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NOMENCLATURE 

1. The p r e f i x p e r f l u o r o i s used before a name to denote that the 

compound or the p a r t of the compound f o l l o w i n g the p r e f i x i s 

f u l l y f l u o r i n a t e d . 
I—n 

) denotes th a t the r i n g and 2. A c a p i t a l F i n a r i n g (e.g. 

i t s unspecified s u b s t i t u t e n t s are f u l l y f l u o r i n a t e d . 



ABSTRACT 

This thesis i s concerned w i t h the preparation and reactions of 
hexafluorobut-2-yne (H.F.B.). 

Attempts to improve the somewhat u n s a t i s f a c t o r y l i t e r a t u r e method 

f o r preparing t h i s acetylene were unsuccessful. However, the p y r o l y s i s 

of perfluorocyclobutene over f l u o r i d e i o n, a reaction f i r s t reported 

by a previous worker i n t h i s laboratory, has been developed to provide 

a new high y i e l d route to H.F.B. 

Free r a d i c a l a d d i t i o n s to H.F.B. have been investigated and a 

series of novel adducts was obtained. The behaviour of H.F.B. was 

found to d i f f e r considerably from that of fluoroalkenes, which have 

been studied p r e v i o u s l y . 

A number of reactions of H.F.B. i n v o l v i n g the use of caesium 

f l u o r i d e as an i n i t i a t o r have been studied. Copolymers of various 

compositions were obtained from reactions with acetylenic esters and 

several i n t e r e s t i n g co-oligomers were prepared from fluoroalkenes. 

The add i t i o n s of a v a r i e t y of nucleophiles to H.F.B. were 

i n v e s t i g a t e d w i t h a view to obta i n i n g c y c l i c products. Most of these 

experiments gave polyhexafluorobut-2-yne as the only product but a 

r e a c t i o n w i t h sulphur d i d give a thiophene d e r i v a t i v e . A reac t i o n 

w i t h dimethyl sulphoxide gave an i n t e r e s t i n g sulphonium y l i d of 

s u r p r i s i n g l y high thermal and chemical s t a b i l i t y . 

A series of reactions was carrie d out i n order to i n v e s t i g a t e some 

of the f a c t o r s which influence the stereochemistry of n u c l e o p h i l i c 

a d d i t i o n to H.F.B. These experiments showed that both catalysed and 

uncatalysed additions of alcohols give mainly anti a d d i t i o n products. 

Only i n the case of uncatalysed reactions employing an i n e r t a p r o t i c 

solvent does sifli a d d i t i o n predominate. 
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GENERAL INTRODUCTION 

I n 1836 Dumas and P e l i g o t prepared methyl f l u o r i d e by what 

appears to be the f i r s t recorded synthesis of a f l u o r i n e containing 

organic compound.^ However, i t was not u n t i l the beginning of t h i s 

century t h a t the foundations of organofluorine chemistry were f i r m l y 

e s t a b l i s h e d by Swarts' work on simple a l i p h a t i c fluoro-compounds.^ 

Between about 1890 and 1938 he prepared a large number of p a r t i a l l y 

f l u o r i n a t e d compounds by halogen exchange reactions. This work made 

i t possible f o r Midgley and Henne to introduce dichlorodifluoromethane 

as a r e f r i g e r a n t . ^ 

The chemistry of p e r f l u o r i n a t e d compounds began w i t h the 

i s o l a t i o n of carbon t e t r a f l u o r i d e , which was not characterised 

t i l l 1930.'^'^ Since then methods have been devised to prepare a 

wide range of f u l l y f l u o r i n a t e d compounds and the subject has been 

ex t e n s i v e l y reviewed.^ 

Besides t h e i r use as r e f r i g e r a n t s , fluorocarbons have found 

i n d u s t r i a l a p p l i c a t i o n s i n areas as diverse as f i r e e x tinguishers, 

aerosol p r o p e l l a n t s , dyes and s u r f a c t a n t s . ^ P o l y t e t r a f l u o r o e t h y l e n e , 

f o r example, i s a polymer w i t h unique physical p r o p e r t i e s which make 

i t i d e a l f o r use i n the manufacture of non-stick coatings f o r cooking 

u t e n s i l s etc. The use of f l u o r i n e containing compounds i n the pharmaceutical 

i n d u s t r y i s becoming i n c r e a s i n g l y common. Methods have been developed to 

introduce f l u o r i n e i n t o almost a l l of the a v a i l a b l e p o s i t i o n s of the 

s t e r o i d nucleus and some of the r e s u l t i n g f l u o r i n a t e d steroids e x h i b i t 

considerably enhanced pharmacological a c t i v i t y . 

However, the value of a study of fluorocarbon chemistry l i e s 

not only i n the i n d u s t r i a l a p p l i c a t i o n s of the new mate r i a l s t h a t 

are being discovered. Another/^i-mporta'fftj;-a'spect o f t h i s study has been 
f/^''' S C I E N C E 

f(.,:; \^ iJtCWSO 
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the development of a new area of chemistry d i s p l a y i n g a v a r i e t y 

of novel types of r e a c t i o n mechanism. The i n t r o d u c t i o n of f l u o r i n e 

i n t o a molecule has a major e f f e c t on the e l e c t r o n i c environment 

of neighbouring f u n c t i o n a l groups and o f t e n a l t e r s t h e i r reactions 

completely. The study of the behaviour of fluorocarbon d e r i v a t i v e s 

presents considerable challenges to established theories of mechanism 

and r e a c t i v i t y . 

This thesis intends to discuss the chemistry of p e r f l u o r i n a t e d 

acetylenes, an area which has not been extensively studied and i s 

s t i l l comparatively young. The synthesis of the f i r s t p e r f l u o r o -

acetylene, hexafluorobut-2-yne, was not reported t i l l 1949.^ 

Although approximately 15 others have been reported to date, 

they are a l l e i t h e r too unstable or too d i f f i c u l t to prepare i n 

large q u a n t i t i e s f o r t h e i r chemistry to be studied i n d e t a i l . Only 

hexafluorobut-2-yne has received more than a s u p e r f i c i a l i n v e s t i g a t i o n , 

l a r g e l y because i t i s the only commercially a v a i l a b l e perfluoroacetylene, 

However, most of the work using t h i s acetylene has not been aimed at 

studying the p r o p e r t i e s of the system per se but instead has treated 

i t as a novel compound w i t h which to i n v e s t i g a t e some other f i e l d 

of chemistry. For example, a vast amount of work has been published, 

e s p e c i a l l y i n recent years, on the use of hexafluorobut-2-yne as 

a l i g a n d i n organometallic chemistry. Another example of t h i s type 

of approach i s the e x p l o i t a t i o n of the powerful d i e n o p h i l i c properties 

of hexafluorobut-2-yne to prepare a wide range of Diels-Alder adducts. 

The work described i n t h i s thesis involves the e x p l o r a t i o n 

of various aspects of the chemistry of hexafluorobut-2-yne. 



CHAPTER I 

PREPARATION OF FLUORINATED ACETYLENES 

This chapter intends to summarise the methods used to prepare 

h i g h l y f l u o r i n a t e d acetylenes and f o r t h i s purpose i t i s convenient 

to t r e a t 1-fluoroacetylenes separately from b i s p e r f l u o r o a l k y 1 

acetylenes. F i r s t , however, i t w i l l be worthwhile to give a b r i e f 

general discussion of the e f f e c t s of f l u o r i n e on the chemistry of 

f l u o r o a l i p h a t i c compounds, w i t h p a r t i c u l a r reference to f l u o r o -

acetylenes . 

I.A General Aspects of Organofluorine Chemistry 

I . A . I I n t r o d u c t i o n 

The replacement of a hydrogen atom by f l u o r i n e can cause 

profound m o d i f i c a t i o n s i n the chemical p r o p e r t i e s of a compound. 

These changes are mainly due to dif f e r e n c e s i n the e l e c t r o n i c 

p r o p e r t i e s of hydrogen and f l u o r i n e but s t e r i c f a c t o r s also have 

some i n f l u e n c e . A b r i e f summary of these e f f e c t s i s given below 

and the subject i s covered i n greater d e t a i l by several authors.*^ 

I.A.2 E f f e c t s of Fluorine i n Organic Molecules 

The f l u o r i n e atom, although i t has 7 electrons i n the second 

quantum s h e l l , i s only s l i g h t l y l a r g e r than the hydrogen atom 

(van der Waals r a d i i ca. 1.35A f o r F, 1.20A f o r H). Therefore i t 

i s possible to replace a l l the hydrogen i n a saturated hydrocarbon 

by f I uor i lU' wi Lliout i n t r o d u r i i i i ; s i g n i f i c a n t overcrowding or 
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d i s t o r t i o n . Fluorine i s more e f f e c t i v e than hydrogen at s h i e l d i n g 

the carbon skeleton of an alkane from chemical at t a c k , not j u s t 

because of i t s greater size but, perhaps more im p o r t a n t l y , because 

i t has a dense e l e c t r o n cloud surrounding i t . Also, the C-F bond i s 

considerably stronger than the C-H bond and both these f a c t o r s 

c o n t r i b u t e to the comparative inertness of saturated fluorocarbons. 

However, the d i f f e r e n c e s between the chemistry of fluorocarbon 

and hydrocarbon systems arise l a r g e l y from e l e c t r o n i c e f f e c t s . These 

may be d i v i d e d i n t o three types: 

a) F l u o r i n e i s the most electr o n e g a t i v e element and the C-F bond 

i s h i g h l y polar. Inductive e f f e c t s are therefore very important i n 

fluorocarbon chemistry. 

b) Fluorine has three lone p a i r s i n the valence s h e l l , whereas 

hydrogen has none. Coulombic repulsion between ele c t r o n pairs 

on f l u o r i n e and TT electrons have been proposed to explain c e r t a i n 

aspects of the r e a c t i v i t y of unsaturated fluorocompounds. 

c) The e l e c t r o n a f f i n i t y of f l u o r i n e i s much higher than that of 

hydrogen. Therefore f l u o r i d e ion i s more r e a d i l y displaced than 

hydride i o n . P o s i t i v e l y charged f l u o r i n e containing species are 

less l i k e l y than the analogous hydrocarbon systems because of 

the higher i o n i s a t i o n energy of f l u o r i n e . 

These g e n e r a l i s a t i o n s lead one to expect h i g h l y f l u o r i n a t e d 

compounds to react r a t h e r d i f f e r e n t l y from hydrocarbons. 

I.B E f f e c t s of Fluorine i n Acetylenes 

From the considerations discussed above i t i s possible to 

p r e d i c t some of the p r o p e r t i e s of fluoroacetylenes. The s u b s t i t u t i o n 

of an acetylene w i t h f l u o r i n e or p e r f l u o r o a l k y l groups reduces the 
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e l e c t r o n density i n the t r i p l e bond. This has the e f f e c t of making 

the acetylene e l e c t r o p h i l i e i n character. Fluoroacetylenes are 

the r e f o r e r e s i s t a n t to e l e c t r o p h i l i c attack but are very reactive 

towards nucleophiles. 

Acetylenes w i t h a f l u o r i n e atom d i r e c t l y attached to the 

t r i p l e bond are very unstable. This i s probably due to repulsive 

i n t e r a c t i o n s between the lone p a i r s on f l u o r i n e and the TI electrons 

of the t r i p l e bond. The energy of the system i s therefore raised. 

arrows represent repulsive i n t e r a c t i o n s 

F CD . F 
\ - c Q c - c;, 

^^'F^ O 

Also, as the e l e c t r o n e g a t i v i t y of carbon increases i n the series 

sp^, sp2, sp, the C-F bond strength decreases correspondingly. 

Acetylenes w i t h p e r f l u o r o a l k y l s u b s t i t u t e n t s are much more 

s t a b l e , the f l u o r i n e lone p a i r s being f u r t h e r removed from t h e . t r i p l e 

bond than i n 1-fluoroacetylenes. 
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I.C 1-Fluoroacetylenes 

I.C.I General 

Compared to the large number of acetylenes w i t h c h l o r i n e , bromine 

and iodine attached to the t r i p l e bond, very few 1-fluoroacetylenes 

are known. This i s due p a r t l y to d i f f i c u l t i e s i n t h e i r preparation 

and p a r t l y to t h e i r i n s t a b i l i t y . They can on.ly be prepared by 

e l i m i n a t i o n type reactions from f l u o r o o l e f i n s , whereas other halo-

acetylenes are obtained by a v a r i e t y of routes^^ and are therefore 

more r e a d i l y accessible. The high r e a c t i v i t y of 1-fluoroacetylenes 

makes t h e i r i s o l a t i o n d i f f i c u l t . I n f a c t , several 1-fluoroacetylenes 

which have not been i s o l a t e d are proposed as high energy intermediates 

i n a number of reactions.-'^ 

LiN(R)2 LiN(R)2 
e.g. C£H5CH=CFC1 ^ [CgHsCrCFj ^ CeH5CECN(R)2 

The only 1-fluoroacetylenes known are monofluoroacetylene, d i f l u o r o -

acetylene, perfluoropropyne, f l u o r o p r o p i o l y l f l u o r i d e , f l u o r o c h l o r o -

acetylene, t - b u t y l f l u o r o a c e t y l e n e , d i f l u o r o b u t a d i y n e , t e t r a f l u o r o -

penta-1,3-diyne and 1-fluoro-2-cyanoacetylene. 

I.e.2 Mono- and Difluoroacetylenes 
I 

Monofluoroacetylent' has bt-un prepared in 6-7% y i e l d by 

delialogenatiuii of 1 , 1-di T 1 ii()r()-2-bromof thy Iene w i t h magnesium in 

, tot r a h y d r o f u r a n , tin- major p r o d u i l being 1,1-d i f 1 uoroe thy lene .' ̂  

Debromination of 1, 2-d i hroiiio-I-t 1 uorue thy lone ' o r 1,1,2,2-tetra-

bromo-l-f luoroetliane ( c i t h e r using magnesium''' or electrochemically^ ̂ ) 

gives b e t t e r y i e l d s . 



FCBr=CHBr ' FC (80%) 

An almost q u a n t i t a t i v e y i e l d was obtained when fluoromaleic anhydride 

was pyrolysed at 650 "C. 

F-C-

F-C-

ĉ / 
\ 
0 
/ 

650 ° 
5 - 7 mm Hg 

FC=CH + CO + CO 2 
(100%) 

Py r o l y s i s of d i f l u o r o m a l e i c anhydride gives some d i f l u o r o a c e t y l e n e 

as w e l l as f l u o r o p r o p i o l y l f l u o r i d e . ^ ' ' 

F-C-
\ 
0 
/ F-C — C 

600: FCiCF + FC=C-COF + CO + CO-

Dif l u o r o a c e t y l e n e i s one of the components produced when t e t r a f l u o r o -

•ethylene i s photolysed'^ and has been i s o l a t e d from the product 

mixture by gas chromatography. Difluoroacetylene i s also believed 

to be produced by r a d i o l y s i s ^ ^ and p y r o l y s i s ' 2 1 of s u i t a b l e f l u o r o -

carbons. I t i s also reported to be formed from the re a c t i o n of 

carbon and f l u o r i n e a t 2500 - 3 0 0 0 K . M o r e r e c e n t l y , d i f l u o r o a c e t y l e n e 

was shown to be one of several fluoroacetylenes produced when 

e l e c t r i c a l discharges were passed through hexafluorobenzene, penta-

f l u o r o p y r i d i n e or p e n t a f l u o r o b e n z o n i t r i l e • D i f l u o r o b u t a d i y n e , 

tetrafluoropenta-1,3-diyne and 1-fluoro-2-cyanoacetylene are also 

i s o l a b l e from these r e a c t i o n s . 



I.e.3 Te trafluoropropyne 

Tetrafluoropropyne has been prepared by debromination of 

1,2-dibromohexafluoropropene, which i n turn i s made from 1,1-difluoro 

ethylene and dibromodif luoromethane. 2'* 

(PhC0)202 C, 300 
CFjBrs + CH2 = CF2 ' CF2BrCH2CF2Br ^ CF2BrCH=CF2 

110° 1 mm Hg 

Br2 hv 

CFoBrCIIIirCFvBr 

KOH ' aq 
Zn/Dioxan AlBr3 

CF3CECF — ; CF3CBr=CFBr CF2=CBrCF2Br 

Another route to t h i s acetylene s t a r t s from h e x a f l u o r o g l u t a r i c 

anhydride. 

F2 
2 KF 420' 

o ^ o A 1 - 2 mm Hg CF2=CFCF2COF ^ CF3CF=CFC0F 

NaOH 

220 - 240° 
CF3CiCF CF3CF=CFC00Na 

Tetrafluoropropyne i s also formed by the mercury s e n s i t i s e d 

decomposition of tetrafluorocyclopropene.26 
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I.D B i s p e r f l u o r o a l k y l acetylenes 

I.D.I General 

The most common methods f o r preparing p e r f l u o r o a l k y l a c e t y l e n e s 

i n v o l v e e l i m i n a t i o n of hydrogen halides or halogens from the appropriate 

o l e f i n . E l i m i n a t i o n of halogens generally gives b e t t e r y i e l d s . 2 7 

D i c h l o r o o l e f i n s are the most common s t a r t i n g materials and these can 

be made by coupling 1,1,1-trichloropolyfluoroalkanes followed by 

e l i m i n a t i o n of c h l o r i n e . 2 8 

275° 
CF,=CF, + CCl, Cl(CF2CF2)nCCl3 n. = 1,2,3 or A 

Cu powder 180°/15 h r . 

CI(CF2CF2)nCCl=CCl(CF2CF2)nCl 

Zn/acetic a n h y d r i d e 135° 

Cl(CF2CF2)nCsC(CF2CF2)nCl 

Another method f o r preparing b i s p e r f l u o r o a l k y l - d i c h l o r o o l e f i n s 

consists of heating a p e r f l u o r o a l k a n o i c acid c h l o r i d e , n i c k e l carbonyl 

and l , l - d i c h l o r o - 2 , 2 - d i f l u o r o e t h y l e n e at 150°. 

2R^C0C1 + Ni(C0)4 

RpCO. 

. + CF,=CC1-

2RpCF2CCl2-

RpCF2CCl2CCl2CF2Rp+Ni(CO)4 

2RpC0' + N i C l j + 4C0 

Rp- + CO 

RpCF2CCl2* 

RpCF2CCl2CCl2CF2Rj, 

RpCF2CCl=CClCF2Rj, + N i C l j + 400 

Besides e l i m i n a t i o n r e a c t i o n s , several other methods have been 

used to prepare b i s p e r f l u o r o a l k y l a c e t y l e n e s . These include the f l u o r i d e 

ion induced i s o m e r i s a t i o n of dienes, the use of sulphur t e t r a f l u o r i d e 
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as a s e l e c t i v e f l u o r i n a t i n g agent and various miscellaneous methods 

of l i m i t e d a p p l i c a b i l i t y . 

I.D.2 Hexafluorobut-2-yne 

Hexafluorobut-2-yne (I) i s the simplest member of the series of 

b i s p e r f l u o r o a l k y l a c e t y l e n e s . I t i s the only commercially available 

p e r f l u o r o a c e t y l e n e and has been made by a v a r i e t y of routes. 

I.D.2.a Dehalogenation and dehydrohalogenation reactions 

The methods f o r preparing dichloroalkenes o u t l i n e d above are 

only applicable f o r hex-3-enes and higher homologues. 2,3-Dichloro-

hexafluorobut-2-ene, the precursor of hexafluorobut-2-yne, i s 

ge n e r a l l y prepared from hexachlorobuta-1,3-diene.29>8 

SbF3/SbF3Cl2 
CCl2=CClCCl=CCl2 ^ CF3CC1=CC1CF3 

(85%) 
Zn/EtOH 

CF3CC1=CC1CF3 ^^^^ ̂ ^o ' CF3CECCF3 + CF3CH=CC1CF3 

(j.)(48.7%) (27.6%) 

+ CF3CH2CH2CF3 + CF3CF=C=CF2 

(1.4%) (0.4%) 

+ 10.1% recovered s t a r t i n g m a t e r i a l 

The d e c h l o r i n a t i o n was o r i g i n a l l y c a r r i e d out using zinc dust 

i n ethanol. ̂ ' H o w e v e r , t h i s method gives low conversions to the 

butyne and large q u a n t i t i e s of reduction products, as w e l l as being 

very slow. Acetic anhydride appears to be a more s a t i s f a c t o r y solvent,28»31 

g i v i n g b e t t e r y i e l d s (63%) w i t h less by-products and i n a shorter 
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time (7 h r s . ) . 

Hexafluorobut-2-yne (I) has also been made by dehydrohalogenation 

of 2-halogenobut-2-enes w i t h excess potassium hydroxide but 
9 7 

dehalogenation was found t o be a more s a t i s f a c t o r y r e a c t i o n . 

CP3CH=CXCF3 ^"^^^^ • CF3C.CCF3 
KOH 10 ° 

X = CI 36% 
X = Br 68% 

CF3CBr=CBrCF3 ^ CF3CECCF3 
r e f l u x , 4 hrs. 

(90%) 

CF3CC1=CC1CF3 ^"^g^^"^^^ > CF3CECCF3 
ace t i c acid 

(70%) 

Hexafluorobut-2-yne i s produced i n 13% y i e l d when o c t a f l u o r o b u t -

2-ene and calcium vapour are condensed simultaneously onto a l i q u i d 

n i t r o g e n cooled surface.-^2 xhe mechanism proposed f o r the d e f l u o r i n a t i o n 

involves the o x i d a t i v e i n s e r t i o n of a calcium atom i n t o a v i n y l i c 

C-F bond, followed by a rapi d e l i m i n a t i o n of calcium f l u o r i d e . 

CE3 CF3 CF3 CF3 -CaF2 
;̂C=C:;̂  + Ca ^ ^C=C^ ^ CF3C5CCF3 

F F F CaF 
(1) 

I.D.2.b Isomerisation of Dienes 

The caesium f l u o r i d e catalysed isomerisation of hexafluorobuta-

1,3-diene gives (^) i n y i e l d s of up to 8 3 % . T h e mechanism involves 

two Sj^2' s u b s t i t u t i o n s by f l u o r i d e i o n . 
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F F 
CF2=CFCF=CF2 ^ CF3CF=C=CF2 

Conditions 

150°, 0.5 hr 

100°, 0.5 hr 

RT , 100 days 

200°, 22 secs§ 

Yi e l d of butyne 

68% 

83% 

76% 

22% 

CF3CHCCF3 

Recovered butadiene 

1%-

40% 

§ Flow r e a c t i o n 

I.D.2.C F l u o r i n a t i o n Reactions 

Sulphur t e t r a f l u o r i d e i s a very useful s e l e c t i v e f l u o r i n a t i n g 

agent f o r converting carbonyl compounds to the corresponding d i f l u o r i d e s 

and c a r b o x y l i c acids to acid f l u o r i d e s and t r i f luorome t h y l d e r i v a t i v e s 

I t reacts w i t h acetylene d i c a r b o x y l i c acid a t 70° i n the presence of 

methylcyclohexane (which acts as a d i l u e n t ) to give the d i a c i d f l u o r i d e . 

At 170°, using a t i t a n i u m f l u o r i d e c a t a l y s t the f l u o r i n a t i o n goes to 

completion g i v i n g hexafluorobut-2-yne. 

70°/diluent 
2SFi+ + HOOCC = CCOOH ^~hrs " FOCC = CCOF + 2HF + 2SOF2 

(51%) 
TiF^ c a t a l y s t 

4SFi+ + HOOCCSCCOOH -r^^ro-^ ^ CFOCECCFO + 2HF + 4SOF5 
^ 170 8 hrs i i 2 

(1) 

Acetylenedicarbonyl f l u o r i d e has also been prepared using phenyl 

sulphur t r i f l u o r i d e instead of SF,,, or by using the dipotassium s a l t 

of the acid.35. 35 



-13-

I.D.3 Octafluoropent-2-yne 

Octafluoropent-2-yne has been prepared by f l u o r i d e i o n induced 

isomerisations of o c t a f l u o r o p e n t a d i e n e s . > 3 7 ,38 

Y i e l d Ref. 

CF2=CFCF2CF=CF2 — y 68% 33 

CF2=CFCF=CFCF3 \ »- CF3 CECCF2CF 3 98% 37 

CF2=C=CFCF2CF3 / 95% 38 

Conditions: (a) CsF 80° 0.5 hr; (b) Flow r e a c t i o n CsF 240° 140 sec 

contact time; (c) CsF 100° 0.1 mm Hg. 

S i m i l a r l y a mixture of isomeric hexynes was produced from 

perfluorohexa-l,5-diene. 

CF2=CFCF2CF2CF=CF2 »- CFgCS^CgFy + C2F5CECC2F5 

Octafluoropent-2-yne has also been prepared by treatment of 

1,2-dichloroperfluorocyclopentene w i t h SbF3Cl2, which gives the 

r i n g opened alkene, followed by d e c h l o r i n a t i o n . ^ ^ 

SbF3Cl2 CF3CC1=CC1C2F5 Zn/EtOH^ CF3C=CC2F5 

I.D.4 Other B i s p e r f l u o r o a l k y l acetylenes 

Perfluorohex-3-yne i s one of the minor components obtained when 

p e r f l u o r o - ( l , 2 - d i e t h y l c y c l o p e n t e n e ) i s photolysed.'*" S i m i l a r l y 

p h o t o l y s i s of the d i - i s o p r o p y l analogue gives d i - i s o p r o p y l acetylene. 
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hv C2F5C=CC2F5 -•• 4 Other products 

hv . i-C3F7CEC(i-C3F7) + 4 other products 

Perf luoro-(2,2-dimethylpent-3-yne) has been prepared'*^ by 

t r e a t i n g perfluoroisobutene w i t h caesium f l u o r i d e to form the 

t e r t i a r y b u t y l carbanion, which was then reacted w i t h 1-chloro-

perfluoropropyne. 

(CF3)2C=CF2 + CsF ^ (CF3)3C~ Cs"̂  

(CF3)3C~ + CIC5CCF3 ' (CF3)3C-CECCF3 + C l " 

I.D.5 Hexafluorohexa-2,4-diyne 

Perfluorohexa-2,4-diyne was prepared by the coupling of the 

zinc d e r i v a t i v e of t r i f luoropropyne using cupric chloride.'*2 

Zn CuCl' x2 
CF3CCl=CCl2 — * CF3C=CZnCl " CF3CECCUCI >• C7^C^C-C-CCF ^ 

DMF 
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CHAPTER I I 

THE CHEMISTRY OF FLUORINATED ACETYLENES 

I I . A I n t r o d u c t i o n 

The chemistry of f l u o r i n a t e d acetylenes was reviewed by Bruce 

and Cullen i n 1969'^^ and therefore t h i s chapter gives only a b r i e f 

summary of e a r l i e r work together with a more d e t a i l e d discussion of 

recent developments i n the f i e l d . 

The unique e l e c t r o n i c p r o p e r t i e s of f l u o r i n e , which account f o r 

many of the unusual aspects of fluoroacetylene chemistry, were discussed 

i n Chapter I . F l u o rine and p e r f l u o r o a l k y l s u b s t i t u t e n t s increase the 

e l e c t r o p h i l i c i t y of the t r i p l e bond rendering f l u o r i n a t e d acetylenes 

very susceptible to attack by e l e c t r o n r i c h species. l-Fluoroacetylenes 

are unstable and t h i s i s probably because of repulsion between unshared 

e l e c t r o n p a i r s on the f l u o r i n e and electrons i n the t r i p l e bond; t h i s 

explains why they oligomerise and polymerise so r e a d i l y . Their i n s t a b i l i t y 

accounts f o r the f a c t that very l i t t l e work on these systems has been 

published. B i s p e r f l u o r o a l k y l acetylenes are comparatively stable because 

the f l u o r i n e lone p a i r s are f u r t h e r removed from the TT system. Largely 

because of i t s commercial a v a i l a b i l i t y , hexafluorobut-2-yne has been 

more ex t e n s i v e l y studied than other perfluoroacetylenes. 

The reactions of fluoroacetylenes can be divided i n t o f i v e basic 

types: 
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1) Oligomerisation and polyTnerisation 

2) Free r a d i c a l additions 

3) N u c l e o p h i l i c additions 

4) Cycloadditions 

5) Reactions w i t h organometallic compounds 

A large amount of work has been reported concerning the use of 

f l u o r i n a t e d acetylenes as ligands i n organometallic chemistry but no 

attempt w i l l be made to discuss t h i s p a r t i c u l a r area as i t l i e s outside 

the scope of t h i s t hesis and has been reviewed elsewhere ."̂  3 

I I . B • Oligomerisation and Polymerisation 

Mono-^^ and d i f l u o r o a c e t y l e n e s ^ ^ polymerise spontaneously at 

room temperature; i n a d d i t i o n monofluoroacetylene t r i m e r i s e s slowly 

to give 1,2,A-trifluorobenzene. 

F 
3F-C=C-H 

H 

F 
H 
H 

polymer 

Tetrafluoropropyne i s stable at 25°/10 cm Hg f o r at least one 

month but slowly polymerises under autogenous pressure at 18°.2'*»25 

Hexafluorobut-2-yne i s much more s t a b l e , a temperature of 275° 

being necessary to cause t r i m e r i s a t i o n . T h e product of t h i s thermal 

r e a c t i o n was o r i g i n a l l y believed Co be a tetramer and was assigned the 

t r i c y c l i c s t r u c t u r e (2).''-' Further examination led to the i n c o r r e c t 

assignment of the s t r u c t u r e as the eye 1ooctatetraene ( 2 ) - ^ ^ The compound 

was f i n a l l y i d e n t i f i e d as the trimer hexakistrifluoromethylbenzene (4^) .'•'•»'*̂  

Some tetramer i s also claimed to be formed.'*^ 
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CF3 CF3CF3 CFa 

CF3 CF3CF3 CF3 

(2) 

CF3 
CF3 

CFq 

CF3 

CF3 

CF3 
CF3 CF3 

(3) 

3 CF3CECCF3 

(1) 

a) 275-285° 14 hr. 

b) 375° 60 hr. 

CF, 
CFo ̂  ^ C F : 

CF3 

(4) 

14% [44] 

68% [47] 

The thermal t r i m e r i s a t i o n o f hexafluorobut-2-yne i s catalysed by 

iodine,'*'* trifluoroiodomethane,'*'* and b i s a c r y l o n i t r i l e - n i c k e l . ' * ^ 

S u r p r i s i n g l y , octafluoropent-2-yne does not give a t r i m e r on h e a t i n g , 

even i n the presence of iodine.^*' 

Hexaf luorobut-2-yne^^» ̂ 2 ^^d oc t a f luoropent-2-yne3-7 both polymerise 

on i r r a d i a t i o n w i t h high energy p a r t i c l e s from a ̂ '̂ Co source. T r i f l u o r o -

methyl h y p o f l u o r i t e causes hexafluorobut-2-yne to polymerise under very 

m i l d c o n d i t i o n s but more conventional f r e e r a d i c a l i n i t i a t o r s such as 

persulphates and peroxides are i n e f f e c t i v e . ^ ^ Several t r a n s i t i o n metal 

complexes have been reported t o i n i t i a t e the polymerisation of hexafluoro-

but-2-yne,'*^ as has a mixture of n i t r o s y l hexafluoroarsenate and boron 

t r i f l u o r i d e i n the presence of u.v. r a d i a t i o n ^ ^ but the mechanism of 

these r e a c t i o n s i s not c l e a r . C e r t a i n types of nucleophiles cause 

hexafluorobut-2-yne to polymerise under m i l d conditions v i a an anionic 

mechanism which can be represented by the f o l l o w i n g general equation. 
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CF3 _ 
C F 3 ^ _ ^ C.Fg CF3 ;:C=C nC.Fe 

CF3CECCF3 - C=C »• C=C CF3 >• polymer 
Nu'^ .""CF3 Nu"^ ^ C F 3 • 

Nu' 
(or Nu:) 

Nu" = F" 89-92, c^FsS" 

Nu: = (CH3)3N, (C6H5)3P 

These reactions w i l l be discussed more thoroughly i n the section 

devoted to n u c l e o p h i l i c additions to fluoroacetylenes. 

I I . C Free Radical Additions 

Chlorine and bromine add r e a d i l y to hexafluorobut-2-yne on u.v. 

i r r a d i a t i o n ^ whereas the a d d i t i o n of iodine requires heat^^ but no 

i n f o r m a t i o n about the isomer d i s t r i b u t i o n s of the r e s u l t i n g 2,'i-dihalogeno-

but-2-enes was given. Chlorine reacts i n the presence of cupric c h l o r i d e 

i n DMF to give the trans a d d i t i o n product together w i t h a small amount 

of a compound which i s probably the hydrogen chloride adduct.'*^ 

The a d d i t i o n of hydrogen halides i s catalysed by Lewis acids^^ 

and appears to proceed by e l e c t r o p h i l i c a t t a c k . Hydrogen bromide, however, 

also adds under the influence of u.v. i r r a d i a t i o n . Trifluoroiodomethane 

adds across the t r i p l e bond of hexafluorobut-2-yne at 240° to give the 

corresponding v i n y l iodide (_5) and the reaction goes f u r t h e r at 350° 

using a 2:1 excess of C F 3 I to give perfluoro-(2,3-dimethylbut-2-ene) {b) . 

240° 
CF3CHCCF3 + C F 3 I ' (CF3)2C=CICF3 

(5) I 
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350° CF3 .CFg 
CF3CHCCF3 + 2CF3I »• ^C=C + I2 

5 days CFg^ ^CFs 

(6) 

Two mechanisms have been proposed f o r the a d d i t i o n o f the second molecule 

of t r i f l u o r o m e t h y l i o d i d e i n v o l v i n g a t t a c k by CF3 at e i t h e r end of the 

double bond i n ( 5 ) . 

CF3 /CF3 CF3 CF3 -I. CF3 ^CF3 
C=C ^ ^C-C(CF^)2l ^ ^C=C 

CF3 I CF3 CF3 ^CF3 

(5) (6) 

CF3 

(CF3)3C-C*ICF3 (CF3) 2C-C-CF3 
CF3 

CF3I ^ - - ^ 

(CF3)3C-CI2CF3 ^ 

Further examples of simple r a d i c a l a d d i t i o n s to hexafluorobut-2-yne 

are summarised i n Table I I . 1 . However, several f r e e r a d i c a l reactions 

have been reported which gave r a t h e r more complicated products. The 

simple adducts ( 7 ) , (8) and (9) are not i s o l a t e d from thermal reactions 

of hexafluorobut-2-yne w i t h t r i f l u o r o m e t h y l p e n t a f l u o r o s u l p h i d e , 

b i s t r i f l u o r o m e t h y l t r i o x i d e , ^ ^ and b i s t r i f l u o r o m e t h y l n i t r o x i d e . ^ ' * Instead 

products (10) - (17) are formed but the mechanisms of these reactions have 

not been c l e a r l y e s t a b l i s h e d . 
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Table I I . 1 

Free Radical Additions to Hexafluorobut-2-yne 

Reactant 

^F^ 

BrNSF 2 

Conditions 

240-270° 

u.v , 

Products ( y i e l d ) 

CF3CI=C(CF3)R 

(Rp, = iso-C2F7 
Rp n-C3F7 

,CF 3 Ĉ=C 
Br NSF. 

55% 
57% 
67%) 

Reference 

69 

62 

(56% cis 44% trans) 

Hg(SiMe3)2 u.v. CF3^ /SiMe3 

Me 3Si' 
C=C; (95%) 

CF, 
60 

HjS X ray CF3 . CF3 
;)c=c 
H ^SH 

+ 2: 1 adduct 

63 

C2H5OH Y •'ay 

CH3CHOH ^H 

(30% cis 37% trans) 

65 

N2F, 170° CFB^ /CF3 
C=C^ 

NF. NF-
61 

(42% cis 58% trans) (92%) 

+ CF,C—CFCF3 
NF NF2 

( 1%) 

(CH3)3SnSn(CH3)3 u.v, (CH3)3Sn. ^ C F o 
^;=cf' 

CF. Sn(CH3)3 
68 

mainly trans 
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Table I I . 1 (continued) 

(CF3)2AsAs(CF3) 
u.v, 

(CF3)2As. CF3 
r =r 

CF3 ^As(CF3)2 
68 

raainlv zvxns 

(CH3 )2AsAs(CH3)2 
-20' 

(CH3)2As CF3 
C=C 

C F 3 ' ^ ^ A s ( C H 3 ) 2 
67 

mainly trans 

(CeH5)2PP(C5H5 )2 
130° 

(C6H5)2Px , /CF3 
c=c 

C F . ^ ^ P ( C e H 5 ) 2 
54 

(CgHs)(CH3)AsAs(CH3)(C.H5) 
20° 

(GpHc)(CH3)As. . C F -
c=c 

CF3^ N\s(CH3)(CeH5) 

70 
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CF3SF5 
525' 

flow system 

CF,^ CF, 
' ^C=C ' 

CF-,C = C — C — C — C F , + CF,C— C — C 
- I I I I ^ 
F CF- CFo CF-, 

CF: 

(10) 

CF, CF3 CF3 CF3 

(11) 

CF 3OOOCF 3 

65° ^ 
I h r . 

C=C 
CF30^ ^OOCF: 

(8) 

CF->C-C(OCF.)'. 
0 CFv 

(12) 

CF 
CF3C-C-OCF3 

0 OOCF 

(13) 

3 

polyme r 

(CF3)2NO 

85° 
48hr. 

CF. 

CF-
C=C 

.CF, 

ÔN'CF, 
(9) 

[(CF3),NO]2C(CF-jCCF3 + 
II 
0 

( U ) 

+ CF3COCOCF3 + 

(16) 

[(CF3)2N] [(CF3)2NO]C(CF3)CCF3| 
0 

(15) 

(CF3)2NON(CF3)2 

(17) 

The mechanism' proposed f o r the formation of hexadienes (10) 

and (11) involves the i n i t i a l d i m e r i s a t i o n of hexafluorobut-2-yne to 

t e t r a k i s t r i f l u o r o m e t h y l cyclobutadiene (18) , which i s then attacked by 

CF3 and F' r a d i c a l s generated from .CF3SF5. 
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2 CFjC^CCFj 
CF, CF-. 

CF3 CF̂ , 
'(18) 

CF. + F 

2CF^ 

CF 3C :CCF 
CF3 CF3 CF3 

(10) 

CF 3C = C — C = CCF -> 
CF CF3 CF3 CF3 

(11) 

However, i n view of the complexity of the products and the low y i e l d s 

of (10) and (11) which were obtained i n t h i s r e a c t i o n , the f o l l o w i n g 

mechanism, which does not c a l l f o r the intermediacy of the high energy 

dimer ( 1 8 ) , seems most appropriate. 

CF3CE;CCF3 -t- F' 
CF-

'^c=c-
CF-

C,F. CF. CF., 
I ' 

'c=c-c=c 
CF3 CF3 

CF3 

(10) 

etc. 

CF3CECCF3 -H CFj 
CF, 

CF 
C=C' 

CF, 

C,F, CF-

CF-/ 
Ĉ=C-C=C- >• etc. 

I \ 
CF. CF, 

CF; 

(11) 

The rea c t i o n w i t h b i s t r i f l u o r o m e t h y l t r i o x i d e i s believed to 

proceed v i a the simple adduct (8) which reacts with CF30' and CF300' 

r a d i c a l s to give (12) and (13) r e s p e c t i v e l y . 
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0 3 
CF3000CF- CF,0- + CF,00-

65° CF,0 
CF3CSCCF3 + CF3OOOCF3 

CF^ • ^OOCFt 

(8) 

(8) + CF3O 

(8) + CF300-—' 

CF, CF, I • I 
(CF ,0) vC C-̂ -̂ -CF • 

CF, CF, 
i I ' 

.(CF30)2C C=0 + CF3O' 
(12 ) 

CF, CF, CF, CF3 I - I ' I I CF,0-C C-rO-OrCF, vCF,OC C=0 I • W W - - I 
CF,00 CF3OO 

(13) 

CF30' 

Of the several mechanisms proposed for the reaction with 

b i s t r i f l u o r o m e t h y l n i t r o x i d e , that shown below i s the most probable. 

2 (CF3)2N0 + CF,C:CCF3 (CF,)2N0C(CF3)=C(CF3)0N(CF,)^ 

heat 

(CF3)2NO 
(14) 

' (CF,)^NOC(CF,)=C 

(CF,),NOC(CF,)-C 

CF,)oN 
CF,C-CCF, 

-11 II -
0 0 

(16) 

+ (CF3)2N. 

(CF3)2NO 

( C F 3 ) 2 N O N ( C F 3 ) 2 

(17) 

(CF3)2N. 



I I . D N u c l e o p h i l i c Additions 

I I . D . l I n t r o d u c t i o n 

Hexafluorobut-2-yne reacts w i t h a wide range of nucleophiles of 

the type R EH, where E i s an element from groups IV, V or VI of the 

p e r i o d i c t a b l e , to give alkenes which are generally r e s i s t a n t to 

f u r t h e r a d d i t i o n . However, a second molecule of the nucleophile w i l l 

sometimes add under f o r c i n g c o n d i t i o n s . 

R EH + CFoC^CCF, R EC(CF,)=CHCF3 

Info r m a t i o n on the stereochemistry of these additions i s quite 

l i m i t e d but most of the ava i l a b l e data point towards a general tendency 

to form trcffu-- a d d i t i o n products. A few examples of n u c l e o p h i l i c 

a d d i t i o n s g i v i n g c y c l i c ])roducCs liave a l K o been reported. 

. I I . D. 2 0 Nucloophiles 

Methanol and ethanol a d d i t i o n requires a basic c a t a l y s t and 2:1 

adducts are obtained at elevated temperatures.-^ 

RONa ROH 70° 
CF3C = CCF3 + ROH • CF,C(OR)=CHCF3 — • CF3C(0R)2-CH2CF3 

30° ' ^ RO.Na 

The base catalysed r e a c t i o n of methanol w i t h hexafluorobut-2-yne (_1̂) 

and t r i f 1 uoropropyne (19) gave predominantly tr-anr, a d d i t i o n products.''' 
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CH 3OH + B CH-̂ 0 + BH 

RjCrCRo + CH,0 
•R; 

' '"c=c~ 
CH30^ ""R, 

BH R, 
^ -"0=0^ 

CHjO-^ '̂ R2 

- 97% 

(_1_) Rj = R2 = CF3 

(19) R, = H, R, = CF, 

Dihydric alcohols add to hexafluorobut-2-yne i n base catalysed 

reactions to give both c y c l i c and ac y c l i c products. •̂^ 

CF3CECCF3 + HOCH2CH2OH 

CF 3 
CF,CH=CCF, I 

OCHjCH2OH 
+ CF3CH2C 

/ \ 0 0 
\, / 
CH 2 CH 2 

CF3CHCCF3 + HOCH2CH2CH2OH ' CF,CH=CF3 

OCH2CH2CH2OH 

A d d i t i o n of a l l y l alcohol i s accompanied by a Claisen rearrangement.^-^ 

CF3C5CCF3 + H0CH2CH=CH; 
NaOH 

50° 
CF3C=CHCF3 

0CH2CH=CH2 
CF,G-CHCF-, 

'II I ^ 
0 CH2CH=CH2 

Acetic acid adds to hexafluorobut-2-yne to give an enol acetate 

and a d i a c e t a t e , together w i t h s u b s t a n t i a l q u a n t i t i e s of decomposition 

products. ̂'̂  
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60° 
CF3CECCF3 + CH3COOH ^ CF3CH=C(CF3)OCOCH3 + CF3COCH3 

CH3C00Na 
(CH3CO)20 40% 34% 

+ some CF3CH2C(CF3)(OCOCH3)2 

Hexafluorobut-2-yne reacts w i t h water i n the presence of 

t r i e t h y l a m i n e but many products are formedi** Hexafluorobutan-2-one, 

the expected h y d r o l y s i s product, i s produced i n only 5% y i e l d . The 

main product i s the ether ( 2 0 ) , formed by attack of the enol (21) on 

a f u r t h e r molecule of butyne. The formation of the other products 

(carbon d i o x i d e , N,N~dimethylaminohexafluorobut-2-ene and trans-2ii-

heptafluorobut-2-ene) suggests that breakdown of both the butyne and 

the amine c a t a l y s t occurs. 

A CF3 _ H2O CF3 ^H H2O CF3 ^H 
CF3C5CCF3 y *' /̂ C=C 

He ^CF3 Me3N-t- ^ C Fj HO ^CFs 

me 2 (.21) 

C F 3 ^ ^H 
C=C 

H^ ^CFg CF3CCH2CF3 

CF3 CF3 

(20) 31% 5% 

Hydration of hexafluorobut-2-yne has been achieved i n d i r e c t l y 

by h y d r o l y s i s of the 1:1 acet i c acid^** and 1:2 al c o h o l ^ ^ adducts. 
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CH3COOH 
C F 3 C = C C F 3 > 

CH3C00Na 
ace t i c 
anhydride, 60 ° 

ROM, RONa 
R = Me,Et 

CF3-CH=C(CF3)OCOCH3 

nBuOH 
HzSOt, 

C F 3 C H 2 C C F 3 

CFq 

RO 

ROH 
'C=CHCF3 

CF 3 \ 
RO — C-CH2CF3 
RO^ 

HjSO^ 

II.D.3 N Nucleophiles 

Diethylamine adds to hexafluorobut-2-yne to give a 1:1 adduct 

which i s 100% trans, ̂ "^ whereas dimethylamine gives a 6:1 mixture of 

trans and cis isomers as the i n i t i a l r e a c t i o n product.^5 Oxygen apparently 

catalyses the i s o m e r i s a t i o n of t h i s m ixture, since leaving i t exposed to 

a i r a t 20° r e s u l t s i n an increase i n the cis isomer content. 

(C2H5)2NH + C F 3 C E C C F 3 

• (1) 

C F 3 ^ /H 
C=C 

(C2H5)2N' CFc 

100% 

(CH3)2NH + CF3C=CCF3 
CF 3>. ^ « C=C CF- .CF. 

Ĉ=C 
(CH3)2N'^ ^CFg (CH3)2N'^ 

1 

1.6 

a i r , 12 days 

1 
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Reaction w i t h chlorodimethylamine ̂ '̂  at 85° gave a complex mixture 

of products i n c l u d i n g the expected 1:1 adduct. I n t e r e s t i n g l y , only the 

ci-s isomer was detected and i t i s possible that t h i s reaction involves 

f r e e r a d i c a l a d d i t i o n rather than n u c l e o p h i l i c attack by n i t r o g e n . 

CF3C=CCF3 + (CH3)2NC1 
C F 3 ^ / C F 3 

-> ^C=C 
( C H 3 ) 2 N ^ "^Cl 

CF3 ^ C l 
^C=C 

H' ĈF-

C=C 
F-" ^CF3 

CF, 

(CH3)2N 
^C=G" 

H 

CF, 

+ (CF3)3CC1 

Cyclohexylamine forms a 1:1 adduct of unknown stereochemistry.^^ 

CF3CSCCF3 -̂  
(C2H5)20 -C(CF3)=CHCF3 

The a d d i t i o n of 2 - v i n y l a z i r i d i n e t o hexafluorobut-2-yne at low 

temperature gave the d i v i n y l a z i r i d i n e (_22), which on standing at room 

temperature isomerised to the azepine (23). S i m i l a r l y , the d i v i n y l -

a z i r i d i n e (24.) gave (25) and (26). 

