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INTRINSIC QUARKS-AND HEAVY FLAVOUR PRODUCTION

Timothy P Spiller

ABSTRACT
A model is constructed for the diffractive productién
of heavy flavours in hadron-hadron interactions, based
on the presence of an intrinsic heavy quark component
in the.hadron wavefunction. It requires three ingredients;
the heavy quark content of the initial hadron, the
probability that these heavy quarks are scattered, and the
probablllty that they form heavy flavoured hadrons afterwards.
The initial heavy quark distributions are calculated,
using lowest order perturbative QCD, starting from the
valence constituent quark distributions, and compared with
deep inelastic charm production data. The valence distri-
" butions are designed to reproduce the dimensional counting
rules, and, via reciprocity, to be consistent with the heavy
quark fragmentation functions. '

‘The light‘quark-hadron scattering cross-section is
-parametrized by Pomeron exchange, and extended to heavy
quarks using the f-dominance hypothesis for the Pomeron-
quark'coﬁpling. Dynamical and kinematical factors which
control the rise of these cross-sections from threshold
are built in. The validity of these ideas is tested
against charm photo-production data, by using a vector
dominance model for the photon-hadron scattering.

The probability that the scattered quarks recombine
to produce heavy flavoured hadrons is assumed to be given
by the overlap of the initial distribution of quarks with
the distribution in a heavy hadron. We compare the
predictions of our model with strangeness and charm production
data, and make predictions for bottom and top production.

In particular, the magnitude of the leptonic signal to be
expected from the decay of top quarksAproduced at the
CERN pp-Collider is given. , ,

_ We conclude that all aspects of this model are consistent
with-present experimental data; and that the top quark should

be observed at the Collider if its mass ‘is around 35 GeV.
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There is a theory which states that if ever anyone
discovers exactly what the Universe is for and why
it is here, it will instantly disappear and be

replaced by something even more bizarre and inexplicable.

- There is another theory which states that this has

already happened.

From The Restaurant at the End of the Universe by

Douglas Adams.




CHAPTER 1

MOTIVATION, BACKGROUND AND MODEL

1.1 MOTIVATION

1.1;1 Recent Experimental Data

vA lot of hadron-hadron scattering experiments have
been done over the last decade, at various enefgies.
 It is found that heavy flavoured hadrons are produced
quite frequently compared to light ones, roughly in

the ratios

-2 -3

(u,d) : s : c~1l: 1/4: 10 7 4 10 (1.1.1)

at the highest energies.

.There appear to be two production mechanisms for
heavy flavoured particles. Most are created "centrally",
with small centre of mass (COM)-moﬁenta compared to that
of the beams, but some (about 1/5) go "forward", with a
sizeable momentum. The latter always have small traﬁs-
verse momentum (relative to the beam), so it is quite
clear which initial hadron they came from. Such production

is termed "diffractive'.

1.2.1 Failure of 01d Models

" The older hadron production models fall into two

~ categories.




(1), in which the probability of

-2m
producing a hadron of mass m is ~ exp( T ) (a Boltzmann

.(a) Statistical models

factor) where T is a universal temperature ~ 160 MeV.
This gives

-1

(u,d) : s :c~l: 10 1072 (1.1.2)

(2)

(b) Tunnelling models , in which the probability of

producing a quark-antiquark pair (which then hadronize)
-T<m >

is v exp(———Kzg—) where the string constant K ~ 0.2 GeVZ2.

<m%Q> is defined by <m%Q> Emé + <k%>, where ™ is" the

quark mass and <k%> ~ 0.1 GeV2., This gives
-10
(up,d) : s : ¢c~1:1/3 : 10 (1.1.3)

Both give the right order of magnitude for strange-
ness production, but are far too small for charm, and
neither ekplains the observed momentum distributions.
Over the last few years there have been attempts to

improve on these predictions.

1.2 NEW MODELS FOR HEAVY FLAVOUR PRODUCTIGON

Numerous predictions for hadronic charm production

exist(3), based on the expression

— i j .
o (AB»>cTX) =7 | dx dx E3(x ) ER(x )8 (1frcT)  (1.2.1)

for;the cross-séctibn. f;(xi) is the probability density




for finding ?mﬁbn i in hadron A with longitudinal

momentum fraction X5 The parton amplitudes for the
‘sub-process cross-section, 8 , come from perturbative
QCD(4)

created centrally and assumed to fragment to form

, and are shown in figure 1.1. The cc pair are

hadfons. The calculations use the measured x-
distributions for light quarks and gluons, but assume
values for the strong coupling ag, the charmed quark

mass m,, and the threshold for the sub-prqcess. For
reasonable choices of these the predictions are
generally too small to account for the central production
of Section 1.1.1.

(5)

Barger et al also consider the excitation
amplitudes of figure 1.2, as a possible explanation
for the diffractive cha;m production. This requires
additional assumptions for the magnitude and shape of
_fg(xc).' They argue this arises frpm QCD evolution,

" and that at Q% » 4m§ is "hard", in order to fit the .
‘data, evolving to lower X, at larger Q2 to avoid
conflict with deep inelastic séattering data. The

- charmed hadrons are produced by recombination with.

the valence quafks.

A model fusing a diquark from one hadron with a
quafk from the other has been proposed by Donnachie(6),

and tested against strange baryon production data.

This requires assumptions for the magnitude and




Figure 1.1:

0}
[T

The parton amplitudes for ij » cc.
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" Figure 1.2: The parton amplitudes for ic » ic.




shape of the diquark distribution.

Brodsky et a1(7) propose an explanation for
diffractive charm production using the idea of "intrinsic"
charm. They model the contribution to f;(xc) fromvthe
‘fuudcc> Fock state of the proton, and conclude that the
heavy quérks cérry most of the momentum. The final
hadrons are again produced via a reformation process:

~ the normalizatipn being fixed from experiment.

Thesé diffréctive models contain uncertainties.
Normalization to fit data ié needed,'and.possible
difficulties in recombining the quarks into hadrons are
neglected. Extrapolation to heavier masses from charm
iS'Simply assumed to scale like mi/m? (i=b,t), either
.in.the intrinsic cross-section, or the inverse of the
threshold for the diffractive excitation sub;process.

lnsect A

1.3 OUR MODEL: AIM AND CONSTRUCTION

We propose a model for diffractive heavy flavour
production, based on the idea of intrinsic heavy quarks,
and regard central production as a separate effect,

- still to bé satisfactorily explained. We aim to avoid
some of the uncertainties of the existing models.
Using aAproton as an example, ;he basic idea is that a
heavy quark Q in the proton's ]uudQ6> Fock state
scatters "softly" on the other hadron, and the quarks

‘then recombine to form heavy flavoured hadrons.




The QQ are pair-created inside the proton. As they
are heavy we model this by lowest order perturbative QCD.
Cpnsequently the relative normalization of the Fock
states juud> and |uudQQ> is predicted. The quarks in
these.states»are constituents, as between them they carry

all of the proton's momentum.

In Chapter 2 we model valence constituent quark
fdisfriﬁutions, ensuring they satisfy the dimensional
..counting rules (see Section 1.7), and support these in
"Chapter 3 by considering heavy quark fragmentation.
.Chapter 4 is devoted to the calcﬁlation of intrinsic.

heavy quérk distributions in light hadrons.

Unlike deep inelastic scattering, diffractive

scattering is soft, and so the appropriate framework

-is Regge,theory(g). We discuss this in Chapter 5,

and calculate heavy quark-hadron cross-sections.

Since recombination functions are essentially
valence distributions, we then have all the ingredients
to predict hadronic heavy flavour production, which is
the topic of Chapter 6. We present our conclusions in

Chapter 7.

In the remainder of this‘chapter we introduce
the background theory and ideas we need, and define our

notation for the calculation of cross-sections, pafton'



densities etc. This may be omitted, and simply used

for reference, by the reader familiar with this framework.

1.4 STANDARD THEORY

" 1.4.1 Cross-Sections and Widths

The cross-section for AB + N particles is given by

N N
> = 3 L¥ L -
o (AB>N) % J‘igl ddp; |(21)*8%(p,+py .Elpi)
= ﬂTy_H 3p(]?- 1._
(1.4.1)

- | AaB~N| 2

Similarly for a width

' N
3 -
. d°p. . (2H)"6‘*(pA zp;)
2 P;

==

T(A*N) = 1
i 7T i=1

o
2pA
R (1.4.2)
In both cases [A[?2 is the squared modulus of the amplitude
for an N-particle final state, averaged over initial
spins and summed over final ones, p; are the relevant

four-momenta, and h is the flux factor, defined by
1 .
= . 2 _ 2 2
h= 4 [(pA.pB) man, ] (1.4.3)

o is Lorentz invariant while F-l transforms as the

Zeroth:éomponént of a four—ﬁector, (hence the dilation

of lifetimes).
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1.4.2 QED, QCD and Regge Theory

Our work will require frequent evaluation of
amplitudes, such as in (1.4.1). When these are unknown

(9) (4)

we resort to modelling, but also call on QED , QCD

and Regge theory(S).

We use QED, the U(1l) gauge theory of electro-
magnetism, when considering the scattering of leptons
and quarks, and also need weak interactions(IO) (the
othér half of the SU(2) x U(l) electro-weak theory)

when considering leptonic decays of heavy quarks.

When calculating amplitudes we employ these
theories perturbatively. The Feynman rules are
conveniently listed in the appendices of Itzykson

(9)

and Zuber , as are many other standard results

(eg trace theorems) and we adopt their notation through-

out, except for defining the normalization of Dirac

- spinors by
G(p,s)u(p;s) = 2m (1.4.4)
The spin summation then reads

tu(p,s)u(p,s) = p +m S (1.4.5)
s

with the advantage that (1.4.1) and (1.4.2) hold for

“any combination of bosons and fermions. In all our
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diagrams a photon is represented by AN and a
gluon by (QLRQ

The QCD approach to hadron physics has deficiencies.
At present- quark confinement is not proven, and many
features of hadron étructure and scattering, particularly
at high energy and low momentum-transfer, remain to be
explained. However Regge theory has far more success
with the latter, and so this is the'approach we introduce

and use when considering such scattering.

_.1.4.3' The Optical Theorem
Summing (1.4.1) over all possible final states
gives the total cross-section. Using unitarity the
right hand side may be re-written in terms of the elastic
scattéring amplitude at zero momentum-transfer, giving

the optical theorem

o‘ot(AB) = 2

t 5 ) (1.4.6)

Disc(AAB+AB

We employ this occasionally, but Mueller's

generalization(ll) will be more useful. This says
3 3 = : — - ,
161 E(:g_g (AB»CX) = 2Disc(A,p=,2p7) (1.4.7)
3 h
d°p¢ -

‘where again the diécontinuity is evaluated with the final
'momenta equal to the initial. X is any hadronic final

.Astaté. The derivation of (1.4.7) is the 'same as that of
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‘(1;4.6), with the crossing of the final C to an
initial C. As a result the amplitude is at an un-
physical value of pg- We simply assume this analytic
continuation can be made; for a discussion see

| Reference 8, Section 10.4.

To evaluate discontinuities we use the rules due

to Cutkbsky(IZ).

1.5 LIGHT CONE VARIABLES

Usually we will treat four-momenta in terms of their

light cone components, defined by

Py Pp P 3 By = (PLPP) (1.5.1)
and use thé_pfojection operator P;, defined by

+ g o+
PppA I (1.5.2)

Under a Lorentz boost (with velocity B, and

. = _ r2y"3 o po, 'H
y = (1 B4) 2) along the 3-axis, Py Py where

py = (1 + B)py Pra = Pra (1.5.3)
Therefore any ratios of the form

(1.5.4)

[
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are invafiant. For example, Py and ki are our notation
for hadron and quark momenta respectively. The Jacobian
for the variable change of (1.5.1) is 3, so, using
(1.5.4), |

4 = 41k ta2 e~ =
d*k, = 3dk}d2k dk; dx 2k d(K3) (1.5.5)

1
2x.
s |

In,terms of these variables dot products read

| = 2 2 T 2 -
2pp-ky = xi(pgrppy) + 1 (kPkfi) - 2ppy-kyy
i

pikpy (15:6)

X. X. .
K. 24k 2 ) 2+k2.) -
2k -k x%(kJ SRR x?(kl+kTi) 2k,
] 1

1.6 THE PARTON MODEL

Whenever a hadron is probed sufficiently hard for
its structure to be resolved, it is found to consist of
almost free "current" quarks and gluons (collectively,

)(13,14)

partons This is in agreement with QCD, since

the strong coupling aS(Qz) > 0 as Q2 > w(4). An
interaction involves the scattering of one or more
partons, which then hadronize in some way. An example

'is shown in figure 1.3.

We define the standard variables Bjorken-x and v

by




2
F/‘irf
/

Y

,"A _ \ [ Parfons

Figure 1.3: The parton diagram for deep inelastic
electromagneticlepton (1) - hadron (A) scattering,
showing the four-momenta of the particles. 1In the

hadron rest frame, (pA==(mA,g)), we define

| Pl = (El’Bl) and pi = (Ei,gi), and the angles 6, ¢

as shown.



-14-

X = _=q2 3 v = P,-q (1.6.1)

" and fi(xi) as the probability density of a quark i
being in hadron A with light cone momentum fraction
X, defined by (1.5.4). The cross-section for the

process in figure 1.3 is

3 > m .
16H3E1d—33 (1a-1X) . ; J}dx.fk(x.)16n3
' d P3 m2n i=1J o 1 1
3 R
Elu (1q;+1q;) (1.6.2)
d321

where n is the number of valence quarks in A, and X
is any hadronic final state. This assumes an incoherent
sum over all possible parton final states is equivalent

‘to the same for hadrons.

However our parton model will differ from the
standard one, since when deriving f's we will consider
qnly the lowest possible value of m. The distributions
are then considered to be those of constituent quarks,
which can be thought of as bare current quarks surrounded
by a sea of qq pairs and gluons. We use light cone
variablgs, but we shall not neglecf masses (except
those << hadron masses) or of £ mass-shell effects.

If we do, though, the usual results emerge, which
| we‘demonstrate as a check, and to introduce our

notation.
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The hadfon tensor, va

, is defined by

3 N _ an3.2
orsg, &2 (1410 < 81

pv
LPu, (1.6.3)

Neglecting the lepton mass, the lepton tensor is

LW = Tr{pivuplyv} (1.6.4)
- while
_e? 1 (1.6.5)
@ = 41137

e being the lepton charge. The most general gauge-

~invariant expression for W 15(19)

Y

Wy = W 0,a2) G+ Qi) + Wy 0v,6%)
¢ 2
A

(p. - Q-P . q-p
(pAp A qp)(pAv Aq,) (1.6.6)
q2 q2
Uéing the differential form of (1.4.1) with
N = 2, the Feynman rules for QED, and integrating over

the quark momentum gives

| 3, . ol o2
1en2g 20 (19571450 _€"€5 () g (i, +q)) 8( (ky+q) 2-mP)

3 A
d ] 4hq”
» A
LT, | (kg +)
=83a2e2 ) 2 2
| L6C(k,+)%) 8((k+q) 2-m)
hqt '

(1.6.7)
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where ee, is the quark charge and
Tva(ki’ki+q) z Tr{(Ki+mi)vp(Ki+4+mi)yv} (1.6.8)
' Evaiﬁating the trace gives

TZpV(kifki+q) = 4[kip(ki+q)v+kiv(ki+q)u

- gw(ki.(ki+q)-mzi) ] (1.6.9)

Using (1.6.7) and (1.6.3), (1.6.2) becomes

HE& = I ? J ' dx.fi(x )efe((k +q)°)
m2n i=1lJd o 1A h *

=1

6((ki+q)2-mf)T (ki,ki+q)

(1.6.10)

2pv

We substitute in (1.6.9) and (1.6.6), and then operate

with P"PP* (as defined by (1.5.2)) to obtain

! [M g 2@ (5 a-Py gty
Ei q? m& q?

: m 1 i e o}
-1 x f ax £1(x )% (K +q)®)
m2n i=1J o h-

+ +
6 ((k;+q)? 1% ) 8k] (k, +q) (1.6.11)
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Neglecting the quark mass
6 ((k;+q)? ) = 3 8(x;-x) (1.6.12)
_gnd, from (1.4.3),
'h = 4mAxiEi | (1.6.13)

Using (1.6.12) the integral in (1.6.11) is trivial,

and defining Fi,Z by

= . . - 2 \
F = mAwl(v,qz) 3 Fy o= #sz(v,q ) (1.6.14)

the result is

+2 ' m .
F q F +_¥ + 2 - 1 e? + +
1 + 2 (pA q24 )2 = 1 1 fA(x) i ki(ki+q)

mz2n i=1 XV

qQz = v
‘ (1.6.15)
9
There is no q+ coefficient on the right, so that on
the left must vanish, giving
2xF, = F, = ¢ r fi(x)xe? (1.6.16)
2 m2n i=1 A -1 v
This is thé familiar result for the structure
_functions F1'2,'showing they are functions of x only,

(16)

obey the Callan-Gross relation , and are related

to the quark distribution functions in the usual way.

