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Abstract 

Mud volcano systems erupt sediment and fluid onto the Earth’s surface producing edifices up to 25 

km3 in volume however, little is known about how such volumes are transported through the Earth’s 

crust.  This thesis investigates whether transport is through mud-dyke-sill complexes, or is diapiric.  

Structural field mapping of exhumed mud volcano intrusive domains onshore in Azerbaijan, shows 

that feeder complexes are 200-800 m wide and roughly circular.  These complexes consist of various 

fracture networks and a megabreccia of country rock blocks tens-of-metres-across that have rotated 

up to 90° in a matrix of mud.  A structural domain model categorises regions within the feeder 

complex which formed during stoping processes. 

 

Structural mapping is combined with nearest neighbour and 2-point-azimuth statistical analysis of 

vent distributions described from nine mud volcanoes in Azerbaijan and Lusi mud volcano, East Java.  

Vent distributions are non-random, showing alignments with: 1) anticline crestal faulting, 2) 

fractures 3) ring faults, and 4) detachment faults indicating that fracture systems and regional 

stresses significantly influence feeder complex architecture.  Lusi’s vent alignments change 

orientation from 2006-2010 implying regions 10 km east and west of the main vent are more likely 

to be impacted by new vents due to the onset of elongate-caldera collapse. 

 

Kilometre-scale, elongate scarps are identified as ‘sector collapses’ on mud volcanoes in Azerbaijan 

due to morphological similarity to those on igneous volcanoes.  Shape parameters distinguish sector 

collapses and eruptive mud breccia flows allowing identification in field and satellite-based mapping.  

The updip domains are characterised by vents showing there is linkage to deeper mud volcano fluid 

flow pathways.  A model of a deflating mud chamber triggering ‘thin-skinned’ sector collapse is 

proposed.  This sector collapse model, vent alignment orientation analysis and intrusive domain 

structural model are ultimately integrated into a comprehensive schematic model of the mud 

volcano system. 
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other areas that do not fall into these coloured zones are part of the ‘un-
intruded zone’ which contains only conjugate faulting/fracturing.  The green 
area represents an area of contorted bedding and the blue areas indicate areas 
where scarps have formed due to slope failures down the flank of the anticline.  
Purple areas mark areas where old mud flows cover outcrop.  Image ©2010 
GeoEye, ©2010 Google. 

Fig. 3.8:  Schematic of the mud volcano ‘feeder complex’.  The ‘active vent zone’ is 
highlighted in red, this represents the area of the mud volcano that is currently 
erupting fluid.  The ‘peripheral fractured zone’, in orange, marks the region 
where both sinuous and conjugate fracture sets are present in the country rock.  
The ‘central zone of block rotation’, in purple, indicates the area where blocks of 
country rock with bedding strike measurements vary from the normal bedding 
orientations seen in the un-intruded anticlinal bedding.  The ‘un-intruded zone’, 
in grey, denotes the region that has been unaffected by the intrusion of the mud 
volcano system.  Here only conjugate fractures that contain no fill are found.  
The full yellow lines represent areas of bedding that follow the general anticlinal 
trend, whereas dashed yellow lines indicate areas where bedding strikes could 
be rotated away from the regional trend.  Sinuous blue lines indicate active fluid 
flow to the vents erupting at the surface. 
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Fig. 3.9:  Mechanisms.  A) Schematic of the ‘caldera collapse’, mechanism modified from 
Cole et al. (2005), B) schematic map view of the intrusive mud rotation and C) 
schematic cross section of the ‘flow rotation’ mechanism. 
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Fig. 3.10:  Schematic of the ‘hybrid stoping’ mechanism modified from Geshi et al. (2002).  
A) Intrusion stage before the surface collapse.  Evacuation of mud from the 
reservoir caused stoping of the roof rock of the reservoir.  Underground stoping 
formed a cavity at the top of the stoping column.  B) The early stage of summit 
subsidence.  The roof rocks of the cavity cannot carry their own weight and 
collapse into the cavity.  Release of mud and fluids fills the cavity.  C) The late 
stage of the summit subsidence.  Continuous evacuation of mud from the 
reservoir caused the subsidence of the roof of the reservoir.  The top of the 
stoping column was filled with the collapsed materials from the outward 
migrating caldera wall.  D) Explosive stage.  Invasion of fluids to the stoping 
column causes eruption and conduit consists of large blocks of country rock 
rotating freely within it. 
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Chapter 4: Structural Controls on Mud Volcano Vent Distributions: Examples from 

Azerbaijan and Lusi, East Java 

Fig. 4.1:  A) Major structural elements of eastern Azerbaijan after Jackson et al. (2002), 
showing the location of the mud volcanoes in this study (localities marked with 
blue stars; see inset for global location).  B) Major structural elements of the 
East Java Basin, after The Geological Survey of Indonesia (1963), showing the 
location of Lusi mud volcano (marked with a star) and main faults marked in red 
(see inset for global location). 
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Fig. 4.2:  A) Gryphons (purple triangles on Fig. 4.3, Fig. 4.5, Fig. 4.6 and Fig. 4.7).  Conical 
vents erupting mud, a few centimetres to 4 m high.  B) Salses (blue triangles on 
Fig. 4.3, Fig. 4.5, Fig. 4.6 and Fig. 4.7).  ‘Lakes’ of muddy water, with cones 1-2 m 
high and diameters of a few centimetres to over 50 m (Guliyev et al. 2000).  C) 
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Cinder mounds (orange triangles on Fig. 4.3, Fig. 4.5, Fig. 4.6 and Fig. 4.7).  Erupt 
only gaseous phases.  Resemble heaps of fired clay, up to 4 m high and 10-20 m 
long displaying an orangey-red ceramic appearance (Hovland et al. 1997; Planke 
et al. 2003).  D) Mud plugs (purple triangle labelled in Fig. 4.3A).  Breccia with a 
putty-like malleable consistency extruding from craters like ‘paste from a tube’, 
on Koturdag A mud volcano (Guliyev et al. 2000; Planke et al. 2003).  E) Pools 
(green triangles on Fig. 4.3, Fig. 4.5, Fig. 4.6 and Fig. 4.7).  Bubbling pools of fluid, 
less than 2 cm in diameter (Mazzini et al. 2009).  Extinct or dormant vents (black 
triangles on Fig. 4.3, Fig. 4.5, Fig. 4.6 and Fig. 4.7).  Vents that were once actively 
extruding fluids but have since dried up and are no longer active. 

Fig. 4.3:  A) Part of Alyaty Ridge with three mud volcanoes intruded along its axis.  
Koturdag A is located to the 0.6 km north of the fold axis.  Yellow dashed lines 
represent the bedding orientation.  Triangles: Purple- gryphons, orange- cinder 
mounds, black- extinct vents, blue- salses and green- pools.  Image © 2010 
DigitalGlobe, © 2010 GeoEye and © 2010 Geocentre Consulting, © 2010 
Google.  B) Rose diagram of fault and fracture orientations measured along 
Alyaty Ridge.  C) Histogram of frequencies of azimuthal direction for 2-point 
azimuth technique of all vent types grouped together for Koturdag A, B and C.  
D) Histogram of frequencies of azimuthal direction for 2-point azimuth 
technique of individual vent types separated into their different distributions for 
Koturdag B.  E) Histogram of frequencies of azimuthal direction for 2-point 
azimuth technique of individual vent types separated into their different 
distributions for Koturdag C. 
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Fig. 4.4:  A) Kichik Kharami mud volcano.  B) Zoomed in image of the centre of the mud 
volcano seen in Fig. 4.4A.  Vents can be seen clustering in concentric rings at the 
centre of the volcano whereas they form along lines orientated in NW-SE and 
NE-SW directions further out from the centre of the volcano.  Triangles: Purple- 
gryphons, orange- cinder mounds, black- extinct vents, blue- salses and green- 
pools.  Images © 2010 DigitalGlobe and © 2010 Geocentre Consulting, © 2010 
Google.  C) Rose diagram of fault and fracture orientations from country rock in 
and around Kichik Kharami.  D) Histogram of frequencies of azimuthal direction 
for 2-point azimuth technique of individual vent types separated into their 
different distributions.  E) Histogram of frequencies of azimuthal direction for 2-
point azimuth technique of all vent types grouped together. 
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Fig. 4.5:  A) Pirsaatadag mud volcano.  Triangles: Purple- gryphons, orange- cinder 
mounds, black- extinct vents, blue- salses and green- pools.  Image © 2010 
GeoEye and © 2010 Geocentre Consulting, © 2010 Google.  B) Rose diagram of 
fault and fracture orientations from country rock in and around Pirsaatadag.  C) 
Histogram of frequencies of azimuthal direction for 2-point azimuth technique of 
individual vent types separated into their different distributions.  D) Histogram 
of frequencies of azimuthal direction for 2-point azimuth technique of all vent 
types grouped together. 
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Fig. 4.6:  A) Akhtarma-Karadag mud volcano.  This volcano is dominated by gryphons at its 
western edge next to two small cinder mounds.  The majority of the salses and 
larger gryphons extrude along an elongate ring detachment fault found along 
the length of the edifice (see Chapter 5; Roberts et al. 2011).  The salses are 
found furthest away from the main centre of eruption further to the east of the 
volcano.  Triangles: Purple- gryphons, orange- cinder mounds, black- extinct 
vents, blue- salses and green- pools.  Image © 2010 GeoEye.  B) Histogram of 
frequencies of azimuthal direction for 2-point azimuth technique of individual 
vent types separated into their different distributions.  C) Histogram of 
frequencies of azimuthal direction for 2-point azimuth technique of all vent 
types grouped together. 
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Fig. 4.7:  A) Dashgil mud volcano zoomed in on the active vent zone.  Gryphons can be 
seen clustering in the western section of the volcano.  Cinder mounds form an 
elongate ridge at the southern limit of the active vent zone and two large salses 
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are found at the southeast end of the volcano.  Triangles: Purple- gryphons, 
orange- cinder mounds, black- extinct vents, blue- salses and green- pools.  Red 
lines show faults and black lines show breaks in slope, with triangles pointing 
towards the downthrown side.  Image © 2010 GeoEye and © 2010 Geocentre 
Consulting, © 2010 Google.  B) Histogram of frequencies of azimuthal direction 
for 2-point azimuth technique of individual vent types separated into their 
different distributions.  C) Histogram of frequencies of azimuthal direction for 2-
point azimuth technique of all vent types grouped together. 

Fig. 4.8:  A) Durovdag mud volcano.  Showing that this volcano is dominated by gryphons 
at its northern edge.  This purple area had such a large concentration of 
gryphons that the whole of this area has been coloured purple to represent the 
intense number of gryphons found in this region, approximately one gryphon 
every 5 m2.  Due to the un-stable nature of this area separate readings could not 
be taken and so the area has been considered as one large vent.  The majority of 
the salses cluster in a ring around the outer edge of the mud volcano with only a 
few small vents and extinct vents at the centre of the edifice.  Triangles: Purple- 
gryphons, orange- cinder mounds, black- extinct vents, blue- salses and green- 
pools.  B) Histogram of frequencies of azimuthal direction for 2-point azimuth 
technique of individual vent types separated into their different distributions.  C) 
Histogram of frequencies of azimuthal direction for 2-point azimuth technique of 
all vent types grouped together. 
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Fig. 4.9:  Lusi mud volcano, East Java.  A) November, 2006.  Histogram of frequencies of 
azimuthal direction for 2-point azimuth technique of active vents in 2006.  B) 
30th September 2009.  Histogram of frequencies of azimuthal direction for 2-
point azimuth technique of active vents in 2009.  C) January, 2010.  Histogram of 
frequencies of azimuthal direction for 2-point azimuth technique of active vents 
in 2010.  Blue dashed line shows trace of Kendensari River.  The blue triangles 
represent ‘bubbles’ that are or were currently active at that time.  Red dashed 
lines indicate faults described by Istadi et al. (2009).  Images courtesy of CRISP. 
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Fig. 4.10:  Schematics of the structures that may cause the varying vent distributions.  A) 
Dashgil type, some form of phase segregation is occurring at depth allowing the 
gryphons to erupt in the area of caldera collapse, the cinder mounds to follow a 
linear area of weakness and so erupt in a line and the watery salses erupt 
further away from the main vent zone.  B) Kichik Kharami type, where small 
salses line up along pre-existing conjugate fractures and also concentrically at 
the centre of the edifice where caldera collapse may be initiating.  C) Durovdag 
type, where some form of phase segregation is occurring at depth allowing the 
gryphons to erupt in the central zone of caldera collapse beneath the main vent, 
with the watery salses erupting further away from the main vent zone along 
concentric ring faults produced during caldera collapse.  D) Koturdag type, 
where mud volcanoes can be seen aligning along anticline axes but have varying 
vent fluid compositions along the length of the anticline.  E) Akhtarma-Karadag 
type, some form of phase segregation is occurring at depth allowing the 
gryphons to erupt in the area of caldera collapse, the cinder mounds to follow a 
linear area of weakness and so erupt in a line and the watery salses to erupt 
further away from the main vent zone along the detachment fault. 
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Fig. 4.11:  Schematic model depicting mud volcano elongation, elongated vent 
distributions, mud chamber elongation and summit caldera elongation patterns.  
Mud dykes preferentially trend perpendicular to σHmax taking advantage of the 
crestal faulting along the anticline.  Summit calderas and mud chambers also 
become elongate perpendicular to σHmax.  After Paulsen & Wilson (2010a). 
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Fig. 4.12:  Schematic diagram of the mode of formation of Lusi mud volcano and how its 
vent systems have evolved through time.  A) November 2006 with its initial NE-
SW vent alignment.  B) January 2010 with the initiation of caldera collapse with 
vents aligning along re-activated E-W trending anticline crestal faulting.  C) 
Predicted future development including elongate caldera collapse structure with 
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vents aligning along caldera ring faults. 
 

Chapter 5: Sector Collapse of Mud Volcanoes, Azerbaijan 

Fig. 5.1:  Digital elevation map of the Caspian coastline in Azerbaijan showing the location 
of the study areas (localities marked with red triangles).  Red dashed lines 
indicate presence of faults.  Inset map of Azerbaijan shows map location as red 
box.  White colouring indicates highest topographic areas with blue representing 
the lowest topographic areas. 
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Fig. 5.2:  A) Lökbatan mud volcano, Baku, Azerbaijan.  B) The western flank of this volcano 
collapsed in 2001 during an eruption.  Red arrow indicates the direction of the 
main failure.  Amphitheatre shaped depression is shaded in orange.  Old mud 
breccia flows are coloured in purple.  Levees are dark brown.  Edges of collapse 
structure are marked by the dashed red line.  Image © 2010 DigitalGlobe, © 
2010 Google. 
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Fig. 5.3:  A) Akhtarma-Karadag mud volcano and west of it Pilpilya mud volcano with a 
collapse structure.  Image © 2010 GeoEye, © 2010 Google.  B) Interpretation of 
Fig. 5.3A.  Red arrow indicates the direction the main slope failure has/could 
occur in.  On Pilpilya the collapse and most recent flow can be seen to fail down 
the volcanoes western flank.  C) IKONOS image of Akhtarma-Karadag mud 
volcano.  D) Interpretation of Fig. 5.3C.  Dotted black line shows fault trace.  
Purple areas represent gryphons and orange areas indicate regions where cinder 
mounds are present.  Image © 2010 GeoEye. 
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Fig. 5.4:  Photos of the Akhtarma-Karadag mud volcano, Azerbaijan.  A) At northern side 
of ring fault, June, 2006 and B) April, 2009 with an inset photo of en-echelon 
faulting seen along the main ring fault.  Rucksack for scale.  The photos show a 
section of the ring fault (marked by the dashed red line) that has an offset on it.  
There is also a large gryphon that is erupting along this fault line.  C) Photo taken 
at the head of the ring fault in June, 2005 and D) Photo taken at the head of the 
ring fault in June, 2006. 
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Fig. 5.5:  Schematic of sector collapse of an igneous volcano after Ui et al. (2000).  A) 
Longitudinal section of a sector collapse.  The dashed line indicates the previous 
morphology of the volcano before the collapse took place.  B) Cross section 
across the debris avalanche high on the flanks of the volcano- ‘debris avalanche 
block facies’, location (B).  C) Cross section across the debris avalanche low down 
on the flanks of the volcano- ‘debris avalanche matrix facies’, location (C).  D) 3-
D schematic of mud volcano sector collapse with localities of cross sections B 
and C drawn on.  White dashed line marks sector collapse fault. 
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Fig. 5.6:  A) Schematic diagram showing the positions of fault tips during caldera collapse 
and B) fault forming due to sector collapse of mud volcanoes. 
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Fig. 5.7:  Structure of mud breccia flows compared to collapse deposits.  A) Mud breccia 
flow emanating from Koturdag crater (3 times vertical exaggeration).  Image © 
2010 GeoEye, © 2010 Google.  Koturdag mud volcano is located 30 km 
southwest of Pilpilya.  B) Elongate collapse structure on Lökbatan (3 times 
vertical exaggeration).  Image © 2010 DigitalGlobe, © 2010 Google.  C) 
Photograph of the elongate collapse structure on Lökbatan.  D) Schematic of 
structural features seen in Fig. 5.7C.  E) Photograph of the mud breccia flow 
emanating from Koturdag crater.  F) Schematic of the structural features seen in 
Fig. 5.7E. 
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Fig. 5.8:  Graph showing the relationship between length and widths of various structures 
on mud volcano edifices.  Dashed line represents the transition zone between 
mud breccia flows and sector collapse geometries (depicting a 2:1 ratio). 
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Fig. 5.9:  Schematic ternary diagram showing the positions of mud breccia flows, sector 
collapses, slope failures and hybrid failures occurring on mud volcanoes in 
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relation to the scarp length and width and the size of the feature.  The internal 
structure of each deposit can also be seen in the block diagrams. 

Fig. 5.10:  Schematic diagrams showing primers and triggers of mud volcano sector 
collapse events.  A) Inflation of mud chamber and volcano causing instability.  B) 
Addition of overburden when mud breccia is erupted onto the volcano flanks.  C) 
Change in pore pressure within the mud volcano.  D) Erosion and removal of 
support.  E) Precipitation increasing pore fluid and loading and therefore pore 
pressures.  F) Earth tides exerting different gravitational forces on the mud 
source causing more or less violent eruptions.  G) Seismicity shaking the ground 
and changing pore pressure in the mud volcanoes.  H) Eruption of mud volcano. 
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Fig. 5.11:  Rose diagrams of orientations of A) long axes of mud volcano calderas, B) mud 
breccia flows and C) sector collapse troughs. 
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Fig. 5.12:  Schematic sector collapse formation.  A) Dormant mud volcano edifice.  B) Ring 
fault forms after small eruption and evacuation of material from depth.  C) Large 
eruption causes subsidence to occur due to expulsion of fluids at the surface 
resulting in sector collapse along ring fault.  Green dashed line represents 
position of anticline axis. 
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Chapter 6: Discussions and Conclusions 

Fig. 6.1:  Photograph showing a horizontal cross section through a sedimentary blowout 
pipe of late-Pleistocene age on the Greek island of Rhodes; the inset sketch 
illustrates the feature in three-dimensions.  The inner central zone comprises 
relatively large (<5-10 cm) angular mud clasts floating in a muddy matrix; the 
outer zone has smaller (<5 cm) clasts.  These zones are surrounded by 20 cm of 
heavily fractured country rock (limestone) and a further 4 m of less fractured 
rock.  From Judd & Hovland (2007). 
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Fig. 6.2:  A) Sketch illustrating emplacement of radial dykes and parasitic vents in a 
direction parallel to the maximum horizontal compression (MHC), producing 
elongation of the edifice and a dilatational stress within the volcano, promoting 
collapse in a direction normal to the MHC.  The sketch on the right-hand side 
illustrates typical morphology of sector collapses.  From Siebert (1984).  B) 
Schematic block diagram showing the relations between the orientation of the 
principal stress axes and the main fracture sets in a sealed-type thrust fold.  The 
steep brittle discontinuities may potentially operate as conduits transferring 
fluids from depth up to surface.  Notably, the intersection of ‘ac’ and ‘bc’ 
fracture families may represent a locus potentially very favourable for localising 
fluidising pipes feeding mud volcanoes.  The thick ‘ac’ joint indicates the setting 
at Nirano mud volcano field, Italy (NMVF), where this joint family is controlling 
mud volcanism.  ‘H’ - maximum horizontal stress; ‘h’ - minimum horizontal 
stress; ‘V’ - maximum vertical stress.  MA, Marnoso Arenacea; LU, Ligurian units; 
ELU, Epi- Ligurian units; PQ, Pliocene-Quaternary deposits.  From Bonini (2007).  
C) Schematic fold and its major and minor structures from relationships seen in 
the clastic dyke swarm in Western Isla Grande, Southern Andes.  From Winslow 
(1983). 
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Fig. 6.3:  Schematic depicting the new structural model for the intrusive and extrusive 
domains of a mud volcano system from the results of this study.  This figure 
highlights how each of the findings of this study relate to each other and link 
together to form one complete system. 
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1 Introduction 

 

1.1 Introduction 

Mud volcano systems are a dynamic type of piercement structure that are integral 

components in many sedimentary basins globally.  A ‘mud volcano’ is commonly 

described as a topographically expressed surface edifice from which mud and fluid 

erupt or flow (Milkov 2000).  They form when sediment and fluid erupt onto the 

Earth’s surface in the form of volcanoes measuring up to 25 km3 in volume (Davies 

& Stewart 2005).  This scale of geo-fluid transport has only been previously noted in 

igneous volcanic systems (Holmes 1998) and sand injectite complexes (Jolly & 

Lonergan 2002; Huuse et al. 2005, 2007), but in contrast, mud volcano systems 

have received relatively little investigation.  Several thousands of mud volcanoes 

have been identified on the Earth’s surface (Fig. 1.1) and more recently possible 

extraterrestrial examples (Fortes & Grindrod 2006; Skinner & Tanaka 2009; Oehler 

& Allen 2010).  Close association can be seen with mud volcano systems and 

hydrocarbon provinces, rapid rates of sedimentation and burial (Kopf et al. 2003).  

They usually occur in tectonically active settings such as convergent margins (Kopf 

2002), foreland basins (Deville et al. 2006), strike-slip provinces (Barber et al. 1986) 

and in some passive-margin settings (Graue 1999; Hansen et al. 2005; Cartwright et 

al. 2007).  The intrusive domain (Stewart & Davies 2006) is the least understood 

part of mud volcano anatomy and also the most important as they penetrate 

sealing successions within basins making them extremely effective seal bypass 

systems (Cartwright et al. 2007).  It is therefore critical to identify conduit geometry 

as this, in conjunction with viscosity, controls the fluid and sediment flux and 

surface expression of the edifice as well as any potential geo-hazards (Kopf 2002; 

Cartwright et al. 2007; Judd & Hovland 2007). 
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Fig. 1.1:  Distribution of mud volcanoes on Earth.  From Kopf (2002). 

 

Distribution of fluid overpressure and regional stresses within the crust often 

determine what type of fracture networks form during or before an intrusive event 

(Sibson 1996).  These networks can act to either augment or prevent fluid flow 

depending on their relative permeability to that of the surrounding country rock 

(Aydin 2000; Eichhubl & Boles 2000).  Recognising that a fracture system is present 

in an intrusive domain is not sufficient to help distinguish structural permeability 

properties (Sibson 1996) which vary widely within the intrusive domain and are 

extremely complex (Aydin 2000).  In order to predict the permeability and fluid flow 

pathways within an intrusive fracture network individual fault/fracture types must 



Chapter 1  Introduction 

3 

be classified depending on their geometry (orientation and dimensional properties), 

spacing, distribution, connectivity and hydraulic properties, which result in both 

limitations and advantages for fluid and sediment transport (Aydin 2000). 

 

The study of mud volcano systems has been enhanced by recent advances in 

industrial 3-D seismic reflection data carried out in order to survey hydrocarbon 

prospects that are usually in close proximity (Cartwright 2007).  The main problem 

with seismic data is that it doesn’t image the centres of the intrusive domains due 

to acoustic blanking most likely caused by the high gas content within the systems 

(Judd & Hovland 1992).  What little is visible may not actually exist i.e. it may be a 

seismic artefact or might also be below seismic resolution.  This has resulted in the 

structure of the intrusive domains remaining undetermined (e.g. Judd & Hovland 

1992; Kopf 2002).  Mud volcanoes have a significant impact on the petroleum plays 

through which they penetrate and may act as a conduit or a baffle to fluid flow 

within a basin as well as having a major influence on overpressure locally (Osborne 

& Swarbrick 1997; Cartwright et al. 2007).  Mud volcano systems pose the threat of 

shallow hazards for drilling and other problems by introducing local uncertainties in 

pore and fracture pressure, depending on the degree of connectivity within the 

system (Reilly & Flemings 2010).  Understanding these hazards is particularly 

significant after the formation of Lusi mud volcano (East Java) in 2006 which was 

potentially the result of a blow out in the nearby Banjar Panji-1 well (Davies et al. 

2007, 2008; Tingay et al. 2008). 

 

1.2 Aims and Rationale 

The primary focus of this thesis is the documentation of the structural evolution 

and geometry of kilometre-scale mud volcano systems with particular focus on the 

intrusive domain and associated fluid flow pathways exposed in outcrop onshore in 

Azerbaijan and at Lusi mud volcano, East Java.  A major problem when attempting 

to understand the intrusive domain of mud volcano systems is the lack of smaller-

scale structural studies that would not be imaged in seismic data (Huuse et al. 
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2007).  This thesis addresses the lack of resolution at the centre of the intrusive 

domain using field mapping and aerial imagery to assess sub-seismic scale (<12 m) 

vent geometry, distribution, structure and observed fluid flow pathways in both 

Azerbaijan and East Java.  How conduit geometry controls the surface expression 

and fluid/sediment flux within these systems will also be investigated.  Azerbaijan is 

ideal for the study of mud volcanoes since there are a large number both on- and 

offshore that are well-imaged by seismic data and many are easily accessible 

onshore.  Onshore the mud volcano edifices of Azerbaijan are a comparable size to 

those offshore and most are now covered by high quality topographic data and 

satellite imagery.  Therefore it is possible to compare the structures observed 

offshore with those seen onshore.  Lusi mud volcano is interesting to evaluate as 

the evolution of the system though time can be recorded due to the system being 

younger than its counterparts in Azerbaijan. 

 

Recently multi-disciplinary studies of mud volcanoes globally have increased in 

number (Planke et al. 2003; Davies & Stewart 2005; Stewart & Davies 2006; Evans 

et al. 2007; Evans et al. 2008; Kopf et al. 2009; Mazzini et al. 2009; Bonini & 

Mazzarini 2010; Calvès et al. 2010; Deville et al. 2010), however, hardly any focus 

solely on the metre- to kilometre-scale intrusive structure of the mud volcano 

system and how it impacts upon the strata that host them (Morley 2003; Davies & 

Stewart 2005; Stewart & Davies 2006).  The majority of mud volcanic studies have 

focused on constraining their methane flux (Dimitrov 2002; Etiope & Klusman 2002; 

Etiope et al. 2002, 2004; Kopf 2002; Etiope & Milkov 2004 and references therein), 

describing their surface morphology and structure (Snead 1964; Hovland et al. 

1997; Delisle et al. 2001; Planke et al. 2003; Martinelli & Judd 2004; Chow et al. 

2006; Bonini 2008; Kopf et al. 2009; Mazzini et al. 2009), and analysing their 

internal structure on seismic reflection data (Davies & Stewart 2005; Stewart & 

Davies 2006; Evans et al. 2007, 2008).  No studies have attempted to thoroughly 

assess the structural influence of intrusion or fluid flow pathways in field outcrops 

for better understanding of the subsurface processes that control their architecture 

and evolution.  The research presented in this thesis focuses on the field 

architecture, structural mapping, extrusive morphologies and vent distributions of 
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both the intrusive and extrusive domains of mud volcano systems at present and 

over time.  The main aims and methodologies of the project are identified below: 

 

1) Mud transport is through linked mud dykes that have dimensions similar to 

their igneous counterparts (a few metres to tens of metres wide) and that 

these collectively form highly efficient conduit systems capable of 

transporting and re-cycling tens of cubic kilometres of mud and fluid from 

depths of 1-5 km.  If the hypothesis is correct it would counter the common 

conception of kilometre wide mud diapir systems. 

i. Determine the structure of these intrusive systems. 

ii. Establish how these intrusive systems affect the reservoir potential of 

the country rock through which they pass. 

iii. Define a descriptive model for the intrusive features seen within the 

systems. 

iv. Analyse the way these intrusive features formed and determine the 

controls on their internal structure. 

v. Reconstruct the intrusive history of a large mud volcano system. 

vi. Develop a model of formation for the mud volcano systems. 

 

2) Identify evidence for faults and fluid flow at the surface and relate these to 

sub-surface fluid flow.  Investigate mud volcano vent distributions on several 

edifices in order to determine which fluid flow pathways are exploited. 

i. Use statistical analyses to pick out dominant vent alignments and their 

orientations. 

ii. Identify possible structures that have similar orientations. 

iii. Relate the vent populations to possible controls on subsurface fluid 

flow within the feeder systems. 

iv. Investigate the evolution of fluid flow pathways over time i.e. Lusi mud 

volcano, East Java. 

v. Relate this relatively young mud volcano system to those in Azerbaijan 

and how their structural settings may influence their evolution. 
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3) Characterise the morphology and structures on edifices at the upper 

terminations of mud volcano systems that may be influenced by the intrusive 

domain i.e. sector collapse scarps. 

i) Describe morphology of structures found on mud volcano edifices. 

ii) Relate these features to structural influences in the region and in the 

intrusive domain. 

iii) Investigate how this impacts the evolution of the edifice. 

iv) Develop a model of formation that includes what external factors may 

be influencing the structures. 

 

1.3 Thesis Outline 

In this section Chapters 2-6 are described individually.  The main data sections, 

Chapters 3-5, have been written as stand-alone manuscripts and have all been 

submitted for publication; these are recast for the thesis when appropriate.  As 

such, each chapter contains introduction, geological background, observations, 

interpretation, discussion and conclusions sections.  The geological background 

sections for each chapter represent a content-specific geological history which is 

also outlined in Chapter 1, and may therefore be skipped at the reader’s discretion.  

The thesis only contains manuscripts for which I am the first author, and I have 

been responsible for primary data collection, interpretation and paper writing. 

 

Chapter 2 – The mud volcano system. 

This chapter represents a summary of the mud volcano system components based 

primarily on published references, but also incorporating regional-scale remote-

sensed and field studies of Azerbaijan carried out as part of the present study. 

 

Chapter 3 – Outcrop scale structural analysis of the exhumed mud volcano systems, 

Azerbaijan. 

This chapter investigates outcrop-scale features seen within intrusive systems of 

kilometre-scale mud volcano systems exposed onshore in Azerbaijan.  Field 
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mapping focuses on the size, shape and internal structure of country rock outcrops 

as well as fluid flow pathways within the feeder complexes, an aspect poorly 

described in previous studies.  This is a structural study of a selection of exhumed 

mud volcano systems in Azerbaijan detailing fault and fracture patterns and 

relationships as well as bedding orientations affected by the intrusion of these 

feeder complexes.  This study is based on detailed structural- and field-mapping.  

The analyses are used to determine distinct deformation events, which are fitted 

into a model of intrusion and formation.  A metre-scale model of the 3-D geometry 

and structure of the mud volcano intrusive complex is presented and confirms the 

presence of a system that has more in common with igneous intrusive complexes 

than those of a diapiric system.  Prof. Davies (Ph.D. supervisor, Durham University) 

and Prof. Stewart (Ph.D. supervisor, Heriot-Watt University) appear as co-authors as 

they provided supervision and manuscript editing advice (Roberts et al. 2010).  Prof. 

Stewart also drafted the first version of Fig. 3.2. 

 

Chapter 4 – Outcrop and regional scale study of mud volcano vent patterns and 

alignments in Azerbaijan and Lusi mud volcano, East Java. 

The aim of this chapter is to investigate the distribution of a variety of fluid escape 

structures at outcrop-scale within kilometre-scale mud volcano edifices, and to use 

the observations to suggest the structural controls on fluid flow pathways within 

the feeder complexes.  These observations are made on a selection of mud 

volcanoes onshore Azerbaijan, and at the Lusi mud volcano in East Java between 

2006 and 2010.  Statistical tests have been carried out on the vent distributions in 

order to ascertain the geometry of the subsurface feeder system and how it is 

compartmentalising the country rock through which it is intruding.  This chapter 

provides an in-depth analysis of the vent alignments on mud volcano edifices and 

relates them to regional and local structure using statistical analyses.  This is the 

first study of its kind carried out on mud volcano edifices as it is primarily used in 

relation to igneous volcanic systems.  The evolution and ‘switching’ of vent 

alignments through time at Lusi mud volcano is also documented with the 

structural controls being identified.  Prof. Davies and Prof. Stewart appear as co-

authors and provided supervision and manuscript editing advice.  Dr Mark Tingay 
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(University of Adelaide) appears as a co-author as he provided references for the 

geological history of East Java, information about the stress regimes in the region 

and manuscript editing.  Vent location data from Lusi mud volcano were kindly 

provided by Badan Penanggulangan Lumpur Sidoarjo (BPLS; Roberts et al. Accepted 

for publication). 

 

Chapter 5 – Outcrop scale structural and aerial analysis of sector collapse events on 

mud volcano flanks. 

This chapter describes collapse phenomena and related morphological features 

seen on mud volcano edifices, considers the priming and triggering events, 

formation mechanisms and potential similarities with the processes by which sector 

collapse occurs in igneous volcanoes.  Further consideration is given regarding 

collapse of mud volcanoes to distinguish between features that are wholly or partly 

due to slope failure versus features that are largely the product of incision and 

erosion of the flanks during an eruptive event.  Using the orientation and size scale 

ranges of these features their importance in mud volcano edifice growth and how 

the underlying structure and fluid flow pathways may affect their evolution are 

documented.  Analysis of these structures at the surface allows inference of 

processes possibly occurring in the feeder complex below.  Prof. Stewart and Prof. 

Davies again appear as co-authors providing supervision and manuscript editing 

advice, Prof. Stewart also adapted Fig. 5.8.  Dr Robert Evans (former Cardiff 

University) is a co-author as he provided photographs for Figs. 5.4C and D, 

manuscript editing and carried out some basic mapping of this study area which 

was referred to during this study (Roberts et al. 2011). 

 

Chapter 6 – Discussion, conclusions, and future work. 

This chapter elaborates on the discussion sections of the preceding chapters and 

conclusions drawn throughout the body of the thesis are summarised.  This chapter 

also identifies areas of interest for possible future research, and suggests further 

relevant studies of importance for both the scientific and industrial communities. 
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1.4 Methodology 

Datasets in this thesis have been collected at multiple scales, including: 1) 

kilometre-scale remote-sensing mapping using high-resolution aerial imagery and 

topography; 2) meso-scale field mapping and 3) statistical analysis. 

 

1.4.1 Remote Sensing 

Remote-sensing analyses were conducted using ArcGIS software, incorporating 

topographic and two-dimensional (2-D) aerial and satellite images (0.5-6 m 

resolution; IKONOS and CRISP imagery) as well as using Google Earth software.  All 

remote-sensed analyses have been conducted within the WGS 1984, UTM zone 

39°N (projected) coordinate system in Azerbaijan and UTM zone 49°S for Lusi mud 

volcano, East Java.  Structural data was imported onto the imagery so that a clear 

structural map could be drawn.  Vent GPS positions and types were each plotted 

onto satellite imagery with corresponding symbols in order to conduct several 

spatial statistical analyses (see section 1.4.3). 

 

1.4.2 Structural Field Mapping 

Detailed structural mapping, mud sampling, hand specimen collection and data 

collection were carried out at 20 mud volcanoes in Azerbaijan (see mud volcano 

location map in Appendix I).  Field measurements were primarily concerned with 

outcrop-scale structural geometries, since large-scale features such as strike and 

dip variations in country rock and antiform/synform structures could be mapped 

remotely. 

 

Mapping of the mud volcanoes in Azerbaijan was carried out using a handheld 

global positioning system (GPS) receiver, with a positional accuracy of 5 m 

therefore, vent alignments also have an accuracy of 5 m.  Orientation data such as 

bedding, fracture and fold orientations have been collected in a standard compass-

bearing system then loaded into GEOrient software to plot stereographic and rose 

projections.  At the time of study, magnetic deviation was calculated to the nearest 
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½ degree as 5.4°E (source: National Oceanic and Atmospheric Administration 

(NOAA)).  Planar data were collected as strike, dip and dip direction; within the 

thesis text.  All locality coordinates are geo-referenced in UTM zone 39°N and UTM 

zone 49°S for Lusi mud volcano, East Java on the WGS 1984 geoid. 

 

The GPS co-ordinates with their corresponding structural datasets were integrated 

as layers in ArcMap software.  The locations of the vents in the Lusi mud volcano 

were provided by Badan Penanggulangan Lumpur Sidoarjo (BPLS) and recorded 

using a hand-held GPS with an accuracy of between 5-12 m.  Some uncertainties 

may arise when mapping vents at Lusi as it is unknown how many of these vents 

are either linked to a deeper feeder system or simply shallow eruptions linked to 

the massive and rapid subsidence occurring in the area.  Some large areas covered 

in mud meant vent locations could not be mapped which possibly accounts for the 

high proportion of vents located near roads, dam walls and high density populated 

urban areas.  Vent types were classified as being either: gryphons, salses, cinder 

mounds, pools, mud plugs or breccia pipes (see Chapter 2, section 2.4.3 for vent 

descriptions). 

 

Mud volcanoes in Azerbaijan were only selected for mapping if they were exhumed 

and exposure of country rock at the centre of the systems was >60%.  This enabled 

the relationship between faulting, folding, regional structure and the Azerbaijan 

mud volcanoes to be determined.  There is less structural information from 

outcrops at the Lusi mud volcano and limited 2-D seismic coverage.  Therefore the 

volcanoes in Azerbaijan were used to inform the interpretation of controls on 

structure and vent distributions at Lusi and globally. 

 

1.4.3 Statistical Analyses 

Two statistical approaches were used to characterise geographic spatial patterns 

within vent fields.  Supported by field studies, these techniques have revealed that 

shifts in the locus of activity are common and that vents often form clusters and 

define alignments at several scales in igneous vent systems (Bleacher et al. 2009).  
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The aim of these spatial studies was to provide insight into the link between the 

distribution of vents and causal processes. 

 

1.4.3.1  Nearest Neighbour Technique 

The nearest neighbour technique (Clark & Evans 1954; Bleacher et al. 2009) tests 

randomness in spatial distributions by calculating the ratio of the observed mean 

distance to the expected mean distance for a hypothetical random distribution to 

determine whether the points are clustered.  This was carried out in ArcGIS which 

measures the distance from every vent point to its nearest neighbouring vent point.  

The spatial statistics tools for analysing patterns in ArcMap were used, within this 

the average nearest neighbour feature was chosen.  This calculates the nearest 

neighbour index based on the average distance from each feature to its nearest 

neighbouring feature.  The Euclidean distance method was selected as this 

measures distances as a straight line between the two points.  The nearest 

neighbour index (Rn) can be represented using; 

 

𝑅𝑛 =
𝐷(𝑂𝑏𝑠)

0.5�𝑎𝑛

 Eq. 1.1 

 

Where D(Obs) is the mean observed nearest neighbour distance, n is the number of 

vents and a is the aerial extent of vent coverage in the study area (Mitchell 2005; 

Moss & Cartwright 2010).  A ratio of 1 indicates a random distribution and a ratio of 

<1 is clustered, the nearer to 0 the more clustered the distribution.  A ratio of >1 is 

a regular distribution.  The equations used to calculate the average nearest 

neighbour distance index and Z score are based on the assumption that the points 

being measured are free to locate anywhere within the study area (Mitchell 2005).  

In addition, the index and Z score for this statistic are sensitive to changes in the 

study area or changes to the area parameter (Mitchell 2005).  For all these reasons, 

comparing results from this statistic are most appropriate when the study area is 

fixed.  The default area value in this study is the area of the minimum enclosing 

rectangle around the point set (Mitchell 2005). 
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In order to determine if there is no pattern to the vent distribution, the Z score is 

calculated.  The Z score (Z) is a test of statistical significance which evaluates for a 

normal distribution of the nearest neighbour distances.  Very high or very low Z 

scores indicate that it is very unlikely that the observed pattern has occurred by 

chance.  Z scores are a measure of standard deviation away from the mean; 

 

𝑍 =
𝐷(𝑂𝑏𝑠) − 0.5�𝑎𝑛

𝑆𝐸
 

Eq. 1.2 

 

Where SE is the standard error as below; 

 

𝑆𝐸 =
0.26136
�𝑛2 𝑎�

 Eq. 1.3 

 

Where a is the aerial extent of vent coverage in the study area (Mitchell 2005; Moss 

& Cartwright 2010). 

 

1.4.3.2  2-Point Azimuth Technique 

The 2-point azimuth technique (Lutz 1986; Wadge & Cross 1988; Connor 1990; 

Bleacher et al. 2009) was applied as a fundamental statistical measure of the 

significance of alignments between vents in the study area.  The 2-point azimuth 

technique quantitatively ascertains structurally controlled trends within a field of 

vents that are spatially distributed.  This method was carried out by implementing 

an algorithm from Bleacher et al. (2009).  This algorithm was input into Matlab to 

obtain the large data files produced (see Appendix III for script).  Only points to the 

east of each point were measured to avoid any duplication (Fig. 1.2).  The data from 

Matlab was then loaded into Microsoft Office Excel where histograms of azimuth 

values (0°=north, 90°=east, 180°=south) were produced with 10° bins.  Vent 

alignments of 0° and 180° are considered to have the same orientation.  Peaks in 

the frequency distribution of the azimuths are suggested to result from preferred 

formation of vents in response to structural controls within a region (Bleacher et al. 
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2009).  It should be kept in mind that where vent spacing is <5 m the alignments 

identified will be less reliable.  However there are clear visual and statistical 

alignments in vents that are consistent and geologically sensible in areas where the 

vent spacing drops below 5 m. 

 

 
Fig. 1.2:  Schematic of the 2-point azimuth technique.  Line segments are drawn between each vent 

and any vents to the east of that vent.  The azimuth of the line segment from north is measured.  

Each azimuth orientation is then plotted in a frequency histogram. 

 

1.5 Geographical, Tectonic and Stratigraphic Setting 

The mud volcano systems investigated in this project are located along the west 

coast of the Caspian Sea in Azerbaijan and the ‘Lusi’ mud volcano which is in 

Sidoarjo, East Java.  Each of these areas are described separately below, as well as 

in more detail at the beginning of Chapters 3, 4 and 5 and so may be omitted at the 

readers discretion.  This section introduces the location of the project study areas, 

provides a brief discussion of the distribution of mud volcanism in the study areas 

and summarises the sequence of events that have influenced their geological 

histories. 
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1.5.1 The South Caspian Basin (SCB) and Eastern Azerbaijan 

1.5.1.1 Location and Formation 

Mud volcano systems from onshore in east Azerbaijan are investigated in this study 

(Fig. 1.3). 

 

 
Fig. 1.3:  Geological setting and study area location in Azerbaijan: A) Location of Azerbaijan.  B) 

Tectonic map of the SCB showing the position of major structural elements and position of the 
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onshore project study area (red box).  Map location is shown as a blue box in Fig. 1.3A.  Modified 

from Jackson et al. (2002). 

 

The mud volcano systems in this study are found within the Shamakha Gobustan 

and Lower Kura ‘mud volcano areas’ of Guliyev & Panahi (2004; Fig. 1.4).  Mud 

volcanism in the SCB is extensive and the area is thought to host approximately 30% 

of the world’s known population of mud volcano systems (Guliyev et al. 2000).  This 

distribution of mud volcano systems is believed to be the result of the presence of 

their regional source layer, the Oligocene to Miocene age Maykop Formation.  

Pinch-out of this formation in the west against the NNW-SSE trending Talysh-

Vandam structural high restricts the mud volcanism to areas east of the high 

(Cooper 2001).  In the north, mud volcanism is restricted by the absence of the 

Maykop Formation north of the Apsheron Sill (Fig. 1.4; Yusifov & Rabinowitz 2004). 

 

 
Fig. 1.4:  Location of mud volcanoes in the Azerbaijan and the Caspian Sea region.  1- Mud volcanoes, 

2- deep faults, 3- boundaries of mud volcano areas, 4- political margins.  I to VII Mud volcano areas: 

I- interflow of Kura and Iori rivers, II- Shamakha-Gobustan, III- Lower Kura, IV- Pre-Caspian, V- 

Absheron-Prebalkhan, VI- Baku archipelago, VII- Western Turkmenia.  From Guliyev & Panahi (2004). 
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Approximately 170 onshore mud volcano systems have been identified from aerial 

imagery (see Appendix I) in Azerbaijan during this study and some of these have 

erupted approximately 300 times since records began (Aliyev et al. 2002; Appendix 

I).  These edifices range from small fields of metre-scale vents (gryphons, salses and 

cinder mounds, see section 2.4.3) to kilometre-scale conical edifices that can be up 

to 6 km wide and 400 m high.  Offshore studies have revealed 99 mud volcano 

systems in the north-western portion of the SCB alone and many more are known 

to exist elsewhere within it (Yusifov & Rabinowitz 2004).  Approximately 75% are 

located in the crest of anticlines with the remainder located on the flanks of 

anticlines or in synclines (Yusifov & Rabinowitz 2004).  Mud volcano formation 

began in the mid-Miocene and became more intensive in the Pliocene during active 

compression and folding within the region (Fowler et al. 2000; Yusifov & Rabinowitz 

2004). 

 

1.5.1.2 Geological History 

Deep seismic events (>80 km) at the northern side of the SCB (Allen et al. 2002) 

indicate that it is subducting beneath the Central Caspian with a westward 

component of motion that initiated in the Pliocene (3-5 Ma; Fig. 1.5; Jackson et al. 

2002).  Backstripping of the stratigraphy by Allen et al. (2002) revealed that ~2.4 km 

of tectonic subsidence had occurred during the Pliocene and Quaternary which they 

attributed to subduction.  This subsidence increased accommodation space within 

the SCB, this and the fact that it is bounded on all sides by compressional orogens 

allowed >13 km of sediment to accumulate post-Oligocene (Jackson et al. 2002).  

During the Oligo-Miocene the regional source rock i.e. the Maykop Formation was 

deposited, which was subsequently overlain by several thick deltaic sequences 

including the sand rich Productive Series, in the Late Miocene (Jackson et al. 2002).  

The Productive Series form the ~6 km thick (Allen et al. 2002) regional reservoir 

rock and were deposited rapidly in 1-2 ka (Jackson et al. 2002).  This rapid 

deposition and burial lead to disequilibrium compaction of the Maykop Formation 

and overpressuring which resulted in mechanical weakening of the rock (Jackson et 

al. 2002).  Fluids from below the Maykop Formation entrained the weakened rock 
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providing the driving force for the mud volcanoes within the region (Jackson et al. 

2002; Kopf et al. 2003).  It also resulted in low temperature gradients within the 

basin allowing hydrocarbons to be generated at depths of 8-12 km (Devlin et al. 

1999). 

 

 
Fig. 1.5:   Regional 2-D reflection seismic line showing main tectono-stratigraphic elements, 

approximately six times vertical exaggeration.  Inset shows the interpretation at vertical = horizontal 

scale.  ACG is one of the main hydrocarbon producing fields in the SCB.  From Stewart & Davies 

(2006). 

 

Large amplitude buckle folding of the Productive Series offshore initiated at around 

~3.4 Ma (Devlin et al. 1999) whereas onshore may have occurred up to 2 Ma 

earlier, as indicated by stratal pinchouts onto fold flanks (Aliyev 1960).  The 

anticlines contain low angle reverse faulting in their lower sections and normal 

faulting in their upper regions (Fig. 1.6; Devlin et al. 1999).  Folding is thought to 

detach in the underlying overpressured Maykop Formation (Jackson et al. 2002).  

These structures provide many of the structural traps exploited by the hydrocarbon 

industry as well as accommodating the numerous mud volcano systems (Fig. 1.6; 

Devlin et al. 1999). 
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Fig. 1.6:  Schematic cross-section across Shah Deniz in the SCB showing the relationship of the deep 

structure with the shallower structure and mud volcanoes.  From Fowler et al. (2000). 

 

1.5.2 Sidoarjo, East Java, Indonesia 

1.5.2.1  Location and Formation 

‘Lusi’ (Lumpur Sidoarjo) mud volcano erupted in the Porong district of Sidoarjo, 

approximately 25 km south of Surabaya, at 5 am on the 29th May 2006 (Fig. 1.7).  It 

has been erupting continuously ever since, claimed 17 lives, displaced 

approximately 40,000 people, and inundated 7 km2 of a populated area (Tingay 

2010).  There are two contending theories as to what triggered the eruption; 1) that 

the mudflow resulted from a blowout in the Banjar Panji-1 well located 150 m away 

(Davies et al. 2008; Tingay et al. 2008), and 2) that the disaster was initiated by the 

Mw6.3 Yogyakarta earthquake that occurred on the 27th May 2006 (Mazzini et al. 

2007; Sawolo et al. 2009).  In order to predict the longevity and evolution of Lusi 

greater knowledge of the subsurface anatomy is essential (in particular the ongoing 

subsidence of the area, the reactivation of faults and possibility of caldera collapse 

(Tingay 2010). 
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Fig. 1.7:  Geological map and mud volcano distribution in east and Central Java.  Red dots are the 

identified mud volcano locations.  From Istadi et al. (2009).  Inset shows global location with red 

rectangle marking the extent of the figure from Istadi et al. (2009). 

 

There are fourteen naturally occurring mud volcanoes found in this region that 

correlate with the presence of the thick and rapidly deposited clay-bearing Kalibeng 

Formation sediments, with at least four located in close proximity to Lusi (Fig. 1.7; 

Istadi et al. 2009).  One way to predict the growth of Lusi is to study the 

stratigraphically identical Porong and Kedeco-11C carbonate mounds (located on a 

trend to the ENE from Lusi).  Both these structures contain circular collapse 

structures with faulting propagating out of the crest of the carbonate mounds (Fig. 

1.8; Kusumastuti et al. 2002; Istadi et al. 2009).  These large collapse structures are 

over 1 km wide and 300 m deep and are possibly ‘Lusi-type’ mud eruptions that 

occurred during the Quaternary and were sourced by adjacent and slightly 

shallower reefal mounds (Kusumastuti et al. 2002; Istadi et al. 2009). 

 

Lusi differs from other naturally occurring mud volcanoes in that it is erupting hot 

(70-100°C) fluid rich mud (initially 60-80% water, reducing over time to 30-50% 

water at present, solid fraction is 80-90% clays with minor silts and sand-sized 

grains; Tingay 2010) and has had an average flow rate of approximately 64,000 

m3/day over the first three years (Istadi et al. 2009; Tingay 2010).  Most naturally 

occurring mud volcano systems flow at rates of only a few tens to hundreds of cubic 

metres per day, but can occasionally have eruptions that are short-lived (1-14 days) 

and extremely violent (100,000-1,000,000 m3/day; Tingay 2010).  The temperature, 

flux and geochemistry of the water indicates a source depth of >1700m (Mazzini et 

al. 2007).  The eruption of mud from Lusi is predominately from the circular ‘main 

vent’ which is approximately 100 m in diameter, this along with the extremely high 

flow rate suggest that the feeder system under Lusi is either conical in shape or 

comprised of several very large open and intersecting fractures (Tingay 2010). 
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Fig. 1.8:  The Porong collapse structure.  A) Seismic base map overlays satellite image.  The areal 

extent of the Porong collapse structure in shaded dark colour, which covers a much larger area 

compared to the Lusi interpreted overpressured shale area.  Porong was an adjacent mud volcano 

that has been used as an analogue to build the subsidence model for Lusi.  From Istadi et al. (2009).  

B) Seismic section of Lusi – Banjar Panji-1 – Tanggulangin-1 – Porong-1 – Porong collapse structure.  
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The Porong collapse structure located approximately 7 km from Lusi is a palaeo-mud volcano where 

subsidence is evident and the multiple faults present likely served as conduits for the mudflow.  

Similarly, the multiple faults near the BJP-1 well (200 m from Lusi) may have been reactivated and 

served as conduit for the mud eruptions and escaping gas, hence the appearance of gas bubbles 

along fault lines. 

 

1.5.2.2  Geological History 

Lusi is located within the East Java Basin, in a present-day, inverted, back-arc setting 

which is dominated by NE-trending basement highs and intervening half-grabens 

that formed during the Tertiary period (Carter et al. 2005).  During the Eocene NE-

SW oriented rift basins formed and filled with continental clastics that host both 

source rock and productive reservoirs (Kusumastuti et al. 2002).  In the Oligocene 

to early Miocene east-west trending normal faults formed (Kusumastuti et al. 2002; 

Istadi et al. 2009).  Carbonate platforms developed on some palaeo-basement 

highs.  Compression during the late Miocene-Pleistocene resulted in inversion 

associated with E-W trending fault movement (Istadi et al. 2009).  This produced 

the E-W orientation of the anticline structures (Istadi et al. 2009).  Subsequent 

Pliocene-Pleistocene sedimentation consisted of an eastward-prograding 

mudstone-dominated volcaniclastic wedge derived from the Java volcanic arc 

(Istadi et al. 2009).  The mudstone deposited during the Pleistocene named the 

Kalibeng Formation is overpressured at 900-1870 km depth at Lusi (Istadi et al. 

2009).  This is the source of the solid fraction of the mud erupted at Lusi (Mazzini et 

al. 2007).  The water has an unknown source estimated to be from >1700 m depth 

by its temperature and isotopic composition (Davies et al. 2007; Mazzini et al. 

2007), but is generally considered to be primarily from the Miocene carbonates 

(2833-3500 m) with a contribution from the remobilisation of the Upper Kalibeng 

Formation (Davies et al. 2007).  Some fluids may also be sourced from shallow 

aquifers in the Pleistocene Pucangan Formation at 280-900 m depth (Tingay et al. 

2008). 

 

The stratigraphy under Lusi comprises: 

(1) Recent alluvium (alternating sands and shales; 0-290 m depth) 
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(2) Pleistocene Pucangan Formation (alternating sands and shales; 290-900 m 

depth) 

(3) Pleistocene Upper Kalibeng undercompacted smectite-illite muds (900-1870 

m depth) 

(4) Plio-Pleistocene low-porosity extrusive igneous rocks (1870-2833 m depth) 

(5) Miocene Tuban Formation which comprises a series of mudstones with thin 

limestone, siltstone and sandstone units (~2833-~3500 m depth; Tingay 

2010). 

(6) Early Miocene Kujung Formation, composed predominantly of carbonates 

and mudstones.  It is sub-divided into three members - Kujung III, II, and I 

(from oldest to youngest). 

(7) Late Eocene-early Oligocene clastics, known as the Ngimbang or ‘CD’ 

Formation. 

