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Abstract

In this thesis we study the homotopy invariant TC(X); the topological complexity

of a space X. This invariant, introduced by Farber in [15], was originally motivated

by a problem in Robotics; the motion planning problem. We study relations between

the topological complexity of a space and its fundamental group, namely when the

fundamental group is ”small”, i.e. either has small order or small cohomological

dimension. We also apply the navigation functions technique introduced in [20] to

the study of the topological complexity of projective and lens spaces. In particular,

we introduce a class of navigation functions on projective and lens spaces. It is known

([25]) that the topological complexity of a real projective space equals one plus its

immersion dimension. A similar approach to the immersion dimension of some lens

spaces has been suggested in [31]. Finally, we study the topological complexity (and

other invariants) of random right-angled Artin groups, i.e. the stochastic behaviour

of the topological complexity of Eilenberg-MacLane spaces of type K(G, 1), where

G is a right-angled Artin group associated to a random graph.
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Introduction

The motion planning problem is a central theme in Robotics. Consider a mobile

robot in a room with obstacles. The robot must move from one side of the room

to the other avoiding the obstacles. The basic solution to this problem is given by

a choice of a path connecting the robot to its final goal. One may also want to

control simultaneously several robots avoiding collisions with the obstacles and with

themselves. A main reference for a deep exposition on the motion planning problem

is [38].

In a more general setting one would like to solve the motion planning problem

for a configuration space X associated with a given mechanical system S. Solving

this problem means creating an algorithm which produces a motion connecting any

two given states of the configuration space. In this thesis the configuration space is

always assumed to be path-connected.

The concept of configuration space is common to both Topology and Robotics.

Configuration spaces of real physical/mechanical systems have often interesting

topology. Besides, one is often able to predict instabilities in the system by studying

the topology of its configuration space [1].

In [15], Farber introduced the concept of Topological Complexity of a config-

uration space X, denoted by TC(X). The number TC(X) is a numerical homo-
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topy invariant of configuration spaces and in a specific sense measures the instabil-

ity/discontinuity of the motion planning problem.

The main goal of this thesis is to study properties of the invariant TC(X). Since

it is an homotopy invariant it is an interesting object to study in Topology. In fact,

the notion of topological complexity has been proven to be linked with other concepts

in Topology. As an example we may mention a result of Farber, Tabachnikov and

Yuzvinsky:

Theorem ([25]). For any n ≥ 1 except n = 1, 3, 7, the number TC(RP n) equals the

smallest dimension k for which RP n immerses into Rk−1.

This thesis can be separated into two parts. The first part contains Chapters

1, and 2; it serves as an introduction to the main concept of the thesis, the notion

of Topological Complexity, and gives an overview on state of the art. With the

exception of Corollary 2.3.3, no new results are introduced in this part of the thesis.

The second part, composed of the remaining three chapters, contributes new results

to this area of research. Chapters 3 and 5 survey the results of the articles [7] and

[8], respectively. The results in Chapter 4 are also original.

We will now offer to the reader a more detailed picture on the structure of the

thesis. Chapter 1 introduces the concept of configuration space and describes some

of the configuration spaces relevant to robotics. The basic motion planning problem,

known as the Piano movers’ problem, is introduced. A main reference is [38].

In Chapter 2 we survey most of the relevant results known in the subject of

topological complexity. The basic techniques to compute the number TC(X) are

presented in Section 2.4. Section 2.5 describes the topological complexity of several

configuration spaces. For a more developed exposition we refer to [20]
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Chapter 3 is an exposition of the joint work with M. Farber, supervisor to the

author of this thesis, developed in [7]. There we established upper bounds for TC(X),

when the fundamental group π1(X) is ”small”, i.e. it is either cyclic of small order

or has small cohomological dimension.

In Chapter 4 we study the concept of navigation function on a manifold M ;

navigation functions were introduced in [20]. These are non-negative Morse-Bott

functions on M ×M which are valued zero exactly on the diagonal ∆M = {(x, y) ∈

M ×M | x = y}. The connection with topological complexity is given by Theorem

4.1.1. We introduce a class of navigation functions on lens (and projective) spaces

and describe a thorough computation of the respective critical submanifolds.

Chapter 5 covers the joint work with M. Farber exposed in [8]. There we show

that the topological complexity of a random right angled Artin group assumes at

most three values, with high probability. Random spaces arise naturally as config-

uration spaces of large or partially unknown configuration spaces. The topological

complexity of a right angled Artin group was first studied in [9].



Chapter 1

Configuration Spaces in Robotics

The configuration space of a given physical/mechanical system is the space of

all possible states of that system. A state is a description of a specific system

configuration.

In this chapter we describe some configuration spaces which appear in Robotics.

These are configuration spaces associated with a given automated mechanical sys-

tem. Studying the topology of such spaces may help to predict instabilities in the

motion of the system. Our main focus will be to study the topology of configuration

spaces arising from mechanical systems. Often the system will consist of one or

more particles moving in a certain space and subject to a number of restrictions. A

classic example is the Piano movers’ problem [38].

1.1 Examples of configuration spaces

Example 1.1.1 (Piano movers’ problem). We wish to move a ”piano” from one

point of a room to another point without colliding with a certain number of objects;

see Figure 1.1. One way to describe a specific state of the system would be to

4
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x

Figure 1.1: Piano Movers’ problem.

determine the coordinates of the piano’s center and its orientation. One can only

have states for which the piano does not intersect with any of the obstacles. The

associated configuration space is a 3-dimensional space with a possibly complicated

geometry. One may even add more complexity to the system by adding moving

obstacles. The asteroid avoidance problem is the problem of planning the motion of

an object in a 2-dimensional or 3-dimensonal space while avoiding moving obstacles;

see [38].

Example 1.1.2 (Robot arm). A typical mechanical system is the robot arm. The

arm consists of a certain number n of rigid bars in the plane attached by revolving

joints as illustrated in the Figure 1.2.

One way to describe a specific position of the arm is to determine the angles

formed by the bars at the revolving joints (the initial angle being formed by the

first bar and the horizontal axis). Knowing the angles determines completely the

position of the arm. Notice that we are allowing self-intersections of the arm. In

this case the configuration space associated to the robot arm is the n-torus

X = S1 × . . .× S1.
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Figure 1.2: Robot arm.

A variation of the robot arm system can be obtained by requiring that the last

bar is connected to the first by a revolving joint. This mechanism is known as a

mechanical linkage.

Example 1.1.3 (Linkages). A (planar) mechanical linkage is a closed sequence of

rigid bars in the plane, with possibly different fixed lengths, connected by revolving

joints; see figure 1.3. We assume that one joint is located at the origin and that

two shapes are the same if there is a rotation of the plane transforming one into

the other. The configuration space of this system is the space of closed polygonal

shapes with possible self-intersections.

Figure 1.3: Linkage with 5 bars.



1.1. Examples of configuration spaces 7

The length vector of the linkage is a vector that encodes the lengths of the bars

in the mechanism. Given a length vector

l = (l1, . . . , ln) ∈ Rn
+, l1, . . . , ln > 0,

the configuration space of all the possible linkages in the plane is the moduli space

Ml = {(u1, . . . , un) ∈ S1 × . . .× S1|
n∑

i=1

liui = 0}/SO(2).

Here the group of rotations SO(2) acts diagonally on the vector (u1, . . . , un), i.e acts

identically in each entry of the length vector. The length vector l = (l1, . . . , ln) is

called generic if
n∑

i=1

aili ̸= 0, for ai = ±1.

It is well known that if l is generic then the space Ml is an orientable manifold of

dimension n− 3; a detailed survey about these spaces can be found in Chapter 1 of

[20].

It may happen that the parameters of a mechanical system are partially un-

known. One may also consider systems with a large number of parameters. In this

case the exact geometry of the configuration system is unknown. However, in some

cases one can predict with high confidence some aspects of the topology of the con-

figuration space. In [24] the authors studied the Betti numbers of random linkages,

i.e. linkages with the lengths of the bars viewed as random variables.

Example 1.1.4 (Projective spaces). Consider a rigid bar revolving around its mid-

dle point in the Euclidean space Rn+1. The configuration space of this system is the

projective space RP n.

We now introduce a system with multiple objects.



1.1. Examples of configuration spaces 8

Example 1.1.5 (Particles avoiding collisions). Let X be a finite simplicial polyhe-

dron with n distinct particles moving in X. The space

F (X,n) = {(x1, . . . , xn)| xi ̸= xj for i ̸= j}

is the configuration space of n particles moving in X avoiding collisions. One may

also consider the configuration space

B(X,n) = F (X,n)/Σn,

where Σn is the symmetric group of degree n and acts freely on F (X,n) by per-

mutation of the particles. This is the configuration space of n unordered particles

moving in the space X avoiding collisions.

Usually one considers two special cases: X = Γ where Γ is a connected graph or

X is the Euclidean space Rk.

In [28] R. Ghrist introduces the space F (Γ, n) as the configuration space for

a system with n robots working in a network of a factory floor. This application

serves as an example on how studying the topology of the space F (Γ, n) may help

to predict the complexity of the multiple robot control problem.

The spaces F (Rk, n), introduced by Fadell and Newirth in [12], have been widely

studied in Topology. For a general exposition consult [13]. These spaces have strong

connections with the theory of braid groups. For example, the braid group with n

strings, Bn, is the fundamental group of the space B(R2, n).

The space F (X,n) where X is an algebraic variety or an orientable manifold has

been studies by Totaro in [47]. There Totaro studied the cohomological algebra of

these spaces.

Curiously, the homotopy type of F (X,n) is not an homotopy invariant even

for manifolds. In [39], Salvatore and Longoni show that there are two homotopy
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Figure 1.4: On the left, two particles interchanging position without collision. On

the right, the respective element of the braid group B2.

equivalent spaces X1 and X2 such that F (X1, n) is not homotopy equivalent to

F (X2, n). The spaces used in that proof were two homotopy equivalent but not

homeomorphic lens spaces with fundamental group Z7.



Chapter 2

Topological Complexity of

Configuration Spaces

In this chapter we introduce the concept of Topological Complexity, which arises

from the motion planning problem discussed in the previous chapter. The topological

complexity of a space X, denoted by TC(X), is an homotopy invariant introduced

by M. Farber in a series of papers; see [15], [16] and [25]. This chapter intends to

serve as an introduction to the notion of topological complexity. The book [20] is

recommended as a survey covering most of the known results.

2.1 Motion planning from a topological viewpoint

Consider a mechanical system S with associated configuration space X. We will

always assume that X is path-connected. Each point of X is a state of the system

S. A continuous path in X corresponds to a continuous motion between two states

of the system. A motion planning algorithm is defined by assigning to each

input (S1, S2), where S1 and S2 are states of S (i.e., points in X), an output γ,

10
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where γ is a continuous path in X that connects S1 to S2.

Let PX be the free path space ofX, the set of all continuous paths γ : [0, 1] → X,

equipped with the compact-open topology. The path space fibration of X is the

fibration

p : PX → X ×X (2.1)

given by p(γ) = (γ(0), γ(1)). One can describe a motion planning algorithm as a

map s : X×X → PX such that p◦s = IdX×X . Hence, a motion planning algorithm

(or simply motion planner) is a section of p.

Most spaces do not admit any continuous motion planning algorithm. In fact,

assume there is a continuous section s : X ×X → PX of the path space fibration

p : PX → X ×X. Fix B ∈ X and set S(x, t) = s(x,B)(t). Then S(x, 0) = x and

S(x, 1) = B. Moreover, since s is a continuous map, S is a deformation retract of X

to a point. Hence, only contractible spaces may admit continuous motion planning

algorithms. The converse is also true; see [15] Theorem 1.

Lemma 2.1.1 ([15]). A continuous motion planner in the space X exists if and

only if X is contractible.

2.2 Topological complexity of a space

We have just seen that a motion planner on a spaceX will usually have some amount

of discontinuity. An instrument to measure this discontinuity is the topological

complexity of the space X. A main reason of interest in this quantity is that it is a

homotopy invariant of the configuration space.

In this thesis will always assume that X is a path-connected topological space.
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Definition 2.2.1. The topological complexity of the space X, TC(X), is the

minimal number k such that there exists an open cover X ×X = U1 ∪ . . . ∪ Uk with

the property that each Ui admits a continuous motion planner si : Ui → PX.

Remark 2.2.1. In view of Lemma 2.1.1 one could ask if the sets Ui are always con-

tractible or null-homotopic. This is not true since for a polyhedron X a continuous

motion planner always exists over some neighborhood of the diagonal of X ×X,

∆X = {(x, x)| x ∈ X} ⊂ X ×X,

which in general is not contractible in X ×X.

Definition 2.2.1 is a particular instance of the notion of genus of a fibration,

introduced by A. Schwarz in the seminal paper [45].

Definition 2.2.2. The genus of a Serre fibration (also known as Schwarz genus)

p : E → B is the minimal integer k such that there exists an open cover of B with k

elements each of which admiting a continuous section of the corresponding restriction

of p.

One can define TC(X) in terms of the Schwarz genus of the fibration p defined

in (2.1).

Definition 2.2.3. The topological complexity of X, TC(X), is the genus of the

fibration p.

One of the main properties of the Schwarz genus is the homotopy invariance,

i .e., if p : E → B is a fibration and h : B′ → B a homotopy equivalence, then

genus(p) = genus(p′), where p′ is the induced fibration of h by p.

Proposition 2.2.1. The topological complexity of a space is a homotopy invariant.
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Denote by P0X the restriction of PX to paths starting at a fixed point x. Con-

sider the fibration p0 : P0X → X, where p0(γ) = γ(0). The Schwarz genus of p0 is

the classic Lusternik-Schnirelmann category of the space X, which we denote

as cat(X)1. Consequently, also the Lusternik-Schnirelmann category is a numeri-

cal homotopy invariant of spaces. For an introduction to Lusternik-Schnirelmann

category consult [10].

A continuous section of p0 over a set U ⊂ X is a continuous map r : U → P0X,

that to a point of u ∈ U assignes a path r(u) which starts at the fixed point x and

ends at u. Let R : U × [0, 1] → X be the map given by R(u, t) = r(u)(t). Clearly R

is continuous and a deformation retract of U onto a point, hence U is null-homotopic

in X.

The invariants TC(X) and cat(X) are naturally correlated as they are the genus

of related fibrations. The fibration p0 : P0X → X is the pullback of the path

fibration p : PX → X ×X by the inclusion ∗ ×X → X ×X.

Proposition 2.2.2. For a path-connected topological space X it holds

cat(X) ≤ TC(X) ≤ cat(X ×X) ≤ 2cat(X)− 1. (2.2)

A proof can be found in [15], Theorem 5.

In [19] Farber introduces several descriptions for the topological complexity of a

space and proves they are equivalent for a vast class of spaces; e.g. the class of finite

simplicial polyhedra (subspaces of a Euclidean space which are homeomorphic to

the underlying space of a finite simplicial complex). We present below one of those

alternative descriptions.

1We warn the reader that some authors define cat(X) as genus(p0)− 1.
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Definition 2.2.4. A motion planning algorithm s : X ×X → PX is called tame

if X ×X can be split into finitely many sets X ×X = F1 ∪ F2 ∪ . . . ∪ Fk such that

1. s|Fi
: Fi → PX is continuous, i = 1 . . . k,

2. Fi ∩ Fj = ∅, whenever i ̸= j,

3. Each Fi is an Euclidean Neighboorhood Retract (ENR), i.e. if it can be em-

bedded into an Euclidean space X ⊂ Rk such that, for some open neighborhood

X ⊂ U ⊂ Rk, there exists a retraction r : U → X, r|X = 1X .

A cover with the above properties is called a tame cover2.

Definition 2.2.5. The topological complexity of a path-connected topological space

X is the minimal k such that X possesses a tame cover with k elements.

Example 2.2.3. The simplest non-contractible spaces are spheres. Using Definition

2.2.5, a simple argument shows that TC(Sn) = 2 for n odd and TC(Sn) ≤ 3 for n

even.

• For n odd let U1 ⊂ Sn × Sn be the set of all pairs (A,B) with A ̸= −B. Set

s1 : U1 → PSn to assign to a pair (A,B) the path connecting A to B through

the unique shortest geodesic arc (assume parameterized by arc-length). This

defines a continuous motion planner over U1. Since n is odd one can has a

non-vanishing tangent vector field X over Sn. Take U2 to be the set of all pairs

(A,−A), where A ∈ Sn. To such a pair assign the path that runs through the

unique semi-circle connecting A to −A which has the direction of X(A) at A

and is parameterized by arc-length. Combining with Lemma 2.1.1, it follows

that TC(Sn) = 2 for n odd.

2We warn the reader of a homonymous notion in the theory of schemes.
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• In the case that n is even, we may proceed analogously for the domain U1 =

{(A,B) ⊂ Sn × Sn : A ̸= −B}. On the other hand, any tangent vector field

on Sn must have at least one zero. However, one can always find a tangent

vector field that possesses a single zero A0. Set U2 = {(A,−A) : A ̸= A0}

and define a section over U2 identical to the one defined for n odd. To the

remaining point (A0,−A0), we may assign an arbitrary path connecting A0 to

A0.

Whereas Definition 2.2.1 allows us to estimate TC(X) through the use of al-

gebraic topology tools, as we will see later, Definition 2.2.5 arises naturally from

real world motion planning algorithms and has a greater geometrical flavor. Except

when explicit otherwise, we will adopt Definition 2.2.1 as the definition of TC(X). In

[19] Farber also presents a characterization of TC through random motion planning

algorithms.

2.3 Relative topological complexity

The notion of relative topological complexity was introduced by Farber in [20].

As we have seen, TC(X) is defined as the Schwarz genus of the path fibration

p : PX → X × X. If we consider a subset A ⊆ X × X, the relative topological

complexity of A is the genus of the restriction of p to A.