V 
H 

N 
H 

CF. 

Freon 11 
+ CF3CECCF3 > .CF 

(22) 

+ CF3CHCCF3 
l-2hr, 

CF-

(23) 

(24) (25) (26) 
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Another example of the formation of r i n g opened products from 

s t r a i n e d c y c l i c amines i s given below. As might be a n t i c i p a t e d , the 

less s t r a i n e d p y r a z o l i d i n e gives the simple 2:1 adduct. 

C F + 
t̂  6 

CH2CI2 N-NH 

C=CHCF3 [103] 

CuF 4^6 

C H j C N 

,N-H 

H 

THF 

50° 

.CH2CN 

- C(CF3)=CHCF3 
"N 
C(CF3)=CHCF3 

[145] 

T r i e thy1 ammonium azide reacts w i t h hexafluorobut-2-yne to give the 

trans hydrazoic acid adduct (27).^8 

CF3C?CCF3 + ( C 2 H r , ) 3 N l l N3 C=C^ 
^ C F -

(27) 

Ammonia and hydrazine add to hexafluorobut-2-yne'79 j-o give good 

y i e l d s of imines. I n a d d i t i o n , ammonia gives some vinylamine (29) and 

these tautomeric products were shown not to i n t e r c o n v e r t at 25°. 

(C2H5)20 
CF3CHCCF3 + NH3 »• 

0° 

NH 
II 

CF3CCH2CF3 

(28) 

CF 
C=C 

3 NH-

(29) 100% tram 
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CF3CHCCF3 + NHjNHj 
(C2H5)20 

-60' 

II ̂  
CF3C-CH2CF3 

II.D.4 S Nucleophiles 

Hexafluorobut-2-yne has been reacted w i t h t h i o l s i n the presence 

of base^^ but no stereochemical information on the products was given. 

NaOEt 
RSH + CF3C = CCF3 RSC(CF3)=CHCF3 

or MeoN 

R = C2H5, H0C2H^, CuHg, CgHs 

L i t h i u m p e n t a f l u o r o p h e n y l t h i o l a t e reacts w i t h hexafluorobut-2-yne at 

-70° to give (30) and (31) together w i t h a large amount of polymer.^' 

These products are thought to arise from the l i t h i o d e r i v a t i v e (32), 

which probably e x i s t s as an e q u i l i b r i u m mixture of et.g and trans isomers. 

The ois isomer can c y c l i s e by e l i m i n a t i o n of l i t h i u m f l u o r i d e to give 

the benzothiophene ( 3 0 ) . A d d i t i o n of a f u r t h e r acetylene molecule to (32) 

gives r i s e to the diene (31). 

CF3C=CCF3 + CgFsS L i 
CFc L i 

C=C 

CF, 
CF3 ^ H 

CsFsS-"^ ^CF3 

CF3C=CCF3 

CFo 

(32) 

CF3^ /CF3 
^C=C 

L i 

3 / C=C 
C=C CF3 

C e F s S ^ ^ C F j 

(31) 

H20 CF3 •c=c 
.Li 

C=C CF3 
C6F5S ^CF3 

CF3CECCF3 

-LiF 

(30) 

polymer 
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Adducts (33) - (15) were obtained from the re a c t i o n w i t h carbon 

di s u l p h i d e at 100°, ̂ 2 

/ C F 3 
CF3CHCCF0 + CSo ^ X ^ / S C 

I I > = < II 
1 : 3 C S-̂  S C 

CF3 CF3 

(33) 2% 

CF3 CF3 CF3 

II -^0-0—0=0^^ I I 
—s-^ s—c 

CF3 ~^CF3 

(34) 60% 

l j _ 3 / C = C - C = C ^ ^ _ P C = C - C = C ^ 5 _ I I 
C F s ' ^ CF3 

(35) 20% 

The mechanism of t h i s r e a c t i o n i s believed to involve an i n i t i a l 

n u c l e o p h i l i c attack by sulphur to give the z w i t t e r i o n (36), which 

c y c l i s e s producing the carbene (37^). This can e i t h e r dimerise to give 

(33) or react w i t h more hexafluorobut-2-yne to produce (34) and (35). 
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CF, 
CF3CrCCF3 + S=C=S ^ CF3C=C: 

+ 

(36) 

CF 

C F , 

CF: 

~c—s 
i ' - s 

(37) (33) 
CF3CECCF3 

CF: 

C=C C: 

CF-

x2. 

(35) 

>^F3CECCF3 

(34) 

Carbene (37) can also be trapped w i t h reagents other than 

hexafluorobut-2-yne provided t h a t they react more r a p i d l y . Alcohols, 

phenols, acids, a l i p h a t i c aldehydes and ketones, and aromatic aldehydes 

have been used to produce a large number of he t e r o c y c l i c d e r i v a t i v e s . 

e.g. 
CF3CHCCF3 + CS2 + ROH 

100 ° CF3 

C S " ^ "^OR 
CF: 

R = Me, Et No (33) , (34) or (35) formed 

100° CF3 
C F j C r C C F g + CS2 + CH3CCH3 > ^ C S H 

" li 
C S-^ ^ C H ^ C O C I l -i 

C F - , ^ 

0 
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Carbonyl sulphide, however, does not react w i t h hexafluorobut-2-yne 

unless methanol i s present. I t was suggested t h a t a r e v e r s i b l e 

n u c l e o p h i l i c attack occurs, producing z w i t t e r i o n (38) which, i n the 

absence of s u i t a b l e trapping agents, collapses back to s t a r t i n g 

m a t e r i a l s . A carbene analogous to (37) i s not formed from (38), f o r 

t h i s would necessitate n u c l e o p h i l i c attack at the oxygen of the carbonyl 

group. 

^CF, CH3OH H CF3 
CF3C = CCF3 + COS ̂ ==^CF3C=C ' /^'^^^^ 

+ 
c 

CF3 SCOOCH3 

(38) 

However, t h i s mechanism does not explain why (38) does not react f u r t h e r 

w i t h hexafluorobut-2-yne. The f a i l u r e to observe products analogous to 

(33 ) , (34) and (35) i s probably due to the lower n u c l e o p h i l i c i t y of 

carbonyl sulphide compared with carbon disulphide and hence (38) i s not 

the primary intermediate i n t h i s r e a c t i o n . An a l t e r n a t i v e mechanism, 

i n v o l v i n g the i n i t i a l formation of an adduct between the alcohol and 

carbonyl sulphide, seems more l i k e l y . 

C,Fe CF3 H 
CH3OH + COS . CHgO-C;^ >• J>^=^C^ 

\(-
H S 

CH30CS'^ XF3 
. 1 ! 

0 

Reaction of hexafluorobut-2-yne w i t h sulphur and carbon disulphide 

at 200° gave the c y c l i c t r i t h i o c a r b o n a t e (39) along w i t h some (34) .^^ 
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200° CF3 

CF-

^C S. 

,C S' 

(39) 

:C=S + (34) 

The formation of b i s t r i f l u o r o m e t h y l thiophenes from photolyses 

of 1 , 2 , 3 - t h i a d i a z o l e s (40) i n the presence of hexafluorobut-2-yne 

probably involves a n u c l e o p h i l i c attack by the proposed t h i i r e n e 

intermediates (42^).8'+ D i r e c t a d d i t i o n of the d i r a d i c a l (41) to the 

acetylene can be rule d out because (40b) would give the 4-raethyl thiophene 

(43b) , whereas, i n f a c t , both (40b) and (40c) give the same product (43c). 

This i s r a t i o u j l i s e d by assuming t l i a t t h e acetylene adds to (42) across the 

less crowded side of the molecule. 

Ri 
N 
11 
.N 

hv 

R2 s 

(40) a Rj = R2 = H (41> 

b Ri = CH3, R2 = H 

c Rj = H, R2 = CH3 X ^'.I't 
CF-

~CF. 

> 7 

(43) a Ri 

b Ri 

(42) a Rj = R2 = H 

b H c Rj = H, 
R2 = CH3 

R2 = H 

CH3, R2 = H 

c Ri = H, R2 = CH3 

(42) 

CF 

i 
CF 

- C ' II 
-C 

CF. 

CF 

.CF: 

(43) a R = H 

c R = CH3 
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II.D.5 C Nucleophiles 

Reaction of isocyanides w i t h hexafluorobut-2-yne i n i n e r t solvents 

gave rat h e r unusual products.'^ Instead of the expected 1:1 adducts ( 4 4 ) , 

the products (45) were found to arise from r e a c t i o n of two molecules of 

butyne w i t h one of the isocyanide. 

R-N=C: + CF3C5CCF3 
CH2CI2 

II C 
.R 

CF CF-

R-N=C: + 2CF3C5CCF3 
CH2CI2 

(44) 

CF-
RN=C=C-C^ 

CF-

(45) 

R = ;-Bu 

When the r e a c t i o n was c a r r i e d out i n ethanol, two d i f f e r e n t 1:1:1 

adducts (46) and (47) were i s o l a t e d . 

CF' 

RN 
^OEt 

(46) 

CF3. /^CF3 
> = < 

RN ^OEt 

(47) 

The mechanism proposed to account f o r these products involved the 

i n i t i a l n u c l e o p h i l i c attack by the carbon of the isocyanide group on the 

ace t y l e n i c t r i p l e bond to give a 1,3.dipolar adduct (48). 
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R - N = C : • R - N z C : 
C . F g C F , C F : CF: CF: 

:c=c 

R - N 
c+ 

R-N 

(48) 

The intermediate (48) can then react e i t h e r as a.carbene or as a 

carbanion to give the 2:1 adduct (45). 

CF3^ . CF3 

RN 

CF3C=CCF3 

CF- .CF : 

RN I 
C F , 

(48) 

CF3. /CF3 
-0=0 

RN 
c+ 

CF3C=CCF3 

CF: CFc 
^ C = C f - ^ 

C / ^ ^ C = C 
RN C F , ^ CF3 

c ^ ^c 

RN ^CF3 

(45) 

I n ethanol the intermediate (48) i s f i r s t protonated and then ethoxide 

ion adds i n one of two p o s i t i o n s to give the ketenimine (46) and the 

imino ester (47). 
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(48) + H 

RN 

CF3 ./CF3 

^ C - ^ H 

EtO 

(46) 

CF 

RN 

3 \ 

EtO 

(47) 

Enamines (49) and (50) react w i t h hexafluorobut-2-yne to give products 

r e s u l t i n g from n u c l e o p h i l i c attack by the 6 carbon. 

N(CH3)2 
H 

Clf2 ^ ^ C ^ I 
R 

+ CF3C~CCF3 

(CH3)2N CF3 

CHo ^ C 
I I R R CF. 

(49) R = -(CH.) 3-

(50) R = CH3 

II.D.6 A d d i t i o n of M e t a l l o i d a l and Metal Hydrides 

A wide range of compounds containing M-H bonds, where M i s an 

element from Croups IV and V or a t r a n s i t i o n metal, have been added to 

hexafluorobut-2-yne under various c o n d i t i o n s . A summary of some of these 

re a c t i o n s i s given i n Table I I . 2 . 

As can be seen the adducts have a predominantly trans c o n f i g u r a t i o n 

i n d i c a t i n g t h a t they are formed by antt a d d i t i o n of the hydride. However, 

i t seems unwise to speculate on the mechanism of hydride a d d i t i o n on 

the basis of ois-trans iosmer r a t i o s i n the product, p a r t i c u l a r l y as 



-39-

Table I I . 2 

Reactions of Hydrides w i t h Hexafluorobut-2-yne 

Reactant Trms Isomer% Conditions Ref, 

(CH3) 3SiH 84-92 Dark reac t i o n 235° 87 

loo'' u.v. i r r a d i a t i o n 87 

(C2H5) 3GeH 92 u.v. i r r a d i a t i o n 87 

(CH3) 3SnH 100 Dark r e a c t i o n T $ 20° 87 

(C2H5) sSnH 98 Dark reaction T ̂ ; 20° 87 

(C4H9) jSnHj a Dark reaction T .< 20° 87 

(C4H9) 3SnH 100 Dark re a c t i o n T 20° 87 

(CH 3) 2NH 86 Dark reaction T 20° 75 

(CH3) 2PH 100 Dark re a c t i o n T 20° 54 

(C6H5)2PH 80 Dark re a c t i o n T 20° 54,75 

(CF3)2PH 80 u.v. i r r a d i a t i o n 54 

(CH3)2AsH 86 Dark re a c t i o n T 20° 75 

(CH3)(C6H5)AsH 92 Dark re a c t i o n T 20° 75 

(CF3)2AsH 100 Dark reaction 210° 75 

(CO) jMnH 100 Dark r e a c t i on T < 20° 88 

(CO)^ReH 100 Dark reaction T 20° 89 

[(C2H5) 3P]2PtClH 0 M i l d heating 90 

a gives (C4H9)2Sn(C(CF3)=CHCF3)2 

b also gives 2:1 adduct (CH3)3SiCH(CF3)-CH(CF3)Si(CH3) 3 
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h y d r i d e s have been shown t o c a t a l y s e ais-trans i s o m e r i s a t i o n i n 

c e r t a i n c a s e s . C u l l e n has suggested t h a t the r e a c t i o n s o f amines, 

p h o s p h i n e s , a r s i n e s and t i n h y d r i d e s proceed by n u c l e o p h i l i c a t t a c k , the 

hydrogen atom on the t i n b e i n g the n u c l e o p h i l e i n the l a t t e r case. He 

made t h i s assumption on the b a s i s o f o b s e r v a t i o n s t h a t the r a t e s o f 

r e a c t i o n s o f phosphines and a r s i n e s decrease as more e l e c t r o n e g a t i v e groups 

are a t t a c h e d t o the c e n t r a l atom and t h a t the r a t e s o f r e a c t i o n w i t h 

h e x a f l u o r o b u t - 2 - y n e are g e n e r a l l y f a s t e r than w i t h the l e s s e l e c t r o p h i l i c 

t r i f l u o r o p r o p y n e . I t i s p o s s i b l e , however, t h a t the a d d i t i o n r e a c t i o n s o f 

some o f these h y d r i d e s ( e . g . the s i l a n e s and germanes) are f r e e r a d i c a l 

p r o c e s s e s . 

I I . D . 7 R e a c t i o n s w i t h F l u o r i d e I o n 

H e x a f l u o r o b u t - 2 - y n e p o l y m e r i s e s i n the presence o f f l u o r i d e i o n 

g e n e r a t e d from caesium f l u o r i d e i n v a r i o u s a p r o t i c s o l v e n t s . ^ 2 95 

The p o l y m e r i s a t i o n appears t o go v i a n u c l e o p h i l i c a t t a c k o f f l u o r i d e 

i o n on the t r i p l e bond t o g i v e the h e p t a f l u o r o b u t e n i d e a n i o n (51). T h i s 

t h e n r e a c t s w i t h f u r t h e r m olecules o f a c e t y l e n e t o g i v e a s e r i e s o f 

a n i o n s , each o f which can a b s t r a c t a p r o t o n f r o m the s o l v e n t . A s e r i e s 

o f o l i g o m e r s o f the type H-(C4F5)^-F i s thus produced anli t he dimer (53) 

and t r i m e r (54) have been i s o l a t e d . T h e p r o p e r t i e s o f the polymer are 

d i s c u s s e d i n Chapter V. 
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CsF 
CF3CECCF3 

sulpholan 

CF3. 

(51) 

CuFg 

Cl3 

solvent 

3 

CF: 
Ĉ=C' 

:c=a 

XF-. 
X T 

CF3 
solvent 

F CF3 

(52) 

CF: 
^C=C' 

:c=c: 
XF: 

CF: 
CF 

CF- 3 \ 

c=c: 
:c=c' 

XF'. 

(55) 

CuFg 

:c=c 

XF-
XF: 

Ci^Fg etc. 

polymer 

(53) 

CFc 
CF, 

solvent CF3 ^C=C 

F ^CF3 

(54) 

CF: 

I n the presence of s u i t a b l e e l e c t r o p h i l i c reagents the intermediate 

carbanions can be trapped. Thus when hexafluorobut-2-yne i s added to 

p e r f l u o r o b e n z o n i t r i l e and caesium f l u o r i d e i n DMF, products (56)-(59) 

are obtained along w i t h some polymer.^3 Under the reaction conditions 

(56) i s i n e q u i l i b r i u m w i t h (57) (5:1) and (58) i s i n e q u i l i b r i u m w i t h 

(59) ( 5 : 1 ) . 
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CF3C=CCF3 + F 

CN 

F - C ^ I 
CF3 

C^ 

(57) 

DMF CF 

F CF3 

(51) 

CN 

C.Fg 

CN 

CF: 

CFo—C 

CF3 _ nC^Fg 
CF3^ > = C ^ -

> = < CF3 
F^ ^CF3 

(55) 
CN 

•polymer 

CN CN 

/CF3 ,CF: 

CF3—c CF3 —C 
X X 

C F 3 — C ^ ^ C F s F - C ^ ^CF3 

CF: 

(56) (58) (59) 

S i m i l a r l y using p e n t a f l u o r o p y r i d i n e as a trapping agent products 

(60)-(62) were produced. 

CF3CHCCF3 + F 
"N' 

CF: 
-c=c: 

CsF 

sulpholan 

-CF3 
\ 1 

F 
"N' 
(60)10% 

ais and trans 

[ C ( C F 3 ) = C ( C F 3 ) ] ^ - F | 

F 

(61) n=2 18% 
(62) n=3 10% 

Trapping agents more susceptible to n u c l e o p h i l i c a t t a c k , such as 

t e t r a f l u o r o p y r i d a z i n e give b e t t e r y i e l d s of s u b s t i t u t i o n products and 

less polymer.^2.95 However, i n t h i s case the 2:1 adduct does not have 

a s t r u c t u r e analogous to (58) or (61) but has been shown to be a 

diazaindene. 
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CF3C=CCF3 + 

C(CF3)=CFCF3 

CsF, 8hr 100° 

su Ipholan 

(63) 

ois and traric 

CF3 

(64) 

Of the several possible ways i n which (64) may be formed, the f o l l o w i n g 

seems most probable. 

CF3-C=C 
XF-

F 
^N 

(63) 

+ F 

(64) 

CF3-C-CF2CF3 

C.Fg 

CF3—C 

A s i m i l a r r e a c t i o n w i t h t e t r a f l u o r o p y r i m i d i n e at 20° gave a high y i e l d 

of a mixture of cis and trans isomers of the 1:1 adduct (65).^^ At 

100° some d i s u b s t i t u t e d compound was also i s o l a t e d . 
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CF3C=CCF3 + 

C(CF3)=CFCF3 

"N" 
(65)ais I trans 7%/63% 

sulpholan 

31% 

M i l l e r has reported an i n t e r e s t i n g f l u o r i d e ion promoted 

t e l o m e r i s a t i o n of hexafluorobut-2-yne w i t h the bromobutenes (66) and 

(67) Telomers of the type F-f CCF3=CCF3^^ Br, where 2 n 6, are 

obtained together w i t h some f u l l y f l u o r i n a t e d products. The amounts of 

the various telomers produced are dependent on the r a t i o of butyne 

to bromobutene used. 

When (67) i s used, the i n i t i a l step i s the formation of the 

monobromo compound (66). 

CH3CN 
CF3CBr=CBrCF3 + CsF <• CF3CF=CBrCF3 + CsBr 

(67) 

CF3CF=CBrCF3 + (n-1)CF3C5CCF3 

(66) 
CsF 
CH3CN 

F - f CCFci=CCFo) Br 
o J n 

(1) 

(2) 

The t e l o m e r i s a t i o n , summarised by equation ( 2 ) , i s believed to take 

place i n several steps analogous to the i n i t i a t i o n , propagation and 

te r m i n a t i o n steps of a conventional free r a d i c a l r e a c t i o n . Reaction 

of hexafluorobut-2-yne w i t h caesium f l u o r i d e gives the anion ( 5 1 ) , 
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which reacts f u r t h e r to give a series of anions of progressively 

higher molecular weight. These can react w i t h (66) by n u c l e o p h i l i c 

attack on bromine, g i v i n g the telomers (68) and regenerating (_51) . 

A slow v i n y l i c s u b s t i t u t i o n by f l u o r i d e ion gives small y i e l d s of 

f u l l y f l u o r i n a t e d polyenes (69). 

CF 3. 
CF3C = CCF3 + CsF , 

Cŝ  CF3 

(1) (51) 

(5_1) + (n-l)CF3C = CCF3 ^ F-(CCF3=CCF3) ~ Cs"̂  (4) 

(67) 

(67_) + CF3CF=CBrCF3 F-(CCF3=CCF3h Br + ( M ) (5) 

(66) (68) 

(68) + CsF ^ F-(CCF3=CCF3)^F + CsBr (6) 

(69) 

Table I I . 3 shows the y i e l d s of the various telomers obtained i n 

two experiments using d i f f e r e n t r a t i o s of butyne (1_) to butene (66). 

I t i s i n t e r e s t i n g t h a t a l l the double bonds i n the products (68) 

and (69) have trcois c o n f i g u r a t i o n s . This i s consistent w i t h exclusive 

anti a d d i t i o n of caesium f l u o r i d e and of the intermediate alkylcaesiums 

to hexafluorobut-2-yne and w i t h r e t e n t i o n of c o n f i g u r a t i o n during bromine 

t r a n s f e r . 

This r e a c t i o n i s of great i n t e r e s t as i t i s the basis f o r the 

synthesis of a range of novel p e r f l u o r i n a t e d compounds. For example, 

when the hexadiene ( 6 8 ) , n=2, i s heated at 100-150° i t gives the 

cyclobutene (70); treatment w i t h m e t h y l l i t h i u m generates t e t r a k i s -
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Table I I . 3 

Yields of Products Obtained by Anionic Telomerisation of Hexafluorobut-2-yne57 

mmol of (61) mmol of (66) Conditions Products 

176 208 30° 2hr. (69) n=2 5% 

(68) n=2 87% 

(68) n=3 3% 

15 5.3 30° 3.5hr. (68) n=2 7% 

n=3 23% 

(68) n=4 38% 

(68) n=5 20% 

(68) n=6 11% 

t r i f l u o r o m e t h y l c y c l o b u t a d i e n e ( J ^ ) , which i s the p r e c u r s o r of compounds 

(72)-(74).98 

CF3 
100-150° 

trans,trans CF3CF=CCF3CCF3=CBrCF3. - Br 
F -
CF 

CF. 

^CF3 

(70) 

CH3Li 
(70) . 

CF. 

CF. 

CF. 

CF' 

(CF3) 3>'8 

(18) 

300' 

(74). 

(CF3) 3̂ 8 

(71) 

hv 

( C F 3 ) ; 

17-
- ( C F 3 ) 8 

(73) (72) 
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S i l v e r f l u o r i d e , u n l i k e caesium f l u o r i d e , does not cause 

hexafluorobut-2-yne to polymerise but instead gives a stable trans 

adduct (75) , 

CH3CN CF3 F 
AgF + CF3CECCF3 ^ 

25° 36hr. Ag^ CF3 

(75) 

I n the presence of metal f l u o r i d e s , hexafluorobut-2-yne reacts 

w i t h two molecules of hexafluoroacetone to give a c y c l i c product (76), 

which slowly converts to the- enone (7_7).lf^0 I t i s not c e r t a i n whether 

the mechanism involves i n i t i a l attack on the acetylene by f l u o r i d e or 

by p e r f l u o r o i s o p r o p o x i d e . 

(CF 3)30=0 -t- MF , (CF 3)2CFO M"*" 

_ ^ CF3 M"̂  (CF3)200 CF3 C—0 M'̂  
X M CF3C=CCF3 "^C=C~ . /̂='̂C 

X"^ CF3 X'̂  CF3 

(CF3)200 

\ _ , / - C F 3 ^ V < , 3 " ^ 

CF< X 

(76) 

/CF3 

CF3- JC-CF3 
0 

(77) 

M = Cs or Ag X = 1' or (CV ^) .,C.\H) 



s i m i l a r l y s i l v e r p e r f l u o r o a l k o x i d e s react w i t h hexafluorobut-2-yne 

i n the presence of a bromine t r a n s f e r agent to give the corresponding 

2-bromo-3-(perfluoroalkoxy)-but-2-ene.^^^ 

30° CF3 . B r 
R OAg + CF3CECCF3 > '^C=C-f 

CCl2BrCCl2Br R̂ O CF3 

= CF3-, CF3CF2-, (CF3),FC-, (CF3)3C-, C^Fs, CF3C^ 

Several miscellaneous f l u o r i d e ion induced reactions of hexafluoro-

but-2-yne are summarised i n Table 11,4. No d e t a i l s of mechanisms or 

stereochemistry of the products were given. 
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Table I I . 4 

M i s c e l l a n e o u s Caesium F l u o r i d e C a t a l y s e d Reactions o f Hexaf l u o r o b u t - 2 - y n e 

R e a c t a n t s C o n d i t i o n s P r o d u c t s Reference 

CFjHgOOCCF; 

SOF2 + SFt, 80° 24 h r s , 

Hg[C(CF3)=CFCF3]2 

C F 3 - C - S \ c / C F 3 
C F 3 - C — ^ C 2 F 5 

101 

102 

CF3N=SF2 70° 10 hr.s 

+ CFsCFSOS-CFCoFr 
I i l 1 CF^ 0 CF, 

C,Fc,CF-S-̂  ̂ S-CFCoFr - ' I I I I I I ' ' 
CFoC N CF3 

102 

+ CF3N=S-C=CFCF3 
F CF, 

C2F5N=SF2 124° 54 h r s . 

C3F7N=SF2 150° 72 h r s , 

C2F5N=S-C=CFCF3 
F CF3 

C3F7N=S-C=CFCF3 3 7 I I 
F CF3 

102 

102 



-50-

I I . E Cycloadditions 

l I . E . l 1,1 Cycloadditions 

Difluorocarbene, generated by p y r o l y s i s of (CF3)3PF9, adds to 

hexaf luorobut-2-yne i"^"^ i n the gas phase to give a cyclopropene 

d e r i v a t i v e ; f u r t h e r a d d i t i o n gives a bicyclobutene together w i t h some 

perfluoro-(2,3-dirae thylbuta-1,3-diene). 

CF3C HCCF3 + :CF2 7i 

U.K. 2 1,2 Cycloadditions 

:CF. 

100° 
CF • 

r-> CF. -CF. 
CF. 

300° 

F,C=C C=CF9 
2 2 

CF3 CF3 

CF 3 \ 

350° 

XF. 

(78) 

Hexafluorobut-2-yne has been reported to undergo [2-t-2] cycloaddition 

w i t h a v a r i e t y of alkenes and allenes to give 1,2 b i s t r i f l u o r o m e t h y l 

cyclobutenes. For example, t e t r a f l u o r o e t h y l e n e gives a small y i e l d of 

^^gyiou although no s i m i l a r r e a c t i o n has been detected between ethylene 

and hexafluorobut-2-yne. 
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230° 
CF3C5CCF3 + CF2=CF. 

CF- .CF, 
[104] 

(78) 3% 

250° 
CF3CECCF3 + CH2=CH; no re a c t i o n [105] 

Hexafluorobut-2-yne adds to c e r t a i n allenes g i v i n g cyclobutenes 

w i t h e x o c y c l i c double bonds. With unsyrametrical allenes, a d d i t i o n 

can take place across e i t h e r double bond to give a mixture of products. 

80-85° 
CF3C=CCF2 + CF2=C=CF2 

(1) 

CF2 

[10^ 

CF, CFo 

CH-

CH3 80° _ 
(1) + CH2=C=C^ . ^ 3 

CH3 
CF3' 

^CH2 

CH. 

CH. [107] 

CF3 CF3 CF. 

(1) + 
80' 

XF. 

XIF. 
[108] 

The [2+2] cycloadduct between hexafluorobut-2-yne and di i s o p r o p y l -

carbodiimide i s unstable and rearranges to give the isomeric azetine 

(79).82 
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100° 
(1) + (CH3)2CHN=C=NCH(CH3)2 CF3-C-N-CH(CH3)2 

CF3-C—C=NCH(CH3)2 

CF3-C—N-CH(CH3)2 
CF3-C—CH-N=C(CH3)2 

(79) 

I I . E . 3 1,3 C y c l o a d d i t i o n s 

V a r i o u s 1,3 d i p o l a r species have been added to h e x a f l u o r o b u t - 2 - y n e 

t o g i v e a range of h e t e r o c y c l i c compounds. Diazomethane and 2 , 2 , 2 - t r i -

f l u o r o d i a z o e thane add to g i v e the c o r r e s p o n d i n g p y r a z o l e s . ' 

CFgCzCCFg + CHjNo 

CF3CSCCF3 + CF3CHN2 
-80° 

H-C^^^N-H, 

C= C 
CF,-((. f^-H 

63% 

97% 

S i m i l a r l y , diazocyclopentadienes y i e l d as primary products the 

spiro-pyrazoles (80) but only compound (80a) has been i s o l a t e d . 

Compounds (80b) and (80c) undergo spontaneous 11 ,5 | - s i gmatrop i i : s l ) i f t s 

g i v i n g pyrazolo pyridines (81b) and (81c). A s i m i l a r rearrangement occurs 

f o r (80a) on r e f l u x i n g i n toluene. 
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Rl 
CF 3 

-80' 

CF. 

(80) (81) 

a R j , R2 = an n e l a t e d benzene r i n g Ro, Ru = a n n e l a t e d benzene 

b R j , R2, R3, R14 = '-'6̂ 5 

c R j , R2 = a n n e l a t e d benzene r i n g R3, R̂, = CgH^ 

The same type o f b e h a v i o u r has been observed f o r o t h e r c y c l i c a z i d e s . ^ ' ^ 

CF: 

C C 

CF3 

I I' 

CF-
J 

A few t r i a z o l e s have been prepared form p e r f l u o r o a c e t y l e n e s by 

r e a c t i o n w i t h a r o m a t i c a z i d e s . 

CF3C=CCF3 + CeH5-N=N=N CF: 

C N-/ \ 
CF,-^ N 

I 
C6H5 

[111] 

CF3C=C-C=CCF3 + 2ArN3 

Ar = (CH3)2N-

CF. 

Ar 

C = C-
/ \ 
N N 

[42] 



Aromatic nitrones add to hexaf luorobut-2-yne^ ̂ 2 t:o give oxazolines 

(82) instead of the expected isoxazolines (83). The f o l l o w i n g mechanism 

i s proposed f o r the rearrangement of the simple 1,3 d i p o l a r adducts (83) 

to the products (82). 

CH=N-C5H5 

+ CF3C;CCF3 

CH—N-CKH 

CClu 

Room temp. 
CH—N-CcHc; 

(83) 

;\ 

o=c 
\ 
CF, 

R = H, OCH3, NO2 

S i m i l a r l y , the 1,3 d i p o l a r adducts formed from the re a c t i o n of 

aromatic N-oxides w i t h hexafluorobut-2-yne have not been i s o l a t e d . 

Instead complex mixtures of rearranged products are obtained and the 

mechanism of these reactions i s f a r from clear.'^-^ 



-55-

benzene 
+ CFjCaCCFj 

70° 

c=c 
OCOCF 3 CF3C-COCF3 

0 CF, 

CH2CF3 

II.E.4 1,4 Cycloadditions 

B i s p e r f l u o r o a l k y l acetylenes are very powerful dienophiles and 

undergo Diels-Alder reactions w i t h a wide range of dienes. I n f a c t , 

hexafluorobut-2-yne i s so d i e n o p h i l i c t h a t i t adds to compounds which 

are not normally considered as dienes. For example, i t adds to durene 

at 200° to give the b i c y c l o o c t a t r i e n e (84) and t h i s was the f i r s t 

reported Diels-Alder a d d i t i o n to a simply s u b s t i t u t e d benzene ring.^O^ 
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CF3CECCF3 + 

On heating the adduct (84) t o 250° a r e t r o Diels-Alder reaction takes 

place g i v i n g a mixture of durene and 1,2-diraethyl~4,5-bistrifluoromethyl 

benzene. S i m i l a r l y H-f CF2)5-C=C-f CF2)5H adds to durene but no adduct 

was formed w i t h less active acetylenes such as t r i f l u o r o p r o p y n e or 

acetylene i t s e l f . - ^ - ^ 

Hexafluorobut-2-yne adds across the 9 and 10 po s i t i o n s of anthracene 

and reacts w i t h naphthalene to give adduct (85). Even the considerably 

deactivated 2 , 3 , 6 , 7 - t e t r a k i s t r i f l u o r o m e t h y 1 naphthalene reacts to give 

adduct (86) i n good y i e l d . 

(85) (86) 

At 250°, hexafluorobut-2-yne reacts w i t h benzene 1°^.^^5 g i v i n g 7 

products, which are formed by a series of Diels-Alder / r e t r o Diels-Alder 
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a d d i t i o n s . Small q u a n t i t i e s o f 1 , 2 , 4 - t r i s t r i f l u o r o m e t h y l benzene (2%) 

and 1 , 4 , 6 , 7 - t e t r a k i s t r i f l u o r o m e t h y l naphthalene (6%) are also 

produced. 

CF3C=CCF3 250° 

Cl ' i 

-C ,H2 

(87) 

('•Ah 

.CF-

-CF-
6% 

CF 3CHCCF3 

(87) + CFsC^CCFs 

CF3C=CCF3 

CF3C=CCF3 
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The 1:1 adduct (87) was not i s o l a t e d as i t r e a d i l y undergoes a r e t r o 

Diels-Alder r e a c t i o n under these conditions. However, i t can be 

i s o l a t e d i n y i e l d s of 7 - 10% i f the r e a c t i o n i s carried out at lower 

temperatures (180 - 200°). Besides the r e t r o Diels-Alder r e a c t i o n , the 

1:1 adduct can also add a f u r t h e r molecule of butyne to give the 

intermediate (88). This type of behaviour has also been observed i n 

the r e a c t i o n of hexaf 1 uorobut-2-yne w i t h bicycloheptadiene .'-' 

CF3CECCF3 -t- // 

I n recent years a large number of Diels-Alder adducts w i t h both 

c y c l i c and a c y c l i c dienes have been reported and these are summarised 

i n Table I I . 5 . Often the 1:1 adduct i s unstable under the conditions of 

i t s formation and only products r e s u l t i n g from r e t r o Diels-Alder reactions 

are observed. 

This table gives an idea of the large v a r i e t y of dienes which w i l l 

add to hexafluorobut-2-yne and indicates the s y n t h e t i c p o s s i b i l i t i e s 

of the Diels-Alder r e a c t i o n f o r preparing t r i f l u o r o m e t h y l s u b s t i t u t e d 

compounds. Another important use of the d i e n o p h i l i c properties of 

hexafluorobut-2-yne i s the trapping of unstable species which cannot be 

observed d i r e c t l y . For example, attempts to generate bismabenzene give 

only polymeric m a t e r i a l but when hexafluorobut-2-yne i s present the D i e l s -

Alder adduct can be i s o l a t e d . ̂  2̂+ 
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-HCl 

I C I 

CF3C=CCF3 

S i m i l a r l y , 1-methylsilabenzene, which i s too unstable to be i s o l a t e d , 

has been trapped as a Diels-Alder adduct.-'*^ Also cyclobutadiene, 

generated by u.v. ph o t o l y s i s of tricarbonylcyclobutadiene i r o n , has been 

reacted w i t h hexafluorobut - 2-yne to give 1 , 2 - b i s t r i f l u o r o m e t h y l 

benzene . ̂  

C[^Hi,Fe(CO) 3 + \ro Ct^Hu + F e ( C O ) 3 

CH=CH + 

2CH=CH 

+ CF3C=CCF3 

I I . F Miscellaneous Reactions 

Hexafluorobut - 2-yne undergoes many of the standard reactions 

c h a r a c t e r i s t i c of unsaturated compounds; thus i t can be hydrogenated 

using a Raney n i c k e l c a t a l y s t ^ and i t i s oxidised to t r i f l u o r o a c e t i c 

acid by potassium permanganate . ° ' ̂ ^ 

CF3C=CCF3 
Raney Ni 

C=C . 
CF 3 X F 3 

CF3CH2CH2CF3 

mainly cis 
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Several non-mecallic elements react w i t h hexafluorobut-2-yne to give c y c l i c 

products. Tlu'si.' rc.'dc L i cms i i r e . a La 1 ysetJ by iodine and i t i s possible that 

the process involves 2,3-diiodohexafluorobut-2-ene as an intermediate. 

P + 3CF3C=CCF3 

As + C F 3 C I = C I C F 3 

Se + C F 3 C I = C I C F 3 

l 2 

200° 

200° 

180" 

C F , 

CP,. 

CF-

Se^ X F - . 

CF-

[56] 

[56] 

[581 

( C F 3 P)u and ( C F 3 P ) 5 react w i t h hexafluorobut-2-yne g i v i n g c y c l i c 

products (89) and (90) respect i v e l y . ' 

C F 3 - C P - C F 3 

3 I I 3 
CF3-C P - C F 3 

(89) 

CF' , -C-

CF-.-C-

(90) 

.CF-

: P - C F , 

A few examples of the ene re a c t i o n have been reported using 

hexaf luorobut-2-yne as the enophile. ̂ D i a d d u c t s are sometimes formed 

when the o l e f i n has more than one a l l y l i c hydrogen. 
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ĈHCH o 
250° 

8hr, 

Ci!, CF. , 3 , 3 

CH,=CH-CH—(i= CHCF. 

CH3-C 

CF I 
C ' I I I 
C 

I 
CF. 

CF3 CF. 
145° > = c C " 

* CH2=C-CH2 H 
8hr. 

CF CF: 

CF3CrCCF3 

240° 

CHp I I ^ 
X H 2-C - C H 2 ^ H 

CF. 

Several allenes have also been reacted with h e x a f l u o r o b u t - 2 - y n e ^ ' 

2,4-DimethyIpenta-2,3-diene gives two enu i n s e r t i o n products together 

w i t h a [2+2] c y c l o a d d i t i o n product. 

CH: GH. 

T 
c 
I I 

,c. 

80° 
+ CF3C=CCF3-

CH3-' 

Ratio 78 8 11 

Other allenes (e.g. 3-methylbuta-l,2-diene and cyclonona-1,2-diene) 

give e x c l u s i v e l y [2+2] cy c l o a d d i t i o n products (see section I I . E . 2 ) . 

Hexafluorobut-2-yne and 1-raethy 1 eye]opropene undergo an ene reaction 

at 30°.'" 
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The photochemical a d d i t i o n of hexafluorobut-2-yne to benzene gives' 

d i f f e r e n t products from those obtained i n the thermal r e a c t i o n . 

Vapour phase p h o t o l y s i s gives (9_[) and (92), whereas carrying out 

the r e a c t i o n i n s o l u t i o n the products (9J^), (93) and (94^) are obtained. 

+ CF.CHCCF, 
h-; 

vapour 

(91) 

-CF, 
+ CF. 

-CF 

(92) 

+ CF3C.3CCF3 

solu t ion 

(93) (94) 



DISCUSSION 
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CHAPTER I I I 

PREPARATION OF HEXAFLUOROBUT-2-YNE 

I I I . A I n t r o d u c t i o n 

P r i o r to t h i s work, the best method a v a i l a b l e f o r preparing 

hexafluorobut-2-yne (I) was the two stage route s t a r t i n g from 

hexachlorobuta-1,3-diene f i r s t reported by Henne and Finnegan i n 1949.^ 

SbF3,- SbF3Cl2 Zn / s o l v e n t 
CCl2=CCl-CCl=CCl2 ^ >• CF3CC1=CC1CF3 >• CF3CFCCF3 

135° (95) ( I ) 

Although i t i s obtainable from commercial sources, hexafluorobut-2-yne 

i s too expensive to purchase i n the large q u a n t i t i e s necessary f o r i t s 

chemistry to be studied i n depth. This chapter describes attempts to 

f i n d new convenient methods of synthesising t h i s acetylene from r e a d i l y 

a v a i l a b l e s t a r t i n g m a t e r i a l s . 

I I I . B Dechlorinations of 2,3-Dichlorohexafluorobut-2-ene 

I I I . B . l I n Flow Systems 

The l i t e r a t u r e methods f o r d e c h l o r i n a t i n g 2,3-dichlorohexafluoro-

but-2-ene (95) s u f f e r from the f o l l o w i n g disadvantages: 

1) Large q u a n t i t i e s of reduction products are formed (mainly 2-chloro-

hexafluor6but-2-ene and hexafluorobutane). 

2) Long r e a c t i o n times are needed. 

3) Low conversion of s t a r t i n g m a t e r i a l . 
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I t was reasoned t h a t i f the reac t i o n could be c a r r i e d out 

without a solv e n t , no reduction products would be formed and b e t t e r 

conversions to hexafluorobut-2-yne would be possible. Therefore, methods 

f o r c a r r y i n g out the d e c h l o r i n a t i o n i n the gas phase using both flow and 

s t a t i c systems were i n v e s t i g a t e d . 

The flow reactions described i n t h i s section were c a r r i e d out by 

passing the dichlorobutene through a heated s i l i c a tube packed w i t h a 

s u i t a b l e d e c h l o r i n a t i n g agent (e.g. i r o n f i l i n g s , zinc d u s t ) . 

I I I . B . l . a Over I r o n F i l i n g s 

Dechlorinations over i r o n f i l i n g s were attempted at various 

temperatures between 300 and 610° and the r e s u l t s of these experiments 

are summarised i n Table I I I . l . 

Table I I I . l 

D e c h l o r i n a t i o n of (95) Over I r o n F i l i n g s 

Max. c o l . 
temp. °C 

Contact 
time (s) 

Mass of (95) 
(g) 

Mass of (95) 
recovered (g) 

Mass of gas 
co l l e c t e d (g) 

% mass 
recovered 

300 30 2.02 1.05 0.00 52 

368 15 2.01 0.74 0.00 37 

450 15 2.02 0. 78 0.00 39 

456 15 5.05 1.95 0.21 43 

520 15 1.96 0,00 0,00 0 

565 15 2.05 0.00 0,11 5 

610 10 2.01 0.00 0,09 4 

20 15 3.06 2.56 - 84 
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At temperatures up to 456° no hexafluorobut-2-yne was c o l l e c t e d 

and less than h a l f of the butene was recovered. At higher temperatures 

a l l the s t a r t i n g m a t e r i a l was consumed but only very small q u a n t i t i e s 

of gaseous products were obtained. 

Gas c o l l e c t e d from the r e a c t i o n at 456° appeared on g . l . c . as 

one peak w i t h i d e n t i c a l r e t e n t i o n time as hexafluorobut-2-yne but the 

i n f r a r e d spectrum revealed the presence of a contaminant. The hexafluoro-

but-2-yne produced at 565° contained a d i f f e r e n t impurity which was 

the only product obtained at 610°. This gas could not be i d e n t i f i e d by 

i n f r a r e d or mass spectrometry. 

Low mass recoveries were observed i n a l l these reactions and t h i s may 

be due to e i t h e r or both of the f o l l o w i n g explanations: 

1) I n e f f i c i e n t t r a p p i n g of unreacted s t a r t i n g m a t e r i a l and products. 

2) Decomposition of hexafluorobut-2-yne on the surface of the i r o n . 

Control experiments were run to see whether the trapping was at 

f a u l t . Hexafluorobut-2-yne ( I ) and 2,3-dichlorohexaf1uorobuL-2-ene (95) 

were passed through the apparatus at 20° w i t h recoveries of 80% and 

84% r e s p e c t i v e l y . Therefore, although a l i t t l e m a t e r i a l i s l o s t due 

to incomplete t r a p p i n g , t h i s can only be p a r t l y responsible f o r the low 

mass balances obtained i n these reactions. 

When (I) was passed through the tube at 450°, 54% was recovered and 

the i r o n f i l i n g s gained i n weight by an amount equivalent to 36% of the 

mass of the acetylene passed. A s i m i l a r r e a c t i o n a t 500° gave only 13% 

recovery. These r e s u l t s imply l h a t lioxafluorobut-2-yne reacts on the 

surface of the i r o n and i s retained there. A sample of these f i l i n g s 

was submitted f o r mass spectroscopic analysis but no spectrum was 

obtained even w i t h a probe temperature of 300°, These observations can 
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be accounted f o r by any of the f o l l o w i n g reactions: 

1) Polymerisation of hexafluorobut-2-yne on the surface of the metal 

2) Formation of a thermally stable i n v o l a t i l e i r o n complex 

3) D e c h l o r i n a t i o n and d e f l u o r i n a t i o n to give carbonaceous m a t e r i a l . 

I n order to o b t a i n more i n f o r m a t i o n , the r e a c t i o n of hexafluoro-

but-2-yne w i t h i r o n f i l i n g s was i n v e s t i g a t e d i n a s t a t i c system. No 

r e a c t i o n occurred at 200° but at 400° a black s o l i d , a l i t t l e l i q u i d 

and some gaseous products were obtained. The gas contained a trace of 

(I) together w i t h three other components of higher molecular weight. 

A f t e r washing w i t h acid to remove unreacted i r o n , the black s o l i d was 

shown to contain 70% carbon. These r e s u l t s show th a t (j_) i s s u b s t a n t i a l l y 

d e f l u o r i n a t e d by i r o n at high temperatures and i t i s therefore not 

s u r p r i s i n g t h a t very l i t t l e was obtained i n the flow d e c h l o r i n a t i o n 

reactions described above. 

I I I . B . l , b Over Zinc Dust 

When hexafluorobut-2-yne was passed over zinc dust at 410° 70% 

was recovered unchanged and the zinc gained weight by an amount 

•equivalent to 12% of the alkyne. 

Passing (95) through the tube under the same c o n d i t i o n s , 85% was 

recovered unchanged and only a trace of hexafluorobut-2-yne was produced. 

The temperature could not be raised f u r t h e r because zinc melts at 419°, 
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I I I . B . l . c Over Platinum F o i l 

For comparison, (95) was passed through a tube packed with 

platinum f o i l i n order to determine whether gaseous products would be 

formed, s i m i l a r to those obtained i n the reactions over i r o n . 

At 450°, 75% recovery of butene was obtained and no trace of 

gaseous products was detected. However, g . l . c . and '̂ F n.m.r. indicated 

t h a t i s o m e r i s a t i o n of the s t a r t i n g m a t e r i a l had taken place. The 

commercial 2,3-dichlorohexafluorobut-2-ene used f o r a l l these 

experiments was a mixture of 90% trrms and 10% ois isomers. However, 

the product from the reaction at 450° was a mixture of 63% trans and 

37% cis iosmers. At 656°, 52% of tl)e butene was recovered as a mixture 

of 54% trans and 46% cis isomers. 

CF, CI , CF. CFo 
X / ^ - \ / C=c ' C=C 
/ \ / \ 

CI CF3 CI CI 

A trace of gas was also produced i n t h i s r e a c t i o n , but i . r , spectros­

copy showed i t to be ne i t h e r hexafluorobut-2-yne nor any of the products 

obtained i n the reactions over i r o n f i l i n g s . 

Determination of ois-tvans isomer r a t i o s 

Approximate r a t i o s were obtained by comparing g , l , c , peak areas 

but as the r e l a t i v e r e t e n t i o n times of the two isomers were not known 

i t was not possible to t e l l which was the major component of the 

mixture. 

