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Thor Gurmarsson. 

Morphology and physiology of horizontal cells 

i n the r e t i n a of the perch (Perca f l u v i a t i l i s , L.). 

ABSTRACT. 

Horizontal c e l l s of the perch retina were studied with morpho­

l o g i c a l and physiological techniques. Three types of cone horizontal 

c e l l s were observed i n Golgi preparations and they were called HI, 

H2, and H3 type c e l l s , according to t h e i r morphological character­

i s t i c s . Analysis of cone-horizontal c e l l contacts,, revealed that HI 

c e l l s contact red sensitive twin cones and green sensitive single 

cones, H2 cell s contact red sensitive twin cones excliisively, and H3 

c e l l s contact exclusively green sensitive single cones. Inter­

connections of cones by basal processes were also examined; single 

cone basal processes were fomd to contact twin cone pedicles, and 

twin cone basal processes to contact other twin cone pedicles. 

The spectral s e n s i t i v i t y and spatial organization of horizontal 

c e l l s were analysed by i n t r a c e l l u l a r recordings. Two types of h o r i ­

zontal c e l l responses were observed; L-type responses that hyper-

polarized to l i g h t s t i m u l i of a l l wavelengths, and R/G C-type re­

sponses that depolarized to red and hyperpolarized to green s t i m u l i . 

Correlation of anatomical and morphological results suggests that HI 

and H2 c e l l s generate L-type responses, and H3 c e l l s generate R/G 

C-type responses. The R/G ce l l s are hyperpolarized by signals from 

the green (P5352) sensitive cones and depolarized by a far red 

(650-670 nm) mechanism. Compared with the red cone pigpnent (P6I52), 

the L-type horizontal c e l l spectral s e n s i t i v i t y ciorve i s narrow and 

wit h maximum (650 nm) displaced towards the red end of the spectrum 

(a pseudopigment spectral s e n s i t i v i t y curve), sv^esting that an 

antagonistic interaction occurs between the two cone types, genera­

ting the horizontal c e l l spectral sensitivity function. 
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I N T R O D U C T I 0 N. 



Chapter 1. 

The structure of the f i s h (vertebrate) eye. 

1.1. (General. 

The vertebrate eye i s a complex sense organ that does not 

d i f f e r s i g n i f i c a n t l y i n structure between species. This implies that 

the basic functional principles are the same for the eyes of most 

vertebrates; l i g h t rays pass through the transparent i n t e r i o r to 

form a real inverted image of the external world at the back of the 

eye chamber. 

The main s t r u c t i j r a l components of the vertebrate eye are;i) the 

sclera, which forms the outer protective layer of the eyeball', i i ) 

the cornea, through vfcich the l i g h t rays enter the eye, i i i ) the 

lens, ^ i c h , i n f i s h , has a fixed (tonchanging) spherical shape, i v ) 

the choroid, a pigmented layer, l i n i n g the sclera inside the eye and 

contains many of the blood vessels which nourish the structtires i n 

the eyeball, v) vitreous humor, a transparent gelatinous substance 

which f i l l s the eyeball behind'the lens, and v i ) the retina, a t h i n 

layer l i n i n g the i n t e r i o r of the eyeball next to the choroid. The 

inverted image i s formed on the retina which contains the photo­

receptors, together with the neurons involved i n the f i r s t levels of 

sjnnaptic processing. 

Numerous excellent reviews on the structure and physiology of 

the r e t i n a have been published i n the l a s t decade (Cohen, 1972; 

S t e l l , 1972i,; Daw, 1973; Rodieck, 1973; Kaneko, 1979; Witkovsky, 

1980; Wheeler, 1982), therefore I w i l l only deal i n depth with those 

features of the re t i n a which are of relevance to thi s study. 



1.2. The retina. 

The retina consists of two main parts: i ) a single layer of 

columnar neuroepithelial c e l l s , termed the r e t i n a l epithelium, and 

i i ) the major part of the retina consisting of neurons and termed 

the sensory retina. The retina i s a portion of the central nervous 

system, an ontogenic derivation of the forbrain. The essential 

function of the r e t i n a i s to extract the visual information present 

i n the inverted image. I n general, a r e t i n a l response must be con­

sidered i n terms of the timing, the spectral composition and the 

spatial extent of the stimulus. The responses of the photoreceptors 

are transformed by processing i n the retina and transmitted, via the 

optic nerve, to the central nervoias system as complex interactions 

between the temporal, spectral and spatial r e t i n a l pathways. 

1.2.1. The r e t i n a l epithelium. 

The r e t i n a l epithelium of the vertebrate eye is a single layer 

of c e l l s which are interconnected by t i g h t jtinctions. The basal 

surface (sclerad) of each c e l l i s attached to Bruchs membrane, a 

layer of connective tissiae which separates the choriocapillaries 

from the r e t i n a l epithelium. The apical surface of the r e t i n a l 

epithelium has many processes that extend vitread and surround the 

photoreceptor outer segments. I n many vertebrates the r e t i n a l 

epithelium contains pigment granules, and therefore i t i s usually 

termed 'pigment epithelium'. 

The pigment epithelium has a surprising variety of roles; a) 

apical processes provide a large area of contact with the outer 

segments and may thus play a mechanical role i n the attachment of 



the neural retina to the inside of the eye chamber (Rodieck, 1973); 

b) when pigmented, the melanin pigment granules absorb l i g h t not 

absorbed by photoreceptors and thus prevent r e f l e c t i o n and l i g h t 

scatter which would blur the image and may actually reduce the 

amount of l i g h t absorbed by an outer segment; c) the e p i t h e l i a l 

c e l l s contain phagosomes that remove the rod outer segment discs by 

phagocytosis (Young and Bok, 1969); d) interchange of metabolites, 

such as vitamin A which moves from the rods to the pigment epi­

thelium during l i g h t adaptation and returns during dark adaptation 

(Dowling, 1960); e) pigment migration: i n son^ lower vertebrates a 

change i n illumination causes a migration of pigment granules withi n 

the apical processes of the r e t i n a l epithelium. In the dark adapted 

state the pigment i s withdrawn from the apical processes between the 

receptor outer segments, thereby reducing i t s screening effect. The 

nature of the pigment migration mechanism i s poorly understood. 

The pigment epithelium responds e l e c t r i c a l l y v^en l i g h t i s 

absorbed i n the rod outer segment (Brown and Wiesel, 1961; Schmidt 

and Steinberg, 1971). I n t r a c e l l u l a r recorded responses consist of a 

slow hyperpolarization which i s graded with intensity and identical 

i n time course to the C-wave of the electroretinogram and results 

from modulation of potassium ion concentration i n the extracellular 

space by the a c t i v i t y of the photoreceptors. 



1.2.2. The sensory retina. 

I n general, the sensory r e t i n a of a l l vertebrates studied 

contains f i v e major classes of neurons; photoreceptors, horizontal 

c e l l s , bipolar cells,.amacrine c e l l s and ganglion c e l l s . 

The r e t i n a i s s t r a t i f i e d into nuclear and S3niaptic layers. The 

c e l l bodies are arranged i n three d i s t i n c t nuclear layers and t h e i r 

synaptic interconnections are mainly confined to two 'synaptic' or 

'plexiform' layers. Receptors, v^ose perikarya aire i n the outer 

nuclear layer (O.N.L,), make synaptic contact with both horizontal 

c e l l s and bipolar.cells i n the outer plexiform layer (O.P.L.). The 

inner nuclear layer (I.N.L.) contains the perikarya of horizontal, 

bipolar and amacrine c e l l s . The horizontal ce l l s occupy the outer, 

or d i s t a l , part of the I.N.L. and the bipolar and amacrine cells 

occupy the inner, or proximal, part of the I.N.L. The inner p l e x i ­

form layer (I.P.L.), which l i e s proximal to the I.N.L., contains 

processes of bipolar, amacrine and ganglion c e l l s . The ganglion 

c e l l s are the only c e l l s that convey signals from the retina to the 

central nervo\as system and most of t h e i r c e l l bodies are i n the 

ganglion c e l l layer, which l i e s proximal to the inner plexiform 

layer. 

A recently described r e t i n a l element the "interplexiform c e l l " 

i s located i n the inner nuclear layer and extends i t s processes to 

both the inner and to the outer plexiform layers. The interplexiform 

c e l l s may be thought of as either a major d i s t i n c t i v e subdivision of 

amacrine c e l l s or a s i x t h class of r e t i n a l c e l l s (Ehinger and Falck, 

1969; Boycott, Dowling, Fisher, Kolb and Laties, 1975; Dowling and 

Ehinger, 1975). 



I n general, each c e l l class i s subdivided into two or more 

subclasses, with multiple p a r a l l e l pathways through the visual 

system at each stage and complex interconnections with i n each 

synaptic layer. 

I n addition to neurons, the sensory retina contains g l i a l 

c e l l s , T f l ^ i c h resemble astrocytes i n cytoplasmic d e t a i l . These 

columnar g l i a l c e l l s span the f u l l thickness of the retina. The most 

frequent are the r a d i a l l y orientated Muller c e l l s , which span the 

re t i n a from the 'outer l i m i t i n g membrane' (O.L.M.) to the 'inner 

l i m i t i n g membrane' (I.L.M,). Their nuclei l i e i n the I.N.L. and are 

generally fusiform i n shape. Their processes penetrate between a l l 

neurons and cover most of, though not a l l , t h e i r surface area. 

Electron microscopic stiodies have revealed that the g l i a l c e l l 

processes occupy almost a l l the space between the r e t i n a l c e l l s , so 

that there i s almost no extracellular space i n the sensory re t i n a 

(Lasansky, 1965; Missotten, 1965b; Dowling and Boycott, 1966). Since 

g l i a l c e l l s contain glycogen t h e i r role i n the retina i s thought to 

be n u t r i t i v e as well as stru c t u r a l . 

1.3. Photoreceptors. 

Vertebrate photoreceptors occur i n a variety of shapes and 

sizes. The photoreceptor c e l l i s bipolar i n form, consisting of an 

outer segment, an inner segment, a c e l l perikaryon with the nucleus 

i n the O.N.L. and a synaptic terminal i n the O.P.L. The outer and 

inner segments extend above the retina and form a sheet at the back 

of the eye, with the outer segment buried i n the apical processes of 

the r e t i n a l epithelium. Light normally enters the retina at the 



v i t r e a l surface, passing throtigh i t s layers before reaching the. 

photoreceptors. 

Two broad classes of vertebrate photoreceptor^, have been 

distinguished;' rods and cones, so named becaiase of their structural 

appearance. Schultze (1866) noted the correlation of the cones and 

rods w i t h day and night v i s i o n , respectively, and established the 

duplex nature of the vertebrate retina. Rods and cones can easily be 

distinguished by a number of special features i n many vertebrates. 

Typically, i n teleosts (Engstrom, 1963b), both rods and cones 

are present and the two receptors are distinguishable on the basis 

of the shapes of the outer and inner segments. Rods have longer, 

c y l i n d r i c a l outer segments and more slender inner segments than 

cones which have a tapering outer segment and a flask-shaped inner 

segment. I n other vertebrates, however, such as the lower fishes, 

amphibians, r e p t i l e s and diurnal birds, t h i s d i s t i n c t i o n between 

rods and cones can be d i f f i c u l t t o make becaiose t h e i r morphological 

characteristics overlap considerably. 

1.3.1. The outer segnent. 

Photoreceptor outer segments are elongated and consist of a 

stack of several hundred membranous discs. Each disc i s a sac, ap­

parently formed by ingrowth or infolding of the plasma membrane. The 

connections of the resultant sac to the membrane may be very narrow 

or absent i n most rod sacs, but are generally persistent i n cone 

sacs (Sjostrand, 1961; Cohen, 1963a). The photopigment molecules are 

incorporated i n the discs and orientated so as to achieve maximal 

absorption of the l i g h t rays, which tra v e l along the length of the 



outer segment. The protein part of the photopigment i s synthesized 

i n the inner segment and transported to the outer segment. Ivhen the 

protein reaches the outer segment i n rods, i t becomes incorporated 

i n the plasma membrane, which then forms the discs by invagination. 

There i s an apparently continuous formation and removal of rod 

discs by the pigment epithelium and, i n frogs, the whole rod outer 

segment i s renewed every 6-7 weeks (Young, 1967, 1969). Similar 

renewal of cone discs was not observed i n frogs. I n teleosts, some 

evidence suggests that cones shed th e i r discs at any level frcra the 

side which i s open to the extracellular space. The discs are shed i n 

small portions but not discarded whole ( f o r review see Cohen, 1972). 

1.3.2. The inner segment. 

Receptor inner segments are joined to the outer segments by 

narrow stalks which contain nine pairs o f filanients or microtubules, 

si m i l a r to c i l i a except f o r the absence of a central pair of f i l a ­

ments (see Cohen, 1972 for review). 

The inner segment i s the metabolically active part of the c e l l 

and i t s d i s t a l part contains densely packed mitochondria and has 

been termed the e l l i p s o i d (Walls, 1942). 

I n some f i s h , amphibia, birds and r e p t i l e s there i s a region i n 

the e l l i p s o i d termed 'paraboloid' with many i n t r a c e l l u l a r vacuoles 

which probably contain glycogen granules (Yamada, 1969; Cohen, 

1963a). The region of the inner segment that l i e s between the 

e l l i p s o i d (paraboloid) and the outer l i m i t i n g membrane has been 

termed myoid. I n some species the myoid i s contractile ( A l i , 1975; 

Couillard, 1975). A s t r i k i n g feature i n many teleosts i s the 



opposing photomechanical responses to l i g h t by the rods and cones. 

VJhen the retina i s illuminated the cone rayoids contract, bringing 

the outer segments closer t o the external l i m i t i n g membrane, simul­

taneously, the rod myoids elongate, thus burying the rod outer 

segments w i t h i n the apical membranes of the pigment epithelium. I n 

darkness these movements are reversed. I t may be sig n i f i c a n t that 

photomechanical responses are wel l developed' i n teleosts i n which 

p u p i l l a r y movements are either absent or small but species w i t h 

rapid and eff e c t i v e p u p i l l a r y control have no photomechanical 

movements ( C r e s c i t e l l i , 1972).. 

The c e l l bodies of pTnotoreceptors are i n the outer nuclear . 

layer. Cone nuclei i n vertebrates ,are usually situated near the 

outer l i m i t i n g membrane but .rod nuclei always l i e vitread to the 

cone nuclei. With the exception of ;a few displaced bipolar c e l l s 

found i n some species, the outer nuclear layer contains only the 

c e l l bodies of rods and cones. 

1.3.3. Visual pigments. 

The re t i n a of the dark adapted eye has a reddish colour, which 

was f i r s t noticed by Mailer (1851).. Boll (1877) noted that t h i s 

colour fades when the re t i n a i s exposed to l i g h t , now termed 

'bleaching'. Kuhne (1878) was the f i r s t to extract the l i g h t 

sensitve substance, which he named rhodopsin. I t s chemical structiare 

remained a mystery for sane time .but Wald (1933, 1935) showed that 

t h i s substance was based on Vitamin A. 

The structure and chemistry of visual pigments have been 

reviewed from time to time (Dart n a l l , 1957; Morton, 1972; Rodieck, 
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CHO 
Retinal 

.^jj^JL, 3-Dehydroretinal 

Figure 1.1.a. The structure of r e t i n a l and 3-dehydroretinal. 

(From Lythgoe, 1979). 

al l - t r a n s 
r e t i n o l 

11-cis 
r e t i n o l 

Figure l . l . b . The isomeric configuration of r e t i n o l . 

(From Lythgoe, 1979). 
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1973; Knowles and Dartnall, 1977) and only a very b r i e f description 

w i l l be given here. 

The molecular basis of the inte r a c t i o n of the rod photopigment 

w i t h l i g h t was established by Wald (1968). The visual pigments are 

chromoproteins consisting of a chromophoric group which i s the 

aldehyde of vitamin Al ( r e t i n a l ) or vitamin A2 (dehydroretinal) 

( F i g . 1.1.a), and are derived from /5-carotene ingested i n the 

food, these are joined to an opsin protein molecule and are called 

rhodopsin and porphyropsin respectively. 

Retinal and 3-GehYdroretinal exist i n several isomeric forms, 

of which only two, 11-cis and a l l - t r a n s are important i n the vi s i i a l 

process (Fig. l . l . b ) . 

The i n i t i a l stage of photoactivation appears to be the same i n 

a l l vertebrates. Before a photon i s absorbed, the chromophoric group 

i s i n the 11-cis configuration which f i t s i n t o the opsin molecule i n 

the disc membrane. On the absorption of a photon, the chrcmophoric 

group changes to the a l l - t r a n s configuration and spontaneous 

detachment of the chroraophoric group from the opsin molecule occurs. 

The reaction: 

Light 

Visual pigment ^ Retinal + Opsin 

Dark 

Retinol 

Figure 1.2. Simplified sequence of bleaching. 

At'the intermediate stage of transduction, coloured compounds 

cal l e d metarhodopsins are formed. The whole process i s called 
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'bleaching'. 

The regeneration of vertebrate rhodopsin i s a chemical process 

and involves f i r s t the isomerization of the chromophore group back 

from the a l l - t r a n s to 11-cis configuration followed by the spon­

taneous recombination of the opsin molecule with the chromophore to 

form the rhodopsin or porphyropsin molecule. 

, Rhodopsin 

Dark "N^ Light 

Isomerase 

11-cis r e t i n a l + opsin • a l l - t r a n s r e t i n a l + opsin 

Figure 1.3. Showing the f i r s t steps i n the isomerization cycle. 

(From Wald, 1968). 

There are two major factors that inflioence the spectral 

absorption of the visual pigment. The f i r s t i s whether the 

chromophoric group i s r e t i n o l (rhodopsin) or 3-dehydro-retinol 

(porphyropsin); the second i s the detailed nature of the electronic 

linkage between the chromophore and the opsin. The longer-wave 

pigments i n both series ( A l , A2) have a narrower absorption spectra 

than the shorter-wave pigments (Harosi, 1976) a fact that Ebrey and 

Honig (1977) accounted f o r i n t h e i r construction of nanograms for 

long-, intermediate- and short-wave rhodopsins and porphyropsin. The 

nomograms of Dartnall (1953) and Munz and Schwanzara (1967), 

however, were based on the assumption that the shape of the 

absorption spectra plotted on wavenumber (1/A ) scale i s invariant. 

I n addition to the main absorption band (the a-band) there i s 
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also the shorter-wavelength cis-peak (the ^-band) and i n the 

u l t r a v i o l e t a strong protein absorption band (Shichi, Lewis, 

Irreverre and Stone, 1969). Absorption by the beta band i s not 

physiologically s i g n i f i c a n t f o r most visual pigments becaiise the 

shorter wavelengths are cut o f f by the lens and vitreous body 

(Burkhardt, 1966; Witkovsky, 1968; Govardovskii and Zijeva, 1974). 

However, the beta band may be s i g n i f i c a n t for some vitamin A2 

pigments, p a r t l y because vitamin A2 pigments absorb at longer 

wavelengths than vitamin Al pigments, bringing at least part of the 

beta band above 400 nm, and p a r t l y because the beta band has a 

higher absorption i n r e l a t i o n to the alpha band for vitamin A2 

pigments (30-50%) than i t does f o r vitamin Al pigments (20-30%) 

(Goodeve, Lythgoe and Schneider, 1941; Wald, Brown and Smith, 1953; 

Bridges, 1967; Daw, 1973). 

Porphyropsins are fomd primarily i n freshwater f i s h retina but 

they are also found i n some marine fishes and i n amphibia (tadpoles) 

and are generally associated with the presence of a r e l a t i v e l y large 

f r a c t i o n of long wavelength l i g h t i n the individvial species 

environment. Some species have both rhodopsin and porphyropsin based 

photopigment (Dartnall, 1962; Bridges, 1965a, b, c; Schwanzara, 

1967; Beatty, 1966; Allen, Loew and McFarland, 1982) and th e i r r a t i o 

varies w i t h a number of factors, such as temperature (Allen and 

McFarland, 1973; Cristy, 1976; Tsin and Beatty, 1977), season 

(Bridges and Yoshikami, 1970a), hormonal state (Munz and Swanson, 

1965), ambient l i g h t (Bridges and Yoshikami, 1970b) and day length 

(Loew and Dartnall, 1976). 

Porphyropsin absorption curves are similar to those of 
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rhodopsin but somewhat broader (Bridges, 1967; Munz and Schwanzara, 

1967; Mooij and Berg, 1983). More importantly porphyropsins have an 

absorption peak that i s shifted towards longer wavelengths, compared 

w i t h i t s rhodopsin analogue and the s h i f t i s r e l a t i v e l y greater f o r 

long (red) wavelength pigments than for those that peak at shorter 

(blue, green) wavelengths. 

Classically, i t i s the solubilized (extracted) form of the 

visual pigment that has been used to study i t s spectral properties 

(Wald, 1935, 1968; Dartnall, 1957, 1962). Rod pigments are dominant 

i n the extracts since cone pigments may contribute only 17o or less 

(Liebman, 1972). Studies of cone pigments have been hindered because 

of the d i f f i c u l t y of t h e i r extraction, possibly due to the particu­

l a r lamellar organization. The visual pigments of rods and cones do 

not appear to d i f f e r fundamentally from each other (Dartnall, 1960). 

Microspectrophotometry (M.S.P.) has been applied to single photo­

receptor outer segments to define the absorption spectra of single 

rods and cones al i k e (Liebman and Entine, 1964; Liebman, 1972). 

1.3,4̂ . Cone types and cone arrangements. 

Cones of lower vertebrates are variable i n structure and they 

may d i f f e r markedly i n closely related species. Subsequently, many 

investigators were concerned with the form and cone arrangements 

i n the teleostean retinas (Engstrom, 1963a ,b; Scholes, 1975; S t e l l 

and Li g h t f o o t , 1975). 

Cone types and cone arrangements of the Eurasian perch (Perca 

f l u v i a t i l i s ) have been investigated by a number of authors. Two 

types of cone photoreceptors i n perch have been described: equal 
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double cones and single cones (Muller, 1856, 1872, 1874; Schulze, 

1866, 1867; F r i i s , 1879; Krause, 1886; Eigenmann and Shafer, 1900; 

Greef, 1900; launder,1925; Arey, 1928; L y a l l , 1957; Engstrom, 1963b; 

Ahlbert, 1969). Morphologically double cones are cl a s s i f i e d as 

unequal, when they consist of a long and a short member (principal 

and accessory) and as equal (or twin) cones when both members are of 

equal size (Walls, 1942). Single cones are cl a s s i f i e d according to 

t h e i r general appearance, i.e. long or short singles, and by th e i r 

p o s i t i o n i n the receptor mosaic, i.e. additional or central single 

cones (Engstrom, 1963b). 

Several workers have suggested that the possession of double 

cones i s related to s e n s i t i v i t y (Willmer, 1953; L y a l l , 1957; 

O'Cbnnell, 1963; Engstrom, 1963b) and i s associated w i t h vis i o n i n 

deep water. A supporting evidence has been found i n the teleost 

species, Sebastes diploproa, which develops d i s t i n c t cone patterns, 

w i t h the loss of single cones, i n association with permanent 

migration from the surface to deep water (Boehlert, 1978). Lythgoe 

(1979) concluded that double cones are associated with vision at the 

lowest l i g h t i n t e n s i t i e s . 

' The cones i n perch, as i n a number of other teleosts form a 

very regular square mosaic, which i s made by four double cones with 

a single cone i n the centre of the square ( L y a l l , 1957; Engstrom, 

1963b; Ahlbert, 1969). A regular square mosaic i s generally observed 

i n the retinae of active, shallow-living teleosts, but a row pattern 

i s observed i n deep-living teleosts ( L y a l l , 1957; Engstrom, 1963b). 

In t e r s p e c i f i c comparison, correlating cone type and pattern 

w i t h the behavior and ecology of teleosts, has suggested that 
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species w i t h well developed patterns of single and double cones feed 

on f a s t moving prey, indicating that these patterns may improve 

perception of movement ( L y a l l , 1957), possibly providing a structur­

a l basis f o r high temporal and spatial resolution (Wagner, 1975). 

Double cones and poorly developed patterns, on the other hand, are 

associated w i t h less acute v i s i o n i n deep water (Boehlert, 1978). 

Variations i n cone density i n the f i s h retina have been shown 

to depend on the main visxial d i r e c t i o n with the corresponding corre­

lati o n s between cone density and feeding habits ( V i l t e r , 1947, 1950; 

Engstrom and Ahlbert, 1963; Ahlbert, 1969). Ahlbert (1969) found 

that i n the perch retina the highest cone density was i n a h o r i ­

zontal region tov/ards the posterior part of the retina. 

I t had become clear among investigators using microspectro­

photometry that there was some correlation between cone morphology 

and the spectral absorption of the visual pigment (Marks, 1965; 

Svaetichin, Negishi and Fatehchand, 1965; Liebman and Entine, 1968; 

Karosi and MacNichol, 1974). However, the correlation between cone 

structure and spectral absorption was f i r s t recognized by 

Scholes (1975) and he was the f i r s t to apply i t to analysis of a 

chromatic pathway i n the rudd retina (Scholes and Morris, 1973; 

Scholes, 1975). Using photographic densitometry, Scholes and Morris 

(1973) found the rudd to be trichromatic. The rudd has, however, 

turned out to be photochemically very complex since i t contains 

A1/A2 mixture, but the results obtained by Scholes have been 

confirmed (Loew and Dartnall, 1976; Loew and Lythgoe, 1978). I n the 

related g o l d f i s h s i x morphologically distinguishable cone types have 

been shown, by microspectrophotometry, to contain one of three 
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visual pigments w i t h absorption maxima i n the blue (455 nm), green 

(532 nm) and red (623 nm) region of the spectrum (Liebman and 

Entine, 1964; Marks, 1965; Harosi and MacNichol, 1974; S t e l l and 

Harosi, 1976). 

I n the perch (Perca f l u v i a t i l i s ) . Loew and Lythgoe (1978) 

found, i n t h e i r studies using microspectrophotometry, that both 

members of the equal double cone, contain the same photopigment with 

an absorption maximum at 615 nm (red) and the single cone with an 

absorption maximum at 535 nm (green).. Both are vitamin A2 or por­

phyropsin. Recently Loew and Lythgoe (1978) and Levine, MacNichol, 

Kraft and Collins (1979) c l a s s i f i e d equal double cones as 'identical 

twins' i f both members contained the same photopigments and as 

'non-identical' i f they did not. 

Photochemically and s t r u c t u r a l l y i d e n t i f i e d cone types can also 

be recognized by the position they occupy i n the receptor mosaic 

(Marc and Sperling, 1976a, b ) C o r r e l a t i o n studies between pigment 

content and cone structure using microspectrophotometry i n f i s h 

r e t i n a have revealed t h a t ^ i n general, the long wavelength (red) 

pigment i s contained i n long cones, i.e. long double and long single 

cones. The green photopigment i s contained i n the short double and 

long single cones and the blue pigment i s contained i n short single 

and i n miniature short single cones. The cone shape within a given 

species may indicate the pigment content but there i s not yet enough 

data to allow extrapolation from one species to another ( S t e l l and 

Harosi, 1976; Loew and Lythgoe, 1978). 
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1.3.5. Synaptic terminations, outer plexiform layer. 

There i s a s t r i k i n g difference between the synaptic termination 

of rods and cones i n f i s h , nocturnal birds and mammals. The cones 

have a f l a t conical (pyramidal) foot, called a pedicle, but the rods 

terminate i n a much smaller romded swelling called a spherule. From 

the photoreceptor terminals arise a number of fi n e processes called 

basal processes or telodendria, which ramify i n the outer plexiform 

layer. 

The terminals of rods and cones both contain small synaptic 

vesicles, of 30-60 nm i n diameter. The synaptic vesicles i n rod 

terminals are of uniform size and are more abundant than i n cones 

(Evans, 1966). 

I t i s generally believed that the sjmaptic vesicles contain the 

transmitter substance. I t i s not clear whether there i s a change i n 

size or number of these vesicles after periods of l i g h t and dark 

(Cohen, 1972), nor has the photoreceptor neiarotransmitter been 

i d e n t i f i e d . 

The receptor cytoplasm opposed to the t i p s of the invaginating 

processes has a ribbon-like structure, termed the synaptic ribbon 

(Sjostrand, 1953b). Cohen (1963a) showed that the synaptic ribbon i s 

a penta-laminar structure i n cross-section. I t seems to be separated 

by a clear zone of 10-20 nm from the synaptic vesicles which 

surround the ribbon. The ribbon i s separated from the cone c e l l 

membrane by a smaller electron-dense organelle called an arciform 

density (Ladman, 1958). 

The function of the sjmaptic ribbon i s unknown but similar 

structures have been described i n the inner plexiform layer i n 
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bipolar c e l l s (Kidd, 1962; Dowling and Boycott, 1965, 1966) and i n 

other receptors such as the hair c e l l s of the cochlea (Smith and 

Sjostrand, 1961a, b ) , the vestibular apparatus (Flock, 1964) and the 

l a t e r a l l i n e organ (Flock, 1965; Hama, 1965). 

Rod spherules i n most vertebrates have a single p i t which 

contains the invaginating processes although there may be more than 

one synaptic ribbon. I n some vertebrate classes rods terminate i n a 

pedicle rather than i n a spherule, which has a number of synaptic 

ribbons, and are not easily distinguished from the cone terminations 

(Cohen, 1963a; Evans, 1966; Dowling, 1968). 

I n mammalian cones there i s a separate synaptic invagination 

for each synaptic ribbon (there may be as many as 30), v^ich 

contains j i i s t the two horizontal processes i n the l a t e r a l position, 

and one bipolar process i n the central position, and i s termed t r i a d 

(Missotten, 1965b). I n lower vertebrates the position i s less 

c l e a r l y described but, i n general, several ribbons share a common 

synaptic cavity occupied by numeroios bipolar and horizontal c e l l 

processes (Pedler, 1965; S t e l l , 1967; Lasansky, 1971; Witkovsky, 

Shakib and Ripps, 1974; Scholes, 1975; Haesendonck and Missotten, 

1979, 1984). 

The d e f i n i t i v e synaptic junctions with photoreceptors f a l l into 

two groups, su p e r f i c i a l (basal) and invaginated. Superficial con­

tacts have been obseir/ed on pedicle terminals i n primates (Cohen, 

1961; Dowling and Boycott, 1966). The s i t u a t i o n i s less clear i n 

other vertebrates. Superficial contacts have been demonstrated i n 

frogs (Dowling, 1968), i n t u r t l e s (Lasansky, 1969) and i n the 

mudpuppy (Dowling and Werblin, 1969), but Scholes (1975) did not 
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observe them i n the f i s h r e t i n a . These contacts may be synaptic but 

neither side shows clear morphological specializations ' such as 

aggregation of synaptic vesicles. 

1.3.6. Photoreceptor interconnections. 

Photoreceptors contact one another at two sites i ) along the 

inner segment ( e l l i p s o i d ) and i i ) at the level of the synaptic 

terminals. 

The close membrane- contact between inner segments of teleostean 

double cones i s characterized by large areas of mutually opposed 

membranes, separated by a very regular c l e f t . Each cone contains a 

single flattened subsurface cisterna which has been described i n a 

number of teleosts (Engstrom, 1963b; S t e l l , 1965; Berger, 1967; 

Ahlbert, 1973). Similar contacts have been described between rod and 

cone inner segnents i n goldfish ( S t e l l , 1965) and rod to rod contact 

i n humans (Uga, Nakao, Mimura and I k u i , 1970). Other special but non 

synaptic contacts have been described i n other vertebrates (Cohen, 

1963a, Pedler and T i l l y , 1964; Locket, 197Ga). Cohen (1963a) 

suggests that such close contact makes the cells an optical m i t . 

At the synaptic terminals, photoreceptors may contact one 

another i n a variety of ways, to a variable degree of specializa­

t i o n . Mainly by two ways: a) Through simple membrane apposition, 

without evidence of any functional specialization and b) v i a basal 

processes (telodendria). 

Membrane appositions have been described between receptor 

terminals i n a number of vertebrates and generally without any 
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s e l e c t i v i t y for receptor type (Nilson, 1964b; Cohen, 1965; 

Missotten, 1966; Dowling and Werblin, 1969; Sjostrand, 1969; Raviola 

and G i l u l a , 1973; Fain, Gold and Dowling, 1976). In some cases the 

membranes show an increase i n electron density and may resemble gap 

junctions, which may mediate low resistance coupling between recep­

tors (Witkovsky et a l . , 1974; Scholes, 1975; Nagy et a l . , 1979 as 

quoted by S t e l l , 1980). 

I t seems l i k e l y that these inter-receptor contacts have another 

function than physiological interaction because of t h e i r lack, of 

s e l e c t i v i t y for receptor type (Cohen, 1965; Missotten, 1965a; 

Dowling and Boycott, 1966; Scholes, 1975). 

The horizontally orientated terminal filaments or telodendria 

are now usually termed 'basal processes'. Basal processes seem to be 

a universal feature of vertebrate S3niaptic terminals of cones and 

rods from most species, except f o r maimialian rods (Cajal, 1892; 

Polyak, 1941). Basal processes are small processes which extend 

l a t e r a l l y i n the outer plexiform layer and t h e i r length and density 

vary according to species, r e t i n a l locus and, among lower verte­

brates at least, to cone type (Cajal, 1892). 

The basal processes (telodendria) i n vertebrates are known to 

make contact with other processes of unknown o r i g i n (Lasansky, 1971) 

as well as other basal processes, w i t h pedicles, and scxne may 

contact rods. These contacts are usually characterized by membrane 

apposition (Sjostrand, 1958, 1959, 1965; Cohen, 1964, 1965; 

Missotten, 1965a, b; Lasansky, 1971, 1972). 

I n addition, basal processes may also make contact with second-

order c e l l s , as has been observed i n c a t f i s h (Sakai and Naka, 1983). 
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Some cone basal processes have been shown to enter the synaptic 

c a v i t y of neighbouring cone pedicles i n lower vertebrates, such as 

i n t u r t l e (Lasansky, 1972; Nermann, Perlman, Kolb and Daly, 1984) 

and i n teleosts (Scholes, 1975; Lockhardt and S t e l l , 1979). Scholes 

(1975) observed i n the rudd that the pattern of interconnections v i a 

the invaginating basal processes i s colour-coded; only chromatically 

d i f f e r e n t sets of cones invaginate one another. This has also 

been observed i n goldfish (Lockhart and S t e l l , 1979). 

1.4. Horizontal c e l l s . 

Heinrich Muller (1851, 1856) was f i r s t to describe horizontal 

c e l l s , which he called the 'zwischenkomerschicht'. He noted two 

layers of horizontally oriented cel l s betiveen the outer and inner 

nuclear layers. Subsequently a number of the early investigators 

described similar c e l l s imder various names. Since these cel l s 

appeared to have no axon they were considered to be supporting cel l s 

(Schiefferdecker, 1886). The horizontal c e l l s have been described i n 

TBOst vertebrates, they are usually r e l a t i v e l y large compared to 

other r e t i n a l c e l l s , forming between one and four continuous but 

perforated layers proximal to the outer plexiform layer. Cajal 

(1892) observed w i t h the Golgi method that horizontal ce l l s had 

d e n d r i t i c processes extending in t o the outer synaptic layer and he 

suggested that they contacted photoreceptors. Electron microscopic 

studies have demonstrated ' t i g h t junctions' or 'gap junctions' 

between horizontal ce l l s of the same type (Yamada and Ishikawa, 

1965; O'Daly, 1967; Witkovsky and S t e l l , 1973; Lasansky, 1976; 

.Witkovsky, Burkhardt and Nagy, 1979). 
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Cajal (1893) was i n no doii)t that teleost horizontal c e l l s were 

neurons, while other workers (Villegas, 1960; Villegas and Villegas, 

1963; Testa, 1966) claimed that they were either g l i a or morphologi­

cal intermediates between g l i a and neurons (Svaetichin et a l . , 

1965). I t has been pointed out, a) that they lack n i s s l substance, 

which i s normally a characteristic of neurons (Villegas, 1960; 

Villegas and Villegas, 1963; Yamada and Ishikawa, 1965; S t e l l , 

1967), b) that they have a high content of glycogen (Parthe, 1967) 

and c) that they lack synaptic vesicles and membrane specializations 

c h a r a c t e r i s t i c of synaptic regions (Yamada and Ishikawa, 1965). 

Nevertheless, the u l t r a s t r u c t u r a l relationship between horizontal 

c e l l s and the photoreceptors and th e i r physiological characteris­

t i c s leave no doubt that they are neurons. 

1.4.1. Teleosts. 

Teleostean horizontal c e l l s are connected either to rods or 

cones (Cajal, 1892; S t e l l 1967; Parthe, 1972; Wagner ,> 1978, 

Haesendonck and Missotten, 1979). Horizontal c e l l s vary considerably 

i n size and shape i n d i f f e r e n t species of teleosts. Retinas which 

have a high proportion of rods tend to have more layers and larger 

c e l l s than those which have a high proportion of cones (Cajal, 

1892). The c e l l s i n the d i s t a l layer are usually small and polygo­

n a l , while those i n the successive proximal layers are progressively 

larger and more s t e l l a t e (Villegas and Villegas, 1963; Testa, 1966; 

Parthe, 1967, 1972; S t e l l and Lightfoot, 1975; Haesendonck and 

Missotten, 1979; Witkovsky et a l . , 1979). I n retinas where the rods 

and cones are nearly equal i n number, the horizontal c e l l s are 
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redticed to a single layer (Engstrom, 1963a; A n c t i l , 1969; S t e l l , 

1972). I n the rod dominated retinas there are as many as four layers 

of horizontal c e l l s and of the four layers, three appear to make 

contact w i t h cones and one with rods (Parthe. 1972). 

S t e l l and Lightfoot (1975) described three types of cone 

horizontal c e l l s i n goldfish. They were termed HI, H2 and H3 ce l l s 

i n order of increasing density of cone contacts. The particular 

synaptic contacts that each of the goldfish horizontal c e l l types 

makes w i t h photoreceptors were evaluated by S t e l l and Lightfoot 

(1975) and chromatic input was characterized by correlating the cone 

pigment and photoreceptor morphology (Scholes, 1975). The HI c e l l s 

(external) contact a l l cone types, red, green and blue cones. The H2 

ce l l s (intermediate) make S3maptic contact with green and blue 

cones, and H3 c e l l s (internal) contact only blue cones. Similar 

methods, making use of the regular receptor mosaic i n teleosts have 

been applied to reveal the connectivity pattern between cones and 

horizontal c e l l s , such as i n cich l i d s (Wagner, 1976), i n the marine 

teleost, dragonet (Haesendonck and Missotten, 1979), and i n 

pikeperch (Witkovsky et a l . , 1979). 