(8) Metamorphic and igneous pre-Tertiary basement (Carter et al. 2005). 
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2 The Characterisation of Mud Volcano Systems 

 

2.1 Introduction 

The study of mud volcanism or ‘sedimentary volcanism’ was first carried out by 

Russian and Azerbaijani scientists mainly in relation to their occurrence with 

hydrocarbon provinces (Abikh 1863; Arhangelski 1932; Goubkin & Fedorov 1938; 

Dadashev 1963; Kalinko 1964).  The earliest works often focus on mud volcanoes in 

the Crimea and Azerbaijan (Abruitski 1853; Ansted 1866).  The term ‘mud volcano 

system’ was first formally defined by Stewart & Davies (2006) who described it as a 

set of structures associated with a constructional edifice (mud volcano) and feeder 

complex that connects the volcano to its source stratigraphic unit and any deeper 

fluid sources.  Fig. 2.1 shows a basic structural model of a kilometre-scale mud 

volcano system based on 3-D seismic mapping in the South Caspian Basin (Stewart 

& Davies 2006).  This system can be subdivided into a series of ‘structural domains’, 

within which a characteristic set of processes occur that control the architecture of 

that part of the system.  The basic mud volcano system consists of three principal 

structural domains (Fig. 2.1); the deepest ‘source domain’, overlain by the ‘intrusive 

domain’ and finally the ‘extrusive domain’.  If the system becomes buried a fourth 

structural domain forms called the ‘roof domain’ which overlies the whole system.  

Each individual domain and the processes which occur within them are now 

described with a particular focus on the intrusive domain. 
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Fig. 2.1:  Summary diagram outlining the basic subsurface configuration and structural domains of a 

large mud volcano system.  Onshore mud volcano systems usually lack a roof domain and are not 

below sea level.  Modified from Stewart & Davies (2006). 

 

2.2 The Source Domain 

This is the deepest domain at the root of the whole system (Fig. 2.1).  It includes the 

‘parent bed’, ‘source layer’ or ‘parent formation’ of the remobilised sediment as 

well as any deeper source of fluids that entrain the sediments during their ascent.  

The upper boundary of the source domain is defined by the deepest stratigraphic 

unit that has been intruded and invaded by allochthonous fluids and sediment 

(Evans 2008).  The parent bed usually consists of a thick sequence of 

undercompacted clays or shales (Kopf 2002).  The erupted mud breccia can be 

easily related to the regional geology and to clay or shale-bearing lithologies at 

depth by using chemical analysis, identification of mud matrix, clast type or 

microfossil assemblages (Kopf 2002; Deville et al. 2006).  Difficulties in determining 

the exact source are only usually experienced along accretionary margins, where it 

is not obvious what type of sediment enters the subduction zone and the 

accretionary wedge may comprise similar argillaceous deposits (Kopf 2002).  The 

depth of origin of mud extruded from volcanoes gives a good indication of the 
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vertical distances that mud can be transported and, therefore, the vertical extent of 

any potential seal breach (Cartwright et al. 2007).  Evans et al. (2008) noted that 

mud volcano caldera margins are generally coincident with the thinnest sections of 

the parent bed, implying that collapse was initiated as material was evacuated from 

depth.  The source domain also includes any deeper structure, such as the leading 

edges of thrust sheets emerging from accretionary prisms (Jackson et al. 2002; 

Allen et al. 2003; Knapp et al. 2004), which may have an influence on which parts of 

the parent bed mobilise to form the mud volcano system, as well as any zones 

beneath the parent bed that have contributed fluids to the system.  For example in 

the South Caspian Basin Kopf et al. (2003) used the geochemical signatures of mud 

volcano fluids to estimate their depth of origin to be beneath the regional parent 

bed.  Geochemical and biostratigraphical analyses were also carried out on the 

eruptive products in Templars Firs, Wootton Bassett mud springs in the UK to 

determine their parent bed (Bristow et al. 2000). 

 

2.2.1 Mechanisms of Sediment Deformation and Mobilisation 

2.2.1.1 Overpressure 

Pore fluid within the parent bed is overpressured if its pressure exceeds that of the 

hydrostatic gradient at a specific depth (Osborne & Swarbrick 1997).  Overpressure 

can result in sediments becoming undercompacted as the pore fluids support a 

greater weight of the lithostatic load, minimising the contact between grains.  

Overpressure can also inhibit increases in shear strength and tensile strength, keep 

the bulk density low and where trapped pore fluid is water, heat is retained (Judd & 

Hovland 2007).  There are many processes that can cause overpressure in the 

parent bed including; 

 

a) Disequilibrium Compaction 

As a shale/mud succession becomes buried fluid is initially expelled from the 

sediment, so the pore pressure increases following the hydrostatic pressure 

gradient (Osborne & Swarbrick 1997).  However, as burial continues, the 
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permeability of the sediment decreases and fluid will start to be retained; the depth 

at which this occurs is the ‘fluid isolation depth’ (Osborne & Swarbrick 1997).  If no 

fluid escapes below the fluid isolation depth, the pore pressure would then rise 

along a pressure-depth path that is parallel to the lithostatic gradient.  This results 

in the pore pressure within the sediments becoming higher than the hydrostatic 

pressure.  When the burial load is eventually taken up by the pore fluid, the 

sediment remains with fixed porosity despite the increasing burial depth.  The 

sediment is now considered overpressured and under-compacted because it shows 

greater porosity than expected at a certain depth (Maltman & Bolton 2003). 

 

This mechanism is the most likely form of overpressure generation in the South 

Caspian Basin (Osborne & Swarbrick 1997).  This is especially likely as disequilibrium 

compaction most commonly occurs in less permeable lithologies e.g. the 

argillaceous Maykop Formation (Devlin et al. 1999), and in regions of rapid burial 

which the South Caspian Basin had (e.g. >5 km of sediment was deposited in 1-2 

Ma; Nadirov et al. 1997; Jackson et al. 2002).  Maykop pore pressure gradients of 

0.020-0.023 MPa m-1 developed in response to the rapid burial (Yusifov & 

Rabinowitz 2004) reducing effective stress and promoting mechanical weakening of 

the sediment. 

 

b) Tectonic Compression 

This mechanism is poorly understood however, may be important in the South 

Caspian Basin where tectonic compression has occurred and now forms the 

anticlinal structures through which the mud volcano systems intrude (Fig. 2.2; 

Stewart & Davies 2006).  The predominant location of mud volcano systems within 

anticlines is thought to reflect the importance of regional compression through the 

increase of lateral stress on the parent bed at depth.  Little is known however about 

the specific ways in which compression influences the Maykop parent bed at depth 

and exactly why mud volcanoes are mostly located within anticline crests.  In many 

regions the folding appears to be synchronous with mud volcano formation (Fig. 

2.2; Fowler et al. 2000; Yusifov & Rabinowitz 2004).  The horizontal stresses would 

be equal to or less than the vertical stresses in basins where no lateral compression 
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is occurring (Osborne & Swarbrick 1997).  Lateral compression can increase pore 

pressures in the same way as vertical stress can cause overpressuring through 

disequilibrium compaction (Osborne & Swarbrick 1997).  One of the main issues in 

this process is that even though it results in a rapid increase in overpressuring it 

may also produce accelerated pressure release during faulting and fracturing 

events. 

 

 
Fig. 2.2:  Summary diagram of mud volcano timing with respect to stratigraphy and start of structural 

growth.  Note the delay in the appearance of the first mud volcanoes from the start of structural 

growth.  Delay of the order of 0.5 to 1 million years assuming relative constant deposition rates from 

the Akchagyl Ash Beds date of 2.4–2.6 Ma.  From Fowler et al. (2000). 
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c) Volume Changes 

There are numerous mechanisms which result in an increase in fluid volume or 

change in the solid-to liquid ratio within a sedimentary section (Osborne & 

Swarbrick 1997).  These processes include; (a) aquathermal expansion, (b) mineral 

diagenesis (including dehydration), and (c) release of hydrocarbons from kerogen.  

In mud volcano systems the two main volumes changes cited for causing 

overpressure are methane gas expansion and hydrocarbon cracking.  At 

temperatures between 120-180°C almost complete thermal cracking from oil to 

lighter, gaseous hydrocarbons i.e. methane occurs (Hunt 1979).  Production of 

gaseous phases usually results in a volume expansion which in turn causes 

overpressuring in a closed system (Osborne & Swarbrick 1997).  This can lead to a 

negative feedback as increasing pressure can also retard the reaction and therefore 

may not produce significant amounts of overpressure (Osborne & Swarbrick 1997).  

In the Maykop Formation the maturation of hydrocarbons within it and the addition 

of other fluids injected from below is highly likely to have contributed to the 

development of overpressure (Osborne & Swarbrick 1997; Kopf et al. 2003).  

Maturation of the Maykop and expulsion of oil and gas is thought to have taken 

place in the last 1 to 3.5 Ma (Abrams & Narimanov 1997; Lerche et al. 1997; Lerche 

& Bagirov 1999). 

 

Several of these mechanisms can occur in a mud volcano system and so it may be 

difficult to distinguish which is the prominent driving factor.  A more detailed list of 

mechanisms can be seen in Table 2.1 from Kopf (2002). 
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 Origin Mechanism Environment 
Burial • Sedimentary loading, 

compaction/settling 
 

• Slumping, sliding 

• Any sedimentary setting 
(i.e. deltas, active and 
passive margins) 

• Marine slopes of active and 
passive margins 

Tectonic • Tectonic loading 
 
• Deep level ducting 
• Smectite dehydration 

• Any compressional margin, 
thrust zones and wedges 

• Accretionary complexes 
• Accretionary complexes 

Thermogenic • Opal/quartz reactions 
• Smectite dehydration 
 
• Other diagenesis 
• Metamorphism 
 
• Methanogenesis/hydrocarbon 

generation 
• Thermal expansion; 

hydrothermal pressuring 

• Any setting with biosilica 
• Any setting with abundant 

clay deposition 
• Deeper subduction zone 
• Deep subduction zones 

and other collision zones 
• Any setting and reservoirs 

 
• Magmatic arcs and ridges 

Biogenic • Methanogenesis • Shallow marine settings 
and accretionary prisms 

Other • Osmosis • Clay-bearing sedimentary 
environments 

Table 2.1:  Mechanisms for generating overpressure from Kopf (2002). 

 

2.2.1.2 Buoyancy 

A second driving force for mobilised sediment is the buoyancy of the fluid-sediment 

mix which is a function of the bulk-density contrast (Judd & Hovland 2007).  

Sediments that are under-consolidated or overpressured (as discussed in section 

2.2.1.1) or in which ‘buoyant fluids’ are accumulating, have a low bulk density 

compared to overlying ‘normally consolidated’ sediments.  In both these cases bulk 

density decreases with depth i.e. there is a density inversion; 

 

𝐵𝐹𝑝𝑎𝑟𝑒𝑛𝑡 = �𝜌𝑝𝑎𝑟𝑒𝑛𝑡 − 𝜌𝑜𝑠� × 𝑔 × ℎ𝑝𝑎𝑟𝑒𝑛𝑡 Eq. 2.1 

 

Where BFparent is the buoyancy of the parent bed or parent formation, ρparent is the 

bulk density of the parent bed, ρos is the bulk density of the overlying sediment, g is 

the acceleration due to gravity and hparent is the height or thickness of the parent 

bed.  Density inversion can either cause the underlying sediment to ‘push’ through 

the capping sequence flowing as a coherent sediment mass (i.e. a diapir) or the 
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excess pore fluid pressure will lead to fluidisation and escape as a fluid transporting 

particles of the parent bed i.e. as a diatreme (Judd & Hovland 2007).  The buoyancy 

force exerted by the sediment mud must be greater than the downward force of 

the overlying sediment and the cohesion in order for the mass to be able to break 

through into the overlying successions (Judd & Hovland 2007).  Once the mass 

begins to ascend there is a pressure reduction in the fluid contained within it 

allowing gases to come out of solution and in so decreasing the density (Judd & 

Hovland 2007). 

 

All of these mechanisms serve to weaken the sediments contained within the 

parent bed however they do not necessarily provide a means of mobilising the 

sediment.  A sediment becomes mobilised once it is in a condition of insufficient 

strength to resist the forces driving it to move (Maltman & Bolton 2003).  Once the 

parent bed has been overpressured it must become mobilised in order to travel to 

the surface.  This can be caused by several processes including fluidisation and 

liquefaction.  In mud volcano systems the sediments are thought to be entrained 

within fluid that most likely enters the overpressured sediments from other sources 

(Fig. 2.3).  Chemical signatures of these fluids help to identify where they originated 

within the system. 
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Fig. 2.3:  Schematic diagram of a mud diapir, mud volcano extrusions, and diatremes, including 

possible fluid sources (numbered 1–8).  (1) Pore fluid expulsion during compaction.  (2) Biogenic 

methane from degradation of organic matter.  (3) Lateral fluid flux through stratigraphic horizons or 

fault zones.  (4) Fluid migration along deep seated thrusts.  (5) Thermogenic methane and higher 

hydrocarbon concentrations.  (6) Fluids from mineral dehydration (opal, smectite).  (7) Hydrothermal 

fluids, alteration of crustal rock.  (8) Fluid expulsion from internal deformation within the diapiric 

intrusion.  Geochemically mature fluids may be found among categories 3, 4, and 7, while in 

categories 1, 6, and 8, water from dissociated gas hydrates may provide ‘freshened’ fluids.  Modified 

from Kopf (2002). 

 

2.2.1.3 Fluidisation 

This occurs when the drag exerted by moving pore fluids exceed the particle 

weight, the particles are lifted and the grain framework is destroyed (Lowe 1975).  

This usually requires rapid influx of external fluids into the sediment (Maltman 

1994).  This can occur once the minimum fluidisation velocity (Umf) is reached; 
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𝑈𝑚𝑓 =
𝜀𝑚𝑓3 �𝜌𝑠 − 𝜌𝑓�𝑔(𝜑𝑑)2

5�1 − 𝜀𝑚𝑓�𝜇36
 Eq. 2.2 

 

Where Ɛmf is the intergranular porosity at minimum fluidisation, d and ϕ are the 

grain size and shape respectively and ρs and ρf are the density of the grains and 

fluid, respectively, g is the acceleration due to gravity and μ is the fluid viscosity.  

When the fluid velocity exceeds the settling velocity of the grains, the grains will be 

lifted and carried away in the flow.  The most easily fluidised sediments are fine 

grained sands and undercompacted clays and silts (Judd & Hovland 2007).  

Unconsolidated clay particles require the lowest fluid velocities to become fluidised 

(0.07 cm/s; Lowe 1975; Judd & Hovland 2007).  Coarse sand and gravel grain 

fluidisation requires much higher fluid velocities (approximately 10 cm/s or higher; 

Huuse et al. 2005). 

 

2.2.1.4 Liquefaction 

This process occurs when there is no internal friction or cohesion between the 

particles in the sediment as the pore fluid temporarily sustains the entire stress 

exerted on the sediment (Maltman 1994), essentially behaving as a fluid.  This 

usually occurs when the effective stress is zero when the upward force of flowing 

fluid equals the buoyant weight of the particles (Lowe 1975; Judd & Hovland 2007).  

Both liquefaction and fluidisation are forms of ‘liquidisation’ processes i.e. both 

lead to a reduction in the sediment strength resulting in it behaving as a liquid. 

 

2.2.1.5 Hydroplastic Deformation 

This type of deformation characterises grain supported sediments with a significant 

yield stress and at pore fluid velocities below those required for fluidisation (Lowe 

1975).  A sediment does not have to be subject to complete liquidisation in order to 

become mobilised.  If the sediment has moderate overpressure or a large 

proportion of cohesive clay minerals it will retain a degree of strength and behave 

plastically rather than as a fluid (Maltman 1994) i.e. it becomes mechanically 
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‘hydroplastic’ (Maltman & Bolton 2003).  Yield stress may originate from either 

cohesive forces or frictional resistance.  This state usually arises from an increase in 

pore-fluid pressure and results in a reduction in strength.  Deformation becomes 

possible when the moisture content exceeds the ‘plastic limit’ but has not reached 

the ‘liquid limit’ (Judd & Hovland 2007). 

 

2.2.1.6 Critical State Deformation 

Deformation at a sediment’s ‘critical state’ takes place before the onset of 

liquidisation.  This is a state where the sediment is able to undergo very large 

amounts of shear even at low deforming stress due to a particular combination of 

porosity, fluid-pressure and stress (Maltman & Bolton 2003).  The sediment 

behaves in a weak, ductile manner rather than as a fluid.  In any one instance of 

subsurface sediment mobilisation liquefaction, fluidisation, hydroplastic and critical 

state deformation are likely to work together (Barber et al. 1986; Maltman & Bolton 

2003). 

 

Although the mechanical states described above make sediment capable of 

mobilisation, in themselves they are not sufficient to bring about bulk movement as 

a driving force is required.  Liquidised sediments, by definition, behave as fluids and 

as such will be subject to fluid pressure gradients.  For example, the fluid potential 

within an overpressured sediment layer is no longer balanced by the elevation head 

meaning that the fluid will attempt to move to lower values of the fluid pressure 

gradient (i.e. move from high pressure areas to lower pressure areas, Brown 1994).  

The sediment will undergo bulk movement if the pressure gradient is high enough 

to trigger movement.  Movement will continue as long as the pressure gradient is 

maintained and the sediment remains in a mechanical state capable of 

mobilisation.  In most sedimentary basins pressure decreases upwards as it is 

usually the lithostatic load that imparts the majority of the loading force on the 

sediment.  This means that most liquidised sediments will have a tendency to move 

upwards.  Locally however, the fluid potential gradient can decrease in any 
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direction making it possible for mobilised sediment to move in any direction, even 

downwards. 

 

2.3 The Intrusive Domain  

The ‘intrusive domain’ of the mud volcano system connects the extrusive and 

source domains (Fig. 2.1).  Included within this is the conduit system that transports 

fluids and sediment from the source domain to the surface and the host rock that is 

intruded by it.  The lower boundary of this domain is the upper surface of the 

source domain and its upper boundary is the surface or seabed and the base of any 

overlying extrusive edifice (Fig. 2.1).  The exact anatomy and fluid flow processes of 

these feeder complexes are still the most poorly understood component of the 

mud volcano system.  This is mainly because:  

 

1)  There are only a few modern or ancient mud volcano systems that have 

been studied which are eroded to a sufficient depth to allow examination of 

conduits at outcrop (Brown & Orange 1993; Clari et al. 2004).  These outcrops are 

rare due to their being particularly vulnerable to weathering processes or the fact 

that they may not have been identified yet; 

2)  Physical properties of the material within the conduit and the timescales 

over which mud volcanoes are constructed are poorly constrained making 

numerical estimates of conduit shape and diameter difficult (Kopf & Behrmann 

2000); 

3)  Seismic reflection data that image the intrusive domains of mud volcano 

systems are often poor quality due to inherent difficulties imaging steep or vertical 

conduits and blanking caused by gas (Judd & Hovland 1992). 

 

These intrusive systems have been imaged on seismic data globally however, the 

resolution at the centre of the feeder complex is often impossible to interpret.  This 

is thought to be the result of many factors including ‘acoustic blanking’ which 

appears beneath the extrusive mud cones and around the feeder complexes.  This 

often takes the form of large blanked out chimneys of seismic data where the 
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reflections are suddenly faint or absent.  In many examples chimneys are 

characterised by loss of the seismic signal, i.e. by low seismic amplitudes and low 

seismic coherency.  The exact causes of these changes in seismic response are not 

always obvious and explanations depend on local circumstances.  In many cases 

however, this may result from the deposition of thick series of unconsolidated 

muds absorbing or scattering the acoustic energy in underlying, locally fluid charged 

sediments (Judd & Hovland 1992).  Seismic chimneys are also anomalies usually 

associated with the upward movement of fluids or free gas (Schroot et al. 2005).  

An alternative explanation for the loss of seismic signal would be the actual break 

up of layering resulting from fluid escape processes.  The latter is only likely to 

occur in a ‘high energy’ environment, which implies active seepage (Schroot et al. 

2005).  Seismic imaging of intrusive domains is generally poor (Dimitrov 2002), 

although modern 3-D seismic data commonly reveal a much narrower vent 

geometry than commonly apparent on two-dimensional (2-D) seismic data (Van 

Rensbergen & Morley 2003).  Pre-stack depth migration is commonly required to 

obtain the best imaging results (Davies & Stewart 2005). 

 

In most mud volcano systems these seismic discontinuities are circular in plan view 

showing that they are pipe-like in 3-D (Fig. 2.4; Fowler et al. 2000; Graue 2000; 

Stewart & Davies 2006).  These discontinuities are tall, narrow zones of low signal-

to-noise ratios that might be misinterpreted as geological features produced below 

an energy-absorbing feature, so it is not known to what extent these pipes are 

geophysical imaging artefacts.  This effect could be reduced by altering the 

streamer length of the seismic acquisition apparatus so that volcanoes with a 

diameter significantly less than the streamer length (4 km; 2.5 mi) will not be 

undershot (Stewart & Davies 2006). 
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Fig. 2.4:  A) Horizontal seismic section (depth slice) through a downward-tapering cone, showing an 

abrupt change from regional structure to faulting and folding of strata in the downward-tapering 

cone.  B) Seismic coherency data emphasising stratal discontinuities in a mud volcano system.  The 

cube is located below the mud volcano and contains a downward-tapering cone.  Discontinuities 

(bright blue) can be interpreted as faults and fracture zones.  This visualisation of structural 

complexity can be useful in well planning through or around mud volcano substructure.  Modified 

from Stewart & Davies (2006). 

 

Various architectures of feeder system have been suggested as connecting 

extrusive mud volcanic cones to their underlying parent bed, ranging from bulbous 

diapirs (Brown 1990; Van Rensbergen et al. 1999) to steep diatremes (Brown 1990; 

Robertson & Kopf 1998) and narrow vertical pipes (Graue 2000; Løseth et al. 2001).  

It is unclear whether current generic models for the structural roots of mud 

volcanoes are accurate or their relative simplicity reflects insufficient image 

resolution.  Currently the two most popular intrusive systems are believed to be 

mud diapirism and/or linked mud dyke/sill intrusive complexes similar to igneous 

volcanic systems.  These two processes are now described in detail below. 

 

2.3.1 Mud Diapirism 

Mud diapirs form when a kilometre-scale layer of plastic mud moves ‘en-masse’ 

and is driven upwards by its internal overpressure and buoyancy as discussed 

earlier in section 2.2.1 (Barber et al. 1986; Brown 1990; Hovland 1990; Morley & 

Guerin 1996; Kopf 2002).  Hovland et al. (1998) define a piercement shale diapir as 

a positive topographical feature constructed mainly of clay sized sediments that 
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periodically or continuously move from the sub-surface upwards towards and 

through the sea floor.  How such conduits penetrate the crust and how fluid-

sediment mixes utilise the conduit systems is largely unknown (Fig. 2.5).  The exact 

mechanism and physical properties of mud involved in diapirism has eluded 

scientists for decades and recently, it has been questioned whether mud diapirs can 

physically exist at depth (Davies & Stewart 2005; Deville et al. 2006, 2010) and 

whether they are necessary in order to explain seismic observations (Van 

Rensbergen & Morley 2003; Calvès et al. 2010).  Diapirs form bulbous intrusions 

when viewed in cross section and have diameters that range from tens of metres to 

kilometre-scale.  Various mud diapirs have been described at outcrop (Barber et al. 

1986; Brown & Orange 1993; Clari et al. 2004) and from seismic data worldwide 

including areas of the Niger Delta, the North Sea and the Alboran Sea (Hovland 

1990; Morley 2003; Morley & Guerin 1996).  Large parabolic disturbances in seismic 

data are often interpreted as mud diapirs due to their columnar shape and lack of 

internal reflectivity (Barber et al. 1986).  These conduits must narrow considerably 

otherwise, exceptionally large flow rates would result even when small density 

contrasts (not to mention an excess hydrostatic head) exist as a driving force.  

Several different types of mud diapir have been classified depending on the phase 

of growth by analysing the deformation and thickness distribution of surrounding 

sediments (Vendeville & Jackson 1992), phases include;  

 

1) Reactive diapirism  

This occurs during the initial stages of growth where relief on the top of the mobile 

mass is caused by the movement on extensional faults (Morley & Guerin 1996).  

The diapir rises without piercement of the overburden (Vendeville & Jackson 1992).  

Thickening of surrounding sediments towards the diapir is therefore seen as 

evidence for a phase of reactive diapir growth (Fig. 2.5). 

 

2) Active diapirism  

This stage occurs when a diapir pierces through the overburden due to fluid 

pressure drive and/or buoyancy forces in the crest of the diapir (Fig. 2.5; Vendeville 

& Jackson 1992).  Thinning of sediment onto the crest of the diapir is characteristic 
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of this phase as is the presence of laterally adjacent synformal basins that form as a 

result of mud withdrawal from depth. 

 

3) Passive diapirism 

This phase begins when the diapir reaches the surface.  If sedimentation is not 

coeval then the diapir cannot rise but instead widens (Vendeville & Jackson 1992).  

It is fairly uncommon as most mud diapirs are terminated before reaching the 

surface due to fluid loss (Morley & Guerin 1996).  Indeed, sufficient fluid loss at any 

stage of diapir growth can lead to shrinkage of the mud mass and diapir collapse.  

Evidence for this can take the form of circular or radial extensional fault zones in 

the areas directly above the head of diapir (Morley 2003; Stewart 1999, 2006). 

 

Sediments within a mud diapir can undergo deformation in a variety of mechanical 

states depending on where they are positioned within the diapir (Brown 1990; 

Maltman & Bolton 2003).  Large exposed mud mélanges (chaotic masses of 

sediment) are generally 100’s of metres thick and thus tend to be described as 

diapirs (Brown & Orange 1993).  Diapirism is believed to be primarily driven by 

excessive pore fluid pressures (Maltman & Bolton 2003).  As discussed in section 

2.2.1.1, overpressure is also able to liquidise sediments and so liquid mud flows 

may erupt if there is extrusion however, in the same diapir there could also be 

other regions that are experiencing shearing under critical state conditions (Brown 

1990; Brown & Orange 1993; Maltman & Bolton 2003).  Plastic flow and critical 

state deformation are most pervasive, producing shear fabrics and marginal ‘scaly 

clays’ (Brown 1990; Brown & Orange 1993; Maltman & Bolton 2003). 
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Fig. 2.5:  Schematic cross sections illustrating some of the characteristics of shale diapirs and pipes (A 

and B).  Variations on shale bulges developing in response to sedimentary loading by deposition in 

the hanging wall of a reactive diapir (Fig. 2.5A), and in a withdrawal syncline (Fig. 2.5B); C) 

development of shale diapirs similar to classic salt diapirs with reactive, active, and passive phases 

and D) shale diapirs commonly do not develop like Fig. 2.5C but may superficially resemble them.  

Instead a complex of gas rich fluids and shale intrusions may intrude laterally and vertically (pipes) 

into the country rock from mobile shale masses at depth.  The well developed synformal 

depocentres in Fig. 2.5C are not seen in Fig. 2.5D.  Modified from Morley et al. (1998). 
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The type of deformation that will occur will largely depend on the lithology and 

physical conditions.  The diapir margins with be subjected to increased shear due to 

contact with the country rock resulting in increased scaly clay formation (Brown 

1990).  These regions will also drain more efficiently and so re-gain some residual 

strength (Maltman & Bolton 2003).  Maltman & Bolton (2003) also suggested that 

with decreasing burial depth (i.e. during diapir ascent) liquidisation becomes more 

pervasive as the confining stress reduces.  Brown (1990) commented on how 

methane exsolution at depths of 2 km or less can locally induce liquidisation within 

parts of a diapir and lead to the formation of mud pipes rooted in the upper parts 

of diapirs and on the margins producing conduits to the surface.  One of the major 

problems of how a shale diapir ascends is what happens to the sediments above it 

as it pierces through them as well as how clasts of country rock get included within 

the diapir.  Fig. 2.6 shows the different ways in which salt diapirs are able to pierce 

through the overburden which may be analogous to shale diapirs. 

 

 
Fig. 2.6:  Summary of how diapirs can ‘apparently pierce’ overburden sediments on seismic 

reflection profiles.  A) Condensed sequence and/or attenuation by ductile creep.  B) Non-deposition 

of sediment and active erosion/dissolution at the sea-bed.  C) Extensional faulting and condensed 
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sequence.  D) Dissolution above sea-level with surface run-off creates pot-holes crevasse system 

with stoping of sediments into dissolved channels and caverns.  Modified from Davison et al. (1996). 

 

2.3.2 Mud Sill/Dyke Igneous Style Intrusive Complex 

Another possibility, determined from analysis of seismic data (Stewart & Davies 

2006) is that transport takes place through intricate mud pipe, dyke and sill 

complexes (Fig. 2.7; Morley 2002), perhaps with similarities with igneous centres 

(Holmes 1998; Davies & Stewart 2005; Stewart & Davies 2006).  Mud pipes are 

often referred to as diatremes due to their close similarity to these igneous features 

(Fig. 2.5D; Brown 1990; Morley 2003).  Seismic reflection data from the South 

Caspian Basin are consistent with movement by fluidised mud flows through 

fractures (e.g. Morley 2003) as there is no evidence for kilometre-scale mud 

diapirism (Yusifov & Rabinowitz 2004; Davies & Stewart 2005).  ‘Mud pipes’ when 

viewed on seismic data have been interpreted as broad to very narrow areas of 

image distortion ranging from < 1 metre to many 100s of metres wide (Løseth et al. 

2001; Morley 2003).  Rare field examples of mud volcano conduits indicate that a 

large degree of fracture propagation and stoping is required for the ascent process 

(Pickering et al. 1988; Morley 2003).  Outcrop examples are described by Morley 

(2003) as long, narrow forcefully intrusive bodies or networks of intrusions filled 

with overpressured fluid.  Where exposed, mud intrusions tend to be tabular rather 

than pipe-like (Pickering et al. 1988; Morley 2003).  Clastic dykes have been 

identified globally and are fairly well documented however, not in association with 

extrusive mud edifices (Winslow 1983; Jolly et al. 1998; Parize & Friès 2003; Jonk et 

al. 2005). 
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Fig. 2.7:  Sketch of an outcrop in Jerudong (Brunei) cut by numerous dykes.  Some of the dykes 

follow older normal faults, but most dykes are independent of the normal faults.  The dykes have 

steep dips in their present orientation.  Upon rotation of bedding to horizontal, dyke dips become 

much lower.  Hence assuming dykes were intruded sub-vertically, dyke emplacement is inferred to 

be post folding.  Photographs show jogs and splays in mudstone dykes in sandstones, these dykes 

are natural hydraulic fractures and do not follow pre-existing faults.  Modified from Morley (2003). 

 

Surface conduit widths range from 1 cm to 100 m onshore in Azerbaijan and 

conduits of 1.5–3.5 km width have been proposed for the Black Sea area and 

Azerbaijan on seismic data (Stewart & Davies 2006).  One opposing theory was 

proposed by Gorkun & Siryk (1968) who suggested that 30 cm wide conduits 

formed at depth, which then widened to 2 m surface diameter at the various 

gryphons of Sakhalin mud volcanoes.  The country rock that is replaced by the mud-

filled pipe is most likely lost to the surface by wall-rock erosion indicated by mud 

flows at outcrop often being rich in wall-rock breccias (Kopf et al. 2003).  This may 

be enhanced if subsequent pipe intrusions follow similar pathways, but onshore 

outcrops often show a scattered array of vents indicating that there must be a 

network of fluid flow pathways at depth rather than a single one, within a 

kilometre-scale mud volcano (Hovland et al. 1997; Planke et al. 2003).  Evans et al. 
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(2007) suggested that numerous pipes repeatedly intruded the overburden at 

approximately the same location to feed the constructional edifice.  This pipe 

system would represent a cylindrical zone of heavily intruded country rock or 

entirely of amalgamated mud pipes.  Stewart & Davies (2006) postulated that this 

cylindrical zone had a low mechanical strength in relation to the surrounding un-

intruded country rock and so underwent differential compaction, resulting in what 

they term a ‘downward tapering conical collapse’.  The internal structure of this 

downward tapering cone is a complex zone of faults; mud dykes and pipes feeding 

the volcanic edifice (Stewart & Davies 2006).  The level of seismic resolution found 

by Stewart & Davies (2006) is rare indicating that either the feeder pipes are below 

seismic resolution at this structural level, or that they are concentrated on caldera 

margins. 

 

2.3.2.1 Intrusion and Propagation 

Mud pipes unlike diapirs, are formed in response to the rapid flow of pore fluids up 

through a sedimentary mass which becomes fluidised and entrained into the flow 

(see section 2.2.1.3; Brown 1990; Morley 2003).  Mud volcano fluid fluxes and 

eruptions are clearly episodic (see Appendix I; Dimitrov 2002), which implies that 

the underlying mud intrusions are also transient.  The most likely mechanism for 

fluids to intrude into the country rock is by hydrofracturing.  A clastic sill or dyke can 

be considered as a natural hydrofracture (Cosgrove 2001; Jolly & Lonergan 2002).  

For a hydrofracture to form and propagate, fluid pressure must exceed horizontal 

stress plus the tensile strength of the overburden (Delaney et al. 1986).  The 

pressure at which a formation can be fractured is known as the fracture pressure or 

PFrac and can be expressed as; 

 

𝑃𝐹𝑟𝑎𝑐 = 𝜎′ℎ + 𝑇 Eq. 2.3 

 

Where σ’h is the effective horizontal stress and T is the tensile strength of the 

formation.  Once the effective stress and the tensile strength of a rock have been 

overcome fracturing can occur and as the fluid rises within the fracture into a lower 
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pressure environment the fractures increase in volume and become able to entrain 

and transport considerable amounts of fluid (Judd & Hovland 2007).  Intrusion of a 

high pressured fluid with entrained parent bed particles into the surrounding 

sediment is needed in order to dilate the fracture (Jolly & Lonergan 2002).  In mud 

volcano systems this excess pressure is most likely caused by overpressure as 

discussed in section 2.2.1.1.  Once a hydrofracture has formed the velocity of 

upward moving pore fluids can fluidise the sediment and cause it to flow.  At any 

specified depth, the fracture pressure of the rock is generally lower than the 

lithostatic (overburden) pressure, typically about 70–90% of the overburden, but 

may be higher at great depths (Osborne & Swarbrick 1997). 

 

A propagating mud dyke is an example of a mode 1 or ‘opening fracture’ that 

propagates as a tensile crack in a plane normal to the least compressive stress 

direction (Delaney et al. 1986: Jolly & Lonergan 2002).  Jolly & Lonergan discuss 

three ways in which a host sediment might fail; 

 

1) If the pore pressure (Pf) within the parent bed exceeds the maximum principal 

stress (σ1) and the tensile strength (T) of the overlying material in the intrusive 

domain, brittle failure will occur; 

 

𝑃𝑓 > 𝜎1 + 𝑇 Eq. 2.4 

 

If the sedimentary basin in which this was true had no imposed tectonic stresses 

then the maximum principle stress would be vertical due to gravitational loading 

and the minimum principal stress would be horizontal therefore allowing vertical 

dykes to form. 

 

2) If there are pre-existing faults or fractures within the host sediment with little or 

no tensile strength, the pore fluid pressure only needs to exceed the normal 

stress (σn) across the older fracture for dilation of that fracture to occur; 
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𝑃𝑓 > 𝜎𝑛 Eq. 2.5 

 

If the fluid pressure increases a larger range in fracture orientations can be formed 

and intruded (Delaney et al. 1986; Jolly & Lonergan 2002). 

 

3) An increase in fluid pressure can cause pre-existing faults and fractures to shear 

(Jolly & Lonergan 2002).  This can form geometries that are more reminiscent of 

dyke and sill complexes. 

 

Different conditions are necessary in order to propagate dykes or sills in a 

sedimentary sequence.  In order for a dyke to propagate the fluid pressure must be 

great enough to overcome the horizontal stress (σh) and the tensile strength of the 

host sediment parallel to bedding (Th); 

 

𝑃𝑓 > 𝜎ℎ + 𝑇ℎ Eq. 2.6 

 

For a sill to form the fluid pressure must exceed the vertical stress (σv) and the 

tensile strength perpendicular to the bedding (Tv); 

 

𝑃𝑓 > 𝜎𝑣 + 𝑇𝑣 Eq. 2.7 

 

Fluid velocities within intrusive complexes are believed to exceed the minimum 

values needed in order to mobilise the metre-scale blocks embedded within ancient 

intrusive structures, both sand and mud filled (Huuse et al. 2005).  Indeed it is likely 

that fluid velocities in some sediment pipes are great enough to significantly erode 

the wall rock in a similar way proposed for igneous conduit systems (Pickering et al. 

1988; Macedonio et al. 1994; Huuse et al. 2005). 

 

2.3.3 Faulting 

Faulting in the intrusive domain often consists of concentric extensional fault sets 

that are almost perfectly circular in plan view or radial (Fig. 2.8; Corthay & Aliyev 
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2000; Graue 2000; Murton & Biggs 2003; Hansen et al. 2005; Stewart 2006; Stewart 

& Davies 2006).  Several studies have recognised fault systems around mud volcano 

systems globally and some examples of these can be seen in Fig. 2.8.  Stewart & 

Davies (2006) mapped fourteen minor extensional ring faults around a mud volcano 

in the South Caspian Basin.  These faults extended to a radial distance of 0.5-10 km 

from the caldera walls.  They observed that the faults were planar in cross section 

with dips of 45° relative to the bedding.  Stewart & Davies (2006) attributed this 

faulting to representing shear at the base of the bicone towards its central axis, 

accommodating lateral compaction of the edifice mud i.e. ‘gravity contraction’.  

Mud volcano caldera faulting has also been studied in great detail by Evans et al. 

(2008).  Radial faults are commonly associated with doming and extensional faults 

with basin subsidence (Stewart 2006).  Radial extensional faulting may also occur 

where doming has influenced the orientation of polygonal fault sets (Davison et al. 

2000) and concentric reverse faults form during uplift due to rapid, forceful 

intrusion (Stewart 2006).  Extensional faults within and surrounding the cone would 

act as inherent weaknesses localising later fluidised flows, resulting in a geometry 

reminiscent of ‘cone sheets’ as described by Anderson (1936). 
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Fig. 2.8:  A) ‘Variance Cube’ slice illustrating a change in fault pattern around a ‘mud pillow’ structure 

from the Gjallar Ridge, offshore mid-Norway.  The variance cube highlights lateral discontinuities 

such as faults in the seismic data.  It was calculated by cross correlating adjacent traces over a 100-

ms window and assigning a value from 0 (perfect match) to 1 (no match).  The radial pattern in the 

proximity of the structure and the polygonal pattern away from the structure suggest that the 

polygonal faults developed when the structure either had formed or was forming.  Modified from 

Hansen et al. (2005).  B) Sidescan sonar image of a mud volcano from Nigeria.  Modified from Graue 

(2000).  C) 30-kHz side-scan sonar image of the mud volcano Yuma (dark tones indicate high acoustic 

back-scatter), shown with the same horizontal scale, in the Gulf of Cadiz.  Note the concentric ring-

like structures that are centred on the main summit with the small dome to its left.  Modified from 

Murton & Biggs (2003).  D) Seabed dip map in Nigeria.  Mud volcanoes are seen as 1–2 km circular 

features.  Note the cuspate faults and numerous pockmarks.  Modified from Graue (2000).  E) 3-D 

view of the concentric fault system and margins of the caldera with downward-tapering cone in ACG 

field, SCB.  Elements of the seismic reflection cube are left to indicate the quality of seismic data on 

which the interpretation is based.  Modified from Stewart & Davies (2006).  F) Artificially illuminated 

rendering of the Akchagyl structure map viewed from the northeast to southwest.  The rendering 

illustrates the radial fault pattern and associated fault blocks that offset the Akchagyl horizon, and 

subtle erosional channels on the eastern (facing) flank of the anticline (vertical exaggeration – 50:1) 

modified from Corthay & Aliyev (2000). 

 

Stewart (2006) gives a detailed account of how these fault systems could form in 

relation to the growth phases of both salt and shale diapirism (Fig. 2.9).  In addition, 

use of seismic coherency attributes and mapping the fault pattern illustrate that 

mud volcanoes in the South Caspian Basin occur strictly in areas of local tension and 

within regional compressive fields (Cooper 2001).  These fault systems are usually 

connected to the mud volcano systems in some way suggesting that they play some 

role in their formation.  However, there is still a question as to whether the mud 

volcanoes are triggered by the activity of these faults, or conversely is there any 

connection at all. 
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Fig. 2.9:  Sketches of radial and concentric fault patterns and kinematics.  Driving mechanism is salt 

flow and volume change of central cylinder.  Volume and line length balance assumed.  All sketches 

are plan views except D.  Salt is pink.  A) Expansion of central zone forces fold with circumferential 

trend, and circumferential extension accommodated by radial faults.  B) Radial fault clustering at 

each end of elliptical hole or intrusion.  C) Contraction of central zone allows concentric, inward-

facing extensional faults.  Secondary structures accommodate circumferential contraction.  D) 

Sheared sediments close to diapir margin (vertical section).  These faults are parallel to the salt 

sediment interface, i.e. concentric in plan view.  From Stewart (2006). 

 

2.4 The Extrusive Domain 

The ‘extrusive domain’ lies on top of the intrusive domain and below the roof 

domain, if present.  This domain has been studied extensively in many locations 

globally both onshore and offshore (Hovland et al. 1997; Kopf 2002; Planke et al. 

2003; Yusifov & Rabinowitz 2004; Evans et al. 2008) and it is probably the most well 

defined domain within the mud volcano system. 
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2.4.1 Edifice 

In the literature, the term ‘mud volcano’ commonly refers to a constructional 

edifice, whether outcropping or buried (Milkov 2000; Stewart & Davies 2006).  The 

‘classic’ mud volcano shape is similar to a composite igneous volcano i.e. a conical 

edifice with a summit crater (Judd & Hovland 2007).  Davies & Stewart (2005) 

termed this the ‘extrusive bicone’ which can be composed of several separate 

stacked mud cones forming the classic ‘Christmas tree’ configuration, first noted in 

salt structures in the Gulf of Mexico (Stewart & Davies 2006).  The first of these 

eruptive mud cones they termed the ‘pioneer cone’ (Davies & Stewart 2005).  The 

morphology of the edifice largely depends on the viscosity, density, grain size of the 

fluids erupted (Kopf 2002), the frequency of eruptions and the volumes of fluids 

erupted (Judd & Hovland 2007).  If there are more frequent eruptions the edifice 

can accrete relatively quickly and produce a large edifice and vice versa.  If the mud 

erupted has a high viscosity it will form a steep sided conical edifice, however, if it 

has a low viscosity it will form a ‘mud pie’ (Kopf 2002).  The dependency on these 

factors results in a wide range of morphologies being produced from calderas to flat 

plateaus (Fig. 2.10).  In Azerbaijan the largest submarine mud volcanoes can reach 7 

km diameter and 300-400 m in height whereas onshore they tend to be slightly 

smaller around with a maximum diameter of 4 km and 200-300 m height.  Globally 

size ranges dramatically (Fig. 2.10) and the edifices can even be as small as < 1 m in 

height with only a single vent. 

 

 
Fig. 2.10:  Sizes and shapes of various terrestrial mud volcanoes (note the figure of a man in 

both frames).  Locations: A= Maghaehu Stream, New Zealand; B= Volcanito, near Cartegena, 

Colombia; C= Moruga Bouff, Trinidad; D= El Totumo, near Cartegena, Colombia; E= Chandragup, 
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Makran Coast, Pakistan; F= Napag, Makran Coast, Pakistan; G= Gharniarigh-Tapeh, Goran region, 

northern Iran.  From Judd & Hovland (2007). 

 

2.4.2 Classification Schemes 

There are several different classification schemes for the differing edifice 

morphologies and for different eruptive types.  The most simple, described by Kopf 

(2002), in which edifices take the one form of ‘mud domes’ that consist of a roughly 

conical edifice with smaller vents i.e. gryphons and salses on its flanks and a crater 

or ‘caldera’ at the peak or ‘crest’ (Fig. 2.11A).  The conduit usually intrudes through 

the centre of the conical edifice and ‘builds’ the edifice from this point source.  The 

second type is a ‘mud pie’ otherwise known as ‘mud pool’, ‘mud spring’ or ‘tassik’ 

(Kopf 2002).  The difference between these two morphologies is based on the slope 

angle i.e. mud pies have slopes of <5° and mud domes with angles >5°.  The ‘feeder’ 

or ‘conduit’ of the mud volcano system is found at the centre of the edifice and 

outcrops as either a caldera or as a fissure i.e. faults and fractures (Kopf 2002). 
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Fig. 2.11:  Schematic diagrams of A) cone-shaped and B) pie-shaped mud feature with main 

applicable terms from Kopf (2002). 

 

Yusifov (2004) distinguished between different mud volcano morphologies using 

seismic reflection profiles in the South Caspian Basin.  This classification consists of 

four types of mud volcanoes based on their general shape; A) concave, B) convex, 

C) flat and D) buried.  Yusifov (2004) also describes how the viscosity of erupted 

mud from marine mud volcanoes is lower than that onshore, making their flow 

lengths longer and their profiles slightly different (Fig. 2.12).  However, the main 

influence on flow length both on and offshore is slope angle. 

 



Chapter 2  The Mud Volcano System 

54 

 
Fig. 2.12:  Types of mud volcanoes based on the shape and appearance on the seismic line.  

A) Concave; B) Convex; C) Flat; D) Buried.  From Yusifov (2004). 

The State Oil Company of Azerbaijan Republic (SOCAR) define four basic groups of 

mud volcanoes based on their eruptive style: 

 

1. Explosive - powerful flow of mud and gas that spontaneously ignites. 

2. Effusive - ejection of large amount of mud breccia with non-ignited gas emission. 

3. Effusive - flow of low viscosity of mud without intense gas emissions. 

4. Extrusive - slow extrusion of viscous mud with very insufficient amount of gas 

(Fowler et al. 2000). 

 

Among these types of mud volcano eruptions, the first two can be very hazardous.  

Others have less destructive power and might be considerably predictable.  This 
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classification system is not very comprehensive and would not suit all mud 

volcanoes as some display several eruptive types during one event.  Dimitrov (2002) 

refined this scheme by providing descriptions based on their morphology and 

eruptive type (Table 2.2).  Dimitrov (2002) also noted that there is no relationship 

between type and geographical position i.e. all three types of mud volcano can be 

found in mud volcanic regions globally depending on the lithology of the local 

sediments and the regional tectonics.  There is no general consensus on which 

classification scheme to use when describing mud volcano systems something that 

must be rectified in order to better understand their processes and distributions. 

 

Mud Volcano Type Description 

I class—Lökbatan type 

Activity has an explosive character commonly with ignition of the 
emitted gases.  Short periods of explosive activity are separated by 
long passive periods.  Lökbatan mud volcano on the Apsheron 
Peninsula, Azerbaijan, Caspian Sea is a typical example.  Usually, the 
extruded mud breccia is characterised by low viscosity.  This 
determines the well-formed steep conical shape of mud volcanoes of 
this type.  Blockages of the feeder channel by mud ‘corks’ and the 
explosive breaking of these corks when the pore-fluid pressure 
exceeds the retention force, explain the activity regime of this mud 
volcano type. 

II class—Chikishlyar type 

Characterised by calm, relatively weak and continuous activity.  Gas is 
vented continuously in approximately uniform quantities.  Numerous 
vents spit out small amounts of gassy mud and water, a very common 
feature of this class.  This type of mud volcano is strongly affected by 
the presence of water saturated layers in the upper part of the 
sedimentary sequence.  They form very low, bulged or flat domes, 
which merge with the surrounding plane, or plate-shaped 
depressions that are often filled up with water.  This type of mud 
volcano is very common on the Kerch Peninsula, Ukraine. 

III class—Schugin type 
The eruptive periods are replaced by weak activity.  This type of mud 
volcanoes may have the greatest distribution worldwide.  It is 
characterised by a great variety of forms, but most commonly they 
build composite craters. 

Table 2.2:  Classification system based on the character of mud volcano activity with respect 

to morphological expression, distinguishing three types of mud volcanoes.  After Dimitrov (2002). 

 

2.4.3 Mud Volcano Activity 

The majority of material forming the kilometre-scale mud volcano edifices is 

erupted during infrequent violent mud breccia eruptions however, for the majority 

of their life they are in their dormant state only erupting small amounts of fluid 
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from metre-scale vents.  Mud volcanoes therefore have a relatively simple life cycle 

which includes (Fowler et al. 2000; Yusifov & Rabinowitz 2004); 

 

Stage 1- Eruption: Hydraulic failure of the strata with the overpressured 

stratigraphic section. 

 

Stage 2- Depletion: Migration of gas, oil and water to the surface from fractures, 

mud flows and adjacent porous strata. 

 

Stage 3- Quiescence and build-up: Accumulation of primary and/or secondary 

overpressure. 

 

This life cycle can occur over tens to thousands of years and will vary greatly at 

different edifices (Judd & Hovland 2007).  This means that mud volcanoes can be 

classified according to the ‘eruption type’ or stage of life cycle that it is currently in.  

Mud volcanoes can evolve from one eruptive type to another over a certain period 

of time.  Some violent eruptions have resulted in flames 500 m high erupting from 

edifices usually accompanied by extrusion of viscous mud breccia (Aliyev et al. 

2002; see Appendix I).  Such an eruption occurred at Lökbatan mud volcano in 2001 

with the main eruption lasting 2-4 hours  but a smaller flame continued to burn for 

months after the initial eruption (Aliyev et al. 2002).  Only 25% of the mud 

volcanoes in Azerbaijan erupt and only a third of these have been known to ignite 

(Judd & Hovland 2007).  Ignition of erupting gases is thought to occur because of 

the supersonic velocity at which the erupting gas jets escape, this has also been 

noted for submarine mud volcanoes (Judd & Hovland 2007).  During a mud 

volcanoes ‘dormant’ stage of life varying vent types can form on their crests 

depending on the nature of fluids being erupted.  These ‘dormant’ phases comprise 

approximately 95% of a mud volcanoes life cycle with the remaining 5% being 

violent eruptions (Judd & Hovland 2007).  Vent types include; gryphons, salses, 

pools, breccia pipes, mud plugs and cinder mounds (Table 2.3; Hovland et al. 1997; 

Guliyev et al. 2000; Planke et al.2003; Mazzini et al. 2009).  Many ‘dormant’ mud 

volcanoes show no sign of active fluid venting however, do have kilometre-scale 
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mud flows on their flanks which are testament to mass mud and fluid venting in the 

past. 

 

Sub-areal mud edifices get heavily eroded by weathering processes, but submarine 

edifices build aggradational structures whose overall shape and lateral margins 

reflect relative rates of extrusion and background sedimentation (Evans 2008).  In 

due course these extrusions get buried and can alias as intrusive chambers (Stewart 

& Davies 2006).  Depending on the eruption rate, different extrusive events may 

become ‘inter-fingered’ with background sedimentation forming the typical 

‘Christmas tree’ structures seen on seismic reflection data (Fig. 2.13; Stewart & 

Davies 2006).  Unlike salt the mobility of mud decreases with time via fluid loss so 

extrusive edifices generally become integrated into basin tectono-stratigraphy as 

mechanically stable units (Stewart & Davies 2006). 

 

 
Fig. 2.13:  Schematic showing end-member geometries of stacked mud volcanoes in a 

subsiding basin.  Volcanoes are kilometre-scale.  No sub-volcanic structure is implied.  A) A single 

mud volcano bicone at a shallow structural level, connected by a long feeder to the mud source.  B) 

Episodic reactivation, edifice building and burial create a stack of bicones of various sizes, the 

youngest shown here yet to be fully buried.  C) A single episode of pulsed extrusion, punctuated by 

brief periods of relatively high rates of background sedimentation, creates an interdigitating margin 

and ‘Christmas tree’ appearance.  Geometries A or C could be misinterpreted as plutonic intrusions.  

Modified from Stewart & Davies (2006). 



 

 

 

Chapter 2                      The Mud Volcano System 

58 

 Table 2.3: Different vent types found on mud volcanoes. 
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2.4.4 Calderas 

These structures have been the subject of an increasing number of recent 

publications especially in reference to their identification in seismic reflection data 

(Fowler et al. 2000; Graue 2000; Kopf 2002; Somoza et al. 2003; Davies & Stewart 

2005; Stewart & Davies 2006; Evans et al. 2008).  Calderas are a structural feature 

that can be found on both igneous and mud volcanoes globally.  They form after 

fluids and sediment from depth has been erupted onto the surface allowing 

collapse into the conduit during evacuation.  This void is later infilled by the 

collapse of the strata above resulting in a collapse structure at the surface i.e. a 

caldera.  They take the form of circular or elliptical depressions on the summit of 

the edifices (Fig. 2.14).  Some studies have utilised caldera elongation as regional 

stress indicators (Bonini 2008; Bonini & Mazzarini 2010).  The depressions are often 

bounded by inward-facing faults at the terminations of kilometre-scale mud 

volcano systems (Evans et al. 2008).  The largest mud volcano caldera collapse 

structure identified by Evans et al. (2008) is 2.5 km in diameter.  Using data from 

both on- and offshore Evans et al. (2008) noted that the morphology of these 

structures briefly consists of a ‘rim’ that defines the topographic boundary of the 

caldera, a ‘caldera fault system’ usually consisting of concentric faults (see section 

2.3.3), a ‘moat’ and a series of mud breccia deposits that built up to form a 

‘pedestal’ (Fig. 2.14).  These features can occur at a range of scales with both on- 

and offshore examples sharing a common form globally. 
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Fig. 2.14:  Mud volcano calderas.  A) Photograph of a small caldera to the west of Bahar mud 

volcano, Azerbaijan.  B) Schematic block diagram illustrating the principal structural and 

morphological elements of a typical circular mud volcano summit caldera identified.  Dashed lines 

indicate areas of tentative interpretation.  From Evans et al. (2008). 

 

2.4.5 Flows 

Mud flows are an extremely common structure found on the edifice flanks of mud 

volcano systems.  Their morphology is heavily influenced by rheology, slope angle, 

grain size and fluid content.  Flows can often resemble those from igneous 

volcanoes or even glaciers (Planke et al. 2003; Judd & Hovland 2007).  These flows 

will always flow down the steepest flank of the edifice unless confined by some 

other topographic features i.e. a caldera or a gulley.  If the flow is composed of 

viscous mud if may erode into the flanks of the volcano becoming highly 

channelised (Planke et al. 2003).  Less viscous mud forms levees at the periphery of 

the flows with a faster moving region at the centre of the flow.  On high slope 

angles (>10°) flows are relatively thin i.e. <100 m wide, however, once slope angle 

decreases or the flow reaches a plain it will become more lobate and spread out.  If 

slope angle decreases, the flow encounters an obstacle or reaching the termination 

of a flow compressional ridges will form similar to those in ‘ropey’ lava flows.  Mud 

flows can look similar on several scales indicating that they may be self similar in 

nature (Fig. 2.15).  Kilometre-scale mud flows are able to carry clasts up to 1.5 m in 
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length but this may largely be dependent on the rheology of the mud and energy of 

the eruption. 

 

These individual mud flows eventually aggrade to form one edifice, which is actually 

composed of a series of pulsed eruptive events which control the morphology of 

the edifice over time.  The duration and frequency of each ‘pulse’ is key to 

controlling the internal architecture of the edifices (Evans et al. 2006).  Evans et al. 

