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Abstract

Clay minerals are ubiquitous and readily accessible in the natural environment

and consequently have become an essential ingredient in the development of West-

ern Society. Their structural properties are responsible for many of their uses, their

layered-leaf composition enables the absorption of water and other solutes, for exam-

ple. In this thesis, the focus of interest lies primarily in the chemical properties of the

clay minerals, which is due to the large surface areas of varying atomistic environ-

ments comprising the mineral layers. Clay minerals offer a challenge to the electronic

structure modeller as their atomistic composition is non-exact, consequently a num-

ber of constraints are automatically applied during the modelling process, the first

being the choice of composition of the model. There are currently few examples of

density functional theory studies using planewaves and the pseudopotential approx-

imation, and the available experimental data is not necessarily directly applicable

to theoretical data due in part, to the inexactness of the clay mineral composition.

Consequently, in the studies presented in this thesis, as much time has been spent

in considering the modelling methods as on the results obtained and the implication

of these in the modelling environment chosen.

This thesis records investigations into the decarboxylation of a fatty acid into

an alkane and CO2 with the modelling of a catalytic environment of an aluminium-

bearing clay mineral; the identification of a transition state of this reaction pathway

using lattice dynamics and finally, the mechanism of reduction within iron-bearing
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clay minerals.
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3.8.1 Wüstite — FeO . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.8.2 Ideal and NG-1 revisited with GGA + U . . . . . . . . . . . . 85

3.8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Contents viii

4 Ab initio Transition State Searching in Complex Systems: Fatty

Acid Decarboxylation in Minerals 95

4.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.2 Computational details . . . . . . . . . . . . . . . . . . . . . . 100

4.3.3 Searching for Transition States . . . . . . . . . . . . . . . . . 101

4.3.4 Lattice dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.5 Computational Details . . . . . . . . . . . . . . . . . . . . . . 117

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4.1 Finding the Transition State . . . . . . . . . . . . . . . . . . . 119

4.4.2 Vibrational analysis . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4.3 Mulliken charges and Kohn-Sham orbitals . . . . . . . . . . . 131

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 Ab initio Reduction in Ferruginous Smectite 140

5.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3 Methods and Modelling Considerations . . . . . . . . . . . . . . . . . 143

5.3.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.2 Modelling considerations — Electrostatic interactions . . . . . 146

5.3.3 Computational details . . . . . . . . . . . . . . . . . . . . . . 157

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.4.1 Binding Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.5 Charges-Octahedral Sheet . . . . . . . . . . . . . . . . . . . . . . . . 171

5.5.1 Ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.5.2 NG-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.6 Charges — Tetrahedral Sheet . . . . . . . . . . . . . . . . . . . . . . 174

5.6.1 Ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.6.2 NG-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.6.3 Oxygen and Silicon . . . . . . . . . . . . . . . . . . . . . . . . 181



Contents ix

5.6.4 Comparing Ideal and NG-1 . . . . . . . . . . . . . . . . . . . 183

5.6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.7 A further investigation . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.7.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.7.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 185

5.7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.8 Overall Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6 Concluding Remarks 193

A Lattice Dimensions and Atomic Coordinates of a Unit Cell of Py-

rophillite 196

Bibliography 198



List of Figures

2.1 Cartoon of Kohn-Sham Hamiltonian . . . . . . . . . . . . . . . . . . 11

2.2 Illustrating the relationship between wavelength and wavenumber. . . 17

2.3 Schematic of the smoothing effect of the pseudo-wavefunction . . . . 22

2.4 Outline of the algorithm for identifying the groundstate charge den-

sity for a single self-consistent field (SCF) cycle . . . . . . . . . . . . 28

2.5 Schematic of the principles of line minimisation . . . . . . . . . . . . 30

2.6 Illustrating the relative magnitude of the increase in kinetic energy

along the diagonal of the Hamiltonian matrix. . . . . . . . . . . . . . 32

2.7 Calculation time with cut-off energy . . . . . . . . . . . . . . . . . . . 44

2.8 Calculation time with number of k-points . . . . . . . . . . . . . . . . 45

3.1 Bulk and atomic structure of kaolinite . . . . . . . . . . . . . . . . . 47

3.2 Composition of clay mineral layers . . . . . . . . . . . . . . . . . . . 47

3.3 A single unit cell of pyrophillite . . . . . . . . . . . . . . . . . . . . . 55

3.4 Energy-differences convergence . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Example of converging the number of k-points with a range of single

point energy calculations. . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Example of the dissipation of charge along the backbone of a hydro-

carbon with increasing chain length . . . . . . . . . . . . . . . . . . . 61

3.7 Schematic of the intermediate stages in a decarboxylation of a model

fatty acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Structures after geometry optimisation . . . . . . . . . . . . . . . . . 67

x



List of Figures xi

3.9 Fermi level orbitals of the reactants and products after geometry op-

timisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.10 Unit cells of Ideal and NG-1 . . . . . . . . . . . . . . . . . . . . . . . 76

3.11 Configurations of 1: Ideal and 2: NG-1 models after geometry opti-

misation. The blue shells are the Fermi level orbitals. . . . . . . . . . 78

3.12 Five 3d-orbitals of Fe . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
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1
Introduction

The term ‘clay’ will be recognised by many with an association to a mud-like sub-

stance found in garden soil. Clay becomes heavy and sticky when wet and hard and

dry when exposed to heat. This swelling and shrinking property (a source of irrita-

tion to many gardeners) is thought to be a causative factor in the origins of chirality

i.e. left or right handedness of molecules [1] in biological life [2], [3]. This adsorbent

property is responsible for the use of clay minerals in products as diverse as cat litter

and cosmetics and arises, in part, from the structure of the clay minerals comprising

the clay. ‘Clay’ describes a rock or an ore containing one or more clay minerals as

components [4]. ‘Clay mineral’ describes one of a category of aluminium, silicon and

oxygen (alumino-silicate) compounds, which are bonded within a plane where the

planes are layered [5]. The layers of the clay minerals are separated by an interlayer

space, which is inhabitable by molecules such as amino acids — pertinent to the

origins of chirality, or water — pertinent to such uses of clay minerals as adsorbents

1
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in, for example, cat litter [6] and cosmetics [7]. If the clay mineral absorbs water

plus other molecules, and subsequently dries out, the molecules may become trapped

and concentrated between the layers [8]. These trapped interlayer molecules are ex-

posed to a large surface area of varying, potentially catalytic, atomic environments

resembling mini laboratories, where such reactions as the formation of long-chain

molecules [8], the addition of specific chemical groups to molecules [9] and the con-

version of molecules into another species e.g. by the removal of a specific group, [10]

can take place. The structure of clay minerals, the variable composition of the lay-

ers and that of the interlayer species endows the clay minerals with an ambiguous

identity that is difficult to classify experimentally [11]. Consequently, the number of

permutations possible between structure, composition, interlayer species and type of

interaction provides the computationalist with an embarrass de richesses with regard

to the choice of theoretical investigation to support and inform experimental results.

The choice of investigations presented in this thesis were motivated by the desire

to extend the application of density functional theory (DFT) with planewaves and

within the pseudopotential approximation, to larger, heterogeneous systems. That

is, if a homogeneous environment describes for example, a silicon crystal, a het-

erogeneous environment describes a system consisting of slab layers with surfaces,

vacuum space and interlayer, gas-phase like molecules. As well as acquiring the

modelling techniques specific to clay minerals, further motivation lay in addressing

unanswered questions concerning in particular, catalytic reactivity of aluminium-

bearing clay minerals and the mechanism of the acquisition of electrons, i.e. reduc-

tion, in iron-bearing clay minerals.

The ab initio investigation of the electronic structure of clay models such as

those included in this work, has only relatively recently become possible with the

development of efficient computational algorithms and the availability of high per-

formance parallel computing facilities. Even so, results are not quickly gained in

comparison to those of standard condensed matter subjects undergoing the same

investigations. Consequently, modelling techniques which may be used ubiquitously
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with more ‘standard’ systems cannot always be applied to the clay mineral models

indiscriminately. Therefore, this work concentrates as much on the techniques of

modelling clay minerals, as on the reactions and interactions of interest and also on

the interpretation of the results in the context of the models and methods used.

The investigation of modelling techniques and catalytic reactivity begins in

Chapter 3, which, in Section 3.2 investigates aluminium-bearing clay minerals. The

motivation behind the study is to determine the catalytic role of the clay in a de-

carboxylation reaction, a role first hypothesised by Almon and Johns [10] in 1975

from their experimental results. They were investigating the part clay minerals play

in the formation of fossil oil from biologically-derived fatty acids, i.e. how the con-

version of dead sea life into fossil oil occurs. An optimum modelling environment

is determined, which is used in Section 3.6 as the template for an investigation into

the same reaction, but within iron-bearing clay minerals, employing two different

density functional approximations.

The exploration of modelling and analytical techniques continues in Chapter 4

where the investigation into the decarboxylation reaction recommences with the op-

timum modelling environment obtained in Chapter 3. This is used to locate an

intermediate in the reaction pathway from first principles, which is then followed by

its identification as a transition state using lattice dynamics.

The subject of appropriate modelling techniques continues in Chapter 5 where

the question of reduction in iron-bearing clays is addressed. The issues involved

include, how to represent reduction in static models; how to ensure that modelling

artefacts are kept to a minimum and how to interpret the results in the context of

the techniques employed. This chapter concludes with an adjunct study designed

to isolate reduction in a specific environment of the clay mineral.

Each investigation has its own introduction and conclusion and there is a brief

chapter of closing comments in Chapter 6. However, before the investigations be-
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gin, the following chapter provides the theory and methods behind the computations

employed throughout this thesis.



2
Theory and Methods

This chapter outlines the route from a many-body Schrödinger equation to its re-

casting as many, single-particle equations each dependent on a common electron

density. It then proceeds to methods of its solution including some specific imple-

mentations within CASTEP with particular reference to the clay mineral models.

This is by no means a comprehensive description of either the theory or methods as

there are many in-depth works covering both these aspects, particularly Payne et

al’s work for an all-encompassing description of the evolution and implementation

of density functional theory (DFT) [12]. An excellent guide for the novice practi-

tioner of DFT is provided by the work of Mattsson et al [13]. For a more focussed

examination of particular aspects of electronic structure theory, consult the books

of Martin [14] and Ashcroft and Mermin [15].

Quantum mechanics describes the wave behaviour and properties of particles.

5
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The Hamiltonian operator of a quantum mechanical system acting on a wavefunc-

tion, comprises the right-hand side of the following time-dependent Schrödinger

equation

i�∂Ψ

∂t
(r, t) = −

�2

2m

∂2Ψ

∂r2
(r, t) + V (r, t)Ψ(r, t) , (2.1)

presenting the kinetic and potential energy of a one-particle system described by

state Ψ(r, t), where V (r, t) is a time-dependent potential. The wavefunctions of the

solution to the Schrödinger equation contain all the information of a system, how-

ever, obtaining that information becomes the problem as highlighted by Dirac [16],

“The fundamental laws necessary for the mathematical treatment of a large part of

physics and the whole of chemistry are thus completely known, and the difficulty

lies only in the fact that application of these laws leads to equations that are too

complex to be solved.” This is certainly the case for the many-body, time-dependent

Schrödinger equation with the implication that, to be at all useful, it needs simpli-

fying.

Although solutions can be readily found for a one-particle system, a many-body

system renders an exact solution within a ‘reasonable’ time, impossible. The com-

plexity arises in the first instance, from the interdependence of distance (x) and

momentum (p) encapsulated by Heisenberg’s Uncertainty Principle:

∆(x)∆(px) ≥
�
2

, (2.2)

itself arising from the non-commutation of conjugate operators. Consequently the x-

, y- and z- axes are no longer independent, and the simplifications possible as a result

of this independence in classical mechanics, are not possible in the quantum sphere.

Further complexity is added when considering a system of interacting electrons due

to the nature of the electrons themselves, properties embodied by Pauli’s exclusion

principle

Ψ(r1, r2) = −Ψ(r2, r1) , (2.3)

satisfying the condition of allowed, non-zero wavefunctions only, considering the
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antisymmetric wavefunctions of a two-particle (electron) system

Ψ(r1, r2) =
1
√

2
[ΨA(r1)ΨB(r2)−ΨA(r2)ΨB(r1)] ,

Ψ(r2, r1) =
1
√

2
[ΨA(r2)ΨB(r1)−ΨA(r1)ΨB(r2)] ,

where states ΨA and ΨB are functions of all four quantum numbers, n, l,m, s and

r1, r2 are the spatial vectors for each particle.

Pauli’s exclusion principle says that two fermionic particles cannot have iden-

tical quantum states. The consequence of this, in the case of electrons, is that

they interact with one another. Two electrons of the same spin have a greater sep-

aration distance than two of opposite spin, consequently their Coulomb energies

are different. The former has a lower Coulomb energy than the latter and when

this energy difference due to antisymmetry is included as a property of the sys-

tem, it is known as the exchange energy of a Hartree-Fock approximation.1 The

Coulomb energy of a system can be lower still if the electrons with opposite spin

are also separated, however, this increases their kinetic energy. This is correlation

i.e. where electrons of opposite spins are separated, reducing the Coulomb energy

at the expense of increasing their kinetic energy. The difference in energy between

the Hartree-Fock approximation and that of a many-body system is the correlation

energy, and, in combination with the exchange energy, will be re-encountered as

the exchange-correlation energy later in this chapter. As a consequence of the spin

property of electrons, both the kinetic energy and the potential terms of Equation

2.1 are no longer simple and the Hamiltonian of a time-independent system of in-

teracting nuclei (position vector R) and electrons (position vector r) is given by the

Hamiltonian

ĤΨ(ri,Rj) = EΨ(ri,Rj) ,

1
The Hartree-Fock approximation is historical in the development of DFT and has been gener-

ally superceded by more recent approximations. It is discussed briefly in Section 2.1.4
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where

Ĥ = −
�2

2me

�

i

∇
2
i
−

�2

2Mn

�

j

∇
2
j

(2.4)

−
1

4π�0

�

i

�

j

eZj

|ri −Rj|
+

1

2

�

i

�

j �=i

e2

|ri − rj|
+

1

2

�

i

�

j �=i

ZiZj

|Ri −Rj|
.

Equation 2.4 describes, term-by-term the kinetic energy of the electrons and the

nuclei, the Coulomb potentials of the electrons and nuclei, electron-electron and fi-

nally the nuclei-nuclei.2 The prefactor of 1
2 for the latter two potentials is to correct

for double-counting where the differences between particles i and j is counted as

well as the difference between j and i. The only simplifications made so far are the

non-relativistic framework and the adoption of time-independence, which has had

little impact on the solvability of a many-body Hamiltonian; an analytic solution is

still intractable. The electron interactions described in the preceding paragraph are,

for the moment, encapsulated in the words describing this many-body interacting

Hamiltonian rather than in any explicit maths. For any progress to be made, fur-

ther simplifications were necessary, the first of which was density functional theory

(DFT); its development forms the subject of the following section.

2.1 Towards Tractability

2.1.1 Born-Oppenheimer

The first important simplification to the many-body Schrödinger equation began

with the Born-Oppenheimer approximation, where the masses of the nuclei, be-

ing approximately two thousand times greater than those of the electrons, renders

them relatively immobile. The electrons effectively move instantaneously in response

to the nuclei and hence the nuclei have relatively zero kinetic energy, removing

the second term of Equation 2.4 and decoupling the wavefunction, Ψ(ri,Rj) into

2
From this point onwards, Hartree atomic units are used, � = me = e = 4π/�0 = 1 unless

otherwise stated.
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ψ(ri)φ(Rj).

2.1.2 Hohenberg-Kohn

Following the Born-Oppenheimer fixed nuclei approximation came two pivotal the-

orems in the history of DFT posited by Hohenberg and Kohn [17]. Firstly, they said

that for any system of interacting particles in an external potential, Vext (r), i.e. a

potential external to the electrons, there is a unique (apart from an additive con-

stant) ground state density, (n0(r)). And secondly, that for any external potential,

Vext (r), it is possible to define the total energy, E as a functional of the density, i.e.

E[n(r)]. Furthermore, for any Vext (r), the groundstate density, (n0(r)) is found at

the global minimum of E[n(r)].

2.1.3 Kohn-Sham — Part 1

The next simplification was made by Kohn and Sham [18] who said that, a system of

N− interacting particles can be replaced by N non-interacting particle systems, with

an interacting density and a background potential due to all other electrons moving

in a potential of fixed nuclei. In light of the simplifications and approximations

made so far, Equation 2.4 can be re-written as the Kohn-Sham energy functional of

the charge density (n(r)) for a fixed array of nuclei,

E[n(r)] =

�
Vion (r)n(r)dr +

1

2

� �
n(r)n(r�)

|r− r�|
drdr� + G[n(r)] , (2.5)

where the first term is the total electron/ion potential the second the Coulomb

interaction or Hartree potential between the electrons. The last term is given by

G[n(r)] = T [n(r)] + Exc[n(r)] , (2.6)

and describes the non-interacting kinetic energy of the electrons and the exchange-

correlation energy of their interactions respectively. This latter term embodies the
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non-classical interactions between electrons that were introduced in Section 2. A

necessary condition for the Kohn-Sham (K-S) energy functional is for any varia-

tion of the charge density to leave the particle number (N) unchanged, given that

N =
�

n(r)dr, this condition is fulfilled by
�

δn(r)dr = 0.

2.1.4 An Historical Interlude —- Hartree and Hartree-Fock

approximation

The Hartree potential of Equation 2.5 contains a self-interaction, due to the spatial

spread of the electron. This is an artefact of the Coulomb potential which was ad-

dressed by the Hartree-Fock approximation (HFA). The HFA includes exchange by

employing the Hartree potential and enforcing antisymmetry of the electron wave-

functions. This is achieved by creating a many-body wavefunction which is the

determinant of a matrix of single-particle, orthogonal, spin orbitals. The determi-

nant of this Slater matrix includes direct and exchange terms, which cancel exactly.

However, two main problems with the HFA are the size of the Slater matrix, it

scales as the square of the number of wavefunctions, and the absence of correlation.

Consequently HFA has been overtaken by DFT where the self-interaction of the

Hartree potential is counteracted by the Exc[n(r)] term which creates an exchange

hole around a region of electron density, which is re-encountered in Section 2.1.5.

Further details of HFA can be found in reference [14].

2.1.5 Kohn-Sham — Part 2

Returning to the Kohn-Sham Hamiltonian. The single-particle Kohn-Sham Hamil-

tonian is given by

�
−

�2

2m
∇

2 + Vion (r) + VH(r) + VXC(r)

�
ψi(r) = εiψi(r) , (2.7)

respectively describing the kinetic energy of non-interacting electrons; the electron-

ion (pseudo)potential; the electron-electron Hartree potential and the

exchange-correlation potential. ψi are the eigenstates and εi the eigenvalues of the
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Kohn-Sham Hamiltonian. They are the single-particle wavefunctions. A sketch of

the simplifications made so far can be seen in Figure 2.1.

The wavefunction of Equation 2.4, Ψ(ri,Rj) = Ψ(r1, r2, ..., rn,R1,R2, ...,Rn)

has become ψ1(r)φ(R), ψ2(r)φ(R), ...ψn(r)φ(R) where φ(R) is effectively a constant

as it is the ion-ion potential due to an array of fixed nuclei described by the Ewald

term — see Section 2.4. The total electron density is given by the sum of the

amplitudes of the Kohn-Sham orbitals for both spin-up and spin-down occupied

states, but for simplicity of notation, spin is subsequently not differentiated unless

otherwise stated. The charge density is given by

n(r) =
�

i

| ψi(r) |
2 , (2.8)

where the wavefunctions are orthonormalised

�

V

ψ∗
i
(r)ψj(r)dV = δij for δij =





1 if i = j

0 if i �= j
and

�
n(r)dr = N ,

where N is the total number of electrons.

Figure 2.1: Cartoon of many-body system, with two nuclei, N and two electrons,
e− (LHS). ‘KE’ is kinetic energy and all other labels are as detailed in Equation 2.7.
After the Hohenberg-Kohn and Kohn-Sham simplifications focussing on one of the
two electrons. The yellow cloud represents the term G[n(r)] in Equation 2.5.

Taking each term of Equation 2.7: the kinetic energy term is that of the non-

interacting electrons and the portion due to their interaction is encapsulated by the
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exchange-correlation potential. The potential term, Vion (r) is the pseudopotential

term and is discussed in greater depth later in this chapter, but for now suffice it

to say that it simplifies the nuclear region from the perspective of the valence elec-

trons. The Hartree term, VH(r) describes the Coulomb interaction between electrons

without their spin effects. The exchange-correlation potential, VXC takes account of

the kinetic energy difference due to interacting electrons and their interacting spin

effects as discussed at the beginning of this Chapter, and is given by

VXC(r) =
δExc[n(r)]

δn(r)
. (2.9)

Can it be said that any progress has been made in finding a solution? How is this

term any more accessible than its forbears? Well, if Equation 2.9 is re-written as

δExc[n(r)]

δn(r)
=

∂[n(r)εXC(r)]

∂n(r)
, (2.10)

with εXC(r) = �hom
XC

(r) , (2.11)

then a possible route to a solution is glimpsed through Equation 2.11 which says

that, in a Kohn-Sham system of non-interacting particles, at position r with a density

n(rks), the exchange-correlation energy is given by the exchange-correlation energy

at position r with the same density, n(rks) in a homogeneous electron gas. This

is a local density approximation (LDA) [18] of the exchange-correlation energy and

was formulated in 1965, and in 1981 was parameterised by Perdew and Zunger [19]

based on Ceperley and Alder’s Monte Carlo computations, which worked out the

exchange-correlation energy of a locally homogeneous gas at various densities [20].

This is local because a small volume around the point r is assumed to have the

same density as that at the point r. The sum of the individual �XC gives the total

exchange-correlation energy of an interacting system [14]

ELSDA

XC
[n↑, n↓] =

�
n(r)�hom

xc

�
n↑(r)n↓(r)

�
d3r . (2.12)

The LDA described here includes the spin (S) densities and is referred to as LSDA.
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Where there is an explicit inclusion of spin, the spin charge density is given by

nσ(r) =
�

i

|ψσ

i
(r)|2 and the total density by n(r) =

�

σ

nσ(r) , (2.13)

consequently there could be two energy minima that minimise E[nσ(r)]. This spin

polarisation effect (with respect to the GGA exchange-correlation functional) is dis-

cussed in Chapter 5 with reference to iron.

In spite of inaccuracies in the density due to ignoring local inhomogeneities in

the electron density around position r, the LDA is a successful approximation. This

is due to obeying the sum rule for an exchange-correlation hole. Exchange and cor-

relation effects cause a decrease in classical electron density at position r1 due to

the presence of an electron at position r2 and vice versa. This depleted area or hole

has electron density given by nxc(r1, r2), which satisfies the normalisation condition

or sum rule,
�

nxc(r1, r2)dr2 = −1. Consequently, the total entity of an electron

plus its volume of electron-depleted space, i.e. exchange-correlation hole, constitute

a neutral entity. This exchange-correlation hole exactly cancels the self-interaction

term of the Hartree potential.

Subsequent exchange-correlation approximations involve the first and higher or-

ders of the density gradient at r. This hierarchy forms a Jacob’s ladder of density

functional approximations designed with the intention to achieve ever greater ac-

curacy. The next rung on the ladder up from LDA is the generalised gradient

approximation (GGA). The GGA is semi-local as it depends on the gradient of the

density at point r, i.e. Equation 2.12 becomes

EGGA

xc
[n↑, n↓] =

�
n(r)�xc

�
n↑, n↓, |∇n↑

|, |∇n↓
|...

�
dr3 . (2.14)

The generalised gradient approximation of Perdew, Burke and Ernzerhof i.e the

GGA-PBE [21] is the density functional of choice in the clay mineral studies because

it is better able to describe molecular bonding than the LDA due to its gradient

parameter [22]. That is, molecules tend to be inhomogeneous in their electron den-
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sity, which the LDA cannot describe very well as it is essentially a local functional.

Molecular systems tend to have rapidly varying densities, environments ill-suited to

a functional originating from a smoothly varying electron density. However, with

regard to band gaps, LDA fares better than the GGA due to gradient discontinuities

at the band gap with the latter approximation. Hence, whereas LDA overestimates

binding energies and thus underestimates bond lengths, GGA underestimates band

gaps. Higher-order approximations are variations on the gradient theme where in

the meta-GGA’s, ∇2n(r) is used. The density functionals will not be described in

greater detail here; the interested reader is referred to reference [23] for an in-depth

comparative study of these functionals.

To re-cap: at this point, the many-body Schrödinger is now tractable due to the

approximations of Born-Oppenheimer, Hohenberg-Kohn and Kohn-Sham plus the

employment of density functional theory. There still remains the question of how

the strong potential of the core electrons should be addressed, how physical systems

can be modelled and how the computations can be carried out to optimum efficiency.

2.2 Modelling Systems — the essential ingredi-

ents

Density functional theory casts a many-body problem in terms of a single param-

eter, electron density, which is the sum of the amplitudes of occupied spin-up and

spin-down Kohn-Sham orbitals. The modelling of these orbitals requires a basis set

for their mathematical representation. Within CASTEP the basis set of choice is

planewaves and the bulk of a material is modelled by periodic cells.
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2.2.1 Periodic Cells

Modelling the bulk of a material involves a unit cell containing an atomic basis, such

that an infinite repetition of this cell throughout space reproduces the bulk mate-

rial. A unit cell of the lowest order symmetry — the primitive cell — is preferable

to minimise computational time. In the atomic basis of the periodic cell, electrons

comprise regions of charge density and, as expressed by Equation 2.8, this charge

density is readily calculated from the amplitude of wavefunctions.

2.2.2 Planewaves

The set of wavefunctions used to described the electron density within a DFT for-

malism is known as a ‘basis set’. The basis functions of choice within CASTEP

are planewaves. As quantum mechanics is a linear theory, the principle of linear

superposition applies, which, for planewaves 3 can be described by the following: if

f = e−iθ and g = e−iφ then f + g = e−iθ + e−iφ.

Planewaves also have the following properties:

Completeness: any continuous function satisfying periodic boundary conditions can

be described by a set of planewaves. The set of planewaves describing the func-

tion forms a complete set, e.g. if a function f(x) satisifies the boundary conditions

f(0) = 0, f(L) = 0 then the set of sine functions, sin(nπx/L), n = 1, 2, 3.... forms a

complete set of functions for the expansion of f(x).

Orthonormality: pairs of member functions of complete sets are orthogonal and

planewaves are normalizable, i.e. for a pair of wavefunctions, orthonormality is de-

scribed by
� 2π

0 φi(x)φj(x) = 2πδij, where δij is the Kronecker delta.

These properties allow for the description of the energy surface of a many-body

system within DFT formalism in the form of a Fourier series of planewaves. One

computational drawback is that they describe all of the volume of a periodic cell,

including the vacuum space. The series of planewaves comprise a wavefunction at

3
the exponential expression for planewaves is used ubiquitously throughout this chapter, where

eiθ
= cosθ + isinθ
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position r, i.e.

ψ(r) =
�

Gmax

CGei(G·r) , (2.15)

where CG is the coefficient per planewave up to an arbitrary wavevector Gmax ,

where G is a reciprocal space lattice vector — more of this in the following section.

Without a pseudopotential approximation,4 the size of the maximum wavevector, G

and hence the size of the basis set are determined by the strong Coulomb interaction

between the core electrons and the nuclei. The kinetic energy of these electrons

is high, hence they have a relatively high number of oscillations, which require

a large number of planewaves for their description. This is ameliorated by the

pseudopotential approximation, which reduces the size of the basis set required

but remains the determining factor in its size. (Properties of pseudopotentials will

be described in greater depth later in this chapter.) Within the pseudopotential

approximation, the basis set size for a computation is determined by testing the

kinetic energy cut-off via the relation between the kinetic energy (EKE) and Gmax =

|Gmax| i.e.

EKE =
�2Gmax

2m
, (2.16)

where, in order to form a complete set, Gx = 2πn/x, Gy = 2πn/y,Gz = 2πn/z, n =

1, 2, 3.... where x, y, z are the lengths of reciprocal space vectors containing the wave-

function ψ(r).

2.2.3 Reciprocal Space

Reciprocal/wave or k− space is a more appropriate environment in which to describe

wave properties than is real space. An example of this is wavenumber, which in non-

wave or ‘real’ space has units cm−1 whereas in k−space it is a number representing

the number of nodes per cm. It is simple to deduce from this and from Figure 2.2

the inverse relationship between wavelength, λ and wavenumber, k consequently the

4
This is an approximation that replaces an all-electron model for the core and valence electrons

with a smoother potential. There is a detailed description in Section 2.3, suffice it to say for now

that the number of planewaves required is reduced by several orders of magnitude by using this

approximation.



2.2. Modelling Systems — the essential ingredients 17

Figure 2.2: Illustrating the relationship between wavelength and wavenumber.
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smaller the value of k, the larger the value of λ.

The replication of the periodic unit cell in real space produces a Bravais lattice

in reciprocal space. As an electron’s wavefunction given by Equation 2.15 evolves

throughout the lattice, it will be affected by an infinite number of other wavefunc-

tions and potentials, i.e. it will experience diffraction. This leads to interference

between a wavefunction and its periodic image, producing wavefunctions that are

out of phase with one another. Formulating the effect of phase variance on the

wavefunction evolving from the single unit cell, is achievable by including a phase

factor per term of the Fourier series, which is simpler to see using trigonometric

functions. If a complex wave is represented by cosθ + isinθ then a phase shift of φ

is given by cos(θ + φ) + isin(θ + φ), which is the same as eiθeiφ = ei(θ+φ). Hence

multiplying the periodic wavefunction of Equation 2.15 by a second wavefunction

induces a phase shift per term of the Fourier series

ψk,G(r) =
�

k

Cke
i(k·r)

�

G

CGei(G·r) , (2.17)

where kx = 2πn/x, ky = 2πn/y, kz = 2πn/z, n = 1, 2, 3.... and x, y, z are reciprocal

lengths of the unit cell. k-points are the positions described by the k vector and

either term will be used to suit the context. Equation 2.17 now describes the evo-

lution of a wavefunction throughout an infinite bulk and satisfies Bloch’s Theorem

described in the following section.

2.2.4 Bloch’s Theorem

For a periodic potential given by

U(r + R) = U(r) , (2.18)

where R is a Bravais lattice vector and the potential is a function of the charge

density, it follows that the charge density is also periodic. However, this does not
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require the wavefunctions to be periodic as the charge density, being the sum of

the amplitudes of the wavefunctions, does not include any information about their

phases, which can be anything. The scale of the periodic potential is usually 10−8cm,

the same order of magnitude as the de Broglie wavelength of free electrons. Thus,

electrons are susceptible to diffraction and their total wavefunction is given by a

superposition of wavefunctions of the periodic potential. Now, the wavefunction

obtained so far is periodic in that it is defined by the boundary conditions of the

unit cell and is the basis set required for the energy surface description, i.e.

uG(r) = ψ(rG) =
�

G

CGei(G·r) , (2.19)

and, including a phase factor, this term describes Bloch’s Theorem

ψk,G(r) = eik·ruG(r) , (2.20)

where k is the Bloch wavevector, which is, in general, any complex vector. This is

exactly the form of Equation 2.17 obtained in the previous section on considering

the effect of diffraction on the phase of a wavefunction. So, for any Bravais lattice

vector R, the wavefunction is given by

ψk,G(r + R) = ei(k·R)ψk,G(r) . (2.21)

(Comprehensive proof of Bloch’s Theorem can be found in references [15], [24]).

Bloch’s Theorem maps the problem of an infinite number of wavefunctions onto an

infinite number of phases within the original unit cell. The choice of the cut-off

energy defined by Gmax results in a finite basis set at an infinite number of phases

or k-points.

The discussion so far has concentrated on periodicity and its use to replicate a

bulk system, an obvious question arises concerning aperiodic systems and surfaces,

is it possible to model these with periodic cells? The answer is yes it is, by using

supercells.
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2.2.5 Supercells

Aperiodic systems such as those containing a defect or those with a surface, are

modelled using supercells, which effectively isolate the defect or the surface. If a

defect is within the bulk of a material, surrounding the defect with sufficient non-

defective bulk renders the defect a relatively singular event. If the defect is charged,

careful consideration must be paid to its long-range Coulombic field and periodic

interactions. Although the clay mineral models do not contain defects, the same

considerations apply to their charged species, which is covered in detail in Chapter

5. Modelling a surface involves including sufficient vacuum space within a large cell

(hence the term ‘supercell’) to separate adjacent surfaces sufficiently to minimise

their interactions. All of the clay minerals described in this study are composed of a

three-tier layer of atoms, which has two surfaces and, in some models, the surfaces

are charged.

