
software such that an interrupt was generated on receipt of a
complete character. Each 7-bit character was mapped into a
(15,7) BCH codeword (see chapter 5), and was further processed to
allow interleaving of 16 codewords along each of the 16 data
subchannels. It was necessary to receive 256 characters before
transmission could commence (because of the interleaving
requirement), after which time characters were accepted

continuously via the interrupt driven input.

7.3.2 Encoding for error control

The forward error correction scheme chosen for this system
was a (15,7) block code interleaved to depth 16 along each of the
16 data channels. The code has been fully described in chapter 5
of this thesis and the improvement in error rate obtained in
practice using this scheme will be demonstrated in the next
chapter., Each data character received through the serial
interface was coded on receipt and the resulting codeword was
loaded into a table of 16 codewords contained in 32 bytes of
memory. When the table was full, the bits were interleaved and
the whole table was transferred to one of !6 tables containing
data ready for transmission via the modem. Each one of these 16
tables corresponded to each of the data channels; a pair of

tables therefore corresponded to one subchannel frequency, the
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bits in the tables being used toS$select the differentiel phase
for each signal element. The organisation of the data in
time-frequency space is shown in figure 7.2., where Cij is the

b

jth bit of the ith codeword.

7.3.3 Modulation

Differential four-phase (quatenary) shift keying (DQPSK) was
adopted as the modulation scheme for the system. The z-plane
representation of a suitable phase encoding scheme is shown in
figure 7.3 where the axes form the decision thresholds and the
bit-pairs corresponding to the phases are arranged in a Gray code

around the unit circle to minimise the bit error probability.

Each subcarrier conveys two bits of information per signal
element and there is a total of eight subcarriers to be located
in a possible 16 orthogonally spaced frequency slots. 16 bits
are therefore transmitted per signal element, which are divided
into 8 pairs; a pair of bits determines the phase on the
corresponding sub-channel. The signal over one element may be

described as:
) = 2 cos(wkt+f_ ), 0=<t=<I333ms

where & = 27 150 Hz, kc is an integerSbetween 3 and 18 and HC
is the phase corresponding to subchannel ¢ (c is an integer).

ﬁc may have values n/4, 37/4, 5r/4, 77/b.

The composite modulating signal was to be generated

digitally, then low-pass filtered to confine the spectrum to the
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required signal band. A lookup table stored in the slave memory
was used to generate samples of this signal. The table consists
of N samples of a cosine waveform, equally spaced in time, each of
which 1is stored as an 8-bit 2's complement number. If consecutive
samples from the table are output at a sampling rate of fs’ the
fundamental frequency of the resulting waveform 1is
fS/N. Multiples of this frequency may be generated by stepping
through the table at different rates, so that if the step length
is 1, the frequency generated is lfS/N. The table may be
regarded as circular; the index of the current sample is always
calculated modulo-N.  Nyquist's sampling theorem requires that at
least 2 samples per waveform cycle must be available to define a
frequency, implying that the sampling rate must be at least twice
the frequency of the highest component. For this application a
sampling rate of 6kHz is sufficient to guarantee this condition,
and if frequencies are to be generated in multiples of fC = 150
Hz (to satisfy the orthogonality constraint), the length of the

lookup table must be N = fs/fC = 40 samples.

The frame rate of the transmitted signal is one-half of the
frequency spacing so that a complete frame is generated using &80
samples at the 6kHz sampling rate. The phase of a particular
subchannel is determined by the starting point in the lookup
table. Phases of nw/4 (n = 1,3,57) are required, corresponding
to the dibits 00,01,11,10 respectively. The required phase is

generated by starting at sample number nN/8 = 5n.

As an example of the preceding discussion, suppose it is

required to generate a subchannel on 900 Hz having a phase of




5.7 /4 radians. The step length is 9OO/fC = 6 and the starting
point in the table is 25. The first 10 indices of the 80 samples

required to generate the subchannel are then:
25,31,37,3,9,15,21,27,33,39

Modulator circuit

Consideration was given to the possibility of generating the
composite multitone waveform using a purely software approach.
One method would be to use an interrupt processing routine to
generate a new sample of this waveform at each sampling period.
However, the overhead required in adopting this method represented
a considerable proportion of the overall processing time, and it
was not possible to complete the required processing in the
available baud time of 13.33 ms. Additional hardware was
therefore designed and built to reduce the computational
requirements of the modulation process. Operation of the
modulator hardware is described in this section. A circuit

diagram is shown in figure 7.4,

The modulator circuit is interfaced to the slave processor
via two PIAs (Peripheral Interface Adapters). That to the left of
the circuit diagram is referred to as the 'input PIA' and that to
the right is the 'output PIA'. Twelve of the 16 1/O port lines
from the input PIA are connected to the inputs of four hex
tri-state buffers, arranged as two pairs. The buffer outputs are
connected to the inputs of six quad 80-bit static shift registers,
arranged as two sets of three, subsequently referred to as SR1 and
SR2. The shift register outputs are connected to six 8-to-4 line

multiplexers, also arranged as two sets of three. The outputs
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from the first set of multiplexers are connected to twelve 1/O
lines of the output PIA, and the outputs from the second set are
connected to the inputs of a 12-bit digital to analogue converter.
The output from a 6kHz square wave generator (implemented using a
crystal oscillator and a divider circuit) is connected to the
input of two cascaded &4-bit binary counters. The QA and QD
outputs from the most significant counter are NANDed together
and are used to 'set' a D-type bistable on the count of 80. The
output from this bistable then resets the counters and is used to
interrupt the slave processor unit via the CAl line on the input
PIA. The remaining bistable in the 7474 IC is used to enable the
6kHz sampling clock to the input of a multiplexer. The inverted
signal from the CB2 line of the input PIA is also connected to the
input side of this multiplexer. The multiplexer is configured so
that the 1Y output is derived from the CB2 line while the 2Y

output is derived from the sampling clock, and vice versa.

The enable lines to the data buffers are inverted with
respect to each other so that while one pair is enabled, the other
is not. The outputs of the pair that is not enabled are pulled to

[ Ao iity ’1';‘(4,; U oy N
logic '0' by the resistors.> The select lines on the multiplexers
are also inverted with respect to each other so that the outputs
from the shift registers whose inputs are derived from the enabled
data buffers are routed to the output PIA, while the outputs from
the other shift registers are routed to the D/A converter. The
'shift' signal for the former is obtained from the CB2 output line

of the input PIA, via the remaining multiplexer, and the shift

signal for the latter is derived from the sampling clock.
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After loading, the slave processor memory contains the
program for control of the modulation, a #40-point cosine lookup
table, and two 8-byte tables containing the step lengths and
starting points for each subchannel. Operation of the circuit is

as follows:

The multiplexers are switched so that the PIA output lines
are routed into the input of register SR1 and the outputs of SRI
are routed into the input PIA. Samples for the first subchannel
are selected from the lookup table using the corresponding step
length and starting point. Each sample is written into the eight
least significant bits of SRI; the register is full after 80
"write" instructions. The f{first sample entered is then read from
the shift register output, added to the first sample of the next
subchanne! and the result (now 9 bits) is written back into the
shift register. After 80 shifts the register contains the sum of
the samples for the first two subchannels. The procedure is
continued for all eight subchannels. The multiplexers are then
switched so that the "shift" line to SRI1 is derived from the 6kHz
clock and the shift line for SR2 is derived from CB2. The output
from SR1 is now routed to the D to A converter and the register
contents are shifted out at the sampling rate of 6 kHz. During
this time the register SR2 is loaded with samples for the next
frame in a similar manner. When SR2 is full, the multiplexers are
again switched and the contents are routed to the D to A
converter. During one frame, therefore, the contents of one
register are shifted out to the converter at the sampling rate
while the slave processor is constructing samples for the next

frame using the other shift register. When all the samples in a
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register have been shifted out, the counter is used to interrupt
the processor which then switches the multiplexer select line and

begins to construct the next frame.

The frequencies and phases of the subchannels for each frame
are determined by the contents of two 8-byte tables which contain
the step lengths and starting points respectively. There are
actually two pairs of tables; the contents of one pair are used by
the slave to compute samples for the frame currently under
construction, while parameters are loaded into the other pair from
the master for use by the slave during the following element.
During one frame, therefore, the master has control of one pair of
tables while the slave has control of the other. Upon receipt of
an interrupt from the slave (indicating completion of transmission

of a frame), control of the tables is reversed.

To summarise the preceding discussion, three processes occur
simultaneously during one signal frame. Samples for the current
frame are shifted into the D-A converter from one set of shift
registers by the 6kHz sampling clock; samples for the next frame
are computed by the slave in the second set of shift registers
with phase and frequency information obtained from one pair of
tables. Frequency and phase information for the third frame is
passed from the master into the second pair of tables in the

slave.
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7.3.4 Channel evaluation & subchannel selection

Following each message transmission, the HF transceiver is
switched to the 'receive' mode (by means of a Tx/Rx reed relay),
and the audio output of the receiver is sampled by the A-D
converter. 64 samples are acquired at a sampling rate of 9.6 KHz
and an in-place FFT is computed (see chapter 2). The resulting
DFT frequency slots are therefore in multiples of 150 Hz, and the
power spectrum of the slots from 450 Hz to 2700 Hz inclusive (the
16 available subchannel slots) is estimated from the phasor
magnitudes. The sampling and transformation processes are repeated
& times and the resulting power spectra are averaged to provide a
reasonable estimation of the noise present in each subchannel slot
over an observation interval of approximately 3.5s. This
represents only 2% of the overall transmission time and therefore
does not significantly affect the data rate. A number sorting
routine (CHSORT) is then used to select the eight "quietest" slots
for subsequent transmission. The quietest slots are taken to be
/Blh&se those eight which exhibit the least average interference
from the total of sixteen available slots. A typical distribution

of the signal spectrum is illustrated in figure 7.5.

In order that the receiver may be advised as to the
subchannel frequencies to be used for subsequent data
transmission, a coded sequence containing this information is
transmitted immediately before the frequency change is effected.
The sequence comprises eight (15,7) BCH codewords; the information
section of each is formatted as follows:
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The vector n = (nznlno) represents a subchannel number
in the range 0-7 and the vector s = (33525150) represents
a subchannel of frequency (450 + (s x 150)) Hz. A code vector ¢
is found from the matrix operation:

c = Ens\_G
where G is the code generator matrix.

The code is fully described in chapter 5. The set of 8 code
vectors are arranged in time-frequency space as illustrated in
figure 7.6, where Ci,' is the jth bit of the ith codeword. It
can be seen that pairs of codewords are interleaved to depth 2
along each data channel allowing correction of 4 errors per data
channel. Because of the &4-phase modulation scheme there are two
data channels per subchannel frequency, resulting in a total of 16
data subchannels. For each signal element, the differential phase
transmitted on a subchannel is determined by the corresponding
dibit. There is a four-fold spectral redundancy in the transmitted
data which compensates for any narrow-band interference which may
be present. The advisory sequence is always transmitted on a set
of subchannels having a fixed frequency allocation. Transfer to
the new subchannels occurs immediately after the advisory sequence
transmission. If a fixed frequency allocation was not used, a
situation might arise where an error occurs in the decoding of the
advisory sequence, resulting in the loss of all subsequent
messages. The fixed allocation allows the receiver to recover
after a single message block, since the location of the

subchannels for the advisory sequence is always known.
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7.3.5 Synchronisation patterns

In order that the receiver may gain element synchronisation,
a sequence of phase reversals is transmitted on alternate
subchannel slots prior to the frame synchronisation sequence. The
phases are equal for each subcarrier during a signal element. The
phase reversal sequence is sent over each transmitted subchannel
frequency. The element synchronisation pattern is followed by a
frame synchronisation pattern, comprising a 31-bit m-sequence
pattern. This pattern is transmitted in parallel on all subchannel
frequencies. The receiver must attempt to correlate the received

synchronisation pattern with the stored sequence.

7.3.6 Construction

The basis for the construction of the transmitter system was
the SWTP 6800 development system. The monitor PROI\;‘;;om the
"motherboard" of this system was modified to allow insertion of a
2 kbyte EPROM containing the transmitter software. A slave
processor unit (see chapter %) was also mounted onto the
motherboard and was interfaced to the modulator wirewrap circuit
board via a length of ribbon cable. The A-D conversion system
(used to sample the receiver audio output) was constructed on a
wirewrap board having a 30-way edge connector to allow insertion
onto the I/O bus on the motherboard. A serial interface board was
also mounted on this bus, as was an additional board containing a
PIA and two reed relays to control (a) enabling of the D-A output
signal and (b) the Tx/Rx relay on the HF transceiver. The
analogue filter (see chapter 2) was constructed using copper
stripboard and later was mounted on the back panel of the system.

Photographs of the transmitter system hardware are shown in
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figures 7.7 (a) and (b).

7.3.7 Transmitter testing

Because the transmitter is entirely software controlled, it
is possible to implement any of the three digital modulation
schemes (ASK, PSK or FSK), using up to 8 subcarrier frequencies,

by simple software modifications.

To test the transmitter operation, the software was initially
set up to generate a phase reversal sequence on a single frequency
of 600 Hz. The photograph of figure 7.8 shows the transmitter
output signal on the upper oscilloscope trace and the modulator
counter reset signal on the lower trace. It can be seen that one
signal element comprises 8 cycles of the subcarrier, as expected,
and that the counter reset signal appears at the end of a signal
element, indicating to the slave processor (via the interrupt
routine) that the element is complete. The CCD spectral
evaluation module (see chapter 2) was used to display the power
spectrum of the voiceband signal, the result of which is shown in
figure 7.9. A single peak can be seen in the signal band output,

and also in the CCD Nyquist band region.

