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ABSTRACT  
Due to potential environmental risks of pesticides, it is important that the fate of pesticides is known 

and that safer pesticides are developed in the future. This thesis focused on identifying controls on 

the Koc of pesticides in soil based on their structural parameters. This thesis also developed 

quantitative structure-activity relationships (QSAR) models to predict the environmental fate of new 

pesticides.  

 

To understand the controls on Koc, a range of multivariate statistical techniques were used including; 

principal component analysis, and analysis of variance. Predictive models were created using logistic 

regression, and multiple linear regression.  

 

The study found adsorption of pesticides in soil is controlled by a combination of size and solubility 

parameters. Logistic regression models were able to predict the adsorption potential of metabolites, 

relative to their parent based on metabolite structures. This study found that adsorption behaviour 

of pesticides was fairly specific to different chemical groups. A QSAR model for Koc was constructed 

for a group of early stage compounds and could predict Koc to just over an order of magnitude.  

 

The results of this study have implications for the pesticide development process. If developed 

further to include a wider range of chemical groups then the models have the potential to reduce 

the dependence on laboratory tests in the early stages of the development process. However, this 

study also questions the use of Koc as a predictive parameter and offers alternative solutions to 

predicting environmental fate of pesticides.  
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1. INTRODUCTION  

1.1 Pesticides; their benefits, and risks 

There are many opinions on the use of pesticides so it makes sense to review some of these opinions 

and issues to put this study into context. The term ‘pesticide’ is a broad non-specific term that 

covers a large number of substances including; insecticides, herbicides and fungicides (Wilson and 

Tisdell, 2001). It is estimated that 2.5 million metric tons of pesticides are applied each year 

worldwide (van der Werf, 1996). The main advantage of pesticides or crop protection products is 

ensuring food security for a growing population. Oerke and Dehne, (2004) stated that human 

population is projected to increase to 7.7 billion by 2020. The increased population density, 

combined with changes in dietary habits of developing countries and increased use of grains for 

livestock feed is projected to cause the demand for grain production to more than double (Oerke 

and Dehne, 2004). An increasing population will mean that there is competition for land. Land 

suitable for agricultural production is limited and most soils with high productivity potential are 

already under cultivation (Oerke and Dehne, 2004).   

 

Over the last 60 years there have been changes in the way farmers and growers produce food, to 

meet the demands of consumers, governments, food processors and retailers, which have included 

the extensive use of pesticides (Cooper and Dobson, 2007). It is estimated that each dollar invested 

in pesticide control returns approximately four dollars in crops saved (Pimentel et al., 1992). The use 

of pesticides is to prevent or reduce agricultural losses to pests, which results in improved yield and 

greater availability of food, at a reasonable price all year round (Cooper and Dobson, 2007). Oerke 

(2006) estimated the global total potential and actual losses of crops to pests in wheat, rice, maize, 

potatoes, soybeans and cotton for the period 2001-2003 (Table 1.1).  

 

Crop Total Potential Loss Total Actual Loss 

Wheat 49.8% 28.20% 

Rice 77.0% 37.40% 

Maize 68.5% 31.20% 

Potatoes 74.9% 40.30% 

Soybeans 60.0% 26.30% 

Cotton 82.0% 28.80% 

 

Table 1.1 Total average potential and total losses to six major crop types worldwide in 2001-2003 (Oerke, 

2006). Potential loss is the loss of crops without physical, biological or chemical crop protection. The actual loss 

is the crop loss occurring despite crop protection practices.  Total losses include loss from weeds, animal pests, 

pathogens and viruses. 
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Although crop protection products do not eliminate all crop losses (Pimentel et al., 1992), using the 

work of Oerke, (2006) it can be calculated that there was a 54% reduction from potential to actual 

losses across the six major crop types.  

 

As well as protecting the existing major crop types from losses, the use of pesticides can broaden the 

range of viable crop options that farmers can grow at particular times of the year. Cooper and 

Dobson, (2007) used the example of tomatoes that can be grown in the Zimbabwean rainy season by 

using fungicides to protect against late blight.  By extending the growing season and range of crops 

that can be grown it is financially beneficial for farmers, particularly for countries that export to the 

USA and Europe. Similarly, consumers in developed countries gain from the wider range of imported 

crops that are available for a greater proportion of the year (Cooper and Dobson, 2007). Additional 

benefits of pesticides are observed when compared to alternative control methods. For example, 

Edwards-Jones, (2008) suggested that when compared to other weed control methods, using 

herbicides is more beneficial as it reduces the labour associated with hand weeding.  Pesticides also 

have the potential to control human diseases such as malaria and fevers. Cooper and Dobson, (2007) 

review some of the studies of malaria incidence and bed nets treated with an insecticide and 

suggested that using treated bed nets reduced the number of infective bites by 75%.  

 

There is much work in the literature that highlights the negative effects and risks of pesticides. The 

largest volume of pesticide use is in developed countries, although use is growing in developing 

countries (Wilson and Tisdell, 2008). Many problems relating to pesticide use and particularly 

pesticide poisoning are found in developing countries. Products that are under regulatory control or 

even banned in places such as Europe are still available in developing countries (Matthews, 2008). 

Tariq et al., (2007) reported that in Pakistan the chances of human exposure to pesticides are 

relatively high due to low awareness of the safe use of pesticides and low literacy rates.  

 

Environmental risks of pesticides include poisoning of non-target organisms, particularly mammals. 

Organisms may take up pesticides through ingestion of contaminated food and water, respiration or 

direct contact (van der Werf, 1996). If the pesticides are slow to metabolise, or are fat soluble there 

is the potential for the compound to move up the food chain in a process call biomagnification. Also 

of concern is the effect of pesticides in the soil on microorganisms and invertebrates. Organisms in 

the soil such as earthworms, bacteria, fungi, etc, are vital to ecosystems because they dominate the 

structure and function of natural systems (Pimentel et al., 1992). Earthworms in particular 

contribute to soil fertility and are an important part of terrestrial food webs (van der Werf, 1996). 
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The main pathway of earthworm exposure to pesticides is via contaminated soil pore water, with 

damage often being observed when there is heavy rainfall after application (van der Werf, 1996). 

Along with many other processes, microorganisms play an important role in the soil due to their 

ability to fix nitrogen, making it available for plants (Pimentel et al., 1992).   

 

The negative effects of pesticides that are most relevant to this study are the risk of pesticide 

pollution to groundwater and to a certain extent, surface waters. Owing to the environmental and 

human risks, there has been a change from persistent organochloride pesticides to less persistent 

pesticides that are more rapidly removed from the environment. However, the newer compounds 

are generally more water soluble and create the risk of contaminating ground and surface water 

(Ward and Robinson, 2000). Pesticides usually enter lakes and streams by water runoff and soil 

erosion (Wilson and Tisdell, 2001). Once in the aquatic system, pesticides can cause fish losses 

through high concentrations that directly kill fish, lower level doses that eliminate essential fish food 

like insects, or by reducing  dissolved oxygen levels in water due to decomposition of aquatic plants 

(Pimentel et al., 1992). However, the use of herbicides can also be a benefit in clearing waterways of 

invasive plant species that can out-compete other plants for space and can clog rivers and dams 

(Cooper and Dobson, 2007).  

 

Groundwater pollution by pesticides is a concern as groundwater is used as a supply of drinking 

water. In the US, approximately half of the population obtain their water from wells (Pimentel et al., 

1992). A survey of groundwater in major hydrological basins in the US by Koplin et al., (2000), found 

that one or more pesticides (including metabolites) were found in nearly half of the sites sampled. 

The European Union have adopted a maximum concentration in groundwater of 0.1 µg/L for any 

individual pesticide; and 0.5µg/L for the sum of all individual pesticides (Hiscock, 2005). In the UK the 

Cretaceous Chalk aquifer in South East England contributes to over half of the groundwater use in 

the UK (Haria et al., 2003). There have been studies that have detected pesticide and metabolite 

concentrations in the chalk aquifer e.g. Johnson et al., (2001).  

 

A guideline document issued by the European Commission defined metabolite as “a term used for all 

reaction or breakdown products of an active substance of a plant protection product, which are 

formed in the environment after the application, be it by biotic (microbials, other taxa) or abiotic 

processes (hydrolysis, photolysis)” (European Commission, 2003). As in the EC guideline document, 

this study uses the terms “metabolite”, “breakdown product”, and “degradation product” 

interchangeably, as there is a combination of these compounds within the data analysed.  Pesticide 
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contamination of groundwater is a concern because pesticide residues can remain in groundwater 

for extended periods of time. Lapworth and Gooddy, (2006) found metabolites of Diuron® (3-(3,4-

dichlorophenyl)-1,1-dimethylurea) were present in the chalk aquifer several years after application. 

A possible explanation for concentrations of metabolites appearing in groundwater is that there are 

only a few microorganisms in groundwater with the potential to degrade pesticides, and 

groundwater recharge rates can be slow. A study by Pimentel et al., 1992 suggested that for some 

areas recharge rate is on average less than 1% per year, but this will vary with geology and rainfall. 

There is also a concern that some pesticides, such as Isoproturon® (3-(4-isopropylphenyl)-1,1-

dimethylurea), may persist in the soil for a number of years and be mobilised by rainwater leading to 

groundwater contamination in the future (Johnson et al., 2001).  

 

Despite the risks associated with pesticides, it has been argued that a ban on pesticides would be 

detrimental to the well being of humans. Guattuso, (2000) reports that by banning some pesticides it 

would reduce the availability and affordability of fruits and vegetables, which are needed as an 

important part out our diets. Therefore it is important that ‘safer’ pesticides are developed by 

ensuring that the environmental fate of pesticides is better understood.  

 

1.2 Pesticides in the Environment 

Once the pesticide is applied to the crop it is estimated that around 0.1% of the pesticide actually 

reaches the target pest (Arias-Estévez et al., 2008). Figure 1.1 demonstrates the pathways of a 

pesticide in the environment once applied to a crop.  
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Figure 1.1 Pathways of a pesticide once applied to crops. Pathways listed account for over 99% of pesticide 

applied.  

 

Pesticides are generally applied to the crop or soil as a liquid spray, but can also be applied as a seed 

treatment. During the spray application process the pesticides may volatilise into the air or be 

transported by spray drift (Figure 1.1). Volatilisation is one of the processes that contribute to 

pesticide dissipation from surfaces, including the crops and soil, with volatilisation being generally 

higher from crop surfaces than from soil (Guth et al., 2004). Once in the atmosphere, pesticides can 

travel and redeposit over large distances (van der Werf, 1996). Spray drift droplets can deposit 

pesticides on soil or can travel and be deposited into surface water (De Schampheleire et al., 2007). 

Although pesticide deposits on soil from spray drift can reach surface water from runoff and soil 

erosion (Figure 1.1), there are ways to mitigate the risk of spray drift for example, by leaving buffer 

zones of unsprayed land along surface waters. The use of buffer zones and other mitigation 

techniques is used in many countries across Europe (De Schampheleire et al., 2007).  

 

Uptake of the pesticide (Figure 1.1) depends on the characteristics of the compound and the crop 

(Wang and Liu, 2007). For example, Behrendt and Brüggemann, (1993), reported that compounds 

with medium water solubility would be taken up systemically by the roots, whereas Wang and Liu, 

(2007) reported on foliar uptake as a diffusion process across the leaf. Uptake of pesticides to the 
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crops would reduce effects of environmental pollution (Wang and Liu, 2007). However, foliar uptake 

across the leaf could potentially increase pesticide residues on the surface of plants (Juraske et al., 

2009) 

 

There are a number of pathways for pesticides to reach surface water from both point and diffuse 

pollution sources. In addition to spray drift and volatilisation, other diffuse paths for pesticides to 

surface water include field drain flow, and surface runoff and soil erosion (Reichenberger et al., 

2007). Point sources of pesticide pollution are usually related to spills, such as spills during filling or 

cleaning of spraying equipment, which are examples of bad management practice (Holvoet et al., 

2007). Preferential flow is the key contributor to the rapid transfer of pesticides to field drainage 

systems (Novak et al., 2001). Relatively rapid movement of pesticide loaded water through only a 

portion of the available pore space, decreases the residence time of the pesticide in the upper soil 

layers, where adsorption is usually faster than in the subsoil, which causes higher pesticide 

concentrations in drainage systems (Reichenberger et al., 2007).  Surface runoff occurs when the 

rate of water application to the ground surface exceeds the rate of infiltration and the surface 

storage capacity is exceeded (Holvoet et al., 2007). Soil erosion consists of detachment of the soil 

particles from the soil surface and their subsequent transport down slope. Detachment is caused by 

the abrasive power of surface runoff and by raindrop impact (Morgan, 2001). The pesticides lost in 

runoff and erosion events leave the field either dissolved in runoff water or adsorbed to eroded soil 

particles (Reichenberger et al., 2007). Work by Kjaer et al., (2011) on pesticide transport and 

pathways found that particle-facilitated transport, such as that involving soil erosion and 

detachment, only accounted for a small proportion of observed pesticide leaching. Pesticides that 

were strongly bound to the soil, such as Glyphosate, were more likely to leach via drain connected 

macropores (Kjear et al., 2011).     

 

1.2.1 Pesticides in Soil 

The environmental pathways that are most relevant to this study are those that occur in the soil, 

such as adsorption, degradation and leaching (Figure 1.1). As mentioned above, pesticides can enter 

surface water through surface runoff and erosion from treated fields (Reichenberger et al., 2007) 

and one of the ways pesticides can enter groundwater via leaching through the soil (Arias-Estévez et 

al., 2008). Therefore it is important that the processes involving pesticides in the soil are 

understood.  
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Factors that can affect the leaching of pesticides from the soil include the timing of application and 

the physical and chemical properties of the soil and compound (Hiscock, 2005). Pesticide leaching is 

the downward movement of pesticides through the soil profile and the unsaturated zone into 

groundwater (Figure 1.1). Leaching is highest in pesticides that are weakly adsorbing (Reichenberger 

et al., 2007). One of the most important processes in this study is adsorption. Adsorption is a process 

that removes a compound from the bulk solution and therefore affects the behaviour of the 

compound in the soil environment (Yaron, 1989). Adsorption can be defined as either chemical or 

physical adsorption. Chemi-sorption generally involves the formation of strong chemical bonds 

between the solute molecules and specific surface chemical groups (Weber et al., 1991). In 

comparison, physi-sorption generally involves weak intermolecular forces that leave the chemical 

structure of the surface intact (Weber et al., 1991). Covalent bonding is generally indicative of 

chemis-sorption, whereas van der Waals forces are involved in physio-sorption. Both of these 

sorption mechanisms, and others, will be discussed in more detail below. For pesticides that strongly 

adsorb to the soil, the risk of leaching from the root zone is generally considered to be low (Kjear et 

al., 2011). Most of the adsorption and degradation processes occur in the soil zone and unsaturated 

zone (Figure 1.1) as this is where soil organic matter and microbial activity are high (Pykh and 

Malkina-Pykh, 1997). Below the soil zone, pesticide mobility is affected by the availability of sorption 

sites (Hiscock,, 2005).  

 

The extent of adsorption depends on the soil properties and the properties of the compound 

(Senesi, 1992). Suitable adsorption sites in soil for pesticides include organic matter and clays, in 

general, the degree of adsorption increases with increasing surface area and with decreasing grain 

size, which is why organic matter and clay particles make good adsorption sites (Hiscock, 2005).  For 

soils with high (>5%) organic matter the mobility of pesticides has been related to total organic 

matter content, while in soils with low organic matter the mobility is often related to active 

components of the inorganic fraction, which is predominantly the clay sized fractions (Spark and 

Swift, 2002).  

 

Clay Structure 

Clay sized fractions can be defined as particles <0.002mm, and clay minerals are layered silicate 

minerals that occur in the clay sized fraction of soils and sediments (Nesse, 2000). Figure 1.2a 

visualises the structure in a 2:1 clay, such as a smectite.  
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Figure 1.2 (a) 2:1 or TOT clay structure. TOT layers have negative charge, with interlayer space filled with 

cations or water. (b) Representation of the process of cation exchange. Hydrogen ions are strongly adsorbed to 

the negative sites, displacing other cations.  

 

A 2:1 clay has repeating layers, each of which is composed of a tetrahedral (T) and octahedral sheets 

(O) sheets arranged in a TOT sequence. The tetrahedral sheet contains oxygen and silicon, with 

aluminium also replacing silicon to contribute to a negative charge. The octahedral sheet contains 

magnesium or aluminium between hydroxyl planes, which also had a negative charge (Yariv and 

Cross, 2002). The most abundant group of 2:1 clay minerals is known as smectite. The negative layer 

charge in a smectite is balanced by an interlayer space filled with cations, usually calcium and 

sodium. The relatively low negative charge, coupled with the presence of cations in only about a 

third of the interlayer spaces, allows water to easily move into the interlayer, causing the clay 
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structure to swell and expand (Nesse, 2000). The process of swelling clays will be also discussed in 

the methodology section (Chapter 2.3.2).  

 

The ability of pesticides to adsorb to the soil is related to types of bonding and charges. Both clays 

(Hiscock, 2005) and organic matter (Spark and Swift, 2002) have negatively charged adsorption 

surfaces onto which cations can adsorb, in a process known as cation exchange. The process of 

cation exchange can be represented above in Figure 1.2b. In cation exchange the hydrogen ions that 

are in the soil water or part of a pesticide molecular structures are strongly attracted to the negative 

charge on the clay layers. The hydrogen ions adsorb to the surface and in doing so, displace the 

other cations present in the interlayer space (Ward and Robinson, 2000).   

 

Not to be confused with cation exchange, ionic bonding involves ionised or easily ionisable 

carboxylic and phenolic hydroxyl groups of humic substances (Senesi, 1992). Bipyridylium pesticides, 

such as Paraquat® and Diquat®, bind to soil humic substances via their cationic group, forming highly 

stable and unreactive bonds with the carboxyl groups of the humic substances (Gevao et al., 2000). 

Soil pH can have an effect on adsorption of pesticide (Yaron, 1989). Kah and Brown, (2007) reported 

that the adsorption of ionisable pesticides is strongly influenced by pH, with a decrease in adsorption 

often observed with increasing pH. Pesticides like triazine herbicides become cationic depending on 

their basicity and the pH of the soil which governs the degree of ionisation of acidic groups of the 

humic substances (Gevao et al., 2000).  

 

The presence of numerous oxygen and hydroxyl-containing functional groups on humic substances 

in soil form hydrogen bonds with suitable complementary functional groups on pesticides, although 

pesticide molecules compete with water for these binding sites on the humic substances (Senesi, 

1992). There has also been hydrogen bonding observed for adsorption to clay minerals, where 

hydrogen bonding is dependent on the strength of interactions between the sorbent, sorbate and 

water, and the pH value of the solution (von Oepen et al., 1991).  

 

Chemisorption, where a bond between the pesticide molecule and the surface atoms occurs, usually 

takes the form of a covalent bond (von Oepen et al., 1991). Covalent bonds lead to stable and mostly 

irreversible incorporation of pesticides into humic substances (Senesi, 1992). The pesticides that are 

most likely to covalently bond to the soil humic matter are those that have similar functionalities to 

the components of the humus i.e. structurally resemble phenolic compounds such as the 

phenylcarbamates chemical group of pesticides (Gevao et al., 2000). 
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Van der Waals interactions are weak short range dipolar or induced-dipolar attractions that occur, in 

addition to stronger binding forces in all adsorbent-adsorbate interactions. The dipole induces small 

dipoles in other molecules of opposite charge, and attracts each other for a short time (von Oepen 

et al., 1991).  The van der Waal forces are additive and their adsorption contribution increases with 

the size of the interacting pesticide (Gevao et al., 2000). They are of particular relevance to 

interactions between non-ionic and non-polar pesticides on humic acid molecules, with van der 

Waal forces shown to be the major adsorption mechanism for 2,4-D (2,4-Dichlorophenoxyacetic 

acid) (Senesi, 1992).  

 

Humic substances contain electron deficient structures or electron rich moieties, and charge transfer 

complexes are formed via electron donor-acceptor mechanisms with pesticides possessing 

alternatively electron donor or electron acceptor properties (Gevao et al., 2000). Charge transfers 

interactions involve the overlap of their respective molecular orbitals and a partial exchange of 

electron density (von Oepen et al., 1991). Bipyridlium pesticides are thought to form a charge 

transfer complex with soil humic acids (Gevao et al., 2000). 

 

 Correlations between organic matter content and the soil adsorption coefficient Kd has led to the 

assumption that soil organic matter is the main sorbent in soils (Wauchope et al., 2002). While the 

presence of organic matter, and clay mechanisms for adsorption are generally accepted, individual 

pesticides can demonstrate different adsorption mechanisms, for example one of the adsorption 

mechanisms of Glyphosate [N-(phosphonomethyl)glycine] is to bind to mineral sites (Kjear et al, 

2011), but other studies have also shown that the pH of the solution is important, and adsorption of 

Glyphosate is not strongly correlated with organic matter content (Coupe et al., 2011). Coupe et al., 

(2001) also stated that Glyphosate binds to surface sites through its phosphonate group (Figure 2.1a) 

and therefore sorption would also be negatively correlated with phosphate concentration as it 

competes for the same binding sites. Using Glyphosate as an example, this highlights the 

complexities involved in understanding adsorption mechanisms of pesticides.   

 

While compounds that are strongly adsorbing to soil will have less opportunity to leach to 

groundwater, their persistence in the soil is still an issue. Pesticides that are very persistent in soil 

will slowly break down and can potentially result in groundwater contamination (Tariq et al, 2007). 

For example, Glyphosate is strongly adsorbing but has a soil half life of between 1.7 – 142 days, and 

its metabolite AMPA has a soil half life of 76 – 240 days (Coupe et al., 2011). When compounds like 



11 
 

Glyphosate and AMPA are compared with compounds such as the triazole fungicides some, of which 

have half lives of more than 400 days (Singh, 2005) then the half life of the triazoles would obviously 

be more concerning for potential groundwater contamination. Pesticide degradation in soils is 

influenced by factors such as microbial availability (Ghafoor et al., 2011). The concern regarding 

degradation products or metabolites is that the metabolites could potentially be more toxic or more 

mobile than its parent compound (van der Werf, 1996), which could then create potential problems 

for groundwater contamination.  

 

1.2.2 Pesticide Chemistry 

The chemistry of a pesticide has an effect on its environmental fate and its mode of action to the 

desired target. Figure 1.3 represents some of the common functional groups found in pesticide 

structures and details their potential effect on adsorption.  
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Figure 1.3 Common functional groups featured in the pesticides analysed in this study 

 

Many of the functional groups featured in Figure 3.1 that are common throughout the structures are 

related to the polarity of the bonds and in turn, how soluble in water it makes the structure. The 

issue of solubility on the environmental fate of pesticides is reoccurring in the results and validation 

chapters and appears to play an important role in understanding how pesticides adsorb in soil. 

Another common feature relating to the structure of a pesticide is the acidity or basicity of 

compounds and their ability to gain or lose hydrogen ions which would play an important role in 

ionic bonding.  

 

Mode of Action 

Crop protection products have different modes of action depending on their ‘target’. The most 

common crop protection products featured in this study included herbicides, insecticides and 

fungicides, for example Glyphosate and AMPA (Chapter 4) are herbicides, and Hexaconazole 

(Chapter 5) is a fungicide.   

 

In the case of herbicides, application can be pre-emergence (applied before the weed and in some 

cases the crop grows), or post-emergence (applied after the weed has grown). Post-emergence 

herbicides can be applied in the form of contact herbicides, where the entire foliage of the crop is 

covered; or as a systemic herbicide where the compound is taken up by the weed and translocated 

throughout the entire plant (Copping and Hewitt, 1998).  Pre-emergence herbicides are usually 

taken up by the roots of the weed so the compound needs to be slightly water soluble so that it is 

available to the germinating weed, but no so soluble that is can be leached away from the weed 

germination zone. They also need to be persistent in the soil so that weeds that germinate over a 

period of time are controlled (Copping and Hewitt, 1998).  

 

Fungicides, such as the triazoles group have different action against fungi. Protective action has the 

aim of preventing infection; curative action, where the effect of the fungicide is in the early stages of 

infection; and eradicant action which is used in the later visible stages of infection (Singh, 2005).  

 

Insecticides have many different modes of action and it is not within the realm of this study to detail 

them all. However, using the example of the organophosphorus and carbamate groups of pesticides, 

can show how the molecular structure of an insecticide can assist its mode of action. Figure 1.4 

shows a member of the carbamate group of pesticides. Both carbamate and organophosphorus 



14 
 

mode of action is to inhibit the acetylcholinesterase (AChE) enzyme, which affects the nervous 

system of insects (Moris et al., 1995). 

 

 

 

 

 

 

Figure 1.4 Carbamate pesticide with the ethyl carbamate functional group circled.  

 

Both organophosphorus and carbamate pesticides inhibit AChE with the hydroxyl group in the 

enzyme attacking either the carbamate group or the relatively positive phosphorus atoms in the 

insecticides (Copping and Hewitt, 1998).  

 

1.3 Predicting Environmental Fate of Pesticides 

It is important to know the environmental fate of pesticides due to potential contamination of 

groundwater, surface water, and effects on humans and microorganisms etc. To ensure pesticide 

safety to humans and the environment, pesticides have a strict registration procedure and are 

regulated. In the European Union, the Pesticide Authorisation Directive (PAD) 91/414/EEC, which 

became effective in 1993, has the aim of reviewing active ingredients that had been used as 

pesticides in the EU before 1993. One of the main objectives of the PAD was to improve safety 

standards for consumers and operators; and to decrease environmental contamination (Hillocks, 

2012). Annex 1 of the PAD is a positive list of active ingredient that are currently authorised to for 

use in plant protection within the EC. Before an active ingredient can be included in Annex 1, 

agrochemical companies must submit a complete dossier on both the active substance and at least 

one plant protection product containing the active ingredient (Hillock, 2012). Included in this dossier 

are studies on the environmental fate. The PAD has been superseded by the Plant Protection 

Products Regulation 1107/2009 which came into force in November 2009, and assesses the impact 

of pesticides on people and the environment. Also due to concerns about pesticide run off into 

water courses the Water Framework Directive (WFD) was transposed in 2003 (Directive 

2000/60/EC). One of the implications the WFD has for UK farming is that certain herbicides could 

potentially be banned under the WFD (Hillocks, 2012).  
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There is much work in the literature focused on trying to model environmental fate of pesticides. 