2.3 Pseudopotentials

Substituting Equation 2.17 into the Kohn-Sham Hamiltonian of Equation 2.7 pro-

duces a dominant kinetic energy term given by

−

�

k,G

|k + G|
2Ck,Gei(k+G)·r . (2.22)

This determines the size of the Hamiltonian matrix of the K-S Hamiltonian. To

include the high kinetic energy of the core and valence electron interactions would

require a large cut-off energy, which has been established is dependent on |Gmax |.

A larger |Gmax | equates with a larger basis set and consequently a Hamiltonian

matrix growing by a factor of n2 where n is the number of terms in the basis set.

The computations would become unfeasibly large for most day-to-day requirements,

consequently all-electron models are not employed without justification.
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The core electrons have less effect on the physical properties of solids than the

valence electrons, due to their tight binding to the nuclear region. As the core

region requires high kinetic energy oscillations for its description, an approximation

to smooth out this region became an important step in the feasibility of modelling

using planewaves. The advent of this pseudopotential approximation reduced the

size of the K-S Hamiltonian matrix by replacing the highly oscillatory core region

of electrons with a smoother pseudo-core region, while reproducing the pertinent

properties of the core region beyond a cut-off radius. As the valence electrons

are screened from the bare nuclear Coulomb potential by the core electrons, they

experience a much smoother potential than might have been initially anticipated,

thus the pseudopotential approximation is entirely appropriate from the perspective

of the valence electrons. Two of the types of pseudopotentials used in the clay

mineral studies are norm-conserving and ultrasoft and between them, they reproduce

the following properties:

1. The eigenvalues of the pseudo-valence (PP) electrons are the same as those of

the electrons in an all-electron (AE) calculation i.e εPP

i
= εAE

i
.

2. There are no discontinuities in the wavefunctions at the core radius cut-off.

3. There are no discontinuities in the logarithmic derivatives of the wave functions

at the core radius cut-off.

4. The first energy derivative of the logarithmic derivatives of the pseudo- and ‘real’

wave functions agree at the core radius cut-off.

5. The integrated charge for each wavefunction agrees within the radius cut-off.

(Applies to norm-conserving potentials only.)

Property one ensures that the correct energy bands are maintained; property two

is a physical and mathematical necessity; properties three and four ensure the cor-

rect scattering properties of the core region are reproduced; property five is optional

depending on whether the approximation is norm-conserving or ultrasoft. The gen-

eral construction of the two types is similar in that there is a local part depending on
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Figure 2.3: Schematic of the smoothing effect of the pseudo-wavefunction ψPS and
potential V PS, compared to the all-electron (AE) versions. Note how they agree at
rcut [12].

radial distance only and a non-local part depending on angular momentum channel

projectors, which are necessary to reproduce the correct scattering properties.

V PP = V (r) +
�

i

|χl�Vl�χl| . (2.23)

The all-electron and pseudo-wavefunctions are identical beyond the cut-off radius,

rcut . The total ionic psuedopotential of a system is given by [12]

Vion (G) =
�

α

Sα(G)vα(G) , (2.24)

where vα is the pseudopotential of species α and S(G) is the structure factor of a

periodic position of ions (RI) of that species i.e. S(G) =
�

I
ei(G·RI).

2.3.1 Norm-conserving

Within this approximation, the charge density of the all-electron core is reproduced

within the cut-off radius, which tends to be relatively short. Therefore, the kinetic
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energy is still high and hence a large number of planewaves are required to describe

the potential experienced by the valence electrons. Norm-conserving pseudopo-

tentials were designed by Hamann, Schlüter and Chiang [25] in 1979 and further

developed by Kleinman and Bylander [26]. The charge conservation property of

norm-conserving pseudopotentials confers greater transferability than that of the

ultrasofts, which, according to Goedecker and Maschke [27] is due to an inert re-

gion of charge density surrounding the core. If the rcut lies within the inert region,

a pseudopotential is transferable to any chemical environment, if, however, it falls

outside of this region, the transferability is reduced, which can be the case in the

ultrasoft approximation.

As the exchange-correlation energy is non-linear, in some cases the charge den-

sity in the core region overlaps with the valence density causing an underestimation

of the exchange-correlation energy in the valence region. To remedy this, a fraction

of the core charge is added to the valence charge in this area of overlap. Both the

norm-conserving and ultrasoft pseudopotentials for iron contain this non-linear core

correction [28] and will be encountered in Chapter 3, Section 3.6.

2.3.2 Ultrasoft

Within this approximation, the norm-conserving constraint is relaxed and rcut can

be larger than in the norm-conserving case. Consequently, the kinetic energy is

reduced, the valence electrons experience a smoother potential and the number of

planewaves required for its description decreases. This is the main advantage of

ultrasofts, which were developed by Vanderbilt [29] and has lead to the applica-

tion of ab initio molecular dynamics to a wider class of systems than with norm-

conserving PP. The increase in rcut decreases the transferability of ultrasofts to some

extent, although Laasonen demonstrated good transferability between small oxygen

molecules [30], a notoriously demanding element. Relaxing the charge constraint

allows the pseudo-and the all-electron wavefunctions to be matched independently

at rcut . As a direct result, the pseudopotential must be self-consistently updated



2.3. Pseudopotentials 24

but this extra computational expense is outweighed by the reduction in the number

of planewaves required. If the integrated charge density in the pseudo-core region

does not match that in the all-electron core, an augmentation charge is added.

Their construction begins by introducing non-local overlap operators, where (as

in the norm-conserving model) the β projectors are per angular momentum channel:

[29], [14], [31]

Ŝ = Î +
�

nml

qnm|βl

n
��βl

m
| where qnm =

�
r

0

Qnm(r)dr , (2.25)

and Qnm = 0 is the norm-conserving constraint. The charge density is now given

by:

n(r) =
�

i

φ∗
i
(r)Ŝφi(r)

=
�

i

�
|φi(r)|

2 +
�

nml

Qi

nm
(r)�φi|β

l

n
��βl

m
|φi�

�
, (2.26)

where the term
�

nml
Qi

nm
(r) describes the quantity of augmentation charge. The

ultrasoft potential can be written as

V PP = Vloc(r) +
�

nml

D0
nm

|βl

n
��βl

m
| , (2.27)

where Dl

nm
= D0

nm
+

�
Vion (r)Ql

nm
dr . (2.28)

D0
nm

are the coefficients characterizing the pseudopotential, differing with the atomic

species and the index l refers to an atomic site. Equations 2.25 to 2.28 are reproduced

here to illustrate the difference between norm-conserving and ultrasoft construction,

that, although the latter requires fewer planewaves, its structure is complicated by

the introduction of the tensor and its overlap operator, Ŝ. The self-consistent Hamil-

tonian becomes Ĥ|ψi� = �iŜ|ψi�, the total energy is now E =
�

ij
�ψi|Ĥ|ψj� and the

wavefunctions of the smooth potential are S-orthogonal, i.e. �ψPP

i
|Ŝ|ψPP

j
� = δij.

The implications of this are that although ultrasoft PP require a more complex pre-
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conditioner5 than norm-conserving PP, this is outweighed by the reduced number

of planewaves required for their description. Further details can be found in Hasnip

and Pickard’s work [32].

The potential artefacts on creating pseudopotentials in general, are ghost states

arising within the core region, due to the addition of augmented charge with too

many nodes, which creates an unphysical phenomenon. Gonze [33] describes a

method of eliminating these ghost states should they arise.

Both norm-conserving and ultrasoft pseudopotentials are constructed by remov-

ing an electron and inverting the Schrödinger equation to determine the potential

experienced by a valence electron. As this is done within a particular density func-

tional, e.g. LDA, it is important to match the pseudopotential with the density

functional computation. The investigations of the following chapters use the GGA

exchange-correlation functional with ultrasoft PBE and norm-conserving pseudopo-

tentials.

Since the formulation of the K-S Hamiltonian, there has been no reference to the

ion-ion interactions. The following section addresses this term.

2.4 Ion-Ion interaction

The brief description of the ion-ion (Ewald) term that follows, serves more as recog-

nition of its existence than an in-depth exploration of its theory. If the latter is

required, the references within this section should be consulted.

The interactions between the nuclei are long-range Coulomb forces in real and

reciprocal space. Ewald cast the problem in the form of a nucleus at position R1

5
This term is explained in Section 2.5.3 but for now, in its most general sense, describes the

stabilisation of an ill-conditioned system to enable numerical convergence of a minimisation algo-

rithm.
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interacting with an array of atoms at points R1 + l where l is a lattice vector and

split the problem into a real space and reciprocal space part. The contribution to the

total energy at G = 0 from the Hartree, pseudopotential and ion-ion terms exactly

cancel but Ewald’s real space/reciprocal space splitting excluded this term from the

reciprocal space contribution. This was later remedied by Yin and Cohen [34] so

that the correct form for the Ewald energy is [12]

ER−R =
1

2

�

I,J

ZIZJe2

�
�

l

erfc(η|R1 + l−R2|)

|R1 + l−R2|
−

2η
√

ρ
δIJ

�
+

1

2

�

I,J

ZIZJe2

�
4π

Ω

�

G �=0

1

|G|2
exp

�
−
|G|2

4η2

�
cos [(R1 −R2) · G]−

π

η2Ω

�
, (2.29)

where ZI , ZJ are the valences of ions I and J , erfc is the complementary error

function, l,R are the real and reciprocal space lattice vectors respectively, Ω is the

volume of the unit cell, η is a number and ρ is the charge density.

2.5 Computational Methods

The second half of this chapter concerns the computations supporting the theory of

the first half, including the algorithmic routines involved in finding a self-consistent

solution to the K-S Hamiltonian. All computations were carried out using CASTEP

[35], an ab initio DFT, total energy, planewave pseudopotential code written in

Fortran 90. Some procedures specific to CASTEP are mentioned and some with

particular reference to the clay mineral models. It begins with a description of how

the Born-Oppenheimer energy surface of a system is sampled.

2.5.1 K-point Sampling

In reciprocal space, the phases are nodes or points in the unit cell, which are de-

scribed by sampling the Brillouin zone (BZ). The BZ describes the unique region

of space closest to the G = 0 point onto which all other points can be mapped by

periodicity, therefore by sampling the BZ, the entirety of the bulk is sampled. The
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change in energy when sampling k−points determines how many of them need to be

sampled, that is, an energy convergence test (or other property of interest) is carried

out using an increasing number of k−points, in a similar method to the cut-off energy

convergence testing described in Section 2.5.10. (There is a detailed description of

the variation in the average energy per k-point per volume of k-space, for a particular

bandstructure of GaAs, in reference [36].) In crystals of high symmetry, the number

of k-points is reduced by symmetry operations where grids of sampling points such

as the Monkhurst-Pack grid, are formulated by the generation of periodic functions

based on point group symmetries [37], [38]. Efficient k-point sampling reduces the

computational time required as it reduces the number of computations, therefore it

is highly beneficial to determine the symmetry of the unit cell to produce a primi-

tive cell and thus the smallest number of k-points. Unfortunately, the clay mineral

models are asymmetric due to the guest species in the interlayer, however, they

are sufficiently large in the z−direction to require only gamma point sampling, i.e.

sampling at k = 0, in that direction. k-point sampling of the clay mineral models is

described in Chapter 3, which also includes an example of a primitive cell of wüstite.

2.5.2 Locating the Groundstate Energy

Hohenberg and Kohn established that there is a unique correspondence between

the groundstate density of a system and its potential. From this groundstate den-

sity, many properties of the system can be determined such as equilibrium crystal

structure, elastic constants, dielectric and magnetic susceptibility etc.. Total energy

differences between systems are used in this study to identify the potential reac-

tivity of particular configurations where, for example, a lower total energy implies

greater stability than a system containing the same constituent atoms in a different

configuration. How is this groundstate density reached, given that the K-S poten-

tial depends on the density which depends on the wavefunctions which are shaped

by the potential? The answer is that the initial wavefunctions are guessed, which

then allows for a self-consistent iterative minimisation of the K-S energy, towards

the groundstate density. The previous section established the theory behind the
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construction of the Kohn-Sham Hamiltonian and this section now proceeds with a

self-consistent determination of the groundstate charge density, n0(r).

Figure 2.4: Outline of the algorithm for identifying the groundstate charge density
for a single self-consistent field (SCF) cycle. ∆E is the energy difference between
successive SCF iterations and ε is the energy tolerance criteria. The outermost
dashed line refers to geometry optimisation, which proceeds from the lowest energy
by moving the atoms and then repeating the entire cycle with the inclusion of the
atomic positions and a force tolerance criteria. This is explained in greater detail in
Section 2.5.4.

Figure 2.4 illustrates the iterative self-consistent cycle leading towards finding

the groundstate density of a system. Initially the trial wavefunctions ψi(r) for a

single k-point are guessed, from which the charge density is calculated via

n(r) =
�

i
|ψi(r)|2. This is then fed into the K-S Hamiltonian to obtain the effective

(total) potential and the Hamiltonian matrix. In principle the next step is to directly

diagonalise the Hamiltonian, but, in reality, this is unfeasible for any but the small-

est systems due to the cubic scaling with the number of planewaves. So, rather than

matrix decomposition, a self-consistent minimisation (the charge density is updated
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iteratively) of the K-S Hamiltonian is performed. The K-S energy functional can be

successfully, directly minimised as it has a well-defined minimum providing a stable

platform for minimisation routines. Iterative diagonalisation methods are employed

to obtain the lowest (i.e. the occupied) eigenstates of the K-S matrix, beginning

with a steepest descent step.

2.5.3 Minimisation Algorithms

Steepest Descent

The steepest descent algorithm finds the largest negative derivative of the energy

with respect to the wavefunctions and uses this as the search direction to locate the

minimum of the electronic energy surface. The principle is given by

h1 = −
∂E

∂ψ
|ψ=ψ1 , (2.30)

where h1 is the first steepest descent direction. Alternatively, in terms of the steepest

descent direction for a single band

ζm

i
= −(H − λm

i
)ψm

i
,

where λm

i
= �ψm

i
|H|ψm

i
� , (2.31)

where i is the band, H is the Hamiltonian and m the iteration index.

To reduce E(ψ) a move from ψ1 to ψ1 +φ1h1 is required. This is sampling along

a line or line minimisation to determine the value of φ1 that minimizes E(ψ1+φ1h1).

A line minimisation follows a steepest descent step.

The drawback with the steepest descent method occurs when the energy surface

is long and shallow and the initial search direction is perpendicular to the long-axis

of the surface, the subsequent orthogonal search direction would then lie along the

long axis of the shallow valley. In such an instance, the minimisation process be-
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comes inefficient. An improvement of the steepest descent is the conjugate gradients

algorithm.

Conjugate Gradients

Fit E(ψ), dE

dψ
, x0 to y = ax2 + bx + c at dy

dx
= 0 i.e. 2ax0 + b = 0.

Then, check x0 − xψi
0 > tolerance?

If no, minimum found.
If yes, then fit a cubic and repeat check.

Figure 2.5: Schematic of the principles of line minimisation. There is an implicit
assumption in the check illustrated that the length of the step taken from E(ψ) to
x0 is optimal. The check is repeated until the tolerance criteria are met, which may
involve extending the algorithm to fitting a quartic function.

Conjugate gradients is an improvement over steepest descent as, for a quadratic

function, convergence is guaranteed for a system of n−dimensions, within n steps.

(Not proven here). This is true in theory, but in practice depends on a perfect line

search. Conjugate gradient iterations converge in proportion to
�

�max/�min i.e. to a

ratio of the maximum and minimum eigenvalues of the basis states [32]. Gradients
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are conjugate to one another if they obey the following condition:

dn
·H·dm = 0 ; for n �= m n, m are integers, (2.32)

where dn and dm are the minimization directions; H and h are as previously defined.

dm = hm + γmdm−1 where γm =
hm · hm

hm−1 · hm−1
. (2.33)

Equations 2.32 and 2.33 show that each subsequent search direction contains in-

formation about the previous search directions. This, together with the conjugacy

condition, ensures that all n-dimensions of a system are searched, thus guarantee-

ing the location of a minimum. Each complete and minimised conjugate gradients

iteration proceeds with a line minimisation as outlined earlier in this section. Fig-

ure 2.5 illustrates a simple line minimisation using a quadratic fit. Although these

algorithms are efficient, the K-S Hamiltonian matrix is, as it has been described,

ill-conditioned. Therefore there is room for improvement in the minimisation meth-

ods, which can be achieved by preconditioning.

Preconditioning

The dominance of the kinetic energy terms in the Hamiltonian matrix with the

increasing size of the coefficents of the wavefunctions can be seen by substituting

the following

ψi(r) =
�

k,G

Ck,Gei(k+G)·r , (2.34)

into the K-S Hamiltonian (Equation 2.7). This produces

�

G�

� �2

2m
|k + G|

2δGG� + Vion (G−G�) + VH(G−G�)

+ VXC(G−G�)
�
ci,k+G� = �ici,k+G , (2.35)
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an ill-conditioned Hamiltonian matrix [39], which, for kinetic energies is a diagonal

matrix of the form

1

2





(k + G1)2 0 0 · · · 0

0 (k + G2)2 0 · · · 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · (k + Gmax )2





whose larger coefficients on the descending diagonal leads to the imbalance shown

in Figure 2.6 In comparison to Gn, k is small.

Figure 2.6: Illustrating the relative magnitude of the increase in kinetic energy along
the diagonal of the Hamiltonian matrix.

Now, the current wavevectors have produced an error in the total energy because

they do not solve Hψi = �iψi. The error in the wavevectors and the steepest descent

direction are related by [12]:

ξi = −

�

α

(εα − λi)ci,αξα , (2.36)

as the error in the wavevectors is given by δψi =
�

α
ci,αξα, where εα is the eigen-

value of the eigenstate ξα, λm

i
= �ψm

i
|H|ψm

i
�, i is the band index and m the iteration

number. Thus, if the unoccupied states (those with the higher kinetic energies) were

degenerate then the steepest descent vector, ξi would become a multiple of the error

vector, δψi thus shortening the route to the wavevectors solving Hψi = �iψi. This

is preconditioning i.e producing a steepest descent vector that is close to the error

vector.
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The eigenstates with the higher kinetic energies have these kinetic energies ly-

ing close to their eigenvalues due to the dominance of the kinetic energy over the

potential energy term. The eigenstates with lower kinetic energies have a more

equal contribution from the kinetic and potential energy terms producing a range

of energies in the basis states. Pre-multiplying the Hamiltonian by a precondition-

ing matrix, K re-balances the system to effectively produce degenerate eigenvalues,

hence the steepest descent vector becomes a simple multiple of the error vector as

desired for the optimum rate of convergence. K consists of a polynomial which re-

moves the effect of high kinetic energy while leaving the lower kinetic energy terms

relatively unaffected. The preconditioning matrix K has elements K
G,G

� which are

a function of x i.e. K
G,G

� = δ
G,G

�f(x) where

x =
(�2|k + G|2)/2m

�ψm

i
|(−�2/2m)∇2|ψm

i
�

. (2.37)

A key point in reducing the computational expense, is to ensure that ψi are con-

strained to be orthogonal allowing for a band-by-band update of the charge density.

Orthogonalising the steepest descent vector to all other bands fulfils this constraint

on the wavefunctions and is achieved by adapting Equation 2.31 to become

ζm

i
= ζm

i
−

�

j �=i

�ψj|ζ
m

i
|ψj� . (2.38)

The preconditioned steepest descent vector is now [12] ηm

i
= Kζm

i
. The next step is

to produce the preconditioned conjugate gradient direction based on Equation 2.33

and detailed in reference [12], then continue as described in Section 2.5.3.

Proceeding with the minimisation band-by-band, that is, within a band, repeat-

ing the cycles until the total energy changes by less than a particular value, then

moving on to the next band and repeating the process, ensures that all bands are

updated gradually towards the convergence criteria before ψi and hence n(r) are

updated. This is the general procedure; there are a couple of variations on this
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implemented within CASTEP, in the form of density mixing (DM) and ensemble

density functional theory (EDFT).

Density Mixing and Ensemble Density Functional Theory

Density mixing in general produces a new estimated charge density at each step

from a linear combination of the input charge densities from a previous history of

densities [40]. The advantage of this is that the trial wavefunctions do not have

to be updated after each band optimisation, which saves time, but has the poten-

tial to introduce charge oscillation or ‘sloshing’ in successive iterations. If the trial

wavefunctions are not updated after each band partial-convergence, an error, par-

ticularly in the Hartree potential is introduced, which grows with system size as the

wavenumber, k decreases. Disparities are then created in the wavefunction/potential

interaction which produces charge sloshing in successive iterations. There are vari-

ous tuneable parameters to control the sloshing and improve the reliability of con-

vergence and this is discussed in depth with respect to the clay mineral models

in Chapter 5. Generally speaking, DM is reliable for ‘reasonably sized’ insulators

where there is a well-defined band gap, which effectively stabilises orbital occupancy.

EDFT is useful where the band gap is small and for metallic systems where the

Fermi level of the Brillouin zone is comprised of orbitals with varying occupancy.

The EDFT algorithm depends on the creation of a projected functional that depends

only on the orbitals rather than their occupancies [41]. The evolution of the orbitals

towards the groundstate is decoupled from their occupancy while maintaining or-

thogonality and conserving charge. The updated charge density then recombines

the occupancies with the wavefunctions, which is then followed by updating the po-

tentials. Thus, for every iteration, n(r), ψi and all potentials are updated creating

a very tight self consistency between all elements of the Kohn-Sham Hamiltonian,

thus, EDFT is an extremely robust minimisation method. It is also variational

unlike DM, which is not. The reliability of EDFT comes at a cost of increased com-

putational time, nevertheless, it became the minimisation method of choice in the

clay mineral studies, for reasons discussed in-depth in Chapter 5.
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2.5.4 Beyond the groundstate charge density

It is important that the range of trial wavefunctions encompasses those of the

groundstate wavefunction or the true groundstate will not be located. For this

reason the coefficients of the initial trial ψi are randomly generated. Also, even in

systems where there is a band gap, it is advisable to include some empty bands in

the model to ensure the groundstate is fully spanned.

Each iteration updates the charge density and the cycle continues until conceptu-

ally, Hψi(rnew )(r) = εiψi(rold )(r); computationally the limiting factor is En−En−1 ≤

∆� i.e. where the energy difference between two successive iterations is no larger than

the energy convergence criteria, ∆�. When the convergence criteria has been met

for two to three SCF cycles, the final charge density is the groundstate density for

that particular configuration of atoms.

2.5.5 Geometry Optimisation

Locating the groundstate of a system where the ions and electrons are in their min-

imum energy configuration, is a straightforward matter of geometry optimisation.

The SCF iterations are repeated following a shift in the atomic positions. The con-

vergence criteria for the electronic groundstate still apply per SCF iteration, as well

as convergence criteria applicable to the geometry per SCF cycle, which are often

energy and force tolerances.

The Hellman-Feynman (H-F) Force Theorem provides the directional guide for

the change in ionic positions and the calculated force on the nuclei [42]. The force

on an ion is given by the derivative of the total energy with respect to the position

of the ion i.e.

FI = −
dE

dRI

, (2.39)
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providing the wavefunctions are eigenstates of the Kohn-Sham Hamiltonian, i.e.

FI =
∂E

∂RI

−

�

i

∂E

∂ψi

dψi

dRI

−

�

i

∂E

∂ψ∗
i

dψ∗
i

dRI

. (2.40)

In a fixed ionic configuration, the electronic structure is relaxed to its groundstate

— where the ψi are the eigenstates — and then the forces on the ions are calculated.

The ions are then moved along the directions of the H-F forces and the electronic

structure is relaxed to its groundstate for the new configuration, beginning the new

SCF cycle with the wavefunctions obtained from the previous ionic configuration.

This cycle continues until the residual forces on all atoms are less than a specified

tolerance. As the forces are sensitive to first order errors in ψi, it is more difficult to

calculate accurate forces than energies, which are sensitive to second order errors in

ψi. Consequently, the force convergence criteria used in the clay mineral studies is

four orders of magnitude higher than that used for the electronic structure energy

convergence and three orders of magnitude higher than that used for the geometry

energy tolerance.

Using planewaves has the advantage that Pulay forces do not have to be consid-

ered. They are a mathematical artefact of the method of self-consistent solutions,

arising due to a change in the basis set on relaxation of the ions. The difference

in the potentials caused by a change in ionic configuration from one iteration to

the next creates an additional term in Equation 2.40, which is the derivative of the

basis set with respect to the position of the ions. This term causes an instability

in the variational force, which is corrected by the frozen cores of the pseudopoten-

tial approximation and, as was shown by Scheffler, Vigneron and Bacheret [43], by

the basis set including its own derivatives, a criteria fulfilled by a planewave basis set.

2.5.6 Calculating Stresses

If the lattice parameters as well as the positions of the ions are allowed to relax, the

shape of the unit cell is able to change; the extent to which this affects the total
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energy of the system is contained within the stress tensor. Stress is an internal bulk

property caused by external pressure and is calculated by considering the strain on

a system. If the lattice vectors a,b, c are written in terms of the identity matrix, I

and a matrix X then the effect of an applied strain ε on the shape of the unit cell

is given by

X
�
= (I + ε)X . (2.41)

The stress tensor, σαβ is then given by

σαβ =
1

Ω

∂E

∂εαβ

, (2.42)

where α, β are the labels for the x, y, z directions and Ω = a · (b× c) [44], i.e. the

volume of a unit cell. The paragraph describing artefactual Pulay forces also ap-

plies to artefactual Pulay stresses, i.e. when using a planewave basis set, they are

non-existent.

2.5.7 Geometry Optimiser

Geometry optimisation uses the stress and strain calculations in its minimisation

routine. When the lattice parameters are allowed to relax, it is the enthalpy of the

system that is minimised where the enthalpy is given by H = E +pΩ where E is the

total energy, p is the applied pressure and Ω is the volume of a unit cell as described

above. If X describes a position vector, then the force vector is given by [45]

F = −
∂H

∂X

��
p

, (2.43)

whose strain components, ε are

f (ε) = −(σ + pΩ)(1 + εT )−1 , (2.44)
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where σ is the stress at X

σ =

�
∂E((1 + ε

�
)h)

∂ε�

�

ε
�=0

, (2.45)

where the strain tensor stretches a reference configuration h0 onto h = (1 + ε)h0.

The remaining 3N components of F are given by

F = (f (ε), gf1, . . . , gfN)T , (2.46)

where g = hT h and N is the number of atoms in the unit cell. Essentially, F is a

multivariable function whose minima can be found by a quasi-Newton minimisation

method such as Broyden-Fletcher-Goldfarb-Shanno (BFGS), which is the geometry

optimiser of choice for all of the calculations in this thesis. For small displacements

from the minimum, the energy surface is quadratic and can be described by the

second derivatives of the energy (the Hessian, A) with respect to small displacements

i.e. δH = 1
2(X−Xmin) · A(X−Xmin). A is not known, so, after an initial guess

successive iterations approach Xmin according to

Xi+1 = Xi + λ∆Xi (2.47)

∆Xi = HiFi , (2.48)

for H = A−1; λ is the step length determined by an approximate line minimisation

along step direction ∆Xi. Further details can be found in reference [45].

As the size and shape of the unit cell changes during geometry optimisation,

errors can be introduced into the computations due to the effect on the size of

the planewave basis set. This basis set size is dependent on the reciprocal lattice

length via the boundary conditions established in Section 2.2.3, hence a change in

lattice length introduced during the relaxation of the lattice can change the size of

the planewave basis set. This can be addressed by either keeping the number of

planewaves fixed in which case the variational principle still applies and the mini-

mum sought is the minimum enthalpy, however, the cut-off energy varies. The other
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alternative is to fix the cut-off energy allowing the number of planewaves to vary,

which breaks the variational principle and looks instead for zero force and stress

rather than minimum enthalpy. All of the calculations in this thesis have used

the latter method on variable cell optimisations as this retains consistency between

models, i.e. the upper bound on the degree of description applies to each, due to the

employment of the same cut-off energy.

2.5.8 Convergence in General

When investigating a system it is important to decide which are the features of

interest, in order to converge computations with respect to these features. In the

clay mineral models, the energies are important in so far as the energy differences

between like-configuration models are used to discriminate between relative states,

e.g. a lower relative energy indicates greater stability. Absolute energies of systems

are absolutely meaningless in this study. Another important feature of the clay

mineral models is relative, minimum energy configurations to determine the reac-

tant and product systems of a chemical reaction. For this feature, the forces, as well

as the energies are converged. By comparing like-systems, many of the potential

errors due to ‘poor’ convergence criteria are cancelled out, as long as the systems

are investigated consistently. ‘Poor’ in this context can adopt any meaning from too

low a cut-off energy, to the forces being too lax. This method of comparing similar

systems is especially important when working in relatively unexplored territory, such

as that inhabited by the clay mineral models. There are so few of these particular

DFT studies in existence for guidance, that, some other method of comparison is

required, hence the comprehensive adoption of this ‘like-models’ method.

2.5.9 Fast Fourier Transforms

Fast Fourier Transforms (FFT) are used within CASTEP to switch between recip-

rocal and real space to optimise calculations in their physical representations. The
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kinetic energy, Hartree potential and local pseudopotential have diagonal represen-

tations in reciprocal space, therefore it is most efficient for them to be minimised in

this space, whereas the exchange-correlation operator is diagonal in real space. FFT

allows for efficient, computationally inexpensive switching between the two optimal

environments.

2.5.10 Energy Cut-off Convergence

An energy cut-off is used to fix the number of planewaves in the basis set, rather

than a straightforward option of choosing the number of planewaves as the former

method ensures the reproduction of the optimal number of nodes when the cell size

changes, such as during a total-cell relaxation. The energy cut-off for planewave sys-

tems is usually tested by examining the convergence of energy differences between

two like-systems. The method for the clay mineral models is described in Chapter

3. The theory behind this method is robust because energy differences between sys-

tems mainly arise due to different chemical bonding, which is external to ion core

regions. An increase in cut-off energy will increase the number of planewaves, which

will increase the accuracy of the description of the ion cores. As long as an increase

in the number of planewaves does not increase the charge density in the bonding

region, an additional number of planewaves increases the energy per atom of the

systems by a constant amount, hence the energy differences remain the same.

Within CASTEP there is a standard grid size used to determine the points at

vectors r where the wavefunction is evaluated when the cut-off energy is chosen.

These points coincide with the Fourier coefficients of the wavefunction. To calculate

the charge density, which is the sum of the square of the wavefunctions, a grid size

of half the spacing of the standard grid is used and is called the coarse grid. The

charge density for ultrasoft potentials is composed of two parts, a softer part which

is the sum of the square of the wavefunction amplitudes and a harder part, which

describes the augmentation charge and is ‘harder’ as the wavefunctions are more

oscillatory. The coarse grid describes the soft density and, practically has spacing
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1/1.75 of that of the standard grid due to ignoring some of the contribution from

the small, high-frequency components of the soft density.

The description of the augmentation charge of the ultrasoft pseudopotentials

requires a finer grid (in real space) due to its high-frequency components. This

grid is the fine grid and by default has the same scaling as the coarse grid. The

GGA exchange-correlation functional also has high-frequency components even in

the norm-conserving pseudopotentials, so it is possible that some adjustment of grid

scale may be required in this case as well as within the ultrasoft approximation. It

is possible that using a closer grid spacing, which corresponds to including more

Fourier terms of a wavefunction, can reduce the cut-off energy requirement. In the

clay mineral studies, the default coarse grid of 1.75 was found to be adequate for the

study of Chapter 3 and of 2.0 for Chapters 4 and 5. An investigation not recorded

in this dissertation, involving a different ultrasoft pseudopotential, showed an im-

provement in convergence to a greater number of decimal places when the coarse

and fine grid scales were adjusted. This implies that it is a very useful auxiliary

convergence parameter and the time spent investigating it could reduce the cut-off

energy and hence increase overall computational efficiency.

2.5.11 Mulliken analysis

Throughout the clay mineral studies, a means of comparing valence charge and spin

was required, to determine trends such as the population of particular atoms and

how this changes in various environments. The analytical tool of choice is Mullikens

population analysis, a method of calculating charges based on the population of

linear combined atomic orbitals (LCAO) bases [46], [47], [48], [49]. As planewaves

and not LCAO are the choice of basis set in CASTEP, a means of projecting the

eigenstates onto atomic orbitals was required. This was implemented in CASTEP

by Segall et al [50] based on the method of Sanchez-Portal [51].

Sanchez-Portal provided the link between methods using LCAO and those us-
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ing planewaves. Where planewaves are essentially delocalized, atomic orbitals are

localised and allow for the quantification of atomic charge, orbital population, bond

charge and charge transfer via population analysis. Planewaves offer a means of

providing a well optimised basis set through the pseudo-atomic orbitals generated

from the pseudopotentials. However, these atomic orbitals form a non-orthogonal

basis set, inferring greater transferability between environments. Essentially the

eigenstates of the Kohn-Sham Hamiltonian are projected onto the pseudo-atomic

orbitals. The quality of this projection is measured by the spilling parameter given

by [51]

S =
1

Nk

1

Nα

Nk�

k

Nα�

α=1

�ψα(k)|(1− P (k))|ψα(k)� , (2.49)

where Nk and Nα are the number of calculated points in the Brillouin zone and the

number of bands respectively; ψα(k) are the K-S Hamiltonian eigenstates; P (k) is

the projector operator. Further details can be found in Sanchez-Portal’s work [51].

