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PERFORMANCE PREDICTION FOR TURBOMACHINES

by Martin Christopher Gunton
Ph.D. Thesis, University of Durham,1981

ABSTRACT

In this computer-aided study, existing methods of determining the
fluid flow in axial flow turbomachines are examined, and the Consistent
Loss Model of Bosman and Marsh is here applied to both duct flow and
intrablade applications of the Streamline Curvature technique., The
resulting equations are presented in a form similar to that of the
conventional equations, thus providing for easy modification of exist-
ing Streamline Curvature method computer programs,

Interpretation of the equations shows that the mean flow through a
blade row passage cannot follow a parabolic path between the blade inlet
and outlet flow angles, as is commonly assumed, but must maintain as
continuous the streamwise derivative of angular momentum, Procedures
are described to design three-dimensional blade shapes from basic aero- ‘
foii data, and tp derive realistic intrablade mean stream surfaces,
including ailowances for flow deviation and secondary flow.

Numerical techniques are presented which have been developed for
closely-spaced intrablade calculation grids, to obtain faster conver-
gence than by conventional schemes in Streamline Curvature calculations,
The computer program is intended for analysing multi-stage axial flow
compressors; tests are presented of simple analytical cases and experi-
mental data for isolated rows of blades,of a'swan-necked' duct, and of
a three~-row experimental compressor,

Three-dimensional flow calculation methods are reviewed with
reference to the limitations inherent in applying them to axial flow

turbomachines, Suggestions are made for future work.
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CHAPTER 1

Introduction

1.1 The Context Of The Present Work

The development of the gas turbine aero-engine over the last forty
years has demanded theoretical and technological advances in many fields,
including acrodynamics., Research effort directed at aero-engines has
benefitted the desipgn of other types of turbomachine, such as land-based
steam, gas or water turbines, water pumps and air compressors., The work—
described here is a study of the fluid flow through the rotating or
stationary blade rows of axial-flow turbomachines in general, but with
application to thce acro-engine multi-stage compressor in mind.,

The analysis of turbomachinery flow used in early design methods,
during and after the second world war, was necessarily simple since
calculating machines available were mechanical and so very slow. The
usual method used was the Simple Radial Equilibrium analysis for com-
pressiblie flow., The culmination of manual calculation techniques, 1in
the late 1946's,was the Actuator Disc Theory of Hawthorne and Horlock,
generally limited to incompressible flow, which was also one of the
first flow models to be used on electronic ogomputers.

In the early 1950's, Wu conceived a very complete theoretical
treatment of the fluid mechanics and thermodynamics of turbomachinery;
it could be implemented only in very limited form until the 1960's, by
which time computers had been developed with greatly increased storage
capability, and much higher running speeds., One method developed in
that decade to ecmploy part of Wu's analysis was the Streamline Curvature
technique, pyoduced by Silvester and Hetherington at Rolls-Royce Limited,
and by workers in the U.S.A. such as Novak, or Smith, The main

alternative method, using the same flow model as Streamline Curvature,
/9" .

is the Matrix Through-Flow approach developed at the National Gas :\\ I R

~. U




Turbine Establishment by Marsh, The term '"through-flow' has come to
indicate the capability of performing flow calculations within rows of
blades, and not only in the lengths of duct between them. A different
formulation of the problem from that in the two methods just named, is used
in the Time-Marching method of Denton, which allows solutions to be
found for transonic flows,
Development in the 1970's of computers with further increcased speed
and storage has made possible the use of more advanced flow models,
The present state of the art allows the calculation of three-dimensional
fiow fields, to varying degrees of realism, for centrifugal impellers
or other single row machines, The available computing power now approx-
imately matches the present understanding of fluid behaviour, indicating
that new research developments in f£1luid mechanics may now be usefully
called for. A more full historical survey is given in Chapter 2,
Improved flow modelling may be considered either as a means of
reducing the development time required in an aero-engine design, or as

a path towards achieving better engine performance,

1.2 Scope And Application

Present methods of calculating fluid flow within turbomachine ducts
and rows of blades are examined, and improvements made in certain
respects:

(i) An improved analysis with a consistent model for flow losses
was proposed by Horlock (1971) and developed by Bosman and
Marsh (1974) for the Matrix Through-flow solution technique.
The analysis is here applied to the alternative and widely-
uscd Streamline Curvature method.

(ii) Calculation methods are présented for locations within blade
rows using the consistent loss model analysis and the Stream-

line Curvature technique. The blade shape is generated in




full from hasic aerofoil data, but the flow surface used for
calculation ailows for exit flow angle deviation, and is
shaped to maintain as continuous the streamwise derivative of
angular momentum at blade entry and exit.

(iii) Provision is made for flow angle adjustments within the blade
rows resulting from secondary fiows, the changes being calcu-
lated separately by a computer program due to Gregory-Smith
(1977).

(iv) The commonly-used finite difference numerical technique is
employed, but with empirically-developed procedures to
provide faster convergence of the solution than conventiobnal
Streamiine Curvature methods,

(

) The applicability of recently-developed three-dimensional

«

calculation methods to axial-flow turbomachines is assessed

briefly,

Application is to machines of the axial-flow type, and although
both turbines and compressors may be analysed, the multi-stage axialf
flow compressor is modelled rather than the turbine because,of the
two, compressor design is found to be the more sensitive; the fiuid
flow against increasing static pressure can result in such phenomena as
the separation of the flow from blade surfaces., Some of the overall
assumptions made in the analysis, for example that of adiabatic flow
(no energy transfer by heat through duct walls or blade surfaces), are
reasonably applied to compressors but not to turbines, in which gas
temperatures are much higher and cooling of blades and duct walls is
often required,

Mathematical analysis of the aerothermodynamics of turbomachines
mav be usced in two major ways: one is to predict the performance of a

machine at the design stage, to optimise performance with the least



development work; the second is in the analysis of experimental results
from machines under test. The present work is biased towards the design
application, A computer program has been written in the PL/1 language

to demonstrate the new analysis,

1,3 Principle of Operation of Axial-Flow Compressors and Turbines

The fluid fiow in an axial-flow turbomachine, whether a compressor
or turbine, has components of velocity parallel to the axis of rotation
and in the tangential direction, but usually little radial velocity.

Fluid passing through an annular row of curved blades is deflected
tangentially and by Newton's second law of motion, the rate of change
of angular momentum of the fluid produces an opposite torque reaction
on the row of blades.

Shaft work is produced in a turbine rotor, which turns because of
the torque acting on its blades., There is in this case an accompanying
drop in the total enthalpy in the fluid, usually appearing as drops in
bhoth temperature and pressure,

In a non-rotating = stat§r - blade row the torque does no work, so
in the absence of flow losses there is no change of total enthalpy;
stators are used to effect changes in fluid angular momentum and other
properties, for subsequent entry to compressor rotors or turbines,

A compressor rotor is driven by a powered shaft to impart tangential
and axial velocity to the fluid., The power is absorbed by the fluid as
increased total enthalipy. 1In the following stator, the tangential velo-
city component is reduced greatly and part of the kinetic energy converted
to a risc in static pressure,

A pair of blade rows, rotor and stator, is called a stage, and the
ratio of thce cnthalpy change in the.rotor to the enthalpy change in the

stage is called the degrec of reaction of the stage.



CHAPTER _ 2

Development of Fiow Calculation Methods

2.1 Velocity Triangles

Techniques for fiow calculation nave generally been limited by the
amount of calilculiation which could be performed in a reasonablie time, and
carly metnods for steam turbine design used simple models suitable for
nand calcuiation.

Because of tne annular shape of turbomachine flow passages, tangen-
tial veiocity components and flow angles vary with radius, as do the
values of otner properties of the flow. In machines such as high
pressure axiai-fiow steam turbines, the ratioc of the inner to outer
radii of biade rows - the hub:tip ratio - is often close to unity, and

the fiow conditions vary little across the blade span.

A simple two-dimensional design procedure applied at mid-span was
found to be sufficiently accurate. Representing velocity vectors as
iines in geometrical constructions, as in Figure 2.1, it is possible to
calculate unknown flow angies, or other velocities, required for design-
ing biade shapes., In particular this method gives a clear visualisation
of the effect of rotor blade speed on the fluid entry and exit to and

from rotors.

2.2 Radial Equiiibrium Theory

By the 1940's attempts were made to devise three-dimensional
methods to cater for the new interest in gas turbines with lower hub:
tip ratios, but usable techniques were still those requiring relatively
little calcuiation,

The classical method developed was the Radial Equilibrium Design

of Cohen and Wnite (1943), described by Horlock (1966), based on an
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FIGURE 2,1: VEILOCITY TRIANGLES




application of Newton's second law of motion in the radial direction,
at points just upstream and downstream of blade rows. It is necessary
to assume tnat at the calculation points the streamlines are straight,
and parailel to the machine axis, i1.e. that the radial veiocity is
zero and unchanging with axial distance.

Given a radial distribution of streamlines upstream of a blade

row, and the variation of inlet and outiet flow angle, the equation

1 dp Vu2

p dr r

may be used to find tne density distribution at outlet, and the velocity
and streamline positions. This equation is valid for compressible flow
provided that tne radial velocity is zero.

For a blade row with 'free vortex' circumferential velocity dis-
tributions at inlet and outlet - i.,e. rV,; = constant with radius -
there is no net shift of the streamlines, and such blade designs were
commonly used because of the ease of aerodynamic design, though they
are poor mechanically because of the large twist necessary on the blade
shape,

In general, changes in fluid density are accompanied by flaring of
the sides of the duct to vary the annulus fiow area and maintain axial
velocities, but this introduces significant radial velocities so that
the assumption of zero radial velocity at calculation planes is no
ionger vaiid. Another objection to the radial equilibrium method is
that it cannot model interference of the flow caused by adjacent rows
of blades, because it is assumed that all radial motion occurs within
blade rows, whereas in most turbomachines of low hub:tip ratio appreci-
able fiow redistribution can be measured outside blade rows for distances

comparabie to the chord length,



2.3 Actuator Disc Theory

Tne major defects of radial equilibrium analysis were tackled in
the Actuator Disc Theory comprehensively descibed by Horlock (1978).
Here the blade row is represented by an infinitely thin disc, rotating
o1 stationary, positioned where the real blade row would be, and it is
imagined that a step-change in tangential velocity occurs across the
disc. The effect of neighbouring biade rows is included in the theory
put there are drawbacks - tne radial velocity is still assumed to be
smail, and tne flow must nave small vorticity. The method works for
compressible flow, but oniy if the duct walls are of constant radius,
despite attempts to allow flared walls, for the following reason:

Referring to Figure 2.2, suppose that at point 1 compressible
fiuid is fiowing close to the machine wall with velocity components

V., Vp, V

. A step-change in V,, occurs as tne flow passes through the

u*
actuator disc, and so there is a sudden change in density. For continuity
of mass flow rate, there must be a change in v, so that the product pV ,
remains constant, V, is invariant, there being no radial forces allowed
in the actuator disc theory. Hence the flow angle ¢ changes abruptly,

and the predicted fiow no longer follows the casing geometry; indeed,

it may be caiculated as passing right through it.

2.4 Wu's General Theory

Wu (1952) publiished a theory for calculating the full three-dimensional
flow field in turbomachines. At the time.adequate computers did not exist
to solve problems by his approach, but since then several methods of
solution have been pased on this analysis, which is summarised below.

The three-dimensional fiow pattern of an inviscid fluid can be
found by solving the following equations:

(i) Flow Continuity -

9p
_+ VvV + (W) = O 3¢ no fluid is entering or leaving

ot ) I AR




(1) . (2)
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FIGURE 2.2: COMPRESSIBLE FLOW THROUGH ACTUATOR
DISC 1IN FLARED DUCT
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(ii) Motion - Newton's second law

23

|
|

DW _ .,% +- ZC_OX\‘L\/ —_1 VP . (2.2
Dt ©

centripetal Coriolis

acceleration acceleration

From the first and second laws of thermodynamics the right hand

side may be expressed as

— | V!o — VI +TVs.

S

This law of motion gives three equations when expanded into three-

dimensional co-ordinates, such as the cylindrical set r, O, z, one in
each co-ordinate direction.

(iii) Energy

DI

_ 0]
Dt .. (2.3)
if the flow is adiabatic,
This means that the rothalpy (see Appendix A) is constant along
a streamline,
(iv) State

One of several forms; a suitable one is:

—L_ 56— S
_§1 - _kl. ¥l éz( o= S)R .. ( 2. 4)

C. h,

where the suffix denotes some reference value,

Qo
The assumption in (iii) of adiabatic flow is widely used and 1s
reasonable for compressor applications, though less so for turbines.
. . . . DI
If there is a heat input of Q per unit mass per unit time, then Dt - Q.
Smith (1966) considers non-zero Q, but notes that the effects of heat
addition on the radial equilibrium equation are expected to be small,

Irreversibility will here be introduced into the equations of motion

by including a frictional force against the direction of fluid flow.



It is required to find the three velocity components, V_, Vy and

Y and tne fluid properties p, h and s. The velocity components and

u’
any two of the fluid properties may be found from the five equations

(1) to (iii). Tne equation of state, (iv), shows the relationship
between p, h and s so that the third of them may be found.

The tnree equations of motion and the energy equation can be
combined to give an equation which states that in reversible adiabatic
fiow the entropy of tne fiuid remains constant along a streamline, but
in irreversibie flow it varies in some empirical way. Any four of these
five equations (energy, entropy and three of motion) may then be used,
the Tifth being automatically satisfied.

If the frictional force modeiling the flow losses is assumed to act
in the (-z) direction, i.e. axially upstream, then by choosing the sur-
pius equation above to be that of motion in the z direction, it is
unnecessary to evaluate the frictional force.

The derivation of energy equation 2:;3 is based on adiabatic flow,
and in flow with losses its application along streamlines is valid only
if the fluid is not heat-conducting. However, the mass flow averaged
rothalpy in the flow field is constant if there is no external heat
source, and equation 2.3 is used as a workable approximation along

streamlines. These points are explained more fully in Appendix A,

2.5 Time-Dependence and Axial Symmetry

Equation 2.2 contains components in all three coordinate directions,
and also time-dependence. A simpliifying premise proposed by Wu (1952)
is that the fliow is taken as steady, so that all time derivatives vanish.
This assumption is reasonable for an isolated row of blades with steady
iniet flow conditions, However, circumferential variations of properties
at exit from a pbiade row, as generalily occur, will appear as unsteady

flow to a downstream row of blades moving relative to the first row.
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The assumption of steady flow is incorporated in many numerical
methods based on Wu's (1952) analysis, but in any example with relative
motion of piade rows, it must be coupled for consistency with another
assumption that either ali circumferential variation of properties is
mixed out in the fiow length between adjacent rows of blades, or that
the flow pattern is axially symmetrical, when no circumferential varia-
tions of flow exist anywhere.

Between adjacent pairs of blades in a blade row, some general a
property, say ¢, varies circumferentially, typically in a repeating
sawtooth pattern., A constant value of q may be approached by consider-
ing a row with very many blades, the thickness of each being greatly
reduced to maintain the original thickness/pitch ratio, The sawtooth
profile is now much reduced in scale, but it should be appreciated
tnat the 'ripple' does not disappear, and the circumferential gradient
of q is unchanged_ As the number of blades tends to infinity, each exerts
an infinitessimal force on an infinitessimal amount of fluid, thus pro-
ducing a deflection of the flow.

In axisymmetric flow there are no such circumferential gradients,and
no bliades to effect change in angular momentum, Fluid is therefore
redirected by a circumferentially-uniform 'body force' F, introduced
into the equations of motion, acting perpendicularly to the fiow and
thus it has components in the three coordinate directions. Ratios of
the components are related to varicus flow angles. F is zero where there
are no blades, as in duct flow.

The distinction between the many-bladed and the axisymmetric flow
models is discussed by Horlock and Marsh (1971). Practical axisymmetric
filow may be imagined in mercury flowing through a tube in a magnetic
field, while conducting electricity, Swirling flow being produced by

magnetohydrodynamic forces.
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2,6 Stream Surfaces

Wu (1952) proposes that the three-dimensional flow solution be
obtained by combining scts of two-dimensional flows which lie on rela-
tive 'stream surfaces' through which no flow passes. There are two
kinds of stream surface, illustrated in Figure 2.3, and denoted Sl and
S2. Type Si surfaces intersect with a z-plane, either upstream or
about midway through a blade row, to form a circular arc. Type S2
surfaces form radial lines at one such intersection.

The assumption of axisymmetric flow implies that all S2 surfaces
are identical, and a solution is required for only one S2 surface,

' 82 stream surface. It also implies that the S1

calied the 'mean
surfaces are surfaces of revolution, with no twist in the circumferential
direction, 1In duct flow these assumptions are quite satisfactory, but
within biade rows the blade surfaces form flow boundaries, and in general
the suction side of one blade has a different shape from the pressure
side of its neighbour.

The notionai shape of the mean S2 surface in a blade row is a
matter of some debate - see Chapter 9 and also Horlock and Marsh (1971) -
but in the present work it is based on the shape of the design camber
surface of the blades in the row, with modifications for trailing edge
flow angle deviation, and for blending of the circumferential curvaturse
of the streamlines at entry and exit; the necessity for this is demon-
strated in Chapter 4, The blade force F acts perpendicularly to the
mean S2 surface everywhere,

For duct flow, angular momentum is conserved along a streamline if
there are no fiow losses, or else changes in angular momentum may be
related to losses via entropy as mentioned in Section 2.4, Hence changes
in flow direction are defined from the equations of motion, Within a

blade row the fluid is assumed to follow the mean stream surface, whose
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S1

FIGURE 2.3: WU STREAM SURFACES TYPES S1 AND S2




geometry will usually depart from free-flow paths, and so over-ride
considerations of conserving angular momentum. There is thus a
geometrical condition relating the velocity components at any point
within a blade row, and so a second of the six original equations in
the analysis may be replaced, Since all 6-derivatives are here assumed
to be zero, the circumferential equation of motion is the one to
climindte, so that the only equation of motion remaining is that in the
radial direction. Such a substitution cannot be made in the duct flow

analysis, as there is no geometrical constraint on flow direction.

2.7 Numerical Solutions Based on Wu's Theory

Two different methods of soclution of the above-described formulation
of the problem were developed, one by workers such as Silvester and
Hetherington (1966) at Rolls-Royce Limited, and another by Marsh (1968)
at the National Gas Turbine Establishment. Both obtain information about
the overall flow pattern, but do so by different numerical techniques,

For a comparison of the two see Marsh (1970).

‘Marsh's (1968) Matrix Through-Flow method uses the stream function
as the main unknown, with the boundary conditions that the non-dimensional
stream function is zero on the duct wall at the machine hub, and unity on
the wall by the biade tips. Starting from a guessed pattern of inter-
mediate stream function values, the radial equation of motion is expressed

as a quasi-linear differential equation in stream function:

M _'_QZ_LE —_ q/(r»}z)

dr? oz
This cquation is solved iteratively by a finite difference method,
manipulation of numbers being performed by matrices. The bar super-
script over derivatives denotes the special derivative following a

stream surface as described in Appendix B,




Silvester and Hetherington's (1966) method is known as the Streamline
Curvature technique because although the main unknown is a fliuid velocity
term, it is necessary to perform the sensitive calculation of the slope
and curvature of the streamlines at calculation points, The radial

caquation of motion is again used, this time cast into a form like:

5 2 -
Wy Wy + W2 K(r) + L(r) =0

This equation is solved iteratively, starting from an initial
estimate of the functions K(r) and L(r). The procedures developed
to reach a converged solution are the concern of Chapter 6,

It may be noted that the degree of swirl in duct flow has no
effect on the choking of the flow which occurs as the fiuid reaches
sonic speed., Thus for duct fiow the limiting case is of the meridional
Mach number reaching unity. For intrablade flow, the flow channel is
defined by the blade surfaces, and choking occurs when the overall
relative Mach number is unity. Both the matrix through flow and the
streamline curvature methods raise problems in transonic flow. In the
matrix through-flow approach, the function q(r,z) involves density
terms, for which there are two possible solutions, one for relative
Mach number less than unity (subsonic), the other for supersonic flow.
The terms K(r) and L(r) in the streamline curvature method contain
denominators of (1 - Mmz), which would result in a division by zero
at Mp = 1. Thus both techniques are in general applied to subsonic

meridional flows only,




CHAPTER 3

Mathematical Analysis For The Streamline Curvaturc Method,

With An Improved Loss Model

3.1 Loss Measurement

Real fluid fiow in turbomachines is irreversible, flow losses
occurring because of skin friction at metal surfaces (in ducts and on
hiades), turbulent mixing in wakes downstream of blade rows and fluid
friction in areas of shear flow., If the flow is assumed to be adiabatic,
but irreversibie then it is not isentropic, and entropy changes may be

found using the formula

sg-sy = € Ln [To2)-r Ln(Poz

To1 Poy

This relationship of thermodynamic properties may be applied hetween two
points not necessarily on the same streamline, However, in adiabatic
fiow with Cp constant, Tgo = Tgy following a streamline in duct or
stator flow,

Changes in total pressure are derived from experimental results
or largely empirically from known behaviour of similar designs, and it
must be borne in mind when applying the following analysis that numer-
ical data to be used in assessing the effects of flow losses are
obtained experimentally, from such devices as pressure probes down-
stream of rows of bplades,

The greatest pressure losses in practice occur within blade rows
and in the downstream mixing-out of circumferential flow variations
built up inside the blade row. Duct losses are found to be small, but
are inciuded in the analysis in this chapter. Wall boundary layers
arc not specifically modelled here, but may be included after a fashion

by using high loss values on the hub and tip walls,




3.2 The Loss Model

The equations of motion set out in Section 2.4 do not include any
representation of fiow losses, except that the elimination of the
equation of motion in the axial direction allows the presence of a force
acting in the exactly opposite direction, without any component of it
appearing in the remaining equations of motion,

It is more realistic to represent fiow losses by a dissipative
force, D, as proposed by Horlock (1971), acting against the local )
reciative velocity vector, i.e. in the (-W) direction. There is often
a considerable circumferential component in W, so the fluid path is
very different from the axial direction and, because of spiralling along
ducts, path lengths are rather greater than the axial distances covered.

Following the analysis of Bosman and Marsh (1974), a rectangular
co~ordinate system is chosen as illustrated in Figure 3.1 with two axes
along and across the stream, in its surface (S and N directions) and
the third (n direction) normal to the surface, The body force F which
is necessary for axisymmetric inviscid flow to follow a prescribed
stream surface shape, as within blade rows, then acts along the n-axis
with no components in the S or N directions. The force D acts in the
(-8S) direction with no components in the N or n directions. Hence the
equation of motion in the N direction contains neither bcdy force nor
dissipative force components.

