
Durham E-Theses

Design Models for Service-based Software Application

ANJUM, MARIA

How to cite:

ANJUM, MARIA (2013) Design Models for Service-based Software Application, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7343/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7343/
 http://etheses.dur.ac.uk/7343/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Design Models for Service-based

Software Application

Maria Anjum

School of Engineering and Computing Sciences

Durham University

Doctor of Philosophy

2013

Declaration

The work in this thesis is based on research carried out in the Inno-

vative Computing Group, the School of Engineering and Computing

Sciences, University of Durham, UK. No part of this thesis has been

submitted elsewhere for any other degree or qualification. All the

work presented here is the sole work of the author unless referenced

to the contrary in the text.

This research has been documented or is related, in part, within the

publications listed below.

• Maria Anjum and David Budgen, A mapping study of the defini-

tions used for service oriented architecture, in 16th International

Conference on Evaluation Assessment in Software Engineering

(EASE) May 2012, IET Press & IEEE. Doi: 10.1049/ic.2012.0008

• Maria Anjum and David Budgen, Modelling the design for an

SOA system to control a small scale energy zone, in IEEE 36th

Annual Computer Software and Applications Conference Work-

shops (COMPSACW) July 2012, IEEE Computer Society. Doi:

10.1109/COMPSACW.2012.100.

Copyright c©2013 by Maria Anjum

The copyright of this thesis rests with the author. No quotation from

it should be published without the author’s prior written consent and

information derived from it should be acknowledged.

Dedicated to
My Mother, Khalida Nasreen Anjum

and in memory of
My Father, Mahmood Ahmad Anjum

Acknowledgements

I would like to praise and thanks to God Almighty for all the success

in this thesis in particular and in my life in general.

This research would not have been possible without the financial sup-

port of Lahore College for Women University, Pakistan under the

scheme of Faculty Development Scholarship from Higher Education

Commission Pakistan. Their generous support is highly appreciated.

I would like to express my deepest sense of Gratitude to my super-

visor Professor David Budgen for his invaluable advice, continuous

guidance and encouragement throughout the course of this thesis. I

got opportunity to learn from him and get benefit from his experience.

My sincere gratitude to Professor Philip Taylor, Dr. Neal Wade, and

Fawad Khateeb from Energy Group, Durham University. Without

their guidance and technical support it would not be possible for me

to understand this domain and construct a case in energy engineering.

I would like to express my gratitude to Professor Malcolm Munro from

Innovating Computing Group, Guy Hutchinson from Energy Group

and Jonathan Berry from Innovating Computing Group, Durham uni-

versity for taking part in the review sessions. I am highly obliged that

they participated as experts in reviews, and for their critical remarks

and valuable suggestions.

My special thanks to Professor Thomas Green and Luke Church from

Cambridge University for visiting us in Durham and sharing their

knowledge on notations.

Thanks to Muhammad Abdallah Al-Tamimi and Khalid Yousif Muham-

mad from School of Engineering and Computing Sciences, Durham

University for being great colleagues and friends.

I greatfully acknowledge the support of my colleagues and friends

Dr. Fatima Chami from Chemistry Department, and Muhammad

Aurangzeb Mughal from Anthropology Department, Durham Univer-

sity and to Syed Atif Mehdi from Technical University Kaiserslautern,

Germany. I would also like to thank Dr. Mariam Rehman from

Computer Science Department, Lahore College for Women Univer-

sity, Pakistan for being a wonderful friend.

Thanks to Ustinov College staff particularly Sarah Lee, Trevor Rus-

sell, Brian D Taylor and the porters.

Special thanks to my friends from Durham and to my international

friends I came to know during my stay in Durham University.

My deepest thanks to my family for their encouragement, love and

spiritual support during this time.

Finally, my heartfelt thanks to my mother for her love and constant

support throughout my life. I reached to this point because of her.

Abstract

Context: The use of a Service Oriented Architecture (SOA) offers

a new and distinct approach to creating software based applications

(SBAs) around the idea of integrating distributed autonomous com-

puting resources. A widely available realisation of an SOA exists in

the form of web services. However, to date no standard techniques

have emerged for developing SBAs. There is also a lack of consis-

tency in describing the concept itself, and the published literature

offers little evidence derived from the experience of developing ‘real

world examples.

Aims: The objective of the work described in this thesis was to

conduct a series of studies to explore systematically the concept of

what constitutes an SOA by using the published literature, to employ

this to construct a proof of concept SOA design model based on a

real world problem, and in doing so, to investigate how well existing

design notations are able to support this architectural style.

Method: The research described in this thesis has been conducted

in an evolutionary manner by employing a range of empirical meth-

ods. A mapping study was performed to investigate how the concept

of SOA is interpreted by the research community. Based upon this

model of SOA, a participant-observer case study was employed to

construct an SOA design model and a use case model for an energy

engineering application to demonstrate use for a real world problem.

Finally, expert knowledge was employed for evaluation of the case

study through the use of walkthroughs.

Results: From the mapping study we created an integrated model

of what constitutes an SOA for the use with the case study. The case

study outcomes include a design for a renewable energy control system

togather with codified experience of constructing and recording the

SOA design model. The experience of employing the walkthrough

method for evaluation, and the outcomes of the evaluation are also

discussed.

Conclusion: From this research we conclude that the SOA research

community needs to develop a clearer shared understanding and agree-

ment on the model of what constitutes an SOA and the vocabulary

used to describe the SOA concept. This will aid designers to com-

municate their mental models more effectively and will provide the

semantics needed for devising the new notations that this study im-

plies are needed for SBA design. Further, some lessons about SBA

design have been derived from the case study experiences.

Contents

1 Introduction 1

1.1 Context . 2

1.1.1 Architectural Style and SOA 2

1.1.2 Component Based Development (CBD) and SOA 3

1.1.3 SOA as a New Paradigm 3

1.1.4 Software Design and SOA 6

1.2 Research Objectives . 7

1.3 Thesis Structure . 9

2 Literature Review - SOA Models 11

2.1 Introduction . 11

2.2 Component based Development (CBD) 12

2.3 Service Oriented Architecture (SOA) 17

2.3.1 Software Service Model . 18

2.3.2 SOA Model . 19

2.3.3 Service Composition Process 21

2.3.4 Technical Perspective . 25

2.3.5 Business Perspective . 26

2.4 Summary . 27

3 Literature Review - SOA Design 28

3.1 Introduction . 28

3.2 Software Design Strategies . 30

3.3 Software Design Methods . 31

3.3.1 OO and Structured Design 31

vii

CONTENTS

3.3.2 Service Oriented Software Engineering (SOSE) 35

3.4 Notations and Diagrammatical Representations 38

3.5 Summary . 40

4 Research Method 41

4.1 Introduction . 41

4.2 The Mapping Study . 44

4.3 The Case Study . 46

4.4 Expert Review / Walkthrough . 48

4.5 Summary . 50

5 The Mapping Study 51

5.1 Introduction . 51

5.2 The form of a Mapping Study . 52

5.2.1 Identification of Relevant Studies 52

5.2.1.1 Search String: . 53

5.2.1.2 Selection of Time Period: 53

5.2.1.3 Choice of Electronic Databases: 53

5.2.2 Selection of Primary Studies 54

5.2.2.1 Step 1: Searching: 54

5.2.2.2 Step 2: Exclusion on title / abstract: 55

5.2.2.3 Step 3: Exclusion on full text: 55

5.2.2.4 Step 4: Inclusion on definitions: 56

5.2.3 Data Extraction . 56

5.3 Analysis . 59

5.3.1 Definition Terms and their Classification 60

5.3.2 Definition Sources . 62

5.4 Findings . 67

5.5 Discussion . 68

5.5.1 Related Work . 68

5.5.2 Answering the Research Question 69

5.6 Conclusions . 70

5.7 Summary . 71

viii

CONTENTS

6 Use Case - A Control System for a Small Scale Energy Zone 72

6.1 Introduction . 72

6.2 Case Study . 74

6.3 Use Case . 79

6.4 The SSEZ Network . 80

6.4.1 Network Configuration . 80

6.4.2 Network Operational Goals 83

6.4.3 Network Considerations 84

6.4.4 Key Factors . 86

6.4.5 Assumptions . 86

6.5 SSEZ Network Data . 87

6.6 Summary of Functional and Non-Functional Requirements 91

6.7 Summary . 93

7 SOA Design 94

7.1 Introduction . 94

7.2 Design Process . 94

7.3 Service-based Control System (SBCS) Design 102

7.3.1 Identification of functional components 103

7.3.2 Identification of potential services 104

7.3.3 Functional traceability . 104

7.3.4 Service Interactions . 106

7.3.5 Modelling static and dynamic behaviour through design

representations . 107

7.3.6 Data flow diagram (DFD) 109

7.3.7 Class Diagram . 110

7.3.8 Component Diagram . 112

7.3.9 Activity Diagram . 114

7.3.10 Sequence Diagram . 120

7.3.11 Flow Chart . 124

7.3.11.1 Scenario for assessing the current energy balance

in the SSEZ . 124

7.3.11.2 Scenario for predicted energy deficit in the SSEZ 131

ix

CONTENTS

7.3.11.3 Scenario for predicted energy condition in the SSEZ

(Figure 7.25) . 131

7.3.12 Design Decisions . 133

7.4 Discussion . 136

7.4.1 Evolution of existing Paradigms and SOA 137

7.4.2 Design and Notations . 139

7.5 Summary . 140

8 Evaluation 141

8.1 Introduction . 141

8.2 The Evaluation Process . 141

8.2.1 Walkthrough Sessions . 144

8.2.2 Interview Sessions . 147

8.2.3 Data coding and Analysis 148

8.2.4 Outcomes of the Interviews 149

8.2.5 Discussion on the use of Walkthroughs 151

8.3 Discussion on the outcomes of the Review 156

8.3.1 Requirements . 156

8.3.2 Assumptions . 161

8.3.3 Design . 162

8.3.4 Conclusion . 165

8.4 Summary . 166

9 Discussion 167

9.1 Introduction . 167

9.2 Why use a multi-method approach? 167

9.3 Related Work . 171

9.3.1 The Mapping Study . 171

9.3.2 The Case Study . 172

9.3.3 The Walkthroughs . 174

9.3.4 Use of a Multi-method Research 174

9.4 Threats to Validity . 175

9.4.1 The Mapping Study . 175

x

CONTENTS

9.4.2 The Case Study . 176

9.4.2.1 Internal Validity 176

9.4.2.2 External Validity 177

9.4.3 The Walkthrough . 177

9.4.3.1 Construct Validity 178

9.4.3.2 Internal Validity 178

9.5 Lesson Learned . 180

9.6 Summary . 181

10 Conclusion 182

10.1 Thesis Summary . 182

10.2 Research Outcomes . 183

10.3 Contributions . 185

10.4 Future Directions for Research . 186

10.5 Summary . 187

A 188

A.1 Search String . 188

A.1.1 IEEE Xplore . 188

A.1.2 ACM . 188

A.1.3 Science Direct . 188

B 190

B.1 Case Study Protocol . 190

B.1.1 Change Record . 190

B.1.2 Background . 190

B.1.3 Energy Systems . 192

B.1.3.1 Small Scale Energy Zones (SSEZ) 194

B.1.4 Design . 197

B.1.5 Data Collection . 199

B.1.6 Analysis . 200

B.2 Validity . 202

B.2.1 Study Limitations . 202

B.2.2 Reporting . 202

xi

CONTENTS

B.2.3 Schedule . 202

C 204

D 218

D.1 Use Case Related Details . 218

D.2 Network Details . 220

D.3 Possible Network Extension . 220

E 223

E.1 Review Protocol . 223

E.1.1 Change Record . 223

E.1.2 Background . 223

E.1.3 Design . 226

E.1.4 Data Preparation and Collection 227

E.1.5 Analysis . 228

E.1.6 Threats to Validity . 228

E.1.7 Study Limitations . 229

E.1.8 Reporting . 229

E.1.9 Schedule . 229

F 230

F.1 Questionnaire . 230

F.1.1 Version Control . 230

F.1.2 Requirements: . 230

F.1.3 Assumptions: . 231

F.1.4 Design: . 231

G 232

G.1 Use Case Document . 232

G.1.1 Version Control . 232

G.1.2 Use case . 232

H 235

H.1 Notations . 235

xii

CONTENTS

H.1.1 Activity Diagram . 235

H.1.2 Class Diagram . 235

H.1.3 Component Diagram . 236

H.1.4 Data Flow Diagram . 236

H.1.5 Sequence Diagram . 236

I 237

I.1 Interview Questionnaire . 237

I.1.1 Part 1: Reviewing the walkthrough process itself 237

I.1.2 Part 2: Presentation of the design 237

J 238

J.1 Summary of Responses from First Interview Session 238

xiii

List of Figures

1.1 Thesis Structure . 8

2.1 Service Oriented Architecture Model (Huhns and Singh, 2005) . . 20

4.1 Research Process for this thesis 43

4.2 Case study process . 48

5.1 Studies selection process . 55

5.2 Cases identified during data extraction 57

5.3 Service oriented Architecture Model 58

5.4 Synthesis Process . 59

5.5 Definition Source and reference year 64

5.6 Clusters of papers around definitions of SOA 66

6.1 Case Study Design . 73

6.2 Electricity Network . 81

6.3 ESCO Small Scale Energy Zone 81

6.4 ESCO Data Sources . 87

7.1 Case Study Design . 95

7.2 Part of functional refinement tree for SBCS 97

7.3 Abstract view of SBCS . 102

7.4 System Architecture Abstract View 103

7.5 Data Flow Diagram (DFD) showing an abstract view of the SBCS 109

7.6 Data Flow Diagram (DFD) of SBCS with further entities and sub

processes . 110

xiv

LIST OF FIGURES

7.7 Data Flow Diagram (DFD) with details about entities and data . 111

7.8 Data Flow Diagram (DFD) of Controller sub-processes 111

7.9 Class Diagram for service dependencies and operations 113

7.10 Component Diagram for SBCS 115

7.11 Activity Diagram showing SBCS main system flow 116

7.12 Activity Diagram providing detail of available options 117

7.13 Activity Diagram with predictions scenario 1 118

7.14 Activity Diagram with prediction scenario 2 119

7.15 Flow to access weather data . 120

7.16 Activity Diagram to show overall SBCS flow 121

7.17 Sequence Diagram with initial system view 122

7.18 Interactions among controller and prediction services 123

7.19 Interactions among controller, weather and market services 124

7.20 Overall system interaction view 125

7.21 Flow Chart Main Structure . 127

7.22 Flow Chart representing branch A 128

7.23 Flow Chart representing branch B 130

7.24 Flow Chart representing prediction Flow 132

7.25 Flow Chart representing branch A for prediction Flow 134

7.26 OO Design and Services . 138

8.1 Case Study Design . 142

8.2 Evaluation process . 143

B.1 Example of a Small Scale Energy Zone 196

B.2 Case Study Structure . 198

B.3 Process of Case Study Analysis 201

C.1 Requirements figure 1 . 205

C.2 Requirements figure 2 . 206

C.3 Requirements figure 3 . 207

C.4 Requirements figure 4 . 208

C.5 Requirements figure 5 . 209

C.6 Requirements figure 6 . 210

xv

LIST OF FIGURES

C.7 Requirements figure 7 . 211

C.8 Requirements figure 8 . 212

C.9 Requirements figure 9 . 213

C.10 Requirements figure 10 . 214

C.11 Requirements figure 11 . 215

C.12 Requirements figure 12 . 216

C.13 Requirements figure 13 . 217

H.1 Activity Diagram Notations . 235

H.2 Class Diagram Notations . 235

H.3 Component Diagram Notations 236

H.4 Data Flow Diagram Notations . 236

H.5 Sequence Diagram Notations . 236

xvi

List of Tables

1.1 A side by side view of CBD and SOA 4

1.2 A side by side view of CBD and SOA 5

2.1 Differences between Traditional and Service-oriented Systems (Lewis

and Smith, 2008) . 21

2.2 CBD Challanges and SOA . 22

3.1 The analytical framework . 33

3.2 Strengths and weaknesses of OOA methods (Iivari, 1995) 34

5.1 Summary of Selection Process . 57

5.2 SOA: Terms used and year first used in a definition 61

5.3 Interpretation of the value of κ 62

5.4 Grouping of Terms for SOA . 63

5.5 Sources of definition, year published and citation 65

6.1 Data Collection . 78

6.2 Summary of Electrical Network 82

6.3 SSEZ Demand . 82

6.4 Power from Distributed Generators 82

6.5 Network Operational Data . 88

6.6 SOC, current and future states 90

7.1 Summary of design activity . 100

7.2 SOA and Representations . 100

7.3 Functional Components (modules) 104

xvii

LIST OF TABLES

7.4 Service Role, inputs and outputs 105

7.5 Functional Traceability . 106

7.6 Functional Realisation . 106

7.7 Service Interactions . 107

7.8 Purpose, Representational forms and Viewpoints 108

8.1 Issues Identified from Walkthrough and Interviews 149

8.2 Summary of responses from second interview session 150

9.1 Empirical Methods employed in the thesis 168

B.1 Change Record . 190

B.2 Case Study Schedule . 203

D.1 Pitch angle and wind speed (Zhang et al., 2008) 220

D.2 Voltage Condition and possible current/future states 221

D.3 Relationship between voltage and SOC 221

E.1 Change Record . 223

E.2 Review Schedule . 229

F.1 Questionnaire version control . 230

G.1 Use Case version control . 232

J.1 Summary of Interview responses Table 1 238

J.2 Summary of Interview responses Table 2 239

xviii

Glossary of Terms

ADMD — After Diversity Max-
imum Demand

Defines peak load for an average customer by
calculating maximum demand, per customer
as the number of customers connected to the
network increases.

CBD — Component based De-
velopment

A software development technique that em-
phasises the use of components for the con-
struction of software applications.

CF — Capacity Factor Expresses the amount of electricity produced
by an electricity generator as a percentage
of the maximum theoretical production from
that generator.

DFD — Data Flow Diagram A graphical representation used to illustrate
the process of data flow in a system, in terms
of its inputs and outputs.

DNO — Distribution Network
Operator

Responsible for technical operations of
medium and low voltage networks that sup-
ply electricity to the customers through their
distribution networks.

DSM — Demand Side Manage-
ment

Used to plan, implement and monitor elec-
tricity utility activities that are designed to
influence customer usage of electricity in a
way that will produce desired changes in the
utility load.

EBSE — Evidence Based Soft-
ware Engineering

A process of identifying, understanding
and evaluating findings from research and
practice-based experience systematically and
objectively gathering and assessing the avail-
able evidence.

Glossary

ESCO — Energy Services Com-
pany

The company that govern and manage small
scale energy zone (SSEZ) to supply locally
generated electricity to their customers in in-
dustrial, commercial and domestic sectors.

ESU — Energy Storage Unit A unit that consists of batteries used for
power management.

Islanding A situation where a distributed generator
(DG) continues to maintain the network volt-
age and frequency to a location, within reg-
ulatory limits even after disconnection from
the power utility.

SaaS — Software-as-a-Service A software development technique that sepa-
rates the possession and ownership of software
from its use by presenting software using a
service model.

SBA — Service Based Applica-
tion

A software application constructed through
the composition of software services available
from the network or by third parties.

SBCS — Service Based Control
System

A software system used to control the activi-
ties of the SSEZ.

SLR — Systematic Literature
Review

A process of identifying, evaluating and inter-
preting available evidence about a particular
topic in an unbiased and objective manner.

SOA — Service Oriented Archi-
tecture

An architectural style used to construct ser-
vice based applications.

SOSE — Service Oriented Soft-
ware Engineering

Emphasis on the life cycle of service based
application development.

SSEG — Small scale Embedded
Generator

Micro generation of electricity through a com-
bination of generators designed to operate
with a low voltage network.

SSEZ — Small Scale Energy
Zone

A controllable low voltage distribution net-
work (LVDN) that consists of a number of
small scale embedded generators (SSEGs),
distributed energy storage units (ESUs) and
units of customer demand.

xx

Chapter 1

Introduction

Service Oriented Architecture (SOA) has emerged in the last decade as consid-

ered a new paradigm for developing distributed software applications. The key

aspects that differentiate this from previous paradigms are the loose coupling

among computational resources, interoperability between heterogeneous applica-

tions, negotiation and ownership.

The research described in this thesis investigates some of the ways in which

software applications can be designed and constructed around the concept of

an SOA. Since, SOA is relatively new area compared to previous technologies

(object oriented and component based development), the published literature on

this topic is mainly contained within the last decade, and the concepts and the

vocabulary that describe an SOA are still evolving. Likewise the techniques to

design and develop SOA based applications have not had time to consolidate on

some agreed practices.

To conduct research on an emerging area requires a clear model of the concept

and needs to establish a chain of evidence that has been constructed in a system-

atic manner. For this reason, the research described in this thesis has been carried

out as a sequence of empirical studies. In this chapter, the nature of an SOA and

related concepts are explained briefly to provide a context for the research dis-

cussed in the thesis. The chapter also explains its relevance to the challenges and

opportunities facing the development of a service based application (SBA).

The next section describes the context, section 1.2 provides the objectives of

this research, and section 1.3 summarises the structure of the thesis.

1

Chapter 1. Introduction

1.1 Context

The emergence of software service technologies and of related concepts such as

that of a Service Oriented Architecture (SOA), have provided a new and dis-

tinct approach to creating distributed systems around the idea of integrating

distributed autonomous computing resources.

The software service model also known as Software-as-a-Service (SaaS) intro-

duced by Pennine Research Group (Brereton et al., 1999) provided a long term

vision of developing software using a service model. This forms a demand-led

paradigm, whereby a requirement is fulfilled by the assembly of various services,

as and when needed. The distinguishing characteristic of this concept is that it

separates the possession and ownership of software from its use (Turner et al.,

2003; Budgen et al., 2004). More recently, the SaaS model has also been de-

scribed as a software delivery model by Laplante et al. (2008), where service is

delivered on demand over the internet. This provides an opportunity for organi-

sations to share resources in a constantly changing environment and to get paid

through either micro- or macro-billing mechanism for providing these services.

This facilitates the customers to get a desired service without employing their

own resources, which also reduces the cost of software ownership.

1.1.1 Architectural Style and SOA

Shaw and Clements (1997) have defined an architectural style as a set of design

rules that aid in identifying the type of components and connectors required to

construct a system. It can make use of local or global constraints for compo-

sition. The subsystems take the form of components which are distinguished

by the functionality they provide. The connectors are the type of interactions

that occur among components. In this regard, SOA can be considered as an

architectural style that describes components in the form of services, and where

interaction among these services can take different forms (such as request and

response messages or remote procedure calls).

The services that constitute an SOA are called atomic services. The atomic

services provide elements of the required functionality and cannot be subdivided.

These services range from performing a simple function such as a calculation,

2

Chapter 1. Introduction

to those encapsulating a complex business process. They have well-defined in-

terfaces, are self-contained and are independent of the state or context of other

services (Papazoglou and Heuvel, 2007). Laplante et al. (2008) have described

SOA as a software construction model. This differentiates SOA from the SaaS

model. As mentioned by Laplante et al. (2008), SaaS provides services for SOA

to use and SOA helps to realise the concepts of SaaS.

The focus of the research described in this thesis is on SOA. Throughout in

the thesis, any application constructed around the SOA concept is described as

a service based application (SBA).

1.1.2 Component Based Development (CBD) and SOA

The SOA concept has partly evolved from component based development (CBD).

However, it provides a more flexible approach towards distributed application

development. The similarities between both technologies have become differences

in the way they address the problem (Breivold and Larsson, 2007). Tables 1.1

and 1.2 provide a brief comparison of some key differences between CBD and

SOA.

1.1.3 SOA as a New Paradigm

Reuse and abstraction are considered important concepts in software develop-

ment. Development methodologies have encouraged reusability through empha-

sis upon modularity and on hiding the internal details, such as by making use

of the concept of information hiding introduced by Parnas (1972). Abstraction

can be used as a technique for making the essential features of a system visible

and suppressing others. In this way, it helps with reducing the complexity of

the problem (Loy, 1990). An SOA makes use of these concepts by encapsulating

the functionality as a service and by providing details in the form of interfaces

that are essential to invoke and use the service. This provides a more flexible

approach for developing applications and introduces a new layer of abstraction to

components. The way SOA based applications are developed can be considered

a paradigm shift.

3

Chapter 1. Introduction

Table 1.1: A side by side view of CBD and SOA

CBD SOA

Process (as-
sembly)

In CBD, a software application is devel-
oped by integrating components developed
by third party, called off-the-shelf compo-
nents (COTS). The components encapsulate
their architecture and implementation de-
tails. The application also need ‘glue code’
to make these components work together
(Garlan et al., 1995).

The construction of an SOA
based application treats ser-
vice publication, discovery,
selection and composition as
key elements. Composition
is a type of ‘glue code’ how-
ever, has taken a form of pro-
cess in SOA and has become
an implicit feature.

Specifications
(interface,
assumptions
etc.)

Component are different from each other in
terms of their abstraction and complexity.
Detailed specifications are required about
component interface, behaviour, possible in-
teractions with other components and about
the configuration. Also, replacement of com-
ponent needs details about functional and
non-functional features of the component.
Further, assumptions made about the ap-
plication domain, underlying infrastructure
and about individual components need to
be explicitly specified. This can remove the
potential conflicts among components (Gar-
lan et al., 1995; Crnkovic and Larsson, 2000;
Geisterfer and Ghosh, 2006).

In SOA, service descrip-
tion includes details of func-
tional, and non-functional
features. The interface de-
scription makes easy for a
consumer to discover and
select appropriate services
from a pool of services.

Interoperability The ‘glue code’ is required to make different
components work together. Components are
written in different languages and use differ-
ent platforms, therefore, interoperability has
become an issue (Garlan et al., 1995; Brere-
ton and Budgen, 2000).

Interoperability is considered
an implicit feature of SOA.
The services in an SOA en-
capsulate the implementa-
tion details, and have invok-
able interfaces that make it
platform, protocol and loca-
tion independent.

Reusability To develop a reusable component requires
three to four times more resources than de-
veloping a component that serves a partic-
ular case (Szyperski et al., 2002). Further,
a change to any component without proper
planning requires extra effort.

The services composed in
SOA based application may
be provided from new ser-
vices, legacy applications
and components wrapped as
a service.

4

Chapter 1. Introduction

Table 1.2: A side by side view of CBD and SOA
CBD SOA

Ownership
and Choice
(selection)

Components are developed by third party,
therefore, replacement of old component with
the new version makes the consumer to use
the component from the same vendor. That
limits the selection of a component and makes
the choice vendor specific and platform depen-
dent.

In SOA, service consumer has
choice to select a different ser-
vice provided by a different
service provider, each time ap-
plication is executed. This
provides more choice to service
provider and consumer when
compared to CBD.

Versioning
and Stan-
dardisation

New versions of components are released as
new changes are made in the components.
That raise the issue of compatibility between
different versions of components. Therefore,
it becomes consumers responsibility to track
these changes and modify application accord-
ingly. Further, it is difficult to standardise
components (Crnkovic and Larsson, 2000).

In SOA, service providers
keep the ownership of service
and therefore responsible of
changes made in the service.
As services are accessed on de-
mand, therefore, service con-
sumer has choice to change
service provider.

Support
and Main-
tenance

For reusable components, support is required
to: develop components for different plat-
forms, development of different variants of
components for different products; and devel-
opment and maintenance of different versions
of components for different product versions
(Crnkovic and Larsson, 2000; Brereton and
Budgen, 2000)

In SOA the change of ser-
vice interface might be an is-
sue if carried out without in-
forming the consumer. As ser-
vices make use of contracts,
this binds the service provider
to take the responsibility of
any change made in the ser-
vice.

Evolution The components in the application are config-
ured at build time by making use of tested and
known components. As system evolves and
new versions of components are made avail-
able there is usually no mechanism to detect
and install new components (Crnkovic and
Larsson, 2002).

In SOA application, service
selection and composition are
considered as a process and
application make use of this to
find and compose different ser-
vices at runtime.

Cost , qual-
ity, and
time to
market

CBD was adopted due to the reduced cost
of development, access to better resources in
terms of quality of components and rapid de-
velopment and deployment of applications.
However, lack of reusability in terms of fac-
tors discussed above have made the commu-
nity reluctant to adopt SOA concept. There-
fore, CBD and SOA are somehow evolving in
parallel.

Reusability of services pro-
vides these benefits but with
greater flexibility and indepen-
dence.

5

Chapter 1. Introduction

In the case of an SOA, a practical realisation of the concepts already exists

widely in the form of web services. However, design practices suited to developing

service based applications (SBA) are still evolving. Current efforts in SOA re-

search are largely directed towards the construction of software development life

cycles for service based applications. This is termed as service oriented software

engineering (SOSE). In this thesis we have focused on an important aspect of

SBA development, namely the logical and physical design. The reason for select-

ing design is the gap that exists in the current literature, where there is lack of

models for an SOA design process as well as of evidence about any experiences

of developing service based applications. Further, design is considered an impor-

tant part of software development, needed to produce high quality software and

to deal with the increasing complexity of software applications.

1.1.4 Software Design and SOA

Software development techniques have their own underlying philosophy and the

design methods and notations developed for these techniques aid the designers

with representing such system features. This means that designers need vocabu-

lary and a set of supporting representational forms in order to communicate their

design ideas. The absence of these, and the lack of consensus, can lead to pos-

sible misunderstandings about the concepts, or invites multiple interpretations

(Wieringa, 1998). As noted by Shaw and Clements (1997), software designers ex-

tensively use descriptive forms to explain their design ideas, and in doing so they

make use of a vocabulary that is informal, ambiguous and difficult to communi-

cate to others. Therefore, it is desirable to establish a common vocabulary that

represent shared understanding of the concepts and can be used to communicate

architectural knowledge. Their work has contributed significantly to define the

terminology of software architecture.

In a similar manner, the component community has developed some level of

agreement on the definition of a software component, such as the widely used com-

ponent definitions by Brown and Short (1997); Heineman and Councill (2001);

Szyperski et al. (2002). A recent study by Boer and Farenhorst (2008) describes

how definitions of architectural knowledge are employed by researchers, and sim-

6

Chapter 1. Introduction

ilar efforts are now required for the case of SOA. Definitions of SOA do exist in

the literature, but the lack of common understanding has caused the research

community to borrow terms from implementation technologies and often to use

the terms in an ad hoc manner. In this thesis we have sought to explore the con-

cept of SOA as described in the existing literature, and have used this to develop

an integrated SOA model as discussed in Chapter 5.