(2007) used seabed phase reversals on seismic reflection data to identify fluid rich, 

mud flows in the South Caspian Basin.  Chow et al. (2006) used ground penetrating 

radar (GPR) in south-western Taiwan in order to construct high-resolution imaging 

of subsurface structures in mud volcano sediments and flows.  They found that the 

key controls on flow morphology are rainfall, viscosity of mud and the gradient. 

 

 
Fig. 2.15:  Different scales of mud flow from mud volcanoes.  A) Koturdag mud volcano with a 

1.3 km long mud flow emanating from its caldera.  Image © 2010 GeoEye, © 2010 Google.  B) 

Photograph of a gryphon with a centimetre-scale mud flow flowing from a small depression at its 

crest.  Note in both pictures the compressional ridges at the base of each flow and the levees 

building up on either side of the flows in their lower reaches. 

 

2.4.6 Deposits 

Mud volcano systems generally emit mixes of gas, water, oil and solid sediment a 

feature that is common to all globally.  It is these deposits which govern how the 

edifice itself accretes as discussed earlier in this section.  There is no accepted 
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terminology for the sediments deposits or erupted by mud volcano systems (Kopf 

2002).  The ‘liquid mud’ that is erupted often contains clasts ranging from <1 cm to 

~1.5 m (Fig. 2.16B; Judd & Hovland 2007) and these can vary from rounded to 

angular.  These clasts may have been part of the original source domain or they 

may have been plucked from the strata that compose the sides of the intrusive 

conduit. 

 

Fluids that erupt from mud volcano edifices may have a number of sources as 

discussed earlier in section 2.1.  Chemical analysis of fluids in Azerbaijan show that 

mud volcanoes can erupt four different mixes of dissolved components including; a) 

hydrocarbons and sodium, b) chlorine and magnesium, c) chlorine and calcium and 

d) sulphur and sodium (Aliyev et al. 2002).  These different components result in a 

range of crystalline deposits forming at the surface around vents (Fig. 2.16A, D and 

E).  Gases emitted by mud volcanoes are predominantly hydrocarbon based i.e. 

methane however, some mud volcanoes have been known to emit carbon dioxide 

or nitrogen (Judd & Hovland 2007).  These gases can ignite leaving the mud 

surrounding the seep vitrified and burned producing cinder mounds (Fig. 2.16C).  

The study of methane flux to the atmosphere from mud volcanoes has been of 

significant interest in the recent literature (Hedberg 1974; Milkov 2000; Kopf 2002; 

Dimitrov 2002; Etiope et al. 2002; Milkov et al. 2003; Etiope & Milkov 2004). 

 



Chapter 2  The Mud Volcano System 

63 

 

 

 

 

 

 



Chapter 2  The Mud Volcano System 

64 

Fig. 2.16:  Photographs of eruptive deposits on mud volcanoes in Azerbaijan.  A) A salse 

erupting oil with a gryphon erupting mud into it at Pirsaatadag mud volcano.  B) A sandstone clast 

within the kilometre-scale mud flow on Kichik Kharami mud volcano.  Note the rucksack for scale.  C) 

Cinder mound marking the location of the gaseous eruption of Lökbatan mud volcano in 2001.  Note 

the camera case for scale.  D) Salt deposits around a salse on Kichik Kharami mud volcano.  E) 

Nodular concretions found on top of Kichik Kharami, Koturdag C and Pirsaatadag mud volcanoes. 

 

2.5 The Roof Domain 

The roof domain is the shallowest structural domain of the mud volcano system.  Its 

base is defined by the top of the extrusive domain and any extrusive edifice that 

has formed (Fig. 2.1).  Its top is defined by the surface of sediment that has buried 

the system and covered the extrusive domain.  The roof domain therefore is only 

present in systems that have undergone burial and it can only be identified if a 

cross-section through the system is available (i.e. a seismic profile).  It is not 

possible to determine whether a system has a roof domain through surface analysis 

alone therefore for the purpose of this study it is not important.  Principally the roof 

domain consists of sediments that bury the system, any through-going minor 

intrusive systems that connect the buried portion of the system to the surface and 

any surface expression that results i.e. seeps.  The roof domain includes a variety of 

differential compaction structures including a zone of fluid escape structures above 

the apex of the buried, compacting mud volcano.  On shore these occur as swarms 

of metre-scale gryphons, offshore large mud pools occur on the sea bed (Evans 

2008). 



Chapter 3  Structure of Mud Volcano Feeder Complexes 

65 

3 Structure of Exhumed Mud Volcano Feeder Complexes, 

Azerbaijan1 

 

Abstract 

This study documents the first structural field mapping of exhumed mud volcano 

feeder complexes.  Three mud volcanoes outcropping onshore in Azerbaijan were 

selected on the basis of outcrop quality and scale.  These examples are all located 

within 1 km of the axes of NW-SE trending folds associated with the southern 

margin of the Greater Caucasus mountain belt.  The mapping shows that the 

intrusive complexes are 200 m to 800 m wide and roughly circular.  These feeder 

complexes consist of a mega-breccia of country rock blocks at a scale of tens of 

metres, enclosed in a matrix of intrusive mud.  Minor structures include grid like or 

conjugate fractures sets, sinuous fractures, mud plugs and breccia pipes.  The 

country rock blocks are deformed and rotated relative to surrounding sedimentary 

strata.  Alternative mechanisms to explain the strain history of these large blocks in 

the feeder complexes are: a) stoping, b) flow rotation and c) caldera collapse.  The 

mapping indicates that the most likely mechanism involves stoping processes, 

similar to those identified in igneous systems.  This chapter provides a basis for 

reservoir distribution in commercial geological models that contain the feeder 

complexes of mud volcano systems, and also constrains conduit geometry for 

modelling studies of evolution and flow dynamics. 

 

 

 

 

                                                      
1 This chapter is based on a paper that has been published in the journal ‘Basin Research’ as part of 

a thematic set.  Referenced as ‘Roberts, K.S., Davies, R.J. & Stewart, S.A. (2010).  Structure of 

exhumed mud volcano feeder complexes, Azerbaijan.  Basin Research, 22, 439-451, DOI: 

10.1111/j.1365-2117.2009.00441.x’, see Appendix V. 
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3.1 Introduction 

Mud volcanoes are a widespread type of piercement structure that allow for 

focussed fluid escape from sedimentary basins.  Little is known, however, about the 

geometry of the sub-volcanic feeder complexes that constitute the intrusive 

domains (Davies & Stewart 2005).  Even less is known about the small scale 

structure of these feeder systems and their effect on the country rock that they 

intrude (Davies & Stewart 2005).  The term ‘mud volcano system’ was coined by 

Stewart & Davies (2006) to describe the set of structures associated with a 

constructional, extrusive edifice (mud volcano) and underlying plumbing of the 

volcano, which connects it to its stratigraphic source unit (Stewart & Davies 2006).  

Previous studies have described various architectures connecting extrusive mud 

cones to their underlying source layer, ranging from bulbous diapirs (Brown 1990) 

to steep diatremes (Robertson & Kopf 1998) and narrow vertical pipes (Graue 

2000).  Currently, the two most widely-publicised alternative models for the sub-

volcanic plumbing system are kilometre-scale mud diapirs (Morley & Guerin 1996) 

or intricate mud pipe, dyke and sill complexes (Morley 2002; Stewart & Davies 

2006). 

 

Detailed mapping of the intrusive domains of mud volcanoes will enable better 

understanding of the processes governing the fluid transport through the shallow 

crust and how the surrounding country rock is influenced.  Comparisons can be 

made with igneous systems that appear to share many common features with mud 

volcanoes (Stewart & Davies 2006).  Guliyev et al. (2000) commented on the spatial 

and genetic relationship of mud volcanoes with oil and gas fields, an affiliation that 

impacts drilling operations, rig installations and pipeline routings.  Problems occur 

as a result of mud eruptions and instability of the surrounding sediments (Yusifov & 

Rabinowitz 2004).  There are further instances of commercial significance where 

reservoirs are intersected by the intrusive domain of mud volcano systems.  In 

these cases the size, shape and internal structure of feeder systems is a local 

control on both hydrocarbons in place and reserves (Stewart & Davies 2006). 
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This study investigates outcrop-scale features seen within intrusive systems of 

kilometre-scale mud volcano systems exposed onshore in Azerbaijan (Fig. 3.1).  

Field mapping focussed on the size, shape and internal structure of country rock 

outcrops within the feeder complexes, an aspect poorly described in previous 

studies.  These conduits are interpreted as mature, long-lived systems where 

episodic activity has continued throughout recent exhumation of the onshore area 

(Fig. 3.2).  Although the majority of onshore mud volcano outcrops are recent 

extrusive edifices, there are occasional examples where lack of recent voluminous 

eruptions means that exhumed intrusive domains are as yet-unburied (Fig. 3.2).  

Three of these exposed intrusive domains were identified for mapping in this study. 

 

3.2 Geological Setting 

The South Caspian Basin is known for its abundant large mud volcano systems 

(Guliyev et al. 2000; Milkov 2000; Aliyev et al. 2002).  This concentration of mud 

volcano systems occurs due to the presence of a thick deposit of the argillaceous 

Maykop Formation of Oligocene to Miocene age (Hudson et al. 2008).  The 

formation is approximately 1 km thick and is buried to a depth 3.5-5 km in the area 

of this study (Allen et al. 2002).  The Maykop Formation is thought to be 

overpressured and therefore under-compacted, fluids from deeper sources (Kopf 

2002) probably entrain the mud during their ascent and erupt at the surface.  A 

compressional tectonic regime has been maintained since the Late Pliocene (Allen 

et al. 2002, 2003; Jackson et al. 2002) resulting in the formation of a large number 

of fold structures within the basin.  The anticlinal crests contain some of the largest 

hydrocarbon accumulations in the world and many large mud volcanoes (Devlin et 

al. 1999). 
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Fig. 3.1:  Map of the Caspian coastline in Azerbaijan showing the location of the study areas 

(localities marked with stars) and the trends of anticlines axes (indicated by black line with dash 

across).  Inset map of Azerbaijan shows map location as red box. 

 

Allen et al. (2002) backstripped a stratigraphic column from the northwest of the 

South Caspian Basin and found that 2.4 km of tectonic subsidence had occurred 

since c. 5.5 Ma which they attributed to basement subduction.  Several kilometres 

of sediment has accumulated in this time, while the upper part of the succession 

has begun to deform by buckle folding (Allen et al. 2002).  Allen et al. (2002) 

proposed that basement subduction began c. 5.5 Ma to create the major Pliocene-

Quaternary subsidence.  Buckle folds have now been exhumed onshore and the 

crests of the anticlines have been eroded.  The present day mud volcanoes seen 

onshore therefore extrude through partially eroded anticlinal crests.  The mud 

volcano systems, studied here, pierce through strata up to and including the 

Absheronian (Early Pleistocene; Fig. 3.2; Reynolds et al. 1998; Abdullayev 2000).  

Since the uppermost parts of the feeder systems have been eroded, the onshore 

exposures do not provide a complete replica of subsurface structures imaged on 
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seismic reflection data (Fig. 3.2).  On the other hand this does provide the 

opportunity, in those cases where the feeder complex is exposed, to directly map 

the intrusive domains that are imaged as part of mud volcano systems offshore.  

This exhumation has not occurred to the offshore structures of the Caspian Sea 

where complete mud volcano systems are imaged on seismic reflection data (Fig. 

3.2; Stewart & Davies 2006). 

 

 
Fig. 3.2:  Schematic regional seismic section depicting the relationship between exhumed intrusive 

domains onshore to the deeply buried, folded mud volcanoes offshore.  Yellow and green marker in 

the Pliocene offshore strata represent hydrocarbon reserves. 

 

3.3 Methods and Datasets 

Three separate mud volcano systems were chosen on the basis of the extrusive 

domain being partially or completely eroded, exposing the underlying feeder 

complex.  Kichik Kharami, Alyaty Ridge and Pirsaatadag mud volcanoes along the 

west coast of the Caspian Sea were selected on this basis (Fig. 3.1).  Mapping of 

these onshore mud volcano systems was carried out using a handheld global 

positioning system (GPS) receiver, with a positional accuracy of 5 m.  Structural 

readings such as bedding, fracture and fold orientations were measured using a 

compass clinometer (see electronic Appendix II for raw data) then loaded into 

GEOrient software to plot stereographic projections.  Fracture density was 

measured by placing a metre rule parallel to bedding and counting the number of 

fractures that crossed the rule over one metre length.  The GPS co-ordinates with 

their corresponding structural datasets were integrated as layers in ArcMap 
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software.  The coordinate system for the data was input using spheroid WGS 1984.  

This automated transcription produced the basic structural maps reproduced in this 

chapter. 

 

3.4 Observations 

3.4.1 Kichik Kharami Mud Volcano 

This is located 87 km southwest of Baku (Fig. 3.1) and outcrops 0.6 km to the south 

of an anticline axis (Fig. 3.3A).  The plan-view shape of the volcano system is 

broadly circular and measures c. 0.9 km by 0.6 km in aerial extent.  The boundary of 

this area is defined by the edge of the peripheral faulted/fractured zone within the 

feeder complex where both sinuous and conjugate fracture types are found.  Of the 

total feeder complex area, some 20% is exposed while the remaining 80% is 

covered by very recently erupted mud, indeed mud is still extruding in small 

quantities at present.  The volcano is surrounded by well-exposed country rock 

forming the anticline through which the feeder complex intrudes (Fig. 3.3C). 

 

 

 



Chapter 3  Structure of Mud Volcano Feeder Complexes 

71 

 



Chapter 3  Structure of Mud Volcano Feeder Complexes 

72 

Fig. 3.3:  Case Study 1- Kichik Kharami Mud Volcano.  A) Location of Kichik Kharami to the south of an 

anticline axis.  Red rectangle marks the area seen in Fig. 3.3C.  Image © 2010 DigitalGlobe, © 2010 

Google.  B) Outcrop at centre of Kichik Kharami volcano showing a large ‘block’ of highly fractured 

sandstone surrounded by a mud matrix.  C) Structural map of Kichik Kharami.  The central red area 

marks the zone where fluid is currently being extruded (i.e. the ‘active vent zone’).  The orange area 

outlines the zone where both sinuous and conjugate fracture systems are found (i.e. the ‘peripheral 

fracture zone’).  The grey transparent zone represents the area where bedding strike measurements 

vary greatly from the surrounding anticlinal bedding (i.e. the ‘central zone of block rotation’).  Any 

other areas that do not fall into these coloured zones are part of the ‘un-intruded zone’ which 

contains only conjugate faulting/fracturing.  Purple areas mark areas where old mud flows cover 

outcrop.  Image © 2010 DigitalGlobe, © 2010 Google. 

 

The ‘feeder complex’ of all three case studies is defined as the area delimited by the 

peripheral fracture zone (highlighted in orange in Fig. 3.3C, Fig. 3.7B and D).  

Fracturing of the country rock increases in intensity towards the centre of the 

feeder complex, with the most common fractures being regular, grid-like fractures 

2-3 m in length (Fig. 3.4A; see Appendix II for more pictures of fractures).  These are 

present in both the surrounding country rock and the intrusive domain.  Conjugate 

fractures (0.5-1 m in length) become increasingly infilled closer to centre of the 

complex.  Finally, sinuous fractures (0.5-1 m in length) appear to be restricted to a 

200 m radius from the centre of the feeder complex (Fig. 3.3C).  Fracture density 

ranges from twenty-eight per metre at the centre of the feeder complex to two per 

metre within the anticline bedding at the edge of the peripheral faulted/fractured 

zone (Fig. 3.5A). 
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Fig. 3.4:  A) Mud infilling pre-existing joints and fractures within the country rock, found in both the 

peripheral fracture zone and the un-intruded zone.  B) Sinuous fractures only found in the peripheral 

fractured zone, often contain small clasts of country rock as seen in the inset picture.  Pen for scale. 

C) Mud plugs consisting of dense mud breccia flows and D) Breccia pipes where country rock clasts 

have been incorporated into the vent walls to form a breccia. 

 

Minor amounts of mud are currently being expelled from this feeder system in the 

form of watery-mud salses (Hovland et al. 1997), although a large, relatively fresh 

mud flow to the south of the mapped area is testament to significant reactivation 

within the past few hundred years or so.  The structural map (Fig. 3.3C) shows that 

the country rock comprising the southern limb of the anticline dip uniformly to the 

south, while blocks within the feeder complex have dip and strike directions that 

vary un-systematically.  The strike directions of the blocks vary up to 90° away from 

the regional anticline bedding strike orientations (Fig. 3.3C).  A slight concentric 

alignment can be discerned from the dip data of beds which dip in towards the 

centre of the feeder complex.  Moving outwards, the beds dip away from the 

centre of the feeder complex and return back to the regional trend of the host 

anticline by a radial distance of 180 m from the centre of the feeder complex.  

Stereonets reveal that the anticline intruded by Kichik Kharami has a moderate 

curvature and interlimb angle (Fig. 3.6A).  All the bedding measurements lie roughly 

along the same plane, apart from bedding readings taken at the centre of the 

volcano which have a large spread with no clear alignment (Fig. 3.6B). 
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Fig. 3.5:  Histograms showing the change in fracture densities per metre with distance from the 

centre of the mud volcano feeder complexes.  A) Kichik Kharami mud volcano, B) Pirsaatadag Mud 

Volcano and C) Alyaty Ridge. 
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Fig. 3.6:  A) Stereonet showing anticline bedding around Kichik Kharami mud volcano.  B) Stereonet 

showing the varying bedding measurements found at the centre of Kichik Kharami mud volcano.  C) 

Stereonet showing anticline bedding around Pirsaatadag mud volcano.  D) Stereonet showing the 

varying bedding measurements found at the centre of Pirsaatadag mud volcano.  E) Stereonet 

showing anticline bedding around Alyaty Ridge.  F) Stereonet showing the varying bedding 

measurements found at the centre of Alyaty Ridge. 
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3.4.2 Pirsaatadag Mud Volcano 

This is located on the southern coast of the Caspian, 81 km south of Baku (Fig. 3.1) 

and is positioned on the hinge of an anticline (Fig. 3.7B).  The exposure of the 

volcano system is in low-lying topography adjacent to the present Caspian shoreline 

and measures c. 0.37 km by 0.4 km in aerial extent.  The location has excellent 

exposures of the mud volcano feeder complex, however, little of the surrounding 

strata is exposed making it difficult to map the margin of the intrusion.  The 

proximity to the present shoreline suggests that this mud volcano system is 

particularly prone to erosion due to its exposure to the Caspian Sea. 

 

Again, three fracture types (sinuous, conjugate and grid-like) are present in this 

mapping area.  The sinuous fractures are wider (1-4 cm wide) than those seen in 

the other case studies and sometimes contain small sandstone clasts within a mud 

matrix (Fig. 3.4B; see Appendix II for more pictures of fractures).  Fracture density 

ranges from twenty fractures per metre at the centre of the feeder complex to 

seven per metre 0.17-0.21 km from the centre (Fig. 3.5B).  The structural map (Fig. 

3.7B) shows a similar layout to that seen at Kichik Kharami mud volcano system, 

except that the zone of rotated blocks is offset to the southeast of the active vent 

zone.  The extrusive features are dominantly active salses inferring that at present 

more fluid is flowing up the Pirsaatadag feeder complex compared with Kichik 

Kharami.  Many structural elements within this feeder complex are exposed as 

positive topographic features consisting of brecciated country rock, mainly 

sandstone (Fig. 3.7A). 
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Fig. 3.7:  A) Case Study 2: Outcrop at centre of Pirsaatadag volcano with rotated bedding strike 

orientation.  B) Structural map of Pirsaatadag Mud Volcano.  The central red area marks the zone 

where fluid is currently being extruded (i.e. the ‘active vent zone’).  The orange area outlines the 

zone where both sinuous and conjugate fracture systems are found (i.e. the ‘peripheral fracture 

zone’).  The grey transparent zone represents the area where bedding strike measurements vary 

greatly from the surrounding anticlinal bedding (i.e. the ‘central zone of block rotation).  Any other 

areas that do not fall into these coloured zones are part of the ‘un-intruded zone’ which contains 

only conjugate faulting/fracturing.  Image ©2010 GeoEye, ©2010 Google.  C) Case Study 3: Outcrop 

at the centre of Alyaty Ridge (compass clinometer at centre of picture for scale).  D) Structural map 

of Alyaty Ridge.  The central red areas at the centre of Koturdag A, B and C volcanoes mark the zones 

where fluid is currently being extruded (i.e. the ‘active vent zone’).  The orange area outlines the 

zone where both sinuous and conjugate fracture systems are found (i.e. the ‘peripheral fracture 

zone’).  Any other areas that do not fall into these coloured zones are part of the ‘un-intruded zone’ 

which contains only conjugate faulting/fracturing.  The green area represents an area of contorted 

bedding and the blue areas indicate areas where scarps have formed due to slope failures down the 

flank of the anticline.  Purple areas mark areas where old mud flows cover outcrop.  Image ©2010 

GeoEye, ©2010 Google. 

 

3.4.3 Alyaty Ridge 

Within this area there are three mud volcanoes termed here Koturdag A, Koturdag 

B and Koturdag C (Fig. 3.7D and Table 3.1).  This area was chosen as it has a 

structurally complex, exposed anticlinal core with several mud volcanoes extruding 

along its axis (Table 3.1 and Fig. 3.7D).  This provides a comparison to the two less 

structurally complex case studies. 

 

Mud Volcano Long Axis (km) Short Axis (km) 

Koturdag A 1.4 1.35 

Koturdag B 1.0 0.45 

Koturdag C 0.35 0.2 

Table 3.1:  Dimensions of mud volcanoes (A, B and C), that extrude along Alyaty Ridge. 

 

Once more the sinuous, grid-like and conjugate fractures can be seen with the 

sinuous fracturing becoming more intense towards the central axes of the mud 

volcanoes (Fig. 3.5C; see Appendix II for more pictures of fractures).  Fracture 
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density rises from one per metre at a radial distance of 0.75 km, and rises to twelve 

per metre within the feeder complex (Fig. 3.5C).  The core of this anticline consists 

of a structurally complex zone of disharmonic folds and contorted bedding (Fig. 

3.7D).  This structural complexity appears to be genetically separate from the mud 

volcano systems, a product of the relative tightness of the folding. 

 

Fig. 3.4C and D shows the extrusive features seen at two of the volcanoes.  

Koturdag A produces a kilometre-scale Bingham body style mud flow (Iverson 1997) 

that has been moving for the past fifty years at a rate of 2-6cm/day (Fig. 3.4C; 

Aliyev et al. 2002).  This contrasts with the extrusive features seen at Koturdag B 

and C at which only gryphons, salses and breccia pipes (Fig. 3.4D) are visible.  

Multiple oil seeps are also visible along the stream section of the anticline following 

a fault which lies at right angles to the anticline axis. 

 

The common structural features seen in all three field examples are summarised in 

Table 3.2. 
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Kichik Kharami Yes Yes Yes No Yes 0.6 2-20 >42 

Alyaty Ridge Yes Yes Yes Yes No 0.1 1-5 >52 

Pirsaatadag Yes Yes Yes No Yes 0.01 1-20 >42 

Table 3.2:  Table of structural features present in each field area. 
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3.4.4 Structural Sub-Domains Associated with Feeder Complexes 

The mapping revealed zones of similar structural elements common to all three 

feeder complexes.  These are the ‘active vent zone’, ‘peripheral fracture zone’, and 

‘central zone of block rotation’, which together comprise the feeder complex itself, 

and finally the ‘un-intruded zone’ which lies outside the feeder complex.  In all 

three field examples mapped in this study, the structural zones can overlap.  

Following the general nomenclature set up by Stewart & Davies (2006), here these 

zones are termed structural sub-domains associated with the intrusive domain of 

mud volcano systems (Fig. 3.8).  These sub-domains are defined here in the context 

of mud volcanism for the first time.  The mud volcano feeder complex can be 

defined as the area which has undergone any change in physical characteristics due 

to the intrusion of mud and fluids from the intrusive mud system.  The boundary of 

this complex usually corresponds with that of the peripheral fracture zone, 

however, lateral intrusions extending locally beyond the peripheral fracture zone 

are possible.  The criteria by which the sub-domains are identified are defined first, 

starting with that closest to the centre of the feeder complex, moving outwards and 

then illustrate their extent in the field examples. 

 

3.4.4.1 Active Vent Zone (red area on structural maps) 

This zone is recognised as the area in which mud and fluids are actively being 

extruded within the mapped exhumed intrusive domains.  A range of extrusive 

features were observed including gryphons, salses and cinder mounds as described 

by Hovland et al. (1997).  These structural elements were centimetres to metres in 

scale. 

 

3.4.4.2 Central Zone of Block Rotation (grey area on structural maps) 

This region characterises the centre of the feeder complex.  It consists of a region of 

large blocks of country rock (1-20 m in length; see Appendix II for more pictures of 

clasts) which have strike orientations varying up to 90° to that of the surrounding 

sedimentary strata.  The blocks are separated by a matrix of mud breccia. 
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Fig. 3.8:  Schematic of the mud volcano ‘feeder complex’.  The ‘active vent zone’ is highlighted in red, 

this represents the area of the mud volcano that is currently erupting fluid.  The ‘peripheral 

fractured zone’, in orange, marks the region where both sinuous and conjugate fracture sets are 

present in the country rock.  The ‘central zone of block rotation’, in purple, indicates the area where 

blocks of country rock with bedding strike measurements vary from the normal bedding orientations 

seen in the un-intruded anticlinal bedding.  The ‘un-intruded zone’, in grey, denotes the region that 

has been unaffected by the intrusion of the mud volcano system.  Here only conjugate fractures that 

contain no fill are found.  The full yellow lines represent areas of bedding that follow the general 

anticlinal trend, whereas dashed yellow lines indicate areas where bedding strikes could be rotated 

away from the regional trend.  Sinuous blue lines indicate active fluid flow to the vents erupting at 

the surface. 

 

 



Chapter 3  Structure of Mud Volcano Feeder Complexes 

83 

3.4.4.3 Peripheral Faulted/Fractured Zone (orange area on structural maps) 

This region is characterised by country rock that contains fracture sets only seen in 

proximity to the mud volcano system, as opposed to regional fracture sets.  These 

fractures are often sinuous and infilled with mud and small clasts of country rock, 

with typical widths of 1-2 cm and lengths of 2-4 m. 

 

3.4.4.4 Un-Intruded Zone 

This zone contains strata that has been un-affected by the intrusion of the mud.  It 

is usually composed of country rock with open, un-filled, conjugate fractures and 

jointing produced by folding.  The fractures do not contain any mud infill. 

 

3.4.4.5 Fracturing 

Sinuous fractures and conjugate fractures are present in all three case studies.  The 

grid-like fractures occur throughout every region of the mapping areas.  These are 

interpreted as being typical of fold-related fractures (Ramsay & Huber 1987) on the 

basis that these fractures are present in areas at some distance from mud volcano 

feeder complexes.  Fractures within the feeder complexes are infilled by mud; those 

in un-affected country rock tend to be open.  The sinuous fracture systems are only 

found within the feeder complexes and are usually infilled by mud.  In cross section 

these fractures appear to be sinuous in form, however, it is important to note that 

in three dimensions the fracture plane would also have a sinuous morphology.  At 

Kichik Kharami they are found within a 250 m radius of the centre of the feeder 

complex and at Pirsaatadag they are 180 m radius from the centre (Fig. 3.5B). 

 

3.4.4.6 Blocks of Country Rock in the Feeder Complexes 

Large blocks of country rock are present at outcrop within all the feeder complexes 

mapped in this study.  These blocks are up to 20 m in length and clearly preserve 

original sedimentary architecture.  However, they are heavily fractured with the 

majority of these fractures being infilled by mud.  The blocks consist of sands and 
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shales, as does the country rock but due to the monotonous nature of the regional 

stratigraphy it was difficult to determine whether the blocks had moved vertically 

within the feeder complex, or whether they correlate laterally with strata that 

currently outcrop adjacent to the feeder complex. 

 

In Kichik Kharami and Pirsaatadag mud volcanoes the blocks are rotated relative to 

the surrounding country rock.  The degree of rotation generally increases towards 

the centre of the feeder complexes. 

 

3.5 Interpretation 

This discussion focuses on three key features apparent from the mapping a) the 

varying degree of fracturing, b) the presence of large blocks of country rock in the 

feeder complexes and c) deformation of these blocks. 

 

3.5.1 Degree of Fracturing 

In each case study fracture density increases from the far field to the centre of the 

feeder complexes (Fig. 3.5).  At Pirsaatadag the fracture density increase towards 

the centre of the edifice which may also have a component of fracture density 

variation due to the position of the mud volcano system on the regional fold axis 

(Fig. 3.6C).  Kichik Kharami intrudes to the south of the anticline axis, an area which 

would not be as highly fractured, however, still maintains a fourteen fold increase 

in fracture density at the centre of the mud volcano (Fig. 3.5A).  It is only the 

sinuous fracture set that dramatically increases in fracture density towards the 

centre of the feeder complexes in all three case studies.  This suggests that the 

intrusion itself, rather than the folding, is the principal control on fracture 

distribution in the feeder complex. 

 

The non-tectonic fractures can be explained by the mud intrusion process.  

Overpressured mud produces a sustained pressure differential between the fluid in 
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the propagating fractures and the fluid in the pores of the country rock.  This 

exceeds the minimum principal stress, causing fracture dilation and enabling the 

fluid mixture to flow through the fracture (Morley et al. 1998; Jolly & Lonergan 

2002).  This may be enhanced by an impermeable ‘mud cake’ being deposited on 

the fracture walls which would prevent fluid leakage out of the fracture and help 

sustain the fluid pressure within the fracture (Morley 2003).  These processes 

facilitate fracturing at depth and eventual propagation towards the surface.  As 

fracture size and density increases, more mud intrusion occurs and eventually 

forms one large feeder complex (Abidin et al. 2008). 

 

3.5.2 Blocks of Country Rock within the Feeder Complex 

Up to 20 m in length, these are prominent features at outcrop but would be un-

detectable at the resolution of seismic reflection data employed in commercial 

hydrocarbon exploration.  The varying strike orientations imply that the blocks are 

rotated.  These blocks are interpreted as ‘megaclasts’ of country rock.  The large 

proportion of mud outcropping in the feeder complexes indicates the amount of 

country rock that has now been removed.  It is not obvious from the mapping 

whether the missing volume of country rock has risen upwards towards the 

extrusive domain, or sunk downwards towards the mud source. 

 

A feature of the country rock blocks within the feeder complexes is that they 

become increasingly rotated with proximity to the central (vertical) axis of the 

feeder complex.  The dips of the blocks still remain in the range of 40-88°, similar to 

dip magnitudes observed in the surrounding country rock.  The bedding at the core 

of Kichik Kharami dips towards the centre of the feeder complex (Fig. 3.3C).  This is 

interpreted as indicating that the cause of the block rotation is a process related to 

the mechanics of the feeder system.  At Pirsaatadag the central zone of block 

rotation is offset to the southeast of the centre of the active vent zone (Fig. 3.7B).  

It is likely that the area of current extrusion has migrated to the northwest from the 

southeast resulting in exposure of the extinct zone of intrusion.  The map of 
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bedding in Fig. 3.7B shows a similar layout to that seen at Kichik Kharami mud 

volcano suggesting that this is a common occurrence in the intruded strata. 

 

3.6 Discussion: Block Rotation Processes 

This study has shown the occurrence of discrete sub-domains within mud volcano 

feeder complexes (active vent zone; peripheral faulted/fractured zone; etc.).  These 

have only been mapped in 2-D (map view) in the examples studied here– but given 

the arbitrary structural level of exhumation in the field area, it can be suggested 

that the zonation mapped in this study is representative of the structure of feeder 

complexes in the subsurface.  The form and dimension of a feeder complex could 

change relative to the proximity to either the extruded edifice or whether it is just 

above the source domain.  The observations made therefore might only be 

applicable to a certain part of the mud volcano system and this should be taken into 

consideration.  Because of the small (metre) scale of these features, such a 

subdivision, has not been possible using the seismic reflection method previously 

applied to subsurface examples offshore Azerbaijan (Davies & Stewart 2005; 

Stewart & Davies 2006).  However, it has been possible to witness the development 

of potentially similar zones at the Lusi mud volcano system which is currently 

forming in East Java.  The Lusi mud volcano has a central zone which is coincident 

with the main active vent.  Surrounding this is evidence for faulting and fracturing 

(peripheral fault and fracture zone), that has led to the establishment of 

approximately 169 new vent sites (Mazzini et al. 2007). 

 

Alternative models are now considered to account for the observed distribution 

and deformation of blocks within the mapped feeder complexes, and identify the 

most likely mechanism for these examples. 
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3.6.1 Flow Rotation 

Flow rotation is a common mechanism of rotation found in several geological 

environments (Reading 1996).  It is most commonly seen within debris flows that 

are gravity-driven surges of roughly equal volumes of water and poorly sorted 

sediment, with the largest flows transporting boulders in the order of 10 m in 

diameter (Iverson 1997).  Intrusive mud has to overcome the gravitational force, 

nonetheless the process may be applicable.  Another analogue could be fluvial 

imbrication where a shear force is exerted on pebbles in a stream bed causing the 

pebbles to rotate and stack on top of one another with their long axes pointing in 

the direction of flow (Reading 1996).  Application of this mechanism would involve 

long-lived, multiple intrusive events of mud intruding upwards through pre-existing 

and new fractures.  Shear forces on the fracture walls are the mechanism driving 

block rotation – it seems reasonable to assume that variation in amount of shear 

stress around the margins of a block (a necessity for rotation) would occur as a 

result of variations in mud flow rates through the fracture network (Fig. 3.9C).  In 

order to conserve volume, the addition of mud to the system must also result in 

expulsion of the country rock that the mud now replaces.  The smaller blocks could 

be carried upwards by intruding mud, ultimately to be expelled in the 

constructional edifice of the extrusive domain.  Evidence to support this is the 

common presence of deep-sourced clasts in extruded mud flows (Guliyev et al. 

2000). 

 

Flow rotation is probably an unlikely mechanism due to the magnitude of forces 

needed to rotate such large blocks of country rock (Kopf & Behrmann 2000).  The 

density of the mud-fluid mix required to exert a shear force on 20 m long blocks of 

country rock would be extremely large.  Even in the largest mud flows emanating 

from mud volcanoes, no blocks greater than 1 m in length were observed in the 

study or reported in the literature (Guliyev et al. 2000).  This suggests that the force 

of the flowing mud is not capable of moving blocks of the largest scale (20 m) 

observed in the feeder complexes. 
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Fig. 3.9:  Mechanisms.  A) Schematic of the ‘caldera collapse’, mechanism modified from Cole et al. 

(2005), B) schematic map view of the intrusive mud rotation and C) schematic cross section of the 

‘flow rotation’ mechanism. 
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3.6.2 Stoping 

Stoping in its igneous context is the mechanical disintegration of the country rock 

surrounding an intrusion, typically through fracturing due to pressure increases 

associated with thermal expansion of the host rock in proximity of the interface 

with the melt (Pinotti et al. 2002).  Fracture networks begin to propagate through 

the country rock closest to the intrusion.  Once fractures are formed, melt and 

volatiles typically invade, widening the fracture and promoting the foundering of 

host rock blocks (Marsh 1982).  When suspended in the melt, ‘stoped’ blocks may 

either sink or float depending upon the density of the block relative to that of the 

melt (Marsh 1982; Kopf & Behrmann 2000). 

 

This process is not directly applicable to mud volcano systems as the upwelling 

fluids are not hot (Guliyev et al. 2000) and so would have no significant effect on 

the thermal expansion of the surrounding country rock.  However, upwards-

propagation of a fracture network driven by overpressured mud and fluids could set 

up a similar situation to igneous stoping (Morley et al. 1998; Kopf & Behrmann 

2000; Morley 2003).  Blocks isolated by this means would become suspended in the 

mud and allowed to rotate freely. 

 

Once the initial failure of the rock occurs at depth more mud can intrude along the 

fractures and the stoping process slowly propagates to the surface of the edifice, 

with the majority of the fracture network being produced by hydrofracturing (Jolly 

& Lonergan 2002).  This highly intruded zone of country rock now forms a ‘stoping 

column’ (Fig. 3.10C; Geshi et al. 2002).  Breaching the surface would release fluids 

and with it some of the overpressure from the chamber (Geshi et al. 2002).  The 

evacuation of material would cause a void to form at depth resulting in lack of 

support for the country rock above (Fig. 3.10D).  As more fluids are expelled, the 

overburden would increase and may induce piecemeal caldera collapse into the 

void left in the vent (Fig. 3.10D; Cole et al. 2005). 
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Fig. 3.10:  Schematic of the ‘hybrid stoping’ mechanism modified from Geshi et al. (2002).  A) 

Intrusion stage before the surface collapse.  Evacuation of mud from the reservoir caused stoping of 

the roof rock of the reservoir.  Underground stoping formed a cavity at the top of the stoping 

column.  B) The early stage of summit subsidence.  The roof rocks of the cavity cannot carry their 

own weight and collapse into the cavity.  Release of mud and fluids fills the cavity.  C) The late stage 

of the summit subsidence.  Continuous evacuation of mud from the reservoir caused the subsidence 

of the roof of the reservoir.  The top of the stoping column was filled with the collapsed materials 

from the outward migrating caldera wall.  D) Explosive stage.  Invasion of fluids to the stoping 

column causes eruption and conduit consists of large blocks of country rock rotating freely within it. 
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The stoping hypothesis assumes a general downwards movement of stoped blocks, 

a feature that is not demonstrable in the case studies.  Stoping models also, often, 

contain an element of block melting and mixing to preserve the volume of the 

system.  This is not an option in mud volcano systems due to the low temperature 

of the intruding mud. 

 

3.6.3 Rotation Due to Multiple Intrusive Episodes 

After the major stoping event the intrusion of mud, occurring as a result of the 

stoping process, would also exert forces on the blocks of ‘stoped’ country rock.  As 

mud forces its way between the stoped blocks it pushes them away from the flow 

(Fig. 3.9B).  Each time a new intrusion of mud occurs up the conduits more force is 

exerted rotating the blocks further.  This is a similar process found in dyke swarms 

in ophiolites and spreading centres (Moores & Vine 1971).  Igneous dykes intrude 

up the centre of pre-existing dykes, forcing each half of the intruded dyke to 

opposite sides of the new dyke (Moores & Vine 1971).  If one area of the mud 

volcano has a higher rate of intrusion than others then the blocks will be pushed 

and rotated towards areas that are more quiescent. 

 

3.6.4 Caldera Collapse 

Both trap-door and piston caldera collapses have been identified on the 

underwater mud volcanoes in the Caspian Sea (Cole et al. 2005; Stewart & Davies 

2006; Evans et al. 2008).  In these onshore examples the dominant morphology is 

the piecemeal collapse (Fig. 3.9A).  The evacuation of the mud from a chamber at a 

shallow depth would cause a void to be formed.  This would enable the strata 

above to collapse into the chamber.  The effect of this would be enhanced by the 

increased overburden of erupted mud on top of the country rock causing more 

subsidence.  This collapse would not have occurred as one event, instead a 

piecemeal collapse results in the country rock collapsing at different rates and 

times.  This varying collapse rate would enable different blocks of rock to collapse 

and rotate at different times and to varying degrees of rotation. 
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The discrepancy with the piecemeal caldera collapse arises with the large 

differences in strike angles within such a small area.  Piecemeal collapses usually 

only allow bedding rotations of a few degrees (0-20°) rather than the observed 

rotations (0-90°; Cole et al. 2005).  This suggests that caldera collapse cannot be the 

singular cause of the block rotations seen at the centre of the feeder complexes. 

 

3.6.5 Diapirs 

Hovland et al. (1998) define a piercement shale diapir as a positive topographical 

feature constructed mainly of clay-sized sediments that periodically or continuously 

move from the sub-surface and upwards towards and through the sea floor.  This is 

on a scale of 100’s to 1000’s of metres in depth and width.  The diapir itself would 

be composed almost entirely of mud or shale on a ratio of 80:20 (mud : xenoliths).  

This study follows Cooper (2001) and Davies & Stewart (2005) in discounting large-

scale mud diapirism on the basis of there being no observations of that 

phenomenon in the basin. 

 

3.7 Implications 

The identification of structural sub-domains is expected to be of utility for the study 

of other exhumed intrusive domains.  Similar and additional sub-domains could be 

identified in other exhumed feeder complexes and with improved seismic reflection 

technology it is conceivable that similar zones may be detectable in the subsurface.  

The blocks of country rock within these complexes are heavily fractured and cut by 

dense networks of mud intrusions.  This dramatically reduces the reservoir 

potential of these segments within the vent as the country rock has become 

extremely compartmentalised.  Commercially the compartmentalisation of the 

country rock will be significantly increased by the intrusion of the mud dyke 

systems.  Although these segments of country rock are not economic the 

observation that they are present and can be recognised by their change in strike 

compared to the surrounding country rock will improve identification of mud 
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volcano systems when drilling.  The evolution of this system over time should be 

considered when planning wells because old feeder dykes may be encountered 

when drilling.  The reservoir surrounding mud volcano intrusive domains are 

commercially viable, however, large, seismic scale faults, seen during the mapping 

of Alyaty Ridge, may pose problems away from the intrusive domain within tight 

regional fold structures. 

 

These interpretations will enable a better understanding of the processes governing 

fluid transport through the shallow crust and how the processes affect the 

surrounding country rock.  Comparisons with igneous vent systems could be fruitful 

as they share some common morphological and mechanical process with mud 

volcanoes and there may be parallels with the mechanisms by which fluids travel to 

the surface.  Further studies of piercement structures will help establish the 

common processes and products. 

 

3.8 Conclusions 

On the basis of field mapping, including collection of bedding orientations, fracture 

types and densities, sub-domains have been identified within mud volcano feeder 

complexes.  This represents the first study on mud volcano systems of its kind.  

These sub-domains consist of the ‘active vent zone’ where fluids are currently being 

extruded, the ‘peripheral fracture zone’ where both infilled sinuous and conjugate 

fracture systems are found, the ‘central zone of block rotation’ where bedding 

strike measurements vary greatly from the surrounding anticlinal bedding and the 

‘un-intruded zone’ which contains only un-filled conjugate faulting/fracturing.  The 

‘active vent zone’, ‘peripheral fracture zone’, and ‘central zone of block rotation’, 

together comprise the mud volcano feeder complex itself, with the ‘un-intruded 

zone’ lying outside the feeder complex.  Further research could establish the 

existence of these sub-domains elsewhere, refine the characteristics for their 

identification and lead to the identification of new examples.  Their delineation 
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should also provide an objective method for the comparison of other mud volcano 

feeder complexes. 

 

Overall findings suggest the feeder complexes consist of a megabreccia of country 

rock surrounded by intruded mud and some long-lived fluid conduits.  The 

preferred model consists of a propagating fracture network that isolates blocks 

which then become free to move as the smaller clasts become eroded by the mud-

water-gas mix through time.  This process has similarities with the better-known 

stoping process in igneous volcanic complexes.  The initial stoping mechanism 

allows an upward-propagating fracture network to isolate a megabreccia of blocks 

up to 20 m in scale.  Once the fracture system breaches the surface and becomes 

an anastomosing flow pathway, the smaller blocks within the breccia are eroded 

and extruded, creating space for widening of the flow conduits and settlement and 

rotation of the larger blocks whose size and weight prevent them from being 

carried upwards.  During periods of low mud flow rates, gravity driven compaction 

of the system may account for relatively low levels of water and gas eruption 

observed during ‘quiescent’ periods. 

 

Furthermore in addition to supplying parameters for lithology and 3-D porosity and 

permeability distribution in feeder complexes, the observations also provide a 

starting assumption for the dimensions of these structures in areas where seismic 

imaging does not clearly resolve their extent.  These parameters will be useful in 

the cases of reserves assessment and drilling planning in the deeper parts of mud 

volcano systems. 
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4 Structural Controls on Mud Volcano Vent Distributions: 

Examples from Azerbaijan and Lusi, East Java1 

 

Abstract 

Structural mapping, nearest neighbour and 2-point azimuth statistical analysis of 

vent distributions are described from nine mud volcanoes in Azerbaijan and Lusi 

mud volcano, East Java.  Spatial distributions are significantly non-random, 

clustering to form alignments with: 1) anticline crestal faulting, 2) ring faults, 3) 

conjugate faults and 4) detachment faults.  Clustering of vent fluid types also 

suggests separation within the intrusive system.  The influences on distribution of 

vents erupting in Azerbaijan are used to identify the structural controls on vent 

distributions at Lusi mud volcano which shows changes in vent alignment through 

time.  There is an early NE-SW trend corresponding to the trend of the Watukosek 

fault, changing to an east-west trend, parallel to local fold axes and faulting.  

Fractures are important elements of feeder system architecture and their 

orientation is related to regional-scale structural elements e.g. anticlines, and the 

in-situ stress state, opening the possibility of predictive modelling.  Changes in 

active fracture orientation through time, as at the Lusi mud volcano, are important 

for managing the disaster by predicting which populated areas will be most affected 

by the eruptions.  Results indicate regions east and west of the main vent are more 

likely to be impacted by new vents than those to the north and south due to 

probable onset of elongate caldera collapse within 10 km diameter of the central 

vent. 

 

 

                                                      
1 This chapter is based on a paper that has been accepted for publication in the journal ‘Journal of 

the Geological Society, London’.  Referenced as ‘Roberts, K.S., R.J. Davies, Stewart, S.A. & Tingay, M. 

(2011).  Structural controls on mud volcano vent distributions: Examples from Azerbaijan and Lusi, 

East Java.  Journal of the Geological Society, London, DOI: 10.1144/0016-76492010-158’, see 

Appendix V. 
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4.1 Introduction 

Mud volcano systems are integral elements in many sedimentary basins globally 

(e.g. Kopf 2002).  However, because of the ephemeral nature of the fluid flow the 

structural pathways exploited during their intrusion are poorly defined.  Sediment, 

fluid and minerals can be transported through these structural pathways, from 

depths exceeding 8 km (Kopf 2002) resulting in eruption at the surface as edifices 

reaching volumes in excess of 25 km3 (Davies & Stewart 2005).  Faults and fractures 

are probably one of the dominant controls on fluid migration pathways during the 

intrusion of mud volcano systems (cf. Morley 2003; Roberts et al. 2010; see Chapter 

3). 

 

Vent populations for igneous volcanoes have been widely studied on Earth (Lutz 

1986; Wadge & Cross 1988; Connor 1990; Hammer 2009; Paulsen & Wilson 2010a) 

and on extraterrestrial bodies (Bleacher et al. 2009) but little is known about the 

fluid flow pathways or organisation of eruptive vent populations for mud volcano 

systems.  It has been proposed that alignment of point-like geological features such 

as volcanic cones, hydrothermal vents, fluid expulsion pipes and springs may reflect 

underlying features, particularly subsurface dyke orientation, faults and joints (e.g. 

Hovland et al. 2006; Hammer 2009; Moss & Cartwright 2010; Paulsen & Wilson 

2010a).  Time dependent changes in vent distributions in igneous or sediment-fluid 

venting has never been considered (Paulsen & Wilson 2010a).  Well exposed sub-

aerial mud volcanoes in Azerbaijan provide examples where the distribution of 

vents can be related to mapped structural features (Hovland et al. 1997; Guliyev et 

al. 2000; Planke et al. 2003).  This provides confidence in assessing the controls on 

vent distributions which have changed from 2006-2010 at Lusi mud volcano, East 

Java.  This mud volcano first erupted in May 2006 and now covers an area of 7 km2, 

it has displaced c. 40,000 people and currently has 169 vents erupting and igniting 

without any warning in the surrounding densely populated areas (Tingay 2010).  

This makes the evolution and prediction of fluid flow pathways particularly 

important. 
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The aim of this chapter is to investigate the distribution of a variety of vents 

erupting variable compositions of water, mud and gas within kilometre-scale mud 

volcano edifices in Azerbaijan and at Lusi (Fig. 4.1) and to use the observations to 

identify the structural controls on their distribution.  The field mapping focuses on 

the geographical position and general composition of vents at eight field examples.  

The spatial distributions of vent populations are statistically analysed allowing for 

an assessment of the geometry of the subsurface feeder systems. 

 

 
Fig. 4.1:  A) Major structural elements of eastern Azerbaijan after Jackson et al. (2002), showing the 

location of the mud volcanoes in this study (localities marked with blue stars; see inset for global 

location).  B) Major structural elements of the East Java Basin, after The Geological Survey of 

Indonesia (1963), showing the location of Lusi mud volcano (marked with a star) and main faults 

marked in red (see inset for global location). 

 

4.1.1 Mud Volcanoes and Vent Complexes 

A mud volcano system refers to the intrusive domain, which contains the feeder 

complex; the source domain and extrusive domain, which is generally comprised of 

an eruptive edifice (Stewart & Davies 2006; Roberts et al. 2010; see Chapter 3).  

Mud volcano eruptions can be violent with quiescent inactive stages where 

eruption from multiple, small vents is the dominant process (Guliyev et al. 2000).  

Dormant mud volcano edifices can have anything from one to thousands of vents of 

differing types.  Herein the pattern of vents on edifices, are termed ‘vent 

populations’.  There are a variety of vent types with a range of mud-water-gas 
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compositions (Table 4.1; Fig. 4.2).  Cinder mounds are suggested to be caused by 

close to 100% gaseous phase eruptions.  Mud breccia flows consist of c. 90-100% 

mud that has the rheology of a Bingham body (Iverson 1997).  Salses contain 

suspensions of <30% mud particles in water and gryphons have a composition of 

30-90% mud particles in water that are either thixotrophic or shear thinning (Yassir 

1990, 2003; Mueller et al. 2010).  The area that is most densely populated with 

vents is termed the active vent zone (see Chapter 3; Roberts et al. 2010). 

 

Vent Type Composition Height 
(m) 

Width 
(m) 

Clasts? 
(Y/N) Morphology Fluid Type 

Gryphons >30-90% mud: 
<30% fluids 0.02-10 0.05-360 Y 

‘Cones’ of mud 
breccias with 
bubbling pools of 
mud in their crater 

Shear 
thinning 

or 
thixotropic 

Salses <30% mud: >70-
100% fluids 0.02-2 0.05-80 N 

Shallow sided 
‘cones’ of mud 
breccias with a 
large pool of 
watery mud at the 
summit and several 
bubbling centres 

Mud 
suspensions 

Cinder 
Mounds 100% gaseous 0-3 1-50 Y 

Mounds of red/ 
orange/ brown 
glassy mud breccia 

Gaseous 

Breccia 
Pipes 

>30-90% mud: 
<30% fluids 0.5-1.5 0.5-10 Y 

Clusters of salses 
surrounded by 
damp mud 
containing clasts of 
country rock 

- 

Mud Plugs 90-100% mud 4 30-100 Y 
Large flows of mud 
breccia emanating 
from one vent 

Bingham 

Pools 100% water 0.01 <0.05 N 

Small vents that 
cluster round 
gryphons and salses 
only erupting water 
and/or gas 

- 

Table 4.1:  Classification of vents mapped during the study. 
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4.2 Geological Settings 

4.2.1 Azerbaijan 

Azerbaijan’s mud volcanoes form due to a combination of factors, including rapid 

sedimentation during the last 5.5 Ma, tectonic compression, the presence of a thick 

overpressured mudstone (Maykop Formation) at 5-8 km depth and hydrocarbon 

maturation (Davies & Stewart 2005; Evans et al. 2008).  All the mud volcanoes are 

located along or near the crests of anticlines and most are thought to have initiated 

in the Pliocene (c. 3.5 Ma; Narimanov 1993; Yusifov & Rabinowitz 2004).  The mud 

volcano systems may also incorporate fluids rising from below the Maykop 

Formation (Kopf 2002; Hovland et al. 2006). 

 

The region has undergone 2.4 km of tectonic subsidence since c. 5.5 Ma (Allen et al. 

2003).  Several kilometres of sediment accumulated during the Pliocene and have 

subsequently been folded, with these structures having a dominant NW-SE fold axis 

orientation (Allen et al. 2003, Yusifov & Rabinowitz 2004). 

 

4.2.2 Lusi, Sidoarjo, East Java 

This mud volcano erupted in the East Java basin in May 2006 (Davies et al. 2007; 

Mazzini et al. 2007).  During the Eocene NE-SW–oriented rift basins formed and 

filled with continental clastics that host both source rock and productive reservoirs 

(Kusumastuti et al. 2002).  In the Oligocene to early Miocene east-west trending 

normal faults formed (Kusumastuti et al. 2002; Istadi et al. 2009).  Carbonate 

platforms developed on some palaeo-basement highs.  The Porong-1 carbonate 

reef is located beneath the Lusi mud volcano and has an E-W orientation 

(Kusumastuti et al. 2002).  Compression during the late Miocene-Pleistocene 

resulted in inversion associated with E-W trending fault movement (Istadi et al. 

2009).  This produced the E-W orientation of the anticline structures (Istadi et al. 

2009).  Subsequent Pliocene-Pleistocene sedimentation consisted of an eastward-

prograding mudstone-dominated volcaniclastic wedge derived from the Java 

volcanic arc (Istadi et al. 2009).  The mudstone of the Pleistocene Kalibeng 
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Formation is overpressured at 900-1870 m depth at Lusi (Istadi et al. 2009).  This is 

the source of the mud that makes up the solid fraction of the mud erupted at Lusi 

(Mazzini et al. 2007).  The water has an unknown source estimated to be from 

>1700 m depth by its temperature, isotopic composition and chemical composition 

(Davies et al. 2007, Mazzini et al. 2007), but is considered here to be primarily from 

the Miocene carbonates (2833-3500 m; Tingay 2010) with a contribution from the 

remobilisation of the Upper Kalibeng Formation (Davies et al. 2007).  Some fluids 

may also be sourced from shallow aquifers in the Pleistocene Pucangan Formation 

at 280-900 m depth (Tingay et al. 2008). 

 

New vents form frequently, and are a safety concern, for example a vent eruption 

in April, 2010 was in close proximity to railway tracks and contained flammable gas.  

The Porong highway near Lusi had developed metre long cracks leaking methane on 

2nd July, 2010, with the highway surface increasingly sloping toward the mud 

embankments.  New vents and increased subsidence are still developing and the 

eruptions could continue for decades which will have an important impact on the 

structural evolution of the region (Davies et al. 2008; Istadi et al. 2009). 

 

4.3 Database and Methodology 

4.3.1 Structural Mapping 

Eight of the mud volcanoes in this study lie along the Caspian Sea coastline in 

Azerbaijan; Koturdag A, B and C (Alyaty Ridge), Kichik Kharami, Pirsaatadag, Dashgil, 

Durovdag, and Akhtarma-Karadag, the ninth is Lusi (Fig. 4.1; for more field 

examples from Azerbaijan see Appendix III).  Mapping was carried out using a 

handheld global positioning system (GPS) receiver, with a positional accuracy of 5 m 

(Azerbaijan) and 5-12 m (Lusi data, courtesy of Badan Penanggulangan Lumpur 

Sidoarjo (BPLS); see electronic version of Appendix III).  Bedding, fracture and fold 

orientations were plotted using GEOrient software onto stereographic and rose 

projections (see electronic Appendix III for structural field data and vent location 

data).  The GPS co-ordinates and corresponding structural data were integrated in 
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ArcMap software.  The coordinate system for these data were input using spheroid 

WGS 1984. 