The essence of the projector method is that the spilling parameter, S measures the

difference between the eigenstates of the K-S Hamiltonian and their projection onto

the atomic basis. S varies between 0 and 1 where 0 is a perfect projection and

1 describes orthogonality between the pseudo-atomic orbitals and the K-S eigen-

states. For groundstate properties such as the total energy, geometry and electron

density describing bonding, all properties studied in the clay mineral models, occu-

pied eigenstates are required. Excited and optical properties require an inclusion of

some of the lowest unoccupied states.

The Mulliken analysis which turns the projection of the planewaves onto the

pseudo-atomic orbitals, into quantified charges per atom, proceeds as described in

Mulliken’s work [46], [47], [48], [49]. Essentially the charge per atom is obtained from

the weighted total of the product of the density and overlap matrices and the in-

terested reader is advised to consult the aforementioned references for further details.

Mulliken analysis is a very quick post-processing calculation as it uses informa-

tion already obtained in the energy minimisation. It is widely acknowledged that
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Mulliken population analysis cannot provide physically meaningful absolute magni-

tudes of atomic charges, due to the sensitivity of the results to the choice of basis

set. However, Mulliken analysis is very useful when considering relative values, as

demonstrated by Sanchez-Portal [52] in examination of the ‘... redistribution of

charge and bonds ...’. This is exactly the application of Mulliken analysis in the

clay mineral studies, where charge and spin comparisons have been made between

like-systems. This, together with relaxed geometries and the occupation of the Fermi

levels are used to draw conclusions about the relative chemical states of reactant,

products and intermediates in Chapters 3 and 4 and relative reduction in Chapter 5.

Although within the studies presented in this thesis, the Mulliken charge parti-

tioning was deemed suitable for analysis, if, in future studies ‘...meaningful charges

that conform to chemical experience..’ [53] are sought, the Hirshfeld partitioning

scheme [54] would be more appropriate. This is based on electron density rather

than the spatial extent of basis sets, as in the Mulliken scheme. Hirshfeld mea-

sures the flow of electron density from an initial state to the final SCF converged

molecule, measuring changes of charge density or deformations, with respect to an

initial charge density of a ‘promolecule’. As it is the deformation density that is

important, the exact shape and size of atomic regions are not critical. Given that

the deformation density is the difference between the molecular and the unrelaxed

atomic charge densities, careful consideration would need to be given to the initial

configurations of unrelaxed, like-models. That is, it would be important to deter-

mine how much the deformation density depends on the state of ‘unrelaxedness’ of

the initial configuration. This would be an interesting investigation, but unfortu-

nately time has not allowed for it in this thesis.

2.5.12 Parallel Computing

All of the calculations done for this thesis were processed on either of the following

parallel computers.

HECToR — UK’s high-end computing resource, funded by the UK Research Coun-
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cils. It has 44000 cores, each at 2.1GHz, 1.3Gb per core.

Hamilton — Durham’s ITS High Performance Computing cluster. It has 1792 cores,

each at 2.4GHz, 448 cores at 6Gb per core and a further 1344 cores at 3Gb per core.

Figure 2.7: Calculation time with cut-off energy.

Each computation in the following chapters (apart from the wüstite study in

Chapter 3) used at least sixteen cores as this was found to be the lower bound

for optimum speed. As can be seen in Figure 2.7 the computational time grows

as the square of the cut-off energy. Figure 2.8 illustrates the relationship between

the number of k-points, symmetry and calculation time. Almost all of the models

within this thesis do not require more than two k-points and have no symmetry

operations other than the trivial identity, consequently there are few examples of

k-point tests recorded. However, in cases (other than within this thesis) where more

than two k-points are required, it is often most efficient to use the number of cores

corresponding to the highest common factor of k-points and cores per node. For

example, for nodes containing 4 cores where 15 kpoints are required, the optimum

choice for k-point parallelisation would be for 15 cores distributed over 4 nodes.

This is assuming that the communication saturation time between the cores has not
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Figure 2.8: Calculation time with number of k-points for a silicon crystal, where
symmetry operations were applicable, reducing the calculation time by an order of
magnitude.

been reached. If it has, then either 5 or 3 cores would be more efficient, i.e. the

number of cores matching the factors of the number of k-points. This is assuming

that the memory requirements per node are within their limits.

The aim of this chapter was to provide some background theory and methodol-

ogy used in the investigation of the electronic structure of materials. It is far from

exhaustive in its breadth and depth but the references contained within, should

provide sufficient guidance as to where further theory can be found.

The following chapter is the first of three investigations into clay mineral models

and their gallery guests and begins with a description of the clay models and their

specific terminology.



3
The Role of Clay Minerals in Oil Forming

Reactions

3.1 Introducing Clay Minerals

Before launching into the study itself, a brief introduction is required concerning

some aspects of the materials modelled and the terminology used to describe them.

As mentioned in Chapter 1, clay minerals are the focus of all of the electronic struc-

ture investigations described in this thesis, and, although probably everyone would

know in general terms what is meant by the word ‘clay’, fewer people would be

familiar with specific clay mineral terminology. Therefore, this brief introduction is

designed to equip the reader with the necessary background information required

for the easy digestion of the remainder of this work.

46
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Figure 3.1: Left — Bulk kaolinite [55], right — atomic structure of kaolinite layer
[56], [57].

Clays are the products of weathered and decomposed igneous rocks [58], where

‘igneous’ describes one of the three types of rocks on Earth. Clays contain clay

minerals of several groups such as kaolin [5], illite [5] and smectite [5] where these

terms describe particular properties of the clay minerals. An example of a clay min-

eral in its bulk form [55] and its atomic structure [56], [57] are shown in Figure 3.1.

The clay minerals of focus in this manuscript are smectites — from the Greek word

smectos for ‘soap’ — which includes montmorillonite, pyrophillite and nontronite to

name a few. The smectite group encompasses clay minerals that are composed of

layered, planar sheets of silicates, which is silicon occupying a tetrahedral environ-

ment surrounded by oxygen, forming hexagonal siloxane rings [5]. ‘Layered silicates’

is given the one word description ‘phyllosilicates’, where ‘phyllo’ is from the Greek

word phyllon for leaf, as clay minerals are composed of many stacked layers or leaves.

Figure 3.2: Far left: octahedral sheet of siloxane; centre: tetrahedral sheet of alu-
minium oxide; right: two clay mineral layers comprised of 2:1 combination of the
siloxane and aluminium oxide shown to the left. Colour scheme: red: oxygen; yellow:
silicon; pink: aluminium; white: hydrogen.
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The tetrahedral phyllosilicate sheets conjoin an octahedrally coordinated metal

oxide sheet to form a clay mineral layer. The ratio of tetrahedral to octahedral de-

scribes this coordination e.g. pyrophillite is a 2:1 dioctahedral phyllosilicate, which

means there is one octahedral metal oxide sheet sandwiched between two tetrahe-

drally coordinated silicate sheets, as seen in Figure 3.2. There are often isomorphic

(‘same shape’) substitutions of the metal atoms in either or both sheets leading to

an overall negative charge on the layer. This attracts charge-balancing cations such

as Na+ or Ca2+ into the space between the layers i.e. into the ‘interlayer space’

or ‘gallery’. The interlayer cations or ‘gallery guests’ are exchangeable cations as

they may trade places with other cations in the layer, increasing the difficulties of

definitively identifying a clay mineral’s constituent atoms.

The layered nature of clay minerals is responsible for their swelling property as

the interlayer space can increase and decrease without loss of integrity of the layers.

The large surface area of the layers provides extended, potentially chemically reac-

tive environments and consequently a wealth of subject material for any interested

researcher. The focus of this study is the catalytic nature of the clay mineral, py-

rophillite in a reaction describing the removal of carbon dioxide, i.e. decarboxylation,

in the context of the formation of fossil oil. The following section is a summary and

overview of the study to provide the reader with a general picture before becoming

immersed in the details.

3.1.1 Synopsis

Mineral catalysed decarboxylation reactions are important in both crude oil forma-

tion and, increasingly, biofuel production. In this study decarboxylation reactions

of a model fatty acid, propionic acid, C2H5COOH to an alkane, C2H6 were exam-

ined in an aluminosilicate model of pyrophillite with an isomorphic substitution

of aluminium in the tetrahedral sheet. The choice of clay mineral was driven by

the experiments of Almon and Johns in the 1970s, who published their work on

decarboxylation within clay minerals [10], which described a theoretical, radical,
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decarboxylation pathway based on their experimental results. To date, this theory

has not been either definitively confirmed or refuted and yet the potential benefits

from identifying this pathway resonate today in, for example, the biofuel industry

as will be explained in the Section 3.2. Thus an attempt was made to investigate

decarboxylation from a DFT-planewave perspective as the nature of the clay mate-

rial lends itself very well to periodic representation in two of its three dimensions.

The aim of the DFT study was to determine a suitable environment in which

decarboxylation would be possible, based on the experimental data recorded by Al-

mon and Johns and where ‘suitable’ means feasible at atomistic and computational

levels. So, the model itself needed to be large enough to be representative of the clay

mineral and to accommodate an appropriate interlayer species but not so large that

computations became unfeasible. The exact nature of the catalytic environment

within clay minerals had to be determined as did the atomistic representation of a

dynamic decarboxylation reaction. Added to this were other modelling considera-

tions such as how best to represent the addition of a charged species in the interlayer

space and what constitutes an intermediate in a chemical reaction? The outcome

was the creation of five stages of a decarboxylation reaction, interpreted from those

hypothesised by Almon and Johns, which were allowed to relax in different clay

mineral environments.

Conclusions were drawn from the results of energy differences between models

post geometry optimisation together with analysis of relaxed structures and the rel-

ative occupancies of the frontier/Fermi level orbitals. When the optimum catalytic

environment had been identified, it was used as the basis to look at two varieties

of iron-bearing or ferruginous clay minerals, variations of a type of clay mineral

investigated by Almon and Johns and believed to be promoters of radical reactions.

The inclusion of iron into the models brought with it further electronic structure

modelling considerations, which lead to the investigation of the Hubbard parameter

by way of a simple case study of wüstite (FeO). This informed an appropriate Hub-

bard value for use with the GGA functional under which the ferruginous models
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were relaxed and the results examined and compared to those obtained from the

aluminosilicate models.

The study begins with a wide-ranging introduction bringing together the essen-

tial ingredients, namely clays, their role in the conversion of organic matter to fossil

oil and a comparison of the constituents of fossil oil with those of biofuel crops and

finally, the role DFT has played so far in investigating some of these key ingredients

of decarboxylation.

3.2 Introduction

Both clays and petroleum have played important roles in the development of Western

society from the production of bricks, tiles and pottery to pet litter, drug delivery

agents and catalysts from clays [11] and a carbon-based economy from petroleum.

The wide-ranging use of clays is due to their molecular properties (e.g. molecular

sieve catalysts [59]) and phyllosilicate structure (e.g. adsorbents) where sheets of

aluminosilicate of octahedral (Al) and tetrahedral (Si) coordination are interleaved.

The general form of the octahedral sheet is Al4O8(OH)4 and of the tetrahedral,

Si4O6. Isomorphic substitution often occurs in both the octahedral and tetrahedral

sheets [60] with an ion such as Mg for Al in the octahedral sheet and Al for Si

in the tetrahedral sheet. Substitution by Mg or Al, produces a negatively charged

sheet which attracts cations, if these are hydrated, the clay is a cationic clay e.g.

montmorillonite. The hydroxyl groups in the octahedral sheet are one of the sources

of Brønsted acid sites and the aluminums which are exposed at the broken edges of

crystals, Lewis acid sites [61]. Although it is widely reported that crystal edges are

sites of greater reactivity than the basal plane [62], the initial choice was to inves-

tigate basal surface reactivity as this is the simpler site to model and has a larger

area for the catalysis of a decarboxylation reaction. The issue of edge versus lateral

site reactivity has been removed by using a comparative study of four similar, basal

plane, clay environments.
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The presence of catalytic sites in clays is an important property in the forma-

tion of fossil oil. The layered leaf structure of clay allows the adsorption of organic

matter [63]; during kerogenization decarboxylation is catalyzed, producing the hy-

drocarbons [64] of petroleum.

Petroleum has played a major role in western society since the 1850s from

the first stages of oil and gas exploration [65] to our current state of dependency.

Oil exploration peaked in the 1960s and 1970s with the aid of experimental data

which helped in the identification of oil reservoirs and improved the extraction pro-

cess [65]. At the same time, experimenters were identifying the possible origins of

petroleum and an examination of fatty acids (RCOOH) and hydrocarbons such as

alkanes (of general formula CnH2n+2) showed the chemical and structural similarity

between biologically derived organic material (fatty acids) and petroleum (paraf-

fins/alkanes/hydrocarbons) [66]. There are several different routes by which a fatty

acid can become deoxygenated to an alkane:- decarboxylation, decarbonylation and

hydrogenation. Decarboxylation involves the release of carbon dioxide, decarbony-

lation involves the release of carbon monoxide and hydrogenation typically involves

saturation with hydrogen atoms, which removes oxygen as water. Further experi-

ments indicated the formation of fossil petroleum from biologically derived fats and

fatty acids (RCOOH) involves a conversion to a reactive intermediate before conver-

sion into hydrocarbons [66]. Geological evidence suggested the conversion of organic

matter into petroleum occurs in marine environments at temperatures conducive to

decarboxylation of fatty acids via a reactive intermediate [67]. In 1975, Almon and

Johns [10] theorized a decarboxylation pathway based on experimental results and

came to the conclusion that there is an organic free radical intermediate. It is this

hypothesis that forms the basis of our investigation.

The age of near sole reliance on fossil fuels to meet most of our energy needs

may be drawing to a close by dint of climate change, dwindling supplies of high

quality, ‘easily’ accessible sources and worldwide energy security issues [68]. The
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release of fossil bound carbon dioxide into the atmosphere as a result of using fos-

sil derived oil is strongly correlated with climate change and, at the same time as

oil reserves are diminishing, the threat to energy supplies by global geopolitics is

increasing. One of the solutions to both of these problems is to locally grow veg-

etable oil bearing biofuel crops such as rapeseed, soybean and algae. The fatty acids

in these crops, usually in the form of triglycerides, closely resemble the alkanes of

fossil oil, consequently, there is potential for their conversion into high grade biofuel.

The biofuels in current use are mostly first generation using feedstock such as

sugar and starch to produce bioethanol, which can be used as a petrol substitute

or blended with it, and oils from, for example, rapeseed and sunflower crops [69] to

produce biodiesel. Biodiesel can be used as a direct replacement for diesel-type fuels

although the lipids usually undergo transesterification into fatty acid methyl esters

(FAMEs) producing oxygenated ‘biodiesel’ which can be integrated with fossil diesel

but only to a concentration of 5% [69] before engine modifications are required for

long term use at higher biofuel concentrations. As these crops are competing for

the same land as food crops, these biofuels do not offer a viable replacement for

fossil fuels. Another drawback of using FAMEs is their use of methanol, itself a

fossil-derived chemical, in as, at best, a ratio of 6 : 1 methanol : sunflower [68].

As reported in the King review, [70] the complete life cycle of potential fuels from

origins to use must be considered when calculating carbon impact.

Second generation biofuels that produce ethanol, such as Switchgrass and other

tall perennial grasses, are currently under investigation [69] as they have the poten-

tial to address some of the problems of the first generation biofuels. For instance,

they can be grown in areas of soil erosion [69] and the whole plant can be used in

several different processes resulting in an overall positive fossil fuel energy balance.

A further development applicable to both the first and second generation fuels that

produce lipids, such as soybean and algae respectively, is to deoxygenate them to

produce green diesel. The triglycerides and fatty acids are upgraded to have a car-

bon number and molecular weight similar to the molecules found in fossil fuels [71]
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and therefore are a direct replacement for fossil-derived diesel.

One of the processes of upgrading to produce green diesel is hydrodeoxygena-

tion, and yet, using hydrogen to produce biofuels is somewhat counterproductive as

the hydrogen itself is derived from fossil fuels. Therefore, to be able to control the

deoxygenation process in the guise of decarboxylation is important industrially for a

variety of reasons [72]. Furthermore, to improve the efficiency of green diesel produc-

tion, a detailed understanding of the catalysts and their properties is essential as this

would enable the control of catalyst selectivity and hence task specificity [73], [74].

Just as the experiments and tests of petroleum’s properties in the early days of

oil exploration lead to a deeper understanding of the location of oil reserves [65], so

a thorough examination of the conversion process of the precursors of hydrocarbons

into petroleum will enable the efficient production of alternative sources of diesel-

like biofuels. Such an examination infers an understanding at the atomic level of

deoxygenation pathways, in particular decarboxylation. Coincidentally, computa-

tional processing capacity along with improved algorithmic and theoretical methods

are currently such that it is possible to carry out first principles investigations of

ever larger systems. This now allows for a thorough investigation of the conversion

of a fatty acid into a hydrocarbon chain involving electronic processes and hence

quantum activity, by an ab initio, electronic structure simulation of decarboxylation

in a periodic system.

Previous DFT studies involving clays and/or fatty acids have looked at the struc-

ture of clays [75], the catalytic activity of anionic clays [76], the vibrational and

conformational properties of fatty acid methyl esters (FAMEs) using the B3LYP

density functional [77], the attachment of the COOH group of fatty acids on metal-

lic monolayers [78] or, using a Gaussian 3 variation, the combustion pathway of

methyl butanoate to find a CO2 production pathway [79]. At the time of writing,

the most recent DFT study of clays [80] investigating the adsorption of volatile

molecules on clays, acknowledges the current deficit of quantum-chemical, periodic
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cell studies of clays and molecules in general, other than those involving cluster

models [11], peptides [81], [82] or amino acids [83].

In this study of a bulk, periodic system, the interaction between a clay cata-

lyst and a fatty acid in a decarboxylation reaction is investigated; with the aim

of addressing various general aspects of a clay mineral model such as: how can a

non-dynamic simulation investigate decarboxylation? What is the nature of the cat-

alyst? How does the electronic structure representation of the clay surface affect the

results? How does the role of charge, ionic substitution and counter ions affect the

catalytic properties of clay? The following sections of this chapter proceed by intro-

ducing the simulation methods and models used, examining the results, discussing

their implications and drawing conclusions from these. There then follows a section

on ferruginous clay minerals, how these models necessitate the use of GGA+U [84]

and the difference this functional makes to the computational results.

3.3 Computational Details

Pyrophillite is a 2 : 1, dioctahedral, uncharged, aluminosilicate clay. A unit cell

of pyrophillite (Al2Si4O10(OH)2)2, space group P1̄ — see Appendix A for lattice

dimensions and atomic coordinates — was constructed by removing the potassi-

ums from muscovite, adding four coordinated hydrogens to form hydroxyl groups in

the octahedral sheet and substituting an aluminium for a silicon on the tetrahedral

sheet surface, see Figure 3.3. The aluminium substitution is thought to be the site

of catalytic activity as it has the potential to be an electron-accepting site [85].

The CASTEP [35] code was employed, with a planewave basis set within the den-

sity functional theory (DFT) formalism [18], [86]. Convergence testing for kinetic

energy cut-off energy was done by creating two small sample models of pyrophillite,

that is, two cells containing a representative sample of pyrophillite, plus propionic

acid and sodium where the samples differed only in the position of Na. This ensured
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Figure 3.3: A single unit cell of pyrophillite with an aluminium substitution in the
tetrahedral sheet and guest molecule of a simple model fatty acid, propionic acid.
See Table 3.3 for geometry optimized dimensions. Oxygen:red; hydrogen:white;
aluminum:pink; carbon:grey; silicon:yellow. This colour scheme, where relevant,
applies to all subsequent figures in this chapter. The oxygens of two of the hydroxyl
bonds are numbered for later reference. The dashed line is the periodic boundary
of a unit cell.
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that the pseudopotentials of all species were tested against basis set size. The point

where the energy differences between the two samples converged to within the cho-

sen convergence criteria, indicated the optimal kinetic energy cut-off as illustrated in

the example shown in Figure 3.4. 550eV gave an energy difference in total energies

of less than 0.04eV per unit cell for higher cut-offs.

A unit cell was then tested for k-point convergence ranging from one k-point

at the gamma point (0, 0, 0) to five k-points varying with respect to (1
3 ,

1
3 , 0) with

the z-direction fixed at zero as this was the largest dimension of the unit cell. The

Brillouin zone integrations were performed on a grid containing two k-points giving

an energy difference of 0.03eV per unit cell between two and four or five k-points

as shown in the example shown in Figure 3.5 and, as this is within the energy

cut-off criteria, two k-points were adequate to converge the calculation at a volume

appropriate for these simulations.

Cross-boundary, periodic effects were tested using supercells containing one

molecule of the reactant (propionic acid) and separately, the product (C2H6 alkane

plus CO2), in supercells up to four unit cells wide in the y-direction. This showed

that the greatest energy difference between a single unit cell and an nth-sized super-

cell was 0.01eV, again within the cut-off energy bound, hence a single cell was used

throughout this study. The question of cross-boundary effects for sodium were more

difficult to tackle because chemically, Na is attracted by the Al substitution in the

tetrahedral sheet, so, if a unit cell contains one Al substitution and one Na, does a 2-

cell supercell contain two Al substitutions and two Na? If it does, then the Coulomb

interaction between the Na ions may be affecting the results; this interaction might

be larger than that between periodic images of the guest species. However, lying

between neighbouring Na in the supercells is the guest species, which, in this in-

stance reduced the Coulomb effect between Na, resulting in the conclusion that a

single unit cell was sufficient to produce results converged to 0.01eV. The subject of

the interaction between periodic images of Na ions in the absence of other gallery

guests, is revisited in Chapter 5.
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Figure 3.4: Example of pseudopotential convergence testing to obtain the kinetic
energy cut-off. Top shows the total energies calculated after single point energy
calculations for two models which differ in the atomic coordinates of one atom.
Bottom shows the convergence of the energy difference between these two models.
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Figure 3.5: Example of converging the number of k-points with a range of single
point energy calculations.

The density functional used was the generalized gradient approximation (GGA),

specifically that of Perdew, Burke and Ernzerhof (PBE) [21] as this describes molec-

ular bonding to a greater accuracy [22] than does the local density approximation

(LDA), due to the difference in electron density within a molecular environment.

Molecules have regions of low electron density which LDA struggles to describe

well, as explained in Chapter 2. Also, the electron density of molecules can vary

rapidly, which is an environment ill-suited to an LDA description as it originates

from a smoothly varying density. PBE ultrasoft pseudopotentials [29] were used

as these are consistent with the PBE exchange functional and their configurations

are shown in Table 3.1. The (geometry) optimizer was Broyden-Fletcher-Goldfarb-

Shanno (BFGS) and the electronic method was ensemble density functional theory

(EDFT) [41]. Further convergence details per BFGS iteration are as follows: elec-

tronic energy tolerance: ≤ 10−6 eV per atom; geometry optimisation:- energy change

per ion: dE/ion ≤ 10−5eV; maximum force: |F |max ≤ 0.04 eV/Å; change in dis-

tance: |dR| ≤ 0.001Å.

The cell and contents were geometry optimized under an external anisotropic
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Element Configuration
Al 3s23p1

C 2s22p2

H 1s1

Na 2s22p63s1

O 2s22p4

Si 3s23p2

Table 3.1: Electronic structure of the ultrasoft pseudopotentials (GGA-PBE).

pressure of 0.05GPa, which was applied in the z-direction only. It is important to

use a small, non-zero pressure when relaxing the cell to prevent unbounded cell ex-

pansion in the z-direction, due to the ultimate groundstate being for the clay layers

to be sufficiently separated such that effectively zero potential exists between them.

This would have occurred because the important van der Waals interaction, which

is the source of attraction between the clay layers in physical clay systems, was not

available in CASTEP at the time the investigations were carried out.

Both the fatty acid and the alkane plus CO2 were optimised as isolated molecules

to gauge the volume of space they required to achieve relaxed configurations. This

helped when expanding the optimised pyrophillite cell in the z-direction for inclu-

sion of the gallery guests, plus, as the latter were already optimised structures,

added to computational efficiency. Cell parameters a and b and all angles were then

constrained allowing only the c-parameter and cell contents to relax, with the in-

clusion of a molecule of propionic acid, positioned as illustrated in Figure 3.3. The

c-parameter converged to 14.5Å and all lattice parameters were then fixed through-

out the remainder of the study, allowing the relaxation of the contents only.

According to Almon and Johns [10] a general fatty acid is converted to a hy-

drocarbon and a carbon dioxide molecule within a phyllosilicate; for this study, the

fatty acid chosen was a simple model with a short hydrocarbon chain, propionic

acid. Longer hydrocarbon backbones dissipate charge along their length [87], [88] as

shown for two molecules, C2H5COOH and C5H11COOH in Figure 3.6. A longer hy-

drocarbon chain molecule would require a larger unit cell to accommodate it. Also,
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as the carboxyl head is a reactive site in decarboxylation, concentration of electron

density should produce optimal conditions for a reaction as well as optimising com-

putational efficiency, hence, a short chain length was used.

To determine the catalytic effects of different surfaces (see Table 3.2) on decar-

boxylation, the total energy obtained after geometry optimisation was taken as a

guide, where the product was expected to have a lower energy than the reactants if

decarboxylation was favoured, as the lower total energy of a system indicates greater

stability at zero temperature.

Model Set Description
1 Al substitution with zero applied charge
1a Al substitution with range of applied charge
2 Al substitution with −1e applied charge
3 No Al substitution with no applied charge
4 Na ion added to Al substitution with no applied charge

Table 3.2: Model Sets as illustrated in Figures 3.7 and 3.8

The first consideration when investigating the clay/reactant and the clay/product

reactions was the effect of charge on the system. It is feasible to consider that the

negative charge on the clay layer created in the tetrahedral sheet by the substitu-

tion of Al3+ for Si4+, is dissipated by a counter ion which may partially or wholly

counterbalance the negative charge per periodic cell, as the counter ion may not be

close to the substitution site but may exist somewhere in the clay so that the net

charge of the bulk system is zero. This is the chemical interpretation of the effect of

a counter ion. The electronic structure interpretation is that a counter ion donates

an electron to the clay layer due to the tetrahedral sheet Al3+/Si4+ substitution.

This donation can be effected in two ways, by adding a counter atom to the periodic

cell or by adding charge to the parameter input file. An applied charge of −1.0e

represents the presence of one counter ion per isomorphic substitution per periodic

cell, whereas an applied charge of 0e represents the counter ion’s absence. The dif-

ference between an input of charge compared to a counter ion being present, is that

in the latter scenario the source of electron donation is localised. Where charge is
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Figure 3.6: Example of the dissipation of charge along the backbone of a hydrocar-
bon with increasing chain length. For clarity, hydrogen is green for this figure only.
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applied, it is a uniform background charge and is non-site specific.

The sets of models investigated are shown in Table 3.2. Each Model Set (apart

from 1a, which involved the reactant and product models only) is based on Figure

3.7 where there are three intermediate stages between the reactant and product as

postulated by Almon and Johns [10]. The DFT perspective is that, if the three

intermediate stages were transition states in a decarboxylation reaction pathway,

then, as the energy surface of a transition state contains a minimum at the saddle

point, these initial configurations would relax to their groundstate geometries, which

would be configurationally equivalent to the initial stages.

Model Set 1 has no counter ion to determine whether its presence is required

for catalysis of decarboxylation. Set 1a involves the reactant and product models

only, with charge applied from −0.25e to −1.0e in steps of 0.25e, to determine the

effect of an increase in electron density. Fractional charge represents the presence

of a counter ion somewhere in the bulk, for example, an added charge of −0.5e

describes one counter ion ‘shared’ between two unit cells. Model Set 2 is the same

as Model Set 1 with the addition of −1.0e to all stages, representing the presence of

one counter ion donating one electron per unit cell. Model Set 3 is where there is

no aluminium substitution, to determine if decarboxylation has any dependency on

tetrahedral sheet substitution. This model is akin to an experimental control. Model

Set 4 includes a sodium ion positioned over the SiO3 ring in the tetrahedral sheet [5]

as shown in Figure 3.8, where the sodium ion is close to the aluminum substitution

and external to the clay surface [89]. The physical presence of a counter ion is, as

previously discussed, the alternative to the addition of charge. Although studies

show that sodium is hydrated [90] pyrophillite is generally considered hydrophobic

on its (001) surface [91], hence water has not been included in this hypothetical

model to decrease modelling complexity and consequently computational time.

All of the models in each set were geometry optimized using the same convergence

criteria described in this section. This was followed by an evaluation of the band
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structure of the relaxed system for examination of the Kohn-Sham orbitals, which

described where the electrons were positioned which were most likely to be involved

in a reaction, on the application of energy. The results from these calculations are

reported and discussed in the following section.

3.4 Results and Discussion

3.4.1 Clay Structure

Table 3.3 shows the structural parameters of the clay as determined by the elec-

tronic structure calculations, after geometry optimization and without a reactant

or product molecule. They are in very close agreement with experiment (1% ) [92]

and another DFT study (1%) [93]. The subsequent calculations use these lattice

parameters apart from the c length which was allowed to relax when a molecule

of propionic acid was included in the model and subsequently fixed at an optimum

length of 14.5Å, as this met the BFGS convergence criteria for the pyrophillite model

plus gallery guest, as well as for the isolated gallery guest species.

This study DFT (PBE) Experiment [92] Other DFT (PB86a) [93]
a = 5.22 α = 90.87 a = 5.18 α = 90.00 a = 5.119 α = 90.77
b = 9.07 β = 100.00 b = 8.96 β = 99.9 b = 8.911 β = 100.96
c = 9.73 γ = 89.65 c = 9.97 γ = 90.0 c = 9.065 γ = 89.91
a: A semi-empirical functional with a fitted parameter for the exchange part.

Table 3.3: Lattice parameters of a unit cell of pyrophillite. Lengths are in Å and
angles in degrees.

3.4.2 Effect of charge

The results shown in Table 3.4 indicate that decarboxylation is not likely to occur

for Model Set 1, (this is equivalent to the system with zero charge in Model Set 1a)

as the product energy is higher than the reactant energy by 0.08eV which, at room

temperature with an available kBT of 0.025eV, suggests 100% conversion from the

product to the reactant. The products become lower in energy than the reactants
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for charges of −0.75e and −1.0e suggesting that the larger the negative charge of

the system and hence the higher the electron density, the more stable the product

becomes, thus increasing the feasibility of a decarboxylation reaction. The total en-

ergy of the in vacuo models decreased with an increasingly negative applied charge

but there was no spontaneous decarboxylation indicating the requirement of a cata-

lyst for this reaction. That is, on relaxation of the atomic coordinates, the reactant

did not relax to the product configuration. Based on the original assertion that the

relative energies of the reactant and product models would indicate the probability

of decarboxylation within a Model Set, these results initially suggest that the pres-

ence of the negative charge in the aluminium substituted system is necessary for

decarboxylation to occur.

The five postulated stages of decarboxylation as illustrated in Figure 3.7 for

Model Set 2 — where there is an Al substitution — were geometry optimized with

a uniform, non-site specific charge of −1.0e to model the addition of an electron,

which represents the presence of a counter ion somewhere in the bulk material. That

is, the counter ion has donated its electron but the electron-deficient ionic species

is not actually in the same unit cell. The application of charge is throughout the

periodic cell, similar to a jellium model [20]. In each of the intermediate stages,

the initial configurations relaxed to variations of the reactant model although the

relaxed, interlayer species indicate interaction with the clay layer, as seen in Figure

3.8 and in Table 3.5.

Charge (e) Eproduct − Ereactant in vacuo Reactant
0.00 0.084 0.000

−0.25 0.018 −0.088
−0.50 −0.043 −0.194
−0.75 −0.100 −0.354
−1.00 −0.102 −0.557

Table 3.4: Energy differences (eV) after geometry optimisation of charged aluminium
systems (Model Set 1a). The values for the in vacuo (reactant only) models are
relative to zero charge.

The three intermediate stages, as shown in Figure 3.7 further examined the effect



3.4. Results and Discussion 66

of charge by investigating possible interactions between the guest molecules and the

clay. In Model Set 3, where there is no charge addition and no chemical charge deficit

in the tetrahedral sheet i.e. there is no Al substitution, the intermediate stages (1–3)

reverted to the fatty acid with the COOH group lying almost parallel to the (001)

clay surface, see Figure 3.8 and Table 3.5. The optimized results (Figure 3.8) show

the guest molecules positioned halfway between the opposite surfaces of the clay,

indicative of a balanced interaction between neighbouring surfaces, but this does not

lead to any catalysed interaction between the guest and clay host. This adds further

evidence to the assertion that the presence of a tetrahedral sheet, Al substitution,

plus a source of additional electron density are pre-requisites for decarboxylation.