Rod horizontal c e l l s have been shown to occupy the t h i r d layer 

(of four) or the foxjrth layer depending on species ( S t e l l , 1965; 

Parthe, 1972). However, i n ' • . .Callionymus l y r a (dragonet) 

Haesendonck and Missotten (1979) describe a rod horizontal c e l l 

^ i c h occupies the external ( d i s t a l ) layer of the inner nuclear 

layer. The variety of horizontal c e l l s i n teleosts i s great and 

therefore i t i s hardly meaningful to refer to the generalized 

teleost r e t i n a . 
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Horizontal c e l l axons: Cajal (1892) observed axons on the 

external and intermediate horizontal c e l l s , but he did not observe 

an axon terminal. Investigators vising the Golgl method have i n some 

cases been mable to demonstrate axons on horizontal c e l l s ( S t e l l , 

1967; S t e l l and Witkovsky 1973b), or have reported d i f f i c i a l t y i n 

locating these horizontal c e l l axons i n teleosts (O'Daly, 1967; 

Parthe, 1967). Cajals 'internal horizontal c e l l s ' have never been 

shown to send processes int o the outer sjmaptic layer and thus S t e l l 

(1967) did not consider them to be true horizontal c e l l s . Yamada and 

Ishikawa (1965) and S t e l l (1967) f a i l e d to f i n d evidence for a 

nucleus or a c e l l body i n these c e l l s . S t e l l (1975) designated them 

'c y l i n d r i c a l processes' of the intermediate neuronal layer, a term 

which simply recognizes t h e i r observed form. Recently Weiler and 

Ze t t l e r (1979) showed the horizontal c e l l s and their axons to be 

functional as well as structural t i n i t s . Because of staining f a i l u r e 

the axon i s not always apparent on a l l c e l l s , i t seems l i k e l y that 

some horizontal c e l l s lack an axon, i n some cases, however, axons 

have been reported i n the majority of c e l l s (Parthe, 1972; Wagner, 

1972; S t e l l , 1975; Haesendonck and Missotten, 1979). The lack of an 

axon has led some investigators to term them 'stellate amacrines' 

(Testa, 1966; Parthe, 1967), but these c e l l s were la t e r shown to be 

rod horizontal c e l l s (Parthe, 1969, 1970, 1972; S t e l l and Laufer as 

quoted by S t e l l , 1972). 

1.4.2. Other vertebrates. 
Horizontal c e l l s i n elasmobranchs are known, to be very large 

and to form at least two d i s t i n c t layers (Yamada and Ishikawa, 
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1965). S t e l l and Witkovsky (1973b) reported three d i s t i n c t types of 

horizontal c e l l s which were segregated i n d i s t i n c t l y separate layers 

i n the smooth dogfish. The external and the intermediate horizontal 

c e l l s make contact with rods. The internal (vitread) H-cells contact 

cones. Toyoda, Saito and Kondo (1978) reported three types of 

horizontal c e l l s i n the stingray r e t i n a , which apparently have 

receptor connections similar t o the dogfish horizontal c e l l s , except 

that the external horizontal cel l s receive input from both rods and 

cones. I n general, the v e r t i c a l sequence of horizontal cel l s which 

contact rods or cones i n dogfish i s inverted from that i n teleosts. 

I n r e p t i l e s , Cajal (1892) distinguished two types of horizontal 

c e l l s , a) brush-shaped c e l l s , and b) s t e l l a t e c e l l s . He suggested 

that both made contact with cones but w i t h d i f f e r e n t types. These 

two horizontal c e l l types have been described i n the t u r t l e retina 

by Lasansky (1971). However, i n Golgi preparations of t u r t l e retina 

Leeper (1978a, b) observed four t 3 ^ s of horizontal cells which he 

termed HI, H2, H3 and H4. HI i s a s t e l l a t e c e l l body (HICB) with an 

axon and an axon terminal (HIAT), and both parts make contact with 

receptors as i n mammals. Dendritic terminals of HI c e l l bodies con­

t a c t red and green cones while the axon terminal contacts only red 

cones and rods. He described H2, H3 and H4 ce l l s as axonless 

s t e l l a t e c e l l s , the H2 c e l l made contact on green and blue, and the 

H3 on blue cones only, the H4 c e l l contacted only green sensitive 

accessory members of the double cones. 

I n the amphibian re t i n a Cajal (1893) distinguished two types, 

outer and inner horizontal c e l l s . Using i n t r a c e l l u l a r injections of 

HKP (horseradish peroxidase) Lasansky (1978) only observed a single 
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type of horizontal c e l l containing an axon that makes contact with 

photoreceptors. The c e l l body and the axon terminal are separate 

functional lonits (Lasansky, 1978). 

Two types of horizontal c e l l s have been described i n the b i r d 

r e t i n a (Mariani and Du Pree, 1977). A brush-shaped horizontal c e l l 

w i t h an axon and i t s s t e l l a t e axon terminal, both of which make con­

tact w i t h photoreceptors (Cajal, 1892; Gallego, Baron and Gayoso, 

1975; Gallego, 1976; Mariani and Du Pree, 1977), and an axonless 

s t e l l a t e horizontal c e l l (Mariani and Du Pree, 1977). The brush-

shaped c e l l body and the axonless s t e l l a t e c e l l contact cones but 

the axon terminal makes contact w i t h rods or with rods and cones 

depending on species (Gallego, 1976; Mariani and Du Pree, 1977). 

I n non-primate mammals Cajal (1893) described two types of 

horizontal c e l l s which he called outer and inner horizontal c e l l s , 

these have been observed i n the retina of mammals such as the ox, 

cat and rabbit and are termed type A and B c e l l s (Gallego, 1971, 

1976; Fisher and Boycott, 1974; Kolb, 1974; Boycott, Peichl and 

Wassle, 1978). Type A i s a large axonless s t e l l a t e c e l l (Fisher and 

Boycott, 1974; Kolb, 1974; Wassle, Peichl and Boycott, 1978, 1979; 

Kolb and Normann, 1982), and type B has an axon and resembles the HI 

c e l l i n primates and makes contact with rods (Kolb, Mariani and 

Gallego, 1980; Dacheux and Raviola, 1981). 

I n i t i a l l y the primate retina was said to contain only one 

horizontal c e l l type, termed the HI c e l l (Polyak, 1941; Kolb, 1970; 

Gallego, 1971; Boycott and Kolb, 1973; Ogden, 1974; Gallego and 

Sobrino, 1975). Recently, however, Kolb et a l . (1980) described a 

second t3rpe of horizontal c e l l i n the monkey retina, termed the HII 
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c e l l . Both the HI and the H I I c e l l types have an axon and an axon 

terminal, and both c e l l parts make contact with photoreceptors as 

l a t e r a l elements of the ribbon synapse (Kolb et a l . , 1980). The c e l l 

bodies of both types make contact with cones, but the axon terminal 

of the HI c e l l contacts rods, i n contrast to the axon terminal of 

the H I I c e l l , which contacts cones (Kolb, 1970; Boycott and Kolb, 

1973; Gallego and Sobrino, 1975; Gallego, 1976; Kolb et a l . , 1980). 

1.5. Other neurons of the retina. 

1.5.1. Bipolar c e l l s . 

The bipolar c e l l s of the retina are neurons which make sjmaptic 

contacts i n the inner and outer synaptic (plexiform) layers. The 

bipolar c e l l s transfer information d i r e c t l y from photoreceptors to 

ganglion c e l l s and these pathways, receptor > bipolar > ganglion 

c e l l s , have been termed the direct-through pathways. 

I n f i s h , Cajal (1892) described two types of bipolar cells i n 

the teleost r e t i n a , large and small, similar to what Schiefferdecker 

(1886) had noted i n most other vertebrates. Cajal (1892, 1893) 

concluded that the large bipolars made synaptic contact with rod 

spherules whereas the small bipolar cel l s contacted cone pedicles. 

I t has since been shown that the large bipolars also make contact 

w i t h cones ( S t e l l , 1967; Parthe, 1972; Scholes and Morris, 1973; 

Scholes, 1975; S t e l l , Ishida and Lightfoot, 1977; Ishida, S t e l l and 

Lightfoot, 1980). 

Numerous morphological types of bipolar cel l s have since been 

i d e n t i f i e d i n the f i s h r e t i n a (Haesenddnck and Missotten, 1984; 

Parthe, 1972; Scholes, 1975; S t e l l , 1967, 1972, 1978). • -' '-/ 
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Bipolar c e l l s can be c l a s s i f i e d by the specific connections they 

make w i t h rods and cones with selective or a conbination of chro­

matic receptor types. Bipolar c e l l s f a l l w i t h i n one of the two major 

categories, mixed bipolars (MB) that make contact with both rods and 

cones, and pure cone bipolars (CB) which contact only cones 

(Scholes, 1975). 

The type and location of synaptic terminations i n the inner 

plexiform layer (IPL) has been d i r e c t l y correlated to the bipolar 

c e l l s general response properties and i s used as an additional means 

of c l a s s i f y i n g bipolar c e l l t3rpes. Functionally, bipolar c e l l s have 

been c l a s s i f i d as ON and OFF c e l l s . A correlation between function­

a l l y and morphologically i d e n t i f i e d bipolar c e l l s has shown that i n 

cyprinids, OFF (hyperpolarizing) cells terminate i n the d i s t a l 

sublamina (termed 'a'), while ON (depolarizing) c e l l s 'terminate i n 

the proximal sublamina (termed 'b'), of the inner plexiform layer. 

So that i n addition to being c l a s s i f i e d morphologically as mixed 

bipolar (MB) or cone bipolar (CB) they are also c l a s s i f i e d i n 

accordance with the sublamina (a or b) of the inner plexiform layer 

i n which the dendritic tree ramifies ( F a m i g l i e t t i , Kaneko and 

Tachibana, 1977; S t e l l et a l . , 1977; Ishida et a l . , 1980). The inner 

plexiform layer i n the non-mammalian retina i s s t r a t i f i e d and 

usually f i v e or more strata have been observed (Cajal, 1892; Boycott 

and Dowling, 1969; Wagner, 1973a, b) and the simple c l a s s i f i c a t i o n 

i n t o sublamina 'a' and 'b' may not always be clear (Haesendonck and 

Missotten, 1983). 

Bipolar c e l l s contact photoreceptor terminals over the extent 

of t h e i r dendritic f i e l d s and i t has been suggested that the nature 
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of these contacts determines the bipolar c e l l ' s response properties 

( S t e l l , 1976; S t e l l et a l . , 1977; Saito, Kujiraoka and Yonaha, 1983; 

Sakai and Naka, 1983), however, other investigators found no 

corr e l a t i o n between the type of j m c t i o n and bipolar c e l l response 

properties (Lasansky, 1978; Dacheux, 1982). 

1.5.2. Amacrine c e l l s . 

The amacrine c e l l bodies l i e i n the most proximal part of the 

inner nuclear layer, w i t h the exception of displaced v a r i e t i e s , and 

t h e i r processes extend into the inner plexiform (synaptic) layer. 

The word 'amacrine' (Cajal, 1892), which means no axon, i s an 

appropriate term since the amacrine c e l l s are characterized by 

having numerous iden t i c a l processes. Cajal (1893) described two main 

types of amacrine c e l l , diffuse and s t r a t i f i e d , which he found i n 

a l l vertebrate classes. S t r a t i f i e d c e l l s can be divided into 'xani-

s t r a t i f i e d ' , ' b i s t r a t i f i e d ' or ' m u l t i s t r a t i f i e d ' c e l l s depending on 

whether t h e i r processes ramify i n the same planar level or i n two or 

more levels of the inner plexiform layer. I n addition to classifying 

amacrine c e l l s by the disposition of t h e i r processes, Cajal further 

distinguished them i n terms of size, position and shape of their 

c e l l body; the thickness, branching size of th e i r f i e l d s and the 

form of t h e i r processes. This method of classifying amacrine cell s 

i s s t i l l iised, characterizing each" c e l l type by the i r dendritic 

morphology ( i . e . f i e l d , size and branching pattern) and specific 

s t r a t i f i c a t i o n levels (Boycott and Dowling, 1969; Kolb, 1982). 

I n teleosts several types of s t r a t i f i e d amacrines have been 

described. I n addition to the diffuse amacrine cell s (Vrabec, 1966; 
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Testa, 1966; Parthe, 1967) displaced amacrines have been observed i n 

f i s h , these are u n i s t r a t i f i e d c e l l s whose soma are i n the same layer 

as t h e i r processes (Testa, 1966; Parthe, 1967; Chan and Naka, 1976). 

Simil a r l y displaced amacrine c e l l s have been observed i n other 

vertebrates (Gallego, 1971; West, 1976; Hughes and Vaney, 1980; 

Perry, 1981). 

A variable number of amacrine c e l l s have been observed i n most 

vertebrate retinas (see S t e l l , 1972 f o r review) and only generaliza­

tions can be made. A great number of morphologically d i f f e r e n t types 

of amacrine c e l l s have been described f o r example i n cat O20) 

(Kolb and Nelson, 1981) and 27 d i f f e r e n t types have been described 

i n t u r t l e (Kolb, 1982). 

A v a r i e t y of contacts have been described between c e l l s i n the 

inner plexiform layer. The bipolar c e l l terminals contain a synaptic 

ribbon (Cohen, 1961) contacting a pair of postsynaptic processes, 

t h i s has been termed 'dyad' (Dowling and Boycott, 1965a, b ) . I n ' 

primates, one element of each dyad i s contributed by a ganglion 

c e l l , the other by an amacrine c e l l . Other combinations have been 

observed, such as amacrine - bipolar (no ribbon), amacrine -

amacrine and amacrine - ganglion c e l l contacts (Dowling and Boycott, 

1965a, b, 1966, 1969). They suggested that the amacrine cell s 

mediate- l a t e r a l interactions which are responsible for the opponent 

surround functional receptive f i e l d of the ganglion c e l l (for f u l l 

review see S t e l l , 1972; Wheeler, 1982). 
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1.5.3. Interplexiform c e l l s . 

The interplexiform c e l l was f i r s t observed and termed by 

Dowling and Ehinger (1975), tising a histochemical technique (deve­

loped by Falck, H i l l a r p , Thieme and Torp, 1962), whereby amine-

containing nexirons can be selectively made t o flvioresce throughout 

t h e i r cellular, structure. They observed t h i s neuron i n goldfish and 

monkey re t i n a . The interplexiform ce l l s were occasionally stained 

w i t h the Golgi method i n cat, monkey and squirrel (Boycott et a l . , 

1975), subsequently, Dowling, Ehinger and Hedden (1976) suggested 

the interplexiform c e l l s to be a general feature of the vertebrate 

r e t i n a . 

The interplexiform c e l l perikaryon i s located among amacrine 

perikarya bodies i n the inner nuclear layer, and extends processes 

in t o both plexiform layers. Following i n t r a v i t a l i n j e c t i o n of drugs, 

these c e l l s were i d e n t i f i e d i n an electron microscope, and their 

synaptic organization studied (Dowling and Ehinger, 1975; Dowling et 

a l . , 1976). I n goldfish the interplexiform c e l l processes were 

reported to be pre- and post-synaptic to amacrine cells i n the inner 

plexiform layer and pre-sjnnaptic to bipolar and horizontal cells i n 

the outer plexiform layer. These interplexiform c e l l s appear to 

provide an i n t r a r e t i n a l centrifugal pathway from the inner to the 

outer plexiform layer and use dopamine as a neiorotransmitter. 

1.5.4. Ganglion c e l l s . 

The proximal netiral layer of the r e t i n a contains c e l l s termed 

the ganglion c e l l s . Their axons become fibers of the optic nerve and 
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t h e i r dendrites ramify i n the inner plexiform layer where they are 

postsynaptic t o amacrine c e l l processes and bipolar c e l l axon 

terminals. Ganglion c e l l perikarya usually l i e i n the ganglion c e l l 

layer, v i t r e a d to the inner plexiform layer. However, displaced 

ganglion c e l l s may occtir i n the inner plexiform or i n the amacrine 

c e l l layer. Cajal (1892) describes two main types of ganglion c e l l s ; 

diffuse and s t r a t i f i e d . I t was f i r s t shown i n mammals by Gallego 

(1954) that the dendritic f i e l d s of ganglion c e l l s are much smaller 

than the functional receptive f i e l d s . Gallego proposed that the 

di r e c t bipolar-ganglion c e l l dendritic contact might determine only 

the properties of the centre of the receptive f i e l d , the periphery 

e f f e c t being mediated by some other neurons, probably amacrine 

c e l l s . 

Recent studies have correlated at least three morphological 

ganglion c e l l types i n the carp with the general characteristics of 

th e i r response properties (Famiglietti et a l . , 1977). ON ganglion 

c e l l s terminate i n sublamina 'b' of the inner plexiform layer as do 

ON bipolar c e l l s . OFF ganglion c e l l s and OFF bipolar cel l s ramify i n 

sublamina 'a'. Individual ON-OFF ganglion c e l l s make contacts i n 

both sublamina of the inner plexiform layer. The c e l l bodies of the 

ON ganglion c e l l s are much smaller than those of the OFF or the 

ON-OFF c e l l s , which have r e l a t i v e l y large c e l l bodies (Famiglietti 

et a l . , 1977). No correlations have yet been reported between 'a 

gar ^ l i o n c e l l ' s spectral properties and i t s morphological 

characteristics. 

Boycott and Dowling (1969) c l a s s i f i e d primate ganglion cel l s 

i n t o f i v e v a r i e t i e s , and recently Mariani (1982) describes a gan-
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g l i o n c e l l that contacts photoreceptors, which he termed 'b i p l e x i -

form' c e l l . A great variety of ganglion c e l l types have been 

described i n vertebrates but systematic and comprehensive i n v e s t i ­

gations are lacking, w i t h the exception of studies on the primate 

r e t i n a (Polyak, 1941, 1957; Boycott and Dowling, 1969; S t e l l , 1972; 

Rodieck, 1973). Recently Kolb, Nelson and Mariani (1981) describe 23 

morphological types of ganglion c e l l s i n the cat retina and 21 i n 

the t u r t l e r e t i n a (Kolb, 1982), however, \^ether each of these c e l l 

types i s a tinique functional type i s unknown. 
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Chapter 2. 

Physiology of the retina. 

2.1. General. 

Photoreceptor, bipolar and ganglion c e l l s form a throijgh 

pathway fo r v i s i i a l signals i n the retina. The response properties of 

these r e t i n a l through pathways are modified i n sioccessive stages by 

inte r a c t i o n with horizontal and amacrine c e l l s . Receptors provide 

d i r e c t input to both horizontal and bipolar c e l l s . A l l visual 

signals reaching the inner plexiform layer must pass through bipolar 

c e l l s , since only they terminate i n both the inner and the outer 

plexiform layers. The information content at successive stages i n 

t h i s r e t i n a l through pathway i s altered by interaction of the l a t e r ­

a l l y orientated horizontal c e l l s with the receptors and bipolar 

c e l l s i n the outer plexiform layer, and by interaction of amacrine 

c e l l s w i t h bipolar and ganglion cel l s i n the inner nuclear layer. 

2.2. Photoreceptors. 

A l l vertebrate photoreceptors respond to illxjmination with a 

membrane hyperpolarization as has been shown i n teleosts (Kaneko and 

Hashimoto, 1967; Tomita, Kaneko, Murakami and Pautler, 1967; Burk-

hardt, 1977), i n r e p t i l e s (Toyoda, Nosaki and Tomita, 1969; Baylor 

and Fuortes, 1970; Baylor, Fuortes and 0'Bryan, 1971; Baylor and 

Hodgkin, 1974), i n amphibians (Bortoff, 1964; Werblin and Dowling, 

1969; Fain and Dowling, 1973; Fain, 1975) and i n mammals (Penn and 

Hagins, 1969;. Nelson, Kolb, F a m i g l i e t t i and Gouras, 1976). 

The hyperpolarization i s accompanied by an increase i n membrane 

resistance i n the outer segment, ixhich sxiggests that the receptor 
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potential results from decreased conductance for an ionic process, 

having a more positive equilibrium potential than resting potential 

(Borton and Norton, 1967; Toyoda et a l . , 1969; Baylor and Fuortes, 

1970; Werblin, 1975a). I n t r a c e l l u l a r recordings show that the 

transmembrane resting potential i s -10 to -40 mV i n the dark, 

depending upon species. Penn and Hagins (1969) demonstrated that a 

steady current flows from the inner segment into the outer segment 

i n darkness and that t h i s current i s reduced by illumination. 

Furthermore, ^/jhen the outer segment i s broken away from the inner 

segment, the l i g h t response disappears (Yau, Lamb and Baylor, 1977), 

which i s consistent with the conclusion drawn e a r l i e r (Penn and 

Hagins, 1969) that the inner segment i s the source of the current. 

The hyperpolarizing response to l i g h t i s thought to result from 

the decrease of a selective sodium conductance i n the outer segment 

(Arden and Ernst, 1969; Sillman, I t o and Tomita, 1969a, b; Yoshikami 

and Hagins, 1970; Korenbrot and Cone, 1972; Cervetto, 1973; Brown 

and Pinto, 1974). The amplitude of the photoreceptor response and 

the P I I I component of the electroretinogram varies i n direct linear 

proportion t o the logarithm of the external sodium concentration 

(Sillman e t . a l . , 1969a, b). Similarly when extracellular sodium i s 

replaced by l i t h i u m , choline or sucrose, the membrane hyperpol arizes 

and the l i g h t response i s abolished (Cervetto, 1973; Brown and 

Pinto, 1974; Capovilla, Cervetto, Pasino and Torre, 1981). Recently 

Woodruff, Fain and Bastian (1982), demonstrated with labeled sodium 

that darkadapted retinas show higher sodium accumulation than 

lightadapted retinas which corresponds closely to the value of 

photoreceptor dark current. 
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In the rod, at least, the l i g h t activated change i n membrane 

potential affects voltage dependent mechanisms which i n turn con­

t r i b u t e to the shaping of the receptor potential (Lasansky and 

Marchiafava, 1974; Schwartz, 1976; Fain, Quandt, Bastian and 

Gerschenfeld, 1978; Detwiler, Hodgkin and MacNaughton, 1978; Bader, 

MacLeish and Schwartz, 1979; Bader and Bertrand, 1984), Photorecep­

tor response to a bright f l a s h shows an i n i t i a l peak followed by a 

decay to a plateau (Fain, 1975). The factors responsible for the 

i n i t i a l peak and the l a t e r plateau are complex. An inward current 

activated by h 3 ^ r p o l a r i z a t i o n and carried by sodium and potassium 

ions, contributes to the decay of the i n i t i a l peak to plateau value 

(Fain et a l . , 1977; Bader et a l . , 1982). I t i s not known whether 

cone membranes contain the same voltage-sensitive channels as do the 

rod membranes. Responses to bright flash show a sag back to 

depolarized plateau from an i n i t i a l peak hyperpolarization 

suggesting that there i s a voltage-gated current i n cones (A t t w e l l , 

Werblin and Wilson, 1982; A t t w e l l , Werblin, Wilson and Wu, 1982). 

However, at least part of t h i s results from a depolarizing feedback 

from horizontal c e l l s to cones (Baylor et a l . , 1971; Simon, 1973; 

Attwell et a l . , 1982a, b) which rods appear to lack (Copenhagen and 

Owen, 1976; A t t w e l l , Werblin, Wilson and 1983). 

Penn and Hagins (1969) and Hagins, Penn and Yoshikami (1970) 

demonstrated an axial 'dark' voltage gradient i n the i n t e r s t i t i a l 

space along the whole length of the receptor, with the synaptic 

region positive i n respect to the outer segment t i p . Upon 

il l u m i n a t i o n , the flow of current i s reduced but the change never 

exceeds the dark current. 
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2.2.1. Transduction mechanisms. 

Vertebrate photoreceptors contain an ion conductance mechanism 

whose properties are controlled by chemical events that are 

modulated by photon absorption. Because rhodopsin i s situated as an 

i n t e g r a l membrane protein i n lamellar disks not contiguoxas with the 

plasma membrane i n rods, one or more light-regulated internal 

messengers must communicate between the disk membrane and the plasma 

membrane. The argument f o r cones i s somewhat d i f f e r e n t , because, at 

least some of t h e i r disks are confluent with the extracellular 

f l u i d . However, photoactivation of a visual pigment molecule must 

r e s u l t i n the release of a siabstance, the internal transmitter, that 

affects a large number of conductance channels i n cones (Cone, 

1973). I t has been argued that hundreds or thousands of internal 

transmitters are generated by isomerization of a single molecule 

(Yoshikami and Hagins, 1973; Baylor, Lamb and Yau, 1979; Baylor, 

Matthews and Yau, 1980). A si±)stantial body of evidence supports the 

hypothesis that calcium i s the messenger that affects rod sodium 

conductance decrease. The evidence includes the following facts; 

f i r s t , that elevated i n t r a c e l l u l a r calcium a c t i v i t y decreases the 

sodium conductance (Yoshikami and Hagins, 1973) and hyperpolarizes 

the rod (Brown, Coles and Pinto, 1977), second, that i l l u m i n a t i o n 

causes extrusion of calcium from rods in t o the extracellular space 

(Gold and Korenbrot, 1980; Yoshikami, George and Hagins, 1980) on a 

time scale w i t h a r i s i n g phase that closely resembles the normal 

photocurrent (Yoshikami et a l . , 1980) and f i n a l l y that 

light-stimulated release of calcium from calcium-loaded disks i s 
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produced w i t h the speed required by visual excitation (George and 

Hagins, 1983). 

An- alternative hypothesis was proposed after discovery of 

phosphodiesterase a c t i v i t y i n rod outer segment. The cyclic 

nucleotide hypothesis (Hubbell and Bownds, 1979) states that photon 

absorption activates an endogenous enzyme system (Yee and Liebman, 

1978; Liebman and Pugh, 1979), i n which the enzyme would produce the 

transmitter and modify the permeability of the membrane. An increase 

i n c y c l i c GMP by i n j e c t i o n or by using phosphodiesterase i n h i b i t o r 

IBM, resulted i n the depolarization of the c e l l membrane and an 

increase i n the l i g h t dependent permeability (Miller and Nichol, 

1979). Capovilla, Cervetto and Torre (1983) suggested that 

phosphodiesterase a c t i v i t y controls the time course of l i g h t 

response i n vertebrate rods. Changes i n cyclic may change the 

i n t r a c e l l u l a r calcium ion concentration and thus i n d i r e c t l y 

influence the membrane permeability. Since the decrease i n c y c l i c 

OIP i s rapid and occurs over the same range of l i g h t i ntensities as 

the photoreceptor l i g h t responses and the light-dependent increase 

i n calcium e f f l u x from rods (Gold and Korenbrot, 1980), i t i s 

conceivable that the decrease i n cyclic GMP i s responsible for 

t r i g g e r i n g a release of calcium ions during transduction (Woodruff 

and Fain, 1982). 

2.2.2. Photoreceptor responsp prnperties. 

The hyperpolarizing response to illumination i s graded i n 

amplitude and duration as a function of intensity of the stimulus 

(Tomita et a l . , 1967; Tomita, 1970; Burkhardt, 1977). The response 
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(V) versus l i g h t i n t e n s i t y ( I ) relationship follows a template 

function, according t o the p r i n c i p l e of univariance as was proposed 

by Naka and Rushton (1966), T:he isomerization of photopigment i s 

solely a function of the number of quanta absorbed by the pigment 

and i s independent of the wavelength of the incident i l l u m i n a t i o n , 

as i s shown by the fo l l o w i n g equation. 

V I " 

Vmax l " + l o " 

where: \faax = saturation response voltage, l o = value of I f o r 

which V = 1/2 ^toax and n = an exponent usually close to 1.0. 

The duration of :rod and cone responses increases as a function 

of increasing stimulus i n t e n s i t y even after the response has reached 

i t s maximum amplitude (^folax). 

There are basic differences between responses of rods and 

cones. I n general cones respond more rapidly than rods to both 

stimulus onset and cessation of stimulus, whereas rods recover 

slowly from their response to a stimulus irrespective of whether or 

when the stimulus i s terminated. 

Receptive f i e l d organization: The l i g h t response of the verte­

brate photoreceptor .depends not only on the photons e f f e c t i v e l y 

absorbed i n i t s outer.segment, but also on the illumination of the 

adjacent area of the r e t i n a . There are two types of interaction: 

that modify the photoreceptor receptive f i e l d . 

F i r s t , rods i^nd cones do not function independently but are 

coupled through electritsal junctions. The receptor potential shows 

sp a t i a l summation 'to i l l u m i n a t i o n of areas which are much greater 

than t h e i r own cross-sectional area. For example, i n t u r t l e and i n 
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pikeperch cones, Baylor et a l . (1971) and Witkovsky et a l . (1979) 

found s p a t i a l simmation up to a radius of about 40 to 50 jjm. Baylor 

et a l . (1971) demonstrated by passing current through a cone that 

the s p a t i a l summation results from e l e c t r i c a l coupling between 

cones. Gap junctions have been found between contiguous cones 

(Raviola and G i l u l a , 1973; Witkovsky et a l . , 1974; Fain et a l . , 

1976; Witkovsky et a l . , 1979), and e l e c t r i c a l coupling occurs only 

between cones of the same chromatic type ( B ^ l o r et a l . , 1971; 

Baylor and Hodgkin, 1973; Detwiler and Hodgkin, 1979). Spatial 

summation i n rods i s extensive i n t u r t l e and toad retinas and covers 

a much wider area than i n cones (about 200pii) and the e l e c t r i c a l 

coupling i s stronger (Fain, 1975; Fain, Gold and Dowling, 1975; 

Schwartz, 1975; Copenhagen and Owen, 1976). Up t o 80% of the 

response recorded from one rod may be due to ligiht absorption i n 

neighbouring rods. 

Second, i l l u m i n a t i o n of surround areas results i n a de­

polar i z i n g component i n the cone response waveform-during the steady 

phase. Thus the receptive, f i e l d of t u r t l e cones has an antagonistic 

centre-surromd organization (Baylor and Fuortes, .1970; Baylor et 

a l . , 1971). More recently, similar interactions have been found i n 

gecko (Pinto and Pak, 1974a, b) and perch retinas (Burkhardt, 1977), 

so i t seems probable that t h i s receptive f i e l d organization i s 

universal among vertebrates. The c e l l providing the depolarizing 

input had a time course, a wide area of spatial sunmation,and lacked 

prominent centre-surround organization characteristics that i m p l i ­

cated the horizontal c e l l . Direct conformation was provided by 

Baylor e t a l . (1971), by recording simultaneously from a horizontal 
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c e l l and a cone. They found that hyperpolarizing currents injected 

i n t o the horizontal c e l l evoked graded depolarizations i n the cone 

proportional to current strength. Therefore the l a t e r a l effect i s 

thoiaght t o be mediated by horizontal c e l l s through a reciprocal 

synapse (0'Bryan, 1973; Piccolino and Gerschenfeld, 1978, 1980). 

However, no chemical S3mapse of appropriate p o l a r i t y has been 

described so that the morphological s i t e of t h i s synaptic transfer 

i s mcertain. 

The horizontal c e l l feedback has been shown to be colour 

specific (Fuortes, Schwartz and Simon, 1973; Burkhardt, 1977; 

Biarkhardt and Hassin, 1978), For example, both red and green cones 

respond with a simple hyperpolarization to a small red spot of 

l i g h t , but both have a large delayed depolarization to a large red 

stimulus; green stimuli,:, however, produced only hyperpolarization. 

Horizontal c e l l feedback to cones may play an important role i n 

constructing the chromatic response properties of horizontal cells 

as proposed by Fuortes and Simon (1974). I n t u r t l e and i n f i s h , each 

horizontal c e l l receives input fran a corresponding type of cone: 

L-type from red sensitive cones, R/G type from green sensitive cones 

and B/G from blue sensitive cones. (For further description of the 

horizontal c e l l types see section 2.3. on horizontal c e l l s ) . A l l 

cone types contact the L-type horizontal ce l l s and thus the 

depolarizing response i n R/G and B/G type horizontal c e l l s may be 

mediated by feedback from the L-type horizontal c e l l s to corre­

sponding cones ( S t e l l , Lightfoot, Wheeler and Leeper, 1975). 

However, Burkhardt and Hassin (1978) conclude that the colour-

opponent properties of the chromatic horizontal ce l l s originate from 
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antagonistic interactions generated i n the postreceptor networks 

rather than on feedback to cones, since i t does not depend upon spot 

size. I n addition to the contribution of horizontal c e l l s on the 

cone, response properties may be altered via cone to cone contacts 

through the invaginating basal processes (Scholes, 1975; S t e l l and 

Harosi, 1976; Norman et a l . , 1984). 

I n addition to the spatial summation and the centre-surround 

organiztion, a rod to cone interaction may be present ( A t t w e l l , 

Werblin, Wilson and l>?u, 1983). The data from other species suggest 

that such a rod-cone interaction may play a role i n chrctnatic i n f o r ­

mation transfer (Fain, 1976; Nelson et a l . , 1976). Rod-cone system 

interactions have been demonstrated both functionally and anatomic­

a l l y ( S t e l l , 1967; Fisher and Boycott, 1974; Fain, 1975; Scholes, 

1975; Leeper, 1978b; Levine and Shefner, 1981) and may prove to be. a 

basic phenomenon i n a l l species. 

2.2.3. Synaptic mechanisms. 

Dendrites emitted by secondary neurons (bipolar and horizontal 

c e l l s ) come in t o close contact with the photoreceptor ribbon 

synapse, the presumed s i t e of chemical synaptic transfer. I t has 

been concluded from several pieces of evidence that photoreceptors 

release an excitatory (depolarizing) transmitter i n the dark when 

the receptor i s i n a depolarized state (Trifonov, 1968). Trifonov 

(1968) foiand i n the t u r t l e r e t i n a , that an extrinsic t r a n s r e t i n a l 

current from the receptors to the vitreous evoked a depolarization 

of the horizontal c e l l ; and a current i n the opposite d i r e c t i o n , a 

hyperpolarization. Trifonov assumed that the current acted presynap-
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t i c a l l y on photoreceptors; a v i t r e a l l y directed positive current 

would therefore depolarize receptors, whereas current of the oppo­

s i t e d i r e c t i o n hjrperpolarized receptors. Depolarization of the re­

ceptor terminal by transretinal current has been shown to depolarize 

the horizontal c e l l s i n a graded manner (Byzov and Trifonov, 1968; 

Kaneko and Shimazaki, 1976). Trifonov (1968) concluded that, i n the 

dark, the r e l a t i v e l y depolarized receptor released a transmitter 

which, i n turn, depolarized the horizontal c e l l and thus followed 

the general rule that transmitter release i s increased by depolari­

zation as i n synaptic terminals of other neurons (Katz, 1969). Light 

hyperpolarizes the photoreceptor and thus reduces the trans- mitter 

release which causes corresponding changes i n secondary neurons 

dependent on type (for example the L-type horizontal c e l l s 

hyperpolarize (Trifonov, 1968)). The hypothesis that transmitter 

release from photoreceptors occurs i n darkness i s further supported 

by the f i n d i n g that, interruption of the photoreceptor-to-horizontal 

c e l l transmission using either calcium free extracellular medium or 

adding calcium antagonists, results i n hyperpolarization of the 

horizontal c e l l membrane and suppression of. the light-evoked 

response (Dowling and Ripps, 1973; Cervetto and Piccolino, 1974; 

Kaneko and Shimazaki, 1975, 1976). 

The photoreceptor transmitter i s probably an acidic amino acid, 

ei t h e r L-glutamate or L-aspartate (Murakanu., Ohtsu and Ohtsuka, 

1972; Dowling and Ripps, 1973; Kaneko and Shimazaki, 1976; Hedden 

and Dowling, 1978; Wu and Dowling, 1980; Ishida and Fain, 1981; 
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M i l l e r , Slaughter and Dick, 1982). However, the neurotransmitter 

released by photoreceptors has yet to be unequivocally i d e n t i f i e d . 

2.2.4. Ionic properties. 

Photoreceptors contain voltage - dependent calcium channels 

(Fain, Ishida and Gallery, 1983), which seem to behave l i k e calcium 

channels i n other systems. They do probably dir e c t the release of 

the synaptic transmitter. A voltage change of the photoreceptor 

produces a change i n the amplitude of the calcium current which i s 

tonic or maintained, but i t does not decline (inactivate) with time 

(Bader et a l . , 1982; Corey, Dubinsky and Schwartz, 1982) l i k e the 

sodium current of the nerve (Hodgkin and Huxley, 1952). Photorecep­

tors have a large sodium permeability i n darkness which contributes 

to t h e i r dark resting p o t e n t i a l . The consequence of t h i s 

depolarization i s an increase i n calcium entry and thus the release 

of a synaptic transmitter. Light decreases sodium permeability of 

the photoreceptor, and the membrane hyperpolarizes, reducing entry 

of calcium and thus the transmitter release (Fain, Ishida and 

Gallery, 1983). 

The conductance change produced i n the cone membrane during 

feedback response e l i c i t e d by the horizontal c e l l s , appears to 

consist of two components, i ) a transient spikelike response f o l ­

lowed by, i i ) a slower sustained ccraponent (O'Bryan, 1973). 

The transient response i s thought to be due to an increase i n 

permeability of'calcium (Piccolino and (ferschenfeld, 1978, 1980; 



46 

Gerschenfeld and Piccolino, 1980). Since l i g h t responses of h o r i ­

zontal c e l l s are hyperpolarizing and associated with a decrease i n 

conductance, i t i s l i k e l y that the release of transmitter from t h e i r 

processes might be similar to that observed i n photoreceptors, i.e. 

a continuous release of transmitter i n darkness which becomes 

reduced or suppressed by l i g h t (Trifanov, 1968; Dowling and Ripps, 

1973; Cervetto and Piccolino, 1974; Kaneko and Shimazaki, 1975; 

Dacheux and M i l l e r , 1976). Therefore, the L-type horizontal c e l l 

transmitter released i n darkness would close calcium channels i n the 

cone membrane. 

