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In light of recent concern over the extent of global warming and the role of soil carbon as a potential store of
atmospheric carbon, there is increasing pressure and demand for regions to estimate their current soil organic
carbon (SOC) stocks with the greatest possible accuracy. This study began by approaching the task in a similar
way to previous studies where attempts at calculating SOC baselines at global, national or regional scale have
usedmean values for soil orders andmultiplied these values by themapped areas of the soils they represent. It
also followed other methods that have approached the task from a land-cover point of view, making estimates
using only land-use, or soil order/land-use combinations and others that have included variables such as alti-
tude, climate and soil texture. The research assessed forms of stratificationwhich could improve these baseline
estimates by determining the major controls on SOC concentrations (%SOC) at the National Trust Wallington
estate in Northumberland, NE England (area=55 km2) where an extensive soil sampling campaign was used
to test what level of accuracy could be achieved in modelling the %SOC values on the Estate using a range of
existing national and local data.Mapped %SOC valueswere compared to the values predicted fromTheNational
Soils Resources Institute (NSRI) representative soil profile data for major soil group, soil series and land-use
corrected soil series values, as well as land-use/major soil group combinations from the Countryside Survey
database.
The results of this study show that:

• When only soil series or land-use was used as a predictor only 48% and 44% of the variation in the dataset
was explained.

• When soil series/land-use combinations were used explanatory power increased to 57%.
• Both altitude and soil pH proved to be significant controls on %SOC and including these variables gave an
improvement to 59%.

A further improvement from 59% to 66% in the ability to predict %SOC levels at point locations when farm
tenancy was included suggests that differences in land-management practices between farm tenancies could
be responsible for more of the variation in %SOC than either soil series or land-use.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Recent concerns over climate change and increasing levels of
CO2 in the atmosphere are strengthening the realisation that global
warming can be alleviated through a reduction in carbon emissions
and increased carbon sequestration. For a company, region or nation
to assess how much they need to reduce their carbon emissions to
become carbon neutral, they need an accurate assessment of their
current carbon stocks.

Soils store twice as much carbon as vegetation and two thirds as
muchas the atmosphere (Smith, 2004), therefore contributing a signif-
icant quantity to any region's carbon stocks. Any action taken by coun-
ll rights reserved.
tries or organisations to reduce their impact on climate change usually
requires a % reduction of their current emissions in respect to their
overall carbon stocks. It is therefore vitally important that any soil
organic carbon (SOC) stock estimates are as accurate as possible in
order to correctly quantify the emission reductions required. Accurate
estimates of SOC stocks and their spatial distribution is also essential as
it will highlight areas of high carbon storagewhich should be preserved
and protected, and areas of low carbon storage with the potential for
increase. The difficulty in estimating SOC stocks is revealed by the
variation in global stock estimates, ranging from 1000 to 3000 Gt C
(Schwartz andNamri, 2002). This is due to the large spatial variability in
SOC (Zhi-Yao et al., 2006) and the use of different databases and scales,
and therefore further investigation is needed to establish how best to
calculate the most accurate SOC stocks (Meersmans et al., 2008).
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Krishnan et al. (2007) recognise that several variables are respon-
sible for differences in SOC concentrations (%SOC); however they state
that many countries and regions do not consider these variables in
their SOC stock estimates, and instead base their estimation purely on
soil type, using the average %SOC value for a soil unit. Davidson and
Lefebvre (1993) raise the issue of how best to calculate SOC stocks,
questioning the use of mean values for soil series versus mean values
for major soil group, the implications of using different scale maps,
and the advantages/disadvantages of making estimates using land-
use rather than soil type values.

China's SOC stocks have been estimated using the soil survey
approach. This involved using mean SOC stocks for a soil type and
multiplying by its area. The stock estimates arrived at varied greatly
from 50 to 180 pgC (Yu et al., 2007). Davidson and Lefebvre (1993)
also used the soil survey approach but found issues relating to the
scale ofmap used, with a 13% difference in SOC stock estimates accom-
panying a change in scale from a 1:250000 to a 1:20000 map. Kern
(1994, cited in: Guo et al., 2006) used three methods: average value
for soil group, average value for soil series and average value for eco-
system. These provided a range of estimates from 621 to 845×108 Mg
for the USA's SC stock. Liebens and VanMolle (2003) used the average
value for soil type, and secondly the average value for soil type/land-
use combinations and found differences of up to 7% in SOC stock
estimates depending on the methods used. Coomes et al. (2002) also
used mean values for soil/land-use combinations and applied these
to the areas of those combinations. Stratification of an area into cate-
gories such as soil type followed by multiplication of point measure-
ments from the stratified areas by the land area of the stratification
can result in major inaccuracies. The point measurements may have
been taken from a small soil inclusion which has not been mapped
due to scale (Tompson and Kolka, 2005) and these soil inclusions
could have significantly different carbon contents to the soil series/
group which they are then taken to represent.

A better method of predicting a region or nations SOC stock needs
to be established as it is widely recognised that there are often large
coefficients of variation (CVs) in %SOC within a soil order (Wilding
et al., 2001; Davis et al., 2004). If the relationships between %SOC and
controlling factors can be better established it will provide a more
accurate guide to the reliability and accuracy of current SOC bank esti-
mates. The more accurate models that can be made, the less time and
money will need to be spent on extensive sampling and analysis to
establish SOC baselines.

Krishnan et al. (2007) have identified a range of variables con-
trolling %SOC, including pH, vegetation type, land-cover, temperature,
rainfall and soil texture. Tompson and Kolka (2005) are among many
authors that have expressed the need to identify the spatial controls
on %SOC in order to be able to better estimate SOC stock. They found
terrain attributes to be a major control and including this variation in
the estimation produced a value 2 times greater than using soil survey
data alone. Campbell et al. (2008) found large differences in an esti-
mate produced by the soil survey approach and one produced by in-
cluding temperature, precipitation and land-use history. Factors found
in other studies to control the spatial distribution of %SOC include
soil moisture, temperature and texture (Yang et al., 2008), elevation
(Powers and Schlesinger, 2002), historical land-use (Schulp and Veld-
kamp, 2008), precipitation (Dai and Huang, 2006) texture, drainage
and slope (Tan et al., 2004), forest management practices and land-use
age (Schulp et al., 2008), slope aspect, elevation and terrain attributes
(Mueller and Pierce, 2003). Although other research has found manage-
ment practices to control %SOC levels due to different levels of organic
matter input, grazing intensity and soil disturbance (Venteris et al., 2004;
Huang et al., 2007; Frazluebbers and Stuedemann, 2009), it has not been
common practice to include this variable in estimating an area or regions
SOC baseline.