COOH ∠ (001) Angle 0

Model Set Reactant Stage 1 Stage 2 Stage 3 Product
1 25 29 39 46 N/A
2 −12 36 42 53 N/A
3 6 −28 7 −6 N/A
4 30 −7 58 42 N/A

Table 3.5: Relative orientations of the plane of the COO(H) groups to the (001)
surface of the clay where a positive angle is towards the surface and a negative angle
away from the surface; refer to Table 3.2 for description of Model Sets.

3.4.3 Effect of aluminium substitution and counter ions

To test whether the presence of the Al is important for catalysis, the Al ion in the

tetrahedral sheet was substituted for silicon for reactant, intermediate stages and

product models and the atomic positions were allowed to relax to the convergence

criteria detailed in Section 3.3. The results from this, shown in Table 3.6 show

that no-Al substitution lowers the product energy compared to the reactant energy

by 0.22eV, showing that the product is more stable than the reactant in an all-

silicon (tetrahedral sheet) phyllosilicate. However, this is not sufficient information

to definitively state that decarboxylation could happen within these models, as the

findings detailed in Section 3.4.2 attest, where it was seen that the relaxed, interlayer

species in the all-Si models were not interacting with the clay layer. An examina-
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Model
Sets

Reactant Stage 1 Stage 2 Stage 3 Product

1

2

3

4

Figure 3.8: Structures after geometry optimisation. Model Sets 1–4: Al no charge;
Al charged; no Al; Al plus Na counter ion (orange). Each Model Set shows the
structural results after geometry optimisation of the five stages shown in Figure 3.7.
The colour scheme used is the same as that in Figure 3.3.
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tion of the Kohn-Sham orbitals in Section 3.4.4 will provide the electronic structure

detail necessary to draw firmer conclusions, but before this, a brief analysis of the

effect of the presence of a counter ion is examined.

Models Es1 − Er Es2 − Er Es3 − Er Ep − Er

1 −0.151 0.206 0.059 0.084
2 0.021 0.031 −0.006 −0.102
3 −0.054 −0.098 −0.109 −0.223
4 0.136 −0.413 −0.025 −0.159

Table 3.6: Total energy differences (eV) to three significant figures, after geometry
optimisation of various models; refer to Table 3.2 for a description of model sets.
Es1,2,3 is the energy of stage one, two, three and Er,p is the energy of the reactant or
product.

The addition of a counter ion in Model Set 4, tests the effect of the presence of

a cation to counteract the chemically charged Al site. Na is used here as it donates

its 3s electron, leaving Na+1 to exactly balance the chemical −1e charge deficit due

to the Al substitution in the tetrahedral sheet. Sodium is a commonly occurring

cation within phyllosilicate clays [11]. In this case, the clay/product system is lower

in energy than the clay/reactant system by 0.16eV hence decarboxylation result-

ing in a stable product, can occur. An examination of the Mulliken charges on

Na in the following environments: clay-only (i.e. no organic species); clay/reactant;

clay/product; gives values of 1.10e; 1.36e; 1.45e; respectively, illustrating how, in

the presence of the clay layer and organic species, Na increases in charge due to the

donation of electron density.

Table 3.7 shows the difference in the angles of the hydroxyl bonds involving oxy-

gens 1 and 2, (see Figure 3.3) for the four different systems. The all-silicon system

(Model Set 3) hydroxyl bond angles are consistent throughout the five stages due

to the non-interaction between the surface and the guests. The O2-H bond angles

for the charged, Al-substituted system (Model Set 2) are the largest, due to the

distribution of the applied −1.0e charge. There is a difference of over 20o for O2-H

between each of the stages for Model Sets 1 and 4, two Al-substituted models where

the former has no balancing counter ion, but the latter contains Na as the counter
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ion. Although the O1-H bond angles are very similar for the four systems, there is

a marked difference in the O2-H bond angles, due to the presence of the Na counter

ion. This effect should be observable in a Fourier transform infra red (FTIR) [94]

spectroscopy analysis of the OH frequency mode. Therefore these results from the

addition of the interlayer cation have the potential to add to the work done on vi-

brational frequencies seen in cluster models [95].

3.4.4 Analysis of Kohn-Sham orbitals

The analysis so far, of the relaxed structures and energy differences has highlighted

that these are insufficient to draw any firm conclusions about the probability of

decarboxylation. A higher resolution of the analysis tool is required, a call met by

the facility to visualise the Kohn-Sham orbitals as these describe the location of

the Fermi level electrons i.e. those electrons in the frontier orbitals — or highest

occupied molecular orbitals (HOMO), which, if energy is applied to the system, are

the most likely to react. Hence, the presence of Fermi level electrons — visualised as

blue orbitals in Figure 3.9 indicate a relative instability compared to regions devoid

of these orbitals. In this section each Model Set is examined in turn.

In Model Set 1, the hydrogen of the fatty acid remained attached to the clay

surface after geometry optimisation in stages 1–3 as it acted as a counter ion to the

chemically charge -deficient Al substitution. The angle between the plane of the

COO− group and the (001) surface as shown in Figure 3.8 show that throughout

system 1, the COO− group is oriented towards this hydrogen. An examination of

the frontier orbitals (Figure 3.9) show that for the reactant, the occupied Fermi lev-

els reside in the clay surface whereas for the product, the occupied Fermi levels are

in the hydrocarbon and the oxygens in the tetrahedral sheet of the clay forming a

ring around the hydrocarbon, explaining why the product has a higher total energy

than the reactant and is less stable.

In Model Set 2, the addition of the −1.0e charge, which was distributed through-
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Model
Sets

Reactants Products

1

2

3

4

Figure 3.9: Fermi level orbitals (blue shells) of the reactants and products after
geometry optimisation. Model Sets 1–4: Al no charge; Al charged; no Al; Al plus
Na counter ion (orange). The colour scheme used is the same as that in Figure 3.3.
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out the model as a background charge, shows the occupied Fermi level orbitals are

on the C-COOH portion of the fatty acid hence the negative orientation away from

the clay. Although, the intermediate stages also have the Fermi level π-orbitals on

the guest molecules but their COOH groups are oriented towards the clay which

may indicate local energy minima. In the product model, the occupied Fermi levels

are in the clay thus lowering the energy of the product and stabilizing it relative to

the reactant.

In Model Set 3, the Fermi level, π-orbitals are located solely over the guest

molecules in each of the reactant and intermediate stages and over the hydrocarbon

in the product stage, suggesting that there is no interaction between the clay and

the guest molecules. The product energy is lower than the reactant by 0.22eV, hence

the product has greater stability than the reactant within this system, however, the

intermediate orbitals analysis shows the clay and variously oriented guest cannot

interact hence a decarboxylation reaction will not occur.

In Model Set 4, the Fermi level π-orbitals are on the fatty acid and the clay,

whereas in the product model they are solely in the clay with increased occupancy.

The electron from the sodium atom is transferred to the fatty acid and clay and is

then dissipated within the clay layer in the presence of the hydrocarbon and CO2.

Although there is no bonding between the guest and clay in the intermediate stages

there is a transfer of charge which stabilises the product by 0.16eV relative to the

reactant. This is the most feasible model for decarboxylation because the product

has a lower total energy than the reactant and there is electron transfer involving

Na, the fatty acid, the clay layer and the product.

Although the optimal environment for decarboxylation has been determined,

the reaction pathway has not, and the results from the relaxed intermediate stages

suggest it is probably not as hypothesised by Almon and Johns [10].
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3.5 Conclusion

In this study four different model systems of a decarboxylation reaction have been

studied to determine how the application of charge, ionic substitution and the in-

clusion of counter ions affects the catalytic properties of pyrophillite clay. It has

been shown that applying charge to an Al-substituted system appears to produce

favourable conditions for a decarboxylation reaction, but examination of the Kohn-

Sham orbitals shows that the physical presence of a counter ion in an Al-substituted

system produces the optimal decarboxylation environment. This shows that the

theoretical presence of a counter ion (−1.0e applied charge) is not equivalent at the

level of orbital occupancy, to the inclusion of the actual counter ion, which has impli-

cations when using cluster models. Application of charge is often adopted in cluster

models for computational convenience. However, this study shows that electronic

structure detail is different in the counter ion and charge scenarios, hence careful

thought should be given to the effect this may have on the aspect being investigated.

The nature of the catalyst has been determined to be an aluminium substitution

in the tetrahedral sheet, which attracts a counter ion that donates its electron to the

reactant guest and clay. An examination of the Mulliken charges on the sodium ion

shows a relative increase in positive charge from a sodium/clay system — no guest

molecule — to the clay/reactant system to a smaller increase for the clay/product

system, indicating the dissipation of electron charge from the sodium ion to the

clay in the presence of a guest molecule. In this way a decarboxylation reaction is

favoured.

The three-fold analysis of structure, relative energy differences between reactant

and product and examination of the Kohn Sham orbitals lends confidence to the

assertion that the Al-substituted system incorporating the counter ion accurately

describes an environment conducive to decarboxylating a fatty acid. This can be

used as the basis to build more realistic models, which eventually will provide infor-

mation for the efficient production of biofuels. Therefore, the next step using this

model would be to look for transition states between the sodium clay/reactant and
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clay/product models as the identification of transition states is key to determining a

reaction pathway. Within CASTEP there are synchronous transition state searching

functionalities [96], and the implementation of these forms the first part of Chapter 4.

An alternative approach, which forms the remainder of this chapter, is to inves-

tigate another type of clay mineral used by Almon and Johns in their experiment.

Their theoretical pathway involved a radical species, and iron-bearing clay minerals

are important in radical reactions [97], [98], therefore it is a logical step to recreate

the optimum decarboxylation environment using ferruginous clay minerals. Will the

inclusion of radical-promoting Fe change the intermediate stage configurations on

relaxation? Are there any different modelling considerations on the introduction of

Fe? These questions are considered and addressed in Section 3.6.

There are many more approaches possible, using the optimum environment as

the starting point, for example, repeating the calculations using geologically relevant

temperature and pressure; including a hydrated sodium ion; investigating the effect

of other cations such as potassium and calcium and so on. However, limited time

focusses resources and interests, so that unfortunately these approaches must be

held in reserve for the time being.

3.6 Ferruginous Clay Minerals

3.6.1 Introduction

The abundance of iron-bearing clay minerals in the Earth makes it highly probable

that these clays were hosts to fossil oil formation and hence decarboxlyation. Al-

mon and Johns were of the same opinion, as an iron-bearing clay mineral nontronite,

was one of their experimental materials. It is possible that the Fe content of clay

minerals promotes radical reactions, which is the category of reaction pathway of

decarboxylation hypothesised by Almon and Johns. Therefore, it would be infor-

mative to repeat the investigation of the five stages applied to ferruginous models

to see how this compares with the results from the study on pyrophillite.
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Ferruginous smectite is called nontronite and contains a dioctahedral sheet of

Fe3+. The nontronites with a 1
8 substitution of Fe3+ in the tetrahedral sheet are

type NG-1 and those with Al3+ in the tetrahedral sheet replacing Si4+ are type

Ideal; these terms will be used for the remainder of this chapter. The size of the

unit cell used so far in this chapter allows for a 1
4 substitution so, the potential

catalytic effect of the substitution is optimised without loss of generality, that is,

if the site of the substitution in the tetrahedral sheet, together with the cation, is

important for a reaction to occur, then the environment modelled by a single unit

cell will exist within the double cell without loss of any detail.

The following sections are shorter than those preceding as much of the compu-

tational details have been covered in-depth in describing the main study. Conse-

quently, the differences in methods will be pointed out where relevant rather than

repetition of all of the computational details.

3.6.2 Method and Computational Details

The optimised reactant models from the main study with a tetrahedral substitution

of Al for Si, were used as the templates for the ferruginous models. Two varieties

were made, both of which contained only Na in the interlayer space and all octa-

hedral Al were substituted by Fe and in one labelled Ideal, the Al substitution in

the tetrahedral sheet remained, in the second, labelled NG-1, the tetrahedral Al

was also substituted by Fe. The introduction of the new Fe pseudopotential re-

quired the re-convergence of cut-off energy as previously described in this chapter.

The energy differences between the two models converged to 4meV at a cut-off of

550eV hence this was used as the cut-off energy. All other convergence criteria are

as previously described. The Fe pseudopotential was constructed using the PBE

exchange-correlation functional with core corrections [28]. This allows for the inclu-

sion of spin density in the exchange-correlation term. To allow for the spin of the

d-electrons of Fe, all subsequent calculations were spin polarised. This is explained

in greater depth in Chapter 5.
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The Ideal and NG-1 models were allowed to completely relax, including both the

cell and contents after which the c-length was extended to 14.5Å to allow for the

inclusion of a gallery guest, see Figure 3.10.

Ideal NG-1

a = 5.20, α = 93.80 a = 5.21, α = 94.29
b = 9.09, β = 101.73 b = 9.04, β = 101.73
c = 14.50, γ = 89.65 c = 14.50, γ = 89.65

Figure 3.10: On the left is a single unit cell of Ideal containing the product and on
the right, a single unit cell of NG-1 containing the reactant. The following colour
scheme is used throughout the remainder of this chapter: Oxygen: red; hydrogen:
white; aluminium: pink; silicon: yellow; iron: blue; sodium: orange. The dashed
line is the periodic boundary of a unit cell.

The optimised Ideal and NG-1 models were used to produce the five configura-

tions as shown in Figure 3.7, with the same intention as in the main study, that is,

if any of the postulated intermediates were transition states then, allowing them to

relax would result in the reproduction of the initial configuration. All of the cell

contents were allowed to relax with the lattice parameters held fixed, with the same

convergence criteria as that detailed in the main study. A post-processing band

structure calculation to determine the Fermi level orbital occupancies, completed

the computations.
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3.7 Results and Discussion

Figure 3.11 shows the relaxed configurations and the Fermi level occupancies of Ideal

and NG-1. The relaxed configurations for both Ideal and NG-1 have all assumed

the reactant configuration, hence, within these ferruginous clay mineral models, no

transition state has been found. All five model stages in both cases appear similar

to each other and to the stages of Model Set 4 (shown in Figure 3.8) apart from

Stage 1 where, in the Ideal and NG-1 sets, the carboxyl head is oriented towards

the tetrahedral sheet rather than away from it, as is the case in Model set 4. Where

configurations contain a carboxyl end group, its orientation is towards the tetrahe-

dral sheet, Al or Fe substitution, apart from in Model Set 4 where it points away,

indicating the existence of at least two local minima resulting from relaxation of the

same initial configurations.

Models Es1 − Er Es2 − Er Es3 − Er Ep − Er

Ideal 0.483 -0.310 -0.065 -0.136
NG-1 0.551 -0.722 0.206 -0.168

Table 3.8: Total energy differences (eV) to three significant figures, after geometry
optimisation of ferruginous models. Es1,2,3 is the energy of stage one, two, three and
Er,p is the energy of the reactant or product.

The energy differences shown in Table 3.8 provide information about the relative

orientations of the fatty acid to the clay layer. In both Ideal and NG-1, stage one,

where the carboxyl head has relaxed to point away from the layer, the difference

in energy between this orientation and that of the reactant is positive, hence the

reactant model is closer to the global minimum for this system. This is important

information because it emphasises the dependence of the outcome of a geometry op-

timisation on the configuration of the initial input. If this ‘falling into local minima’

were of concern, then by testing a few orientations, an energy/orientation picture

would emerge. In the sets presented here, stage two in both Ideal and NG-1 is closer

to the global minimum than the original reactant models. Although this does not
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affect the conclusion drawn from the results of these geometry optimisations, inso-

far as none of the initial configurations are transition states as they relaxed away

from their starting configurations, this orientation information could be used in, for

example, the search for a transition state where the Reactant model1 would be that

of stage two as this has the lowest energy of the reactant configurations shown here.

The product models for Ideal and NG-1 are both lower in energy than their

respective reactant models and the energy differences are an order of magnitude

larger than the tolerance criteria, hence the conversion from reactant to product is

possible. An examination of the Fermi level orbitals should provide the information

required to draw a firm conclusion as to the feasibility of decarboxylation within

ferruginous clays.

Scrutiny of the Fermi level orbitals (Figure 3.11) shows a marked difference from

the non-ferruginous models in that in every scenario, the occupied orbitals are those

of the iron within the octahedral sheet, apart form Stage 3 of Ideal and Stage 1 of

NG-1 where there is involvement of the oxygen in the octahedral sheet lying above

the substitution in the tetrahedral sheet. Particularly striking is the total lack of

involvement of the fatty acid and alkane, which indicates that, on application of en-

ergy, their electrons would not be the first to react, hence a decarboxylation reaction

is not likely within these clays. However, is this a ‘real’ result or is it an artefact of

the approximations used?

Iron is a transition metal of electronic structure [Ar]4s23d6 where the unpaired

electrons in five of the d-orbitals are able to interact as can be seen in Figure 3.12

where d-electrons with different angular momentum vary in their proximity to each

other depending on their d-orbital. Consequently there is a complex interplay of

Coulomb and exchange interactions between the 3-d electrons, which the GGA func-

tional is not able to capture as it cannot split the triply degenerate dzx, dyz and dxy,

1
The two end configurations of a reaction pathway in a transition state search implemented in

CASTEP, are called the ‘Reactant’ and ‘Product’.
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i.e. the t2g bands [99]. Consequently, an iron oxide bearing insulator for example,

could be described as metallic within the GGA approximation. Table 3.9 illustrates

this phenomenon very well, showing that the band gap of the ferruginous models

is an order of magnitude less than that of the aluminosilicates. Apparently GGA

has reduced the band gap and interpreted the iron models as more metallic than

insulating, thus, the results obtained for these models are not ‘real’ results but are

artefacts of the GGA approximation.

Figure 3.12: Five 3d-orbitals of Fe where light orange represents the bonding and
dark orange the anti-bonding orbitals. The dz2 and dx2−y2 are centred on the z-, x-
and y- axes respectively and form the symmetry group eg, whereas dzx, dyz and dxy

are centred between the axes, comprising the symmetry group t2g.

Model Reactant Stage 1 Stage 2 Stage 3 Product
4 5.10 5.07 5.33 5.11 5.54

Ideal 0.26 0.20 0.19 1.57 0.26
NG-1 1.18 0.16 0.25 0.10 1.10

Table 3.9: Band gaps (eV) of the relaxed clay models where ‘4’ refers to the main
study i.e. the sodium models with the Al substitution in the tetrahedral sheet.

Fortunately, there is a potential solution to this seemingly artificial reduction in

the band gaps; it is the Hubbard parameter, which is used with GGA (or LDA). The

theory behind it plus its application to the ferruginous models forms the subject of
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the following section.

3.8 LDA + U

The following description concerns the LDA approximation but in principle also

applies to the GGA and higher functionals as the aim of the Hubbard parameter is

to separate the d-orbitals to introduce Coulomb and exchange terms between the

d-electrons. Describing LDA +U captures the essential theory without becoming

swamped by the larger number of mathematical terms used in GGA and higher

functionals.

The transition metals in the middle of the periodic table contain partially filled

d- or f-orbitals displaying properties that depend on these orbital occupancies. LDA

cannot describe these localized interactions [84] as this functional represents the one

electron, delocalized exchange-correlation potential of a homogeneous electron gas.

Consequently, under the LDA the d-bands are described as being partially filled with

non-local electrons, somewhat in the manner of the electronic structure of a metal

and the material falls into the category of a Mott insulator. This occurs when the

(d-/f-) orbital-dependent Coulomb and exchange interactions are larger in energy

than the bandwidth of the sum of the (d-/f-) orbitals.

To describe the interactions between the electrons in the d-orbitals, an additional

term, the Hubbard or U value, is added to the energy; the following is a simplified

version of it: [84]

E = ELDA −
UN(N − 1)

2
+

1

2

�

i�=j

ninj , (3.1)

where the first term is the usual LDA describing the delocalised s and p orbitals; the

second term is the Coulomb energy of d-d electrons, which is a function of the total

number, N of d-electrons; the third term is the additional Hubbard term, which

depends on the orbital occupancies ni. Taking the derivative of E with respect to
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ni gives:

�i =
∂E

∂ni

= �LDA + U

�
1

2
− ni

�
, (3.2)

in the orbital energy, i.e. if there is occupation, ni = 1 hence �i = �LDA −
U

2 and if

not, ni = 0 hence �i = �LDA + U

2 .

As the potential of the orbitals is given by Vi(r) = δE

δni(r)
, which describes the

change in charge density of a specific orbital, information which GGA alone was not

able to capture, then

Vi(r) = VLDA(r) + U

�
1

2
− ni

�
, (3.3)

and a mathematical description of the correct physics of Mott insulators is achiev-

able that is, their strong electron-electron interactions are correctly described hence

theoretically, as well as physically, they are insulators. In some Hubbard approxi-

mations [84], the term describing exchange is described separately to the Coulomb

term and is proportional to 1
2J [n ↑ (N ↑ −1) + [n ↓ (N ↓ −1)] where J is the

exchange parameter and n ↓ is the number of spin down electrons (for example).

In CASTEP the U and J parameters are combined into a single ‘U ’ number. As

well as Coulomb interactions between the d-electrons, there are also screening effects

between each other and with electrons in the s- and p-orbitals. In fact, separation

of the d-orbitals in the planewave approximation appears to be an advantage over

local orbitals basis sets as, within the planewave approximation the screening effects

are well reproduced, that is, when the d-orbitals are separated they are decoupled

from the whole environment, bestowing the d-electrons with their own identity,

thus allowing for Coulomb, exchange and screening interactions with their environ-

ment. This lack of basis-set dependency is an advantage over a local orbitals basis

such as Gaussians, where each partial orbital decoupling results in an over-screened

scenario [100], which then leads to the introduction of s- and p-hybridization to

ameliorate this effect.
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The Hubbard parameter U , is a number whose value depends on the local en-

vironment, e.g. for the d-electrons of Ni, U = 2.5eV whereas for the f-electrons of

La, U = 6.0eV [31]. The environment of interest here contains Fe, O, Si, H, C and

Al where only Fe has d-electrons but there is a high proportion of Fe-O bonding.

Documented U values for Fe range from U= 4 to 7eV [99], [100] and the optical

band gap for FeO is 2.4eV [101]. However, the band gap obtained from an excited

state does not represent the same exchange-correlation environment as that within

the groundstate. Is it a reasonable value when the optical excitation promotes a

3d electron to the 4s orbital and yet the band gap describes the separation of the

d-orbitals? Perhaps not, but then perhaps the exchange-correlation approximation

is able to absorb potential discrepancies between an actual band gap and that ob-

tained experimentally. The following section is a short study on a simple system,

FeO to show the effect of varying U and to determine the value of U which gives a

band gap of 2.4eV.

3.8.1 Wüstite — FeO

The ferruginous smectites described in this chapter are heterogeneous systems, con-

taining infinite slabs of clay separated by vacuum which itself contains isolated

molecules. Compared to the usual condensed matter material such as crystals of

silicon, the computations are time consuming, so, in order to illustrate the effect

of increasing the Hubbard parameter, a simpler system, namely wüstite, FeO, has

been chosen as the subject. This system is relevant to the ferruginous clays as there

are also FeO environments within them and hence the results from the study will

be somewhat transferable as well as illustrative.

Wüstite is a paramagnetic crystal of Fe and O with the structure of NaCl and

cubic symmetry [102]. It has the relative coordination FexO where x varies be-

tween 0.85 and 0.95 [103], [104] displaying a high concentration of defects, hence a

pure crystal is difficult to obtain, which explains the scanty band gap data. In its

antiferromagnetic state, FeO has a slightly distorted rhombohedral structure [102]
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(α < 60o) where the spins of the Fe in the planes parallel to the (111) axis, are able

to align as shown in Figure 3.13.

Figure 3.13: Cubic structure of paramagnetic wüstite shown on the left; antiferro-
magnetic, rhombohedral crystal of FeO in the middle and with spin density (black
and yellow shells) on the right. Blue: Fe; red: O.

The model crystal made for this study was a double-sized, rhombohedral super-

cell (to allow for the antiferromagnetism) of a = 5.31Å = b = c, α = 33.56o = β = γ.

The same cut-off energy of 550eV as was used in the Ideal/NG-1 study, was used

as the ultrasoft pseudopotentials were for Fe and O, two of the same species used

in the clay studies. A k-point grid of 6 × 6 × 6 was used to sample the Brillouin

zone, which, with symmetry operations, reduced this to 28 points. This produced

energy-differences convergence within the criteria detailed in Section 3.3 i.e. to less

than 40meV per unit cell. The exchange-correlation function was GGA PBE be-

cause this is the functional used in all of the clay models, and hence the results from

the wüstite study would be transferable to the clay models. The minimiser was

EDFT as density mixing does not easily converge in the presence of the Hubbard

parameter, possibly due to the charge sloshing and mixing of spin histories required

in the algorithm — density mixing is explained in greater depth in Chapter 5.

The Hubbard values ranged from 2.0eV to 6.0eV and the crystal was allowed to

completely relax. Figure 3.14 shows the linear relationship between the band gap

and Hubbard value in the range 2.0eV to 5.5eV; at the value 6.0eV there is a sharp
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increase in the gradient indicating this value is an upper bound of the Hubbard

value. The U value corresponding to a band gap of 2.4eV is approximately 5.0eV.

The shifting of the d-orbitals shown in Figure 3.14 illustrates how, in increasing the

band gap, the d-orbitals in the conduction band are squashed, which if continued,

becomes increasingly unphysical.

The conclusion from this is that increasing the Hubbard value increases the band

gap as was expected. It does so within the d-orbitals as explained previously. A

Hubbard value of U = 5.0 reproduces the reported band gap of wüstite of 2.4eV and

so, as the ferruginous clays Ideal and NG-1 also contain FeO environments in their

octahedral sheets, U = 5.0 will be used to re-optimise the reactant, product and

three intermediate stages to determine whether this changes the computed catalytic

properties of these clay minerals.

3.8.2 Ideal and NG-1 revisited with GGA + U

The five initial configurations shown in Figure 3.7 were geometry optimised with the

inclusion of U = 5.0 in the cell file for Ideal and NG-1. For the latter model Fe in the

tetrahedral sheet was given the same U value as the octahedral sheet Fe, although

this is an approximation, it was to ensure simplicity of modelling. All convergence

criteria were the same as described in this chapter for each previous optimisation.

Results and Discussion

There are two sets of results in this section which are not converged to the same

precision as the rest due to time constraints and lengthy BFGS cycles — in some

cycles over 150 SCF iterations were required to reach the electronic groundstate.

These are Ideal, Stage 3 and NG-1, Stage 2 and the convergence details are in Table

3.10. However, their progress was monitored at various intervals and their inclusion

in the results is representative of their converged results and where it is thought

that total convergence will make a difference, reference is made to this in the text.
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Figure 3.14: Illustrating the linear increase in the band gap of FeO (top), and the
density of states for the d-electrons of Fe with two different Hubbard values.
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dE/ion (eV) |F |max (eV/Å) |dR|max (Å)
Convergence criteria 1.000 x 10−5 3.000 x 10−2 1.000 x 10−3

Ideal — Stage 3 1.096 x 10−4 2.510 x 10−1 4.923 x 10−2

NG-1 — Stage 2 5.913 x 10−6 7.571 x 10−2 1.654 x 10−2

Table 3.10: Top row describes the convergence criteria achieved by all models apart
from the two listed below.

(a) Band Gap

Table 3.11 shows that a Hubbard value of 5.0 has increased the band gaps of

every configuration apart from Stage 3 of Ideal where there has been an order of

magnitude decrease.

Model Reactant Stage 1 Stage 2 Stage 3 Product
Ideal 2.17 N/A 2.13 0.05 2.26
NG-1 1.69 N/A 1.53 1.47 1.67

Table 3.11: Band gaps of the relaxed clay models within the GGA+U approximation
with U = 5.0.

There is no data available for Stage 1 as there was a problem during its relax-

ation, the BFGS algorithm ran out of search directions declaring that it was going to

begin looking uphill which meant a probable deviation away from the original mini-

mum into another, not based on the starting configuration. This happened for both

Ideal and NG-1 and an examination of the forces showed that they were ridiculously

high (> 100eV/Å) for some atoms. This implied that the starting configuration was

so far removed from an energy minimum, that the results, if the ground state was

eventually reached, would have little bearing on the relevance of Stage 1’s initial con-

figuration and how close this was to a possible transition state. It could be said that

the problem with Stage 1 indicates the unlikelihood of it being a transition state,

however, exactly the same configurations had no problem converging in the absence

of the Hubbard value, hence there was something happening due to the Hubbard

term, which was interfering with geometry optimisation for this configuration. One

way to determine whether the Hubbard parameter was causing the problem, would

be to use a range of Hubbard values for this Stage. Perhaps the increase in band
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gap is responsible for creating large Coulomb forces between some of the atoms;

again, this could be monitored with increasing U and conclusions drawn as to the

potential for Stage 1 being a transition state. For example, perhaps a Hubbard value

of 1.0 would allow relaxation of this Stage to its ground state and hence appropriate

analysis could be applied.

Stage 3 of Ideal and NG-1 have the smallest band gaps where, in the former case,

the band gap is almost non-existent and has decreased from 1.57 in the same model

without the inclusion of the Hubbard parameter, whereas the band gap of NG-1 has

increased from 0.10. This may be an artefact of convergence and an examination

of the energy differences and structures of the relaxed geometries should illuminate

the results further.

(b) Relaxed Geometries

Models Es2 − Er Es3 − Er Ep − Er

Ideal −0.355 0.833 −0.130
NG-1 −0.323 −0.596 −0.153

Table 3.12: Total energy differences (eV) to three significant figures, after geometry
optimisation of ferruginous models. Es1,2,3 is the energy of stage one, two, three and
Er,p is the energy of the reactant or product.

The energy differences shown in Table 3.12 imply that the reactant and product

models in Ideal and NG-1 are contenders for investigating transition states as the

product has a lower energy than the reactant in both cases. As Stage 2 in Ideal and

NG-1 and Stage 3 of NG-1 have lower energies than the reactant, they could not

be transition states. The higher energy of Ideal, Stage 3 is possibly due to its con-

vergence as discussed and at this point cannot be seen as a potential transition state.

Figure 3.15 shows how, with a Hubbard value of 5.0, three new configurations

have appeared; Stage 3 of Ideal and Stages 2 and 3 of NG-1. In Stage 3 of Ideal,

the hydrogen has remained attached to the tetrahedral surface and the CO2 has

attached to CH3CH2 to form the species CH3CH2COO. This latter species is the
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initial species of each Stage 2, based on Almon and Johns hypothesis where it is

attached to the tetrahedral substituted atom, which implies that it is potentially a

transition state and hence an intermediate in decarboxylation. An examination of

the distance between the hydrogen atom attached to the tetrahedral surface and the

doubly-bonded oxygen of CH3CH2COO at increasing levels of convergence shows

an increase from 3.56Å to 3.70Å, strongly implying that the CH3CH2COO species

would not move back towards the hydrogen on further convergence. Thus, a new

species has been located, furthermore, it has a higher energy than the reactant and

hence could be a new transition state.

The relaxed geometry of NG-1, Stage 2 is similar to the initial configuration for

this stage, except that the species, CH3CH2COO has moved sufficiently close to the

tetrahedral Fe, that a bond is forming between it and an oxygen. An examination of

the relaxed configuration at increasing levels of convergence showed that, at lower

convergence the hydrogen of the fatty acid remained attached to the tetrahedral

surface. Further convergence has resulted in the re-attachment of this hydrogen to

form the fatty acid and an increase in the bond length between the Fe on the tetra-

hedral surface and the oxygen of the fatty acid, from 2.16Å to 2.19Å. Thus, in this

case, further convergence will probably result in the fatty acid detaching from the

tetrahedral surface and becoming a variation on the reactant model configuration,

hence it is not a potential transition state as the energy differences intimated.

The relaxed configuration of NG-1, Stage 3 is new to this study and is a variant

of a stage hypothesised by Almon and Johns. The energy difference between it and

the reactant is negative and is the largest in magnitude of that between the reactant

and all other models, which would not appear to indicate that it is a transition

state between the NG-1 reactant and product. The results analysed so far, lead to

contradictory conclusions, perhaps an examination of the orbitals of the potentially

most reactive electrons will clarify the picture.

(c) Fermi Level Occupancies
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The addition of the Hubbard parameter has changed the Fermi level orbital occu-

pancies as can be seen by comparing Figures 3.11 and 3.15. In the case of Ideal,

GGA+U results in occupation of the Fermi level orbitals of the fatty acid in the

reactant model, which is one of the factors used in the aluminosilicate study to

identify the correct reactant environment. Although in the ferruginous case, there

is no involvement of the clay layer. In Stage 3, Ideal, the potentially most reactive

electrons are on the carboxyl head of the ‘new’ species, possibly indicating its transi-

tory nature, although again there is no involvement of the clay layer. In the product

model of Ideal, the Fermi level electrons are within the clay, which was previously

used as an indicator of the relative stability of the product, hence the ferruginous

GGA+U product model conforms to this description.