Some studies on modelling pesticide inputs into ground and surface waters, for example 

Reichenberger et al., (2007) or Holvoet et al., (2007) while others use QSARs (Quantitative Structure 

Activity Relationships) to predict physical and chemical characteristics of pesticides as indicators of 

environmental fate. The assumption behind QSARs is that variations in activity within structurally 

similar compounds can be correlated with changes in parameters which reflect molecular properties 

(Reddy and Locke, 1994a). QSARs are widely used as alternatives to experimental determinations of 

environmental fate parameters such as Kow and Koc,, because experimental determinations  are time-

consuming and expensive (Bintein and Devillers, 1994). The Kow parameter is the octanol/water 

partition coefficient, which is the ratio of chemical concentration in the octanol phase compared to 

its concentration in the aqueous phase; the higher the Kow value; the greater the degree of predicted 

hydrophobicity. Hydrophobicity determines the amount of pesticide present in the aqueous phase 

and therefore available for degradation (Reddy and Locke, 1994b). The most accepted measure of 

sorption of pesticides to soil is the soil sorption coefficient, normalised to organic carbon, Koc, 

(Chapter 2). Koc values provide a relative measure of mobility in aqueous/soil systems; where 

compounds with higher Koc values will be less mobile than those with lower values (Sabljić et al., 

1995). This study is focused on the modelling and prediction of Koc, as it is the parameter that is 

favoured by industry risk assessments (Wauchope et al., 2002).  

 

1.4 Study Outline 

The overall aim of the study was to understand the controls on the Koc of pesticides in soils, with a 

view to developing predictive QSAR models. The overall aim was broken down into two objectives 

1. Understand controls on adsorption.  

Objective 1 was to investigate how Koc varies between different soils and different compounds, 

specifically using compounds molecular properties to identify a correlation with Koc. It was 

hypothesised that certain structural and soil properties would correlate significantly with Koc. A 

better understanding of Koc has the advantage of potentially preventing pesticide movement from 

soils into groundwater, which is important for groundwater quality and pollution.  

2. Develop models for predicting Koc. 

Objective 2 was to investigate if, once a correlation with Koc was identified, could those parameters 

be used to predict Koc for other compounds. Predictive models have the potential to improve the 
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pesticide development process, as they could reduce the need for experimental Koc values in the 

early stages of the pesticide development process.  

The outline of this study is as follows: 

Following the introduction, Chapter 2 explains the process of obtaining the structural properties of 

the compounds to use in the QSAR models. The methodology explains the statistical analysis used to 

build the predictive models and explains the reasons why the particular structural parameters were 

selected for analysis. Chapter 2 also outlines the batch equilibrium procedure for experimental Koc 

values that were used to obtain additional data for Chapter 4 and Chapter 5.  

Chapter 3 reports the preliminary analysis of a diverse range of compounds, obtained from industry 

reports. The preliminary analysis showed that adsorption behaviour of pesticides could generally be 

modelled into ‘high’ and ‘typical’ Koc values. Chapter 3 reports on the structural parameters that are 

important for high adsorption compounds. 

The analysis of parent and metabolite compounds is reported in Chapter 4. The parent and 

metabolite compounds were analysed separately. Additional data was obtained for this study by 

experimental work. Logistic regression models were able to identify between parent compounds and 

metabolite compounds based on their molecular structures. More importantly, logistic regression 

models could predict the adsorption potential of metabolites relative to their parent, which has 

relevance for risk assessments of the environmental fate of metabolites.  

The importance of soil properties on adsorption of pesticides is analysed in Chapter 5. Chapter 5 

outlines the details of the fieldwork and experimental work to obtain Koc values for a compound, 

tested on 24 soil types. The experimental results are analysed and a predictive Koc model based on 

soil type is presented. 

Chapter 6 presents the results of a study of modelling Stage 1 compounds, which are compounds in 

the early stages of compound development. Chapter 6 also discusses some of the practical issues in 

predicting Koc. Chapter 6 concludes that prediction of Koc is possible for this particular situation and 

suggests options for future work.  

The Stage 1 model is validated in Chapter 7. Chapter 7 also compares Koc predictions from this Stage 

1 model against predictions of the current US EPA model. The suitability of this model and of using 

Koc as a predictor of environmental fate is discussed and suggestions for alternative predictors are 

made. The main results of this study are concluded in Chapter 8.  
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2. METHODOLOGY  

2.1 Data Collection 

The data supplied to this project were obtained from Syngenta’s SmartDoc database. The data were 

in the form of industry reports with the results of adsorption studies performed at various Syngenta 

laboratories and contract laboratories. The reason for using these reports is that there were large 

amounts of data available in the SmartDoc system, so a large dataset of adsorption, compound and 

soil properties could be constructed.  

 

The advantage of using these reports is that the studies were carried out using a relatively consistent 

methodology across all the laboratories, and the majority of studies in the database had to follow 

Good Laboratory Procedure (GLP). This meant that there was reduced variability in the results 

obtained in the studies, which were then used in constructing the dataset. However, by only using 

reports obtained from Syngenta, it led to some restriction in the Active Ingredients (AIs) that could 

be used in constructing the dataset, i.e. only compounds and reports that were recorded in the 

SmartDoc system could be used in the study. This means that there may be some reduced variability 

in the range of AIs and also quantity of adsorption data available for each AI, for example, some 

compounds only had one study, whereas others had three or four, giving more soil data for each 

compound. A table of the main compounds discussed in this study is given in Table 2.1.  

 

Table 2.1 Structures and chemical classes of the most commonly discussed pesticides in this study. Structures 

are taken from the original reports or from The Pesticide Manual (Tomlin, 1997).  Unless stated all chemical 

structures are given as their neutral structures.  
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Chemical Class Example Compounds Structure 

Pyrethoid Permethrin 

 

  

Cypermethrin 

 

  

Lambda-cyhalorthrin 

 

Choloacetonilide Dimethachlor 

 

Aminophosphonic Glyphosate 

 

  AMPA 

 

Bipyridylum Paraquat 

 

  

Diquat 
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Sulfonylurea Oxasulfuron 

 

  

Prosulfuron 

 

  

Nicosulfuron 

 

Benzoylcyclohexanedione Mesotrione 

 

Diphenyl-ether Fomesofan 

 

2,6 - dinitroaniline Fluazinam 

 

Aryloxphenoxy propionic acid Clodinafop 
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Fluazifop 

 

Avermectin Emamectin B1a 

 

  

Abamectin B1a 

 

Stobilurin  Azoxystrobin 

 

  

Picoxystrobin 

 

Azomethine Pymetrozine metabolite 
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Pyrimide Cyprodinil 

 

Triazole Propiconazole 

 

  

Difenconazole 

 

  

Hexaconazole 

 

  

Cyproconazole 

 

  

Paclobutrazol 

 

1,3,5-Triazine Atrazine 
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Terbuthylazine 

 

Phenylpyrrole Fludoxonil 

 

Carbamate Fenoxycarb 

 

Chloronitrile Chlorothalonil 

 

Unclassified Fenpropidin 

 

 

 

2.1.1 Constructing the Dataset 

The information within the industry reports that was of interest in creating the dataset included: 

 Adsorption information - This would be a table of Koc and Kd values for the compound by 

each soil type. The Koc values collected from the reports are the linear distribution 

coefficient not Kfoc which refers to the Freundlich distribution coefficient; the difference 

between Koc and Kfoc and the reason for using the Koc parameter will be explained in more 

detail in Section 2.1.2. 

 Compound information - This just included the name or development code for the 

compound and usually the structure or molecular formula for the compound. 

 Soil data - This comprised the name of the soil, its USDA textural classification, the country it 

was sampled from and depth sampled in soil profile (if applicable). The soil data that was 

available and would be analysed comprised of its pH, Cation Exchange Capacity (CEC), 
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organic matter (OM) and/or organic carbon (OC) content and the percentage of sand, silt 

and clay.  

 

The compound’s structure was modelled into the commercial software package HyperChem 8.0 

(Hypercube Inc.), where the molecular properties were obtained and recorded in the dataset. 

Molecular properties will be the term used to cover quantum and semi-empirical properties. The 

structure was geometry optimised by HyperChem so that the bonds in the structure were at the 

correct angles. The geometry optimisation feature employs energy minimisation algorithms to locate 

the stable structure (Hypercube Inc.) The structure could then be redrawn into ISIS Draw (MDL 

Information Systems) so that the structure could be imported into the software package Topix 1.0 

(http://www.lohninger.com/topix.html), where atom and bond counts, connectivity parameters and 

molecular fragments were collected and recorded. Table 2.2 lists the molecular properties that were 

calculated from the structure:  

 

Table 2.2 Descriptions of molecular properties used in the data analysis. PCA Abv. refers to how the structural 

property is listed in the tables of PCA loadings in results chapters.   

 

Symbol Structural property PCA Abv. Definition/Physical 
interpretation 

µ Debye dipole moment dipolm solubility 

totalE Total energy totalE size descriptor 

HOMO Energy of Highest Occupied Molecular Orbital HOMO Acidity 

NHOMO Energy of the Next Highest Occupied Molecular Orbital NHOMO 
 LUMO Energy of the Lowest Unoccupied Molecular Orbital LUMO Basicity 

NLUMO 
Energy of the Next Lowest Unoccupied Molecular 
Orbital NLUMO 

 Vsav Surface accessible volume Vsav size descriptor 

Asas Solvent accessible surface area Asas size descriptor 

VvdW van der Waals volume Vvdw size descriptor 

AvdW van der Waals surface area Avdw size descriptor 

ΔHhyd Hydration enthalpy Δhhyd solubility 

LogP Octanol-Water Partition Coefficient logp 
 n molecular refractivity refractivity refractive index value 

π polarisability polarisability solubility 

M relative molecular mass mass size descriptor 

 

It should be noted that unless stated all the molecular structures were assumed to be neutral 

structures. The problem with assuming a neutral structure is that the electronic molecular 

properties, such as the hydration enthalpy, the dipole moments, the HOMO and LUMO, may change 
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if the structure was then to become charged and may therefore have an effect on the pesticide 

behaviour in the environment. The molecular properties were calculated using HyperChem using the 

set up menu and selecting molecular mechanics (MM+) to calculate Vsav, Asas, VvdW, AvdW, ΔHhyd, 

logP, µ,n, π, and Mr. Molecular mechanics (MM+) method uses a general purpose force field to treat 

atoms as an individual unit to calculate the quantum properties (Hypercube Inc). Then by selecting 

semi-empirical (extended Hϋckel method) the total energy and the HOMO, NHOMO, LUMO and 

NLUMO were calculated. The extended Hϋckel method uses both the pi and sigma bonds to 

calculate the energies of the molecular orbitals (Hypercube Inc.) 

 

Additional properties that were calculated from the structures were: 

 

 Bond and Atom counts - This is the number of the following atoms in the molecule: carbon, 

oxygen, nitrogen, fluorine, chlorine, phosphorous and silicon. Number of: single, double and 

triple bonds and carbon-carbon single bonds, carbon-carbon double bonds, carbon-carbon 

triple bonds and number of aromatic bonds.  

- The bond and atom counts could be calculated by counting the relevant bonds and 

atoms in the compounds molecular structure, but for ease this was obtained as part of 

calculations performed by Topix.  

 

 Connectivity parameters - In this report the connectivity parameters will be expressed as 

  
 
 

 where: χ is connectivity,  h is calculated from zero to ninth order; m is designated p for 

path fragments, c for cluster fragments and pc for path-cluster fragments; and v denotes 

that the value is valence corrected. The connectivity parameters used in this study were 

valance corrected (Kier-Hall Connectivity parameters). There were 29 connectivity 

parameters calculated for each compound in the dataset.    through to    (zero order 

connectivity to ninth order connectivity) were classed as low order connectivity, and were 

interpreted as a size or volume descriptor.   
 
  

 
 through to  

 
  

 
 (third order cluster, zero 

order path connectivity through to fourth order cluster, ninth order path connectivity). Path 

and cluster connectivities can be related to the degree of branching in a molecular structure. 

 

- Molecular connectivity can be defined as: 

 

         
 

 
   

 

  
   

 

   
      

(Equation 1) 
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Where: δv = the vertex degree from the adjacency matrix (valence corrected), i, j ... refer 

to pairs of adjacent atoms, and the reciprocal square root products are summed across 

all possible subgraphs of the hydrogen suppressed graph of the molecule (Worrall, 

2001).  The connectivity parameters are calculated through the input of .mol files of the 

compounds into Topix. The structure of the compound was drawn in ISIS Draw and 

saved as a .mol file. A .mol file is a text file that can be read in Notepad and shows rows 

of numbers and letters than are identifiable as elements of the compounds structure. In 

Topix the compound file was loaded and the parameters to be calculated were selected 

from tick boxes. The output file, .asc, can be opened in a program such as Excel and lists 

the calculated values from the parameters.  

 

 The molecular fragments: - these are sometimes referred to as augmented atoms and were 

calculated as: C1C1C, C1C, O1C, C1O1C1C, C1C1C1C, and C2C1C. This is where the first atom 

is the augmented atom and the others are those that are bound to it by the bond of order 

given by the number between. For example, O1C is oxygen bonded to a carbon by a single 

bond.  

- The molecular fragments are one of the parameters that can be calculated by Topix.  

 

2.1.2 Justification of Parameters 

Soil Adsorption Coefficients 

Soil sorption is characterised by a partition coefficient K, with subscript d for distribution (Wauchope 

et al., 2002). Kd is defined by:   

 

    
     

  
 

(Equation 2) 

 

Where: x/ms = concentration of pesticide in the solid phase and Ce = concentration of pesticide in 

liquid phase. There is a generalisation that Kd shows a high correlation with organic matter content 

of soils (Wauchope et al., 2002). Therefore sorption is often characterised by Koc, the sorption 

distribution normalised to organic carbon, which is defined as: 
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(Equation 3) 

 

Where: Kd is the linear sorption distribution coefficient, as determined by batch equilibrium 

experiments (see Section 2.3), and OC is the organic carbon content.  

Sorption data originating from batch equilibrium studies are often described using the non-linear 

Freundlich equation: 

 

 

 
        

     

(Equation 4) 

 

Where: x/m = amount adsorbed; Ce = concentration of pesticide in solution; Kf = Freundlich 

distribution coefficient; and 1/n = exponent (Dubus et al., 2003). The value of 1/n usually lies 

between 0.7 and 1 (Wauchope et al., 2002). Dubus et al. (2003) reported that it is common practice 

to normalise the Kf coefficient to organic matter and report this new value as Koc. However the initial 

Koc value relates to the linear distribution of the coefficient (Equation 3). Therefore there could be 

possible confusion in the literature surrounding the term Koc, as it could refer to the linear or 

Freundlich distribution. In terms of this potential confusion, Dubus et al. (2003) states that the 

differences in the values between Koc and Kfoc will be maximum for compounds that exhibit strong 

non-linear sorption.  Wauchope et al. (2002) follows this by stating that the most important 

consequence of isotherm non-linearity of the Freundlich type with 1/n < 1, is that mobilities for 

compounds at very high concentrations will be under predicted by Kd values measured at lower 

concentrations and vice versa. This project used the linear Koc coefficient as this is the parameter 

that tends to be used by modellers (Dubus et al., 2003) and allowed the models produced in this 

project to be compared to models used in the regulatory process e.g. EPIWIN 

(http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm).  

 

Structural Properties 

The structural properties in the data base generally have some kind of physical interpretation and 

there has been much work in the literature around the subject of predicting soil adsorption 

coefficients based on structural properties. Meylan et al. (1992) and Worrall (2001) are among those 

who have used molecular topology to predict Koc. The molecular topology relates to the connectivity 

parameters as described above in Section 2.1.1. Worrall (2001) states the molecular topological 

approach has an advantage as it is simple and that no more information than is present in the 

structural formula is required as an input. The work of Meylan et al. (1992) and Worrall (2001) 
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showed lower order connectivity parameters to be successful in building Koc models. The lower order 

connectivities can be related to molecular volume and molecular size, which directly relate to the 

solubility of the compound, with higher order connectivities related to the degree of branching 

(Worrall, 2001). Meylan et al. (1992) and Lohninger (1994) used connectivity parameters alongside 

molecular fragments to model Koc. Lohninger (1994) also stated that using molecular fragments are 

an advantage as they can be readily calculated before any experiments, providing a good method for 

screening future pesticides. Both Meylan et al. (1992) and Lohninger (1994) found that including 

molecular fragments with connectivity parameters in the model improved the estimation of sorption 

coefficients. Molecular fragments are known to generally have some influence on the chemical and 

physical properties of a compound (Lloyd, 1989). For example, Lohninger (1994) found polar 

fragments such as hydroxy groups (O1C fragment) decreased the sorption coefficient.  

 

Other authors such as Reddy and Locke (1994a) and Gramatica et al. (2000) have used quantum 

parameters to predict Koc. The quantum parameters relate to the molecular properties listed above 

in Section 2.1.1.  Dai et al. (2000) found that using molecular properties like the ones listed above 

had advantages as they were easily obtained by computer calculations and the parameters had 

“clear chemical sense”. The molecular parameters can be interpreted in terms of their affinity to 

adsorb pesticides to soil. Worrall and Thomsen (2004) included quantum and molecular properties, 

as well as topological properties in their model to predict groundwater pollution. By including 

connectivity parameters in the model the explained variance in the data increased (Worrall and 

Thomsen, 2004). 

 

As outlined in Section 2.1.1, this project chose to use a mixture of connectivity parameters, 

molecular fragments and molecular properties to build the models. The reason these parameters 

were selected was to attempt to increase the explained variance in the data as shown by Worrall 

and Thomsen (2004) and to attempt to get many parameters that could explain most of the 

adsorption behaviour of the compounds.  

 

2.2 Data Analysis 

The software used to analyse the data was Microsoft Excel 2003 and 2007 and statistics software 

Minitab v14.  

 

There was potentially a problem with having such a large dataset. There are around 80 variables to 

consider and with so many variables being analysed together it would be difficult to see what is 
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actually causing a variation in adsorption. A way of resolving this was to group the variables into 

similar categories which were then analysed separately. The categories for analysis were: soil 

properties; quantum properties; and connectivity parameters with molecular fragments - the 

variables in each category have been described in section 2.1.1. Dividing the dataset up into 

categories like this can still create an issue of co-linearity. Co-linearity is where some variables, or 

predictors, show a high correlation with each other and would suggest that the variable shares 

something in common with the other variable. The problem of co-linearity means that if these 

variables are included in the data set then it would not explain much of the variation in the data 

(Howell, 1997). An easy way to resolve this problem is by identifying predictors in the database with 

opposite coefficients, which are predictors that have a similar coefficient but one variable has a 

negative value and the other is positive. If predictors with opposite coefficients are found then one is 

removed.  

  

2.2.1 Principal Component Analysis (PCA) 

Principal Component Analysis was used first to analyse the full dataset of 700 Koc values because it is 

a way of converting a large multivariate dataset into a smaller number of variables. Principal 

Component Analysis transforms the original, observed, variables into principal components that are 

a linear function of the original variable set (Wang, 2009). The new principal components are 

independent of each other and thus avoiding the issue of co-linearity (Wang, 2009). The PCA 

identifies which combinations of variables explain the largest amount of variation in the dataset 

(Fowler et al., 1998), but is also useful for identifying groups of data and multiple trends. The 

principal components are ordered so that the first principal component is chosen to explain the 

largest possible amount of information in the data and the second principal component explains the 

second largest amount of information in the data and so on (Wang, 2009). The first few principal 

components therefore, account for a large proportion of the total variance in the dataset. 

 

Principal Components (PCs) were calculated from Minitab. Principal Components were selected for 

examination if their eigenvalues >1.00 and including the first PC with an eigenvalue <1.00. The 

reason for using 1.00 as a cut off point is because any variable that is more or less independent of all 

other variables will have an eigenvalue close to 1.00 but will still be important when explaining the 

overall variance (Jolliffe, 2010). The reason only a few principal components are chosen was because 

the idea of PCA was that the first few principal components will jointly explain a reasonably large 

proportion of the information in the original sample set (Fowler et al., 1998). When the principal 

components were calculated a set of loadings were produced, with a value for each variable in the 
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dataset. The loadings were interpreted as if it were a regression coefficient, although it cannot be 

tested for significance. As one of the aims of the project was to determine controls on adsorption, 

the principal components were selected by choosing the two principal components that had the 

highest loadings for Koc. 

 

Scores for the principal components were also calculated by Minitab. The scores are the 

transformed variables values and correspond to a particular data point (Shaw, 2003). Therefore the 

scores were used to create scatter plots for the first two principal components relating to Koc. The 

PCA was run a number of times for each category of predictors as outliers on the scatter plots were 

removed, following visual inspection, at each run to help make the trends clearer and reduce noise 

in the dataset. 

 

An advantage of PCA is that it possible to visualise multiple trends within a dataset. Therefore, 

scatter plots of PCs were examined and redrawn by chemical group classification of the compounds. 

The chemical group classification of each compound was determined either from information given 

in the industry studies or, if that information was not available, from its classification in ‘The 

Pesticide Manual’ (Tomlin, 1997). 

 

2.2.2 Multiple Regression 

The principle of multiple regression is to find an equation to predict Y on the basis of j number of 

predictors or variables. The general equation for multiple regression is: 

 

              
   
       

(Equation 5) 

 

Where: Yi = the dependent variable; Xj = the jth explanatory variable; A = constant; Mj = the jth 

regression coefficient; and V = the number of explanatory variables (Shaw, 2003). For this project, 

the aim was to see if the variation in Koc can be predicted from different soil or compound properties 

so    Yi = Koc and Xj = variables from the dataset e.g. dipole moment or %OC.  

 

The dataset was analysed in the subcategories as outlined in section 2.2. Multiple regression was 

tried in three ways so as to make sure the model was as accurate as possible and to avoid any co-

linearity.  Firstly, variables were added to the model individually, if the variable was found to be 

significant at the 95% level then other variables were added one at a time in a stepwise manner until 
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no more significant variables were found. Variables were added or removed according to their 

significance, and therefore their influence on the R2 value. The R2 was calculated by Minitab and can 

be directly interpreted in terms of the percentage of variance in the original dataset that was 

accounted for by the model (Howell, 1997) – this is a forward stepwise regression method. The 

second method for creating, and checking the model was to add all the variables from the 

subcategories at once then remove them one at time in a backward stepwise manner, according to 

their P values. In this case a variable would be removed if the P value was above 0.05 by convention 

and in accordance with other studies (Pires et al. 2008). Thirdly, in addition to the forward and 

backward stepwise methods, all of the variables were added in the model individually then removed 

to record their effects on the R2 value: this was also a check for co-linearity.  

 

The process for collecting the molecular properties and analysisng the data to build multiple 

regression models is shown below in Flow Chart 1. Full details of the steps needed to obtain the 

compounds structural properties are found in Appendix A. 
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2.2.3 Logistic Regression  

Logistic regression is a technique for predicting a binary outcome from continuous explanatory 

variables (Worrall, 2001). For example, in this project it was used for analysis of the parent and 

metabolite compounds, so a binary outcome of parent vs. metabolite from the continuous variables 

measured in the database. The method transforms from a probability scale (0, 1) to the scale of 

continuous variables (∞, -∞) (Worrall, 2001).  The transformation used is the logit transform   

    
 

   
 . For example in this project θ = the probability of a compound being a parent compound. 

The transformed parameter y can be linearly related to the chosen explanatory variables. This 

regression uses a maximum likelihood estimation rather than least squares estimation of coefficients 

as would be used in multiple regression. 

 

The dataset was analysed in the subcategories (as described in Section 2.2) but only parent 

compounds and their respective metabolites were analysed. The analysis of the parent and 

metabolite compounds using logistic regression is described in detail in chapter 4. Logistic regression 

was also used during the preliminary analysis to segregate compounds with ‘typical’ adsorption 

behaviour from those compounds that displayed more unusual adsorption behaviour (the model is 

shown in Chapter 3).  

 

An example of the process for collecting the molecular data, and using the logistic regression models 

is represented by Flow Chart 2, which in this case has been used to assess the adsorption potential 

of metabolites (the results of this study are described fully in Chapter 4). The method for building 

the logistic regression models is similar to building multiple regression models, so Flow Chart 2 

instead assumes a logistic regression model has been built and demonstrates how the model is used 

to calculate the adsorption potential. Again, full details for obtaining the structural properties are in 

the instructions in Appendix A.  
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2.2.4 Analysis of Variance (ANOVA)  

The technique of ANOVA was used to support the multiple linear regression. The advantage of using 

ANOVA is that it can model two independent variables as well as modelling the individual effects of 

each variable separately: the interacting effects of the variables can be analysed (Howell, 1997). For 

this project ANOVA was used to determine whether soil properties or compound properties were 

more important in controlling adsorption.  

 

The ANOVA experiment was set up in Minitab as a two factor experiment with compound and soil as 

the factors. It was not found necessary to transform the data in order to meet the assumptions of 

normality and homogeneity of variance within ANOVA. 

