Intrinsic quarks and heavy flavour production

Spiller, Timothy P

How to cite:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.
Intrinsic Quarks and Heavy Flavour Production

Thesis submitted to the University of Durham for the degree of Doctor of Philosophy by

Timothy P Spiller, BA (Oxford)

May 1984

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.
CONTENTS

ABSTRACT i
ACKNOWLEDGEMENTS ii

CHAPTER 1: MOTIVATION, BACKGROUND AND MODEL

1.1 MOTIVATION
 1.1.1 Recent Experimental Data 1
 1.1.2 Failure of Old Models 1

1.2 NEW MODELS FOR HEAVY FLAVOUR PRODUCTION 2
1.3 OUR MODEL: AIM AND CONSTRUCTION 6

1.4 STANDARD THEORY
 1.4.1 Cross-Sections and Widths 8
 1.4.2 QED, QCD and Regge Theory 9
 1.4.3 The Optical Theorem 10

1.5 LIGHT CONE VARIABLES 11
1.6 THE PARTON MODEL 12
1.7 DIMENSIONAL COUNTING RULES 18

CHAPTER 2: VALENCE QUARK DISTRIBUTIONS

2.1 INTRODUCTION 25
2.2 MESON WAVEFUNCTION 28
2.3 BARYON WAVEFUNCTION 31
2.4 GENERAL CALCULATION 36
2.5 TRANSVERSE MOMENTUM 39
2.6 RESULTS 43
2.7 COMMENTS AND COMPARISON WITH EXPERIMENT 45

CHAPTER 3: HEAVY QUARK FRAGMENTATION FUNCTIONS

3.1 DISTRIBUTION OF TWO SPINLESS CONSTITUENTS
 3.1.1 Introduction 59
ABSTRACT
A model is constructed for the diffractive production of heavy flavours in hadron-hadron interactions, based on the presence of an intrinsic heavy quark component in the hadron wavefunction. It requires three ingredients; the heavy quark content of the initial hadron, the probability that these heavy quarks are scattered, and the probability that they form heavy flavoured hadrons afterwards.

The initial heavy quark distributions are calculated, using lowest order perturbative QCD, starting from the valence constituent quark distributions, and compared with deep inelastic charm production data. The valence distributions are designed to reproduce the dimensional counting rules, and, via reciprocity, to be consistent with the heavy quark fragmentation functions.

The light quark-hadron scattering cross-section is parametrized by Pomeron exchange, and extended to heavy quarks using the f-dominance hypothesis for the Pomeron-quark coupling. Dynamical and kinematical factors which control the rise of these cross-sections from threshold are built in. The validity of these ideas is tested against charm photo-production data, by using a vector dominance model for the photon-hadron scattering.

The probability that the scattered quarks recombine to produce heavy flavoured hadrons is assumed to be given by the overlap of the initial distribution of quarks with the distribution in a heavy hadron. We compare the predictions of our model with strangeness and charm production data, and make predictions for bottom and top production. In particular, the magnitude of the leptonic signal to be expected from the decay of top quarks produced at the CERN pp-Collider is given.

We conclude that all aspects of this model are consistent with present experimental data, and that the top quark should be observed at the Collider if its mass is around 35 GeV.
ACKNOWLEDGEMENTS

It has been my pleasure to pursue this research under the supervision of Peter Collins, who provided numerous ideas and much advice. I thank him, the other staff members at Durham, Alan Martin, Mike Pennington and Fred Gault, and the many research students; in particular Tony Rimmer, Phil Done, James Webb and Anthony Worrall, with whom I overlapped in space as well as time. They all contributed to the friendly stimulating environment in which what follows was concocted.

My thanks also to the SERC for a three year research studentship, and to Ruth Robson for her excellent typing.
There is a theory which states that if ever anyone discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.

There is another theory which states that this has already happened.

From The Restaurant at the End of the Universe by Douglas Adams.
CHAPTER 1

MOTIVATION, BACKGROUND AND MODEL

1.1 MOTIVATION

1.1.1 Recent Experimental Data

A lot of hadron-hadron scattering experiments have been done over the last decade, at various energies. It is found that heavy flavoured hadrons are produced quite frequently compared to light ones, roughly in the ratios

\[(u,d) : s : c \sim 1 : 1/4 : 10^{-2} \sim 10^{-3}\] \hspace{1cm} (1.1.1)

at the highest energies.

There appear to be two production mechanisms for heavy flavoured particles. Most are created "centrally", with small centre of mass (COM) momenta compared to that of the beams, but some (about 1/5) go "forward", with a sizeable momentum. The latter always have small transverse momentum (relative to the beam), so it is quite clear which initial hadron they came from. Such production is termed "diffractive".

1.2.1 Failure of Old Models

The older hadron production models fall into two categories.
(a) Statistical models1, in which the probability of producing a hadron of mass m is $\sim \exp\left(\frac{-2m}{T} \right)$ (a Boltzmann factor) where T is a universal temperature ~ 160 MeV. This gives

$$(u,d) : s : c \sim 1 : 10^{-1} : 10^{-5} \quad (1.1.2)$$

(b) Tunnelling models2, in which the probability of producing a quark-antiquark pair (which then hadronize) $\sim \exp\left(\frac{-m_{TQ}^2}{K} \right)$ where the string constant $K \sim 0.2$ GeV2. m_{TQ}^2 is defined by $m_{TQ}^2 = m_Q^2 + k_T^2$, where m_Q is the quark mass and $k_T^2 \sim 0.1$ GeV2. This gives

$$(u,d) : s : c \sim 1 : 1/3 : 10^{-10} \quad (1.1.3)$$

Both give the right order of magnitude for strangeness production, but are far too small for charm, and neither explains the observed momentum distributions. Over the last few years there have been attempts to improve on these predictions.

1.2 NEW MODELS FOR HEAVY FLAVOUR PRODUCTION

Numerous predictions for hadronic charm production exist3, based on the expression

$$\sigma(AB+ccX) = \sum_{i,j} \int dx_i dx_j f_A^j(x_i) f_B^i(x_j) \delta(ij+cc) \quad (1.2.1)$$

for the cross-section. $f_A^i(x_i)$ is the probability density
for finding parton i in hadron A with longitudinal momentum fraction x^i_1. The parton amplitudes for the sub-process cross-section, σ, come from perturbative QCD, and are shown in figure 1.1. The $c\bar{c}$ pair are created centrally and assumed to fragment to form hadrons. The calculations use the measured x-distributions for light quarks and gluons, but assume values for the strong coupling α_s, the charmed quark mass m_c, and the threshold for the sub-process. For reasonable choices of these the predictions are generally too small to account for the central production of Section 1.1.1.

Barger et al\(^{(5)}\) also consider the excitation amplitudes of figure 1.2, as a possible explanation for the diffractive charm production. This requires additional assumptions for the magnitude and shape of $f^c_A(x_c)$. They argue this arises from QCD evolution, and that at $Q^2 \sim 4m_c^2$ is "hard", in order to fit the data, evolving to lower x_c at larger Q^2 to avoid conflict with deep inelastic scattering data. The charmed hadrons are produced by recombination with the valence quarks.

A model fusing a diquark from one hadron with a quark from the other has been proposed by Donnachie\(^{(6)}\), and tested against strange baryon production data. This requires assumptions for the magnitude and
Figure 1.1: The parton amplitudes for $ij + c\bar{c}$.
Figure 1.2: The parton amplitudes for $ic \rightarrow ic$.
shape of the diquark distribution.

Brodsky et al\(^{(7)}\) propose an explanation for diffractive charm production using the idea of "intrinsic" charm. They model the contribution to \(f^{c}_{p}(x_{c}) \) from the \(|uudcc\rangle\) Fock state of the proton, and conclude that the heavy quarks carry most of the momentum. The final hadrons are again produced via a reformation process, the normalization being fixed from experiment.

These diffractive models contain uncertainties. Normalization to fit data is needed, and possible difficulties in recombining the quarks into hadrons are neglected. Extrapolation to heavier masses from charm is simply assumed to scale like \(m_{c}^{2}/m_{i}^{2} \) (i=b,t), either in the intrinsic cross-section, or the inverse of the threshold for the diffractive excitation sub-process.

1.3 OUR MODEL: AIM AND CONSTRUCTION

We propose a model for diffractive heavy flavour production, based on the idea of intrinsic heavy quarks, and regard central production as a separate effect, still to be satisfactorily explained. We aim to avoid some of the uncertainties of the existing models. Using a proton as an example, the basic idea is that a heavy quark Q in the proton's \(|uudQQ\rangle\) Fock state scatters "softly" on the other hadron, and the quarks then recombine to form heavy flavoured hadrons.
The $Q\bar{Q}$ are pair-created inside the proton. As they are heavy we model this by lowest order perturbative QCD. Consequently the relative normalization of the Fock states $|uud\rangle$ and $|uudQ\bar{Q}\rangle$ is predicted. The quarks in these states are constituents, as between them they carry all of the proton's momentum.

In Chapter 2 we model valence constituent quark distributions, ensuring they satisfy the dimensional counting rules (see Section 1.7), and support these in Chapter 3 by considering heavy quark fragmentation. Chapter 4 is devoted to the calculation of intrinsic heavy quark distributions in light hadrons.

Unlike deep inelastic scattering, diffractive scattering is soft, and so the appropriate framework is Regge theory \(^{(8)}\). We discuss this in Chapter 5, and calculate heavy quark-hadron cross-sections.

Since recombination functions are essentially valence distributions, we then have all the ingredients to predict hadronic heavy flavour production, which is the topic of Chapter 6. We present our conclusions in Chapter 7.

In the remainder of this chapter we introduce the background theory and ideas we need, and define our notation for the calculation of cross-sections, parton
densities etc. This may be omitted, and simply used for reference, by the reader familiar with this framework.

1.4 STANDARD THEORY

1.4.1 Cross-Sections and Widths

The cross-section for $AB + N$ particles is given by

$$\sigma(AB+N) = \frac{1}{h} \int \prod_{i=1}^{N} \left[\frac{d^3p_i}{2(2\pi)^3p_i^0} \right] (2\pi)^4\delta^4(p_A + p_B - \sum_{i=1}^{N} p_i)$$

$$|A_{AB+N}|^2$$

(1.4.1)

Similarly for a width

$$\Gamma(A+N) = \frac{1}{2p_A^0} \int \prod_{i=1}^{N} \left[\frac{d^3p_i}{2(2\pi)^3p_i^0} \right] (2\pi)^4\delta^4(p_A - \sum_{i=1}^{N} p_i)$$

$$|A_{A+N}|^2$$

(1.4.2)

In both cases $|A|^2$ is the squared modulus of the amplitude for an N-particle final state, averaged over initial spins and summed over final ones, p_i are the relevant four-momenta, and h is the flux factor, defined by

$$h = 4 \left[(p_A \cdot p_B)^2 - m_A^2m_B^2 \right]^{\frac{1}{2}}$$

(1.4.3)

σ is Lorentz invariant while Γ^{-1} transforms as the zeroth component of a four-vector, (hence the dilation of lifetimes).
1.4.2 QED, QCD and Regge Theory

Our work will require frequent evaluation of amplitudes, such as in (1.4.1). When these are unknown we resort to modelling, but also call on QED\(^9\), QCD\(^4\) and Regge theory\(^8\).

We use QED, the U(1) gauge theory of electromagnetism, when considering the scattering of leptons and quarks, and also need weak interactions\(^10\) (the other half of the SU(2) x U(1) electro-weak theory) when considering leptonic decays of heavy quarks.

When calculating amplitudes we employ these theories perturbatively. The Feynman rules are conveniently listed in the appendices of Itzykson and Zuber\(^9\), as are many other standard results (eg trace theorems) and we adopt their notation throughout, except for defining the normalization of Dirac spinors by

\[
\bar{u}(p,s)u(p,s) = 2m \quad (1.4.4)
\]

The spin summation then reads

\[
\sum_s \bar{u}(p,s)u(p,s) = \not{p} + m \quad (1.4.5)
\]

with the advantage that (1.4.1) and (1.4.2) hold for any combination of bosons and fermions. In all our
diagrams a photon is represented by \(\sim\sim\sim\) and a gluon by \(\sim\sim\sim\sim\) .

The QCD approach to hadron physics has deficiencies. At present quark confinement is not proven, and many features of hadron structure and scattering, particularly at high energy and low momentum-transfer, remain to be explained. However Regge theory has far more success with the latter, and so this is the approach we introduce and use when considering such scattering.

1.4.3 The Optical Theorem

Summing (1.4.1) over all possible final states gives the total cross-section. Using unitarity the right hand side may be re-written in terms of the elastic scattering amplitude at zero momentum-transfer, giving the optical theorem

\[
\sigma_{\text{tot}}(AB) = 2\text{Disc}(A_{AB \to AB})
\] (1.4.6)

We employ this occasionally, but Mueller's generalization (11) will be more useful. This says

\[
16\pi^3 \varepsilon C \frac{d^3\sigma}{d^3\varepsilon} (AB \to CX) = 2\text{Disc}(A_{ABC \to ABC})
\] (1.4.7)

where again the discontinuity is evaluated with the final momenta equal to the initial. X is any hadronic final state. The derivation of (1.4.7) is the same as that of
(1.4.6), with the crossing of the final C to an initial \bar{C}. As a result the amplitude is at an unphysical value of p_C. We simply assume this analytic continuation can be made; for a discussion see Reference 8, Section 10.4.

To evaluate discontinuities we use the rules due to Cutkosky

1.5 **LIGHT CONE VARIABLES**

Usually we will treat four-momenta in terms of their light cone components, defined by

$$ p_A^\pm = p_A^0 \pm p_A^3 \quad ; \quad P_{TA} = (p_A^1, p_A^2) $$

and use the projection operator P^{μ}_{μ}, defined by

$$ P^{\mu}_{\mu} p_A^{\mu} = p_A^+ $$

Under a Lorentz boost (with velocity β, and $\gamma = (1 - \beta^2)^{-\frac{1}{2}}$) along the 3-axis, $p_A^\mu + p_A'^\mu$, where

$$ p_A'^\pm = \gamma (1 + \beta) p_A^\pm \quad ; \quad P_{TA}' = P_{TA} $$

Therefore any ratios of the form

$$ x_i \equiv \frac{k_i^+}{p_A^+} $$
are invariant. For example, \(p_A \) and \(k_i \) are our notation for hadron and quark momenta respectively. The Jacobian for the variable change of (1.5.1) is \(\frac{1}{2} \), so, using (1.5.4),

\[
d^4k_i = \frac{1}{2} dk^+_1 d^2k_{T1} dk^-_1 = \frac{1}{2x_1} dx_1 d^2k_{T1} d(k_1^2)
\]

(1.5.5)

In terms of these variables dot products read

\[
2p_A . k_i = x_i (p_A^2 + p_{TA}^2) + \frac{1}{x_1} (k_1^2 + k_{T1}^2) - 2p_{TA} . k_{T1}
\]

(1.5.6)

\[
2k_i . k_j = \frac{x_i}{x_j} (k_i^2 + k_{T1}^2) + \frac{x_j}{x_1} (k_j^2 + k_{T1}^2) - 2k_{T1} . k_{Tj}
\]

1.6 THE PARTON MODEL

Whenever a hadron is probed sufficiently hard for its structure to be resolved, it is found to consist of almost free "current" quarks and gluons (collectively, partons)\(^{(13,14)}\). This is in agreement with QCD, since the strong coupling \(\alpha_s(Q^2) \to 0 \) as \(Q^2 \to \infty \)\(^{(4)}\). An interaction involves the scattering of one or more partons, which then hadronize in some way. An example is shown in figure 1.3.

We define the standard variables Bjorken-\(x \) and \(\nu \) by
Figure 1.3: The parton diagram for deep inelastic electromagnetic lepton (l) - hadron (A) scattering, showing the four-momenta of the particles. In the hadron rest frame, \(p_A = (m_A, 0) \), we define \(p_1 \equiv (E_1, p_1) \) and \(p'_1 \equiv (E'_1, p'_1) \), and the angles \(\theta, \phi \) as shown.
\[x = \frac{-q^2}{2p_A \cdot q}; \quad \nu = p_A \cdot q \] \hspace{1cm} (1.6.1)

and \(f_A^i(x_i) \) as the probability density of a quark \(i \) being in hadron A with light cone momentum fraction \(x_i \), defined by (1.5.4). The cross-section for the process in figure 1.3 is

\[\int_{-n}^{n} d^3 p_1 \frac{d^3 \sigma}{d^3 p_1} (lA+1X) = \sum_{m=n}^{m} \sum_{i=1}^{n} \int_{-\nu}^{\nu} dx_i f_A^i(x_i) 16n \] \hspace{1cm} (1.6.2)

where \(n \) is the number of valence quarks in A, and \(X \) is any hadronic final state. This assumes an incoherent sum over all possible parton final states is equivalent to the same for hadrons.

However our parton model will differ from the standard one, since when deriving f's we will consider only the lowest possible value of \(m \). The distributions are then considered to be those of constituent quarks, which can be thought of as bare current quarks surrounded by a sea of qq pairs and gluons. We use light cone variables, but we shall not neglect masses (except those \(\ll \) hadron masses) or off mass-shell effects. If we do, though, the usual results emerge, which we demonstrate as a check, and to introduce our notation.
The hadron tensor, $W_{\mu\nu}$, is defined by

$$16\pi^3 E_1 \frac{d^3 \sigma}{d^3 p_1} (1A+1X) \equiv \frac{8\pi^3 a^2}{E_1^4 q^4} L^{\mu\nu} W_{\mu\nu}$$

(1.6.3)

Neglecting the lepton mass, the lepton tensor is

$$L^{\mu\nu} = \text{Tr}\{\gamma^\mu \gamma^\nu\}$$

(1.6.4)

while

$$e^2 = \frac{e^2}{4\pi} \approx \frac{1}{137}$$

(1.6.5)

e being the lepton charge. The most general gauge-invariant expression for $W_{\mu\nu}$ is

$$W_{\mu\nu} = W_1(v,q^2)(-g_{\mu\nu} + \frac{q_{\mu} q_{\nu}}{q^2}) + \frac{1}{m_A} \frac{q_{\mu} - P_{\mu}}{q^2} \frac{q_{\nu} - P_{\nu}}{q^2}$$

(1.6.6)

Using the differential form of (1.4.1) with $N = 2$, the Feynman rules for QED, and integrating over the quark momentum gives

$$16\pi^3 E_1 \frac{d^3 \sigma}{d^3 p_1} (1q_1 + 1q) = e^2 \theta((k_1 + q)^2 - m_i^2)$$

$$L^{\mu\nu} T_{2\mu
u}(k_1, k_1 + q)$$

$$= \frac{8\pi^3 a^2 e^2}{\theta((k_1 + q)^2 - m_i^2)}$$

$$L^{\mu\nu} T_{2\mu
u}(k_1, k_1 + q)$$

(1.6.7)
where ee_1 is the quark charge and

$$T_{2\mu\nu}(k_i, k_i + q) = \text{Tr} \left((k_i + m_i) \gamma_\mu (k_i + q + m_i) \gamma_\nu \right)$$ \hspace{1cm} (1.6.8)$$

Evaluating the trace gives

$$T_{2\mu\nu}(k_i, k_i + q) = 4 [k_i \mu (k_i + q)_\nu + k_i \nu (k_i + q)_\mu - g_{\mu\nu} (k_i, (k_i + q) - m_i^2)]$$ \hspace{1cm} (1.6.9)$$

Using (1.6.7) and (1.6.3), (1.6.2) becomes

$$\frac{W_{\mu\nu}}{E_1} = \sum_{m \geq n} \sum_{i=1}^{m} \int_0^1 dx_i f_i^A(x_i) \frac{e_i^2}{h} \theta((k_i + q)^0) \delta((k_i + q)^2 - m_i^2) T_{2\mu\nu}(k_i, k_i + q)$$ \hspace{1cm} (1.6.10)$$

We substitute in (1.6.9) and (1.6.6), and then operate with $P^+ P^{+\nu}$ (as defined by (1.5.2)) to obtain

$$\frac{1}{E_1} \left[\frac{W_1(\nu, q^2)}{q^2} q^+ q^2 + \frac{W_2(\nu, q^2)}{m_A^2} (p_A^+ q \cdot P_A q^+)^2 \right]$$

$$= \sum_{m \geq n} \sum_{i=1}^{m} \int_0^1 dx_i f_i^A(x_i) \frac{e_i^2}{h} \theta((k_i + q)^0) \delta((k_i + q)^2 - m_i^2) 8 k_i^+ (k_i + q)^+$$ \hspace{1cm} (1.6.11)$$
Neglecting the quark mass

\[\delta((k_1^+ q)^2 - m_1^2) = \frac{1}{2\nu} \delta(x_1 + x) \quad (1.6.12) \]

and, from (1.4.3),

\[h = 4m_x^A x_1 E_i^1 \quad (1.6.13) \]

Using (1.6.12) the integral in (1.6.11) is trivial, and defining \(F_{1,2} \) by

\[F_1 = m_x^A W_1(\nu, q^2) \quad ; \quad F_2 = \frac{\nu}{m_x^A} W_2(\nu, q^2) \quad (1.6.14) \]

the result is

\[\frac{F_1 q^+}{q^2 \nu} + \frac{F_2}{q^2} (p_A^+ q_2^+ q^2) = \sum_{m\pi n} \sum_i^m f_i^A(x) e_i^2 \frac{k_i^+(k_1^+ q)^+}{x \nu} \quad (1.6.15) \]

There is no \(q^+^2 \) coefficient on the right, so that on the left must vanish, giving

\[2xF_1 = \frac{F_2}{F_1} = \sum_{m\pi n} \sum_i^m f_i^A(x) x e_i^2 \quad (1.6.16) \]

This is the familiar result for the structure functions \(F_{1,2} \), showing they are functions of \(x \) only, obey the Callan-Gross relation \(^{16}\), and are related to the quark distribution functions in the usual way.
1.7 DIMENSIONAL COUNTING RULES

The dimensional counting rules\(^{(17)}\) describe the behaviour of the elastic cross-section at large \(-q^2\), shown in figure 1.4 for lepton-baryon scattering. Consider the amplitude for reforming A (the elastic form factor, \(G_A(q^2)\)) containing \(n_g\) gluons, necessary to hold the hadron together. In QCD the fermion traces typically cancel the behaviour of the gluon propagators\(^{(18)}\), as we shall demonstrate in Chapter 2. The fermions labelled \(___X___\) in figure 1.4 have four-momenta \(\sim q^2\), and so their propagator denominators give the \(q^2\)-dependence of \(G_A(q^2)\),

\[
G_A(q^2) \sim q^{-2n_g}
\]

(1.4.1) with \(N=2\) integrates to give

\[
\sigma(1A+1A) = \frac{1}{\hbar} \int \frac{d^3p_1}{2E_1(2\pi)^3} \frac{(2\pi)^\theta((p_A+q)^0)}{\delta((p_A+q)^2-m_A^2)|A_1A_1A|^2}
\]

(1.7.2)

Neglecting the lepton mass

\[
dq^2 = -2E_1E_1'd(cos\theta) \quad dp_1 = dE_1
\]

(1.7.3)

so
Figure 1.4: The parton diagram for elastic lepton (l) - hadron (A) scattering, with the same definitions for four-momenta as in figure 1.3.
\[\frac{d^3p}{2E_1(2\pi)^3} \delta((p_A+q)^2-m_A^2) = \frac{dE_1 dq^2 d\phi}{8(2\pi)^3 E_1^4 m_A} \delta(E_1'-E_1+\frac{q^2}{2m_A}) \]

(1.7.4)

and from (1.4.3)

\[h = 4E_1^4 m_A \]

(1.7.5)

We substitute these into (1.7.2) and integrate over \(E_1 \) and \(\phi \), but differentiate with respect to \(q^2 \), obtaining

\[\frac{d\sigma(1A\rightarrow1A)}{dq^2} \approx \frac{|A_{1A\rightarrow1A}|^2}{64\pi E_1^2 m_A^2} \]

(1.7.6)

a result that will also be of use later on. Including the photon propagator \(A_{1A\rightarrow1A} \sim q^{-2}G_A(q^2) \), so using (1.7.1), (1.7.6) gives

\[\frac{d\sigma(1A\rightarrow1A)}{dq^2} \sim q^{-4(n_g+1)} \]

(1.7.7)

At large \(-q^2\), the dominant contribution comes from the minimum \(n_g \), which is \(n-1 \) (\(n \) being the number of valence quarks), giving for mesons (M) and baryons (B)

\[\frac{d\sigma(M\rightarrowM)}{dq^2} \sim q^{-8} \]

(1.7.8)

\[\frac{d\sigma(B\rightarrowB)}{dq^2} \sim q^{-12} \]

(1.7.9)
The large \(-q^2\) form factor behaviour, \((1.7.1)\), relates to that of the structure function \(F_2(x)\) as \(x \rightarrow 1\) if figure 1.3 goes over smoothly to figure 1.4 as \(M^2 \rightarrow m_A^2\). To demonstrate this we require an expression for \(\frac{d\sigma}{dq^2} (1A+1X)\), defined by

\[
\frac{d\sigma}{dq^2} (1A+1X) \equiv \int dv \delta(v-\frac{1}{2}(M^2-m_A^2-q^2)) \frac{d^2\sigma}{dq^2dv} (1A+1X)
\]

\(1.7.10\)

to compare with \((1.7.7)\).