Lasansky (1981) showed that siistained feedback response i n 

cones of the t i g e r salamander i s accompanied by an' increase i n 

chloride conductance. He proposed that the synaptic transmitter of 

horizontal c e l l s produced a decrease i n cone permeability for 

chloride, thus, l i g h t would reduce the flow of transmitter and allow 

chloride channels to reopen. However, Piccolino and (^erschenfeld 

(1980) have observed that the sustained component of feedback can be 

blocked by passing a hyperpolarizing current into cones, but 

hyperpolarization should enhance the change i n membrane potential 

produced by an increase i n chloride conductance. In an alternative 

hypothesis i t has been suggested (CJerschenfeld and Piccolino, 1980; 

(Perschenfeld et a l , , 1980) that L-type horizontal c e l l transmitter 

released i n darkness may increase the potassium or chloride conduc­

tance of the cone synaptic membrane, and thus t o n i c a l l y decrease the 

voltage dependent calcium conductance. The decrease of transmitter 

release during the L-type horizontal c e l l hyperpolarization by l i g h t 

would therefore decrease such cone potassium or chloride conductance 
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and consequently the calcium conductance would increase. This would 

explain both the prodiiction of the calcium spikes and the i n h i b i t i o n 

by hyperpolarization. 

The l i m i t e d available data obtained, bearing d i r e c t l y on the 

photoreceptor synapse i n terms of the r e l a t i o n of l i g h t absorption 

to transmitter release, suggest that the photoreceptor sjniapse i s 

exquisitely sensitive to small fluctviation i n transmembrane voltage. 

I t i s probable that near the dark voltage of the c e l l , a small f l u c -

tioation i n polarization level results i n a large change of calcium 

entry and hence i n transmitter release (Fain, 1977; Fain et a l . , 

1977). 

2.3. Horizontal c e l l s . 

2.3.1. General. 

Horizontal c e l l s respond to illumination with graded sustained 

responses that have a high degree of spatial summation. The h o r i ­

zontal c e l l response i s of a large amplitude (10 to 50 mV), losually 

negative, superimposed on a negative resting potential (-10 to -50 

mV), graded w i t h l i g h t i n t e n s i t y and maintained f o r the duration of 

the l i g h t stimulus. 

Horizontal c e l l s respond with hyperpolarization to white l i g h t , 

but t h e i r response p o l a r i t y to chromatic illumination depends on the 

wavelength of the incident l i g h t . According to th e i r spectral re­

sponse properties, horizontal c e l l s are c l a s s i f i e d into two groups: 

f i r s t , the L-type horizontal cells which show hyperpolarizing 

responses to l i g h t s t i m u l i of a l l wavelengths and second, the C-type 

horizontal c e l l s . The C-type c e l l s are further c l a s s i f i e d i n t o the 
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biphasic C-type, that are hyperpolarized by short (blue-green) 

wavelengths and depolarized by long (red) wavelengths, and the 

triphasic C-type, that are hyperpolarized by monochromatic short 

(bl;ie) and long (red) wavelengths and depolarized by intermediate 

(green) spectral s t i m u l i . L-potentials are reported i n a l l species, 

but C-potentials have only been observed i n lower vertebrates. 

Before t h e i r o r i g i n had been determined, these responses were named 

'S-potentials' as a t r i b u t e to Svaetichin (1953), vho f i r s t 

described them i n the f i s h retina. However, i t was only after years 

of e f f o r t by a large number of researchers using i n t r a c e l l u l a r 

staining techniques (Motokova, Oikawa and Tasaki, 1957; MacNichol 

and Svaetichin, 1958; Mi t a r a i , 1958; Tomita, Murakami, Sato and 

Hashimoto, 1959; Oikawa, Ogawa and Motokova, 1959; Gouras, 1960; 

Mi t a r a i , 1960; Svaetichin, Laufer, Mitarai et a l . , 1961) that i t was 

conclusively demonstrated that these responses originated from 

horizontal ce l l s (Werblin and Dowling, 1969; Kaneko, 1970, 1971b; 

Steinberg and Schmidt, 1970; Kaneko and Yamada, 1972; Matsumoto and 

Naka, 1972; M i l l e r , Hashimoto, Saito and Tomita, 1973; Simon, 1973; 

Mi t a r a i , Asano and Miyake, 1974; Hashimoto, Kato, Inokuchi, 

and Watanabe, 1976). 

MaeNichol and Svaetichin (1958) proposed that the function of 

L-potentials was to carry luminosity (brightness) information, 

therefore called L-unit, whereas the function of C-potential was to 

code colour and therefore termed chromaticity or C-unit (Svaetichin, 

1956; MacNichol, MacPherson and Svaetichin, 1957; Svaetichin and 

MacNichol, 1958; MacNichol and Svaetichin, 1958). However, the terms 

'Imino s i t y ' and 'colour' are generally not used since they are 
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considered p r e j u d i c i a l . 

I n teleosts four general horizontal c e l l types have been 

i d e n t i f i e d . There are three horizontal c e l l types which only receive 

input from cones: 1) the monophasic L-type, 2) biphasic C-type and 

3) trip h a s i c C-type c e l l s . The fourth type of horizontal c e l l s , 

receive input only from rods, and are termed 'rod' horizontal c e l l s , 

but they are also monophasic L-type c e l l s that hyperpolarize to 

l i g h t s t i m u l i of a l l wavelengths (Laufer and Millan, 1970; Kaneko 

and Yamada, 1972; Mitarai et a l . , 1974; Weiler and Z e t t l e r , 1976). 

2.3.2. L-type horizontal c e l l s . 

Tne L-type horizontal c e l l s can be subdivided into a variety of 

subtypes based on t h e i r responses to monochromatic l i g h t s . Some re­

sults indicate that a l l L-units i n a particular species of f i s h have 

approximately the same spectral response (MacNichol and Svaetichin, 

1958), but others show that L-units i n the same retina may have d i f ­

ferent spectral responses (Svaetichin, 1953, 1961; Motokova et a l . , 

1957; Tamura and Niwa, 1967). 

Under photopic conditions, the most commonly described L-units 

i n C3rprinids (goldfish and carp) have maximum spectral s e n s i t i v i t y 

about 620 nm or red sensitive L-cells (Tomita, 1965; Witkovsky, 

1967; Kaneko, 1971b; Mitarai et a l . , 1974; Hashimoto et a l . , 1976; 

Yang, Tauchi and Kaneko, 1982, 1983). In addition to the red sensi­

t i v e L-unit, Tamura and Niwa (1967) found, under photopic condi­

t i o n s , green- and blue sensitive L-cells. Laufer and Millan (1970) 

found under photopi.c conditions three L-units, a red-, green- and 

blue sensitive c e l l s i n the teleost Eugerres'plumeri. Hashimoto and 
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Inokuchi (1981) found two separate L-units, LI and L2, i n the dace 

r e t i n a which peaked at 590 and 630 nm respectively. In the 

dichromatic pikeperch r e t i n a , Burkhardt and Hassin (1978) found two 

separate L-units that receive predominant input from orange cones 

(605 nm). The spectral s e n s i t i v i t y curves of these L-units were 

found to match the corresponding cone pigment's absorption spectra. 

The spectral responses of L-units may have several submaxima i n 

t h e i r action spectra (Svaetichin, 1956; Svaetichin and MacNichol, 

1958; Tomita, Tosaka, Watanabe and Sato, 1958; Witkovsky, 1967). 

This indicates that at least two or more photoreceptor systems must 

contribute to t h e i r response (Orlov and Maksimova, 1965; Maksimova, 

Maksimov and Orlov, 1966; Naka and Rushton, 1966c; Witkovsky, 1967; 

Gouras, 1972; Yazulla, 1976; Yang et a l . , 1983). Witkovsky (1967) 

fomd, fo r example i n carp, two peaks i n L-units, a primary peak at 

620 nm and a secondary peak at 665 nm, the l a t t e r more prominent at 

lower c r i t e r i o n response amplitudes. In L-units i n the tench retina 

Naka and Rushton (1966c) also found two peaks, at 620 nm and at 680 

nm, but when the action spectra of these units were determined i n 

the presence of chromatic background an additional peak at 540 nm 

and possibly another i n the blue region of the spectrum were 

uncovered. They concluded that L-units receive signals from four 

d i f f e r e n t cone mechanisms w i t h peak s e n s i t i v i t i e s i n the far red 

(680 nm), i n red (620 nm), i n green (540 nm) and i n the blue (450 

nm) part of the spectrum. The l a t t e r three mechanisms are probably 

related to photopigments i d e n t i f i e d i n single cones of Cyprinidae 

fishes by microspectrophotometry (Liebman and Entine, 1964; Marks, 

1965). However, no 680 nm cone pigment has been fomd microspectro-
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photometrically. A steady red background not only decreases the 

cell's s e n s i t i v i t y to red l i g h t , but also considerably increases the 

cell's" s e n s i t i v i t y to green l i g h t (Maksimova et a l . , 1966; Naka and 

Rtishton, 1966c; Laufer and Negishi, 1978; Yang, et a l . , 1982, 1983). 

This indicates that the L-mits receive inputs from both red- and 

green-sensitive cones. However, i n contrast to these results, no 

change i n the peak spectral s e n s i t i v i t y of the L-cells was observed 

under selective chromatic background adaptation i n carp (Witkovsky, 

1967), i n pikeperch (Biarkhardt and Hassin, 1978), and i n dace retina 

(Hashimoto and Inokuchi, 1981). 

The long wavelength s h i f t of the red cone mechanism to 650-680 

ran i s now acknowledged to be ' pseudopigments', which are thought to 

be generated by interaction between signals derived from photorecep­

tors w i t h d i f f e r e n t photopigments (Abramov, 1972; Sirovich and 

Abramov, 1977). Pseudopigments are characterized by having much 

narrower spectral s e n s i t i v i t y curves than the absorption curves of 

the corresponding hypothetical visual pigments. Pseudopignfints have 

occasionally been observed i n monophasic and regularly i n biphasic 

and triph a s i c horizontal c e l l s , and also i n ganglion c e l l s (Witkov­

sky, 1967; Spekreijse, Wagner, and Wolbarsht, 1972), and behaviour-

a l l y , i n perch (Cameron, 1982) and i n rhesus monkey (Hartwerth and 

Sperling, 1971). 

I n t u r t l e s , the L-tjrpe horizontal c e l l s have been shown to 

receive t h e i r major input from the red cones (Simon, 1973; Fuortes 

and Simon, 1974; YazuUa, 1976). However, as i n teleosts^a green 

cone input to the L-units has been demonstrated (Fuortes, Schwartz 

and Simon, 1973). Using chromatic adaptation Yazulla (1976) found 
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that the red cone dominated L-units could be subdivided on the basis 

of receptor input, seme receiving input only from red cones, others 

from red and green cones, or from a l l cones, red, green, and blue. 

Under scotopic conditions rod driven L-type horizontal c e l l s 

have been observed i n various teleosts. The rod driven L-potentials 

are characterized by much slower r i s e and decay i n timecourse, and 

by lower threshold s e n s i t i v i t y (by 2 to 4 log units) than t h e i r 

photopic counterparts (Witkovsky, 1967; Laufer and Millan, 1970; 

Kaneko and Yamada, 1972; Mitarai et a l . , 1974; Hashimoto et a l . , 

1976). Most physiological observations i n teleosts show that no 

Purkinje s h i f t frcm a rod to cone pigment maximum occurs (Watanabe 

and Hashimoto, 1965; Witkovsky, 1967; Laufer and Millan, 1970; 

Hashimoto et a l . , 1976), which i s i n agreement with the anatomical 

observations that the teleostean horizontal cells are connected 

exclusively to either rods or cones (Cajal, 1892; S t e l l , 1967; 

Parthe, 1972; Haesendonck and Missotten, 1979). 

I n elasmobranchs and i n the mammalian horizontal c e l l s , a mixed 

rod and cone input (Purkinje s h i f t ) has been observed (Nelson et 

a l . , 1976; Toyoda et a l . , 1978; Bloomfield and M i l l e r , 1982). This 

indicates that these horizontal ce l l s are not physiologically 

devoted to either rods or cones exclusively, as implicated by t h e i r 

anatomical connections w i t h photoreceptors ( S t e l l and Witkovsky, 

1973b; Kolb, 1974; Wassle et a l . , 1978; Dacheux and Raviola, 1981). 

2.3.3. C-type horizontal c e l l s . 

The C-type horizontal c e l l s are subdivided, on the basis of 

t h e i r response properties to monochromatic l i g h t s , into biphasic and 
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triphasic C-type horizontal c e l l s . C-type horizontal c e l l s have only 

been found i n teleosts, elasmobranchs and t u r t l e s , but not i n other 

vertebrate classes (Tonita, 1965; M i l l e r et a l . , 1973; Toyoda et 

a l . , 1978). 

Several varieties of the biphasic horizontal c e l l s have been 

distinguished i n terms of t h e i r spectral responses. I n teleosts the 

most commonly described C-type horizontal c e l l i s the dichromatic 

R/G-cell. I t i s depolarized by f a r red (650-680 nm) l i g h t and 

hyperpolarized by green (520-540 nm) l i g h t (Tomita, 1965; Naka and 

Rushton, 1966a; Witkovsky, 1967; M i t a r a i , et a l . , 1974; Kaneko, 

1970, 1971b; Burkhardt .and Hassin, 1978; Hashimoto and Inokuchi, 

1981). Other varieties include c e l l s that show a maximum 

depolarization i n the green region of the spectrum and a maximum 

hyperpolarization i n the blue region of the spectrum or a G/B type, 

and a depolarizing yellow and hyperpolarizing blue or a Y/B type 

(Motokova et a l . , 1957; MacNichol and Svaetichin, 1958; Naka and 

Riashton, 1966a, b; Mi t a r a i et a l . , 1974). The triphasic C-type 

horizontal c e l l s are hyperpolarized by red and blue l i g h t and 

depolarized by green l i g h t (Motokova et a l . , 1957; Naka and Rushton, 

1966a, b; Tamura and Niwa, 1967; Mitarai et a l . , 1974). 

I f photoreceptors display univariance (Naka and Rushton, 1966a, 

b, c ) , the C-t3^.horizontal c e l l s must receive signals from more 

than one receptor type. The cone mechanism underlying the opposite 

p o l a r i t y response i n C-units has been isolated by selective 

chromatic adaptation (Naka and Rushton, 1966a, b; Witkovsky, 1967). 

They have shown that: 1) biphasic R/G c e l l s receive inputs from the 

green and red cones although the far red mechanism might be 
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involved (for further information see section 2.3.4.), 2) the G/B 

c e l l s receive inputs from the green and blue cones and 3) triphasic 

c e l l s receive input from the red, green, and blue cones. I'Jhen the 

contributions of each cone type were separated and measured, Naka 

and Rushton (1966a) found that the amplitude of the C-potential was 

equal to the sum of the opposing contribution of the cone types. 

Naka and Rushton (1966c) demonstrated that the biphasic cell' s 

response to a red stimulus saturates independently of the intensity 

of a green stimulus applied simultaneously. The response of red 

cones or synaptic contacts between the red cones and horizontal 

c e l l s must therefore reach saturation levels before t h e i r response 

conbines with the response from- the green cones at the horizontal 

c e l l s . The pre-horizontal c e l l saturation of the red system may also 

contribute to the green enhancement i n L-units under red background 

i l l u m i n a t i o n (Witkovsky, 1967). 

An important difference has been observed between depolarizing 

and hyperpolarizing S-potentials. Depolarizing potentials have a 

longer latency and a slower time course than h j ^ r p o l a r i z i n g ones 

(MacNichol and Svaetichin, 1958; Gouras, 1960; Spekreijse and 

Norton, 1970). When these two opposing potentials are approximately 

balanced, transient hyperpolarizing on-responses and depolarizing 

off-responses occur, suggesting that the depolarizing response may 

be mediated by one or more additional synapses (Gouras, 1972). 

A number of investigators using i n t r a c e l l u l a r dye i n j e c t i o n 

have attempted to locate the characteristic S-potentials w i t h i n 

horizontal c e l l layers i n the r e t i n a . Kaneko (1970, 1971b) found i n 

carp and goldfish that both L- and C-type cell s originated i n the 
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external and internal horizontal c e l l layers. Similarly, Mitarai et 

a l . (1974) found L- and C-types c e l l s to originate i n either 

external or internal horizontal c e l l layers, although within the 

external layer C-units seemed to be below (vitread) the L-units. 

Hassin (1979) found i n the pikeperch r e t i n a two types of L-units i n 

HI (external) and H2 (medial) proximal (vitread) to HI and a C-type 

(H3) i n yet more proximal position. Hashimoto et a l . (1976) using 

procion yellow i n carp retina found four layers, with L-type 

response i n the external layer (layer I ) , the C-type i n medial 

(layer I I ) , both L- and C-ty^ responses were found i n the innermost 

layer (layer I I I ) , and the horizontal c e l l s which were attributed to 

rod function formed another layer between layers I I and I I I . Several 

authors (Kaneko and Yaraada, 1972; Mitarai et a l . , 1974; Hashimoto et 

a l . , 1976) have located the o r i g i n of the scotopic L-potential i n 

the carp r e t i n a to correspond to the intermediate horizontal, c e l l s 

of Cajal (1894, 1933). 

In teleosts, unlike r e p t i l e s , birds and mammals, the horizontal 

c e l l axon terminals end deep i n the inner nuclear layer and do not 

make contact with photoreceptors (see section 1.4). However, 

c j ^ r i n i d axon terminals have the same general response properties as 

t h e i r corresponding c e l l body (Kaneko, 1970; Mitarai et a l . , 1974; 

Hashimoto et a l . , 1976). The teleostean cone horizontal c e l l 

responses are conducted non-decrementally and without spikes frcan 

c e l l body to axon ( S t e l l , 1975; Weiler and Zettler, 1976, 1979). The 

only differences i n the response properties of the axon compared to 

those of the c e l l body are that the amplitude i s smaller, and that 

axons show larger spatial summation (Kaneko, 1970). The axon 
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terminals of t u r t l e and mammalian horizontal c e l l s have been shown 

to contact photoreceptors and respond independently of t h e i r 

corresponding c e l l body (Boycott and Dowling, 1969; Fisher and 

Boycott, 1974; Leeper, 1978). The functional role of the teleostean 

horizontal c e l l axon terminals i s s t i l l unknown. 

2.3.4. Generation of horizontal c e l l responses. 

On the basis of cone and horizontal c e l l electrophysiology, the 

connections of various receptor and horizontal c e l l types were pre­

dicted, i n f i s h by Gouras (1972), and i n t u r t l e by Fuortes and Simon 

(1974). They concluded that the responses of L-type as well as 

C-type horizontal c e l l s could be explained by assuming that each 

horizontal c e l l tjrpe receives dir e c t hj^jerpolarizing input primarily 

from only one chromatic cone type for which the latency i s shortest, 

and makes indirect contacts v i a intemeurons with the other cone 

types, with sign inversion (depolarization) and added delay at each 

stage. These cascading models emphasize the cones as interneurons 

and incorporate the horizontal c e l l feedback onto cones, as shown by 

Baylor et a l . (1971). Thus the C-type horizontal cells receive 

hyperpolarizing input d i r e c t l y from only one cone mechanism and are 

depolarized when other cone mechanisms are stimulated. The 

depolarizing signal goes through additional synapses and i s 

consequently more delayed than the hjrperpolarizing signal (MacNichol 

and Svaetichin, 1958; Gouras, 1960; Spekreijse and Norton, 1970). I t 

i s d i f f i c u l t , however, to predict unequivocally the morphological 

interconnections which exist between horizontal and photoreceptor 

c e l l s on the basis of spectral s e n s i t i v i t y data alone. For example. 
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S t e l l and Lightfoot (1975) have shown that goldfish horizontal c e l l 

responses, dependent on given cone system, may not be generated by 

immediate contact with those cones. In t h e i r correlation between the 

f u n c t i o n a l l y i d e n t i f i e d versus the h i s t o l o g i c a l l y i d e n t i f i e d cone 

horizontal c e l l types, the following relations were proposed. The 

h i s t o l o g i c a l l y i d e n t i f i e d HI c e l l s were found to be the monophasic 

L-t37pe c e l l s receiving functional input mainly frcm red sensitive 

cones, but making contact with red, green and blue'sensitive cones. 

The H2 c e l l s , contacting the green and blue sensitive cones were 

found to be the biphasic R/G c e l l s , and the H3 c e l l s were found to 

be the triphasic G/RB c e l l s , that receive functional input from a l l 

three chromatic classes of cones, but contact only the blue 

sensitive cones. These functional/histological correlations are also 

supported by data obtained from cel l s stained i n t r a c e l l u l a r l y after 

functional i d e n t i f i c a t i o n (Mitarai et a l . , 1974; Hashimoto et a l . , 

1976). 

S t e l l , Lightfoot, Wheeler and Leeper (1975) have proposed a 

functional model to account for the spectral properties of the three 

horizontal c e l l types. I n t h e i r model each horizontal c e l l acts 

through feedback synapses upon the next cone type i n sequence. 

The horizontal c e l l s receive t h e i r input from cones through a h o r i ­

zontal c e l l synaptic process which occupies a central position i n 

the synaptic ribbon complex of the cone photoreceptors, whereas 

the horizontal c e l l synaptic processes vMch terminate as l a t e r a l 

elements i n the synaptic ribbon complex mediate the sign inverting 

feedback from horizontal c e l l s to cones. I n the proposed scheme, Hi 

c e l l s receive d i r e c t input from the red sensitive cones and feedback 
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onto the H2 c e l l s via the green cones. Subsequently, H2 ce l l s re­

ceive d i r e c t input from the green sensitive cones and feedback onto 

the H3 c e l l s v i a the blue cones. The proposed scheme i s consistent 

w i t h the difference i n latencies of the horizontal c e l l response 

ccmponents reported by Spekreijse and Norton (1970). I n general, the 

horizontal c e l l to cone feedback model accounts for a large propor­

t i o n o f both the hi s t o l o g i c a l and functional properties of cone 

horizontal c e l l s , and pathways similar to these have also been 

proposed f o r the horizontal c e l l s of t u r t l e (Leeper, 1978b). Since 

these models emphasize the photoreceptors as interneurons i n gener­

ating the colour opponency of the C-type horizontal c e l l s , and 

account.±or the feedback from horizontal c e l l s to receptors, the 

C-type "horizontal c e l l s should r e f l e c t the spatial and spectral 

properties of the feedback system. 

Tne p a r t i c i p a t i o n of the horizontal c e l l to cone synapses i n the 

generation of the horizontal c e l l chromatic response patterns i s 

s t i l l controversial. I n i t s favor are: i ) the observed functional 

horizontal c e l l to cone synapses i n f i s h (Burkhardt and Hassin, 1978; 

Hedden and Dowling, 1978), i i ) the blockage of synaptic trans­

mission '.from monophasic horizontal c e l l s , which are probably 

GABA-.ergic (Marc, S t e l l , Bok and Lam, 1978; Lam, Su, Swain and Marc, 

1979; 'Murakami, Shimoda, Nakatani et a l . , 1982a, b; Yazulla and 

Kleinschmidt, 1982), by GABA antagonist (Lam, Lasater and Naka, 1978) 

•or GABA . i t s e l f i n excess (Murakami, Shiraoda and Nakatani, 1978) and, 

i i i ) t he absence of u l t r a s t r u e t u r a l features characteristic of 

d i r e c t chanical transmission from HI to H2 or H2 to H3 c e l l s 

(Stell., 1976). I n contradiction, the depolarising feedback component 
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i n cones i s not always observed, . The spectral properties of 

the C-type c e l l s are not dependent upon the spatial extent of the 

stimulus as i n the feedback system since,using small spots which 

produce no detectable feedback from horizontal c e l l s i n cones, 

normal chromatic responses are recorded i n horizontal c e l l s 

(Burkhardt, 1977; Burkhardt and HassLn, 1978). 

2.3.5. Synaptic mechanisms. 

Horizontal c e l l s have a resting potential of about the same 

magnitude as photoreceptors i n darkness (Saito, Kondo and Toyoda, 

1979; Ashmore and Falk, 1980; Ishida and Fain, 1981). The level of 

the horizontal c e l l membrane potential i s produced primarily by the 

continuous release of the photoreceptor transmitter, and perhaps 

from i n t e r p i exiform c e l l transmitters as well (Dowling and Ripps, 

1973; Cervetto and Piccolino, 1974; Dacheux and M i l l e r , 1976; Kaneko 

and Shimazaki, 1976; Dowling and Ehinger, 1978). The effect of the 

photoreceptor transmitter i s to depolarize the horizontal c e l l 

membrane i n darkness (see section 2.2.3). Bright l i g h t , which stops 

synaptic transmission from photoreceptors, or interupting synaptic 

transmission by t r e a t i n g the retina with cobalt, hyperpolarizes 

horizontal c e l l s and brings the membrane potential near to the 

potassium equilibrium potential (Kaneko and Shimazaki, 1975; Byzov 

and Trifonov, 1981). The membrane potential of hyperpolarized 

horizontal c e l l s has been shown to follow closely the transmembrane 

potassium equilibrium potential (Byzov and Trifonov, 1981; 

Tachibana, 1981). Recent electrophysiological studies on isolated 

horizontal c e l l s from goldfish retina have shown that they have a 



60 

prominent voltage dependent c a l c i m conductance (Byzov and Trifonov, 

1981; Johnston and Lam 1981; Tachibana, 1981). Voltage dependent 

sodium channels, tetrodotoxin (TTX) sensitive, have not been 

observed i n goldfish horizontal c e l l s (Byzov and Trifonov, 1981; 

Tachibana, 1981; Djamgoz and S t e l l , 1984). However, Shingai and 

CHnristiansen (1983a, b) found voltage dependent sodium channels 

(TTX-sensitive) i n the c a t f i s h horizontal c e l l s . These studies on 

the isolated teleostean horizontal c e l l s have shown that the h o r i ­

zontal c e l l membranes are capable of generating 'slow' action poten­

t i a l s through voltage dependent calcium and/or sodium channels 

(Johnston and Lam, 1981; Shingai and Christensen, 1983 a, b ) . Other 

studies on isolated horizontal c e l l s have shown that t h e i r action 

potentials are calcium dependent, but sodium independent (Johnston 

and Lam, 1981; Tachibana, 1981, 1983). 

Glutamate, the presumptive photoreceptor transmitter, induces a 

long las t i n g depolarization i n horizontal cells at low (pM) 

concentrations (Ishida and Fain, 1981; Dowling Lasater, Buskirk and 

Watling, 1983). Depolarization appears to be the result of an 

i n i t i a l decrease i n potassium conductance (Byzov and Trifonov, 

1981), followed by an increase i n calcium conductance (Dowling et 

a l . , 1983). However, Ishida et a l . (1983, 1984) reported that the 

e f f e c t of L-glutamate on isolated horizontal cells is accompanied by 

a cond;actance increase ^ i c h i s sodium dependent, and Tachibana 

(1981) concluded that both sodim and calcium cond-'jctances contribu­

ted t o horizontal c e l l membrane poten t i a l . 

A number of studies have pointed t o Gamma-aminobutyric acid 

(GABA) as the ne\irotransmitter of Hl-type horizontal c e l l s i n 
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cyprinid and c a t f i s h retinas (Lam and Steinman, 1971; Lam, 1975; 

Marc et a l . , 1978; Niurakami et a l . , 1978; Lam et a l . , 1978, 1979; Wu 

and Dowling, 1980). Horizontal c e l l s have been shown to release GABA 

by means of a voltage-dependent but calcium independent transport 

system (Schwartz, 1982; Lam and Ayoub, 1983). I t has also been 

demonstrated that GABA can be released from Hl-type horizontal c e l l s 

by L-glutamate and L-aspartate (Yazulla and Kleinschmidt, 1982). 

They suggest that the release of GABA occurs \aa sodium dependent, 

but calcium independent transport system. 

Dopamine, at least i n f i s h , i s the presimiptive neurotrans­

m i t t e r of the interplexiform c e l l s wtdch make synaptic contact with 

Hl-type horizontal c e l l s (Ehinger, Falck and Laties, 1969; Dowling 

• and .Ehinger, 1978). Dopamine has been reported to produce a decrease 

i n the size of the receptive f i e l d of Hl-D/pe horizontal c e l l s 

(Negishi and Drujan, 1978; Ne^/ton, Piccolino and Gerschenfeld, 1982; 

(^rschenfeld, Neyton, Piccolino and Witkovsky, 1983) and thus reduce 

the l a t e r a l influence exerted by Hl-type horizontal c e l l s on red 

cones and bipolar c e l l s (Negishi and Drojan, 1978; Hedden and 

Dowling, 1978). The eff e c t of dopamine seems to 'be prodxiced by a 

decrease i n conductance of the gap junction "between .the horizontal 

c e l l s (Piccolino, Neyton, Witkovsky and (^rschenfeld, 1982), which 

may arise from dopamine act i v a t i o n of adenylate .cyclase (Vhi and 

Dowling, 1980; Dowling and Watling, 1981; Watling^and Dowling, 1981; 

Neyton et a l . , 1982; Teranishi, Kato and Nagishi, .1982). Dopamine, 

i n v i r t u a l l y a l l parts of the brain, activates the enzyme adenylate 

cyclase causing substantial increase i n i n t r a c e l l i i l a r cyclic AMP 

concentration (Iversen, 1975; Daly, 1977). The effect of dopamine i s 
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mimicked by C-AMP, indicating that dopamine causes an increase i n 

i n t r a c e l l u l a r level of cyclic AMP i n Hl-type horizontal cells 

(Yazulla and Kleinschmidt, 1982), as demonstrated by Dowling et a l . 

(1983). 

The horizontal cel l s show a non-linear current/voltage r e l a ­

tionship (Trifonov, Chailachian and Byzov, 1971, 1974; Byzov and 

Trifonov, 1973). The results of voltage clamp studies suggest that 

the horizontal c e l l l i g h t response i s e l i c i t e d by a resistance 

increase at the synaptic membrane that i s obscured by a potential 

and time-dependent resistance decrease at the non-synaptic part of 

the c e l l membrane (Werblin, 1975b). Byzov and Trifonov (1981) 

propose that there are several ionic mechanisms underlying the 

nonlinearity of the. horizontal c e l l membrane, depending mainly on 

potassium conductance changes and on voltage dependent calcium 

conductance. Tachibana (1983) concluded that the combination of one 

calcium current and three voltage dependent potassium currents con­

t r i b u t e d to the non-linear current voltage relationship of isolated 

horizontal c e l l s . 

2.3.6. Receptive f i e l d properties. 

Receptive f i e l d of a r e t i n a l c e l l i s defined as the r e t i n a l 

area over which l i g h t stimulation i s able to e l i c i t a response i n a 

c e l l . 

Horizontal ce l l s have a large receptive f i e l d , p a r t i c u l a r l y i n 

the retinas of lower vertebrates, where the receptive f i e l d i s much 

larger i n area than the dendritic spread of a single horizontal c e l l 

(Naka and Rushton, 1967; Norton, Spekreijse, Wolbarsht and Wagner, 
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1968; Kaneko, 1971a). The large receptive f i e l d of the S-potential 

was noted by several authors (Tomita et a l . , 1958; Oikawa et a l . , 

1959; Watanabe and Tosaka, 1959; Gouras, 1960; Naka and Riashton 

1967; Norton et a l . , 1968). Naka and Rushton (1967), showed that i t 

was ciorrent but not scattered l i g h t that generated the large recep­

t i v e f i e l d of horizontal c e l l s . 

E l e c t r i c a l coupling between horizontal c e l l s has been proposed 

to explain the long spread of potentials along the horizontal c e l l 

layer of the f i s h r etina (Tomita, 1957; Naka and Rushton, 1967). The 

e l e c t r i c a l coupling between horizontal c e l l s has been confirmed by 

the morphological findings of e l e c t r i c a l or low resistance 'gap' 

junctions between processes of adjacent horizontal c e l l s , i n f i s h 

(Yamada and Ishikawa, 1965; Kaneko, 1971a; Pinto and Pak, 1974a, b; 

Witkovsky et a l . , 1979), and i n t u r t l e (Borovyagin, 1966; Raviola, 

1976). Kaneko (1971a) showed by current and procion yellow i n j e c t i o n 

that the external horizontal cel l s of the dogfish are e l e c t r i c a l l y 

coupled. The e l e c t r i c a l responses and morphological properties of 

each horizontal c e l l type strongly suggest that only cells of same 

type are e l e c t r i c a l l y coupled; i.e. monophasic cells are only 

coupled to other monophasic c e l l s , biphasic to other biphasic c e l l s , 

and triphasic to other triphasic c e l l s , with no evidence of direct 

cross coupling between d i f f e r e n t c e l l t3^es (Yamada and Ishikawa, 

1965; Kanekd, 1971a; Lasansky, 1973;. Simon, 1973; Byzov, 1975; 

Witkovsky et a l . , 1979). 

Potential changes arising w i t h i n the horizontal c e l l layer 

(S-space) propagate passively with an exponential d i s t r i b u t i o n , 

according to a given space constant. I n the cable theory the one 
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dimensional space constant i s the distance at which the p o t e n t i a l , 

spreading passively i s decreased to l/e(Vo), where Vo = voltage at 

o r i g i n . The decrease i n the amplitude of the response with i n ­

creasing distance has the form of exponential decay; for example i n 

tench, carp and i n mudpuppy, the space constant was found to be 

about 0.25 mm, (Naka and Rushton, 1967; Werblin, 1970). 

The spatial summation of the teleostian horizontal cells has 

been fomd to vary from 0.5 to several millimeters i n extent (Naka 

and Rushton, 1967; Norton et a l . , 1968; Hassin, 1979). Furthermore 

the receptive f i e l d s of C-potentials appear to be about twice the 

size of those f o r L-potentials, i n f i s h (Negishi and Sutija, 1969; 

Kaneko, 1970). However, i n t u r t l e the LI-type c e l l s have receptive 

f i e l d diameters twice that of C- and Lll-type c e l l s (Simon, 1973; 

Saito, M i l l e r and Tomita, 1974). 
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2.4. Other neurons. 

2.4.1. Bipolar c e l l s . 

Bipolar c e l l s respond to illumination by a slow potential 

(S-potential) as photoreceptors and horizontal c e l l s , and their 

responses are c h a r a c t e r i s t i c a l l y graded with l i g h t intensity and 

maintained for the duration of the stimulus. Bipolar cel l s are 

characterized by having receptive f i e l d s consisting of antagonistic 

centre and surround organization (Werblin and Dowling, 1969; Kaneko, 

1970). Stimulation of the surround produces a response which has a 

opposite p o l a r i t y to that of a central stimulus (Werblin and 

Dowling, 1969; Kaneko, 1970; Toyoda, 1973; Schwartz, 1974; Richter 

and Simon, 1975). Functionally, bipolar c e l l s are c l a s s i f i e d i n on-

and off-centre c e l l s . On-centre cell s are depolarized by a l i g h t 

spot presented to t h e i r receptive f i e l d centres, but respond with 

hyperpolarization to surround s t i m u l i . On the other hand off-centre 

c e l l s are hyperpolarized by a central stimulus, and depolarized by a 

surround s t i m u l i (Werblin and Dowling, 1969; Kaneko, 1970). 

A number of investigators have succeeded i n recording i n t r a -

c e l l u l a r l y from f i s h bipolar c e l l s (Kaneko and Hashimoto, 1969; 

Kaneko, 1970; Ashmore and Falk, 1977a, b; Toyoda, 1973; Naka and 

Ohtsuka, 1975). I n general the centre of the receptive f i e l d i s much 

more sensitive than the surround. For example, i n goldfish, the 

centre of the bipolar c e l l receptive f i e l d i s approximately 100 

times more sensitive than the surround, i.e. 100 times more energy 

i s required i n the surround i n order to produce a comparable re­

sponse to that of a central response (Kaneko, 1973). Other i n v e s t i ­

gators have found i t neccesary i n some cases, to lightadapt the 
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receptive f i e l d centre before any response can be produced with a 

surround stimulation (Kaneko, 1973; Richter and Simon, 1974). 

The spectral response properties of bipolar cel l s i n f i s h have 

been described by a number of authors, and they have been cl a s s i f i e d 

i n t o two types; non-colour coded and colour-coded bipolar c e l l s by 

t h e i r spectral properties (Kaneko, 1973; Toyoda, 1973; Fa m i g l i e t t i 

et a l . , 1977; M i t a r a i , Soto and Takagi, 1978; Kaneko and Tachibana, 

1981, 1983). The non-colour coded tjrpe receives input predominantly 

from red cones at the receptive f i e l d centre and surround. I n colour 

coded c e l l s the receptive f i e l d centre i s usually dominated by red 

cones, while the green cones contribute to the surround. The colour-

coded bipolar c e l l s include double-colour opponent cell s whose 

response p o l a r i t y depends not only upon the wavelength of l i g h t , but 

i n addition the response p o l a r i t y was also found to depend on l i g h t 

i n t e n s i t y (Kaneko and Tachibana, 1981). 

Almost a l l bipolar c e l l s i d e n t i f i e d morphologically by i n t r a ­

c e l l u l a r dye i n j e c t i o n are i n the category of Cajal's large bipolar 

c e l l s or mixed bipolar (M.B.) cells (Kaneko, 1973; Mitarai et a l . , 

1978; Tachibana, 1978; Hashimoto, Inokuchi, Umino and Katagiri, 

1980). I t i s l i k e l y that the sampling by i n t r a c e l l u l a r recording 

strongly favoxars the larger c e l l types (M.B.s) which receive input 

p r i m a r i l y frcm red cones (Scholes, 1975; S t e l l et a l . , 1977). I t i s 

ce r t a i n that bipolar c e l l s do exist which contact predominantly 

green cones and others that contact predominantly bltie cones 

(Scholes, 1975), but these c e l l s are rare or absent i n the sample of 

chromatic bipolar c e l l s found using i n t r a c e l l u l a r recordings. 

Most evidence suggests that the central response i s produced by 
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d i r e c t receptor-bipolar c e l l contacts \A^ereas the bipolar c e l l ' s 

surround responses are provided by interneurons, presumably by h o r i ­

zontal c e l l s . These conclusions are consistent with the observations 

that the size of functionally defined bipolar c e l l receptive f i e l d 

centres (100-200 ym) are proportional to the bipolar c e l l dendritic 

spreads i n the outer plexiform layer (Kaneko, 1971b, 1973; Scholes, 

1975, S t e l l et a l . , 1977). Naka (1972) presented the most direct 

evidence f o r horizontal to bipolar c e l l transfer i n the c a t f i s h 

r e t i n a . Passing a depolarizing current i n t o a L-type horizontal c e l l 

produced a bipolar c e l l response equivalent to that e l i c i t e d by a 

centred spot of l i g h t . On hjrperpolarizing the horizontal c e l l the 

bipolar c e l l ' s response was equivalent to that e l i c i t e d by a 

surround stimulus. Recently, Toyoda and Kujiraoka (1982) demon­

strated t h a t passing hyperpolarizing current i n t o horizontal c e l l s 

of carp, irrespective of c e l l type, e l i c i t e d a hyperpolarizing 

response i n on-centre bipolar c e l l s and a depolarizing response i n 

off-centre bipolar c e l l s , i.e. a response similar i n p o l a r i t y to 

that e l i c i t e d by surround illumination. Essentially the same results 

had been reported previously for bipolar .cells of the t u r t l e retina 

(Marchiafava, 1978), and for off-centre bipolar c e l l s of the carp 

r e t i n a (Trifonov and Byzov, 1977). There are two possible pathways 

by which t h i s can be mediated. One is a d i r e c t synaptic pathway from 

horizontal c e l l s to bipolar c e l l s (Werblin and Dowling, 1969), and 

the other i s an i n d i r e c t one, involving a feedback pathway from 

horizontal c e l l s to photoreceptors (Toyoda and Tonosaki, 1978). 