 

2.3 Experimental Methodology 

Additional Koc data were obtained for three compounds using a batch equilibrium experiment. The 

three compounds tested were an aminophosphonic compound (Glyphosate), its metabolite (AMPA), 

and a compound from the triazoles group (Hexaconazole) Figure 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Structures of the three compounds used in the batch equilibrium experiments. All structures are 

given as neutral structures and were obtained from Tomlin (1997). Glyohosate and AMPA solubility obtained 

from Coupe et al., (2011), Hexaconazole solubility as given in Tomlin (1997).   

b. AMPA 

Solubility: 5.8g/l at 25°C 

 a. Glyphosate 

Solubility: 10.1g/l at 25°C 

c. Hexaconazole 

Solubility: 0.017g/l at 20°C 
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The experiments were performed at Syngenta laboratories’ at their Jealott’s Hill research site and 

were carried out according to OECD guidelines (OECD 2000), and therefore the Koc results from the 

experiments should be comparable to the Koc values already in the dataset. Although, the adsorption 

experiment was performed to OECD standards, unfortunately due to the time restraints, no 

preliminary study (Tier 1 – OECD 2000) was made and no determination of adsorption isotherms 

(Tier 3 – OECD 2000) was carried out. However, any specific details of a Tier 1 study that was needed 

to determine the soil/solution ratio and equilibrium time for adsorption for the three compounds 

was taken from previous reports of those compounds made by Syngenta. Also the experiment was 

carried out under the guidance of one of Syngenta’s study directors who ensured the methodology 

was appropriate. Tier 3 was not necessary for these experiments as all the values taken from the 

reports were Koc values, therefore calculating Kfoc values were not a priority.  

 

2.3.1 Selection of Soil Properties 

The reason for the adsorption experiments was to expand the number of Koc values per compound in 

the database and expand the range of soils included. The additional soils came from the collection of 

standard soils that Syngenta use in batch equilibrium experiments, and therefore already met OECD 

guidelines. The three compounds chosen had not been tested on these soils before. Full details of 

the characteristics of the soils can be found in Chapters 4 and 5. The study based around 

Hexaconazole (Chapter 5) used seven new UK soils in addition to the Syngenta soils available. These 

new soils were selected for specific reasons based on their underlying geology, and as much as 

possible tried to meet OECD guidelines (OECD 2000). The seven new soils were prepared in the same 

way as the Syngenta soils. For full characteristics of the collected soil see Chapter 5.  

 

2.3.2 Batch Equilibrium Adsorption Study 

The following outlines the general methodology that was followed for each of the three compounds. 

All three compounds were available in a radio-labelled form. All calculations and serial dilutions are 

given in Appendix B – Folder 1.  

 

Experiment Preparation 

By studying the previous reports for the three compounds appropriate soil: aqueous ratios for each 

compound were selected. The soil: aqueous ratio for Glyphosate was 1:20 (1g soil: 20mls aqueous 

solution), and for AMPA and Hexaconazole was 1:10 (2g soil: 20mls aqueous solution).  As 1ml of the 

aqueous solution will be the radioactive treatment solution (i.e. contains the radio-labelled 

compound) and to maintain the correct ratios, 19ml will be made up of 0.01M CaCl2. 0.01M CaCl2 
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was used as opposed to deionised water as it minimises cation exchange and improves 

centrifugation (OECD 2000). Although not explicitly stated in the OECD guidelines, a reason for 

minimising cation exchange may be to create a more stable soil system, as without the Ca2+ ions 

there is the potential for the clay structure to become too hydrated and swell (de Jonge and de 

Jonge, 1999). Divalent cations such as the Ca2+ ions, although very hydrated have a small hydrated 

radius compared to monovalent ions. Being a hydrated ion has the effect of increasing its size and 

reducing its mobility so it is strongly adsorbed to a negatively charged surface. Whereas the small 

hydrated radius means there are less water molecules present to fill the interlayer spaces, stabilising 

the clay structure (Hiscock, 2005). The adsorption step was given as 24 hours for all three 

compounds.  

 

Syngenta reports for Hexaconazole showed that there was adsorption of this compound onto the 

Teflon tubes to be used in the adsorption experiment. However, in the presence of soil, 

Hexaconazole preferentially adsorbed onto the soil (Oliver and Kuet, 1999). Therefore, Teflon tubes 

were still appropriate for this study. Teflon tubes were also appropriate for Glyphosate and AMPA as 

these compounds showed no signs of adsorption on to the tubes (Thomas and Lane, 1996). For each 

soil type there were two replicates and for each experiment a blank tube was included. The blank 

tube contained only the soil and CaCl2 mix. This blank tube was used to check the analytical method 

and for matrix effects caused by the soil (OECD 2000).  For the Glyphosate and AMPA experiments a 

control tube was also used. The control tube only has the aqueous solution with no soil and was 

used to confirm that there was no adsorption of the two compounds onto the Teflon tubes. For all 

three compounds, 1g or 2g of the appropriate soil was weighed into each tube, then 19mls 0.01M 

CaCl2 was added. The lids were applied and once secured the samples were placed on an end-over-

end shaker for 24hrs for pre-equilibration.  

 

Preparation of Treatment Solution 

Each chemical came with a dispense sheet that provided the radioactivity data for the chemical. The 

radioactivity data is important because it identifies the levels of radioactivity that has been added to 

the compound and needs to be known to be able to correctly dilute the compound to use in the 

adsorption experiment. The compounds had been labelled with 14C. The radioactive 14C isotope 

acted as a tracer, which meant that it was easy to see whether the compounds were mostly present 

in the soil phase or the aqueous phase.   
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The level of radioactivity determines if a serial dilution of the stock was needed to make the 

treatment solution. A serial dilution step was used to check that the activity dispensed value given 

with the chemical is correct. It was important to know the correct activity of the chemical because it 

was used to calculate the size of the aliquot taken from the stock solution to use in the treatment 

solution. The activity was quantified by Liquid Scintillation Counting (LSC). Also, serial dilution may 

have to occur so any aliquots taken are at an appropriate concentration for the LSC machine to read.  

As the Glyphosate had a relatively low concentration it could be used in the LSC machine without 

needing a serial dilution first. However AMPA and Hexaconazole had higher activity and needed a 

serial dilution. Full details of the serial dilution calculations are in Appendix B – Folder 1. 

 

Glyphosate 

Without the need for a serial dilution, the Glyphosate treatment solution could be made directly 

from the chemical that was provided. The Glyphosate radiochemical had arrived in liquid in a glass 

vial. Using a pipette the Glyphosate was transferred into a clean 100ml volumetric flask. The size of 

the flasks had been chosen based on the number of tubes that had to be treated with each chemical. 

This pipette was referred to as ‘hot’ as it had been in direct contact with the radio labelled 

Glyphosate. Using a different pipette, 1-2mls of CaCl2 was pipetted into the vial that contained the 

Glyphosate to rinse around the walls of the vial. This pipette was the ‘cold’ pipette as it should not 

have had any contact with the radio labelled Glyphosate. With the hot pipette, the liquid that was 

used to rinse the walls was transferred back into the volumetric flask. Using the cold pipette, more 

CaCl2 was washed around the walls of the vial, and then transferred back to the volumetric flask 

using the hot pipette. This process was repeated to ensure any radiochemical on the walls of the vial 

was washed into the 0.01M CaCl2 and none was lost. This rinsing was repeated until 100ml volume of 

the flask is reached. The Gyphosate treatment solution was now at a concentration of 20,000Bq/ml.  

 

AMPA 

The radioactivity of AMPA was higher than Glyphosate and would have been too concentrated to 

use in the LSC machine so had to be diluted. A stock solution had to be prepared first. To make the 

stock 10MBq of AMPA was diluted into a 10mls of ultra pure water giving a stock concentration of 

1MBq/ml (or 1000Bq/μl). Ultra pure water was used in the stock creation process to dissolve the 

chemical as, unlike Glyphosate, the AMPA had arrived at the lab in the form of a solid. The stock was 

prepared by using the hot and cold pipette technique to rinse and transfer the dissolved AMPA into 

the volumetric flask.  
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To make the treatment solution an aliquot of the stock solution had to be taken and diluted with 

0.01M CaCl2. The calculation and quantifications in appendix B show how the volume of the aliquot 

of stock was determined. It was calculated that 3.4ml of stock should be taken. Using a pipette 3 x 

1ml aliquots of the AMPA stock were taken and dispensed into a clean 50ml volumetric flask. Then a 

400μl aliquot of the stock was taken and dispensed into the 50ml volumetric flask. The volumetric 

was made up to the 50ml line with 0.01M CaCl2 giving the AMPA treatment solution a concentration 

of around 75,000Bq/ml.  

 

Hexaconazole 

As with AMPA, Hexaconazole also had to be made into a stock solution prior to experimental use. 

The reason for making a stock was that the Hexaconazole radiochemical arrived dissolved in 2mls 

acetonitrile, and therefore had to undergo a solubility check to ensure it was appropriate to use with 

the CaCl2 in the experiment. To make the stock, Hexaconazole was diluted into 10mls of acetonitrile 

giving the stock a concentration of 230,000Bq/ml (230Bq/µl).  A solubility test was made (appendix 

B) and based upon the result it was decided that it was appropriate to use with the CaCl2 and the 

treatment solution could be made. The Hexaconazole treatment solution was prepared in the same 

way as the AMPA treatment solution by calculating the volume of stock that was needed to be 

diluted (appendix B). It was calculated that 3.5ml of the stock was needed. Using a pipette 3 x 1ml 

aliquots of the stock were taken and dispensed into a clean 100ml volumetric flask. Then a 500μl 

aliquot was taken and dispensed into the 100ml volumetric flask. The volumetric was made up to the 

100ml line with 0.01M CaCl2 giving the treatment solution a concentration of around 9000Bq/ml.  

After each treatment solution was made it was quantified by LSC to ensure the concentration was 

correct before applying it to the samples (Appendix B – Folder 1_Hexaconazole).  

  

Treating and Quantifying the Samples 

Further quantifications of each of the treatment solutions were made during the process of treating 

the samples. A sample of each treatment solution was taken before the tubes were treated, once 

during the treatment process and then once after all the tubes were treated. The reason for 

quantifying during the treatment process was to test exactly how much radioactivity had been 

applied to the tubes and also to check that there was continuity in the pipetting technique 

(Appendix B – Folder 1). In each experiment, all the tubes were treated with 1ml of the treatment 

solution, except for the blanks. The tubes were placed back in the end-over-end shaker for a planned 

24hours for the adsorption step.  
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After 24 hours, the tubes were removed from the shaker and centrifuged for 10 minutes at 

3000rpm. This centrifugation allowed the soil to settle at the bottom of the tube and the 

supernatant to be sampled. The supernatants were removed from the tubes with a pipette and 

transferred into individual labelled glass vials for storage. From each of the glass vials a 2 x 1ml 

aliquot of the supernatant was removed with pipette and dispended into separate large LSC vials. 

10mls of scintillation fluid was added to each vial. The concentrations of compounds in the vials 

were measured overnight by LSC.  For a full list of the counts see Appendix B – Folder 1.  Using the 

Bq counts from the LSC, the Kd and Koc values were calculated for each compound. The results of the 

Glyphosate and AMPA study are given in Chapter 4 and the results for Hexaconazole in Chapter 5. 

The full adsorption spreadsheets for each compound can be found the relevant files in Appendix B – 

Folder 1.    

 

For Hexaconazole, additional analysis of the aqueous solution was made using High Pressure Liquid 

Chromatography (HPLC) and the soil phase using Thin Layer Chromatography (TLC) before 

calculating Kd and Koc. The reason for the extra analysis was because the Compound A experiment 

featured new soils that had not been used in a batch equilibrium study before and there was a risk 

that degradation of the compound may have occurred.  The HPLC and TLC methodology is described 

fully in Chapter 5. 
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3. PRELIMINARY RESULTS –ALL DATA 

3.1 Introduction 

There have been many studies attempting to predict Koc based on a compounds molecular 

descriptors (e.g., Gramatica et al., 2000), connectivity indices (e.g. Baker et al., 2001) and fragment 

data (e.g. Meylan et al., 1992). This study analyses a wide range of molecular descriptors to predict 

the adsorption behaviour of a large group of pesticides. Unlike similar work in the literature, this 

study had access to the original experimental lab reports to obtain the Koc data.  

 

The full dataset is comprised of 700 Koc values from 80 compounds; this includes the parent 

compounds and their relative metabolites. When the compounds are assigned to their chemical 

groups (according to The Pesticide Manual (Tomlin, 1997)) the full dataset has 17 different chemical 

groups. This full dataset will be referred to as ‘Dataset 1’.  

 

3.2 Study Approach 

In order to understand the variation in Koc across the range of compounds, this study used a range of 

multivariate statistical techniques. The study focused firstly on analysing the complete dataset of 80 

compounds (Dataset 1). The techniques used to analyse Dataset 1 were principal component 

analysis and analysis by chemical class with the methodology as described in Section 2.2.1. The 

results of the data analysis are presented and discussed. The preliminary analysis of Dataset 1 

identified that the compounds fell into two distinct trends and therefore modelling the full range of 

compounds was unsuccessful.  

 

Based on the preliminary results, Dataset 1 was split into two groups based on the two trends 

identified in the analysis. The split was made in an attempt to produce more suitable models. This 

study then focused on what has been referred to as ‘Group A’ compounds (Dataset 2). The modelling 

techniques to analyse the Group A data were multiple regression and logistic regression. The 

methodology was outlined in Sections 2.2.2 and 2.2.3.  

 

3.3 Results 

3.3.1. PCA: Connectivity Parameters and Molecular Fragments 

 

Table 3.1 The first five principal components for connectivity parameters and molecular fragments with the 

cumulative proportion of variance explained. Eigenvalues: PC1: 26.04, PC2: 3.51, PC3: 1.75, PC4: 1.045, PC5: 

0.93.   
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PC1 PC2 PC3 PC4 PC5 

Koc 0.005 0.015 -0.065 -0.866 -0.444 

Ki0 0.183 -0.134 -0.083 0.064 -0.005 

Ki1 0.187 -0.103 -0.115 0.026 0.007 

Ki2 0.190 -0.080 -0.530 0.033 -0.005 

Ki3 0.189 -0.125 -0.045 0.019 -0.024 

Ki4 0.189 -0.128 -0.023 0.011 -0.027 

Ki5 0.189 -0.135 -0.002 0.006 -0.030 

Ki6 0.189 -0.126 0.037 0.008 -0.045 

Ki7 0.189 -0.132 0.051 -0.004 -0.035 

Ki8 0.190 -0.114 0.058 -0.027 -0.020 

KiCP30 0.188 0.027 -0.140 0.030 -0.027 

KiCP31 0.189 0.006 -0.107 -0.033 -0.002 

KiCP32 0.192 -0.051 -0.007 -0.002 -0.008 

KiCP33 0.193 -0.037 -0.026 -0.028 0.001 

KiCP34 0.194 -0.027 0.018 -0.013 -0.030 

KiCP35 0.193 -0.064 0.047 -0.016 -0.007 

KiCP36 0.192 -0.067 0.098 -0.009 -0.014 

KiCP37 0.190 -0.085 0.108 -0.029 0.012 

KiCP38 0.188 -0.109 0.109 -0.036 0.009 

KiCP39 0.186 -0.122 0.114 -0.042 0.017 

KiCP40 0.126 0.299 -0.165 0.066 -0.091 

KiCP41 0.112 0.356 -0.196 -0.100 0.062 

KiCP42 0.157 0.290 0.000 -0.017 0.055 

KiCP43 0.170 0.234 -0.023 -0.067 0.076 

KiCP44 0.138 0.357 0.078 0.004 0.035 

KiCP45 0.145 0.317 0.037 0.042 0.013 

KiCP46 0.128 0.313 0.174 0.083 -0.025 

KiCP47 0.141 0.234 0.086 0.016 0.043 

KiCP48 0.180 0.136 0.053 0.015 -0.013 

KiCP49 0.183 -0.017 -0.017 -0.029 -0.024 

C1C1C 0.056 -0.027 -0.630 -0.109 0.180 

C1C 0.172 0.056 0.180 -0.022 0.058 

O1C 0.156 -0.183 0.128 0.012 0.074 

C1O1C1C 0.088 -0.103 -0.489 0.023 0.307 

C1C1C1C 0.164 -0.130 0.133 -0.018 0.046 

C2C1C 0.049 0.010 -0.254 0.440 -0.795 

Variance Explained (%) 72 82 87 90 93 
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The eigenvalues suggest there are five principal components that are worth exploring. The first five 

principal components explain 93% of the variance in the data (Table 3.1). The first principal 

component shows a positive loading for KiCP34: 0.194 (the 3rd order cluster, 4th order path 

connectivity). The second principal component shows a positive loading for KiCP41: 0.356 (the 4th 

order cluster, 1st order path connectivity). The third principal component has a high negative loading 

for the molecular fragment C1C1C: -0.630. The fourth principal component has a high negative 

loading for Koc: -0.866. The fifth principal component shows a high negative loading for the 

molecular fragment C2C1C: -0.795. By looking at the loadings on the first five principal components, 

it suggests a combination of connectivity parameters and molecular fragments as being important 

for Koc.  

 

The higher order path and cluster connectivity parameters are associated with the structural 

complexity of the molecule like the degree of branching (Worrall and Thomsen, 2004). Increased 

branching will also restrict microbial degradation (Worrall, 2001). The molecular fragments C1C1C 

and C2C1C (an alkane and an alkene) can be related to solubility.  

 

As the aim of this study was to understand the controls on Koc, the two principal components with 

the highest loadings on Koc were selected to make a scatter plot so any trends could be visualised 

(Figure 3.1). Figure 3.1 represents the interaction between Koc and molecular fragments C2C1C and 

C1C1C.  The data points plotted in the scatter graphs from Minitab are the scores from the PCA. This 

means that the values in the tables have been transformed and the data points are representative of 

the variables and not the actual values of the variables.  
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Figure 3.1 Scatter plot of principal component 4 versus principal component 5 for connectivity parameters and 

molecular fragments. Blue arrow demonstrates direction of negative trend defined by Koc. Green arrow 

demonstrates influence on data from alkene molecular fragment.     

 

As Koc, on the fourth and fifth principal components has a negative value (Table 3.1), the data will 

follow this negative trend, as shown by the blue line in Figure 3.1. However, the molecular fragment 

C2C1C has a positive loading for principal component 4 that is causing other compounds to move 

away from the original negative trend (as shown by the green line). The interaction between the 

loadings and variables in the two principal components can be represented in Figure 3.1. The blue 

line (Figure 3.1) shows the direction of the negative trend created by the loadings on the variables. 

The blue line is therefore representing a mix of Koc and the C1C1C and C2C1C molecular fragments. It 

would be expected that the highest Koc values would be along this line. The green line is showing the 

effect of the positive loading on C2C1C for principal component 4, resulting in a ‘V’ shaped split in 

the data points.  

 

3.3.2 PCA: Soil Properties 

 

Table 3.2 The first four principal components for soil properties with the cumulative proportion of variance 

explained. Eigenvalues are: PC1: 3.68, PC2: 1.62, PC3: 1.03, PC4: 0.98.  
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PC1 PC2 PC3 PC4 

Koc -0.003 0.000 0.684 0.729 

% OM 0.406 -0.479 0.012 -0.003 

%OC 0.400 -0.476 0.004 0.000 

%Sand -0.427 -0.443 0.040 -0.038 

%Silt 0.381 0.394 -0.108 0.072 

%Clay 0.366 0.383 0.079 -0.029 

pH -0.046 -0.049 -0.716 0.680 

CEC 0.460 -0.210 -0.019 0.004 

Variance Explained (%) 46 66 79 91 

 

 

The eigenvalues suggests there are four principal components worth exploring. The first four 

principal components explain 91% of the variation in the data (Table 3.2). Principal component 1 has 

a negative loading on % sand content: -0.427 and positive loadings on organic carbon content: 0.400 

and organic matter content: 0.406. The second principal component has negative loadings for 

organic matter content: -0.479 and organic carbon content: -0.476. The third principal component 

shows a high negative loading for soil pH: -0.716 and a high positive loading for Koc: 0.684. The fourth 

principal component shows high positive loadings for both pH: 0.680 and Koc: 0.729. As above, the 

two principal components with the highest loadings on Koc were selected to make a scatter plot so 

any trends could be visualised. This produced a scatter plot of PC 3 v PC4 (Figure 3.2).  
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Figure 3.2 Scatter plot of principal component 3 versus principal component 4 for soil properties. Blue arrow 

represents direction of trend defined by Koc. Green arrow represents the influence of pH on the data.   

 

Figure 3.2 visualises the interaction between Koc and pH. The blue line in Figure 3.2 shows the 

positive trend that represents Koc. The green line is showing the effect the negative loading for pH 

has on the data points. The positive and negative loadings for PC 3 seem to be showing that there is 

almost a ‘barrier’ in the data (along the green line) where no data points seem to plot below it. As PC 

3 relates to soil pH Figure 3.2 is suggesting that soil pH is acting as a control on Koc and is linked to 

higher Koc values.   

 

3.3.3 PCA: Molecular Properties  

 

Table 3.3 The first five principal components for molecular properties with the cumulative proportion of 

variance explained. Eigenvalues are: PC1: 9.37, PC2: 2.83, PC3: 1.49, PC4: 1.18, PC5: 0.98 
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PC1 PC2 PC3 PC4 PC5 

Koc 0.024 -0.090 -0.001 0.766 0.320 

dipolm 0.100 0.074 -0.031 -0.231 -0.350 

totalE -0.313 -0.145 0.017 0.039 -0.004 

NHOMO 0.211 -0.351 0.058 0.005 -0.110 

HOMO 0.188 -0.307 0.028 0.352 -0.009 

LUMO -0.137 0.361 0.502 0.145 0.039 

NLUMO -0.153 0.446 -0.127 0.177 0.044 

Vsav 0.315 0.154 -0.015 0.001 0.026 

Asas 0.303 0.169 -0.115 0.047 0.050 

VvdW 0.314 0.155 0.009 -0.007 0.019 

AvdW 0.312 0.166 -0.019 -0.004 0.019 

ΔHhyd -0.069 0.289 -0.601 0.132 0.059 

logP 0.216 -0.139 0.432 0.035 0.032 

refractivity 0.318 0.123 0.040 -0.015 0.023 

polarisability 0.317 0.120 0.049 -0.008 0.027 

mass 0.315 0.132 -0.032 -0.004 0.016 

Variance Explained (%) 52 68 76 83 88 

 

 

The first five principal components explain 88% of the variation in the data. Principal component 1 

has positive loadings for refractivity: 0.318 and polarisability: 0.317. Principal component 2 has a 

positive loading on NLUMO: 0.446. Principal component 3 has a high negative loading for ΔHhyd: -

0.601. Principal component 4 shows a high positive loading for Koc: 0.766. Principal Component 5 has 

a negative loading on the dipole moment: -0.530. The results of the PCA in Table 3.3 did show that 

some of the eigenvalues were very close together for example, mass, Vsav, VvdW. However, in all cases 

it was the highest eigenvalues that were selected for importance.   

 

The polarisability, ΔHhyd and dipole moment are related to aqueous solubility. The ΔHhyd is usually 

inversely related to the aqueous solubility and the polarisability and dipole moment are normally 

proportional to the solubility (Worrall and Thomsen, 2004). Reddy and Locke, (1994a) found the 

LUMO to be significant in establishing a relationship with Koc. The high loadings on the principal 

components for change in hydration energy and the dipole moment suggest that in this case 

solubility is important for Koc. As above, the two principal components with the highest loadings on 
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Koc were selected to make a scatter plot so any trends could be visualised. This produced a scatter 

plot of PC 4 v PC5 (Figure 3.3).   
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Figure 3.3 Scatter plot of principal component 4 versus principal component 5 for molecular properties. Blue 

arrow represents direction of positive trend influenced by HOMO parameter. Green arrow represents the 

positive trend influenced by dipole moment parameter.  

 

The arrows indicate the split in the data points created by the interaction between the loadings on 

the variables. The blue line shows the influence the positive loading for HOMO has on Koc. The green 

line shows the influence the positive loading for the dipole moment has on Koc. The result is a 

positive ‘V’ shaped split in the data. This split implies that there are two groups of compounds, being 

controlled by different molecular properties. One group is controlled by HOMO and one controlled 

by the dipole moment.  

 

3.4 Analysis by Chemical Group 

The principal component analysis found that there were multiple trends present in the data set. To 

determine which compounds lay on which trend the scores from the PCA were plotted by chemical 

category as well as by category of molecular descriptor. The compounds were categorised according 

to their chemical group, as defined in The Pesticide Manual (Tomlin, 1997) or the original Syngenta 

report. Each chemical group was then added as an individual series in the graph. This created copies 

of the scatter plots from Figures 3.1, 3.2 and 3.3 but sorted by chemical group type. The red and 
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blue circles in Figure 3.4, 3.6 and 3.8 have been added to show the general locations of the groups of 

compounds that are showing the separate trends identified in the PCA. 

 

3.4.1 Connectivity Parameters and Molecular Fragments 

Figure 3.4 shows the interaction between Koc and the molecular fragments C1C1C and C2C1C when 

broken down into the different chemical group types. The original scatter plot (Figure 3.1) showed 

that there was a split in the data set; from analysis by chemical group type it identifies the 

composition of the two trends, which have been identified in Figure 3.4 by the red and blue circles. 

By thinking of the compounds within these two trends as two different groups, the scatter plot can 

be simplified (Figure 3.5).  
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Figure 3.4 Scores from PCA plotted by chemical group for connectivity parameters and molecular fragments, with groupings illustrated as per Figure 3.5.  

-4 

-3 

-2 

-1 

0 

1 

2 

3 

-3 -2 -1 0 1 2 3 4 5 6 7 

PC 4 

PC 5 

pyrethoid 
chloroacetonilide 
aminophosphonic  
bipridylum 
azole 
sulfonylurea 
benzoylcyclohexondione 
diphenyl-ether 
2,6-dinitroaniline 
2-(4-aryloxyphenoxy) propionoc acid 
morpoline 
avermectin 
strobilurin 
azomethine 
pyrimidine 
triazole 
1,3,5-triazine 
phenylpyrrole 



50 
 

 

 

Figure 3.5 Scores from PCA plotted by chemical group for connectivity parameters and molecular fragments 

simplified into two groups. Arrow indicates direction of increase in Koc as identified by loadings from PCA.  