The (N, n, S) co-ordinates may be applied to Wu's type S1 or S2
surfaces, but for this axisymmetric treatment of the problem, only the
mean S2 surface is considered. Within rotating blade rows, the force
D is assumed to oppose the flow relative to the moving surface, so the
S co-ordinate is aligned to the relative velocity vector W, not to V,
the absoiute velocity vector.

Hong (1980) criticises the'dissipative force approach to modelling

losses, concluding that the force does not follow the direction of
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FIGURE 3.1: (N,n,S) CO-ORDINATES ON S2 STREAM SURFACE
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(-W), though this appears to be reasoned from general rheological
considerations. He models the dissipative force as a tensor, not a
vector, and fiuid tensor analysis allows the generation of shears
perpendicular to the primary shear. Such behaviour is characteristic
of non~-Newtonian fluids, but the loss model proposed here, utilising

tne force vector D, is valid for Newtonian fluids such as air,

3.3 Intrablade Fiow - Formulation of N-direction Equation of Motion

Bosman and Marsh (1974) set out an application of the improved
loss model to the equations for the matrix through-flow analysis, and
obtained equations of motion in the (N, n, S) co-ordinates similar to
those in the conventional (r, 8, z) co-ordinates,

In this section it will be shown that the concept can be manipu-
lated into a form suitable for the streamline curvature technidue,
resulting in equations of motion which differ from those ordinarily
used, The (N, n, S) co-ordinates at any point change their orientation
as calculations proceed. Expressing the N-direction equation of motion
in terms of (r, 6, z) co-ordinates allows the use of a co-ordinate
system which does not shift from iteration to iteration as the calculated
fiow direction changes.

The form of the radial equilibrium equation derived by Silvester
and Hetherington (1966), Smith (1966) and Novak (1967) is summarised
by Marsh (1970) as:

W, 3% L W K(r) 4 L) = O (3.1)
. S _F. - p— . -

We desire 2 very similar form to this for the N-direction equilib-
rium cquation.

Initially following the analysis of Bosman and Marsh (1974), the
three equations of motion in the r, 6, and z directions including the

dissipative force D are:
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Wo [~ Vel-w |dU - 3V, | 31 -T3s~D, (3.22)
P or 20 92 or T r ok
-W,- {a(r\/h oW W [3Ve = (Pt — 1 31 - T3s - D, (3.2)
roLor oP Y1008 0z T r~ 00
WL 3V, -3V, [-W. {3l -~ 3(rV)| — 3T -~ T3 - D, (32
3z 3r r |30 dz T 9z
These equations are to be solved on the mean stream surface and
may be expressed in terms of the special derivatives defined'in
Appendix C, without discarding the 6-derivative terms, which will
appear in the components of the body force F, as also shown in
Appendix C.
W, 3(-%) - W, {3V, -3V | — 3] —T3s ~F =D (3.3q)
o dr 2 dr | T dr r
-w, (V) -wW, Y(ru . —-F. — D (3.35)
v dr T~ Z T
Wo[3V—ol |+ We 3(-V)_ 31 —T3s - F ~D, (3.30)
23z or K0z T dz2 dz
F— =L 2p
where - T Qry 00

The force vector F, being normal to the mean stream surface, is

therefore normal to W and D, and so
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]
o

wrFr+quu+wze

D, F,

1]
Q

+ Du F + D, F

u Z z

Also, since the dissipative force vector D 1s assumed to oppose

the velocity vector W,

. . . . (3.5)

The equation of motion in the N-direction contains no components
of F or D, since F and D (and W) are perpendicular to the N-direction.
Put another way,

F x W lies in the N-direction.

Using equations 3.4 and 3.5 it is possible to form
(3.3a) (W, Fy - Wy Fp) + (3.3b) (Wp F, - W, F.) + (3.3¢c) (W, F,. = W,. F)
which contains no net components of F or D and is thus the equation of

motion in the N-direction. Expanding, and noting that W, = V, and

W, =V, results in
WR Y =3V — W [F SL-F 3]~ R [W3I -v 5L
o2 dr| or 3z 3r 32
[ — - B —
~TW,|F ds ~F3s| «TR| Y 3s -V, 3s
or 2z dr Y4

- W F 3rv) = B 3\ ... (3.6)
37

r ¥
This equation can be simplified by introducing two local angles
A and p which define the local geometry of the mean stream surface,

(Figure 3.2):

\

tan ) = Ve oo Fr
Vu Fy ‘
: >> e e o (3.7)
tan p = vg F,
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FIGURE 3.2: FLOW ANGLES A AND
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Note that in the sign convention adopted (Appendix D), u and «

are of opposite signs.

From equation 3.4 the velocity components are related by:

o

W, tan & + W, + W, tan y = O

.. (3.8)
which is tne geometrical condition for the flow to follow the stream

surface.

The continuity equation may be written as

d(eBrV) + d(eBrl) — O
or V4 ’

where B is proportional to the local angular thickness of the stream

surface, In the through-flow analysis, B is the ratio of the local

circumference available for fluid flow to the total circumference, and

although termed the 'blockage factor' is a measure of the unblocked

flow area., In duct flow B = 1, but where there are blades of finite

thickness, it is less than unity.

A stream function ¥ may then be defined, where

or ... (3.9)
0z
For steady adiabatic flow, the energy equation
e
Dt

shows that the rothalpy I remains constant along a streamline. The

rothalpy is therefore a function of § alone, so that

Q.
—~

. o . (3.10)

| ]
O
t—~

o N
Q
, <€
Q/
UYL

Q.
<

"
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Departing from the analysis of Bosman and Marsh (1974), equation

3.6 is divided by F, and substitutions made for tan) and tan y:

<, = T - 1T < <
W VL =0Vl W, |Fam e 31 < Fan AT |-, 3L -V 3T
dz or| 3~ 32 3r 3z
- —

W Fama 35 - Fann s +T[\/z_§i Y SSJ
or

odr 7

r L by— 32

Combination of Rothalpy Terms

- w‘_kan/u_s(rvg = Fan ) 3(%)}

Tne terms involving rothalpy may be combined as follows:

w{h,,,/ufé_; ~ o) 5_1] {vzg -v@;]
dr dZ dr 22
Wu f‘a»\/u -~ \/z} - J: [Wu. ."anA - \/,.,]
2

—dI BD"V li\/V... f‘an -V}#‘O’I B?"V,.[W._,ranx—v,,:]
"‘T«y@ 2 M V2 WP

H
o/

o|

using equations 3,9 and 3.10

-
— dl (JBr —sz*‘VzWu_ o+ vLw, F,. —\/'_z using
4y 3 Fo equation 3,7
— dI (DBrr—sz -Vt w2 using
T dv equation 3.4
2
— —dlI @BrW ) )
~—--77¢ since Wr = Vr, Wz = Vz

Entering this single rothalpy term we obtain:

WY <3V |~ -dI eBrW ~TW. |fans 3s - tand3s
3z or |  dw oF 37

ds -V s | - w? el - n N
Tegorg] oo e
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Tne meridional direction, co-ordinate m, is the streamline path
projected onto a (r, z) plane of constant 6, so that
Wi = W,
without any component of circumferential velocity. For the general
property q the special derivatives are related by

W 04 _ Wy da W, 2q

dm ar Az
The left hand side of equation 3.11 may then be expressed as:
w2l W, oV, W, av, 3V
w om w ar or
Introducing the streamline slope angle ¢ and radius of curvature C,

where

the left hand side of equation 3.11 may then be written as

w? [-wW.? cose + W, WL sine B . (3.12)

Vl
W, C W; om W,

The last two terms in the bracket combine to give

we 3W, + 3W, . W, W,
W, dr dr T W, or

Evaluation of Ewm/am

The term in expression 3,12 involving 5Wm/am may be evaluated
following the analysis of Marsh (1970) from the equations of continuity
and energy as foliows,

The equation of continuity is

g(rBQW + _—B__(wB(JVVZ) — 0O
Sk oz -

W (+Bo) + rBo 3V + W, 3(rBp) + +Be W, — O
§irBe) v rBo g w e grBe) v rfe gt =
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Forming the special derivatives in the m-direction, and dividing

rBe,
W, 2 (rBe) + 3W, + 3W, — O.
rBe dm or d2
© W, [rB3p + e (B + W+ W, — O.
'rB@[: ﬁ G_S;" or 0z
W, 3¢ — ~W, [r38+ B3r| —oW ~ 2w,
@ dm ¥R | Oom oM o 22

Now from the r

SW, _ W, W, ~ W, oW,
9z T W, om W, or

SW,,, + W,., B(COSE.‘) — ILanG B (W C056>
Cose Om Or

d

— gW W /'txne aC

Om

— tan € S (W,,, case)

or

3

WY, §p._—W,,, B -W, sine ——S_(W,,sine) --B_W,_,
' e om B Om r or Q M

+ W,,,, f'ane E_G_ -+ /..QHGS(WMCOSG> .

aM r

——-‘W,., _B —g\/\/m _W,,, sin€ ~— _EW,., (sfne—cosfl."ane)
— B Om om " 3 m

~ W cos€ 36 ~3/ne lfané’W 36 + fané W 36
-5—" ar-

- W,
B

QJIQJ]
Yoo

SWm - W W, -~ W, |sine + §_€ (rcas€+ sine’/&né)
am WZ C ~ oFr i
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The equation of continuity may therefore be expressed:

- W_Z —SJ_V" /‘anf) ,
or

W, dp

W, W, 0B — W, - Wa
C om

B om dm

I

\/Vz C r

Turning now to the energy equation for steady,

axisymmetric flow,

=W W - W Fane ZFY:
YV + rsec -a—: .

adiabatic,

W, 31 — O.
m
"W, 3(h+iW ~ 4 = O
m
W, 3h — W, |- W' -awz + %_@r)
om T 2 d m
— WL - VL W 3L + W, cor D (wr)
T om Dm om
— W, IW, Vv 9N+ W, W g(w)+wwr3(w)
Jm om
— - W' §W.., WW“SV.‘_ + W, VL B(Wr).
— Orm om S m
T
— O + twsmeé
— (V- w
— — W
WoSh —-Wo2 W, - Wa WL 3V = WoWLu + W2
m d m om e r
Also, Wm_é « T+ Wr V.. W», F_B—V - V\. Sin €
0 m r r a*ﬂ
__.Wm i"?_\_/: -+ Vw—é)"
— dm om
W, 2l
——

F. + Do

from equation 3.3b
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The final form of the energy equation is then

W, 3h — -W,2 9W, ~W.{ + W, W2
am am ~

where f = Fy, * Du.

If the fluid is a perfect gas, then

1 3k -

| 3p

— ] Ds
C dm™ a® ¥m R °om

and substituting from the equation of continuity and energy:

WL = 1 {[Wy s =W, Srkn€) -Woly, W, 08 +Wef ~W.W.°
3m ‘[-m:MR AR M O R o

This result is obtained by Marsh (1970, equation 27), In the usual

streamline curvature analysis, D, = O and then f = F,;. This completes

the evaluation of oWg/a3m.

The ieft hand side of equation 3.11 now becomes

W2 ‘qu Cose ’_\A/AS_M_/@_‘f%Sihe ’ }g!vb 'S__W.LD "”ane)
[W; C WZ Br Wz ;l—Mm fe r

ch m a rat

‘wmw,-v_vg,nig + W f -w,wf% o (3.13)

The terms in C combine to give

.Wm'2 cos€ + W, Sin€ {me W,.J —- W, (:I-f w,t :]

w, C w, (-] | w. ¢ | = C Wi (-9
2
—"‘A/‘w3 I—Ml
We'C | 1-M,f
within the square brackets of expression 3.13.
Hence equation 3.11 may be rewritten as
W 3V = (17t Wl o+ W | W 35 - W 2[rhne)
W, or 1-M cw,t Wi (I-MF) | R om  + 2r

~W, 38| + MM.{ - MW
B?”—T (l_,Mmi)Wz '_Mmf rM/z
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:_l_ (DBPWQI -Tw, /'an/uc?s - Fan ) 35) -+ T( , s ~V,§s>
w* Ay X

W ( Fan e Se0) < han ) am/)):]

:“ Bro(I T 9 V W/’¢n 3 V’,~W“f'qn/\
POl L|p (h i) - )

sl I,a'"/l& s(rl/k_) ~ }—a—h/\ D("‘l/u)
r ar 0z
Multiplying throughout by (-W;), the equilibrium equation in the

N-direction is obtained in the form to be used:

Wo WL — —[1= MAT W 4+ (W 3s = Wy 3(rtene) -V 38
dm T ||=MI|Ccese (I-MJ)|R om » Or —B_

[Mm ]t -miVS 4+ WpeBr dL
EAIRELN T

"‘TWZ %(%-W“fan/&>”%(w,."wh[‘ah)\>}

w® L
\A/Z ;ap, D("l/u - /La.n)\ 3(}-]/.,. PR 3. /&-
+ = S ) £ ):l _ ( )

The last two terms of equation 3,14 may bhe simplified, using the

relationships between the special derivatives, to

~T 35 + W (We Fandh ~W.) 3s
dr W om
+ W B(PU) = W hn) 3(nV)
T oF r om

which are preferable where the m-derivaties are readily calculable,
Colleccting all the ds/0m terms, the N-dircction equilibrium equation

appears in an alternative form discussed in Chapter 4:
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WIW, —==MA W+ We FW 3(rfane) - W 28
dr l~M,.,’J C cos€ G—-M} r Jr —Eg_m
+[ MMt =M W pBr AL
e M M
1= M| 0-m. I o ¥
VLD [ T (We-W Fand) =~ W, [ =T 3s
om | W* - MJ R or

+ W.., S(VV“ - \/Vm /‘aq) 3()“[/“ L. 3./5

Comparisons of equations 3.14 and 3.15 with the commonly-used

radial equilibrium equation are made in Section 3.5,

3.4 Axisymwmetric Duct Flow Eduations of Motion

For duct flow there is no prescribed stream surface, and so no
geometrical condition relating the three velocity components, There-
fore only one of the equations of motion can be replaced - by the loss
model entropy equation,

As with the intrablade flow, the equation of motion to replace
is that in the local fiow direction, since it contains the dissipative
force D. The two remaining equations of motion both lie in the plane
perpendicular to the velocity vector V,

Taking J as the unit vector in the 8 direction, it is convenient
to choose the directions for the two equations of motion as j x V and
Vx (jx V)., In common with the intrablade flow, the direction of
the vector V may be changed as calculations proceed so it is again help-
ful to form the j x V and V x (Jj x V) equations of motion in terms of
the r, 8, z co-ordinates,

For axisymmetric flow the equations of motion in the r, © and z

directions arve respectivély (Bosman and Marsh (1974) ):




AR [;v,. -%}_ dh ~Tas =D, ... (340

r  Or vz or | — r or

=Va(rV) ~ Y 3(rl) — -D. . (3.168)

roor r~ oZ o

Vojok -2Vl + W 26 U) b —T3s ~D, ... (34¢)
9z or r 0z — oz 7 '

The equation of motion for the j x V direction is obtained by
forming
(3.16a) v, - (3.16c) V,
which leads to an equation with no component of the dissipative

force:

V. [av, —sv}_ (V. 3k, - v ax,o] ~T[\4}>5 _y, asJ
0z

5z or|— o Sz or

-V. |V, V.) =V, o(rV.
___F_[r%g' ) Z-_B—T("r )J

Departing from the analysis of Bosman and Marsh (1974), the enthalpy
terms may be collected in a manner similar to that in the intrablade

analysis, using the energy equation

to obtain
V. I3V, -3V = —dh. (DV‘VMZ —TIV.os -V 95]
oz or dy 0z oF

~v (v 3(w) -\/z_s__(_rv,)J o (3.07)

The total enthalpy here is simply a special case of rothalpy, with the

rotational spceed zcoro.,
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Note that the factor B is unity in the free duct and has been omitted.

The task is now to reorganise equation 3.17 into the form

2

Vm 9 Vm _ Vp© K(r) + L(r),

ar
Working on the left hand side of equation 3.17,

Ve _ 1 vg| 9V, Vyr Vg

Az 2 dm ST

Therefore the left hand side of equation 3.17 equals

VAV, 3 (Vsine) - L Y, -3V,
17_ dm X7— dr Sr

_.Vr:r~\/m2 Cos€ + sin€ V...al/m V_ V-
Vs

v C V. 3m Ve dr
Using Marsh (1970, equation 27),
(1-M7 )3, =V, Bs-\/ Sfrtane) -U Y + Ut ~ YU
5m R T~ Or VZC al r a? ’

where

The left hand side of equation 3,17 with this substitution becomes

sz -~£z cosé€ —ﬁ.,_ oV, + Vms’”é/ : )(ﬁ.a_s_
v, C V%, 9r TV V=AT/IR e

—% g_’(_*’/iae) VYl ~ VL { »VJ/{)

(7]
VzC CLZ ra

so that dividing by sz, the entire equation 3.17 has now become:
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— ~prdh. + T (Vas-vias| - W [udllk) -V 3k
ere v F [ ] 4 uglek)

Multiplying by V, and rearranging,
[~
Vi, 3V — =[1=-M% V2 + W Vmds =Y 3(rten€)
dr }—/"7,.,2 C cos€ I*M,“'z

+ M. M, ’( - Iv’l“Z Vuz + \/z "'d/'o
I-M...’] [-Mm‘ C

| ad

9z

Equation 3,18 is the equation of motion in the j x V direction for duct
flow,

V,9s —Was |— Wl M@_Q‘M)‘V»Q(”Vu) ...(3-’8)
_V—..,— 3 37| Yie| e '
analogous to the equation of motion in the N direction for intra-

biade flow.

In & similar manner to that employed in the intrablade flow
analysis, the last two terms of equation 3.18 may be expressed as

—T[%ir—sine_aa%} ~ V. [_Lr\/) —s;nei(_v)}

to give the alternative formulation of the equation of motion in the

’

J x V direction:

Vdh — =[P 1 +[ v |35 - v 30 fame)
or /- M.Cese  [I-ME[|R oOm or
MM e [ me v +y ordh
| | —MM’:] I:~M,,,’J T~ 2 C dy

- Tl2s - sine3s | ~ V., |3[rl -—S/neérl/ (3.1
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For duct flow the equation of motion in the V x (2 x V) direction
is also required; this is a relatively straightforward matter., Following
Bosman and Marsh (1974), the equation of motion for the V x (j x V)
direction is formed from

~(3.16a) V,Vy + (3.16b) Vg2 - (3.16¢) V,Vy,

which after substituting hg = hg (}), leads to

2 d(r V. Vo 90U — = TV VL 3s + \, Ds
%\/"59)+257r)— > 5%

(3.20)

or Q(fvu)—\r‘vul__b
bt v: Dt

Equation 3,20, the equation of motion in the V x (j x !) direction,
shows that with losses corresponding to an entropy rise, the angular

momentum decreases along a streamline,

3.5 Comparison of Equations With Those Commonly Used

Marsh (1970) gives the radial equation of motion as

an1:g\ﬂ/ - = f“fqzz VMWQ —+~ E;I" -7;S$ — F
or T |~ M2 Ccese or or

For all applications the term F, should be replaced by

Wy O (rVy) | Wz 3 (xVy) (= Fy + Dy)

oo T
This is a back-substitution to re-insert a term simplified in the
derivation of equation 3.21, The term is denoted £ in equations 3.14,
3.15, 3.18, and 3.19, since for the improved loss model there is a

component D, of the dissipative force in addition to the circumferential

component of blade force F» SO that f # Fy.
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For the analysis of duct flow:
(i) the special derivatives may be replaced by regular partial
derivatives;
(ii) B is unity everywhere, so %g = 0;

(iii) W =V, and all respective components are alike;

(iv) T = hg.

3.5.,1 Intrablade Fiow

Equation 3.21 may be converted to the intrablade flow equation of
motion in the N direction with the improved loss model by replacing:

(a) 31 by V, o B r dI;

ar dy
(b) §§ by either s + W. ( W, han ) ~W,) Ei
ar dr WE T dm
or W, |35 (VWi k) =33 (V- Wi hn )|
W or 92
(c) W, S(y\\/vj by either Wi S(V'Vu) — W, fan ) 5("‘ Vu.)
W~ I T or r om
or e Fan 5 rVu ~ Fan /\\ i(»vu
—;l /M'§£ > X4 )

(d) F.. by zero. ;
For the case of simple radial equilibrium,

0]

1l

where V., = 0 and ) ,

the equations 3.14 and 3.21 are in agreement,

3.5.2 Duct Flow
Equation 3.21 may be converted to the duct flow equation of motion
in the j x V dircction with the improved loss model by replacing:

(a) El by V, p r dhg ;
dr day

(b) 23s by either
or

ds — Sin€ 3s
b Ya d

or \/z Vz .3_5_ - V, bs .
E Or 9z




() Wo 3 (+W) by either Vi |3(rW) —smed(-W)
<Y T O

 or or
o VoV, [V, (r V) — V. 2(r W
i \/2; -a—f'- ) 3—(5 )

(d) ¥y by zero,

3.6 Discussion of New Terms in Equations

3.6,1 Rothalpy Terms - substitution (&)

For steady adiabatic flow, the energy equation

DI

be
shows that the rothalpy remains constant along any streamline, and is
therefore a function of ¥ alone, so that as shown by Bosman and Marsh
(1974),
31 ar oy

or dy or

°

By definition of the stream function,

Eﬂ = p Brv,,
ar
so that
31 _ V, p Br dl
o> ay

is simply a re-expression of the original term. The units of stream
function here are those of mass flowrate, so that numerically if it
is zero on one annulus wall then it is equal to the specified mass
flow rate on the other, In adiabatic flow, dI/dy{ remains constant
along a streamline until entry to or exit from a rotor row. It is
constant through stator rows, where I = hg.

In a duct vegion, B is unity and I = h,.
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3.6.2 Entropy Terms - substitution (b)

The N direction equation of motion for blade rows was formed by
adding the r, 6 and z direction equations of motion, equations 3,3, in
such proportions that the result contained no component of forces

D or F:

(3.3a)(W,F, — WyF,) + (3.3b)(W.F, - W,F ) + (3.3c)(WyFp. - WyF,).