Direct synaptic contacts from horizontal c e l l s to bipolars were 

f i r s t postulated to be responsible for centre surround organization 
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of bipolar cells (Werblin and Dowling, 1969), and direct contacts 

have been clearl y i d e n t i f i e d i n mammals (Fisher and Boycott, 1974) 

and i n t u r t l e (Kolb and J i l l , 1982). Possible synaptic connections 

between dendrites of horizontal cel l s and bipolar cells have also 

been reported i n some amphibians (Dowling and Werblin, 1969; 

Lasansky, 1973) and i n c a t f i s h (Naka, 1976). Conventional synaptic 

structures between horizontal c e l l s and bipolar cells have not been 

reported i n cyprinids, but S t e l l (1978) reported occasional close 

contacts between dendrites of horizontal and bipolar c e l l s , sug­

gesting that i t might be the s i t e of unconventional synaptic con­

t a c t . Some rod-driven bipolar c e l l s have been shown to have a 

centre/surround organization (Fain, 1975, Saito, Kondo and Toyoda, 

1981), but feedback from horizontal c e l l s has not been demonstrated 

i n rods and therefore the surround effect must be mediated by some 

other mechanism. However, the evidence fo r horizontal to bipolar 

c e l l synapses i n f i s h i s v i r t u a l l y non-existent. Thus, i t seems 

l i k e l y that the feedback system from horizontal c e l l to cones i s the 

source of the bipolar c e l l surround properties (Toyoda and Tonosaki, 

1978; Wheeler, 1982; Fain et a l . , 1983). Presumably, the feedback 

would depolarize the receptor and increase i t s transmitter output, 

thereby antagonizing the central mechanism, which depends on a l i g h t 

induced reduction i n receptor transmitter release. However, none of 

these possible pathways can be considered to be proved as yet. 

2.4.2. Amacrine c e l l s . 

The response properties of two d i s t i n c t physiological types of 

amacrine c e l l have been described i n the teleost retina. and termed 
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sustained and transient amacrine cel l s (Kaneko, 1973; Naka and 

Ohtsuka, 1975). One feature of the amacrine c e l l s that i s d i f f e r e n t 

from other peripheral neurons i s that the amacrine c e l l s show spike 

discharges, but these spikes are, however, atypical and are often 

abortive (Werblin and Dowling, 1969; Kaneko, 1970; Werblin, 1977). 

Most amacrine cells lack centre-surround organization, or have only 

rudimentary centre-surround responses (Kaneko, 1973; Mitarai et a l . , 

1978). 

Sustained amacrine cel l s respond with either a maintained 

hyperpolarization (off-amacrine) or depolarization (on-amacrine) to 

i l l u m i n a t i o n and have been i d e n t i f i e d h i s t o l o g i c a l l y (Chan and Naka, 

1976). Transient amacrine c e l l s , on the other hand, respond to 

i l l u m i n a t i o n with a transient depolarization to both the onset and 

o f f s e t of the stiraulios, and often produce spontaneous discharges 

superimposed on the transient on-off depolarizations (Kaneko and 

Hashimoto, 1969; Werblin and Dowling, 1969; Kaneko, 1970; Toyoda, 

Hashimoto and Ohtsu, 1973; Chan and Naka, 1976; Murakami and 

Shimoda, 1977). 

Both the sustained and transient amacrine cel l s i n goldfish 

respond d i f f e r e n t i a l l y to spectral s t i m u l i (Kaneko, 1973; Mitarai et 

a l . , 1978). The spectral response properties of sustained amacrines 

suggest that they receive di r e c t input from colour coded bipolar 

c e l l s (Mitarai et a l . , 1978). The transient amacrine cel l s are 

reported to show enhanced response to green l i g h t i n presence of red 

background illumination, i.e. the same spectral properties as H-1 

type horizontal c e l l s and the sxrrround of mixed bipolar c e l l s 

(Kaneko, 1973). This suggests that the transient amacrines may 
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receive d i r e c t input from HI horizontal c e l l axons (Naka, 1976, 
1980). 

Amacrine c e l l s receive t h e i r synaptic input from bipolar ce l l s 

and are known to be presynaptic to ganglion, bipolar and other 

amacrine c e l l s (Dowling and Boycott, 1966; Dowling, 1968; S t e l l , 

1972; Marc et a l . , 1978; Naka and (3iristensen, 1981). Famiglietti et 

a l . (1977) showed that the axons of on-centre bipolar c e l l s always 

reached the proximal portion of the inner plexiform layer (IPL), 

termed sublamina b. Dendrites of off-centre bipolar c e l l s terminated 

at the d i s t a l portion of the IPL, termed sublamina a (see section 

1.5). I n the cyprinid r e t i n a , i n t r a c e l l u l a r staining has revealed 

that the amacrine c e l l dendrites are also confined to the sublamina 

expected from t h e i r response p o l a r i t i e s : on type to sublamina b, o f f 

type to sublamina a, and on-off type to both sublamina (Kaneko, 

1973; Murakami and Shimoda, 1977; Kaneko, Nishiraura, Tachibana et 

a l . , 1981). The primary role of amacrine c e l l s i s the formation of 

the on-off ganglion c e l l receptive f i e l d response properties 

(Werblin and Copenhagen, 1974; M i l l e r and Dacheux, 1976a, b, c; 

Wheeler, 1982). Furthermore, i t appears that amacrine c e l l s form a 

network f o r the l a t e r a l transfer of information i n the IPL (Naka and 

Christensen, 1981; Wheeler, 1982). For f u l l review on the amacrine 

c e l l function see Witkovsky (1980) and Wheeler (1982). 

2.4.3. Ganglion c e l l s . 

Ganglion c e l l s are the only cel l s i n the retina with a typical 

axon. The c e l l bodies are located i n the innermost (proximal) part 

of the r e t i n a (see section 1.8). The ganglion c e l l axons form the 
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optic nerve, which conveys spike discharges (action potentials) to 

the higher visual centres. Ganglion c e l l responses are characterized 

by graded potentials with superimposed action potentials (spikes). 

Ganglion c e l l s can be divided into three response categories; on, 

o f f , and on-off units (Hartline, 1938; K u f f l e r , 1953; Barlow, 1953). 

On-mits increase t h e i r f i r i n g rate to increased stimulus 

i n t e n s i t y . Off-units decrease t h e i r f i r i n g rate to an increase i n 

stimulus i n t e n s i t y and t y p i c a l l y "produce a high rate of f i r i n g to a 

stimulias o f f s e t . On-off units have an increased rate of f i r i n g to 

both stimulxis onset and o f f s e t . Ganglion c e l l s have an antagonistic 

centre-surround receptive f i e l d organization,' thios t h e i r surround 

response i s opposite to that of the centre (Kuffler, 1953; Wagner, 

MacNichol and Wolbarsht, 1960; Svaetichin et a l . , 1965; Daw, 1968; 

Dowling and Ripps, 1970).. 

Naka (1977) demonstrated that on-ganglion c e l l s receive input 

only from on-centre bipolar c e l l s and o f f ganglion c e l l s from o f f -

centre bipolar c e l l s . These results are consistent with the morpho­

lo g i c a l ^observations that the on-centre bipolar and on ganglion 

c e l l s terminate i n sublamina b of the inner plexiform layer, and 

off-centre bipolar and o f f ganglion c e l l s terminate i n sublamina a, 

while the on-off ganglion c e l l s ramify i n both sublamina of the 

inner plexiform layer ( F a m i g l i e t t i et a l . , 1977), which suggests 

that they receive input frcra both on and off-centre bipolar c e l l s . 

These findings suggest that the synaptic contacts between bipolar 

and ganglion c e l l s are always sign conserving, or that the p o l a r i t y 

of the response i s maintained through the bipolar-ganglion c e l l 
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transmission. Physiological support for t h i s hypothesis comes from 

the observation that depolarization of on-centre bipolar ce l l s 

produces spikes i n on-ganglion cel l s and depolarization of o f f 

bipolars produces spikes i n o f f - g a n g l i o n cells (Baylor and 

Fettiplace, 1977; Naka, 1977). No cross-interaction was found 

between c e l l s with d i f f e r e n t response p o l a r i t y . 

The ganglion c e l l receptive f i e l d s are complex and have been 

at t r i b u t e d d i r e c t l y to inputs from bipolar and amacrine c e l l s . 

Kaneko (1973) fomd that the size of goldfish ganglion c e l l centre 

was comparable to the size of the t o t a l receptive f i e l d of a bipolar 

c e l l . The ganglion c e l l receptive f i e l d centre has been shown to 

consist of two components, generated by d i r e c t input from bipolar 

c e l l s , an inner core and an outer core (Raynauld, 1975). Raynauld 

(1975) concluded that the inner core i s generated by the sum of 

bipolar c e l l centres and the outer core i s generated by the sum of 

bipolar c e l l surrounds (see Wheeler, 1982, for review). The ganglion 

c e l l surromd (up to 6 mm i n diameter) constitutes the sum of 

amacrine c e l l receptive f i e l d s (Daw, 1968). 

Wagner et a l . (1960, 1963) were f i r s t to describe colour 

opponent centre surround organization i n ganglion cells i n f i s h . 

Some ganglion c e l l s have single colour receptive f i e l d s , some have 

doiible colour receptive f i e l d s , and some of the receptive f i e l d s are 

more complex (Witkovsky, 1965, 1967; Daw, 1968; Adams and Afandor, 

1971; Beauchamp and Daw, 1972; Kaneko, 1973; Raynauld, 1975). The 

most commonly observed colour opponent cell s are red and green 

sensitive, but ganglion c e l l s also receive input from blue cones 

and from rods (Adams and Afandor, 1971; Beaxichamp and Daw, 1972; 
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Spekreijse et a l . , 1972). A few i m i t s of colovir coded ganglion c e l l s 

have been fomd wi t h a far red spectral s e n s i t i v i t y peaking at 650 

t o 680 nm, w i t h a narrow spectral s e n s i t i v i t y curve (Witkovsky, 

1967;, Daw and Beauchamp, 1972). This i s similar to the spectral 

s e n s i t i v i t y observed i n horizontal c e l l s , which i s thought to be dxae 

to an i n h i b i t o r y interaction between red and green cones (Witkovsky, 

1967; Sirovich and Abramov, 1977; Gunnarsson and Hyde, 1982). 

Movement sensitive units were f i r s t observed i n the rabbit by 

Barlow and H i l l (1963). They discovered a class of ganglion cells 

which had r a d i c a l l y d i f f e r e n t response to moving st i m u l i from those 

w i t h centre surromd organization. These m i t s exhibited a well de­

fined v e c t o r i a l axis, so that movement i n one direction ('prefer­

red'), produced a strong discharge, whereas movement i n the opposite 

d i r e c t i o n ('null') produced no response ( ' s i l e n t ' ) . Similar movement 

sensitive ganglion c e l l s have been described by a number of other 

investigators (Barlow, H i l l and Levick, 1964; Werblin, 1970; 

Karwosky and Burkhardt, 1976). I t has been suggested that the direc­

t i o n s e l e c t i v i t y i s due to. l a t e r a l l y mediated transient suppression 

when the motion i s i n the ' n u l l ' d i r e c t i o n (Barlow and Levick, 1965; 

Bishop, Coombs and Henry, 1971; Wyatt and Daw, 1975). For further 

review on-ganglion c e l l response properties see Levick (1972), Daw 

(1973), and Wheeler (1982). 

2.5. Behavioural studies. 

Behavioiaral studies on teleost colour v i s i o n have demonstrated 

that many of the f i s h studied possess colour .vision. Spectral 

s e n s i t i v i t y curves of large variety have been derived by behavioural 
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methods (Powers and Easter, 1978a, b; Cameron, 1982). The maximum 

spectral s e n s i t i v i t y and the shape of the spectral s e n s i t i v i t y 

curves seem either to depend on the method of measurement or the 

experimental conditions or both. However, the behavioiaral studies 

have, i n some cases, revealed the nature ( i . e . dichromatic, t r i c h r o ­

matic etc.) of the colour v i s i o n (tteitz and Northmore, 1970). 

Cameron (1982), measured photopic spectral s e n s i t i v i t y i n the fresh­

water perch (Perca f l u v i a t i l i s ) using a behavioural technique and 

found i t t o be dichromatic w i t h maxionum spectral peaks i n the green 

(530-560 nm) and the fa r red (660-680 nm). 

2.6. The present study. 

The aim of the present study i s to examine i n d e t a i l morpho­

lo g i c a l and physiological characteristics of horizontal cells i n the 

perch (Perca f l u v i a t i l i s ) retina. 

The perch was chosen for t h i s study f o r a number of reasons: 

F i r s t , the perch retina i s characterized by a regular mosaic 

arrangement of d i f f e r e n t cone types (Engstrom, 1963b). Second, the 

perch has been shown to have two types of cones, double (twin) cones 

forming a square mosaic and single cones each situated i n the center 

of the double cone square (Ahlbert, 1969). Third, microspectrophoto-

metry has revealed that the double cones contain a red sjensitive 615 

nm photopigment, and the single cones- a green sensitive 535 nm 

photopigment (Loew and Lythgoe, 1978). Fourth, the cone pedicles can 

easily be i d e n t i f i e d at the level of the outer plexiform layer 

(OPL), becaxase of the regular mosaic pattern of cones, permiting 

i d e n t i f i c a t i o n of the connections between d i f f e r e n t cone horizontal 
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c e l l s and specific cones. 

I n t h i s study i t was intended to i ) i d e n t i f y and describe 

morphological characteristics of d i f f e r e n t types of perch horizontal 

c e l l s i n Golgi preparations, i i ) characterize the chromatic inputs 

to cone horizontal c e l l s by determining the connection pattern of 

Golgi ' impregnated cone horizontal c e l l s w i t h chromatically i d e n t i ­

f i e d cones, losing the l i g h t microscope, i i i ) characterize the 

d i f f e r e n t horizontal c e l l response properties by i n t r a c e l l u l a r 

recordings, and i v ) attempt to correlate t h e i r response properties 

w i t h the chromatic inputs they receive from cones, i n order to gain 

some insight i n t o the processing of colour v i s i o n i n the outer 

plexiform layer. 
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Chaptex 3. 

Morphological methods, 
3.1. Material, 

Experiments were carried out on retinas of the freshwater 

teleost f i s h perch (Perca f l u v i a t i l i s L.). Fish were captured with 

nets and traps i n the Hallington Reservoir i n Northumberland, with 

permission from the Northumberland Water Authority. The f i s h were 

kept i n 1000 l i t e r aerated aquaria at 15°C, and were maintained on a 

d i e t of mealworms. The l i g h t and dark cycle was normally 9 hours 

dark and 15 hours l i g h t . Some f i s h were used shortly after capture, 

others were held and used many months la t e r . A l l animals used 

measiared between 15 and 25 cm. 

3.2. Methods. 

3.2.1. I s o l a t i o n of the r e t i n a . 

To f a c i l i t a t e the separation of the pigment epithelium from the 

r e t i n a the f i s h was dark adapted f o r at least I j hour. The f i s h was 

decapitated and one eye was caref u l l y enucleated. After removing 

muscles from the scleral surface of the eye, a cut was made r i g h t 

round the equator using f i n e scissors. The front h a l f of the eye was 

removed wi t h the lens and discarded. The posterior eyecup was then 

placed i n a cool Ringer solution. I t was cut i n ha l f and the r e t i n a 

c a r e f u l l y shaken out of the eyecup i n the Ringer solution. Most 

dissections were carried out mder a dim white l i g h t , but a red 

l i g h t and a infra-red l i g h t were also occationally tised. 

The Ringer solution xased was a Kaneko-Carp Ringer of the 

following composition: 110 mM NaCl,2.5inM KCl, 10 mM CaCU and 5 
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mM HEPES (N-2-hydroxyethyl piperazine N-2-ethanesulphonic acid) 

buffered to pH 7.4 with NaOH. 10 mM Glucose was used as a substrate. 

3.2.2. Golgi f l a t (whole) mount preparation. 

Approximately f i f t y eyes were used to obtain r e t i n a l f l a t 

mounts using a modification of Cajal's rapid-Golgi procedure ( S t e l l 

and Witkovsky, 1973a). After the dark adapted retina had been 

isolated, several p a r t i a l r a d i a l cuts were made so that the retina 

would l i e f l a t . The retina was placed receptor side down on a 

microscope s l i d e , covered by a perforated plastic f i l m (cut fran a 

Telfa pad). Covering the perch r e t i n a w i t h f i l t e r paper was also 

t r i e d but no useful impregnation was obtained that way. Several 

pieces of record cards were placed on top of the pla s t i c f i l m f o r 

mechanical support. Tne 'sandwich' was secured to a microscope 

s l i d e w i t h cotton thread. The f i x a t i o n and staining was then 

completed i n a Coplin j a r . 

The material was fi x e d and stained by procedures similar to 

those used by S t e l l and Lightfoot (1975) and Leeper (1978a). A 

number of combinations were t r i e d but the following method gave the 

most consistent results. 

Fixation: The retinas were immersed i n a f i x a t i v e containing 

2.57o gluteraldehyde, 1% paraformaldehyde, 3% sucrose i n 0,06 M 

sodium phosphate buffer at pH 7.3. Isolated retinas were fixed at 

room temperature, 22-24°C, f o r 1 5 minutes, and then at 8°C for 4 

hours. 

Golgi impregnation: The retinas were then washed b r i e f l y i n a 

phosphate buffer and transferred to a mixture of 0.3 M potassium 
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dichromate ( 1 9 parts),, and 4 % osmium tetroxide ( 1 p a r t ) , and l e f t 

f o r 5 days at room temperature. The retinas were rinsed b r i e f l y with 

d i s t i l l e d water and then transferred to a 17o s i l v e r n i t r a t e solution 

and l e f t f o r 2 days i n the dark. Finally the retinas and the f i l m 

were removed together from the slide and excess crystals were 

removed from the surface of the retina using a fine brush. The 

preparations were examined for signs of useful Impregnation; retinas 

showing successful impregnation were dehydrated i n graded alcohols 

and mounted. Retinas showing l i t t l e staining were returned for 

another cycle of osmium-dichromate and s i l v e r n i t r a t e treatment. 

Embedding: Those retinas that were successfully stained were 

moxmted v i t r e a l surface up on a glass slide mder freshly made aral-

d i t e and covered w i t h a weighted polyethylene cover s l i p . The 

ar a l d i t e mounted retinas were cured at 6 0 ° C f o r 3 6 hours. After this 

time the polyethylene cover sli p s were removedj and the retinas 

c a r e f u l l y examined. Selected areas with well stained and isolated 

c e l l s were photographed and mapped. Selected cells were drawn (see 

section 3 . 2 . 4 ) , these cel l s and the surromding area of the 

flatmount were cut out and remounted on epon blocks for se r i a l 1 ]M 

horizontal or v e r t i c a l sectioning. 

3 . 2 . 3 . Golgi th i c k sections. 

The material used fo r thick sections was fixed and stained as , 

described previously (section 3 . 2 . 2 ) . However, these had usioally a 

s l i g h t l y longer staining time, or i n some cases a double impregna­

t i o n . I n common with a l l Golgi procedtires there i s a tendency for 

the tissue to darken and crystals to form on the surface. The 
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crystals could be brushed o f f to some extent but the inner segments 

of the photoreceptors tend to form a general dark background which 

often made the retina too dark to examine with trans-illumination. 

I n these cases the material could not be examined as f l a t mounts. 

These darker retinas were divided into 4 or 5 pieces, usually by 

cuts radiating from the optic nerve and embedded i n araldite (epoxy 

r e s i n ) . The resin was ctired f o r 36 hours. 

Sectioning: Thick sections, 20 to 60 ym, were cut either v e r t i ­

c a l l y or horizontally i n a s l i d i n g microtome with a steel blade. 

Cutting the sections was f a c i l i t a t e d by heating the block face using 

the method described by West (1972). The sections were transferred 

i n s e r i a l order and placed f l a t on a microslide. Mounted either i n 

D.P.X. and covered with a t h i n glass coverslip, or i n fresh araldite 

and covered with a l i g h t l y weighted polyethylene coverslip. Araldite 

mounted sections were cured overnight at 60°C. After the polyethyl­

ene cover had been removed, well impregnated cells were photographed 

and drawn (see section 3.2.4). Selected areas from the araldite 

mount were removed from the slide and remounted for further 

sectioning. 

3.2.4. Serial 1 ym sectioning and analysis. 

Selected cel l s from the f l a t mount retinas or from thick 

sections were further analysed by s e r i a l sectioning. Selected areas 

were removed using a fine (no. 11) scapel blade and were flatmounted 

w i t h clear araldite on to a transparent capsule-shaped araldite 

block, and cured over night at 60°C. The mounted specimen was then 

trans-illuminated and viewed i n a l i g h t microscope so that the 
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progress of subsequent trimming and sectioning could be followed. 

Sectioning and staining techniques: The re-embedded block was 

mounted i n the specimen holder of a microtcme and the edges of the 

block face were trimmed smooth and p a r a l l e l w i t h a razor blade, so 

that sections would form a straight unbroken ribbon. Material was 

sectioned either horizontally or v e r t i c a l l y on a Reichert 0MU3 

ultra-microtome using glass knives with tape boats. 

For l i g h t microscopy the material was sectioned at approximate­

l y 1.0 pn. These sections were flattened i n the knife boat xasing a 

heat pen. The sections were l i f t e d , usually two to four at a time, 

from the tape boats either with a narrow glass s t r i p cut from a 

glass coverslip, or with a round glass rod. The sections were then 

dried on a hot plate at 90°C. The sections were stained with 

t o l u i d i n e blue f o r one to two minutes, washed b r i e f l y w ith d i s t i l l e d 

water and, after drying on the hot plate, they were mounted mder a 

glass coverslip. 

The stained s e r i a l 1.0 pn sections were examined and photo­

graphed xising a Microfex UFX camera momted on a Nikon Biological 

microscope (Optiphot), or a Zeiss Ultraphot microscope. 

Material f o r electron microscopy was sectioned at approximately 

0.1 pm. U l t r a t h i n sections f o r electron microscopic studies were 

doubly stained, f i r s t w i t h uranyl acetate, followed by lead c i t r a t e 

and subsequently examined and photographed w i t h a Philips 400 T 

electron microscope. 

Analysis: Golgi impregnated c e l l s were readily i d e n t i f i e d i n 

the 1 pm sections and t h e i r processes were traced through the series 

of sections to the cone pedicles. The i d e n t i t y of the cones was 
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established from t h e i r position i n the photoreceptor mosaic. 

I n photomicrographs of ce l l s from whole mounts, and fran thick 

sections, only a lim i t e d number of terminals and dendrites could be 

seen i n one focal plane. Therefore, i n order t o reconstruct the form 

of the viiole c e l l , i t was necessary to take s e r i a l photographs at 

d i f f e r e n t focal levels. By superimposing the pictures the form of 

the horizontal c e l l was reconstructedand drawn, and where the photo­

receptor mosaic was v i s i b l e the cone horizontal c e l l contacts could 

be i d e n t i f i e d . 

ffeasiorements of size and distance were made with the aid of an 

eye-piece graticule calibrated against a stage micrometer. A l l meas­

urements were made under o i l immersion vising a Zeiss 100 x Planapo-

chronatic objective at a t o t a l magnification of 2000 x. Measurements 

could be made with an acciiracy of approximately ±0.2 ym. 

Terminology: For convenience, visual pigments w i t h absorption 

cxorves that peak i n the red, green, or blue regions of the spectrum 

w i l l be called red-, green-, and bltie-absorbing vistial pigments 

respectively. Clones v^iich contain these visual pigments w i l l be 

calle d red-, green-, and blvie-sensitive cones, or simply, red, 

green, and blue cones. 
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Chapter 4. 

Physiological iiBthods. 

4.1. Preparation. 

The retina was isolated as described i n section 3.2.1. The 

isolated r e t i n a was then placed on a piece of f i l t e r paper with the 

receptor side up and transfered to the recording chamber, which 

measures 5 cm i n length, 3 cm i n width and i s 2 cm high. The retina 

was mounted on a small black perspex platform i n the middle of the 

recording chamber. On each side of the platform was tissue paper 

soaked i n f i s h Ringer perfusate (see section 3.2.1), to keep the 

r e t i n a moist and provide an e l e c t r i c a l reference to the retina. 

Oxygenation and pH of 7.4 were maintained by supplying the r e t i n a 

w i t h a steady flow of cool (10 to 15°C), moist gaseous mixture of 

95% oxygen and 5% carbon dioxide, at the rate of 120 ml/min. I n 

order to cool and moisten the gaseous mixture, i t was led through a 

series of bottles containing cold water. The water was kept cool by 

standing the bottles on ice. 

The recording chamber was mounted on a Peltier device cooling 

u n i t to control the temperature, t h i s was i n turn mounted on an X-Y 

micrometer driven base. During experiments the temperature of the 

recording,chamber'was kept at approximately 15°C. 

The recording platform consisted of about Im high concrete 

p i l l a r on top of which was a 3 cm thick steel plate. 

Recordings were made inside an e l e c t r i c a l l y shielded l i g h t 

t i g h t Faraday cage. 
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4.2. Microelectrodes. 

The microelectrodes were pulled on a Livingstone-type, single 

stage microelectrode puller (Clark Electromedical-LPP2). The glass 

used was Borosilicate tubing' 1.0 nm OD, 0.5 nm ID, with a glass 

f i b r e attached to bore. 

The microelectrodes were f i l l e d with 4 M aqueous solution of 

potassium acetate. Microelectrodes which had resistance of 100-500 

Megaohms were accepted, but usually t h e i r resistance was between 200 

and 300 Megaohms. Microelectrode resistance was measured on the 

surface of the r e t i n a w i t h a small D.C. current ( o . l nA). 

4.3. Recordings. 

Microelectrodes were advanced v e r t i c a l l y onto the surface of 

the r e t i n a and the resistance of the microelectrodes was measured. 

Once on the surface, the microelectrodes were inserted into the 

re t i n a i n 1 pm steps i:ising a micromanipulator. Contact of the elec­

trode w i t h the r e t i n a was indicated by a s h i f t i n the steady poten­

t i a l , while impalement of neiirons was indicated by a negative s h i f t 

i n voltage. Penetrations of horizontal c e l l s , as a l l other r e t i n a l 

c e l l s , was best acccmplished by b r i e f l y bringing the electrode pre­

amplifier i n t o o s c i l l a t i o n by increasing the capacity compensating 

feedback. This procedure f o r penetrating small cel l s has been used 

fo r some time by many workers, but the mechanism of penetration i s 

not understood. Perhaps the e l e c t r i c a l o s c i l l a t i o n i t s e l f , or a 

re s u l t i n g mechanical v i b r a t i o n allows the electrode to jimp abruptly 

across the c e l l membrane (Baylor and Fuortes, 1970). Stable penetra­

tions could only be made after the retina had been allowed to s e t t l e 
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down i n the chamber f o r approximately 30 minutes. Within that time 

the movement of the r e t i n a was to great to allow any stable 

penetrations. After the retina had ccmpletely settled down, i t was 

possible to hold any single c e l l f o r up to one hour or even more. I n 

the experiments :vAaere responses to a series of l i g h t intensities 

and wavelengths were compared, i t was necessary to have stable 

recordings up to 20 minutes long. Since the condition of the c e l l 

could change during the recording, a comparison of responses were 

made only \dnen response amplitude and l i g h t s e n s i t i v i t y of the c e l l 

did not deteriorate notably. Fortunately the penetrations were 

usually quite stable, but the loss of a c e l l was t y p i c a l l y abrupt. 

The i n d i f f e r e n t electrode was of uncoated s i l v e r as was the 

input wire connection to the microelectrode. Signals were recorded 

w i t h high input impedance amplifier (Colbum. St Schwartz). A l l 

e l e c t r i c a l recordings were monitored on an oscilloscope (Tektronics 

502A), and fed to a Vetter Model A, FM tape recorder (D.C.-300 HZ) 

f o r l a t e r evaluation and photography. A l l recordings were printed on 

a penwriter f o r analysis. 

4.4. Optics. 

The arrangement \ased i s shown schematically i n Figure 4.1. The 

l i g h t sources were two Tungsten Halogen lamps, of 70W and 24 v o l t , 

run w i t h a constant ctirrent from a Coutant TC-500 power supply. The 

lamps were s l i g h t l y underrun (25%) to extend th e i r l i f e and ensure 

greater s t a b i l i t y of l i g h t output. I n path 1. (Fig. 4.1.) the 

interference f i l t e r s (IF) are B-40 Balzers, | bandwidth (10-12 nm), 

they are seventeen i n a l l and are placed on a moveable wheel. Their 
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range i s from 704 to 388 nra i n wavelength and collimated (p a r a l e l l ) 

l i g h t passes through them. 

Shutters (SH) are driven by Stepping motors, which are 

controled by a Digitimer, that also provided a trigger signal f o r 

the oscilloscope. 

Mirror 1. (Ml, Figure 4.1) i s a half s i l v e r mirror, but mirrors 

2 and 3 (M2 ̂  M3) are front surface mirrors. 

The stop B (path 1) i s a calibrated aperture wheel providing 

concentric c i r c u l a r s t i m u l i 0.1 to 5.0 mm i n diameter, which was 

focused upon the retina. I n order to align the small spots with the 

center receptive f i e l d of a c e l l , the spot was v i s u a l l y aligned over 

the electrode t i p pr i o r to r e t i n a l penetration. Sequential presenta­

t i o n of small spots of increasing diameter was used as the basis for 

area summation measurements, and to evaluate the extent of interac­

t i o n between horizontal c e l l s . For measurements of the 'space' 

constant a long (1-2 cm) and narrow (80 pm) bar ( s l i t ) of l i g h t was 

used. The l i g h t bar could be moved across the retina with a micro­

manipulator. Using the s l i t has the advantage of reducing the 

complex two-dimensional syncytial networks i n the retina (Naka, 

1972) to a one-dimensional cable (Lamb, 1976). 

Heat f i l t e r s (Interference-type Balzers), which have a maximum 

absorption. at wavelengths longer than 720 nm, were used to eliminate 

nonvisual i r r a d i a t i o n . 

Light intensity was controled i n path 1 by two neutral density 

Wedges (NDWl), Carbon-type (Optical and Electrical Coatings LTD) of 

0-3 log u n i t range. Additionally, two fixed neutral density f i l t e r s 

(Inconel-on-glass) of 1.6 log units were placed i n the l i g h t path 
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while white l i g h t was used. 

Path 2 was only used for background illumination. The spot size 

i n path 2 remained fixed at 5.0 mm i n diameter. The l i g h t intensity 

of the background was controled by a neutral density wedge (IWl) of 

three log un i t range. To provide red background illumination a red 

Wratten f i l t e r no. 70. was used, with 80% transmission above 700 nm 

and 1 log attenuation at 605 nm and 2 log attenuation at 655 nm. 

This f i l t e r w i l l be referred to as 'red (700 nm) background'. To 

provide blue background illu m i n a t i o n a blue Wratten f i l t e r no. 47B 

was used, w i t h peak transmission at 435 nm, h a l f bandwith of 405 to 

465 nm, w i t h an additional transmission beyond 750 nm of 1 log u n i t , 

which was largely f i l t e r e d out with IR blocking f i l t e r s . This f i l t e r 

w i l l be referred to as 'blue (435 nm) background'. 

4.5. Calibrations. 

Calibrations, were made at the plane of the retina with a 

s i l i c o n Photodiode (UDT lODF, United Detector Technology radio­

m e t r i c ) , which has a 1.0 cm detection area. The photodiode was 

stored i n the dark and was only used for • calibrations, which were 

made about once every three months. The detector's output was 

measured with a vacuum thermopile (Hilger Schwartz, 0.1003 Amp/ 

w a t t ) , that has a response which i s f l a t from 450 nm to 900 nm 

(±2%). A spectrophotometer (Pye-Unicam SP 1800) was used for 

c a l i b r a t i n g a l l f i l t e r s , except the neutroal density wedges, which 

were calibrated i n s i t u . Calibrations were made for each wavelength 

by measuring l i g h t i ntensity at approximatly 0.25 LogI fjjxed steps 

on the neutral density wedges (NDtiJl and NDW2). 
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Table 4.1. 

The table ill i a s t r a t e s the unattenuated l i g h t from the i n t e r ­

ference f i l t e r s (452 to 704 nm and for Wratten f i l t e r s no. 47B and 

no, 70), and shows the sequence of conversion of the detector output 

( i n Amps.) to pW/cm̂  for four nm spot size (lyA=10pW radi a t i o n ) , and 

the conversion of yW/cm̂  to photons/ym^/sec. Photon energy = lixc/A, 

where h =Plancks constant (6.6608xlO'tiS); c = 2.997x10^m/sec; and A = 

wavelength. For example at 704 nm, lpW=3.52989xl0'*Photons/sec/ijm2. 

Interference f i l t e r s Detector output Log photons/ 
Wavelength Ampere pW/cm̂  ym^/sec 

704 nm 0.552 X 10"^ 44.16 6.1928 
687 nm 0.972 x 10"^ 77.76 6.4277 
674 nm 1.580 X 10"^ 126.40 6.6298 
651 nm 1.106 X 10"^ 88.48 6.4603 
630 nm 0.852 X 10"^ 68.16 6.3325 
608 nm 0.297 X 10"^ 23.76 5.8597 
585 nm 1,437 X 10"^ 115.00 6.5280 
571 nm 0.724 X 10"^ 57.92 6.2195 
550 nm 0,767 X 10'^ 61.36 6.2280 
526 nm 0.490 X 10"^ 39.20 6.0138 
514 nm 0.270 x.l0~^ 21.60 5.7547 
493 nm 1.329 X 10"^ 106.32 6.4184 
474 nm 0.265 X 10"^ 21.20 5.7010 
452 nm 0.346 X 10"^ 27.68 5.7943 
no 47B 

435 nm 1.304 X 10-5 1.8391X10^ 6.0028 
no 70 

700 nm 1.625 X 10"^ 2.2989x 10^ 6.3065 
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Figure 4.1. 

Path 1; 'LSI', l i g h t source; 'LI to lA' lenses; 'SHI', shutter 

driven by Stepping motors; 'IF', interference f i l t e r s ; 'HF', heat 

f i l t e r s to eliminate nonvisual i r r a d i a t i o n ; 'B', calibrated 

apperture wheel provides concentric c i r c u l a r s t i m u l i , 0.1 to 5.0 mm 

i n diameter; 'NDWl', two neutral density wedges of 0-3 log u n i t 

range each, to control l i g h t i n t e n s i t y . The mirrors, 'Ml', a half 

s i l v e r mirror, and inside the Faraday cage a f r o n t surface mirror 

'M2'; 'L5', a lens that focused the l i g h t spot on to the ret i n a . 

Path 2 was used for background i l l t m i n a t i o n only; 'LS2', l i g h t 

source; ' L6 to L9', lenses; ' SH2', shutter; ' IF', interference 

f i l t e r s , either a red Wratten f i l t e r no. 70 to provide red (700 nm) 

background i l l v m i n a t i o n or a blue Wratten f i l t e r no 47B to provide 

blue (435 nm) background i l l u m i n a t i o n ; 'NDW2', a neutral density 

wedge of 3 log u n i t range; 'M3', a f r o n t siarface mirror. 
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Chapter 5. 

Morphology of Golgi preparations. 

5.1. (General observations. 

Following the Golgi impregnation and subsequent embedding of 

the perch r e t i n a (Chapter 3), the morphology of the horizontal cells 

was determined under the l i g h t microscope. I n Golgi preparations of 

the perch r e t i n a three types of horizontal c e l l s were observed which 

were seen to be segregated into separate layers. For convenience the 

c e l l t j ^ s are here called HI, H2, and H3, on the basis of: a) 

increasing distance from the outer plexiform layer, b) increasing 

extent of dendritic spread, and c) the unique subset of receptor 

c e l l types contacted by members of each type of c e l l . 

I n addition to horizontal ce l l s a number of other Golgi impreg­

nated c e l l types were observed. Main emphasis was given to the outer 

plexiform and the inner nuclear layers. Two types of photo­

receptors, rods and cones, were readily i d e n t i f i e d on t h e i r charac­

t e r i s t i c appearances. The cones were found to be of two types, equal 

double cones (twin-cones) and single cones. The cones form a very 

regular square mosaic, which i s formed by four double cones with a 

single cone i n the center of the square, here termed a 'mosaic 

u n i t ' . These results are consistent with previous studies on cones 

and cone arrangements i n the perch re t i n a (Engstron, 1963b; Ahlbert, 

1969). A sqiiare mosaic, similar to the cone mosaic, was observed i n 

the outer plexiform layer, formed by processes, some of which were 

found to be of bipolar c e l l o r i g i n . No attempt was made to classify 
Golgi impregnated bipolar c e l l s or amacrine and ganglion c e l l s . 
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I t was always possible to distinguish between stained horizon­

t a l c e l l s and the d i s t a l dendritic structures of bipolar cells on 

t h e i r characteristic appearances. 

Measurements of the horizontal c e l l s are given for comparison 

i n Table 5.1. The selection of points f o r measurement, i.e. the 

narrowest part of a c e l l body or the d e f i n i t i o n of a " c e l l body", i s 

somewhat ar b i t r a r y . No attempt was made to study and compare d i f f e r ­

ent r e t i n a l locations i n a systematic way so that the differences 

between HI, H2, and H3 ce l l s are not attributable to differences i n 

r e t i n a l locations. 

5.2. Hl-type horizontal c e l l s . 

T h i r t y two Golgi impregnated Hl-tjrpe horizontal c e l l s , from the 

whole mounts and the 20 to 40 ym thi c k sections of the perch retina, 

were selected f o r further sectioning and morphological characteriza­

t i o n . Only those c e l l s were selected that showed successful staining 

and were reasonably isolated from other Golgi impregnated c e l l s . 