The software was then configured to permit transmission of
sequences using 2,4, and 8 subcarriers. The power spectra
obtained from these signals is shown in figures 7.10 (a), (b) and
(c) respectively. For the latter case it can be seen that the
envelope of the spectrum is not flat and that the transmitted
Nyquist band is evident, in addition to the required signal band.

These problems were later overcome by improved f{filtering of the
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D-A converter output signal using the 5-pole filter described in
chapter 2, which provided a flat response over the voice channel

and a steep rolloff above the 3 kHz band edge.

Although some difficulties were experienced with the receiver
demodulation (to be discussed later), it was possible to test the
effectiveness of the frequency agility of the transmitter over an
HF link. An SSB HF transceiver was available (Collins, type
KWT-6), which was installed at the Leicester university field site
at Oadby, near Leicester. The antenna socket was connected to an
east-west orientated inverted-V half-wave dipole (cut to resonate
at 4.7925 MHz) with the apex mounted at a height of approximately
30 ft above ground. An HF receiver (RF Comm. Inc., model
RF-505A) was located at Durham; the antenna socket was connected
to an east-west orientated half-wave dipole mounted at

approximately 100 ft above ground.

The transmitter computing equipment was connected to the HF
transceiver as follows. The Tx/Rx reed relay in the
microprocessor system was wired to the Tx/Rx switch in the
transceiver. The 'transmit' or 'receive' modes could then be
controlled automatically. The audio output of the transceiver was
connected to the analogue input of the A/D converter. Some
difficulty was experienced at first, as the audio gain in the
receiver section of the transceiver tended to decrease during the
first hour after switching on, after which time the gain remained
stable. The gains were therefore set up after the initial
"warm-up" period. It was also found necessary to introduce a 0.5s

delay after switching from '"receive" to '"transmit", to allow the

7-18




.ansceiver internal relays to "make" correctly before commencing

transmission,

The spectrum of the received signal at Durham was monitored
using the HF spectrogram described in chapter 3. Following this,
the '"quietest" subchannels at the receiving station were noted
during intervals of no transmission, During this time, the
transmitter itself was estimating the optimum subchannel slots for
subsequent transmission. By observing the radiated spectrum from
the transmitter during the next message (ie. by determining the
subchannel slots occupied by the signal), it was possible to
compare the prediction at the receiving station with that at the
transmitting station. Qualitative observations indicated that the
prediction at the transmitting site was generally in agreement

with that at the receiver,

Observations indicated that a much greater level of agility
occurred during the evening, when the interference level was
higher, than during the early afternoon (when no detectable
interference was observed). On no occasion were more than &
subchannels reallocated after each message block (transmission
time of 3.4 mins), the most frequent number being 2. However,
during noisy channel conditions, a reallocation was made on
approximately 1 out of every 2 occasions. During midday, little
interference was observed, and the frequency allocation remained
fixed for more than one hour. The subchannel allocation was
observed to coincide with the optimum, as noted at the receiver,
on approximately 90% of occasions, indicating that interference

observations made at the transmitter site are usually coincident
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with those made at the receiver.

7.4 Receiver philosophy

Conventional parallel data modems use narrow-bandpass filter
banks to separate out the subcarrier frequencies on reception.
This technique suffers from two disadvantages. The cost of
constructing a bank of such filters is extremely high and, in a
frequency-agile environment, the centre frequencies of the filters
must be made adaptive or extra filters must be added, both of

which still further increase the cost.

It is possible to use digital techniques to perform
matched-filter detection of the received multi-subchannel signal.
The Discrete Fourier Transform (DFT) of a finite set of samples
may be evaluated and, if it is ensured that the samples all
pertain to one signal element, the response of the DFT frequency
slots may be arranged to match the spectrum of the transmitted
signal. If phase modulation is used, then the Fourier coefficients
corresponding to a matching frequency slot (or "bin") will allow
determination of the phase for the received signhal element. That
is, if at the end of a received signal element, the DFT of the
sampled version of that element is evaluated, the DFT slots
corresponding to the transmitted frequencies may be used to

extract the phase for each of the subcarriers.

The functions of the demodulator are twofold: (i) to ensure
that all the samples for the DFT calculation pertain to a unique
signal element and (ii) to determine the phase from the computed
Fourier coefficients. The first criterion may be ensured by

observing the variation of the phasor magnitude (for a matched
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frequency slot) as the DFT is computed for successive sets of
samples over a sequence of phase reversals. The magnitude of the
phasor as a function of time is a triangular wave as shown in
figure 7.11. The peaks of this waveform then indicate the correct
synchronising instants. The second function may be obtained by
observing the signs of the real and imaginary coefficients, once
synchronisation has been achieved. If the phases are permitted to
take on 4 possible values, as in figure 7.3, then, for example, a
positive real component indicates that the phasor is located in
the right-hand half of the complex (z) plane, and a positive
imaginary componerit indicates a position in the upper half of the
plane. This determines a differential phase of 7T/4, and the data
may be obtained by finding the dibit corresponding to the phase
difference bhetween this phase and the phase determined for the
preceding signal element (because of the differential PSK

modulation scheme).

Once element synchronisation has been achieyed, it is a
fairly simple matter to obtain frame synchronisation by
correlating the demodulated data with a start-of-message
synchronisation pattern, This pattern must exhibit good
correlation properties when preceded by a sequence of keying
inversions. In other words, the correlation coefficient should
exhibit a large peak at the synchronising instant and a small
amplitude at other instants. A 3l-bit m-sequence is known to
yield good correlation properties and was chosen as the frame

synchronising sequence.

7-21




$ SIGNAL

% \%

N

TIME ——

PHASOR
MAGNITUDE

! ! | T
CORRECT -
SAMPLING

INSTANTS

——— [3

FIGURE 7.11. PHASOR MAGNITUDE VARIATION OVER
PHASE REVERSAL SEQUENCE.




In addition to performing the demodulation and
synchronisation processes, the receiver must be capable of
de-interleaving and decoding the demodulated data. The
implementation of these operations has been described in chapter

5.

7.5 Receiver implementation

The computational requirements in the receiver system for the
data modem were considerably greater than for the transmitter.
The major problem was the demodulation process for which it was
necessary to compute the DFT of samples of successive signal
elements. A frequency resolution of 150 Hz was required because
the available subchannel slots were integer multiples of this
frequency. Since the highest permitted subchannel frequency was
2700 Hz it was necessary, at least (by Nyquist's sampling
theorem), to compute a transform of length (2700/150)x2 = 36
points. A decimation in time FFT algorithm is suitable for
evaluation of transforms of length 2™ (m integer), therefore m
was required to be at least 6. The required sampling rate is
therefore 9.6 kHz and the resulting DFT slots are integer
multiples of 150 Hz from 0 to 4.8 kHz. (The slots above 2.70 kHz
are therefore redundant.) It has been shown in chapter 2 of this
thesis that the computation time required for a microprocessor
implementation of a transform of this length, even using hardware
multiplication, far exceeds the signal element duration of 13.33
ms. Consideration was therefore given to a hardware implementation

of the DFT using equipment discussed in chapter 2.
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A Charge Coupled Device (CCD) was available which, with
additional circuitry, could compute a fixed length (512 point) DFT
in 5.12 ms or more, depending on the clock rate. The device
contains two 512-stage MOS '"bucket-brigade" devices which are used
to implement four transversal filters using a split-electrode
weighting technique. The filters are are used in a "chirp-z"
implementation of the DFT algorithm and the device is supplied
with circuitry which allows the power spectrum of an analog input
waveform to be evaluated. It is necessary to include additional
circuitry if, as in this case, the Fourier coefficients are
required. The device, its operation, and the design and
construction of a module suitable for extracting the complex
coefficients from the resulting transform, have been discussed in
chapter 2. It has also been shown that the phase of an input
signal may subsequently be determined. Reference should be made
to this chapter in the subsequent discussion. A receiver design
was attempted which utilised the device and its associated
circuitry to perform the demodulation process. However, in the

course of experimentation, several difficulties became apparent.

At a clock rate of 38.4 kHz, it is possible to acquire 512
samples in precisely the baud time, ie. 13.33 ms. At this
sampling rate the frequency domain resolution is 75 Hz. Adjacent
subchannel frequency slots are therefore separated by ! frequency
bin and this scheme appears to present a possible solution to the
demodulation problem. However, because of the weighting applied
to the split electrodes in the CCD filters, a time window is
applied to the incoming signal which effectively spreads the power

in each frequency bin over several adjacent bins. There is
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therefore considerable overlapping between adjacent frequency
slots, rendering it impossible to determine the Fourier
coefficients using the chosen sampling frequency. It is possible
to increase the resolution by decreasing the sampling frequency.
However, to ensure that all samples pertain to a single element,
it is then necessary to reduce the transform length, which in this

case is impossible as the length is fixed by hardware.

To overcome the problem of overlap of nearby frequency bins,
the possibility of spreading the input signal spectrum over the
frequency range of the CCD was considered. A greater separation
between subchannel frequency bins could then be achieved. The
CCD operates in a serial fashion; one sample in the time domain is
clocked into the device as one sample in the frequency domain is
clocked out. To evaluate the DFT of a set of 512 samples of an
input signal, it is necessary to enter a replica of the input
signal into the device as the frequency domain samples are clocked
out, if the true spectrum is to be obtained. To spread the
spectrum of the input signal from the HF receiver over the
frequency range of the CCD it was necessary to (a) sample the
input signal and store the resulting samples, (b) enter the
samples into the CCD, then replicate the samples until the CCD was
full, (c) obtain the spectrum from the CCD output while entering
further replicas of the input signal. [t was calculated that,
even if the samples were entered into the device at the specified
maximum rate of 100 kHz (using a direct memory access (DMA)
arrangement), the total time required for all operations was in

the order of 20 ms, which was greater than the signal element
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duration. These problems therefore precluded the use of the device
for the demodulation process. It is envisaged, however, that the
advent of new bit-slice microprocessors will permit the

computation of the DFT in the required time,

7.6 Phase detection

Some experimentation was carried out into phase demodulation
of a single tone carrier using the technique of maximising the
phasor magnitude, mentioned in section 7.4. Details of this work

are now descibed.

An experiment was set up to demodulate a PSK modulated
carrier using software. The transmitter routines were modified to
provide, at the transmitter output, a sequence of phase reversals
on a 1200 Hz carrier. The signal was sampled by the receiver at a
rate of 4800 Hz, resulting in 64 samples for each signal element.
The 64 samples were reduced to 32 samples by averaging samples
x(n), x(n+32), and a 32-point DFT was computed for each element,
as described below. The bandwidth of each of the DFT slots in
this case is 150 Hz, which matches the spectrum of the transmitted
signal. If a 32-point DFT is computed on 32 successive samples,

the received signal will be contained within the DFT slot at k=8.

7-25




For the 32 point DFT:

3] .
Flo = § fn) 2032 gL L 3l
n=0
and
3 .
Fg) = 9 i(n) e /2
n=0

7 7 7 7

= Y far) - Y f(ure2) o+ [ Y f(4r+3) - S f(4r+1)]
r=0 r=0 r=0 r=0

The computation of the DFT slot at k=35 therefore requires 16

additions and 16 subtractions. No multiplications are needed.

The magnitude of the function is:

2

7 7 2 7 7
[FI =[] ) f(4r) - S f(4r+2) ] + I: Z f(4r+3) % - zof(l#nl) J
= i r=0 r=

r=0 r=0

The receiver system for the tests employed 2 slave
processors. The first was used simply to interrupt the second at
intervals of 13.33 ms, ie. at the signal element duration. The
received analog waveform was sampled by the second slave processor
using an 8-bit A-D converter and PIA. Computation of the Fourier
coefficients was implemented using the master processor. To
locate the correct sampling instants, the magnitude of the current
phasor (at k=8) was compared with the magnitude of the previous
phasor. If the current phasor magnitude was greater than the
previous, the timing was advanced or retarded by appropriately
adjusting the counter in the first slave. If the previous

adjustment was a retardation, then a further retardation was made,
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the aim being to maximise the phasor magnitude. Similarly, if the
previous adjustment was an advancement, a further advancement was
made. If the current phasor magnitude was less than the previous,

the timing was made opposite to the previous adjustment.

Once the correct synchronising instants were located, the
phase was determined by observing the signs of the Fourier
coefficients. It was necessary to make a trade-off between the
maximum time required for synchronisation and the amount of
tolerable phase jitter. If the timing step adjustment (for a
retardation or an advancement) is large, then the time taken to
synchronise will be small (because it will take less time to reach
the point where the phasor magnitude is maximised), but the jitter
will be large because a continual adjustment is being made around
the point of maximum magnitude. For a 4-phase system, the amount
of tolerable jitter must be less than one-eighth of the period of
the highest frequency subcarrier,. In the case of the
multi-subchannel modem, the highest frequency subcarrier is 2700
Hz, so the maximum tolerable jitter is 46 us either side of the
correct sampling instants. A more realistic figure in a noisy
environment might be 20 us. [If the step length is set to this
figure, the worst case synchronisation time must then be
(13.33ms/20ps)x13.33ms = 8.88s., This is an excessively long time
and will result in a considerable reduction in data throughput
owing to the long phase reversal sequence required. It is
preferable to begin with a large step length and then to reduce
the step length as an improvement is observed. A method that was

found to be successful was to double the step length if a
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deterioration in sync was observed (up to a maximum of 2.5 ms) and
to halve the length if an improvement was noticed (down to a
minimum of 20 ps). The jitter is then minimised, and phase lock
is achieved in a much shorter time (worst case was observed to be

0.19s).