 

In Figure 3.5 the main trend, shown by the blue circles, will be referred to as Group A. Plotting away 

from the main trend is the second trend, which will be referred to as Group B. Group A comprises 

the majority of the dataset and a diverse range of chemical groups. Group B comprises only 

compounds from the pyrethoid, aminophosphonic, bipyridylium and avermectin chemical groups. 

The compounds in these four chemical groups are displaying an adsorption behaviour that is 

different to the majority of the compounds in the data set.  The PCA would suggest that the 

presence of particular molecular fragments is important (Table 3.1).  

 

Table 3.1 has identified that the molecular fragment C2C1C, an alkene, has having a high negative 

loading on principal component 5. The negative loading relates to the direction of the trend in the 

scatter plots, so in Figure 3.5 the trend for alkenes plots in the direction of the left half of the graph. 

An alkene fragment will decrease the solubility of the compound (Lloyd, 1989) and with decreased 

solubility, adsorption will increase. By considering the influence of the C2C1C fragment, Figure 3.5 

suggests that the compounds with the lowest solubility are found in the negative portions of the 

graph, which is dominated by the Group B compounds. It is important to note that the negative 

portions of Figure 3.5 also includes some of the Group A compounds, at the very end point of the 

Group A line, which has been caused by the positive loading for C2C1C on PC 4. Figure 3.5 shows 

that based on the loadings from the PCA, the Group B compounds are plotting in the direction of the 

highest Koc values (as indicated by the arrow). Therefore, Figure 3.5 would suggest that the Group B 
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compounds are more adsorbing than the majority of the Group A compounds, because the Group B 

compounds are more insoluble.  

 

However, when comparing the original fragment data obtained by Topix for the compounds, the 

average number of alkene fragments in the Group B compounds was the same as the Group A 

compounds. Individual compounds will have different fragment counts but generally speaking the 

original data would imply that although Group B compounds are more adsorbing than the majority 

of the Group A compounds, as shown by the higher Koc values, the alkene fragment is not controlling 

adsorption in this case.  In Figure 3.5 the majority of the data points from both groups are clustered 

around the lower right portion of the graph. If this grouping of data points were interpreted in terms 

of the eigenvalues from Table 3.1 then this data cluster may also correspond to the C1C1C molecular 

fragment.  

 

3.4.2 Soil Properties 

When the data for the soil properties are plotted by their chemical groups it produces two groups of 

data points (Figure 3.6). The data points show similarities with the connectivity parameters and 

molecular fragments graph (Figure 3.4). The main cluster of data points, blue oval, again comprises 

the majority of compounds and a range of chemical groups in the data set. There is again also a sub 

group of compounds, red oval, trending away from the main group of data. Like the previous figure, 

the subgroup is again only comprised of compounds from pyrethoid, aminophosphonic and 

avermectin chemical groups.  
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Figure 3.6 Scores from PCA plotted by chemical group for soil properties, with groupings illustrated as per Figure 3.7 
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To simplify the scatter plot, the individual chemical groups in the two trends can be grouped 

together (Figure 3.7). The main trend in will again be referred to as Group A and the sub group of 

compounds in will be referred to as Group B. 

 

 

 

Figure 3.7 Scores from PCA plotted by chemical group for soil properties, simplified into two groups 

 

By plotting the data as just two groups of compounds it shows that there might be another mixing 

trend in the dataset. Some of the data points for Group B appear to plot within the Group A trend 

and the chemical groups are more spread out along the Group B trend than they were in the 

connectivity graph. For example, there are two compounds both within the avermectin chemical 

group, but one is found at both ends of the Group B line and the other is more mixed in the Group A 

trend.  

 

The soil types at the extremes of the lines don’t seem to show any particular trend relating to the 

Group A and Group B compounds. The end points of the lines are a mixture of sands, silts, clays and 

loams. This may explain why some of the compounds are so spread out along the trends. The 

influence of soil type is enough to create a mixing type trend, but the influence is not strong enough 

to define the trends, and therefore the trends are still based on chemical group type. So although 

Figure 3.7 shows the interaction of pH and Koc, from the PCA it would suggest that any difference in 

adsorption behaviour is more likely to be due to a structural feature in the compound as opposed to 

a soil property alone.  
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3.4.3 Molecular Properties 

Figure 3.8 shows that like the previous graphs of the scores plotted by chemical group type, there 

are again two trends. The main trend in the blue oval is the majority of chemical groups and the 

secondary trend within the red oval are again the pyrethoid, aminophosphonic, bipyridylium, and 

avermectin chemical groups. As these four particular chemical groups appear in the secondary 

trends of all three categories of analysis suggests that it is more likely that any difference in 

adsorption behaviour between these four chemical groups and the rest of the data set is due to 

molecular properties as opposed to just an effect of soil type.  

 

Figure 3.8 also shows that there is a clear difference in adsorption behaviour within the secondary 

trend as well as a difference from the main trend. To investigate this further the scatter plot has 

been simplified (Figure 3.9).  
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Figure 3.8 Scores from PCA plotted by chemical group for molecular properties, with red and blue groupings illustrated in Figure 3.9.  
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Figure 3.9 Scores from PCA plotted by chemical group for molecular properties, simplified into two groups. 

Group B chemical groups are separated into their individual groups. Arrow represents the direction of 

increasing Koc values, as indicated by PCA loadings. 

 

By plotting the molecular properties by chemical group type it again demonstrated the two trends in 

the data. Like the previous graphs, the composition of Group A and Group B remained the same. 

Figure 3.9 shows these two trends; however the Group B compounds have now been plotted as their 

individual chemical groups, represented by the different coloured diamonds.  

 

What Figure 3.9 demonstrates is the complexity of the adsorption behaviours within the full data 

set. There is the difference in adsorption behaviour between the main group and the subgroup, as 

already shown by the results for the connectivity parameters, molecular fragments and soil 

properties. What is clearer in Figure 3.9 is the Group B compounds are showing adsorption 

behaviour that is different not only to the compounds in Group A, but also different to each other. 

Within Group B the four chemical groups are showing a linear separation. It would suggest that 

there is a feature in the structure of the Group B compounds that is causing the difference from the 

main trend, but also a feature that is causing the difference from each other. From looking at the 

results of the PCA it would suggest that in this case the dipole moment of each compound is 

important as the dipole moment has the highest loadings. The dipole moment relates to the 

solubility, which would have an effect on adsorption behaviour.  
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Worrall and Thomsen, (2004) have indicated that the dipole moment is normally proportional to the 

solubility. An increase in solubility will lead to lower adsorption. From the PCA results, the dipole 

moment has a negative loading for both principal component 4 and principal component 5. 

Therefore, the compounds with the higher solubility (and lower Koc values) are clustered around the 

origin and towards the left of the graph in Figure 3.9.  What Figure 3.9 is suggesting is that the Group 

B compounds have the higher Koc values compared to the Group A compounds, because they are less 

soluble. When comparing the original data, the average dipole moments for both the Group A and 

Group B compounds are similar, but the average changes in hydration energies are different. So the 

original data indicates that the Group B compounds are more insoluble than Group A due to the 

hydration energy and in this case solubility is controlling adsorption. 

 

3.5 Group A Compounds 

The aim of analysing the Group A compounds (Dataset 2) was to create a predictive Koc model for a 

range of chemical classes. After discussions with environmental fate scientists at Syngenta’s Jealott’s 

Hill site, they identified Group A as being of interest as these compounds represent what is more 

‘typical’ adsorption behaviour, compared to the Group B compounds which demonstrate very high 

adsorption – some of the compounds in Group B had Koc values >100,000 ml/g. As the majority of 

compounds in the data fall within the trend for typical adsorption behaviour it was important to 

them to be able to model and predict the environmental fate of these types of compounds.  

 

The Group A compounds (Dataset 2) were analysed only for connectivity parameters and molecular 

fragments and molecular properties. The results from the soil analysis for the full dataset suggested 

that soil parameters were not that important for Koc in this situation. Analysis of Dataset 2 was by 

PCA combined with analysis of compound type, as described in Chapter 2 (Section 2.2.1). This helped 

to gain a clearer picture of what was happening in the main trend, as when the Group A trend was 

included with the full dataset the trend was very noisy and non-linear compared to Group B. 

Whereas Dataset 1 was analysed by chemical group type, the Group A compounds in Dataset 2 have 

been analysed by compound type to get a more in depth view of the dataset. Multiple regression 

and logistic regression were also tried, as described in Chapter 2 (Section 2.2.2 and 2.2.3). The 

logistic regression model was created for the parent compounds only, as this was the best way of 

making the two categories of similar size in terms of the number of compounds, which was 

important for model development. 
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3.5.1 PCA: Connectivity Parameters and Molecular Fragments 

Table 3.4 The first five principal components for Group A compounds, for connectivity parameters and 

molecular fragments. Eigenvalues: PC1: 21.64, PC2, 6.86, PC3: 1.99, PC4: 1.18, PC5: 0.89.   

 

 

PC1 PC2 PC3 PC4 PC5 

Koc 0.056 0.022 0.466 -0.316 0.237 

Ki0 0.182 0.175 0.113 -0.002 -0.041 

Ki1 0.186 0.177 0.062 0.014 -0.030 

Ki2 0.203 0.113 0.025 0.040 -0.028 

Ki3 0.194 0.158 0.018 0.040 0.008 

Ki4 0.192 0.162 0.015 0.071 -0.056 

Ki5 0.194 0.151 0.039 0.012 -0.024 

Ki6 0.198 0.122 -0.009 0.074 -0.109 

Ki7 0.199 0.123 -0.018 0.011 -0.050 

Ki8 0.201 0.104 0.005 0.049 -0.031 

KiCP30 0.200 0.076 -0.024 -0.118 0.010 

KiCP31 0.206 0.034 -0.031 0.105 0.014 

KiCP32 0.198 0.043 -0.058 0.235 -0.117 

KiCP33 0.208 -0.017 0.001 0.108 0.002 

KiCP34 0.202 -0.010 -0.038 0.189 -0.119 

KiCP35 0.209 -0.042 -0.062 0.047 0.018 

KiCP36 0.203 -0.076 -0.014 0.114 0.005 

KiCP37 0.190 -0.156 0.021 -0.036 0.109 

KiCP38 0.193 0.070 -0.129 -0.010 0.034 

KiCP39 0.153 0.194 -0.218 -0.037 -0.019 

KiCP40 0.172 -0.082 -0.123 -0.323 -0.077 

KiCP41 0.159 -0.251 0.039 0.011 0.055 

KiCP42 0.163 -0.238 0.029 0.059 0.017 

KiCP43 0.159 -0.253 0.044 0.000 0.042 

KiCP44 0.155 -0.261 0.052 -0.032 0.002 

KiCP45 0.153 -0.261 0.038 -0.082 0.026 

KiCP46 0.143 -0.267 0.042 -0.073 -0.007 

KiCP47 0.129 -0.277 0.091 -0.109 0.116 

KiCP48 0.150 -0.249 0.031 -0.138 0.054 

KiCP49 0.107 0.185 -0.327 -0.354 -0.141 

C1C1C 0.112 0.195 0.280 -0.215 0.339 

C1C 0.101 -0.180 -0.059 0.300 -0.174 
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O1C 0.019 0.086 0.505 0.027 -0.510 

C1O1C1C 0.063 0.204 0.395 0.077 0.075 

C1C1C1C 0.074 0.163 -0.127 0.279 0.643 

C2C1C 0.110 0.096 -0.194 -0.490 -0.083 

Variance Explained (%) 60 79 85 88 90 

 

 

The eigenvalues suggest there are five principal components worth exploring. The first five principal 

components explain 90% of the variance in the data (Table 3.4). The first principal component has a 

positive loading on KiCP35: 0.209 (the 3rd order cluster, 5th order path connectivity). The second 

principal component has a negative loading on KiCP47: -0.277 (the 4th order cluster, 7th order path 

connectivity). The third principal component shows positive loadings for Koc: 0.466 and the 

molecular fragment O1C: 0.505.  The fourth principal component shows negative loadings for Koc:      

-0.316 and the molecular fragment C2C1C: -0490. The fifth principal component has a high positive 

loading for the molecular fragment C1C1C1C: 0.643.  

 

The connectivity parameters can give an indication to the size and branching of the structure. The 

path and cluster connectivity parameters represent the structural complexity of the molecule, like 

the degree of branching, which influences the changes in enthalpy and entropy upon aqueous 

dissolution (Worrall and Thomsen 2004). An increased degree of branching in a molecule will also 

restrict microbial degradation (Worrall, 2001). Molecular fragments have been identified in other 

studies as being important to sorption (Lohninger, 1994). The molecular fragments analysed in this 

study can be related to the type of bonding and solubility of the compounds. In a QSAR model the 

hydroxyl group O1C, was found to decrease the sorption coefficient (Lohninger, 1994), which would 

imply that the presence of the O1C fragment in a compound decreases adsorption. As the O1C 

fragment is polar, the compound may be quite soluble in water, decreasing its ability to adsorb to 

the soil. As the aim of the study was to understand controls on Koc, the two principal components 

with the highest loadings on Koc were selected to make a scatter plot so any trends could be 

visualised, producing a scatter plot of PC3 vs. PC4 (Figure 3.10) 

 



60 
 

 

 

Figure 3.10 Scores from PCA for Group A plotted by compound, for connectivity parameters and molecular 

fragments. Arrows indicate direction of loadings on variables. 

 

Figure 3.10 shows that when Group A was analysed separately from the rest of the dataset, the 

Group A compounds also showed linear separation into individual compound types. Figure 3.10 is a 

visual representation of the interactions of the different variables with Koc. The two variables that 

had the highest, but opposite loading for principal component 3 and principal component 4 were the 

molecular fragments O1C and C2C1C.  

 

The positive and negative loadings on the two molecular fragments will have influenced the 

difference in the compounds, as shown by the two arrows (Figure 3.10). Example molecular 

structures for some of the compounds discussed here can be found in Table 2.1 in Chapter 2. The 

compounds in the upper portion of the graph are those that are more likely to have the hydroxyl 

functional group O1C, while the compounds in the lower portion of the graph are more likely to have 

the alkene functional group C2C1C. For example, by focusing on Azoxystrobin, Propiconazole and 

Atrazine in the upper portion of the Figure 3.10, the original data shows these compounds do indeed 

have a higher O1C values compared to their C2C1C values. For Azoxystrobin and its metabolites have 

an O1C value of between 1-4, compared to a C2C1C value of 0. In the lower portion of Figure 3.10, 

Prosulfuron, Oxasulfuron, and Picoxystrobin have higher C2C1C values compared to their O1C 

values. Picoxystrobin and its metabolites, have a C2C1C value of 3 compared to its O1C value of 0. 

This suggests that the linear separation of the individual compound types is caused by a difference in 
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the molecular structure of the compounds, and relates strongly to the solubility. This means that the 

compounds towards the left half of the graph will have higher Koc values and may be more strongly 

adsorbing than the compounds in the right half of the graph.  

 

3.5.2 PCA: Molecular Properties 

Table 3.5 The first four principal components for Group A compounds for molecular properties. Eigenvalues are: 

PC1: 9.20, PC2: 1.43, PC3: 1.22, PC4: 0.88.   

 

 

PC1 PC2 PC3 PC4 

Koc 0.136 -0.295 -0.264 0.118 

dipolm 0.101 0.209 -0.502 -0.727 

NHOMO 0.183 0.043 -0.102 0.294 

HOMO 0.211 -0.143 -0.348 0.470 

LUMO -0.141 -0.595 0.389 -0.210 

NLUMO -0.263 -0.395 0.067 -0.174 

Vsav 0.322 -0.058 0.158 -0.065 

Asas 0.308 -0.018 0.169 -0.218 

VvdW 0.324 -0.071 0.120 -0.056 

AvdW 0.321 -0.040 0.148 -0.119 

ΔHhyd 0.055 -0.549 -0.492 -0.057 

logP 0.296 -0.077 -0.104 -0.031 

refractivity 0.321 -0.082 0.152 -0.024 

polarisability 0.322 -0.089 0.086 0.017 

mass 0.318 0.067 0.135 -0.037 

Variance Explained (%) 61 71 79 85 

 

 

The eigenvalues suggest there are five principal components to study. The first five principal 

components explain 85% of the variance in the data (Table 3.5). The first principal component has 

positive loadings for Vsav: 0.322 and VvdW: 0.324. The second principal component has high negative 

loadings for LUMO: -0.595 and ΔHhyd: -0.549. The second principal component also has a negative 

loading for Koc: -0.295. The third principal component has a high negative loading for the dipole 

moment: -0.502. The third principal component also has a negative loading on Koc: -0.264. The fourth 

principal component has a high positive loading for the dipole moment: -0.727.  
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The Vsav is a size descriptor but in hydrophobic compounds it can be related to the leaching ability of 

the compound, where it is inversely related to the aqueous solubility (Worrall and Thomsen, 2004). 

The ΔHhyd is also inversely related to solubility, meaning an increase in the change in hydration 

energy may lead to an increase in adsorption, whereas the dipole moment is proportional to the 

solubility (Worrall and Thomsen, 2004). In this case an increase in the dipole moment may lead to a 

decrease in adsorption.  The LUMO is a parameter that can be related to a hydrogen bonding term 

and the basicity of the compound (Kamlet et al., 1987). 

 

As the aim of the study was to understand controls on Koc, the two principal components with the 

highest loadings on Koc were selected to make a scatter plot so any trends could be visualised. This 

produced a scatter plot of PC2 vs. PC3 (Figure 3.11) 

 

 

 

Figure 3.11 Scores from PCA plotted by compound for molecular properties. Note: The reason for the different 

types of compounds in each graph is due to the data being analysed for different properties so some will be 

have been removed as outliers by visual inspection during PCA. 

 

Figure 3.11 shows that when the Group A compounds are analysed for molecular properties they 

also demonstrate a linear separation into individual compounds, example molecular structures for 

some of the compounds discussed in this section can be found in Table 2.1. Figure 3.11 is a visual 

representation of the interactions of the different variables with Koc. The two variables that had the 

highest loadings for principal component 2 and principal component 3 were LUMO and the dipole 
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moment. The negative loadings on the variables Koc, LUMO and the dipole moment have influenced 

the linear separation of the compounds. The dipole moment is linked to the solubility of compounds, 

with the dipole moment being inversely proportional to adsorption. This would suggest that the 

compounds that would be the most soluble would be towards the upper left region of the graph, 

such as Azoxystrobin and Picoxystrobin, and therefore would have lower adsorption. Azoxystrobin 

and Picoxystrobin have lower Koc values of around 300-900, in comparison Difenconazole that has Koc 

values of between 2000-5000.  

 

From using PCA to analyse the Group A compounds separately from the main data set, it showed 

that the adsorption behaviour of these compounds was more complex than first anticipated. Figures 

3.10 and 3.11 would suggest that the presence of alkane and alkene molecular fragments and also 

the solubility of the compounds are important.  

 

3.5.3 Multiple Regression 

If there is a range of Koc values across the data set that are related to specific structural properties in 

particular compounds, then it would imply that the adsorption behaviour is quite compound 

specific. This would suggest that a general model to predict Koc that covers a variety of compounds 

would be hard to produce. To see if any model could be produced, multiple regression was 

attempted on the Dataset 2, for the categories of connectivity and molecular fragment data and 

molecular data.  

 

The first runs produced very poor models, in terms of accountable variation in the data. The R-sq 

value for the connectivity and molecular fragment model was 28.2% and for the molecular 

properties model was just 24.2%. This meant that around three quarters of the variation in the 

dataset was unaccounted for. To improve this value, soil properties were included in the model. The 

PCA from the preliminary results had shown that soil pH was important to Koc for both Group A and 

Group B compounds so this was added to the model. The addition of pH did improve the model 

slightly, but still created a very poor fitting model. When the connectivity and molecular properties 

were combined the best model produced gave an R-sq value of 35.6% (Table 3.6). 
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Table 3.6 The significant parameters of MLR model for predicting Koc of Group A compounds, the regression 

coefficients and R
2
 value for the model.  

 

Parameter Coefficient Standard Error (±) 

   Constant 372 578.7 

   pH -166.77 65.59 

   Asas 10.328 2.999 

   AvdW -32.819 5.709 

   polarisability 298.76 30.79 

   Ki3 -1524.8 420.7 

   Ki8 5183 1814 

   KiCP31 2791 525.7 

   KiCP41 -14185 3404 

   KiCP42 62777 14509 

   KiCP43 -125230 27814 

   KiCP47 155899 39019 

   O1C -270.77 60.94 S R2 Residual Error 

   

1320.42 35.6 472 

 

 

3.5.4 Logistic Regression 

From the models produced (Table 3.6) it was clear that using multiple regression to create predictive 

models for Koc wasn’t successful in this scenario. This meant that an alternative method to analyse 

the adsorption behaviour of the compounds was needed.  Binary logistic regression can be used to 

try and predict which of the two trends the compounds in Dataset 1 would fall on (Group A trend or 

Group B trend). This is a way of predicting general adsorption behaviour of compounds based on 

their chemical structures and properties. Logistic regression is the best way of modelling a direct 

comparison between the two groups. The best combined model created was 93% concordant with 

the data and therefore good at identifying the Group B compounds (Equation 6).  

 

   
 

   
                                                         

 

 
 
 

 
 

 

(Equation 6) 
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Table 3.7 The significant parameters for Group A versus Group B model. Table also shows regression 

coefficients and concordance of the model.  

 

Predictor Coefficient Standard Error (±) Odds Ratio 

 Constant -4.99762 0.646875 

  dipolm 0.413999 0.104137 1.51 

 Δhhyd 0.0243379 0.005156 1.02 

 C1C1C 0.236919 0.084667 1.27 

 C2C1C -1.13601 0.428668 0.32 

 KiCP41 15.9998 2.22863 8884258 Concordance 

    

93.4% 

 

 

Equation 6 shows the variables that are significant in determining potential adsorption behaviour for 

a group of compounds. As this model identifies the Group B compounds, it suggests that these are 

some of the variables that are significant for compounds that have a high adsorption potential.  

 

The dipole moment and hydration energy parameters are related to solubility. An increase in 

solubility will reduce adsorption and lower Koc values. The model is suggesting that Group B 

compounds are more insoluble compared to Group A compounds. When comparing the original data 

of the Group A and B compounds, although on average Groups A and B have similar dipole 

moments, the Group B compounds have a larger change in hydration energy which makes them 

more insoluble. The scatter plots from the PCA support the model as the more soluble Group A 

compounds are not plotting in the direction of increasing Koc like the Group B compounds (Figure3. 

4).  

 

The cluster and path connectivity parameters are related to how branched the chemical structures 

are. The model is suggesting that the Group B compounds are more branched than Group A which is  

confirmed when checking with the original data that the Group B compounds that on average have 

the largest connectivity parameters.  

 

The model suggests the C2C1C molecular fragment is either absent or less prominent in the Group B 

compounds compared to Group A, which does disagree slightly with the results of the PCA that was 

shown in Figure 3.5. Although there are some Group A compounds where the C2C1C fragment is 

more prominent, they are at the extreme of the trend and do not appear to be representative of the 
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majority of Group A compounds. The C2C1C fragment is the alkenes functional group and also 

relates to solubility (Lloyd, 1989). The alkenes are insoluble in water, so with an absence or 

reduction of alkenes in the majority of the Group A structures, they will have higher solubility and 

lower Koc values compared to Group B compounds. When checking the original data the Group A and 

B compounds have the same average number of alkane and alkene functional groups.  

 

3.6 Summary 

Principal Component Analysis was successful in analysing the dataset. The PCA worked in two ways: 

1) in identifying that there were two main trends in the data set, a trend that comprised compounds 

with “typical” adsorption behaviour (Group A) and a sub group of compounds made from only the 

pyrethoid, avermectin, bipyridylium and aminophosphonic chemical groups with much higher Koc 

values (Group B).  2) PCA also identified variables that could be deemed important for understanding 

controls on adsorption.   

 

As there were two distinct trends within the dataset a decision was made to split the data into 

Group A and Group B compounds to be analysed separately. PCA showed that there was a linear 

separation between each chemical group type. This suggested that there was a difference in the 

chemical structure of the types of chemical groups causing the difference in Koc between the 

compounds. This indicates that for this dataset, compound properties rather than soil properties has 

the biggest control on adsorption.  

 

Multiple regression has showed that in this situation it not possible to create accurate models for 

predicting Koc. Attempting to have one model that can cover a wide range of compounds is 

suggesting a simple solution that is not feasible. The preliminary analysis has identified that 

understanding the controls on adsorption is more complex than was first anticipated. The best 

model from this set of data can predict the general adsorption potential of a particular group of 

compounds compared to another. The Logistic regression model is not good for predicting Koc 

values, but is successful in identifying the type of properties that might influence adsorption, in this 

case the solubility of the compounds have been identified as being important. This type of model 

may be useful for the early synthesis stages of new active ingredients.  

 

The preliminary analysis meant that a general over view of the data could be gained. By 

understanding some of the trends that were in the data it became possible to target specific 

chemical groups in the dataset for more detailed analysis. It was decided that the areas for further 
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research were 1) Parent and metabolite compounds, including a lab based study for Glyphosate and 

a metabolite, AMPA, one of the aminophosponic compounds. This parent/metabolite study also 

incorporated some work with the Group B compounds as extra data was created. 2) A lab based 

study on soil properties using a compound from Group A. 3) A predictive modelling study for the 

benzazole chemical group.  
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4. PARENT/METABOLITE STUDY 

4.1 Introduction 

The preliminary analysis of Dataset 1 (Chapter 3) had identified that the relationship between a 

compound’s structural properties and Koc was more complex than first anticipated, and that specific 

compound groups (as defined by their chemical class in The Pesticide Manual (Tomlin, 1997)) should 

be targeted and analysed separately. Unfortunately, there were problems with the quantity of data 

for individual chemical classes needed to be able to develop successful models. However, it was also 

noted during the preliminary analysis (Chapter 3) that a large proportion of the data was comprised 

of parent and metabolite compounds. It was thought that the parent and metabolite compounds 

may be able to produce successful Koc models. Therefore, the parent and metabolite compounds 

were singled out for a more detailed study into adsorption behaviour. These parent and metabolite 

compounds will be collectively referred to as Dataset 3. Although, all of the compounds in the 

Dataset 1 are either a parent or a metabolite, only the parent compounds that had data for their 

metabolites were selected for use in Dataset 3. So, parents without data for their metabolites and 

metabolites without parent data were excluded.  