I n horizontal view (Figs. 1-3, Plate 1) the Hl-type horizontal 

c e l l i s a compact s t e l l a t e c e l l . The Hl-type c e l l body meastires 

approximately 15 ym i n diameter (Table 5.1) and i s about 5 ym thick. 

Typically, twelve to eighteen r e l a t i v e l y short (5-10 ym), usioally 

branched and gradually tapering dendrites, radiate from the c e l l 

body of the H l - c e l l and delimit the c e l l . The dendritic tree i s 

often deeply indented (Figs. 1-3, Plate 1, and Fig. 4, Plate 2), and 

the boundaries of the dendritic f i e l d may vary from roughly four 

sided to ci r c u l a r i n outline i n the horizontal section. The 

dendritic spread i s about 37 ym i n diameter (Table 5.1). The Hl - c e l l 
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may bear horizontally directed processes or filamentous appendages 

that measure about 0.5-1.0 ym i n diameter and 1-5 ym i n length and 

some may expand s l i g h t l y at the t i p (Figs, l . b , 2.a, Plate 1, and 

Fig. 4, Plate 2). 

One dendrite of the Hl - c e l l usually gives r i s e to a slender 

axon 0.5 t o 1.0 ym i n diameter and ustially 150 to 200 ym i n length 

i n well stained preparations (Figs. 3.a, b, Plate 1, and Fig. 4, 

Plate 2). The axon runs horizontally across the retina and descends 

towards the inner nuclear layer. The axon was occasionally observed-

t o have a swelling but generally i t appeared smooth and unbranched. 

I t was not possible to i d e n t i f y any contacts of the axon. Not a l l 

stained H l - t } ^ horizontal c e l l s were observed to possess an axon. 

The Hl-t3rpe horizontal c e l l s form the d i s t a l (external, 

sclerad) layer of horizontal c e l l s i n the inner nuclear layer 

(I.N.L.) and l i e proximal to the outer plexiform (synaptic) layer 

and the receptor terminals. Vertical sectioning of the Hl-cells 

demonstrates that t h e i r c e l l bodies l i e d i r e c t l y below the synaptic 

terminals of cone photoreceptors (Fig. 5, Plate 3), with dendrites 

arborizing l a t e r a l l y at the border of the inner nuclear layer and 

the outer plexiform layer. 

From the sclerad ( d i s t a l ) surface of the c e l l body and dend­

r i t e s , arise many short dendritic processes (Figs. 1, 2, Plate 1, 

and Fig. 5, Plate 3). These dendritic processes, vrfiich are usioally 

unbranched, run r a d i a l l y and/or obliquely towards the receptor 

terminals. They are 0.5 to 1.0 ym i n diameter and the i r length 

varies according t o t h e i r position on the c e l l . They are shortest 

from the centre of the c e l l (Figs. 5.a, b, Plate 3) being 0.5 to 1.0 
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ym i n length but the dendritic processes arising peripherally (Figs. 

5.e, f , Plate 3) are somewhat longer, up to 5-10 ym i n length. At 

t h e i r termination, at the level of the photoreceptor synaptic termi­

nals, the dendritic processes clear l y branch w i t h i n the cone pedicle 

base to form ^^hat appears to be a cluster of small round endings 

about 0.5 ym or less i n diameter (Figs. 5.a-f, Plate 3, and Fig. 

28.f, Plate 11). However, fi n e details of the ultrastructure of 

terminal endings of the Hl-cells are d i f f i c u l t to resolve i n the 

l i g h t microscope. 

Hl-cells appear to be arranged i n a regular square pattern 

which i s best observed as the regular distance between the Hl-cell 

nuclei (Fig. 33.d, Plate 15), with the centre of the c e l l body 

d i r e c t l y below a central' single cone (Fig. 30, Plate 13). The 

distance between the centres of the Hl-cells i s the same as the 

distance between neighbouring single cones when measured i n the same 

area and there i s obviously one H l - c e l l per cone "mosaic u n i t " , 

which consists of a square of four pairs of double cones with a 

central single cone. When the size of the dendritic spread (37 ym) 

i s conpared w i t h the distance between the centres of adjacent 

Hl-cells (which i s approximately 20 ym), then i t i s obvious that 

there i s a considerable overlap of Hl-cells. 

The appearance of the H l - c e l l i s rather variable as the 

examples of the Hl-cells (Figs. 1-3, Plate 1) show. I t was concluded 

that the v a r i a t i o n was due to differences i n the reaction of Hl-type 

c e l l s to the Golgi staining procedure. I n general, r e l a t i v e l y few 

well impregnated Hl-cells were found compared with the numbers of 

well impregnated H2 and H3-cells. 
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5.3. H2-type horizontal c e l l s . 

Eighty-six Golgi impregnated H2-type horizontal c e l l s , from the 

whole motints and the t h i c k sections, were selected for morphological 

characterization and further sectioning. 

I n appearance, the outline of the Golgi impregnated H2-cell i s 

similar to that of the H l - c e l l . However, i t i s easily distinguished 

from the H l - c e l l by i t s larger c e l l body, greater dendritic spread 

and the less compact appearance of i t s processes. I n the horizontal 

plane, the H2-cell i s , l i k e the other perch horizontal c e l l s , funda­

mentally a s t e l l a t e c e l l , but, of the three types, i t has the most 

cuboidal appearance (Figs. 6-8, Plate 4, and Fig. 9, Plate 5). The 

c e l l body of H2-horizontal c e l l s i s characteristically the largest 

of the three perch horizontal c e l l s , with an area of approximately 

30 x 45 ym (Table 5.1). Typically, eight to f i f t e e n , thick (up to 15 

ym across), tapering and usually branched dendrites radiate from the 

c e l l body and delimit the c e l l (Figs. 6-8, Plate 4, and Fig. 9, 

Plate 5). The dendrites of the H2-cell sometimes appear to end i n a 

t h i n , horizontally directed process or appendage (Fig. 8.b, Plate 

4), these are 0.5 to 1.0 ym i n diameter and with no . expansion of 

the t i p . The dendritic f i e l d i s roughly circular i n extent or 

occasionally e l l i p t i c a l . The diameter of the dendritic f i e l d of the 

H2-cell i s t y p i c a l l y about 100 ym (Table 5.1). 

I n favourable Golgi preparations (Figs. 7.a, b, Plate 4), both 

c e l l s of a contiguoias pair were posit i v e l y i d e n t i f i e d as H2-cells. 

Their dendritic f i e l d s overlap p a r t i a l l y and three dendrites appear 

contiguous. Four or f i v e cones appear to be i n mutual contact with 

the dendritic processes of both cel l s (Fig. 7.b, Plate 4). The 
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distance between the centres of the c e l l bodies i s about 55-60 ym or 

about three mosaic u n i t s , which means that the number of HI-type per 

H2-type c e l l s i s about 9/1 (Figs. 33.b-d, Plate 15). The dimension 

of the dendritic spread, i n combination with the separation of the 

c e l l bodies, shows that the overlap between the dendrites of adja­

cent H2-cells i s much smaller than for the Hl-cells. 

Only rarely was i t observed that H2-cells possessed an 

impregnated axon (Figs. 6.a, b, Plate 4). This axon i s 1 to 2 ym i n 

diameter and more than 100 ym long, i t runs horizontally with a 

sinuous course and descends towards the inner nuclear layer. I t 

appears smooth, imbranched and a terminal ending was not observed. 

The H2-type horizontal c e l l s form the intermediate layer of 

horizontal c e l l s . They l i e proximal to the HI and d i s t a l to the H3 

horizontal c e l l s and to the bipolar c e l l s (Figs. 13-15, Plate 6). 

However, the horizontal c e l l layers do overlap to some extent i n 

perch, but they s t i l l remain clear l y segregated into layers. 

I n v e r t i c a l view the sclerad surface of the H2-cell i s located 

5 to 6 ym from the outer plexiform layer, and the c e l l body i s 

maximally 8 to 10 ym thick (Figs. 10-12, Plate 6). From the sclerad 

( d i s t a l ) surface of the H2-cell radiates an average of 34 dendritic 

processes. These dendritic processes are \asvially unbranched, about 

1.0 to 1.5 ym i n diameter and ascend r a d i a l l y for 5 to 8 ym towards 

the outer plexiform layer vhere they form terminal clusters (Figs. 

10, 11, Plate 6). The terminal clusters of the H2-cell clearly 

invaginate the cone pedicle base as can be seen i n v e r t i c a l 1.0 ym 

sections (Figs. 12.a-c, Plate 6). The terminals themselves are 

clusters of small romd endings about 0.5 ym i n diameter, strung 
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together on f i n e r processes (Figs. 12.a-c, Plate 6). 

5.4. H3-type horizontal c e l l s . 

Fourty-six Golgi impregnated H3-type c e l l s , from the whole 

mounts and the t h i c k sections, were selected for further sectioning 

and morphological characterization. 

The H3-t3rpe horizontal c e l l s form the proximal layer of h o r i ­

zontal c e l l s i n the inner nuclear layer. I n position they l i e 

proximal to the H2-t3rpe horizontal c e l l s and d i s t a l to the bipolar 

c e l l layer (Figs. 13-15, Plate 6). 

The H3-cells are s t e l l a t e c e l l s with a r e l a t i v e l y small c e l l 

body compared w i t h t h e i r dendritic spread (Table 5.1). The c e l l 

body, which i s often very d i f f i c u l t to define (Figs. 16-20, Plate 7, 

and Fig. 21, Plate 8), i s usioally elongated,measuring 16.6 x 37.6 ym 

i n area (Table 5.1). T3^ically, seven to ten, usiially branched dend­

r i t e s radiate horizontally and obliquely from the c e l l perikaryon. 

The dendrites are t y p i c a l l y long and slender, c y l i n d r i c a l i n cross-

section and gradually tapering along t h e i r length. The dendritic 

f i e l d outline of the H3-type horizontal c e l l i s t y p i c a l l y elongated 

to fusiform i n shape only occasionally c i r c u l a r (Figs. 16-20, Plate 

7, and Fig. 21, Plate 8). The dimensions of the H3-cell dendritic 

f i e l d measure on average 104 x 125 ym i n diameter and thus this c e l l 

has the greatest dendritic f i e l d of the three perch horizontal c e l l s 

(see Table 5.1). 

I n the flat-mount preparations and i n 20 ym thick sections 

(Figs. 16-20, Plate 7) the Golgi-impregnated H3-type c e l l i s easily 

distinguished from HI- and H2-type horizontal c e l l s by the 
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c h a r a c t e r i s t i c a l l y long and slender appearance of the perikaryon and 

dendrites, and by the r e l a t i v e l y few dendritic processes radiating 

from the sclerad surface. 

Both c e l l s i n Figure 35 (Plate 17) of the contiguous pair were 

p o s i t i v e l y i d e n t i f i e d as H3-cells. The centre to centre distance 

between Golgi impregnated H3 pairs i s 75 to 80 ym or approximately 

four mosaic un i t s . Typically, one or two dendrites appear contiguous 

and two to three cones are i n mutual contact with dendritic proces­

ses from both c e l l s . 

Only a few H3-type horizontal ce l l s have been seen to possess 

an axon, an example of ̂ i c h i s shown i n Figure 23 (Plate 9). The 

axon arises from a dendrite and i s similar i n appearance to the 

H2-t5^ axon. However, the H3 axon (Fig. 23, Plate 9) i s clearly 

running obliquely i n the horizontal c e l l layer, before disappearing 

from view. The axon does not make contact with photoreceptors, and 

an axon terminal was not observed. 

I n v e r t i c a l view (Figs. 22-24, Plate 9) the H3-cell body i s 

maximally about 6 to 7 pm i n thickness and i s at a distance of about 

8 to 10 ijm from the outer plexiform layer. The dendritic processes 

ari s i n g from the peripheral part of the c e l l usually run more ob­

li q u e l y towards the outer plexiform layer, comparedwiththose.arising 

from the c e l l centre which take a more direct course (Fig. 22, Plate 

9). I t i s usual for the dendritic processes of the H3-cell to run 

fo r some distance tangentially i n the outer plexiform layer before 

they terminate i n a cone pedicle (Fig. 24.b, Plate 9). The terminal 

clusters of the H3-type cell s appear similar to the H2-type terminal 

endings. 
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5.5. Horizontal-receptor c e l l contact. 

Several examples of each type of Golgi impregnated horizontal 

cells frcm f l a t , whole-momted perch retinas were s e r i a l l y sectioned 

i n the horizontal plane at 1.0 ym thickness, and examined with a 

l i g h t microscope. The cones that contact the stained horizontal 

c e l l s were i d e n t i f i e d by t h e i r position i n the cone mosaic. The 

pattern of the horizontal c e l l terminals was also studied i n 20 ym 

t h i c k horizontal sections. I n favourable 20 ym sections the plane of 

sectioning often separated the c e l l body fran the terminal endings 

so that each could be observed i n adjacent sections. I n t h i s way the 

pattern of termination of the dendritic processes was not obscured 

by the densely stained c e l l body and the terminal pattern could be 

compared with the photoreceptor mosaic. The results are summarized 

i n Table 5 . I I . 

5.6. H l - c e l l contact. 

The pattern of dendritic processes arising from the Hl-cell can 

be seen i n favourable 20 ym sections (Figs. 25-27, Plate 10). From 

the pattern of the terminals seen i n 20 ym horizontal sections i t 

was d i f f i c u l t to be certain of the precise connections with cones, 

when compared with the mosaic of cone photoreceptor terminals. 

However, the best correspondence between H l - c e l l terminals and the 

cone mosaic requires that the H l - c e l l makes contact indiscriminately 

w i t h a l l the cones wi t h i n reach. This conclusion i s supported by 

observations from v e r t i c a l 1.0 ym sections through the Hl - c e l l 

(Figs. 5.a-f, Plate 3), where the Hl - c e l l terminals appear to i n -

vaginate a l l cone pedicles w i t h i n reach. These results were v e r i f i e d 
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by analysis of horizontal 1 ym s e r i a l sections. 

The numbers of cones contacted by the dendritic processes of 

Hl-cells were counted i n reconstructions of a t o t a l of 17 cells from 

1 ijm horizontal sections (Figs. 28.a-f, Plate 11, and Figs. 29.a-e, 

Plate 12). The mean numbers of double (red) and single (green) cones 

contacted by a single H l - c e l l were 13.5 (±3.4) and 2.5 (±0.5) 

respectively (Table 5 . I I ) . Figure 30 (Plate 13), shows an actual 

observation of the H l - c e l l contact pattern as revealed by recon­

stru c t i o n . Since, i n some cases, the Golgi impregnated Hl-cells were 

accompanied by other Golgi impregnated horizontal cells (Figs. 

29.a-e, Plate 12), the t o t a l number of cones contacted by the 

Hl - c e l l might be overestimated. There i s , however, no doubt about 

the pattern of cone contacts by Hl-c e l l s , i.e. that they make 

contact w i t h both double and single cones. 

I n 1.0 ym se r i a l horizontal sections through the Hl- c e l l (Figs. 

28, Plate 11, and Figs. 29, Plate 12) the d i s t a l (sclerad) siorface 

appears very roxagh, with an extensive plexus of appendages or 

processes. Most of the projections are 1 to 2 pm i n length and 0.2 

to 0.5 ym i n diameter, and are r a d i a l l y directed into the outer 

plexiform layer. Fewer, iisually longer, projections (some up to 10 

ym) are horizontally directed. Some of the processes appear to 

expand into a knob or bulb at the t i p (Fig. 29.d, Plate 12). 

Most of these appendages appear to end w i t h i n the outer p l e x i ­

form layer, although other processes (e.g. Fig. 29.c-d, Plate 12), 

appear to extend and make contact w i t h rods. However, an indication 

of a rod contact was observed only i n two out of the seventeen 

Hl-cells analysed. Fiarthermore, no rod connections were observed i n 
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an analysis of s i x H l - c e l l s , from 1.0 ym v e r t i c a l sections (Figs. 

5.a-f, Plate 3). I t has not been possible t o provide positive 

s t r u c t u r a l evidence f o r an exclusive rod horizontal c e l l i n t e r ­

r e l a t i o n i n perch re t i n a . 

5.7. H2-cell contact. 

The pattern of the H2-cell to cone connections was revealed i n 

favourable 20 ym thic k horizontal sections, were the Golgi impreg­

nated H2-cell body and its',:: r a d i a l l y arising dendritic processes are 

separarted i n adjacent sections (Figs. 31, 32, Plate 14). The 

sections containing the H2-cell terminals reveal i n a s t r i k i n g way 

the selective pattern of connections made by the H2-cell. The 

terminals are arranged i n a r i n g pattern, which matches the pattern 

of the double cone pedicles. The H2 horizontal c e l l therefore 

appears to be exclusively associated with double cones. This 

conclusion was v e r i f i e d by analysis of 1.0 ym se r i a l sections of 52 

Golgi impregnated H2-cells (Figs. 33, Plate 15). 

Careful reconstruction of the pattern of innervation of the 52 

H2-cells revealed that i n no instance were any terminal processes of 

the H2-cell associated with single cones. A l l terminations were seen 

to be made i n the terminal ending of double cones (Fig. 34, Plate 

16). I n addition to the previously mentioned c e l l s , more than 60 

po s i t i v e l y i d e n t i f i e d H2-cells were examined. The number of double 

cones that an individiaal H2-cell invaginated varied between 28 and 

40, or 34.2 (±3.6) on average (Table 5 . I I ) . Not a l l the double cones 

w i t h i n the dendritic f i e l d of an individual H2-cell were associated 

w i t h the terminal endings of that c e l l (Fig. 34, Plate 16), but 
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there was no obvious pattern of s e l e c t i v i t y between members of the 

dovible cones. 

5.8. H3-cell contact. 

The H3-type horizontal c e l l i s the most d i s t i n c t i v e horizontal 

c e l l i n the f l a t momt preparations and i n thick sections. The 

r a d i a l l y orientated dendritic processes are r e l a t i v e l y few and long 

compared with those of HI- and H2-cells. Because of their length, 

they are therefore frequently separated from the c e l l body i n 20 ym 

horizontal sections and usually a l l of the Golgi impregnated 

dendritic terminals can be seen (Figs. 35-36, Plate 17). In a l l 

cases the dendritic terminals form a f a i r l y regular square or 

rhomboidal pattern which resembles the form and dimensions of the 

central single cone pattern. The H3-cells show, as the H2-cells, a 

high degree of selective connectivity. Data from reconstructions of 

21 s e r i a l l y sectioned H3-cells at 1.0 ym (Figs. 37.a^f, Plate 18) 

and from 30 H3-cells from 20 ym horizontal sections showed (Fig. 38, 

Plate 19) that there was no exception to the single cone contacts. 

The number of single cones invaginated varied from 10 to 19, with 

14.0 (±2.7) on average (Table 5 . I I ) . 

The terminal endings of the H3-cell were rather variable i n 

shape, overall size and complexity. Those arising centrally from the 

c e l l body were usually more complex and larger than those arising 

peripherally from the dendrites (Fig. 35.b, Plate 17). I t i s not 

unusual fo r two dendritic terminals from the same c e l l to invaginate 

the same single cone pedicle. Usually a l l single cones are 

invaginated w i t h i n the H3-cell dendritic f i e l d (Figs. 35, 36, Plate 

17, ard Fig. 38, Plate 19). 
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5.9. Light microscopy of (k)lgi-impregnated receptor terminals. 

The two classes of photoreceptors are readily i d e n t i f i e d i n the 

Golgi impregnated perch retina by t h e i r size and shape alone. Both 

rods and cones produce basal processes (telodendria), that ramify i n 

the outer plexiform layer (Figs. 39.a, b, Plate 20). 

With the Golgi method; s i l v e r chronate impregnation did not 

extend to the outer segment of the receptors. Most Golgi impregnated 

cones were only p a r t i a l l y impregnated, t y p i c a l l y , proximal to the 

nucleus and i n some cases the inner segment was impregnated as well. 

The rod was rarely found to be Golgi impregnated. The rod 

spherule ^ i c h measures about 1.0 to 2.0 ym i n diameter has few and 

short basal processes (Fig. 36.b, Plate 17). They appear a homoge­

nous population of similar dimensions, 1 to 3 ym i n length and less 

than 0.5 ym i n diameter. They were generally unbranched and are 

proximally directed towards the outer plexiform layer, and they have 

a terminal swelling or knob at t h e i r t i p . They do not appear to i n -

vaginate other spherules or cone pedicles. 

When the Golgi impregnated cone pedicles are viewed i n the f l a t 

mount two types of pedicle can be i d e n t i f i e d by the structural 

characteristics of t h e i r basal processes (Figs. 40-43, Plate 21). 

One type has several long and r e l a t i v e l y t h i c k basal processes, i n 

addition to shorter and f i n e r processes (Figs. 40, 41, PLate 21), 

whereas the other type has only short and frequently branched pro­

cesses (Figs. 42, 43, Plate 21). I n the 20 ym horizontal sections 

the two types could be i d e n t i f i e d by t h e i r position i n the receptor 

mosaic. The cone pedicle w i t h only short processes was i d e n t i f i e d as 

a single cone (Figs. 44.a-c, Plate 22), and the pedicle with long 
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processes was i d e n t i f i e d as a double cone (Figs. 45.a-c, Plate 22). 

5.10. Double cones. 

The doiable cone pedicle i s usually s l i g h t l y larger than the 

single cone pedicle, . - with diameters of 8.0 to 8.5 ym and 7.5 to 

8.0 ym, respectively. Each double cone pedicle forms processes which 

may be c l a s s i f i e d i n t o 3 types according to t h e i r size, i ) Long and 

r e l a t i v e l y t h i c k processes which are horizontally directed i n the 

outer plexiform layer. They can reach 30 to 35 ym i n length and 1.0 

to 1.2 ym, i n diameter. They are generally branched and have a te r ­

minal swelling at the t i p . These processes have a tendency to course 

i n a par t i c u l a r r e t i n a l direction. The double cone usually emits 2 

to 3 such processes which run p a r a l l e l and one i n the opposite 

d i r e c t i o n (Figs. 40, 41, Plate 21, and Figs. 45.a-c, Plate 22). i i ) 

Intermediate long processes that are 0.5 to 0.8 ym i n diameter and 

10 to 15 ym i n length. These are generally more frequently branched 

than the longer ones and they may have several knobs or swellings, 

i i i ) Short basal processes, are 0.1 to 0.3 ym i n diameter and 1 to 5 

ym i n length, frequently branched, and have several terminal knobs. 

They often take a more proximal course towards the external 

horizontal c e l l s (HI). However, the fi n e details are d i f f i c u l t to 

resolve i n the l i g h t microscope because of t h e i r small size. 

5.11. Single cones. ^ 

Each single pedicle emits two types of basal process (Figs. 42, 

43, Plate 21, and Figs. 44.a-c, Plate 22). i ) Short basal processes 

that are approximately 0.1 ym i n diameter and 1 t o 2 ym i n length. 
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They appear very similar to the short processes of the double cone, 

being frequently branched and with several knobs. i i ) Long basal 

processes that are 10 to 15 ym i n length and approximately 0.5 ym i n 

diam:eter. They are frequently branched w i t h a large number of 

terminal swellings. Usually these processes do not extend outside 

the mosaic u n i t . 

The basal processes losually course w i t h i n the outer plexiform 

layer (Figs. 39.a, b, Plate 20) vdiere they generally terminate 

'blind' i n the outer plexiform layer. However, a proportion of the 

longer processes both from the double and single cones leave the 

outer plexiform layer and invaginate other cone synaptic terminals. 

I n the l i g h t microscopic examinations of the f l a t mount and 20 ym 

sections, i t was not possible to establish the exact point of termi­

nation of the Golgi impregnated basal processes. The Golgi impreg­

nated cones of both types were therefore selected for further sec­

tio n i n g i n the horizontal plane at about 1.0 ym and counterstained 

w i t h t o l u i d i n e blue. The chromatic i d e n t i t y of the invaginated cones 

could r e a d i l y be i d e n t i f i e d from t h e i r position w i t h i n the receptor 

mosaic. The contacts of the basal processes that did not invaginate 

other cone pedicles could not be i d e n t i f i e d . 

5.12. Invaginating basal processes. 

Double cones: Analysis of eleven Golgi impregnated double cone 

basal processes from s e r i a l 1.0 ym horizontal sections revealed that 

they invaginate exclusively other double cone synaptic terminals 

(Figs. 46, 47, Plate 23). Each double cone invaginates 3 to 5 other 

double cones. Normally, any particular cone pedicle sends jxjist one 
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process i n t o each of the nearby pedicles, though occasionally two or 

three processes may be involved. Doiable cone processes showed a 

preference f o r cones which are i n the same position i n the mosaic, 

even though other adjacent cone pedicles were also invaginated, 

(Fig. 47, Plate 23). 

Single cones: Reconstructions of nine single cones showed that 

they were likewise selective; they invaginated exclusively double 

cones (Figs. 48, 49, Plate 24). Basal processes from each single 

cone invaginated 6 to 8 double cones. Figures 47 and 49 (Plates 23 

and 24) show acttaal reconstructions of invaginating basal processes 

of double and single cones respectively. 

The invaginating basal processes do not penetrate the synaptic 

cavity as deeply as the dendritic processes of the horizontal c e l l s . 

5.13. Electron microscopy of (?olgi-preparations. 

Selected C^olgi impregnated cel l s from 20 to 40 ym thick h o r i ­

zontal sections were sectioned further at 0.1 ym for electron micro­

scopy. I t had been observed with the l i g h t microscope that f i x a t i o n 

and i s o l a t i o n of impregnated cel l s i n this material was rather poor 

at the u l t r a s t r u c t u r a l l e v e l . However, i t was possible to confirm 

the results of the 1.0 ym s e r i a l sectioning of the interconnection 

of H2- and H3-t5rpe horizontal c e l l s w i t h double and single cones re­

spectively, and i t appears as i f the processes of H2- and H3-cells 

occupy both central and l a t e r a l position at the synaptic ribbon com­

plexes (Figs. 50, 51, Plate 25). I n addition, membrane appositions, 

that resemble 'gap jxmctions' i n other teleosts, were observed 

between adjacent horizontal cells.Reasonably isolated examples of 



107 

Golgi impregnated Hl-type c e l l s and cones could not be obtained f o r 

u l t r a t h i n sectioning, since the best material had already been used 

fo r 1.0 ym s e r i a l sectioning. Therefore electron microscopy of Golgi 

impregnated material was not attempted further. 

I n general the outer plexiform layer of the perch retina shows 

a lamellar organization i n the electron microscope, which i s com­

posed pr i m a r i l y of photoreceptor terminals. Rod synaptic terminals 

are t y p i c a l spherules and are readily i d e n t i f i e d from cones by t h e i r 

size (1 t o 2 ym) and shape (Fig. 50, Plate 25). Cone synaptic termi­

nals or pedicles measure 7 to 9 ym i n diameter. The electron micro­

scope reveals c l e a r l y the difference i n size and complexity between 

the double and single cones. Both cone types have a common synaptic 

cavity, i n t o which processes of horizontal and bipolar cel l s enter. 

The double cones contain up to eleven synaptic ribbons compared with 

seven or less i n the single cone pedicles, and the rod spherules 

contain only one synaptic ribbon. The general organization of the 

ribbon synapses, i . e . dyad and t r i a d organizations i n cones and 

t r i a d i n rods were observed, and are f u l l y consistent with e a r l i e r 

studies on the f i s h r e t i n a ( S t e l l , 1967, 1976; Scholes, 1975; 

Hapsendonck and Missotten, 1979). 
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Table 5.1. 

Dimensions ( i n ym) of perch cone horizontal c e l l s i n f l a t mounts 
and t h i c k sections. 

HI (n=32) H2 (n=86) H3 (n=46) 

Dendritic-
f i e l d 35.9 X 38.1 ym 94.1 x 108.3 ym 104.3 x 125.6 ym 
(dimensions) 

S.D. (±3.0) (±3.2) (±5.2) (±6.6) (±9.0) (±10.5) 

Cell body 13.8 x 17.2 ym 30.5 x 45.1 ym 16.6 x 37.6 ym 
(dimensions) 

S.D. (±3.1) (±3.7) (±5.2) (±6.1) (±7.7) (±9.0) 

Measurements of cone horizontal c e l l s i n f l a t mounts and i n 20 

to 40 ym thick sections. Numbers are the mean and standard deviation 

(±S.D.) of n c e l l s . Major and minor axes of dendritic f i e l d and c e l l 

body were measured. 
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Table 5 . I I . 

Input patterns of reconstructed perch cone horizontal c e l l s . 

Double cone Single cone 

Hl-type 
horizontal c e l l 13.5 2.5 
(n=17) 

S.D. (±3.4) (±0.5) 

H2-type 
horizontal c e l l 34.2 0.0 
(n=112) 

S.D. (±3.6) 

H3-type 
horizontal c e l l 0.0 14.0 
(n=51) 
(S.D.) - (±2.7) 

The numbers of cones contacted by horizontal ce l l s reconstructed 

from s e r i a l 1.0 ym sections and 20 ym thick horizontal sections. The 

numbers given are the mean number of cones contacted by n cell s and 

standard deviation (±S.D.) for n c e l l s . 
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Key to abbreviations: 

Ap: Appendage (process). 

Ax: Axon. 

CB: Cell body. 

Cbp: Cone basal process. 

Cn: Cone nucleus. 

Cp: Cone pedicle. 

De: Dendrite. 

Dp: Dendritic process. 

Dc: Double cone (red). 

HI: Hl-type horizontal c e l l . 

Hl.N: H l - c e l l nucleus. 

H2: H2-type horizontal c e l l . 

H2.N: H2-cell nucleus. 

H3: H3-type horizontal c e l l . 

H3. N: H3-1}^ nucleus. 

INL: Inner nuclear layer. 

QUA: Outer l i m i t i n g membrane. 

ONL: Outer nuclear layer. 

OPL: Outer plexiform (synaptic) layer 

PT: Photoreceptor terminal. 

Rs: Rod spherule. 

SC: Single cone (green). 

Te: Terminal ending. 
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Plate 1. • 

Light micrographs of Golgi impregnated Hl-type ho r i z o n t a l 

c e l l s . Photographed at d i f f e r e n t focal planes, from 20 ym horizontal 

sections. 

Figures l.a and l . b . Hl-type (HI) horizontal c e l l s photographed at 

the l e v e l of dendritic terminals, showing a part of the much 

larger H2-type (H2) horizontal c e l l . Note the numerous h o r i ­

zontally orientated processes or appendages r a d i a t i n g from the 

H l - c e l l . Note also the difference b'etween the Hi- and H2-terminal 

(Te) endings (arrow > ). 

Figures 2.a. and 2.b. H l - c e l l photographed at the l e v e l of i t s c e l l 

body (CB) and dendrites (De) and 2.b. showing the terminal 

endings of the de n d r i t i c processes (Dp). 

Figure 3.a. and 3.b. Shows an H l - c e l l w i t h a short axon (Ax). Note 

the silver-chromate p r e c i p i t a t i o n randomly d i s t r i b u t e d a l l over 

the tissue i n 2.a., 2.b., 3.a. and 3.b. 

Abbreviations: 

AX: Axon. 

CB: ^Cell body. 

De: Dendrites. 

Dp: Dendritic processes. 

HI: Hl-type horizontal c e l l . 

H2: H2-type horizontal c e l l . 

Te: Terminal ending. 

Markers = 20 ym. 
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Plate 2. 

Figure 4. Hl-type horizontal c e l l s , reconstiructed from l i g h t 

micrographs of Golgi impregnated c e l l s that were photographed 

s e r i a l l y at d i f f e r e n t focal planes (Section 3.2.4). 

Abbreviations as f o r Plate 1. 

Marker = 20 ym. 
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Plate 3. 

Light micrographs of Golgi impregnated Hl-type horizontal c e l l , 
s e r i a l l y sectioned v e r t i c a l l y at 1.0 ym and cotmterstained w i t h 
t o l u i d i n e bltie. 

Figures 5.a., 5.b., 5.c., 5.d., 5.e. and 5.f. Showing the HI c e l l 

nucleus (Hl.N) 5b,.dendrites (De) 5d, and terminal endings (Te) 

5e, that c l e a r l y terminate inside cone pedicles. The H l - c e l l 

dendritic processes appear to invaginate a l l cone pedicles (Cp) 

w i t h i n reach (5a, and 5e). Note the short distance between the 

c e l l perikaryon and the cone pedicle above i t s center as i n 5.a. 

and 5.b. I n 5.f. there are at least two fin e processes or 

appendages visable vAiich appear to end b l i n d i n the outer 

plexiform layer (arrow > ). A part of the much larger H2-type 

c e l l body can be seen i n 5c. A cone c e l l body can be seen i n 5a 

w i t h i t s nucle\as (Cn) and i t s f i n e process terminating i n a cone 

pedicle (Cp). Rod spherules can be seen i n 5e, that are 

ch a r a c t e r i s t i c a l l y much smaller than the cone pedicles. 

Abbreviations: Cn: Cone nucleus. 

Cp: Cone pedicle. 

Hl.N: H l - c e l l nucleus. 

H2: H2-type horizontal c e l l . 

OLM: Outer l i m i t i n g membrane. 

ONL: Outer nuclear layer. 

Rs: Rod spherule. 
Other abbreviations as on previous plates. 
Marker = 10 ym. 
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Plate 4. 

Light micrographs of Golgi impregnated H2-type horizontal 
c e l l s , from 20 ym horizontal sections, photographed at d i f f e r e n t 
focal planes. 

Figures 6.a. and 6.b. Show an H2-cell with an axon (Ax), also 

showing d e n d r i t i c processes (Dp). 

Figures 7.a. and 7.b. Two contiguous Golgi impregnated H2 c e l l s 

w i t h three dendrites i n c o n t i n u i t y , and a H3 c e l l can be seen. I n 

7.b., at least two dendritic processes from each c e l l appear to 

invaginate the same cone pedicles, (arrow > ) 

Figures 8.a. and 8.b. Note the t h i n processes or appendages (Ap) 

coursing h o r i z o n t a l l y from some dendrites. (Ba and b are not the 

same c e l l ) . 

Abbreviations: Ap: appendage or process. 

Other abbreviations as for previous plates. 

Marker = 40 ym. 
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Plate 5. 

Figure 9. H2-type horizontal c e l l s reconstructed from l i g h t 
micrographs of Golgi impregnated c e l l s that were photographed 
s e r i a l l y at d i f f e r e n t focal planes.' The dendritic processes were 
usi i a l l y unbranched, but occasionally branched processes were 
observed (arrow > ). 

Abbreviations as f o r previoias plates. 

Marker = 20 ym. 
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Plate 6. 

Light micrographs of v e r t i c a l l y sectioned, Golgi impregnated 
horizontal c e l l s . 

Figure 10.a. and 10.b. H2-type horizontal c e l l , sectioned 

v e r t i c a l l y at 40 ym, photographed at two focal planes. 

Marker = 30 ym. 

Figure 11. H2-cell, f r a n a v e r t i c a l , 40 ym section. 

Marker = 30 ym. 

Figure 12.a., 12.b., and 12.c. H2-t3rpe horizontal c e l l sectioned 

v e r t i c a l l y at 1.0 ym. Note the shape of the H2-cell terminal 

ending (Te) inside cone pedicles (Cp). 

Marker = 5 ym. 

Figure 13. Hl-type horizontal c e l l , from v e r t i c a l 40 ym sections. 

Marker = 10 ym. 

Figure 14. H2-type horizontal c e l l , from v e r t i c a l 40ym sections. 

Marker = 10 ym. 

Figure 15. H3-type horizontal c e l l , from v e r t i c a l 40 ym sections. 

The length of the horizontal c e l l s d endritic processes indicates 

the r e l a t i v e distance from the outer plexiform layer (OPL) of the 

three perch horizontal c e l l s . 

Marker = 10 ym. 

Abbreviations: OPL: CXiter plexiform layer 

H2.N: H2-cell nucleus. 

H3: H3-type horizontal c e l l . 

Other abbreviations as f o r previous plates. 
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Plate 7. 

Light micrographs of Golgi impregnated H3-type horizontal 
c e l l s . 

Figure 16. From a whole ( f l a t ) mount. 

Marker = 40 irni. 

Figure 17. Two contiguous H3-type horizontal c e l l s from the whole 

mount, two H2 c e l l s can also be seen. 

Marker = 40vim. 

Figures 18. and 19. H3-type horizontal c e l l s from 20 ym th i c k 

horizontal sections, photographed i n the plane of the c e l l body. 

Marker = 60 ym. 

Figures 20.a. and 20.b. H3-cell photographed at two focal planes. 

Fig. 20.a. at the level of the c e l l body, f i g . 20.b. at the level 

of the dendritic processes. 

Marker = 60 ym. 

Abbreviations as f o r previous plates. 
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Plate 8. 

Figure 21. H3-type horizontal c e l l s reconstructed w i t h the aid of 
s e r i a l focus photographs from 20 ym t h i c k horizontal sections, 
showing dendritic processes (Dp) and terminal endings (Te). On 
most H3 c e l l s two dendritic processes were seen to make contact 
w i t h the same cone (arrows • ) . 

Abbreviations as for previous plates. 

Marker = 20 ym. 
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Plate 9. 

Light micrographs of Golgi impregnated v e r t i c a l l y sectioned 
H3-type horizontal c e l l s . 

Figure 22. H3-t5rpe c e l l , from 40 ym t h i c k sections. Note that a 

part of a Golgi impregnated H2-cell i s v i s i b l e . 

Marker = 40 ym. 

Figure 23. Shows an H3-cell w i t h an axon (Ax), from 40 ym thi c k 

section. 

Marker = 40 ym. 

Figure 24.a. and 24.b. From 1.0 ym v e r t i c a l sections, 

counterstained w i t h toluidine blue. Figure 24.a. Shows two 

dendritic processes that appear to invaginate the same cone 

pedicle. Note the 'knob' l i k e endings on the terminal (Te). 

Figure 24.b. Shows an H3-cell dendritic process (Dp) coursing 

h o r i z o n t a l l y i n the outer plexiform layer d i s t a l t o an H l - c e l l , 

before invaginating the cone pedicle above the centre of the 

H l - c e l l . Note that an H2-cell can be seen between the H3 and HI 

c e l l s . 

Marker = 5 ym. 

Abbreviations as fo r previous plates. 
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Plate 10. 

Light micrographs of Golgi impregnated Hl-type horizontal 
c e l l s , from 20 ym horizontal sections where the c e l l body i s 
separated from the terminal endings. 
Figure 25.a. Shows the c e l l body. 

