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"If you want to learn about nature, to appreciate nature,

it is necessary to understand the language that she speaks
1"

in,

R.P.Feynman, The Character of Physical Law
(1964 Messenger Lectures)
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ABSTRACT

Multi—insténton solutions of four dimensional E{Pl models are
sought, and a singular two insténzisolution in flat Euclidean space-
time is constructed. Non-singular multi-instanton solutionscan be
constructed if a gravitational fiéld is introduced{ as first pointed
out by Glrsey et al ;' Their method iskdeveloped, and in the process
a formalism for the construction of an (anti) self-dual SU(2) Yang-
Mills field tensér in curved space-times is exhibited. Demanding
that a potential for the SU(2) field exists implies that, for a space
of non-zero scalar curvature, Einstein's field equations must be
satisfied, and conditions on the Weyl tensor are found. It is shown
how the formalism relateé to the work of Charap and Duff . Finally
the method is applied to the four dimensional complex projective space

and the four dimensional manifold consisting of the outer product of

two two spheres.
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CHAPTER 1

INTRODUCTION | /

hae

At least three of)four forces of nature presently known,
electromagnetism and the strong and weak nuclear forces, seem to be
described by gauge theories, of the type first enunciated by Yang

and Millébgland Shangl Gauge theories of the fourth force, gravity

have also been developed, Utiyaméeo% Kibblégjl In particular the
symmetry of the strong nuclear force is widely believed to be SU(3) -
chromodynamics, The evidence for SU(3) of colour is manifold,
though indirecélil The most compelling evidence is,

(i) The ratio R, of the amplitudes for ¢ e~ —>(hadrons) over
ete~ —> (leptons), depends on the numbefofquafksandtheircharges.
For energies below charmed threshéld, with only three flavours of
quark, i = 1,2,3 with charges ei,

> 2/3, no colour v
eréb-%/’ @

i h 2, three colours,
Experiment favours the coloured case,
(ii) The rate for the T~ to decay into two photons, again

depends on the number of quarks in the pion, their charges and the

direction of their isopins in isopin space. The amplitude is proportional

to
1/6, no colour
The' = % /6, 2
Wtk 1/2,three colours
Experiment favours the coloured case,
(iii) With only one type of quark for each flavour, the Pauli

exclusion principle forbids three quarks of the same flavour to be in

the same state, Thus the Lr+ should not exist. However, if each
o Univeps, -

‘i ™
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2,

quark can come in three different colour states, they can all have the

same spin without violating the exdusion principle.

Thus, in any attempt to understand the colour force, it is very impoxrtant

to analyse the Yang-Mills equations for a non—abe;ign SU(3) gauge theory.
Unfortunately, explicit solutions are difficult to f£ind, though
Atiyah et aﬂglhave given a procedure for .implicitly constructing all
solutions for which the field tensor is (anti) self-dual -, These
solutions are topologically non-trivial, a fact which owes its existence
to the four dimensional nature of the world in which we live. Since
the topological charge density can be written as a total divergence,
itdependsonly on the valﬁe of the gauge fields at very large distances
from the origin, i.e. on the "surface at infinity", SS. The topological
charge is the winding number of the map from 83 to the gauge group, given
by the fields at infinity. It is a remarkable fact, that for any
simple lie group G

™, (&) & Z (3)
Thus the maps fall into topologically inequivalent classes, labelled
by the,integers,ZLH{

In order to try and understand Sﬁ(S) better, it is useful to
examine the case of SU(2). Here, explicit solutions are knowr[;e;’é,%qc'J
the 'tHooft solutions. These éolutions are localised in both
Eucli&ean'space and time, and so are called "instantons'", Since
ihstantons have non-zero action, they will contribute to the quantum
mechanical functional integral for the Yang-Mills fields and it has
been suggested that they may provide a mechanism for the confinement
of quarkél4q Indeed, for a simplified, two dimensional U(l) gauge

theory, <EP1, the functional integral can be explicitly evaluated and

a logarithmic, confining potential between "instanton quarks" has been
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demonstratedrlg’zoq To try and extend this to SU(2) in four dimensions,

it is a very compelling step to consider quaternionic fields, and this
S - 0, 38 4 3

approach has been considered by a number of authorsYS ? » 45, 6’52.