As the largest non-government landowner in the UK (owning
more than 250000 ha), The National Trust wants to do as much as it
can to reduce its carbon emissions and increase its carbon stores. It has
therefore set up a pilot project to assess its carbon stocks within its
estate and as such it has chosen its largest single and most diverse
estate (TheWallington Estate) in order to developmethods and under-
standing. The aim of this study is to compare the various options
available for calculating the National Trust's Wallington Estate SOC
baseline, and to compare the results of soil samples taken from the
field with estimates that would be produced if only secondary data
were available. The results of this should suggest the important factors
needed to estimate %SOC levels, and identify the information needed
in order to accurately calculate SOC baselines for other National Trust
estates across the UK, as well as suggest important variables which
need to be considered in any researcher's attempt to estimate %SOC
values and SOC stocks.

2. Materials and methods

2.1. Study site

TheWallington estate is the largest area of contiguous land owned
by the National Trust in the UK, covering an area of 55 km2. It is located
35 kmNorth of Newcastle Upon Tyne (Fig. 1). The extent and variation
in land-use, altitude and soil type across the one estate (Fig. 2) make
it the perfect location to attempt to identify controls on %SOC typical
of at least England. The majority of land is leased to agricultural ten-
ancies undertaking livestock and arable farming, and a further large
component is currently leased to the Forestry Commission, operating
as a commercial coniferous plantation. Small areas of the estate are
under natural woodland as field margins. Altitude ranges from 100 m
in the Southern end of the estate to over 350 m above sea level in the
Northern areas under Harwood Forest. The estate is covered by a range
of soil types, including mineral soils, organo-mineral soils (seasonally
waterlogged with 15–40 cm thick black surface organic horizons) and
organic soils (deep peats with N40 cm thick organic horizons). The
data in this study only refers to the results collected frommineral and
organo-mineral soils, as it is realised that organic soils behave differ-
ently and may not be controlled by the same variables.

2.2. Estimate of %SOC values using soil samples

As spatial variation in %SOC can be very large (Saby et al., 2008), a
high sampling density was required. A total of 618 mineral/organo-
mineral soil samples were collected during the period September
2007 to May 2008.

For each sample taken in the field a GPS locationwas recorded and
notes of the altitude, aspect and land-use were made. Any relevant
notes on landscape position (e.g. topographic decline) were also taken
as this is recognised to control %SOC (Dick and Gregorich, 2004). The
land-use at each sample point was classified into the following cate-
gories: arable, improved temporary pasture, improved permanent
pasture, rough pasture, lowland woodland and forestry plantation.
Classification was made using the National Trusts Biological survey
(Hewins et al., 2001) as a guide, combined with subjective observa-
tion in the field and information provided by tenant farmers. It was
recognised that any soil samples taken would need to be accurate
representations of the area in order to provide reliable results (Cook
and Ellis, 1987). Before entering the field initial references to ordnance
survey, soil maps and National Trust Biological survey maps were
made to get an idea of the distribution of potential influencing factors
within each field and any areas of particular interest. In fields that
appeared highly homogenous (uniform aspect, land-cover, altitude,
drainage etc.) a simple random sampling technique was adopted. In
fields with a heterogeneous character a more intense sampling rate
was used. In large fields a stratified random sampling technique was
adopted to break down each field into a number of subpopulations
and then a random sample taken from each. Stratification was based



Fig. 1. Wallington location in North East England.
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on topography, slope aspect and vegetation cover. Samples from areas
close to field boundaries were avoided due to the possibilities of com-
paction from machinery resulting in an unrepresentative sample, as
were the corners of fields (which may have been sites for crop and
fertiliser storage), gate entrances and other unrepresentative areas.
Attempts have been made to take samples from every field belong-
ing to each tenant farm; however time limitations have meant that
some fields remain un-sampled. As a quality control check and to
ensure sufficient sampling of the major soil/land-use combinations,
it was ensured that each combination covering N1% of the estate was
sampled.
Fig. 2. Land-use and soil series distribution at Wallington.
Measurements of %SOC were made by collecting a sample using
either an auger or by digging to a depth of 22 cm.A soil samplewas then
taken from the 18–22 cm layer, giving a value for %SOC at a depth of
20 cm across the estate: 20 cm was chosen as it is the depth to which
SOC in mineral soils is most likely to be affected by land-use change,
(Woomer et al., 2001; Cheng andKimble, 2001; Kimble et al., 2001) and
is the depth used in several similar studies (e.g. Nyssen et al., 2008).

The Wallington estate boundary was entered into ARC GIS and
the National Soils Resources Institute (NSRI) map was used to create
feature classes for soil series, major soil group, land-use and farm
tenancy respectively. The mean %SOC values from the 618 soil samples
were then calculated for each soil series, major soil group, land-use
category and farm tenancy respectively. This value was applied to the
area of each feature class to which it represented.

2.2.1. Analysis of %SOC
All samples were dried overnight at 105 °C and stored. Loss On

Ignition (LOI) and the Walkley–Black wet oxidation method (De Vos
et al., 2007) were used to establish %SOC in each sample. In the first
method the samples were placed in a furnace overnight at 500 °C to
burn off the organic matter. % organic matter (OM) was then calcu-
lated by subtracting the final weight from the weight of the air-dried
sample. In the second method organic matter within the soil was
oxidised with acidified Potassium Dichromate to CO2. Any unused
Potassium Dichromate was back titrated with Ammonium Ferrous
sulphate and %SOC calculated. Triplicate or duplicate measurements
were made on each individual sample.