7.7 Conclusion

This chapter has described the design of an adaptive modem
for use over HF radio channels which are subject to multipath
distortion and noise effects. It has been shown that several
modem techniques (TDFM, FEC and frequency agility) may be combined
in one system which may be implemented at very low cost by
employing nearly-all digital techniques. The use of
microprocessors in such designs allows major system changes (such
as a change in the modulation or the coding scheme) to be effected
by simple software modifications. The use of VLSI technology also

allows the physical size of the system to be kept to a minimum.

The transmitter has been described in detail and has been
shown to operate successfully over a real HF link. An novel
aspect of the transmitter system is the slave processor/ shift
register hardware used to generate the modulated signal. However,
some difficulties were encountered with the receiver

implementation which have been discussed in section 7.5.

Many designs for HF modems have been described in the
literature, some of which have been mentioned at the beginning of
this chapter and in other areas of this thesis, However, most are
extremely costly and non-adaptive, and for these reasons have not

presented an economically viable alternative to satellites for
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long-distance communications. This chapter has discussed the
design of an economical adaptive modem based on discrete signal
processing techniques which attempts to overcome many of the

problems encountered with previous systems.
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CHAPTER 8 Error patterns & coding performance

8.1 Introduction

Radio signals propagated via single or multiple reflections
from the ionosphere are frequently subjected to severe levels of
amplitude and phase disturbances. The effects on a serial data
stream are to cause large numbers of errors which will
considerably degrade the fidelity of the received data. The
signal distortion arises from (i) intersymbol interference caused
by multipath propagation, and (ii) additive noise from natural
and man-made sources. The errors which result from these effects
are, to a large extent, unpredictable, and will result in a wide
range of error rates for a given channel. The error rates may
vary by several orders of magnitude even over a relatively short
time span. The error distribution is often distinctly non-random
in nature, and clusters of errors may occur as a result of noise

or fading.

This chapter describes an experiment undertaken to
investigate the statistical properties of the error patterns
observed over a medium-haul HF radio data link and to assess the
performance of the real-time error correction scheme described in
chapter 5, with and without interleaving of the codewords. It
will be shown that errors occurring over the link are
significantly non-random in nature and that bit-interleaved
short-length random-error-correcting codes can be effectively
used to combat such errors. Results are presented showing the
deviations from the theoretical random distributions and the

apparent time-varying nature of the error statistics.




Some work on the applications of coding in HF communications
systems has been described in the literature (72-75). Much of
this, however, has involved recording of the received data; the
analysis being performed later using a mainframe computer. The
work in this chapter uses microprocessor techniques to perform

decoding and error-pattern recording in real time.

8.2 HF Equipment

Experimental tests were carried out over a 250 km
south-north path between Leicester and Durham using an HF data
link centred on 4.7925 MHz. Permission to use this frequency for
data transmission was granted by the Home Office subject to the
station callsign (G9BLD) being transmitted in morse code at
regular intervals, The HF transmitting equipment comprised a
Collins KWT-6 single sideband suppressed carrier transceiver
tuned to output 40W PEP into an east-west orientated half-wave
dipole antenna situated at a height of approximately 10m above
ground level. The transceiver uses valve technology and is
constructed in modular form; the synthesised VFO, sideband
generator, power amplifier, receiver, and tuning unit are located
in separate sections. The audio input frequency response of the
transmitter was plotted in the laboratory. The results are shown
in figure 8.1 and indicate that the response in reasonably flat

within the voice channel spectrum.

The receiving equipment at Durham comprised an inverted-"V"
half-wave dipole antenna with the apex situated 25m above ground
level (also orientated east-west) feeding into an RF

Communications Inc. RF-505A synthesised HF communications
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receiver. This receiver uses transistor and IC technology and has
3kHz wide independent sideband outputs, as well as CW and AM

reception facilities.

8.3 Computing Equipment

All of the computing equipment used for the experiment was
based around the Motorola 6800 microprocessor. The transmitting
equipment hardware was that described in the previous chapter.
It comprised a master CPU board with an EPROM containing the
transmitter software, a slave processor unit (described in
chapter #4), modulator board and filter unit. The software was
configured to produce a binary amplitude modulated
audio-frequency carrier at 75 bps at the output of the filter
which was then used as input to the HF transmitter. The ASK
modulation scheme was chosen to ensure a statistical
independence of the errors at the detector., If a differential
PSK system was used, the errors would tend to occur in pairs, as
the differential detector requires a recovery time of one signal
element following the detection of an erroneous bit. The basis
of the receiving system was an MSI 6800 microprocessor
development system containing two slave processor units, and
interfaced to a triple minifloppy disc drive. A real-time clock
facility was incorporated within the receiving system which is

fully described in section 8.6.7.

The test data format is now described, followed by a more
detailed discussion of the transmitter and receiver

configurations. Test results are then presented and discussed.
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8.4 Data format

Message sequences of 896 bits were used as data for the
tests, comprising four consecutive sequences of 32 random 7-bit
characters., Two reasons for choosing the 7-bit character format
were (a) that each character could conveniently be encoded into a
(15,7) codeword and (b) the increasing popularity of the 7-bit
ASCII character set as a replacement for the 5-bit BAUDOT code.
The transmission format was as follows:

(1) A sequence of 128 characters, each preceded by a "I"

start bit and terminated by a "0" stop bit.

(2) The same sequence, with each character forming the

information section of a !5-bit error correcting codeword

(3) The sequence of codewords transmitted in (2), but

interleaved to a depth of 16.

Each of the above sequences was preceded by a
synchronisation preamble consisting of a series of amplitude
inversions, a 15-bit m-sequence and a 7-bit message
identification pattern. The m-sequence allowed 3 random errors
to occur before synchronisation failure and the identification

pattern permitted | error before recognition failure.

As mentioned previously, it was necessary to transmit the
station callsign in morse code at frequent intervals. The
transmitter software included an automatic morse code
transmission routine used to transmit the message " DE G9BLD"
(the allocated call-sign) at a speed of 12 wpm, approximately

every 20 minutes.
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8.5 Transmitter

The microprocessor controlled transmitter system hardware
has been described in chapter 7. The software may be categorised
as follows:

(1) System initialisation & main procedure

(2) Slave processor bootstrapping

(3) Carrier frequency synthesis

(4) Modulation

(5) Data encoding and bit interleaving

(6) Morse code transmission
All software for implementing the above processes was written in
Mé6800 assembly language and assembled into object code format
using the co-resident mnemonic assembler. An EPROM programmer,
connected to the SS-30 bus of the microprocessor development
system, was used to transfer the contents of the object code file
onto a single 2 kbyte EPROM. A listing of the transmitter
software is shown in the listing in Appendix 2, and a system
memory map is shown in figure 8.2, The transmitter routines
reside in the EPROM which occupies the top 2 kbytes of the memory
address space. The highest two locations contain the program
start address (or "reset vector"). The slave processor memory
has the (master) address space S$C000-$SC3FF; the slave control
latch is therefore at address $CO000, ie. at the bottom of the
slave address space, The master system RAM occupies the 4 kbyte
space from S$0000-SOFFF and a single PIA is located at addresses
$8010-58013. The two least significant bits of the "A" side of
this PIA are used to control a pair of reed relays, one of which

determines the transceiver operating mode (Tx or Rx); the other
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is used to gate the filtered synthesised audio output signal to

the transmitter audio input circuitry.

Reference should be made to the transmitter software, listed
in Appendix 2. The main procedure begins at the label "INITLSE".
The transceiver is initially set to "receive" mode and the filter
output is not gated to the transmitter. The slave processor
"reset" line is brought low and the slave processor routines are
loaded into the slave RAM using the bootstrap loader subroutine.
The phase and frequency parameters are then set up in the
appropriate tables in slave memory (see chapter 4, section 4.3.6,
for details) to initialise all subchannels to a phase of #f
radians relative to the start of a signal element, and having a
frequency of 1500 Hz (centre of the voice channel). The slave
processor is then brought into reset by writing a "I" to the
slave reset line, the transceiver is switched to "transmit" and
the station callsign is transmitted in morse code at a speed of
12 wpm by the morse code transmission subroutine. The first
sequence consisting of the uncoded message, followed by the coded
message, and finally the coded message with bit interleaving are
all transmitted twice. Transmission of the three sequences is
repeated in this manner 8 times before the station callsign is

transmitted again. 75 bps.

8.5.1. Bootstrap loader

The bootstrap loader routine simply maps the slave processor
control program from the EPROM into the slave RAM érea. Slave
processor execution is suspended during this procedure by holding

the slave reset line at logic '0'. The beginning and end




addresses of the area to be mapped are contained in Y,Y+l and
Z,Z+1. The index register points to the start address of the area

into which the data is to be mapped.

8.5.2 Carrier frequency synthesis

Synthesis of the AF carrier is performed by the slave
processor and the modulation board containing the shift registers
and D/A converter. The synthesis of a multitone carrier using
this system has been described in chapter 4. For this experiment
a single tone was required, and all eight subchannels were set to
the same frequency and phase. The first 40 bytes of the slave
memory contained (after bootstrapping) the lookup table required
for carrier generation, consisting of equally spaced samples of a
sinusoid. The slave reset vector is located in the top two bytes
of the slave address space, ie. at local (slave) addresses $O3FE
and S$03FF, and the local IRQ vector is located at S$03F8 and
$03F9. An IRQ is initiated by the modulator circuit immediately
following the transmission of samples for a complete signal

element,

8.5.3 Modulation

An ASK modulation scheme at 75 bps was used for the
experiment. The transmitter software was configured to generate
an on-off keyed audio tone at 1500 Hz. Because of the "lookup
table" method of carrier synthesis, the phase at the start of a
transmitted signal element is always constant. The modulation
process is carried out by the subroutine "SNBITS", which
transmits N left-justified bits contained in the A accumulator,

where the bit count, N, is contained in the B accumulator. If a




bit is "0", the step lengths in the slave processor subchannel
table are all set to zero, thereby inhibiting carrier
transmission during that element. If the bit is "I" the step
lengths are all set to 20 and the element comprises 20 cycles of

a 1500 Hz sinusoid.

8.5.4 Morse code transmission routine

This routine is used to transmit the message "DE G9BLD" when
called. The output gating relay is keyed according to the bits
in a stored sequence which represents the message. The relative
timing of the elements comprising the morse characters was
arranged to conform to the following internationally accepted

schedule (9):

dash = 3 dots
element space = 1 dot
letter space = 3 dots
word space = 6 dots
The key is initially set to "open" - ie. the carrier is not gated

to the transmitter. Bits are read sequentially from the sequence
"MMES" and if the bit that is read is a "lI" the state of the key
is switched; if it is "0" nothing is done. After each bit has
been read, and the key switched if necessary, a fixed delay is
introduced which governs the overall transmission rate of the
morse message. The sequence required to transmit the characters

"DE G9BLD" is shown in figure 8.3.
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0.6 Receiver
The receiving equipment consisted of the HF radio receiver

with dipole antenna, ASK demodulator unit, MSI 6800 development
system with 2 slave processor units (see chapter &), triple floppy
disc drives, and printer. The hardware configuration of the
system is shown in figure 8.4. One slave processor was required
for real-time decoding and de-interleaving of the received data,
the other was used as a timer to locate the correct sampling
instants on the demodulated signal. The floppy disc drives were
used to store statistical information about the received data for
later analysis. The receiver functions may be categorised as
follows:

(1) demodulation

(2) synchronisation

(3) de-interleaving & decoding

(4) error counting

(5) error pattern recording

(6) disc management

(7) real-time clock

Each function is now described in turn.

-.6.1 Demodulator

The circuit of f{figure 8.5 was devised to permit incoherent
envelope detection of the received signal. The USB audio output
from the HF receiver was buffered and half-wave rectified by the
diode. The envelope was extracted by low-pass filtering using C
and Rl’ then buffered and f{finally converted to a rectangular
baseband signal using the Schmitt trigger. The latter was

preferred to a straightforward comparator in order to minimise
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noise effects. The output data signal was then fed to the most
significant bit of one port of a PIA interfaced to the main

processor system,

8.6.2 Synchronisation

The preamble sequence transmitted immediately before each
message was used to obtain element and frame synchronisation, The
purpose of element synchronisation was to ensure that each signal
element was sampled as near as possible to its mid point. The
first part of the preamble consisted of a sequence of amplitude
inversions which was used by the receiver to locate the correct
sampling instant to within 2% accuracy. Once synchronised, a
software timing loop in the second slave processor unit was used
to interrupt the master processor at the centre of each signal

element.

Frame synchronisation was achieved using a 15-bit m-sequence
which was known to yield good correlation properties when preceded
by the amplitude inversion sequence. The «cross-correlation
between the stored m-sequence and the synchronisation preamble is
shown in figure 8.7(a). The autocorrelation property of the same
sequence is illustrated in figure 8.7(b). During synchronisation,
each received bit is shifted into a 2-byte buffer (SNPAT) and a
correlation is performed with the stored sequence (MSEQ) by
finding the Hamming weight of the result of an exclusive-OR
operation between the low-order 15 bits of SNPAT and the sequence
MSEQ. A low weight indicates a good correlation. A correlation
factor ~ 8 indicates detection of the synchronisation pattern. The

distance from the detection threshold to the correlation peak is 7
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which allows up to 3 random errors in the sync pattern before the
receiver fails to detect it. (This is because a distance of at

least 2t+1 is required if t errors are to be corrected.)