In particular Gﬁrse§36lhas suggested an extension of Einstein's work

on a generalised theory of gravﬂatioézg’sgz

Einstein considered a
complex, Hermitian, metric whose real part was the usual %¢v of
four dimensional curved space-time and whose purely imaginary part was
an electroﬁagnetic field tensor, FP”. He showed that, with certain
conditions on the Christoffel symbols, the field equations for
electrodynamics in a curved space-time were automatically satisfied.
Gﬁrseggejhas proposed that this approach could be extended to SU(2)
Yang-Mills in curved space—~time by considering a quaternionic,
ﬁefmitién metric whose real part is the metric of space-time and
whose purely quaternionic part is a SU(2) Yang-Mills field tensor.
From a completely different point of view, Charap and Duféls]and
Atiyah et afS)have considered SU(2) Yang-Mills in a curved space-time,

fe0]

by taking Utiyama's 0(4) gauge theory of gravity and performing

the decomposition 0(4) &= SU(2) x SU(2). They show that, provided
.Rﬂ” = 0, the 0(4) field tensor decomposes into a self-dual and an
anti-self-dual SU(2) field, Other authors who have considered SU(2)

Yang~-Mills in curved space-times are Boutaleb-Joutei et af8—13!

132]

5
and Yuille 5-)ancl Gibbons and Pope

Pope

In this work a method of implementing Gﬁrsey'svsuggestion is
developed, and it is shown that it is intimately related to the
construction of Charap and Duff, In chapter 2, cp” models in two
dimensions and their extension to SU(2) invariant models in four
dimensions,lHPn models, are reviewed, and a singular, two instanton

1
configuration in E{Pl is constructed, In chapter 3, P  is coupled




to gravity, via GUrsey's quaternionic metric, and the non-singular,
' . . " I3

0(4) symmetric, multi-instanton solutions of Gursey et al 7]are

extended beyond the 0(4) symmetric case, In the process, a method

is developed for the construction of a gquaternionic metric, whose

purely quaternionic part automatically satisfies the Yang-Mills

equations in the curved space~time described by its real part, This
requires the introduction of quaternionic Vierbeins.. In chapter 4,
the methods developed for]PlP; are extended to SU(2) Yang-Mills,  and
it is shown that the existence of a potential for the self-dual field
constfucted from the quaternionic Vierbeins, actually implies that
Eintein's field equations, with a cosmological constant, are satisfied,
provided the curvature scalar is non-zero, Further conditions on

the Weyl tensor are also derived and it is shown that the construction
is the same as that of Charap -and Duf%lSJexcept that R+*O0, In chapter
5, the method is applied tO‘IPz, a gravitational instanton, to yield

a self~dual SU(2) field with non-integral topological charge and an

anti-self-dual electromagnetic instanton,  as in[§'32!

In chapter 6,
U(l) fields over SZ X 52 are considered from the same point of view
and "dyons'" are constructéd. Finally, in chapter 7, the main results
are summarised and the possible extension to the SU(3) of nature is
dicussed,

Appendix A sets up notation, by way of a review of quaternions
and their relationship to SU(2), and appendix B contains the explicit
evaluation of some integrals encountered in chapter 2.

All references are collected together at the end, in alphabeticalf
order, and are referred to in the text by superscript, e.g.[51
Equations appearing in current chapters are referred to by their numbers
in round brackets, e,g.(42), while equations appearing in remote chapters
‘are denoted by round brackets with the chapter number, followed by the

equation number in that chapter, e.g. (3.42), means equation 42 of

chaptexr 3.