For the NG-1 reactant model, the Hubbard parameter has changed the area of

occupation of the Fermi level orbitals in the clay layer, where prior to GGA+U there

was dissipation within the layer, there is now concentration around the tetrahedral

Fe and the adjacent oxygens. The degree of confidence with which this environment

could be described as a suitable reactant model has decreased. For Stages 2 the

Fermi level electrons are localised within the clay layer, around the tetrahedral Fe.

If, as suggested in a previous paragraph, further convergence results in separation

of the fatty acid from the clay layer, then it is probable the Fermi level occupation

remains within the clay. In Stage 3, the highest energy electrons are of the species

CH3CH2, suggesting this species is transitory and yet the energy difference between

it and the reactant is the largest within these model sets. This says that, if it is a

transition state, it will not become the reactant or product (models of this study)

as it moves away from its saddle point and into a minimum. For the product model,

there is occupation of the clay layer with concentration around the tetrahedral Fe,

so, within the previously stated definitions of ‘relative stability’, the product model

is acceptable as being representative of a product environment.

Can any firm conclusions be drawn from this analysis? The following section

addresses this and discusses what should come next.
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3.8.3 Conclusion

The ferruginous models were initially investigated in the same manner as the alu-

minosilicate models but the results attained were artefactual due to the inability

of the GGA functional to correctly describe the relationships between the strongly

correlated, d-electrons of Fe. To remedy this, the GGA+U functional was employed

where the Hubbard parameter was gauged from a trial study on the FeO environ-

ment comprising wüstite. The ferruginous clay mineral results gained using this

functional were ambiguous and somewhat contradictory in their implications.

The Hubbard parameter increased the band gaps in all but one case but the new

band gaps were less than half those of the aluminosilicate models. This phenomenon

has been reported in another first principles study where the introduction of Fe into

aluminosilicate nanotubes reduced the band gap from 4.7eV to 1.4eV [105] but the

author does not describe how the strongly correlated electrons were modelled, so

a direct comparison between results is unreliable. There is a lack of experimental

data on the band gaps of clay minerals, consequently it is difficult to say whether

the difference in band gaps between the aluminosilicate and the ferruginous clays is

representative of reality. However, what is real, is that the inclusion of the Hubbard

parameter changed the band gaps as well as the relaxed structures and the Fermi

level occupancies.

The aim of this part of the study was to determine if the inclusion of the Hub-

bard parameter would change the results. The conclusion is that yes, indeed it has.

The question of the reliability of these results is worthy of a separate study due to

the number of issues raised. For example, the choice of the U value was somewhat

arbitrary even though it was obtained from a study investigating an environment

that exists within the ferruginous clays. This value was used for all Fe, including

the tetrahedral Fe in NG-1, with no justification other than for modelling simplicity.

In a stand alone study, a range of Hubbard values could be applied to the models

with a different value for the tetrahedral Fe, which would test the effect on the band

gap, structural and orbital results and whether a different value for tetrahedral Fe
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made any significant difference to these results.

The slow convergence of Ideal Stage 3 and NG-1 Stage 2 raised an interesting

modelling question, as a result of checking on their convergence and the effect this

had on their structures and orbital occupancies. In the course of the relaxation from

the initial structure of NG-1, Stage 2, the interlayer species passed through Stage

1 where it moved towards the tetrahedral surface to ‘collect’ the hydrogen before

moving away again to form the reactant model. The question this raises is, could the

course of geometry relaxation of a structure be representative of a chemical reaction,

given a viable i.e. chemically feasible starting configuration? This would require the

initial configuration to be a chemically feasible intermediate not a transition state2

nor a minimum energy configuration, although the relaxed structure could be either

of these.

A second modelling issue raised is that of convergence, when is a structure in

its ground state and what does this mean with regard to experimental conditions?

Although, to some extent using sets of models by-passes these issues, in that there

is always a relative comparison possible and hence error cancellation, can this be

compared to experimental conditions? For example, if a species existing in a higher

energy state requires less energy to metamorphose than a species of a lower energy

state, should the same convergence criteria be applied to the two configurations?

For the electronic structure, without the implementation of excited state methodol-

ogy, then yes, but, for the geometry, perhaps not. Perhaps, by enforcing the same

convergence criteria on all models, potential reaction pathways are being lost. An

interesting investigation would be to begin with relatively low convergence criteria

for all models, gradually increasing it and analysing the results.

Clearly, the introduction of the GGA+U has raised more questions than it has

2
An intermediate in this investigation is a species identified during geometry optimisation, which

may or may not exist physically during a chemical reaction and does not have the potential energy

surface of a saddle point. A transition state is a species formed from the reactants or products, is

separated from them by a positive energy barrier and has the potential energy surface of a saddle

point with the expectation of chemical significance.
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answered. In spite of it having affected the results, the investigation needs to be

extended to determine how ‘real’ these results are. This would be one way forward,

especially worthwhile given the potential new species the ferruginous models with

the GGA+U functional have uncovered. However, that particular investigation will

have to be revisited at some point in the future, as the alternative step forward was

explored. And that was, to attempt to find a transition state between the reactant

and product models of the aluminosilicate models, in an effort to identify the reac-

tion pathway of the decarboxylation of a fatty acid within a smectite clay mineral.

It is this that forms the substance of the following chapter.



4
Ab initio Transition State Searching in

Complex Systems: Fatty Acid

Decarboxylation in Minerals

4.1 Synopsis

This chapter continues from the point reached in the last chapter, concerning the

identification of an appropriate model to investigate decarboxylation in the alumi-

nosilicate, pyrophillite. In the previous study, none of the intermediates hypothe-

sised by Almon and Johns were found to be potential transition states, so in this

chapter, an ab initio approach to identifying a transition state is taken. This in-

volves the reactant and product models only, in linear and quadratic synchronous

transition searches, two techniques which will be explained in the chapter. These

95
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searches were semi-automatic in that CASTEP was able to carry them out to a

limited convergence but required user-input to reach tighter convergence criteria.

The reasons for this are examined and a potential solution mooted.

The semi-automatic transition state search found a species different from both

the reactant and product but its transition state nature was in question, therefore a

means of identifying a transition state was required. Lattice dynamics (i.e. phonon

calculations) were used because a phonon calculation will produce imaginary eigen-

frequencies for transition states, the theory behind this is described in this chapter.

Employing a phonon calculation required a change of pseudopotential, from ul-

trasoft to norm-conserving which brought to light several modelling considerations;

the decisions taken and their consequences are discussed at length.

The layout of this chapter is somewhat in the manner of a standalone study,

hence there is some brief repetition from the previous chapter, which has been kept

as a reminder of the essential elements of this investigation.

4.2 Introduction

Chapter 3 introduced clay minerals and the importance they played in the devel-

opment of Western society from, for example, the production of bricks, tiles and

pottery to pet litter, drug delivery agents and catalysts, [11] and in particular their

potential catalytic role in the production of biofuels. To this end, a 1975 experi-

mental paper by Almon and Johns [10] was used as the basis for the DFT modelling

of a decarboxylation environment within a phyllosilicate clay, pyrophyllite. The in-

vestigation presented in this chapter is a continuation from that DFT study, which

described the optimum decarboxylation environment catalysed within pyrophyllite,

involving a short chain fatty acid, propionic acid (reactant) and ethane plus carbon

dioxide (product). The aim of the present study is to locate an intermediate between
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the reactant and product and to verify it as a transition state using vibrational anal-

ysis.

In chemical terms, transition states are short-lived intermediates between reac-

tants and products; they are found at a stationary point on a chemical reaction

pathway and describe the activation energy of a chemical reaction and the relative

stability of the product. Their location is important in identifying the pathway of a

chemical reaction, such as in research into enzymes [106], [107] and the production

of enzyme inhibitors [108], to calculating reliable rate coefficients [109]. Transition

states can be located by various means such as eigenvector following [110], nudged

elastic band [111], string method [112] and statistical transition path sampling [113],

although for large systems there is no obvious way to predict the efficiency of one

method over another [114]. In this investigation linear and quadratic synchronous

transition state (LST/QST) searches [115] are employed, which bear a resemblance

to a practised method that involves the identification of intermediates (see refer-

ence [116] for more details), although that particular method relies on chemical

intuition or a priori knowledge of the reaction pathway and does not need the re-

actant and product configurations. In contrast, LST/QST uses the reactant and

product geometries and assumes nothing about the decarboxylation reaction path-

way, hence it could be described as an ab initio transition state search.

An examination of the current literature shows that DFT and the B3LYP func-

tional have been used to study the kinetics of decarboxylation [117] and to identify

transition states by vibrational analysis [118], [119]. These and other DFT investi-

gations have mostly been carried out on cluster models [11] and isolated molecules

in the gas phase [120], which contrasts with this study where periodic models are

used to represent an extended clay surface. As well as investigating decarboxylation,

DFT has been used extensively to determine the structure of clays [75] and their

vibrational properties [121], [122] and structural defects [123] as well as examining

the catalytic activity of anionic clays [76].
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This study brings together several facets of the above in an uncommon, if

not unique, combination. Linear response density functional perturbation theory

(DFPT) (which will be described in detail) is used to calculate the vibrational

frequencies of a periodic clay system containing a gas phase-like molecule in the

interlayer space, in order to identify an intermediate of a decarboxylation reaction

and verify it as a transition state, with the aim of gaining insight into the chemical

pathway of clay-catalysed decarboxylation.

As previously stated, the location of a transition state would ultimately help

identify the chemical pathway of this form of fossil oil production. This is of partic-

ular relevance today as the fatty acids in biofuel crops are of a similar type to those

modelled in this reaction [66], [71] hence the investigation of this reaction and the

insight gained into the catalytic conversion of fatty acids into high-grade fuel, offers

the potential to contribute to the efficient production of biofuels.

This chapter proceeds with a description of the method of searching for transi-

tion states together with the theory of linear and quadratic synchronous searches.

4.3 Method

4.3.1 Structures

A unit cell of pyrophillite (Al2Si4O10(OH)2)2, space group P1̄ was constructed as

detailed in Chapter 3, Section 3.3. The reactant model is comprised of a unit cell

of pyrophillite plus propionic acid and the product model a unit cell of pyrophillite

plus the alkane C2H6 and CO2 as shown in Figure 4.1; the cell dimensions are shown

in Table 4.1. From this point onwards the terms ‘reactant’ and ‘product’ are used

respectively to describe these models. The optimal reactant and product models

were found to incorporate an aluminum substitution in the tetrahedral sheet which

is thought to be the site of catalytic activity [10] plus a sodium atom which coun-

terbalances the charge generated by this and enables electron transfer between the
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guest organic molecule and the clay. These reactant and product models provided

the end points for the transition state search detailed in the following section.

Reactant

Product

Figure 4.1: A single unit cell of pyrophillite (with an aluminum substitution in
the tetrahedral sheet) and guest molecule of one of the simpler model fatty acids,
propionic acid within the interlayer space of the reactant model and ethane plus
carbon dioxide in the product model. See Table 4.1 for initial geometry optimized
dimensions. Oxygen: red; hydrogen: white; aluminum: pink; carbon: grey; silicon:
yellow; sodium: orange The dashed line is the periodic boundary of a unit cell. All
subsequent figures use the same colour scheme.
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DFT (PBE) [124] Experiment [92] Other DFT (PB86a) [93]
a = 5.22 α = 90.87 a = 5.18 α = 90.00 a = 5.119 α = 90.77
b = 9.07 β = 100.00 b = 8.96 β = 99.9 b = 8.911 β = 100.96
c = 9.73 γ = 89.65 c = 9.97 γ = 90.0 c = 9.065 γ = 89.91
a: A semi-empirical functional with a fitted parameter for the exchange part.

Table 4.1: Lattice parameters of a unit cell of pyrophillite after geometry optimi-
sation. The first column reproduces the results from our previous paper with no
interlayer molecules; the c-length in our previous study converged to 14.5Å on the
inclusion of a molecule of propionic acid, hence the same extension was used in this
study. Lengths are in Å and angles in degrees.

4.3.2 Computational details

The computations were carried out using the CASTEP code [35], with a planewave

basis set within the DFT formalism [18], [86]. Convergence testing from the pre-

vious study described in Chapter 3 showed that a planewave basis represented by

a kinetic energy cut-off of 550eV gave an energy difference in total energies of less

than 0.04eV per unit cell for higher cut-offs and the Brillouin zone integrations were

optimal using a grid containing two k-points to converge the calculation at a volume

appropriate for these simulations [124].

The generalized gradient approximation (GGA) density functional, specifically

Perdew, Burke and Ernzerhof (PBE) [21] was used as this describes molecular bond-

ing to a greater accuracy than does the local density approximation (LDA) [23].

PBE ultrasoft pseudopotentials [29] were used which are consistent with the PBE

exchange functional. The (geometry) optimizer was Broyden-Fletcher-Goldfarb-

Shanno (BFGS) and the electronic method was ensemble density functional theory

(EDFT) [41]. As a transition state search as implemented in CASTEP requires

force tolerance criteria of less than 0.1 eV/Å, the geometries of the reactant and

product models were relaxed to the following criteria: electronic energy tolerance:

≤ 10−10 eV; geometry optimisation:- energy change per ion: ≤ 10−8eV; maximum

force: ≤ 0.025 eV/Å; change in distance: ≤ 0.0005Å. All calculations were carried

out without spin polarization, as in the aluminosilicate models, there was an even

number of electrons.
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4.3.3 Searching for Transition States

CASTEP has automatic transition state searching functionality in the guise of lin-

ear synchronous transitions (LST) and quadratic synchronous transitions (QST) [96]

and with the help of visualising software such as Materials Studio, [31] is a seemingly

straightforward procedure and indeed, may well prove to be so for more homogeneous

models than the clay minerals. Transition state searches require the identification of

two configurations comprising the end points of a reaction pathway, the transition

state lies between them. In the CASTEP set-up, the two end models on the reaction

pathway are identified as the Reactant and Product which, in this study coincided

with the reactant and product models, that is, a Reactant and or Product could be

any configuration on the reaction pathway, it is entirely up to the user to determine

which part of a reaction pathway is under scrutiny. The next step, if using Materials

Studio, is to map atoms between the Reactant and Product and therein lies the first

potential source of error. For example, in reference to Figure 4.1, for part of the car-

boxyl head of the fatty acid in the reactant model to become CO2, a decision has to

be made about which oxygen of COOH becomes which oxygen in CO2. The general

guideline is that the least distance moved by each constituent atom on transforming

from the Reactant to the Product, is the most probable, which in its most general

sense is known as the Principle of Least Motion (PLM) [125]. However, as can be

seen in Figure 4.1, this is not always clear, fortunately, in this case there are only

two possibilities so both were attempted. In more complex models, this problem

might be ameliorated by choosing different orientations for the Reactant and Prod-

uct models where possible, as some relative orientations might lend themselves to

more obvious atom-atom mappings. This suggests a use for the various reactant

configurations found in Chapter 3 on relaxation of the Almon and Johns interme-

diates, where the reactants contained the same species but in varying orientations

with respect to the tetrahedral surface.

With the Reactant and Product models identified along with their atom-atom

mappings, the LST commences. The LST and QST are searches based only on

the geometries of the Reactant and Product models, there is no chemical intuition
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introduced nor is there any dependence on energy to obtain the reaction interme-

diates. LST is ‘linear’ because the extrapolation equation used to find an initial

intermediate is a linear equation, similarly for QST being quadratic. Equation 4.1

describes the internuclear distance between atoms a and b (shown in Figure 4.2) of

the interpolated intermediate, rab(i) defined by an addition of a proportion of the

internuclear distance between a and b in the reactant, rR

ab
and the product, rP

ab
.

Figure 4.2: Schematic defining the variables used in Equation 4.1 where a and b
are labels for the same two atoms in each molecule and the intermediate is an
interpolated configuration between the Reactant and Product.

rab(i) = (1− f)rR

ab
+ frP

ab
0 ≤ f ≤ 1 . (4.1)

The proportion parameter, f , minimizes the following equation

S(f) =
1

2

N�

a �=b

[rab(c)− ri

ab
(f)]2

[ri

ab
(f)]4

+ 10−6
�

ζ=x,y,z

N�

a

[ζa(c)− ζ i

a
(f)]2 , (4.2)

where rab(c) is the calculated and ri

ab
(f) the interpolated internuclear distances be-

tween atoms a and b; similarly for the calculated (ζa(c)) and interpolated (ζ i

a
(f))

Cartesian coordinates per atom; N is the number of atoms. The first term’s weight-

ing of r−4 guarantees the close reproduction of important distances between bonded

atoms while the second term weighted by 10−6 minimises rigid translations and ro-
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tations [126] in the manner of maximum coincidence [125]. The result of this is a

‘loose’ intermediate configuration between the Reactant and Product species which

can be further refined according to the following

p =
dR

(dR + dP )
, (4.3)

where p defines the relative distance from path-limiting geometries and

dR =

�
1

N

�

ζ=x,y,z

N�

a

(ζa − ζR

a
)2

�1/2

, (4.4)

and similarly for dP and previous definitions of variables apply.

The application of this algorithm in CASTEP has been modified to apply to pe-

riodic systems, where the function S(f) is subject to a cut-off radius that includes

a few unit cells [96]. The LST with maximum energy becomes the upper bound on

the geometry of the intermediate such that subsequent structures are determined

by altering the internal coordinates while maintaining the p value. The constraint

enforced on p ensures that the relative distance from path-limiting geometries is

maintained in subsequent structures.

There then follows a conjugate gradient and line minimisation refinement in the

same manner as that discussed in Chapter 2 where the tangent to the LST trajectory

at the LST maximum becomes the initial search direction s0. If this minimisation

fails to produce a transition state structure, a QST search commences using the

‘best guess’ [96] from the conjugate gradient algorithm. The QST search is based

on the following equations.

rab(i) = α + βf + γf 2 , (4.5)

given rab(i) = rR

ab
for f = 0 and rab(i) = rP

ab
for f = 1
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where

rab(i) = (1− f)rR

ab
+ frP

ab
+ γf(1− f) , (4.6)

and γ is defined through

γ =
[rab − (1− p)rR

ab
− prP

ab
]

[p(p− 1)]
, (4.7)

As with the LST maximum, the geometry corresponding to the QST maximum

is refined using conjugate gradients and line minimisations where the tangent to

the QST energy maximum is the new s0. In theory, conjugate gradient refinement

will locate the negative gradient direction of a saddle point as it searches every

direction orthogonal to s0, so, if the algorithmic assumption is that the transition

state has been found, then s0 is negative and no subsequent search directions will

also be negative. Now, if the energy surface of the saddle point is n-dimensionally

quadratic then two vectors si and sj in this surface with Hessian G are conjugate

providing

sT

i
Gsj = 0, i �= j , (4.8)

and a conjugate refinement will complete in n iterations. In reality, the energy sur-

face is not perfectly quadratic and lack of precision in the line searches requires the

introduction of a monitor, based on ratios of search directions relative to s0 as there

could be a tendency for the gradient in the s0 direction to become too large. A

new cycle of QST optimisation then begins and is considered converged when the

residual forces fall below a user-input tolerance.

For the reactant and product model of this study, the LST was successful and

found the structure shown in Figure 4.3. The QST search output described how the

search was ‘falling off the ridge’, a description of the conjugate gradients algorithm

falling into a minimum close to the saddle point. This meant another QST maxi-

mum was located and the conjugate refinement began again. However, after several

attempts of adjusting the force tolerance criteria, no transition state was located.

During some QST conjugate refinements the line minimizer had failed. On exami-

nation of the code, it was seen that the step-size for the conjugate gradients was too
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Figure 4.3: Top — the LST maximum corresponding to the LST maximum at the
apex of the black line, on the chart at the bottom. (CG is conjugate gradients.)
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large and the check on predicted energy compared to calculated energy, too coarse.

Also, the line minimizer extended to a cubic but there was no check imposed and

no quartic extrapolation, which would increase the accuracy of the minimisation.

These were inherent problems with the code, which, if time allowed could have been

repaired and tested. However, a different approach was taken.

Although the algorithm had failed to find a transition state, it had identified

some structures different to both the reactant and product, new geometries with

the potential to be transition states, two examples of which are shown in Figure 4.4.

If these geometries were potential transition states, relaxing them to their ground

states would allow them to fulfil this potential, although this would require strict

convergence criteria as the slightest noise in the computations would cause a tran-

sition state to relax to a reactant or product. As the convergence criteria used for

the transition state algorithm involved strict convergences, the same geometry op-

timisation criteria described in Section 4.3.2 were used to relax the QST maxima.

The relaxed geometries show that one fell into the product configuration and hence

was not a potential transition state but more of an intermediate on the route to

becoming a product — this is purely geometrical and has no chemical significance.

One of the QST maxima relaxed into a completely new configuration, implying that

a new minimum on the potential energy surface had been reached. At this point

there was no way of differentiating between a true minimum and the minimum of a

saddle point.

The energy landscape of a transition state is a saddle point, such that there

is an increase in energy in traversing the saddle in all directions but one, and a

decrease in the other. The mathematical description of this is a single imaginary

eigenfrequency identifying the direction of decreasing energy. This eigenfrequency

can be detected as a vibrational mode and hence lattice dynamics calculations can

be used to identify transition states. The following section describes this procedure.
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Figure 4.4: Two of the QST maximum configurations before relaxation (top row)
and after relaxation (bottom row).
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4.3.4 Lattice dynamics

Vibrational analysis via lattice dynamical calculations, is the examination of atomic

motion within a bulk material under an applied electromagnetic field. The theory

behind this is essentially simple but when applied from first principles is computa-

tionally complex. In light of this, this section introduces the simple theory progress-

ing to an increasingly complex model, during the course of which, the convergence

of the classical and the quantum in experimental spectroscopy is highlighted. There

then follows an introduction to the ab initio implementation of linear response lattice

dynamics in the form of density functional perturbation theory (DFPT). Concluding

this section is the description of some of the restrictions necessary for its successful

implementation within CASTEP.

1-D Basic Model

In classical mechanics the motion of a collection of masses is modelled by represent-

ing the masses as point particles joined by springs with their own spring constants.

The resting position of the masses is considered to be the equilibrium position and

any deviation away from this is the measured motion, which is simple harmonic

oscillatory. This is motion that can be described by a single frequency cosine or

sine function, with a constant amplitude for all time. When the masses move in a

synchronised manner, that is they begin their motion and end their motion at the

same instant, this is known as ‘moving in phase’. In-phase motion is called a normal

mode and can encompass different amplitudes. In a system of three masses, the

equations of motion produce three normal mode solutions — see Figure 4.5 — one

of which is the translational mode (λn = 0) where the centre of gravity of the whole

system moves. Any general motion of this three particle system consists of a super-

position of the three normal modes with its own set of amplitudes and phases [127].

This is the basic, one dimensional mathematical model behind lattice dynamical

calculations.

To begin applying this simple model to more complex systems, the next step
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Equations of motion for masses 1, 2 and 3 respectively

mẍ1 + k(x1 − x2) = 0;

Mẍ2 + k(2x2 − x1 − x3) = 0;

mẍ3 + k(x3 − x2) = 0.

(4.9)

Assuming a solution of the form xn = Ancos(2πνt + φ) where A is the amplitude, ν
the characteristic frequency of a normal mode and φ the phase angle, gives the

secular equation of motion:
������

(k −mλ) −k 0
−k (2k −Mλ) −k
0 −k (k −mλ)

������
= 0 where λ = 4π2ν2.

Whose solutions are: λa = k

m
; λb = k(M+2m)

Mm
; λn = 0.

Figure 4.5: Schematic of a model system of three masses (LHS) of mass M and m
connected by springs with spring constant k.
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is to consider a single molecule. The key to making this transition is to use the

Born-Oppenheimer approximation, whereby the atomic nuclei (of a molecule) are

the point masses and it is their motion that is modelled. The spring constants

between the point masses are representative, in the first instance, of the chemical

bonds between atoms in a molecule, where the chemical bonding is due to electrons.

The intramolecular forces created by the presence of the electrons are responsible

for the restoring forces, which counteract a change in internuclear distance precipi-

tated by vibrational motion. As the molecular vibrational amplitudes are small, the

simple harmonic oscillator (SHO) approximation is appropriate.

Prior to the implementation of ab initio lattice dynamics computations, spectro-

scopic data was used to gauge the strength of the intramolecular force fields. At this

point, no quantum mechanics has been introduced and yet a classical mechanical

model together with experimental data is informing what is essentially quantum

mechanical relationships. This is because in the case of an SHO, electromagnetic

radiation can only be absorbed in multiples of quantum numbers e.g. from n = 0

to n = 1, that is, where the energy levels are adjacent. Suppose two energy levels

have eigenvalues W0 and W1, then the frequency of the radiation required for this

transition (vq) is given by the Bohr relation

vq =
W0 −W1

h
, (4.10)

and the eigenvalue W
�
associated with wave function ψ

�
is given by

W
�
= (n

�
+

1

2
)hvc , (4.11)

where n
�
is the quantum vibrational number and vc is the classical vibrational fre-

quency. Substituting this into Equation 4.10 gives

vq =
(n0 + 1

2)hvc − (n1 + 1
2)hvc

h
= (n0

− n1)vc = vc , (4.12)

and hence the use of radiation frequencies in spectroscopic analyses of classical me-
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chanical frequencies, in order to determine the strength of internuclear force fields.

Introducing Dipoles

The dipole moment of a molecule is due to its nuclear (and electronic) configuration

and hence the principle of SHO motion applies, where the normal modes are char-

acteristic of the dipole. The energy of radiation a dipole is able to absorb to induce

oscillations of the normal modes, lies in the infrared region between wave numbers

650 cm−1 and 4400 cm−1. This frequency region spans the spectrum of energy a

dipole can absorb, to effect its range of vibrational modes. In complex molecules

some vibrations involve the whole molecule whereas others involve only some of the

bonds or the functional groups [128]. These localized vibrations can be used as a

means of identification of the functional groups as they have specific motions such as

stretching, bending, rocking, twisting or wagging. Where infrared spectroscopy in-

volves the absorption of radiation, a second technique, Raman spectroscopy, involves

the detection of a change in frequency due to the scattering of incident radiation

and the induction of a dipole moment. Raman will not be explored in greater depth

here, suffice to say that infrared and Raman can be complementary tools of spec-

troscopic analysis, as some absorptions disallowed in infrared, are allowed in Raman.

Towards Quantum Mechanics

Moving on from the consideration of isolated molecules, to the consideration of a

periodic array of atoms, which, by its very definition, implies that the various vi-

brational modes of the atoms in adjacent unit cells are strongly coupled. The phase

relationships of the coupled displacements can be identified in real space using long

wavelength radiation of wavevector q where |q| = 2π/λp where λp is the wavelength

of the incident radiation. To examine the commensurate or in-phase vibration of

the bulk, λp = ∞ is required which, relative to atomic spacing and bond lengths,

is achieved by infrared radiation [94]. Computationally it is possible to probe the

phase relationships between cells by using wavevectors of q �= 0, information that
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can be used to plot dispersion curves and density of states. Further elastic prop-

erties are then accessible such as the heat capacity of the bulk, thermal expansion,

thermal conductivity and thermal resistivity [24].

So far the classical mechanical implementation of lattice vibrations is straight-

forward, but now it is time to introduce quantum mechanics into the model. Al-

though there are several methods of implementing ab initio lattice dynamics such

as the frozen phonon method and finite differences, the focus of this study is linear

response DFPT. The vibrational change in energy of a material due to the displace-

ment of atoms is ultimately governed by the electrons. As long as the vibrations are

of a sufficiently low frequency, i.e. with longer wavelengths and lower frequency than

those of the electrons, the electrons can be considered to remain in their ground-

state, which evolves as a function of nuclear displacements [14]. The total energy of

the material is then a function of the positions of the nuclei i.e E = Etotal (RI) and

the forces on the nuclei are given by FI = −
dE

dRI
where, in the SHO approximation,

the forces at equilibrium are zero. The second derivatives of the energy (Hessian in

matrix form) with respect to the nuclear positions, which identify stationary and

saddle points, are the interatomic force constants given by

CIJ = −
dFI

dRJ

=
d2E

dRIdRJ

. (4.13)

The force constants of CIJ can be calculated from the responses of the nuclei to

positional perturbations, i.e. expansions of the nuclear displacements from their

equilibrium position produce displacements with vibrational modes at frequency ω,

and are described by [14]

uI(t) = RI(t)−R0
I
≡ uIe

iωt , (4.14)

where R0
I

is the equilibrium position. Given that the force on the nuclei is

FI(R) = MI

∂2RI

∂t2
= −

∂

∂RI

E(R) , (4.15)
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then substituting in Equation 4.14 and combining with Equation 4.13 produces, for

each I

−ω2MIuI = −

�

J

CIJuJ . (4.16)

Add in the Born van Karman boundary conditions which imposes the Bloch theorem

as detailed in Chapter 2 and the full solution to Equation 4.16 is given by

det

�����
1�

MsMs
�
C

s,s
� (q)− ω2

iq

����� = 0 , (4.17)

where s refers to the sth atom, q is the wave vector where for ωiq, i = 1, 3s (3 degrees

of freedom per atom). The force constant matrix for wavevector q is then defined

as

C
s,s

� (q) =
�

Tne
iq·Tn

∂2E(R)

∂Rs(0)∂R
s
� (Tn)

=
∂2E(R)

∂us(q)∂u
s
� (q)

, (4.18)

where Tn is cell Tn in the bulk and us the Bloch wave function of atom s given by

us,Tn = eiq·Tnus(q) . (4.19)

Equation 4.17 is an analogy of the classical mechanical secular equation shown in

Figure 4.5 where in the latter case, the force constant matrix is given in terms of

the spring constant, k. But now, the case is quantum mechanical, explicit in its

inclusion of wave functions and, as mentioned previously, the effect of the electrons

is expressed in the interatomic force constants as will now be demonstrated.

The Hellman-Feynman theorem detailed in Chapter 2 gives the force expression

of the Born-Oppenheimer Hamiltonian as [129]

FI = −

�
nR(r)

∂VR(r)

∂RI

dr−
∂EN(r)

∂RI

, (4.20)

where ∂EN(r) is the electrostatic interaction between nuclei and VR(r) is the electron-

nucleus interaction given by

VR(r) = −

�

iI

ZIe2

|ri −RI |
. (4.21)



4.3. Method 114

Equation 4.20 explicitly shows the inclusion of the groundstate electron charge den-

sity, n(r). To obtain the interatomic force constants, simply differentiate F with

respect to the nuclear coordinates to obtain [129]

∂2E(R)

∂RI∂RJ

≡ −
∂FI

∂RJ

=

�
∂nR(r)

∂RJ

∂VR(r)

∂RI

dr +

�
nR(r)

∂2VR(r)

∂RI∂RJ

dr +
∂2EN(R)

∂RI∂RJ

,

(4.22)

which now requires the ground state charge density and its linear response to a per-

turbation of the nuclear positions. The theory introduced here has served to draw

parallels between classical and quantum mechanics, to emphasise that the essential

idea behind the approach of lattice dynamics is that of simple harmonic oscillators.

From this point, the interatomic force constant matrix is obtained by perturbing

each term in Equation 4.22 according to perturbation theory, as detailed in Gonze’s

work [130]. Implementation of DFPT in CASTEP was refined in 2006 with the in-

clusion of the linear response of the GGA exchange-correlation potential, responsive

to incommensurate (q �= 0) wave vectors [131]. The interested reader is referred to

the aforementioned references for further details as this study will not delve further

into the theory behind lattice dynamic calculations apart from discussing some of

its output and ‘limitations’ pertinent to this investigation.

The results of a DFPT calculation for N atoms in periodic boundary conditions

are 3N phonon branches, three of which are the acoustic modes representing 3-D

translations of the lattice, analogous to the 1-D case shown in Figure 4.5 where

λn = 0. The remaining 3N − 3 optic modes are due to the interaction of the nuclei.

The output can be in the form of infrared and Raman plots as well as dispersion

curves and density of states. Transition states are identifiable because the Hessian

of the Born-Oppenheimer energy surface produces an imaginative frequency for a

saddle point energy surface.

Another consequence of a DFPT calculation is the ability to calculate (lon-

gitudinal optic/transverse optic) LO/TO splitting. This experimentally observed

phenomenon occurs due to a coupling of the long wavelength optical phonon and
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the electric field due to long range Coulomb forces. As can be seen in Figure 4.6

the LO/TO splitting is dependent on the direction of wavevector q = 0 relative to

the direction of the Coulomb electric field, Ec. When q is longitudinal/parallel to

Ec i.e (Ec � q) the degeneracy of optical modes is removed as there is no equivalent

perpendicular/transverse electric field coupling (Ec ⊥ q). Thus there is a change in

Coulomb forces created by (Ec � q), which does not occur due to (Ec ⊥ q) hence

there is a frequency difference between the LO and TO modes, detectable by spec-

troscopy. The strength of coupling of (Ec � q) is quantified by the Born effective

charges.