Experimental studies on how designers work indicate that they usually con-

struct ‘mental models’ of the intended system. During the process of development

they may also mentally execute the model in order to observe its behaviour (Adel-

son and Soloway, 1985; Visser and Hoc, 1990). To record and communicate their

mental models, designers make use of different representational forms (such as

diagrams). These aid them in transferring their ideas in order to construct de-

sign models. These representations or notations provide syntax and semantics to

communicate ideas and to help with refinement of a system design. They also

make use of the well defined set of concepts and terminologies offered by that

particular architectural method, for example, forms such as the class diagram are

based on object oriented concepts.

To investigate the issue of SBA design in a systematic way, this study has

identified SOA attributes from the published literature through a mapping study

and constructed an integrated SOA model; constructed a case study to represent

a significant ‘real-world’ problem; developed an SOA design model; and then

evaluated the resulting design by employing expert knowledge with regard to

both application domain and software design. The architecture of the thesis is

shown in Figure 1.1.

1.2 Research Objectives

The concept of SOA is widely employed in the creation of service based appli-

cations (SBA). In the process of exploring design literature on SOA we became

aware that the term is used rather vaguely and there are many different in-

terpretations. We also identified that there is no evidence available about the

experience of constructing SOA based application design. Further to this, the

examples used in literature are apt to be constructed artificially and be narrow

7

Chapter 1. Introduction

Mapping Study Case Study Model

Design

SOA
literature

Evaluation

Use Case
(Energy Eng.)SOA Model

Figure 1.1: Thesis Structure

in their scope. As noted by Lane and Richardson (2011), the process models and

development life-cycles available in the literature lack empirical validation and

there is no proof of their applicability in real life scenarios. Even the process

model used in service-oriented modelling and architecture (SOMA), which they

found to be quite mature when compared to other models, lacks evidence about

the claim that this model is based on the experience of developing a large number

of service based projects. Also we found that there is no evidence that there are

any standard practices available for designing applications using an SOA form.

This is also observed by Oliveira et al. (2010) who note that there is no consen-

sus about representing service-oriented architectures, and that informal ways are

used to explain the model that could be interpreted in different ways.

These findings have encouraged us to fill some of the gaps by conducting

research on SOA to systematically explore the concept, and by employing a real-

world case study, construct an SOA design model.

The main objectives of this research are therefore:

• To identify the key characteristics of a Service Oriented Architecture (SOA)

from the published literature in a systematic manner, and to investigate how

8

Chapter 1. Introduction

the term SOA is being interpreted by the research community.

• To conduct a case study based on a real-world problem. Within this, we

have used a use case model to represent the operational features of the ‘case’

we have selected from the domain of energy engineering.

• To model SOA attributes through the use of abstract diagrammatical forms

to help design the use case, and hence to determine the suitability of existing

notations for designing such systems and to identify where new forms of

representations are required.

• To evaluate the use case model and the SOA design model by employing

expert review.

1.3 Thesis Structure

The thesis is organised as ten chapters. After this introduction chapter, there are

two chapters (2 and 3) that contain background information on the research area

under investigation.

Chapter 2 provides an overview of Component based development (CBD)

and Service oriented architecture (SOA). It explains briefly the evolution and the

emerging forms of both paradigms.

Chapter 3 provides details about software design, a survey of on-going research

on the SOA based software life cycle and the issue of notations in software design.

Chapter 4 then describes the research methods used to conduct this research.

It presents the rationale for choosing these forms and how they are employed.

Chapter 5 explains the process of performing the mapping study. The chapter

describes the different phases of the mapping study including data extraction,

synthesis, results, and findings.

Chapter 6 is about the case study based upon a small scale energy zone

(SSEZ). The case study provides an introduction about SSEZ, the need for a

case study approach in this research and the way it has been used. The chapter

also describes the use case developed as part of the case study. The description

of the use case covers the requirements for the SSEZ control system in detail,

9

Chapter 1. Introduction

including SSEZ network configurations, network operational features, and SSEZ

network data that will be accessed from inside and outside of the SSEZ control

system.

Chapter 7 describes the SOA design model constructed as a part of case

study. The details from initial design model to its representation in different

diagrammatical forms are provided.

Chapter 8 explains the evaluation process through the use of walkthroughs,

including how the reviews were conducted, the lessons learned from them, and

the outcomes of the evaluation.

Chapter 9 discusses the research conducted in this thesis, and considers the

possible threats to validity.

Chapter 10 concludes the thesis, summarises the contributions, and indicates

a number of potential areas for conducting further work.

10

Chapter 2

Literature Review - SOA Models

2.1 Introduction

Reuse is an important concept in software development. This has encouraged soft-

ware community to develop new techniques for development. To achieve reuse,

modularity was introduced which is based on the well known concept of ‘separa-

tion of concern’. Structured approach achieves this by dividing a problem into a

set of functions. However, with the introduction of ‘information hiding’, the new

concept of developing software was evolved in the form of object oriented (OO)

paradigm. This changed the way of thinking of software design and development.

Instead of thinking a system as a set of functions; the ‘Object’ is considered the

main element to be focused on for developing the system. Thinking about object

means considering real world entities that have a set of attributes and associated

functions. The object oriented paradigm introduced a new level of abstraction

and was considered a paradigm shift.

Reuse has different levels from the reuse of source code to the development of

reusable software. Since software industry is evolving rapidly and softwares are

becoming more complex, it has become important to reuse the available function-

ality to develop new softwares. For this reason the concept of ‘component’ was

introduced. In component based development (CBD) a system is developed by in-

tegrating existing (or third party) components instead of building it from scratch.

CBD requires a new way of software development and reuse a large ‘chunk’ of

11

Chapter 2. Literature Review - SOA Models

system functionality. The evolved form of CBD is service oriented architecture

(SOA) that adds another level of abstraction and provides more flexibility than

CBD.

In this chapter we briefly describe CBD, how this is evolved, its limitations

that led the software community towards SOA. Further we describe SOA, its

forms and its realisation through current technologies.

2.2 Component based Development (CBD)

The objective of component based development (CBD) is to build application sys-

tems through the assembly of ready to use software components (i.e. components-

off-the shelf). By producing application systems with pre-constructed software

pieces, CBD promises the benefits of accelerated software development, reduced

costs, higher reusability, and greater flexibility (Szyperski et al., 2002). The tech-

nologies that have become standard for component development, integration,

and deployment include Enterprise Java Beans (EJB) by Sun Microsystems Inc.,

Common Object Request Broker Architecture (CORBA) by the Object Manage-

ment Group and Microsoft Corporation products that include Component Object

Model (COM), Distributed Component Object Model (DCOM) and .NET.

Sharp and Ryan (2010) have described component development and compo-

nent based system development as two separate processes. And the development

phases for the development of a component and a system based on a set of com-

ponents are different. In CBD, component is a building block and like OO devel-

opment, it is important to define what a component is. For this reason, different

definitions are being evolved within the CBD community. That shows that CBD

community has developed a shared understanding of the concept and terminol-

ogy of component. The definitions that are widely used by CBD community are

explained below.

• Brown (1997) contributed an early definition by describing component as

“an independently deliverable set of reusable services”.

• Heineman and Councill (2001) categorised a component as being “a software

element that conforms to a component model and can be independently

12

Chapter 2. Literature Review - SOA Models

deployed and composed without modification according to a composition

standard”.

• A widely used definition by (Szyperski et al., 2002) describes a component

as “A software component is a binary unit of composition with contractually

specified interfaces and explicit context dependencies only. Context depen-

dencies are specified by stating the required interfaces and the acceptable

execution platform. A software component can be deployed independently

and is subject to composition by third parties”.

• Hopkins (2000) has provided a definition that describes a component as “a

physical packaging of executable software with a well defined and published

interface”.

• Another definition in use is from (Waguespack and Schiano, 2004) that

defines a component as “an artifact of systems development, manufactured

explicitly for the purpose of being used in the construction of multiple

systems by multiple development groups”.

In the definition offered by Brown two main elements of components are dis-

cussed: one is reusable services and the other one is independent delivery of

components which means components cannot be developed with embedded de-

pendencies on one another, but that a component might have generic dependen-

cies that could be satisfied by different providers (Brereton and Budgen, 2000).

In Heineman and Councill, the emphasis is on a component model, independent

delivery as mentioned earlier by Brown and standardisation. Szyperski’s defini-

tion further stresses the need for well defined interfaces and explicitly defines the

context specific dependencies for the purpose of component composition. Hopkins

and Waguespack definitions more or less emphasise the same concepts discussed

in earlier definitions.

Apart from the efforts to define what a component is, there has also been

discussion on the type and nature of the components. Brown et.al, (1998) have

divided components into two categories: abstract and off-the-shelf. CBD with

abstract components requires new methods and tools for design, development

13

Chapter 2. Literature Review - SOA Models

and integration of components. This represents a ‘white box’ form of compo-

nents where the design focus is on the collaboration of interfaces to understand

system architecture and enables reuse and replacement of implementations that

conform to the interface specifications. For systems developed with off-the-shelf

components, there is a need for new techniques of application assembly. Such

components can be considered as black box as there is limited or no access to

their internal design, and functionality.

Carney and Long (2000) has categorised components on two axes: origin and

modification. Component origin means how the components were developed at

first place and represents the commercial point of view. The five possibilities

about component origin are listed below.

• Independent commercial item

• Custom version of a commercial item

• Component produced to order under a specific contract

• Existing component obtained from external sources (for example, a reuse

repository)

• Component produced in-house

The modification axis is about the type of ‘glue code’ that is required for com-

ponents composition and represents the technical aspect. This includes following

options:

• Very little or no modification

• Simple parametrisation

• Necessary tailoring or customisation

• Internal revision to accommodate special platform requirements

• Extensive functional recoding and reworking

14

Chapter 2. Literature Review - SOA Models

Carney and Long (2000) article on COTS not only provides clarity about the

acronyms that exist for components, but also their categorisation using origin and

modification helps with understanding the complexity of the component based

system design and integration mechanism.

The issues of CBD are discussed in detail by (Brereton and Budgen, 2000).

Their focus is more on development issues of component systems without going

into the debate of architectural forms of such systems and their implementation.

The issues are discussed through a framework that is based on five functional

areas (software product, software process, business and people or skill) which

are mapped to the viewpoints of three key stakeholders (component providers,

component integrators and integrated system customers) that they identified for

such systems. The research emphasises the need for further work in the direction

of component evaluation, maintenance, integration of technical and commercial

factors and composition rules to build component based systems. In addition

to this, according to Brereton and Budgen (2000) while moving towards CBD

based development, the software development process needs to integrate the new

concepts of selection, evaluation, and integration into its development process.

CBD gained popularity because of the concept of reusable components. Fur-

ther elements that contributed towards the acceptability and adoption of this

development style were low cost, less development time, efficient development,

enhanced product reliability, reduced maintenance, portability, flexibility and

easy access to best resources. CBD research community continues to put ef-

fort into finding solutions that will reduce the risks associated with this type of

development. The challenges that are still open in CBD are:

Reuse: Reuse principles place high demands on reusable components. The com-

ponents must be sufficiently general to cover the different aspects of their

use. At the same time they must be concrete and simple enough to serve a

particular requirement in an efficient way. However, developing a reusable

component requires three to four times more resources than developing a

component (Szyperski et al., 2002). This is because the requirements of the

components are usually incomplete, not well understood (Sommerville and

Kotonya, 1998) and bring additional levels of complexity.

15

Chapter 2. Literature Review - SOA Models

Versioning: In a component based system, components are configured at design

time with known and tested versions of components. However, problems

arise when new versions of a component come. In such case, a system based

on components needs to know about the new versions and how to replace

previous one with new one. A component can be replaced easily if it is

compatible with its previous version. Compatibility issues are relatively

simple when changes introduced in the products are in the nature of main-

tenance and improvement only. Using appropriate test plans, including

regression tests, functional compatibility can be tested to a reasonable ex-

tent. More complicated problems occur when new changes introduced in a

reusable component eliminate the compatibility (Vitharana, 2003). In such

a case, additional software, that can manage both versions, are required to

be written (Crnkovic and Larsson, 2002).

Component Selection: For all technologies, component definition is usually

limited to syntactic specification of interfaces. There is no support for

semantic specification of software components (Teiniker et al., 2005). Sig-

nificant progress in the advancement of the component-based paradigm will

probably not occur without successfully addressing selection and reuse. The

issues related to replacement of software components (considered as primary

driver for CBSE) are also closely related to the issues involved in selection

and reuse (Geisterfer and Ghosh, 2006).

Component Assembly: There is no support for nested component composition

where components can be composed to construct subsystems and further

embedded into another component (Teiniker et al., 2005). Architectural

mismatch discussed by Garlan et al. (1995) is another important factor

that makes it difficult to write ‘glue code’ for components.

Portability: All current server component technologies (EJB, COM/DCOM,

CORBA etc.) have a strong interdependency between their component

model and either the used platform, programming language or middleware

technology (Teiniker et al., 2005).

Development Environment: When developing reusable components, several

16

Chapter 2. Literature Review - SOA Models

dimensions of the development process need to be considered that include

support for development of components on different platforms; support for

development of different variants of components for different products; sup-

port for development and maintenance of different versions of components

for different product versions. To address these types of problems, develop-

ment environment support is essential (Crnkovic and Larsson, 2000).

Standardisation: There are a number of models proposed for component stan-

dardisation but not enough work has been done in this direction. There

is the possibility of interoperation between EJB, COM/DCOM/.NET, and

CORBA infrastructures, however, there is no significant progress for the

emergence of a united component infrastructure (Duan and Yuan, 2007;

Mahmood et al., 2007).

Visual Modelling and design: Despite limited success with extending the Uni-

fied Modelling Language (UML) for component modelling, visual modelling

of CBD with different component infrastructures remains one of the most

difficult and challenging subject in CBD (Duan and Yuan, 2007). The is-

sue of component based system design is still open (Szyperski et al., 2002)

and OO techniques are still mainly used to develop components (Vitharana

et al., 2003).

Although research on the above issues is still going on, the bottlenecks in CBD

have encouraged the software community to devise new development techniques,

such as the concept of software services.

2.3 Service Oriented Architecture (SOA)

SOA is an emerging paradigm that is being widely advocated for software devel-

opment. It can exploit the power of the internet and of grid systems to provide

an alternative and distributed approach to the traditional way of designing, de-

veloping and implementing monolithic software applications. As an architectural

paradigm, it integrates the resources provided by multiple applications that may

be owned by others, and that may use quite disparate technologies and platforms.

17

Chapter 2. Literature Review - SOA Models

Compared to traditional distributed object-oriented architectures, SOA is better

able to integrate heterogeneous systems, and is potentially more adaptable in

a changing environment. It uses software service technology as a fundamental

framework for the design and development of applications.

SOA has attracted the attention of industry and academia because of its

features of loose-coupling, reusability, and interoperability (Lewis and Smith,

2008). Indeed, one of its attractions for commercial purposes is the potential to

re-deploy legacy systems within a ‘service wrapper’. The concept of SOA has

been implemented in various technologies and applied in several domains. It

is considered as representing a paradigm shift from object oriented (OO) and

distributed computing (DC) (Cotroneo et al., 2004). It can also be considered

as having roots in some earlier forms of distributed technology such as DCOM /

CORBA (Chen et al., 2006).

In a service oriented architecture, a system is decomposed into smaller parts

(components/modules) that are able to provide the required functionality by

employing a number of services.

2.3.1 Software Service Model

In software service model, a system is built through the use of autonomous, dis-

tributed computation elements which are self contained and can be combined on

demand (Budgen et al., 2004; Prinsloo et al., 2006). This concept is also known

as software-as-a-service (SaaS). Brereton et al., (1999) introduced the concept of

SaaS in which services are composed out of smaller ones (and so on recursively),

procured and paid for on demand. The idea they presented was to deliver and

consume software as services with a long term vision for software evolution. The

concept was elaborated and used in Web service conceptual architecture by IBM.

IBM and Microsoft focused primarily on technical solutions where as SaaS re-

search was using a market led approach (Zhu et al., 2004).

In the SaaS model, services have the following three properties;

• Being used rather than owned, with no significant processing needing to be

performed by a user.

18

Chapter 2. Literature Review - SOA Models

• Conforming to a document-style interface, making a service independent of

programming language constructs for interconnection and data exchange:

• Being stateless, in the sense of not preserving end user knowledge across

different episodes of use.

SaaS focuses on separating the possession and ownership of software from

its use. In this way it would open up new markets, both for relatively small-

scale specialist-services providers and for larger organisations that provide more

general services (Turner et al., 2003).

Currently, SaaS is generally linked to cloud computing (Cusumano, 2010) and

research work on SaaS applications is more focused on single instance multi-tenant

models (MTAs) which are best known in terms of cloud computing (Schroeter

et al., 2012). Multi-tenancy refers to a principle where a single instance of the

software runs on a server, serving multiple client organisations (tenants). With

MTA, a software application is designed to virtually partition its data and config-

uration, so that each client works with a customised virtual application instance.

Although all tenants share the same software, they feel like they are the sole user

of the software(Tsai et al., 2010).

Both the SOA and SaaS, concepts are based up on demand-led composition

of services which we regard is the most important aspect of this new paradigm.

According to Laplante (2008) despite their significant differences, SaaS and SOA

are closely related architectural models for large-scale information systems. Using

SaaS, a vendor can deliver a software system as a service. Using SOA enables

the published service to be discovered and adopted as a service component to

construct new software systems, which can also be published and delivered as

new services. In other words, the two models complement each other: SaaS helps

to offer components for SOA to use, and SOA helps to quickly realize SaaS.

2.3.2 SOA Model

The software service model provides specific functionality across a network and an

SOA is a structure that combines individual elements of functionality to provide

an overall system. Each service is essentially autonomous and so the process of

19

Chapter 2. Literature Review - SOA Models

composition can involve short-term or long-term negotiations for service provision

between the ‘supplier’and the ‘consumer’. Further to this, in SOA, services can

be made available by different service providers (meaning that they can have

different ownership), and their functionality is published through well-defined

interfaces in such a way that they can be discovered and composed to provide

functionality to other services, systems or end users.

A general service model used to explain SOA is shown in Figure 2.1. The

interaction model consists of three-elements that are: service providers, service

requesters, and registries that are used for service discovery (Baresi et al., 2003).

The interactions among these entities are through the publish, find and bind

operations.

Registries
Service Discovery

Service
 Description

Service
Requester

Service
Provider

Find Publish

BindClient

Figure 2.1: Service Oriented Architecture Model (Huhns and Singh, 2005)

The service providers publish their service descriptions in service repositories

or registries. Service users search these repositories to find their required services.

Once a user finds a particular service, it is possible for them to directly negotiate

with the provider to agree on terms and then invoke the service (Schuschel and

Weske, 2004). The three basic functions that must therefore be supported in an

SOA are:

1. Describe and publish services

2. Discover a service

3. Negotiate with a service provider and consume the service.

20

Chapter 2. Literature Review - SOA Models

The development of SOA based applications involve different activities that

are different from tradition development models. Lewis and Smith (2008) have

provided a comparison between traditional and service oriented system that is

shown in Table 2.1.

Table 2.1: Differences between Traditional and Service-oriented Systems (Lewis
and Smith, 2008)
Traditional Systems Service-oriented Systems
Tight coupling between system com-
ponents

Loose coupling between service con-
sumers and services

Semantics shared explicitly at design
time

Semantics shared without much com-
munication between developers of con-
sumers and services

Known set of users and usage patterns Potentially unknown set of users and
usage patterns

System components owned by the
same organisation

Systems components potentially
owned by multiple organisations

The most significant advantage of SOA when compared to CBD is that it

embodies loose coupling among services. Once a service is discovered, the user

is not required to have any detailed knowledge of its location, implementation,

implementation language, or execution platform. The only concerns of the user

are to renegotiate (or agree) terms of use and to determine how the service can

be invoked through a service interface (Chen et al., 2006). The CBD challenges

discussed in section 2.2 are discussed here with respect to SOA in Table 2.2.

2.3.3 Service Composition Process

Service composition is a process in which a business process is constructed by

integrating a set of atomic services. An atomic service is one that provides some

functionality (that can be a simple formula calculation, business function, a search

process etc.) and that can not be divided any further into smaller services,

meaning that it is the lowest level of service provision. The composition process

is similar to the traditional work flow model. Activity, control flow and data flow

are the basic elements of composition process. Activities correspond to certain

operations carried out by atomic services. Control flows describe the dependency

21

Chapter 2. Literature Review - SOA Models

Table 2.2: CBD Challanges and SOA
CBD Challenges SOA
Reuse SOA offers loose coupling among services that provides

flexibility and makes it easy to reuse the functionality.
Versioning There is no need to keep information about different ver-

sions as services remain under the ownership of service
providers. However, if service interface changes with-
out prior information then consumer has to manage the
change. But there is no compatibility issues.

Component selec-
tion

In terms of specifications, in SOA, service interfaces are
well defined and there is no issue of service replacement
as we have in CBD.

Component assem-
bly

In SOA, higher level services can be composed of lower
services.

Development envi-
ronment

SOA is platform independent and provides interoperabil-
ity. However, tools to develop SOA based applications
are still evolving.

Standardisation It is important for CBD but for SOA it is not critical.
Visual modelling
and design

SOA is also facing this challenge.

relations among the activities, that is, the time sequence that the basic services to

be carried out. Data flows describe the data transformation between the activities

(Qing-Ming et al., 2009).

The process of service composition can be divided into different activities

which are discussed below.

• Service description and publication: provides the basis for matching user

needs to available services; and describes functionality, interfaces, non-

functional characteristics and constraints, as well as describing the param-

eters within which both the provider and the user are willing to negotiate.

• Service discovery: is used to locate appropriate services, resulting in a list

of candidate services and their providers. Service discovery employs match-

ing techniques to select services by comparing their descriptions against

user constraints. Service discovery enables suitable services to be located

based on functional requirements, non-functional requirements or both. A

22

Chapter 2. Literature Review - SOA Models

service discovery approach is either syntactic-based (where descriptions are

represented as a set of strings and “string matching” is used) or semantic-

based (where ontological relationships are used to perform mappings be-

tween terms of user requests and service descriptions) (Gooneratne and

Tari, 2008).

• Service selection: involves identifying, appropriate services from the list of

discovered services. If more than one service is providing the same func-

tionality, then QoS and user preferences can be used to select the most

suitable service to fulfil the requirements. In the case of a dynamic envi-

ronment, service selection and re-selection (in case of failure) will need to

be performed at runtime.

• Service negotiation: is a process of interaction between the user and one or

more service providers, with the aim of agreeing the terms and conditions

for the supply of a service.

• Service integration and execution: At this stage, a complete plan is gen-

erated that describes how to call atomic services to obtain the overall be-

haviour of a business function (Agarwal et al., 2008). A process is designed

that defines the order of service interaction and execution. By combining

and linking services, the process shows the control and data flow from one

service to another.

The process can be constructed statically, or (semi/fully) dynamically. In

static composition the process model is created manually and service bind-

ing is done at design time. Workflow-based methods (Rao and Su, 2004)

come in this category. Workflow based service composition explicitly de-

fines the control and data flows among services. Standards such as BPEL,

BPEL4WS, XLANG, WSFL, BPML and WSCI can be applied to define the

workflow models. However, these models are based on static composition

and do not support dynamic adjustment of the workflow to create a better

fit to the requirement (Zhao and Tong, 2007). By adding semantics for

service interfaces, usually with the help of OWL-S, more information a can

be added to a service description (Fujii and Suda, 2005). This approach is

23

Chapter 2. Literature Review - SOA Models

called semi-dynamic composition. In dynamic composition, process model

is created automatically and service binding is done at runtime. For this,

AI and agent technology are used.

Many factors are involved at different stages of service composition process.

For example, in service publication an important consideration can be that of

representing service features and defining the way that services can be listed

in the registry, so they can be found during the selection process. The selection

criteria for candidate services may involve QoS features and user preferences; and

an execution process that defines the order in which services are to be executed

(either through runtime planning or predefined workflows) according to a business

process, by considering data and functional dependencies among services. There

are further issues (like time of execution, cost, fault-tolerance, self configuration

etc.) that are associated with the composition process, and that depend upon

the techniques used.

In SOA based systems, service providers, service brokers and service con-

sumers are the main stakeholders (Gu and Lago, 2007) and thus they have a

direct impact on the selection of service composition technique and implementa-

tion technology.

Service consumers (either end-user, other system or service, or service provider

itself) can affect the way services are published and selected, and at the same time,

their agreement or disagreement on the end result in terms of non-functional fea-

tures (accuracy, time, and cost) can effect the composition process. In addition,

the negotiations and contracts with service providers (a company, another system,

website etc.) can effect the selection of a particular service and its availability at

run time.

In some situations, service level agreements (SLAs) are used by service providers

and consumers to provide a contract for a particular level of service quality. These

SLAs have to be defined, monitored and enforced so that service functionality

and data can be predictably and contractually delivered between the providers

and users. For both providers and users it is important to understand and map

business drivers to quality attribute requirements and to clearly articulate these

in the SLAs. Equally important is to have processes to monitor the quality of

24

Chapter 2. Literature Review - SOA Models

the service provided and to define policies that deal with situations where the

contracted level of service is not met (O’Brien Lero et al., 2007).

However, the limitations of current solutions and tools can effect the decision

making process and restrict service providers and consumers to making compro-

mise solutions.

2.3.4 Technical Perspective

In terms of technology used to realise SOA, web services are widely considered to

be the most suitable technology for implementing an SOA (Harrison and Taylor,

2005; Papazoglou and Heuvel, 2007). According to Baligand and Monfort (2004),

although web services are not the only way to model the service paradigm, they

are one of the major technologies that can provide both the interoperability and

loose coupling required for an SOA. However, SOA based applications can be im-

plemented using other technologies such as message-oriented middleware (MOM)

(e.g. IBM Websphere MQ), publish-subscribe technologies (e.g. Java Messaging

Service (JMS)), and Common Object Request Broker Architecture (CORBA)

(Lewis and Smith, 2008).

Two core themes exist to implement web services: XML based technologies

and more recently Representational State Transfer (REST).

• Web services exploit XML and internet technologies to integrate applica-

tions. Three key XML-based standards have been defined to support Web

service deployment: Simple Object Access Protocol (SOAP), Web Services

Description Language (WSDL), and Universal Description, Discovery and

Integration (UDDI). WSDL provides a description framework for web ser-

vices and is primarily aimed at service invocation. UDDI offers a registry

service that allows advertisement and discovery of Web services. SOAP

provides a standard way to structure messages that can be carried over a

variety of transport protocols with HTTP being the most frequently used

one (Korotkiy and Top, 2006).

• Representational State Transfer (REST) is another way to provide web ser-

vices. REST was originally introduced as an architectural style for building

25

Chapter 2. Literature Review - SOA Models

large-scale distributed hypermedia systems. The REST architectural style

is based on four principles: identification of a resource through its URI;

uniform interface using a fixed set of four operations create, read, update,

delete; self-descriptive messages in a variety of formats (e.g., HTML, XML,

plain text, PDF, JPEG, etc.) and interaction through stateless messages

(Pautasso et al., 2008; Lewis and Smith, 2008)

2.3.5 Business Perspective

To run and manage SOA applications, an organisation needs an SOA infrastruc-

ture. An SOA infrastructure consists of several elements that support the main

aspects of SOA including security, governance, management, orchestration and

resourcing (e.g. virtualisation) (O’Brien et al., 2008). In general, it is recognised

that SOA adoption can provide benefits for business agility, adaptability, legacy

leverage, and integration with business partners. Given these potential results, an

important criterion for making business decisions concerns the amount of invest-

ment that is required for SOA adoption and the projected pay-off over a certain

period of time. Current efforts have focused on individual case studies and there

have not been any rigorous analyses that can be generalised (Kontogiannis et al.,

2008).

SOA governance focuses on the smooth adoption and successful operation of

an SOA as the enterprise architecture in a company. By providing guidelines,

responsibilities, and reference processes, it ensures its integrity and adaptability

to business and administration processes (Niemann et al., 2009). It involves the

techniques and processes to model policy, risk, and trust, and to ensure that a

service acts on requests that comply with claims required by policies (Kontogian-

nis et al., 2008). A number of organisations such as IBM, AgilePath and Software

AG have developed sophisticated models of SOA governance. These models focus

mostly on its relationship to corporate enterprise architecture, use of registries,

SOA life cycle management, defining and monitoring service level agreements,

and defining and analysing metrics on policy enforcement, effectiveness of ser-

vices and use of services. Most efforts to define and implement governance are

still vendor-driven and are focused upon by those governance aspects that can be

26

Chapter 2. Literature Review - SOA Models

automated by their tools (Kontogiannis et al., 2008).

SOA governance includes policies, procedures, roles and responsibilities for

design-time governance and runtime governance. Design time governance ensures

that services meet the business objectives that they are meant to serve. Runtime

governance ensures that services are being provided and consumed in a consistent

fashion (Lewis and Smith, 2008).

2.4 Summary

Paradigm shifts introduce change in the way softwares are developed. This change

includes the way of thinking towards software development and requires new

methods and tools to realise these changes. From functions to objects and from

components to services, reuse and information hiding are the main concepts that

are causing these paradigm shifts. Service Oriented Architecture (SOA) is evolved

from component based development (CBD). For CBD, the idea was to promote

reusability, in order to reduce development time and to use ‘off the shelf’ com-

ponents to deliver software. However, the challenges in CBD have encouraged

researchers to find forms that are flexible enough to handle all these issues, and

the concept of the software service is essentially one of these.

The concept of component and service share a common development model

where (component/service) development and assembly are performed by differ-

ent actors and can take place at different locations. Since services focus on other

aspects of development such as dynamic discovery and negotiation that are gen-

erally not explicit considerations for components (Cervantes and Hall, 2005).

Developing a service based system is therefore a different task from that of

using previous software development technologies, especially those developed for

the object-oriented paradigm. In OO there is usually no issue of ownership, hence

no contracts and negotiations.

As noted by Sharp and Ryan (2010) for components, the development of

services and the SOA based system are two different things. Both need new

techniques and tools for design and implementation.

27

Chapter 3

Literature Review - SOA Design

3.1 Introduction

In this chapter we explain software design in general and techniques in particular.

From literature on software design, we identify that design makes use of two im-

portant concepts: abstraction and modularity. Abstraction facilitates to reduce

system complexity and modularity allows reusing system functionality. Further,

modularity is considered an important feature for achieving reusability. Although

choosing the right level of abstraction is non-trivial and involves complex trade-

offs (Wagner and Deissenboeck, 2008). The better a designer can predict what

is likely to change in future; the easier it will be to change a module at later

time without effecting other modules. The accepted criteria for making design

decisions about modularity are derived from the concepts of separating compu-

tation from representation, preferring composition over inheritance and reducing

coupling (Van der Hoek and Lopez, 2011).