A more s a t i s f a c t o r y method was to measure the i n t e n s i t i e s of the 
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CF3 resonances i n the ^^F n.m.r. spectrum. The low f i e l d resonance 

was assigned to the ois isomer i n agreement w i t h the l i t e r a t u r e 

values shown i n Table I I I . 2 . 

Table I I I . 2 

^^F n.m.r. Data for cis and j|;r'(cm&—2 ,3-Dichlorohexaf luorobut-2-ene ^ ̂  3 

CF 3 CF, 
\ / ^ 
C=C 60.4 

/ \ 
CI CI 

CF3 CI 
\ / 

C=C 63.7 
/ \ 

CI CF3 

I I I . B . 2 Reactions i n a Sealed System 

Dechlorinations of (95) were attempted i n an autoclave using 

zinc dust as the dehalogenating agent. I t was hoped that by using a 

longer contact time and lower temperatures than those used i n the flow 

reactions the d e c h l o r i n a t i o n would proceed smoothly without any 

d e f l u o r i n a t i o n . At 200°, 91% of the s t a r t i n g m a t e r i a l was recovered 

unchanged and no gaseous products were detected. However, at 270° a 

good y i e l d of gas was obtained but u n f o r t u n a t e l y t h i s was found to be 

an 8 component mixture containing only a small percentage of hexafluoro-

but-2-yne. 

A re a c t i o n was attempted using zinc dust a c t i v a t e d by washing 

wi t h g ] a c i a ! a c e t i c a c i d . Wlien .1 sample of t h i s zinc dust was heated 



-78-

w i t h (95) at 270°, a black carbon r i c h s o l i d was formed together w i t h 

a l i t t l e gas. S i m i l a r r e s u l t s were obtained using unactivated zinc 

at 325°. The black s o l i d i s i n v o l a t i l e , does not dissolve i n organic 

solvents or mineral acids and shows no absorption i n the i n f r a r e d . 

These rea c t i o n s again demonstrate the s u s c e p t i b i l i t y of hexafluorobut-

2-yne towards d e f l u o r i n a t i o n by hot metals. 

I I I . B . 3 Reactions i n S o l u t i o n 

A f t e r the unsuccessful attempts to dechlorinate 2,3-dichlorohexa-

fluorobut-2-ene (95) i n the gas phase, a t t e n t i o n was turned to 

improving the conventional reactions employing a solvent. The r e a c t i o n 

was c a r r i e d out using zinc dust i n dioxan, dioxan / sulpholan (40:60) 

and a c e t i c anhydride; of these solvents the l a t t e r gave the best y i e l d 

of hexafluorobut-2-yne (65%) although i t was contaminated with consider­

able amounts of reduction products. Careful low temperature d i s t i l l a t i o n 

gave the butyne i n approximately 99% p u r i t y . 

A r e a c t i o n using magnesium turnings i n tetrahydrofuran gave a 

small y i e l d of hexafluorobut-2-yne together w i t h a large qu a n t i t y of 

t a r r y m a t e r i a l from which no s t a r t i n g m a t e r i a l was recovered. 

I I I . C I somerisation of Hexafluorocyclobutene 

I I I . C . l I n t r o d u c t i o n 

While the work described above was i n progress, another worker 

i n t h i s ' l a b o r a t o r y showed th a t good y i e l d s of hexafluorobut-2-yne 

were produced when hexafluorocyclobutene (96) was passed over caesium 

f l u o r i d e at. high t e m p e r a t u r e s T h e best r e s u l t s were obtained at 

590°, when the product gas consisted of 90% hexafluorobut-2-yne and. 
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10% s t a r t i n g m a t e r i a l and the t o t a l recovery of m a t e r i a l was 72%. 

CsF a 
— CFoCHCCFo 
Flow system ^ ^ 

(1) (96) 

These experiments were only c a r r i e d out using small q u a n t i t i e s of 

(96) ( 4 - 6 g ) , so i t was important to see whether the reaction could 

be scaled up to i)rovide a pruparativt- route to hexaf luorobut-2-ync'. 

11I.C.2 Reaction Conditions 

Hexafluorocyclobutene was passed over caesium or potassium 

f l u o r i d e at several temperatures between 540 and 690° using a range 

of contact times. The r e s u l t s are summarised i n the experimental 

s e c t i o n . 

No s i g n i f i c a n t d i f f e r e n c e s were observed between the caesium 

f l u o r i d e and potassium f l u o r i d e catalysed reactions; both gave good 

conversions to hexaf luorobu t-2-yne at 590-600° w i t h contact times 

of 20 - 30 seconds. Using higher temperatures or longer contact times 

s i g n i f i c a n t amounts of complex l i q u i d products (ca. 10 components) 

were obtained and the o v e r a l l mass recovery was lower. At lower 

temperatures large amounts of hexafluorocyclobutene were recovered. 

The l i q u i d products were analysed by m.s. / g . l . c . and shown to 

have molecular weights i n the region of 340 - 800 but they do not 

appear to be simple m u l t i p l e s of Ci^Fg. S i m i l a r products were obtained 
• i * 

on passing hexafluorobut-2-yne over potassium f l u o r i d e under the same 

c o n d i t i o n s , i n d i c a t i n g t h a t these complex mixtures are derived from 

tlie butyne and not the cyclobutene. They can be thought of as being 
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produced by free r a d i c a l processes' i n v o l v i n g the i n i t i a l hemolytic 

f i s s i o n of the C-C bond. 

e.g. CF3CHCCF3 

CFgC^C* + CF3CECCF3 >• 

CF3CEC' + .CP 3 

CF-
\ C=CCF 3 

CF3CEC 

CFg-
CF. 

\ 
C=C(CF3)2 

CF 3CEC 

CF3' + CF3CECCF3 

CF3' 

CFc CF o 0 
\ / ^ 
C=C 

/ \ 
CF3 .CF3 

Ci,F 

I I I . C . 3 Discussion 

CF. 
etc. \ 

CF 3CEC 
C=C=CF2 

etc. 

CF-
\ 

/ 
CF3 

etc . 

C=CCF3 

CF: 

CF. 
/ 
C=C=CF2 

etc. 

The f l u o r i d e i o n induced rearrangement of hexafluorocyclobutene (96) 

to give hexafluorobut-2-yne (1_) can be conveniently considered as 

occur r i n g i n two stages. F i r s t , the cyclobutene r i n g opens to give 

hexafluorobuta-1,3,-diene ( 9 7 ) , which i s then isomerised under the 
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i n f l u e n c e of f l u o r i d e ion to (1^). Both of these reactions are w e l l 

e s t a b l i s h e d and i t i s somewhat s u r p r i s i n g that they had not previously 

been r e l a t e d . 

(96) F - - ^ C F , 

(97) 

CsF or 
KF 

CF3C=CCF3 

(1) 

The thermal r i n g opening of cyclobutenes to give dienes i s a 

w e l l known re a c t i o n i n hydrocarbon chemistry. At high temperatures the 

two isomeric forms o f t e n e x i s t i n e q u i l i b r i u m and i n the case of 

cyclobutene i t s e l f the r i n g opening goes v i r t u a l l y to completion.' 

However, the p o s i t i o n of e q u i l i b r i u m i s d r a m a t i c a l l y changed on going 

from a hydrocarbon to a fluorocarbon system. Hexafluorobuta-1,3-diene 

(9 7) r e a d i l y undergoes r i n g closure to give the cyclobutene (96)^ 

and t h i s d i f f e r e n c e i n behaviour i s c l e a r l y demonstrated by the AH 

values shown i n Table I I I . 3 . 

1) 

Table I I I . 3 

.AH Values f o r Cyclobutene Ring Opening Reactions 

Reaction 

"2. H 

H2 H 
(98) 

H,^^"2 

H^CH, 
(99) 

AH (kJ/mol) 

-33 

2) 

3) 

^2. F 

F2 F 
(96) 

CK-, 

(78) 

F ^ \CR, 
(97) 

CI'., 

CP. CF., 

(100) 

+49 

+ I .7 
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These e f f e c t s have been a t t r i b u t e d to (a) d e s t a b i l i s a t i o n of the 

ir system on s u b s t i t u t i o n w i t h f l u o r i n e , ̂  ' 1 5'' s i m i l a r to that invoked 

to account f o r the i n s t a b i l i t y of 1-fluoroacetylenes (see Chapter I ) 

and (b) the f a c t t h a t the C-F bond strength increases i n the change 

from sp2 to sp2 hybridisation.^5^"^^° E i t h e r o f these considerations 

could e x p l a i n the anomalous behaviour of hexafluorocyclobutene, as 

the number of f l u o r i n e s attached t o sp^ h y b r i d i s e d carbon decreases 

from 6 to 2 on cyclisation..However, as there i s the same net change 

i n the number of sp^ C-F bonds i n both reactions (2) and (3) the f a c t 

t h a t t h e i r enthalpies are d i f f e r e n t implies t h a t the d e s t a b i l i s a t i o n 

introduced by f l u o r i n e attached t o unsaturated carbon i s a d d i t i v e i n 

nature, i . e . (97) which has 6 sp2 C-F bonds i s d e s t a b i l i s e d to a 

greater extent than (100) which has only 4. 

I t i s w e l l e s t a b l i s h e d t h a t terminal difluoromethylene groups 

are susceptible to at t a c k by f l u o r i d e ion g i v i n g t r i f l u o r o m e t h y l 

s u b s t i t u t e d compounds. I n p a r t i c u l a r , the isomerisation of hexafluoro-

buta-l,3-diene (97) proceeds very r e a d i l y at 100° to give a good y i e l d 

of hexaf luorobut-2-yne. The r e a c t i o n mechanism involves two Sj^2' 

displacements by f l u o r i d e i o n . 

^^^^^ CF2 
(97) 

CF3CECCF3 

(1) 

Comparison of the t o t a l bond enthalpies of the carbon skeletons 

i n but-2-yne and buta-l,3-diene i n d i c a t e s t h a t the l a t t e r i s the more 

stable molecule and t h i s i s the case f o r the hydrocarbon system. 
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Average bond enthalpies at 298K (kJ/mol)162. C-C 348 

C=C 612 

CrC 83 7 

C-C=C-C C=C-C=C 

2 C-C =696 2 C=C = 1224 

1 C=C =837 1 C-C = 348 

Total 1533 Total 1572 

However, the order of s t a b i l i t y i s reversed f o r the fluorocarbon 

analogues, i . e . hexafluorobut-2-yne i s more stable than hexafluoro­

buta-1 , 3-diene and t h i s i s a f u r t h e r example of the i n s t a b i l i t y of 

f l u o r i n e attached to unsaturated carbon. 

I n view of these considerations i t i s not s u r p r i s i n g t h a t the 

r i n g opening and i s o m e r i s a t i o n reactions can be c a r r i e d out i n one 

step by passing hexafluorocyclobutene over metal f l u o r i d e s . A high 

temperature i s necessary to d r i v e the cyclobutene - butadiene 

e q u i l i b r i u m over to the r i g h t . The butadiene i s then q u a n t i t a t i v e l y 

converted to hexafluorobut-2-yne which can react f u r t h e r to give 

l i q u i d products i f the temperature i s too high or the contact time too 

long. A temperature of 600° w i t h a contact time of 30 seconds appears 

to be the best compromise as the r i n g opening goes to ca. 94% 

completion and only 3% of the butyne i s converted to l i q u i d products 

under these c o n d i t i o n s . 
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CHAPTER IV 

FREE RADICAL REACTIONS OF HEXAFLUOROBUT-2-YNE 

TV.A Pol3nnerisation and Attempted Copolymerisations of Hexafluorobut-2-yne 

IV.A.1 Preparation and Properties of Polyhexafluorobut-2-yne 

I r r a d i a t i o n of hexafluorobut-2-yne w i t h high energy p a r t i c l e s from 

a '̂'Co source gives a white s o l i d polymer^.^ ' w h i c h i s not attacked 

by b o i l i n g concentrated acids or bases and i s insoluble i n a l l common 

solvents.-^' C l e a r l y such a m a t e r i a l i s of great i n t e r e s t p a r t i c u l a r l y 

now t h a t an e f f i c i e n t route to hexafluorobut-2-yne h>i.s been developed. 

Therefore i t was decided to i n v e s t i g a t e some of the properties of t h i s 

p o t e n t i a l l y u s e f u l polymer. 

IV.A.l.a I n t r o d u c t i o n 

Most of the reported s t r u c t u r a l i n v e s t i g a t i o n s of polyhexafluoro-

but-2-yne have been c a r r i e d out on the polymer which i s produced from 

the r e a c t i o n of the acetylene w i t h f l u o r i d e i o n . However, since the 

i . r . spectra are i d e n t i c a l f o r both the f l u o r i d e ion and the gamma ray 

polymers (see Appendix I I ) , i t seems reasonable to assume that they have 

s i m i l a r s t r u c t u r e s . A discussion of the s t r u c t u r e of these polymers i s 

given i n Chapter V. 

IV.A.l.b Preparation 

I r r a d i a t i o n of commercial hexafluorobut-2-yne gave high y i e l d s 

(75-85%) of polymer and s i m i l a r r e s u l t s were found using a sample of 
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the acetylene which had been prepared from perfluorocyclobutene by the 

method described i n the previous chapter. However, poor y i e l d s of polymer 

were obtained from hexafluorobut-2-yne made by d e c h l o r i n a t i o n of 

2,3-dichlorohexafluorobut-2-ene. This i s presumably due to the presence 

of traces of by-products which i n h i b i t the polymerisation process. A 

s i m i l a r phenomenon was observed i n many of the attempted gamma ray 

induced a d d i t i o n reactions which are discussed l a t e r i n t h i s chapter. 

Even when no a d d i t i o n to the acetylene occurred, l i t t l e or no polyhexa-

fluorobut-2-yne was obtained. This apparent i n h i b i t i o n could be due to 

the operation of e f f i c i e n t chain termination processes when c e r t a i n types 

of contaminants are present i n the acetylene. 

IV.A.l.c Thermal Behaviour 

I t i s w e l l known th a t p o l y t e t r a f l u o r o e t h y l e n e breaks down to the 

monomer on p y r o l y s i s i n vacuo and mass sp e c t r a l data^'^'^'^ i n d i c a t e d 

that polyhexafluorobut-2-yne might behave s i m i l a r l y . When a sample 

of the polymer, prepared by the method described i n the previous s e c t i o n , 

was heated i n vacuo at approximately 600° f o r 4 hours, a great deal of 

d i s c o l o u r a t i o n and a 10% loss i n weight was observed. A l i t t l e brown 

s o l i d sublimed but no gaseous products were obtained. This aspect of 

the thermal behaviour of polyhexafluorobut-2-yne i s therefore completely 

d i f f e r e n t to that of p o l y t e t r a f l u o r o e t h y l e n e . 

Considerable d i f f e r e n c e s between the thermal p r o p e r t i e s of the 

two poljmiers were also observed by thermogravimetric analysis (T .G.A.) . ̂  

Isothermal experiments were c a r r i e d out at 502, 550 and 600? i n a i r 

and showed polyhexaf luorobut-2-yne to be remarkably s t a b l e ; e.g. at 

502° p o l y t e t r j f liiorot'thylent; cixnp 1 f tc 1 y ck-gradisd a l t u r 4.5 hours whereas 

polyhexafluc)r()hut-2-yne had only l o s t 7% of i t s mass (see Figure 1). 
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% Wt, 
Loss 

100 

% Wt. 
Loss 

600° AIR 

Polyhexafluorobut-2-jme 

Teflon-6 

40 Time (mms) 

502" AIR 

Polyhexafluorobut-2-yne 

Teflon-6 

Time (hrs) 

100 

Figure 1 
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When the temperature of the polymer was s t e a d i l y increased decomposition 

suddenly set i n at approximately 608° and was 50% complete by 644° 

and 687°, i n a i r and ni t r o g e n r e s p e c t i v e l y . 

IV.A.l.d Reaction w i t h Aqueous Potassium Hydroxide Solution 

S t i r r i n g the polymer w i t h r e f l u x i n g potassium hydroxide s o l u t i o n 

i n glass apparatus gave a large q u a n t i t y of s i l i c a l i k e s o l i d as the 

only product and no gas was evolved. Using a t e f l o n reaction vessel, 

most of the polymer was recovered unchanged but a small f r a c t i o n had 

e v i d e n t l y dissolved and could not be recovered from the brown reaction 

m i x t u r e . I t would appear that h y d r o l y s i s does not occur r e a d i l y because of 

d i f f i c u l t y i n w e t t i n g the polymer, but i t s use i n s t r o n g l y caustic 

environments i s c l e a r l y going to be l i m i t e d . 

IV.A.l.e Reaction w i t h Fluorine and Bromine 

No s i g n i f i c a n t uptake of f l u o r i n e was observed when the polymer 

was exposed to the neat gas at various temperatures up to 90°. However, 

i n one experiment where the polymer was heated more s t r o n g l y , i t 

spontaneously combusted leaving a l i t t l e black ash. The polymer i s also 

r e s i s t a n t to attack by bromine, both i n ordinary l i g h t and on exposure 

to u.V. r a d i a t i o n . 

IV.B Attempted Copolymerisation Reactions 

Several gamma ray induced reactions to prepare copolymers from 

hexafluorobut-2-yne have been attempted. With dimethyl acetylenedicarboxylate 

and styrene, q u a n t i t a t i v e recoveries of both the fluorocarbon and the 
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hydrocarbon were obtained. Methyl methacrylate, however, r e a d i l y 

homopplymerised and the hexafluorobut-2-yne was recovered unchanged, 

CF3CECCF3 + CH3OOCCECCOOCH3 

CF3CHCCF3 + 
,CH=CH, 

CF3CECCF3 + CH2=C^ 
/CH3 

•COOCH3 

no reaction 

no r e a c t i o n 

poly(methyl methacrylate) 

This i s an example of how the presence of other compounds can i n h i b i t 

the p o lymerisation of hexafluorobut-2-yne. Even more s u r p r i s i n g l y , 

hexaf luorobu t-2-yne prevents the homopoljrmerisation of styrene. The 

ace t y l e n i c d i e s t e r d i d not form a homopolymer when i r r a d i a t e d by i t s e l f , 

CH300CCrCCOOCH3 •X- no rea c t i o n 

IV.C Free Radical Additions to Hexafluorobut-2-yne 

IV.C.l I n t r o d u c t i o n 

Several examples of free r a d i c a l additions to hexafluorobut-2-yne 

have been reported and these were discussed i n Chapter I I . Most of 

these reactions involved compounds containing a r e l a t i v e l y weak bond; 

f o r example halogens, hydrogen h a l i d e s , p e r f l u o r o a l k y 1 iodides and 

hydrogen sulphide a l l r e a d i l y add i n the presence of a s u i t a b l e i n i t i a t o r . 

Only one report of a ra d i c a l a d d i t i o n of .1 C-M bond across the t r i p l e 

bond of hexaf I iiorobii t-2-yne has appeared i n the l i t e r a t u r e . * ' ^ The 

r a d i a t i o n induced a d d i t i o n of ethanol using Freon-113 ( I , 1 , 2 - t r i c h l o r o -
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t r i f l u o r o e t h a n e ) as a solvent gave approximately equal amounts of 

the cis and trans adducts (101) and (102). 

CF3^ ^CF3 CF3^ /CH(0H)CH3 
CF3C=CCF3 + C2H5OH ^ C=C + C=C. 

Freon-113 H ^ ^CH(0H)CH3 H ""CF3 

(101) (KI2) [63] 

30% 37% 

Work c a r r i e d out i n t h i s l aboratory has shown that a low y i e l d of 

the tvanr, adduct (104) was obtained from a s i m i l a r reaction of hexafluoro-

but-2-yne w i t h methanol in the absence of a solvent.'''"' In t h i s case 

however, the major product was (103), formed by n u c l e o p h i l i c attack by 

the a l c o h o l . 

CF3 /OCH3 CF3 ^CH20H 
CF3C5CCF3 + CH3OH — ^ ^C=C " + "̂ C=C 

H'̂  ^CF, Vi-^ ^CF3 

(103) (104) 12% 

Acetaldehydfc was also found to add to hexafluorobut-2-yne, g i v i n g a 

low y i e l d of the enone (105).''''' 

CF3CECCF3 + CH3CHO—^ ".C=C 
CF3 ^COCH; 

H-" "^CF3 

(105) 19% 

Assignments of the stereochemistry were made f o r adducts (101)-(105) 

on the basis of w e l l established n.m.r. coupling c o n s t a n t s ' 

Typical values of CF3 coupling constants are given i n Table IV.1 and 

using t h i s i nformation i t is an easy matter to d i s t i n g u i s h between 
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cis and trans isomers. Some of the smaller couplings (e.g. J 
CF3,CF3J trcois 

and ^ vicinal ^ o f t e n not properly resolved but the strong 

couplings (e.g. J„,, . and J„_ ^ • 7 ) are usually c l e a r l y Ct3,CF3,ct£r QY •^,VL ,germnal ^ ^ 

defined and allow unambiguous assignments to be made. 

Table IV. 1 

C h a r a c t e r i s t i c CF3 Coupling Constants 

CF3^ /CF3 
C=C J = 11-13 Hz CF3-C-C-CF3 J = 0 - 18 Hz 

CF: 
C=C J = 1 - 2 Hz 

"^CF3 

H 
I I 

CF3-C-C- J = 2 - 29 Hz 

CF 
C=C J = 7 - 9 Hz CF,-C-C- J = 0 - 1.6 Hz 

CF: 
~C=C J = 0 - 2 Hz 

CF: 
C=C 

H 
J = 0 - IHz 

I n t h i s chapter free r a d i c a l additions of various hydrocarbon and 

halocarbon d e r i v a t i v e s to hexafluorobut-2-yne are discussed. Both gamma 

i r r a d i a t i o n nnd peroxides were used to i n i t i a t e the reactions. 



-91-

IV.C.2 Reactions w i t h Aldehydes 

IV.C.2.a Acetaldehyde 

The r e a c t i o n of hexafluorobut-2-yne w i t h acetaldehyde was repeated 

using a longer dose of r a d i a t i o n than had previously been used and the 

y i e l d of enone (105) was increased to 30%. A s i m i l a r y i e l d was obtained 

using benzoyl peroxide as the i n i t i a t o r and some s o l i d product was also 

formed. A f t e r r e c r y s t a l l i s a t i o n t h i s gave a 17% y i e l d of a compound which 

was shown to be a 2:1 adduct by mass spectroscopy and elemental analysis. 

The product was assigned the symmetrical s t r u c t u r e (106) rather than the 

unsymmetrical s t r u c t u r e (107) on the basis of the ''̂F n.m.r. spectrum, 

which showed j u s t one s i n g l e t i n the CF^ region. 

CF3v^ /CF3 
H -^C-C—H 
COCH3 "^C0CH3 

CF3CrCCF3 + 2CH3CHO 
\L (106) 

/COCH3 
CF3-CH2-C-CF3 

''COCH3 

(107) 

Compound (106) i s the product expected on s t e r i c grounds because 

a d d i t i o n of a CH3CO r a d i c a l to the 1:1 adduct would take place at the 

l e a s t crowded end of the double bond. Also the intermediate (108) i s 

presumably lower i n energy than (109) due to the s t a b i l i s i n g e f f e c t of 

the carbonyl group adjacent to the r a d i c a l centre. 
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CF3 ^ H _ CF3 /H .H-
/C = C + CH3CO ^ C - C - C 0 C H 3 >- ( 1 0 6 ) 

COCH3 ^CF3 CH3-C>' \ F 3 
^0 
(108) 

CCCH35^-^V 
COCH3 3 

(109) 

A higher y i e l d of 2:1 adduct was obtained using an excess of acetaldehyde. 

CF3C=CCF3 + CH3CHO ' (105) + (106) 

1 2.5 18% 45% 

Photolysis of (E)-3-Trifluoromethyl-1,1,1-trifluoropent-2-en-4-one (105) 

A slow r e a c t i o n was observed when the 1:1 acetaldehyde adduct (105) 

was photolysed at 300 nm. G.l.c. of the product mixture showed the 

presence of (105) plus two other major components and m.s./g.l.c. 

demonstrated t h a t these a l l had the same molecular weight. Three f r a c t i o n s 

were separated by preparative scale g . l . c . and two were i d e n t i f i e d as 

(105) and the cis isomer (110). The other component decomposed on the 

detector of the g . l . c . machine to give a mixture of (105) and (110). 

Attempts to i s o l a t e t h i s unstable compound by using a low g.l . c . 

detector temperature gave s i m i l a r r e s u l t s . Fortunately t h i s t h i r d 

component could be i d e n t i f i e d from n.m.r. data on the mixture. A f t e r 

s u b t r a c t i n g the signals due to (105) and (110) the remaining resonances 

could be assigned to the oxetene (111) . These data are summarised i n 

Table IV. 2.-
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Table IV.2 

N.m.r. Data f o r CgHî F̂ O Isomers 

b , b a b a 
C F 3 ^ ^ /H C F 3 ^ / C F 3 C F 3 / C F 3 

c C=C^ c C=C, , C-C^ , 
CH3-C-^ > C F 3 CH^-C-^ " H^ II I ^ H ^ 

0 0 CH3 
(105) (110) (111) 

Resonance 6 Resonance 5 Resonance 6 

F a 63.1 D,J ,=7.5 a 62.1 M a 81.2 S 
ad 

b 67'.5 S b 60.9 Q,J, =10 b 62.4 S 
ba 

H c 2.50 S(broad) c 2.50 S(broad) c 2.18 S 

d 6.45 Q,J, =7.5 d 6.93 Q,J_, =8 d 5.58 S ^' da da 

S = s i n g l e t D = doublet Q = quartet M = m u l t i p l e t 

Although the y i e l d of oxetene (111) increased w i t h i r r a d i a t i o n dose, 

a maximum of 72% conversion was observed a f t e r 94 hours. No f u r t h e r 

r e a c t i o n had occurred by 352 hours and t h i s suggests t h a t a photo-

e q u i l i b r i u m i s set up as f o l l o w s : 

CF3^ ^CF3 
CF3 H hv 

C=C 
fC hv CF3 /CF3 

H ;;==i C=C^ -0 CH3-C" "CF3 ^„ ^ CH3-C' H 
I ! CH3 ,1 
0 > 0 

(105) (111) (110) 

A number of r e l a t e d reactions have been discussed i n the l i t e r a t u r e , 

g i v i n g oxetenes of varying degrees of s t a b i l i t y . A few of these are 

mentioned here f o r the purpose of comparison. M i l l e r has reported a 

photochemical c y c l i s a t i o n r e a c t i o n g i v i n g an oxetene (116) which i s 
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converted back to the enone (115) on heating. 

C F 3 \ /CF 
c=c 

CF.-C-^ ^CF 
II 
0 

(115) 

h v 

0.5 hours,200° 
CP 3 

< CF3 

CF3 

(116) 

The oxetene produced from the uncatalysed r e a c t i o n of hexafluoroacetone 

and ethoxyacetylene slowly isomerises at room temperature to give the 

enone (117). 

H-CEC-OCj,H.: 

+ C F 3 C C F 3 

0 

0C2H 5 

CF 

CF, 
:c=aicoc^ii,^ 

(117) 

R e l a t i v e l y l i t t l e has been reported on the photosensitised reactions 

of non-fluorinated a c y c l i c enones. However, trans-dibenzoylethylene does 

undergo isomerisation on i r r a d i a t i o n . ^ 

CgHsCO. H h v C(:HrCO, COC^Hr, 
c=c C=C 

Photosensitised reactions of benzaldehyde and acetophenone w i t h d i b u t y l -

acetylene give unisolable oxetenes which decompose e i t h e r back to s t a r t i n g 

m a t e r i a l s or r i n g open to give enones 171 
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h v 

C6H5C 
\ 

0-

R 

C^Hc 

C5H5 s t a r t i n g 
materials 

R = H , CH3 

D " 5 - .CuHc 

R CChHo 
II ' ' 
0 

IV.C.2.b Propanal 

Propanal and a small excess of hexafluorobuC-2-yne reacted under 

benzoyl peroxide i n i t i a t i o n to give both l i q u i d and s o l i d products. The 

l i q u i d was a si n g l e component, i d e n t i f i e d by mass spectroscopy and 

n.m.r. as (E)-3-trifluoromethyl-1,1,1-trifluorohex-2-en-4-one (112) and 

the s o l i d was a mixture of 12% unsymmetrical and 88% symmetrical 2:1 

adducts (113) and (114). 

C F 3 C H C C F 3 + C2H5CHO 

COC H 
Benzoyl peroxide C F 3 I ^ ^ 
— , ^ C = C + CF3CH2.CCF3 

75°, 15hrs. COC^H^^CFs 

(112) (113) 
(40%) (6%) 

COCoHc 
I 

+ C F 3 C H - C H C F 3 

COC2H5 

(114) 

(41%) 
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S t r u c t u r a l Assignments 

A treats s t r u c t u r e was assigned to (112) by comparing coupling 

constants w i t h those given i n Table IV. 1. The ^̂ F n.m.r. spectrum of 

(112) consists of two CF3 resonances and the largest coupling constant 

was J = 7.5 Hz, a r i s i n g from geminal H-CF3 coupling. This rules out a 

ais c o n f i g u r a t i o n of the CF3 groups leaving the s t r u c t u r e (112) as the 

only p o s s i b i l i t y . 

The mass spectrum of the s o l i d showed a weak parent peak 

corresponding to an adduct formed by re a c t i o n of two molecules of 

propanal w i t h one of hexafluorobut - 2-yne and the '̂ F n.m.r. spectrum 

i n d i c a t e d the presence of two d i f f e r e n t species. Three CF3 resonances 

were observed, the strongest being a s i n g l e t a r i s i n g from the symmetrical 

isomer (114) and two smaller s i n g l e t s of lower i n t e n s i t y were assigned 

to the unsymmetrical isomer (113) . These data are summarised i n Table IV.3. 

The formation of a mixture of 2:1 adducts i s i n contrast w i t h the 

acetaldehyde r e a c t i o n , as even on reexamining the products from the l a t t e r , 

only the symmetrical adduct (106) could be detected. The reason f o r t h i s 

d i f f e r e n c e i s not understood. 

IV,a2.c But anal 

Under benzoyl peroxide i n i t i a t i o n , butanal reacted w i t h a small 

excess of hexafluorobut - 2-yne to give a l i q u i d containing seven 

components. Three major and one of the minor components were i d e n t i f i e d 

as 1:1 adducts by m.s,/g.l.c. and the expected product (118) was 

i s o l a t e d by preparative scale g . l . c . Since attack by r a d i c a l (119) can 

only produce two 1:1 adducts, i t seems l i k e l y t h a t the other two arise 

from a r a d i c a l of type (120), 
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C^Fg, +H- CF3 H C F 3 ^ C F 3 
CH3CH2CH2C'^ >- /^"^ 

^ 0 CH3CH2CH2C CF3 CH3CH2CH2C " ^ H 
(119) • ^O ^ 0 . 

(118) 

. / H C . F e , + H - C F 3 CF3 / C F 3 
CH3CH2CHC y ^C=C + 

^ 0 CH3CH2CHCHO ^ C F 3 CH3CH2CHCHO H 
(120) 

Two of the other minor components showed high mass peaks which can be 

derived from 2:1 adducts by simple, w e l l precedented fragmentations. ̂  

•0-- QCHo -CH2=CH2 0 
I I AI _ ^ 1 ^ I I 

R-C^^CH2g ^ ~ ^ \ -
CH 2 CH 2 
a 

m/e = 306 m/e = 278 

C F 3 

R = C F 3 C H 2 C — or CF3CH CH-
COC3H7 COC3H7 CF3 

IV.C.2.d Pentanal 

Pentanal reacted w i t h hexafluorobut-2-yne using benzoyl peroxide 

as the i n i t i a t o r to give a complicated mixture of products from which 

two f r a c t i o n s were separable by preparative scale g . l . c . The f i r s t 

f r a c t i o n was r e a d i l y assigned the s t r u c t u r e (121) by examination of 

the n.m.r. spectrum (see Table I V . 3 ) . I d e n t i f i c a t i o n of the second 

f r a c t i o n was not possible as i t . e v i d e n t l y contained two components which 

could not be separated. 

C F 3 / H 

Ci^HgC CF3 

0 
(121) • 
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CH C 
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Table IV.3 

N.m.r. Data f o r Aldehyde Adducts 

CF. 

(105) 

Signal Chemical. 
S h i f t 

63.1 

67.5 

M u l t i p l i c i t y 
(J values i n Hz) 
^' -̂ ad = 

C F 3 . / ^ F 3 a 
H - ^ C - C - H c 

C H a C ^ CCH3 
II II b 
0 0 

(106) 

63.9 

b C F 3 H e 
• C=C 

C H 3 C H 2 C ' ^ ^ C F 3 
c d 0 

(112) 

63.0 D, J = 7 
ae 

of Q, J^^ - 1.6 

67.3 Broad S 

H - C-C -

(114) 

, C F 3 a 
H f 

"CCH ,CH , 
II e ̂  d ̂  

64.2 Broad M 

0 
II h g ' 
CCH 2CH 3 

C F 3 C H 2 C C F 3 b 
c i I 

CCH2CH3 
II 
0 

60.2 

69.6 

(113) 

b CF3 H f 
> = < 

CH3CH2CH2C CF3 
c d e 0 

(118) 

62.7 D. J = 7.5 
af 

67.0 S 

bCFa-

CH 3CH2CH2CH2C' 
c d e f . ^ 

CF3 
a b 

57.5 D, J = 7 

61.5 S 
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Signal Chemical M u l t i p l i c i t y 
s h i f t (J values i n Hz) 

(105) c 2.50 S 

6.45 D, = 7.5 da 

(106) b 2,4 S 

c 4,1 S 

(112) c 1,08 T, J = 7 
cd 

d 2,69 Q, J, = 7 
dc 

e 6.40 Q, J = 7 
ea 

of Q, J^^ = 1.3 

(114)* d,g 1.13 

(113)* e,h,i 2.68 Broad 

f 4.08 

0,95 T, J = 7 
cd 

1.71 Sx, = = 7 
dc de 

2.72 T, J = 7 
ed 

6,42 Q, J^^ = 7.5 

(121) c 0,86 T, J = 7 cd 
d,e 1,37 Broad M 

f 2.60 T, = 7 
fe 

g 6,23 Q, = 7 

* run as a mixture of (113) and (114) 

s i n g l e t , D = doublet, T = t r i p l e t , Q = q u a r t e t , Sx = sextet 
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IV.C.2.e Attempted Reaction w i t h (E)-But-2-enal (Crotonaldehyde) 

No r e a c t i o n occurred between (E)-but-2-enal and hexafluorobut-2-yne 

using benzoyl peroxide i n i t i a t i o n and t h i s i s probably due to s t a b i l i s a t i o n 

of the intermediate r a d i c a l by d e l o c a l i s a t i o n of the unpaired e l e c t r o n . 

CH, CS, H C^Fe >-< — X 
'C=0 H^ ^ C ^ 

0 

IV.C.3 Reaction w i t h 2,2,2-Trifluoroethanol 

I r r a d i a t i o n of hexafluorobut-2-yne w i t h an excess of t r i f l u o r o -

ethanol gave a mixture of three products, from which the two major 

components were i s o l a t e d i n equal q u a n t i t i e s . Spectral data showed 

these products to be ( E ) - and (Z)-3-trifluoromethyl-1,1,1,5,5,5-hexa-

fluoropent-2-en-4-ol. The stereochemistry of these adducts followed 

from the ̂ ^F n.m.r. coupling constants of the y i n y l i c C F 3 groups. 

gamma CF3 H C F 3 ^ C F 3 
CF3CH2OH + C F 3 C = C C F 3 • — ^ ^C=C'^ + /"^^^^ 

i r r a d i a t i o n CF3CHOH ^CFg CF3CHOH H 

(122) (123) 

(22%) (22%) 
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IV,C,4 Reactions Attempted w i t h Other Compounds Containing C-H Bonds 

Since aldehydes react q u i t e r e a d i l y w i t h hexafluorobut-2-yne a 

series of free r a d i c a l reactions was undertaken using a v a r i e t y of 

f u n c t i o n a l hydrocarbons to determine''which other types of C-H bond 

would add across the t r i p l e bond. Gamma i r r a d i a t i o n , benzoyl peroxide 

and di-tertiarij-hutyl peroxide were used as i n i t i a t o r s . Most of the 

compounds used f a i l e d to react w i t h hexafluorobut-2-yne but small 

q u a n t i t i e s of products were detectable from the reactions w i t h aromatic 

hydrocarbons. The r e s u l t s are summarised i n Table IV.4, 

Discussion 

Most of the hydrocarbons l i s t e d i n Table IV.4 have been reported 

to react w i t h fluoroalkenes under gamma ray or peroxide i n i t i a t i o n . 

+ CF2=CF-CF 
peroxide 

C H 2 - C F 2 - C F H C F 3 

f 3 
CH2-CF-CF2H [173] 

noN 



-102-

Table IV.4 

Attempted Free Radical Additions to Hexafluorobut-2-yne 

Reactant I n i t i a t o r Results 

HCON(CH3)2 

CĤ OCH. 

CH3CH2OCH2CH3 

CFgCCFoH 
II 
0 

A 

Y 

7, 80° 

A 

No reaction 

No reaction 

No reaction 

No reaction 

No reaction 

No reac t i o n 

Some polymer 

A 

B 

Some polymer + 3 products i n 
trace amounts 

3 products i n trace amounts 

Small y i e l d of complex mixture 
of l i q u i d products 

Some polymer 

Some polymer 

Small y i e l d of complex mixture 
of l i q u i d products 

OCH, 

A benzoyl peroxide 75-85° 

B d i - t - b u t y l peroxide 125-135° 
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C2H5OC2H5 + 

CHq 
I ' 

H CHOC2H5 H 

CH, CH3 
I - I 
CHOCH 

[174] 

HCON(CH3)2 + C 1 C F = C F 2 ^ (CH3)jNCCFjCFClH + CHINCH,(CF2CFC1)^H 
II " I • -
0 CHO 

n=l or 2 

[175] 

Recent work c a r r i e d out i n these l a b o r a t o r i e s has shown t h a t a wide 

v a r i e t y of etaers of the type CH3OX add to fluoroalkenes i n free r a d i c a l 

processes, to give products resuJ t i n g from f i s s i o n of- a C-H bond u to 

the oxygen atoms. 

e.g, CH3OX + CF2=CF -CF3 

X = C H 3 , CH2OCH3, CH2CH2OCH3 

X O C H 2 C F 2 - C H F C F 3 + minor 
components 

I t i s therefore somewhat s u r p r i s i n g that analagous reactions w i t h 

hexafluorobut-2-yne f a i l e d to give s i g n i f i c a n t amounts of products. 

Almost q u a n t i t a t i v e recoveries of s t a r t i n g m aterials were observed i n 

a l l the reactions using benzoyl peroxide and gamma i r r a d i a t i o n as the 

i n i t i a t o r . A small amount of polyhexafluorobut-2-yne was formed i n some 

cases but since ca. 80% polymerisation was observed when hexafluorobut-

2-yne was i r r a d i a t e d alone, i t must be concluded that these hydrocarbons 

have an i n h i b i t i n g e f f e c t on the polymerisation r e a c t i o n . 

To underatand these observations i t w i l l be h e l p f u l to consider 

the mechanism of the f r e e r a d i c a l chain a d d i t i o n r e a c t i o n . The process 

involves a series of steps summarised as f o l l o w s . 
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I n i t i a t i o n R-H i ^ l i l M ^ ^ R. , R- (1) 

R-̂  / C F 3 
Propagation R- + C F 3 C = C C F 3 C=C, (2) 

CFj-^ 

(124) 

R . C F 3 R^ ^ C F 3 
Chain Transfer c=C + R-H C=C + R- (3) 

C F 3 - ^ • C F 3 ' ^ '̂H 

Since .Kixafluorobut-2-yne i s r e a d i l y horaopolymerised by gamma 

i r r a d i a t i o n some degree of te l o m e r i s a t i o n might also be a n t i c i p a t e d 

(Step 4) although no telomeric products were detected i n any of the 

benzoyl peroxide or gamma ray i n i t i a t e d a d d i t i o n , reactions. Chain 

t e r m i n a t i o n occurs by r a d i c a l - r a d i c a l combination reactions. 

R /CFo 
Telomerisation ^C=C. ' -̂  C F 3 C H C C F 3 <- R-fC (CF3) =C(CF3) ] 2 (4) 

C F 3 ' ^ 

The ease w i t h which the i n i t i a t i o n step proceeds depends on the 

str e n g t h of the bond to be broken. Some d i s s o c i a t i o n energies of C-H 

bonds i n d i f f e r e n t environments are given i n Table IV.5. 

Obviously the i n i t i a t i o n step i s not the determining f a c t o r i n 

these r e a c t i o n s , since i n view of the bond energies shown i n Table IV.5, 

dimethyl ether would be expected t o undergo homolytic C-H bond f i s s i o n 

more r e a d i l y than methanol. Also, the reactions w i t h fluoroalkenes 

demonstrate th a t ethers form r a d i c a l s q u i t e r e a d i l y . As mentioned above 

these r a d i c a l s add to a wide range of fluoroalkenes and furthermore, 

r a d i c a l s of tlio type CH3CO and CH3CHOH r e a d i l y add to hexaf luorobut-2-yne. 
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Table IV.5 

Bond D i s s o c i a t i o n Energies of C-H Bonds i n Selected Compounds^^S 

R-H B,D,E. kJ mol~l 

CH3-H 434 

CBHS-H 431 

C2H5-H 410 

C C I 3-H 402 

HOCH2-H 3 89 

CH3OCH2-H 385 

CH3CO-H 366 

CgHsCHj-H 356 

I t i s th e r e f o r e probable that the propagation step also occurs f o r the 

unsuccessful reactions shown i n Table IV.4. -

^ - ^ / C F 3 
R- + C F 3 C S C C F 3 ^ C=C R = CH3OCH2 

C F 3 ^ 

(124) 
C2H5OCHCH3 etc. 

Thus i t seems that there i s some d i f f e r e n c e between the intermediate 

r a d i c a l s (124) which allows the chain r e a c t i o n to proceed when 

R- = CH3CO and CH3CHOH but favours chain termination when R = CH3OCH2 

e t c . A d i f f e r e n c e of a f a c t o r of one hundred i n the chain lengths of 

these processes would be s u f f i c i e n t to f i t the observations. 

In the case of the r e a c t i o n wi t l i dimethyl ether, the intermediate 

r a d i c a l (125) has the p o s s i b i l i t y of undergoing intramolecular hydrogen 
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atom t r a n s f e r to give (126) . This r a d i c a l can abstract a hydrogen atom, 

react w i t h a f u r t h e r molecule of butyne or dimerise. 

CH2 4 C H 2 , 

C=C. ^ ^C=C 
CFj'^ "^CF3 CFs"^ ^ C F j 

(125) (126) 

I t has been found that dimethyl ether adducts of the type HRP.CH2OCH3 

are less r e a c t i v e towards fluoroalkenes than dimethyl ether i t s e l f ' 

and t h e r e f u r s i t i s u n l i k e l y that r a d i c a l (126) w i l l attack another 

molecule of acetylene. I t i s also possible that r a d i c a l (126) i s too 

unreactive f o r i t to abstract a hydrogen atom from dimethyl ether, 

leaving d i m e r i s a t i o n as the most l i k e l y a l t e r n a t i v e . This would have 

the e f f e c t of t e r m i n a t i n g the chain r e a c t i o n and would account f o r the 

f a i l u r e to observe detectable q u a n t i t i e s of products. 

/ ° ^ C H . 
' 2 . 

CH3OCH3 •"C=C' + CH3OCH2 
I X > C F 3 ' " ' ^ C F 3 

CHo ""^H 

C i ^ ^ ^"^H / CF3 / C F 3 CF3 ^ C F 3 

^c=c . ( >- C=C c=c^ 

CFg"^ ""CF3 \ H^ "^CH20CH2CH20CH2'^ H 

(126) \ s./ . H ^CHoOCH 2 
c,F^^ • -c=c' ^ - ^ c = t ; 

C F 3 ' ^ ^ C F 3 C F 3 ' ^ C F 3 

Traces of products formed from the benzoyl peroxide and y ^̂ ŷ 

i n i t i a t e d reactions w i t h toluene were not i s o l a b l e but m.s./g.l.c. 
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showed the presence of the two isomeric 1:1 adducts which are probably 

the cis and trans isomers (127) and (128). I n a d d i t i o n the benzoyl 

peroxide i n i t i a t e d r e a c t i o n gave a t h i r d component which corresponded 

to an adduct of type (129). This product presumably arises from r e a c t i o n 

of hexafluorobut-2-yne w i t h phenyl r a d i c a l s generated from the i n i t i a t o r . 

CF, CF, 

Cg H5 CH2 H 

(127) 

CF3 H 
/C=C 

C6H5CH2 "^CFg 

(128) 

C6H5C(CF3)=CHCF3 

(129) 

B e t t e r conversions of hexafluorobut-2-yne (ca. 10%) were obtained 

i n the di-tevt'iavy-h\ity\ peroxide (DTBP) induced reactions, probably 

because of the higher temperature at which they were performed. The 

products from these reactions were very complicated mixtures but 

m.s./g.l.c. showed th a t some of the ex:pected adducts were indeed formed 

together w i t h products a r i s i n g from the attack of methyl r a d i c a l s 

(generated from the i n i t i a t o r ) on hexafluprobut-2-yne. 

CH: CH. 
CH3-C-O-O-C-CH3 

CHo CHo 130° 
^ 2CH3-C-O' 

CH. 
2CH3 + 2CH,CCH3 

0 

CH, + 

X =,H or OCH3 

+ CF3CHCCF3 
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CH3 

C F 3 C F 3 
CH3 + C F 3 C = C C F 3 >- *" C=CHCF3 

CH3 ^ C F 3 CHg-^ 

For comparison the reactions of hexafluorobut-2-yne w i t h i n i t i a t o r s 

were i n v e s t i g a t e d . Benzoyl peroxide was recovered q u a n t i t a t i v e l y on 

heating w i t h hexafluorobut-2-yne at 70° f o r 16 hours. This r e s u l t was 

very s u r p r i s i n g , since under these c o n d i t i o n s , s u b s t a n t i a l decomposition 

of the peroxide would have been a n t i c i p a t e d ( h a l f l i f e of benzoyl 

peroxide at 80° i s ca. 3.5 hours^^^). However, the same r e s u l t s were 

obtained on repeating the experiment at 75°. I n a c o n t r o l reaction a 

sample of the same peroxide was found to be an e f f e c t i v e i n i t i a t o r f o r 

the a d d i t i o n of acetaldehyde to hexafluorobut-2-yne. No s a t i s f a c t o r y 

e xplanation f o r these r e s u l t s has been found. 

However, complex l i q u i d products were obtained when hexafluorobut-2-yne 

was heated w i t h DTBP. A series of oligomers of the type CH3 - (Ci^F6)jj-H, 

where n = 1 - 4, was detectable by m.s./g.l.c. and these are presumably 

produced by a methyl r a d i c a l induced t e l o m e r i s a t i o n process. 
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C F 3 ^ . C F 3 ^ 
CH-, + CF3CHCCF3 .C=C-CF3 . C=CHCF3 

^ ^ ^ C H 3 ^ CH3 

Ĉ F 

+H« 
C H 3-[C ( C F 3)=C ( C F 3 ) ] 2 * CHg-f C ( C F 3 ) =C (CF3) j ^ H 

etc. 