-
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1.7 DIMENSIONAL COUNTING RULES

(17) describe the

- The dimensional counting rules
behaviour of the elastic cross-section at large -q2,
shown in figure 1.4 for lepton-baryon scattering.
Consider the amplitude for reforming A (the elastic

form factor, GA(qz)) containing ng gluons, necessary

to hold the hadron together. In QCD the fermion traces

typically cancel the behaviour of the gluon propagators(IS),
as we shall demonstrate in Chapter 2. The fermions
 labelled —¥%— in figure 1.4 have four-momenta? ~ q2,
and so their propagator denominators give the q2-
dependence of GA(qz),
-2n
G,(q )~ qg “'8 (1.7.1)
(1.4.1) with N=2 integrates to give
c(1a-18) = 1 | TB1 (ame((p,+q)®)
h J2E,(2 1P
\2 I\~
&(pA+q)—mA)|A1A+1A|2 (1.7.2)
Neglecting the lepton mass
'dq? = -2E E{d(cos®) ; dlp;| = dE; (1.7.3)

SO
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v

Figure 1.4: The parton diagram for elastic lepton (1)
- hadron (A) scattering, with the same definitions for

four-momenta as in figure 1.3.
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d3p dE., dq2d¢ DL q2
1- 6((pA+q)2-m£) z 1 G(El—E1+7%X)

3 '
2E1(2H) 8(2n)3E1mA
(1.7.4)
and from (1.4.3)
h =z 4E;m A _ o (1.7.5)

17A

We substitute these into (1.7.2) and integrate over

E., and ¢, but differentiate with respect to q2?,

1

obtaining

do(1a-14) = |P1a-14]2 (1.7.6)
dq? 641E; “m?

a result that will also be of use later on. Including
| -2 :

the photon propagator Aj,,ja ™ 4 GA(qz), so using

(1.7.1), (1.7.6) gives

do (1A-18) ~q *+(ng*D) (1.7.7)
dq?
. At large -q2, the dominant contribution comes from
the minimum ng, which is n-1 (n being the number of

valence quarks), giving for mesons (M) and baryons (B)

-8

do (IM>1M)  ~ g (1.7.8)
dq? —q%s=
do (1B-18) ~ q ° (1.7.9)

2
- dq? -q" e
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"~ The large -q2 form factor behaviour, (1.7.1),

relates to that of the structure function F,(x) as

x*1 if figure 1.3 goes over smoothly to figure 1.4
2 2

as M <P To demonstrate this we require an expression

for gg (1A+1X), defined by

dq?
do (1A+1X) = J dv 6(v-3(M2-m2-q?2))_d2s_ (1A»1X)
“dq? dq2dv _
(1.7.10)
to compare with (1.7.7).
The integrand derives from (1.6.2). Neglecting

the lepton mass, (1.6.1) give

dx = -EEq d(cos®) 3 dv = -mAd|21| =-m,dE,

Y

(1.7.11)
and using these (1.6.2) becomes

d3s (1q, ;> lqy )

m2n i=1

1
d3c (1A-1X)_ -
m = 1 EJ\de(X)__];'
. Eld P |
(1.7.12)
Substituting (1.6.7) and integrating over ¢ gives

1
d2g (1A1X)_ m I 2
Tl L I dx f (x ) o
dxdv mn i=1
Alhq

: o) pv :
8((k;+q) )6((ki+q)2-mg)L Tva(ki’ki+q) (1.7.13)
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Using (1.6.4), (1.6.8), (1.6.10), pi =Py + Qs and

neglecting the quark mass,

1w = 2
16L Tva(ki’ki+q)_2ki’p1[ Zki'p1+2q'p1+2kifq+q ]

- 2q.p1q.(q+ki) (1.7.14) :
and it is easy to show

.ki.p1'= 2xi(mAEi—v) 3 q-Pp = Xv 3 ki.q = X

q? = -2x v (1.7.15)
We use these to re-write (1.7.14) and substitute it,

along with (1.6.12) and (1.6.13), into (1.7.13).

Integrating, cancelling, and using (1.6.1) we get

m . .
d2¢ (1A»1X) = £ % f;(x)e%ZHaz 1o-_1 + 1
dxdv m2n i=l X v ' 2p12
| : | vmyEqy 2mEy
(1.7.16)

(19)

which is a familiar result , in a slightly unfamiliar .

guise. We need this form in Chapter 4, but here re-

write it, using (1.6.1) and (1.6.16), to that required

by (1.7.10),

dzzd “(1A°1X) = -4Ta2W,r 1 1
d v , N ) ‘
! ¢ | v* vmE] 2nfg;?

(1.7.17)
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Tﬁe'invariant mass of the final state X is given by

2 _ 2 2 2
M, = (py + @7 =my +q7(1 - 1/x)
" giving -
2 2 2, : !
-q = x(Mx - mA) (1.7.18)
(1-x)

and so for any Mi > mi

e ezx 1 (1.7.19)

" All quark distribution functions f;(xi) > 0 as X, > 1,
because of the difficulty in transferring all the
momentum to one quark. Suppose the least suppressed
béhaviour is

(1-x N (1.7.20)

flex.) o
A1 xi*l

| From (1.6.16) and (1.7.19) we deduce

F, v g (1.7.21)
2

-q - 00

Substituting (1.7.17) into (1.7.10), integrating,

letting -q2 + o and using (1.7.21), we obtain

do(1a+1K) ~ ¢ 2(N+3) (1.7.22)

2
dq . _qz-)on
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2

< mi; if we assume that it

This behaviour is for M
connects smoothly to the elastic region, and compare
with the most dominant form of (1.7.7) we get

N =2 -1 (1.7.23)

n__.
gmin

the Drell-Yan-West relation(ZO).
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CHAPTER 2

VALENCE QUARK DISTRIBUTIONS

2.1 INTRODUCTION

In this chapter we calculate the distribution of
valence quarks in an arbitrary hadron A. More precisely
we shall derive expressions for the x-distribution of
the quark (or antiquark) in the |qq> Fock state of a
‘meson, and of the quarks in the lgqq> state of a
baryon. For light hadrons these are the input for
calculating the x-distributions of intrinsic heavy
QQ pairs, and for heavy hadrons (containing a valence
Q or Q) give their recombination functions, which are

two of the ingredients for our diffractive model.

The calculations require several assumptions,
which we introduce, along with their justification,
as needed. At the end of this chapter we compare the

results with experimental data.

In orderlto derive x-distributions without
neglecting maéses, or off mass-shell effects, we
Begin by considering the lepton-hadron inelastic
scattering of figure 1.3. Probing the hadron with a
photon is merely a calculational tool; during the
course of oﬁr derivation the dependence on the photon

four-momentum q will cancel. This must happen, because
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the final result is a property of the hadron alone.

Our starting point is Mueller's generalized optical
theorem, (1.4.7), which applied to the process shown in
figure 1.3 gives

. 3 : >
16“3E19—2 (lA 1X)

DiSC(AlTA*lTA) (2.1.1)
d 3p, A :

=2

hl
AliA+1TA is the three-particle elastic spattering
amplitude, which is evaluated with all final state
momenta equal to their corresponding initial values, and
h' is the flux factor. In pictorial form

DiSC(AlTA*lTA) = Disc

| by )
' .
N : Y bt e
k;fq, :
|
t
m- | !
quarks : b
: J
(2.1.2)

where the discontinuity is evaluated at the dotted line,
and r, is the wavefunction for hadron A to be in an
m-quark Fock state, (ie Ty = <q1...qm|A>). ki are the
quark four-momenta, and n is the number of valence

quarks in A. The lepton and hadron four-momenta,
'pl and Pa respectively, satisfy their mass-shell constraints,

(p% = m% s 1= 1,A).
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We now have two separate expressibns ((1.6.2) and
(2.1.1)) for the inclusive 1epton-hadr6n differential
'.crosls-section, which ave equal term by term in the
- summations. Picking out just the lowest term, and
équating, we get
1

3 ,
ax_£0(x 116w, 42 Qo™ 100) _ 2
Jo d321

Pi+a,

N SRR DR e L

-

(2.1.3)

‘where n = 2 for a meson and 3 for a baryon. fz(xn)
is the constituent quark distribution, because we only
consider the Fock state where the valence quarks carry

all of the momentum of the hadron between them.

The idea from here on is to feed in I and derive
an expression for fX(xﬁ). - Unfortunately in the present
state of hadron physics the r_ are still unknown,
‘because we do not know how to calculate them from QCD.

We therefore have to model them.
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2.2 MESON WAVEFUNCTION

We observe experimentally that quarks are confined
SPatially within hadrons, although the theoretical proof
of this does not yet exist. This tells us that the
momenta of quarks must also be constrained in some way.

‘ Our model for the wavefunction I must incorporate this,
and allow for the fermionic nature of the quarks. We

therefore define the meson wavefunction, Fz, by

| 1 1 ~
Tg = CoBy(xy,x,)) 6% (kyy J6% (kpyduy (£,5py )Ty (-2 9Py

(2.2.1)

- The spinors, (u; with their spin labels suppressed)
provide the Dirac space structure for two spin-% quarks.
The minus sign occurs because we choose label 1 for the
antiqﬁark, although the. final result will not depend on

this choice. £, is the initial four-momentum fraction

of quark i; to conserve four-momentum £, t8,y = 1.

The quafk‘transverse momentum, ET’ is defined
relative to the beam axis, so Py 0. The hadronic
binding is built into Pi via its kTQdependence.
G(kp) is a dimensionless function describing the
' kT—distribution of a quark inside a hadron,‘whose
properties we discuss in Section 2.5. Clearly in an
n = 2 Fock state‘the quarks must have the same kT-
distribution,_independent of their mass. We shall
assume this holds for all higher Fock states, SO a

single function G(ky) describes the kp-distribution of
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any quark in any Fock state, for a meson or a baryon.

The remaining momentum dependence of I, comes in
‘gz(xl,xz), where_yx1 and X, are defined by (1.5.4).
This,x-dependence is motivated by the minimum gluon
exchénge shown in figure 2.1,'and fixed by appealing
to fhe fact that (at least for equal mass quarks) it
‘should be invariant under an interchange of the labels.
Single gluon exchange generates the least suppressed
behaviour of 5 at the limits of Xs, (0 s X; 1
i=1,2). We treat the quark and antiquark on an equal
footing in o> and make no reference to which one is |
off mass-shell; | this will be incorporated automatically
'in our calculation of fi(xz). Both quarks cannot be on
their respective mass-shells if bound within an on-shell

meson.
The gluon propagator in figure 2.1 has the behaviour

1 1

= vooX
-py)2 = (K2+k2.)pT) ) %20 L
(ky-py) (k%+pi-(x1pApl+ 17Tl pl)) *1

+
X1Pp (2.2.2)

ﬁsing (1.5.6) to expand the dot product. Similarly, in
terms of the other momenta instead

1 o 1 ‘

“k,)2 + - (K2+K2,)pr . x,»0
(py-ky) (B (xypypp 12 TT2 Py)) %3

XDy (2.2.3)
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Y T
\’3-— ka= k,- \"
OL "‘Pl '13 ‘l

Figure 2.1: A single gluon exchange between the quark

and antiquark in a meson, showing the four-momenta of

the particles.
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As the propagator appears twice in |F2|2we choose
gy (x1xy)]2 = %, (2.2.4)

which has the required invariance under label interchange.
This choice ensures that fi(XZ) satisfies the dimensional
counting rules, as we shall demonstrate having done the

- calculation.

The final ingredient in (2.2.1) .is C2, which is a
~ constant dependent upon the normalization chosen for
fi(xz). Any colour factors are absorbed into the

defimition of C,.

We now repeat this modelling process for three
quarks in a baryon. This is more complicated, but

employs the same basic ideas as here.

2.3 BARYON WAVEFUNCTION

The batyon'wavefunction, P3, must have the same

features as I,, so we define it by

w

- 1 '
Ty = C3g3(x1,xz,x3)i£1G2(kTi)ui(gipA) (2.3.1)

There are three quarks in a baryon, so we have three
spinors for the Dirac space structure. As before, €5
. is the initial four-momentum fraction of quark i, and
3 | : :

z Eiél_ensures the quarks carry all the four-momentum
i=1 - .
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of the_barybn between them.

We again build the hadronic binding into I, through
its kT-dependence, using the same distribution function,

G(kp), as in the meson case.

Tﬁe least suppressed behaviour for Tj at the limits

| of xi, (0 s X4 <1;1i=1,2,3), arises from the minimal
gluon exchange between the quarks. Unfortunately this
time there are the six diagrams of figure 2.2, rather
than one. We obtain the x-dependence of Iy by considering
these diagrams, and imposing invariance under the |

- interchange of.the labels of any two equal mass quarks.

_There is an additional ingredient this time, the
propagator of the quark which couples to both gluons,
(1abelled by —%— in figure 2.2). AS well as contributing
to the powers of X which damp T, for any of the xi+0,
this propagator depends on the Quark mass, and exhibits
"a .certain behaviour in the limit that one of the quarks

becomes very massive.

Consider the denominators of these propagators for
cach of the diagrams in figure 2.2, in the limit

00

My My m, m, fixed, (using four-momentum conservation
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S L

\

NS AN 2 A

AL NEANAL

PL Pai A

Two gluon exchange between the three quarks

Figure 2.2:.

in a baryon, showing the four-momenta of the quarks.
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n

(a) (pA-p14k3)2—m§ (pA-k3).[pA-k3—2p1]

n

(b) (p1+p2-k1)2-m§ (pA-k3).[pA-k3-2(p1+p2+k2)]

iR

_(c) '(p3+p2-k2)2-m§ kg-m3

(d) (p1+p3—kl)2—m§ k%-m%

n

(e)( (p1+p2—k2)2-mf (pA-k3).[pA—k3-2(p1+p2+kl)]

(pA-k3).[pA-k3-2pZ] . (2.3.2)

1

: - 2.2
(f) (p1+p3 k3) m{
If we now let kq>p, (Ekg*m§5x3+l), all six of these
expressions vanish like (l-x3). We get an analogous

result if we let m; or m, > instead. We build this

denominator behaviour into 5 by choosing

3 m2, -1
83(x],Xy,%q) = (mf- I _Ti) (2.3.3)
_ i=1 x,
i
where mp. is defined by
m2 = m?2 + k2 ' (2.3.4)

Ti i Ti
(2.3.3):hés the required symmetry for equal masses.

However we have not finished, because there are
still the two gluon propagators and the numerator

of the quark propagator to consider. In the limit
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4 x3*1 (which forces xl,x2+0) each gluon propagator gives
a power .of X, OT X,, (which when integrated gives
(1—x3)L in a similar manner to the single gluon in Y
The quark propagator (—¥—) numerator contains a singie
‘power of its four-momentum, which when traced will
.always.end up in a dot product. From (1.5.6) we see
this cancels one power of X) OT X, and therefore

(l—x ). The corresponding result arises if X, or xz’l,

3
 so our model for |g3(x1,x2,x3)|2 must have a numerator
which generates two powers of (l—xi) when integrated,
if xi*l; (i=1,2,3). There are four powers from the

gluons minus two from the quark. The simplest symmetric

choice is XXoXg, which, combined with (2.3.3), gives

\ 2 X‘X X
|g3(xl,x2,x3)| = 172 32 (2.3.5)
(m¢- ¢ TTi)2
i=1xi
Once again Cy in (2.3.1) is a constant dependent
upon. the normalization of fi(x3), and containing any

colour factors.

In (2.2.1) and (2.3.1) we suppress the spin
states of the quarks, because'we shall average incoherently
over them. We neglect correlations between these spins
due to‘ﬁhe spin state of the hadron, so fhe x-distributions

we derive are for unpolarized quarks.

With our wavefunction modelling complete, we now
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return to deriving valence quark x-distributions.

| 2;4 GENERAL CALCULATION

We derive an expression for fz(xn) valid for both
n=2 and n=3, which will avoid having to go through
two virtually identical calculations. We take (2.1.3)
and substitute our model for Pn from (2.n.1). Evaluating
the discontinuity and averaging over the spins of the

external fermions, we get

1 -1
. 3 > n y
J\ dxan(xn)16n3Elg;g(lqn lq) lJin [ d'ky
0 d°py ni=il (om)w

o) , X
(zn)e(ki)c(kg-m§>c(gTiﬂd~kn o

n
Gf(pA-.zlki)ZHe((kn+q)°)6((kn+q)2-mg)G(5Tn)|gn|2|Cn|2e“e%
1=

2 _m2 41 2 _m2_4 2,4 2.4
(ko mn+16)(kn me-ie) (q +ie) (g% -ie)

n-1 '
uv
%L ln 'El [EiTZ(pA’ki) ]EnThuv(pA’kn’kn+q’kn)
2 1=
(2.4.1)

wheré ee is the quark charge, and we have defined

Ty(py.ky) = T;{(¢A+mA)(ki+mi)}

Tyuy (Paakpokp+a,ky) = Trl (B, +my) (kpsm )Y, (Rpedem )

v, (K +m )} . (2.4.2)
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'Y is defined by (1.6.4).

We replace the lepton-quark differential cross-
section in (2.4.1) with the expression we derived in
- Chapter 1, (1.6.7), and also change to light cone

variables, so

o : n n . n
d%k_s%(p,- £ k,)=dx _8(1- £ x.)d2?k. 62( % Kk..)

d(k2) s (x_(m2- : K +kT1)) (2.4.3)

. 1 .
1 Xl

The last 6-function is the origin of our earlier remark
that the quark off-shellness will be built into this
calculation automatically. Substituting (1.5.5) and
(2.4;3) into (2.4.1), we obtain integrals over X on
both sides of thé expression. If we assume that the
integrands are equal (which is equivalent to saying
(2.4;1) holds in differential form), and cancel the
lepton.tensor (L*"Y) and various other trimmings from

both sides, the result is . ‘ ‘ C

f (x )T

2uv(kn’kn+q) -

21, | n-1 2 2
c_|2n| ™ [dxid oy d(K2)
— | i=1

' 3
h Z(ZH)-Xi

n
O .
-8k 6(k2-m2)G Kk } 4%y d(Kk2)6(1- T x,) G (k)

i=1
n B 22, g |2 n-l.
§2( £ ko )6(x (m2- I Ti)) '®n n e:T,(p,,k.)
. A” . i"2'FA° L
i=1" =1 Xs oD i=1
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n 4NV(pR n’ kn+qkn) v
2 2 '
(kn-mn) (2.4.4)

The traces 'in (2.4.2) can easily be evaluated to‘give

Tz(ngi) = 4(pA.ki + mAmi)

T4 (Pasknsn#askg) = 8(py-leyrmym,) [knu(kn+q)v

- 2 -
+e (e +Q) 2kn-(kn+q)guv]+4mn [(ZPA.kn py-(k_+a))g,

+ pAp(kn+q)v+pAv(kn+q)p] +4mAm;gpv

+4kn2[(pA.(kn+q)+mAmn)guv-pAp(kn+q)v—pAv(kn+q)p ]
(2.4.5)

' We substitute (1.6.9) and (2.4.5) into (2.4.4) and then

employ the trick of opgrating on both sides with the

projection operators PPp*Y (defined by (1.5.2)). This

leaves us free to cancel the remaining factors multiplying

fZ(xn), and hence isolate it, giving

~ 2w | D= 1 2
£2(x_) = IC, | hJ [dx (4% kq 5 d (K3 )e(k )8 (k2 -02 )Gk )J
n' Ji=l 2(21)3x,

n. n
2 2 - 2 -
d?kp d(k2)6 (1- % x;)6X T ke )8 (x (md

z k +le)) G(krn)
i=1 i=1 =

i=1" x.
i

n-1 '
|gnlzixll[a [ (2p, .k +2mym, )] 2p, -k +2m,m -1/x (k2-m2)

2_2212
(kn mn)
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To proceed any further we must integrate over the quark
transverse momenta. It is possible to develop a general
method for this, which applies to any kT-integrals

arising in this work.