Design theories usually form up around “separation of concerns” mentioned by

Dijkstra (1976) and the concept of information hiding defined by Parnas (1972).

The focus is to reduce dependency between modules, to hide the complexity and

the internal functionality from others. This is particularly import today when

software systems are large and more complex.

These concepts have made the software community to make use of different

techniques to develop systems such as structured, object oriented, component

28

Chapter 3. Literature Review - SOA Design

and more recently service based application development. These techniques dif-

fer from each other because of the concepts we mentioned earlier and also due to

the approaches they used to solve the problem. Loy (1990) has mentioned these

approaches as a different way of thinking about a problem. In structured devel-

opment a problem is divided into a set of functions and subroutines and programs

are developed to realise this. He named it a ‘functional paradigm’ also known

as top down approach of problem solving. However, in case of object oriented

development, the problem is analysed in terms of objects and classes. Further

it introduces new level of modularity and provides concepts such as inheritance,

and encapsulation. Therefore, the way system is developed using OO technique

is different. This is called a bottom up approach.

Apart from knowing about development techniques, software design activity

requires a set of tools and notations (text, tables, and diagrams). These aid

the designer to represent system features and to communicate his ideas that

exist in the form of mental models. That is why, designers make use of sketches

and box and line diagrams to express the models constructed in their minds.

Software design studies discuss this in terms of design thinking where focus is

on the cognitive aspects, how mental models and mental simulations are created

(Guindon and Curtis, 1988; Kim and Lerch, 1992). Further the analysis of design

activities and design process through observation of expert and novice designers

in real situations (Adelson and Soloway, 1985; Guindon, 1990b; Visser and Hoc,

1990; Reeves et al., 1995; Pohthong and Budgen, 2001; Petre, 2009).

While designing a software system, a number of factors contribute that include

knowledge of the application domain, of software architecture, design methods,

experience, and the support for tools and notations to express design solution

and design concepts (Guindon, 1990b).

In this chapter we will briefly explain software design strategies, design meth-

ods such as structured, object oriented and the use of notations in software design

largely in terms of diagrammatical forms.

29

Chapter 3. Literature Review - SOA Design

3.2 Software Design Strategies

The theory on software design strategies has largely been derived from observa-

tional studies. Visser and Hoc (1990) has divided design strategies into different

categories such as top-down and bottom-up, breadth-first and depth-first, and

opportunistic. These strategies are discussed below.

• Top-down and bottom-up Strategy: The top-down approach begins from

most abstract level down to the lowest and concrete level. This strategy

is strictly used only when problem is familiar and a solution is similar

to a previous one (Visser and Hoc, 1990). In other words, this strategy

is suitable for well-structured problems where designer already knows the

correct decomposition (Guindon, 1990b). In the bottom-up strategy the

problem is approached by concentrating on small chunks of system elements

and then they are integrated to construct larger elements (Mayrhauser and

Vans, 1995).

• Breadth-first Strategy: The breadth-first strategy is used in combinations

with a top-down strategy. The solution takes the form of a tree and at each

level; information is maintained at equal level of detail (Visser and Hoc,

1990). Further, it ensures that the information about current state of design

at one level of abstraction will be available to the next iteration (Anderson,

1981). Adelson and Soloway (1985) named it as balanced development.

• Depth-first Strategy: Instead of keeping all branches at the same level of

details, in depth first strategy, some branches are constructed more in detail

and others are handled afterwards (Visser and Hoc, 1990).

• Opportunistic Strategy: In this case, a mixed approach is used based on the

previous strategies, on designer’s experience and knowledge of design and

application domain. Further, in opportunistic design strategy, the decision

at given level of abstraction may influence the subsequent decisions at higher

or lower level of abstractions (Guindon, 1990a).

Design is a creative process, involves decision making, deals with uncertainty

and is constrained by a number of factors. The design progresses non- linearly

30

Chapter 3. Literature Review - SOA Design

and involves the exploration of both breadth and depth of the problem. The

known design problems are tend to be explored in opportunistic fashion as op-

posed to entirely novel design problem, which tend to involve the exploration of

alternatives (Van der Hoek and Lopez, 2011).

Design strategies adopted by designers vary from domain to domain and from

one development technique to another. The studies of software design practiced

by designers reveal useful strategies that designers make use of and the charac-

teristics essential to design process. They make use of provisionality and juxta-

position to explore alternatives and maintain awareness about options. For this,

they intentionally change paradigms, formalism and representations to change

the perspective. Further they avoid tools that impose restrictions and restrict

them in expressing their ideas. However, they need tools that support conceptual

design and provide conceptual design visualisations (Petre, 2009) .

3.3 Software Design Methods

The software design methods such as structured, object oriented, and services are

explained in this section.

3.3.1 OO and Structured Design

New technologies arise the need of new methodologies for software development.

Moving from structured development towards object oriented (OO), brought

many changes in the way softwares were analysed, designed and developed. The

survey like computer survey paper by Wieringa (1998) on the comparison of both

methodologies: structured and OO, provides some insight how the need for new

concept representation was addressed through new methodologies and the way

structured methodologies were revised to fill the gap.

The debate on either previous methodologies are sufficient to address new

needs is always there in software community. In their comparison on OO and

structured methodologies, Fichman and Kemerer (1992) referred to Yourdon’s(1987)

categorisation of OO methodologists as revolutionaries and synthesists, where the

first group believed that OO was a radical change and needed new methodologies

31

Chapter 3. Literature Review - SOA Design

and the second group considered it a set of principles that could be embedded in

existing methodologies. Further to this discussion, Fichman et al. (1992) quoted

both Booch as well as Coad and Yourdon’s stances on OO:

“ Let there be no doubt that object-oriented design is fundamentally differ-

ent from traditional structured design approaches: it requires a different way of

thinking about decomposition, and it produces software architectures that are

largely outside the realm of the structured design culture (Booch).”

“ We have no doubt that one could arrive at the same results [as Coad and

Yourdons OOA methodology produces] using different methods; but it has also

been our experience that the thinking process, the discovery process, and the

communication between user and analyst are fundamentally different with OOA

than with structured analysis (Coad and Yourdon).”

The comparison of structured and OO methodologies by Fichman et al., (1992)

is in two parts. One deals with the comparison of six (three conventional and

three OO) analysis methodologies, and other with five (two conventional and

three OO) design methodologies. The comparison uses 11 modelling dimensions.

The design methodologies used in the study include:

• Yourdon and Constantine structured design

• Martin information engineering design

• Wasserman et al. object-oriented

• Booch object-oriented design, and

• Wirfs-Brock et al., responsibility driven design.

Fichman et al., concluded that object oriented design (OOD) is a radical

change from both process and data oriented methodologies. The dimensions

that need to be addressed by OO community and that are not supported in

structured design are the detailed definition of classes and inheritance, class and

object relationships, encapsulated operations and message protocols. Further to

their analysis, the method of decomposition of modules in both methodologies is

different. In structured analysis the view is function-oriented and modules such

32

Chapter 3. Literature Review - SOA Design

as programs, sub routines and functions only contain procedural code. Whereas

in OO, object that bundles methods and data, is a primary unit of modularity.

Iivari (1995) compared six OO analysis methods on three modelling perspec-

tives: structural, functional and behavioural. The analytical framework is re-

ferred in Table 3.1.

Table 3.1: The analytical framework
individual object community

Structure object, object class/type,
Attribute

Relationship, In-
heritance, Compo-
sition/aggregation,
Subsystem

Function Method/operation/service
Behaviour State transition message/request

The study identified the strength and weaknesses of these methods along with

the identification of the problem areas. The study found that the methods were

similar with respect to structural modelling but quite different in their functional

and behavioural modelling. Table 3.2 provides a brief summary of the findings.

The study also concludes that the OO methods are weak in guidelines to

partition the system into subsystems. It argues that the mechanisms for modelling

desired functional and behavioural capabilities at the level of the whole system

are essential for OO.

(Wieringa, 1998) described system properties in terms of functions, commu-

nications and behaviour. These properties were used to conduct a survey of

structured and OO software specification methods. The techniques were clas-

sified using the specification of external interaction and internal decomposition.

The external interaction techniques where then further subdivided into functions,

communications and behaviour. The study stresses on the need of simplicity in

diagram techniques and the use of formal semantics to define them. The proper-

ties used to analyse specification techniques were:

• Functional specification techniques

• Behaviour specification techniques

33

Chapter 3. Literature Review - SOA Design

Table 3.2: Strengths and weaknesses of OOA methods (Iivari, 1995)
Method Strength Weakness and problems
Coad and Your-
don

Conceptual simplic-
ity A streamlined
process

Little attention to the function-
ality and behaviour of objects.
The concept of ‘subject’ as a sub-
stitute for ‘subsystem’.

Jacobson et al., ‘Use cases’ as
functional and
behavioural ab-
stractions, Object
categories

Little attention to the function-
ality and behaviour of individual
objects. An unconventional way
of modelling relationships Insuf-
ficient instructions. (e.g. inte-
gration of use cases)

Martin and Odell A rich set of concepts
for behaviour mod-
elling

Modelling attributes Poor in-
structions (especially on how to
proceed from behavioural mod-
elling to structural modelling)

Rumbaugh et al., Balanced attention
to the three per-
spectives (structure,
function, behaviour)
Object modelling
Generally good
instructions

The perspectives are not clearly
integrated. Little attention to
’subsystems’. No enforcement
of encapsulation in the sense of
data hiding.

Shlaer and Melior Balanced atten-
tion to the three
perspectives ‘Do-
main’ analysis and
‘sub-system’ analysis

Information model based on the
relational model. No support
for complex objects. No en-
forcement of encapsulation in the
sense of data hiding. Somewhat
insufficient instructions (e.g. do-
main integration and object life-
cycle derivation)

Wirfs-Brock et al., Early attention to
the behaviour of
object communities
(collaborations)
The concept of
‘subsystem’

No explicit concepts for at-
tributes, relationships and com-
plex objects. Unclear bound-
ary between OOA and OOD. Ne-
glect of the internal behaviour of
objects. Complexity of the pro-
cess.

34

Chapter 3. Literature Review - SOA Design

• Communication specification technique

• Decomposition specification technique

3.3.2 Service Oriented Software Engineering (SOSE)

In the literature, the software development life cycle (SDLC) is discussed for both

structured and OO development, the same effort is now needed for the develop-

ment of SOA based applications which is termed as Service Oriented Software

Engineering (SOSE).

SOSE (Tsai, 2005) is a term introduced to bring the new features of SOA,

such as identifying, discovering and composing services, into traditional software

engineering activities (like coding, testing and deployment) (Gu and Lago, 2011).

The basic engineering principles remain the same, but the way that they are

applied are different in SBA development. Specifically, in SBA, most engineering

tasks require to be performed at runtime in a collaborative manner. Because

systems are composed at runtime using existing services, many engineering tasks

need to be performed without complete information, which makes SOSE different

from traditional software engineering (Tsai, 2005). In the literature, different

SOSE methodologies have been proposed, for which the focus is on different

aspects of SBA development. Some of these techniques are listed below:

• SOSE methodology (Karhunen et al., 2005) aims at developing methods

and tools to improve quality and profitability of software development. The

framework is based on

1. business, service-oriented and component-based development features;

2. it focuses that the first activity in developing SBA applications should

be the creation of business case to justify project implementation;

3. creation of a design model by focusing on communication and integra-

tion of service components.

By combining component-based and service-oriented development, the SOSE

component model provides three level of granularities: system level compo-

nent (SLC), business service component (BSC), and component level.

35

Chapter 3. Literature Review - SOA Design

• (Erradi et al., 2006) have developed Service Oriented Architecture Frame-

work (SOAF), an architecture-centric framework. The proposed framework

is business process-centric and is comprised of a set of structured activities

grouped in five phases (information elicitation, service identification, service

definition, service realisation and road map & planning). It incorporates

a range of techniques and guidelines for systematically identifying services,

deciding service granularity and modelling services while integrating exist-

ing operational/legacy systems.

• The method developed by (Papazoglou and Heuvel, 2006) for service-oriented

analysis and design is based on the rational unified process (RUP), component-

based development (CBD), and business process modelling. It concentrates

on the levels of the web services development life cycle. It follows an itera-

tive and incremental approach that consists of eight phases including plan-

ning, analysis and design (A&D), construction and testing, provisioning,

deployment, execution and monitoring. The methodology stresses reliance

on reference models, and considers several service realisation scenarios (in-

cluding green field development, outsourcing and legacy wrapping).

• Gu and Lago (2007) have proposed a stakeholder-driven service life cycle

model for SOA. The model represents the activities associated with stake-

holders and the interaction among them. The study compares different

SOA life cycles (2 academic and 6 vendor-specific) from the stakeholder’s

point of view. In Gu’s model, life cycle activities are divided into design

time, run time and change time. Design time refers to the life cycle of a

service before it is available for use. During the runtime stage, services are

put into production and the implementations start to work. The change

time stage comes after runtime. It focuses on the life cycle of a service when

adjustments have to be made when business requirements change. The ac-

tivities are then associated with stake holders (service provider, application

provider (service consumer) and service broker) and service life cycle stages.

• Chang (2007) has proposed a service oriented analysis and design (SOAD)

methodology for adaptable services. The process consists of six phases

36

Chapter 3. Literature Review - SOA Design

(Defining Target Services, Defining Unit Services, Planning Service Com-

ponents Acquisition, Acquiring Service Components, and Composing Ser-

vices.) and the result of each phase refers to one or more deliverables. The

criteria for designing SOAD methodology involves:

– Modelling the service variability among different clients and different

contexts

– Modeling the mismatch between published services and expected ser-

vices

– Designing adaptation mechanisms into service components

– Enabling dynamic composition of services

For Service Variability, three types of variation points are considered in

service design (Workflow, Service Composition, and Logic). For service

mismatch, three types identified are: interface mismatch, functional mis-

match, and non-functional mismatch.

• SOMA by Arsanjani et. al.,(2008) is a software development life-cycle

methodology invented and initially developed in IBM for designing and

building SBA solutions. It consists of seven phases (Business modelling

and transformation, Identification, Specification, Realisation, Implementa-

tion build/assembly, Deployment, monitoring, and management, Solution

management) and provides support for the two main aspects of SOA gov-

ernance: design-time and runtime governance.

• Offermann and Bub(2009) have proposed SOAM, that consists of six phases:

company analysis (which covers business process aspects), service operation

discovery, legacy system analysis, consolidation, service design and process

preparation. Existing notations and models (UML, BPMN etc.) are used

for modelling in SOAM.

Gu Lago (2011), have compared the SOSE methodologies both from vendors

(SOAD, SOMA, SOUP by IBM, OASIS model, SO from CBDI) and academia,

37

Chapter 3. Literature Review - SOA Design

on the bases of their general characteristics and those that are specific to service-

orientation (service provision, service consumption etc.). Their evaluation frame-

work is based on the characteristics identified through feature analysis. The focus

of this study is not on what is practised, rather, its aim is to gain insight into

the common features they share and the specific features they individually hold.

Also they aim to differentiate the methodologies that are truly service-oriented

from those that deal little with service aspects. However, it did not provide any

priority to any methodology.

The study found that many service life cycle activities are not well supported.

Mostly the design and analysis phases are covered and there is not sufficient detail

available about construction, delivery and management phases. The development

roles and responsibilities are not properly addressed. Further, the support for

service consumption from both consumer and provider side is not fully available.

Finally study has proposed an evaluation framework for SOSE methodologies

to facilitate organisations that want to adopt SOA.

3.4 Notations and Diagrammatical Representa-

tions

Designers make use of ‘mental imagery’ in constructing on abstract solution to

the problem which can be externalised. The externalisation of images is used to

share ideas and to communicate design decisions about the proposed solution.

These images are discussed among designers to assess its adequacy in terms of

how it solves the problem and what insight it offers about the particular issues.

By doing this a shared set of semantics is developed among the team. Therefore,

design process can be considered as a ‘dialogue’ between designers and artefacts,

and among designers themselves. To aid this dialogue, designers make use of

sketches (notations) that aid them in transition of ‘mental image’ to ‘external

representations’ (Petre, 2009). Also these notations support them to uncover

missing information and to ensure completeness of the problem (Guindon, 1990b).

Design notations plays an important role in producing the design. They ex-

press the design solution and are vehicle for developing the design solutions.

38

Chapter 3. Literature Review - SOA Design

Software design activities are apt to involve different forms of notations. They

range from informal conventions that are established on-the-fly (such as sketches

or box and line diagrams) by a group of designers engaged in a design exercise

to precise formalisms that are standards for the field. Two primary concerns

in the formulation of notations are expressiveness and usability. Expressiveness

concerns what aspects of a design can be captured in the notation; usability con-

cerns the fluidity with which designers can work with the notation. Though both

factors are equally important, the primary driving force behind the development

of most new notations has been expressiveness adding modelling capabilities,

often for a particular analysis purpose (Taylor and der Hoek, 2007).

Further, notations have both a syntax (structure) and semantics (associated

meanings), and these need to be expressed correctly to ensure that the notation

meets its purpose (Wieringa, 1998). For this reason notations need to have the

quality that they could be easily produced and help the designers to explore their

ideas about design and communicate those ideas to others (Budgen, 2003). In this

regard, Green and Blackwell (1998) have proposed a framework called cognitive

dimensions. The focus of which is upon notations (information representation)

and by doing this they have provided a set of discussion tool for evaluating quality

concepts.

Notation design in itself is a science that needs a proper theory for design

and evaluation. Designing cognitively effective visual notations can, therefore, be

seen as a problem of optimising them for processing by the human mind, in the

same way that software systems are optimised for particular hardware (Moody,

2009).

In software engineering, notations exist in multiple visual forms such as data

flow diagram (DFD) and ER modelling. They exist in multiple visual forms:

DFD exists in two semantically equivalent forms: the De Marco style, consisting

of circular “bubbles” and curved arrows and the Gane and Sarson, consisting of

rounded rectangles and right-angled lines. ER modelling also exists in a variety

of visual dialects. Despite the fact that these notations have been used in practice

for over 30 years, there is still no consensus on which is best. Also why SE visual

notations look so similar to one another and change so little over time. Without

sound principles for evaluating and comparison of visual notations, there is no

39

Chapter 3. Literature Review - SOA Design

reliable way to resolve such debates. For visual notation design to progress from

a craft to a design discipline (a self-conscious design culture), there is a need

to define explicit principles for evaluating, comparing and constructing visual

notations (Moody, 2009).

The UML provides a detailed set of notations. However, while design activity

is in progress, many details of such notations are usually ignored and simple and

basic notations are used to express the concept. UML modelling philosophy is

based on OO concepts and considered a de facto standard for OO modelling. Thus

the notations semantics and syntax both are developed to support the design of

OO systems.

Budgen et. al., (2011) conducted a survey on UML notations in order to

determine the extent to which the forms and characteristics of the UML have

been studied empirically. They found that apart from class diagram where its

forms have been compared with other notations, not much evidence exists about

the use of other UML notations. They also identified that there is a lack of

evidence about the adaptation of UML notations in the field as compared to

laboratory experiments.

In case of CBD, a component diagram is introduced in the set of UML no-

tations. However, how far these extensions are effective for the design of CBD

systems has not yet been evaluated.

3.5 Summary

Software design is an essential element of software development. In software de-

sign, two features abstraction, and modularity are considered important because

they aid reusability. In this chapter, we have explained different design strate-

gies used by expert and novice designers, reported through observational studies.

Further, an overview of various design methods used for software development is

presented. Finally, notations and diagrammatical representations are discussed

as part of the software design activity.

40

Chapter 4

Research Method

4.1 Introduction

The chapter describes the research process employed in this thesis. The research

strategy adopted is a multi-method one, in which different research methods that

are appropriate to each of the sequence of the research questions are employed.

As noted by Wood et al. (1999), a multi-method approach is used to investigate

a phenomenon by employing a combination of empirical research methods, with

the intention that the strength of the different methods complement each other.

It is considered that this approach potentially provides benefits in terms of more

robust conclusions, development and investigation of research hypothesis in an

evolutionary manner, and increases the understanding of research results. A

research study such as the one described here is not a single, discrete event,

rather a process that proceeds through a number of phases that pose different

tasks and problems for the researcher. In this way, particular research methods

tend to be more useful in relation to some phases than others, hence combining

them has a beneficial effect. Even where methods do perform similar functions,

combining a range of approaches may well yield a better result (Mingers, 2001).

The use of a multi-method approach in the area of information systems (IS) and

more recently in software engineering is discussed by Wood et al. (1999); Mingers

(2001, 2003); Petter and Gallivan (2004); Mandić et al. (2009).

The overarching research process developed for this thesis is shown in Figure

41

Chapter 4. Research Method

4.1. The process begins by posing a research question about the attributes of

an SOA. To answer this question a mapping study technique which is a form of

systematic literature review (SLR), has been employed.

• Objective: The objective was to collect evidence from existing literature

about the way that SOA terminology was used by the research community.

• Outcome: The outcome of this study was an SOA model that we con-

structed through thematic analysis of SOA literature. The study also iden-

tified the issues related to SOA based application development. The issues

that we considered for further research include: the need for a real world

case instead of using ‘toy’ examples; and the construction of an SOA design

model. We selected design because SOA realisations already exist predom-

inantly in the form of web services and are discussed widely in the SOA

literature. However, there is no standard design technique available for

SOA-based application development. These factors motivated us to adopt

a case study approach in order to pursue design issues in greater depth.

The case study is a research method used to understand a contemporary phe-

nomena in its real setting (Yin, 2008). Here, The case study is used to address a

real-world phenomena in an SOA context.

• Objective: To develop a use case from the energy engineering domain that

describes the control system for a small scale energy zone (SSEZ). The use

case provides an operational scenario to construct an SOA design model,

and in doing this existing design notations have been used to describe the

different features of the SSEZ control system.

• Outcome: The outcome of the case study is the use case model and the

SOA design model for the SSEZ.

The outcomes of the case study have been evaluated by employing expert re-

views (i.e. walkthroughs). The reason for using this are both the interdisciplinary

nature of this research and also the unavailability of similar studies for compar-

ison. Therefore, it was felt appropriate to involve experts from both domains

(energy engineering and computer science) to evaluate the case study outcomes.

42

Chapter 4. Research Method

Mapping Study

RQ2 RQ3

Case Study

Design
Model

Design
Notations

Evaluation

Use Case
Model

SSEZ
Model

RQ1

SOA
Model

Expert Review

Walkthrough Interviews

Figure 4.1: Research Process for this thesis

43

Chapter 4. Research Method

• Objective: Identify gaps in the use case description and SOA design model

by employing expert knowledge from both domains. Also, to identify the

effectiveness of using a walkthrough for evaluation in an academic context.

• Outcomes: The outcomes include the lessons learned from the walk-

through experience and the issues identified related to use case description

and the SOA design model.

The evaluation process explains the activities carried out as part of the walk-

through and the results of these activities.

The form of each research method adopted is discussed briefly in the following

sections. Fuller details are then provided in the later chapters.

4.2 The Mapping Study

Evidence based software engineering (EBSE) places emphasis upon adopting a

‘systematic’ approach of collecting evidence from research as a mechanism to

be used by researchers and practitioners to find best evidence about the area

of research (Dyb̊a et al., 2005). In EBSE, systematic reviews (SRs) are a key

tool for creating evidence based on synthesising data from individual studies.

These reviews use explicit and rigorous methods to identify, critically appraise

and synthesise relevant studies on a particular topic. Further they could be used

to identify areas where the available evidence is insufficient and further studies

are required (Dyb̊a et al., 2007).

A systematic review, or as used in EBSE, the term systematic literature review

(SLR), is defined by (Kitchenham and Charters, 2007) as a way “ to identify, eval-

uate and interpret all available research relevant to a particular research question,

or topic area, or phenomenon of interest in an objective and unbiased way”.

The aim of an SLR is to ensure that the literature review is objective, unbi-

ased, rigorous and repeatable. SLRs are used to answer specific research ques-

tions, however there are situations where the topic under investigation is relatively

new and little or no evidence is available in the literature. In such situations a

broader research question is developed. To handle such situations, a mapping

44

Chapter 4. Research Method

study or scoping review is used (Petticrew and Roberts, 2006; Kitchenham and

Charters, 2007).

A mapping study is “a form of SLR that is used to identify gaps in the

set of primary studies, to determine where new or better primary studies are

required, and also to find clusters where there may be scope for more complete

SLRs to be undertaken”(Kitchenham et al., 2011). Such a study addresses a

broader topic than an SLR, and is designed to provide an initial indication of

the size and location of the literature relating to a particular topic. It provides a

comprehensive review of the topic and establishes how a particular term is used

in what literature, by whom, and for what purpose (Cruzes and Dyb̊a, 2011).

The stages of a mapping study are generally similar to those of a SLR, although

the research question itself is likely to be much broader and the searching may

be less rigorous.

Motivation: The concept of SOA has evolved in the past decade and the litera-

ture available on this topic is almost entirely published after 2000. Hence to

explore the concept, a mapping study is employed to collect evidence from

literature. As explained in (Kitchenham et al., 2011), the goal of a map-

ping study is the classification and thematic analysis of literature, therefore,

we considered it appropriate to conduct a mapping study to examine the

concept of an SOA.

Research Question (RQ 1): The research question we choose for the mapping

study was therefore: “What are the key characteristics of a Service

Oriented Architecture?”.

Process: The structure and the procedure of conducting mapping study is dis-

cussed in detail in Chapter 5.

Result: The result of this study is an SOA model that emerged through the use

of a thematic analysis and the synthesis of the SOA literature. This model

has provided the terminology for describing SOA attributes and related

concepts in the rest of the thesis.

45

Chapter 4. Research Method

4.3 The Case Study

A case study is an empirical research method that can be used to investigate a cer-

tain phenomenon in depth. Runeson and Höst (2009) noted that case studies that

have appeared in the software engineering (SE) literature have addressed topics

ranging from well defined and thoroughly performed studies to ‘toy’ examples.

This may be because empirical research in SE has a strong focus on experimental

forms of research. Further, the use of the case study as a research method is rel-

atively new in SE when compared to information systems (IS) research (Runeson

and Höst, 2009).

There are three types of case study, depending upon the research perspec-

tive, namely positivist, critical and interpretive. In software engineering (SE),

case studies tend to use a positivist perspective and therefore, Yin’s (Yin, 2008)

definition is widely used, where this describes a case study as:

“an empirical inquiry that investigates a contemporary phenomenon in depth

and within its real-life context especially when the boundaries between phe-

nomenon and context are not clearly evident.”

The key characteristics that make case study research appropriate for SE are:

• “it is of flexible type, coping with the complex and dynamic characteristics

of real world phenomena, like software engineering,

• its conclusions are based on a clear chain of evidence, whether qualitative

or quantitative, collected from multiple sources in a planned and consistent

manner, and

• it adds to existing knowledge by being based on previously established the-

ory, if such exist, or by building theory” (Runeson and Höst, 2009; Runeson

et al., 2012).

Case study research is considered appropriate for SE because SE is a multi-

disciplinary field and involves areas where case studies are normally conducted

such as ‘field’ studies. Also research in SE is usually aimed at investigating how

development, operation and maintenance is carried out by software engineers and

other stakeholders under different conditions (Runeson and Höst, 2009).

46

Chapter 4. Research Method

Motivation: The objective of employing a case study is to investigate a real

world problem in detail and use this to model an SOA design. During the

process of conducting the mapping study, it was observed that the cases

discussed in the literature are artificially constructed and are narrow in

scope. Also SOA applications are largely discussed from an implementation

point of view. Further we found no studies that discussed the design of SOA

based applications independent of technology, or the need for new notations.

Therefore, to fill this gap, the resources within the School have been utilised

to construct a case study.

Research Question (RQ 2 & RQ 3): The research question we have sought

to answer through the use of a case study is: “Can the characteristics

of an SSEZ control system be successfully modelled through the

construction of a use case model?”

The other two questions associated with the case study are: “How can

SOA attributes be modelled using abstract diagrammatical forms?”

and “How can such abstract models be developed?”

Process: The case study process is shown in Figure 4.2. The case study domain

is that of energy engineering, and the ‘case’ (or unit of analysis) is a Small

Scale Energy Zone (SSEZ) control system. The case study design is cat-

egorised as a single-case design. The rationale for using single-case is the

complexity and wide scope of the selected problem. The other reason was

access to resources. Also, this was considered an opportunity to understand

the phenomena in depth when resources are available within school and so

could be used as a ‘representative’ case for SOA modelling. The operational

model of the SSEZ control system has been explained by constructing a ‘use

case’. A protocol for the case study as suggested in (Brereton et al., 2008)

was produced and is available in Appendix B. An SOA design model was

also developed as part of the case study. This has made use of existing

notations. For the evaluation of the use case and design, an expert review

technique (walkthroughs) has been used.

Result: The outcomes of the case study include the use case model discussed in

47

Chapter 4. Research Method

SSEZ
Model Use Case SOA

Model

Scenarios Evaluation

Design

assessment for the
case study RQ

expertise

Case StudyCase study
protocol

Figure 4.2: Case study process

Chapter 6, and the SOA design model discussed in Chapter 7. The evalu-

ation process that investigates the outcomes of the case study is described

in Chapter 8

4.4 Expert Review / Walkthrough

Reviews are commonly used in software engineering to evaluate the quality of

software work products (code, design, or requirement specification etc.). The

purpose of conducting a review is to identify defects in the work product so that

problems created in one phase will not invalidate the next. Reviews are performed

at different stages of development and can have a significant impact on the cost,

quality, and development time of the software (Kemerer and Paulk, 2009).

In the literature, different review procedures exist, with the choice of form to

use depending upon the nature of the problem. For example, inspections (Fagan,

48

Chapter 4. Research Method

1976) are used for code reviews, and make extensive use of checklists. However,

structured walkthroughs can be used to verify both the overall approach and the

outcomes (Weinberg and Freedman, 1984).

Motivation: The research discussed in this thesis is interdisciplinary and ex-

ploratory. Evaluating the use case and the SOA design model requires

knowledge about energy engineering, and software design (more specifically

about SOA). Therefore, a qualitative approach is used for evaluation, in

the form of a walkthrough. As explained in (Budgen, 2003), a walkthrough

is a useful technique for assessing the structural and behavioural aspects of

a design. Through proper planning and organisation, it can bring together

the people with expertise related to the domain and those with technical

knowledge, in order to make realistic projections about the behaviour of

the design.