IV,C.5 Reactions Attempted w i t h Compounds Containing C-X Bonds 

A few free r a d i c a l reactions of hexafluorobut-2-yne with compounds 

co n t a i n i n g carbon-halogen bonds were attempted but no products were 

observed except f o r a l i t t l e polymer. The r e s u l t s are summarised i n 

Table IV.6, 

Table IV,6 

Attempted Reactions w i t h Halogen Containing Compounds 

Compound I n i t i a t o r Results 

C H C I 3 Y No reac t i o n 

CCltj Y Some polymerisation 

C F C I 3 Y Some polymerisation 

C F 2 B r 2 Y Some poljnnerisation 

CHoCCl Y Some polymerisation 
II 
0 
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S i m i l a r arguments to those given i n the previous section can be used 

to account f o r the f a i l u r e of these halocarbon systems to add to 

hexafluorobut - 2-yne. I n view of the r e s u l t s given i n the previous 

s e c t i o n i t i s perhaps not s u r p r i s i n g t h a t e l e c t r o p h i l i c r a d i c a l s such 

as C C I 3 and C F C I 2 do not react w i t h the very e l e c t r o p h i l i c acetylene. 
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CHAPTER V 

REACTIONS . INVOLVING FLUORIDE ION 

V.A I n t r o d u c t i o n 

Several f l u o r i d e ion induced reactions of hexafluorobut-2-yne have 

been reported i n the l i t e r a t u r e and these were discussed i n Chapter I I . 

Most of these reactions involved the i n i t i a l formation of the heptafluoro-

butenide anion (51) , which was then trapped by reagents susceptible to 

n u c l e o p h i l i c a t t a c k . 

CF3 _ R-F CF3 ^R 
CF0CHCCF3 + F~ »- "̂ C=C V ^C=C + F 

F CF3 F CF3 

(51) 

I n the absence of a trapping agent, (51) reacts w i t h f u r t h e r molecules of 

hexafluorobut-2-yne to give a homopoljnner. 

CF3 
^C=C + nCF3CECCF3 ' > polymer 

F CF3 

(51) 

The work described i n t h i s chapter f a l l s i n t o three categories. F i r s t l y , 

the f l u o r i d e io'n induced polymerisation of hexafluorobut-2-yne was 

repeated and some of the p r o p e r t i e s of the polymer were i n v e s t i g a t e d . 

Then copolymerisation of hexafluorobut-2-yne w i t h other e l e c t r o p h i l i c 

acetylenes was studied and f i n a l l y , a series of f l u o r i d e ion catalysed 

co-oligomerisations of hexafluorobut-2-yne w i t h perfluoroalkenes i s described. 
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V.B Polymerisation and Copolymerisation Reactions 

V.B.I Polyhexafluorobut-2-yne 

V.B.I.a I n t r o d u c t i o n 

The ganmia ray i n i t i a t e d polymerisation of hexafluorobut-2-yne 

was discussed i n the previous chapter. This section deals w i t h the 

f l u o r i d e i o n induced -polymerisation, which was f i r s t observed i n the 

course of work i n v o l v i n g the a d d i t i o n of the heptafluorobutenide anion 

(51) to p o l y f l u o r o a r o m a t i c s y s t e m s . ^ ^ ^ 

I n the presence of a d i p o l a r a p r o t i c solvent and a source of 

f l u o r i d e i o n , hexafluorobut-2-yne poljmierises i n good y i e l d to give a 

chemically i n e r t , o f f - w h i t e s o l i d . ^ 2 " * * The most obvious s t r u c t u r e which 

can be envisaged f o r the polymer i s the l i n e a r polyene (130), a r i s i n g 

from a simple anionic polymerisation process. 

F + CFgC^CCFj F C ( C F 3 ) = C ( C F 3 ) y F f C ( C F 3 ) = C ( C F 3 ) ] j j 

(130) 

However, a polymer w i t h t h i s type of s t r u c t u r e might w e l l be expected 

to be coloured and the f a c t t h a t i t i s a c t u a l l y o f f - w h i t e appears 

to support a h i g h l y c r o s s l i n k e d ladder type s t r u c t u r e such as (131) . 

CF. CF. CF-

CF: CF: 

(131) 

CF: 
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A saturated s t r u c t u r e i s also i n d i c a t e d by the absence of a C=C 

s t r e t c h i n the i n f r a r e d spectrum, ̂ 2"'* although t h i s could simply be 

a consequence of the symmetry of the double bonds i n s t r u c t u r e (130). 

The mass spectrum of the v o l a t i l e f r a c t i o n s of the polymer was 

r e p e t i t i v e every 162 mass units92,93 ^^d showed the presence of a 

series of oligomers of general formula F—fCi^Fg^fj H.^^ This i s consistent 

w i t h a polymerisation process i n i t i a t e d by f l u o r i d e ion and terminated 

by proton a b s t r a c t i o n from the solvent but i t does not provide a means 

of d i s t i n g u i s h i n g between the two possible s t r u c t u r e s . The polymer was 

f i n a l l y assigned the polyene s t r u c t u r e f o l l o w i n g an ESCA i n v e s t i g a t i o n . 

V.B.l.b Preparation and Thermal Behaviour 

F l u o r i d e i o n induced polymerisations of hexafluorobut-2-yne were 

c a r r i e d out using sulpholan and tetraglyme as solvents and the r e s u l t i n g 

o f f - w h i t e s o l i d s were studied by thermogravimetric analysis (T.G.A.). 1^"* 

These samples were considerably less stable than the polymer obtained 

by gamma i r r a d i a t i o n (see Chapter I V ) . The l a t t e r showed no s i g n i f i c a n t 

weight loss u n t i l 608°, whereas the polymers prepared using caesium 

f l u o r i d e s t a r t e d to sublime a t 200°. By 600°, the weight loss was 

approximately 50% and these r e s u l t s are as would be a n t i c i p a t e d f o r a 

polymer c o n s i s t i n g of a mixture of oligomers w i t h a large range o f . 

molecular weights. 

V.B.l.c S o l u b i l i t y 

The f l u o r i d e i on polymer was p a r t l y soluble i n acetone and methanol, 

again i n d i c a t i n g the presence of low molecular weight m a t e r i a l . I t was 

observed t h a t when these s o l u t i o n s were evaporated from a glass surface, 
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the residue rendered the surface water-repellent.^^'* 

V.B.2 Copolymerisation w i t h Acetylenic Esters 

Reaction of hexafluorobut-2-yne (I) w i t h the a c e t y l e n i c d i e s t e r 

(132) i n the presence of caesium f l u o r i d e gave a tan coloured copolymer, 

CsF 
C F 3 C H C C F 3 + C H 3 O O C C E C C O O C H 3 »- copolymer 

tetraglyme 
(1) (132) 

Only a few peaks at low mass number were seen i n the mass spectrum. 

Peaks due to C F 3 and C 2 F 5 were observed but those due to the molecular 

ions of {!) and (132) were very weak, i n d i c a t i n g that the copolymer 

breaks down i n a d i f f e r e n t manner to polyhexafluorobut-2-yne. 

The r a t i o of (1) to (132) i n the copolymer was dependent on how 

the r e a c t i o n was performed. When the ester (132), caesium f l u o r i d e 

and tetraglyme were s t i r r e d together under an atmosphere of hexafluoro-

but-2-yne, the r e s u l t i n g copolymer was shown by elemental analysis to 

c o n t a i n (1^) and (132) i n the r a t i o of 9.5:1. However^ adding the two 

acetylenes simultaneously i n small q u a n t i t i e s gave a copolymer w i t h 

a 2.1:1 r a t i o of monomer u n i t s . 

These s o l i d s were shown to be genuine copolymers r a t h e r than 

mixtures of the two homopolymers since a r e a c t i o n of the d i e s t e r (132) 

w i t h caesium f l u o r i d e i n tetraglyme gave no s o l i d products. Furthermore 

no s t a r t i n g m a t e r i a l or l i q u i d produc^^s were recovered by reduced pressure 

d i s t i l l a t i o n and t . l . c . also i n d i c a t e d t h a t a l l the d i e s t e r had been 

consumed. The products from t h i s r e a c t i o n therefore probably consist of 

a series of i n v o l a t i l e oligomers of the type F-(-CgHgO^-^jjH, by analogy 

w i t h the f l u o r i d e i on i n i t i a t e d polymerisation of hexafluorobut-2-yne. 
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F C O O C H 3 F COOCH: 
F + C H 3 O O C C - C C O O C H 3 ^ ^C=C_ y ^C=C^ 

CH300C^ ~ solvent CHgOOC'^ 
+ H+ 

n(132) 

solvent 
F - eCgHgO^^^j ^ F - f C g H g O^^^H 

Polymerisation of dimethyl acetylenedicarboxylate has been 

reported by Russian workers using e i t h e r neat aminesl^9-9 QJ- various 

a l k a l i metal s a l t s i n D.M.F.̂ ^̂  as i n i t i a t o r s and these observations 

lend support to the mechanism proposed above f o r the f l u o r i d e ion 

induced process. However, the oligomers of (132) were soluble i n 

tetraglyme and could not be i s o l a t e d from the r e a c t i o n mixture. 

This r e s u l t allows f o r a b e t t e r understanding of the copolymerisation 

reactions observed above. I n the f i r s t r e a c t i o n most of the di e s t e r 

probably homo-oligomerised before i t had chance to react w i t h the 

flu o r o c a r b o n . The homo-oligomers were l e f t i n s o l u t i o n and therefore the 

r e s i d u a l polymer contained a large excess of hexafluorobut-2-yne u n i t s . 

However, i n the second r e a c t i o n the chance of copolymerisation was 

increased by adding the monomers simultaneously and therefore the ester 

content of the r e s u l t i n g polymer was increased. 

The copolymer obtained from a s i m i l a r r e a c t i o n between hexafluoro-

but-2-yne and d i e t h y l acetylenedicarboxylate (133) was a brown v i s c i d 

m a t e r i a l which was soluble i n ether. Elemental analysis i n d i c a t e d that 

t h i s m a t e r i a l contained ester and fluorocarbon u n i t s i n a r a t i o of 

approximately 6:1. 

I t was of considerable i n t e r e s t t o determine whether these 

copolymers could be hydrolysed t o give a polymer containing both 

t r i f l u o r o m e t h y l and carbox y l i c a c i d groupings. Such a f u n c t i o n a l i s e d 
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fluorocarbon polymer might have p o t e n t i a l a p p l i c a t i o n s as an i o n - s e l e c t i v e 

membrane i n e l e c t r o l y t i c c e l l s , as have c e r t a i n copolymers of t e t r a f l u o r o -

ethylene.^®^ However, a l l attempts to hydrolyse the copoljrmer of (I) 

and (132) gave only recovered s t a r t i n g m a t e r i a l even under f o r c i n g 

c o n d i t i o n s . I t was believed that t h i s apparent u n r e a c t i v i t y was due to 

d i f f i c u l t i e s i n w e t t i n g the surface of the polymer and therefore a 

series of experiments was attempted using various s u r f a c t a n t s . Again 

no hydrolysed products were obtained and i t was concluded t h a t perhaps 

the copolymer e x i s t s i n a conformation where the ester groups are 

shielded against attack by the fluorocarbon u n i t s . 

V.C. Co-oligomerisation w i t h Fluoroalkenes 

V.C.I I n t r o d u c t i o n 

An i n t e r e s t i n g analogy has been drawn between the r o l e of 

f l u o r i d e i o n i n fluorocarbon chemistry and that of the proton i n 

hydrocarbon chemistry. Just as alkenes rearrange, polymerise or 

act as a l k y l a t i n g agents under a c i d i c c o n d i t i o n s , i n the presence of 

f l u o r i d e i o n , fluoroalkenes: 

a) rearrange to give isomers containing the lowest possible 

number of v i n y l i c f l u o r i n e s , 

b) oligomerise to g i v e , u s u a l l y , dimers, trimers and tetramers, 

c) react w i t h a c t i v a t e d polyfluoroaromatic systems i n what may be 

regarded as the n u c l e o p h i l i c equivalent of a F r i e d e l - C r a f t s 

r e a c t i o n . 

Examples of these processes are summarised below and, f o r comparison, 

the corresponding reactions i n hydrocarbon chemistry are given. 
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F + cF2=Y-c::^ CFc-C=C^ + F" 

H 
c f . H + C H 2 = C - C C : ^ ^ C H 3 - C=CC^ + H 

Oligomerisation: 

_ C3F6 
F + C F 2 = C F - C F 3 ^Z::̂  ( C F 3 ) 2 C F >• (CF3) 2CFCF2CFCF3 

nCgFg 

polymer - F 

[183] trimers F ,C3F6 

+ tetramers 
( C F 3 ) 2 C F C F = C F C F 3 

dimer 

60% H2S0i^ 
c f . CH2=C(CH3)2 ^ (CH3)3CCH2-C" + (CH3)3CCH=C(CH3)2 

70° ' C H : 

80% 20% 

A l k y l a t i o n Reactions: 

KF 
+ C F 2 = C F C F 3 

sulpholan 

F ( C F 3 ) 2 F ( C F 3 ) 2 

F [184] 
• C F ( C F 3 ) 2 

c f . 
H3PO4 

+ C H 2 = C H C H 3 ^ 

C H ( C H 3 ) ; 
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I n recent years a wide range of novel p e r f l u o r i n a t e d compounds 

have been prepared by f l u o r i d e i o n catalysed oligomerisations of 

f luoroalkenes, The process has been extended to produce a 

seri e s of co-oligomers i n c o r p o r a t i n g two d i f f e r e n t fluoroalkene u n i t s , 

e.g. 

(96) 

CsF, DMF 
72 hours 

F F 

[186] 

(96) 

CsF, DMF • 
+ CF3CF=CF2 >• 

5 hours ~CF. 
[187] 

+ higher 
oligomers 

However, no s i m i l a r reactions w i t h hexafluorobut-2-yne have been 

reported i n the l i t e r a t u r e , although previous work i n t h i s laboratory^ 

i n d i c a t e d t h a t oligomers (134)-(136) were produced from the r e a c t i o n 

w i t h octafluorobut-2-ene (137). 

CsF C 2 F 5 ^^CjFs C 2 F 5 C F 3 

C F 3 C E C C F 3 + C F 3 C F = C F C F 3 >• "^0=0 + 'Jc=C ^ C F 3 

C F 3 ^ ^ C F 3 C F 3 "^C=C 
(137) C F 3 ^ '^C2F5 

(134) 

C F 3 C 2 F 5 
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This s e c t i o n describes the preparation of co-oligcmers from hexafluoro-

but-2-yne and the mechanism of these reactions i s discussed. 

V.C.2 Hexafluorocyclobutene 

A r a p i d r e a c t i o n occurred when a s t i r r e d suspension of caesium 

f l u o r i d e i n tetraglyme was exposed to an atmosphere containing equal 

amounts of hexafluorobut-2-yne and hexafluorocyclobutene. V i r t u a l l y a l l 

the gas had been consumed a f t e r 24 hours and three d i f f e r e n t procedures 

were attempted to work up the r e s u l t i n g r e a c t i o n mixture. Flash 

d i s t i l l a t i o n gave a very small recovery (5%) of a multicomponent l i q u i d . 

Aqueous work-up gave a 26% recovery of a multicomponent l i q u i d together 

w i t h 53% of a t a r r y i n t r a c t a b l e m a t e r i a l . A 25% recovery of a very 

complex mixture of l i q u i d products was obtained by steam d i s t i l l a t i o n . 

No products could be i s o l a t e d from any of these mixtures but three 

dimeric species could be detected by m.s./g.l.c. Since the f l u o r i d e 

i o n i n i t i a t e d o l i g o m e r i s a t i o n of (96) gives only two dimers,^^^ (138) 

and (139), the t h i r d product i s presumably a codimer of the type (140). 

CsF 

(96) (138) 

+ *~̂ ^̂ /* * trimer + tetramer 

(139) 

CsF C F 3 ^ F 
C F 3 C E C C F 3 + (96) ^ ^C=C 

(1) 
CF. 

(140) 



-120-

V.C.3 Perfluorocyclopentene 

This r e a c t i o n proceeded r a p i d l y , and v i r t u a l l y a l l the s t a r t i n g 

m a t e r i a l s were consumed w i t h i n 24 hours. Once again, however, low mass 

recoveries were obtained and the product mixtures were complex. 

I n a t y p i c a l experiment w i t h tetraglyme as the solvent, a 25% 

recovery of fluorocarbon was obtained using f l a s h d i s t i l l a t i o n to 

work up the r e a c t i o n mixture. Steam d i s t i l l a t i o n gave a b e t t e r recovery 

(60%) but the product mixture contained ten components. However, small 

q u a n t i t i e s of compounds (141) and (142) were i s o l a t e d by preparative 

scale g . l . c . and m.s./g.l.c. revealed the presence of cyclopentene 

dimer (143) . 

¥ I j + C F 3 C r C C F 3 

CsF, CF. 
R.T. / - ' ^ ^ ^ * 

tetraglyme 3 '6 (142) ^2^5 

(141) 

(143) 

Both (141) and (142) showed a parent peak i n the mass spectrum and 

gave s a t i s f a c t o r y elemental analyses. Structures were assigned on the 

basis of t h e i r n.m.r. spectra. Compound (141) showed two v i n y l i c 

C F 3 groups, two v i n y l i c f l u o r i n e .itoms and three d i s t i n c t C F 2 groups. 

The s i d e chain was .issigiiod a t-ffOii; c o n f i y u r a l ion by inspect ion of the 

C F 3 coupling constants as described i n Lhe previou.s chapter. The other 

co-oligoraer was assigned the b i c y c l i c s t r u c t u r e (142) r a t h e r than the 
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isomeric 1,2-dibutenylcyclopentene s t r u c t u r e (144) because the n.m.r. 

spectrum showed only C F 3 and C F 2 resonances. Also the weak C=C s t r e t c h 

i n the i n f r a r e d spectrum i n d i c a t e s the absence of v i n y l i c f l u o r i n e 

atoms and i s t h e r e f o r e consistent w i t h s t r u c t u r e (142). 

(144) 

A series of reactions using a v a r i e t y of solvents was c a r r i e d out i n 

an attempt to improve the mass recovery but both sulpholan and dimethyl-

fomamide gave s i m i l a r r e s u l t s to those described above. The use of 

a v o l a t i l e solvent was then i n v e s t i g a t e d as i t was a n t i c i p a t e d that i t 

could be removed by d i s t i l l a t i o n to leave the products behind. However, 

when the r e a c t i o n was c a r r i e d out i n a c e t o n i t r i l e the m a j o r i t y of the 

product d i s t i l l e d over w i t h the solvent and could not be i s o l a t e d . The 

d i s t i l l a t i o n residue was a complex i n t r a c t a b l e o i l which was not 

i n v e s t i g a t e d f u r t h e r . I t t h e r e f o r e appears t h a t the r e a c t i o n i n aceto­

n i t r i l e gives mainly v o l a t i l e low oligomers, whereas the other solvents 

favour the formation of higher molecular weight compounds. 

V.C.4 Perfluorocyclohexene 

No r e a c t i o n between hexafluorobut-2-yne and perfluorocyclohexene 

was observed e i t h e r at room temperature or at 60°. Instead the acetylene 

homopolymerised and perfluorocyclohexene was recovered unchanged. 
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V.C.5 Hexafluoropropene 

This r e a c t i o n proceeded t o v i r t u a l completion w i t h i n 24 hours but 

again poor mass recoveries were obtained. However, a small q u a n t i t y of 

l i q u i d containing f o u r major components was obtained and these were 

i d e n t i f i e d by m.s./g.l.c. as C-^i^F2hy ^11^18 isomers of C j o F i s * 

Except f o r C ^ i ^ F 2 i | , these were i s o l a t e d by preparative scale g . l . c . and 

the C i j F ^ s component was i d e n t i f i e d as ( 1 4 5 ) . This compound showed a 

parent peak i n the mass spectrum and gave a s a t i s f a c t o r y elemental 

a n a l y s i s . The ^^F n.m.r. spectrum of (145) shows j u s t two resonances 

i n the C F 3 region w i t h r e l a t i v e i n t e n s i t i e s of 2:1, implying a h i g h l y 

symmetrical s t r u c t u r e f o r t h i s compound. The s t r u c t u r e was confirmed by 

comparing the s p e c t r a l data f o r t h i s compound w i t h t h a t of a clo s e l y 

r e l a t e d model compound (see section V.C.7.C.). 

One of the C i g F i e f r a c t i o n s could be assigned the cyclohexene 

s t r u c t u r e ( 1 4 6 ) , although the ^^F n.m.r. spectrum was complicated by 

the presence of several stereoisomers. Several of the resonances were 

e i t h e r broadened or s p l i t but the two v i n y l i c C F 3 groups and the two 

t e r t i a r y f l u o r i n e s were c l e a r l y v i s i b l e . (A t e r t i a r y f l u o r i n e i s one 

attached to a saturated carbon on which a l l the other s u b s t i t u e n t s 

are themselves carbon.) 

The other C I Q F I S f r a c t i o n could not be assigned a s t r u c t u r e , 

presumably because i t was a mixture of isomers. 

CsF, R.T. 
C F 3 C F = C F 2 + C F 3 C 5 C C F 3 y C 1 0 F 1 8 

tetragljmie 

l'4J'2tt 

C F 3 C F 3 

(145) 
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Compound (145) i s formed by r e a c t i o n of two molecules of hexafluorobut-

2-yne w i t h one molecule of hexafluoropropene; however, attempts to 

improve the y i e l d of t h i s compound by using a 2:1 excess of the 

acetylene r e s u l t e d i n the formation of large q u a n t i t i e s of polyhexafluoro-

but-2-yne. The same tendency f o r the butyne to polymerise was observed 

even using a s l i g h t excess of the propene and the course of the r e a c t i o n 

i s e v i d e n t l y c r i t i c a l l y dependent on such f a c t o r s as how the gases are 

introduced i n t o the r e a c t i o n vessel e t c . 

V.C.6 Perfluorobut-2-ene 

A b e t t e r recovery of m a t e r i a l was obtained f o r t h i s r e a c t i o n . 

Flash d i s t i l l a t i o n gave a complex mixture of products from which 

compounds (134) and (135) were i s o l a t e d and the presence of a l i t t l e 

(136) was shown by m.s./g.l.c. A large q u a n t i t y of polyhexafluorobut-2-yne 

was also formed i n t h i s r e a c t i o n . 

C F 3 C H C C F 3 + C F 3 C F = C F C F 3 •• >• _ ^^"^X 

CsF, R.T. C 2 F 5 C 2 F 5 

tetraglyme C F 3 J ^ ' • C F 3 

(134) 

;C=C C 2 F 5 , 

C F 3 ^ C F 3 C F 3 C 2 F 5 

CF,i^ ^C=C'^ 

(135) (136) 

+ polyhexafluorobut-2-yne 

Compound (134) was i d e n t i f i e d by comparing g.I.c. r e t e n t i o n times and 

^^F n.m.r. spectra w i t h those of a known sample.'Co-oligomer (135) 
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showed a broad v i n y l i c C F 3 resonance ( r e l a t i v e i n t e n s i t y 6 ) , another 

C F 3 resonance at higher f i e l d ( r e l a t i v e i n t e n s i t y 3) and two broad 

C F 2 resonances ( t o t a l r e l a t i v e i n t e n s i t y 2 ) . The broadness of these 

s i g n a l s implies the presence of more than one isomer. Compound (136), 

which was not i s o l a t e d , was shown to be one of the minor components 

of the product mixture by m.s./g.l.c. The mass spectrum of t h i s 

component was i d e n t i c a l to th a t of a sample of (136) prepared by a 

previous worker i n t h i s l a b o r a t o r y . ̂  

V.C.7 Discussion 

V.C.7.a General 

As mentioned i n the previous s e c t i o n s , low mass recoveries were 

obtained i n most of these experiments. Several work-up procedures were 

employed i n an attempt to improve the mass balance. Flash d i s t i l l a t i o n , 

which i s a standard method f o r removing v o l a t i l e m a t e r i a l from i n v o l a t i l e 

s o l v e n t s , gave only small amounts of complex mixtures. This implies 

t h a t the major p a r t of the product consists of high molecular weight 

i n v o l a t i l e oligomers which should therefore separate out on pouring i n t o 

water. However, i n most cases only a l i t t l e i n t r a c t a b l e o i l was 

obtained by t h i s method. Solvent e x t r a c t i o n also f a i l e d to separate the 

products from the r e a c t i o n m ixture. 

Steam d i s t i l l a t i o n gave a s u b s t a n t i a l l y improved recovery of 

m a t e r i a l f o r the r e a c t i o n w i t h perfluorocyclopentene but un f o r t u n a t e l y 

t h i s method produced no s i g n i f i c a n t improvements f o r the p e r f l u o r o c y c l o -

butene and perfluoropropene rea c t i o n s . 

The cause of these i s o l a t i o n problems i s not understood and i s 

p a r t i c u l a r l y m y s t i f y i n g considering that no s i m i l a r d i f f i c u l t i e s were 

encountered i n the co-oligomerisations of fluoroalkenes reported by a 
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previous worker i n t h i s l a b o r a t o r y . ̂  5'* Presumably the problem i s 

associated w i t h some complex r e a c t i o n process which occurs when 

hexafluorobut-2-yne i s used instead of one of the fluoroalkenes and 

which leads to mainly i n t r a c t a b l e products. One p o s s i b i l i t y f o r such 

a process i s i l l u s t r a t e d i n Scheme V . l . 

Scheme V.l 

^ ^ C = C ^ ^>C-CF2CF3 ^ = CF2=C^ 
CFg-"^ "^CF3 CF3^ CF2CF3-

(147) (1A8) 

(148) + R' ^ > = < ^ = 
^ C F 2 C F 3 

I n t h i s way, simple oligomers of type (147) are converted i n t o a 

complex mixture of compounds of higher molecular weight. The i n i t i a l 

step of t h i s process involves a f l u o r i d e i o n induced isomerisation of 

(l47) t o give small concentrations of h i g h l y r e a c t i v e compounds 

con t a i n i n g d i f luoroinethylene groups (148) . This type of isomerisation 

has been shown to occur f o r the i n t e r n a l alkene (134) . ̂ .̂ ^ 

C 2 F 5 (F ) C F 3 C F 3 (F ) C F 3 CF; 

CFgCF^ C 2 F 5 ^ ^^^3^^ F 

C 2 F 5 (134) C 2 F r , 

Compounds of type (148) could then react w i t h any anionic species 

present to give higher oligomers. I n p r i n c i p l e , t h i s process may repeat 
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many times so t h a t a very large number of products i s possible. 

Another possible mechanism f o r the formation of complex mixtures of 

i n t r a c t a b l e products i s discussed i n the next s e c t i o n . 

V.C,7,b Mechanism 

Previous work i n t h i s laboratory^ has shown that i n the presence 

of caesium f l u o r i d e and a d i p o l a r a p r o t i c solvent, hexafluorocyclobutene 

(96) r e a d i l y oligomerises at room temperature to give a trimer as the 

major product together w i t h smaller amounts of dimers and a tetramer. 

I t i s t h e r e f o r e probable t h a t small amounts of these oligomers are 

formed i n the co-oligomerisation r e a c t i o n w i t h hexafluorobut-2-yne; i n 

a d d i t i o n i t i s l i k e l y t h a t small concentrations of anions derived from 

these oligomers are also present i n the r e a c t i o n mixture. Therefore, i n 

p r i n c i p l e , a l a r ge number of reactions and products are possible 

(Scheme V.2) and t h i s would account f o r the complex mixtures obtained 

i n these experiments. 

Compared w i t h perfluorocyclobutene, perfluorocyclopentene i s less 

susceptible to n u c l e o p h i l i c attack and does not oligomerise as r e a d i l y . 

The o l i g o m e r i s a t i o n appears to be confined to the formation of dimers 

and only proceeds r a p i d l y at elevated temperatures. I t was therefore 

a n t i c i p a t e d that the co-oligomerisation w i t h hexafluorobut-2-yne would 

give f a i r l y simple products. Unfortunately, however, although some low 

molecular weight compounds were i s o l a t e d , the m a j o r i t y of the product 

apparently consisted of i n t r a c t a b l e higher oligomers when the r e a c t i o n 

was performed i n tetraglyme, sulpholan or dimethyl formamide. The 

s i t u a t i o n was reversed using a c e t o n i t r i l e as solvent, mainly v o l a t i l e 

products being produced i n t h i s case. 
Compound (141) arises by n u c l e o p h i l i c attack of the lieptafluorobutenide 
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Scheme V.2 

Co-oligomerisation of Hexafluorobut-2-yne w i t h Hexafluorocyclobutene 

Some Possible Reactions and Products 

(96) 

CsF 
F 

(96) 
dimers, t r i m e r , tetramer 

F~ 

CF3C5CCF3 

(1) 

CsF CF. 
^C=C 

F CF3 

(1) 
F-f C(CF3)=C(CF3))2 

(1) 

e t c . 

F-eC(CF3)=C(CF3)) 

Rp + CF3CECCF3 

(1) 

CF-
:c=c. 

^CF3 

(1) 

Rp-eC(CF3)=C(CF3))2 

-F 

CF. 
^ C = C ^ 

-F 
Rp-f C(CF3)=C(CF3))2l^ 

F-(C.(CF3)=C(CF3))^ + R̂  -F F-f C(CF3)=C(CF3)^R 

Rp, R̂  = (96) or i t s dimers, trimer or tetramer 

Rp = anion derived from R̂  +, F 
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Scheme V.3 

Co-oligomerisation of Hexafluorobut-2-yne w i t h Perfluorocyclopentene 

CFsCrCCFg + F 
CF. CuF 

C=C CF3 
CF-

CF. 

C=C' 
C=C 

F-^ ~̂ CF3 
"CF. 

(1) (51) (55) 

(51) + 
CF-

•c=c Zl. 
CF. 

CF 3\ / C=C 
F 

CF 

(55) + 

(51) + 

CF. 
•c=c 

CF. 

( l A l ) 

CF, 

(141) 

CF. 

CF3-C 
F 

C-CF3 
I 

C-CF3 
^-C-CF. 
/ ^ 
C2F5 

-F~ 

(144) 

CF. CF, C,F 
' - c = c -

2̂  5 

CF , ( I ) 

^ ^C'^ CF3 -F (142) 
-^ . / \ ( . / • ^ -

, . .-C 

(141) (149) 
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ahion (51) on perfluorocyclopentene. There are several possible 

ways i n which the 2:1 adduct (142) may be formed: (1) r e a c t i o n of 

the dienide ion (55) w i t h perfluorocyclopentene followed by a f l u o r i d e 

i o n promoted c y c l i s a t i o n ; (2) r e a c t i o n of the 1:1 adduct (141) 

w i t h a second heptafluorobutenide anion to give p e r f l u o r o - l , 2 - b i s -

( 1-me t h y l p r o p - l - e n y l ) -cyclopentene (144) , followed by c y c l i s a t i o n ; 

(3) r e a c t i o n of the anion (149) w i t h hexafluorobut-2-yne followed 

by c y c l i s a t i o n , or a corresponding concerted process. Although the 

l a s t a l t e r n a t i v e seems most probable, there i s i n s u f f i c i e n t evidence 

to allow a clear d i s t i n c t i o n between these processes. Products 

s i m i l a r to (141) and (142) were obtained by previous workers i n 

t h i s l a b o r a t o r y from the f l u o r i d e ion i n i t i a t e d r eaction of hexa-

fluorobut-2-yne w i t h t e t r a f l u o r o p y r i d a z i n e ^ ^ (see I I . D . 7 ) . 

Perfluorocyclohexene (150) i s less r e a c t i v e than p e r f l u o r o c y c l o ­

pentene towards nucleophiles and presumably the f a i l u r e to form 

co-oligomers such as (151) between (150) and hexafluorobut-2-yne i s 

due t o the f a r greater r e a c t i v i t y of the acetylene. The hep t a f l u o r o ­

butenide anion (51) reacts p r e f e r e n t i a l l y w i t h more acetylene rather 

than w i t h the cycloalkene, thus g i v i n g polymer as the sole product. 

CF3CECCF3 + F 
CF. 

C=C 
F " "^CF3 

(51) 

(51) + nCF3CHCCF3 >- polymer 
CF3. 

;c=c 
(51) + CF. 

(150) (151) 
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I n contrast to (150), hexafluoropropene i s very susceptible to 

n u c l e o p h i l i c attack and r e a d i l y oligomerises at room temperature i n 

the presence of f l u o r i d e i o n . A mechanism s i m i l a r to that proposed 

f o r the cyclobutene r e a c t i o n (Scheme V.2) may also be operating here 

and again t h i s would account f o r thie observed complexity of the 

product mixtures. The mechanisms proposed to account f o r the formation 

of compounds (145) and (146) are shown i n Scheme V.4. Both the 

heptafluorobutenide anion (51) and the carbanion (153) generated 

from the propene (152) must take p a r t i n the r e a c t i o n , since the 

major product, C^ i F i g (145) can only be formed by i n i t i a l attack of 

(153) on hexafluorobut-2-yne, whereas the CJQFIS isomer (146) can 

only a r i s e from the r e a c t i o n of (51) w i t h (152). 

The c y c l i s a t i o n of the intermediate dienide anion (154) can 

be thought of as i n v o l v i n g intramolecular n u c l e o p h i l i c displacement 

of f l u o r i d e i o n from a saturated carbon atom and t h i s unusual type 

of process, although not common, has been reported on other occasions, 

e.g: 

C2F5 - C 

CF3. /CF3 

0 
J ^ C F ^ 

F*^ CF3 

- F [191] 

L.F2 

0 
- F [154] 

C F o - C F C F . 
/ \ ' 
0 ^ 0 

^ ^ l ' ' < c o F 
CFo 

CF.̂ -CFCFo 
/ ' \ ' 192 
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Scheme V.4 

Co-oligomerisation of Hexafluorobut-2-yne w i t h Hexafluoropropene 

CF2=CF-CF3 + F 

(152) 

CF3CECCF3 + F 

CF3-CF-CF3 

(153) 

CF, 3 ̂ C=C^ 
CF. 

(51) 

(153) + CF3C=CCF3 
(1) 

II 

CF , CF: 

(1) 
CF 

^C C 

CFq V-^C CF3 
CF3 CF3 

(154) 

-F 

(145) 

(51) + CF2=CFCF3 
(152) 

CF3 ^CF2-CFCF3 3 
C=C 

F ^ ^C1^3 

X//CF2-C-CF3 
,F 
- ( 
CF. 

— CF3^<?C-C/^^' 
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However, a mechanism i n v o l v i n g a f l u o r i d e i o n induced isomerisation 

of the dienide anion (154) cannot be rul e d out. This a l t e r n a t i v e 

seems less l i k e l y as i t c a l l s f o r an attack by f l u o r i d e ion on an 

already n e g a t i v e l y charged species. 

C F s ^ /CF3 _ C F g ^ ^ ) CF3 
^ C C F ^ C C ^ 

11 II . 1 * ^ II 

CY{ C "̂ CF3 CF3^ > ^ > F 3 
F ^ ^ p ^ C F j , C F , C F , 

(154) 
-F 

(145) 

Perfluoro-(3,4-dimethylhex-3-ene) (134), the major product from 

the r e a c t i o n of perfluorobut-2-ene w i t h hexafluorobut-2-yne, i s 

formed by the f l u o r i d e ion induced d i m e r i s a t i o n of the alkene. 

Several mechanisms can be proposed f o r the formation of the co-

oligomers (135) and (136) (Scheme V.5). However, the c y c l i c product 

(136) i s probably formed by c y c l i s a t i o n of (156) by analogy w i t h 

the mechanism which was shown to account f o r the formation of (145). 
i 

Somewhat s u r p r i s i n g l y , the same products (134) - (136) were 

obtained by a previous worker i n t h i s l a b o r a t o r y ^ f r o m the oligomer­

i s a t i o n of perf luoirobut-2-ene even i n the absence of hexaf luorobut-2-yne, 

D e f l u o r i n a t i o n of the butene was proposed to account f o r the formation 

of the co-oligomers (135) and (136). Two possible mechanisms were 

suggested f o r t h i s process: 
i ) d e f l u o r i n a t i o n by caesium f l u o r i d e , forming complex f l u o r i d e s . 

1 .e: 
CF3v^ ^CF3 

CsF + /C=C\ y CF^CECCF, + CsF. 
. 3 3 
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Scheme V.5 

Co-oligomerisation of Hexafluorobut-2-yne w i t h Perfluorobut-2-ene 

CF3CECCF3 

(1) 

F - ( C(CF3)=CCF3) 

(51) 

CF3CF=CFCF3 

(137) 

C 2 F 5 ^ ' ^ C 2 F 5 

CF. 

C2F5CFCF3 (155) 

(137), -F" 

'^F-C(CF,)=CFCF. 
(51) CF3^ ^ [ 3 f 3 f 3 

C2F5 - F C2FC: 
C=C-CF—C=CFCF3 

,CF 
CF3CF=C; 3 (155) 

^C=CFCF3 _p-
CF. 

CFnCF=C^ .CF3 * X-
CF; ^CF 

.CoF 2'^ 5 

CFj,^ CF3 

^ 2 ^ 5 ^ > = < 
CF-^ ^' C2F5 

CF. 
(135) 

( 1 3 7 ) / - F ( 5 1 ) > ^ F 

(51) 
.CF3 CF3 

CFoCF=C' ^C=CFCFo 

CF, ^CF. 

(1) \ / ( 1 3 7 ) , - F 

F - ( C ( C F 3 ) = C ( C F 3 ) ) 2 

CF 

CF. 

cF3CF=c:;^ V < 
-

CF, CF, 

CF. 

CF 
3 \ 

(1) 

CF3 C 2 F 5 
(145) 

(1) 

•^F 

CF. CF. 

(155) CF. (156) 
C F 3 / > C CF3 

F \ 
C F 3 ^ 2 F s 
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i i ) e l e c t r o n t r a n s f e r 

1 .e: 

The hexafluorobut-2-yne thus formed can then react as i n Scheme V.5 

to give co-oligomers (135) and (136). As might be a n t i c i p a t e d , t h i s 

r e a c t i o n gave a higher y i e l d of perfluorobutene dimer (134) and 

correspondingly smaller q u a n t i t i e s of (135) and (136) than the 

c o - o l i g o m e r i s a t i o n r e a c t i o n described above. 

V.C.7.C S t r u c t u r a l Assignments 

The s t r u c t u r e s of most of the co-oligomers described i n t h i s 

chapter followed simply from t h e i r ^̂ F n.m.r. spectra and assignments 

were made w i t h reference to the data l i s t e d i n Table V . l . These 

t y p i c a l ranges f o r f l u o r i n e chemical s h i f t s are applicable to most 

compounds containing only carbon and f l u o r i n e . 

Structures were confirmed by comparing spectra w i t h those of 

s u i t a b l e model compounds (Table V.2), and i n f r a - r e d spectroscopy 

was also u s e f u l as a confirmatory t o o l . I t i s known that the i n t e n s i t y 

and frequency of the C=C s t r e t c h increases w i t h increasing number 

of v i n y l i c f l u o r i n e s . Double bonds attached only to carbon 

s u b s t i t u e n t s tend to show very weak absorptions and are sometimes 

not detectable. 
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Table V.l 

l ^ F N.m.r. Chemical S h i f t s f o r A l i p h a t i c Perfluorocarbons^^3 

S t r u c t u r a l Typet Approximate S h i f t Range (p.p.m.)* 

C F 3 - C ^ 6 0 - 7 0 

CFo-C=C'^ 60 - 70 
I \ 

C F g - C F ^ 7 0 - 8 0 

CF3-CF2- 80 - 90 

^C=CF2 60 - 80 

^ C = C F - 90 -120 

- C F o -

-CF: 

100 -140 

160 

t a l l unmarked s u b s t i t u e n t s are carbon 

* w . r . t . CFCI3 
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Table V.2 

^̂ F N.m.r. Data f o r Co-oligomers>and Related Model Compounds 

Model Compounds Assignment Ref. 

a 
CF. C=C' 

F c 

58.5 

65.6 

67.4 

111.5 

119.5 

121.4 

133.7 

g 

d 

154 

CF, a 

CF, b 

54.9 

58.7 

60.8 

78.2 

80.0 

106.8 

96 

f and g 

d 

CF3 CF3a 
^C=C^ 

CF^CF2^ • ~^CF2CF3 
c b 

58.0 

74.5 

99.8 

a 

b 

185 

c a 

C=C 

b 

62.8 

70.9 

104.4 

a 

b 

185 
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C F , CFo 
e ^ I ^g 

C F , 

57.6 

60 .1 

6 1 . 8 

82.7 

106.3 

a, d 

e 

b, c 

f 

g 

185 

Co-oligomers Relative Assignment 
I n t e n s i t y 

63 .2 

72 .5 

103.0 

112.5 

122.5 

124. 2 

134.2 

3 

3 

1 

2 

1 

2 

2 

g 

d 

e 

f 

58,2 

62 .4 

63 .1 

83 .5 

1 1 1 . 5 ^ 

115.3 

129.6 J 

c 

d 

e,f,g,h 
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^10^18 

6 

61.2 

62.6 

66.8 

76.5 

Relative Assignment 
I n t e n s i t y 

3 

CF3 CF3 

59.4^ 

60.4. 

62.3 

74.1 

96-120 

159.3' 

163.0' 

3 

6 

4 

b 

c,d 

e,f 

CF3 CF3 

a 
CF3 

c d 
CF3-CF2' 

c=c 
/CF3 

58.5 

62.6 

58.5 

80.3 

105.9" 

108.2-

3 

6 

6 

3 

b,c 

a,b 
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CHAPTER VI 

NUCLEOPHILIC ADDITIONS TO HEXAFLUOROBUT-2-YNE 

VI.A I n t r o d u c t i o n 

A number of reactions of simple nucleophiles w i t h hexafluorobut-2-yne 

were discussed i n Chapter I I . Although i n f o r m a t i o n about the stereo­

chemistry of the products has been reported i n comparatively few cases, 

the a v a i l a b l e data show a clear tendency f o r alcohols and amines to 

gi v e predominantly trans adducts. 

This chapter deals w i t h attempts to prepare c y c l i c products by 

r e a c t i o n of hexafluorobut-2-yne w i t h nucleophiles. Most of these 

experiments attempted to react two acetylene molecules w i t h one of 

the nucleophile to give 5 membered r i n g compounds. 

CFoCECCFg 

Nu 

CF, 

CF Nu 

C„F 
CF. 

CF , Nu 

CF. 

CF. 

CF. 

CF 

CF. 

u CF. 

Also, a series of reactions was c a r r i e d out to i n v e s t i g a t e some of the 

f a c t o r s which were believed to have an influence on the stereochemistry 

of n u c l e o p h i l i c a d d i t i o n to hexafluorobut-2-yne. 
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VI.B C y c l i s a t i o n Reactions of Hexafluorobut - 2-yne 

VI.B.l I n t r o d u c t i o n 

I n order t o obtain c y c l i c products from hexafluorobut - 2-yne, the 

i n i t i a l a d d i t i o n to the t r i p l e bond must give a ais carbanion (157) 

and t h i s can occur e i t h e r by syn a d d i t i o n , or by anti a d d i t i o n followed 

by i s o m e r i s a t i o n . A d d i t i o n of (157) to a f u r t h e r molecule of the 

acetylene gives an anion which could then c y c l i s e . 

CF3C=CCF3 ^ ^C=C 
(1) R / ^ ^ ^ ^ - c ^ 

CF3 E+ CF3 
R E (157) I n R 

n 

R E+ CF3 II II n ^ C C 
(158) CF3'" Y ^CF3 

R 
n 

This mechanism would only be applicable when E i s able to increase i t s 

co o r d i n a t i o n number by 2. For C,N and 0 nucleophiles, where t h i s i s 

not p o s s i b l e , a s u i t a b l e leaving group could be employed. 

CF3 ... CF3 /CF3 CF3 /CF3 
rv r=rrFo ^ C " ^-^ ^ c —C , ^ C — C 

C F 3 - - E CF3-V'-CF3 
L '̂ L + L" 
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Obviously compounds w i t h mobile hydrogen atoms w i l l give mainly 

simple adducts r a t h e r than c y c l i c products. Also the use of p r o t i c solvents 

i s l i k e l y to r e s u l t i n p r o t o n a t i o n rather than c y c l i s a t i o n . 

I t was thought t h a t the f o l l o w i n g f a c t o r s may encourage the i n i t i a l 

a d d i t i o n step to proceed i n a syn fashion, thus favouring the formation 

of c y c l i c products. 

1) Use of jlarge nucleophiles 

Nucleophiles w i t h large s t e r i c requirements, i . e . l a r g e r than the 

CF3 group, may p o s s i b l y favour the formation of the less crowded 

anions 

Nu l a r g e r than CF3: 

CF3^ /CF3 
c=c_ 

Nu'^ 

CF3CHCCF3 

Nu 

crowding 

2) Use of Neutral Nucleophiles 

Uncatalysed reactions of n e u t r a l nucleophiles to hydrocarbon 

acetylenes have been reported to give mainly .';yn a d d i t i o n products. 

I t i s possible that under these circumstances the carbanion develops 

on the same side as the a t t a c k i n g nucleophile because of coulombic 

a t t r a c t i o n between the opposite charges on the z w i t t e r i o n (159). 
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-CEC-

Nu 

Nu+ \0 
(159) 

Nu+ 

(160) 

VLB. 2 Reaction w i t h Sulphur 

Sulphur s a t i s f i e s both of the above q u a l i f i c a t i o n s , as i t i s 

both large and n e u t r a l , Hexafluorobut-2-yne has been reacted w i t h sulphur 

i n the presence of iodine at high temperature and pressure to give a 

mixture of products (161) - (163). ' 

200' 
CF3. 

CFsC^CCFs + S 

(1) 

S-S 
I 1 

CF3-C=C-CF3 

(161) 

CF3^\S -
(162) 

CF-

CF. 

CF, 

CF-

-S.^^3 s 
CF. 

-CF: " CF3-

(163) 

Further experiments i n d i c a t e d t h a t the d i t h i e t e n e (161) was the 

primary product from which the other compounds were formed. The 

mechanism proposed f o r the r e a c t i o n involved the a d d i t i o n of the r a d i c a l 

end of a sulphur chain to the t r i p l e bond to form a v i n y l r a d i c a l which 

then c y c l i s e s to give (161). 

(S) -S-S + (1) n — 

CF3 ^CF3 
^C=C 

^S-^(S) 
n 

(161) + •S-(S)n_i 
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(161) + (1) 
CF 

C F . 

- C F . 

~ C F -

- S 
(162) 

However, previous work i n t h i s laboratory has i n d i c a t e d that 

r e a c t i o n of sulphur w i t h hexafluorobut-2-yne occurs q u i t e r e a d i l y at 

atmospheric pressure and at temperatures as low as 80° to give the 

thiophene (162) as the only p r o d u c t . T h e s e r e s u l t s were confirmed 

i n the course of the present i n v e s t i g a t i o n ; a 61% y i e l d of (162) was 

obtained as the only detectable product. 