The message identification pattern was transmitted
immediately following the m-sequence, and consists of one of three
codewords from an m-sequence of length 7, the codeword indicating
whether the message is uncoded, coded, or coded and interleaved.
The distance between different words in this code is 4, which

allows correction of a single error.

8.6.3 De-interleaving & decoding

Slave processor 2 was used for real-time de-interleaving and
decoding of the received data. Operations by the slave were
carried out on one of two pairs of tables containing the data
while operations on the other pair were performed by the master.
One table in each pair contained data for de-interleaving (if
required); the other contained received words for decoding. Two
control parameters were passed to the slave from the master
indicating (a) which pair of tables were to be operated on
(TBFLAG), and (b) whether or not de-interleaving was required. A
pictorial representation of the operations is shown in figure 8.8.
The de-interleaving process was executed by the subroutine DINTLV
and the resulting words were entered into the appropriate decoding
table as they were extracted. On completion of this operation,
the 16 received words in the decoding table were decoded using the
algorithm described in chapter 5. Each decoded word was returned
to its corresponding position in the table. A count of the total

number of errors corrected during decoding was kept in the
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two-byte counter "ERRCOR".

While decoding and de-interleaving operations were performed
by the slave, the newly received data was entered into the
inactive pair of tables in slave RAM. Coded but non-interleaved
data was entered directly into the decoding table. When the slave
operations were complete, the decoded data was offloaded by the
master and the tables were switched to allow the receiving process

to continue.

8.6.4 Error counting

The number of errors in a decoded message was determined by
cross-correlating the decoded words with a stored table of correct
characters.  This cross-correlation was performed by implementing
an exclusive-OR operation between the decoded word and the
corresponding stored character. The least significant 7 bits of
the result were then shifted out into the carry flag, in turn, and
if the flag was set, the bit was found to be erroneous. The total
number of corrected errors was obtained from the slave processor

on completion of the decoding procedure.

The total number of errors in the received bit stream (before
decoding) was determined by a similar correlation procedure and
the statistical properties of the error patterns were recorded as
described in the next section. Results of the error counts and

the number of errors corrected were stored on disc.
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8.6.5 Error pattern recording

As each bit was received a test was made to determine whether
or not the bit was erroneous. This was done by correlating the
received data with the stored (correct) bit pattern. Three tables
of stored patterns were required; one for each of the uncoded,
coded and coded and interleaved sequences. A flag (PREV) was used
to indicate if the bit immediately preceding the current bit had
been received correctly, thereby allowing the number of
consecutive erroneous bits to be recorded. A count of the number
of consecutive correctly received bits was recorded as a positive
number (1 or 2 bytes) on the disc and a count of the number of
consecutive errors was recorded as a 2's complement negative
number. A complete record of the error pattern information for one
received sequence therefore consisted of alternate positive and
negative values which could be later retrieved for analysis. A
2-byte "start-of-message" marker (SFFFF) was recorded at the
beginning of each data set to distinguish the records. Because it
was often necessary to record on disc a large number of bytes for
each received sequence, 2 disc drives were used to store the
information. When the disc in drive 1 was full, the f{file
(ERRPAT.000) was closed and a new file (with the same name) was
opened on drive 2. The file capacity was therefore increased from
80 kbytes to 160 kbytes and allowed a useful quantity of data to
be collected ( ™ 24 hours) without exceeding the disc storage

capacity.




8.6.6 Disc management

The disc file management software allowed sequential access
disc files to be created, written, read and destroyed by the
system wuser and is described in reference (76). Two files were
used to store information on the received data; therefore two file
control blocks (FCBs) were required. A file on disc drive 0
(called 'ERRDAT.000') was used to record the following parameters
in sequential order:

(a) time of day (three 2-digit BCD numbers)

(b) message type (l-uncoded, 2-coded, 3-interleaved)

(c) no. of errors in decoded message (2 bytes)

(d) total no. of errors in received bit stream (2 bytes)

(e) total no. of corrected errors (2 bytes)
A second file (called 'ERRPAT.000') was created, initially on

drive 1, to store error pattern data on the incoming bit stream.

8.6.7 Real-time clock

A real time clock was kept within the processor system memory
by using the M6800 interrupt capability. A 1Hz timing reference
was derived from a digital clock unit installed in the receiver
rack to display the current time of day. The IHz TTL output from
this unit was connected to the CAl control line of a PIA which
was configured to cause an interrupt to be generated on detection
of a negative edge on this line. If bit 0 of the control register
is set to a 'l' and bit 1 is set to a '0', a negative edge on CAl
will cause an interrupt to be generated by setting the IRQA1 flag
(bit 7), which causes the IRQ line on the processor to be brought
low. The system monitor interrupt routine then causes a jump to

the address stored at the lowest two locations in the monitor RAM.
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This address is the start of the clock routine. The clock routine
updates the time of day which is stored in BCD format in four
bytes located on page 0, one each to hold seconds, minutes, hours
and days. The penultimate instruction in the clock routine clears
the IRQA1 flag by reading peripheral data register A. A 'return
from interrupt' instruction then restores the stack and execution
of the interrupted program is resumed. The fastest execution time
for the clock interrupt routine is 31 machine cycles; the slowest

is 84 cycles.

8.7 Data analysis programs

The experimental results were based on data collected during
the week of 10/7/80 to 16/7/80. Propagation conditions were found
to be similar from day to day. Two programs were written in BASIC
to analyse the data. The first was used to obtain the following
information from the file ERRDAT.000, averaged over each hour of
the observation period:

(1) BER averaged over all received messages. [ e b

(2) BER averaged for each of the three received sequences.

(3) BER after decoding for each of the 2 coded sequences.

(#) Proportion of errors corrected for serial and interleaved

codeword sequences. Lo
The second program was used to obtain statistical information on
the error patterns stored in the file ERRPAT.000. The following
information was obtained from this program:

(1) Frequency of occurrence of consecutive errors.

(2) Frequency of occurrence of error free intervals,

(3) Frequency of occurrence of error bursts.
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Assembler-written routines were called by the BASIC user function,

USR(X), to control the reading of data blocks from the disc files.

8.8 Experimental Results

The results section of this chapter is divided into two
subsections:

(1) Statistical analysis of error patterns.

(2) Analysis of coding performance.
The coding performance results will be seen to correlate with the

error pattern analysis.

8.8.1 Analysis of error patterns
Distributions of consecutive errors, consecutive error-free
intervals, and burst error occurrence were obtained from the

recorded results.

For a random error distribution, the theoretical probability,
Pe’ that n consecutive errors occur when the average probability

of a bit error is p, is given by:
P_(n) = p"(1-p)

This function is tabulated in table 8.1 for two chosen values of

BER. For a BER of 10-2 it can be deduced that 99% of the errors

should occur singly; for BER = 2x1072 the figure is 98%.

n 1 x 1072 2 x 1072

0 9.9 x 10‘; 9.8 x 10"12
1 9.9 x lO-5 1.96 x 10-4
2 9.9 x 10—7 3.92 x 10_6
3 9.9 x 10'9 7.84 x 10"7
4 9.9 x 107 1.57 x 10°

Table 8.1
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The error performance of the HF link is plotted in figure 8.9
for a 24 hour observation period. The averaged raw BER (without

3

coding) per hour was observed to vary between 3.2 x 10~ and

1.94% x 10'2. Two hourly observation periods were chosen having
BERs close to those used to compute the theoretical distributions;
these were the periods 2300-0000 hrs. and 1400-1500 hrs. which
corresponded to average bit error rates of 0.98 x 10-2 and 1.94
x 1072 respectively.  (figures 8.10(a) and (b)). The results
indicated that around 75% of the errors were single, and 15%
occurred in pairs. It can be seen that the measured distributions
deviated substantially from the theoretical random estimation, but
that the measured distributions appeared similar for both values
of BER. In other words the consecutive error distribution
appeared to be independent of error rate. It was also noted that
the distribution appeared to be exponential. A regression

analysis showed that a function conforming closely to the measured

distribution is given by:

£ () = 74 el 620D

where fo(n) is the frequency of occurrence (%) of n consecutive
errors. The results indicated that the errors were tending to
cluster and that the size of the clusters was independent of the

average error density,

The cumulative distribution of error-free intervals was
plotted for the two hourly periods analysed above and compared
with the theoretical random distributions. The theoretical
probability, P.(n), of an n-bit error-free interval assuming

random error statistics is given by:
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Pin) = p(1-p)"

where p is the probability of a bit error. Again, the results
(figs 8.11 (a) and (b)) indicate substantial deviations from the
random  distribution, and appear to be independent of error rate.
For a BER of 10_2, the random distribution predicts that only
10% of the errors should be separated by a gap of 10 bits or less,

whereas the measured figure was 76%.

An error "burst" is defined in a paper by Brayer (77) to be a
region of the serial data stream where the following properties
hold. A minimum of 2 errors are contained in the region and the
minimum density of errors in the region is A. The burst error
must always begin with a bit in error and end with a bit in error,
and must be immediately preceded and followed by an interval in
which the density of errors is less than A.The burst density
criterion A in this paper was chosen to be 0.05. This definition
of an error burst did not appear to be entirely satisfactory as

the following example illustrates.

Suppose that the {first 5 and the last | of 120 consecutive
bits are received erroneously. The error density is therefore

6/120

0.05 which is exactly the minimum density required to
define a burst. The data would be logged as containing a burst of
errors of length 120 even .though there is an error-free interval
of 114 bits. It would intuitively seem more reasonable to suppose
that the errors were distributed as a burst of length 5 followed

by a single random error occurring 114 bits later.
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It is proposed that the following constraint be appended to
the above definition: All errors contained within the burst must
be separated by an error-free interval of w bits or less where w =
2/A -1, This ensures a more even distribution of errors within
the burst. In this experiment, A was chosen such that an error
burst would cause consecutive character errors to occur in an
uncoded 7-bit ASCII character stream. For characters preceded by
a single start bit and terminated with a single stop bit the burst

error density criterion is 2/9 = 0.22,

The distribution of error bursts complying with the amended
definition was plotted for data averaged over a 24 hour
observation period and is shown in figure 8.12, It can be seen
that the distribution is an exponential decay apart from a
noticeable peak at b=10. The unusually high proportion of error
bursts of this length was attributed to regular noise bursts from
locally situated machinery which were consistently observed
throughout the period. Observations on an oscilloscope indicated
that these were of 0.l4s in duration, ie. approximately ten times
the signal element duration. The averaged measured BER over the

observation period was 1.35 x 10_2.

8.8.2 Coding performance

The performance of the HF data link in terms of bit error
rate has been plotted in figure 8.9 for a 24 hour observation
period. The results shown illustrate the performances obtained
with no coding, with forward error correction (FEC) and with FEC
and interleaving of the codewords to a depth of 16. It can be

seen that the improvement with interleaving exceeds the
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improvement with coding alone. Figure 8.13 shows the time
distribution of the proportion of total errors corrected, with and
without codeword interleaving, for a different observation period.
The performance with interleaving always exceeds the performance
with coding alone, but the relative improvement gained is not
constant. This is also evident from fig 8.9. We shall define the

"interleaving gain" as:
20 loglo(ci(t)/cc(t))

where Ci(t) and cC(t) are the percentages of total errors
corrected with and without interleaving respectively. A plot of
this variable against time together with a plot of BER (figure
8.14) shows that it is not necessarily dependent on error rate.
The interleaving gain varies between 0.2dB and 7.2dB. It appears
from these results that the nature of the error structure varies
with time and, for the observation period chosen, the errors tend
to cluster during the night and are of a more random nature during
the day. The apparent increase in the burst nature of the error
structure during the night is attributed to an increase in the
skip distance which exposes the receiver to static bursts and
interference from further afield. During the day, short noise
spikes were observed which gave rise to an increase in the number

of random errors.

Plots were made of the proportion of errors corrected against
bit error rate (figure 8.15), (a) for no interleaving of codewords
and, (b) for an interleaving depth of 16. The same data (over 24
hours) was used for each plot. It can again be seen that the

performance with coding and interleaving exceeds the performance
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with coding alone, as the points tend to cluster towards the top

g

of the plot in the latter case, and are more widely dispersed for

the formier. - -

Theoretical distributions were plotted, using the recorded
data, of the proportion of errors that would be corrected for
different depths of codeword interleaving. Three curves were
plotted from data obtained from three intervals of | hour, each of
which exhibited a different BER. The results were based on the
assumption that if two or fewer errors occurred in a [5-bit
codeword the errors would be corrected otherwise none would be
corrected., Points were plotted for five values of bit
interleaving. It can be seen that the relative improvement gained
by using greater interleaving depths tends to decrease with
increasing depth and that the curves tend to flatten for low
values of BER (figure 8.16). As the interleaving depth is
increased, the delay before decoding is increased. An
interleaving depth of 16 appears to present a reasonable
compromise between error-correcting ability, decoding delay and

implementation complexity.

8.9 Conclusion

This chapter has described an experiment using microprocessor
techniques undertaken to investigate the error patterns occurring
over a medium-haul HF data link. The results have confirmed the
view that the error statistics are significantly non-random in
nature and a comparison has been made indicating precisely the
deviation from the theoretical random distributions. It has also

been shown that the distribution of consecutive errors and error
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free intervals appears to be independent of error rate. An
investigation of error burst statistics for this experiment has
shown that the distribution of burst lengths is exponential but
that bursts of a fixed length may occur more frequently than

expected.