Research Question: The overarching research question for walkthrough is: “Are

the design, and the notations used, appropriate for the construc-

tion of an SOA model for the SSEZ control system?”

Process: To conduct the walkthrough, a protocol was developed, as reported in

Appendix F. The two walkthrough sessions were each followed by interviews

with the participants. A cyclic approach of plan-act-reflect was adopted for

this as used in action research (Oates, 2005). Experts from both domains

(energy engineering, and computer sciences) were involved.

Result: The walkthrough identified gaps in the design. The data collected

through the interviews with the walkthrough team addressed the issues

related to the walkthrough process. As we mentioned earlier, the walk-

through can be used for academic purpose, therefore, lessons learned from

this experience are also discussed. The walkthrough technique is used as

part of the case study evaluation, and therefore, discussed in Chapter 8.

49

Chapter 4. Research Method

4.5 Summary

The research discussed in the thesis is exploratory and interdisciplinary. There-

fore, a multi-method research approach as discussed in the beginning of this chap-

ter has been used. The research methods employed include a mapping study, a

case study and a series of walkthroughs. The research process consists of identi-

fication of SOA characteristics; modelling the characteristics of an SSEZ control

system through a use case; construction of an SOA design and evaluation of the

use case and design by means of expert reviews.

50

Chapter 5

The Mapping Study

5.1 Introduction

Service Oriented Architecture (SOA) is a paradigm that has emerged and evolved

over the past decade, and hence the research community has published widely

about SOA. As with every new paradigm, the concepts and terminologies that

define this architecture are still evolving. The lack of agreement on common

terms, a lack of awareness that other terms exists and a lack of an agreed model

of what SOA is has led to potentially inconsistent use of terms. Hence individual

researchers have interpreted the term in different ways, depending upon their

needs and purposes. So, while the term SOA is widely used, interpretations of its

meaning appear to vary according to who uses it and what the perceived benefits

of an SOA are (Harrison and Taylor, 2005).

To design an SOA based application, designers need an architectural model

that provides a relatively established set of common concepts, together with no-

tations that embody a shared understanding of how the semantics will be in-

terpreted for the eventual implementation. Therefore, to find out systematically

how consistently the term SOA is used in literature, and what characteristics

such a system should possess, we have carried out a mapping study that sought

to answer the question “What are the key characteristics of an SOA?”. In this

chapter the process of conducting a mapping study is explained and the outcomes

are discussed in detail.

51

Chapter 5. The Mapping Study

5.2 The form of a Mapping Study

A mapping study is a form of SLR (Kitchenham and Charters, 2007) that is

designed to provide a systematic and unbiased overview of a research area, to

establish if evidence exists on a topic and to provide an indication of the quantity

of the evidence. The early stages of a mapping study are generally very similar

to those of a systematic literature review, although the research question itself is

likely to be much broader, in order to address the wider scope of such a study

adequately. The three stages involved in conducting a mapping study, as defined

in (Budgen et al., 2008), are:

1. identification of primary studies that may contain relevant research results

(searching);

2. selection of the appropriate primary studies from the results of (a), after

further examination (inclusion/ exclusion);

3. where appropriate, performing a quality assessment of the selected studies

(bias / validity).

5.2.1 Identification of Relevant Studies

Mapping studies and SLRs commonly use the PICO model to break down their

research question and organise their searching process (Petticrew and Roberts,

2006). For this study, we interpreted this as follows:

Population of interest Papers that explicitly identified how they interpreted

the term SOA.

Intervention Whether the definition used was explicit, or by reference.

Comparison Since we were using a mapping study to identify definitions rather

than the more conventional use to find empirical studies, this element has

no direct interpretation.

Outcomes These were the set of characteristics included in the definitions adopted

for a given paper.

Based on this, we then performed a search to identify relevant papers.

52

Chapter 5. The Mapping Study

5.2.1.1 Search String:

A set of three search strings were used to search relevant studies. The software

engineering guidelines suggest that identifying suitable search strings might need

some element of prototyping (Kitchenham and Charters, 2007), and as at times

the initial choice of string was not present in the title of papers, or was only used

in the keywords in abbreviated form, we gradually adjusted the strings to include

these situations and so find the maximum number of papers.

Due to the popularity of service based systems we also identified many related

terms in the search results such as service oriented programming, service oriented

computing, service orientation etc. The following strings were the ones that we

eventually used.

• “SOA”

• “Service oriented architecture”

• “Service-oriented architecture”

The interfaces of the electronic libraries such as those provided by IEEE, ACM

and Science Direct are organised using different forms for specifying the details

of a search, and so these strings were mapped on to the interface for each source

in a manner that could bring the relevant results (details in Appendix A).

5.2.1.2 Selection of Time Period:

We considered it appropriate to start our search from the year 2000 since this was

when the first standard for SOAP became available. The search was conducted

during 2010 and so the complete time period used for our search was 2000-2009.

5.2.1.3 Choice of Electronic Databases:

The electronic electronic databases used were: ACM, IEEE Xplore and Science

Direct. These cover major publishers of conference proceedings, since much of

the literature on SOA is still being published in this form. Experience from other

mapping studies that we have undertaken suggests that restricting the search to

53

Chapter 5. The Mapping Study

this set of electronic databases will access the bulk of the relevant literature for

an emerging topic. This could then use snowballing if appropriate.

5.2.2 Selection of Primary Studies

The selection process was performed in four steps.The decisions about inclusion

and exclusion at each step were made according to the following criteria:

• Papers should be published in journals or conferences.

• They should be written in English.

• Papers should not come under the category of abstract, workshop, tutorial,

and keynote (these were treated as being ‘grey’ literature and excluded).

The study topic was non-empirical, therefore inclusion was not restricted to

studies using any specific research method, type of intervention, or outcome mea-

sure. Papers authored by both academic and industry researchers were included.

The study selection process is shown in Figure 5.1. The steps involved in selection

process are described below.

5.2.2.1 Step 1: Searching:

We identified 921 candidate studies that contained matches to the search strings,

after excluding duplicate studies. During the search process, especially in the

ACM database, articles found in the search results contained similar terms like

Service oriented programming, Service oriented systems, Service oriented appli-

cations, Service oriented design and Service oriented software engineering. All of

these were excluded. We strictly followed the criteria that the search string must

appear in the title or abstract or keywords of the paper. The search results from

the IEEE database using the search string SOA brought rather different results.

After 100 records, articles on semiconductor optical amplifier (SOA) began to

appear in the search results. The search on Science direct brought 205 studies

out of which 135 were selected and included in the set of 921.

54

Chapter 5. The Mapping Study

Initial search

Exclusion on title /
abstract

Full analysis of papers

Exclusion on full text

921

819

701

98

Figure 5.1: Studies selection process

5.2.2.2 Step 2: Exclusion on title / abstract:

The titles and abstracts of papers found in the first phase were then analysed to

determine their relevance. We excluded 102 studies that did not meet the criteria

such as short papers, keynotes, and tutorials. Here, we faced the same problem

discussed in (Budgen and Zhang, 2009), where the low quality of abstracts, use

of inappropriate titles, and provision of irrelevant keywords created difficulty to

make such judgements.

5.2.2.3 Step 3: Exclusion on full text:

In this round, we examined the full text of the remaining 819 studies and tried to

find out whether they discussed SOA any further in the text, other than in the

abstract and titles. As a result, 118 of these papers were excluded, along with

those that provided the abstract in English but with rest of the content being in

another language. Finally 701 studies were left for data extraction.

55

Chapter 5. The Mapping Study

5.2.2.4 Step 4: Inclusion on definitions:

We carefully analysed how each paper has described SOA concepts and what

sources and definitions were used to explain these concepts. Out of the 701

studies, these were 98 papers that specified the definitions of SOA used, and

explicitly referenced the sources of these definitions. It was quite interesting and

also problematic to find that there were studies that use:

1. a single definition with one reference;

2. a single definition with two or more references;

3. two separate definitions with separate references;

4. the term SOA with one or more citations; and

5. definitions without any references.

Here, we had to decide whether or not to include those papers that fall into

categories (4) and (5). In Table 5.5 we have given the count of studies that come

under case (4) with certain conditions. In the case of (5), (Papazoglou, 2003) and

(Jammes et al., 2005) and (Komoda, 2006) gave their own description of SOA and

these were used by other studies: 7, 2, 1 times respectively. Talaei-Khoei et al.

(2005) explicitly mentioned what they mean by SOA, however, their definition

was similar to the one used to define SOA model (through operations of publish

find and bind), without a reference and not cited in any other study. For further

analysis, only those studies under cases (1), (2), (3) and (5) have been considered,

although case (5) is a bit restricted.

Table 5.1 provides summary of the selection process. The table contains the

details about the studies identified through each database, along with the count

of studies stating definitions explicitly.

5.2.3 Data Extraction

In data extraction phase, we examined the 98 studies that had been rigorously

selected on the basis of the following criteria:

56

Chapter 5. The Mapping Study

Table 5.1: Summary of Selection Process
Databases Studies Found Studies Selected Studies with Definitions
IEEE Xplore 326 278 60
ACM 390 288 23
Science Direct 205 135 15
Total 921 701 98

• The paper specifically describes SOA.

• The description in the paper contains reference(s) to definitions of SOA.

For each paper the definitions in the text were extracted, together with the

details of the references used. During the extraction process, there were some

cases where the authors used two different definitions to support their views. So

the definitions were listed as two separate definitions although they appeared

in the same paper. Also, in some papers a single definition had more than one

reference. Studies such as (Casola et al., 2008; Gasikanti et al., 2007; Zhang et al.,

2006a; Schroh et al., 2009; Choi et al., 2007; Mykkanen et al., 2007; Panahi et al.,

2009) came under this category. In this case, the references were verified and only

those definitions were selected that contained the actual text. The three cases

identified during data extraction are shown in Figure 5.2

Paper A

SOA definition

(Ref.)

Paper B

SOA definition1, SOA definition 2

(Ref. 1) (Ref. 2)

Paper C

SOA definition

(Ref. 1, Ref 2, Ref 3....)

case (a) case (b) case (c)

Figure 5.2: Cases identified during data extraction

• Case (a) represent the situation when a paper has used one SOA definition

and cited a single reference for that.

57

Chapter 5. The Mapping Study

• Case (b) demonstrate the situation when two definitions are stated in one

paper with two corresponding references. In this case definition count is

considered two.

• Case (c) is discussed earlier where a paper provides a single definition but

use multiple references.

The data extracted from papers included article information, definitions, source

of definitions and their references. This was recorded in a spreadsheet where

further information is added that includes the verification of references (where

possible) and any inconsistencies between the source and reported text.

The verification of references proved a troublesome process as many references

were taken from the grey literature, often being provided on web sites. As a

consequence, many were either not available or the URLs have changed.

During the data extraction process, it was also observed that some researchers

used the explanation of the SOA model given in Figure 5.3 as a definition. So,

the definitions such as those in references (Baresi et al., 2003) and (Massuthe and

Schmidt, 2005) come under this category.

Registries
Service Discovery

Service
 Description

Service
Requester

Service
Provider

Find Publish

BindClient

Figure 5.3: Service oriented Architecture Model

From the 98 studies that fulfilled the selection criteria, the total number of

“different” definitions found was 96. Both selection and data extraction were

undertaken by the author. While the guidelines suggest that two analysts should

normally undertake data extraction – we felt it unnecessary to do so for a non-

empirical topic such as this one, since no interpretation or quality assessment is

involved and any decisions about exclusion are therefore largely objective.

58

Chapter 5. The Mapping Study

5.3 Analysis

The synthesis process contained two sub-processes: extraction and analysis of

terms used in the definitions (process a) and analysis of sources used for definitions

(process b). The process is shown in Figure5.4.

Extract article information,
definitions and references

Verify references
(where possible)

Extraction of terms
from definitions Table 5.2

Kappa Test

Add definition and reference
 in the list and allocate

unique paper ID

Grouping of definitions
according to sources

Link source and year
of citation Figure 5.5

Link papers with
source Figure 5.6

SOA
Model

Grouping of terms,
allocation of identifiers

and description Table 5.4

(Process a) (Process b)

Figure 5.4: Synthesis Process

A thematic analysis (Cruzes and Dyb̊a, 2011) was carried out on the defini-

tions extracted from the papers. The sources of definitions were analysed thor-

oughly. Thematic analysis is a method for identifying, analysing and reporting

patterns (themes) within data (Braun and Clarke, 2006). It minimally organises

59

Chapter 5. The Mapping Study

and describes the data set in rich detail and frequently interprets various aspects

of the research topic (Cruzes and Dyb̊a, 2011). The strength of this method is

that it provides flexible procedures for reviewers, copes well with diverse evidence

types and can be used for theory-building (Cruzes and Dyb̊a, 2010).

Each sub process presented in Figure 5.4 is discussed in next sections.

5.3.1 Definition Terms and their Classification

In the SOA literature, the early definitions describe the form of an SOA as being a

relationship between three actors: service provider, service requester and registry,

using publish, find and bind operations as in Figure 5.3. The later definitions,

however, contain additional concepts that seems to address specific requirements

introduced by different communities. Table 5.2 provides a list of the terms that

have appeared in different definitions over the period of time covered by this

study.

The extraction of these terms from the reported definitions was done by both

the author and supervisor, working independently. The final agreed list of terms

took three iterations, in which we both classified them according to the existing

set, and also tried to identify any missing ones.

To check our results we used the Kappa test, which is a statistical measure

used to calculate the degree of agreement among experts / raters for qualitative

items. The value of κ is given by:

κ = Pr(a)−Pr(e)
1−Pr(e)

where

Pr(a) = probability or proportion expected by chance;

Pr(e) = probability or proportion observed.

The interpretation of the value of κ is shown in Table 5.3.

The Kappa scores obtained are related to the final agreed set of extracted

terms and were calculated for each term over all 98 definitions. The result shows

an average agreement of 95% with a maximum value of 1 and a minimum of 0.65,

which can be considered as a high level of agreement among raters.

After resolving any differences, the terms were grouped, new identifiers were

60

Chapter 5. The Mapping Study

Table 5.2: SOA: Terms used and year first used in a definition
Features 2003 2004 2005 2006 2007 2008 2009
Software Architecture + + + + + + +
Component model + + + + + + +
Service Provider + + + + + + +
Service Requester + + + + + + +
Service Discovery + + + + + + +
Service Negotiation + + + + + +
Service Publication + + + + + +
Service Registry + + + + + +
Interoperability + + + + + +
Service Invocation + + + + + +
Network Environment + + + + + +
Distributed system architecture + + + + + +
Encapsulation + + + + + +
Interfaces + + + + + +
self-containment + + + + + +
Service Composition / Integration + + + + + +
Broker + + + + +
Dynamic binding + + + + +
Agility + + + + +
Flexibility + + + + +
Granularity + + + + +
Platform independence + + + + +
Framework + + + + +
Service Interaction + + + + +
Loose coupling + + + + +
Heterogeneous + + + + +
Architectural style + + + + +
Connection Technology + + + + +
Business Functions / Processes + + + +
Reusability + + + +
Application architecture + + + +
Architectural paradigm + + + +
Service description + + + +
Language independent + + +
Hardware independent + + +
Service contracts + + +
Service Independence + + +
Service bus + + +
Service Consumer + + +
Reuse + + +
Communication + + +
Messaging protocols + + +
Orchestration + +
Different Ownership + +
Measurable Predictions + +
Web services + +
On demand + +
Choreography +
Resource Management +
Uniforming / standards +

61

Chapter 5. The Mapping Study

Table 5.3: Interpretation of the value of κ
Value of κ Strength of agreement
≤ 0.20 Poor
0.21 - 0.40 Fair
0.41 - 0.60 Moderate
0.61 - 0.80 Good
0.81 - 1.00 Very Good

allocated and new descriptions for the groupings were created (these were not

extracted from existing ones). In reviewing the terms, it is important to note

that not every definition states new concepts, but rather that the same concepts

are apt to be expressed in different ways and used in different combinations in

the definitions. Table 5.4 provides detail about the extracted terms that have

been grouped and each grouping is given an identifier (one word where possible,

assuming that the word ‘service’ is implicit throughout), a brief description of

what we mean by the term in terms of SOA characteristics (italicising what we

see as keywords), and then a list of the terms that we think are synonymous with

that (or partly so).

One common thing that appeared in all definitions is that they provide an

interpretation of the underpinning concept of service through its various charac-

teristics. Almost all definitions in one way or the other are focused on explaining

the concept of a service and its underlying benefits. This is a key factor of SOA

popularity, which is being used increasingly by the research community and in-

dustry, despite lacking a single agreed definition. Recent studies also discuss

SOA implementations; problems of legacy systems; highlight SOA benefits; ex-

plain limitations of current technology, address their own solutions (frameworks,

models, approaches etc.) and provide experiences, but little effort has been made

to explore the term itself. The model in Figure 5.3 often used to explain SOA is

the same that is also used to explain the concept of web services.

5.3.2 Definition Sources

For the purpose of analysing definition sources and to find out how frequently

they have been referenced, the set of references that formed some sort of cluster

62

Chapter 5. The Mapping Study

Table 5.4: Grouping of Terms for SOA
Identifier Description of Characteristic List of related terms

Architecture Describes the overall organization of a
system built from services as the ele-
ments, interacting through the use of
mechanisms such as SOAP.

application architecture, ar-
chitectural paradigm, archi-
tectural style, software archi-
tecture

Binding The time at which a particular service
(and provider) is chosen. In an SOA,
this can be at the time of use through
dynamic binding.

agility, dynamic binding, flex-
ibility, loose coupling, on de-
mand

Capability The purpose of an SOA as viewed from
an end-user perspective

business functions, resource
management

Composition The process by which a given set of
services are assembled in order to pro-
vide a single overall service that meets
an end-user need.

choreography, integration, or-
chestration, service composi-
tion

Contracts The mechanisms for agreeing upon the
terms and conditions under which a
service will be delivered.

service contracts, service nego-
tiation

Delivery The process that follows composition,
whereby service functionality is sup-
plied by the service providers to meet
end-user needs.

service interaction, service in-
vocation, service provider, ser-
vice consumer

Distributed
Sources

An SOA is implicitly capable of being
created using services that are deliv-
ered across a network and hence that
are not necessarily owned or controlled
by the end-user or their agents.

different ownership, dis-
tributed system architecture,
network environment, network

Identity The characteristics that describe a
particular service and the means by
which these may be accessed.

broker, service discovery, ser-
vice publication, service reg-
istry, service requester, service
description

Interoperability The mechanisms that make it possible
to deploy services without any knowl-
edge of their location or the means by
which they are supplied.

connection technology, frame-
work, hardware independent,
interfaces, language indepen-
dent, platform independence,
standards, communication,
messaging protocols

Packaging The characteristics of service imple-
mentation that enable it to be treated
as a unique and distinct identity.

component model, encap-
sulation, granularity, reuse,
reusability, self-containment,
web services

Unclassified measurable predictions, ser-
vice bus

63

Chapter 5. The Mapping Study

Figure 5.5: Definition Source and reference year

around a source were selected. In doing so, it was decided to include only those

definitions that were referenced in more than one paper. This reduced the number

of studies from 98 to 65. In Figure 5.5, definition sources cited by these papers,

together with their year of publication are shown.

Table 5.5 provides a summary of the frequency with which the definition

from each of these sources was re-stated in those papers. We have separated

those studies that used the definition without actually re-stating the words. For

example, OASIS is referenced in research studies published in year 2007, 2008 and

2009 and there are also five studies that used this source but did not explicitly

state the definition.

The definitions, grouped according to their sources of their references to form

64

Chapter 5. The Mapping Study

Table 5.5: Sources of definition, year published and citation
Source 03 04 05 06 07 08 09 Cited by Others†
D. Krafzig +++ + (Sun and Chen, 2008),(Chmielewski

et al., 2008)*,(Nestler, 2008), (Schroh
et al., 2009)*

2

D.Sprott + + + (Allison et al., 2009),(Hoel,
2006),(Gao and Tang, 2007)

-

F. Jammes + + (Mendes et al., 2008),(Barata et al.,
2007)

-

Gartner + +++ (Zhu and Zheng, 2005),(Henningsson
et al., 2007), (Locola, 2007), (Liu and
Deters, 2007)

1

IBM + +++ +++
+++

+ + (Massuthe and Schmidt, 2005), (Er-
radi et al., 2006), (Wong-Bushby
et al., 2006), (Zhang et al., 2006a)*,
(Kim et al., 2007), (Gasikanti et al.,
2007), (Griffin and Pesch, 2007),
(Kumaran et al., 2007), (Liang and
Chung, 2007), (Luthria et al., 2007),
(Dimitrov, 2008),(Duan, 2009)

9

J. McGovern + + (Khoshnevis et al., 2009),(Bierhoff
et al., 2007)

-

M. P. Papa-
zoglou

+ +++ ++ + (Prinsloo et al., 2006), (Yue et al.,
2007), (Kumar et al., 2007), (Luthria
et al., 2007), (Tewoldeberhan and
Janssen, 2008), (Gu and van Vliet,
2009), (Zhang and Gracanin, 2008)

14

OASIS ++ ++++ +++ (Howerton, 2007), (Hrastnik and
Winiwarter, 2007), (Demirkan
et al., 2008), (Sabucedo et al.,
2009),(Canfora et al., 2008), (Hour-
din et al., 2008),(Papagianni
et al., 2008),(Bakker and Iacob,
2009),(Valipour et al., 2009)

5

Thomas Erl +++ ++++ ++++ ++ (Briscoe and Wilde, 2006), (Zhang
et al., 2006a)*, (Fornasa et al.,
2006), (Wang et al., 2007),
(Sward, 2007), (Ricci et al.,
2007),(Choi et al., 2007),(Roach
et al., 2008),(Chmielewski et al.,
2008)*, (Gogouvitis et al., 2008),
(Schepers et al., 2008)*,(Candido
et al., 2009),(Schroh et al., 2009)*

22

W3C + ++ +++ ++++ + (Baresi et al., 2003), (Baresi et al.,
2005), (Jørstad et al., 2005),
(Jardim-Goncalves et al., 2006),
(Dan et al., 2006), (Braun and
Winter, 2007),(Huang and Fan,
2007),(Yau and Liu, 2007b),(Schepers
et al., 2008)*,(Yau and Liu, 2007a),
(Bocchi and Ciancarini, 2006)

5

webservices.
xml.com

+ + (Nakamura et al., 2004), (Pichit-
lamken et al., 2007)

1

[]* : papers that have two references or two definitions with different source.
†others : count of papers that cite but did not explicitly state the definition.

65

Chapter 5. The Mapping Study

Figure 5.6: Clusters of papers around definitions of SOA

clusters, are shown in Figure 5.6. In this Figure, the central box in each cluster

represents the source of a definition. The small circles linked with the central

ones represent the papers that reference these sources. The numbers written in

these circles represent unique paper ID that was given to each paper during data

extraction.

The definition sources should not be taken to imply that all definitions linked

with one source are taken from one web site or article, in fact, they appeared

in different years (e.g http://www.w3.org /TR /2002 /WD-ws-arch-20021114/

(Baresi et al., 2003) & http://www.w3.org /TR/ 2004/ NOTEws-arch-20040211

(Huang and Fan, 2007)) and also in different books by the same author such as

(Erl, 2004) and (Erl, 2005) that were cited by (Wang et al., 2007) and (Briscoe

and Wilde, 2006) respectively.

These clusters indicate that W3C and IBM are the main sources from where

researchers have adopted definitions, regardless whether they are published on

the web sites or in technical articles. The interesting difference for the definitions

66

Chapter 5. The Mapping Study

provided by OASIS, W3C, IBM and Thomas Erl is that only the OASIS definition

is consistent over time, whereas, the other three sources have provided different

and evolving versions of their definitions over time.

5.4 Findings

The key research findings from analysis are listed below.

• The various definitions that have appeared in the literature are not contra-

dictory, but they differ in their level of abstraction and also in their assumed

context (perspective), with a pattern that is similar to the analysis given

by (Budgen, 2003) in his discussion on different (and evolving) definitions

of CBSE. From the perspective of a consumer, the service interface charac-

teristics are the only point of interest, whereas for service providers, service

implementation is an important issue. For service developers, service com-

position and service discovery form a challenging task for which they need

a solution that is independent of any technological dependencies.

• The community has used a number of different definitions of SOA, but pre-

dominantly, those are from W3C, OASIS and IBM (at least, in those papers

that actually referenced definitions). The reason why the research commu-

nity is employing definitions from these sources is very clear. The most

dominant and preferred technology that was used to implement SOA over

the period covered by the study is web services as defined by W3C. The

business solutions in turn are mainly focused on IBM-defined frameworks.

In studies (2008 and 2009), the OASIS definition has also been used by

researchers, as it explicitly states that services have different ‘ownership’.

Figure 5.6 provides information that industry defined definitions are increas-

ingly cited by researchers. Therefore influenced by these vendor-oriented

definitions, the SOA term itself has become ambiguous. The problem asso-

ciated with this trend is that the definition changes with change in product

features.

• Our analysis includes those papers that have explicitly stated SOA defini-

67

Chapter 5. The Mapping Study

tion. The great bulk of publications that discussed SOA made no explicit

reference to any definition of SOA, suggesting either a lack of awareness of

the variety in use or, more charitably, an assumption that they were writing

for a community based around one definition.

• There is little or no discussion of the need to clarify SOA, at least in the

published literature. (We found only one study in the software architecture

domain where the authors analysed the definitions of software architectural

knowledge (Boer and Farenhorst, 2008).)

Based on our analysis of different definitions, we find ourselves in a situation

similar to that encountered by Shaw when defining a vocabulary for software

architectures (Shaw and Clements, 1997). They observed that the designers make

use of extensive descriptive vocabulary to explain their system which is informal,

casual and ambiguous. Therefore, they considered it necessary to establish a

common vocabulary for architecture styles so the communication about styles

become more effective.

5.5 Discussion

5.5.1 Related Work

The studies reported in (Gu and Lago, 2009) and (Oliveira et al., 2010) have pre-

sented the outcomes from systematic literature reviews of service-oriented system

engineering(SOSE) and SOA respectively. In the first study, the review aims to

identify the challenges faced by SOSE as discussed in studies published during

the time period of 2000 to 2008. The paper classifies these challenges to identify

research trends in SOSE and based on this, establishes a future research agenda

for SOSE. The second study has analysed the establishment and use of reference

models and architectures that have been proposed to support service-oriented

systems, their domains and new research lines. This study concludes that while

SOA is receiving more attention from both academia and industry, there is no

consensus about how to present SOA reference models and architectures. Apart

68

Chapter 5. The Mapping Study

from these studies and the one described in the next paragraph we have not been

able to identify any attempts to discuss the concept and vocabulary of SOA.

A recent publication on SOA from the SEI, in the form of white paper (Lewis,

2010), has provided a discussion of SOA terminology. The report aims to estab-

lish a baseline of terms for service-oriented systems and describes SOA as “a way

of designing, developing, deploying and managing systems..” with SOA features

that are almost the same as those that we found in different definitions. However,

from a technical point of view, the author has described SOA as “an architec-

tural style or design paradigm” and separated it from a system architecture or a

complete system.

5.5.2 Answering the Research Question

The research question asked for the mapping study at the start of this chapter

was “What are the key characteristics of an SOA?”, and our analysis of the

literature suggests that the list presented in Table 5.4 effectively captures the

current thinking about SOA characteristics.

Two practical questions that this study raises is whether it would be helpful

either to:

• adopt one widely accepted definition of SOA within the community; or

• require authors of papers to make clear which definition(s) they are using.

While the first is an attractive idea, it is not clear that this is necessary,

although arguably the lack of such a clearly shared understanding has possibly

impeded the early stages of other developments in software engineering, such as

component based development. The second is probably more practical and could

easily be adopted by workshops and conferences.

Returning to the motivation for an original research question, there is no

indication that lack of a common definition has so far hindered the developers

of SOA, perhaps because the elements that differ between definitions are not

in conflict. However, for the purposes of modelling and developing SOA-based

systems, a common understanding of the elements of an SOA are essential. So,

one of the questions that this study raises is how can the characteristics identified

69

Chapter 5. The Mapping Study

in Table 5.4 be modelled? For example, an important element in determining

how a system will execute is that of contracts. A contract can potentially take

many forms, and while overall system functionality may not be affected by the

choice of the form of contract, it may well influence non-functional issues such

as performance, quality of output, and cost, since it determines which service

provider will be bound when the service is required. Such issues do not arise

in more ‘conventional’ statically-bound forms and so cannot readily be modelled

using existing notations.

5.6 Conclusions

This secondary study is different from most previously published ones, both in

the evidence-based literature, such as those listed in (Kitchenham et al., 2009),

as well as the services literature, since the focus here was not to find empirical

forms of evidence, but rather to find evidence about how the concept of SOA is

defined and used.

We have tried to answer the question “What are the key characteristics of an

SOA?”. What has been demonstrated by the mapping study is that definitions

of SOA do certainly exist, although there is no one universally adopted one, and

that different communities do not even seem to be aware that other definitions

exist. Table 5.4 summarises the characteristics of an SOA, as extracted from

the literature. Characteristics such as interoperability and reuse, with or with-

out dynamic binding, have much to offer. They also resonate strongly with the

emergence of the semantic web, allowing resources to be physically distributed

and moving away from a centralised and static model of resource management.

However, as we have demonstrated, SOA is still an emerging concept. There are

some substantial challenges to overcome in order to achieve its full potential, not

least identifying practical forms of design model, based upon the characteristics,

and this is more likely to occur if the SOA community converges on a shared set

of concepts for the meaning of SOA.

70

Chapter 5. Chapter The Mapping Study

5.7 Summary

The research community is publishing widely on SOA, however, while performing

our research into service design issues, we became aware that the term SOA

was apt to be used in rather different ways with no one clear definition. So, to

identify what characteristics are generally considered to constitute an SOA (the

research question), a mapping study is conducted to collect evidence about how

the concept of SOA is defined and what the key characteristics of an SOA are

considered to be by the research community.

Through the mapping study, SOA features are identified, grouped and inter-

preted to be used to explain the key concepts. It was also identified that there is

no one single clear definition exist for SOA, rather the same concepts with slight

variations are used by industry and within academia. As no agreement exists

on SOA definitions, the problem for creating design models to represent SOA

characteristics will remain an issue.