The integrand derives from \((1.6.2)\). Neglecting the lepton mass, \((1.6.1)\) give

\[
dx = -E_1E_1 \frac{d(cos\theta)}{v}
\]

\(1.7.11\)

and using these \((1.6.2)\) becomes

\[
\frac{d^3\sigma}{dx dv d\phi} (1A+1X) = \Sigma \Sigma^m_{i=1} \int_0^1 dx_i f_A^i(x_i) \frac{\nu E_1}{m_A E_1^2} \frac{d^3\sigma}{dx dv d\phi} (1q_i+1q_i)
\]

\(1.7.12\)

Substituting \((1.6.7)\) and integrating over \(\phi\) gives

\[
\frac{d^2\sigma}{dx dv} (1A+1X) = \Sigma \Sigma^m_{i=1} \int_0^1 dx_i f_A^i(x_i) \frac{\Pi a^2}{m_A E_1^2 hq^4} \theta((k_i+q)^0) \delta((k_i+q)^2-m_i^2) L_{\mu\nu}^{\mu\nu} T_{2\mu\nu} (k_i, k_i+q)
\]

\(1.7.13\)
Using (1.6.4), (1.6.8), (1.6.10), \(p'_1 = p_1 + q \), and neglecting the quark mass,

\[
\frac{1}{16} L^{\mu \nu} T_{2 \mu \nu}(k_i, k_i + q) = 2k_i \cdot p_1 \left[2k_i \cdot p_1 + 2q \cdot p_1 + 2k_i \cdot q + q^2 \right] - 2q \cdot p_1 q \cdot (q + k_i)
\]

(1.7.14)

and it is easy to show

\[
k_i \cdot p_1 = 2x_i (m_A E_i - v) ; \quad q \cdot p_1 = x v ; \quad k_i \cdot q = x_i v
\]

\[
q^2 = -2x v
\]

(1.7.15)

We use these to re-write (1.7.14) and substitute it, along with (1.6.12) and (1.6.13), into (1.7.13). Integrating, cancelling, and using (1.6.1) we get

\[
\frac{d^2 \sigma}{dx d\nu} (1A+1X) = \sum_{m \geq n} \sum_{i=1}^m f^4_A (x) e_i^2 \frac{2 m a^2}{x} \left[\frac{1}{v^2} - \frac{1}{v m_A E'_i} + \frac{1}{2 m_A^2 E'_i^2} \right]
\]

(1.7.16)

which is a familiar result\(^{(19)}\), in a slightly unfamiliar guise. We need this form in Chapter 4, but here re-write it, using (1.6.1) and (1.6.16), to that required by (1.7.10),

\[
\frac{d^2 \sigma}{dq^2 d\nu} (1A+1X) = -4 \pi a^2 v F_2 \left[\frac{1}{v^2} - \frac{1}{v m_A E'_1} + \frac{1}{2 m_A^2 E'_1^2} \right]
\]

(1.7.17)
The invariant mass of the final state X is given by

\[M_X^2 \equiv (p_A + q)^2 = m_A^2 + q^2(1 - 1/x) \]

giving

\[-q^2 = x(M_X^2 - m_A^2) \frac{1}{(1-x)} \]

and so for any $M_X^2 > m_A^2$

\[-q^2 + \infty \equiv x + 1 \]

(1.7.18)

(1.7.19)

All quark distribution functions $f^i_A(x_i) \to 0$ as $x_i \to 1$, because of the difficulty in transferring all the momentum to one quark. Suppose the least suppressed behaviour is

\[f^i_A(x_i) \sim (1-x_i)^N \]

(1.7.20)

From (1.6.16) and (1.7.19) we deduce

\[F_2 \sim -q^{2N} \]

(1.7.21)

Substituting (1.7.17) into (1.7.10), integrating, letting $-q^2 \to \infty$, and using (1.7.21), we obtain

\[\frac{d\sigma(1A+1X)}{dq^2} \sim q^{-(N+3)} \]

(1.7.22)
This behaviour is for $M_x^2 > m_A^2$; if we assume that it connects smoothly to the elastic region, and compare with the most dominant form of (1.7.7) we get

$$N = 2n_{g_{\text{min}}} - 1 \quad (1.7.23)$$

the Drell-Yan-West relation$^{(20)}$.
CHAPTER 2

VALENCE QUARK DISTRIBUTIONS

2.1 INTRODUCTION

In this chapter we calculate the distribution of valence quarks in an arbitrary hadron A. More precisely we shall derive expressions for the x-distribution of the quark (or antiquark) in the $|q\bar{q}\rangle$ Fock state of a meson, and of the quarks in the $|qqq\rangle$ state of a baryon. For light hadrons these are the input for calculating the x-distributions of intrinsic heavy $Q\bar{Q}$ pairs, and for heavy hadrons (containing a valence Q or \bar{Q}) give their recombination functions, which are two of the ingredients for our diffractive model.

The calculations require several assumptions, which we introduce, along with their justification, as needed. At the end of this chapter we compare the results with experimental data.

In order to derive x-distributions without neglecting masses, or off mass-shell effects, we begin by considering the lepton-hadron inelastic scattering of figure 1.3. Probing the hadron with a photon is merely a calculational tool; during the course of our derivation the dependence on the photon four-momentum q will cancel. This must happen, because
the final result is a property of the hadron alone.

Our starting point is Mueller's generalized optical theorem, (1.4.7), which applied to the process shown in figure 1.3 gives

\[16\pi^3 E_1 \frac{d^3 \sigma}{d^3 p_1} (1A+1X) = 2 \text{Disc}(A_1TA+1TA) \]

(2.1.1)

\(A_1TA+1TA \) is the three-particle elastic scattering amplitude, which is evaluated with all final state momenta equal to their corresponding initial values, and \(h' \) is the flux factor. In pictorial form

\[\text{Disc}(A_1TA+1TA) = \text{Disc} \]

\[\sum_{m \geq n} \sum_{i=1}^{n} \left[\begin{array}{c}
 h_{i+q_{m}} \\
 h_{i+q_{n}} \\
 \vdots \\
 h_{i+q_{2}} \\
 h_{i+q_{1}} \\
 h_{i+q_{0}} \\
\end{array} \right] \\
\]

where the discontinuity is evaluated at the dotted line, and \(\Gamma_m \) is the wavefunction for hadron A to be in an \(m \)-quark Fock state, (ie \(\Gamma_m = \langle q_1 \ldots q_m | A \rangle \)). \(k_{i} \) are the quark four-momenta, and \(n \) is the number of valence quarks in A. The lepton and hadron four-momenta, \(p_1 \) and \(p_A \) respectively, satisfy their mass-shell constraints, \((p_i^2 = m_i^2 ; i = 1,A) \).
We now have two separate expressions ((1.6.2) and (2.1.1)) for the inclusive lepton-hadron differential cross-section, which are equal term by term in the summations. Picking out just the lowest term, and equating, we get

\[\int_0^1 dx_n f_A^n(x_n) \frac{d^3\sigma}{d^3p_L} (lq_n^+ + lq_n^-) = \frac{2}{n!} \text{Disc} \]

where \(n = 2 \) for a meson and \(3 \) for a baryon. \(f_A^n(x_n) \) is the constituent quark distribution, because we only consider the Fock state where the valence quarks carry all of the momentum of the hadron between them.

The idea from here on is to feed in \(\Gamma_n \), and derive an expression for \(f_A^n(x_n) \). Unfortunately in the present state of hadron physics the \(\Gamma_n \) are still unknown, because we do not know how to calculate them from QCD. We therefore have to model them.
2.2 **MESON WAVEFUNCTION**

We observe experimentally that quarks are confined spatially within hadrons, although the theoretical proof of this does not yet exist. This tells us that the momenta of quarks must also be constrained in some way. Our model for the wavefunction \(\Gamma_n \) must incorporate this, and allow for the fermionic nature of the quarks. We therefore define the meson wavefunction, \(\Gamma_2 \), by

\[
\Gamma_2 = C_2 \delta_2(x_1, x_2) G^{\frac{1}{2}}(k_{T1}) G^{\frac{1}{2}}(k_{T2}) u_2(\xi_2 p_A) \bar{u}_1(-\xi_1 p_A)
\]

(2.2.1)

The spinors, \((u_1 \text{ with their spin labels suppressed})\) provide the Dirac space structure for two spin-\(\frac{1}{2}\) quarks. The minus sign occurs because we choose label 1 for the antiquark, although the final result will not depend on this choice. \(\xi_1\) is the initial four-momentum fraction of quark i; to conserve four-momentum \(\xi_1 + \xi_2 = 1\).

The quark transverse momentum, \(k_T\), is defined relative to the beam axis, so \(p_{T_A} = 0\). The hadronic binding is built into \(\Gamma_2\) via its \(k_T\)-dependence. \(G(k_T)\) is a dimensionless function describing the \(k_T\)-distribution of a quark inside a hadron, whose properties we discuss in Section 2.5. Clearly in an \(n = 2\) Fock state the quarks must have the same \(k_T\)-distribution, independent of their mass. We shall assume this holds for all higher Fock states, so a single function \(G(k_T)\) describes the \(k_T\)-distribution of
any quark in any Fock state, for a meson or a baryon.

The remaining momentum dependence of Γ_2 comes in $g_2(x_1, x_2)$, where x_1 and x_2 are defined by (1.5.4). This x-dependence is motivated by the minimum gluon exchange shown in figure 2.1, and fixed by appealing to the fact that (at least for equal mass quarks) it should be invariant under an interchange of the labels. Single gluon exchange generates the least suppressed behaviour of Γ_2 at the limits of x_i, $(0 \leq x_i \leq 1; \ i = 1, 2)$. We treat the quark and antiquark on an equal footing in g_2, and make no reference to which one is off mass-shell; this will be incorporated automatically in our calculation of $f_A^2(x_2)$. Both quarks cannot be on their respective mass-shells if bound within an on-shell meson.

The gluon propagator in figure 2.1 has the behaviour

$$\frac{1}{(k_1-p_1)^2} = \frac{1}{(k_1^2+p_1^2-(x_1p_A^+p_1^++(k_1^2+k_1^2)p_1^+))} x_1^0 x_1$$

using (1.5.6) to expand the dot product. Similarly, in terms of the other momenta instead

$$\frac{1}{(p_2-k_2)^2} = \frac{1}{(p_2^2+k_2^2-(x_2p_A^+p_2^++(k_2^2+k_2^2)p_2^+))} x_2^0 x_2$$

(2.2.2)
Figure 2.1: A single gluon exchange between the quark and antiquark in a meson, showing the four-momenta of the particles.
As the propagator appears twice in $|r_2|^2$ we choose

$$|g_2(x_1x_2)|^2 = x_1x_2 \quad (2.2.4)$$

which has the required invariance under label interchange. This choice ensures that $f_A^2(x_2)$ satisfies the dimensional counting rules, as we shall demonstrate having done the calculation.

The final ingredient in (2.2.1) is C_2, which is a constant dependent upon the normalization chosen for $f_A^2(x_2)$. Any colour factors are absorbed into the definition of C_2.

We now repeat this modelling process for three quarks in a baryon. This is more complicated, but employs the same basic ideas as here.

2.3 BARYON WAVEFUNCTION

The baryon wavefunction, Γ_3, must have the same features as Γ_2, so we define it by

$$\Gamma_3 \equiv C_3 g_3(x_1,x_2,x_3) \prod_{i=1}^3 G^3(k_{T_i})u_i(\xi_i p_A) \quad (2.3.1)$$

There are three quarks in a baryon, so we have three spinors for the Dirac space structure. As before, ξ_i is the initial four-momentum fraction of quark i, and $\sum_{i=1}^3 \xi_i = 1$ ensures the quarks carry all the four-momentum
of the baryon between them.

We again build the hadronic binding into Γ_3 through its k_T-dependence, using the same distribution function, $G(k_T)$, as in the meson case.

The least suppressed behaviour for Γ_3 at the limits of x_i, $(0 \leq x_i \leq 1 ; i = 1,2,3)$, arises from the minimal gluon exchange between the quarks. Unfortunately this time there are the six diagrams of figure 2.2, rather than one. We obtain the x-dependence of Γ_3 by considering these diagrams, and imposing invariance under the interchange of the labels of any two equal mass quarks.

There is an additional ingredient this time, the propagator of the quark which couples to both gluons, (labelled by $—\times—$ in figure 2.2). As well as contributing to the powers of x_i which damp Γ_3 for any of the $x_i > 0$, this propagator depends on the quark mass, and exhibits a certain behaviour in the limit that one of the quarks becomes very massive.

Consider the denominators of these propagators for each of the diagrams in figure 2.2, in the limit $m_A, m_3 \to \infty$; m_1, m_2 fixed, (using four-momentum conservation

$$p_A = \sum_{i=1}^{3} p_i = \sum_{i=1}^{3} k_i$$
Figure 2.2: Two gluon exchange between the three quarks in a baryon, showing the four-momenta of the quarks.
(a) \((p_A - p_1 - k_3)^2 - m_2^2 = (p_A - k_3) \cdot [p_A - k_3 - 2p_1]\)

(b) \((p_1 + p_2 - k_3)^2 - m_2^2 = (p_A - k_3) \cdot [p_A - k_3 - 2(p_1 + p_2 + k_2)]\)

(c) \((p_3 + p_2 - k_3)^2 - m_3^2 = k_3^2 - m_3^2\)

(d) \((p_1 + p_3 - k_3)^2 - m_3^2 = k_3^2 - m_3^2\)

(e) \((p_1 + p_2 - k_2)^2 - m_1^2 = (p_A - k_3) \cdot [p_A - k_3 - 2(p_1 + p_2 + k_2)]\)

(f) \((p_1 + p_3 - k_3)^2 - m_1^2 = (p_A - k_3) \cdot [p_A - k_3 - 2p_2]\) \hspace{1cm} (2.3.2)

If we now let \(k_3^+ \cdot p_A (\equiv k_3^2 + m_3^2 \equiv x_3 + 1)\), all six of these expressions vanish like \((1 - x_3)\). We get an analogous result if we let \(m_1\) or \(m_2^* \rightarrow \infty\) instead. We build this denominator behaviour into \(\Gamma_3\) by choosing

\[
g_3(x_1, x_2, x_3) = (m_A^2 - \sum_{i=1}^{3} \frac{m_{T_i}^2}{x_i})^{-1} \hspace{1cm} (2.3.3)
\]

where \(m_{T_i}\) is defined by

\[
m_{T_i}^2 = m_i^2 + k_{T_i}^2 \hspace{1cm} (2.3.4)
\]

(2.3.3) has the required symmetry for equal masses.

However we have not finished, because there are still the two gluon propagators and the numerator of the quark propagator to consider. In the limit
x_3 + 1 (which forces x_1, x_2 = 0) each gluon propagator gives a power of x_1 or x_2, (which when integrated gives (1-x_3)), in a similar manner to the single gluon in \(\Gamma_2 \).

The quark propagator \(\left(\frac{-1}{X} \right) \) numerator contains a single power of its four-momentum, which when traced will always end up in a dot product. From (1.5.6) we see this cancels one power of x_1 or x_2, and therefore (1-x_3). The corresponding result arises if x_1 or x_2 = 1, so our model for \(|g_3(x_1,x_2,x_3)|^2 \) must have a numerator which generates two powers of (1-x_1) when integrated, if x_i = 1; (i=1,2,3). There are four powers from the gluons minus two from the quark. The simplest symmetric choice is x_1 x_2 x_3, which, combined with (2.3.3), gives

\[
|g_3(x_1,x_2,x_3)|^2 = \frac{x_1 x_2 x_3}{3} \frac{m_2^2}{(m_A^2 - \sum_{i=1}^3 m_{T_i}^2)^2} \tag{2.3.5}
\]

Once again \(C_3 \) in (2.3.1) is a constant dependent upon the normalization of \(f_A^3(x_3) \), and containing any colour factors.

In (2.2.1) and (2.3.1) we suppress the spin states of the quarks, because we shall average incoherently over them. We neglect correlations between these spins due to the spin state of the hadron, so the \(x \)-distributions we derive are for unpolarized quarks.

With our wavefunction modelling complete, we now
return to deriving valence quark x-distributions.

2.4 GENERAL CALCULATION

We derive an expression for $f_A^n(x_n)$ valid for both $n=2$ and $n=3$, which will avoid having to go through two virtually identical calculations. We take (2.1.3) and substitute our model for Γ_n from (2.n.1). Evaluating the discontinuity and averaging over the spins of the external fermions, we get:

$$\int_0^1 dx_n f_A^n(x_n) 16\pi^3 E_1 \frac{d^3\sigma(1q_n + 1q_n)}{d^3p_1} = \frac{1}{\hbar} \int_{\hbar}^{\hbar-1} \left[\frac{d^4k_i}{(2\pi)^4} \right]$$

$$(2\pi)\delta(k^O_i) \delta(k^2_i - m^2) G(k_{T1})$$

$$\delta^4(p_{A_i} - \sum_{i=1}^{n} k_i) 2\pi \delta((k_n + q)^O) \delta((k_n + q)^2 - m^2) G(k_{Tn}) |g_n|^2 |C_n|^2 e^2 e_n$$

$$(k_n^2 - m_n^2 + i\epsilon)(k_n^2 - m_n^2 - i\epsilon)(q^2 + i\epsilon)(q^2 - i\epsilon)$$

$$\frac{1}{4} \frac{L^{\mu\nu}}{2^n} \prod_{i=1}^{n-1} [\xi_i T_2(p_A, k_i)] \xi_n T_{4\mu\nu}(p_A, k_n, k_n + q, k_n)$$

(2.4.1)

where ee_n is the quark charge, and we have defined:

$$T_2(p_A, k_i) \equiv \text{Tr}((\not{p}_A + m_A)(\not{k}_i + m_i))$$

$$T_{4\mu\nu}(p_A, k_n, k_n + q, k_n) \equiv \text{Tr}((\not{p}_A + m_A)(\not{k}_n + m_n)\gamma_\mu (\not{k}_n + q + m_n)) \gamma_\nu (\not{k}_n + m_n)$$

(2.4.2)
\(L^\mu_\nu \) is defined by (1.6.4).

We replace the lepton-quark differential cross-section in (2.4.1) with the expression we derived in Chapter 1, (1.6.7), and also change to light cone variables, so

\[
d^4k_n \delta^4(p_A - \Sigma k_i) = dx_n \delta(1 - \Sigma x_i) d^2k_Tn \delta^2(\Sigma k_{T1})
\]

\[
d(k^2) \delta(x_n (m^2 - \Sigma \frac{k_i^2 + k_T^2}{x_i})) \tag{2.4.3}
\]

The last \(\delta \)-function is the origin of our earlier remark that the quark off-shellness will be built into this calculation automatically. Substituting (1.5.5) and (2.4.3) into (2.4.1), we obtain integrals over \(x_n \) on both sides of the expression. If we assume that the integrands are equal (which is equivalent to saying (2.4.1) holds in differential form), and cancel the lepton tensor \((L^\mu_\nu) \) and various other trimmings from both sides, the result is

\[
f^A_n(x_n) T_{\mu\nu}^A(k_n, k_n + q) = \frac{|C_n|^2 h}{|h'|} \int \prod_{i=1}^{n-1} \left[\frac{dx_i d^2k_{T1} d(k_i^2)}{2(2\pi)^3 x_i} \right] \\
\cdot \theta(k_i^0) \delta(k_i^2 - m_i^2) G(k_{T1}) \\
\cdot d^2k_Tn \delta(1 - \Sigma x_i) G(\xi_n) \\
\cdot \delta^2(\Sigma \frac{k_i + k_{T1}}{x_i}) \delta(x_n (m^2 - \Sigma \frac{k_i^2 + k_T^2}{x_i})) |g_n|^2 \prod_{i=1}^{n-1} \left[\xi_i T_{\mu}^A(p_A, k_i) \right]
\]
The traces in (2.4.2) can easily be evaluated to give

\[T_2(p_Ak_i) = 4(p_A \cdot k_i + m_A m_i) \]

\[T_{4,\mu\nu}(p_A, k_n, k_i + q, k_n) = 8(p_A \cdot k_n + m_A m_n) \left[k_{nm}(k_n + q)_{\nu} \right] \]

\[+ k_{nm}(k_n + q)_{\nu} - 2k_n(k_n + q)g_{\mu\nu} \]

\[+ 4m_n^2 \left[(2p_A \cdot k_n - p_A \cdot (k_n + q))g_{\mu\nu} \right] \]

\[+ p_{A\mu}(k_n + q)_{\nu} + p_{Av}(k_n + q)_\mu \]

\[+ 4k_n^2 \left[(p_A \cdot (k_n + q) + m_A m_n)g_{\mu\nu} - p_{A\mu}(k_n + q)_{\nu} - p_{Av}(k_n + q)_\mu \right] \quad (2.4.5) \]

We substitute (1.6.9) and (2.4.5) into (2.4.4) and then employ the trick of operating on both sides with the projection operators \(p^+\mu p^{+\nu} \) (defined by (1.5.2)). This leaves us free to cancel the remaining factors multiplying \(f^n_A(x_n) \), and hence isolate it, giving

\[f^n_A(x_n) = \frac{|C_n|^2}{h} \frac{d^2k_{Tn}}{2(2\pi)^3} \delta^{(2)}(1 - \frac{1}{2} x_i) \delta^{(2)}(\Sigma k_{Ti}) \delta(x_n^2 - \Sigma \frac{k_i + k_{Ti}}{x_i}) \frac{G(k_{Tn})}{x_i} \]

\[\delta^{(2)}(k^2_n) \delta^{(2)}(x_n m^2 - \Sigma \frac{k_i^2 + k_{Ti}^2}{x_i}) \frac{G(k_{Tn})}{x_i} \]

\[\left| g_n \right|^2 \prod_{i=1}^{n-1} \left[\xi_i (2p_A \cdot k_i + 2m_A m_i) \right] \frac{2p_A \cdot k_n + 2m_A m_n - 1/x_n (k_n^2 - m_n^2)}{(k_n^2 - m_n^2)^2} \quad (2.4.6) \]
To proceed any further we must integrate over the quark transverse momenta. It is possible to develop a general method for this, which applies to any k_T-integrals arising in this work.