Figure 4.6: Schematic of the origins of LO/TO splitting where the change in the
Coulomb forces caused by the incident longitudinal phonon, removes the degeneracy
of optical modes at the gamma point. Ec is the electric field produced by long range
Coulomb forces.

The first ‘limitation’ of the linear response DFPT implementation within CASTEP

to date, is that it can only be applied to insulators. During a perturbation, the first

order response of the Kohn Sham orbitals (φ(1)) is required and is given as the
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solution to the Sternheimer equation

�
H(0)

− �(0)
m

� ��φ(1)
m

�
= −Pcv

(1)
��φ(0)

m

�
, (4.23)

where φ(1)
k,q(r) = e−i(k+q)·ru(1)(r); u(1)(r) is the first perturbed periodic function [130];

Pc is the projection operator and the first order potential, v(1) includes the response

of the Hartree and XC potentials [132]. The projection operator projects perturbed

occupied states only onto unoccupied states because a perturbed charge density pro-

jected onto itself produces a null result [129]. Thus, a definite band gap (together

with fixed orbital occupancy) is required in DFPT, which is the electronic structure

definition of insulators.

The second ‘limitation’ is that DFPT is currently implemented in CASTEP

with norm-conserving pseudopotentials (PP) only. This is because ultrasoft PP

have non-orthogonal atomic orbitals and an augmentation charge and an overlap

operator as detailed in Chapter 2. A varying orthogonality produces artefact forces

and extra terms and derivatives are produced when calculating the Hessian of the

Born-Oppenheimer energy surface, due to the augmentation charge term. Basically,

the model becomes so complicated that the code has not, to date, been function-

alised. Further details can be found in Paul Tulip’s thesis [133]. This is a pertinent

point for the study detailed in this chapter, as the norm-conserving PP requirement

introduced several modelling issues, which will be discussed in due course.

In spite of the above drawbacks, which in itself is a subjective viewpoint, linear

response DFPT is a powerful analytical tool. It can be computationally expensive

to produce the Hessian for q �= 0 but this process is made efficient by the technique

of Fourier transforming the force constant matrix to produce the dynamical matrix,

D(q), a 3N by 3N matrix at each q

D(q) =
1

√
MIMJ

� �
∂2E

∂u∂u

�
e−iq·R . (4.24)

Sub- and super- scripts have been dropped as this equation is illustrative of the
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method and not the mathematical details, which can be found in reference [132].

Although the dynamical matrix is costly to produce, it can be used as the basis of

an interpolation procedure, by virtue of the relatively short range of the real space

forces in the force constant matrix, of the order of 1
R−5 . This arises from the rela-

tively short interatomic interactions in a non-polar solid or insulator [132]. From a

relatively coarse calculation of D(q), a density of states or dispersion curve can be

produced at little extra computational expense.

As mentioned in the Introduction to this chapter there is a dearth of studies com-

bining heterogeneous periodic systems, planewaves, pseudopotentials and DFPT in

spite of the analytical power of the latter method of vibrational analysis. There-

fore, the study outlined in this Chapter is pioneering but the potential to add to

the scientific understanding of chemical reactions via the identification of transition

states, is sufficient to justify this venture into uncharted territory. All that remains

to be remarked on before the Results section is the convergence criteria specific to

DFPT.

4.3.5 Computational Details

The linear response calculation, DFPT [130] implemented in CASTEP computes

the lattice dynamic responses of a bulk material for a range of phonon wavevectors

(q-values/points). DFPT is currently implemented for norm-conserving pseudopo-

tentials [134]. All previous calculations up to this point have employed ultrasoft

PP, which require a relatively low cut-off energy compared to the norm-conserving

PP. If a higher energy cut-off was introduced, then all previous geometry optimisa-

tions would have to be re-done. A higher cut-off would increase the computational

time, which, with these particular models was already substantial reaching several

weeks for a full optimisation. However, the need for a higher cut-off was obviated

by switching from a coarse grid of 1.75 to a coarse grid of 2.0. An energy-differences

convergence test showed that, for a coarse and fine grid scale of 2.0, (these scales

are explained in Chapter 2) an energy cut-off of 550eV produces convergence per
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unit cell to 1meV - illustrated in Figures 4.7 and 4.8. This is an order of magnitude

higher than was used for the ultrasoft PP, which lends confidence in the output

obtained used norm-conserving PP.
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Figure 4.7: Energy cut-off convergence test for the norm-conserving pseudopoten-
tials using two product models, which differ in the position of their sodium atom
only.
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Figure 4.8: Showing the convergence of the total energy differences with cut-off
energy for the norm-conserving pseudopotentials.

Consequently a pragmatic decision was made to keep the 550eV cut-off energy,
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together with the relaxed lattice parameters found with the ultrasoft PP. Fixing the

lattice parameters was motivated by computational efficiency and the fact that the

interlayer species were contained within a vacuum-like space.

To summarise, keeping the lattice parameters fixed, and allowing only the atoms

to relax, the reactant, intermediate and product models were re-optimized with the

GGA-PBE exchange-correlation functional, norm-conserving pseudopotentials [31],

using 550eV, two k-points, a grid scale of 2.0 and the convergence criteria previously

stated in section 4.3.2, paragraph two. The additional convergence criteria used for

the linear response calculation were as follows: phonon energy tolerance: ≤ 10−5eV;

phonon convergence tolerance: ≤ 10−5eV/Å2; phonon preconditioner: Teter, Payne

and Allan (TPA) [39].

DFPT calculations were carried out on the optimized geometry of the interme-

diate at the gamma point, q = 0 followed by a dispersion curve based on a coarse,

reciprocal space, Monkhurst Pack grid of q- points: [10, 5, 1] with an interpolation

of q- point spacing of 0.01. This spacing was found to be optimal as spacing less

than this produced no further refinement in the results. This was repeated for the

reactant, product and the clay-only model plus the full relaxation of the clay-only

model including its lattice parameters. The latter two cases involved solely the clay

surface without any guest molecules. The motivation for the relaxation in the latter

two cases will be revealed in the following section.

4.4 Results and Discussion

4.4.1 Finding the Transition State

The LST/QST searches produced a configuration of interlayer species, consistent

with a possible transition state between the reactant and product, see Figure 4.4.

The intermediate is comprised of ethanol CH3CH2OH plus CO, which are not species

hypothesised by Almon and Johns who deduced an organic free radical intermediate
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or, in the absence of water, the involvement of a carbonium ion [10]. Some of the

reasons for these differences will be discussed in due course.

An examination of the energy differences between the intermediate, reactant and

product, Table 4.2, shows that in both PP approximations, there is a positive en-

ergy difference between the intermediate and the reactant and the intermediate and

the product due to the higher energy of the intermediate, which is consistence with

the characteristics of a transition state between a reactant and product. Although

the two PP approximations show a difference in magnitude of the energy differ-

ences between the reactant, product and intermediate, these results were found to

be acceptable within the scope of this study, as the expectation was not to obtain

quantitative data about reaction rates from this simulation. Although the GGA

achieves greater accuracy in calculating reaction barrier heights — in the context

of the attachment of a gas-phase molecule to a surface [135] — than does the LDA,

due to the overbinding of the latter, this result is being used as a guide to the

feasibility of the intermediate being a transition state. Quantitative calculations of

barrier heights would follow the full identification of the reaction pathway, and might

require the consideration of clay layer surface–gas-phase molecule interactions, or

gas-phase–gas-phase interactions depending on the configuration of the transition

state(s).

(∆A−B) ultrasoft norm-conserving
∆I−R 1.2026 0.8773
∆I−P 1.3413 1.6467
∆P−R -0.1387 -0.7694

Table 4.2: Energy differences (∆A−B) of the optimised models using ultrasoft and
norm-conserving pseudopotentials where R is reactant; I is intermediate; P is prod-
uct.

Much of the initial interest in mineral mediated decarboxylation reactions arose

from issues surrounding the formation of crude oil and its extraction and purifi-

cation. Early work by Almon and Johns evidenced that one possible pathway for



4.4. Results and Discussion 121

decarboxylation, under putative reservoir conditions, involved free radical mecha-

nisms, with increased conversion of fatty acids in the presence of radical promoters

and, conversely, a decrease in reactivity in the presence of free radical inhibitors. In

other work by Zhang et al [136], who used metal oxide catalysts to reduce the total

acid number (caused by naphthenic acid) in crude oil, in order to increase the value

of the product, cationic/anionic and concerted pathways were proposed as poten-

tial reaction mechanisms. However, the intermediate and potential transition state

found in this study does not suggest a reaction pathway in agreement with any of

the above mechanisms.

As previously stated, decarboxylation has become of interest through the desire

to be able to produce fossil fuel-like products from plant oils, which are primarily

composed of tri-acyl glycerides, based on fatty acid structures. In this present study

an alcohol has been identified as a potential transition state, which is not without

precedent [137]. An alcohol is involved in a hydrodeoxygenation pathway where it

subsequently undergoes further reduction down to the hydrocarbon with the simul-

taneous formation of CO2. Dehydration/hydrogenation reactions of fatty acids and

their esters have been shown to involve alcohol intermediates in studies of biofuel

production [137] as illustrated in Figure 4.9. However, in contrast to the physical

hydrodeoxygenation pathway, the production of the simulated ethanol intermediate

occurred without C-C bond cleavage, no hydrogen source was introduced and no

water was formed.

Figure 4.9: Hydrodeoxygenation reaction scheme of a fatty acid.

The difference between the intermediate found and the hypothesised reaction

pathway of Almon and Johns is completely within expectations. The models used

in this investigation are as minimal as possible. The approach to investigating the

reaction mechanism is simplistic where only the reactant and product are defined,

allowing, in the first instance, a one-configuration transition between them. If, as
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is highly likely in the case of free radical reactions, multiple transition states with

small energy separations exist on that pathway, this method may not uncover them

in a single investigation of this type. An alternative approach, within the method-

ological constraints, would be to specify explicit intermediate states or, on obtaining

one intermediate state, to use this as either the reactant or product and repeat the

transition state search.

Additionally, it should be noted that the experimental reaction rates were rather

slow, with only 2% conversion to the alkane product, even at elevated temperatures

of 250oC and that Almon and Johns did state that their proposed decarboxylation

mechanism probably did not ‘reflect reality except in the broadest sense’ [10].

Both their study and this agree that a decarboxylation reaction within a clay

environment involves the transfer of electrons to the clay minerals, as will be il-

lustrated in subsequent sections. Furthermore, the potential transition state found

here opens up the possibility in future work to determine an intrinsic reaction co-

ordinate (IRC) path [138] and to analyse the mechanics of a reaction [139] leading

from the reactant to the product via this transition state and, possibly, many others.

The following section describes the results obtained from vibrational analysis of the

intermediate.

4.4.2 Vibrational analysis

On geometry optimisation of the intermediate configuration using norm-conserving

PP and visualisation of the resulting geometry, it was found that there was a dis-

tortion in the clay layer above the position of the sodium atom, see Figure 4.10.

When repeating the optimisation on the reactant, product and clay-only layer using

norm-conserving PP, the same distortion of the clay layer appeared. When the lat-

tice and atomic positions of the clay-only layer were allowed to relax, there was no

distortion in the clay layer, see Figure 4.11. This implies the distortion is a direct

result of using the norm-conserving PP without allowing the lattice parameters to
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relax. The lattice lengths of the completely relaxed clay-only layer are within 5%

of those obtained using the ultrasoft PP and although the clay layer has been dis-

torted, a comparison of Figures 4.1, 4.4 and 4.10 shows that the configurations of

the interlayer species appear similar in both PP approximations. This is probably

due to the vacuum of the interlayer enabling the organic molecules to relax without

the imposed lattice restraint, as anticipated in Section 4.3.5. The aim of this study

is to identify a transition state configuration and, as both PP approximations have

produced the same configuration when geometry optimised, this elicits the question:

how much has the distortion in the clay layer affected the verification of a transition

state using vibrational analysis?

The four lowest eigenfrequencies of the phonon calculation (see Table 4.3) for

the commensurate q = 0 point, show that the intermediate has four imaginary fre-

quencies, three of which are shared with the reactant and clay and two with the

product. The three frequencies with the value −0.02i cm−1 and −0.03i cm−1 rep-

resent the three translational vibrations of the lattice in the x-, y- and z-directions.

The difference between these values and zero is acceptable noise of the calculation

in the context of a range of frequencies that extends to 3700cm−1, together with the

force convergence criteria of the geometry optimisation. The results for the reactant

and clay models do not contain any large imaginary frequencies implying that the

imaginary frequencies found in the intermediate and product are not due to using

the norm-conserving PP and the effect it has had on the clay.

Reactant Intermediate Product Clay
−0.02i N −45.35i Y −53.9i Y −0.02i N
−0.02i N −0.02i N −0.03i N −0.02i N
−0.02i N −0.02i N −0.02i N −0.02i N
38.22 Y −0.02i Y −0.02i N 55.66 Y

Table 4.3: Four lowest eigenvalues from the phonon calculation on each model where
‘Y’ and ‘N’ refer to Raman acivity, ‘Yes’ and ‘No’ respectively and units are cm−1

The largest imaginary frequency of the intermediate is indicative of a transition
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Reactant Intermediate

Product Clay

Figure 4.10: Geometry optimised models using the norm-conserving pseudopoten-
tials. The labelled atoms are referred to in Tables 4.4 and 4.5.

state but, as can be seen in the results, the product also has a large imaginary eigen-

frequency although the product was assumed to be stable. Dynamic visualisations

of these imaginary modes — a facility available in Materials Studio — show for

the intermediate an oscillation of the OH branch of ethanol towards CO suggesting

that an application of energy would initiate a reaction between the two separate

molecules of this intermediate stage, which would then form the product alkane and

CO2. Therefore this intermediate is a transition state. In contrast, visualisation of
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Clay layer Lattice dimensions

a = 4.97 α = 90.09
b = 8.63 β = 100.88
c = 9.24 γ = 89.60

Figure 4.11: Unit cell of the clay layer (without any interlayer species) after geometry
optimisation where the whole cell and contents have been allowed to relax within
the norm-conserving pseudopotential approximation. Lengths are in Å and angles
in degrees.

the imaginary mode of the product model shows an oscillation of the alkane in the z-

direction pivoted at one end, with no feasible interaction with the local environment.

As this imaginary vibrational mode does not indicate a change of configuration, it is

more an indication of a mechanical instability in the system rather than a transition

state. See Figure 4.12 for a static visualisation of these modes.

An analysis of other vibrational modes shows agreement with both experimen-

tal [140] and computational results [93], [141]: O− H libration mode at 930cm−1,

Si−O modes at 1100cm−1 and 1104cm−1 and O− H stretching at 3644cm−1 and

3663cm−1 involving the central-cell O− H. This indicates that the results concern-

ing the imaginary vibrational modes have equal validity and that the distortion

caused by the norm-conserving PP has had a minimal effect on vibrational frequen-

cies.

Table 4.4 shows the effect on the bond distances between the aluminiums of

using norm-conserving PP, which provides evidence that the distortion in the clay

layer in the norm-conserving PP approximation is responsible for the bond length

disparities. Comparing the relaxed lattice, ultrasoft models and norm-conserving,

Clay layer-2 model, there is a 6% difference in bond length which could be due to

the imposed lattice constraint.



4.4. Results and Discussion 126

Intermediate Product

Figure 4.12: Schematic of the imaginary vibrational modes of the intermediate and
the product. The area encircled by the dashed line indicates the atoms involved
in the vibration. The double-headed arrow indicates the direction of vibration and
the point labelled P represents the intersection of the pivotal axis with the organic
molecule. In the intermediate this is the x-axis and in the product, the z-axis.

Al-1 to Al-2 (Å)
Model ultrasoft norm-conserving

Reactant 3.066 3.925
Intermediate 3.070 3.926

Product 3.070 3.919
Clay layer-1 - 3.993
Clay layer-2 - 2.877

Table 4.4: Distances between the Al’s marked on Figure 4.10. Clay layer-1 refers to
the clay only layer without lattice relaxation and Clay layer-2 to the clay only layer
with lattice relaxation.
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The clay mineral models used here are anisotropic with only C-1 symmetry,

hence two paths through the Brillouin zone were chosen to compare dispersion curves

through the models, see Figure 4.13 for details of the paths and Figures 4.14 and

4.15 for the dispersion curves.

The short path dispersions shown in Figure 4.14 for all four models share a

similar feature between [0,0,0] and [0,0,0.5], which is strong evidence of the effect

of the same geometry in all four models, possibly the distortion creating an insta-

bility in the clay layer. This could be proved by running a DFPT calculation on

the distortion-free, clay-only layer. The two imaginary frequencies of the transition

state and the product are distinct and are representing a phenomenon that is not

shared by the clay layer and the reactant models. If this is evidence for the interme-

diate being a transition state, then the same must be said about the product system.

Evidence of the intermediate being a transition state and the product not, is pro-

vided in Figure 4.15, which shows the dispersion graphs for the longer path through

the Brillouin zone shown in Figure 4.13. The intermediate has one distinct line

of imaginary frequencies compared to the product which has three. The reactant

and clay-only models do not have any imaginary frequencies, which indicates that

there are no inherent system instabilities along that path. Therefore, the multiple

imaginary frequencies of the product model indicate an instability in that system,

whereas the single imaginary frequency seen in the intermediate model is indicative

of a genuine transition state.

The lattice was not re-optimized at the same time as the contents because the

optimised cell agreed with previous DFT calculations and experimental results (see

Table 4.1). This inspired confidence that any intermediate found in a transition

state search using these optimised models, would likewise accurately reflect experi-

mental geometries. Although a distortion was created in the clay layer, the relative

configurations of the interlayer guests remained the same on the PP substitution,
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Figure 4.13: Two different paths through the Brillouin zone of the clay mineral
models. x, y, z are the reciprocal space axes.
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hence the change caused by the substitution did not detract from the main aim of

this study. An examination of the Mulliken charges and Kohn Sham orbitals in

the following section, will provide additional evidence to strengthen the conclusion

reached in the previous paragraph.

4.4.3 Mulliken charges and Kohn-Sham orbitals

The Mulliken charges of the aluminiums and oxygens labelled in Figure 4.10 within

the clay layers (see Table 4.5) show that, in the norm-conserving PP calculations,

Al1 and Al2 are allocated a higher charge than in the ultrasoft calculations whereas

Al3 is between 1.86 and 1.88 for both approximations for the reactant, intermediate

and product. This shows that the tetrahedral sheet aluminium (Al3) has the same

charge as the octahedral sheet aluminiums when the lattice has not been allowed to

relax, however, when it is able to relax (model C-2) the tetrahedral sheet aluminium

has a charge higher than Al1 and Al2 by 0.1e which is the same as the difference

between these aluminiums within the ultrasoft approximation. The same trend in

the clay-only layers, C-1 and C-2 where sodium is absent is seen in both scenarios

which implies that, in spite of the lattice restraint, the absence of sodium results in

a higher charge on Al3 due to the decrease in electron density. Therefore, the lattice

restraint has had no effect on the mechanism of electron donation to the clay layer.

An examination of the charges on the oxygens shows that within the norm-

conserving PP approximation, they range from -1.18 to −1.20e for the reactant,

intermediate and product models whereas within the ultrasoft approximation they

range from −1.12 to −1.18e. When the clay-only layer is allowed to relax (C-2),

the charges on the oxygens within the octahedral sheet both become −1.15e and

the oxygen closest to the tetrahedral aluminium becomes −1.09e. This less negative

charge compared to that of O3 in the reactant (−1.19e), intermediate (−1.20e )

and product (−1.20e) models appears to be due to the absence of sodium — no

electron donation and hence the consequent reduction in electron density. The clay-

only layer which was not allowed to relax (C-1) shows a charge of −1.16e on O3
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even in the absence of sodium, and could have assumed some of the negative charge

from O1 which has a charge of −1.13e. The charges on the sodium within both

PP approximations show different values but the same trend — a decrease from the

reactant to intermediate then an increase to the product. The higher charges of the

oxygens for C-1 and C-2 in the norm-conserving models than those of the oxygens

in both PP approximations for the reactant, intermediate and product models add

further evidence to the assertion that sodium is the source of electron donation.

Reactant Intermediate Product
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Figure 4.16: Fermi-level orbitals shown in blue where the upper row models use the
norm-conserving pseudopotentials and the lower row the ultrasofts.

These Mulliken charges show that the two approximations have resulted in dif-

ferent charge distributions within the clay layers which suggests that where Fermi

level orbitals exist within this layer, their distribution may differ depending on the
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PP approximation. This is indeed the case in the product model (see Figure 4.16)

where there is clay layer involvement of the Fermi level orbitals. The two PP ap-

proximations display different Fermi level orbital distributions particularly around

the aluminium and oxygen atoms discussed above. However, to what extent have

the Mulliken charges and the Fermi level orbitals of the interlayer species been af-

fected by the clay layer distortion?

The Mulliken charges [46] of the reactant atoms (Figure 4.17) show that it has

been allocated a relative charge of −0.31e and −0.30e in the norm-conserving and

ultrasoft approximations. An examination of the highest occupied molecular or-

bitals (HOMO) or Fermi level orbitals (Figure 4.16) shows that the electrons most

likely to react are those on the fatty acid in both PP cases.

The Mulliken charges on the ethanol of the intermediate model give its overall

relative charge of −0.22e and −0.17e in the norm-conserving and ultrasoft approx-

imations. A closer examination of the charges of the oxygen and hydrogen atoms

of the hydroxyl bond shows a difference of 0.01e between the two approximations

and the Fermi-level orbitals in both cases are situated on the ethanol, including

this bond. This is consistent with the analysis of the imaginary vibrational mode

which showed a joint vibration between the hydroxyl bond of the ethanol and the

carbon monoxide and hence the supposition that an application of energy would

most probably cause the Fermi level electrons to react, decreasing the overall energy

of the system by interacting with CO to form the product.

The overall Mulliken charge on the alkane in the product model is −0.34e and

−0.30e in the norm-conserving and ultrasoft approximations. This slightly larger

negative charge on the alkane in the norm-conserving approximation together with

the positive charge of 1.56e on the sodium could be creating a dipole interaction.

This dipole may be responsible for the imaginary frequency of the product and those

seen in the product’s dispersion curves, due to the creation of an instability in the

bulk system. It seems coincidental that the imaginary frequency of the product
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model, at the commensurate point, displays a vibration towards the sodium and the

distortion in the clay layer. Could it be that the imposed lattice constraints and the

position of the alkane within the interlayer, have conspired to produce the imaginary

frequency of the product? One way to test this would be to swap the positions of

the alkane and CO2, re-optimise and redo the DFPT calculations.

The Fermi-level orbitals in both approximations show dissipation within the clay

layer only, but differ in their distributions as commented on in the previous para-

graphs. There are no Fermi-level orbitals in either PP approximation on the alkane,

which is evidence that this configuration is relatively stable and is not in transi-

tion. Thus, the concluding assertions are that the imaginary frequency of the alkane

model is a secondary effect of the imposed lattice constraint, i.e. it is not a genuine

transition state and that the intermediate of ethanol plus CO2 has been correctly

identified as a genuine transition state.

4.5 Conclusion

Here, for the first time, are presented ab initio transition state search calculations

with DFT methods to probe potential reaction pathways in decarboxylation reac-

tions in smectite clay minerals. Such reactions are believed to be responsible for

crude oil formation under reservoir conditions [10] and are increasingly of interest

in biomass-biofuel conversions [68].

Conceptually, low order layered organo-mineral structures are amongst the most

difficult to accurately characterise with only limited information available from an-

alytical methods. As such, computer simulation has become an essential adjunct to

experiment to characterise the structure of such systems fully [60], [142]. The situ-

ation is even more challenging if reaction mechanisms are to be studied, the sheer

complexity of a mineral matrix, organic material, water, and applied external con-

ditions make the study of reaction mechanisms in such systems inherently difficult.
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In this study some advances have been made in the application of computational

methods to address this challenge.

In order to be able to address this topic on a meaningful computational time

scale, lattice constraints were enforced on the PP switch. Changing PP could affect

the lattice dimensions, but full relaxation is more computationally expensive than

the relaxation of atomic positions only. For example, full cell relaxation including

lattice parameters as well as atomic positions of one model, processed for one week

across 64 nodes; relaxation of the atomic positions only for one model took 17 hours

across 128 nodes and a DFPT computation of one model took two weeks to process

across 64 nodes, all of which were processed by HECToR.

The lattice constraint was prompted by the structure of the unit cell. The deci-

sion regarding the constraints was justified, to a certain extent in the results. The

molecular configuration of the intermediate was the same in both PP approxima-

tions. Also, forces were well converged and only two distinct imaginary frequencies

were computed at the q = 0 point, one each for the intermediate and product (ex-

cluding the small imaginary frequencies of the lattice translation). The assertion

that the vacuum of the interlayers would protect the gallery guests from any effects

of the constraints also appeared to be justified as the distortion due to these con-

straints appeared in the clay layers only.

The question of ‘accuracy’ of results is interesting, perhaps a more appropri-

ate word is ‘relevance’. In the context of this study, what is the relevance of the

results? Comparisons between models ameliorates the computational inaccuracies,

which may have been introduced by the imposed constraint. This argument has

been used here to, in part, justify this constraint. And, as a result (or in spite) of

this, a transition state has been found and identified. Within a computational envi-

ronment, a new result has been obtained. However, the moment this is exposed to

comparison with experiment, ‘accuracy’/‘relevance’ transforms its meaning. Com-

pared to Almon’s and Johns’ experiment, the simulated transition state does not
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exist and hence could be said to be ‘completely irrelevant’. So, there are two separate

issues here, the computational aspect and the chemical and experimental. At this

early stage of this type of investigation, is there any common ground between them?

This pioneering study began with basic models, which by virtue of their simplic-

ity are unrepresentative of experimental environments. Such simplicity allows the

artefactual results (e.g. the clay-layer distortion due to constrained lattice param-

eters and possibly the imaginary frequency of the product) to be distinct from the

genuine results (e.g. the transition state identified by its imaginary eigenfrequency

and occupied Fermi level electrons). The results are relevant in two ways, firstly they

inform future modelling practice, and secondly they suggest the revisions required

to increase the complexity of the models and hence increase their experimental rel-

evance. For example, with regard to modelling practice, one development would be

to increase the number of q points in the coarse grid in the z-direction. An example

of making the models more complex would be for the transition state to be used as

a new Reactant or Product and a transition state search re-run.

In summary, this study is evolving to capture the fundamental elements of mod-

elling catalysis in complex mineral systems. Through using an ab initio approach, no

conditions or assumptions are imposed a priori on the system of interest. Through

the chosen DFT methodology, information regarding the electronic structure of the

system at potentially critical stages along the reaction coordinate has been obtained

and, the spectroscopic data even at this early modelling stage, may aid in the inter-

pretation of experimental analytical data.

Such an approach presents a powerful tool to elucidate reaction mechanisms in

complex systems. The key to success lies in marrying computational efficiency and

methodology, together with experimental conditions and environments, which this

study has achieved within the limitations previously discussed.

Although there are several paths this study could take, for now it has reached
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a conclusion. The next step in this foray into the electronic structure modelling

of clay minerals, was prompted by a question asked at a Clay-Mineral Conference.

The point of query was the mechanism of the reduction of iron within clay-minerals

and it is this investigation that comprises the following chapter.



5
Ab initio Reduction in Ferruginous

Smectite

5.1 Synopsis

This chapter addresses the question of reduction within iron-bearing clay minerals.

It opens with a description of the motivation and background for the study, pro-

ceeding to examine how reduction should be optimally modelled and the modelling

considerations involved. It progresses by presenting the range of models; computa-

tions and the results followed by analyses of the Mulliken charges and Fermi level

occupancies. While these results produced a firm conclusion of reduction in the oc-

tahedral sheet, a further, small adjunct study was required to cultivate a definitive

answer concerning reduction in the tetrahedral sheet. Finally, this chapter draws to

a close with an overall conclusion discussing reduction in the context of the models

140
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and methods used. However, before the story ends, it begins with the Introduction.

5.2 Introduction

In December 2009 at the FuturoClays: Clay Minerals Group Annual Meeting, this

question was raised: ‘Could DFT answer the question where and how does reduction

in nontronite occur? Is it predominantly at edge sites or at the basal surfaces?’ This

gauntlet could not be ignored and the attempt to answer these questions forms the

investigation presented in this chapter.

Nontronite is a dioctahedral 2:1 ferruginous, smectite clay, similar to pyrophillite

described in the previous chapters but with the substitution of Fe3+ and/or Mg2+ in

the octahedral sheet and, more rarely, Fe3+ in the tetrahedral sheet. The categories

of nontronite depend on their composition for instance, both Fe3+ and Mg2+ sub-

stitution for Al3+ cations in the octahedral sheet together with Al3+ present in the

tetrahedral sheet constitute Garfield nontronites. The smectites with solely Fe3+

in the ocatahedral sheet and about 20% [143] substitution in the tetrahedral sheet

constitute the NG-1 nontronites. This latter type together with ideal nontronite —

an all-Fe3+ octahedra and an Al3+ substitution in the tetrahedra — are the focus of

this investigation into reduction.

The state of oxidation versus reduction in phyllosilicate clays determines many of

the chemical and physical properties of clays, such as: specific surface area, cation

exchange capacity, magnetic exchange interactions [144], mineral availability, the

degree of swelling in water, reactivity with organic chemicals and pesticides and the

potential for mineral dissolution and transformation [145]. This direct effect on the

smectite layers has consequences for the local environment of the clay as clay is one

of the key ingredients of soil. For example, a change in specific surface area of the

smectite sheets causes a collapse in the clay layers, reducing the interlayer spacing

and trapping some of the interlayer cations making them less available for uptake by
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plants. The layer collapse causes an increase in the thickness and size of the smec-

tite particles which determines the settling properties of clays, their permeability

to water and hydraulic conductivity [146]. Studies in to the bacterial reduction of

smectites [145] have shown that the reaction of the clay with organic chemicals and

pesticides increases insofar as the reduced smectites alter and degrade these chemi-

cals to a greater degree than either non-reduced (i.e. oxidized) or reduced re-oxidized

smectites. These examples illustrate how the reduction of ferruginous smectites has

industrial, environmental and agricultural implications and although these extensive

changes have been studied experimentally (and reviewed in reference [147]) to date,

the exact mechanism of reduction in ferruginous smectites has not been studied at

the level of molecular structure [148].

An element is reduced by gaining electrons, therefore, if an environment is cre-

ated where electrons are available, an element will be reduced if this is the optimal

electronic structure response. In this study, reduction is presented in the form of a

series of models with an increasing number of added sodium atoms or charge, which

act as the reducing agents. The justification for the modelling method is described

in Section 5.3.2, where various artefacts of the models due to their constituents and

structure are considered.

This chapter proceeds with a Method section describing the models and the pro-

cess of reduction, followed by the Results and an in-depth Discussion of the findings,

and finally a Conclusion where the investigation is summarised and implications are

drawn for future studies. For the purposes of reducing tediousness of language, in

the remainder of this chapter, the octahedral sheet will be known as ‘OS’ and the

tetrahedral sheet ‘TS’.
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5.3 Methods and Modelling Considerations

Chemical reduction is the acquisition of electrons by one atom or molecule which

computationally can be achieved, within the current ab initio methods, in two ways

either by the inclusion of a source of electrons in the simulation, such as an increas-

ing number of sodium atoms, or by the addition of charge to the input file. Both

methods have been chosen for investigation, in order to determine if one is more

suitable than the other to study this type of reaction. The precedent for this was

set in the first results chapter where the conclusion was that the presence of sodium

was enabling electron transfer from the organic guest molecule to the clay surface

and therefore a necessary inclusion for the investigation of decarboxylation. This

investigation is the first step in examining reduction within clay minerals, so the

unphysical step of excluding interlayer guest molecules has been taken. Even with-

out this complicating factor, there are many other considerations such as the effect

of adding an increasing number of sodium atoms to a unit cell, which potentially

introduces Coulombic effects between their periodic images in the x-y plane and

dipole effects between Na ions and an uncharged basal surface in the z-direction.

The charge-only models could remove these potential problems but may well intro-

duce a different one, that of the change in the density of the background charge

as the number of unit cells are increased, as will be explained shortly. A further

modelling consideration for these iron-containing simulations, is the effect of spin

and the interactions between the unpaired electrons on different Fe atoms and how

this affects the process of reduction, if at all. The methods subsequently described

are attempts to separate out these modelling effects in order to answer the original

question with confidence.

5.3.1 Models

The pyrophillite models from the first results chapter are the template models for

this chapter. The interlayer guests and Na were removed and two types of nontron-

ite were made, Ideal and NG-1. Ideal has an all-Fe OS plus a substitution of Al3+
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for an Si4+ in the TS. NG-1 is the same as Ideal but with an Fe3+ substitution in

the TS, see Figure 5.1. Both types have an overall layer charge of −1e due to the

substitutions in the TSs. The motivation for using two types of nontronite which

differ only in their TS, is to gauge the relative effects of reduction in both sheets, for

example, would reduction be less pronounced in the OS when there is Fe3+ in the TS?

