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APPLICATIONS OF THE THEORY OF ELLIPTIC FUNCTIONS IN NUMBER THEORY

M.Sc. Thesis

by

T. Harmoussis

ABSTRACT

The aim of this thesis is to present some striking
applications of Number Theory, essentially based on the
powerful machinery of Elliptic Modular Functions and
Class Field Theory.

One of these applications is the explicit determination
of all imaginary quadratic fields with class-number one,
famous as the 10th discriminant problem. In my discussion
of this problem, I have followed the work of K. Heegner
and others, based on the results of H. Weber found in his
"Lehrbuch der Algebra'". 1 have presented the results of
Weber adopting up to date methods, since Weber's proofs
were rather computational using complicated, lengthily
presented properties of theta functions. For this purpose
I have been rescued by Group Theory, which has been used
throughout to prove the critical results of Weber. Thus,

T have shortened the ground work which I needed for further
exploration.

A second application very closely related to the above
is the identification of elliptic curves with infinitely many
rational points, or, what is essentially the same thing, cubic
equations with infinitely many rational solutions.

In the first part of this work I have provided a systematic
development of a pertinent background for the objectives outlined

above.
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INTRODUCTION

This thesis is naturally divided into two parts. The
first is concerned with establishing an appropriate background
necessary for our purposes and this occupies the first two
chapters. The second part, the last two chapters, deals with
two remarkable applications in Number Theory: the Gauss 10th
discriminant problem and the discovery of an infinite series
of Elliptic Curves each with infinitely many rational points.

Chapter I is of an introductory nature and is divided
into two sections, A. MODULAR FUNCTIONS and B. FELLIPTIC
FUNCTIONS AND ELLIPTIC CURVES.

The first is concerned with the Modular Group, Modular
Functions and Modular Forms. In paragraphs |, 2 and 3 we
review briefly this beautiful area of Mathematics treating
in particular the concept of level of a subgroup of the
Modular Group and the cusps of principal congruence subgroups.
It now seems to me, having had the opportunity to attend the
the recent International Symposium on Modular Forms at Durham,
that this subject offers a whole range of fascinating conjectures.

In paragraph 4 we give a detailed exposition of some Modular
Functions which constitute the main ingredients of our work.
In particular we examine the properties of Weber's functions
f, £, and f, . Birch and Heegner (as we point out) use these
functions (or very similar ones) with conflicting notation.
Both for historical reasons and for the sake of clarity we
stick to Weber's notation and definitions. Therefore we have
set ourselves the challenging task of presenting proofs of all
properties of the Weber functions which we need. The Theorem
I. 4.6.10, in its extended form, has been one of the most

interesting statements to prove.




Paragraph 5 rapidly presents the necessary preliminaries
on the Modular polynomial in order to prove at the end three
significant theorems.

The section B of Chapter I introduces the most basic
properties of Elliptic Functions and Elliptic Curves,
including the Addition Theorem, the possibility of complex
multiplication and the Mordell-Weil Theorem. I have found
three excellent surveys of this subject (see Cassels [10] ,
Tate [47] , and Gelbart [18] ), which should be mentioned
here. I have also tried to avoid too great a generality,
as too much Algebraic geometry would have taken us beyond
the intended scope of our thesis. Lang says: "It is
possible to write endlessly on elliptic curves'.

In Chapter II we look at the application of Modular

Functions to the Class Field Theory of imaginary quadratic
fields. Our principal aims are a statement of the S6hngen
theorem and a closer examination of the case where the
discriminant D = -p, P = 3 (mod4) and p is a prime greater
than 3.

Chapter 111 is devoted to the longstanding Gauss'
conjecture that there are exactly 9 imaginary quadratic
fields with class-number, h(-p) is equal to | (given by
p=23, 4, 7,8, 11, 19, 43, 67, 163).

In 1951 Heegner (see [23]) was motivated by a lemma
of Weber (see [48] , & 125) stated as follows: "If p is a
rational prime =3 (mod8), and h(-p) = 1,then Xa<-3t;fi->
is a rational integer" to prove the Gauss conjecture. When
his proof appeared it was discounted, because it was thought
that the proof was based on a conjecture of Weber that had

not been proved at the time. Using our notation Heegner's

proof was based on a fact, actually proved by Weber, that

1T




& f: (w) e K, II1
and not on Weber's conjecture
/2 e o wﬁ; (w e Ky

(which has subsequently been proved by Birch [4] ).
Indeed the ideas of Heegner are effective not only for the
class—-number problem but also for the study of rational points
on Elliptic Curves.

Historically, the first generally accepted proofs were
given by Stark (see [45]) and Baker (see [3] ) in 1967.
They have also showed, by using a transcendence theorem, that
there are exactly 18 imaginary quadratic fields with class-number
two. Recently great progress has been made on b ounding the
class-number of quadratic fields in general (se e.g. [19], [24] ).

Chapter IV 1is devoted to elliptic curves defined over
the rationals with infinitely many rational points. This
fascinating subject involves inevitably a certain amount of
Alpgebraic Geometry. Siegel proved (see [42] ) that on an
arbitrary affine curve of genus » | there exist only a finite
number of integral points. The question of whether there
exists a rational point is extremely difficult, and there is
as yet no known procedure for deciding in general. Reichardt
showed that there are no rational points on x% - 17 = 2 y2 .
Birch (see [5] ) has presented a family of Elliptic curves
defined over the rationals such that each of these curves has
infinitely many rational points.

All definitions, theorems, and remarks within a single

chapter are numbered consecutively. Bibliographical references

are given by numbers enclosed in square brackets.
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A. MODULAR FUNCTIONS

1. Standard Notation - Lattices in the complex plane

We denote by Z, R, , € the ring of rational integers,
the field of rational numbers, the field of real numbers, the
field of complex numbers, respectively.

We also denote by:

C : =CU {iw}

g : = {zeC: jm(z) >0} , the upper half of the complex plane

& -%Li=mloQ

For a commutative ring R with unity, we denote by R" the group
of units of R, and by M,(R) the ring of all 2 x 2 matrices with
entries 1in R.

Now we set:

GL; (R) = My (R)™
SL,(R) = {A€GL,(R) : det (A) = 1}
Finally, we denote by(" the quotient group SLZ(Z.y s
{+ 1}
1 O
where 1 ~(O ')

Note that { acts on!h on the left, by Mobius transformations,

in the obvious way.

Definition (Def T,1,1)
LetVbe a real vector space of finite dimension n .
A (full) lattice L inV'is a discrete subgroup of V' of rank n, in
other words, an additive subgroup of Vgenerated by a basis of V.

Regarding the complex plane as a two-dimensional vector space




o ver the reals, a lattice L in the complex plane is a freely
generated subgroup of ¢ of rank 2, that is, there are w,,wzc_c
with £ & R , so that:
Wy ’

L = [w,,wl]= { MW, +NWy - M, N eZ.}
In the following we keep fixed the notations:
L = [o,,wz] for a lattice in the complex plane with jm(%))O,
and, putting't':—zi' , we denote by A=[T,1] the normalized lattice.

Now we make some important remarks on lattices in the complex

plane:

Remark (Rem. I. 1.2)

’ ’
It is easily seen that the pairs (w,, W, ), (W) , ;)
with entries in @Fgenerate the same lattice in{, if and only if,
they are equivalent with respect to GL,(Z ), in other words, if

and only if, there is a unimodular integer matrix (2 g)such that:

W, _ ab) Q,i
(4); c d Wy
We denote by:
ds , the set of all latices in{, and
4
m¢ , the set of all pairs (W, w,)with entries in{, such that
. w,
IS, ) >0.
Remark (Rem. TI. 1.3)

The proup SL,( &) acts on wmg, on the left in the obvious way:

(ig . (W ,Wp) = (aw+ bW, , cw, + dW,).

The action is well defined, since

A bwg) i (2 )
Jm(cm,+ dw, ! ~ Ic% + d? >0

2

Thus, the quotient "’/SUl)is identified withlo , by the map
((A).‘ , &)z)'—ﬁ-[&),,wz]

x
Now, the group @€ acts on M (resp. onde ) by:




;\.(w,,wz)a(ﬁwﬁ,ﬁwz) (resp. j\[m,,wz]=[/“a),,/’]a)z] ) o
The quotient m/¢! is identified with %6 s, by the map

(01,&)1)I—>T=%

and since this identification transforms the action of SLk(Z)

on Mg into that of € on¥, we have that

Remark (Rem. I. 1.4)
There is a bijection of %onto 3“/(r induced by the map
(w,,wi) o—-—'t=%;- .
The basic functions we shall be dealing with are the Eisenstein
functions g,, g, , the discriminant A, the Klein function J, and
the absolute invariant j.

For our given lattice L=[w,w,]the Eisenstein series of order
g 2

2n, n 22 1is given by

Gm(L)=Z§.l :

wel
WHAS

We make the following definitions:

g, (L) = 60G, (L)

B, (L) = 140G4(1.)

AL) = g2(L) - 2785(L)

J (L) = —g:—(m—
A

j(L)Y = 1728 J (L) .

In terms of the normalised lattice /\=[’t,1] we have

1

Gy (N) = E (e d™ y M2 (I.1.5)
(¢ d¥o.0)
g,(N) = 60C,(A) (1.1.6)
B, (N = 140 G3(N) (I.1.7)
AN = g - 2785 (M) (1.1.8)
3

gg (N\)
A NS (1.1.9)
JNY = 1728 3 (N (1.1.10)




2. THE MODULAR GROUP

2.1 General Facts and Definitions

The homogeneous modular group [(1)is defined to be the

group SL,(Z)
Note that, for each T =(i E >§r(j)corresponds a Mobius

transformation T: €& —— & , given by

T (2) = 82+b
cz +d

A

We denote by [ (1) the set of all Mobius transformations defining
by the elements of [(1). The set [ (1) turns out to be a group

under the composition of mappings, and is called the inhomogeneous

modular group.

The map: ¢ sT(1)—=T7Y(1) defined by:
bty =T MTel()

is clearly a group epimorphism with Ker (&) ={J¥I}, where T is
the identity matrix.

Therefore we have: A

I'U)/ = (1)
{£1f
Vo)

Let G be any subgroup of [ (1). We denote by G the inhomogeneous
image of G under @¢.

Note that:

if - TEG , then r/{il}

A

and if - 1€G , then G ¥ G

~

A
G

Definition (Def I.2 1.1)

The Modular group { is defined to be the inhomogeneous

~
modular group r(l), although we may prefer to think of it as
the quotient group r(lbqi I} ,or indeed as the homogeneocus

group (1), with every matrix T identified with -T.




The theory of row reduction of integral matrices shows that

the Modular group(r is generated by the elements S, T given by:

st Tr~-L T

A
Clearly therefore{ is also generated by the elements S, ST,

which are of order 2,3 respectively. 1In fact, it can be proved

A
that { is the free product
A
T -<{s>xdsT>

A *
2.2 The Action of (" on 3£

A
The modular groupr acts ond€ in the usual way

YT =y () ’v‘yeﬂc, Vreds

In particular, if yis the inhomogeneous image of the matrix

<a b>ef—(|), then we have:
c d

Remark (Rem I 2.2.1)

Cy . . at+ b _ jm(T)
(i’ Y("C)E% Y tedd [ since jm <__—_c'z:+ d> Tetr dF

(i) pae={% > e*°
100 , if ¢ =0

(iii) For t= qe @

Q+§ ,if c=0
aqg+b - 4
v Leo i ¢+, g--2

Def initions (Def. I 2.2.2.)

A %*
A fundamental set of  , for & , 1s defined to be any subset

*
of % containing just one point of each orbit.

A *
A fundamental domain of{ , for .3 , is defined to be a set

A #
containing a fundamental set of T , for 3 , and if it contains

two points of the sameorbit, then they lie on the boundary.

Theorem (Th. I. 2.2.3) (See Schoeneberg [37] , p.p. 17, Th. 13)

The Set D, = {teﬂé s | Recr)l« % v >l ot}
0 {vele: Reu=-f , It1>1] 0 vedbziti-1 fReweo]

A *
is a fundamental domain of (" for % .




The boundary of th consists of pairs of equivalent sides, namely:

The vertical sides (p,io0) ~ (p+1 , io0 ), which are mapped
oneonto the other by the transformations T or T", and the arc
sides (p ,i1 ) ~(p+1,1 ) which are mapped one onto the other by
the transformation §.

A ~

Let (7 ={V6r1 V(T)=T} be the stabilizer of an element

Te Dq,_\ nnder ' . Then one has:

<T », infinite cyclic group, generated by T

h

<S> , cyclic group of order 2, generated by §

< ST >, cyclic group of order 3, generated by ST

mﬁ> :—tﬁ> §Q'>
it

A
In all other cases of TeDf’c: = {ld} .
N
Therefore every element Ye(r is uniquely determined by the image
of a point 'CeDo': , distinct from 100, e, 1i.
It is easy to deduce from the (def. I. 2.2.2) the following:
Remark (Rem I.2.2.4)
*
The map Doc——v%/ac , defined by t orbitr_('r) , 1s bijective.
In particular, this map sends

since orbit(/r\(too) = {‘LW}U Q .
Theorem (Th. I 2.2.5)

(i) Let (c, d) =1

r d
Then every element of T sending - = to ico is of the

form T® L,keZ where L is the inhomogeneous image of matrix

a b
L —<c d)

(ii) Let {(c, d) = (c,, dq) = 1



Then every element of q_sending - g-to —-gf is of the
1

-1
form L ™L , wveZ,

where L, L, are the inhomogeneous images of matrices, L =<i 3>'

d

1 1

b .
L, =(i‘ ’)pf [(1), respectively.

Proof

(i) Suppose that V is a matrix lying in rkl) whose the

inhomogeneous image, V say, is such that

v (_.fl ) = 1oo
c
_(* Y
Then V = (C d) .
Since (c,d) = 1,the Diophantine equation dx - cy = 1
has solution x = a + ke, y = b + kd, where xeZ

Therefore V = TKL
The converse is obvious .

(ii) Let ve(, and V(-%): _%‘_
s

Then for an arbitrary integer K, we have
™1, v (- i):T"‘L(‘lL)= oo ,
1 P f\c,
since (1) .
Therefore 'I‘K‘L1 V= Tk L for some integer K, .
Hence V = L, T L, ,keZ.
The converse is obvious .

A

2.3 Fixed Points for i

Let y be the Mobius transformation, corresponding to the

. *
matrix }'==<Z Z) € [ (1). We find the fixed points of € by yp

Case 1, ¢ # o

#
The only possibility for y(r):t,'tegé is that

*
at + b . d
_— =T,amiTegé\ {1“H ———}
cT + d d

which is equivalent to

2
_(a - dis \/§2+d) -4 and |tr(y)|=|a +dlg 2.

Suppose Itr (Y)“< 2 (the elliptic case).




(a - d) + JQa + d)2 -4

In this case p fixes only the point T = 7e

lying on ¥& R
Every element yesd_ such that: |tr (y)]< 2 is called elliptic,

and by the above, every elliptic transformation fixes only one point
of ﬂ?lying on the upper half plane.

Using standard thorems of integral matrices, one proves that an
elliptic element of f is either of order 2 and is of the form
L?s L, for some Le}f , or,is of order 3 and is of the form
L1(sT)% L, where K = | or 2, for some I;E-f .
Now, if'teaé* is a fixed point for an elliptic element p of order
2, then

L4 s L (t)=1, for some LGG:.

and therefore SL (t) = L (1), which means that L (t) is a fixed
point for S. Since the only fixed point of B for S is 1, we
deduce that L () =1, that is T= L7y,
We denote by E2={ IO L&@:} the set of all elliptic
fixed points of order 2 in ¥ .

A
Similarly, one proves that E3={ L4 (p) : Leﬂ_} is the set

N . . . 2nig
of all elliptic fixed points of order 3 in 3@, where p = e .
Suppose,now, |tr (p)| =2
In this case,p fixes only the rational number a ;cd 0

Case 2, ¢ =0

In this case a = d=4#I, and so if the matrix Y# £ I, the
transformation p fixes only the point at infinity. Any element
Ved: with matrix P4 = I, and|tr (P)l = 2 is called parabolic.