Equations 3,3a and 3.3c contain respectively the radial and axial deri-
vatives of entropy, so that from the above formulation, four entropy
terms appear, two each in the radial and axial derivatives. These may

be re—grouped as

T 3s (V, - W, tan )y = T 3s (V, = W tan \).
zZ u r u

or 0z
The multiplier WZ/WZ was introduced to give the magnitude of the main
MW

unknown as W -
mdm °

In duct fiow the equation of motion in the j x V direction has
a simpler formulation involving only two of the equations 3,16:
(3.16a) v, - (3.16¢) Vi
Of the r, 8, z set of equations of motion, 3.16a and 3,16c are the two

to contain entropy terms, but the factors V, and (-Vy) here give only

one pair of entropy derivatives:

The intrablade equation of motion in the N-direction was produced
by combining all three of the equations in the r, 8 and z directions,
equations 3,3, but the equivalent equation of motion for duct flow, in
the j x V direction, contains no component of the circumferential

equation 3.16b, This difference may be traced through to explain the

contrasting denominators in the prefixes on the substituted entropy

terms: Vz  for duct flow, but W, for intrablade flow.

2
m W2

\Y




The first version of the substitution, for both duct and intrablade

s s
cases, consists of the original %; term, plus a new term in a3 . It

_ om

s
follows that in lossless flow, where gﬁ vanishes although %; may remain,

the entropy term is in agreement with that in the radial equilibrium
cquation,
Losscs in blades being higher than those in duct regions, the

s
centropy gradicnt %; will in general change near blades. The effect

of such sudden changes is discussed in Chapter 4,

3.6.3 Angular Momentum Terms - substitution (c)

These arise for similar reasons to the entropy terms - the combination
of the r, 8 and z direction equations of motion in varying proportions
cause the more complicated algebra,

As with the new entropy terms, the first versions of the replace-
ment angular mementum terms for both duct and intrablade flow are
expressed as the original r-derivative with a new meridional derivative.

The duct flow cquation term shows that for lossless flow, where

S (xv,) = 0O

>m the angular momentum term remains the same as in the radial

equilibrium equation,

The purpose of a blade row is to change angular momentum, so that

E_(rvu)
om

less, Thus within a blade row the angular momentum term for the

is generally non-zero in a blade row, even if the flow is loss-

consistent—-loss analysis will differ from that in the radial equilibrium.

L2 (xVy) = 0.
Am

[

analysis, unless the blade geometry is such that tan A = O o
The significant behaviour of derivatives of angular momentum is discussed

in Chapter 4.

3.6.,4 Radial Force Term - substitution (4)

The N direction equafion of motion within blades was derived to
contain no component of the forces F or D, and so no force terms appear

within it and the term F, is eliminated from the equation,
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The force F does not act outside a blade row, so that no duct
fiow equations contain any component of F, The dissipative loss force
D is present, but the J x V direction equation of motion was derived

to contain no componcent of D,

3.7 Reported Errors in the Literature

The criticism by Hong (1980) of the loss model used by Horlock
(1971), Bosman and Marsh (1974) and in the present work has been noted
in Section 3.2. Hong also scrutinizes the analyses of other papers,
inciuding those by Silvester and Hetherington (1966), Smith (1966),
Novak (1967), Frost (1972), and an unpublished work of Hetherington
(1974), The last two of these are reported by Hong (1980) to contain
errors in principal equations. The paper by Hetherington (1974) was
unobtainapble, but the analysis of Frost (1972) was examined.

Hong (1980) sets down the radial equation of motion in the

following form, using the notation of the present work:

| §E _ \/\/22 Fan?é€ +_I_S(:Lan’lé>+ fane 4B
? or _("MzzSeczé) "” 2 ar B 4z

(b £ )

+g(1‘Mzz) /’ahA + MZZILOHG ILan/f,,g__’VV f_(__(*‘vu>
r W, Az

where d
dz

W,
W, am

He then notes a difference between this and Frost's (1972)
simiiariy-presented principal equation, numbered (1), The present
author has determined that the error is indeed in Frost's paper, and

can ve traced to the formation of his equation (A,15),

?
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It is wise to follow through the analysis presented in published
works, both to gain an understanding of the principles and assumptions
involved, and aiso because errors occasionally appear, whether mathe-

matical or merely typographical,
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CHAPTER 4

Flow Effects At Blade Entry And Exit

4.1 Introduction

Fluid moving in a section of duct experiences low losses, no
enforced turning (as occurs within blade rows) and no blockage effects,
Consequently the rate of change of entropy in the streamwise direction,
%%, is iow and is matched by a correspondingly small streamwise deriva-
tive of angular momentum, according to equation 3.20, The streamwise
rate of change of the blockage term, %g, is zero.

In the vicinity of a blade row, losses are usually rather higher,
and so higher values of gi, occur there. Quite how the loss is distri-
buted through the bhlade row depends on the application, but in any
case is open to some debate: the loss may be regarded as all appearing
at, or even downstream of, the trailing edge, in the wake; a blade
operating near stall at inlet will incur losses near the leading edge;
and there is gencrally a boundary layver loss over the entire blade
surface., In the computer program the empirical data for the ratios
of total pressure across a blade row are translated into entropy changes,
For the sake of argument, the entropy is assumed to vary linearly with
axial position between the leading and trailing edges, This gives
rise to sharp changes in the value of %% over the distances from lead-
ing or trailing edges to the adjacent calculation stations in the duct
region, and so considering equation 3,15 there is at blade entry or
exit an abrupt change in the term

W Js T (W, - Wy tan }) - w.

am | w? (1 - M;2) R

uniess the contents of the square bracket equal zero,

\iJ .
Such changes indicate changed values of MWm on the left hand side

ar

of the cquation 3,15, leading to rcedistribution of the meridional
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velocity and repositioned streamline paths, but in practice such stream-
line shifts couid be accommodated over the distance to the adjacent
calculation stations., The most important entropy effect in a multi-
stage machine is always the accumulation of the radial entropy gradient
over several stages,

L . . 3B

Similarly the streamwise gradient of the blockage factor 3m presented

no problems in practice, since in the N direction equation of motion
its f - is e ¥ and W, is oft all ared to oth
its factor is (1-M2)B’ n r is often sm compare o other
veliocity components,

Discontinuity problems were encountered, however, because of the

numerically larger changes in the terms involving the streamwise
3 (rvy),
om

these that this chapter is formulated,

derivative of angular momentum, and it is in the light of

4.2 An Example Involving A Free Vortex Blade Row

Consider uniform, lossless fluid flow in a cylindrical annular
duct with streamlines straight and parallel to the axis (Z direction),
Let there be no swirl in the flow, which is a special case of the 'free
vortex' circumferential velocity distribution wherein the product rVy
is a constant at all radii. The value of the constant may be varied
from place to place axially, but the significaﬁce of free vortex flow
is that there is no consequent radial redistribution of the stream-
lines with changing swirl component of velocity. Thus the radial
velocity for this example is zero everywhere, and m&ny terms in equa-
tion 3,18, the main equation for duct flow, are zero. All the other
terms on the right hand side vanish because: the radius of curvature

of the streamiines is infinite; entropy and total enthalpy are uniform

ar

everywhere; and
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Inspection shows that uniform-flow is a solution of equation 3.18
since the left hand side of the equation also becomes zero.

Now let the flow in the duct encounter a row of stator blades
with uniform axial length, whose entry angle is zero at all radii, to
match the arriving flow., Through the blades, the flow is redirected
so that the fluid exit angle varies radially as:

tan @y = constant/r,
which is the flow angle distribution for free vortex flow.

With oo varying radially, blade cross-sections at different radii
will be of different shapes, The circumferential length of the blade
will be greater for sections of greater camber angle, causing varying
iean angle ) on the camber surface, as shown in Figure 4.1,

Depending on the relative circumferential positions of the different
cross-sections (the section 'stacking'), the lean angle ) may be varied
by the designer. Taking the mean stream surface to follow closely the
biade camber surface, tan ) is obtained in the N-direction intrablade
equation of motion, However, it is shown below that even for the flow
in this example with little or no radial velocity, the circumferential
positions of neighbouring cross-sections have an important effect on

the flow which is not revealed by the radial equilibrium analysis,

4,3 Consideration of the N-Direction Equation of Motion

At entry to the blade row, the meridional velocity is uniform
radially, with no radial velocity component, and as with equation 3.18
for duct flow, many terms in equation 3,14 become zero. Once inside
the blade, V, starts to change, following the parabolic camber line,

such that

U = constant,
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FIGURE 4,1: DISTRIBUTION OF LEAN ANGLE 3
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or assuming a camber line which follows the quasi-streamline as

described in Chapter 5,

2(rv,)
“( WU = constant

;jm

This is shown in Figures 4.2(a) and 4.2(b). Thus the term

-Wy tan ) §~(rvu) in equation 3,15 is non-zerounless tan A = 0 or 3 (rvy) = O,
N D am
It is possible to construct a blade shape, and hence create a mean
stream surface, with tan)~ = 0 over all or part of the leading edge or

at any other chosen location, but for tan A # 0 at the leading edge, as

orvy)

is generally the real case, the step-change in the value of
blade contry indicates a sudden change in %Xm , which leads to redistribution
of the fiuid flow and a streamline shift,

At the blade trailing edge, the flow paths once again change from

following the curve

g (rvy)

= constant,

am

to the lossless free duct flow

5 (rv)
am
The analysis indicates another redistribution here, unless tan )\ = O;
see Figure 7(c).

The radial gradient %r(rvu)

in equation 3,15 does not undergo these
abrupt changes on passing a hlade row edge, so does not raise the same

problem, even if tan py # O,

4.4 Deviation

Although fiuid close to the blade surfacesmust follow their shapes,
fiuid distant from the surfaces does not turn fully onto the blade angle
at exit, and so the mean flow direction downstream may differ consider-

ably from the exit angle of the blade geometry. This difference is




A(rVy)
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called the deviation, §, and is a well-known effect (Horlock (1958);
Cohen, Rogers and Saravanamuttoo (1972) )., A widely-used empirical
rule to estimate deviation is that included in Howell's blade design
method, descriped by Horlock (1958), Cohen, Rogers and Saravanamuttoo
(1972) and Dixon (1975). Howell's deviation rule is included in
Appendix D.

It is reasonable to assume that fiuid entering, at zero incidence,
a row of blades with parabolic camber lines may follow a path which is
parabolic, though reaching a different angle at exit from the blade

angle, as shown graphically in Figure 4.3.

4,5 Non-Parabolic Flow Paths

The discussion of Section 4.2 emphasised that real fluid flow can
not undergo discontinuities in its path, or sudden velocity changes,

Thus where tan A # O on the mean stream surface, there cannot occur abrupt

d (rv
changes in 9 (xVu)

am !

one whereby circumferential curvature is acquired over a finite length

but the fluid path must depart from the parabolic to

after blade entry, and lost progressively before blade exit., The effect
on the axial distribution of rV, and of its meridional derivative, for
tan \ # O at both leading and trailing edges, are shown diagrammatically
in Figure 4.4. The mean fiow is assumed to leave the blade row at the
angle predicted from deviation considerations; its progress to that

flow angle is the matter in question,

From the principal equations 3.14 and 3,18, it is seen that

F,+ D, = Wy, 3 (rVy).
r Adm
. . .3 (xvy)
In lossless flow, D, = O; in a duct region Fu = 0., By setting Sm

to zcro at blade centry and exit, there is no circumferential load on

.
the blade there: the value of %ﬁ(r u may be used as a measure of the
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local blade loading, and it is seen that the proposed modification to
the assumed flow path implies that at other points within the blade,
loadings are higher than originally reckoned,

The assumed form of the blending of circumferential curvature
does not appear to be critical when using a mean S2 stream surface, and
a workable rule was adopted which appears intiutively realistic,

The point X in Figure 4.4(a), at which the fluid is assumed to
have turned fully onto the angle of the equivalent parabolic path, is
thought to be about 0.2 to 0,4 of the distance through the blade row.
Downstream of X, the fluid is over-turning relative to the parabola,
though as drawn in Figure 4.4(a) its flow angle nowhere excecds that

of the blade camber line.

4,6 Non-Zero Incidence At Blade Inlet

Fluid entering a blade row at an angle different from the blade
inlet angle will be turned rapidly to align closely with the direction
followed if the fluid were entering at zero incidence, This is illustrated
in Figure 4.5, assuming that downstream of X there is no difference between
the two paths just described,

The curved rV,, profile upstream of X, shown by the solid line on
the graph of Figure 4.5(a), must satisfy conditions of value and slope
at the leading edge, and at point X, and is thus & curve of cubic or
higher order,

As drawn in Figure 4.5, for case 'A' the circumferential velocity
of the incident flow is first reduced and then increased again, on
entering the blade. This indicates that the front portion of the blade
will suffer reversed loading., The incident angle of flow 'B' is such
that extra tufning is applied to it immodiately after blade entry, and
so the loading just behind the leading edge is higher than for flow

arriving with no incidence,
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CHAPTER 5

BIADE DESIGN

5.1 Introduction

The purpose of the rows of blades in a turbomachine is to change
the angular momentum of the fluid passing through, as by this means
work may be transferred into or extracted from the fluid. The rate
of change of angular momentum is matched by a circumferential force
on the bilade row, giving rise to a torque on the annulus. The rate
of work transfer, or power, at a blade row is given by the relation-
ship:

Power = Torque x Anguliar Velocity.

For a non-rotating stator row, no work is transferred, and for
adiabatic flow the stagnation enthalpy of the working fluid remains
unchanged. The fluid velocity, and thus its kinetic energy, is
changed and there are compensatory changes in, for example, the pressure,
temperature and density. In a compressor stator the desiped end-product
is a high pressure and so blades are used to decelerate the flow. A
turbine stator is usually used to provide a high circumferential
velocity for entry to the following rotor,

In a rotor row power is transferred from a rotating shaft to the
working fiuid, or vice versa, and the stagnation enthalpy changes between
rotor entry and exit. There is consequently a change in the fluid
stagnation temperature and generally also in the static values of
properties.

. The boundary layers on the blades and the annulus walls encounter
favourable pressure gradients in turbines, but face adverse pressure
gradicnts in compressors, and the difficulty of achicving flows free

from separation over the blade surfaces resulted in axial-flow compres-

sor development lagging behind that of turbines, and means that compres-

sor design is much the more delicate task,
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The cross-sectional shapes of axial-flow compressor blades are usually
those of acrofoils known to give good performance. The profile is
defined by a central camber line with a given distribution of material
thickness along it, as illustrated in Appendix D. The chord line length
is the straight line distance between the centres of curvature of the
rounded leading and trailing edges. The camber line shape is usually
composed of one or more circular arcs, or of a parabola; the leading
and trailing edge angles are defined, and the curve constructed between
them, For any curve other than a single circular arc, the proportion
of the chord length is redquired at which the camber reaches a maximum,
For the single circular arc this proportion is always 0.5; for the
parabola it may be between 0.25 and 0,75, but is normally around 0.4,

Experimental tests on such aerofoils are often performed under
conditions and in configurations very different from those actually
occurring within the turbomachine; the aerofoil base profiles often
originate from those used in isolation for the wings of aeroplanes,
rather than in the proximity of several other aerofoils to each side,
forming a cascade, Recorded data are generally available for linear
cascades of identical aerofoils set in wind tunnels with uniform
approaching flow, In the annular cascades in turbomachines, the pitch
varies from the hub to the tip radius, the blades are often of twisted
shape, and the approaching flow may be considerably non-uniform,

Radial shifting of streamlines may be minimised across turbomachine
blade rows by adopting the free-vortex radial distribution of circumfer-
ential velocity, as discussed in Chapter 4, where it was shown that
it is impossibie to satisfy the free-vortex condition at all points
within a biade row, and so there is some radial deviation from the most
direct flow paths, Blades for free-vortex flow are considerably twisted,

creating mechanical strength probiems in such designs,




Another factor affecting streamline positioning is the partial
hiockage caused by the thickness of real blades, which varies in

proportion both radially and axially through a blade row,

5,2 Sign Conventions for Blade Angles

The nomenclature for a cascade of blades is shown in Appendix D,
For annular rows of blades the symbol usage holds over small displace-

ments of the € co-ordinate, For rotors, the absolute gas angles are

still denoted by @, but the rotor-relative gas and blade angles are

\J

denoted by B and 8 respectively, so that as shown in Figure 5.1,

1
<

tan o tan 8 = Wy

v A W,

The angle 8 and the velocities Vy, W,, are taken as positive in
the direction of rotor rotation . The sign convention for angles o,
g foliows from the definitions given for their tangénts.
Further defining positive streamline slope such that
tan ¢ = V,

\%
z

equation 3,8 shows that
tanp = = tan B - tan € tan A.

5.3 Stream Surfaces for Blade Design

In flow normal to a long untwisted aerofoil of uniform section,
stream surfaces are plane, and the flow paths coincide with the cross-
section for which data are tabulated.

Figure 5.2 shows flow with a spanwise component approaching the
aerofoil which will cleariy be presented with a longer path over the
surfacce and, to an obscrver travelling with the flow, the acrofoil

will appear longer and give a different camber angle from that for
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perpendicular flow, Furthermore, if the aerofoil were twisted in

shape the cambelr line would appear to the observer to depart from the
design parabola or circular arc, Thus to make sensible use of aerofoil
performance data, the standard aerofoil shape must be constructed on
the true stream surface, and not on a surface merely of geometric con-
venience, Such a design procedure will be iterative, since the intro-
duction of a row of blades will alter the streamline paths from those
adopted if no blades were present; and the final stream surface shapes
arc not known until flow calculations are complete.

In the computer program, conical surfaces as shown in Figure 5.3
are used as approximations to the truesurfaces, eliminating the iterative
nature of the design procedure,

At both the casing walls, the cone angle ¢ is matched to the
slope of the casing at its intersection with the design line. Other
conical surfaces are defined, based at 10% radial intervals along the
design line, with tan ¢ varying linearly from hub to tip.

Clearly, in a duct with walls curved in the (r, z) plane, conical
surfaces at the hub and tip will not match the wall profiles at points
other than the design line, Therefore after the design of the aero-~
foil has been completed on the conical surfaces, the radii of the grid
points set up are modified so that the hﬁb and tip sections follow the
walils, and intcrmediate blade sections are altered proportionately.

The 8 co-ordinate and the blockage factor need to be trimmed accordingly,

but the blade angie ¢' is unchanged.

5,14 The Stacking of Blade Sections

The 'stacking' of the aerofoil sections making up the blade as
a whole was introduced in Chapter 4., Radially-varyingflow conditions

require & sot of differing aerofoil cross-sections, and a certain
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freedom is available to the designer in arranging them, axially and
circumferentially, relative to their neighbours. The aerodynamic impli-
cations of the stacking have been discussed in terms of the angles ) and
u, which vary as the stacking is altered., Other constraints on the
designer's freedom arise from mechanical stress limitations, and manufac-
turing feasibility.

The computcr program requires as input data the ge&metry of the
annulus walls, together with a 'design line' on which the blade section
chords are centred axially., By setting an inclined design line it is
possible to generate blade shapes with sweepback, as is seen in Figure
5.3,

As viewed axially, the blade sections are stacked radially on their
centres of mass, found by considering not only the blade thickness dis-
tribution but also the changing radial depth between the non-parallel
neighbouring concs.,

Input data for the chord lengths at hub, mid-span and tip may be
specified as being either the true chord lengths, or only the meridional
component (the view in Figure 5.3), of the chords. Values at locations
other than the three entered are found by interpolation. Radial varia-
tions in chord, together with varying stagger angle 7, mean that the blade
leading and trailing edge profiles in the meridional (r, z) plane will
generally be curved., Intermediatc points, at 10% intervals axially along
cach cross-scction, are found as reference grid points, and thus the
whole blade mesh is in general curwed in the meridional plane, except
that the grid line connecting all the mid-chords is the original straight

design line.

5.5 Conical-to-Planar Conformal Mapping

Cascades of uniform aerofoils possess camber lines lying in plane

cross-sections, and chords which are straight lines. Applied to the
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conical design surface of the turbomachine, the equivalent geometry lies
on & curved surface and it is necessary to construct an aerofoil shape
as seen by an observer moving with the fiuid in the turbomachine, to
provide cquivalence between the behaviour of the turbomachine blades and
the known behaviour of the linear cascade,
Considering Figure 5.4, let q be a co-ordinate on & conical
surface, foilowing constant 6, and originating at the apex of the cone,
The conical surface may be mapped onto a plane with rectangular co-ordinates
by the transformation

n=6; 5.-5= g (&) (%0

Sin € 9,

The transformationmay be manipulated for use in the reverse direction:

9:72 : %i, — exp[(81—§,>sine].

The mapping is used indesigning conical blade sections, the cones
being approximations to the true stream surfaces., A linear cascade of
acrofoils is constructed on the (¢, T)) plane, following Appendix E, with
straight chord lines AB, and parabolic camber lines, with the thickness
distribution of a desired standard aerofoil. The geometry constructed
is then mapped onto the cone, and while angles are preserved (e.g. the
stagger angle T), the blade shape is altered.

The data required are the true length of A'B' on the turbomachine
conical design surface, and the entry and exit blade angles on the conical
surface, 01 and gg respectively, which are related to Q’]_' and az' by

tan O = tan o 'cos €,
The entry and exit angles appear unchanged in the construction on the
(C, 1) plane, and so the stagger angle of the blade, T, or the slope of
the straight line AB may be found for a blade with a parabolic camber
line by:

tan T = tan 0, + % (tan oy ~ tan 0;p).
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This is for the case of the parabola axisbeing parallel to the T-axis. The
ratio a/c may then be calculated.

If a/c is specified as design data, then the construction comprising
the parabola, its axis and the chord line may need to be rotated to
satisfy both the angle change (02 - 01) and the ratio a/c. The stagger
angle then changes also, and the camber line shape is constructed accord-
ing to the procedure in Appendix E.

The length of any straight chord line, whether on a 'rotated’' con-
struction or not, may be determined as follows, for use in scaling the
blade thickness distribution on the ({, 7)) plane. The ratio (qg/dy)
is needed, and is found by considering the conical surface to be unrolled
into a plane scction of an annulus, as depicted in Figure 5.5, The chord
line A'B' crosses all the radiating constant-g lines at the same angle T,

Such a line is a logarithmic spiral of form

!
age P

i

q

where qg is a constant, the value of q at o = O;

k 1/tan T;

1]

0 = 6 sin e,
The length of the logarithmic spiral between points A' and B' is
A'B' = (qp - a3) /1 + K2
k
so that

(4p - a3) = A'B’

Hence if q is fixed at one end of the chord, or at its centre, then Ay
qy and the ratio (q2/q1) are found, and thus the length AB from the
mapping.