Although the carbon content for the large majority of samples
was estimated using both methods, time limitations meant that some
samples were only analysed by LOI. Accurate estimates of the %SOC of
these samples were however made using a regression equation from
previous calibration of the methods. This method of applying a re-
gression equation was also used by Garnett et al. (2001).
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2.2.2. Clay content and pH
Several studies have found a significant relationship between %SOC

and clay content due to chemical protection of microbial decay (Grigal
and Berguson, 1998; Paul et al., 2002; Leifeld et al., 2005; Axel Don
et al., 2007). As well as providing physical protection, Jones et al.
(2005) state that soils with higher clay contents generally have higher
%SOC due to greater moisture levels and lower aeration inhibiting
oxidation. To establish if clay content is controlling %SOC, particle size
distribution was measured using the centrifuge method (Tan, 1996).
Although a largemajority of studies use the Pipettemethod, time limi-
tationsmeant the centrifugemethodwas chosen as it produces results
just as accurate as other methods (Tan, 1996). Again due to time limi-
tations all 618 samples could not be analysed for clay content. All
samples were entered into a General Linear Model (GLM) and those
under the Soil/land-use combinations covering the largest areas of
the estate, with particularly high or low %SOC values for their soil/
land-use category were chosen for analysis: in total 160 samples were
analysed for clay content.

Higher pH results in greater microbial activity (Jones et al., 2005),
meaning greater organic matter mineralisation is expected. Measure-
ment was undertaken to establish if a relationship exists between soil
pH and %SOC on all 618 samples. pH was measured using a glass elec-
trode and pH meter following the method of Rowell (1994) and Tan
(1996). Although this method of determining soil pH in water will
never give an absolute value, comparisons between soil types can be
made with confidence (Rowell, 1994).

2.2.3. Land-use history (years in current land-use)
A detailed land-use history was required to assess which soil

carbon pools are in equilibrium and which are adjusting to previous
land-use change (Stevens and Van Wesemael, 2008). This was done
by interviewing the tenant farmers regarding their land-use from
1980–2008, following the approach used byNyssen et al. (2008). Limi-
tations at this stage included the fact that some of the tenants are
relatively new to the estate and had to make a best guess of land-use
during the earlier period.

2.2.4. Water content
Although the water content of soil could be a significant factor

affecting SOC levels it has not been measured in this study. This was
due to the widespread sampling interval spanning September to May,
and the realisation that water content would be to some extent influ-
enced by the time of year the sample was taken (Hamer et al., 2008).

2.3. Estimate of soil carbon using published soil survey data and maps

2.3.1. NSRI data
The NSRI soil map of the region (1:50000 scale — Payton and

Palmer, 1989) was digitized and the Wallington estate boundary over-
lain with each individual soil series given a feature class. The %SOC
contained within the top 20 cm of a representative profile for each soil
series was obtained from soil survey publications: this involved refer-
ring to soil surveys from across the country to find representative pro-
file descriptions for all soil series present at Wallington. The %SOC
contained within the top 20 cm of a major soil group was found by
calculating the mean value of the soil series within that soil group.
Major soil groups were classified by reference to Payton and Palmer
(1989). The representative soil profiles did include a classification of
what land-use each soil profile was under at the time of sampling. For
a large number of profiles this was permanent grassland, although
some profiles were taken under arable, rough grassland and wood-
land. The land-use informationwas then used to estimate %SOC values
for land-uses under which soil series at Wallington occurred, but
which were not represented in the NSRI representative profiles. This
was done by calculating conversion factors for the limited soil series
under which a variety of land-uses were represented in the NSRI data-
base, and applying these conversion factors to all soil series present
at Wallington. This was done to investigate if soil series/land-use
combination valueswould improve estimates of %SOC. The %SOCmaps
of the estate were then produced by assigning the mean value for that
soil series or major soil group to the area of the soil series/major soil
group.

2.3.2. (CSS) Countryside Survey data
The Countryside Survey database is funded by the Department

for Environment, Food and Rural affairs and the Natural Environment
ResearchCouncil (Countryside Survey data ©NERC—Centre for Ecology
&Hydrology. All rights reserved). It details information relating to land-
use, habitat types and soil data from a random sample of 1 km grid
squares across Great Britain and provided 760 point measurements of
SOC values frommineral and organo-mineral soils analysed in 1998 and
2000. Major soil group and land-use data was provided for each %SOC
measurement, allowingmeanvalues to be calculated for eachmajor soil
group, land-use and major soil group/land-use combination present at
Wallington. The data from the 2000 Countryside Survey data was split
into separate land-uses and classified into one of the five land-uses
identified at Wallington. The land-use in italics refers to the Country-
side Survey classification and that in brackets to the new classification:
Crops/weeds (arable); Fertile grassland (improved pasture); Infertile
grassland/heath/bog/moorland grass/mosaic/tall grassland/herb
(rough pasture); Lowland wooded (woodland); and Upland wooded
(forestry plantation).Meanvalueswere then assigned to each soil poly-
gon (from the NSRI map), each land-use area (from fieldwork obser-
vation and local knowledge) and each soil type/land-use combination.

2.3.3. Statistical analysis
The sampling design conducted within this study could be con-

sidered as a three factor experiment with multiple covariates. The
three factors are: soil series (and or main soil group); land-use and
farm tenancy. All three factors were entered into a General Linear
Model (GLM) as categorical variables using Minitab statistical soft-
ware. The covariates considered are: altitude, pH, clay content, slope
angle and years in current land-use (all continuous variables). This
means that thedata canbeanalysedbyanalysis of covariance (ANCOVA).
Results were considered statistically significant if pb0.05 (95% con-
fidence interval). The results of ANCOVA were post-hoc tested using
the Tukey test and proportion of the original variance explained by
factor and covariate was calculated using the ω2 method of Howell
(2002). Tomeet the requirement of ANCOVA that all data are normally
distributed all %SOC at 20 cm depth data were log transformed. De-
scriptive statistics were used to compare the variability within the
different levels of soil or land-use classification.