 

The aim of this study is to understand adsorption behaviour of parent and metabolite compounds 

and to develop predictive Koc models for these compounds. There are two reasons why the parents 

and their metabolites have been selected for further study. The first reason is to understand the 

relationship these compounds have with each other, in terms of their structural similarities and their 

potential influence on Koc. There has been work in the literature on the structural properties of 

metabolites and their adsorption, for example, work by Gooddy et al. (2007) has modelled the 

transport of some pesticides and metabolites through soil to understand their binding mechanisms, 

but the model is not specifically related to Koc. It is important that Koc is considered in any model 

developed as it is a parameter that is used in the pesticide registration process.    

 

The second reason is the importance of the environmental fate of the parent and their metabolite 

compounds. Pesticides and their metabolites have been detected in groundwater in the US (Koplin 

et al., 2004) and the UK (Johnson et al., 2000). Therefore it is important to understand the 

adsorption behaviour of metabolites as there is the potential for these compounds to leach into 

groundwater. As of December 2003, the European Union Drinking Water Directive (Council Directive 

98/83/EC), has set limits of maximum allowable concentrations of pesticides in water for human 

consumption. However, there is no requirement for water suppliers to analyse for metabolites 
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(Gooddy et al., 2002).  One of the concerns is that some metabolites can show a higher toxicity than 

their parents (e.g.Tixier et al., 2000).    

 

4.2 Study Approach 

The dataset used for this study has been a combination of Koc values taken from Syngenta reports, 

selected from the original full Dataset 1 used in Chapter 3, and a lab based study of a parent 

compound and a metabolite (Glyphosate and AMPA).  This study first focused on the experimental 

study for Glyphosate and AMPA, detailing the results from this experiment. Finally the results of the 

analysis are presented and discussed.  

 

4.3 Glyphosate and AMPA Adsorption Study 

The experimental work was performed according to OECD guidelines (OECD 2000) and is outlined in 

Chapter 2, Section 2.3.2. Glyphosate and AMPA were chosen for this study because: 

 They are part of the aminophosphonic chemical group and were highlighted in the 

preliminary analysis (Chapter 3) as showing different adsorption behaviour when compared 

to other groups of compounds.  

 The aminophosphonic chemical group was under-represented in the full dataset, taken from 

the original Syngenta adsorption reports. By testing these two compounds on different soils 

meant that a more varied dataset (in terms of soil types) and therefore a wider range of Koc 

values were obtained.  

 AMPA is a metabolite of Glyphosate and so the results provided an opportunity for 

researching the adsorption properties of a metabolite compared to its parent.  

The molecular structures for Glyphosate and AMPA can be found in Figure 2.1 

4.3.1 Soil Choice 

For this study 17 soils were selected for experimentation (Table 4.1). These soils vary in organic 

matter content, textural class and global location. Glyphosate and AMPA have not been tested on 

these soils in the Syngenta database; therefore this will provide new results for analysis of each soil 

type.  
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Table 4.1. List of soils tested for the Glyphosate and Ampa adsorption experiments and their characterisation.   

Soil USDA Textural Classification Country %OM %OC %Sand %Silt %Clay pH CEC 

        

(0.01MCaCl2) (meq/100g) 

Leyland Loam USA 1.1 0.6 42.0 45.0 13.0 5.6 8.2 

North Carolina Loamy Sand USA 2.1 1.2 84.0 10.0 6.0 5.7 7.0 

Iowa Sandy Loam USA 7.6 4.4 60.0 29.0 11.0 6.6 30.4 

Illinois Silty Clay Loam USA 4.1 2.4 20.0 52.0 28.0 5.9 28.9 

Minnesota Clay Loam USA 7.1 4.1 26.0 45.0 29.0 7.3 44.1 

Ohio Loam USA 5.7 3.3 35.0 39.0 26.0 5.5 63.4 

Washington Sand USA 0.5 0.3 89.0 7.0 4.0 7.0 3.5 

Ushiku Clay Loam/Sandy Silt Loam Japan 8.8 5.1 27.0 55.0 18.0 6.4 50.2 

Kumamoto Clay Loam Japan 9.6 5.6 39.0 41.0 20.0 5.7 51.1 

Kagoshima Sandy Loam Japan 2.9 1.7 57.0 27.0 16.0 5.8 11.9 

Gunma Sandy Loam Japan 6.5 3.8 66.0 16.0 18.0 5.4 13.7 

Marsillargues Loam France 1.0 0.6 31.0 44.0 25.0 7.8 10.7 

Gartenacker loam/silt loam Switzerland 3.7 2.1 35.9 52.3 11.8 7.3 13.9 

Pappelacker loamy sand Switzerland 2.1 1.2 71.7 21.9 6.4 7.5 7.3 

Borstel loamy sand Germany 1.7 1.0 74.9 17.9 7.3 5.1 7.2 

18 Acres sandy clay loam UK 4.0 2.3 48.0 21.0 31.0 6.8 16.9 

Kenny Hill sandy loam UK 6.2 3.6 77.0 9.0 14.0 7.4 16.2 
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4.3.2 Experimental Study Results  

 

Table 4.2 Results for 24 hour adsorption step, by soil type for Glyphosate. The complete calculations in the 

adsorption spreadsheets and LSC Bq counts are in table Appendix B- Folder 1_Glyphosate 

 

Soil Classification Kd (ml/g) Koc (ml/g) % Adsorption 

Leyland Loam 1076 168573 98 

North Carolina Loamy Sand 188 15681 90 

Iowa Sandy Loam 105 2394 82 

Illinois Silty Clay Loam 899 37424 98 

Minnesota Clay Loam 84 2043 80 

Ohio Loam 486 222071 97 

Washington Sand 74 25439 79 

Ushiku Clay Loam 4104 80403 99 

Kumamoto Clay Loam 18583 333710 99 

Kagoshima Sandy Loam 1321 117832 99 

Gunma Sandy Loam 10231 271361 99 

Marsillargues Loam 252 43390 92 

Gartenacker Silt Loam 50 2341 67 

Pappelacker Loamy Sand 49 4051 69 

Borstel Loamy Sand 210 21248 91 

18 Acres Sandy Clay Loam 1276 55001 98 

Kenny Hill Sandy Loam 65 1812 75 
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Table 4.3 Results for 24 hour adsorption step, by soil type for AMPA. The complete calculations in the 

adsorption spreadsheets and LSC Bq counts are in table Appendix B- Folder 1_AMPA 

 

Soil Classification Kd (ml/g) Koc (ml/g) % Adsorption 

Leyland Loam 213 33406 95 

North Carolina Loamy Sand 163 13597 94 

Iowa Sandy Loam 69 5761 86 

Illinois Silty Clay Loam 415 17270 97 

Minnesota Clay Loam 27 647 71 

Ohio Loam 305 13845 98 

Washington Sand 30 10459 75 

Ushiku Clay Loam 1143 22383 99 

Kumamoto Clay Loam 1554 27909 99 

Kagoshima Sandy Loam 443 39518 99 

Gunma Sandy Loam 1038 157535 99 

Marsillargues Loam 58 9935 85 

Gartenacker Silt Loam 30 1381 71 

Pappelacker Loamy Sand 27 2216 70 

Borstel Loamy Sand 173 17581 95 

18 Acres Sandy Clay Loam 427 18414 98 

Kenny Hill Sandy Loam 41 1143 79 

 

 

4.4 Parent and Metabolite Analysis: Methodology 

The Koc values from Tables 4.2 and 4.3 were added to Database 3 (created from the Syngenta 

reports). The reports that had parents with their metabolites were selected and removed from the 

full dataset to create a database of only parent and metabolite data. By following the same 

methodology as that used in the Syngenta reports then the Koc values in the Glyphosate and AMPA 

studies should be comparable to the Koc values already in the dataset and any experimental error 

between results due to methodological changes should be minimal. In order to understand the 

variation in Koc between parent and metabolite compounds, this study used a range of multivariate 

statistical techniques including principal component analysis, multiple regression and analysis of 

variance. These techniques were explained in Chapter 2, Section 2.2. 
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4.5 Parent and Metabolite Analysis: Results 

4.5.1. PCA: Connectivity Parameters and Molecular Fragments 

 

Table 4.4 The first five principal components for Parent and Metabolite compounds, analysed for connectivity 

parameters and molecular fragments. Eigenvalues: PC1: 26.86, PC2: 2.77, PC3: 1.79, PC4: 1.1, PC5: 0.86 

 

 

PC1 PC2 PC3 PC4 PC5 

Koc 0.012 -0.145 -0.366 0.360 0.767 

Ki0 0.180 0.132 0.180 0.021 0.094 

Ki1 0.183 0.109 0.135 0.052 0.107 

Ki2 0.188 0.406 0.093 0.053 0.079 

Ki3 0.189 0.057 0.107 0.022 0.033 

Ki4 0.188 0.060 0.105 -0.001 0.013 

Ki5 0.190 0.070 0.076 0.007 0.028 

Ki6 0.191 0.047 0.042 0.003 0.002 

Ki7 0.190 0.072 -0.008 0.005 -0.002 

Ki8 0.189 0.089 -0.058 0.005 0.004 

KiCP30 0.186 -0.031 0.083 0.092 0.034 

KiCP31 0.183 -0.085 0.069 -0.022 -0.037 

KiCP32 0.185 -0.048 0.067 -0.066 -0.052 

KiCP33 0.189 -0.042 0.022 -0.037 -0.028 

KiCP34 0.190 -0.042 0.005 -0.041 -0.035 

KiCP35 0.190 0.038 -0.091 -0.011 -0.037 

KiCP36 0.187 0.073 -0.126 -0.019 -0.023 

KiCP37 0.184 0.080 -0.177 0.002 -0.024 

KiCP38 0.182 0.101 -0.193 0.019 -0.026 

KiCP39 0.181 0.097 -0.203 0.012 -0.022 

KiCP40 0.113 -0.395 0.057 0.258 0.055 

KiCP41 0.100 -0.443 0.084 -0.096 0.021 

KiCP42 0.140 -0.366 0.133 -0.122 0.036 

KiCP43 0.164 -0.296 0.025 -0.105 -0.013 

KiCP44 0.156 -0.317 0.042 -0.045 -0.020 

KiCP45 0.179 -0.113 0.047 0.024 -0.125 

KiCP46 0.183 -0.017 -0.043 0.037 -0.085 

KiCP47 0.181 0.084 -0.189 0.052 -0.078 

KiCP48 0.180 0.095 -0.192 0.069 -0.073 

KiCP49 0.180 0.091 -0.196 0.049 -0.043 

C1C1C 0.081 0.291 0.427 0.096 0.332 

C1C 0.155 0.023 -0.165 -0.242 -0.116 

O1C 0.136 0.233 -0.140 -0.130 0.048 
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C1O1C1C 0.091 0.110 0.363 -0.446 0.340 

C1C1C1C 0.148 -0.071 -0.014 0.078 0.040 

C2C1C 0.053 0.077 0.341 0.664 -0.297 

Variance Explained (%) 75 82 87 90 93 

 

 

The eigenvalues suggest there are five principal components. The first five principal components 

explain 93% of the variance in the data (Table 4.4). The first principal component has positive 

loadings for the 6th order connectivity: 0.191 (Ki6). The second principal component has a positive 

loading for the 4tH order cluster, 1st order path connectivity: -0.443 (KiCP41). The third principal 

component has a positive loading for the molecular fragment C1C1C: 0.427 and a negative loading 

for Koc: -0.366. The fourth principal component shows a high positive loading on the molecular 

fragment C2C1C: 0.664. Principal component 5 has a high positive loading for Koc: 0.767 and also 

positive loadings for the molecular fragments C1C1C: 0.332 and C1O1C1C: 0.340. The values shown 

in Table 4.4 suggest that it is a combination of molecular fragments and connectivity parameters 

that are important in influencing Koc in parents and metabolites.  

 

The connectivity parameters can give an indication to the size and branching of the structure while 

the lower order connectivity parameters, like the Ki6 parameter are usually associated with 

molecular size (Worrall and Thomsen 2004). Lohninger. (1994) showed that molecular volume is 

important for sorption. Gramatica et al. (2000) indicated that an increase in size of a compound 

leads to increased hydrophobic effects with a compound tending to bind with the soil organic 

matter. The path and cluster connectivity parameters represent the structural complexity of the 

molecule, like the degree of branching, which influences the changes in enthalpy and entropy upon 

aqueous dissolution (Worrall and Thomsen 2004). An increased degree of branching in a molecule 

will also restrict microbial degradation (Worrall, 2001). Molecular fragments have been identified in 

other studies as being important to sorption (Lohninger, 1994). The molecular fragments analysed in 

this study can be related to the type of bonding and solubility of the compounds.  

 

As the aim of this study was to investigate how Koc varies between parent and metabolite 

compounds, therefore the two principal components with the highest loadings for Koc were selected 

to make a scatter plot so any trends could be visualised (Figure 4.1).  
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Figure 4.1 Scatter plot of principal component 3 versus principal component 5 for all parent and metabolite 

data, analysed for connectivity parameters and molecular fragments.   

 

Figure 4.1 shows that the Koc of metabolites differs from their parents. Some of the parents and 

metabolites show segregation along the y axis while others do not. To identify how the compounds 

are behaving relative to each other and which metabolites show segregation, Figure 4.1 was 

redrawn by compound type and separated into parent and metabolite (Figure 4.2). 
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Figure 4.2 Scores from PCA analysed for connectivity parameters and molecular fragments plotted by 

compound and by parent and metabolite. For labelled compounds square = parent, triangle = metabolites. Grey 

circles = compounds not of interest. 

 

Figure 4.2 shows that not all of the compounds in the dataset displayed the parallel relationship that 

was identified in Figure 4.1. The five types of compounds that did show a linear trend have been 

marked as a square to show the parent compound and its metabolite has been marked as a triangle. 

The compounds not showing this trend are marked as grey circles.  

 

Based on Figure 4.2 most of the variation between parent and metabolite is along the y axis, which 

relates to principal component 3. The exception being Glyphosate and metabolite, which shows a 

wide spread along principal component 5. The spread in data is likely to be due to the range in Koc 

values created by the range of soil properties in the batch equilibrium study (Table 4.2). Principal 

component 3 has a positive loading on the molecular fragment C1C1C, which is a propyl chain. This 

figure suggests that the parent compounds either have the alkane fragment present or have more 

alkane fragments than their metabolites. When checking the original data, the parent compounds on 

average do have a larger value for the C1C1C fragment compared to the metabolites (a value of 4 for 

the parents versus 3 for the metabolites).  Alkanes are relatively insoluble in water (Lloyd, 1989) so 

this would suggest that for these particular five types of compounds the metabolites would be more 

soluble than their parent.   
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4.5.2 PCA: Molecular Properties 

Table 4.5 The first five principal components for Parent and Metabolite compounds, analysed for molecular 

properties .Eigenvalues: PC1: 10.00, PC2: 3.10, PC3: 1.64, PC4: 1.10, PC5: 0.77. 

 

  PC1 PC2 PC3 PC4 PC5 

Koc 0.011 0.366 -0.141 -0.014 -0.070 

dipolm 0.118 0.046 -0.220 -0.552 -0.749 

rmsgrad 0.064 -0.088 0.151 0.760 -0.596 

totalE -0.302 -0.153 -0.048 -0.002 -0.022 

NHOMO 0.226 -0.303 -0.111 -0.054 0.169 

HOMO 0.234 -0.244 0.004 -0.151 -0.017 

LUMO -0.166 0.296 0.483 -0.116 -0.001 

NLUMO -0.182 0.422 -0.029 -0.036 -0.061 

Diff 0.199 -0.312 -0.411 0.062 -0.003 

Vsav 0.301 0.169 0.010 0.035 0.038 

Asas 0.282 0.220 -0.087 0.097 -0.012 

VvdW 0.301 0.162 0.045 0.006 0.061 

AvdW 0.298 0.184 0.029 0.014 0.039 

ΔHhyd -0.072 0.279 -0.580 0.246 0.170 

logP 0.229 -0.225 0.361 -0.042 0.038 

refractivity 0.306 0.120 0.079 0.010 0.052 

polarisability 0.305 0.119 0.079 0.008 0.071 

mass 0.302 0.153 0.035 0.011 0.012 

Variance Explained (%) 56 73 82 88 92 

 

The eigenvalues suggest there are five principal components. The first five principal components 

explain 92% of the variance in the data (Table 4.5). The first principal component has positive 

loadings for refractivity: 0.306 and polarisability: 0.305. The second principal component has a 

positive loading on Koc: 0.366 and NLUMO: 0.422. The third principal component has a high negative 

loading for change in hydration energy: -0.580 (ΔHhyd) and a positive loading for LUMO: 0.483. The 

third principal component also has a negative loading on Koc: -0.141. The fourth principal component 

shows a high negative loading for the dipole moment: -0.552. The fifth principal component also 

shows a high negative loading for the dipole moment: -0.749.  
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The polarisability, ΔHhyd and dipole moment are related to aqueous solubility. The ΔHhyd is usually 

inversely related to the aqueous solubility and the polarisability and dipole moment are normally 

proportional to the solubility (Worrall and Thomsen, 2004). Reddy and Locke, (1994a) found the 

LUMO to be significant in establishing a relationship with Koc.  

 

As the aim of this study was to investigate how Koc varies between parent and metabolite 

compounds, therefore the two principal components with the highest loadings for Koc were selected 

to make a scatter plot so any trends could be visualised (Figure 4.3).  

 

 

 

Figure 4.3 Scatter plot of principal component 2 versus principal component 3 for all parent and metabolite 

data, analysed for molecular properties.   

 

Figure 4.3 shows that there is some linear segregation in Koc between parents and metabolites. Parts 

of the data are noisy but some of the data points do show a linear trend. To study the difference in 

parent and metabolite Koc in more detail, this scatter plot was coloured by compound type and by 

parent and metabolite (Figure 4.4).  
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Figure 4.4 Scores from PCA analysed for molecular properties, plotted by compound and by parent and 

metabolite. For labelled compounds square = parent, triangle = metabolites. Grey circles = compounds not of 

interest. 

 

Figure 4.4 shows that not all of the compounds in the dataset displayed the parallel relationship that 

was identified in Figure 4.3. The five types of compounds that did show a linear trend have been 

marked as square to show the parent compound and its metabolite has been marked as a triangle. 

The compounds not showing this trend are marked as grey circles.  

 

Based on Figures 4.3 and 4.4, most of the variation between parents and metabolites is along the x 

axis for principal component 3, which relates to the change in hydration energy. The variation along 

the y axis is related to Koc. As there was a positive loading on Koc for principal component 2, this 

means that the compounds that have been coloured and marked in Figure 4.2 are generally the 

compounds with low Koc values. A possible reason why the compounds that have been marked as 

displaying the linear trend are also the compounds that have lower Koc values may be due to the 

interaction with the change in hydration energy. The hydration energy is linked to the solubility of 

compounds (Worrall, 2001). If the compounds are more soluble then they would have a lower Koc 

value. Figure 4.2 also suggests that the metabolites may be more soluble than their parent 

compound, this result is supported by work in the literature e.g. van der Linden et al., (2009). It is 

worth noting that the compounds that have been marked and coloured in figures 4.2 and 4.4 are not 

the same compounds in both graphs. This would imply that the influences on adsorption behaviour 

may be specific to particular compound types.  
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4.5.3 PCA: Soil Properties 

Table 4.6 The first four principal components for Parent and Metabolite compounds, analysed for soil 

properties. Eigenvalues: PC1: 3.75, PC2: 1.56, PC3: 1.19, PC4: 0.822.  

 

  PC1 PC2 PC3 PC4 

Koc -0.020 0.016 0.694 0.718 

% OM 0.420 0.448 0.029 -0.043 

%OC 0.480 0.452 0.011 -0.040 

%Sand -0.421 0.451 0.061 -0.076 

%Silt 0.377 -0.397 -0.133 0.147 

%Clay 0.356 -0.396 0.078 -0.070 

pH 0.002 0.147 -0.693 0.669 

CEC 0.459 0.236 0.101 -0.032 

Variance Explained (%) 47 67 81 92 

 

The eigenvalues suggest that there are four principal components. The first four principal 

components explain 92% of variation in the data (Table 4.6). The first principal component has 

positive loadings for % organic carbon content: 0.480 and Cation Exchange Capacity: 0.459. The 

second principal component has positive loadings for % Sand: 0.451 and % organic carbon content: 

0.452. The third principal component has a high positive loading for Koc: 0.694 and a high negative 

loading for pH: -0.693. The fourth principal component shows a high positive loading Koc: 0.718 and 

pH: 0.669. By studying the scores in Table 4.6, it suggests that the most important factor in 

influencing Koc is the soil pH.  

 

As the aim of this study was to investigate how Koc varies between parent and metabolite 

compounds, therefore the two principal components with the highest loadings for Koc were selected 

to make a scatter plot so any trends could be visualised. This produced a scatter plot of PC3 v PC4 

(Figure 4.5). 
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Figure 4.5 Scatter plot of principal component 3 versus principal component 4 for all parent and metabolite 

data, analysed for soil properties.   

 

Unlike the Figure 4.1 and Figure 4.3, the scatter plot of soil properties (Figure 4.5) doesn’t show 

much variation between parent and metabolite. The parents and metabolites seem to follow the 

same trend and cluster together.  As Figure 4.5 is a plot of pH vs. Koc, it seems to suggest that 

although the scores show pH as being important (compared to the other soil properties), the actual 

influence on Koc is minimal. This graph would imply that soil properties are not as important as other 

molecular properties in understanding Koc of parent and metabolite compounds. 

 

4.6 Modelling Parent and Metabolite Compounds 

4.6.1 Multiple Regression Model 

The first model attempted on the parent and metabolite compounds was a multiple regression 

model to predict Koc in both parents and metabolites. The preliminary results (Chapter 3) showed 

that first attempts at a predictive model for Koc was unsuccessful, one reason for this could have 

been the range and quantity of compounds. Therefore, it was hoped that by taking a select group of 

compounds from the original dataset that have similar, but not identical structures (i.e. the parent 

and metabolite compounds) that the predictive models could be improved.  
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Table 4.7 The significant parameters of MLR model for predicting Koc of parent and metabolite compounds, the 

regression coefficients and R
2
 value for the model 

 

Parameter Coefficient Standard Error (±) 
   Constant -7.421 8883 
   Ki3 54416 13350 
   Ki5 -159194 29983 
   KiCP32 -79469 23894 
   KiCP34 527284 91107 
   KiCP36 -1226261 207018 
   KiCP38 1956433 255739 
   KiCP41 -205018 60350 
   KiCP48 18582933 3666392 
   C1C -9464 3374 
   C1O1C1C 9274 2852 
   C2C1C -8054 3675 S R2 Residual Error 

   
58882.1 21.1 477 

 

 

Table 4.7 shows significant parameters for the best model for predicting Koc of all the parent and 

metabolite compounds in the database. However it only explains 21% of the variation in the dataset 

which means nearly 80% of the variation is unaccounted for.  

 

4.6.2 Logistic Regression 

Classification Model 

It seemed that multiple regression was not the most suitable method for analysing the parent and 

metabolite dataset. As there were two classes of data, the parents and the metabolites, binary 

logistic regression was suitable. The first model attempted was to simply classify the compounds 

based on their molecular properties. The parameters of the model are displayed in Table 4.8. 
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Table 4.8 The significant parameters of model classifying parent and metabolite compounds. Table also shows 

regression coefficients and concordance of the model.  

 

Parameter Coefficient Standard Error (±) Odds Ratio   

Constant 0.564101 0.508259     

C2C1C 0.749073 0.131965 2.12   

C1C1C1C 0.395536 0.108986 1.49   

C1O1C1C 0.334752 0.102773 1.4   

NLUMO 0.191507 0.0520043 1.21   

ΔHhyd 0.0525179 0.0188865 1.05 Concordance 

        69.9 

 

 

With further calculations, it was found that the classification model had 69.9% concordance with the 

data, which is good, and could predict the parent compounds based on their molecular properties. 

The parameters suggest that much of the difference between the parents and metabolites was due 

to the presence of the C2C1C, C1C1C1C and C1O1C1C molecular fragments in the parent 

compounds. The presence of these fragments in the parents is confirmed by the original data and on 

average the parents have higher fragment values for C2C1C, C1C1C1C and C1O1C1C compared to 

the metabolites. The odds ratio show that the most important parameter in the model is due to the 

alkene chain, molecular fragment C2C1C. Two thirds of the parent compounds in the dataset possess 

an alkene chain compared to 30% of the metabolites.  

 

Adsorption Potential Model 

The classification model was able to successfully identify the difference between parents and 

metabolites based on molecular properties but could not explain anything about their adsorption. 

The simplest adsorption question to consider would be ‘is a metabolite more or less adsorbing than 

its parent?’ This type of model would allow any results to be considered relative to the parent 

compound. The percentage changes in metabolite Koc and metabolite molecular properties were 

calculated using the formula: (parent property – metabolite property) / parent property and based 

on the Koc values marked as ‘more’ or ‘less’ adsorbing than the parent. The new calculated relative 

values were used in the logistic regression model. The model for predicting adsorption potential 

relative to a parent is shown in Equation 7.  
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(Equation 7) 

  

Table 4.9 The significant parameters of adsorption potential model. Table also shows regression coefficients 

and concordance of the model.  