CHAPTER 2

PROJECTIVE SPACE MODELS IN TWO AND FOUR DIMENSIONS

The complex projective space, CPn, is the space of all complex

lines passing through a point (e.g. the origin) of e, 1t can

be represented by identifying some of the points of ¢n+l in the

following manner

Let

'z = .1 (1)

. n+l . .
be a complex vector in ¢ ,:ZAie T, 4=0,...,0, The complex line

through the origin is given by ¢z for some z and all ¢ = |,c|ei°‘ ,
where « € R. Then all the points on thé same line are identified,
and we can represent each such line by a subset of its points, We
choose to normalise the representatives of each line so that
2tz = i Z:z, = A

Y (2)
(here Z; denotes complex conjugate on any complex number, and t denotes
Hermitian conjugate on any matrix i.e, transpose followed by complex
conjugation).

Given the normalisation (2), there is still a phase degeneracy in
the choice of 3, Any 2 € ¢n+1 which obeys (2) is in the same complex
line through the origin of d:n+l as é"‘z’ (whereo is real) which also
satisfies (2), and thus must be identified. with 2 for the construction
of CPn.

Thus CPn can be thought of as the set of all complex (n+l)-plets,
z, satisfying (2) such that, any two (n+1)—p1et§-differing by an overall

U(1l) factor are identified, To calculate the dimension of CPn, we
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note that z has 2(nt+l) degrees of freedom. v'Equation (2) reméveé one
degree of freedom and the identification of zfs differing by an overall U(l)
factor remo&es another, giving <£Pn a real dimension of 2n,

cP" can also be thought of as the coset space SU(n+1l)/(SU(n)xU(1))
where SU(n+)is the special, unitary group, which can be represented by
the set of all (n+l) X.(n+1) complex matrices, M, for which Mt M = l(n+1) % (1)
and det M =1. This can be seen by thinking of the elements of

SU(n) as being n x n submatrices (the dotted submatrix below) embedded

in the matrix representation of SU(n+l)

—\A-ou Wot -« Waom T
: .
Wi :\N\\ \A-\m:
M = | ’ %
| |
|
I '
! :
| el 2 W

(3)

Taking the coset space SU(n#l)/SU(n) means that all elements of
SU(n+l) which differ "solely by a SU(n) submatrix, as shown, are identified.
The (0,0) component of the unitarity condition MTM =1 is equation (2),
if we take z, =u, . The u ., components are fixed, since givenu,

i io oi io
and any element of SU(n), uoi are given by the unitarity condition,
Factoring out a U(l) component from Zi then gives CPn. As a check on
the dimensions, note that the real dimension of SU/(n) is nzrl, S0

SU(n+1)/(SU(n) x U(1l)) has dimension

e -l - @) +1] = am (4)

as before.




We now construct a field theory in two dimensions, where the
27]

fields are an valued functions ofng? (as first developed by Eichenherr

and Golo and Perelom09345.
2
2 : R — CP
The‘U(l) freedom in the representation of z will be used as a

gauge freedom,

Define
+) ‘
= —~ \Z
Da = 2= (2 )T (5)
where’%*= %;f_, 93\are co—~ordinates on the underlying space]};z, Y’= 1,2,

Then take the Lagrangian density to be

1-
A (%) = %(DMZ) D,z (6)

where the summation convention is used over repeated indices, p. Note
that, in Euclidean space~time, there is no distinction between covariant
and contravariant indices.

Since, atleach point of“&z, Zz is only defined up to a U(l) factor,

we can perform the local phase (gauge) transformation,

Lottt )
Zlmx) — 2 Z (%% ) (7)

vwhere<i(“w*1)is a real function of E&z.
Note that p»? is covariant and fL(mbma) is invariant under such
a phase transformation.

For the action
' ! c}le (D ‘Z.)T D.z
= -~ M
S= 3 S - (8)
to be finite, z must be a constant vector (to within a, possibly
direction dependent, phase factor) as .1%|—s oo This phase'factor

gives a mapping from the circle at infinity into U(1).




The winding number of this map is given by

Q= S (‘;‘“) %s‘ (Z',.2) 3y (9

[EAE XS
where the integral is taken round the circle, radius '*\ , centred on
the origin.