3. Results and discussion

When comparing coefficients of variation (CV) for individual soil
series/land-use combinations the combinations covering either less
than 1% of the estate or with less than 5 samples were eliminated.
During creation of the %SOC maps any combinations of soil/land-use/
tenancy which were un-sampled were left blank.

3.1. SOC estimate using field samples

3.1.1. Stratification into major soil group
Large CVs ranging from 16.14% to 48.18% show that there is an

extensive amount of variation in %SOC within some major soil groups
(Table 1), indicating that there is not a strong relationship between
major soil group and %SOC and that other factors are important. The
large sample number of 368 for Surface-Water Gley Soils (Avery,1980)
confirms that it is not small sample numbers that are responsible
for high CVs. Although there are statistically significant differences
(pb0.05) between some major soil groups, the fact that only 16.18% of



Table 1
%SOC variation within different soil groups, soil series and soil series/land-use categories: decreasing variation when both soil series and land-use class are known.

S groupa(Nb) Mean CVc S seriesd(N) Mean CV Land-use(N) Mean CV Land-use(N) Mean CV

Disturbed(8) 5.19 16.14 92(8) 5.19 16.14 IPe(1) 4.68 Arable(94) 2.73 24.9
ITf(3) 4.56 24.36 Forestg(61) 15.67 28.4
RPh(4) 5.87 10.27 IP(128) 3.70 23.9

Browni(188) 3.32 24.84 Heapey(13) 4.51 37.35 Arable(29) 2.54 17.32 IT(81) 3.10 28.1
Nercwys(137) 3.23 21.51 IP(47) 3.44 22.49 IP(241) 5.15 39.8
Waltham(30) 3.14 24.28 IT(32) 3.06 22.38 Woodj(8) 4.55 37.19

RP(80) 3.70 22.84
GWGk(26) 3.84 34.16 Belmont(3) 20.28 12.60 Arable(4) 3.26 30.40

Enborne(19) 3.92 29.42 IT(4) 2.26 49.05
RP(18) 4.49 26.79

Lithl(4) 8.63 42.04 IP(1) 3.88
RP(3) 11.27 37.07

Podm(20) 14.54 26.25 Cartington(9) 18.70 13.30 Forest(15) 15.41 23.69
IP(2) 10.94 29.24
RP(2) 9.64 65.40

SWGn(368) 5.05 48.18 Brickfield(125) 3.45 27.36 Arable(61) 2.80 26.30
Dunkeswick(33) 3.16 38.88 Forest(46) 15.77 30.09
Greyland(53) 3.44 20.69 IP(77) 3.74 20.86
Kielder(22) 8.20 35.51 IT(42) 3.14 29.13
Ticknall (13) 3.16 23.95 RP(134) 6.19 40.51
Wilcocks(122) 9.62 39.06 Wood(8) 4.55 37.19

a Major soil group.
b Number of samples.
c Coefficient of variation (%).
d Soil series.
e Improved permanent pasture.
f Improved temporary pasture.
g Forestry plantation.
h Rough pasture.
i Brown soils.
j Woodland.
k Ground-water-gley soils.
l Lithomorphic soils.
m Podzols.
n Surface-water-gley soils.
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the %SOC values from samples collected in the field can be predicted
from the mean values for major soil group (Table 2) indicates that
major soil group is not sufficient information to correctly predict any
SOC baseline. Table 3 shows that this can be expected due to the large
Table 2
The predictive value of SOC baseline estimates using different data sources and
classification methods.

SOCa mean value data from

NSRIb

MSGc
NSRI
SSd

CSe

MSG
CS
LUf

Wallg

MSG
Wall
SS

Wall
LU

Altitude pH Farmh %SOCi

✓ 16.85
✓ 48.35
✓ ✓ 58

✓ 15.97
✓ 44.75

✓ ✓ 51.53
✓ 16.18

✓ 48.69
✓ 45.25

✓ ✓ 48.96
✓ ✓ 57.72
✓ ✓ ✓ 64.58
✓ ✓ ✓ ✓ ✓ 66.65
✓ ✓ ✓ ✓ 59.27

a Soil organic carbon.
b National Soils Resources Institute.
c Major soil group.
d Soil series.
e Countryside Survey.
f Land-use.
g Wallington.
h Farm tenancy.
i Soil organic carbon concentration correctly predicted.
range in altitude and land-use beneath the one major soil group. The
%SOC map produced by this method is shown in Fig. 3a.

3.1.2. Stratification into soil series
Smaller CVs ranging from 12.60% to 39.06% indicate less %SOC

variability within soil series (see Clayden and Hollis, 1984 for classi-
fication) than major soil group (Table 1) and that soil series is a better
predictor of %SOC. Two out of the three soil series within the Brown
Soils (Avery, 1980) group have a lower CV than for the category Brown
Soils, indicating that stratification into soil series is a more accurate
method for estimating SOC stock. This is supported by the fact that
both soil series within the Ground-Water Gley Soil (Avery, 1980)
category have lower CVs than the major soil group (12.6% and 29.24%
compared to 34.16%). Within the Surface-Water Gley major soil group
all soil series have lower CVs compared to the CV for major soil group
(48.18%).
Table 3
Different levels of stratification, their areal coverage and ranges in other controls on
%SOC.