 

Vent types are classified as either: gryphons, salses, cinder mounds, mud plugs or 

pools (Fig. 4.2; Table 4.1; Hovland et al. 1997; Guliyev et al. 2000; Mazzini et al. 

2009).  Each is marked onto satellite imagery with different symbols (Fig. 4.2).  The 

relationship between faulting, folding and regional structure of the mud volcanoes 

in Azerbaijan is clear as the area has been exhumed and exposure of country rock is 

>60% in the cases of Alyaty Ridge, Kichik Kharami and Pirsaatadag volcanoes.  

Structural data from outcrop and 2-D seismic coverage for Lusi mud volcano are 

limited.  Therefore the Azerbaijan mud volcanoes are used to develop confidence 

about the relationships between structures and vent populations and also aid 

interpretation of the vent trends at Lusi. 

 

4.3.2 Statistical Analyses 

Two statistical approaches, adapted from igneous vent systems, are used to 

characterise spatial patterns within vent populations (see Chapter 1 for a more 

detailed account of the statistical techniques).  At igneous vent systems these 

techniques have revealed that magmatic volcanic vents often form clusters and 

define alignments at several scales from 10 m’s to over 1000 km’s (Bleacher et al. 

2009; Paulsen & Wilson 2010a).  As the GPS accuracy is 5 m, vent alignments have 5 

m accuracy.  The goal of these spatial studies is to provide insights into the links 

between the distribution of vents, causal processes and controls on fluid flow 

pathways. 
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Fig. 4.2:  A) Gryphons (purple triangles on Fig. 4.3, Fig. 4.5, Fig. 4.6 and Fig. 4.7).  Conical vents 

erupting mud, a few centimetres to 4 m high.  B) Salses (blue triangles on Fig. 4.3, Fig. 4.5, Fig. 4.6 

and Fig. 4.7).  ‘Lakes’ of muddy water, with cones 1-2 m high and diameters of a few centimetres to 

over 50 m (Guliyev et al. 2000).  C) Cinder mounds (orange triangles on Fig. 4.3, Fig. 4.5, Fig. 4.6 and 

Fig. 4.7).  Erupt only gaseous phases.  Resemble heaps of fired clay, up to 4 m high and 10-20 m long 

displaying an orangey-red ceramic appearance (Hovland et al. 1997; Planke et al. 2003).  D) Mud 

plugs (purple triangle labelled in Fig. 4.3A).  Breccia with a putty-like malleable consistency extruding 

from craters like ‘paste from a tube’, on Koturdag A mud volcano (Guliyev et al. 2000; Planke et al. 

2003).  E) Pools (green triangles on Fig. 4.3, Fig. 4.5, Fig. 4.6 and Fig. 4.7).  Bubbling pools of fluid, 

less than 2 cm in diameter (Mazzini et al. 2009).  Extinct or dormant vents (black triangles on Fig. 4.3, 
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Fig. 4.5, Fig. 4.6 and Fig. 4.7).  Vents that were once actively extruding fluids but have since dried up 

and are no longer active. 

 

The nearest neighbour technique (Clark & Evans 1954) tests randomness in spatial 

distributions by calculating the ratio of the observed mean distance to the expected 

mean distance for a hypothetical random distribution to determine whether the 

points are clustered.  A ratio of 1 indicates a random distribution and a ratio of <1 is 

clustered, the nearer to 0 the more clustered the distribution.  This was carried out 

using ArcGIS which measures the distance from every vent point to its nearest 

neighbouring vent point (see Chapter 1 for a more detailed account). 

 

The 2-point azimuth technique (Lutz 1986; Bleacher et al. 2009) was used as a 

measure of the significance of alignments between vents.  The technique 

quantitatively identifies trends within vent populations and has been widely used in 

literature dealing with the structural geology of igneous volcanoes (Wadge & Cross 

1988; Connor 1990; Bleacher et al. 2009).  The azimuth of line segments that 

connect each vent to all other vents east of its location were calculated (Bleacher et 

al. 2009; see Appendix III for Matlab script).  Only points to the east of each vent 

were measured so as not to duplicate any measurements.  Histograms of azimuth 

values (0°=north, 90°=east, 180°=south) were produced with 10° bins.  Peaks in the 

frequency distribution of the azimuths result from preferred formation of vents in 

response to structural controls (Bleacher et al. 2009; see electronic Appendix III for 

azimuth data).  In this study the ‘dominant’ alignment refers to the azimuthal trend 

with the highest frequency of azimuths.  ‘Sub-alignments’ include smaller peaks in 

azimuth frequency less significant than that of the ‘dominant’ alignment.  Different 

vent types are separated and the individual azimuth alignments of different vent 

fluid types displayed (i.e. mud, water and gas) are analysed.  The ‘overall’ azimuth 

alignments including all vent types are also plotted to identify larger scale 

influences on vent alignments of the whole edifice.  On each of the graphs the ‘Y’ 

indicates the orientation of the anticline axis in the region, ‘X’ the orientation of any 

faulting measured during mapping and ‘A’ any anomalous values that may be the 
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result of external factors, such as human influences i.e. loading induced fluid flow 

around man made dams (e.g. Londe 1987). 

 

4.4 Observations 

4.4.1 Alyaty Ridge 

Alyaty Ridge hosts twelve mud volcano systems, three of which were selected to 

study (Koturdag A, B and C; Fig. 4.1A and Fig. 4.3A).  Koturdag A has a single, 240 m 

diameter caldera on its summit that is extruding 500 m to the north of the anticline 

axis (Fig. 4.3A).  The most recent mud breccia flow has been ongoing for 

approximately fifty years and is currently extruding mud breccia from a 20 m wide 

vent at a rate of 2-6 cm length per day.  The flow has areas of oxidised mud breccia 

and cinder which are the result of escaping gases igniting mud during eruptions (Fig. 

4.2C; Hovland et al. 1997; Guliyev et al. 2000).  The 20 m wide vent has a 1 m high 

gryphon 5 m away from it.  This contrasts with the extrusive features seen at 

Koturdag B and C at which gryphons, salses and breccia pipes are present (Fig. 4.2A 

and B).  Koturdag B has a high concentration of salses, 0.2-5 m in diameter, 

compared to the increased concentration of 1-2 m high gryphons found at Koturdag 

C (Fig. 4.3A).  Another difference seen along Alyaty Ridge anticline is the change in 

dominant vent types at each volcano.  Koturdag C is located at 100 m higher 

elevation than Koturdag B and has twice as many gryphons.  In contrast, Koturdag B 

has twice as many salses as Koturdag C.  Both Koturdag B and C edifices have long 

axes which align with the anticline axis at 130°N (Fig. 4.3A). 
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Fig. 4.3:  A) Part of Alyaty Ridge with three mud volcanoes intruded along its axis.  Koturdag A is 

located to the 0.6 km north of the fold axis.  Yellow dashed lines represent the bedding orientation.  

Triangles: Purple- gryphons, orange- cinder mounds, black- extinct vents, blue- salses and green- 

pools.  Image © 2010 DigitalGlobe, © 2010 GeoEye and © 2010 Geocentre Consulting, © 2010 

Google.  B) Rose diagram of fault and fracture orientations measured along Alyaty Ridge.  C) 

Histogram of frequencies of azimuthal direction for 2-point azimuth technique of all vent types 

grouped together for Koturdag A, B and C.  D) Histogram of frequencies of azimuthal direction for 2-

point azimuth technique of individual vent types separated into their different distributions for 

Koturdag B.  E) Histogram of frequencies of azimuthal direction for 2-point azimuth technique of 

individual vent types separated into their different distributions for Koturdag C. 

 



Chapter 4  Mud Volcano Vent Distributions 

106 

The orientations of fractures in the area are sub-parallel to the anticline axis at 130-

140°N with another peak at 90° to this, at around 050°N (Fig. 4.3B).  When including 

all the vent positions along Alyaty Ridge as a whole the observed frequencies of 

azimuths derived from the 2-point azimuth technique show preferential alignment 

in the direction of 120-130°N (Fig. 4.3C).  When examining Koturdag B (Fig. 4.3D) 

and C (Fig. 4.3E) individually, both share this dominant 130°N trend.  Koturdag B 

also shows a peak in salse alignment at this orientation whereas Koturdag C shows 

a peak in gryphon alignment (Fig. 4.3D and E). 

 

4.4.2 Kichik Kharami Mud Volcano 

This mud volcano edifice is 1 km to the south of a NW-SE trending anticline axis and 

is roughly circular in plan view (Fig. 4.1A and Fig. 4.4A and B).  Minor amounts of 

mud are being expelled in the form of salses, although a 1.2 km long mud flow to 

the south of the feeder complex is testament to significant eruption of mud breccia 

within the past few hundred years (Fig. 4.4A).  The salses have a circular 

arrangement at the centre of the volcano (Fig. 4.4B).  100 m from the centre of the 

volcano the salses orient themselves in NW-SE and NE-SW linear trends (Fig. 4.4B). 

 

At Kichik Kharami fractures are dominantly arranged sub-parallel to the anticline 

axis at 120-130°N with a set perpendicular to this at 030°N.  There are also smaller 

fracture alignments at 100°N and 160°N which form two planes, each roughly 30° to 

the fold axis (Fig. 4.4C).  The dominant azimuthal frequency at Kichik Kharami is 

130-140°N (Fig. 4.4).  There are also secondary alignments, for example at 090°N 

(Fig. 4.4) which don’t share a common orientation with any structures in the area.  

The salses show a dominant azimuth sub-parallel to that of the strongest fracture 

orientation at 130°N. 
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Fig. 4.4:  A) Kichik Kharami mud volcano.  B) Zoomed in image of the centre of the mud volcano seen 

in Fig. 4.4A.  Vents can be seen clustering in concentric rings at the centre of the volcano whereas 

they form along lines orientated in NW-SE and NE-SW directions further out from the centre of the 

volcano.  Triangles: Purple- gryphons, orange- cinder mounds, black- extinct vents, blue- salses and 

green- pools.  Images © 2010 DigitalGlobe and © 2010 Geocentre Consulting, © 2010 Google.  C) 

Rose diagram of fault and fracture orientations from country rock in and around Kichik Kharami.  D) 

Histogram of frequencies of azimuthal direction for 2-point azimuth technique of individual vent 

types separated into their different distributions.  E) Histogram of frequencies of azimuthal direction 

for 2-point azimuth technique of all vent types grouped together. 
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4.4.3 Pirsaatadag Mud Volcano 

This mud volcano is located on the axis of a NW-SE trending anticline and has an 

elliptical shape, the long axis of which is aligned with the anticline axis at 150°N (Fig. 

4.1A and Fig. 4.5).  Minor amounts of mud are being expelled in the form of salses 

and pools.  The mud volcano is heavily eroded and so exposure of country rock at 

its centre allows easy measurement of structure.  The active vent zone of the 

volcano is offset to the north-western end of the edifice and displays a slight 

circular arrangement of vents at its centre (Fig. 4.5A). 

 

The dominant orientation of fractures is at 030°N with the second most prevalent 

fracture orientation being sub-parallel to the fold axis at 150°N (Fig. 4.5B).  The 

dominant azimuthal frequency at Pirsaatadag is 180°N (Fig. 4.5C and D) however, 

there is also a high azimuth frequency sub-parallel to the anticline axis at 150°N.  

There is a distinct lack of azimuths around 090°N. 
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Fig. 4.5:  A) Pirsaatadag mud volcano.  Triangles: Purple- gryphons, orange- cinder mounds, black- 

extinct vents, blue- salses and green- pools.  Image © 2010 GeoEye and © 2010 Geocentre 
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Consulting, © 2010 Google.  B) Rose diagram of fault and fracture orientations from country rock in 

and around Pirsaatadag.  C) Histogram of frequencies of azimuthal direction for 2-point azimuth 

technique of individual vent types separated into their different distributions.  D) Histogram of 

frequencies of azimuthal direction for 2-point azimuth technique of all vent types grouped together. 

 

4.4.4 Akhtarma-Karadag Mud Volcano 

Akhtarma-Karadag outcrops along an ENE-WSW trending anticline axis and is also 

elongate parallel to this anticline axis (Fig. 4.1A and Fig. 4.6A).  The active vent zone 

on the summit is found at the western end of the edifice (Fig. 4.6A).  It has three 

eruptive compositions: cinder mounds, salses and gryphons. 

 

There are three cinder mounds at the western edge of the mud volcano (Fig. 4.6A), 

only 1 m in height and diameter.  The salses are found further towards the centre of 

the edifice and have a maximum diameter of 10 m.  The main concentration of 

gryphons is closer (6 m) to the cinder mounds.  There are also numerous dormant 

gryphons (Fig. 4.6A).  The 2-point azimuth technique for Akhtarma-Karadag with 

vent types separated on the basis of fluid type shows a dominant azimuth 

frequency for gryphons and salses at 030°N whereas the pools tend to align at 

120°N (Fig. 4.6B).  When including all vent types in the 2-point azimuth analysis the 

dominant alignment can be seen to be at 070°N which does not align with the 

anticline axis oriented at 090°N (Fig. 4.6). 
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Fig. 4.6:  A) Akhtarma-Karadag mud volcano.  This volcano is dominated by gryphons at its western 

edge next to two small cinder mounds.  The majority of the salses and larger gryphons extrude along 

an elongate ring detachment fault found along the length of the edifice (see Chapter 5; Roberts et al. 

2011).  The salses are found furthest away from the main centre of eruption further to the east of 

the volcano.  Triangles: Purple- gryphons, orange- cinder mounds, black- extinct vents, blue- salses 

and green- pools.  Image © 2010 GeoEye.  B) Histogram of frequencies of azimuthal direction for 2-

point azimuth technique of individual vent types separated into their different distributions.  C) 

Histogram of frequencies of azimuthal direction for 2-point azimuth technique of all vent types 

grouped together. 

 

4.4.5 Dashgil Mud Volcano 

Dashgil outcrops on the crest of the Dashgil fold (Fig. 4.1A) which is 6-8 km long, 

3.5-4 km wide and trends in an E-W direction.  The entire mud volcano can be seen 

with the active vent zone offset to the western end of the edifice (Fig. 4.7A). 
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There is a concentration of gryphons, 2-3 m in height, clustering at the centre of 

200 m diameter crater to the west of the volcano (Fig. 4.7A).  A 200 m long row of 

2-3 m high, 4-5 m wide cinder mounds trends in an E-W direction.  These are only 

found in the south-eastern section of the volcano and form a sharp, straight 

boundary to the edge of the active vent zone.  Dashgil also has two salses 20-30 m 

in diameter on its summit in the eastern portion of the mud volcano.  These are 

comprised of several bubbling centres.  There is also a small cluster of dormant 

gryphons in the northern section of the volcano. 

 

 
Fig. 4.7:  A) Dashgil mud volcano zoomed in on the active vent zone.  Gryphons can be seen 

clustering in the western section of the volcano.  Cinder mounds form an elongate ridge at the 

southern limit of the active vent zone and two large salses are found at the southeast end of the 

volcano.  Triangles: Purple- gryphons, orange- cinder mounds, black- extinct vents, blue- salses and 

green- pools.  Red lines show faults and black lines show breaks in slope, with triangles pointing 
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towards the downthrown side.  Image © 2010 GeoEye and © 2010 Geocentre Consulting, © 2010 

Google.  B) Histogram of frequencies of azimuthal direction for 2-point azimuth technique of 

individual vent types separated into their different distributions.  C) Histogram of frequencies of 

azimuthal direction for 2-point azimuth technique of all vent types grouped together. 

 

Both the combined and separate vent type 2-point azimuth results show that the 

dominant orientation in this system is at 050°N with sub-orientations at 100°N and 

170°N (Fig. 4.7C).  When separating different vent types from each other three 

‘peaks’ in azimuth frequency can be seen for both gryphons and salses at 060°N, 

110°N and 170°N whereas pools only have one dominant trend at 060°N (Fig. 4.7B). 

 

4.4.6 Durovdag Mud Volcano 

The crest of the volcano is dominated by gryphons and salses which are <2 m in 

height (Fig. 4.1A and Fig. 4.8A).  There is a concentration of gryphons at the 

northern end of the volcano, with an average vent spacing of 5 m.  Due to the un-

stable nature of this region separate readings could not be taken and so the area 

has been considered as one large vent in the statistical analysis.  The majority 

(~92%) of the remaining vents on the summit are found around the outer edge of 

the mud volcano forming an 800 m diameter ‘ring’ (Fig. 4.8A).  The vents also align 

at tens of metre-scale, along linear conjugate paths within this ‘ring’ zone. 

 

Durovdag volcano has a wide spread of vent azimuth frequencies which is also seen 

on a smaller scale at the centre of Kichik Kharami volcano (Fig. 4.4).  The dominant 

orientation in this system is at 160°N with sub-orientations at 100°N and 020°N (Fig. 

4.4). 
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Fig. 4.8:  A) Durovdag mud volcano.  Showing that this volcano is dominated by gryphons at its 

northern edge.  This purple area had such a large concentration of gryphons that the whole of this 

area has been coloured purple to represent the intense number of gryphons found in this region, 

approximately one gryphon every 5 m2.  Due to the un-stable nature of this area separate readings 

could not be taken and so the area has been considered as one large vent.  The majority of the salses 

cluster in a ring around the outer edge of the mud volcano with only a few small vents and extinct 

vents at the centre of the edifice.  Triangles: Purple- gryphons, orange- cinder mounds, black- extinct 

vents, blue- salses and green- pools.  B) Histogram of frequencies of azimuthal direction for 2-point 

azimuth technique of individual vent types separated into their different distributions.  C) Histogram 

of frequencies of azimuthal direction for 2-point azimuth technique of all vent types grouped 

together. 
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4.4.7 Lusi Mud Volcano, East Java 

Lusi mud volcano is 3.4 km by 2.6 km in aerial extent and 7 m elevation (Fig. 4.9).  

The main active vent is 100 m in diameter and located at the centre of the edifice 

(Fig. 4.9).  The first few vents were originally aligned in a NE-SW direction (Mazzini 

et al. 2007).  A fracture hundreds of metres long and tens of centimetres wide was 

observed a few days after the eruption which also had a NE-SW orientation 

(Mazzini et al. 2007).  This was interpreted as being the Watukosek fault which 

crosses the area (Fig. 4.9; Mazzini et al. 2007).  Most of the early ‘sandy’ eruption 

sites discussed by Mazzini et al. (2007) were buried during the second week of June 

2006, by the mud erupting from the main vent.  New smaller vents started erupting 

in November 2006 approximately 1 km to the SW of the main crater (Mazzini et al. 

2007).  Currently there are 169 active vents (BPLS) although not all vent 

occurrences can be documented due to limited access to the majority of the edifice 

and because some are short lived.  The vents near the main central vent had a 

roughly concentric pattern (Fig. 4.9A) whereas vents further away are closer to the 

observed faults in the region (Fig. 4.9A).  Newer vents occur further away from the 

central vent and are now clustering close to the Kendensari River to the west of Lusi 

(Fig. 4.9B and C).  These eruption sites erupt gas or suspensions of <20% mud in 

water. 

 

The 2-point azimuth data for Lusi mud volcano (Fig. 4.9) show the vent distribution 

in 2006 a few months after it first erupted compared to the vent distributions seen 

in 2009 and 2010.  In 2006 the dominant azimuth frequency is WNW-ESE (100°N), 

with two smaller trends at 060°N in a NE-SW orientation and 120°N in a NW-SE 

orientation (Fig. 4.9A).  There is also a fairly large spread in azimuth frequencies 

apart from the dominant trends (Fig. 4.9A).  In 2009 there are two dominant 

azimuthal trends at 010°N and 180°N with two less dominant trends at 100°N and 

120°N (Fig. 4.9B).  The dominant azimuthal orientation of vents in 2006 has now 

decreased in frequency.  In 2010 this trend continues with the decreasing influence 

of the 060°N and 120°N alignments and increasing frequency of alignments at 

010°N, 180°N (which are essentially the same trend) and 100°N (Fig. 4.9C) 
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Fig. 4.9:  Lusi mud volcano, East Java.  A) November, 2006.  Histogram of frequencies of azimuthal 

direction for 2-point azimuth technique of active vents in 2006.  B) 30th September 2009.  Histogram 

of frequencies of azimuthal direction for 2-point azimuth technique of active vents in 2009.  C) 

January, 2010.  Histogram of frequencies of azimuthal direction for 2-point azimuth technique of 

active vents in 2010.  Blue dashed line shows trace of Kendensari River.  The blue triangles represent 

‘bubbles’ that are or were currently active at that time.  Red dashed lines indicate faults described 

by Istadi et al. (2009).  Images courtesy of CRISP. 
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4.4.8 Nearest Neighbour Analysis 

It can be seen that all of the mud volcano vent systems nearest neighbour analyses 

are statistically ‘clustered’ to a significant value of <0.05 (Table 4.2).  This clustering 

occurs around structural features.  The 2-point azimuth results also indicate that 

there is a significant alignment of vents along mapped structural features.  These 

statistical analyses indicate that fluid flow along structural features (faults, fractures 

and anticlines) may be enhanced in certain regions causing regions of vent 

clustering along the structures.  It should be kept in mind that where vent spacing is 

<5 m the alignments identified will be less reliable.  However there are clear visual 

and statistical alignments in vents that are consistent and geological sensible in 

areas where the vent spacing drops below 5 m. 
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Dashgil 0.29 Clustered 0.01 -2.58 -14.34 0.000047 0.000161 0.291484 
Durovdag 0.34 Clustered 0.01 -2.58 -31.44 0.000025 0.000072 0.34203 
Akhtarma-

Karadag 0.82 Clustered 0.05 -1.96 -2.22 0.000237 0.00029 0.818488 

Kichik 
Kharami 0.55 Clustered 0.01 -2.58 -12.92 0.00007 0.000128 0.546609 

Koturdag B 0.71 Clustered 0.01 -2.58 -6.18 0.000106 0.000149 0.714539 
Koturdag C 0.51 Clustered 0.01 -2.58 -6.95 0.000047 0.000091 0.514191 

Lusi 0.39 Clustered 0.01 -2.58 -12.39 0.003464 0.008802 0.393561 
Table 4.2:  Showing different mud volcanoes nearest neighbour statistical analysis results. 

 

4.5 Discussion 

These data reveal a significant degree of clustering and alignments of vents on mud 

volcanoes.  The structural controls on permeability are now considered and this 

interpretation used to make a qualitative assessment of vent populations likely to 

form at Lusi. 
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4.5.1 Alignments 

1)  Alignment along anticline crests 

It has previously been noted that kilometre-scale mud volcano systems align along 

the crest and hinges of anticlines (Fig. 4.10D; Devlin et al. 1999; Planke et al. 2003; 

Bonini 2007, 2008) and this observation is also made here.  However, the 2-point 

azimuth technique also identifies a clear trend of both the kilometre-scale mud 

volcano systems and the metre-scale vents aligning on crests, and an alignment 

sub-parallel to the anticlinal trend evident in all mud volcano systems in this study 

(Fig. 4.3, Fig. 4.4, Fig. 4.5, Fig. 4.6, Fig. 4.7 and Fig. 4.8). 

 

Koturdag B and C align along the axis of an anticlinal structure that forms the Alyaty 

Ridge at 130°N (Fig. 4.3A).  Dominant trends at each of these volcanoes individually 

is also at 130°N showing that both the mud volcano systems as a whole and the 

metre-scale vent populations align in the same orientation as anticline axes.  Fluids 

are most likely taking advantage of pathways produced by increased compressive 

shear failure in the anticlinal cores, and outer arc crestal faulting along the 

anticlines (Ramsay & Huber 1987).  The folding has brought the overpressured 

Maykop Formation to a shallower depth in the subsurface and allowed thickening 

of these strata in the anticlinal hinges (Allen et al. 2003).  This as well as the 

unloading of the anticlines during exhumation onshore and decreased overburden 

load on the anticlinal fold hinge compared to that on the limbs would decrease the 

force needed for the overpressured Maykop Formation to overcome the vertical 

stress and the tensile strength of the overburden (Magara 1981; Yassir & Bell 1996).  

These factors significantly increase the potential for the mud-water-gas mix to 

travel to the surface and erupt along these planes of weakness (Yusifov & 

Rabinowitz 2004). 
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Fig. 4.10:  Schematics of the structures that may cause the varying vent distributions.  A) 

Dashgil type, some form of phase segregation is occurring at depth allowing the gryphons to erupt in 

the area of caldera collapse, the cinder mounds to follow a linear area of weakness and so erupt in a 

line and the watery salses erupt further away from the main vent zone.  B) Kichik Kharami type, 

where small salses line up along pre-existing conjugate fractures and also concentrically at the 

centre of the edifice where caldera collapse may be initiating.  C) Durovdag type, where some form 

of phase segregation is occurring at depth allowing the gryphons to erupt in the central zone of 

caldera collapse beneath the main vent, with the watery salses erupting further away from the main 

vent zone along concentric ring faults produced during caldera collapse.  D) Koturdag type, where 

mud volcanoes can be seen aligning along anticline axes but have varying vent fluid compositions 

along the length of the anticline.  E) Akhtarma-Karadag type, some form of phase segregation is 

occurring at depth allowing the gryphons to erupt in the area of caldera collapse, the cinder mounds 

to follow a linear area of weakness and so erupt in a line and the watery salses to erupt further away 

from the main vent zone along the detachment fault. 

 

Mud volcanoes also tend to become elongate in the direction of the anticline axis as 

seen by many of the examples in this chapter (Fig. 4.3, Fig. 4.4, Fig. 4.5, Fig. 4.6, Fig. 

4.7 and Fig. 4.8).  Elongation of edifices is also seen in igneous volcanoes and is 

generally parallel to the maximum horizontal stress (Nakamura 1977; Paulsen & 

Wilson 2010a).  This is attributed to formation of vents along feeder dykes which 

orient parallel to the maximum stress and open perpendicular to the minimum 

horizontal stress (σHmin; Paulsen & Wilson 2010a).  In mud volcano systems and 

their vent populations this is not the case as they all extrude along or sub-parallel to 

anticline axes which form perpendicular to the maximum horizontal stress (σHmax; 

Fig. 4.11).  This is to be expected as the ‘source’ of the fluids and any mud chambers 

feeding the edifices would also become elongate perpendicular to the maximum 

horizontal stress (Fig. 4.11).  The result of this being that vent populations on mud 

volcano edifices provide a good indicator of both palaeo- and current regional 

stress regimes. 
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Fig. 4.11:  Schematic model depicting mud volcano elongation, elongated vent distributions, 

mud chamber elongation and summit caldera elongation patterns.  Mud dykes preferentially trend 

perpendicular to σHmax taking advantage of the crestal faulting along the anticline.  Summit calderas 

and mud chambers also become elongate perpendicular to σHmax.  After Paulsen & Wilson (2010a). 

 

2)  Alignment with fractures 

Fault and fracture networks can act to either enhance or prevent fluid flow 

depending on their relative permeability to that of the surrounding country rock 

(Aydin 2000; Eichhubl & Boles 2000; Faulkner et al. 2010).  When faults and 

fractures have high permeabilities they are able to act as pathways allowing fluids 

to utilise them as a conduit to the surface (e.g. Sibson 1996; Faulkner et al. 2010).  A 

prominent characteristic of mud volcano systems are high fluid pressures, which 

may result in the formation of hydrofractures and shearing producing open 

fractures and dilatant faults (e.g. Aydin 2000).  By comparing vent alignment 

orientations to structures mapped in close proximity it is possible to identify which 

fault and fracture systems have the highest permeability in a certain region.  The 

cinder mounds on Dashgil are only found in a discrete elongate zone and so 
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probably form when gas venting from the mud volcano feeder complex travels 

along a pre-existing fault line (Fig. 4.10A).  This faulted zone may intersect a mud 

chamber that has separated phases of gas, water and mud within it.  Periodically 

the pressure in this chamber would become high enough to overcome the tensile 

strength and minimum horizontal stress producing new hydrofractures in a similar 

way to fault-valve behaviour allowing fluids to erupt at the surface as discrete 

events (Sibson 1990, 1992).  This fault may even be an anticline crestal fault as the 

cinder mounds can be seen oriented in an E-W direction similar to that of the 

Dashgil Fold (Fig. 4.7A). 

 

Kichik Kharami mud volcano is similar to Durovdag at its centre, with a 10 m 

diameter ring of salses forming along a circular collapse structure.  However, 100 m 

out from the centre, the salses are aligned in rows in NW-SE (160°N) and NE-SW 

(100°N) directions (Fig. 4.4D and E).  These orientations are coincident with the 

orientation of shear fractures (Fig. 4.4C) found on anticline flanks (Ramsay & Huber 

1987) and both occur at 30° from the anticline axis orientation of 130°N.  This 

implies that these have the highest permeability compared to other structures in 

the region (Fig. 4.10B).  Dashgil also displays these fault arrangements (Fig. 4.7) 

with ‘peaks’ in both gryphon and salse azimuths occurring at 060°N and 170°N 

fracture orientations occurring at 60° to the anticline axis orientation (110°N). 

 

3)  Detachment fault alignment 

Both active and extinct gryphons and salses on the Akhtarma-Karadag mud volcano 

align along a linear offset that can be traced around the summit of the volcano 

which is interpreted here as a detachment fault (Fig. 4.6 and Fig. 4.10E; see Chapter 

5; Roberts et al. 2011).  Pressure ridges of sediment can be seen at the centre of the 

detachment fault, suggesting that the mud volcano appears to be failing to the 

northeast (Fig. 4.6A).  This movement is confirmed by the presence of plants being 

torn across the head of the detachment fault and en-echelon fracturing.  This is 

again supported by the 2-point azimuth statistics which show the vents have a 

dominant orientation similar to that of the detachment fault at 070°N (Fig. 4.6C). 
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4)  Ring fault alignment 

Durovdag displays clear alignment of its vents with 92% of the gryphons and salses 

erupting around the periphery of the edifice (Fig. 4.8).  This alignment is to be 

expected for a caldera collapse system (Stewart & Davies 2006; Evans et al. 2008) 

with the majority of the vents forming a ‘ring’ around the outer edge of the mud 

volcano (Fig. 4.10C).  These fluids are taking advantage of ring faulting that is 

forming as a result of the gravitational collapse of the mud volcano.  This 

distribution is displayed as a large spread of alignments on the 2-point azimuth 

histograms, as well as showing the slightly more dominant anticline axis alignment 

(160°N) and less dominant alignments that may be caused by fracture alignments 

(100°N and 020°N; Fig. 4.10C).  On a metre-scale vents align in a conjugate pattern 

similar to shear fracturing on anticline limbs (Ramsay & Huber 1987).  These metre-

scale alignments occur around the trace of the kilometre-scale ‘ring’ fault itself (Fig. 

4.8A).  It is likely that these metre-scale conjugate vent alignments formed first 

aligning with the pre-existing anticline fractures.  After this caldera collapse 

initiated and formed the more recent ring fault alignments which then overprinted 

the conjugate alignments to produce the dominant azimuth frequency.  The 

concentration of gryphons to the north of the volcano indicates that there may be a 

large mud chamber beneath this area. 

 

4.5.2 Distributions - Fractionation of Vent Eruptive Phases 

Dashgil and Akhtarma-Karadag both produce three eruptive compositions, gaseous 

(cinder mounds), watery mud (salses) and viscous mud-water mix (gryphons).  They 

also show a similar spatial distribution of erupting fluid types.  Dashgil is dominated 

by gryphons on its westerly side, salses to the east and cinder mounds to the south 

of the active zone of the edifice (Fig. 4.7A).  Akhtarma-Karadag has cinder mounds 

in the most westerly section, 5-10 m from an area of gryphons at the centre of the 

active zone and then salses at the easterly end of the volcano (Fig. 4.6A).  From 

these observations it is possible to ascertain that these three phases must be 

separating some areas within the conduit and travelling to their points of eruption 

via different pathways.  This has been noted by others in past studies at Dashgil 
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mud volcano (Mazzini et al. 2009).  Mazzini et al. (2009) found that the water 

geochemistry highlights different water sources and reactions that occur at 

gryphons, pools, and salses.  Gryphons have a signature of deep-rising fluids, while 

pools and salses show the imprint of meteoric fluids and a solute content increased 

by in situ evaporation (Mazzini et al. 2009).  When integrating this with the 

observations it can be assumed that gryphons may be fed directly from a mud 

chamber in the main feeder complex of the mud volcano from depth whereas 

salses and cinder mounds are most likely sourced from shallow, smaller chambers 

that remain ‘stagnant’ for periods of time allowing them to interact with the 

surrounding meteoric fluids.  When looking at vent type azimuth frequencies 

individually they show that gryphons and salses often display common orientations 

indicating that they may share similar fluid flow pathways in the subsurface (Fig. 

4.3, Fig. 4.6 and Fig. 4.7).  Pools show no correlation with other vent types agreeing 

with Mazzini et al. (2009) who suggested that these are only shallow fluid flow 

pathways that are not influenced by regional structure (Fig. 4.3, Fig. 4.6 and Fig. 

4.7). 

 

4.5.3 Time Dependent Changes – Lusi Mud Volcano 

It has been noted that when Lusi initially erupted in 2006 its first few vents aligned 

in a NE-SW orientation (Fig. 4.9A) similar to the NE-SW trending faulting.  This 

resulted in suggestions of a major fault (termed the Watukosek Fault Zone) passing 

through the Lusi eruption site and being a dominant control on fluid flow (Mazzini 

et al. 2007, 2009).  In 2009, however, the dominant azimuth frequencies at 010°N 

and 180°N are most likely the result of the majority of vents being covered by mud 

and others occurring in populated areas where they are more likely to be identified.  

This could account for the high proportion of vents located near roads, dam walls 

and high density urban areas.  This may also be the result of loading in this region 

allowing focused fluid flow in this orientation (e.g. Londe 1987).  Because of this 

possible influence this study now focuses on the second most dominant alignments 

in 2009 and 2010. 
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The NE-SW trend evolved to have a dominant vent azimuthal direction of E-W 

(100°N) in 2009 (Fig. 4.9B), becoming even more prominent in 2010 (Fig. 4.9C).  This 

evolution of the vent alignments has occurred in only 9 months and implies that the 

fluid pathways themselves are developing during a similar time period.  It also 

suggests that an important E-W trending, regional scale anticlinal structure 

influences the feeder system architecture, reducing the influence of the local NE-

SW faults.  Also in the 2009 and 2010 data (Fig. 4.9) there is a 120°N trend which is 

sub-parallel with the NW-SE Siring fault that cross-cuts the region.  From the aerial 

mapping it can be seen that some of the new vents are aligning with the Kendensari 

River (Fig. 4.9; see Appendix III for a figure illustrating the growth of Lusi mud 

volcano).  The river in the region where the vents are erupting is very straight and 

has the same orientation of the major fault trends in the area.  From these 

observations it can be inferred that there may be a fault in this area which is being 

exploited by the river and is now a locus for eruptions. 

 

The present day orientation of the maximum horizontal stress (σHmax) is NNE-SSW 

and has not changed during the formation of Lusi (Tingay et al. 2010).  Lusi erupted 

along the crest of an anticlinal structure which trends in an E-W direction sub-

perpendicular to the main stress field, a typical path exploited by mud volcanoes 

globally (Devlin et al. 1999), and indicates very deep fault trends.  In 2009, E-W was 

also the dominant orientation of vents in the region (Fig. 4.9).  Another control are 

the Miocene carbonates (2833-3500 m) that have been suggested as a possible 

source of the erupted fluids at depth (Davies et al. 2007).  These carbonates were 

deposited on the structural ‘highs’ in an ENE-WSW orientation (Istadi et al. 2009).  

The evacuation of such large volumes of fluid and mud has induced subsidence 

(Abidin et al. 2008; Istadi et al. 2009) which in turn has probably resulted in faulting 

that could be being used as a conduit for fluid flow.  The orientation of the Miocene 

carbonate build-ups and the anticlinal structure are intimately linked and share a 

common orientation indicating that these are most likely to be the dominant 

controls on the evolution of Lusi’s fluid flow pathways.  The fact that so few vents 

are erupting the same fluid as the main Lusi vent, and most are thought to be very 

shallow rooted, suggests that the fluid pathways and source for the main vent and 
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the smaller vents may differ.  One preferred interpretation is that many of the 

water eruptions are coming from c. 290-900 m deep aquifers (Tingay et al. 2008) 

that have become faulted due to the subsidence resulting in seal breakage and fluid 

flow. 

 

A ring-like arrangement of vents is observed around the main central vent at Lusi 

(Fig. 4.9), similar to the pattern seen at Durovdag (Fig. 4.8).  This could indicate that 

a ring fault has formed as a result of subsidence in the region due to the evacuation 

of large volumes of fluid from depth (Fukushima et al. 2009).  Abidin et al. (2008) 

and Fukushima et al. (2009) both used time-lapse SAR interferograms from one 

year after the birth of the Lusi mud eruption in May 2006 to show subsidence over 

an ellipsoidal area of 12 km2 centred on the main eruptive vent.  Depletion of 

material and decrease of fluid pressure at depth were described as being the 

dominant cause of the subsidence.  Fukushima et al. (2009) found that deflation of 

an oblate spheroid lying shallower than 1 km explains the observed displacements.  

This observation is supported by the 2010 azimuth data (Fig. 4.9C) that show a 

wider spread of azimuth trends than seen in 2009. 

 

4.5.3.1 Mode of Formation 

The first of Lusi’s vent eruptions (seven vents forming a lineation oriented NE-SW 

during the first week of eruption (29th May; Mazzini et al. 2007) and increasing to 

34 in November (BPLS)) in 2006 occurred in a NE-SW orientation, roughly 30° to the 

present day maximum horizontal stress (σ1, σHmax) orientation of NNE-SSW (Mazzini 

et al. 2009; Sawolo et al. 2009; Tingay et al. 2010).  This indicates that fluids first 

travelled up the highest permeability paths that were optimally oriented for 

sinistral shear failure in a strike-slip faulting stress regime (Fig. 4.12A) from the 

Miocene carbonates at >2800 m depth (Fig. 4.12A; Davies et al. 2008; Tingay 2010).  

This is analogous to the formation of Miocene shale dykes along faults in the 

Jerudong Anticline of Brunei (Tingay et al. 2005).  It is well documented that faults 

can transmit significant volumes of fluids when active (Barton et al. 1995; Sibson 

1996) especially if they have a higher permeability than the surrounding country 
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rock (Reitsma & Kueper 1994).  Initial eruptions of mud near Lusi are consistent 

with fluid flow up a reactivated NE-SW trending strike-slip fault although this in no 

way indicates that the fault triggered the initial eruption (see Davies et al. 2008).  

The propagation of overpressured fluids is also thought to have increased the pore 

pressure so that it exceeded the minimum principal stress (σ3, σHmin) and tensile 

strength of the surrounding rock resulting in hydrofracturing of the country rock 

around the vent and new eruptions (e.g. Jolly & Lonergan 2002).  It should be noted 

however, that the alignments seen at Lusi may differ from those in Azerbaijan as it 

is not necessarily a naturally occurring mud volcano.  The temperature of the fluids 

erupting at Lusi are around 70-100°C (Tingay 2010) whereas mud volcano fluids in 

Azerbaijan are classically around 10-20°C (Guliyev et al. 1994).  This may be due to 

relatively rapid fluid ascent rates at Lusi compared to those in Azerbaijan where 

fluid flow pathways have been present for thousands of years.  Lusi had an average 

mud and fluid flow rate of approximately 64,000 m3/day over the first three years 

(Istadi et al. 2009; Tingay 2010) differing dramatically from most naturally occurring 

mud volcano systems.  In Azerbaijan flow rates of only a few tens to hundreds of 

cubic metres per day occur, but can occasionally have eruptions that are short-lived 

(1-14 days) and extremely violent (100,000-1,000,000 m3/day; Tingay 2010).  When 

compared to mud volcanoes in Azerbaijan, Lusi is an extremely rapidly evolving 

system but this does not mean that the structural influences will differ and 

ultimately regional structure will govern both areas. 
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Fig. 4.12:  Schematic diagram of the mode of formation of Lusi mud volcano and how its vent 

systems have evolved through time.  A) November 2006 with its initial NE-SW vent alignment.  B) 

January 2010 with the initiation of caldera collapse with vents aligning along re-activated E-W 

trending anticline crestal faulting.  C) Predicted future development including elongate caldera 

collapse structure with vents aligning along caldera ring faults. 

 

As the feeder system evolved through time, the vent populations changed to an E-

W orientation in 2009 and 2010 with a possible increase in vent formation along 

the confining dams due to the load they impose in N-S orientation (Londe 1987).  

From studies of mud volcanoes in Azerbaijan it is possible to make the assumption 

that older feeder systems naturally take advantage of pre-existing structures in the 

region (Fig. 4.12B).  It is proposed that this change in orientation occurred due to a 

drop in pore fluid pressure in the system once the main source of overpressured 

fluid had been erupted.  The decreased pore fluid pressure was lower than the 

tensile strength and minimum principle stress required to keep the original 

hydrofractures open resulting in closure of these pathways and decreasing their 

permeability (e.g. Jolly & Lonergan 2002). 

 

In 2008 Lusi had erupted mud and fluids at an average rate of 64,000 m3 per day 

producing subsidence up to 10 km away from the main vent (Abidin et al. 2008).  

This subsidence would be accommodated by the re-activation of the E-W trending 

crestal faulting along the anticline.  During reactivation these faults would have 

breached aquifers located in the Pucangan Formation (280-900 m depth; Fig. 4.12B; 

Tingay et al. 2008).  Overpressured fluids from these aquifers would use these high 

permeability re-activated faults as conduits to the surface.  This is supported by the 

relatively low height of eruptions (1-3 m) indicating modest overpressure and that 

the pore fluid is not hydraulically connected to the source of the fluid for the main 

vent, where eruptions can be tens of metres in height.  Almost none of the vents 

are erupting mud, indeed, a very large number are erupting fluids comprised of 

methane, CO2, alkanes and a mix of both thermogenic and biogenic hydrocarbons 

(Mazzini et al. 2007; Sawolo et al. 2009).  In this study the Miocene carbonates are 

proposed as the primary source of the fluids driving the eruption from the main 
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vent (Davies et al. 2008), because of the absence of other lithologies that could 

deliver fluid at the rates observed.  However, other studies have suggested that the 

shallower Upper Kalibeng clays are the source of the majority of the fluids (Mazzini 

et al. 2007).  These deposits also trend in an E-W orientation (Carter et al. 2005) 

and so subsequent subsidence in the vicinity of the reefal mounds could result in 

localised reactivation of pre-existing E-W faults.  As the main vent continues to 

remobilise mud from the Kalibeng Formation (900-1870 m), this will load the 

surface and more subsidence will occur resulting in more faulting, aquifer breaches 

and new vent formation.  When the system evolves further an elongate caldera 

collapse could develop, similar to the Porong collapse identified 8 km to the 

northeast of Lusi (Fig. 4.12C; Istadi et al. 2009).  This will produce a vent azimuth 

distribution similar to that seen at Durovdag mud volcano, indeed the 2010 vent 

azimuth histogram is already exhibiting ring fault distribution more so than previous 

years. 

 

4.6 Conclusions 

The orientation of regional folds, faults and local metre- to kilometre-scale 

fractures, detachment and ring faults are the key control to the vent patterns in the 

mud volcanoes studied here.  The most dominant vent orientations occur sub-

parallel to anticline axes causing elongation of the volcanic edifice perpendicular to 

the regional maximum horizontal stress.  If later detachment or ring faulting form 

this will then overprint the original sub-parallel anticline crestal faulting.  Zonation 

of eruptive phase types also occurs implying that there is some form of 

fractionation beneath the edifices in either one large chamber or a network of 

smaller linked chambers. 

 

The composition of the fluids being erupted and alignment of vents along anticline 

axes is significant as it will dictate how the edifice itself will accrete over time 

causing volcano edifices becoming elongate sub-parallel to anticline axes.  Mud 

volcano alignments can occur on a range of scales from metre-scale vents that 
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erupt along crestal fractures to the 1-4 km systems that align along anticline axes.  

Lusi mud volcano is an example of how fluid flow pathways evolve through time 

from a localised kilometre-scale fault zone and hydrofracture system in 2006 to 

exploiting pre-existing pathways on the larger regional anticlinal structural control 

in 2009 and 2010.  This evolution is likely to continue along this trend and in a 

similar ring fault style to that seen in Azerbaijan which could have major 

implications for the local population.  It can be predicted that the flux of fluid flow 

up E-W orientated structures at Lusi will be more important than NE-SW and that as 

more subsidence occurs in the region more hazardous vents will form eventually 

producing multiple ring fault alignments and ultimately elongate caldera collapse 

up to 10 km away from the main vent as seen in palaeo-collapse structures in the 

region. 
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5 Sector Collapse of Mud Volcanoes, Azerbaijan1 
 

Abstract 

Field data collected from mud volcanoes in Azerbaijan are used to describe a 

process in mud volcano development that involves portions of the constructional 

edifices collapsing outwards in ‘thin-skinned’ slides.  These events create kilometre-

scale scarps that are tens of metres in height, arcuate in plan view, elongate and 

facing downdip.  Similar morphological features occur on igneous volcanoes and 

have been described as ‘sector collapse’ structures.  The largest sector collapses in 

igneous volcanoes involve some 1012 tons of mobilised material; equivalent 

structures in mud volcanoes are several orders of magnitude smaller.  A shape 

parameter is employed that can be utilised in field and satellite-based mapping, to 

distinguish between slope failure and eruptive deposits.  Three mud volcanoes with 

kilometre-scale sector collapses are described and controlling mechanisms are 

reviewed.  The updip domains of these collapses are characterised by fluid escape 

showing there is also linkage to deeper mud volcano structure.  The observations 

are reconciled in a model consisting of a deflating mud chamber that triggers thin-

skinned sector collapse.  The updip domain of the sector collapse is localised above 

a deep-seated zone of volume loss and the downdip domain of the collapse runs 

down the edifice flank on to the surrounding plain. 

                                                      
1 This chapter is based on a paper that is in press in the journal ‘Journal of the Geological Society, 

London’.  Referenced as ‘Roberts, K.S., Stewart, S.A., Davies, R.J. & Evans, R.J. (2011).  Sector 

Collapse of Mud Volcanoes, Azerbaijan.  Journal of the Geological Society, London, 168, DOI: 

10.1144/0016-76492010-115’, see Appendix V. 
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5.1 Introduction 

Mud volcanoes range in size from 0.01-5 km in diameter and occur in a range of 

tectonic settings, yet there are relatively few detailed descriptions of the 

morphology of kilometre-scale edifices (Milkov 2000; Kopf 2002; Planke et al. 2003; 

Yusifov & Rabinowitz 2004).  Mud volcanoes are similar to igneous volcanoes in that 

they both form constructional edifices when erupting at the surface and can 

develop structural elements such as calderas and ring faulting (Evans et al. 2008).  

The structural development of mud volcano edifices has received some attention 

(Hovland et al. 1997; Davies & Stewart 2005; Mazzini et al. 2007; Evans et al. 2008; 

Mazzini et al. 2009; Roberts et al. 2010; see Chapter 3) but has been studied far less 

than their igneous equivalents (Fisher 1990; Kokelaar & Romagnoli 1995; Lipman 

1997; Leyrit 2000; Geshi et al. 2002; Masson et al. 2002; Kennedy et al. 2004; Cole 

et al. 2005). 

 

The aim of this chapter is to describe kilometre-scale collapse phenomena and 

related morphological features seen on mud volcano edifices based on field 

mapping in Azerbaijan, and to identify the most likely trigger mechanisms for 

collapse events.  A particular difficulty in the study of mud volcanoes is 

distinguishing between features that are dominantly due to slope failure versus 

features that are largely the product of incision and erosion of the flanks during an 

eruptive event.  These processes are distinguished between on the basis of 

geomorphological criteria and the overall dimensions of the deposits. 

 

5.2 Geological Setting 

The South Caspian Basin is known for its abundant kilometre-scale mud volcano 

systems (Guliyev et al. 2000; Milkov 2000; Aliyev et al. 2002).  This concentration of 

mud volcano systems occurs due to the presence of the argillaceous Maykop 

Formation of Oligocene to Miocene age (Hudson et al. 2008) which has become 

overpressured due to disequilibrium compaction and mobilised by the addition of 
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fluids from depth (Kopf et al. 2003).  The Maykop Formation is approximately 1 km 

thick and is buried to a depth 3.5-5 km in the area of this study (Allen et al. 2003).  

Mud volcano edifices are the extrusive termination of steep intrusive feeder 

complexes that are created by pressure at depth exceeding the lithostatic pressure 

resulting in hydrofracturing.  This leads to intrusion of fluids and mud resulting in 

eventual stoping of the surrounding country rock (Stewart & Davies 2006; Deville & 

Guerlais 2009; Roberts et al. 2010; see Chapter 3). 

 

5.3 Methods and Datasets 

The edifices studied were Akhtarma-Karadag, Pilpilya and Lökbatan mud volcanoes, 

all located in Azerbaijan along the west coast of the Caspian Sea (Fig. 5.1).  Mapping 

was carried out using a handheld global positioning system (GPS) receiver, with a 

positional accuracy of 5 m.  Structural readings such as bedding and fracture and 

fold orientations were measured using a compass clinometer.  The GPS co-

ordinates with their corresponding structural datasets were integrated as layers in 

ArcMap software.  The coordinate system for the data was input using spheroid 

WGS 1984.  Areal imagery is from Digital Globe and IKONOS via Google Earth, all 

areal imagery has a resolution of 6.5-23 m.  The volumes of scarps were calculated 

by splitting the scarp into smaller wedges, calculating their individual volumes and 

then summing them as a whole volume.  The thickness of the wedges were 

considered to be the maximum height of the scarp at the head and then tapered to 

the height of the scarp at the base of the edifices, therefore making the volume 

calculations dependent on the chosen value of scarp height.  Errors in these 

measurements may arise as volume calculations were based on scarp heights that 

may have been affected by erosive processes. 
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Fig. 5.1:  Digital elevation map of the Caspian coastline in Azerbaijan showing the location of the 

study areas (localities marked with red triangles).  Red dashed lines indicate presence of faults.  Inset 

map of Azerbaijan shows map location as red box.  White colouring indicates highest topographic 

areas with blue representing the lowest topographic areas. 

 

5.4 Observations 

A number of mud volcano edifices from the South Caspian Basin feature elongate 

collapse scars on their flanks.  A detailed description of two representative collapse 

structures and their associated deposits is now provided, plus one feature 

interpreted as an incipient collapse structure.  Locations are shown in Fig. 5.1. 

 

5.4.1 Lökbatan Mud Volcano 

Lökbatan is one of Azerbaijan’s most active mud volcanoes, with twenty-two major 

eruptions from 1810-2010 (Aliyev et al. 2002; see Appendix I); it is located 15 km 

southwest of Baku (Fig. 5.1).  Lökbatan is situated on the crest of an anticline of the 

same name which trends in an east-west orientation.  The fold has a steeper 

northern limb (55-60°) than its relatively gentle southern limb (30-35°), and its crest 

is faulted.  The plan-view shape of the mud volcano edifice is elongate, in contrast 

with many other examples documented in the area (Evans et al. 2008).  Its plan-
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view dimensions are c. 1.6 km by 0.9 km (Fig. 5.2) and its crest is 130 m above the 

level of the Caspian Sea. 

 

The western flank of Lökbatan is characterised by an arcuate, elongate failure scarp 

measuring 1.62 km long in the dip direction.  This feature was first described by 

Planke et al. (2003) as a ‘western trending graben collapse structure’.  The failure 

has a maximum width of 0.48 km and is 6 m high at the crest of the edifice (Fig. 

5.2).  The failure is orientated coaxially with the mud volcano edifice.  Where the 

fault scarp is exposed it dips at 60-80° towards the collapse structure.  There is no 

scarp at the downdip limit of the collapse structure.  At the base of the scarp, 1-2 m 

high elongate mounds of mud breccias demarcate the sides of the failure. 

 

Freshly erupted mud breccias occupy an area of c. 0.096 km2 in the upper reaches 

of the area enclosed by this scarp.  The contrast in colour and texture of the mud 

breccias, and their field relationships with the scarp, indicate that these were 

erupted some time after the main collapse structure developed (Fig. 5.2).  Scholte 

et al. (2003) refer to this as a ‘breccia field’.  ‘Megablocks’ (Siebert 1984) occur 

within the main flow measuring up to 110 m in length (Fig. 5.2).  The megablocks 

display a similar light grey colour to those of the flanks of the volcano when 

compared to the darker grey flow deposit within the collapse structure and the 

blue-grey of the younger mud breccia flows (Fig. 5.2).  One indicator that these 

megablocks are not in-situ is that they rise from 2-5 m above the height of the 

flanks in their present location, suggesting that they came from a location further 

updip, where the fault scarp is higher.  Also- in Fig. 5.2A, a wedge shaped 

megablock (‘megablock A’) can be ‘fitted’ back to where its height corresponds to 

the volcano flanks.  The ‘long axis’ of this block is determined on the basis of 

variations in thickness of the block, with a view to establish whether the block has 

rotated about a steep or vertical axis (Fig. 5.2A).  This method suggests that the 

block has moved 160 m down the flank and has been rotated 26° from its original 

long axis orientation (Fig. 5.2A). 
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Fig. 5.2:  A) Lökbatan mud volcano, Baku, Azerbaijan.  B) The western flank of this volcano collapsed 

in 2001 during an eruption.  Red arrow indicates the direction of the main failure.  Amphitheatre 

shaped depression is shaded in orange.  Old mud breccia flows are coloured in purple.  Levees are 

dark brown.  Edges of collapse structure are marked by the dashed red line.  Image © 2010 

DigitalGlobe, © 2010 Google. 
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5.4.2 Akhtarma-Karadag and Pilpilya Mud Volcanoes 

These volcanoes are located on an east-west trending anticlinal structure 87 km 

southwest of Baku.  Akhtarma-Karadag and Pilpilya are essentially two summits of a 

single elongate mud volcano (Fig. 5.3A), the summits being separated by a col tens 

of metres below the elevation of the adjacent highs.  Each elongate summit area is 

characterised by kilometre-scale failure – that face in opposite directions to one 

another and are a few hundred metres apart at their closest approach. 

 

Pilpilya, the westerly half of the mud volcano, has an almost circular plan-view 

shape measuring c. 2.06 by 1.90 km (Fig. 5.3B).  The main active vent zone on the 

summit is found at the eastern end of the edifice.  Although no vents are currently 

active on the volcano itself, a single, 200 m diameter active gryphon is located 500 

m west of the mud volcano (Fig. 5.3B).  Pilpilya has a failure structure c. 1.58 km in 

length and c. 240 m wide that has failed in a westerly direction (Fig. 5.3B). 

 

The head-scarp at the top of the edifice is arcuate and c. 170 m wide.  At the top of 

the edifice the scarp is 5.5 m high reducing to 20 cm at the base of the mud volcano 

flanks.  The sides of the scarp dip steeply at 30-40° towards the collapse structure 

on all sides of the failure.  At the base of the scarp 1-2 m high elongate mounds of 

breccias mark the sides of the failure.  A major mud breccia eruption has occurred 

subsequent to the failure as a large breccia flow oversteps the debris avalanche 

(Fig. 5.3B). 
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Fig. 5.3:  A) Akhtarma-Karadag mud volcano and west of it Pilpilya mud volcano with a collapse 

structure.  Image © 2010 GeoEye, © 2010 Google.  B) Interpretation of Fig. 5.3A.  Red arrow 

indicates the direction the main slope failure has/could occur in.  On Pilpilya the collapse and most 

recent flow can be seen to fail down the volcanoes western flank.  C) IKONOS image of Akhtarma-

Karadag mud volcano.  D) Interpretation of Fig. 5.3C.  Dotted black line shows fault trace.  Purple 

areas represent gryphons and orange areas indicate regions where cinder mounds are present.  