Using Stokes's theorem, this is

- +
QU= -2 Sdfoc €y omZ A,z

) (10)
— S.(,}o‘-_ i‘pv L-DM‘ZA Dyz

ar
where Lo1= = €6 =1 is the antigymmetric tensor in two dimensions,
Note in passing that the action, (8), is invariant as a functional under
conformal transformations of the variables ( *,,%;), and so the
equations of motion and the field theory as a whole are invariant under
such transformations, Thus we can equally well take the two dimensional
space~time to be S2 (conformally compactified'E;z) and (10) is the

winding number of the map

%2
‘Zislﬂ c?

The equations of motion that one obtains by varying z in (8) are
—.D",_-.D,_.,‘Z + 2i(.9‘-93%,)‘2 = O (11)

and it is well know§27’34]

that these are satisfied by taking z to

. Py T .
be of the form z; = %’45\,where 10\ =-% ﬁ 2 V=S ™  with J%;(x)
analytic,except for isolated poles, in the complex variable x = o, +ix,

Such forms of z automatically saturate the lower bound on S

S > wiQl | (12)




For example, in CPl write
W
7 = _._i___[‘

T (W (13)

where & is a single, complex function of position, Then the solutions
. ' th

with winding number k are given by taking w to be a ratio of k degree
polynomials in x (all the roots of one polynomial must be different
from all the roots of the other, though multiple roots may occur within

each polynomial)

A ) s T\‘ e ‘:’;) (14)

where o5 and b , 5<h.w R, are comp‘lex constants, A solution with
winding number (-k) may be obtained from (14) by replacing x with
X, (14) is the R instanton solution of c?l. It has 4k-1 parameters
(the -1 is due to global gauge freedom), For CPI‘ this exhausts all
the solutions of the equations of motion (11).

For cf’n (nz72), solutions to the equations of motion have been

21 22]

found which do not saturate the inequality (12) For such

solutions, the action is stationary, though it is not a minimum, but

21,22)

a saddle point. The solutions found in exhaust all the solutions
of Q:'an.

0(3) & ~ model in two dimensions

The 0(3) o~ model in two dimensions, is a field theory in which

the fields are represented by real, three vectors of unit magnitude,

which rotate ° under global 0(3) rotations in field space.
¢| T
P (x,x,) = P, <b ¢ = 1
Py | (15)

(here <PT denotes the transpose of $).
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_’The Lagrangian density is taken to be,

: i (%) = ';._‘-'): }M <pT o, ¢ (N = real coﬁstant) (16)

with the constraint ¢ ¢=1. While the topological charge density is

] o b ©
'«)L’J‘-l,:"-z) = 8—_"_ Eobc SMV QM‘P )'v(p $ (17

where €ub. is the completely antisymmetric tensor in three indices,
< = .
123 1l etc
As for the ¢P" models, the action obtained by integrating (16)
over space-time is invariant as a functional under conformal transformations
of (xl,xz), and so we can take the space-time to be 82 rather than Rz.
2
Thus ¢: S -—982 and the integral of (17) is just the winding number
of this map.
[19) 1

It is well known ™ , that this model is equivalent to the <P

model described above if we make the identifications
. + S'O'Z
¢ = Z (18)

where O , a= 1,2,3 are the Pauli matrices.

Then
o Rewr A L Temw 3 O=ar &)
<b‘= O+ W) ¢ = GRS P G ) (19)
e Prve
(+ ¢2) (20)

In terms of mrrzawvpiw,, the Lagrangian density for CPl is

'i, —_ _L QMW bMW (21)
Q~ war\l
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which, with (20) is identical to (16), with A =4,

In terms of w, the topological charge density of ¢P1 is

“ I dy s

‘.'3‘\71‘1) = —_— — —— e
* 2T Y )