Stratification %SOC
predicted

Area
(km2)

Altitude
range (m)

No. of
soil
series

No. of
land-
uses

No. of
farms

Major soil group 16.18 34.86 188 7 4 17
Land-use 45.25 11.92 167 22 1 16
Soil series 48.69 8.88 122 1 4 12
Farm 55.46 2.47 35 9 3 1
Soil series/land-use 57.27 4.25 124 1 1 10
Soil series/land-use/
altitude

59.27 1.41 15 1 1 7

Soil series/land-use/
altitude/farm

66.65 0.42 15 1 1 1



Fig. 3. %SOC distribution estimated using mean values from: a) Fieldwork major soil group; b) Fieldwork soil series; c) Fieldwork land-use; d) Fieldwork major soil group/land-use;
e) Fieldwork soil series/land-use; f) Fieldwork soil series/land-use/farm tenancy; g) NSRI major soil group; h) NSRI soil series; i) Countryside Surveymajor soil group j) Countryside
Survey land-use; k) Countryside Survey major soil group/land-use. %SOC = soil organic carbon concentrations.
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There is a significant improvement from 16.18% to 48.69% in the
ability to predict %SOC values correctly from the mean value for soil
series rather than major soil group (Table 2). Statistically significant
differences between several soil series further indicate that soil series
is having some degree of control on %SOC levels. The %SOC map pro-
duced by this method is shown in Fig. 3b. Reference to Table 3 again
indicates how this can be expected due to a smaller range in altitude
beneath the one soil series than the one major soil group.

3.1.3. Stratification into land-use
CVs ranging from 23.97% to 39.89% indicate less variability within

land-use categories than within major soil groups (Table 1, columns
10–12 compared to 1–3), however the lowest CV of 23.97% compared
to the lowest CV for soil series of 12.06% suggests that some soil series
have less variation than some land-use classes. This indicates that
generally soil series is a better predictor of %SOC than land-use, if
this is the only information available. This is confirmed by the lower
r2 value of 45.25% indicating less chance of correctly predicting %SOC
at a specific location if the estimate is based purely on land-use as
opposed to soil series. There are however statistically significant dif-
ferences between arable and forestry, rough permanent pasture and
improved permanent pasture; forestry and all land-uses; improved
permanent pasture and rough permanent pasture; improved tempo-
rary pasture and rough permanent pasture, suggesting that land-use
is having some influence on %SOC. The %SOC map produced by this
method is shown in Fig. 3c. Reference toTable 3 shows how the area of
the estate covered by an individual land-use is large, therefore cover-
ing a large range in altitude and soil series, whichwill again be respon-
sible for the variation in %SOC beneath a particular land-use.

3.1.4. Stratification into farm tenancy
The range in CVs from 15.28% to 40.91% indicate that some farm

tenancies have much less variation in %SOC than others, most likely
due to some having various land-uses and soil types, compared to
others with one dominant land-use and soil type. An r2 value of
55.46% suggests that farm tenancy is a better predictor of %SOC than
soil series or land-use if this is the only information available onwhich
to estimate %SOC. The majority of tenancies show no significant dif-
ferences, however there are 3 farms with significantly higher %SOC
values, therefore, although estimation of SOC stocks based on strati-
fication into farm tenancy will produce an estimate more accurate
than soil group, soil series and land-use stratifications respectively,
this is most likely the result of inconsistencies in the other variables
affecting %SOC between farms. Single variant analysis cannot establish
whether farm management practices are responsible for %SOC varia-
tion due to differences in soil series, land-use, altitude and other vari-
ables between farms.

3.1.5. Stratification into major soil group/land-use
The CVs for all land-uses within the major soil group Brown Soils

are lower than the CV for just Brown Soils (Table 1, columns 7–9
compared to 1–3). Within the major soil group Ground-Water Gley



Table 4
Controls on %SOC: the greater impact of farm tenancy compared to land-use and soil
series: an indication of land-management effects.

Variable Magnitude of effect (%)

pH 5.14
Altitude 13.47
Soil series 9.17
Land-use 19.67
Farm tenancy 35.29
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soils, the land-use categories arable and rough pasture have lower CVs
than for the Ground-Water Gley Soil category. Rough pasture within
the Lithomorphic Soil (Avery, 1980) category has a lower CV than the
category Lithomorphic Soils, and all land-use categories within the
major soil group Surface-Water Gley have lower CVs than the CV for
Surface-Water Gley. This confirms that stratification into major soil
group/land-use category would achieve a more accurate estimate of
%SOC compared to stratification using major soil group alone. This
is also confirmed by the large increase in r2 from 16.18% to 48.96%.
Stratification of the area into major soil group/land-use categories
would also provide a more accurate estimate than stratification into
land-use (r2=45.25%) and soil series (r2=48.69%). The %SOC map
produced by this method is shown in Fig. 3d.

3.1.6. Stratification into soil series/land-use
As mentioned earlier, access difficulties and remote areas of small

soil series inclusions meant that a mean value for each soil series/
land-use combination at Wallington has not been measured. The re-
sult of this is that the predictive value of using the mean values to
estimate %SOC values for these soil/land-use combinations cannot be
assessed. These areas however tend to cover less than 1% of the estate
and therefore inaccuracies in calculating total %SOC levels as a result
of this are small.

Within the soil series Breamish, 4 out of 5 of the land-use cate-
gories have lower CVs than Breamish; all land-uses within Dunkes-
wick have lower CVs than Dunkeswick, as is the case with land-uses
within Greyland, Nercwys and Wilcocks soil series. The large increase
in r2 to 57.72% indicates that soil series/land-use stratification is the
most accurate method of predicting SOC stocks if you only have infor-
mation relating to soil type and land-use. The %SOC map produced by
this method is shown in Fig. 3e.

3.1.7. Stratification into soil series/land-use/farm tenancy combinations
If however you also know which farm tenancy the land-use and

soil series is located under, the probability of correctly predicting
%SOCwill be improved from57.72% to 64.58%. The CVs for all tenancies
within the category Brickfield/arable are lower than the CVs for soil
series stratification into Brickfield and land-use stratification into
arable. The CVs for both Newbiggen and Prior Hall within the category
Brickfield/arable are lower than the CVs for stratification based purely
on tenancy. The same is true of many other soil series/land-use/ten-
ancy stratifications. The %SOC map produced by this method is shown
in Fig. 3f.

Although there is a statistically significant difference betweenmany
of the farm tenancies under the same soil series and land-use, the pos-
sibility that this could be the result of other potential %SOC controlling
factors including altitude, pH and clay content must be investigated.