An error-correcting coding scheme has been investigated using
real-time encoding and decoding procedures implemented on a
low-cost conventional 8-bit microprocessor. A substantial
improvement in error performance was acheived by interleaving
successive codewords, but the improvement in error rate was not
proportional to interleaving depth. Also, the benefit gained by
interleaving codewords may not be constant, indicating that the
error structure is time-varying. The (15,7) BCH code interleaved
to depth 16 was found to be a good compromise between
error-correcting ability over the HF channel, decoding delay, and
implementation complexity. In view of this, the code was chosen
as the forward error correction scheme for use with the HF data

modem described in chapter 7.
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CHAPTER 9 Conclusion

Shortly after the advent of digital communications over wire
links, investigations were carried out into the possibility of
using the refractive properties of the ionosphere as a medium for
data transmission over long distances. By the early 1950's,
telegraphy and telephony were well established methods for
communication via HF radio links, but considerable difficulties
were encountered when attempts were made to use the ionospheric

medium for digital data transmission.

Acceptable error rates could be achieved only if the
transmission rate was severely restricted to avoid the
intersymbo! interference caused by long differential multipath
delays. Even so, it was found that the effects of noise, often
tolerated by telephony and telegraphy systems (which are highly
redundant), were to introduce large numbers of errors,
occasionally of such severity as to render the channel useless

for many communications purposes.

Attempts were made to find techniques which could, to some
extent, overcome the detrimental effects of the HF channel.
Coding, diversity, time-to-frequency division mutiplexing and
equalisation were all found to be effective in reducing the error
rate under certain conditions, and are techniques which have been
adopted in a variety of systems. Development work on systems
which exhibit a certain degree of tolerance to the channel
distortions was carried out in the 1950's and 60's, mainly in the

U.S., and resulted in the production of a number of HF




communications terminals for military applications, notably
Kineplex (5), Kathryn (6) and Codegq (15). These systems were
highly complex, bulky and extremely expensive to produce, and

their performance was not entirely satisfactory.

Following the introduction of satellite communications
during the 1960's, work in the HF field was largely abandoned in
favour of this more attractive medium, which could provide
reliable, high-speed data communications over long distances,
albeit at high cost. However, the subsequent development of
sophisticated weaponry and jamming systems led to a realisation
that the satellite medium was an extremely vulnerable one, and
attention was again turned to ionospheric data communications,
which was often the only alternative to satellites for mobile
communication over long distances. Much of the new work was
concentrated on sounding techniques (11), in order to gain a
better understanding of the effects of the HF channel on a
digital signal. Adaptive techniques were investigated (60) to

cope with the time-varying properties of the transmission medium.

The revolutionary developments in electronics technology
over the last decade, notably the advances in digital
electronics, have considerably eased the burden of designing
complex systems for data communications (1,2). Additionally, the
economic benefits to be gained using VLSI techology are often
considerable. It is only in the last five years that attention
has been concentrated on the possibility of implementing
real-time signal processing techniques using microprocessors

although such techniques have been applied mainly to line and to
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VHF /UHF transmission systems (56-58). Relatively little work has
been published on the direct applications of microprocessors in
the field of HF data communications, which is strising, as the
inherently f{flexible nature of microprocessor systems make them

extremely suitable for HF radio systems, where a high level of

adaptability is often required.

This thesis has described an investigation into the
applications of microprocessors in a variety of HF radio
communications techniques. A real-time channel evaluation system
has been described whereby an HF radio voice channel may be
assessed as to its suitability for communication over a link.
The implementation of forward error correction schemes suitable
for overcoming the effects of burst errors occurring over a link
have been investigated and demonstrated. This has led to the
development of an adaptive modem, which uses a technique of
adaptive time-to-frequency division multiplexing, together with
forward error correction, to implement a low-cost system in which
all the signal processing techniques have been implemented
digitally. The real-time processing requirement has resulted in
the development of a novel distributed processing arrangement in
which a number of subsidiary ("slave'") processors are under
control of a central ("master") processor; the overall processing
power of the system is thereby increased. Some considerable
attention has been paid to the signal processing requirements of
HF systems, for spectral analysis, modulation, and demodulation.
This has included investigations into Fourier transformations
and matched filter detection using microprocessor techniques, in

addition to a study of the chirp-z transformation using a charge
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coupled device.

It is hoped that this thesis has illustrated the potential
of the applications of VLSI technology to the implementation of
effective, low-cost systems in the field of digital HF radio
communications. The complex signal processing techniques
required for channel evaluation and communication over the HF
medium may be realised at low cost using primarily software-based
techniques. It is anticipated that further advances in the field
will result in a considerable resurgence of interest in

long-distance communications over HF links.

Note on publications by the author:-
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the Permanent Way Institution. December, 1981.

"Error Patterns and Real-time Correction Procedures for Data
Transmission over HF Radio Links". Isaac, D.R. and Spracklen,
C.T. IEE Conference on HF Comm. Systems and Techniques, 15-16
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listings for chapter 2

(1) BASIC FFT

(2) Assembler FFT
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listings for chapter 3

(1) The HF Spectrogram
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LA B RERIOD
DET B WAIT LOOP
ENE imPL2
CLR E
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0000000000000 0040000000000000000000000000000
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JIR CDFM CLOIE ACTIVE FILES

Nigld ZWARMT iloled
al¢ rTS
PLPCIPPPPPPPLPENICPPIPPPPPPP 0P E00000 0400000
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Lo ELPASE
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21z LD BRINDX
: TR AN REZTCRE DATR
ZTA B 1A
14
I M3IYE TO NEXT POINY
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RTZ
0000000090000 000000000000000000000000000+000
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T e UPDATEZ RERL TIME CLOCK
T PEBEPGEPCPP00009 2000800000000 005055090090000
ar T2 CLK R IECS
0t T3 R i1
a3 o2 A IECS
20 T3 R £3a0}
12 T3 K1
aaIngr T3 SECI
an T35 A MINT
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& COMPUTE POWER TPECTRUM
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listings for chapter #%

(1) Memory diagnostic
(2) Vector diagnostic

(3) Parallel processing diagnostic
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CRG

LOTEMF RME
HITEWF RME

ORI

INIFAT FCE
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{XRTMF RME
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LOFl  =TA

D>DDD

LOAFAT LIOX

LODF4  3ITA B
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CHILCW =TX
LOCFZ  LCFX

CHCKMI LDX

LOOFE INX
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ERFNTL ZWI
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5 END
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FAGE 001
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e, X
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END ’

0, X
ERFNTS
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PIIALLEL OROCESSING TEST ROUTINE SSB MNEMONIC ASSEMELER PAGE 0123 FB CO0R  6n: ADD B PR+LATCH+3
012E B? COOR  61: ROC R PR+LATCH+2 I
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2
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listings for chapter 5

(1) BCH Encoder

(2) BCH Decoder




{15. 7 BTH ZNTEIER TTR MNEMONIC S933EMBLER PAGE 1
Nar BCH ENCODER
=T
P A S R X Y R R e R T 2 T R e et L 2ttt d
&
~ {15, 7% 2CH EMCODING ZUBROUTINE
» CE IS S SIS S S ST IS SSSTSIE==SSE=EE
>
e TUBROUTING TO 9P 3 F-2IT INFORKMATION BLOCK INTO
Ad - WaRD.
13 » JIVITZED BY THE GENERATOR POLYNOMIAL
11 » ¥ BITZ. DATA IN ACCA. CTHECK 3BITS
12: + RETURNED INM ACCE. -
13 » .
134: ..
1T 400000000000 00000005005080000000 0006950000004
131 »
»  DJATA TTORAGT JREA:
i d
q=i L
SENPOL FIB 10011080 M1 O
i3 =TT 11111 M2 KN

THREIMT *M3T 1
J=is 01040

BoR b L () g e e

TaaE El
33 OIS 3 L3
22 B CIHECHT
TOROP B 3EHPOL+1
9
TITTST q
S =i 3
R A
] THTONT
ERC TITTIT
514 lotn ge o4 -
L ozE B
T
N3 TRRAR (Y TSTECTED

R
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SSE MNEMONIC ASSEMPLER PAGE 1

NAM (157> BCH DECODRER
arT NOS.LIS

BP80000000000000000000808000006000000800000000

*
. (15+7) ECH DECODING SUBROUTINE
* TS TS SCSSST ST oS s=====S====
*
s SUBSDUTINE TO CORRECT LP TO 2 ERRORS IN A
e 15-EIT RECEIVED wIRD. RECEIVED WORD
o CONTSINED IN FXe Fiel
-
CPPGOCOPEFPRIPPIGP PGP PPPOPPPPPPPPEPPPPIPIPPPINIPIGS
*
o VARIAELE STAORAGE RRERA:
*
are n
R sME 2 RECEIVED WORD R XY

MINIMUM POLYNOMIAL M1 (XD
MINIMUM POLYNOMIAL M2 (XD

FLE 10011900
FCEB 11111000

FIR S11101000, X 0000000

ass FOZ00 EXFONENTS >> FIELD ELEMENTS
FCR F1eR2n 545 EQ s BO
FCB FRVESs RRETH EFES EF 3DV $95 $1

a5 0400 FIELD ELEMENTS >»> EXPONEMTS
TRLZ FLE RER TR SES: T EE XN ISR S AR LR 3c)

FCR B3O - TR WAl XS SR 3T In
0000000000000 0000000000000000000888050000000000000

SME 1 DIvISOR
eME 2 LOOKUP TAELE POINTERS .

SME 2 v

MR g POWER SiM SYMMETRIC FUNCTION S1
M1 POWER SUM SYMMETRIC FUNCTION S3
FME 1 ELEMENTARY SYMMETRIC FUNCTIOM 2
FME ) SHIFT COUNTER

MR ENPONENT OF 51

smE 1 TEMEOFARY DATA STORE

erE FALO1S FIELD EXPONENT COUNT

e PEGIN LECODING PROCEDLIFE .
0000000000000000000000000000000000000000060‘0000000
ges 0100
DECODE LD tTELL
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listings for chapter 8

(1) Transmitter software

(2) Receiver software
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RELOAD STACK POINTER

e BIT TIMING ERROR - SLAVE RELDADED eees”

SLAVE TIMER FLAG

RESET FLAG

I 086000000000 000000000000000000000050000000000
IDENTITY CODE:
0200000000000 0000000000000000000000000000000

€ TEMP FOR RECEIYED
DATA.

ZAYE BIT COUNTER

SET BIT

2 7 TIMES

SET 7-BIT CODE
COSRELATE WITH 15T
2ATTERN

STOQRE RESULT

ST CODE
~ORRELATE WITH 2ND
COMEARE WITH PREVIOUS

IF LE3Xs IGNORE.
IF SRERTER: 3IRVE.

55T CODE

CAORRELATE WITH 3RD
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RETURN PATTERN
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L d
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START OFF WITH 1
END OF BUFFER MARKER

ERROR ON PREVIOUS RIT
30 RUMP CURRENT COUNTER

NEW POINTER
BUMP TOTAL ERROR COUNT
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HIGH-SPEED SOFTWARE CASSETTE
INTERFACE FOR THE SWTP 6800 SYSTEM

David R. Isaac
Dept. of Applied Physics & Electronics, University of Durham

This article describes a software approach to the problem of
1terfacing a microprocessor system (in this case the SWTP 6800
system) 10 en audio cassette used for data storage. This alter-
nattve to the more conventional hardware methods offers several
distinct sdvantages. Since the system is software based (the only
hardware requirements being the cassette player and two ports
i a PLA}, its most obvious attraction is low cost. Unlike dedi-
cated hardware cassette interfaces, total control over speed is
availuble and the system is capable of data transfer rates up to
about 2000 baud. With the parameters given in the listings, a rate
vt 1600 baud is obtainable.

Figure 1 illustrates the hardware configuration, A PIA is
piugged into row 4 in the motherboard and output to the mic.
socket of the cassette recorder is taken directly via 8 screened
lead from the most significant bit of the ‘A’ side of the PIA, In-
coming data from the cassette player is received via another
screenad lead connected from the extension speaker socket 10
the most significant bit of the ‘B’ side. Good resuits were ob-
tained using medium quality audio cassettes and with the volume
and tone controls on the cassette player both set to maximum,

Data is stored on the cassette as a frequency shift keyed sig- -

nal. Logic tevicis ‘@' and ‘1 are stored as single cycles of 2800

and AQ49 to the start address of the SAVE program, switch the
cassette player on to record and enter G. When the transfer of
data is complete, the system automatically returns to MIKBUG.