Figure 25.b. Shows the terminal endings (Te) with part of the c e l l 

body, note the rough upper surface with a number of small 

processes or appendages (Ap). 

Figure 26. Terminal endings from an H l - c e l l without c e l l body. 

Figure 27. Same as f i g . 26. Note that the receptor mosaic of double 

(Dc) and single cones (Sc) i s c l e a r l y v i s i b l e . 

Abbreviations: Dc: double cone 

Sc: single cone 

Other abbreviations as for previous plates. 

Marker = 10 ym. 
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Plate 11. 

Light micrographs of a Golgi impregnated HI-type horizontal 
c e l l , serially sectioned horizontally at 1.0 \m and counterstained 
with toluidine blue. Photographed mder o i l immersion at lOOx 
magnification. 

Figure 28.a. A section through the c e l l perikaryon. 

Figure 28.b., 28.c. and 28.d. Showing a part of the c e l l body and 
invaginated cone pedicles, note the rod spherules (Rs). 

Figure 28.e. and 28.f. Show sections through the plane of the cone 
pedicles and outer plexiform layer, note that the HI c e l l clearly 
makes contact with both double (Dc) and single cones (Sc). 

Abbreviations as on previous plates. 
Marker = 5 ym. 
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Plate 12. 

Light micrographs of Golgi impregnated HI- and H2-type hori­
zontal cells, serially sectioned horizontally at 1.0 ym and counter-
stained with toluidine blioe. 

Figure 29.a. and 29.b. Show sections through the c e l l bodies of HI 
and H2 cells. Note the regular distance between Hl-cell nuclei 
that are visible around the Golgi impregnated c e l l i n 29b. 

Figures 29.c, 29.d. and 29.e. Show sections through the outer 
plexiform layer and the cone pedicles. Note the large number of 
Golgi impregnated appendages and processes above the Hl-cell i n 
29.c, and that both double and single cones appear to be 
contacted by the HI c e l l and rods as well, 29d. Some of the 
horizontally directed processes appear to end i n a knob or a bulb 
at the t i p 29d (arrow — ) . 

Abbreviations: FT: photoreceptor terminals. 
Other abbrevfetions as on previous plates. 
Marker = 10 ym. 
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Plate 13. 

Figure 30. Perch Hl-type horizontal c e l l and i t s cone contacts. 
Horizontal projections reconstructed from serial 1 ym horizontal 
sections. Outlines of the cell bodies are drawn. Cone pedicles 
are represented as circles. Double cones, 'oo', and single cones, 
'o'. Filled circles, represent cones which are contacted, while 
open circles represent cones which were not contacted by the 
Hl-cell. Note that the figure is not drawn to scale for c l a r i t y . 

Abbreviations as on previous plates. 
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Plate 14. 

Light micrographs of Golgi impregnated H2-type horizontal 
cells , from 20 ym horizontal sections where the c e l l body is 
separated from the terminal endings. 

Figure 31.a. and 31.b. Adjacent sections of the same c e l l . Fig. 
31.a. shows the cell body and 31.b. the terminal endings. Note 
that a part of the receptor mosaic is visible and that only the 
double cones appear impregnated. 

Figure 32.a. and 32.b. Same as f i g . 31. Fig. 32.a. shows the 
H2-cell body and 32.b. shows the terminal endings. Note that the 
terminal pattern forms a circle. Golgi impregnated cones with 
their basal processes (C.bp) can be seen. 

Abbreviations: C.bp. = cone basal processes. 
Other abbreviations as on previoxis plates. 
Marker = 40 ym. 
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Plate 15. 

Light micrographs of two Golgi impregnated H2-type horizontal 
cells, serially sectioned horizontally at 1.0 ym and counterstained 
with toluidine blue. 

Figure 33.a. Shows the proximal parts of H2-cells at the level of 
H3-t3rpe horizontal cells and bipolar cells. 

Figure 33.b. and 33.c. Photographed at the level of their cell 
bodies. 

Figure 33.d. Photographed at the level of the Hl-type horizontal 
cells. Note the regular space between Hl-cell nuclei. 

Figure 33.e. Shows the dendritic processes i n the outer plexiform 
layer. 

Figure 33.f. At the level of the cone terminals, showing clearly 
that the H2-cell contacts exclusively the double cones. 

Abbreviations as for previous plates. 
Marker = 20 ym. 
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Plate 16. 

Figure 34. Perch H2-type horizontal c e l l and i t s cone contacts. 
Horizontal projection reconstructed from serial 1.0 ym horizontal 
sections. Outlines of the c e l l body are drawn. Cone pedicles are 
represented as circles (See Fig. 30, Plate 13). Fille d circles 
represent cones which are contacted and open circles represent 
cones that were not contacted by the H2-cell. The figure is not 
drawn to scale. 
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Plate 17. 

Light micrographs of two Golgi impregnated H3-type horizontal 
cells , from 20 ym horizontal sections where the c e l l body is 
separated from the terminal endings and each can be observed i n 
adj acent sections. 

•Figure 35.a. Two H3-type cell bodies simultaneously impregnated. 
Note that two to three dendrites appear contiguous. 

Figure 35.b. Their terminal endings. Note the regular square or 
rhombic pattern. 

Figure 36.a. At the level of the H3-cell perikaryon. 
Figure 36.b. I t s terminal endings. Note the Golgi impregnated rod 

spherule (Rs). 
Abbreviations as on previous plates, 
t'larker = 40 ym. 
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Plate 18. 

Light micrographs of Golgi impregnated H3-type horizontal 
cells. Serial 1.0 ym horizontal sections, counterstained with 
toluidine blioe. Figures 37.a. to 37.f. are i n sequence from proximal 
to distal (sclerad). 

Figure 37.a. The proximal part of the H3-cell showing the inner 
nuclear layer with the bipolar c e l l nuclei. Note that i t s nucleus 
is visible. 

Figure 37.b. Section through the middle of i t s c e l l body with the 
nucleus (H3.N). 

Figure 37.c. At the level of H2-cell bodies. Note the difference 
i n size between the stained H3-cell body and H2-cell perikaryons 
around i t , this indicates that there is an overlap between the H2 
and H3-cell layers. 

Figure 37.d. At the level of the Hl-type horizontal cells, where 
only dendritic processes of the H3-cell are visible. 

Figure 37.e. and 37.f. At the level of cone pedicles showing 
clearly that they exclusively contact central single cones. 

Abbreviations: H3.N: H3-type horizontal c e l l nucleias. 
Other abbreviations as for previous plates. 
Marker = 20 ym. 
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Plate 19. 

Figure 38. Perch H3-type horizontal c e l l and i t s cone contacts. 
Horizontal projection reconstructed from s e r i a l horizontal 1.0 ym 
sections. Outlines of the c e l l body are drawn. Note that the 
fig u r e i s not drawn to scale. 

Representations as f o r Plates 13 and 16. 
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Plate 20. 

Light micrographs of a Golgi impregnated cone. Fran v e r t i c a l 40 
ym t h i c k sections photographed at d i f f e r e n t focal planes showing the 
basal processes. 

Figure 39.a. Showing basal processes ra d i a t i n g h o r i z o n t a l l y i n the 

outer plexiform layer. One appears to leave the outer plexiform 

layer and terminate at the plane of the cone pedicles, f i l l e d 

arrow ( • ) . While others end i n the outer plexiform layer 

proximal t o the cone pedicles, open arrow ( t = " ) . Other basal 

processes have a more v e r t i c a l d i r e c t i o n (>). 

Figure 39.b. Shows horizontally directed basal processes (arrow 

• ) , which are shorter and thinner than those i n f i g . 39.a. 

Marker = 10 ]m. 
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Plate 21. 

Light micrograps of Golgi impregnated cones, photographed from 
the f l a t mount r e t i n a . 

Figures 40. and 41. Cones wit h two t3rpes of basal processes, long 

and t h i c k ( f i l l e d arrows) on the one hand, and shorter and 

thinner ones (open arrows) on the other. These were i d e n t i f i e d as 

double cones. 

Figures 42. and 43. Cones that i n the f l a t mount appear to have a 

homogenous population of basal processes, a l l are of similar 

appearance w i t h numerous knobs and of similar thickness and 

length. These were i d e n t i f i e d as single cones. 

Marker = 20 ym. 
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Plate 22. 

Light micrographs of Golgi impregnated cones. From 20 pm t h i c k 
horizontal sections, photographed at d i f f e r e n t focal planes. 
Figures 44.a., 44.b. and 44.c. A single cone and i t s basal 

processes. 

Figures 45.a., 45.b. and 45.c. A. double cone and i t s basal 
processes. 

Marker = 10 ym. 
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Plate 23. 

Light micrographs of Golgi impregnated double cone. 

S e r i a l l y sectioned h o r i z o n t a l l y at 1.0 ]m and counterstained 

w i t h t o l u i d i n e blue. 

Figure 46.a. Shov/es basal processes i n the outer plexiform 

layer. 

Figure 46.b., 46.c, and 46.d. Show invaginating basal 

processes. Note that the cone has a common apperture and 

that only other double cones appear invaginated. 

Marker = 20 ym. 

Figure 47. Pattern of cone-cone connections reconstructed 

from s e r i a l 1 ym sections. Invaginated cone pedicles are 

marked by a f i l l e d square, the Golgi impregnated cone 

pedicle i s marked by a f i l l e d c i r c l e (•), double cones 

(Dc) and single cones (Sc). The fig u r e i s not drawn to 

scale. 
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Plate 24. 

Light micrographs of Golgi impregnated central single 
cone. S e r i a l l y sectioned h o r i z o n t a l l y at 1.0 ym and counter-
stained w i t h t o l u i d i n e blue. 

Figures 48.a., 48.b., 48.c, and 48.d. Note that basal 

processes from the single cone ' can only be seen to 

invaginate double cones. 

Marker 20 ym. 

Figure . 49. Pattern of cone-cone connections reconstructed 

from s e r i a l 1 ym horizontal sections. Invaginated cone 

pedicles are marked by a f i l l e d square, the Golgi 

impregnated cone pedicle i s marked by a f i l l e d c i r c l e 

(•), double cones (Dc) and single cones (Sc). 
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Plate 25. 

Electron micrographs of u l t r a t h i n horizontal sections through 

photoreceptor terminals. 

Figure 50. Shows the dendritic processes of Golgi impregnated 

H2-t3rpe horizontal c e l l . Note that terminations of the H2 c e l l 

contact only double cones (Dc), which surround a single cone. 

Marker = 5 ym. 

Figure 51. Dendritic termination of an H3-t5rpe horizontal c e l l , 

contacting a single cone (Sc). 

Abbreviations as for previous plates. 

Marker = 2 ym. 
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6.2.2. Receptive f i e l d s . 

Receptive f i e l d size was determined by the dependence of 

response amplitude upon the diameter of a centred-, spot of l i g h t , 

flashed at constant i n t e n s i t y l e v e l . Figure 6.4 shows the r e l a t i o n ­

ship between peak amplitude and stimulus diameter when the intensity 

was selected so that the largest diameter stirauliis would evoke a re­

sponse of about half-maximum (l/2Vmax) amplitude, and for compar­

ison, showing the relationship when using higher intensities \jhich. 

evoked responses of approximately maximum amplitude (V. max) for a 

large diameter spot. No difference was observed between white or 

monochromatic red and green l i g h t s when compared as V/\toax for 

d i f f e r e n t amplitude responses (Fig. 6.5). The curve shows that t h i s 

c e l l has a uniform receptive f i e l d of 5 imi i n diameter. Similar 

results were obtained from 6 other L-type horizontal c e l l s , which 

showed homogenous receptive f i e l d size, ranging from 4 to 5 mm. 

The spread of potential along the conducting layer of cells i s 

characterized by the space constant. I n cable theory, the space con­

stant i s the distance over which the potential spreading passively, 

decreases to l/e(Voj ( i . e . exponential), where Vo = voltage at 

o r i g i n . I n t h e i r work Naka and Rushton (1967) assumed that the 

system of horizontal c e l l s behaves as a continuous two-dimensional 

network. However, Lamb (1976) showed, by using a long bar ( s l i t ) of 

l i g h t , that the complex two-dimensional voltage d i s t r i b u t i o n was 

reduced to a single one-dimensional exponential, from which the 

space constant could easily be measured. Figure 6.6.a shows the 

L-type peak response plotted as a function of displacement of a long 
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narrow s l i t or bar of ligh t . In figure 6.6b straight lines have been 
f i t t e d to the points on the semilogarithmic plot to test the 
exponential decay as predicted by Lamb's (1976) model for low light 
intensities. The lines provide a reasonable f i t to the points and 
correspond to a length constant of 250 pm. Increasing the light 
intensity Ky 0.5 log unit, caxased a change i n length constant from 
250 ym to 385 jjm or an increase of 35.IX. 

6.2.3. Spectral response properties. 

To lig h t stimuli of a l l wavelengths,, the response waveform of 
the L-t3rpe horizontal c e l l , i n i t s timecourse, consists of a rapidly 
hyperpolarizing i n i t i a l (rising) phase, to peak amplitude followed 
by a return to a less hyperpolarized level, here termed late phase 
or plateau (Figs, l.a-c). The peak/plateau waveform is not observed 
at low amplitude responses and at maxinMi (saturating) amplitude 
(Figs. 1. a-c). At the termination of the flash, the membrane 
potential returned rapidly to the level observed prior to illvmina-
tion (Fig. 1). 

The response waveforms of the L-type cell of equal peak ampli­
tude d i f f e r , when compared, according to the stimulus wavelength. 
The rapidly hyperpolarizing i n i t i a l (rising) phase of the response, 
however, showed a similar time-course when responses of equal 
amplitude of different wavelengths were compared (Fig. 6.7). Figure 
6.7 illustrates the i n i t i a l phase of the response of a dark adapted 
L-type c e l l to various wavelengths of red and green lights of 
various amplitudes, with each pair of stimuli adjusted in intensity 
to e l i c i t responses of equal amplitude. The late phase (plateau) of 
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the L-t3rpe response waveform, however, differed markedly when 
eli c i t e d by shorter (<550 nm) as opposed to longer (>600 nm) 
wavelength stimuli. Figure 6.8 shows superimposed responses of eqiial 
peak amplittide of a dark adapted L-type cell to red and green 
flashes. Responses to the 526 nm (green) flash have a less 
hyperpolarized late phase (plateau) than the responses to 651 nm 
(red) flash, and the latter is slightly slower in the returning 
phase than the response of the green-blue flash. For small amplitude 
responses (Fig. 6.8) the differences between red and green flashes 
are minimal and have a similar time-course and duration. 

This dependence of response waveform on stimulus wavelength was 
observed i n a l l cells studied, and may indicate that L-cells receive 
inputs from more than one type of photoreceptor. 
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Figure 6.1. 

Superimposed response of L-type horizontal c e l l to 0.5 sec 
duration flashes of different intensities. 
Figure 6.1.a. White l i g h t . 

Figure 6.1.b. Monochromatic red (674 nm) l i g h t . 
Figure 6.I.e. Monchromatic green (526 nm) l i g h t . 

The li g h t intensity was increased i n approximately 0.25 log unit 
steps. 
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Figure 6.2. 

The response amplitude of L-type horizontal c e l l -plotted as a 
function of the logarithm of lig h t intensity. 
Figure 6.2.a. The figure shows linear relationships except at high 

and low amplitude. 
Figure 6.2.b. Linear plot on double logarithmic -scale reveals that 

the relationship is linear at low amplitude responses.. 
Stimulus white l i g h t of 5 mm spot diameter and 0.5 'sec i n duration. 
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Figure 6.3. 

Relation between relative amplitude of the L-type response and 
stimulus intensity. The smooth curve V/Vmax = 1^/1^ + c r " (where n = 
1.5) (see text) gives the best visual f i t of the L-type V-logI 
relationship. 
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Figure 6.4. 

Relation between response amplitude and stimulus diameter for 
L-type horizontal cells. Top, superimposed responses to white, red, 
651 nm, and green, 550 nm flashes. Intensity for each stimuliis was 
adjusted to evoke half maximum or 2\feiax amplitude response, with a. 5 
mm spot diameter. Solid circles represent white l i g h t of maximum 
amplitude (Vmax) for 5 mm spot diameter. See text for details. 
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Figure 6.5. 

The data from figure 6.4. plotted as a relative response 
amplitude against spot diameter. Smooth curve drawn by eye as best 
f i t to points. 
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Figure 6.6. 

Responses of L-type horizontal c e l l as a function of displace­
ment of a narrow (80 ym) s l i t . Peak hyperpolarization is plotted a) 
linearly and b) logarithmically against s l i t position. 
Figure 6.6.a. The broken top has been drawn by eye. 
Figure 6.6.b. Straight lines have been drawn by eye to f i t the 

points. 

Flash delivered 2.0 x 10^ photons ym"̂  for white l i g h t of 0.5 sec i n 
duration. 
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Figure 6.7. 

Oanparison of the rising phase of response waveforms to flashes 
of various wavelengths recorded frcm a dark adapted L-tjrpe 
horizontal c e l l . Stimuli were matched i n intensity so as to e l i c i t 
responses of equal amplitude. Top trace; response to 704 nm (logi = 
3.2) flash (dotted curve), and 585 nm (logI = 3.6.) flash (solid 
curve). Middle trace; responses to 651 nm (logI =3.5) flash (dotted 
curve), and 526 nm (logI = 4.5) flash (solid curve).Bottom trace; 
responses to 704 nm (logI = 4.5) flash (dotted curve) and 514 nm 
(logI = 5.3) flash (solid curve). 
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Figure 6.8. 

Comparison of response waveforms of a dark adapted L-type 
horizontal c e l l . Stimuli were varied i n intensity so as to e l i c i t 
responses of equal peak amplitude. 

Figure 6.8.a. Shows responses to 687 nm (logi = 2.5) and 526 nm 
(logi = 3.4) flashes. 

Figure 6.8.b. Shows responses to 651 rm (logi = 3.0) flash (solid 
curve) and 514 nm (logi =3.7) flash (dotted cuxve). 

Figure 6.8.C. Shows responses to 651 nm (logi =3.3) flash (solid 
curve) and 526 nm (logi = 4.3) flash (dotted curve). 

Figure 6.8.d. Shows responses to 651 nm (logi =3.5) flash (solid 
curve) and 493 nm (logi = 4.6) flash (dotted curve). 
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6.2.4. Spectral analysis. 

The response amplitude, V, was measured electrophysiologically 
as a function of the logarithm of the stimulus intensity, I , for 
various wavelengths at approximately 20 nm intervals i n the wave­
length range fron 450 nm to 704 nm. This was done in two waysri) the 
v^eels carrying the neutral density f i l t e r s were rotated i n steps 
from low to high intensity for each interference f i l t e r o r , i i ) the 
wheel carrying the interference f i l t e r s was rotated from one wave­
length to the next for each intensity level, the light intensity was 
then increased when a l l interference f i l t e r s had been tested, and 
the proceedure repeated for each light intensity level. (Generally the 
f i r s t method was losed, the second method being used occasionally for 
ccmparison. 

Figure 6.9.a illvistrates the V-logI relationship of an L-unit 
for a series of wavelengths fron 704 nm to 514 nm, when the maximum 
amplitude (peak amplitude) of the response was measiared. The L-type 
V-logI curves for different wavelengths are parallel (self-similar, 
Sirovich and Abramov, 1977) over the whole dynamic range of the 
response (Fig. 6.9.b). Furthermore, V-logI curves constructed for 
the i n i t i a l (rising) phase (Fig. 6.10) and for the late (plateau) 
phase (Fig. 6.11) at 200 and 500 msec respectively, after the flash 
onset, were also found to be parallel. V-logI 
relationships were fomd to be parallel i n t h i r t y L-units studied 
for a l l wavelengths. 

The L-type horizontal c e l l seems to respond according to the 
principle of univariance (Naka and Rushton, 1966a, b), which states 
that the signal from a photoreceptor depends only upon the rate at 
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which i t is effectively absorbing quanta, i t does not depend upon 
the associated wavelength. Thus, i f an S-potential unit is driven by 
a single cone type, then the V-logI^curves, generated i n response to 
different monochromatic lights, should be self-similar (parallel) 
but shifted horizontally along the logi axis. In addition, the 
response waveform should be identical in shape to stimuli of a l l 
wavelengths. 

The L-type horizontal c e l l in perch behaves as would be 
expected of a ce l l obeying univariance from the parallel V-logI 
curves and as does the similarity of the i n i t i a l phase kinetics. 
However, the late phase deviates from the univariant response. 

6.2.5. Spectral sensitivity curves. 

Spectral sensitivity curves were constructed from the V-logI 
curves. The sensitivity was defined as the reciprocal of the light 
intensity giving rise to an ar b i t r a r i l y determined criterion re­
sponse amplitude and plotted as a function of wavelength to provide 
the spectral sensitivity curves. Usually two criterion amplitudes 
were chosen from the linear part of the V-logI curves at approxi­
mately 1/2 (l/lVmax.) and 1/3 (l/3\toax) of maximum amplitude for com­
parison. 

The spectral sensitivity curves of a l l L-type cells studied 
showed a maximum at 650 nm. A mean spectral sensitivity curve of 30 
L-units was constructed for l/2Vmax criterion amplitude (Fig. 6.12). 
(xxnparison of spectral sensitivity curves constructed from different 
c r i t e r i a amplitudes (l/2Vmax and l/3Vmax) were identical, as 
expected from parallel V-logI curves (Fig. 6.13). Thus, the shape of 
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the spectral sensitivity ciorve did not vary with the amplitude of 
the c r i t e r i o n voltage. Figure 6.14 shows that the spectral sensitiv­
i t y curves determined at the rising phase (200 msec), peak (250 
msec), and plateau (500 msec) respectively, were almost identical 
over the entire spectral range. This is what can be expected from 
the univariant rising phase, but the observed differences i n the 
late phase of the response did not appear to affect the shape of the 
spectral sensitivity curves. 

The L-cell spectral sensitivity curve reached a maximum at a 
wavelength of 650 nm and is therefore shifted towards the long 
wavelength end of the spectrum when compared with the red cone 
photopigment (Fig. 6.15) which has a maximum absorption at a wave­
length of 615 nm (Loew and Lythgoe, 1978). In additon^the shape of 
the L-type spectral sensitivity curve is narrow when compared with a 
hjrpothetical photopigraent, constructed from Ebrey and Honig's (1978) 
nomogram, of the same absorption peak (Fig. 6.16). 

In perch only two types of cone photoreceptors have been 
observed (Engstrora, 1963; Ahlbert, 1969); double and single cones 
containing red and green absorbing photopigments (ilmax 615 and 535 
nm) respectively, as detected by microspectrophotometry (Loew and 
Lythgoe, 1978). I t may be assumed that the L-type spectral sensi­
t i v i t y arises as the result of interaction between signals from the 
red sensitive double cone and the green sensitive single cone, since 
a photopigment with an absorption maximum at 650 nm has not been 
detected i n the perch retina and the observation that the L-type 
spectral sensitivity curve is much narrower than a hypothetical 
photopigment. 
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Figure 6.9. 

Relation between response amplitude and the logarithm of the 
lig h t intensity (V-logI) curves of a dark adapted L-type c e l l . 
Response amplitudes were measured at peak amplitude, at approxi­
mately 250 msec after the flash onset. 

Figure 6.9.a. V-logI ciorves for various wavelengths. Key: 1 = 704 
nm; 2 = 687 nm; 3 = 674 nm; 4 = 651 nm; 5 = 630 nm; 6 = 608 nra, 7 
= 585 nm,- 8 = 571 nm; 9 = 550 nm; 10 = 526 nm; 11 = 514 nm. (The 
V-logI CTirves for 450 to 493 nm were omitted for c l a r i t y ) . 

Figure 6.9.b. The V-logI curves frcm a) have been adjusted 
late r a l l y to show their self-similarity. 
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Figure 6.10. 

V-logI curves of the L-type c e l l (the same as i n figure 6.9) 
measured at the rising phase, at approximately 200 msec after the 
flash onset. 

Figure 6.10.a. V-logI curves for varioiis wavelengths. Key as i n 
f i g . 6.9. 

Figure 6.10.b. The V-logI ciorves have been adjusted laterally to 
show their self-similarity. 
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Figure 6.11. 

V-logI curves of the L-type c e l l (the same as i n figures 6.9 
and 6.10) measured at the late phase (plateau), at approximately 500 
msec after the flash onset. 

Figure 6.11.a. V-logI curves for various wavelengths. Key as i n 
f i g . 6.9. 

Figure 6.11.b. The V-logI curves have been adjusted laterally to 
show their self-similarity. 
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Figure 6.12. 

Spectral sensitivity of dark adapted L-type horizontal cells. 
The circles are average values from 30 cells; vertical bars show the 
standard deviation of the mean. The curve is based on a criterion 
response of 50% maximum amplitiade (|Vmax) from peak amplitude 
responses. 
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Figure 6.13, 

Spectral sensitivity of dark adapted L-type horizontal cells 
comparing two criterion levels; crosses are |Vmax and open circles 
represent l/3Vmax. The points are the average of 30 L-type cells, 
based on peak amplitude responses. 
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Figure 6.14. 

Spectral sensitivity curves from a dark adapted L-type 
horizontal c e l l , determined at the i n i t i a l phase (200 msec) open 
circles, peak (250 msec) (solid circles), and late phase (500 msec) 
(crosses). Criterion response | maximum amplitude. 
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Figure 6.15. 

Comparison of dark adapted L-type spectral s e n s i t i v i t y ciorve 
(open c i r c l e s ) , w i t h the absorption ciorve of perch red (P6I52) cone 
photopigraent ( s o l i d l i n e ) , from microspectrophotometry study by Loew 
and Lythgoe (1978), as printed by Lythgoe (1979). 
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Figure 6.16. 

Comparison of L-type c e l l spectral s e n s i t i v i t y curve (open 

c i r c l e s ) w i t h a hypothetical pigment of the same max (650 nm) con­

structed from Ebrey & Honig (1977) nomogram ( s o l i d c i r c l e s ) . 
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6.2.6. Effects of chromatic adaptation. 

I n order to test whether the unusual spectral s e n s i t i v i t y of 

the L-unit arises from the interaction of signals derived from two 

d i s t i n c t photoreceptor types, the responses of the L-units were 

examined under chromatic background adaptation. I f the spectral 

s e n s i t i v i t y of the L-unit results from an interaction between 

signals from the red and green sensitive cones then i t would be 

expected that chromatic background adaptation would alter the 

balance of inputs to the L-unit, leading to a change i n i t s spectral 

s e n s i t i v i t y . I f , however, the L-cells respond as i f they were driven 

by a single pigment (A max = 650 nm), chromatic adaptation should 

not change the spectral s e n s i t i v i t y curve. 

Figure 6.17 i l l \ i s t r a t e s the time-course of changes i n membrane 

pot e n t i a l of a representative L-type horizontal c e l l after exposing 

the r e t i n a to bright (saturating) background l i g h t ( l o g i = 0) which 

hyperpolarized the c e l l by 50 mV (Vmax). Under steady background 

i l l u m i n a t i o n the membrane potential showed a p a r t i a l recovery of 40 

mV a f t e r 30 minutes, reaching a steady level at 10 mV more negative 

than the membrane potential before the background onset (Fig. 6.17). 

Figure 6.18 i l l u s t r a t e s V-logI curves taken at various time 

periods a f t e r onset of the background illumination. The c e l l ' s 

maximum response amplitude continued to increase for 25 minutes 

(Fig. 6.18), q u a l i t a t i v e l y similar to the recovery of the resting 

p o t e n t i a l . Figure 6.19 shows that the s e n s i t i v i t y , which was defined 

as a 3 mV response, has reached a steady level after 10 minutes. 

Comparison of the dark adapted response waveform with the l i g h t 

adapted waveform of equal amplitude (Fig. 6.20), reveals that the 
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l i g h t adapted response has a shorter latency (40 msec) and faster 

r i s i n g phase (100 msec faster to peak amplitude) than the dark 

adapted response of the same c e l l . 

Under intense (saturating) background illu m i n a t i o n the c e l l did 

not i n i t i a l l y respond to additional i l l u m i n a t i o n of any wavelength 

and, as a r u l e , the spectral s e n s i t i v i t y was measured after 

approximately 25 minutes of steady background to allow the c e l l to 

recover. Changes i n response waveform depend not only on the 

i n t e n s i t y and the wavelength of the background l i g h t , but also on 

the i n t e n s i t y and wavelength of the t e s t f l a s h (Figs. 6.21.a-c). I n 

the dark a small depolarization (1.0 mV) could be detected after the 

f l a s h o f f s e t , i.e. overshoot from the resting potential or an o f f 

response, for blue-green l i g h t s of wavelengths shorter than 571 nm 

(Fig. 6.22a). Under a moderate (LogI=5.22) blue background 

i l l u m i n a t i o n no depolarization ( o f f response) can be detected (Fig. 

6.21.a). On the other hand, the o f f response was enhanced to an 

amplitude of 3 mV under a moderate (Logl=6.40) red background 

(Fig.6.21.b). Under an intense (LogI=7.25) red backgromd the L-cell 

showed a depolarizing response to flashes of r e l a t i v e l y low 

(LogI=4.5) l i g h t i n t e n s i t i e s (Fig. 6.21.c). Higher (LogI=5.5) l i g h t 

i n t e n s i t i e s produced a hyperpolarization w i t h an o f f response (Fig. 

6.21.C). In addition, under high i n t e n s i t y red background the 

depolarizing o f f response i s enhanced, i . e . reaching further i n t o 

the long wavelength part of the spectrum than when under a weaker 

red background (Figs. 6.21.b, c ) . The e f f e c t of chromatic background 

adaptation can also be seen on the change i n peak/plateau r a t i o . I n 

the dark the peak/plateau r a t i o i s s l i g h t l y higher (1.7) for 
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green-blue l i g h t than for red l i g h t (1.5) when equal amplitude 

(about l/2Vmax) responses were compared. The effect of blue 

background was observed to reduce the peak/plateau r a t i o (Fig. 

6.22.b), v^ereas the effec t of red background (Fig. 6.22.C, d) was 

to increase the peak/plateau r a t i o . This effect of chromatic 

adaptation was observed for both red and green flashes. However 

these differences are small and no differences were observed i n 

spectral s e n s i t i v i t y (Fig. 6.24). 

The response under intense red background (Fig. 6.22.d) to red 

and green flashes consists of a hyperpolarizing i n i t i a l transient 

"followed by a depolarizing plateau and o f f transient. The response 

to the green (550 nm) fl a s h (Fig. 6.22.d), however, the response 

p o l a r i t y of the plateau phase was opposite to that of the green test 

flashes i n the absence of background and with moderately intense 

background. These effects on the L-type response waveform appear to 

be caused by a green-driven antagonizing signal which, under strong 

red background, causes the small depolarization i n the platoe phase 

f o r bliae-green test flashes at lower l i g h t i n t e n s i t i e s and the ' o f f 

response at higher l i g h t i n t e n s i t i e s (Figs. 6.21.C, and 6.22.d). 

Tnese re s u l t s may suggest that a green sensitive antagonizing 

s i g n a l , presumably from the green cones, i s revealed i n the L-type 

c e l l response under chromatic adaptation. 

Figure 6.23 shows the L-cell spectral s e n s i t i v i t y when measured 

under steady red moderate and intense background illumination (peak 

transmission about 700 nm) and blue background illumination (peak 

transmission at 450 nm). Despite the observed differences i n 

response waveforms the spectral s e n s i t i v i t y of the L-type was not 



164 

s i g n i f i c a n t l y changed by chromatic background adaptation of any 

l i g h t i n t e n s i t i e s (Fig. 6.24). This indicates that the L-type cel l s 

receive input primarily from the far red (650 nm) mechanism. 

In experiments where a monochromatic s t i m u l i of red and green 

l i g h t s was held at fixed i n t e n s i t y and chromatic background was 

increased i n steps between test flashes (Fig. 6.25). In Figure 

6.25.a the deep red (687 nm) fla s h i s of fixed i n t e n s i t y , while the 

in t e n s i t y of the blue (500 nm) background i s increased i n steps and 

i n Figure 6.25.b the fla s h i s green (526 nm) with a red (700 nm) 

background also increased i n steps. In both cases the increase i n 

steady l i g h t produced an increase i n the steady hyperpolarization of 

the u n i t , which was associated w i t h a reduction i n response to the 

flas h . 
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Figure 6.17, 

Recovery of membrane potential of a L-type horizontal c e l l 

during the course of l i g h t adaptation, during exposure to saturating 

( l o g i = 5.89) blue (435 nm) background ill u m i n a t i o n . Note that the 

membrane po t e n t i a l p r i o r to the background onset was set at 0 mv. 
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Figure 6.18. 

V-logI curves f o r a L-type horizontal c e l l (the same as i n f i g . 

6.17) before and after exposure to blue (435 nm) saturating 

background i l l u m i n a t i o n . 1. dark adapted, 2. af t e r 5 min of steady 

blue background, 3. after 10 min of blue background, 4. af t e r 15 min 

of blue background and 5. after 20 min of blue backgromd. 
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Figure 6.19. 

Changes i n s e n s i t i v i t y of the same c e l l as i n figures 6.17 and 

6.18. S e n s i t i v i t y was defined as the i n t e n s i t y giving r i s e to a 3 mV 

response. Solid square represents the s e n s i t i v i t y i n the dark (Da) 

and s o l i d c i r c l e s represent the s e n s i t i v i t y a f t e r exposure to the 

blue (435 nm) steady background. 
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ô 



168 

Figure 6.20. 

Ccmparison of response waveforms of equal amplitude of an 
L-type horizontal c e l l (the same as on f i g s . 6.17 and 6.19) to a 651 
nm f l a s h ; when dark adapted, broken l i n e ( l o g I = 3.26), and s o l i d 
l i n e , a f t e r 15 min of blue (435 nm, l o g I = 5.89) background. 
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Figure 6.21. 

Responses of a L-type horizontal c e l l to 608 nm ( f i r s t row) and 
to 550 nm (second row) monochromatic flashes of increasing i n t e n s i ­
t y . Showing the effects of superimposing the 608 nm and the 550 nm 
flashes upon d i f f e r e n t backgrounds. 

Figure 6.21.a. Blue (435 nm)' background ( l o g i = 5.22). 

Figure 6.21.b. Red (700 nm) background ( l o g I = 6.4). 

Figure 6.21.C. Strong red (700 nm) background ( l o g I = 7.25). 

See text f o r d e t a i l s . 



6 0 8 nm f l a s h 550 nm f l a s h 

a . Blue Background 

b. Red Background I 
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Figure 6.22. 

Superimposed responses of a L-type horizontal c e l l (the same as 
i n figure 6.21) to monochromatic s t i m u l i ; 608 nm ( f i r s t row) and 550 
nm (second row) of increasing i n t e n s i t y , showing the e f f e c t of 
chromatic backgromds on the response waveform. 
Figure 6.22.a. Shows the dark adapted waveform. 

Figure 6.22.b. A blue (435 nm) background ( l o g I = 5.22). Note the 

reduction i n difference between the amplitude of the peak and the 

plateau. 

Figure 6.22.C. A red (700 nm) backgromd I ( l o g I = 6.4), Note here 

the increased difference i n the amplitude of the peak and the 

plateau. 

Fiugre 6.22.d. A red (700 nm) background I I ( l o g I = 7.25). Note the 

depolarizing response at lower i n t e n s i t i e s for the 550 nm f l a s h 

(second row) and the large ' o f f response for the 608 nm flash. 

(Note that the increase i n l i g h t i n t e n s i t y i s not always the same, 

i.e. 0.5 log steps were used i n 'c and d' (608 nm) and i n 'a' (550 

nm), i n . a l l others 0.25 log steps were used). 



608 nm f l a s h 550 nm f lash 
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h. Blue Background 
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Figure 6.23. 

Spectral s e n s i t i v i t y curves of an L-type horizontal c e l l , dark 
adapted ( s o l i d c i r c l e s ) and under chromatic background adaptation, 
crosses represent blue (435 nra) background ( l o g I = 5.22). Pluses (+) 
represent red (700 nm) background. 1. ( l o g I = 6.4) and open c i r c l e s 
represent the red (700 nm) background, 2. ( l o g I = 7.25) c r i t e r i o n 
response was -IVmax. 
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Figure 6.24. 

Comparison of spectral s e n s i t i v i t y curves of a L-type horizon­
t a l c e l l (the same as i n f i g . 6.21) \jhen dark adapted ( s o l i d 
c i r c l e s ) , blue (435 nm) background (crosses) ( l o g I = 5.22) and red 
(700 nm) background (open c i r c l e s ) ( l o g I = 7.25). Spectral 
s e n s i t i v i t y ctirves were measured approximately 20 min after the 
onset of background i l l i j m i n a t i o n t o allow the c e l l to recover. 
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Figure 6.25. 

Shows responses of • a L-type c e l l t o flashes of steady inte n s i t y , 
while background i l l u m i n a t i o n was increased i n 0.5 l o g I steps 
(arrows). 

Figure 6.25.a. The f l a s h 493 nm of steady i n t e n s i t y ( l o g I =5,1) 

superimposed on red (700 nm) background of increasing intensity. 

Figure 6.25.b. The steady 687 nm f l a s h ( l o g I = 4.77) was 

superimposed on an increasing blue (435 nm) background. 



a. Red background (700 nm) & 

493 nm flash. 

10 mV 

b. Blue background (435 nm) & 

687 nm flash. 
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6.3. Properties of C-type horizontal c e l l s . 

6.3.1. General observations. 

I n t r a c e l l u l a r recordings from the C-type horizontal c e l l s i n 

perch were always obtained proximal to the L-type horizontal c e l l s , 

which suggests that the C-type c e l l s comprise the most proximal 

layer of horizontal c e l l s . I n general i t was more d i f f i c u l t to pene­

t r a t e and more d i f f i c u l t to obtain stable i n t r a c e l l u l a r recordings 

from C-type c e l l s than from L-units. 

A l l the C-type c e l l s tested depolarized to red (704 nm) t e s t 

l i g h t and hyperpolarized t o green (526 nm) test l i g h t . (R/G-cell) 

(Fig. 6.26). The depolarizing and hyperpolarizing responses were 

superimposed on negative resting potentials, xasually -25 to -35 mV, 

and were siistained, l a s t i n g f o r the duration of the stimulus. Both 

hyperpolarizing and depolarizing responses were graded with l i g h t 

i n t e n s i t y . However, responses to intermediate wavelengths show com­

plex biphasic waveforms. The neutral point of the C-potential s h i f t s 

as a function of the r e l a t i v e amplitudes of hyperpolarizing and de­

pola r i z i n g components and the int e n s i t y of the. l i g h t , i.e. depolar­

i z i n g f o r lower l i g h t i n t e n s i t i e s (Fig. 6.26) and hyperpolarizing 

f o r higher l i g h t i n t e n s i t i e s . The depolarization usioally occurred 

before the hj^jerpolarization and with increasing hjrperpolarization 

the depolarizing component was reduced i n amplitude. The s t i m u l i , 

when neutral, caused no net hyperpolarization or depolarization, the 

response consists of transient responses t o both stimulus onset and 

cessation. 
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6.3.2. Spatial properties. 