 

Predictor Coefficient Standard Error (±) Odds Ratio   

Constant 1.842 1.37598 

  %change KiCP32 -27.264 12.9535 0 

 %change Ki0 43.441 20.4248 7.35 

 %change KiCP38 -9.135 4.4334 0 

 %change C1C -3.321 1.66727 0.04 Concordance 

    

91.4 

 

Equation 7 was 91% concordant with the data and therefore good at identifying the metabolites that 

are less adsorbing than their parents; these are the compounds that may be more likely to leach into 

groundwater. Equation 7 can be visualised in Figure 4.6 

 

 

  

Figure 4.6 Probability plot of Equation 7, showing metabolites that are less adsorbing and more adsorbing than 

their parents.  
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The parameters in Equation 7 suggest that a cause of the difference in adsorption potential is due to 

the size and level of branching in the structures. The odds ratio shows the most important 

parameter is the percentage change in the connectivity parameter Ki0, zero order connectivity. The 

Ki0 parameter is usually an indication of the volume of the compound, but can also usually be 

strongly correlated with molecular mass (Lohninger; 1994). Therefore Equation 7 implies that the 

metabolites that are less adsorbing will have a larger mass than those that are more adsorbing than 

their parents. Two of the other parameters in the model are the percentage changes in the 

connectivity parameters KiCP32 and KiCP38. These parameters can be linked to the complexity of 

branching in the molecular structure and suggests that the more mobile metabolite have a structure 

with little branching. What Equation 7 is suggesting is that the metabolites that are less adsorbing 

(than their parents) are compounds that have a simple non-branched structure, but have a relatively 

large mass – when compared to those metabolites that are more adsorbing, which would have a 

smaller mass but a more branched structure.  

 

4.7 Summary  

Analysis of parent and metabolite compounds show that there is a difference in Koc between parent 

compounds and their metabolites that can be identified using principal component analysis. 

Principal component analysis also showed that soil properties aren’t as important as molecular 

properties in trying to understand the controls on adsorption of parent and metabolite compounds.  

It has been possible to model the structural differences between parent and metabolite compounds 

using logistic regression. This classification model identified the properties most present in the 

parent compounds. The significant properties in the model are those related to solubility. These 

types of molecular properties would suggest that the parent compounds are more insoluble than 

their metabolites, meaning the metabolites are the compounds that would be more at risk of 

leaching to groundwater. However it is important to note that although the experimental side of this 

study did focus on Glyphosate and AMPA, the model in Equation 7 covered a range of parent and 

metabolites. As Figure 2.2 demonstrates both the structures and reported solubilities for Glyphosate 

and AMPA with both having relatively simple structures it may be that Equation 7 does not apply as 

strongly to them as it does to other metabolites.   

 

The metabolite adsorption potential model was successful in understanding adsorption relative to 

the parent compound. The model identified the metabolites that were less adsorbing than their 

parents, which are the metabolites that are ‘higher risk’ in terms of groundwater pollution. The 
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model identified the molecular properties that may be influencing the compounds to be more 

mobile, as being related to the size and the branching complexity of the metabolite.  

 

Understanding controls on metabolite adsorption is important as metabolites have the potential to 

leach into groundwater. These types of logistic regression model could be used in the pesticide 

development process to minimise the potential for leaching.  The significant parameters in the 

models have identified the types of properties that influence adsorption and can then be used to 

create suitable parent compounds. The relative model would be more suitable as part of the risk 

assessments, in particular the environmental safety study package, as the model provides an 

indication of the environmental fate of metabolites.  
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5. SOIL STUDY 

5.1 Introduction 

As well as considering the variation in Koc due to the molecular properties of the compounds, the 

variation in Koc that may be due to soil properties also needs to be studied. It is important to 

consider the variation from soil properties as Koc has been shown to vary across different types of 

soils (Hornsby et al., 1996). Soil organic matter is generally an important adsorption site for 

pesticides (Farenhorst, 2006), but studies have shown that pesticides also bind to different materials 

in the soil e.g. iron oxides (e.g. Clausen and Fabricus, 2001), aggregates (e.g. Van Beinium et al., 

2005) and Fe/Al oxides and clay (e.g. Albers et al., 2009).   

 

To test the importance of soil properties in understanding and predicting pesticide adsorption, one 

compound will be tested on a range of soils in a batch equilibrium experiment. The fungicide 

Hexaconazole is being used for this experiment. The reason for choosing this compound is that it 

was one of the “Group A” compounds (Section 3.4) and therefore had more ‘typical’ adsorption 

behaviour than, for example the Glyphosate and AMPA compounds that were tested in Chapter 4. 

This means the results of this experiment would be more representative of the majority of 

compounds in the database. Obviously it cannot be fully representative of the whole of the database 

as some individual compounds may adsorb by specific mechanisms but it still provides an insight into 

the effects of soil properties on adsorption.  

 

5.2 Study Approach 

This study will first outline the details of the fieldwork for collecting additional soils. Then the 

experimental methodology will be presented, detailing the additional analysis of the soil phase and 

the aqueous phase; and results from the lab study. The analysis of the results will be presented and 

discussed. 

 

5.3 Fieldwork: Collecting Soil Samples 

In addition to the soils that were available from Syngenta that are used in their adsorption 

experiments, a range of soils were collected from various parts of the UK. The locations that were 

selected for soil sampling were chosen to cover a range of underlying geology. By selecting from 

differing geologies it would be expected that the soil properties would also vary. The aim of 

collecting the extra soils was to include some samples that covered a range of soil properties than 

the Syngenta soils, for example very high organic matter or a very high sand content. Therefore the 

study could consider the widest possible range of behaviour.  
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The locations that were selected for sampling are shown on the map in Figure 5.1. 

 

 

 

Figure 5.1 Locations of sites for new soil samples. Numbers correspond to site information in Table 5.1  

 

The samples were collected in June 2010 and the 7 samples were all collected from the top 10cm of 

the soil profile. The geology and land use of the locations intended for sampling are listed in Table 

5.1. The information in Table 5.1 has been obtained from the online British Geological Survey 

Geology maps (http://www.bgs.ac.uk/discoveringGeology/geologyOfBritain/viewer.html) and from 

the soil maps of England (Soil Survey England and Wales, 1983). 
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Table 5.1 Geology, soil type, and land use of locations taken for soil sampling 

 

Sample Number Location Geology Soil Type Land Use 

1 Brancepeth, 

County Durham 

Pennine Lower 

Coal Measures 

Formation 

Acid loams and 

clays 

Winter cereals 

2 High Hesleden, 

County Durham 

Roker Formation, 

Dolostone 

(upper magnesian 

limestone) 

Fine loamy soils Cereals 

3 Elwick, 

Hartlepool 

Sherwood 

Sandstone 

Loamy and clayey 

soils 

Winter cereals, 

potatoes, cereals, 

field vegetables 

4 Glaisdale Moor, 

North Yorkshire 

Blanket Peat Acid raw peat 

soils 

Wet moorland 

Sheep grazing 

5 Tholthorpe, 

North Yorkshire 

Sherwood 

Sandstone 

(Aeolian 

sandstone) 

Fine sandy soil Cereals, potatoes, 

sugar beet 

6 Rockland St Mary, 

Norfolk 

Fenland Peat Peat soils in part 

very acid 

Cereals, sugar 

beet, field 

vegetables 

7 St Albans, 

Hertfordshire 

Lewes Nodular 

Chalk 

Formation/Seaford 

Formation 

(White chalk 

formation) 

Fine loam over 

clayey 

Cereals and other 

arable crops 

 

5.4 Soil Characteristics  

The 7 soils collected from the fieldwork were air dried then ground and sieved through a 2mm mesh, 

as specified in the available soil reports from Syngenta (OECD 2000). This meant that the way the soil 

samples were prepared was comparable to the samples used in Syngenta experiments.  
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The samples were taken to Syngenta’s laboratories at their Jealott’s Hill research site, which is where 

the batch study took place. The 7 extra soil samples were sent out for characterisation at the NRM 

Laboratories in Bracknell, the characteristics are shown in Table 5.2. 

 

Table 5.2 Soil Characterisation as determined by NRM Laboratories Ltd, Coopers Bridge, Braziers Lane, 

Bracknell, Berkshire RG42 6NS 

 

Sample Soil Name 

 

USDA Textural 

Classification 

Organic 

Matter 

% Sand %Silt %Clay pH 

(0.01MCaCl2) 

CEC 

(meq/100g) 

1 Brancepeth Sandy Loam 6.2 61 24 15 5.6 15.1 

2 High Hesleden Sandy Clay Loam 5 52 24 24 7.1 14.1 

3 Elwick Sandy Clay Loam 6.7 56 21 23 6.7 20 

4 Glaisdale Sand/Loamy Sand 11.1 88 6 6 3.6 13.8 

5 Tholthorpe Clay 4.4 43 21 36 7.3 21.8 

6 Rockland Sandy Loam 11.9 81 7 12 7.4 29.6 

7 Sandridge Clay Loam 6 38 40 22 6 18.7 

 

For this study 24 soils had been tested. The remaining 17 soils were Syngenta standard soils. These 

17 soils varied in organic matter and textural class and varied globally. With the exception of 18 

Acres and Kenny Hill soils, Hexaconazole had not been tested on these soils in the Syngenta 

database of batch equilibrium studies. Hexaconazole had not been tested on the 7 UK soils. The 17 

Syngetna soils are the same soils that were used in the Glyphosate and AMPA study (Chapter 4, 

Table 4.1).   

 

5.5 Hexaconazole Study 

Hexaconazole was chosen as the compound of interest for this study because: 

 Hexaconazole represents more “typical” adsorption behaviour compared to compounds 

previously studied (Glyphosate and AMPA, Chapter 4).  

 The aim of the study was to investigate the effects of soil properties on adsorption – using a 

single compound would be best at highlighting any soil effects  

The molecular structure of Hexaconazole can be found in Figure 2.1 
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5.5.1 Adsorption Study Methodology  

The experimental work was performed according to OECD guidelines (OECD 2000) and is outlined in 

Chapter 2, Section 2.3.2. However, due to unforeseen circumstances, the tubes containing the 

Hexaconazole and soil slurries could only be sampled after 72hrs. The study supervisor decided that 

this delay meant that there was a risk that the compound had degraded. Therefore, the tubes were 

sampled as normal and the supernatants were stored in labelled glass vials to be analysed further.   

 

Analysis of the Aqueous Solution  

To test if Hexaconazole had degraded during the longer than planned adsorption step, the aqueous 

solution was analysed by High Phase Liquid Chromatography (HPLC) with radio-detection. For each 

soil type a 1.5ml aliqout was taken from the vials containing the supernatants and dispensed into 

separate HPLC vials, giving a total of 24 vials. The samples were analysed using the HPLC conditions 

outlined in Table 5.3, which are the conditions that have been used in a previous Syngenta study of 

Hexaconazole (Oliver and Kuet 1999).  
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Table 5.3 HPLC Conditions used for analysis of Hexaconazole aqueous phase 

 

HP1100 System:  HP1100 Vacuum Degasser    

   HP1100 Quaternary Pump    

   HP1100 ALS autosampler    

   HP1100 Column compartment    

   HP100 Photodiode Array Detector (DAD)   

   HP Colour Laserjet 4650dn    

   HP Compaq d530 SFF computer (Lablogic Laura 4.0.4.101 SP1) 

         

HPLC Conditions:   Zorbax CN 5 µm (25cm x 4.6mm id)   

  A: Acetonitrile     

   B: 0.1%Formic Acid (aq)    

         

Injection Times:   Time (min) %A %B    

   0 10 90    

   5 10 90    

   12 42 58    

   15 100 0    

   17 100 0    

   20 10 90    

   25 10 90    

         

Flow Rate:   1ml/min      

Temp:   30°C      

UV Detector Wavelength : 205nm      

Injection Volume:  500µl      

Radio Detection System: Packard Flow Scintillation Analyser 500TR   

   Series with Ultima-Flo M (Packard)   

   Scintillation Cocktail (Flow rate of 4.5ml/min)   

   using Lablogic Laura 4.0.4.101.SP1 software   
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The results of the HPLC showed that there was no sign of degradation within the Syngenta soils 

(Appendix B – Folder 2). However in the 7 UK soils, high radio counts showed that there could be 

signs of Hexaconazole degradation due to them still being ‘live’, i.e. not sterilised. When the soils 

had been characterised, they had not been prepared as thought, and were therefore not sterilised. 

To check for Hexaconazole degradation, the soil phase was tested for the live UK soils.  

 

Analysis of Soil Phase 

The soil phase was analysed by Thin Layer Chromatography (TLC) to check the stability of 

Hexaconazole. Based on the size of the TLC plate, six soils could be tested. The Glaisdale and High 

Hesleden soils were selected as they showed high radio counts from the HPLC, indicating there may 

be metabolites present (Appendix B – Folder 2). The Gunma soil from the Syngenta soils was 

selected as a comparison as this soil showed no signs of degradation. Three other soils, two from the 

new soil set and one from Syngenta’s soils, were selected at random to use as extra confirmation of 

any degradation. The three extra soils were Brancepeth and Sandridge from the new soils and North 

Carolina from the original soil set. To confirm the HPLC results, two aqueous phase samples of the 

new soils were also tested by TLC. The soil types and the phases tested are listed in Table 5.4 

 

Table 5.4 Soils selected for TLC analysis 

 

Soil Sample Phase Tested 

Glaisdale Soil 

High Hesleden Soil 

Gunma Soil 

North Carolina Soil 

Brancepeth Aqueous 

Sandridge Aqueous 

 

 

The Brancepeth and Sandridge aliquots could be sampled directly, whereas the Glaisdale, High 

Hesleden, Gunma and North Carolina samples had to be extracted. To extract the sample from the 

soil phase, 25ml of acetone was added to each Teflon tube, containing the compound and soil slurry, 

and shaken for 10 minutes at 300rpm. The shaking was to make sure the soil was agitated and mixed 

with the acetone. The tubes were then centrifuged for 10 minutes at 3000rpm so the supernatant 

could be separated. The supernatant was removed using a glass pipette transferred into a 20ml 

volumetric flask for storage. From each volumetric flask, a 1ml aliquot was taken from the Glaisdale, 

High Hesleden, Gunma, and North Carolina samples and dispensed into 1.5ml vials for analysis. From 



94 
 

the Brancepeth and Sandridge samples, a 1ml aliquot was taken from the supernatants and 

dispensed directly into the 1.5ml vials. All the samples were analysed directly from the 1.5ml vials 

using the autosampling machine.  

 

To analyse the samples, a 20cm x 20cm Merck 60F Silica UV254 Plate was used. The samples were 

applied using the Automatic TLC Sampling ATS4 machine. The samples were sprayed at 2cm from 

the bottom of the plate. The samples were sprayed in bands of 1cm with a 2cm space between 

bands. The dosing speed for the soil samples in acetone was 200nl/s .The dosing speed for the 

aqueous samples in 0.01MCaCl2 was 50nl/s. 

 

While the plate was being sprayed the tank and solvents were prepared. For a normal phase TLC the 

solvents were Hexane: ethanol (80: 20 v/v). The solvents were placed in the tank in between 

saturation paper and left to equilibrate. The solvents used were determined from previous Syngenta 

adsorption reports for Hexaconazole (Oliver and Kuet 1999). The plate was placed in the solvent, in 

between the saturation paper and left until the solvent had reached 4cm from the top of the plate. 

After it reached 4cm it was removed and left to dry.  When the plate was completely dry, it was 

marked with a sticker for identification and using radioactive ink the solvent fronts were marked. 

The TLC plate was placed in a cassette and a phosphor imaging plate was placed on top and the 

cassette was secured. The cassette was placed in a lead box to protect it from atmospheric radiation 

and left the plate to be exposed for one week. A one week exposure time was chosen due to the 

levels of radiation in the samples. After one week the phosphor imaging plate was removed from the 

cassette and loaded into the image reader and scanned (Figure 5.2). 
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Figure 5.2 Scan of developed TLC plate after one week exposure, showing the position of the aqueous and soil 

phase solvent fronts. Solvent fronts correspond to samples given in Table 5.4. Dashed arrows give direction of 

expected trace of solvent fronts, i.e. in a vertical line. If metabolites were present then marks behind the 

original solvent fronts would be seen on the image where the scan had identified radioactive material.  

 

The scanned image (Figure 5.2) shows that there is an unexpected curve in the trace of the samples. 

This may be due to the plate having touched the side of the tank or the solvents not being 

appropriate for the samples. However, the solvents and the methods used were the same as 

previous Hexaconazole studies so it was assumed that they would be suitable for this study. The 

image also shows the samples hadn’t traced very far up the TLC plate which was also unusual. 

However, the study supervisor confirmed that the material identified was likely to be the parent 

material and no traces of metabolite were identified on the plate. Therefore, the Koc values for 

Hexaconazole could be calculated (Table 5.5).  
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5.5.2 Hexaconazole Experimental Study Results 

Table 5.5 Koc values for Hexaconazole after 72hr adsorption. The complete calculations in the adsorption 

spreadsheets and LSC Bq counts are in table Appendix B- Folder 1_ Hexaconazole. 

 

Soil Classification Kd (ml/g) Koc (ml/g) % Adsorption 

Brancepeth Sandy Clay Loam 70 1944 87 

Elswick Sandy Clay Loam 42 1089 81 

High Hesleden Sandy Clay Loam 30 1031 75 

Tholthorpe Clay 57 2221 85 

Glaisdale Sand/Loamy Sand 442 6867 97 

Rockland Sandy Loam 77 1669 92 

Sandridge Clay Loam 36 1019 78 

Marsillargues Loam 11 1861 51 

18 Acres Sandy Clay Loam 42 1812 80 

Ohio Loam 34 1481 82 

Iowa Sandy Loam 29 644 71 

N.Carolina Loamy Sand 17 1437 63 

Ushiku Clay Loam 53 1038 78 

Leyland Loam 11 1669 51 

Illinois Silty Clay Loam 29 1205 71 

Minnesota Clay Loam 49 1185 82 

Washington Sand 4 1298 27 

Kummamoto Clay Loam 31 556 67 

Kagoshima Sandy Loam 28 1668 73 

Gunma Sandy Loam 25 650 68 

Gartenacker Loam/Silt Loam 16 765 57 

Pappelacker Loamy Sand 15 1199 54 

Borstel Loamy Sand 35 3546 77 

Kenny Hill Sandy Loam 40 1101 78 
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5.6 Hexaconazole Analysis: Methodology 

The results in Table 5.5 were added to the Hexaconazole Koc data already available in the original 

Dataset 1. This created a new dataset of Koc values for Hexaconazole tested on 51 different soil types 

(Dataset 4). By following the same methodology as that used in the Syngenta reports, it meant that 

the Koc values in the Hexaconazole study should be comparable to the Koc values already in the 

dataset and any experimental error between results should be minimal.  

 

This study used a range of multivariate statistical techniques including principal component analysis, 

multiple regression and analysis of variance. These techniques were explained in Chapter 2, Section 

2.2. As there was only a single compound used in the study then there was no variation in molecular 

properties or connectivity parameters and molecular fragments, therefore only soil properties were 

analysed.  

 

5.7 Hexaconazole Analysis: Results 

5.7.1. PCA: Soil Properties 

Table 5.6 the first four principal components for Hexaconazole analysed for soil properties.  

Eigenvalues: PC1: 3.88, PC2: 1.5, PC3: 1.44, PC4: 0.57, PC5: 0.33.  

 

 

PC1 PC2 PC3 PC4 

Koc -0.162 -0.559 -0.387 0.505 

% OM 0.416 0.279 -0.335 0.032 

%OC 0.402 0.325 -0.345 0.005 

%Sand -0.418 0.342 -0.313 0.048 

%Silt 0.355 -0.378 0.330 -0.425 

%Clay 0.394 -0.181 0.189 0.607 

pH -0.051 0.457 0.587 0.437 

CEC 0.424 0.091 -0.180 0.048 

Variance Explained (%) 49 67 85 92 

 

As outlined in the methodology, the PCA was run a number of times to remove any outliers, to 

create the best possible dataset for use in the multiple regression. Table 5.6 shows the principal 

components for the fourth run, which produced the most successful multiple regression model. For 

the fourth run there are Koc values for the remaining 45 different soil types. The eigenvalues suggests 
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there are four principal components worth investigating. The first four principal components explain 

92% of the variance in the data (Table 5.6).  

 

The first principal component shows high positive loadings for % organic matter: 0.418, and CEC: 

0.424. The second principal component has high negative loadings for Koc: -0.559. The third principal 

component has a high positive loading for pH: 0.587. The fourth principal component has a high 

positive loading for Koc: 0.505, % clay: 0.607 and pH: 0.437. The loadings suggest that the soil 

properties that are important for influencing Koc are %clay content and pH. As the aim of the lab 

study was to investigate the effect of soil properties on Koc, therefore the two principal components 

with the highest loadings for Koc were selected to make a scatter plot so any trends within the data 

could be visualised. This produced a graph of PC2 vs. PC4 (Figure 5.3) 
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Figure 5.3 Scatter plot of principal component 2 versus principal component 4 for Hexaconazole, analysed for 

soil properties. Blue arrow demonstrates direction of trend influenced by Koc and soil pH. Green arrow shows 

direction of trend influenced by Koc and % clay.   

 

Based on the scores from Table 5.6, the scatter plot in Figure 5.3 is mostly showing the interaction 

between Koc, % clay content and soil pH. There does not appear to be any groupings within the data 

points. The blue arrow is showing the interaction of the variables for PC2, the interaction between 

Koc and soil pH, (There is a negative loading on Koc but a positive loading for pH). The green arrow is 

showing the interaction of the variables for PC4, the interaction between Koc and % clay, (There is a 
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positive loading for Koc and positive loading for % clay). This is creating a chevron trend in the data 

points with the highest Koc values meeting in the middle. Figure 5.3 is suggesting that the highest Koc 

values for Hexaconazole will be found on a soil with a low pH and high % clay content.  

 

The findings reported in this study, are supported by similar findings in the literature for similar 

studies. For example, Ertli et al. (2004) studied the effects of soil pH on the adsorption of 

isoproturon and also found that adsorption increased with decreasing soil pH, which was explained 

by the formation of hydrogen bonds, typical at lower pH values, between the oxygen, nitrogen, and 

hydrogen atoms of the isoproturon and the surface groups. When looking at the molecular structure 

of Hexacoanzole (Chapter 2, Figure 2.1), there are also suitable oxygen, nitrogen, and hydrogen 

atoms within the structure that could form hydrogen bonds with the soil surface. As discussed in 

previous chapters, the high clay content that has been identified in Figure 5.3 as being important for 

adsorption is likely to be related to cation exchange processes occurring in the soil. Paszko, (2012) 

also stated that at low pH values, a carbamate pesticide was adsorbed by the clay fractions in its 

protonated form, wheras at highe pH values, the compound was adsorbed by organic and mineral 

fractions involving non-ionic interactions. These results, although related to a carbamate pesticide, 

further strengthen the link between acidic and clay soils, and high adsorption values.  

 

The results from Figure 5.3, seemed to match with the results of the previous Hexaconazole studies 

performed by Syngenta that also indicated that adsorption of Hexaconazole was influenced by 

increasing clay content and decreasing soil pH, with the highest Koc values being found on acidic soils 

(Oliver and Kuet, 1999).   

 

5.7.2 Multiple Linear Regression: Modelling Soil Properties 

The PCA has identified there are some soil properties that are important in understanding the 

relationship between soil properties and Koc. MLR was used with the aim of predicting Koc based on 

soil properties.  Unfortunately, the best model only accounted for 38% of the variation in the data 

(Equation 8). 

 

                        

(Equation 8) 

 

Table 5.7 The significant parameters of MLR model for predicting Koc of Hexaconazole based on soil properties, 

and the regression coefficients and R
2
 value for the model.  



100 
 

 

Parameter Coefficient Standard Error (±) 
   Constant 4723.5 664.6 
   pH -418.19 94.52 
   %OC -215.77 68.34 S R2 Residual Error 

   
555.63 38.3% 42 

 

Equation 8 showed that there were two soil parameters that could be modelled to predict Koc; which 

were pH and %OC. Soil pH was also identified from the PCA as being important for influencing Koc. As 

there was only one compound tested, the only source of variation had to come from the soil 

properties. Therefore it is surprising that Equation 8 returned such a poor fitting model. Equation 8 is 

suggesting that over 60% of the variation in the data is unaccounted for by the model, implying that 

the variation in the data is coming from soil properties that haven’t been measured in this 

experiment, which may be properties such as mineral content.  

 

Paszko, (2012) raises some considerations regarding mineral content in soil and the effect on 

pesticide adsorption. The soil characteristics in Table 5.2, list only the percentage clay content in the 

soil, most likely calculated by its particle size, not the type of clay present. Within the silicate sheets 

that comprise the structure of the clay there are octahedral sheets and tetrahedral sheets. The 

octahedral sheet can be comprised of a either trioctahedral sheet, where the sites are occupied by 

divalent cations such as Mg2+ or Fe”+, or a dioctahedral sheet, with the sites occupied by trivalent 

cations such as Al3+ (Nesse, 2000). Paszko, (2012) found that the adsorption of carbendazim was 

negatively correlated with the saturation of the soil complex with Al3+ cations. It was hypothesised 

that as the Al3+ cations could ‘block’ the negative adsorption sites on a soil particle that would 

otherwise be capable of adsorbing the pesticide cations, reducing the potential for cation exchange.  

 

Equation 8 indicates that lower pH values influence Koc. The influence of lower pH values on 

increasing Koc is supported by the findings in the Syngenta reports (Oliver and Kuet 1999) and similar 

work in the literature has found that adsorption of other compounds is also linked to more acidic 

soils (Albers et al., 2009, Li et al., 2003). However, the percentage organic carbon parameter in the 

model seems contradictory to what would be expected for this study. Soil organic carbon is usually 

considered important in influencing Koc (e.g. Kah and Brown 2007). For Equation 8, the percentage 

organic carbon content is negatively correlated with Koc, suggesting that for this compound, organic 

carbon content limits the adsorption. Oliver et al., 2005 found that for three compounds tested on 

temperate and tropical soils, organic carbon content was not significantly correlated with adsorption 
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for any of the three compounds. To try to understand the interaction soil properties and compound 

properties have on Koc, an Analysis of Variance was attempted.  