2.5 TRANSVERSE MOMENT UM

In our wave function modelling we allowed for the
hadronic binding by defining the dimensionless quark
‘kp-distribution function, G(kg), such that

n
r.12 « 1 G(kps) (2.5.1)
|Tq | j=1 —Ti _

Rather than choose an explicit model for G, we need
onIy assume it possesses certain properties in order to
‘evaluate the kT-integrals we encounter. With |I‘n|2

given by (2.5.1) they will always turn out to have the

|

where H  is some function of all the possible dot

form

i
—i

‘ n
d2k,..G(kn.)]62( ¢
[ —Tl _Tl ] i=1

N =3

kpy MM (kg Ry ) = 1y
(2.5.2)

1

products of the k...

There is no preferred direction perpendicular to
the hadron momentum, so we have rotational invariance

about the beam.axis, and therefore assume

Glkps) = G(k2;) | | (2.5.3)
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G is a dimensionless function, and so must contain a
parameter with dimensions of momentum. Instead of .
‘ worrying about what this is, and the actual form of G,
we assume the kT-integrals can be done, and concern
ourselves with the resulting expectation values. For

just one such integral we define'<k%> by
21 02 (12 2y = 2 2
Id kG2 (k2)H(k2) = M<kZ>H(<k2>) (2.5.4)

the T coming from the angular integral (d2k; = nd(k%)),
and the <k%> out front keeping the dimensions correct.
We then have to choose a suitable value for <k%>.

- (We return to this point later).

Before we can apply (2.5.4) to (2.5.2) we need some

further assumptions. The first is that G factorizes, so

_ n-1 n-1
G( zkpy) = 1 G(ky) « (2.5.5)

i=1 i=1

We also have to worry‘about the cross terms, kTi.gTj(i¢j),

in Hn' These cannot average to zero, as we can see by

cohsidering
n n n
-0 E’<p2>=<( E}S.)2>= z<k >+ 23 <E .._li.)
TA i=1 Ti i=1 fl i>] Ti"=Tj

k

n
n<k2> + 2 ¢ <—15Ti'—Tj>

T "
i>j
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 However this identity is satisfied for all n by choosing

__-<k2> rsas
ngi.gTj> = n?l : (i#3)

~which may be written generally as

' _ <k2> .
“ri-kry” T L ey -D - (2.5.6)

 An example of both of these assumptions at work

is an exponential of the form

2 -
G(ET) = exp[<kT>]exp[ k%]

2 2
At At

where AT is a constant with dimensions of momentum.

Substituting ki = ZEI EIi we obtain
- _n-l_z. -2n;1k e
G(?flkTi) = eXP[<k%>Jexp[ iille]exp i)j—Tl —TJ]
i=1 A% _——X%_— A%
n-1
= exp[ (n-2) k%>] exp[-ziijTi.th}n 1
A b iEIG(ETi)

The second. exponential can be regarded as part of H

" when the k.-integrals are done, and so the Ky Ky

T j

are giVen by (2.5.6). This is exactly what is

required, for then the two exponentials cancel to

produce (2.5.5).
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Returning to (2.5.2), we integrate over the
§ -function, and build in (2.5.5) and (2.5.3). This
gives |
n-1 2 2(k2
I = J 131 [d ks (kTi)] Hn({ gTi.gTj}) (2.5.7)
We do the remaining integrals as in (2.5.4), adding
the sophistication of (2.5.6), obtaining the final

result"

2
k$> (ns,, - DD (2.5.8)
n-1 1

This prescription will enable us to do any kT-integrals

we come across from now on.

There is one furtﬁér assumption that we make, that
<kZ> is independent of n, and so is the same for both
| baryons and mesons, and higher Fock states. This is
clearly not exactly true, as H_ is different for each
case,‘bﬁt it should be a reasonable approximation.
The conjugate statement to this is that all hadrons have

the same shape and size, and we know this is not a bad

first approximation.

Anyway, armed with (2.5.8), we now return to

deriving.valence quark distributions.
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2.6 RESULTS

- If we expand the dot products in (2.4.6) using
(1.5.6), the n kf—integrals over the é-functions can
be done trivially, and the n kTi—integrals done using

the prescription of (2.5.8), to give

‘ n-1
£x ) = [Cal%h [“<k%>}“f1J‘1 n FEEJ
2h'  |2(21) =11 4.

o
1

n
5(1- 1x)<|g | 2>

j=11 n <mi. > 2
I [g.( Ti” + mex, + ZmAmi)]

2(m2- 1 2 i-
xn(mA meTi>) i=1 X; 2 6.1)
i=1 x. tue
i

where <m%i> is defined by

<m%i> = m% + <k%> (2.6.2)

Using the-full expression for a flux factor,
(1.4.3),

h ((py+q) .k )2-m2k2 1%

R AR5 S Y ™ (2.6.3)

h' ((p1+q).pA)2-m%mi

Provided we work in a frame where all masses are negligible
compared to momenta this can be greatly simplified. Putting

m1=0 and using (1.5.6) for the dot prbducts, (2.6.3)

becomes
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+ - -+
h | (p1+q) kn+(p1+q) kn-2(2T1+gT).5Tn

b’ - (p1+q)+p;+(p1+q)_pz
C(pyr) K _ : .
g M (2.6.4)
(P1+q) Pa

where to get the final result we picked the terms top

and bottom which dominate in the large momentum limit.

" If we make the definitions

1| |2 ) I n-1 n
V.= 3]|C <k&> [ J nme.
n nt T homny o i= |

—m? 2
~Im <m.> - m,m.

oz A g =_T& . y = A1l (2.6.5)
<k%> -1 <k%> 1 <k%>

where V_ is now a dimensionless constant, we can simplify
the expression for fZ(xn). Substituting (2.6.4) and

(2.6.5) into (2.6.1) we obtain

n 2(n-2)
0 ) 1 n-1rq 6(1-'3 xi)<|gn|2><k%>
£,(x)) =V, I i i=1
n o i=1 X ng,
x_(a- 1 ==)?
n L oaX.
i=1"1
n _g.
T [ =L +ax, + 27v,) (2.6.6)
i=1 *i t S

. The final tidying up is done by using the definitions

for Ignlz, (2.n.n+2), which give




Jl n-1 [ ] n n ' .
= I [dx.]6(1-3% x.)f,({x}) (2.6.7)
CJog=1 1 j=1 1 A" '

We now discuss the important features of this result,
and compare it (although contrast might be a better word)

with the experimental data.

2.7 COMMENTS AND COMPARISON WITH EXPERIMENT

- We promised for the case n=2 that our choice of
label 1 for the antiquark would have no effect on the
result. The symmetry of the expression (2.6.7) shows

this to be true.

‘We also promised that the results for both n=2 and
3 would satisfy the dimensional counting rules; (see
Section 1.7). Consider the behaviour of (2.6.7) in

the limit X * 1. The denominator gives 2(n-1) powers

| . of x, (i <'n), each of which generates a power of

'7rfu(1§xh) after.integration."The integrals themselves

‘givef(n-Z)'pdwers of (l-xn)_(as there are n-1 integrals,

"énd ﬁe'lose'one to the-G-function), but the fermion
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traces (in the square brackets) knock off (n-1) powers

of (l—xn). Therefore

n 2(n-1)-1
fA(Xn) ~ (l—xn) (2.7.1)
x>1
n
in.agreement with (1.7.23) since ngmin = n-1. Our

choices for the numerators of Ignlzin (2.n.n+2) cancel
the léading behaviour of the square brackets in (2.6.7),

(18) that fermion

in agreement with Gunion's comment
traces typically cancel against gluon propagators in

QCD.

The expression for fgﬂxn) has been derived with
n=2 or 3 in mind, but clearly (2.6.7) could also be used
for any integer n > 3. This is of little interest at
the moment, since exotic hadrons (with, for example,

| qqqq> as the valence Fock state) have yet to be observed.

The next topic of discussion is the denominator

. nB. ' .
(a - £ -2) and its effect on fz(xn). We observe that if
i=1%1
1
n 1 2 .3
m, = I <m2 > and x, = Mpji> (2.7.2)
A . Ti i
i=] m,

which using (2.6.5) can be written

n . B.
3 - 3 _ (i3
o iflsi and X; = (a )
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the denominator vanishes. If we divide fZ(xn) by its

integral over X, to normalize, and then take the limit

1 n i
a2 » I Bi, the result is
i=1
F(x ) = 8¢ n,}
Alx ) = 8(x - (——) ) (2.7.4)

Defining the (dimensionless) binding'A by

n |
(zgb-oab)= T mdiom, (2.7.5)

1
<k2T>2A = <k
1 i=1

we see that in order to avoid the unrealistic result of
(2.7.4), (or worse, a zero in the denominator in

V(2.6;7)), we must always have

n
A >0 = I<m? 5 > m (2.7.6)
i=1 Ti A '

2 .3

- It is therefore the quark transverse mass <m s
(defined by (2.6.2)), and not the current mass m;
(which appears in the propagator), that is the

important quantity here.

For this reason, and also because all the momentum
of the hadron is carried by the valence quarks, fZ(xn)
must be thought of as a constituent (as opposed to
current) quark distribution. This is clearly a problem

when it comes to making comparisons with experiment.

Before we plot (2.6.7) for n=2 and 3 we need to
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decide on the values of «a, Bi and Y- In table 2a we
list the masses we use, from which «, Bi and v, are

calculated using (2.6.5). 1In all our calculations we

RSl BT R T B
u 0.0 | 0.450 | 0.140 | 0.769 | 0.938
P 0.0 | 0.450 | (m) (m) (m )
s 0.355 | 0.573 | 0.494 | 0.892 | 1.116
c 1.627 | 1.688 | 1.869 | 2.010 | 2.282
b 5.078 | 5.008 | 5.270 | 5.412% | s5.6841
(1) |25.00 |25.00 ‘|25.18" |25.32% |[25.509"
£ (ii) [35.00 [35.00 |35.18" |[35.32% |35.50f
(ii1) [45.00 [45.00 {4s5.18" {45.328  |45.507
Table.2a: The hadron massés(ZI) and quark masses used

inqall our calculations, in GeV.

- .
take <k%>2 = 0.45 GeV, because we shall find this
gives the best results for hadron production later on.

Figure 2.3 shows that the proton valence distribution

is not particularly sensitive to this choice (provided

"p = 0.313 GeV).
3

‘we stay well away from <k.%>é =




A*) T T 1 ! | ; T | T

30
f (x)

1
Figure 2.3: f; calculated from (2.6.7) for <k§>2 = 400(---),

450(——4), and 600(----- -) MeV, normalized to unit area.
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We choose the current masses of the up and down

~ quarks to be zero, and consider three possible masses
for the top_ﬁuark. The other quark masses are chosen
so that A (defined by (2.7.5)) is the same for the |
relevant vector meson as it is for the p. It is much
better to consider the vector mesons for this, because
A is anomalously large for the pion due to its very
small mass, which presumably reflects its special
‘'role as a Goldstone boson. The unknown hadron masses
(# in table 2a) are chosen to give the same 4 as for
their known counterparts. Thus mAg and my + are chosen
so A is the same as for the A;, Mok and mT: are chosen

so A is the same as for the other vector mesons, and

the my are chosen so that
m - M, =M -m, =n - m (2.7.7)

This last relation is reminiscent of the results derived .
fromzassuming a logarithmic interquark potential in

potential model calculations(ZZ).

The valence distributions calculated from (2.6.7)

are shown in figure 2.4. For the baryons the one

Figure 2.4: The constituent valence quark distributions
calculated from (2.6.7) with n=2 and 3 using the
numbers from. table 2a.(i), (ii) and (iii) correspond

to mt'= 25, 35 and 45 GeV respectively.
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Figure 2.4
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non-triviél x-integral is done numerically; it is
possible analyticélly, but difficult. Figure 2.4
showsithat for both scalar and vector mesons, and
baryons, as the quark mass increases (relative to

the other constituents' masses) it carries an
_iﬁcréasing fraction of the hadron's momentum. We can
understand this result by the intuitive argument(7)
that in order to "hold together" in the hadron the
quarks must have the same velocity. This simple
(non-relativistic) picture works for valence distributions,:
but, as we shall see in Chapter 4, is not good enough

when we come to consider the higher Fock states of

hadrons.

For each flavour the scalar meson distribution is
broader than that of its vector counterpart. This is
due to the féct that A is always larger for the scalars,
and increased binding results in a greater spread of

momentum.

The origin of both the observations we have just
made is the denominatqr (o —:.zig%). For this reason
the results obtained are simiI;; t(l) those of Brodsky
et a1(7), as they have such a denominator in their
- expression for the distribution function. However
the rest of their ingredients are rather different

‘to ours. They choose to omit the 1/x;'s from the

phase-space, and always assume that T has no
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x-dependence. As a consequence their distributions
do not always obey the dimensional counting rules as
x *1; (they obtain (1-x¥® and (1-x)»® for mesons and
baryons respectively). These differences do not piay
much of a role here, because, as we have said, it is
the denominator that matters most. However, when we
-consider higher Fock states in Chapter 4 we will find
that the dimensional counting behaviour is more

significant.

We should make one more comment on the choice of
<k%>. In Section 2.5 we made it the same for all
‘baryons and mesons. This assumption must be qualified
a Bit, or problems could arise if we applied it to more
excited mesons and baryons of greater spin; (to be
precise mesons with épin > 1 and baryons with spin > 3/2).
For then particles exist for which (2.7.6) does not
hold if <k%>% = 0.45 GeV. These particles, in simple
constituent quark models, are considered to be excitations
of the lower spin ones, with some quark orbital angular
momentum (1) so we would expect <k%>% to be larger. We
therefore need to choose a value of <k%>% increasing
with 1, but since we only consider 1 = 0 hadrons in

this work our single choice is sufficient.

To close this section we compare the predictions of
(2.6.7) with experiment, to the extent that such a

comparison is possible. As we have already stressed,
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our distributions are of constituent rather than
current quarks. Experiments measure the latter. For
pions this is done via the Drell-Yan process, and for
»nucleons by deep inelastic scattering. In each case it
is found that only a fraction of the hadron's momentum
is carried by the valence quarks, the remainder being
carried by qq pairs and gluons in the sea. These

fractions are listed in table 2b.

I 0.4 ¢ 0.1

p,n 0.32+0.01

Table 2b: Themeasured fraction of momentum carried by

(23) (24)

the valence quarks in a pion and a nucleon

We make the following definitions

Fp(x) = gxfﬁ(x) = 2xfﬁ(x) (2.7.8)
Fo(x) = gegxfg(x) | ' (2.7.9)

as thése are what experimentalists actually plot.

| The final form of (2.7.8) follows because

fl(x) = fg(x). The x here is Bjorken-x, defined by
(1.6.1). (2.7.9) is the usual nucleon structure |
function, (1.6.16), defined just for the valence Fock

" state, and (2.7.8) is the same for a pion, except the




10

Fﬁ[(X)

01—

001 | (R | | | | 1 l ]

-Figure 2.5: OQur prediction for Fn(x), calculated from

(2.7.9) using (2.7.12) and the factor from table 2b,

compared with the data(23).
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quark charge is omitted. For nucleons in fact what is
plotted is Fg(x) - Fg(x) as the sea, being the same for

both, then cancels.  Using (2.7.9) this may be written

Flz’(x) - Fg(x) eff 3(x)x- e lf 3(x)x

3P 3

x £3(x) (2.7.10) :
3 P

using‘the qﬁark charges eu=2/3, ed=-1/3.
The normalizations of our distribution functions are

f Yix x £5(x) = 1/n (2.7.11)
o
for A =1, p and n=2,3 respectively, as the constituent
quarks carry all the momentum and have equal mass. To
compare with the data we put in by hand the relevant
factor from table 2b, which ensures the areas under the
experimental and theoretical curves are equal. In
figures 2.5 and 2.6 we plot (2.7.8) and (2.7.10)

respectively.

In both cases the theoretical peak is at larger x
'than the experimental one. This is because if a
constituent quark is probed at large momentum transfer

squared (Q2), as happens in the experiments, its

structure is resolved, and its momentum distribution is
| | (4,25)

suppressed to lower x by QCD evolution The




S I E N R S B B N

0-10
F2 (x)- F3 (x)
0-08 |

0-06

0-04

0-02

e oz e 06 o8 10

Figure 2.6: Oﬁr'prediétion for Fg(x)-Fg(x), calculated

from (2.7;11) using (2.7.12) and the factor from table 2b,

compared with the data(26).
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discrepancies in figures 2.5 and 2.6 therefore reflect

the amount of QCD evolution from Qg (where the constituent
quarks are just resolved) up to the Q2 at which the
distributions are measured; we are not comparing like
with like. A much better comparison of our model with
experiment comes in the next chapter, when’we consider

fragmentation functions.
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CHAPTER 3

HEAVY QUARK FRAGMENTATION FUNCTIONS

3.1 DISTRIBUTION OF TWO SPINLESS CONSTITUENTS

3.1.1 Introduction
So far we have been considering the x-distributions
of quarks inside hadrons, for which the physical region

£ 1. We can also consider the possibility

A
"
§

of x is O
of a hadron being produced by a quark with a fraction z
of the quark's (light cone) momentum. When the quark
fragments, all the resultant hadrons lie in the region
03z (=1/x)3 1. If their momentabare large this is a
very good approximation, because the interactions between

different fragmenting partons will be small by comparison.