Definition 2.3.1. Let X be a topological space and A ⊆ X ×X. Let PAX ⊂ PX

be the space of all paths in X with endpoints in A and let pA : PAX → A be the

restriction of p to A. Then TCX(A) is the smallest integer k such that there is an

open cover {Ui}1≤i≤k of A with the property that for each i there is a continuous

section of pUi
.
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Remark 2.3.1. Suppose that A and B are E.N.R. sets such that A ∪B = X ×X.

Then

TC(X) ≤ TCX(A) + TCX(B).

Notice also that for any subset A ⊂ X ×X one has TCX(A) ≤ TC(A). This is due

to the natural inclusion PA ⊂ PAX.

Remark 2.3.2. Clearly the number TC(X) is the minimal integer k for which

there is an open cover U1, . . . , Uk of X ×X with the property that TCX(Ui) = 1 for

1 ≤ i ≤ k.

A property of relative topological complexity is the following:

Lemma 2.3.1 ([20]). Suppose that the sets A ⊂ B ⊂ X ×X are such that B can

be deformed into A inside of X ×X. Then

TCX(A) = TCX(B).

The next lemma describes which subsets have minimal relative topological com-

plexity.

Lemma 2.3.2. Let A ⊆ X ×X. The following statements are equivalent

• TCX(A) = 1;

• the two projections of A on each of the factors of X ×X are homotopic;

• the inclusion A → X×X is homotopic to a map A → ∆X , where ∆X denotes

the diagonal of X ×X.

As an illustration we present the Corollary below.



2.4. Bounds on TC(X) 17

Corollary 2.3.3. Let M be the Moebius band and B = ∂M the respective boundary.

One has

TCM(B ×B) = 2.

Proof. One has M ∼ S1 and B ∼ S1 (where ∼ denotes homotopy equivalence),

where B is included in M by the map S1 i→ S1 given by i(z) = z2, where z ∈ S1.

By the previous lemma TCM(B × B) = 1 if and only if the map S1 × S1 p1→ S1 is

homotopic to the map S1 × S1 p2→ S1, where

p1(z1, z2) = z21 and p2(z1, z2) = z22 .

This is clearly not true since the maps p1 and p2 can be identified with loops which

are not homotopic in the torus S1 × S1.

On the other hand, by Remark 2.3.1 one has

TCM(B ×B) ≤ TC(M) = TC(S1) = 2.

Hence TCM(B ×B) = 2.

2.4 Bounds on TC(X)

In this section we describe some of the methods for determining the topological

complexity of a configuration space X. The cohomology of the space X will play a

central role in the methods for obtaining lower bounds for TC(X).

2.4.1 Upper bounds

Schwarz genus properties imply the following result:
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Theorem 2.4.1 ([16]). If X is an r-connected simplicial polyhedron with covering

dimension dimX, then

TC(X) <
2 dimX + 1

r + 1
+ 1. (2.3)

In particular we have the general bound

TC(X) ≤ 2 dimX + 1. (2.4)

The topological complexity of the product of spaces is at most additive.

Proposition 2.4.2. Given two polyhedra X and Y one has

TC(X × Y ) ≤ TC(X) + TC(Y )− 1.

A proof of this proposition can be found in [15].

2.4.2 Lower bounds

An effective method to obtain a lower bound on TC(X) is given by studying cup

products of certain classes in a cohomology ring of X × X. This technique was

introduced by Farber in [15] and later generalized in [21] by Farber and Grant,

through the concept of weight of a cohomology class.

Definition 2.4.1. Let X be a path-connected topological space and R a coefficient

system on X ×X. A cohomology class u ∈ H∗(X ×X;R) is said to have weight k

if k is the largest integer such that for any open subset A ⊂ X×X with TCX(A) ≤ k

one has u|A = 0; u|A is the restriction of u to A. The weight of the zero cohomology

class is defined to equal ∞.
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We will denote the weight of a cohomology class u by wgt(u). The weight of a

cohomology class depends on the coefficient system and this should be explicit when

computations are made.

The proofs of the next three results can be found in [20].

Proposition 2.4.3. If there exists a nonzero cohomology class u ∈ H∗(X ×X;R)

with wgt(u) ≥ k, then TC(X) > k.

We will see in the next section that the above result often provides a better lower

bound than the one given by Proposition 2.2.2.

The following two lemmas allow us to describe several cohomology classes with

high weight.

Lemma 2.4.4. For u ∈ H∗(X ×X;R) one has wgt(u) ≥ 1 if and only if

u|∆X = 0 ∈ H∗(X;R|∆X),

where u|∆X denotes the restriction of u to ∆X = {(x, y) ∈ X × X| x = y}; the

diagonal of X ×X.

The classes which satisfy the condition u|∆X
= 0 are usually called zero divisors.

Lemma 2.4.5. Let u ∈ Hn(X ×X;R) and v ∈ Hm(X ×X;R′) be two cohomology

classes and denote by uv ∈ Hn+m(X ×X;R⊗R′) their cup product. Then

wgt(uv) ≥ wgt(u) + wgt(v).

Remark 2.4.1. We observe that if R is an abelian group then any cohomology class

u ∈ H∗(X;R) induces a zero-divisor

ū = 1× u− u× 1 ∈ H∗(X ×X;R)

since the definition of cup product implies ū|∆X = 1 ∪ u− u ∪ 1 = 0.
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Let G = K be a field. Then the cohomology ring of X allows us to easily find

all the zero divisors. Through Künneth theorem

H∗(X ×X;K) ∼= H∗(X;K)⊗H∗(X;K).

The zero divisors ideal is the kernel of the cup product homomorphism

∪ : H∗(X;K)⊗H∗(X;K) → H∗(X;K)

and a cohomology class u ∈ Hn(X ×X;K) of the form

u =
∑
i

ai × bi, ai ∈ H∗(X;K), bi ∈ Hn−∗(X;K),

is a zero divisor precisely when

∪(u) =
∑
i

aibi = 0.

The tensor product H∗(X;K)⊗H∗(X;K) is a graded K-algebra with multiplication

(u1 ⊗ v1) · (u2 ⊗ v2) = (−1)|v1||u2|u1u2 ⊗ v1v2,

where |v1| and |u2| denote the degrees of the corresponding cohomology classes.

As an illustration we improve the result on the topological complexity of spheres

mentioned in Example 2.2.3.

Proposition 2.4.6.

TC(Sn) =

 2, if n is odd,

3, if n is even.

Proof. In view of the arguments of Example 2.2.3, we will prove that TC(Sn) > 2,

for n even. Denote by u ∈ Hn(Sn;Q) the fundamental class and by 1 ∈ H0(Sn) the

unit. Then θ = 1⊗ u− u⊗ 1 is a zero divisor. If n is even

θ2 = ((−1)n−1 − 1) · u⊗ u = −2u⊗ u ̸= 0.
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Hence θ2 is a nonzero class such that wgt(θ2) ≥ 2. In particular, by Proposition

2.4.3 we have that TC(Sn) > 2, for n even.

Theorem 2.4.1 and Proposition 2.4.3 fully determine the topological complexity

of numerous other spaces as we will see in the next section.

2.5 Examples

We briefly describe known results about the topological complexity of several con-

figuration spaces. A more detailed exposition with proofs can be found in Chapter

4 of [20].

The next two results can be proven by combining the upper bound (2.4) with

the lower bound given by Proposition 2.4.3.

Proposition 2.5.1. If Γ is a connected finite graph then

TC(Γ) =


1, if Γ is a tree,

2, if Γ is homotopy equivalent to S1,

3, otherwise.

Proposition 2.5.2. Denote by Σg the closed orientable surface of genus g. Then

TC(Σg) =

 3, if g=0 or g=1,

5, if g ≥ 2.

The topological complexity of non-orientable surfaces is still an open problem.

The inequality (2.4) implies that any surface S must have TC(S) ≤ 5. However,

the method given by Proposition 2.4.3 apparently does not provide a lower bound

greater than four, in the case of non-orientable surfaces. For example, the topological
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complexity of the Klein bottle K satisfies

4 ≤ TC(K) ≤ 5

but the exact value is not known.

A curious result by M.Farber, S.Tabachnikov and S.Yuzvinsky [25] shows that the

problem of determining the topological complexity of projective spaces is equivalent

to solving their immersion problem, i.e. the problem of finding the minimal number

k such that RP n immerses in Rk. Since the immersion problem for projective spaces

is not fully solved, one may hope that topological complexity techniques give new

insights to the immersion dimension problem for projective spaces. This perspective

has been supported by M. Grant [32], J.González [29] and J. González-L. Zárate [31].

Theorem 2.5.3 ([25]). For any n ≥ 1 except n = 1, 3, 7,

TC(RP n) = I(RPn) + 1

where I(RPn) denotes the immersion dimension of the real projective space RP n, i.e.,

the smallest dimension k for which RP n immerses in Rk. Moreover for n = 1, 3, 7

one has TC(RP n) = n+ 1.

González [29] and Farber-Grant [21] studied, using different approaches, the

topological complexity of lens spaces. The author of [29] gave estimations through

certain equivariant maps between spheres, the axial maps. In [21] the authors ob-

tained estimations using cohomological weights, a lower bound estimation method

described in the previous section.

Theorem 2.5.4 ([29]). Let L2n+1
m be the lens space of dimension 2n+1 with torsion

m and assume that m divides
(
2n
n

)
. Then:



2.5. Examples 23

1. If m is even then TC(L2n+1
m ) ≤ 4n. Moreover, if m does not divide

(
2n−1
n

)
one

has TC(L2n+1
m ) = 4n.

2. If m is odd and does not divide
(
2n−1
n

)
then TC(L2n+1

m ) ≥ 4n− 1.

Theorem 2.5.5 ([21]). For any positive integers n and m ≥ 2 one has

TC(L2n+1
m ) ≤ 4n+ 2.

Moreover, if m does not divide
(
2n
n

)
. Then one has

TC(L2n+1
m ) = 4n+ 2.

In Chapter 1 we introduced the configuration space F (X,n) of n distinct points

in X. Usually X is the Euclidean space Rm or a connected graph Γ. The next two

theorems, by Farber-Yuzvinsky and Farber-Grant, describe completely the topolog-

ical complexity of F (X,n), when X is an Euclidean space.

Theorem 2.5.6 ([26]). For any n ≥ 1 one has

TC(F (Rm, n)) =

 2n− 1, for any odd m,

2n− 2, for m = 2.

Theorem 2.5.7 ([22]). For any n ≥ 1 and m even

TC(F (Rm, n)) = 2n− 2.

Consider the configuration space F (Γ, n), where Γ is a connected graph. Call a

vertex essential if it has degree at least three.

Theorem 2.5.8 ([17]). If Γ has at least an essential vertex, then

TC(F (Γ, n)) ≤ 2m(Γ) + 1

where m(Γ) is the number of essential vertices in Γ.
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As we have seen in Proposition 2.2.1 the topological complexity of a space is an

homotopy invariant. The homotopy type of an aspherical space X, i.e. πi(X) = 0

for any i > 1, depends exclusively on the fundamental group of X; see [34], section

1.B. In Chapter 3 we will present some connections between algebraic properties of

the fundamental group of a polyhedron X and the number TC(X).

Definition 2.5.1. The topological complexity of a group G is defined as the

topological complexity of the associated aspherical space with fundamental group G.

Namely,

TC(G) = TC(K(G, 1)),

where K(G, 1) is an Eilenberg-MacLane space.

Definition 2.5.2. To a finite graph Γ with vertex set V and edge set E we may

associate a right-angled Artin group (RAAG) (also known as a graph group)

GΓ = |v ∈ V ; vw = wv iff (v, w) ∈ E|,

see [6], [42].

In the case when Γ is a complete graph GΓ is a free abelian group of rank n = |V |;

in the other extreme, when Γ has no edges the group GΓ is the free group of rank

n. In general GΓ interpolates between the free and free abelian groups.

In [9], D. Cohen and G. Pruidze determined the topological complexity of right

angled Artin groups in terms of the properties of the graph.

Theorem 2.5.9 ([9]). Let Γ be a graph and GΓ the respective right angled Artin

group. Then

TC(GΓ) = z(Γ) + 1,
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where

z(Γ) = max
K1,K2

|K1 ∪K2|

is the maximal number of vertices that support two complete subgraphs in Γ.

In Chapter 5 we will study the topological complexity of right-angled Artin

groups generated by random graphs.

2.6 Symmetric topological complexity

Symmetric motion planning is motion planning with the extra requirement that if a

motion planner assigns a certain path connecting a point A to a point B then it must

assign the same path (with reverse orientation) to connect B to A; see Definition

2.6.1 below.

In this section we present the symmetric version of the notion of topological

complexity. The concept of Symmetric Topological Complexity was first introduced

by Farber and Grant in [23]; we refer back to that paper for a deeper discussion.

Gonzalez and Landweber [30] applied this concept to the study of projective and

lens spaces and obtained a surprising relation between the symmetric topological

complexity of projective spaces and their embedding dimension. Unlike the (non-

symmetric) topological complexity of a space, the symmetric topological complexity

is not an homotopy invariant.

Definition 2.6.1. Let p : PX → X ×X be the path-fibration described in (2.1). A

symmetric motion planner in X is a (possibly discontinuous) map

s : X ×X → PX
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such that p ◦ s = IdX×X and for every t ∈ [0, 1] one has

s(A,A)(t) = A and s(A,B)(t) = s(B,A)(1− t), A,B ∈ X.

The path fibration

p : PX → X ×X

can be restricted to a fibration

p′ : P ′X → F (X; 2) (2.5)

where

F (X, 2) = {(x, y) ∈ X ×X| x ̸= y}

is the space defined earlier in Example 1.1.5 and P ′X is the subspace

{γ : [0, 1] → X| γ(0) ̸= γ(1)} ⊂ PX

of paths with distinct endpoints. Both spaces P ′X and F (X, 2) admit free Z2-

actions defined by path reversing and factors interchange, respectively. Besides

p′ : P ′X → F (X, 2) is an equivariant map of free Z2-spaces and induces a fibration

pS := p′/Z2 : P
′X/Z2 → B(X, 2). (2.6)

Here B(X, 2) = F (X, 2)/Z2 is the space previously defined in Example 1.1.5, namely

the space of unordered pairs of distinct points in X.

Definition 2.6.2. The Symmetric Topological Complexity of X, denoted by

TCS(X), is the number

TCS(X) = 1 + genus(pS), (2.7)

where genus(pS) is the Schwarz genus of the fibration pS.
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By definition, the number genus(pS) is the minimal integer k such that there

is an open cover U1, . . . , Uk of B(X, 2) with the property that for every i there is

a continuous section si : U i → P ′X/Z2 of the fibration pS. Here by ”open” we

mean an open set for the quotient topology carried by B(X, 2). Moreover, there is

a cover {U1, . . . , Uk} of F (X, 2) such that, for every i, Ui/Z2 = U i and there is an

equivariant lift si : Ui → P ′X of the local section si. Hence a local section of the

fibration pS induces a symmetric local section of the path-fibration p : PX → X×X.

In particular, since TCX(∆X) = 1 and, by Remark 2.3.1, it holds that

TC(X) ≤ TCX(∆X) + TCX((X ×X)\∆X),

one has

TC(X) ≤ TCS(X). (2.8)

Inequality (2.8) can be an equality. For any positive integer n it holds

TC(S2n) = TCS(S2n) = 3;

see [23]. Another example is given by the complex projective space CP n. Namely,

one has

TC(CP n) = 2n+ 1 = TCS(CP n).

The non-symmetric side of the equality was established in [25] and the symmetric

side was proven in [30].

One has an universal upper bound

TCS(X) ≤ 2 dimX + 2;

this should be compared with (2.4). The above inequality is derived from the fact

that, for any fibration p : E → B, one has genus(p) ≤ dimB + 1. In our case
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p = pS : P ′X/Z2 → B(X, 2) and dimB(X, 2) = 2 dimX. Hence one has the

inequality TCS(X) = 1 + g(pS) ≤ 2 dimX + 2.

Recall from Example 1.1.5 that there are homotopy equivalent spaces X1 and X2

such that F (X1, n) is not homotopy equivalent to F (X2, n). This implies that, unlike

the non-symmetric version, the number TCS(X) is not an homotopy invariant.



Chapter 3

Topological Complexity of Spaces

with Small Fundamental Group

This chapter is an exposition of joint work with M. Farber [7]. There we established

sharp upper bounds for the topological complexity TC(X), where X is a polyhe-

dron such that π1(X) is ”small”; either π1(X) is cyclic of order ≤ 3 or ”small”

cohomological dimension.

3.1 Introduction

Let X be a path-connected polyhedron. We have seen in Theorem 2.4.1 is that

TC(X) admits the upper bound (2.4). Namely,

TC(X) ≤ 2 dimX + 1. (3.1)

Examples when the above inequality is sharp include orientable surfaces of genus

greater than one or the connected sum of two n-torus.

29
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For simply connected spaces, Theorem 2.4.1 gives the stronger upper bound

TC(X) ≤ dim(X) + 1, (3.2)

which is sharp for example when X is a simply connected closed symplectic manifold

X, see [25].

A natural question is if (3.1) can be improved under assumptions on the funda-

mental group π1(X). The assumption that π1(X) = Z2 leads to the theorem below,

which will be proved later in this chapter.

Theorem 3.1.1. Let X be a cell complex with π1(X) = Z2. Then

TC(X) ≤ 2 dim(X). (3.3)

Furthermore, for a closed manifold X with π1(X) = Z2 it holds that

TC(X) ≤ 2 dim(X)− 1 (3.4)

assuming that wn = 0, where n = dim(X) and w ∈ H1(X;Z2) is the generator.

Notice that also (3.3) is sharp since TC(RP n) = 2n when n is a power of 2; see

Corollary 8.2 of [25].

Theorem 3.1.1 should be compared with Theorem 3.5 of [3] given below:

Theorem 3.1.2 ([3]). For a closed connected n-dimensional manifold X with π1(X) =

Z2 one has cat(X) = dim(X) + 1 if and only if wn ̸= 0 ∈ Hn(X;Z2) where

w ∈ H1(X;Z2) is the generator.