CF3CHCCF3 
sulpholan,110 

atmospheric 
pressure 

162) 61% 

The absence of any other products such as (161) and (163) indicates 

t h a t the r a d i c a l mechanism shown above does not operate at low 

temperatures. Instead, the r e a c t i o n could be thought of as proceeding 

by a n u c l e o p h i l i c mechanism i n v o l v i n g syn a d d i t i o n to the t r i p l e bond. 

CFc 

C F . 

' C — C 

II P 

. C F : 

S+ C F . 

C F . , C F . 
^ C — C 
II II 
C J . c \J ^ \J 

CF3^ ^ C F . 

(162) 

S - S 
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VI.B.3 Reaction w i t h 2,2,2,-Trifluoroethyl-p-toluenesulphonate anion 

The anion (164), which i s generated on t r e a t i n g 2 , 2 , 2 - t r i f l u o r o ­

ethyl-p-toluenesulphonate w i t h an a l k y l l i t h i u m at -70°, seemed to be 

an i d e a l system f o r g i v i n g c y c l i c products from hexafluorobut-2-yne. 

Not only i s i t a very bulky anion but i t also has a good leaving group 

attached to the n u c l e o p h i l i c centre. I t was therefore a n t i c i p a t e d that 

the f o l l o w i n g r e a c t i o n sequence could give the cyclopentadiene (165) . 

CF3CH2OSO2-

CF3PHCCF3 

CF3CHOT0S L i 

(164) 

Tos = -S02' 

-70° 
CH3 + RLi ^ CF3CHOSO2 

+ 
L i 

(164) 

CF. 

CF. 

CuF CF. ,CF. 
^c —C 

CH 
OTos CF3 

CF3 ^ CH CF3 

CH. 

Tos CF3 

CF3^ /CF3 
^C — C 

II II 
c c 

CFg^ V ^CF3 
H CF3 

(165) 

CH3 + RH 

OTos 

However, on slowly i n t r o d u c i n g hexafluorobut-2-yne i n t o the re a c t i o n 

mixture containing the anion (164) at -78°, only polymeric materials 

were obtained. The r e a c t i o n was repeated under a v a r i e t y of conditions, 

using both b u t y l - and m e t h y l l i t h i u m to generate the anion. I n a l l cases 

polymeric s o l i d s and t a r r y residues were the only products. A deficiency 
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of the a l k y l l i t h i u m was used to ensure that t h i s was not responsible 

f o r the polymerisation of the acetylene. 

The polymers were soxhlet extracted to remove unreacted s t a r t i n g 

m a t e r i a l and t a r r y residues, but even then the mass of the polymer was 

s t i l l g r eater than the mass of hexafluorobut-2-yne used. This showed 

t h a t the polymer was not simply polyhexafluorobut-2-yne but must contain 

some m a t e r i a l derived from the tos y l a t e and indeed elemental analysis 

showed the presence of s u b s t a n t i a l amounts of sulphur. However, the 

a n a l y t i c a l data d i d not correspond t o polyhexafluorobut-2-yne contaminated 

w i t h s t a r t i n g m a t e r i a l . 

A possible explanation f o r these r e s u l t s i s that the anion (164) 

elimi n a t e s f l u o r i d e i o n on warming up to room temperature (Scheme VI.1). 

The r e s u l t i n g f luoroalkene could then copolymerise w i t h hexafluorobut-2-yne 

i n a f l u o r i d e i o n induced process. 

Scheme VI.1 

CF3CHOT0S CF2=CH0Tos + F~ 

(164) (166) 

CF3 _ 
F + CF3CHCCF3 C=C 

F ^ ^CFg 

(1) (51) 

(I) + (166) 
(51) + (166) ^ FC(CF3)=C(CF3)-CF2-CHOTos " copolymer 

etc. 

However, the analysis f i g u r e s d i d not f i t c l o s e l y to any of the possible 

formulations of such a copolymer. Therefore i n order to cast more 

l i g h t on t h i s r e a c t i o n a c o n t r o l experiment was run. The tosyl'ate 
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anion (164) was generated at -78° as before and then allowed to warm 

up i n the absence of hexafluorobut-2-yne. A brown polymeric material 

and a tarry residue were obtained as i n the previous experiments. 

Elemental analysis showed that the polymeric material was not a simple 

polymer of (166), since the sulphur content was too low and the fluorine 

too high (see Table VI.1). 

Table VI.1 

Elemental Analyses f o r Various Possible Polymers Derived from CF3CH2OT0S 

A B c 

c 35.32 46.15 41.77 

H 2.28 3.42 2.85 

F 27.7 16.24 30.06 

S 10.02 13.68 10.13 

A Values found f o r poljrmer obtained from CF3CH2OT0S + CH3Li 

B Values calculated f o r CFo-CH0Tos-> 
n 

C Values calculated f o r -f CFo-CHF-CFo-CHOTos-)-

A better f i t i s obtained by assuming that 50% of the tosyl groups have 

been replaced by fluor i n e (column C i n Table VI.1). This does not seem 

unreasonable considering that tosylate i s an excellent leaving group. 

» « F- I ? 
-CF2-C-CF2-C- -CF2-C-CF2-C-

OTos OTOS F OTOS 

I t therefore seems l i k e l y that the polymer obtained from the reaction 

of (164) with hexafluorobut-2-yne is i n fact a copolymer containing some 
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combination of -C(CF3)=C(CF3)-, -CFj-CHOTos- and -CFj-CHF- units. 

Recently, Japanese workers have proposed the formation of a li t h i u m 

s a l t (167) by reaction of t r i f l u o r o e t h y l t o s y l a t e with 2 equivalents of 

li t h i u m diisopropylamide (LDA).^^^ The s a l t (167) was not isolated but 

was reacted i n s i t u with a variety of carbonyl compounds to give a-keto 

acids. These findings give support to the copolymerisation mechanism 

discussed above. 

LDA _ -F LDA ^ L i 
CF3CH2OT0S >• [CF3CHOT0S ^ CF2=CH0Tos] — C F 2 = C 

THF -78° OTos 
(164) (166) (167) 

VLB.4 Reactions with Phosphonium Ylids 

Phosphonium y l i d s werie considered to be the most l i k e l y type of 

nucleophile to give cyclic products with hexafluorobut-2-yne. They are 

bulky, e l e c t r i c a l l y n eutral, and the phosphine part of the molecule 

forms a good leaving group. Reactions were therefore attempted with 

methylene- and isopropylidenetriphenylphosphorane to see'whether 

cyclopentadienes (168) could be produced. 

MeLi or 
PhgP-CHR^ : >• PhgP-CRz ^ ^ Ph3P=CR2 

nBuLi 

. CF3 CF3^ /CF3 
Ph35-CR2 + CF3CECCF3 V ^ C Ci^Fs C C 

(169) R = H 

(170) R = CH3 

I I i i I I 

C C ^ C 
C F 3 ^ ^ C R 2 C F 3 - ^ ^ C R 2 ^ C F 3 

Ph3P+ Phjp)^ 

CF3^ .CF3 
C — c 
II II + Ph3P Ĉ  /C ^ 

C F 3 ^ / C ^ C F 3 
R^ R 

(168) 
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The r e a c t i o n w i t h methylenetriphenylphosphorane (169) gave only 

polymeric m a t e r i a l and i t was thought t h a t perhaps the s t e r i c requirements 

of t h i s y l i d were not s u f f i c i e n t l y large to cause syn a d d i t i o n . Instead 

the y l i d was possibly merely i n i t i a t i n g the polymerisation of the 

acetylene. Therefore reactions were attempted using the more crowded 

isopropylidene y l i d (170). However, once again no v o l a t i l e products 

were recovered and only polymeric m a t e r i a l was obtained. 

The i n f r a r e d spectrum of t h i s polymer was s i m i l a r to that of 

polyhexafluorobut-2-yne except f o r the presence of a few extr a weak 

peaks, These may be due to the end groups i n the polymer, although the 

p o s s i b i l i t y that they a r i s e from some contaminant cannot be ruled out. 

Elemental analysis showed the presence of phosphorus and iodine and 

i n d i c a t e d that the poljmier contained approximately 16 hexafluorobut-2-yne 

u n i t s f o r every phosphonium group. I n a d d i t i o n ^̂ P n.m.r. showed that 

the phosphorus atom was 5 coordinate. The f o l l o w i n g r e a c t i o n scheme i s 

the r e f o r e proposed to account f o r the r e s u l t s . 

Scheme VI.2 

+ - + -
Ph3P-CHR2 I + R'Li — — P h 3 P - C R 2 + R'H + L i I 

(171) 
+ - + 

Ph3P-CR2 + CFgC^CCFg >- Ph3P-CR2 CF3 
^C=C 

nC^Fg 

+ solvent + 
Ph3P-CR2-^C(CF3)=C(CF3))-H '• Ph3P-CR2-( C(CF3>=C(CF3))' 

n+1 L i l 
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However, the r e s u l t s of a subsequent experiment suggested an 

a l t e r n a t i v e explanation f o r the formation of polymers. When the 

phosphonium s a l t (171, R = CH3) was t r e a t e d w i t h a deficiency of 

b u t y l l i t h i u m at 25°, butane was slowly evolved over a period of one 

hour. A sample of the r e a c t i o n mixture was t r e a t e d w i t h bromine and 

the r e s u l t i n g l i q u i d was found to contain b u t y l bromide, i n d i c a t i n g 

t h a t some b u t y l l i t h i u m was s t i l l present. Even on repeating t h i s t e s t 

a f t e r heating the mixture at 55° overnight some b u t y l bromide was s t i l l 

d e t e c t a b l e . Furthermore, ^̂ P n.m.r.^^'' on the r e a c t i o n mixture showed 

the presence of s i x d i f f e r e n t phosphorus containing species but no 

s t a r t i n g m a t e r i a l (171) was l e f t . I t i s somewhat m y s t i f y i n g how a l l 

the phosphonium s a l t can react and s t i l l leave b u t y l l i t h i u m i n the reaction 

mixture; no explanation f o r these apparently c o n f l i c t i n g observations 

has been found but i t i s obvious t h a t the formation of the required 

y l i d s does not proceed r e a d i l y under the conditions employed. Therefore, 

although polymeric m a t e r i a l s were obtained i n the r e a c t i o n w i t h hexafluoro-

but-2-yne, i t i s not clear whether the polymerisation was i n f a c t 

i n i t i a t e d by the y l i d or by r e s i d u a l b u t y l l i t h i u m . I f the l a t t e r i s the 

case i t i s q u i t e possible that f u r t h e r experiments, using a more stable 

y l i d which can be i s o l a t e d , w i l l give the a n t i c i p a t e d c y c l i s a t i o n r e a c t i o n . 

VLB.5 Reaction w i t h the Sodium Sa l t of D i e t h y l Malonate 

Hexafluorobut-2-yne reacted smoothly w i t h a s o l u t i o n of the sodium 

s a l t of d i e t h y l malonate i n tetraglyme to give a small recovery of 

a multicomponent o i l . A b e t t e r recovery of m a t e r i a l was obtained when 

the r e a c t i o n was performed i n dimethylformamide but i t was impossible 

to separate the products by e i t h e r g.l.c. or d i s t i l l a t i o n because of 

t h e i r i n v o l a t i l i t y . However, ^^F n.m.r. in d i c a t e d the possible presence 
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of the trans adduct (172) as w e l l as other components w i t h resonances 

i n the CF3 region (Table VI.2) 

^C00C2H5 
CF3 ^CH 

~̂ C=C ^C00C2H5 
H ^ "^CFo 
c b ̂  

(172) 

Table VI.2 

^ ^ F N.m.r. Data f o r Product Mixture Obtained from Reaction of D i e t h y l 

Malonate w i t h Hexafluorobut-2-yne 

S h i f t 
p.p.m. 

Fine Structure 
Coupling constants 

i n Hz 

Relative 
I n t e n s i t y 

Assignment 

61.42 

64.29 
64.72 
65.04 

66.70 

Doublet J = 7 ac 

Complex signals 

S i n g l e t 

5.3 

The formation of the trans adduct (172) would imply that the malonate 

anion (173) does not add to hexafluorobut-2-yne i n a syn manner as 

had been hoped. Instead anti a d d i t i o n occurs g i v i n g the anion (174) 

which can then presumably e i t h e r e x t r a c t a proton from the solvent or 

re a c t w i t h more hexafluorobut-2-yne. I t seems l i k e l y t h a t the other 

products of t h i s r e a c t i o n are higher oligomers of the type (175). 
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C2H5OOC 
CH + CF3CSCCF3 

C2H500C^ C2H5OOC /C=C 
CF3̂  

^CH CF3 
(173) C2H5OOC 

/ 
^ s o l v e n t 

F 3 ) ^ , 
(175) C2H5OOC 

X solvent 
/(n-l)C,Fe 

CF3. 
C j H c O O C ^ .C=C 

( C 2 H 5 0 0 C ) 2 C H - { C ( C F 3 ) = C ( C F 3 ) ^ H ^ C H ^ C F 3 

(172) 

VLB.6 Reaction w i t h Dimethyl Sulphoxide 

VI.B.6.a I n t r o d u c t i o n 

W i n t e r f e l d t has reported an i n t e r e s t i n g two. stage reaction of 

dimethyl acetylene d i c a r b o x y l a t e w i t h dimethyl sulphoxide to give the 

t e t r a s u b s t i t u t e d furan (176).^ ̂  8 The o v e r a l l process can be represented 

by the f o l l o w i n g equation. 

CH300C.^^ ^C00CH3 

2 CH3OOCCECCOOCH3 + CH3 CH3 ' + CH3SCH3 

(132) ^' CH3OOC ' " ^ 0 ^ "COOCH3 

0 
(176) 

Two products were i s o l a t e d on heating (132) w i t h excess dimethyl 

sulphoxide. The f i r s t , a 1:1 adduct, was found to be not the primary 

a d d i t i o n product (177) but the rearranged adduct (178). A 2:1 adduct 

(179) r e s u l t i n g from r e a c t i o n of (177) w i t h a f u r t h e r molecule of 

acetylene, was also i s o l a t e d . A d d i t i o n of more (132) to the 1:1 adduct 

gave the furan (176) and the same compound was also obtained on heating 

(179) under vacuum. The complete mechanism i s given i n Scheme VI.3. 

Although the furan expected from an analogous r e a c t i o n of hexafluoro-

but-2-yne w i t h dimethyl sulphoxide i s a known c o m p o u n d , t h i s would 
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Scheme VI.3 

R 
I 
C^ 
c 
I 

R 

(132) 

':0 

CH3 ^CH3 

R = COOCH3 

^C 

II 

CH3 CH3 

I 

CH3 CH3 

(177) 

(132) 

C H . 

C-S 
II I 
C — 0 >̂  CH3 

R R 

R ^ "04 
CH3 CH3 

R . S 

C H . 

' C C H . 

R ^ " " " O -

(178) 

(132) 

R ^ R 

> - C ^ 

// W 

R - ^ 03s R 

CH"^ CH3 

R . a 
C H . 

- ( C H 3 ) 2 S 

R ^ R 

" - c - c ^ 

R ^ 0 S+J R 

CH3 ^CHg 

• ( C H 3 ) 2 S 

R "0' R 

(179) (176) 
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be a f a r more convenitent route than the e x i s t i n g ones. 

VI.B.6.b Results 

On heating hexafluorobut-2-yne w i t h dimethyl sulphoxide the 

1:1 adduct (180) was formed as the only product. No trace of a 2:1 

adduct analogous to (179) was detected. Furthermore, heating the 

1:1 adduct (180) w i t h f u r t h e r hexafluorobut-2-yne f a i l e d to give any 

r e a c t i o n under any of the conditions employed. Reactions were attempted 

a) w i t h o u t a solvent at 120°; b) i n sulpholan a t 130°, atmospheric 

pressure; c) i n . sulpholan at 130°, autogenous pressure; i n each case 

a q u a n t i t a t i v e recovery of both (180) and the butyne was obtained. 

The reason f o r the d i f f e r e n c e i n r e a c t i v i t y between dimethyl acetylene-

d i c a r b o x y l a t e and hexafluorobut-2-yne i s not cl e a r , although i t may 

w e l l be that W i n t e r f e l d t ' s mechanism i s an o v e r s i m p l i f i c a t i o n and 

the ester groups play an e s s e n t i a l r o l e i n the r e a c t i o n . 

CF3C=CCF3 

+ 

CH3SCH3 

0 

CF. CF: 
"C 

II 
C 

CF. ~0 
S^ 

CH3 CH3 

yf c . F 

CF 
CH3 

(180) 

CH. 

I n contrast to the ester adduct (178) where the ̂H n.m.r. spectrum 

i n d i c a t e d the presence of only one isomer, the ̂^F n.m.r. spectrum of 

the hexafluorobut-2-yne adduct (180) showed i t to be a mixture of ais 

and trans isomers i n the r a t i o of 3.5:1. The formation of two isomers 
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i s not i n c o n s i s t e n t w i t h the proposed mechanism since isomerisation 

v i a an y l i d type intermediate would seem p e r f e c t l y f e a s i b l e under the 

r e a c t i o n c o n d i t i o n s . The cis isomer i s presumably the more stable form 

because of coulombic i n t e r a c t i o n s between the opposite charges and 

t h i s could account f o r i t being the major product. 

CF3^ /CF3 CF3 ^CF3 CF3 0 
/C=C^ ^ /C-C^ E ^C-C 

CH3-S+ -0 CH3-S+ ^ 0 CH3-S+ CF3 
CH3 CH3 CH3 

(181) 
t 

/C=C^ 
CH3-S-t- ^CF3 

CH3 

Variable temperature n.m.r. studies of the adduct showed that at 

elevated temperatures free r o t a t i o n about the c e n t r a l C-C bond 

occurs. 

VI.B.6 .C S t r u c t u r a l Assignment 

Spectroscopic data f o r the ois and trans 1:1 adducts are given 

i n Table VI.3. For comparison the data f o r the d i e s t e r adduct (178) 

are also shown. 

Assignment of ais and trans isomers followed from the respective 

n.m.r. coupling constants as described i n Chapter IV..Spectra were 

taken at var ious t cmiperatures l)i'tweL'n 40° and I )')". As I he temperature 

was rais e d the (>K (-CK-j coupling c|uickly d i sappcart^d; next the four 

s i g n a l s broadened and moved closer together. F i n a l l y at 135°, only two 
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Table V I . 3 

Spectroscopic Data f o r Dimethyl Sulphoxide Adducts 

CF3 ^ C F 3 

CH0-S+ -0 
I 
CHo 

CH3-S+ CF3 
^ I 

CH., 

' ' C H 3 0 0 C ^ ^ C O O C H ; 
C=C 

^CH 3 - S - f ^ ^ 0 

C H / 

iH n m.r. 

3 . 0 2 S i n g l e t 

19F n.m.r, 

2 . 8 6 S i n g l e t 3 . 0 S i n g l e t a CH3 

3 . 6 5 > 
Singlets b,c CH3 

3 . 8 0 . 

49 .l^Quartets 

73.4/ J = I I Hz 

5 1 . 9 

7 0 . 2 
Singlets 

I n f r a r e d ' 

^C=C 
1 6 0 8 cm-1 (broad) 1 5 8 0 cm'^ 

* n.m.r. data measured at 4 0 ° C 
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Figure 2 ^ ^ F N.m.r. Spectra of (180) at Various Temperatures 

Solvent: DMSO 

0 O O 0̂  
o 
O 
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si g n a l s can be seen and t h i s i s i n t e r p r e t e d as being due to free 

r o t a t i o n about the c e n t r a l C-C bond. On cooling,the sequence was 

reversed u n t i l the o r i g i n a l spectrum was seen again at 40°. The 

r e l e v a n t parts of the spectra are reproduced i n Figure 2. 

VI.B.6.d Reactions of the Dimethyl Sulphoxide Adduct (180) 

i ) P y r o l y s i s 

On heating to 250-260°, the dimethyl sulphoxide adduct of dimethyl 

ace t y l e n e d i c a r b o x y l a t e has been reported to rearrange to (181). 

CH300C^ ^O" CH300C^^ ̂ ^OCH-j 
?, 250-260° n 

CHg-^ "CH3 
CĤ OOC-̂  ^S CHgOOC^ ^SCHg 

(178) (181) 62% 

The hexafluorobut-2-yne adduct (180) was heated i n vacuo 

a) at 110° f o r 2 hours, b) at 170° f o r 24 hours and c) at 250° f o r 

15 hours. No r e a c t i o n was observed i n the f i r s t two experiments but 

at 250° the adduct decomposed t o give a black s o l i d , a complex mixture 

of l i q u i d products and a trace of gas. These products could not be 

i d e n t i f i e d , 

i i ) With Acetyl Chloride 

No r e a c t i o n occurred on r e f l u x i n g ' ( 1 8 0 ) w i t h a c e t y l c h l o r i d e 

and t h i s r e s u l t again i l l u s t r a t e s the d i f f e r e n c e i n r e a c t i v i t y between 

the hexafluorobut-2-yne adduct and the est e r adduct (178) which has been 

shown to give an acetate (182) under these conditions.^ 
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CHgOOC. 0 . CHqOOC^ OCOCH3 ^ \ ^ Reflux ^ \ ^ ^ 
^ + CH3COCI • ^ 

CHaOOC^ CHgOOC^ "^scHa 
. C H 3 ^ ^ C H 3 

(178) (182) 

i i i ) With Water 

The adduct (180) was recovered unchanged a f t e r s t i r r i n g w i t h 

water a t room temperature f o r several days. 

VI.B.7 Reaction w i t h Triphenylphosphine Oxide 

U n l i k e dimethyl sulphoxide, triphenylphosphine oxide f a i l e d t o 

r e a c t w i t h hexafluorobut-2-yne under moderate c o n d i t i o n s . Q u a n t i t a t i v e 

r e c o v e r i e s of s t a r t i n g m a t e r i a l s were obtained when the phosphine 

oxide was heated at 100° w i t h the acetylene, whether a solvent was 

employed or not. At 170° some r e a c t i o n was observed and n.m.r.^^^ 

showed t h a t the recovered phosphine oxide was contaminated w i t h two 

other phosphorus c o n t a i n i n g species. Of these, the major component 

showed a t r i p l e t which may be due to a compound such as Ph3PF2 and t h i s 

would i n d i c a t e t h a t decomposition of the butyne occurs under these 

circumstances. 
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VI.B.8 Reaction w i t h 5 - T r i f l u o r o m e t h y l t e t r a z o l e Derivatives 

A remarkable r e a c t i o n between 5 - t r i f l u o r o m e t h y l t e t r a z o l e 

(183) and acyl chlorides has been reported to give 1,3,4-oxadiazoles 

(184) . N u c l e o p h i l i c attack by n i t r o g e n on the carbonyl group gives 

an u n i s o l a b l e a c e t y l intermediate (185) which cyclises w i t h e l i m i n a t i o n 

of n i t r o g e n to give (184).20° 

N=N 
CF3-C^ I 

N-N-H 

(183) Cl-C-CHo 
I I . 
0 

-HCl CF3-C ̂ 1 
N-N 

I Ô C-CHg 

(185) 

N-N 
C F 3 - < II 

^0-C 
CH: 

(184) 

I t was of considerable i n t e r e s t to determine whether a s i m i l a r 

type of r e a c t i o n would occur w i t h hexafluorobut-2-yne. The t e t r a z o l e 

i t s e l f would probably j u s t add across the t r i p l e bond but using the 

sodium s a l t i t was a n t i c i p a t e d t h a t a diazole d e r i v a t i v e (187) would 

be produced. 



•160-

^ N = N ^ = N ^N-N' 
CF3-C^ I . CF3-C K , CF3-C^ I 

^N-N f ̂  N-r ^C=C 
(186) + 

CF3^ ^CF3 
CFo CF-

CF3-C=C-CF3 (187) 

However, although hexafluorobut-2-yne reacted very r e a d i l y w i t h 

a s o l u t i o n of the sodium s a l t i n a c e t o n i t r i l e , the product was an 

i n t r a c t a b l e t a r r y m a t e r i a l . Also no n i t r o g e n was evolved, i n d i c a t i n g 

t h a t the a n t i c i p a t e d r e a c t i o n d i d not occur. Instead i t seems l i k e l y 

t h a t the anion (186) adds to hexafluorobut-2-yne to give the trans 

carbanion (188) r a t h e r than the cis intermediate necessary f o r 

c y c l i s a t i o n to occur. 

CF3-C^ y CF3-C'^ I ^ polymeric 
^ N-N M nr^ etc. m a t e r i a l 

N-N CF3 
C=C 

CF3- -
CF3CHCCF3 

The N-methyl d e r i v a t i v e (189) was then prepared as i t was thought 

t h a t a n e u t r a l nucleophile would favour syn a d d i t i o n . 

CF3-C I . CF3-C I CH3 

CH3 

(189) 
CF3 "^CF3 

+ CF3C=CCF3 

Unf o r t u n a t e l y (189) f a i l e d to react w i t h hexafluorobut-2-yne even 

under f o r c i n g conditions and t h i s i s a t t r i b u t e d to the low n u c l e o p h i l i c i t y 
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of the system. 

VI.B.9 Summary 

C y c l i c products were obtained only i n the r e a c t i o n w i t h sulphur; 

most of the other nucleophiles e i t h e r gave polymers or trans adducts. 

Only dimethyl sulphoxide gave a cis a d d i t i o n product but t h i s does 

not necessarily i n d i c a t e t h a t i t was formed by syn a d d i t i o n . 

From these r e s u l t s i t would seem t h a t the stereochemistry of 

the i n i t i a l a d d i t i o n depends on the size of the at t a c k i n g atom and not 

on the s i z e of the nucleophile as a whole. 

VI.C I n v e s t i g a t i o n of the Stereochemistry of Nucleophilic Additions 

to Hexafluorobut-2-yne 

VI.C.l I n t r o d u c t i o n 

Although the stereochemistry of a d d i t i o n of nucleophiles to 

a c t i v a t e d hydrocarbon acetylenes has been extensively studied201 and 

reviewed, ^̂ '̂  l i t t l e a t t e n t i o n has been paid to the stereochemical 

course of ad d i t i o n s to t r i f l u o r o m e t h y l a c t i v a t e d acetylenes. The 

stereochemistry of these reactions i s of p a r t i c u l a r i n t e r e s t since i n 

co n t r a s t to carbonyl, n i t r i l e and sulphone a c t i v a t e d t r i p l e bonds, the 

a c t i v a t i o n here should be l a r g e l y i n d u c t i v e i n nature. 

The base catalysed a d d i t i o n of methanol to t r i f l u o r o p r o p y n e and 

hexafluorobut-2-yne gave predominantly trans products.''^ Since the ois 

adduct was not isomerised under the r e a c t i o n c o n d i t i o n s , the trans adducts 

obtained i n these reactions must be k i n e t i c products. 
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CH3O + RCECCF3 ^ 
CH3O CF3 

R = H, CF3 

CH3OH R 
C=C 

CH3O "^CFj 

> 97% 

Dimethylamine reacts w i t h hexafluorobut-2-yne to give a mixture 

of ais and trans adducts i n the r a t i o of 1:6.^^ However, isomerisation 

of the products occurs over a period of several days to give an increase 

i n the ais isomer content. Isomerisation has also been observed f o r 

other amine adducts and a mechanism i n v o l v i n g the formation of an 

immonium type intermediate has been proposed. ^ 

RoN:^ 
• H 

R2N+' 
C-C 

1> \ R2N+^ H 
C=C 

R2N'^ H 

The only other d e t a i l e d study of n u c l e o p h i l i c a d d i t i o n to hexafluoro-

but-2-yne which has been published concerns the a d d i t i o n of d i m e t h y l a r s i n e . ^ I 

A 96:4 r a t i o of transiois products was obtained and competition reactions 

i n d i c a t e d t h a t the mechanism does not involve an intramolecular proton 

t r a n s f e r . Several mechanisms were considered but the f o l l o w i n g f i t t e d 

the experimental observations most c l o s e l y . 

slow CF3 
R2ASH + CF3CECCF3 > /5.^"^\ 

R2ASH CF: 

CF; 

RoAsIl 
-C=C 

/CF3 

CFc H' 

R2AS Q.Y: 

R'2AsH' 

/CF3 

R2AS H' 

+ R'2AsH 
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I n view of the dearth of inform a t i o n about additions of simple 

nucleophiles to hexafluorobut-2-yne, the reactions w i t h a range of 

alcohols were i n v e s t i g a t e d . 

VI.C.2 A d d i t i o n of Alcohols 

The aim of these experiments was to i n v e s t i g a t e some of the fa c t o r s 

which i n f l u e n c e the stereochemistry of n u c l e o p h i l i c a d d i t i o n of alcohols 

to hexafluorobut-2-yne. I n p a r t i c u l a r , the e f f e c t s of c a t a l y s t , solvent, 

temperature and the nature of the alcohol were studied. 

VI.C.2.a Catalysed Reactions 

Sodium alkoxide catalysed additions to hexafluorobut-2-yne were 

c a r r i e d out under a v a r i e t y of conditi o n s . Isomer r a t i o s were measured 

by the simple ^^F n.m.r. technique described i n Chapter IV. Predominantly 

anti- a d d i t i o n was observed regardless of the nature of the alcohol and 

n e i t h e r temperature nor the use of a solvent caused the isomer r a t i o to 

change s i g n i f i c a n t l y (Table V I . 4 ) . 

Table VI.4 

Base Catalysed Additions to Hexaflurorbut-2-yne 

ROH Solvent Temp. °C % trans' Ids 

CH3OH - 20 96 4 
n-CsHyOH - 20 92 8 
n-Ci^HgOH - 20 89 11 
n-Ĉ ĤgOH - 117 86 14 
n-Ci+HgOH . sulpholan 117 92 8 
2-Ci^H90H - 20 91 9 
t-Ci^HgOH - 20 86 14 
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VI.C.2.b Uncatalysed Reactions 

Uncatalysed a d d i t i o n s r e q u i r e d elevated temperatures f o r the 

r e a c t i o n t o proceed t o an appreciable e x t e n t . Reactions between the neat 

a l c o h o l and hexafluorobut-2-yne gave products w i t h s i m i l a r isomer r a t i o s 

to those obtained i n the catalysed a d d i t i o n s . However, when a p r o t i c 

d i p o l a r solvents are used syn a d d i t i o n predominates. (Table V I . 5 ) . 

ROH 

CH3OH 
n-Ci+HgOH 
n-Ci+HgOH 
n-C^HgOH 
n-Ct^HgOH 
n-Ci^HgOH 
t-Ct^HgOH 
t-C^HgOH 

Table VI.5 

Uncatalysed A d d i t i o n s to Hexafluorobut-2 yne 

Solvent 

ether 
ether 
sulpholan 
sulpholan 

Temp. 

95 
95 
95 

150 
100 
150 
95 

150 

trans % ois 

92 8 
90 10 
t t 
27 63 
t t 
30 70 
t t 
90 10 

t no detectable r e a c t i o n 

VI.C.2.C S t r u c t u r e of the Products 

Isomer r a t i o s were obtained f o r the crude r e a c t i o n products using 

the ^^F n.m.r. technique described i n Chapter IV and product mixtures 

were also studied by m.s./g.l.c. Molecular i o n peaks were not observed, 

the h i g h mass peaks a r i s i n g from loss of e i t h e r f l u o r i n e or a l k y l groups, 

A l l the adducts show a peak at m/e = 161, which may be due to the 

fragmentation process shown below. A s i m i l a r type of break-down has been 

reported f o r other ethers. 
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CF, Ĥ CFo ^H -F CFo 
C=C "̂ C=C ^ ^ ̂ =C' + X-

r c ' p l ^ b r ^CF3 H4)r ^CF3 h4): 

. >=cC 
m/e = 161 

VI.C.2.d Discussion 

Predominantly anti a d d i t i o n was observed f o r a l l the catalysed 

r e a c t i o n s and also f o r a l l the uncatalysed reactions which d i d not 

employ a solv e n t . S t e r i c e f f e c t s do not appear to be of prime importance 

although the amount of cis a d d i t i o n product d i d increase s l i g h t l y as the 

s t e r i c demand of the alcohol increased. 

Also i t was establ i s h e d , f o r the n-butanol adduct, that isomerisation 

does not take place at temperatures up to 150° even i n the presence of 

base. This rules out the p o s s i b i l i t y that the observed isomer compositions 

are a r e s u l t of an e q u i l i b r i u m which i s set up between the oia and tram: 

adducts. 

CF3 ,CF3 BuO /BuOH CF3 ^H 
^C=C ' 

BuO-^ ^H "-̂  BuO-^ CF3 

Furthermore, i t i s d i f f i c u l t to imagine a mechanism f o r the 

iso m e r i s a t i o n of v i n y l anions (190) and (191); indeed calc u l a t i o n s f o r 

the v i n y l anion i t s e l f i n d i c a t e that the b a r r i e r to inve r s i o n i s very 

high.20'' I t therefore soems u n l i k e l y that (1_90) and (Ĵ 9_l_) are in 

equLlibrium .iiiil l luTcfore the air. I l.viuu: isomer rat io i s a re LMot; t iun of 

the r a t i o of the rate constants (k^ and k^) for the a d d i t i o n stop. 
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C=(r y X=C 

t ^ 
CF3C = CCF3 + RO" 

k 

RO"^ "^CF, t r a n s f e r RO ̂  ^CF, 

(190) 

CF3 /CF3 H+ CF3 /CF3 
C=C y 

R C ^ NJ) t r a n s f e r RO ̂  H 

(191) 

I t i s i n t e r e s t i n g to compare the r e s u l t s of the alcohol a d d i t i o n 

r e a c t i o n s w i t h the a d d i t i o n of diethylamine reported by another worker 

i n t h i s l a b o r a t o r y . 5 A r e a c t i o n i n sulpholan proceeded r a p i d l y at 

room temperature to give predominantly the trans adduct. This i s i n 

contra s t to the uncatalysed a d d i t i o n of n-butanol i n sulpholan, which 

gave 70% cis a d d i t i o n product. 

The mechanism proposed to account f o r the amine a d d i t i o n involves 

the formation of z w i t t e r i o n i c intermediates (192) and (193) which are 

protonated to give trans and cis adducts. Protonation of (192) probably 

occurs v i a an int e r m o l e c u l a r process, whereas (193) can be protonated 

e i t h e r i n t e r - or i n t r a m o l e c u l a r l y . The f a c t t h a t trans a d d i t i o n predominates 

i n d i c a t e s t h a t k' » k' . 
t c 

CF3^ Q H^ CF3 /H 
.-c=c . /C=C 

Et2N-H CF3 t r a n s f e r EtjN CF3 

CF3CiCCF3 + EtgNH (192) 

^CCF3 CF3 H^ CF3 ^CF3 
^C=C^ . ^C=C^ 

Et2N-H ^ t r a n s f e r EtpN'^ H 

(193) 
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However, i t would appear th a t a d i f f e r e n t mechanism operates f o r 

the uncatalysed alcohol a d d i t i o n reactions. Here, the use of a solvent 

has a major e f f e c t on the ois/trans isomer r a t i o and t h i s suggests a 

concerted mechanism such as tha t shown below. 

6-
CF3^ ..H---OR CF3 ^H 

.C=C' y ^C=C 

CF3CECCF3 + ROH 
^CF3 RO CF3 

H 

k" 
c CF3 /CF3 CF3^ ^CF3 

C=C y C=C^ 
0--H 

R-" 
RO H 

I n the reactions w i t h the neat alcohol trans products predominate, 

i . e . k" » k" . 
t c 

However, employing an i n e r t a p r o t i c solvent, which acts as a 

d i l u e n t , the r a t e of intermolecular p r o t o n a t i o n i s reduced and the 

intr a m o l e c u l a r proton t r a n s f e r , leading to ais products, becomes the 

major process. 

Vi.D Reaction of Hexafluorobut-2-yne w i t h Water 

As already discussed i n Chapter I I , hexafluorobut-2-yne reacts 

w i t h water i n the presence of an amine catalyst^** to give a complex 

mixture-of compounds i n c l u d i n g the expected product, hexafluorobutanone 

(194). The major product, however, was the ether (20), which may be 

formed by attack o f t h e enol form of (194) on a f u r t h e r molecule of 

acetylene. 

CF3 CF3 
MesN ^C=C 

CF3C5CCF3 + H2O y CF3CH2CCF3 + H-^ "^0 ^CF3 + other 
II C=C products 
° CF3^ ^H 

(194) (20) 
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However, since alcohols have been shown to add to hexafluorobut-2-yne 

i n the absence of a c a t a l y s t i t was a n t i c i p a t e d that water would behave 

s i m i l a r l y . As w i t h the alcohols, no r e a c t i o n occurred between hexafluoro-

but-2-yne and water i n an a p r o t i c solvent at room temperature. However, 

at 85° a slow, low conversion r e a c t i o n occurred to give a l i q u i d 

c o n s i s t i n g of two components. The major component (> 90%) was i d e n t i f i e d 

by n.m.r. and mass spectroscopy as the butanone (194), whereas the minor 

component showed a high mass peak i n the mass spectrum which could be 

derived from the ether (20) by loss of a CF3 group. At 110° the reaction 

gave a good conversion w i t h the butanone (194) as the only detectable 

product. 

tetraglyme 
CF3C=CCF3 + H2O ^ CF3CH2CCF3 

110° N 

(194) 91% 

This r e a c t i o n i s the r e f o r e much cleaner than the catalysed process 

and provides a convenient high y i e l d route to the butanone. 



E X P E R I M E N T A L 
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INSTRUMENTATION 

I n f r a r e d spectra were recorded on a Perkin-Elmer 457 Grating 

I n f r a r e d Spectrophotometer using KBr discs or p l a t e s . 

Proton and f l u o r i n e n.m.r. spectra were recorded on a Varian 

A56/60D spectrometer operating at 60 and 56.4 MHz r e s p e c t i v e l y . Chemical 

s h i f t s are quoted r e l a t i v e to e x t e r n a l IMS and CFCI3. Variable temperature 

f a c i l i t i e s were a v a i l a b l e f o r recording spectra at temperatures other 

than the standard probe temperature of 40°. The phosphorus n.m.r. spectra 

were recorded on a Fourier transform spectrometer operating at 24.29 MHz. 

Chemical s h i f t s are quoted r e l a t i v e to e x t e r n a l R^VOi^.^^'^ 

Mass spectra were recorded on an A.E.I. M.S. 9 Spectrometer or on 

a V.G. Microraass 12B Spectrometer f i t t e d w i t h a Pye 104 gas chromatograph. 

Gas l i q u i d chromatographic analyses were c a r r i e d out on a Varian 

Aerograph Model 920 or Pye 104 Gas Chromatograph using columns packed 

w i t h 30% s i l i c o n e gum rubber SE-30 on chromosorb P (column 0 ) , 20% 

d i i s o d e c y l p h t h a l a t e on chromosorb P (column A) or 17% 2-cyanomethyl-

s i l i c o n e on chromosorb P (column Z). Preparative scale gas l i q u i d 

chromatography was performed on a Varian Aerograph Model 920 using 

columns 0,A or Z. 

F r a c t i o n a l d i s t i l l a t i o n s of product mixtures were c a r r i e d out using 

Fischer-Spaltrohr MS 200 and HMS 500 systems. 

Carbon, hydrogen and ni t r o g e n analyses were obtained using a Perkin-

Elmer 240 Elemental Analyser. Analyses f o r halogens were performed by 

the l i t e r a t u r e method. 

B o i l i n g p o i n t s were determined by Siwoloboff's method and are 

uncorrected. 
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Solvents 

Tetraglyme was p u r i f i e d by s t i r r i n g w i t h sodium metal at 95° 

f o r 24 hours, followed by f r a c t i o n a l d i s t i l l a t i o n under vacuum, the 

middle f r a c t i o n being c o l l e c t e d over molecular sieve (type 4A) and 

stored under n i t r o g e n . 

Sulpholan was p u r i f i e d by f r a c t i o n a l vacuum d i s t i l l a t i o n . The 

middle f r a c t i o n was c o l l e c t e d over dry molecular sieve (type 4A) and 

stored under n i t r o g e n . 
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CHAPTER V I I 

EXPERIMENTAL TO CHAPTER I I I 

V I L A General Procedure f o r Flow Reactions 

The s t a r t i n g m a t e r i a l was placed i n a two necked f l a s k maintained 

a t d i f f e r e n t temperatures depending on the reagent used: -35° f o r 

hexafluorobut-2-yne (b.p. -26°), -10° f o r hexafluorocyclobutene (b.p. 0°) 

and 20° f o r 2,3-dichlorohexafluorobut-2-ene (b.p. 65°). Dry nitrogen 

was bubbled i n t o the l i q u i d a t a known r a t e and the r e s u l t i n g gas 

passed through a s i l i c a tube packed w i t h the appropriate m a t e r i a l . 

The contact time was estimated from the n i t r o g e n flow r a t e . 

Five d i f f e r e n t packings were used f o r these reactions: coarse 

i r o n f i l i n g s , zinc dust, platinum f o i l , caesium f l u o r i d e and potassium 

f l u o r i d e . I n a l l cases except f o r platinum, the packing was renewed 

a f t e r approximately 30- 40 g of m a t e r i a l had been passed. 

A t h e r m o s t a t i c a l l y c o n t r o l l e d furnace was used to maintain the 

tube a t the required temperature. The products were trapped out by 

passing the e f f l u e n t gases through two l i q u i d a i r cooled vessels 

packed lo o s e l y w i t h glass wool to provide a large surface area f o r 

condensation. When a l l the m a t e r i a l had passed through the tube the 

contents of the cold traps were t r a n s f e r r e d under vacuum to a f l a s k 

f i t t e d w i t h a f l e x i b l e gas r e s e r v o i r . Gaseous products were studied 

by g . l . c . and i n f r a - r e d spectroscopy before being t r a n s f e r r e d to a 

c y l i n d e r f o r storage. 
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VII.B D e c h l o r i n a t i o n of 2,3-Dichlorohexafluorobut-2-ene 
V I I . B . l Flow Reactions 
V I I . B . l . a Over I r o n F i l i n g s 

I n a t y p i c a l experiment, 2,3-dichlorohexafluorobut-2-ene (2.02g, 

8.67 mmol) was passed over i r o n f i l i n g s a t 300° (contact time 30 sees) 

and a l i q u i d (1.05g, 52% recovery) was c o l l e c t e d . This was shown to be 

unchanged s t a r t i n g m a t e r i a l by g . l . c . (Col. 0, 70°). 

Results of s i m i l a r experiments employing a v a r i e t y of conditions 

were summarised i n Table I I I . l (Chapter I I I ) . Small amounts of gaseous 

products were obtained from the reactions a t 456°, 565° and 610°. Data 

on these products are summarised i n Table V I I . 1 . 

Table V I I . 1 

Reaction temperature g . l . c . ^ i . r . data Mass spectrum 
(major peaks) 

456° 1 peak spectrum of (1) + e x t r a 
absorptions a t 1108 and 
1114 cm"l 

565° 1 peak spectrum of (1) + extr a 
absorptions at 1030 and 
735 cm"l 

610° 1 peak absorptions a t 1030. and 
735 cm~l only 

28, 43, 59, 106 

a Columns A and 0, room temperature 

I n a c o n t r o l run to t e s t the trapping e f f i c i e n c y of the system, 

2,3-dichlorohexafluorobut-2-ene (3.06g) was passed through the tube at 

20°. A recovery of 84% was obtained. S i m i l a r l y , when hexafluorobut-2-yne 

(2.54g) was used, 80% was recovered. Hexafluorobut-2-yne (2.20g) was 

passed through the tube at 450° to give recovered s t a r t i n g m a t e r i a l 
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(1.21g, 54%) and the i r o n f i l i n g s had gained i n weight by 0.8g. Passing 

hexafluorobut-2-yne ( l . l l g ) through the tube a t 500° gave recovered 

s t a r t i n g m a t e r i a l (O.lAg, 13%) and the i r o n f i l i n g s had gained i n weight 

by 0.7g. 

V I I . B . l . b Over Zinc Dust 

2,3-Dichlorohexafluorobut-2-ene (4.95g) was passed over zinc dust 

a t 410° ( c o n t a c t time 60 sees). S t a r t i n g m a t e r i a l (4.20g, 85%) and a 

gas (0.05g) were recovered. The gas was i d e n t i f i e d as hexafluorobut-2-yne 

by comparison of i t s i . r . spectrum w i t h t h a t o f an authen t i c sample. 

Passing hexafluorobut-2-yne (2.01g) over zinc under the same conditions 

gave a gas (1.40g, 70%), shown by i . r . to be unchanged s t a r t i n g m a t e r i a l . 

The tube gained i n weight by 0.2g. 

V I I . B . l . c Over Platinum F o i l 

Passing 2,3-dichlorohexafluorobut-2-ene (Z.OOg) over platinum f o i l 

a t 450° (c o n t a c t time 30 sees) gave recovered s t a r t i n g m a t e r i a l (1.46g, 

75%) as a mixture of 63% trans and 37% cis isomers. 

At 656° (contact time 30 s6cs) , 2,3-dichlorohexafluorobut-2-ene 

(2.98g) gave recovered s t a r t i n g m a t e r i a l (1.54g, 52%) as a mixture of 

54% trans and 46% ais isomers. A l i t t l e gas (0.03g) was also formed. The 

i n f r a r e d spectrum showed t h i s to be s t a r t i n g m a t e r i a l vapour contaminated 

w i t h a gas which absorbs a t 1290, 1116 and 1108 cm~^. 



-174-

VII.B.2 Reactions i n a Sealed System 

VII.B.2.a Reaction of Hexafluorobut-2-yne w i t h I r o n F i l i n g s 

No r e a c t i o n occurred when hexafluorobut-2-yne (2.05g) and i r o n 

f i l i n g s (A.12g) were heated i n a Carius tube at 200° f o r 24 hours. 

At 400° hexafluorobut-2-yne (5.60g) and i r o n f i l i n g s (5.64g) gave 

v o l a t i l e m a t e r i a l (2.65g) and a black s o l i d (8.94g) a f t e r 24 hours. 

The v o l a t i l e m a t e r i a l consisted of a trace of a complex mixture of 

l i q u i d products, which were not i n v e s t i g a t e d , together w i t h a gas which 

was shown by m.s. / g.1.c. to be a mixture of four components w i t h high 

mass peaks a t 195, 293, 316 and 395. The black s o l i d d issolved p a r t i a l l y 

i n concentrated h y d r o c h l o r i c a c i d g i v i n g a green s o l u t i o n and a black 

powder which was washed w i t h water and d r i e d . (Found: C, 70.12; F, 9.61; 

CI, 3.08%). 

VII.B.2.b Reaction of 2,3-Dichlorohexafluorobut-2-ene w i t h Zinc Dust 

A s t a i n l e s s s t e e l bomb was loosely packed w i t h a l t e r n a t i n g layers 

of glass wool and zi n c dust (65.Og, 1 mol) and 2,3-dichlc)rohexafluoro-

but-2-ene (47.6g, 0.21 mol) was added. The bomb was sealed and heated 

at 200° f o r 18 hours. S t a r t i n g m a t e r i a l (43.2g, 91%) was recovered and 

no trace o f gaseous products was detected. 