‘When we consider the z-distributions of these hadrons,
called fragméntation functions (Dg(z)), we will need a
model of, for example, the distribution of a D-meson
inside a D*, if we are to make comparisons with experimental
data. This is because when experimentalists measure the
distribution of D-mesons from charmed quarks produced in
an e’e -collider, what they really measure is the
distribution of D's which come directly from the quarks
added to that of D's which come from D*'s. 1In principle
we could élso,éonsider even higher excited states.

Clearly then, we shall not'only need the frégmentation

. * .
functions DB and DE , but also a model for the
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distribution of D's inside D*'s, fg*, in order to make a
prediction to compare with the data. With foresight we
therefore first construct a model distribution for two

spinless constituents inside a hadron.

The idea we use is about the simplest possible. We
assume the heavy vector meson consists of a heavy scalar
meson and a pion, and that these interact via a four-

point interaction, as shown in figure 3.1. Our justification

'is the most important features of the distribution we

need to get correct are the position and width of the peak.

The dominant factor determining these is the denominator

of the hgavy scalar meson propagator. This is present

in virtually any model, independent of the other constituents
of the vector meson and the dynamics of the interaction,

and alﬁays has the same effect as long as the other
constituents are light by comparison. So, although the
behaviour at the limits of x may not be particularly
realistic, the distribution should be satisfactory.

in the region where it matters.

We again employ a photon for our probe, but, as
before, the final result will not depend on this choice.
Defining_our distribution in the same manner as for

quarks in a meson, we have

1 >
S

(o]
dR1' de (3.1.1)
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Figure 3.1: The four-point interaction between two

. spinless particles, showing their four-momenta.
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whefe‘V is the vector meson, and S a scalar. The summation
is over the different constituents of V in this picture.

- Mueller's theorem, (1.4.7), gives an alternative expression
for the left hand side, namely - |

d3g(1VX) _ 2 ..
a-sg = = DISC(AITV+1TV) (3.1.2)

16 II3E1
d’p, h'

where h' is the flux factor and

DiSC(AlTV "lTV) = Disc | -
= - '
: P
I
i
+
,ZE : 3 potq
]
5 R
! S
f I ”
i PV
|
L j
(3.1.3)

Equating (3.1.1) and (3.1.2), using (3.1.3) and taking
- just one term in the summation, we obtain

1
S 3 d3¢ (1S8+1S) _
J\dezfv(xz)l6ﬂ El——— = 2

d331
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We n@w follow the familiar pattern of modelling P%

and then calculating fé.

3.1.2 Wavefunction Model and Calculation

Modellingl‘3 is easy. We assume the hadronic
binding is the same as for quarks inside a hadron. The
kT—dependence is therefore given by (2.5.1). The
particles are spinless, so no spinor structure is
required, which only leaves a possible x-dependence due
to the interaction of figure 3.1. However the vertex

is a constant, so we make the very simple choice
r S =c6ik2 etk (3.1.5)
"y 2 GGk T2 -1
‘remembering (2.5.3). Cy is a constant.

The sub-process cross-section in (3.1.4) is similar

to (1.6.7). There is one less factor } for spin averaging,
as one particle is now a scalar, and the photon must
couple to this scalar by the correct vertex(g).

Allowing for these differences we get

3 R :
16 1%, 9915 15) _ eeh (91)6 ((ky+q)®)s ((kyq)2-m2)
d 2hqt

L*Y (2k,+q)u (2k,+q)v
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If we insert (3.1.5) into (3.1.4), average over the spin

of the lepton, and evaluate the discontinuity, it reads

1 . P by Aty ab(n L - 42
J‘ dx f (x )16H3E1d g (1s»1s) _ 1 J d kld k26 (pA kl kz)e e5
d’p; B J2m) (1 -m3 +ie) (k3 -m3-ic )

|C yl 26(k21)G(k2,)

(211)206 (k)6 (k2-m2)6 ((k,+q)°)
(q2+ie)(q?-1ie) o 11 2

2 _m2y1lp v
6((k2+q) —mZ)ZL (2k2+q)u(2k2+q)v (3.1.7)

As before, we change to light cone variables using (1.5.5)
and (2.4.3), equate the integrands, substitute (3.1.6),

S
and cancel all the factors multiplying fy. The result

is

S _lc.l?n dx, 42 2 2 2
f\%XZ) = vV ~ 1 dk ld k d(kl)d(kz)
4(2m)3n' Xy

L)

' X - 2 2 2 0 2_.2
5 (1-xq-x,) 62(Kpy+ky,)G(kE )G (A, )8 (kD)6 (k] -m])

1
2 122
(k5 -m5) (3.1.8)

ki+kZiy)

2
6(x2( mV i

X.
1

'We integrate over the é-functions in k? and use (2.5.8)

for the kT-integrals. Making the definitions

2 2
4(2103<k%> <k
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"and employing (2.6.4) and (2.6.5), leads to the final

‘result
2
fS(X ) =V ldxld(l‘ z X-)
AR, o i=1 1 (3.1.10)
2
KXo (- & —=)2
1727V i=1%1

As we have already stressed, this simple expreésion
should be good enough for our purposes, because it
contains the denominator (“V',g ;%), which governs the
peak in fg. =

We now continue to the region x > 1, and consider the

reciprocal process of fragmentation.

3.2 FRAGMENTATION FUNCTIONS

A fragmentation function, D?(ZA), is the probability
density in N of a quark i fragmenting to a hadron A,
which carries a fraction Zp of the quark's (light cone)

. + - . .
momentum. Thus in e e + hadrons, the defining equation

-18(27)

1. dole’e™ax) = 1 1[e2(df(zy)+D3(z,)] (3.2.1)

dzA Te?

o
tot ey
: 1

To derive an expression for D?(ZA) we use the method
developed for distribution functions. The relationship

between the D's and f's will be brought out when we model

the wavefunction.
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Before starting the calculation, we discuss the
inclusion of the word "heavy" in the title of this
chapﬁer, for which there is a good reason. If an
experiment sets out to measure a fragmentation function

of a quark i to a meson A then what will be measured is

. nA - Am
Di(zA) = I (zA) (3.2.2)
m
where D?m(zA) is ‘defined as the fragmentation function

for i going to A and m-1 other partons, (m z 2). The
summation is not only over m, but alllpossible sets of

parfons for each m value as well.

For light quark fragmentation many terms in this
summation contribute. However, for a heavy quark
fragmenting to a meson containing that heavy quark,
the single term with m=2 will dominate(28). This is
because most of the quark momentum carries through to
the hadron, due to the large quark and hadron mass.
Since m 2 3 for a baryon this predicts that heavy

quarks should fragment predominantly to heavy mesons,

in agreement with experimental observations.

As valence constituent quark distributions are not
' measﬁred experimentally, we had difficulty in testing
our predictions in Chapter 2. However, providing we
:Miconéidéf only heavy quarks, the expression we derive for

D?(ZA) will be directly comparable with data.
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We begin the derivation by again using (1.4.7),

in the form

3 taTs
d3g (e’e »AX) _ Zpigc(p + -3, *o
d3kA‘ h e e Aree A

)

16 TE, (3.2.3)

where

D;sc(Ae+e-K+e+e x

bt

e et
(3.2.4)
: . 4V

We only consider I', as the quark is heavy. This
éxpression is clearly very similar to (2.1.2), summed
just for m=2. In (3.2.4) we change the labels pA"kA’

' , : ~

ki+—pi for the fragmenting quark, and Tp>Tys to bring
out the fact that we are in an unphysical region as far
as (2.1.2) is concerned. Our axis is now given by the

three-momentum of the quark, rather than the hadron.
Since z, is defined by

Zp

LR

it follows that
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+d3g(ete ™ »AX)

3 + -,

1613E
A3
d°k,

*t3q2
dkpdkry

d3s(eTe”+AX)

= 16H3zA )
dzAd kp

(3.2.6)
A

With this we integrate (3.2.3), obtaining an expression
which equates to (3.2.1). Picking the term in the

summation where i fragments to A, and using

N + vy - + -+ - 2
ot = q(e e +X) 3o0(e e »p p )iei (3.2.7)

where the factor 3 is from summing over colours, we get

d 2k 2
__—E — Disc

16H3zA h

3G%D?(ZA)G(e+e-+p+p_) = J

bt
hitq

(3.2.8)

A"
To proceed further we need a model for Ly
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3.3 WAVEFUNCTION MODEL

N

ry has the same ingredients as T,, so we define

=g 312 Yo (k2T '

9 F ngz(zAzl)G (kTA)G (le)ui(EikA)ul(-slkA)
(3.3.1)

The spinor structure is similar to that of (2.2.1),

‘except hadron A is now a final state particle, so the

quark (label i) and antiquark (label 1) are out-going.

The £&'s are now the final four-momentum fractions, with

gi+g1=1.

k. is defined relative to the three momentum of the

~T
fragménting quark. We assume the function which governs
the binding of hadrons and quarks inside a quark is
the same as that for quarks inside a hadrop, G(ET),
and build in (2.5.3) to give the kT—dependence of (3.3.1).

z, is defined by (3.2.5), and z; by

A

(3.3.2)

21

;P+|QF;

To determine éé(zA,zl) weAuse the fact that (2.1.3) with
n=2 and (3.2.8) describe the same process in different
physical regions, so at the boundary between them the
- z-dependence of ?2 must be equivalent to the x-dependence

" of FZ‘ Dé(zA) is then a smooth continuation of fk(xz)
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to an unphysical value of Xy and vice versa.

known as ''reciprocity".

We therefore choose

4"
Igz(zA,zl)I2 = -zézl

This is

(3.3.3)

which may seem rather odd at first, although since we

have a hadron and a quark there is no reason for it to

be symmetric. Using light cone momentum conservation,

z,*zq=1, (3.3.3) may be written
N ,
2 = _,2(1-
Igzl = -z;(1-z,)
and therefore
n, 9 N 2 _
g2, -1 =0 5 =5 I8, 1%, -1 =1
2 | Zp BzA 2 zp 1
If we re-write (2.2.4) using x1+x2=1, it reads
. 2 _ _
From (1.5.4) and (3.2.5) it follows that

(1
Tz

X
2" zy

and substituting this into (3.3.6) we find

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)
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lg.,|2 -0 ; 2 g, |2 -1 (3.3.8)
2 Zp-1 azA 2 Zp-1

Z = % = 1 is where the physical regions for D?(ZA)
“and fi(xz) meet, so (3.3.5) and (3.3.8) show that our
choice for |éé|2, (3.3.3), does indeed join smoothly
t0'|g2|2.at this point. This z-dependence will also
cancel that of the fermion traces in our calculation, so

the result for D?(ZA) will satisfy the dimensional

counting rules.

The final ingredient in (3.3.1) to be accounted for
v
is C2. This is simply a constant, dependent on the

normalization of D?(ZA).

3.4 CALCULATION

We now return to (3.2.8), substitute (3.3.1),
evaluate the discontinuity, and average over the spins

of the external fermions, obtaining

- - - Y
3e§D?(zA)o(e+e sptpT) = 3 dzhTAd p;d%ky
h 16n3zA(2n)“

6“(pi-kA-k1)e“e%

n,
2.2 2 2 2 o
elsilczl zAzlc(kTA)G(le)(ZH) 6(k;)

(pg-mf+ie) (p2-m2-ie)

c(kf-mf>e<(q-pi>%a((q-pi)Z-m§>

(q2+ie)(q2—ie)
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pv

Y

The 3 on the right hand side comes from summing over
the colours of i, and the traces are defined by'(l.6.4)

and (2.4.2).

, + - -y
We write o(e' e +u+u ) in the form

- - *t42 4
s(ete ) =\[dpid Br;e* (21 o ((q-p;)°)5((q-p;) 2-m})
16H3p;4hql+

uv - :
L Tzuv(pi’pi q) (3.4.2)

by integrating (1.6.7) using (3.2.6). T, is defined
by (1.6.8), and the flux factor h is the same as in
(3.4.1). We change to light cone variables by \
substituting (1.5.5) and (2.4.3) into (3.4.1), along
with (3.4.2). Equating the integrands, cancelling,
operating with pt¥"p*Y (defined by (1.5.2)), and

cancelling again, we obtain

n,
A _ -lc, 1% 6, [dz,d%k.,d%k
Di(zA) = 2 1 i J‘ 1 —TA -=T1 zizlé(l-zA-zl)
4(21m) Z,2q
52 2 2 2 0 2_2 2
8 (l_<TA+5T1)G(kTA)G(le)d(kl)e(kl)6(k1 ml)d(pi)

k. +2m )

(2. 2;'2_ (-2k m
é(pi.mA ki 2kAfk1)‘ A 2»1.2 i 1
(ps-m$)
i
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' - 2_2
(ZkA.pi+2mAmi zA(pi mi)) (3.4.3)

We replace the dot products using (1.5.6), being careful
about the axis that defines kr, and integrate over
kf, pi, and the transverse momenta using (2.5.8),
which gives
3

D.(z

N
2 2 o - 2
A _A) - H<kT>|C2| €164 dzlé(l zq zA)zAz1

4(2m)3 2 <m2 >_<m2 >y o
ozAzl(mi— TA T17)
Zp zq
2
Z1<m2 . >+2%A<m2 25 <M > 2
(_l<mTA>+_é<mTl>+2<kT> ZmAml)( TA +zAmi+2mAmi)
A %1 | A (3.4.4)

<rmf> is defined by (2.6.2). We tidy (3.4.4) by using

some. of - the definitions from (2.6.5), and making the

new ones
v reelt (2 ,
v, <k Cyl2e8; , v _ <miy>
4(2m)3 <k,2r>

The final result is

~ Pl .
D‘i*(zA) - sz dz,8 (1-2y-2,)z5z)

(@)

'\:-’\:_82
zy2(B, -« -71)

Zp 21

Qe

(Z

a z,B N Y
| 17 +°A 1_+2-2¥1)(% +ZABi+2Yi)
A 2] A
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.This has a similar structure to the expression for
fi(xz), (2.6.7) with n=2. The differences arise because
here a quark goes to a hadron and a quark, instead of a

' hadron going to a quark and an antiquark.

Reciprocity predicts the same dimensional counting
behaviour for D?(ZA) and fi(xz), and from (3.4.6) we
see that D?(ZA) 21 (1—zA), as expected. This result

A
L1€29)

contrasts with that of Peterson et They

include a factor zgl for the hadron phase-space and
(pfesumably) assume the z-dependence of the wavefunction
cancels that of the fermion traces, but omit the phase

space of the final quark. They have a similar denominator

to ours; the full expression is

Az, = N (3.4.7)
i*“A
“ 1.5 )2

Zp l—zA

zA(l-

where N is a normalization constant, and e; is roughly
the ratio of the light to heavy quark masses squared,
. 2 2 . A _ 2 .

ie eimmq/mi. (3.4.7) gives D (z,) zékl (1-z,)2, in

conflict with the dimensional counting rules.

" We conclude this chapter by confronting (3.4.6)

with experimental data.
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3.5 COMPARISON WITH EXPERIMENT

The lightest quark for which taking one term in
the summation in (3.2.2) is a good approximation is
the charmed quark. To date most of the measurements on.
heavy quark fragmentation are for charm aithough results

for bottom quarks are beginning to appear.

Before we compare (3.4.6) with this data there is a
subtlety to consider, as we explained at the start of
this chapter. In an experiment where ete™cC a final
state D-meson can either come from the charmed quark

directly, or via a D*. We therefore plot

1

: *
DO(z,a) = aD>(z) + (l-a)J %ng (y)fg*(§> (3.5.1)

z

*
where Dg, DB and fg* are calculated from (3.4.6) and

(3.1.10) respectively. The constant "a" lies in the
range 0 s a s 1. The first term in (3.5.1) is the
direct fragmentation of c¢-»D, and the second is where
there is an intermediate D*; the integral is a
(probability conserving) convolution. The masses used
to evaluate (3.5.1) are given in table 2a, with the
exception of the hadron transverse masses, which we

calculate from the actual masses using (2.6.2).

In figure 3.2 we plot the D-meson data against
(3.5.1), for a=0.25 and 0.50. Just counting spin

-degeneracy predicts a=0.25 (ie D*'s are produced 3
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Figure 3.2: Our predictiéns for DE calculated from (3.5.1)

with a=0.25 (-=e=-=-- ) and a=0.50 (----- ), compared with

(30)

the data Also shown is the prediction of Peterson

et a1'29) (——) calculated from (3.4.7) with ¢ =0.10.
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times more often than D's), but unless we suppose there
is some suppression of the higher spin (and mass) states
there seems little justification for neglecting D**'s
etc. The choice a=0.5 is probably more realistic,
therefore, and this is perhaps borne out in figure 3.2,
ﬁalthough given the error bars, either curve is acceptable.
The choice a=0.5 is definitely preferred in table 3a,

though, for the average z-values of the D-(and also B-)

mesons..
Experiment ED ZB
MARK - T1 | 0.59+0.06 0.79+0.09
CLEO » 0.68:0.08
MAC | 0.80+0.10
TASSO 0.68+0.08
- MARK-J 0.46+0.05 0.74+0.10
CDHS 0.68:0.08
HRS 0.56+0.02
DELCO 0.60:0.10"
JADE 0.55+0.06
E531 0.62+0.08
Average 0.60 0.78
 Prediction from
(3.5.1) with a=0.25 | .0.56 0.69
(3.5.1) with a=0.50 0.60 02
(3.4.7) 0.63 0.79

o Table 3a: Our predictions for the average momentum
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fractions of D-(B-) mesons produced from c(b) quarks,
compared with the measured values(30). Also shown are
the predictions of Peterson et a1(29) with ec=0.10 and

=m2/m2=
€y mc/mb 0.011.

We also plot the prediction of Peterson et a1(29)
in figure 3.2, which considering the errors on the data
is an acceptable alternative to our model, although it
is less attractive from a theoretical viewpoint.
Figures 3.3 and 3;4 compare our model with theirs
for Dg‘and DE fespectively. Our distributions are
broader because we consider the possibility of intermediate
vector mesons. When data appears care should be taken to
compare like with like. Both models predict z-1 as the
mass increases, in agreement with the experimental |

results in table 3a.