The C-type c e l l has a large uniform receptive f i e l d , with no 

centre-surround organization. Figure 6.27 shows the dependence of 

response amplitude on spot diameter for red (704 nm) and green (550 

nm) test flashes. The constant l i g h t intensiy was adjusted for the 

largest diameter spot to give h a l f maxinrum (l/2\toax) amplitude 

response. The p o l a r i t y of the response i s not dependent on spot 

diameter, since . the response amplitude increased with increased 

stimulus diameter both f o r the depolarizing and the hyperpolarizing 

components (Figs. 6.27.a, b). The C-type receptive f i e l d size ranges 

from 3 to 5 mm i n diameter, depending on c e l l (Fig 6.28). 

6.3.3. Wavelength dependent responses. 

At 704 nm the response function i s a monophasic depolarization 

for a l l i n t e n s i t i e s tested (Fig. 6.26.a), whereas at 687 nm (Fig. 

6.29.a) and 651 nm (Fig. 6.26.b) the response function i s monophasic 

for less than 2 log m i t s above threshold. At higher intensities the 

depolarizing response becomes increasingly antagonized by the hyper-

polarizing response which, when large enough, results i n a complex 

biphasic response. At 630 nm (Fig 6.29.b) the depolarization i s 

reduced to a on transient and i s observed only at lower l i g h t i n ­

t e n s i t i e s , j u s t above threshold, but at higher l i g h t intensities the 

c e l l hyperpolarized. At shorter wavelengths, however, only mono­

phasic hyperpolarizations were observed (Fig. 6.26.c). 

In general, the maximum response amplitude of the hyperpol arizing 

mechanism exceeded the maximum depolarizing response amplitude by a 
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factor of 2 to 5. However, the R/G cells were variable and i n a few 

extreme cases, R/G-cells were observed which showed very weak 

depolarizing responses and could be mistaken for green-sensitive 

L-type c e l l s , 

6.3.4. Spectral s e n s i t i v i t y . 

Spectral s e n s i t i v i t y curves and V-logI curves were constructed 

for C-type horizontal c e l l s by the same method as was described i n 

section 6.2. The V-logI curves for the hypefpolarizing and depolar­

i z i n g responses were not p a r a l l e l and the same fixed template would 

not describe them a l l (Figs. 6.30.a, b). However, at wavelengths 

shorter than 600 nm the V-logI curves for the hyperpolarizing 

responses showed a reasonable agreement with the fixed template 

constructed from the equation: 

V/Vmax = l " / l " +CT" , where n=l, (Naka and Rushton, 1966a) 

(Fig. 6.31). 

Figure 6.32 shows the mean spectral s e n s i t i v i t y for eleven dark 

adapted R/G type horizontal c e l l s . The spectral s e n s i t i v i t y of' the 

hyperpolarizing responses were constructed from half maximum ampli­

tude (l/2Vraax), and the spectral s e n s i t i v i t y curve for the depolar­

i z i n g component was constructed f o r low amplitude response, or were 

the V-logI curves were reasonably p a r a l l e l . The spectral s e n s i t i v i t y 

curve of the hyperpolarizing response was maximally sensitive around 

530 nm, whereas the depolarizing response was maximally sensitive at 

670 nm. However, the shape of the R/G c e l l spectral s e n s i t i v i t y 

curves w i l l be dependent upon chosen c r i t e r i o n level for t h e i r con-
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s t r u c t i o n (Fig. 6.30). This indicates that the C-type c e l l receive 

input from more than one cone mechanism. 

The C-type c e l l spectral s e n s i t i v i t y curve of the hyperpolar­

i z i n g response shows a reasonable f i t with the absorption curve of 

the Amax 535 nra hypothetical pigment from Ebrey and Honig's (1977) 

nomogram (Fig. 6.33).This indicates that the hyperpolarizing 

component of the C-type response receives input from the green (535 

nm) sensitive single cones. The depolarizing component may be driven 

by the red (615 nm) sensitve cones and the resulting spectral sensi­

t i v i t y curves arise frcm the antagonistic interaction between 

signals from the two cone types i n the C-type horizontal c e l l , or i t 

may receive input frcm the f a r red cone mechanism. 

6.3.5. Effects of chronatic adaptation. 

I f the assianption that the C-type c e l l i s driven by the red de­

polarizing and green h ) ^ r p o l a r i z i n g cone mechanisms, i t should be 

possible t o isolate each mechanism by selective chromatic adapta­

t i o n . Red backgromd should suppress the red sensitive depolar­

i z i n g component and the e f f e c t of the red depolarizing mechanism 

should be selectively reduced, i s o l a t i n g the e f f e c t of 'the green 

cone on the c e l l . Blue background should have the opposite e f f e c t , 

ol enhancing the depolarizing canponent of the c e l l and suppressing 

the hyperpolarizing canponent. Figures 6.34.b, c, show the effect of 

two i n t e n s i t y levels (LogI=4.8 and 5.2) of red background adapta­

t i o n , compared with the dark adapted c e l l before (Fig.6.34.a) and 

a f t e r background i l l u m i n a t i o n (Fig 6.34.d). As expected, the effect 
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of a red background adaptation i s to suppress the depolarizing 

mechanism, whereas the hyperpolarizing mechanism showed an increase 

i n amplitude. 

Under red backgromd adaptation the peak of the action spectra 

curve of the hyperpolarizing response was not clearly altered from 

the dark adapted spectral s e n s i t i v i t y (Fig. 6.35). The action 

spectrum of the R/G c e l l under red background illumination i s 

s l i g h t l y broader than the dark adapted curve (Fig. 6.35). Similar 

results were obtained for f i v e R/G c e l l s under red background adap­

t a t i o n . Spectral s e n s i t i v i t y curves of R/G c e l l s with very weak red 

depolarizing input or those that had been exposed to strong red 

backgroimd showed reasonable agreement with the green cone (P5352 ) 

pigment absorption curve (Fig. 6.36). 

Blue background adaptation had the opposite effect to red 

background adaptation, i t enhanced the depolarizing component and 

suppressed the h3rperpolarizing mechanism. Under blue background 

adaptation the action spectrum of the depolarizing component i s 

sh i f t e d i n maximum s e n s i t i v i t y from 670 nm to 650 nm (Fig. 6.36), i t 

also has a narrow spectral s e n s i t i v i t y curve. 

The perch R/G C-type horizontal c e l l s appear to recieve input 

from two sources; they are hyperpolarized by the green sensitive 

single cones and depolarized by the f a r red 650 nm cone mechanism. 

Comparison of spectral s e n s i t i v i t y curves of the depolarizing compo­

nent of the R/G c e l l with a L-type c e l l , both under blue background 

adaptation, shows that t h e i r spectral s e n s i t i v i t y curves were very 

sim i l a r (Fig 6.37). This may indicate that the depolarizing 
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component of the R/G c e l l receives t h e i r input from the same source 

as the L-type c e l l s , but not d i r e c t l y from the red (615 nm) 

sensitive cones. 
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Figure 6.26. 

Superimposed responses of a R/G-type horizontal c e l l to mono­
chromatic flashes. 

Figure 6.26.a. Responses to 704 nm flashes. 

Figure 6.26.b. Responses to 651 nm flashes. 

Figure 6.26.C. Responses to 526 nm flashes. 

The l i g h t i n t e n s i t y was increased in' approximately 0.5 log u n i t 

steps f o r a l l flashes. The numbers (1-8) indicate increasing i n t e n s i t y 

Fig. 6.26b. 



704 nm 

b. 651 nm 

c. 526 nm 

10 mV 0.5 sec 
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Figure 6.27. 

Relation between response amplitude and stimulus diameter for a 

R/G-type horizontal c e l l . 

Figure 6.27.a. A red 704 nm fla s h . 

Figure 6.27.b. A green 550 nm flash. 

Note that the l i g h t i n t e n s i t y was adjusted to e l i c i t h a l f 

maximum amplitude (jVmax) f o r the largest spot size of 5 mm i n 

diameter. The f l a s h duration was 0.5 sec. 



a . 704 nm 

0. 5 sec 

b . 550 nm 

10 mv 
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Figure 6.28. 

Rsponse amplitude versus spot diameter. 

The data from Fig. 6.27 plott e d as a r e l a t i v e response 

amplitude against stimulus diameter where s o l i d sqtiares represent-

704 nm, or the depolarizing component, and a s o l i d c i r c l e represents 

550 nm, or the hyperpolarizing component. 
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Figure 6.29. 

Superimposed responses of a R/G type horizontal c e l l t o mono­
chromatic flashes. 

Figure 6.29.a. Responses to 687 nm f l a s h were depolarizing, except 

generating a biphasic waveform at maximum amplitude. 

Figure 6.29.b. Responses to 630 nm,flash. The c e l l depolarizes only 

to flashes j u s t above threshold, while intermediate i n t e n s i t i e s 

•generate complex waveforms, and at higher l i g h t i n t e n s i t i e s the 

c e l l hyperpolarizes. 

The f l a s h delivered was of 0.5 seconds i n duration. The l i g h t 

i n t e n s i t y was increased i n approximately 0.5 log un i t s steps as 

indicated by the nijmbers ( 1 . . 7). 



a . 687 nm 

b . 630 nm 

10 mV 0.5 sec 
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Figure 6.30. 

Relation between response amplitude and the logarithm of the 
l i g h t i n t e n s i t y (V-logI curves) of a dark adapted R/G c e l l . Response 
amplitudes were measured at peak response. 

Figure 6.30.a. V-logI curves f o r various wavelengths of the 

hyperpolarizing component. The wavelengths of the monochromatic 

flashes used are indicated i n the f i g u r e . 

Figure 6.3Q.b. V-logI curves of the depolarizing response. The 

wavelengths of the monochromatic flashes used are indicated i n 
the f i g u r e . 
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Figure 6.31. 

Relation between r e l a t i v e amplitude of the R/G-t3rpe response 
and the logarithms of stimulus i n t e n s i t y of 550 nm flashes (open 
c i r c l e s ) . The smooth curve i s drawn from the equation 

V/max = l^/l'' , where n = 1. 
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Figure 6.32. 

Spectral s e n s i t i v i t y of dark adapted R/G-type horizontal 
c e l l s . The curves axe an average of eleven c e l l s . 'H' wi t h ( s o l i d 
c i r c l e s ) represent the hyperpolarizing component, and 'D' w i t h (x) 
represent the depolarizing ccmponent. The hyperpolarizing curve i s 
based on a c r i t e r i o n response of h a l f maximum amplitude (f^/max), but 
the depolarizing response f o r approximately 1/3 of maximum amplitude 
(l/3Vmax). V e r t i c a l bars show the standard deviation of the mean. 
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Figure 6.33. 

Spectral s e n s i t i v i t y curves of the hyperpolarizing component 
from the dark adapted R/G c e l l ( s o l i d squares) compared wi t h a 535 
nm hypothetical pigment (porphyropsin) ( s o l i d c i r c l e s ) , constructed 
from Ebrey and Konig's (1977) nomogram. 
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Figure 6.34. 

Responses from R/G c e l l on a stationary time base. I n each row 

the f l a s h was of monochromatic l i g h t as indicated. Lateral s h i f t of 

records shows i t s r e l a t i v e log i n t e n s i t y (see scale below (Fig. 

6.34.d). 

Figure 6.34.a. The c e l l i s dark-adapted. 

Figure 6.34.b. Under red (700 nm) background (LogI = 4.8). 

Figure 6.34.C. Under a more intense red (700 nm) background (LogI = 

5.2). 

Figure 6.34.d. The same c e l l dark adapted a f t e r losing the two 

/ levels of red background adaptation. Note that the depolarizing 

response has almost been abolished. 
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Figure 6.35. 

Spectral s e n s i t i v i t y curves of a:. R/G-type horizontal c e l l ; 
dark adapted ( s o l i d squares) and xmder red (700 nra) background 
(LogI = 4.8) ( s o l i d c i r c l e ) . D and H represent the depolarizing 

and hyperpolarizing components respe c t f u l l y . 
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Figure 6.36. 

Spectral s e n s i t i v i t y curves of the hyperpolarizing component of 

a dark adapted R/G c e l l ( s o l i d c i r c l e s ) which showed a very weak 

depolarizing component. Solid squares are 535 nm photopigment 

from Ebrey and Honig's (1977) nomogram. A s t r i x represents the 

depolarizing component of the dark adapted R/G c e l l , and open 

c i r c l e s represent the depolarizing component under blue (435 nm) 

(LogI =5.1) background adaptation. 
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Figure 6.37. 

Conroarison of the spectral s e n s i t i v i t y curve of the depolar­
i z i n g component of a R/G cellCcKsame as i n Fig. 6.36) w i t h a L-type 
spectral s e n s i t i v i t y curve (*) under blue background adaptation 
(same as i n Fig. 6.22). The broken l i n e (open c i r c l e s ) represents a 
curve calciilated from red (615 nm) and green (535 nm) pigment 
curves, when the green (535 nm) pigment was weighted D.vo times more 
than the red (615 nm) pigment and then sijmmed. 
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Chapter 7. 

Morphology. 

7.1 Horizontal c e l l s , 

Horizontal c e l l s i n teleosts have been cla s s i f i e d on 

morphological grounds int o two main types, rod and cone horizontal 

c e l l s (Cajal, 1892; S t e l l , 1964, 1967; Parthe, 1972). The present 

study has demonstrated three morphological types of cone horizontal 

c e l l s i n the perch (Perca f l u v i a t i l i s L.) re t i n a . These three types 

of horizontal c e l l s from d i s t a l HI to proximal H2 and H3 become 

progressively larger and more s t e l l a t e , as i s commonly found i n 

other te l e o s t retinas containing a high proportion of rods (Cajal, 

1892; Villegas and Villegas, 1963; Testa, 1966; S t e l l , 1967; Parthe, 

1969, 1972; Naka and Carraway, 1975; Witkovsky et a l . , 1979). 

The three types of cone horizontal c e l l have been observed to 

be segregated i n separate layers as i n a number of teleost species 

(Parthe, 1972), i n goldfish ( S t e l l and Lightfoot, 1975), i n 

Callionymus l y r a (Haesendonck and Missotten, 1979), and i n pikeperch 

(Wikovsky e t a l . , 1979; Hassin, 1979). This i s i n contrast with 

several teleostean genera i n which the horizontal c e i l s are clearly 

segregated i n t o four layers (Testa, 1966; Parthe, 1972; S t e l l and 

Li g h t f o o t , 1975; Haesendonck and Missotten, 1979), with three layers 

contacting only cones and one layer only rods. I n perch only three 

layers were observed, a l l contacting cones. Rod horizontal ce l l s 

were not observed. The retina of the related pikeperch (Hassin, 

1979; Witkovsky et a l . , 1979) also has only three layers of cone 
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horizontal c e l l s . I n t h i s species rod horizontal c e l l s were not 

observed. 

Electron microscopical observations of rod spherules i n the 

perch indicate the presence of horizontal c e l l dendritic process i n 

th e i r u l t r a s t r u c t u r e . I t i s possible that the rod horizontal c e l l 

exists i n perch, but i t s perikaryon could be intermingled among the 

cone horizontal c e l l s . One of the drawbacks of the Golgi method i s 

the capriciousness of impregnation; i t may be d i f f i c u l t to 

demonstrate a c e l l type when i t has not been impregnated. I f the 

impregnation i s incomplete, which i s not always obvioijs, i t may 

results i n f a i l u r e to visualize some c e l l processes ( S t e l l , 1972). 

The rare observation that the perch HI c e l l made contact with rod 

spherules i s thought to be a staining a r t i f a c t , since these 

dendritic processes that appeared to contact rods could not be 

traced t o the HI c e l l . Some results suggests, however, that the 

teleostean horizontal c e l l s are not as exclusively seggregated to 

rods and cones as the anatomical results indicate. For example, 

Laufer and Mil l a n (1970) found on physiological grounds that some 

horizontal c e l l s of the teleost Eugerres plumieri received both rod 

and cone input. Among elasmobranchs, Toyoda et a l . (1978) found i n 

the stingray r e t i n a that the external horizontal c e l l receives a 

mixed rod and cone input, but i n the smooth dogfish retina the 

horizontal c e l l s appeared to contact either rods or cones, but not 

both ( S t e l l and Witkovsky, 1973b). 

I n general, the perch horizontal c e l l s bear a close anatomical 

resemblance to the horizontal c e l l s of the related pikeperch 
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(Hassin, 1979; Witkovsky e t a l . , 1979) i n t h e i r size and form, i.e. 

dendritic spread and thickness. I n addition, there i s obviously an 

anatomical s i m i l a r i t y between the perch and pikeperch HI, H2 and H3 

c e l l s w i t h the Golgi impregnated cone horizontal c e l l s i n the 

teleost Eugerres plumeri (Parthe, 1972). The cone horizontal c e l l 

types i n perch resemble the cone horizontal cells i n cyprinids i n 

having increasing dendritic spread and decreasing density of cone 

contacts with increasing distance from the outer plexiform layer. I n 

cyprinids, the Hi (external) c e l l has cha r a c t e r i s t i c a l l y the largest 

c e l l body (Parthe, 1972; S t e l l and Lightfoot, 1975), whereas i n 

perch the H2 (medial) c e l l has the largest c e l l body. I n addition, 

the cone horizontal c e l l s i n perch are more clearly segregated i n 

v e r t i c a l layers than i n cyprinids. 

Horizontal c e l l s make gap junctions with other horizontal c e l l s 

of the same type at the l a t e r a l face of the perikaryon and between 

dendrites i n teleosts ( S t e l l , 1972). I n the electron microscope, 

s t r u c t u r a l features which corresponded well with gap junctions 

described between horizontal c e l l s i n other vertebrates (Yamada and 

Ishikawa, 1965; Witkovsky and Bowling, 1969; S t e l l , 1972; Witkovsky 

and S t e l l , 1973; Lasansky, 1976; Witkovsky et a l . , 1979), were 

observed between adjacent horizontal c e l l s i n perch. There i s good 

evidence that such i n t r a c e l l u l a r junctions provide channels of 

enhanced ionic permeability through which horizontal c e l l s are 

e l e c t r i c a l l y coupled, generating t h e i r large uniform receptive f i e l d 

properties (Kaneko, 1971; Witkovsky et a l . , 1979). 

The perch Hl-type horizontal c e l l s are very regularly spaced, 
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and i t was observed that the horizontal distance between HI c e l l 

nuclei was the same as that between adjacent single cones. When the 

HI c e l l dendritic arborization were determined with respect to the 

photoreceptor mosaic, the HI c e l l bodies were always situated 

exactly under a single cone, as suggested i n e a r l i e r studies on the 

perch r e t i n a (Ahlbert, 1969). This pattern has also been observed i n 

other teleosts with a regular square receptor mosaic (Engstrom, 

1963b; Testa, 1966; Wagner, 1976; Haesendonck and Missotten, 1979). 
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7.2. Horizontal c e l l axons. 

A l l three types of cone horizontal c e l l were observed to 

possess a short axon. An axon was only rar e l y observed on H2- and 

H3-t5rpes, but occurred frequently on the Hl-type horizontal c e l l s . 

The horizontal c e l l axons, as i n other teleosts, were pbserved to be 

up to several hundred microns i n length and descend gradually to the 

inner nuclear layer (Cajal, 1892; Parthe, 1972; Wagner, 1972; 

Haesendonck and Missotten, 1979), where they terminate abruptly. 

They were never observed to terminate i n an fusiform axon terminal 

as described i n cyprinids ( S t e l l , 1975; Weiler, 1978), which may 

possibly be due to a staining f a i l u r e ( S t e l l , 1975). 

I n addition to the horizontal c e l l axons, 'free axons', that 

did not appear to be attached to any c e l l bodies i n the inner 

nuclear layer were frequently observed. Similar free axons have been 

reported i n the pike perch (Witkovsky et a l . , 1979). I t i s possible 

that these structures are impregnated axons of horizontal c e l l s , but 

the corresponding c e l l bodies were not impregnated. 

The axon and the axon terminal do not make contact with recep­

tors i n teleosts (Cajal, 1892; S t e l l , 1975; Weiler, 1977; Weiler and 

Z e t t l e r , 1979) unlike those of other vertebrates as i n the t u r t l e 

(Leeper, 1978a) and i n mammals (Dowling, Brown, and Major, 1966; 

Gallego, 1971; Fisher and Boycott, 1974; Ogden, 1974), i n which the 

axon terminal makes contact with receptors. 

The teleostian horizontal c e l l bodies and t h e i r axon terminals 

have been shown to have remarkably similar electrophysiological and 

pharmacological properties (Kaneko, 1970; Lam and Steinman, 1971; 

Marmarelis and Naka, 1973; Weiler and Z e t t l e r , 1979). 

Yamada and Ishikava (1965) and Weiler and Zettler (1979) re-
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ported that the fusiform elements contain large numbers of micro­

tubules and that they make 'close membrane appositions' with one 

another. Kaneko (1970) and Marmarelis and Naka (1973) further ob­

served that the axon terminals are e l e c t r i c a l l y coupled as the h o r i ­

zontal c e l l bodies. I t has been shown that the axon terminals show 

the same patterns of chrcsnatic organization as the corresponding 

c e l l bodies, which siiggest that the axon terminals are e l e c t r i c a l l y 

coupled selectively only to others of the same type (Kaneko, 1970; 

S t e l l , 1975; Hassin, 1979; Weiler and Z e t t l e r , 1979). Comparison of 

the potential amplitudes i n horizontal c e l l soma and i t s axon 

terminal shows that the conduction from the c e l l body to the axon 

terminal i s non-decremental (Weiler and Z e t t l e r , 1979). 

The functional significance of axon terminals and the i n t r a -

r e t i n a l neurons they may contact has not been determined. 

Naka (1977) suggests that horizontal c e l l s may make direc t 

contact w i t h amacrine c e l l s , since the axon descends to the amacrine 

c e l l layer, which would at least make a possible canditade for such 

connections. 

7.3. Patterns of interconnections between 

cones and cone horizontal c e l l s . 

Two types of cones were observed; equal doiable (twin) cones and 

single cones. The double cones form a regular square mosaic with a 

single cone i n the centre of each square. The r a t i o of twin/single 

cones was 2/1, as was previously reported by Engstrom (1963) and 

Ahlbert (1969). Exceptions from the square cone mosaic were very 

r a r e l y observed, and did not effect the analysis of the cone-

horizontal c e l l connections. Ahlbert (1969), i n her study of perch 
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cones and cone arrangements, only rarely observed i r r e g u l a r i t i e s 

from the square mosaic. She observed irregular mosaic around the 

optic nerve where t r i p l e cones have been found, and also a row 

pattern i n ora serrata (Ahlbert, 1969). I n addition, Ahlbert (1969) 

observed a few single cones at the corners of the squares, which 

were only distinguishable from the central single cone by the i r 

p o s i t i o n i n the mosaic, and occasional single cones, which from 

t h e i r size and position i n the mosaic, probably represented h a l f a 

double cone. 

Loew and Lythgoe (1978) presented evidence from microspectro-

photonetry which revealed that both members of the twin cones 

contain the same red absorbing photopigment based on vitamin A2 

(dehydroretinal) with maximum spectral absorbance at 615 nm. The two 

members of these double cones are thus indistinguishable on the 

basis of morphology and pigment content and were thus termed 

'id e n t i c a l twin' cones (Loew and Lythgoe, 1978). The central single 

cone contains green absorbing photopigpient (dehydroretinal) with 

maximum absorbance at the wavelength of 535 nm. From the correlation 

between the cone structure and pigment content i t i s therefore 

reasonable to conclude that the perch i s i n fact dichromatic. This 

conclusion i s supported by Camerons (1982) behavioral studies on 

perch (Perca f l u v i a t i l i s ) . 

I t would seem u n l i k e l y that short wavelength l i g h t i s of 

significance i n the function of the perca re t i n a . Not only are the 

blue cone photoreceptors absent i n perch r e t i n a , but i n addition, 

the ccmbined absorption properties of i t s yellow cornea and the 

lens, should cut o f f a l l blue l i g h t from reaching the retina. The 
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perch cornea absorbs maximally at 460 nm, with minimal absorption at 

longer wavelengths than 550 nm (Cameron, 1982). The unpigmented lens 

i n perch, as i n many freshwater fishes, absorbs maximally at shorter 

wavelengths than 400 ran (Cameron, 1982). 

Analysis based on 1 ym s e r i a l sections and on 20 ym horizontal 

sections of Golgi preparations shows that i n perch the Hi c e l l s 

contact a l l cones w i t h i n t h e i r dendritic f i e l d , i.e. both double and 

central single cones. The H2 c e l l s contact double cones exclusively 

and H3 c e l l s contact central single cones exclusively. Thus i n perch 

as i n other teleosts, where cone-horizontal c e l l receptor contacts 

have been analysed, the general rule seems to be that the HI or the 

external (sclerad) horizontal c e l l contacts a l l types of cones, with 

the H2 and H3 becoming more selective and contacting fewer types of 

cones, as.for example i n goldfish ( S t e l l and Lightfoot, 1975); i n 

pikeperch (Witkovsky et a l . , 1979) and i n Callionymus (Haesendonck 

and Missotten, 1979). This pattern had previously been noticed by 

the d i s t r i b u t i o n of horizontal c e l l dendrites i n teleosts (Parthe, 

1972). 

From the specific connections of the d i f f e r e n t classes of h o r i ­

zontal c e l l s with the cones, i d e n t i f i e d by their position i n the 

mosaic, i t should be possible to make a prediction of the spectral 

characteristics of each type of horizontal c e l l . Thus for the perch 

r e t i n a studied here i t i s concluded that the colour coded cone 

inputs i s as follows: HI receive input from red and green cones; H2 

receive input from red cones; and H3 c e l l s receive input from green 

sensitive cones. However, a number of investigators have shown that 

the response properties of horizontal c e l l s do not correspond with 



201 

the cone-horizontal c e l l contact pattern. S t e l l and Lightfoot (1975) 

suggested a correlation between functionally i d e n t i f i e d versus 

h i s t o l o g i c a l l y i d e n t i f i e d horizontal c e l l s i n the cyprinid retina. 

Based on such predictions as the percentage of c e l l types recorded 

i n electrophysiological studies versus the c e l l body size, and the 

sequence i n which the horizontal c e l l types were encountered when 

penetrating the ret i n a from the receptor side. They concluded that 

the HI type c e l l s were monophasic (L-type) receiving functional 

input mainly from red sensitive cones, although contacting red green 

and blue sensitive cones. The H2 type were biphasic (C-type) 

receiving input from red and green cones, but making contact with 

green and blue cones and H3 type c e l l s were triphasic (C-type) 

receiving input from a l l three cones, but contacting only blue 

sensitive cones. Their conclusions were l a t e r confirmed by 

functio n a l / h i s t o l o g i c a l i d e n t i f i c a t i o n a f t e r dye i n j e c t i o n 

experiments (Mitarai et a l . , 1974; Hashimoto et a l . , 1976; Weiler 

and Wagner, 1984). 

Based on studies of connectivity of cones and cone horizontal 

c e l l s i n the goldfish S t e l l et a l . (1975) proposed a functional 

p o l a r i z a t i o n of the horizontal c e l l processes w i t h respect to t h e i r 

l o c a l i z a t i o n i n the ribbon synapse. According t o t h i s model, only 

central processes are postsynaptic, whereas l a t e r a l processes are 

presynaptic and thus mediate the feedback frcm horizontal c e l l s to 

cones. Thus, Hi c e l l s receive direct input from red cones and 

feedback (sign inverting synapses) v i a the green cones and hence 

onto the H2 c e l l s . Subsequently, H2 c e l l s receive dire c t input from 

green cones and feedback onto the H3 c e l l s v i a the blue cones. 
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A cor r e l a t i o n between h i s t o l o g i c a l l y i d e n t i f i e d versus func­

t i o n a l l y i d e n t i f i e d horizontal c e l l s i n the t u r t l e r e tina (Leeper, 

1978), showed that the L-type c e l l s (red sensitive) contacted red 

and green receptors, biphasic C-type (red/green sensitive) contacted 

green and blue receptors, and triphasic C-type (red, green, and blue 

sensitive) contacted only blue cones. Thus showing a similar contact 

pattern as goldfish horizontal c e l l s . The contact pattern of Golgi 

impregnated cone horizontal c e l l s i n the dichromatic pikeperch 

(Witkovsky et a l . , 1979) appears similar to the contact pattern of 

the perch horizontal c e l l s . As i n perch the pikeperch HI horizontal 

c e l l s contact both twin (red) and single (green) cones and the H3 

c e l l s contact single cones exclusively. The pikeperch H2 c e l l s were 

reported to make contact with single cones, although they 

predoninantly contacted twin cones. In contrast w i t h the ^2 c e l l of 

perca vMch exclusively contacts double cones. Subsequent functional 

i d e n t i f i c a t i o n by i n t r a c e l l u l a r dye injections revealed that the HI 

and H2 c e l l s i n pikeperch were red sensitive L-type c e l l s and the H3 

c e l l s were biphasic red/green sensitive C-type c e l l s (Hassin, 1979). 

Based on the connectivity pattern of perch horizontal c e l l 

types w i t h red and green cones and considering the evidence from 

g o l d f i s h , t u r t l e , and pikeperch, i t should be possible to make a 

predictive model of the spectral characteristics of each type of 

perch horizontal c e l l . I t i s concluded that the HI c e l l s are red 

sensitive L-type c e l l s , the H2 c e l l s are also red sensitive L-type 

c e l l s , and H3 c e l l s are red/green (R/G) sensitive C-type c e l l s . 

The HI c e l l i n perch contacts both red and green cones as the 
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HI c e l l i n pikeperch (Witkovsky et a l . , 1979) and H l - c e l l body 

(HICB) i n t u r t l e (Leeper, 1978), both of which have been shown to be 

red sensitive L-type c e l l s (Leeper, 1978; Hassin, 1979). I t i s 

concluded i n the perch r e t i n a that the contact of the HI c e l l with 

the green sensitive single cone probably represents a feedback 

pathway. The H2 c e l l i n perch makes contacts exclusively with the 

red sensitive double cones, and i s therefore most l i k e l y a red 

sensitive L-type c e l l . A horizontal c e l l making exclusive contacts 

wi t h red cones has not been reported i n other species. The H3 c e l l 

i n perch which exclusively contacts green sensitive single cones as 

does the H3 c e l l i n pikeperch (Witkovsky et a l . , 1979), which has 

been shown to be a R/G c e l l (Hassin, 1979). According to the S t e l l 

and Lightfoot (1975) and S t e l l et a l . (1975) model, the generation 

of R/G responses i n H3 type cell s i n perch can be explained by 

d i r e c t input from green sensitive cones and a red depolarizing 

response produced i n d i r e c t l y through HI L-type c e l l s v ia feedback 

onto the green cones. 

7.4. Photoreceptor interconnections. 

Analysis of invaginating basal processes i n 1 ym s e r i a l 

sections through Golgi impregnated cone pedicles suggest that the 

invaginating basal processes are highly selective according to cone 
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type. The pattern of interconnections of the central single cone 

(green sensitive) basal processes were fomd to be colour coded, 

invaginating exclusively the twin cones (red sensitive) around them 

i n the cone mosaic. They were never observed to make contact with 

double cone pedicles outside t h e i r mosaic u n i t , or with other, single 

cones. Basal processes from the red sensitive twin cones i n perch 

were found to be non-colour coded, since they invaginated only other 

twin cones and were never observed to invaginate the green sensitive 

single cones. I n other teleosts, the pattern of interconnections via 

the invaginating basal processes are colour coded, since they have 

been demonstrated only to invaginate chromatically different sets of 

cones (Scholes, 1975; Lockhart and S t e l l , 1979). This i s i n 

agreement with the colour coded pattern of the green cone basal 

processes i n perch, but i n contradiction with the non-colour coded 

pattern of perch red cone basal processes. In rudd (Scholes, 1975) 

the pattern i s green in t o red, red into green and blue into green 

sensitive cones. I n goldfish,, Lockhart and S t e l l (1979) f i n d a 

similar pattern, with the addition of red and green into the blue 

sensitive cones. 

Invaginating basal processes i n perch appear to make r e l a t i v e l y 

shallow invaginations ccmpared with the horizontal c e l l dendritic 

processes, as observed i n the l i g h t microscope. This may indicate 

that the invaginating basal processes do not make direct contact 

w i t h the ribbon synapse, and may correspond with other reports where 

they are reported t o approach the ribbon synapse and make extensive, 

although apparently unspecialized, contact with both the cone 

pedicle and i t s horizontal c e l l processes (Lasansky, 1971; Scholes, 
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1976; Lockhardt and S t e l l , 1979). I t i s not known whether the i n ­

vaginating basal processes are post or presynaptic, and i n the 

absence of physiological data i t i s d i f f i c u l t to know whether the 

green cone i s acting upon the red cone or vice versa. 

The colour coded pattern of interconnections via basal processes 

suggests that they may play a role i n colour opponent processing as 

suggested by Scholes (1975). The fa c t , however, that the cone pig­

ment spectra and physiological action spectra agree closely i n 

cyprinids (Tomita et al.,1967; S t e l l and Harosi, 1976) and i n pike­

perch (Burkhardt, Hassin, Levine, and MacNichol, 1980), suggests 

that cones themselves are not influenced strongly by antagonistic 

interactions from other cone types i n these species. Therefore, i t 

is l o g i c a l that the cones act through t h e i r invaginating telodendria 

upon horizontal c e l l processes i n the pedicle, rather than upon the 

invaginated cone pedicle (Lasansky, 1971; S t e l l , 1980). 

I n t u r t l e r e t i n a , coupling between neighbouring cones has been 

demonstrated by current i n j e c t i o n techniques (Baylor et a l . , 1971; 

0'Bryan, 1973) and gap junctions have been observed between t h e i r 

terminals (Lasansky, 1972; Raviola and Gil u l a , 1973). I n addition, 

anatomical and physiological results frcm the salamander retina 

indicate that rods and cones inay be e l e c t r i c a l l y coupled (Gold and 

Dowling, 1979; Attwell et a l . , 1983). 

The small areas of sxjramation reported on cones i n pilceperch 

(Burkhardt, 1977) and t v i r t l e (Baylor et a l . , 1971), as well as rods ' 

i n toad (Fain e t a l , 1976) and t u r t l e (Copenhagen and Owen, 1976) 

show that some receptors are coupled sumraatively. 

The fact that the cone pigment spectra and the physiological 
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action spectra agree closely, suggests that the summative i n t e r ­

actions, presumably v i a gap junctions, are lim i t e d to cones of the 

same spectral type (Baylor et a l . , 1971; Baylor and Hodgkin, 1973; 

Fuortes and Schwartz et a l . , 1973; Burkhardt, 1977; Detwiler and 

Hodgkin, 1979; Witkovsky e t a l . , 1979). Gap junctions which may 

mediate a low-resistance coupling between receptors with the selec­

t i v i t y required have not been demonstrated. I t has been suggested, 

however, that the receptor basal processes which have been shown to 

make membrane appositions w i t h similar processes, (Witkovsky et a l . , 

1974) might represent such a selective pathway (Scholes, 1975; 

S t e l l , 1980). I t has been suggested (Fain and Dowling, 1973) that 

coupling of homologous pairs of photoreceptors may increase the 

l i g h t evoked changes i n synaptic transmissions i n very dim l i g h t , 

while exerting l i t t l e or no ef f e c t i n brighter l i g h t . 
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Chapter 8. 

I n t r a c e l l u l a r recordings. 

8.1. General observations. 

The present study has demonstrated two types of horizontal c e l l 

recordings i n the perch r e t i n a . Based on easily recognised physio­

l o g i c a l response characteristics, they were c l a s s i f i e d into L-type 

(monophasic) and C-type (biphasic) responses. The L-type c e l l s 

hyperpolarized to l i g h t s t i m u l i of a l l wavelengths, maximally sensi­

t i v e at 650 nm. The C-type (R/G) c e l l s hyperpolarized to l i g h t s t i m u l i 

of short (blue-green) wavelengths, maximally sensitive at 535 nm, and 

depolarized to long ( f a r red) wavelengths, maximally sensitive at 

650-680 nm. The results described suggest that the spectral 

organization of the perch r e t i n a i s complex, since the spectral 

s e n s i t i v i t y of the L-type c e l l and depolarizing component of the R/G 

c e l l are clear examples of horizontal ce l l s with pseudopigment 

spectral s e n s i t i v i t y curves. These narrow, far red spectral 

s e n s i t i v i t y • curves were f i r s t observed by Naka and R.ushton (1966a, c) 

i n telostean horizontal c e l l s . I t has been suggested that these 

unusual spectral s e n s i t i v i t y curves are the result of interaction 

among responses derived f r o n two or more d i r e c t l y measured photo-

pigments (Sirovich and Abramov, 1977). 

8.2. L-type horizontal cells.. 

I n agreement with previous reports on teleost L-type horizontal 

c e l l s (Svaetichin and MacNichol, 1958; Tonita, 1965; Naka and Rushton, 

1966c; Burkhardt and Hassin, .1978), the L-type horizontal c e l l i n 

perch hyperpolarized ."in response to flashes at a l l wavelengths, and 

the response amplitude showed a graded increase with increasing l i g h t 

i n t e n s i t y , having a djniamic range of about 2.5 l o g i u n i t s . 
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Photoreceptors, normally depolarized and releasing transmitter i n 
darkness, hyperpolarize under the action of l i g h t and, the release of 
transmitter reduced or turned o f f depending on the I n t e n s i t y of the 
l i g h t ^ stimulus. The action of the photoreceptor (excitatory) trans­
m i t t e r i s t o depolarize the L-type horizontal ce l l s i n darkness and 
therefore they hyperpolarize as a result of reduced transmitter 
release (Byzov and Trifonov, 1968; Trifonov, 1968). The relationship 
between l i g h t energy and response amplitude i n the L-type c e l l s i n 
perch could be described by the hyperbolic tangent function for a 
single cone mechanism: V/Vmax = l " / l " +a'^' (Naka and Rushton, 1966a,. 
b, c) w i t h an exponent (n) of about 1.5. Thus the L-type c e l l s have a 
dynamic range of about 2.5 l o g i units (Fig. 6.3). The L-type cell s i n 
perch have s i g n i f i c a n t l y smaller d5niamic range than the R/G cells i n 
perch (see Fig. 6.31), cones and horizontal cells i n t u r t l e (Baylor 
and Hogdkin 1973; Yazulla 1976) and i n f i s h (Burkhardt 1977; Burkhardt 
and Hassin 1978). The V-logI curves of these cells could be f i t by a 
hyperbolic tangent function with an exponent 1.0, having a dynamic 
range of about 3.5 l o g I u n i t s . 