Every parabolid element of f.fixes only one point of ggﬁ which
is either 2 rational number or the point at infinity . Using

standard theorems of integral matrices, one proves that a parabolic

A "~

element of @ is of infinite order in ( and takes the form L} TKL,
A
for some Le ( , where KeZ~ io}
*
Now, if redd is a fixed point for a parabolic element % then,

~
L't L (T) =7, for some Le(T, KGZ\{O}
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and therefore TX L (t) =L (t), which means that L (T) is a
fixed point for T¥ , that is
L (1) = ioeo
and so T =1L"" (ie0)
Pl ooy : vef .
We denote by ={ L7 (io®) : L€ the set of all parabolic
A
fixed points which are also called cusps of the modular group
Summarising the above analysis we see that the elements of the
Modular group ( acting on the extended upper half plane b can be
divided into four classes:
1. The identity transformation 1
2. Elliptic transformations of order 2, which are of the
”~N
form L5 L , for some L€
Each of them fixes only one point lying ond, and the
set of fixed points is :
-, . -~
E2={L (i) = LGG—}
3. Elliptic transformations of order 3, which are of the
-1 K =
form L™1 (ST) L, for some Le [, where k = 1 or 2.
Each of them fixes only one point lying on % , and the
set of fixed points is
-1 -
E~{t" ) = teC )
where p = e .
An elliptic transformation occurs,if and only if the trace of
the corresponding matrix has absolute value less than 2.
4. Parabolic transformations, which are of the form
L' 1, for some Le( , where ke Z~{0]}.
*
Each of them fixes only one point of §& which is
either a rational number or the point at infinity leo
and the set of fixed parabolic points (cusps) is =«
-1, . -
1P=iL (Ltoo) LGG—}
Finally, a parabolic transformation occurs_ if and only if, the

trace of the corresponding matrix is + 2 , and the matrix itself

is #+1.




1

A
2.4 Subgroups of " of finite index. The concept of level.

Let n be any positive integer.

Set [ (n) ={<2 3)5 [(1) : a=sdal (modn), b=c=o (modn)}:
It is easy verified that [(n) is a normal subgroup of [(1) and
in fact, it is the kernel of the natural homomorphism
[(1)— SL 5, (Zn), which is also onto ,
Thus (1) ~ SL(Z.)
== 2 mn
['(n) (I. 2.4.1)

The subgroup [(n) is called the homogeneous principal congruence

subgroup of level n.

A

A
We write [(n) for the subgroup of { which corresponds to [ (n),

and we call it the inhomogeneous principal congruence subgroup

of level n.
Since -Ie [(n), if and only if, n = 1| or 2,
we have: M(n) = [(n) (n=1,2)
(1} >
(1. 2.4.2)
V)
) 2 [(n) , (n33)
By a simple argument ., counting the incongruent solutions of
ad - bc=l (modn), one proves that the order of SL, (Z,) is nBIIT(-"%z).
pin
Therefore, setting p(n) = [rTl): r(Tﬂ] , it follows from
(1.2.4.1), that: ien) = 2T T(1-1) (I.2.4.3)
PIn P

N AA
Also, setting p(n)==[¢_: F(n)] , since (I.4.4.2) we have :

p(m) , (n=1,2)

A
H(n)
(1. 2.4.4)

pe = Lpm , (n>3)

Definition (Def. 1.2.4.5)
Let G be any subgroup of F(1).

We say thatG is a congruence subgroup of [(1), if

[(n) € G, for some positive integet n.

The notion of an inhomogeneous congruence subgroup is defined

similarly.




We give, now, a short list of some important congruence subgroups:

For a positive integer n, we set:

]—o(n) ={<2 >e[—f]): c=o0 (modn) }

e
[ ={<i

3

>ér(]): b=zo (modn) }

AT Ao oo

>€-r(]): bz=c=o (modn)}

We set: ym =[ra):Lm]=[Ta): rm],
\I/m) = [d/L : Fo(n)]= [ : o] .
Since -le I'o (n) Mo ﬁﬂ/{tl} X [,m)

A
‘\y(m=\t/m)

and therefore

Note that, if ¢ =o (modn), the congruence ad - bc =1 (modn) has

exactly n¢(n) incongruent solutions, where @ is the Euler

¢ - function. Therefore: [__r;(n)'.r(n)] = ’n?(]’l) = ‘nzT'—[(l‘%‘) .
PIM
From (I.2.4.3), we deduce that:
|
= = 1.2.4.6
Y= n m(u =) ( )
and  [TC1):To(m)] = [(C: )] = nym) (1.2.4.7)

We discuss, now, the notion of the level of a subgroup G of
r(l), in the case, where G is of finite index in [(1).

Let G be any subgroup of [(1) of finite index, 7 say.
Since [ (1) is finitely generated group by §, T, G is also finitely
generated. Furthermore, by Schreier's theorem, the number of
generators of G does not exceed | +[.

Since the matrix T is of infinite order in r(l), for each
ve [(1), we are allowed to define n, to be the least positive
integer such that:

™ve vy

12
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Since G is of finite index in r(]), the number of conjugate

subgroups of G in [ (1) is also finite, and in fact this number is

equal to ,rYI)/FJ G) where Pﬁ“{G) is the normalizer of G
r¢ S
in [(1). Therefore the set {nx,: Ve r(l)j is finite.

Keeping fixed the above notations, we give the Wohlfahrt

(1964) definition of the level of the subgroup G of .

Definition (Def. I. 2.4.8)

Let G be any subgroup of (1), of finite index. The level
N of G is defined to be the least common multiple of n,, Ve ey,
and write :

lev (G) = N .

Let n be any positive integer.
We denoted by A(n) the normal closure of the cyclic group <T™>
in (1), that is the intersection of all normal subgroups of
[ (1), which contain <T™>.

Following the standard properties of the normal closure
we have:

(i)A(n) is the unique smallest normal subgroup of [(1)

containing <Tnhand

(iid)A) =<viT?y : ve [(1)>
Thus, if G is a subgroup of [(1), of finite index, then we may
equivalently define the level of G as follows:
Definition (Def I. 2.4.9)

Let G be any subgroup of [(1), of finite index, and N be any
positive integer. We say that G is of level N, if and only if,

AMm <6 ’
and N is the smallest positive integer for which this inclusion
holds, that is, N is the smallest positive integer, such that:
viIiTN Yy e ¢ Muve ) .

We make exactly similar definitions for inhomogeneous groups,




A

which are of finite index in @ .

Now, 1t can be easily proved that:
Remark (Rem I. 2.4.10)

tev (M) )= 1ev<F(N)) - N

Suppose, now, that G is a congruence subgroup of Fc.
Therefore [(n)S G for some positive integer n, and so G is of
finite index in [(1). Let lev (G) = N, where N is a positive
integer, and hence N 1s the least positive integer such that
VIN v'! € G for any arbitrary chosen Ve [(1). So N is the
least positive integer such that TNeG. But, since [(n)e€ G we
have also T"€ G and therefore N|n. So we have proved the following:
Remark (Rem I.2.4.11)

If T(n)eG< (1) for any positive integer m, then

lev (G) ln

We state now a more general result:

Theorem (Th. 1.2.4.12)

Let G be any congruence subgroup of G.
Then lev (G) = N, if and only if, N is the least positive integer
such that [(N)eG.

Proof

Let N, be the least positive integer such that [(N, )=G (1).
We will prove that N, =N .
By the previous remark, N | N, (2)
Because of (1), and (2), it is enough to prove that [(N)<EG.
Let A = (i S>be any element of [(N).

We reduce A, step by step, in such a way that the result
A € G becomes obvious.
First Step

Since TNe G, T"*e G for any integer K

Note that: A TMNE = (a b> (I Nk)

a aNk + b
c d 0 ]

c cNk + 4

14
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Since (d, N) = (d, ¢) =1, {(d, ecN) =1 .,
Therefore choosing any integer R, such that:
cNk ¢ - d (mod'%% )
we have (cNk + d, Ny) = 1

Thus we may assume that (d, N ) = |

Second Step (After the assumption (d, N, ) = 1 is made)
. LaN A )N) a b)_(a+ cNy b+dN,\>
Note that: T°7. A = (O | ( ¢ d ) c 4
Since (d, N, ) = 1, choosing any integer 3, such that:
b

TI-+ di = 0 (modN,)

we deduce b + dNp=0 (modN,) .

Thus, we may further assume that b=0 (modN,) .

S O R i N O G I B

the matrix ( 1 0 ) lies in G.
n 1

N
a b ) 1 0 ) _ ( a + bNu b
c d (,AN i " \c+dNp  d

Since (d, N,)={we can choose an integer w, such that

We have also A( I 0 )
uhN 1

c +dNp =0 (modN, )

Therefore, we may further suppose that ¢ = o (modN,)

Third Step (After the assumptions (d, Ny) = 1, b=c=o0o (modN,) are made ).

D3 5) moany)

Since ad - bc = 1, and bc=o (modN,), we have

We have A

]
N
O o

ad=1 (modNe), so A =P (modNy) »

a ad-1
where B ‘(l-ad d(2-ad)> )
and so we have A = B C, for some Ce [(N,) € G.

The matrix B may be written as the product:

(L) () (s 9
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d-1

l )GG .Since (3),

Since d=1 (modN), N |d-1, and therefore ((])

10
( 1-d 1> €G-

The middle factor can be written as

C=0 IR S I i I G B
I a-1 ) _ al.y

Since a=1 (modN), (O |

and therefore, by the definition of the level of G, the right

hand side of (4) lies in G, and hence(lfa ;:; )eG .

Therefore, since B, C both lie in G, we have also Ae G, and this

proves our claim.

A A # A
2.5 The Action of a Subgroup G of  on¥% - Cusps of G
A

A
Let G be any subgroup of ( of finite index.

A * A
The action of @ on % restricted to the subgroup G induces

A x*
the action of G on # .

A similar definition to (def. I. 2.2.2) states for

A »
fundamental domains of G for g, .

Definition (Def. I. 2.5.1)
A A
Let G be any subgroup of § of finite index.
A A A
Every cusp of ( fixed by an element of G is called a cusp of G.

Theorem (Th. I. 2.5.2)

Let ¢, d, ¢;, dq be integers, and (c,d) = (c,, d;) = |

A
Then - % , ——:—’— are equivalent cusps of [ (n), if and only
1
if,
(c,d)= z (c,, d4) (modn)
Proof
. d d, . A :
The rationals, T~ are equivalent cusps of [(n), if
1
and only if, A

ve-9y . _ﬁ, for some Ve [ (n)
c c,

that is, since (Th. I. 2.2.5),

A
1ok e [ (n) for some integer k, where L, L,

L']
are the inhomoneneous images of the matrices, L =(i 3)’
a b .
= 1 l t .
L, (C1 d,) of[(1), respectively
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A
Therefore —-%, —{é are equivalent cusps of r(n), if and

only if, there is an integer K, such that, the matrix congruence:
-1
L, L s& T (modn)

holds, that is,there is an integer KR, so that

a;d-byc=s ¢ 1 (modn), (1)
cgyd-dyec=0 (modn), (2)

-¢,b +dya = #{(modn), (3)

and -a,b + bya = + k (modn), (4)

where on the right hand sides the same sign is to be taken.

Note, that in the above four concruences only the (4) is depended

on K.
Supposing that (1), (2) both hold, one has:
a, (d = dy) +by(cy~¢c) =0, -2 (modn),
and c (d=-dy) +d (cg=-c)=0 (modn)

from which deduces that
c= 4 cy (modn), d = £ dy (modn) (s,
where again the right hand sides have the same sign.
Now it is easy to check, that, when the congruences (5)
hold,then (1), (2) and (3) hold as well.
Thus, the above mentioned cusps are equivalent under F(n),
if and only if:
(¢, )=« (cy, dy) (modn)
and -a,b + bya = + K (modn), for some integer K . Now, since
for any integer K, we can choose the elements a ,b ,a,, b, so that
the last congruence holds, we further reduce our case to that:
(c, d) = (CI’ dl) (modn)
Therefore the theorem holds.
Now we denote by_}(n) the number of inequivalent cusps
of F(n). We say that a pair of integers c, d is primitive modn,
if (¢, d, n) = 1.

From the above theorem we deduce that:
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If n> 2,‘3(n) is equal to the one half of the number of
incongruent modn primitive pairs modn, and, if n = 2,_$(n) is just
equal to this number.
Now, by counting all incongruent modn primitive pairs modn, one can
prove that:
Theorem (Th. I. 2.5.3)

A
The number of inequivalent cusps of M(n) is given by:

3 , 1f n = 2

Remark (Rem., I. 2.5.4)
Using (Th. I. 2.5.2) and (Th. I. 2.5.3), we are able to
A

determine complete systems of inequivalent cusps of [ (n).

The table which follows gives some examples.

| R ~
n A (n) A complete system of inequivalent cusps of r(n)
0 ] 1
2 3 ]
0 1 1 2
3 4 T°0°7°71
0 1 1 2 2 3
4 6 T*0° 11731
; " 0 L 1 2 1 3 3 4 2 5 71 9
r*o1 1 *2’>1”21>5°22°2°2
6 12 o 12 3 2 3 4 5 5 5 5
1201721123221 217273"°%




3. MODULAR FUNCTIONS AND MODULAR FORMS

3.1 Weakly Modular Functions

Let G be any subgroup of [(1) with inhomogeneous image

A A
G of finite index in the modular group @, and let f be a

meromorphic function ondk, which satisfies the condition:

at + b\_ 2K
f(C’t+d = (ct+d) f (t), (I. 3.1.1)

V (i g)ec, \7‘1:&3{’5 , where R is an integer .

b

d) the condition

. . a b a
In this case, 1f we replace( . d)by —(C
(I.3.1.1) remains unchanged. Therefore, as far as (I. 3.1.1) is

A
concerned it makes no difference whether we mark G or G.

Definition (Def. T. 3.1.2)
A
Let G be any subgroup of (", of finite index, and k be anyinteger.

A function f is said to be a weakly modular function, of weight 2k,

f or the subgroup G, if it satisfies the following two conditions:

(1) f (%) is meromorphic on 36, and
(ii) f(zziz = (cr+ dfE (), Vred, ¥ ( : 3)6 G

In particular, if N is the least positive integer, such that

b

d) & [ (N), then we say that f is a

the condition (ii) holdsV‘(i

weakly modular function, of weight 2k and of level N.

Theorem (Th. I. 3.1.3)

Let G be any subgroup of C, of finite index, and f (Tt ) be a
meremorphic function on dk.

Then f (T) is a weakly modular functionof weight 2k,ked for G,

if and only if, the condition

f (3 b)= (et+ O f (1),

ct + d

holds for every generator(ecl 3) of G.

In particular £ (t) is a weakly modular function of weight 2k, for @ ,




if and only if,

£ (x+ 1) =1 (t),

and £ (- ,ci) = ™%f ().

Proof

Let J6(% ) be the set of all mereomorphic functions on T .
For, f e}{,(a&,), 6 =(2 S)GG, we define the function
fI[G]zk.e Ho3) by:
Flrotn(® = f (2258 Jeex v )

cet+ d

By simple calculations, we see that G acts on Jé(%), by:

O.f = fi,, »V6eC, N feHhdh)
Now, § is of weight 2 k, for G, if and only if,

6.f = f M ee€G (D
On the other hand, if (1) holds for every geneator 6 of G, then
it is clear that (1) holds for very element of G. This proves
our claim.

A
In the case,where G is the whole modular group €, our claim

A
follows immediately, since (is generated by S:'t——o-%-and T:T—7+1

Therefore the thorem holds.

Now, for every p =<‘i 3 )E-[(i ), we put

v(p.t) = ct+d

It is easy to prove that, for every U, and V 1in [(1) we have:
v(U v, t) =v(U, V() . v(V,T) (I. 3.1.4)

We also note, that the condition (I. 3.1.1) can be written as:
f (geony) = V(g.’C)a{‘f (&) , ge6G, el
We prove now that:
Theorem (Th. I. 3.1.5)
If f () is a weakly modular function of weight 2k for G,
the the function
f|[‘r"’]2k(~c)= vphty oo pTien), (n

* -
is also weakly modulardfweight 2k, for G =pr' .




21

* . * * -1
Let g be in G , and g = pgp, for some geG.

We have

v geen ™ F g eon

*
fI[P-qzk,( g ()

. . -2K -
V(p’,ygp’(t)) . f (gp‘(‘r) )

- -2K -
V(Yi,\)g 4] wﬂg,y"c't))gk.'-f:( )11(‘t) )
o ( -1 -1 - 2K 4 2K 4 2k
PLpgp (B)) VE, YD . vIP,T ).ﬂ[,,-v]ﬂm
-2K

[Yvper'cor) v pieod’ v @l e, @

Because of (I. 3.1.4), v(g, V4(T)) V(};‘,7 Y = V(gﬁf‘,t ) and

also v (phpeytemd) = v (gt v ). wipgpt )

Therefore:

~2K
* -1 - oy TRy
‘F'[P~']2K(g (T) ) [\y (gp - )_Q(ng,‘t‘).\’(g)),'[)] -F'[Vﬂ]gk(r)

1 2K
v (pev ) fpy (o

V(g*, T )2K- 'F,[P-'}zk 2

hence the theorem holds, since the condition (i) of (Def. I.3.1.2)

is easily verified o
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We now consider the behaviour of a weakly modular function
f, of weight 2k, for G, at im, and a rational cusp -g-, c +o,
(c, d) = 1, if one exists.
So, let lev (g) = N

For any positive number a, we set

%a={re% : jm ('c)>a}

. 2ni1:/ % .
Then the function h (T) = e M maps %5 onto the punctured disk:

~2na
D={ qe C : 0< jq|<e 4‘}

Since lev (G) = N, the function f is periodic with period N.