Ideal NG-1

Figure 5.1: On the left is a single unit cell of Ideal (id0-c1) containing no sodiums; on
the right is a single unit cell of NG-1 (ng3-c1) containing 3 sodiums. The following
colour scheme is used throughout this chapter: Oxygen: red; hydrogen: white;
aluminium: pink; silicon: yellow; iron: blue; sodium: orange. The dashed line is the
periodic boundary of a unit cell.

Convergence of template models

The introduction of a new pseudopotential in the guise of Fe species necessitated

re-testing of the cut-off energy. As described in previous chapters the cut-off energy

convergence test involved making two identical models of nontronite with the inclu-

sion of a Na atom in each with slightly different coordinates. A range of single point

energy calculations were performed from 450 to 1000eV cut-off energy. The energy

differences between the two models converged to 4meV at a cut-off of 550eV hence

this was used as the cut-off energy for this study. Ideal and NG-1 — both without
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Na were then allowed to fully relax, including atomic positions and lattice parame-

ters using the following criteria: electronic energy tolerance: ≤ 10−6 eV; geometry

optimisation:- energy change per ion: dE/ion ≤ 10−5eV; maximum force: |F |max

≤ 0.04 eV/Å; change in distance: |dR| ≤ 0.001Å; external isotropic pressure of

0.05GPa. As previously described, the generalized gradient approximation (GGA)

density functional, specifically Perdew, Burke and Ernzerhof (PBE) [21] was used,

as this describes molecular bonding to a greater accuracy than does the local den-

sity approximation (LDA). PBE ultrasoft pseudopotentials [29] were used as these

are consistent with the PBE exchange functional. The pseudopotential for Fe was

PBE with non-linear core corrections, a type of pseudopotential described in Chap-

ter 2, Section 2.3 [28]. The (geometry) optimizer was Broyden-Fletcher-Goldfarb-

Shanno (BFGS) and the electronic method was ensemble density functional theory

(EDFT) [41] although an attempt to use density mixing as the electronic minimizer

was made and is described in section 5.3.2.

The results of this relaxation can be seen in Table 5.1 together with the param-

eters of the template cell. The similarity of the results suggested that repeating the

k-point test was unnecessary so the previously optimised 2 k-points for the Brillouin

zone integration were used throughout this study.

Model Lattice length Angle
a b c α β γ

Ideal 5.20 9.09 9.82 93.80 101.73 89.65
NG-1 5.21 9.04 9.86 94.29 101.86 89.64

Template 5.22 9.07 9.73 90.87 100.00 89.65

Table 5.1: Lattice parameters of a unit cell of smectite. Lengths are in Å and angles
in degrees.

Post relaxation, the c-length was increased to 14.5Å to accommodate the inclu-

sion of sodium atoms. These cell dimensions were then fixed for the remainder of

this study.

Before proceeding with the computational details, there follows a description of
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the particular properties of these models and the potential artefacts produced in

the results. The question of how to represent the conditions for reduction based

on the template models, Ideal and NG-1 and the nature of the reducing agent are

considered, followed by a description and justification of the models used for this

study.

5.3.2 Modelling considerations — Electrostatic interactions

Electrostatic interactions due to electron charge density and point charges in peri-

odic lattices have been examined extensively since the beginning of the twentieth

century with the resulting creation of an increasingly complex model of interacting

elements. In this section, the fundamental electrostatic relations will be examined

and considered in the context of the reduction models.

Charge density

In 1928, Lennard-Jones [149] illustrated how to calculate the electrostatic potential

outside a crystal surface by assuming that a variation in charge density (including

that from electrons and nuclei) across the surface could be simplified into an aver-

age density across the surface σ(z) [14] plus a density dependent on the point in the

surface δn(r), as shown in Figure 5.2. The calculations showed that the variations

in planar density, δn(r) gave rise to potentials that decay exponentially with |z| —

see the original work for details, whereas the average charge density, σ(z), gave rise

to potentials which had long-ranging effects. The following sections examine these

long-range interactions in detail.

Multipole interactions

The longest range interaction is due to the Coulomb force between charges, whose

magnitude in a vacuum is given by :
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Figure 5.2: Decay length of the potential due to the variation in local density (LHS)
is proportional to L, the length over which δn(x, y) varies, whereas that due to the
average planar density (RHS) is long-ranging and has decay length 1

zN where N is
the multipole factor e.g. Coulomb potential, N = 1.
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Fc =
1

4πε0

q1q2

r2
, (5.1)

where ε0 is the permittivity constant of free space, q1, q2 are the charges and r is

the separation between them. This relation was derived from experimental data and

observation, somewhat in the manner of an ansatz. The electrostatic potential, V (r)

of this interaction decreases as 1/r and is the dominant artefact potential in peri-

odic cell calculations on systems containing charged species. For example, consider

a system containing a charged defect modelled with periodic boundary conditions

(as opposed to an isolated cluster model), the charge on the defect will interact with

its periodic images. In ‘reality’ i.e. in the physical system, the defect will probably

be an isolated effect in terms of atomistic simulation, therefore, the charge defect

interaction is artificial, affecting the charge density resulting in errors in the total

energy and forces on the atoms. A careful consideration of the factors affecting con-

vergence and hence reliability of results in defect vacancies in silicon [150], concluded

that even the symmetry of the initial cell must be carefully considered. Clearly, the

Coulomb interaction is potentially very problematic!

One method of determining the strength of the Coulomb interaction between

charged species is by consideration of the Madelung energy (Em), i.e. the Coulomb

energy per cell of an array with charged defects: [151], [152]

Em = −
αQ2

2εL
, (5.2)

where Q is the charge on the unit cell, L is the lattice parameter of the periodic

array (occupying a cubic volume) i.e. the distance between the charges and α is

the Madelung constant whose value for simple cubic, body centred cubic and face

centred cubic arrays can be read from a table [152]. Here, ε represents the dielectric

permittivity of the background neutralising charge, or jellium [20] which is applied

to charged cells to enforce neutrality. Charged periodic cells would lead to infinitely

charged systems and divergent Coulomb energies.
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Within this study, the charged ‘defects’ are simply sodium atoms that become

charged due to the donation of electrons to the clay layer. They have long-range

interactions in the x-y plane across cell boundaries. Therefore, by increasing the

distance, L between periodic images, the artificial interaction should decrease, al-

beit slowly. This could be achieved by using a range (in the x-y plane) of supercell

sizes to determine the optimum cell size. The z-direction is less of a consideration

for this interaction because the slab layer screens the sodium atoms from each other

in this direction. Equation 5.2 could be used to determine the optimum cell size to

minimise the charged particle interaction energy, Em, by plotting 1
L

and total energy

(Etot ) and extrapolating to where Etot = 0. However, as reduction is effected by

adding an increasing number of sodium atoms or charge, the optimum cell size for

a model set containing one sodium atom will not be the same as that containing

three. Therefore, the idea of using a single size model to simulate reduction does

not seem feasible.

The models in this study have two basal surfaces with varying charge density

in the periodic plane due to the range of atoms comprising the clay layers, but as

described previously, this will have no effect on the convergence of total energy with

cell size as the z-length is larger than the length over which δn(r) varies. One of

the more significant effects on convergence will be from the difference in σ(z) on the

basal surfaces due to the substitution of Al3+ for Si4+ creating a dipole across the

aperiodic cell boundary. This is the source of the second electrostatic interaction

i.e. the dipole electric field across the cells in the aperiodic, z-direction as shown in

Figure 5.3.

A dipole electric field is given by:

Edipole =
1

4πε0

p

R3
, (5.3)

where p = qd is the dipole moment, (q is the charge and d the distance (d) and di-

rection of the moment) and R is the distance from the dipole where R >> d. There
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Figure 5.3: Schematic of the origins of an artificial electric field in the aperiodic
direction, due to the substitution of an Al3+ or Fe3+ for Si4+ in the TS. The yellow
triangles represent Si and the pink, Al.

will also be a dipolar effect arising from the relatively higher charged Na atoms which

donate their electrons to the clay layer and the opposite TS. The dipole field is not

a physical phenomenon as the clay layers are separated by water, organic molecules

and cations. However, in simulated bulk, hence periodic systems, the dipole fields

interact with all cell contents and with periodic images of themselves with the con-

sequent introduction of an error in the true charge density. An illustration of the

long-ranging interactions is shown in Figures 5.3 and 5.4

Although Edipole decreases with 1
R3 or, in terms of lattice parameters, 1

L3 where

the cell volume, Vc ∝ L3 and so dies quicker than the Coulomb electric field ( 1
R2 ), it

can, after cell-size convergence, result in supercells with a vacuum space (between

slabs) twice that of the original model [153], which can become computationally

expensive. For example, a short test of z-length versus total energy using single

point energy (SPE) calculations showed no convergence even on a four-fold increase

in c- length (results not shown here). One method of counteracting this effect is
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Figure 5.4: Schematic of some of the multipole interactions showing Coulomb inter-
action between periodic images of Na+, dipole effect between Na+ and the opposite
basal surface and dipole-dipole interactions of the artificial electric field.

to use a Coulomb cut-off where, if ‘slab-thickness’ is taken to be the distance be-

tween zero charge densities on opposite surfaces, then using a supercell of twice

this distance should result in convergence of energies and forces [153]. The tests on

c-lengths referred to earlier make this an infeasible approach for this study as the

computational efficiency is too low to achieve a sufficient body of results within the

six months spent on this investigation.

Another method of counter-acting the electric field due to the difference in

charges on the slab surfaces, is to introduce a planar dipole layer in the middle

of the vacuum region [154], effectively cancelling the difference in charges across

periodic boundaries. By introducing a compensating potential and an energy cor-

rection term [155] that compensates for an error in the energy on the introduction

of an external field, the dipole moment of the slab is embedded in a periodic super-

cell. Unfortunately, this method is not available within CASTEP so the artificial

interactions cannot be ‘modelled out’ in this way.
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Makov and Payne [156], theorised a method of correcting for artificial multipole

interactions in charged systems involving the formulation of an equation for the

error in the total energy due to the Coulomb and dipole interactions, which can

be subtracted a posteriori from calculations involving a charged, aperiodic, cubic

system. This is given by:

E = E0 −
αq2

2εL
−

2πqQ

3L3ε
+ O(L−5) , (5.4)

where E0 is the electrostatic energy of the uncharged, periodic system, ε and Q

are parameters representing properties of the periodic and aperiodic densities re-

spectively. The second term is the Coulomb interaction, the third the dipole and

the fourth the interaction of the compensating background jellium charge with cell

contents and itself [20]. The jellium background is a monopole comprised of a com-

pensating background charge per unit volume i.e. zc/V . It interacts with the charge

density of the cell and itself but has been shown to converge to O(L−5) [156], al-

though, changing the cell size will of course change the density of the background

charge and hence its interactions with the environment and itself leading to an er-

ror term in the energy which may not have the same convergent property, O(L−5).

This could prove a way to converge the cell size, but, Makov and Payne applied

it successfully to cubic systems and the reduction template models are not cubic.

So the search for a suitable method to counteract the artificial interactions continues.

Schultz [157] treated the multipole interactions in an a priori manner — alter-

ing the potential rather than a post-calculated energy — by splitting the charge

density in two parts, one which has no moments and one which represents all of

the moments but which are localized in a supercell and hence the potentials are

unable to overlap and interact in aperiodic directions. This is applicable to models

containing vacuum rather than crystalline bulk systems because the vacuum space

allows for a simpler interpretation of the multipole interactions compared to bulk

systems where short range interactions dominate. In principle this sounds feasible



5.3. Methods and Modelling Considerations 153

for the reduction models, but the dipole is constructed with a 1-D Gaussian in a

jellium-free environment and hence is an infeasible method for implementation in

the planewave code, CASTEP.

In another attempt to reduce the multipole interactions, Kantorovich [158] re-

examined the work by Makov and Payne, extending it to include any Bravais lattice,

not just cubic, by explicitly removing dipole-dipole interactions between cells. This

was achieved by calculating the energy of interaction of dipoles within the same

lattice and subtracting this from the total energy. The obvious difficulty here is the

calculation of the energy of the dipole-dipole interaction as there would need to be

a way of calculating the strength of the electric field, which is not implemented in

CASTEP to date. Although, this could be done manually by taking the average po-

tential across the x-y plane with varying z; the gradient of this potential then gives

the electric field and hence a measure of its strength. In this study there are varying

numbers of sodium atoms, which will affect the strength of the dipole interactions

in the z-direction, hence multiple dipole strength calculations would be required.

Higher multipole interactions such as quadrupole-quadrupole decay as L−5 ac-

cording to Makov and Payne [156] and hence have a negligible effect on systems

as large as those studied here. Van der Waals interactions are comprised of three

contributions, London dispersion forces where the movement of electrons causes a

fluctuation of the charge density, inducing temporary dipole moments. The second

force is the Keesom force which describes the attraction between molecules with

permanent dipoles and the third is the Debye force describing the induction of a

temporary dipole by a permanent dipole. The mathematical description of the en-

ergy of the van der Waals interaction (Evdw) is given proportional to the sum of

these terms i.e.

Evdw ∝
a

R6
+

b

R8
+

c

R10
, (5.5)

where a, b and c represent the collection of the multipole moments and associated

constants and R is the distance between the multipoles.
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To date, the calculation of well validated van der Waals forces is not available

in CASTEP, so, although these forces exist in a physical clay system and are one

of the important forces in producing the layered structure [4], the energy of these

interactions (Evdw) is not available to the results. However, their rate of decrease

suggests they would not contribute significantly to total energy calculations.

A study into semiconductor point defect errors in supercell approximations, [159]

showed Makov and Payne’s correction method to be insufficient compared to the

method of total potential realignment in real-space and finite scaling. However, this

method involves parameter fitting and it is difficult to determine how this could be

applied to the reduction models. The method of Freysoldt [160] shows the greatest

potential for applicability to the reduction models, as it involves using ‘a rigorous

analysis of electrostatics in dielectric media’ [160], accomplished by deriving exact

expressions for the electrostatic interaction of periodic charged defects, in an ab

initio way rather than fitting parameters. However, this is not currently function-

alised in CASTEP and hence cannot be used for the reduction scenario, although

it does ‘propose a new correction scheme, which is easily implemented in existing

codes’ [160].

In theory, Kantorivich’s approach, together with the method concerning Madelung

energy for extrapolating an optimum distance to reduce Coulomb effects, could be

used in equation 5.4, to produce a converged cell size, i.e. a cell with minimised

artificial electrostatic interactions. But, what would the convergence criteria mean

when, in order to allow reduction to occur, an increasing number of sodiums are

added to a cell? An increase in the number of sodiums will increase the strength of

the multipole interactions, so, the cell size would need re-converging to minimise the

electrostatic interactions. But, by converging cell size with respect to energy, say,

how can there be any certainty that the reduction effect being examined remains

unaffected by the convergence criteria, that is, how can an accurate comparison of

reduction effects be made on varying cell sizes? The following section describes the

method and models used to try and overcome these potential problems, to investi-
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gate reduction in a consistent way.

Model Sets

Figure 5.5: Schematic showing the model sets used in this study. Along the hori-
zontal, the cell sizes increase to a maximum of 4 unit cells wide — the dashed line
indicates a single unit cell and the black dots, sodium atoms located in the ‘first’
unit cell. The positions of the sodium atoms are illustrative only, they are identically
positioned in all sets of models and are unrelaxed throughout the investigation. The
added background charge is dispersed throughout the cells. Down the vertical, the
number of added Na atoms or added charge increases. Both Ideal and NG-1 were
investigated using both sodium and added charge scenarios resulting in 64 models
in total.

The solution to this cyclical problem appeared to be in comparing models of

the same size with an increasing number of sodiums and, separately, charge. This

method produced sixty-four models to examine but suggested the means by which

reduction could be identified with confidence as a physical phenomenon, from the

many artificial, periodic interactions discussed at length in this section.

The Coulomb effect of Na on periodic images was tested by making supercells in

the x-direction ranging from the original unit cell to four unit cells wide (supercells

larger than this proved computationally time-consuming and produced results which
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added nothing to the conclusions). Calculating the binding energy of these supercells

determines the relationship between periodic images, for example, a Coulomb effect

would result in a 1
x

cell-length vs binding energy curve [152] whereas a non-periodic

image relationship would produce a monotonic decrease in the binding energy with

increasing supercell length.

The reduction effect was tested by adding an increasing number of Na atoms (0

to 3) to each unit cell in both Ideal and NG-1 model sets. Na (1s22s22p63s1) acts

as an electron donor due to the sole electron in the 3s shell; increasing the number

of electrons within a unit cell represents an opportunity for an increasing degree of

reduction within the cell. Comparisons of the Mulliken charges between sets of cells

indicates the extent of reduction specific to each atomic species. An examination of

Mulliken charges is valid when considering the relative changes in charges between

model sets [52] and not absolute charges for the determination of, for example, the

nature of chemical bonds [53]. A relative comparison of charge does not rely on the

spread of the plane wave basis set as this will be the same in each model set as it is

the ground state of the electronic structure under examination, whereas, identifying

the nature of a chemical bond is determined by the localisation of electron density.

The effect of the presence of the Na atoms was tested by including a uniform

background charge rather than the Na atoms themselves, where a charge of −1e

represented 1 Na atom and the charge addition ranged from 0e to −3e, mirroring

the sodium models.

The Coulomb effect of the Na is tested in two ways, first by the increasing su-

percell size and second by comparison with no-sodium, charge-only models. The

electrostatic, z-direction dipole interactions were also effectively cancelled out by

using increasing supercells of the same c-length, that is, results could be compared

across the rows where the number of Na or charge is constant.

Each of the sixty-four models underwent a single point energy calculation with
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fixed atomic coordinates throughout, hence the position of each Na was the same

in each Na-model and all of the Na atoms were placed in the same unit cell. This

ensured that any Coulomb effect seen when increasing the cell sizes from one to four

should be identifiable as all other relationships would remain constant.

Nomenclature

For shorthand the following labels are assigned to the models according to type:

Ideal represents id; NG-1 represents ng; followed by the number of added sodium

atoms or charge (this distinction will be made clear where applicable) ranging from

0 to 3, e.g. id0 means Ideal with no Na/charge, ng3 means NG-1 with 3 added

Na/charge; followed by the size of the (super)cell ranging from 1 to 4 e.g. id0-c3

is a 3-unit cell supercell of Ideal with no Na/charge; ng2-c1 is a unit cell of NG-1

with 2 added Na/charge. This system will be used throughout the remainder of this

chapter.

5.3.3 Computational details

Single Point Energy (SPE) Calculations

The SPE calculations were performed using cut-off energy 550eV and two k-points

as previously described, with the GGA-PBE exchange functional and ultrasoft pseu-

dopotential approximations as justified in preceding chapters. The configurations

of the pseudopotentials are the same as those in Chapter 3, Table 3.1, and that of

iron is 3d64s2. The fine grid scale was 2.00, the electronic energy minimiser EDFT

and electric energy tolerance ≤ 10−6eV.1

1
An extra facility available in CASTEP was employed for all of the calculations over two unit

cells in size, viz, the wave dumping option. The smallest unit cell contained forty atoms, the

largest, one hundred and sixty-three and using EDFT for these larger models required more time

for an SPE than was available in a single session on HECToR, hence it was necessary to restart

the calculations from the previous deposit of wave functions.
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Electronic Minimizers

The energy calculations were carried out using the electronic minimiser EDFT as it

proved to be completely reliable for these models. The theory behind EDFT was

described in Chapter 2 so will not be repeated here. An attempt at using the density

mixing minimiser was made but proved to be totally unreliable, as described in the

following section.

Density Mixing

Density Mixing (DM) is an electronic minimiser which, in theory, can reach the

ground state up to ten times faster than EDFT and so would reduce the compu-

tational expense considerably. For the single point energy calculations of sixty-

four models. Another advantage over EDFT is the facility to initialise spin which

would control the magnetic state of the irons enabling the comparison of like-models,

which might otherwise prove difficult due to the differences in energy resulting from

whether a material is in a magnetic, ferrimagnetic or antiferromagnetic state.

The DM minimiser begins by calculating the initial electron density from the

pseudoatomic orbitals, which allows for the initialisation of spin density; the Kohn-

Sham wave functions are then calculated. Contrast this with EDFT where the wave

functions are randomly initialised and the electron density is then calculated, thus

not allowing for any spin density initialisation as the density is calculated from the

randomly selected wave functions.

In the DM scheme, the local potential is calculated from the sum of the local

eigenvalues for each energy band. If this leads to a ‘low’ potential, there will be

a migration of electrons into this region, creating an area of high electron density,

higher than befits the ‘low’ potential. The Hamiltonian is re-calculated resulting in

a higher potential due to the higher electron density just mentioned, and so electrons

migrate out of the higher potential region due to electron-electron Coulomb repul-

sion (VH). The overall effect of this sloshing of electron density is charge sloshing
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and is symptomatic of poor convergence. There is an analogous artefact of DM with

spin sloshing. Both types of sloshing can be controlled by eight different parame-

ters in total and what follows is a description of how some of them can be used to

dampen oscillatory behaviour to induce convergence to the groundstate.

The Hartree term VH describing the electron Coulomb interaction is proportional

to the size of the reciprocal lattice vector i.e.

VH ∝
n(G)

|G|2
, (5.6)

where G is a reciprocal lattice vector and n(G) is the electron density. As the real

space simulation cell increases in size, the magnitude of the reciprocal space lat-

tice vector decreases and hence any error in electron density is magnified by factor

1/|G|2 where |G| << 1, hence VH has a greater effect on the Hamiltonian and the

subsequent calculation of electron density with a consequent effect on charge and

the degree of its sloshing. One way to dampen this effect is to increase the num-

ber of density histories2 included in the mixing while at the same time reducing

the change in the density due to the small Gs which is achieved in the manner

of Kerker preconditioning [161], by scaling the Gs: (|G|2)/(|G|2 + c2) where c is a

real constant. The value of c is a controllable parameter which affects the Kerker

preconditioning of the residual density [162], which is an indicator of the reliabil-

ity of convergence when it occurs, that is, if the norm of the density residual is

O(E−4) then convergence is reliable within the convergence criteria. This is a use-

ful test when the energy oscillates and then appears to converge, as it removes any

doubt that, on the next iteration, the energy would oscillate away from convergence.

The same scenario is repeated for spin and spin density and the method of control

is the same as that above, via the spin parameter equivalent. The sixty-four models

examined in this investigation varied in cell size (and therefore the size of |G|) and

spin due to the number of Fe atoms. Where a single unit cell converged in its single

2
This is one of the controllable parameters where previously iterated densities are mixed together

to produce the next successive density.
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point energy calculation, a supercell three times its size did not. After numerous

attempts to achieve convergence by systematically changing all of the parameters,

no consistency was found in the type of model, the parameters used and its likeli-

hood of convergence. It could be posited that, as DM can be up to ten times faster

computationally than EDFT, time should have been spent setting correct parame-

ters for each model to achieve convergence, however, this variation in parameters is

surely a cause of concern in that one cannot be certain that modelling artefacts —

introduced by comparing different size models — skew the results. Therefore, the

reliable EDFT method was chosen for all of the calculations in this chapter. This

justification was deemed necessary given the potential difference in computational

efficiency between the two minimisers.

Spin Polarisation

Initial trial calculations showed that spin polarisation had to be taken in to ac-

count as the difference between spin polarised and non-spin polarised calculations

was 0.6eV, two orders of magnitude greater than the cut-off energy convergence

tolerance of 0.004eV. The difference in energy between the two types of calculations

arises from the energy of the exchange interaction as shown in Figure 5.6. In these

models the spin polarised calculations are necessary probably due to the electrons

in the d-orbitals of Fe. During the convergence of the electronic structure, electrons

are ‘placed’ in an attempt to find the ground state for a particular arrangement of

atoms. However, there is a difference in the exchange energy between two electrons

with the same spin and two with opposite spins and further, the difference in the

exchange energy of symmetric electrons depends on the distance between them. By

requesting spin-polarised calculations, CASTEP performs two calculations based on

the symmetry of the spins and produces the average of these. Unfortunately, spin-

polarised calculations take twice as long as non-spin polarised.
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Figure 5.6: Schematic of the origins of the difference between spin and non-spin po-
larised energy calculations. The LHS diagram shows energy levels (E) and distance
between electrons (r) where the black arrows are the electrons in their energy levels
and the coloured arrows the electrons allocated during an SCF cycle. Blue arrows
are symmetric to the black and the brown arrows, antisymmetric. The labels A, B,
C, D correspond to the labels shown on the RHS diagram where Ex is the exchange
energy, r is distance between electrons, the blue line represents the energy curve
for symmetrically allocated electrons and the brown, antisymmetrically allocated
electrons, the orange dashed line is the average of these.
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Binding Energy

Binding energy for the purpose of this work adopts a specific definition in that it

describes the energy change on computational relaxation of the electronic structure

in a supercell, compared to the sum of the computational energy of each unit cell

of the supercell. The electrostatic effects, such as those between periodic images

of sodium, are also included in the computations. Figure 5.7 shows a schematic

explanation.

Figure 5.7: Schematic showing the calculation of the binding energy of a 2-unit cell
supercell. The black crosses represents the smectite layer and the orange circle a
sodium atom.

The relationship between the total energy (in this study from SPE calculations)

and supercell size indicates the type of relationship that exists between periodic im-

ages such as Coulombic between charged species, dipolar or higher order multipoles

as described in section 5.3.2. This information can be used in several ways, such as

to determine the effect these interactions might have on the results and hence the

conclusions that can be drawn; the validity of supercell comparisons and possibly

the identification of an optimum model to simulate reduction.

This concludes consideration of the modelling method and justification of the

choices made and the following section proceeds with the results obtained as a con-
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sequence of these choices.

5.4 Results and Discussion

5.4.1 Binding Energy

Ideal

Figure 5.8 shows the binding energy for model sets id0-c2 to id0-c4, id1-c2 to id1-c4,

id2-c2 to id2-c4 and id3-c2 to id3-c4 where Na atoms were included together with

the same sets where Na was replaced with charge. In the case of no sodium (and no

charge) there is no significant (in relation to the other trends on the graph) change

in energy as would be expected. That is, there is no Na hence no Coulomb interac-

tions between periodic images. There will be an electric field due to the difference

in charge density on the basal surfaces which may be interacting with itself via a

dipole-dipole interaction in the z-direction, which could explain why, with increasing

supercell size, the binding energy does not plateau as the c-length for all models is

the same.

With one Na, the binding energies show a monotonic decrease characteristic of

Coulomb interactions, which is different to the trend with a charge of −1e; in this

case the binding energy parallels that of the case with no Na and is to be expected

as again, there is no Na causing Coulomb interactions. There is, however, a com-

pensating, neutralising, background charge which is screening the electric field from

its periodic images.

In the case of two and three sodium atoms, there is a dominant Coulomb re-

lationship, that is, the effect of the dipole field interactions seen with zero Na, is

masked by the strength of the Coulomb interaction. What is interesting here, is that

the Coulomb effect is not enhanced by a third sodium atom which suggests that two

sodiums are sufficient for reduction in this system, i.e. the sodiums have become
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Figure 5.8: Binding energies of Ideal models with sodium and with charge only.
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maximally charged, whatever the number of Fe in the OS. The sodium atoms are

localised within the first cell in every model hence this effect might change if the

sodium atoms were distributed between neighbouring unit cells, but this would make

the calculation of binding energies more difficult as the configurations would not be

comparable.

In contrast to the near-identical nature of the two and three sodium atom

Coulomb trends, the charge models of −2e and −3e are different to each other

although the binding energies indicate a Coulomb relationship within the models.

The gradient of the curve of the −2e set is steeper than those of the sodium, id2, id3

sets but shows more positive binding energy. For the −3e set, the gradient is steeper

again and the binding energy the lowest of all models. What appears to be hap-

pening here, is that the background charge is interacting with itself. As the number

of unit cells in the supercells increases, the jellium density decreases, which is the

same for −1e, −2e and −3e and yet, the −3e models show a pronounced Coulomb

interaction, so, perhaps as the screening effect decreases, the ‘areas of charge’ begin

to interact with one another.

A closer examination reveals that what is actually happening is less worrying in

terms of modelling as it is due to the way the binding energies were calculated rather

than to an inherent quality of the models, that is, for the theoretical energies, all of

the charge was assumed to be within the first unit cell which was then ‘padded’ out

with charge-empty cells as shown in Figure 5.9.

Contrast this with the computational energies that involve charge distribution

throughout the supercell. The latter has a lower energy than the former. What

has effectively been created is a theoretical Coulomb interaction between charges

contained within one cell and its periodic images. A solution to this might be to

calculate the energies of cells with fractional charge and use these in the theoretical

calculations which might produce more accurate binding energies. However, the true

binding energies will follow the same trend as that for a charge of −1e, as, even when

this charge was distributed over four unit cells, hence the compensating jellium had



5.4. Results and Discussion 166

Figure 5.9: Schematic showing how the binding energies were calculated for the
charge models.

the smallest possible charge density of all models, the electric field dipoles did not

significantly affect the binding energy.

In conclusion, the dominant multipole interaction is Coulomb between sodium

ions and their periodic images. This can be eliminated by using charge rather than

Na as the reducing agents. The extent to which the Coulomb interactions affect

reduction is examined in section 5.5.

NG-1

The results of the binding energy of the NG-1 models indicate that an examination

of the spins is required to interpret any meaning from them. Figure 5.10 shows the

binding energies for the sodium and Figure 5.11, the charge model sets ng0-c2 to

ng0-c4, ng1-c2 to ng1-c4, ng2-c2 to ng2-c4 and ng3-c2 to ng3-c4 together with the

dominant spins per model on the tetrahedral Fe. In the case of zero Na, there is

a decrease in binding energy with increasing supercell size, as expected. The spin

on the Fe in ng0-c4 is separated from its neighbouring spin by three spin-free unit

cells hence shows ferrimagnetism at maximum separation which should not affect

the binding energy.
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Figure 5.10: With sodium atoms — binding energies of NG-1 models (top) and a
schematic of the spin states of Fe in the TS (bottom), where a red arrow represents
a spin of magnitude approximately 3 and zero is relative to this.
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The graphs for one, two and three sodiums show trends related to how the bind-

ing energy was calculated. For example, all theoretical binding energies assumed a

ferrimagnetic model — explained shortly — but this is true for the computational

models only in cases ng0-c4, ng1-c2, ng2-c4 and ng3-c3. Figure 5.12 shows some of

the differences possible between the theoretical and computed spin states and Table

5.2 shows the computed magnetic states and describes the abbreviations AFoM,

FiM, FoM and NM.
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Figure 5.11: Charge only models — binding energies of NG-1 models (top) and a
schematic of the spin states of Fe in the TS (bottom), where a red arrow represents
a spin of magnitude approximately 3 and zero is relative to this.
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Figure 5.12: Schematic showing the difference in magnetic state between the theo-
retical and computational models when calculating binding energies.

With sodium (N * Na) Charge (N * −e)
N c2 c3 c4 c2 c3 c4
1 FiM FiM AFoM FiM NM NM
2 FoM AFoM FiM FoM FiM NM
3 FoM FiM AFoM AFoM AFoM FiM

Table 5.2: Computed magnetic states of the supercells used in the binding energy
calculations where AFoM is antiferromagnetic; FiM, ferrimagnetic; FoM ferromag-
netic and NM non-magnetic. (All theoretical models were ferrimagnetic.)
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Ideal NG-1
Na c1 c2 c3 c4 c1 c2 c3 c4
1 0 0 0 0 0 0 0 0
2 0.58 0 0 0 0.28 0.02 0 0
3 0.50 0.94 0.84 0.84 0.66 0.86 0.76 0.72

Table 5.3: Spins (�) on the sodium atoms after relaxation of the electronic structure

Assuming that, in terms of lowering the energy of a system, NM < AFoM < FiM

< FoM and that the computational energy will be lower than the theoretical en-

ergy for exactly the same spin state due to the relaxation of the electronic structure,

then, relative to the theoretical FiM state FiMT , it should be that the computational

state, FiMC will be lower, hence FiMT−NMC < FiMT−AFoMC < FiMT−FiMC <

FiMT−FoMC . So, comparison of this progression with Figure 5.10 should help to

explain the erratic nature of the binding energies and it does, to some extent. But,

there is an added complication in that the energy of, for example, a FiM state will

depend on the distribution of spins, that is a ↑ 0 ↑ may have higher energy than

↑ 00 due to the interaction of the spins. Consequently, there is no guarantee that,

in every instance, FiMT−FiMC < FiMT−AFoMC which is indeed the case in Figure

5.10 — one sodium and Table 5.2, row one.