PR )‘wl

dak

i

(22)
(\+ W«Tr)m

|
A PYRICR }xwz
Writing (17) as ‘
PR I
gk | ), ¢ Le ¢
)\ ¢3 >7~9—5 ¢1

|

(G STP e = —_

A{) D) :L) 4’” (23)
we find that (23) is identical to (22) using (19) and (20), Thus

the OW3) &= model in two dimensions corresponds to the (EPl model,

with the identifications (19).

lI-IPn Models in Four Dimensions

»

The quaternionic projective space, lI-IPn, is defined in the same
way as the complex projective space, G:Pn, with "complex" replaced
"~ with "quaternionic". (For a summary of the properties of quaternions,

38]

see appendix A and ref_erence[ . i) Pn is the space of all quaternionic
lines passing through a point (e.g. the origin) in Hn+1, where a-
quaternionic line through the origin is the set L h:Vhel] 13 for

some <& ™Y Given any such line we choose an element of unit

norm to represent it

o
4= (24)
Un
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where q .el , i=o...n and

" +
) = o 2T Ca) - L

)
20 =0 v (25)

<

(here, and throughoult this work, quaternions are thoughtof as being
represented by 2x2 matrices - see appendi;i A),

The choice of a unit norm ukrto‘ represent a line is not unique,
since q,% will also do, where % is a quaternion of unit magnitude

ek

(it can be represented as g = e S“where Ao, *=h%3 are real). %
is thus an element of SU(2). Thus there is a SU(2) phase (gauge)
freedom in our choice of 4L has 4(n+l) degrees of freedom, (25)
removes one and the phase freedom removes another three, giving .[[-IPn
a real dimension of 4n,

Just as for G;Pn, JI-IPI1 caﬁ be thought of as the Grassmanian
Sp(n+1)/(Sp(n)xSp(1)) where Sp(n+l) is the group of all (n+l)x(n+l)

quaternionic matrices, N , for which NTN = Linyxams) + The dimension

of Sp(n) is n(2n+l), so the dimension of Sp{n+l)/(Sp(n)xSp(l)) is

(re)Latnr) +1] = Dlame) + 37 = fm (26)

in agreement with the previous analysis. The Sp(l) factor is the
SU(2) gauge freedom, Sp(l)=SU(2).

We now construct a field theory in four dimensions where the fields

138
are II—IPn valued functions on 34(.&5 in ref - -])
q,: R — HP o ' (27
Define : |
3 AR |
Doq, = 2wt = LR 0y | (28)
and
U DoV D
F, = (Dey) Do =~ Pes ) Dy | (29)

My
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note that Y%ins covariant under local SU(2) gauge transformations
P 4 3 and that Fﬂw‘*g—levg under such gauge transformations,
Also, FFV = =F ;V is purely quaterionic.

Then we can set up a field theory using the Liagrangian density

-T
j.U\) = LCL T F}v«\z Fy\/ ) (30)

This Lagrangian density integrates up to give an action whose functional
form is conformally invariant, and so is a natural choice, Other

candidates would be

4 ) = (PuDdyq) D.Dyq, (31)

or
1= [(Duqa) DAVQM\*DAAEDAS D.q, \o-mv%bh»u]mz}
where we sum over a,b:o,..f,n, which label the components of the vector qv.
However, we choose to analyse (30), since it proves to be analogous to
the SU(2) Yang-Mills Lagrangian density.
Define
GM=~%ﬂ_= {d»% | (33)
then (30) is the Lagrangian density for a SU(2) Yang-Mills theory
with
F o= 2ufAy =0 AL+ [an Ayl (34)
(the Yang-Mills coupling constant is set equal to one),
The }{Pn fields, for a given n,'therefore form a subset of the
possible SU(2) Yang-Mills fields i.,e, those that can be written in the

form (33),

The topological charge density is taken to be

x
o) = = L (Fuy Flay) (35)
where
* -
Fav = 3 Emvps Tps (36)

is the dual of FIM . Qb*vfc is the totally antisymmetric tensor in
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four indices.