2.5 TRANSVERSE MOMENTUM

In our wave function modelling we allowed for the hadronic binding by defining the dimensionless quark k_T-distribution function, $G(k_T)$, such that

$$|\Gamma_n|^2 = \prod_{i=1}^{n} G(k_{Ti})$$

(2.5.1)

Rather than choose an explicit model for G, we need only assume it possesses certain properties in order to evaluate the k_T-integrals we encounter. With $|\Gamma_n|^2$ given by (2.5.1) they will always turn out to have the form

$$\int \prod_{i=1}^{n} [d^2k_{T_i} G(k_{T_i})] \delta^2(\Sigma_{i=1}^{n} k_{T_i}) H_n((k_{T_i},k_{T_j})) = I_n$$

(2.5.2)

where H_n is some function of all the possible dot products of the k_{T_i}.

There is no preferred direction perpendicular to the hadron momentum, so we have rotational invariance about the beam axis, and therefore assume

$$G(k_{T_i}) = G(k_{T_i}^2)$$

(2.5.3)
G is a dimensionless function, and so must contain a parameter with dimensions of momentum. Instead of worrying about what this is, and the actual form of G, we assume the k_T-integrals can be done, and concern ourselves with the resulting expectation values. For just one such integral we define $<k_T^2>$ by

$$\int d^2 k_T G^2(k_T^2) H(k_T^2) = \Pi <k_T^2> H(<k_T^2>) \quad (2.5.4)$$

the Π coming from the angular integral ($d^2 k_T = \Pi d(k_T^2)$), and the $<k_T^2>$ out front keeping the dimensions correct. We then have to choose a suitable value for $<k_T^2>$. (We return to this point later).

Before we can apply (2.5.4) to (2.5.2) we need some further assumptions. The first is that G factorizes, so

$$G(\Sigma k_{T_i}) = \Pi G(k_{T_i}) \quad (2.5.5)$$

We also have to worry about the cross terms, $k_{T_i} \cdot k_{T_j} (i \neq j)$, in H_n. These cannot average to zero, as we can see by considering

$$0 \equiv <p_{TA}^2> = <(\sum_{i=1}^n k_{T_i})^2> = \sum_{i=1}^n <k_{T_i}^2> + 2 \sum_{i>j} <k_{T_i} \cdot k_{T_j}>$$

$$= n<k_T^2> + 2 \sum_{i>j} <k_{T_i} \cdot k_{T_j}>$$
However this identity is satisfied for all \(n \) by choosing

\[
\langle k_{T_i} \cdot k_{T_j} \rangle = -\frac{\langle k_i^2 \rangle}{n-1} \quad (i \neq j)
\]

which may be written generally as

\[
\langle k_{T_i} \cdot k_{T_j} \rangle = \frac{\langle k_i^2 \rangle}{n-1} (n \delta_{ij} - 1) \quad (2.5.6)
\]

An example of both of these assumptions at work is an exponential of the form

\[
G(k_T) = \exp \left[\frac{\langle k_i^2 \rangle}{\Lambda_T^2} \right] \exp \left[\frac{-k_i^2}{\Lambda_T^2} \right]
\]

where \(\Lambda_T \) is a constant with dimensions of momentum.

Substituting \(k_T = \sum_{i=1}^{n-1} k_{T_i} \) we obtain

\[
G(\sum_{i=1}^{n-1} k_{T_i}) = \exp \left[\frac{\langle k_i^2 \rangle}{\Lambda_T^2} \right] \exp \left[\sum_{i=1}^{n-1} \frac{-k_{T_i}^2}{\Lambda_T^2} \right] \exp \left[\sum_{i>j}^{n-1} \frac{-2 \cdot k_{T_i} \cdot k_{T_j}}{\Lambda_T^2} \right]
\]

\[
= \exp \left[\frac{-(n-2)\langle k_i^2 \rangle}{\Lambda_T^2} \right] \exp \left[\sum_{i>j}^{n-1} \frac{-2 \cdot k_{T_i} \cdot k_{T_j}}{\Lambda_T^2} \right] \prod_{i=1}^{n-1} G(k_{T_i})
\]

The second exponential can be regarded as part of \(H_n \) when the \(k_T \)-integrals are done, and so the \(k_{T_i} \cdot k_{T_j} \) are given by (2.5.6). This is exactly what is required, for then the two exponentials cancel to produce (2.5.5).
Returning to (2.5.2), we integrate over the δ-function, and build in (2.5.5) and (2.5.3). This gives

\[I_n = \int \prod_{i=1}^{n-1} d^2 k_{Ti} G^2(k_{Ti}^2) H_n(\{ k_{Ti} \cdot k_{Tj} \}) \] \hspace{1cm} (2.5.7)

We do the remaining integrals as in (2.5.4), adding the sophistication of (2.5.6), obtaining the final result

\[I_n = \prod_{i=1}^{n-1} \langle k_i^2 \rangle \prod_{i=1}^{n-1} H_n(\langle k_i^2 \rangle (n \delta_{ij} - 1)) \] \hspace{1cm} (2.5.8)

This prescription will enable us to do any k_T-integrals we come across from now on.

There is one further assumption that we make, that ⟨k_i^2⟩ is independent of n, and so is the same for both baryons and mesons, and higher Fock states. This is clearly not exactly true, as H_n is different for each case, but it should be a reasonable approximation. The conjugate statement to this is that all hadrons have the same shape and size, and we know this is not a bad first approximation.

Anyway, armed with (2.5.8), we now return to deriving valence quark distributions.
2.6 RESULTS

If we expand the dot products in (2.4.6) using (1.5.6), the $n k_i^2$-integrals over the δ-functions can be done trivially, and the $n k_{T_i}$-integrals done using the prescription of (2.5.8), to give

\[
\left(\begin{array}{c}
\frac{C_n}{2h'} \left[\prod_{i=1}^{n-1} \pi \left(\frac{dx_i}{x_i} \right) \right] \\
\delta(1 - \sum_{i=1}^{n} \xi_i) \langle |g_n|^{2} \rangle \\
\frac{x_i^2 (m_i^2 - \langle m_{T_i}^2 \rangle)^2}{x_i} \end{array} \right) = \frac{n}{n} \prod_{i=1}^{n} \xi_i \left(\frac{\langle m_{T_i}^2 \rangle}{x_i} + m_i^2 x_i + 2m_A x_i \right)
\]

where $\langle m_{T_i}^2 \rangle$ is defined by

\[
\langle m_{T_i}^2 \rangle = m_i^2 + \langle k_i^2 \rangle
\]

(2.6.1)

Using the full expression for a flux factor, (1.4.3),

\[
\begin{align*}
h &= \frac{\left[((p_1 + q) . k_n)^2 - m_1^2 k_n^2 \right]^{\frac{1}{2}}}{h'} \\
h' &= \frac{\left[((p_1 + q) . p_A)^2 - m_1^2 m_A^2 \right]^{\frac{1}{2}}}{h'}
\end{align*}
\]

(2.6.3)

Provided we work in a frame where all masses are negligible compared to momenta this can be greatly simplified. Putting $m_1=0$ and using (1.5.6) for the dot products, (2.6.3) becomes
\[h = \frac{(p_1+q)^+ k_n^- + (p_1+q)^- k_n^+ - 2(p_{T1}+q_{T}) \cdot k_{Tn}}{h'} \]

\[h' = (p_1+q)^+ P_A^- + (p_1+q)^- P_A^+ \]

\[\frac{(p_1+q)^+ k_n^-}{(p_1+q)^- P_A} = x_n \quad (2.6.4) \]

where to get the final result we picked the terms top and bottom which dominate in the large momentum limit.

If we make the definitions

\[V_n = \frac{1}{2} |C_n|^2 \left[\frac{\prod_{i=1}^{n} \xi_i}{(2\pi)^3} \right] \]

\[\alpha = \frac{-m_A^2}{\langle k_T^2 \rangle} \quad \beta_i = \frac{\langle m_{T1i}^2 \rangle}{\langle k_T^2 \rangle} \quad \gamma_i = \frac{m_{A1i}}{\langle k_T^2 \rangle} \quad (2.6.5) \]

where \(V_n \) is now a dimensionless constant, we can simplify the expression for \(f_{A_n}^n(x_n) \). Substituting (2.6.4) and (2.6.5) into (2.6.1) we obtain

\[f_{A_n}^n(x_n) = V_n \int_0^1 \prod_{i=1}^{2(n-2)} \delta(1 - \sum_{i=1}^{n} x_i) |g_n|^2 \langle k_T^2 \rangle^{2(n-2)} \]

\[\frac{\prod_{i=1}^{n} \left(\frac{\beta_i}{x_i} + \alpha x_i + 2\gamma_i \right)}{x_n (\alpha - \sum_{i=1}^{n} \frac{\beta_i}{x_i})^2} \]

The final tidying up is done by using the definitions for \(|g_n|^2 \), (2.6.6), which give
\[f_A^n(x_n) = V_n \int_0^1 \prod_{i=1}^{n-1} [dx_i] \frac{\delta(1- \Sigma x_i)}{\prod_{i=1}^n \beta_i^{2(n-1)}} \]

\[= \int_0^1 \prod_{i=1}^{n-1} [dx_i] \delta(1- \Sigma x_i) f_A^n(\{x_i\}) \quad (2.6.7) \]

We now discuss the important features of this result, and compare it (although contrast might be a better word) with the experimental data.

2.7 COMMENTS AND COMPARISON WITH EXPERIMENT

We promised for the case \(n=2 \) that our choice of label 1 for the antiquark would have no effect on the result. The symmetry of the expression (2.6.7) shows this to be true.

We also promised that the results for both \(n=2 \) and 3 would satisfy the dimensional counting rules; (see Section 1.7). Consider the behaviour of (2.6.7) in the limit \(x_n \rightarrow 1 \). The denominator gives \(2(n-1) \) powers of \(x_i \) (\(i < n \)), each of which generates a power of \((1-x_n) \) after integration. The integrals themselves give \((n-2) \) powers of \((1-x_n) \) (as there are \(n-1 \) integrals, and we lose one to the \(\delta \)-function), but the fermion
traces (in the square brackets) knock off \((n-1)\) powers of \((1-x_n)\). Therefore

\[
 f_A^n(x_n) \sim \frac{(1-x_n)^{2(n-1)-1}}{x_n^{n-1}} \tag{2.7.1}
\]

in agreement with (1.7.23) since \(n_{\text{gmin}} = n-1\). Our choices for the numerators of \(|g_n|^2\) in (2.n.n+2) cancel the leading behaviour of the square brackets in (2.6.7), in agreement with Gunion's comment (18) that fermion traces typically cancel against gluon propagators in QCD.

The expression for \(f_A^n(x_n)\) has been derived with \(n=2\) or \(3\) in mind, but clearly (2.6.7) could also be used for any integer \(n > 3\). This is of little interest at the moment, since exotic hadrons (with, for example, \(\bar{q}qqq\bar{q}\) as the valence Fock state) have yet to be observed.

The next topic of discussion is the denominator \((\alpha - \sum_{i=1}^{n} \frac{\beta_i}{x_i})\) and its effect on \(f_A^n(x_n)\). We observe that if

\[
 m_A = \sum_{i=1}^{n} \frac{m_{T_i}^2}{m_A} \text{ and } x_i = \frac{<m_{T_i}^2>^{\frac{1}{2}}}{m_A} \tag{2.7.2}
\]

which using (2.6.5) can be written

\[
 \alpha^{\frac{1}{2}} = \sum_{i=1}^{n} \beta_i^{\frac{1}{2}} \text{ and } x_i = (\frac{\beta_i}{\alpha})^{\frac{1}{2}} \tag{2.7.3}
\]
the denominator vanishes. If we divide $f^n_A(x_n)$ by its integral over x_n to normalize, and then take the limit $a^{\frac{1}{2}} \to \sum_{i=1}^{n} \beta_i^{\frac{1}{2}}$, the result is

$$f^n_A(x_n) = \delta(x_n - \frac{\beta_n}{a})$$ (2.7.4)

Defining the (dimensionless) binding Δ by

$$\langle k_T^2 \rangle^{\frac{1}{2}} \Delta = \langle k_T^2 \rangle^{\frac{1}{2}} (\sum_{i=1}^{n} \beta_i^{\frac{1}{2}} - a^{\frac{1}{2}}) = \sum_{i=1}^{n} \langle m_{T_i}^2 \rangle^{\frac{1}{2}} - m_A$$ (2.7.5)

we see that in order to avoid the unrealistic result of (2.7.4), (or worse, a zero in the denominator in (2.6.7)), we must always have

$$\Delta > 0 \equiv \sum_{i=1}^{n} \langle m_{T_i}^2 \rangle^{\frac{1}{2}} > m_A$$ (2.7.6)

It is therefore the quark transverse mass $\langle m_{T_i}^2 \rangle^{\frac{1}{2}}$ (defined by (2.6.2)), and not the current mass m_i (which appears in the propagator), that is the important quantity here.

For this reason, and also because all the momentum of the hadron is carried by the valence quarks, $f^n_A(x_n)$ must be thought of as a constituent (as opposed to current) quark distribution. This is clearly a problem when it comes to making comparisons with experiment.

Before we plot (2.6.7) for $n=2$ and 3 we need to
decide on the values of α, β_i and γ_i. In table 2a we list the masses we use, from which α, β_i and γ_i are calculated using (2.6.5). In all our calculations we take $<k,p>^i = 0.45$ GeV, because we shall find this gives the best results for hadron production later on. Figure 2.3 shows that the proton valence distribution is not particularly sensitive to this choice (provided we stay well away from $<k_T^2>^i = \frac{m_p}{3} = 0.313$ GeV).

<table>
<thead>
<tr>
<th>Flavour (Q)</th>
<th>m_Q</th>
<th>$<m_{iQ}^2>^i$</th>
<th>m_{M_Q}</th>
<th>$m_{M_Q}^*$</th>
<th>m_{Λ_Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>0.0</td>
<td>0.450</td>
<td>0.140</td>
<td>0.769</td>
<td>0.938</td>
</tr>
<tr>
<td>d</td>
<td>0.0</td>
<td>0.450</td>
<td>(m_{\pi})</td>
<td>(m_{\rho})</td>
<td>(m_{p})</td>
</tr>
<tr>
<td>s</td>
<td>0.355</td>
<td>0.573</td>
<td>0.494</td>
<td>0.892</td>
<td>1.116</td>
</tr>
<tr>
<td>c</td>
<td>1.627</td>
<td>1.688</td>
<td>1.869</td>
<td>2.010</td>
<td>2.282</td>
</tr>
<tr>
<td>b</td>
<td>5.078</td>
<td>5.098</td>
<td>5.270</td>
<td>5.412#</td>
<td>5.684#</td>
</tr>
<tr>
<td>(i)</td>
<td>25.00</td>
<td>25.00</td>
<td>25.18#</td>
<td>25.32#</td>
<td>25.59#</td>
</tr>
<tr>
<td>t (ii)</td>
<td>35.00</td>
<td>35.00</td>
<td>35.18#</td>
<td>35.32#</td>
<td>35.59#</td>
</tr>
<tr>
<td>(iii)</td>
<td>45.00</td>
<td>45.00</td>
<td>45.18#</td>
<td>45.32#</td>
<td>45.59#</td>
</tr>
</tbody>
</table>

Table 2a: The hadron masses \(^{21}\) and quark masses used in all our calculations, in GeV.
Figure 2.3: f_p^3 calculated from (2.6.7) for $<k_T^2>^{1/2} = 400(- - -)$, 450(--), and 600(-----) MeV, normalized to unit area.
We choose the current masses of the up and down quarks to be zero, and consider three possible masses for the top quark. The other quark masses are chosen so that Δ (defined by (2.7.5)) is the same for the relevant vector meson as it is for the ρ. It is much better to consider the vector mesons for this, because Δ is anomalously large for the pion due to its very small mass, which presumably reflects its special role as a Goldstone boson. The unknown hadron masses (# in table 2a) are chosen to give the same Δ as for their known counterparts. Thus m_A^0 and m_A^+ are chosen so Δ is the same as for the Λ_C^+, m_B^* and m_T^* are chosen so Δ is the same as for the other vector mesons, and the m_T are chosen so that

$$m_{T^*} - m_T = m_{B^*} - m_B = m_{D^*} - m_D$$ \hspace{1cm} (2.7.7)

This last relation is reminiscent of the results derived from assuming a logarithmic interquark potential in potential model calculations (22).

The valence distributions calculated from (2.6.7) are shown in figure 2.4. For the baryons the one

Figure 2.4: The constituent valence quark distributions calculated from (2.6.7) with $n=2$ and 3 using the numbers from table 2a.(i), (ii) and (iii) correspond to $m_T = 25, 35$ and 45 GeV respectively.
Figure 2.4

- $f_{u,d}^\pi$
- $f_{u,d}^p$
- $f_{u,d}^p$
- f_K^s
- f_K^s
- $f_{\Lambda_s}^s$
- f_D^c
- f_D^c
- $f_{\Lambda_c}^c$
- f_B^b
- f_B^b
- $f_{\Lambda_b}^b$
- f_T^t
- f_T^t
- $f_{\Lambda_t}^t$
- f_T^t
- f_T^t
- $f_{\Lambda_t}^t$
- f_T^t
- f_T^t
- $f_{\Lambda_t}^t$
non-trivial x-integral is done numerically; it is possible analytically, but difficult. Figure 2.4 shows that for both scalar and vector mesons, and baryons, as the quark mass increases (relative to the other constituents' masses) it carries an increasing fraction of the hadron's momentum. We can understand this result by the intuitive argument\(^{(7)}\) that in order to "hold together" in the hadron the quarks must have the same velocity. This simple (non-relativistic) picture works for valence distributions, but, as we shall see in Chapter 4, is not good enough when we come to consider the higher Fock states of hadrons.

For each flavour the scalar meson distribution is broader than that of its vector counterpart. This is due to the fact that \(A \) is always larger for the scalars, and increased binding results in a greater spread of momentum.

The origin of both the observations we have just made is the denominator \((a - \sum_{i=1}^{n} \frac{\beta_i}{x_i}) \). For this reason the results obtained are similar to those of Brodsky et al\(^{(7)}\), as they have such a denominator in their expression for the distribution function. However the rest of their ingredients are rather different to ours. They choose to omit the \(1/x_i \)'s from the phase-space, and always assume that \(\Gamma_n \) has no
x-dependence. As a consequence their distributions do not always obey the dimensional counting rules as \(x \to 1 \); (they obtain \((1-x)^2\) and \((1-x)^3\) for mesons and baryons respectively). These differences do not play much of a role here, because, as we have said, it is the denominator that matters most. However, when we consider higher Fock states in Chapter 4 we will find that the dimensional counting behaviour is more significant.

We should make one more comment on the choice of \(\langle k^2 \rangle \). In Section 2.5 we made it the same for all baryons and mesons. This assumption must be qualified a bit, or problems could arise if we applied it to more excited mesons and baryons of greater spin; (to be precise mesons with spin > 1 and baryons with spin > 3/2). For then particles exist for which \((2.7.6)\) does not hold if \(\langle k^2 \rangle^T = 0.45 \text{ GeV} \). These particles, in simple constituent quark models, are considered to be excitations of the lower spin ones, with some quark orbital angular momentum (1) so we would expect \(\langle k^2 \rangle^T \) to be larger. We therefore need to choose a value of \(\langle k^2 \rangle^T \) increasing with 1, but since we only consider \(l = 0 \) hadrons in this work our single choice is sufficient.

To close this section we compare the predictions of \((2.6.7)\) with experiment, to the extent that such a comparison is possible. As we have already stressed,
our distributions are of constituent rather than current quarks. Experiments measure the latter. For pions this is done via the Drell-Yan process, and for nucleons by deep inelastic scattering. In each case it is found that only a fraction of the hadron's momentum is carried by the valence quarks, the remainder being carried by \(q\bar{q} \) pairs and gluons in the sea. These fractions are listed in table 2b.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi)</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>(p, n)</td>
<td>0.32 ± 0.01</td>
</tr>
</tbody>
</table>

Table 2b: The measured fraction of momentum carried by the valence quarks in a pion \(^{(23)}\) and a nucleon \(^{(24)}\).

We make the following definitions

\[
F_{\pi}(x) \equiv 2xf_{\pi}^2(x) = 2xf_{\pi}^2(x) \quad (2.7.8)
\]

\[
F_{2}^{A}(x) = \Sigma e_{3}^{2}xf_{A}^3(x) \quad (2.7.9)
\]

as these are what experimentalists actually plot.

The final form of (2.7.8) follows because

\[
f_{\pi}^{q}(x) = f_{\pi}^{q}(x). \quad \text{The x here is Bjorken-x, defined by (1.6.1).} \quad (2.7.9) \]

is the usual nucleon structure function, (1.6.16), defined just for the valence Fock state, and (2.7.8) is the same for a pion, except the
Figure 2.5: Our prediction for $F_\pi(x)$, calculated from (2.7.9) using (2.7.12) and the factor from table 2b, compared with the data (23).
quark charge is omitted. For nucleons in fact what is plotted is $F_2^p(x) - F_2^n(x)$ as the sea, being the same for both, then cancels. Using (2.7.9) this may be written

$$F_2^p(x) - F_2^n(x) = \sum e_u^2 f_3^u(x)x - \sum e_d^2 f_3^d(x)x$$

$$= x f_3^u(x)$$ (2.7.10)

using the quark charges $e_u=2/3$, $e_d=-1/3$.

The normalizations of our distribution functions are

$$\int_0^1 dx x f_A^n(x) = 1/n$$ (2.7.11)

for $A = n, p$ and $n=2,3$ respectively, as the constituent quarks carry all the momentum and have equal mass. To compare with the data we put in by hand the relevant factor from table 2b, which ensures the areas under the experimental and theoretical curves are equal. In figures 2.5 and 2.6 we plot (2.7.8) and (2.7.10) respectively.

In both cases the theoretical peak is at larger x than the experimental one. This is because if a constituent quark is probed at large momentum transfer squared (Q^2), as happens in the experiments, its structure is resolved, and its momentum distribution is suppressed to lower x by QCD evolution (4,25). The
Figure 2.6: Our prediction for $F_2^P(x)$-$F_2^N(x)$, calculated from (2.7.11) using (2.7.12) and the factor from table 2b, compared with the data$^{(26)}$.
discrepancies in figures 2.5 and 2.6 therefore reflect the amount of QCD evolution from Q_0^2 (where the constituent quarks are just resolved) up to the Q^2 at which the distributions are measured; we are not comparing like with like. A much better comparison of our model with experiment comes in the next chapter, when we consider fragmentation functions.
CHAPTER 3

HEAVY QUARK FRAGMENTATION FUNCTIONS

3.1 DISTRIBUTION OF TWO SPINLESS CONSTITUENTS

3.1.1 Introduction

So far we have been considering the x-distributions of quarks inside hadrons, for which the physical region of x is 0 ≤ x ≤ 1. We can also consider the possibility of a hadron being produced by a quark with a fraction z of the quark's (light cone) momentum. When the quark fragments, all the resultant hadrons lie in the region 0 ≤ z (=1/x) ≤ 1. If their momenta are large this is a very good approximation, because the interactions between different fragmenting partons will be small by comparison.