Image © 2010 GeoEye. 

 

Akhtarma-Karadag volcano is elongate and measures c. 2.15 km by 0.8 km in areal 

extent and 96 m elevation (Fig. 5.3C).  The main active vent zone on the summit 

occurs at the western end of the edifice (Fig. 5.3C).  This feature was first observed 

using satellite imagery that identified a closed, kilometre-scale elongate structure 

(Fig. 5.3C).  Field mapping demonstrated the western end of this feature to be an 

arcuate fault (Fig. 5.3D).  Displacement decreases from c. 1.5 m at the west end of 

the structure, to a centimetre-scale fracture zone at the eastern end, barely 

perceptible in the prevailing outcrop conditions (Fig. 5.4).  The head of the break in 

slope at the western end of the volcano is arcuate and has several smaller fractures 

radiating from it in east-west orientations (Fig. 5.3D).  There are several centimetre- 

to metre-scale kinematic shear sense indicators that have been identified from the 

incipient fault.  The most prominent of these shear indicators being en-echelon 

fractures (Fig. 5.4B, inset) showing lateral movement towards the northeast.  

Freshly-exposed plant root systems span the main open fracture, and many 

gryphons and salses are coincident with the fracture zone (Fig. 5.4A and B).  

Another kinematic indicator are the ‘sediment ridges’ that occur within the 

structure, similar in form to pressure ridges seen in lava flows (Fig. 5.3; Sigurdsson 

et al. 2000).  These also indicate movement to the northeast. 
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Fig. 5.4:  Photos of the Akhtarma-Karadag mud volcano, Azerbaijan.  A) At northern side of ring fault, 

June, 2006 and B) April, 2009 with an inset photo of en-echelon faulting seen along the main ring 

fault.  Rucksack for scale.  The photos show a section of the ring fault (marked by the dashed red 

line) that has an offset on it.  There is also a large gryphon that is erupting along this fault line.  C) 

Photo taken at the head of the ring fault in June, 2005 and D) Photo taken at the head of the ring 

fault in June, 2006. 

 

5.5 Interpretation 

The main features described are elongate scarps on the flanks of mud volcanoes, 

mud breccia levees; arcuate-amphitheatre shaped craters and allochthonous 

megablocks.  All of these features are consistent with thin-skinned failure of the 

margins of the mud volcano flanks (as opposed to deep-rooted caldera collapse) all 

of which are now described drawing parallels with equivalent structures 

documented on igneous volcanoes.  Where possible, nomenclature used in igneous 

context by Ui et al. (2000) is followed. 

 

5.5.1 Amphitheatre 

The volume encompassed by an arcuate, updip part of a scarp that delimits a sector 

collapse is termed the ‘amphitheatre’ as the scarp forms a ‘horseshoe’ shape (Fig. 

5.5; Leyrit 2000).  This morphology is accentuated when the collapse is 

accompanied or overprinted by eruptive activity (Leyrit 2000).  The walls of the 

amphitheatre are steep and reach several hundreds of metres height in igneous 

volcanoes.  At Lökbatan and Pilpilya mud volcanoes these walls are steep but only 

reach 2-10 m in height. 

 

The edge of the amphitheatre is defined by the footwall high of the sector collapse 

fault.  Its height is controlled by the amount of fault displacement and the amount 

of material removed by the debris avalanche.  The examples suggest that 

amphitheatre height in mud volcanoes is restricted to a maximum of c. 10 m. 
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Fig. 5.5:  Schematic of sector collapse of an igneous volcano after Ui et al. (2000).  A) Longitudinal 

section of a sector collapse.  The dashed line indicates the previous morphology of the volcano 

before the collapse took place.  B) Cross section across the debris avalanche high on the flanks of the 

volcano- ‘debris avalanche block facies’, location (B).  C) Cross section across the debris avalanche 

low down on the flanks of the volcano- ‘debris avalanche matrix facies’, location (C).  D) 3-D 

schematic of mud volcano sector collapse with localities of cross sections B and C drawn on.  White 

dashed line marks sector collapse fault. 
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5.5.2 Sector Collapse Fault 

The margin of the amphitheatre is marked either by an inward-dipping scarp or a 

slope with a pronounced break at its base.  This defines the ‘elongate scarp’ 

marking the limits of failure.  This scarp varies in height from c. 10 m in the 

amphitheatre to less than 1 m at the downdip limit. 

 

At Akhtarma-Karadag this fault is interpreted to be in an incipient stage at present.  

The elongate shape of this ring fault is similar in plan-view form to the failure at 

Lökbatan mud volcano.  The dimensions of this structure are c. 1.2 km in length and 

c. 400 m wide, similar to the collapses mapped at Lökbatan and Pilpilya.  The fault is 

currently active on the basis that exposed and broken plant root systems can be 

found spanning open fractures, en-echelon fracturing and sediment ridges (Fig. 

5.4B, inset).  Gryphons and salses coincident with this fault demonstrate active fluid 

flow preferentially localising on to the fault surface.  This link between fluid flow 

and faulting argues against a purely thin-skinned interpretation along the whole 

length of the sector collapse fault (Fig. 5.4A and B). 

 

Caldera collapse and sector collapse can be distinguished in terms of their bounding 

fault geometry.  The lower tips of faults associated with calderas and ring 

complexes occur at depth in the subsurface below or within a volcanic edifice and 

could be described as ‘thick-skinned collapse’ (Fig. 5.6A).  On the other hand the 

lower tip line of a fault or shear zone bounding a sector collapse outcrops at the 

surface on the volcano flank and can be considered as ‘thin-skinned’ failure (Fig. 

5.6B).  So in terms of peripheral, bounding structures (as opposed to internal 

structures), sector collapse structures should have a downdip domain characterised 

by surface expression of compression (which may be an overthrust or flow over 

laterally equivalent units), whereas caldera structures do not. 
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Fig. 5.6:  A) Schematic diagram showing the positions of fault tips during caldera collapse and B) fault 

forming due to sector collapse of mud volcanoes. 

 

Planke et al. (2003) describe the elongate portion of the sector collapse fault at 

Lökbatan as a ‘graben collapse structure’.  They suggest that this was caused by the 

presence of an elongated, shallow mud chamber within the crest of the anticline 

and that during an eruption mud was drained from the chamber resulting in 

subsidence and collapse of the roof, essentially viewing the whole structure as an 

elongate caldera.  This study proposes an alternative interpretation, that the scarp 

was produced by a process of ‘thin-skinned’, detached collapse only indirectly 

linked to a deeper-seated deflating chamber.  A critical piece of evidence 

supporting this interpretation is the presence of hummocky terrain, enclosed by the 

downdip portion of the elongate ring fault. 

 

5.5.3 Levees 

These morphological features form on the downthrown side of the elongate scarp 

and mark the edges of the debris avalanche field.  They can be seen at both 

Lökbatan and Pilpilya.  At the updip (headscarp) end of the collapse, the levees are 

between 2-4 m in height and towards the foot of the edifice they decrease to less 
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than 1 m in height.  In cross section they have a wedge shape and in 3-D this wedge 

is sinuous, defining the edges of the debris avalanche deposit.  This morphology is 

similar to debris avalanche levees common on igneous volcano sector collapse 

deposits (Siebert 1984), and also fluvial/alluvial levees (Adams et al. 2004).  This 

similarity suggests that these processes share a common mode of formation.  

Levees form on mud volcano sector collapse flows as opposed to eruptive flows 

because sector collapse flows are geologically instantaneous, catastrophic events 

involving very poorly sorted material.  As this debris avalanche moves downslope 

and outwards the levees build up in areas where flow boundary conditions are 

markedly non-uniform as flow energy decreases towards the outer edges of the 

avalanche.  This process does not occur in eruptive flows as they often flow at an 

average rate of 0.5-2 m per year and are composed of a mass of mud breccia that 

flows downhill almost as a coherent block. 

 

5.5.4 Debris Avalanche Deposit 

These produce hummocky deposits of fragmented debris towards the base of 

volcanoes (Fig. 5.5D and Fig. 5.7B).  Early igneous workers variously interpreted 

these hummocks as glacial moraines, phreatic blisters on the surface of gas-rich 

lava flows, small independent volcanic vents, lahars, or man-made features (Siebert 

1984).  Debris avalanche deposits in the case studies considered here consist 

primarily of the mud breccia that originally comprised the mud volcano edifice.  

Table 5.1 shows that the volumes of debris avalanches are comparable to those of 

the missing sectors of the cone, indicating that the dominant process is not input of 

new, erupted material, but slope failure of a pre-existing portion of the volcanic 

edifice. 
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Mud 
Volcano 

Angle 
of 

Sector 
(°) 

Length 
of 

Elongate 
Scarp 
(km) 

Volume of 
Debris 

Avalances 
(m3) 

Volume 
of Scarp 

(m3) 

Angle of 
Repose 

(°) 

Width of 
Elongate 

Scarp 
(km) 

Area of 
Volcano 

(km2) 

Akhtarma-
Karadag 35 1.6 - - 6 0.9 5.8 

Pilpilya 29 1.8 ~7.4*106 ~7.3*106 10 0.8 6.8 

Lökbatan 28 1.7 ~7.4*106 ~6.3*106 10 0.8 5.8 

Mount St 
Helens 36 15.4 2.3*109 - 15 3.5 70.4 

Table 5.1:  Dimensions of sector collapse structures discussed in the text.  The ‘angle of 

repose’ is measured from the slope angle of the sector failure. 

 

Debris avalanche deposits are poorly sorted and the dominant constituent is 

material of the volcanic edifice.  Some freshly erupted material may be present, 

though this is hard to distinguish in mud volcanic eruptions if the deposits are old.  

Large fragments of the volcanic edifice, tens of metres in size or larger, termed 

‘megablocks’ (Siebert 1984), can be incorporated in debris avalanches, for example 

at Lökbatan.  Debris avalanche deposits display surface morphology with textural 

and morphological features characteristic of landslide deposits (Fig. 5.5; Siebert 

1984).  In particular, hummocky topography with numerous hills, closed 

depressions, and longitudinal and transverse ridges occur at both Lökbatan and 

Pilpilya (Fig. 5.5D and Fig. 5.7B).  Mud volcano debris avalanches are more easily 

eroded than those at igneous volcanoes and so are relatively inconspicuous. 
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Fig. 5.7:  Structure of mud breccia flows compared to collapse deposits.  A) Mud breccia flow emanating from Koturdag crater (3 times vertical exaggeration).  Image © 2010 GeoEye, © 2010 Google.  Koturdag mud volcano is located 30 km 
southwest of Pilpilya.  B) Elongate collapse structure on Lökbatan (3 times vertical exaggeration).  Image © 2010 DigitalGlobe, © 2010 Google.  C) Photograph of the elongate collapse structure on Lökbatan.  D) Schematic of structural features seen 
in Fig. 5.7C.  E) Photograph of the mud breccia flow emanating from Koturdag crater.  F) Schematic of the structural features seen in Fig. 5.7E. 
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5.5.5 Eruptive Flow Versus Sector Collapse 

It is not necessarily straightforward to distinguish between scarps produced by 

sector collapse and those excavated by erosive flow of erupted mud.  However, 

there appear to be morphological differences between the kilometre-scale 

structures produced by these processes (Fig. 5.7).  Mud breccia flows tend to be 

narrow, point-sourced phenomena originating near the top of the mud volcano 

edifice (Fig. 5.7A, E and F; Chow et al. 2006; see Appendix II for more examples of 

mud breccia flows).  As they reach lower lying, gentler slopes they spread out into 

wider, lobate deposits.  By contrast, sector collapses involve a whole segment of 

the flank moving down slope (Fig. 5.5, Fig. 5.7B, C and D; see Appendix II for more 

examples of sector collapses).  The dimensions of eight sector collapses and twenty-

one mud breccia flows were measured from areal imagery and are plotted on Fig. 

5.8 (see Appendix II for raw data).  Flows in this dataset were characterised on the 

basis of field work and/or diagnostic features recognised on areal imagery (levees, 

megablocks, sinuosity and colour (Fig. 5.7).  The results show that the ratio of 

‘Bottom Width’ (width at the most distal termination of the structure) to ‘Average 

Width’ (an average of the widths of the top and halfway down the structure) of the 

structures effectively distinguishes between the two failure modes with sector 

collapse ratio being ~1 and flows being greater than 1 (typically 2 or more; Fig. 5.8). 
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Fig. 5.8:  Graph showing the relationship between length and widths of various structures on mud 

volcano edifices.  Dashed line represents the transition zone between mud breccia flows and sector 

collapse geometries (depicting a 2:1 ratio). 

 

Three end members of failure and resulting deposits on mud volcano flanks are 

identified here based on scale, and relative importance of slope failure versus 

eruptive processes (Fig. 5.9).  Erosive flow of a mud breccia deposit can involve 

relatively long, meandering tongues of mud breccia that cut into the flanks of the 

volcano from which they emanate.  They tend to spread out once they meet the 

plain on which the edifice is building (Fig. 5.7 and Fig. 5.8).  At the foot of the flows 

pressure ridges build up giving them an appearance similar to ‘ropey’ lava flows 

(Fig. 5.7A; Sigurdsson et al. 2000). 
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Fig. 5.9:  Schematic ternary diagram showing the positions of mud breccia flows, sector collapses, 

slope failures and hybrid failures occurring on mud volcanoes in relation to the scarp length and 

width and the size of the feature.  The internal structure of each deposit can also be seen in the 

block diagrams. 

 

Sector collapse deposits have a low to moderate length and a uniform width 

throughout their length.  Their internal structure resembles that of a debris 

avalanche with an extensional zone at the top and a compressional zone at the 

bottom of the deposit.  Surface morphology of sector collapse deposits includes 

hummocky terrain and megablocks of the flanks of the volcano.  Small slope failures 

(5-30 m length) also occur on the flanks of these volcanoes and structurally 

resemble the larger sector collapse deposits.  They have short downslope length 

and relatively wide compared to their length. 
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5.6 Discussion:  Mechanisms for Mud Volcano Sector Collapse 

Sector collapses are well documented in the context of igneous volcanoes (Siebert 

et al. 1987; Van Wyk de Vries et al. 2000; Lundgren et al. 2003).  In relation to 

igneous volcanoes these structures are in excess of tens of kilometres in extent, 

some of the largest examples involve approximately 1012 tons of mobilised material 

(Masson et al. 2002).  Mud volcanoes are generally smaller than igneous volcanoes, 

so sector collapse of mud volcano edifices occupy a different scale range.  The 

lower cut-off for length scale of sector collapse in mud volcanoes employed here is 

1 km on the basis that these are substantial structures that are relatively easy to 

identify in the field and on seismic reflection data, and are of a scale to pose 

significant risk to subsea infrastructure. 

 

A range of possible mechanisms may be involved in triggering sector collapse in 

mud volcanoes; it may be that actual events result from combinations of such 

factors.  A brief review is presented here based in part on processes that have been 

discussed in relation to sector collapse in igneous settings (Fig. 5.10; Voight & 

Elsworth 1997).  Most likely mechanisms for mud volcano sector collapse are 

highlighted; 

 

Oversteepening of summit region of the volcano, for example tumescence due to 

mud injection could produce gravitational instability (Fig. 5.10A).  Slope angles in 

the case studies reported here range from 6-10° (Table 5.1).  On igneous volcanoes 

the majority of collapses occur on slopes of 28-30° (Voight & Elsworth 1997).  The 

slope failures reported here from Azerbaijan do not, however, occur on the 

steepest parts of the edifice. 
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Fig. 5.10:  Schematic diagrams showing primers and triggers of mud volcano sector collapse 

events.  A) Inflation of mud chamber and volcano causing instability.  B) Addition of overburden 

when mud breccia is erupted onto the volcano flanks.  C) Change in pore pressure within the mud 

volcano.  D) Erosion and removal of support.  E) Precipitation increasing pore fluid and loading and 

therefore pore pressures.  F) Earth tides exerting different gravitational forces on the mud source 

causing more or less violent eruptions.  G) Seismicity shaking the ground and changing pore pressure 

in the mud volcanoes.  H) Eruption of mud volcano. 

 

Regional Stress Siebert et al. (1987) stated that the location of sector collapses 

within the igneous volcanic edifice can be influenced by local and regional stress 
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regimes.  Swarms of mud volcano vents often occur parallel to the regional 

maximum horizontal compression (see Chapter 4; Roberts et al. 2010), resulting in 

the elongation of the volcanic edifice in that direction.  In the Azerbaijani examples 

mud breccia flows show weak clustering in a northeast or southwest direction, 

generally flowing down the steepest topography (Fig. 5.11B; see Appendix II for 

more examples).  By contrast, the sector collapse failures occur parallel to the 

direction of mud volcano edifice elongation, generally an east-west trend that is 

also parallel to the anticline axis at each location (Fig. 5.11C; see Appendix II for 

more examples).  This relationship suggests that, while the sector collapses may be 

related to some aspect of mud volcano edifice geometry, they are not directly 

related to regional stress. 

 

Loading of the volcano flanks by erupted mud breccia may cause increase in pore 

pressure resulting in collapse (Fig. 5.10B).  Rainfall could be another significant 

loading factor in the onshore mud volcanoes in Azerbaijan.  The climate is arid for 

much of the year and the mud flows become heavily fractured as they dry out - 

appreciable water load is absorbed in the wet season. 

 

Overpressure of pore fluids in and around the mud volcano edifice may cause 

failure (Fig. 5.10C).  If the sediments are sealed, pore pressure within them will 

increase, reducing the effective normal stress as well as shear strength of the 

sediment.  No additional trigger is necessarily required; pore pressure can simply 

increase until the down-slope component of the gravitational force is greater than 

the shear strength of the sediment and its cohesion, at which point failure occurs. 

 

Erosion can create steeper zones that are susceptible to de-stabilisation (Fig. 

5.10D).  It may also remove lateral support to slopes and so induce collapse. 

 

Hydrothermal alteration along regional fracture sets also may be an important 

process in the localisation of sector collapse features (Lopez & Williams 1993; Reid 

et al. 2001; Reid 2004).  Circulation of fluids (meteoric and hydrothermal) can result 

in an increase in pore water pressure. 
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Fig. 5.11:  Rose diagrams of orientations of A) long axes of mud volcano calderas, B) mud 

breccia flows and C) sector collapse troughs. 
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Seismic activity is a documented triggering factor of both igneous and mud volcano 

eruptions and collapses (Fig. 5.10G; Manga 2007; Manga et al. 2009).  Continuous 

monitoring of Lökbatan mud volcano has indicated the occurrence of weak 

earthquakes during eruptions but it is not clear is these are a cause or effect of the 

eruption process. 

 

Earth tides have been linked with both mud volcano and igneous volcano eruptive 

periodicity (Fig. 5.10F; Mauk & Johnston 1973; Aliyev et al. 2002). 

 

Eruptions and fluid activity are involved in some 50% of all igneous sector collapses 

(Leyrit 2000).  Lökbatan’s first recorded eruption took place in 1864 (Aliyev et al. 

2002; see Appendix I for eruption histories).  The 2001 eruption involved ignited gas 

jets 50-60 m in height (Aliyev et al. 2002; Kadirov & Mukhtarov 2004) and 304 m3 of 

erupted mud breccia (Aliyev et al. 2002).  Sector collapse at Lökbatan may have 

coincided with the eruption on February 23, 1935.  Aliyev et al. (2002) document 

this eruption as ‘taking place without noise, gas and breccia emanation’.  Aliyev et 

al. (2002) noted that step like subsidence occurred with landslides which were most 

likely the result of a collapse of the western portion of the volcano.  The centre of 

the volcano then subsided up to 22 m and numerous fractures formed that then 

began to emit gas and breccia that covered up to 25,000 m2 (Aliyev et al. 2002). 

 

A broader summary of factors that may relate to sector collapse are tabulated in 

Table 5.2. 

 

 

 

 

 

 

 

 

 



Chapter 5  Mud Volcano Sector Collapse 

157 

In
he

re
nt

 c
au

se
s 

Initial composition 
Texture- loose, porous, weak materials are slide prone 
Bedding attitude relative to slope face 
Layering sequences in relation to strength, permeability 
Discontinuity systems- faults, joints, bedding planes 
Slope forming process history, movement history; bedding slip and fault slip history and 
orientation of movement 
Initial physiochemical setting; conditions of weathering and alteration 
History of seismicity and seismic damage 
Ambient (seasonal) groundwater conditions 

Ca
us

es
 o

f i
nc

re
as

ed
 sh

ea
r s

tr
es
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Removal of lateral 
or underlying 
support of slopes 

Erosional processes producing, steepening, or undercutting natural 
slopes 
Prior mass movements 
Eruptions near base of slope 

Static Loading 

Natural deposition- slope or river sedimentation 
Weight of water added by natural precipitation or by exolved volatiles 
Seepage pressures and joint water pressures 
Mud/fluid pressure 
Swelling pressures in expansions clays 

Dynamic loading 
Regional or local tectonic earthquakes 
Vibrations from volcanic earthquakes, explosion and eruptive processes 
Vibrations from adjacent, rapidly moving landslides 

Increase of surface 
slope 

Mud/fluid intrusion related deformation 
Regional tectonics 
Slope changes due to depositional processes 

Ca
us

es
 th

at
 re

du
ce

 sh
ea

r s
tr

en
gt

h 

Physiochemical 
Factors 

Hydrothermal alteration 
Softening of clays 
Hydration of clay minerals 
Ion exchange of clays 
Weathering 
Solution of grain cement 
Decomposition of organic materials 
Physiochemical fracturing 

Pore fluid 
pressure 
enhancement 

Heavy rainfall or rapid snowmelt 
Changes in groundwater flow regime 
Pore pressure changes due to hydrothermal processes 
Thermal expansion of pore fluid due to frictional slip 
Vibration induced pore fluid pressure rise 
Shear deformation induced pressure rise 
Consolation seepage induced by surcharge 
Base level changes in reservoirs, lakes or oceans 
Flow boundary condition changes 

Changes in 
structure 

Disturbance 
Particle reorientation due to slip or dynamic loading; peak to residual 
strength loss 
Grain collapse in altered deposits 
Fracturing and loosening of valley walls, stress relief 
Deep seated fracturing associated with fluid intrusion, stress relief, 
physiochemical alteration 
Adjustments to groundwater flow paths; slope drainage enhanced or 
impeded 

Table 5.2:  Causes of mud volcano collapse adapted from Voight & Elsworth (1997). 
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Mapping in this study has revealed apparently conflicting structural evidence in 

relation to mechanism of the kilometre-scale elongate collapse structures on mud 

volcanoes in Azerbaijan.  On one hand, there is good morphological evidence of 

mass flow on shallow detachment with many similarities to sector collapse 

structures in igneous volcanoes.  On the other hand alignments of fluid expulsion 

features are observed along the bounding faults, particularly in the updip domains, 

of these structures (see Chapter 4).  Reconciling these observations leads us to a 

preferred model that is essentially a development of that previously published by 

Planke et al. (2003).  This study adopts their idea of an elongate mud chamber at 

relatively shallow (<1 km) level.  But rather than the elongate fault-bound 

structures at the surface directly representing a collapsing roof of a deflating mud 

chamber, these findings suggest that the observed sector collapse structures are 

‘thin-skinned’ sector collapses triggered and localised by mud chamber deflation 

during eruptions, as shown in Fig. 5.12.  This ring fault provides a pathway for fluids 

and so results in vents aligning along the fault itself (Fig. 5.12B; see Chapter 4).  Ring 

fault formation may be enhanced by fluid flow up crestal faulting parallel to the 

anticline axis which would explain why failure sometimes occurs on the shallowest 

slopes. 

 

 
Fig. 5.12:  Schematic sector collapse formation.  A) Dormant mud volcano edifice.  B) Ring 

fault forms after small eruption and evacuation of material from depth.  C) Large eruption causes 

subsidence to occur due to expulsion of fluids at the surface resulting in sector collapse along ring 

fault.  Green dashed line represents position of anticline axis. 

 

Subsea examples of igneous sector collapse have also been identified in both 

seismic reflection and multibeam (swath) bathymetric sonar data (Mattioli et al. 
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1995; Leat et al. 2010) as well as possible un-identified sector collapse structures on 

mud volcanoes in subsea seismic reflection data from the South Caspian Basin e.g. 

Corthay & Aliyev (2000).  These structures also share the same ‘shape parameters’ 

that this study identifies as being characteristic of sector collapse.  Using this study 

to identify similar subsurface structures could aid a better understanding of the 

processes at depth as well as determining areas that may be at risk to these 

potential geohazards (Corthay & Aliyev 2000; Leat et al. 2010). 

 

5.7 Conclusions 

Elongate trench like depressions bounded by shallow inward-facing faults trending 

from the summit to the base of some mud volcanoes in Azerbaijan, and displaying 

evidence of downdip lateral movement, are termed ‘mud volcano sector collapses’.  

Examples mapped in the field range in size from ~180 m to ~200 m width and 1-2 

km in length, each representing up to 106 tons of mobilised material assuming 

depth to detachment averaging 10-20 m.  Field observations include an elongate 

trough that is fault-bounded, on three sides (open downdip), with an updip 

‘amphitheatre’ depression, levees, and a downdip domain with hummocky 

morphology.  The bounding fault system shows kinematic evidence of lateral 

movement.  However the presence of fluid escape structures in the updip parts of 

these collapses also indicate a relationship with the deeper-seated structure of the 

mud volcano.  The observations made here are reconciled in a model where a 

deflating, perhaps elongate, shallow mud chamber (<1 km) triggers detached sector 

collapse.  This model could account for the range of observations plus the curious 

spatial relationship of the sector collapses, namely they occur on the gentler slopes 

(i.e. elongate crest) of the mapped mud volcano edifices.  The model also allows the 

sector collapse to be more extensive than any underlying mud chamber, potentially 

running out to, and beyond the edifice on to the surrounding plain. 

 

A by-product of this study is recognition that sector collapse flows tend to have a 

different planform shape relative to eruptive flows, the latter having a pronounced 
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lobe at the base of slope.  This criterion enables these structures to be distinguished 

on remote-sensed data.  The observations of sector collapse made herein can also 

be applied in risk assessments, for instance it should not be assumed that mud flow 

hazard is restricted to areas downdip of the steepest sides of mud volcanoes.  This 

can equally be applied in submarine settings. 
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6 Discussions and Conclusions 

 

6.1 Introduction 

In this chapter the primary findings of the thesis are brought together to provide an 

overview of the mud volcano system as well as any limitations that the structural 

model developed may exhibit.  The results of each chapter are compared with the 

questions and thesis aims posed in Chapter 1.  Finally, suggestions are made for 

further work and other studies that may enhance the understanding of mud 

volcano systems. 

 

6.2 Discussion 

This thesis has used field mapping, statistical methods and high resolution satellite 

imagery to perform a detailed analysis of the structure, evolution and processes of 

the intrusive and extrusive domains of mud volcano systems from Azerbaijan and 

East Java.  The use of multiple data types has produced a detailed evaluation of the 

structure and geometry of the fluid flow pathways utilised and the various 

structural features (faults, fractures and anticline axes) found within these systems.  

This section in conjunction with the discussions sections in Chapters 3, 4 and 5 

relates the key scientific results of each core research chapter and draws them 

together into a generalised structural model of large mud volcano systems from the 

South Caspian Basin.  Each chapter is now discussed in reference to the key linking 

factors including the similarity between igneous and sedimentary volcanism, 

structural influences (i.e. faults, fractures and anticline axes that may control fluid 

flow within the crust), fluid flow within the mud volcano system, geo-hazard 

prediction and the mud volcano system as a whole.  These are presented in sub-

sections 6.2.1-6.2.5. 
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6.2.1 Comparison to Igneous Volcanic Systems 

One of the most significant observations about mud volcano systems over the past 

decade is that they bear a striking resemblance to igneous volcanic systems in 

various ways (Davies & Stewart 2005; Stewart & Davies 2006; Evans et al. 2008; 

Bonini & Mazzarini 2010).  Table 6.1 shows a comparison between igneous 

volcanoes and mud volcanoes made during this study.  Similarities addressed are 

between; calderas, sector collapses, flows, edifices, vent alignments and processes 

of intrusion.  Obviously they differ in some aspects being that igneous volcanic 

activity is primarily driven by hot, molten rock and mud volcanoes are mostly cool, 

fluidised sediments, however both produce morphologically and geometrically 

similar products and are driven by pressure differentials.  Both types of volcanism 

form steep-sided cones with vent populations on their crests which emit fluids 

(Kopf 2002; Table 6.1).  As discussed in Chapter 2 mud volcano activity can by 

characterised by explosive or effusive eruptions, in which the mud flows produced 

resemble lava flows from igneous volcanoes (Table 6.1).  Many explosive eruptions 

of igneous volcanoes have been triggered by earthquakes of a threshold magnitude, 

which occur several days before (Manga & Brodsky 2006).  The same relationship 

has been seen with mud volcanoes with the physical processes that initiate 

eruptions still not being fully understood (Delisle et al. 2001; Mellors et al. 2007; 

Manga et al. 2009). 

 

Several studies have focused on the largest known mud volcano system, Chirag 

mud volcano in the South Caspian Basin (Davies & Stewart 2005; Stewart & Davies 

2006; Evans et al. 2008).  This mud volcano is ~600 m thick, with a 4 km wide 

caldera collapse structure and downward tapering cone complex beneath it (Davies 

& Stewart 2005; Stewart & Davies 2006; Evans et al. 2008).  The dimensions of 

these structures make them comparable in size to their igneous equivalents 

(Hansen 2006).  Evans et al. (2008) also discussed the similarity between igneous 

and mud volcanic caldera formation, structure and geometry and Bonini (2008) 

related mud volcano caldera elongation to the direction of regional stress in a 

similar fashion to that used on igneous volcano calderas (Lipman 2000). 
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Table 6.1:  Comparison of igneous and mud volcanic systems.  Google Earth Images © 2010 

DigitalGlobe and © 2010 GeoEye, © 2010 Google. 

 

One of the best examples of the parity between igneous and mud volcano systems 

in this thesis is shown in Chapter 5 where elongate depressions, bounded by 

shallow inward-facing faults, are classified as ‘mud volcano sector collapses’, as 
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they show similarities with igneous sector collapse structures.  These collapses 

trend from the summit to the base of some mud volcanoes in Azerbaijan, and 

display evidence of downdip lateral movement in a similar fashion to those 

displayed by igneous volcanoes.  Examples from mud volcanoes range in size from 

~180 m to ~200 m width and 1-2 km in length, each representing up to 106 tons of 

mobilised material assuming depth to detachment averaging 10-20 m.  Field 

observations included an updip ‘amphitheatre’ depression, levees, and a downdip 

domain with hummocky morphology.  These collapses are triggered by violent 

eruptions on both igneous and sedimentary volcanoes.  Structurally and 

morphologically the two types of collapses are identical however, the difference 

arises with scale as igneous sector collapses are several orders of magnitude above 

the volume of mud volcano collapses.  This may be due to the rheology and 

temperature of the material being erupted.  Igneous material is more viscous and 

when it cools can form steep conical edifices that usually fail at an angle of repose 

of around 30° (Siebert 1984).  Mud volcanoes often fail at a shallower angle than 

this of around 10° probably due to the relative weakness of the mud that the 

edifice is composed of. 

 

Vent alignments on igneous volcanoes have been studied in great detail and have 

had numerous statistical techniques carried out on them to determine what 

processes might control these arrangements (Wadge & Cross 1988; Connor 1990; 

Bleacher et al. 2009).  In Chapter 4 it can be seen that this is also useful for analysis 

of mud volcano vent populations.  These statistical techniques prove that like 

igneous volcano vent populations those on mud volcano edifices also reveal what 

the structure of the intrusive domain is like.  This will be discussed in more detail in 

section 6.2.2.  Venting only occurs in the ‘active vent zone’ of the intrusive domain 

as discussed in Chapter 3.  This distribution of vents will determine the overall 

morphology of the edifice itself and if there is an elongate vent distribution it will 

also be likely that the edifice will become elongate as it accretes which is also true 

of igneous edifices (Bonini & Mazzarini 2010). 

 



Chapter 6  Discussions and Conclusions 

165 

The observation that igneous and mud volcanoes are akin is also true of the 

intrusive domain as discussed in Chapter 3.  Davies & Stewart (2005) determined 

that the intrusive domain was composed of feeder pipes and dykes that connected 

to a deeper source layer several kilometres below.  They described this conduit 

system as being a steep cylindrical zone of densely intruded country rock comprised 

of mud pipes and exhibiting low mechanical strength in comparison to the 

surrounding un-intruded country rock (Davies & Stewart 2005).  This intrusive 

domain underwent differential compaction and resulted in the caldera collapse 

structure which overlies the downward tapering cone (Davies & Stewart 2005).  

These characteristics are similar to those found for igneous volcanoes, which share 

the same structure (Lorenz 1986; Hansen 2006).  Ring faulting in mud volcano 

systems, as discussed in Chapter 2, also closely matches the form of ‘ring dykes’ and 

‘cone sheets’ in igneous intrusive systems (Anderson 1936, 1937).  In Chapter 3 

mud volcano system feeder complexes were found to consist of megabreccia of 

country rock surrounded by intruded mud and some long-lived fluid conduits.  This 

is a description that would also fit that of an igneous diatreme complex, these are 

cone shaped areas of brecciated country rock and juvenile material that extend 

down to igneous dykes and sills at depth (Lorenz 1986).  The model of intrusion 

discussed in Chapter 3 consists of a propagating fracture network that isolates 

blocks and eventually allowing them to move freely as the smaller clasts become 

eroded by the mud-water-gas mix through time.  This process has similarities with 

the better-known ‘stoping’ process in igneous volcanic complexes where an 

upward-propagating fracture network isolates a megabreccia of blocks.  Once the 

fracture system breaches the surface and becomes an anastomosing flow pathway, 

the smaller blocks within the breccia are eroded and extruded, creating space for 

widening of the flow conduits and settlement and rotation of the larger blocks 

whose size and weight prevent them from being carried upwards. 

 

Another analogue is that of sand injectites where intrusions may be filled by sand- 

or mud-sized grains and form by the hydrofracturing of the interface between 

liquidised sediment and stronger surrounding sediments or the forceful intrusion of 

existing fractures (Jolly & Lonergan 2002; Hurst et al. 2003a, b).  If overpressured 
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fluids passing into the opening fracture do so at a sufficient velocity, the fluid shear 

stress will balance or exceed the weight of a sediment grain and the grain will 

become entrained into the flow through fluidisation (Lowe 1975).  These structures 

can form networks of cross-cutting or merged intrusions, of both dykes and sills 

(Hurst et al. 2003a, b).  Individual examples can reach sizes of up to 3 km in length 

and 20 m thickness (Huuse et al. 2005).  Their scale means they are can be observed 

on seismic reflection profiles, typically as ‘v’ or ‘w’ shaped amplitude anomalies in 

cross-section (Hurst et al. 2003a).  The orientation of the intrusions is controlled by 

the orientation of the regional stresses and the tensile strength of the surrounding 

sediments (Jolly & Lonergan 2002).  This results in sand injectites being a useful 

palaeostress indicator in a similar way to igneous dykes (Nakamura 1977; Boehm & 

Moore 2002). 

 

The intrusion size and fill is controlled by volume and type of sediment within the 

source body and the duration of sufficient pressure drive.  Consolidated clay 

particles have a greater degree of cohesion than sand grains and are not as easily 

fluidised (Brown 1990).  A combination of liquidisation, plastic flow and critical state 

deformation may therefore be important in the formation of shallow mud injectites 

(Brown & Orange 1993) as noted by Morley (2003) in Brunei.  The scale, orientation 

relative to regional stresses, volume of source and type of sediment, are also 

dominant controls on igneous dyke and sill intrusive complexes (Petford 1996).  

Sand injectites, mud volcano intrusive domains and igneous intrusive complexes all 

propagate via hydrofracturing (Petford 1996; Jolly & Lonergan 2002; Morley 2003) 

making the scale of these features all largely dependent on the volume of the fluid 

source, the velocity and the pressure differentials.  This indicates that all three of 

these intrusive structures share more in common than previously thought 

especially their modes of formation and driving mechanisms. 

 

The similarities between mud and igneous volcanic systems in relation to their 

morphology, internal structure, plumbing systems, vent distributions and eruptive 

activity show that these systems may share similar processes and driving forces.  

The processes controlling the two types of volcanism are fundamentally driven by 
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pressurised fluids at depth.  Conversely if these systems do not share causal 

mechanisms then the question has to be asked, why do they still form such similar 

constructions? 

 

6.2.2 Influence of Regional and Local Structure and Stresses 

The influence of regional structure and stress regimes is extremely important in 

igneous volcanic systems with a number of studies being carried out in relation to 

the topic (Nakamura 1977; McGuire & Pullen 1989; Voight & Elsworth 1997; Day et 

al. 1999; Acocella et al. 2003; Bosworth et al. 2003; Holohan et al. 2005; Paulsen & 

Wilson 2010a, b) however, there are far less that focus on mud volcano systems 

(Morley 2003; Bonini 2007, 2008; Bonini & Mazzarini 2010).  Chapter 3 evaluates 

the structure of the intrusive domain of a mud volcano system for the first time.  

The study splits the intrusive domain into sub-domains comprised of; the ‘active 

vent zone’ where fluids are currently being extruded; the ‘peripheral fracture zone’ 

where both sinuous and conjugate fracture systems are found with infill; the 

‘central zone of block rotation’ where bedding strike measurements vary greatly 

from the surrounding anticlinal bedding and the ‘un-intruded zone’ which contains 

only open conjugate faulting/fracturing that has not been infilled or intruded.  This 

model for the intrusive domain shows how important the pre-existing structure 

within the country rock is to the intrusive process with the majority of intrusions 

occurring along pre-existing fracture systems and some along sinuous 

hydrofractures.  This would be of particular interest to hydrocarbon production as 

the effects of intrusion on the country rock can be evaluated in order to assess how 

much of the reservoir has been compartmentalised.  The internal structure of this 

intrusive domain model could be what comprises the centre of the ‘downward 

tapering cone’ structures that were first noted by Stewart & Davies (2006).  If this is 

the case then the intrusive domain of mud volcanoes bear more in common with 

igneous diatremes (Lorenz 1986; Hansen 2006) than first thought however, it is only 

by improving seismic imaging techniques that the structure will truly be 

determined. 
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The most critical information that this mapping uncovered was that there are 

megablocks of country rock within the centre of these intrusive domains that at 

some point have been rotated in order to give them strike orientations that vary by 

up to 90° from the surrounding country rock.  One analogy might be the smaller 

scale ‘blow out pipes’ seen on the island of Rhodes (Fig. 6.1; Løseth et al. 2001).  

These pipes are most likely formed by explosive eruptions of gas forming the 

circular structures that are linked by 3-4 m high and 0.2 m wide vertically oriented 

fractures (Løseth et al. 2001).  The fractures and circular structures are both filled 

with clay clasts and slurry from the overlying units.  All pipes have a wide, sub-

concentric deformation zone up to 10 m away from the core (Løseth et al. 2001).  

This raises the question of if the intrusive domain can be described as being ‘self-

similar’.  If the structure of a metre-scale blow-out pipe resembles that of a 

kilometre-scale mud volcano intrusive domain then this surely implies some scale-

dependence.  This self-similar nature is seen in other parts of mud volcano systems 

such as the kilometre-scale edifices and metre-scale vents; kilometre-scale breccia 

flows with metre-scale mud flows from gryphons; and also in vent and mud volcano 

edifice alignments as seen in Chapter 4.  Why could the same not be true of the 

intrusive domain?  If this self-similar scaling is valid it would increase the potential 

to produce valid models of these systems. 
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Fig. 6.1:  Photograph showing a horizontal cross section through a sedimentary blowout pipe of late-

Pleistocene age on the Greek island of Rhodes; the inset sketch illustrates the feature in three-

dimensions.  The inner central zone comprises relatively large (<5-10 cm) angular mud clasts floating 

in a muddy matrix; the outer zone has smaller (<5 cm) clasts.  These zones are surrounded by 20 cm 

of heavily fractured country rock (limestone) and a further 4 m of less fractured rock.  From Judd & 

Hovland (2007). 

 

In igneous volcanic systems structural concepts usually assume that the geometric 

characteristics of volcanic features i.e. elongation of edifices or calderas and 

alignment of vents or edifices, reflect the regional stress axis orientation.  

Nakamura (1977) inferred that the rows of aligned volcanic vents frequently form 

above subsurface feeder dykes.  Therefore, vent alignments have been used to infer 

the direction of the minimum horizontal stress (σHmin) or the maximum horizontal 

stress (σHmax; Nakamura 1977; Lutz 1986; Wadge & Cross 1988).  Pre-existing faults 

and fractures may influence dyke trajectory, but in general the stress field in the 

country rock is thought to exert the primary control on dyke orientation in igneous 

systems (Delaney et al. 1986).  In Chapter 4 these techniques are used on the vent 

distributions at the surface of mud volcano systems in order to reveal intricate 

detail about the subsurface pathways that have been exploited by the migrating 

fluids and how these pathways can change with time.  It is most likely that the 

orientation of regional stress regimes and local metre- to kilometre-scale structures 

are the key control to the vent arrangement proving that fluid often flows up 

conjugate fractures, anticline crestal faults, detachment faults, ring faults and 

parallel to anticline axes.  Interestingly a similar study carried out by Bonini (2008) 

showed that the majority of vents on Napoli mud volcano in Italy aligned with 

jointing at 90° to the anticline axis and parallel to the maximum horizontal stress 

(Fig. 6.2B).  This was also found by Winslow (1983) who looked at the orientation of 

clastic dykes intruding at 90° to the anticline axis (Fig. 6.2C).  This contradicts the 

findings of Chapter 4 with the volcanoes in Azerbaijan and may show that intrusion 

is controlled on an even smaller scale than previously thought.  Vent alignments on 

igneous volcanoes also usually occur parallel to the maximum horizontal stress as 

the dykes dilate perpendicular to the maximum horizontal stress (Fig. 6.2A). 
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Chapter 4 shows that the dominant orientation for mud volcano vent populations is 

nearly always parallel to the anticline axes on which they erupt.  This means that if 

you infer the vents form at the termination of a linear ‘mud dyke’ at the surface, 

that the orientation of that dyke is also perpendicular to the regional maximum 

horizontal stress and so the opposite to what is seen on igneous vent populations 

and dyke swarms.  One explanation for this is that mud volcano systems are largely 

controlled by the anticlinal structures through which they intrude unlike igneous 

volcanoes which, due to their scale and the energy involved, would not be 

influenced by local structure.  Anticline axes will always be oriented at 90° to the 

maximum horizontal stress as the anticline forms as a result of this compressive 

stress, as will their crestal faulting.  As a result of this, mud volcano alignments can 

occur on a range of scales from the 1-4 km systems that align along anticline axes to 

metre-scale vents that erupt along anticline crestal faulting.  If there are mud 

chambers within the intrusive domain then they may also become elongated 

perpendicular to the maximum horizontal stress as has been inferred in igneous 

systems (Paulsen & Wilson 2010a).  This alignment of vents and mud chambers also 

allows the edifice itself to become elongate due to the sources of fluids accreting 

along anticline axes, another feature which has been noted in igneous volcanic 

systems (Paulsen & Wilson 2010a). 

 

The opening direction of igneous volcanic amphitheatre craters or orientation of 

sector collapse structures of igneous volcano systems has been found to occur 

consistently sub-parallel to the direction of regional minimum horizontal stress.  

Some studies of igneous volcanoes have linked vent alignments with the orientation 

of sector collapse structures suggesting that failure is more likely to occur along 

lines of weakness i.e. dykes and so fail perpendicular to the maximum horizontal 

stress (Fig. 6.2A; Siebert 1984).  However, these relations are apparently more 

complex (for an overview see Lagmay & Valdivia 2006).  For instance, in regions 

dominated by trans-tensional tectonics, crater breaching is most commonly parallel 

to the fault strike (Tibaldi 1995) or it forms an acute angle to the σHmax direction 

(Lagmay & Valdivia 2006).  In extensional settings, cone breaching is perpendicular 

to normal fault strike and the σHmax (Tibaldi 1995).  In volcanoes developed under 
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compressional settings, crater opening and debris avalanches tend to develop 

roughly orthogonal to the regional trend of thrusts, as inferred for the Central 

Andes (Francis & Wells 1988), and thus roughly parallel to the direction of regional 

σHmax.  In Chapter 5 it can be seen that all mud volcano sector collapses in 

Azerbaijan occur parallel to the local anticline axis orientation and so perpendicular 

to the maximum horizontal stress similar to their igneous equivalents (Siebert 

1984).  In Chapter 5 sector collapse parallel to the anticline axis is explained with a 

model where a deflating, perhaps elongate, shallow mud chamber (<1 km) triggers 

detached sector collapse.  This model accounts for the orientation observations 

plus the occurrence of collapses on the gentler slopes (i.e. elongate crest) of the 

mapped mud volcano edifices. 

 

Igneous volcanic calderas form as a result of the removal of magma from an 

underlying magma chamber or reservoir, the roof of which subsequently collapses 

(Anderson 1936; Lipman 1997; Cole et al. 2005).  Caldera collapse depressions are 

often elongated in plan view, and elongation is usually taken as a reliable indicator 

of regional stress orientation.  Elliptical igneous calderas normally become elongate 

parallel to the direction of the minimum horizontal stress, this is also true of mud 

volcano calderas as seen in Chapter 5 and Appendix IV.  Different models have been 

proposed to explain the ellipticity (ratio of the long axis/short axis) of igneous 

calderas (Acocella 2007).  It has been suggested that at some igneous volcanoes the 

magma chamber underlying the caldera grows along brittle discontinuities that 

formed prior to the emplacement of the magma, making caldera elongation 

dependent upon the local structural setting (Acocella 2007).  It has also been 

proposed that the growth of the magma chamber may occur in the direction of the 

σHmin as the fluid chamber walls change shape due to stress concentrations and 

resulting brittle failure of the wall rock, analogous to the breakouts in a wellbore 

(Bosworth et al. 2003).  Bonini (2008) suggested that growth of a fluid-mud 

chamber in the σHmin direction is appropriate to explain the presence of elliptical 

mud calderas elongating sub-parallel to the axis of anticlines over which they 

usually develop.  It has been proposed that elliptical calderas may reflect the shape 

of the underlying magma/fluid-mud mix reservoir, and that the caldera long axis 
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could reveal the shallow σHmin orientation (Bosworth et al. 2003) a similar finding to 

the model proposed in Chapter 5 of elongate sector collapse orientation. 

 

 
Fig. 6.2:  A) Sketch illustrating emplacement of radial dykes and parasitic vents in a direction parallel 

to the maximum horizontal compression (MHC), producing elongation of the edifice and a 

dilatational stress within the volcano, promoting collapse in a direction normal to the MHC.  The 

sketch on the right-hand side illustrates typical morphology of sector collapses.  From Siebert (1984).  

B) Schematic block diagram showing the relations between the orientation of the principal stress 

axes and the main fracture sets in a sealed-type thrust fold.  The steep brittle discontinuities may 

potentially operate as conduits transferring fluids from depth up to surface.  Notably, the 

intersection of ‘ac’ and ‘bc’ fracture families may represent a locus potentially very favourable for 

localising fluidising pipes feeding mud volcanoes.  The thick ‘ac’ joint indicates the setting at Nirano 

mud volcano field, Italy (NMVF), where this joint family is controlling mud volcanism.  ‘H’ - maximum 

horizontal stress; ‘h’ - minimum horizontal stress; ‘V’ - maximum vertical stress.  MA, Marnoso 

Arenacea; LU, Ligurian units; ELU, Epi- Ligurian units; PQ, Pliocene-Quaternary deposits.  From Bonini 

(2007).  C) Schematic fold and its major and minor structures from relationships seen in the clastic 

dyke swarm in Western Isla Grande, Southern Andes.  From Winslow (1983). 
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6.2.3 Fluid Flow Pathways within Mud Volcano Systems 

Chapters 3 and 4 in conjunction provide intricate detail about the subsurface 

pathways that have been exploited by the migrating fluids and how these pathways 

can change with time within mud volcano systems.  One of the major findings of 

this study is that no kilometre-scale mud diapirs have been found.  In other 

locations globally structures previously interpreted as diapirs have frequently 

turned out to be poorly imaged thrust cored anticlines associated with gas charge 

and mud volcanoes piercing their culminations, giving an impression of a large mud-

cored anticline (Huuse et al. 2010).  This study, particularly in Chapter 3 has found 

that fluid flow only occurs in certain parts of the intrusive domain namely the 

‘active vent zone’, ‘central zone of block rotation’ and the ‘peripheral fracture 

zone’.  Intrusion of fluids dominantly occurs via pre-existing faults and fractures 

which are conjugate or form a ‘grid’ like mesh.  This is inline with other studies 

which have noted intrusion in pre-existing structures (Bonini 2008).  A second type 

of fracture was also seen, these were described as ‘sinuous fractures’ and were 

formed as a result of fluid intrusion most likely by hydrofracturing.  This kind of fluid 

flow pathway was also noted by Morley (2003) in Brunei.  These findings were also 

backed up in Chapter 4 as mapped vent distributions also revealed alignment with 

pre-existing structures in country rock as well as with anticline axes, ring faulting 

and detachment faults.  Alignment of vents along ring faults have also been noted 

in igneous volcanic systems (Nakamura 1977). 

 

Chapter 4 shows that on some mud volcanoes zonation of eruptive phase types is 

also occurring implying that there is some form of fractionation at depth in either 

one large chamber or a network of smaller linked chambers.  Unfortunately the 

precise mechanisms causing this to occur have not been identified but it does show 

that certain fluid types travel through different fluid flow pathways.  From the 2-

point azimuth statistics in Chapter 4 it is usually the case that both mud (gryphon) 

and water (salse) fluid types display the same azimuth alignments and so may share 

similar fluid flow pathways.  Cinder mounds (gaseous) tend to form in discrete 

zones and so are probably controlled by metre-scale fault valve behaviour (Sibson 
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1990).  Pool vent types bear no orientation relationship to any other vent type 

indicating that they are probably only very shallow features that form as a result of 

dewatering of the surrounding mud edifice (Mazzini et al. 2009). 

 

The composition of the fluids being erupted at each volcano is significant as it will 

dictate how the edifice itself will accrete over time.  Fluid flow pathways may also 

be a precursor to edifice collapse or indeed may prime it for failure as shown in 

Chapter 5.  The presence of vents in the updip parts and margins of the incipient 

collapse structures in Chapter 5 also indicate a relationship with the deeper-seated 

structure of the mud volcano.  It is most likely that intrusion initially occurs through 

pre-existing fracture networks and along crestal faulting and then subsequently 

influenced by formation of detachment and ring faulting.  This obviously suggests 

that fluid flow pathways can change over time depending on what structures may 

be present within the edifice itself.  In Chapter 4 the Lusi mud volcano is also given 

as an example of how fluid flow pathways evolve through time from a localised 

kilometre-scale fault zone and hydrofacture system in 2006 to a larger regional 

anticlinal structural control in 2009 and 2010.  This evolution is likely to continue 

along this trend and in a similar ring fault style to that seen in Azerbaijan as 

subsidence increases more faulting will probably occur up to 10 km away from the 

central vent which could have major implications for the local population.  In order 

to better understand mud volcano fluid flow pathways time-dependant studies 

must be carried out on Lusi and mud volcanoes globally to determine exactly how 

these pathways evolve. 

 

6.2.4 Geo-Hazard Prediction 

Mud volcano systems globally pose a significant hazard to economic drilling and 

engineering operations as well as local infrastructure.  Most importantly Chapters 3 

and 4 introduce the Lusi mud volcano which may have been triggered by the drilling 

of a gas exploration borehole 200 m away from the central vent (Davies et al. 

2008).  Events like this make predicting the evolution of a mud volcano system even 

more important in reducing the possible occurrence of such blow-outs.  Mud 
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volcano systems in Azerbaijan are typically located on the crest of anticlines which 

usually host hydrocarbon accumulations likely to be located in close proximity to 

their feeder conduits.  Mud volcanoes can have a significant impact on the 

petroleum plays through which they penetrate and may act to either help or hinder 

the migration of hydrocarbons in a region.  In many cases an impermeable clay 

‘cake’ builds-up on the walls of the intruding mud pipes or dykes in a similar fashion 

to mud cake formation in drilled wells (Morley 2003).  This build-up prevents fluid 

loss into permeable lithologies within the overburden and seals shallow reservoirs 

from the effects of short-term fluctuations in fluid content and pressure in mud 

feeders (Morley 2003).  Fresh permeable lithologies will be exposed to the mud 

feeder system during the propagation of new pipes and faulting associated with the 

collapse of a downward-tapering cone (Stewart & Davies 2006).  As shown in 

Chapters 3 and 4 the feeder complex is intensely fractured, intruded by mud and 

fluids, contains megablocks and may experience large pressure variations all of 

which are potential problems that may be encountered within and around this area 

of the system.  In order to avoid these regions reservoir models must be designed 

to predict potential hazards.  The overall model presented in this thesis can be 

integrated into these models especially taking into account the regional stress 

orientation and any local scale structures. 

 

Sector collapse of mud volcano edifices presents a hazard to infrastructure both on 

and offshore and warning signs of incipient collapse can now be noted due to the 

observations made in Chapter 5.  This study has provided a detailed account of the 

internal structure of the intrusive and extrusive domains of mud volcano systems 

and has helped to better understand and identify some of the potential hazards 

posed by these systems.  The observations of sector collapses, can also be applied 

in risk assessments, for instance it should not be assumed that mud flow hazards 

are restricted to areas downdip of the steepest sides of mud volcanoes.  This can 

equally be applied in submarine settings. 
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6.2.5 Mud Volcano System Model 

By integrating the findings of Chapters 3, 4 and 5 a comprehensive structural model 

can be produced which schematically depicts the configuration of the extrusive and 

intrusive domains of a typical mud volcano system (Fig. 6.3).  Chapter 5 has 

recognised that sector collapses tend to have a different planform shape relative to 

eruptive flows, the latter having a pronounced lobe at the base of slope.  This 

criterion enables these structures to be distinguished on remote-sensed data and 

seismic reflection data and so these structures have also been added in to the 

structural model.  In order for this model to be of further use for predictive 

modelling several more parameters must be supplied including lithology, pressure 

measurements and 3-D porosity and permeability distribution in feeder complexes.  