A s i m i l a r r e a c t i o n using zinc dust (99.Og) and 2,3-dichlorohexa-

fluorobut-2-ene (25.Og) heated at 270° f o r 22 hours gave a gas (24.Og), 

shown by g . l . c . (Col. A, 40°) to be a mixture o f hexafluorobut-2-yne and 

7 other major components of longer r e t e n t i o n time. The products were not 

i n v e s t i g a t e d f u r t h e r . 

A r e a c t i o n was attempted using zinc dust which had been a c t i v a t e d 

by washing w i t h a c e t i c a c i d and d r i e d i n vacuo. When a c t i v a t e d zinc 
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dust (lOOg) and 2,3-dichlorohexafluorobut-2-ene (25.Og) were heated 

a t 270° f o r 20 hours, a gas (2.9g) was recovered and a black s o l i d had 

formed i n the bomb. (Found: C, 68.14; F, 7.81; C I , 4.65%). The gas was 

a v e r y complicated mixture (8 major components) c o n t a i n i n g some hexafluoro-

but-2-yne. 

A r e a c t i o n using unactivated zinc dust (29.5g) and 2,3-dichlorohexa-

fluorobut-2-ene (15.9g) heated a t 325° f o r 48 hours gave a gas (1.6g) 

c o n t a i n i n g hexafluorobut-2-yne, s t a r t i n g m a t e r i a l and 7 other components. 

A black s o l i d (14.Og) was also produced. (Found: C, 76.61; F, 9.96%). 

VII.B.3 Reactions i n S o l u t i o n 

VII.B.3.a General Methods f o r Dechlorinations i n S o l u t i o n 

The solvent and zinc dust were r e f l u x e d i n a large three-necked 

f l a s k f i t t e d w i t h mechanical s t i r r e r , dropping funnel and r e f l u x 

condenser. A cold f i n g e r maintained a t -15°C (CO2 / ethylene g l y c o l ) 

was f i t t e d a t the top of the condenser to prevent s t a r t i n g m a t e r i a l 

and r e d u c t i o n products from d i s t i l l i n g over i n t o the l i q u i d a i r 

cooled r e c e i v e r s . 2,3-Dichlorohexafluorobut-2-ene was added to the 

m i x t u r e a t such a r a t e as to maintain a steady r e f l u x . This u s u a l l y took 

6-8 hours, a f t e r which time the mixture was r e f l u x e d f o r a f u r t h e r 

24 hours. The contents of the traps were then t r a n s f e r r e d under vacuum 

i n t o a c y l i n d e r f o r storage. Products from several such runs were 

combined and d i s t i l l e d a t low temperature through a vacuum jacketed 

column packed w i t h glass h e l i c e s . The top of the column was f i t t e d 

w i t h an e f f i c i e n t c o l d f i n g e r maintained at -15°C. The d i s t i l l a t e was 

shown t o be ca. 99% hexafluorobut-2-yne by g . l . c . (Columns A and 0) and 

by i n f r a r e d spectroscopy. 
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VII.B.3.b Using Zinc i n Dioxan 

2,3-Dichlorohexafluoroi3ut-2-ene (46.6g, 0.20 mol) i n dioxan (72 ml) 

was added over a p e r i o d of 6 hours t o a s t i r r e d suspension of zinc 

dust (65.Og, 1 mol) i n r e f l u x i n g dioxan (100 m l ) . A f t e r a f u r t h e r 15 hours 

s t a r t i n g m a t e r i a l contaminated w i t h r e d u c t i o n products and dioxan (11.2g) 

was recovered from the r e a c t i o n m i x t u r e . The gas which had c o l l e c t e d 

i n the traps (9.1g, 36% based on consumption of 36g of butene) was 

ca. 95% hexafluorobut-2-yne. 

VII.B.3.c Using Zinc i n Dioxan / Sulpholan (40;60) 

2,3-Dichlorohexafluorobut-2-ene (48.3g, 0.21 mol), dioxan (65 m l ) , 

sulpholan (100 ml) and zinc dust (64.Ig, 1 mol) gave impure hexafluoro-

but-2-yne ( 9 . 6 g ) . a f t e r 24 hours. S t a r t i n g m a t e r i a l h e a v i l y contaminated 

w i t h 2-chlorohexafluorobut-2-ene and several other by-products (20.Og) 

was d i s t i l l e d from the residue. 

VII.B.3.d Using Zinc i n A c e t i c Anhydride 

2,3-Dichlorohexafluorobut-2-ene (46.6g, 0.20 mol) i n a c e t i c 

anhydride (100 ml) was added t o a suspension of zinc dust (96.Og, 1.5 mol) 

i n r e f l u x i n g a c e t i c anhydride. A f t e r 30 hours, s t a r t i n g m a t e r i a l 

contaminated w i t h r e d u c t i o n products (12.5g) was recovered from the 

r e a c t i o n m i x t u r e . The gaseous product (16.3g, 65% based on consumption 

of 36g of s t a r t i n g m a t e r i a l ) was shown to be ca. 92% hexafluorobut-2-yne. 
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VII.B.3.e Using Magnesium i n Tetrahydrofuran 

2,3-Dichlorohexafluorobut-2-ene (10.Og, 43 mmol) was added to 

a s t i r r e d m i x ture of magnesium i n r e f l u x i n g THF. A small c r y s t a l of 

i o d i n e was r e q u i r e d t o i n i t i a t e the reaction,. A f t e r 24 hours a gas 

(l.Og) had been evolved and no s t a r t i n g m a t e r i a l was recovered from the 

t a r r y r e a c t i o n m i x t u r e . The gas was ca. 90% hexaflubrobut-2-yne. 

VII.C I s o m e r i s a t i o n of Hexafluorocyclobutene 

These rea c t i o n s were c a r r i e d out using the f l o w system described 

a t the beginning of t h i s chapter. Hexafluorocyclobutene (96) was 

passed over caesium or potassium f l u o r i d e a t temperatures between 

540 and 690°. The r e s u l t s are summarised i n Table V I I . 2 . 

Table V I I . 2 

Results of F l u o r i d e Ion Induced-Isomerisation Reactions of (96) 

Temp. Contact 
t i m e ( s ) 

Packing 
m a t e r i a l 

Mass of (96) 
used (g) 

Mass of 1 Lq. 
c o l l e c t e d ( g ) 

Mass of gas 
c o l l e c t e d ( g ) 

T o t a l % 
recovery 

% (1) 
i n gas 

540° 20 CsF 19.5 0.0 16.6 85 45 

560° 30 CsF 21.6 0.0 17.6 82 50 

590° 20 CsF 15.7 0.0 12.7 81 90 

560° 20 KF 14.6 0.0 13.9 95 50 

580° 80 KF 164.0 47.3 93.6 86 90 

580° 30 KF 20.9 0.4 19.4 95 85 

600° 30 KF 33.3 0.8 31.6 95 94 

630° 30 KF 30.0 2.1 24.4 88 95 

645° 20 KF 62.4 7.9 49.1 91 96 

690° 20 KF 12.0 2.8 6.8 80 96 
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The percentage hexafluorobut-2-yne (1^) i n the product gas was 

determined by g . l . c . The l i q u i d products were complex mixtures 

c o n t a i n i n g components of molecular weight higher than t h a t of hexafluoro-

but-2-yne. For example, the l i q u i d obtained from the r e a c t i o n at 

690° consisted of 11 major components; m.s. / g . l . c . gave the f o l l o w i n g 

high mass f i g u r e s : 343 (CgF^ 3) , 393 (C9F15), 374 (CgF^i^) (3 isomers), 

405 (C10F15), 367 (C10F13), 336 (C9F12). 448 ( C j g F i e ) , 398 ( C j i F i ^ ) 

and 784 (C21F28). 

S i m i l a r l i q u i d products were obtained when hexafluorobut-2-yne 

was passed over KF a t 695°. 
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CHAPTER V I I I 

EXPERIMENTAL TO CHAPTER IV 

V I I I . A Reagents 

Acetaldehyde was f r a c t i o n a l l y d i s t i l l e d through a 20 cm Vigreux 

column and stored over type 4A molecular sieve under n i t r o g e n i n the 

f r i d g e . Other aldehydes were d i s t i l l e d under n i t r o g e n a f t e r checking f o r 

peroxides. 

Dimethyl ether was used s t r a i g h t from the c y l i n d e r and other reagents 

were e i t h e r used as supplied o r , where necessary, p u r i f i e d by standard 

methods. 

V I I I . B General Procedure 

A l l a d d i t i o n r e a c t i o n s were c a r r i e d out i n glass Carius tubes of 

approximately 100 cm^ volume. Reagents were thoroughly degassed before 

s e a l i n g the tubes under vacuum. Standard vacuum l i n e techniques were 

used to manipulate gaseous reagents and products. 

Gamma ray i n i t i a t e d r e a c t i o n s were performed by exposing the tubes 

to a known dose of r a d i a t i o n from a ^"Co source. Unless otherwise s t a t e d , 

c a t a l y t i c amounts of peroxides (ca. 1% by weight) were used i n the 

chemically i n i t i a t e d r e a c t i o n s . Where reactions were performed more 

than once a t y p i c a l set of r e a c t i o n c o n d i t i o n s i s given. Yields are based 

on the q u a n t i t y of hexafluorobut-2-yne consumed. 

r 
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V I I I . C Preparation and Reactions of Polyhexafluorobut-2-yne 

V I I I . C . l Preparation 

I r r a d i a t i o n of hexafluorobut-2-yne (18.Og, 111 mmol) to a dose of 

6 x 1 0 ^ rads gave a white s o l i d i d e n t i f i e d as polyhexafluorobut-2-yne 

(14.4g, 80%), (Found: C, 29.36; F, 70.76%. Calc. f o r (CitFe)^^: C, 29.63; 

F, 70.37%), I . r . spectrum no. 2. 

VIII.C. 2 Reactions 

VIII.C.2.a P y r o l y s i s 

Polyhexafluorobut-2-yne (1.25g) was placed i n a s i l i c a tube which 

was connected to a vacuum l i n e v i a a l i q u i d a i r cooled t r a p . The polymer 

was heated t o ca. 600° at 0.01 mm Hg f o r 4 hours. A l i t t l e brown s o l i d 

sublimed onto the cooler p a r t s of the apparatus. No l i q u i d or gas was 

c o l l e c t e d i n the trap and a brown powder (1.09g) was recovered. (Found: 

C, 29.82; F, 70.70%) . 

VIII.C.2.b Reaction w i t h F l u o r i n e 

The polymer was spread t h i n l y along the length of a glass tube 

which was heated to the r e q u i r e d temperature using a heating tape. A 

stream of f l u o r i n e d i l u t e d w i t h n i t r o g e n was slowly passed through the 

tube and the n i t r o g e n f l o w r a t e g r a d u a l l y decreased u n t i l the polymer 

was f i n a l l y exposed t o an atmosphere of neat f l u o r i n e . The r e s u l t s are 

summarised i n Table V I I I . 1 . 
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Table V I I I . 1 

F l u o r i n a t i o n of Polyhexafluorobut-2-yne 

Mass of 
polymer 

(g) 

Mass of F 2 
passed 

(g) 

Length of 
exposure 

(hrs) 

Temp. Elemental 
C % 

analysis 
F % 

0.20 9.0 24 20° 29.08 71.14 
0.33 9.0 21 55° 28.72 71.20 
0.20 6.0 24 90° 29.67 71.22 
0.53 2.0 120° * 

* Polymer spontaneously i g n i t e d 

V I I I . C . 2 . c Reaction w i t h Bromine 

Poiyhexafluorobut-2-yne (O.lOg) was sealed i n a pyrex tube w i t h 

bromine (1 cm3) and l e f t to stand i n s u n l i g h t f o r 1 week. A white s o l i d 

was recovered (O.lOg) . (Found: C, 29.88%.Calc.-for (C^F^)^: C, 29.63%). 

The experiment was repeated using the same q u a n t i t i e s of s t a r t i n g 

m a t e r i a l s b ut t h i s time the tube was exposed f o r 20 hours to u.v. 

r a d i a t i o n from a high pressure mercury lamp. A white s o l i d was recovered. 

(Found: C, 29.76%). 

V I I I . C . 2 . d Reaction w i t h Potassium Hydroxide S o l u t i o n 

Polyhexafluorobut-2-yne (1.05g) w a s ' s t i r r e d i n a glass vessel 

w i t h aqueous potassium hydroxide s o l u t i o n (20 ml, 5M) at r e f l u x temperature. 

The apparatus was connected to a vacuum l i n e to monitor any gas formation. 

The s o l u t i o n slowly turned brown and no gas was evolved. A f t e r 9 days,, 

unreacted polymer (0.55g) was recovered by f i l t r a t i o n . A c i d i f i c a t i o n of 

the brown s o l u t i o n gave a brown s o l i d (7.3g) whose i . r . spectrum c l o s e l y 
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resembled t h a t of s i l i c a . 

Repeating the experiment using polyhexafluorobut-2-yne (0.52g) 

and potassium hydroxide s o l u t i o n (20 ml, 5M) i n a t e f l o n beaker, unchanged 

polymer (0.39g) was recovered a f t e r 1 week. A c i d i f i c a t i o n , c o n c entration 

and s o l v e n t e x t r a c t i o n of the r e s i d u a l brown s o l u t i o n d i d not give any 

organic products. 

V I I I . D Attempted Copolymerisation Reactions 

V I I I . D . a With Dimethylacetylene Dicarboxylate 

Dimethylacetylene d i c a r b o x y l a t e (1.68g, 18 mmol) and hex a f l u p r o -

but-2-yne (3.9g, 24 mmol) were i r r a d i a t e d to a dose of 7 x 1 0 ^ rads. A 

q u a n t i t a t i v e recovery of both reagents was obtained. 

VIII.D.b With Styrene 

Styrene (6.1g, 59 mmol) which had been t r e a t e d w i t h alumina to 

remove the s t a b i l i s e r and hexafluorobut-2-yne (9.2g, 57 mmol) were 

i r r a d i a t e d t o 7 x 1 0 ^ rads. A q u a n t i t a t i v e recovery of both reagents was 

obtained. 

V I I I . D . c With Methyl Methacrylate 

i r r a d i a t i o n of methyl methacrylate (5.5g, 55 mmol) and hexafluoro-

but-2-yne (7.9g, 49 mmol) to a dose of 1 x 1 0 ^ rads gave polymethyl 

methacrylate as the only product. Hexafluorobut-2-yne (7.8g) was recovered. 
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VIII.D.d Attempted Homopolymerisation of Dimethylacetylene Dicarboxylate 

The acetylenic d i e s t e r (1.51g) was i r r a d i a t e d to 7x10^ rads and 

a q u a n t i t a t i v e recovery of unchanged s t a r t i n g m a t e r i a l was obtained. 

V I I I . E Additions of Aldehydes 

V I I I . E . l Acetaldehyde 

V I I I . E . I . a By Gamma Ray I n i t i a t i o n 

A mixture of acetaldehyde (S.Olg, 114 mmol) and hexafluorobut-2-yne 

(19.7g, 122 mmol) was i r r a d i a t e d to a dose of 1.1x10^ rad. Hexafluoro-

but-2-yne (11.Og) was recovered and the r e s i d u a l mixture was washed w i t h 

water, the fluorocarbon layer separated, d r i e d (P2O5) and the product 

was t r a n s f e r r e d under vacuum to give ( E ) - 3 - t r i f l u o r o m e t h y l - 1 , 1 , 1 -

trifluoropent-2-en-4-one (105), (3.3g, 30%), i d e n t i f i e d by comparison 

w i t h an authentic sample. 

V I I I . E . l . b By Benzoyl Peroxide I n i t i a t i o n 

( i ) With Excess Hexafluorobut-2-yne 

Acetaldehyde (4.4g, 100 mraol), hexafluorobut-2-yne (19.Og, 120 mraol) 

and benzoyl peroxide (0.20g, 0.8 mmol) were heated at 70° f o r 16 hours. 

Hexafluorobut-2-yne (8.2g) was recovered and the re s i d u a l mixture 

f i l t e r e d to remove a . s o l i d which was sublimed and r e c r y s t a l l i s e d from 

chloroform to give 3,4-bistrifluoromethylhexa-2,5-dione (106), (2.3g, 17%); 

m.p. 122-3°; (Found: C, 38.4; H, 3.2; F, 45.6%. CgHgFgOj requires 

C, 38.68; H, 3.01; F, 45.20%). N.m.r. spectrum no. 1, i . r . spectrum no. 4, 

mass spectrum no. 1. The f i l t r a t e was washed w i t h water, the fluorocarbon 

lower layer separated, d r i e d (P2O5) and tr a n s f e r r e d under vacuum. The 
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r e s u l t i n g l i q u i d (8.1g) was shown by g . l . c . (Col. A, 70°) to consist 

of 1 major and 4 minor components. The major component was i s o l a t e d by 

pre p a r a t i v e scale g . l . c . and i d e n t i f i e d as (105). (4,2g, 31%). 

( i i ) With Excess Acetaldehyde 

Acetaldehyde (5.8g, 130 mmol), hexafluorobut-2-yne (8.4g, 52 mmol) 

and benzoyl peroxide (0.20g, 0.8 mmol) were heated at 75° f o r 16 hours. 

The l i q u i d p a r t of the product was separated from the s o l i d and a f t e r a 

work up s i m i l a r to t h a t described i n the previous experiment (105) , 

(1.9g, 18%) and (106)^ (6.Og, 46%) were i s o l a t e d . 

( i i i ) Photolysis of (E) - 3 - t r i f l u o r o m e t h y l - 1 , 1 , 1 - t r i f l u o r o p e n t -

2-en-4-one (105) 

Three experiments were c a r r i e d out using 300 nm r a d i a t i o n and 

d e t a i l s are given i n Table V I I I . 2 . The 1:1 acetaldehyde adduct was 

sealed under vacuum i n a 300 ml s i l i c a tube. Only the vapour was 

i r r a d i a t e d , the l i q u i d being shielded from d i r e c t exposure. I n each 

case three major products were observed i n d i f f e r e n t proportions. A 

small amount of a f o u r t h component was also detectable. The three major 

components were i d e n t i f i e d by m.s./g.l.c. and ^^F n.m.r. as (105); 

( Z ) - 3 - t r i f l u o r o m e t h y l - 1 , 1 , 1 - t r i f l u o r o p e n t - 2 - e n - 4 - o n e , (1VQ); n.m.r. 

spectrum no. 3, i . r . spectrum no. 5, mass spectrum no. 2; and 1,2-bis-

trifluoromethyl-3-methyl-4-oxacyclobutene, (111), n.m.r. spectrum no. 4. 
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Table V I I I . 2 
Photolysis of (105) 

Mass of (105) I r r a d i a t i o n time Products % 
(8) (hrs) (105) (111) (106) Minor component 

1.80 90 30 29 39 1 

0.48 94 10 73 11 5 

1.75 352 12 72 12 4 

Compounds (105) and (106) were i s o l a t e d by preparative scale g.1.c. 

(Col. A, 78°) but the f r a c t i o n which should have contained (111) was 

found to consist of a mixture of (105) and (106) i n the r a t i o of 44:56. 

V I I I . E . 2 Propanal 

Propanal (2.2g, 38 mmol), hexafluorobut-2-yne (7.4g, 46 mmol) and 

benzoyl peroxide (0.20g, 0.8 mmol) were heated a t 75° f o r 16 hours. 

Hexafluorobut-2-yne (3.1g) was recovered along w i t h a l i q u i d (2.9g) and 

a white s o l i d (3.4g). The l i q u i d was d i s t i l l e d to give ( E ) - 3 - t r i f l u o r o ­

methyl-1 , 1,1-trifluorohex-2-en-4-one (112), (2.3g, 40%); b.p. 93 - 94°; 

(Found: C, 38.3; H, 2.8; F, 51.6%. CyHgFgO requires C, 38.18; H, 2.73; 

F, 51.82%). N.m.r. spectrum no. 5, i . r . spectrum no. 6, mass spectrum 

no. 3. The s o l i d was sublimed to give a product i d e n t i f i e d as a mixture 

of 4,5-bistrifluoromethyl-octa-3,6-dione (114), and 4 - t r i f l u o r o m e t h y l -

4 - ( 2 , 2 , 2 - t r i f luoroethyl)-hepta-3,5-dione (113), (3.4g, 47%) (Found: 

C, 42.9; H, 4.2; F, 40.6%. C10H12F6O2 requires C, 43.16; H, 4.32; F, 41.01%) 

N.m.r. spectra nos. 6 and 7, i . r . spectrum no. 7, mass spectrum no. 4. 

Ratio of (114) : (113) = 88 : 12. 
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VIII.E.3 Butanal 

VIII.E.3.a By Benzoyl Peroxide I n i t i a t i o n 

Heating butanal (3.2g, 44 mmol), hexafluorobut-2-yne (lOg, 62 ramol) 

and benzoyl peroxide (0.28g, 1.2 ramol) at 80° f o r 17 hours gave a l i q u i d 

(9.0g) and recovered acetylene (4.1g). The l i q u i d showed 3 major and 

4 minor components by m.s./g.l.c.; the high mass peaks are given below. 

(Calc. f o r 1:1 adduct: M = 234; f o r 2:1 adduct: M = 306.) 

Component High Mass Peak Assignment 

1 (minor) 233 1:1 adduct M-H 

2 (major) 234 1:1 adduct M 

3 (major) 234 1:1 adduct M 

4 (major) 234 1:1 adduct M 

5 (minor) 278 2:1 adduct M-C2Hi^ 

6 (minor) 263 2:1 adduct M-C3H7 

7 (minor) 235 2:1 adduct M-C3H7CO 

A l i q u i d (4.0g) d i s t i l l e d from the mixture at 80-90°/0.5 mm Hg. This 

contained three 1:1 adducts which were separated by preparative scale 

g . l . c . (Col. 0, 130°). One of these was i d e n t i f i e d as ( E ) - 3 - t r i f l u o r o ­

me t h y l - 1 ,1,1-trifluorohept-2-en-4-one (118). (Found: C, 41.12; H, 3.30; 

F, 49.01%. CgHgFgO requires C, 41.03; H, 3.42; F, 48.72%). N.m.r. spectrum 

no. 8, i . r . spectrum no. 8, mass spectrum no. 5. The other components 

were not i d e n t i f i e d , and due to i t s complexity the d i s t i l l a t i o n residue 

(5.0g) was not i n v e s t i g a t e d f u r t h e r . 
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VIII.E.3.b By Gamma Ray I n i t i a t i o n 

A mixture c o n t a i n i n g butanal (2.9g, 40 mmol) and hexafluorobut-2-yne 

(7.8g, 68 mmol) was i r r a d i a t e d to a dose of 4.3x10^ rads. Hexafluoro-

but-2-yne (4.9g) was recovered leaving a clear l i q u i d (5.2g) shown by 

m.s./g.l.c. to contain unreacted aldehyde and the same components as were 

observed i n the r e a c t i o n above. The mixture was not in v e s t i g a t e d f u r t h e r . 

V I I I . E . 4 Pentanal 

Pentanal (3.5g, 41 mmol), hexafluorobut-2-yne (9.6g, 59 mmol) and 

benzoyl peroxide (0.28g, 1.2 mmol) were heated at 80° f o r 18 hours. 

A f t e r c o l l e c t i n g the unreacted butyne (1.5g) the residue was a pale 

yellow l i q u i d (10.Ig) containing 2 major and 4 minor components. The 

2 major components were i s o l a t e d by preparative scale g . l . c . (Col. 0, 

160°). The component w i t h the shorter r e t e n t i o n time was i d e n t i f i e d as 

(E ) - 3 - t r i f l u o r o m e t h y l - 1 , 1 , 1 - t r i f l u o r o o c t - 2 - e n - 4 - o n e (121). (Found: C, 53.01; 

H, 3.38; F, 38.90%. CgHiQFgO requires C, 52.70; H, 3.38; F, 38.51%), 

n.m.r. spectrum no. 9, i . r . spectrum no. 9, mass spectrum no. 6. 

VIII . E . 5 (E)-But-2-enal 

(E)-But-2-enal (crotonaldehyde) (3.1g, 44 mmol), hexafluorobut-2-yne 

(9.8g, 60 mmol) and benzoyl peroxide (0.2g, 0.8 mmol) were heated at 82° 

f o r 18 hours. An almost q u a n t i t a t i v e recovery of hexafluorobut-2-yne was 

obtained and no products were detectable by g . l . c . (Col. 0, 160°). 
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V I I I . F Reaction w i t h 2,2,2-Trifluoroethanol 

2,2,2-Trifluoroethanol (9.6g, 96 mmol) and hexafluorobut-2-yne 

(5.4g, 33 mmol) were i r r a d i a t e d to a dose of 1.6x10^ rads. Hexafluoro-

but-2-yne (4.0g) was recovered and excess t r i f l u o r o e t h a n o l was p a r t i a l l y 

removed by d i s t i l l a t i o n to leave a l i q u i d (2.1g) containing the alcohol 

and three other components. Two f r a c t i o n s were c o l l e c t e d by preparative 

scale g . l . c . (Col. Z, 145°) and these were i d e n t i f i e d as: ( E ) - 3 - t r i f l u o r o ­

methyl-1 ,1,1,5,5,5-hexafluoropent-2-en-4-ol (122), (0.5g, 22%), 

(Found: C, 27.18; H, 1.10; F, 65.36%. CgHgEgO requires C, 27.48; H, 1.15; 

F, 65.27%), n.m.r. spectrum no. 10, i . r . spectrum no. 10, mass spectrum 

no. 7; and (Z)-3-trifluoromethy1-1,1,1,5,5,5-hexafluoropent-2-en-4-ol 

(123), (0.5g, 22%), (Found: C, 27.25; H, 1.09; F, 65.32%. C6H3F9O requires 

C, 27.48; H, 1,15; F,65.27%), n.m.r. spectrum no. 11, i . r . spectrum no. 11, 

mass spectrum no. 8. 

V I I I . G Reactions Attempted w i t h Other Compounds Containing C-H Bonds 

A series of f r e e r a d i c a l a dditions to hexafluorobut-2-yne were 

attempted using a v a r i e t y of compounds cont a i n i n g C-H bonds. Both gaimna 

ray and peroxide i n i t i a t i o n were used. The q u a n t i t i e s of reactants and 

the r e a c t i o n conditions are summarised i n Table V I I I . 3 , which also gives 

d e t a i l s of any products obtained. 
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Table V I I I . 3 

Experimental Conditions f o r Attempted Free Radical Additions 

Reagent 

g mmoles 

Hexafluoro-
but-2-yne 
g mmoles 

I n i t i a t o r Dose/Reaction 
time 

Products 

HCON(CH3)2 
2.7 38 5.2 32 Y 4.3 X lO^rad None 

2.3 31 2.6 16 A 16 hours None 

CH3OCH3 
8.1 176 11.6 72 Y 1.2 X10^ rad None 
1.9 41 6.5 40 Y, 80° 2.7 X 10^ rad None 
4.8 100 5.5 34 A 21^ hours None 

CH 2CH2OCH2CH 2 
7.4 100 5.2 32 Y 1.1 X 10'7 rad None 

CF3COCF2H 
3.0 20 4.3 27 Y 1.2 x l O ^ rad Polyhexafluorobut-2-yne 

(0.8g) 

Toluene 
3.5 38 6.2 38 Y 8.0X10^ rad Polyhexafluorobut-2-yne 

(0.3g) + 2 products 
(ca. 2% combined y i e l d ) 

1.5 16 2.9 18 A 17 hours 3 products (ca. 4% 
combined y i e l d ) 

2.0 22 3.5 22 B 18 hours Yellow l i q u i d (2.1g) 
12 components 

o-Xylene 
2.1 20 7.4 46 Y 2.7X 10^ rad Polyhexafluorobut-2-yne 

(0.5g) 

p-Methylanisole 
4.1 33 7.0 43 Y 1.5 X10^ rad Polyhexafluorobut-2-yne 

(0.5g) 

1.2 10 2.5 15 B 18 hours Yellow l i q u i d (1.9g) 
7 components 

A Benzoyl peroxide B Di-tt'r'/,-buty 1 peroxide 
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The products obtained from the reactions w i t h toluene and p-methyl-

anisole were analysed by m.s./g.l.c. The high mass peaks f o r the major 

components were as f o l l o w s . Formulae are assigned where possible. 

Toluene (A) Component 1 M = 240 

Components 2 and 3 M = 254 

;(CF3)=CHCF3 

) .CH2C(CF3)=CHCF3 

(B) Component 1 M = 178 CH3-C(CF3)=CHCF3 

Components 2 and .3 M = 254 CH;,C(CF3)=CIIC1'3 

A large q u a n t i t y of toluene was also present i n these mixtures. 

p-Methylanisole (B) Component 1 

Component 2 

Component 3 

M = 178 CH3-C(CF3)=CHCF3 

M = 218 

M = 284 CH3O- C H 2 C ( C F 3 ) = C H C F 3 

p-Methylanisole was also detected i n the product mixture. 

V I I I . H Attempted Reaction of Hexafluorobut-2-yne w i t h Benzoyl Peroxide 

Hexafluorobut-2-yne (2.5g, 15 mmol) and benzoyl peroxide ( O . l l g , 

0.45 mmol) were heated at 70° f o r 21.5 hours. A q u a n t i t a t i v e recovery of 

both compounds was obtained. Neither showed any change i n i n f r a r e d spectrum. 

The same r e s u l t was obtained when the r e a c t i o n was repeated w i t h the 

same q u a n t i t i e s of s t a r t i n g m a t e r i a l s heated at 75° f o r 24 hours. To 

check t h a t the peroxide had not decomposed, a sample was used t o i n i t i a t e 

the r e a c t i o n between acetaldehyde and hexafluorobut-2-yne. Results s i m i l a r 

to those given i n V I I I . E . l . b were obtained. 
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V I I I . I Reaction w i t h D i - t g r t - b u t y l Peroxide 

Hexafluorobut-2-yne (1.7g, 10 mmol) and di-tert-hutyl peroxide 

(O.lg, 0.7 mmol) were heated at 132° f o r 18 hours. The yellow l i q u i d 

(0.4g) which was obtained showed 9 components on g . l . c . (Col. A, 76°) 

The high mass peaks of the major components are given below. 

Component 1 

Component 2 

Component 3 

Component 4 

Component 5 

Component 6 

M = 

M = 

M = 

M = 

M = 

M = 

178 

340 

58 

340 

502 

664 

CH3-C(CF3)=CHCF3 

CH3 4C(CF3)=C(CF3)]-5- H 

Acetone 

Isomer of component 2 

CH34C(CF3)=C(CF3)h3H 

CH3-{C(CF3)=C(CF3)^^H 

V I I I . J Reactions Attempted w i t h Compounds Containing C-X Bonds 

The experimental conditions and r e s u l t s of these gamma ray induced 

rea c t i o n s are summarised i n Table V I I I . 4 . No adducts were observed i n 

any of these r e a c t i o n s . 

Table V I I I . 4 

Experimental Conditions f o r Attempted Additions of C-X Compounds 

Reagent 

g mmoles 

Hexafluoro-
but-2-3me 
g mmoles 

Dose 
rad 

Products 

CHClg 
4.8 40 6.9 43 9 X 106 None 

CClit 
5.7 36 6.0 37 3 X 10^ Polyhexafluorobut-2-yne (0.4g) 

CFCI3 
4.7 34 5.0 31 3 X 10^ Polyhexafluorobut-2-yne (l.Og) 
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Reagent 

g mmoles 

Hexafluoro-
but-2-yne 
g mmoles 

Dose 
rad 

Products 

CF2Br2 
6.8 32 5.2 32 9 x 10^ Polyhexafluorobut-2-yne (O.lg) 

CH3COCI 
1.5 19 3.1 19 9 X 106 Polyhexafluorobut-2-yne (O.lg) 
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CHAPTER IX 

EXPERIMENTAL TO CHAPTER V 

IX.A Reagents 

Dimethyl- and die t h y l - a c e t y l e n e dicarboxylates were av a i l a b l e 

commercially and used as supplied. 

Perfluorocyclohexene was a v a i l a b l e w i t h i n t h i s laboratory and 

perfluorocyclo-pentene and -butene were prepared by te c h n i c a l s t a f f 

using l i t e r a t u r e methods. Other perfluoroalkenes were obtained from 

commercial sources. 

The caesium f l u o r i d e was reagent grade and was dr i e d using strong 

heating (ca. 180°) under high vacuum w i t h frequent a g i t a t i o n and periodic 

g r i n d i n g under an atmosphere of dry n i t r o g e n . 

IX.B Polymerisation and Copolymerisation Reactions 

IX.B.l Polymerisation of Hexafluorobut-2-yne 

A f l a s k c o n t a i n i n g anhydrous caesium f l u o r i d e (3.1g, 20 mmol) and 

sulpholan (50 ml) and f i t t e d w i t h a magnetic s t i r r e r was evacuated u n t i l 

degassing of the solvent had ceased. A trap f i t t e d w i t h a f l e x i b l e 

r e s e r v o i r (a f o o t b a l l bladder) was charged w i t h hexafluorobut-2-yne 

(22.7g, 140 mmol) and attached to the r e a c t i o n vessel. A slow re a c t i o n 

occurred which could be followed by the collapse of the r e s e r v o i r . A f t e r 

4 days the uptake of gas had v i r t u a l l y ceased and the r e s i d u a l hexafluoro-

but-2-yne (6.2g) was t r a n s f e r r e d to a cold t r a p . The reac t i o n mixture 

was poured i n t o water and a pale brown s o l i d was removed by f i l t r a t i o n . 

This was d r i e d by heating under high vacuum t o give an o f f - w h i t e s o l i d 
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(14.2g) (Found: C, 29.36; F, 70.26%. Calc. f o r ( C 4 F 6)n: C, 29.63; F, 70.37%), 

i . r . spectrum no. 3. 

IX.B.2 Copolymerisation of Hexafluorobut-2-3Tie w i t h Acetylenic Esters 

IX.B.2 . a With Dimethyl Acetylenedicarboxylate 

A mixture of dimethyl acetylenedicarboxylate (7.6g, 53 mmol), 

caesium f l u o r i d e (l.Og, 6.6 mmol) and tetraglyme (50,ml) was s t i r r e d at 

room temperature and hexafluorobut-2-yne (10.Og, 62 mmol) allowed i n t o 

the r e a c t i o n vessel at a pressure of one atmosphere. A f t e r 30 hours the 

r e s i d u a l hexafluorobut-2-yne (0.9g) was removed and the b r i g h t red 

r e a c t i o n mixture was poured i n t o water. The s o l i d was separated by f i l t r a t i o n , 

washed w i t h methanol and d r i e d i n vacuo to give a pale brown s o l i d (10.6g) 

(Found: C, 31.91; H, 1.11; F, 65.04% Copolymer of formula (C6H50i t )^(C^F6)9 

requires C, 31.41; H, 0.36; F, 64.43%), i . r . spectrum no. 12. 

I n a second experiment dimethyl acetylenedicarboxylate (12.2g, 86 mmol) 

was added dropwise over a period of 24 hours to a s t i r r e d suspension 

of caesium f l u o r i d e (7.2g, 47 mmol) i n tetraglyme (80 ml) while under 

an atmosphere of hexafluorobut-2-yne (11.Og, 68 mmol). A f t e r 48 hours 

a l l the gas had been consumed and a f t e r the same work-up procedure 

as described above a l i g h t brown coloured s o l i d (14.Og) was recovered. 

(Found: C, 35.89; H, 0.80; F, 49.85%. Copolymer of formula 

( C 6 H 6 0 i t)n(C4F6)2.in requires C, 35.84; H, 1.24; F, 49.64%). The mass 

spectrum showed strong peaks at m/e = 55, 57, 69, 71, 73, 83 and 119. 

IX.B.2.b With D i e t h y l Acetylenedicarboxylate 

/• 

A mixture of caesium f l u o r i d e (3.0g, 20 mmol), d i e t h y l acetylene­

d i c a r b o x y l a t e (9.4g, 66 mmol) and sul.pholan (70 ml) was s t i r r e d at 50° 
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under an atmosphere of hexafluorobut-2-yne (5.0g, 31 mmol). A f t e r 

72 hours the r e s i d u a l gas (1.3g) was recovered and a f t e r an aqueous 

work-up a deep brown s o l i d (6.1g) was obtained (Found: C, 52.21; 

H, 5.16; F, 6.96%. Copolymer of formula (Ci^Fg)n(C8Hj QÔ ) gn requires 

C, 52.79; H, 5.08; F, 9.64%). The polymer was completely soluble i n 

ether. 

IX.B.2.c Reaction of Dimethyl Acetylenedicarboxylate w i t h Caesium Fluoride 

A mixture of dimethyl acetylenedicarboxylate (4.6g, 32 mmol), 

caesium f l u o r i d e (3.0g, 20 mmol) and tetraglyme (50 ml) was s t i r r e d 

f o r 72 hours. No s t a r t i n g m a t e r i a l could be detected i n the r e s u l t i n g 

s o l u t i o n by t . l . c . (eluent ether) and no v o l a t i l e s t r a n s f e r r e d on heating 

to 100° at 0.1 mm Hg, 

IX.B.2.d Attempts to Hydrolyse the Copolymer of (132) and {V) 

Several attempts were made to hydrolyse the copolymer of (132) and 

(1) but i n a l l cases the recovered m a t e r i a l was shown by i . r . spectroscopy 

to be i d e n t i c a l w i t h s t a r t i n g m a t e r i a l . The f o l l o w i n g experiments are 

t y p i c a l . 

i ) The copolymer (0.50g), water (2g) and concentrated hydrochloric acid 

(2 ml) were sealed under vacuum i n a Carius tube and heated at 140° f o r 

28 hours. A brown s o l i d was separated by f i l t r a t i o n , washed w i t h water 

and d r i e d i n vacuo. The r e s u l t i n g s o l i d (0.45g) was i d e n t i f i e d as 

s t a r t i n g m a t e r i a l . 
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i i ) A mixture of copolymer (0.5g), acetone (10 m l ) , water (2.5 ml) and 

concentrated h y d r o c h l o r i c acid (2.5 ml) was r e f l u x e d f o r 24 hours. Water 

(100 ml) was then added and a brown s o l i d was f i l t e r e d o f f . A f t e r 

f u r t h e r washing and drying the r e s u l t i n g s o l i d (0.42g) was shown to 

be unchanged s t a r t i n g m a t e r i a l . 

A series of experiments using several anionic and non-ionic 

s u r f a c t a n t s also f a i l e d to b r i n g about h y d r o l y s i s . For example, a 

mix t u r e of copolymer (0.50g), acetone (10 m l ) , water (2.5 m l ) , 

concentrated h y d r o c h l o r i c acid (2.5 ml) and Monflor 31 (an anionic 

s u r f a c t a n t ) was r e f l u x e d f o r 24 hours. The recovered s o l i d (0.36g) 

was shown to be unchanged s t a r t i n g m a t e r i a l . 

IX.C Co-oligomerisation w i t h Fluoroalkenes 

IX.C.l Hexafluorocyclobutene 

Caesium f l u o r i d e (7.6g, 50 mmol) and tetraglyme (50 ml) were 

placed i n a dry f l a s k f i t t e d w i t h magnetic s t i r r e r and the mixture was 

thoroughly degassed. Two traps containing hexafluorobut-2-yne (12.5g, 

77 mmol) and hexafluorocyclobutene (11.Og, 68 mmol) were attached to 

the r e a c t i o n vessel. Equal pressures of the two gases were allowed i n t o 

the r e a c t i o n vessel to a t o t a l pressure of one atmosphere and the 

mixture was s t i r r e d f o r 24 hours. The r e s i d u a l gases (1.8g) were then 

t r a n s f e r r e d to a cold trap and the r e a c t i o n mixture f l a s h d i s t i l l e d to 

give a l i q u i d (3.1g) shown by g . l . c . (Col. 0,60°) t o consist of 6 

components. Three isomers of C8F12 (M^ = 324) were detectable by ra.s./g.l.c. 

The f l a s h d i s t i l l a t i o n residue was poured i n t o water to give a pale 

yellow l i q u i d (6.0g) (4 components) and a deep brown i n t r a c t a b l e m a t e r i a l 

(11.6g) (6 components i n c l u d i n g some tetraglyme). The components of these 
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mixtures could not be separated by preparative scale g . l . c . (Cols. 0 

and A). 

The experiment was repeated using caesium f l u o r i d e (7.1g, 47 mmol), 

tetragljone (50 m l ) , hexafluorobut-2-yne (9.7g, 60 mmol) and hexafluoro-

cyclobutene (10.Ig, 62 mmol). A f t e r removing the r e s i d u a l gases (l.Og) 

' the r e a c t i o n mixture was steam d i s t i l l e d to give a pale yellow o i l 

(4.7g) shown by g . l . c . (Col. 0, 100°) to contain 10 major components 

which were not i n v e s t i g a t e d f u r t h e r . 

IX.C.2 Perfluorocyclopentene 

A mixture of perfluorocyclopentene (15.5g, 73 mrool), caesium 

f l u o r i d e (11.8g, 78 mmol) and tetraglyme (50 ml) was s t i r r e d at room 

temperature and a trap containing hexafluorobut-2-yne (26.8g, 165 mmol) 

was attached. A f t e r 24 hours the r e s i d u a l gas (0.6g) was condensed i n t o 

a c o l d t r a p and the r e a c t i o n mixture f l a s h d i s t i l l e d . The r e s u l t i n g l i q u i d 

(12.2g) was shown by g . l . c . (Col, 0, 80°) to contain 10 components. 

Part of t h i s l i q u i d (9.3g) was separated by preparative scale g . l . c . 

and the two major components were i d e n t i f i e d as p e r f l u o r o - ( E ) - 2 -

(cyclopent-l'-enyl)but-2-ene (141) (0.5g), b.p. 108°, (Found: C, 28.71; 

F, 70.79%. CgFj4 requires C, 28.88; F, 71.12%), n.m.r. spectrum no. 12, 

i . r . spectrum no. 13, mass spectrum no. 9; and perf1uoro-2,3,4-trimethyl-

, 4 - e t h y l b i c y c l o [ 3 . 3 . 0 ] o c t a - ( l , 5 ) ( 2 , 3 ) - d i e n e (142) (2.9g), b.p. 141°, 

(Found: C, 28.80; F, 71.36%. C13F22 requires C,29.10; F, 70.90%), n.m.r. 

spectrum no. 13, i . r . spectrum no. 14, mass spectrum no. 10. The o v e r a l l 

y i e l d s (based on perfluorocyclopentene) of compounds (141) and (142) 

are 2% and 10% r e s p e c t i v e l y . One of the minor components of the mixture 

was i d e n t i f i e d by m. s ./g .1 .,c. as perf l u o r o — b i c y c l o p e n t y l i d e n e (143) , 

(M 424, Calc. for C-^QT^^IH 424). The mass spectrum of t h i s compound was 
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i d e n t i c a l w i t h t h a t of an authentic sample of (143). 

The experiment was repeated using hexafluorobut-2-yne (10.Ig, 

62 mmol), cyclopentene (11.Og, 52 mmol), caesium f l u o r i d e (4.0g, 26 mmol) 

and tetraglyme (40 ml) and a f t e r 24 hours the reaction mixture was 

steam d i s t i l l e d t o give a l i q u i d (12.6g, 60% recovery of m a t e r i a l ) shown 

by g . l . c . (Col. 0, 80°) to contain 10 components as i n the previous 

experiment. The mixture was not i n v e s t i g a t e d f u r t h e r . 

IX.C.3 Perfluorocyclohexene 

IX.C.3.a At 20° 

A mixture of caesium f l u o r i d e (8.0g, 53 mmol), tetraglyme (25 ml) 

and perfluorocyclohexene (10.4g, 40 mmol) was s t i r r e d at 20° while 

hexafluorobut-2-yhe (15.Og, 93 mmol) was allowed to enter the rea c t i o n 

v e s s e l . A f t e r 18 hours a large amount of s o l i d had formed i n the f l a s k 

and the r e a c t i o n was terminated. Hexafluorobut-2-yne (5.3g) was recovered 

and v o l a t i l e s were t r a n s f e r r e d under vacuum to a cold t r a p . The recovered 

l i q u i d (7.9g) was shown by g . l . c . (Col. A, 50°) to be unreacted p e r f l u o r o ­

cyclohexene contaminated w i t h a l i t t l e hexafluorobut-2-yne. The rea c t i o n 

mixture was f i l t e r e d , the s o l i d thoroughly washed w i t h water and d r i e d 

i n vacuum to give an o f f - w h i t e powder (8.1g) i d e n t i f i e d from i t s i . r . 

spectrum as polyhexafluorobut-2-yne. 

IX.C.3.b At 60° 

A s i m i l a r r e a c t i o n was c a r r i e d out at 60° using caesium f l u o r i d e 

(9.3g, 61 mmol), tetraglyme (30 ml) and perfluorocyclohexene (10.8g, 

41 mmol). Hexafluorobut-2-yne (10.3g, 64 mmol) was allowed to enter the 

r e a c t i o n vessel and a f t e r 4 days the r e s i d u a l gas (0.7g) was recovered. 
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Again only perfluorocyclohexene (9.0g) and polyhexafluorobut-2-yne (7.9g) 

were obtained. 

IX.C.4 Hexafluoropropene 

IX.C.4.a Using a Small Excess of Hexafluoropropene 

A suspension of caesium f l u o r i d e (9.9g, 65 mmol) i n tetraglyme (20 ml) 

was s t i r r e d i n a f l a s k attached to two traps containing hexafluorobut-2-yne 

(9.0g, 56 mmol) and hexafluoropropene (10.Ig, 67 ramol). Equal pressures 

of each gas were allowed i n t o the f l a s k and t h e r e a f t e r the gases were 

l e f t to d i f f u s e i n t o the r e a c t i o n mixture at a pressure of one atmosphere. 

A f t e r 16 hours the r e s i d u a l gas (1.6g) was recovered and the reaction 

mixture was f l a s h d i s t i l l e d to give a colourless l i q u i d (9.9g). Three 

major components were detectable using m.s./g.l.c. w i t h high peaks at 

462, 474 and 624 corresponding to compounds CJOFISJ C i i F j s and CmF2^. 

Three f r a c t i o n s were i s o l a t e d by preparative scale g . l . c . (Col. 0, 70°) 

and two of these were i d e n t i f i e d as perfluorohexamethylcyclopentadiene 

(145) (0.8g, 6.0%), b.p. 119°, (Found: C,27.62; F, 72.29%. CnFia requires 

C, 27.85; F, 72.15%), n.m.r. spectrum no. 14, i . r . spectrum no. 15, 

mass spectrum no. 11; and perfluoro-1,2,4,5-tetramethylcyclohexene (146) 

(0.4g, 2.6%), (Found: C, 26.15; F, 74.13%. C j o F i g requires C, 25.97; 

F, 74.03%), n.m.r. spectrum no. 15; i . r . spectrum no. 16, mass spectrum 

no. 12. The t h i r d f r a c t i o n (0.5g) showed signals at 61.2 ( 3 ) , 62.6 ( 7 ) , 

66.8 (2) and 76.5 (2) i n the ̂ ^F n.m.r. spectrum, the mass spectrum showed 

a high mass peak at m/e = 462, which corresponds to C i o ^ i e * and a weak 

C=C s t r e t c h a t 1650 cm ^ was v i s i b l e i n the i . r . spectrum. This f r a c t i o n 

was not i d e n t i f i e d and probably consists of a mixture of compounds. A 

s i m i l a r r e a c t i o n was c a r r i e d out using caesium f l u o r i d e (6.0g, 39 mmol), 

tetraglyme (35 m l ) , hexafluoropropene (14.6, 97 ramol) and hcxafluoro-
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but-2-yne (14.4g, 89 mmol). A f t e r 40 hours the r e s i d u a l gases (1.8g) 

were removed and the r e a c t i o n mixture steam d i s t i l l e d to give a 10 

component l i q u i d (10.5g, 36% recovery) which was not i n v e s t i g a t e d f u r t h e r . 

