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ABSTRACT

We attempt to answer two questions; for g greater than one,
when is a simple (2g-1)-knot the branched cyclic cover of another
such knot? and, for q sufficiently large to ensure the existence
of an appropriate classification theorem, when is a (2q)-knot the
m-twist-spin of such a knot? The methods used will be mainly
algebraic, including some arising from the theory of projective
modules over an integral group ring. The work is original except
where references indicate otherwise; part of chapter 1 has been

published previously as [St].
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INTRODUCTION

In this thesis we consider two related questions; when is an
odd-dimensional simple knot the branched cyclic cover of another
knot? and when is an even-dimensional knot the m-twist-spin of an
odd-dimensional one? The second question has already been
considered by R.A.Litherland in [Li] in order to show that we may
use a construction of R.H.Fox called "rolling" in conjunction
with the twist-spinning construction to obtain knots which cannot
be obtained by simply twist-spinning a knot; in our case the
question is motivated by work of Cherry Kearton on spun knots in
[K3]. We work in the piecewise linear category throughout; and
all embeddings and isotopies will be assumed to be locally flat.
The methods used are mostly algebraic, making use of the
classification theorems of Rearton and Kojima ([Kl],[Ro],[K2]);
unfortunately the geometric investigations have been less

successful (see chapter 5 especially).

In the first chapter we obtain an algebraic condition for an
odd-dimensional simple knot to be the m-fold branched cyclic
cover of another, and give two sufficient conditions on the

module of a knot which ensure that the knot may only be the
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m-fold branched cyclic cover of finitely many knots for any value
of m. In the second we describe Zeeman’s definition of the
twist-spinning construction, and we show how to calculate the
Alexander modules of a twist-spun knot via an exact sequence
which is due to Milnor. We apply this to the twist spinning of
the simple knots whose modules may be considered as modules over
certain Dedekind domains, described by Eva Bayer in [Ba]; and, in
the special case of knots whose modules are modules over the ring
of integers of some cyclotomic field, we calculate the modules in

such a way as to be able to compare them.

Chapter 3 attacks the second question stated above. Necessary
conditions for a module to belong to an m-twist spun simple knot
are derived, and we introduce two special classes of finite knot
modules in the hope of being able to identify exactly which knots
whose modules fall into these classes may be obtained by the
twist-spinning process. We also investigate the Levine, or
torsion, pairing associated with a twist-spun knot, and show that
in each of the special cases we consider, this never provides any

further obstruction to a knot”s being twist-spun.

Chapter 4 introduces some algebraic machinery to tackle the
most sensitive obstruction to a knot”s being twist-spun, namely
that the projection of its order ideal to the ring zZ[t,t™']1/(t"-1)
must be principal and generated by a self-conjugate element; and

we give two examples to show that this obstruction is not



vacuous.

In chapter 5 we investigate the case of a simple
even-dimensional knot whose modules are Z-torsion free, and
attempt: to énalyze the geometry of the situation; the results
are incomplete, all following from the simplest necessary
condition derived in chapter 3. In the appendix we have
collected together some algebraic results which assist various
calculations, referenced as (Ri) or (Ai) in the text, where i

denotes an integer.

Due to the printer used to produce this thesis, some of the
notation is slightly non-standard; in particular, the capital
letters Q and Z will always be used to denote the field of

rational numbers and the integers respectively.

It only remains to express my thanks; to my supervisor, Cherry
Kearton, for suggesting these two questions, and for the support
and encouragement he has given me throughout my stay in Durham;
to Steve Wilson, who patiently introduced me to much of the
number theory, especially that used in chapter 4; and to the
computing services at Durham and Newcastle for the use of their
facilities, which I have made use of for various calculations,

and in producing this document.
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1 BRANCHED CYCLIC COVERS OF SIMPLE KNOTS

1.1 DEFINITIONS

Let E:S“———ésnfldenote an n-knot, N the interior of a
regular neighbourhood of E(S"), and K the exterior of the
knot, which will be SQQ\N. E(S“) has a trivial normal bundle,
so the closure of N is homeomorphic to S“XBI . By Alexander
duality, H*(K)iﬂﬁ(s‘); so we may form the infinite cyclic
cover K of K corresponding to the kernel of the Hurewicz
homohorphism T, (K) — H (K)=Z; and the finite cyclic cover R;“
corresponding to the kernel of the composition of this map
with the natural surjection Z->Z,. To construct the m-fold
branched cyclic cover Ky, we glue the m-fold cyclic cover of
N, branched along k, into i;; the branch set then gives us a
natural embedding lc_m:s'L -> K,. In the first chapter we will

be interested in the case where K, is another (n+2)-sphere,

so that k _ is a knot.

The invariants of the knot which will interest us (and, in
the simple case, classify the knot type) will be associated
with the infinite cyclic cover ®, together with the
homeomorphism t generating the group of covering

translations. t will also be used (ambiguously) to denote the




generator of the ring [\=Z[t,t“'] of Laurent polynomials and
the induced homomorphism of chain groups and homology groups
of the various covering spaces of K, taking t to be the
identity on the knot itself. The Alexander modules of k are
the homology groups of K, considered as A-modules via the

action of t.

To determine whether K, is a sphere, we use the following
short exact sequence of chain groups;
t™-1

0 —> C () ——>Cc () —— C (K)—> 0
* * *m

which leads to Milnor“s long exact sequence of homology

modules; (Lm1])

-1
o> H () ———— 4 ) ——> 8 ) — 1 ® —...
q q q m gq-1
o~ tm—l ~ o~
— H (k) ——> H (§) —> B () — 8 () — 8 (¥)
1 1 1 m 0 0

If K. is a sphere, then K,, must be a homology S', by
Alexander duality; so 1-t™ must act as an automorphism of
Hi(f) for all g>0. Conversely, if 1-t" does so act, then Kp,
which can be obtained from K by attaching a two-handle
(killing the first homology group), and an (n+2)-handle, will
be a homology sphere. If we have 1T, (K)2Z, then the
fundamental group of i;‘will also be infinite cyclic, and
thus be killed by attaching the two-handle; so that K, will

be a simply connected homology sphere, hence a homotopy



sphere. Using the generalised Poincare conjecture, we then

have the following (probably already known) result;

Proposition 1/Provided n+2 » 5 and 1(,(K)2Z, then the m-fold

branched cyclic cover k_ of k will be a genuine knot if and

only if 1-t™ is an automorphism of H,(f) for g>0.//

Suppose now we have the situation where k is the m-fold
branched cyclic cover (b.c.c.) of a knot 1. The infinite
cyclic cover T of 1l is the same as K; but it is acted on by a
group of covering translations generated by a homeomorphism
u, which we may choose so that u™=t. We will similarly use u
to denote induced maps, and as a generator of Z[u,uf']. In
attempting to characterise which knots k can arise as
branched cyclic covers, we shall be trying to construct
suitable candidates for 1. We shall therefore work with
classes of knots which have been classified by algebraic
information, the best known examples being the so-called

simple knots.

1.2 SIMPLE KNOTS

We have already noted that the exterior of a knot is a
homology S'; by Levine”s unknotting theorem, if ﬂ;(K)ETYJS')

for i< q, where k is either a (2g-1)- or a (2qg)-knot, then k



is unknotted, i.e. k(S™) bounds a disc in S™. We say k is
simple if T (K)=TT;(S') for i<q. We deduce that rr;(K)=0 for
i<q; then the first Alexander module of k which may be
non-trivial is H%('!’(’)Enw(f() , by the Hurewicz theorem.,
Additional information which enables us to calculate the
higher dimensional Alexander modules and to classify the
odd-dimensional knots is summed up in two duality pairings;
one on the torsion-free parts Fr of Hk(K); and the other on
the torsion parts, denoted T,. Both are described by Levine
in [L2). We shall write the two pairings as follows;

£,>:F XF —30(t) /A

k n-k+1

{,]1:T XT —0/7
k n-k

Suppose A is any [\ -module with [\ acting on the left by
(A,a)—> Aa. We define the conjugate module A to have the
same underlying abelian group structure as A, but with j\_ A
acting on the right by (a,A)r—> ia, where this bar denotes
the involution of /\ induced by t—>t~' (and also the

involution inherited by quotient modules of A). The above

pairings then give duality isomorphisms;
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F =Hom(F 0(8) /)
k n-k+1

by x > (Y > <x,¥>)

and T =Hom(T ,0/2)
'k n-k

by a ~—> (b —> [a,bl])

These duality isomorpisms show that HQAK) is the only
non-trivial Alexander module if n=2gq-1 is odd, when it must
also be torsion-free; if n=2q, then Hm(ﬁ) and Hq4(K) are the
only two possibly non-zero modules, with the latter

necessarily torsion-free.

The torsion pairing is complicated to describe in general;
a simpler description for the case where k is a fibred
even-dimensional knot will be used in chapter 2. The
description of the torsion-free pairing given by Blanchfield
will be used later in this chapter when we come to calculate
the pairing of an odd-dimensional simple knot given the
pairing of its branched cyclic cover; since odd-dimensional
simple knots are classified by their module and pairing
([R1],([T]), this will effectively enable us to deduce the

type of such a knot from that of its branched cyclic cover.



1.3

RELATIONSHIP BETWEEN THE MODULES AND PAIRINGS

We return to the situation we had at the end of section
(1.1), where k is the m-fold branched cyclic cover of 1. We
may take their infinite cyclic covers to be both K, with
corresponding generators of the groups of covering
translations given by t and u respectively, where t=u"™. The
Alexander modules of 1 will then be the same as those for k,
but considered as modules over Z[u,u'] via the induced action
of u. Suppose that k and 1 are both odd-dimensional simple
knots (if one is, they clearly both are); and denote their
non-zero modules by A, and A, respectively. We may write

down their Blanchfield pairings <,> and <,>, as follows.

Take two elements a,b of At=HW(E). A, is a A-torsion
module, so there exists a non-zero p(t)éA such that pa=0.
Choose a triangulation of K induced by a triangulation of the
exterior of 1 (so that it will be acted on by u); and let Cq,
be the group of g~chains, and E;M the group of (g+l)-chains
in the dual triangulation. As pa=0, we may choose an element
& of 5;4 whose boundary represents pa; we also choose B & C,
representing b, Then we define ([B],[Kl]);

i i -1

&0
<a,b> = () I(&,t B)t )/p(t)e Q(t)/z(t,t ]
t i==0o



o i i m -1
<a,b> = ( > I(&,u B)u )/p(u )€ Q(u)/zlu,u ]
u i==eo
where I(,) denotes intersection numbers of chains. We now
group the second infinite sum into groups of powers of u
having the same value modulo m. Let M be a complete set of

representatives of the integers modulo m, for instance

{0,1,...,m-1}. Then we have;

k & im+k im m
ca,b> = (D.u 2 I(&d,u  B))(u ))/plu )
u keM: i=-o0
k i k m i m
=ZU (Z I(&,t (uB))(u) )/p(u)
k k
= Zu .8<a,u b>
keM t
-1 -1
where 8:Q(t)/z[t,t 11— Q(u)/Z[u,u ] is defined by
m
f(t) — f(u ).

1.4 WHICH ODD-DIMENSIONAL SIMPLE RNOTS ARE BRANCHED CYCLIC

COVERS?

Given such a knot k and a homeomorphism u of FFSuch that
u™=t, we now know what the module and pairing structure would
have to be of a knot whose m-fold b.c.c. was k, and whose
infinite cyclic cover (when identified with K) had u as a
generator of the group of covering translations. If these

new structures satisfy the Levine axioms, given below, then




we know that we can construct a knot 1 with these invariants.
The m-fold b.c.c. of 1 would then have the same module and
pairing as k, and so be equivalent by the classification

theorem given below;

Theorem 2/([{Kl])Given any odd-dimensional simple knot

kst ' s gt

, the module A and pairing <,> satisfy the

Levine axioms as follows;

(L1) A is a finitely generated, A-torsion module.
(L2) Multiplication by (l1-t) is an automorphism of A.

]
(L3) <,> is (-1)¥" -Hermitian, that is;

<a,b> -1 <6, 3>

& t<a,b>

<ta,b>.

(L4) <,> is non-singular, so that the adjoint map;

A —— Hom (A,Q(t)/A) given by
a b—=» (X —> <x,a>)

is an isomorphism.

Furthermore, these conditions characterize the modules and
pairings which can arise, together with the condition that
the signature of the corresponding quadratic pairing (as in

[T]) must be divisible by 16 if g=2. //

To derive the algebraic conditions for k to be the m-fold

b.c.c. of a knot, we shall need to use the following trick



repeatedly;

Lemma 3/Suppose that M is a set of integers having distinct

values modulo m, and we are given that;

(E: 5? a u

keM i=-=-o k+im

k+im m -1
)/p(u )=0 in Q(u)/Z[u,u ]

Then, for all ke M;

o9 i -1
( D.a t)/p(t) =0 in Q(t)/z(t,t |

i=-o k+im

m ﬁi i
Proof Since p(u )| b u

j==—00 i

i
ZE: bu Vkez //

i=k(mod m) i

m
<=> p(u )|

If the module A, and pairing <,>, defined above satisfy
the Levine conditions, we may construct a knot 1
corresponding to them. Let 5' denote the m-fold b.c.c. of 1,
which is a spherical knot by proposition 1, noting that 1-u™

is an automorphism of A,. The Alexander module of k” is

clearly At; and if <,>£ is its
m-1 k k
u 8<a,u b>“ = <a,b> =
k= t u
for all a,b&A,. Using lemma 3

<a,b>t=<a,b>;; so k and k” are

as an m-fold b.c.c.

Blanchfield pairing, we have;
m-1 k k
u 8<a,u b>
k=0 t
for k=0 we see that

equivalent, and k does arise

The condition we regquire is as follows;

AN



- 10 -

Theorem 4/(A,,<,>,) satisfies the Levine conditions (and

hence k is an m-fold b.c.c.) if and only if u acts as an

isometry of (Ap,<,>,) with um=t°

Proof. Firstly the "only if" part. For <,>, to satisfy (L3)

we must have, for all a,b&A.;

L g+l
<a,b> = e<b,a> (e=(-1) )
u u

=1 k k m-1 -k m

<=> u 8<a,u b> = e u 8<b,u a>
k= t k= t

= u 6<u a,b> as <,>_ 1is e-Hermitian

i

<=> <a,u b> =t <u a,b> for all 0< k< m by lemma 3

<=> <a,u b> for all 0<k<m

It
N
c
2
o
A\

t t

<=> y is an isometry of <,> .
t

Conversely, A 1is clearly finitely generated; and l-u is an
automorphism since;

m-1 m
(1-u). (1+u+...+u y=1-u =1-t.