To read data from the cassette, first set locations AQ48 and
AQ49 to the start address of the READ program, start the cass-
ette rolling a little before the data begins {to allow it to pick up
speed) then enter G. When the end of file pattern is read from
the tape the systemn returns to MIKBUG. Should an error be en-
countered during playback, an ‘E’ will be printed on the teletype;
the tape should be stopped, rewound slightly and a G shouid
again be entered. Note that there is no need to reset the program
counter before doing this,

This cassette system has been used for several months and has
been found to be very reliable. The data transfer rate is more
than five times that of Kansas City standard system which results
in @ considerable time saving for long programs. A change of

 speed can be effected by changing ‘the frequencies of the two

FSK tones. This is done by altering the timing loop parameter at
location 5@D0@ in the SAVE program, and the mean number of
samples per half-cycle at location 60@B in the READ program.

and 1400 Hz respectively which represents an average bit rate of ay
1600 baud. Data is sent as a MiKBUG formatted tape headed by MIC.
a string of 200 ASCH nulls and terminated with an ASCII ‘S9’
vnd of file pattern, The ‘save’ and ‘read’ programs are shown in 6800 PIA CASSETTE
tigures 2 ard 3 respectively, and have been given arbitrary orig- SYSTEM {at row #4) RECORDER
ins, although both programs are fully relocatable. By storing the EXT. SP
programs in PROM, the risk of overwriting them is eliminated, by '
To save an area of data on cassette tape, first enter the begin-
ning address of the area in locations AQ@2 and AQ@3 and the . T .
tinal address in locations AQ@4 and AQ(S. Set locations A@48 Figure 1. Hardware Configuration
5014 B6 AOOS SENLl  LDA A ENDA+ 1
TITLE: SAVE 5017 RO AOLO SUB A TW+l
S0lA  F6 ACO4 LDAB ENDA
501D F2 ACOF SBCB TW
LWC  OBJECT CODE SOURCE STATEMENTS 5020 26 04 BNE  SEN22
5022 8l lo CMP A W16
. NAM  SAVE 5024 25 02 BCS  SENZ3
: 5026 86 OF SEN22 DA A WS
. TRANSMIT ROUTINES 5028 88 04 TSEND2Y ADD A 44
. ———— 502a B7 AOLl STA A MCONT FRAME COUNT THIS RECORD
» This program sends miakbug formatted data as 5020 80 L3 SUB A 4 3
+ an FSK signal through one port of A Pia, 502F B7 AOOE STA A TEMP  BYTE COUNT THI5 RELORD
. A logc 'L’ is sent as one cycle of 1400 Hz; o * SEND C/R, L/F, NULLS, S, 1 {START OF RECORD):
. A leyic 'O’ 1s sent as one cycle of 2800 Hz. 503:’ @ ELsd LDX #MTAPEL
. Beqyus, Bega + 1 and Enda, Enda + 1 Contain the, 503L 8D 14 BGR PDATAL
. first and last addresses respectively of the 5037 5¢ CLR B ZERO CHECKSUM
. dats irea to be saved. * SEND FRAME “OWNT
. 5038 CE AOLL LDX  #MCONT
! . 503B 8D 38 BSR SENDZ
} #olo PIAAD EQU 38010 PIA ADDRESS * SEND ADDRESS
* MIKBUG RAN ADDRESSES: 503D CE AOOF LDX  #TW
ACO? BEGA  EQU  $ACO?  DATA START ADDRESS 5040 8D 33 BSR  SEND2
A0S ENDA  EQU  $ACO4  DATA END  ADDRESS 5042 8D 31 - BSR  SEND2
AOGE TEMP  EQU  3AOOE * SEND DATA
AOQF ™ EQU  SAOOF 5044 FE AOOF LOX W
Aol MCNT  EQU  $AOLL 5047 8D 2C SEN32 BSR  SEND2 SEND ONE BYTE (2 PRAMES)
AC. - XTEMP  EQU  $A012 5049 7A AOOE DEC  TEMP  DEC BYTE COUNT
+ END-OF-FILE PATTERN: 504C 26 F9 BNE  SEN32
2020 ORG  $AQ20 SO4E FF AOOF STK W
AO20 OD MTAPE2 FCB  $D,$A,0,0,0,0,$53,$39,4 5051 53 CoM B
2021 QA 5052 37 PSH B
2022 00 5053 30 TSX
A023 00 + SEND CHECKSUM
A024 00 5054 8D 1F BSR  SEND2
2025 N0 5056 33 PUL R RESTORE STACK
A026 53 5057 FE AOOF LDX  TW
027 39 505A 09 DEX
2028 04 5058 BC ADO4 CPX  ENDA
» MIKBUG ROM ADDRESSES SOSE 26 B4 BNE  SENLL
EOE3 CONTRL EQU  SEOE) « IF FINISHED, SEND END-OF-FILE
EL34 MTAPEL EQU  SEL34 : 5060 CE AO20 LDX  H#MTAPE2
5000 ORG  $5000  PROGRAM ORIGIN 3063 B0 06 BSR  PDATAL
5000 CE FFO4 START LDX #§FFO4  INITIALISE PIA 5065 7B EQE} JMP CONTRL RETURN TO MIKBUG
5007 FF BOLO STX  PlLARD 5068 8D 24 PDATA2 BSR  SENDIT
* SEND 200 NULLS 506 08 INX
5006 Co C8 LDA B #200 5068 A6 00 PDATAL LDA A X
5008 4F NULLS  CLR A NULL 506D 81 04 CHME A 4
5009 8D 67 BSR  SEND S06F 26 F7 BNE  PDATAZ
S00B 5A DEC B 5071 39 RTS
S00C 26 FA BNE  NULLS 5072 8D 1A SEND  BSR  SENDIT
* MIKBUG "PUNCH" ROUTINE: 5074 39 RTS
SOOE FE AQO2 PUNCH  LDX  BEGA START ADDRESS * SEND 2 HEX CHARS: UPDATE CHECKSUM
50l1 FF AOCOF STX TV SAVE IT Continued on page 42
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S EB 0O SENDZ  ADD . O,X  UPDATE CHECKSUM 5087 86 FF LDA A #SFF  PIA~~> HIGH
7 A6 00 OUT2H  LDA A O,X SEND 2 HEX CHARS 50B9 6D OF BSR DELAY
9 8D 05 OUT2HA  BSR OUTHL OUT LEFT CHAR S0BB 8D OD BSR DELAY WAIT AGAIN
B At 00 LDA A 0O,X 50BD 32 PUL A RESTORE STACY.
D 08 1NX SOBE 19 RTS
E 20 04 BRA OUTHR OUT RIGHT CHAR & RETURN * BIT=0; TRANSMIT CYCLE OF HIGH FREQUENCY
0 44 OUTHL  LSR A SOBF 36 ZERQ PSH A SAVE ACCA
1 44 LSR A 50C0 86 00 BACK LDR A #0 PIA--> LOW
2 44 LSR A SoC2 BD 06 BSR DELAY TIMER i
3 44 LSR A 50C4 86 FF LDA A #$FF  PIA--> HIGH
4 84 OF OUTHR  AND A #$F OUT RIGHT BCD DIGIT 50c6 8D 02 BSR DELAY
6 88 30 ADD A 4330 50c8 32 PUL A RESTORE STACK
8 81 29 CMP A #3139 50C9 39 RTS
A 23 02 BLS SENDIT * FREQUENCY CONTROL DELAY LOOP
c 88 07 ADD A #8$7 50CA 37 DELAY  PSH'B SAVE ACCB i
. . S0CB €6 OB LDA B #8 DELAY COUNTER
* GENERATE FSK SIGNAL AND SEND THROUGH PIA 50cD B7 BOLO LOOP!  STA A PLAAD OUTPUT TO PIA
. S0D0  SA DEC B DEC LOOP COUNT .i
E 37 SENDIT PSH B 50Dl 26 FA BNE LOOPL LOOP AGAIN 3
F PP AOL2 STX XTEMP SAVE XREG sop3 33 PUL B RESTORE STACK H
2 C6 08 LDA B 48 BIT COUNT . 50p4 39 RTS RETURN i
4 8D 29 8SR ZERD  SEND START BIT ’ END
6 oD SEC . v
7 49 NEXBIT ROL A GET NEXT BIT ’ SYMBOL VALUE i
8 24 04 BCC SKIP  JUMP IF ZERO OVER 50A0 :
A 8D 14 BSR ONE SEND A '1° . AGAIN 50B1 PDATAL 5068 :
c 20 02 BRA  OVER BACK 50C0 PDATA2 5068 i
¥ 8D 1P SKIP BSR ZERO  SEND A 'O’ BEGA 2002 PIAAD 8oto
O OD OVER SEC CONTRL EOE3 PUNCH 500E
YRYY DEC B DELAY 50CA SEND 5072 .
\2 26 P BNE NEXBIT NEXT BIT ENDA A004 SENDIT S08E
\d 6D OA BSR ONE SEND STOP BIT ’ LOOP L 50CD SEND2 5075 i
\» 86 00 LDA A #O PIA---> LOW MCONT AOLL SENLL 5014 !
4 B7 6010 STA A PIAAD MTAPEL E134 SEN22 5026 1
B FE AOL2 LOX XTEMP RESTORE XREG MTAPE2 A020 SEN23 5028
\E 32 PUL A AND STACK NEXBIT 5097 SEN32 5047
\F 39 RTS . NULLS 5008 SKIP SOYE
* BIT=l; TRANSMIT CYCLE OF LOW FREQUENCY ONE £IBO START 5000
36 ONE PSH A SAVE ACCA OUTHL 5080 TEMP AOOE
1 86 00 AGAIN LDAA # 0O PIA---> LOW OUTHR 5084 ™ AOOF
3 8D 1S BSR DELAY TIMER OUT2H 5077 XTEMP AOL2
5 8D 13 BSR DELAY AND AGAIN OUT2HA 5079 ZERO 50BF
ITLE: READ 603A BD EIDI 3SR ouUTCH
603D 7E EOE3 LOAD2) JMP CONTRL  RETURN TO MIKBUG
* BUILD ADDRESS:
PC  OBJECT CODE SOURCE STATEMENTS 6040 8D OC BADDR  BSR BYTE GET A BYTE
6042 B7 AOOC STA A XHI MSBYTE
NAM READ 6045 8D 07 BSR BYTE GET A BYTE
. 6047 B7 AOOD STA A XLOW LSBYTE
. 604A FE ADOC LDX XHI ADDRESS WE BUILT
. RECEIVE ROUTINES 604D 39 RTS
. * INPUT 1 BYTE (2 FRAMES):
. This program demodulates the fsk signal from - 604E 8D 10 BYTE BSR INHEX READ HEX CHAR
. the cassette player by comparing the number 6050 48 ASL A
. of samples per 1/2 cycle with a threshold (mean) 6051 48 ASL A
. value. The received data is,}tored directly 6052 48 . ASL A
. into ram. If a non-hex clar”is received or 6053 48 ASL A
v a checksum error is detected, an 'E' is typed 6054 16 TAB
. on the terminal before returning to mikbug. 6055 8D 09 BSR INHEX READ HEX CHAR
. A return to mikbug without the 'E' indicates 6057 1B ABA
. that all data has been successfully transferred. 6058 16 TAB
. 6059 FB AOOA ADD B CXSM
. 605C P7 AOOA STA B CKSM
8012 PIRAD EQU 38012 PIA ADDRESS 605F 39 RTS
¢ MIKBUG RAM ADDRESSES: * INPUT HEX CHAR:
AOOA CKSM EQU  $ACOA ' 6060 8D 13 INHEX BSR READ}
AQOis BYTECT EQU  $AOOB . 6062 80 30 suUB A #$30
ADOC a1 EQU  3A0OC 6064 28 D2 BHMI LOAD1S  NOT HEX; ERROR ?
AOOD XLOW EQU $A00D 6066 8l 09 CMP A 4309
A012 XTEMP  EQU  $AO12 6068 2F OA BLE INIHG
A020 CNTR EQU  $AO20 . 606A Bl 11 CcMP A (1391
021 MEAN EQU  $AO21 606C 2B CA BHI LOAD1Y  NOT HEK) ERROR ?
* MIKBUG ROM ADDHESSES 606E Bl 16 [ #S$16
EOE3 CONTRL EQU  $EQEJ : 6070 2E C6 BGT LOADL9  NOT HEX: ERROR ?
ELD} QTCH EQU  S$EIDL 6072 80 07 SUB A LY
ORG  §6000 PROGRAM ORIGIN 6074 39 INIHG  RTS
CE 0004 LDX  #3$0004 INITIALISE PIA * SAMPLING AND TIMING ROUTINES:
3 FF 8012 STX  PIAAD 6075 37 READL PSH B SAVE ACCB
* SET MEAN NO. OF SAMPLES PER 1/2 CYCLE: 6076 FF AOL2 STX XTEMP AND XREG
86 OB LDA A 430B 6079 4F START CLR A
87 AO21 STA A MEAN 607A  SP CLR B
* BEGIN SEARCHING FOR DATA: 6078 OD SEC
B BD 68 LOAD}  BSR  READI FETCH A CHAR 607C 8D 13 SBIT BSR LOOK LOOK FOR START BIT
D 81 53 CMP A #'S IS IT AN S 7 607 25 FC BCE SBIT NOT FOUND; LOOX AGAIN
F 26 FA BNE  LOAD) NO;LOOK AGAIN 6080 36 NEXBIT PSH A SAVE ACCS
I 8D 62 BSR  READIL YES; GET NEXT CHAR 6081 37 PSH B
3 81 39 CMP A #'9 END-OF-FILE ? 6082 8D OD BSR LOOK
5 27 26 BEQ  LOAD21 YES: READING COMPLETE 6084 33 PUL B RESTORE ACCS
81 31 CMP A §'L START OF RECORD ? 6085 32 PUL A
26 PO BNE  LOAD3 NO; LOOK AGAIN 6086 49 ROL A GET RECEIVED BIT
7¥ ADOA CLR CKSM ZERO CHECXSUM 6087 5C INC B 8 BITS FOWND ?
8D 2E BSR  BYTE READ 1 BYTE 6088 cC1 08 CHP B [1:]
80 02 SUB A #2 60BA 26 P4 BNE NEXBIT NO: FETCH NEXT BIT
87 AOOB STA A BYTECT 608C FE AOL2 LDX XTEWP RESTORE INDEX REG
®  BUILD ADDRESS: 608F 33 . PUL B
8p 19 BSR  BADDR 6090 39 RTS
* STORE DATA: * FETCH A BIT:
6D 25 LOADlL BSR  BYTE 8091 7F AO20 LOOK CLR ONTR SAMPLE COWNT
A AOOB DEC  BYTECT 6094 86 8O LDA A p$80 SELECT INPUT LINE
27 05 BEQ LOADLS 6096 Bl 8012 LOOP1 CMP A PIAAD START OF CYCLE ?
A7 00 sTa A X STORE DATA 099 26 : BNE LOOPL ~ NO: LOOK AGAIN
o INX 6098  7C A020 LOOP2 INC CNTR YES; INC SAMPLE COUNT,
20 P4 BRA LOADLl  GET NEXT BYTE 6oJE Ol Nop
o AOOA LOADLS INC CKSM 609F Bl 8012 CMP A PIAAD INPUT STILL HIGH ?
27 D3 BEQ -  LOAD3 GOAZ 27 F¥7 BEQ LOOP2 YES; KEEP LOOPING.
+ ERROR DETECTED: 60R4  B6 A020 LDA A ONTR TOTAL SAMILE COINT
w45 LOADI9 LDA A W'E PRINT ERROR MESSAGE 60AT Bl A0ZL CHP A MEAN COMPARE ;:'" ;’g"‘”"a
8 )
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6oM 20 LT up 1P LEBO THEW BI FRRQUINCY
6OAC ©OD B8C RETUR '1°' 1M CARRY
60AD M RTS8
soAr ©C (=7 RETURN ‘O' IN CARRY miug 6074 MEAN AD2)
toAr RTS Lr GOAC  NEXBIT 6080
awo LOADLL 6027 ource [ 31.7)
LOADLS 6033  PIAAD 0012
LOADL® 60)8  READL 6075
BYMBOL VALUE CX8M AOCA  LOAD21 ' 6030  geIT 607¢
ONTR AD20  LOAD3 6008  BTART 6079
BADDR 6040 CONTRL . EOE)  LOOK 6091 i1 AOOC
BYTE 6042 ur 60AE  LoOPl 6096  XLOW ACOD
BYTECT AOOB INHEX 6060  LOOP2 6098  XTEMP A0l 2
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Abstract
High frequency radio links are time - varying
channels which can introduce considcrable levels of