This model provides a starting assumption for the dimensions of these structures in 

areas were seismic imaging does not clearly resolve their extent.  These parameters 

will be useful in the cases of reserves assessment and drilling planning in the deeper 

parts of mud volcano systems. 
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Fig. 6.3:  Schematic depicting the new structural model for the intrusive and extrusive domains of a mud volcano system from the results of this study.  This figure highlights how each of the findings of this study relate to each other and link together to form 

one complete system. 
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6.2.6 Limitations 

One of the main discrepancies of the study in Chapter 3 is that the position of the 

‘rotated blocks’ at the centre of the feeder complex have not been correlated to 

the surrounding country rock.  This means that it is not possible to determine 

whether these blocks have moved up, down or stayed in the same position within 

the intrusive domain.  A second point about this study is that it is not possible to 

know at what structural level the intrusive system is being mapped.  So although 

mud volcanoes that had the largest amount of country rock visible were mapped, it 

is still not known how much of this feeder complex had been eroded in the past.  It 

also means that it is only possible to see a single 2-D ‘slice’ of the intrusive system 

at any one mud volcano. 

 

Limitations faced in Chapter 4 are that only a limited number of the mud volcanoes 

had structural data available as the majority of the country rock is usually covered 

with mud flows.  This meant that exact correlation of the vent alignments with 

structural features could not be carried out at every mud volcano.  The accuracy of 

GPS measurements may also influence the vent positioning and the statistical 

analysis presented here would be enhanced if accuracies could be decreased to the 

sub-metre scale.  Another consideration when looking at the Lusi mud volcano 

alignments is that because the volcano may be subjected to different structural 

influences than those in Azerbaijan it may not be directly applicable.  Some 

uncertainties may arise when mapping vents at Lusi as it is unknown how many of 

these vents are either linked to a deeper feeder system or simply shallow eruptions 

linked to the massive and rapid subsidence occurring in the area.  Some large areas 

covered in mud meant vent locations could not be mapped which possibly accounts 

for the high proportion of bubbles located near roads, dam walls and high density 

urban areas. 

 

Chapter 5 presents limitations in the way that the exact depth to the detachment of 

the sector collapse is not known and can only be estimated.  If a fresh sector 

collapse occurred that hadn’t been subjected to erosion and subsequent mud 



Chapter 6  Discussions and Conclusions 

179 

breccia flows infilling the depression then a more accurate depth could be 

determined.  Identification of more sector collapse structures using seismic 

reflection data would also have been useful in assessing how deep this detachment 

occurs and has been carried out to some degree by Corthay & Aliyev (2000).  In 

order to overcome some of these problems more future work could be done to 

address them as discussed in the section 6.4. 

 

6.3 Conclusions 

The investigations presented in this thesis provide a detailed study on the structure, 

evolution and geometry of the intrusive and extrusive domains of kilometre-scale 

mud volcano systems from the South Caspian Basin and East Java.  The structural 

field mapping, aerial image analysis and statistical techniques carried out during 

this study have significantly enhanced the understanding of fluid flow through the 

crust and how large volumes of sediment can be mobilised and erupted at the 

earth’s surface.  This relationship of fluid flow and its influence upon surrounding 

country rock and structures on the mud volcano edifice itself have been 

determined.  Whilst the study is focussed on only two geographic regions it is 

anticipated that the results are relevant to mud volcano systems globally.  The 

following sections list a number of statements that summarise the conclusions of 

this project in reference to the hypotheses posed at the beginning of the thesis. 

 

1) Mud transport is through linked mud dykes and sills that have dimensions 

similar to their igneous counterparts (a few metres to tens of metres wide) 

and that these collectively form highly efficient conduit systems capable of 

transporting and re-cycling tens of cubic kilometres of mud and fluid.  If the 

hypothesis is correct it would counter the common conception of kilometre-

wide mud diapir systems. 

During this study no field evidence for kilometre-scale mud diapirism was found.  

The structure of the intrusive domain of mud volcano systems in Azerbaijan was 

found to be composed of sinuous hydrofractures and pre-existing fracture systems 

that were infilled with mud or mineral precipitations.  Country rock was largely 
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intact apart from in the ‘central zone of block rotation’ which was composed of a 

megabreccia of country rock containing blocks of up to 20 m in length and with 

bedding strike rotations that differed from the surrounding country rock by up to 

90°.  Fracture density towards the centre of these intrusive domains also increased 

dramatically as did mud intrusions.  This megabreccia, increased fracturing and 

intrusion, result in the reservoir potential of the country rock through which they 

pass being severely reduced as compartmentalisation increases. 

 

Sub-domains of the intrusive domain have been defined as; the ‘active vent zone’ 

where fluids are currently being extruded, the ‘peripheral fracture zone’ where 

both infilled sinuous and conjugate fracture systems are found, the ‘central zone of 

block rotation’ where bedding strike measurements vary greatly from the 

surrounding anticlinal bedding and the ‘un-intruded zone’ which contains only open 

conjugate faulting/fracturing.  The ‘active vent zone’, ‘peripheral fracture zone’, and 

‘central intrusive zone’, together comprise the mud volcano feeder complex itself, 

with the ‘un-intruded zone’ lying outside the feeder complex.  Formation of the 

intrusive domain is likely to be similar to stoping processes in igneous volcanic 

complexes where an upward-propagating fracture network isolates a megabreccia 

of blocks via mechanical breakdown of the country rock.  Once the fracture system 

breaches the surface and becomes an anastomosing flow pathway, the smaller 

blocks within the breccia are eroded and extruded, creating space for widening of 

the flow conduits and settlement and rotation of the larger blocks whose size and 

weight prevent them from being carried upwards however, relative positioning of 

blocks has still to be determined. 

 

2) Identify evidence for faults and fluid flow at the surface and relate these to 

sub-surface fluid flow.  Investigate mud volcano vent distributions on several 

edifices in order to determine which fluid flow pathways are exploited. 

2-point azimuth and nearest neighbour statistical analyses of mud volcano vent 

populations in Azerbaijan and East Java picked out dominant vent alignments and 

their orientations.  The principle fluid flow pathways exploited nearly always shared 

the same orientation of regional folds axes, local metre- to kilometre-scale 
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fractures, detachment faults and ring faults suggesting that these are the key 

controls of the vent patterns.  The dominant vent orientations are located sub-

parallel to anticline axes causing elongation of the volcanic edifice perpendicular to 

the regional maximum horizontal stress.  If later detachment or ring faulting form 

this will then overprint the original sub-parallel anticline crestal faulting.  Zonation 

of eruptive phase types also occurs implying that there is some form of 

fractionation beneath the edifices in either one large chamber or a network of 

smaller linked chambers. 

 

The observations in Azerbaijan were used to assess how the fluid flow pathways at 

Lusi mud volcano are evolving through time, from a localised kilometre-scale fault 

zone and hydrofracture system in 2006 to exploiting pre-existing pathways on the 

larger regional anticlinal structural control in 2009 and 2010.  Predicted evolution is 

likely to continue along this trend and in a similar ring fault style to that seen in 

Azerbaijan, with the fluid flow up E-W orientated structures becoming increasingly 

more dominant than NE-SW and that as more subsidence occurs in the region more 

hazardous vents will occur, eventually producing multiple ring fault alignments and 

elongate caldera collapse up to 10 km away from the main vent.  Mud volcano 

alignments can occur on a range of scales from metre-scale vents that erupt along 

crestal fractures to the 1-4 km systems that align along anticline axes. 

 

3) Characterise the morphology and structures on edifices at the upper 

terminations of mud volcano systems that may be influenced by the intrusive 

domain i.e. sector collapse scarps. 

Field observations identified elongate troughs that are fault-bounded, on three 

sides (open downdip), with an updip ‘amphitheatre’ depression, levees, and a 

downdip domain with hummocky morphology on some mud volcanoes in 

Azerbaijan.  Examples mapped in the field range in size from ~180 m to ~200 m 

width and 1-2 km in length, each representing up to 106 tons of mobilised material 

assuming depth to detachment averaging 10-20 m and display evidence of downdip 

lateral movement.  These structures have been identified as ‘mud volcano sector 

collapses’ similar to their igneous equivalents.  The presence of fluid escape 
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structures in the updip parts of these collapses also indicate a relationship with the 

deeper-seated structure of the mud volcano. 

 

The observations made here are reconciled in a model where a deflating, perhaps 

elongate, shallow mud chamber (<1 km) triggers detached sector collapse.  This 

model could account for the range of observations plus the curious spatial 

relationship of the sector collapses namely they occur on the gentler slopes (i.e. 

elongate crest) of the mapped mud volcano edifices.  The model also allows the 

sector collapse to be more extensive than any underlying mud chamber, potentially 

running out to, and beyond the edifice on to the surrounding plain.  The differences 

between sector collapse flows and eruptive flows has also been identified as they 

each have a different planform shape, with eruptive flows displaying a more 

pronounced lobe at their base.  This criterion enables these structures to be 

distinguished on remote-sensed data and possible seismic reflection data.  The 

observations of sector collapse made herein can also be applied in risk assessments, 

for instance it should not be assumed that mud flow hazard is restricted to areas 

downdip of the steepest sides of mud volcanoes. 

 

6.3.1 General Conclusions 

This project has shown that mud volcano systems share more in common with 

igneous volcanic systems than previously thought, with similarities between 

intrusive domain structures, i.e. dykes and sill complexes and stoping; edifice 

evolution and morphology, i.e. sector collapse, calderas, flows and vents; structural 

influences, i.e. caldera ellipticity, vent alignments and sector collapse orientation; 

and both present potential geo-hazards.  In order to fully understand mud volcano 

systems their link to their igneous equivalents must be studied to gain a better 

understanding of the intrusive processes. 

 

Both regional and local structure have a significant influence on how mud volcano 

intrusive systems penetrate the crust on several scales from the sub-metre-scale 

fractures to kilometre-scale feeder complexes.  Regional stress regimes dictate how 
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a mud volcano edifice will accrete over time as well as determining which structural 

pathways will act as potential conduits.  Regional stress will also control what 

orientation a mud volcano caldera is likely to breach and so will dictate where a 

sector collapse structure will form. 

 

The fluid flow pathways that compose the intrusive domain in mud volcano systems 

govern the evolution of the extrusive domain, with fractures forming planes of 

weakness for failures to occur along and for vents to erupt along producing 

alignments.  Mud volcano systems, unlike igneous volcanic systems are strongly 

influenced by the local anticlinal structures through which they intrude and it 

seems that it is these that ultimately control the evolution, position and structure of 

the intrusive domain. 

 

6.4 Future Work 

The range of data types and varying scales of investigation in this project have led 

to a thorough investigation of the intrusive and extrusive domains of mud volcano 

systems.  However, whilst the project represents a considerable advancement of 

the knowledge and understanding of these aspects of mud volcanism, certain 

limitations have been imposed by limited data availability, data quality gaps and the 

relatively small number of examples available for study.  The remainder of this 

section now provides a discussion of the project limitations together with a number 

of suggestions as to how further work may be of use in overcoming them. 

 

6.4.1 Field Studies 

• The main outstanding question that is raised by this thesis is whether these 

intrusive domains have the same geometry globally.  More studies should aim 

to identify outcrop analogues of mud volcano feeders and pipes as in Chapter 3 

so that a wider comparison can be drawn between intrusive domains on a 

global scale.  Studies of ancient mud volcanoes and their feeder systems have 

the potential to elucidate what the feeder system looks like and how they may 
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be influenced by regional and local structures.  One particular area that would 

be of use identified during this study is that of the mud volcanoes in south-

western Pakistan (Snead 1964; Von Rad et al. 2000; Delisle et al. 2001; Wiedicke 

et al. 2001).  These mud volcanoes erupt in areas where structural features can 

be easily mapped in relation to the intruding system, even via Google Earth.  

The structural detail in this region along with its close proximity to the edifices 

would greatly enhance our understanding of mud volcano systems especially 

their feeder systems. 

 

• One of the main unknowns in the feeder complex study detailed in Chapter 3 is 

that it was difficult to determine whether ‘blocks’ within the central zone of 

block rotation had been moved up, down or stayed at the same stratigraphic 

level within the intrusive complex.  If this could be determined it would help to 

better constrain the fluid flow regimes within the intrusive system.  It would 

reveal information about the rheology, velocity, density and viscosity of the 

mud erupted and energy of eruptions themselves that would be required in 

order to cause these blocks to move.  This could be achieved if stratigraphic 

correlation between the blocks and the surrounding country rock could be 

determined most likely using biomarkers. 

 

• Structural mapping around mud volcano systems would also increase 

understanding about how these structures pierce the country rock.  Of 

particular interest would be how the intrusion of mud volcano systems may 

affect the growth of the anticlines through which they penetrate, particularly in 

Azerbaijan.  This would be of use for the hydrocarbon industry as it may have an 

impact upon how their petroleum systems evolve through time. 

 

• How intrusion of mud volcano systems affects the country rock through which it 

intrudes on a micro-scale should also be addressed.  During this study a small 

grain crushing analysis was carried out on six transects across three mud 

volcano systems.  This was carried out in order to assess the amount of grain 

crushing that was caused by the intrusion of the mud volcano systems.  
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Transects were carried out perpendicular and parallel to anticline axes across 

the different mud volcanoes.  Thin sections of each hand specimen were made 

and stained with blue dye.  Although no significant grain crushing was found in 

relation to proximity to the mud volcano systems micro-scale fracturing was 

observed.  This fracturing contained clay infills suggesting that mud may invade 

on a variety of scales.  A study that focuses primarily on this micro-scale 

intrusion would be useful in gaining insight into how far this fracturing occurs 

from the centre of the intrusive complex, what orientation these formed at and 

what impact this may have on the surrounding country rock. 

 

• Mud volcano edifices and structures on their crests display a degree of 

statistical ‘self-similarity’, they are geometrically similar at a range of scales, for 

example gryphons on the crest of a large mud volcano resemble the kilometre-

scale edifices on which they sit (Bonini & Mazzarini 2010).  The schematic model 

of the intrusive domain in Chapter 3 bears a striking resemblance to the blow-

out pipe in Fig. 6.1 indicating that the intrusive domain of kilometre-scale mud 

volcanoes share similar structure to metre-scale pipes.  If this is true of the mud 

volcano system as a whole a study focusing on this aspect might be able to shed 

some light on the geometry of the intrusive system at depth and may enable 

predictive modelling of these systems. 

 

• How different fluid types erupt along different parts of the same anticline could 

also be investigated.  In Chapter 4 it can be seen that different fluid types erupt 

along separate sections of the same anticline, with one part erupting a mud 

plug, another dominantly salses and another dominantly gryphons.  Does the 

location along the anticline or the tilt of the anticline hinge affect which types of 

fluids are able to erupt? 

 

• During this study mud particle size analysis and rheological experiments on 

erupted mud from various different mud volcanoes in Azerbaijan were carried 

out.  These data in conjunction with particle shape analysis could be used to 

determine how these parameters influence mud flow through the crust.  Future 
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research in this area should be cross-disciplinary, focusing on the coupling 

between stress, pressure, particles size, shape, fluid and mass transport, and 

will involve geologists, geochemists, mathematicians and physicists. 

 

• How does the structure of the intrusive domain evolve through time?  In 

Chapter 4 the analysis of the Lusi mud volcano revealed an evolution of its fluid 

flow pathways within only a few years of its birth.  This highlights the 

importance of time-lapse monitoring of mud volcano systems globally in order 

to better understand their evolution.  If this could be done it would greatly 

enhance hazard prediction during well planning. 

 

6.4.2 Modelling 

• Further data-driven research would be significantly boosted by numerical and 

analogue modelling to constrain the mechanics of deep subsurface sediment 

remobilisation as these processes cannot be readily observed, unlike many 

conventional sediment transport phenomena. 

 

• Incorporation of focused fluid flow conduits in basin and fluid flow modelling to 

ascertain impacts on migration and storage of fluids, compaction, heat flow, 

both during and following the emplacement of such conduits (transient vs. 

steady- state modelling). 

 

6.4.3 Seismic Imaging Techniques 

• It is only recently that good quality 3-D seismic data that cover mud volcano 

systems have become available.  Despite the large volume and high quality of 

seismic data available to this project no intrusive domains are imaged in enough 

detail to allow for meaningful seismic interpretation to take place.  Whilst 

analysis of these examples has proved successful, the inclusion of more 3-D 

seismic data and more well-imaged examples would allow for a more informed 

comparison of systems globally.  Significant advancements are also likely to take 
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place in this field as better quality seismic data becomes available.  In particular 

there are ongoing projects focussed on producing high quality converted wave 

seismic data in the South Caspian Sea (Bouska & Johnston 2005).  These new 

data are likely to lead to improved imaging of the intrusive elements of mud 

volcano systems since they are not subject to the gas-related imaging problems 

that hamper normal P-wave data acquisition.  In order to really determine the 

structure of subsurface fluid flow pathways especially in mud volcano systems 

seismic reflection data must improve its resolution in order to image metre-

scale structures and features that contain or exist beneath gas accumulations or 

large quantities of fluid that distort any images produced. 

 

• In the case of the source domain there is a large gap in the knowledge of its 

physical properties and the structures which control the location of large mud 

volcano systems.  This is partly due to a lack of any boreholes that penetrate the 

source domain.  It is also a result of the fact that most commercially acquired 

seismic surveys become very poorly quality at the typical depth of mud volcano 

parent beds 

 

Many of these suggestions are far beyond the scope of this thesis however, all 

would lead to a more comprehensive understanding of mud volcano systems as a 

whole.  The rewards of such studies should be an improved understanding of 

dynamic basin processes, fluid flow within the crust, hazard distributions and 

understanding the impacts of these natural processes on the environment in the 

near and long term. 
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Appendix I: Azerbaijan Locations, Structural Maps and 

Eruption History 
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Mud volcano location map.  Mud volcanoes marked by blue triangles were visited during the study.  

Mud volcanoes marked with black stars were mapped on Google Earth. 
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Structural Map of the Lökbatan Area (Courtesy of Geospatial Research Ltd (GRL)) 
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Azerbaijan Mud Volcano Eruption Records: 1810-2001 (Aliyev et al. 2002) 

Volcano Date of Eruption Time Duration (hrs) 

   Hours Minutes 

Gil Island 1810    
Khare-Zire Island 1810    

Yanan-Tava     
Keyreki 1824    

Yanan-Tava 1825    
Bozag-Gobu 09/12/1827 18:00:00 3  

Lokbatan 06/01/1829    
Keyreki 03/06/1830 19:30:00 1 30 

Bozag-Gezdek 10/02/1839 13:00:00 20  
Toragai 1841    

Yanan-Tava 1841    
37 km from Shamakhi City 21/06/1844 19:00:00  45 

Pirsagat River Valley 21/07/1845 19:00:00   
Shikhzairli 20/07/1848 Night   

Marazy 24/11/1848 12:00:00   
Jengi 24/03/1851 20:00:00   

Bakhar 1853    
Otmanbozdag 03/02/1854 21:00:00 3  

Khare-Zire Island 22/03/1857 05:30:00  45 

Gil Island 05/07/1859 20:00:00   
Khare-Zire Island 1859 23:00:00  20 

Bakhar 1859    
Gil Island 24/06/1860 12:00:00  25 

Chigil-deniz 19/05/1861    
Lokbatan 1864    
Keyreki 1865    
Degne 09/08/1866 14:45:00   

Bozdag-Gezdek 17/11/1867 16:00:00  4 

Yanan-Tava 24/04/1868 19:00:00   
Shikhzairli 27/05/1868 Night 3  
Aran-deniz 1868    

Cheildag 01/12/1870 Afternoon   
Kalamaddyn 26/01/1872 11:00:00   
Shikhzairli 26/01/1872 11:00:00   

Jengi 23/08/1873    
Bakhar-deniz 1876    
Garasu Island 29/02/1876 Morning   
Garasu Island 21/03/1876 Evening   

Dashgil 30/06/1882    
Near Salyan City 1882  2  

Keyreki 1885    
Bakhar 30/07/1886    

Lokbatan 17/01/1887 12:00:00  10 

Abseron Kyupesi 1888    
Lokbatan 1890    

Buzovna Sopkasi 02/05/1890    
Bozdag-Gobu 1894    

Lokbatan 1900    
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Toragai 1901    
Bozakhtarma 13/02/1902    

Shikhzairli 13/02/1902    
Bozdag-Gezdek 1902    

Keyreki 1902    
Dashgil 1902    

Lokbatan 1904    
Otmanbozdag 22/11/1904    

Bank 03/10/1906    
Sabail 1907    

Dashgil 04/07/1908    
Bakhar 14/03/1909  216  
Bakhar 1911    

Delyaniz 19/04/1912 18:00:00  20 

Bakhar-deniz 1912    
Kichik Kharami 1912    

Gushchi 05/01/1913    
Gil Island 27/08/1913 Night  15 

Aran-deniz 1913    
Giziltepe 03/01/1914    
Giziltepe 10/04/1914    
Lokbatan 03/02/1915 23:10:00 1  
Keyreki 17/02/1915 20:00:00  5 

Sabail 27/07/1915    
Buzovna Sopkasi 27/07/1915  2  

Gushchi 13/11/1917    
Lokbatan 14/03/1918    

Dashly Island 07/10/1920    
Bakhar-deniz 1921    

Beyukdag 1921    
Beyukdag 1921    

Otmanbozdag 31/01/1922 18:25:00  25 

Lokbatan 07/01/1923 Evening 1 30 

Garasu Island 08/02/1923 17:37:00  40 

Sangi-Mugan Island 29/03/1923    
Buzovna Sopkasi 08/10/1923 00:00:00 2  
Akhtarma-Puta 1923    

Toragai 13/03/1924 19:33:00  22 

Gushchi 1924    
Between Stations Alyat and Navagi 24/03/1924   25 

Bakhar-deniz 07/07/1925 Night   
Basgal 1926    

Ayazakhtarma 1926   5 

Bozdag-Gekmaly 17/05/1926 06:00:00  30 

Dashgil 08/06/1926    
Lokbatan 14/08/1926 20:00:00 3 30 

Bakhar 11/10/1926 14:05:00   
Gil Island 13/11/1926 21:25:00  40 

Chigil-deniz 01/05/1927 02:15:00   
Shikhzairli 14/08/1927    

Chigil-deniz 13/11/1927    
Garakure 1928    
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Chigil-deniz 05/11/1928 14:15:00 45  
Chapylmish 01/06/1929    
Shikhzairli 24/11/1929 11:35:00 1 30 

Sangi-Mugan Island 11/04/1932 19:30:00 9  
Bandovan 1932    

Toragai 20/04/1932 02:25:00   
Lokbatan 05/03/1933    

Sangi-Mugan Island 22/05/1933 21:35:00  4 

Chapylmish 28/05/1933 11:30:00   
Akhtarma-Puta 01/11/1933    

Near Bakhar-deniz 1933    
Lokbatan 23/02/1935 21:00:00   
Saryncha 15/06/1936 Morning   
Gil Island 28/09/1937 08:45:00  15 

Lokbatan 18/01/1938 22:00:00   
Shikhzairli 1939    

Chigil-deniz 08/11/1939 17:45:00  30 

Khare-Zire Island 11/08/1940 10:20:00  48 

Agnour 21/09/1940 Night  15 

Lokbatan 01/03/1941 08:20:00   
Bakhar-deniz 1941    

Gushchi 1941    
Duzdag 07/09/1941   15 

Near Marazy Village 05/07/1944  11  
"Dead Valley" 01/12/1945    

Shikhzairli 03/07/1946 10:30:00   
Neftchala Sopkalari 1947    
Neftchala Sopkalari 14/07/1947    

Khare-Zire Island 1947    
Khamamdag 01/09/1947    

Toragai 13/11/1947 19:20:00  30 

Agnour 1948    
Nardaranakhtarma 25/11/1948    

Akhtarma-Puta 25/11/1948 14:00:00   
Shikhzairli 03/04/1949    
Solakhai 23/09/1949 04:00:00   

Neft Dashlari 01/10/1949    
Beyuk Kanizadag 12/05/1950 06:00:00 4  

Toragai 1950    
Buzovna Sopkasi 18/07/1950    
Akhtarma-Puta 1950 18:40:00  30 

Chigil-deniz 04/12/1950    
Jairli 1951    

Dalyaniz 01/06/1951    
Garakyure 18/07/1951 18:00:00  35 

Otmanbozdag 1951    
Neft Dashlari 1952    

Gushchi 1952    
Keyreki 01/08/1952 11:30:00 4 30 

Buzovna Sopkasi 26/02/1953 20:00:00   
North East from Amiya cape, 13 km off-shore 20/07/1953 11:00:00   

Bozdag-Gobu 23/08/1953 10:30:00   
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Buzovna Sopkasi 10/09/1953 Afternoon   
Durovdag 1953    
Lokbatan 30/07/1954 22:22:00  15 

Gushchi 1954    
Dashmardan 21/11/1954 14:30:00 1 15 

Shikhzairli 30/01/1955    
Mugan-deniz 1957    
Bozdag-Gobu 27/08/1957 22:00:00  30 

Neft Dashlari 01/12/1957   30 

Keyreki 1957    
Dashgil 20/03/1958 12:20:00   

Bakhar-deniz 15/10/1958 21:50:00  35 

Demirchi 1958    
Gushchi 1958    

Khare-Zire Island 21/10/1959    
Lokbatan 17/12/1959 18:10:00  10 

Chigil-deniz 25/12/1959 08:45:00  18 

300m eastward from Gil Island 08/05/1960 00:00:00   
Durandag 18/06/1960 Evening   

Khare-Zire Island 23/07/1960 22:00:00 4  

Gushchi 
01/08/1960    
01/05/1961    

Bank 1960    
Zenbil Island 04/09/1961 08:45:00  35 

Khare-Zire Island 23/03/1962    
Gil Island 04/09/1962    

Kelany 15/09/1962  3  
Bakhar-deniz 01/02/1963   30 

Ajiveli 01/03/1963 14:30:00 1 30 

Lokbatan 1963    
Agzybir 17/06/1964 21:15:00  10 

Airanteken 07/10/1964 00:30:00 3  
Keyreki 1964    

Kursangi 03/01/1965 20:45:00   
Gushchi 11/09/1965 02:00:00 2  

Otmanbozdag 01/10/1965 13:00:00 2 30 

Keyreki 01/07/1966  2  
Goturdag 15/10/1966    

Kelany 01/12/1966 16:00:00 4  
Bakhar 20/03/1967 20:45:00   

Melikchobanli 03/10/1967 15:00:00 1  
Keyreki 14/04/1968 16:00:00 3  

Bozakhtarma 1969    
K.Maraza 1969    

Airanteken 10/06/1969 17:15:00   
Shikhzairli 1969    

Akhtarma-Pashaly 07/07/1969    
Kelany 12/12/1969 20:40:00 3  

Kalajalar 1970    
Bozakhtarma 1970    

K.Maraza 1970    
Cheildag 04/06/1970 16:30:00   
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Sabail 25/06/1970 22:00:00   
Goturdag 1970    
Kurdamir 1970    
Cheildag 01/12/1970 Night   
Kurdamir 1971    
Demirchi 12/11/1971 Evening   

Two groups of Nardaranakhtarme 1971-1972    
Lokbatan 01/10/1972 05:47:00 1  

Ayazakhtarma 01/06/1973    
Ayazakhtarma 1973    
Bozdag-Gobu 09/05/1974 11:10:00  20 

Shikhzairli 1974    
Davalidag 01/04/1975    
Sheytanud 1975    

Agnour 01/05/1976 07:40:00  15 

Dashmardan 26/09/1976 13:26:00  35 

Saryncha 10/10/1976    
Garasu Island 28/03/1977 23:34:00 168  

Airanteken 18/09/1977 13:57:00   
Lokbatan 06/10/1977 14:30:00 2 30 

Goturdag 01/12/1977    
Melikchobanli 1977   10 

Agzybir 1978    
Lokbatan 31/03/1980 01:26:00  19 

Shikhzairli 02/11/1980 19:15:00 2  
Akhtarma-Pashaly 1982    
Nardaranakhtarma 1982    

Jagirli 1983    
Nardaranakhtarma 1984    

Chapylmish 1984    
Khamamdag 25/05/1984    
Bakhar-deniz 01/06/1984    

Toragai 1985    
Ayazakhtarma 1985    

Akhtimer 1985    
Otmanbozdag 1985    

Shikhzairli 1986    
Kichik Maraza 1986    

Bozdag-Gezdek 1986    
Bozdag-Gobu 1986    
Dashmardan 1986    

Akhtarma-Pashaly 1986    
Nardaranakhtarma 1986    

Gushchu 01/08/1986    
Shorsulu 1986    

Shikhzairli 01/04/1987    
Bozdag-Gobu 24/06/1987    

Kalajalar 1987    
Astrakhanka 1987    
Bozakhtarma 1987    

Bozdag-Gezdek 1988    
Toragai 1988    
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Solakhai 1988    
Shekikhan 1988    
Airanteken 1988    
Akhtimer 1988    
Keyreki 26/02/1989 08:30:00  20 

Akhtimer 1989    
Solakhai 1989    

Shekikhan 1989    
Gotur 1989    

Lokbatan 23/03/1990    
Airanteken 22/07/1990    

Akhtarmaardi 27/06/1990 23:00:00   
Keyreki 23/01/1991    

Shikhzairli 1991    
Shikhzairli 30/09/1991    
Gushchi 12/10/1992    
Bakhar 03/10/1992 18:00:00 7  

Gasimkend 29/11/1993 Evening   
Garasu Island 1993    

Khare-Zire Island 1993    
Otmanbozdag 12/12/1994 17:00:00   
Zenbil Island 20/08/1995 17:50:00   

Bozdag-Gezdek 01/05/1995    
Nardaranakhtarma 01/10/1996    
Beyuk Kanizadag 01/10/1996    

Khamamdag 01/10/1996    
Shikhzairli 01/06/1997    

Khare-Zire Island 20/10/1997    
Bozdag-Gobu 01/07/1999    

Kechaldag 10/10/2000    
Akhtimer 01/12/2000    
Durandag 01/01/2001    
Garabujag 2001    
Shekikhan 2001    

Gotur 2001    
Ayazakhtarma 2001    

Nardaranakhtarma 2001    
Chapylmish 2001    

Solakhai 2001    
Buzovna Sopkasi 21/03/2001    

Dashgil 01/05/2001    
Chigil-deniz 30/05/2001    

Keyreki 26/06/2001 20:42:00 2 30 

Lokbatan 24/10/2001 14:45:00  28 

Bozdag-Gekmaly 24/11/2001    
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Alyaty Ridge, Azerbaijan 

 
 

Field photographs from Alyaty Ridge.  A) Weathered clast on the top of Koturdag B mud volcano.  B) 

Fractured sandstone clast on top of Koturdag B mud volcano.  C) Pre-intrusion fracturing in 

sandstone country rock along stream section in between Koturdag B and C.  D) Pre-intrusion 

fractures in sandstone country rock along stream section in between Koturdag B and C.  E) Sinuous 

fractures with clay infill in sandstone country rock along stream section in between Koturdag B and 

C.  F) Pre-intrusion fractures infilled with gypsum in sandstone country rock along stream section in 

between Koturdag B and C. 
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Kichik Kharami Mud Volcano, Azerbaijan 
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Field photographs of mud intrusions from Kichik Kharami mud volcano.  A) Sinuous fracturing with 

a clay infill, in sandstone.  B) Pre-intrusion fractures in sandstone country rock with clay infill.  C) Pre-

intrusion fractures in sandstone country rock.  D) Sinuous fracturing with a clay infill, in sandstone.  

E) Sinuous fracturing with a clay infill, in sandstone.  F) Sinuous fracturing with a clay infill, in 

sandstone.  G) Pre-intrusion fractures in sandstone country rock with clay infill. 
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Field photographs of clasts and megablocks from Kichik Kharami mud volcano.  A) Sandstone clast, 

compass clinometer for scale.  B) Eroded conglomerate clast, Garmin Geko GPS for scale.  C) Highly 

fractured sandstone clast.  D) Sandstone clast.  E) Sandstone clast, rucksack for scale.  F) Fractured 

sandstone clast. 
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Pirsaatadag mud volcano, Azerbaijan 

 
 

Field photographs of intrusions from Pirsaatadag mud volcano.  A) Dead vent complex with feeder 

pipes forming a mound due to increased resistance to weathering compared to the erupted mud.  B) 

Dead feeder pipe complex, pipes have red/brown staining where fluids have been flowing, pen for 

scale.  C) Dead feeder pipe complex, pipes have red/brown staining where fluids have been flowing, 

Garmin Geko GPS for scale.  D) Yellow mineralisation along a faulted fracture, hammer for scale.  E) 

Fractures infilled by clay and ‘tar’, pen top for scale.  F) Pipe structure with sandstone clasts attached 

to its side, pipe is more resistant to weathering standing proud of erupted mud, hammer for scale.  

G) Different view of F) note the red/brown staining on the edges and at the core of the pipe. 
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Mud Volcano Vent Distribution Maps and Statistics 
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Alat Oily mud volcano.  A) Vent distribution map.  Triangles: Purple- gryphons, orange- cinder mounds, black- extinct vents, blue- salses and green- pools.  Image © 2010 GeoEye, © 2010 Google.  B) Histogram of frequencies of azimuthal direction for 2-point 

azimuth method of individual vent types separated into their different distributions.  C) Histogram of frequencies of azimuthal direction for 2-point azimuth method of all vent types grouped together.  D) Nearest neighbour statistical analysis results. 
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Alat East and West mud volcanoes.  A) Vent distribution map.  Triangles: Purple- gryphons, orange- cinder mounds, black- extinct vents, blue- salses and green- pools.  Image © 2010 DigitalGlobe, © 2010 Google.  B) Histogram of frequencies of azimuthal 

direction for 2-point azimuth method of individual vent types separated into their different distributions for Alat West Mud Volcano.  C) Histogram of frequencies of azimuthal direction for 2-point azimuth method of all vent types grouped together for Alat 

West Mud Volcano.  D) Histogram of frequencies of azimuthal direction for 2-point azimuth method of individual vent types separated into their different distributions for Alat East Mud Volcano.  E) Histogram of frequencies of azimuthal direction for 2-point 

azimuth method of all vent types grouped together for Alat East Mud Volcano.  F) Nearest neighbour statistical analysis results. 
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Bahar mud volcano.  A) Vent distribution map.  Triangles: Purple- gryphons, orange- cinder mounds, black- extinct vents, blue- salses and green- pools.  Image © 2010 GeoEye, © 2010 Google.  B) Histogram of frequencies of azimuthal direction for 2-point 

azimuth method of individual vent types separated into their different distributions.  C) Histogram of frequencies of azimuthal direction for 2-point azimuth method of all vent types grouped together.  D) Nearest neighbour statistical analysis results. 
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Caldera  mud volcano.  A) Vent distribution map.  Triangles: Purple- gryphons, orange- cinder mounds, black- extinct vents, blue- salses and green- pools.  Image © 2010 GeoEye, © 2010 Google.  B) Histogram of frequencies of azimuthal direction for 2-point 

azimuth method of individual vent types separated into their different distributions.  C) Histogram of frequencies of azimuthal direction for 2-point azimuth method of all vent types grouped together.  D) Nearest neighbour statistical analysis results 
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BPLS Lusi Map 2006 
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CRISP Aerial Imagery Showing the Evolution of Lusi Mud Volcano: 2006-2010: Image © 2010 DigitalGlobe and © 2010 DigitalGlobe, © 2010 Google 
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Matlab Script for 2-Point Azimuth Technique 

 

function Azimuth 
 
[nums,text,raw] = xlsread('File_name.xls') 
 
Northings = nums(:,1) 
 
Eastings = nums(:,2) 
 
 
i=0; 
 
for index = 1:length(Northings) 
    N1 = Northings(index,1); 
    E1 = Eastings(index,1); 
    for index2 = 1:length(Northings); 
        N2 = Northings(index2,1); 
        E2 = Eastings(index2,1); 
        DiffE = E2-E1; 
        DiffN = N2-N1; 
        Azimuth2 = atan2(DiffE,DiffN); 
        AzimuthDeg2(index,index2) = Azimuth2*(180/pi); 
         
        if (AzimuthDeg2(index,index2) >= 0); 
            i=i+1; 
            Azdegpos(i)=AzimuthDeg2(index,index2); 
           % AzimuthDeg2(index,index2) = NaN; 
        end 
    end 
end 
 
 
 
az = Azdegpos 
%az = reshape(AzimuthDeg2,Northings*Northings,1); 
N = hist(az,18) 
bar(N) 
 
az = az' 
dlmwrite('New_File_Name.txt',az) 
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Mud volcano sector collapse structures.  A) 109.  Image © 2010 GeoEye, © 2010 Google.  B) 51.  

Image © 2010 GeoEye and © 2010 DigitalGlobe, © 2010 Google.  C) 88.  Image © 2010 GeoEye, © 

2010 Google.  D) 63.  Image © 2010 GeoEye, © 2010 Google.  E) 70.  Image © 2010 GeoEye and © 

2010 DigitalGlobe, © 2010 Google.  F) Mud volcano delta.  Image © 2010 GeoEye, © 2010 Google.  

G) 93.  Image © 2010 GeoEye, © 2010 Google.  H) 66.  Image © 2010 GeoEye, © 2010 Google.  Red 

arrows point in direction that failure has occurred in.  Angles show orientation of failure relative to 

North.  Numbers and names can be used to identify mud volcano locations in the figure above and in 

the ‘Mud volcano locations’ table in the digital version of this section. 
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Mud volcano flows.  A) 112.  Image © 2010 GeoEye, © 2010 Google.  B) Otmanbozdag.  Image © 

2010 GeoEye and © 2010 Terrametrics, © 2010 Google.  C) 90.  Image © 2010 GeoEye, © 2010 

Google.  D) Akhtarma-Pashly.  Image © 2010 Terrametrics and © 2010 DigitalGlobe, © 2010 Google.  

E)  Kalmas.  Image © 2010 GeoEye and © 2010 Geocentre Consulting, © 2010 Google.  F) 117.  

Image © 2010 GeoEye and © 2010 Geocentre Consulting, © 2010 Google.  G) 110.  Image © 2010 

GeoEye and © 2010 Geocentre Consulting, © 2010 Google.  H) 49 and 48.  Image © 2010 GeoEye 

and © 2010 Geocentre Consulting, © 2010 Google.  I) Airantekyan.  Image © 2010 GeoEye and © 
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2010 Geocentre Consulting, © 2010 Google.  J) Khamamdag.  Image © 2010 GeoEye and © 2010 

Geocentre Consulting, © 2010 Google.  K) 102.  Image © 2010 GeoEye and © 2010 Geocentre 

Consulting, © 2010 Google.  L) 98.  Image © 2010 GeoEye and © 2010 Geocentre Consulting, © 

2010 Google.  M) Cheildag East.  Image © 2010 GeoEye and © 2010 Geocentre Consulting, © 2010 

Google.  N) Cheildag West.  Image © 2010 GeoEye and © 2010 Geocentre Consulting, © 2010 

Google.  Angles show orientation of mud flows relative to North.  Numbers and names can be used 

to identify mud volcano locations in the figure above and in the ‘Mud volcano locations’ table in the 

digital version of this section. 
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Mud volcano calderas.  A) Big caldera.  Image © 2010 GeoEye and © 2010 Geocentre Consulting, © 

2010 Google.  B) 38.  Image © 2010 GeoEye © 2010 DigitalGlobe and © 2010 Geocentre Consulting, 

© 2010 Google.  C) Toragai.  Image © 2010 GeoEye and © 2010 Geocentre Consulting, © 2010 

Google.  D) Bolshoi-Kyanizadag.  Image © 2010 GeoEye and © 2010 Geocentre Consulting, © 2010 

Google.  E) Otmanbozdag.  Image © 2010 GeoEye and © 2010 Geocentre Consulting, © 2010 

Google.  F) Koturdag A.  Image © 2010 GeoEye, © 2010 Google.  G) Kalmas.  Image © 2010 GeoEye 
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and © 2010 Geocentre Consulting, © 2010 Google.  H) 99.  Image © 2010 GeoEye and © 2010 

Geocentre Consulting, © 2010 Google.  I) 112.  Image © 2010 GeoEye and © 2010 Geocentre 

Consulting, © 2010 Google.  J) Caldera.  Image © 2010 GeoEye © 2010 DigitalGlobe and © 2010 

Geocentre Consulting, © 2010 Google.  K) 98.  Image © 2010 GeoEye and © 2010 Geocentre 

Consulting, © 2010 Google.  Angles show orientation of caldera long axes relative to North.  

Numbers and names can be used to identify mud volcano locations in the figure above and in the 

‘Mud volcano locations’ table in the digital version of this section. 
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Length – Width Profiles for Sector Collapses, Flows and Calderas 

Structure Length 
(m) 

Top Width 
(m) 

Middle 
Width (m) 

Bottom 
Width (m) 

Average 
Width (m) Ratio Middle/Bottom 

Flow 840 290 180 390 286.67 2.930232558 0.461538462 
Flow 1390 230 270 830 443.33 3.135338346 0.325301205 
Flow 1090 210 280 700 396.67 2.74789916 0.4 
Flow 1940 70 140 820 343.33 5.650485437 0.170731707 
Flow 1380 70 130 1120 440.00 3.136363636 0.116071429 
Flow 1250 40 90 630 253.33 4.934210526 0.142857143 
Flow 1930 70 80 430 193.33 9.982758621 0.186046512 
Flow 1570 60 130 230 140.00 11.21428571 0.565217391 
Flow 440 50 240 380 223.33 1.970149254 0.631578947 
Flow 1830 130 280 340 250.00 7.32 0.823529412 
Flow 2700 170 170 880 406.67 6.639344262 0.193181818 
Flow 2700 120 210 600 310.00 8.709677419 0.35 
Flow 2450 210 270 800 426.67 5.7421875 0.3375 
Flow 1370 70 120 550 246.67 5.554054054 0.218181818 
Flow 830 120 150 140 136.67 6.073170732 1.071428571 
Flow 1560 110 250 280 213.33 7.3125 0.892857143 
Flow 2200 300 330 1060 563.33 3.905325444 0.311320755 
Flow 3280 230 280 1810 773.33 4.24137931 0.154696133 
Flow 3400 210 390 1870 823.33 4.129554656 0.20855615 
Flow 770 40 100 290 143.33 5.372093023 0.344827586 
Flow 1490 50 100 500 216.67 6.876923077 0.2 

Sector 
Collapse 1540 300 550 590 480.00 3.208333333 0.93220339 

Sector 
Collapse 3240 240 350 550 380.00 8.526315789 0.636363636 

Sector 
Collapse 810 200 330 390 306.67 2.641304348 0.846153846 

Sector 
Collapse 1610 140 280 330 250.00 6.44 0.848484848 

Sector 
Collapse 1650 120 200 270 196.67 8.389830508 0.740740741 

Sector 
Collapse 1420 180 290 230 233.33 6.085714286 1.260869565 

Sector 
Collapse 1600 160 250 520 310.00 5.161290323 0.480769231 

Sector 
Collapse 1120 130 280 290 233.33 4.8 0.965517241 
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Sector Collapse, Flow and Caldera Long Axis Orientations 

Long Axis Orientation (˚) 

Calderas Sector Collapse Flows 

150 120 60 

290 70 70 

155 125 30 

135 290 260 

145 90 240 

110 75 10 

260 300 50 

90 320 350 

110 100 145 

20 70 130 

110 280 50 

150 55 150 

145 90 190 

295 260 150 

270 290 110 

350 240 40 

20 75 355 

300  40 

280  150 

290  180 

270  140 

110  240 

110  350 

145  90 

110  180 

220  200 

140  310 

50  120 

150  200 

140  90 

155  130 

210  230 

310  10 

45  70 

210  15 

320  50 

  170 

  220 

  310 

  320 

  70 

  90 

  60 

 

 

 



Appendix V  Published Journal Articles 

220 

Appendix V: Published Journal Articles 

 

 

 

 

 



Structure of exhumedmud volcano feeder
complexes,Azerbaijan
K. S. Robertsn, R. J. Daviesn and S. A. Stewartw
nScience Laboratories, Department of Earth Sciences, Centre for Research into Earth Energy Systems (CeREES),
DurhamUniversity, Durham, UK
wInstitute of PetroleumEngineering, Heriot-Watt University, Edinburgh, UK

ABSTRACT

We report the ¢rst structural ¢eld mapping of exhumed mudvolcano feeder complexes.Three mud
volcanoes outcropping onshore in Azerbaijanwere selected on the basis of outcrop quality and scale.
These examples are all locatedwithin1km of the axes of NW^SE-trending folds associatedwith the
southern margin of theGreater Caucasus mountain belt.The mapping shows that the intrusive
complexes are 200^800mwide and roughly circular.These feeder complexes consist of a megabreccia of
country rock blocks at a scale of tens of metres, enclosed in a matrix of intrusive mud.Minor structures
include grid like fractures sets, sinuous fractures, mud plugs and breccia pipes.The country rock blocks
are deformed and rotated relative to surrounding sedimentary strata. Alternative mechanisms to explain
the strain history of these large blocks in the feeder complexes are: a. stoping, b. £ow rotation and c.
caldera collapse. Our mapping indicates that the most likely mechanism involves stoping processes,
similar to those identi¢ed in igneous systems.This study provides a basis for reservoir distribution in
commercial geological models that contain the feeder complexes of mudvolcano systems, and also
constrains conduit geometry for modelling studies of evolution and £owdynamics.

INTRODUCTION

Mud volcanoes are a widespread type of piercement struc-
ture that allow for focussed £uid escape from sedimentary
basins. Little is known, however, about the geometry of the
sub-volcanic feeder complexes that constitute the intrusive
zones (Davies & Stewart, 2005). Even less is known about
the small scale structure of these feeder systems and their ef-
fect on the country rock that they intrude (Davies&Stewart,
2005).The term‘mudvolcano system’was coined by Stewart
& Davies (2006) to describe the set of structures associated
with a constructional, extrusive edi¢ce (mud volcano) and
underlying plumbing of the volcano, which connects it to
its stratigraphic source unit (Stewart & Davies, 2006). Pre-
vious studies have described various architectures connect-
ing extrusive mud cones to their underlying source layer,
ranging from bulbous diapirs (Brown, 1990) to steep dia-
tremes (Robertson & Kopf, 1998) and narrow vertical pipes
(Graue, 2000). Currently, the two mostwidely publicized al-
ternative models for the sub-volcanic plumbing system are
kilometre scale mud diapirs (Morley & Guerin, 1996) or in-
tricate mud pipe, dyke and sill complexes (Morley, 2002;
Stewart &Davies, 2006).

Detailed mapping of the intrusive zones of mud volca-
noes will enable better understanding of the processes gov-

erning the £uid transport through the shallowcrust and how
the surrounding country rock is in£uenced. Comparisons
canbemadewith igneous systems that appear to share many
common features with mud volcanoes (Stewart & Davies,
2006).Guliyev etal. (2000) commented on the spatial andge-
netic relationship of mud volcanoes with oil and gas ¢elds,
an a⁄liation that impacts drilling operations, rig installa-
tions and pipeline routings. Problems occur as a result of
mud eruptions and instability of the surrounding sediments
(Yusifov &Rabinowitz, 2004).There are further instances of
commercial signi¢cance where reservoirs are intersected by
the intrusive domain of mudvolcano systems. In these cases
the size, shape and internal structure of feeder systems is a
local control on both hydrocarbons in place and reserves
(Stewart &Davies, 2006).

This paper investigates outcrop-scale features seen
within intrusive systems of kilometre-scale mud volcano
systems exposed onshore in Azerbaijan (Fig. 1). Our ¢eld
mapping focussed on the size, shape and internal struc-
ture of country rock outcropswithin the feeder complexes,
an aspect poorly described in previous studies.These con-
duits are interpreted as mature, long-lived systems where
episodic activity has continued throughout recent exhu-
mation of the onshore area (Fig. 2). Although the majority
of onshore mudvolcano outcrops are recent, extrusive edi-
¢ces, there are occasional examples where lack of recent
voluminous eruptions means that exhumed intrusive do-
mains are as yet-unburied (Fig. 2).Three of these exposed
intrusive zones were identi¢ed for mapping in this study.
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GEOLOGICAL SETTING

The South Caspian Basin is known for its abundant large
mud volcano systems (Guliyev et al., 2000; Milkov, 2000;
Aliyev et al., 2002). This concentration of mud volcano
systems occurs due to the presence of a thick deposit
of the argillaceous Maykop Formation of Oligocene to
Miocene age (Hudson et al., 2008). The formation is
approximately 1km thick and is buried to a depth
3.5^5 km in the area of this study (Allen et al., 2002). The
Maykop Formation is thought to be overpressured and
therefore undercompacted, £uids from deeper sources
(Kopf, 2002) probably entrain the mud during their ascent
and erupt at the surface. A compressional tectonic regime
has been maintained since the Late Pliocene (Allen et al.,
2002, 2003; Jackson et al., 2002) resulting in the formation
of a large number of fold structures within the basin.The
anticlinal crests contain some of the largest hydrocarbon
accumulations in the world and many large mudvolcanoes
(Devlin et al., 1999).

Allen et al. (2002) backstripped a stratigraphic column
from the NWof the South Caspian Basin and found that
2.4 km of tectonic subsidence had occurred since ca.
5.5Ma which they attributed to basement subduction.
Several kilometres of sediment has accumulated in this
time, while the upper part of the succession has begun to
deform by buckle folding (Allen et al., 2002). Allen et al.
(2002) proposed that basement subduction began ca.
5.5Ma to create the major Pliocene^Quaternary subsi-
dence. Buckle folds have now been exhumed onshore and
the crests of the anticlines have been eroded.The present
day mud volcanoes seen onshore therefore extrude
through partially eroded anticlinal crests.The mud volca-
no systems, studied here, pierce through strata up to
and including the Absheronian (Early Pleistocene) (Fig. 2)

(Abdullayev, 1998; Reynolds et al., 1998). Since the upper-
most parts of the feeder systems have been eroded, the
onshore exposures do not provide a complete replica of
sub-surface structures imaged on re£ection seismic data
(Fig. 2). On the other hand this does provide the opportu-
nity, in those cases where the feeder complex is exposed, to
directly map the intrusive domains that are imaged as part
of mudvolcano systems o¡shore.This exhumation has not
occurred to the o¡shore structures of the Caspian Sea
where complete mud volcano systems are imaged on re-
£ection seismic data (Stewart &Davies, 2006) (Fig. 2).

METHODS AND DATASETS

Three separate mud volcano systems were chosen on the
basis of the extrusive domain being partially or completely
eroded, exposing the underlying feeder complex. Kichik
Kharami, Koturdag Anticline and Pirsaatadag mud volca-
noes along the west coast of the Caspian Sea were selected
on this basis (Fig.1).Mapping of these onshore mudvolca-
no systems was carried out using a handheld global posi-
tioning system (GPS) receiver, with a positional accuracy
of 5m. Structural readings such as bedding, fracture and
fold orientations were measured using a compass clin-
ometer then loaded intoGEOrient software to plot stereo-
graphic projections. Fracture density was measured by
placing a metre rule parallel to bedding and counting the
number of fractures that crossed the rule over 1m length.
TheGPS co-ordinates with their corresponding structur-
al datasets were integrated as layers in ArcMap software.
The coordinate system for the datawas input using spher-
oidWGS1984.This automated transcription produced the
basic structural maps reproduced in this paper.

OBSERVATIONS

Kichik Kharami Volcano (GR: 4015 017.2500N,
48157 07.3600E)

This is located 87 km SW of Baku (Fig. 1) and outcrops
0.6 km to the south of an anticline axis (Fig. 3a).The plan-
view shape of the volcano system is broadly circular and
measures ca. 0.9 km� 0.6 km in aerial extent.The bound-
ary of this area is de¢ned by the edge of the peripheral
faulted/fractured zone within the feeder complex where
both sinuous and conjugate fracture types are found. Of
the total feeder complex area, some 20% is exposed
whereas the remaining 80% is covered by very recently
erupted mud, indeed mud is still extruding in small quan-
tities at present. The volcano is surrounded by well-ex-
posed country rock forming the anticline through which
the feeder complex intrudes (Fig. 3c).

We de¢ne the feeder complex of all three case studies as
the area delimited by the peripheral fractured zone (high-
lighted in orange in Figs 3c, 7b and d). Fracturing of the
country rock increases in intensity towards the centre of
the feeder complex, with the most common fractures
being regular, grid-like fractures 2^3m in length (Fig. 4a).

Fig.1. Map of the Caspian coastline in Azerbaijan showing the
location of the study areas (localities markedwith stars) and the
trends of anticlines axes (indicated by black line with dash across).
Inset map of Azerbaijan shows map location as red box.
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These are present in both the surrounding country rock
and the intrusive zone. Conjugate fractures (0.5^1m in
length) occur closer to centre of the complex. Finally, sinu-
ous fractures (0.5^1m in length) appear to be restricted to a
200m radius from the centre of the feeder complex (Fig. 3c).
Fracture density ranges from28m�1at the centre of the fee-
der complex to 2m�1 within the anticline bedding at the
edge of the peripheral faulted/fractured zone (Fig. 5a).

Minor amounts ofmud are currently being expelled from
this feeder system in the form of watery-mud salses (Hov-
land et al., 1997), although a large, relatively fresh mud £ow
to the south of the mapped area is testament to signi¢cant
reactivation within the past few hundred years or so. The
structural map (Fig. 3c) shows that the country rock com-

prising the south limb of the anticline dip uniformly to the
south, whereas blocks within the feeder complex have dip
and strike directions that vary unsystematically. The strike
directions of the blocks vary up to901 away from the regional
anticline bedding strike orientations (Fig. 3c). A slight con-
centric alignment canbe discerned from the dip data of beds
which dip in towards the centre of the feeder complex.Mov-
ing outwards, the beds dip away from the centre of the feeder
complex and return back to the regional trend of the host an-
ticline by a radial distance of 180m from the centre of the
feeder complex.Stereonets reveal that the anticline intruded
byKichik Kharami has a moderate curvature and interlimb
angle (Fig. 6a). All the bedding measurements lie roughly
along the same plane, apart from bedding readings taken at

Fig. 3. Case Study1- Kichik KharamiMud Volcano. (a) Location of Kichik Kharami to the south of an anticline axis. Red rectangle
marks the area seen in (c) (satellite image fromGoogle Earth), (b) Outcrop at centre ofKichikKharami volcano showing a large ‘block’of
highly fractured sandstone surrounded by a mudmatrix. (c) Structural map ofKichikKharami (satellite image fromGoogle Earth).The
central red area marks the zone where £uid is currently being extruded (i.e. the ‘active vent zone’).The orange area outlines the zone
where both sinuous and conjugate fracture systems are found (i.e. the ‘peripheral fracture zone’).The grey transparent zone represents
the area where bedding strike measurements vary greatly from the surrounding anticlinal bedding (i.e. the ‘central zone of block
rotation’). Any other areas that do not fall into these coloured zones are part of the ‘unintruded zone’ which contains only conjugate
faulting/fracturing. Purple areas mark areas where old mud £ows cover outcrop.

Fig. 2. Schematic regional seismic
section depicting the relationship between
exhumed intrusive zones onshore to the
deeply buried, folded mud volcanoes
o¡shore.
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the centre of the volcano which have a large spread with no
clear alignment (Fig. 6b).

PirsaatadagVolcano (GR: 39146 026.2000N,
49122 038.4400E)

This is located on the southern coast of the Caspian, 81km
south of Baku (Fig.1) and is positioned on the hinge of an
anticline (Fig.7b).The exposure of the volcano system is in
low-lying topography adjacent to the present Caspian
shoreline and measures ca. 0.37 km� 0.4 km in aerial
extent. The location has excellent exposures of the mud
volcano feeder complex, however, little of the surrounding
strata is exposed making it di⁄cult to map the margin of
the intrusion.The proximity to the present shoreline and
the recent rapid sea level changes of the Caspian Sea
(Kroonenberg et al., 2000) suggests that this mud volcano
system is particularly prone to erosion.