We now have a clear picture of the case when the space X has fundamental

group π1(X) = Z2. Theorem 3.1.3 addresses the case when π1(X) = Z3 and will be

proved later in this chapter.
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Theorem 3.1.3. Let X be a finite cell complex such that π1(X) = Z3.

1. Assume that either dimX is odd or dimX = 2n is even and the 3-adic expan-

sion of n contains at least one digit 2. Then,

TC(X) ≤ 2 dim(X). (3.5)

2. For any integer n ≥ 1 having only the digits 0 and 1 in its 3-adic expansion

there exists a finite polyhedron X of dimension 2n with π1(X) = Z3 and

TC(X) = 2 dim(X) + 1.

If X is the lens space L2n+1
3 , for an n that has only the digits 0 and 1 in its

3-adic expansion, one has TC(X) = 2 dim(X); the assumption on n is equivalent to

the assumption in Theorem 2.5.5 with m = 3. This shows that the inequality (3.5)

is sharp.

We now look at the case where the fundamental group has finite cohomological

dimension. The following theorem is an adaptation of Dranishnikov result relating

the Lusternik-Schnirelmann category of a space and its fundamental group.

Theorem 3.1.4. Let X be a finite cell complex. Then one has

TC(X) ≤


dim(X) + 2cd(π1(X)), if dim(X) is odd,

dim(X) + 2cd(π1(X)) + 1, if dim(X) is even.

(3.6)

Proof. This theorem is a consequence of a recent theorem of Dranishnikov [11] re-

garding Lusternik - Schnirelmann category. The theorem states that for a cell com-

plex X with fundamental group π1(X) of finite cohomological dimension one has

cat(X) ≤
⌈
dim(X)− 1

2

⌉
+ cd(π1(X)) + 1. (3.7)
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Inequality (3.6) follows from (3.7) and from the inequality

TC(X) ≤ 2 · cat(X)− 1,

see [15].

Remark 3.1.1. Notice that 3.1.4 improves (3.1) whenever the cohomological di-

mension of the fundamental group of X is smaller than half of the dimension of

X. Theorem 3.1.4 does not improve (3.1) when dimX = 2. If dimX = 2 and

cd(π1(X)) = 1, i.e. π1(X) is free, then X is homotopy equivalent to a wedge of cir-

cles and 2-spheres. Then either TC(X) = 2 (exactly when X ∼ S1) or TC(X) = 3.

The topological complexity of spaces with free abelian fundamental group is also

described by the following result:

Theorem 3.1.5 ([9]). Let X be the l-skeleton of the n-torus, n ≥ l ≥ 2. Then

TC(X) = min{n+ 1, 2l + 1}.

3.2 Necessary and sufficient conditions for TC(X) ≤

2 dimX

We will show in this section that the upper bound

TC(X) ≤ 2 dimX

is equivalent to the vanishing of a power of a certain cohomology class; the primary

obstruction to the existence of a continuous section of the path fibration

p : PX → X ×X
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defined in (2.1).

Let x0 ∈ X be the base point of X. The fibre F = p−1(x0, x0) is the space ΩX of

all loops in X based at x0. Clearly F is disconnected; the set of path-components is

in bijection with π1(X, x0). The primary ”homological obstruction” to the existence

of a continuous section of p is a cohomology class

θ ∈ H1(X ×X, {H̃0(F )}), (3.8)

where {H̃0(F )} denotes a local coefficient system over X×X which we will describe

later.

Denote by p2n : P2nX → X × X the 2n-fold fiberwise join of the path space

fibration p : PX → X × X defined in (2.1); for details on this construction (also

called the sum of the fibration) consult [45], Chapter 2. The fibre F2n of p2n is the

2n-fold join ΩX ∗ . . . ∗ ΩX. It follows by the properties of the join of spaces that

F2n is (2n− 2)-connected and thus, by Hurewicz Theorem,

{π2n−1(F2n)} = {H2n−1(F2n)}

and the primary obstruction

θ2n ∈ H2n(X ×X; {H2n−1(F2n)})

to the existence of a continuous section of p2n lies in the top cohomology group of

X ×X and therefore θ2n is the only obstruction to the existence of a section of p2n.

In [45] Schwarz showed that is possible to reduce the computation of the genus

of a fibration to the study of the existence of a section in a certain join of that

fibration.

Theorem 3.2.1 ([45]). Let p : E → B be a fibration. Then genus(p) ≤ k if and

only if pk has a continuous section, where pk is the k-fold fiberwise join of p.
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The relation between θ and θ2n, respectively the primary obstructions associated

to the fibrations p and p2n, is given by Theorem 2 of [45], which establishes that

{H2n−1(F2n)} = ⊗2n
i=1{H̃0(F )}

and that θ2n is the 2n-fold cup product of θ, i.e.

θ2n = θ2n. (3.9)

By the (3.9) and Theorem 3.2.1 one has the following result:

Corollary 3.2.2. TC(X) ≤ 2n if and only if θ2n = 0.

The next step is to describe explicitly the primary obstruction to the path fibra-

tion p.

Denote the fundamental group of X by G = π1(X, x0) and the kernel of the

associated augmentation homomorphism ϵ : Z[G] → Z by I = ker(ϵ) ⊂ Z[G] . An

element of I is a finite sum of the form
∑

nigi such that
∑

ni = 0, where ni ∈ Z

and gi ∈ G. One can view I and Z[G] as left Z[G×G]-modules via the action

(g, h) ·
∑

nigi =
∑

ni(ggih
−1), g, h ∈ G. (3.10)

Since I and Z[G] are Z[π1(X × X)]-left modules they determine local coefficient

systems over X ×X; consult [48], Chapter 6.

By Theorem 3.3 (Chapter 6) of [48], crossed homomorphisms determine one-

dimensional cohomology classes. A crossed homomorphism is a map f : G×G → I

that satisfies the identity

f((g, h)(g′, h′)) = f(g, h) + (g, h) · f(g′h′)

where g, g′, h, h′ ∈ G.
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Fix the crossed homomorphism f : G×G → I given by

f(g, h) = gh−1 − 1 (3.11)

and denote the corresponding one-dimensional cohomology class by

v ∈ H1(X ×X; I). (3.12)

As groups Z[G] and H0(F ) are identical since they are free abelian groups on

the same number of generators. Hence

I = H̃0(F ),

as groups. We will show that in fact I and {H̃0(F )} can be identified as local coeffi-

cient systems and the class v represents exactly the primary homological obstruction

θ. This leads to the following theorem.

Theorem 3.2.3. Let X be a cell complex of dimension n = dim(X) ≥ 2. One has

TC(X) ≤ 2n

if and only if the 2n-th power

v2n = 0 ∈ H2n(X ×X; I2n)

vanishes. Here I2n = I ⊗Z I ⊗Z · · · ⊗Z I denotes the tensor product over Z of 2n

copies of I, equipped with the diagonal action of G×G, and v2n is the cup-product

v ∪ v ∪ · · · ∪ v of 2n copies of v, the class described in (3.12).

Proof. Fix (x0, x0) ∈ X×X and the corresponding fibre F = F(x0,x0) = p−1((x0, x0)) =

ΩX. To a loop σ : [0, 1] → X × X, where σ(t) = (α(t), β(t)), with σ(0) = σ(1) =

(x0, x0), we may associate an homotopy

Σ : p−1(x0, x0)× [0, 1] → PX
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using the homotopy lifting property of the fibration p.

Let Σ be defined by the formula

Σ(ω, τ)(t) =


α(3t+ τ), for 0 ≤ t ≤ 1−τ

3
,

ω(3t+τ−1
1+2τ

), for 1−τ
3

≤ t ≤ 2+τ
3
,

β(−3t+ τ + 3), for 2+τ
3

≤ t ≤ 1,

Σ satisfies the identities Σ(ω, 1) = ω and p(Σ(ω, •)) = σ, and induces a map

Fσ(1)
ρ→ Fσ(0)

defined by ω 7→ Σ(ω, 0). The monodromy action of σ on ΩX can be simply described

by

ω 7→ Σ(ω, 0) = αωβ̄; (3.13)

where β̄ represents the inverse loop of β and (α, β) = σ.

The induced map ρ∗ on homology

ρ∗ : H̃0(Fσ(1)) → H̃0(Fσ(0))

is an isomorphism and the above construction gives a monodromy action on H̃0(F )

that is identical to the action on I presented in (3.10). Hence

I = {H̃0(F )}

as local coefficient systems.

Using Corollary 3.2.2 we complete the proof by identifying v with the primary

homological obstruction θ ∈ H1(X ×X, I).

Assume thatX has a single 0-cell x0 (quotient by a maximal tree in the 1-skeleton

if necessary) and denote by ω0 the corresponding constant loop. The homological
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obstruction θ associates with any oriented 1-cell of X ×X the formal difference, in

H̃0(ΩX) = I, between the connected components of Σ(ω0, 0) and ω0, where Σ is

induced by σ (a loop representing the 1-cell), by the construction described before.

Given an oriented 1-cell e of X consider the 1-cells e×x0 and x0×e in X×X and let

g to be the loop in X representing e. By formula (3.13) the crossed homomorphism

f ′ : G×G → I representing θ is given by

f ′(g, 1) = g − 1, f ′(1, h) = h−1 − 1, h ∈ G.

Using the definition of crossed homomorphism it follows that

f ′(g, h) = f ′((g, 1)(1, h)) = f ′(g, 1) + (g, 1)f ′(1, h) = gh−1 − 1 = f(g, h).

Thus θ = v.

Corollary 3.2.4. Let X be a cell complex with TC(X) = 2 dim(X) + 1. Then the

topological complexity of the Eilenberg - MacLane complex Y = K(π1(X), 1) satisfies

TC(Y ) ≥ 2 dim(X) + 1.

Proof. If X dimX = 1 then X is aspherical and the statement above is trivial.

Hence we may assume that n = dim(X) ≥ 2 and apply Theorem 3.2.3.

Consider local systems IX on X ×X and IY on Y × Y and cohomology classes

vX ∈ H1(X ×X; IX) and vY ∈ H1(Y × Y ; IY ) defined as in (3.12). The canonical

map f : X → Y inducing an isomorphism of fundamental groups satisfies

(f × f)∗(IY ) = IX and (f × f)∗(vY ) = vX .

By Theorem 3.2.3, we obtain (vX)
2n ̸= 0. On the other hand, if (vX)

2n ̸= 0 then

(vY )
2n ̸= 0. Inequality TC(Y ) ≥ 2n + 1 now follows from Proposition 2.4.3 since

wgt(vY ) ≥ 1; see Lemma 3.2.5.
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The proof of theorems 3.1.1 and 3.1.3 are based on Theorem 3.2.3 combined with

the results below.

Lemma 3.2.5. The restriction of the class v = vX to the diagonal ∆X ⊂ X × X

vanishes, i.e.,

vX |∆X = 0 ∈ H1(X; I|X). (3.14)

In particular, wgt(vX) ≥ 1; see Lemma 2.4.4.

Proof. Just notice that the crossed homomorphism induced by f , given by (3.11),

is trivial when restricted to the diagonal ∆G ⊂ G × G, i.e. f(g, g) = 0 for all

g ∈ G.

Note that the local system I|X corresponds to the ideal I viewed with the left

G-action

g ·
∑

nigi =
∑

ni · (ggig−1),

where g, gi ∈ G and
∑

ni = 0.

The class v = vx can be described as follows:

Lemma 3.2.6. One has

vX = β(1) ∈ H1(X ×X; I)

where

β : H0(X ×X;Z) → H1(X ×X; I)

is Bockstein homomorphism corresponding to the exact sequence of left Z[G × G]-

modules

0 → I → Z[G]
ϵ→ Z → 0.
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Proof. Cohomology with local coefficients of a space can be seen as the equivariant

cohomology of its universal cover, see [34]. Let X̃ denote the universal cover of X

and let x̃0 ∈ X̃ be a lift of the base point x0 ∈ X. Consider the singular chain

complex S∗ = S∗(X̃ × X̃). This is a free left Z[G × G]-module. The equivariant

cohomology E∗
G×G(X̃ × X̃,Z[G]) is generated by Z[G×G]-homomorphisms from S∗

to Z[G]. We may identify S0(X̃ × X̃) with the free abelian group generated by the

points of X̃ × X̃. Consider a Z[G×G]-homomorphism

k : S0(X̃ × X̃) → Z[G]

associating an element of G with every point of X̃×X̃ and such that k(x̃0, x̃0) = 1 ∈

G. Hence k(gx̃0, hx̃0) = gh−1 for g, h ∈ G. The cochain ϵ◦k : S0 → Z represents the

class 1 ∈ H0(X×X;Z) and the Bockstein image β(1) ∈ H1(X×X; I) is represented

by the composition

δ(k) : S1(X̃ × X̃)
∂→ S0(X̃ × X̃)

k→ I

taking values in I ⊂ Z[G] (as follows from the definition of the Bockstein homomor-

phism). A crossed homomorphism f ′ : G×G → I associated to β(1) can be found

as follows, see [48], Chapter 6, §3. Given a pair (g, h) ∈ G×G = π1(X×X, (x0, x0)),

realize it by a loop σ : ([0, 1], ∂[0, 1]) → (X ×X, (x0, x0)), then lift σ to the cover-

ing σ̃ : ([0, 1], 0) → (X̃ × X̃, (x̃0, x̃0)) and apply the cocycle δ(k) to σ̃, viewed as a

singular 1-simplex in X̃ × X̃. We obtain

f ′(g, h) = k(gx̃0, hx̃0)− k(x̃0, x̃0) = gh−1 − 1

for all g, h ∈ G. This coincides with the crossed homomorphism describing vX , see

(3.11). Thus β(1) = vX .



3.3. Proof of Theorem 3.1.1 40

Corollary 3.2.7. The order of the class vX ∈ H1(X ×X; I) equals the cardinality

|G| of the fundamental group of X. In particular vX = 0 if and only if X is simply

connected.

Proof. Consider the exact sequence

H0(X ×X; I) → H0(X ×X;Z[G])
ϵ→ H0(X ×X;Z) β→ H1(X ×X; I).

Note that H0(X ×X;Z[G]) is isomorphic to the set of elements a =
∑

nigi ∈ Z[G]

which are invariant with respect to G×G-action, see [48], Chapter 6, Theorem 3.2.

If G is infinite then H0(X ×X;Z[G]) = 0 as there are no invariant elements in

the group ring. Since H0(X × X;Z) = Z this implies that in this case the class

vX ∈ H1(X ×X; I) generates an infinite cyclic subgroup.

In the case when G is finite any G×G-invariant element of Z[G] is a multiple of

N =
∑

g∈G g and H0(X ×X; I) = 0. Hence the group H0(X ×X;Z[G]) is infinite

cyclic generated by N and since ϵ(N) = |G|, the exact sequence

0 → H0(X ×X;Z[G])
ϵ→ H0(X ×X;Z) β→ H1(X ×X; I)

becomes

0 → Z ×|G|→ Z β→ H1(X ×X; I).

It follows that the subgroup of H1(X ×X; I) generated by the class vX is cyclic of

order |G|.

We can now prove Theorems 3.1.1 and 3.1.3.

3.3 Proof of Theorem 3.1.1

Let X be a connected cell complex with π1(X) = Z2 = G. Then the augmentation

ideal I = ker[ϵ : Z[G] → Z] is isomorphic to Z as an abelian group but not as local
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systems on X × X. Denote by g ∈ G the unique nontrivial element of G. Then

both the classes (g, 1), (1, g) ∈ G × G act as multiplication by −1 on Z = I. Thus

I is the local system of ”twisted integers”. It follows that the tensor square I ⊗Z I

is a trivial local coefficient system isomorphic to Z. Note that Theorem 3.2.3 is

applicable since we must have n = dim(X) ≥ 2 .

Consider the canonical class v = vX ∈ H1(X ×X; I) and its square

v2 ∈ H2(X ×X;Z).

Since H1(X;Z) = 0 the Künneth theorem gives

H2(X ×X) = H2(X)⊗H0(X)⊕H0(X)⊗H2(X);

all omitted coefficients are identically Z. Hence we may write

v2 = a× 1 + 1× b, a, b ∈ H2(X;Z).

By Lemma 3.2.5 one has a+ b = 0, and by Corollary 3.2.7 both classes a and b are

of order two: 2a = 0 = 2b. Thus we may rewrite

v2 = a× 1 + 1× a

and

v2n = (v2)n = (a× 1 + 1× a)n =
n∑

i=0

(
n

i

)
ai × an−i.

If n is odd then for any i either ai = 0 or an−i = 0 for dimensional reasons. Thus

v2n = 0. If n is even then

v2n =

(
n

n/2

)
an/2 × an/2 = 0

since the binomial coefficient
(

n
n/2

)
is always even and 2a = 0. By Theorem 3.2.3 we

obtain TC(X) ≤ 2n.
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Assume now that X is a closed manifold satisfying π1(X) = Z2 and wn = 0

where w ∈ H1(X;Z2) is the generator. By the theorem of Berstein mentioned ear-

lier (Theorem 3.1.2) one has cat(X) ≤ dim(X). The statement (3.4) follows now

from the inequality TC(X) ≤ 2cat(X) − 1, see [15]. This proves the second state-

ment of the theorem and thus completes the proof.

3.4 Proof of Theorem 3.1.3

Let X be a connected cell complex with fundamental group π1(X) = G = Z3.

We represent G as the multiplicative group {1, t, t2} holding the identity t3 = 1.

The group ring Z[G] is the ring of polynomials with integer coefficients of the form

a+bt+ct2, with the usual operations and the extra relation t3 = 1. The augmentation

ideal I has rank 2 with generators α = t− 1 and β = t2 − t. As a Z[G×G]-module,

I is defined by

(t, 1) · α = β, (t, 1) · β = −α− β,

and

(1, t) · α = −α− β, (1, t) · β = α.