When we consider the z-distributions of these hadrons, called fragmentation functions (D_q^A(z)), we will need a model of, for example, the distribution of a D-meson inside a D*, if we are to make comparisons with experimental data. This is because when experimentalists measure the distribution of D-mesons from charmed quarks produced in an e^+e^--collider, what they really measure is the distribution of D's which come directly from the quarks added to that of D's which come from D*'s. In principle we could also consider even higher excited states. Clearly then, we shall not only need the fragmentation functions D_c^D and D_c^{D*}, but also a model for the
distribution of D's inside D^*'s, $f_{D^*}^D$, in order to make a prediction to compare with the data. With foresight we therefore first construct a model distribution for two spinless constituents inside a hadron.

The idea we use is about the simplest possible. We assume the heavy vector meson consists of a heavy scalar meson and a pion, and that these interact via a four-point interaction, as shown in figure 3.1. Our justification is the most important features of the distribution we need to get correct are the position and width of the peak. The dominant factor determining these is the denominator of the heavy scalar meson propagator. This is present in virtually any model, independent of the other constituents of the vector meson and the dynamics of the interaction, and always has the same effect as long as the other constituents are light by comparison. So, although the behaviour at the limits of x may not be particularly realistic, the distribution should be satisfactory in the region where it matters.

We again employ a photon for our probe, but, as before, the final result will not depend on this choice. Defining our distribution in the same manner as for quarks in a meson, we have

$$16 \pi^3 E_1 \frac{d^3 \sigma(1V+1X)}{d^3 P_1} = \sum S \int_0^1 dx S \frac{E_1}{S} \frac{d^3 \sigma(1S+1S)}{d^3 P_1} \tag{3.1.1}$$
Figure 3.1: The four-point interaction between two spinless particles, showing their four-momenta.
where \(V \) is the vector meson, and \(S \) a scalar. The summation is over the different constituents of \(V \) in this picture. Mueller's theorem, (1.4.7), gives an alternative expression for the left hand side, namely

\[
\frac{16 \pi^2 E_1 d^3 \sigma (1V \cdot 1X)}{d^3 p_1} = \frac{2}{h'} \text{Disc}(A_{1TV} \cdot 1TV) \tag{3.1.2}
\]

where \(h' \) is the flux factor and

\[
\text{Disc}(A_{1TV} \cdot 1TV) = \text{Disc} \tag{3.1.3}
\]

Equating (3.1.1) and (3.1.2), using (3.1.3) and taking just one term in the summation, we obtain

\[
\int_0^1 dx_2 f_{V}^{S}(x_2) 16 \pi^2 E_1 d^3 \sigma (1S \cdot 1S) = \frac{2}{h'} \text{Disc} \tag{3.1.4}
\]
We now follow the familiar pattern of modelling \(r^S \)
and then calculating \(f^S \).

3.1.2 Wavefunction Model and Calculation

Modelling \(r^S \) is easy. We assume the hadronic binding is the same as for quarks inside a hadron. The \(k_T \)-dependence is therefore given by (2.5.1). The particles are spinless, so no spinor structure is required, which only leaves a possible \(x \)-dependence due to the interaction of figure 3.1. However the vertex is a constant, so we make the very simple choice

\[
\Gamma^S = C^V G^{3/2}(k^2_{T1}) G^{3/2}(k^2_{T2})
\]

(3.1.5)

remembering (2.5.3). \(C^V \) is a constant.

The sub-process cross-section in (3.1.4) is similar to (1.6.7). There is one less factor \(\frac{1}{2} \) for spin averaging, as one particle is now a scalar, and the photon must couple to this scalar by the correct vertex\(^{(9)}\).

Allowing for these differences we get

\[
16 \pi^2 \frac{d^{3} \sigma(1S \rightarrow 1S)}{d \mathbf{p}_1} = \frac{e^4 e_2^2}{2 \hbar^4} (2\pi)^3 \delta((k_2 + q)^0) \delta((k_2 + q)^2 - m_2^2)
\]

\[
L^\mu \nu (2k_2 + q)_\mu (2k_2 + q)_\nu
\]

(3.1.6)
If we insert (3.1.5) into (3.1.4), average over the spin of the lepton, and evaluate the discontinuity, it reads

\[
\int_0^1 \frac{d^4k_1 d^4k_2 \delta^4(p_A - k_1 - k_2) e^4 e^2}{(2\pi)^4 (k_2^2 - m_2^2 + i\epsilon)(k_2^2 - m_2^2 - i\epsilon)}
\]

\[
\frac{|C_V|^2 G(k_{T1}^2) G(k_{T2}^2)}{(q^2 + i\epsilon)(q^2 - i\epsilon)} (2\pi)^2 \theta(k_1^0) \delta(k_1^2 - m_1^2) \theta((k_2 + q)^0)
\]

\[
\delta((k_2 + q)^2 - m_2^2) \frac{1}{4} \mu \nu (2k_2 + q)_\mu (2k_2 + q)_\nu
\]

(3.1.7)

As before, we change to light cone variables using (1.5.5) and (2.4.3), equate the integrands, substitute (3.1.6), and cancel all the factors multiplying \(f_V \). The result is

\[
f_V(x_2) = \frac{|C_V|^2 h}{4(2\pi)^3 h'} \int \frac{dx_1}{x_1} d^2k_{T1} d^2k_{T2} d(k_1^2) d(k_2^2)
\]

\[
\delta(1-x_1 - x_2) \delta^2(k_{T1} + k_{T2}) G(k_{T1}^2) G(k_{T2}^2) \theta(k_1^0) \delta(k_1^2 - m_1^2)
\]

\[
\frac{1}{(k_2^2 - m_2^2)^2}
\]

(3.1.8)

We integrate over the \(\delta \)-functions in \(k^2 \) and use (2.5.8) for the \(k_T \)-integrals. Making the definitions

\[
V = \frac{\pi |C_V|^2}{4(2\pi)^3<k_T^2>}; \quad a_V = \frac{m_V}{<k_T^2>}
\]

(3.1.9)
and employing (2.6.4) and (2.6.5), leads to the final result

\[f_S^{(x_2)} = V \int \frac{d^2 \delta(1 - \sum_{i=1}^{2} x_i)}{x_1 x_2 (a_V - \sum_{i=1}^{2} \beta_i)^2} \]

(3.1.10)

As we have already stressed, this simple expression should be good enough for our purposes, because it contains the denominator \((a_V - \sum_{i=1}^{2} \beta_i)^2\), which governs the peak in \(f_S^{(x_2)}\).

We now continue to the region \(x > 1\), and consider the reciprocal process of fragmentation.

3.2 FRAGMENTATION FUNCTIONS

A fragmentation function, \(D^A_i(z_A)\), is the probability density in \(z_A\) of a quark \(i\) fragmenting to a hadron \(A\), which carries a fraction \(z_A\) of the quark's (light cone) momentum. Thus in \(e^+ e^- \rightarrow \) hadrons, the defining equation is

\[\frac{1}{d^2 \sigma(e^+ e^- \rightarrow AX)} = \frac{1}{\sigma_{\text{tot}}} \sum_{i} \frac{e_i^2}{1} \left[e_i^2 (D^A_i(z_A)) + D^2_i(z_A) \right] \]

(3.2.1)

To derive an expression for \(D^A_i(z_A)\) we use the method developed for distribution functions. The relationship between the \(D\)'s and \(f\)'s will be brought out when we model the wavefunction.
Before starting the calculation, we discuss the inclusion of the word "heavy" in the title of this chapter, for which there is a good reason. If an experiment sets out to measure a fragmentation function of a quark \(i \) to a meson \(A \) then what will be measured is

\[
D^A_i(z_A) = \sum_{m=1}^{\infty} D^A_{i,m}(z_A) \quad (3.2.2)
\]

where \(D^A_{i,m}(z_A) \) is defined as the fragmentation function for \(i \) going to \(A \) and \(m-1 \) other partons, \((m \geq 2)\). The summation is not only over \(m \), but all possible sets of partons for each \(m \) value as well.

For light quark fragmentation many terms in this summation contribute. However, for a heavy quark fragmenting to a meson containing that heavy quark, the single term with \(m=2 \) will dominate\(^{(28)}\). This is because most of the quark momentum carries through to the hadron, due to the large quark and hadron mass. Since \(m \geq 3 \) for a baryon this predicts that heavy quarks should fragment predominantly to heavy mesons, in agreement with experimental observations.

As valence constituent quark distributions are not measured experimentally, we had difficulty in testing our predictions in Chapter 2. However, providing we consider only heavy quarks, the expression we derive for \(D^A_i(z_A) \) will be directly comparable with data.
We begin the derivation by again using (1.4.7), in the form

\[16 \pi^2 \int d^3 \sigma (e^+ e^- \rightarrow A X) = 2 \frac{2}{h} \text{Disc}(A e^+ e^- e^- e^-) \quad (3.2.3) \]

where

\[\text{Disc}(A e^+ e^- e^- e^-) = \text{Disc} \]

We only consider \(\Gamma_2 \) as the quark is heavy. This expression is clearly very similar to (2.1.2), summed just for \(m=2 \). In (3.2.4) we change the labels \(p_1 + k_A \), \(k_1 + p_1 \) for the fragmenting quark, and \(\Gamma_2 \), to bring out the fact that we are in an unphysical region as far as (2.1.2) is concerned. Our axis is now given by the three-momentum of the quark, rather than the hadron.

Since \(z_A \) is defined by

\[z_A = \frac{k_A^+}{p_1^+} \quad (3.2.5) \]

it follows that
With this we integrate (3.2.3), obtaining an expression which equates to (3.2.1). Picking the term in the summation where i fragments to A, and using

$$\sigma_{\text{tot}} = \sigma(e^+ e^- + X) = 3\sigma(e^+ e^- \rightarrow \mu^+ \mu^-) \sum_i e_i^2$$

(3.2.7)

where the factor 3 is from summing over colours, we get

$$3e_i^2 D_i^A(z_A) \sigma(e^+ e^- \rightarrow \mu^+ \mu^-) = \frac{d^2 k_{TA}}{16\pi^3 z_A} \frac{2}{h} \text{Disc}$$

(3.2.8)

To proceed further we need a model for $\tilde{\Gamma}_2$.
3.3 WAVEFUNCTION MODEL

\(r_2 \) has the same ingredients as \(T^r \), so we define

\[
\hat{r}_2 = \hat{r}(z_1, z_2, z_3, z_4) G(k_{T_1}^2) G(k_{T_2}^2) \bar{u}_1(\xi_1 k_A) u_1(-\xi_1 k_A) \\
(3.3.1)
\]

The spinor structure is similar to that of (2.2.1), except hadron A is now a final state particle, so the quark (label i) and antiquark (label 1) are out-going. The \(\xi \)'s are now the final four-momentum fractions, with \(\xi_i + \xi_1 = 1 \).

\(k_T \) is defined relative to the three momentum of the fragmenting quark. We assume the function which governs the binding of hadrons and quarks inside a quark is the same as that for quarks inside a hadron, \(g(k_t) \), and build in (2.5.3) to give the \(k_T \)-dependence of (3.3.1).

\(z_A \) is defined by (3.2.5), and \(z_1 \) by

\[
z_1 = \frac{k_{T_1}^+}{p_{T_1}^+} \\
(3.3.2)
\]

To determine \(g_2(z_A, z_1) \) we use the fact that (2.1.3) with \(n=2 \) and (3.2.8) describe the same process in different physical regions, so at the boundary between them the \(z \)-dependence of \(\hat{r}_2 \) must be equivalent to the \(x \)-dependence of \(r_2 \). \(D_T^A(z_A) \) is then a smooth continuation of \(f_A^1(x_2) \)
to an unphysical value of x_2, and vice versa. This is known as "reciprocity".

We therefore choose

$$|g_2(z_A, z_1)|^2 = -z_A^2 z_1$$ \hspace{1cm} (3.3.3)

which may seem rather odd at first, although since we have a hadron and a quark there is no reason for it to be symmetric. Using light cone momentum conservation, $z_A + z_1 = 1$, (3.3.3) may be written

$$|g_2|^2 = -z_A^2 (1-z_A)$$ \hspace{1cm} (3.3.4)

and therefore

$$|g_2|^2 \bigg|_{z_A = 1} = 0 \hspace{0.5cm} ; \hspace{0.5cm} \frac{\partial}{\partial z_A} |g_2|^2 \bigg|_{z_A = 1} = 1$$ \hspace{1cm} (3.3.5)

If we re-write (2.2.4) using $x_1 + x_2 = 1$, it reads

$$|g_2|^2 = x_A (1-x_A)$$ \hspace{1cm} (3.3.6)

From (1.5.4) and (3.2.5) it follows that

$$x_2 = \frac{1}{z_A}$$ \hspace{1cm} (3.3.7)

and substituting this into (3.3.6) we find
\[|g_2|^2 \bigg|_{z_A=1} = 0 ; \quad \frac{\partial}{\partial z_A} |g_2|^2 \bigg|_{z_A=1} = 1 \quad (3.3.8) \]

\(z_A = \frac{1}{x_2} = 1 \) is where the physical regions for \(D_A(z_A) \) and \(f_A(x_2) \) meet, so (3.3.5) and (3.3.8) show that our choice for \(\tilde{\tau} \), (3.3.3), does indeed join smoothly to \(|g_2|^2 \) at this point. This \(z \)-dependence will also cancel that of the fermion traces in our calculation, so the result for \(D_A(z_A) \) will satisfy the dimensional counting rules.

The final ingredient in (3.3.1) to be accounted for is \(C_2 \). This is simply a constant, dependent on the normalization of \(D_A(z_A) \).

3.4 CALCULATION

We now return to (3.2.8), substitute (3.3.1), evaluate the discontinuity, and average over the spins of the external fermions, obtaining

\[
3e^2 D_A(z_A) \sigma(e^+e^-\mu^+\mu^-) = -\frac{3}{\hbar} \int \frac{d^2k_A d^4p_1 d^4k_1}{16\pi^3 z_A (2\pi)^4} \\
\delta^4(p_1 - k_A - k_1) e^4e_1^2 \\
\xi_1 \xi_1 |C_2|^2 z_A^2 z_1 G(k_{TA}^2) G(k_{11}^2)(2\pi)^2 \theta(k_1^0) \\
(p_1^2 - m_1^2 + i\epsilon)(p_1^2 - m_1^2 - i\epsilon) \\
\delta(k_1^2 - m_1^2) \theta((q - p_1)^2 - m_1^2) - m_1^2) (q^2 + i\epsilon)(q^2 - i\epsilon)
\[
\frac{1}{4} \frac{1}{4} T_{4\mu
u}(k_A, p_i, p_i - q, p_i) T_2(-k_A, k_i) \tag{3.4.1}
\]

The 3 on the right hand side comes from summing over the colours of \(i \), and the traces are defined by (1.6.4) and (2.4.2).

We write \(\sigma(e^+e^-\gamma^+\gamma^-) \) in the form

\[
\sigma(e^+e^-\gamma^+\gamma^-) = \int \frac{dp_i^+ dp_i^- e^4(2\pi)^4}{16\pi^3 p_i^+ 4\pi q^4} \delta((q-p_i)^0) \delta((q-p_i)^2-m_i^2)
\]

by integrating (1.6.7) using (3.2.6). \(T_{2\mu\nu} \) is defined by (1.6.8), and the flux factor \(h \) is the same as in (3.4.1). We change to light cone variables by substituting (1.5.5) and (2.4.3) into (3.4.1), along with (3.4.2). Equating the integrands, cancelling, operating with \(P^+\mu P^+\nu \) (defined by (1.5.2)), and cancelling again, we obtain

\[
D_i^A(z_A) = -\frac{C_2}{4(2\pi)^3} \int dz_1 d^2 k \frac{d^2 k_{TA} d^2 k_{T1}}{z^2 A z^2_1} \delta((1-z_A-z_1) \delta(k_{TA}^2 - k_{T1}^2) G(k_{TA}^2) G(k_{T1}^2) d(k_1^0) \delta(k_1^2-m_1^2) d(p_i^2)
\]

\[
\delta^2(k_{TA}^2 - k_{T1}^2) G(k_{TA}^2) G(k_{T1}^2) d(k_1^0) \delta(k_1^2-m_1^2) d(p_i^2)
\]

\[
\delta(p_i^2-m_i^2-k_{1A}^2-2k_A\cdot k_i) \left(-2k_A\cdot k_i+2m_A m_i\right) \left(p_i^2-m_i^2\right)^2
\]
(2k_A \cdot p_i + 2m_{A_1} m_1 - z_A (p_i^2 - m_i^2)) \quad (3.4.3)

We replace the dot products using (1.5.6), being careful about the axis that defines k_T, and integrate over k_T^2, p_i^2, and the transverse momenta using (2.5.8), which gives

\[
D^A_1(z_A) = \frac{\pi \langle k_T^2 \rangle}{4(2\pi)^3} \int dz_1 \delta(1-z_1-z_A) z_A^2 z_1 \int \frac{dz_1^2}{z_A z_1} \left(\frac{m_i^2}{z_A} - \frac{m_A^2}{z_1} \right)^2
\]

\[
\frac{\langle z_1^2 m_{TA}^2 \rangle + z_A \langle m_{T1}^2 \rangle + 2 \langle k_T^2 \rangle - 2m_{A_1} m_1 \rangle}{z_A z_1} \quad (3.4.4)
\]

$\langle m_T^2 \rangle$ is defined by (2.6.2). We tidy (3.4.4) by using some of the definitions from (2.6.5), and making the new ones

\[
\frac{\langle z_1^2 m_{TA}^2 \rangle + z_A \langle m_{T1}^2 \rangle + 2 \langle k_T^2 \rangle - 2m_{A_1} m_1 \rangle}{z_A z_1} \quad (3.4.5)
\]

The final result is

\[
D^A_1(z_A) = V_2 \int \frac{dz_1}{z_A z_1} \delta(1-z_1-z_A) z_A^2 z_1 \int \frac{dz_1^2}{z_A z_1} \left(\frac{m_i^2}{z_A} - \frac{m_A^2}{z_1} \right)^2
\]

\[
\frac{\langle z_1^2 m_{TA}^2 \rangle + z_A \langle m_{T1}^2 \rangle + 2 \langle k_T^2 \rangle - 2m_{A_1} m_1 \rangle}{z_A z_1} \quad (3.4.6)
\]
This has a similar structure to the expression for $f_2^2(x_2)$, (2.6.7) with $n=2$. The differences arise because here a quark goes to a hadron and a quark, instead of a hadron going to a quark and an antiquark.

Reciprocity predicts the same dimensional counting behaviour for $D_1^A(z_A)$ and $f_2^2(x_2)$, and from (3.4.6) we see that $D_1^A(z_A) z_A^{-1} (1-z_A)$, as expected. This result contrasts with that of Peterson et al. (29). They include a factor z_A^{-1} for the hadron phase-space and (presumably) assume the z-dependence of the wavefunction cancels that of the fermion traces, but omit the phase space of the final quark. They have a similar denominator to ours; the full expression is

$$D_1^A(z_A) = \frac{N}{z_A (1-\frac{1}{z_A} - \frac{\epsilon_i}{1-z_A})^2}$$ (3.4.7)

where N is a normalization constant, and ϵ_i is roughly the ratio of the light to heavy quark masses squared, ie $\epsilon_i \approx m_q^2/m_i^2$. (3.4.7) gives $D_1^A(z_A) z_A^{-1} (1-z_A)^2$, in conflict with the dimensional counting rules.

We conclude this chapter by confronting (3.4.6) with experimental data.
3.5 COMPARISON WITH EXPERIMENT

The lightest quark for which taking one term in the summation in (3.2.2) is a good approximation is the charmed quark. To date most of the measurements on heavy quark fragmentation are for charm although results for bottom quarks are beginning to appear.

Before we compare (3.4.6) with this data there is a subtlety to consider, as we explained at the start of this chapter. In an experiment where e⁺e⁻→c̅c a final state D-meson can either come from the charmed quark directly, or via a D*. We therefore plot

\[D^D(z,a) = aD^D_c(z) + (1-a) \int_0^1 \frac{dy}{y} D^{D^*}_c(y) f^{D^*}(z) \]

(3.5.1)

where \(D^D_c, D^{D^*}_c \) and \(f^{D^*} \) are calculated from (3.4.6) and (3.1.10) respectively. The constant "a" lies in the range 0 ≤ a ≤ 1. The first term in (3.5.1) is the direct fragmentation of c⁺D, and the second is where there is an intermediate D*; the integral is a (probability conserving) convolution. The masses used to evaluate (3.5.1) are given in table 2a, with the exception of the hadron transverse masses, which we calculate from the actual masses using (2.6.2).

In figure 3.2 we plot the D-meson data against (3.5.1), for a=0.25 and 0.50. Just counting spin degeneracy predicts a=0.25 (ie D*'s are produced 3
Figure 3.2: Our predictions for D^D_C calculated from (3.5.1) with $a=0.25$ (------) and $a=0.50$ (-----), compared with the data\(^{(30)}\). Also shown is the prediction of Peterson et al\(^{(29)}\) (-----) calculated from (3.4.7) with $\epsilon_Q=0.10$.
times more often than D's), but unless we suppose there is some suppression of the higher spin (and mass) states there seems little justification for neglecting D**'s etc. The choice a=0.5 is probably more realistic, therefore, and this is perhaps borne out in figure 3.2, although given the error bars, either curve is acceptable. The choice a=0.5 is definitely preferred in table 3a, though, for the average z-values of the D-(and also B-) mesons.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>\overline{x}_D</th>
<th>\overline{x}_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARK - II</td>
<td>0.59±0.06</td>
<td>0.79±0.09</td>
</tr>
<tr>
<td>CLEO</td>
<td>0.68±0.08</td>
<td></td>
</tr>
<tr>
<td>MAC</td>
<td></td>
<td>0.80±0.10</td>
</tr>
<tr>
<td>TASSO</td>
<td>0.68±0.08</td>
<td></td>
</tr>
<tr>
<td>MARK-J</td>
<td>0.46±0.05</td>
<td>0.74±0.10</td>
</tr>
<tr>
<td>CDHS</td>
<td>0.68±0.08</td>
<td></td>
</tr>
<tr>
<td>HRS</td>
<td>0.56±0.02</td>
<td></td>
</tr>
<tr>
<td>DELCO</td>
<td>0.60±0.10</td>
<td></td>
</tr>
<tr>
<td>JADE</td>
<td>0.55±0.06</td>
<td></td>
</tr>
<tr>
<td>E531</td>
<td>0.62±0.08</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>0.60</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Prediction from

(3.5.1) with a=0.25	0.56	0.69
(3.5.1) with a=0.50	0.60	0.72
(3.4.7)	0.63	0.79

Table 3a: Our predictions for the average momentum
fractions of D-(B-) mesons produced from c(b) quarks, compared with the measured values\(^{(30)}\). Also shown are the predictions of Peterson et al\(^{(29)}\) with \(\epsilon_c=0.10\) and \(\epsilon_b=m_c^2/m_b^2=0.011\).

We also plot the prediction of Peterson et al\(^{(29)}\) in figure 3.2, which considering the errors on the data is an acceptable alternative to our model, although it is less attractive from a theoretical viewpoint. Figures 3.3 and 3.4 compare our model with theirs for \(D^B_b\) and \(D^T_\ell\) respectively. Our distributions are broader because we consider the possibility of intermediate vector mesons. When data appears care should be taken to compare like with like. Both models predict \(z\rightarrow1\) as the mass increases, in agreement with the experimental results in table 3a.