We have already proved the first half of (L3) above; for
the second half we have;
m=1 k k

<ua,b> = > u @<ua,u b>
u k=0 t
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m-1 k k-1
? u 6<a,u b> as u is an isometry
= t

- k k
= u, u 8<a,u b> = u.<a,b> .

=1 t u

Finally we prove (L4) in two parts;

(i) The adjoint map is injective,

Suppose <a,b> =0 for all a in A . Then;
u u

m=1 k k
u 8<a,u b> =0 for all a in A
= t t

=> <a,b> =0 for all a in A (putting k=0 in lemma 3)
t t

=> b = 0 as required, since <,> 1is non-singular
t

(ii) The adjoint map is surjective.

Suppose a ——> f (u) is a u-linear map
a
-1
A ——> Q(u)/Z[u,u ]
u

m
If A(t) is the Alexander polynomial of k, then Alu ) will

kill A , and we may write;
u

-1 k (k) m m
£ (u) = [ u £ (u)]l/A(u)
a k=0 a

(k)
for some integer polynomials £ .
a



- 12 -~

(0)
Then a — £ (t)/N\(t) is a t-linear map
a

A — Q(t) /A
t

So, as <,> 1is non-singular, there is an x in A such
t t
that;
(0)
<a,x> = £ (t)/A(b)
t a

Then we have;

=1 k K
u .8<a,u x>

<a,x> =
u k=0 t

k -k

= ZZ:u .B<u a,x> as u is an isometry

t

k (0) m m

=[ 2uf (u)l/A(u)

u a

-1 k (k) m m
=[3§fu f (u)]/A(u) as a —> f (u) is u-linear
k=0 a a

= £f as required.
a

We have proved that if u is an isometry of A then <,>,
is a genuine Blanchfield pairing; and this suffices to prove
the theorem for g>2. Suppose now that k is a 3-knot. As the
Levine conditions depend only on the value of g modulo 2, the
above proof shovs that <,> is the Blanchfield pairing of a
7-knot i7, whose m-fold cover 57 has pairing <,>.. Any lift

of a 2-connected Seifert surface of 1, to the complement of
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k, will be a Seifert surface for k,. It follows that the
quadratic pairings associated with the pairings <,>, and <,>,
will have the same signature, namely that of the surface; so

it follows that <,>, is the Blanchfield pairing of a 3-knot,

completing the proof. //

Ideas used in the lemma and the above proof enable us to
define a set of maps;

-1 -1
-QK:Q(U)/Z[u.u ] — Q(t)/2[t,t 1 Ke 2z

Suppose we had an element of Q(u)/z[u,u”], expressed as
the quotient of two integral polynomials f(u)/d(u). We form

the polynomial;

S =JTagw

where the product runs over all the mth roots of unity §.

The coefficients of 5, being symmetric functions of the roots
of the polynomial 1-x"™, are all integers; and since
5(}u)=$(u) for any mth root of unity X, S(u) must be of the

form A(u™) where A is an integral polynomial. So we have;

m m
£(u)/d(uw) = £(u).[ @(yu) /A(u ) (product over § =1,3#1)

-1 k m m .
[Eu ¢ (u)1/A(u ) say,
k=0 k

and we define i%df(u)/d(u)) = ¢k(t)AA(t), where K is the
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image of k under the natural projection 2 —— Z,. Adapting
the proof of lemma 3, we see that &%‘is well-defined. So, by
the calculation at the end of section three, we see that we
may write <9 in terms of <,>,  as;
<a,b> = {) <a,b>
' t 0 u

where 0 denotes the identity element of Z,.

This map will also be useful in calculating the torsion

pairing of a twist-spun knot in the third chapter.

HOW MANY DIFFERENT KNOTS IS K AN M-FOLD B.C.C. OF?

We may translate this question into an algebraic one by

means of the following theorem;

Theorem 5/Suppose u and v are two isometries of (A,,<,> )

with u™=t=v™. Then (Ay,<,>,) and (Ay,<,> ) are isometric,
and hence correspond to equivalent knots, if and only if u
and v are conjugate by an isometry of (A ,<,>).
Proof We write both <,>, and <,> with values in Q(u) /Z[u,u™]
Then;
b: (A ,<,> ) —> (A ,<,> ) is an isometry
u u v v

<=> <a,b> = <¢a,¢b> for all a,b&A,
u v
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=1 k k =1 k k
<=> u 8<a,u b> = u 8<da,v ¢b>
k= t k=0 t
k k
<=> <a,u b> = <da,v ¢b> for all a,b,0Lk<m by lemma 3
t t

=> ¢ is an isometry of <,> (k=0)
t

1
and taking k=1, we see that u=é vé, since <,> is
t
non-singular. //

So an equivalent algebraic question is to ask how many
conjugacy classes of elements u with u"=t there are in the
isometry group of <,> . In certain cases we can show this
number is finite; the following proposition arises from

Jonathan Hillman”s work in [H1l];

Proposition 6/If a simple (2g-1)-knot k, q2> 2 has the same

Alexander polynomial and minimal polynomial, then it may only
be the m~-fold branched cyclic cover of finitely many distinct
knots,

Proof Let M be the Alexander module of k. We shall in fact

show that the group of automorphisms Aut (M) contains only
finitely many elements with uM=t, which we will do by
considering successively more complex forms for M. We
firstly note that our polynomial condition is equivalent to
insisting that the second Alexander polynomial (l),in

Jonathan Hillman“s notation) is equal to one.
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Suppose first that M E_A/(p(t))s where p is irreducible;
we shall prove the proposition in this case by induction on
j. The case j=1 follows from lemma 4 of [H1], since Aut (M)
is just the group of units 0 (M) (Mx in Hillman“s notation),
considering M with its natural ring structure inherited from
A. Suppose we have proved the proposition for j=h, and
u,,...,05 €A satisfy;

m J
(e (u)) =T (t) (t:AN-->A/(p(t)) the natural projection)
h i h j
with the JT (u;) being the only mth roots of t in Aut(j\/pk).
Then if TT,,,(u) is to be an mth root of t in Aut(A /p™*' ), we
must have
h
u=u.+f(t)(p(t)) for some 1 and f(t).
i

Suppose that;

m h

U =t+g(t) (p(t))
1

m m m-1 h
Then u  =u +m.u f(t)p(t)
i i
h m-1

=t+p(t) (g(t)+m.u  £(t))
i

h+1
=t (mod p )

for 1,,,(u) to be such an mth root. If a suitable f can be

found, then it will be uniquely determined (mod p(t)); so
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there is at most one choice for u (mod phd) for each i, and
the number of mth roots of t in Aut(A‘/p“*') is no greater

than the number in Aut(A/p").

Suppose now that M = \/(f(t)), where f is a composite
polynomial. Any element of Aut(M)SU(A/f(t)) will be uniquely
determined by its projections onto U(A/(p(t);) for all the
factors (p(t))l of £ which are powers of irreducible
polynomials; and the projections of mth roots of t must also
be mth roots of t. By the first case there are only finitely
many of these in each primary factor; so there are only

finitely many in Aut(M).

Finally, we cover the general case where we only know that
AJM)=1. By Crowell”s result, the annihilator ideal of M in
Nis principal, generated by f(t), say. By theorem 2 of
[H1], Aut(M) contains U(A/f) as a subgroup of finite index,
and is itself Abelian. Any two roots of t in the same coset
will then have a quotient which is an mth root of unity in
U(A/f); and since the above reasoning may be readily adapted
to show that there are only finitely many of these (the same
number as there are mth roots of t, in fact), there are only
finitely many mth roots of t in each of the finite number of

cosets, which completes the proof. //
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We may derive another finiteness condition from the work

of E. Bayer and F. Michel [BM];

Proposition 7/If a simple (2g-1)-knot k, q » 2, has Alexander

module M, annihilated by a squarefree minimal polynomial,
then it may only be the m-fold branched cyclic cover of
finitely many knots,
Proof Suppose k were the m-fold b.c.c. of a knot 1 with
minimal polynomial F&u), where u™=t. Over the rationals, the
Alexander module of 1 tensored with Q splits up as a direct
sum of terms;
-1

® N =& Q[u,u 1/(f (w)

i i i i

where the f; “s are powers of irreducible polynomials over
Q, since Q[u,u'] is a P.I.D. If m, which is a lowest common
multiple in Z[u,u™] of the £, °s, is not squarefree, then one
of these polynomials, say f,, must be a non-trivial power
(g(enh,

Now the Alexander module of k tensored with Q will be
QRM=6N, , considered as a Q[t,t"']-module in the obvious way,
by the reasoning of section 3 of this chapter. We claim that
the module N, thus considered will have a minimal polynomial

with a square factor. We define, as in the last section;
m
G(t)=G(u )= | ‘g(&u)
m
§=1

and we distinguish two cases;
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m m
(i) g has no pair of roots a,b with a =b .

In this case, since G(t) is a polynomial of the same
degree as g(u), whose roots are the mth powers of the roots

of g, we deduce that G has no repeated roots. Define;

(i) i
N = {xeN : g(u) x=0}
3
-1 min(i,h) -1
g2 Qfu,u 1/(g(u)) as a Z[u,u ]-module.
Now N(o will certainly be annihilated by G(t); so, as

deg (g)=deg(G), the only way it can have a square-free minimum

polynomial is if it is isomorphic as a Q[t,t”]-module to

D)

Qlt,t'1/(G(t)). So N is a cyclic module over this ring,

generated by x, say. Pick ys« N

such that g(u)y=x. Now y
is annihilated by G(t)z, but not by G(t), as x was a
generator; so N‘ﬂ must have a minimal polynomial, over

ol(t,t™"1, with a square factor.

m m
(ii) g has a pair of roots a,b with a =b

This time we must have a={b, where 9 is some non-trivial
mth root of unity; then a will be a root of the polynomial
G(u™) /g(u), and we must have g(u)1|G(um), since g is
irreducible. So the polynomials;

m m m-1 m

G(u ) and 4 G(u ) = mu G”(u )
du
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must have a common root, an mth power of which will be a
common root of G“(t) and G(t); so G(t) must have a square
factor. Again deg(g)=deg(G), and G(t) annihilates

(2) -1 2 -1
N 2 Q[u,u 1/(g(u)) (as a Z[u,u ]-module);

so, by considering its dimension as a Q-vector-space, the

minimum polynomial over Q[t,t"') must have a square factor.

Thus we conclude that if k has a squarefree minimum
polynomial, which is an invariant of the rational homology
module, then any knot whose m-fold b.c.c is k will also have
a squarefree minimum polynomial. How many choices are there
for this minimum polynomial M(u)? Since T\Fitu) must
annihilate the module, f. must be a factor of A(u™), where &\
is the Alexander polynomial of k; so there are only finitely
many possible choices. The rank of the isometric structure
corresponding to 1 will be the same as that for k (being
dim Q®&M); so, by [BM], there are only finitely many isometric
structures (which all have unit determinant) corresponding to
each choice of M; and hence finitely many knots altogether

wich may have k as their m-fold b.c.c. //

It is natural to ask whether any simple knot may be the
m-fold b.c.c. of infinitely many distinct knots; however, we

have been unable make any further progress on this question.
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TWIST SPINNING

DEFINITION

We revert to the notations at the beginning of the first
2 .
chapter, where E:Sné——+su+ was any n-knot. The twist

spinning construction was described by Zeeman in [Z]}; and the

description which follows is taken from this paper.

Pick a point x,& E(S“); since our embeddings are locally

2

flat, x, has a closed neighbourhood x=B"" such that

(X,Xak (S")) is an unknotted ball pair. Removing the interior

n
n*2 p"), whose

of X leaves us with another ball pair, (D
s . Nn+2 n |

boundary is unknotted. We consider oD as B X8 , where

9B"Xs' is identified to dB"=9D"; this enables us to

parametrize the space as pairs (x,¢), where x e B" and be s',

kS
so that (x,¢$)=(x,$") whenever x€9B". We parametrize D by

polar coordinates (r,8).

We now form two (n+3)-dimensional “solid torus pairs” by;

n+2 n 2 n+2 2 n 2
9(b ,D )XD @D XD ,oD X D)

<
il

n+2 n 2 n+2 2 n 2
Z = (D ,D)XoD (D X9D ,D X9D )
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n+2 n 2
SO oY = 9Z = (D ,2D )XdD ; and we may parametrize
points in these boundaries by triples (x,¢,6) derived from
the parametrizations for (Dn¥L,D“) and Dl. We join Y and Z
along their boundaries by the map;
£: ©Y—>012
(x,4,8)—> (x,b+m8,8)

n 2 n 2
This map is a map of pairs, ie. f(QD XoD )=2D XoD ; and by

Zeeman”s lemma 4, the result is a smooth pair of spheres

+
n+3'sn ‘), which we may consider as a knot l:Sn+'¢——»Sn13,

(8
which is the m-twist spin of k. Zeeman”s main theorem then

goes as follows;

Theorem 8/Provided m#0, there is a bundle;

n+2 n+3 n+l 1

(K, \B ) —> (S \1l(S ) ) —>S

m

with group 2 whose generator may be taken to be induced by

M,'
the covering translation of the m-fold branched cyclic cover

Kmof k. Further, the closure F of the fibre is a smoothly

embedded surface bounded by the knot i(sn+'). Finally, s!

n+3

. n+i . .
acts on S in such a way as to leave S setwise fixed,

rotating it once about an unknotted s"7'. //

So 1 is a fibred knot, with fibre F; its infinite cyclic

R

cover L is homeomorphic to FXR, whence Hg(ﬁ)iﬂi(F) for all i.

Suppose now that k is once more a simple (2g-1)-knot;
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Milnor“s exact sequence shows that H;(F)=0 for i#q,g+l, and
reduces to;

m

t -1
0 — # (F) —> H (k) ——— 8 (k) —> H (F)—0
g-1 q q q
which enables us to calculate the Alexander modules of 1 as

the cokernel and kernel of the map t™-1.