There is one other effect to consider, which is the presence of sodium itself. Ta-

ble 5.3 shows that the spins on the sodiums in Ideal and NG-1 are practically the

same, hence the only way in which this is contributing to the oscillating nature of

the binding energies is if the sodium atoms are affecting the spins on the tetrahe-

dral Fe. This is supported by Figure 5.11 where the binding energies for the charge

models display monotonic relationships. Also, there are fewer magnetic states of the

supercells and there is possibly greater coincidence between the like-for-like energies

of, for example, FiMT and FiMC states.

There is no numerical analysis of the aforementioned scenarios as it is rather

futile, that is, the binding energies for the sodium models of NG-1 are erratic com-

pared with the uncharged models and those of Ideal. It is clear from the above

analysis that the spins on the TS iron are affecting these energies and that sodium
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may be affecting these results but that replacing Na with charge is not guaranteed

to produce more consistent results. So far it has been learnt that there are Coulomb

interactions between periodic sodiums, periodic dipole interactions between electric

fields and interacting spins in the TS. All of which suggests it is not a simple matter

to create an optimum model to investigate reduction. However, using this range

of supercells and number of sodium or charge, allows for a thorough investigation

of reduction and the distinction between modelling artefacts and reliable results,

especially on the examination of charge which comprises the next section.

5.5 Charges-Octahedral Sheet

In this section the effect on the charge on the octahedral irons is examined for Ideal

and NG-1 where the model sets for the same sized cell but with an increasing num-

ber of sodiums/charge are compared, i.e. down the columns in Figure 5.5 and across

where explicitly described.

5.5.1 Ideal

Table 5.4 shows that the greatest decrease in charge occurs in the charged model

set, c1 with a reduction of 0.78e and the smallest decrease is 0.36e in the sodium

model set, c1. The decrease in the charged models is, per set, greater than that in

the sodium models. Table 5.5 shows the increase in total charge on the sodiums,

which, in the case of set c1 is 0.52e, from 1.07e to 1.59e and yet, if three sodiums

were donating their 3s electrons, they would have a total charge of 3e. This implies

that the application of charge ensures it is more available to the system than are the

3s electrons of sodium because, in the latter case, the sodium atoms are localised

within the first unit cell whereas in the case of charge, this is evenly distributed

throughout the supercells. This ‘localisation effect’ is discussed further in section

5.6.1.
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Sodium
Ideal NG-1

c1 c2 c3 c4 c1 c2 c3 c4
0 4.54 9.07 13.58 18.12 4.37 8.75 13.07 17.50
1 4.34 8.87 13.41 17.95 4.26 8.62 13.02 17.41
2 4.23 8.69 13.17 17.76 4.18 8.54 12.92 17.25
3 4.18 8.63 13.19 17.71 4.18 8.50 12.87 17.23

(∆0 −∆3) 0.36 0.44 0.39 0.41 0.19 0.25 0.20 0.27

Charge
Ideal NG-1

c1 c2 c3 c4 c1 c2 c3 c4
0 4.54 9.07 13.58 18.12 4.37 8.75 13.07 17.50
1 4.31 8.85 13.37 17.92 4.18 8.57 12.90 17.24
2 4.05 8.63 13.25 17.71 3.98 8.40 12.71 17.05
3 3.76 8.35 12.89 17.43 3.73 8.17 12.53 16.98

(∆0 −∆3) 0.78 0.72 0.69 0.69 0.68 0.58 0.54 0.52

Table 5.4: Total charges of octahedral Fe following a single point energy calculation.
On the LHS, 0 to 3 is the number of added Na or charge and the labels c1, c2 etc.
represent the size of the (super)cell. Comparison down the columns is examining
the effect of the addition of reducing agent to the same size (super)cell, whereas
comparison across the rows is examining the effect of changing the (super)cell size.
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Ideal NG-1
Na c1 c2 c3 c4 c1 c2 c3 c4
1 1.07 1.09 1.10 1.10 1.06 1.08 1.08 1.08
2 1.49 2.07 2.08 2.09 1.65 2.05 2.05 2.05
3 1.59 2.12 2.30 2.29 1.58 2.19 2.25 2.28

Table 5.5: Total charges on the sodium ions after relaxation of the electronic struc-
ture

The maximum change in total charge of the sodiums occurs in c3 and c4 sets

(Table 5.5) with total charges of 2.30e and 2.29e respectively, where the larger cells

allow the electronic structure to relax with a reduced Coulomb interaction between

periodic sodiums. However, this does not correspond with an increase in reduction

in the OS iron, where it peaks at −0.44e for c2 and decreases to −0.41e for c4. So,

despite the greater number of Fe atoms within the OS of the larger c4, reduction

does not increase but this could be due to the presence of tetrahedral Al which

is also being reduced (discussed in section 5.6). There is a similar trend with the

charge models, where in c3 and c4 the reduction is −0.69e and the same explanation

applies as there is also Al in the TS.

5.5.2 NG-1

The maximum reduction in the NG-1 models occurs in the charge set, c1 (see Table

5.4) of −0.68e and the minimum occurs in the sodium set c1, of −0.19e. As the

number of cells increases, the reduction in the charge sets decreases, which is the

same trend as in the Ideal models. Therefore, the discussion of this in the last sec-

tion applies to the charge, NG-1 models. Similarly, the trend for the Na sets is the

same as that discussed for the Ideal models and, as the OS constituent atoms are

identical in Ideal and NG-1, the same implications can be drawn.

Comparison of Ideal and NG-1

In both sodium and charge sets, the total octahedral charge is higher in Ideal than

in NG-1 suggesting a difference due to the presence of Fe in the TS of NG-1. In
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both Ideal and NG-1, the total charge of the OS Fe is higher in the sodium models

than the charge models, suggesting a difference due to the distribution of the charge

‘donated’ by the reducing agents. The conclusion at this point is that reduction

is occurring in the octahedral irons of all four model sets. The following section

examines the effect of the reducing agents on the tetrahedral sheet.

5.6 Charges — Tetrahedral Sheet

In this section the effect on the charge of the tetrahedral Al/Fe substituted atom

is examined for Ideal and NG-1 where the model sets for the same sized cell but

with an increasing number of sodiums/charge are compared, i.e. down the columns

in Figure 5.5 and across where explicitly described.

5.6.1 Ideal

The largest reduction occurs in the sodium sets, c2, c3 and c4 of −0.21e and the

smallest in the charge sets c2 and c4 of −0.08e — see Table 5.6 and is the reverse

pattern of the OS reduction. Across Table 5.6, from c1 to c4, there is an increase

in reduction in the sodium models from −0.18e which stabilizes from c2 onwards

to −0.21e, which suggests that reduction occurs local to the position of the sodium

atoms. A closer comparison of the charges on each of the Al within the models,

(results not shown for brevity) shows that the Al in the cell containing the sodiums

is reduced more than any other Al, for example, in c2, the c1-Al decreases form

1.96e to 1.79e on addition of three sodiums, whereas the c2-Al decreases from 1.96e

to 1.92e. Further scrutiny shows that on the addition of two Na, the maximum

reduction effect is achieved for all models c1 to c4.

The smaller reduction effect seen in the charge models could be due to the dis-

tribution of charge throughout the cells together with the larger reducing capacity

of the OS Fe compared to Al. The local effect of charge is given further credence
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Sodium
Ideal NG-1

c1 c2 c3 c4 c1 c2 c3 c4
0 1.96 3.92 5.88 7.84 1.23 2.44 3.67 5.05
1 1.89 3.85 5.81 7.77 1.26 2.48 3.85 5.09
2 1.80 3.71 5.67 7.64 1.10 2.43 3.63 4.69
3 1.78 3.71 5.67 7.63 1.14 2.45 3.46 4.88

(∆0 −∆3) 0.18 0.21 0.21 0.21 0.09 −0.01 0.21 0.17

Charge
Ideal NG-1

c1 c2 c3 c4 c1 c2 c3 c4
0 1.96 3.92 5.88 7.84 1.23 2.44 3.67 5.05
1 1.93 3.90 5.85 7.84 1.17 2.55 3.61 4.85
2 1.90 3.86 5.82 7.80 1.29 2.66 3.73 4.78
3 1.83 3.84 5.79 7.76 1.20 2.62 3.83 5.20

(∆0 −∆3) 0.13 0.08 0.09 0.08 0.03 −0.18 −0.16 −0.15

Table 5.6: Total charges of tetrahedral Al (Ideal) or Fe (NG-1) following a single
point energy calculation. On the LHS, 0 to 3 is the number of added Na or charge
and the labels c1, c2 etc. represent the size of the (super)cell. Comparison down the
columns is examining the effect of the addition of reducing agent to the same size
(super)cell, whereas comparison across the rows is examining the effect of changing
the (super)cell size.
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by the results from these charge models, where the greatest reduction occurs in c1

compared to c4 where the reduction is less, that is, the charge is concentrated in c1

thereby reducing the local Al, whereas in the supercells, the charge is distributed

and hence its effect on the TS Al is diminished. For example in c1, Al decreases

from 1.96e to 1.83e on addition of −3e, whereas in c2, the Al in c1 and c2 decrease

from 1.96e to 1.92e and in the c4 models the decrease for all four Al is 1.96e to 1.94e.

In contrast to the sodium models where reduction stabilised on the addition of two

Na, the reduction of Al continues beyond the addition of −2e. Also, all Al reduce to

the same extent in the charge models whereas with Na, the effect is localised. This

‘localisation effect’ is discussed further in the following section where the orbital

occupancy of the TS Al is analysed.

Orbital occupancy

Figure 5.13 shows an example of increasing occupancy of the s and p orbitals of

the aluminium atoms in the TS on addition of sodium and/or charge. The largest

occupancy increase is seen in the π-orbital of Al in the c1 cell containing the sodi-

ums, which explains the localisation effect on reduction described in the previous

section. Also, there is further evidence for this seen in the c4 models (full results not

shown) where the values for the Al in c1 (s1 and p1) are 0.45 and 0.77 respectively

decreasing to 0.41 and 0.64 for the three subsequent s and p orbitals of Al. Compare

this with the charge set where all four s and p orbitals have values 0.42 and 0.64

respectively.

5.6.2 NG-1

In this case the greatest reduction effect is seen in c3 of the sodium models and the

least in c2 of the charge models where Fe in the TS is oxidized. Oxidation also oc-

curs in c2, c3 and c4 of the charge models; closer inspection of the pattern down the

columns reveals that in all three cases, there is both reduction and oxidation. In c1

of the sodium models, there is less oxidation but within the column there is both re-
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Figure 5.13: Orbital occupancies of Al in the tetrahedral sheet in the 2-cell models
where labels s1-Na and s2-Na refer to the s-orbitals of Al in the original unit cell
and the second cell respectively, of the sodium sets and similarly for p1-ch and p2-ch
referring to the π−orbitals of the charge sets. This labelling convention also applies
to Figures 5.14, 5.15 and 5.19.

duction and oxidation. In fact, examining all NG-1 models down the columns shows

that in every case there is both oxidation and reduction, but there is no obvious

pattern to predict whether the Na*3 or −3e model is reduced or oxidised relative

to the 0*Na or 0e models. This is clearly an effect of the Fe in the TS as there

is consistent reduction seen in the Ideal models where the substitution is Al in the

TS. There appears to be an interaction between neighbouring Fe’s, possibly also Na

and the distributed −e charge. Again, as the latter is more diffuse throughout the

models and hence spread out over all TS irons, the effect is greater than in the Na

models where sodium is localised within the first unit cell. An examination of the

orbital occupancy might elucidate the cause of the oscillatory oxidation/reduction

behaviour.
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Orbital occupancy

Figures 5.14 and 5.15 show the orbital occupancies of Fe in the tetrahedral sheet

and, similar to the Ideal case, the p-orbital of the Fe in the first unit cell is occupied

to the largest extent in both the 2- and 3-cell sets, which is evidence of a localisation

effect. That is, the presence of the sodium atoms in the first unit cell is affecting the

occupancy of the p-orbital of the TS Fe. This effect is not present in the charged

models or seen in the p-orbitals of the Fe in the sodium set in the cells without the

sodium atoms.

An examination of the graphs of the d-orbitals shows erratic occupancy where

the number of added electrons or charge appears to have no correlation with the level

of d-orbital occupancy. Closer inspection of the graphs shows that the occupancy

oscillates between about 6.10 and 6.40 although there are possibly fewer oscillations

in the 2-cell sets, which could be a result of fewer interactions between the TS Fe as

the 2-cell models contain two Fe in the TS whereas the 3-cell sets contain three. This

suggests a possible model which might clarify the effect of sodium/charge addition

on the TS Fe and such a model is described in section 5.7.

The conclusion from this analysis is that the nature and location of the reducing

agent affects the occupancy of the p-orbitals in particular, of the TS Fe in c1, but

is irrelevant to the occupancy of the d-orbitals. Therefore, it seems reasonable to

hypothesise that the largest interactions are due to those between neighbouring Fe

and that if these were reduced, by decreasing the number of irons per supercell, a

conclusion as to the behaviour of TS Fe on the addition of a reducing agent, could

be drawn. This idea is pursued in section 5.7.
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Figure 5.14: Orbital occupancies of iron in the tetrahedral sheet.
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Figure 5.15: Orbital occupancies of iron in the tetrahedral sheet.
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Ideal
Oxygen Silicon

With Na With Charge With Na With Charge
Cells Max Species Max Species Max Species Max Species

1 −0.09 6 −0.09 6 −0.16 4 −0.16 4
2 −0.11 6 −0.11 6 −0.12 11 −0.12 11
3 −0.11 6 −0.11 6 −0.13 11 −0.13 11
4 −0.11 6 −0.11 6 −0.13 11 −0.13 11

Table 5.7: Change in charge of the oxygen and silicon atoms from no sodiums/no
charge in the Ideal models to 3 sodiums/charge of −3e. Max means maximum
reduction and species refers to the atoms shown in Figure 5.16.

5.6.3 Oxygen and Silicon

Ideal

The reduction of oxygen and silicon occurs to the same degree in both Na and

charge models, see Table 5.7. Silicon is reduced more than oxygen with a maximum

of −0.16e compared to −0.11e. As can be seen in Figure 5.16, the silicons and

oxygens most reduced are closest to the aluminium in the TS, i.e. in c1.

NG-1

The reduction of oxygen and silicon occurs to varying degrees in the Na and charge

models; oxygen is reduced more than silicon with a maximum of −0.20e in the charge

set compared to a maximum of −0.15e for silicon in the Na set. The reduction of

oxygen in the charge set has maxima spread throughout the supercell, whereas the

maximum in the Na set is adjacent to, or within the cell containing the sodiums,

i.e. c1. The magnitude of reduction of silicon is greater in the Na sets than in the

charge sets. Although in both cases the silicons in the first cell are more strongly

reduced than any others.
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Figure 5.16: Id3-c4 showing the species referred to in Tables 5.7 and 5.8 For clarity
of display, hydrogen is green in this model only.
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NG-1
Oxygen Silicon

With Na With Charge With Na With Charge
Cells Max Species Max Species Max Species Max Species

1 −0.18 6 −0.20 6 −0.15 4 −0.09 4
2 −0.19 6 −0.15 6 −0.11 1 −0.05 4
3 −0.18 6 −0.13 54 −0.11 1 −0.04 4
4 −0.13 78 −0.11 30 −0.11 1 −0.03 4

Table 5.8: Change in charge of the oxygen and silicon atoms from no sodiums/no
charge in the NG-1 models to 3 sodiums/charge of −3e. Max means maximum
reduction and species refers to the atoms shown in Figure 5.16.

5.6.4 Comparing Ideal and NG-1

A brief summary is that in the Ideal models, if one wants to minimise the reduction

effect on the oxygens and silicons and hence maximise the effect on the iron atoms,

the optimum model would be a 2-cell set using either Na or charge as the reducing

agent. In the NG-1 models, using a 4-cell charge set would achieve this aim.

Figure 5.17: Bar chart summarising the maximum charge changes per model set
where the first 8 names are comprised of, sheet, species, reducing agent — sodium
(Na) or charge (Ch) and then model. The second set of 8 names are comprised of
species, reducing agent — sodium (Na) or charge (Ch) and then model.
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5.6.5 Conclusion

Figure 5.17 clearly shows that there is reduction of the OS Fe in both Ideal and

NG-1 models and that the magnitude of reduction is greater in the charge than the

Na sets for reasons previously discussed.

The magnitude of reduction of Al, Si and O in the TS is the same with variations

in maxima between Na and charge sets.

The question of whether Fe in the TS reduces is not clear. The interactions

between Fe produce results which are too inconsistent to draw any firm conclusions.

However, the results discussed in section 5.6.2 suggest that reducing the number

of Fe in the TS might lead to reduced interaction between Fe and hence to results

which lend themselves to interpretation.

5.7 A further investigation

5.7.1 Introduction

This small, additional study is an attempt to determine the effect on the TS iron

upon the addition of a reducing agent. The conclusion from the main body of the

study was that the TS Fe are interacting and that this interaction is obscuring in-

terpretation of the results. Therefore, if the TS irons were isolated to the extent

that interactions were minimised, a conclusion could be drawn about the behaviour

of iron in TS on the addition of sodium or charge.

5.7.2 Method

To test this hypothesis, the model shown in Figure 5.18 was constructed with a

single Fe atom in the TS, separated by Si atoms within a supercell the size of three

single cells. This is somewhat along the lines of a ‘thought experiment’ for several
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reasons. Substitution of Fe for Si has not been followed by any relaxation of the

structure; the charge deficit of −1e caused by this substitution is less than that re-

quired for the attraction of a counterbalancing charge of three sodiums or a charge

of −3e. However, following the same procedure as in the main study, the replication

of environments with either the addition of sodium or charge and comparison of

these results, ensures the cancellation of errors caused by lack of convergence of the

geometry. As in the method of the main study, the models were made ranging from

zero Na/0e to three Na/−3e. A single point energy calculation was carried out with

the convergence criteria as previously described.

Figure 5.18: Fe isolated in the tetrahedral sheet from neighbouring Fe atoms.

5.7.3 Results and Discussion

Table 5.9 shows that in both sets of models, with sodium or with charge, there is

reduction of the iron in the octahedral sheet and that the greater effect is seen in

the charge models. This is explained by examining the charge of the sodiums, that

is, their charge increases by only 0.05eV on increasing from two to three Na imply-
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Sodium Charge
Na OS TS OS TS

0 0.00 13.14 1.24 13.14 1.24
1 1.09 13.09 1.37 13.03 1.22
2 2.00 12.92 1.37 12.78 1.19
3 2.05 12.90 1.36 12.60 1.34

δ0 − δ3 - 0.24 −0.12 0.54 −0.10

Table 5.9: Total charge of sodiums and of Fe in OS and TS sheets after a single
point energy calculation of the model shown in Figure 5.18.

With sodium Charge
Na TS TS

0 - 0.06 0.06
1 0.00 3.46 0.02
2 0.00 −3.56 0.14
3 −1.00 3.54 3.58

Table 5.10: Total spins of Na and Fe in TS after a single point energy calculation
of the model shown in Figure 5.18.

ing that their oxidising potential has peaked in this system. Contrast this with the

background charge which is wholly available to effect reduction, as commented on

previously.

In the tetrahedral sheet there is overall oxidation of the iron in both scenarios

although within the charge set, there is some reduction followed by a larger oxida-

tion effect. This is explained later in this section. In Table 5.9 the overall oxidation

trend in the Na set is mirrored by an increase in charge on the TS Fe from 0-Na to

1-Na and then its stabilisation through 2-Na and 3-Na. In the charge set, this trend

is almost reversed where 0e, −1e and −2e result in approximately zero spin on the

TS Fe and have similar charge (1.24, 1.22, 1.19 respectively) and then in the −3e

set, the spin on TS Fe increases to 3.58 with a consequent increase in charge to 1.34e.

As can be seen in Table 5.10, spin induction of the sodium appears to occur when

the number of sodiums increases which is perhaps a proximity effect such that, the

third sodium is closer to the TS Fe and thus adopts some degree of spin which is

then transmitted to the second and first sodiums due to their proximity to this third,
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spin-induced sodium.

Orbital occupancy

Figure 5.19 shows the s, p and d-orbital occupancy of the single Fe in the TS. In this

case, the largest increase in occupancy is of the p-orbital in the charged set although

it is only very slightly greater than the increase in the p-orbital of the sodium set.

This suggests the localised effects described previously are not important here but,

as can be seen in Figure 5.18 the TS Fe is in the position of the second TS Fe in the

NG-1 models for supercells of 3 unit cells and hence the sodium is not ‘local’ to the

TS Fe anyway.

The d-orbital graphs in Figure 5.19 do not oscillate in the way the graphs in

Figures 5.14 and 5.15 do, which indicates there is less interaction between neigh-

bouring/periodic Fe atoms. Within the parameters of this study, i.e. for the addition

of up to three sodium atoms or a charge of −3e, and by the removal of the interac-

tions between neighbouring Fe, it can be seen that the s and p orbitals increase in

occupancy whereas the d-orbitals decrease in occupancy and their is no difference

seen whether charge or sodium atoms are employed as the reducing agents.

Table 5.10 shows that, in the sodium set, the iron in the model where there is

no sodium has no spin and hence is Fe2+ whereas in each subsequent model, Fe is

magnetic and hence could be either Fe2+ or Fe3+. This can be deduced from the

electronic configuration of these ions, i.e. Fe2+ is [Ar]4s23d4 with the d-orbitals oc-

cupied thus: [↑↓] [↑] [↑] or [↑↓] [↑] [↓] where the brackets indicate different d-orbitals;

Fe3+ is: [Ar]4s23d3 with d-orbital occupancy of [↑↓] [↑], that must involve spin and

hence magnetism due to the odd number of electrons.

The implications are that, when the iron in the TS is in a state close to Fe2+

i.e. close to zero spin — it has been established that Fe3+ cannot have zero spin —

addition of electrons results in oxidation of the ferrous iron to a state close to ferric,
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Figure 5.19: Orbital occupancies of Fe in the TS where s-Na refers to the s-orbital
of the Na models and p-ch the p-orbital of the charge models; similarly for d-Na
and d-ch.
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Fe3+ with a spin close to |3.54|.

5.7.4 Conclusion

This supplementary study has removed the interactions between neighbouring iron

atoms in the TS, which were obscuring the effect of reducing agents on TS Fe. By

decreasing the number of Fe atoms in the TS, a clearer picture of the effect of sodi-

ums and charge on TS Fe has emerged. Within the environments described in this

last section, TS iron is oxidised and not reduced. When Fe3+ exists within this

environment, addition of a reducing agent will not cause reduction.

5.8 Overall Conclusions

Reduction in vivo has been investigated experimentally as a dynamic process [144]

and has been seen to occur via a reduction front mechanism from edge sites and

with the irregular development of reduced domains in the octahedral sheet. The

study described in this chapter is an attempt to simulate such a reduction scenario,

but with two notable differences from the experiments. The computational models

are structurally and dynamically different. That is to say, the simulation of clay

edges has not yet been widely reported, the edges are themselves not easily iden-

tifiable in their structure and constituents and so this study has concentrated on

basal surface models. Indeed, it is conceivable that the modelling of edge sites could

constitute a PhD in its own right! In spite of this simulation deficit, the results from

this study apply to atomic environments and are therefore, theoretically transfer-

able, i.e. if an edge site contains a local environment which is the same as a basal

surface, then the same conclusions about the local effects of reduction can be drawn.

The difference in dynamics between experiment and theory is that experimen-

tally, reduction is a continuous reaction whereas computationally, it is static and

represented by adding and then increasing the concentration of the reducing agent
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(sodium atoms or charge). This introduced modelling considerations such as the

increase in Coulomb potential between sodium ions in unit cells containing one, two

or three sodiums. To work around this potential problem, supercells were created to

test the Coulomb effect. The addition of uniform charge rather than sodium atoms

themselves, was another method of determining Coulomb strength, which also tested

locality, that is, the proximity of the sodium atoms to the clay layer affected the

relative orbital occupancies of the nearest atoms to a greater extent than the more

distant atoms of the same species. The electrostatic interactions were tested by

calculating the binding energies of the supercells, but their formulation proved more

complicated than initially thought and highlighted several considerations specific to

these models.

Firstly, the distribution of charge in the theoretical calculations of binding en-

ergy. The correct calculation would be to have fractional charge occupancy for the

additional cells in a theoretical calculation, e.g. for the binding energy of three cells

with an overall charge of −2e, each theoretical cell should have a fractional charge

of −2
3e. A brief calculation for the −2e and −3e sets of Ideal for two and three cells

respectively, gave positive binding energies of 0.0739eV and 0.0215eV respectively.

Therefore, the nature of the dominant interactions between charge cells has not been

correctly identified but is unlikely to be the Coulomb reaction calculated.

Secondly, the binding energies for the NG-1 models displayed an erratic nature

belying the interplay between spins on the tetrahedral sheet iron and the overall

magnetic nature of the (super)cell, which lead to incorrect comparisons between

different magnetic states, when considering the same size model and number of

sodium atoms or charge. The ability to fix the spin of the tetrahedral sheet iron

would have been very useful, but, as explained in the body of this chapter, was not

possible. Consequently, the results from the binding energy calculations acted more

as a warning of the potential pitfalls inherent with the models than as useful results

in their own right.
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Armed with the knowledge that the tetrahedral irons were interacting, the single

point energy calculations yielded results which reflected this. For the Ideal models,

the conclusions were simple, that iron in the octahedral sheet was reducing and to

a greater extent in the charge than the sodium models. In the tetrahedral sheet,

aluminium also reduced, to a lesser degree than the irons and more so in the sodium

than the charge models due to the localisation of sodium. Similarly, the octahedral

sheet irons of the NG-1 models reduced to a greater extent in the charge than the

sodium models. The effect on the tetrahedral sheet iron was clarified by creating

supercells with fewer neighbouring irons in the tetrahedral sheet. These models

clearly showed that tetrahedral sheet iron was oxidising and not reducing.

The conclusions drawn about the octahedral sheet irons are robust as the same

results appeared four times, for the sodium and charge cases of Ideal and NG-1 and

hence are transferable, that is, where there is an octahedral sheet of iron, the irons

will reduce. The results regarding the tetrahedral species agree within themselves,

that is, aluminium, [Ne]3s23p1 reduces towards [Ne]3s23p2, i.e. towards silicon’s elec-

tronic configuration, which has four vacancies in 3p and Fe2+, [Ar]4s23d4 oxidises

towards Fe3+, [Ar]4s23d3 i.e. towards four completely empty d-orbitals. This occurs

for both reducing agents tested. However, a problem arises in the lack of connec-

tion between one model set and that containing an increased amount of reducing

agent. There is no guarantee that two consecutive single point energy calculations

on the same (super)cell will result in the appearance of the same spin state of iron

in the tetrahedral sheet, as the spin polarised calculations may choose different spin

states on each occasion. If, however, the local environment determines the nature

of the tetrahedral iron spin state, then there is a connection between subsequent

(super)cells and the reduction reaction is represented as dynamically as it could

be. As both the sodium and charge models of the supplementary study resulted

in the same conclusion about tetrahedral iron, the dynamic connection is promis-

ing but not guaranteed as the statistical significance of two results agreeing is not

high. However, further evidence for the transferability of the results exists within

NG-1, where there are oscillations in the graphs of the d-orbital occupancy between
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the same values as for the supplementary study between 6.1 and 6.4. As there is

an increased number of irons, then, the connection between same size supercells is

undermined, as, on each single point energy calculation, the same spin per iron has

to be duplicated. The probability of this is much lower than in the supplementary

study case, which could explain the oxidation/reduction/oxidation oscillations seen

in the main study, as artefacts of the modelling method. Thus, it can be said with

confidence that, where there are clay mineral edge site environments containing irons

separated by more than three silicon-oxygen bonds, oxidation will occur.

This study could be continued by examining the effect of using the GGA+U func-

tional for the reasons described in Chapter 3 and by creating various environments in

the tetrahedral sheet using the results from several cluster model studies [163], [164],

which may reproduce in part at least, portions of clay edges.



6
Concluding Remarks

The studies described in this thesis began with an investigation of decarboxylation

within an aluminosilicate clay mineral, motivated by the potential to inform the

production of biofuels. The study was based on the experimental work done by

Almon and Johns [10], which was used as a guide to produce feasible models of the

reaction pathway within a DFT, planewave and pseudopotential approximation. An

optimum modelling environment was determined although no intermediates in the

reaction pathway were found. This prompted a re-examination of the same process

but using iron-bearing clay minerals, based on Almon’s and Johns’ hypothesis that

decarboxylation could proceed via a radical mechanism. It was found that the GGA

+U functional was required to model the ferruginous clay minerals and that poten-

tial intermediates were found, but that the employment of this functional required

further testing before the new intermediates could be accepted as genuine results,

and not merely artefacts of the modelling process.

193
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The second study continued with the optimum aluminosilicate environment found

in the first study, using these reactant and product models to carry out an ab ini-

tio transition state search. An intermediate in the decarboxylation pathway was

determined and the identification of its status as a transition state required the

employment of lattice dynamics. This in turn highlighted several modelling con-

siderations, which were addressed and analysed for their impact on the results of

the phonon calculation, which identified both the product and the intermediate as

transition states. In-depth analysis of the Mulliken charges, dispersion curves along

two paths through the Brillouin zone and the Fermi level occupancies, showed that

only the intermediate model was a genuine transition state.

The final study considered reduction within ferruginous clay minerals and where

it occurs within the clay layers. This simple question uncovered a multitude of

modelling considerations such as how to best represent reduction and how can this

be achieved consistently while decreasing the potential for artefacts in the results.

In spite of the modelling complications, analysis of several aspects of the electronic

structure lead to satisfactory conclusions about the site of reduction within clay

minerals.

These studies have explored modelling techniques specific to clay minerals and

highlight that the approach depends on the aspect of investigation. One of the main

themes running throughout the investigations is the employment of multiple mod-

els, which has informed analysis by enabling comparison between like-models. This

has proved an invaluable technique in the absence of similar DFT studies on clay

minerals and especially so when identifying a transition state, as, to date, this is the

first study of its kind in these types of systems. These studies also serve to highlight

that analysing several aspects of the electronic structure enables firm conclusions to

be drawn from the results, in the context of the modelling environment.

The next challenge lies in relating these theoretical results to those obtained
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experimentally, i.e. to re-creating the relevant experimental environments within a

DFT, planewave, pseudopotential approximation, which would require the presenta-

tion of more complex systems than those used in this thesis. However, in modelling,

complexity is built on simplicity and so the model systems created for the purposes

of the investigations recorded here, provide the foundation on which the process of

complexification can begin.



A
Lattice Dimensions and Atomic

Coordinates of a Unit Cell of Pyrophillite

The lattice dimensions and angles and atomic positions of the initial pyrophillite cell

used to create the Model Sets in Chapter 3 with appropriate substitutions and/or

the addition of a sodium atom as outlined in the main body of the chapter. This

initial cell of pyrophyllite has composition (Al2Si4O10(OH)2)2 and space group P1̄.

a = 5.150 α = 90.500
b = 8.930 β = 99.200
c = 13.170 γ = 89.700

Table A.1: Lattice parameters of a unit cell of pyrophillite: lengths are in Angstroms
and angles in degrees.
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H 1.2632 0.4194 0.3918 O 0.0636 0.5924 0.0301
H 0.4711 0.6622 0.2328 O 0.2250 0.8700 0.0354
H 0.9814 0.9183 0.4611 O 0.8707 0.2400 0.3880
H 0.1832 0.0389 0.1821 O 0.9512 -0.0704 0.3846
O 0.5246 0.9429 0.2206 O 0.9057 0.3989 0.5648
O 0.6074 0.2465 0.2179 O 0.7443 0.1213 0.5595
O 0.5269 0.5568 0.2213 O 0.9534 0.5510 0.3913
O 0.5724 0.0875 0.0411 O 0.7398 0.6883 0.5447
O 0.7382 0.8056 0.0672 Al 0.7376 0.0768 0.3013
O 0.7337 0.3651 0.0464 Al 0.2317 0.9145 0.2936
O 0.4447 0.0484 0.3743 Al 0.2288 0.5816 0.2903
O 0.3619 0.7447 0.3770 Al 0.7405 0.4096 0.3046
O 0.4424 0.4345 0.3736 Si 0.5193 0.9274 0.0947
O 0.3969 0.9037 0.5538 Si 0.5340 0.2513 0.0912
O 0.2311 0.1857 0.5277 Si 0.4500 0.0639 0.5002
O 0.2356 0.6262 0.5485 Si 0.4353 0.7400 0.5037
O 0.0159 0.4403 0.2037 Si 0.0106 0.4248 0.0777
O 0.2294 0.3030 0.0502 Si 0.0252 0.7562 0.0802
O 0.0986 0.7514 0.2069 Si 0.9441 0.2351 0.5147
O 0.0181 1.0616 0.2103 Si 0.9587 0.5665 0.5172

Table A.2: Atomic positions: fractional.
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