71

Chapter 6

Use Case - A Control System for

a Small Scale Energy Zone

6.1 Introduction

In this chapter we describe the use case model that was developed as part of

the case study. The case study process is shown in Figure 6.1. The grey boxes

represent the elements of the process that are covered in this chapter. The purpose

of employing a case study was to apply ideas about SOA design to a problem

from the ‘real world’ instead of using ‘toy’ examples. From the experience of

the mapping study on SOA, we have observed that while the examples used

in the SOA literature do illustrate the proposed methods, they are artificially

constructed, lack originality and are narrow in scope. The other issue with these

examples is that while they were represented as case studies, the forms of these

are not consistent with case study research as discussed in (Runeson and Höst,

2009; Yin, 2008).

This issue is addressed by other researchers in SOA community such as a recent

study by Espinha et al. (2012). While searching a case study for their research,

they identified that there is a lack of suitable case study that can be used by

the researchers in order to develop applications, assess their research ideas, and

use that for comparison and also for benchmarking. Therefore, they conducted

a literature survey on the case studies used in SOA research. They reported

72

Chapter 6. Use Case

Case Study

SSEZ
Model Use Case SOA

Model

Scenarios Evaluation

Design

assessment for the
case study RQ

expertise

Figure 6.1: Case Study Design

fourteen case studies published in CSMR, ICSE and ESEC/FSE conferences and

also from European S-Cube project on service based applications (SBA). They

identified that there are case studies created by authors which are quite small

to be representative of real service based system such as (Bianculli and Ghezzi,

2007) and (Ardissono et al., 2006). And there are some that include more services

such as (Baresi et al., 2004), although their details are not available. The same

is the case with industry based research publications. The researchers mention

that their approach is applied to real applications but details are not available.

Therefore these studies cannot be compared or replicated. Espinha et al. (2012)

has also suggested a case study named as ‘Spicy Stonehenge’ constructed from

an existing open source system.

To conduct case study we have developed a case study protocol attached as

Appendix B. In this chapter we explain the case study process and discuss the

use case model in detail.

73

Chapter 6. Use Case

6.2 Case Study

The elements considered in the design of the case study are explained in detail

below.

Rationale: We undertook case study in response to the questions raised from

performing mapping study on SOA. From the analysis of literature pub-

lished on SOA we became aware of the fact that one of the challenges for

the development of SBA is the design of such applications. In particular,

the need of the detailed description of the real world problem and the ex-

perience of designing a new service based application. Therefore, primary

rationale for the case study was to provide deep understanding of the prob-

lem and use this along with the outcomes of previous study to construct a

proof-of-the concept design.

Case Study Domain: The case study has been taken from the energy engineer-

ing domain. The reason for selecting this domain is mainly one of having

access to the resources within the School. In addition to this the concept of

smart grids, which is similar to that of a small scale energy zone (SSEZ), is

considered an important idea in future power systems. The concept involves

distributed generation independent of the grid. This helps supplying power

when there are blackouts in case of extreme weather conditions such as

‘Hurrican Sandy’. On this occasion, the distributed generators helped the

universities, hospitals and business to keep their power supply independent

of the grid (Venables, 2012). Further to this, these power systems inte-

grated with prediction can help to remove loads from grid and to provide

power to the consumers by estimating future power needs in the area. In

Muller (2012), a future picture of power systems is presented in the form of

distributed energy management systems that combine weather data, real-

power, prices, and consumer demand to produce forecast and operating

schedules for power plants.

Case Study Type: This is being conducted as a single-case study, due to the

breadth and complexity of the domain.

74

Chapter 6. Use Case

Unit of Analysis: The ‘case’ (or unit of analysis) is the design for a small scale

energy zone (SSEZ) control system. This is a real time system that is run

by an Energy Services Company (ESCO) to manage the electrical network

and fulfil energy needs in an SSEZ.

Use Case Model: We have constructed an operational model of the SSEZ con-

trol system in the form of use case. This contains electrical network in-

formation, operational goals, key factors related to control system and the

data involved.

Characteristics of Use Case: The characteristics that were considered to be

represented in the use case were the needs for adaptability; multiple dis-

tributed sources of information; and negotiation. The SSEZ is a distributed

system that requires information from different sources (network and service

providers). The involvement of service providers fulfils the requirement of

negotiation to be present in the case study. Being a real time system, adapt-

ability is also an important attribute of this case. The match between the

characteristics of the use case and the service oriented architecture (SOA)

are discussed in (Anjum and Budgen, 2012b).

The characteristics of an SOA, as mapped on to the use case are listed

below.

• Architecture: The SSEZ control requires information to be collected

by a centralised element. Which means the composition takes the

form of a ‘tree’ where lower level services (network information) are

composed into higher level services such as control service.

• Binding: The state of the SSEZ needs to be reviewed at regular

intervals based on current values and forecasts for demand, provision

and weather. Each review may involve a different set of information

sources, especially as generation and storage are added and removed

from the current profile of the SSEZ. A model of late (runtime) binding

as provided in an SOA is therefore particularly well-matched to this

need.

75

Chapter 6. Use Case

• Capability: The meaning of this is the same for both an SOA and

for the system as a whole, and is concerned with the overall function-

ality. For an SSEZ, it is related to the ability of the software to use

available information to perform the necessary resource management,

by modelling demand and provision for the next period of time and

then plan any changes accordingly. That in turn is related to the set

of algorithmic models used for prediction, the state of the system at

any time, and the forecasts for the next period.

• Composition: Composition involves bringing together multiple sources

of information to facilitate a decision. An example of this in an SSEZ

might be the use of information from a wind farm about its current

output, together with forecasts of likely demand and a weather fore-

cast, to decide whether to increase or decrease provision from other

sources. Composition is a core feature of a software service model,

which also provides the means to determine the source of a service

(e.g. weather forecast) when the request is issued (late binding), and

hence this characteristic makes a service solution well matched to needs

of an SSEZ.

• Contract: The contracts are rules of engagement with other services

or between service provider and consumer. In the case of an SSEZ,

contracts for different types of forecasting services may involve terms

that address the granularity of data and service availability. If the rules

of engagement change, then re-negotiation may result in a change of

service provider.

• Distributed Sources: The SSEZ is well matched with this implicit

feature of an SOA. The data coming from generation, demand and

weather is already coming from distributed sources with different own-

ership, and hence the elements in the overall system will be interacting

over the network.

• Identity: The characteristics of demand, generation, weather and

their forecasts are different and are accessed through different means.

These characteristics will help the generation forecast service to select

76

Chapter 6. Use Case

the most suitable service provider for its processing.

• Interoperability: For an SSEZ this is an important feature as its

elements need to be able to communicate information with each other

in a consistent framework. To ensure interoperability, the electrical

power industry is working on two standards: Common Information

Model (CIM) and IEC 61850. In an SOA, interoperability is provided

by a combination of XML-based messaging forms and an ontological

model that provides the necessary semantics. This is clearly highly

consistent with the above.

Data Collection: The case study data has been collected through the use of

both method triangulation (Oates, 2005) which is shown in Figure 6.1 and

also by employing triangulation of multiple data sources. Table 6.1 provides

details about this. These techniques are used to increase the validity and

consistency of the data. In the case study, the confounding factors that

may impact the result are not entirely known or cannot be controlled. This

is because in a case study the researcher does not have the same control

as is in an experiment. Therefore, Yin (2008) has suggested two ways to

handle this problem.

• By conducting multiple case studies or use of multiple cases in a single

case study.

• Use of triangulation to gather evidence in a single study.

Time Period: The case study time period was longer than defined in the proto-

col. This was due to the iterative approach of collecting data and analysing

it to identify gaps in the information. The second reason was that of need

for the domain knowledge. A significant amount of time was spent on un-

derstanding the terminologies, and in collecting the relevant data. The

research is interdisciplinary, therefore, vocabulary played an important role

in data collection and representation, and was needed to ensure that the

documents produced could be understood by both disciplines.

77

Chapter 6. Use Case

Table 6.1: Data Collection
Method Triangula-
tion

Data Triangulation

Use Case The data about use case was collected through interviews
with domain experts and the study of supporting doc-
uments that include research papers, technical reports,
and thesis. The information collected in one interview
session was used in the next with some additional docu-
ments to collect feedback. This was important to identify
inconsistency in the collected data and to make sure that
the domain information has been understood correctly.
The interview sessions (formal and informal) with do-
main experts helped with understanding the domain and
the supporting documents provided sources for its vocab-
ulary. This was mainly a process of requirements elicita-
tion. In Appendix C documents from discussion sessions
are attached.

Design The SOA design model constructed as the part of case
study provides details about the service and functional
components created from requirements. The design el-
ements are presented through abstract diagrammatical
forms.

Evaluation: The
walkthroughs and
interviews were con-
ducted as part of
case study for the
validity of use case
and the design.

The data for evaluation was collected both from walk-
through sessions and also from interviews with partic-
ipants. The data about walkthrough sessions contains
details about the review. The data is recorded in audio
and video files. The feedback about walkthrough process,
and design presentation is collected through interviews.
The data is collected through by recording interviews.

78

Chapter 6. Use Case

The use case constructed for use in the case study is discussed in the next

sections. The use case was constructed in such a way that it could be understood

by both domain experts and the software engineers. There is domain specific

information for example the electrical network configurations. This information

is provided because the case study we have taken is the part of an ongoing research

programme in renewable energy. To get information from energy engineers you

have to provide them with the scope of the network as a reference point in order

to discuss related issues.

The details in the use case provide a wider scope of the problem. This is

useful, particularly when a domain is new and unfamiliar. This also helps in the

development of the application from scratch. In this research we are not only

constructing the case study to represent a real world problem but also using it as

a tool to explore and represent the SOA design problem.

In the next section we discuss the use case model that was developed as the

part of the case study.

6.3 Use Case

The use case describes the situation where an Energy Services Company (ESCO)

is maintaining the specified electrical network by generating electricity through

renewable energy resources1 and trying to avoid the use of conventional power2

where possible.

The main objective for the ESCO is to provide electricity to its customers

in an efficient, reliable and cost effective way. To achieve this target, the ESCO

needs to be able to predict demand and generation for its electrical network; to

take decisions, where required, about the buying and selling of energy, as well

1According to the Environmental Protection Agency (EPA), renewable energy in-
cludes resources that rely on fuel sources that restore themselves over short periods
of time and do not diminish. Such fuel sources include the sun, wind, moving wa-
ter, organic plant and waste material (biomass), and the earth’s heat (geothermal).
http://www.epa.gov/greenpower/gpmarket/index.htm

2Conventional power includes fossil fuels (coal, natural gas, and oil) and the nuclear fission
of uranium. Fossil fuels have environmental costs from mining, drilling, or extraction, and emit
greenhouse gases and air pollution during combustion. Although nuclear power generation
emits no greenhouse gases during power generation, it does require mining, extraction, and
long-term radioactive waste storage. http://www.epa.gov/greenpower/gpmarket/index.htm

79

Chapter 6. Use Case

as when to adopt an islanding mode and to take decisions about demand side

management (DSM). For this, the ESCO has to gather and process network and

commercial data from different sources and use this to make real-time decisions.

The rest of this chapter consists of a requirements specification based upon a

particular instance of the case study.

6.4 The SSEZ Network

The details about the example small scale energy zone (SSEZ) electrical network

resources forming the use case, and about their usage are provided below.

6.4.1 Network Configuration

Our example SSEZ comprises of a HV/MV 33kV three-phase network with three

11kV feeders: one for residential use, one for industrial and one for commercial.

The residential feeder serves 500 customers with 1MW demand. Photovoltaics

(PVs) are attached with each house with a capacity of 2kW. Demand for indi-

vidual customers can vary from 400W to 15 kW. The average peak demand for

domestic customers after taking diversity (ADMD1) into consideration is 2-3kW.

The minimum load can be considered to be 30% of the peak demand.

The commercial feeder covers a 1 MW demand for a supermarket, as shown

in Figure 6.2. The industrial feeder has a 2MW demand for a factory. A wind

farm near the factory is connected to the industrial feeder with the capacity

of 3MW, with each wind turbine having the capacity to generate 500 kW. An

energy storage unit (ESU) is installed next to the wind farm which has a storage

capacity of 2 MWh. Figure 6.3, shows the configuration of the SSEZ governed

by the ESCO.

Table 6.2 provides a summary of electrical network resources. The load type

with its maximum and minimum limits is discussed in Table 6.3

In Table 6.4, details about distributed generators (DGs) are given in detail

with actual capacity and after applying capacity factor (CF)2

1After diversity maximum demand
2Capacity factor (or load factor) expresses the amount of electricity produced by an electric-

80

Chapter 6. Use Case

33kV HV System

11kV

Load
Market

Wind
Farm

Storage

Load
Factory

Load
250 customersPV

Load
45 customersPV

Load
100 customersPV

Load
5 customers

Farm
PV

Load
100 customers PV

Figure 6.2: Electricity Network

Factory

(Industrial Load)
Farm House

(domestic load)

Houses

(domestic load)

Supermarket

(commercial load)

Wind Farm

Storage

ESCO Small Scale Energy Zone

National

Grid

Figure 6.3: ESCO Small Scale Energy Zone

81

Chapter 6. Use Case

Table 6.2: Summary of Electrical Network
Feeders Load type Load DG

Feeder1:domestic 500 customers 1MW PV

Feeder2:commercial one market 1MW Use power coming from Wind farm,
PV or storage device

Feeder3:industrial one factory &
storage unit

3MW Wind farm & Storage device

Table 6.3: SSEZ Demand
Load Type Min Load Max Load Notes

Summer Winter

Domestic 300 kW (30%) 700 kW (70%) 1MW seasonal

Commercial 500 kW (50%) 600 kW (60%) 1 MW Time 9-5 constant
throughout the year

Industrial 200 kW (10%) 200 kW (10%) 2 MW option1: 9-5 shift, op-
tion2: 24h shift

Storage - - 1 MW

Table 6.4: Power from Distributed Generators
Generators Capacity /

generator
Quantity Min

Power
Max Power
(CF)

Max En-
ergy (CF)

CF

PV 2 kW 500 0 0.2 kW 1752 kWh 10%

Wind Turbine 500 kW 33 0 150 kW 1314 MWh 30%

Storage 1 MW 1 0 1 MW 2 MWh -

82

Chapter 6. Use Case

6.4.2 Network Operational Goals

Depending upon the network conditions, five operational goals that need to be

met in order to run an SSEZ have been identified in (Trichakis et al., 2008).

These goals are summarized below (but an important point to be considered here

is that not all goals can be met at the same time).

1. Zero power export: If local generation capacity is less than peak local de-

mand, the goal could be to maintain a zero power export position to the

distribution network.

2. Zero power import: If local generation capacity exceeds peak local demand,

the SSEZ could aim for zero power import.

3. Zero power import and export (self-sufficient): If there is a close match

between peak local demand and local generation capacity, the SSEZ could

attempt to operate self-sufficiently, with no power exchange with the dis-

tribution network.

4. Constant power import: this involves operating with a fixed power demand,

by having a constant level of power import from the distribution network.

5. Dispatchable power export1: involves providing dispatchable power to the

distribution network over a specified time period.

ity generator as a percentage of the maximum theocratical production from generator. Wind
generators typically operate below rated capacity for around 90% of all hours(site dependent);
this mode of operation results in an annual average capacity factor for wind turbines substan-
tially below that typically achievable for conventional generators. For UK a 30% capacity factor
is generally representative of the current level of wind power development (Sinden, 2007). In
Table 6.4, maximum energy with CF is calculated for the period of one year (power capacity(.5
MW) ∗ 24(hours/day) ∗ 365(day) ∗ 0.30(CF) ≡ 1314 MW

1Electricity is provided on the request of grid operators or by distribution network operators
(DNO) using a short term contract. Where an energy system can be expected to provide a
continuous output (given normal conditions) it is termed as “dispatchable”, thus offering the
ability to furnish power on demand to meet changing loads; e.g., hydrocarbon-based or nuclear
power plants are dispatchable, but solar and wind power are not (EnergyLibrary, 2011). An
integrated energy system where wind and solar energy sources are coupled with storage devices
can be used as dispatchable during peak demand, thereby enabling their broader use (Garrison
and Webber, 2011).

83

Chapter 6. Use Case

For power dispatch, the link between control system and market operators (or

local DNO) needs to be established to allow the control system to determine if it

is capable of delivering the specified power to the grid and to decide how best to

achieve this.

6.4.3 Network Considerations

The factors that are important and need to be considered about network resources

are described below.

• The capacity factor for each wind turbine is 10-35% and for the PV it is

10%.

• The time for demand and generation patterns varies from 30 minutes to

days and weeks.

• The weather forecast is required from 30 minutes to 1h, 2h,5h or 3 days

ahead in order to run renewable energy generators and for prediction of

demand and generation in the zone.

• Storage can be used as a form of demand, therefore if there is a need to

increase demand (bringing the loads forward), the storage can be charged.

• Because of finite capacity of the storage device, it is necessary to consider its

state of charge (SOC) and voltage limits when using it to increase demand.

• Storage may be used to take advantage of price and cost differences by

charging up with surplus electricity at low cost times and discharging in

peak cost periods (known as arbitrage).

• An important consideration about storage limits could be to stop discharg-

ing if the SOC is ≤ 50%. Once storage is fully drained it takes more time

to fill it to full capacity.

• The percentage of demand that can be deferred to flatten the peak demand

according to Ofgem1 is between 5% to 10%, which is considered a reasonable

assumption.

1Ofgem is the Office of the Gas and Electricity Markets http://www.ofgem.gov.uk

84

Chapter 6. Use Case

• In the event of an overvoltage or violation of the thermal limits in the

reverse direction, the generation could be curtailed to resolve the issues.

• Power deficit or surplus inside the zone could cause technical problems or

commercial opportunities or both or none.

• The important control factor is that the power balance must be met at all

times as the national grid is a ‘slack-bus1’.

• The SSEZ is a 5MW network and at any time power in the network should

not exceed this figure.

• The wind turbine pitch control (blade angle) can be used to decrease power

output.

• Wind turbines cannot run at full capacity all the time, due to variable wind

speed. If wind speed is very low no electricity can be produced and if it

is too high, then wind turbines have to shut down to avoid damage. The

wind speed is categorised as cut-in speed (i-e 4-5 m/s), rated speed (i-e

10-15 m/s) and survival speed (i-e 25 m/s).

• The system technical constraints mean that the network could not afford

more power due to its assets limits2.

1The load-flow problem requires that total generated power matches with the total demand
along with transmission losses. However, such losses cannot be determined beforehand, there-
fore, total generation needed to supply a known demand cannot be exactly specified a priori. In
consequence, it is necessary to have at least one bus (the slack bus) whose real power generation
can be rescheduled to supply the difference between total system load plus losses and the sum
of active powers specified at generation buses (Expsito et al., 2004).

2Network constraints are determined by statutory regulations and also by equipment rating.
Equipment or component rating varies according to the weather condition such as wind speed
or solar radiation. Component temperature is not a constant value and depends on the energy
balance between the heat produced inside the component and the heat exchanged on its surface.
The dynamic thermal rating (DTR) concept consists of estimating or measuring component
temperature or real current carrying capacity, in order to allow the power system component
utilisation to be safely increased. DTR is a part of active management technique where power
flow can be increased in a safe manner in the certain sections of the network in a cost effective
way (Roberts et al., 2008; Michiorri and Taylor, 2009). The LV distributed network constraints
include voltage rise limits, voltage unbalance limits, thermal limits and reverse power flows
limits (Trichakis et al., 2008).

85

Chapter 6. Use Case

• Electricity price can be considered as a commercial constraint, and in the

case of a system, the ESCO has to decide whether or not it should sell

electricity to the grid (export electricity from the network).

6.4.4 Key Factors

The key factors that must be considered while making decisions are:

1. Technical: Network constraints have the highest priority because secure

system operation is the single most important requirement of the SSEZ

control system (Trichakis et al., 2008).

2. Demand: Keeping essential supplies to customers is essential.

3. Storage: The decision about when to charge and discharge storage is linked

to the fact that a storage unit is best used when it is fully charged or is

discharged steadily over a longer period of time. The longest time period

for discharge considered here, in this use case, is from 30 minutes.

4. DSM: Demand side management (DSM) is important especially in cases of

power deficit. DSM is best suited to a short term situation (15 minutes

in this use case), when a rapid response is required. Demand cannot be

deferred for a long time due to Ofgem policies and the risk of customer

relationships.

5. Export: It is better to export surplus energy before planning to turn off

power generation. Energy can be exported when energy market prices are

high and when there is surplus energy in the zone.

6. Import: Importing energy from the grid is necessary when the green energy

supply is not enough to fulfil the demand, or when energy market prices

are very low.

6.4.5 Assumptions

• For decision making purposes, we need to define what is meant by short,

medium and long term. In this use case, the short term is classified as

86

Chapter 6. Use Case

around 15 minutes, medium is 30 minutes and long term is 60 minutes.

• Different assumptions can be made about the ESU’s state of charge (SOC)

such as: 25%, 50%, 75%, 100%.

• It is assumed that the network is in a normal operating condition and that

no faults are present.

• The initial assumption is that the system parameters need to be revised at

half hour intervals, in accordance with UK and most European electricity

market procedures.

6.5 SSEZ Network Data

To manage the SSEZ, the ESCO needs to collect data from its electrical network

resources, which are considered as internal elements, and from weather and en-

ergy market services which are categorised as external elements. Figure6.4 below

provides an abstract view of the ESCO and the sources that it interacts with.

Weather Service Market Prices

Demand

Generation

Storage

ESCO SSEZ Control System

Figure 6.4: ESCO Data Sources

The SSEZ operational data consists of energy consumption data (demand),

generation outputs, status of energy storage unit (ESU), weather forecast and

energy market prices. The ESCO will communicate with weather and market

services through the internet and it is assumed that they will be available in the

form of a web service. The details of data and its sources are discussed below:

87

Chapter 6. Use Case

Table 6.5: Network Operational Data
Category Source Information Type Data

Weather Webservice
(Metoffice or any
other weather
service provider)

Current & Fore-
cast

Time of day, Wind Speed,
Wind Direction, Tempera-
ture, Ice, Rain-Soil resis-
tivity, Solar Irradiance, Po-
sition of Sun, Cloud Con-
ditions, Ambient Tempera-
ture

Current De-
mand

Smart meters1 Current data Load data, Energy Con-
sumption, Date & Time

Historical de-
mand

Webservice Load data, Energy Con-
sumption, Date & Time

Generation Wind farm & PVs Present States Power output, Energy,
time of day

Storage Storage device Present State State of charge, Voltage

Energy Mar-
ket

Webservice (Na-
tional grid)

Current & Fore-
cast price

Settlement price, System
buy price, System sell price

Weather Service: Weather forecast data is primarily used for two purposes;

generation forecasts and demand forecasts. In the case of renewable gen-

eration from wind and solar farms, weather forecasting plays an important

role by providing information about expected wind speed and direction. In

the same way, weather has an impact on energy demand - for example in-

creased use of air conditioning on hot days and increased heating needs on

cold days. Both free and commercial weather services are available via the

web, and these can be used by the ESCO to determine what may happen

in the short term with regard to wind speed, solar insulation and ambient

temperature.

A basic level of weather service is available on the internet for free, but to

get accurate and refined data, a higher cost option needs to be used.

Demand: The demand data provides information about a customer’s electric-

ity consumption. Customer demand profiles are required to analyse the

1A smart meter is an advanced meter that measures energy consumption like conventional
meters but have the additional functionality of communicating information to the central system
for monitoring and billing. Smart meters transfer real-time energy consumption information
and have the ability of bidirectional data communication (Depuru et al., 2011).

88

Chapter 6. Use Case

electricity usage in the network and also to predict future demand. Smart

meters have the ability to provide real-time data through their open network

interfaces.

For demand prediction, it is required to know about how much power is

currently being drawn, how much energy has been used in last half hour,

what is the weather forecast, what is demand now, as well as the time of

the day, date and historical demand profile. Other important factors that

need to be known for demand prediction (apart from day-to-day variations)

are the seasonal demand variations, annual events like Christmas, and any

major sports occasions, social events etc. when electrical appliances are

likely to be in use.

Historical Demand Profile: Historical demand profiles provide information

about previous profiles of energy use that show past energy consumption

on a specific day, time and year. This information can help with analysing

likely demand patterns for a specific time of the year or a specific occasion.

Generation: The generation data consists of output from different generation

sources like wind turbines, solar panels etc. in order to analyse current

available energy in the network. The energy generators can be owned by the

ESCO itself or they can be provided by different generation plant owners.

To make decisions, the ESCO needs to calculate generation cost, and the

amount of energy and power to be generated. If the ESCO is focusing

on balancing and metering then it needs power and energy as net amounts.

But if it is considering network issues, where wind turbines and solar panels

are connected to different parts of the network, then power and energy

information need to be collected on each wind turbine and solar panel. In

this case, network constraints might affect both forecasting and delivery.

The wind speeds at which wind turbines operate are categorised as cut-in

speed (i-e 4-5 m/s), rated speed (i-e 10-15 m/s) and survival speed (i-e

25 m/s). These speed limits put constraints on the wind farm generation

plans. There is a relationship between wind speed and pitch angle, that can

be used to reduce the output as discussed in Appendix D.

89

Chapter 6. Use Case

In this use case we are assuming continous provision of the following infor-

mation from the wind farm:

• Wind Turbine/ farm Power output

• Wind Speed (m/s)

• Time Stamp

The information about power produced from photovoltaics (PVs) that is

required is listed below:

• Power output

• Solar irradiance

• Time Stamp

Storage: The two main pieces of information that need to be considered about

the ESU are: state of charge (SOC) and current state of the ESU. In some

cases voltage condition is also considered (detail in Appendix D). Table 6.6,

shows the SOC and its state relationship.

Table 6.6: SOC, current and future states
SOC(%) Current State Future State

100 charge stop / discharge

stop stop / discharge

70 charge charge / stop / discharge

stop charge / stop / discharge

discharge charge / stop / discharge

50 or less no discharge allowed stop/ charge

Energy Markets: The Grid is the backbone source for energy provision. De-

pending upon market conditions, an ESCO can decide to buy or sell elec-

tricity to the Grid.

To obtain up-to-date wholesale buy and sell prices for grid electricity, an

ESCO needs to communicate with the energy market. The electricity mar-

ket price will help the ESCO to determine when to export/import electricity

90

Chapter 6. Use Case

to the grid and when to charge and discharge its storage units. More detail

about the balancing market is given in the Appendix D.

Current and predicted market price is required whenever there is a need

for import or export of energy. Energy is imported from the grid only

when renewable generation is not enough and when there is a risk of a

loss of supply to customers. In this case, brown energy is used, which has

environmental effects, and this is the situation which an ESCO will usually

try to avoid. Energy export occurs when the current output of generators is

more than required in the zone. If a full load is being exploited, the storage

has reached maximum capacity and there is still excess energy in the zone,

then to avoid energy wastage it needs to be exported to the grid. It is a key

part of an ESCO’s strategy to decide when to import and export energy

as the price to export energy to the grid is only approximately 2p/kW-hr,

whereas the energy purchase price from the grid is around 7-13p/kW-hr.

Market prices include current system buy price (SBP) and system sell price

(SSP). The details about SBP and SSP are given in the Appendix D.

System History: There is need to maintain record of the data about the SSEZ

network. For this the decisions made by control system should be logged

along with the information collected from network and the data obtained

from outside the network such as weather data and energy market prices.

This information will help to maintain SSEZ energy profile. Which further

can help in making prediction about the energy condition in the zone.

6.6 Summary of Functional and Non-Functional

Requirements

The functional and non- functional requirements identified from the use case are

listed below:

Functional Requirements: • Maintain the power balance in the SSEZ

• Access and evaluate data coming from the electrical network resources

91

Chapter 6. Use Case

• Import power from the Grid as necessary

• Export power to the Grid as necessary

• Access Weather Services

• Access Energy Market Service

• Predict demand for the SSEZ

• Predict generation for the SSEZ

• Maintain a system history by logging key data

Non-functional Requirements: • Time: The control system evaluates its

network resources on 30 minutes intervals. Estimation to access data

from each resource (either inside or outside the network), estimation

of time to process data coming from different resources to take final

decision and time-out for the messages sent to services.

• Cost: This factor needs to be considered when buying from and

selling electricity to the grid. Also, when accessing data from a third

party such as weather service.

• Reliability: The correctness of data coming from different resources

that are owned by third parties.

• Availability:

– The availability of data from different resources owned by third

parties, or such as the weather service and the demand forecast.

– The availability of data from ESCO owned electrical network.

• Performance: is associated with the time required for completing

tasks as discussed above.

• Operating policy of ESCO: The priorities and policies set by ESCO

that need to be used for making different decisions about use of the

resources owned by third parties.

92

Chapter 6. Case Study

6.7 Summary

The chapter explains the case study process and provides details about the use

case that is constructed as a part of the case study. The use case represents an op-

erational model of an energy control system for a small scale energy zone (SSEZ).

The SSEZ electrical network configurations, operational goals and network data

sources are discussed in detail.

93

Chapter 7

SOA Design

7.1 Introduction

The chapter describes the high level design created to model the small scale energy

zone (SSEZ) control system that was discussed in detail in Chapter 6. Figure 7.1

highlights the part of the overall process of the case study that is covered in this

chapter.

Conducting a design involves integrating case study information, the SOA

model and software design knowledge. The design process consists of the tasks

that need to be performed to construct the design. In this chapter, the term

‘System’ is used in a general way. While describing the design for the use case,

we have also used the phrase ‘service-based control system (SBCS)’; which means

‘the software system that is going to control the activities of the SSEZ ’.

7.2 Design Process

From a cognitive perspective “a software design method is a problem solving ap-

proach that focuses designer’s attention on certain aspects of the design problem

and attempts to facilitate the process of transforming problem requirements into

a software solution (Kim and Lerch, 1992)”.

A software design ‘method’ typically consists of three main components: rep-

resentions, processes and a set of heuristics (Budgen, 2003). The representational

94

Chapter 7. SOA Design

Case Study

SSEZ
Model Use Case SOA

Model

Scenarios Evaluation

Design

assessment for the
case study RQ

expertise

Figure 7.1: Case Study Design

part describes the design model through a set of notations (text, diagrams etc.),

by making use of one or more viewpoints. Viewpoints are used to represent both

the static and dynamic aspects of a system. The process part deals with the

procedures and strategies are adopted by the designer to construct the design so-

lution. The third part consists of guidelines that encapsulate knowledge of past

experience and information related to particular problems or design techniques.

The design has been constructed by performing a set of activities, where

these include both decompositional(a top-down-identification of functions) and

compositional (a bottom-up-identification of entities) approaches (Budgen, 2003).