2.2 FOX“S FORMULA

The two duality pairings;

<,>:F xF —3>Q(t) /A
k (2g+1)-k

[,1:T xT ——0/2
k 29-k

enable us to make some deductions about the two non-trivial
Alexander modules of our twist-spun simple knot (and, indeed,
about any even-dimensional simple knot). The existence of
the non-singular torsion pairing for k=q+1 shows that Hg+, (F)
is always torsion-free; then the pairing on the torsion-free
part gives us the duality isomorphism;

H (F) = Hom(F ,Q(t)/A) 2 Hom(H (K),Q(t)/A)
a+l q q

In particular, if HQ(F) is a Z-torsion module, then
H1ﬂ,(F)=0, and our even-dimensional knot only has one

non-zero module; we call such a knot a finite simple

(2g) -knot. We may compute the order of H4(F) by a formula of
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Fox proved by Claude Weber in [We], noting that his proof,
given for classical knots, only uses Milnor“s sequence,
together with the properties of the Alexander module which
come from the Levine axioms; and these both apply to any
odd-dimensional simple knots. The theorem then goes as
follows; if & is the middle-dimensional Alexander polynomial
of k (ie. a generator of the order ideal of H$(ﬁ3), then the
order of H$(F) is given by the formula;

m

[ (F)| = |R(t -1,A(t)) |
q

where R(,) denotes the resultant (see appendix A). If
the resultant is zero, we interpret this to mean that the
module is infinite; this will happen if and only if t™-1 and

A(t) have a common factor, by (R2).

In general, the rational invariants of k can yield no more
information about the structure of the torsion submodule of

HW(F), as the following example shows;

Example I/Let M = A/(t -t+1) ® A/ (t*-3t+1) and

N = A/(t*-t+1) (t*-3t+1)

be the Alexander modules of two odd-dimensional simple knots
(which can only be (2g-l)-knots for some odd g, from the form
of the Alexander polynomials ([Ll]); however, in the other
dimensions we could use M®M and N@®N). Tensoring with the

rationals yields two isomorphic modules, so the rational
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invariants are the same; however the gth Alexander modules of

the 6-twist spins will be respectively;

M/(1-t8)M =2 A/(£8-1,t%-t+1) & A/ (t%-1,t%-3t+1) (A3)
= A/ (t*-t+1) @A/ (t -1, -3t+1)
N/(1-t5)N 2 A/ (t8 -1, (£*-t+1) (£*-3t+1)) (A3)

2 A/ -t+1) (£ +E+1) (E+1) (E-1),t5-3t+1)
So the orders of the torsion submodules are respectively
[R(t8-1,t*-3t+1)| and |R((t®-1)/(t*-t+1),t*-3t+1)]| by Al,
which differ by a factor of;

|R(t -t+1,t*-3t+1) |=|R(t*-t+1,2t) |=4.

Example II/Claude Weber uses the example of the

(3,3,3)-pretzel knot; its Alexander polynomial is 7t*-13t+7,
which is irreducible; so its rational homology is cyclic as a
Q[t,Edl-module. He calculates the homology of the two-fold
cover to be 7Z,8%,. However, if we look at the two-fold cover
of a knot whose Alexander module is cyclic with the same
Alexander polynomial, then, by lemma A3, we may write the
homology of the two-fold cover as;
A/ (782 =13847,¢2 -1) =2 A/ (7t% -13t+7,t+1) (7t* -13t+7,t-1) (A4)
2 A/(27,t+1) (1,t-1) = A/(27,t+1)
and the homology group is Z,, . We note that these knots are
capable of having distinct homology groups, because their
common order A(-1) is not square-free (A(t)=7t"—13t+7); and
this observation also applies to the other example given in

[Wel, of the two knots 6, and 9+‘ whose common Alexander
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polynomial is 21542, Now, for a quadratic Alexander
polynomial A(t), the discriminant is A(-1) (modulo a sign);
and as Levine proves in section 31 of [L3], this
discriminant”s being square-free is necessary and sufficient
to ensure that the ring A/(A(t)) is a Dedekind domain. In
the case of a knot whose module is annihilated by a
polynomial d(t) such that A /(d(t)) is a Dedekind domain, we

have the positive result of the next section.

TWIST SPINNING DEDEKIND KNOTS

Proposition 9/Suppose that R=A/(d(t)) is a Dedekind domain,

and that the knot module A=quﬁ) of the odd-dimensional
simple knot k is a module of rank r over R, which is
necessarily Z-torsion-free because of the Levine axioms.
Then the homology module H$1F) of the m-twist spin of k is a

direct sum of r copies of A/(-1,4(t)), provided d*tﬂ-l.

Proof By the structure theorem for torsion-free modules over

Dedekind domains ([C], page 413), we can write A as a direct
sum;

A=ZRO®GRS® ... BI
where there are r summands, and I is an ideal of R determined
uniquely up to its ideal class. From Milnor”s exact

sequence;
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m m m m
A/(t -1)A 2 R/(t -1)R ® R/(t -1) ® ... & I/(t -1)I

iR

A (F)

m m m
A/t -1,d(t)) @ A/(t -1,d(t)) & ... ® I/(t -1)1I

11}

so it only remains to prove that;

m m
I/(t -1)I 2 R/(t -1)R

Now, by corollary 3 on page 411 of [C], we may multiply I by
a unit in the field of fractions of R to get a new ideal I~
in the same ideal class as I, but with I“+(t -1)=R (so I~
must be an integral ideal). Then we have;

m m
R/(t -1)R = I1°/(I°n(t -1)R) (isomorphism theorem)

m
I1I/(t -1)I” by (A2), as desired. //

N

The class of cyclotomic polynomials provides examples of
polynomials d(t) such that A/(d(t)) is Dedekind; in what
follows we shall calculate the modules of twist-spins of
knots having cyclotomic minimal polynomials, in such a way as
to be able to compare the results. If we denote the nth
cyclotomic polynomial, whose roots are the primitive nth
roots of unity, by én(t), there are some restrictions we must
place on n, and on the rank of the module, to ensure that
there are (2g-l)-dimensional simple knots whose modules are
annihilated by §n, by the results of [Ll]. Firstly, in order
that éu(l)=l, we must ensure that n is not a prime power. If

q is odd, this will suffice, as Levine“s results show. If g
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is even, we must ensure that A(-1) is a square, where A is

the Alexander polynomial, by theorem 1 of [Ll]. As we see in
example 5.2 of [Bal, §rd-1)=l provided n is not of the form
2p*; if it is, én(—l) = §P;(l) = p, so any module annihilated
by §n must be of even rank over ﬁL/(@u), if it is to belong to
such a knot, The other conditions which Levine derives do

not apply to us, since we are living in the PL category.

In any event, proposition 9 shows us that if k has an
Alexander module A of rank r over [&/(@n), its m-twist spin
will have as its gth Alexander module a direct sum of r
copies of;

m m
A/t -1, (t)) provided § }ft -1,
n n
ie. provided nfm. Denoting this summand by A , we may

derive the following properties;

k h
(i) If I is any ideal of A, and we have t -1 and t -1l€ I,
then;
k k-=h h k-h
t -1 - ¢t (t -1) = t -1le 1
(k,h)
so we may apply Euclid”s algorithm to deduce that t -l€1l

where (k,h) denotes the highest common factor of k and h.

So A = A ; and we shall assume from now on that
n,m n, (n,m)

m divides n.
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(ii) We may use the remainder theorem to deduce that there
exists a polynomial f €A such that;
1 for k not a prime power
(e=L)E(e)+$ (t) = ¢ (1) = :
k k p for k=p , p prime.
Now the mth power of a primitive (km)th root of unity is
. . . N ”»m
clearly a primitive kth root of unity; so §km(t)|§k(t ), and
there exists a g€/ such that;
m m m m m

(t =1)E(t )+d (£ ) = (t -L)E(t )+ (t)g(t)
k km

]

1, k not a prime power
p, k=p"*.

So we have;

m
Lemma 10/ 1 e(§ (t),t -1) if n/m is not a prime power

n

m i
pe(d (v),t -1) if n/m=p .//
n

S0 Apm=0 if n/m is not a prime power; let us assume that
n=me=phm’, where p is prime, pfm“. Then the primitive nth
roots of unity are precisely those complex numbers whose
(pk)th powers are primitive (m”)th roots of unity, but whose

(p*' ) st powers are not. So we may write;

pk ph~|
I CERVZ G
e m‘

m

$ ()
n

R k-1
p P
(f (&)1 /1 (0] (mod p)
m m
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(p-1)p*”"
=1 (t))
m

y

m
Now, let t -1 = § (t)¥F (t). We claim;
m” m”

Lemma 11/§ is coprime to ¥ (mod p) (ie. (p,d ,¥ ) =A)
m’ m” m° m”

d p(m”/4)
Proof § (t) = [ ‘(t -1)
m‘
dim”
where p.is the Moebius function. So ﬂ?,(t) is a quotient of
[4a}
factors of the form (t*-l) for 4@ strictly dividing m”; as
pYm”, m”/d cannot be a power of p. So there exist
polynomials f;,gy&A such that;
d
(t -1)E (t) + & (t)g (t) = q
d m d d

where q¢_is either one or a prime not equal to p, by lemma

10. Thus (p,t‘—l,é;)=[\for all proper divisors 4 of m”“. So

a
¥ & o\ (ot -1,3 ) =N\ //
m* "m”  djm” m”
d#m”

We may then compute the ideal;

m m
$ (v),t -1) (p,§ (t),t -1) (lemma 9)
n n

R- » -
(p-L)p""'  m~ p*

(Ps (& ) S(E -1 )
m

(p-1)p"”"' ph-t
(s (§ ) @ T )
m m m
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Now, by lemma 11 there exist polynomials f,g,h€A such that;
fp + 9 + h§ = 1.
m” m’

k-1
Raising to the ({(p-l)p )st power and grouping all the terms

divisible by p together gives us polynomials £°,g”,h” in A
with

&-1 R-\
(p-1)p (p-1)p
£°p + g7 (§ ) + h"(F ) = 1.

»

m m
R-L
Multiplying by (§ ) shows us that this element lies in our
ideal (as (p-l)p””z;ph‘tbecause 1>0); so in fact;
m ph-L
% (v),t -1) = (p,(§ (B)) ).
n m”

To summarise;

A = A .
n,m n, {n,m)
If m|n; A =0 if n/m is not a prime power,
n,m
p)
and A =A/(p,d (t) ) if n/m is a power of a prime p,
n,m m”

3
and j is the highest power of p dividing m=p m”.

These ideas, together with lemma Al, allow us to calculate
the absolute value of the resultant of two cyclotomic

polynomials as follows;

Proposition 12/Let n>mz 1l be two integers. Then;
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1 if n/m is not a prime power

IR($ ,& )|
n m $ (m)

p if n/m is a power of a prime p

deg § (t) is Euler”s function.
m

where ¢ (m)

m
Proof If m|n, then we know by lemma 9 that (§ ,§ )y > (t -1,$ )
m n n

h
which contains p if n/m=p , and contains 1 if n/m is not a

prime power. So if m divides n, but m/n is not a prime

power, then |R($ ,§ )|=1, using lemma Al. If n=mp"™, we have;
m n

h

p
$ (v if p|m
m

$ (t) =

n h k‘l

P
() /& (t ) if pfm.
m m

{3 3
P P
In either case, since § (t )=(d (t)) (mod p), we find
m m

that § |§ (mod p), so;
m n
(§ Ié) = (P:& ré) = (P:i)
n m n m m

$ (m)
and |R($ ,$)] = |IR(P,& )| =p by (R1).
n m m

Finally, if m does not divide n, so that (m,n)#m, we use

the fact that;

m (m'n)
Ir(t -1,6 )1 =|a | = |A | = |R(t -1,$ ]
n n
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.m (m,n)
so, as §, is a factor of t -1 but not of t -1, it must
have unit resultant with §“, by the multiplicative property

of the resultant (R3). //

This result can also be deduced from theorem 25.26 and
isomorphism 25.28 of [CR]. Although the results of these
calculations differ from those in [S], we only part company

on the third line from the bottom of page 29; in his

notation, m=pﬁn’, p does not divide n”, and;
$(m) /b (p") L .
P (p-L)p $(n”) [(p-1)/p" (p-1)]
- = p
d(m) /¢ (p*")
P

(-1p" " b(n")  b(n)
= p =p as above,

In fact, using properties (R5) and (R6), it is possible to
show that if n>mZ2 1, then R(§“,§’) > 0 unless n=2 and m=1,

thus giving us the actual values of these resultants.



- 34 -

3 CHARACTERIZING FINITE TWIST-SPUN KNOTS.

3.1 ELEMENTARY IDEALS

Suppose that A is an Alexander module of a knot. From
Levine”s first axiom, A is a finitely-generated A-module; so

we may find an exact sequence of the form;

n f r
j\ >1\_ > A > 0

and f may be specified by an by n matrix (a;j) over \.
Since A always is a A-torsion module, n must be greater than éw‘e$uaL5?
r. We define the elementary ideals E, of A to be the ideals
of A generated by the (r-k)x(r-k) minors of (aﬁ y; and these
are invariants of the module. Now suppose A is the qth
Alexander module of é simple (2g-1)-knot; the gth Alexander
module of the m-twist spin of this knot will be given by the
Milnor exact sequence as B £ A/(1-t™)A. Now A may be given a
square presentation matrix over A (for instance, a Seifert

matrix plus or minus t times its transpose); then B can be

presented by the exact sequence;

AN N s — 0

where g is given by the matrix;
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Then we may write the elementary ideals F; of B by;

m mor
E + (1-t )E + ..... + (1-t )
0 0 1

]
H

m mr-1
E + (1-t)E + ... (1-t )
1 1 2 etc.

o]
i

The conditions that we will be able to set on a finite
knot module in order that it may be the module of a

twist-spun knot will all follow from the next proposition;

Proposition 13/Suppose that B is the gth Alexander module of

an m-twist spun simple (2g-1)-knot k. Then B must be
annihilated by l—tM; and if It is the projection map
A— A /(t™-1), and F, the zeroth elementary ideal (order
ideal) of B, then rtF, is a principal ideal, generated by the
image of the Alexander polynomial A(t) of k.

Proof The first part follows immediately from Milnor“s exact
sequence; the second from the fact that the order ideal E, of
the Alexander module of k is principal and generated by the

Alexander polynomial, together with the above formula for
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Fo. //

Corollary l4/Denote by Qi the projectionsj\———aA/(§&), where
$, is the dth cyclotomic polynomial, and by Ny the
compositions of ¢¢ with the norm map into the integers; when
we apply this map to ideals in the ring of cyclotomic
integers, the result will be taken to be the positive integer
generating the norm of the ideal. Then, with other notations
as above, if B is to be the qth Alexander module of an
m-twist spun knot, we must have;

IB| =ﬂn (F )

d o
dlm

Proof By proposition 13, MTF, must be principal and generated
by m(A(t)); so since each ¢¢_can be factored through I, ¢&F;

must be principal and generated by ¢iﬁA(t)) for each d|m.