Consider the canonical class vX ∈ H1(X ×X; I) and respective square

v2X ∈ H2(X ×X; I ⊗ I).

The local system I ⊗ I has rank 4 and is generated by the elements α ⊗ α, α ⊗ β,

β ⊗ α and β ⊗ β with G×G acting diagonally; for example

(t, 1) · α⊗ α = β ⊗ β,

(t, 1) · α⊗ β = β ⊗ (−α− β) = −β ⊗ α− β ⊗ β.
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and so forth.

Consider the homomorphism

T : I ⊗ I → I ⊗ I

which interchanges the factors. One has T (α ⊗ β) = β ⊗ α, T (β ⊗ α) = α ⊗ β and

T acts trivially on the two other generators α ⊗ α and β ⊗ β. It is easy to verify

that the diagonal action commutes with the interchange of factors. Hence T is a

Z[G×G]-homomorphism and therefore a homomorphism of local systems.

Let I ∧ I ⊂ I ⊗ I denote the subgroup generated by the element α⊗ β − β ⊗ α.

It is easily verifiable that I ∧I = Z has a trivial Z[G×G]-action; in particular it is a

Z[G×G]-submodule of I⊗I. Denote the factor module by S(I); it is the symmetric

square of I. We have the following exact sequence of local systems

0 → I ∧ I
i→ I ⊗ I

j→ S(I) → 0

(recall that I ∧ I = Z is trivial) which induces an exact sequence

. . . → Hn(X ×X; I ∧ I)
i∗→ Hn(X ×X; I ⊗ I)

j∗→ Hn(X ×X;S(I)) → . . . (3.15)

The skew-commutativity property of cup-products implies that T∗(v
2
X) = −v2X .

Since j = j ◦ T we obtain j∗(v
2
X) = j∗T∗(v

2
X) = −j∗(v

2
X); thus 2j∗(v

2
X) = 0. On the

other hand, by Corollary 3.2.7 one has 3j∗(v
2
X) = 0. Hence

j∗(v
2
X) = 0 ∈ H2(X ×X;S(I)).

From the long exact sequence (3.15) we obtain

v2X = i∗(w) (3.16)

for some w ∈ H2(X ×X;Z).
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Let A : I ⊗ I → I ∧ I = Z be the map given by A(x) = x− T (x) for x ∈ I ⊗ I.

ClearlyA is a homomorphism of local systems andA◦i : I∧I → I∧I is multiplication

by 2. Hence we obtain 2w = A∗ ◦ i∗(w) = A∗(v
2
X) which implies

6w = 0

since 3vX = 0.

Applying Künneth theorem with respect to H2(X × X;Z) and using the fact

that H1(X;Z) = 0 one can write

w = a× 1 + 1× b

where a, b ∈ H2(X;Z) with 6a = 0 = 6b. Then

v2nX = (v2X)
n = i∗(w

n) =
n∑

k=0

(
n

k

)
i∗(a

k × bn−k).

If n is odd each term in the last sum vanishes for dimensional reasons. Suppose now

that n is even, n = 2m. Then we have

v2nX =

(
2m

m

)
i∗(a

m × bm).

We mentioned in the proof of Theorem 3.1.1 that the binomial coefficient
(
2m
m

)
is

always even. Since 6i∗(a
m×bm) = 0 we just need to assure that

(
2m
m

)
is also divisible

by 3; which is the case if the 3-adic expansion of m contains at least one digit 2,

see [21], Lemma 19. Therefore v2nX = 0 under the assumptions indicated in the

first statement of Theorem 3.1.3. By Theorem 3.2.3 this proves the first part of the

theorem.

Next we prove the second statement of Theorem 3.1.3. Let n ≥ 1 be such that

its 3-adic expansion contains only digits 0 and 1. Then the binomial coefficient
(
2n
n

)
is not divisible by 3, see [21], Lemma 19.
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Consider the lens space L2n+1
3 = S2n+1/Z3 where S

2n+1 ⊂ Cn+1 is the unit sphere

and Z3 = {1, ξ, ξ2} acts as the group of roots of 1, where ξ = exp 2πi/3. It is well

known that the lens space has a cell decomposition with a unique cell in every

dimension i for i = 0, 1, . . . , 2n + 1, see [34], page 144-145. Let X the 2n-skeleton

of L2n+1
3 . Note that X has homotopy type of the lens space L2n+1

3 with one point

removed. We will prove that TC(X) = 4n+1 using the technique developed in [21].

The cohomology algebra H∗(L2n+1
3 ;Z3) can be described as the quotient of the

polynomial algebra Z3[x, y] with two generators x of degree 1 and y of degree 2

subject to relations x2 = 0, yn+1 = 0 and xyn = 0; consult [34], page 251. Here x is

the generator of H1(X;Z3) and y = β(x) ∈ H2(X;Z3) is the image of x under the

Bockstein homomorphism

β : H1(X;Z3) → H2(X;Z3)

corresponding to the exact sequence

0 → Z3 → Z9 → Z3 → 0.

The classes yk and xyk, where k = 0, 1, . . . , n, form an additive basis of H∗(X;Z3).

By the Künneth theorem one has

H∗(X ×X;Z3) = H∗(X;Z3)⊗H∗(X;Z3)

and therefore the classes

xayb × xcyd ∈ H∗(X ×X;Z3)

where a, c ∈ {0, 1} and b, d ∈ {0, 1, . . . , n} and (a, b) ̸= (1, n), (c, d) ̸= (1, n) form an

additive basis of H∗(X ×X;Z3). We represent by x̄ and ȳ the classes

x̄ = x× 1− 1× x ∈ H1(X ×X;Z3), ȳ = y × 1− 1× y ∈ H2(X ×X;Z3).
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It is shown in [21] that β(x̄) = ȳ and therefore the class ȳ has weight two with

respect to the path fibration (2.1).

Recall Definition 2.4.1: a cohomology class u ∈ H∗(X×X;R) has weight greater

or equal than k if u|A = 0 for any open subset A ⊂ X ×X with TCX(A) ≤ k; see.

By Lemma 2.4.5 one has

wgt((ȳ)2n) ≥ 2n · wgt(ȳ) ≥ 4n.

Adding Proposition 2.4.3 implies that if (ȳ)2n ̸= 0 then TC(X) ≥ 4n+ 1. A simple

computation shows that

(ȳ)2n = (−1)n
(
2n

n

)
yn × yn

and the binomial coefficient
(
2n
n

)
is mutually prime to 3 due to the fact that the

3-adic expansion of n does not contain any 2; we refer once more to Lemma 19 from

[21]. We obtain (ȳ)2n ̸= 0 which shows that TC(X) ≥ 4n+ 1.

The opposite inequality TC(X) ≤ 4n+1 follows directly from the general upper

bound TC(X) ≤ 2 dimX + 1. Hence

TC(X) = 4n+ 1.



Chapter 4

Navigation Functions

In [36] and [37] the authors explored the idea of using the gradient flow of Morse

functions to develop motion planners which allow navigation of a mechanism to a

fixed goal. In [20], Farber introduced a similar technique which produces motions

connecting arbitrary points on a manifold M . In this variation the correct idea

is to study the gradient flow of certain Morse-Bott functions on M × M . Such

functions are called navigation functions. These can be used to construct motion

planning algorithms. Through this method one obtains upper bounds of TC(M); see

Theorem 4.1.1 below. In this chapter we introduce and study a class of navigation

functions on projective and lens spaces.

4.1 Navigation functions as motion planners

We start by reviewing some definitions regarding smooth maps. Let M be a closed

manifold. A Morse function is a smooth map f : M → R such that every critical

point p is nondegenerate, i.e. the Hessian matrix of f at p is nonsingular. If the set

of critical points is a disjoint union of connected submanifolds of M (called critical

47
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submanifolds) and the Hessian of f is nondegenerate on the normal bundle to each of

the critical submanifolds (the quotient of the tangent bundle of M with the tangent

bundle of the critical submanifold), then we say that f is a Morse-Bott function. If

p is a critical point the index of p, I(p), is the number of negative eigenvalues of

Hesspf =

(
∂2f

∂xi∂xj

∣∣∣∣
p

)
i,j

,

the Hessian matrix of f at p. If N is a connected critical submanifold then every

p ∈ N has identical index and we define the index of N as I(N) := I(p).

The negative gradient flow of f ,

Φ : R×M → M,

is the flow associated to the tangent vector field −∇f . For a critical submanifold N

define the sets

U(N) = {x ∈ M | lim
t=−∞

Φ(t, x) = q, q ∈ N}

and

S(N) = {x ∈ M | lim
t=+∞

Φ(t, x) = q, q ∈ N}.

It is well known that if f is a Morse-Bott function then U(N) and S(N) are man-

ifolds; the unstable and stable manifolds, respectively. In fact, U(N) and S(N)

are fibre bundles over N with fibres diffeomorphic to RI(N) and Rm−n−I(N), where

m = dimM and n = dimN . Let N1, . . . , Nk denote all the critical submanifolds of

f . Then

M =
k∪

i=1

U(Ni) =
k∪

i=1

S(Ni) (4.1)

Moreover, U(Ni) ∩ U(Nj) = ∅ = S(Ni) ∩ S(Nj) for i ̸= j.
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Let i : N → M be the natural inclusion of N into M . The normal bundle to N

in M is the quotient

ν(N) =
i∗TM

TN
,

where i∗TM is the restriction of the tangent bundle TM by the inclusion i. If f is

Morse-Bott then the flow lines are ’transversal’ to the critical submanifolds. In fact

for any critical submanifold N , the total space of the fibre bundle U(N)⊕ S(N) is

homeomorphic to the total space of the normal bundle ν(N) in M .

We now introduce the key definition of this chapter.

Definition 4.1.1. Let M be a manifold. A smooth map f : M ×M → R is called

a navigation function if the following assumptions are verified:

1. f(x, y) ≥ 0 for all x, y ∈ M ,

2. f(x, y) = 0 if and only if x = y,

3. f is a Morse-Bott function.

Remark 4.1.1. Observe that condition 2) implies that the diagonal of M ×M , i.e.

∆M = {(x, y) ∈ M ×M : x = y},

is always a critical submanifold of any navigation function on M .

The connection between navigation functions and topological complexity is made

explicit by the next result, Theorem 4.32 from [20]. For convenience of the reader

we reproduce the proof.

Theorem 4.1.1 ([20]). Let f : M ×M → R be a navigation function for M with

critical submanifolds N1, . . . , Nk ⊂ M × M . Denote by ci the respective critical
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values, i.e., f(Ni) = {ci}. Then

TC(M) ≤
∑

r∈ Crit(f)

Nr,

where

Nr = max
ci=r

{TCM(Ni)}

and Crit(f) ⊂ R denotes the set of critical values.

Proof. Let Φ denote the flow associated with the tangent vector field −∇f . By (4.1)

we have a decomposition by stable manifolds of critical submanifolds, i.e.,

M ×M =
k∪

i=1

S(Ni).

For every i, Φ induces a continuous retraction

qi : S(Ni) → Ni

from the stable manifold of Ni onto Ni given by

qi(x, y) = lim
t→+∞

Φ(t, (x, y)), (x, y) ∈ M ×M.

Let f(Si) = {ci}. Given a critical value r, denote by Cr the union

Cr =
∪
ci=r

Ni.

Clearly

S(Cr) = S

(∪
ci=r

Ni

)
=
∪
ci=r

S(Ni).

It is well known that if f(Ni) = f(Nj) for i ̸= j then S(Ni) ∩ S(Nj) = ∅. Hence

there is a continuous retraction Qr : S(Cr) → Cr such that Qr|Ni
= qi. Moreover,

Proposition 2.3.1 implies that

TCM(S(Cr)) = TCM

(∪
ci=r

Ni

)
= max

ci=r
TCM(Ni) = Nr.
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Applying the statement of Remark 2.3.1 with respect to the partition

M ×M =
∪

r∈ Crit(f)

S(Cr).

proves the inequality

TC(M) ≤
∑

r∈ Crit(f)

TCM(S(Cr)) =
∑

r∈ Crit(f)

Nr.

We see that the problem of global motion planning on M reduces to constructing

sections of the path fibration PM → M ×M over the critical submanifolds.

4.2 A navigation function on lens spaces

We recall the construction of lens spaces. Let ξ = e
2π
m

i ∈ C. The multiplication by

ξ defines a Zm-action on Cn. The (2n − 1)-dimensional sphere, S2n−1, is naturally

embedded in Cn; it is Zm-invariant and Zm acts freely on S2n−1. The quotient of

S2n−1 by this action is the lens space

L2n−1
m = S2n−1/Zm.

Given a point z ∈ S2n−1, we denote by [z] the image of z under the projection

S2n−1 → L2n−1
m .

The main goal of this section is to study the number TC(L2n−1
m ). We introduce a

navigation function for the lens space L2n−1
m and apply Theorem 4.1.1 with respect

to this function.

Consider first the function F̃ : S2n−1 × S2n−1 → R defined by

F̃ (z, z′) =
m−1∏
j=0

|z − ξjz′|2, z, z′ ∈ S2n−1. (4.2)
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It is clear that this map is smooth, symmetric, and invariant under the Zm × Zm-

action on S2n−1 × S2n−1 given by

(ξj, ξk) · (u, v) = (ξju, ξkv).

The product space L2n−1
m × L2n−1

m is the Zm × Zm-quotient of S
2n−1 × S2n−1. Thus,

F̃ induces a smooth function

F : L2n−1
m × L2n−1

m → R (4.3)

given by F ([z], [z′]) = F̃ (z, z′). Clearly F satisfies properties 1) and 2) of Definition

4.1.1. Property 3) will be verified later in Proposition 4.2.8. Thus F is a navigation

function. The critical points of F will be described by Proposition 4.2.1. We first

introduce a space that plays a key role in that result.

Consider the complex Stiefel manifold V2(Cn), i.e. the space of pairs of orthonor-

mal vectors in Cn with respect to the Hermitian inner product

⟨z, z′⟩ =
n∑

i=1

ziz̄′i ∈ C.

By definition V2(Cn) is a submanifold of S2n−1 × S2n−1. Due to the properties

of the Hermitian inner product it follows that, for any z, z′ ∈ S2n−1 ⊂ Cn and

α, β ∈ C\{0}, one has ⟨z, z′⟩ = 0 if and only if ⟨αz, βz′⟩ = 0. In particular, we have

a well defined quotient manifold

VL = V2(Cn)/Zm × Zm.

Proposition 4.2.1. Let m ≥ 3 and L = L2n−1
m be the lens space described above.

The critical submanifolds of the navigation function F : L×L → R induced by (4.2)

are the following:

a) ∆L = {([z], [z′]) ∈ L× L : [z] = [z′]}, the diagonal;
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b) ∆′
L = {([z], [z′]) ∈ L× L : [z] = [e

π
m
iz′]}, the ”shifted” diagonal;

c) VL = V2(Cn)/Zm × Zm = {([z], [z′]) ∈ L× L : ⟨z, z′⟩ = 0}, the ”orthonormal”

2-frames on L.

Remark 4.2.1. Simple calculations show that the critical values are the following:

F (∆L) = 0; F (∆′
L) = 2m ·

m∏
j=1

sin

(
(2j − 1)π

2m

)
; F (VL) = 2m.

Hence

F (∆L) < F (∆′
L) < F (VL).

4.2.1 Proof of Proposition 4.2.1

Let TzS
2n−1 be the tangent space at z of the sphere S2n−1. Identify TzS

2n−1 with

the set {v ∈ Cn| Re⟨v, z⟩ = 0}. Given a point (z, z′) ∈ S2n−1 ×S2n−1 we assume the

identification T(z,z′)(S
2n−1 × S2n−1) ≃ TzS

2n−1 × Tz′S
2n−1.

For any v ∈ TzS
2n−1 one has

∂F̃

∂(v, 0)

∣∣∣∣∣
(z,z′)

=
m−1∑
j=0

((
∂

∂(v, 0)
|z − ξjz′|2

)
·
∏
k ̸=j

|z − ξkz′|2
)

=
m−1∑
j=0

((
∂

∂(v, 0)

(
−2Re

(
⟨z, ξjz′⟩

)))
·
∏
k ̸=j

|z − ξkz′|2
)

= −2
m−1∑
j=0

(
Re
(
⟨v, ξjz′⟩

)
·
∏
k ̸=j

|z − ξkz′|2
)
.

Let

∆̃ = {(z, z′) ∈ S2n−1 × S2n−1| z′ = ξjz, j = 0, . . . ,m− 1}. (4.4)

If (z, z′) ∈ ∆̃ then z′ = ξjz, for some j ∈ {0, 1, . . . ,m− 1}. Thus

∂F̃

∂(v, 0)

∣∣∣∣∣
∆̃

= −2Re (⟨v, z⟩) ·
∏
k ̸=j

|z − ξkz′|2
∣∣∣∣∣
∆̃

= 0.
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Analogously,

∂F̃

∂(0, w)

∣∣∣∣∣
∆̃

= 0

for any w ∈ Tz′S
2n−1. On the other hand, if z ̸= ξjz′ for any j = 0, 1, . . . ,m− 1, we

have

∂F̃

∂v
= −2F̃ · Re (⟨v, µz′⟩) , (4.5)

where µ = µ(z, z′) is defined by

µ(z, z′) =
m−1∑
j=0

ξj

|z − ξjz′|2
. (4.6)

Similar computations show that for w ∈ Tz′S
2n−1 one has

∂F̃

∂w
= −2F̃ · Re (⟨z, µw⟩) = −2F̃ · Re (⟨w, µ̄z⟩) . (4.7)

One can naturally identify Cn with R2n. Given x, y ∈ Cn, denote by x∗, y∗ the

associated real vectors. It is easy to verify that Re (⟨x, y⟩) = ⟨x∗, y∗⟩R, where ⟨·, ·⟩R

denotes the usual real inner product. Denote by PT (·) : Rl → T the real orthogonal

projection onto a real vector subspace T ⊂ Rl. By (4.5) and (4.7) we can express

the gradient ∇F̃ at a point (z, z′) ∈ S2n−1 × S2n−1 − ∆̃ as

∇F̃ (z, z′) = −2F̃ · PT×T ′((µz′)∗, (µ̄z)∗), (4.8)

where T = TzS
2n−1 ⊂ R2n and T ′ = Tz′S

2n−1 ⊂ R2n.