A symmctrical aerofoil with its camber line coincident with its

chord linc generates no lift if the angle of attack (al - al') is




- 64 -

® = 6 sin ¢

FIGURE 5.5: CHORD LINE AS LOGARITHMIC SPIRAL
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zero, Note that such a zero-1lift aerofoil on a conical stream surface
nevertheless has a three~dimensionally-curved camber line,
The calculation technique for applying blade thickness data to the

transformed acrofoil is detailed in Appendix L,
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CHAPTER 6

NUMERICAL TECHNIQUES

[}
o
Ve

Introduction
Closced solutions to the equations of motion, equations 3.14 or
3.18, derived in Chapter 3, are avaiilable for only a few special cases
of {iow ficlds; tnrece are described in Chapter 7 by which the behaviour
=1 the computer program was checked. Expressing the main equation in
the form:

W K(r) Wy + L(r)

ar Wi ... (6.1)
tnose cases are those in which many terms in the functions K(r) and
L{r) vanisn.

More generaliy, the values of K(r) and L(r) at any point depend
upon the local values and rates of change of various properties and
velocities, so tnat tne solution of equation 6.1 is found itcratively.

An initial ecstimate of the flow pattern gives first guesses for
K(r) and L(r) at every calculation point on an arbitrary set of calcula-
tion stations, such as is shown in Figure 6.1. At some position, such
as mid-span, on one of tne calculation stations, the radial gradient of
Wm is found from equation 6.1, and a new value is established for Wp
at the adjacent position on the station (but see Section 6.3). Calcula-
tions proceed towards the hub and tip walls, to produce & new profile of
meridional (and hence axial) velocity. The mass flowrate across the
calculation annulius may be found by numerical integration, and compared
with the flowrate at the machine inlet, where conditions will have been
defined by input data. If necessary, & new choice is made for the

central velocity, and the calculations repeated until the required mass

flowrate is obtained,
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The velocity profiles are found at all calculation stations through
the macnine, usually working in a downstream direction, and then a new
streamline pattern can be calculated, with new values for K(r) and 1L(r),.
The process of working on successive calculation stations is known as
'marching ' down the machine. The complete cycle is repeated until one
oY more convergence criteria are satisfied. The numerical procedure
can become unstavle, and it is usually necessary to allow only small
changes in the fiow pattern from one iteration to the next, by the use

of 'relaxation factors'.

6,2 Geometry of the Calculation Grid

It is necessary to define the geometry of the annular walls of the
duct through which the fluid flows, and which contains the various rotor
and stator blade rows, This is achieved by supplying the (r, z) co-ordinates
of pairs of points, one of each pair lying on the inner (hub) wall, the
other on the outer (tip) wall, Such pointsserve not only to define
the shape of the duct, but also to provide quasi-orthogonal calculation
stations, each pair of inner and outer wall co-ordinates being used as
the extremities of a series of locations on the straight line Jjoining
them. A grid of calculation points is thus produced; enough points must
be gencerated in the space between the two walls to give sufficient defini-
tion of the fluid flow.

Stations may be inclined from the radial direction, which is useful
in ducts which are either severely-flared, or of the 'swan-neck' type,
and for stations near to swept-back blade row edges.

The fluid flow at any calculation station is heavily dependent on
that at adjacent stations both upstream and downstream, and so the flow
pattern at tne inlet station must be defined, there being no upstream
station, The flow at exit from the machine is assumed to rcach conditions

of straight flow parallél to the machine axis far downstrcam of the exit,




In the computer program, this has to be modelled at a finite position,
and so a dummy calculation station is formed, following the method of
Silvester and Hetnerington (1966), with inner and outer radii the same
as thosc at the last real station in the machine. It is arbitrarily
positioned downstream of the last station by a distance eyual to the
axial length of the defined duct,

The formation of the calculation grid within rows of bhlades has
been desceribed in Chapter 5, The small clearance between rcal rotor
blade tips and the outer casing is not modelled; it is assumed there

is no fiow lcakage over the blade tips,

6.3 Inclined Stations and Non-Axial Flow

Figure 6.2 shows a flared portion of duct carrying a flow which is
not paraiiel to the axis of rotation, Sited on the duct arc non-radial
calculation stations PQ, RS and TU,

A and B represent two adjacent calculation points on the station RS,
In finding the profile of W, along the iine RS, lect cquation 6.1 supply
a value of the radial gradienp of W, at A, Applying this gradient over
the radiai distance 6r gives the velocity W, at point C, not at point
B. The axial gradicnt of Wm at B is applied over the length §z to obtain
finally the new estimate for the meridional velocity at B. The latest
figures from which to find the axial gradient are those produced by the
previous march through the duct, so the axial gradients lag, by one
iteration, benind the radial gradients of Wp. Tracking along the
station RS using real r - and z-derivatives gives for ready handling of
curved calculation stations, such as are formed within blade rows.

It is difficult to find the axial gradient of any property directly
near the duct cdges, say at R or S, becausec neighbouring stations PQ and

TU do not eoxtend hetween the same radii as RS, so no data are available
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downstream of R or upstream of S. It is easier to calculate first the
meridional gradient by following streamlines QSU or PRT, and then to
find the axial gradient using the relationships between the radial,
meridional and axial gradients set out in Appendix B.

The swmmiation of the mass flowrate across & calculation station is
now considercd, referring to station TU on Figure 6.2. BE and AF
represent streamlines, across which no flow passes, EF is perpendicular
to the local meridional direction, and so the increment of mass flow-
rate

dm =  27mr p Vm (EF)
The radius r used here will be taken as the mean over the geometry line
used, Line EGH is radial, and the calculation station is inclined

iocally at angle p to the radial. The streamline slope is the angle ¢,

and
cos ¢ = V, = EF
Vm EG
Al = 2qr p Vyu (EG)

It is significant to note that DGF is a streamline, with no flow cross-
ing it, so that the mass flow rate increment in terms of axial velocity
and radial length involves EG, and not EH, the difference in radius
between D and E.

E'G' represents the line EG repositioned so that the mean values
of V, and r on it are also those for station increment DE. Then

gm =  2mr DV, (E'G")

It is rp and rg which do not vary as the flow field is recalculated, and
it is convenicnt to calculate 8m from the readily-available Parameters

vV and (rE - r.). The relationships

D
cos ¢p = EH ; cos (v + ¢) = EF
ED ED
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yvield
EI': = ?_Of Gy Li = Cos ¢ - Sin ¢ tan .
EN Cos o
Hence
v, (BG) = v, (EF) = Vg (EH) (Cos ¢ - Sin ¢ tan ).

I'oilowing the nomenclature on streamline RS,
EH = Av
b = 2mr o Vp Or (Cos ¢ - sin ¢ tan‘¢).
The mass flowrate increments between all adjacent pairs of stream—
iines are found, using as property values the means of the values on
the two streamlines. The sum of all the small increments provides the

overall flowrate at the station,

6.4 Calculation of Velocity Profiles

K(r), L(r) and their components, the various properties, velocities
and Mach nuwbers, are revalued only once per march through the machine,
and so the production of an updated velocity profile for W, is performed
with distributions of K(r) and L(r) which are not changing as different
mid-span W values are tried, despite the appearance of W, in terms
within L(r).

With fixed distributions of K(r) and L(r), a chosen central
velocity, Wy mid-span’ yields a particular velocity profile from hub to
tip, and correspondingly a single value for mass flowrate. A typical
variation of mass flowrate with choice of central meridional velocity
is shown in Figure 6.3, following Frost (1972)., It will be seen from
this Figure that though the mass flowrate may be determined uniquely from
a given velocity value, the reverse is not true, in that a prescribed
mass flowrate mayv be produced by two differeht flow solutions, one sub-

sonic and the other supersonic, This point is discussed by Marsh (1971),




»

Required Mass
Flowrate

- 73 -

1/#/;////’f-_—‘\\\\\\\\\x
3 N
1
Subsonic H Supersonic
'
—r>

Wm midspan

FIGURE 6,3: MASS FLOWRATE VARIATION

Required Mass
Flowrate

T 7

Changing
K(r), L(r)

P
/

m midspan

FIGURE 6.4: EFFECT OF CHANGING X(r) AND L(r)




The boundary between the subsonic and supersonic régimes is not distinct,
Although there is a definite peak in the mass flowrate of Figure 6.3, any
flow field with non-uniform velocity must exhibit a combination of sub-
sonic and supcrsonic arcas when operating around the maximum flowrate and
the definition of 'choked' flow is thon open to some debate.

It may be considered as simply the flow for which mass fiowrate is
a maximum - the peak of the curve in Figure 6.3. Alternatively, choking
may be defined as the condition where no flow effects can propagate
upstream, but unless the flow is sufficiently fast that a supersonic
region extends across the entire blade passage, information about the
downstream flow is transmitted upstream through the subsonic regions.
Foilowing this definition, the transition point may appear on Figure 6,3
to the right of the peak in the curve, indicating a flowratc which is
less than tho maximum,

In cquations 3,14 and 3.18, the denominator (1 - Mmz), which
appears scveral times, vanishes at M; = 1, and so & singularity occurs
there, preventing the analysis of transonic flows by this streamline
curvature method., As mentioned above, there is a supersonic as well as a
subsonic solution giving the required mass flowrate. For these reasons
the overall soclution method is envisaged as being applied to subsonic
flow problems only.

In finding the distribution of W, consistent with thc mass flow-
rate, the initial guess used for mid-span velocity is that from the solution
of the previous march through the flow field, With the revalued K(r) and
L(r) terms, the velocity may now bc in crror, and produce a plot on
Figure 6.3 such as point 1. The relationship bhetween mass flowrate and

w is not linear, as Figure 6.3 shows, because the density changes

m mid-span

with the fiuid velocity, and so point 2 is taken as the next guess,

with an over-large change in W,, so that point 2 can be expected to lie
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on the opposite side to point 1 of the required flow value, The small
portion of the graph between points 1 and 2 is rather better to use
for linear interpolation, and as more accurate estimates are obtained,
the upper or ioweyr limits, originally points 1 and 2, may be brought
clioser together. Convergence to very small errors in flowrate, point
3, is rapid.

It has already been mentioned that the factors K(r) and L(r) in
cquation 6.1 arc held constant at cach grid location, for the duration
of the calculations to find a new velocity distribution. If they were
changed during these calculations, to incorporate the very latest
velocity values, for example, then the graph of Figure 6.3 would con-
tain not one but many curves, each relating to a set of K(r) and L(r)
values, but with only one point known 9N each curve. It is seen from
Figure 6.4 that no conclusions as to & correct answer could be drawn
from the resulting scattered solutions.

A widely-used condition in initialising the flow pattern, before
any solution to the main equation is performed, is to assume an infinite
radius of curvature, C, for all streamlines at all calculation points,
This results in all K(r) terms becoming zcro for the first march through
the flow field, and egquation 6.1 simplifies to:

oW, L(r)

or Wm
In examples where additionally the radial velocity may be initialised
as zero, the equation simplifies further to that of Simple Radial
Equilibrium,

It is quite usual for the velocity profiles at calculation stations
to be changed dramatically on the first machine march, and this is

enhanced over parts of the span where Wy, 1s reduced, because with fixed

W
L(r), g;m increases in magnitude as W  falls. The effect is shown in
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Figure 6.5, accumulating as the integration of equation 6,1 proceeds

i

ar

to zero, To restrain such behaviour, limits are placed on the allow-

towards the duct wall, The gradient becomes infinite if Wy falls
able profile change, being progressively tightened after the first few
marches, to avoid instability and negative axial velocities: the latter
would lead to double-valued stream functions.

1t proved helipful to maintain the K(r) terms at zero for both the
first and sccond flow field marches, so that the first is effectively
used only to provide better estimates of L(r), and not to initialise

K(r).

6.5 The Calculation of Streamline Slope and Curvature

The stream function § is constant along each of the walls of the
flow duct and aiso, in axisymmetric flow, over any surface generated
by revolving a streamline about the duct axis. The stream function
values at one wall, say the hub, may usefully be set to zero, when the
value on the other wall will correspond to the fluid mass flowrate
passing through the duct.

The distribution of the stream function along each calculation
station may be determined easily from the mass flowrate distribution,
found during the calculation of the velocity profile. A series of
streamline loci is thus available at the calculation stations, spread
axially along the duct, including through the rows of blades.

Constructing the streamline as a curve through points of the same
value of stream function, the streamline slope and curvature may be
determincd at the calculation points., The slope (tan ¢) and curvature
(C) hoth appear in the main equations 3.14 and 3,18, and the slope allows
the determination of Wy and W, from Wp. The curvature, with units of

(length)—l, is defined as
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If the streamline is some function f(r, z), with z-derivatives

£' = 3fF | " = 3°f

AZ azz

then

£"

(1 + £'2)1.5
Streamlines of positive and negative curvature appear as shown in
Figure 6,6,

The method of fitting the curve through the streamline loci has
been a matter of debate (Wilkinson (1970), Shaalan and Daneshyar (1969,
i272), Denton (1978) ) and is a problem not encountered in the Matrix
Throughflow sciution technique (Marsh (1968) ). It is, however,
characteristic of the type of analysis presented here, which has thus
become known as the Streamline Curvature method,

Shaalan and Daneshyar (1969, 1972) examine various polynomial
and spline curve-fits to obtain slope and curvature. Their test cases
are regular geometrical shapes - the circular arc and the sine curve.
They propose that a piece~wise cubic spline be constructed through a
set of data points and the streamline slope determined from the first
derivative. Rather than differentiate this curve twice to produce
the curvature, they recommend creating a new spline curve using the
streamline slopes as data, and finding the curvature via the first
derivative of this curve: the double-spline fit.

Wilkinson (1970) applies a wider variety of curve fits to the sine
wave, and suggests an empirical combination of two different fitting
methods as being best. Both he and Shaalan and Daneshyar find that
curvature can be determined with good accuracy if there are many data
points ( > 20) per wavelength, but that the accuracy decreases as

the point spacing is increased, reducing the number of data points per
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wavelength. The 'best' curve fit is the one which remains accurate to
the jowest waveliength/point spacing ratioc. Wilkinson (1970) and
Shaaian and Daneshyar (1972) present similar graphs of the accuracy
obtained in proedicting the curvature at a point on 2 sine wave using
various curve fits and various spacings of the data points. However,
the two papers show some anomalous results.

For spline curve fits they agrec that as wavelength/point spacing
ratio is reduced from 20 to 5, the ratio of predicted curvature/true
curvature becomes progressively greater than unity., A second example
common to both papers, a piece-wise parabola through five points, with
a least-squarcs fit, is shown by Shaalan and Daneshyar (1972) to behave
similarly to tne spline curve, though with greater error, but Wilkinson
(i1970) shows tne predicted/true curvature ratio as progressively fall-
ing below unity as wavelength/point spacing is reduced.

Wilkinson (1970) and Shaaian and Daneshyar (1969, 1972) refer to
the data-smoothing technique of Wood and Marlow (1967) to damp high
order harmonics., This technique was devceloped empirically as a means
of obtaining convergence in streamline curvature calculations, performed
apparently with no form of relaxation (Section 6.7). However Cornock,
in the Communications on Wood and Marlow's paper, presents a mathematical
basis for the technique and reports stability and rapid converegence
using it on iterative problems,

Denton (1978) has found overall computing accuracy in programs to
be more dependent on the empirical data input than on the numerical
scheme, and has used at C.E.G.B, a three-point parabolic curve fit to
obtain slope and curvature. Stow (1971) at Rolls-Royce also uses the
parabolic fit., Denton (1978) sets the axis of the parabola perpendicular
to the line joining its two outer points, so that greatly-sioped stream-
lines may be constructed realistically, Wilkinsﬁn (}970) shows the three-
point parabolia to be a more accurate method of determining curvature than

many more complicated curve fits,
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The calculation method used in the present work employs the
three-point paraboiic curve fit, following Denton (1978) to find the
slope, but inspired by the methods of Shaalan and Daneshyar (1969, 1972)
the curvature is determined from the slope of a second parabola,
constructed using the streamline slopes as data, Curvature is thus
affected by more data points than just those adjacent to the calcula-

tion point, reducing the expected error,

6.6 Convergence Criteria

A converging iterative procedure is terminated when changes in
some selected parameter become sufficiently small, There are several
usable terms in the streamline curvature analysis, Stow (1971)
measures proportional change in static pressure at each calculation point,
and terminates calculations when sufficient of the points in the flow
field have experienced sufficiently small pressure changes between
successive marches through the flow field. Novak (1966) inspects for
the greatest shift of streamline position, as a proportion of duct
height. Wilkinson (1970) comments that at Mach numbers approaching
unity, streamline shifts are small even for large velocity changes, and
that the maximum velocity change is a better convergence criterion; in
the present work the proportional change in meridional velocity 1is used.

The formation of the meridional veiocity profiles at the individual
calculation stations is also an iterative process, requiring a matching
on mass flowrate, The mass flowrate tolerance here is set rather tighter
(at least 100 times smaller) than the tolerance on the meridional
velocity change for the whole machine being analysed, to ensure that
the error introduced into Wj, by an inexact flowrate valuc is insignifi-

cant, compared to the changes in W, caused by streamlinc redistribution,
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Section 6.8 deals with the optimum size of relaxation factors to
use, The resulting values for closely-spaced calculation stations can
be very small, and without careful inspection the small flow field
changes thcy aliow can be mistaken for arrival at the converged solu-
tion, At the stage in the calculation cycle where the relaxation factors
are applied, e.g. in the calculation of slopes from stream function dis-
triputions, a discrepancy is generated between the stored values (of
siope) and the values produced if no relaxation were applied. This
discrepancy only becomes negligible when the true convergence is achieved,
which is worth verifying if closely—sbaced calculation grids are involved,
as in the present application with several stations within each blade
row. Such a check was built into the program as described in Section

6.5 and used after the velocity change criterion had been finally met.

6.7 The Location of Relaxation Factors

Wood and Marlow's (1567) data-smoothing technique for streamline
ioci has already been mentioned (Section 6.5) as an aid to convergence
in Streamline Curvature calculations. Siivester and Hetherington (1566)
describe the application of an empirical relaxation factor to the changes
in mass flowrate distribution predicted after each march through the flow
field., If superscript n denotes the number of the iteration, m the mass
flowrate predicted at a particular grid point, and m the value stored
there, then the relaxation factor ;, is used thus:

mntl) m ;n_n + (1 —u)mn.

Silvester and Hetherington (1966) cite an axample wherein |, = 0,2 realised
a converged solution, but j, = 0.3 caused divergent oscillation of the
velocity profiie as calculations proceeded,

Having appiied the relaxation factor to mass flowrate changes, the
subscquent paramceters, namely stream function distribution, streamline

slopc and finally streamline curvaturc are calculated with no further
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damping. Silvester and Hetherington's (1966) method leaves a discrepancy
between velocity profiles and mass flowrate profiles though, clearly, when
a converged solution has been obtained the matching will be close.

It is possible to apply the relaxation factor later in the calculations,
to changes in the stream function distribution, or to the streamline slope
calculation, This moves the discrepancy in property values'to appear
vetween mass fiowrate and stream function, or between stream function and
slope, and so alters some of the data to be used in the next march through
the flow field.

The relaxation factor is usually applied to changes in the stream
function distribution, i.e. streamline shifts, as done by Novak (1966)
and Bosman and El-Shaarawi (1977), and also in the Matrix Throughflow method
hy Marsh (1968), Formulae to optimise relaxation factors for fastest
convergence in such applications have been derived by Wilkinson (1970) and
Stow (1971), and are discussed in Section 6.8.

Denton (1978) proposes an unorthodox use of damping factors, splitting
his version of the main equation into 'streamline curvature' terms and
'radial equilibriwn’' terms, and relaxing on the streamline curvature
terms rather than on changes of stream surface position. He also makes
use of the same main equation for both duct and intrablade analysis, but
finds that the radial equilibrium terms need to be damped in the latter
case by the factor c032 R, to maintain stability.

Instability had been encountered with the computer program of the
present work when performing calculations in regions of significant swirl,

2 g

It was found that such problems could be circumvented by applying a cos
relaxation factor to changes in the function L(r) of equation 6.1, in both
duct and intrablade applications. The separation of the terms in equations
3.14 or 3.18 into the groups K(r) and L(r) is similar to Denton's (1978)

distinction between streamline curvature terms and radial equilibrium

terms,
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A further empirical trial, to perform the main relaxation in the
streamline curvature calculations, involved the transfer of Stow's
(1971) reclaxation factors from the stream function calculation to the
streamline sliope calculation. For the example tried, this ad hoc system
did indeed produce faster convergence, as detailed in Section 8.4, and

was maintained in the program,

6.8 Optimum Values of Relaxation Factors

Wilkinson (1i970) and Stow (1971) have derived similar expressions
for optimum relaxation factors, f', used in streamline curvature proced-
ures with approximately orthogonal calculétion grids. The value of f'
may change from location to location, and alsco to a lesser extent frém
itcration to itcration, since a Mach number effcct is included in the
formulae., The relaxation factors are intendedfor application to the
repositioning of streamlines after successive marches through the flow
field, though the advisability of using velocity, and npt streamline
position, for the convergence criterion has been mentioned in Section
6.6, and the experimental re-application of f' to the streamline slope
calculation discussed in Section 6.7.

The formula of Stow (1971) is similar to that of Wilkinson (1970),
which is given as

. 1
1 =

L - 5 Kpip (1-Mn?) A2
96

kmin depends on the curve fit used; for the parabola through three points,

Kk = -4, Note that kpi, is negative, so O <f' <1 for subsonic flow.

min
Wilkinson (1970) also gives an estimate of the number of iterations, n
required to reduce an initial streamline positional error to some small
proportion, ¢, of it:

n = fne
£n(1-£")




For closely-spaced calculation stations, the aspect ratio, A, is
. v . . 1 '
nigh, so that then f' is approximately proportional to aZ and f
reduces rapidiy as stations are brought close together. This is signif-
icant in inserting stations within biade rows, as the close spacing
implies the need for very many iterations before an accurate solution
is obtained., The necessity to distinguish between small flow ficld

changes caused by low f' values, and those due to convergencc of the

soiution, was emphasized in Section 6.6,

6,9 Treatment of Ciosely-Spaced Intrablade Grids

Figurc 6.7 depicts an isolated blade row in a cylindrical annular
duct, with intrablade and duct calculation stations as shown. In
determining the relaxation factor f' at any station, the grid aspect
ratio used is the higher of the two obtainable with respect to the
upstream and downstream stations. Thus low relaxation factors are set
at the blade cdge stations, owing to the close intrablade grid
spacing. Applying the relaxation factors to the slope calculation
rather than to the calculation of the stream function distribution,
ieads rapidly to the establishment of the overall streamline shift
caused by the blade row (dash-dotted line in Figure 6.7), but the slope
values lag considerably behind, and the result after only a few itera-
tions, c.g. the second, which contains no curvature consideration, is
very like that from Simple Radial Equilibrium calculations, which
assume that the entire streamline shift occurs through the blade row.
The process of siope incrementation, iteration by iteration, is very sluggish,
though one would like to think it is running at the optimum rate. Correspond-
ingly slow is the spread of the blade effects upstream and downstream, to
produce a streamline like the dashed line in Figure 6.7, of the type given

by the Actuator Disc Theory.
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To accelerate the dissemination of the streamline shifts, the following
schome was devised:
L.