)
=
1

ﬂNd(A(t) ).

dlm d|m

i

But Ndm(t)) R(® ,0(t)) (A8)
d

d|m d|lm

m
[R(t -1,A(t))] (R3)

|B| by Fox“s formula. //
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It would be nice to use Crowell”s result that the
annihilator ideal of k is principal in a similar fashion.
However, example II in section (2.2) gives us two knots whose
annihilator ideals must both be (7t1-l3t+7) as this
polynomial is irreducible; but the annihilator ideals of the
two-twist spins are respectively (9,t+l) and (27,t+l), whose
projections inboj\/(tl—l) cannot be the same, since their
projections into the quotient ring A/(t+l) are different. In
fact, only the ideal 7m(27,t+l) is generated by the image of

the polynomial 7tT-13t+7.

THE LEVINE PAIRING

Suppose that we have the Milnor exact sequence;

~m

t -1 P
0 —» H (F) —> H (K) ————>» H (K) —> A (F) — 0
q+l q q q

associated with the knot 1 which is the m-twist spin of the
simple (2g-1)-knot k. From this we know the structure of the
Alexander modules of 1; the most obvious pieces of algebraic
information to calculate next are the pairings on the
Z~torsion and Z-torsion-free parts of these modules. The
second of these will simply express the duality isomorphism

between Hg4 (F) and the free part of Hg(F), as in (2.2); so

it is to the first pairing which we now turn.



The definition of the torsion pairing is quite complex in
general; but when we are dealing with twist spun knots, which
must be fibred, it may be defined more simply in terms of a
linking pairing on the Z-torsion elements of the homology of
the fibre, by [L2, section 7], as follows. Let a,bé.H@(F) be
two torsion elements, and suppose that n is an integer such
that na=0. We may then choose chains &€ C,, (F) such that 043
represents na, and Be& CW(F), the group of g-chains in the
dual triangulation, representing b; and we define the torsion
pairing by;

fla,b] = 1(&,B) €Q/Z
n

This definition has similarities with the definition of
the Blanchfield pairing of k, and it would seem natural to
try and express the torsion pairing as;

fa,b] = O<x,y>
where <,> denotes the Blanchfield pairing of k, x and y are
elements of Hw(ﬁﬁ with p(x)=a, p(y)=b, and 8 is some map;
Q(t) /A —> Q/Z

This cannot be done in general; we shall give an example
below where, whatever our choice of x and y, their
Blanchfield pairing is zero. If 1 turns out to have a finite
knot module, however, which is the case where the module (if
it has odd order) and pairing can classify the knot ([Ko]),
we have the following result; for consistency of notation we

~
write u for the covering translation of K, so that the
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pairing <,> takes values in Q(u)/Z[u,u™];

Proposition 15/With notation as above, and with H (F) finite,
q

we have;

[a,b] = Eﬂ)0<x,y> (0 denoting the identity of 2,)
where dz, is the map defined at the end of section (1.4), and
€ is defined as follows. We define the map e:Q(t) ——Q by
expressing any rational function as a sum of partial
fractions, whose denominators are powers of irreducible
polynomials, together with a rational polynomial; e is then
defined by taking the sum of those terms whose denominators
are not powers of (l1-t), and setting t=1. Clearly e(\)< Z;
so e induces a map € :Q(t)/\N ——> 0Q/2 as required.

Proof Let d(u) be the Alexander polynomial of k. Then, as in

(1.4), we define;
m
At =9 =] Jagw
<=

S(U) must annihilate H¢(ﬁ), since it is divisible by d{u);
so we may find chains 3 €., (¥K), teé"w(f(’) such that 98
represents S(u)x, and € represents y. Then we have

i i
<X,y> = (.EZ: I(8,u ¥)u ) /8 (u)
i=-ec0

Considering the exact sequences;

um—l s}

0 —>C (R) ———>C (K) — C (F) —> 0
g+l g+l g+l
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u™-1 r
0 — C (K) —_— C (K) —3> C (F) > 0
qd q q
we see that r () represents b, and p(8) represents
S(w) a=A(u")Ya=A(1)a. Now;

m
|R(d(u) ,u -1)|

IA(L) | = @d(s)l

|8 (F) | by Fox“s formula
q

# 0 by assumption.

So we may write [a,b] = I(p(8),r(¥)) / A1)

jm
Now, u T projects down to r (%) for all integers j, from

the above sequence; so if any of these lifts intersect with
8, this will give rise to intersections of p(%) with r(%);
and the intersections corresponding to all the different
lifts will give rise to all the intersections of the
projections, without duplication. So we may write;
o0 .
I(p(8),r(%)) ='§EL:(S.UJmE)

Then we have;

00 jm
[a,b] = ( D I(8,w ©)) /AQ)

€Y <x,y> as desired. //
0
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Example III Let k be a simple (2g-1)-knot with Alexander

module A /(1-t+t*)*=A, The six-twist spin of this knot has

gth Alexander module;

B = A/(1-t%)A = A/ ((1-t+t%)%,1-t8) (A3)
= A/ (1-t+t2)((1-t+t2), (1-t) (1+t) (L+t+t?))
2 N/ (1-t+t?) (3,1+4t) (2,1+t+t2) (Ad)

and the torsion elements are precisely the multiples of

1-t+t*. Elements of A projecting to torsion elements must

then be of the form (l-t+t*)x for x in A. But we must have;

<(1-t+t*)x, (1-t+t?)y>

and there is
part of B by
next section

pairings, as

<(1-t7HE %) (1-t+t¥) x, y>

= <t™Z(1-t+t¥)2 x,y> = <0,y> = 0
no hope of deriving the pairing on the torsion
such a straightforward approach. However, the
will suggest methods to compute such torsion

well as further techniques for recognizing

twist-spun knots

RELATING DIFFERENT TWIST-SPINS OF THE SAME KNOT.

Suppose that m and n are two integers, with n dividing m.

We may construct the Milnor exact sequences corresponding to

the n- and m-fold cyclic covers of k as below;



n
~ ~ t -1 ~ P ~
0 —> # (X) — HX) — > 8B (X)) —> a8 (X) — 0

g+l n q q q n

N

r~ ~ - ~ pM ~/
0 — H (X) — H (X) > H (X) /> H (X)) — 0
g+l m q q q m

m n
where i is defined as multiplication by (t -1)/(t -1) and j

is induced by i. This diagram clearly commutes; and any
multiple of (8“-1)/(t“-l) in ijig) is the projection of an
element i(x) which is a multiple of this polynomial in quf).
Since j(ph(x))=pm(i(x)), we see that j maps onto the module;
m ~
(t -1).H (X )
n g m
(t -1)
If H%jﬁg) is finite, then we may deduce that the order of
this module divides the order of H$(§h1 If kK has Alexander
polynomial A(t), then we have;

n

I (X )| = |R(t -1,A(t))]

a n

T\IR,@d(t) CA(E)) |

d|n
]_\[N (F )]
diln 4@ o©

with the notation as in corollary 14. This gives us a simple
numerical condition for determining whether a knot whose
module is infinite, but not torsion-free, may be an m-twist

spin if m is composite;
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Proposition 16/If a simple even-dimensional knot 1 with gth

Alexander module B whose order ideal is F, is to be an
m-twist spin, then we must have;
m

(t -1).B| dividing ]—TN (F ) for all n|m v

n d o0 e

(t -1) d{n ‘

If B is finite, then these orders must be equal.
Proof The last remark follows from noting that when B is
finite, H$ﬂ(xn) = Hqﬂ(xm) = 0 for all n dividing m; and the
map j in the diagram above must be an injection by a
generalisation of the 5-lemma. //
The cases n=m and n=1 correspond to corollary 14 and the fact
that B must be annihilated by t™-1 (t-1 is an automorphism of

B) respectively. We may also derive the torsion pairing on

f;, and hence on the m-twist spin of k, as follows;

Proposition 17/Let a,be ijf) map to torsion elements of

Hﬁjig), and let [,1,.,,[,]. denote the torsion pairings on the
images of Hw(i) under the maps p, and p,. Then we have;
m
(t -1)
[alb] = a, n .b
n (t -1)
m

Proof Denote by p::KM-——QE” the natural projection map, so
that ﬁ:pk=p“; where, as usual, we are using the same notation
for a map and for its induced map in chain groups and

homology modules. For some non-zero integer k, kp,a=0; so we

may find a chain & in C$+JK;) whose boundary represents this
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element. Then p:a will have boundary representing kp,a,
proving our first assertion. If Be Eg(ﬁ;) is a dual cycle
representing p,b, then B will have m/n distinct lifts to
Cﬁjﬁ;), representing elements th"Lb for 0 i<m/n; and the
total number of intersections of these with 3 will be the
same as the number of intersections of B with R:a. So, by

definition of the Levine pairing in the fibred case;

m/n-1 ni
f:. [a,t b]
i=0

[a,b]

m m

ni
[a,(§:t ) b] by linearity
m

m n
la, (t -1)/(t -1).b] . //
m

In example III, the 2- and 3-twist spins of the knot with
module A/((1-t+t*)*) have finite modules, these being
A (9,1+t) and A/(4,14t+t?) respectively; so we can work out

the pairings [,], and [,]; on X using proposition 15. Then

we have;
la, (1+t*+tY) b, = [a,b],
(a, (1+t*)b], = [a,bl,

and, since l—t+t1=(l+t1+t*)—t(l+t3) we have;
[ar (l-t+t )blg = [alb]l— [altblar

which is sufficient to determine the Levine pairing on



ngﬁg), as all the torsion elements are multiples of 1-t+t >,
Unfortunately, this method does not appear to be sufficient
even to calculate the torsion pairing on the (6k)-twist spin

of a knot with this module for k>1.

TWO CLASSES OF FINITE KNOT MODOULES

In an attempt to find a reasonably wide spectrum of
examples of knots where we can determine which are the
twist-spun knots, we will look at two classes of finite
A-modules which may be written in standard forms (as a sum of
cyclic modules in each case), and where the pairings arising
have been classified. The first is motivated by the form of
the modules of twist-spun cyclotomic knots, as in section
(2.3); and we shall see that, in a sense to be made precise
later, the modules arising there are the only modules of that
form which satisfy the conditions of proposition 16. The
second class is the class of semisimple modules defined by

Jonathan Hillman in [H2].

Class I: Modules Annihilated by Squarefree Integers n

In this case we may write our modules as direct sums of
their p-primary components for all p dividing n. This
decomposition will be orthogonal with respect to the torsion

pairing, since if x is in the p-primary part (so is
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annihilated by p, as n is squarefree), and y is annihilated
by another prime g, then the pairing [x,y]l€ Q/Z will be
annihilated by both p and g, so must be zero. So we need
only consider the case of modules annihilated by primes p;
then our pairings will take values in Z¢:Q/Z; and the problem
is equivalent to that of classifying ZP-inner product spaces
with isometries. This was achieved by John Milnor in [M2],
as follows; since Zf[t,t"] is a principal ideal domain, we
can split up our module as a direct sum of cyclic components
of the form AP/(q(t)"‘), where [\P=Z‘,[t,t"] and q is
irreducible; and the splitting may be chosen so that any two
components annihilated by q? and q: are orthogonal, unless
q;vaz and m=n, when the terms may be grouped together in
pairs to form hyperbolic summands (where gq~r iff g is equal
to a unit tt; times r). The pairings on these hyperbolic
summands are uniquely determined by the module structure; and
so are the pairings on the q(t)-primary parts of the module,
for g(t)»l+t, because of theorem 3.3 and example 1 in section
1l of [M2]. If g(t)~l+t, then we may ignore the case where
p=2, since 1l-t=1+t (mod 2) could not be an automorphism. We
may write the g-primary part of our module as V'OVZQ...GVr;
where VE is free over ZP[t]/((1+t)L); this splitting may also
be chosen to be orthogonal. Then a complete invariant for

€ ~-symmetric pairings on VL on which t acts as an isometry is
given by a (—l)LJe—symmetric pairing on VL/(1+t)V£, which is

a vector space over Z,. Now the symmetric pairings on a
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Z,-vector space are classified by rank and determinant, which
lies in U(ZP)/(U(ZP))Q; so there are only two of these for
each rank; and an anti-symmetric one only exists for even
ranks, when it will be unique. So we have the following

result;

Proposition 18/Any finite knot module which is annihilated by

a squarefree integer splits up as a direct sum, orthogonal
with respect to the torsion pairing, of three types of
summand;
i i _
(i) AN/p,g(t) Yy ® A/(p,q(t) ) p prime, q#q irreducible
i —
(iiy A /(p,a(t) ), g~q irreducible, degree#2

i r o
(iii) [A/(p, (1+t) )] where this denotes a direct.s@wx

of r like terms.
Summands of types (i) and (ii) have unique symmetric and
anti-symmetric pairings definable on them; and summands of
type (iii) have a unique (—lfﬂ—symmetric pairing if and only
if r is even, but two distinct pairings of the other symmetry

whatever the value of r. //

We have seen in section (2.3) that the twist spins of
cyclotomic knots have modules which, provided they are
finite, are of this form. The resulting modules will all be
of type (ii), except those resulting from (ZpR)—twist

spinning a knot whose minimal polynomial is of the form
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§2MJt), 1>k. Then, since all modules of type (ii) support
unique pairings, Kojima“s classification of odd finite simple
even-dimensional knots ([Ko]) shows us that any such knot of
dimension greater than 6 with module;

pk r

[A/(p,(&m(t)) )1 p an odd prime,pfm,m#2
is the twist-spin of a cyclotomic knot. Modules of type
{iii) above arise from (2ph)-twist spinning cyclotomic knots
with minimal polynomial $1pg(t), 1>k; and in this case we
must investigate which pairings can occur. We begin with the
case of a 2-twist spun knot, and extend to the general case
using proposition 17. The 2-twist spin of a knot with
Alexander polynomial A(t) will have an Alexander module which
may be considered as an Abelian group of order |[A(-1)|, on
which t acts as multiplication by -1. To work out the
pairing we use the following result, where 0 denotes the

identity element of 2,.
Lemma 19/e V(E(t)/A(t)) = [£(-1).(D(-1)+1)/21 / OO(-1)