One can now use the formula (4.8) to describe the critical submanifolds of F̃ .

Corollary 4.2.2. A point (z, z′) ∈ S2n−1×S2n−1 is a critical point of F̃ if and only

if one of the following holds:

1. F̃ (z, z′) = 0;
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2. F̃ (z, z′) ̸= 0 and µ(z, z′) = 0;

3. F̃ (z, z′) ̸= 0, µ(z, z′) ̸= 0 and µ(z, z′)z′ = λz for some λ ∈ R.

Proof. We already saw that all points in ∆̃, given by (4.4), are critical points of F̃ .

Clearly F̃ (z, z′) = 0 if and only if (z, z′) ∈ ∆̃. Thus all points in the solution set of

F̃ (z, z′) = 0 are critical. By (4.8), any critical point (z, z′) such that F̃ (z, z′) ̸= 0

must satisfy

PT×T ′((µz′)∗, (µ̄z)∗) = 0, (4.9)

where µ is as defined in (4.6). Clearly, points (z, z′) such that µ(z, z′) = 0 are

solutions of this equation. If (z, z′) is a solution of equation (4.9) and µ(z, z′) ̸= 0

then PT ((µz
′)∗) = 0, i.e.

µz′ = λ1z, (4.10)

for some λ1 ∈ R, and PT ′((µ̄z)∗) = 0, which is equivalent to

µ̄z = λ2z
′, (4.11)

for some λ2 ∈ R. However, multiplying both sides of (4.11) by µ
λ2

gives λ3z = µz′,

with λ3 =
|µ|2
λ2

. Therefore conditions (4.10) and (4.11) are equivalent.

We conclude that a critical point (z, z′) of the function F̃ must satisfy either

F̃ (z, z′) = 0

or

µ(z, z′) = 0

or

µ(z, z′)z′ = λz,

for some λ ∈ R.
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The next goal is to use Corollary 4.2.2 to describe explicitly the critical subman-

ifolds of F̃ .

Proposition 4.2.3. For z, z′ ∈ S2n−1 such that F̃ (z, z′) ̸= 0 one has µ(z, z′) = 0 if

and only if ⟨z, z′⟩ = 0.

Proposition 4.2.4. For z, z′ ∈ S2n−1 such that F̃ (z, z′) ̸= 0 and µ(z, z′) ̸= 0 one

has µ(z, z′)z′ = λz for some λ ∈ R if and only if z = eiθz′, where θ = (2k+1)π
m

for

some integer k.

For the proofs of the above statements we need to introduce some definitions.

Given w ∈ C, define the sets

H+(w) = {αw| α ∈ C, Im(α) > 0},

H−(w) = {αw| α ∈ C, Im(α) < 0},

J+(w) = {j ∈ Z| 0 ≤ j ≤ m− 1, ξj ∈ H+(w)},

J−(w) = {j ∈ Z| 0 ≤ j ≤ m− 1, ξj ∈ H−(w)},

J0(w) = {j ∈ Z| 0 ≤ j ≤ m− 1, ξj ∈ Rw}.

The sets H+(w) and H−(w) are the two half-planes in C separated by the real line

Rw = {λw| λ ∈ R};

see Figure 4.1.
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Figure 4.1: The sets J−(w) and J+(w).

Proof of Propostion 4.2.3. There is a bijection between J+(1) and J−(1) given by

j 7→ m− j. Hence, we may rewrite (4.6) as

µ(z, z′) =
∑

j∈J+(1)

(
ξj

|z − ξjz′|2
+

ξ−j

|z − ξ−jz′|2

)
+
∑

j∈J0(1)

ξj

|z − ξjz′|2
. (4.12)

By definition of J0(1), the second sum on the right side of (4.12) is a real number.

Thus, in order to have µ(z, z′) = 0, the sum in (4.12) whose indices run over J+(1)

must also be a real number.

Lemma 4.2.5. Suppose z, z′ ∈ S2n−1 ⊂ Cn are such that ⟨z, z′⟩ ∈ H±(1). Then,

for any j ∈ J+(1),

ξj

|z − ξjz′|2
+

ξ−j

|z − ξ−jz′|2
∈ H±(1). (4.13)

In particular, by formula (4.12), µ(z, z′) is nonzero.
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Proof. Assume that ⟨z, z′⟩ ∈ H+(1) and j ∈ J+(1), i.e. Im(⟨z, z′⟩), Im(ξj) > 0. Then

|z − ξjz′|2 − |z − ξ−jz′|2 = −ξ−j⟨z, z′⟩ − ξj⟨z′, z⟩+ ξj⟨z, z′⟩+ ξ−j⟨z′, z⟩

=
(
ξj − ξ−j

)
(⟨z, z′⟩ − ⟨z′, z⟩)

=
(
ξj − ξ̄j

) (
⟨z, z′⟩ − ⟨z, z′⟩

)
= −4Im(ξj)Im(⟨z, z′⟩)

< 0,

since, for any α ∈ C, α − ᾱ = 2Im(α) · i. Obviously 0 < Im(ξj) = −Im(ξ−j). Since

|z − ξjz′|2 < |z − ξ−jz′|2 then

Im

(
ξj

|z − ξjz′|2

)
+ Im

(
ξ−j

|z − ξ−jz′|2

)
> 0,

i.e. the sum (4.13) must lie in H+(1). The proof is analogous in the case ⟨z, z′⟩ ∈

H−(1).

We have just seen that if µ(z, z′) = 0 then ⟨z, z′⟩ ∈ R. On the other hand,

µ(ξz, z′) =
m−1∑
j=0

ξj

|ξz − ξjz′|2
=

m−1∑
j=0

ξj

|z − ξj−1z′|2
= ξµ(z, z′).

Hence,

µ(z, z′) = 0 ⇔ µ(ξz, z′) = 0 ⇒ ⟨ξz, z′⟩ ∈ R ⇔ ⟨z, z′⟩ ∈ Rξ̄.

This shows that if µ(z, z′) = 0 then ⟨z, z′⟩ ∈ R ∩ Rξ̄ = {0}.

The inverse statement is clearly true. Indeed, the condition ⟨z, z′⟩ = 0 implies

that all the denominators of the summands on the right side of equation (4.6) are

equal. Since
∑m−1

j=0 ξj = 0 it follows that µ(z, z′) = 0.

This completes the proof of Proposition 4.2.3.

The proof of Proposition 4.2.4 follows the same idea of the above proof but it is

technically more delicate.
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Proof of Propostion 4.2.4. Any two points z, z′ ∈ S2n−1 which satisfy the hypothesis

of Proposition 4.2.4 must lie in the same complex line. Let w ∈ S1 ⊂ C be the

complex number defined by

z = wz′.

Since F̃ (z, z′) ̸= 0, the complex number w cannot lie in the subgroup generated by

ξ which we denote by

Om = {e
2kπ
m

i| k = 0, 1, . . . ,m− 1} < S1. (4.14)

The existence of a nonzero real number λ such that µ(z, z′)z′ = λz is equivalent

to

m−1∑
j=0

ξj

|w − ξj|2
∈ Rw. (4.15)

Denote by O′
m the coset e

π
m
i ·Om of the subgroup Om < S1 ⊂ C. Explicitly,

O′
m = {e

(2k+1)π
m

i, k = 0, 1, . . . ,m− 1}. (4.16)

We will show that (4.15) holds if and only if w ∈ O′
m. This will be a consequence

of Lemma 4.2.6. First we need some preparation.

Let us start by rewriting the sum in (4.15) as

m−1∑
j=0

ξj

|w − ξj|2
=

∑
j∈J+(w)∪J−(w)

ξj

|w − ξj|2
+
∑

j∈J0(w)

ξj

|w − ξj|2
. (4.17)

Since the last sum in (4.17) takes value in Rw, statement (4.15) holds if and only if

∑
j∈J+(w)∪J−(w)

ξj

|w − ξj|2
∈ Rw. (4.18)

Assume, without loss of generality that

min
j∈J−(w)

|w − ξj| ≤ min
j∈J+(w)

|w − ξj|. (4.19)
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If necessary, this assumption is true by the interchange of coordinates (z, z′) → (z′, z)

since F̃ is symmetric. Let us reorder the indices of the sets J+(w) and J−(w) by

increasing norm of w − ξj; for example, if w is in the short arc delimited by ξj and

ξj+1, then j is the first element of J−(w) and j + 1 is the first element of J+(w).

Notice that, under the assumption of (4.19), the cardinalities of sets J+(w) and

J−(w) is either the same or |J−(w)| = |J+(w)|+1; Figure 4.2 illustrates both cases.

Figure 4.2: Possible configuration for m = 5 (left) and m = 6 (right). The elements

of J−(w) and J+(w) are the respective exponents in H−(w) and H+(w).

Denote by

ϕ : J+(w) → J−(w)

the injective map which associates the k-th element of J+(w) with the k-th element

of J−(w). As example notice that in the left side case of Figure 4.2 one has

J−(w) = {0, 3, 4}, J+(w) = {1, 2}

and

ϕ(1) = 0, ϕ(2) = 4.
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On the right side configuration we have J−(w) = {0, 4, 5} and J+(w) = {1, 2, 3} and

ϕ(1) = 0, ϕ(2) = 5, ϕ(3) = 4.

Remark 4.2.2. The map ϕ was already introduced in the proof of Proposition 4.2.3.

There it was described as the bijection between J+(1) and J−(1) given by j → m− j.

Define R to be the following complex number. If m is even or m is odd with

w ∈ O′
m set

R = 0.

If m is odd and w ̸∈ O′
m then ϕ is not a bijection; by (4.19), it follows that |J−(w)| =

|J+(w)|+ 1. In this case set

R =
ξl

|w − ξl|2
∈ H−(w), (4.20)

where l is the last element of J−(w), with respect to the ordering defined above. In

the situation pictured on the left side of Figure 4.2 we have R = ξ3

|w−ξ3|2 . For the

configuration on the right R = 0.

The next Lemma plays the same role that Lemma 4.2.5 played in the proof of

Proposition 4.2.3.

Lemma 4.2.6. Let Om and O′
m be the sets defined in (4.14) and (4.16), respectively,

and w ∈ S1\Om ⊂ C.

1. If w ∈ O′
m then ϕ is the bijection given by reflection on {λw| λ ∈ R}. In

particular, for any j ∈ J+(w)

ξj

|w − ξj|2
+

ξϕ(j)

|w − ξϕ(j)|2
∈ Rw.
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2. If w ̸∈ O′
m, i.e. w ̸= e

kπ
m

i for k = 0, . . . ,m− 1, and

min
j∈J−(w)

|w − ξj| < min
j∈J+(w)

|w − ξj|, (4.21)

then, for any j ∈ J+(w),

ξj

|w − ξj|2
+

ξϕ(j)

|w − ξϕ(j)|2
∈ H−(w). (4.22)

The first part of the lemma implies that if w ∈ O′
m then (4.18) and consequently

(4.15) hold. Hence, for any pair (z, z′) ∈ ∆̃, where

∆̃′ = {(z, z′) ∈ S × S | z = e(2k+1) π
m
iz′, k = 0, . . . ,m− 1},

there is a nonzero λ ∈ R such that

µ(z, z′)z′ = λz.

The restriction (4.21) in the second part of the lemma, is equivalent to (4.19)

since equality can only occur when w ∈ O′
m.

Since

∑
j∈J+(w)∪J−(w)

ξj

|w − ξj|2
=

∑
j∈J+(w)

(
ξj

|w − ξj|2
+

ξϕ(j)

|w − ξϕ(j)|2

)
+R,

we conclude that if w ̸∈ O′
m then (4.18) cannot hold since, by (4.22), the sum in

(4.18) must take value in H−(w) and either R = 0 or R ∈ H−(w).

Proving Lemma 4.2.6 terminates the proof Proposition 4.2.4.

Proof of Lemma 4.2.6. For every j ∈ J+(w) define

Xj = |w − ξj|, Yj = |w − ξϕ(j)|

and αj, βj ∈ (0, π) denote the angles formed by w and ξj and w and ξϕ(j), respec-

tively; see Figure 4.3 above.
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Figure 4.3: The numbers αj, βj, Xj and Yj.

Clearly, the statement in the first part of the lemma holds. If w ∈ O′
m then

w = e
kπ
m

i for some k. Thus, for any j ∈ J+(w), Xj = Yj and αj = βj.

Let j0 be the first element of J+(w) with respect to the ordering described before.

Inequality (4.21) can be rewritten as Xj0 > Yj0 . Clearly this implies that for any

j ∈ J+(w) it holds that

Xj > Yj and αj > βj .

Statement (4.22) is equivalent to

sinαj

X2
j

<
sin βj

Y 2
j

,

for any j ∈ J+(w). Since

Xj = 2 sin
(αj

2

)
, Yj = 2 sin

(
βj

2

)
the second part of the lemma follows from the following result.

Claim. If α, β ∈ (0, π) such that α > β then

Y 2 sinα < X2 sin β

where X = sin
(
α
2

)
, Y = sin

(
β
2

)
.
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The proof is straightforward. A property of the trignometric function sin states

that

sin(a+ b) = sin(a) cos(b) + sin(b) cos(a).

Thus

Y 2 sin(α) < X2 sin(β) ⇔ sin2

(
β

2

)
sin
(α
2

)
cos
(α
2

)
< sin2

(α
2

)
sin

(
β

2

)
cos

(
β

2

)
⇔ tan

(
β

2

)
< tan

(α
2

)
⇔ β < α.

This concludes the proof of Proposition 4.2.4.

Propositions 4.2.3 and 4.2.4 together with Corollary 4.2.2 imply the next result.

Corollary 4.2.7. A critical point (z, z′) ∈ S2n−1 × S2n−1 of the function F̃ must

satisfy one of the following conditions:

1. (z, z′) ∈ ∆̃, i.e. z = eiθz′ where θ = 2kπ
m

for some integer k;

2. z = eiθz′ where θ = (2k+1)π
m

for some integer k;

3. ⟨z, z′⟩ = 0.

Corollary 4.2.7 provides a clear description of the critical submanifolds of the map

F̃ . Each of the submanifolds is invariant by the Zm ×Zm-action and the respective

quotients are the critical submanifolds of F . Namely, the quotients submanifolds

defined in 1), 2) and 3) of the above Corollary are respectively the submanifolds ∆L,

∆′
L and VL introduced in Proposition 4.2.1. This terminates the proof of Propositon

4.2.1.
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4.2.2 Proof of the Morse-Bott condition

Finally we prove that F is a Morse-Bott function and therefore a navigation function.

Proposition 4.2.8. The map F : L2n−1
m ×L2n−1

m → R given by (4.3) is a Morse-Bott

function.

Proof. Clearly F is a Morse-Bott function if and only if F̃ is Morse-Bott function.

Thus we must prove that the Hessian of F̃ is nondegenerate on each of the normal

bundles to the critical submanifolds in S2n−1 × S2n−1.

Denote by S the sphere S2n−1. By Corollary 4.2.7, the submanifolds

∆ = {(z, z′) ∈ S × S| z = z′}, (4.23)

∆′ = {(z, z′) ∈ S × S| z = e
π
m · z′}, (4.24)

V = {(z, z′) ∈ S × S| ⟨z, z′⟩ = 0}. (4.25)

of S × S are critical. Furthermore, the Zm × Zm-orbits of the points in ∆ and ∆′

contain all the critical points described in 1) and 2) of Corollary 4.2.7. Since F̃ is

Zm×Zm-invariant, it suffices to show that the Hessian of F̃ is nondegenerate on the

normal bundles in S2n−1 × S2n−1 to ∆, ∆′ and V .

We start by computing the tangent bundles to ∆, ∆′ and V . The space S×S has

a natural embedding in Cn ×Cn. The tangent space to S × S at a point ∗ = (z, z′)

is the real vector space

{(v, v′) ∈ Cn × Cn| Re⟨v, z⟩ = 0, Re⟨v′, z′⟩ = 0}.

From (4.23), (4.24) and (4.25) we can see that the tangent spaces to ∆, ∆′ and



4.2. A navigation function on lens spaces 66

V , at a point ∗ = (z, z′) ∈ S × S, are the real vector spaces:

T∗∆ = {(v, v′) ∈ Cn × Cn| v′ = v,Re(⟨v, z⟩) = 0};

T∗∆
′ = {(v, v′) ∈ Cn × Cn| v′ = e

π
m
i · v, Re(⟨v, z⟩) = 0};

T∗V = {(v, v′) ∈ Cn × Cn| ⟨v, z′⟩+ ⟨z, v′⟩ = 0, Re(⟨v, z⟩) = 0 = Re(⟨v′, z′⟩)}.

Denote the respective normal spaces by N∗∆, N∗∆
′ and N∗V . Clearly,

N∗∆ = {(v, v′) ∈ Cn × Cn| v′ = −v,Re(⟨v, z⟩) = 0}

and

N∗∆
′ = {(v, v′) ∈ Cn × Cn| v′ = −e

π
m
i · v, Re(⟨v, z⟩) = 0}.

Given a point ∗ = (z, z′) ∈ V we may choose a basis

B =
{
(v1, v

′
1), . . . , (v2n−1, v

′
2n−1), (v1,−v1), . . . , (v2n−1,−v′2n−1)

}
,

of the real vector space T∗(S × S), where {v1, . . . , v2n−1} and {v′1, . . . , v′2n−1} are

orthonormal basis of TzS and Tz′S, respectively, and such that

v1 = z′, v2 = iz′, v′1 = z and v′2 = −iz.

By the condition ⟨v, z′⟩+ ⟨z, v′⟩ = 0, we see that the space T∗V is the real vector

space generated by the base

BT = B\{(v1, v′1), (v2, v′2)}.