(i) Consider initially all main grid stations, but only thoso intra-
blade stations at leading edge, mid-chord and trailing edge.

This gives relaxation factors within the blade row 25 times as
great as those obtained when using all eleven intrablade stations
(set at intervals of 10% axial chord). Perform the calculations on
tne svstem until the solution is converged.

(1i) Obtain estimates, by interpolation, of the flow propertics at the
four intrablade stations at 20%, 40%, 60% and 80% chord length, and
using these and the blade edges to form a finer grid, continue
caltulations until convergence is again obtained.

From the results of (ii), interpolate to estimate the propertics

~
L.
=
~

!

at the other intrablade stations, and thus continue again to find

the flow pattern using every station,

In part (i) there is little definition of intrablade flow, and the
process of redistributing the axial variation of (rV,) (Chapter 4) was
limited to a matching of flow direction at blade entry, to that of the
arriving flow.

Thearesults of part (ii) may be used in a computer program, developed
by Gregory-Smith (1977) using the analysis of Glynn and Marsh (1980), to
find the change in mean stream surface flow angle at blade exit caused
by secondary flow. Such modified fiow angles are first used in a repeti-
tion of part (ii) (which often converges on its first iteration after
being restarted), beforce entering part (iii). An extra convorgence
criterion was available for part (iii) as reasoned in Section 6.6: & check
on the compatibility of the streamline slopes stored, with the unrclaxed

slopc values (i.c. plots through neighbouring points of cqual strecam

function).
&




_87_

CHAPTER 7

Flow Ficlds With Analytical Solutions

7.1 Introduction
Far downstream of blade rows in an unflared annuiar duct, the fiuid

streamrines may be t&ken as straight and parallel, with no curvature

or siope, and no radial compopent of velocity. The equation of motion

in the j x V direction, equation 3.18, then reduces to that for simple

radial cquiliibrium:

dhg _ T As _ Vy av, . Vy tan g O (rV, tan o)

ar A ar r ar
Assuming the flow to be axisymmetric, the partial derivatives may
be replaced by ordinary ones. If the filow is homentropic at duct entry,

and lossiess in passing along the duct and through any blade rows, then

ds

ar = O cverywhere. If the total enthalpy is uniform at inlet, thce flow

2
. . dh
adiabhatic, and the blade rows are stators, not rotors, then :ﬂ? =

cverywhere. Under these conditions the simple radial equilibrium

cquation becomes

dv,, _tano d  (rv, tan )

dr - dr C e (701

The tangent of the flow angle appears here; certain choices for
tne radial distribution of tan o, applied to equation 7.1 for the far
downstream flow,allow the radial variation of axial velocity to be
predicted theve without recourse to iterative methods.

By Ereating suitaple numerical examples to be solved by the
computer program, aspects of its hehaviour may be checked, since its

solutions Sshould. be the same as the analytical answers.
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For all cases, uniform non-swirling flow was modelled entering an
annuiar duct, as shown in Figure 7.1, and the swirl was changed by a
singlile stator row, The different types of stator flow exit angle dis-
tribution causcd fiow patterns far downstream which matched the predictions
closcly.

In using the program the fiow angle variation for the far down-

B
styream location was applied at blade exit, but because & streamline
shift does not occur entirely within the blade row (as is assumed in
Simple Radial Equiiibrium analysis - Chapter 2), some radial redistri-
bution of the angle profile, and hence also of the axial velocity profile,
took place hetween the stator and the caliculation station far downstream,
This introduced small differences hetween the solution obtained from
tne prograsm, and that from Simple Radialil Equilibrium analysis. It would
be possibic to trim manualilly the flow angle at blade exit, to arrive
more nearly at tne analytical angie distribution downstream, and to
approach sthe predicted velocity profile more exactly. However, by
specifving anglo distributions which would produce modest vzlocity
gradients and strcamline shifts, close agreement was shown between the
program results and the mathematical analysis,

The next three scctions in this chapter describe three cexamples

~

of fiow types amenable to such treatment. Where the radius r appears
in the function for tan ¢, it must be made non-dimensional by referral
to some datum radius, rg, such as the mid-span value. In cach example,
kK is a constant of seiected value for a particular design; clearly

krq and k/rq are themselves constant,
&

7.2 Anglie Distribution tan ¢« = k/(r/rq4)

Inserting this type of angle variation into equation 7.1 gives

dv,

Kry d (krgq V,)

dr r2 dr
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= - (krd)z av,,

o

re dr
. . 2
dv,, (1 +(krg)™) = O,
dr r2
which has tue sciution,for real kry
r
dVV -0
dv .o W (702)

This is the free vortex flow fieid described in Chapter 4, since

tan v =V, = krg
vV, r
yicids
> - ~ kY = t t
1Vu rykv, constant

if both kry and VZ are unchanging with radius. The uniform veclocity

profiic from equation 7,2 is plotted in Figure 7.2,

7.3 Angic Distribution tan ¢ = K

Sctting the tangent of the flow angle constant with radius means
that the angle itself also does not vary. Equation 7.1 may bo
re-written as folliows:

dv, _ tan o rv, d (tan ) + rtan ¢ dVZ N v, tan ¢

dr r dr dr

Inserting d (tan «)= O and rearranging gives

dr
. 2 2

dv, |1 + tan o« = =V, tan &
dr r

dVZ _ - VZ Sin2 o

dr r

Dividing by V,:
d  ({n V) = - sin’ o

dr
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Integrating from » = r4 to r = ry, noting that sin « is constant with
radius:
{n Vob T {n Vog = - sin2 v ( Cn ry T {n ry)
\/n - vza /raSin ¢
ry o s L (7.3)

A dimensioniess plot of equation 7.3 is given in Figure 7.3, where
for different vaiues of k the variation of axial velocity ratio with
radius ratio is shown, The datum value for velocity is taken at the

same place as that for radius; the mid-span is used.

7.4 Angle Distripution tan ¢y = kr/rg4

For this casc equation 7,1 becomes

av, _k a | xr? v,
dr rq dr rq
2 2 2
= -k T 2 av, |x v, d ()
rq dr T4 dr

. . 5 2 27 _ 2

qzi i+ E- T = 2 E rvz

dry rg rd

iodv, r—2 k 2 T

VZ dr ra

2
1 +/k r2
r
d
- 4
2

) d ( fn VZ) = =2 k1 T

_— — 55

dr ] i +/1

dr rd j_ r

) Ta
To integyate from v = 13 to r = ry, & result given by Petit Bois (1961)
miy be used:
’ r _ 1 b |1 e/k\2 2
e dr = + constant,
2 2
1+ K 1’2 2 k
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2 2
Thus tn Voo T~ {n Vg = o |14k r.2| - {nl1+/x rbz
rq T'q
. _ i M. 2 2]
Vzh Vza I +/k ry
rg
I +/k 2 r.2
D
Ta .. W(T7.4)

A graph of equation 7.4 is presented in Figure 7.4 in a similar

manner to Fipgure 7.3, for comparison.

7.5 Numerical Triais

An annuiar duct of the type shown in Figure 7.1 was designed, with
the hub and tip radii similar to those on the test rig of Oxford (1965)
and Gregory-Smitn (1i970). For ease of analysis the test rig radii of
1 ft and 2.5 ft were rounded to S,I, equivalents of 0.3 m and 0.75 m,
these maintaining the same hub:tip ratio of 0.4, Chapter 8 describes
the computer simulation of Gregory-Smith's (1970) experiment2l results,
when the apparatus was modelled accurately.

In the presently-considered test cases, the distance between the
duct iniect and the calculation station 'far' downstream was set at
10 m, with the mid-chord of the stator blade row positioned 2.5 m from
the duct inlet, The point of interest in the blade row design was the
fiuid exit angic distribution, which was varied from test to test to
produce the various types of swirl described in Sections 7.2 to 7.4.

Several parameters were held constant for aill blade designs, viz:

Sweepback: None

Inict Biade Angie: 0° at all radii

Axiai Chord Iength: 0,7 m at all radii

Acrofoil type: C4 on paraholic camber line;
tmax/c = 0.1
a/c = 0.4

Number of Blades: Notionally zero

(see below)
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The long axial chord length allowed for rapid convergence of
calculations (Section 6.7) and also for more gentle streamline slopes
than would appear within shorter blades. Setting the number of blades
to zero was a programming 'fix' to eliminate varying blade blockage as
a cause of intrablade streamline shifting. For this casc, with bladc
pitch undcfincd, the pitch : chord ratio was taken as unity in using
Howeli's deviation correlation (Appendix D).

An examplc of each type of flow angle variation described in

Scctions 7.2 to 7.4 was applied at exit from the stator row, viz:

tan o = 0.5 rpidspan
r - o o L (7.5)
tan ~ = 0.5 . . W (7.6)
tan o = 0.5 r
midspan .. (7.7

For the designed duct, r/rmidspan varied from 0.57 at the hub to
1.43 at the tip casing, and over this radius range the choicc k = 0.5
in equations 7.6 and 7.7 gives themodest radial gradients of velocity
mentioned in Section 7.1 as desirable for these tests., This may be seen
from Figures 7.3 and 7.4. Equation 7,5 corresponds to equation 7.2
which indicates fiow with uniform axial velocity for all values of k,
though k = 0.5 was selected for consistency with equations 7.6 and 7.7,

A  further example was modellied with increased k,

tan & = 1 o . L (7.8)

to obscrve the increasing departure from the velocity profile
predicted in Section 7.3,

Two specifications for the fluid passing through the duct were
used. Onc modellied compressible air, with Cp = 1005 J/kg/X and
v = 1.4; the other assumed an incompressible fluid, again with

C,o= 1005 J/kg/K, but an effective value of infinity for yv. (The
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computer program was written to treat as incompressible any fluid with
a suppiied vaiue of Y exceeding 10). For all cases, the flow entered
the duct at o temperature of 300 K and a velocity of 100 m/s, with no

swiri,

7.6 Resuits of Triais

Figure 7.5 shows the result far downstream of applying at blade
oxit the fiow angie variation defined by equation 7.5. The graph
contains plots of the analytical solution (V, = constant) and of the
dimensioniess velocity profiles produced by the program for the compres-—
5ible and incompressible fiow cases. All three curves arc non-dimensionalized
with respect to the mid-span velocity. The vertical axis scale is 100 times
as large as that of the horizontal axis to show the errors incurred, which
arc small; they arc tabulated in Figure 7.9, These errors arise because
within the blade row the flow is not held to the free vortex pattern,
and so streamiines leaving the stator are slightliy inclined, changing
the effective fiow angle y, and they undergo some redistribution down-
stream as their meridional curvature disappears,

The axial velocity upstream of the blade row being 100 m/s,
incompreﬁsible fiow may be expected to travel at the same axial velocity
in the downstrecam end of the duct. As Figure 7.5 shows, the velocity
profile generated by the program was not perfectly uniform, and the
resulting mid-span axial velocity, given in Figure 7.9 was 99.9965 m/s.

The effect of performing the caiculations for the compressible f£luid

was that the axial velocity profile produced remained nearly uniform,

but the central axial velocity was raised to 101.28 m/s. The introduc-
tion of swirl into the flow increased the magnitude of the velocity
vector V, and thus the static density was reduced. This in turn caused
a further increase in V, in its axial component, to maintain the mass

flowrate in the downstream part of the duct.
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Figurcs 7.6 to 7.8 show results of trials using the blade exit flow
angic digtributions from equations 7.6 to 7.8 respectively., Differences
from the layout of Figure 7.5 are that the veiocity ratio axes cover
a much ilarger range than that of Figure 7.5, and that the analytical
veiocity ratio is assumed to be held accurately at the hub, not at the
mid-span of the duct, The reasoning for this is that the discrepancy
hetween the computed and the analytical velocity profiles is least at
the duct edges, because only there does no radial shift of streamlines
oceur, as described in Section 7.1, to aiter the circumferontial component
of the velocity as the flow passes downstream of the blades. The condi-
tions at the outer, tip, casing couid cqually well be usced as the basié
for comparvison. In tests with compressible flow, changes in density,
as described above, additionally cause axial velocity changes which are
not readily determined and so away from the duct walls both the axial
and circumfercntiai velocity components may be altered, With the
velocity profiies normalised on the hub value, vZ/VZmidSPan does not
appear as cxactiy unity at the duct centre.

Referring to Figures 7.6, 7.7 and 7.8, the departure of the
dimensioniess velocity profiles from the analytical Simple Radial
Equilibriws solutions is not cxcessive and the difference between the
respective curves for compressible and incompressible flow arc nearly
cverywhere so small that they do not show on the graphs; the differences
arc prescnted in tabular form in Figure 7.9.

Figures 7,6 and 7.8, for fiow angle constant with radius, appear
to justify the usec of the hub velocity as the base for comparison of
the program resulits, since although the discrepancy between the analytical
and the modelied fiow rises from hub to mid-span, it decreases consider-
apiv between the mid-span and the tip. The errors at the duct centre

Tor k = 1 arc approximately double thosec for k = 0.5,
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Figure 7.7 shows close matching of results over almost the whole

radius range, except at the tip.

7.7 Streamiine Paths

In the foregoing parts of this Chapter the radial repositioning
of the strcamlines within the blade row and outside it proved to be a
hindrance in establishing in the downstream flow a pre-determined angle
distribution, The computer program inciudes within its output the
stream function values stored at each grid point in the calculation
mesh, and from these it is possible to plot streamline loci to quantify
the radial movement involved and observe the propagation of cffects from
the biade row into flow upstream and downstream,

Figure 7,10 shows the meridional projection of the stream line for
o= O.S‘é (& being the entire mass flowrate) drawn from the test of
cquation 7.8 for incompressiblie flow | the test which produccd the
preatest axial shear in the downstream flow, The radial position
cxpressed as a proportion of the duct span forms the vertical axis; 1ts
scare 1s iarge to make visible the streamline shift. The overall radial
shift is nearly 5% of the span,

The results depicted in Figure 7.8 were obtained using a convergence
criterion of i% on the greatest meridional velocity change between
successive marches (Section 6.,6). The three-stage program application
described in Section 6.9 was used, with the check on slope compatibility
in the third part set sufficiently slack that no more iterations were
required once the velocity adjustment criterion had been satisfied.

The siopes within the blade row for the plotted streamline are given
in Figure 7.11i, together with the greatest tan ¢ incompatibility in the
fiow ficld., This was found at the trailing edge of the blade, and is

scon to transiate to an angular error there of the same order of

magnitude as the caiculated sliope.
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For comparison the calculations were re-run demanding convergence
to a much smaiier incompatibility on tan e¢., The § = 0.5 % streamline
from these extended calculations was negligibly different from the plot
on Figurc 7.1i0, but the slope values through the blade row were altered
and are liisted in Figure 11, Far downstream the mid-span axial veloci?y
was reduced by 0.4%.

At the bliade trailing edge, where the greatest'errors in streamline
siopc compatibiiity were detected, thce change in the slope cffected by
performing the extra iterations was only one quarter of the slope error
indicated at the end of the calculations for Figure 7.8, yet the error
now diagnoscd was smailer than the former estimated by a factor of more
than ten. It would appear that the siope incompatibility test may give
pessimistic resulits, and that as gajculations are continued, streamline
siope convergence may occur sooner than the test would indicate, since
both the stream function field and the slope distributions approach each
other,

Inspection of Figure 7.10 reveals that the flow effects of the

nlade row extend about two chord-lengths upstream and two downstrecam,

which is of thce order of magnitude found in practice.

7.8 Flared Ducts and Non-Radial Calculation Stations

The examplies considered in Sections 7.2 to 7.7 have all
involved cylindrical annular ducts, and were modelled on the computer
with ail caicuiation stations set radiai. Hirsch (1976) presents an
example, with results, in which incompressible fluid passes with no
iosses along an axisymmetric duct comprising two cylindrical annuli of
different radii, connected by a curving transition piece - a 'swan-
necked' duct,

At inlet the hub radius is 0.25 m and the tip radius 0,35 m, At

oxit the respective radii arc 0.1 m and 0.2 m, The exit flow pattern
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appears to be independent of the shape of the transition length, but
a design simiiar to that depicted by Hirsch (1976) was used.

The iniet flow has uniform axial velocity; py integrating Hirsch's
(1976) resuit for the exit axial velocity profile, the uniform inlet axial
velocity to pass the same mass fiow was found to be 44.24 m/s. Hirsch
does not specify the fluid, but assuming it to be air at ambient condi-
tions - a temperature of 300 K and a pressure of about 1 atmosphere
(105 1Pa) - gives ciose agreement with the mass flowrate figure of
10 kg/s given by Hirsch,

The circumferential velocity at inlet 1is in the form of a solid
pody vrotation. Denoting the fluid rotationalspeed by (}, the circumferen=-
tial velocity at any radius is given by

Vg = nr (q= 100 sy,
This type of swirling flow, entering along straight parallel streamlines,
may be shown by Simple Radial Equilibrium considerations to exhibit a

radial pressure gradient at inlet, as follows:

2
Logp o Vy® 0T

p ar r
Integrating radiaily:

4 2 2
p=cp0Q T + k

where k is a constant,

For incompressiple fiow,

Po = P+ 3 p (V2 + VD)
2 , 2 2
P=py =2 pVe -5pQ r
=k + 3 p 2 r2
2 2 9

Po =K+ G op VT + 507 ro,
Vo, £, 0 and k are all constant with radius,
Then for the data given in this example, the inlet total pressure

is 731 Pa higher at the tip than at the hub, a small variation of 0.7%




on the atmospheric pressure., Further implications aré discussed in
Section 7.9, where it is shown that total temperature does not vary
radiaily,

The duct geometry was supplied to the computer program with radially
inciined caiculation stations along the curved part. The results obtained
at cxit for the axial and circumferential velocity distributions matched
the graphical resuits presented by Hirsch (1276) to the accuracy to
which nhis graphs could bc read; the printing of the graphs was such that
the axes worce not perpendicular, so that interpretation ecrrors were
cxpected,

Convergence to less than 1% change in meridional velocity anywhere
was achieved in 9 fiow field marches, and a requirement that the slope
incompatibiliity (p tan ¢) be less than 0,001 was satisfied after 2 more
marches, Tne greoatest streamline slopes in the transition duct were

about 459,

7.9 Enthaipy and Entropy in Flow With Solid-Body Rotation

The analysis prescented in Scction 7,8 was required to determine
the radial variation of total pressure in flow with solid-body rotation,
The test rig of Oxford (1965), discussed in Chapter 8, was built to
produce flow of this type. Air is drawn into the annular wind tunnel
with uniform total pressure, but is then passed through several annuiar
wvire gauzes, alil extending radialliy outwards from the hub wall, but
terminating at different radii, so that fiow losses are incurred,
varying with radius, to produce the total pressure profile required.
Downstream of the gauzes the axial velocity is also non-uniform, but
with subscquent turning through a blade row, flow results with solid-

pody rotation and with uniform axial velocity.
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The fiow through the gauzes may be considered adiabatic, and the
total enthaipy is unchanged (and hence total temperature), but since
the fiow is irrceversible, it is not isentropic, and so radial entropy

gradients are created in accordance with the equation:

Ty, as - 3hy 1 apo
dr ar o dr °
o]
¥or adiavatic fiow from a plenum of uniform enthalpy, %%ﬂ = 0,
Substituting for g and Py from the result in Section 7.8,
AS - R (2 0 er)
ar Po
C s =2R g Cg r
T pVZZ T 6?}2

Thus for the exampice of Section 7.8, the computer program must sct up
a radial entropy gradient at inlet, to be consistent with the specified
data there.
7.:0 Conciusions

Several predictavie flow patterns have been closely realised by
tine computer program, Sma:rl deviations from tne calicuiated velocity
profites are due to radial redistribution of tne flow angle between
tae piance at wnicn tne flow angie was defined, and tne measuring plane,
wnere a1l streamiines were constrained to pe straight and paralilel,
Compressinle fiow is alitered in density as the swiri component of its
verocity cnanges, and so produces downstream flow with axial velocity
different from tnat for tne comparative test with an incompressible fliow
model. However, tne non-dimensionalised axial velocity profilies produced
for these two fiow types were found to be remarkably similar to each
other,

A study of meridional streamline patns for the most severciy

sheared example revealed that tne radial positions of the strecamiines
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% of

downstream way he different from the upstream positions by up to §
tne duct span. Flow effects causcd by tne blade row are propagated to
realistic distances into the free duct,

Despite the application of relaxation factors in the program such
tnat discrepancics appear between the filow ficlid stream function values
and the indicated streamline sliopes, checks on the incompatibiiity may
give pessimistic results, and convergence to finer criteria causes ounly
minimal redefinition of streamlines.

Calicuiations performed on grids with non-rectuanguiar geometry

were snown to give reliable results.
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CHAPTER 8

Comparisons With Two Experimental Examples

Sections 8.1 to 8.3 describe the computer modelling of an annuiar
row of Inliet Guide Vanes, designed by Oxford (i965), but as used by
Gregory-Smith (1970). In Sections 8.4 to 8.6, results are prescnted
from tne computer simulation of tne flow tnrough the guide vanes, model-
1ing Gregory-Switn's experiments.

A tinree-row axial compressor tested by Fanmi (1968) is discussed
in Sections 8.7 to 8.i0, as a test exampie of a multi-row macnine.
Computed profiles of axial velocity at exit from each blade row are

compared with tne experimentali data.

8.1 The Test Rig of Oxford and of Gregory-Smith

A iarge annular wind tunnel was constructed in the Department of
Engineering at Cambridge University in the 1960's to study flow with
'solid-body' rotation. Such flow traveis with radialiy-uniform axial
velocity, but with swirl velocity varying so tlrt all the flow revolves
around the annulus axis at uniform anguiar velocity. There isthus neitner
axial nor circumferential shear.