Proof Let A(-t)

i
:i:d t , d=4 #0,
-r i

r -r
s i
and f£(t) = 2 .a t . Then;
-s 1

EV [ (F(t). A(-t)) / (A(tYy.A(-t)) ]

€5 (f(t)/AlL))
0 0
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i
eV [ (Zt Zad ) / (A(t). A(-t)) ]
0

j+k=1 j k

[ (D ad) /A(-1) ] € 0/2 as A(1)=1
j K

where the sum is taken over all values of j and k which are
congruent to each other modulo 2. We note that twice the sum
of the coefficients 4] for i even is equal to A(-1)+/(1); and
twice the sum over odd i is equal to A(-1)-/\(1). If we let

D=4A(-1), then modulo D we have;

j
2X Za'd Z'a {D+(-1) ) (sum over j=k (mod 2))
‘,:‘l(ﬁ)] k j

5:a d
j k

j
[(D+1)/2]).Za (D+(-1) ) (D is odd)
3

j
[(D+1)/2).2a (-1) = £(-1).(D+1)/2
j

as claimed., //

If our knot to be twist-spun is a (2g-1)-knot with gq even,
and has minimal polynomial §1Pdt), then its rank over the
ring_A/(@lﬂ) must be even, since §1PJ—1)=p is not an odd
square. A skew-Hermitian form can always be defined on such
a module using a hyperbolic form (see [Ba), definition 3.6).
The two-twist spin will then have a torsion pairing which is
unique up to isometry by proposition 18, i=pk being odd here.
The only case where the module of the twist-spin of such a

knot supports different pairings is when we start with a
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(2g-1)-knot for g odd. Given a polynomial f(t) such that
f(t)=£(t™"), which represents a unit of.A/(élw), we may define

the rank one Hermitian form;

<> A@ ) xA/E ) — on)/A
f 2 2p

P

by ( x(t) , Yty ) — fx§/§2
P

L

where we have divided §2¢,by a power of t so that

T ~) . . o4 2 v e
§1P4t)—é2¢1t ). If our original knot has a Hermitian pairing
which is a direct sum of <,>+ with (r-1) copies of <,> , then
the determinant of the torsion pairing of its two-twist spin
will be given by
r r
[ (& _(-1)+1)/2 ] .£(-1) = [ (p+1)/2 ] .f(-1)  (mod p)
2p

using lemma 19. Which of the two possible pairings we
will obtain is determined by whether this is a square
(mod p), hence by whether f(~-1) is a square (mod p). We
shall demonstrate that f may be chosen so that f(-1) has any
non-zero value (mod p), so that both pairings can be realised
by twist-spun knots.

-k 2k+1 4{: i i
Define u (t) = t . (t +1)/(t+1) = (~1) t
k -k
We claim this is a unit (mod §;k) provided p does not
P

divide 2k+1; for then there will be an odd integer h such

that h(2k+1)=1 (mod 2pL), and the inverse is given by;

k h(2k+1) 2k+1
t .(t +1)/(t +1)
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uyg is clearly self-conjugate; and u,(-1)=2k+l can be chosen
to take any given non-zero value (mod p), as desired.
k
In the case of the (2p )-twist spin for k<1, we have, by

proposition 17;

2pR 2
fa , (t ~-1)/(t -1).b] = [a,b]
2pR 2
2pR 2 p“
Working modulo p, t -1l = (t -1) , so;
2pR 2 p*-1 pR-1
(t ~1)/(t =1) = (t+1) (t-1) .

But by Milnor”s work, the isometry class of the pairing [,]
k
on the module A/(p, (t+1)? ) is determined by the pairing

&

(a, (t+1)°

b]l; so, since (t-1) is an automorphism, the two
pairings on the (Zpk)—twist spins correspond to the two
distinct pairings on the 2-twist spins, and we have seen that

both of these can arise.

By the results of section (2.3),_A/(p,(t+l)Ph) arises as
the module of an m-twist spun knot with Alexander polynomial
§1¢(t) provided that the highest common factor of m and 2pL
is 2pR. So this module arises from a 2pkr-twist spun knot,
provided pfr; and, by proposition 17;

2pkr 2pk

[a , (t -1)/(t -1) .p] = [a,b]
2pRr 2p®
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2p*r 2pk

Since (t -1)/(t -1) is a product of cyclotomic
polynomials §1P@sfor pfs>1, it is an automorphism of
_A/(p,(t+1fk) since R(t+l,§:lpns)=l° So once again the pairings
on the ZpRr—twist spins are determined by the pairings on the

2p*-twist spin, and both possibilities can arise.

Class II: Semisimple Modules

We will use the following characterization of semisimple
modules given in theorem 1 part (iii) of [H2], which says

that a finite A-module M is semisimple if it is annihilated

by an ideal of the form;

r e
Ann(M) = T \(p ,9 (t))
1 1
i=1

where the p, are primes, and each g; is an irreducible factor
(modulo p ) of some cyclotomic polynomial., Furthermore, we
insist that the maximal ideals (p;,g;) are all distinct.

Then part (ii) of the same theorem tells us that such modules
split up as a direct sum of cyclic modules of the form
A/(pe,g), where g is irreducible (mod pe); and any such
direct sum must be a semisimple module, as by looking at the
powers of the image of t in these finite summands, some of
which must be equal, we see that g must be an irreducible
factor (mod pe) of tnLl for some n, and hence of some

cyclotomic polynomial.
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The decomposition of M can be rearranged into groups of
summands annihilated by powers of different maximal ideals;
and this coarser decomposition will be orthogonal with
respect to the torsion pairing, as in section 2 of [H2]. 1If
we write M as M®M, where M, is a sum of cyclic modules of
the form_A/(pe,t+l), and M, contains no such summands , then
the usual involution (conjugation) induced by t—>t™' will pe
non-trivial on M,; the corollary to theorem 2 of [H2] shows
that M, only supports one pairing up to isometry. On M , the
involution is trivial; by corollary 1 of [H2] there can be.at
most one isometry class of anti-symmetric pairings on this
module; and by corollary 2, there will be exactly 2“
symmetric ones, where r is the number of distinct irreducible
summands; and these pairings are distinguished by the r
determinants of the pairings on the summands made up of these
different irreducible parts. Thus as in the case of modules
annihilated by squarefree integers, we do not have to worry
about the pairing when trying to determine which simple

(2q) -knots may be twist spun for g even.

If q is odd, we must consider the pairing on submodules of
the form A/ (p%,t+l). These arise as the the modules of

2-twist spun knots with modules.A/(§i;) as;

2 e e
A/t -1,3 ) =A/(t+1,% ) (as t-1 is an automorphism)
2 2

P P
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e
=A/(t41,%  (-1))
2p

e
=A/(t+1,p )

To realise the two possible pairings, we need to find two
self-conjugate polynomials f,f representing units of.A/(§;,)
such that fJ-l) is a square (mod pe), and fi-l) is not, by
lemma 19. Now;

e

f is a unit (mod § )
i 2p

e
<=> Jh(t) such that f (t)h(t)=1 (mod § )
i 2p

<=> |R(f ,§e yl=1 (A1)
i 2p
<=> |R(f ,$ )|=1 (R3)
i 2p
<=> f is a unit (mod § )
i 2p
Such £, representing units (mod §2P) were found while
investigating pairings on the first class of finite knot
modules; and f (-1) will be a non-zero square (mod pe) if and
only if it is a non-zero square (mod p). Also, by using an
exactly similar method to that used for the first class of
modules, and the fact that R(§P,§f)=l if p does not divide r,
we see that these modules arise from (2r)-twist spins,

provided (p,r)=1l, and that both possible pairings can arise.



Having realised each cyclic module and pairing of this
form as the module and pairing of a (2r)-twist spin for
suitable r, we may obtain any semisimple module on which the
involution is trivial, together with any pairing, by taking a
connected sum of suitable odd-dimensional knots with modules
A/(§$;) and forming its (2r”)-twist spin, where r” is
divisible by all the values of r corresponding to the
summands, so long as none of these values are divisible by

any of the different primes p.

3.5 FINITE CYCLIC KNOT MODULES

In this section we investigate a situation in which the
necessary conditions of proposition 13 and corollary 14 are

close to being sufficient.

Proposition 20/If I is an ideal of A such that A/I is finite,

then A/I is the module of an m-twist spun knot if and only
if;
m
(1) t -1lel
(ii) fmI is principal and generated by the image
T.(A(t)) of a symmetric polynomial &, where

Tt A ———+1\/(tm—l) is the projection map.



- 56 -
and (iii) |A/1] = [ 8 I
d|lm 4
Proof The "only if" part follows from proposition 13 and
corollary 14. Suppose now that all three conditions above
are satisfied for some m. Since A/I is a knot module, (t-1)

must act as an automorphism, so;

A1 A
0 = = (A3)
(t-1)A/1 I+(t-1)

A

So 1T, (I)=A/(t-1); and if m_(I) is generated by M.(A(t)) we

I+(t-1)

must haveIT‘(A(t))=A(l)=¢J. We may then define a Blanchfield
pairing on AN/7WA(t)) by <[x],[y]l> = x?[&(t), where [] denotes
cosets in A /(A(t)). So there exists a simple (2g-1)-knot
with this module, at least for g odd. The module of its

m-twist spin is then

m
A/(A(Y),t 1) by (A3)

m
Now, by (ii), t -1 € I; and since T, I is generated by

m.(A(t)), we must have A(t)+f(t)(tﬂ—1)e I for some feA,

whence A(t) € I also. Then there is a projection map;

m
A/d),t -1) — A/I

but, by (iii);

IA/1]

=

1T 18 (A | (ii)
dim 4
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IﬂR(A(t),é (t)) | (A8)
dlm d

m
IR(4A,t -1) | (R3)

]

m
A/t -1,A(t)) |
so the above surjection, mapping a finite module to another

of the same order, must be an isomorphism. //

In fact, condition (iii) is a consequence of the other

two, as if they hold we have;

m
IA/1] IA/(I+(t -1))] by (i)

m

A/t -1)

= (lst isomorphism theorem)
m m

(I+(t -1))/(t -1)

m

= [A/(t -1)
T I

m
= |A/(t -1) by (ii)

(A (L))

m
= |DMt -1),A(L)) ] (1st isomorphism theorem)

m
= |R(A(t) ,t -1) ]| (Al)

= If_\N I as above.

However, we shall retain this third condition for the

present, as it will prove to be relevant when we discuss the
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m
projective class group of A/(t -1) in chapter 4.

If A/1 is the module of a (2q)-knot for g even, so that
it supports a skew-symmetric Levine pairing, it is more
difficult to decide whether the knot may be twist-spun,
although the conditions of the proposition are still
necessary. If t'-1&I where m is odd, and m,I=(T,(A(t)))
where A is symmetric, we can show that A(l)=+1 as above.
Considering the symmetry of A shows us that A(-1)-A(1) is
divisible by 4. If we add some multiple of (t'-1)(t ™1),
which has value 4 when t=-1, to A, we can get a new symmetric
polynomial A(t) such that TLJAS generates I, Aﬂl)=il=ﬂk—l).
Then R, t-t")=A(1)A(-1)=1; so t-t™' is a unit of A /(a), and
we can define the skew-Hermitian pairing;

A/ XA/ @) — Q(t) /A

(Ix1 , [yl )— (t-t")xy/N
so that there exists a (2g-1)-knot with this module and
pairing, which has a (2q)-knot with module A/I as its m-twist
spin provided |R(A(t),t™-1)|=]A/I]. If we can satisfy the
conditions of proposition 20 for some even m and symmetric
polynomial A, then we must have;

-1 -1
IR(4,t-t )| [R(A, (t-1) (1+t )] = JA(LDA(-1) |

N (A(t)).N (A(t))
1 2

NI.NI=NTI
1 2 2



as (l-t) is an automorphism of A /I, where N4I denotes the
positive integer generating the norm of the image of I in the
dth cyclotomic field, as in corollary 14. If N/ ) suppor ted
a skew-Hermitian pairing <,> which was non-singular, then it
would have to be given by <[x],[y]l> = fxy/A where f(t), which
may be taken to be of the form;

i -1

a (t -t )
i

projects to a skew-symmetric unit of A /(a). Clearly, t-t~'
divides f(t); so N\ I.N,I = |R(t-t™,a)]| divides
|R(£(t),A(t))]|, which must be equal to one for f to project
to a unit; so such an f can only exist if N,I=1, in which
case we may take f(t)=t-t4. So A/I is the module of the
m-twist spin of a (29-1)-knot with module of the form

NA/(b(t)) if and only if N,I=1 and the other conditions of

proposition 20 are satisfied.

Considering A /I as an Abelian group with a skew-symmetric
pairing, Wall”s classification of quadratic pairings on
finite Abelian groups in [Wa]l] shows that we may split it up
as a sum of groups chwzrz with hyperbolic pairings, for p
odd, together with a 2-group. Then if our knot is an m-twist
spin, we have;

3 2 m
2 (k) = |[N/I| = |[R(A,t -1)]| = |£l—‘\;n(n,§d)|

where k is an odd integer. Now, §d'is a symmetric polynomial
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for 4>2, when R(A,§A) will be a square by (R5). 8So, since
R(A,§I)=A(1)=il and R(A,$,)=A(-1)=4n+A(1) for some n, so that
A(-1) must be odd, we conclude that |[A(-1)| is an odd square.
If we normalize so that A(l)=1, then A(-1)=4n+l1 must be an
odd square, since =-(4n+l) cannot be a square for any n (as -1
is not a square (mod 4)). Then by theorem 2 of {Ll], there
is a simple (2g-l)-knot with Alexander polynomial A, whose
m-twist spin has a module of the same size (both being equal
to IR(H“-l,A)I) as A/I, and with order ideal having the same
image in A/(t™-1). One would expect that with infinitely
many choices possible for A, at least one should be the
Alexander polynomial of a (2g-1)-~-knot whose m-twist spin has

module A /I; but I am unable to think of a proof of this.