 

5.7.3 Analysis of Variance (ANOVA) 

As using a data set limited to one compound and a range of soil types proved unsuccessful in 

predicting Koc, the original data had to be analysed by ANOVA in order to understand the causes of 

variation in Koc. The data set for ANOVA had 45 compounds tested on six soils.  

The factors for the general linear ANOVA were compound and soil and the response was Koc. The 

compound properties and soil properties were added as covariates.  

 

Table 5.8 ANOVA results testing for significance of soils and compounds on Koc.  

 

 

Koc 

 Soils 0.161 

 Compounds 0.000 R2 

  

72.8% 

 

 

The ANOVA model in Table 5.8 is suggesting that it is the difference between compounds that has 

the most influence on Koc.   

 

5.8 Summary 

The MLR model has shown that when predicting the Koc of a single compound, only 38% of the 

variation could be explained by the soil properties measured in the experiment. In the case of 

Hexaconazole, soil pH seems to be a controlling factor; however the majority of variation in 

adsorption is unaccounted for. The most likely cause of the unaccountability is that it is due to a soil 

property that had not been measured in the soil characterisation. Ideally the experiment should be 

repeated using the same soils, but tested with a wider range of soil characteristics to test this 

theory. Is this MLR result exclusive to Hexaconazole? Is this low fit only related to Hexaconazole 

because it has an unusual or missing soil parameter that is controlling its adsorption?  Another 

compound from a different chemical class should be tested on the same 24 soils as a comparison. 

The ANOVA showed that when comparing a range of soils and a range of compounds for their 

influence on Koc, it is the compound properties that are the most important for Koc.  
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These results have implications for the pesticide registration process. At present, the batch 

equilibrium reports used by Syngenta feature a compound that is usually tested on five soils, 

although the number can vary. The results shown in 5.7.2 and 5.7.3 are suggesting that either the 

compounds are not being tested against the right soil properties or in the case of the ANOVA the soil 

properties are not as important as first considered. It is important that the questions posed in this 

summary are researched further as, not only do they have financial and time implications for 

experimental work, they also raise scientific implications for the regulatory system. These questions 

will be addressed further during the validation and discussion (Chapter 7).  
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6. STAGE 1 COMPOUND STUDY  

6.1 Introduction  

As seen in the Group A and B study (Chapter 3), the parent and metabolite Study (Chapter 4), and 

the soil study (Chapter 5) attempts to create a model for predicting Koc have had limited success. A 

possible reason for this may have been the variety in the adsorption studies available from 

Syngenta’s SmartDoc database. The results from Chapter 3 have already identified that adsorption 

behaviour appears to be specific to particular chemical groups of compounds and that attempting to 

have one model to cover the variety in Koc between the different groups is not reasonable. It seems 

that there may need to be individual Koc models for each group. However, when multiple linear 

regression (MLR) has been attempted on individual groups, that has also been unsuccessful (Chapter 

3).  

 

Assuming that it is possible to predict Koc from molecular descriptors, then the problem of data 

quality needs to be addressed. There maybe two possible reasons for the failure of the predictive 

models. The first is that there aren’t enough compounds in each of the individual chemical groups in 

order to estimate a model. An example of this poor model fit was the Aminophosphonic chemical 

group. Although there was a lot of Koc data available for the Aminophosphonic chemical group 

(studies where the compounds have been tested on many soil types) there were only data available 

for two compounds, Glyphosate and a metabolite (AMPA).  As there was then not much difference 

in the structures of the two compounds, when a MLR model was tried using molecular and structural 

properties it could not identify any variability that may affect Koc. The second reason for poor model 

fitting could be that there was not enough data in each of the chemical groups to be able to run the 

model. An example of this was the Bipyridlium chemical groups. As well as only having data for two 

compounds, the data for this chemical group comprises only seven different Koc values. Therefore 

there is simply not enough data for a reasonable model to be generated.  

 

The problems associated with model building experienced so far means that a very specific type of 

data is needed to create predictive models. There has to be enough variability between the 

compounds structural properties for it to be identified by the model, but not too much variability 

that it is impossible to model, as was the case when trying to model the full dataset. The compounds 

also have to be tested on a range of soils types to create a dataset of a suitable size. Although it is an 

added advantage if the different compounds in the group can be tested on the same soil types so an 

appropriate comparison in Koc values can be made.  
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6.2 Stage 1 Data 

The best solution to this problem was to obtain extra data, as the original dataset appeared not to 

be suitable for this type of modelling work. The extra data came from a stage 1 study, as it fitted the 

above criteria. Stage 1 studies are completed in the very early stages of pesticide development and 

involve creating a range of potential compounds with very similar chemical structures, but each 

compound has a slight variation in its structure so that the compound with the greatest efficacy can 

be found. Potential metabolites are also created from the original structure.  Each potential 

compound in the stage 1 study is tested on the same range of soil types, in a batch equilibrium 

study, to obtain a Koc value.  

 

An experimental dataset like the stage 1 dataset is ideal for the predictive modelling work that is 

being attempted in this project. This is because the aim of a stage 1 study is to investigate how 

different chemical structures of potential compounds affect Koc, the most suitable compounds are 

then taken through to the next stage of pesticide development. The aim of this project is also to 

study the effect of compound properties on Koc, but to be able to predict the effect on Koc without 

the reliance on lab studies.  

 

6.2.1 Stage 1 Reports 

A request was made to Syngenta for some stage 1 data, the criteria for selecting the data being that 

the potential compounds and the Koc values in the reports were “typical”. “Typical” data meant that 

it compared to the original dataset and they would show a similarity with the results in the Group A 

dataset. The reason for wanting “typical” compounds was the results would be more representative 

of the majority of compounds and therefore any model could potentially be extrapolated further to 

include a wider range of compounds. The reports returned were for a benzazoles chemical group. 

The general structure of the Stage 1 compounds used in this study is shown in Figure 6.1 

 

 

 

 

Figure 6.1 General anonymised structure for Stage 1 benzazole compounds used in this study. R1 and R2 

indicates locations of functional groups and molecular fragments. 
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Each of the 15 potential compounds were tested on four different soil types, the properties are 

listed in Table 6.1. 

 

Table 6.1 Soil properties for benzazoles Stage 1 study 

 

Soil USDA Textural 

Classification 

%OM %OC %Sand %Silt %Clay pH 

(0.01MCaCl2) 

CEC 

(meq/100g) 

Rocky Mount Sandy Loam 0.9 0.52 72 20 8 5.8 3.2 

Leland Loam 0.8 0.47 46 39 15 5.3 7.7 

18 Acres Sandy Loam 4.9 2.84 51 26 23 6.9 16.9 

East Anglia Loam 3.6 2.09 85 5 10 7.4 8.4 

 

 

6.3 Stage 1 Data Analysis 

This study used a range of multivariate statistical techniques including principal component analysis, 

multiple regression and analysis of variance. These techniques were explained in Chapter 2, Section 

2.2.  

 

6.3.1 PCA: Connectivity Parameters and Molecular Fragments 

Table 6.2 First five principal components for Stage 1 Compounds, tested for connectivity parameters and 

molecular fragments. Eigenvalues are: PC1: 16.12, PC2: 10.86, PC3: 3.56, PC4: 0.94, PC5: 0.57.  

 

 PC1 PC2 PC3 PC4 PC5 

Koc 0.030 -0.167 0.341 -0.106 -0.247 

Ki0 0.180 -0.160 0.217 0.008 0.133 

Ki1 0.181 -0.178 0.165 -0.018 0.155 

Ki2 0.239 -0.555 0.068 0.069 0.169 

Ki3 0.151 -0.233 0.018 0.088 0.244 

Ki4 0.171 -0.210 0.000 -0.058 0.214 

Ki5 0.166 -0.221 -0.069 -0.079 0.030 

Ki6 0.186 -0.193 -0.047 -0.139 -0.120 

Ki7 0.198 -0.175 0.004 -0.177 -0.072 

Ki8 0.175 -0.201 -0.100 -0.094 -0.120 

KiCP30 0.106 -0.084 0.427 0.266 0.014 

KiCP31 0.174 -0.202 0.006 0.221 0.159 
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KiCP32 0.237 -0.066 -0.019 0.030 0.190 

KiCP33 0.175 -0.169 -0.277 0.059 -0.104 

KiCP34 0.234 0.008 -0.130 -0.048 -0.295 

KiCP35 0.239 0.070 -0.078 0.015 -0.067 

KiCP36 0.216 -0.006 -0.215 0.057 -0.231 

KiCP37 0.229 0.065 -0.152 0.076 -0.069 

KiCP38 0.224 0.078 -0.163 0.092 -0.006 

KiCP39 0.235 -0.010 -0.154 0.038 0.145 

KiCP40 0.068 -0.010 0.474 0.236 -0.069 

KiCP41 0.144 0.192 0.200 0.119 0.121 

KiCP42 0.146 0.240 0.084 0.023 -0.042 

KiCP43 0.145 0.243 0.073 0.016 -0.036 

KiCP44 0.143 0.246 0.053 0.001 -0.024 

KiCP45 0.142 0.247 0.047 -0.003 -0.021 

KiCP46 0.144 0.245 0.062 -0.009 -0.022 

KiCP47 0.143 0.246 0.052 0.012 -0.026 

KiCP48 0.143 0.246 0.045 0.020 -0.026 

KiCP49 0.165 0.221 0.056 -0.025 0.056 

C1C 0.200 0.142 -0.118 -0.111 -0.111 

O1C 0.063 0.126 0.141 -0.753 0.410 

C1O1C1C 0.084 -0.139 0.288 -0.333 -0.553 

Variance Explained (%) 49 82 93 95 97 

 

 

The eigenvalues show that there are five principal components worth exploring, explaining 97% of 

the variance (Table 6.2). The first principal component has positive loadings for the second order 

connectivity parameter: 0.239 (Ki2) and the third order cluster, fifth order path connectivity: 0.239 

(KiCP35). The second principal component had a negative loading for the second order connectivity: 

-0.555 (Ki2). The third principal component has a positive loading for Koc: 0.341 and the fourth order 

cluster, zero order path connectivity: 0.474 (KiCP40). The fourth principal component has a high 

negative loading on the molecular fragment O1C: -0.753. The fifth principal component has a 

negative loading on Koc: -0.247 and a positive loading on the molecular fragment O1C: 0.410. As seen 

in the previous modelling studies (Chapters 3 and 4), it appears that it is a mixture of low order 

connectivities, path and cluster connectivities, and molecular fragments that are important for Koc.  

 

The lower order connectivity parameters, like the Ki2 parameter are usually associated with 

molecular size (Worrall and Thomsen 2004) also Lohninger. (1994) showed that the lower order 
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connectivities can also be associated with molecular volume, which is important for sorption. 

Gramatica et al. (2000) indicated that an increase in size of a compound leads to increased 

hydrophobic effects with a compound tending to bind with the soil organic matter more strongly. 

The path and cluster connectivity parameters (KiCP35 and KiCP40) represent the structural 

complexity of the molecule, e.g. the degree of branching: an increased degree of branching in a 

molecule will restrict microbial degradation (Worrall, 2001). The molecular fragment (O1C) has been 

identified in other studies as being important to sorption (Lohninger, 1994). The molecular fragment 

analysed in this study can be related to the type of bonding and solubility of the compounds.  

 

As the aim of this study was to predict Koc, the two principal components with the highest loadings 

for Koc were selected to make a scatter plot (Figure 6.2). 
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Figure 6.2 Scatter plot of principal component 3 versus principal component 5 for Stage 1 Compounds, analysed 

by connectivity parameters and molecular fragments. Black arrow represents the direction of increasing Koc 

values. Green arrow represents influence of 4
th

 order cluster, zero order path connectivity parameter. Blue 

arrow represents influence of molecular fragment O1C.  

 

Figure 6.2, represents the interaction between principal components three and five, which relates to 

Koc and KiCP40 and Koc and O1C respectively. Based on the loadings in Table 6.2, the Koc is increasing 

in the direction of the black arrow, so this would put the compounds with the highest Koc values in 

the top left region of the graph (Figure 6.2). The green arrow represents the loading on the KiCP40 

Koc 
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parameter. As the KiCP40 parameter is related to the structural complexity of the molecule, it would 

suggest that the branched compounds have a higher Koc. The blue arrow represents the loading on 

the molecular fragment O1C. In a QSAR model the hydroxyl group O1C, was found to decrease the 

sorption coefficient (Lohninger, 1994), which would imply that the presence of the O1C fragment in 

a compound decreases adsorption. As the O1C fragment is polar, the compound would be quite 

soluble in water, decreasing its ability to adsorb to the soil. Figure 6.1 appears to agree with the 

results of Lohninger (1994) as the loading on the O1C fragment is increasing in the direction of the 

lower Koc values.  

 

6.3.2 PCA: Molecular Properties 

Table 6.3 First five principal components for Stage 1 Compounds, tested for molecular properties. Eigenvalues: 

PC1: 7.18, PC2: 5.56, PC3: 1.84, PC4: 1.52, PC5: 0.82.   

 

 PC1 PC2 PC3 PC4 PC5 

Koc 0.167 0.051 0.271 -0.561 -0.193 

dipolm 0.017 0.372 0.361 0.038 -0.098 

totalE 0.095 0.087 0.528 0.458 -0.048 

NHOMO -0.028 0.456 -0.102 -0.046 0.350 

HOMO 0.109 0.392 -0.226 0.088 -0.426 

LUMO -0.015 -0.475 0.195 -0.031 0.362 

NLUMO -0.065 -0.373 0.245 0.102 -0.632 

Vsav 0.364 -0.071 -0.106 0.033 -0.017 

Asas 0.344 0.126 -0.103 0.111 -0.139 

VvdW 0.359 -0.103 -0.122 0.06 0.012 

AvdW 0.370 -0.042 -0.068 -0.027 -0.016 

ΔHhyd 0.218 0.107 0.456 0.198 0.294 

logP 0.308 0.165 0.194 -0.218 0.004 

refractivity 0.335 -0.163 -0.142 0.173 0.082 

polarisability 0.328 -0.129 -0.188 0.246 0.037 

mass 0.259 -0.103 0.125 -0.508 0.038 

Variance Explained (%) 45 67 79 88 93 

 

The eigenvalues suggest there are five principal components. The first five principal components 

explain 93% of variation in the data (Table 6.3). The first principal component shows positive 
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loadings for AvdW: 0.370 and Vsav: 0.364. The second principal component has a positive loading on 

NHOMO: 0.456 and a negative loading on LUMO: -0.475. The third principal component has a high 

positive loading on totalE: -0.528 and ΔHhyd: 0.456. The fourth principal component has a high 

negative loading for Koc: -0.561 and mass: -0.508. The fifth principal component shows high negative 

loading for NLUMO: -0.632.  

 

The Vsav is a size descriptor but in hydrophobic compounds it can be related to the leaching ability of 

the compound, where it is inversely related to the aqueous solubility (Worrall and Thomsen, 2004). 

The ΔHhyd is also inversely related to solubility, meaning an increase in the change in hydration 

energy may lead to an increase in adsorption, whereas the dipole moment is proportional to the 

solubility (Worrall and Thomsen, 2004). In this case an increase in the dipole moment may lead to a 

decrease in adsorption. The LUMO (and NLUMO) are parameters that can be related to a hydrogen 

bonding term and the basicity of the compound (Kamlet et al., 1987), similarly the NHOMO 

parameter can then be related to the acidity of the compound. The mass of the compound is linked 

to the adsorption ability of the compound. Gramatica et al. (2000) indicated that an increase in size 

of a compound leads to increased hydrophobic effects with a compound tending to bind with the 

soil organic matter. As above, the two principal components with the highest loadings for Koc have 

been selected to make a scatter plot (Figure 6.3)  
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Figure 6.3 Scatter plot of principal component 3 versus principal component 4 for Stage 1 Compounds, analysed 

by molecular properties. Black arrow relates to the direction of increasing Koc values. Blue arrow represents the 

influence of the total energy parameter. Green arrow represents the influence of the mass parameter. Orange 

dashed line shows divide between potential parent compounds and potential metabolite, with data points to 

the left of the line referring to metabolites.   

 

Figure 6.3 represents the interaction between principal components 3 and 4, which relates to Koc 

and totalE and Koc and mass respectively. Based on the loadings in Table 6.3, the Koc is increasing in 

the direction of the black arrow, so this would put the compounds with the highest Koc values in the 

top left region of the graph. The blue arrow represents the loading on the totalE parameter, the total 

energy. The total energy can provide information about the bulkiness of the molecules (a size-

related descriptor) (Dai et al. (1999). The green arrow represents the loading on the mass 

parameter. Based on the loading for the totalE and mass parameter, the mass or size of the 

compounds is increasing in the directions of the blue and green arrows, towards the top and left 

portion of Figure 6.3, where the higher Koc values are found. Figure 6.3 supports the work of 

Gramatica et al. (2000) and shows that increasing mass is important in increasing adsorption. Dai et 

al. (1999) also showed that total energy was significant for Koc and that the totalE parameter 

indicates that larger molecules adsorb better into soil.  

 

Figure 6.3 also is unique in this study in that it is the only graph where there is a visible relationship 

between the parent compounds and the potential metabolites and the properties measured.  The 

compounds to the left of the orange dashed line are solely potential metabolites, whereas the 

compounds to the right of the line are (with the exception of two compounds) parents. Figure 6.3 

shows that the potential metabolites have higher Koc values than the parent compounds, as the 

potential metabolites have a larger mass. The metabolites having a larger mass, does seem unusual 

and similar results to this were also found in the modelling work of Chapter 4, Section 4.6.2.  

 

6.3.3 PCA: Soil Properties 

Table 6.4 First five principal components for Stage 1 Compounds, tested for soil properties.  

Eigenvalues: PC1: 4.10, PC2: 2.95, PC3: 0.92, PC4: 0.03.  

 

 PC1 PC2 PC3 PC4 

Koc -0.142 0.118 -0.979 -0.077 

% OM 0.493 -0.003 -0.035 -0.361 

% OC 0.493 -0.003 -0.035 -0.361 
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The eigenvalues show that there are four principal components worth exploring that explain 99% of 

the variance (Table 6.4). The first principal component has positive loadings for % organic matter: 

0.493 and % organic carbon: 0.493. The second principal component has a high negative loading for 

the % sand content: -0.578. The third principal component has a very high negative loading on Koc:    

-0.979. The fourth principal component has a high positive loading on the % clay content: 0.604 and 

a high negative loading on the % silt content: -0.510. As above, the two principal components with 

the highest loadings for Koc have been selected to make a scatter plot (Figure 6.4) 
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Figure 6.4 Scatter plot of principal component 1 versus principal component 3 for Stage 1 compounds, analysed 

by soil properties. Black arrow shows direction of increasing Koc values. Blue arrow shows loading from % OC 

parameter. Green arrow shows influence from %silt parameter. Orange arrow represents loadings from pH. 

Groupings of soil types have been identified.  

 

% Sand 0.042 -0.578 -0.090 0.182 

% Silt -0.195 0.528 0.127 -0.510 

% Clay 0.305 0.453 -0.027 0.604 

pH 0.428 -0.277 -0.098 -0.116 

CEC 0.420 0.303 -0.062 0.246 

Variance Explained (%) 51 88 99 99 

Koc Rocky Mount (Sandy Loam) & Leland (Loam) 

East Anglia (Loam) 

 18 Acres (Sandy Loam) 
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Figure 6.4 represents the interaction between principal components one and three, which relates to 

Koc and percentage organic carbon content and Koc and percentage silt content respectively. The 

black arrow relates to the loading on Koc, and suggests that the lowest Koc values are found in the 

lower left region of figure 6.4. The compounds appear to have grouped together according to the 

different soil types, so there will be one data point from each compound in each of the groups in 

Figure 6.4.   

 

The blue arrow (Figure 6.4) represents the loading on the %OC parameter and shows that 

percentage organic carbon content is the reason why the data points have separated out into the 

groups of soil types. Based on Figure 6.4, it shows that the 18 Acres soil has the highest organic 

carbon content and the Leland and Rocky Mount have the lowest, which is confirmed by studying 

the soil characteristics in Table 6.1. As the %OC parameter has a positive loading, with the highest 

organic carbon contents found in the 18 Acres soil, Figure 6.3 suggests that organic carbon content 

was not a control on Koc, for this group of benzazole compounds.  

 

As soil organic carbon is usually considered important in influencing Koc (Kah and Brown 2007) this 

result is initially surprising. However, this result is similar to the results in Chapter 5 (Section 5.7.2), 

where the MLR model showed that organic carbon content was negatively correlated with Koc. As 

the compound tested in chapter five was part of an azole group (Hexaconazole was part of the 

triazole group), then it may share a similar structure with the benzazole compounds tested in this 

study, and therefore a similar binding mechanism.  By looking at the original data for the Stage 1 

Compounds and the azole group, they only appear to share similar electron acceptor-donor 

properties.  

 

By looking at the loadings (Table 6.4), the next most important parameter was pH (orange arrow). 

Figure 6.4 suggests that the highest Koc values were found on the more acidic soils. Work by Li et al., 

(2003) has shown that compounds tended to bind more on acidic soils. The result in Figure 6.3 also 

supports the result in Chapter 5 (section 5.7.1 and section 5.7.2) which showed that the azole 

compound also showed greater adsorption on the acidic soils. The green arrow (Figure 6.4) 

represents the loading on the %silt parameter. It would appear that the percentage silt content is 

controlling the range of Koc values in each group of soil type, with the higher Koc values found on the 

soils with the lower percentage silt content.  The influence of silt content shown in Figure 6.4 is an 

unusual result as generally silt content is shown to increase adsorption e.g. Kumar and Philip (2006).  
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6.4 Multiple Regression Model 

The PCA has identified that there were a number of variables that were important for understanding 

controls on Koc of this group of benzazole compounds, mainly those relating to the size and degree of 

branching in a compound, its solubility, and then an indication to type of soil where the highest 

adsorption may occur.  Multiple regression (MLR) was used to model these parameters to predict Koc 

of this group of benzazole compounds (Equation 9). Equation five has an R2 value of 92%.  

 

 

                                                              

                                                      
 

 
 
 

 
 

(Equation 9) 

Table 6.5 The significant parameters of MLR model for predicting Koc of Stage 1 compounds, and the regression 

coefficients and R
2
 value for the model.  

 

Predictor Coefficient Standard Error (±) 

   Constant 1067935 153609 

   % OM 1971 551 

   CEC 600 185 

   totalE 706 68 

   NHOMO 61930 9651 

   LUMO 32140 4027 

   Vsav 889 84 

   AvdW 2477 239 

   ΔHhyd 5834 591 

   NsglBnd 5246 846 

   KiCP38 503690 69282 

 

S R2 

    

3563 91.80% 

 

 

The two soil parameters give an indication to the types of soils where the benzazole compounds 

would show the highest adsorption. The organic matter content has already been shown in the PCA 

work to be not important for adsorption. The cation exchange capacity (CEC) can be an indication of 

clay content, and would also suggest strong adsorption to clay minerals via a cation exchange 

process. So these two parameters suggest that the soil controls on the benzazole compounds would 
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be low organic carbon content, but high clay content. As mentioned previously, high clay content in 

the soil would have many suitable adsorption sites for a pesticide to bind to via cation exchange.   

 

The LUMO parameter can be related to the basicity of the compound and therefore would be a 

contributing factor to adsorption, as most soils have significant acid sites (Famini and Wilson. 1997). 

As the specific structures of the stage 1 compounds has been anonymised (Figure 6.1), then this 

study is unable to identify the details in the structure such as the functional groups that may aid in 

binding to the soil. However, as the LUMO parameter has been identified as being significant to 

predicting Koc then it may be that there are basic functional groups in the structure that would easily 

protonate and be able to undergo cation exchange with the clay minerals. The acidity of the soil was 

also shown to be important in the PCA work in Section 6.4.1.3. If the soil had a low pH then there 

would be an abundance of humic acids present. As discussed previously, the carboxyl and phenol 

groups present in the humic acids can bind with structurally similar functional groups in the pesticide 

structure, either covalently, or if the pesticide is charged then via ionic bonding. It is a possibility in 

the case of these stage 1 compounds, that there are carboxyl and phenol groups present in the 

specific structures.  

 

The ΔHhyd can be thought of as a control on the solubility of the compound. In Figure 6.1, there is a 

ketone group present in the general structure. The carbon-oxygen double bond in a ketone group is 

relatively polar and therefore would be able to form hydrogen bonds with water molecules, 

increasing the solubility of the compound (Ramsden, 2000). However, there may also be other 

functional groups present in the anonymised structures that would have a lower solubility due to not 

being strong enough to form hydrogen bonds. The AvdW can be considered as size descriptors 

meaning that increasing the size of the compound, contributes to an increase in adsorption.  

 

6.5 Summary 

The results of this study have shown that it is possible to create a predictive Koc model for a group of 

compounds. The model suggests that it was size and solubility of the compound that is controlling 

Koc. The model developed in Equation 9, has important implications for Syngenta and their pesticide 

development process. Out of all of the models created in this study to predict Koc, the stage 1 model 

was the only one that was successful, in that based on the R2 values it explained the largest amount 

of variation (91.8%).  
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6.6 Further Thought 

The reasons for the relative success in the stage 1 model needs to be considered. As the stage 1 

compounds have a common structure, it would be expected that there would be some correlation 

between the structural properties. However, as the results of the Group A and B study in Chapter 3 

showed, it appears that adsorption behaviour is compound or chemical group specific. Therefore it 

seems likely that any predictive models that are developed will have to be tailored to specific 

chemical groups. It is possible that the positive result in Equation 9 is indeed due to the quality and 

quantity of the stage 1 data that was outlined in the introduction to this study. Any groups of 

compounds with a similar structure would be likely to produce a successful predictive model. 

However due to their experimental nature combined with their importance in the early stages of the 

registration process; and the quality and suitability of the data in the reports, the stage 1 compounds 

make a better choice for developing predictive models. It is therefore proposed that further research 

into the stage 1 compounds is considered to test this theory.  
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7. VALIDATION AND DISCUSSION  

7.1 Introduction  

This chapter will validate the predictive Koc models created for the Stage 1 compounds (Chapter 6). 