On the other hand, for Te¥Xgs, h_l (h (Tt) ) {'C +kN : ke Z }

We note that f (T + kN) = £ (1), xe Z .
Therefore, setting q = &Mt , the function of f (T) depends only
on q»@, so induces a meromorphic function
:p—C
such that £ (1) = ¢ ( q"¥ ).
We make, now, the following definitions:
Definitions (Def. I. 3.1.6)

If @ extends to a meromorphic function at the origin q = o, we

say that f (t) is meromorphic at infinity.

In this case @ has a Laurent expansion in a neighbourhood of the

origin of the form:
o0

§(H)- 2 o™ .

T
where -~ me Z~{o]} .

This induces a Fourier expansion for f (t),
o0

F (t) _ Z Cn eanir"}‘,

MN=-m
which is valid for a sufficiently large jm (t), and is called

Fourier expansion for f () at 1ico .

In particular, if f (tr) is meromorphic atiwthen, -mM3»0,
that is: oo
znit %,
£ (T) = E Cphe
-0

In this case we write f (i) = G, and the constant C, is called
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the value of £ (T) at ico.
If £ (T) is strictly meromorphic at infinity then -m< O.

In this case we say that f (T) has a pole of order m at infinity.

Now the behaviour of f (t) at a rational cusp of G, if one exists,
is handled by reducing the problem to the case at infinity.
We proceed as follows:

Let ——g—, ¢c# 0, (¢, d) = 1, be a rational cusp of G, and

a b d .
1ety=<c d>e r(l), such that p( —'—C—) = 1% .
Now setting
~2K -1
g("C)=f| _.] (t) = ( -=c7T + a) f (p () (1.31.7)
(V7] 2c
we note that:
By (Th. I. 3.1.5), g(t) is also a weakly modular function of
* - *

weight 2k, for G =VG pl. We also note that lev (G ) = lev (G)
and Vﬂ(ﬂﬂ) = ——g—. Finally, the behaviour of g (T) at i, does not
depend on the choice of p, since, by (Th. I.2.2.5 (i)), the cusp
—-g- determines the transformationpup to a factor of " with an
arbitrary interger n.

Therefore the following definition makes sense:
Definition (Def. I. 3.1.8)

Keeping fixed the above notation, we say that the behaviour

of f (t) at the rational cusp —-{; , is that of g (T) at ioo.

3.2 Modular Functions

Definition (Def. I. 3.2.1)
A
Let G be any subgroup of (of finite index, and K be any integer.
A function f is defined to be a modular function of weight 2k,
for the subgroup G, if it satisfies the following conditions:
(i) f (t) is a weakly modular function of weight 2k, for

the subgroup G, and

(ii) f (T) is meromorphic atiw, and also at all rational




cusps of G, if one exists.

It is easily seen that:

Remark (Rem I. 3.2.2)

If f () is a weakly modular function of weight 2k for the whole
modular group, then the behaviour of f (x) at a rational cusp follows

that at infinity.

3.3 Modular Forms

Definition (Def. TI. 3.3.1)
A

Let G be any subgroup of { , of finite index, and k be any integer.

A modular function, of weight 2k, for G, which is holomorphic on (3

and also at all the cusps of G is said to be a modular form, of

weight 2k, for G.

3.4 Cusp Forms

Definition (Def. I. 3.4.1)
A

Let G be any subgroup of , of finite index, and K be any integer.

A modular form, of weight 2k, for G, which vanishes at all the cusps

of G, is called a cusp form, of weight 2k, for G.

3.5 The Vector Space of Modular Forms

In this paragraph, we state, without proof, some important
theorems.
A *

We denote by Dr , the fundamental domain of { for 3&, which

we have defined in the (Th. I. 2.2.3). Now, let f be any modular
A

function of weight 2k for { , and T be any point in D . If
re[¥\ﬁmﬁ, and there is an integer n such that f (z) = (z -<T T h(z),

where h (z) is holomorphic and non-zero at T , then this is

called the order of f at t , and is denoted by U, (f).

If T=iso, we define the order of f atieo , and denote by U;w(f), the

. 1
order of the function § (q’“) at q = 0, where Q is the function

defined § 3.1

24




Theorem (Th. I. 3.5.1) (See Serre [38] p.p. 85, Th. 3)
A

If f is a non-zero modular function, of weight 2k for ( ,

then the following formula holds:

1 1 é k
teD¢
2ni ioo,i,
where p = e % o TR

Quoting from Gunning ( [2!], p.p. 25-26), and Serre ([38],

Chapter VII, § 3, Theorem 4), we state a general theorem of

the vector space of modular forms.

Theorem (Th. I. 3.5.2)

Let G be any subgroup of Gﬁ, of finite index. Denote by
M k(G) (resp. M ; (G) ) the € -vector space of modular forms of
weight 2k for G (resp. of cusp forms of weight 2k for G, and

SK(G) (resp. éi(G) )} its dimension.

We have:
0 ,if k& 1, K50,
8, (6) = 1 ,if k = 0.
(2k-1)(g-1) +GK + [ 1 é)] iR >

where g is the genus of the Riemann surface of a@zg, G is the
number of cusps of G, and the sum runs through the elliptic
fixed points of G of periods €;.

In particular:

A
(i) TFor the full modular group (:

[¥e) . if k=1 (mod6)

S, () =
[E%]-+1 , if k%1 (modf)
A A
S =0, ()
For k = 0, 2, 3, 4, 5, My () is of dimension ! with a basis

A
0
l, G, G3, G4, G5 respectively. Also SK_(G—) =0 for k = 0, 2, 3,

4, 5.

25
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A
(ii) For the principal congruence subgroup [ (2):

Se( T(2)) =k + 1

A
(iii) TFor the principal congruence subgroup [ (n), n>3:

A
5C fomy = @knnxs o] [0

D)
X 24 p|n p?
4., Examples of Modular Functions and Forms
4.1 The Basic Functions g, (T), g, (T)
Since, for k» 2, the Eisenstein series:
G ('l:)=§ —L ky»?2
X Caron (cT + d) ’
is absolutely convergent, it is easy to see that it gives a
A
modular form of weight 2k, for . Furthermore,
. ]
G (l°°)=§ = 2 @ (2k)
X e ’
where & denotes the Riemann zeta function.
Therefore, G, (T ) is not a cusp form.
Consequently the basic functions
g, (t) =60 G, (v)
g5 (¥) = 140 G 5(T)
A
are modular forms of weight 4,6 respectively, for .
These are not cusp forms, and in fact
. 4
Bg (o) =20 (4) =%n"
6 (I. 4.1.1)
g, (=) =2 2(6) = &0
The Fourier expansion of these functions are given by
y K
g2(~c>=“—3”{ |+ 240 Z 6, (0 q }
K=q
o (I. 4.1.2)

8n6 K }
gs('t) -2—7{1—504 E &, (k) q

W=1
where q efmr , 8 (k) = E d (see Serre [38] , P-P- 93)
alk




4.2 The Discriminant A (%)

Using the above facts, for the basic functions g5 (%), g4 (1),

we deduce that the discriminant:

Aty=g; () -27 8% C0)
A

is a modular form of weight 12, for . Furthermore, from (I. 4.1.1)
A

we have A(i®) = 0. Thus A(T) is a cusp form of weight 12, for {
A A
By (Th. I. 3.5.2 (1) ), Eﬁkd—) = 5;(6-) = |, and therefore
the discriminant A(T ) is the only cusp form, up to scalar

A
multiples, of weight 12, for ( .

By (I. 4.1.2), the Fourier expansion of A(T ) is given by

12
ACt) = (20) (q - 24® + 252¢% - 1472q% -+ ) (1. 4.2.1)

Furthermore, we state the Jacobi formula for A,
[~ o]

24
Ay =ne l Taoqn ¥ (1. 4.2.2)

n=l
The proof may be sketched as follows:

o0
12 24
Set h (T)= (2N) ¢ I ,I (1 —qm) , and show that
M=
12
h T+ D =h (T), h(-2)="Th(T)
A

This proves that h (T ) is a cusp form of weight 12, for ( .

Therefore A (T ) = c h (T ) for some constant ¢ e . Since

(I. 4.2.1), we have:

oo

24
1 - 24q + - - - = c Inil (1 - q")
which gives ¢ = | (for q = 0). Thus (I. 4.2.2) holds.

N

Finally, from (I, 4.2.2), we deduce that:

Act)y 4+ o0 Mre % (I. 4.2.3)

4.3 The Absolute Invariant J(<T )

The absolute invariant j(t ) is given by

3
. - gz (T)

Using the facts about g , (t), A(Tt) of the previous examples,
we decude that j (T ) is holomorphic on¥.Writing I for any power

series in q with integer coefficients, we deduce from (I. 4.1.2) that:

27




12
g: (t) = -gi%%~— (1 +720q + 1),
64n]2
and A(Ct) = 1728 —5774 (1 = 24q + 1)
1 + 7209 + I

There fore J(t) = q (1 - 24q + 1)

(1 + 720 q + I) (1 + 24q + 1)

(=)

E n
+ 744 4+ Cy 4 (I. 4.3.1)

N=1

and thus: J(7T)

Q-

Hence: J(t) =

Q) —

where c, are integers.
The expansion (I. 4.3.1) begins with
Jit) = ql + 744 + 196884q + 214937600 + - - -
So the function s ( T) has a simple pole at imwith residue 1.
Now, since gz (Tt), and A(T) are modular functions of the same

A

weight, for G», we have:
A

J(T) is a modular function of weight 0, for { .

We state, now, some important properties of the absolute invariant .

Theorem ( Th. I. 4.3.2)
y 7

The map J: ,/? —  1is a bijection, or equivalently,
since the (Rem. 1. 2.2.4), the map j: Ik —— (¢ is a bijection.
In particular:
. . 2ni 4
J(ie) =00, f (T) has a triple zero at T=p = e , and
ST )- 1728 has a double zero at T = L.
Proof

Let ¢ be any complex number.

Set £ (v) =j(T)-c.

A
The function f () is modular of weight O for ( , holomorphic

ond, and has a simple pole at iwo.

By the (Th. I. 3.5.1), we have

%Ui(f)+§‘ Up () + ED,Uz(ﬂH (1)

v&Dp
T bseip

and since f (T ) is holomorphic on db, the terms on the left are

all > 0.

28




29

Therefore the sum contains only one term, U/f) , and (1)
holds, if and only if,

<U1(f), U, (), U t(f)> = (0, 0, 1) or (2, 0. 0) or (0, 3, 0) (2)
Thus, in every case, there is a unique T€D§\{iw} such that j(<T) = c.
Therefore adding the case J (iw=) = % | we proved that the map

J :ch —»¢ is a bijection.

Also, since (2), the multiplicity of J{T) = 1728 is 2 at

T =1, and the multiplicity of j(%t) = 0 is 3 at T= p- In all other

cases the multiplicity is 1.
The following figures illustrate how Dé is mapped by j onto the

complex plane.

{zek : Re@)=-1 , Izm] ——> (-,0]
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Theorem (Th. I. 4.3.3)
A
(i) Every modular function of weight 0, for { , can be
expressed as a rational function of j, and conversely.

(ii) In particular, if £ (T ) is a modular function of

A
weight 0 for § , holomorphic on#, with Fourier expansion:
L

£ (z) = Z c.nq71 , q=e2ﬂhc 1

N=-m

then f can be expressed as a polynomial inJ:with coefficients

in the Z-module generated by the coefficients c; ,

(v »-mMm ), occured in (1).

Proof
We are interested in showing (ii), since the first part of the
theorem is well-known (see Serre [38] , p.p. 89, Pr. 6). Note, that

the ( function is also holomorphic on ¥ with Fourier expansion:

j("c)=(—l + 2 an qn, where aiéz M 1i=o0, 1y 25000

n=0

Thus the new function f—gw,j1n is again holomorphic on 56, and has

a Fourier expansion. oo
.M mn
(f-c ) (o) = Z by -
m f N=-T+] n d

. e™m em-1 . .
Now we form the new function f-c,, f - §m¢1f , which 1is also

holomorphic on &b
Continuing this process we find a function

m -1 »
£ - c A S K (2)

m “ms
A
which is modular of weight 0 for (_, holomorphic at 190 and indeed
A
vanishes there. So, this is a cusp form of weight 0 for ( , and
A .
since éﬁ(d~) =0 (Th. I. 5.3.2 (1!) ), the function (2) is

identically zero, and by construction all coefficients occurred in

(2) lie in theZ -module generated by C?LS .

4.4 The Bth Power of the Dedekind eta Function

The Dedekind eta function is defined by
1/ 2niT
() = q “|M|(1-q“>, q=e

Since |q| < 1, the infinite product converges absolutely and is




non-zero. Furthermore, since the convergence is uniform on
compact subsets of £, m(t) is holomorphic on 46, . Also note

that ('t ) is holomorphic at infinity, and indeed Mm(ie®) = 0.

eanyﬁa“L(m ).

It is clear that M(T+ 1) = It is also true that

m, (- %) = J-1T mMm(t) (e.g. see Seigel's proof [41] ).
Therefore, the action of { onn is given by:
m(Tt+ 1) = emuh4 T, (T, n( - % ) = V-t "M (%) (I. 4.4.1)

where the square toot takes positive values on the positive real axis.

Thus, we can easily deduce that:
A

2
The function TLa(t ) is a cusp form of weight 12, for T.

Clearly, in view of (I. 4.2.2)
12 24
ACTt)= 2n)y 7 (T) (I. 4.4.2)
24
and that proves again our previous statement for M, (T).
Also, in view of (I. 4.4.2), M(T) ¥+ 0 Fredb .

For the 8th power of 7, we have
2"(/3 &

8 8 8 ] 4
MP(te D =e M), M- =T . .M7(T)
A
We now look at the function n?(%) under the action of [(3).

We know that [(3) is generated by the matrices:

3 (1 3 -1 3 4 3 -2 3 2 {1 0
- (4 ,>, (s1)™ T2 (sT) <_3 _2>, (sm % 12 (s1) -<_3 )

One easily calculates that

nBr+3) = M%)
ns(_—g—z—’:——g— BT+ )4 M8 (1)

8 T 8
V()= 6r- 1 )
And so, by (Th. I. 3.13) ﬂ?(t ) is a weakly modular function of
A
weight 4, for [ (3). By (Rem I. 2.5.4), {iOO,O, 1, 25 is a complete
~
system of inequivalent cusps of [ (3).
B . .
Clearly, m,(T) is holomorphic on 3.
Also, from (I. 4.4.2) and (I. 4.2.1), we have:

-4 1
'TLB(“C) = 2nYACD™ (q - 26q% + 252 = 147245 + - OYY (1. 4.4.3)

32
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and so, ’71,8( v ) is holomorphic at infinity and vanishes there.

Now let - g be a rational cusp of F(B), and let y =<2 3>e r(l)
such that yp (- g) = Loo,

Now in view of the (Def. I. 3.1.8), we have:

Py - o)

~-CcT+
and in view of (I. 4.4.3), 1
nah:})'l]/,,(”:) - 4 e )]
and now, 1t is clear, from (I. 4.4.3), that ’Yle[P.g] 4 (T) is
holomorphic at iewand vanishes there. So, 'T’Le (1) is holomorphic
at all cusps and vanishes there.

8
Therefore, by (Th. I. 3.5.2), the functionTM(T) is the only

A (I. 4.4.4)
cusp form, up toscalarmultiples, of weight 4, for I (3).

4.5 The Weber Functions ¥3 , Xa.

Definition (Def. I. 4.5.1)

We define the Weber functions Y, , Y, by,
3

3 (t) 3 (e)
A Tl e R 13 00) (o) Elseay (TG

From (I. 4.4.2), we deduce that:
3 . 2 .
)(2(“6)=j(‘t), and y3(1)=j(’6)—l728 (1. 4.5.2)

Since the functions g, (T), g4 (), m,(t) are holomorphic on 3
and mM,(T) #0 V'Cég't’, we have Yz(’t ), Y}(I) are both holomorphic
on $& .

. . R 2n%
Since J (T ) has a triple zero at T= e

, the function XZ('U)

Zny@

has a simple zero at T= e Also, since J(T) - 1728 has a

double zero at T= i, the function Xs("C) has a simple zero at T= i.

Since the basic functions g, (T ), g4 (') are modular forms
A A

of weight 4, 6 respectively, for d_ , the action of { on them is given
by:
T ) = 4
g, (T+# 1) =g, (), g,(-5)=Tg,()

(T) (I. 4.5.3)

gs(“c«\l) g3 (T), g4 ( -




A
Therefore the action of ( on the functions Y, » ¥, can be easily

deduced from (I. 4.5.3) and (I. 4.4.1), and is givenby the

following formulae:

4ni
I C R g

~
it

yz(t+ 1)

¥, (T) (I. 4.5.4)

- Al—
S
]

P (T+ 1) == ¥3(T) » o ¥a( - S AGD (I. 4.5.5)

Starting from (I. 4.5.4), and following the same process as in § 4.4,

one proves, by simple calculations, that the function ¥,77T ) is invariant
A

under [ (3).

Again, [(2) is generated by the matrices

T2 =<(; ?>, s T?s =<_2] _(])> , and from

(I. 4.5.5), we can easily deduce, that the function 83(T ) is
A
invariant under | (2).