While designing, a designer has to transform an incomplete and ambiguous

requirement specification into a high level system design which is expressed in

formal or semi-formal notations (Guindon, 1990b). Therefore, process of design

is regarded as a creative task, and there is no real systematic way of doing this

(Visser and Hoc, 1990). Each new problem has its own level of complexity and

95

Chapter 7. SOA Design

novelty, that may be a combination of new requirements in a familiar type of

system or an unfamiliar type of system in an unfamiliar domain (Guindon, 1990b).

Usually, the design produced at the end is the result of multiple iterations

of this process, as this is not possible to identify all of the features in the first

round. Also the identification of one aspect may lead to the discovery of the need

for a new service or change same features of the previous one. Therefore, there is

no strict order for performing the activities discussed below and they are usually

interleaved to some degree.

(a) Identification of functional components (functional decomposition of

the system) - We partition the system into main functions through which

the overall system functionality can be realised. This is based on the well

established concept of ‘separation of concerns’ which is achieved through de-

composition of system functionality. In structured design, functional decom-

position is used to divide a complex problem into a number of sub-problems.

This is categorised as a top down approach in which the problem is viewed

from functional perspective rather thinking in terms of noun properties as

we do in object oriented (OO).

In the SOA context, we consider a system as being a set of services that

togather perform the system functionality. By considering these services as

functional components we can initially assume them to be black boxes each

taking certain input(s) and provides output(s). Expanding these as a white

box, we can identify what functionality it provides and whether that can be

sub-divided into sub-functions. These sub-functions have there own inputs

and output. This makes the hierarchy of function and sub-functions which is

called a functional refinement tree by Wieringa (1998). A functional refine-

ment tree divide the function until we reach to the atomic functions that are

transactions as shown in Figure7.2. By taking the example of the SBCS, we

were able to identify that the system needs network states, it need to assess

power in the zone, and evaluates different options to make final decisions.

As Wieringa (1998) has suggested, we can use this functional refinement tree

with a Data Flow diagram to show the hierarchical decomposition. In the

case of the SBCS, Figure 7.6 and Figure 7.8 correspond to the functional

96

Chapter 7. SOA Design

Control Power Balance (controller)

Get system states

Get demand Get generation Get storage
state

Assess power
 balance

Assess level
of change

Update system
states

Charge
storage

Discharge
storage

Figure 7.2: Part of functional refinement tree for SBCS

refinement tree. Functional refinement tree show system behaviour an in-

creasing level of detail and can lead towards detailed design which is not in

the scope of our discussion.

The other important criteria that need to be considered while identifying and

defining functional components is coupling and cohesion which are defined by

Yourdon and Constantine (1979). These are important because reusability is

defined as being an intrinsic feature of an SOA. While identifying functional

components and forming them into potential services these criteria need to

be considered.

The goal of this activity is to identify the main functions performed by the

SBCS. The result of this activity is a list of operations through which the

overall system functionality can be realised.

(b) Identification of potential services - Identification of services is associated

with the identification of functional components discussed in (a). A service

may provide one or more functions, and may contain a logical grouping of

functions within itself. This will also depend on the role of the service in the

system. The inputs and outputs will determine the dependency of services on

each other. This will help in composition of services and in the construction

of workflow. Therefore the main goals of this activity are:

• Identification of services (the functionality that is reusable and will need

to be obtained from a third party or that provided as service to others)

• Identification of service roles (what functionality the service will provide)

97

Chapter 7. SOA Design

• Identification of inputs and outputs of these services (which will lead to

identifying of dependencies and developing a composition flow)

These goals are similar to those used in object oriented design which is often

considered a bottom up approach. However, in OOD the relationship between

classes may also need to represent inheritance, which is not the case here.

The goals achieved in this phase will help to develop the possible interfaces

for the services which can be realised through a class diagram. They will

further aid to define the parameters needed for service invocation.

The output of this activity is a list of identified potential services, including

their roles with possible inputs and outputs.

(c) Functional traceability - The functional components have been allocated

to the services by means of a ‘traceability table’. This allows mapping be-

tween functional components and identified potential services. The purpose

of using functional traceability is to find out which function is provided by

which service. This is represented in Table 7.5. This helps to identify ser-

vice granularity and to determine how cohesive they are. Further, to identify

which service is contributing to realise a particular functional component we

have used a functional realisation table. The purpose of using these two

tables is to:

(a) track which service is providing what functionality and which function-

ality will be available locally.

(b) identify services that are providing input to realise the functional com-

ponent, where this is not part of their operations.

The result of this activity is the mapping of identified functional components

and identified potential services which is represented by making use of tables.

(d) Service interactions - This describes how services interact with each other.

The interaction pattern is described by using a table structure where services

are ordered on horizontal and vertical axis, in the same order. The service

interaction can be to get data or to provide a functional feature to other

98

Chapter 7. SOA Design

services. For example, as interaction with an intermediary service can be to

discover a particular service from the registry. In SBCS we have created a

service ‘get system states’. This intermediary service (or logical service) is

responsible to collect system states from other services and to send a response

to the controller. As this service is locally available means that it is a logical

service not associated with any service provider.

The service interaction table makes the service interactions and dependencies

visible. For example, to predict power generation, current generation and

the information about the weather forecast is required, which will be used by

prediction service. Further prediction service will be called by the controller,

as mentioned in Table 7.7.

These interactions further help with identifying the type of messages the

services will exchange. The representation of message passaging can be re-

alised through the use of a sequence diagram as discussed in section 1.4.5.

The interaction of services can be synchronous and asynchronous. This is an

important design choice and depends on the requirement of the system. A

combination of both can also be used, however, both have their own benefits

and limitations. This choice will effect the way services are implemented. The

important factor is that services are considered stateless and the scalability

is considered an important factor in SOA design. However, the application

domain has its own constraints that also effect the design choices.

The result of this activity is a table structure that represents the service

interaction pattern.

(e) Modelling static and dynamic behaviour through design represen-

tations- As part of the design process, properties that describe the static and

dynamic features of the software need to be captured and represented in order

to formulate and explore the design model (Budgen, 2003). The viewpoint

classification is taken from that of described in (Budgen, 2003). This classifi-

cation consists of functional, behavioural, constructional and data modelling.

To represent the viewpoints we have made use of existing representational

forms where possible, as there are no standards for SOA design. In the

99

Chapter 7. SOA Design

representational forms we have tried to keep the level of abstraction the same.

However, each representation has its own purpose and adds further level of

information in the design.

In Table 7.1, the design activities are linked with the appropriate represen-

tational forms. The purpose is to analyse at what level each representation

is useful.

Table 7.1: Summary of design activity
Activities Form Supporting Representa-

tions
Identification of func-
tional components

List of functions Data Flow diagram

Identification of services Table class diagram, component
diagram

Functional traceability Tables -
Service interactions Tables Sequence diagram, activity

diagram

In Table 7.2, we have mapped services features to different representational

forms.

Table 7.2: SOA and Representations
Features Representations
Service Interfaces class diagram, component diagram
Service Dependencies class diagram, activity diagram
Message Interactions sequence diagram
Service ownerships and choices component diagram
Process, control and data flow DFD, activity diagram and flow chart

The viewpoints provide a classification of system features. We have used

them for the selection of diagrammatical representations such as to represent

static features of SBCS class diagram is used that comes under constructional

viewpoint. Also we have discussed service interactions and now need to anal-

yse how they will interact in the overall system. Further we need to decide

where sequencing and parallel tasks will be required and how the control and

data flow of the system will be organised.

100

Chapter 7. SOA Design

In addition to the above discussed points, in the case of service based appli-

cations we have to identify:

• Whether services will be locally or remotely sourced. They will be logical

or physical. By logical we mean that a service will not be associated

with service provider. By physical service we mean a service that will

be provided by a third party.

• Identify service providers and the type of contract used with them.

There can be long or short term contracts with service providers. This

will help to define the binding type (static binding or dynamic (Bianco

et al., 2007)) and the use of the registry.

• The decision about the use of registry and its availability. There are

different approaches to this. The registry can itself be a third party

service, or it can be at the consumers’ location. This decision effect

the design of the system. By this we mean that if registry is located

at consumer side then who will be responsible to update information

about services and service providers. If registry is owned by a third

party then consumer might need to pay for this service and the owner

of the registry will be responsible to manage the information. These

choices also depend on the application domain. In case of SBCS, the

registry will be preferred to be at consumer end due to time constraints

and the type of contracts made by ESCO (contracts that are long term

such as six months or so).

We consider these decisions important enough to be mentioned explicitly, and

as the detailed design is developed so these features need to be addressed.

At a high level, we have represented them through the use of diagrams and

discussed them accordingly.

101

Chapter 7. SOA Design

7.3 Service-based Control System (SBCS) De-

sign

The SBCS consists of different components and Figure 7.3 presents a brainstorm-

ing diagram that represents the main elements. The SBCS collects information

about its network resources that is recorded as system states. It needs market

buy and sell prices to import or export energy to the national grid. For the pre-

diction model, it needs demand and generation prediction values. To maintain

system history and to be used to add further functionality like asset conditions,

the SBCS requires weather data. The Controller is responsible for executing the

overall process of the SSEZ control system, and uses priorities (the preferences

discussed in Chapter 6) as part of the operating policy of the system.

SBCS

System States

Controller

Energy Market Service
Demand Prediction Service

Generation Prediction Service

Weather Service

Figure 7.3: Abstract view of SBCS

Figure 7.4, presents an abstract system architecture for the SBCS. The SSEZ

network data is recorded as part of system states. The information about current

and predicted weather condition in the zone is also collected. This information is

used by the component that assesses system states and the prediction model. The

component responsible for assessing states makes use of constraints and priorities

along with the information about current market buy and sell prices. The current

situation for power generation and demand in the zone is assessed. Further,

information coming from prediction model is used to assess future conditions in

the zone. The information about the current and future condition along with the

decisions made by the controller are also recorded as part of system history.

102

Chapter 7. SOA Design

System States Weather Data

Weather Service with one

or more service providers

SSEZ Network

Data

Assess States

Energy Market

Prices

Energy market

service with fixed

service provider

Constraints

Priorities

Demand Prediction

Generation

Prediction

Historical

Demand

Weather

Data

Table Table

Figure 7.4: System Architecture Abstract View

In the next section we discuss the SBCS design according to the activities

defined in section 7.2.

7.3.1 Identification of functional components

The SBCS consists of nine main functional components as shown in Table 7.3.

These functions are at the first level and they contain sub-functions. We have

kept them at this level here as we have to identify what functionality will be local

to the system and which will be accessed through third party.

In the next iteration we can divide these functions into sub functions, for ex-

ample, F1 contains three informations sources (generation, demand and storage).

These sub-functions can also take the form of services, depending on their use.

Similarly F4 and F5 provide a high level of abstraction. Dividing them into sub-

functions will include further level of details. Here, we can make use of functional

refinement tree.

103

Chapter 7. SOA Design

Table 7.3: Functional Components (modules)
Functional Components Roles
Get system states (F1) SBCS states from three different sources (gen-

eration, demand and storage).
Assess power balance (F2) To check balance in current demand and gen-

eration.
Get weather forecast (F3) Get weather forecast for SBCS.
Predict demand (F4) Predict demand based on current and historical

data.
Predict generation (F5) Predict generation based on weather forecast

and current generation status.
Assess level of change (F6) Check different options to assess the type of

change required to maintain energy balance.
Get market price (F7) Get energy market price for SBCS.
Update system states (F8) Take action by changing system states.
Update system log (F9) Update data in the SBCS system database.

7.3.2 Identification of potential services

The services that have been identified as being able to provide the functionality

identified in Table7.3 are shown in Table 7.4. The role of each service with

possible inputs and outputs is also described.

The controller that executes the process is not considered as a service because

it is not offering a service outside of its own system. Instead, it is consuming the

services listed in Table 7.4. Therefore, F2 and F6 are part of the controller and

are not represented as a service. Further, service (SHD) responsible of providing

historical demand is identified as part of demand prediction service.

This table is helpful in identifying service interfaces. The class diagram that

can help with providing interface information is discussed in section 7.3.7.

7.3.3 Functional traceability

The traceability table, Table 7.5, represents the role that each service plays in

providing the functionality listed in Table 7.3. A cross indicates the involvement

of a service in a function and its absence means that the service plays no role in

the realisation of that function. The functional components, F2 and F6 are not

104

Chapter 7. SOA Design

Table 7.4: Service Role, inputs and outputs
Services Roles Inputs Outputs
Service to get
generation out-
put (SG)

Provides data from wind tur-
bines.

- generation
output, wind
speed

Service to get de-
mand (SD)

Responsible for providing cur-
rent demand data.

- energy con-
sumption
data

Service to get
historical de-
mand (SHD)

Responsible for providing his-
torical demand data.

- energy con-
sumption
data

Service to get
storage status
(SS)

Provides current state of
charge (SOC) and storage sta-
tus (SS) for storage unit.

- SOC, SS

Service to pre-
dict demand
(SPD)

Provides demand prediction. current
demand,
historical
demand,
weather
data

demand pre-
diction data

Service to pre-
dict generation
(SPG)

Responsible for providing
generation predictions.

current
generation,
weather
data, loca-
tion

generation
prediction,
wind speed

Service to get
weather forecast
(SW)

Provides weather data (cur-
rent and forecast).

location wind speed,
temperature

Service to pro-
vide energy mar-
ket price (SM)

Responsible for providing the
energy market price.

- buy and sell
price

Service to main-
tains system log
(SL)

Updates data in the SBCS
database.

system
states,
weather
data, mar-
ket price

-

105

Chapter 7. SOA Design

provided directly by services and are part of the controller, therefore no cross is

included in these two columns.

Table 7.5: Functional Traceability
F1 F2 F3 F4 F5 F6 F7 F8 F9

SG ×
SD ×
SS ×
SPD ×
SPG ×
SW ×
SM ×
SL ×

In Table 7.6, the services are mapped to functional components in order to

represent how the functionality of these functions is realised. These functions are

not part of a service, rather they use information from the services to perform

their tasks.

Table 7.6: Functional Realisation
F1 F2 F3 F4 F5 F6 F7 F8 F9

SG × ×
SD × ×
SS × ×
SPD × ×
SPG × ×
SW × ×
SM ×
SL

7.3.4 Service Interactions

In Table 7.7, services are listed along the x-axis and the y-axis in the same

order, and the table shows where services interact with each other, including the

controller (represented by C). The cross indicates service interactions and absence

means no direct communication between services. We found this representation

106

Chapter 7. SOA Design

useful in terms of identifying the dependency and interaction of services with each

other. This dependency is further shown in the class diagram in section 7.3.7.

The interactions in the form of data and control flow are discussed in section

7.3.9 and messages among services is represented in sequence diagram in section

7.3.10.

Table 7.7: Service Interactions
SG SD SS C SHD SPD SPG SW SM SL

SG ×
SD ×
SS ×
C × × × × × × × ×
SHD ×
SPD × × ×
SPG × × × ×
SW × × ×
SM ×
SL ×

7.3.5 Modelling static and dynamic behaviour through

design representations

Here, the viewpoints described in the design process section are discussed in more

detail. Table 7.8 provides information about the purpose of using a particular

representation, and the viewpoint that it is intended to provide.

• Both DFDs and activity diagrams are used to show the functional aspects

of the SBCS. A DFD provides a ‘big picture’ of the SBCS and is used to

aid functional decomposition of the system. The activity diagram provides

more detail about the processes.

• An activity diagram is particularly useful for representing how services in-

teract with each other in order to perform a specific task or to realise a

business process. During service composition, workflow is generated that

describes the sequence in which services will be assembled and executed.

An activity diagram can be used to describe this.

107

Chapter 7. SOA Design

Table 7.8: Purpose, Representational forms and Viewpoints
Purpose Representation Viewpoint
Problem oriented view of system with its in-
puts, outputs and processing elements

Data flow Dia-
gram

Functional

Service operations and relationships Class Diagram Constructional
System components and Service interfaces, re-
lationships, and service providers

Component Di-
agram

Constructional

System flow with functional components inter-
nal and external to the system, sequencing and
ordering of activities

Activity Dia-
gram

Behavioural/
Functional

Interaction and order of interaction among ser-
vices over time

Sequence Dia-
gram

Behavioural

Overall system behaviour, interaction with ser-
vices and decisions by the control

Flow Chart Behavioural

• A sequence diagram is selected to represent SBCS behaviour through mes-

sage passing.

• The class diagram serves two purposes. It can provide the conceptual de-

composition of the system into services. And can also be used for service

interface information and their relationship with each other.

• The component diagram is used to show how system components and ser-

vices are interacting with each other. The interfaces that are provided and

required by them. This also helps to present the physical and logical view

of services.

• A flow chart is used to represent system behaviour. The decisions made by

the controller and the interactions with services in a workflow are shown

through scenarios.

Notations used in these diagrams are available in Appendix H.

The use of each representational form for the SBCS is discussed in the follow-

ing sections.

108

Chapter 7. SOA Design

7.3.6 Data flow diagram (DFD)

A DFD introduced by DeMarco (1979) provides an abstraction of the overall

system and is considered to be useful for analysis. In structured analysis, the

DFD is a well established way of representing processes, external entities, data

flow and data stores of the system under development. It provides the concepts

and notations in a simple manner which can be considered a major element of

its acceptability. Also it provides modularisation in top-down manner, support

hierarchical structure and the symbols used are distinct that help in managing

the diagrammatical complexity (Moody, 2009).

In Figure 7.5, a DFD has been constructed to represent an abstract view of

the SBCS by presenting its processes, the entities it communicates with, and the

data it stores. The oblong box is used to represent external entities which are the

distributed resources of the SBCS that take the form of service providing inputs.

The circle represent the SBCS process. The arrows show the flow of data from

the entities to the central process. The output from this process is stored in the

data store, represented by two parallel lines.

Controller

System History

System States

Energy Market

Services

Weather

Services

Prediction

Services

Figure 7.5: Data Flow Diagram (DFD) showing an abstract view of the SBCS

In Figure 7.6 the processes that interact with external entities are shown

separately. For example, the arrow pointing towards the change system states

entity represents decisions made by Controller.

Figure 7.7, provides further details about the interactions of processes with

entities, togather with some values. Three system states are shown in this di-

109

Chapter 7. SOA Design

Get System

States

Controller

Get

Prediction

Get Market

prices

Change System States System History

Get

Weather

data

System States
Energy Market

Services

Weather

Services

Prediction

Services

Figure 7.6: Data Flow Diagram (DFD) of SBCS with further entities and sub
processes

agram that model energy consumption, energy generated and energy stored in

the zone. Current and predicted buy and sell prices are taken from Market Ser-

vice. The Weather service provides current and future weather data. Demand

and Generation prediction services provide the prediction values to evaluate the

likely future condition of the SSEZ.

Figure 7.8 provides detail about the Controller sub-processes. It collects data

from different resources including system states and data from different services.

In the next process, it evaluates power condition in the zone by comparing demand

and generation values. Based on the current power situation, it considers different

options available to handle the situation, for example importing or exporting

energy to the grid in the case of energy deficit /surplus. Finally it updates the

system states, depending on the decisions it has made, for example charging or

discharging the storage.

7.3.7 Class Diagram

The purpose of using a class diagram is to represent the static features of the

SBCS. Each element in a class diagram is usually partitioned into three sections

110

Chapter 7. SOA Design

Get System

States

Controller

Get

Demand

Prediction

Get Market

prices

System States

System History

Get

Weather

data

Demand Energy Market Services

Weather Services

Demand Prediction Service

Generation

Storage

demandValue

generationOutput

storageState

Generation Prediction Service

generation prediction

demand prediction

Get

Generation

Prediction

buy and sell prices

temperature

Figure 7.7: Data Flow Diagram (DFD) with details about entities and data

Collect data
Assess

power

balance

Assess

level of

change

Update

system

states

Figure 7.8: Data Flow Diagram (DFD) of Controller sub-processes

111

Chapter 7. SOA Design

that contain the class name, its attributes and its operations. In Figure 7.9, a

service model for the SBCS is represented using class diagram. The operations

that services offer and perform are listed in the rectangular boxes. The interac-

tions among services which show their dependencies on each other are represented

through doted lines. Stereotypes have been used to give more meanings to service

model.

In the Controller the operations are performed internally, while other services

offer interfaces designed to be invoked. For example, the GenerationPrediction

Service takes data from the Weather Service and Generation Service and pro-

vides predictions to the Controller. The DemandPrediction Service, invokes the

Demand Service and provides demand prediction to the Controller. The System-

Log Service is in turn the service that is dependent on the Controller, which it

accesses to get the data needed to maintain the system history.

7.3.8 Component Diagram

A component diagram has been used to represent the interactions of services, their

interfaces, and any dependency between system components. This also provides

information about the interfaces that are offered by services and the one required

by system components.

We have used a component diagram to represent:

• dependency among services and SBCS components,

• the interfaces provided by service and used by components, and

• to represent information about service providers. This also represent where

choice for more than one service provider is available. This information is

helpful when we have a mix of fixed and multiple service providers. It also

helps to decide that either there is a need to use the registry in the case of

the availability of fixed service provider or whether it should be treated as

static binding. We consider it an important design decision as this will add

or remove the processing of the searching service from the registry.

112

Chapter 7. SOA Design

<
<

D
e

m
a

n
d

P
re

d
ic

tio
n

 S
e

rv
ic

e
>

>

fn
D

e
m

a
n

d
P

re
d

ic
tio

n
()

<
<

M
a

rk
e

t S
e

rv
ic

e
>

>

fn
E

m
a

rk
e

tB
u

y
P

ric
e
()

fn
E

m
a

rk
e

tS
e

llP
ric

e
()

<
<

D
e

m
a

n
d

 S
e

rv
ic

e
>

>

fn
D

e
m

a
n

d
()

<<C
o
n
tro

lle
r>>

fn
d

e
m

a
n

d
()

fn
G

e
n

e
ra

tio
n

()

fn
S

to
ra

g
e

()

fn
E

n
e

rg
y
M

a
rk

e
tP

ric
e

s
()

fn
A

s
s
e

s
s
E

n
e

rg
y
B

a
la

n
c
e

()

fn
S

u
rp

lu
s
E

n
e

rg
y
()

fn
E

n
e

rg
y
D

e
fic

it()

fn
M

a
rk

e
tP

ric
e

C
h

e
c
k
()

fn
Im

p
o

rtE
n

e
rg

y
()

fn
E

x
p

o
rtE

n
e

rg
y
()

fn
D

e
m

a
n

d
P

re
d

ic
tio

n
()

fn
G

e
n

e
ra

tio
n

P
re

d
ic

tio
n

()

fn
P

re
d

ic
tE

n
e

rg
y
B

a
la

n
c
e

()

fn
L

o
g

()
<

<
S

y
s

te
m

L
o

g
 S

e
rv

ic
e

>
>

fn
L

o
g

()

<
<

W
e

a
th

e
r S

e
rv

ic
e

>
>

fn
C

u
rre

n
tW

e
a

th
e

r()

fn
W

e
a

th
e

rF
o

re
c
a

s
t()

<
<

H
is

to
ric

a
lD

e
m

a
n

d
 S

e
rv

ic
e
>

>

fn
H

is
to

ric
a

lD
e

m
a

n
d

()

<
<

G
e

n
e

ra
tio

n
P

re
d

ic
tio

n
 S

e
rv

ic
e
>

>

fn
G

e
n

e
ra

tio
n

P
re

d
ic

tio
n

()

<
<

G
e

n
e

ra
tio

n
 S

e
rv

ic
e

>
>

fn
G

e
n

e
ra

tio
n

O
u

tp
u

t()

fn
G

e
n

W
in

d
S

p
e

e
d
()

<
<

S
to

ra
g

e
 S

e
rv

ic
e

>
>

fn
S

to
ra

g
e

S
O

C
()

fn
S

to
ra

g
e

S
ta

te
()

Figure 7.9: Class Diagram for service dependencies and operations

113

Chapter 7. SOA Design

In Figure 7.10 we have divided the SBCS into two main components: the

controller and the prediction model. These two components are internal to the

SBCS and use the other services.

The Energy Market Service has a fixed service provider. This service interacts

with controller to provide current market buy and sell price. The Weather Service

that interacts with controller has two possible service providers. This means that

the weather service can be obtained from multiple service providers. For this

reason we need to add registry to the SBCS functional components. The registry

component will maintain the information about the weather service providers

and the non-functional information that includes the time and cost of using these

service. Further the weather service used here is also providing current weather

condition to the controller. Each time the controller accesses this service there is

the possibility that a different service provider is selected.

The services interacting with the prediction model also have multiple service

providers. It is possible that the Weather Service that provides current weather

to the Controller will be different to the one that is used by the Generation

Prediction Service and the Demand Prediction Service. This means that each time

the Controller executes its process, a different set of services might be selected.

The dotted arrow going from the prediction model to the controller represents

the decision that this component is executed as part of the controller component.

7.3.9 Activity Diagram

An activity diagram provides a workflow-oriented view of a problem. It represents

both functional and behavioural aspects. Different activities are organised so as

to show system flow. This can also be used to represent a business process.

The diagram helps in presenting the decisions, functions, parallel and sequential

activities involved in a system. It can also be used to represent control and data

flow among different activities. This is also useful in presenting the different

scenarios.

We have used an activity diagram to represent the overall flow in SBCS, and

for different scenarios that show behavioural aspects. The rectangles used in the

diagram are for functions, a diamond is for a decision, the bar representing join

114

Chapter 7. SOA Design

W
e

a
th

e
r S

e
rv

ic
e

G
e

n
e

ra
tio

n
 P

re
d

ic
tio

n

S
e

rv
ic

e
(s

)

D
e

m
a

n
d

 P
re

d
ic

tio
n

S
e

rv
ic

e

H
is

to
ric

a
l D

e
m

a
n

d

S
e

rv
ic

e

H
is

to
ric

a
l D

e
m

a
n

d

W
e

a
th

e
r F

o
re

c
a

s
t

G
e

n
e

ra
tio

n
 P

re
d

ic
tio

n

P
re

d
ic

tio
n

 M
o

d
e

l
E

n
e

rg
y

 M
a

rk
e

t

S
e

rv
ic

e

M
a

rk
e

t P
ric

e
 F

o
re

c
a

s
t

D
e

m
a

n
d

 P
re

d
ic

tio
n

C
o

n
tro

lle
r

W
e

a
th

e
rS

e
rv

ic
e

s

C
u

rre
n

t W
e

a
th

e
r

E
n

e
rg

y
 M

a
rk

e
t

S
e

rv
ic

e

C
u

rre
n

t M
a

rk
e

t P
ric

e

S
e

rv
ic

e
 P

ro
v

id
e

r

S
e

rv
ic

e
 P

ro
v

id
e

r A

S
e

rv
ic

e
 P

ro
v

id
e

r B

S
e

rv
ic

e
 P

ro
v

id
e

r A
S

e
rv

ic
e

 P
ro

v
id

e
r B

S
e

rv
ic

e
 P

ro
v

id
e

r

S
e

rv
ic

e
 P

ro
v

id
e

r A

S
e

rv
ic

e
 P

ro
v

id
e

r B

W
e

a
th

e
r F

o
re

c
a

s
t

S
e

rv
ic

e
 P

ro
v

id
e

r A

S
e

rv
ic

e
 P

ro
v

id
e

r B

S
e

rv
ic

e
 P

ro
v

id
e

r A

S
e

rv
ic

e
 P

ro
v

id
e

r B

Figure 7.10: Component Diagram for SBCS

115

Chapter 7. SOA Design

and forks are to help in presenting parallel activities.

In Figure 7.11, the SBCS main flow is represented. The process starts by ac-

cessing the SBCS states (consumption, generation and storage), and the weather

forecast data. The SBCS states are used to assess the current power balance in

the SSEZ. If there is no change needed from the current condition, then the sys-

tem updates the log and process ends. If there is difference from the current state

in the predicted demand and generation, the process evaluates system states and

market prices to check possible options available to take appropriate actions. At

the end, the process updates the system states and the history records.

Get system states, weather data

Assess level of change

Get market price

Demand < or > Generation

Update system states

Update system log

Demand==Generation

Assess Power Balance

Figure 7.11: Activity Diagram showing SBCS main system flow

In Figure 7.12 further details are provided about the activity that assesses

the degree of change. The process is the same as described previously. To assess

116

Chapter 7. SOA Design

change, the storage condition is checked to see it is possible to make use of the

energy available within the SSEZ. The Market Service is invoked to get current

buy and sell prices. Depending upon storage condition, current market prices,

the current condition of generation and the operating policy set by ESCO, the

SBCS can decide which course of action it has to take. So, in the case of surplus

energy, the SBCS has to decide about making money in the market by exporting

energy or whether it should charge its storage or both. Similarly, if there is energy

deficit in the zone, it has to evaluate the condition and decide upon an action

from the possible options available.

Get system states, weather data

Demand == Generation

Assess Power Balance

Update system log

Check storage state Check market price

Update system states

Demand < or > generation

Figure 7.12: Activity Diagram providing detail of available options

Figure 7.13 describes the prediction model used in the SBCS, which is a sub-

process of overall system. This flow shows the sequence of activities that occur

when the SBCS decides to use prediction services provided by service providers.

117

Chapter 7. SOA Design

The main flow remains the same as shown in 7.11 apart from invoking the pre-

diction services and assessing the future condition of the SSEZ. To get demand

prediction, current consumption is provided to the DemandPrediction Service.

The GenerationPrediction Service will then use the current generation data to

provide a generation forecast, along with the details of the weather forecast. The

Market Service is used to get the market price forecast.

Get system states

Demand == Generation

Predict power balance

Update system log

Assess level of change

Update system states

Demand < or > generation

Get demand prediction Get generation prediction

Get market prediction

Figure 7.13: Activity Diagram with predictions scenario 1

In Figure 7.14, further details has been added to the prediction model. In this

case, the historical demand data and current energy consumption values have

been used to predict demand along with the weather forecast. The historical

demand can be the SBCS system itself or can be purchased from third party.

118

Chapter 7. SOA Design

For generation prediction, current generation output and weather forecast data

is required. The Energy Market Service is invoked to get future buy and sell

prices. The rest of the flow is the same.

Get system states

Demand == Generation

Predict power balance

Update system log

Assess level of change

Update system states

Demand < or > generation

Predict demand Predict generation

Get market prediction

Get weather prediction
Get historical demand

Figure 7.14: Activity Diagram with prediction scenario 2

Figure 7.15 represents the process of getting weather data from the Weather

Service. The swimlanes used in the diagram are to separate the system and

weather service provider. The registry service can be used to maintain Weather

service information. After selecting the appropriate service it will invoke the

weather service to get current and forecast weather data. There can be multiple

119

Chapter 7. SOA Design

Start

Search weather service

Get weather data

request weather forecast

Weather Service provider

weatherservice

SSEZ System

Figure 7.15: Flow to access weather data

Weather Service providers and the SBCS operating policy may include short term

contracts with them. Decision about the selection of which service to use may

also include the cost, and granularity of data.