The response waveform of the perch L-type horizontal c e l l s showed 

i n i t i a l peak to l a t e r plateau or transient on responses. The transient 

on responses were observed for a l l wavelengths and were most prominent 

at intermediate response amplitudes. Thus the perch L-type response 

waveform i s similar to that of the related pikeperch (Burkhardt and 

Hassin, 1978) and of t u r t l e (Gerschenfeld et a l . , 1980). These L-type 

c e l l s are contrasted by the more complex L-type c e l l s which show 

wavelength dependent response waveforms, as i n t u r t l e (Fuortes et a l . , 

1973; Fuortes and Simon, 1974; Yazulla, 1976) and i n cyprinids (Yang 

et a l . , 1982, 1983; Gutierrez, Neely, and Salinas, 1983). 

The mechanisms for the generation of the transient on responses 
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are uncertain. I n perch, there are some indications that the tran­

sient on responses may be dependent upon stimulus diameter (see Fig. 

6.4). However, the observed e f f e c t of smaller (>2.0 mm) stimulus 

diameters (Fig.6.4) may re s u l t from decreasing response amplitude 

since the transient i s reduced by small (> 10.0 mv) response 

amplitudes (Fig. 6.1). Burkhardt and Hassin (1978) demonstrated i n the 

pikeperch r e t i n a that the transient on responses were eliminated when 

smaller spot stimulus diameters than 1-2 mm were used. Since large 

stimulus diameters are also necessary to' evoke the feedback from 

horizontal c e l l s to cones (Baylor et a l . , 1971, Burkhardt, 1977), the 

transient on responses might be the consequence of the horizontal c e l l 

to cones feedback as suggested by Burkhardt and Hassin (1978). 

However, the voltage dependent conductance changes i n the nonsynaptic 

part of the horizontal c e l l membrane (Werblin, 1975b; Byzov and 

Trifonov, 1981; Tachibana, 1983) can not be excluded from a t t r i b u t i n g 

to the generation of the transient on responses. Recently, Teranishi, 

Negishi and Kato (1984) observed an increase- i n the transient 

responses i n dopamine treated carp retinas, and Gutierrez et a l . 

(1984) showed that by treating the carp re t i n a with dopamine blockers 

(haloperidol and 6-hydroxy dopamine) the transient on response was 

se l e c t i v e l y eliminated. These results suggest that dopaminergic 

interplexiform c e l l s may contribute to the the generation of the 

transient on response, since dopaminergic interplexiform c e l l s are 

known to be presynaptic to external horizontal cells and bipolar c e l l s 

i n the perch and carp retinas (Ehinger et a l . , 1969). Application of 

dopamine on f i s h horizontal c e l l s (L-type) results i n depolarization 

of the membrane potential and reduction of the response to 

i l l u m i n a t i o n (Dowling et a l . , 1976), decreasing the l a t e r a l spread of 

the L-type response, but increasing i t s amplitude to central 
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stimulation (Negeshi and Drujan, 1979; Teranishi et a l . , 1984). 

However, the present observations do not rule out any of these 

mechanisms. I t i s not known what part the interplexiform c e l l s play i n 

shaping the spectral responses of horizontal c e l l s . 

8.2.1. Spectral s e n s i t i v i t y . 

The spectral s e n s i t i v i t y of the L-unit i n the perch retina peaks 

at 650 nm and does not correspond with the 615 nm red (twin) cone 

photopigment, which has been i d e n t i f i e d by microspectrophotometry 

(Loew and Lythgoe, 1978). In additon, the spectral s e n s i t i v i t y curve 

of the L-type horizontal c e l l i s narrow compared with a hypothetical 

photopigment of the same maximum. 

The L-t5rpe c e l l s i n perch appear to receive t h e i r predominant 

input from one spectral class of cone mechanism peaking at 650 nm, 

since t h e i r spectral s e n s i t i v i t y does not change under selective 

chromatic adaptation and that t h e i r V-logI curves are p a r a l l e l . 

Comparison of the L-type response waveform revelled wavelength 

dependent differences i n the la t e phase (plateau), which might 

indicate that the L-unit receives input from more than one chromatic 

class of receptors. However, the V-logI curves constructed from 

d i f f e r e n t time periods after flash onset are linear and could be 

described by the same fixed template, and the spectral s e n s i t i v i t y 

curves constructed for d i f f e r e n t phases of the response were almost 

i d e n t i c a l i n shape. This suggests that the L-units receive input from 

a single photopigment peaking at 650 nm, and that the chromatic 

interactions leading to the generation of pseudopignent does not occur 

at the le v e l of the L-type horizontal c e l l s . 

The L-type c e l l s i n perch show similar response properties as the 

L-type c e l l s i n pikeperch (Burkhardt and Hassin, 1978), i n Eugeres 
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(Laufer and Mill a n , 1970), and i n t u r t l e (Yazulla, 1976), since the 

L-type c e l l s i n these species show similar response waveforms to 

s t i m u l i of d i f f e r e n t wavelengths, with p a r a l l e l V-logI curves and are 

not s e l e c t i v e l y adapted by chromatic background, and thus seem to 

receive a predominant input from a single cone type. However, there i s 

one fundamental difference when these L-type c e l l s are compared with 

those of perch, as the spectral s e n s i t i v i t y curves of these L-type 

c e l l s correspond w i t h the absorption curves of t h e i r cone 

photopigments, whereas the L-type cel l s i n perch do not. These L-type 

c e l l s are i n contrast with the more complex L-t3rpe c e l l s i n cyprinids 

and i n t u r t l e where the experimental evidence strongly suggests that 

the L-type horizontal c e l l s receive input from at least two chromatic 

classes of cones ((3ouras, 1972). These cell s show wavelength dependent 

waveforms and have action spectra which are strongly dependent upon 

the response amplitude, i.e. V-logI curves are not p a r a l l e l (Fuortes 

et a l . , 1973; Fuortes and Simon, 1974; Yazulla, 1976; Yang et a l . , -

1982, 1983), and are also dependent upon chromatic adaptation (Naka 

and Rushton, 1966c). I n addition, i n the L-type c e l l s which have been 

shown to receive input from more than one class of cones, a red 

backgroiand not only decreases the c e l l ' s s e n s i t i v i t y to red l i g h t , but 

also considerably increases the cell's s e n s i t i v i t y to green l i g h t 

(Naka and Rushton, 1966c; Laufer and Negishi, 1978; Yang et a l . , 1982, 

1983). This effec t was not observed i n perch, and thus further 

supports the conclusion that the L-type c e l l s i n perch only receive 

input from the 650 nm cone mechanism. 

Naka and Rushton (1966c) i n tench and Witkovsky (1967) i n carp 

reported that the L-units had two peaks, a primary peak at 620 nm, and 

a secondary peak at 680 and 665 nm respectively. Naka and Rushton 

(1966c), who determined the L-unit's action spectra under chromatic 



212 

backround, concluded that the L-unit's i n tench receive signals from 

680, 620, 540 nm and possibly from 450 nm as we l l . The l a t t e r three 

mechanisms correspond with the three cone photopigments i d e n t i f i e d i n 

cyprinids (Liebman and Entine, 1964; Marks, 1965), but despite 

intensive _^microspectrophotometrical studies on the cones i n these 

species (Harosi, 1976; S t e l l and Harosi, 1976; Loew and Lythgoe, 

1978), the far-red 680 pigment has yet to be observed. Despite the 

mismatches between physiological and microspectrophotometrical 

r e s u l t s , the pseudopigments were accepted as being related to single, 

but unusual pigment, because they obeyed the generally accepted 

c r i t e r i a f o r i d e n t i f y i n g responses driven by a single cone, such as 

that the V-logI curves for various wavelengths are p a r a l l e l and/or the 

r e l a t i v e spectral s e n s i t i v i t y curves are unchanged under chromatic 

adaptation (Naka and Rushton, 1966a, c ) . 

Preliminary calculations i n which signals derived from the red 

(615 nm) and green (535 nm) sensitive cones, were given opposite signs 

and then summed, and the signal from the green cone i s weighted two 

times more than the signal from the red cones. The calculated action 

spectra gives a 650 nm peak and corresponding with the red end of the 

horizontal c e l l spectral s e n s i t i v i t y curves. However, t h i s method i s 

inadequate to describe the possible interaction between the red and 

green cones, since the calculated curve deviates from the 

experimentally obtained horizontal c e l l spectral s e n s i t i v i t y curves at 

shorter wavelengths (Fig. 6.37). 

Sirovich and Abramov (1977) proposed that these unusual pigments 

are the re s u l t of interaction between responses derived from two or 

more photoreceptors with d i f f e r e n t photopigments. Their proposed 

i n t e r a c t i o n i s on the form: 

S(V) = [I/ J i A ^ (V-Vi)]^/P 
1=1 
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where S(V) = (spectral) s e n s i t i v i t y function, p, = the weighting 

function, A(V) = the absorption function of the contributing photo-

pigments, and p = an exponent. 

I n t h i s equation there are two unknowns; the exponent p and the 

weighting function, /5(a) which incorporates information about the 

number of photopigroents and t h e i r max (Sirovich and Abramov, 1977). 

The L-type horizontal c e l l i n perch has p a r a l l e l V-LogI curves as 

predicted by Sirovich and Abramovs model. For a solution of t h i s 

equation, the two known cone photopigments i n perch, the red P615 and 

green P535 absorption curves from the microspectrophotometric study 

on perch cones (from Loew and Lythgoe, 1978), were chosen as the 

absorption function A(V). The weighting factor was found to be = 

1.63, vten the red pigment absorption curve was displaced to show 

asymptotic agreement at long wavelenghts with the spectral s e n s i t i v i t y 

curves of perch L-type c e l l s (Fig. 8.1). 

The best correspondence i s obtained (by the method of Sirovich 

and Abramov, 1977), according to the eqxiation: 

The calculated curve gives a reasonable f i t with the L-type 

spectral s e n s i t i v i t y curve, suggesting that an interaction, of the 

form proposed by Sirovich and Abramov (1977), occurs bewtween the red 

and green cones i n perch and generates the L-type pseudopigment 

spectral s e n s i t i v i y . 

The depolarizing signal observed under the intense red background 

adaption sviggests that an antagonizing signal, presumably from the 

green cones, i s observed i n the L-type horizontal c e l l response 

waveforms. However, since the depolarization i s not observed 

immediately a f t e r the onset of the red background and that the 

L-cell's spectral s e n s i t i v i t y remains unchanged under chromatic 
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Figure 8.1. 

Perch photopigments, the green 535 nm and the red 615 nm, from 

a microspectrophotometric sttidy by Loew and Lythgoe (from Lythgoe, 

1979) and the L-type horizontal c e l l spectral s e n s i t i v i t y curve, 

where the pigment absorption curve i s displaced (x 1.61), to show 

asymptotic agreement at long wavelengths w i t h L-type spectral curve. 
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Figure 8.2. 

Spectral s e n s i t i v i t y of a pseudopiginent w i t h a maximum at 650 

nm, constructed according to the equation described i n the te x t . 

The relationship ( s o l i d c i r c l e s ) , 

1.61 [R°:^- 0.4G°-̂ ]2 (Sirovich and Abramov, 1977). Where 

'R' i s the 615 nm (red pigment) and G i s the 535 nm (green pigment), 

the same as shown i n f i g . 8.1, and compared w i t h the mean spectral 

s e n s i t i v i t y of L-t3rpe horizontal c e l l s . 
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adaptation, t h i s may indicate that the antagonizing signal i s not 

acting d i r e c t l y upon the L-cell but presynaptic to the L - c e l l . I t i s 

u n l i k e l y that the depolarizing response can result from contamina­

t i o n of responses from neighbouring C-type c e l l s , since the R/G C-t3rpe 

c e l l s hyperpolarize to green wavelengths. Input from rods i s unlikely 

since rods are supposedly not functioning under these conditions. 

Under chromatic adaptation of both red and green background 

l i g h t s the spectral properties of the L-type horizontal c e l l s remain 

unchanged, but only the absolute s e n s i t i v i t y i s i s changed (Figs 6.18 

and 6.23). Thus the cones not only interact to generate the pseudo-

pigment spectral s e n s i t i v i t y but also by l i g h t adapting one cone type 

leads t o simultanious adaptation of the other cone type, since the 

r e l a t i v e contribution of the two cone types to the generation of the 

pseudopigraent i s independent of the adapting l i g h t . Since adaptation 

occurs mostly i n the photoreceptors i t must occur before or at the 

combination (pseudopigment) stages, but not after as Sirovish and 

Abramov (1977) proposed. 

Depolarizing responses i n monophasic horizontal c e l l s have been 

reported i n goldfish horizontal c e l l s , presumably from the green 

sensitive cones (Tauchi, Yang, and Kaneko, 1984), but the L-type c e l l s 

i n g o l d f i s h show wavelength dependent responses and receive an input 

from the green cones, although receiving predominant input from the 

red (625 nm) sensitive cones (Yang et a l . , 1983). Depolarizing 

responses i n L-type c e l l s have also been reported as a result of 

i n t e r a c t i o n of receptive f i e l d centre and surround i n the t u r t l e 

(Piccolino, Neyton, and (Serschenfeld, 1981) and i n l a r v a l t i g e r 

salamander (Lasansky and Vallegra, 1975). 

The present observations are not s u f f i c i e n t to i d e n t i f y the 

underlying mechanisms, and only speculations can be made, which need 
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further study. However, i t seems possible that the depolarization 

recorded arises as an inte r a c t i o n between the red and green cones, 

which by specific i n t e r a c t i o n generate the far red (650 nm) spectral 

s e n s i t i v i t y of the L - c e l l . I f t h i s interaction takes place between the 

cones, then i t could be expected that the red cone spectral 

s e n s i t i v i t y was shi f t e d to 650 nm as well. However, since i t was not 

possible t o obtain the cone spectral s e n s i t i v i t y , t h i s assumption 

cannot be tested. 

I n the trichromatic cyprinid's retina, far red pseudopigment 

spectral s e n s i t i v i t y has been observed i n horizontal c e l l s (Naka and 

Rushton, 1966a; Witkovsky, 1967), and i n ganglion c e l l s (Daw and 

Beuchamp, 1972; Spekreijse et a l . , 1972). However, there i s a good 

co r r e l a t i o n between the cone action spectral s e n s i t i v i t y (Tomita, 

1967) and the cone pigment spectra ( S t e l l and Harosi, 1976) i n 

cyprinids, suggesting that the pseudopigroent spectral s e n s i t i v i t y 

functions are generated i n the postreceptoral network, rather than by 

d i r e c t cone to cone interactions. Whether this assumption holds for 

perch i s not known, but the L-type horizontal c e l l s i n perch are 

unusual, however, since they have th i s far-red pseudopigment spectral 

s e n s i t i v i t y that i n most respects follows the principle of 

univariance. 

8.3. C-type horizontal c e l l s . 

A l l the C-type horizontal c e l l s observed i n perch were red/ green 

(R/G) sensitive C-type c e l l s , that hyperpolarized to green 550 nm and 

depolarized to red 670 nm test s t i m u l i . The action spectra and the 

complex biphasic response waveform of perch R/G c e l l s , where the 

neutral point s h i f t s as a f m c t i o n of the r e l a t i v e amplitude of 

hyperpolarizing and depolarizing components and of stimulus intensity 
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are characteristic for R/G c e l l s i n other species (Svaetichin and 

MacNichol, 1958; Naka and Rushton, 1966a; Witkovsky, 1967; Burkhardt 

and Hassin, 1978). 

The hyperpolarizing component of the R/G c e l l , maximally sensi­

t i v e at 535 nm, corresponded with the perch green (P535 ) single cone 

photopigment. The V-logI curves were p a r a l l e l at shorter wavelengths 

than 600 nm, where the depolarizing component did not affect the 

hyperpolarizing component, and selective chromatic adaptation did not 

change the maximum s e n s i t i v i t y of the hyperpolarizing component. This 

suggests that the hyperpolarizing cctnponent results from a direct 

input from the green sensitive single cones. 

The depolarizing component of perch R/G c e l l s i n the absence of 

adapting background, shows good correlation with previous reports on 

teleostean R/G c e l l s w i t h maximum s e n s i t i v i t y at 670 nm and a narrow 

spectral s e n s i t i v i t y curve (Naka and Rushton, 1966a; Witkovsky, 1967; 

Burkhardt and Hassin, 1978). However, under intense monochromatic blue 

background adaptation the maximum s e n s i t i v i t y was shifted to 650 nm, 

and corresponding with the L-type maximum s e n s i t i v i t y and with a 

similar shaped spectral s e n s i t i v i t y cxxrve. This may indicate that the 

depolarizing component of the R/G c e l l receives input from the 650 nm 

red cone mechanism as the 'L-type c e l l s , either d i r e c t l y or i n d i r e c t l y 

from the L-type c e l l s . I n other teleosts the depolarizing component of 

the R/G c e l l s did not show a significant change i n spectral 

s e n s i t i v i t y under monochrcxnatic adaptation (Naka and Rushton 1966a; 

Witkovsky, 1967; Burkhardt and Hassin, 1978). Thus the R/G c e l l i n 

perch may not correspond to the simple scheme of one receptor type 

opposing another as proposed f o r R/G c e l l s i n other teleosts 

(MacNichol and Svaetichin, 1958; Tomita, 1963; Naka and Rushton, 

1966a; Spekreijse and Norton, 1970; Burkhardt and Hassin, 1978), since 
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the R/G c e l l i n perch appears to receive input from the green (535 nm) 

sensitive cones and fron the red (650 nm) sensitiye cone mechanism. 

I t has been reported that the C-type horizontal c e l l depolarizing 

response has a longer latency and a slower time course than the c e l l 

hyperpolarizing response i n teleosts (MacNichol and Svaetichin, 1958; 

and Gouras, 1960). Spekreijse and Norton (1970) measured the chromatic 

response latencies using sinusodally modulated s t i m u l i and confirmed 

MacNichol's and Svaetichin's (1958) conclusion. They found that the 

shortest wavelength component, i.e. green hyperpolarizing i n biphasic 

c e l l s , had a latency of 25 msec; wit h 50 msec for the red depolarizing 

component i n the biphasic R/G c e l l . This data has been interpreted to 

indicate that the biphasic c e l l s make direc t contact with the green 

cone system for which the latency i s shortest and make indirect 

contact through interneurons with the red cone system and is thus 

consequently more delayed ((Jouras, 1972). 

The feedback from horizontal c e l l s t o cones, observed i n t u r t l e 

(Baylor et a l . , 1971) and i n f i s h (Burkhardt, 1977), has been proposed 

to account f o r the generation of colour opponent properties of C-type 

c e l l s (Gouras, 1972; Fuortes and Simon, 1974; S t e l l et a l . , 1975; 

Leeper, 1978b). These models ( S t e l l et a l . , 1975; Leeper, 1978b) 

account f o r the known chromatic inputs to H2 biphasic R/G c e l l s and H3 

tr i p h a s i c c e l l s from cone systems with which they make no contact, and 

fo r the difference i n latencies of the C-type horizontal c e l l response 

components (Spekreijse and Norton, 1970). Further evidence for 

feedback mechanism comes from the temporal frequency analysis of 

photoreceptor and horizontal c e l l photoresponses i n carp and i n 

c a t f i s h retinas (Fukurotani, Hara and Oomura, 1975; Lasater, 1982), 

and from u l t r a s t r u c t u r a l analysis of HRP injected Hl-type horizontal 

c e l l processes i n carp (Weiler and Wagner, 1984). However, since these 
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models emphasize the photoreceptors as interneurons i n generation of 
the colour opponency of C-type horizontal c e l l s and account for the 
colour specific horizontal cell-to-receptor feedback, the C-type 
horizontal c e l l s should r e f l e c t the spectral and spatial properties of 
the feedback system. 

The horizontal c e l l feedback to green cones has been shown to be 

produced by a large red s t i m u l i , but not by green s t i m u l i or a small 

red stimulus, i n t u r t l e (Fuortes et al.,1973; Fuortes and Simon, 1974) 

and i n f i s h (Burkhardt, 1977; Burkhardt and Hassin, 1978). I n perch 

the colour opponent properties of the R/G ce l l s were not dependent 

upon the s p a t i a l extent of the stimulus. As i n perch, previous studies 

on carp and pikeperch show that the colour opponent properties of 

C-cells were detectable with small spots which do not s i g n i f i c a n t l y 

i n i t i a t e horizontal c e l l feedback to cones (Norton et a l . , 1968; 

Hashimoto et a l . , 1976; Burkhardt and Hassin, 1978). Thus the present 

re s u l t s may suggest that the horizontal c e l l feedback to cones i s not 

essential f o r generating colour opponent responses i n perch R/G c e l l s . 

Furthermore, i n these and many other reports, the C-potentials have 

been routinely recorded from the isolated f i s h retina where the 

horizontal c e l l feedback could not be detected (Burkhardt, 1977). 

There i s considerable evidence that the Hl-type (L-cell) 

horizontal c e l l s i n the cyprinid r e t i n a , may use gamma-aminobutyric 

acid (GABA) as neurotransmitter, since these c e l l s synthesize and 

accumulate GABA (Lam and Steinman, 1971; Lam, 1977; Marc et a l . , 1978; 

Lam et a l . , 1979). I n two recent physiological studies on carp 

Murakami et a l . (1982a, b ) , i n t r a c e l l u l a r recordings from cones and 

horizontal c e l l s , provided strong evidence supporting the idea that 

GABA i s the neurotransmitter involved i n the feedback system. Blocking 

the GABA pathway abolishes the depolarizing response of C-type c e l l s . 
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However, the release of GABA must be assumed to occur i n a 

non-vesicular way, since synaptic vesicles are rar e l y found i n the 

cytoplasm of the horizontal c e l l terminals (l-feiler and VJagner, 

1984). Recently, calcium independent release of GABA has 'been 

demonstrated i n isolated carp horizontal c e l l s (Ayoub and Lam, 

1984), which may suggest a non-vesicular release of GABA, These 

findings suggests that the R/G c e l l may receive i t s red component 

through the L-type horizontal c e l l s , but whether the pathway 

includes the green cone as an intemeuron or ju s t a simple 

post-receptor c i r c u i t r y l i k e that proposed by Naka and Rushton 

(1966b) has yet to be decided. 

8.4. Spatial properties. 

A d i s t i n c t i v e feature of a l l perch horizontal c e l l s was th e i r 

large area summation, as i n other teleosts (Tonita, 1965; Naka and 

Rushton, 1967; Norton et a l . , 1968; Kaneko, 1970, 1971a; Hassin, 

1979) and i n t u r t l e (Lamb, 1976). The r e s u l t of t h i s study shows 

that the receptive f i e l d s of the L-type c e l l s were about 4 to 5 mm 

i n diameter and 3 to 5 mm for the C - t } ^ c e l l s , v^ich f a r exceed the 

physical dimensions of dendritic processes radiating from the h o r i ­

zontal c e l l s , measuring about 100 ym i n diameter. The area summation 

i n perch horizontal c e l l s are similar to those i n other teleosts 

ranging from 0.5 to several mm i n extent. I n perch the L- and C-type 

c e l l s have similar receptive f i e l d s as i n pikeperch (Burkhardt and 

Hassin, 1978; Hassin, 1979), but i n other teleosts the C-type c e l l s 

have been reported to have larger receptive f i e l d s than the L-type 

c e l l s (Negishi and S u t i j a , 1969; Kaneko, 1970). 
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The large receptive f i e l d s of horizontal cells implies that 

signals from peripheral photoreceptor contribute to the spatial sum­

mation transmitted to the centre v i a interactions between neigh­

bouring horizontal c e l l bodies of the same type. The spatial sum­

mation i s probably mediated by a low resistance coupling between 

neighbouring horizontal c e l l s (Kaneko, 1971a). Low resistance 

coupling among ce l l s has been at t r i b u t e d to nexuses or gap junctions 

(Bennett, 1966). I n the electron microscope, gap jionctions are 

widely found between contiguoxis horizontal c e l l s (Yamada and 

Ishikawa, 1965; Witkovsky and S t e l l , 1973; Witkovsky et a l . , 1979). 

E l e c t r i c a l coupling through gap junctions do probably mediate such 

l a t e r a l interaction i n perch as i n other vertebrates (Yamada and 

Ishikawa, 1965; Naka and Rtishton, 1967; Kaneko, 1971a; Lasansky, 

1973; Witkovsky et a l . , 1979). The e l e c t r i c a l coupling between h o r i ­

zontal c e l l s i s l i m i t e d to horizontal c e l l s of the same spectral re­

sponse properties, w i t h no evidence of d i r e c t cross-coupling between 

d i f f e r e n t types (Kaneko, 1971a). I n general, the perch horizontal 

c e l l s appear to correspond well w i t h previous investigations on 

horizontal c e l l receptive f i e l d properties i n other teleosts, with a 

large uniform receptive f i e l d , which i s probably mediated by low 

resistance gap junctions between horizontal c e l l s of each type. 

Measurements of the space constant with a long and narrow bar 

of l i g h t , showed an exponential decay as observed i n other species 

(Naka and Rushton, 1967; Lamb, 1976). The space constant was found 

t o be about 250 ym as i n cyprinids (Naka and Rushton, 1967) and 

raudpuppy (Werblin, 1970). However, the space constant i n perch was 

found t o depend upon l i g h t i n t e n s i t y , which may result either from 
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an increase i n membrane resistance or from l i g h t scattering, as 

suggested by Lamb (1976). I n general the space constant seems to 

depend on the method used to measure i t , such as l i g h t spot, l i g h t 

bar or current i n j e c t i o n (Lamb, 1976; Byzov and Shura-Biora, 1983).. 



224 

Chapter 9. 

(General discussion and concliosion. 

9.1. Correlation of the morphological and physiological results. 

Three types of cone horizontal c e l l s have been i d e n t i f i e d i n 

t h i s study of C^olgi impregnated perch retina. I t has been mentioned 

e a r l i e r (Section 7.1) that each c e l l type forms a layer of cell s 

d i s t i n c t l y separated from the other layers. The d i s t a l layer of 

horizontal ce l l s consists of Yil-type c e l l s which contact both the 

red sensitive twin cones and the green sensitive single cones. The 

intermediate layer of c e l l s consists of H2-type c e l l s which contact 

the red sensitive twin cones exclusively. The proximal layer con­

s i s t s of H3-type c e l l s which contact the green sensitive single 

cones exclusively. (For summary see Fig. 9.1). 

I n t h i s study two main types of horizontal c e l l responses were 

observed by i n t r a c e l l u l a r recordings, monophasic L-type and biphasic 

(R/G) C-type responses as was described previously (Section 8.2-3). 

The L-type responses were always observed d i s t a l to the C-tjpe 

responses. I n addition, i t was noted that two L-type cell s were 

often penetrated i n sequence d i s t a l t o the C-type c e l l s . The 

sequence of responses observed i n t h i s study corresponds i n many 

respects w i t h the characteristic sequence observed i n other species. 

Among cyprinids f o r example, i n which c e l l u l a r organization and 

function have been correlated and where the layering i s evident, the 

C-type c e l l s are generally found to be proximal to the L-type cell s 

(Mitarai et a l . , 1974; S t e l l and Lightfoot, 1975; Hashimoto et a l . , 

1976), which was consistent with the order i n which these responses 

were encountered when penetrating the retina from the receptor side 
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Figure 9.1. 

Sxjmmary diagrammatic reconstruction of perch cones and horizon­

t a l c e l l s . Showing the interconnections of cones and horizontal 

c e l l s , including the invaginating basal processes. RD, red double 

cones; GS, green single cones; ONL, outer nuclear layer; GPL, outer 

plexiform layer; HI, H2, and H3, Hl-type, H2-type, and H3-type 

horizontal c e l l s ; HIP, H2P, H3P, HI-, H2-, H3-type dendritic 

processes; GIBP, green (single) cone invaginating basal process; 

RIBP, red (double) cone invaginating basal process. 



-H3P 



226 

(Orlov and Maksimova, 1965; Witkovsky, 1967). I n pikeperch, 

Burkhardt and Hassin (1978) made recordings fron two L-type c e l l s i n 

sxaccession d i s t a l to the C-type c e l l s , l a t e r , Hassin (1979) using 

i n t r a c e l l u l a r staining technique found that the two d i s t a l layers, 

HI and H2 c e l l layers, gave L-type responses and the proximal layer, 

H3 c e l l layer, gave C-type responses which was consistent with the 

order i n which these responses had been encountered and thus 

confirmed the previous results. This suggests that the sequence i n 

v ^ c h the c e l l types are encounterd when penetrating the retina can 

be a r e l i a b l e i n d i c a t i o n of the order i n which the c e l l types are 

arranged i n the re t i n a . 

According to the observed connection pattern of the three perch 

horizontal c e l l types w i t h cones and on the sequence i n which the L-

and C-type c e l l s were encountered when penetrating the retina i n 

t h i s study, and on correlation with f u n c t i o n a l l y / h i s t o l o g i c a l l y 

i d e n t i f i e d horizontal c e l l s i n other species (Section 7.3), the 

following relations are proposed: The h i s t o l o g i c a l l y i d e n t i f i e d HI 

and H2 c e l l s generate monophasic L-type responses and H3 ce l l s 

generate R/G C-type responses. 

Tne .primary d i s t i n c t i o n between perch and pikeperch retinas and 

other teleostean retinas i s the posession of two layers of cone 

rel a t e d L-type c e l l s w i t h cle a r l y detectable nuclei. This may 

r e f l e c t differences i n habitat or behavioural patterns or both and 

i t may be a characteristic of the percidae family. 
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9.2. (feneration of horizontal c e l l responses. 

The Hl-type c e l l s i n perch which contact both red and green 

cones probably generate red sensitive L-type responses. They 

correspond thus with the contact pattern of HI L-type c e l l s i n 

pikeperch (Hassin, 1979; Witkovsky et a l . , 1979), and the L-type 

c e l l s (HICB) i n t u r t l e (Leeper, 1978). The H2-type cells i n perch 

which contact red cones exclusively would therefore be expected to 

be L-type cel l s receiving input only from red sensitive cones. The 

H2 c e l l i n perch has a similar connection pattern to the HIAT L-type 

i n t u r t l e (Leeper, 1978). While the HI and H2 cell s i n perch d i f f e r 

i n the contacts they make wit h cones, no difference was observed i n 

spectral s e n s i t i v i t y i n recordings from sequentially encountered 

L-type c e l l s i n the same penetration. Both c e l l types have the same 

maximum spectral s e n s i t i v i t y and no wavelength dependent differences 

i n the response waveforms were observed. According to t h i s evidence 

and the fact that the HI c e l l contacts both red and green cones and 

the H2 c e l l only red cones, i t seems l i k e l y that the sites of the HI 

c e l l synapses on green cones may be involved mainly with L-type 

horizontal c e l l feedback onto green cones. 

The H3 cell s make contact only with the green sensitive single 

cones and are probably R/G C-type c e l l s , since they have exactly the 

same contact pattern as R/G c e l l s i n pikeperch (Hassin, 1979; 

Witkovsky, et a l . , 1979), and similar contact pattern to R/G c e l l s 

i n goldfish and i n t u r t l e , which contact green and bltie sensitive 

cones ( S t e l l and Lightfoot, 1975; Leeper, 1978). Generation of R/G 

responses i n H3 c e l l s i s explained by direc t hyperpolarizing input 

from the green sensitive single cones. The depolarizing input must 
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therefore be mediated by an i n d i r e c t pathway, probably through the 

HI L-type c e l l s . I t remains uncertain, however,, whether the de­

polarization of R/G c e l l s to red l i g h t i s produced by synaptic 

contact d i r e c t l y from L-type c e l l s onto H3 c e l l s , or by HI c e l l 

feedback onto green cones. 

Given the connectivity pattern of the three types of cone 

horizontal c e l l s (HI, H2, and H3) and assuming the presence of a 

sign-inverting feedback mechanism from horizontal ce l l s to cones, 

which may be a general feature, t h i s concept readily explains the 

, generation of the opponent colour responses i n horizontal c e l l s . A 

key feature appears to be a cascading system of interneurons, i n 

which the c e l l t5rpe producing the monophasic responses (HI) receives 

a d i r e c t input from red sensitive cones and communicates i t s 

response to the biphasic c e l l type, probably by feedback onto the 

green cones (Fig. 9.2). However, as has been mentioned previously 

(Section 8.2.1) the spectral s e n s i t i v i t y of perch L-type horizontal 

c e l l s d i f f e r s markedly f r o n those of other teleosts. 
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R G R G 

Hl-L-TYPE CELL 

H2-L-TYPE- CELL 

H3-R/G-TYPE CELL 

Figure 9.2. 

Diagrammatic summary of the interconnections between horizontal 

and receptor c e l l s i n the perch r e t i n a , incliiding a model for the 

pathways involved i n the generation of horizontal c e l l responses and 

psetidopigment spectral s e n s i t i v i t y . R, red doijble cones; G, green 

sensitive single cones; "+", sign-conserving synapse; inverting 

synapse. 
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9.3. Pseudopigment spectral s e n s i t i v i t y . 

As has been previously demonstrated i n t h i s study (see section 

8.2.1), by the method of Sirovich and Abramov (1977), the L-type 

pseudospectral s e n s i t i v i t y can possibly be generated by an antagon­

i s t i c i n t e r a c t i o n between the red and green sensitive cones. The 

question arises as to the s i t e of t h i s interaction and the anatomi­

cal pathway through which t h i s interaction i s mediated. Since the 

L-type horizontal c e l l s respond as i f they receive input primarily 

from a single 650 nm pigment, i t i s l i k e l y that the antagonistic 

i n t e r a c t i o n between the two colour channels i s mediated at some 

level peripheral to the s i t e at which the responses are measured. 

Furthermore, the depolarizing signal observed i n the horizontal 

c e l l s under intense red background does not appear to be mediated 

d i r e c t l y on the L-cell but rather to be a postsynaptic i n ­

te r a c t i o n , and since the horizontal c e l l s are connected d i r e c t l y t o 

the cones, t h i s interaction probably occurs d i r e c t l y between the red 

(R) and green (G) cones (Fig. 9.2). 

The invaginating basal processes seem to be the anatomical 

pathway through which such an interaction might occur (see Fig. 

9.1). I n h i b i t o r y actions of the green cone basal processes onto the 

red cone pedicles may generate the pseudospectral s e n s i t i v i t y 

observed i n perch horizontal c e l l s (Fig. 9.2). I t could be expected 

that i f the cones themselves d i r e c t l y interact i n sxich a way to 

generate the 650 nm spectral s e n s i t i v i t y i n perch, this spectral 

s e n s i t i v i t y should be observed without exception elsewhere i n the 

visxaal pathway, but not the red 615 nra pigment. The behavioural 

measurements on perch (Cameron, 1982) may support such a conclusion. 
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as behavioural spectral s e n s i t i v i t y curves are i n a very good quali­

t a t i v e agreement with the L-type c e l l 650 nm spectral s e n s i t i v i t y 

measured physiologically i n t h i s study, and a spectral s e n s i t i v i t y 

corresponding w i t h the 615 nm red cone photopigment was not ob­

served. I t was noted e a r l i e r (Section 7.4) that the colour opponent 

system of cone basal processes of other teleosts (Scholes, 1975; 

S t e l l , 1980) are u n l i k e l y t o mediate dire c t cone to cone anta­

gonistic interactions, since the physiological action spectra and 

behavioural mesurements f i t closely w i t h the pigment spectra (Naka 

and Rushton, 1966c; Muntz and Northmore, 1971; Spekreijse et a l . , 

1972). Therefore S t e l l (1980) siaggested that the basal processes 

acted on the horizontal c e l l processes, rather than on the cone 

pedicles. However, u l t r a s t r u c t u r a l details of the basal processes 

interconnections are s t i l l to poorly known fo r evaluation of t h i s 

hypothesis, and i n the absence of i n t r a c e l l u l a r recordings from 

perch cones and other r e t i n a l neurons, i t i s d i f f i c u l t to determine 

the s i t e of in t e r a c t i o n between the colour channels and must await 

further investigation. 

Loew and Lythgoe (1978) suggested that generation of pseudo-

spectral s e n s i t i v i t y or 'ghost cones' w i t h t h e i r narrow spectral 

s e n s i t i v i t y curves and spectral s e n s i t i v i t y displaced to longer 

wavelengths are p a r t i c u l a r l y suitable f o r detection of contrast. 

McFarland and Munz (1975a) have showed that detection of contrast i s 

best achieved by possession of at least two cone photopigments, one 

'matched' to the wavelength of maximum backgromd radiance and one 

'offset' from that wavelength. The spectral bandwidth of l i g h t 

available i n fresh water i s narrower than on land due to selective 
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absorption of natural water. As l i g h t travels through the water 

column i t s long wavelength components are gradually absorbed and i t s 

short wavelength components are selectively absorbed by the break­

down products of chlorophyl (yellow substances) narrowing the back­

ground l i g h t , leaving the midspectrum green l i g h t to be transmitted. 

Due to the selective absorption of water, the distance of an object 

i s c r i t i c a l f o r i t s detection. A distant object and an object i n 

deep water have the same spectral d i s t r i b u t i o n as the backgromd 

l i g h t . I n t h i s case, a receptor having a spectral s e n s i t i v i t y 

matched t o the spectral radiance of the water background, as the 

perch green (535 nm) sensitive cone, w i l l be best for detection of 

contrast. On the other hand, the spectrum of a bright object, at 

short distances at least, i n moderate or shallow water i s broader 

than that of the background. Thus for a visxaal mechanism spectrally 

o f f s e t from the background l i g h t , the background would appear 

r e l a t i v e l y dark compared wi t h the object (Munz and McFarland, 1977). 

A pseudopigroent spectral s e n s i t i v i t y which i s narrow and displaced 

to longer wavelengths as i n perch, would therefore be an e f f i c i e n t 

contrast detector. 

The perch v^ich i s sensitive to green 535 nm and far red 650 nm 

l i g h t , therefore, has the opportunity to employ a wavelength 

selective visual mechanism, both for optimal detection of objects 

and f o r discrimination of objects against background, i n i t s 

struggle f o r survival. 
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