A set of iniet guide vanes and gauZzes was designed by Oxford (1965)
to produce sucn fiow from an approaching unswirlied flow. To provide
a uniform axiali velocity profiie downstream of the biade row, the
upstream axial veliocity had to pe constrained to enter the guide vanes
with a particular axial shear, which Oxford achieved by piacing in the
upstream flow a set of annuiar gauzes. These gauzes extended from the
wind tunncl hub across to various radii, giving a radial variation of
flow resistance, and so creating thce required profiie of upstrcam
annular velocity.

Oxford also designed an experimental rotor which couid be installed

in the tunnei, Jones (1969) performed expcriments on the flow through
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the inlet guide vanes without the gauzes or the rotor being present,
Gregory-Smitn (1i970) used the apparatus to study boundary iayers on
the annulus walilis,using thne guide vanes and tne rotor separatcly. He
too operated the rig with the gauzes removed, and the guide vane tests
were conducted with the vanes rotated to give 6° of inlet incidence,

a configuration tested by Jones (1969).

Tne present work does not inciude modelling of boundary layers,
except insofar as suitable pressure loss values may be specified near
duct waliis, but Gregory-Smith (1970) produced plots of axial veclocity
across tne entire duct span which are useful as test data for the
presently-developed computer program,

The blade design procedure may also ve tested in attempting to
replicate Oxford's (1965) inlet guide vane design, as used in the

application of Jones (1969) and Gregory-Smith (1970).

8.2 Design of Iniet Guide Vanes

Oxford (1965) designed the inlet guide vanes to the fo:lowing

specification:
| Inner radius : 1 ft (.3048 m)
Outer radius : 2.5 ft (.7620 m)
Axial chord : 5.351 inch at alil radii
True chord-hub : 5.675 inch
midspan : 6,183 inch
tip : 6.734 inch

Inlet piade

angie . 09 at ali radii
Outlet flow . follows
angle tan ¢ = .5022 r (r in feet)
(deduced) = 1.6476 r (r in metres)
Camber iince . parabolic
shapoe
a/c 0.4

tmax/c
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Thickness profiie ;. type C4
Number of biades ;31
Deviation rule used

in design : Carter (i950)

The axial chord length listed above is drawn from Oxford's (1965)
Appendix XI; in tne main text he briefly mentions a 6 inch total chord
lengtn, though from the table above it is seen that only at one radius
is the chord exactly 6 inches, and this radial position appears to be
of no significance. Gregory-Smith (1970) iists the axial chord as
6 inches, and the camber line shape as being a circular arc, two details
which are true of Oxford's (1965) rotor bilade design, and so perhaps
misappiied here to the inlet guide vanes,

Although the axial chord length (5.357 inch was assumed to be the
correct figure ) is constant at all radii in the design position,
rotation of the blades through 6°, as in Gregory-Smith's (1970) experi-
ments alters the axial projection of the cnord by an amount dependent
at any radius upon the local stagger angle. Consequently it was more
straightforward, in compiling data for the computer program design
procedure, to supply the differing true chord lengths at the hub,
midspan and tip; the program contains options whereby either the true
chord length or the meridional projection (in this case the same as the
axial component) may be entered.

The blade design performed by the computer program was for the
blades in their rotated position, using the exit flow angle distribution
for this arrangement given by Gregory-Smith (1970) as shown on Figure 8.1.
The source of these data is thought to be tne work of Jones., Ideally
the blade geometry produced from the calcuiations should match the
known design of Oxford (1965), rotated by 6°2, but the respective blade

angie plots snown on Figure 8.1 show some discrepancy.
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Oxford's Blade Design with 6° inlet incidence

Gregory-Smith's experimental Flow Angle

— . — .~ Computed Blade Design - no secondary flow considerations

70 |

--——--— Computed Blade Design - secondary flow considered
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The cause of this discrepancy has been traced to the estimation of
deviation angle. Howell's deviation corrclation (reference: Dixon
(1975) ) was used in the present work, but in his original blade design
Oxford (1965) used that.due to Carter. Both these rules were formulated
similarly for the design of compressor cascades, wherein fluid is
decelerated, though they include different modifications to their
formulae to allow the calculation of deviation in guide vane nozzles,
such as the present application, and turbine cascades.

Oxford applied Carter's method to the design of the inlet guide
vanes, and the deviation values he obtained may be contrasted with

those for the 'nominal' deviation of Howell, viz:

Howell, g% Carter, § (from Oxford (1965))
Hub 2.265° 1.183°
Mean 5.71290 2.700°
Tip 9.4620 4,183°

The deviation angles predicted by Howell's rule may not be
meaningfully adjusted for the departure from nominal operating condi-
tions, because this aspect of the method is applicable only to cascades
which reduce the swirl angle and decelerate the flow, such as compressor
cascades.

Figure 8.2 shows the deviation angles tabulated above, applied
to the guide vane exit angle in the rotated position used by Gregory-
Smith (1970). Also plotted is a smoothed profile for the experimental
exit flow angle given by Gregory-Smith. It is scen that neither rule
has predicted the actual deviation accurately; Carter's method under-
estimates it, and Howell's gives an over—estimate. The discrepancy

between the actual and the computed blade exit angle plots on Figure 8.1

(and Figure 8.6) is caused by the inability of Howell's deviation rule
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Oxford's Blade Design with 69 inlet incidence

—_———— Gregory-Smith's experimental flow angle (smoothed)

Flow Angle predicted with Carter's deviation rule

Flow Angle predicted with Howell's deviation rule
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-
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100 % Span
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FIGURE 8.2: FLOW DEVIATION CALCULATIONS




to predict the angular difference between the blade exit angie and
the experimentalil flow angie.

The uneven pattern in the flow angle bcetwecn the hub and midspan
indicates tnat the experimental data may be considerably in crror, and
the unevenness is reflected in the computed blade exit angic distribu-
tion. Figure 8.6 shows a blade design assuming a smoothed fiow angie
profiie,

It is worth noting that the deviation rules of both Howell and
Carter are formulated for iinear cascades. The secondary flow effects
which occur in annular cascades (Glynn and Marsh (1980) ), may be found
using a computer program developed by Gregory-Smith (1977), once an
initial biade shape has been designed and fiow field calculations have
been performed. For the example modelled here subsequent secondary
fiow caicuiations indicated a contribution to the flow angie of over
+1° at the hub, passing through zéro to about -.8° at the tip. Since
the flow angies used to reconstruct the blade shape werc experimental
results, they must already contain these secondary flow effects, which
are not considered in the usual deviation rules. Thus a more realistic
biade profile may be designed by removing the secondary fiow contribu-
tion from the flow angle distribution and then redesigning the blade,
calculating the deviation as if for a linear cascade. This second-
generation bilade geometry is also shown in Figure 8,1. For the exit
angle profile, the difference fyrom Oxford's (1965) blade design is
now smail (less than 10) at the hub, but the secondary flow ailowance
enhances the discrepancy towards the tip, where it is nearly 50, with
an estimated deviation of 11° there.

The computer program used the method described in Section 5.4 to
stack the various acrofoil scctions designed, Oxford's guide vancs
were constructed to nave a §tr§ight, though not radial, trailing edge,

and with a constant axial chord in the design orientation,
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8.3 Downstream Axial Velocity Profiles

By performing aerodynamic calculations on the inlet guide vanes,
the operation of the computer program was checked against Gregory-Smith's
(i970) graphical piots of experimental axial velocity profiles at dis-
tances of 0.5 inch and 11.2 inch downstream of the iniet guide vanes.

The upstream air flow was uniform and non-swirling; the axial velocity
tnerc was not given, and so it was estimated by graphically integrating
the downstream velocity profiles. Small wodifications were neccssary
after the first attempts at reproducing the velocity profiles because
the original integration took no account of varying air density. Within
the accuracy of this procedure, the upstream axial velocity was found
to be 20.0 m/s, which may be a fortuitously round number since the original
experiments were measured in imperial units.

Given that one calculation station is set on the blade trailing
edge, the positioning of another 0.5 inch behind it in the 18 inch span
duct would give a local grid aspect ratio of 36. Relaxation factors
gencrated there wouid be small (Scction 6.8) and the calculations
would therefore require many iterations, The intrablade axial grid
spacing for a blade of about 6 inch axial chord would be around 0.6
inch, with 10% spacing, but for the first and second parts of the
three-stage solution scheme (Section 6,9) not all of the intrablade
stations are used, giving correspondingly larger aspect ratios. A
similar treatment could be developed for the duct grid, but in its
absence the easier solution was to relocate the close downstream station
permanently a little further away, and then interpolate results there

and at the blade trailing edge to estimate the velocity profiie 0.5

inch behind the blade. The station was set 1.8 inches (about 0.3 chord
lengths) downstream, giving an aspect ratio of 10.
The biade exit flow angle variation was knownabd initio, and so

despite the questionable blade design results the mean stream surface
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fiow treatment couid be performed accurately in the aerodynamic
caicuiations; furthermore there was no need to correct the flow angle
for secondary flow effects retrospectively.

The loss model in the theory comes into its own in a multi-stage
machine where appreciable radial gradients of entropy are developed
over several stages. Although annuius wall boundary layers were studied
by Gregory-Smith (1i970), no loss data are presented for the inlet guide
vanes, The computed velocity profiles were therefore produced assuming
iossiess fiow,

Figures 8.3 and 8.4 show, at 0.5 inch and 11,2 inch downstream
respectively, the comparisons of the computed axial velocity profiles
with Gregory-Smitn's (1970) experimental results, The joggle centred
at about 30% span in the computed profile immediately behind the blade
would appear to match the uneven fiow angle variation at that point in
Gregory-Smith's (1970) blade exit flow angle data, shown in Figure 8.1.
Other than this effect, the calculated result follows the experimental
data closely over most of the span, The greatest error, 4%, occurs
near the hub,

For the station further downstream the computed profile again crosses
the line of experimental data at about 30% span, with the predicted
velocity less than the experimental at radii inside this point and
greater than the experimental at larger radii. The reduction of the
experimental axial velocity over the outermost 1i5% of the span is not
apparent in the computed result.

More accurate velocity distributions were computed following smooth-
ing of the original blade exit flow angle data from Gregory-Smith (1970).
These are considered in Section 8.5, but one more aspect of the calcula-
tion method was investigated during the above-described trials, and an

account of this is first given below.
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e e Computed Velocity Profile

X Gregory=Smith's (1570) experimental Velocity Profile
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JURE  8.3: AXIAL VELOCITY O.,5 INCH DOWNSTREAM OF INLET GUIDE VANES, USING
EXIT F1OW ANGLE DISTRIBUTION OF GREGORY-SMITH (1570)
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Computed Velocity Profile

% Gregory-Smith's (1$70) experimental velocity profilé
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FIGURE 8.4: AXIAL VELOCITY 1ii.2 INCH DOWNSTREAM OF INLET GUIDE VANES,
USING EXIT FLOW ANGLE DISTRIBUTION OF GREGORY-SMITH (1§70)




8.4 Effects of Relocating the Relaxation Factors

As discussed in Section 6,7 the relaxation factors are usually
applied to tne caicuiation of stream function values from the velocity
profiies, though they could alternatively be used in the subsequent
caiculations of streamiine slope or of the radius of curvature of the
streamiines, Comparative trials were conducted to perform the calcula-
tions described in Section 8.3 with Stow's (1971) relaxation factors
appiied in each of two ways: firstly the usual application of the
factors in tne stream function calculation, and secondly using them
instead in the determination of slope values, In both cases the three-
stage scheme of Section 6.9 was used for intrablade analysis, demand-
ing for convergence at each stage that the greatest meridional velocity
change be less than 1%, During these trials the cos2 A relaxation on
changes in the term L(r) of equation 6.1 was being applied oniy within
pbiade rows - subsequently its use was extended to duct calculations as
well. The comparative run times, in terms of the number of flow field
marches required, are tabulated in Figure 8.5.

For this example the transfer of the relaxation factors to the
slope calcuiation reduced the amount of calculation required by over
30% and produced very simiiar results. The number of iterations to
convergence for Stage 3 with the relaxation imposed on the stream
function calculations was not determined properly because the restric-
tion on the changes in the velocity profile (Section 6.4) was being
invoked in the Stage 3 calculations: the maximum allowed change, which
was reduced as the number of iterations performed increased, dropped
below the convergence criterion (1%),giving a false indication of a
converged solution, This procedure was modified subsequently to avoid
such situations, but other changes to the program had by then been made,
and 8 direct comparison with the other data in Figure 8.5 was no longer

possibie,
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8.5 Smoothed Flow Angie Data

The uncven distribution of blade exit flow angle between the hub
and midspan in Gregory-Smith's (1970) tabuiated data (Figure 8.1) was
thought to he the cause of the similariy-placed disturbances on the
computed blade exit angle profile (Figure 8.1) and the downstream axial
velocity distribution (Figures 8.3 and 8.4),.

The blade design and aerodynamic analysis were repeated using the
subjectively smoothed blade exit flow angie profile depicted in
Figure 8,6, The blade angle variations shown on this Figure appear
with the ripple smoothed out, though the overall design still shows
the departure from Oxford's (1965) original attributed to the methods
of estimating deviation,

Compared with Figure 8.3, Figure 8.7 shows much better simulation,
near the hub, of Gregory-Smith's (1970) experimental axial velocity
results, and Figure 8.8 shows a smoother velocity profile than Figure
8.4, though the errors at the hub and tip are almost identical to those
previousiy produced. Boundary layers on the annulilus walls developed
in practice and by this point they had increased to thicknesses of
approximately 1 inch on each wall, so that about 10% of the duct span
was affected., The effective narrowing of the usable duct may be
responsiblie for the steeper experimental radial gradient of velocity.

Thesc results were produced using the program with the relaxation
factors applied to the siope calculation, and convergence times to 1%
on meridionai velocity were now a little faster than those using the
original data, Figure 8.5 shows the number of flow field marches
required, for comparison with the tests using unsmoothed flow angle

data,.
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Oxford's Biade Design with 6° inlet incidence

'_______*__n_ Gregory-Smith's experimental Flow Angle (smoothed)
——— —a Computed Blade Design - no secondary flow consideration

—_—— Computed Blade Design - secondary flow considered

70

‘xit Angle
Degrees)

30 1 ! 1 1 1 e
0 20 40 60 80 100 % span
ift 1.5 ft v 2.5 ft radius

FIGURE 8.6: BIADE REDESIGN WITH SMOOTHED FLOW ANGLE DATA
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Computed Velocity Profile

¥ Gregory-Smith's (1570) Experimental Velocity Profile
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"IGURE 8.7: AXIAL VEIOCITY ©0.5 INCH DOWNSTREAM OF INLET GUIDE VANES,
USING SMOOTHED EXIT FLOW ANGLE DISTRIBUTION
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Computed Velocity Profile

Gregory-Smith's (1970) Experimental Velocity Profile
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FIGURE 8.8: AXIAL VEIOCITY 1i.2 INCH DOWNSTREAM OF INLET GUIDE VANES,
USING SMOOTHED EXIT FLOW ANGLE DISTRIBUTION




- 129 -

8.6 Conclusions From Modelling the Rig of Oxford and of Gregory-Smith

The geometry of a set of inlet guide vanes was reconstructed using
experimental fiow angie data. Several parameters, such as the system
of stacking diffcrcent aerofoil sections, may have been different in
the original design by Oxford (1965), but a discrepancy of up to 5° in
the blade exit angic between the real and the computer-modelled blades
is attributed to tnc estimation of the exit flow deviation from methods
dovoloped for coumpressor cascade design.,

Good agrecment was obtained 'between experimental axial velocity
data and computed values across the duct span at two locations down-
stream of the row of bilades, one close to the trailing edge, the other
some distance away. The comparison of the results was improved by
smoothing a rippie in some basic data, the blade exit flow angle
distribution given by Gregory-Smith (1970),

Faster convergence was obtained by applying the relaxation factors
to the siope caiculationsrather than tothedetermination of thc stream

function, the morc conventional approach,

8.7 Tne Compressor of Fahmi

As is also noted in Section 10.6.2, there is little material
publisned in the open literature on multi-stage machines which also
contains sufficient information to test a computer program of the
kind developed in the present work, The work of Fahmi (1968) includes
reasonaply full definitions of the blade design, and also some flow loss
data, in addition to experimental velocity profiles. Fahmi tested a
low-specd axial-flow compressor containing only three blade rows: inlet
guide vancs, rotor and stator. He conducted experiments with scts of
blades of 3 incn and of 6 inch chord, to vary the blade aspect ratio,

and also varied the air flowrate,
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The selected test case modelled with the present computer program
was that with the blade rows of longer chord operating at their design
flowrate, For each of the three blade rows, the true chord was 6 inches
at all radii, but the axial component of the chord varied boecausc of
the blade twist. The hub and tip radii of the parallel-wallcd duct werc
18 inches and 24 inches respectively, giving blade aspect ratios of the
order of unity. The finest intrablade grid used in the computations
would therefore have an aspect ratio of ten, or not much larger, a value
not expected to cause convergence problems by demanding very small relax-
ation factors (Section 6.8),.

Inlet and outlet blade angles, the number of blades and the profile
types (all C4) were all supplied in Fahmi's (1968) data. The experimental
blades incorporated circular arc camber lines; the present computer
program wis capable of generating only parabolic camber lines but a
reasonably true shape was produced by specifying the ratio a/c = 0.5,

The designed cross-sections of the actual inlet guide vanes were stacked
radially at the leading edge, and the rotor and stator cross-sections
were stacked radially at the mid-chord. Although each blade row could

be replicated as viewed in an (r, z) plane, only one option was available
in the computer program for the relative circumferential positioning of
aerofoil cross-sections: the centres of mass of all the sections of a
blade were set to lie at the same circumferential co-ordinate, The
computed values of the lean angle ; were thus unrealistic.

In the absence of more detailed information, the maximum blade

thickness was entered as 0,1 chord lengths at all radii for all blades.

8.8 Axial Vclocity Profiles Following Each Blade Row

Upstream of the guide vanes, the axial velocity profile adopted for

the acrodynamic calculations was not uniform, but was based on the
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experimental form given by Fahmi (1968), with reduced velocity near the
walls, The computer program .could not handle stationary flow and so

the axial velocity at the walls was not prescribed as zero. The small
experimental swirl component was included in the flow data for the com-
puter program, Assuming no meridional curvature or slope of the flow

at the inlet calculation station, the static pressure there is very nearly
constant with radius; the swirl combonent of velocity in tnis example has
very little centripetal effect. However, the total pressure profile con-
tains a radial variation to match the varying dynamic head of the flow;

Blade row loss data provided by Fahmi (1968) include both theoretical
and experimental values. No experimental data are given for the inlet
guide vanes, and those for the rotor indicate an unrealistic negligible
loss at the condition modelled here, so the theoretical predictions were
employed in the computed simulation,

Figure 8,9 shows radial distributions of axial velocity following
each blade row, The results at exit from the rotor and from the stator
are in fairly good agreement with Fahmi's (1968) test data, but the
profile at exit from the guide vanes does not follow the test points at
all well, However, examination of the computed intrablade results at
the rotor leading edge shows a predicted axial velocity increasing con-
siderably with radius. The axial velocity profile obtained behind the
guide vane exit is inf luenced by the upstream propagation of such
effects through the short inter-row space and into the guide vanes.

The program would appear to predict a more sensitive reaction than that
observed in practice,

Figure 8.10 shows the computed exit flow angles relative to each
blade row, which all accord well with the design values of Fahmi (1968),
though no sccondary flow calculations were undertaken in this application

of the computer program, For the inlet guide vanes, the measured flow
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angles near the hub are higher than expected, and rather lower than
expected towards the tip., From mid-span to tip tﬁe experimental flow
angle variation follows closely a 'free-vortex' distribution,

The computed axial velocity profiles following the rotor and the
stator (Figure 8.9) are not as greatly inclined as the experimental
data, but the measured flow angles do differ from the design predictions,

by up to 62 in the case of the rotor,

8.5 Numerical Considerations

The computer program requires a duct calculation station just
upstream of each blade row and another following each row, They indicate
the presence of & blade row and its type (stator or rotor), For the
example used here this resulted in two closely-spaced calculation stations
being placed in the half-inch duct length between each pair of blade rows,
It was these stations, rather than the intrablade stations, which produced
the smallest relaxation factors in the solution process. By cxtending
the inter~row spacing to 50 mm, faster convergence éould be obtained,

In place of such undesirable modifications to the geometry of the problem
being considered, the program should be improved by eliminating the
necessity for such duct calculation stations,

Calculations assuming a uniform velocity profile at inlet to the
compressor converged in little over a quarter of the number of iterations
required for the solution with the experimental profile, Difficulties
had been encountered with the sharp changes in properties near the duct
wails, associated with the lowering of the axial velocity there,

Onc problem arose in the interpolation of property values from up-
strecam data, for cxample in tracing total pressure values along a loss—
icss streamline, Referring to Figure 8,11, the data points A, B, C and

D show the totali pressure and dimensionless stream function values held
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at four grid points equally spaced radially at the inlet calculation

station, where flow conditions must be defined by the user., Point A
is on the hub wall of the duct; the low total pressure there is indica-
tive of the low specd flow along the wall,

Because of the proximity of a blade row downstream, for example,
some redistribution of the flow occurs between the inlet and the second
stations, so that at the grid points on the second station different
stream function values will he stored from those at the first station.
An interpolation scheme was used in the computer program for cvaluating
certain fiuid properties from their values upstream on the same stream-
lines, i.ec., by following stream function values. For a grid point where
the stream function value is that of I and I' on Figure 8.11, a parabola
is constructed through points A, B and C, and the interpolated total
pressure value is taken as that at I, which for the case depicted lies
apove the total pressure at B and C, and indeed above the maximum inlet
station total pressure, at the duct mid-span. EXrroneous valucs of
entropy and of thc term QE are subsequently found at I, affecting the
predicted velocity profile over the innermost part of the span.

For such ill-conditioned cases wherec the interpolated point I lies
outside the range of B and C, a simple linear interpolation is used,
resulting for the example shown in the total pressure value at 1°,
However, a better alternative or additional method would be to introduce
a calculation grid whose radial distribution may be defined by the user,
to allow more grid points to be placed in regions of great change of
fluid pvehaviour, such as near the duct walls, whereby information may
be stored in more detail,

The formation of the meridional velocity profile at each calculation
station (Section 6.4) is begun at the mid-span and progressively extra-

polated towards the duct walls, using the radial gradient of
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velocity determined at the latest completed grid point., Thus a severe
drop-off in velocity near the walls is not reproduced unless the calcu-
lation procedure senses the high gradient there; this may be achicved
by again incorporating a radially adjustable calculation grid,

The average calculation time for this test example was 0,15 second
per calculation station (including intrablade stations) per flow field

march, on an IBM 370/168 computer,

8.10 Conclusions from Modelling Fahmi's Compressor

The flow through a three-row axial compressor has been modelled
with a degree of sucoess. The original blade designs could not be
reproduced exactly as there are insufficient options in the design
procedures in the computer program, The axial velocity profilc down-
stream of the inlet guide vanes was not well reproduced.