The overall flow of the SBCS is shown in Figure 7.16. The process to get

Weather Service has already been discussed. In case of the Energy Market Service

there is a fixed service provider. The prediction model is represented as an activity

in the overall flow as the details are represented in Figure 7.14.

7.3.10 Sequence Diagram

The purpose of employing a Sequence diagram is to represent the communications

between of services over time. The different services are organised across the X

axis and the messages sent and received among services are along the Y axis.

The lifeline represents the existence of the service over a period of time and the

thin rectangle shows the period of time during which a service is performing an

action.

Figure 7.17 provides an initial view of how message passing is recognised

among the services. The Controller sends requests to the generation, demand

and storage services to get data. A self loop represents where Controller uses

120

Chapter 7. SOA Design

Get system states

Assess level of change

demand < or > generation

Update system states

Update system log

demand == generation

Get energy market price

Prediction Model

Get weather forecast

Assess power balance

Market Service

Weather Service

Figure 7.16: Activity Diagram to show overall SBCS flow

121

Chapter 7. SOA Design

the input to assess the power balance. It further sends a request to the Weather

Service to get a weather forecast. On the basis of this weather forecast, togather

with the demand and generation prediction data, the Controller will predict

the power balance, which is shown in Figure 7.18. A request is sent to the

Energy Market Service to get current and predicted buy and sell prices. The

Controller checks the level of change required in case of any variation in energy

balance. Finally it communicates with the SystemLog Service to log system states.

TheDemandPrediction Service and GenerationPrediction Service are not shown

in this diagram.

Controller
Generation

Service
Demand
Service

Storage
Service

Weather
Service

Market
Service

SystemLog
Service

getGenOutput()

getGenOutput(): response

getDemand()

getDemand(): response

getStorageState()

getStorageState(): response

Assess power balance
getWeatherForecast()

getWeatherForecast(): response

getMarketPrice()

getMarketPrice(): response

updateSystemLog()

Assess level of change

Figure 7.17: Sequence Diagram with initial system view

In Figure7.18 new services are introduced to this model. The SystemStates

Service collects information about system state from the Demand Service, the

Generation Service and the Storage Service and provides this to the Controller.

The Controller then communicates with the DemandPrediction Service and pro-

vides it with the current demand level in order to get the demand forecast. For

122

Chapter 7. SOA Design

generation prediction, the Controller provides generation and weather forecast to

the GenerationPrediction Service. Once the demand and generation predictions

are received, the Controller uses this information to predict the future power

balance. It further invokes Market Service to get market forecast prices.

Controller
SystemStates

Service
Demand

Prediction Service
Generation

Prediction Service
Weather
Service

getSystemStates()

return system states

getDemandPrediction(currentDemand)

getDemandPrediction(): response

getGenerationPrediction(currentGeneration)

getGenerationPrediction(): response

Assess power balance

getWeatherForecast()

getWeatherForecast(): response

predict power balance

predict demand

predict generation

Market
Service

getMarketPrice()

getMarketPrice(): response
predict level of change

Figure 7.18: Interactions among controller and prediction services

Figure 7.19 provides details about the interactions between the Controller

and those services that get data from external resources. The Weather Service

interacts with the registry to get information about available weather services;

and after getting the response; it invokes a weather service to get forecast data.

The registry can provide more than one weather service, and so the Weather

Service has to select the appropriate service to get data. In the case of the

Market Service, there is only one external service provider, hence the service will

be accessed directly.

Figure 7.20 describes the overall view of service interactions. The Demand,

123

Chapter 7. SOA Design

Controller Weather Service RepositoryMarket Service

getWeatherForecast()

getWeatherForecast(): response

Search weather
service

getWeatherService()

Weather service information

Get weather data

getEnergyMarketPrice()

getEnergyMarketPrice():response

Get market prices

Figure 7.19: Interactions among controller, weather and market services

Generation and Weather service each have different service providers. Therefore,

we have used a registry. There is the possibility that each service will use a

different set of parameters and provide a different level of detail in its return.

7.3.11 Flow Chart

The Flow Chart used is to model the decisions that the controller makes in

different conditions. It makes use of scenarios to represents different system

states, and constructs workflow that shows overall system process. Therefore, we

find flow chart an appropriate choice to be used here.

Two flow charts are constructed. Figures 7.21 and 7.22 and Figure 7.23 rep-

resent the current condition in the SSEZ. The second flow chart is constructed to

represent the scenario based on predicted demand and generation values. This

also shows that where changes will be made in current system states. This is

represented in Figure 7.24 and Figure 7.25.

7.3.11.1 Scenario for assessing the current energy balance in the SSEZ

The process starts by getting information about different system states. It checks

for the availability of the storage unit. If this is present then the controller will

124

Chapter 7. SOA Design
C

o
n

tro
ller

System
States

Service
D

em
an

d

P
red

ictio
n

 Service
G

en
eratio

n

P
red

ictio
n

 Service

getSystem
States()

retu
rn

 system
 states

getD
em

an
d

P
red

ictio
n

(cu
rren

tD
em

an
d

)

getD
em

an
d

P
red

ictio
n

(): resp
o

n
se

getG
en

eratio
n

P
red

ictio
n

(cu
rren

tG
en

eratio
n

)

getG
en

eratio
n

P
red

ictio
n

(): resp
o

n
se

A
ssess p

o
w

er b
alan

ce
getW

eath
erFo

recast()

getW
eath

erFo
recast(): resp

o
n

se

p
red

ict p
o

w
er b

alan
ce

G
et d

em
an

d
 p

red
ictio

n

G
et gen

eratio
n

 p
red

ictio
n

W
eath

er
Service

R
ep

o
sito

ry
M

arket
Service

Search
 w

eath
er service

getW
eath

erService()

W
eath

er service in
fo

rm
atio

n

G
et w

eath
er d

ataG
et m

arket p
rices

System
Lo

g
Service

u
p

d
ateSystem

Lo
g()

getM
arketP

rice()

getM
arketP

rice(): resp
o

n
se

A
ssess level o

f ch
an

ge

Search
 service

getG
en

eratio
n

P
red

ictio
n

Service()

G
en

eratio
n

P
red

ictio
n

 service in
fo

rm
atio

n

Search
 service

getD
em

an
d

P
red

ictio
n

Service()

D
em

an
d

P
red

ictio
n

 service in
fo

rm
atio

n

Figure 7.20: Overall system interaction view

125

Chapter 7. SOA Design

make the task of adjusting the state of the storage unit to be its first priority

before importing or exporting power to the grid.

The controller checks the power balance as shown in Figure 7.21.

• If it is balanced, the storage state of charge (SOC) is checked for its bound-

ary conditions.

• If current demand is less than generation then branch A represents the flow.

• If current demand is greater than generation, it follows branch B.

(a) Branch A: Demand is less than generation (Figure 7.22)

• Calculate current surplus energy in the zone.

• Check storage state of charge (SOC).

• If storage is charging, and has reached the upper limit then stop this.

Get market price and export energy. (Here the calculation can help

ESCO to evaluate how much green energy is retained in the SSEZ and

how much can be exported to grid.)

• If storage is charging and its SOC is equal to the lower limit, then

calculate power it needs to reach the upper limit and find if there is

still surplus energy available. If so, export that to the Grid. For this,

the energy market service will be invoked to get the current market sell

price. (Here, the function that calculates the energy sold to grid will

help ESCO to calculate the money it has made in the market.)

• In any case other than the ones listed above, the controller will decide to

charge its storage and export energy at the same time, or just to make

money in the market by exporting all surplus energy. At this point the

ESCO operating policy sets the priority for the controller to consider.

This option is represented through the solid black arrow in Figure 7.22.

• If storage is stopped or discharging, in both cases the SOC limits will be

checked and decisions will be made about energy export. As the scenario

contains the information about storage state of charge, therefore we have

represented these states through separate flows.

126

Chapter 7. SOA Design

S
ta

rt

C
h

e
c
k
 e

n
e

rg
y

b
a

la
n

c
e

 ?

G
e

t s
y
s
te

m
 s

ta
te

s

A

D
e

m
a

n
d

 is
 le

s
s
 th

a
n

 g
e

n
e

ra
tio

n

B

D
e

m
a

n
d

 is
 g

re
a

te
r th

a
n

 g
e

n
e

ra
tio

n

C
h

e
c
k

s
to

ra
g

e
 s

ta
te

?

D
e

m
a

n
d

 e
q

u
a

ls
 to

 g
e

n
e

ra
tio

n

E
x
it

C
h

a
rg

in
g

/d
is

c
h

a
rg

in
g

S
to

p
 c

h
a

rg
in

g
/d

is
c
h

a
rg

in
g

C
h

e
c
k
 s

to
ra

g
e

a
v
a

ila
b

ility
?

S
to

ra
g

e
 is

 a
v
a

ila
b

le

If s
to

ra
g

e
 is

 n
o

t a
v
a

ila
b

le

th
e

n
 s

y
s
te

m
 w

ill ru
n

 w
ith

o
u

t

c
o

n
s
id

e
rin

g
 s

to
ra

g
e

 o
p

tio
n

a
n

d
 im

p
o

rt /e
x
p

o
rt w

ill b
e

d
ire

c
t.

Figure 7.21: Flow Chart Main Structure

127

Chapter 7. SOA Design

C
h

e
c
k
 s

to
ra

g
e

S
ta

te
 ?

D
e

m
a

n
d

 is
 le

s
s
 th

a
n

 g
e

n
e

ra
tio

n

C
h

e
c
k
 S

O
C

 ?
C

h
e

c
k
 S

O
C

 ?

S
to

ra
g

e
 is

 c
h

a
rg

in
g

S
to

ra
g

e
 is

 d
is

c
h

a
rg

in
g

S
O

C
>

=
1

0
0

S
to

p
 c

h
a

rg
in

g
C

a
lc

u
la

te
 e

n
e

rg
y

re
q

u
ire

d
 fo

r s
to

ra
g

e

S
O

C
<

=
5

0

C
h

e
c
k

S
u

rp
lu

s
 E

n
e

rg
y

?

C
o

n
tin

u
e

 c
h

a
rg

in
g

C
o

n
tin

u
e

 c
h

a
rg

in
g

Y
e

s

N
o

C
a

lc
u

la
te

 e
n

e
rg

y

re
q

u
ire

d
 fo

r s
to

ra
g

e

S
O

C
<

=
5

0

S
ta

rt c
h

a
rg

in
g

C
h

e
c
k

S
u

rp
lu

s
 E

n
e

rg
y

?

S
ta

rt c
h

a
rg

in
g

N
o

Y
e

s

C
h

e
c
k
 S

O
C

 ?

S
to

ra
g

e
 is

 s
to

p
p

e
d

S
O

C
>

=
1

0
0

S
O

C
 <

=
5

0

C
a

lc
u

la
te

 e
n

e
rg

y

re
q

u
ire

d
 fo

r s
to

ra
g

e

C
h

e
c
k

S
u

rp
lu

s
 E

n
e

rg
y

?

S
ta

rt c
h

a
rg

in
g

S
ta

rt c
h

a
rg

in
g

Y
e

s

N
o

G
e

t m
a

rk
e

t p
ric

e

E
x
it

E
x
it

E
x
it

E
x
it

A

C
a

lc
u

la
te

 s
u

rp
lu

s
 e

n
e

rg
y

s
u

rp
lu

s
 e

n
e

rg
y
 a

fte
r

s
to

ra
g

e
 n

e
e

d

E
x
p

o
rt S

u
rp

lu
s
 e

n
e

rg
y

M
a

rk
e

t

P
ric

e
 S

e
rv

ic
e

* w
h

e
n

 s
to

ra
g

e
 is

7
0

 %
 a

v
a

ila
b

le
,

d
iffe

re
n

t d
e

c
is

io
n

s

c
a

n
 b

e
 m

a
d

e

Figure 7.22: Flow Chart representing branch A

128

Chapter 7. SOA Design

(b) Branch B: Demand is greater than generation (Figure 7.23)

• Calculate current energy deficit in the zone.

• Check storage state of charge (SOC).

• If storage is charging

– if storage is charging, check upper and lower limits.

– if storage is approaching upper limit. Stop charging.

– if storage is fully charged, check if storage is enough to fulfil demand.

Also check market price (to compare cost of storage use and buying

price from market). If market price is favourable then preference will

be to import energy instead of using storage. Otherwise Storage will

be used.

– if storage is not enough to fulfil demand then power will need to

be imported from the grid. Depending upon storage condition and

market price, storage can be discharged along with energy import

from grid. Otherwise storage can be charged if market price is

favourable.

• If storage is stopped or discharging

– Check storage upper and lower limits.

– Check demand can be fulfilled from storage. Check market buy

price. Make decision about energy import.

As we mentioned earlier, in this flow we have represented the scenario when

storage is available. In the absence of a storage unit, the controller will make

decisions about import and export of energy more directly.

The functions that calculate green energy retained in the SSEZ and the cost

of buying and selling energy to the grid are not shown here.

In the case of having surplus energy, there is more energy in the SSEZ than

required. In that case demand side management (DSM) can be considered in

which loads are brought forward. Which means if some equipment is going to use

power later in the day can be switched on earlier to use surplus energy, such as

home appliances. We have not considered this in much detail here. For this we

129

Chapter 7. SOA Design
C

h
e

c
k

s
to

ra
g

e

s
ta

te
 ?

D
e

m
a

n
d

 is
 g

re
a

te
r th

a
n

 g
e

n
e

ra
tio

n

C
h

e
c
k

S
O

C
 ?

S
to

ra
g

e
 is

 c
h

a
rg

in
g

S
to

ra
g

e
 is

 d
is

c
h

a
rg

in
g

S
O

C
>

=
1

0
0

S
to

p
 c

h
a

rg
in

g

S
to

p
 c

h
a

rg
in

g

S
O

C
<

=
5

0

C
h

e
c
k

S
O

C
 ?

S
to

ra
g

e
 is

 s
to

p
p

e
d

Im
p

o
rt e

n
e

rg
y

S
O

C
 <

=
5

0

E
x
it

P
ric

e
 fa

v
o

u
ra

b
le

 (y
e

s
)

c
h

e
c
k

e
n

e
rg

y

d
e

fic
it ?

c
h

e
c
k

m
a

rk
e

t

p
ric

e
 ?

e
n

e
rg

y
 d

e
fic

it =
=

 s
to

ra
g

e

O
R

e
n

e
rg

y
 d

e
fic

it <
 s

to
ra

g
e

S
ta

rt d
is

c
h

a
rg

e

P
ric

e
 fa

v
o

u
ra

b
le

 (n
o

)

E
x
it

E
n

e
rg

y
 d

e
fic

it >
 s

to
ra

g
e

c
h

e
c
k

e
n

e
rg

y

d
e

fic
it ?

E
n

e
rg

y
 d

e
fic

it >

 s
to

ra
g

e

e
n

e
rg

y
 d

e
fic

it =
=

 s
to

ra
g

e

O
R

e
n

e
rg

y
 d

e
fic

it <
 s

to
ra

g
e

c
h

e
c
k

m
a

rk
e

t

p
ric

e
 ?P

ric
e

 fa
v
o

u
ra

b
le

 (y
e

s
)

S
ta

rt d
is

c
h

a
rg

e

P
ric

e
 fa

v
o

u
ra

b
le

 (n
o

)

c
h

e
c
k

e
n

e
rg

y

d
e

fic
it ?

c
h

e
c
k

m
a

rk
e

t

p
ric

e
 ?

P
ric

e
 fa

v
o

u
ra

b
le

 (y
e

s
)

S
ta

rt d
is

c
h

a
rg

e

P
ric

e
 fa

v
o

u
ra

b
le

 (n
o

)

C
h

e
c
k

S
O

C
 ?

S
to

p
 d

is
h

a
rg

e

S
O

C
<

=
5

0

c
h

e
c
k

e
n

e
rg

y

d
e

fic
it ?

E
n

e
rg

y
 d

e
fic

it >

 s
to

ra
g

e

e
n

e
rg

y
 d

e
fic

it =
=

 s
to

ra
g

e

O
R

e
n

e
rg

y
 d

e
fic

it <
 s

to
ra

g
e

c
h

e
c
k

m
a

rk
e

t

p
ric

e
 ?

N
o

 c
h

a
n

g
e

P
ric

e
 fa

v
o

u
ra

b
le

 (n
o

)

S
to

p
 d

is
h

a
rg

e
P

ric
e

 fa
v
o

u
ra

b
le

 (y
e

s
)

S
to

p
 d

is
h

a
rg

e

B

E
n

e
rg

y
 d

e
fic

it

a
fte

r s
to

ra
g

e

M
a

rk
e

t P
ric

e

S
e

rv
ic

e

C
a

lc
u

la
te

 e
n

e
rg

y
 d

e
fic

it

E
x
it

E
x
it

E
x
it

E
n

e
rg

y
 d

e
fic

it >

 s
to

ra
g

e

e
n

e
rg

y
 d

e
fic

it =
=

 s
to

ra
g

e
 O

R

e
n

e
rg

y
 d

e
fic

it <
 s

to
ra

g
e

P
ric

e
 fa

v
o

u
ra

b
le

 (y
e

s
)

Figure 7.23: Flow Chart representing branch B

130

Chapter 7. SOA Design

need further information about demand side management (DMS) and we need

to consider the time of day. Some loads can be brought forward or deferred only

at specific times, such as we can defer load of refrigerators as home appliances to

night. In the case of a farm we can water the fields at night, so tube wells can be

switched off in the day time and used at night.

To keep the scenario simple we have used storage for demand side manage-

ment.

Another important factor related to the operating policy is to define the

favourable price for importing and exporting energy. This will create constraints

on the decision also. The decision also depends on the ESCO policy about CO2

emission, and the effect of using brown energy.

7.3.11.2 Scenario for predicted energy deficit in the SSEZ

In this part we discuss the scenario when there is an energy deficit in the SSEZ

based on the predicted values of demand and generation. (The scenario for the

case when predicted demand will be less than predicted generation is not repre-

sented.)

• Get generation and demand prediction values from generation and predic-

tion services.

• Compares these to check the energy balance. If there is an equal balance

then no change will be made in current system states as shown in Figure

7.24.

• In case of energy deficit (predicted demand is greater than predicted gen-

eration), the flow is shown through branch A in Figure 7.25.

7.3.11.3 Scenario for predicted energy condition in the SSEZ (Figure

7.25)

• Calculate energy deficit.

• Get current and forecasted market buy price.

131

Chapter 7. SOA Design

Get demand and

generation prediction

Is energy

balance?

Predicted demand >

predicted generation

Predicted demand <

Predicted generation

Yes

Start

Generation

Prediction

Service

Demand

Prediction

Service

Exit Exit
A

Figure 7.24: Flow Chart representing prediction Flow

• Check if predicted market buy price is favourable. Also check if current

market buy price is favourable.

• If current market buy price is favourable then check current demand and

generation in the SSEZ.

• If current demand is less or equal to current generation then there is the

possibility that storage can be used for predicted demand.

• Compare storage with predicted energy deficit to check if storage can be

used to cover the deficit. Also check storage state of charge (SOC) as if the

current price is favourable, the storage can be charged to full capacity.

• If storage is fully charged and currently not discharging then no action will

be taken. However, if it is discharging then it will be stopped. As the future

market price is high, storage will be used for the next half hour.

• Check if there is energy export going on. In that case first priority will be

to charge storage and then export energy.

Here different decisions are involved. In case when both buy and sell prices

are high the factor about the use of brown energy will need to be included to

calculate use of brown energy. On the other hand if the ESCO wants to make

132

Chapter 7. SOA Design

money then it has to evaluate how long it can defer demand and make money in

the market when sell price is high and demand is high too.

7.3.12 Design Decisions

The design has been developed to be independent of any implementation tech-

nology. The decisions associated with the SBCS are discussed below.

Controller: The Controller is not considered to be a service. This is because it is

used locally, and needs SSEZ electrical network specific configurations and

constraints. The decision to consider a particular element of functionality

to be a service is appropriate when there is more than one consumer of the

service. The Controller Service is dependent on a large number of context

specific information such as electrical network configurations, constraints

that include technical constraints and priorities that need information about

operating policy. If this service is provided to another ESCO then all this

information will be required to configure the Controller functionality.

Also we need to consider the ESCO long term policy about services. By this

we mean that currently the ESCO is using third party services, however,

at later stage if it decides to provides its functionality as service to other

ESCOs then how will this be done? This is an important decision that needs

to be made at the early stage of service based application development.

Registry: The registry will be used at the consumer site. This decision is made

because of the domain of application. In other words we identify it as a

domain specific decision. Time is an important factor in a control system

and using a third party registry can be a possible constraint.

Market Service: The Market service is represented as a single service provider.

Although it can be assumed that this will be offered by different service

providers in case when neighbouring ESCO offer this service. This assump-

tion add to important points in the design such as use of registry.

First, it adds further choice for Controller : whether buy green energy from

other ESCO or use brown energy from the national grid. Second, in case of

133

Chapter 7. SOA Design

C
a

lc
u

la
te

 e
n

e
rg

y
 d

e
fic

it

Is

P
re

d
ic

te
d

m
a

rk
e

t b
u

y
 p

ric
e

fa
v
o

u
ra

b
le

?

(N
O

) p
ric

e
 is

 H
ig

h
(Y

e
s
) p

ric
e

is
 L

e
s
s

G
e

t p
re

d
ic

te
d

 e
n

e
rg

y
 m

a
rk

e
t p

ric
e

s

S
to

p
 d

is
c
h

a
rg

in
g

c
o

m
p

a
re

c
u

rre
n

tD
e

m
a

n
d

 a
n

d

C
u

rre
n

tG
e

n
e

ra
tio

n

?

C
o

m
p

a
re

p
re

d
ic

te
d

 d
e

fic
it

a
n

d
 s

to
ra

g
e

c
a

p
a

c
ity

?

c
u

rre
n

t d
e

m
a

n
d

 <
 c

u
rre

n
t g

e
n

e
ra

tio
n

O
R

 e
q

u
a

ls

Is

S
to

ra
g

e
 F

u
ll

?

Is

S
to

ra
g

e

d
is

c
h

a
rg

in
g

?

(Y
e

s
) S

O
C

>
=

1
0

0

Y
e

s

N
o

 c
h

a
n

g
e

N
o

Is

C
u

rre
n

t s
u

rp
lu

s

e
n

e
rg

y
 s

u
ffic

ie
n

t fo
r

s
to

ra
g

e
 ?

(N
o

) S
O

C
 <

1
0

0
C

a
lc

u
la

te
 e

n
e

rg
y
 re

q
u

ire
d

 b
y
 s

to
ra

g
e

Is

c
u

rre
n

t m
a

rk
e

t

p
ric

e
 fa

v
o

u
ra

b
le

?

(Y
e

s
) c

u
rre

n
t b

u
y
 p

ric
e

 is
 le

s
s

C
o

m
p

a
re

 c
u

rre
n

t s
u

rp
lu

s
 e

n
e

rg
y
 w

ith
 re

q
u

ire
d

 s
to

ra
g

e
 e

n
e

rg
y

S
ta

rt c
h

a
rg

in
g

S
ta

rt c
h

a
rg

in
g

Is

E
x
p

o
rtin

g

E
n

e
rg

y

?

S
u

rp
lu

s
 e

n
e

rg
y
 is

 e
q

u
a

ls
 to

 re
q

u
ire

d
 b

y
 s

to
ra

g
e

Y
e

s
S

to
p

 E
x
p

o
rt

E
x
it

E
x
it

E
x
it

N
o

E
x
it

S
ta

rt c
h

a
rg

in
g

S
u

rp
lu

s
 e

n
e

rg
y
 m

o
re

 th
a

n

re
q

u
ire

d
 b

y
 s

to
ra

g
e

E
x
p

o
rt e

n
e

rg
y

E
x
it

P
re

d
ic

te
d

 d
e

fic
it

is
 q

u
a

ls
 o

r le
s
s

th
a

n
 s

to
ra

g
e

c
a

p
a

c
ity

Is

E
x
p

o
rtin

g

E
n

e
rg

y
 ?

S
u

rp
lu

s
 is

 le
s
s

th
a

n
 s

to
ra

g
e

S
to

p
 E

x
p

o
rt

Y
e

s

S
ta

rt Im
p

o
rt

N
o

E
x
it

C
a

lc
u

la
te

 p
re

d
ic

te
d

 e
n

e
rg

y

d
e

fic
it a

fte
r s

to
ra

g
e

 c
a

p
a

c
ity

N
o

 c
h

a
n

g
e

C
u

rre
n

t d
e

m
a

n
d

 m
o

re

th
a

n
 c

u
rre

n
t g

e
n

e
ra

tio
n

E
x
it

N
o

 c
h

a
n

g
e

E
x
it

(N
o
) c

u
rre

n
t b

u
y

p
ric

e
 is

 h
ig

h

Is

c
u

rre
n

t m
a

rk
e

t

p
ric

e
 fa

v
o

u
ra

b
le

?

N
o

 c
h

a
n

g
e

E
x
it

(N
o
) c

u
rre

n
t b

u
y

p
ric

e
 is

 h
ig

h

(Y
e

s
) c

u
rre

n
t b

u
y
 p

ric
e

 is
 le

s
s

S
ta

rt C
h

a
rg

in
g

(A
)

E
n

e
rg

y

M
a

rk
e

t

S
e

rv
ic

e

Figure 7.25: Flow Chart representing branch A for prediction Flow

134

Chapter 7. SOA Design

these being more than one service provider for generation we need to add

their information and the registry, provides a mechanism to do this.

In this design we have intentionally considered one service provider to repre-

sent the scenario where we have a mix of one and more service providers for

different services. Also, we may have different contract with these providers

that can be long as 6 months to one year. This feature is domain specific

and depends on the need of the ESCO.

System States Service: This service is logical and internal, responsible for col-

lecting and providing network status to the controller.

Weather Service: Weather data includes temperature, wind speed, wind direc-

tion, solar irradiance, cloud conditions, along with information about the

area. The level of detail offered by each weather service can be different.

We have made the decision to include the weather service from the beginning

because SBCS deals with two situations: present and future. The current

weather information is treated as being part of current system state and to

maintain history about the condition of the zone. The weather forecast is

required to evaluate the situation in the zone and to assess the effects of

upcoming events such as sports and Christmas.

Further, the ESCO is currently taking generation prediction and demand

prediction services from a third party. However, at a later stage it might

consider providing these services as part of its business.

Different level of details are provided by third party services. In the case

of the demand and generation prediction services these may be very simple

services that take weather information, demand and generation values and

provide the prediction. There can also be more sophisticated services that

require network information, and location information along with current

demand and generation data. They can also use their own weather service

to calculate demand and generation prediction.

Network Configurations: These are technical constraints that include elec-

trical network low level details (such as assets information) that are not

included in the design. This role is associated with the Controller.

135

Chapter 7. SOA Design

Operating policy: This is required to determine new decision making will be

performed at different levels. The policy set the priority for the Controller

to use for making different decisions. We have discussed some examples

in Flow Chart section. The decision that the SBCS will try to remain self

sufficient means that if there will be more demand in the zone, the first

priority for the SBCS will be to defer this. However, if the highest priority

is to meet customer demand then the SBCS have to import power from

grid. In that case it has to evaluate the use of green and brown energy.

Also if its goal was to minimise brown energy that will also be effected by

this. From Controller point of view operating policies are important factor

in SBCS.

Non-functional Features Some design time non-functional attributes are con-

sidered, such as time and cost. These provide the main selection criteria for

the services. However, when it comes to availability of the service at run

time the Controller might need to compromise on the level of detail.

7.4 Discussion

The design activity carried out for the SBCS is different from existing studies.

These studies can be broadly classified as:

• the ones that discuss and propose service oriented life cycle models such as

(Offermann and Bub, 2009; Gu and Lago, 2007; Papazoglou and Heuvel,

2006; Erradi and Sriram Anand, 2006; Karhunen et al., 2005).

• There are studies that make use of UML profiles. Some of them have used

UML profile with modelling techniques such as model driven architecture

(MDA). The studies (Ali et al., 2010; López-Sanz et al., 2008; Zhang et al.,

2006b; Wada et al., 2006; Amir and Zeid, 2004; Stojanovic et al., 2004) come

under this category. The diagrammatical forms used are limited to class

and component diagrams. There is extensive use of stereotypes to explain

SOA features.

136

Chapter 7. SOA Design

We have addressed the problem of service based application (SBA) design

by producing a high level design through the use of existing diagrammatical

representations. We have captured the problem from the very beginning; from

requirements. We have discussed design issue from a software designer’s perspec-

tive. The design decisions made at different levels are also explained.

In this section we discuss the problems of service based application design in

terms of our experiences related to:

• the novelty and immaturity of the SOA paradigm, and

• the choice of design and notations used in SBCS.

7.4.1 Evolution of existing Paradigms and SOA

The structured and object oriented (OO) paradigms evolved over time and now

have mature software development life cycles. Application developments based

on these paradigms largely differ from each other because of their underlying

assumptions, the major functional elements and focus of analysis.

Structured development techniques analyse the system from a functional view

point. The main functions are identified that software need to perform. These

functions are further divided into sub functions and sub tasks to provide required

functionality. The process is constructed to visualise the functions working to-

gether. This is called a top-down approach. Loy (1990) has mentioned this as

being a functional paradigm.

In case of object oriented development, the analysis involves thinking about

objects, their attributes, and relating them to the operations defined on them

Loy (1990). This is termed a bottom-up approach.

However, each new paradigm borrows techniques from previous one and adds

its features into this. According to Wieringa (1998) object-oriented methods

adopted structured techniques in a ‘new guise’ and we can benefit from this by

making ‘technology transfer’ explicit.

The object oriented design methodologies developed over time. Figure 7.26

provides an abstract view of its evolution. The OO design was initially based

on structured techniques. As the concepts matured and a shared vocabulary

137

Chapter 7. SOA Design

emerged, the design techniques for object oriented applications also evolved. Its

realisation also provided input to develop these techniques. The diagrammatical

forms used to decompose the problem and to represent object behaviour and

communication were developed, and in turn contributed to ideas such as design

patterns, UML , RUP.