We conclude that our calculations, culminating in
(3.5.1), give a good description of the present
expefimental results. “When the data improves, there will
clearly be scope for improving the predictions, for
e#ample by varying <k%> for a hadron inside a hadron
and tuning "a'", but at present the experimental errors

are just too large.
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Figure 3.3: Our prediction for Dg, calculated from (3.5.1)

with a=0.5 (---), along with that of Peterson et 31(29)

calculated from (3.4.7) witheQ=1.1x10'2 (—) .
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Figufé 3.4: Our prediction for DE calculated from (3.5.1)

with a=0.5 (---) and using mt=35 GeV, along with that of

(29)

Peterson et al calculated‘from (3.4.7) with

eQ=2.3x10‘4 (—) .
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CHAPTER 4

INTRINSIC HEAVY QUARKS

4.1 INTRODUCTION

In Chapter 1 we suggested that intrinsic heavy
quarks may provide an explanation for the forward
production of naked heavylflavours in hadron-hadron
interactions. In this chapter we construct a model
wavefunction which determines their presence in hadrons.
This will enable us to calculate heavy quark distributions,
in a similar manner to the valence quark distributions
of Chapter 2. Finally, for the case of intrinsic charm
in a nucleon, we shall compare our results with the

EMC deep inelastic scattering data(31).

In Chapter 2 we considered hadrons to be composed
of valence quarks alone, and concluded in such a
picture thaﬁ these have to be constituent, rather than
current, quarks ie bare current quarks dressed by a sea

of gluons and qq pairs.

" If ‘a hadron, such as a proton or a pion, is probed
hard enough, we know from experiment that occasionally
heavy flavours are produced. These ﬁave two possible
sources; either heavy flavoured quarks are produced in
the interaction, or were already inside the hadron and
are simply knocked on mass-shell by the probe."Ih both
~cases they must then hadronize in some.way. (In a

sense'these contributions are just different time-
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orderings of the same diagram.) We return to the former
process when comparing our results with experiment,
" but it is the latter which is thé subject of our

calculations.

Probing a hadron sufficiently hérd, we cannot think
of it as being composed just of its valence constituent
quarks. Some of-tﬁe time it will also consist of these
plus.heavy QQ pairs. Fof example, a proton may be
regarded as being partially in the |uudQQ Fock state.
'In this state its momentum is distributed amongst all
five quarks, so they are sfill to be thought of as

constituent quarks.

Our aim is to calculate both the x-distributions and
normalizations of such heavy QQ pairs inside the light
hadrons (ie In,p,n), which form the beams and targets

in experiments.

- 4.2 WAVEFUNCTION MODEL MOTIVATED BY PERTURBATIVE QCD

Our model for the origin of QQ pairs inside a
light hadron is that they are creatéd, via a gluon,
off one of the valence quarks, as shown in figure 4.1.
We again use a photon as our probe, for the purpose
of doing the calculations. Figure 4.1 éhows the
 probability of heavy quarks occurring is proportional

to u:, and we incorporate the leading logarithmic
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Figure 4.1: The creation of a heavy QQ pair off a light
quark q, showing the colour structure. The diagram is
for the probability ie the squared modulus of the

amplitude.
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corrections to all orders by using the running coupling(A)

o = 121 - (4.2.1)
(33—2Nf)lqg(%3)

N¢ is the number of quark flavours and A is the QCD scale
parameter. (We take A = 0.3 GeV in all our calculations).
Q?is the momentum squared scale of the process. We |
assume Qz =»4<m%Q> (<m%Q>_is_defined by (2.6.2)), as

this is roughly the threshold for the creation of a pair
of hadrons containing Q and Q. The QQ pair exist
virtually at any Q2, but if we probe with insufficient

Q? for them to end up on mass-shell, they must always

- annihilate back to a gluon.

The colour factor from figure 4.1 is

25 .
kj'ji = 3%

b @ 5 - <1Tb T8 sba, _ .

2

- b ..a 2
C = <TijjiTrs ST 3

(4.2.2)
Since the quark q is in a hadron we have averaged over
k=i;, We do not sum over flaVburs in the quark loop
because we are concerned with a loop of one particular

flavour.

4.3 GENERAL CALCULATION

For heavy quark production in deep inelastic
scattering the distribution function fg(xQ) is defined

by
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1613, 90141000 - 5 dx £Qx 16134201010
d’p Q,Q Jo A1
1 ? daEl

(4.3.1)
As before, Mueller's theorem, (1.4.7), provides an |
alternative expression for the left hand side of (4.3.1),

d3c (1A-1QQX) _ 2
3 _ _
161 E1 h'DlSC(A11A+11A) (4.3.2)

d3 Py

except now

Disc(A ) = Disc

1TA>1TA

The notation in (4.3.3) is the same as that in (2.1.2).

The calculations will produce notlonly the form of
'fQ, but also its normalization relative to the constltuent
valence distribution, since the valence Fn of Chapter 2
appear again. The dotted outlines are drawn around
.Qhat we consider to be happening inside the hadron, to
enforce the idea that the QQ pair is intrinsic. The
principle of the calpulation'is exactly the same as
Chapter 2, and most of it may be done for general n.

However the arithmetic is rather more complicated.
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We begin by equating (4.3.1) and (4.3.2), using

(4.3.3) and taking just one term in the summation, to

get
Tax e 20 y16neE,d20(10-10) _ € 7
1o n+2"A n+2 1d321 h
ol gy 0
J I i6(k;)6(k2-m2)G(k2.)
i=1 |7 i 11 Ti
(2m)3
n+2 o .
dl+kn+26“(pA-i£1ki)(zn)e((kn+2+q) )s((k . »+q) -mQ)
(k§+2-mé+ie)(kg+2-m6—ie)(k2+ie)(kz—ie)((kn+2+kn+l)&ig)
2 2 : n-1
Clhrnip) 180 171C 1% e¥efipBs 1101
((k otk 17 -1€) (q®+ie) (q2-1ie) A

kK_,,+q,k k_ 1)

n+l

n+2 n+2°

-
[EiTz(pA,ki)]Ean(pA,k,kn,k)Tauvpo(kn+2,

(4.3.4)
The minus sign comes from the heavy quark loop, C is
the'colour factor of (4.2.4), g meéns sum over the
QQ being created off any of the valence quarks, and
8¢ is the strong interaction coupling, where
s - %% - o (4.3.5)

a
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We have defined

+k (4.3.6)

* kn+1 n

n+2
and used the trace definitions of (1.6.4) and (2.4.2),

along with the new one

T4pvpc&n+23kn+2+q’kn+2’-kn+1) : Tr{(Kn+2i+mQ)

Y, (Kn+2+qi+mQ)yV (1€n+2+mQ)\(p (-Kn+1+mQ)Yo} (4.3.7)

These come from averaging over the spins of the external
fermiops, using (2.n.1) for ro We have been careful

to get the arguments of the n G's and g, correct (as

k emerges from Fn’ not kn), and then used (2.5.5) to
obtain the produce of h+2lG'§. Finally we have put the
valence quark current masses zero, as thié simplifies
ﬁattefs, and is almost true for hadrons made of u

and d valence quarks which interest us. -

Taking (4.3.4) we substitute for the lepton-quark
cross-section, (1.6.7),.and_change to light cone variables
using (1.5.5) and (2.4.3). Equating integrands,
cancelling, and applying P*Pp*’ (defined by (1.5.2)),
we obtain

: n - n+l 2 2
PR P (g p) = <O0x,, €, 2(4Tay)? J n |99 kp dCkE)

A X

n+2

ji=1t 2%, (21) 3




-88-

n+2
P x;)|g | 2d2k

o (k)8 (k2-m2)6(12, )]5(1-
i=1

Tn+2

) ) n+2 ) 2 n+2k2+k
G(kg, 0262 I ko )d(ke o)é6(x fmp Ti))
i=1 - —1 X.
i
ol T,(p, k,) £ o7 (B k)
n. E [g Ppr%y ] n

—m2y2( Y
(kn+2 mQ) (kn+2+kn+l)

1
2

v+
T4 po(k

K48k

+q,k -k_.,)

n+2°? n+2
(k

n+2’ "n+l (4.3.8)

+ )+
n+2 q

n+2
We have used the analogue of (2.6.4) for the flux factor
ratio, and (4.3.5) to remove g The traces in (4.3.8)
have already been evaluated in (2.4.5), except for the
last one. The calculation of this is straightforward,

and gives

4 +
Ty po(kh+2’kn+2+q’kn+2’-kn+l) = kpip (kg p*d)
{4(kn+20 n+lo kn+20kn+lp)
2y_X 2 .2
—2gp0[2(kn+2.kn+l+mQ) “n+l(k2 mQ)]
: X
n+2
~2(PMe +PTK TR (4.3.9)
n+10 o n+lp _E_I__Q} Tt
kn+2

The remaining steps are exactly those at the end

of the derivation of fz(xn). We substitute for the

tracés‘in (4.3.8) using (2.4.5) and (4.3.9), and
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contract over the indices p and o, obtaining dot
products which we replace with (1.5.6). We evaluate
the n+2 kz-integrals over the 6§ - functions, and the

i;:ﬁfszT?integrals by the prescription of (2.5.8),

5'iééﬁing?tﬁe:x4integrals. We omit the details, but in

‘‘the next sectionwewrite out the results for n=2 and 3

EXPLICIT SOLUTIONS FOR PION AND NUCLEON

Q;We‘use the definitions of (2.6.5), with the

B_ =B =B (4.4.1)

since the Q and Q have equal mass. Bi=1 for the valence
quafks, If {xm} denotes the set-{xl, ..... ,x } , for

a heavy quark in-a light meson we have

1 3 4
4 _ b _CV, a
J El[dxi]a(l-_zlxi)fA({x4}> = £i(x,) = 22 %y,

o i= 1= . X4

. 4
1 3 §(1- ¢ x.)
I [dxi] j=1 t
1 (a- I Ui)2((1- ¢ x.)(a- % )‘3)2
i=1%, i=1 * i=1%1

1

xl(l—xf(l/x1+axl)
((l-xl)(a-l/xl)-l)2
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2 .
[23 *2 (1-a(1-x)2)48(3 + X4 + &) [a(1 +ox,)
XqX, X, X3 X2

~(%1 + X2 + 2)(a(l-x)+a-1 )] -(a(l-%;)+a-1 )
X, 3 3 Xy ' X4

& * Ly ex)-3%3 + ¥a)-2%1 +%2 + 2)]
3 4 X, X Xy X 3

woBd T lhoad Tax)y ¢ [ZE3 e 2 Gagexg)

X
3 4 2 X, 3
+ %(% + axz)] -(a(l-x1)+a-% )[2X4X3 +%(x3+x4)
2 1 XX
172 |
i
1 .1 ,,4,% X 2, 87 10 1
('}'{‘ +§ )+'§(_1_ + _Z + -§)+'§]' "'3— [Ot(-i +aX2)
1 72 X, Xy 2

- (%1 o+ %2+ D) (al-x+a-l )]}] s 1es2)
Xy  Xg 3 Xy

(4.4.2)

Clearly the term 1+ 2 gives an identical contribution
to fi(x4). HoWever this will not be true when we consider

diffractive production of heavy flavour hadrons.

- The analogous result for. a heavy quark in a light.

baryon is
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3 cv
H [dx ]6(1- I X )f ({x5}) = fi(xe) = 773 (3)2
i=1 Xg 21
: 5
§(1- z xi)
- i=1
i 5 3 3
(- 2 Bi)2((1- 5 x.)(a- 1 1/x,) - 3/2)2
i=1%, i=1 t i=1 L
i
, xlxz(l-xl—xz)(1/x1+ax1)(1/x2+ax2)
1 1 1 : 1 1 3
(a-= -= - )2((1-%,-%x,) (a-= == )-2)2
XIHXZ (I-xl-x25 1 72 X)X, 2
[262}(3 (— + a(l- -X-X, )2)+B{(x4 + 5 +4)
A ' X5 X4

[ -C1 + %2 + $))(L +axg)-(F1%*2 + x4(1 +1 )+1)
B | X3 X3 X) %

;(a(l—xl-x2)+a—l -1 )],—(a(l-xl-x2)+a—l -1)

X1 % X1 %

‘ﬂ [%(l'+lf)(x1+x2+2x3)-(fi-+ *5)-2(* l 2+x (1 +1 )+1)]
SR ®s s X4 %3 X] %,

”&Q+1(Q;(flb+ X2+ %))[%(l +1 )-2(1 +ax3)]}+{(a-(fl+fg+%))

L XX Xy %5 X3 X2 ¥

SRS L (eyex) ¢ 3L+ axg)] la(oxpxp)l 1)
, ! |

;gxgn;_  2 3 | X] X,
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2
[ X4X5(l +1 )+%(x4+x5

Xq 4‘x1 X, X X, x3 2

X3 Xl X2

-7 [ (- (*1+%2+3)) (1 +axy) - i ) +x5(1 +1 )+1)
RS | X3 Y X1 X

(a(l-x,-%,)+a-1 -1 )]}] t1e3 + 263 (4.4.3)
X, X ' '
1 72
n
Again we have put in the terms from I explicitly,
rather than multiplying by 3, so fZ({xs}) need not be

re-defined later on.

4.5 COMMENTS
The ekpressions (4.4.2) and (4.4.3) are normalized
relative to their corresponding valence distributions

(given by (2.6.7)). We can therefore plot them without

. further assumptions, and do so in figures 4.2 and 4.3

for a pion and a proton respectively. The remaining

x-integrals after the one over the é§-function are

" calculated numérically.

‘The distributions all diverge in the same way that

(32)

normal sea distributions do , so the amount of

'momentum carried is finite. The reduction of the

- magnitude;with increasing mass is mainly due to the

running coupliﬁg, (4.2;1);~with the choice of

_Q2-4<m2 ' The distributions in the pion and proton

Q™

(L +1 42 )+3(F1™2 4x (1 +1 )+D)+1]
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Figure 4.%: The intrinsic heavy quark distributions in
a pion, calculated from (4.4.2), for fﬁ (also shown)
normalized to unity. The masses are from table 2a,

taking only mt=35 GeV.
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Figure 4.3: The intfinsic heavy quark distriButions in
" a prdton,_calcuyated from (4.4.3), for f; (also shown)

normalized to unity. The masses used ate from table 2a
. taking‘only mt=35 GeV.
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have comparable values near x=0 for each flavour, but
' the proton ones fall faster with increasing x. This is
due to the larger number of quarks in the Fock state

producing a more suppressed dimensional counting behaviour.

These predictions are in sharp contrast to those
(7)

- of Brodsky et al s nﬁho conclude that an intrinsic
QQ pair in a light hadron carfy most of its momentum.
Tﬁey back_their'findings up by applying the argument
that the quarks‘should all have the same velocity to
hold together in a hadron. However the QQ pairs are

-being,created and annihilated all the time, which suggests

that they should favour very small x, as we find.

4.6 'RELATION OF DISTRIBUTION FUNCTIONS TO OBSERVABLES

Before we compare our distribution function
fg(xs) with experiment, we must consider its relation
to the data. The experimental production process is
shown in figure 4.4. At sufficiently large -q? where all
massés squared (including mé ) can be neglected, the

analogue of (1.7.16) is

d20 (1p>1QQX) = Z_ean(x)Znaz 1 - 1 o+ 1
dxdv . Q:Q P X ‘: v2 vm E! ZmZE'Z jl
: pl pl
(4.6.1)
"Bjorken-x and v are defined by (1.6.1). - Integrating

over a range of v gives




Figure 4.4: - Thé parton diagram for intrinsic heavy
flavour production in deep inelastic lepton (1)-

hadron (A) scattering, showing the four momenta of the

- particles.
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1
_ 1

do(1p-1030 = 1 elfl(x)210? [; 1 -
min Ymax mpEl

ax Q.Q ? X

log Vmax +(“max-vmin) - (4.6.2)
Vmin| 2m2E'?
P1

This is what we need to compare our distribution
function against data, because experiments measure the

.left hand side, and we can calculate the right hand side.

" 4.7 NUCLEON INTRINSIC CHARM VERSUS THE DATA
(33)

The photon gluon fusion model , where heavy
 quarks are created in the collision (and so are extrinsic

fﬁ_as]opposed to 1ntr1n31c), is shown in figure 4.5. This

'very smllar to flgure 4.4 (the intrinsic case), since
'ﬁthe 1ntr1n81c QQ orlglnate from a gluon, as in figure 4.1.

,'?Tbe dlfference between them is the definition of the

”ﬂfproton boundary However, they clearly produce the same

’Aﬂflnal state lQQX, and so must both be considered when

'”'Look;pg;gt data.

'For‘deep inelastic lepto-production of charm,
Aubert et a1(31) actually measure g—(p pru uX), where
:the flnal p comes from the decay of a D- or D-meson.

(4.6.2) therefore requires a slight modification;

do(p P pX) _ 0.389B eéfQ(x)ZHa 1 -1
dx _ - Q, Q P X v

A\
. min max
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Figure 4.5: The parton diagram for extrinsic heavy
. flavour production in lepton-hadron scattering, showing

the four-momenta of the particles.
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2m?E'2

- 1. 1onga%] + Onax Vmin’ ] mb (4.7.1)
P 1

mpEi bmin

B is the branching ratio for the decay D-px, and 0.389

converts to mb if the energies are in GeV.

The comparison of (4.7.1) with experiment is shown in
figure 4.6, We use (4.4.3) to calculate f;(x), with
the value for V3_which normalizes f; to unity, and
the masses from table 2a. Table 4a contains the values

of the other parameters in (4.7.1).

B \)min(GeV) ) \)max(GeV) Ei(GEV)

mp Mp

0.082 60 220 250

Table 4a: The numbers needed in our calculation for

figure 4.6, using (4.7.1).