We conclude that our calculations, culminating in (3.5.1), give a good description of the present experimental results. When the data improves, there will clearly be scope for improving the predictions, for example by varying \(<k^2_\perp>\) for a hadron inside a hadron and tuning "a", but at present the experimental errors are just too large.
Figure 3.3: Our prediction for D^B_0, calculated from (3.5.1) with $a=0.5$ (---), along with that of Peterson et al (29) calculated from (3.4.7) with $e_Q=1.1\times10^{-2}$ (—).
Figure 3.4: Our prediction for D^T_t calculated from (3.5.1) with $a=0.5$ (---) and using $m_t=35$ GeV, along with that of Peterson et al (29) calculated from (3.4.7) with $\epsilon_Q=2.3\times10^{-4}$ (—).
CHAPTER 4

INTRINSIC HEAVY QUARKS

4.1 INTRODUCTION

In Chapter 1 we suggested that intrinsic heavy quarks may provide an explanation for the forward production of naked heavy flavours in hadron-hadron interactions. In this chapter we construct a model wavefunction which determines their presence in hadrons. This will enable us to calculate heavy quark distributions, in a similar manner to the valence quark distributions of Chapter 2. Finally, for the case of intrinsic charm in a nucleon, we shall compare our results with the EMC deep inelastic scattering data\(^{(31)}\).

In Chapter 2 we considered hadrons to be composed of valence quarks alone, and concluded in such a picture that these have to be constituent, rather than current, quarks ie bare current quarks dressed by a sea of gluons and $q\bar{q}$ pairs.

If a hadron, such as a proton or a pion, is probed hard enough, we know from experiment that occasionally heavy flavours are produced. These have two possible sources; either heavy flavoured quarks are produced in the interaction, or were already inside the hadron and are simply knocked on mass-shell by the probe. In both cases they must then hadronize in some way. (In a sense these contributions are just different time-
orderings of the same diagram.) We return to the former process when comparing our results with experiment, but it is the latter which is the subject of our calculations.

Probing a hadron sufficiently hard, we cannot think of it as being composed just of its valence constituent quarks. Some of the time it will also consist of these plus heavy $Q\bar{Q}$ pairs. For example, a proton may be regarded as being partially in the $|uudQ\bar{Q}\rangle$ Fock state. In this state its momentum is distributed amongst all five quarks, so they are still to be thought of as constituent quarks.

Our aim is to calculate both the x-distributions and normalizations of such heavy $Q\bar{Q}$ pairs inside the light hadrons (ie π, p, n), which form the beams and targets in experiments.

4.2 WAVEFUNCTION MODEL MOTIVATED BY PERTURBATIVE QCD

Our model for the origin of $Q\bar{Q}$ pairs inside a light hadron is that they are created, via a gluon, off one of the valence quarks, as shown in figure 4.1. We again use a photon as our probe, for the purpose of doing the calculations. Figure 4.1 shows the probability of heavy quarks occurring is proportional to s^2, and we incorporate the leading logarithmic
Figure 4.1: The creation of a heavy $Q\bar{Q}$ pair off a light quark q, showing the colour structure. The diagram is for the probability i.e. the squared modulus of the amplitude.
corrections to all orders by using the running coupling

\[\frac{\alpha_s}{\pi} = \frac{12 \pi}{(33-2N_f)\log\left(\frac{Q^2}{\Lambda^2}\right)} \]

(4.2.1)

\(N_f \) is the number of quark flavours and \(\Lambda \) is the QCD scale parameter. (We take \(\Lambda = 0.3 \) GeV in all our calculations).

\(Q^2 \) is the momentum squared scale of the process. We assume \(Q^2 = 4\langle m_{TQ}^2 \rangle \) (\(\langle m_{TQ}^2 \rangle \) is defined by (2.6.2)), as this is roughly the threshold for the creation of a pair of hadrons containing \(Q \) and \(\bar{Q} \). The \(Q\bar{Q} \) pair exist virtually at any \(Q^2 \), but if we probe with insufficient \(Q^2 \) for them to end up on mass-shell, they must always annihilate back to a gluon.

The colour factor from figure 4.1 is

\[C = \langle T^b_{kj} T^a_{ji} T^b_{rs} T^a_{sr} \rangle = \langle \frac{1}{2} T^b_{kj} T^a_{ji} \delta_{ba} \rangle = \langle \frac{2}{3} \delta_{ki} \rangle = \frac{2}{3} \]

(4.2.2)

Since the quark q is in a hadron we have averaged over \(k=i \). We do not sum over flavours in the quark loop because we are concerned with a loop of one particular flavour.

4.3 GENERAL CALCULATION

For heavy quark production in deep inelastic scattering the distribution function \(f^{Q}_A(x_Q) \) is defined by
As before, Mueller's theorem, (1.4.7), provides an alternative expression for the left hand side of (4.3.1),

\[
16 \pi^3 E_1 \frac{d^3 \sigma}{d^3 \mathbf{p}_1} (1A + 1Q \bar{Q}X) = \sum_{\phi, \phi} \int_0^1 dx Qf_A(xQ) 16 \pi^3 E_1 \frac{d^3 \sigma}{d^3 \mathbf{p}_1} (1Q + 1Q)
\]

\[
(4.3.1)
\]

except now

\[
16 \pi^3 E_1 \frac{d^3 \sigma}{d^3 \mathbf{p}_1} (1A + 1Q \bar{Q}X) = \frac{2}{h} \text{Disc}(A_1 \bar{T}_A + \bar{1}T_A)
\]

\[
(4.3.2)
\]

The notation in (4.3.3) is the same as that in (2.1.2).

The calculations will produce not only the form of \(f_A^Q \), but also its normalization relative to the constituent valence distribution, since the valence \(\Gamma_n \) of Chapter 2 appear again. The dotted outlines are drawn around what we consider to be happening inside the hadron, to enforce the idea that the \(Q\bar{Q} \) pair is intrinsic. The principle of the calculation is exactly the same as Chapter 2, and most of it may be done for general \(n \). However the arithmetic is rather more complicated.
We begin by equating (4.3.1) and (4.3.2), using (4.3.3) and taking just one term in the summation, to get

\[
\int_0^1 dx \text{e}^{n+2}(x_{n+2})16\pi^3E_1 d^3p_1 \sigma^{(1Q+1Q)} = -C_n^\Sigma \eta
\]

\[
\int \prod_{i=1}^{n+1} \left[\frac{d^4k_i}{(2\pi)^3} \theta(k_i^0) \delta(k_i^2-m_i^2)G(k_i^2) \right]
\]

\[
d^4k_{n+2} \delta^4(p_A-\Sigma k_i)(2\pi)\theta((k_{n+2}+q)^0)\delta((k_{n+2}+q)^2-m_Q^2)
\]

\[
G(k_{n+2}^2)|g_n|^2|C_n|^2 \frac{e^2}{n+2} g_s^4 \prod_{i=1}^{n+1} \frac{1}{4} \sum_{\nu\sigma} \frac{\eta_{\nu\sigma}}{2}\xi T_2(p_A,k_i)\xi T_4(p_A,k,k,k) T_{4\mu\nu\sigma}(k_{n+2},k_{n+2}+q,k_{n+2},-k_{n+1})
\]

\[\text{(4.3.4)}\]

The minus sign comes from the heavy quark loop, \(C\) is the colour factor of (4.2.4), \(\Sigma\) means sum over the QQ being created off any of the valence quarks, and \(g_s\) is the strong interaction coupling, where

\[
\alpha_s = \frac{g_s^2}{4\pi} \quad \text{(4.3.5)}
\]
We have defined

\[k = k_{n+2} + k_{n+1} + k_n \]
(4.3.6)

and used the trace definitions of (1.6.4) and (2.4.2), along with the new one

\[T_{4\mu 4\nu} (k_{n+2}, k_{n+2} + q, k_{n+2}, -k_{n+1}) \equiv \text{Tr}((k_{n+2} + m_Q)^2) \]

\[\gamma_\mu (k_{n+2} + q + m_Q)\gamma_\nu (k_{n+2} + m_Q)\gamma_\rho (k_{n+1} + m_Q)\gamma_\sigma \]
(4.3.7)

These come from averaging over the spins of the external fermions, using (2.n.1) for \(\Gamma_n \). We have been careful to get the arguments of the \(n \) G's and \(g_n \) correct (as \(k \) emerges from \(\Gamma_n \), not \(k_n \)), and then used (2.5.5) to obtain the produce of \(n+2 \) G's. Finally we have put the valence quark current masses zero, as this simplifies matters, and is almost true for hadrons made of u and d valence quarks which interest us.

Taking (4.3.4) we substitute for the lepton-quark cross-section, (1.6.7), and change to light cone variables using (1.5.5) and (2.4.3). Equating integrands, cancelling, and applying \(P^+P^+ \) (defined by (1.5.2)), we obtain

\[f_A^{n+2}(x_{n+2}) = \sum_{n=0}^{n+1} \frac{\int d^2k T_1 d(x_{n+2})}{2x_i(2\pi)^3} \int \frac{d^2x_i}{4\pi^2} \int \frac{d^2k_T}{4\pi^2} |C_n|^2 (4\pi a_s)^2 \]
\[\left(k_i^0 \right) \delta (k_i^2 - m_i^2) G(k_i^2) \]
\[\delta \left(1 - \sum_{i=1}^{n+2} x_i \right) g_{n+2}^d d^2 k_{Tn+2} \]

\[G(k_{Tn+2}^2) \delta^2 \left(\sum_{i=1}^{n+2} k_i^2 \right) \frac{d^2 \delta (x_i (m_i^2 - \sum_{i=1}^{n+2} k_i^2 / k_{Tn+2}))}{x_i} \]

\[\frac{1}{2} \sum_{i=1}^{n-1} \left[\xi_i T_2 (p_A, k_i) \right] \frac{\xi_n T_4^{\rho \sigma} (p_A, k_n, k)}{(k_{n+2}^2 - m_Q^2)^2 (k_{n+2} + k_{n+1})^4} \]

\[T_{4 \rho \sigma}^{++} (k_{n+2}^+, k_{n+2}^+ + q, k_{n+2}^+, -k_{n+1}^-) \]

\[k_{n+2}^+ (k_{n+2}^+ + q)^+ \]

\[4 (k_{n+2}^+ k_{n+1}^- + k_{n+2}^+ k_{n+1}^-) \]

\[-2 g_{\rho \sigma} \left[2 (k_{n+2}^+ k_{n+1}^- m_Q^2 - x_{n+1} (k_{n+2}^2 - m_Q^2)) \right] \]

\[-2 (p_{\rho}^+ k_{n+1}^- + p_{\sigma}^+ k_{n+1}^-) \frac{k_{n+2}^2 - m_Q^2}{k_{n+2}^+} \]

We have used the analogue of (2.6.4) for the flux factor ratio, and (4.3.5) to remove \(g_s \). The traces in (4.3.8) have already been evaluated in (2.4.5), except for the last one. The calculation of this is straightforward, and gives

\[-T_{4 \rho \sigma}^{++} (k_{n+2}^+, k_{n+2}^+ + q, k_{n+2}^+, -k_{n+1}^-) = 4k_{n+2}^+ (k_{n+2}^+ + q)^+ \]

\[(4(k_{n+2}^+ k_{n+1}^- + k_{n+2}^+ k_{n+1}^-) \]

\[-2 g_{\rho \sigma} \left[2 (k_{n+2}^+ k_{n+1}^- m_Q^2 - x_{n+1} (k_{n+2}^2 - m_Q^2)) \right] \]

\[-2 (p_{\rho}^+ k_{n+1}^- + p_{\sigma}^+ k_{n+1}^-) \frac{k_{n+2}^2 - m_Q^2}{k_{n+2}^+} \]

\[(4.3.9) \]

The remaining steps are exactly those at the end of the derivation of \(f_A^n (x_n) \). We substitute for the traces in (4.3.8) using (2.4.5) and (4.3.9), and
contract over the indices ρ and σ, obtaining dot products which we replace with (1.5.6). We evaluate the $n+2$ k^2-integrals over the δ-functions, and the $n+2$ k_T-integrals by the prescription of (2.5.8), leaving the x-integrals. We omit the details, but in the next section we write out the results for $n=2$ and 3 in full.

4.4. EXPLICIT SOLUTIONS FOR PION AND NUCLEON

We use the definitions of (2.6.5), with the addition

$$\beta_{n+2} = \beta_{n+1} = \beta$$ \hspace{1cm} (4.4.1)

since the Q and \bar{Q} have equal mass. $\beta_1=1$ for the valence quarks. If $\{x_m\}$ denotes the set $\{x_1, \ldots, x_m\}$, for a heavy quark in a light meson we have

$$\int_0^1 \prod_{i=1}^3 [dx_i] \delta(1- \sum_{i=1}^4 x_i) f_A^4(x_4) = \frac{CV_2}{x_4} \frac{1}{2\pi}$$

$$\int_0^1 \prod_{i=1}^3 [dx_i] \frac{\delta(1 - \sum_{i=1}^4 x_i)}{x_i^{\beta_i} (1/\sum_{i=1}^{2\beta_i} (1-\sum_{i=1}^{2\beta_i} x_i) (\sum_{i=1}^{2\beta_i} x_i) - \frac{4}{3})^2}$$

$$x_1(1-x_1)(1/\sum_{i=1}^{2\beta_i} (\sum_{i=1}^{2\beta_i} x_i) - 1)$$

$$\frac{((1-x_1)(\alpha-1/\sum_{i=1}^{2\beta_i})-1)^2}{(1-x_1)(1/\sum_{i=1}^{2\beta_i} - 1)^2}$$
Clearly the term 1→2 gives an identical contribution to $f_A^4(x_4)$. However this will not be true when we consider diffractive production of heavy flavour hadrons.

The analogous result for a heavy quark in a light baryon is
\[
\int_{0}^{1} \prod_{i=1}^{4} \left[\delta \left(\mathbf{1} - \sum_{i=1}^{5} x_i \right) f_A^5 \left((x_5) \right) \right] = f_A^5 (x_5) = \frac{C V_3}{x_5} \left(\frac{a_3}{2\pi} \right)^2
\]

\[
\int_{0}^{1} \prod_{i=1}^{4} \left[\delta \left(\mathbf{1} - \sum_{i=1}^{5} x_i \right) \right] \left(a - \sum_{i=1}^{5} \beta_i \right)^2 \left((1 - \sum_{i=1}^{5} x_i) \left(a - \sum_{i=1}^{5} 1/x_i \right) - 3/2 \right)^2
\]

\[
\frac{x_1 x_2 (1-x_1-x_2) (1/x_1+ax_1)(1/x_2+ax_2)}{(a - \frac{1}{x_1} - \frac{1}{x_2} - \frac{1}{(1-x_1-x_2)^2})^2 \left((1-x_1-x_2) \left(a - \frac{1}{x_1} - \frac{1}{x_2} \right) - \frac{3}{2} \right)^2}
\]

\[
\frac{2 \beta x_3}{x_4 x_5} \left(\frac{3}{2} + a (1-x_1-x_2)^2 \right) + \beta \left(\frac{x_4}{x_5} + \frac{x_5}{x_4} \right)
\]

\[
\left[(a - \left(\frac{x_1}{x_2} + \frac{x_2}{x_1} + \frac{1}{2} \right)) \left(\frac{1}{x_3}(ax_3) - \left(\frac{x_1+x_2}{x_3} + x_3 \left(\frac{1}{x_1} + \frac{1}{x_2} \right) + 1 \right) \right)
\]

\[
\left(\frac{a(1-x_1-x_2) + a_1 - a_1}{x_1 x_2} \right), \frac{1}{x_1 x_2} \left(a - \left(\frac{x_1}{x_2} + \frac{x_2}{x_1} + \frac{1}{2} \right) \right) \right] \left(a - \left(\frac{x_1}{x_2} + \frac{x_2}{x_1} + \frac{1}{2} \right) \right)
\]

\[
\left[\frac{1}{2} \left(\frac{1}{x_4 x_5} \right) \left(x_1 + x_2 + 2 x_3 \right) - \left(\frac{x_4}{x_5} + \frac{x_5}{x_4} \right) - 2 \left(\frac{x_1 + x_2 + x_3}{x_4 x_5} \left(\frac{1}{x_1} + \frac{1}{x_2} \right) + 1 \right) \right]
\]

\[
+ \left(\frac{a - \left(\frac{x_1}{x_2} + \frac{x_2}{x_1} + \frac{1}{2} \right) \right) \left[\frac{1}{2} \left(\frac{x_1}{x_4 x_5} \right) - 2 \left(\frac{x_1 + x_2 + x_3}{x_4 x_5} \left(\frac{1}{x_1} + \frac{1}{x_2} \right) + 1 \right) \right]
\]

\[
\left[\frac{2 ax_4 x_5}{x_3} + \frac{a(x_4+x_5)}{2} + \frac{3(x_1 + ax_3)}{2 x_3} \right] - \left(a - \left(\frac{x_1}{x_2} + \frac{x_2}{x_1} + \frac{1}{2} \right) \right)
\]

\[
\frac{1}{x_1 x_2}
\]
\[
\frac{2x_4 x_5 (1 + \frac{1}{x_3}) + \frac{1}{2} (x_4 + x_5) (1 + \frac{1}{x_3}) + x_3 (1 + \frac{1}{x_3}) + 1}{x_1 x_2 x_3 x_2}
\]

\[
-\frac{7}{2} \left[(\alpha - (\frac{x_1 + x_2}{x_1} + \frac{1}{x_2})) (1 + \alpha x_3) - (\frac{x_1 + x_2}{x_3} + x_3 (1 + \frac{1}{x_3} + 1)) \right] + 1 \rightarrow 3 + 2 \rightarrow 3 \quad (4.4.3)
\]

Again we have put in the terms from \(\Xi \) explicitly, rather than multiplying by 3, so \(f_A^5 (x_5) \) need not be re-defined later on.

4.5 COMMENTS

The expressions (4.4.2) and (4.4.3) are normalized relative to their corresponding valence distributions (given by (2.6.7)). We can therefore plot them without further assumptions, and do so in figures 4.2 and 4.3 for a pion and a proton respectively. The remaining \(x \)-integrals after the one over the \(\delta \)-function are calculated numerically.

The distributions all diverge in the same way that normal sea distributions do \(^{(32)}\), so the amount of momentum carried is finite. The reduction of the magnitude with increasing mass is mainly due to the running coupling, (4.2.1), with the choice of \(Q^2=4\langle m^2_{TQ} \rangle \). The distributions in the pion and proton
Figure 4.2: The intrinsic heavy quark distributions in a pion, calculated from (4.4.2), for f^2_{π} (also shown) normalized to unity. The masses are from table 2a, taking only $m_c=35$ GeV.
Figure 4.3: The intrinsic heavy quark distributions in a proton, calculated from (4.4.3), for f_p^3 (also shown) normalized to unity. The masses used are from table 2a taking only $m_t=35 \text{ GeV}$.
have comparable values near $x=0$ for each flavour, but the proton ones fall faster with increasing x. This is due to the larger number of quarks in the Fock state producing a more suppressed dimensional counting behaviour.

These predictions are in sharp contrast to those of Brodsky et al\(^{(7)}\), who conclude that an intrinsic $Q\bar{Q}$ pair in a light hadron carry most of its momentum. They back their findings up by applying the argument that the quarks should all have the same velocity to hold together in a hadron. However the $Q\bar{Q}$ pairs are being created and annihilated all the time, which suggests that they should favour very small x, as we find.

4.6 RELATION OF DISTRIBUTION FUNCTIONS TO OBSERVABLES

Before we compare our distribution function $f^5_p(x_5)$ with experiment, we must consider its relation to the data. The experimental production process is shown in figure 4.4. At sufficiently large $-q^2$ where all masses squared (including m_Q^2) can be neglected, the analogue of (1.7.16) is

$$
\frac{d^2\sigma(1p\cdot 1Q\bar{Q}X)}{dx_5} = \sum_{Q,\bar{Q}} e_Q^2 f^Q_p(x) 2\pi \alpha^2 \left[\frac{1}{v^2} - \frac{1}{v m_{E_1}^2} + \frac{1}{2m_{E_1}^2} \right]
$$

(Bjorken-x and v are defined by (1.6.1)). Integrating over a range of v gives

$$
(4.6.1)
$$
Figure 4.4: The parton diagram for intrinsic heavy flavour production in deep inelastic lepton (l)-hadron (A) scattering, showing the four momenta of the particles.
This is what we need to compare our distribution function against data, because experiments measure the left hand side, and we can calculate the right hand side.

4.7 NUCLEON INTRINSIC CHARM VERSUS THE DATA

The photon-gluon fusion model, where heavy quarks are created in the collision (and so are extrinsic as opposed to intrinsic), is shown in figure 4.5. This is very similar to figure 4.4 (the intrinsic case), since the intrinsic QQ originate from a gluon, as in figure 4.1. The difference between them is the definition of the proton boundary. However, they clearly produce the same final state 1Q̅QX, and so must both be considered when looking at data.

For deep inelastic lepto-production of charm, Aubert et al (31) actually measure \(\frac{d\sigma}{dx}(\mu^+ p \rightarrow \mu^+ \mu X) \), where the final \(\mu \) comes from the decay of a D- or D̅-meson. (4.6.2) therefore requires a slight modification:

\[
\frac{d\sigma}{dx}(\mu^+ p \rightarrow \mu^+ \mu X) = 0.389B \sum_{Q,Q} e^{2F_{Q}(x)} \pi a^2 \frac{1}{x} \left[\frac{1}{v_{\text{min}}} - \frac{1}{v_{\text{max}}} \right],
\]
Figure 4.5: The parton diagram for extrinsic heavy flavour production in lepton-hadron scattering, showing the four-momenta of the particles.
\[-\frac{1}{m_p E'_1} \log \left(\frac{v_{\text{max}}}{v_{\text{min}}} \right) + \frac{(v_{\text{max}} - v_{\text{min}})}{2m^2 E'_1} \] \text{mb} \quad (4.7.1)

B is the branching ratio for the decay D→μx, and 0.389 converts to mb if the energies are in GeV.

The comparison of (4.7.1) with experiment is shown in figure 4.6. We use (4.4.3) to calculate \(f^c_p(x)\), with the value for \(V_3\) which normalizes \(f^3_p\) to unity, and the masses from table 2a. Table 4a contains the values of the other parameters in (4.7.1).

<table>
<thead>
<tr>
<th>B</th>
<th>(\frac{v_{\text{min}}}{m_p}) (GeV)</th>
<th>(\frac{v_{\text{max}}}{m_p}) (GeV)</th>
<th>(E'_1) (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.082</td>
<td>60</td>
<td>220</td>
<td>250</td>
</tr>
</tbody>
</table>

Table 4a: The numbers needed in our calculation for figure 4.6, using (4.7.1).

Clearly the photon-gluon fusion model gives a good description of the data alone, so the additional contribution from intrinsic charm cannot be too large. Our result is, as it stands, compatible with the data. However when comparing \(f^3_p\) with experiment in Section 2.7, we had to normalize it to 0.32 rather than 1, because experiments resolve current quarks, and ours are
Figure 4.6: The data(31), compared with the photon-gluon fusion model(33) (-----), and our calculation from (4.7.1) (-----).
constituents. This effect may also be present here, along with possible QCD evolution and threshold suppression factors. These three effects contribute in the same direction, to reduce our result, so the curve in figure 4.6 is really an upper limit.