A white s o l i d (8.1g) i d e n t i f i e d as polyhexafluorobut-2-yne, was recovered 

from the steam d i s t i l l a t i o n residue. 

IX.C.4.b Using an Excess of Hexafluorobut-2-yne 

A s i m i l a r experiment was c a r r i e d out using caesium f l u o r i d e (16.4g, 

108 mmol), tetraglyme (25 m l ) , hexafluorobut-2-yne (21.2g, 131 mmol) and 

hexafluoropropene (14.8g, 99 mmol). The gases were added i n such a way 

as to ensure that the p a r t i a l pressure of the butyne was approximately 

twice t h a t of the propene. A f t e r 24 hours the res i d u a l gases (8.0g) were 

rec'overed and v o l a t i l e m a t e r i a l (6.7g) was t r a n s f e r r e d under vacuum to 

a c o l d t r a p . A p o r t i o n of the r e s u l t i n g l i q u i d (5.6g) was separated by 

p r e p a r a t i v e scale g . l . c . (Col. A, 60°) to give two f r a c t i o n s . The f i r s t 

f r a c t i o n (2.2g) was shown by m.s./g.l.c. to consist of a mixture of at 

l e a s t 3 C10F18 isomers and the second f r a c t i o n (0.8g) was i d e n t i f i e d 

as (145). The r e a c t i o n mixture was f i l t e r e d to give a s o l i d , which, a f t e r 

a thorough washing w i t h water and drying under vacuum, was i d e n t i f i e d 

as polyhexafluorobut-2-yne (15 .Og). 

IX.C.5 Perfluorobut-2-ene 

A mixture of caesium f l u o r i d e (10.Ig, 66 mmol), tetraglyme (60 ml) 

and octafluorobut-2-ene (20.Og, 105 mmol) was s t i r r e d at room temperature 

and hexafluorobut-2-yne (6.9g, 43 mmol) was allowed to d i f f u s e i n t o 

the r e a c t i o n vessel. A f t e r 6 days octafluorobut-2-ene (1.6g) was 

recovered by transference under vacuum to a cold t r a p . The reaction 
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mixture was then f l a s h d i s t i l l e d t o give a l i q u i d (16.6g) c o n s i s t i n g 

of 4 major components. F r a c t i o n a l d i s t i l l a t i o n gave a l i q u i d (8.3g) 

which b o i l e d at 80 -90° and was i d e n t i f i e d as impure perfluoro-3,4-

dimethylhex-3-ene (134). The major component of the d i s t i l l a t i o n residue 

was separated by preparative scale g . l . c . and i d e n t i f i e d as p e r f l u o r o -

3,4,5,6-tetramethylocta-3,5-diene (135) (4.4g, 18%), n.m.r. spectrum 

no. 16, i . r . spectrum no. 17, mass spectrum no. 13. One of the 

unseparable components was i d e n t i f i e d by m.s./g.l.c. as (136) . The 

mass spectrum of t h i s component was i d e n t i c a l w i t h that of an authentic 

sample.^^^ 
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CHAPTER X 

EXPERIMENTAL TO CHAPTER VI 

X.A S t a r t i n g M a t e r i a l s 

2,2,2-Trifluoroethyl-p-toluenesulphonate was prepared from 

2 , 2 , 2 - t r i f l u o r o e t h a n o l and p-toluenesulphonyl chloride by the method of 

E. Schatzle and c o w o r k e r s . T h e crude product was p u r i f i e d by 

su b l i m a t i o n at 95°/0.1 mm Hg. 

Methyltriphenylphosphonium bromide was a v a i l a b l e commercially 

and was used a f t e r drying at 60° i n vacuo f o r several days. I s o p r o p y l -

triphenylphosphonium iodide was prepared by heating triphenyIphosphine 

w i t h excess 2-iodopropane i n acetone i n a large carius tube at 90° f o r 

40 hours. The c r y s t a l l i n e s o l i d which separated on cooling was dissolved 

i n dichloromethane and the r e s u l t i n g s o l u t i o n washed w i t h sodium 

thi o s u l p h a t e s o l u t i o n to remove the iodine which was present as a 

contaminant. A f t e r d r y i n g and removing the solvent the remaining s o l i d 

was shown by ̂ P̂ n . m . r . t o be the required phosphonium io d i d e . 

The sodium s a l t of 5 - t r i f l u o r o m e t h y l - t e t r a z o l e was prepared from 

t r i f l u o r o a c e t o n i t r i l e and sodium azide by the method of Norris.^'^^ A f t e r 

d r y i n g i n vacuo at 100° the product was used without f u r t h e r p u r i f i c a t i o n 

(n.m.r. spectrum no. 17). Treating the sodium s a l t of the te t r a z o l e with 

methyl iodide i n r e f l u x i n g THF gave the 2-methyl d e r i v a t i v e i n 50% y i e l d 

(n.m.r. spectrum no. 18). 

T r i f l u o r o a c e t o n i t r i l e was prepared using a modified version of the 

method reported by Oilman and J o n e s . A n in t i m a t e mixture of phosphorus 

peintoxide (202g, 1.42raol) and tr i f l u b r p a c e t a m i d e (86g, 0.76 mol) was 

placed i n a dry f l a s k f i t t e d w i t h an e f f i c i e n t condenser connected to a 
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trap cooled i n l i q u i d a i r . The mixture was heated over a period of 

2 hours up to a temperature of 180° and then the residue was heated 

s t r o n g l y w i t h a bunsen burner f o r 1 hour. The contents of the trap were 

t r a n s f e r r e d at -70° and the r e s u l t i n g gas (58.3g, 81%) was shown by 

g . l . c . and i n f r a r e d spectroscopy to be pure t r i f l u o r o a c e t o n i t r i l e . 

X.B N u c l e o p h i l i c Additions to Hexafluorobut-2-yne 

X.B.I Sulphur 

A suspension of sulphur (3g) i n sulpholan (40 ml) was s t i r r e d at 

110° under an atmosphere of hexafluorobut-2-yne (6.0g). A f t e r 5 days, 

hexafluorobut-2-yne (2.5g) was recovered and v o l a t i l e m a t e r i a l was 

t r a n s f e r r e d at 80° under vacuum to a cold t r a p . The r e s u l t a n t l i q u i d 

(2.4g) was shown by g . l . c . (Col. 0, 170°) to consist of one component, 

i d e n t i f i e d as t e t r a k i s t r i f l u o r o m e t h y l t h i o p h e n e (162) (2.4g, 61%): 

b.p. 134°, ( l i t . 134-5°^^). (Found: C, 26.89; F, 64.26; S, 9.29%. 

Calc. f o r CQFJ2S: C, 26.97; F, 64.04; S, 8.99%); n.m.r. spectrum no. 18, 

i . r . spectrum no. 18, mass spectrum no. 14. 

X.B.2 2,2,2-Trifluoroethyl-p-toluenesulphonate Anion 

Several experiments were attempted using both b u t y l l i t h i u m and 

m e t h y l l i t h i u m to generate the anion and varying the conditions under 

which the hexafluorobut-2-yne was added. The f o l l o w i n g set of r e s u l t s i s 

t y p i c a l , 

A f l a s k was charged w i t h 2,2,2-trifluoroethyl-p-toluenesulphonate 

(8.2g, 32 mmol) dissolved i n dry ether (60 ml) and then cooled t o -78° 

w h i l s t purging w i t h dry n i t r o g e n . An ethereal s o l u t i o n of m e t h y l l i t h i u m 

(15.0 ml, 2M, 30 mmol) was added over a period of 30 mins. Then a 
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f l e x i b l e r e s e r v o i r containing hexafluorobut-2-yne (11.Og, 68 mmol) was 

attached to the r e a c t i o n vessel and the gas allowed to react over a 

period of 4 hours. The f l a s k was then allowed to warm slowly up to 

room temperature and at approximately -40° a t h i c k mass of s o l i d 

p r e c i p i t a t e d out. No hexafluorobut-2-yne was recovered. The re a c t i o n 

mixture was then f i l t e r e d and the s o l i d washed w i t h ether and water. 

The r e s u l t i n g m a t e r i a l was d r i e d i n vacuo to give a brown s o l i d (16.Og) 

(Found: C, 32.36; H, 1.00; F, 53.58; S, 9.84%). A t a r r y brown residue 

(3.0g) was obtained from the ether layer and washings. 

A c o n t r o l experiment was run i n exactly the same manner except t h a t 

no hexafluorobut-2-yne was added. The t o s y l a t e (6.5g, 26 mmol) was 

dissolved i n ether (50 ml) and m e t h y l l i t h i u m (12 ml, 2M s o l u t i o n , 24 mmol) 

was added at -78°. On warming up to room temperature a brown s o l i d formed. 

This was thoroughly washed w i t h ether and water to give a polymeric 

m a t e r i a l (l.Og) (Found: C, 35.32; H, 2.28; F, 27.2; S, 10.02%). A brown 

t a r (5.1g) was recovered from the ether layer. 

X.B.3 Phosphonium Y l i d s 

X.B.3.a MethylenetriphenyIphosphorane 

B u t y l l i t h i u m (32 ml, 1.5M s o l u t i o n i n hexane, 48 mmol) was added 

under an atmosphere of dry n i t r o g e n to a s o l u t i o n of m e t h y l t r i p h e n y l ­

phosphonium bromide (17.9g, 50 mmol) i n dry ether (75 ml) at such a 

r a t e as to maintain a steady temperature of 25°C. The mixture was s t i r r e d 

f o r 1 hour a f t e r a d d i t i o n was complete and then the orange s o l u t i o n was 

f i l t e r e d under n i t r o g e n to remove the p r e c i p i t a t e d l i t h i u m bromide. A 

f l e x i b l e r e s e r v o i r containing ht'xafluorobut-2-yne (6.7g, 41 mmol) wn.s 

then attached to the r e a c t i o n vessel, which was cooled to -25°. The 

gas was allowed i n t o the f l a s k i n small portions and when a d d i t i o n was 



- 2 0 5 -

complete the mixture was allowed to warm up to room temperature. No 

gas was recovered. V o l a t i l e s were t r a n s f e r r e d under vacuum i n t o a 

cold t r a p but no fluorocarbon was detectable i n the r e s u l t i n g l i q u i d . 

The s o l i d residue was washed w i t h water and dichloromethane to leave a 

brown s o l i d (4.4g), i d e n t i f i e d by i . r . as polyhexafluorobut - 2-yne. 

A brown t a r r y m a t e r i a l (18 .9g) was recovered from the organic washings 

and ^ n . m . r . ^ ^ ^ revealed the presence of 3 phosphorus containing species 

w i t h resonsnces a t - 2 2 . 7 , -12.9 and +6.5 p.p.m. ( r e l a t i v e to H3P0i^). 

X.B.3.b Isopropylidenetriphenylphosphorane 

B u t y l l i t h i u m ( 4 . 8 ml, 1.5M s o l u t i o n , 7 .2 mmol) was slowly added 

under an atmosphere of dry n i t r o g e n to a suspension of i s o p r o p y l -

triphenylphosphonium iodide (3.2g, 7 .5 mmol) i n dry pentane (10 m l ) . 

The r e a c t i o n was monitored by observing the e v o l u t i o n of butane gas. 

A f t e r 2 hours no more gas was evolved and a f l e x i b l e r e s e r v o i r containing 

hexafluorobut-2-yne (4.0g) was attached to the r e a c t i o n vessel. A f t e r 

a f u r t h e r 2 hours the r e a c t i o n appeared to have stopped and hexafluoro-

but - 2-yne (1.9g) was recovered. V o l a t i l e s were t r a n s f e r r e d under vacuum 

to a c o l d t r a p but the r e s u l t i n g l i q u i d contained no detectable q u a n t i t y 

of f l u o r o c a r b o n , The s o l i d residue was washed w i t h dichloromethane to 

leave a brown s o l i d (1.6g) whose i . r . spectrum resembled t h a t of 

polyhexafluorobut - 2-yne except f o r a few e x t r a weak peaks a t 2950, 1710, 

1625, 1520 and 1445 cm"^ (Found: C , 28 .42; H , 0 . 4 2 ; F, 60 .69 ; P , 1.12; 

I , 9 .5%). A brown t a r (3.0g) was recovered from the organic washings. 

Control Experiment 

The previous experiment was repeated but t h i s time the r e a c t i o n 
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mixture was i n v e s t i g a t e d by ^ n . m . r . p r i o r to adding the hexafluoro-

but-2-yne. B u t y l l i t h i u m (4 ml, 1.5M s o l u t i o n , 6 mmol) was added to a 

suspension of isopropyltriphenylphosphonium iodide (3.6g, 8.4 mmol) i n 

dry hexane (10 m l ) . The mixture was s t i r r e d at 55° f o r 2^ hours, by 

which time the e v o l u t i o n of butane had ceased. An a l i q u o t of the 

r e s u l t i n g s o l u t i o n was quenched w i t h bromine and the presence of b u t y l 

bromide was shown by g . l . c . (Col. 0 ) . The r e a c t i o n mixture showed 6 

phosphorus containing species on ^^P n.m.r. w i t h resonances at -109.6, 

-64.5, -51.6, -22.7, -9.8 and +6.5 p.p.m. ( r e l . to HjPOi^) . Hexafluoro-

but-2-yne (3.1g, 19 imnol) was allowed to d i f f u s e i n t o the re a c t i o n vessel 

and a f t e r 24 hours the v o l a t i l e s were t r a n s f e r r e d under vacuum to a 

cold t r a p . No fluorocarbon was detectable i n the r e s u l t i n g l i q u i d . A 

polymer (1.6g) was obtained from the s o l i d residue and shown to be of 

s i m i l a r composition to that described i n the previous experiment. 

X.B.4 D i e t h y l Malonate Anion 

Experiments were c a r r i e d out using both tetragljone and D.M.F. as 

solvents. S i m i l a r r e s u l t s were obtained i n both cases and therefore 

only one experiment w i l l be described. 

Diethyl malonate (16.Ig, 0.10 mol) was slowly added to a s t i r r e d 

suspension of sodium hydride (2.4g, 0.10 mol) i n tetraglyme (50 m l ) . The 

m i x t u r e was s t i r r e d f o r 1 hour a f t e r a d d i t i o n was complete and then .the 

f l a s k was evacuated. A f l e x i b l e r e s e r v o i r containing hexafluorobut-2-yne 

(1 8 . I g , 0.11 mol) was attached to the f l a s k and the gas allowed to enter 

at such a r a t e as t o maintain a pressure of approximately 50 cm Hg. A f t e r 

3^ hours the uptake of gas had ceased and hexafluorobut-2-yne (3.6g) was 

recovered. An evacuated cold trap was connected to the f l a s k but no 

v o l a t i l e s t r a n s f e r r e d at 100°/0.1 mm Hg. The r e a c t i o n mixture was then 
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poured i n t o water and a brown o i l (7.9g) separated out. Three major 

components were detectable by g . l . c . (Col. 0, 170°), one of which had 

the same r e t e n t i o n time as d i e t h y l malonate. The components could not 

be separated by pr e p a r a t i v e scale g . l . c , d i s t i l l a t i o n or column 

chromatography. Uowever, n.m.r. on the crude mixture showed several 

s i g n a l s i n the CF3 region i n c l u d i n g a s i n g l e t at 66.70 p.p.m. and a 

doublet at 61.42 p.p.m. which i s possibly due to the trans 1:1 adduct 

(172). 

X.B.5 Dimethyl Sulphoxide 

X.B.5.a Preparation of Adduct (180) 

Dimethyl sulphoxide (25.6g, 328 mmol) and hexafluorobut-2-yne 

(7.3g, 45 mmol) were sealed i n a Carius tube and heated at 70° f o r 7 

hours. Hexafluorobut-2-yne (0.3g) was recovered and the excess dimethyl 

sulphoxide was removed under vacuum t o leave a pale yellow s o l i d (10.Og). 

This was sublimed (70°/0.1 mm Hg) to give a white s o l i d i d e n t i f i e d as 

3-dimethy1suIphuranyIhexafluorobutan-2-one (180), (7.8g, 75%): m.p. 95-6°; 

(Found: C, 30.17; H, 2.50; F, 47.27; S, 13.3%. CgHeFgOS requires C, 30.00; 

H, 2.50; F, 47.50; S, 13.33%); n.m.r. spectrum no. 20; i . r . spectrum no. 19; 

mass spectrimi no. 15. 

X.B.S.b Attempted Reaction of (180) w i t h Hexafluorobut-2-yne 

i ) The adduct (180) (l.Og, 4.2 mmol) and hexafluorobut-2-yne (1.6g, 

10 mmol) were sealed i n a Carius tube and heated at 120° f o r 20 hours. 

A q u a n t i t a t i v e recovery of s t a r t i n g m a t e r i a l s was obtained. 
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i i ) A s o l u t i o n of the adduct (180) (l.Og, 4.2 mmol) i n sulpholan 

(5 ml) was s t i r r e d at 130° under an atmosphere of hexafluorobut-2-yne 

f o r 48 hours. No uptake of gas was observed and ^̂ F n.m.r. showed that 

the sulpholan s o l u t i o n contained only unreacted (180). 

i i i ) The adduct (180) (l.Og, 4.2 mmol), sulpholan (5 ml) and hexafluoro-

but-2-yne (1.6g, 10 mmol) were sealed i n a Carius tube and heated at 

130° f o r 20 hours. Hexafluorobut-2-yne (1.6g) was recovered and ^̂ F n.m.r. 

showed th a t the sulpholan contained only unreacted (180). 

X.B.5.C P y r o l y s i s of (180) 

i ) The adduct (180) (l.Og) was sealed under vacuum i n a Carius tube 

and heated at 110° f o r 2 hours. The recovered s o l i d was i d e n t i f i e d as 

unreacted s t a r t i n g m a t e r i a l and was then heated at 170° f o r 24 hours. 

Again only (180) was recovered. 

i i ) The adduct (0.43g) was sealed under vacuum i n a Carius tube and 

heated at 250°for 15 hours. A black s o l i d (0.15g), a colourless l i q u i d 

(0.22g) and a l i t t l e a c i d i c gas were recovered from the tube. The 

l i q u i d was shown by g . l . c . (Col. A, 125°) to consist of 6 major 

components and was not i n v e s t i g a t e d f u r t h e r . 

X.B.5.d Attempted Reaction of (180) w i t h A c e t y l Chloride 

The adduct (180) (0.31g, 1.3 mmol) and a c e t y l c h l o r i d e (4.5 ml) 

were r e f l u x e d f o r 3 hours and then the acid c h l o r i d e was d i s t i l l e d o f f 

to leave a pale yellow s o l i d . This was sublimed to give a white s o l i d 

(0.28g) which was i d e n t i f i e d as (180). 
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X.B.5.e Attempted Reaction of (180) w i t h Water 

A suspension of the adduct (180) (1.83g, 7.8 mmol) i n water 

(1.8 ml) was s t i r r e d at room temperature f o r 48 hours. The s o l i d was 

f i l t e r e d o f f and d r i e d i n vacuo to give a q u a n t i t a t i v e recovery of 

(180) . 

X.B.6 Triphenylphosphine Oxide 
0 

Triphenylphosphine oxide (4.7g, 17 mmol) and hexafluorobut-2-yne 

(2.8g, 17 mmol) were sealed i n a Carius tube and heated at 100° f o r 

12 hours. No v i s i b l e r e a c t i o n had occurred and the tube was therefore 

heated at 170° f o r 12 hours. Hexafluorobut-2-yne was recovered together 

w i t h a black shiny s o l i d (6.2g). This s o l i d was washed w i t h ethanol to 

remove unreacted phosphine oxide leaving a black s o l i d which was drie d 

i n vacuo (0.8g). The ^̂ P n.m.r. spectrum showed i t to be mainly 

triphenylphosphine oxide (6 =-30.7 p.p.m.) but there were smaller peaks 

at 27.5, 54.9, 82.2 (components of a t r i p l e t , J = 660 Hz) and -16.2 p.p.m. 

The experiment was repeated using a solv e n t , but no reac t i o n 

occurred on heating a mixture of triphenylphosphine oxide (5.9g, 21 mmol), 

hexafluorobut-2 —yne (4.3g, 26 mmo 1) and dichloromethane (20 ml) at 100° 

f o r 15 hours. 

X.B.7 5 - T r i f l u o r o m e t h y l t e t r a z o l e Anion 

A s o l u t i o n of the sodium s a l t of 5 - t r i f l u o r o m e t h y l t e t r a z o l e (4.4g, 

27 mmo.l) i n a c e t o n i t r i l e (60 ml) was degassed and a f l e x i b l e r e s e r v o i r 

c o n t a i n i n g hexafluorobut-2-yne (5.5g) was attached to the reaction vessel. 

The pressure of hexafluorobut-2-yne was maintained at approximately 
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10 cm Hg. A f t e r 48 hours the r e s e r v o i r was d e f l a t e d and the re s i d u a l 

gas (0.5g) was condensed i n t o a cold t r a p . The solvent was removed 

under vacuum to leave a brown t a r (9.1g). Molecular d i s t i l l a t i o n gave 

a l i t t l e brown o i l ( l . l g ) which was shown to contain 6 major components 

by g . l . c . (Col. 0, 162°). 

X.B.8 2 - M e t h y l - 5 - t r i f l u o r o m e t h y l t e t r a z o l e 

i ) A s o l u t i o n of 2 - m e t h y l - 5 - t r i f l u o r o m e t h y l t e t r a z o l e (2.1g, 14 ramol) 

i n a c e t o n i t r i l e (20 ml) was s t i r r e d under an atmosphere of hexafluoro-

but-2-yne f o r 48 hours. No uptake of gas was observed and a q u a n t i t a t i v e 

recovery of unreacted t e t r a z o l e was obtained on removing the solvent. 

i i ) Hexafluorobut-2-yne (7.0g, 43 mmol) was sealed i n a Carius tube 

w i t h 2 - m e t h y l - 5 - t r i f l u o r o m e t h y l t e t r a z o l e (2.0g, 13 mmol) and aceto­

n i t r i l e (20 m l ) . The tube was heated a t 80° f o r 16 hours. Hexafluoro-

but-2-yne (6.9g) was recovered and a q u a n t i t a t i v e recovery of unreacted 

t e t r a z o l e was obtained on removing the a c e t o n i t r i l e . 

i i i ) Hexafluorobut-2-yne (4.0g, 24 mmol) was sealed i n a n i c k e l tube 

w i t h 2 - m e t h y l - 5 - t r i f l u o r o m e t h y l t e t r a z o l e (l.Og, 6.6 mmol) and a c e t o n i t r i l e 

(10 m l ) . The tube was heated at 140° f o r 20 hours. Hexafluorobut-2-yne 

(4.0g) was recovered and n.m.r. showed that only unreacted t e t r a z o l e 

was present i n the a c e t o n i t r i l e s o l u t i o n . 

X.G A d d i t i o n of Alcohols to Hexafluorobut - 2-yne 

X.C.I Reaction Conditions and Products 

Most of the a d d i t i o n reactions were performed i n glass Carius tubes 
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of approximately 100 ml volume but n i c k e l tubes were used f o r reactions 

a t temperatures above 100°. Hexafluorobut-2-yne was sealed i n the tube 

w i t h an excess of the alcohol and the tube was e i t h e r heated or l e f t 

to stand a t room temperature f o r approximately 20 hours. The catalysed 

reactions were c a r r i e d out by d i s s o l v i n g the appropriate amount of 

sodium i n the alcoh o l i n order to give a s o l u t i o n containing 4-5% of 

the alkoxide. Catalysed reactions at elevated temperatures were ca r r i e d 

out at atmospheric pressure, the hexafluorobut-2-yne being introduced 

i n t o the r e a c t i o n vessel from a f l e x i b l e r e s e r v o i r . Experimental 

con d i t i o n s and r e s u l t s are summarised i n Table X . l . 

Base Catalysed Reactions 

Table X.l 

Alcohol Solvent 
(g) 

Hexafluoro-
but-2-yne 
(g, mmol) 

Temp. Recovered 
hexafluoro-
but-2-yne(g) 

% trans 

CH3OH 
. 5.1, 160 - 6.0, 37 20° 0.0 96 

n-C3H70H 
8.1, 135 - 4.0, 25 20° 0.0 92 

n-Ci^HgOH 
9.0, 120 - 5.3, 33 20° 0.0 89 

15.8, 214 - 6.8, 42 117° 0.0 86 

5.2, 70 sulpholan, 
25.0 

3.8, 23 117° 0.0 92 

2-Ci,HgOH 
4.6, 62 - 2.4, 15 20° 0.0 91 

l!;-Ci+H90H 
9.9, 130 • - 4.0, 25 20° 2.2 86 
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Al cohol 

(g, mmol) 

Solvent 
(g) 

Hexafluoro-
but-2-yne 
(g, mmol) 

Temp. Recovered 
hexafluoro-
but-2-yne(g) 

% trans 

CH3OH 
4.5, 140 - 4.5, 28 95° 0.0 92 

n-C^HgOH -

8.0, 110 6.1, 38 95° 3.7 90 

1.8, 24 Ether, 6.5 5.5, 34 95° 5.5 -

3.5, 47 Ether, 14.2 10.0, 62 150° 7.5 27 

1.8, 24 Sulpholan, 
12.7 

5.8, 36 100° 5.8 

1.2, 16 Sulpholan, 
9.0 

4.8, 28 150° 3.4 30 

t-Ci^HgOH 
18.6, 251 - 4.2, 26 95° 4.2 -

9.8, 130 - 3.0, 19 150° 2.5 90 

The products were not i s o l a t e d but were studied by ^̂ F n.m.r. 

and m.s./g.l.c. on the crude r e a c t i o n mixture. Isomer r a t i o s were 

determined using the method described i n Chapter IV. The f o l l o w i n g data 

were obtained: (Z)-2-methoxy-l,1,1,4,4,4-hexafluorobut-2-ene (195); n.ra.r, 

spectrum no. 21; (E)-2-methoxy-l,1,1 , 4,4,4-hexafluorobut-2-ene (196); 

n.m.r. spectrum no. 22; (Z)-2-n-propoxy-l,1,1,4,4,4-hexafluorobut-2-ene 

(197): n.m.r. spectrum no. 23, mass spectrum no. 16; (E)-2-?t-propoxy-

1,1,1,4,4,4-hexafluorobut-2-ene (198): n.m.r. spectrum no. 24; 

(Z)-2-n-butoxy-l,1,1,4,4,4-hexafluorobut-2-ene (199); n.m.r. spectrum 

no. 25, mass spectrum no. 17; (E)-2-n-butoxy-l,1,1,4,4,4-hexafluoro-

but-2-ene (200); n.m.r. spectrum no. 26; (Z)-2-see-butoxy-l,1,1,4,4,4-

hexafluorobut-2-ene (201); n.m.r. spectrum no. 27, mass spectrum no. 18; 

(E)-2-sgc-butoxy-l,1,1,4,4,4-hexafluorobut-2-ene (202); n.m.r. spectrum 
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no. 28, mass spectrum no. 19; (Z)-2-tert-hutoxy-l,1,1,4,4,4-hexafluoro-

but-2-ene (203): n.m.r. spectrum no. 29, mass spectrum no. 20; 

(E)-2-tert-hutoxy-l,1,1,4,4,4-hexafluorobut-2-ene (204): n.m.r. spectrum 

no. 30. 

X.C.2 Attempted E q u i l i b r i u m Reactions 

( i ) At 20° 

A p o r t i o n of the mixture obtained from the uncatalysed r e a c t i o n 

of n-butanol w i t h hexafluorobut-2-yne i n sulpholan at 150° ( i . e . a 

mixture of 30% (199) and 70% (200)) was s t i r r e d a t 20° w i t h an equal 

volume of a 5% s o l u t i o n of sodium n-hutoxide i n n-butanol. The r a t i o 

of isomers (199) and (200) was found to remain unaltered over a period 

of 48 hours. 

( i i ) At 150° 

The above experiment was repeated i n a Carius tube which was heated 

f o r 48 hours at 150°. On cooling to 20° and opening the tube the 

recovered l i q u i d was found to contain isomers (199) and (200) i n the 

r a t i o of 30:70 i . e . no isomerisation had occurred. 

X.D Reaction of Hexafluorobut-2-yne w i t h Water 

Water (2.0g, 110 mmol), hexafluorobut-2-yne (6.3g, 39 mmol) and 

tetraglyme (8.4g) were sealed i n a Carius tube which was shaken i n an 

o i l bath a t 85° f o r 64 hours. On opening the tube hexafluorobut-2-yne 

(4.2g) was recovered and v o l a t i l e m a t e r i a l was t r a n s f e r r e d under vacuum 

to a cold t r a p . ,The r e s u l t i n g l i q u i d was d r i e d over P2O5 and tr a n s f e r r e d 
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under vacuum to give a colourless l i q u i d (2.0g), shown by g . l . c . 

(Col. A, 80°) to consist of 2 components. The major component (> 90%) 

i d e n t i f i e d by m.s./g.l.c. and n.m.r. as 1,1,1,4,4,4-hexafluorobutan-2-one 

(194): n.m.r. spectrum no. 31; M̂  not observed, peak at m/e = 161 

i . e . M^ - 19(F). The minor component was probably bis(hexafluorobut-2-

enyl) ether (20): M"̂  not observed, peak at m/e = 273 i . e . M"*" - 69(CF3). 

The r e a c t i o n was repeated using water (2.2g, 120 mmol), hexafluoro-

but-2-yne (10.9g, 67 mmol) and sulpholan (lOg). A f t e r 114 hours at 110° 

hexafluorobut-2-yne (5.0g) was recovered and v o l a t i l e s were transferred 

under vacuum to a cold t r a p . The r e s u l t i n g l i q u i d was d r i e d (P2O5) and 

t r a n s f e r r e d under vacuum to give a colourless l i q u i d , shown by g. l . c . 

(Col. A 70°) to be one component and i d e n t i f i e d as the butahone (194) 

(5.9g, 91%.); b.p. 56°, ( l i t . 54.2° at 747 mm Hg^'*), (Found: C, 26.55; 

H, 1.08; F, 63.49%. Calc, f o r C(^H2Fg0: C, 26.67; H, 1.11; F, 63.33%), 

n.m.r. spectrum no. 31, i . r . spectrum no. 20. 
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APPENDIX I 

N.M.R. SPECTRA 

1) 3,4-bistrifluoromethyl-hexa-2,5-dione (106) 

2) (E ) - 3 - t r i f l u o r o m e t h y l - 1 , 1 , 1 - t r i f l u o r o p e n t - 2 - e n - 4 - o n e (105) 

3) ( Z ) - 3 - t r i f l u o r o m e t h y l - 1 , 1 , 1 - t r i f l u o r o p e n t - 2 - e n - 4 - o n e (110) 

4) l-methyl-2,3-bistrifluoromethyl-4-oxacyclobutene (111) 

5) (E)-3-trifluorOTiethyl-1,1,1-trifluorohex-2-en-4-one (112) 

6) 4,5-bistrifluoromethyl-octa-3,6-dione (114) 

7) 4 - t r i f l u o r o m e t h y l - 4 - ( 2 , 2 , 2 - t r i f l u o r o e t h y l ) - h e p t a - 3 , 5 - d i o n e (113) 

8) ( E ) - 3 - t r i f l u o r o m e t h y l - l , 1 , 1 - t r i f l u o r o h e p t - 2 - e n - 4 - o n e (118) 

9) ( E ) - 3 - t r i f l u o r o m e t h y l - 1 , l , l - t r i f l u o r o o c t - 2 - e n - 4 - o n e (121) 

10) (E)-3-trifluoromethyl-1,1,1,5,5,5-hexafluoropent-2-en-4-ol (122) 

11) (Z)-3-trifluoromethyl-1,1,1,5,5,5-hexafluoropent-2-en-4-ol (123) 

12) Perfluoro-(E)-2-(cyclopent-l'-enyl)-but-2-ene (141) 

13) Perf l u o r o - 2 , 3 , 4 - t r i m e t h y l - 4 - e t h y l b i c y c l o [3 . 3.0] oc.ta-(l ,5), ( 2 , 3 ) -

diene (142) 

14) PerfluorohexamethyIcyclopentadiene (145) 

15) Perfluoro-1,2,4,6-tetramethylcyclohexene (146) isomer mixture 

16) Perfluoro-3,4,5,6-tetramethylocta-3,5-diene (135) 

17) 5 - t r i f l u o r o m e t h y l t e t r a z o l e sodium s a l t (186) 

18) 2 - m e t h y l - 5 - t r i f l u o r o m e t h y l t e t r a z o l e (189) 

19) T e t r a k i s t r i f l u o r o m e t h y l t h i o p h e n e (162) 

20) ' 3-dimethylsulphuranyIhexafluorobutan-2-one (180) 

21) (Z)-2-methoxy-l,l,l,4,4,4-hexafluorobut-2-ene (195) 

22) (E)-2-methoxy-l,l,l,4,4,4-hexafluorobut-2-ene (196) 

23) (Z)-2-n-propoxy-l,l,l,4,4,4-hexafluorobut-2-ene (197) 

24) (E)-2-n-propoxy-l,l,l,4,4,4-hexafluorobut-2-ene (198) 
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25) (Z)-2-n-butoxy-l,l,l,4,4,4-hexafluorobut-2-ene (199) 

26) (E)-2-n-butoxy-l,1,1,4,4,4-hexafluorobut-2-ene (200) 

27) (Z)-2-see-butoxy-l,1,1,4,4,4-hexafluorobut-2-ene (201) 

28) (E)-2-sec-butoxy-l,l,l,4,4,4-hexafluorobut-2-e.ne (202) 

29) (Z)-2-tert-butoxy-l,l,l,4,4,4-hexafluorobut-2-ene (203) 

30) (E)-2-tert-butoxy-l,l,l,4,4,4-hexafluorobut-2-ene (204) 

31) 1,1,1,4,4,4-hexafluorobutan-2-one (194) 

The f o l l o w i n g abbreviations are used i n t h i s appendix: 

S, s i n g l e t ; D, doublet; T, t r i p l e t ; Q, q u a r t e t ; P, pentet; Sx, sextet; 

M, m u l t i p l e t . 

Unless otherwise s t a t e d spectra were recorded at 40° as neat l i q u i d s . 

E x t e r n a l CFCI3 and TMS were used as references f o r '•̂ F and Ĥ spectra 

r e s p e c t i v e l y . 

For % spectra downfield s h i f t s are quoted as p o s i t i v e ( d e l t a s c a l e ) , 

w h i l s t f o r ^^F spectra, u p f i e l d s h i f t s are quoted as p o s i t i v e . 



-217-

S h i f t Fine S t r u c t u r e Relative Assignment 
p.p.m. J values i n Hz I n t e n s i t y 

1. 3,4-bistrifluoromethyl-hexa-2,5-dione (106) 

63.9 S 

IH 

2.4 S 3 

4.1 S 1 

C F s . ^ /CF3'^ "CF3 H- '̂ CF3 CF3 
H^C-CrHc , . ^C=Cr > = C 

Recorded as a s o l u t i o n i n CDCI3 
a b _ „c 

CH3OC' "C0CH3^ '̂ CH30C' "CF3" ^CHjOC "H 
(106) (105) (110) 

2. ( E ) - 3 - t r i f l u o r o m e t h y 1 - 1 , l , l - t r i f l u o r o p e n t - 2 - e n - 4 - o n e (105) 

63.1 D, J = 7.5 3 a 
ac 

67.5 S 3 b 

2.50 S 3 d 

6.45 Q, J = 7.5 1 c 
ca 

3. (Z) - 3 - t r i f l u o r o m e t h y l - 1 , 1 , 1 - t r i f l u o r o p e n t - 2 - e n - 4 - o n e (110) 

111 
60.9 Complex M 3 a 

62.1 Q, J^^ = 10 3 b 

iH 

2.50 S 3 

6.93 Q, J = 8 1 
ca 
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S h i f t Fine Structure Relative Assignment 
p.p.m. J values i n Hz I n t e n s i t y 

4. l-methyl-2,3-bistrifluorcimethyl-4-oxacyclobutene (111) 

62.4 S 3 a 

81.2 S . 3 b 

iH 

2.18 S 3 c 

5.58 Broad S . 1 d 

Spectrum recorded as a mixture w i t h compounds (105) and (110) 

C F s ^ /CF3^ ^CF3 H^ 

^ H - ^ i " f 3-CH.< -CF3^ 
"-CH3^ ^ ' ° 

(111) (112) 

5. (E)-3-trifluoromethy1-1,1,1-trifluorohex-2-en-4-one (112) 

19F 

63.0 D, J =7 of Q, 
ac ' J . = 1.6 ab 

67.3 Broad S 

1.08 T, J, = 7 3 
de 

2.69 Q, J^^= 7 2 

6.40 Q, J = 7 of Q, 
J , = 1.3 1 
cb 



-219^ 

S h i f t Fine Structure Relative As;signment 
p.p.m. J values i n Hz I n t e n s i t y 

6. 4,5-bistrifluorcmethyl-octa-3,6-dione (114) 

111 
64.2 Broad M 

iH 
1.13 Broad M - b 

2.68 Broad Q - c 

4.08 Broad S - d 

Spectrum recorded as a 88:12 mixture of (114) and (113) using CDCI3 
as solvent 

H H'̂  a COCH2CH3 
^c-cC' CF3-C-CH2-CF3 

CH3-CH2-C'^ C-CH2-CH3 a ,1^^^^^^^^ 

0 0 ° d c 
(114) (113) 

7. 4 - t r i f l u o r o m e t h y l - 4 - ( 2 , 2 , 2 - t r i f l u o r o e t h y l ) - h e p t a - 3 , 5 - d i o n e (113) 

60.2 Broad S 3 a 

69.6 Broad S 3 . b 

1.13 Broad M - c 

2.68 Broad Q - d,e 

Spectrum recorded as a 12:8.8 mixture of (113) and (114) using CDCI3 as 

solvent 
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S h i f t Fine Structure Relative Assignment-
p.p.m. J values i n Hz I n t e n s i t y 

8. ( E ) - 3 - t r i f l u o r o m e t h y l - l , l , l - t r i f l u o r o h e p t - 2 - e n - 4 - o n e (118) 

62.7 D, J =7.5 of Q, 3 a 
J = 1.5 ab 

67.0 S 3 b 

0.95 T, J^^= 7 3 d 1.71 Sx, J= 7 2 e 

2.72 T, J^^= 7 2 f 

6.42 Q, J =7.5 of Q, 1 • c 
J = 1.3 cb 

d e f ^C=C^ d e f g /C=C , 
CHgCHjCHjC:^ C F 3 ^ CH3CH2CH2CH2C. C F 3 ' 

"^0 0 

(118) (121) 

9. ( E ) - 3 - t r i f l u o r o m e t h y l - l , l , l - t r i f l u o r o o c t - 2 - e n - 4 - o n e (121) 

57.5 D, J = 7 3 a 

61.5 S 3 b 

0.86 ' T, J^g= 7 3 d 

1.40 'Broad M 4 e,f 

2.60 T, Jg^= 7 2 g 

6.23 Q, J = 7 1 c 
ca 
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S h i f t Fine Structure Relative Assignment 
p.p.m. J values i n Hz I n t e n s i t y 

10. (E)-3-trifluoromethyl-1,1,1,5,5,5-hexafluoropent-2-en-4-ol (122) 

19F . 

61.5 Broad 3 a 

64.9 D, J^^= 7.8 3 b 

77.6 Broad 3 c 

3.80 S 1 d 

5.15 Q, J^^= 6.4 1 e 

6.30 Q, J^^= 7.8 1 f 

CF3-C^H^ ^Fa*' ^CF3-C-0H^ ^H^ 
H H e e 

(122) (123) 

11. (Z)-3-trifluoromethyl-1,1,1,5,5,5-hexafluoropent-2-en-4-ol (123) 

I9F 

61.5 Q, J^^= 10 3 a 

62.7 Complex M 3 b 

80.0 Broad 3 c 

3.10 D, J^^= 5.2 1 d 

4.63 Broad 1 e 

6.42 Q, J^^= 8.0 1 f 
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Shif t 
p.p.m. 

Fine St r u c t u r e 
J values i n Hz 

Relative 
I n t e n s i t y 

Assignment 

12. P e r f l u o r o - [(E)-2-(cyclopent-l'-enyl)-but-2-ene] (141) 

63.2 

72.5 

103.0 

112.5 

122.5 

124.2 

134.2 

D, J = 2 0 ac 

Broad S 

Broad M 

Broad D 

Broad S 

M 

M 

3 

3 

1 

2 

1 

2 

2 

g 

d 

e 

f 

(141) 
,CF3 CF3 ^ 

13. P e r f l u o r o - ( 2 , 3 , 4 - t r i m e t h y l - 4 - e t h y l b i c y c l o [ 3 . 3 . 0 ] o c t a - ( l , 5 ) , ( 2 , 3 ) -

diene) (142) 

58.2 Broad S 3 a 

62.4 Q, J^^= 10.5 3 • b 

63.1 M 3 c 

83.5 S 3 d 

Signals at 111.5, 115.3 and 129.6 equivalent t o 8F (4 CFj groups) 
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S h i f t Fine S t r u c t u r e Relative Assignment 
p.p.m. J values i n Hz I n t e n s i t y 

14. H e x a k i s t r i f l u o r o m e t h y l cyclopentadiene (145) 

58.5 Broad S 3 a 

62.6 Broad M 6 b,c 

C F 3 C F 2 ^ C F 3 a 
2^=0 ^ C F 3 

C F 3 C F 3 ^ C F 3 CF3 ^C=C 
3 3 a b ^ C Y s ^CF2CF3 

(145) (146) ' (135) ^ " 

15. Perfluoro-(l,2,4,6-tetramethylcyclohexene) isomer mixture (146) 

59.9) 
> Broad S 3 a 

60.4^ 

62.3 Broad M 3 b 

74.1 Broad S 6 c,d 

159.3 Broad S 1 , >i 

163.0 Broad S 1 J 

Weak signals between 96.0 and 120.0 p.p.m. due to AB s p l i t t i n g of 

C F 2 groups e and f were unassigned 

16. Perfluoro-3,4,5,6-tetramethylocta-3,5-diene isomer mixture (135) 

58.5 Broad M 6 a,b 

80.3 S 3 c 

105.9) 
\ Broad M 2 . d 

108.2J 
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S h i f t Fine St r u c t u r e Relative Assignment 
p.p.m. J values i n Hz I n t e n s i t y 

17. 5 - t r i f l u o r o m e t h y l t e t r a z o l e sodium s a l t (186) 

62.2 S 

Recorded as a s o l u t i o n i n CH3CN 

18. 2 - m e t h y l - 5 - t r i f l u o r o m e t h y l t e t r a z o l e (189) 

64.6 S 

iH 

4.49 S 

Recorded as a s o l u t i o n i n C D C I 3 

N=N ^N=N. CFg^ / C F 3 

cF3-c^ l _ , cF3-c;^ 
a ^N-N Na a ^N-N 

(186) (189) b 

a 

CF3 ^ S ' ^ ^ C F 3 ^ 

(162) 

19. T e t r a k i s t r i f l u o r o m e t h y l t h i o p h e n e (162) 

56.5 S 3 a 

58.2 S 3 b 
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S h i f t 
p.p.m. 

Fine Structure 
J values i n Hz 

Relative 
I n t e n s i t y 

Assignment 

20. 3-dimethylsulphuranyIhexafluorobutan-2-one (180) 

19F 

Q, J = 11 3.5 

S 1 

S 1 

Q, J = 11 3.5 

49.1 

51.9 

70.2 

73.4 

iH 

2.86 

3.02 

S 

S 

1 

3.5 

Recorded as a s o l u t i o n i n dg-acetone 

a 
CF 

CH3-S^ 
CH3 
c 

a h b 
C F 3 C F 3 

CH3-S+ 

1;H3 

^CFg CH3O CH3-S+ 

1;H3 
b c 

(195) 

H 

b 

b 

b 
CF: 3 \ / ^ ^ 3 

CF3 CH3O H 
a c d 

(196) 
(180) 

21. (Z)-2-methoxy-l,1,1,4,4,4-hexafluorobut-2-ene (195)* 

57.8 D, J^^= 7.5 3 a 

70.9 Broad S 3 b 

iH 

3.80 

5.57 

c 

d 
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S h i f t " Fine Structure Relative Assignment 
p.p.m. J values i n Hz I n t e n s i t y 

22. (E)-2-methoxy-1,1,1,4,4,4-hexafluorobut-2-ene (196)* 

19F 

54.4 M 3 

68.8 Q, J^^= 11 3 

iH 

3.50 S 3 c 

4.86 Q, J^3= 7.5 1 d 

* Spectrum run as a mixture of 96% (Z) and 4% (E) isomers 
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S h i f t Fine Structure Relative Assignment 
p.p.m. J values i n Hz I n t e n s i t y 

23. (Z)-2-n-propoxy-l,1,1,4,4,4-hexafluorobut-2-ene (197)* 

19F 

59.0 D, J = 7.5 3 . a 
ac 

71.5 S 3 b 

24. (E)-2-n-propoxy-l,1,1,4,4,4-hexafluorobut-2-ene (198)* 

111 
55.1 M 3 a 

69.8 Q, J^^= 10 3 b 

* Spectrum run as a mixture of 92% (Z) and 8% (E) isomers i n propan-l-ol 

^ C = C ^ c = c ^ 
RO'^ ^CFga RO^ He 

(197) R = n - C 3 H 7 (198) R = n-C^Hj 

(199) R = n-Ci^Hg (200) R = ^2-C(,Hg 

25. (Z)-2-n-butoxy-1,1,1,4,4,4-hexafluorobut-2-ene (199)t 

111 
58.9 D, J = 7.5 3 a 

ac 
71.5 . S 3 b 

26. (E)-2-n-butoxy-1,1,1,4,4,4-hexafluorobut-2-ene (200)+ 

111 

55.0 M 3 a 

69.7 Q, Ĵ ^̂ = 10 3 b 

t Spectrum run as a mixture of 89% (Z) and 11% (E) isomers i n butan-l-ol 
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S h i f t Fine Structure Relative Assignment 
p.p.m. J values i n Hz I n t e n s i t y 

27. (Z)-2-sec-butoxy-l,1,1,4,4,4-hexafluorobut-2-ene (201)* 

19F 

59.5 D, J^^= 7.5 3 

70.0 S 3 b 

28. (E)-2-aec-butoxy-l.l,l,4,4,4-hexafluorobut-2-ene (202)* 

He. 