Hence

N∗V = {α(v1, v′1) + β(v2, v
′
2)| α, β ∈ R} ⊂ Cn × Cn.

Lemma 4.2.9. The Hessian of F̃ is nondegenerate on the normal bundle N∆.
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Proof. Let ∗ = (z, z) be a point in ∆. Given a vector V = (v,−v) ∈ N∗∆ one has

∂F̃

∂V

∣∣∣∣∣
∗

=
m−1∑
j=0

∂Aj

∂V
F̃j

∣∣∣∣∣
∗

,

where

Aj = ||z − ξjz′||2 and F̃j =
∏
k ̸=j

Ak.

Hence,

∂2F̃

∂W∂V

∣∣∣∣∣
∗

=
∑
j

(
∂2Aj

∂W∂V
F̃j +

∂Aj

∂V

∂F̃j

∂W

)∣∣∣∣∣
∗

(4.26)

where W = (w,−w) ∈ N∗∆. Note that A0 = 0 and F̃j = 0 for j ̸= 0. Thus we can

write (4.26) as

∂2F̃

∂W∂V

∣∣∣∣∣
∗

=
∂2A0

∂W∂V
F̃0

∣∣∣∣
∗
+
∑
j

∂Aj

∂V

∂F̃j

∂W

∣∣∣∣∣
∗

. (4.27)

We claim that the second sum on the right side of (4.27) is valued zero. In fact,

∂F̃j

∂W
=
∑
k ̸=j

∂Ak

∂W
F̃j,k,

where F̃j,k =
∏

l ̸∈{j,k}Ak. One has F̃j,k = 0 if both j, k ̸= 0. On the other hand, for

any V = (v,−v) ∈ N∗∆, one has

∂A0

∂V

∣∣∣∣
∗

= −2
∂

∂V
Re(⟨z, z′⟩)

∣∣∣∣
∗
= −2 Re(⟨v, z′⟩ − ⟨z, v⟩)|∗ = 0,

since ⟨v, z′⟩ = ⟨v, z⟩ = ⟨z, v⟩. Hence, for any j,(
∂Aj

∂V
· ∂F̃j

∂W

)∣∣∣∣∣
∗

= 0.

By (4.27) we have

∂2F̃

∂W∂V

∣∣∣∣∣
∗

=
∂2A0

∂W∂V
F̃0

∣∣∣∣
∗
.
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On the other hand,

∂2A0

∂W∂V

∣∣∣∣
∗

= −2
∂

∂W
Re(⟨v, z′⟩ − ⟨z, v⟩)

∣∣∣∣
∗

= −2 Re(⟨v,−w⟩ − ⟨w, v⟩)|∗

= 4Re(⟨v, w⟩).

When analyzing the Hessian matrix of F̃ at a critical point ∗ = (z, z), we may

assume that V = (v,−v) and W = (w,−w) are such that the vectors v and w are

chosen from an orthonormal basis of TzS, i.e. they are both unitary and either

v = w or Re(⟨v, w⟩) = 0. For these coordinates the Hessian matrix of F̃ at a point

∗ ∈ ∆ is a diagonal matrix with constant value 4 in the diagonal entries.

Lemma 4.2.10. The Hessian of F̃ is nondegenerate on the normal bundle N∆′.

Proof. Set α = e
π
m
i and let ∗ = (z, αz) be a point in ∆′. We adopt the notations

Aj, F̃j and F̃j,k from the proof of the previous lemma. Recall that a vector V ∈ ∆′

has the form V = (v,−αv).

As we have seen in the proof of Lemma 4.2.9 one has

∂2F̃

∂W∂V

∣∣∣∣∣
∗

=
m−1∑
j=0

(
∂2Aj

∂W∂V
F̃j +

∂Aj

∂V

∑
k ̸=j

∂Ak

∂W
F̃j,k

)∣∣∣∣∣
∗

, (4.28)

for any V,W ∈ N∗∆
′.

Let us choose a basis

B′ = {(v1,−αv1), . . . , (v2n−1,−αv2n−1)}

forN∗∆
′ such that {v1, . . . , v2n−1} is an orthonormal basis of TzS and if V = (v,−αv)

is an element of B′, then either

v = iz or Im(v, z) = 0.
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One has

∂Aj

∂V

∣∣∣∣
∗

= −2
∂

∂V
Re(⟨z, ξjz′⟩)

∣∣∣∣
∗

= −2Re(⟨v, ξjz′⟩ − ⟨z, αξjv⟩)
∣∣
∗

= −2Re(⟨v, z⟩ · (αξj − αξj))

= 4Re(⟨v, z⟩ · Im(αξj) · i))

= −4Im(αξj) · Im(⟨v, z⟩).

Thus, if V ∈ B′ and v ̸= iz we have

∂Aj

∂V

∣∣∣∣
∗
= 0. (4.29)

On the other hand, given two vectors V,W ∈ B′, we have

∂2Aj

∂W∂V

∣∣∣∣
∗

= −2
∂

∂W
Re(⟨v, ξjz′⟩ − ⟨z, ξjαv⟩)

∣∣∣∣
∗

= 2 Re(⟨v, αξjw⟩+ ⟨w,αξjv⟩)
∣∣
∗

= 4Re(αξj)Re(⟨v, w⟩).

Therefore if V,W ∈ B′ and V ̸= W one has
∂2Aj

∂W∂V

∣∣∣
∗
= 0. Besides, V ̸= W implies

that either v ̸= iz or w ̸= iz and by (4.29) either
∂Aj

∂V

∣∣∣
∗
= 0 or

∂Aj

∂W

∣∣∣
∗
= 0, for any j.

Hence, by formula (4.28), we have

∂2F̃

∂W∂V

∣∣∣∣∣
∗

= 0,

for any two distinct vectors V and W of the basis B′. Moreover, if V is such that

v ̸= iz, then

∂2F̃

∂V ∂V

∣∣∣∣∣
∗

=
m−1∑
j=0

(
∂2Aj

∂V ∂V
· F̃j

)∣∣∣∣
∗
= 4

m−1∑
j=0

(Re(αξj) · F̃j(∗)).

For any 0 < j < m− 1 one has

F̃0(∗) = F̃m−1(∗) > F̃j(∗)
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and also

Re(αξ0) = Re(αξm−1) > 0.

Clearly one has
∑

j Re(αξ
j) = 0 which implies that

m−2∑
j=1

Re(αξj) = −2Re(αξ0).

Hence,

m−1∑
j=0

(Re(αξj) · F̃j(∗)) = 2F̃0Re(αξ
0) +

m−2∑
j=1

(Re(αξj) · F̃j(∗)) > 0.

The proof terminates once we prove that

∂2F̃

∂V ∂V

∣∣∣∣∣
∗

̸= 0,

where V = (v,−αv) ∈ B′ is the basis vector for which v = iz. Let

I = {(j, k)| 0 ≤ j, k ≤ m− 1, k ̸= j}.

One has

∂2F̃

∂V ∂V

∣∣∣∣∣
∗

=
∑
j

(
∂2Aj

∂V ∂V
+

∂Aj

∂V

∑
k ̸=j

∂Ak

∂V
F̃j,k

)∣∣∣∣∣
∗

=
∑
j

(
4Re(αξj) + 16Im(αξj) ·

∑
k ̸=j

(
Im(αξk)F̃j,k(∗)

))
= 16 ·

∑
(j,k)∈I

Im(αξj) · Im(αξk) · F̃j,k(∗)

= 16 ·
∑

(j,k)∈I

Im(αξj) · Im(αξk)

AjAk

(4.30)

since
∑

j Re(αξ
j) = 0. One can easily check that

∑
(j,k)∈I

Im(αξj) · Im(αξk)

AjAk

=
m−1∑
j=0

m−1∑
k=0

Im(αξj) · Im(αξk)

AjAk

−
m−1∑
j=0

(
Im(αξj)

Aj

)2

=

(
m−1∑
j=0

Im(αξj)

Aj

)2

−
m−1∑
j=0

(
Im(αξj)

Aj

)2

.
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Claim. For any m ≥ 2, with ξ = e
2π
m

i and α = e
π
m
i, one has

m−1∑
j=0

Im(αξj)

Aj

= 0.

Proof. Recall that Aj(z, z
′) = ||z − ξ2z′||2 = ||1− αξj||2. Let

J = {αξ0, αξ1, . . . , αξm−1}

and J+ and J− be the subsets of J containing the elements with positive and negative

imaginary part, respectively. In the picture bellow one has that J+ = {αξ0, αξ1}

and J− = {αξ3, αξ4}. Moreover, there is a reflection r : J → J on the real line such

that r(J+) = J−.

Figure 4.4: The case m = 5.

Obviously

Aj = ||1− αξj||2 = ||1− r(αξj)||2 and Im(αξj) = −Im(r(αξj)).

Therefore
m−1∑
j=0

Im(αξj)

Aj

=
∑
j

Im(αξj) + Im(r(αξj))

Aj

= 0.
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Resuming from (4.30) one has

∂2F̃

∂V ∂V

∣∣∣∣∣
∗

= −16 ·
m−1∑
j=0

(
Im(αξj)

Aj

)2

< 0,

since at least one summand in nonzero; e.g. Im(α)/A0. This proves the lemma and

also shows that the Bott index at ∆′ is 1.

The next lemma is the final step to show that F̃ is a Morse-Bott function.

Lemma 4.2.11. The Hessian of function F̃ is nondegenerate on the normal bundle

NV.

Proof. We adopt the notations Aj, F̃j and F̃j,k from the proof of Lemma 4.2.9.

Recall that given a point ∗ = (z, z′) ∈ V in the normal space to the tangent

space T∗V is given by

N∗V = {α(v1, v′1) + β(v2, v
′
2)| α, β ∈ R},

where

v1 = z′, v2 = iz′, v′1 = z and v′2 = −iz.

As we observed in the proofs of the two previous lemmas,

∂2F̃

∂W∂V

∣∣∣∣∣
∗

=
∑
j

(
∂2Aj

∂W∂V
F̃j +

∂Aj

∂V

∑
k ̸=j

∂Ak

∂W
F̃j,k

)∣∣∣∣∣
∗

. (4.31)

Set V1 = (v1, v
′
1) and V2 = (v2, v

′
2). Then, for any j, one has

∂Aj

∂V1

∣∣∣∣
∗
= −2Re

(
⟨v1, ξjz′⟩+ ⟨z, ξjv′1⟩

)
= −2Re(ξ−j + ξ−j) = −4Re(ξ−j).

and

∂Aj

∂V2

∣∣∣∣
∗
= −2Re

(
⟨v2, ξjz′⟩+ ⟨z, ξjv′2⟩

)
= −2Re(iξ−j + iξ−j) = 4Im(ξ−j).
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On the other hand, for any j and r, s ∈ {1, 2} we have

∂2Aj

∂Vr∂Vs

∣∣∣∣
∗

= −2
∂

∂Vr

Re(⟨vs, ξjz′⟩+ ⟨z, ξjv′s⟩)
∣∣∣∣
∗

= −2Re(⟨vs, ξjv′r⟩+ ⟨vr, ξjv′s⟩)

= −2Re(ξ−j(⟨vs, v′r⟩+ ⟨vr, v′s⟩))

= 0,

since ⟨z, z′⟩ = 0. Hence, by (4.31) we have

∂2F̃

∂Vr∂Vs

∣∣∣∣∣
∗

=
m−1∑
j=0

(
∂Aj

∂Vr

∑
k ̸=j

∂Ak

∂Vs

F̃j,k

)∣∣∣∣∣
∗

, (4.32)

for r, s = 1, 2.

Clearly, F̃j,k = 2m−2 for any j, k. Let

I = {(j, k)| 0 ≤ j, k ≤ m− 1, k ̸= j}.

Then,

∂2F̃

∂V1∂V1

∣∣∣∣∣
∗

= 2m−2

m−1∑
j=0

(
4Re(ξj)

∑
k ̸=j

4Re(ξk)

)
= 2m+2

∑
(j,k)∈I

Re(ξj)Re(ξk),

∂2F̃

∂V2∂V2

∣∣∣∣∣
∗

= 2m−2

m−1∑
j=0

(
4Im(ξj)

∑
k ̸=j

4Im(ξk)

)
= 2m+2

∑
(j,k)∈I

Im(ξj)Im(ξk)

and

∂2F̃

∂V1∂V2

∣∣∣∣∣
∗

= 2m−2

m−1∑
j=0

(
4Re(ξj)

∑
k ̸=j

4Im(ξk)

)
= 2m+2

∑
(j,k)∈I

Re(ξj)Im(ξk).

Claim. For any two sequence of numbers {rj}0≤j≤m−1 and {ij}0≤j≤m−1 such that

m−1∑
j=0

rj = 0 =
m−1∑
j=0

ij

one has  ∑
(j,k)∈I

rjrk

 ·

 ∑
(j,k)∈I

ijik

−

 ∑
(j,k)∈I

rjik

2

≥ 0. (4.33)

where the equality holds only if there exists λ ∈ R such that rj = ij for all j.
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Proof of the Claim. The proof is based on the Cauchy-Schwarz inequality.

Clearly

∑
(j,k)∈I

rjrk =

(
m−1∑
j=0

rj

)2

−
m−1∑
j=0

r2j = −
m−1∑
j=0

r2j ,

∑
(j,k)∈I

ijik =

(
m−1∑
j=0

ij

)2

−
m−1∑
j=0

i2j = −
m−1∑
j=0

i2j ,

∑
(j,k)∈I

rjik =

(
m−1∑
j=0

rj

)
·

(
m−1∑
j=0

ij

)
−

(
m−1∑
j=0

rjij

)
= −

(
m−1∑
j=0

rjij

)
.

Hence the statement (4.33) becomes(
m−1∑
j=0

r2j

)
·

(
m−1∑
j=0

i2j

)
−

(
m−1∑
j=0

rjij

)
≥ 0.

This is precisely the Cauchy-Schwarz inequality in Rm.

Our intention is to apply this claim with respect to rj = Re(ξj) and ij = Im(ξj).

By the discussion above one has

det(Hess∗F̃ ) =
∂2F̃

∂V1∂V1

∣∣∣∣∣
∗

· ∂2F̃

∂V2∂V2

∣∣∣∣∣
∗

−

(
∂2F̃

∂V1∂V2

∣∣∣∣∣
∗

)2

= 22m+4 ·

 ∑
(j,k)∈I

rjrk

 ·

 ∑
(j,k)∈I

ijik

−

 ∑
(j,k)∈I

rjik

2
≥ 0.

Moreover, the vectors (r0, . . . , rm−1) and (i0, . . . , im−1) are clearly independent. Thus

we conclude that

det(Hess∗F̃ ) > 0

and therefore Hess∗F̃ in nondegenerate on the normal bundle NV .

This terminates the proof of Proposition 4.2.8.

From the proofs of the above lemmas we can conclude the following:
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Corollary 4.2.12. The Bott indices of the navigation function F : L × L → R of

Proposition 4.2.1 at the critical submanifolds ∆L, ∆
′
L and VL are respectively 0, 1

and 2.

Figure 4.5: Schematic representation of the flow lines.

4.2.3 The case m = 2

For any n there is a free Z2-action on Sn, given by the antipodal map, for which the

respective quotient is the real projective space RP n. Consequently, for m = 2 the

map F̃ defined in (4.3) can be extended to even-dimensional spheres. The function

F̃ : Sn × Sn → R given by

F̃ (z, z′) = |z − z′|2|z + z′|2 (4.34)

and induces a navigation function

F : RP n × RP n → R.

The diagonal ∆P = {([z], [z′]) ∈ RP n×RP n| [z] = [z′]} is a critical submanifold,

corresponding to the level set F = 0.
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The gradient∇F̃ at a point (z, z′) ∈ Sn×Sn−∆̃ is still defined by (4.8). However

we now have

µ(z, z′) =
1

|z − z′|2
− 1

|z + z′|2
.

Therefore µ(z, z′) = 0 if and only if |z− z′| = |z+ z′|. This corresponds to a critical

submanifold

V = {([z], [z′]) ∈ RP n × RP n| Re(⟨z, z′⟩) = 0}

where ⟨·, ·⟩ is the usual hermitian inner product. By Proposition 4.2.3 and 4.2.4,

the equation

µ(z, z′)z′ = λz

only has solutions for λ = 0, i.e. when ⟨z, z′⟩ = 0. Therefore, the submanifold ∆′
L

of Proposition 4.2.1 is included in V .

We conclude that the navigation function F : RP n×RP n → R induced by (4.34)

only has two critical submanifolds.

Proposition 4.2.13. The navigation function F : RP n ×RP n → R induced by the

map (4.34) has only the two following critical submanifolds:

1. ∆ = {([z], [z′]) ∈ RP n × RP n| z = z′}, the diagonal;

2. VP = {([z], [z′]) ∈ RP n ×RP n| z ⊥ z′}, the space of pairs of orthogonal lines.

4.2.4 Comments

Let P denote the projective space RP n and L the lens space L2n−1
m . Combining

Theorem 4.1.1 with propositions 4.2.1 and 4.2.13 one obtains the following corollary.
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Corollary 4.2.14. Consider the submanifolds VL = {([z], [z′]) ∈ L×L : ⟨z, z′⟩ = 0}

and VP = {([z], [z′] ∈ P × P | Re(⟨z, z′⟩) = 0}. One has

TC(L) ≤ 2 + TCL(VL)

and

TC(P ) ≤ 1 + TCP (VP ).

Proof. By Theorem 4.1.1 the result follows from proving that

TCL(∆L) = TCP (∆P ) = 1

and

TCL(∆
′
L) = 1.