We therefore conclude that our model for the intrinsic charm in a proton is completely consistent with the observed charm production in deep inelastic scattering experiments.
CHAPTER 5

THE SCATTERING PROCESS

5.1 INTRODUCTION

The overall aim of our work is to understand the diffractive production of heavy flavours in hadron-hadron interactions. So far we have derived the distributions of heavy constituent quarks inside hadrons. In this chapter we consider the scattering of these heavy quarks by hadrons, and test our ideas against experiment.

Diffractive high energy hadron-hadron cross-sections are well described by Regge theory, so we begin with a simple discussion of this topic. Figure 5.1 shows the general 2+2 scattering processes, which by crossing are described by the same amplitude $A(s,t)$ in different regions of the Mandelstam variables s and t, defined by

$$s = (p_A + p_B)^2 = (p_C + p_D)^2$$

$$t = (p_A - p_C)^2 = (p_D - p_B)^2$$

This amplitude may be expanded as a t-channel partial wave series

$$A(s,t) = \sum_{l=0}^{\infty} (2l + 1)A_l(t)P_l(\cos t)$$
Figure 5.1: The 2 + 2 hadron scattering processes, showing the four momenta. a) $AB \rightarrow CD$; b) $A\bar{C} \rightarrow \bar{B}D$.
where \(\theta_t \) is the scattering angle in the \(\text{AC COM} \) frame.

In this frame, for the case of equal masses

\[
s = (p_A - p_B)^2 = 2m^2 - \frac{t}{2} + 2\left(\frac{t}{4} - m^2\right)\cos\theta_t
\]

so

\[
\cos\theta_t = 1 + \frac{2s}{t - 4m^2} \quad (5.1.4)
\]

The intermediate particles produced in the process \(\text{AC} \rightarrow \text{BD} \), and therefore exchanged in the process \(\text{AB} \rightarrow \text{CD} \), are observed to lie on a Regge trajectory, roughly

\[
\alpha(t) = \alpha_0 + \alpha't \quad (5.1.5)
\]

where \(\alpha_0 \) and \(\alpha' \) are constants. \(\alpha(t) \) takes the integer value 1 when \(t = m_1^2 \), \(m_1 \) being the mass of the spin 1 particle. The pole due to the propagator of this particle is therefore of the form

\[
A_1(t) = \frac{\delta(t)}{1 - \alpha(t)} \quad (5.1.6)
\]

and so (5.1.2) reads

\[
A(s, t) = \sum_{1=0}^{\infty} \frac{(21+1) \delta(t) P_1(\cos\theta_t)}{1 - \alpha(t)} \quad (5.1.7)
\]
From (5.1.4)

\[\cos \theta_t \propto \frac{s}{s^{\to \infty}} \quad (5.1.8) \]

This \(s \)-dependence also arises in the case of non-equal masses.

Writing (5.1.7) as a contour integral around the non-negative integers in the complex \(l \)-plane, and distorting the contour, we pick up the residue of the Regge pole. For \(s^{\to \infty} \), \(t \) fixed, this is the dominant contribution, and using (5.1.8) and the property

\[P_1(\cos \theta_t) \sim (\cos \theta_t)^1 \quad (5.1.9) \]

it gives

\[A(s,t) \sim \beta(t) \left(\frac{s_0}{s^{\to \infty}} \right) a(t) \left(\frac{s}{s_0} \right) a(t) \quad (5.1.10) \]

where we have inserted the constant \(s_0 \equiv 1 \text{ GeV}^2 \).

Substituting (5.1.10) into the optical theorem, (1.4.6), with the flux factor (1.4.3)

\[h = 4 \left[(p_A \cdot p_B)^2 - m_A^2 m_B^2 \right]^{1/2} \equiv 2s \quad (5.1.11) \]
we obtain

$$\sigma_{\text{tot}(AB)} \approx \sigma_o \left(\frac{S}{S_0} \right)^{\alpha(o) - 1}$$ \hspace{1cm} (5.1.12)

where σ_o is a constant.

We could consider more than one trajectory, but in the limit $S \to \infty$ the one with the largest value of $\alpha(o)$ dominates. For all hadron-hadron interactions this is the Pomeron, with an effective intercept $\alpha_p(o) = 1.08$. The fact that $\alpha_p(o) > 1$ will lead to an eventual violation of the Froissart bound\(^{(34)}\) does not affect us, since whatever mechanisms prevent this violation appear to have little effect at present values of s.

As the Pomeron controls all large s interactions, independent of flavour, any particles lying on the trajectory may well be glueballs, although these have yet to be discovered. The Pomeron may not be a simple trajectory, but it certainly behaves like one, and that is all that concerns us here.

5.2 EFFECTIVE HADRON-QUARK CROSS-SECTIONS

The value for $\alpha_p(o)$ comes from the total cross-section measured at the CERN pp-Collider\(^{(35)}\). The result is

$$\sigma_{\text{tot}(pp)} \approx 22.7 \left(\frac{S}{S_0} \right)^{0.08} \text{ mb}$$ \hspace{1cm} (5.2.1)
Using $\alpha_p(o) = 1.08$ to fit the highest energy πp data\(^{(36)}\) gives

$$\sigma_{\text{tot}}(\pi p) \approx 14.7 \left(\frac{s}{s_0}\right)^{0.08} \text{mb} \quad (5.2.2)$$

The idea of constituent valence quarks enables these to be approximated by

$$\sigma_{\text{tot}}(A p) \approx \sum_{s=\omega}^{n} \sigma_{\text{tot}}(q_i p) \quad (5.2.3)$$

with $n=2$ for $A=\pi$, $n=3$ for $A=p$, and where

$$\sigma_{\text{tot}}(q_i p) \equiv 7.5 \left(\frac{s}{s_0}\right)^{0.08} \text{mb} \quad (5.2.4)$$

is the effective asymptotic light (u,d) quark-proton cross-section. The analogous results for scattering on a pion are

$$\sigma_{\text{tot}}(A \pi) \approx \sum_{s=\omega}^{n} \sigma_{\text{tot}}(q_i \pi) \quad (5.2.5)$$

where

$$\sigma_{\text{tot}}(q_i \pi) \equiv 5.0 \left(\frac{s}{s_0}\right)^{0.08} \text{mb} \quad (5.2.6)$$

We extend this to heavy quarks by invoking the hypothesis of f-dominance of the Pomeron coupling\(^{(37)}\). If the Pomeron couples to a quark via the relevant f-meson (they have the same quantum numbers), as in
Figure 5.2: The amplitude for $Qp \rightarrow Qp$, assuming f-dominance of the Pomeron(P)-quark coupling.
figure 5.2, (5.1.6) would instead be of the form

\[A_1(t) = \frac{B_{tl}(t) B_{lf_j}(t)}{(1-a_p(t))(1-a_{f_j}(t))} \]

(5.2.7)

The contour integral now gives a factor \((a_p(t) - a_{f_j}(t))^{-1}\) from the residue. Assuming quarks couple to their respective \(f\)'s with equal strength, the same for \(f\)'s to the Pomeron, and remembering that the optical theorem (1.4.6) requires the amplitude at \(t=0\), we predict

\[\sigma_{\text{tot}}(Q\bar{B}) = \frac{\alpha_p(0) - \alpha_{f_j}(0)}{\alpha_p(0) - \alpha_{f_j}(0)} \sigma_B(\frac{s}{s_0})^{0.08} \]

(5.2.8)

where \(\sigma_B = 7.5 \ (5.0)\ \text{mb for} \ B = p(\pi).\)

The values of the parameters in the Regge trajectory relevant to us are the solutions of the simultaneous equations

\[1 = a_0 + a'M^2_{Q} ; \quad 2 = a_0 + a'M^2_{f_j} \]

(5.2.9)

which follow from (5.1.5) assuming the mesons lie exactly on the trajectory. Table 5a contains the values of the particle masses we use to calculate these Regge parameters, which are given in table 5b. For the lightest flavours \((u,d)\), a more sophisticated analysis to determine \(\alpha_{f_j}(t)\) has been performed \((38)\), as the masses
of the particles on the trajectory with spin > 2 are known (21). We use the (u,d) trajectory parameters from reference 38.

<table>
<thead>
<tr>
<th>Flavour (Q)</th>
<th>$m_\omega (1^{--})$</th>
<th>$m_\pi (2^{++})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>u,d</td>
<td>0.783</td>
<td>1.273</td>
</tr>
<tr>
<td>s</td>
<td>1.020</td>
<td>1.520</td>
</tr>
<tr>
<td>c</td>
<td>3.097</td>
<td>3.556</td>
</tr>
<tr>
<td>b</td>
<td>9.456</td>
<td>9.912</td>
</tr>
<tr>
<td>(i)</td>
<td>25</td>
<td>49.26 #</td>
</tr>
<tr>
<td>(ii)</td>
<td>35</td>
<td>69.26 #</td>
</tr>
<tr>
<td>(iii)</td>
<td>45</td>
<td>89.26 #</td>
</tr>
</tbody>
</table>

Table 5a: The known (21) or assumed # masses for the ω_Q^{-} and f_Q^{-}-mesons, in GeV.

The unknown ω_t and f_t masses in table 5a are chosen to have a difference of 0.5 GeV, roughly that observed for the lighter pairs. This gives $\alpha_t^\omega \sim 1/m_Q$ and so $\alpha_t^f (o) \sim -m_Q$; the results are given in table 5b (a).
<table>
<thead>
<tr>
<th>Trajectory (i)</th>
<th>α_0_i</th>
<th>α'_i(GeV$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1.08</td>
<td>0.22</td>
</tr>
<tr>
<td>f</td>
<td>0.49</td>
<td>0.95</td>
</tr>
<tr>
<td>f'</td>
<td>0.18</td>
<td>0.79</td>
</tr>
<tr>
<td>f_c</td>
<td>-2.17</td>
<td>0.331</td>
</tr>
<tr>
<td>f_b</td>
<td>-9.1</td>
<td>0.113</td>
</tr>
<tr>
<td>(a) (i)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_t (ii)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) (i)</td>
<td>25</td>
<td>-48</td>
</tr>
<tr>
<td>f_t (ii)</td>
<td>35</td>
<td>-68</td>
</tr>
<tr>
<td>(iii)</td>
<td>45</td>
<td>-88</td>
</tr>
<tr>
<td>(b) (i)</td>
<td>25</td>
<td>-273</td>
</tr>
<tr>
<td>f_t (ii)</td>
<td>35</td>
<td>-541</td>
</tr>
<tr>
<td>(iii)</td>
<td>45</td>
<td>-899</td>
</tr>
</tbody>
</table>

m_t (GeV)

Table 5b: The values of the Regge intercepts, calculated from (5.2.9) where appropriate.
The values in table 5b(b) come from assuming a' for top is the same as for bottom, giving $a_f(o) \sim -m_Q^2$ and are realistically lower bounds for the trajectory intercept. From (5.2.8) these give lower bounds on $\sigma_{tot}(tB)$.

Using (5.2.8), (5.2.3), and the numbers from table 5b we predict

$$
\frac{\sigma_{tot}(Kp)}{\sigma_{tot}(\Pi p)} = \frac{(a_p(o) - a_f(o))^{-1} + (a_p(o) - a_f(o))^{-1}}{2(a_p(o) - a_f(o))^{-1}} = 0.8
$$

(5.2.10)

in good agreement with experiment (37,14).

Almost all the present data on heavy flavour production is at s values where (5.2.8) cannot be applied; the cross-sections are still rising from threshold. We must therefore model this effect, in order to test (5.2.8) against experiment.

5.3 THRESHOLD RISE

5.3.1 Counting Rule Suppression (Dynamics)

We form our final hadrons by recombining the initial quarks after they scatter. Figure 5.3 shows $pB+\Lambda\overline{p}B$ (there is no "X" just above threshold), as an example. It includes the minimum number of gluons required to hold the hadrons together. Just above threshold in
Figure 5.3: The parton diagram for \(p_B + \Lambda_Q \bar{M}_Q B \).
the pB COM frame the Λ_Q and $\bar{\Lambda}_Q$ must be almost at rest, so the gluons are needed to "stop" the quarks.

We define a variable x', (which would equal Bjorken-x if the proton reformed), by

$$(p_A + q)^2 \equiv q^2(1 - \frac{1}{x'}) + (m_{\Lambda_Q} + m_{\bar{\Lambda}_Q})^2 \quad (5.3.1)$$

Clearly we have an equality of limits;

$$x' + 1 \equiv (p_A + q)^2 + (m_{\Lambda_Q} + m_{\bar{\Lambda}_Q})^2 \equiv s + s_{th} \quad (5.3.2)$$

where s is defined by (5.1.1) and s_{th} by

$$s_{th} \equiv (m_B + m_{\Lambda_Q} + m_{\bar{\Lambda}_Q})^2 \quad (5.3.3)$$

If the $\Lambda_Q \bar{\Lambda}_Q$ system is excited (ie $(p_A + q)^2 > (m_{\Lambda_Q} + m_{\bar{\Lambda}_Q})^2$), (5.3.1) gives

$$q^2 \sim (1 - x')^{-1} \quad (5.3.4)$$

In the heavy hadron reformation amplitude, A_r, containing n_g gluons, the fermion traces cancel the gluon propagators, as in Section 1.7. The quarks labelled by $\bar{\Lambda}_Q$ in figure 5.3 have four momenta squared $\sim q^2$, so $A_r \sim q^{-2n_g}$ from their propagator denominators. From (1.7.6), the reformation probability, P_r, therefore satisfies
We assume the \(Q\bar{Q} \) excited region goes smoothly to threshold, in the same way that we matched-up the scaling and elastic regions to derive the Drell-Yan-West relation in Section 1.7. Using (5.3.4) this gives

\[
dP_x \sim |A_x|^2 \sim q^{-4n_g} \tag{5.3.5}
\]

\[
\frac{\text{d}P_x}{\text{d}q^2} \sim (1 - x')^{2n_g - 1} \tag{5.3.6}
\]

the familiar counting rule behaviour.

From (5.3.2) we obtain the dynamical suppression factor, defined by

\[
P(s) \equiv (1 - \frac{s_{th}}{s})^{2n_g - 1} \tag{5.3.7}
\]

Clearly \(P(s) \rightarrow 1 \) as \(s \rightarrow \infty \), most quickly for the minimum \(n_g \). We use only this value, as in figure 5.3. The real \(P(s) \) must be a (normalized) sum over \(n_g \geq n_{g_{\text{min}}} \), but the higher terms will presumably be down by powers of \(\alpha_s \). For the processes we consider \(n_{g_{\text{min}}} \) is listed in table 5c. In the case \(pB + pM\bar{Q}QB \) we need the final state proton to conserve baryon number, (and assume a light \(q\bar{q}-\text{pair} \) are created at no cost for this).
Table 5c: The relevant values of $n_{g_{\text{min}}}$.

5.3.2 Limited Availability of Phase-space (Kinematics)

Another factor constraining the rise of the cross-section from threshold is the available range of t. This is a kinematical effect, but in order to incorporate it we have to assume some further dynamics.

Consider the process in figure 5.1 a), with

$$p_A^2 = m_A^2; \quad p_C^2 = m^2; \quad p_B^2 = p_D^2 = m_B^2$$ (5.3.8)

and the definitions

$$p_P^+ = x_{PA}^+; \quad p_D^- = x_{PB}^-$$ (5.3.9)

We neglect transverse momentum transfer in what follows, in order to find the limits of phase-space. Using (5.3.8), (5.3.9) and (1.5.6), (5.1.2) may be written

$$t = m_B^2(2 - x_D - \frac{1}{x_D})$$ (5.3.10)
Clearly for \(0 \leq x_D \leq 1\), \(-\infty \leq t \leq 0\), but if \(x_D\) is further constrained, so is \(t\). We calculate this range as a function of \(s\).

In the COM frame where \(p_A^3 + p_B^3 = 0\) and \(p_A^3 > 0\), (5.1.1) gives

\[
s^\frac{1}{2} = (p_B^2 + m_A^2)^{\frac{1}{2}} + (p_B^2 + m_B^2)^{\frac{1}{2}} \tag{5.3.11}
\]

Solving this for \(p_A^3\), and using (5.3.9) with \(p_A^3 = 0\) (which minimizes \(x_B^3\)) we get

\[
x_B^3 = \frac{m_B}{p_B} \tag{5.3.12}
\]

where

\[
p_B^- = \frac{(s + m_B^2 - m_A^2)^2 - [2s - m_B^2 - m_A^2 - m_B^2]^2}{4s} \tag{5.3.13}
\]

To find \(x_B^3_{\text{max}}\) we again expand (5.1.1), using (5.1.6), obtaining

\[
s = m_B^2 + M^2 + \frac{m_B^2 M^2}{x_C x_D p_A p_B} + x_C x_D p_A p_B \tag{5.3.14}
\]

This gives

\[
x_C x_D = \frac{w}{p_A p_B} \tag{5.3.15}
\]
where \(w \) is defined by

\[
w = \frac{1}{2} \left[(s-m_B^2-M^2) + \left[(s-m_B^2-M^2)^2 - 4m_B^2M^2 \right]^{\frac{1}{2}} \right] \quad (5.3.16)
\]

From (5.3.9)

\[
x_CP_A^+ = (M^2+p_C^2)^{\frac{1}{2}} + p_C^3 \quad ; \quad x_DP_B^- = (m_B^2 + p_C^2)^{\frac{1}{2}} + p_C^3
\]

so

\[
p_C^3_{\text{max}} = \frac{p_B^{2}x_D^{2}_{\text{max}} - m_B^2}{2p_B^{2}x_D^{2}_{\text{max}}} \quad (5.3.18)
\]

Eliminating \(x_C \) from (5.3.15) and (5.3.17), and using (5.3.18) on the result to remove \(p_C^3 \), we obtain

\[
x_D^{\text{max}} \left[(M^2 + \frac{p_B^{2}x_D^{2}_{\text{max}} - m_B^2}{2p_B^{2}x_D^{2}_{\text{max}}})^{\frac{1}{2}} + \frac{p_B^{2}x_D^{2}_{\text{max}} - m_B^2}{2p_B^{2}x_D^{2}_{\text{max}}} \right] = \frac{w}{p_B}
\]

Solving this we get

\[
x_D^{\text{max}} = \frac{1}{p_B} \left[\frac{w(w+m_B^2)}{w+M^2} \right]^{\frac{1}{2}} \quad (5.3.20)
\]

As a check, \(s \to \infty \) implies \(x_D^{\text{min}} \to 0 \), \(x_D^{\text{max}} \to 1 \), and \(s = s_{\text{th}} = (m_B + M)^2 \) implies \(x_D^{\text{min}} = x_D^{\text{max}} \).

We therefore define our kinematical threshold rise factor by

\[T(s) = \int_{t_{\min}}^{t_{\max}} dt \frac{d\sigma}{dt} \]

where \(t_{\max} \) and \(t_{\min} \) come from (5.3.10) using (5.3.20) and (5.3.12) respectively.

To calculate \(T(s) \) we need a model for \(\frac{d\sigma}{dt} \), which, rewriting (1.7.6), is given by

\[\frac{d\sigma}{dt} \propto \frac{1}{s^2} |A(s,t)|^2 \]

Regge theory suggests exponential behaviour. Substituting (5.1.5) and (5.1.19) into (5.3.22) gives

\[\frac{d\sigma}{dt} \propto F(t)(\frac{s}{s_0})^{2\alpha_0 - 2}\exp[2\alpha_0 t\log(\frac{s}{s_0})] \]

where \(F(t) \) contains the remaining \(t \)-dependence. The large \(s \) cross-sections for \(np \) and \(pp \) elastic scattering can be well fitted by considering just the Pomeron trajectory, but with a sum of exponentials in the amplitude (39), giving

\[\frac{d\sigma_{el}}{dt} = e^{2C_p t((1-X) + X e^{a_1 t})^2} \]

where \(C_p \) is defined by

\[C_p = a_p + a_p' \log(\frac{s}{s_0}) \]
We assume (5.3.24) also gives a reasonable description of $\frac{dσ}{dt}$ when the $π$ or p are diffractively excited. Using (5.3.24), (5.3.21) integrates to

$$T(s) = \left[\frac{(1-X)^2}{2C_p} + \frac{2X(1-X)}{(2C_p+a_1)} + \frac{X^2}{2(C_p+a_1)} \right]^{-1} \left[\frac{(1-X)^2}{2C_p} \right] \left(e^{2C_p t_{\text{max}} - e^{2C_p t_{\text{min}}}} \right) \left(e^{2(C_p+a_1) t_{\text{max}} - e^{2(C_p+a_1) t_{\text{min}}}} \right)$$

$$+ \frac{2X(1-X)}{(2C_p+a_1)} \left(e^{(2C_p+a_1) t_{\text{max}} - e^{(2C_p+a_1) t_{\text{min}}}} \right)$$

$$+ \frac{X^2}{2(C_p+a_1)} \left(e^{(2(C_p+a_1) t_{\text{max}} - e^{(2(C_p+a_1) t_{\text{min}})}} \right)$$

(5.3.26)

The values of the parameters are given in table 5d.

<table>
<thead>
<tr>
<th>Process</th>
<th>X</th>
<th>a_p(GeV$^{-2}$)</th>
<th>a'_p(GeV$^{-2}$)</th>
<th>a_1(GeV$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>πp</td>
<td>0.66</td>
<td>1.00</td>
<td>0.22</td>
<td>3.20</td>
</tr>
<tr>
<td>$p p$</td>
<td>0.65</td>
<td>2.05</td>
<td>0.22</td>
<td>3.39</td>
</tr>
</tbody>
</table>

Table 5d: The values of the parameters used in (5.3.26).

There is one more point to consider, the choice of M. In principle we should average (5.3.26) over all possible M-values with some assumed distribution, as
t_{max} is a function of M. However we simplify this, and just replace M^2 in (5.3.20) by \overline{M}^2, where \overline{M}^2 is defined by

$$\overline{M}^2 \equiv \frac{\int_{M^2_{\text{min}}}^{M^2_{\text{max}}} dM^2 \frac{d\sigma}{dM^2}}{\int_{M^2_{\text{min}}}^{M^2_{\text{max}}} dM^2} \ (5.3.27)$$

with

$$M^2_{\text{max}} \equiv (s^{1/2} - m_B)^2 \ ; \ M^2_{\text{min}} \equiv (s_{\text{th}}^{1/2} - m_B)^2 \ (5.3.28)$$

Using the empirical observation\(^{(40)}\) that for $M^2 \gtrsim 2$ GeV\(^2\)

$$\frac{d\sigma}{dM^2} \sim \frac{1}{M^2} \ (5.3.29)$$

the dependence expected from the triple Pomeron model\(^{(41)}\), (5.3.27) integrates to give

$$\overline{M}^2 = \frac{M^2_{\text{max}} - M^2_{\text{min}}}{\log \left[\frac{M^2_{\text{max}}}{M^2_{\text{min}}} \right]} \ (5.3.30)$$

With \overline{M}^2 in (5.3.26) rather than, for example, M^2_{min}, $T(s)$ still $\to 1$ as $s \to \infty$, but takes longer. This is because, in a simplified way, we are allowing for the production of $\Lambda Q Q X$, and not just $\Lambda Q Q$, to use our
counting rule example.

We end this section with the new version of (5.2.8), valid for all s,

$$
\sigma_{\text{tot}}(QB) = P(s)T(s) \left(\frac{\alpha_p(o) - \alpha_f(o)}{\alpha_p(o) - \alpha_f(o)} \right) \sigma_B \left(\frac{s}{s_0} \right)^{0.08}
$$

(5.3.31)

$P(s)$ and $T(s)$ are given by (5.3.7) and (5.3.26) respectively and $\sigma_B = 7.5 (5.0)$ mb for $B = p(\pi)$.