Regression analysis of %SOC against altitude reveals that 41.5% of
the variance in %SOC can be explained by altitude. Again however,
single variance analysis at such a complex site is insufficient to estab-
lish the factors controlling %SOC. Soil series and land-use as well
as tenancy are all governed to some extent by altitude. The r2 value
of 41.5% does however reveal that having information only relating
to altitude would produce a SOC estimate of greater accuracy than
stratification into major soil group alone. Regression analysis of %SOC
against pH reveals that 32.8% of the variance in %SOC can be explained
by pH: the same issues relating to single variance analysis again how-
ever exist. Although it is unlikely that you would have information
relating to soil pH andnot altitude, land-use, soil series or farm tenancy,
if this was the case, you would be able to achieve a more accurate
estimate of SOC using pH as a predictor rather than major soil group
alone.

Other factors which were also thought to be possible controls
on %SOC including land-use history (years in current land-use), slope
aspect, slope angle and clay content were also included in the model
but did not have a statistically significant affect on %SOC (pN0.05).
3.1.8. Stratification into soil series/land-use/farm tenancy/altitude/pH
Inclusion of altitude and pH in the model increased the r2 value

from 64.58% to 66.65% and both factors were identified as having a
statistically significant affect on %SOC (Table 2).

To assess the impact of classification into farm tenancy on %SOC
estimates, farm tenancy was removed from the model (leaving soil
series, land-use, altitude and pH), and the statistically significant dif-
ferences between land-uses were compared to the statistically sig-
nificant differences between land-uses in the model stratified by farm
tenancy (soil series, land-use, farm tenancy, altitude and pH). At a
specific altitude, land-use, soil series and pH, when tenancy is kept
constant there is no longer a difference between arable and improved
permanent pasture. This suggests that without the inclusion of ten-
ancy there was a larger spread in the %SOC values found under these
categories. With tenancy included there is now a difference between
arable and improved temporary pasture suggesting that there was
previously a larger spread in the values for these categories and these
have been reduced with stratification into farm tenancy. There is no
longer a difference between forestry and rough pasture suggesting
that the spread of %SOC values for rough pasture are greater across the
entire Wallington estate than they are within tenancies, indicating
that different levels of management practice within rough pasture
are causing differences in %SOC. There is now a difference between
improved permanent pasture and rough pasture suggesting that the
CVs for these categories have become more constrained. This again
suggests that farm management practices within these categories
are controlling %SOC levels. There is no longer a difference between
improved temporary pasture and rough pasture. This again suggests a
reduction in variation within land-use classes when stratified by farm
tenancy.

The role of farm management practices on %SOC is emphasised
when the magnitude of the effect of each variable is analysed. When
altitude, soil series, land-use, farm tenancy and pH are constant, a
change in any of these variables has a statistically significant affect on
%SOC. Themagnitude of the effect of each variable is shown in Table 4.
These results indicate that farm tenancy has a greater influence on
%SOC than both land-use and soil series. The generally good model fit
is shown in Fig. 4; however the prediction of 66.65% of %SOC values
with these variables included means that 33.35% of the variation is
still unexplained.

3.2. SOC estimate using published soil survey data

3.2.1. NSRI data
Regression analysis of the 618 samples versus the mean values

formajor soil group from the NSRImap series indicates that only 16.8%
of the %SOC values could be correctly predicted from the mean values
for these soil groups. The %SOCmap produced by thismethod is shown
in Fig. 3g. Using mean values for soil series from the NSRI map series
would produce a significantly better estimate, correctly predicting
48.35% of the %SOC values. The %SOC map produced by this method
is shown in Fig. 3h. However, the r2 value of 48.35% shows that more
than 50% of the observed variation is unexplained, and that other
variables must be included. Usingmean values for soil series/land-use



Fig. 4. Modelled values of SOC versus residuals: using soil series, land-use, altitude, pH
and farm tenancy as inputs.
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combinations calculated from a limited NSRI database increased the
estimate further still to 58%, indicating the major importance of land-
use on %SOC values.

3.2.2. Countryside Survey data
Regression analysis of the 618 samples versus the mean values for

major soil group from the Countryside Survey database indicates that
only 15.97% of the %SOC values could be correctly predicted from the
mean values for these major soil groups. The %SOC map produced by
this method is shown in Fig. 3i. Using mean values for land-use would
produce a significantly better estimate, correctly predicting 44.75% of
the %SOC values, however the predictive value is increased further still
when mean values for major soil group/land-use combinations are
applied. Applying these values correctly predicts 51.53% of the varia-
tion in the measured %SOC data. The %SOC maps produced by these
methods are shown in Fig. 3j and k.

These results suggest that the Countryside Survey database is
the more accurate of the two methods for calculating SOC baselines if
no local soil sampling and fieldwork is available, and only raw data
provided by the two sources is used, however the highest r2 value of
51.53% implies that other variables are controlling %SOC levels and
should be included to achieve greater accuracy. Although the CSS
is predicting 51.5% of the %SOC values correctly, the green and blue
colours in Fig. 3i, j and k show that the CSS is predicting values that
are systematically too high for the more organic rich soils and areas of
rough pasture. This is very important when calculating SOC stocks and
although the majority of this study refers only to %SOC values rather
than SOC stocks, a comparison of SOC stocks at this point emphasises
this point. NSRI data for soil series would predict a carbon stock for the
top 20 cm of soil on the estate of 556.13Kt C, CSS data for major soil
group/land-use combinations would produce a carbon stock value of
1188.43Kt C and fieldwork values for soil series/land-use combina-
tions a carbon stock value of 785.24Kt C.

The accuracy of predicting %SOC values can be increased using pub-
lished data if NSRI data is manipulated and soil series %SOC values are
converted to take account of land-use.