Clearly the photon-gluon fusion model gives a good
description of the data alone, so the additional contri-
~bution from intrinsic charm cannot be too large. Our
result is, as it stands, compatlble with the data.
However when comparing fg with experlment in Section 2. 7
we had to normalize it to 0.32 rather than 1, because

experiments resolve current quarks, and ours are
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(31)

Eigure 4.6: " The data , compared with the photon?gluon

(33) (

fusion model ), and our calculation from

(4.7.1) (----- ).
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constituents. This effect may.also be present here,

along with possible QCD evolution and threshold suppression
factors. These three effects contribute in the same
direction, to reduce our result, so the curve in

figure 4.6 is really an upper limit.

We therefore conclude that our model for the
" intrinsic charm in a proton is completely consistent with
the observed charm production in deep inelastic scattering

experiments.
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CHAPTER 5

THE SCATTERING PROCESS

5.1 INTRODUCTION

The overall aim of our work is to understand the
diffractive production of heavy flavours in hadron-
~ hadron interactions. So far we have derived the
vdist:ibutions of heavy constituent quarks inside hadrons.
In this‘éhapter we consider the scattering of these
heavy quarks by hadrons, and test our ideas againét

experiment.

Diffractive high energy hadron-hadron cross-sections

(8), so we begin with

are well described by Regge theory
a simpie discussion of this topic. Figure 5.1 shows

the general 2 > 2 scattering processes, which by crossing
are described b& the same amplitude A(s,t) in different

regions of the Mandelstam variables s and t, defined by

1

4]
i

(py +=pB)2 (pc + pD)2 ' (5.1.1)

ct
T

(py - pC)2 = (pp - pB)2 (5.1.2)

This amplitude may be expanded as a t-channel
partial,Wave series

oo

A(s,t) = = (21 + 1), (£)P, (coso,) (5.1.3)
1=0
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" Figure 5.1: The 2 » 2 hadron scattering processes,

showing the four momenta. a)vAB +~ CD ; b) AC - BD.
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where Bt is the scattering angle in the AC COM frame.

In this frame, for the case of equal masses

s (pA pB) 2m % + 2(% m )coset

SO

cosf, =1 + 2s (5.1.4)
t-4m2

The intermediate particles produced in the process
AC » BD, and therefore exchanged in the process AB » CD,

are observed to lie on a Regge trajectory, roughly

a(t) = @+ o't (5.1.5)
where o« and o' are constants. a(t) takes the integer
- value 1 when t = m%, m; being the mass of the spin 1
particle. The pole due to the propagator of this

particle is therefore of the form

Al(t) = g(t) (5.1.6)
o 1-0a(t)

and so (5.1.2) reads

A(s,t) = © (21+1) B (t) P,(coss.) (5.1.7)
- - ——= "1 "t

. 1=0

- 1-a(t)
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From (5.1.4)

coset « s (5.1.8)
S >
t fixed t-4m

This s-dependence also arises in the case of non-equal

masses.

: Writing (5.1.7) as a coﬁtour integral around the
ﬁon—négative integers in the complex 1l-plane, and
distorting the contour, we pick up the residue of
" the Regge pole. For s»«, t fixed, this is the dominant

contribution, and using (5.1.8) and the property

'-Pl(cose ) " (coso® )1 (5.1.9)
t t
cos B _oew
t
it gives
A | . _
A(s,t) Stm B(t)( o) Z)a(t)(g )a(t) (5.1.10)
t fixed t-4m 0

where we have inserted the constant S, 1 GeV?2.
‘Substituting (5.1.10) into the optical theorem, (1.4.6),

with the flux factor (1.4.3)

h=64[(p.pg) -] 2 & 25 (5.1.11)
) A S o . .

> 00
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we obtain

s a(o0)-1 :
Oo(g ) . (5.1.12)

g (AB)
tot e 5

where 00 is a constant.

We could consider more than one trajectory, but in
the limit s¥w;the one with the largest value of a(o0)
dominates. For all hadron-hadron interactioﬁs this is
the Pomeron, with an effective intercept aP(o) = 1.08.
The fact that aP(o) > 1 will lead to an eventual violation
of the Froissart bound(34) does not affect us, since
whatever mechénisms prevent this violation appear to

have little effect at present values of s.

As the Pomeron conttrols all large s interactions,
independent of flavour, any particles lying on the
trajectory may well‘be glueballs, although these have
yet to be discovered. The Pomeron may not be a simple
trajéctory, but it ceftainly behaves like one, and that

is all that concerns us here.

5.2 EFFECTIVE HADRON-QUARK CROSS-SECTIONS

The value for aP(o) comes from the total cross-
(35)

section méasured at the CERN pp-Collider The

result is
0.08 ab

= s
o (pp) = 22.7(%)
tot T N
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Using aP(o) = 1.08 to fit the highest energy Nip data(36)

gives

| s .0.08
o ror 1) = 1476 mb (5.2.2)

The idea of constituent valence quarks enables these

to be approximated by

n
otot(Ap) z -f otot(qip) (5.2.3)
s*o i=]

with n=2 for A=, n=3 for A=p, and where

- s ,0.08
O or(qP) = 7.5(50) mb (5.2.4)

is the effective asymptotic light (u,d) quark-proton
cross-section. The analogous results for scattering on

a pion are

n
o (Am) = Lo (q; ) (5.2.5)
tot orw jo] tOt

where

5.0(5 y0.08 1p (5.2.6)
(@]

(q ;M

9 tot

Webextend this to heavy quarks by invoking the
hypothesis of f-dominance of the Pomeron coupling(37),
'1f the Pomeron couples to a quark. via the relevant

f-meson (they have the same quantum numbers), as in
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Figure 5.2: The amplitude for Qp+» Qp, assuming f-

dominance of the Pomeron(P)-quark coupling.
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figure 5.2, (5.1.6) would instead be of the form

B (t) B, B ()
P Pfy "fg (5.2.7)

(1—aP(t))(1—an(t))

m

Al(t)

The contour intégral now gives a factor (aP(t)-af (t))-1

Q

from the residue. Assuming quarks couple to their
respective f's with equal strength, the same for f's
" to the Pomeron, and remembering that the optical theorem

(1;4.6) requires the amplitude at t=0, we predict

~

s )0.08

(QB) _ (xP(O)--af(O)
SO

g +®

( (5.2.8)

B

% tot
- an(0) - a. (0)
P fQ

where OB'= 7.5 (5.0) mb for B = p(n).

The values of the parameters in the Regge trajectory
relevant to us are the solutions of the simultaneous

equations
1 =a + a'mg i 2 =0 +a m% (5.2.9)

- which follow ffom (5.1.5) assuming the mesons lie
eXaétly on the trajectory. Table 5; contains the values
Qf'thé particle masses we‘use to calculate these Reggé
paréméters, which are given in table 5b. For the
lightestfflavoﬁrs_(u,d), a more sophisticated analysis.

"to determineaf(t) hés_been performed(3§)as the masses
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of the particles on the trajectory with spin > 2 are

(21)

known We use the (u,d) trajectory parameters from

‘reference-38;

Flavour m (177 m. (2%%)
(Q) “q fq
u,d 0.783 1.273
s 1.020 1.520
c | o 3.097 3.556
b 9.456 | 9.912
(i) 25 49.26 1 49.76 1
t(id) 35 69.26 1 69.76 '
(iii) | 45 89.26 ' 89.76 1
'mt(GeV)
°Téb1e 533 The known(21) or assumed# masses for the

wQ- and fQ-meéons, in GeV.

- The unknown w_ and ft masses in table 5a are chosen

t
~to have a difference of 0.5 GeV, roughly that observed

- - for the lighter pairs. This gives<fm v l/mQ and so

(o) v -mQ ; the results are given in table 5b (a).
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Trajectory a a: (GeV™ “)
(i) i 1
YI'P ..1.08 0.22
f 0.49 0.95
£' 0.18 0.79
fC -2.17 0.331
fb -9.1 0.113
(a) (i) 25 -48 0.0202
£, G| 35 -68 0.0144
(iii)| 45 -88 0.0112
(b) (1) 25 - -273 0.113
ft (ii) |- 35 -541 0.113
(iii)] 45 -899 0.113
m (GeV)
-Tabie 5b: The values of the Regge intercepts, calculated

from (5.2.9) where appropriate.
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The values in table 5b(b) come from assuming «' for top

is the same as for bottom, giving a. (o) v -m2, and
Q mQ-) o0 Q

are realistically lower bounds for the trajectory

intercept. From (5.2.8) these give lower bounds on

ototftB).

Using (5.2.8), (5.2.3), and the numbers from table 5b

we predict

n
o
oo

o o (KP) = (aple)-ag(0)) Hrlap(0)-agi0)) ™

S>

-1
otot(np) 2(aP(o)-af(o))
(5.2.10)

in good agreement with experiment(37’14).

Almost all the present data on heavy flavour
production is at s values where (5.2.8) cannot be
applied; the cross-sections are still rising from
threshold. We must therefore model this effect, in

order to test (5.2.8) against experiment.

5.3 THRESHOLD RISE

5.3.1 Counting Rule Suppression (Dynamics)

We form our final hadrons By recombining the initial
qua;ks after they scatter. Figure 5.3 shows pB»AQﬁQB
(there 1is n§ "X'" just above threshold), as an example.
‘It includes the ﬁinimum number of gluons required to

‘hold the hadrons together. Just above threshold in




p > 8
Pa 1
)P
B > B
bs

Figure 5.3: The parton diagram for pB » AQﬁQB.
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the pB COM frame the AQ and ﬁQ;must be almost at rest,

so the gluons are needed to‘”stbp” the quarks.

We define a variable x', (which would equal Bjorken-x

if the proton reformed), by
1
2 = g2¢1 - & — )2
(pA +q)¢ = q«1 - x.) + (my + My ) (5.3.1)
Q Q
Clearly we have an equality of limits;

x'"> 12 (py + @)% » (mAQ + mﬁQ)2 =s »s, (5.3.2)

where s is defined by (5.1.1) and Sep DY

(mB tmy o+ omy ) 2 (5.3.3)

S
th QMg

If the AQ ﬁQ system is excited (ie (pA+q)2>(mAq+mﬁQ)2),
(5.3.1) gives '

g2 v (1 - x')71 (5.3.4)

In the heavy hadron reformation amplitude, A_, containing

_ng gluons, the fermion traces cancel the gluon propagators,
as in Section 1.7. The quarks labelled by —%— in _
figure 5.3 have four momenta squared qu, so A~ q-an
from their propagator denominators. From (1.7.6), the

reformation probability, Pr’ therefore satisfies
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R 4 ’
EE;N |12 ~ q"*g | (5.3.5)
dq?

We assume the AQMQ excited region goes‘smoothly to
threshold, in the same way that we matched-up the
lscaling and elastic regions to derive the Drell-Yan-West
relation in Section 1.7. Using (5.3.4) this gives

P~ (1- x0Tt (5.3.6)

the familiar counting rule behaviour.

- From (5.3.2) we obtain the dynamical suppression

factor, defined by

P(s) = (1 - Stn)?g™! (5.3.7)
S ' :

Clearly P(s) *» 1 as s » =, most quickly for thée minimum
ng. We use only this value, as in figure 5.3. The
real P(s) must be a (normalized) sum over n

v

n s
12 gmin

but the higher terms will presumably be down by powers
of a_. For the processes we consider n is listed
s min

in table 5c. In the case pB'* pMQﬁQB we need the final

state proton to conserve baryon number, (and assume a

light qq-pair are created at no cost for this).
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Proc I B+M_M.B B-4.M B B+M_ .M
ocess QQ PEHMy pE*HgMqpB

n_ - 2 3 4
gmin

Table 5c: The relevant values of n
' min

5.3.2 Limited Availability of Phase-space (Kinematics)

Another factor constraining the rise of the cross-
section from threshold is the available range of t.
This is a kinematical effect, but in order to incorporate

- it we have to assume some further dynamics.

Consider the process in figure 5.1 a), with

2 - ;2 2 - M2 . 2 _ 2 _ o2
Py = mAA 3 PG = M 5 Pg Py my (5.3.8)
and the definitions
+ + - -
Pc = XcPy 3 Pp F XpPp _ (5.3.9)

We neglect transverse momentum transfer in what follows,

in order to find the limits of phase-space. Using (5.3.8),

(5.3.9) and (1.5.6), (5.1.2) may be written

t=mnf2 - x - %, N » (5.3.10)

-
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Clearly for 0 s x, 1, -= <t 50, but if x is further
constrained, so is t. We calculate this range as a

function of S.

* In the COM frame where pg + pg = 0 and pZ = > 0,
(5.1.1) gives.
R P NPT ¢ 2)%
si= (py +mDZ + (pp + m)) (5.3.11)
Solving this for pg, and using (5.3.9) with pB =0
(which minimizes xD) we get
x, =B , ' (5.3.12)
min PZ '
where
2.2 2_12)2 3
Pg = (s+mg-mg) +_[(S+mB'mA) - mg] (5.3.13)

1
2s? 4s

To find Xp we again expand (5.1.1), using (5.1.6),

max
obtaining
' 23,2
- m2 + M2 ~mpM +o-
s =mg+ M°+ B — + XoXpP,Pp _ (5.3.14)
*c*pPaPs
This gives
_ . S o A .3.15
XcXp W - (5 )
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where w is defined by
1

= 1 [(S_mE;Mz) + [(s- mp-M2)2 - 4mgMZ] Z] (5.3.16)

From (5.3.9)

ot 2,030 )3 3 . - 2 3203 3
XoPy = (M4pg )%+ p3 5 Xppp = (mg + pd )2 + pg
(5.3.17)
 so
. _-;-? )
3 - P -m :
pCmax B Dmax B (5.3.18)
2poXn .
. B Dmax

Eliminating Xo from (5.3.15) and (5.3.17), and using
(5.3.18) on the result to remove pé, we obtain

2

. s o -mgl’ p—2 xZ  -m?
- N )
XD [ (M2+ l— B Dmax B )2+ B Dmax B] _ &]. |
"“max . — - ]
2p, X 2pox ;
‘ l’ B DmaX . B Dmax B
(5.3.19)
~ L w(w+ ) 5 e
pB WM 2

'As a check s > o implies Xp > 0, xg » 1, and
R ) min “max
8 =8, = (m + M) implies x =X
ST th;‘; B P Dmin Dmax

We therefore deflne our k1nemat1ca1 threshold rise

' efactor by
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'T<s) = J Ynin (5.3.21)

where t___ and.tmin come from (5.3.10) using (5.3.20)
and (5.3.12) respectively.
To calculate T(s) we need a model for{%%, which,

rewriting (1.7.6), is given by
do ~ 1 |A(s,t)]|2 | | (5.3.22)

Regge theory suggests exponential behaviour. Substituting

(5.1.5) and (5.1.19) into (5.3.22) gives

dg ~ F(t)(% )Zao—zexp[Za'tlog(g )] (5.3.23)
dt o : 0

where F(t) contains the remaining t-dependence. The
large s crbss—sections forp and pp elastic scattering
can be well fitted by considering just the Pomeron
trajectory, but with a sum of exponentials in the

(39)

amplitude R giving

do . « e2CPt((1-X)+xe?1%)2 (5.3.24)

dt

el

where Cp is defined by

- REPUT '
Cp = ap + aPlog(; ) (5.3.25)
o _
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We assume (5.3.24)'aiso gives a reasonable description
of %g when the I or p are diffractively excited. Using

(5.3.24), (5.3.21) integrates to

_ 2 _ -1 vy 2 2Cpt 2Cpt_.
) =[ (1-X)°, 2X(1-X) X2 [(1 X)? e FPrmax_ 7P min,

T(s
. 2Cp (2CP+a1) 2(CP+a1) _ZCP

+2X(1-X) (e(ZCP+al)tmax_e(ZCP+a1)tmin)
(2CP+al)
. 2(Cpta )t 2(Cy+a,)t_.
2
P RD (o BTl max | TR ming g5 3 94
2(Cptay)

The values of the parameters are given in table 5d.

Process X aP(GeV_z) aé(GeV_z) al(GeV°2)
Iip 0.66 1.00 0.22 3.20
PP 0.65 2.05 0.22 3.39
Table 5d: The values of the parameters(39) used in
(5.3.26).

There is one more poiﬁt to consider, the choice
of M. In principle we should average (5.3.26) over all

possible M-values with some assumed distribution, as
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thax 1S5 2 function of M. However we 31mp11fy this, and

just replace M2 in (5.3.20) by M2 , where M2 is defined

by
2'y.
FM max -do
, dM2Y°diff M2
_ M2 — _
MZ = min___dM? . (5.3.27)
nMZV . . »
max dO :
. dM2%9%3iff
IMoin - am2

2 = 3 2 . 2 - 2 2
»_M = (s mB)‘ 3 Mmin E: (sf:h mB) (5.3.28)

(40)

m'USiﬁg?fhe‘empirical observiation that for M2 ; 2 GeV?

- %o4ifr w1 | (5.3.29)

dMZ - M2

the depehdence expected from the triple Pomeron mode1(41),

(5.3.27) integrates to give

— M2 - M2 : '
M2 = Mnax = Mpin | (5.3.30)

log Méax
M2

min
With M2 in (5.3.26) rather than, for example, M%in’
‘T(s) still » 1 as s » =, but takes longer. This is
‘ bécause, in a simplified way, we are allowing for the

roduction of AM.X, and not just AWM., to use our
P Qo™ Just fo'o> |
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counting rule example. .

We end this section with the new version of (5.2.8),
valid for all s,
(QB) = P(s)T(s) {0 ~ag(D , (8,0.08
o

aplo) ‘“fQ(") (5.3.31)

%ot

P(s) and T(s) are given by (5.3.7) and (5.3.26) respectively

and og = 7.5 (5.0) mb for B = p(m.

5.4 CHARM PRODUCTION IN yp INTERACTIONS

Since there is no data.on heavy particle scattering
.eross-sections, we test (5.3.31) against experiment by
predicting the total cross-section for heavy particle
production in. Yp interactions. A nice feature of this
test is that is doesn't depend on our distribution

functions from Chapters 2 or 4.