For any topological space X, one has TCX(∆X) = 1 since we can assign the

constant path to any point on the diagonal of X × X thus having a local section

of the path-fibration over the diagonal ∆X . To prove the equality TCL(∆
′
L) = 1 we

observe that over the ’shifted diagonal’ ∆′
L there exists a continuous local section

s : ∆′
L → P∆′

L
L of the path fibration p : PL → L × L, where P∆′

L
L ⊂ PL is the

space of paths in L with endpoints in ∆′
L. In fact, let s([z], [z′]) be the path

s([z], [z′])(t) = [e
π
m
ti · z], t ∈ [0, 1].

Since [z′] = [e
π
m
tiz], we have s([z], [z′])(0) = [z] and s([z], [z′])(1) = [z′] and therefore

s defines a continuous section over ∆′
L.

The navigation functions technique discussed in this chapter gives new insight

into known results regarding the topological complexity of projective and lens spaces.

In [25] Farber, Tabachnikov and Yuzvinsky study the topological complexity of

projective spaces and prove the following result.
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Theorem 4.2.15. For any n ̸= 1, 3, 7, TC(RP n) = k + 1 where k is the smallest

integer such that the projective space RP n admits an immersion into Rk.

In the same paper (Theorem 7.3) the authors present explicitly k + 1 motion

rules covering RP n × RP n. In fact, let U, V ⊂ RP n × RP n where U is the set of

pairs of lines in Rn+1 that form an acute angle and V the complement, i.e. the

set of pairs of orthogonal lines. The authors point out that U can be covered

with a single continuous motion rule s : U → P (RP n) and then show how to use

an immersion RP n → Rk to build k local continuous motion rules covering V .

Comparing with Proposition 4.2.13 notice that the gradient flow of the navigation

function deformation retracts U onto the diagonal ∆ and V = VP . Thus the chosen

navigation function, induced from (4.34), is optimal since TC(RP n) = 1+TCRPn(V2).

It is natural to conjecture if also for lens spaces the inequality of Corollary 4.2.14

is an equality. Recall that

TCL(VL) ≤ TC(L) ≤ 2 + TCL(VL).

The above inequality justifies an interest in estimating TCL(VL). We describe a

possible method to determine this value.

The negative gradient flow ϕt associated to F : L × L → R, given by (4.3),

defines a fibration η : U(VL) � VL given by

η([z], [z′]) = lim
t→−∞

ϕt([z], [z
′]).

With the evolution of the negative gradient flow, as the time parameter t tends

to infinity, points in U(VL) approach either ∆L or ∆′
L. Suppose genus(η) = r. Then

VL admits an open cover U1, . . . , Ur such that for every j ∈ {1, . . . , r} there is a

section

sj : Uj → U(VL)
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of the induced fibration ι∗jη : η−1(Uj) → Uj with respect to the inclusion map

ιj : Uj → VL. Thus VL can be covered by 2r domains U i
1, . . . , U

i
r, with i ∈ {0, 1},

defined as follows: U0
j ⊂ Uj is the subset of points in the stable manifold S(∆L) and

U1
j ⊂ Uj the subset of points in the stable manifold of S(∆′

L). Clearly each set U i
j

admits a continuous section

Si,j : U
i
j → η−1(U i

j)

of the path fibration ι∗i,jp, where p : PL → L × L is the path fibration of L and

ιi,j : U
i
j → L× L the inclusion map. Explicitly

Si,j([z], [z
′]) = (ri ◦ sj)([z], [z′]), i ∈ {0, 1}, j ∈ {1, . . . , r},

where r0 : S(∆L) → L× L and r1 : S(∆′
L) → L× L are the natural inclusions.

Let i : VL → L×L denote the inclusion of the critical submanifold VL. We have

just proven that genus(i∗p) ≤ 2r = 2genus(η). By definition of relative topological

complexity we have

TCL(VL) = genus(i∗p) ≤ 2genus(η).

By Corollary 4.2.14

TC(L2n−1
m ) ≤ 2 + 2genus(η). (4.35)

Related to genus(η) is genus(υ), where υ is the normal bundle to VL. This

is a complex line bundle and studying the respective Chern class may provide the

information missing in (4.35).

Gonzalez and Landweber [30] studied the symmetric topological complexity of

projective spaces and lens spaces. In that paper the authors successfully related the

number TCS(RP n) with the embedding dimension of RP n in a theorem analogous

to Theorem 4.2.15 (Theorem 1.3, [25]).
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Theorem 4.2.16 ([30]). For r > 15 or r = 1, 2, 4, 8, 9, 13, one has

TCS(RP n) = E(n) + 1,

where E(n) stands for the Euclidean embedding dimension of RP n.

A key element of the proof was the existence of an equivariant deformation

retract

H : (Sr × Sr − ∆̃)× [0, 1] → Sr × Sr − ∆̃,

where ∆̃ = {(z, z′)| z = ±z′}, onto the set of pairs of orthogonal vectors in Sr. The

equivariance was with respect to the action generated by coordinate interchange and

antipodal mapping. Notice that the gradient flow associated to F̃ , given by (4.34),

is equivariant with respect to this action. The authors then claim that a similar

deformation retract apparently does not exist in the case of lens spaces (Section 5.1,

[30]).

”Unfortunately, we have not succeeded in obtaining such a connection for

larger values ofm. The major problem seems to be given by the apparent

lack of a suitable equivariant deformation retraction of L2n+1
m × L2n+1

m −

∆L2n+1
m that plays the role of V2n+2,2

1 (...)”

We observe that Proposition 4.2.1 offers a nice illustration of this phenomenon.

The chosen navigation function is the natural generalization of the one chosen for

projective spaces. However once m ≥ 3 a new critical submanifold is formed, which

we denoted by ∆′
L. Thus in that case we obtain only an equivariant deformation

1V2n+2,2 is the set of orthonormal 2-frames in R2n+2. The space VP mentioned in this section

is the Z2 × Z2-quotient of that space.
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retract from U(VL) to VL. Note that from formula (4.8) we can establish that U(VL)

is the space of pairs (z, z′) ∈ L2n−1
m ×L2n−1

m which are not in the same complex line.



Chapter 5

Topology of Random

Right-Angled Artin Groups

It is usual to have a mechanical system for which the parameters are partially

unknown. One way to deal with this uncertainty is to treat the parameters of

the system as random variables. In spite of the uncertainty associated with the

configuration space of a ”random” mechanical system, one can often predict some

of their topological information; an interesting example is [24], where the authors

studied the topology of ”random” linkages.

Right-angled Artin groups have connections with some configuration spaces in

Robotics. In certain cases the fundamental group of the configuration space F (Γ, n)

(recall Example 1.1.5) has the structure of a right-angled Artin group; see [28]. On

the other hand, right-angled Artin groups can always be viewed as fundamental

groups of certain subcomplexes of a n-torus; such complexes have a natural inter-

pretation as configuration spaces of a robot arm with some additional restrictions.

In this chapter we discuss the topology of random right-angled Artin groups with

82
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main focus on topological complexity. The contents of this chapter (joint work with

M.Farber) were submitted for scientific publication, see [8].

We introduced right-angled Artin groups just before Theorem 2.5.9. In this

chapter we are interested in right-angled Artin groups associated to random graphs

Γ. We adopt one of the basic Erdős - Rényi models of random graphs in which each

edge of the complete graph on n vertices is included independently with probability

0 < p < 1. The probability of obtaining a specific graph Γ by this process is given

by

P(Γ) = pEΓ(1− p)(
n
2)−EΓ , (5.1)

where EΓ denotes the number of edges of Γ, see [35].

We will examine statistics of various topological invariants of the group GΓ as-

sociated to a random graph. Each of such invariants is a random function and it is

quite natural to ask about its mathematical expectation and distribution function.

We will study the asymptotic behaviour of these functions, as n tends to ∞.

Various probabilistic approaches to group theory can be found in [33] and [46].

5.1 Betti numbers of random graph groups

Recall from Definition 2.5.2 that to a finite graph Γ with vertex set V and with the

set of edges E is associated the right-angled Artin group (R.A.A.G.)

GΓ = |v ∈ V ; vw = wv iff (v, w) ∈ E|.

There is a well-known construction of an aspherical complex KΓ with fundamen-

tal group GΓ. Consult [6] and [42] for proofs and more detail.
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Let V = VΓ denote the set of vertices of the graph Γ. The torus T n where

n = |V | can be identified with the set of all functions ϕ : V → S1. The support

supp(ϕ) ⊂ V of a function ϕ : V → S1 is defined as the set of vertices v ∈ V such

that ϕ(v) ̸= 1. One defines KΓ ⊂ T n to be the set of all functions ϕ such that their

support supp(ϕ) generates a complete subgraph of Γ, i.e. any two vertices of the

support are connected by an edge in Γ. It is well known ([6], [42]) that KΓ (viewed

with the induced topology) is aspherical with fundamental group is GΓ, i.e. KΓ is

the Eilenberg-MacLane complex KΓ = K(GΓ, 1).

We fix the cell decomposition of S1 consisting of a single 0-cell 1 ∈ S1 and a single

1-cell given by S1 − {1}. Clearly T n inherits a cell decomposition with cells in one-

to-one correspondence with subsets of V . In this decomposition KΓ ⊂ T n is a cell

subcomplex; the cells of KΓ are in 1-1 correspondence with complete subgraphs of Γ.

Namely, given a subset S ⊂ V one considers the set eS of all functions ϕ : V → S1

with support S; then eS is a cell of dimension |S|.

The cohomology algebra of KΓ with integral coefficients is the quotient

H∗(KΓ;Z) ≃ E(v1, . . . , vn)/JΓ (5.2)

where E(v1, . . . , vn) is the exterior algebra generated by degree one classes corre-

sponding to the vertices V = {v1, . . . , vn} of Γ and the ideal JΓ is generated by the

degree two monomials vw such that the corresponding vertices v, w are not connected

by an edge. In particular, any product vi1vi2 . . . vir vanishes iff the corresponding

vertices {vi1 , vi2 , . . . , vir} do not form a complete subgraph of Γ.

One obtains the following well-known facts:

Lemma 5.1.1. For an integer r ≥ 2 the r-th Betti number br(GΓ) = br(KΓ) equals

the number of complete subgraphs of size r in Γ. Note that b0(GΓ) = 1 and b1(GΓ) =
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n for any graph Γ.

Lemma 5.1.2. The expectation of the r-th Betti number of the group GΓ of a random

graph Γ, where r ≥ 2, equals

E(br(GΓ)) =

(
n

r

)
p(

r
2). (5.3)

Proof. We must find the number of complete subgraphs of size r in Γ ∈ Ωn. For a

subset S ⊂ {1, . . . , n} with |S| = r consider the random variable IS : Ωn → {0, 1}

which equals 1 on a graph Γ ∈ Ωn iff S forms a complete subgraph in Γ. Then

E(IS) = p(
r
2) and

∑
S IS is the number of all complete subgraphs on r vertices. This

shows that E(
∑

S IS) is as stated.

Now we assume that r (the dimension) is fixed and p may depend on n. Asymp-

totically, the expectation of br(GΓ) can be written as

E(br(GΓ)) ∼
1

r!

[
np

r−1
2

]r
.

The expectation has a positive limit for n → ∞ if and only if

np
r−1
2 → c > 0. (5.4)

Under this condition the expectation E(br(GΓ)) converges to
cr

r!
.

Note that the convergence (5.4) to a positive limit may happen for one dimension

r only. Moreover, under the assumption (5.4), the distribution of br : Ω → Z

converges to the Poisson distribution with expectation

λ =
cr

r!
, (5.5)

see below. Theorem 5.1.3 is an interpretation of a theorem of Schürger [44] about

complete subgraphs in random graphs.
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Theorem 5.1.3. Fix an integer r > 1 and consider the function of r-th Betti number

of the associated graph group,

br : Ωn → Z, br(Γ) = br(GΓ),

as a random function of a random graph. If the limit (5.4) exists and is positive

then for any integer k = 0, 1, . . . the probability

P(br(GΓ) = k)

converges (as n → ∞) to

e−λ · λ
k

k!

where λ is the number defined in (5.5).

In other words, Theorem 5.1.3 claims that the limiting distribution is Poisson

with mean λ.

Example 5.1.4. Consider the following examples illustrating the previous result:

(a) Suppose that r = 2 and p = 4
n2 . Then c = 2, λ = 2, and for any integer

k = 0, 1, . . . the probability that b2(GΓ) = k converges to 2k

e2·k! as n → ∞.

(b) As another example, assume that r = 3 and p = 6
n
. Then λ = 36 and the

probability that b3(GΓ) = k converges to 36k

e36·k! as n → ∞.

5.2 Cohomological dimension of GΓ

It follows from the above previous section that the cohomological dimension of GΓ

equals the size of the maximal clique in Γ; a clique in a graph is defined as a maximal
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complete subgraph. The clique number cl(Γ) of a graph Γ is the maximal order of

a clique in Γ.

There are many results in the literature about the clique number of random

graphs; we may interpret these results as statements about the cohomological di-

mension of graph groups build out of random graphs. Matula [40], [41] discovered

that for fixed values of p the distribution of the clique number of a random graph

is highly concentrated in the sense that almost all random graphs have about the

same clique number. These results were developed further by Bollobás and Erdős

[4]; consult also the monographs of B. Bollobás [5] and of N. Alon and J. Spencer

[2].

Below we restate a result of Matula [41] as a statement about cohomological

dimension of random graph groups. Recall that the cohomological dimension of

a group G is less than or equal to n, cd(G) ≤ n, if for an arbitrary G-module

A, the cohomology of G with coefficients in A vanishes in degrees k > n, that is,

Hk(G,A) = 0 whenever k > n.

Denote

z(n, p) = 2 logq n− 2 logq logq n+ 2 logq(e/2) + 1, (5.6)

where q = p−1.

Theorem 5.2.1. Fix an arbitrary ϵ > 0. Then

⌊z(n, p)− ϵ⌋ ≤ cd(GΓ) ≤ ⌊z(n, p) + ϵ⌋, (5.7)

asymptotically almost surely (a.a.s). In other words, the probability that a graph

Γ ∈ Ωn does not satisfy inequality (5.7) tends to zero when n tends to infinity.

Here ⌊x⌋ denotes the largest integer not exceeding x. We assume that ϵ < 1/2;

then the integers ⌊z(n, p)− ϵ⌋ and ⌊z(n, p) + ϵ⌋ either coincide or differ by 1.
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Thus, according Theorem 5.2.1, the cohomological dimension cd(GΓ) for a ran-

dom graph Γ takes on one of at most two values depending on n and p, with prob-

ability approaching 1 as n → ∞. Moreover, it is known that for most values of n,

the clique number is concentrated in a single value ([4]).

The next Lemma is a technical result which will be used later in this chapter.

Lemma 5.2.2. Fix ϵ > 0 and let r = ⌊z(n, p)− ϵ⌋. Then

r−1 ·
(
n

r

)
p(

r
2) → ∞

as n → ∞.

Proof. One has r = ⌊z(n, p)− ϵ⌋ ≤ z(n, p)− ϵ and therefore

p(
r
2) ≥

(
p(z(n,p)−ϵ−1)/2

)r
=

(
plogq n−logq logq n+logq(e/2)−ϵ/2

)r
=

(
2C logq n

en

)r

,

where C = qϵ/2 > 1. On the other hand, using Stirling’s formula, we have(
n

r

)
= cn ·

(n
r

)r
· er · r−1/2

where cn and c−1
n are bounded. Therefore,

r−1 ·
(
n

r

)
· p(

r
2) ≥ r−1cn

(n
r

)r
r−1/2

(
2C logq n

en

)r

=(
C ·

2 logq n

r

)r

· r−3/2 · cn ≥ Cr · r−3/2 · cn.

Clearly, Cr · r−3/2 · cn tends to infinity since C > 1. This completes the proof.

The main result of this chapter states that the inequality (2.4), i.e.

TC(X) ≤ 2 dimX + 1,
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is asymptotically very close to be an equality in the case of Eilenberg - MacLane

spaces of random graph groups. However, a specific graph group G can have topo-

logical complexity significantly lower than the upper bound

TC(G) ≤ 2 dimK(G, 1) + 1.

For example, if Γ is the complete graph on n vertices then the corresponding as-

pherical space is the n-torus KΓ = K(GΓ, 1) = S1 × . . .× S1 and TC(GΓ) = n+ 1.

5.3 Topological Complexity of random groups

Consider the probability space Ωn of random graphs on n vertices with probability

given by formula (5.1). For any Γ ∈ Ωn consider the corresponding Eilenberg-

MacLane complex KΓ = K(GΓ, 1) (see section 5.1) and its topological complexity

TC(KΓ).

Theorem 5.3.1. Fix an arbitrary 0 < ϵ < 1/2. Then for any random graph Γ ∈ Ωn

one has

2 · ⌊z(n, p)− ϵ⌋+ 1 ≤ TC(KΓ) ≤ 2 · ⌊z(n, p) + ϵ⌋+ 1, (5.8)

asymptotically almost surely, where z(n, p) is given by formula (5.6). In other words,

probability that a graph Γ ∈ Ωn does not satisfy inequality (5.8) tends to zero when

n tends to infinity.

It is clear that the integers on the left and on the right of inequality (5.8) differ at

most by 2. Hence Theorem 5.3.1 determines the value of the topological complexity

TC(GΓ) for a random graph with ambiguity of at most 2. Comparing with the result

of Theorem 5.2.1 we obtain:
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Corollary 5.3.2. For a random graph Γ ∈ Ωn one has

2 · cd(GΓ)− 1 ≤ TC(KΓ) ≤ 2 · cd(GΓ) + 1, (5.9)

asymptotically almost surely.

The rest is this section is devoted to the proof of Theorem 5.3.1.

By an (r, r) bi-clique in a graph Γ we mean an ordered pair consisting of two

disjoint complete subgraphs of Γ on r vertices. To specify an (r, r) bi-clique one

has to determine an r-element subset S of the set of vertices of Γ and an r-element

subset T in the complement V − S such that the induced graphs on S and T are

complete.