3.3. Discussion

This study highlights the issues of scale involved in calculating SOC
baseline inventories. Examination of Table 3 indicates why applying
the mean %SOC value for a particular major soil group gathered from
an area as large as 55 km2 will limit the accuracy of the prediction, due
to the large range in other possible controls on %SOC beneath that one
land-use. The same is true when applying mean values taken from a
particular land-use or soil series covering such a large scale. Applying
mean %SOC values taken from beneath one particular farm tenancy
could possibly increase the accuracy of the estimate due to the farm
covering a much smaller scale than a particular land-use, major soil
group or soil series (Table 3), therefore decreasing the variation in
altitude beneath that feature class, however the range in land-uses
undertaken by that one farm tenant are likely to be just as great, and
therefore even at this small scale %SOC variation can be large. The
application of mean values collected from national databases such as
the CSS or NSRI will result in even less accurate %SOC estimates as a
result of the values being taken from an area of a much greater scale
(national level), increasing the likelihood of an even greater range in
altitude and other possible controlling factors of %SOC beneath that
one land-use or soil group/series etc. This study reveals that for the
Wallington Estate in North East England the most accurate estimates
of %SOC for particular locations are made when mean values taken
from the same particular land-use/soil series/altitude/farm tenancy
combination as that of the area in question are applied. Table 3 em-
phasises how the application of thesemean valuesmay be responsible
for the increase in predictive accuracy due to themuch smaller scale of
the estate covered by a land-use/soil series/altitude/farm combina-
tion compared to the scale of the estate covered by individual factors
such as major soil group.

Although it was earlier suggested that soil series is a better pre-
dictor of %SOC than land-use, this was based on single variance anal-
ysis and is likely the result of soil series having a smaller variation in
altitude and pH than land-use (Table 3). When altitude and pH are
constant, land-use has been identified as a better predictor of %SOC
than soil series, but more importantly farm tenancy is also a better
predictor than soil series. This is confirmed by the greater magnitude
of the effect of farm tenancy (35.29%) compared to that of soil series
(9.17%) and land-use (19.67%) when all other variables are constant.
This research suggests that different farmmanagement practiceswith-
in a land-use category are causing differences in %SOC, and therefore
that land-use stratification into the categories arable, improved tem-
porary pasture, improved permanent pasture, forestry and woodland
is not sufficient on which to base SOC baseline estimates.

Table 2 shows the predictive value of %SOC estimates produced
using different combinations of the variables discussed here. Compar-
ison of the bottom 4 rows indicates that farm tenancy is an important
variable to include and emphasises the suggestion that farm manage-
ment practices are controlling %SOC. Examination of Table 3 also rein-
forces this suggestion. Although the scale of the land area fromwhich
the mean %SOC is calculated has declined when stratification of soil
series/land-use/altitude classes is increased into soil series/land-use/
altitude/farm tenancy classes, there is no decline in the number of
other possible controls on %SOC. It must therefore be either land-
management differences between farms, or some other unidentified
factor which also varies under different farms that is responsible for
the observed variation in %SOC.

Although this research highlights the importance of including farm
management practices in any SOC predictions, it has not identified
what precise farm management practices are responsible for increas-
ing SOC levels. It has been suggested that fertiliser use can cause a loss
of CO2 to the atmosphere (Zhang and McGrath, 2004), however this is
not taken into account when predicting SOC baselines and is an area
needing further research. Although many attempts at predicting SOC
baselines have stratified the areas into land-use, recognising a differ-
ence between improved and unimproved agricultural grassland, this
study suggests that this stratification does not go far enough, and that
factors such as fertiliser type and application rates as well as grazing
intensity and typemay be other factors playing a major role (Soussana
et al., 2004). Sonneveld et al. (2002) also recognise the need for further
research into this area, quote: “Distinguishing between mowing and
grazing regimes or specific silage maize cultivation practices might
further explain the variability observed.”
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Much recent literature has attempted to establish the role of fer-
tiliser input on SOC stocks (Triberti et al., 2008; Purakayastha et al.,
2008), however these factors are rarely considered when establishing
SOC baselines. Dedonker et al. (2004) reveal that organic amendments
increase soil carbon levels. A lack of disturbance reduces outputs. Pre-
vious studies have found animal manure incorporation to increase
carbon accumulation, as well as sewage sludge incorporation, straw
incorporation and no-till management. These previous findings com-
bined with the results of this study go towards further confirming
that SOC is affected by agricultural management (Frazluebbers and
Stuedemann, 2009) due to changes in the levels of organic matter
input and soil disturbance. Crop type, crop rotation, tillage type, fertil-
iser use and organic amendments all influence the amount and distri-
bution of the organic matter within the soil. Management practices
also influencehoworganicmatter is lost as a result of soil erosion, plant
harvest and microbial decomposition. Differences in %SOC between
farms located at similar altitudes and on similar soil types at Walling-
ton help to emphasise that land-management practices such as these
have a large impact on SOC levels. Despite this realisation, farmmana-
gement is often ignored when predicting SOC levels for un-sampled
regions. Franzluebbers et al. (2001, cited in: Frazluebbers and Stuede-
mann, 2009) found greater SOC accumulation in pastures that were
grazed by cattle in summer compared to those that were not grazed. In
other studies however, no differences have been found between lightly
grazed and unharvested grasslands— but differences have been found
between those that are heavily grazed and unharvested. The results are
verymixed but there is clearly a difference resulting frommanagement
practices, supporting the results of this research, confirming that SOC
baselines and estimations without consideration of these factors will
be inaccurate.

The use of secondary data to estimate a SOC bank has many limi-
tations. Although the %SOC values estimated for the estate using NSRI
mean values for soil group or soil series can correctly predict approxi-
mately the same % of %SOC values as using the mean values collected
in the field (16.85% using NSRI major soil group, 16.18% using field-
work major soil group, 48.35% using NSRI soil series and 48.69% using
fieldwork soil series), examination of maps produced by these ap-
proaches (Fig. 3) reveal many spatial differences in the %SOC values
across the estate depending on the source of data. This method of
estimation relies on soil survey datameasured in the 1980s to calculate
the soil carbon stock and could be inaccurate due to land-use change
and climate change since the period of survey (Gao et al., 2008). The
same inaccuracies are therefore likely in any attempt to calculate a
region or organisations carbon stock in Britain using the NSRI data-
base, and could be responsible for the range in estimates of SOC stocks
and maps produced in this study. The majority of NSRI surveying was
undertaken in the 1970s/1980s and climate/land-management change
could have resulted in a change in soil carbon values for the same soil
types under present day conditions (Bellamy et al., 2005; Smith et al.,
2007). This could help to explain the differences in %SOC calculated in
this field study and those that would be predicted for the Wallington
site using NSRI data from earlier decades.