(42)

Generalized vector dominance says the total
Yp cross-section may be written
N )
otot(yp) élAYVl otot(Vp) (5.4.1)

The sum runs over all vector mesons having the same
quantum numbers as Y, and 'AYVIZ is the probability for

Yy + V.
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. This is related to the widthl‘v* toTs for the vector

meson going to a virtual photon which decays to e’e”,

as in figure 5.4. In the V rest frame, (1.4.2) gives

- 1 [d’ d’p 4 gl -
I'ysete™ = — 1 2 (2m)*8% (py-pq P,)
v 2E1(2H)32E2(2H)3
L2 2
3 .

mg

We have averaged over the initial spin, and summed over
final ones; Tzuv is defined by (1.6.8). Neglecting the
lepton masses and remembering (1.6.5), we integrate

over p, to get

' = ds3
T - P 2 _ 2
vrete 12;m» J\ 16 (mg 2pV'p1)|AyVI
, Y E1
wv_ phpy o
(g | ' V)Tzw(pl,p1 pV) (5.4.3)

mg

Using

: 1 m
— 2 . 2— = -
d?gl = E4dE;da § (m§-2py.py) §(_V - Ep)

2my 2 (5.4.4)
and substituting for Tzuv from (1.6.9), the remaining

integrals give




Figufé:5.4f The decay V ~» e+e-, Showing the four momenta

of the particles.
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2 -
T L A Y0 B WS &
Vre e 3m m3 '
' v E1=T¥
2
- 2 .
=alagyl® (5.4.5)
oy
Using.this (5.4.1) becomes

' o _ 3T voto" _ ' '
Otot(YP) f.é V+e e Gtot(Vp) B . (5.4.6)

amv

where Otot(Vp) is given by Pomeron exchange, assuming

f-dominance‘forvthe coupling.

(43)

This has been tested against experiment , and

gives good results. The Reggeon-photon coupling.

(38’44), which incorporates (5.4.1) in its

- analogy
basic‘assﬁmptiohs, also gives good predictions for
d ' do » = .
'af(Yp+pp) and EE(Yp+¢1»'(amongst otber things), as |
shown in reference 43, so we cqnclude (5.4.6) is on

solid ground.

Aséuming charm production comes from the single
term V=¢ gives  |
o r - ~ : . '
o (yrceX)z Slyvetel o wp) . (5.4.7)
o ——f;;;——— |

tot

This neglects the higher mass versions of the ¢, and
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any intrinsic chafm in all the vector mesons and the
“proton. We also assume all the charm produced is naked
(in the form of charmed mesons). Substituting (5.2.3)

into (5.4.7), we obtain

(cp) (5.4.8)

o (yp. » ccX) = Ol y.ete” 9 ot

amw

which is calculable using (5.3.31) for otot(cp).

5.5 COMPARISON WITH THE DATA

In figure 5.5 we plot the prediction (5.4.8) against

the data, having used

(5.5.1)

where EYfis the photon enefgy in the proton rest frame,
to change the argument of (5.3.31). The numbers needed

come from tables 2a, 5b and 5d, with the exception of
(21)

r¢+e+e_ and mw

qq pairs form at no cost, two gluons then being neceséary

We take ng=2, assuming light

to formaD and D (or excited versions). The agreement
between theory and experiment is rather good. Our

approximation of ignoring hidden charm pfoduction is

(46)

clearly justifiable, since at E, ~ 105 GeV, o(yp » ¥X)*20 nb

giving

o (vyp > ¥X) 1
- . N 4

_ 30
o (Yyp » ccX)
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10t ' :
’ l |

103

ofyp—>00X)
(nb)

0'}—

10 '
10 102 10°
Ey (GeV)

Figure 5;5: o(yp » ccX) (—), calculated from (5.4.8),
 compared with the data(45); e SHF Photon Collaboration,
* ¥ CERNg(yp » ﬁOX), o FNAL Broad Band (yp » D°X),
. X-Eﬁc; D BFP Collaboration. Also shown is (yp » bbX)

((---), calcuiated from (5.4.85.
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Also shown in figure 5.5 is the prediction for

o (yp » bbX).

We plot the predicted distributions of D*- and
D-mesons in figure 5.6, assuming that the charmed quarks
fragment after the interactioh, and using (2.6.7) and

(3.4.6) to calculate

1

D*/D _ c D*/D,z '

fw (z) = J dx fw(x)DC (;) (5.5.2)
zZ X . :

As in (3;5.1), the observed distribution of D-mesons will

be of the form

£2(z,a") = a'fL(z) + (l-a') i% f?p*<y>fg*<§)
(5.5.3)
where 0 sfa' < I; There is not yet any good z-distribution
'~ data, so we cannot determine a' tocompare with a ~ 0.5
~from Section 3.5. However the trend ofvthe data so‘far(47)
for D*'s, is that they generally carry a sizeable
fraction of E s and don't form a distribution sharply
peaked at the brigin. This is in qualitative agreement

with our predictions of figure 5.6. Figure 5.7 shows

the analogous predictions for bottom production.

We conclude that our model for heavy quark-proton
scattering, (5.3.31), when used in conjunction with

- generalized vector dominance, gives a good description

of the eXisting data on the photo-production of heavy

flavours.




-129-

L-0 T ' | T -
340 -
1dg (’Yp»DﬁX)
o dz

2:0

10

0-0
. 1-0

Figure 5.6: The predicted z-distributions of D* (---)
and D (——)-mesons produced in yp interactions,

calculated from (5.5.2).
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40 [ T T

3.0
1. do (yp->BBX)
odz

2:0

1-0

0-0
0-0

Figure 5.7: The predicted z-distributions of B*(---)
and B (——)-mesons produced in yp interactions, calculated

- from (5.5.2).
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CHAPTER 6

HADRONIC HEAVY FLAVOUR PRODUCTION

6.1 THE MODEL

We how have all the ingredients to calculate hadronic
~ production of heayy.flavoﬁrs. Figure 6.1 shows an
‘examplé_of our model, for AQ production from a proton.
Hadron B scatters on the Q in the |uudQQ> Fock state of

the proton, from which udQ then reform into a AQ'

For the sub-process (boxed by --- in figure 6.1)
b+ x,pp = py" + XD, (6.1.1)

. Our définition of pZ, (1.5.1), gives pZ >> pg in any frame
where |pi|'>> m, for i = A and B, and for diffractive
scattering the momentum transfer is small so pZ >> pé+

as well. .Frdm (6.1.1), therefore, X, = xL. As the heavy
.quark receives only a glancing blow, hadron B can

scatter oﬁ the Q or Q, independent of which one then

~ goes into the reformation.

The AQ production cross-section is given by

o 1 1 5 5 .
(p »apMyX) = J'dx~ J m[dx;] §(1- 1 x;)
g . B Q Q ‘ AQ . 1

0 o i=1" i=1
5 ! o
fp({XS})otot(QB)R5 (Xl’XZ’XS)G(XAQ_XI-XZ-XS)

| ‘ (6.1.2)
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: _B o .~ - N

. 7 . rd
!
8

Figure 6.1: The parton diagram for pB * AQHQX with

four-momenta and x's labelled.
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fg({xs}) (defined by (4.4.3)) isAthe initial x-distribution
of the |uudQQ> Fock state, and RSQ(XI’XZ’XS) is the M
recombination funition, with d(xA —xl—xz-xs) fixing its
quark content. RSQ is essentially the valence distribution
of thg AQ'_ We discuss this fully in Section 6.2. The
integfals evaluate the overlap between these functions,
giving the probability of reforming a AQ with light cone
momentum fraction x, from the initial quark distribution,
.summedoner all x, . 'ctét(QB) is the hadron-quark cross-

section of (5.3.31), which gives the scattering probability

and contains the s-dependence.

'The diffractive cross-section, defined as
cd(p *.AQHQX), isAcalculated by summing (6.1.2) over the
B A

Pomeron coupling to the Q or the Q, and the possible

‘combinations from ‘luudQQ > which can form a AQ'

For charm and heavier flavours we assume all these
possibilities produce AQ's, if not immediately, then via
a decay. For example ZZ+ (uuc) decays to AZ (ude). 1In
principle the reformation function is a sum over all
heavy'baryons which can form, but in the absence of any
informétion on the relative weights of the terms, we
approximate to just one, RQQ. Consequently we neglect
any smeariﬁg of the AQ distribution to smaller Xy

: +
from intermediate states. However ES (uus) doesn't

decay to Ag (uds), although Z: (uds) does, so in our
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picture 1/3 of the strange baryons produced are 2;'3,

and 2/3'A(S)'s.

Using the same notation we define

_ 1 1 5 5
o (p g MQMQX) = J;dxﬁQ J; iflfdxi]d (l-ijlxi)
c
'fg({xs})ctot(QB)RSQ(x3,x4)G(XHQ-X3-X4) (6.1.3)

_ Ji Jl 4 o] 4
c(lI »MMX) = | dx I [dx.] §(1- £ x.)
B QQ o MQ o i=1 L i=1 *

M*

98)R, Q -
(QB)R4 (XZ,XA)G(XM Xz X4) (6.1.4)

L
fﬂ({x4})otot 0

and again the diffractive cross-sectiohs, od’ are calculated
by summing these for the Pomeron scattering on the Q or

Q, and over the diffeient quark combinations which can form
ﬁhe final hadron. RMQ is a single term approximation for

the meson reformation function. Our mechanism cannot

produce diffractive AQ's from's.

In each case the heavy quark which doesn't recombine
S will prdducé a heavy hadron (probably a meson) at low x,
either by fragmenting or recombining with sea quarks.

We assume that if heavy hadron production does not occur,

the heavy quarks annihilate each other.

"Hidden" heavy flavour (J/ ¥, T etc) production is
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not calculable without further assumptions,but is clearly
suppressed by tﬁe need to get the colour and invariant
mass correct, since the QQ pair in our picture are
created in a colour octet state. It is observed to be

Véry small compared to "open' heavy flavour production.

The diffractive heavy flavour production cross-
sections are calculated by adding the contributions

from both the initial particles, giving

9 4(PP>AHX) = Zod(p;AQMQX) = 04 (PP AgHX/ ghX)

= >A M : P »AM.X 6.1.
_Gd(pEAQMQX) + od(p pAQ Q ) (6.1.5)

vcd(pp+M M X) = Zod(p*MQMQX) = od(pp+MQMQX)

Q,Q‘ p
= o, (p>M M X p2M M 6.1.6
od(pEMQMQX) + od(ppMQMQX) ( )
dd(np+AQMQX) = od(pﬁAQMQX) (6.1.7)

cd(Hp»MQMQX) = cd(HEMQMQX) + od(pﬁMQMQX) (6.1.8)

6.2 RECOMBINATION FUNCTIONS

In the |uudQ6> Fock state of a proton the Q is at very
low x, whereas in a AQ valence distribution it carries

most of'the'momentum, and the light quarks are at low x.
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AQ production from the initial distribution must be

suppressed by this mis-match. We take

A ' A
Q Q3 x X, X

Q X, X, X
Yo T g

where fi (defined by (2.6.7)) gives the distribution of

the valence quarks in a AQ.

A
The normalization constant N5Q is chosen so that the
overlap integral is unity if we consider all possible

final states in the reverse process AQ6u+X, ie

1 1 5 : 5 AQ 3 %, % x
dx mo[(dx;] 6(1- ¢ x INg Fy (71,72 ,75 )
Q L=

o o i=1 i=1 Q X X5 Xy
Q Q Q
d(xA -xl—xz-xs) =1 , ((6.2.2)
Q
Inserting the normalization condition for f% , which may
Q

be written

o |
dx;dx,dxs £3 (X1 %) X5 )5(1-*1-%2-%5 ) = 1
o 3 Q Xp Xp Xy X) Xp X
AQ Q Q@ Q Q Q '
(6.2.3)

we obtain

Jl Jl ( )AQ 1
dx, x2 dx dx 6(1-x,  =-x,-%x,)N =
A2 374775

o "gMgJo P h -

which givés‘




1 A
dx, xZ (1-x, )N Q_ (6.2.4)

N;Q =12 ' ' (6.2.5)
WIiting
% Mx :
Q - N.Q2 (X3 X
R5 (x3,x4) = N5 fM*(—é &) (6.2.6)
: Q Xy Xy
Q Q
FM* h M*
Q _ Q-2 (x X
R, (x9,%,) = N, fyx (22 .74 ) ' (6.2.7)
v Q Xy Xy
"o Mo

similar arguments give

1 1 5 5 ﬁs ) %, x
dx ) 131[axi] §(1- i:_xi)N5 £ (23 .74 )

M .
o Q i=1 Q x5 Xu
. MQ MQ

G(XH —x3-x4) =1 (6.2.8)

1 1 4 4 ME .
dxy no[dx,] s(1- £ x ON, g (F2 %4 )

i P | MX = —

-Q =1 Q xMQ XMQ

o i=1 i

6(xMQ-x2-x4) =1 (6.2.9)

which we again evaluate using the normalization conditions
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fOr'the-f's. The results are listed in table 6a.

Ay M M*

Q Q Q
N5 N5 N4
12 Y 6

Table 6a: The reformation function normalization factors.

6.3 RESULTS AND COMPARISON WITH EXPERIMENT

In this section we present the predictions of our
model, . (6.1.2)-(6.1.4), and compare them with the data
using (6.1.5)-(6.1.8). All the integrals, after those

over the § -functions, are calculated numerically.

We begin by cbnsidering the differential forms of
(6.1.2)-(6.1.4) with respect to the x of the heavy flavoured
hadron at fixed s%, in figures 6.2 to 6.12. We choose
values of s% for which data exists, or is likely to in
the future. Where there is data the agreement between
theory and experiment is quite good at large | x|,

while at small |x| the data lies well above our predictions.

) This is due to central producfion, which is not
.predicted by our model. Perturbative QCD does not really
explain thié either; (see Section 1.2). When a better
model exists, the sum of its predictions and ours will

hopefully account for the data at all values of x. We




x do
T dx
(mb)

10
0-0

o 1
. Figure 6.2: Our prediction for x dcd(pp+A§KX) at s2=20 GeV,
i
4 dx
compared with the data in a small s2-range centred on

(48)

this value




(mb)

-1-0 -0-8-0-6 -0-4-0-2 00 02 04 0-6 08 1-0
' X

: ‘ _ 1
Figure 6:3: Our prediction for x dod(pp*AgKX) at s?= 16.6 GeV,

ldX
c Value(48).

compared with the data at this s The
experiment in reference 48 has a bias against fast
forward (x+1) particles, hence the (unexpected) asymmetry

in the data.
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Figure 6.4: Our prediction for x Efg(pp+K+KX) at.
1 ' ' dx
' s2=13.7 GeV (---) and 18.1 GeV (—), compared with the

(49)

" data at these values , 0 and e reépectively. We
assume 2/3 of the KK production is K+K, considering

.the possibilities out of |luudss > which can form a K.
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10"
X do
T dx
(mb)
10°

Figure 6.5: Our prediction for f dod(pp+KOKX) at
1 ) n dx
§2=19.6 GeV (---) and 23.8 GeV (—-), compared with the

(48)

data at these values , o and e respectively. We
assume 1/3 of the KK production is K°K, considering the

possibilities out of |uudss> which can form a K°.
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Figure 6.6: Our prediction for x Efg(ﬂp»AEKX) at
1 C . S dx 1
s2=16.6 GeV, compared with the data at this s? value(48)

x>0 1is the pion direction.
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do L
dx

(mb)

00 02 0 06 08 10

Figure 6.7: Our prediction for x dod(ﬂp»KKX) at
1 - , dx
§2=13.7 GeV (---) and 18.1 GeV (——) compared with the

(49)

data at these values , 0 and e respectively. x>0

is the pion direction.
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Figure 6.8: Our prediction for x ifg(nproKX) at

3 ' dx 3 (48)
sz=16.6 GeV compared with the data at this s? value .
‘x>0 is the pion direction, and we again assume 1/3

of the KK production from the proton is KOK.
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Figure 6.9: Our predictions for dod (pp*A M X) at

1 1 CIETA
-~ §2=53 GeV for Q=s, and s?=64 GeV for Q=c,b, compared with
the/\g(SO)(o) and AZ (51) (o) data at these respective

energies.
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'Figuie'6.10: Our predictions for ffg (pp+ﬁQMQX)
‘at s?=64 GeV for Q=s,c,b, compared with the D-meson
(51) | 5

data ét this value of sZ2.
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Figure 6.11: Our predictions for %ﬁimp+MQﬁQX) at

1
s%=26 GeV for Q=s,c,b. x>0 is the pion direction.
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Figure 6.12: Our predictions for Ejﬁ(pﬁ4TTX) and
—_— — - 1 dx
d<h(pp?AtTX/AtTX) at s?=540 GeV, for mt=35 GeV and the

dx _
lower o e (o) from table 5b(b). With the higher intercept
t

from table Sb(a) these curves should be multiplied
by 8, and for the other choices of m_ may be scaled by the
.ratios of the cross-sections in tables 6b and 6c. x>0

is the proton direction.
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estimate that our diffractive contribution is about 1/5

of the total production cross-section well above threshold.

Figure 6.12 shows our predictions for top production

at the pp-Collider, as a function of x.

OQur x-distributions are similar in shape to those of

(7) (5), but we also predict

.Brodsky et al and Barger et al
‘the normalization, rather than fitting to the charm data
and assuming (mC/mQ)? scaling for heavier flavours. |
Our suppression is somewhat greater (for the lower choice
of the unknown heavy flavour Regge trajectory intercept),
as shown in figure 6.13. This is due to the increasing
difficulty of forming the heavy hadrons as mQ increases.
We also predict a‘decrease in the production ratio
AQﬁQ:ﬁQMQ as mg, increases, because to reform a AQ
requires two light valence quarks at progressively lower

X, whereas an MQ requires only one.

We now consider the predictions of (6.1.2)-(6.1.4),
as a function of s%. The measured cross-sections for
heavy flavour production, after rising from threshold,
seem to tend to a constant fraction of the total cross-
section. Our diffractive model predicts this behaviour,
and so presumably the other (central) contribution has

it aé well.