5.4 CHARM PRODUCTION IN γp INTERACTIONS

Since there is no data on heavy particle scattering cross-sections, we test (5.3.31) against experiment by predicting the total cross-section for heavy particle production in γp interactions. A nice feature of this test is that it doesn't depend on our distribution functions from Chapters 2 or 4.

Generalized vector dominance\(^{(42)}\) says the total γp cross-section may be written

$$
\sigma_{\text{tot}}(\gamma p) = \sum_V |A_{\gamma V}|^2 \sigma_{\text{tot}}(Vp)
$$

(5.4.1)

The sum runs over all vector mesons having the same quantum numbers as γ, and $|A_{\gamma V}|^2$ is the probability for $\gamma + V$.
This is related to the width $\Gamma_{V^+ e^+ e^-}$, for the vector meson going to a virtual photon which decays to $e^+ e^-$, as in figure 5.4. In the V rest frame, (1.4.2) gives

$$\Gamma_{V^+ e^+ e^-} = \frac{1}{2m_V} \int \frac{d^3 P_1}{2E_1 (2\pi)^3} \frac{d^3 P_2}{2E_2 (2\pi)^3} (2\pi)^4 \delta^4(p_V - p_1 - p_2)$$

$$\frac{\alpha^2}{3} |A_{VV}|^2 \left(\frac{g_\mu \nu - \frac{P_\mu P_\nu}{m_V^2}}{m_V^2} \right) T_{2\mu \nu}(p_1, p_1 - p_2)$$

(5.4.2)

We have averaged over the initial spin, and summed over final ones; $T_{2\mu \nu}$ is defined by (1.6.8). Neglecting the lepton masses and remembering (1.6.5), we integrate over p_2 to get

$$\Gamma_{V^+ e^+ e^-} = \frac{\alpha}{12\pi m_V} \int \frac{d^3 P_1 \delta(m_V^2 - 2p_V \cdot p_1) |A_{VV}|^2}{E_1}$$

$$\left(\frac{g_\mu \nu - \frac{P_\mu P_\nu}{m_V^2}}{m_V^2} \right) T_{2\mu \nu}(p_1, p_1 - p_2)$$

(5.4.3)

Using

$$d^3 p_1 = E_1^2 dE_1 d\Omega; \ \delta(m_V^2 - 2p_V \cdot p_1) = \frac{1}{2m_V^2} \delta \left(\frac{m_V}{2} - E_1 \right)$$

(5.4.4)

and substituting for $T_{2\mu \nu}$ from (1.6.9), the remaining integrals give
Figure 5.4: The decay $V \rightarrow e^+e^-$, showing the four momenta of the particles.
Using this (5.4.1) becomes

\[\sigma_{\text{tot}}(\gamma p) = \sum_{V} \frac{3\Gamma_{V^+e^+e^-}}{\alpha m_{\gamma}} \sigma_{\text{tot}}(Vp) \] \hspace{1cm} (5.4.6)

where \(\sigma_{\text{tot}}(Vp) \) is given by Pomeron exchange, assuming \(f \)-dominance for the coupling.

This has been tested against experiment \(^{(43)}\), and gives good results. The Reggeon-photon coupling analogy \(^{(38,44)}\), which incorporates (5.4.1) in its basic assumptions, also gives good predictions for \(\frac{d\sigma}{dt}(\gamma p \rightarrow pp) \) and \(\frac{d\sigma}{dt}(\gamma p \rightarrow \phi p) \) (amongst other things), as shown in reference 43, so we conclude (5.4.6) is on solid ground.

Assuming charm production comes from the single term \(V=\psi \) gives

\[\sigma(\gamma p \rightarrow ccX) = \frac{3\Gamma_{\psi^+e^+e^-}}{\alpha m_{\psi}} \sigma_{\text{tot}}(\psi p) \] \hspace{1cm} (5.4.7)

This neglects the higher mass versions of the \(\psi \), and
any intrinsic charm in all the vector mesons and the proton. We also assume all the charm produced is naked (in the form of charmed mesons). Substituting (5.2.3) into (5.4.7), we obtain

$$\sigma(\gamma p + c\bar{c}X) = \frac{6\Gamma_{\psi^0 e^+ e^-}}{\alpha m_\psi} \sigma_{\text{tot}}(cp)$$

(5.4.8)

which is calculable using (5.3.31) for $\sigma_{\text{tot}}(cp)$.

5.5 COMPARISON WITH THE DATA

In figure 5.5 we plot the prediction (5.4.8) against the data, having used

$$E_\gamma = \frac{s - m_p^2}{2m_p}$$

(5.5.1)

where E_γ is the photon energy in the proton rest frame, to change the argument of (5.3.31). The numbers needed come from tables 2a, 5b and 5d, with the exception of $\Gamma_{\psi^0 e^+ e^-}$ and m_ψ (21). We take $n = 2$, assuming light qq pairs form at no cost, two gluons then being necessary to form a D and \bar{D} (or excited versions). The agreement between theory and experiment is rather good. Our approximation of ignoring hidden charm production is clearly justifiable, since at $E_\gamma \sim 105$ GeV, $\sigma(\gamma p + \psi X) \sim 20$ nb (46), giving

$$\frac{\sigma(\gamma p + \psi X)}{\sigma(\gamma p + c\bar{c}X)} \approx \frac{1}{30}$$
Figure 5.5: $\sigma(\gamma p \to c\bar{c}X)$ (---), calculated from (5.4.8), compared with the data $^{(45)}$; • SHF Photon Collaboration, v CERN$\gamma(\gamma p \to D^0X)$, o FNAL Broad Band ($\gamma p \to D^0X$), x EMC, □ BFP Collaboration. Also shown is $(\gamma p \to b\bar{b}X)$ (---), calculated from (5.4.8).
Also shown in figure 5.5 is the prediction for
\(\sigma(\gamma p \rightarrow b\bar{b}X) \).

We plot the predicted distributions of D*- and
D-mesons in figure 5.6, assuming that the charmed quarks
fragment after the interaction, and using (2.6.7) and
(3.4.6) to calculate

\[
\frac{f_{D^*/D}}{f_{D^*/D}}(z) = \int_{x}^{1} \frac{d x}{x} f_{D}(x) D_{c} D_{D^*/D}^{(z)}(x)
\]

(5.5.2)

As in (3.5.1), the observed distribution of D-mesons will
be of the form

\[
f_{D}(z, a') = a' f_{D}(z) + (1-a') \int_{z}^{1} \frac{d y}{y} f_{D}(y) f_{D^*/D}(z)
\]

(5.5.3)

where \(0 \leq a' \leq 1 \). There is not yet any good z-distribution
data, so we cannot determine \(a' \) to compare with \(a' \approx 0.5
\) from Section 3.5. However the trend of the data so far
(47),
for D*’s, is that they generally carry a sizeable
fraction of \(E_{Y} \), and don't form a distribution sharply
peaked at the origin. This is in qualitative agreement
with our predictions of figure 5.6. Figure 5.7 shows
the analogous predictions for bottom production.

We conclude that our model for heavy quark-proton
scattering, (5.3.31), when used in conjunction with
generalized vector dominance, gives a good description
of the existing data on the photo-production of heavy
flavours.
Figure 5.6: The predicted z-distributions of D^* (---) and D (—)-mesons produced in γp interactions, calculated from (5.5.2).
Figure 5.7: The predicted z-distributions of $B^*(---)$ and $B (~---~)$-mesons produced in γp interactions, calculated from (5.5.2).
CHAPTER 6

HADRONIC HEAVY FLAVOUR PRODUCTION

6.1 THE MODEL

We now have all the ingredients to calculate hadronic production of heavy flavours. Figure 6.1 shows an example of our model, for Λ_Q production from a proton. Hadron B scatters on the \bar{Q} in the $|uud\bar{Q}\rangle$ Fock state of the proton, from which udQ then reform into a Λ_Q.

For the sub-process (boxed by --- in figure 6.1)

$$p_B^+ + x_4p_A^+ = p_B'^+ + x_4'p_A^+$$ \hspace{1cm} (6.1.1)

Our definition of p_A^+, (1.5.1), gives $p_A^+ \gg p_B^+$ in any frame where $|p_i^2| \gg m_i$ for $i = A$ and B, and for diffractive scattering the momentum transfer is small so $p_A^+ \gg p_B^+$ as well. From (6.1.1), therefore, $x_4 = x_4'$. As the heavy quark receives only a glancing blow, hadron B can scatter on the Q or \bar{Q}, independent of which one then goes into the reformation.

The Λ_Q production cross-section is given by

$$\sigma(p \to \Lambda_Q\bar{Q}\pi X) = \int_0^1 dx_\Lambda \int_0^1 dx_{\bar{Q}} \prod_{i=1}^5 \delta(1-\Sigma x_i)^5$$

$$f_p^5(x_5) \sigma_{tot}(\bar{Q}B) R_5^\Lambda (x_1, x_2, x_5) \delta(x_{\Lambda_Q} - x_1 - x_2 - x_5)$$ \hspace{1cm} (6.1.2)
Figure 6.1: The parton diagram for $pB + \Lambda_Q \overline{M}_Q X$ with four-momenta and x's labelled.
f_p^5(x_5) (defined by (4.4.3)) is the initial x-distribution of the |uudQ̄Q> Fock state, and R_Q(x_1, x_2, x_5) is the recombination function, with δ(x_3 - x_1 - x_2 - x_5) fixing its quark content. R_Q is essentially the valence distribution of the Λ_Q. We discuss this fully in Section 6.2. The integrals evaluate the overlap between these functions, giving the probability of reforming a Λ_Q with light cone momentum fraction x^Λ_Q from the initial quark distribution, summed over all x^Λ_Q. σ_{tot}(Q̄B) is the hadron-quark cross-section of (5.3.31), which gives the scattering probability and contains the s-dependence.

The diffractive cross-section, defined as

σ_d(p + Λ_Q M̄Q X), is calculated by summing (6.1.2) over the Pomeron coupling to the Q or the Q̄, and the possible combinations from |uudQ̄Q> which can form a Λ_Q.

For charm and heavier flavours we assume all these possibilities produce Λ_Q's, if not immediately, then via a decay. For example Σ_c^+(uuc) decays to Λ_c^+(udc). In principle the reformation function is a sum over all heavy baryons which can form, but in the absence of any information on the relative weights of the terms, we approximate to just one, R_Q. Consequently we neglect any smearing of the Λ_Q distribution to smaller x^Λ_Q from intermediate states. However Σ_s^+(uus) doesn't decay to Λ_s^0 (uds), although Σ_s^0 (uds) does, so in our
picture 1/3 of the strange baryons produced are Ξ_s's, and 2/3 Λ_s's.

Using the same notation we define

$$
\sigma(p \to \bar{M}_Q M X) = \frac{1}{dx} \int_0^1 \frac{1}{dy} \sum_{i=1}^5 \delta(1 - x_i)
$$

$$
f_p^5(x_5) \sigma_{tot}^{\bar{Q}B} R_5^Q(x_3, x_4) \delta(x_3 - x_3 - x_4)
$$

(6.1.3)

and again the diffractive cross-sections, σ_d, are calculated by summing these for the Pomeron scattering on the Q or \bar{Q}, and over the different quark combinations which can form the final hadron. R_{MQ} is a single term approximation for the meson reformation function. Our mechanism cannot produce diffractive Λ_Q's from Π's.

In each case the heavy quark which doesn't recombine will produce a heavy hadron (probably a meson) at low x, either by fragmenting or recombining with sea quarks. We assume that if heavy hadron production does not occur, the heavy quarks annihilate each other.

"Hidden" heavy flavour (J/ψ, Υ etc) production is
not calculable without further assumptions, but is clearly suppressed by the need to get the colour and invariant mass correct, since the \(\bar{Q}Q \) pair in our picture are created in a colour octet state. It is observed to be very small compared to "open" heavy flavour production.

The diffractive heavy flavour production cross-sections are calculated by adding the contributions from both the initial particles, giving

\[
\sigma_d(pp+\Lambda_{Q\bar{Q}}X) = 2\sigma_d(p+\Lambda_{Q\bar{Q}}X) = \sigma_d(p\bar{p}+\Lambda_{Q\bar{Q}}X/\Lambda_{Q\bar{Q}}M_{QX})
\]

\[
= \sigma_d(p+\Lambda_{Q\bar{Q}}X) + \sigma_d(p\bar{p}+\Lambda_{Q\bar{Q}}X)
\]

(6.1.5)

\[
\sigma_d(pp+\bar{M}_{Q\bar{Q}}X) = 2\sigma_d(p+\bar{M}_{Q\bar{Q}}X) = \sigma_d(pp+\bar{M}_{Q\bar{Q}}X)
\]

\[
= \sigma_d(p+\bar{M}_{Q\bar{Q}}X) + \sigma_d(p\bar{p}+\bar{M}_{Q\bar{Q}}X)
\]

(6.1.6)

\[
\sigma_d(\pi p+\Lambda_{Q\bar{Q}}X) = \sigma_d(p+\Lambda_{Q\bar{Q}}X)
\]

(6.1.7)

\[
\sigma_d(\pi p+\bar{M}_{Q\bar{Q}}X) = \sigma_d(\pi p+\bar{M}_{Q\bar{Q}}X) + \sigma_d(p\pi+\bar{M}_{Q\bar{Q}}X)
\]

(6.1.8)

6.2 RECOMBINATION FUNCTIONS

In the \(|uud\bar{Q}Q>\) Fock state of a proton the \(Q \) is at very low \(x \), whereas in a \(\Lambda_Q \) valence distribution it carries most of the momentum, and the light quarks are at low \(x \).
Λ_Q production from the initial distribution must be suppressed by this mis-match. We take

\[R_5^Q(x_1, x_2, x_5) = N_5^Q f_3^Q \frac{x_1^Q, x_2^Q, x_5^Q}{x_1^Q, x_2^Q, x_5^Q} \quad (6.2.1) \]

where \(f_3^Q \) (defined by (2.6.7)) gives the distribution of the valence quarks in a \(\Lambda_Q \).

The normalization constant \(N_5^Q \) is chosen so that the overlap integral is unity if we consider all possible final states in the reverse process \(\Lambda_Q \bar{u} + \bar{X} \), i.e.

\[\int_0^1 dx_1^Q \int_0^1 dx_2^Q \int_0^1 dx_3^Q f_3^Q \frac{x_1^Q, x_2^Q, x_5^Q}{x_1^Q, x_2^Q, x_5^Q} \delta(1-x_1-x_2-x_5) N_5^Q = 1 \]

\[\delta(x_1^Q-x_2-x_3-x_5) = 1 \quad (6.2.2) \]

Inserting the normalization condition for \(f_3^Q \), which may be written

\[\int_0^1 dx_1^Q \int_0^1 dx_2^Q \int_0^1 dx_3^Q f_3^Q \frac{x_1^Q, x_2^Q, x_5^Q}{x_1^Q, x_2^Q, x_5^Q} \delta(1-x_1-x_2-x_5) N_5^Q = 1 \]

we obtain

\[\int_0^1 dx_1^Q \int_0^1 dx_2^Q \int_0^1 dx_3^Q \int_0^1 dx_4^Q \delta(1-x_1-x_2-x_3-x_4) N_5^Q = 1 \]

which gives
\[
\int_0^1 dx_1 \Lambda_Q x_1^2 (1-x_1)^N_5 \Lambda_Q = 1 \quad (6.2.4)
\]

This implies

\[
N_5^\Lambda_Q = 12 \quad (6.2.5)
\]

Writing

\[
R_5^Q(x_3,x_4) = N_5^Q f_{MQ}^2 \frac{\Lambda_3}{\Lambda_Q} \frac{\Lambda_4}{\Lambda_Q} \quad (6.2.6)
\]

\[
R_4^Q(x_2,x_4) = N_4^Q f_{MQ}^2 \frac{\Lambda_2}{\Lambda_Q} \frac{\Lambda_4}{\Lambda_Q} \quad (6.2.7)
\]

similar arguments give

\[
\int_0^1 dx_M^Q \int_0^1 dx_1 \prod_{i=1}^5 \left[dx_i \right] \delta(1-\sum_{i=1}^5 N_5^Q f_{MQ}^2 \frac{\Lambda_3}{\Lambda_Q} \frac{\Lambda_4}{\Lambda_Q}) \delta(x_M - x_3 - x_4) = 1 \quad (6.2.8)
\]

\[
\int_0^1 dx_M^Q \int_0^1 dx_1 \prod_{i=1}^4 \left[dx_i \right] \delta(1-\sum_{i=1}^4 N_4^Q f_{MQ}^2 \frac{\Lambda_2}{\Lambda_Q} \frac{\Lambda_4}{\Lambda_Q}) \delta(x_M - x_2 - x_4) = 1 \quad (6.2.9)
\]

which we again evaluate using the normalization conditions.
for the f's. The results are listed in table 6a.

\[
\begin{array}{|c|c|c|}
\hline
\frac{A}{N_5} & \frac{M^*}{N_5} & \frac{M^*}{N_4} \\
\hline
12 & 24 & 6 \\
\hline
\end{array}
\]

Table 6a: The reformation function normalization factors.

6.3 RESULTS AND COMPARISON WITH EXPERIMENT

In this section we present the predictions of our model, (6.1.2)-(6.1.4), and compare them with the data using (6.1.5)-(6.1.8). All the integrals, after those over the δ-functions, are calculated numerically.

We begin by considering the differential forms of (6.1.2)-(6.1.4) with respect to the x of the heavy flavoured hadron at fixed s^2, in figures 6.2 to 6.12. We choose values of $s^\frac{1}{2}$ for which data exists, or is likely to in the future. Where there is data the agreement between theory and experiment is quite good at large $|x|$, while at small $|x|$ the data lies well above our predictions.

This is due to central production, which is not predicted by our model. Perturbative QCD does not really explain this either; (see Section 1.2). When a better model exists, the sum of its predictions and ours will hopefully account for the data at all values of x. We
Figure 6.2: Our prediction for $x \frac{d\sigma}{dx}$ (pp+Δ→KX) at $s^\frac{1}{2} = 20$ GeV, compared with the data in a small $s^\frac{1}{2}$-range centred on this value (48).
Figure 6.3: Our prediction for $x \frac{d\sigma}{dx} (pp+\Lambda^0_{\overline{K}X})$ at $s^{1/2} = 16.6$ GeV, compared with the data at this $s^{1/2}$ value (48). The experiment in reference 48 has a bias against fast forward ($x \rightarrow 1$) particles, hence the (unexpected) asymmetry in the data.
Figure 6.4: Our prediction for $x \frac{d\sigma}{dx}(pp \rightarrow K^+ KX)$ at $s^2 = 13.7$ GeV (---) and 18.1 GeV (—), compared with the data at these values\(^{(49)}\), ○ and ● respectively. We assume 2/3 of the $\overline{K}K$ production is $K^+ K$, considering the possibilities out of $|uud\bar{s}\overline{s}>$ which can form a K^+.
Figure 6.5: Our prediction for \(\frac{x}{\pi} \frac{d\sigma}{dx}(pp \to K^0KX) \) at \(s^\frac{1}{2} = 19.6 \text{ GeV} \) (---) and 23.8 GeV (----), compared with the data at these values (48), o and • respectively. We assume 1/3 of the \(\bar{KK} \) production is \(K^0K \), considering the possibilities out of \(|uudss \rangle \) which can form a \(K^0 \).
Figure 6.6: Our prediction for $x \frac{d\sigma}{dx} (\Pi^{+}\Lambda^{0}KX)$ at $s^{\frac{1}{2}} = 16.6$ GeV, compared with the data at this $s^{\frac{1}{2}}$ value (48). $x > 0$ is the pion direction.
Figure 6.7: Our prediction for $x \frac{d\sigma}{dx}(\pi^+ p K^- X)$ at $s^{1/2}=13.7$ GeV (---) and 18.1 GeV (——) compared with the data at these values (49), o and • respectively. $x>0$ is the pion direction.
Figure 6.8: Our prediction for $x \frac{d\sigma}{dx}(\Pi p \to K^0 K X)$ at $s^{1/2} = 16.6$ GeV compared with the data at this $s^{1/2}$ value (48). $x > 0$ is the pion direction, and we again assume 1/3 of the $\bar{K}K$ production from the proton is $K^0 K$.
Figure 6.9: Our predictions for $\frac{d\sigma}{d|x|}$ $(pp \rightarrow p\Lambda\overline{q}\Lambda^0 X)$ at $s^q=53$ GeV for $Q=s$, and $s^q=64$ GeV for $Q=c, b$, compared with the Λ_s^- (o) and Λ_c^+ (51) (●) data at these respective energies.
Figure 6.10: Our predictions for $\frac{d\sigma}{d|x|}$ (pp\rightarrowQ\overline{Q}, X) at $s^{1/2}$=64 GeV for Q=s,c,b, compared with the D-meson data (51) at this value of $s^{1/2}$.
Figure 6.11: Our predictions for \(\frac{d\sigma}{dx} \) at \(s^{1/2} = 26 \) GeV for \(Q = s, c, b \). \(x > 0 \) is the pion direction.
Figure 6.12: Our predictions for $\frac{d\sigma}{dx}$ at $s^\frac{1}{2}=540$ GeV, for $m_t=35$ GeV and the lower $\alpha_f(o)$ from table 5b(b). With the higher intercept from table 5b(a) these curves should be multiplied by 8, and for the other choices of m_t may be scaled by the ratios of the cross-sections in tables 6b and 6c. $x>0$ is the proton direction.
estimate that our diffractive contribution is about 1/5 of the total production cross-section well above threshold.

Figure 6.12 shows our predictions for top production at the pp-Collider, as a function of x.

Our x-distributions are similar in shape to those of Brodsky et al\(^{(7)}\) and Barger et al\(^{(5)}\), but we also predict the normalization, rather than fitting to the charm data and assuming $(m_c/m_Q)^2$ scaling for heavier flavours. Our suppression is somewhat greater (for the lower choice of the unknown heavy flavour Regge trajectory intercept), as shown in figure 6.13. This is due to the increasing difficulty of forming the heavy hadrons as m_Q increases. We also predict a decrease in the production ratio $\Lambda_Q \overline{M}_Q : \overline{M}_Q M_Q$ as m_Q increases, because to reform a Λ_Q requires two light valence quarks at progressively lower x, whereas an \overline{M}_Q requires only one.

We now consider the predictions of (6.1.2)-(6.1.4), as a function of $s^{1/2}$. The measured cross-sections for heavy flavour production, after rising from threshold, seem to tend to a constant fraction of the total cross-section. Our diffractive model predicts this behaviour, and so presumably the other (central) contribution has it as well.

To compare our predictions with experiment as a
Figure 6.13: Our prediction for $\sigma_d(p\bar{p} \rightarrow M_Q^2 X)$ as a function of m_Q, for three values of s^2. At the branching the solid curve is for the higher Regge intercept model (ie $a_f Q(0) \propto -m_Q$), and the dotted curve for the lower ($a_f Q(0) \propto -m_Q^2$).
Figure 6.14: Our predictions for $\sigma_d(pp+\bar{\Lambda}_Q\Lambda_QX)$ or $\sigma_d(pp+\Lambda_Q\bar{\Lambda}_QX)$ (—), and $\sigma_d(pp+\Lambda_Q\bar{\Lambda}_QX)$ or $\sigma_d(pp+\Lambda_Q\bar{\Lambda}_QX)$ (---), as functions of $s^{\frac{1}{2}}$, multiplied by 5 to allow for central production. Also shown is the pp(inelastic) data, and that for strange, charm, and bottom production, with solid points for mesons and open points for baryons. Top production is shown for the lower $\alpha_x(\circ)$ from table 5b(b), and may be scaled to the higher values in table 5b(a) by multiplying by 6, 8, 10 for $m_t=25, 35, 45$ GeV respectively. The charm and bottom data is plotted assuming an $A^{2/3}$ dependence for the cross-section as a function of atomic mass number A, which is thought to be a better approximation than an A^1 dependence.