Proposition 20, and the discussion following, enable us to
give some sufficient conditions for a finite cyclic A -module

to support a non-singular torsion pairing;

Proposition 21/With notation as above, A /I supports a

symmetric torsion pairing if conditions (i)-(iii) of
proposition 20 are satisfied for some m. It will support a
skew-symmetric pairing if in addition these conditions are
satisfied for some odd m, or for an even m provided N,I.N, I=1
Proof Because in these circumstances, A /I is the module of an
even-dimensional twist-spun knot of the appropriate

dimension. //
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4 IDEALS OF Z (% )

4.1 PRELIMINARIES

In this chapter, we shall assume that our knot module is
annihilated by t*-1 for some m, so that we may consider it as
a module over the ring AM;Z(ZM)EI\/(tM-l), We define the

projection /%nso that the following diagram commutes;

A
Ttm /OM

m
A7te -1y = A
m

Many studies have been made of the projective class group
for various values of m (see [RU1l],[G],[KM]); but in order to
be able to use this work, we shall have to be able to
identify which are the projective ideals in this group ring;
we shall do this by comparing the index of ideals in Amﬂwith
the product of the indices of their projections into the

cyclotomic rings of integers I\/(ét) for 4 dividing m.
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Let Z(, = {a/b:a,be 2, (b,p)=1} be the localisation of Z at
the prime p. This has a metric defined by d(a/b,c/e) = l/p‘,
where i is the largest power of p dividing the numerator, in
lowest terms, of a/b-c/e, provided this is not zero; the
distance will be zero if it is. We define Zg, to be the
completion of Zw)with respect to this yyd?ics, which is the
ring of p-adic integers. An ideal I in A, will then be
projective if and only if ZpR1 is free in Z(Z,,) &rzdlpdwum’)/dr
equivalently igizaﬂl is free in ZG“ZM) (see [0],[RU1l]). Then
the index of Z,®I in Z.)(%.) will just be the p-component of

the index of I in A,. Suppose 7, ®I=(«,), where d, is a

polynomial over the ring Z,. Then;

Z“JZM) Z“JZM) (x generates ZM)
 |zplt1 /(-1 |
L (e
m
= |R(op,t -1)|

1T \Ridp 8 |
d|m

which is the product of the norms of the images of @”ﬂl in
Z@ﬂt]/(ﬁi)° Since localisation commutes with these

projection maps, we have proved;
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Proposition 22/Let n be the composition of the projection

maps j\———a[\/(§k) with the norm maps into the integers.

Then, for an ideal I to be projective in j\mwe must have;

A/l = 1] \ngny| /7
= d|m

In fact we can reverse this proposition; to do this, we
shall prove that any ideal of A, contains a projective ideal
with the same images in the ringsAA/(§&). This time we look
at the completion ZG“Z”J of ij if p does not divide lAﬁ/Il,
then Zp@I=Z{y(Z,); at the other primes of Z we will show that
Z@ﬁl contains a free ideal LP with the same projections into
Z@[t]/(§*), Then the intersection of I with the various L,
will be the projective ideal we are looking for, as in [0O],

page 504,

Over the p-adic integers, £ -1 splits up as a product of
distinct polynomials; by Hensel”s lemma, there will be one
for each factor in ZP[t], although these factors will not be
distinct if p divides m. So the ideal (1-t™) in zg[t] is the
intersection of the ideals (f; (t)), as f!{ runs through the
p-adic factors of t™-1. We may then break down the ring

ZG«Zn) by a series of Cartesian squares, using (A5);



R > Zplt) /(£ )
i+l i+l

(*)

R
i

where g = } {f , and R = Z@ﬂt]/(g ).
j i<j i i i

v

Z@[t]/(g £ )
i i+l

We shall use these squares to build up an ideal contained in
Z&QI which projects to the same ideals in h@[t]/(fi); as the
projections of Z@HRI into Z@ﬂt]/(@a) will all be principal
(since all ideals in cyclotomic fields are projective, hence
locally free), these projections will be determined by the
projections into the rings ZGﬂt]/(fi), essentially because
elements in the top left of a Cartesian square are determined

by their projections into the adjacent corners.

Since the rings Z&ﬂt]/(f;) are all local, with maximal
ideals pZGﬁt]/(f;), we may construct the desired free ideal

inside &aﬂl by induction using the following lemma;

Lemma 23/ Suppose R —> R

1
g _
R —R
2
is a Cartesian square with all maps surjective, where R is a

local ring, and that I is an ideal of RE{(q,E)engff(rg=g(§)}

which projects to principal ideals («), (f) of R,,R,
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respectively. Then I contains a principal ideal with the
same projections.
Proof In order for I to project onto these ideals, it must
contain elements (&/,v§), (ud,B) for some u,véR ,R,. If u is
a unit of R we may use the ideal generated by (ue,B);
otherwise, we know that R contains an element (w,v) for some
w in R,, so that the ideal I contains the element;

(w,v) (u ,B)=(,vB ) = ((wu-1)a(,0)
since R is local, and u is not a unit, wu-1 must be a unit;
so in fact I contains («,0) and (0,BR) by further
calculations; and hence it contains («,8), which generates
the required principal ideal. //

We apply this lemma to the squares (*), with the ideals
(o¢) , (p) being either the images of Z@ﬂzn)ﬂl, or the principal
ideal, inside the image of this ideal, thrown up by the
previous application of the lemma; and intersecting the
ideals in the relevant localisations with I gives us the

ideal indicated by the following proposition;

Proposition 24/Any ideal of % (%,) contains a projective ideal

with the same set of images in the rings Z[t]/(§i) for 4

dividing m. //

Corollary 25/1f I is any ideal of finite index in [\ , then;

m
JANIAIRS |]_\ndm|

d|m
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with equality only if I is projective.

Proof From the proposition, any ideal contains a projective
ideal which satisfies the above inequality, with both sides
in fact equal by proposition 22; and, by (A7), these two

ideals will be the same if and only if the product of their

"norms" are the same., //

I am indebted to Steve Wilson for the above result, which

will generalize to other orders.

4.2 KNOT MODULES WHICH ARE SUMS OF CYCLIC MODULES

In this section we tackle the simplest generalisation of
the situation in section (1.5), armed with the above results.
We recall the conditions of proposition 20, which said that
the module A/I belonged to an m-twist spun knot provided;

m m
(i) t -1&€1I (ie. t -1 annihilates A/I)
(ii) TWmI is principal and generated by the image
TTw (A (L)) of a symmetric polynomial A, where

ﬁﬁ;Af-—>A/(tM—l) is the projection map.

and (iii) |A/1|=]_\N I
d

d|m

Given a knot module M which is a direct sum of cyclic
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modules A/I,@A/Ilm oo ®A/I,, this module will certainly
belong to an m-twist spun knot if all of the summands do; so
the first test we can perform is to look at all the different
expressions of M as a direct sum of cyclic A-modules (using
(A6)), and see whether each of the summands in any of these
arrangements satisfies all the above conditions. If none of
these summations show that M does belong to an m-twist spun
knot, we have only been able to obtain negative results, so
that the characterization of knot modules so arising is

incomplete even in this simple case.

Suppose, therefore, that we have written M as a sum of
cyclic modules as above, at least one of which fails to
satisfy all the conditions above. If one fails to satisfy
(i), then M will not be annihilated by tmll, so cannot arise
from an m-twist spin by proposition 13. The same conclusion
cannot be drawn if it fails to satisfy (ii), as later
examples will show; but the corresponding result does hold in
the case of condition (iii)“s being violated, provided (i)

holds, as shown below;

Proposition 26/Suppose t™-1e€ I,, but LA_/IJ#|71(N4}J. Then no

knot with finite module of the form A/I‘QA/II ®...8 A/I; can
ever be an m-twist spin for any collection of ideals I[,...,[

of finite index in A.
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m m
Proof |A/(t -1) |A 7+t -1)) ]

m
A /1) as t -l &J,

1l

m
So, by corollary 25, II\/I‘I <7TN¢I|, Now, if t -1 is not

contained in each of the Ij,then our knot can certainly not

be an m-twist spin; but if it is, then we have;

|A/IJ| S for j»1, as above.

Then |A/Ile eA/I lA/Il/_l\l[\/r
J>

Y ZIAVALE

dlm j>1 4d j

u\/xﬂn J Vo)

fm d j3>1 3
< N(ﬂl)
;\d j
dim

So our knot cannot be an m-twist spin by corollary 14. //

Example/ Let J=(p,(§"4t))t), where p does not divide m.
Consider the projection Jy of J into Z[3¢], the ring of
integers in the dth cyclotomic field. Unless d/m is a power

of p, we can find an integer q such that;

£(8)d () + g(t)d (t) = g
m d d

for some integer polynomials f,g as in the proof of
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proposition 12. So J4 contains q,, which is coprime to p; so
J4=2[3,]1, and Ny (J)=1.

(p-1)p"""

k
If d=mp , then § (t) = (§ (t)) (mod p) .
d m

k-1 i
So if p (p-1)< i, then (§ (§)) =0 (mod p) and J =(p);
m -d d

d(d)  d(md(p®) k-1
so Ny (J) = p =p . If (p-l)p > i, then,

because of the way ideals factorise in Z[KL] (see [La], page

27) ,we have;

i i
J = (@ (FN )= s ¥N
d m d m d
_ i
and (N J) = (N(p,¢ (S ))) (N is the norm map)
d m d
i¢(m)
NJ=0p o
d
s J
Then; sNJ= p , where s = ¢(m) [ Zd)(p ) + Zi ]
d j&s, jeS,
d|n
k k-1 k k-1

and s, ={k>0:mp [n, P (p-1)si}, s,={k>0:mp |n, i<p (p-1)}

id (m)
Now, |D/I]|=p ; so in order for I to satisfy the
norm-product condition, we must have;

is= E:¢ij)-+ 2 i

jes, jes,
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k
=p + y i
jés,
k k-1
where k is the largest integer s.t. mp |n and p (p-1)Si.
But it is not hard to see that, in order for this equation to
hold, we must have i=pk; and then we must also ensure that

mpJ does not divide n for i<p’ ' (p-1), ie. for j>k.

Combining this example with proposition 26 shows that no
knot module which is a sum of cyclic modules, one of which is
_A/(p,@i) for pfm and i not a power of p, can belong to any
twist spun knot., Taking m=2, we have already seen that if i
is any power of p, this summand does arise from an
(2pkr)—twist spun knot, provided that i=pk, and r is not

divisible by p; and in these cases, either of the two

possible pairings can be realised

In the case of a finite knot module M falling into one of
the two classes of the last chapter, we will also run into
the question of whether each of the alternative pairings on M
can be realised by m-twist spun knots. The above result
completes the proof that all the possible pairings can be so
realised if M can, in the case that M is irreducible and so
cyclic. If we have found a decomposition of M into cyclic
summands satisfying the conditions of proposition 20, then we
shall show that we can split off the irreducible summands

which are annihilated by powers of (l1+t), ie. those which may
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support more than one pairing, while leaving summands which
still satisfy these conditions; so the different possible

pairings will offer us no additional problems.

Suppose that one of the summands is of the form A/IJ,
where I and J are two non-trivial ideals. Both classes of
finite modules split up as sums of cyclic modules annihilated
by the irreducible ideals which are factors of their order
ideals; so we must have A/IJ =A/I & A\/J. Suppose that A/I
is one of the irreducible modules which may support more than
one pairing, so that I will be of the form (p,(t+l)i) if M
belongs to the first class, or (p%,t+l) if M is semisimple.
We have seen above that if A/I fails to belong to an m-twist
spun knot then I will fail to satisfy the norm-product
condition (iii) above; and then IJ will fail this condition
too, as in proposition 26. Since A/I1J is part of a
decomposition for M chosen so that each summand satisfies all
three conditions of proposition 20, the module A/I, together
with any permissible pairing on the direct sum of all the
isomorphic components of M, arises from an m-twist spun knot.
In particular, A /I satisfies (i)-(iii); it only remains to
prove that A/J does too. It must be annihilated by tm—l, as
A/1J is; so J contains t"-1. Then;

m m

A/3] = |D/@3+(t -1))| = |Q/(t -1)

Trm J



- 72 -

and J satisfies the norm-product condition by corollary 25.
I satisfies (ii), so IimI is generated by a self-conjugate
element ; then we may write any self-conjugate generator of
%.IJ as ®p, where P is itself self-conjugate, since this
ideal is contained in M,I. Then (ﬁ)cﬂkl; and, if we denote
by nga the composition of the natural projection
A/(€“-l)——-{A/(§L) with the norm map into the integers, then
we have;

n ()n (p)=n (AP)=N (IJ)=N I.N J=n ()N J for all d|m,
d a d d d a a4 d

so N (J)=ny(f) for all d|m, and m, J=(R) by (A7); solA/J does

indeed satisfy all three conditions of proposition 20.

TWO EXAMPLES

It is usual to break down the study of Cl(A,) into two
parts as follows. Define ¢A.to be the natural projection
AN —>z[%,] for d|m, where %, is a primitive dth root of
unity. The collection of all these maps gives us a
homomorphism;

Cl(A ) ——> & Cl(z[% ))
m d|m d

and we define the reduced class group D(Aﬁ) to be the kernel

of this map. When we investigate self-conjugate ideals, two
different approaches are used; in the cyclotomic fields the

object of interest is the class group of the real subfield
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Q(§¢+g1); but in the reduced class group it is usual to look
at the subgroup D' generated by self-conjugate ideals, not
worrying about whether prospective generators are themselves
self-conjugate (see [KM]). Neither approach is ideal for our
application; however, if an ideal of z[%4] can be generated
by self-conjugate generators, then it will be generated by a
single such element if its intersection with the real
subfield is a principal ideal there (since then its original
generators lie in the subfield, and can be expressed as
multiples of this single generator). The following result
gives an instance where the usual approach answers our

question in the study of the reduced class group;

Proposition 27/If m is odd, then any principal self-conjugate

ideal I in A. can be generated by a self-conjugate element,
g£gg§ Suppose I=(y); then, since I is self-conjugate, uy=y,
where u is a unit of A . Taking conjugates, uy=y; so uu=l,
The image of u in each of the rings Z[(AJ for dlm must also
have unit product with its conjugate; so, as in the proof of
proposition 2.3 of [Ba}, these images must all be roots of
unity. So if p is the product of the orders of all its
images in these rings, then uf=1 in A,c By [Hig], the only
roots of unity in 2 (Z,) are of the form ixl, where x is a
generator of Z,; and projecting the equation y=uy down to
Z[§]=Z shows that u=+x; for some i. Now, since m is odd,

there exists a j such that 2j=i (mod m); then we have;



- 74 -

- =3 -3 27 3

xjy = X Yy=X X Y =XY

and this is the required self-conjugate generator. //

Now if m is a prime, then we know that D(A.l is zero by
Rim”“s theorem ([M3], page 29); and if it is a non-trivial
power of a prime p, then D+(Au)=0 if and only if p is a
regular prime ([KM]). In either case, if the class number of
the real subfield of Zlg&] is one for all 4 dividing m, then
we know that any knot module from either of our special
classes which is annihilated by 6*-1, and whose cyclic
summands satisfy the norm-product condition, belongs to an
m-twist spun knot. In each case we can identify the cyclic
modules satisfying the norm-product condition; they will be
those which can arise as summands of modules of m-twist-spun
knots; all these satisfy the condition by proposition 26.