The topological charge is the normalised integral over R4 of

p(x), ¥
- ! S d&d_ Tr\— KF}AV P»V)

TS (37

For the action to be finite, q must tend to a constant to within

a, possibly direction dependent, SU(2) phase factor as |xl— oo

T rvond U 18- R (38)

\ e\ oo

. Where 9, is a constant vector,
[}

In this instance, the topological charge can be expressed as a

16l

surface integral

, o + +
R S ), T B @ W) p W ),t\,)»r% CRRRICRISHITY )yc\,ﬂ (39

Q=- LT ‘
BN I RN N A T MACR R CR R R AR SIS

L..’h‘ \zxl-d>a
where 83 is the sphere with radius |%x| centred on the origin, n}l is

the unit outward normal to this sphere and d36' is its volume element.

Since C\:ré,,.f\r - %~|ép% as \*\=-» =0 this becomes

- o(p)’ ..l -\ -\
Q= B — S‘ &5 € o T L0y % éﬂ% }*%]- (40)

o0 AL §

2
As g € SUW) & S , this is the winding number of the map

3 3 '
g ST — 5.

n . . . L4]

The HHP construction is exactly the form used by At:iyah et al
in constructing self-dual solutions of SU(2) Yang-Mills, Their
construction exhausts all the self-dual solutions, but is however

implicit, taking the form of conditions on q, - Explicit solutions

have been given by 'tHooft and, subsequently conformally extended by

Jackiw, Nohl and Re'bbimér:‘ They show that the lower bound
%
S » 3w \Q) (a1)

where the action, S, is the integral of (30), is saturated by c\r’s of the

form : ¥ ~1
(% 4+ o
Vo= I~ L D emees) )
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where .5, 559 are the components of 9,0 X is the quaternion labelling
position (see appendix A) f% is real and

M

X
st f5 | (43)

\'v) o= 2 \o;"+°s\a'
is a normilisation factor, These are n instanton configurations. Anti-
instantons are obtained by sending x'—>x. The form (42), however, does

not exhaust all possible self-dual configurations.

The H Pl Model

To examine the properties of these models, let us first of all
restrict ourselves to the simplest case, that of HPl, where the
R
field g is simply a two component quaternion unit vector [1'7] .

Writing this as

SR ] IR A
vl v, ) Iasi . (44)

where " has any magnitude, \wv\= -i"'* T , we can use the SU(2)

freedom to rotate vy so' that it is real at every point x (the gauge

is now fixed) so that

Vv, 1 1
= 1 - = KA (45)
e ,'\r;"& 1T W) |V J \ '\r;"_i_’\‘«k'\r“"\r.} '/,u;
where ~r, is now real, but v, is still quaterionic,
Let u=uiei = f\r;"v-, be a single gquaternionic function of position,

then

1 1

A JVrwwg u (46)
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and now in terms of u

—\-
uT e - W

= 1
A (47)
and
S \:3\,\&—}\,\3 é,,u\
‘:)M, = fasd —
. v+ Wiy ) (159
Thus
Py
SR T R TR VSRR IO TRVE)
TR T O Wy (29)

The equations of motion forlHP1 are obtained by varying'i;with
respect to u, They are most easily obtained by writing u out in its

components, then

2
4 = ol D, Iy = W b”uﬂ\
(+ by wg VY

(50)

and, varying ui, we find that
T g Qe Y0u01) - dptit b, JpW g = 33, g D o = D dpuy Dy

— e 2P g ) Yo = D Dy s}

G+ugug)

ARedel S \Qképu;éw')\k— QuuphvYy = O | (51)
k\‘f’\*m\)—b

The 0(5) & - Model in Four Dimensions

[P . . ' :
Just as for € P in two dimensions, where there is a correspondence

with the 0(3) & +~model, there is a similar correspondence between E%[Pl
. 301
in four dimensions and. the 0(5) o -model . .- The 0(5) < ~model has

fields which are real, five component unit vectors, jz(“QwﬁNﬂ with ¢T¢= 1.