attennation and delay distortions. These effects,
together with interference from natural and man - made
sources, result in the high crror rates observed over
the HF channel, This paper describes a novel
microprocessor implementation of a data transmission
system for usc over HF radio, where 16 data channels
are used to modulate 8 frequency - agile subcarriers
contained within the voice channel. The system
atteinpts to Jlocate the subchannels within the quiet
portion of the channel to avoid narrow band
interference. Broad - band effects are overcome by
using bit - interleaved block codes. The software -
orientated implementation renders the systern both cost
- effective and flexible.

1. Introduction

Information transmitted via high frequency (HF)
radio signals reflected from the ionosphere is
frequently degraded due to the characteristics of the
propagation medium. The high error rates encountered
can be attributed to the effects of multipath
propagation and interference, both natural and man -
inade.

This paper describes an experiment being
undertaken by the Departinent of Applied Physics and
Flectronics, Durham University, intended to demonstrate
that with the aid of modern electronics technology in
the form of microprocessors, it is possible to effect a
significant improvement in the error rate.

‘The simplest, and often the most effective, way of
reducing these errors is to implement some form of
channel evaluation system to assess the suitability of
a number of channels for transmission over the radio
link /1,2/, and to choose the channel yielding the best
signal - to - noise ratio. This approach may often be
unrealistic since a wide selection of {requencies may
not be available to the communicator and he may often
have to make the best possible use of a frequency far
removed from the optimum. However, even for a single
assigned frequency, substantial improvements can be
obtained by using adaptive techniques based on a
'"microscopic' analysis of the channel /3/.

Over recent years there has been a considerable
resurgence of interest in communications using the HF
part of the radio spectrum. Many users faced with the
problems of cost and wvunerability of satellite
communications, have begun to look again at the
prospect of achieving reliable data communications
using HF radio links. Indeed, the HF path is the only

alternative for Jong distance circuits involving
mmobiles such as ships and aircraft. However, the
problems are considerable. If we consider signals

propagated to outside the skip zone (where ionospheric
propagation predominates) then we have the difficulty
of communicating via an anisotropic time - varying
medium with noise levels greatly exceeding those found
in other communications systems. However, there has
been considerable progress in the state of electronics
technology in recent years, particularly in the digital
field, and it seems likely that such a communications
system would need to take full advantage of such
advances.

G5.

2. Design Considerations

Multipath propagation causes time dispersion of
the received signal /4/ which results in severe
intersymbol interference if the signal clement duration
is of insufficient length, It has becen shown /5/ that
the optimum frame length for_ transmission over a
dispersive medium is equal to JL/B, where L is the time
spread introduced by the medium and B is the frequency

spread. The time spread caused by rnultipath
propagation, and the Doppler shift introduced by
ionospheric perturbations, result in a near - optimum

frame rate of 75 Hz. Serial data transmission systems
are therefore limited to a data rate of 75 baud, which
makes inefficient use of the 3 kHz. wvoice channel. To
utilise the channel more elficiently the data can be
time division multiplexed for transmission over a
number of parallel sub - channels, orthogonally spaced
within the voice channel.

Several such parallel sub - channel modemns have
been developed in the past, notably Kineplex /6/,
Kathryn /7,8/, and Codem /9/, for medium speced data
transmission over HF radio /[10,11/.

A macroscopic investigation of the HF spectrum

below the M.U.F. /1,12/ reveals that it is very
difficult to find a 3 kHz. slot which is completely
free of interference and it has also been shown /3/
that much of this interference is narrow - band. It is

therefore unwise to attempt to wuse the channel to its
full capacity. Codemn uses a spectral redundancy
technique to overcome narrow - band interference and
fading by using only 16 of its 25 subchannels to carry
information, the remainder being used for redundant
parity bits. This is effective but inefficient in that
the available transmitter power is distributed amongst
all 25 channels which may present a disadvantage when
working from a mobile transmitter. Gott /3/ «nd Betts
/12/ have shown that interference measurements made on
the voice channel are often valid for several minutes
and occasionally for an hour or more. This suggests
that an adaptive system might be used which avoids
those subchannels exhibiting poor error performance.
Ideally, a revertive link would be used to assess the
signal - to - noise ratio on each subchannel at the
receiving site by transmitting a sounding signal from
the receiver back to the transmitter. In practice,
revertive links are costly and often difficult to
implement, especially from mobile sites, and .the best
that can be done is for the transmitting site to
evaluate the spectral distribution of interference
within the channel in the absence of a signal. It has
been shown /3/ that over distances of several hundred
miles the interference pattern at the transmitter site
is similar to that observed at the receiver and
provides at¢ reasonable criterion for sub - channel
selection. Results have also shown /[13,14/ that, for a
? - tone F.S.K. system, the error performance of an
ideal frequency agile system greatly exceeds that of a
system wusing fixed frequency allocation.

The system currently being developed uses 16
available equally (orthogonally) spaced sub - channels
which accomodate 8 quartenary phase - modulated sub -
carrijers. One possible distribution of the sub -
carriers is illustrated in Figure 1. A 4 - phase
modulated signal occupies the same bandwidth as a bi -
phase one but carries twice as ruch information, and
was therefore chosen in prefercnce [15,16/.  Systems
employing pilot tone phase references have been shown

to exhibit poor performance on HF /17,18/, so a
differential encoding technique is chosen to eliminate
the need for an absolute phase reference. The

differential phases correspond to dibits arranged in a




de around the unit circle (Figure 2) such that
t probable phase error causes only a single bit
Selection of the sub - channels to be used for
sion is based on the results of a measurement
noise present in each of the 16 available sub -
. over an observation period of 3.5 seconds.
ire is a compromise arrived at by consideration

> major factors. Firstly, an observation period
too long necessitates a large input data buffer
transmitter if overflow is to be avoided.
, a period that is too short may coincide with
fadeout of any narrow - band interfering
These fadeouts have been observed /19,20/ to
rer periods of up to 0.5 seconds. Thirdly, as
e measurements are based on the results of a
analysis using software - implemented Fast -
I'ransforms, sufficient time must be allowed for
 be evaluated. After each observation period,
ubchannels exhibiting the lowest noise levels
sen for transmission of the next message block.
g a preamble of phase reversals used to regain
synchronisation, the receiver is advised as to
sub - channels to be used for subsequent
ion of the data. This advisory sequence has a
cy level four times greater than that used for
sion of the message. Results /12/ indicate
‘easonable interval between observation periods
e order of several minutes and each message
ce consists of 3 minutes of data.

ors observed on the HF channel predominantly
» bursts and it has been shown /20,21,22,23/
- interleaved binary block coding provides the
tection against these types of errors. As the
is to be implemented in real - time at the
a code must be used which is a reasonable
ise between burst - correcting ability and
1tation complexity. The (15,7) dual - error -
g binary BCH code /25/ is reasonably simple to
n real time using software /26/, and groups of
s interleaved to a depth of 16 in serial along
the 16 data sub - channels can tolerate wide -
les or noise bursts of up to 0.43 seconds. This
a block length (of 16x16x15 = 3840 bits) in
total number of 512 errors can be corrected.

nodulation of a parallel sub - channel system is
implemented using banks of narrow - band
/16/. These are often costly and are
it in an in - band frequency agile environment
1 small number of filters are in use at any one
For this reason it was decided to use the
Fourier Transform (D.F.T.) for sub - channel
in and phase decoding. Because  the time
to implement the F.F.T. algorithm using

exceeds the signal element duration, a
approach is adopted by evaluating the chirp -
wm algorithm using charge - coupled - device
transversal filters /27/. D.F.T. processors
ch devices are capable of evaluating a 512 -
transform in Jess than 6 mS.

n Implementation

requirement for system flexibility, together
talling cost of microprocessor technology,
d that a primarily ‘software - based'
tation was preferable to a purely hardware -
1 approach /28/. Coding [/ decoding and
on demodulation are controlled almost
by the microprocessor system, changes in
rformance being effected by simply modifying'
ably - level programs. This ensures that the
e costs are kept to a minimum.

,

c -

A block diagram of the complete system is shown in
Figure 3. At the transmitter incoming serial data is
buffered and encoded by the Motorola 6800 - based
microprocessor system prior to generation of the
frequencies and phases required to construct the multi
sub - channel baseband signal. The datx is frequency
division multiplexed for transmission over eight
differential quadrature phase shift keyed (DQPSK) sub -
channels and the resulting composite waveform is low -
pass filtered to remove components above the signal
band which then forms the modulating signal to the
single side - band (SSB) suppressed - carrier HF
transmitter. During breaks in transmission, the
baseband output from the HF receiver at the
transmitting site is sampled by the A/D converter and
an FFT is performed by the microprocessor to determine
the optimum sub - channels for subsequent transmission.

At the receiving station, samples of the filtered
baseband signal are processed by an FFT processor whose
output coefficients in the frequency domain are used by
the microprocessor systemn to demodulate the composite
waveform. Decoding and re - formatting of the
demodulated signal then results in the output serial
data stream.

For real - time operation, it was found that
single processor systems at the transmitter and
receiver sites were insufficient to handle all the
required tasks. For this reason, a multi - processor
configuration has been developed in which one or more
'slave' processor units (Figure 4) are assigned tasks
by a master processor which oversecs operation of the
entire system. Each slave processor unit incl.des a
single 6800 centra! processing unit (CPU) and 1Kbyte of
read / write or random access memory {(RAM), which is
used to contain data and program areas. The master
processor accesses the slave control lines via a & -
bit latch located at the base address of the slave
processor. Once initialised, the slave processor unit
is capable of performing tasks completely independently
of the master thereby increasing the overall processing
power of the complete system.

The transmitter (Figure 5) uses one slave unit for
generation of the multitone modulating signal.  Serial
data at 550 bps is accepted into the serial interface
and is loaded into the input data buffer in RAM via an
interrupt service routine. Groups of seven data bits
are extracted from the buffer and mapped into 15 - bit
BCH codewords. A group of seven data bits can be
represented as a sixth order modulo - 2 polynomial
d(x) which is encoded by finding

r{x)=x¥d(x) + rem{x®d(x)/g(x))

where g{x) is the generator polynomial

256 of the resulting codewords are assembled into
a 16 x 240 bit matrix to enable interteaving to depth
16 along each of the 16 data sub - channels. On
request from the slave processor, pairs of bits are
extracted from the matrix and loaded into the slave

RAM, each dibit corresponding to a single frequency

division multiplexed sub - channel. For a single sub -
channel, the absolute phase is determined by the result
of an exclusive - OR operation on the current dibit

with the immediately preceding dibit for that sub -
channel, the result being used as an index on an 80 -
point cosine lookup table in the slave processor - RAM.
Samples for each sub - channel are then added in to one
of two 80 x 12 bit multiplexed shift registers; the
complete waveform for a single element is thus formed
after eight complete rotations. When one shift
register is full, its contents are output to the low
pass filter at the appropriate sample rate of 6 kHz.




A message consists of 16,384 codewords, a total
transmission time of 3.4 minutes. DBetween messages, an
estimate of the interference present in each subchannel
is made by evaluating a 6% - point radix - 2 butterfly
Fast Fourier Transform algorithin on the sampled data
signal. The 9600 Hz. sampling frequency provides a
frequency - domain resolution of 150 Hz,  Selection of
the sub - channels to be used for transmission of the
next inessage sequence is made by finding the eight sub
channel slots cxhibiting the lowest power spectral
density averaged over cight sample periods.
Transinission is then resurmed by sending a preamble of
phase reversals over the eight sub - carriers used for
the previous message. This is followed by an advisory
sequence of 8 15 ~ bit codewords transmitted with a
four fold spectral redundancy to ensure a high
probability of correct reception. The first three
information bits of cach codeword relate to a sub
channel number in the range 0 to 7, the last four
indicating a frequency slot in the range 0 15.
Transfer to the new frequency slots occurs after the
final element of the advisory sequence.