To compare our predictions with experiment as a
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(mb)

O4 (pﬁ - MQ HQX)

a) sh=540 GeV
| b) s?=2 Tev \
. ~ c) st=20 TeV

-
(=N
=2

Figure 6.13: Our prediction for od(p}ﬁQMQX) as a
function of 'mQ, for three values of s2. At the

branching the solid curve is for the higher Regge
intercept model (ie o, (o) = -mQ), and the dotted

curve for the lower (af (0) « -mé).

Q
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Figure 6.14: Our predictions for od(pp+ﬁQMQX) or
Od(pp*MQMQX) (—), and ?d(pp+AQMQX) or od(pp»AQMQX/AQMQX)
(---), as functions of s?, multiplied by 5 to allow for
central production. Also shown is the pp(inelastic)

(52)(05, and that for strange(53) (54)
(55,56)

(v), charm ()

data

and bottom (Q) production, with solid points for

mesons and open points for baryons. Top production is

shown for the lower af'(o) from table 5b(b), and may be
t .
scaled to the higher values in table 5b(a) by multiplying

by 6, 8, 10 for mt=25, 35, 45 GeV respectively. The

charm and bottom data is plotted assuming an AZ/3

dependence for the cross-section as a function of atomic

mass number A, which is thought to be a better approx-

imation than an Al dependence(57).

Figuré 6.15: Our predictions for od(Hp+MQﬁQX)(———) and

; 1

od(np+AQﬁQX) (---), as functions of s?, multiplied by 5

to allow for central production. Also shown is the

(36)(0), and that for strange(36’53)

Ip (inelastic) data
(v), chafm(58)(D) and bottom(sg)(O) production, with solid
points for mesons apd open ones for baryons. AQ production
is for x<0, and D and B production is for x>0 only,

as this is what is measured experimentally. x>0 is the
pion direction. As in figure 6.14 the charm and Bottom

data is plotted assuming an A2/3 dependence for the

cross-section.
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Figure 6.14.

[~ l -
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Figure 6.15

| é& : — np (inelastic)
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1
function of s? we therefore multiply by 5 to allow for
central production. The results are shown in figures

6.14 and 6.15.

We extrapolate back to light (u,d) flavour production,
to see how far the model may be pushed, being careful
to avoid double counting (which is a negligible effect
" for the heavier flavour production). Figure 6.16 shows
the Qarious contributions to a total hadrbnic cross-
section;Aand using that notation our calculated cross-

sections are

o g(A 3 X) = g4al8.p + Bqp)
| (6.3.1)

o 4(B g X) = gyp(Bp * 84p)

We require od(AB-*X), given by

(H(AB > X) = 84a8eB * geAgdB + 84a84B (6.3.2)

and, assuming 84a° 84 ” BeaA’ BeB (which is observed

experimentally), make the approximation
> = 1 > >
Y d(AB X) | 2(0d(A B X) + od(B Iy X)) (6.3.3)

It is this quantity which is plotted in figures 6.14
and 6.15, again multiplied by 5 to allow for the central

production.
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.' 3eA 3“ Jea
A
I(AB) = §
B B +—
' 9esn 9es NS
elastic di”ractive central

Figure 6.16: The different contributions making up

0. op (AB). The g's are defined so- that ore(AB*AB)=geAgeB

and g (AB-X)=g4)Bcp * BopBqp * BaaBam®




-157-

The agreement Setween our predictions and the data
is reasonably good, considering we have simply extrapolated
our model to a region of mQ for which it was not originally
designed. It is also poséible that the central and
diffractive contributions have different mQ-dependence,
and so multiplying our predictions by 5 indgpendent of
mQ is inaccurate. Improved data on charm and bottom

production is required to examine this.

Figure 6.14 and 6.15 show that the threshold rise
for u,d and s production is too slow. This is presumably
because the central component rises faster than the

diffractive one. Our naive method of allowing for

3., o f

central production is then only valid for s Sthe

In figure 6.14 our prediction for total BB production

(55), but as it

is in conflict with the one data point
is so near to threshold this does not unduly worry us.
- Our prediction for Ag production is well below the.

(disputed) data?®),

All these calculations are done with <k%>% = 0.45 GeV
and A = 0.30 GeV, which are essentially the only parameters
in ourlmodel. These values are chosen to give the best
overall .agreement with the data, although for the

heaviest quarks the results are insensitive to these

choices.
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- 1
" Considering the range- of both s? and m, over which
we are predicting, and the quality of the present data,
the agreement between theory and experiment is quite

good.

6.4 LEPTONS FROM TOP QUARKS AT THE COLLIDER

Top quarks produced at the pEjCollider should reveal

(60,61), shown

themselves through their leptonic decay
in figﬁre 6.17. The final state muons (electrons)

can be detected if leC 5(15) GeV, provided 6 2 10°.
Leptons froﬁ the decay of diffractive top hadrons will

mostly have 6 <10° for any le, because of the

longitudinal momentum spectrum of figure 6.12.

- However each diffractive-top hadron leaves behind
anotﬁer top quark, whose x-distribution is calculable
~ either by undoing the x, integral in (6.1.2) or the

_*5 integral in (6.1.3). 1In both cases the result peaks
at the origin, with essentially all of the distribution
having |x| < 0.05, as shown, for example, in figure
'6.18. This produces few leptons with kg2 5 GeV

and 6 < 100, since in the quark rest frame any lepton

‘with kg % 5 GeV has 8 3 20° (for m ~ 25-45 GeV).

" The hadronization of the top quark before its decay,
either by fragmentation or recombination with a low-x
sea quark, has a negligible effect on this argument,

becéuse the-intrinsic kT is small (~0.45 GeV) and
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-
A\ 2

" Figure 6.17: The lepton 1(1) from the‘deéay of a top
quark t(t) produced at the pp-Collider, showing the four-

momenta. 6 is the angle in the pp COM frame.

n ot |
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Figure 6.18;_'Our prediction for dod(pﬁ*TTX) at
b ’ dx _
s2=540 GeV, for the x of the diffractive T/T, and that

~of the t/t "left behind". x > 0 is the proton direction.
We have taken mt=35 GeV and- the 1ower'af (o) from table

t
5b(b). )
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We therefore calculate the fraction of leptons with
le 2 kTC in the top quark rest frame, and assume all

these have 6 > 10° in the pp COM frame, for koo 2 5 GeV.

(60), we use the standard

(10)

‘Following Horgan and Jacob

V-A weék.interaction theory to calculate
r(t » Tvlb)(=P(E > 1715)), neglecting all final particle

masses. The decay is shown in figure 6.19.

The émplitude is

1
—_ T 207, a 1
At+Tv1b =2 2Gu\)lwr (1+vglujupy (I+yglu, (6.4.1)
. . . _ A (62)
Substituting this into (1.4.2) for N=3 gives
_ 64G2 d3kg Ak d®k v
F(t+1v1b) =
3p_ 3 3
2m, 2(2m) By 2(2m) E, 2(2m) E\)1
hgb(l _leele. - Y
(21 *¢ (kt kl kb kvl)kt'kab'kvl : (6.4.2)
and sb
37 (T 2 - 3
g T Iv D) Gk kp ARy quy gu (k kek, -k )
1 — vy t 1 b vy
d3 kT 41°m E,

1 1 4°5m

8(k2 )k, .k = szt'kT dE, d2 E 6 ((k _-k)? -2k, . (k -k7))
v b*™v _— b™ b™b t 1 b* "t 7l
. :
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Figure 6.19: The leptonic decay of a top quark, showing

the four-momenta. G is the weak coupling.
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.-kb'(kt_kT) (6.4.3)
In the bv1 COM frame

(E-Ep) g Ep

1 1 6(~——7——— b)f_

6((kt—k—)2—2kb.(kt-kT))kb.(kt-k—) =
(6.4.4)

Using this the remaining integrals in (6.4.3) are easy,

with the result (written in invariant form) -

3 ST —(k -k=)2
Er &@r (> Tvpb) _ Gk .kylk -kq) (6.4.5)
3 b
d 51 81 m,

We défine the variables y, z, and‘the gxis direction by
:k{ =kt m%y z k%T : ETt = 0 (6.4.6)
These give
d3k= médzdyd¢'

1 =
ET _ 2z (6.4.7)

where ¢ is the angle defining ETT' We introduce the

branching ratio for t+Th1b,

B(t>Tv by = T(E2Tvyb) (6.4.8)

Ttot
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T ot being the total top quark width. Using these

definitions in (6.4.5), with (1.5.6) for the dot

. products, we integrate over ¢ to get

2 + Ta 2,5
E_E (t lvlb) - Gmg (z+§)(l-z-§) (6.4.9)

3
dzdy l16n I ot?

kTT (and therefore, from (6.4.6), y) maximizes
when the b-quark and v, are collinear. Expanding

k2 = (k=+k,+k )2 for this situation, and using
t 1" il
(1.5.6) for the dot products gives

(1% l§E+ 2)

_ 2_
= kpy

and so, using (6.4.6)

y.= z(1 - z) (6.4.10)

12
TC), the allowed

m

t
region of yz space is shown in figure 6.20.

For leptons with kpg 2 koo (e y 2 y, =

We define the dimensionless constant BO by

2_5 -
B = &M (6.4.11)

2

and 6B as the branching ratio for b*Tvlb with ko 2 kees
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Figure 6.20: The yz plane, with the allowed region for

leptons with y 2 Yo shaded.
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which isfthe subject of this calculation. Substituting
(6.4.11) into (6.4.9), and integrating over the allowed

area, we obtain

N

%+(%_YC) z(1-2z)

5B dz dy (1+>Ziz)(1-z-§)

I
o~}

1
2

1

3 4 2 2 3
= B 2.z +E_-yCz+Zgi +Zg+yélogz—Zg
6 6 12 2 2z 622 2 (1
2-4g"
(6.4.12)
which gives 6B as a function of Yo+ For the calculations

we choose B(t+Tb1b)=0.l. In the limit yC+O, 6B+B(t+Tb1b),

so this choice fixes Bo=1.2.

Table 6b contains our predicted lepton yields
from diffractive TT production at the pp-Collider,

for three possible top quark masses. 6B is calculated

 from (6.4.12), and the predicted numbers of leptons are

for an assumed integrated luminosity of 100 nb_l.

The
cross-sections are from figure 6.14, without the central
production factor of 5. Remember these are for the
smaller Regge intercepts from table 5b(b), and the
larger intercepts from table 5b(a) give results

bigger by 6, 8, 10 for mt=25, 35, 45 GeV respectively.

If central production at the Collider really is 4 times

larger than diffractive production, and these events
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1 .
at s?=540 GeV.

produce a visible lepton with roughly the same probability
as the diffractive ones, then all these results should be

multiplied by 5 for the total (diffractive and central)

lepton yields.

k = 8(20) GeV for muons (electrons).

TC

m, (GeV) 25 35 45
kTC t _ .
(GeV) o (nb) 30 9.1 3.4
o6B (nb) 1.8 0.71 - 0.29
s :
No of |
leptons 180 71 29
o6B (nb) 0.71 0.47 0.23
8
No of
leptons 71 47 23
6B (nb) 0 2.8x10" 6.8x10 2
15
No of
leptons 0 3 !
66B (nb) 0 0 5.8x1073
20
' No of :
leptons 0 0 v 0 orl
Table 6b: The predicted lepton yields from pp>TTX

We also consider the larger cut-off
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Table 6c contains the corresponding predictions

for leptons from diffractive AtT/TtT production at the

Collider.
AkTC m, (GeV) 25 35 45
(GeV)
s(nb) .0x107% | 8.5x107% | 3.0x1072
6B (nb) .9%x10” 6.7x10"3 | 2.6x1073
5
No of n 2 1 ~ 0 or 1
leptons
6B (nb) .3%x10" 4.4x1073 | 2.0x10°3
8 .
No of
leptons v o] ~0 or 1 ~v0 or 1
6B (nb) 0 2.6x10°% | 6.1x107%
15
No of
leptons 0 0 0
56B (nb) 0 0 5.1x107°
20 ‘
| No of 0 0 0
leptons

Table 6c: The predicted lepton yields from pE;AtTWTtTX

i
at s?=540 GeV.

From these numbers we conclude that if the top

quark has a mass in the range we have considered, it
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should be visible at the pp-Collider via its muonic,

and also possibly its electronic, decay, for an integrated

luminosity of 2100 nb~1*
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CHAPTER -7

SUMMARY AND CONCLUSIONS

The aim of this work has been to develop a model
for the diffractive production of heavy flavours in
hadron scattering, predicting both the normalization

and x-dependence of the production cross-sections.

- Our model contains three ingredients; the initial
distribution of intrinsic heavy quarks in the incident
hadrdn, the heavy quark-hadron total cfoss—section,
and the recombination function for producing heavy
flavoured hadrons from the scattered quarks. In an
interaction a hadron scatters on one of the intrinsic
heavy quarks'in the other hadron, with very‘little
disrﬁption of its initial x-distribution. The probability
of the heavy quarks forming heavy hadrons is given by
" the overlap of this distribution with the recombination
function, which is essentially the heavy hadron valence
distribution. If the QQ pair do not hadfonize in this

way, we assume they annihilate each other.

, In Chapter 2 we modelled constitutent valence quark
distributions for all types of hadron. They are needed
to‘calculate the heavy flavoured hadron recombination
functions, and the QQ distributions in light hadrons.

For pions and nucleons we compared these valence
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distributions with deep inelastic scattering data, and
in each case found discrepancies, the theoretical peak
being at larger x. This is expected because the data
is for current quarks wheréas our distributions are of
constituent quarks, which are current quarks surrounded
'by a sea of qq pairs and gluons. If our distributions
‘are probed by larger momentum transfers (in order to
resolve the current quarks), they will be suppressed to
smallef x by QCD evolution. This moves the theoretical
curves in figures 2.5 and 2.6 towards the data, thus,

one may suppose, resolving the discrepancies.

These valence distributions obey the dimensional
counting rules as x-»1, and by reciprocity should match
up with their corresponding'fragmentation functions as
z+1. We investigated this in Chapter 3, where we
modelled the fragmentation functions. For heavy quarks
the dominant fragmentation process is Q+MQq, SO our
predictions compare directly with experiment. Figure
3.2 and table 3a indicate the good agreement obtained
for both charm and bottom fragmentation. We also give

predictions for top quark fragmentation.

In Chapter 4 we calculated the intrinsic heavy
quark distributions in ‘light hadrons, assuming that
the QU pair are created by a gluon emitted from one of
‘the vélence constituent quarks. Our prediction for

charm production in deep inelastic scattering due to
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intrinsic charmed quarks is under the data, even without
a possible QCD evolution, as shown in figure 4.6. Since
the data is already well described by the photon-gluon

fusion model, this is necessary to avoid any conflict.

The remaining ingredient, the heavy quark-hadron
total cross-section, was cpnsideréd in Chapter 5. We
modelled total hadronic éross-sections by introducing
:the idea of a lightz(valence)Vduark-hadron cross-section,
dominated by Pomeron exchange at large s. We extended
this to heavy quarks using the f-dominance hypothesis
for the Pomeron-quark coupliﬁg. The rise of these
cross-sections from threshold is limited both by
dyhamics ie the difficulty of forming the final state
hadroné in the exclusive threshold process, and by
A_kinematics ie the restricted range of t available at
low s; Correcting for these effects, and using the
hypothesis of generalized:vector dominance enabled us to
: predict the cross-section for the photo-production of
heavy flavours. Figure 5.5 shows the good agreement

with the data for charm production.

We used these successes as the basis for our model
of diffractive hadronic heavy flavour production,
assuming tﬁe intrinsic heavy quarks in one hadron are
scattered by the other, before reforming heavy flavoured
hadrons. We constructed this model, and tested it

against experiment, in Chapter 6. Figures 6.2 to 6.10
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show good agreement with the data at large x, whereas at
small x the daté lies above our predictions because of
central production. This presumably occurs through a
quite different mechanism, and when a good model exists,
its predictioné added to ours should be able to account

for the data at all x.

Central production appears to constitute about 4/5
of the total cross-sectioﬁ, and so we multiplied our
diffractive results by 5 before plotting them against
the total cross-sectiondata as a function of s% in
figures 6.14 and 6.15. These figures also contain our
predictions of the total cross-sections for bottom and
top production. The data support the threshold rise
built into the model, but suggest that central production
riSes faster_than‘the diffractive component, at least
for light flavours. (It is also possible that our
threshold rise for the diffractive component is too
slow for the lightest flavours; it was derived with
heavy flavours in mind). We have extrapolated the
model to light (u,d) flavour production, and obtain
agreement with the data to better than a factor of
2 at large s. This is the most one should expect,
since the assumptions in our model, (particularly the
ﬁse of lowest order QCD to create the intrinsic QQ),

cannot really be justified for light quark production.

The production of top quarks at the pp-Collider
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is of particular interest at the moment, so we devoted
Section 6.4 to calculating the large k; lepton yield
from our diffractive top production, for a range of m .
The backgrounds to these leptons have been considéred
_(61,63)

by various authors , and the top signal should be

clearly visible above them. There should also be
associated jet activity from the bottom quark decay.
We cqnsidered two possible top quark-proton cross-
sections; the smaller of these is really a lower
bound, so failure to observe leptons at or above the
rate predicted using this would cast serious doubt on
the existence of the top quark with a mass in the

range 25 < m_ < 45 GeV.

We discussed other models for hadronic production
of heavy fiavours in Section 1.2. The x-dependence we
predict for the cross-sections is in sharp contrast to
those from QCD perturbation theory models(3), calculated
using (1.2.1). These peak at x=0; but are unable to
account for the observed magnitudes of central heavy

flavour production. Our x-distributions of heavy

flavoured hadrons are similar to those predicted by
(5) (7) (6)

ABargef et al ,.Brodsky et al and Donnachie ",
despite the rather different picture'we adopt. However
we predict the magnitudes of the diffractive cross-
sections, rather than normalizing to the dgta, which is

very important for extrapolating to top production.
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| Wexconclude, finally; that our diffractive model
accounts_for'the preseﬁt large x hadronic heavy flavour
production data, and that all aspects of the model
separafely compare well with experiment. Hopefully
more data will appear soon, adaing further support;
in particularvif the top quark has 25 % Hk;s 45 GeV

it should be visible at the pp-Collider.
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