This study shows that predicting a SOC bank based entirely on
%SOC values for soil type is insufficient. This can be expected as SOC
is known to vary greatly as a result of land-use, and therefore to predict
a region's carbon stock using just soil type mean %SOC values is ignor-
ing this major influence on SOC levels. Prediction at a large scale may
be accurate in terms of a figure for total C stock, due to the mean value
averaging out over all land-uses; however this method is unlikely to
correctly predict the SOC stock values for particular locations. The
assumption that agricultural soils, for example, will have the same
SOC values as forestry soils if they belong to the same soil series should
not be made (Heath et al., 2002). A large amount of the variability
in SOM is unexplained by soil classification (Schulp and Veldkamp,
2008) and this research highlights that soil classification can miss the
variation within soil classes.
Although it is suggested that it is land-management practiceswith-
in a land-use that are responsible for the statistically significant dif-
ferences in %SOC between farm tenancies located on the same soil
type, at the same altitude and under the same land-use class, the pos-
sibility that these differences are the result of issues associated with
scale must also be considered. In this study all estimates using soil
type as a SOC predictor, whether it be the use of field data %SOC values,
CSS %SOC values or NSRI %SOC values is that they are all estimated
using the NSRI soil map. Major errors can occur in extrapolating point
data if small inclusions of organic soils occur within amapped soil unit
and these are then either not accounted for (if the sample was not
taken from the inclusion), therefore the carbon stock is under-predicted,
or the carbon stock may be greatly over-predicted if the representative
profile for the soil unit was taken from the inclusion, and this value is
then applied to the whole soil type. The larger the scale of the soil map,
the more errors in carbon inventories (Arnold, 1995), however these
limitations are very difficult to overcome as these maps provide the
most accurate identification of soil type if extensive sampling is not to
be carried out. It is possible therefore that some of the difference that
appears to result from farmtenancycould in-fact be the result of inaccu-
rate soil series allocation due to the use of a 1: 50000 scale soil map.

Other possible explanations for the apparent role of land-man-
agement in this study are related to aggregation issues. In this study
the low predictive value of using land-use data alone could in part
be explained by the subjective nature of classifying particular land-
uses. This again however emphasises the role of farm management
and stresses the fact that levels of management within a land-use
category are an important control of SOC levels. It is very possible that
the SOC predictions would be different had a different land-use map
beenused (Meersmans et al., 2008). The apparent differences between
farm tenancies located on the same soil series at the same altitude and
under the same land-use could therefore possibly be the result of a
particular land-use under one farm tenancy being allocated a differ-
ent/same land-use to the same/different land-use under a different
farm tenancy due to the subjective nature of classification.

Although the application ofmean values from local sampling rather
than mean values from National databases appears the more appro-
priate method for SOC baseline estimation, the time and effort in-
volved in such an intense soil sampling campaignmust be considered.
As the results from this study are presently only valid for the Walling-
ton Estate the mean %SOC values for particular land-use/soil series/
altitude locations cannot yet be applied to other areas of the country,
however ongoing validation studies in these areas will reveal if this
can be the case in the future. In order for an organisation such as The
National Trust to estimate their entire SOC stocks it would therefore be
most beneficial to use national databases, provided that the soil data is
adjusted to take account of land-use and altitude using similar correc-
tion factors as found in this study. The previous suggestion however,
that %SOC values from national databases may now be inaccurate due
to the passing of several decades since data collection means that if
values from this current study can be found to correctly predict the %
SOC in otherNational Trust estates then referral to this database should
be themethod employed in the future. The implication from this study
that farm management practices are responsible for differences in
%SOC also suggests that in the future the mean %SOC values from
national databases could be increased or decreased to take account
of practices such as fertiliser application rates and grazing levels, how-
ever to date these adjustments cannot be made until the exact effects
of land-management on %SOC are clarified.

It must also be realised that this study has only assessed the accu-
racy of SOC baseline estimates made by aggregating %SOC values from
a variety of soil types and land-uses from national databases and local
soil sampling into different classes to produce mean %SOC values
which are then applied to the area of that classification. The study has
not assessed the accuracy of SOC baselines produced using process
models and geostatistical methods.
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4. Conclusion

Calculating a SOC baseline based on major soil group stratification
is the least accurate method and is significantly improved by stratifi-
cation into soil series. Land-use stratification is a less accurate method
than soil series; however this can be improved by stratification into
soil series/land-use combinations.

Intensive soil sampling at Wallington, NE England has shown that
other variables must be included to increase this accuracy further, and
that the use of secondary data is insufficient if the most accurate soil
organic carbon bank estimates are required. The results of this study
can be summarised as follows:

• An increase in predictive value from 16.85% to 48.35% when using
soil series rather than major soil group NSRI data indicates that if
NSRI data is the only data available then this form of stratification
shouldbeused. Thepredictivevalue canbe improvedonslightlywith-
out any additional fieldwork if the Countryside Survey database is
used instead, and applied tomajor soil group/land-use combinations.

• Additional information including altitude and soil pH is required to
producemore accurate estimates, and these can be improved further
still if the areas are also stratified by farm tenancy. This is shown by
an increase in predictive value from 57.72% for soil series/land-use
combinations, to 59.27% for soil series/land-use/pH/altitude com-
binations and 66.65% for soil series/land-use/pH/altitude/farm ten-
ancy combinations.

• With all of these variables included in an estimate of SOC levels at
Wallington, 33.5% of the variation in SOC still remains unexplained.

• This study suggests that stratification into a greater number of land-
use categories is needed in order to take account of different land-
usemanagement practiceswithin a land-use category, aswell as em-
phasising the large spatial variability in %SOC.
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