The metabolite models (Chapter 4, Section 4.6.2) have been validated as they have been tested to 

determine the correct classification of data. The model discussed in this chapter is a new model 

based on a separate validation study. The data for the model was divided into a training set and 

validation set on a random selection of two thirds training and one third validations, which is 

convention for this type of validation.  

 

7.2 Stage 1 Model Validation 

The new stage 1 model (Equation 10), which was based on data from Chapter 6 was created from 

the training data was validated against 19 compounds from the validation set.  

 

                                                                

                            Δ                       

(Equation 10) 

 

When tested, Equation 10 tended to overestimate Koc, predicting higher Koc values for 12 out of 19 

compounds. Overestimating Koc in a screening model is particularly a problem for the compounds 

that are very mobile, like some of the compounds in this dataset. Some of the observed Koc values 

(Compound 10 in Table 7.1) were extremely low, classifying them as very high to high mobility based 

on the McCall Scale (McCall et al., 1980), but the model predicted Koc values, classifying them as 

immobile. By using this model in a screening situation, then these mobile compounds could 

potentially be wrongly taken through to the next stage of development. 

 

The mean average percentage error between the observed and predicted Koc was calculated as 

155406%. The predicted Koc vs. observed Koc is plotted in Figure 7.1. 
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Figure 7.1 Predicted Log Koc versus observed Log Koc for Equation 10. Black line is a 1:1 line, and shows the trend 

that would be expected if observed and predicted values were the same. Purple circle represents the compound 

that does not have a good fit with the data. This extremely mobile was removed from the model. Pink circle 

highlights compounds that have been under predicted by the stage 1 model.  

 

Figure 7.1 shows that for certain data points the model is not a good fit, particularly the four data 

points in the purple circle. These four data points correspond to the same compound, but tested on 

four different soil types (Compounds 10a, b, c and d in Table 7.1).  Compound 10 is also extremely 

mobile as indicated by the observed Koc values. The structural properties of Compound 10 show that 

it has a small total energy and VvdW compared to the rest of the compounds in the validation data 

set. The total energy is related to the bulkiness of the compound (Dai et al. 1999). The VvdW is a size 

related descriptor and also a control on solubility (Worrall and Thomsen, 2004). Therefore this 

model is not suitable for soluble compounds with a small mass. It also backs up other work in this 

study suggesting that size and solubility are controls on adsorption.  

 

The two data points in the pink circle relate to compounds that have been predicted by the model to 

have extremely low Koc values. One of these compounds (Compound 4a in Table 7.1) had quite a low 

observed Koc regardless of the prediction (939 ml/g). However the other of these compounds 

(Compound 5b in Table 7.1) had an observed value that would class it as slightly mobile (3722ml/g) 

but the predicted value was -1166 ml/g. Both of these compounds have by chance been validated 

twice due to being tested on different soil types (Compound 4b and Compound 5a in Table 7.1). On 
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the other occasion these two compounds are a good fit with the model, showing a mean average 

percentage error between the observed and predicted Koc of 57% and 2% (Table 7.1). As the two 

compounds are structurally similar to each other and having been tested before and showing a good 

fit, it is therefore assumed that the low predicted values are due to soil properties. By looking at the 

experimental data for these compounds and comparing those to the variables in Equation 10, the 

%OM and CEC variables are significant. Equation 10 suggests that higher Koc values are related to a 

low %OM and high CEC values. One of the soils tested does have a low OM content of just 0.9% but 

also has a low CEC of 3.2 meq/100g. The other soil had 3.6 %OM and a CEC of 8.4 meq/100g, which 

according to Equation 9 are both related to lower Koc values.  

 

Compound 10 that was in the purple circle was removed from the data set and the mean average 

percentage error between the observed and predicted Koc was calculated again as 132%. Now the 

model can on average predict Koc values to just over one order of magnitude. The model now 

overestimates Koc for 8 out of the 15 compounds and underestimates Koc for 7. The new predicted vs. 

observed Koc values are plotted in Figure 7.2.  

 

 

 

Figure 7.2 Recalculated predicted Log Koc versus observed Log Koc values for Equation 10, having removed data 

for Compound 10. Black line represents line of equal observed and predicted Koc values.  
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7.2.1 Stage 1 Model Discussion  

The results of both Chapter 6 and the validation of Equation 10 show that the structural properties 

that are significant for predicting Koc in a benzazoles group are can be grouped into size, solubility 

and type of bonding. There is also the influence of some soil properties that are significant for Koc 

although this model is chemical group specific so it is likely that the soil properties that are 

significant in this model are not significant for other compounds. Structural properties like size are 

important for adsorption as the size of the molecule can influence the way the compound is 

transported through the soil (van der Bruggen et al., 2002). Famini and Wilson, (1997) suggest that 

the larger the compound, then the better it is adsorbed to the soil, with the larger compounds being 

less soluble. The adsorption of pesticides with larger molecular sizes may be influenced by van der 

Waals forces. Van der Waals bonds are additive and so their contribution increases with the size of 

the interacting pesticide (Gevao et al., 2000). The HOMO and LUMO parameters in Equation 10 may 

represent adsorption by charge transfer complexes formed by the electron donor-acceptor 

mechanisms (Gevao et al., 2000). Charge transfer mechanisms create a relatively strong adsorption 

between the pesticide and soil (Moreno-Castilla, 2004) which may be represented by the high Koc 

values in Table 7.1.  

 

The main assumption for the validation of Equation 10 is that the experimental Koc values are 

correct. It is known that there is variability in Koc values (Dubus et al., 2003) so it is hard to validate 

against a value that is not constant. Considering experimental Koc is not constant, building a model 

(Equation 10) that can predict Koc to just over one order of magnitude could be seen as a success. 

The experimental Koc values have been calculated from soil properties that are more variable 

whereas Equation 10 is based on structural properties that are less variable. Therefore it could be 

argued that Equation 10 may provide a more accurate value for Koc than those estimated by 

experimental values.  

 

7.3 Comparison of Stage 1 Model against EPA Model 

The US Environmental Protection Agency (EPA) developed the EPI-suite software to provide a 

screening tool for organic compounds. The stage 1 compounds were imported into the program as 

mol files to predict their Koc values as a comparison to the model created in this study. The EPA 

model provides two methods for estimating Koc: an estimation using the first order molecular 

connectivity index (MCI); and estimation using log Kow (the octanol-water partition coefficient). For 

both methods the mean average percentage error was calculated, for the MCI method it was 



120 
 

calculated to be 86%, and for the log Kow method was 656%. The estimated Koc values for both 

methods are plotted against the observed Koc values and the stage 1 model values Figure 7.3. 

 

 

 

Figure 7.3 EPA predicted Log Koc values, compared to observed Log Koc values and the Log Koc values predicted 

by the Stage 1 Model.  

 

As the log Kow, method produced a high mean average percentage error; this method will be 

disregarded from the discussion. Also, similar work in the literature generally prefers the use of 

molecular indices over Kow (e.g. Meylan et al., 1992). The MCI method shows that although on 

average it can estimate Koc to within one order of magnitude; it also overestimates the Koc value for 

most of the compounds (Figure 7.3), although the EPA admits that the model does produce higher 

than expected values of exposure to err on the side of safety (EPIWIN, US EPA). To decide which 

model is preferred out of MCI or Stage 1 depends on the level of accuracy required. Selected 

compounds from Table 7.1 are used as an example of how this decision could be made. 
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Table 7.1 Compounds from the validation set and their Koc values and percentage differences between 

predicted and observed values. Compound 10 was removed from validation and therefore not tested against 

EPA values. 

 

Compound 
Observed Koc 

(ml/g) 
Stg1 Koc 

(ml/g) % difference 
EPA Koc 

(ml/g) % difference 

Compound 1 3567 8118 56 18860 81 

Compound 2a 3342 9011 63 124100 97 

Compound 2b 4923 5057 3 124100 96 

Compound 3 2806 6798 59 278100 99 

Compound 4a 939 -1171 180 142400 99 

Compound 4b 6154 2633 -134 142400 96 

Compound 5a 2857 2787 -3 13430 79 

Compound 5b 3722 -1166 419 13430 72 

Compound 6a 1781 7691 77 10480 83 

Compound 6b 302 6126 95 10480 97 

Compound 7a 9806 11473 15 11440 14 

Compound 7b 12026 5955 -102 11440 -5 

Compound 8 15499 14713 -5 1623000 99 

Compound 9a 33288 37371 11 2698000 99 

Compound 9b 50000 14768 -20 2698000 98 

Compound 10a -21 20612 -98252 x x 

Compound 10b 124 24415 19590 x x 

Compound 10c 10 22851 228407 x x 

Compound 10d 3 18897 629808 x x 

 

 

If hypothetically using the McCall Scale (McCall et al., 1980) as criteria for deciding which 

compounds should be taken to the next stage, then around half of the compounds would be classed 

as immobile (Observed Koc > 5000 ml/g) which would probably be a good reason for putting them 

through to the next stage of development (Table 7.1). Both of the predictive models give estimated 

Koc values that would also indicate that the compounds are likely to be immobile, although the EPA 

Model mostly over predicts them. In the case of Compound 7b the Stage 1 Model actually under 

predicts Koc by around 100%, however it still returns a Koc value that would indicate immobility so in 

this case the environmental fate of the compound would probably not be cause for concern.  

 

Out of the two models the Stage 1 Model does have the worst root mean average percentage error, 

but for most of the compounds in the validation set the Stage 1 model actually has the smallest 

individual percentage difference. The smaller individual difference means that the Stage 1 model 

predicts Koc values that are more realistic (realistic in terms that it is closer to what would be 
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expected from a lab study). Having more realistic values is important, particularly in the case of 

Compounds 2b and 5a (Table 7.1). Compounds 2b and 5a have observed Koc values that would put 

them in the category of slight mobility. The Stage 1 model estimates Koc values with a 3% difference. 

These realistic Koc values mean that the two compounds might not be suitable for the next stage of 

development. In contrast, for Compounds 2b and 5a the EPA Model estimates Koc values with a 79% 

and 96% difference. These EPA Koc values are unrealistic and may result in these compounds being 

wrongly taken into development.  

 

If specific predicted Koc values are not that important then the EPA model may be the best choice 

overall; however based on individual Koc values in the validation set this study suggests that the 

Stage 1 Model should be used for prediction of this chemical group. In comparison to the EPA model 

which uses only the first order molecular connectivity index, the Stage 1 Model is constructed from a 

range of molecular properties that are interpretable in terms of adsorption. The Stage 1 model also 

includes soil parameters (%OM and CEC) so can provide an estimate of Koc for specific sites.  

 

7.4 Suitability of Koc Models 

The results of this validation have shown that the Stage 1 Model can offer a screening model for Koc 

in the early stages of compound development for a particular group of low mobility compounds. 

However, when considering the use of predictive models one of the issues raised is the suitability of 

Koc as a predictive tool. When creating and validating the models it is assumed that the original Koc 

values obtained by the batch experiments are the correct values. However, Wauchope et al. (2002) 

stated that the batch method will tend to overestimate short term adsorption and under estimate 

long term adsorption. Wauchope et al. (2002) also estimated that a batch experiment will probably 

vary from the true average Kd value in a field of the same soil by a factor of up to two.  Using Koc also 

assumes that the main control on adsorption is organic carbon, which is not true for all compounds 

as the work in Chapter 5 shows.  

 

This study shows that much of the control on Koc was size and solubility related. Significant 

parameters related to solubility included the dipole moment, hydration energy and Van der Waals 

volume, with the more soluble compounds being less adsorbing. Along with partitioning and 

sorption, solubility can be thought of as one of the main controls on the environmental fate of 

pesticides (Thomsen et al., 1999), and there have been studies in the literature that have been 

successful in predicting aqueous solubility from molecular structure e.g. Patil, (1994) and Delgado, 

(2002). Therefore based on the results of this study it may be more appropriate to use structural 
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properties to predict aqueous solubility, and use solubility as an indicator of the potential behaviour 

of pesticides, or at least to consider solubility alongside Koc.  

 

Any predictive Koc models will need to be chemical class specific. Work in the literature (e.g. Müller, 

1997) has already identified the need for compound class specific models and is supported by the 

work in this study. Using solubility as another indicator of environmental fate may reduce the 

problem of different compounds adsorbing by different mechanisms, and the need for individual 

chemical group models.  

 

7.4.1 Is it possible to predict Koc?  

Taking the above concerns relating to Koc into consideration, and assuming that Koc is still the 

parameter that is to be predicted, then this study has raised some practical concerns relating to how 

transferrable the Stage 1 Model is. The benzazoles group analysed in Chapter 6 and validated in 

Equation 10, share some soil adsorption mechanisms with Hexaconazole from the triazoles group 

that was analysed in Chapter 5, mainly low organic matter and acidic soils. To test how far the Stage 

1 model could be used in predicting Koc, some compounds from the triazoles group were substituted 

into the model.  The root mean average percentage error between observed Koc and predicted Koc 

for each compound in the azole group were calculated (Table 7.2).  

 

Table 7.2 Calculated root mean average percentage errors for Hexaconazole and other compounds from 

triazole chemical group.  

 

Compound root mean average percentage error 

Hexaconazole 2916% 

triazole compound 1 9895046% 

triazole compound 2 1400323043% 

triazole compound 3 2487426% 

triazole compound 4 4618297% 

 

Table 7.2 shows that generally the benzazole Stage 1 Model is unreliable at predicting Koc for 

compounds other than those it was built for. The exception is Hexaconazole which has an average 

percentage error which is relatively small compared to the other compounds. The smaller 

percentage error for Hexaconazole may be due to Hexaconazole and the benzazoles sharing a similar 

adsorption mechanism for binding to soils. Therefore, when building Koc models, a possible method 

could be to not build them by chemical group which may be restrictive and would result in many 

different models, but instead to build them by adsorption mechanism allowing for more flexibility. 
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As well as the general science surrounding Koc prediction being a problem, this study found there was 

the issue of quantity of suitable data posing a problem for confidently predicting Koc, particularly for 

Chapter 5 and Chapter 6. The results of Chapter 5 Section 5.7.2 and 5.7.3 suggest that soil properties 

tested are not as important as the compounds own structural properties for predicting and 

influencing Koc. However, the data validated by Equation 10 suggests that soil properties do actually 

have some effect on Koc, and soil properties can make the difference between classifying mobile and 

immobile compounds (Table 7.1, Compound 4a and 4b). The problem this study had was that the 

results of Chapter 5 were only tested on a single compound. Likewise, Equation 10 was only built for 

benzazole compounds. The exclusivity of these results means it is hard to evaluate the effects of soil 

properties on other compounds.  

 

The OECD Guidelines (OECD 2000) advise that soils for batch equilibrium adsorption studies should 

be cover a range of soil properties that would be typical of temperate geographical zones. However, 

it may be useful if Syngenta were to also use a control soil that remained constant across all 

compounds tested to try and create a base value for Koc for compounds to be validated against. 

Inevitably debate would occur as to the characteristics of this control soil and whether it is 

appropriate for all compounds, but a control would at least be an attempt at direct validation and 

comparisons of Koc between different compounds.  

 

7.5 Summary 

The results of this study suggest that predicting Koc is possible for a specific group of compounds. 

This study would advise that further models should be created to assess if it is possible to predict Koc 

for other compounds and other chemical groups/adsorption mechanisms. For chemical group 

specific models, for practical reasons (outlined in Chapter 6) the most appropriate data is likely to be 

the Stage 1 reports.  
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8. CONCLUSION  
The aims of this project were to:  

1. Understand the controls on pesticide adsorption in soil.  

Aim 1 was to investigate how Koc varies between soils and compounds. By understanding controls on 

Koc there is the potential for reducing pesticide movement from soils into groundwater, which is 

important for groundwater quality and pollution.  

 

As indicated by Principal Component Analysis and the multiple regression models, controls on 

adsorption of compounds are generally molecular size and solubility parameters, with larger, less 

soluble compounds being more adsorbing. Other important parameters were connectivity 

parameters meaning compounds with branched structures were also more adsorbing.  

 

2. Develop models to predict Koc.  

Aim 2 was to investigate if Koc can be predicted from structural compounds. Predictive models have 

the potential to reduce the need for experimental Koc values in the early stages of the pesticide 

development process.   

 

This study has developed a range of models based on structural properties to predict pesticide 

behaviour. The models show that: 

- General adsorption behaviour can be modelled into high and low adsorption categories.  

- Metabolite adsorption potential relative to its parent can be predicted, with the mass of 

metabolites being a key parameter in mobility.  

- Koc can be predicted within a range of just over an order of magnitude for a group of 

benazole compounds.  

 

Experimental work suggested that for Compound A, the soil properties measured were not as 

important as the structural properties of the compound in predicting Koc. Although, the significant 

properties in the QSAR models did not always directly relate to the soil properties given in the batch 

equilibrium studies, the adsorption of pesticides can be linked to soil via their molecular structures 

and their ability to undergo processes such as protonation and cation exchange.  However the Stage 

1 model validation suggested that soil properties did have some influence on the prediction of Koc. 

Therefore soil properties should be included in the models on a case by case basis.  

 

The results of this study, shown in Chapter 3 and Chapter 6, report that adsorption behaviour is 

chemical group specific. A stage 1 screening model has shown that it is possible to predict Koc for a 

specific group of high adsorption compounds. However, this model does not transfer well to other 

groups of compounds. Based on the results of this study, currently Koc can be predicted but only in 

group specific models.   
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This study recommends that:   

 To increase the range of compounds that have a Koc prediction, further chemical class or 

adsorption mechanism specific models should be created. 

 To attempt a direct comparison between compounds, a control soil should be considered in 

adsorption experiments. 

 To reduce the problem of different adsorption mechanisms between compounds, using 

solubility QSARs as indicators of environmental fate could be considered. 

 

Based on the recommendations, potential future work would involve both data based work and lab 

work. Relating to Chapter 5, it is recommended that the batch equilibrium experiment is repeated, 

either using the same range of soils that were used in the Chapter 5 experiment on different 

compounds, or testing Compound A for a different range of soil characteristics. The aim of this 

experimental work would be to further understand the effects of soil on Koc, and to identify the 

appropriate soil characteristics to include in the models for each compound. Included in the 

experimental work should be a control soil so that direct Koc comparisons can be made.   

 

The main priority for future work should be building a database of Koc models for chemical groups or 

adsorption mechanisms. Although any group of compounds with a similar structure can be used, for 

convenience and availability of data it is recommended that the stage 1 reports are targeted.  

 

Future work relating to QSARs may also be attempted. If solubility data is available then this should 

be used along with Koc for a better understanding of environmental fate. Depending on the success 

of Koc and solubility QSARs, the same technique could be applied to other parameters important for 

pesticide fate such as half life or ecotoxicology.   

 

Overall, this study has identified the influence the molecular structure of a pesticide has on its 

environmental fate. The research presented in this thesis, although still in the preliminary stages, 

does offer both environmental and financial justifications. Through analysis of a large dataset of 

pesticide adsorption studies, molecular properties that would have an effect on adsorption and 

mobility in soil have been identified. These significant molecular properties appear to have an effect 

on, or be influenced by solubility; and therefore reiterate the link between solubility, adsorption and 

environmental fate. This study also highlights the complexity involved in attempting to understand 

the interactions between soil properties and molecular properties, when predicting environmental 

fate. Financially, there is the opportunity to make the pesticide development process more efficient 

by using QSAR models to screen potential compounds in the early stages of development. However, 

the QSARs presented in this study still need further refinement. 
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APPENDIX A: HOW TO MAKE YOUR MODEL 
 

1. Drawing the compound 

This study used ISIS Draw (MDL Information Systems) to draw the chemical structure of all 

compounds. Other chemical structure drawing packages could be used as long as the structure of 

the compounds can be converted into a .mol file. A .mol file is needed to import the structure into 

other packages to calculate structural properties. As mentioned in the methodology the .mol files 

are in the form of text files with rows of numbers and letters that correspond to elements within the 

compounds structure. 

 

The compound can also be drawn in a program like HyperChem. Using HyperChem to draw the 

compound would be particularly suitable if only molecular (semi-empirical or quantum) parameters 

are needed. If other structural parameters are needed the best option is to use ISIS Draw, this is 

because HyperChem does not have an option for converting to .mol files.  

 

2. Obtaining Molecular Properties 

This study used HyperChem v8.0 (Hypercube Inc.) to calculate the molecular parameters. The full list 

of parameters calculated in this study is in the methodology Chapter 2 Section 2.1.1. Regardless of 

whether the structure has been drawn in HyperChem or drawn in another package and imported, 

the structure has to be optimised. This is because the structure appears as a hydrogen-reduced 

structure. 

 

In the following instructions the first word in each section is the title of the drop down menu and is 

followed by the command.  

 

2.1 Optimising the Structure 

1. Build > Add Hydrogen 

2. Build > Model Build 

3. Setup > Molecular Mechanics > MM+ 

4. Compute > Geometry Optimisation 

2.2 Obtaining QSAR Properties 

1. Properties > QSAR Properties > mass, polarisability, refractivity, hydration energy, logP, 

surface area, volume 

2. Properties > Dipole Moment 

3. Properties > Total Energy 

2.3 Obtaining Orbital Data 

1. Setup > Semi-emipirical > Extended Hückel 

2. Compute > Single Point 

3. Orbitals > HOMO, LUMO, NHOMO, NLUMO 
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3. Obtaining Connectivity Parameters and Molecular Fragments 

This study used Topix (http://www.lohninger.com/topix.html) although there are similar packages 

that would do the same job. Using the .mol files that were created in ISIS Draw, the compounds can 

be grouped together in an .sdf file. An .sdf file is the input file to Topix and is a combination of .mol 

files. An advantage of using an .sdf file is that a number of compounds can be calculated at the same 

time.  

 

3.1 Creating .sdf Files 

1. Notepad > File > Open > ‘compoundname.mol’ 

2. ‘compoundname.mol’ > Type name of compound at the top of the row of numbers/letters 

(this is to identify the compound in the output file if using multiple compounds) > Save As > 

‘compoundname.sdf’ 

If wanting to use multiple compounds in the same input file, then: 

3. Notepad > File > Open > ‘compoundname2.mol’ 

4. ‘compoundname2.mol’ > Type name of compound2 > highlight all text > Copy > Open > 

‘compoundname.sdf’ > paste > Save 

 

3.2 Obtaining Properties in Topix 

1. Topix > Load Structure File > ‘compoundname.sdf’  

2. Connectivity Parameters Tab > select check boxes > Kier-Hall  

3. Fragments Tab > select check boxes > Atom counts, bond counts, augmented atoms 

4. Calculate Descriptors 

When the calculations are complete, the output file is created and can be read in notepad, but is 

best used in Excel where the values can be copied straight into the new database of properties 

you are creating: 

5. Excel > Open > ‘compoundname.asc’ 

 

4. Creating Koc Models 

This study used statistics package Minitab v14 to build all the models, but other similar programs 

could be used. By following steps 1, 2 and 3 it should have created a dataset, with a list of 

compounds with their molecular properties; connectivity parameters; and molecular fragments.   

 

To make a predictive Koc model, the compounds will need to be sorted into chemical groups, with a 

separate predictive model for each group of compounds. All the data for that particular chemical 

group should be copied and pasted into a new Minitab document.  

 

A multiple regression model tries to find the relationship between the structural properties and Koc. 

The predictive model in Chapter 6 was built using information from a Stage 1 report for a particular 

group of compounds (e.g. Benazoles). This information also included their Koc values, as obtained 
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from a batch experiment. These Koc values were necessary to build the initial model for the 

Benazoles group. The advantage is that if there are any new compounds developed that belong in 

this chemical group, their structural parameters can be inputted directly into the model. However, 

the disadvantage is the model is chemical group specific, and if there are any new compounds 

developed that are not Benazoles, then this particular model cannot be used.   

 

It therefore recommended that the Syngenta records are researched to find structural and Koc 

information for groups of compounds in order to build up a set of models for different chemical 

groups. Based on the results of Chapter 6, it is advised that Stage 1 data is a suitable place to start 

developing a range of models.  

 

4.1 To obtain Koc value for a compound in a chemical group – e.g. FLOW CHART 1 
If a model has been created for the relevant chemical group then the appropriate structural 

properties of the new compound can be substituted into the model. This process is best done in a 

program like Excel.  

 

If a model is not available for the relevant chemical group and there is structural and Koc data 

available then a new model will have to be created, if it is anticipated that more compounds in the 

same group will be developed. See Section 4.2 

 

4.2 To build a new Koc model 

1. Minitab > Statistics > Regression > Multiple Regression 

2. Response > Koc 

3. Predictors > calculated structural parameters 

4. Parameters should be added or removed from model, one at a time in a stepwise 

process based on the p value as shown in the Minitab printout.  

Once the models have been developed then a Koc value for any new compound related to that group 

should be able to be calculated as described in Section 4.1 

 

5. Metabolite Model – e.g. FLOW CHART 2 

A model for predicting adsorption potential of metabolites has already been created (Equation 7) 

and is included with these instructions: 

 

   
 

   
           

 

 
 
 

 
           

 

 
 
 

 
          

(Equation 7) 

 

 

5.1 Calculating percentage change in metabolite properties 

 Steps 1, 2, and 3 should be followed to obtain structural properties for parent and metabolite 

compounds. The percentage change in metabolite properties relative to its parent should be 

calculated as follows: 
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((value of parent property – value of metabolite property)/ value of parent property) 

 

The new percentage change values are the variables that will be substituted into the adsorption 

potential model.  

 

5.2 Calculating the exponential equation and probabilities 

Using Excel, the equation for the adsorption potential model can be calculated for each metabolite 

using the following formula: 

 

              
 

 
 
 

 
             

 

 
 
 

 
            

 

The calculated value is then used to calculate the predicted probability, which is how the adsorption 

potential is assessed. The predicted probability can be calculated in Excel: 
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