So far, we have proved that ¥,(t), Y,(7T) are weakly modular
A
functions of weight 0, for [(3), ﬁ(Z) respectively.
Finally, we see from (I. 4.5.2), that the functionsg%(T ), XS(T )
are both meromorphic at infinity.

A

Now let - g , c+#0, (c, d) = 1 be any rational cusp of [ (3)

A
(resp.[(2) ) and let

1% =<il 3>e D is such that
d = 2 3
p € - < ) = 1%

Tn view of the (Def. I. 3.1.8) we have

82][\)—1]0 (e XZ ( P—i(T)>

< resp. XaI[P_, ]O (T) Xa ( P-l(“l: ) > >
and so we deduce from (I. 4.5.4) < resp, (1. 4.5.5)) , that

¥ (t) = ()
2|0vTo e
( resP Yy ), (T) =(+1) ¥, (T) )
Therefore, the function y,('T) (resp .XJ’E)) is meromorphic at all

A A
rational cusps of [(3) ( resp. r(2)> .

So we have proved that:

34
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Theorem (Th. I. 4.5.6)
The Weber functions %(T )s ¥3(*) are modular functions of
A A
weight 0, for the subgroups [(3), [ (2) respectively. Also,
they are both holomorphic on ¥ .
4.6 The Weber Functions f, f, , f,,
Definition (Def. I. 4.6.1) (See Weber (48], § 25, p.p. 86)
We define the Weber functions f, £, , f, by
-1 = .1
f(v) =q 7 |m| (1+q7° 2 ) (1. 4.6.1)
-1 = _1
£,(t) =q 7™ |M| (1-q7° % )
1 o
fz('r)=\/2—q/24|l|“1+qn)
M
where q = ean‘r .
Hence we may express these functions in terms of the Dede kind eta
function 7, as follows:
—ni/ T+ |
f(ry=e T
(I. 4.6.2)
n(CT)
T
£,(T) - m(3)
()
M(27)
T) = s
f,(T) V2 n00)
2nm .
Since R(Tt+ 1) = e 74 m, (T ), and TL(—:]C)=\/—L“C nCT) (I. 4.4.1)
A
we can easily deduce, that the action of the modular group { on the
functions f, f,, f, is given as follows:
_ni/24 |
f (t+ 1) =e £, 0T) £ (- z Y = £ ()
-4 I
f1('t+l)=e f (r) |, fi(—'f)=f2(’5) (I. 4.6.3)
niA2 [
f, (T+ 1) =¢ fp ) , f0-2)=1£,07)
Lemma (Lem. I. 4.6.4)
8 8 8
FLo(t) + £, (T) = £ (%) (I. 4.6.5)

8
) £,(t) = ¥, () (1. 4.6.6)

d

8
£2(e) £o () + E8 () £ () - £, (

£ (T) £,(T) £,(T) =V2 (1. 4.6.7)
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Proof of the Lemma

The proof of (I. 4.6.7) easily follows from (I. 4.6.1).

Proof of (I. 4.6.5)

Put F (%) = £5(T) + Fo(t) - f8(t)

Using the action of { on the Weber functions, from (I. 4.6.3),

we can easily see that:

F(‘c+l)=ezm/3 F(T),F(-]

~
It

F (T)
~ 16
Set F (T)=F (T) M(T)

From (I. 4.4.1) we have

401 8 16
e =e ey, nc-Ly - T )
Thus:
~ 16
F(T+ 1) =F (T+ 1) MT+ 1)
™ p ey B e
16
=F(t) m (T)
=F ()
Also:
~ 1 _ ] 16 1
F ( - T ) =F ( - z ) ( - T )

1]
IS
oy

<
p—g

So F (T ) is a weakly modular function of weight 8 for the full
A
. 8 . .
modular group § . From (I. 4.6.2), and since Mm (') is holomorphic
. 8 , ~
on géuilmﬁ , and also T, (10) = 0, we have that F (T ) is a cusp
A
form of weight 8 for [ . By (Th. I. 3.5.2 (i) ), the vector space of
A
cusp forms of weight 8, for {, is actually the zero space. Hence

F () =0, that is F () = 0, and so (I. 4.6.5) holds.

Proof of (I. 4.6.6)

Put wor) = 22y £8 ey v e Pl gl - ) £Xe) Sy
Again, we find that:
4nisy I
W(t+ 1) =e wit) , Wl-z)=W(T)

Set W (1) =W (v) M°(T)
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From (I. 4.4.1) we have:

2ni
o+ D= 70 mPee), -1y = il
Thus W (T + 1) =W (T+ 1) 2 (t+ 1)
4n1 2ne
- e 1/3W(‘7,’)e /3 ’Qa("ﬁ)

W M)

v ()

] 8 ]
w(—E)n(—%\

-
~
il

~J
Also W ( -

W () "cl"n,&(‘v)

()

A
[aY
So, W () is a weakly modular function of weight 4 for { .

Now:

~ 8 8
() = l:fa CeIESCT) + £208) £,(T) ~ £, (1) f?(t)]”’ba(t)—"%ga(’t)

~ *
Hence W (T) is holomorphic on %

A

Therefore u () is a modular form, of weight 4, for (.

If we prove that G (T) is actually a cusp form, then, by
(Th. I. 3.5.2 (i) ), we deduce that G () = 0,and thus W (T) = 0,
which completes the proof of (I. 4.6.6).

Therefore, it suffices to prove that a’(t) is a cusp form.
So, it is enough to prove that g (¥) tends to zero as T—iw(or q—0).
Now using the formulae (I. 4.6.5), (I. 4.6.7) of the (Lem. I. 4.6.4),

we may write:

4
~ _ 2 16 8 3
W (t) = “¥§*?;7- + £, (t) . mo(T) -%Fzg 2( T)
and so
%
~ (%) 1 5 3
w (T) = ey yavn £, (Tin () - e B 2 (T) (I. 4.6.8)

. Vou R4 8 .
Since f, (t) =v2 -%%%%;%, and N, (T) is a cusp form we deduce that

16 8
f, () (L )—>0, as ¥ —> too .

16
A]. M___»l as “C_____’_]._oo o
S0 I ;
From the g-expansion of g5 (t), given by (I. 4.1.2), we deduce that
4
g2('t)—a—4—3”—,as T —» too -
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Therefore, from (I. 4.6.8) we have W (T ) — 0, as T —» i, and this
completes the proof of (1. 4.6.6).

From the (Lem I. 4.6.4), we deduce the following theorem.

Theorem (Th. I. 4.6.9)
. 8 & ®
The functions f% (¢ ), - £,(T), - f,(T) are the roots of

3
the cubic equation X>-£(T:)x - 16 =0 .

Theorem (Th. I. 4.6.10)
The function f (T ) is modular of weight 0, for a congruence
¢ . A
subgroup G' of index 72 in (.

The functions f, (T ), f, (1T) are also modular of weight O,

f, £ - [ £

-1 -1 .
for G =TG6G T, G =S TG T S, respectively.

In particular, the functions f(t), f,(7T), fz('E) are

A
invariant under rk48), and have Fourier expansions at each cusp

A .
. . . . . - 3 4 2”"
of | (48) with coefficients lying in the cyclotomic field (e /45).

Proof

3
First, we take the congruence subgroups ng), and F, defined

- (2

3

[— i<a b>€r(]) : ab +cd =0 (mod 3) }
¢ d

We get all the information we need about these groups from (Rankin,

M

‘;)erm : (a-d +(b-c)=0 (mod z)},

i

L35 ] , p.p. 29-33, and Table 3 in p.p. 63, where E(Z) is denoted
by [,C2) ).
We quote that:

A A A

[[(2) is a normal subgroup of 5(2) of index 2, and [;(2) is a

A A
2
(not normal) subgroup of ( of index 3. Also, that E(Z) =S, T ),
A
and [(2) =<T%, s T?5s», and therefore it is clear that

2 =<T@, s> .

We have also that:
A "3 A3
[(3) is a normal subgroup of [~ of index 4, and " is a normal
A A
3 -1 -1
subgroup of §of index 3. Also, that [ ={S$, SISTS, TS T » -




Since (I. 4.6.3), we

£T (x)
£,T ()
f£s (x)

For the 3rd power of

f3T(7:)

ffT(*c)

3

£28 (7))

have:

—ni
e £, (T)

-ni
R (T)

f (t)

f, since (I. 4.6.11), we get:

e 3
= e f1

-ni
o Y8 ¢3

()
()

£ ()

and hence the action of

£3s1%s (%) =

Let Ves be the & -vector
A A

A
F(2) on £ is given by

70t
e /4 f3

7ni
o

(t) .,

£3(1)
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(I.4.6.11)
(1. 4.6.12)
(I. 4.6.13)

space generated by the images of £ under

[[(2). since [(2) =<fT2, sT*S >, and (I. 4.6.13), we have

3 . . . .
Vs =<{f >$ , that is Vs is of dimension ,1

Now, V.3 affords a group representation of [(2),

3

f A
f}3 : [(2) —— Aut (Vea)

Also, since Vfais of dimension 1, the character

A %
cfoat [(2) — &

is a group homomorphism, and is defined by its image on the
A

generators of r(Z), that is ,
7nv ?ﬂv
4, and X, (sT?5) = e 4
bs

Thus, we have also, 1Mm(JX, ) & Zg .
PFS

Since, it is clear that the function £ is invariant under the Kernel
of JKPa , we intend to identify that.

f

Define the map

A
¢ : @ ——»(Z{;w) by

-b

p (3%) = %5

It is not difficult to prove that?.is a group epimorphism.

. a (mod 8)




Also, note that
A
a b
Kerg’k ={<C d>6 r(2) : b= ¢ (mod l6)j
and hence Ker@ c [48)
Now, the map

Vp:Zg— C

defined by:
nni -
Y(n) =e 4
is a group homomorphism, and the composite map
A X
’SUO? : r(2) _ 6

is identical with the “XP ,
f

. 3 . . .
Thus, we proved that the function f~ 1s invariant under the group:

A
G = { <\a bi> e [ : b= c (mod 16) }
c d

A
and in fact G2 [(48). Also, since r(2)/G ’2‘28 ,[[é(Z): GJ = 8
and hence [f':(3 ] = 48.
Now, since the function £ is invariant under S§, it is also
under the subgroup generated by G, and S, namely

Gy =<6, 5§
Since < G, S>/G facd <|é(2), S>/‘i(2)

A
Co6 =MD,

and hence [GS : G ] = 2, therefore
[ €:c] = 2.

Now we look at the 8th power of f.

By the (Th. I. 4.6.9), we have:
£24 () - 16

8
£ () = (%) (I. 4.6.14)
From (I. 4.6.11)
£ 02 () = £ 24 ()

£24 ¢ (p) =£% (1)

A
Therefore, the function f24is invariant under [5(2).

For the function sze deduce from (I. 4.5.4) that:
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4n1
/3y,

Y, (T) .

Y. T () = e
(I. 4.6.15)

Y,S (7T)

Now from (I. 4.6.15), it is easily verified that ¥, is invariant
A3
under the generators of the subgroup ", and hence invariant under
A

3
the action of [ . Therefore, in view of (I. 4.6.14), the function

A A
£8(v) is invariant under the subgroup [‘;(2)0 rs

We see from (I. 4.6.1), that the function f (T ) is non-zero on .

Note, that the function f written as

2
£2)

5
(£2)
A A 3
is invariant under the intersection of Gg , and [;(2)0 [ , and

go(f@al)=annf?

3. . .
Now, since [“is a normal subgroup of d_, by the isomotphism

A
since G, < [;(2)

A
theorem G NG [_3 ;
Yot 5 O
d.’i
and hence Gg A ~ A ’
/é%nr3 //F3
A
and so [GS:GS(H_S]=3 °
A
. ‘B
3
[;(2) ,
Aa
8 “ [
GS
\3\/
A
G-Gonl?

A
Therefore, the function f (% ) is invariant under Gsﬂ e which is
A

A A A
of index 72 in {, and since G, 2 ["(48) ,and e [G8)the function

f (w) is also

holomorphic on

A
. f
Therefore f (T ) is a weakly modular function of weight 0 for G=G80r3.

A
invariant under [(48). From (I. 4.6.2), £ (T) is

13



From (I. 4.6.1), f (%) is meromorphic at 1co.
Note that in view of (Th. I. 3.1.5), and (I. 4.6.3), the
function: -1 Ly
Fllr], 9 = F(Tw) - e ™0
is a weakly modular of weight 0 for (}'fj = T‘(}f’r'i .
Also, the function
filfs], €0 " ﬂ(S(r)) - f, ()

i1s a weakly modular of weight 0 for (}ﬁ:= S'-‘TGf:T-1 S5.
From (I. 4.6.1), £y (T) and £, (T ) are also meromorphic at
infinity.

Now, we prove that the function f (T ) is meromorphic at
each rational cusp of Cf; for 9% . For, suppose that - g s
c+0, (¢, d) =! is a rational cusp of GF, for 4@*; and the
transformation pe f sends - g to 100 ., Then, in view of
(Def. I. 3.1.8), and the formulae (I. 4.6.3), the function:

f|[;f’]o (t) = f(p'cvy)=EF (D)

where F = f, f, or f; and & is a 48th root of unity. Now since

& F(t ) is meromorphic atieo, f (¥ ) is meromorphic at -

A
Hence, f (T ) is a modular function of weight 0 for ¢ Gsﬂrﬁ.
Similarly, we can also prove that f, (©), f, (T ) are

. : £ £ *
meromorphic at all rational cusps of G , G 2, for b s

respectively. Hence f, (7T), f, (T ) are modular functions of

weight 0, for ¢ , G f2 , respectively.

A A A A
Now since | (48) is a normal subgroup of €, [(48) T =T . [ (48),

A

and so r(48) TCTG £

A A

Hence [(48)c T cf T_i, that is [ (48) < Gﬂ
- f
Similarly [ (48) ¢ G2
A

Therefore f1 (t), fz(t ) are invariant under | (48). It is
clear, from (I. 4.6.1), that the functions f (%), £y0t), £,(T)
have Fourier expansions at iw with coefficients lying in Q(e "Veu) .

Now, in view of (Def. I. 3.1.8), and (I. 4.6.3), these functions
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have also Fourier expansions at all rational cusps of F(&B)
with coefficients lying in Qz(e&%“).
Therefore the theorem holds.

Theorem (Th. I. 4.6.16)

2

The functions f24 (7 ), £

4
T ), f; (T ) are modular of
A
weight 0 for [(2). 1In particular, each of them has Fourier
A *
expansions at all cusps of [(2) for b with coefficients lying
in @Q

Proof

24
My, 50T

From (I. 4.6.3) the functions f2'( <), f
are all invariant under the generators T? s ST?S of f(Z), and
so they are invariant under F(Z).

In view of (I. 4.6.1) these functions are holomorphic on ¥
Also the first two are meromorphic at iec and the last holomorphic
at o0 and indeed vanishes there. The cusps of F(Z) are{iﬂgo, l} ,

. -1 . .
and the transformations S, ST send O, ] to 1o, respectively.

From (I. 4.6.3), we deduce that
24

257 Ty = ¥y, £FsTny = £ ey, 5T = £ )
sty = —£5 ), st = oty B = % ()

(I. 4.6.17)

. 2 24 24
We denote by F (T ) any of thefunctions f 4(1 ), £4 (), £,(T).

In view of the (Def. I. 3.1.8), we have:
Flls1], ()= F (87w
Fllrsd, (v=F (T§%w).
From the above, and (I. 4.6.17), it is clear that F (7T) is
A #*
meromorphic at all the rational cusps of [ (2) for .

Also, from (I. 4.6.17), we deduce that F ('t ) has a Fourier

expansion at each cusp with coefficients in @. So the theorem holds.




5. The Modular Polynomial

In this paragraph we introduce the notion of the modular
polynomial, in order to prove later on the following fundamental
theorem.

"If vy is an imaginary quadra tic number lying on 3§,

then j(t ) is an algebraic integer.”

Let n be any positive integer.
We denote by:
A_: The set of all 2 x 2 matrices with entries in Z

and determinant T

*
An: The subset of Ancontaining only primitive elements,

b) with (a, b, ¢, d) = 1.

. a
that 1s, of the type<C d

*
5.1 A Determination of Ay

Lemma (Lem. I. 5.1.1)

» *
Vo(e:—An paeAn

’

¥
Vl)er(l) we have 0<).J€A,n

b

Proof

Obviously Xpe A'n
*
Suppost that « péd AT) . Therefore, there is an integer

»*
d, d>! , such that «p = dp , where peAn .

Hence (—;0( =ﬁ})-1 - contradiction.
* *
Therefore o pe A,n . Similarly, px & A'n R
Now, since (Lem I.5.1.1) holds, we can define an action, either
*
left or right, of the homogeneous group [(1 ) on the set AT] .