Multistage machines may be modelled by the program, but some
improvements may usefully be made: the climination of the nced for
duct calculation stations adjacent to every blade row; and the intro-

duction of a calculation grid with a user-defined radial distribution,
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CHAPTER 9

Three-Dimensional Flow

9.1 Introduction

In the initial part of his analysis, Wu (1952) includes the variations
of fluid properties with both circumferential position and with time,
though in presenting a calculation procedure he eliminates the time
variable and considers only steady fiow.

The assumption of axisymmetric flow introduced in Chapter 2 of this
thesis implies that no flow variations exist with respect to the circum-
ferential co~ordinate, and in the case of a turbomachine with relative
motion of the biade rows, no variation with time either,

Turbomachine flow models suitable for computing have increased in
complexity over recent years as computers have become faster and larger,
and considerable progress has been made in removing the commonly-made
assumption of axisymmetric flow, 1In the context of this Chapter the
asymmetry considered is that occurring in each circumferential passage
from the suction surface of one blade to the pressure surface of its neigh-
bour, rather than uneven distribution of flow around the annulus as a
whole.

Full three-dimensionai calculations performed following Wu's (1952)
approach require families of intrablade stream surfaces, types S1 and
S2, which were described in Section 2.6; the axisymmetric solution used
just one representative S2 surface. The calculations to produce the
axisymmetric soliution represent only one iteration in a longer procedure
in which the families of S1 and S2 surfaces must be allowed to interact
to find a convergedthree~dimensional result,

The two blade surfaces bounding the intrablade flow passage generally
differ in shape, and thus the family of S2 stream surfaces botween them

must form a transition from one surface shape to the other. The fluid
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properties and velocities also vary circumferentially, and so the S1

stream surfaces are twisted, and not surfaces of revolution.

9.2 A Survey of Existing Calculation Methods

Krimerman and Adler (1i978) report compiete three-dimensional
calculations for centrifugal flow impcilers, using a lossicss subsonic
model in a finite clement technique. The analysis of such single-rotor
macnines is a suitable application of a three-dimensional flow calculation
method, but the computing time to analyse a multi-stage axial fiow machine
would be very considerable. Furthermore, the circumferentially-varying
flow from the exit of one axial blade row is usually directed into a sub-
scquent row which is rotating relative to the first. To an observer on
the second row of blades, such approaching flow appears to vary with time,
an effect which is not being considered here, and so the assumption must
be made that between adjacent blade rows circumferential variations in the
fiow arc mixed out, and the flow at any hlade entry is axisymmctric. This
moans that the S1 surfaces at blade cntry appear as chords of circles con-
centric with the machine axis. Within the blade row, behind the leading
edge, the S1 surfaces may become twisted.

Many authors approximate the entire S1 surfaces to surfaces of
revoiution, and not just at the blade leading edges. Bosman and
Ei-Shaarawi (1977), Novak and Hearsey (1977), Veuillot (1977), Hirsch and
Warzee (1978) and Spurr (1980) follow this approach, usually with a mean S2
stream surface guessed initially from considerations of blade geometry, but
modified as the calicuiations proceced, with the interaction of data from
Si and S2 surfacce calculations. This type of procedure is commonly known
as the Quasi-Threce-Dimcensional solution,

various choices of the initial 'mean' stream surface appear in the
works of Bosman and Ei-Shaarawi (1977), Novak and Hearsey (1977) and

Veuillot (1977), but Horlock and Marsh (1971) conclude that although
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an axisymmetric flow model can represent overall flow changes through a
hiade row, averaged properties within the blade row cannot all be matched
itocally by only one, mean,stream surface.

Hirsch and Warzee (1978) set out a method which, as they say, is
restricted to the use of surfaces of revoiution for the Si surfaces,
uniess extended by performing secondary flow calculations. They derive
averaged equations of motion for which no S2 surface choice is required,
by specifying that the data used for each term of the equations must be
a 'mass-averaged' value across the blade-to-blade passage. Denoting the
averaged value of a variable q over the passage width by a bhar super-
script, Hirsch and Warzee (1978) define a 'mass-average' value, denoted
by a tiida superscript, as
q = oq/g

When several mass-averaged values are multiplied together to produce
each term of the main equation, extra terms are included to allow for
the differences between the products of mass-averages and mass—-averages
of products. These extra terms, called 'interaction' terms, are simpler
than those obtained from working with passage-averaged terms only.

However, the mass passing any point in the flow field is dependent
not only upon the local fluid density, but also on the axiai velocity
and, within a blade row, on the local blockage factor. Thus the 'mass-
averaged' value of q should be defined as

T = (pBVZa) / (gBVy)
which may give a different set of interaction terms,

Smith (1966) originated a similar procedure assuming a linear
pitchwise variation of every property, and introduced a serics of extra
terms called G-functions in the radial equation of motion.

Hirsch and Warzee (1978) use a finitc element calculation method.

Bosman and Ei-Shaarawi (1977) incorporate the Consistent l.oss Model of
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Chapter 3 and of Bosman and Marsh (1974), but in a finite difference

Matrix Througnflow solution. The Time-Marching methods of Veuillot (1977)

and Spurr (19%0) allow transonic flow, but the models uscd arc lossless.
Spurr (1980) acknowledges the serious disadvantage in assuming the

S1 surfaces to be surfaces of revolution, and Novak and Hearsey (1977)

discuss the incorporation of twisted blade-to-blade surfaces through

tho reiation between %g and the streamwise vorticity.

9.3 Wu's Power Series Analysis, and Vorticity

Wu (1952) outlines a method by which the circumferential variation
of fluid propertics within a blade row may bhe determined without recourse
to any assumption about the shapes of S1 stream surfaces. Given the flow
pattern and the value of some general property g (€,) on the mean S2
stream surface, then the value q(8) of the property a short angular
distance away can be obtained by a Taylor Series:

p(O)=9(0) # (8-6)5/(5) +(6-6)" 4" (0) + -8 5" (0) ...
2 3

Wu reports that only the first few terms of the series need be found to
give accuratc rcesults, but this does require calculation of the 6-derivatives
of qg.

Starting from the definitions of the r, © and z components of vorticity,
£, Wu (1952) derives equations for the circumferential gradients of the

velocity components, using the special derivatives following the me&n

stream surface which are readily found from the axisymmetric solution:

1w £ETE 3(V) + F3k)~ D(WB) +EE ~F E,| -0
TR

T 38 — Fz E? —:- F.r o7 bt F.

L, 1 3V € v R Al . (@2)
¥ 36 —F 97 TR P

Lol 1 S(rk) ~% + £ 1 d (‘7-3)
T 98 —F I . E ¥ 39




-~ 142 -

In equation 9.1, the term
D B) W, 3(nB) + W 3L E)
2 — o Sz

The ratios of the body force components in equations 9.1 to 9.3
may all be expressed as functions of the flow angles ) and ;,, but the
form of their blade-to-blade variation must be assumed in some way.

Wu (1952) proposed that the analysis beapplied to flow with zero
absolute vorticity only, and it is known that equations like 9.1 to
9.3 have been used at Rolls-Royce to estimate circumferential variation,
ignoring the vorticity terms. Came and Marsh (1974) analyse the second-
ary flow in linear cascades, applying Kelvin's circulation theorem to
determine the vorticity within the blade row from known upstream values
of both the streamwise and perpendicular vorticity components. Glynn and
Marsh (1980) extend the method to annular cascades. Kelvin's circulation
theorem as applied in these papers should strictly be limited to revers-
ible incompressible fiow, but is generally a good approximation for
other applications; the effect of compressibility is considered by
Marsh (1976). A simple numerical example following Glynn and Marsh
(1980) to determine the intrablade secondary vorticity yielded values
of the vorticity components in equations 9.1 to 9.3 which were insignif-
icant compared to other terms. However, secondary flow effects can affect
the flow angie at exit from a blade row, as discussed in connection with

the blade design of Section 8.2,

9.4 The Problem of Flow Deviation

The calculation method proposed by Wu (1952) has not been described
in mathematical detail because although it would provide sufficiently
accurate blade-to-blade flow variations very rapidly without some of the
stream surface constraints of other methods, there appears to be a funda-

mental probicm concerning the circumferential distribution of the flow
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angle ; (related to ), which appears inequations 9.1 to 9.3 as
a body forcec ratio.

The flow angle in general varies from 8; on one blade surface
to By ©on the other across the blade passage, about a mean value E, as
discussed by Horiock and Marsh (1971) and shown in Figure 9.1. 1In the
many-biaded cascade model, Ba and Bb are very nearly identical, but the
pitcnhwise profiic of Figure 9.1 stiil exists, falling below E towards
the mid-pitch.

The vaiue tan g is used for the axisymmetric analysis and because
of fiow angie deviation it need not liie between the values on the blade
surfaces, tanp, and tan 3. Wu (1952) suggests that the Power Series
method may be used to extend the flow field outwards from the mean stream
surface, but it is ciear from Figure 9.1 that the threc angles E, Aa
qb provide insufficient data to determince the curve joining Ba and Bp
across the passage.

Novak and Hearsey (1977) realise that the Tayior Series type of
blade-to-biade tcchnique cannot recognise the off-cascade momentum
change which occurs on the mean streamliine towards the leading and
trailing edges, but obtain surprisingly realistic information for
centrifugal impeiilers. The experimental deviation is considerable, as
indicated in Figure 8.1 by the departure of the mixed-out downstream flow
angie from the blade exit angle for Oxford's (1965) inlet guide vanes.
This suggests that for axial fiow cascades, which have high pitch:chord
ratios, compared with the equivalent tip spacing:channel length of
centrifugai impelliers, bilade-to-blade flow variations may not be found
reaiisticaliy by extending calculations circumferentially from the meoan
stroeam surface,

The form of mean stream surface developed in Chapter 4 for intra-
bilade analiyvsis allows the progressive application of circumferential

curvature aiong the streamiine path, and is considered to be an improvement
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FIGURE 9.1:

BLADE-TO-BLADE VARIATION OF FLOW ANGLE
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over many intrablade analyses using mean stream surfaces based on the
biade gecometry only, since these were shown to indicate sudden radial
redistribution of the flow, Bosman and Ei-Shaarawi (1977) use a
geometrically~defined initiallguess for the mean S2 surface, and
iterate between producing improved Si and S2 solutions, retaining
surfaceos of revoiution for the S1 shapes throughout. They remark that
the major change in the S2 surface occurs in the first interaction with
the Si1 surfaces; it would be of intcrest to discover whether the
reshaped S2 surface is at all like that produced by the considerations

of Chapter 4.

9.5 Conclusions

The quasi-three-dimensional techniques of other workers involve the
calculation of the fiuid fiow on a series af S1 surfaces, which are held
to be surfaces of revolution. Attempts to relax this condition, by
applying to an axisymmetric solution Wu's (1952) circumfcrential exten-
sion of the flow ficid via a Tayior Scrics, would appear to be unsuitable
for axiai-flow machines becausc of the uneven distribution across the
biade-to-biade passage of the angular momentum imparted to the fluid;
this appears as a considerable pitchwise variation of flow angle.

A more promising method of removing the restriction on S1 shape
may be to use the quasi-three-dimensional solution as a starting point
for secondary flow calculations, as mentioned by Novak and Hearsey (1977)
and Hirsch and Warzee (1978). The time-marching method developed by
Spurr (1980) for quasi-three-dimensional calculations in axial flow
steam turbines presents an aliternative path.

Fuil three-dimensional calculations will become feasible in multi-
stage axial machines as computers are developed which are both faster

and with sufficicnt storage, but such an application to turbomachines
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with reiative motion of the blade rows is of dubious value unless the
variation of flow with time can aliso be incorporated. Results produced

may then become difficuit to understand meaningfully.
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CHAPTER 10

CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE WORK

10.1 Theory
The loss model proposed by Horlock (1971) has been successfully
incorporated into the equations of motion for axisymmetric flow. The
principal equation of motion is prescented in a form providing for easy
modification of Streamline Curvaturc calculation methods bascd on the
former analysis of Marsh (1970). The modification is achieved by replac-
ing four terms in tne conventional radifl equation of motion by four
new terms which transform the equation to that in the N-direction with
tne consistent loss model included. The version for use within blade
rows is expressed in terms of the special derivatives along the mean
stream surface, and these derivatives, together with body forces applied
to the fluid to represent the blade row torque and the frictional flow
ioss, account for all the circumferential derivatives of velocity appear-
ing in thc initial formulation of thc equations of motion, equations 3.2,
The basic assumptions made in Chapter 3 about the fluid and the
system analysed are:
(i) The fluid is a perfect gas
(ii) losses may be modelled by a force opposing the relative
flow velocity vector, so in the sense that no rheological
tensor cross-coupling terms are considered, the fluid is
assumed to be Newtonian
(iii) the flow is steady relative to each blade row
(iv) tie flow is axisymmetric
(v) rotors rotate with constant angular velocity
(vi) the flow is adiabatic, i.c,
(a) no cnergy is transfcrred by heat to or from the
environment

(b) there is no inter-streamline energy migration.
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Assumptions (ii) and (vi,b) are made to satisfy criticisms raised
by Hong (1980) concerning the loss model used here,
Faquations 3,15 and 3,18 provide the radial gradients of thc meridional
velocity. A redistributed velocity profile indicates a repositioning
of tho streamlines, and so terms within these equations cannot change
value instantancously, This condition applies equally to thosc terms

which are derivatives of fluid properties so that, for these, not only

the property value but also its first derivative must be continuous with

B Js 3 (rv . .
streamliine path length., The terms §~, as and a ( U) appearing in

om Am om
equation 3,15 must generally all be continuous, unless their multiplying
factors are zero, and this continuity must be observed particularly at
- . 3 (xv ) s
blade entry and cxit, The term S; u was found to be sufficiently
infiuential tnat attention was required to ensure that at blade entry
and exit the circumferential curvature of the streamlines was not changed
suddenly, as otherwise sharp changes were predicted in the radial posi-
tion of streamlines, The streamline path through a blade row viewed
in the (6,z) planc was modified by an empirically-developed mcthod to

create transition curves within the blade.

For the examples analysed, the ce¢ffects of abhrupt changes in g% and

25 were not troublesome, The leading and trailing edge cusps extending
up- and down-stream applied to blade rows in the techniques of some
authors may obviate problems from the gradient of blockage term. The

entropy changes through a blade row are related to the flow losses, and

the distribution undoubtedly varies from one application to another, in

a manner not well defined,

10.2 Bladce Design

The procedures for designing hlade geometry arose from a need to

detormine the bhlockage factor B within blade passages, and arc sufficient
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for the purposes of demonstrating the accompanying aerodynamic analysis
but as was found in Chapter 8 the calculation of flow deviation angle
is not sufficiently refined. For the applications presented, the use
of conical design surfaces for the aerofoil cross-sections is reasonable,
though methods of transformation from linear cascades onto more generally-
shaped surfaces of revolution are available (Bez (1978) ). Only one
option for the stacking of the blade cross-sections is available in the
computer program, Aerofoil thickness data gre applied to the camber lines
to find not only tne blockage factor B, but also the blade surface dis-
tributions of the angles y and ).

Calculation stations are required in the duct immediately upstream
and downstream of the blade row. This results in close axial spacing
of the stations if the inter-vrow distance is short. The program may
be modified to eliminate the requirement for some or all of these stations,
which as presently used cause small local relaxation factors to be genera-
ted, and consequently many flow field marches are required to reach

converged flow solutions,

10,3 Numerical Techniques

A computer program has been developed in the PL/1 language by which
axisymmetric subsonic flow field solutions may be found using a develop-
ment of the usual streamline curvature metnhod of repeatedly solving the
principal equations of motion., Profiles of the meridional velocity are
computed along each of several calculation stations spanning_the duct
from the hub to the tip wall by integrating equation 3,15 or 3,18 from
the mid-span to the hub and tip walls, Using the form of equation 6.1,
the functions K(r) and L(r) are evaluated from previous results and held
constant while successive vélues of meridional velocity at the duct

centre are tried until the calculated mass flowrate past the calculation

station matches that at the duct inlet.
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The greatest errors in the velocity profile may be expected towards
the edges of the span because of the cumulative inaccuracy in the numeri-
cal integration performed along the calculation station. The velocity
distribution being constructed by extrapolation from the latest known
grid point, using the radial gradient calculated there, some detail is
iost at the duct walls if the flow pattern in the input data changes
rapidly closc to walls; the modelling of the low speed flow in boundary
layers is a case in point. The radial spacing of the calculation grid
should be made adjustable so that closely-spaced grid points may be used
to retain such flow detail.

For the entire flow field being analysed, the meridional velocity
value at cach grid point is stored. During the next calculation march
through the flow field, each meridional velocity value is not allowed
to change by more than a certain proportion, to avoid problems of wildly
o scillating velocity profiles during the first few marches which may
even include negative velocities, i.e., regions of reverse flow,

Sweptback calculation stations in duct flow and intrablade stations
generally curved in the meridional plane may be used, since the station
velocity profile is formed considering local velocity gradients both
radially and axially, The mass flowrate calculation allows for the local
geometrical cffects of non-radial stations and non-axial streamlines,

Streamline slope is determined from the changing distribution of
stream function between successive calculation stations, and the curva-
ture of the streamlines is subsequently found from the changing slopes.
The slope values were found by a simple quadratic fit through points of
equal stream function on three adjacent calculation stations, following
the method of Denton (1978). The curvatures were evaluated in a similar
manner but using the slope values as data for the curve fit. This detail

was inspired by the methods of Shaalan and Daneshyar (1972) and gives a
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simple curve fit with some weighting of the original stream function data
as far as two calculation stations upstream and two downstream,

To maintain stability of the converging overall solution, it is
usual to apply relaxation factors to the calculation of stream function
distributions from the mass flowrate profiles, whereby only a proportion
of the indicated change in stream function between one flow field march
and the next is applied, It was found however that solution convergence
was accelerated if the same relaxation factors were applied not to the
determination of stream function values from mass flowrate, but to the
next step in the calculation sequence, the calculation of streamline
slopes from the stream function distributions, Additionally it proved
helpful to relax, by a factor related to the flow swirl, the changes
from march to march of the function L(r) in the principal equations in
a manner similar to that used by Denton (1978),

The optimum relaxation factor values are dependent on the aspect
ratio of the calculation grid, and become small in the closely-spaced
intrablade grids generated by the program, Very long times to conver-
gence may be expected if all the calculation stations within a blade
row are used from the start, and so a three-stage solution technique
was developed in which blade rows are treated with successively finer
grids, the solution of each previous stage providing initial estimates
of the flow at the newly-introduced extra calculation stations,

Secondary flows within blade passages are not computed by the pro-
gram developed; Gregory-Smith's (1977) program may be used for this
purpose., The swirl angle changes it indicates may be stored, and
applied before entry to the final stage of the three part solution
described., The magnitude of these changes is of the order of a few

degrees.
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The small relaxation factors generated in high aspect ratio grids
may producc only small flow field changes, even when the solution is
far from converged, At the point in the calculations where the relaxa-
tion factors are applied, the discrepancy arising is checked, since only
when a truly converged solution is achieved will the unrelaxed and
the stored values of slope agree closely. Test cases indicate that
the error detected in an unconverged solution may be pessimistic com-
pared with the overall subsequent slope changes applied from then until

a sufficiently converged solution is produced.

10.4 Applications

Examples of flow were used for testing the computer program for
which the radial distribution of axial velocity was predictable. In
each case, uniform unswirled upstream flow was passed through a stator
blade row within a cylindrical-walled duct to produce flow with & swirl
angle distributed according to some simple function of radius. The
analytical axial velocity profiles were reproduced to good accuracy in
the far downstream flow, where meridional streamline slope and curva-
ture had settled to zero, Small errors are attributed to the radial
repositioning of streamlines after exit from the blade row, and these
errors were greater for cases modelling compressible flow than for those
assuming incompressible flow,

A test example given by Hirsch (1976) of incompressible flow
within a 'swan-necked' transition duct was successfully modelled to
show that the program could handle problems with flared wall duct
geometry and with sweptback calculation stations.

Experimental data were obtained from the works of Oxford (1965) and
Greogory=Smith (1970), using the same apparatus, and of Fahmi (1968). A

bladc design bascd on Gregory-Smith's experimental guide vane exit flow
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angle figures was not an exact reproduction of the actual blades used,
designed by Oxford; the discrepancy in blade exit angle was as much as

5° near the tip. This was because the programmed method of calculating
flow deviation over-estimated the deviation found in practice, and
Oxford's original design used different deviation calculations, which
?under-estimated the effect. The axial velocity profile close behind

the blade trailing edges was simulated well, after smoothing the original
flow angle data used (Gregory-Smith (1970) ), The computed velocity
profile further downstream departed from the experimental profile near
the duct edges, but this is attributable to the considerable thickness

of the annulus wall boundary layer by this distance downstream, an effect
not modelled in the program,

The three~row compressor of Fahmi (1968) was modelled to demonstrate
the ability to perform multi-row calculations. The axial velocity pro-
file following the inlet guide vanes was not well reproduced, but the
predicted veiocity distributions behind the rotor and stator agree rather
better with experimental results, The flow entering the compressor was
non-uniform, as found in practice, and the flow through the blade rows
was assumed to be irreversible, following loss predictions by Fahmi
(1968)., The numerical inadequacies in the computer program regarding
the treatment of highly non-uniform portions of velocity profiles have

been mentioned in Sections 8.2 and 10.3,

10,5 Three-Dimensional Flow

No firm proposals are put forward concerning the calculation of
the blade-to-blade property variations in axial flow turbomachines.
The full three-dimensional methods recently applied to centrifugal
impellers arc not suitable for multi-stage axial machines as present
computer running times would be excessive. The mean fluid flow from

an axial blade row incurs considerable flow angle deviation, indicating
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that simplec premises about the form of the blade-to-blade variations
are unsuitavie, e.g. Smith's (1966) assumption of linear variation
across the passage of each fluid property,

Methods involving quasi-three-dimensional calculations using Sl
surfaces wnich are constrained to be surfaces of revolution are proposed
by scveral authors, ¢.g. Bosman and El-Shaarawi (1977), Novak and Hearsey
(1977), Spurr (1980). In a machine with blade rows moving relative to
one another it is necessary to assume axisymmetric flow and circular
arc S1 surface shapes at entry to every blade row (unless time-variation
of the flow is ailowed), but the local flow behaviour within the blade
row would be better determined if the Sl surfaces were allowed to twist
in shape.