Again, three fracture types (sinuous, conjugate and grid-
like) are present in this mapping area.The sinuous fractures
are wider (1^4 cm wide) than those seen in the other case
studies and sometimes contain small sandstone clastswithin

a mudmatrix (Fig. 4b). Fracture density ranges from20 frac-
tures per metre at the centre of the feeder complex to 7m�1,
0.17^0.21km from the centre (Fig. 5b). The structural map
(Fig. 7b) shows a similar layout to that seen at Kichik Khar-
ami mud volcano system, except that the zone of rotated
blocks is o¡set to the SE of the active vent zone.The extru-
sive features are dominantly active salses inferring that at
present more £uid is £owing up thePirsaatadag feeder com-
plex compared with Kichik Kharami. Many structural ele-
ments within this feeder complex are exposed as positive
topographic features consisting of brecciated country rock,
mainly sandstone (Fig. 7a).

Koturdag Anticline (GR: 39158 024.1100N,
49120 012.5500E)

Within this area there are three mud volcanoes termed
here Koturdag A, Koturdag B and Koturdag C (Fig. 7d)
(Table 1). This area was chosen as it has a structurally
complex, exposed anticlinal core with several mud volca-
noes extruding along its axis (Table 1 and Fig. 7d). This

Fig.4. (a)Mud in¢lling pre-existing joints and fractures within the country rock, found in both the peripheral fracture zone and the
unintruded zone. (b) Sinuous fractures only found in the peripheral fractured zone, often contain small clasts of country rock as seen in
the inset picture. (c) Mud plugs consisting of dense mud breccia £ows and (d) Breccia pipes where country rock clasts have been
incorporated into the vent walls to form a breccia.
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provides a comparison to the two less structurally complex
case studies.

Once more the sinuous, grid-like and conjugate frac-
tures can be seen with the sinuous fracturing becoming
more intense towards the central axes of the mud volca-
noes (Fig. 5c). Fracture density rises from1m�1 at a radial
distance of 0.75 km, and rises to 12m�1 within the feeder
complex (Fig. 5c). The core of this anticline consists of
a structurally complex zone of disharmonic folds and
contorted bedding (Fig. 7d). This structural complexity
appears to be genetically separate from the mud volcano
systems, a product of the relative tightness of the folding.

Figure 4c and d shows the extrusive features seen at two
of the volcanoes. Koturdag A produces a kilometre-scale
Bingham body style mud £ow (Iverson,1997) that has been
moving for the past 50 years at a rate of 2^6 cm day�1

(Aliyev et al., 2002) (Fig. 4c). Iverson (1997) describes that
Bingham £ow is characterized by a material that remains
rigid or elastic unless stresses exceed a threshold value,
the plastic yield strength.Where stresses exceed the yield
strength, the material £ows like a viscous £uid (Iverson,
1997). This contrasts with the extrusive features seen at
KoturdagB andC atwhich only gryphons, salses and brec-
cia pipes (Fig. 4d) are visible. Multiple oil seeps are visible
along the stream section of the anticline following a fault
which lies at right angles to the anticline axis (Fig. 7d).

The common structural features seen in all three ¢eld
examples are summarized inTable 2.

Structural sub-domains associated with
feeder complexes

The mapping revealed zones of similar structural ele-
ments common to all three feeder complexes. These are
the ‘active vent zone’,‘peripheral fracture zone’and ‘central
intrusive zone’, which together comprise the feeder com-
plex itself, and ¢nally the ‘unintruded zone’which lies out-
side the feeder complex. In all three ¢eld examples
mapped in this study, the structural zones can overlap.
Following the general nomenclature set up by Stewart &
Davies (2006), we term these zones structural sub-
domains associatedwith the intrusive domain of mudvolca-
no systems (Fig. 8).These sub-domains are de¢ned here in
the context ofmudvolcanism for the ¢rst time.Themudvol-
cano feeder complex canbe de¢ned as the areawhich has un-
dergone any change in physical characteristics due to the
intrusion of mud and £uids from the intrusive mud system.
The boundary of this complexusually correspondswith that
of the peripheral fracture zone, however, lateral intrusions
extending locally beyond the peripheral fracture zone
are possible.We ¢rst describe the criteria by which the sub-
domains are identi¢ed, starting with that closest to the
centre of the feeder complex, moving outwards and then
illustrate their extent in the ¢eld examples.

ActiveVent Zone (red area on structural maps)

This zone is recognized as the area in which mud and
£uids are actively being extruded within the mapped
exhumed intrusive domains. A range of extrusive features
were observed including gryphons, salses and sinter cones
as described by Hovland et al. (1997). These structural
elements were centimetre to metre in scale.

Central Zone of Block Rotation (grey area on structural maps)

This region characterises the centre of the feeder complex.
It consists of a region of large blocks of country rock
(1^20m in length) which have strike orientations varying
up to 901 to that of the surrounding sedimentary strata.
The blocks are separated by a matrix of mud breccia.

Fig. 5. Histograms showing the change in fracture densities per
metre with distance from the centre of the mud volcano feeder
complexes. (a) Kichik Kharami mud volcano, (b) Pirsaatadag
Mud Volcano and (c) Koturdag Anticline.
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Peripheral faulted/fracturedzone (orange area on structural maps)

This region is characterized by country rock that contains
fracture sets only seen in proximity to themudvolcano sys-
tem, as opposed to regional fracture sets.These fractures are
often sinuous and in¢lledwithmud and small clasts of coun-
try rock, with typical widths of1^2 cm and lengths of 2^4m.

Unintruded zone

This zone contains strata that has been una¡ected by the
intrusion of the mud. It is usually composed of country
rock with conjugate fractures and jointing produced by
folding.The fractures do not contain any mud in¢ll.

Fracturing

Sinuous fractures and conjugate fractures are present in
all three case studies. The grid-like fractures occur
throughout every region of the mapping areas.We inter-

pret these as being typical of fold-related fractures
(Ramsay et al., 1987) on the basis that these fractures are
present in areas at some distance frommudvolcano feeder
complexes. Fractures within the feeder complexes are
in¢lled by mud; those in una¡ected country rock tend to
be open. The sinuous fracture systems are only found
within the feeder complexes and are usually in¢lled by
mud. In cross-section these fractures appear to be sinuous
in form, however, it is important to note that in three
dimensions the fracture plane would also have a sinuous
morphology. In Kichik Kharami they are found within
a 250m radius of the centre of the feeder complex and at
Pirsaatadag they are180m radius from the centre (Fig. 5b).

Blocks of country rock in the feeder
complexes

Large blocks of country rock are present at outcropwithin
all the feeder complexes mapped in this study. These

Fig. 6. (a) Stereonet showing anticline
bedding aroundKichik Kharami mud
volcano. (b) Stereonet showing the varying
bedding measurements found at the
centre of Kichik Kharami mud volcano.
(c) Stereonet showing anticline bedding
around Pirsaatadag mud volcano. (d)
Stereonet showing the varying bedding
measurements found at the centre of
Pirsaatadag mud volcano. (e) Stereonet
showing anticline bedding around
Koturdag Anticline. (f) Stereonet showing
the varying bedding measurements found
at the centre of Koturdag Anticline.
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blocks are up to 20m in size and clearly preserve original
sedimentary architecture. However, they are heavily frac-
turedwith the majority of these fractures being in¢lled by
mud. The blocks consist of sands and shales, as does the
country rock but due to the monotonous nature of the re-
gional stratigraphy it was di⁄cult to determine whether
the blocks hadmovedvertically within the feeder complex,
or whether they correlate laterally with strata that cur-
rently outcrop adjacent to the feeder complex.

In Kichik Kharami and Pirsaatadag mud volcanoes the
blocks are rotated relative to the surrounding country
rock. The degree of rotation generally increases towards
the centre of the feeder complexes.

INTERPRETATION

We focus our discussion on three key features apparent
from the mapping (a) the varying degree of fracturing, (b)
the presence of large blocks of country rock in the feeder
complexes and (c) deformation of these blocks.

Degree of Fracturing

In each case study fracture density increases from the far
¢eld to the centre of the feeder complexes (Fig. 5). At Pir-
saatadag the fracture density increase towards the centre of

Table1. Dimensions of mud volcanoes (A^C), that extrude in
the Koturdag Anticline area

Mud volcano Long axis (km) Short axis (km)

Koturdag A 1.4 1.35
Koturdag B 1.0 0.45
Koturdag C 0.35 0.2

Fig.7. (a) Case Study 2: Outcrop at centre of Pirscatadag volcano with rotated bedding strike orientation. (b) Structural map of
PirscatadagMud Volcano (satellite image fromGoogle Earth).The central red area marks the zone where £uid is currently being
extruded (i.e. the ‘active vent zone’).The orange area outlines the zone where both sinuous and conjugate fracture systems are found (i.e.
the ‘peripheral fracture zone’).The grey transparent zone represents the areawhere bedding strike measurements vary greatly from the
surrounding anticlinal bedding (i.e. the ‘central zone of block rotation).Any other areas that do not fall into these coloured zones are part
of the ‘unintruded zone’which contains only conjugate faulting/fracturing. (c)Case Study 3:Outcrop at the centre ofKoturdagAnticline
(compass clinometer at centre of picture for scale). (d) Structural map of Koturdag Anticline (satellite image fromGoogle Earth).The
central red areas at the centre of Koturdag A^C volcanoes mark the zones where £uid is currently being extruded (i.e. the ‘active vent
zone’).The orange area outlines the zone where both sinuous and conjugate fracture systems are found (i.e. the ‘peripheral fracture
zone’). Any other areas that do not fall into these coloured zones are part of the ‘unintruded zone’ which contains only conjugate
faulting/fracturing.The green area represents an area of contorted bedding and the blue areas indicate areas where scarps have formed
due to slope failures down the £ank of the anticline. Purple areas mark areas where old mud £ows cover outcrop.
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the edi¢ce may also have a component of fracture density
variation due to the position of the mudvolcano system on
the regional fold axis (Fig. 6c). Kichik Kharami intrudes
to the south of the anticline axis, an area which would not
be as highly fractured, however, still maintains a 14-fold
increase in fracture density at the centre of the mud
volcano (Fig. 5a). It is only the sinuous fracture set that
dramatically increases in fracture density towards the
centre of the feeder complexes in all three case studies.
This suggests that the intrusion itself, rather than the
folding, is the principal control on fracture distribution
in the feeder complex.

The non-tectonic fractures can be explained by the mud
intrusion process.Overpressuredmudproduces a sustained
pressure di¡erential between the £uid in the propagating
fractures and the £uid in the pores of the country rock.
This exceeds theminimumprincipal stress, causing fracture
dilation and enabling the £uid mixture to £ow through the
fracture (Morley et al., 1998; Jolly & Lonergan, 2002). This
may be enhanced by an impermeable ‘mud cake’ being
deposited on the fracture walls which would prevent £uid
leakage out of the fracture and help sustain the £uidpressure
within the fracture (Morley, 2003).These processes facilitate
fracturing at depth and eventual propagation towards the
surface.As fracture size anddensity increases,more mud in-
trusion occurs and eventually forms one large feeder
complex (Abidin et al., 2008).

Blocks of country rock within the Feeder
Complex

Up to 20m in length, these are prominent features at out-
crop butwould be undetectable at the resolution of seismic
re£ection data employed in commercial hydrocarbon ex-
ploration. The varying strike orientations imply that the
blocks are rotated. We interpret these blocks as ‘mega-
clasts’ of country rock.The large proportion of mud out-
cropping in the feeder complexes indicates the amount of
country rock that has now been removed. It is not obvious
from our mapping whether the missing volume of country
rock has risen upwards towards the extrusive zone, or sunk
downwards towards the mud source.

A feature of the country rock blocks within the feeder
complexes is that they become increasingly rotated with
proximity to the central (vertical) axis of the feeder
complex. The dips of the blocks still remain in the range
of 40^881, similar to dip magnitudes observed in the sur-

rounding country rock.The bedding at the core of Kichik
Kharami dips towards the centre of the feeder complex
(Fig. 3c).We interpret this as indicating that the cause of
the block rotation is a process related to the mechanics of
the feeder system. At Pirsaatadag the central zone of block
rotation is o¡set to the SE of the centre of the active vent
zone (Fig. 7b). It is likely that the area of current extrusion
has migrated to theNW from the SE resulting in exposure
of the old zone of intrusion.The map of bedding in Fig.7b
shows a similar layout to that seen atKichikKharami mud
volcano suggesting that this is a common occurrence in
the intruded strata.

Fig. 8. Schematic of the mud volcano ‘feeder complex’.The
‘active vent zone’ is highlighted in red, this represents the area of
the mud volcano that is currently erupting £uid.The ‘peripheral
fractured zone’, in orange, marks the regionwhere both sinuous
and conjugate fracture sets are present in the country rock.The
‘central zone of block rotation’, in grey, indicates the area where
blocks of country rockwith bedding strike measurements vary
from the normal bedding orientations seen in the unintruded
anticlinal bedding.The ‘unintruded zone’, in white, denotes the
region that has been una¡ected by the intrusion of the mud
volcano system.Here, only conjugate fractures that contain no ¢ll
are found.The full yellow lines represent bedding areas that
follow the general anticlinal trend, whereas dashed yellow lines
indicate areas where bedding strikes could be rotated away from
the regional trend. Sinuous blue lines indicate active £uid £ow to
the vents erupting at the surface.

Table 2. Table of structural features present in each ¢eld area

Mud volcano

Features

Sinuous
fractures

Pre-existing
fractures with
mud ¢ll

Breccia
pipes

Mud
plugs

Zone of
random strike
orientations

Distance
from anticline
axis (km)

Block
size (m)

Dip
angles

Kichik Kharami Yes Yes Yes No Yes 0.6 2^20 4421
Koturdag Yes Yes Yes Yes No 0.1 1^5 4521
Pirsaatadag Yes Yes Yes No Yes 0.01 1^20 4421
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DISCUSSION: BLOCK ROTATION
PROCESSES

This study has shown the occurrence of discrete sub-do-
mains within mud volcano feeder complexes (active vent
zone; peripheral faulted/fractured zone; etc). These have
only been mapped in two-dimensional (2D) (map view) in
the exampleswe have studied^ but given the arbitrary struc-
tural level of exhumation in the ¢eld area,we suggest that the
zonationmapped in this study is representative of the struc-
ture of feeder complexes in the sub-surface.The form and
dimension of a feeder complex could change relative to the
proximity to either the extrudedvolcano or whether it is just
above the source bed. The observations made therefore
might only be applicable to a certain part of the mudvolcano
system and this should be taken into consideration. Because
of the small (metre) scale of these features, such a sub-divi-
sion, has not been possible using the seismic re£ection
method previously applied to sub-surface examples o¡shore
Azerbaijan (Davies & Stewart, 2005; Stewart & Davies,
2006). However, it has been possible to witness the develop-
ment of potentially similar zones in a currently developing
mud volcano system in east Java.The Lusi mud volcano has
a central zone which is coincident with the active vent. Sur-
rounding this is evidence for faulting and fracturing (fault
and fracture zone), that has had led to the establishment of
approximately100 new vent sites (Mazzini etal., 2007).

We now consider alternative models to account for the
observed distribution and deformation of blocks within
the mapped feeder complexes, and identify the most likely
mechanism for these examples.

Flow Rotation

Flow rotation is a common mechanism of rotation found
in several geological environments (Reading, 1996). It is
most commonly seen within debris £ows that are gravity-
driven surges of roughly equal volumes ofwater and poorly
sorted sediment, the largest £ows transporting boulders in
the order of 10m in diameter (Iverson, 1997). Intrusive
mud generally works against gravity, nonetheless the pro-
cess may be applicable. Another analogue could be £uvial
imbrication where a shear force is exerted on pebbles in a
stream bed causing the pebbles to rotate and stack on top
of one another with their long axes point in the direction
of £ow (Reading, 1996). Application of this mechanism
would involve long-lived, multiple intrusive events of
mud intruding upwards through pre-existing and new
fractures. Shear forces on the fracture walls are the
mechanism driving block rotation ^ it seems reasonable
to assume that variation in amount of shear stress around
the margins of a block (a necessity for rotation) would
occur as a result of variations in mud £ow rates through
the fracture network (Fig.9c). In order to conserve volume,
the addition of mud to the system must also result in
expulsion of the country rock that the mud now replaces.
We suggest that smaller blocks are carried upwards by
intruding mud, ultimately to be expelled in the construc-

tional edi¢ce of the extrusive zone. Evidence to support
this is the common presence of deep-sourced clasts in
extruded mud £ows (Guliyev et al., 2000).

We suggest that £ow rotation is an unlikely mechanism
due to the magnitude of forces needed to rotate such large
blocks of country rock (Kopf & Behrmann, 2000). The
density and viscosity of the mud- £uid mix required to ex-
ert a shear force on 20-m-long blocks of country rock
would be extremely large. Even in the largest, most dense
and viscous mud £ows emanating from mud volcanoes
no blocks 41m in length were observed in the study or
reported in the literature (Guliyev et al., 2000).The £ow at
Koturdag mud volcano only extrudes its large mud plug
£ow at a rate of 2 cm day�1 from a 20m wide vent. This
indicates that even if two contributing in£uences were
at a maximum the velocity of the £ow may also provide a
restriction on the amount of deformation and rotation that
occurs. The slow rate of £ow even at these high densities
only results in small boulders being extruded (0.1^1.0m in
length).This suggests that the force of the £owing mud is
not capable of moving blocks of the largest scale (20m)
observed in the feeder complexes.

Stoping

Stoping in its igneous context is the mechanical disinte-
gration of the country rock surrounding the intrusion,

Fig.9. Mechanisms. (a) Schematic of the ‘Caldera Collapse’
Mechanism modi¢ed fromCole et al. (2005), (b) Schematic of the
intrusive mud rotation and (c) ‘Flow Rotation’Mechanism.
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typically through fracturing due to pressure increases
associated with thermal expansion of the host rock in
proximity of the interface with the melt (Pinotti et al.,
2002). Fracture networks begin to propagate through the
country rock closest to the intrusion. Once fractures
are formed, melt and volatiles typically invade, widening
the fracture and promoting the foundering of host rock
blocks (Marsh, 1982). Once suspended in the melt,‘stoped’
blocks may either sink or £oat depending upon the density
of the block relative to that of the melt (Marsh, 1982; Kopf
& Behrmann, 2000).

This process is not directly applicable tomudvolcano sys-
tems as the upwelling £uids are usually between 11 to 26 1C
(Guliyev et al., 1994, 2000) and so would have no signi¢cant
e¡ect on the thermal expansion of the surrounding country
rock. However, upwards-propagation of a fracture network
driven by overpressuredmud could set up a similar situation
to igneous stoping (Barber et al., 1986; Morley et al., 1998;
Kopf & Behrmann, 2000; Morley, 2003). Blocks isolated by
this means would become suspended in the mud and al-
lowed to rotate freely.

Once the initial failure of the rock occurs at depth more
mud can intrude along the fractures and the stoping pro-
cess slowly propagates to the surface of the edi¢ce,with the
majority of the fracture networkbeing produced byhydro-
fractures (Jolly & Lonergan, 2002; Planke, 2003). This
highly intruded zone of country rock now forms a ‘stoping
column’ (Fig.10c) (Geshi etal., 2002).Breaching the surface
would release £uids and with it some of the overpressure
from the source of £uids at depth (Geshi et al., 2002).The
evacuation of material would cause a void to form at depth
resulting in lack of support for the country rock above
(Fig. 10d). As more £uids are expelled, the overburden
would increase and may induce piecemeal caldera collapse
into the void left in the vent (Fig.10d) (Cole et al., 2005).

The stoping hypothesis assumes a general downwards
movement of stoped blocks, a feature that is not demon-
strable in our case studies. Stoping models also, often, con-
tain an element of block melting and mixing to preserve the
volume of the system.This is not an option in mud volcano
systems due to the low temperature of the intruding mud.

Rotation due tomultiple intrusive episodes

After the major stoping event the intrusion of mud, occur-
ring as a result of the stoping process, would also exert
forces on the blocks of ‘stoped’ country rock. As mud
forces its way between the stoped blocks it pushes them
away from the £ow (Fig. 9b). Each time a new intrusion of
mud occurs up the conduits more force is exerted rotating
the blocks further.This is a similar process found in dykes
swarms in ophiolites and spreading centres (Moores &
Vine, 1971). Igneous dykes intrude up the centre of pre-
existing dykes, forcing each half of the intruded dyke to
opposite sides of the new dyke (Moores & Vine, 1971). If
one area of the mud volcano has a higher rate of intrusion
than others then the blocks will be pushed and rotated to-
wards areas that are more quiescent.

Caldera Collapse

Both trap-door and piston caldera collapses have been
identi¢ed on the underwater mud volcanoes in the
Caspian Sea (Cole et al., 2005; Stewart & Davies, 2006;
Evans et al., 2008). In these onshore examples the domi-
nant morphology is the piecemeal collapse (Fig. 9a). The
evacuation of the mud from a chamber or source at a
shallowdepthwould cause a void to be formed.This would
enable the strata above to collapse into the chamber.The
e¡ect of this would be enhanced by the increased overbur-
den of erupted mud on top of the country rock causing
more subsidence. This collapse would not have occurred
as one event, instead a piecemeal collapse results in the
country rock collapsing at di¡erent rates and times.
This varying collapse rate would enable di¡erent blocks
of rock to collapse and rotate at di¡erent times and to
varying degrees of rotation.

The discrepancy with the piecemeal caldera collapse
arises with the large di¡erences in strike angles within
such a small area. Piecemeal collapses usually only allow
bedding rotations of a few degrees (0^201) rather than the
observed rotations (0^901) (Cole etal., 2005).This suggests
that caldera collapse cannot be the singular cause of the
block rotations seen at the centre of the feeder complexes.

Diapirs

Hovland et al. (1998) de¢ne a piercement shale diapir as a
positive topographical feature constructed mainly of clay-
sized sediments that periodically or continuously move
from the sub-surface and upwards towards and through
the sea £oor.Thiswould be on a scale of hundreds to thou-
sands of metres in depth andwidth.The diapir itselfwould
be composed almost entirely of mud or shale on a ratio of
80 : 20 (mud : xenoliths). We follow Cooper (2001) and
Davies & Stewart (2005) in discounting large-scale mud
diapirism on the basis of there being no observations of
that phenomenon in the basin, instead we ¢nd piercing
mud volcano feeder complexes that have a geometry simi-
lar to sill and dyke complexes in igneous volcanic systems
(Davies & Stewart, 2005).

IMPLICATIONS

We expect the identi¢cation of structural sub-domains to
be of utility for the study of other exhumed intrusive com-
plexes. Similar and additional sub-domains could be
identi¢ed in other exhumed feeder complexes and with
improved seismic re£ection technology, it is conceivable
that similar zones may be detectable in the sub-surface.
The blocks of country rock within these complexes are
heavily fractured and cut by dense networks of mud intru-
sions.This dramatically reduces the reservoir potential of
these segments within the vent as the country rock has
become extremely compartmentalized. Commercially the
compartmentalization of the country rockwill be signi¢ -
cantly increased by the intrusion of the mud dyke systems.
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Although these segments of country rock are not economic
the observation that they are present and can be recognized
by their change in strike compared with the surrounding

country rock will improve identi¢cation of mud volcano
systems when drilling. The evolution of this system over
time should be consideredwhen planning wells because old

Fig.10. Schematic of the ‘hybrid stoping’mechanism modi¢ed fromGeshi et al. (2002). (a) Intrusion stage before the surface collapse.
Evacuation of mud from the reservoir caused stoping of the roof rock of the reservoir.Underground stoping formed a cavity at the top of
the stoping column. (b) The early stage of summit subsidence.The roof rocks of the cavity can not carry their ownweight and collapse
into the cavity.Release of mud and £uids ¢lls the cavity. (c)The late stage of the summit subsidence.Continuous evacuation ofmud from
the reservoir caused the subsidence of the roof of the reservoir.The top of the stoping columnwas ¢lledwith the collapsed materials
from the outward migrating caldera wall. (d) Explosive stage. Invasion of £uids to the stoping column causes eruption and conduit
consists of large blocks of country rock rotating freely within it.
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feeder dykes may be encountered when drilling.The reser-
voirs surrounding mudvolcano intrusive domains are com-
mercially viable, however, large, seismic scale faults, seen
during the mapping of Koturdag anticline, away from the
intrusive zone within tight regional fold structures, may
pose problems. These faults can often act as either ba¥es
or aids to £uid £ow from the reservoirs throughwhich they
penetrate creating problems when evaluating the reservoir
potential in the region.

These interpretations will enable a better understand-
ing of the processes governing £uid transport through
the shallow crust and how the processes a¡ect the
surrounding country rock. Comparisons with igneous
vent systems could be fruitful as they share some common
morphological and mechanical process with mud volca-
noes and there may be parallels with the mechanisms
by which £uids travel to the surface. Further studies of
piercement structures will help establish the common
processes and products.

CONCLUSIONS

On the basis of ¢eld mapping, including collection of bed-
ding orientations, fracture types and densities, we identify
sub-domains within mud volcano feeder complexes.This
represents the ¢rst study on mud volcano systems of its
kind.These sub-domains consist of the ‘active vent zone’
where £uids are currently being extruded, the ‘peripheral
fracture zone’ where both sinuous and conjugate fracture
systems are found, the ‘central zone of block rotation’
where bedding strike measurements vary greatly from the
surrounding anticlinal bedding and the ‘un-intruded
zone’ which contains only conjugate faulting/fracturing.
The ‘active vent zone’,‘peripheral fracture zone’ and ‘cen-
tral intrusive zone’, together comprise the mud volcano
feeder complex itself, with the ‘unintruded zone’ lying
outside the feeder complex. Further research could estab-
lish the existence of these sub-domains elsewhere, re¢ne
the characteristics for their identi¢cation and lead to the
identi¢cation of new examples. Their delineation should
also provide an objective method for the comparison of
other mud volcano feeder complexes.

Overallwe ¢nd the feeder complexes to consist of mega-
breccia of country rock surrounded by intruded mud and
some long-lived £uid conduits. Our preferred model con-
sists of a propagating fracture network that isolates blocks
that become free to move as the smaller clasts become
eroded by the mud^water^gas mix through time. This
process has similarities with the better-known stoping
process in igneous volcanic complexes. An initial stoping
mechanism where an upward-propagating fracture net-
work isolates a megabreccia of blocks up to 20m in scale.
Once the fracture system breaches the surface and
becomes an anastomosing £ow pathway, the smaller blocks
within the breccia are eroded and extruded, creating space
for widening of the £ow conduits and settlement and rota-
tion of the larger blocks whose size and weight prevent

them frombeing carried upwards (Fig.10).During periods
of low mud £ow rates, gravity driven compaction of the
system may account for relatively low levels of water and
gas eruption observed during ‘quiescent’ periods.

Furthermore in addition to supplying parameters for
lithology and 3D porosity and permeability distribution
in feeder complexes, our observations also provide a
starting assumption for the dimensions of these structures
in areas were seismic imaging does not clearly resolve their
extent. These parameters will be useful in the cases of
reserves assessment and drilling planning in the deeper
parts of mud volcano systems.
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Abstract: Field data collected from mud volcanoes in Azerbaijan are used to describe a process in mud

volcano development that involves portions of the constructional edifices collapsing outwards in ‘thin-skinned’

slides. These events create kilometre-scale scarps that are tens of metres in height, arcuate in plan view,

elongate and facing downdip. Similar morphological features occur on igneous volcanoes and have been

described as ‘sector collapse’ structures. The largest sector collapses in igneous volcanoes involve some 1012

tons of mobilized material; equivalent structures in mud volcanoes are several orders of magnitude smaller.

We employ a shape parameter that can be utilized in field and satellite-based mapping, to distinguish between

slope failure and eruptive deposits. Three mud volcanoes with kilometre-scale sector collapses are described

and controlling mechanisms are reviewed. The updip domains of these collapses are characterized by fluid

escape, showing that there is also linkage to deeper mud volcano structure. The observations are reconciled in

a model consisting of a deflating mud chamber that triggers thin-skinned sector collapse. The updip domain of

the sector collapse is localized above a deep-seated zone of volume loss and the downdip domain of the

collapse runs down the edifice flank onto the surrounding plain.

Mud volcanoes range in size from 0.01 to 5 km in diameter and

occur in a range of tectonic settings, yet there are relatively few

detailed descriptions of the morphology of kilometre-scale

edifices (Milkov 2000; Kopf 2002; Planke et al. 2003; Yusifov &

Rabinowitz 2004). Mud volcanoes are similar to igneous volca-

noes in that they both form constructional edifices when erupting

at the surface and can develop structural elements such as

calderas and ring faulting (Evans et al. 2008). The structural

development of mud volcano edifices has received some attention

(Hovland et al. 1997; Davies & Stewart 2005; Mazzini et al.

2007, 2008; Evans et al. 2008; Roberts et al. 2010) but has been

studied far less than igneous equivalents (Fisher 1990; Kokelaar

& Romagnoli 1995; Lipman 1997; Leyrit 2000; Geshi et al.

2002; Masson et al. 2002; Kennedy et al. 2004; Cole et al.

2005).

The aim of this study is to describe kilometre-scale collapse

phenomena and related morphological features seen on mud

volcano edifices based on field mapping in Azerbaijan, and to

identify the most likely trigger mechanisms for collapse events.

A particular difficulty in the study of mud volcanoes is

distinguishing between features that are dominantly due to slope

failure and those that are largely the product of incision and

erosion of the flanks during an eruptive event. We distinguish

between these processes on the basis of geomorphological

criteria and the overall dimensions of the deposits.

Geological setting

The South Caspian Basin is known for its abundant kilometre-

scale mud volcano systems (Guliyev & Feizullayev 1995; Milkov

2000; Aliyev et al. 2002). This concentration of mud volcano

systems occurs as a result of the presence of the argillaceous

Maykop Formation of Oligocene to Miocene age (Hudson et al.

2008), which has become overpressured as a result of disequili-

brium compaction and mobilized by the addition of fluids from

depth (Kopf et al. 2003). The Maykop Formation is c. 1 km thick

and is buried to a depth of 3.5–5 km in the area of this study

(Allen et al. 2003). Mud volcano edifices are the extrusive

termination of steep intrusive feeder complexes that are created

by pressure at depth exceeding the lithostatic pressure, resulting

in hydrofracturing. This leads to intrusion of fluids and mud,

resulting in eventual stoping of the surrounding country rock

(Stewart & Davies 2006; Deville & Guerlais 2009; Roberts et al.

2010).

Methods and datasets

The edifices studied were Akhtarma-Karadag, Pilpilya and

Lökbatan mud volcanoes, all located in Azerbaijan along the

west coast of the Caspian Sea (Fig. 1). Mapping was carried out

using a handheld global positioning system (GPS) receiver, with

a positional accuracy of 5 m. Structural readings such as bed-

ding, fracture and fold orientations were measured using a

compass clinometer. The GPS coordinates with their correspond-

ing structural datasets were integrated as layers in ArcMap

software. The coordinate system for the data was input using

spheroid WGS 1984. Aerial imagery is from Digital Globe and

IKONOS via Google Earth, and all aerial imagery has a

resolution of 6.5–23 m.

Observations

A number of mud volcano edifices from the South Caspian Basin

feature elongate collapse scars on their flanks. We provide a

detailed description of two representative collapse structures and

their associated deposits, plus one feature interpreted as an

incipient collapse structure. Locations are shown in Figure 1.



Lökbatan mud volcano

Lökbatan is one of Azerbaijan’s most active mud volcanoes, with

22 major eruptions from 1810 to 2010 (Aliyev et al. 2002); it is

located 15 km SW of Baku (Fig. 1). Lökbatan is situated on the

crest of an anticline of the same name, which trends east–west.

The fold has a northern limb steeper (55–608) than its relatively

gentle southern limb (30–358), and its crest is faulted. The plan-

view shape of the mud volcano edifice is elongate, in contrast to

many other examples documented in the area (Evans et al.

2008). Its plan-view dimensions are c. 1.6 km by 0.9 km (Fig. 2)

and its crest is 130 m above the level of the Caspian Sea.

The western flank of Lökbatan is characterized by an arcuate,

elongate failure scarp measuring 1.62 km long in the dip direction.

This feature was first described by Planke et al. (2003) as a ‘western

trending graben collapse structure’. The failure has a maximum

width of 0.48 km and is 6 m high at the crest of the edifice (Fig. 2).

The failure structure is oriented coaxially with the mud volcano

edifice. Where the fault scarp is exposed it dips at 60–808 towards

the collapse structure. There is no scarp at the downdip limit of the

Fig. 1. Digital elevation map of the Caspian coastline in Azerbaijan

showing the location of the study areas (localities marked with red

triangles). Red dashed lines indicate presence of faults. White colouring

indicates highest topographic areas; blue represents the lowest

topographic areas. Inset regional map shows main map location as red

box.

Fig. 2. (a) Lökbatan mud volcano, Baku,

Azerbaijan. (b) The western flank of this

volcano collapsed in 2001 during an

eruption. Red arrow indicates the direction

of the main failure. Amphitheatre-shaped

depression is shaded in orange. Old mud

breccia flows are coloured in purple. Levees

are dark brown. Edges of collapse structure

are marked by the dashed red line. Image

# 2010 DigitalGlobe, # 2010 Google.
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collapse structure. At the base of the scarp, 1–2 m high elongate

mounds of mud breccias demarcate the sides of the failure.

Freshly erupted mud breccias occupy an area of c. 0.096 km2 in

the upper reaches of the area enclosed by this scarp. The contrast

in colour and texture of the mud breccias, and their field relation-

ships with the scarp, indicate that these were erupted some time

after the main collapse structure developed (Fig. 2). Scholte et al.

(2003) referred to this as a ‘breccia field’. ‘Megablocks’ (Siebert

1984) occur within the main flow, measuring up to 110 m in

length (Fig. 2). The megablocks display a similar light grey colour

to those of the flanks of the volcano when compared with the

darker grey flow deposit within the collapse structure and the

blue–grey of the younger mud breccia flows (Fig. 2). One

indicator that these megablocks are not in situ is that they rise 2–

5 m above the height of the flanks in their present location,

suggesting that they came from a location further updip, where

the fault scarp is higher. Also, in Figure 2a, a wedge-shaped

megablock (Megablock ‘A’) can be ‘fitted’ back to where its

height corresponds to the volcano flanks. A ‘long axis’ of this

block is determined on the basis of variations in thickness of the

block, with a view to establishing whether the block has rotated

about a steep or vertical axis (Fig. 2a). This method suggests that

the block has moved 160 m down the flank and has been rotated

268 from its original long axis orientation (Fig. 2a).

Akhtarma-Karadag and Pilpilya mud volcanoes

These volcanoes are located on an east–west-trending anticlinal

structure 87 km SW of Baku. Akhtarma-Karadag and Pilpilya are

essentially two summits of a single elongate mud volcano (Fig.

3a), the summits being separated by a col tens of metres below

the elevation of the adjacent highs. Each elongate summit area is

characterized by kilometre-scale failures that face in opposite

directions to one another and are a few hundred metres apart at

their closest approach.

Pilpilya, the westerly half of the mud volcano, has an almost

circular plan-view shape measuring c. 2.06 km by 1.90 km (Fig.

3b). The main active vent zone on the summit is found at the

eastern end of the edifice. Although no vents are currently active

on the volcano itself, a single, 200 m diameter active gryphon is

located 500 m west of the mud volcano (Fig. 3b). Pilpilya has a

failure structure c. 1.58 km in length and c. 240 m wide that has

failed in a westerly direction (Fig. 3b).

The head-scarp at the top of the edifice is arcuate and c. 170 m

wide. At the top of the edifice the scarp is 5.5 m high, reducing

to 20 cm at the base of the mud volcano flanks. The sides of the

scarp dip steeply at 30–408 towards the collapse structure on all

sides of the failure. At the base of the scarp 1–2 m high elongate

mounds of breccias mark the sides of the failure. A major mud

breccia eruption has occurred subsequent to the failure, as a large

breccia flow oversteps the debris avalanche (Fig. 3b).

Akhtarma-Karadag volcano is elongate and measures c.

2.15 km by 0.8 km in areal extent, and is 96 m in elevation (Fig.

3c). The main active vent zone on the summit occurs at the

western end of the edifice (Fig. 3c). This feature was first

observed using satellite imagery that identified a closed, kilo-

metre-scale elongate structure (Fig. 3c). Field mapping demon-

strated the western end of this feature to be an arcuate fault (Fig.

3d). Displacement decreases from c. 1.5 m at the west end of the

structure to a centimetre-scale fracture zone at the east end,

Fig. 3. (a) Google Earth image of Akhtarma-Karadag mud volcano and west of it Pilpilya mud volcano with a collapse structure. Image # 2010 GeoEye,

# 2010 Google. (b) Interpretation of (a). Red arrow indicates the direction in which the main slope failure has occurred or could occur. On Pilpilya the

collapse and most recent flow can be seen to fail down the volcano’s western flank. (c) IKONOS image of Akhtarma-Karadag mud volcano. (d)

Interpretation of (c). Dotted black line shows fault trace. Purple areas represent gryphons and orange areas indicate regions where cinder mounds are

present. Image # 2010 GeoEye.
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barely perceptible in the prevailing outcrop conditions (Fig. 4).

The head of the break in slope at the western end of the volcano

is arcuate and has several smaller fractures radiating from it in

east–west orientations (Fig. 3d). There are several centimetre- to

metre-scale kinematic shear sense indicators that have been

identified from the incipient fault. The most prominent of these

shear indicators are en echelon fractures (Fig. 4b, inset) showing

lateral movement towards the NE. Freshly exposed plant root

systems span the main open fracture, and many gryphons and

salses are coincident with the fracture zone (Fig. 4a and b).

Another kinematic indicator is the ‘sediment ridges’ that occur

within the structure, similar in form to pressure ridges seen in

lava flows (Fig. 3; Sigurdsson et al. 2000). These also indicate

movement to the NE.

Interpretation

The main features described are elongate scarps on the flanks of

mud volcanoes, mud breccia levees; arcuate-amphitheatre-shaped

craters and allochthonous megablocks. All of these features are

consistent with thin-skinned failure of the margins of the mud

volcano flanks (as opposed to deep-rooted caldera collapse) and

are described below, drawing parallels to equivalent structures

documented on igneous volcanoes. Where possible, we follow

the nomenclature used in igneous context by Ui et al. (2000).

Amphitheatre

The volume encompassed by an arcuate, updip part of a scarp

that delimits a sector collapse is termed the ‘amphitheatre’ as the

scar forms a ‘horseshoe’ shape (Fig. 5; Leyrit 2000). This

morphology is accentuated when the collapse is accompanied or

overprinted by eruptive activity (Leyrit 2000). The walls of the

amphitheatre are steep and reach several hundreds of metres

height in igneous volcanoes. At Lökbatan and Pilpilya mud

volcanoes these walls are steep but reach only 2–10 m in height.

The edge of the amphitheatre is defined by the footwall high

of the sector collapse fault. Its height is controlled by the amount

of fault displacement and the amount of material removed by the

debris avalanche. Our examples suggest that amphitheatre height

in mud volcanoes is restricted to a maximum of c. 10 m.

Sector collapse fault

The margin of the amphitheatre is marked by either an inward-

dipping scarp or a slope with a pronounced break at its base.

This defines the ‘elongate scarp’ marking the limits of failure.

This scarp varies in height from c. 10 m in the amphitheatre to

less than 1 m at the downdip limit.

At Akhtarma-Karadag this fault is interpreted to be in an

incipient stage at present. The elongate shape of this ring fault is

Fig. 4. Photographs of the Akhtarma-Karadag mud volcano. (a, b) At northern side of ring fault, (a) June 2006 and (b) April 2009, with an inset

photograph of en echelon faulting seen along the main ring fault. The photographs show a section of the ring fault (marked by the dashed red line) that

has an offset on it. There is also a large gryphon that is erupting along this fault line. (c) Photograph taken at the head of the ring fault in June 2005.

(d) Photograph taken at the head of the ring fault in June 2006.

K. S. ROBERTS ET AL .52



similar in plan-view form to the failure at Lökbatan mud

volcano. The dimensions of this structure are c. 1.2 km length

and c. 400 m width, similar to the collapses mapped at Lökbatan

and Pilpilya. The fault is currently active on the basis of exposed

and broken plant root systems found spanning open fractures, en

echelon fracturing and sediment ridges (Fig. 4b, inset). Gryphons

and salses coincident with this fault demonstrate active fluid flow

preferentially localizing onto the fault surface. This link between

fluid flow and faulting argues against a purely thin-skinned

interpretation along the whole length of the sector collapse fault

(Fig. 4a and b).

We distinguish between caldera collapse and sector collapse in

terms of bounding fault geometry. The lower tips of faults

associated with calderas and ring complexes occur at depth in

the subsurface below or within a volcanic edifice and could be

described as ‘thick-skinned’ collapse (Fig. 6a). On the other

hand, the lower tip line of a fault or shear zone bounding a sector

collapse crops out at the surface on the volcano flank and can be

considered as ‘thin-skinned’ failure (Fig. 6b). Therefore in terms

of peripheral, bounding structures (as opposed to internal

structures), sector collapse structures should have a downdip

domain characterized by surface expression of compression

(which may be an overthrust or flow over lateral equivalent

units), whereas caldera structures do not.

Planke et al. (2003) described the elongate portion of the sector

collapse fault at Lökbatan as a ‘graben collapse structure’. They

suggested that this was caused by the presence of an elongated,

shallow mud chamber within the crest of the anticline and that

during an eruption mud was drained from the chamber, resulting

in subsidence and collapse of the roof, essentially viewing the

whole structure as an elongate caldera. We propose an alternative

interpretation, that the scarp was produced by a process of ‘thin-

skinned’, detached collapse only indirectly linked to a deeper-

seated deflating chamber. A critical piece of evidence supporting

our interpretation is the presence of hummocky terrain, enclosed

by the downdip portion of the elongate ring fault.

Levees

These morphological features form on the downthrown side of

the elongate scarp and mark the edges of the debris avalanche

field. They can be seen at both Lökbatan and Pilpilya. At the

Fig. 5. Schematic illustration of sector

collapse of an igneous volcano after Ui et

al. (2000). (a) Longitudinal section of a

sector collapse. The dashed line indicates

the previous morphology of the volcano

before the collapse took place.

(b) Cross-section across the debris

avalanche high on the flanks of the volcano;

‘debris avalanche block facies’, location B.

(c) Cross-section across the debris

avalanche low on the flanks of the volcano;

‘debris avalanche matrix facies’, location C.

(d) A 3D schematic illustration of mud

volcano sector collapse with localities of

cross-sections B and C indicated. White

dashed line marks sector collapse fault.
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updip (headscarp) end of the collapse, the levees are between 2

and 4 m in height and towards the foot of the edifice they

decrease to less than 1 m in height. In cross-section they have a

wedge shape and in three dimensions this wedge is sinuous,

defining the edges of the debris avalanche deposit. This morph-

ology is similar to debris avalanche levees common on igneous

volcano sector collapse deposits (Siebert 1984), and also fluvial

or alluvial levees (Adams et al. 2004). This similarity suggests

that these processes share a common mode of formation. Levees

form on mud volcano sector collapse flows as opposed to

eruptive flows because sector collapse flows are geologically

instantaneous, catastrophic events involving very poorly sorted

material. As this debris avalanche moves downslope and out-

wards the levees build up in areas where flow boundary

conditions are markedly non-uniform as flow energy decreases

towards the outer edges of the avalanche. This process does not

occur in eruptive flows, as they often flow at an average rate of

0.5–2 m a�1 and are composed of a mass of mud breccia that

flows downhill almost as a coherent block.

Debris avalanche deposits

These produce hummocky deposits of fragmented debris towards

the base of volcanoes (Figs 5d and 7b). Early igneous workers

variously interpreted these hummocks as glacial moraines,

phreatic blisters on the surface of gas-rich lava flows, small

independent volcanic vents, lahars, or man-made features (Sie-

bert 1984). Debris avalanche deposits in the case studies consid-

ered here consist primarily of the mud breccia that originally

formed the mud volcano edifice. Table 1 shows that the volumes

of debris avalanches are comparable with those of the missing

sectors of the cone, indicating that the dominant process is not

input of new, erupted material, but slope failure of a pre-existing

portion of the volcanic edifice.

Debris avalanche deposits are poorly sorted and the dominant

constituent is material of the volcanic edifice. Some freshly

erupted material may be present, although this is hard to

Fig. 6. Schematic diagrams showing (a) the positions of fault tips during

caldera collapse and (b) fault forming as a result of sector collapse of

mud volcanoes.

Fig. 7. Structure of mud breccia flows compared with collapse deposits. (a) Mud breccia flow emanating from Koturdag crater (3 3 vertical

exaggeration). Koturdag mud volcano is located 30 km SW of Pilpilya. Image # 2010 GeoEye, # 2010 Google. (b) Elongate collapse structure on

Lökbatan (33 vertical exaggeration). Image # 2010 DigitalGlobe, # 2010 Google. (c) Photograph of the elongate collapse structure on Lökbatan. (d)

Schematic illustration of structural features seen in (c). (e) Photograph of the mud breccia flow emanating from Koturdag crater. (f) Schematic illustration

of the structural features seen in (e).
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distinguish in mud volcanic eruptions if the deposits are old.

Large fragments of the volcanic edifice, tens of metres in size or

larger, termed ‘megablocks’ (Siebert 1984), can be incorporated

in debris avalanches (e.g. at Lökbatan). Debris avalanche depos-

its display surface morphology with textural and morphological

features characteristic of landslide deposits (Fig. 5; Siebert

1984). In particular, hummocky topography with numerous hills,

closed depressions, and longitudinal and transverse ridges occur

at both Lökbatan and Pilpilya (Figs 5d and 7b). Mud volcano

debris avalanches are more easily eroded than those at igneous

volcanoes and so are relatively inconspicuous.

Eruptive flow versus sector collapse

It is not necessarily straightforward to distinguish between scarps

produced by sector collapse and those excavated by erosive flow of

erupted mud. However, there appear to be morphological differ-

ences between the kilometre-scale structures produced by these

processes (Fig. 7). Mud breccia flows tend to be narrow, point-

sourced phenomena originating near the top of the mud volcano

edifice (Fig. 7a, e and f; Chow et al. 2006). As they reach lower-

lying, gentler slopes they spread out into wider, lobate deposits. In

contrast, sector collapses involve a whole segment of the flank

moving downslope (Figs 5 and 7b–d). The dimensions of eight

sector collapses and 21 mud breccia flows were measured from

aerial imagery and are plotted in Figure 8. Flows in this dataset

were characterized on the basis of fieldwork and/or diagnostic

features recognized on aerial imagery (levees, megablocks, sinuos-

ity and colour; Fig. 7). The results show that the ratio of ‘Bottom

Width’ (width at the most distal termination of the structure) to

‘Middle Width’ (width halfway down the structure) of the struc-

tures effectively distinguishes between the two failure modes, with

sector collapse ratio being about unity and flows ratio being greater

than unity (typically two or more; Fig. 8).

We identify three end members of failure and resulting

deposits on mud volcano flanks based on scale, and relative

importance of slope failure versus eruptive processes (Fig. 9).

Erosive flow of a mud breccia deposit can involve relatively long,

meandering tongues of mud breccia that cut into the flanks of the

volcano from which they emanate. They tend to spread out once

they meet the plain on which the edifice is building (Figs 7 and

8). At the foot of the flows pressure ridges build up, giving them

an appearance similar to ‘ropy’ lava flows (Fig. 7a; Sigurdsson et

al. 2000).

Sector collapse deposits have a low to moderate length and a

uniform width throughout their length. Their internal structure

resembles that of a debris avalanche, with an extensional zone at

the top and a compressional zone at the bottom of the deposit.

Surface morphology of sector collapse deposits includes hum-

mocky terrain and megablocks of the flanks of the volcano.

Small slope failures (5–30 m length) also occur on the flanks of

these volcanoes and structurally resemble the larger sector

Table 1. Dimensions of sector collapse structures discussed in the text

Mud volcano Angle of
sector (8)

Length of elongate
scarp (km)

Volume of debris
avalances (m3)

Volume of scarp
(m3)

Angle of repose
(8)

Width of elongate
scarp (km)

Area of volcano
(km2)

Akhtarma-Karadag 35 1.6 – – 6 0.9 5.79
Pilpilya 29 1.75 c. 7.43 3 106 c. 7.29 3 106 10 0.8 6.75
Lökbatan 28 1.65 c. 7.42 3 106 c. 6.32 3 106 10 0.8 5.75
Mount St. Helens 36 15.44 2.3 3 109 – 15 3.45 70.37

Fig. 8. Graph showing the relationship

between lengths and widths of various flow

structures on mud volcano edifices. Dashed

line represents the transition zone between

mud breccia flows and sector collapse

geometries.
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collapse deposits. They have short downslope length and are

relatively wide compared with their length.

Discussion: mechanisms for mud volcano sector
collapse

Sector collapses are well documented in the context of igneous

volcanoes (Siebert et al. 1987; Van Wyk de Vries et al. 2000;

Lundgren et al. 2003). In relation to igneous volcanoes these

structures are in excess of tens of kilometres in extent; some of

the largest examples involve c. 1012 tons of mobilized material

(Masson et al. 2002). Mud volcanoes are generally smaller than

igneous volcanoes, so sector collapses of mud volcano edifices

occupy a different scale range. The lower cut-off for length scale

of sector collapse in mud volcanoes employed here is 1 km, on

the basis that these are substantial structures that are relatively

easy to identify in the field and on seismic reflection data, and

are of a scale to pose significant risk to subsea infrastructure.

A range of possible mechanisms may be involved in triggering

sector collapse in mud volcanoes; it may be that actual events

result from combinations of such factors. A brief review is

presented here based in part on processes that have been

discussed in relation to sector collapse in igneous settings (Fig.

10; Voight & Elsworth 1997). The most likely mechanisms for

mud volcano sector collapse are as follows.

Oversteepening. Oversteepening of the summit region of the

volcano (e.g. tumescence owing to mud injection) could produce

gravitational instability (Fig. 10a). Slope angles in the case

studies reported here range from 6 to 108 (Table 1). On igneous

volcanoes the majority of collapses occur on slopes of 28–308

(Voight & Elsworth 1997). The slope failures reported here from

Azerbaijan do not, however, occur on the steepest parts of the

edifice.

Regional stress. Siebert et al. (1987) stated that the location of

sector collapses within the igneous volcanic edifice can be

influenced by local and regional stress regimes. Swarms of mud

volcano vents often occur parallel to the regional maximum

horizontal compression (Roberts et al. 2010), resulting in the

elongation of the volcanic edifice in that direction. In the

Azerbaijani examples mud breccia flows show weak clustering in

a NE or SW direction, generally flowing down the steepest

topography (Fig. 11b). In contrast, the sector collapse failures

occur parallel to the direction of mud volcano edifice elongation,

generally an east–west trend that is also parallel to the anticline

axis at each location (Fig. 11c). This relationship suggests that,

although the sector collapses may be related to some aspect of

mud volcano edifice geometry, they are not directly related to

regional stress.

Loading. Loading of the volcano flanks by erupted mud breccia

may cause increase in pore pressure resulting in collapse (Fig.

10b). Rainfall could be another significant loading factor in the

onshore Azerbaijani mud volcanoes. The climate is arid for much

of the year and the mud flows become heavily fractured as they

dry out; appreciable water load is absorbed in the wet season.

Fig. 9. Schematic ternary diagram showing the positions of mud breccia

flows, sector collapses, slope failures and hybrid failures occurring on

mud volcanoes in relation to the scarp length and width and the size of

the feature. The internal structure of each deposit can also be seen in the

block diagrams.

Fig. 10. Schematic diagrams showing primers and triggers of mud

volcano sector collapse events. (a) Inflation of mud chamber and volcano

causing instability. (b) Addition of overburden when mud breccia is

erupted onto the volcano flanks. (c) Change in pore pressure within the

mud volcano. (d) Erosion and removal of support. (e) Precipitation

increasing pore fluid and loading and therefore pore pressures. (f) Earth

tides exerting different gravitational forces on the mud source, causing

more or less violent eruptions. (g) Seismicity shaking the ground and

changing pore pressure in the mud volcanoes. (h) Eruption of mud

volcano.
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Overpressure. Overpressure of pore fluids in and around the mud

volcano edifice may cause failure (Fig. 10c). If the sediments are

sealed, pore pressure within them will increase, reducing the

effective normal stress as well as shear strength of the sediment.

No additional trigger is necessarily required; pore pressure can

simply increase until the downslope component of the gravita-

tional force is greater than the shear strength of the sediment and

its cohesion, at which point failure occurs.

Erosion. This can create steeper zones that are susceptible to

destabilization (Fig. 10d). It may also remove lateral support to

slopes and so induce collapse.

Hydrothermal alteration. Hydrothermal alteration along regional

fracture sets also may be an important process in the localization

of sector collapse features (López & Williams 1993; Reid et al.

2001; Reid 2004). Circulation of fluids (meteoric and hydrother-

mal) can result in an increase in pore water pressure.

Seismic activity. This is a documented triggering factor of both

igneous and mud volcano eruptions and collapses (Fig. 10g;

Manga 2007; Manga et al. 2009). Continuous monitoring of

Lökbatan mud volcano has indicated the occurrence of weak

earthquakes during eruptions but it is not clear whether these are

a cause or effect of the eruption process.

Earth tides. These have been linked with both mud volcano and

igneous volcano eruptive periodicity (Fig. 10f; Mauk & Johnston

1973; Aliyev et al. 2002).

Eruptions and fluid activity. These are involved in some 50% of

all igneous sector collapses (Leyrit 2000). Lökbatan’s first

recorded eruption took place in 1864 (Aliyev et al. 2002). The

2001 eruption involved ignited gas jets 50–60 m in height

(Aliyev et al. 2002; Kadirov & Mukhtarov 2004) and 304 m3 of

erupted mud breccia (Aliyev et al. 2002). Sector collapse at

Lökbatan may have coincided with the eruption on 23 February

1935. Aliyev et al. (2002) documented this eruption as ‘taking

place without noise, gas and breccia emanation’. Aliyev et al.

(2002) noted that step-like subsidence occurred with landslides,

which were most probably the result of a collapse of the western

portion of the volcano. The centre of the volcano then subsided

up to 22 m and numerous fractures formed that then began to

emit gas and breccia that covered up to 25 000 m2 (Aliyev et al.

2002).

A broader summary of factors that may relate to sector

collapse is tabulated in Table 2.

Mapping in this study has revealed apparently conflicting

structural evidence in relation to mechanism of the kilometre-

scale elongate collapse structures on mud volcanoes in Azerbai-

jan. On one hand, there is good morphological evidence of mass

flow on shallow detachment with many similarities to sector

collapse structures in igneous volcanoes. On the other hand, we

observe alignments of fluid expulsion features along the bound-

ing faults, particularly in the updip domains, of these structures.