*
Thus, the orbit of an element e A»n , under the left action,

is the right coset (1) o
In the following, by "an action'", we mean a "left action".
*

Also, we say that the elements °‘;°‘1EA'n are equivalent

under (1), or they are congruent mod [ (1) and write

o« 2 o4 or X = ol (mod I (1)) ,

*
if and only if, they lie in the same orbit of Anunder r(l).
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By considering integer row and column reduction we can prove
the following two lemmas:
Lemma (Lem. I. 5.1.2)

»
For every oe AT], there are p,p'e (1) , such that

’ 1 0
o =
* 10
Thus, An =1 (1 0 n (1), and consequently, the homogeneous
group [(1) acts left transitevely on the left [(1) cosets, and also
*
right transitevely on the right [(1) cosets of lxﬂ .

Lemma (Lem. I. 5.1.3)

*
Every matrix oce Z&T, is congruent mod [ (1) to a unique triangular

matrix:
a b‘>
(o .
where 0O<a, 0£Lb«d, ad = n, and (a, b, d) = 1I.
a b
Thus {(0 d>:0<a,0<b<d,ad=n, (a, b, d) = 1 S

>
is a set of representatives for the cosets of [ (1) in an .

Theorem (Th. I. 5.1.4)

#*
The number y(n) of equivalence classes of Anunder the action

of (1) is given by:

yn) = n-’_r<l+}17)

pin
Proof
We prove first that ¥(p) =p + | .

*
By (Lem. I. 5.1.3) an arbitrary chosen «e& pr is equivalent

either to (8 (]))or to <é l;) , where O0gb<p. Therefore
*

there are exactly p + | equivalence classes in ZXP' that is,

Y (p) =p+ 1.
Now we prove the theorem for any positive integer n .

It suffices to count all inequivalent matrices of the type

(5 %)

where 0<a, Ngb<d, ad = n, and (a, b, d) = 1.
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13
Suppose that d is fixed, and so does a = We set (a,d)=e and countb.

oS

Put d = ek, and $={0, 1y 25.0.. , €65 + 1, 8 + 2,.., 2, 2e + ),..,3e,..,ke}-
It is enough to find all those elements of Buhich are relatively
prime to e.
We know that among v consecutive integers there are just ¢ (V)
integers relatively prime to ¥V . The setj’fcontains k such sets
and so contains k ¢ (e) such elements. Now, since d runs through
all divisors of n, we have

o () - 4‘: 4 ¢e)

din

Note, now, that (1) is @ multiplicative arithmetic function.

For, if (nl » Ny ) = 1, we have:

pmOpm)= Z %‘{P(ei) T %@(ez)

=hel I,
did.
= o {m Eq ez ?(e,)@(ez)
dalma
~ E ddz ¢cee ) (since is multiplicative)
= — ®o, ¢ 2 ¢
dz'"z
g dady
= (e.e
Cza]'-n;nz e,0e, g’ 1 2)
= pmm)

This last result suffices for our study of Y to the case when
T .
n=p (p prime, r>o).

We have: ‘PCPI) = Z (a—d_,d) ?(a,d)

dip”
bod
PM H )
T = PR PY) p PP

y
- 1ap Z 9 (p)
[+pTeptiot

= p'+p
= p( 1+f)—)

for which the conclusion follows.

Y-1
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5.2 The Modular Polynomial

In the following we denote by

Xy o, Kz, . . o, Xym
*
a complete system of inequivalent representatives of An with

A
respect to the modular group d.
By the (Th. TI. 4.3.2), the functions j°°<4 , jodz . ,j.° X bem)
are distinct. Also, by the (Lem. I. 5.1.2), the modular group

A
( acts transitively on the set { Joo, 1 1< 1&g g(m) }

Definition (Def. I. 5.2.1)
+ *
Let c/({o(%) be the field of meromorphic functions on 3 .
Y
The polynomial @n(x)eJ’é(%)[x] given by

)
P, x) = ﬁ (% - foexy)

is called the modular polynomial of order n.

Theorem (Th. I. 5.2.2) The coefficients of the modular polynomial

)
@n(x)=]l:xj (X - foox;)

are polynomials in § with integral coefficients.

Proof

o0
) . n 2niv
Write J ('t) =%;C-nq sy @ =€ ’C'DE'Z » €y =1

Each o ( 1< 1t € (M) may be chosen as <8 3) , where

0<a, 0gKb<d , ad =n, (a, b, d) = 1 1)

at+ b

Therefore o/i(t) = 3

In order to find the Fourier expansion of joo(i we replace 'T Dby

ETT”)— and so q becomes
2m 9:1—-*5 2ni % 2ai 5_
e = e . e
2ni ) b
Set Zd e 4 , and so q becomes q 4 ZJ

Therefore we may write (I),n (xX)

o0
a‘n bTI
as I I(X“ chq‘_{ Zd >
abd n=-1
as ini)

and a direct calculation of this product gives:




V= -yn)

) oo
®,00 = HZ()( Z C v qv>x“

2ni . . .
where CHV = m,€ i , with rational integers m, .
K

On the other hand the coefficients of C}?n (X) are the elementary
symmetric functions of feoq and indeed modular functions themselves.
Now, since Gtacts transitively on [oo; the coefficients of @,nCX)are
invariant under (]A Also, since j and each o are holomorphic on gk,
so is joo(i and hence are the coefficients of Cbn x) .

Therefore, by (Th. I. 4.3.3 (ii) ), the coefficients of @,,., (%)
are polynomials inj with coefficients in & [C“v] , and so it is
enough to prove that the va are rational integers.

So far we have that (L, are algebraic integers in the cyclotomic
field @(ezn%) and therefore it suffices to prove that the Cuv
are rational.

If onc replaces b by bk, where (n, k) = 1, the formula for CE,,,(X)

is valid, and so the C,v remain unchanged. Such a substitution

Zni/h
1s the result of a @ —automorphism of the cyclotomic field @(9 )
given by

ant 2m
- =k
n
e e 7 , (k, n) =1

and therefore Cu € 4) . This completes the proof.
Thus: X R
us @"’()GZ[J]I_X]
s0 we may view (-'I)n(x) as a polynomial in the two independent
variables X andj with integer coefficients and we write:
®,x)=- P (x,/) e 2 [, J]
Lemma (Lem. I. 5.2.3)
If n is not a square, then @n(j,j) is a polynomial in j

of degree > and with leading coefficient % 1.

Proof

$(m)
Write @(f,j):li I(j—fe%):l I(_l_+...__1___~... »)
n i=1 @bdlt > 9 ARG
ad-;
0<
ogb<d

Since n is not a square, and ad = n, we have akd. Therefore there
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is no cancellation in the polar term in each bracket on the
right hand side of (%) and furthermore, the leading coefficient
of each bracket g-expansion is a root of unity . Therefore the

g-expansion for cph(j,j ) starts with

Cm .
.Eﬁ + . .
with Cyy an integer and also a root of unity and so we must

have C,m=:t1 . This result completes the proof.

Theorem (Th. I. 5.2.4)
If v is an imaginary quadratic number lying on 46, then

J (T) is an algebraic integer.

Proof

Let Te K, where K is an imaginary quadratic field and
Z be an algebraic integer such that

K =®R(z)

5

and R_= int K =Z (2]
We can always find an element WE€R, with norm over @ a square-

free integer.

For if K = ®R (i), we take W = | +t and if K = @ ( J/=d),
where d is a square-free rational integer »1, we take w = v=d.
Now, we can find a, b, ¢, deZ , with (a, b, ¢, d) = | so that
wz = az + b
w = cz +d
Note that la—w b |= 0 gives w2 - ( a+ d) w + ad=bc = 0

d-w

and therefore N, (w) = ad-be.
7
So in that case, put ad-bc = n and therefore n is not a square.
*
Put o« =<i 3) , then oe AT‘ , and < (Z)=2

o be a complete system of inequivalent

Let o
19 %2 ey My

, *
representatives of An
A A
We must have o(o;'v«; for some i: 1< v < Y(m) and hence ape(r
such that X =P X

Therefore f(z) = J(x(z)) = (J.°P)(°(iCZ)> = Joxi (%)

Hence f(Z) is a zero of the polynomial (i),n(JJ) which lies in Z[J]




and has leading coefficient | according to the (Th. I. 5.2.2),
and therefore { (z) is an algebraic integer. Now, we prove
that j(t)is also an algebraic integer. Since re Q(z) |
3 r, sedl such that T=r1 2 +s, that is T =P¢z) for some
+ .
primitive pe GL2 ) Since fop is integral over Z 1]
it follows that j(’t)=j°ﬁ’(z) is integral over Z[J(z)] |,

and hence j('c) is also an algebraic integer, as required.

Theorem (Th. I. 5.2.5)
For any rational prime pjy 7, X2< -3¢ 2' - P > is a real

algebraic integer less than zero.

First we prove the following lemma:

Lemma (Lem. I. 5.2.6)

x 3 FB (1. 5.2.6)

Proof of the Lemma:

Since - f,(T) is a root of the equation

3 - 3(Vx - 16 = 0

6 16
we have: (ty="%f, o)+
XZ 2 ‘FB(T)
and so, - 16 (I. 5.2.7)
(52)- 10 £7(552) 4 1(%2)
Now express {2(%3—> in terms of f (7T).
: M (21) '
S = (see (I. 4.6.2) )
ince t, o V2 o) see
we have: FZ( T-3 > - Jz E3» (I. 5.2.8)
Sin "4 " 2
ce (=€ n(Ct+1)
—2ni/§4
h . -3 - T -1
we have 'TL(*Z > e 'YL(_Z. >




—2ni/

Also: m (t-3)= ¢ ¢ n, (t-2)

Rl I 7Y

=€ e n, (t-1)

iy 2y -2mify,

- e e e ()
Therefore n(T-3) _ e-Zm/M. ()
() m (534)
and since (I. 4.6.2),
_.n.
We have, n(t-3) _ e %
7(52) fir)
and hence (I. 5.2.8) gives:
~n;‘/
5(7-3) - \/2? € ®
2 2 f(r)

(I. 5.2.9)
Finally, from (I. 5.2.7), and (I. 5.2.9) the desired (I. 5.2.6)
follows.

Proof of the Theorem

Setting % = /-p in (I. 5.2.6) we take:

¥ “>+y-p Yy 256 _ Fa(\/—_f—)
< ? ) fw(/’-p) ) (I. 5.2.10)

“Yig T n-4 -2nip
where, as usual {1’(\/;?)=q l'n=i|( 1+q ) and q=¢

-2ndp
Note, since q= € e R s F (\/-—-F)G R, , and hence

(I .5.200) implies %, ( —3+\/:§)6[R,
2
i 3/ -3+ /- Cro-3 4+ /-
Now, since Xz< 3 2\/?) =J(“2£)

and j<‘3 +\/*P) is an algebraic integer (from Th. I. 5.2.4)
2

we deduce X(-3+\/—p) is an algebraic integer, and since
2 2

XZ(—B +2\/—5 )e—'R- , we have:

82 ( -3 +V-P ) is a real algebraic integer.
2




Now we prove that y, ( —3+ \/‘P) is negative.
2

~2nlp Y48

Since q-e > 0 , f(\/:ls)>c{
1 -4

Therefore Y, ( ‘3"2[‘_15 ) £ 256 qa - q ° (I.5.2.11)

- A ‘n 8 n/p
So ¥ lﬁ < q (2-¢ )

2 2

N _ /3 8 nJ7

and so Xz( 3+2/—§)< q (e - e )

and since ﬂ\/;> 8 we deduce that 82( -3+ J/-P ) < 0
2

Theorem (Th. I. 5.2.12)
For any rational prime p»7 ,j(l*’\/“-P) is a real
3

algebraic integer less than zero.

Proof
. ey A 3 a3 [-
By the (Th. I. 5.2.5), and since J(%E)n ¥, ( >t )
we have that J(;ﬁz_@) is a real algebraic integer less

A

than zero. Now, since j(”[) i1s invariant under (]_, we have

j( -3;\1__1;) =}'(_3+2-\/-—p +2) = j(i +2\/:_13 ) and so the theorem holds.
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B. ELLIPTIC FUNCTIONS
AND

ELLIPTIC CURVES

6. Elliptic Functions

Definition (Def. I. 6.1)
Let L be any lattice in & .

An elliptic function with periods in L , is by definition,

a meromorphic function on & invariant under translation by the
elements of L, and therefore it can be equivalently regarded,
as a meromorphic function defined on the torus Q&L , which is

a compact Riemann surface of genus 1.

Let f be an elliptic function with periods in a lattice L
in & , and holomorphic on & . Then, by the above definition, the
function f can be regarded as a holomorphic function on the torus

Y

Thus, the function f is bounded, and so by Liouville's

L

theorem must be constant. So, we have proved that:

Theorem (Th. I. 6.2)
Every holomorphic elliptic function is constant.
We can also prove (by integrating f}P and zﬁ(F around a

fundamental parallelogram) that:

Theorem (Th. I. 6.3)
Let f be an elliptic function defined on the torus Q;L .
Then, we have:
(i) The number of zeros of f is equal to the number of
poles of f, taking the multiplicities into account.
(ii) The sum of zeros of f is equal to the sum of poles
of f, taking the multiplicities into account.

The most important examples of elliptic functions are the
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4
§o-Weierstrass function and its derivative §@ . These in fact

generate the field of elliptic functions with periods in L
over & .

These functions are defined as follows:

1 1
p(z3L) = .é_z + 21, {(Z_w)a— L—)E} , (I.6.4)

we
w#0

2 1
-2
< Z-o) (I. 6.5)

It is straight forward to prove the following:

]

go/(z;L)

Remark (Rem. I. 6.6)

From (1. 6.2) we deduce p(ﬁZSRL) = /7—2@(231:) ’v‘ﬂe@’,x
Therefore gg(—Z;L) = P(Z;L) , that is, the o-function is
even. From the series expansion (T. 6.4), we deduce that the
f2 -function is meromorphic on & , with a double pole at each
lattice point, and no other poles.

p -3 7 X

Also, (I. 6.5) gives @ (A23AL)= 2 @(z:L) Vael
Therefore p,(-Z’,L)=-P,(Z;L) , that is, the XOI—function is odd.
From the series expansion (I. 6.5), we also deduce that the
P,—function is meromorphic on &, with a triple pole at each

lattice point, and no other poles.

From (I. 6.5) it is clear that the Pl—function is invariant
under translation by the elements of L. So @{is periodic and odd
and one proves from that, by integrating that the f -function is
also elliptic.

From now on we fix the notation

L- [wt.wz] s Wy = - (Wy+wz) and Ei'—'fO(%w{) . 1=12,3.
Remark (Rem. I. 6.7)

By (Th. I. 6.3), the ${-function has three zeros modL
with sum = 0 (modlL). Now, since F{ is odd, it is clear that

these three zeros are at %—ah, %.wz, %-uh (modL) .
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Remark (Rem. I. 6.8)
- , .
The Weilerstrass go, W functions can be expressed, as

Laurent series near the origin, in terms of the Eisenstein

1
. EL)
series Gn(L) = %‘ W .

W0
These expansions are given as follows (Lang [28] , p.p.- 10-11)

P (z;L) = z% +%:(2u+1>GK‘](L)z2K and (I. 6.9)

’ 2x-1

P (z;L)=- 2 4 ZZK(QM)G (Lyz" (I. 6.10)
2 Kz1 K+l

Now, set ¢ (z3L)= p(z;1) (4p(z;L)> g (L)fa(z;L)- gs(U}
where, g 2(L) = 60 G, (L), g 5 (L) = 140 G5(L). Note, that
since ¢(z:L) 1is a rational function of @ and pl, it is an
elliptic function with respect to L.

Now, using the Laurent expansions (I. 6.9) and (I. 6.10) it
is easy to see that ®&(z;L)) has no poles in & and also that
¢ (0) = 0. Therefore, by the (Th. I. 6.2), the function

$(z3,) is identically the zero function. Thus we have

proved the following theorem.

Theorem (Th. I. 6.11)

The Weierstrass @ -function satisfies the following

3
differential equation: Y)’(z)2=4p(2) - Qz fa(z)- €,

Now put ¢i(2)= P(z)-e; , (i =1, 2, 3).

Note, that the function 4:1(2) is elliptic with a double pole
= 0 (modL). So, by the (Th. I. 6.3), the function cpi(z)

has exactly two zeros (modL) counting the multiplicity.

Note that ¢i(~21—ﬁ)1') =0 , and since d>l(-21-(o1)= 0

we deduce that -é—wi is a double zero of cbl-(z) modL, and

that ¢>i(z) has no other zeros modL. ,

Therefore, e,, e,, e; are distinct and the product 2]-]&)(2)-8{}

1=1




2
has the same zeros and poles as f),('Z) .
So, by (Th. I. 6.11),
3
3
hep(2)-g, p(2-g, = 41—1{ p(z)—ei}
t=

Thus, we have proved the following theorem:

Theorem (Th. 1. 6.12)
We have:

4 ga(z)3— g, p(2)-g, =4 [p(z)—eﬂ[ fo(Z)—ez][[o(z)-@J

and furthermore the roots €; are distinct.