Wu (1952) analyses a method of obtaining blade-to-blade property
variations without needing to define any S1 surface shape. A power
series is formed witn the first, second, etc, , ©~derivatives of each
property, and these in turn are found from radial and axial gradients
upon the mean S2 surface. The O-derivatives of velocity are determined
from an analysis based on vorticity definitions. The vorticity terms
which appear in the resulting equations for the blade-to-blade velocity
gradients are typically small compared with other terms, and may even
be neglected. However, Wu (1952) envisages the mean S2 solution as the
starting point for extending the flow field outwards, and this returns
the problem to that of defining the blade-to-blade variation of the flow
angles, the mean S2 surface not being representative of the mid-passage

flow.

10.6 Future Work

10.6.1 Introduction

Recommendations made here for future study in the field of turbo-

machine flow calculation methods arise from two sources: those topics
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inciuded in the original wide brief at the start of the present work,
but incompletely covered or not touched upon; and those arising from the
analytical and computational work presented here.

10.6.2 Coverage of Original Brief

It was intended that the research programme could cover:

(i) Improvements in the streamline curvature method by examining the
possibility of including:
(a) the effects of the circumferential variations in flow and

fluid properties,

(b) a model for the annulus wall boundary layer,
(c) secondary flow, using the new approach developed at Durham,
(d) mixing of wakes
(e) improved loss models.

(ii) A re~examination of alternative approaches to turbomachinery flow
calculations, including time marching through-flow and McCune's

work on transonic flow.

Preliminary requirements for part (i) (a) have been extensively
covered, with the development of a method of intrablade axisymmetric
flow calculation, including a mean S2 surface shape which conforms to
the blade loading requirements at the leading and trailing edges. The
blade design procedures also determine the surface shapes of the blades,
The extension to blade-to-blade property calculations has not been
achieved, bpeyond the acceptance of present quasi-three-dimensional
techniques with their limitations, and the important problem to be faced
appears to be the determination of the form éf the flow angle variations
across the biade passage, in view of the considerable mean flow deviation
present in axial blade rows,

The annulus wall boundary layer, (i) (b), has not been considered

in the development of a flow model, though the work of Gregory-Smith (1970)
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indicates tnat it may bhecome significantly thick and affect the main-
stream flow behaviour. Horlock (1968) examines the experimentally-
obscerved result that within a multi-stage axial compressor the boundary
layer growtn docs not continue beyond about the second stage, but
reaches a steady state.

Secondary flow calculations have been performed using a computer
program of Gregory-Smith (1977); it would be advantageous to include such
calculations automatically within the streamline curvature technique,
even for tne axisymmetric solution, as blade flow angles may be changed
noticeably. Tne vorticity components found in the process would be
needed in Wu's (1952) proposals for blade-to-blade calculations,

Part (i) (d), the mixing of wakes in the duct downstream of a row
of blades, nas been alluded to in the context of re~forming axisymmetric
flow before entry to the next blade row., The vorticity components
which appear in the blade wake, the trailing shed and trailing filament
vorticities, are analysed by Came and Marsh (1974) for linear cascades,
and should be derived for annular cascades as a development of that
paper and of the work of Glynn and Marsh (1980) on intrablade secondary
flow in annular cascades. In the wake behind a blade row, the mixing
may be considered to be that of the distributed secondary vorticity with
the trailing shed and trailing filament vorticities, but the mixing length
is expected to be an empirical result pased on experimental observations.
From such considerations may be estimated the time variation of flow
entering downstream blade rows,

The Consistent Loss Model forms a major contribution of the present
work, and is shown to produce usable equations for the Streamline
Curvature calculation method. However, the use of the loss model is
best illustrated by analysing the flow in multi-stage machines with

prossurce leoss data available; significant radial gradients of entropy

may be expected in the latter stages and the use of the new loss model
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will predict a different flow pattern there from other analyses. Suitable
published experimental dataare sparse; Chauvin and Weyer (1976) comment
on the reluctance of research organisations to publish results, The
requirement is for detailed data on intrablade losses, and the effects
on the behaviour of multi-stage machines. The three-row axial compressor
used as a test case in the present work does not fully test the loss
model incorporated.

Regarding part (ii), research on Time-Marching Through-flow methods,
with blade-to-blade calculations, has been conducted by Spurr (1980),
overlapping in time with the present studies which have concentrated
on the application of the Streamline Curvature approach. Spurr shows
that the partial differential equations used in the Streamline Curvature
analysis are elliptic for subsonic flow solutions, but hyperbolic for
supersonic solutions., The Time-Marching approach allows transonic
calculations py introducing into the flow unsteadiness with time, to give
the same, hyperbolic, form to the equations in both subsonic and super-
sonic applications. The calculation method is conceived as stepping
forward in time from an original flow field estimate. The method is
lossless, and so more suited to modelling turbines, which are less
sensitive to irreversiblities than are compressors, but it may be a
promising path to pursue for the purposes of three-dimensional
calculations,

10.6.3 Aspects of the Present Work

Theoretical studies may be possible to predict the extent of inter
streamline energy migration in irreversible flows, and to express this
in terms of the entropy loss and the change in total enthalpy (or
rothalpy) along a streamline,

The transition curves imposed on the intrablade mean stream surface

shape at blade entry and exit warrant further investigation because
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their use implies that the mechanical blade loading is considerably higher
in some regions and lower in others than otherwise assumed, It may be
possible to deduce the loading pattern experimentally from cascades of
blades instrumented for surface pressure measurement, or constructed with
a segmented blade so that the loading on each segment may be measured,

The blade design procedure can be bettered by allowing more
general design surface shapes, requiring iteration with the aerodynamic
analysis to follow true streamlines., Flow deviation angles need to be
estimated more accurately, particularly for blade rows which accelerate
the flow such as inlet guide vanes, for which the departure from Howell's
nominal operating condition cannot be estimated by his deviation method,.
The requirement in the program of duct calculation stations adjacent to
blade rows should be removed.

Further analysis is required on the stability and convergence of
the numerical techniques propounded here. The application of the relaxa-
tion process to the slope calculation may not yet be the optimum method
and the relaxation factors themselves need to be re-analysed for use in
their new location., The calculation grid should be improved so that the
radial distripution of grid points at each station is defined by the
user, and not limited to being uniformly spaced across the duct span.

It should be a straightforward matter to incorporate the secondary
flow analysis into the Streamline Curvature program to estimate intra-
blade flow angle adjustments,

The program needs to be proved more fully in regions of high loss
and in multi-stage applications. The lack of suitable.test data has
been mentioned in Section 10,6.2,

The best approachto three-dimensional developments may be to plan
for the introduction of computers sufficiently fast that full three-
dimensional calculations may be performed, with the inlet flow to efch

blade row assumed axisymmetric. Beyond this, the understanding must
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be advanced of the fluid mechanics involved in unsteady flow, boundary
layers, fiow losses and blade wakes, so that realism of the flow models
may be improved; the complexity of available calculation methods will
then be Jjustificd, and the expected computing power will be fully

utilised,
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APPENDIX A

The Calculation of Stagnation (Total) Property Values

A,1 Introduction

The stagnation value of a fluid property is its value if brought to
rest reversibly and adiabatically, i.e. isentropically, relative to an
opvserver, and if in a force field, relative also to some datum for poten-
tial energy level, Thus the stagnation value is the sum of the thermo-
dynamic value (independent of an observer's velocity or position) and

the components due to the relative kinetic and potential energies,

A.2 Entropy

Since by definition the fluid is assumed to be brought to rest
isentropically, the stagnation entropy has the same value as the property
static entropy, irrespective of an observer's velocity or position, or

the strength of any force field,

A.3 Enthaipy

For a fluid flowing steadily and changing from state 1 to state 2,
the steady-flow energy equation, per unit mass of fluid, may be written

in the following manner:

Energy transfer by: Changes in:
Heat Work Enthalpy Kinetic Energy Potential Energy
. . x
Lowa2 2 2
Q - Wy = ho - hy + 3(Wo™ - W1 ) - J dx
*1

where Q is rate of energy transfer by heat
Wx is rate of energy transfer by work
X is displacement from some datum within a force field

J is a function denoting strength of a force field acting upon the

fluid, + ve J acting in the +ve x direction,
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If the process 1 » 2 be that which brings an element of fluid to

rest reversibly and adiabatically at the datum level, then

Q = 0; w, = 0.

When at rest,

0.

)

Hence the change in enthalpy

2 v}
hg = hy = § Wy +S J dx.
X1

A.3.1 Stationary Observer

To an observer stationary on the earth, the J force (per unit mass)
is the acceleration due to the earth's gravity, denoted g, and taking x
as increasing withwrtical distance above the earth,
J = -g.
g may be taken as constant over the small changes of height from the
bottom to the top of a typical jet engine. Thus using suffix o to denote
stagnation values,

v+ g ox,

where V is the fluid velocity relative to the stationary observer,

[

ho = h +

Furthermore for the purposes of this thesis, changes in gx
encountered are small compared to other terms, and the potential energy
change in the gravity field is neglected in the assumption of axial
symmetry of flow properties. Thus in stationary blade rows and in

ducts,

V2,

jo 2
1
=
+
ol

A.3.2 Observer Rotating at Angular Velocity @

An observer on a blade row rotating at uniform angular velocity
w experiences a centripetal acceleration and the function J is in the
form of an acceleration(- wzr)in the r direction, whose magnitude varies

with radius,
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Thus the potential energy of a fluid element, taking the axis of
rotation as zero datum, is

o
.'l.‘UJz dr = -
r
If the fluid velocity be W relative to the rotating observer, the

2

U.)I‘z

[0

stagnation enthaipy relative to him, termed the rothalpy I, is

2 - % w?r?,

L}
Il
=
+
[

w
Denoting radial, circumferential and axial components of V and W by the

suffices r, u and z respectively,

W =V

r r
wu = \7u - Wr
W=V

Z zZ

z (vrz + (V, - wr)? + V" - T

=]
=
c
n
-
1l
o
+
™

Clearly when w = O, I = h
For any steady adiabatic flow, even if irreversible the summation

of stagnation entnhalpy over the entire mass flowrate passing any axial

location is the same as at any other location. Where work transfer

occurs, i.e. within rotors, it is the integral of rothalpy which remains

constant, 1In reversible flow, or irreversible flow with no neat transfer

within the fluid itself, the value of stagnation enthalpy (or of rothalpy)

is constant along individual streamlines, and then

Dhe 0O (Ducts and stators)
Dt
or Ei = 0 (Rotors)
Dt Y O |

In irreversibple heat-conducting flow which is shearing, fluid
friction transfers energy by heat from one streamline to another, and

though the overall stagnation enthalpy (or rothalpy) level of the working
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fiuid is unchanging, equations A.l no longer hold. This effect is
referred to by Cnauvin and Weyer (1976) as 'inter-streamlinc energy
migration'. In assuming equations A,l1 to be valid along irreversible
streamiines, Bosman and Marsh (1974) and Horlock (1971) must also assume
tnat no energy is transferred by heat within the fluid, Few real fluids
exhibit tnis behaviour and Hong (1980) objects to such applications of
equations A.1, but concedes that to do otherwise raises difficulties

whicn are presently insurmountable.

A.,4 Temperature
Assuming that the working fluid is a perfect gas, Cp and C,, may

vary with temperature, but the difference is constant, the gas

constant R:

Further assuming that Cp is constant over the range of temperature of

interest, then from its definition, i.e.

Cp = {dh

AT p’

the relationship between temperature changes and enthalpy changes may
be obtained:

AT = Ah/Cp
If the datum for temperature changes is chosen as absolute zero,

T = h/Cp.
Similarly for stagnation temperatures:
(i) in the stationary frame of reference

TO = hO/Cp
(ii) relative to a rotor

1/C

Torol p*
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This 1last equation uses the definition of the stagnation condition
as being the fluid at rest and on the axis of rotation. The temperature

measured by a rotating observer at the radius of the original stream-

L}

line, denoted T, ..y, i8S

' B 2
To ol (h + W /2)/Cp,

which does not include the effect of the radial shift through the

centripetal force field.

A.5 Pressure

For a compressible gas, the simple form of Bernoulli's equation
does not hold, but stagnation values of pressure, Py’ may be found from
the temperature values, as follows.

Consider the foliowing equation for entropy:

To ) . R (n EE

T p .

s, — 8§ = Cp {n

For the isentropic process used to define stagnation property values

S - s =0,
En Po Cp {n To
p R T
Now EIZ _ A%
R Yy - 1
-1
Thus p, = p[T v/ (y=1)
T

A.6 Density

Density values are easily found from the perfect gas equation

p= P

b

RT

or for stagnation values

p = Po

RT,
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APPENDIX B

Co-ordinate Systems

B.1} r, 8, z Co-ordinates

The co-ordinates r, 8, z represent the usual radial,circumferential
and axial cylindrical co-ordinates shown in Figure B.l.
r is taken as zero at the axis of rotation and increases with distances
away from this centre. It has units of length,
e has an arbitrary zero, and increases in the direction of rotation-
of rotors, Its units are dimensionless angles, so that circumfer-
ential distance is the product re.
Z has an arbitrary zero position, and increases parallel to the

machine axis in the direction of overall fluid flow,

B.2 m Co-ordinate

The meridional direction, co-ordinate m, is the streamline path
projected onto a (r,z) plane of constant © as in Figure B.2, so that

for example

There is no component of circumferential velocity in Wm.
For the general property q, the special derivatives (Appendix C)
are related by
W, oq
an ar -
Components of quantities such as velocity, Mach Number, or vorticity,

are denoted by the suffixes r, u, z or m and taken as positive in the

same sense as the co-ordinates.

B.3 N,n, S Co-ordinates

The steamwise co-ordinate S is aligned to the relative velocity

vector W,




FIGURE B.1
r, 6, z CO-ORDINATES

FIGURE B.2: MERIDIONAL CO-ORDINATE
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Lying in the!'same type '2' stream surface is the N co-ordinate,

normal to the flow,

The co-ordinate n is perpendicular to the stream surface, and is

thus normal to both S and N co-ordinates,

N, n and S all have units of length and are shown in Figure B.3.
The positive directions of N, n and S &are arbitrary, but it is

convenjent to set them such that

oS ) a_N_a.nd f

oz or Po]:)

are all positive.




- 168 -

FIGURE B.,3: N,n,S CO-ORDINATES
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APPENDIX C

The Use of the Special Derivative

C.1 Special Derivatives on a Stream Surface

let a stream surface be defined by
f(r,8,2) = O,

If v is the unit vector normal to this surface, then

e R, V¥ .
T 2 Y2

da 34

I1f for some property q, St and 3z are partial deriviaties taken along
tne stream surface, then

2y — 23 - > 2y

Or or rY_ o206

E o9 -~ Y, o
and °y = 22 - % 23 .

oz oz rY. 06

H-OI

The special derivative %— is the rate of change of q with r on the
stream surface at constant z, whereas g% is the rate of change of q with
r at constant z and 8, |

The vectors v and F both act in the n-direction in the N,n,S

co-ordinate system, so that the components of v are proportional to the

respective components of F.

C.2 The Introduction of Special Derivatives in Forming Equations 3.3

No assumptions about axisymmetry have been made in obtaining
equations 3.3 from equations 3.2. This may be demonstrated as follows,
first re-analysing the 6-derivative of pressure,

dp dh - Tds
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Lap 3L - Tas + 1 (U
Y Y © 2 306
~1 3 (sz*wrz*wzz>
2 30
U2
U is the blade speed, sc %5 (0]
13p —31 ~T3s - [W. oW +W.3W, + W, s
T e 39736 20 26 o0 0 |
Following Wu (1952, equations 67 and 68), aig-t and BVS% may be replaced
to give
19p =31 ~T3s ~[W.aW, + W [3(V)-rf +E 9W>
_(5'5}(‘29"3— 306 [ 36 <3,~ fz Fo SO
_T'Wz 3 Vl/k)‘y‘g —f‘fz__ SWK
Z DY
"‘élj “Tiﬁi = BMA.< Wi, ~ A
96 o |36
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From the definitions of vorticity of Wu (1952),

I 3p-23I — T2s -[ W, >(rL +w<a(yv_ W,
755~ 58 a—é[f‘*gg> Z—Z—)rgz
R ARICAEEINS
, or o r

rlé + VV :BVV
) ZW‘]

This is the desired form for the circumferential pressure gradient
The body force F is defined by

F- -l

op vV,
Tpro.

00

so that its components are

F“‘ - A P_B -3 )
- oryv. o T e 55
F;. —_— Vr B
@r)}u §%
and Fz -

Equations 3.2 may be analysed using the results for op
the components of F

and for
e
to produce equations 3.3

The procedure is similar
for each equation; equation 3.2a is taken as an example

We [0 0) =2V w9k ~an| — oI
7[% ) aT] [ ‘*]—

_'rgé_ “-Zl
0z or 5: dr
Using special derivatives gives
(V) + > a(rV) -3 | -W, |3 + >, DV, -3~y
[‘i)va&)w ‘152 BL3F S oL 56
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~Y, ol + Ty, ds |
ry. 90 Y. o8

The contents of square bracket on the right hand side become

>0 36 F 50 20 Y 00 Y, 20

5]

Sy, [P ~Tas -V 3(el) - W, 3Y +W o DY + Wi vkav}
ry.

— =Y [ 3T ~T3 -W. 3% - \_’V_u,l(%‘/u) ~
“ rV.| 060 90 ~

@L

B

which is equation 3.3a,
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APPENDIX D

Blade Geometry

D.1 Blade Nomenclature

Angles marked in Figure D,l are positive for rotor rotation to

the left.
®; = fiuid iniet angle
®)' = blade inlet angle
¥, = fluid outlet angle
%' = blade outlet angle
i = inlet incidence angle, ¢y - 01'
8 = flow deviation angle, ag - Uz'
T = stagger angle
u = blade cambervangle, S “2'
N = number of blades
s = pitch of blades, 2mr/N
c = chord iength
b = maximum camber
a = location of maximum camber along chord line
t = blade thickness perpendicular to chord line

D.2 Howelli's Deviation Rule

The deviation, §, is introduced in Chapter 4. Given a required
fluid outlet flow angle, it is necessary to find the deviation before
the blade exit angle may be determined. Using the star superscript to
denote Howell's 'nominal' operating conditions,

s n
6* ot m ) (—) y
C

where for compressor cascades: n = 0,5, m = 0,23 (2&)2 + |ra]

e 500

(oo in degrees)
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and for inlet guide vanes and turbine cascades: n = 0,1, m = 0,19 .

1 1]

a' is the distance along the chord line to the point of maximum camber,
For circular arc camber lines~% = 0.5; for parabolic camber lines
0.25 <« % < 0,75, but is normally set at about 0.4.

Howell's blade design method provides graphical adjustments to
the deviation for operating conditions other than the 'mominal', but
because the flow incidence is included as a variable, the nominal condi-
tions may be satisfied by a range of cambers and associated staggers;
the judgement of the designer is called for here. The computer program
must be given the blade inlet angle.
The sign of the calculated deviation is inspected to ascertain that

the effect of applying the deviation will be to lessen the turning caused

by the blades,
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APPENDIX E

Blade Design

E.1 Parabolic Camber Line Design

The blade inlet and exit angles which must be matched in designing
a blade camber line, are given as angles from the axial direction, A
parabolic camber line constructed using the 7} and r directions (Section
5.5) as the co-ordinate axes will be part of a parabola symmetrical
about the T or [ axis. The alternatives available from such geometry
may not be suitable for practical blade design; for example, Figure E.1l
shows a parabolic camber line for a blade row wherein‘the swirl is to
be reduced to zero,

There is higher curvature towards the trailing edge than at the
leading edge, making the blade row susceptible to flow separation from
its convex surface,

By specifying the ratio a/c (Appendix D), the relative curvatures
near the ends may be controlled in the design, but this extra parameter
redefines the direction in the (7, () plane of the axis of symmetry of
the paravola.

The camber line may be designed by first constructing it on a
parabola symmetrical about the 1) axis, matching the ratio a/c and
only the difference vetween the blade inliet and exit angles, i.e. the
camper angle v. The whole construction is then rotated in the (T, ()
plane so that the blade angles themselves are correct.

Figure E.2 shows the process diagramatically. Angles A and B are
subtended between the ends of the camber line and the straight chord
line, Clearly,

0y T 09 = v =A - B,

Figure E.3 shows a construction of Rolls-Royce (undated) to deter-

mine A and B and hence the rotation required to produce the design

camber 1line,
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flow

FIGURE E.l : UNSUITABLE PARABOLIC CAMBER LINE
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Requirement for
blade shape

b e o cm— Gome T —— ———
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n

Construction on
parabola

FIGURE E.2: CAMBER LINE DETERMINATION
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From the geometry of Figure E.3,

/‘an /"}_26 _ 4—"/

“Ra-% 4%
wore # = Lt [ e 3-¢e)
) T — Fan v N Fant v “c ——C/

Referring to Figure E.2, points ((;, N1) and ({y, T2) are found
as ends of tne chord line., In determining intermediate loci on the
camber line, e.,g. point F, the corresponding value at f on the symmet-
rical parancolia is more easily found., Values on the straight chord lines
e and E are also simply found., The lengths ef and EF being equal, the

displacement at ¥ can be calculated,

E.2 The Application of Aerofoil Thickness Distribution Data to the

Transformed Aerofoil

The specification of an aerofoil profile includes the variation
of the material thickness with distance along the chord line., The

maximum thickness, t is given as a proportion of the chord line

max -’

tmax

length, e.g. p

= 0.1, and the value of t/tpax is given every few
per cent of chord line length.

If QI is the mapped q value of a grid point at which the thickness
is desired, then t/tpgy Must be found, not at [ = (j, but at some other
vaiue [ =(*, where the chord-normal, through QI on the camber line,
intersects the chord. Figure E.4 shows this construction,

The length EF being known from the considerations of Section E.1,

[*x - CI = EF sin 71 cos 7t

Figure E.5 shows that if the local blade angle is g, then the
circumferential component of thickness is t/cos g. For a row of N
blades, the '"Blockage Factor' B, at radius r is then

B=1- Nt/cos g
27r
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