So, for the first class, if f(t) is a factor (modulo p) of a
cyclotomic polynomial §Jit), and £ is coprime to §A/f

(mod p), then A/(p,f) is a direct summand of_A/(p,éL) by
(A6); and the latter module may arise from a (dr)-twist spun
cyclotomic knot provided p does not divide r, from the work
in section (2.3); and soA/(p,f) must satisfy the
norm-product condition with m=dr, If f divides §#_but is not
coprime to ét/f (mod p), then 4 must be divisible by p to
give §A'a square factor (mod p). If gL is a power of an
irreducible (mod p) polynomial dividing both £ and é&/f' then

A/(p,gi) will fail the norm-product condition for m divisible
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by d, using the method of the example in the last section; so
A/(p,f) must also fail, by proposition 26. The semisimple
case will pbe susceptible to similar analysis; but we shall
not burden the reader with the calculations. So we may
completely solve the question of which modules and pairings
in our two special classes which are annihilated by t"-1 for
m prime or a power of an regular prime arise from twist spun
knots, provided that the real subfield of the mth cyclotomic
field has class number 1; and thus the problem of which

(2q) ~knots having modules with these properties so arise for
any gq>4, remembering that the case where g was even presented
no problems so long as m was odd, as we saw in the discussion
leading up to proposition 21. All prime powers with ¢(m)< 66
satisfy these conditions; and if the generalized Riemann
hypothesis is true, then any prime powers with ¢(m)< 162 do,

by [vdL]; but the real subfield of.A/(§ ) has class number

163
divisible by 4.

We now give two examples of rings_Ammcontaining
non-principal projective ideals, which lead to knots which

fail to be twist-spun because of this fact,

Example I/ Let p(t) be a polynomial of degree 7 which is

irreducible modulo 3. Z3[t]/(p(t)) is the field of order 3 ,
and its elements all satisfy x"-x=0 where n=37; in particular

we have, modulo 3;
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p(t)ltn-t = t(t-1) (t+1) ¢ (t)§2 (t)
1093 186
as 37-l=2.1093, and 1093 is prime. Since p is of degree
seven, it must divide one of the latter two factors modulo 3;
and as the corresponding cyclotomic fields are the same, we

assume without loss of generality that it divides §. We

o43°
consider the module A/I, where;

I = (3,p(t)p(t)) = (3,p(t))(3,P(t)) by (A4).
There are 1092/7=156 different irreducible factors of §wq3
modulo 3, which are all coprime modulo 3. So applying (A6)

and (A4) we have;

A/3,% (t)) 2 ®A/(3,p (t))
1093 i

i
where the p; are the irreducible factors. Now the module on
the left comes from an m-twist spun knot for any m divisible
by 1093 but not by 3, as we saw in section (2.3). Therefore,
for these values of m, this module satisfies conditions (i)
and (iii) of proposition 20; and proposition 26 shows that
each summand must do so too (giving the promised example of a
cyclic module satisfying (ii) which splits up into a direct
sum of cylics not satisfying this condition); in particular,
A/I=A/(3,p) ®A/(3,p) does. We shall, however, show that
the projection of the ideal I into z[%], where ¥ is a
primitive 1093rd root of unity, is not principal, so I does

not satisfy condition (ii).
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The extension Q({):0Q is of degree $(1093)=1092; so the
real subfield Q(§+§”) is of degree 546 over Q. There is,
therefore, a unique subfield of degree 2, which must be
Q(JI093), as 1093 is totally ramified in Q(%):Q. The ring of
integers in Q(JI093) is z[(1+/1093)/2], since 1093=1 (mod 4);
and the ideal (3) factorises into primes as;

(3) = (3,(1+/1093)/2) (3, (1-/1093) /2)
In Z[§] this ideal splits further as the product of all the
ideals (3'P£(§)) by [Lal, page 27, or by lemma A4. The
iQeals (3,p(%)) and (3,5(3)) lie over the same prime ideal in
QkJTU§33, since this field is totally real. So, without loss

of generality, we may assume;

i
N (3,PP(Y)) = (3, (1+/1093)/2))
Q(%) :Q(/I093)
for some i; and since;
_ 14
N (3,pp (%))
Q(%):0
and N (3, (1+J1093)/2) = (3)
Q(JI093):0

we see that i=14. Now, if the ideal (3,pp(%§)) were
principal, then so would any norm of it be, generated by the
norm of a generator. In particular, so would

(3, (1+/1093) /2)'* be; and since z[(1+/1093)/2] has class
number 5 [B&S], this ideal is principal if and only if
(3,(1+/T093)/2) is. This in turn is equivalent to the
existence of integers x,y such that;

(x+yJT093) (x-yJT1093)=+3 <= x*-1093y" =+12
s 2
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and we shall show in the appendix that no such integers can
be found, so that I cannot satisfy condition (ii). Indeed,
since I projects to a non-principal ideal of z[g], the class

of My I lies outside D(A,), as desired.

Example II/For a module whose order ideal belongs to a

non-zero class within the reduced class group, we take m=190.
The cyclotomic fields Q(SL) for d|m all have real subfields
with class number 1, by [vdL]; so provided our order ideal,
containing tm°-l, can be generated by self-conjugate
elements, all its projections into these cyclotomic fields
will be principal, and generated by self-conjugate elements.
We will implicitly be using Milnor”“s Meyer-Vietoris sequence
(see [RU2],[M2]) for the Cartesian square;
190 £
A7e -1y = A —5 218 )
m m
£ h
hl
R— 8§

where R =A/(f ), and s=0/(§_ ., § ) (3T =t"-1)

2A/ (@, (-8B 80 B, 0 B, 850 B, 8. (A8
=N/(19,8,) 0A/(5,8,) & N/(2,3, ) (A6)

We name these three components of S SH'Sr' and S
respectively. The ideal we will look at in A,.will be the

pullback of the ring R and an ideal (A({“)) in Z[‘m], where D
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is some symmetric polynomial; that is the set of elements x
in ﬁgﬁsuch that f(x) e (A(gm)) (and f(x)e R); and we denote
this ideal by I. If I were principal, generated by an
element &, then fJS) and fég) would generate (A(%)) and R
respectively; so we should have;

£,(5)

and fl(g)

u, A3, uEU(Z(g,])

u, & U(R)

Since the square commutes, we would have;

h (u)h (A(§)) =h £f (3) =h £ (&) =h (u)
2 1 2 m 21 1 2 1 2

.. h (A(§)) =h (u).h (u)e In ¥
2 m 1 2 21

where " :0(2[§ 1)XU(R) ——> U(S)
m

is given by (v ¢y V) ———> h (v Yh (v )
1 2 2 1 1 2

We shall show, however, that ¥ is not surjective, and that if

A is chosen suitably its projection to S will lie outside the

image, so that I can not be principal; and we shall do this

by examining the composition of Y with the projection S—»S, .

Now, ¢(95)=deg(§qs)=72; and the Galois group M(Q(§,):Q) is

g(z ) = 0(2 )eu(zZ ) = 2 &2 .
95 5 19 4 18

So the element sending a primitive root to its square has
order at most 36; and we may easily check that it is exactly

36. When we work modulo 2, this element gives us the
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Frobenius automorphism; and since it has order 36 it splits
up the roots of unity into two orbits, whence éq; splits up
as a product of two irreducible polynomials mod 2. Since

—Q

fsﬁ—l {mod 95), the set of elements of the form S:;+ 4 has
just one orbit under this action; the characteristic
polynomial for a generator Sq5+3;; is thus irreducible mod 2,
and the two factors of §§s(mod 2) must be mutually conjugate,

being £ and f, say. So we may write;

A/2,8) @ A/(2,F) = vew say

S
Let p be the projection S——V. Remembering that
S EA/(§HO,§1;), we can see that py may be factored through
0(2[§,,1)X0(2(3,]). Since §qs=§mo (mod 2), we may identify
the images of these two unit groups; and then all the
elements in the image of p{r come from units of 2[%,,,] via the
map ph,. By Sinnott”s result ([W], page 147), and the fact
that the real subfield of Z[SM] has class number one, the
units of Z[Sn] are all cyclotomic units, which means that the
image of ph, is generated by elements i.gm' 11'5“( ltS: and
1+ H' together with their Galois conjugates. Let T denote
the image of Swtin V; we shall show that the images of these

elements are all cubes of elements in V.

V is a finite field, so its unit group V\O is cyclic of
6 . . . \
order 23 -1. T is of order dividing 190 in this group, so 1is
certainly a cube, as three divides 236—1 but not 190. We

treat the other three images as follows.
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(i)1+T. Let T=RP, where R is a pri

and P a primitive 5th root.

(2°-1) /3 4%-1) /(a-1)
(1+T) = (1+RS)
144+, ..+4"
= (1+RS)
4 4 a7

(1+RS) (14R S )... (1+(RS) )

4
(1+RS) (14R S

16
)(1+R S) ... {

-1

4
) (S+R ) (S+R

k L -16

S R (S+R

1

) ..

for some integers k,lL. But -1,4,-1

set of non-zero residues (mod 19);

mitive 19th root of unity,

Then we have;

(since we work mod 2)

\7
1+R S

-1
)

ny
. (S+R )

17
6,...,4 form a complete

so this expression is

equal to;
k L k 1 18
SR (S) = SR (1+4S+...48 )
19
k-1 L 2 3 4
= 8 R since 1+S+8 +S +S =0
Now this must be a cube root of unity; so k=1 and 1=0, and
1+T must be a cube in V.
5
(i1)1+T . This will have the same order as 1+R. Now;
1+4+.,.+47 4 4'7
(1+R) = (1+R) (1+R )...(1+R )
1+4+...+47 -1 -4 -4"7
= R (14R ) (14R )... (1+R )
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and, since R is a 19th root of unity, the power of R on the
right is equal to one. The numbers 1,4,.,.,4r7do not form a
complete set of residues modulo 19, as 4q=1; but, since the
residue -1 is not among these, 1,4,...,4'7,—1,-4,...,—4'7do
form a complete set; so the square of the above expression is
equal to §n(l)=l; and since squaring defines the Frobenius
automorphism, the expression itself is equal to one, as

desired,.

19
(iii)1+T .This will have the same order as 1+S; S is a

primitive S5th root of unity, and §g is irreducible (mod 2);
so the order of 1+S must divide the order of the unit group
of Z;[S;] which is 15; and since the order of the unit group
of the finite field V is divisible by 27, 1+S must be a cube

of a unit in V.

So we have shown that Im p¥c V?*. But since h, is onto, we
can find an element d of Z[g“J which maps to a cube of a unit
in Vv, a unit which is not a cube in W, and the identity
elements of S, and S¢. Then dd gives a self-conjugate element
of z[§,] such that h,(dd) is a unit outside Im {= The ideal
(dd) factorises into ideals of the form (pL,Ln), where p are
rational primes, and the A are symmetric polynomials
dividing §r1(mod p;); all of these are principal, as
mentioned above, and at least one, say (p,A), must have a

symmetric generator mapping to a unit of S outside Im YT The
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pullback ideal I will then be given by (p,A(x)), where x is
the image of t in AM; this projects onto R, since p cannot
divide 190 if a generator of (p,A(%.)) is to map onto a unit
of S. Then the knot module A/(p,A(t)) cannot arise from a
twist-spun knot, since (p,A(xX)) is not principal in.A_: on
the other hand, A/I is clearly annihilated by t'*-1; and
IA/1|=T\ 8aI, by corollary 25, using the fact that (p,A(t))

is a factor of (p,§hﬂ}t)), which follows from (A4).

Modules which fail to belong to twist spun knots because
of the projection of their order ideal”s not being principal
in,AM lead to examples where we have been unable to decide
whether a module may belong to a twist spun knot. Suppose we
have an ideal I whose projection to A., is not principal, but
such that A/I is a finite knot module annihilated by gn-l and
satisfying the norm-product condition. By the
Jordan-Zassenhaus theorem, the projective class group of ﬁww
is finite; so there exists an integer n such that m projects
to a principal ideal of A,; and if this has no self-conjugate
generator, then it is not hard to see that 1* will have one
(in the examples above we would take some n divisible by 5
and 3 respectively). Then a direct sum of n or 2n copies of
A/I will be a module satisfying all the conditions of
proposition 13 and corollary 14; but it is difficult to see
how this module might be realised by a twist-spun knot.