Remark (Re. I. 6.13)

Since the discriminant of the polynomial 43 - B, U - 8,

is actually 1—16_ A (L), where A(L)= 8:(L3‘27g§ (L)

from the above theorem we deduce that

ALY #0

which is a fact already proved in (I. 4,2,3), in a different way.

Now let c be any complex number. The function &(z)= g;(z)—c
is elliptic with a double pole at the point 0 of Z%J. Therefore,
by the (Th. I. 6.3), it has also two zeros u, -u say, lying in Gi

So, we have proved that:

Lemma (Lem. I. 6.14)
The map 0 C/L\{O} — € is surjective.
In fact, for any complex number ¢ the equation
f(z)=c¢
has only two zeros #* u (modL), # 0 (modL).
Finally, we prove the addition theorem of elliptic functions
which states as follows:

The Addition Theorem (Th. I. 6.17)

Let u,, u,e@ , u ¢ + u, (modL), and u,, Uy, 2u, +i,, 2U+UY 7%O(modL)

Then we have:

_ ) 1 [ _Plu) - Pluy
f (uruy) = - @) - fPCu,) + i { B — @ (i) }
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Proof

By the hypothesis, and (Lem. I. 6.14), P (u) - P Cup)

is a non-zero complex number.

p'Cuy) - Py, ¢
Set = _. = (u1 -a (u )
Set a YA 108, and b P (w)-a ply,

and thus:

f)’(u,) = a@(u) + b, P,(uz) =a fo(ug) + b
The function pzz) - (ap(z) + b ) has a triple pole at 0 of
Qbi‘ , and hence it has three zeros, counting multiplicities,
and two of these are u, and u, , each of multiplicity one.
Let u, be the third zero, then by the (Th. I. 6.3), we have:
+ U, +uy=201in Caj‘
Also: XO,(ua) =a f(ug) +b .
By (Th. I. 6.11), p(u, ), pp(u, ), @(uz) are the roots of
the cubic equation

2
4% 3 -8,X = 83 - (ax + b) =0
2

a
and therefore f(u, ) + (‘)(uzl) +[O(’u3 ) = (1)
Now, substituiting a by i;)((l;:)): gg’:i and ugy by =(u; +uy ),

in (1), we have the desired formula.

7. Elliptic Curves

7.1 Definitions and General Facts

Definition (Def. TI. 7.1.1)

Let K be any field.

An elliptic curve E over K, is said to be, a non-singular
projective curve defined over K, of genus 1, which has a point
defined over K.

It is known that every elliptic curve over a field K, with
Char (K)+2,3, is algebraically equivalent over K to a curve
given by an equation of the form:

3
zY2=4% -o,2%x -2 (I. 7.1.2)
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3 2
where ,0(,,0(36K , and  of, —270<5 # 0 . Such an equation
is said to be in Weierstrass form.
An elliptic curve defined as above has exactly one point at
. .. 2 . X
infinity, namely [(0, 1, 0)Je P2 (K), and setting x =
Y

y =7 (Z #+ 0), we obtain in affine form the defining

equation of the curve:

y2=4x3—0(2x—0(3

Note that E is usually regarded as the set of points in

P2 (K) satisfying (I. 7.1.2) with K an algebraic closure of
K.

The set of K-rational points of E, denoted by E(X), is
defined to be the set of points (x, y) of E with x, yek,
together with the point at infinity. It can be shown, by
the Reimann-Roch theorem that we can define an abelian (additive)
group structure on E, with E(K) being a subgroup, taking the
point at infinity as the zero element, which from now on we
denote by O .

We are interested in elliptic curves defined over the
field of complex numbers,or, over the rationals.

We shall show first, that the parametrization of an
elliptic curve, by the Weierstrass p,gf -functions, affords

a group structure to the set E (& ). Furthermore, we shall

investigate the homomorphisms between elliptic curves.

7.2 The Group Structure of the Set of Points of an Elliptic Curve

over & .
Using the fact that the absolute invariant j takes every
value on the complex plane (Th. I. 4.3.2), one can prove the

following:

Lemma (Lem. I. 7.2.1) (Lang [28] p.p. 39, cor.2)

3 2
Given any two complex numbers of,, o3 with “2“27“3 +0,




there exists a lattice L = [&%.Qk] with fn1(%§j) >0

such that: 8, (WyrWy) = o, sy €s (W, Wz) = Xz ,

Now let E be an elliptic curve with the Weierstrass form

3 2
y2=4x3—°~’2x-0‘3 , where o,, =3 € and d2—27°‘3740'
By the above lemma, we can choose a lattice L = [0%,£02]

with jﬂ](%ﬁ) >0 such that

82(IJ)=0Q and 83(14)=cx3
Therefore, by (Th. I. 6.11), we have
p'(z-,L)2=4 p(z;L)B—txz fP(z5L) -3 (1. 7.2.2)
which means that the elliptic curve can always be parametrized
by the Weierstrass go,[.)' functions.

We, now, take the map

£:% — EC©

defined by: ,
(p2), () ,if 240
fi(z) = (1. 7.2.3)
4 ,if z=0 |
Note that, since both go(z),fo'(z) have poles only at the

point 0 of Z;L, the map is well-defined.
Note, also, that the map f is bijective.
For, let (x, y)e;E(C)\iﬁ} Then, by the (Lem I. 6.14), there
are only two elements * u GC/L\{O} such that f(u) = x, and
f (-u) = x.
Now, since (I. 7.2.2), fa,(u) = + y, and since p,is odd we can
find a unique element V€ 91,\{0} , such that V . x.y)
as follows: If fa’(u) =y, then V = u, and if p/(u) = -y,
then V = -u. This proves our claim.
Note, that, since the map f is bijective, the group structure

on gi induces, via f, a group structure on the set E (@), and from
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the addition theorem (Th. I. 6.17) we see that E (&£ ) is an

algebraic group with this structure:
If P, =(x1, ¥¢)s Pp = (x,, Y, ) are two points of
then P, + P, = P,, where P, = (x,, vy, ) and

3

S/ -Vi X
y3 = - yl“‘—‘z ( +Xz>+ “—VIXI Sf: 2

XI_XZ XZ—X«]_

o

EGZ))
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7.3 Homomorphisms on Elliptic Curves

By the previous paragraph, if E, E’ are two elliptic
. . < < .
curves 1isomorphic to %/ , 4: respectively then
Hom (B, B’ )% Hom (& , C/p0)

It is easy to prove that:
Lemma (Lem. I1.7.3.1) (See Lang [28] , p.p. 14-15, th. 6)

(i) 1If A @t — ¢9U is a complex analytic homomorphism,

then there exists a complex number a such that

Az) =az(modL) and al c L’

/
(ii) 1f aelC , and aLQL , then the map

A

[ — %7 sivenby A2 =az (modl)

is a complex analytic homomorphism.

From this lemma, we deduce that:

Theorem (Th. I. 7.3.2)
Let E, and E be elliptic curves isomorphic to gh;, and

Q;i: respectively. Then we have:

Hom (E, E') & { aeli : aLc U } (I. 7.3.3)
Fnd  (F) ¥ {acC : act | (1. 7.3.4)
Aut (E) a4 { acl : aL =1 } (1. 7.3.5)

Note also that:

The curves E, E are isomorphic, as complex analytic manifolds,

/

if and only if, there exists an a € & such that aL = L' . By the

homogeneity of the lattice function f, we deduce that the class

of elliptic curves isomorphic to E is determined by j(L), which is

the so called, thef -invariant of the curve.

Definition (Def. I. 7.3.6)
Let E be an elliptic curve isomorphic to Q;ﬁ; .

We say that E has a complex multiplication, if there is a non
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rational integer ae€ such that alLg L.

So if E has no complex multiplication, we have:

End (B) % Z , Aut () & {1}
For the case where E has a complex multiplication, one easily

establishes that:

Theorem: (Th. I. 7.3.7)
Let E be an elliptic curve isomorphic to %%’, with
complex multiplication by o«e C\Z .
Set K =@(x) , R, = int (K), R (1) ={2ek:AL<L{.
We have:
(i) o 1is an imaginary quadralic algebraic integer.
(ii) E nd (E) %R (L)
(iii) R (L) is a subring of R  , and
(iv) Aut (E) = R:

Note that, since K is an imaginary quadratic field,

X
R, ={ + l} apart from the cases where K is either @ (V/-1)
or (V-3

x
Therefore there are only two cases in which Ro contains more

than + | and these are:

Case | K=& /-1

We have Ro = ZZ[VCTQ R = { + I, t -1} , and R(L) =

n

Therefore: E nd (E)

éZ[JCT} , and
Aut (E) g{il,i \/——l}

Case 2 K= @ (-3)
x
We have Ro==ZZ[V—3] » Ry ={ + 1,+ p, ¢ 92} where
2nis
p=e , and R(L) = R,
Therefore: End (B) ¥ Z [\J—3 ], and

Aut (E) ;’{ t],iP,tPZ}

In fact we can tell whether an elliptic curve falls into either

0
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these two cases by looking at its equation in Weierstrass form.

For, let E : y2 =4 x3 -o,x -o3 be an elliptic curve
isomorphic to ZVL with a complex multiplication.
Note that:
jE = 1728, if and only if, &5 =0
In this case, Aut (E) contains at least 4 elements, namely:
(x, ¥) — (x, £y), (x,9) — (-x, =+ J-1y)
Also note that:
Je =0, if and only if, o, =0
In this case, Aut (E) contains at least 6 elements, namely:
v . 2nisy
(x, y)— (p'x, +y), v=0,1, 2, with p=ce¢ .
Therefore E belongs to the case | (resp. 2), if and only if,

o, = 0 (resp. X3= 0).

The above results are summarised in the following remark.

Remark (Rem. I. 7.3.8)
Every elliptic curve E over ¢ belongs to one of the
following three classes

The Class é;z

It contains all elliptic curves with Wejerstrass form
2 3
E:ty =4 x - o;x
where « # 0.

Furthermore, they have complex multiplication, and
End () ¥ Z2[V]
Aut (E) 9—-’{1 1, + /-1 }

The Class 63

It contains all elliptic curves with Weierstrass form

where oKy # 0.

Furthermore, they have complex multiplication, and
Z [J5]

{il,:tp,:tpz}

LI

E nd (E)

e

Aut (E)

2ni/3
where p = e
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The Class §,

It contains all elliptic curves with Weierstras form

E : yz = 4 x3 - X, X — O3

where x,xX3#0, and 0(23— 2?0(32 # 0

Furthermore,

Aut(E)'——v{il}

7.4 Points of Finite Order of an Elliptic Curve

Let K be any field with Char (K)# 2, 3, and E an elliptic
curve over K.
For any positive integer n, the map
E — E
given by: P +— nP
is clearly a group homomorphism.
The kernel of this map, that is,

E

n ={P€E:nP=U}

is called the group of n-division points of E.

If the elliptic curve E is defined over ¢ , then in view
of the isomorphism E (¢) ¥ @i‘, it is obvious that
~
and therefore, there are exactly n? elements of order dividing

nin E (&).

In general, if the elliptic curve E is defined over an arbitrary

field K of characteristic p (p is a prime or 0), then, it can be

proved that

éanZZn , if p T~n

subgroup of anzn, otherwise.
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7.5 Elliptic Curves over a Number Field - The Mordell-Weil Theorem

It is easy to prove that every elliptic curve E defined over
@, is algebraically equivalent over @ to a curve given by the
equation

y2 = x> - Ax - B (n
where A, B are rational integers, and 4A® - 27B2# 0).
The discriminant of the polynomial x? - Ax - B, that is ,
A =16 (4a® - 2782 ), is called the discriminant of E.

In 1922 L.J. Mordell proved that E (@) is a finitely
generated abelian group, and this was conjectured by H. Poincaré
in 1901. 1In 1928 A. Weil extended this result to an arbitrary
algebraic number field. We state this remarkable result, which

is referred to as the Mordell-Weil theorem.

The Mordell-Weil Theorem (Th. I. 7.5.1) (See Lang [29] , p.p. 84, § 2)

If E is an elliptic curve defined over a number field K,

then E (K) is a finitely generated abelian group.
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1. Standard Notations and General Facts

In the following, we denote by p a prime rational integer,
and by w an imaginary quadratic surd so that:
Aw2+ Bw+ C =0 (1)
where A, B, C, are relatively prime integers such that
A>0>8B% - 4 AC.
We set K = Q(w) , and denote by:
R, any order in K
R, , the maximal order in K, that is R, = int (K)

D, the discriminant of R . We have:

(i) D=0 or 1 (mod4), and D is not a square.
(ii) D determines the quadratic field K, and thus
we may write h(D) for the class number of the
field K.
(iii) The Dirichlet class number formula (see Markus [31]p.p. 201-202,

th. 46):

2

h(D) = 2—1(5]— ("PE‘J | , if D<-4

(K, D)=}
-]
0< k< 3

(IT. 1.1)

where (%}), is the Kronecker symbol.

O , the absolute value of the discriminant of R, , that is
D = Idisc (Ro)l .

Pw) , the absolute value of the discriminant of (1), that is
D (w) =82 -4 ac|

A, the lattice <w,1> .

R (A), the order of the lattice A, which by definition, is,

R (A) ={ peC :ﬂ/\g/\}
Note, that since - Dw) = B2— 4 AC, B =_-Dw)(mod 2),

and hence:

< --@(w)’fzJ-.D(w) , 1 >=<B*\/-2.‘2§§w) L 1>

It is easly seen, that:

R(A) = ZRWILEDE) sy (B SB@) , 4y
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We also denote by:

M (R), the conductor of the order R in K, that is, by definition,

M (R) = ,RO/R’ . It is known that if R, =Z[z] then R =Z[M(R)Z]
It is also easlly verified that the conductor of the order R (A),

is the unique positive integer M such that W) = M233 , which 1is

also called the conductor of @ . It M = |, we say that W is

primitive;
In this case, of course,R (A) = R, , and if WER, then R0 =Z[w]
Now, we denote by: '
S, a finite set of rational prime integers.
m , any positive rational integer with prime factors in S.
IS (R), the multiplicative group containing all fractional
ideals of K, prime to S, with respect to the order R,
that is the free abelian group generated by all prime
ideals of R in K, which are prime to S.
So, we have:
IS(R)Q Ig(Ry)c Iy ,
where Iy is the ideal group of K.
<PS,n1 (R), the multiplicative group containing all principal fractional
ideals of K, prime to S, of the form (n + mcx%i, where
neZ , and « € R .
So, we have:
P o o R)C Py s
where Py is the principal ideal group of K, and that
for any positive integer m having prime factors in S.
P s.1m (R), the subgroup OfI?S,V)(R) containing all principal
fractional ideals of K, prime to S, of the form
(1 +mo<)R ,where « € R
Now, we state some results of the class-field theory on imaginary

quadratic fields (quoted from [4 J,[15 Jand[44]).




2. General Results

Theorem (Th. IT. 2.1)
To any subgroup H, such that

IS(R)QHQP (R)

S,1,m
for some positive integer m with prime factors in S, there is
a unique abelian extension Ky of K = Q(w) with the following
properties:
(i) The quc norms of integral ideals in Ky prime to
S are in H.

(11) Ky is unramified outside S, and

(iii) Gal (Ky: K) % IS(R)/H .

Ps,i’m(R)
N
KH > H
(@) 0
K= Q(w) ~—0 I o (R)

In particular we have:

(i) To Pg 4 , (R,) corresponds the Ray-class field modulo m
b4 >

(denoted K,% ), and so

’

Gal (Kyy : K) % T4 (Ro )/P (Ry)
S,1.m

The Ray—flass field o PS,i,WI(RO )

Km

O 0

K = Q(w) - > I (Ro)

(ii) Let m be any positive integer with prime factors
in S. To the subgroups P (R), Pg 1,w1(R) with
1o (R)2Pg (R)DPg o m(R)

4
correspond, respectively, the fields K v Kg,m namely the

Ring-class field with respect to R , the Ray-ring class field with
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respect to R andm, respectively.

Ray-ring class field
/7

KR m “ > PS,1,m (R)

O N
Ring-class field

e e

K o Po (R)

0 0
K= Q(w <~ Ig (R)

(iita) If R = R (A), since
cond (w ) = cond (R) = M,
we may replace the symbol R by M (or by w ), in the above class
field correspondence.

So we have:

Ray-ring class field
4

K M,m (or K w,m )

)

Ring-class field

K M (or K¢ ) P S (R)
@) N
K = Q(w) - Iy (R)

Tn this case, we may call, KM (resp. K¢, ) the ring-class field

modulo M (resp. the ring-class field with respect to w ), and

/
K’ K ) the ray-ring class field with respect to M and m

M, (resp. w.m

(resp. the ray-ring class field with respect to w andm), of K =QW).
The ring-class field Ky , that is Ky with cond (w) = 1, is

called the Hilbert class field or the absolute class field,

of K = Qw) .

In this case the class field correspondence is as follows:
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Hilbert class field

K1 <« 5 PK
@) 0
K = Q. (w) - Ly

In this case, of course, Gal (K1: K) £ IK//H< = Cy,

and the degree of the extension K :K is the class number hk
of K= &(w). We have also, that K, is the unique abelian
maximal unramified extension of K = & (w) and corresponds to

the group of principal ideals.