Reconciling these observations leads us to a preferred model that

is essentially a development of that previously published by

Planke et al. (2003). We adopt their idea of an elongate mud

chamber at relatively shallow (,1 km) level. However, rather

than the elongate fault-bounded structures at the surface directly

representing a collapsing roof of a deflating mud chamber, we

suggest that the observed sector collapse structures are thin-

skinned sector collapses triggered and localized by mud chamber

deflation, as shown in Figure 12. This ring fault provides a
Fig. 11. Rose diagrams of orientations of (a) long axes of mud volcano

calderas, (b) mud breccia flows and (c) sector collapse troughs.
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pathway for fluids and so results in vents aligning along the fault

itself (Fig. 12b). Ring fault formation may be enhanced by fluid

flow up crestal faulting parallel to the anticline axis (Roberts et

al. 2010), which would explain why failure sometimes occurs on

the shallowest slopes.

Subsea examples of igneous sector collapse have also been

identified in both seismic reflection and multibeam (swath)

bathymetric sonar data (Mattioli et al. 1995; Leat et al. 2010), as

well as possible unidentified sector collapse structures on mud

volcanoes in subsea seismic reflection data from the South

Caspian Basin (e.g. Corthay & Aliyev 2000). These structures

also share the same ‘shape parameters’ that we believe identify

sector collapse. Using this study to identify similar subsurface

structures could aid a better understanding of the processes at

depth as well as determining areas that may be at risk to these

potential geohazards (Corthay & Aliyev 2000; Leat et al. 2010).

Conclusions

Elongate trench-like depressions bounded by shallow inward-

facing faults trending from the summit to the base of some mud

volcanoes in Azerbaijan, and displaying evidence of downdip

lateral movement, are termed ‘mud volcano sector collapses’.

Examples mapped in the field are in the range of c. 180–200 m

Table 2. Causes of mud volcano collapse, adapted from Voight & Elsworth (1997)

Inherent causes
Initial composition
Texture: loose, porous, weak materials are slide prone
Bedding attitude relative to slope face
Layering sequences in relation to strength, permeability
Discontinuity systems: faults, joints, bedding planes
Slope-forming process history, movement history; bedding slip and fault slip history and orientation of movement
Initial physicochemical setting; conditions of weathering and alteration
History of seismicity and seismic damage
Ambient (seasonal) groundwater conditions
Causes of increased shear strength
Removal of lateral or underlying support of slopes

Erosional processes producing, steepening, or undercutting natural slopes
Prior mass movements
Eruptions near base of slope

Static loading
Natural deposition: slope or river sedimentation
Weight of water added by natural precipitation or by exsolved volatiles
Seepage pressures and joint water pressures
Mud or fluid pressure
Swelling pressures in expansive clays

Dynamic loading
Regional or local tectonic earthquakes
Vibrations from volcanic earthquakes, explosion and eruptive processes
Vibrations from adjacent, rapidly moving landslides

Increase of surface slope
Mud or fluid intrusion-related deformation
Regional tectonics
Slope changes owing to depositional processes

Causes that reduce shear strength
Physicochemical factors

Hydrothermal alteration
Softening of clays
Hydration of clay minerals
Ion exchange of clays
Weathering
Solution of grain cement
Decomposition of organic materials
Physicochemical fracturing

Pore fluid pressure enhancement
Heavy rainfall or rapid snowmelt
Changes in groundwater flow regime
Pore pressure changes owing to hydrothermal processes
Thermal expansion of pore fluid owing to frictional slip
Vibration-induced pore fluid pressure rise
Shear deformation-induced pressure rise
Consolidation seepage induced by surcharge
Base-level changes in reservoirs, lakes or oceans
Flow boundary condition changes

Changes in structure
Disturbance
Particle reorientation owing to slip or dynamic loading; peak to residual strength loss
Grain collapse in altered deposits
Fracturing and loosening of valley walls, stress relief
Deep-seated fracturing associated with fluid intrusion, stress relief, physicochemical alteration
Adjustments to groundwater flow paths; slope drainage enhanced or impeded
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in width and 1–2 km in length, each representing up to 106 tons

of mobilized material assuming depth to detachment averaging

10–20 m. Field observations include an elongate trough that is

fault-bounded on three sides (open downdip), with an updip

‘amphitheatre’ depression, levees, and a downdip domain with

hummocky morphology. The bounding fault system shows kine-

matic evidence of lateral movement. However, the presence of

fluid escape structures in the updip parts of these collapses also

indicate a relationship with the deeper-seated structure of the

mud volcano. We reconcile the observations in a model where a

deflating, perhaps elongate, shallow mud chamber (,1 km)

triggers detached sector collapse. This model could account for

the range of observations plus the curious spatial relationship of

the sector collapses; namely, they occur on the gentler slopes

(i.e. elongate crest) of the mapped mud volcano edifices. Our

model also allows the sector collapse to be more extensive than

any underlying mud chamber, potentially running out beyond the

edifice onto the surrounding plain.

A by-product of our study is recognition that sector collapse

flows tend to have a different planform shape relative to eruptive

flows, the latter having a pronounced lobe at the base of slope.

This criterion allows these structures to be distinguished on

remote-sensed data. The observations of sector collapse made

herein can also be applied in risk assessments; for instance, it

should not be assumed that mud flow hazard is restricted to areas

downdip of the steepest sides of mud volcanoes. This can equally

be applied in submarine settings.
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18 Abstract: Structural mapping, nearest neighbour and two-point azimuth statistical analysis of mud volcano

19 vent distributions from nine examples in Azerbaijan and the Lusi mud volcano in east Java are described.

20 Distributions are non-random, forming alignments subparallel to faults within anticlines, ring faults, conjugate

21 faults and detachment faults; this finding confirms a spatial relationship and supports a model for subsurface

22 flow along these features as well as showing fractionation at depth. As fracture and fault orientations are

23 related to structures such as anticlines and the in situ stress state they are therefore predictable. We use vent

24 distributions in Azerbaijan, where the structural geology is well constrained, to propose what controls the

25 distribution of 169 vents at the Lusi mud volcano. This mud volcano system shows evidence for initial

26 eruptions along a NE–SW trend, parallel to the Watukosek fault, changing to eruptions that follow east–west

27 trends, subparallel to regional fold axes. Our analysis indicates that regions east and west of the Lusi mud

28 volcano are more likely to be affected by new vents than those to the north and south, owing to probable

29 onset of elongate caldera collapse within a 10 km diameter of the central vent.

30 Mud volcano systems are a dynamic type of piercement structure

31 that are integral components of many sedimentary basins glob-

32 ally (e.g. Kopf 2002). However, because of the ephemeral nature

33 of the fluid flow the structural pathways exploited during their

34 intrusion are poorly defined. Fine-grained sediment and fluid can

35 be transported from depths exceeding 8 km (Kopf 2002) resulting

36 in eruption at the surface producing edifices that can potentially

37 reach 25 km3 in volume (Davies & Stewart 2005). The driving

38 force is generally considered to be excess pore fluid pressure

39 (e.g. Davies et al. 2011) but how mud is entrained and the

40 pathways for this fluid are poorly understood. It has been

41 proposed that folds, faults and fractures may be some of the

42 dominant controls on fluid migration pathways during the

43 intrusion of mud volcano systems (e.g. Morley 2003; Roberts et

44 al. 2010) but this has not been tested. Analysis of surface vent

45 patterns and their spatial relationships to these structures repre-

46 sents one type of test, which has successfully been carried out

47 for igneous volcanoes but not for their mud volcano counter-

48 parts.

49 Alignments of point-like geological features such as volcanic

50 cones, hydrothermal vents, fluid expulsion pipes and springs have

51 often been shown to follow underlying structures, such as dykes,

52 faults or joints (e.g. Hammer 2009; Moss & Cartwright 2010;

53 Paulsen & Wilson 2010). Igneous vent patterns have been studied

54 in great detail both on Earth (Lutz 1986; Wadge & Cross 1988;

55 Connor 1990; Hammer 2009; Paulsen & Wilson 2010) and on

56 extraterrestrial bodies (Bleacher et al. 2009). Time-dependent

57 changes in igneous vent distributions have never been considered,

58 mainly because these changes tend to occur over longer time

59 scales than mud volcanoes, over thousands to millions of years

60 (Paulsen & Wilson 2010).

61 Here we use eight mud volcanoes in Azerbaijan to statistically

62 analyse the distribution of vents and relate these to well-exposed

1 geologically mapped structures such as folds, faults and fractures

2 (Hovland et al. 1997; Guliyev et al. 2000; Planke et al. 2003).

3 These examples provide confidence in assessing the controls on

4 vent distributions that can then be applied to the Lusi mud

5 volcano in east Java (Fig. 1). This has continuously erupted since

6 2006, displacing 13 000 families, but the structural geology that

7 could be influencing vent locations is not well constrained. At

8 the time of writing Lusi has 169 vents, which erupt and

9 sometimes ignite without warning in the surrounding densely

10 populated area (Tingay 2010). Our analysis allows for a general

11 assessment of the pathways for fluid and gas in mud volcanoes.

12 In the case of Lusi, it provides a better understanding of where

13 vents are more likely to occur in the future.

14 Mud volcanoes and vent populations

15 A mud volcano system includes an intrusive domain containing

16 the feeder complex; a source domain, which comprises the

17 source of water, gas and mud; and an extrusive domain, which is

18 dominated by the eruptive edifice (Stewart & Davies 2006;

19 Roberts et al. 2010). Mud volcano eruptions can be violent with

20 quiescent inactive stages during which eruptions from multiple,

21 small vents are the dominant process (Guliyev et al. 2000).

22 Dormant mud volcano edifices can have anything from one to

23 thousands of vents of differing morphologies erupting varying

24 compositions of mud, water and gas (Table 1; Fig. 2). Vent types

25 include cinder mounds, which are the result of c. 100% gaseous

26 phase eruptions. Mud breccia flows consist of c. 90–100% mud

27 that has the rheology of a Bingham body (Iverson 1997). Salses

28 contain suspensions of ,30% mud particles in water and

29 gryphons have a composition of 30–90% mud particles in water

30 that are either thixotrophic or shear thinning (Yassir 1990, 2003;

31 Mueller et al. 2010). Herein the pattern of vents on edifices is
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1 termed ‘vent populations’. The area that is most densely

2 populated with vents is termed the active vent zone (Roberts et

3 al. 2010).

4 Geological settings

5 Azerbaijan

6 Azerbaijan’s mud volcanoes probably form as a result of rapid

7 sedimentation during the last 5.5 Ma, tectonic compression, the

8 presence of a thick overpressured mudstone (Maykop Formation)

9 at 5–8 km depth and hydrocarbon maturation (Davies & Stewart

10 2005; Evans et al. 2008). All the mud volcanoes are located

11 along or near the crests of anticlines and most are thought to

12 have initiated in the Pliocene (c. 3.5 Ma; Narimanov 1993;

13 Yusifov & Rabinowitz 2004). The mud volcano systems may also

14 incorporate fluids rising from below the Maykop Formation

15 (Kopf 2002; Hovland et al. 2006).

1 The region has undergone 2.4 km of tectonic subsidence since

2 c. 5.5 Ma (Allen et al. 2003). Several kilometres of sediment

3 accumulated during the Pliocene and have subsequently been

4 folded, with these structures having a dominant NW–SE fold

5 axis orientation (Allen et al. 2003; Yusifov & Rabinowitz

6 2004).

7 Lusi, Sidoarjo, east Java

8 This mud volcano erupted in the east Java basin in May 2006

9 (Davies et al. 2007; Mazzini et al. 2007). During the Eocene, NE–

10 SW-oriented rift basins formed and filled with continental clastic

11 rocks that host both source rock and productive reservoirs (Kusu-

12 mastuti et al. 2002). In the Oligocene to early Miocene east–

13 west-trending normal faults formed (Kusumastuti et al. 2002;

14 Istadi et al. 2009). Carbonate platforms developed on some palaeo-

15 basement highs. Carbonate reefs are located beneath the Lusi mud

16 volcano and have an east–west orientation (Kusumastuti et al.

Fig. 1. (a) Major structural elements of eastern Azerbaijan after Jackson et al. (2002), showing the location of the mud volcanoes in this study (localities

marked with blue stars; see inset for global location). (b) Major structural elements of the east Java Basin, after Geological Survey of Indonesia (1963),

showing the location of Lusi mud volcano (marked with a star) and main faults marked in red (see inset for global location).

Table 1. Classification of vents mapped during the study

Vent type Composition Height (m) Width (m) Clasts? Morphology Fluid type

Gryphons .30–90% mud:
,30% fluids

0.02–10 0.05–360 Yes ‘Cones’ of mud breccias with bubbling pools of
mud in their crater

Shear thinning
or thixotropic

Salses ,30% mud:
.70–100%
fluids

0.02–2 0.05–80 No Shallow-sided ‘cones’ of mud breccias with a
large pool of watery mud at the summit and
several bubbling centres

Mud suspensions

Cinder mounds 100% gaseous 0–3 1–50 Yes Mounds of red, orange or brown glassy mud
breccia

Gaseous

Breccia pipes .30–90% mud:
,30% fluids

0.5–1.5 0.5–10 Yes Clusters of salses surrounded by damp mud
containing clasts of country rock

–

Mud plugs 90–100% mud 4 30–100 Yes Large flows of mud breccia emanating from
one vent

Bingham

Pools 100% water 0.01 ,0.05 No Small vents that cluster round gryphons and
salses only erupting water and/or gas

–

K. S. ROBERTS ET AL .2



1 2002). Compression during the late Miocene–Pleistocene resulted

2 in inversion associated with east–west-trending fault movement

3 (Istadi et al. 2009). This produced the east–west orientation of the

4 anticline structures (Istadi et al. 2009). Subsequent Pliocene–

5 Pleistocene sedimentation consisted of an eastward-prograding

6 mudstone-dominated volcaniclastic wedge derived from the Java

7 volcanic arc (Istadi et al. 2009). The mudstone of the Pleistocene

8 Kalibeng Formation is overpressured at 900–1870 m depth at Lusi

9 (Istadi et al. 2009). This is the source of the mud that makes up the

10 solid fraction of the erupted liquid mud (Mazzini et al. 2007). The

11 water is most likely to have been sourced from the Miocene

12 carbonates (2833–3500 m; Tanikawa et al. 2010; Tingay 2010;

13 Davies et al. 2011) with a contribution from the remobilized Upper

14 Kalibeng Formation (Davies et al. 2007). Some fluids may also be

15 sourced from shallow aquifers in the Pleistocene Pucangan Forma-

16 tion at 280–900 m depth (Tingay et al. 2008).

17 New vents form frequently and several have ignited causing

18 injury. For example, the Porong highway, near the Lusi mud

19 volcano, developed metre-long cracks leaking methane on 2 July

20 2010, with the highway surface increasingly sloping toward the

21 mud embankments used to limit the spread of the mud. It has

22 been predicted that it will take 26 years for the flow rate to

23 reduce to 10% of its initial rate (Davies et al. 2011). Therefore

1 more vents will form and the subsidence (Abidin et al. 2008;

2 Istadi et al. 2009) will continue for decades.

3 Database and methods

4 Structural mapping

5 Mapping of vent populations was carried out using a handheld

6 global positioning system (GPS) receiver, with a positional

7 accuracy of 5 m (Azerbaijan) and 5–12 m (Lusi data, courtesy of

8 Badan Penanggulangan Lumpur Sidoarjo (BPLS)). Bedding,

9 fracture and fold orientations were plotted using GEOrient

10 software onto stereographic and rose projections. The GPS

11 coordinates and corresponding structural data were integrated in

12 ArcMap software. The coordinate system for these data was

13 input using spheroid WGS 1984.

14 Vents were classified as either gryphons, salses, cinder

15 mounds, mud plugs or pools (Fig. 2; Table 1; Hovland et al.

16 1997; Guliyev et al. 2000; Mazzini et al. 2009). Each is marked

17 onto satellite imagery with different symbols (Fig. 2). The

18 potential spatial relationships between folds, faults and fractures

19 and vent populations should be clear, as exposure is .60%.

Fig. 2. (a) Gryphons (purple triangles in

Figs 3, 5, 6 and 7). Conical vents erupting

mud, a few centimetres to 4 m high.

(b) Salses (blue triangles in Figs 3, 5, 6 and

7). ‘Lakes’ of muddy water, with cones 1–

2 m high and diameters of a few

centimetres to over 50 m (Guliyev et al.

2000). (c) Cinder mounds (orange triangles

in Figs 3, 5, 6 and 7). These erupt only

gaseous phases, and resemble heaps of fired

clay. They are up to 4 m high and 10–20 m

long, with an orangey-red ceramic

appearance (Hovland et al. 1997; Planke et

al. 2003). (d) Mud plugs (purple triangle

labelled in Fig. 3a). Breccia with a putty-

like malleable consistency extruding from

craters like ‘paste from a tube’, on

Koturdag A mud volcano (Guliyev et al.

2000; Planke et al. 2003). (e) Pools (green

triangles in Figs 3, 5, 6 and 7). Bubbling

pools of fluid, less than 2 cm in diameter

(Mazzini et al. 2009) on extinct or dormant

vents (black triangles in Figs 3, 5, 6 and 7).
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1 Structural data from outcrop and 2D seismic coverage for Lusi

2 mud volcano are limited.

3 Statistical analyses

4 Two statistical approaches, adapted from igneous vent systems,

5 are used to characterize spatial patterns within vent populations.

6 At igneous vent systems these techniques have revealed that

7 magmatic volcanic vents often form clusters and define align-

8 ments at several scales from tens of metres to over 1000 km

9 (Bleacher et al. 2009; Paulsen & Wilson 2010). As the GPS

10 accuracy is 5 m, vent alignments have 5 m accuracy.

11 The nearest neighbour technique (Clark & Evans 1954) tests

12 randomness in spatial distributions by calculating the ratio of the

13 observed mean distance to the expected mean distance for a

14 hypothetical random distribution to determine whether the points

15 are clustered. A ratio of unity is a random distribution and a ratio

16 of ,1 is clustered; the nearer to zero the more clustered the

17 distribution. This analysis was carried out using ArcGIS, which

18 measures the distance from every vent point to its nearest

19 neighbouring vent point.

20 The two-point azimuth technique (Lutz 1986; Bleacher et al.

21 2009) is used as a measure of the significance of alignments

22 between vents. The technique quantitatively identifies trends

23 within vent populations and has been widely used in studies on

24 the structural geology of igneous volcanoes (Wadge & Cross

25 1988; Connor 1990; Bleacher et al. 2009). The azimuths of line

26 segments that connect each vent to all other vents east of its

27 location were calculated (Bleacher et al. 2009). Only points to

28 the east of each vent were measured so as not to duplicate any

29 measurements. Histograms of azimuth values (08 ¼ north,

30 908 ¼ east, 1808 ¼ south) were produced with 108 bins. Peaks in

31 the frequency distribution of the azimuths result from preferred

32 formation of vents in response to structural controls (Bleacher et

33 al. 2009). In this study the ‘dominant’ alignment refers to the

34 azimuthal trend with the highest frequency of azimuths. Sub-

35 alignments include smaller peaks in azimuth frequency less

36 significant than that of the ‘dominant’ alignment. Different vent

37 types are separated and the azimuth alignments of each of the

38 vent fluid types displayed (i.e. mud, water and gas) are analysed.

39 The ‘overall’ azimuth alignments, which include all vent types

40 for each volcano, are also plotted to identify larger scale

41 influences on vent alignments of the whole edifice. On each of

42 the graphs ‘Y’ indicates the orientation of the anticline axis in

43 the region, ‘X’ the orientation of any faulting measured during

44 mapping and ‘A’ any anomalous values that may be the result of

45 external factors, such as human influences (e.g. loading induced

46 fluid flow around manmade dams (e.g. Londe 1987)).

47 Observations

48 Alyaty Ridge

49 This ridge is an anticline that extends for 12 km in a NW–SE

50 orientation and hosts several mud volcano systems. Koturdag A

51 has a single, 240 m diameter caldera on its summit, which is

52 500 m to the north of the anticline axis (Fig. 3a). The most

53 recent mud breccia flow has been continuing for c. 50 years and

54 is currently extruding mud breccia from a 20 m wide vent at a

55 rate of 2–6 cm day�1. The flow has areas of oxidized mud

56 breccia and cinder, which are the result of escaping gases

57 igniting mud during eruptions (Fig. 2c; Hovland et al. 1997;

58 Guliyev et al. 2000). The 20 m wide vent has a 1 m high

59 gryphon 5 m away from it.

1 This contrasts with the extrusive features seen at Koturdag B

2 and C, at which gryphons, salses and breccia pipes are present

3 (Fig. 2a and b). Koturdag B has a high concentration of salses,

4 0.2–5 m in diameter, compared with the increased concentration

5 of 1–2 m high gryphons found at Koturdag C (Fig. 3a). Koturdag

6 C is located at 100 m higher elevation than Koturdag B and has

7 twice as many gryphons. In contrast, Koturdag B has twice as

8 many salses as Koturdag C. Both Koturdag B and C edifices

9 have long axes that align with the anticline axis at 1308N (Fig.

10 3a).

11 The orientations of fractures in the area are subparallel to the

12 anticline axis at 130–1408N with another peak at 908 to this, at

13 c. 0508N (Fig. 3b). When including all the vent positions along

14 Alyaty Ridge as a whole the observed frequencies of azimuths

15 derived from the two-point azimuth technique show preferential

16 alignment in the direction of 120–1308N (Fig. 3c). Koturdag B

17 (Fig. 3d) and C (Fig. 3e) share this dominant 1308N trend.

18 Koturdag B also shows a peak in salse alignment at this

19 orientation whereas Koturdag C shows a peak in gryphon

20 alignment (Fig. 3d and e).

21 Kichik Kharami mud volcano

22 This is 1 km to the south of a NW–SE-trending anticline axis

23 and is roughly circular in plan view (Figs 1a and 4a, b). Minor

24 amounts of mud are being expelled in the form of salses,

25 although a 1.2 km long mud flow to the south of the feeder

26 complex is evidence for a significant eruption of mud breccia

27 within the past few hundred years (Fig. 4a). The salses have a

28 circular arrangement at the centre of the volcano (Fig. 4b), and

29 at 100 m from the centre of the volcano they orient themselves

30 in NW–SE and NE–SW linear trends (Fig. 4b).

31 Fractures are dominantly arranged subparallel to the anticline

32 axis at 120–1308N with a set perpendicular to this at 0308N.

33 There are also smaller fracture alignments at 1008N and 1608N,

34 which form two planes, each at roughly 308 to the fold axis (Fig.

35 4c). The dominant azimuthal frequency at Kichik Kharami is

36 130–1408N (Fig. 4). There are also secondary alignments, for

37 example at 0908N (Fig. 4), which do not share a common

38 orientation with any structures in the area. The salses show a

39 dominant azimuth subparallel to that of the strongest fracture

40 orientation at 1308N.

41 Pirsaatadag mud volcano

42 This is located on the axis of a NW–SE-trending anticline and

43 has an elliptical shape, the long axis of which is aligned with the

44 anticline axis at 1508N (Figs 1a and 5). Minor amounts of mud

45 are being expelled in the form of salses and pools. The mud

46 volcano is heavily eroded so exposure of country rock at its

47 centre allows easy measurement of structures. The active vent

48 zone of the volcano is offset to the northwestern end of the

49 edifice and displays a slight circular arrangement of vents at its

50 centre (Fig. 5a).

51 The dominant orientation of fractures is at 0308N, with the

52 second most prevalent fracture orientation being subparallel to

53 the fold axis at 1508N (Fig. 5b). The dominant azimuthal

54 frequency at Pirsaatadag is 1808N (Fig. 5c and d); however, there

55 is also a high azimuth frequency subparallel to the anticline axis

56 at 1508N. There is a lack of azimuths at c. 0908N.
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Fig. 3. (a) Part of Alyaty Ridge with three mud volcanoes intruded along its axis. Koturdag A is located 0.6 km north of the fold axis. Yellow dashed lines

represent the bedding orientation. Triangles: purple, gryphons; orange, cinder mounds; black, extinct vents; blue, salses; green, pools. Image # 2010

DigitalGlobe, # 2010 GeoEye and # 2010 Geocentre Consulting, # 2010 Google. (b) Rose diagram of fault and fracture orientations measured along

Alyaty Ridge. (c) Histogram of frequencies of azimuthal direction for two-point azimuth technique for all vent types grouped together for Koturdag A, B

and C. (d) Histogram of frequencies of azimuthal direction for two-point azimuth technique, showing the distribution of each vent type for Koturday B.

(e) Histogram of frequencies of azimuthal direction for two-point azimuth technique, showing the distribution of each vent type for Koturday C.
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Fig. 4. (a) Kichik Kharami mud volcano. (b) Close-up view of the centre of the mud volcano seen in (a). Vents can be seen clustering in concentric rings

at the centre of the volcano whereas they form along lines oriented NW–SE and NE–SW further out from the centre of the volcano. Symbols as in Figure

3. Images # 2010 DigitalGlobe and # 2010 Geocentre Consulting, # 2010 Google. (c) Rose diagram of fault and fracture orientations from country

rock in and around Kichik Kharami. (d) Histogram of frequencies of azimuthal direction for two-point azimuth technique, showing the distribution of each

vent type. (e) Histogram of frequencies of azimuthal direction for two-point azimuth technique, for all vent types grouped together.
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1 Akhtarma-Karadag mud volcano

2 Akhtarma-Karadag crops out along an ENE–WSW-trending

3 anticline axis and is also elongate parallel to this anticline

4 axis (Figs 1a and 6a). The active vent zone on the summit

5 is found at the western end of the edifice (Fig. 6a). It has

6 three eruptive compositions: cinder mounds, salses and

7 gryphons.

8 There are three cinder mounds at the western edge of the mud

9 volcano (Fig. 6a), only 1 m in height and diameter. The salses

1 are towards the centre of the edifice and have a maximum

2 diameter of 10 m. The main concentration of gryphons is closer

3 (c. 6 m) to the cinder mounds. There are also numerous dormant

4 gryphons (Fig. 6a). The two-point azimuth technique shows a

5 dominant azimuth frequency for gryphons and salses at 0308N

6 whereas the pools tend to align at 1208N (Fig. 6b). When

7 including all vent types, the dominant alignment can be seen to

8 be at 0708N, which does not align with the anticline axis oriented

9 at 0908N (Fig. 6).

Fig. 5. (a) Pirsaatadag mud volcano.

Symbols as in Figure 3. Image # 2010

GeoEye and # 2010 Geocentre Consulting,

# 2010 Google. (b) Rose diagram of fault

and fracture orientations from country rock

in and around Pirsaatadag. (c) Histogram of

frequencies of azimuthal direction for two-

point azimuth technique, showing the

distribution of each vent type.

(d) Histogram of frequencies of azimuthal

direction for two-point azimuth technique,

for all vent types grouped together.
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1 Dashgil mud volcano

2 This is on the crest of the Dashgil fold (Fig. 1a), which is 6–

3 8 km long, 3.5–4 km wide and trends in an east–west direction.

4 The active vent zone is offset to the western end of the edifice

5 (Fig. 7a). There is a concentration of gryphons, 2–3 m in height,

6 clustering at the centre of 200 m diameter crater to the west of

7 the volcano (Fig. 7a). A 200 m long row of 2–3 m high, 4–5 m

8 wide cinder mounds trends in an east–west direction. These are

9 found only in the southeastern section of the volcano and form a

10 sharp, straight boundary to the edge of the active vent zone.

11 Dashgil also has two salses 20–30 m in diameter on its summit

12 in the eastern portion of the mud volcano. These are composed

13 of several bubbling centres. There is also a small cluster of

14 dormant gryphons in the northern section of the volcano.

1 Both the combined and separate vent type two-point azimuth

2 results show that the dominant orientation in this system is at

3 0508N with sub-orientations at 1008N and 1708N (Fig. 7c). When

4 separating different vent types from each other three ‘peaks’ in

5 azimuth frequency can be seen for both gryphons and salses at

6 0608N, 1108N and 1708N, whereas pools only have one dominant

7 trend at 0608N (Fig. 7b).

8 Durovdag mud volcano

9 The crest of the volcano is dominated by gryphons and salses,

10 which are ,2 m in height (Figs 1a and 8a). There is a

11 concentration of gryphons at the northern end of the volcano,

12 with an average vent spacing of 5 m. Owing to the unstable

13 nature of this region separate readings could not be taken and so

Fig. 6. (a) Akhtarma-Karadag mud volcano. This volcano is dominated by gryphons at its western edge next to two small cinder mounds. The majority of

the salses and larger gryphons extrude along an elongate ring detachment fault found along the length of the edifice (Roberts et al. 2011). The salses are

found furthest away from the main centre of eruption further to the east of the volcano. Symbols as in Figure 3. Image # 2010 GeoEye. (b) Histogram of

frequencies of azimuthal direction for two-point azimuth technique, showing the distribution of each vent type. (c) Histogram of frequencies of azimuthal

direction for two-point azimuth technique, for all vent types grouped together.
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1 the area has been considered as one large vent in the statistical

2 analysis. The majority (c. 92%) of the remaining vents on the

3 summit are found around the outer edge of the mud volcano,

4 forming an 800 m diameter ‘ring’ (Fig. 8a). The vents also align

5 at tens of metre scale, along linear conjugate paths within this

6 ‘ring’ zone.

7 Durovdag volcano has a wide spread of vent azimuth frequen-

8 cies, which is also seen on a smaller scale at the centre of Kichik

9 Kharami volcano (Fig. 4). The dominant orientation in this

1 system is at 1608N with sub-orientations at 1008N and 0208N

2 (Fig. 4).

3 Lusi mud volcano, east Java

4 The Lusi edifice is 3.4 km by 2.6 km in areal extent (Fig. 9). The

5 main active vent is 100 m in diameter and located at the centre

6 of the edifice (Fig. 9). The first seven vents at Lusi formed

7 roughly aligned in a NE–SW direction during first week of

Fig. 7. (a) Dashgil mud volcano; close-up view of the active vent zone. Gryphons can be seen clustering in the western section of the volcano. Cinder

mounds form an elongate ridge at the southern limit of the active vent zone and two large salses are found at the SE end of the volcano. Symbols as in

Figure 3. Red lines show faults and black lines show breaks in slope, with triangles pointing towards the downthrown side. Image # 2010 GeoEye and

# 2010 Geocentre Consulting, # 2010 Google. (b) Histogram of frequencies of azimuthal direction for two-point azimuth technique, showing the

distribution of each vent type. (c) Histogram of frequencies of azimuthal direction for two-point azimuth technique, for all vent types grouped together.
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Fig. 8. (a) Durovdag mud volcano. This volcano is dominated by gryphons at its northern edge. This area had such a large concentration of gryphons that

the whole of this area has been coloured purple to represent the intense number of gryphons found in this region, approximately one gryphon every 5 m2.

Because of the unstable nature of this area separate readings could not be taken and so the area has been considered as one large vent. The majority of the

salses cluster in a ring around the outer edge of the mud volcano with only a few small vents and extinct vents at the centre of the edifice. Symbols as in

Figure 3. (b) Histogram of frequencies of azimuthal direction for two-point azimuth technique, showing the distribution of each vent type. (c) Histogram

of frequencies of azimuthal direction for two-point azimuth technique, for all vent types grouped together.

Fig. 9. Lusi mud volcano, east Java. (a) November, 2006. Histogram of frequencies of azimuthal direction for two-point azimuth technique for active vents

in 2006. (b) 30 September 2009. Histogram of frequencies of azimuthal direction for two-point azimuth technique for active vents in 2009. (c) January

2010. Histogram of frequencies of azimuthal direction for two-point azimuth technique for active vents in 2010. Blue dashed line shows trace of

Kendensari River. The blue triangles represent ‘bubbles’ that are or were currently active at that time. Red dashed lines indicate faults described by Istadi

et al. (2009). Images courtesy of CRISP.
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1 eruption (29 May 2006; Mazzini et al. 2007). This increased to

2 34 in November 2006, also in a NE–SW orientation. A fracture

3 hundreds of metres long and tens of centimetres wide was

4 observed a few days after the eruption, which also had a NE–

5 SW orientation (Mazzini et al. 2007). This was interpreted as

6 being the Watukosek fault, which is interpreted to cross the area

7 (Fig. 9; Mazzini et al. 2007). Most of the early ‘sandy’ eruption

8 sites discussed by Mazzini et al. (2007) were buried during the

9 second week of June 2006, by the mud erupting from the main

10 vent. New smaller vents started erupting in November 2006 c.

11 1 km to the SW of the main crater (Mazzini et al. 2007).

12 Currently there are 169 active vents (BPLS) although not all vent

13 occurrences can be documented owing to limited access to the

14 majority of the edifice and because some are short lived. The

15 vents near the main central vent had a roughly concentric pattern

16 (Fig. 9a) whereas vents further away are closer to the observed

17 faults in the region (Fig. 9a). Newer vents occur further away

18 from the central vent and are now clustering close to the

19 Kendensari River to the west of Lusi (Fig. 9b and c). These

20 eruption sites erupt gas or suspensions of ,20% mud in water.

21 The two-point azimuth data for Lusi mud volcano (Fig. 9)

22 show the vent distribution in 2006, a few months after it first

23 erupted, compared with the vent distributions seen in 2009 and

24 2010. In 2006 the dominant azimuth frequency is WNW–ESE

25 (1008N), with two smaller trends at 0608N in a NE–SW

26 orientation and 1208N in a NW–SE orientation (Fig. 9a). There

27 is also a large spread in azimuth frequencies apart from the

28 dominant trends (Fig. 9a). In 2009 there are two dominant

29 azimuthal trends at 0108N and 1808N with two less dominant

30 trends at 1008N and 1208N (Fig. 9b). The 0608N NE–SW

31 azimuthal orientation of vents in 2006 has now decreased in

32 frequency. In 2010 this trend continues with the decreasing

33 influence of the 0608N and 1208N alignments and increasing

34 frequency of alignments at 0108N, 1808N and 1008N (Fig. 9c).

35 Nearest neighbour analysis

36 The two-point azimuth and nearest neighbour analyses show that

37 all mud volcanoes have vent populations that are statistically

38 ‘clustered’ to a significant value of ,0.05 (Table 2) and have a

39 strong spatial relationship to folds, fractures and folds. The

40 results also indicate that there is a significant alignment of vents

41 along mapped structural features. These statistical analyses

42 indicate that fluid flow along structural features (faults, fractures

43 and anticlines) may be enhanced in certain regions, causing

44 regions of vent clustering along the structures. Where vent

45 spacing is ,5 m the alignments identified are less reliable.

46 However, there are clear visual and statistical alignments in vents

1 that are consistent and geologically sensible in areas where the

2 vent spacing drops below 5 m.

3 Discussion

4 Alignments

5 Alignment along anticline crests. It has previously been noted

6 that kilometre-scale mud volcano systems align along the crest

7 and hinges of anticlines (Fig. 10d; Devlin et al. 1999; Planke et

8 al. 2003; Bonini 2007, 2008) and this observation is also made

9 here. However, the two-point azimuth technique also identifies a

10 clear trend of both the kilometre-scale mud volcano systems and

11 the metre-scale vents aligning on crests, and subparallel to the

12 anticlinal trend evident in all mud volcano systems in this study

13 (Figs 3–8).

14 Koturdag B and C are located on the crest of the Alyaty Ridge

15 at 1308N (Fig. 3a). Dominant trends at each of these volcanoes

16 are also at 1308N, showing that both the mud volcano systems as

17 a whole and the metre-scale vent populations align in the same

18 orientation as anticline axes. Fluids are most probably taking

19 advantage of pathways produced by increased compressive shear

20 failure in the anticlinal cores, and outer arc crestal faulting along

21 the anticlines (Ramsay & Huber 1987). The folding has brought

22 the overpressured Maykop Formation to a shallower depth in the

23 subsurface and allowed thickening of these strata in the anticlinal

24 hinges (Allen et al. 2003). This, as well as the unloading of the

25 anticlines during exhumation onshore and decreased overburden

26 load, would decrease the force needed for the overpressured

27 Maykop Formation to overcome the vertical stress and the tensile

28 strength of the overburden (Magara 1981; Yassir & Bell 1996).

29 These factors significantly increase the potential for the mud–

30 water–gas mix to travel to the surface and erupt along these

31 planes of weakness (Yusifov & Rabinowitz 2004).

32 Mud volcanoes also tend to become elongate in the direction

33 of the anticline axis, as seen for many of the examples in this

34 study (Figs 3–8). Elongation of edifices is also seen in igneous

35 volcanoes and is generally parallel to the maximum horizontal

36 stress (Nakamura 1977; Paulsen & Wilson 2010). This is

37 attributed to formation of vents along feeder dykes that orient

38 parallel to the maximum stress and open perpendicular to the

39 minimum horizontal stress (�Hmin; Paulsen & Wilson 2010). In

40 mud volcano systems and their vent populations this is not the

41 case, as they all extrude along or subparallel to anticline axes,

42 which form perpendicular to the maximum horizontal stress

43 (�Hmax; Fig. 11). This is to be expected, as the ‘source’ of the

44 fluids and any mud chambers feeding the edifices would also

45 become elongate perpendicular to the maximum horizontal stress

46 (Fig. 11). The result of this is that vent populations on mud

Table 2. Nearest neighbour statistical analysis results for mud volcanoes

Mud volcano Observed
mean distance

(km)

Clustered or
dispersed

Significance
value

Critical value Z score Nearest
neighbour

observed mean
distance (km)

Expected mean
distance (km)

Nearest
neighbour

index

Dashgil 0.29 Clustered 0.01 �2.58 �14.34 0.000047 0.000161 0.291484
Durovdag 0.34 Clustered 0.01 �2.58 �31.44 0.000025 0.000072 0.34203
Akhtarma-Karadag 0.82 Clustered 0.05 �1.96 �2.22 0.000237 0.00029 0.818488
Kichik Kharami 0.55 Clustered 0.01 �2.58 �12.92 0.00007 0.000128 0.546609
Koturdag B 0.71 Clustered 0.01 �2.58 �6.18 0.000106 0.000149 0.714539
Koturdag C 0.51 Clustered 0.01 �2.58 �6.95 0.000047 0.000091 0.514191
Lusi 0.39 Clustered 0.01 �2.58 �12.39 0.0034637 0.008802 0.393561
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1 volcano edifices provide a good indicator of both palaeo- and

2 current regional stress regimes.

3 Alignment with fractures. Fault and fracture networks can act to

4 either enhance or prevent fluid flow depending on their relative

5 permeability compared with that of the surrounding country rock

6 (Aydin 2000; Eichhubl & Boles 2000; Faulkner et al. 2011). When

7 faults and fractures have high permeabilities they are able to act

8 as pathways allowing fluids to utilize them as a conduit to the

9 surface (e.g. Sibson 1996; Faulkner et al. 2011). A prominent

10 characteristic of mud volcano systems is high fluid pressures,

11 which may result in the formation of hydrofractures and shearing

12 producing open fractures and dilatant faults (e.g. Aydin 2000). By

13 comparing vent alignment orientations with structures mapped in

14 close proximity it is possible to identify which fault and fracture

15 systems have the highest permeability in a certain region. The

16 cinder mounds on Dashgil are found only in a discrete elongate

17 zone and so probably form when gas venting from the mud

18 volcano feeder complex travels along a pre-existing fault plane

19 (Fig. 10a). This faulted zone may intersect a mud chamber that

20 has separated phases of gas, water and mud within it. Periodically

21 the pressure in this chamber would become high enough to

22 overcome the tensile strength and minimum horizontal stress,

23 producing new hydrofractures in a similar way to fault-valve

1 behaviour, allowing fluids to erupt at the surface as discrete events

2 (Sibson 1990, 1992). This fault may even be an anticline crestal

3 fault, as the cinder mounds can be seen oriented in an east–west

4 direction similar to that of the Dashgil Fold (Fig. 7a).

5 Kichik Kharami mud volcano is similar to Durovdag at its

6 centre, with a 10 m diameter ring of salses forming along a

7 circular collapse structure. However, 100 m out from the centre,

8 the salses are aligned in rows in NW–SE (1608N) and NE–SW

9 (1008N) directions (Fig. 4d and e). These orientations are

10 coincident with the orientation of shear fractures (Fig. 4c) found

11 on anticline flanks (Ramsay & Huber 1987) and both occur at

12 308 from the anticline axis orientation of 1308N. This implies

13 that these have the highest permeability compared with other

14 structures in the region (Fig. 10b). Dashgil also displays these

15 fault arrangements (Fig. 7), with ‘peaks’ in both gryphon and

16 salse azimuths occurring at 0608N and 1708N fracture orienta-

17 tions occurring at 608 to the anticline axis orientation (1108N).

18 Detachment fault alignment. Both active and extinct gryphons

19 and salses on the Akhtarma-Karadag mud volcano align along a

20 linear offset that can be traced around the summit of the volcano,

21 which is interpreted here as a detachment fault (Figs 6 and 10e;

22 Roberts et al. 2011). Pressure ridges of sediment can be seen at

23 the centre of the detachment fault, suggesting that the mud

Fig. 10. Schematic illustrations of the structures that may cause the varying vent distributions. (a) Dashgil type, where some form of phase segregation is

occurring at depth, allowing the gryphons to erupt in the area of caldera collapse, the cinder mounds to follow a linear area of weakness and so erupt in a

line, and the watery salses to erupt further away from the main vent zone. (b) Kichik Kharami type, where small salses line up along pre-existing

conjugate fractures and also concentrically at the centre of the edifice, where caldera collapse may be initiating. (c) Durovdag type, where some form of

phase segregation is occurring at depth, allowing the gryphons to erupt in the central zone of caldera collapse beneath the main vent, with the watery

salses erupting further away from the main vent zone along concentric ring faults produced during caldera collapse. (d) Koturdag type, where mud

volcanoes can be seen aligning along anticline axes but have varying vent fluid compositions along the length of the anticline. (e) Akhtarma-Karadag type,

where some form of phase segregation is occurring at depth, allowing the gryphons to erupt in the area of caldera collapse, the cinder mounds to follow a

linear area of weakness and so erupt in a line, and the watery salses to erupt further away from the main vent zone along the detachment fault.
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1 volcano appears to be failing to the NE (Fig. 6a). This movement

2 is confirmed by the presence of plants being torn across the head

3 of the detachment fault and en echelon fracturing. This is again

4 supported by the two-point azimuth statistics, which show that

5 the vents have a dominant orientation similar to that of the

6 detachment fault at 0708N (Fig. 6c).

7 Ring fault alignment. Durovdag displays clear alignment of its

8 vents, with 92% of the gryphons and salses erupting around the

9 periphery of the edifice (Fig. 8). This alignment is to be expected

10 for a caldera collapse system (Stewart & Davies 2006; Evans et

11 al. 2008), with the majority of the vents forming a ‘ring’ around

12 the outer edge of the mud volcano (Fig. 10c). These fluids are

13 taking advantage of ring faulting that is forming as a result of

14 the gravitational collapse of the mud volcano. This distribution is

15 displayed as a large spread of alignments on the two-point

16 azimuth histograms, as well as showing the slightly more

17 dominant anticline axis alignment (1608N) and less dominant

18 alignments that may be caused by fracture alignments (1008N

19 and 0208N; Fig. 10c). On a metre scale vents align in a conjugate

20 pattern similar to shear fracturing on anticline limbs (Ramsay &

21 Huber 1987). These metre-scale alignments occur around the

22 trace of the kilometre-scale ‘ring’ fault itself (Fig. 8a). It is likely

23 that these metre-scale conjugate vent alignments formed first

24 aligning with the pre-existing anticline fractures. After this,

25 caldera collapse initiated and formed the more recent ring fault

26 alignments, which then overprinted the conjugate alignments to

27 produce the dominant azimuth frequency. The concentration of

28 gryphons to the north of the volcano indicates that there may be

29 a large mud chamber beneath this area.

30 Distributions: fractionation of vent eruptive phases

31 Dashgil and Akhtarma-Karadag both produce three eruptive

32 compositions: gaseous (cinder mounds), watery mud (salses) and

33 viscous mud–water mix (gryphons). They also show a similar

1 spatial distribution of erupting fluid types. Dashgil is dominated

2 by gryphons on its westerly side, salses to the east and cinder

3 mounds to the south of the active zone of the edifice (Fig. 7a).

4 Akhtarma-Karadag has cinder mounds in the most westerly

5 section, 5–10 m from an area of gryphons at the centre of the

6 active zone, and then salses at the easterly end of the volcano

7 (Fig. 6a). From these observations it is possible to ascertain that

8 these three phases must be separating at depth and travelling to

9 their points of eruption via different pathways. This has been

10 noted by others in past studies at Dashgil mud volcano (Mazzini

11 et al. 2009). Mazzini et al. (2009) found that the water

12 geochemistry highlights different water sources and reactions

13 that occur at gryphons, pools and salses. Gryphons have a

14 signature of deep-rising fluids, whereas pools and salses show

15 the imprint of meteoric fluids and a solute content increased by

16 in situ evaporation (Mazzini et al. 2009). When integrating this

17 with the observations it can be assumed that gryphons may be

18 fed directly from a mud chamber in the main feeder complex of

19 the mud volcano at depth, whereas salses and cinder mounds are

20 most probably sourced from shallow, smaller chambers that

21 remain ‘stagnant’ for periods of time, allowing them to interact

22 with the surrounding meteoric fluids. The azimuth frequencies

23 for each vent type show that gryphons and salses often display

24 common orientations, indicating that they may share similar fluid

25 flow pathways in the subsurface (Figs 3, 6 and 7). Pools show no

26 correlation with other vent types, in agreement with Mazzini et

27 al. (2009), who suggested that these are only shallow fluid flow

28 pathways that are not influenced by regional structure (Figs 3, 6

29 and 7).

30 Time-dependent changes, Lusi mud volcano

31 The dominant 0108N and 1808N vent azimuth orientations seen

32 at Lusi in 2009 may result from local loading by the earth dams

33 in this region, which share this alignment. Loading would allow

34 focused fluid flow in this orientation (e.g. Londe 1987) or could

Fig. 11. Schematic model depicting mud

volcano elongation, elongated vent

distributions, mud chamber elongation and

summit caldera elongation patterns. Mud

dykes preferentially trend perpendicular to

�Hmax taking advantage of the crestal

faulting along the anticline. Summit

calderas and mud chambers also become

elongate perpendicular to �Hmax. After

Paulsen & Wilson (2010).
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1 be the result of sampling bias, as these locations are more readily

2 reported by residents of Sidoarjo. Because of these possible

3 influences we focus on the second most dominant azimuth

4 orientations, which change from NE–SW to east–west vent

5 alignments.

6 During the first eruptive phase in 2006 vents were aligned in

7 a NE–SW orientation (Fig. 9a) at c. 308 to the present-day

8 maximum horizontal stress (�1, �Hmax) orientation of NNE–

9 SSW (Mazzini et al. 2009; Sawolo et al. 2009; Tingay et al.

10 2010). This is consistent with fluids initially travelling up the

11 highest permeability paths, which were optimally oriented for

12 sinistral shear failure in a strike-slip faulting stress regime, and

13 originating from the Miocene carbonates at .2800 m depth

14 (Fig. 12a; Davies et al. 2008; Tingay 2010). Analogous to this

15 is the formation of Miocene shale dykes along faults in the

16 Jerudong Anticline of Brunei (Tingay et al. 2005). It is well

17 documented that faults can transmit significant volumes of

18 fluids when active (Barton et al. 1995; Sibson 1996) especially

19 if they have a higher permeability than the surrounding country

20 rock. However, this in no way indicates that reactivation of the

21 fault triggered the initial eruption (see Davies et al. in

22 preparation).

23 The second phase of eruption during 2009 showed the east–

24 west (1008N) vent azimuth alignments becoming even more

25 prominent, and these became increasingly dominant in 2010

26 (Fig. 9c). Evolution of these vent populations has occurred in

27 only 9 months and implies that the fluid pathways themselves are

28 developing during a similar time period. It also suggests that an

29 important east–west-trending, regional-scale anticlinal structure

30 influences the feeder system architecture, reducing the impor-

31 tance of the local NE–SW fault. The fact that so few vents are

32 erupting the same fluid as the main Lusi vent, and that most are

33 thought to be very shallow rooted, implies that the source for the

34 main vent and the smaller vents may differ. One preferred

35 interpretation is that many of the water eruptions are coming

36 from c. 290–900 m deep aquifers (Tingay et al. 2008) that have

37 become faulted owing to subsidence, resulting in seal breakage

38 and fluid flow. From studies of mud volcanoes in Azerbaijan it is

39 possible to make the assumption that older feeder systems

40 naturally take advantage of pre-existing structures in the region

41 (Fig. 12b). It is proposed that this change in orientation occurred

42 as a result of a drop in pore fluid pressure in the system once the

43 majority of the main source of overpressured fluid had been

44 erupted. The decreased pore fluid pressure was lower than the

45 tensile strength and minimum principal stress required to keep

46 the original hydrofractures open, resulting in closure of these

47 pathways and a decrease in their permeability (e.g. Jolly &

48 Lonergan 2002).

49 A ring-like arrangement of vents is observed around the main

50 central vent at Lusi (Fig. 9a) and is similar to the pattern seen at

51 Durovdag (Fig. 8). This could indicate that a ring fault has

52 formed as a result of subsidence in the region owing to the

53 evacuation of large volumes of fluid from depth (Fukushima et

54 al. 2009). Abidin et al. (2008) and Fukushima et al. (2009) both

55 used time-lapse synthetic aperture radar interferograms from 1

56 year after the start of the Lusi mud eruption in May 2006 to

57 show subsidence over an ellipsoidal area of 12 km2 centred on

58 the main eruptive vent. Depletion of material and decrease of

59 fluid pressure at depth were described as being the dominant

60 cause of the subsidence. Fukushima et al. (2009) found that

61 deflation of an oblate spheroid lying shallower than 1 km

62 explains the observed displacements. This observation is sup-

63 ported by the 2010 azimuth data (Fig. 9c), which show a wider

64 spread of azimuth trends than seen in 2009.

1 Mode of formation: 2008–present. The Miocene carbonates are

2 proposed as the primary source of the fluids driving the eruption

3 from the main vent (Davies et al. 2007, 2008; Tanikawa et al.

4 2010). However, other studies have suggested that the shallower

5 Upper Kalibeng clays are the source of the majority of the fluids

6 (Mazzini et al. 2007). We speculate that from 2008 to the

7 present, subsidence up to 10 km away from the main vent,

8 resulting from the evacuation of large quantities of remobilized

9 mud (Abidin et al. 2008), may have been accommodated by the

10 reactivation of the east–west-trending crestal faulting along an

11 anticlinal structure. During reactivation these faults would have

12 breached aquifers located in the Pucangan Formation (280–

13 900 m depth; Fig. 12b; Tingay et al. 2008). Overpressured fluids

14 from these aquifers would use these high-permeability, reacti-

15 vated faults as conduits to the surface. This is supported by the

16 relatively low height of eruptions (1–3 m) at satellite vents,

17 indicating modest overpressure and that the pore fluid is not

18 hydraulically connected to the source of fluid for the main vent,

19 where eruptions can be tens of metres in height. The Miocene

20 carbonate deposits also trend in an east–west orientation (Carter

21 et al. 2005) and so subsequent subsidence in the vicinity of the

22 reefal mounds could also result in localized reactivation of pre-

23 existing east–west faults. Almost none of the satellite vents are

24 erupting mud; indeed, a very large number are erupting fluids

25 consisted of methane, CO2 and a mixture of thermogenic and

26 biogenic hydrocarbons (Mazzini et al. 2007; Sawolo et al. 2009).

27 As the main vent continues to remobilize mud from the Kalibeng

28 Formation (900–1870 m), this will load the surface and more

29 subsidence will occur, resulting in more faulting, aquifer

30 breaches and new vent formation. When the system evolves

31 further an elongate caldera collapse could develop, similar to the

32 Porong collapse identified 8 km to the NE of Lusi (Fig. 12c;

33 Istadi et al. 2009). This will produce a vent azimuth distribution

34 similar to that seen at Durovdag mud volcano; indeed, the 2010

35 vent azimuth histogram is already exhibiting ring fault distribu-

36 tion, to a greater extent than in previous years.

37 Differences between mud volcanism in Azerbaijan and at
38 Lusi

39 It should be noted that the alignments seen at Lusi may differ

40 from those in Azerbaijan as it is almost certainly not a naturally

41 occurring mud volcano. The temperature of the fluids erupting at

42 Lusi are around 70–100 8C (Tingay 2010) whereas mud volcano

43 fluids in Azerbaijan are classically around 10–20 8C (Guliyev et

44 al. 2000). This may be due to relatively rapid fluid ascent rates at

45 Lusi compared with those in Azerbaijan, where fluid flow

46 pathways have been present for thousands of years. Lusi had an

47 average mud and fluid flow rate of c. 64 000 m3 day�1 over the

48 first 3 years (Istadi et al. 2009; Tingay 2010), differing dramati-

49 cally from most naturally occurring mud volcano systems. In

50 Azerbaijan flow rates of only a few tens to hundreds of cubic

51 metres per day occur, but occasionally there are eruptions that

52 are short-lived (1–14 days) and extremely violent (100 000–

53 1 000 000 m3 day�1; Tingay 2010). When compared with mud

54 volcanoes in Azerbaijan, Lusi is an extremely rapidly evolving

55 system, but this does not mean that the structural influences will

56 differ, and ultimately regional structure will govern both areas.

57 Conclusions

58 The orientation of regional folds, faults and local metre- to

59 kilometre-scale fractures, detachment and ring faults are the key

60 control to the vent patterns in the mud volcanoes studied here.
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1 The most dominant vent orientations occur subparallel to

2 anticline axes, causing elongation of the volcanic edifice perpen-

3 dicular to the regional maximum horizontal stress. If later

4 detachment or ring faulting forms this will overprint the original

5 subparallel anticline crestal faulting. Zonation of eruptive phase

6 types also occurs, implying that there is some form of fractiona-

1 tion beneath the edifices in either one large chamber or a

2 network of smaller linked chambers. The composition of the

3 fluids being erupted and alignment of vents along anticline axes

4 are significant as these characteristics will dictate how the edifice

5 itself will accrete over time.

6 Mud volcano alignments can occur on a range of scales from

Fig. 12. Schematic diagram of the mode of

formation of Lusi mud volcano and how its

vent systems have evolved through time.

(a) November 2006 with its initial NE–SW

vent alignment. (b) January 2010 with the

initiation of caldera collapse with vents

aligning along reactivated east–west-

trending anticline crestal faulting. (c)

Predicted future development including

elongate caldera collapse structure with

vents aligning along caldera ring faults.
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1 metre-scale vents that erupt along crestal fractures to the 1–4 km

2 systems that align along anticline axes. Lusi mud volcano is an

3 example of how fluid flow pathways evolve through time from a

4 localized kilometre-scale fault zone and hydrofracture system in

5 2006 to exploiting pre-existing pathways in the larger regional

6 anticlinal structural control in 2009 and 2010. This evolution is

7 likely to continue along this trend and in a similar ring fault style

8 to that seen in Azerbaijan, which could have major implications

9 for the local population. It can be predicted that the flux of fluid

10 flow up east–west-oriented structures at Lusi will be more

11 important than NE–SW faulting, and that as more subsidence

12 occurs in the region more hazardous vents will form, eventually

13 producing multiple ring fault alignments and ultimately elongate

14 caldera collapse up to 10 km away from the main vent, as seen in

15 palaeo-collapse structures in the region.
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