Figure 6.15: Our predictions for $\sigma_d(pp+\Lambda_Q\Lambda_QX)$ (—) and $\sigma_d(pp+\Lambda_Q\bar{\Lambda}_QX)$ (---), as functions of $s^{\frac{1}{2}}$, multiplied by 5 to allow for central production. Also shown is the pp (inelastic) data, and that for strange, charm, and bottom production, with solid points for mesons and open ones for baryons. Λ_Q production is for $x<0$, and D and B production is for $x>0$ only, as this is what is measured experimentally. $x>0$ is the pion direction. As in figure 6.14 the charm and bottom data is plotted assuming an $A^{2/3}$ dependence for the cross-section.
Figure 6.14.
Figure 6.15

The graph shows the cross-section (σ) in mb as a function of the invariant mass $(s^{1/2})$ in GeV. The various processes are indicated with their corresponding symbols and labels:

- $\pi p \rightarrow K \bar{K} X$ (solid line)
- $\pi p \rightarrow \Lambda_s \bar{K} X (x < 0)$ (dashed line)
- $\pi p \rightarrow D DX (x > 0)$ (long-dashed line)
- $\pi p \rightarrow \Lambda_c \bar{D} X (x < 0)$ (short-dashed line)
- $\pi p \rightarrow B \bar{B} X (x > 0)$ (dot-dashed line)
- $\pi p \rightarrow \Lambda_b \bar{B} X (x < 0)$ (dotted line)

The data points are shown in various symbols, with error bars indicating the uncertainty in the measurements.
function of $s^{\frac{1}{2}}$ we therefore multiply by 5 to allow for central production. The results are shown in figures 6.14 and 6.15.

We extrapolate back to light (u,d) flavour production, to see how far the model may be pushed, being careful to avoid double counting (which is a negligible effect for the heavier flavour production). Figure 6.16 shows the various contributions to a total hadronic cross-section, and using that notation our calculated cross-sections are

$$\sigma_d(A \rightarrow B \rightarrow X) = g_{dA}(g_{eB} + g_{dB})$$

(6.3.1)

$$\sigma_d(B \rightarrow A \rightarrow X) = g_{dB}(g_{eA} + g_{dA})$$

We require $\sigma_d(AB \rightarrow X)$, given by

$$\sigma_d(AB \rightarrow X) = g_{dA}g_{eB} + g_{eA}g_{dB} + g_{dA}g_{dB}$$

(6.3.2)

and, assuming g_{dA}, $g_{dB} > g_{eA}$, g_{eB} (which is observed experimentally), make the approximation

$$\sigma_d(AB \rightarrow X) \approx \frac{1}{2}(\sigma_d(A \rightarrow B \rightarrow X) + \sigma_d(B \rightarrow A \rightarrow X))$$

(6.3.3)

It is this quantity which is plotted in figures 6.14 and 6.15, again multiplied by 5 to allow for the central production.
Figure 6.16: The different contributions making up $\sigma_{\text{tot}}(AB)$. The g's are defined so that $\sigma_e(AB \rightarrow AB) = g_{eA}g_{eB}$ and $\sigma_d(AB \rightarrow X) = g_{dA}g_{eB} + g_{eA}g_{dB} + g_{dA}g_{dB}$.
The agreement between our predictions and the data is reasonably good, considering we have simply extrapolated our model to a region of m_Q for which it was not originally designed. It is also possible that the central and diffractive contributions have different m_Q-dependence, and so multiplying our predictions by 5 independent of m_Q is inaccurate. Improved data on charm and bottom production is required to examine this.

Figure 6.14 and 6.15 show that the threshold rise for u,d and s production is too slow. This is presumably because the central component rises faster than the diffractive one. Our naive method of allowing for central production is then only valid for $s^{\frac{1}{2}} \gg s_{th}^{\frac{1}{2}}$.

In figure 6.14 our prediction for total $B\Bar{B}$ production is in conflict with the one data point\(^{(55)}\), but as it is so near to threshold this does not unduly worry us. Our prediction for Λ_{b}^{0} production is well below the (disputed) data\(^{(56)}\).

All these calculations are done with $<k_{T}^{2}>^{\frac{1}{2}} = 0.45$ GeV and $\Lambda = 0.30$ GeV, which are essentially the only parameters in our model. These values are chosen to give the best overall agreement with the data, although for the heaviest quarks the results are insensitive to these choices.
Considering the range of both $s^{1/2}$ and m_Q over which we are predicting, and the quality of the present data, the agreement between theory and experiment is quite good.

6.4 LEPTONS FROM TOP QUARKS AT THE COLLIDER

Top quarks produced at the pp-Collider should reveal themselves through their leptonic decay (60,61), shown in figure 6.17. The final state muons (electrons) can be detected if $k_{T1} > 5(15)$ GeV, provided $\theta > 10^0$. Leptons from the decay of diffractive top hadrons will mostly have $\theta < 10^0$ for any k_{T1}, because of the longitudinal momentum spectrum of figure 6.12.

However each diffractive top hadron leaves behind another top quark, whose x-distribution is calculable either by undoing the x_4 integral in (6.1.2) or the x_5 integral in (6.1.3). In both cases the result peaks at the origin, with essentially all of the distribution having $|x| < 0.05$, as shown, for example, in figure 6.18. This produces few leptons with $k_{T1} > 5$ GeV and $\theta < 10^0$, since in the quark rest frame any lepton with $k_{T1} > 5$ GeV has $\theta > 20^0$ (for $m_t \sim 25-45$ GeV).

The hadronization of the top quark before its decay, either by fragmentation or recombination with a low-x sea quark, has a negligible effect on this argument, because the intrinsic k_T is small (~ 0.45 GeV) and
Figure 6.17: The lepton \(l(\bar{T}) \) from the decay of a top quark \(\bar{t}(t) \) produced at the pp-Collider, showing the four-momenta. \(\theta \) is the angle in the pp COM frame.
Figure 6.18: Our prediction for $\frac{d\sigma}{dx}(p\bar{p}^{*}T\bar{T}x)$ at $s^{\frac{1}{2}}=540$ GeV, for the x of the diffractive \bar{T}/T, and that of the t/\bar{t} "left behind". $x > 0$ is the proton direction. We have taken $m_{t}=35$ GeV and the lower $a_{f_{t}}(o)$ from table 5b(b).
We therefore calculate the fraction of leptons with \(k_{T1} \geq k_{TC} \) in the top quark rest frame, and assume all these have \(\theta > 10^\circ \) in the pp COM frame, for \(k_{TC} \geq 5 \text{ GeV} \). Following Morgan and Jacob\(^{60}\), we use the standard V-A weak interaction theory\(^{10}\) to calculate \(\Gamma(t \rightarrow \bar{\nu}_1 b)(=\Gamma(\bar{t} \rightarrow 1\nu_1 \bar{b})) \), neglecting all final particle masses. The decay is shown in figure 6.19.

The amplitude is

\[
A_{t\rightarrow \bar{\nu}_1 b} = 2^{-1/2} G \bar{u} \gamma^\alpha (1+\gamma^5) u_b \gamma^\alpha (1+\gamma^5) u_t \quad (6.4.1)
\]

Substituting this into (1.4.2) for \(N=3 \) gives\(^{62}\)

\[
\Gamma(t \rightarrow \bar{\nu}_1 b) = \frac{64G^2}{2m_t} \int \frac{d^3k_T}{2(2\pi)^3 E_1} \frac{d^3k_b}{2(2\pi)^3 E_b} \frac{d^3k_{\bar{\nu}_1}}{2(2\pi)^3 E_{\bar{\nu}_1}}
\]

\[
(2\pi)^4 \delta^4(k_t - k_{\bar{\nu}_1} - k_b - k_{\nu_1}) k_t \cdot k_b \cdot k_{\bar{\nu}_1} \cdot k_{\nu_1} \quad (6.4.2)
\]

and so

\[
E_T \frac{d^3 \Gamma(t \rightarrow \bar{\nu}_1 b)}{d^3 k_T} = \frac{G^2 k_t \cdot k_T}{4\pi^5 m_t} \int \frac{d^3 k_b}{E_b} \frac{d^4 k_{\bar{\nu}_1} \delta^4(k_T - k_{\bar{\nu}_1} - k_b - k_{\nu_1})}{E_{\bar{\nu}_1}}
\]
Figure 6.19: The leptonic decay of a top quark, showing the four-momenta. G is the weak coupling.
In the $b\nu_1$ COM frame

$$\delta((k_T^-k_T^-)^2 - 2k_b\cdot(k_T^-k_T^-))k_b\cdot(k_T^-k_T^-) = \delta\left(\frac{(E_T-E_T^-)}{2} - E_b\right)^2$$

(6.4.4)

Using this the remaining integrals in (6.4.3) are easy, with the result (written in invariant form)

$$E_{T^-} \frac{d^3\Gamma(t^-\bar{\nu}_1b}{d^3k_T^-} = \frac{G^2 k\cdot k_T^- (k_T^-)^2}{8\pi^4 m_T^2}$$

(6.4.5)

We define the variables y, z, and the axis direction by

$$k_T^+ = zk_T^-; \quad m_T^2y = k_T^-; \quad k_T^z = 0$$

(6.4.6)

These give

$$\frac{d^3k_T^-}{E_{T^-}} = \frac{m_T^2 dz dy \phi}{2z}$$

(6.4.7)

where ϕ is the angle defining k_T^-. We introduce the branching ratio for $t^-\bar{\nu}_1b$,

$$B(t^-\bar{\nu}_1b) = \frac{r(t^-\bar{\nu}_1b)}{r_{tot}}$$

(6.4.8)
\[\frac{d^{2}B}{dzdy} \left(t + \bar{T} \nu_{1} b \right) = \frac{G^{2} m_{t}^{5}}{16\pi^{3} \Gamma_{\text{tot}} z} \left(z + \frac{1 - z - z}{z} \right) \]

(6.4.9)

\[k_{T}^2 \text{ (and therefore, from (6.4.6), } y \text{) maximizes when the } b-\text{quark and } \nu_{1} \text{ are collinear. Expanding } k_{T}^{2} = (k_{T}^{2} + k_{b}^{2} + k_{\nu_{1}}^{2})^{2} \text{ for this situation, and using (1.5.6) for the dot products gives} \]

\[m_{t}^{2} = k_{T}^{2} \left(\frac{z}{1 - z} + \frac{1 - z}{z} + z \right) \]

and so, using (6.4.6)

\[y = z(1 - z) \]

(6.4.10)

For leptons with \[k_{T} \geq k_{T}^{2} \text{ (ie } y \geq y_{C} = \frac{k_{T}^{2}}{m_{t}^{2}} \text{), the allowed region of } yz \text{ space is shown in figure 6.20.} \]

We define the dimensionless constant \(B_{0} \) by

\[B_{0} = \frac{G^{2} m_{t}^{5}}{16\pi^{3} \Gamma_{\text{tot}}} \]

(6.4.11)

and \(\delta B \) as the branching ratio for \(b + \bar{T} \nu_{1} b \) with \(k_{T} \geq k_{T}^{2} \).
Figure 6.20: The yz plane, with the allowed region for leptons with $y \geq y_c$ shaded.
which is the subject of this calculation. Substituting (6.4.11) into (6.4.9), and integrating over the allowed area, we obtain

\[
\delta B = B_0 \left[z \left(1 - z \right) \int_{\frac{1}{4} - (1-y_C)^2}^{\frac{3}{4} + (1-y_C)^2} \frac{dz}{dy} \left(1 + \frac{Y_z}{z} \right) (1 - z - Y_z) \right] \int_{y_C}^{\infty} dy
\]

\[
= B_0 \left[\frac{z - z^3 + z^n}{6} - y_C z + \frac{y_C z^2}{2} + \frac{y_C^2}{2} \log z - \frac{y_C^3}{6} \right] \left(\frac{1}{4} - (1-y_C)^2 \right)^{1/2}
\]

(6.4.12)

which gives \(\delta B \) as a function of \(y_C \). For the calculations we choose \(B(t+T_{1b}) = 0.1 \). In the limit \(y_C \to 0 \), \(\delta B \to B(t+T_{1b}) \), so this choice fixes \(B_0 = 1.2 \).

Table 6b contains our predicted lepton yields from diffractive \(T\bar{T} \) production at the pp-Collider, for three possible top quark masses. \(\delta B \) is calculated from (6.4.12), and the predicted numbers of leptons are for an assumed integrated luminosity of 100 nb\(^{-1}\). The cross-sections are from figure 6.14, without the central production factor of 5. Remember these are for the smaller Regge intercepts from table 5b(b), and the larger intercepts from table 5b(a) give results bigger by 6, 8, 10 for \(m_t = 25, 35, 45 \) GeV respectively. If central production at the Collider really is 4 times larger than diffractive production, and these events
Table 6b: The predicted lepton yields from $p\bar{p}\rightarrow T^{+}T^{-}X$ at $s^{rac{1}{2}}=540$ GeV.

produce a visible lepton with roughly the same probability as the diffractive ones, then all these results should be multiplied by 5 for the total (diffractive and central) lepton yields. We also consider the larger cut-off $k_{TC} = 8(20)$ GeV for muons (electrons).
Table 6c contains the corresponding predictions for leptons from diffractive $\Lambda_T^{\pi^+}/\Lambda_T^{\pi^-}$ production at the Collider.

<table>
<thead>
<tr>
<th>k_{TC} (GeV)</th>
<th>m_t (GeV)</th>
<th>25</th>
<th>35</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ(nb)</td>
<td>3.0x10^{-1}</td>
<td>8.5x10^{-2}</td>
<td>3.0x10^{-2}</td>
</tr>
<tr>
<td>5</td>
<td>σ_{6B} (nb)</td>
<td>1.9x10^{-2}</td>
<td>6.7x10^{-3}</td>
<td>2.6x10^{-3}</td>
</tr>
<tr>
<td></td>
<td>No of leptons</td>
<td>~ 2</td>
<td>~ 1</td>
<td>~ 0 or 1</td>
</tr>
<tr>
<td>8</td>
<td>σ_{6B} (nb)</td>
<td>7.3x10^{-3}</td>
<td>4.4x10^{-3}</td>
<td>2.0x10^{-3}</td>
</tr>
<tr>
<td></td>
<td>No of leptons</td>
<td>~ 1</td>
<td>~ 0 or 1</td>
<td>~ 0 or 1</td>
</tr>
<tr>
<td>15</td>
<td>σ_{6B} (nb)</td>
<td>0</td>
<td>2.6x10^{-4}</td>
<td>6.1x10^{-4}</td>
</tr>
<tr>
<td></td>
<td>No of leptons</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>σ_{6B} (nb)</td>
<td>0</td>
<td>0</td>
<td>5.1x10^{-5}</td>
</tr>
<tr>
<td></td>
<td>No of leptons</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6c: The predicted lepton yields from $p\bar{p}+\Lambda_T^{\pi^+}/\Lambda_T^{\pi^-}$ at $s^{1/2}=540$ GeV.

From these numbers we conclude that if the top quark has a mass in the range we have considered, it
should be visible at the $p\bar{p}$-Collider via its muonic, and also possibly its electronic, decay, for an integrated luminosity of $\sim 100 \text{ nb}^{-1}$.
SUMMARY AND CONCLUSIONS

The aim of this work has been to develop a model for the diffractive production of heavy flavours in hadron scattering, predicting both the normalization and x-dependence of the production cross-sections.

Our model contains three ingredients; the initial distribution of intrinsic heavy quarks in the incident hadron, the heavy quark-hadron total cross-section, and the recombination function for producing heavy flavoured hadrons from the scattered quarks. In an interaction a hadron scatters on one of the intrinsic heavy quarks in the other hadron, with very little disruption of its initial x-distribution. The probability of the heavy quarks forming heavy hadrons is given by the overlap of this distribution with the recombination function, which is essentially the heavy hadron valence distribution. If the $Q\bar{Q}$ pair do not hadronize in this way, we assume they annihilate each other.

In Chapter 2 we modelled constituent valence quark distributions for all types of hadron. They are needed to calculate the heavy flavoured hadron recombination functions, and the $Q\bar{Q}$ distributions in light hadrons. For pions and nucleons we compared these valence
distributions with deep inelastic scattering data, and
in each case found discrepancies, the theoretical peak
being at larger x. This is expected because the data
is for current quarks whereas our distributions are of
constituent quarks, which are current quarks surrounded
by a sea of \(q\bar{q} \) pairs and gluons. If our distributions
are probed by larger momentum transfers (in order to
resolve the current quarks), they will be suppressed to
smaller x by QCD evolution. This moves the theoretical
curves in figures 2.5 and 2.6 towards the data, thus,
one may suppose, resolving the discrepancies.

These valence distributions obey the dimensional
counting rules as \(x^{-1} \), and by reciprocity should match
up with their corresponding fragmentation functions as
\(z^{-1} \). We investigated this in Chapter 3, where we
modelled the fragmentation functions. For heavy quarks
the dominant fragmentation process is \(Q\rightarrow MQq \), so our
predictions compare directly with experiment. Figure
3.2 and table 3a indicate the good agreement obtained
for both charm and bottom fragmentation. We also give
predictions for top quark fragmentation.

In Chapter 4 we calculated the intrinsic heavy
quark distributions in light hadrons, assuming that
the \(QQ \) pair are created by a gluon emitted from one of
the valence constituent quarks. Our prediction for
charm production in deep inelastic scattering due to
intrinsic charmed quarks is under the data, even without a possible QCD evolution, as shown in figure 4.6. Since the data is already well described by the photon-gluon fusion model, this is necessary to avoid any conflict.

The remaining ingredient, the heavy quark-hadron total cross-section, was considered in Chapter 5. We modelled total hadronic cross-sections by introducing the idea of a light (valence) quark-hadron cross-section, dominated by Pomeron exchange at large s. We extended this to heavy quarks using the f-dominance hypothesis for the Pomeron-quark coupling. The rise of these cross-sections from threshold is limited both by dynamics ie the difficulty of forming the final state hadrons in the exclusive threshold process, and by kinematics ie the restricted range of t available at low s. Correcting for these effects, and using the hypothesis of generalized vector dominance enabled us to predict the cross-section for the photo-production of heavy flavours. Figure 5.5 shows the good agreement with the data for charm production.

We used these successes as the basis for our model of diffractive hadronic heavy flavour production, assuming the intrinsic heavy quarks in one hadron are scattered by the other, before reforming heavy flavoured hadrons. We constructed this model, and tested it against experiment, in Chapter 6. Figures 6.2 to 6.10
show good agreement with the data at large x, whereas at small x the data lies above our predictions because of central production. This presumably occurs through a quite different mechanism, and when a good model exists, its predictions added to ours should be able to account for the data at all x.

Central production appears to constitute about 4/5 of the total cross-section, and so we multiplied our diffractive results by 5 before plotting them against the total cross-section data as a function of $s^{1/2}$ in figures 6.14 and 6.15. These figures also contain our predictions of the total cross-sections for bottom and top production. The data support the threshold rise built into the model, but suggest that central production rises faster than the diffractive component, at least for light flavours. (It is also possible that our threshold rise for the diffractive component is too slow for the lightest flavours; it was derived with heavy flavours in mind). We have extrapolated the model to light (u,d) flavour production, and obtain agreement with the data to better than a factor of 2 at large s. This is the most one should expect, since the assumptions in our model, (particularly the use of lowest order QCD to create the intrinsic $Q\bar{Q}$), cannot really be justified for light quark production.

The production of top quarks at the $p\bar{p}$-Collider
is of particular interest at the moment, so we devoted Section 6.4 to calculating the large k_t lepton yield from our diffractive top production, for a range of m_t. The backgrounds to these leptons have been considered by various authors\(^{(61,63)}\), and the top signal should be clearly visible above them. There should also be associated jet activity from the bottom quark decay. We considered two possible top quark-proton cross-sections; the smaller of these is really a lower bound, so failure to observe leptons at or above the rate predicted using this would cast serious doubt on the existence of the top quark with a mass in the range $25 \leq m_t \leq 45$ GeV.

We discussed other models for hadronic production of heavy flavours in Section 1.2. The x-dependence we predict for the cross-sections is in sharp contrast to those from QCD perturbation theory models\(^{(3)}\), calculated using (1.2.1). These peak at $x=0$, but are unable to account for the observed magnitudes of central heavy flavour production. Our x-distributions of heavy flavoured hadrons are similar to those predicted by Barger et al\(^{(5)}\), Brodsky et al\(^{(7)}\) and Donnachie\(^{(6)}\), despite the rather different picture we adopt. However we predict the magnitudes of the diffractive cross-sections, rather than normalizing to the data, which is very important for extrapolating to top production.
We conclude, finally, that our diffractive model accounts for the present large x hadronic heavy flavour production data, and that all aspects of the model separately compare well with experiment. Hopefully more data will appear soon, adding further support; in particular if the top quark has $25 \lessapprox m_t \lessapprox 45$ GeV it should be visible at the $p\bar{p}$-Collider.
REFERENCES

2. Peterson, C., Proc. of the Topical workshop on
 Forward Production of High Mass Flavours at Collider
 D18, 162 (1978),
 Hagiwara, K., and Yoshino, T., Phys. Lett. 80B, 282 (1979),
 Combridge, B.L., Nucl. Phys. B151, 429 (1979),
4. Reya, E., Physics Reports 69C, 3 (1981),
 Pennington, M.R., Reports on Progress in Physics 46,
 393 (1983), and references therein.
 D24, 1428 (1981); D25, 112 (1982).
8. Collins, P.D.B., An Introduction to Regge Theory and
9. e.g. Itzykson, C., and Zuber, J-B., Quantum Field
10. e.g. Okun, L.B., Leptons and Quarks, North-Holland (1982).
12. Cutkosky, R.E., J. Math. Phys. 1, 429 (1960); Rev. Mod. Phys. 33, 446 (1961), and ref. 9, Section 6-3-4.
15. Ref. 13, Section 9.1.3.
Chaveau, J., University of Rochester Pre-print COO-3065-362.
27. Ref. 13, Section 12.2.
41. Ref. 8, Section 10.8.
53. Whitmore, J., Physics Reports 10C, 273 (1974);
 Physics Reports 27C, 187 (1976), and refs. 50 and 52.
 65A, 457 (1981); 67A, 40 (1982),
 Sajot, G., Proc. of XX International Conference on
 High Energy Physics, Madison, 192 (1980),
 Muller, F., Proc. of XX International Conference
 on High Energy Physics, Madison, 193 (1980),
 Fuchi, H., et al., Proc. of 16th International Cosmic
 Ray Conference, Kyoto, 6, 112 (1979),
 1774 (1979),
 Daum, C., et al., Proc. of XXI International
57. Halzen, F., Proc. of XXI International Conference on
Koester, L.J., et al., Proc. of XX International
Conference on High Energy Physics, Madison, 190 (1980),
Daum, C., et al., Proc. of XXI International Conference
on High Energy Physics, Paris, (1982),
Moriond, 377 (1982).
60. Horgan, R., and Jacob, M., Phys. Lett. 107B, 395 (1981);
61. Barger, V., Martin, A.D., and Phillips, R.J.N.,
62. Ref. 10, Section 3.1.
63. Baer, H., Barger, V., Martin, A.D., and Phillips, R.J.N.,