We have seen in the previous sections that cd(GΓ) ≥ r if and only if Γ contains

an r-clique, i.e. a maximal complete subgraph on r vertices. By a theorem of Cohen

and Pruidze [9] one has TC(KΓ) ≥ 2r + 1 if Γ contains an (r, r) bi-clique.

In the rest of this chapter we set

r = ⌊z(n, p)− ϵ⌋.

Theorem 5.3.1 follows once we have shown that a random graph Γ ∈ Ωn contains

an (r, r) bi-clique a.a.s. The right hand side of the inequality (5.8) follows from the

general upper bound TC(X) ≤ 2 dimX + 1 and from the right hand side of (5.7).

Let r > 0 be an integer and let X : Ωn → Z be the random variable that counts

the number of (r, r) bi-cliques in random graph. We want to show that X > 0

asymptotically almost surely, i.e.

P(X > 0) → 1, for n → ∞. (5.10)

The proof of (5.10) will use the second moment method and will be based on the
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inequality

P(X > 0) ≥ (EX)2

E(X2)
, (5.11)

see [35], page 54. Thus, our statement follows once we show that

E(X2)

(EX)2
→ 1 as n → ∞. (5.12)

Let S and T be disjoint r-element subsets of the set of vertices of the complete

graph Kn and let

I(S,T ) : Ωn → {0, 1}

denote the function which equals 1 on a graph Γ ∈ Ωn if and only if S and T form

a bi-clique in Γ. Then

X =
∑
(S,T )

I(S,T )

where the sum is taken over all ordered pairs of disjoint r-element subsets of {1, 2, . . . , n}.

Note that one obviously has

E(I(S,T )) = p2(
r
2)

and thus

E(X) =

(
n

r, r

)
p2(

r
2) ,

where (
n

r, r

)
=

n!

r! · r! · (n− 2r)!

denotes the multynomial coefficient. Similarly,

X2 =
∑

I(S,T ) · I(S′,T ′). (5.13)

Here (S, T ) and (S ′, T ′) run over all ordered pairs of disjoint r-element subsets of

the set of vertices {1, . . . , n}.
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Figure 5.1: A pair of (r, r) bi-cliques.

Denoting

a = |S ∩ S ′|, b = |T ∩ S ′|, c = |S ∩ T ′|, d = |T ∩ T ′|,

(see Figure 5.1) we find

E(I(S,T ) · I(S′,T ′)) = p4(
r
2)−(

a
2)−(

b
2)−(

c
2)−(

d
2). (5.14)

Therefore taking into account (5.13) one obtains the following expression

E(X2)

E(X)2
=
∑
α∈D

Fα · qL(α) =
∑
α∈D

Tα. (5.15)

Here

α = (a, b, c, d) ∈ Z4

denotes a vector and D is the set of all vectors α = (a, b, c, d) with nonnegative

integer components satisfying the inequalities

a+ b ≤ r, a+ c ≤ r, c+ d ≤ r, b+ d ≤ r. (5.16)

In formula (5.15) the coefficient Fα is given by

Fα =

(
r
a, c

)(
r
b, d

)(
n−2r

r−a−b, r−c−d

)(
n
r,r

) (5.17)
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and

L(α) =

(
a

2

)
+

(
b

2

)
+

(
c

2

)
+

(
d

2

)
, q = p−1, (5.18)

while

Tα = Fα · qL(α). (5.19)

Let m(x, y) denote max{x, y}. Then the inequalities (5.16) can be rewritten in

a simple form as

m(a, d) +m(b, c) ≤ r. (5.20)

Next we mention the symmetry of the problem. There are two commuting invo-

lutions

β, γ : D → D, β2 = 1 = γ2,

where

β(a) = b, β(c) = d, γ(a) = c, γ(b) = d.

These two involutions generate an action of the group G = Z2 ⊕ Z2 on D which

preserves both functions Tα and L(α). This action is transitive on the four coordi-

nates.

Recall that our goal is to show that the sum (5.15) tends to 1 as n → ∞. Note

that ∑
α∈D

Fα = 1 (5.21)

for obvious reasons. Observe also that the term F0 corresponding to α = (0, 0, 0, 0) ∈

D equals

F0 =

(
n−2r
r, r

)(
n
r, r

) =
2r−1∏
k=0

(
1− 2r

n− k

)
≥

(
1− 2r

n− 2r + 1

)2r

≥ 1− 4r2

n− 2r + 1
.
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Hence we see that F0 → 1 as n → ∞. Therefore, the sum of all coefficients Fα

with α ̸= 0 tends to zero. However the value of the second factor qL(α) becomes

increasingly high when the coordinates of α grow.

As an example, consider the term of (5.15) corresponding to α = (r, 0, 0, r).

Then Fα =
(

n
r, r

)−1
, L(α) = 2

(
r
2

)
and1

Tα = Fα · qL(α) = 1(
n
r, r

)q2(r2) ∼
[(

n

r

)
p(

r
2)
]−2

.

By Lemma 5.2.2 one obtains

r2T(r,0,0,r) = o(1). (5.22)

As another example consider the term with α = (r, 0, 0, 0). Then

Tα = Fαq
L(α) =

(
n−2r

r

)(
n
r, r

) q(
r
2) ∼

[(
n

r

)
p(

r
2)
]−1

.

In this case we have

rT(r,0,0,0) = o(1), (5.23)

by Lemma 5.2.2.

The term Tα with α = (1, 0, 0, 0) satisfies

T(1,0,0,0) ≤
r2

n
(5.24)

as one easily checks.

Next we consider Tα with α = (r − 1, 0, 0, 0). One has

Tα = r ·
(
n−2r
1, r

)(
n
r, r

) q(
r−1
2 ) ∼ r(n− 2r)

(
n−2r

r

)(
n
r, r

) q(
r−1
2 )

∼ r(n− 2r)(
n
r

) q(
r−1
2 ) ∼ npr−1 ·

[
r(

n
r

)
p(

r
2)

]

≤ C ′npr−1 ∼ C
log2q n

n

1Here the symbol an ∼ bn means that the sequences anb
−1
n and a−1

n bn are bounded.
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for some constants C,C ′; here we have used Lemma 5.2.2. Thus, we have the

inequality

T(r−1,0,0,0) ≤ C ·
log2q n

n
. (5.25)

Using similar arguments one obtains

T(r−1,0,0,r−1) ≤ C ′′ ·
log4q n

n2
, (5.26)

where C ′′ is a constant independent of n.

As a summary of the above discussion of examples we can make the following

claim which will be referred to later:

Claim. If α is either (1, 0, 0, 0), or (r − 1, 0, 0, 0), or (r − 1, 0, 0, r − 1) then

r4Tα = o(1). (5.27)

Recall that

r = ⌊2 logq n− 2 logq logq n+ 2 logq(e/2) + 1− ϵ⌋,

and in particular r ≤ 2 logq n. Fix λ satisfying the inequality

0 < λ <
1

1 + eq
(5.28)

and split the set of all integers in [0, r] into three subsets

Sλ = {x ∈ N; 0 ≤ x ≤ (1− λ) logq n},

Iλ = {x ∈ N; (1− λ) logq n < x < (1 + λ) logq n},

Lλ = {x ∈ N; (1− λ) logq n ≤ x ≤ r}.

Integers lying in Sλ, Iλ, and Lλ will be called “small”, “intermediate” and “large”,

correspondingly.
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Suppose that α′ ∈ D is obtained from α = (a, b, c, d) ∈ D by increasing of one of

the coordinates by 1, say, α′ = (a + 1, b, c, d). Then the ratio of the corresponding

terms of sum (5.15) equals

Tα′

Tα

=
(r − a− b)(r − a− c)

(a+ 1)(n− 4r + ℓ+ 1)
· qa,

where ℓ = ℓ(α) = a+ b+ c+ d. Clearly, one has

n/2 ≤ n− 4r + ℓ+ 1 ≤ n,

assuming that n is large enough. Hence we obtain

A · qa ≤ Tα′

Tα

≤ 2 · A · qa (5.29)

where

A =
(r − a− b)(r − a− c)

(a+ 1)n
. (5.30)

If a ∈ Sλ is small then qa ≤ n1−λ, A ≤ r2

n
and

Aqa ≤ r2

nλ

tends to zero as n → ∞. Hence the ratio which appears in (5.29) is less than 1 for

n large enough.

If a ∈ Lλ is large then qa ≥ n1+λ, A ≥ 1
2n logq n

and hence

Aqa ≥ nλ

2 logq n

tends to infinity for n → ∞. This gives the following statement:

Lemma 5.3.3. There exists a constant N > 0 such that for all n ≥ N the following

is true:
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1. If α′ ∈ D is obtained from α ∈ D by adding 1 to one of its coordinates which

is small (see above) then

Tα > Tα′ . (5.31)

2. If α′ ∈ D is obtained from α ∈ D by adding 1 to one of its coordinates which

is large then

Tα < Tα′ . (5.32)

Figure 5.2: Schematic representation of behavior of Tα with respect to small a ∈ Sλ

and large a ∈ Lλ coordinates.

Figure 5.2 illustrates Lemma 5.3.3. Next we analyze the case when one increases

an intermediate index.

Lemma 5.3.4. There exists a constant N > 0 such that for all n ≥ N the following

is true: Suppose that α′ = (a + 1, b, c, d) ∈ D is obtained from α = (a, b, c, d) ∈ D

by adding 1 to one of its coordinates. If a ≤ r/2 and m(b, c) ̸∈ Sλ, then

Tα > Tα′ . (5.33)

Proof. Without loss of generality we may assume that a ∈ Iλ since the case a ∈ Sλ

is covered by Lemma 5.3.3. Then our assumptions imply that m(b, c) ∈ Iλ, and
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therefore by symmetry we may assume that b ∈ Iλ. Our goal is to estimate the

value of A given by (5.30). We have

a+ b > 2(1− λ) logq n

and since r < 2 logq n we obtain

r − a− b < 2λ logq n (5.34)

and thus the numerator in (5.30) satisfies

(r − a− b)(r − a− c) < 4λ log2q n.

To estimate the denominator we observe that a < r/2 implies

qa ≤ eq

2
· n

logq n
.

Since a+ 1 ≥ (1− λ) logq n we obtain

2Aqa ≤
4λ log2q n

(1− λ) logq n
· eq
2

· n

logq n
· 1
n
=

4λ

1− λ
· eq
2

< 1; (5.35)

the last inequality uses our assumption (5.28). This completes the proof of statement

(5.33).

Lemma 5.3.5. For n sufficiently large and α = (a, 0, 0, d) ∈ D with 1 ≤ a ≤ r− 1,

one has

Tα ≤ max{T(1,0,0,d), T(r−1,0,0,d)}. (5.36)

Proof. The assertion of the Lemma follows from Lemma 5.3.3 in the case when either

a ∈ Sλ or a ∈ Lλ. Hence we may assume below that α = (a, 0, 0, d) where a ∈ Iλ.

Denote α′ = (a+ 1, 0, 0, d) and α′′ = (a+ 2, 0, 0, d). Then

Tα′′Tα

T 2
α

=

(
r − a− 1

r − a

)2

·
(
a+ 1

a+ 2

)
· n− 4r + a+ d+ 1

n− 4r + a+ d+ 2
· q.
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In the right hand side of this formula the two bracketed factors tend to 1 as n → ∞;

besides q > 1. Hence for n > N large enough one has

TαTα′′

T 2
α′

> 1. (5.37)

This proves that logq(Tα) is convex as function of a ∈ Iλ. By Lemma 5.3.3 this

function increases for a ∈ Sλ and decreases for a ∈ Lλ. This implies (5.36).

Now we can complete the proof of Theorem 5.3.1. Recall that we have to show

that the sum
∑

α∈D′ Tα tends to 0 as n → ∞ where D′ = D−{(0, 0, 0, 0)}. Consider

the subset D̃ ⊂ D consisting of vectors with at least one coordinate equal r. Each

α ∈ D̃ has the form α = (r, 0, 0, d) (up to symmetry) where d = 0, . . . , r. Applying

Lemma 5.3.5 we obtain that

Tα ≤ max{T(r,0,0,0), T(r,0,0,r)}.

Since the cardinality of D̃ does not exceed 5r, we obtain, using (5.22) and (5.23),

that

∑
α∈D̃

Tα = o(1). (5.38)

Each vector α ∈ D′ may have at most two large coordinates. Decompose

D′ − D̃ = D′
0 ∪D′

1 ∪D′
2,

where D′
i denotes the set all vectors in D̃ having exactly i large coordinates, i =

0, 1, 2.

Suppose that α ∈ D′
2. Without loss of generality we may assume that a and d

are large and b and c are small, i.e. a, d ∈ Lλ, b, c ∈ Sλ. Applying Lemma 5.3.3 we

obtain Tα ≤ T(a,0,0,d). Since a ̸= r ̸= d we may engage Lemma 5.3.5 to obtain

Tα ≤ max{T(1,0,0,r−1), T(r−1,0,0,r−1)}. (5.39)
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Now, taking into account (5.22), (5.23) and (5.27), we obtain

∑
α∈D′

2

Tα = o(1). (5.40)

Consider now the sum
∑

α∈D′
1
Tα. In this case the vector α = (a, b, c, d) contains

one large index. Assume that a is large. Then b, c must be small and applying

Lemma 5.3.3 and Lemma 5.3.5 we obtain

Tα ≤ T(a,0,0,d) ≤ T(r−1,0,0,d) ≤ max{T(r−1,0,0,0), T(r−1,0,0,r−1)}.

Now (5.27) implies that

∑
α∈D′

1

Tα = o(1). (5.41)

Next we show that for any α ∈ D′
0 one has

Tα ≤ max{T(1,0,0,0), T(r−1,0,0,0), T(r−1,0,0,r−1)} (5.42)

which in view of (5.27) would imply that

∑
α∈D′

0

Tα = o(1). (5.43)

The combination of (5.38), (5.40), (5.41) and (5.43) gives Theorem 5.3.1.

To prove (5.42) consider α = (a, b, c, d) ∈ D′
0. Note that coordinates a, b, c, d can

be either small or intermediate. Assume first that all coordinates a, b, c, d are small.

Then Tα ≤ T(1,0,0,0) (by Lemma 5.3.3) implying (5.42).

Suppose now that exactly one of the coordinates of α is intermediate. If a is

intermediate and b, c, d are small then

Tα ≤ T(a,0,0,0) ≤ max{T(1,0,0,0), T(r−1,0,0,0)}

(by Lemma 5.3.3 and Lemma 5.3.5) proving (5.42).
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Consider the case where two coordinates of α are intermediate. Taking into

account symmetry (the action of G on D, see above), this case can be subdivided

into two subcases: (i) a and b are intermediate and (ii) a and d are intermediate.

In the subcase (i), since a + b ≤ r, either a ≤ r/2, or b ≤ r/2 and we may apply

Lemma 5.3.4. Assuming that a ≤ r/2 we obtain

Tα ≤ T(0,b,0,0) ≤ max{T(1,0,0,0), T(r−1,0,0,0)},

implying (5.42). In the subcase (ii), we know that b, c are small hence Tα ≤ T(a,0,0,d)

and application of Lemma 5.3.5 gives (5.42).

In the remaining case when α ∈ D′
0 has three or four intermediate indices we

know that at least two of these indices are ≤ r/2 and by Lemma 5.3.4 one has

Tα ≤ Tα′

where α′ is obtained from α by replacing by zeros two coordinates which were ≤ r/2.

To estimate Tα′ one applies Lemma 5.3.5 leading again to (5.42). This completes

the proof of Theorem 5.3.1.



Chapter 6

Conclusions

In this thesis we discussed the homotopy invariant TC(X); the topological complex-

ity of a space X. The original results of this thesis were presented in Chapters 3, 4

and 5.

In Chapter 3 we presented new upper bounds for spaces with ’small’ fundamental

groups. From Theorem 3.1.1 we have the upper bound TC(Gk(Rn+k)) ≤ 2kn, where

Gk(Rn+k) denotes the real Grassmannian, the manifold of n-dimensional real vector

subspaces of Rn+k. Moreover, it follows from theorems 3.1.1 and 3.1.2 that when

cat(Gk(Rn+k)) is not maximal then TC(Gk(Rn+k)) ≤ 2kn − 1. In [3], the author

shows that in some cases cat(Gk(Rn+k)) = dim(Gk(Rn+k))+1 = nk+1. Notice that

by applying the upper bound given by Proposition 2.2.2 only allows to establish the

general dimensional upper bound TC(Gk(Rn)) ≤ 2kn+ 1. We warn the reader of a

mistake in [43]. There it was wrongly assumed that TC(X) = cat(X×X) (Theorem

1.8, [43]). For example TC(S1) = 2 ̸= 3 = cat(S1×S1). This compromises the results

stated in [43]. It would be interesting to obtain more results relating the algebraic

properties of the fundamental group of a space X with the number TC(X).
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In Chapter 4 we introduced and studied a class of navigation functions on pro-

jective and lens spaces. This study is incomplete and should be addressed in future

work. The goal is to obtain new upper bounds for the (symmetric and nonsymmet-

ric) topological complexity of lens spaces. The function F̃ defined in (4.2) can be

written as ∏
g∈Zm

A(z, g · z′),

where A(z, z′) = ||z − z′||2 and g · z′ is given by the product ξgz′. This method for

creating a navigation function can be generalized for other spaces, such as the Klein

bottle. Denote by K and T = S1 × S1 the Klein bottle and the two dimensional

torus. Let ϕ : T → R be the involution on T given by ϕ(z1, z2) = (−z1, z̄2). The

Klein bottle can be obtained by the quotient K = T/ϕ. One can then define a

ϕ-invariant map G̃ : T × T → R given by

G̃(z, z′) = A(z, z′) · A(z, ϕ(z′)),

where A(z, z′) = ||z − z′||2. This can help to solve the open question regarding the

precise value of TC(K).

In Chapter 5 we estimated the topological complexity of random right-angled

Artin groups (also called graph groups). These are groups induced from random

graphs. We showed that with probability tending to one, the topological complexity

of a random graph group is concentrated in at most three values.
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