54.6 M 3 a 

69.9 Q, J^^= 10.5 3 b 

* Spectrum run as a mixture of 91% (Z) and 9% (E) isomers i n butan-2-ol 

' C F 3 ^ /H ^ ' C F 3 ^ • / C F 3 ^ 

^c=c c=c^ ^ 
RO^ ^CFf RO-̂  ^H^ 

(201) R = C 2 H 5 C H - (202) R = C 2 H 5 C H -

CH3 CH3 

(203) R = ( C H 3 ) 2 C - (204) R = ( ^ 3 ) 2 0 -

29. (Z)-2-tert:-butoxy-1,1,1,4,4,4-hexafluorobut-2-ene (203) + 

19 F 

59.5 D, J^^= 7.5 3 a 

70.1 S 3 b 

30. (E)-2-ter't-butoxy-l,1,1.4,4,4-hexafluorobut-2-ene (204)+ 

61.5 . M 3 a 

68.2 M . 3 b 

+ Spectrum run as a mixture of 86% (Z) and 14% (E) isomers i n 2-methyl-

propan-2-oI 
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S h i f t Fine Structure Relative Assignment 
p.p.m. J values i n Hz I n t e n s i t y 

31. 1,1,1,4,4,4-hexafluorobutan-2-one (194) 

19F 

60.6 S 3 

86.7 S 3 

iH 

5.2 

c b a 
C F 3 C H 2 C O C F 3 

(194) 
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APPENDIX I I 

INFRARED SPECTRA 

Hexafluorobut-2-yne (I) 

Polyhexafluorobut-2-yne (prepared by gamma i r r a d i a t i o n ) 

Polyhexafluorobut-2-yne (prepared using CsF i n sulpholan) 

3.4- bistrifluoromethyl-hexa-2,5-dione (106) 

(Z)- 3 - t r i f l u o r o m e t h y l - 1 , 1 , 1 - t r i f l u o r o p e n t - 2 - e n - 4 - o n e (110) 

(E ) - 3 - t r i f l u o r o m e t h y l - 1 , 1 , l - t r i f l u o r o h e x - 2 - e n - 4 - o n e (112) 

4.5- b i s t r i f l u o r o m e t h y l - o c t a - 3 , 6 - d i o n e (114) and 4 - t r i f l u o r o m e t h y l -

4 - ( 2 , 2 , 2 - t r i f l u o r o e t h y l ) - h e p t a - 3 , 5 - d i o n e (113) mixture 

(E)-3-trifluoromethyl-1,1,1-trifluorohept-2-en-4-one (118) 

( E ) - 3 - t r i f l u o r o m e t h y l - 1 , l , l - t r i f l u o r o o c t - 2 - e n - 4 - o n e (121) 

10) (E)-3-trifluoromethyl-1,1,1,5,5,5-hexafluoropent-2-en-4-ol (122) 

11) (Z)-3-trifluoromethyl-1,1,1,5,5,5-hexafluoropent-2-en-4-ol (123) 

12) Copoljmier of hexafluorobut-2-yne and dimethylacetylene dicarboxylate 

(2.1:1) 

13) Perfluoro-(E)-2-(cyclopent-l'-enyl)-but-2-ene (141) 

14) P e r f l u o r o - 2 , 3 , 4 - t r i m e t h y l - 4 - e t h y l b i c y c l o [ 3 . 3 . 0 ] o c t a - ( l , 5 ) , ( 2 , 3 ) -

diene (142) 

15) H e x a k i s t r i f l u o r o m e t h y l cyclopentadiene (145) 

16) Perfluoro-1,2,4,6-tetramethylcyclohexene (146) isomer mixture 

17) Perfluoro-3,4,5,6-tetramethylocta-3,5-diene (135) 

18) T e t r a k i s t r i f l u o r o m e t h y l t h i o p h e n e (162) 

19) 3-dimethylsulphuranylhexafluorobutan-2-one (180) 

20) 1,1,1,4,4,4-hexafluorobutan-2-one (194) 
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APPENDIX I I I 

MASS SPECTRA 

1) 3,4-bistrifluoromethyl-hexa-2,5-dione (106) 

2) (Z)-3-trifluoromethyl-1,1,1-trxfluoropent-2-en-4-one (110) 

3) ( E ) - 3 - t r i f l u o r o m e t h y l - l , l , l - t r i f l u o r o h e x - 2 - e n - 4 - o n e (112) 

4) 4,5-bistrifluoromethyl-octa-3,6-dione (114) and 4 - t r i f l u o r o m e t h y l -

4 - ( 2 , 2 , 2 - t r i f l u o r o e t h y l ) - h e p i t a - 3 , 5 - d i o n e (113) mixture 

5) ( E ) - 3 - t r i f l u o r o m e t h y l - l , l , l - t r i f l u o r o h e p t - 2 - e n - 4 - o n e (118) 

6) ( E ) - 3 - t r i f l u o r o m e t h y l - 1 , 1 , 1 - t r i f l u o r o o c t - 2 - e n - 4 - o n e (121) 

7) ( E ) - 3 - t r i f l u o r o m e t h y l - l , l , l , 5 , 5 , 5 - h e x a f l u o r o p e n t - 2 - e n - 4 - o l (122) 

8) ( Z ) - 3 - t r i f l u o r o m e t h y l - l , l , l , 5 , 5 , 5 - h e x a f l u o r o p e n t - 2 - e n - 4 - o l (123) 

9) Perfluoro-(E)-2-(cyclopent-l'-enyl)-but-2-ene (141) 

10) P e r f l u o r o - 2 , 3 , 4 - t r i m e t h y l - 4 - e t h y l b i c y c l o [ 3 . 3 . 0 ] o c t a - ( l , 5 ) , ( 2 , 3 ) -

diene (142) 

11) Perfluorohexamethylcyclopentadiene (145) 

12) Perfluoro-1,2,4,6-tetramethylcyclohexene (146) 

13) Perfluoro-3,4,5,6-tetramethylocta-3,5-diene (135) 

14) T e t r a k i s t r i f l u o r o m e t h y l t h i o p h e n e (162) 

15) 3-dimethylsuIphuranyIhexafluorobutan-2-one (180) 

16) 2-n-propoxy-l,1,1,4,4,4-hexafluorobut-2-ene isomer mixture (197) & (198) 

17) 2-n-butoxy-l,l,l,4,4,4-hexafluorobut-2-ene isomer mixture (199) & (200) 

18) (Z)-2-see-butoxy-l,l,l,4,4,4-hexafluorobut-2-ene (201) 

19) (E)-2-see-butoxy-l,l,l,4,4,4-hexafluorobut-2-ene (202) 

20) 2-^ert-butoxy-l,l,l,4,4,4-hexafluorobut-2-ene isomer mixture (203) & (204) 



CJ1G8 9 
X 20 
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zee 3B0 

CJ16B Y ••••BO 

PEAK 
N O . 

MASS x :I:N T 
BASE 

9 
10 
:U 
:I2 
13 
14 
15 
16 
17 
18 
19 
20 
2 1 

2 7 . 1 4 
2 f U 0 0 
vS J. <• -'"V 

3 8 . a9 
4 1 .. 93 
4 2 . 9 8 
4 4 . 0 4 
4;-.. 06 
47<. 07 
50<.9V 

61 . 0 2 
6 2 . 0 5 
6 8 . 9 9 
7 5 . 1 2 
91 . 0 8 
9 5 . 1 5 

145 c 22 
1 6 7 . 2 7 
2 1 5 . 2 5 
250 »29 

0 ( 4 3 
9 . 7 0 
1 . 9 7 
0 . 4 7 
2 . 6 5 

. 0 0 . 0 0 
3 . 5 1 
5 . 1 2 
0 . 3 9 
0 . 3 6 
0 . 3 9 
0 . 5 0 
1 , 6 8 
2 . 2 5 
0 „ 79 
0 . 7 5 
2.11 
0 . 3 9 
0 . 4 7 
2 . 9 7 
0 . 7 5 
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CJRC S 
X IB 
T 

r C . 2 206 

J.,^Li.Llij.J_-iLjiL,—U U 
180 

l i l j l L 1 — 
Z0E 

I.: J AC 5 09-JLY-80 

EAK MASS r/. INT 
NO. BASE 

:l 27.25 0.24 
'? 28. 13 4.19 
3 28. 9 9 0.59 
4 30.91 0.39 
5 32.02 0.86 
6 3 3 . 1 3 0.51 
•7 38.08 0.24 

3 9.00 1.10 
9 4 0 . 9 5 0,37 

10 42.04 4.50 29 93.01 0.54 
11 43.11 100.00 30 94.05 0.34 
12 44.15 2.35 31 95 • 06 0.98 
13 45.16 0.34 32 100.98 0.32 
14 49.88 0.22 33 109.04 0.27 
15 50.<^4 1.27 34 113.02 3.99 
16 53.07 0.93 35 119.01 0.22 
17 57.10 0.88 36 120.99 0.29 
18 59.01 0.24 37 137.03 0.34 
19 60.98 0.37 38 138.97 0.66 
20 64.11 0.27 39 140.94 1.54 
21 6 8 . 9 7 8.20 40 142.97 0.37 

' ':>':> 6 9 . 9 3 0.24 41 144.01 0.47 
23 70.99 0.27 A 2 159.00 0.42 
24 7 5 . 0 7 6.78 43 163 . 00 2.94 

i::-
A'. . \ J 

76 . 0 7 0.29 44 187.03 0.73 
26 77.0/' 0. 34 4 5 190.95 7. 1 5 
•A J 88.98 0.86 4 6 1 9 1V V 9 0.44 
23 9 0 . 9 5 0.64 47 206.04 0.69 
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CJ1852 5 ;vIV/ 220 
X s 

CJ1852. 

PEAK-
NO. 

MASS 

07-JAN-80 

% INT 
BASE 

1 26.34 2.05 
2 
3 

27.27 
28.15 

22.92 
29.57 

4 29.04 62.23 
5 29.87 1.50 
7 32.03 5.61 
12 42.04 1.63 
13 43.11 9.03 
15 47.12 4.40 
16 50.95 1.14 
17 53.09 1.89 
19 55.16 4.27 
20 56.16 2.90 
21 57.15 100.00 54 140.93 5.93 

58.12 3.49 56 142.96 1.27 
23 59.06 1.08 57 143.98 4.50 
26 69.05 11.05 58 145,00 1.21 
27 75.13 14.77 59 150.96 3.36 
29 77.08 1.63 61 152.99 2.64 
37 95.04 1.79 62 162.96 11.44 
40 103.03 2.64 64 171.90 o, 22 
41 112.99 11.57 65 172.94 1.60 
47 122.99 3.10 66 190.98 76.13 
49 126.00 2.90 68 200.94 0.29 
51 130.96 1.27 69 219.90 4.50 
52 133.01 1.01 70 220.93 0.62 
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K0.4 278 
J1741fl 4 

X 4 

189 2B0 30B 

J1741A. 08-N0y-71 

PEAK 
NO. 

MASS % INT 
BASE 

1 20.65 64.62 
2 21.92 100.00 
5 24.30 1.32 
6 31.83 0.93 
7 33.00 12.67 
8 34.23 1.66 
9 37.51 2.47 
10 41.95 1.34 
11 44.31 0.46 
12 45.50 0.95 
14 47.70 1,81 
15 48.77 0.34 
16 49.80 2.12 
17 50.92 1,10 
20 58.74 0.66 
21 62.10 0.66 
22 63.23 1.59 
23 64,38 0.71 
24 65.46 3.61 
25 66 • 55 0.44 
26 67.64 0.46 
30 76.46 0.46 
31 77.52 0.42 
32 78.56 1.39 
33 79.64 0.59 
34 80.74 1.29 
36 87.34 1.51 
37 88.44 0.42 
39 91 .71 0,85 
40 92.87 0.39 

41 93.96 0.76 
42 95.07 0.37 
43 96.15 0.46 
44 102.58 1.61 
46 105.88 0.46 
47 106.97 0.78 
49 109.10 0.61 
53 117.69 2.05 
55 124.28 0.37 
56 132.79 0.39 
57 135.97 0.59 
58 137.11 0.34 
59 139.25 0.37 
60 152.09 0.27 
61 162.68 0.22 
62 164.74 0.71 
63 173.38 0.27 
64 199.49 0.44 
65 277.99 0.27 
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CJ1932 
HO. 5 Ivf̂  234-

X 2 

-1 
388 

CJ1932 5 30-JAN -80 

EAK MASS % INT 
NO. BASE 

27.25 33.42 
3 28.13 24.31 
4 29.02 10.47 
7 32.01 4.47 

10 39.01 11.00 
11 39.88 2.19 
12 40.94 55.34* 
13 41 .04 36.76* 
14 42.05 14.67 
15 43.10 100.00* 
16 43.20 66.10* 
17 44.17 3.61 
24 55.10 6.98 
28 59.89 9.49 
33 68.94 9.76 87 157.93 8,25 
35 70,98 56.91 89 162.90 5.32 
36 72.03 2.63 93 165.07 21.38 
37 73.04 . 3.11 . 94 167.59 2.04 
39 75.05 8.67 95 172.26 6.06 
42 78.03 3.61 98 185.86 27.24 
46 88.95 3.99 99 190.81 29.37 
60 112.93 7.34 100 198.93 7.84 
77 140.85 3.52 101 205.94 32.42 
79 143.95 3.16 102 207.83 0.27 
80 144.98 4.35 103 213.88 0. {:{6 
84 150.89 2,57 104 218.84 1.39 
85 152.94 2.51 105 234.18 1.75 
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CJ882X 7 
NO.6 MW 248 

100 280 300 

CJ882X. 30-JAN-80 

PEAK 
NO. 

MASS % INT 
BASE 

1 27.25 27.29 
n 
A . 

28.13 54.17 
3 29.02 97.50 
4 29.85 2.29 
5 32.01 10.21 
6 39.00 16.87 
7 39.87 3.12 
8 40.98 100.00 
9 42.07 38.54 
10 43. 14 48.12 
11 44.15 2.08 
12 50.91 1 .87 
13 53.06 3.96 
14 55.13 23.96 
15 56.13 5.62 
16 57.14 70.21 
17 58.08 2.92 
18 68.96 12.50 
19 75.07 13.12 
20 85.11 32.50 
21 86.02 1 .87 
22 88.95 9.79 
23 94.97 2.08 
24- 112.95 12.29 
25 138.84 2.29 
26 140.89 6.87 
27 143.93 3.96 

28 150.87 5.42 
9 9 152.89 6.04 
30 157.91 25.00 
31 158.92 8.33 
32 162.89 9.37 
33 167.97 2.29 
34 170.84 2.71 
35 171.82 2.29 
36 172.82 1.87 
37 178.90 14.79 
38 179.74 1.87 
39 186.02 66.87 
40 190.87 33.54 
41 198.91 13.96 
42 199.76 2.29 
43 206.05 58.33 
44 218.78 2.29 
45 227.99 30.21 



-242-

CJ2112 5 i - ^ 262 

1 108 L_pji;l J 

II 
...11 

CJ2112. 14-MAY-80 
PEAK MASS % INT 
NO. BASE 

2 28.13 25.67 
3 29.00 34.02 
6 30,93 4.83 
7 32.03 4.67 
11 48.98 7.16 
12 49.88 0.93 
13 50.94 21.00 
14 53.08 1.05 
15 55.14 1.60 
17 57.10 4.73 
21 67.08 3.04 
22 68.98 35.87 
25 75.07 32.13 
26 76.09 2.43 
27 77.07 1.63 
29 78.96 3.90 
30 79.90 1.25 
32 83.04 1.82 
35 88.01 0.96 
36 90.95 0.90 
37 93,02 1.47 
39 95.03 39.23 
40 96.05 1.57 
41 97.01 1.12 
42 98.97 1.69 
44 104.04 0.80 
45 106.03 1.89 
46 107.03 2.21 
48 113.00 6.23 
49 122.97 23.88 

50 124.01 2.01 
51 124.99 73.43 
52 125.99 10.77 
55 136.99 1.21 
56 140.93 0.83 
58 143.98 4.19 
59 144.96 38.94 
60 146.00 1.50 
62 152.94 16.02 
63 154.00 2.01 
64 155.07 0.99 
66 156.99 2.91 
67 162.94 0.99 
68 172.88 100.00 
69 174.88 10.39 
70 175.94 1.25 
71 190,91 2.43 
73 192.93 60.87* 
74 194,79 38.01* 
75 196.01 2.21 
76 222.92 11.38 
77 223.98 0.93 
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CJ2114 G NO.8 ivR' 262 

100 200 300 

CJ2114 14 • MAY-f'U) 

PEAK-
NO. 

MAbb y. INT 
BABE 

3 28. 13 33.65 
4 28.99 77.61 
6 29 .84 1 . 14 
7 30.93 2.71 
8 32.02 7.93 

18 48.98 16 .30 
19 . 49.89 1 .42 
20 50.94 20.95 
22 53.08 ,"1. * 7*J!> 
24 55. 14 1 .99 
25 56.13 1.27 
26 57. 10 5.76 
32 67.03 3.49 
33 68.98 69.14 
36 73 • 09 1 .08 
38 75.08 33.08 
39 76.07 3.07 
40 77 ..o:̂  3.85 
42 78<.96 8.03 
43 79. 90 1,37 
50 8(3.01 J.. 99 
52 90.94 1 .21 
53 93.01 2.04 
56 95.03 58.26 
58 96.04 2 .40 
59 9 7 .00 18.52 
61 98. 95 2.82 
65 104.02 1 .27 

68 106.03 2.69 
69 107.02 3,41 
71 112.98 5.50 
81 122.97 6. 17 
83 123.99 1 .39 
84 125.00 57.83 
85 126.00 11. 18 
86 126.99 11.26 
90 136.98 2.25 
91 140.93 1 .14 
92 142.96 1.42 
94 144.96 73.79 
98 152.94 3.23 
9 9 154.00 1 ,94 
100 155.29 1.32 
101 156.93 3.38 
103 162.90 1 .65 
11 1 172.84 100.00* 
112 174.49 14.93* 
113 175.89 1.50 
117 190.86 3.02 
118 192,96 75.72* 
119 194.88 35.54* 
126 222.94 9.50 
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CJ483 4 
NO.9 MV; 374 

200 3aa 400 

C;J483 09-JL.Y-80 

PEAK MASS % INT 
NO. BASE 

1 28.13 11.81 
30.91 1 .46 

3 32.02 2.57 
4 43. 11 1.39 
5 49.87 0.62 
6 50.95 0.62 
7 68.97 100.00 
8 69.91 1.32 
9 75.07 0.62 

10 93.01 6.32 
11 99.92 3.82 
12 105.03 0.90 
13 112.02 0.90 
14 113.02 3.68 
15 117.02 7.15 
16 118.01 0.56 
17 118.96 2.64 
18 124,01 4.10 
19 130.94 7.85 
20 136.01 2.15 
21 136.99 2.50 
nn 
AH A -

142.97 3.26 
23 147.98 1.46 
24 155.00 11.46 
25 156.01 0.90 
26 161,96 0.62 
27 163.00 0.90 
28 167.00 7.57 
29 167.96 1.11 
30 174.00 1.67 

31 175.00 0.62 
32 178.89 0.76 
33 180.94 1.60 
34 186,20 11.39 
35 192.95 1.04 
36 197.92 0.83 
37 205.01 28.19 
38 216.99 16.11 
39 223.96 0.83 
40 224.92 3.26 
41 236.05 24.10 
42 242.89 1.04 
43 247.93 0.62 
44 248.68 0,69 
45 254.95 42.85 
46 266.96 9.58 
47 274.86 12,01 
48 285.91 4,51 
49 292.91 0.90 
50 
51 

304.95 79,37 50 
51 324.52 4.79 
52 354.97 39,44 
53 373.94 9,10 
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CJ43G S 
X 4 

IIC.IO 536 

j j i l l 
2Sli sea 

CJ4e6 

PEAK 
NO, 

1 
'? 
3 
5 
6 
8 
10 
11 
22 
26 
27 
30 
31 
32 
33 
34 
35 
37 
38 
39 

MAS 

28 
30 
32 
6B 
69 
99 
118 
119 
204 
228 

248 
254 
259 
267 
279 
282 
290 
298 
301 

,13 
.90 
.02 
.97 
,91 
,91 
.96 
.91 
.99 
.98 
.98 
.00 
.96 
.96 
.01 
.05 
.95 
.96 
.12 
.98 

09-JLY-80 

% INT 
BASE 

9.04 
1.16 
1.72 

92.85 
1.13 
2.47 

100.00 
2.44 
2.56 
1.72 
1.66 
1.16 
1.42 
1.45 
2.01 
4.74 
1.13 
1.16 
2.79 
4.36 

40 309.97 1.77 
41 317.00 4.48 
44 329.01 7.24 
45 333.00 3.81 
47 348.05 6.48 
48 352.00 3,43 
51 367.01 11.08 
52 378.97 20.70 
54 397.99 8.60 
55 417.00 14.77 
56 428,92 7.56 
57 436,57 0.26 
58 447.98 0.76 
59 466,94 2.47 
60 486.85 0.41 
61 517.07 13.60 
62 536.00 6.98 
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KO.ll ivP̂  474 
X s 

GJ1155 5 16-SEP-80 
PEAK MASS 
NO. BASE 

1 28.13 33.87 
2 32.02 6.32 
3 39.85 0.50 
4 68.99 100.00 
5 69.94 1.05 
6 119.06 • 0.50 
7 267.10 4 .71 
8 286.06 0 .61 
9 317.13 8 .31 

10 336.02 1.00 
11 . ,367.07 9 .31 
12 • 385.98 6.37 
13 404.96 2.77 
14 455.08 . 11.25 
15 474.00 3.99 
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F0.12 mi 462 
X 4 

CJ1151 5 16-SEP-80 

PEAK MASS 
m. BASE 

28.13 27.15 
2 29.01 0.25 
3 32.02 5.49 
4 39.84 0.53 

. ^ 69.00 100.00 
6 69.93 1.09 
7 93.06 0 .31 
8 99.96 0.36 
9 119.01 4.57 

10 • 131.03 0 .31 
11 . 143.05 0.64 
12 149.99 0.50 
13 155.11 0.33 
14 167.09 0.31 
15 181.03 2.23 
16 186.08 . 0.25 

.17 193.08 0 .31 
18 205.08 1.31 
19 217.10 0.53 
20 231.10 0.25 
21 236.09 1.34 
22. 243.06 1.14 
23 255.10 2.14 
24 267.08 0 .81 
25 281.05 0.39 
26 286.06 0.75 
27 . 293.07 2.09 
28 305.15 4.32 
29 343.03 1.73 
30 355.09 5.90 

31 362.0^ 0.84 
32 374.04 0.39 
33 380.96 0.47 
34 393.03 31.56 
35 430.97 0.39 
36 443.05 2.45 
37 462.01 0.42 
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CJG4 5 
X l a 

I:C.13 IViW 562 

S" 

... A l l 

CJ64 5 16-SEP-80 
PEAK MASS '/o INT 

NO. BASE 
1 28.13 29.33 
2 32.02 5.90 
3 39.84 0.68 
4 68.99 100.00 
5 69.94 1.15 
6 119.01 30.01 
7 119.97 0.68 
8 181.03 0.64 
9 236.14 0. 38 

10 267.10 • 1.95 
11 286.06 0.55 
12 305.02 0.38 
13 317.11 2.97 
14 336.05. 0.38 
15 354.99. 1.66 
16 366.96. 0.76 
17 405.00 8.02 
18 455.05 3.01 
19 . 493.03 4.16 
20 504.98 0.47 
21 543.05 0.47 
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CJIG'7 12 NO.14 356 
X 2 

^.^^.-L.,- 1 
308 . 

-1 n 
4nB 

GJ167 12 24-OCT-79 

PEAK MASS fo INT 

NO. PASE 

1 28.12 15.50 
2 30.91 1.18 
3 32.02 4.15 
5 43.17 1.87 
7 55.19 G.97 
9 57.17 2.28 

10 63.07 12.53 
12 69.01 100.00 
13 • 69.97 1.31 
14 71.09 1.87 
15 75.10 1.45 
17 85 .21 1.59 
18 87.06 6.64 
19 93.08 7.89 
20 q4.07 2.28 
21 99 .01 2.56 
24 106.07 10.59 
27 111.02 1.87 
28 l l 3 . 0 6 9.48 
29 117.09 2.08 
31 124.09 1.18 
32 125.08 2.35 
33 129.98 10.10 
34 131.03 3.25 
36 137.06 2.15-
38 . 143.08 4 .01 
39 149.01 11.00 
40 150.00 1.25 

41 155.31 2.28 
42 167.10- 1.04 
43 • 168.05 1.11 
44 175.07 1.04 
45 181.06 1.80 
46 187.07 1.18 
47 193.07 1.87 
48 199.02 16.26 
49 200.03 4.64 
50 201.06 1.59 
51 205.07 1.04 
52 218.07 2.15 
53 237.05 13.98 
54 238.05 1.04 
56 243.08 . 1.59 
58 256.11 1.11 
59 268.07 2.08 
60 287.08 32.32 
61 288.97 1.87 
6? 306.01 4.57 
63 307.14 0.97 
65 337.06 26.09 
66 338.97 1.52 
67 356.12 16.12 
68 357.97 1.04 
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>1C.15 m 240 

100 Z»0 300 

CJDMSO 5 15-JLY-80 

PEAK MASS io INT 

m. BASE 

2 27.14 5.73 
28.01 100.00 

4 28.88 4.03 
5 30.75 3.18 
6 31.83 22.51 
7 35.00 4.46 
8 35.98 15.92 
9 37.92 4.25 

10 40.89 2.34 
11 44.03 5.73 
12 4 5.05 21.02 
13 46.05 13.80 
14 47.05 20.38 
15 48.99 4.46 
16 . 50.99 4.03 
17 58.07 3.18 
18 59.02 4.67 

-19 61.02 6.53 
20- 62.08 14.86 
21 63.08 9.13 
22 65.14 2.76 
23 68.14 7 .01 
24 69.02 37.58 
25 75.15 8.92 
26 79.06 11.68 

27 85.16 8.07 
28 91.17 3.18 
29 94.21 6.37 
30 97.20 5.10 
31 109.19 3.18 
32 113.19 23.78 
Y.. 128.18 11.04 
34 129.20 2.12 
35 147.25 8.28 
36 149.26 3.40 
37 156.26 17.62 
38 171.22 40.76 
39 173.27 2.34 
40 197.26 8.70 
41 221.23 7.43 
42 22 5.31 2.55 
43 240.26 22.72 
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CJ227 34 NO. 16 M\7 222 
X lU 

laa zee 3BB 

GJ227 34 • 17- SEP-80 
PEAK MASS % I N I 

NO. EASE 

1 26.33 0.76 
2 27.25 17.05 
3 28.13 100.00 
4 28.24 0.27 
5 29.01 2 .61 
6 29.84 0.85 
7 30.93 12.43 
8 32.02 22.37 
9 33.12 1.25 

10 39.00 4.27 
11 • 39.85 2.47 
12 40.98 28.11 
13 42.08 • 4.27 
14 .43.14 57.22 
15 44.18 2.20 
16 45.19 0 .51 
17 47.13 0.63 
18 49.91 0.37 
19 55.19 0.42 
20 56.17 0.42 
21 " 57.13 1.37 
22 58.08 0 .51 
23 59.02 1.51 
24 59.96 0.63 
25 60.99 0.73 
26 68.^;i7 1.44 
27 70.00 0.29 
28 73.10 0.42 

29 75.05 0.76 
30 78.96 0.34 
31 82.02 0.42 
32 83.07 0.42 
33 83.14 0.29 
34 90.93 2.76 
35 110.94 0.27 
36 140.96 0.78 
37 142.99 0.49 
38 148.95. 0.32 
39 160.95 0.76 
40 193.03 • 0.29 
41 207.07 0.42 
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CJ229 33 KG. 17 IvI\V 236 
X 4 

11 483 18a 288 ' 388 

GJ229 33 17-SEP-8G 
PEAK MASS % IWT 
HO. PASE 

1 26.31 9.40 
4 39.86 13.97 

. 5 40.36 100.00 . 
6 41.53 52.82 

14 43.14 30.50 
17 44.14" 7.25 
19 45.16 3.13 
24 47.11 24.42 
29 50.94 4.42 
34 53.09 15.58 
38 54.13 4.62 
43 56.56 4.40 
44 56.80 100.00 
45 57.87 80.42 
46 58.74 7.69 
52 61.00 13.46 
54 63.06 1.76 
60 •68.97 30.06 
61 69.96 1.86 
62 71.02 3.17 
64 • 73.07 2.17 105 113.01 3.83 
68 75.07 16.29 111 123.00 2.93 
69 76.06 . 1.64 121 140.93 9.91 
70 77.03 3.05 123 142.96 4.05 
74 81.90 3.83 • 124 143.96 2.27 
75 83.04 1.88 128 148.92 4.47 
85 90.92 87.20 135- 160.91 15.04 
88 91.97 3.76 140 174.99 5.05 
91 95.03 1.68 14 6 192.93 5.89 

102 109.88 4.05 • 148 206.95 1.10 
103 110.93 3.52 149 208.92 0.27 
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CJ22G 2G TO. 18 r.:v/ 236 

lee 
iJ-J-

388 

GJ226 26 16-SEP-8C 
PEAK MASS 

HO. BASE 
2 27.25 23.00 
5 28.13 100.00 
6 29.04 100.00 
8 29.86 5.69 

10 32.02 91.06 
12 3^.13 2.08 
17 39.01 19.68 
18 39.85' 10.62 
21 40.99 100.00 
22 42.08 8.99 
23 43.13 7.45 
24 44.16 2.27 
25 45.18 2.76 
26. 47.13 32.50 
31 53.12 2.81 
33 - .55.18 19.46 
34 56.18 14.02. 
37 57.17 100.00 
38 58.13 15.80 
40 61.03 9.23 
45 69.01 5.79 
49 75.15 • 8.42 
58 90.95 13.55 
er^ 141.00 3.61 
73 161.05 48.40 
76 206.07 0.32 

79 
80 

207.09 
208.09 
221.12 
2 3 5.-13 

4.47 
0.34 
0.49 
0.66 
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CJ22K 30 NO.19 236 
% 6 

i ALL 
IBB 

T-208 388 

CJ226 30 16-3EP-80 
PEAK MASS 7i IIU 

MO. .. BASE 
2 27.26 4.96 
3 28.13 100.00 
5 29.03 46.20 
6 29.86 1.44 
9 32.02 100.00 

11 34.17 1.03 
13 39.01 4.27 
14 39.84 19.88 
15 41.00 44.13 
16 42.09 2.42 
17 43.14 3.37 
18 44.14 1.81 
19 45.19 2.95 
20 47.14 7.28 
26 55.19 5.64 
27 56.18 4.03 
28 57.17 71.04 
29 58.13 3.22 
30 59.05 0.93 
31 61.04 1.93 
34 • 69.04 1.93 
35 70.01 0.76 
36 71.08 1.61 
38 73.13 0.90 

7 5.15 1.86 
4 6 8 5.19 0.90 
47 9 1 . CI 3.10 
54 141.10 0.93 
55 149.06 2.59 
57 161.06 10.94 

60 
61 
62 
63 

22 5.12 
281.09 
307.35 

"1.51 
0.24 
0.27 
0.22 
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K0.20 236 
CJ225 29 

X 4 

B 

! 
Si 

i'l I r 
1 Hi, 

ii... •!!•..-. ilUi l i l J i . 
\r.B 

2fiB 

CJ225 29 
PEAK 

NO. 
2 
4 
6 
8 

10 
11 
12 
13 
14 
15 . 
16 
17 
18 
19 
20 
23 
25 
26 
27 
28 
29 
30 
3;i 
34 
35 

17-SEP-80 
MASS /5 INT 

BASS 
1.93 

100.00 
10.82 
10.53 

100.00 
0.42 
0.71 
3.00 

13.41 
17.73 
1.44 
4.03 
1.25 
0.78 
0.37 
0.46 
2.05 
2.00 

21.51 
1.12 

24.57 
1.10 

14..'i5 
0.76 
1.22 
0.46 
0.81. 

27.25 
28.13 
29.02 
30.93 
32.02 
33.13 
34.16 

• 39.01 
39.84 
40.99 
42.08. 
43.12 
44.13 
45.18 
47.13 
53.11 
55.17 
56.17 
57.15 
58.11 
59.03 
5'1.9 6 
6:i .03 

69.01 
6^^.'f8 
71.06 

36 . 73.12 0.51 
37 75.11 0.46 
40 78.97 0.56 
43 83.10 0.44 
45 85.16 0.37 
46 90.97 0.81 
47 97.13 0.37 
51 111.02 0.44 
53 113.11 0.37 
54 149.01 1.07 
55 150.08 0.24 
56. 160.99 0.58 
57 167.10 0.27 
58 207.10 U.5I 
58. 20').:i 4 0.22 
60 221.11 2.47 
61 . 222.08 0.39 
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APPENDIX IV 

DEPARTMENTAL COLLOQUIA AND FIRST YEAR INDUCTION COURSE FOR POST-GRADUATES 

The Board of Studies i n Chemistry requires t h a t each postgraduate 

research thesis contains an appendix l i s t i n g 

(a) a l l research c o l l o q u i a , research seminars and lectures arranged 

by the Department of Chemistry during the period of the w r i t e r ' s 

residence as a post-graduate student; 

(b) a l l research conferences attended and papers read out by the w r i t e r 

of the t h e s i s , during the period when the research f o r the thesis was 

c a r r i e d out; and 

(c) d e t a i l s of the f i r s t - y e a r i n d u c t i o n course. 

Events i n (a) which were attended are marked * 

Research Colloquia, Seminars and Lectures 

1. U n i v e r s i t y of Durham Chemistry Colloquia 

Academic Year 1977 - 1978 

* 19 Oct. Dr. B. Heyn (U. of Jena, D.D.R.), "Sigma-organo molybdenum 

complexes as alkene polymerisation c a t a l y s t s " . 

* 27 Oct. Professor R.A. F i l l e r ( I l l i n o i s I n s t i t u t e of Technology, U.S.A.), 

"Reactions of organic compounds w i t h xenon f l u o r i d e s " . 

2 Nov. Dr. N. Boden (U. of Leeds),"N.m.r. spin-echo experiments f o r 

studying s t r u c t u r e and dynamical p r o p e r t i e s of materials containing 

i n t e r a c t i n g spin Y2-pairs". 

* 9 Nov. Dr. A.R. B u t l e r (U. of St. Andrews), "Why I l o s t f a i t h i n l i n e a r 

f r e e energy r e l a t i o n s h i p s " . 
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7 Dec. Dr. P.A. Madden (U. o f Cambridge), "Raman studies of molecular 

motions i n l i q u i d s " . 

* i^_2i£- Gould (U. of Edinburgh), "Crystallography to the 

rescue i n ruthenium chemistry". 

* 25 Jan. Dr. G. Richards (U. of Oxford), "Quantum Pharmacology". 

* 1 Feb. Professor K.J. I v i n (Queens U. B e l f a s t ) , "The o l e f i n metathesis 

r e a c t i o n , mechanism of r i n g opening polymerisation of cycloalkenes". 

* 3 Feb. Dr. A. Hartog (Free U., Amsterdam), " S u r p r i s i n g recent studies 

in-organomagnesiimi chemistry". 
* 22 Feb. Professor J.D. B i r c h a l l (Mond D i v i s i o n , I . C . I . ) , " S i l i c o n i n 

the biosphere". 

* 1 Mar. Dr. A. Williams (U. of Kent), "Acyl group t r a n s f e r r e a c t ions". 

3 Mar. Dr. G. van Koten (U. of Amsterdam), "Structure and r e a c t i v i t y 

of aryl-copper c l u s t e r compounds". 

15 Mar. Professor G. Scott (U. of Aston), "Fashioning p l a s t i c s to match 

the environment". 

22 Mar. Professor H. Vahrenkamp (U. of F r e i b u r g , Germany), "Metal-

metal bonds i n organometallic complexes". 

19 Apr. Dr. M. Barber (UMIST), "Secondary i o n mass spectra of surfaces 

and adsorbed species". 

16 May Dr. P. Ferguson (C.N.R.S., Grenoble), "Surface plasma 

waves and adsorbed species on metals". 

18 May Professor M. Gordon (U. of Essex), "Three c r i t i c a l points 

i n polymer chemistry". 
22 May Professor D. Tuck (U. of Windsor, O n t a r i o ) , "Electrochemical 
synthesis of inorganic and organometallic compounds". 

24 & 25 May Professor P. von Schleyer (U. of Erlangen, Niirnberg) 

* I "Planar t e t r a - c o o r d i n a t e methanes, perpendicular ethenes and planar 

a l l e n e s " . 
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* I I "A r o m a t i c i t y i n three dimensions". 

* I I I "Non-classical carbo-cations". 

21 June Dr. S.K. T y r l i k (Acad, of S c i . , Warsaw), "Dimethylglyoxime 

cobalt complexes - c a t a l y t i c black boxes". 

23 June Professor G. Metescu (Case Western Reserve U., Ohio), "A 

concerted spectroscopy approach to the c h a r a c t e r i s a t i o n of ion and 

i o n - p a i r s : f a c t s , plans, and dreams". 

8 Sept. Dr. A. Diaz (I.B.M., San Jose, C a l i f o r n i a ) , "Chemical 

behaviour of electrode surface bonded molecules". 
15 Sept. Professor W. Siebert (Marburg, W. Germany), "Boron heterocycles". 

22 Sept. Professor T. Fehlner (Notre Dame, U.S.A.), "Ferraboranes: 

synthesis and photochemistry". 

Acadanic Year 1978 - 1979 

* 12 Dec. Professor C.J.M. S t i r l i n g (U. of Bangor), "Parting i s such 

sweet sorrow - the leaving group i n organic chemistry". 

* 31 Jan. Professor P.D.B. de l a Mare (U. of Auckland, New Zealand), 

"Some pathways leading t o e l e c t r o p h i l i c s u b s t i t u t i o n " . 

14 Feb. Professor B. Dunnel (U. of B r i t i s h Columbia), "The a p p l i c a t i o n of 

n.m.r. to the study of motions of molecules i n s o l i d s " . 

* 14 Mar. Dr. J.C. Walton (U. of St. Andrews), "Pentadienyl r a d i c a l s " . 

* 28 Mar. Dr. lA. Reiser (Kodak L t d . ) , "Polymer photography and the 

mechanism of c r o s s - l i n k formation i n s o l i d polymer matrices". 

* 25 Apr. Dr. C.R. P a t r i c k (U. of Birmingham), "Chlorofluorocarbons and 

s t r a t o s p h e r i c ozone: an ap p r a i s a l of the environmental problem". 

* 1 May Dr. G. Wyman (European Research O f f i c e , U.S. Army), "Excited 

s t a t e chemistry of i n d i g o i d dyes". 
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* 2 May Dr. J.D. Hobson (U. of Birmingham), "Nitrogen-centred reactive 

intermediates". 

8 May Professor A. Schmidpeter ( I n s t , of Inorg. Chem., Munich U.), 

"Five-membered phosphorus heterocycles containing dicoordinate phosphorus". 

* 9 May Professor G. Maier (Lahn Giessen U.), " T e t r a - t e r t - b u t y l t e t r a h e d r a n e " . 

9 May Dr. A.J. Kirkby (U. of Cambridge), "Structure and r e a c t i v i t y 

i n i ntramolecular and enzymic c a t a l y s i s " . 

16 May Dr. J.F. Nixon (U. of Sussex), "Some recent developments i n 

platinum-metal phosphine complexes". 

* 23 May Dr. B. Wakefield (U. of S a l f o r d ) , "Electron t r a n s f e r i n 

r e a c t i o n of metals and organometallic compounds w i t h polychloropyridine 

d e r i v a t i v e s " . 

* 13 June Professor I . Ugi (U. of Munich), "Synthetic uses of super 

nucleophiles". 

* 25 Sept. Professor R. Soulen (Southwestern U., Texas), "Applications of 

HSAB theory to v i n y l i c halogen s u b s t i t u t i o n reactions and a few copper 

coupling r e a c t i o n s . 

Academic Year 1979 - 1980 

* 21 Nov. Dr. J. M i i l l e r (U. of Bergen), "Photochemical reactions of 

ammonia". 

28 Nov. Dr. B. Cox (U. of S t i r l i n g ) , "Macrobicyclic cryptate complexes: 

dynamics and s e l e c t i v i t y " . 

* 5 Dec. Dr. G.C. Eastmand (U. of L i v e r p o o l ) , "Synthesis and prope r t i e s 

of some multicomponent polymers". 

12 Dec. Dr. C.I. R a t c l i f f e , "Rotor motions i n s o l i d s " . 

18 Dec. Dr. K.E. Newman (U. of Lausanne), "High pressure multinuclear 

n.m.r. i n the e l u c i d a t i o n of mechanism of f a s t simple inorganic reactions". 
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30 Jan. Dr. M.J. Barrow (U. of Edinburgh), "The st r u c t u r e s of some 

simple inorganic compounds of s i l i c o n and germanium - poi n t e r s to 

s t r u c t u r a l trends i n group IV". ' 

* 6 Feb. Dr. J.M.E. Quirke (U. of Durham), "Degradation of c h l o r o p h y l l - a 

i n sediments". 

* 23 Apr. B. Grievson B.Sc. (U. of Durham), "Halogen radio-pharmaceuticals", 

* 14 May Dr. R. Hutton (Waters Associates), "Recent developments i n 

m u l t i - m i l l i g r a m and multi-gram scale preparative high performance 

l i q u i d chromatography". 

21 May Dr. T.W. Bentley (U. of Swansea), "Medium and s t r u c t u r a l 

e f f e c t s on s o l v o l y t i c r e a c t i o n s " . 

* 10 Ju l y Professor D. Des Marteau (U. of Heidelberg), "New developments 

i n organonitrogen f l u o r i n e chemistry". 

2. Durham U n i v e r s i t y Chemical Society 

Academic Year 197 7 - 19 78 

13 Oct. Dr. J.C. Young and Mr. A.J.S. Williams (U. of Aberystwyth), 

"Experiments and considerations touching colour". 

* 20 Oct. Dr. R.L. Williams (Metropolitan Police Forensic Science Dept.), 

"Science and Crime". 

* 3 Nov. Dr. G.W. Gray (U. of H u l l ) , " L i q u i d c r y s t a l s - t h e i r o r i g i n s 

and a p p l i c a t i o n s " . 

24 Nov. Mr. G. Russel (Alcan), "Designing f o r s o c i a l a c c e p t a b i l i t y " . 

1 Dec. Dr. B.F.G. Johnson (IJ. of Cambridge), "Chemistry of binary 

metal carbonyls". 

* 2 Feb. Professor R.A. Raphael (U. of Cambridge), "Bizarre reactions 

of a c e t y l e n i c compounds". 
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* 16 Feb. Professor G.W.A. Fowles (U. of Reading), "Home winemaking". 

2 Mar. Professor M.W. Roberts (U. of Bradford), "The discovery of 

molecular events at s o l i d surfaces". 

* 9 Mar. Professor H. Suschitzky (U. of S a l f o r d ) , " F r u i t f u l f i s s i o n s 

of benzofuroxans". 

4 May Professor J. Chatt (U. of Sussex), "Reactions of coordinated 

d i n i t r o g e n " . 

* 9 May Professor G.A. Olah (Case Western Reserve U., Ohio), " E l e c t r o p h i l i c 

r e a c t i o n s of hydrocarbons". 

Academic Year 1978 - 1979 

* 10 Oct. Professor H.C. Brown (Purdue U.). "The t o o l of increasing 

e l e c t r o n demand i n the study of c a t i o n i c processes". 

* 19 Oct. Mr. F.C. Shenton (Public Analyst, Co. Durham), "There i s death 

i n the pot". 

* 26 Oct. Professor W.J. Albery ( I m p e r i a l College, London), "Photogalvanic 

c e l l s f o r solar energy conversion". 
* 9 Nov. Professor A.R. K a t r i t s k y (U. of East A n g l i a ) , "Some adventures 

i n h e t e r o c y c l i c s " . 

* 16 Nov. Dr. H.C. F i e l d i n g (Mond D i v i s i o n , I . C . I . ) , "Fluorochemical 

s u r f a c t a n t s and t e x t i l e f i n i s h e s " . 

23 Nov. Dr. C. White ( S h e f f i e l d U.), "The magic o f chemistry". 

18 Jan. Professor J.C. Robb (Birmingham U.), "The p l a s t i c s r e v o l u t i o n " . 

8 Feb. Mr. C.G. Dennis (Vaux L t d . ) , "The a r t and science of brewing". 

* 1 Mar. Professor R. Mason (Govt. S c i e n t i f i c A d v i s o r ) , "The S c i e n t i s t 

i n defence p o l i c y " . 

10 May Professor G. A l l e n (Chairman SRC), /'Neutron s c a t t e r i n g f o r polymer 

s t r u c t u r e s " . 
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Academic Year 1979 - 1980 

18 Oct. Dr. G. Cameron (U. of Aberdeen), "Synthetic polymers -

tw e n t i e t h century polymers". 

25 Oct. Professor P. Gray (U. of Leeds), " O s c i l l a t o r y combustion 

r e a c t i o n s " . 

* 1 Nov. Dr. J. Ashby ( I . C . I . T o x i c o l o g i c a l Laboratory), "Does 

chemically-induced cancer make chemical sense?". 

* 8 Nov. Professor J.H. Turnbull (R.M.C. Shrivenham), "Luminescence 

of drugs". 

* 15 Nov. Professor E.A.V. Ebsworth (U. of Edinburgh), "Stay s t i l l , 

you b r u t e : the shape of simple s i l y l complexes". 

* 24 Jan. Professor R.J.P. Williams (U. of Oxofrd), "On f i r s t looking 

i n t o biology's chemistry". 

14 Feb. Professor G. Gamlen (U. of S a l f o r d ) , "A yarn w i t h a new 

t w i s t - f i b r e s and t h e i r uses". 

* 21 Feb. Dr. M.L.H. Green (U. of Oxford), "Synthesis of h i g h l y reactive 

organic compounds using metal vapours". 

28 Feb. Professor S.F.A. K e t t l e (U. of E. A n g l i a ) , "Molecular shape, 

s t r u c t u r e and chemical blindness". 

* 6 Mar. Professor W\D. O l l i s (U. of S h e f f i e l d ) , "Novel molecular 

rearrangements". 
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Research Conferences Attended 

I X t h I n t e r n a t i o n a l Symposium On Fluorine Chemistry, Avignon, 3-7 September 

1979. 

3rd Annual Congress of the Chemical Society, Durham, 9-11 A p r i l 1980. 

F i r s t Year I n d u c t i o n Course 

I n each p a r t of the course, the use and l i m i t a t i o n s of the various 

services a v a i l a b l e are explained by the people responsible f o r them. 

Departmental o r g a n i s a t i o n 

Safety matters 

E l e c t r i c a l appliances and 
i n f r a r e d spectroscopy 

Chromatography and 
microanalysis 

L i b r a r y f a c i l i t i e s 

Atomic absorptiometry and 
inor g a n i c analysis 

Mass spectrometry 

N.m.r. spectroscopy 

Glassblowing techniques 

Dr. E.J.F. Ross 

Dr. M.R. Crampton 

Mr. R.N. Brown 

Mr. T.F. Holmes 

Mr. W.B. Woodward (Keeper of 
science books) 

Mr. R. Coult 

Dr. M. Jones 

Dr. R.S. Matthews 

Mr. W.H. F e t t i s and 
Mr. R. Hart 
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