The ¢ . rotate . under global O(5) rotations, and the Lagrangian density

takes the following form,
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L= L (3 0 dy 8,2y 80, o)
(52)

where 9o ,a=0,..,4 are the components of gand [ and b are summed

over, The topological charge density is

J()\'ﬂ = é Cobeda E—Mv(m' B»(Po,}v ¢19 B(a b \éc"Pdu Do (53)

6. oo da ]

! WAL

Lt

- _—

3 ci),+ 5<v‘l)¢‘--- §'-;¢u

If we make the following identifications, for q € IHPl
+
, +(° &"‘) _ _#(v o
d)\"‘o\, &Q‘\.‘o Q, ¢h-‘ A o~\5% (54)

where i=0,...,3 and the entries in the 2x2 matrices are themselves 2x2

complex matrices, then

2 W, U+ Wi WY
b= Trom U=
! V=g (55)
b; — 0
Wy, = v u.)“&: \ P \+U\'>u'é =
i+ b, L+ @, b+ @

where again i=o,...3,o0nly, and

>, i
Qua= Y g oty (56)
Vi oy YO g\t

Now substitution of (55) and (54) into the !I-IP1 L.agrangian density,
.
together with $;¢; = 1-¢, = 9w &=~ H3.9, i=o,...3, shows that these

Lagrangians are identimal, with )\ =4,
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Similarly, writing the II—IPl topological charge density as

bp\{r dy\ ép\;éu‘* ]

L wing )4

P = = e [Sw("’

bN\}LO...\aTU\-o
S W LA W I
('\-\-U.;,U'b\b . (37)
}M\A.&A..)gun;

one finds, using fhe properties of determinants, that this is identical
to the 0(5) o~ model topological charge density. Thus the S[—",[P1 model
corresponds to the O(5) o~ model in a similar fashion to the way (I:Pl

corresponds to the 0(3) &~ model.

Instantons in I Pl

In the light of CPl models, where solutions are given byw'(xl,xz)

being a function of either x_+ix or x put not both, with

12 1 e
isolated poles and zeros, one's first guess for solutions of I[—IPl might
be T

P (58)
where x = Xiei is a quaternion, labelling position, and /3 is a real
constant, with dimensions of length, Indeed, this satisfies the

equations of motion (51). It is in fact a self-dual solution, since

)

-\.
)»u' = 7{ 2, W =013 30 (48) gives

+ +
= o= Ly "Ryl
y\) - R Ky 2
P v+ Iot-l/(,z) (59)
. o
= My o

PR S————]
eﬂ& \ + \a_\q./P’_ 31
when “\m: is the self-dual 'tHooft tensor (see Appendix A).
)h

A more general solution is

~1
W = 5(9(-\."’“13(-0("‘-1'0'“‘\

(60)
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where al and a2 are constant gquaternions, with dimensions of length, and

s is a real dimensionless constant. This is also self-dual, since

~1
duw = (8-W) 42.1 (=T ran)
(61)
% us M Q,T )L’l.r'i- Ong_Y-' \s_w\l
o S AL AN (200 =2y i
g O+ waw ) > |
(62) ‘

which is again manifestly self-dual, It has the same topological

charge and action as (58) since it is merely a conformal transformation

of (58).

The topological charge of (58) (and so of (60)) is one, since

o b b ' |
Q = Jﬂ.Ség 'w[rmyvﬁzvgmw ]
Lar pH !
() + \'Jf-l"/{)z )

Ky 3 "Le .
g [<%) w gv R e M‘P
= . &9\ ap

(63)

= 1

- 4
where we have used polar co-ordinates (R,0,%,VY ) on R~, with Rz = le2

Equation (60) is, in fact, the single instanton in Jackiw, Nohl and

.y . f44) . e . . 1
Rebbi's. construction” ") and, noting that if u(x) is a solution of I[P,

—1 .

then u " (x) gives exactly the same L.agrangian density and topological
charge density and so is an equivaient configuration, (58) is seen to
be simply the 'tHooft single instanton.