Certainly, it could not belong to the twist-spin of a knot
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whose module was a sum of cyclics, since each such summand
could only give rise to a single summand of the finite
module. It might be possible to use some of the results of
[L1] to write down an admissible presentation matrix for the
knot module of an odd-dimensional simple knot with the right

twist spin; but I can think of no way of doing this.
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TORSION FREE KNOTS

In this chapter k will be a simple (2gq-1)-knot whose
exterior has infinite cyclic cover K. If L is the infinite
cyclic cover of the exterior of its m-twist spin, then we
have the Milnor exact sequence;

m
t -1 o

00— 8 () — 8 & ———s 8 & —> 8 () — 0
g+l q q q

We shall be interested in the case where Hq}E3 turns out
to be Z-torsion free. The simple even dimensional knots
satisfying this condition have been classified for g>4 in

[K2], as below;

et H, (D
1

8 (Tys/2.8 (%) for i=q,q+l
i i

T ©ys2.tt @),
g+l g+l g+l

o
]

and let p (f):ﬂ (ﬁ) -——>3{' (E) denote the quotient map.
q q q

Then there is a short exact sequence of " ~-modules;
w:0 — ¥ @ —\ O — 3{ ) — o0
q g+l g+l
where P=Zl[t,t4], H is induced by the Hurewicz homomorphism,
and & is induced by the map;

w: 8@ —1w @
q g+l

which takes the homology class of a g-cycle, which will be

homologous to a g-sphere I by the Hurewicz isomorphism
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theorem; and takes it into the homotopy equivalence class of
the composition of the non-trivial element of EQN(Z) with the
inclusion 72 &—— E: There are also two non-singular
hermitian pairings defined on these M-modules;
>, EXE O —Op
q+l q
induced by the Blanchfield duality pairing, where [3 is the
field of fractions of I'; and;
[ 77 @XTT (& —T/p
g+l g+l

which is related to the first pairing by;

[u,Q(v)] = <H(u),v> for all ue€ T, ve¥}¥ (D).
: nq+1 3{q

All these pieces of information together define an algebraic
object (iji),ﬂqjﬁ),p$,[,],<,>) called an F-form; and Cherry
Kearton in [K2] shows that two such knots are equivalent if
and only if their F-forms are isometric, ie. their exact
sequences 3 are connected by maps which make up a commutative
diagram, which act as isometries of the two pairings, and
which commute with the projection maps Pgs A special sort of
F-form is singled out by him in [K3); if the sequence 3 is

split, so that there exist maps i,j such that;
o —H @ —JT @O —H @ — o0
g+l a+l q

is a short exact sequence with jflL =id, Hi=id; and if the

image of i is self-annihilating under [,], then we say that
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this F-form is hyperbolic . In [K3] it is shown that any

simple spun knot has a hyperbolic F-form; and that if a
torsion free simple (2q)-knot has a hyperbolic F-form, and
Alexander modules which could arise as the Alexander module
of a simple (2g-1)-knot k, then the knot is equivalent to the
spin of k, provided again that g>4. Unfortunately, the
geometry has proved too intractable to give such a powerful
characterization of m-twist spun knots; we can however show
that a torsion-free m-twist spun knot which is Z-torsion free
and simple will have a hyperbolic F-form provided m is odd by

using the following purely algebraic result;

Proposition 28/1f the annihilator ideal of M=7T;+“ﬁ5 inf?,

which must be principal sincel? is a PID, is generated by a
squarefree polynomial, then the F-form of a torsion-free
simple knot 1 whose exterior has infinite cyclic cover T will
be hyperbolic.

Proof As ' is a PID, M can be expressed as a direct sum

® P/(f;), where the f; are polynomials in P; since this
module is annihilated by a squarefree polynomial, the f can
be chosen to be irreducible. Then it is clear that any
submodule of M is in fact a direct summand, and the sequence
g(f) must split, so that;

M =_ﬂ_(3{ T)) ® N say, where N 53{ @ .
q g+l

Choose a basis (a;) for_ﬂjjﬁéL)), so that the a, generate the

cyclic submoduleslj/(f;). By Blanchfield duality, we can
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extend this to a basis (..,a(,....,b¢s..) Of M, where b;
generates P/(f;). On the subspace annihilated by an f; such
that Q7bva the pairing [,] must be hyperbolic by [M2]; on a
subspace annihilated by an f{ such that f(VfL, we may express
the pairing by a matrix;

0 A

A B
where A is non-singular (as a matrix over the field [/ (£f;))

since [,] is, and there are zeroes in the top left hand

quadrant because;

(n(x) , D(y)] <HA(X) , (V) >

<0,y> as §T) is exact
=0 for all x,y éé"ﬂ..,(ﬁ)
Our problem now is to change the basis for this submodule
so that this matrix comes into hyperbolic form, ie. B becomes

zero; this is equivalent to finding a matrix V such that;

B - VA - ATVT = 0
Now, as M is the homotopy module of a knot, t-1 must act as
an automorphism; so we must have fi{(l1)=1, and f{ may be
written in the form t' +..+1+..+t . Adding f; to the diagonal

elements of B if necessary, we may represent B as;
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1 12 13 1n
b 4a b . b
12 2 23 2n
b b d coe »
13 23 3 .
b b ... .. d
\ In 2n n

where d; =d; has no constant term, and so can be written as

c,+C;. Then B=C+C', where C is;

-1
Then we may set V = CA , again considering these as

over the finite field I/(f;). So the pairing [,] can be

expressed in this hyperbolic form, with zeroes in the top
left and bottom right quadrants of its matrix; and it is

easy to see how this matrix may be used to define a

splitting of the sequence S(f) which shows that the
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F-form is hyperbolic. //

In the case of an m-twist spun knot for m odd, theorem 8
implies that t™=1 when considered as a map of the fibre of
the twist spin; and this fibre has the same homology and
homotopy modules as the infinite cyclic cover, So]T;Jﬁ) is
annihilated by 6&-1, which has no repeated factors modulo 2
since it is coprime to its derivative modulo 2.
Unfortunately, of the conditions of proposition 13 and
corollary 14, the condition that the module of an m-twist
spun knot must be annihilated by t™-1 is the only one that
has any force in the torsion-free case; this is due to a
result of Kervaire ([Ke], Lemme II.12) which shows that any
torsion free A-module satisfying the Levine axioms possesses
a square presentation matrix, so automatically has an order
ideal which is principal; and the fact that this ideal must
be generated by a self-conjugate element follows from the
fact that it must be a Z-torsion free module with t-1 acting
as an automorphism and annihilated by ™o, Also, the fact
that the knot must be fibred also follows from this
condition, using Browder and Levine”s fibration theorem
([BL]), as the Alexander polynomial must be a product of

cyclotomic polynomials dividing tM—l, and thus monic.

We conjecture that the F-form of any Z-torsion-free
twist-spun simple knot will always be hyperbolic, as is the

case for spun simple knots ([K3]); but it seems rather hard
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to derive the F-form from the module and pairing of the
original (2q-1)-knot k. As we saw in the proof of
proposition 28, it would suffice to show that the sequence
E(L) split; and, as MNis a PID, we would just have to express
the constituent modules as sums of irreducible cyclics in
order to discover whether or not this happens. The structure
of the modules 3f;is determined by Milnor”“s exact sequence;
and it is not hard to see that if the module TT%+, had the
same annihilator ideal in " as these, then the sequence would
have to split. In an attempt to find out how these ideals
are related, we need to look at the geometry of the

situation.

Firstly, we interpret Milnor“s exact sequence associated
with the m-fold cyclic cover the exterior of the knot k,
which has the form;

a £7-1

~ P
0 —>H ({®)—> 8 K ———> 8 K —> 8 K)— 0
g+l m q q g m

Elements of H¢(E;) can be represented by the projections of
g-cycles in H@(ﬁ); how can we represent an element a of
H$+JKM) whose image d(a) is annihilated by t™-1? The
homotopy modules of K are trivial in dimensions below gq; so
by the Hurewicz theorem, we can represent d(a) by a spherical

g-cycle & such that (t™-1)3% bounds a "cylindrical”

(g+1) ~chain homeomorphic to S*XI, since the two end spheres
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are homotopic. When we project down to ﬁ;, the ends join up,
and we get a "toroidal" (g+l)-cycle ¥, which may be seen to

ns
represent the desired element of H1’AKN).

To relate this to the sequnce X(f) associated with the
m-twist spin 1 of k, remember that the fibre F, which is
homeomorphic to the branched cyclic coverK minus an open
ball, of 1 is homotopy equivalent to LZFXR, so we may write

this sequence as;
g(x):o—ag—t(x)iﬂ (R ) —s (K) —> 0
m q m g+l m g+l m
To find an element of.TT%+§KM) projecting by H to the element
of Kwﬂrepresented by &, take a path p:S'—) £ = S‘XS'
running once round the s' factor; when we add the 2-handle to
E;ito form K,, this path will bound a 2-disc; and if we
perform an ambient surgery on ¥ whose core is this disc, we
will get a (g+l)-sphere representing the same homology class,
and which will define an appropriate element of TT;+JKm).
This element is by no means unique; we could alter it by
adding any element of.ﬂjgfdéxm)), which would correspond to
adding, in the ordinary homotopy group]TvdK”Q, an element
represented by a homotopically non-trivial map from the
(q+1) -sphere to a g-sphere in K,. If we want to show that
the sequence 3 splits, then we would need to choose this
element in some canonical way for each generator of (K,) i

g1
and then we would have to show that it was killed by the same



elements of I,
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Appendix A

Throughout this section I& denotes Z[t,t'], f,g9,h denote
polynomials in A, and 1,3,k denote ideals of A . we define
the resultant of two polynomials;

r r-1 m

f(t) at +a t +...+ta t

and g(t)

1
o3
o
+
o
+
+
+
o
poe

where none of a ,b ,a ,b 1is zero, to be the determinant;

a b
r S
a a . b
r-1 ¢ . S
. . a b . b
. . r n+l . ]
a a [ ] L]
m . . b .
R . n .
a . R
m L] b
L] o n *
m n

where there are r+s-m-n columns and rows. We list some
properties of the resultant, which we write R(f,qg); for

proofs see {[vdW].
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(R1) If {d;},{Bj} are the sets of roots of f(t),g(t)

(excluding zero), then;

S=-n r-m
R(£,9) = a b I_Y(d;-ﬁ)

r s 1,3 1 7
S—n

= a (ol )
r i

(R2) R(f,g)=0 if and only if f and g have a common factor

which is not a unit of IX,
(R3) R(frgh) =R(flg) °R(frh) .

(R4) There exist polynomials p,q such that;

p(t)£(t) + q(t)g(t) = R(f,q)

(RS5) The resultant of two symmetric polynomials of even
degree is a perfect square.
Proof If f,g are two such polynomials, we can write

-n -1 -m -1
t f£(t) = F(t+t ), t g(t) = G(t+t )

where n,m are integers, and F,G are integer polynomials. If

the roots of g(t) are {d:}, we have;

R(£,9) =/ \E(el ) =/"\F(oc.+ocjl)
i i i
But, since g is symmetric, the roots occur in reciprocal
pairs; and the O(-L+d;—'are precisely the roots of G. So we
have;

R(f,9) = (R(F,G))" as desired //
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(R6) R(f,q9) = (—1)qu(g,f), where p=deg £, g=deg gq.
The following lemmas assist in the manipulation of
j\—modules;
Lemma Al/If at least one of f and g has first and last
coefficients equal to *1, then we have;
IN/(£,9)| = [R(£,9)]

Proof [We] //

Lemma A2/If I and J are coprime ideals (ie. I+J=/), then
IJ=In J.

Proof If ie I,j€ J, then ij€1I and ije J; so IJ<cINJ.
Conversely, suppose xe¢ InJ. Since I+J=/\, we can find
ae I,b€é€ J such that a+b=1; then we have;

X = x(a+b) = ax+xb &€ IJ //

Lemma A3/If M= A /I, then M/J.M & /A /I+J
Proof Check that the sequence;
0 —> I.(A/J) —> A/J —> A /(I+J) —> O
where the maps are either the obvious inclusion or surjection
is exact; exactness at the middle term follows because;
x+ (I+J)=(I+J) <=> x=i+j for some i€ I,j€Jd
<=> x+J=i+J for some ieI
<=> x+J=i. (1+J) I.(A/T3) //
Lemma A4/Suppose we have I+J+K=4; then (I+J) (I+K)=I+JK.
Proof (I+J) (I+K) = I“+IJ+IR+JK = I (I+J+K)+JK = [+JK //

We will use this lemma most often when I,J,K are principal
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ideals (f),(g),(h). In this case, (f,g,h)=/A if any two of
the possible resultants of thes polynomials are coprime; for,
by (R4), R(f,g) must annihilate /\ /(f,9); so in this case

N\ /(f,9,h) will be annihilated by two coprime integers.

Lemma A5/There is a Cartesian square;

fl
A/indg —— A/I

.| h )

N/3 —— N/1+d

ie.A/InJ = {(x,y) €A/I ®A/J : h,x = h,y}

Proof Define the maps by;

f‘: x+ (InNJ) ——> x+I
f,_: x+(InJ) b——> xX+J
h,: x+J b—_> x+(I+J)
h,: x+I — x+ (I+J)

Then there is an exact sequence;

(flrfz,)

P
0 —> [\ /Ing AN/I8\/J —— N /I+J —> 0O
where p(x+I,y+J)=hZ(x+I)-h|(y+J)=x—y+(I+J), as may be
checked. //

Corollary A6/If I+J=A,then A /1J 2 /I & A/J

Proof A2 and A5. //

Lemma A7/If 1< J are ideals of finite index in A, =2(2,), and

nyl denotes the positive generator of the norm of the
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projection of I into Z[S&J’ then nyI2> nyJ for all 4 dividing

m, and [ \n 1 =] {n1 iff 1=J.
dlm 4 d|m d

Proof The first assertion is clear, as is the "if" part of the
second. If nuI>mJ for some d dividing m, we certainly have
ngI#n)J; so there is an element in the projection of J into
ZESJ] which is not in the projection of I; and this element

must be projected from an element of J not in I. //

Lemma A8/If N,) denotes the composition of the projection
A-——»Z[S&} with the norm map into the integers, then
Ng(£(t))=R(£,$y)
Proof By (R1), R(£,§) =] \f(g‘;) =N (f(t)). //
d 4d
(a,dy= |
Finally, we prove the following numerical result which we

make use of in chapter 4;

To Prove that x1-1093y1=112 has no solutions in the integers.
Proof If (u,v) were a solution, then so would (+u,+v) be; so
we may assume u,v>0. Then, (u+v/I093) (u-vJ/I093)=+12; and
since the largest value of +u+v/I093 is taken when both signs
are positive, we can see that u+vJ/1093>/T2. Let
£=33+/1093,f°=33- /I093; ff°=-4, and if we had u+v/I093> [3f,
then s+t JT093 = -(u+vJI093) (33-J1093)/2 also has
$*-1093¢t"=+12, but;

(i) s+t /1093 < u+v]JI093
and (ii) s+tJI093 > -J3ff"/2 = JIZ



- 99 -

so s+tJ1093 would represent a smaller solution, again with
s,t>0, since s+tJ1093>/12 implies that this has the largest
value among the numbers isjtjfﬁgij s and t must both be
integers, since in order for u and v to satisfy the above
equation, they must either both be even or both be odd. So,
by continuing this process, we will find a solution (u,v)
with;
JIZ < u+vJI093 < J3.f

Finally, if u?-1093v*=-12, let s+t/1093 =

(u+vJ1093) (33-v1093)/2; then s*-1093t =12, and (]|s|,]|t|)

gives a solution (u,v) with u,v>0 and;
2 7
u“-1093v =12 == u<v JI093
and /12 < u+v /1093 < J3.f == 2u < /3.f

= u < (J372).(33+JI093) < 34/3 < 70

But u'=12 (mod 1093); so u=+162 (mod 1093), which gives us a

contradiction. //
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