The receiver (Figure 6) uses one slave processor
to control element synchronisation of the received
signal and one for decoding of the demodulated data.
Demodulation is accomplished using a charge coupled
device (CCD) to evaluate the chirp - Z transform /29/.
The chirp Z transform can be derived from the

expression for the discrete Fourier Transform as
follows /30/:
N=i
Fie = 2. faexpl-i2nnk/N)  (DFT)
n=0
nk=0%2...... N-I
using the identity 2nk= n* k*-(k -n)®
we obtain
N-1
Fyc = '\ZO [fnexp(-inn’/N)e@(in(k—n):/N] ex pl-ink/N)
) {CZT)
The implementation involves three operations

(i)

the comlex sequence gn is generated by the product
of fn with exp(~inn/N)

(ii) a discrete convolution is performed between gn
and exp (iw(k-n}/u)

(iii)the resulting sequence is multiplied by exp
(~inki/n)
These steps are illustrated in Figure 7.  Step
(it) involves four convolutions which are performed by

the CCD transversal filters. Steps (ii) and (iii) are
implemented by using multiplying digital to analog
converters and lookup tables in programmable read -
only memories which contain sampled sine and cosine

‘chirp' waveforms.

For purely real inputs,
from zero to the Nyquist frequency.
with its associated circuitry implements a fixed length
transform of 512 points which, for a f{requency
resolution of 75 Hz. requires a sampling frequency of
38.4 kHz. The total time taken to acquire 512 samples
is thus 512/38400 13.3 S, which is the element
duration. The required signal band extends from 300 to

the analysis band extends
The CCD device

2550 Hz. which is available in 885 microseconds. The
remaining time of 12.4 mS is thus available for
processing.

G5.3

Synchronisation is achicved by obscrving the
behaviour of the phasor. For a sequence of phase
reversals, the locus of the phasor as we traverse along
the signal element is a spiral, and its magnitude is a
triangular wave (Figure 8), whosc maxima correspond to
the correct sampling instants. The magnitude of the
phasor can be computed from the Fast Fourier Transform
by observing the Fourier coefficients at the discrete

sub - channel frequencies. An estiinate of the inean
value of the phasor over all sub - channels can be
cvaluated by finding

= :}z— 31,.- . T

IFl=g )/ G iRe) s § (Im

where Kc is the sample number corresponding to the sub
channel frequency. The values of [F| thus obtained
indicate the position of the primary sampling instant
within the frame and the slave processor then instructs

4n appropriate change to synchronise the frame,
The demodulated data is entered into a 480 - byte
matrix in the slave decoder for de - interleaving and

decoding. Peterson's decoding algorithm /31/ is used to
recover the scven information bits from cach received
codeword. Arithmetic operations are implemented in the
Galois field of () elements.  Addition and subtraction
are simply performed modulo 2, while rultiplication
and division operations are performed using logarithinic
lookup tables. The algorithm used is shown in Figureq
and can be described as follows

If r(x) is the received word and g(x) =
My (x) My (x)
then the two partial syndromes can be found by
calculating

S =rem fX) S,=refn@.

' m,[x mlx)
If errors have occured, the syndromes will be non -

zero and the elementary symmetric functions can be
found directly from Newton's identities:

S+0; =0
Syt S54S,0; + 0= 0
in matrix notation

S=MX

where

5=k

M.

L2

It is then possible to find the (0;-),j:1,2 by ‘computing
M. S
Z R
It is then possible to solve /32/ for the error locator

nurnbers (B) by substituting elements of  Galois field @*

) in the equation
2. ()

(x+ pI(x+pa)

= Yox+ 03

This completes the decoding algorithin.  The decoded
data is stored in the output data buffer and is then
converted to serial format by a parallel to serial
converter.




clusion

novel implementation of a multi - channel modem
ta comrnunications over HF radio links has been
d. The use of microprocessor technology reduces
and increases system flexibility by wusing a
ly software - based approach. The effects of
th distortion are overcome by using a parallel
el system to extend the duration of the signal
s.  Narrow - band interference is combated by

in - band frequency agility to locate the
lers within the quiet regions of the voice
Because of the time - varying nature of the

I, the subcarrier locations are updated at
t intervals; thus the systern adapts itself to
evailing interference pattern. Subchannel
on and demodulation are accomplished by using
oupled devices to evaluate the Discrete Fourier
i, thereby alleviating the need for banks of
- band fiiters which are traditionally used in
bcarrier modems. Broad band noise effects are
e by using bit - interleaved binary block

view of the flexibility of the system, it
e possible, if a revertive link were available,
erve fluctuations in the error patterns
ned at the receiver, and to modify the
Cy in the transmitted signal to suit the types
‘s received. The system then becomes fully
» the redundancy in the signal always being
icient to maintain error - free communication.
is much scope for future work!
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Microprocessor Controlled Trackside Recorder

D.R. Isaac, C.T. Spracklen,
J.R. Manning

Abstract

This paper describes a new trackside train speed recorder
designed at Durham University Applied Physics Department for the
Chief Civil Engineer, British Rail Southern Region. The new
recorder is controlled by a microprocessor unit and is capable of
recording train speed, direction, wheel count, and time of day in
an electrical memory contained within the system. The recorder
is later transported to a microcomputer base station where the
data is offloaded and displayed on a line printer. The new unit
is entirely electronic in operation and is powered by
rechargeable dry cells. The system is lighter, smaller, and more
flexible than any previous designs. :

History

The interest in the speeds which trains achieve extends
beyond railway staff to some sections of the general public.
Usually the interest is in the performance of particular trains
over various routes and a record of speeds achieved can easily be
obtained on board the train. Speed records in this form are of
considerable value to railway operators. To be of use to
permanent way engineers it is often desirable to obtain the speed
of all trains passing over a particular piece of track. A man
stood at the trackside using a stopwatch could obtain this
information but such a practice is seldom justified. '

The use of automatic unattended recording systems would be
ideal for permanent way needs. The limited commercial scope for
such equipment has tended to restrict development to the adaption
to train speed recording of standard commercial data recorders.
The few recorders that have been developed tend to suffer from
the trackside environment leading to frequent mechanical
failures.

- Specifications

A small, battery operated unit was required which could be
placed at the track side to record data over a period of several
days. The following parameters were to be recorded for each
train passing during that period: time of day, train speed, wheel
count and direction of travel. The recorder unit would then be
transported to a base computer for offloading the data
accumulated during the recording period and for recharging the
dry cells.” The unit would then be returned to the track side for
further recording. )




The unit was required to measure train speeds In the range 1
to 150 mph, and to record the speed rounded down to the nearest |
mph. Trains travelling at speeds not exceeding 1 mph were to be
regarded as stationary and not recorded. The time of day was to
be recorded at the instant of arrival of a train, to the nearest
minute at least, and the system was to be capable of recording up
to 200 axles per train. The overall storage capacity of the
system memory was to be sufficient to hold data relating to 1000
trains (based on an estimate of a maximum of 250 trains per day
passing over a period of 4 days).

To operate the existing recorder, two switches are mounted
on the rail head, spaced 66 feet apart (figure 1). The front
wheel of an approaching train causes these switches to close in
turn. The train speed is recorded by measuring the time interval
between switch closures. The new system was required to operate
correctly using the existing track switches but should be
adaptable to other spacings.

A single base station may serve a number of trackside units,
the overall cost being considerably lower than any previous
system.

Design and Construction

Recent advances in silicon integrated circuit technology
have allowed complex logic operations to be implemented using
very small amounts of hardware. Instructions specifying the
operations to be performed are stored sequentially in a "read
only"” memory. These instructions are read from the memory by a
microprocessor and are obeyed or "executed" accordingly. Changes
in the operation of the system may be effected by simply
modifying the instructions (the "software") in the memory. The
new trackside recorder is based on such a system; a block diagram
is shown in figure 2.

The system is controlled by the microprocessor unit (a
Motorola Mé6802), whose program is contained in a 2 kbyte
programmable read only memory. The Peripheral Interface Adapter
(PIA) is used to interface the microprocessor to the track
switches, the control pushbuttons, and the base station. A
crystal controlled clock IC is used to maintain the time of day.
Train data is stored in four CMOS read/write memory ICs, which
are powered by a backup battery supply in the event of main
battery failure. A Liquid Crystal Display, with its associated
interface IC, is included to display the current time, or the
speed of the last train recorded.

The system software continuously monitors the track switches
for a closure. When a closure is detected, the train direction
is known, and the second switch is monitored for closure. The
time between closures is measured to an accuracy of Ims, and the
train speed is computed by dividing a fixed number (which is
proportional to the switch spacing) by the measured time. The
number of axles is then found by counting the number of
successive closures of the second switch (a 15ms "debounce" time




is allowed for each closure). It is assumed that the train has
passed If no switch closures are detected within a time which is
inversely proportional to the train speed. After the last axle
has passed, the data is stored in memory in the format to be .
described, and a delay of exactly 15s is allowed before
commencing the search for a new train. If a switch closure is
detected within this time, the axle count is regarded as
erroneous and is stored as a count of '0'. The search for a new
train will not begin until both switches have returned to the
rest position.

Data for each train is stored in four or five bytes (8 bits)
of read/write memory. The fifth byte is used only if there has
been a change in hours since the previous train was recorded.
Otherwise the hours are not recorded (to conserve memory).
Minutes and seconds are recorded using 7 bits each, direction is
recorded as a single bit, speed and axle count occupy one byte
each. Up to 254 axles per train are permitted. The maximum
memory capacity is 8 kbytes, which allows nearly 1000 trains to
be recorded. If a smaller memory capacity is sufficient, the
number of memory ICs may be reduced accordingly to save cost.

Eight data lines and two control lines are used to interface
the recorder unit to the base station for data offloading. A
logic '0' on one of these lines (from the base station) indicates
that the offloading procedure is to begin. Successive bytes of
data are then passed from the recorder to the base station on
command until the end of the data table is encountered. The
batteries may then be changed, and the system time adjusted by
depressing one of two buttons located on the inside of the
recorder housing for "slow" or "fast" time advance (the time is
monitored on the LCD mounted on the front panel).

The major elements of the recorder unit are mounted on a
dual-sided printed circuit board, which also contains the backup
battery supply. Several pushbutton controls are available inside
the housing: Reset, to restart the recording operation; Test
buttons, for simulation of the trackside switches; Slow and fast
clock advance, for presetting system clock. A single control
marked "time" is available outside the unit. Ordinarily, the
speed of the last passing train is presented on the liquid
crystal display; if the "time" button is depressed, the current
system time is displayed until the button is released.

Base station

The system base station was required to offload, print, and
if necessary, recall the data from the trackside unit. It was
centred around an AIM-65, a small, inexpensive, 8-bit
microcomputer system, with an integral printer. The trackside
recorder base station program prompts the user to connect the
recorder unit to the computer, then prints out the results in the
format shown in figure 3. This format may be altered by simple
software changes. A change of batteries will normally be made
after the data has been offloaded. It is, however, possible to
change the batteries before, even while the recorder is in the




field, as the battery backup will protect any existing data.
Field Trials

Laboratory tests have shown the accuracy of the new recorder
to be 0.002% at ! mph and 0.33% at 150 mph with a 66 ft. switch
spacing. A comparison with an existing recorder over the full
range of speeds showed the new recorder to be considerably more
accurate, especially at higher speeds. accurate then the GMT at
higher speeds. Tests on a stretch of (third rail) electrified
line have shown the system to be immune to the transient effects
often produced in a high-intensity electric field environment.
Field tests have been carried out using a variety of switch
mechanisms, The Silec oil-damped treadles, normally used with the
existing recorders, gave good speed results but spurious axle
counts due to the long time required for the treadles to return
to rest after closure. Removal of the oil damping cures this
problem but considerably shortens the life of the treadles. A
magnetic proximity-detector type mechanism again gave good speed
measurements but generally produced an axle count greater than
the true count due to excessive contact bouncing. A pair of
pressure-sensitive microswitches advantages of small size and low
cost. Work is now in progress to fully develop this type of
track switch.

Future Development

Automatic train identification should be possible if a
measurement of axle spacing is made in addition to the axle
count. The measured data can be correlated with stored data
relating to a number of train types. The train type may then be
identified with a high degree of certainty. This information
would then be printed at the base station, together with the
speed, direction and time.

A multiple switch facility would allow a number of switch
pairs to be connected to a single recorder unit in order to
monitor several tracks simultaneously. This might be especially
useful for monitoring train movements over a number of routes at
complex rail junctions. A maximum of four switch pairs would be
tolerable without major hardware modifications to the current
system.. However, considerable software modifications would be
necessary for this option. :

The power consumption of the current trackside recorder
system Is approximately 1W; most of this is due to the Mé6802
microprocessor. A CMOS plug-in replacement for this device has
been announced, which should reduce power consumption, and hence
battery drain, by approximately 66%. It will shortly be possible
to replace the other major components, namely the PIA and the
EPROM, with their CMOS equivalents which should then allow the
unit to operate continuously for several months without the need
for battery recharging.




Conclusion

A trackside train speed recorder based on microprocessor
technology has been described which presents many advantages over
previous designs. A cost effective system is achieved, together
with an overall performance improvement. The new recorder unit
can be used with a variety of switch mechanisms and switch
spacings, and may be operated from a set of dry batteries for
several days. Very favourable results have been obtained from
tests in the laboratory and in the field. It is anticipated that
the falling cost of microelectronics technology will lead to
further improvements and cost reductions in the near future.
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