Theorem (Th. 1I. 2.2) (see Lang [ 28] , P-p. 133, Th. 5)
If w has conduction M then j (w ) generates the ring-class

field modulo M of K = @{(w ) over & (w), that is, K, = Q(w, S).

Theorem (Th. II. 2.3) (see Lang [28] , p.P- 95, Th. 7)

Let K be any imaginary quadratic field, and R be any order
in K with conductor M. Then we have:

[k, :x] = me IIRK -(5) %)

piM

X x . . .
where Ro » and R are the group units in R, , and Ryrespectively,

and(%) is given by:

0 if p ramifies in K
(li) = 1 if p splits completely in K

-1 if p remains prime

Furthermore, by the tower KMZ)K { O K we have:

(¥ = ¥4] - <R’;P=4 R%) Ipml(l 5} +)

3. The Sohngen Theorem

We state, now, a very important result due to H. Sohngen

(see Sohngen [44], also Shimura [4QL p.p- 140, pr. 6.9)
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Sohngen's Theorem (Th. ITI 3.1)

Suppose that f (7 ) is a modular function of weight 0, for
A A
(N) and the Fourier expansions of f (<t ) at every cusp of [ (N)
#* .
2
for 36 have coefficients in the cyclotomic field @, (e "N ).

If w has conductor M, then f (w) is in the class field corresponding

to the group H generated by principal ideals of the form:

< 1 + N + NMB )aR
with x¢eZ , and B € R

In particular, f (w) lies inthe ray-class field modulo M N,

/

K wn , and furthermore f (w ) generates an abelian extension

of A(w).

4. The Case, where D = —p, p= 3 (mod 4), and p>3

Let K = & ( J/-p), and R, = int (K).
We have: Ro = 2? [l—tjfijl] , and RZ { + }

X
Now, if R is any order in K with conductor M then R = {i l} s

and by the (Th. IT. 2.3),
K\ 1
[KM : Kl] =M I I ( 1- (3)?) o (IT1. 4.1)

Theorem (Th. II. 4.2)
The class-number h (-p) is odd.

Proof

Since p is odd, the Kronecker symbol (:EJ mentioned in the
class number formula (II. 1.1) is actually the Legendre symbol ({})

We also know that:

7 (mod8)

i

) { -1 , if p=3 (mod8)

1, if p
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Therefore, the class number formula can be written as:

%_ ;E (%&) , if p=3 (mods)

k=1
h (-p) = - (1I. 4.3)
; (_15_) N 1f [)—37 (m0d8)
=1 p
Note that, since p=3 (mod4), -25:1 is odd.
Hence, in the sum =£§ (%;)appear an odd number of + 1, and so,
Kel

the whole sum is an odd number. Therefore, from (II. 4.2), we
deduce that h (-p) is odd.
From algebraic number theory we pick the following classical

proposition, which is easy to prove.

Lemma (Lem. II. 4.4)
Let @ ( /d ) be a quadratic field, where d is a square-free
rational integer, and q be a prime rational integer. Then we have:

(i) If q +d, and q is odd, then

<q,n+/—d > < q,n—/g> , if d =n? (modq).
<q>={

prime, if d is a non (qr) modq

(ii) If q = 2, and 2 T d, then

2
<2, 1+ Jd>, if d= 3 (mod4)

I+ /7; 1 -J”E_

<L 2r>=4 <2, ———5———+<2, -—37———>, if d= 1 (mod8)

]

prime, if d = 5 (mod8)

2
(iii) 1f q | d then <q> =<q,Jd > , where <q, Jd >

is a prime ideal.

Theorem (Th. IT. 4.5)
3 , if p= 3 (mod8)

We have: [K 2t Kii]=

i

1 , if p=7 (mod8)
’
and K, = Ky

Proof

Q(V/-p), and q = 2

By the above lemma, setting K

[]

we have:




24

If p = 3 (mod8), then -p = 5 (mod8), and therefore 2 remains

prime in K. Hence (J£> = =1,

2
If p= 7 (mod8), then -p = 1 (mod8), and therefore 2 splits
completely in K. In fact,
<2>=<2,%‘—"—><2, b_"2/3>
Hence (%;) = I.

Therefore, by (II. 4.1), we have:

[K 2 ¢ K1]= 2( 1 —(%g) %_) _ {j 3, if p= 3 (mod8)

1, if p= 7 (mod8)

/
Also K, = K, , since the corresponding ideal groups are clearly

the same.

Theorem (Th. II. 4.6)

2, if p =2 (mod3)
We have: [K3 : Ki] = {
4, if p= 1 (mod3)
7
and K3 = Kg -
Proof
By the above lemma, setting q = 3, we have:
If p = 2 (mod3), then -p= 1 (mod3), and therefore 3 splits
completely in K. 1In fact
<3y =<3, 1+/p < 3,1-/-p >
K
Therefore (3} = 1.
If p= 1 (mod3), thewp = 2 (mod3), and therefore 3 remains
prime in K. Therefore (%4 = -]
Hence, by (II. 4.1), we have:
K 1 2, ifps 2 (m0d3)
K3 : K1 = 3( 1 - (3) 3 ) = )
4, if p= 1 (mod3)
/
Also Kz = Kjsince the corresponding ideal groups are clearly

the same.
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1. The 10th Gauss Discriminant Problem

Let K be any imaginary quadratic field, R = int (K),
and disc (R, ) = -p, where p is a positive rational integer.
We denote by h (-p) the class number of the field K.
We keep fixed the above notation throughout this chapter.
We now state the main theorem, which was conjectured

by Gauss, and is famous as the 10th Gauss Discriminant Problem .

Theorem (Th. IIT. 1.1)

There are exactly nine imaginary quadratic fields with
class number h (-p) = 1, given by

p=23, 4, 7, 8, 11, 19, 43, 67, 163
We proceed to build up a proof of this theorem, and in this
section using elementary algebraic Number Theory we reduce
the proof to the consideration of the case p = 3 (mod8) with

p a rational prime integer.

Theorem (Th. ITI. 1.2)

If K is an imaginary quadratic field with h (-p) = 1,
then p = 4 or 7 or 8 or p = 3 (mod8) and p is a rational
prime integer.

Let K =@ (/d ), where d is a square-free negative

rational integer. Suppose that d s 1 (mod4), then -p = 4d,

and R, =;Z [lePJ . By (Lem II. 4.4), and since h (-p) = 1,

we have {29 = <x +y ——~2_p > for some rational integers
2 2
X, y. Taking norms on both sides we have: 4 =(x2 -+%% y ) (n.

It is easy to check that (1) has integral solution, if and
only if, p = 4 or p = 8.
Hence, the only possible cases are:

p=4, 0or p=28, or p=3 (mod4).
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v-p

Suppose now that p = 3 (mod4). Then -p = d, and R =;Z? [l—i-————

2

Let us start with the case where p = 7 (mod8).
By (Lem. IT. 4.4), we have:

<2y =< 2, ]_4'2__‘/:_£><2, ]_'2_‘[_—‘)_> (2)

Since h (-p) = 1, each ideal on the right hand side of (2) is

principal. Therefore, there is an element

such that N (e ) = 2, that is, there exist rational integers x, y

with x = y (mod2) such that:

_Z~+p%=2 , that is x2 +py? = 8 (3)

Since p = 7 (mod8), it is easy to check that (3) has integral
solution, if and only if, p = 7.
So far the only possible cases are
p=4, or p=8, or p=7, or p=3 (mod8)
and so we have only to prove that, if p = 3 (mod8), then p

is a rational prime.

For,suppose that p = 3 (mod8), and p is a composite square

free. Then there exists an odd prime 9, such that q (q + 2)< p,

and q | p.
Since h (-p) = 1, there is an element
x = X*yv-p . R,
2
where x, y are rational integers, such that N (&) = q, that

isx2+1)y2=4 q.

But 4 q =x*+py?ypy®rqlqg+2) y*,
and so 4y (q +2)y°

Since q is odd, q + 2 » 5, and so 4 » 5 y2
Hence y = 0, that is x R =y q - contradiction.

So, if h (-p) =1, and p = 3 (mod8), then p is a rational prime,

and hence the theorem holds.
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Note, that, the single cases, where p = 4 or 7 or 8 easily

lead to h (~p) = }. Therefore the main interesting poing is

to determine among all rational primes p = 3 (mod8) those having
h (-p) =1. For technical reasons, we exclude the case p = 3,

where, of course, it is known that h (-p) = 1.

2. The Proof of Gauss' Theorem

From now on, we suppose that
h (—p) = | 3
p =23 (mod8), p>3, and p is a rational prime.

We also set:

1 +V-p

W = 5

In this case, in view of the results of the § II. 4, we have:
Ky= K=QC /-p)
int (K,0R ) =2
/7

[ks @ K,

Also, by the (Th. I. 5.2.12), and since Jw) e K4 , we have

7/
2 or 4, K3 = K3

that, j (w) is a rational integer less than zero. Finally,

by the (Th. II. 2.2), K, = K,(JCLP)) .

2.1 Lemma (Lem. ITT. 2.1)

¥, (W+ 1) is a real algebraic integer less than zero, and
lies 1in K4 . Therefore Xz(w + 1) is a rational integer less than
zero.

Proof

A
Since XZ(Ti) is invariant under r(3), we have

v S VT -3 4V
LR g, (2 )y (22T

‘6}2(0‘)*']) =X2( )

and from (Th. I. 5.2.5), we have that xz(UJ+ 1) is a real algebraic
integer less than zero.
Now we prove that XZ(&>+ 1) e Ky

3 -
By (Th. I. 4.5.6), and since XZ(T)=?j(t) , the function XZ(T)




A

has a Fourier expansion at every cusp of | (3) with coefficients

2ni . .
in QQ (e 3). Theyefore, by Sohngen's theorem, we have gz(u)+l)el<3

and so ¥, (0 + 1) e Kg
Now, take the tower of fields
Ky 2 K, (¥(w+1)) D Ky

and note that X2(03+ 1) is the real zero the polynomial

x> o J(we )
that is,
P (x) = xa—j (w) e Z[X]
Since [K 3 ¢ Ky ] = 2 or 4 , we have

[K1('Xz(w+1)): K, ] =1 or 2
And since y, (@ + 1) is the only real root of ¢ (x),
[Ki(xz(wﬁ)) iKJ *+72, and so ¥, (w+ 1) lies in K 4
Now, since int (K10ﬂa)= Zz , ¥,(w+ 1) is a negative rational

integer as required.

Theorem (Th. III. 2.2)

The equation: (t - 16)3 = f()t (1) has a unique real
root which is also positive. The roots of (1) are f 24(w),
- fi4(0>), - fzh(u)), and - f 2‘(ﬁ>) is the unique real positive
root. Furthermore, all of f 24(0)), - f 1(u)), - fi:(u)) lie in
K, , and in fact K, = K, (f2:(w)) .

We take the polynomial ¢ (t) = (t - I6f - J(w) ¢t 6:2?[{J
Note that, for real t, CPQt) =3 (t - ]6)2 -j(w) =0 ,
since f(w)<0 . Therefore ¢ (t) has a unique real zero.
Also, since $(0).¢(16) = 164ij) <0 , ¢ (t) has a real

zero lying in (0, 16). So the equation (1) has a unique

real root, which is also positive.

8

(@), - fz( w) are the roots

By (Th. I. 4.6.9), £8(w), - f

79




80

of the equation x2 - ¥,(w) x - 16 = 0, and so clearly the
24
£ (w), - f214(w), - fz;(w) are the roots of the equation
(1); among these only one can be real and positive, and from
.. 24

(I. 4.6.1) this is - £ 7, (w).
From the (Th. I. 4.6.16), we deduce that

£ 2wy, - £5(w), - 3 (w) all lie inK, = K,
Now we prove that f?(w) generates K, over K, .

Because K, = K1<f(~/$)) DKl(fzza(&)))

it is enough to prove that /[ (/fp e K1 (Fﬂ; (w))

We have already proved in (I. 5.2.9), that

—n‘l./

=3y J2 e 13
(55 P Ve
Therefore
12
(PSP 2 (2)

o (24 LF)
A

and since Fi“(r ) is invariant under F(Z),
24 B - 24 _ - 24
sl ) L 522 ) Y

So (2) can be written as
12

24 -2
{- (,/—p ) =—r
4 (3)
2 (@
Now, for every '5636 , £24(¢t ) is a root of

(t - 16) = S (T) t

3
and so J(t) = ($%(e) - 16)
{:24(.5)
Therefore 3
: (£*¢rB)-16 )
JWP ) = ZI: (4)
£240P)
In view of (3) and (4) we have: 3
24
j(/P)- (L fe (@)
( f:‘(w))
So j(uﬁﬁ5)€LK1('F§4(w)> , as required.
2.3 Theorem (Th. III. 2.3.1)
M2, . ..
The number e Fz(w) is a real algebraic integer, and

lies in Ko




We need a lemma from Galois Theory.

Lemma (Lem. III. 2.3.2)
Let F DL 2 K be an abelian tower of fields with L : K

. 2
of odd degree. Suppose there i1s an xe F, x € L and N Ly

for some peX. Then «x € L.

Proof of the Lemma

Fleo
- Gal(F: L)

Gal(F K)

We may assyme that F = L (o ). Suppose for a contradiction that
[
Gal (F : L) =<6> , where 6 1), s0o o ==-ox
Since Gal (F : L) is of order 2r where r is a positive odd number,

/7
it has a unique subgroup, H say, of index 2. Let F be the fixed

field corresponding to H

Note that N, , (x) = l l "

& h‘”lm
80 (Ng g o) = (1) | l o
and hence (Nﬁﬁﬂ ca))_._ PVF’(d) {n

On the other hand, we have

B = Ny, () =Ny (N () 2 N ()

2
~N_, (N (¥) o - (N (o)
F/x Ere = /g )
Therefore NF/ L () = & B - contradiction, since by (1),
NF Cot) is moved by & , and £+ P 1is not.
7R
So G = IJ , that is « e L.

Proof of the Theorem

In view of the lemma, and (Th. I. 4.6.10), we proceed as
follows:
. 12 2 24
Take o = - L{-Z (w) , and note that o _—.—{:2 (w) 6K2

. 2 . 3 . . 12
Since o 1is a root of (t - 16) = J (w) t, we have Nk (x?)=
2[K

(?) =

81
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.12
So by the lemma -1 Fz(W)€l<2 . From (I. 4.6.1), it is
easily seen that —ifgzcw) is real and positive, and therefore
Nk ( —if;z(aﬂ )= 26 . Repeating the lemma again for
2/K

1 ami 6
X = e mmfé@ﬁ we also have that

3ni 6
e /4 £, (e K, (2)

Now, note that 24 24
2nip 8 f, cw) + 16 £, (wy+16

e b, () = ~2my3 =
e ¥, (W) ¥,(w+1)

By the (Lem IIT 2.1), ¥,(w+ 1)e AR
Also by the (Lem. III. 2.2), £2 (w) € K,

Therefore ezm/3 F: (e K, (3)

Now, since (2), (3), and

2nify 8 N, 2
eanl F:(w) = € / 'Fz (w)
e>"/4 £ (w)
we have that .
-nif12 2
e foek, _
: o i 2
Since (I. 4.6.1), it is easly seen that e Fz(w)

is real and positive, and by the (Lem III. 2.2) it is also

algebraic over K, and indeed cubic.

Remark It is now clear that the function which Birch names

-n

1}
. 4 .
& is € Fz(Cp . Birch [ 5 ] )
-m
712 2 .
2.4 By the (Th. III. 2.3.1),V=¢ ano) is a root of the
equation:
3 2
X -kX +4A%x -2 =0 (4)

where X , A are real algebraic integers lying in K; , and so
they are rational integers.
Also, note that the roots of (4) are three of the roots of the
equation:

X%y (wet) X2 16 = 0 5)

Let P, , i=1,2,3 the roots of (4), then

p: =kpi3-ﬁp_2+2p‘, , 1=1,2,3.




so, Yo =wlg-alp +2Lp
- K(kZp:—ﬁ ):pi+6)—ﬂ ):pinrZZpi
=(k2—ﬂ)Zp: +(2-ud) Zpi + 6K
o[ (Lp) -2 Lpp f+ (2w Lo, + bk
S ANKE-2A) + (2 -kA)K +6k

= k4+8K _hPA+2A°

4
By (5), Pi , 1 =1, 2, 3 are the roots of
x> —xz(co+ 1) x - 16 =0
and therefore 5: Pf =0
i

So we deduce that
2 2
e 8u-4u’A+2a = 0 (6)
From (6) it is easly seen that
k=A= 0 (mod?2)

and so setting Kn—Zo()and/a=Zp we deduce from (6) that,

2

R — 4o<2p + 20— 20 =0

2
which can be written as (p - 22 ) =2 (o<3+ 1)
. . . 3 2

Remark Note that, in fact, V satisfies V+2xV+2pV-2=0

and not viavi pv-2 =0 (C.F. Birch[—5], Equation (8) ).