Again, guided by the CIPl model, a natural choice for a possible

two instanton solution might be

T‘L
X
W = /f)l (64)
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However, we f£ind that this does not give a self-dual field, nor
indeed does it even satisfy the equations of motion (51).

A more general configuration would be

w= = L'x*+o\)(9u++\o) (65)

with a and b constant quaterhions. One can try varying the values

of a, b and p to see if there are any values for which they make the

action stationary. Without loss of generality, we can move the origin

to (atb)2 and rotate the time axis so that it passes through a and b.
Then.a= ~b is real, Now 1et us see.how the action varies as a function

of the dimensionless parameter a/P, and how it compares with the topological
charge.,

With (65) and a = -b, real,

! Tt ot
O = F“M&M"%‘”) (66)
giving
+ Ty .
_,\O(ol.) = - T [E}"’PW LAMW B\,\A->PU\. s 3 ‘l
' QYR
. 3 £t et
A o
P e Ittt e T -
% * 2 A
where T =%e , A =2, + Xy + Ao | Then
OH, L) 0 . S’W S'X’T\' -\;L("\‘.'LJ;"(Q'\
T ‘ e \ambal \ & ¢ )
Q ‘98 'h"' g~jt So 8 o {\J, Jél-y[.Q‘tﬂk\i'“"kly_kt'“\z.).nrﬁ].&

= 19 had 603‘, 'hk'vlkt"vr’")
— : ~ 2 aqlH
- N e
°

(68)




(for details of the integral, see appendix B)

The value of the Lagrangian density'is

N
it YOy w - duwd,w )X
U+ wing ) &

4] = —;’_‘\‘—«-‘:

. ~7 L;.
el = ~ T (69)
f ®+?[umfhﬁuuﬂn«]}

giving

~

~
§ LL%&\H%‘H@-M”‘@@;“ (70).

S = b+ X g:"& g:a,:;

""P , a="'/P are dimensionless, (For details of (69)

where t=%p 5=
see appendix B).

Upon performing one integration in (70) (see appendix B) we obtain

©o >
g = b 4+ gor” S a5 e )
o [(’v—'&"‘\"-m]""‘ [ov+ &) 2

which was evaluated numerically, see graph on the next page
A measure of how close the configuration (65) is to a solution of

the equations of motion is given by

I (&) = SLaY) - \6T"
(72)

~ . ~ 2
with self-duality for I(O\k)=0. The graph of I(® ) as a function of

~2
& is shown on the next page

We see that the action mongonically approaches its lower bound in
~
the two instanton sector as * e, Furthermore, it approaches this
~N
limit very rapidly, being within 0,7% of it for &=\ , Thus we have

a two instanton solution, only in certain limits:
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(i) F fixed, @ —soco 1l.e., the instantons are of finite size, but
I ( 31) represents a repulsive interaction which sehds them infinitely
far apart.

(ii) o fixed, P->9 i.e. the instantons are at a finite separation,
but thei? size shrinks to zero,
Case (i ) has been analysed, in a slightly different form, by Neinast and
St%c£52} I am grateful to Werner Nahm for pointing 6ut the interpretation(ii),
Nahm has coined the phrase "virtual stationary points" for such
configurationéslq

One expects that such configurations would contribute to functional
integfa}s, since the action is finite, and therefore must be taken into
account in any attempt to quantise SU(Z) Yang-Mills theory. However,
it has not proved possible to perform the functional integral, using
(65) with @~ , as a stationary_point,vdue to the singular nature of
the fields,

Indeed, for any finite integer 8> , the configuration

T\h
\"=L’x)/(>& (73)

has finite action and topological charge k, and so»such cohfigurations

will contribute to functional integrals. The action and topological

charge are most easily calculated using spherical polar coordinates.

N = RLesD + B §) (74)

: ' a ] ) )

where ?~=x»I»)and ﬁ}: o0 Pyt ien PRy, + M P ARy and
O<LR<Leo, 0O LT, 0P &£, o W¥s AW,
, we have de Moiv