2.5 The Solution of the Diophantine Equation

2
(p-20") = 20 (o4 1) (7)
Putting & = - x, (7) is reduced to
B-2x2) =2x(x -1 (8)

2
Set y =B -2 x , so (8) is reduced to

y 2 22 x( x> - 1) (9)

We find the integral solutions of (9).

3

The trivial cases, where either x or x -1 are 0, + | give
the solutions:
(x =0, y=0), (x=1.y=0), (x=-1,y=2), (x=-1, y=-2)

We find now the integral solutions of (9), where neither x nor

(10)
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x3 -1 are 0, + 1.

We can easily see that only the following four cases are left:

Case 1
. 2

x is odd, and x = u” (ueZ, u>1)

. 3
In this case we must have x - 1 = 2 v2 (v eZ, v>0)
Case 2

X 1s odd, and x = -u’ (ue , uy1l)

. 3
In this case x - | =2 v>* (veZ , v>0)
Case 3

2

x =2u (ueZ , uy0)

. 3 2
In this case x -1 =v" (veZ, v >1)
Case 4

x=-2u? (ued , u»0)

. 3 2
In this case x -1 =-v (ved , v>1)

We treat each case separately as follows:

3 2

Case 1: x> -1 =2v®, where ve Z , v>0

We have: x> = (1 +v J=2) (1 - v J/-2)
The number field @( . /-2) has unique factorization and its units
are + 1, which are all cubes in Q.( /-2). Furthermore 1 + v‘/—_a,
1 - v /-2 are coprime integers in @Q(/-2), since if p is a prime
integer in @ (\/-2) dividing both factors, then p divides their
sum, that is, p = i,/:f. But i\/—-‘Z does not divide either factor.

Therefore there are rational integers W, such that:

1 +v /-2 = (l&+ﬁ\/“—i)3

So K (K-6A%) =1 and  A(3K*-227)=-v
hence: K =1, A =0, v = 0
Therefore the equation x3 -1 =2 v has no integral solution
for v>0.

3 2
Case 2: x -1 =-2v ,whereveZ, vy> 0




L. Aubry and E. Fauquembergue have proved that the only
solutions of x3 - 1=2v" are:

(x = -1, v =

|+
=

(x =1.v=0), (x ==23, v = + 78)
(See [ 16 ] , Vol. 2, p.p. 538)
The only acceptable solutions in this case are

(x = =1, v=1)
We eliminate all the others, since v must be strictly positive
and x strictly negative.
For (x = -1, v = 1), we find the solutions

(= 1,p=0), (e =1, P =4)

2
Case 3: x -1 =v  , where veZ , v> 1
3 . N
We have: x = (1 +1v ) (1 -1v)
The number field @( /-1) has unique factorization and its
units are {*1,*1 } which are allcubes in @Q( /-1).
Furthermore, | + {v, | - 1v are coprime integers in @ (/-1).
For, let a + bi be a common factor of 1 + iv, I - 1v.
Then a 4 bidivides their sum, that is,a + bl divides 2.
. . 2 2
Taking norms we find a~ + b = 4
So the candidates common factors are:
1,041,421 42 +] ]
It is clear that + 2i, + 2 are not common factors.
Also the case where *l %1 is a common factor leads to
that, where v is odd, and so x is even.
. . 2 .
In this case, it 1is eadly seen that x> - 1 = v° has no integral
solution.
Therefore, we may consider that the only common factors are the
units of @ ( V-1). Hence 1 +1v, | - 1v are coprime integers, and
so there are rational integers A, B such that
. .. 3
1+ 1v = (A +1B)

Thus A A -3B2% ) =

and so A=1,B=0,v=20
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Therefore, x~ - | = v has no integral solution for v > 1.

2
Case 4: x 2 - | = - v , where veZ s VI

This is a classical equation solved by Euler ([1€LV01 2,

p.p- 533-534). The only solutions are:

The only acceptable solution in this case is
(x=-2,v=23)

which gives the solutions

(x =2, b =2), («(=2,p = 14)
Now since the trivial solutions (10) give:

(¢ = 0,p=0), (x=-1,8=2), («x=1,B=14), (<=1, p=0)
the only solutions of (7) are:
((=0,p=0), (Xx==-1,p=2), (x=1,p=4)

(rn
(= 1,p=0), (x=2,p=2), (<=2, P = 14)

2.6. Now we find 82(w + 1) in terms of coefficients K,A of the
equation (4).

Note, that:

4 4
~ ¥, (w+l) = ) P,

ipd
and one easily deduces that

2 2 2
=%, (WD) ={ (‘%RF)J)-ZengZPI } —2P2P2P2{( Zp{)—Z ij}

1'2°3 ]

and so, by the equation (4),
-y, (we1)= A~ 8%+ 8K+ 164
Putting K =-Z2« , A= Zb to the above formula, we find
—¥y(w+1)= 2" (B4 44 20 +2p)
For the integral solutions («, ﬁ) of the equation (7), given
by (11), one finds that:
- g0+ 1) =0, 2% .3, 27 3.5.00, 27, 2° 3.5, 2% L 3.5.23.29,

respectively.

By the (Lem III. 2.1), - (w+ 1)%>0. Therefore there are only
Y 2



five remaining cases to be considered, and these are given by

the following table:

4 -1 1 1 2 2
p 2 4 0 2 14
5 5 5 6 6
- Lw+ D | 27.3 1 27.3.5.11 | 2 2 .3.5 | 2 .3.5.23.29 J

On the other hand we have already proved,

-1 1
q " - 25692« - ¥, (w+1)
-2n./~F
where q = e .
Weber also proved that:
‘3 Y
U 1y Bq 2%q”
_Xz((k)+l)< q ‘—256q + 1-8q{/"-q 1_q

(see,l_ 48] ,8 125, p.p. 461-2) ,

and having used the inequalities (12), and (13),

2

_X2<_3.+2ﬂ> _ 55

<3+\/-_19> 5

-X < + 5/:23 ‘> = 26
_K2< 3+2\/——]_6—§> ___25

.3

.3.5.11

.3.5.23.29

(see I. 5.2.11) that:

(12)

(13)

(14)

Note, that the values on the right hand sides of {14) coinside

he deduced that:
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with the values of the last row of the above table. Therefore,

by the bijectivity of the § -function, we deduce that, if

h (-p) 1, p=3 (mod8), p > 3, then we must have:

[

p 11, 19, 43, 67, 163
Conversely, if p takes the above values, j (w) is a negative
rational integer, and since K, = K (J(w))  we have [KZ : K1]= 1,

that is h (-p) = 1.

This completes the proof of the (Th. III. 1.1) ,
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1. The Weak Mordell-Weil Theorem, and the group of 2-coverings

U of an elliptic curve.

1.1 The Weak Mordell-Weil Theorem

Let E be an elliptic curve defined over @) with Weierstrass
form: y2 = h(x) = x> - Ax - B 5
where A, Be Z .

By the Mordell-Weil theorem, E (&) is finitely generated
and its subgroup E (Glf of rational points of finite order is
finite.

We denote by r the number of independent generators of E (@)
of infinite order, and by r, the number of independent generators
of finite even order. Clearly rp, =0, | or 2 if the polynomial
h (x) has o, 1, or 3 rational zeros,respectively.

Now we state the following result, which was proved by

Weil, in the general case where E is defined over a number

field K. (See Lang [29] , p.p. 101, V, § 1).

The Weak Mordell-Weil Theorem (Th. IV. 1.1.1)

The quotient group E(Q124§E(¢L) is finite.

) r+r,
In fact, it has order 2 z

1.2 The group of 2-coverings U of an elliptic curve

Let E be an elliptic curve defined over @ . Following
Cassel's definition (see Cassels [9] ) we say that there is
a 2-covering U of E if there is a curve D defined over & and

a commutative triangle:

with associated generic points

E

beo|

Xy ————————— x =2 X4

|

X



where the map X — x is over the rationals, and X X, is over
the complex numbers. We shall say that another curve D’ with
. . ‘., . . .
generic point X gives the same 2-covering on E, if and only if,
there is a birational mapping
/
X «—— X

over the rationals and a point P on E with 2P = such that the

diagram

is commutative.

There is also a natural structure of an abelian group
on the 2-coverings U of E, inherited from the law of composition
of the curves D regarded as homogeneous spaces (see Weil [49] ).
We denote by G the group of 2-coverings U of E. Every element
of G other than the identity has order 2.

We are interested here in a special subgroup of G, which
we denoted by ¢ , consisted of 2-coverings U of E for which
D has a rational point (C.F. Birch and Swinnerton-Dyer, in (6],
denote this group by ¢’ and is clearly a subgroup of those
2-coverings U for which D has a point in each p-adic field).

Weil has also proved that:

Theorem (Th. IV. 1.2.1)

,and consequently

ra
Th up G is isomorphic to E (@)
e group i phic (/éEﬂu)

g™ ] = 27

Birch and Swinnerton-Dyer have found an effective method
under which one can specify 2-coverings U of an elliptic curve
E (See Birch and Swinnerton-Dyer [6] ).

In the next we quote some of their results.

Lemma (Lem. IV. 1.2.2) (See [6]1 , Lemmas 1, 2 p.-p. 9 -11)

. . . . ) Ta
(i) 1If D is a curve corresponding to a 2-covering U in G

b

%!
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then we can take D in the form

y2 = g(x) = ax® + bx> + cx® + dx +e (n
where a, b, ¢, d, e are rational.
Furthermore, the curve (1) is a 2-covering of

y2 = x> - 27Ix - 27J (2)

where T = 12ae - 3bd + c? , J = 72ace + 9bcd -~ 27ad2 - 27eb2 - 2c3
which are called the invariants of (1).
And conversely, any 2-coverim of (2) has invariants Iﬂ4 ,‘st
for some rational A

(ii) Two curves D and p* of the form (1) give the same
covering, if and only if, there are rational numbers o«,f,¥, S,p
such that:

X+ B
Xx+5

2 4 ¥
g0 = (yx+8) g (
. * . *
Clearly, if D, D are equivalent,then g(x), g (x) have the same
splitting field.

(i1i) TIf g(x) has a rational zero, it gives rise to the

trivial 2-covering defined by the map X ——2X of E onto itself.

2. A specific example of an infinite series of elliptic curves

with infinitely many rational points.

1+ J-p
2

such that p = 3 (mod4), and p > 3. Let K =Q(w) =Q( /-p).

We set w = s where p is a rational prime
We recall some general facts from the Chapters I and II.
These are:
(i) §(w) is a real algebraic integer less than zero
(Th. I. 5.2.12)
(ii) The Hilbert class-field K, = K (J@)) (Th. TI. 2.2)
(iii) h(-p) = [k, : K] = odd (Th. TI. 4.2)

3, 1f p =3(mod8) ,
(iv) [Kz: Ki] ={ . ,amiKz = K, (Th. II. 4.5)
I, if p=7(mod8)




Now we also recall some results from the Chapter III which
depend only on the fact h(-p) = odd and not on the special
case where h(-p) = 1.
These are:
(v) —fza(u)) is the unique real root of the equation
(t - 16)° =j (w) ¢ (1)
which is also positive. Furthermore f §4(co) & K,
In particular if p = 3 (mod8) then K, = K, (‘f:G(w)) (Th. III. 2.2)
(vi) —:l'.f;2 (w) , 83"1/4 f:(w) are real and positive
and also lie in K, . (From a part of the proof of
(Th. III. 2.3.1) ).
Lemma  (Lem. IV. 2.1)
K,MR is an odd extension of &; in fact

h(-p), if
[K,0R:0] - { A

3h(-p), if p

7 (mod8)

3 (mod8)

]

Proof

First we prove that [K1r7mL3Ql.] = h(-p).

Clearly, KnR = @ | and K,OR= @ (Sw) .

K
2 T KR
{ov 3
K,= K (§(w)
KU YR -@Gw)
h{-p)
K=®'(/‘_P_) \2 WHR=Q

Note that [k, :k,OR] = [® (j(@ ,JP) : @ (Jw)) ]~ 2

and since  [K,:@ ] = 2h(-p), we have [K,LOR:® ] = h(-n).
Suppose that p = 7 (mod8), then K, = K, and so

[KoR:@ ] = hi-p).

Now suppose that p = 3 (mod8), then [K2:¥<1] = 3,and

93
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Uy =~ Ky (Fo ) = QCIB , jw, f2' )

Clearly K,nR = Q(j(w),{f(w))

and so [yt x,0R ] =2

since  [K, : K,0R]=[K,: Kk J[K :kOR] = 3.2 | and

[Ky: k,0R] =2, wehave [K0R:knR] =3
Therefore, [K,NR.: @& |=[K,nR : K, n IRJ[LQMR 2@ ]~ 3h(p)

So the lemma holds.
Now we prove that:

Lemma (Lem IV. 2.2)

¥y (W) € K, . In particular,
¥y (W) = Aﬁ , for some Ae K( niR
Proof

From (Th. I. 4.5.6), and 832('6)=j(1:)—]728 we deduce that
¥3(t) has at each cusp of [ (2) Fourier expansion with
coefficients in @, , and therefore by Sdhngen's theorem ggauﬁiké
Now note that §,(w) 1is a zero of the polynomial

dOO = X° - few)+ 1728 € Kix]
Since JjwHy <0 , ¥y (W) is a pure imaginary number.
Also from the tower of fields
Ko D Uy (¥w)) DK,

since [Vz: Kilz 1 or 3 , we have ¢(x) 1is reducible
over K and so ¥y (W) & Ky
Now since K,= Q.(FP)(j(wy) , and jw) is real, we have
X3(‘*” =7 /.? for some A€ Kjf)@, .
Theorem (Th. IV. 2.3)

The curve D: —py2 = x4 - 64 has a Q -rational point.

Proof

First, we prove that D is soluble in K,0R,.
It is easily seen that the equation (t - 16)3 = Jf(w) t

can be written as:




2
j(w) ~ 1728 = (t - 64)t(t + 8) .

. t
that 1s, X;(w)’(—t—T‘g—)e‘ =t - 64

Note that in view of (V) and, (VI) we have

12
1 Fo () }2_ { Il e 4
R B N AR

and from (Lem. IV. 1.1), we deduce that
. A2 2 3ni 4
- /4 6
s i f2 (w) } _ { j Y
jL P-aA {7 (w)+8 e f

which means that D has a KZOG{ ~-rational point, namely

. 12
. iy e -ify (@
(X,J)~<€ 1CZC¢U7 s )W>

We now prove that D has a @ -rational point. We need first
to recall the following facts concerning divisors of an
elliptic curve D defined over the rationals. (See Farkas
and Kra [17] , p.p.67, 90, ITII. &4 )

~ = D,
There is a fundamental isomorphism D(€)— D, = /%
P

given by: P [P}'[Cﬂ 4
where D, 1is the group of divisors of D of degree 0, and Dy,
is the group of principal divisors, that is the group of
divisors of degree O,which are divisors of functions defined
on D.
This induces a bijection

h: DE) «~—D,

where 51 is the set of divisor classes of degree |. Clearly

h preserves the action by the Galois group of € and from this

we deduce a bijection:
Gal(€/@)  Gal(e/a)

D) «— D,
between the @, -rational points of E and the rational divisors
of degree 1.

We return now to the problem in hand. Let P be the

k.0R -rational point of D. Since K,0Q. is of odd degree over
2 2 g

Q, , the sum,ii , of conjucates of P over @ provides a rational

divisor of odd degree

?5




9%

We denote by Q = (2 J2, 0), Q/ = (=22, 0).
Clearly Q + Q/ is a rational divisor of degree 2 and
therefore
%, =% - 28220 (q Q)
is a rational divisor of degree |. Hence, by the above

bijection, D has a @ -rational point, as required.

The Final Result (IV. 2.4)

2 . ..
The curve E : y2 = x> + P x has infinitely many

rational points.

Proof

In view of the previous discussion, and since Y,= |
. . ra )
it suffices to prove that IG |> 3, that is enough to
find two non-trivial, inequivalent, 2-coverings U of E.
We show that the curves

D : —py2 = x4 - 64,

2 4 2

and D : yo = x" + 4p
are as required.
The curve D has the obvious rational points

(x =0, y =+ 2p)
The following diagram shows how the curve D is rationally
X+ 2,_17103

‘ 2
transformed to the curve D : Yy =-

1
P

(x o) ——( 12y ,(2)y
D (3o

~S
Also the following diagram shows how the curve D is rationally

e, 2_- 2.4
transformed to the curve Dy =-4px + o 3h

X ,¥) —( 22.3.px 5 23.3?py) ~

3
—>

e



In view of (Lem. IV. 1.2.2) the invariants of the quartics
/ ~/
D , and D are:

2
__E =
I=-% , J=0

~n
So, D and D are both 2-coverings of the curve

3
y2 =x - 27Ix
that is, y2 = x4 p2 X
. . {4 64
Clearly, they are not trivial, since -§JX + 3;— and
—x4 +4F¥ have no rational roots.

Also they are inequivalent, since the splitting fields of the

above polynomials over & differ.

This proves our claim.
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