Object Oriented Services

DFD, ERD, Activity,
State Charts

Object Diagram
Class diagram
State transition diagram
Actors and use case

Structured
design

OO Design

OO realisation Concepts and Vocabulary

Design patterns RUP UML

OO Design

service realisation

Object Diagram
Class Diagram
State Transition diagram
Sequence Diagram
Component Diagram

Figure 7.26: OO Design and Services

In the case of service based application development, a gap exists in design

techniques (Stojanovic et al., 2004). Currently, services community is adopt-

ing OO techniques for design and its focus is more on SOA realisation through

web services. There is a lack of agreement on a shared vocabulary and related

concepts. Further to this the need for design techniques is not fully appreciated.

The procedures explained in literature about service based application design

are usually based on technological solutions. Mostly application development is

discussed in terms of web services such as the study by Papazoglou and Heuvel

(2007). In other studies, service compositional aspects are discussed in terms

138

Chapter 7. SOA Design

of service identification, publication, service selection and its composition and

execution. The notion of the designing service based applications by representing

its features through SOA notations is lacking. Erl (2009) has proposed a set

of SOA design patterns, however, their practical realisation is missing. The life

cycle for SOA, as suggested in the form of service oriented software engineering

(SOSE) as it appears in literature was discussed in Chapter 3. However, this is

not mature. In the case of service based application design, tools are not available,

and although work flow based languages have been suggested for this, these are

very specific in their scope.

7.4.2 Design and Notations

The SBCS design process has been constructed by identifying the main functions

that when combined, should provide overall system functionality. We suggest that

this approach is closer to that of structured design. We have identified that every

functionality in the system does not need to be presented as a service. Further,

we need to identify and categorise services. The ones which will be provided by

service providers and the one which will be logically exist but have no service

provider. The approach we have used for services is closer to OO in terms of

identifying its attributes, roles and related operations. Indeed, we have used an

opportunistic approach to design the SBCS SOA model.

In terms of notations, we have made use of existing diagrams. In diagram-

matical representations, syntax, semantics, the annotations used to interpret a

diagram, and the domain information in which the diagram is to be represented

are important. The purpose of a diagram is to be used a means of commu-

nication and the lack of semantics invites multiple interpretations of the same

diagram (Wieringa, 1998). Therefore they need to be used correctly to ensure

that they serve the intended purpose. The notations associated with particular

paradigms (in case of OO the UML) have their implicit meanings. The object

diagram embodies the philosophy of ‘object’.

For SBCS design, we have used different representational forms. We have also

used tabular forms to map services. The notations we have used are a mix of

structured and object oriented design.

139

Chapter 7. SOA Design

• The class diagram was used for service interfaces and dependency.

• The component diagram was used to represent the services that have service

providers and to represent where choices about service selection exist.

• To represent the overall flow of how services and other functions will work

together, we have used the activity diagram.

• Sequence diagrams have been used to represent messages among services

and other functions.

• Flow chart was used to show overall system behaviour, It represents the

process where services and system internal working is combined.

In our design we have added SOA vocabulary in existing forms along with de-

scription to provide the context. In the literature, the activity and class diagrams

are predominantly used for service composition and service interfaces respectively

(Skogan et al., 2004). Through stereotyping meanings are given to the diagrams.

To construct processes, workflow languages (BPEL, BPEL4WS etc.) are avail-

able, however, they are not that mature or semantically strong enough to express

the concepts (Aalst, 2003). We have focused on the high level design and have

not considered work flow languages.

7.5 Summary

In this chapter, SOA design model constructed for SSEZ control system is dis-

cussed in detail. The design process that includes different activities is described.

The design is explained through existing diagrammatical forms. Different scenar-

ios are constructed to represent SBCS behaviour. The discussion section provides

a brief overview of the issue of design for service based applications.

140

Chapter 8

Evaluation

8.1 Introduction

This chapter discusses the evaluation which has been carried out as part of the

case study. The grey area in Figure 8.1 shows where this fits in the case study

process.

The chapter describes the evaluation process, the techniques involved, and

the outcomes. The techniques employed in the evaluation process are discussed

in terms of how they have been used; what their results are; and the lessons

learned from their use. The outcomes of the evaluation are discussed in section

8.3. The review experts for the walkthrough were selected from two different

domains, therefore throughout in the chapter, the expert having background in

computer science is referred to as the ‘software expert’ and the expert from energy

engineering is referred to as the ‘application domain expert’.

8.2 The Evaluation Process

The evaluation process has been performed by combining ideas of a structured

walkthrough with elements of action research. The purpose of using a walk-

through was to evaluate the use case and the resulting SOA design model through

expert reviews. We considered the walkthrough technique appropriate for eval-

uation since we could not find an application that could be used as a baseline

141

Chapter 8. Evaluation

Case Study

SSEZ
Model Use Case SOA

Model

Scenarios Evaluation

Design

assessment for the
case study RQ

expertise

Figure 8.1: Case Study Design

for comparison. Further, the study involves knowledge of two domains that need

to be validated, therefore, expert reviews are needed. By doing this we have

introduced a qualitative approach into our study as also discussed by (Seaman,

1999). To perform a walkthrough, a protocol was established that contained the

information about the review structure (Appendix E).

Since the walkthrough has been used for an academic purpose, which is not

the usual practice, we considered it appropriate to combine this with an action

research approach. Action research is a ‘cyclic’ approach and is based on the

process of ‘plan-act-reflect’ (Oates, 2005). Hence, after each walkthrough session,

interviews were conducted with the participants in order to collect feedback about

the walkthrough process and the design presentation. These were semi-structured

interviews and a questionnaire was prepared for this purpose (Appendix F).

The evaluation process consisted of two walkthrough sessions, each followed

by an interview with the participants, as shown in Figure 8.2. The data collected

142

Chapter 8. Evaluation

from the first interview was used to improve both the walkthrough and the design

presentation where possible. The purpose of the second interview was to evaluate

the effectiveness of this approach by comparing both walkthrough sessions and

to identify where further improvement is required.

Interviews

DesignWalkthrough
process

DesignCase Study

Walkthrough 2

Walkthrough 1

Interviews

Figure 8.2: Evaluation process

The research question that we addressed through the evaluation was “Are the

design and notations used in the case study appropriate for constructing an SOA

model for the specified SSEZ control system?” and hence, “Can a service-oriented

architecture handle the problems of an SSEZ control system?”

In next sections we describe the conduct of the walkthroughs and discuss the

143

Chapter 8. Evaluation

data we have collected through the interviews.

8.2.1 Walkthrough Sessions

In this section we provide details about how the walkthrough sessions were con-

ducted.

Form of review: A walkthrough is a form of review that is slightly different

from other review forms such as inspection. Inspection is considered to be

a more formal technique used for defect identification. The process involves

more steps than a walkthrough and there is extensive use of checklists.

This provides more of a mix of quantitative and qualitative data whereas

walkthrough outputs are largely qualitative. We have used a walkthrough

to evaluate our case study elements, including the use case and the SOA

design model. In a walkthrough, the documents are made available to

the review committee before the evaluation. The reviewers then review

the document critically before the session takes place. During the review

session, checklists are used for evaluation. Instead of preparing checklists

as carried out in inspections, that seek to identify defects in the code, we

have used a questionnaire for our walkthrough. A set of documents that

included the walkthrough protocol, the use case chapter from this thesis

and the design chapter were made available to the review team.

Further to this, we used part of the walkthrough session to present the

design. This approach again makes it different from a conventional walk-

through where the reviewers are involved in document content analysis.

Our approach is more exploratory, discussion oriented and informal. This

fits well with the purpose of a walkthrough as described by Weinberg and

Freedman (1984) who considered a walkthrough to be informal and hence

appropriate for use for educational purposes.

Review Team and Roles: As identified in the protocol, the roles for the walk-

through include the moderator, reviewers and the author. The session was

chaired by the moderator. A moderator with a computer science back-

ground was selected so that he would be able to track the discussion and

144

Chapter 8. Evaluation

keep the session on schedule. The walkthrough protocol was sent to him

prior to the session. The review schedule and the questionnaire were also

made available to him. However, the use case and design documents were

only sent to the reviewers.

The expert team included two members; one from the energy engineering

research group and other from computer science. Neither expert was in-

volved at any stage of the use case and design preparation. This was an

important element to avoid bias in the review session. The fourth partici-

pant in the review was the author, who was responsible for presenting the

design, along with the information about the use case.

Review Schedule: The duration for the review was two hours. This time period

is considered effective for a review session (IEEESTD, 2008) and so was the

time period defined in the review protocol.

For the second review, the duration for the review was again two hours. In

the absence of a moderator the review questionnaire was used to keep the

review focused and to make sure that all of the questions were covered in

the session.

Review Procedure (First Review): The review session was chaired by the

moderator who introduced the team members and provided the detail about

the session. The author provided an overview of the use case and the

requirements. The main elements of the system and how they link with

each other were explained. This was carried out using a whiteboard. After

that, discussion with reviewers was carried out, based on the questions they

raised from the documents provided.

Before design presentation, the author was asked to provide a brief overview

of the service oriented architecture (SOA). The design is based on SOA

concepts and it was considered important to outline the concepts to the

review team, as they provide the context for the design and design decisions.

As we discussed in the design chapter, each development technique has its

own requirements and it is important to make explicit the choice of design

techniques employed. The other purpose was to provide an SOA overview

145

Chapter 8. Evaluation

to the application domain expert.

The moderator used the review schedule as defined in the review protocol,

dividing the session into three categories; requirements, assumptions and

design. At the end of each category, the questionnaire was used to ensure

that all the questions listed in each category are covered. The question-

naire had the same categories as were used for structuring the walkthrough

session.

Data and Record Keeping: The review was conducted in an environment where

audio and video facilities were available. A microphone was attached to each

member of the team. There was also a room audio system that recorded the

presenter’s voice. Video cameras were allocated to each team member and

also to capture the whiteboard activity. The complete session was recorded,

which eliminated the need for taking notes. This was also useful to avoid

inconsistency in the collected data and to remove any possible bias.

The second walkthrough session was largely carried out in the same manner.

However, there were some modifications including the ones that were identified

through the interviews with the participants, and some that were due to unfore-

seen reasons.

Review Documents: The first walkthrough identified that there was a need for

additional documents that could help in understanding both domains. For

this reason, further supporting documents were prepared. The documents

were sent to reviewers and also to the moderator. The new documents

included:

• Diagrams representing a system level view.

• A component diagram

• A flow chart to represent current system flow

• A flow chart to represent part of prediction flow

• A list of acronyms - a glossary was suggested but the terms were al-

ready explained in relevant chapters of the thesis.

146

Chapter 8. Evaluation

• A document that provides a key for each notation used in the diagrams

• An SSEZ network diagram design to assist the understanding of an

audience coming from outside of energy engineering.

Review Team and Roles: The team members remained the same and no changes

were made in the roles. The moderator was unavailable due to an incident

on the day of the second review, and no arrangements were made for another

one.

Review Procedure (Second Review): The session was carried out using the

pattern employed in the previous walkthrough session, but with some mod-

ifications. The session started with a formal presentation representing the

problem and design. The author presented the design and explained the

reason for using each representation. After that, a discussion was carried

out with the reviewers. The reviewers asked questions from the documents

provided and from the presentation. The review was again organised around

the three main categories defined in the questionnaire, although the ques-

tionnaire was used to check that all of the questions are answered.

The interview sessions conducted after each walkthrough session are described

in the next section.

8.2.2 Interview Sessions

The interviews were conducted following each walkthrough session. The purpose

of this activity was to collect feedback from the participants about the walk-

through process and about the presentation of the design. We considered it

necessary to hold debriefing interviews because:

• The walkthrough was conducted with a team that had little prior experi-

ence. Therefore it was considered important to collect participants’ feed-

back.

• The walkthrough was used as part of an academic exercise, which is unusual.

Therefore we considered it necessary to collect participants’ views about

147

Chapter 8. Evaluation

its effectiveness. This provides an action research element to the review

process.

• The walkthrough involved knowledge about two different domains. It was

important that the reviewers and author had the same understanding of

the problem regardless of discipline. For this, views about representation

were considered to be particularly important.

A semi-structured questionnaire was prepared to support the interview process

(see Appendix I). The interview consisted of two parts. The first part was about

the walkthrough process, and included the effectiveness, organisation and any

improvement of the process if required. The second part was about the design

presentation itself, and included the understanding of the design, its presentation

and any improvements required.

The interviews were conducted separately with each participant. During the

interview, the questionnaire was provided to the participants, and they were

asked to discuss any other issue that they considered as being important for the

walkthrough. The interviews were also recorded.

8.2.3 Data coding and Analysis

The walkthrough data was available in the form of audio and video recording. As

we mentioned earlier, the walkthrough session was divided into three categories:

requirements, assumptions and design. In each category, a set of questions were

listed to aid the walkthrough. This categorisation made the coding a bit easier in

terms of classifying the discussion and the questions. The classification was used

by the reviewers whenever they have to ask any question related to previously

discussed category. This categorisation helped us for analysing the walkthrough

session which was done by consulting recordings.

The interviews were semi structured and participants were given the freedom

to discuss any other issue they find important other than the questions listed in

the interview questionnaire. The interviews were analysed by listening to audio

files and with the help of questionnaire used for interviews. The summary of

responses is attached in Appendix J where we have mentioned the main issues

raised from the interviews.

148

Chapter 8. Evaluation

The issues that we raised from the walkthrough and interview sessions are

listed in Table 8.1. We have associated these issues with four categories: Inter-

disciplinary, Walkthrough structure, Experience, and Design presentation. We

have not mentioned the second interview as no issues were raised by the experts

about the walkthrough process or design presentation.

Table 8.1: Issues Identified from Walkthrough and Interviews
Issues (or changes) Issue Type W1 I1 W2
Information about de-
sign notations

Interdisciplinary X

Simplified Diagrams
for computer scientists

Interdisciplinary X

Outline of SOA Interdisciplinary X
List of Acronyms Interdisciplinary X
Use of Powerpoint Pre-
sentation

Design presentation X

Need for preparatory
session

Walkthrough process / In-
terdisciplinary / Experience

X

Availability of docu-
ments to moderator

Walkthrough process / Ex-
perience

X

Use of questionnaire Walkthrough process (con-
trol)

X

Walkthrough purpose
and context

Walkthrough process (pro-
tocol)

X

Inclusion of design de-
cisions

Design presentation X

Views about the effectiveness of the walkthrough as assessed in the second

interview, are summarised in Table 8.2.

8.2.4 Outcomes of the Interviews

The responses we got from both interview sessions are summarised below.

Walkthrough Effectiveness: From the responses collected from participants,

it was clear that they found the walkthrough process to be effective in terms

of:

149

Chapter 8. Evaluation

Table 8.2: Summary of responses from second interview session
Questions Responses
Do you think that the walkthrough
was effective in terms of meeting its
aims?

“The initial presentation (first walk-
through) did not give us additional in-
formation what we have read in the
document but talking about the way
you came up with the solution was use-
ful.” “It was a multi-angle approach
to solve the problem. How you thought
about the solution was useful. Know-
ing the process was useful.”

What elements do you think were
lacking in the organization of the
walkthrough, both in terms of the
process and of the material pro-
vided?

“The material is quite comprehen-
sive.” “Should not let reviewers to set
their agenda. I was interested in pro-
cess and you want to concentrate on
design.”

What things could be done to im-
prove the walkthough process?

“Process was fine. You did tell us what
you want to do.”

How well were you able to under-
stand the design of the software sys-
tem?

“The design was understandable and
presentation made it a lot clearer.”

What could be done to improve the
design presentation, both in terms
of how it was organized and the
forms used?

“Presentation was better. The slides
kept you focused and opening was a lot
better.” “Addition of new diagrams es-
pecially electrical network side by side
a view for non-engineers was making
things understandable.”

Are there better ways or forms
that we could use to describe and
present the design?

“What you presented was logical and
with enough detail.”

150

Chapter 8. Evaluation

• Getting feedback on the work produced.

• Identifying the issues that had been ignored by the author, and filling

any gaps in their understanding of the domain.

• Learning from these sessions, they noted that they found it interesting

to view the problem from both angles; computer science and engineer-

ing.

• Information about new development approach such as SOA.

Walkthrough Organisation: The participants found the organisation of the

walkthrough appropriate in terms of its structure and the schedule. The

first interviews recommended keeping the same team for the next session.

In terms of walkthrough material, it was identified that there is need to

provide further detail about the goals of the review. The participants ini-

tially considered it to be a thesis review, and therefore in the walkthrough

the focus was more on documents than on the design.

Design Presentation: The responses we collected indicated that:

• Participants found the design understandable and comprehensive.

• The responses we got about the actual design presentation were mixed.

The application domain expert considered it important to get more in-

formation about the diagram notations, which were considered implicit

knowledge for the computer science participants.

• The other point mentioned by participants was the use of PowerPoint

presentation.

The responses we collected through the interviews and the lessons learned

from the experiences of using walkthroughs are discussed in next section.

8.2.5 Discussion on the use of Walkthroughs

The walkthrough was conducted as part of the evaluation process. The use of

a walkthrough as an evaluation technique is certainly not new (Seaman, 1999;

151

Chapter 8. Evaluation

Card et al., 1987; Weinberg and Freedman, 1984), although this is not a form

that is normally used in academic research. Therefore, in this section we discuss

our experience of conducting walkthroughs and the lessons we have learned from

this exercise.

• From the responses from the participants in the walkthroughs, we can iden-

tify that it is necessary to explain the purpose and context of the walk-

through more clearly, especially when:

(a) the audience is from a mix of different domains,

(b) the participants have little or no experience of conducting walkthroughs,

and

(c) when the technique is used in a new way, such as our use of walk-

throughs for academic purposes.

We developed a review protocol and made this available to each participant.

However, during the interview sessions we identified that the context was

still not very clear to them until the actual walkthrough session.

• The purpose of using a walkthrough was to present the design and explore

its different features through a board exercise. However, in the first session

of walkthrough this turned into a formal evaluation of the use case and

design documents. The reviewers focused on the content of the documents.

The author explained the points which were not clear to the reviewers and

where required, provided information about the terminologies and the con-

cepts.

This helped to identify the challenge of presenting interdisciplinary research.

The solution was identified as being to produce further supporting docu-

ments in the form of glossary, list of acronyms, presentation forms for dia-

grams, so that people from both domains could share an understanding of

the notations used for each diagram.

For example, the network diagram was understandable by the application

domain expert but it was difficult to understand for the reviewer whose

152

Chapter 8. Evaluation

background was in computer science. However, while the notations used

in the design diagrams were not an issue for the software reviewer, the

application domain expert required more information to understand them.

The first walkthrough therefore helped to bring the participants from both

domains to the same level of understanding. Also, the major part of the

domain was covered in the first walkthrough, along with the background

information about SOA for the application domain expert. This cleared the

picture and in the second walkthrough the reviewers and author were able to

focus on the design. As mentioned in the interviews, the first walkthrough

helped with providing an understanding of the context for both domains.

• It proved challenging for the author to:

(a) present work to an audience having different backgrounds,

(b) simplify the problem to explain the design clearly, and

(c) categorise the problems when they are interlinked.

• The presentation of the design was more effective when PowerPoint was

used. In the first walkthrough, the author presented work by using a white-

board. The subsequent interview with the participants identified that a

better approach would be for a presentation to be used side by side with

whiteboard activity, because the board discussion contains acronyms and

the reviewers need to consult the documents. Also a diagram and page

number can be referred to on the slide and the explanation can be carried

out with the support of whiteboard.

One of the participants found that the whiteboard presentation served the

purpose and so felt that a PowerPoint presentation would not add much.

However, in the second round of interviews we identified that all the partic-

ipants found it a better approach to use a formal presentation. This made

the walkthrough more focused and easy to analyse, and from a presenter

point of view, it was easier to explain the context of each diagram in a sys-

tematic way. This indeed helped the reviewers to understand the context

and purpose of each diagram used.

153

Chapter 8. Evaluation

The reason why one of the participants was originally not in favour of

the PowerPoint presentation was the use of content on the slides. It is in

normal practice that people put details on slides that make it a replica of

what is written in the document. Also, it puts more cognitive load on the

audience. However, the presentation we used, contained only the design,

and the context and purpose were explained verbally.

• From a learning perspective, the responses we collected from the partici-

pants were positive. For the application domain expert it was interesting to

see an engineering problem discussed in the computer science domain. He

found it interesting to see a ‘multi-angle’ approach towards the problem.

Further, instead of being based upon an implementation point of view, the

problem was discussed starting from the design, which was different. The

participants and the author gained experience about dealing with the sit-

uation when two views have to be discussed in a simplified way. However,

presenting both domains side by side was challenging.

• The first walkthrough session focused more upon providing the background

information about energy domain and SOA to participants. The reviewers

from both domains needed this to clarify the acronyms used in the document

and also to get clarity about the terms used. It was important for the

reviewer from engineering to mention how we have understood the domain

and where we are focusing. For the software expert it was important to

get domain knowledge to evaluate design. So, in this case, the first session

could be viewed as a preparatory session.

• We identified that the role of the moderator becomes important when re-

viewers are from different domains, and when the author has the role of

presenter. In such a case the moderator helps in eliminating possible bias

from the reviewers and the author. In the first walkthrough, the discussion

on ‘weather forecast’ which took a bit longer was eventually interrupted by

the moderator.

From the combined walkthrough sessions, we note that the element of con-

trol is very important, whether applied through the role of the moderator

154

Chapter 8. Evaluation

or by imposing a strict structure. We used the latter in the second walk-

through session, when the moderator was not available. The questionnaire

used in the first walkthrough to ensure that all categories and features were

covered was used in the second walkthrough for the same purpose and also

to keep the walkthrough focused. As the walkthrough technique is informal

and discussion-oriented, there is a possibility that discussion can exceed

the specified time and can involve the elements that are not the focus of

walkthrough. In our case, in the absence of a moderator, the questionnaire

helped to control the discussion and to keep the walkthrough to its schedule.

We would observe that the moderator role involves more than tracking

time. From the interviews and walkthroughs we can identify that it is

important for the moderator to have some level of knowledge about the

problem discussed. Otherwise it becomes difficult to track the discussion.

Therefore, a domain background alone is not enough. Knowledge about the

problem is also important.

• From these experiences we can identify the following points as being impor-

tant for conducting a walkthrough of this form.

– A preparatory session may well be necessary when participants have

different backgrounds.

– Documents should be available to all participants including the mod-

erator.

– The presenter needs to put effort into presenting both sides of the

application domain.

– Control through a moderator or by a fixed walkthrough structure is

needed.

– Documents need representations that can be understood by both do-

mains.

• The benefit of such walkthrough exercise as an academic discipline is that

we identified through our interview with participants and from our own

experience is that it provides:

155

Chapter 8. Evaluation

– a better understanding of both disciplines and hence helps with iden-

tification of inconsistencies.

– provides a different way of analysing the problem.

– provides knowledge sharing for both disciplines.

8.3 Discussion on the outcomes of the Review

For the review, we defined three categories for discussion that included require-

ments, assumptions and design. For each category we allocated a time slot. The

purpose was to evaluate the completeness and correctness of the use case and

the design in the most effective way. For this reason the questionnaire was made

available to the reviewers. This was used at the end of each category to make it

sure that all questions are answered. In the rest of this section we review some

key issues about the design that were raised in the review.

8.3.1 Requirements

Why are future extensions mentioned in the use case document. For

example landfill gas generator is discussed but not used in the design.

Why not remove this information from the use case?

We can answer this question in two ways. For designing an application, a

designer needs a reasonable knowledge about the domain and the requirements.

This is useful for developing the system by keeping a broad picture in the mind and

able to incorporate any further extensions that are required later in the system.

Service oriented architecture provides such scalability implicitly. However, from

our experience we have identified that not all functionality needs to be presented

as service (if we want to use the term ‘service’ then we have to create some

categories of services and make their meaning clear. Such as we can categorise

service provided by a third party (having ownership), and also those that are

logical and local to application).

If we know from the beginning that we may need to expand our system in

certain directions, its better to include that in the requirements under possible

future extension.

156

Chapter 8. Evaluation

We can start from a very narrow scope and later identify the things that do

not fit in our model. For the design a broad picture of the system is required.

The other reason for adding this section in the use case was unfamiliarity

with the domain and availability of the resources. We have collected information

that can be added further in the system and can also help to understand the

system. While constructing requirements we identified that energy engineers are

trying to make a mix of green and brown energy generators. Because renewable

resources are not fully implemented, other sources of power generation are also

in use. Therefore, it is important to evaluate the CO2 emission and the cost

involved in using these generation sources.

Later in the review, when the generation service was discussed, the reviewers

identified that if another generator like landfill gas was added, that this would

be able to fit under this service, and so in this way, SOA can provide a flexible

solution for use in the energy domain.

Figure 6.2 was difficult to understand for the software expert. The

figure is drawn from an engineering point of view. It represents the

SSEZ electrical network and the important entities within that.

This figure was drawn to use a network model as reference point. While

extracting the requirements, we were asked about the network configurations, as

each network has its own properties and engineers like to know about that before

discussing it. This helps them to set the context.

During the review, we determined that the figure was understandable for the

application domain expert. However, for a computer scientist a more abstract

figure is really required.

This problem can be identified as one arising from the interdisciplinary nature

of the study. A side by side picture for both domains is required. For this reason

another figure was added to the use case document.

The use case does not contain information about the assets such

as transformers. This information is required if technical constraints

are to be considered in the design.

The technical constraints involve details about network assets such as trans-

formers, cables etc. This involves using further information about the thermal

limits, voltages (regulation, unbalance, rise/drop), network losses, phase angles,

157

Chapter 8. Evaluation

location of these entities (phases or network) and configuration details. We have

not discussed these in details for two reasons. Firstly it involves further infor-

mation about the energy domain and requires the designer to focus on the lower

level details of the network.

Secondly, this information is categorised as network constraints and used by

the controller to check that network measurements are not violated. This further

involves information about network statutory regulations. The technical con-

straint depends on the configurations of individual networks, therefore, we have

briefly mentioned this in the use case.

The value of the Capacity factor (CF) is used in the Table 6.4.

Why is this information included at this point in the study?

While working on the requirements, we were told that the outputs of the wind

turbine and PVs do not provide their full capacity. So their actual outcome is

less than what is mentioned in theory. Therefore, while estimating the required

number of wind turbines and PVs for our electric network we considered the

capacity factor. Further, as we are not considering any other source of energy

generation other than renewable sources, therefore we considered it important to

mention CF.

However, from the review we identified that it is not necessary to mention

CF at this point. This information is used for economic purposes and does not

need to be considered. Here we found two different opinions from application

domain experts, however this is not critical from the design point of view. From

the domain perspective it is extra information and can help the ESCO later when

calculating its yearly estimations.

The information about storage technology is important. In the use

case there was inconsistency about storage capacity. Two different

figures were mentioned 1MH in description of electrical network and

in the table it was 2MH. Both values give different meanings.

For the application domain expert it was important to consider the type of

technology used for storage and to mention this explicitly. There are different

types of storage and these are used in different ways. Further, the important

point is to know the difference about how much energy can be stored and how

fast it can be accessed from storage. These are two different things and depends

158

Chapter 8. Evaluation

on the type of the storage.

The use case does not provide details about the storage technology. From

the requirements we identify that the storage can be assumed as a black box

(a buffer). This is what we have considered in the use case. However, the use

case contains the basic information about the storage unit. Here, the reviewers

considered SOA a good option to be used for an energy system. At the abstract

level we can provide outline information about storage, and later the details about

the storage can be expanded.

The problem was raised due the difference of the storage capacity mentioned

in the use case document. We are considering a 5MW network, in which a

one MW load is from the storage unit. Now if we add time with this then it

changes the meanings, for example, 1MH energy means 1MW power is used over

an hour. However, 2MH means 1MW power in 30 minutes. As we are working

on a 30 minutes time frame we have to consider that what capacity is available

in 30 minutes. This means that if we want 1 MW power in 30 minutes from

the storage then we need a 2MWh storage unit. The capacity mentioned in the

network description is therefore consistent.

The information about the state of charge (SOC) is inconsistent.

We have mentioned different options that can be considered about the SOC

in the use case. These options can be considered as operating policy of the

ESCO. Both reviewers understood it differently. Both were correct. The energy

engineering point of view was about storage technology and the software expert

analysed this from a software architecture point of view.

The inconsistency was found to arise from the use case document and the

simplified version of use case provided for review. We assumed storage SOC 50%

which was mentioned in the later document, but this caveat was not made in the

first one.

Was a full fault analysis carried out as part of the requirements?

The initial answer was no. The term ‘faults’ was not clear. Does this mean

problems in the network assets or does it mean the exceptional conditions from

software perspective.

At this point, both experts exchanged their views about what they mean

by faults. For application domain expert, faults means the short-circuits in the

159

Chapter 8. Evaluation

network such as when generators are broken down. The situations when circuit

breakers trip and customers no longer get the power. This situation is considered

as a fault case.

However, the term ‘technical constraints’ is used that is different from ‘faults’

to explain the issues related to the control system. They are associated with

thermal limits and network configurations. Therefore, according to the applica-

tion domain expert, the thermal limits mentioned in the use case document are

associated with control and cannot be considered as fault case.

This issue was raised as the term ‘fault’ used by the software expert was

having different meaning to the one used in engineering. By faults he meant

the exceptional conditions when controller would have to take extreme measures

such as to shut down the wind farm in case when wind speed is too high. Or

the situation when the SSEZ is isolated from the grid. This situation is called

‘islanding mode’ in energy engineering. In this case, the SSEZ would have to

reduce its generation to avoid extra power in the zone that can damage the

appliances.

If we consider faults from an engineering perspective then they are not in-

cluded in the use case. We have mentioned in the assumptions that the network

is operating in normal conditions which means no faults are present.

In the case of technical constraints, particularly network thermal limits, the

basic information is available in the use case. We have not discussed this in detail

for two reasons. First it involves detailed information about voltage rise and fall,

and the associated frequencies. Also this information is more about network asset

control. Secondly, this information is local to the application and can be added

when realising the working of the controller. For this reason it was added as part

of the technical constraints in the use case but not discussed in detail.

In the case of exceptions we listed scenarios (the extreme cases such as is-

landing) where controller decisions were required. Therefore, the reviewers were

brought back to the documents where we have mentioned network assumptions

and scenarios.

We categorised this discussion as a problem associated with interdisciplinary

research.

How is demand side management (DSM) handled?

160

Chapter 8. Evaluation

From the requirements we can identify that storage can be considered as load

and so comes under demand side management. However, demand side man-

agement that deals with customers is not discussed. This involves information

coming from each category of load and then defining the demand categories such

as which demand critical at what time of the day. Also we need to involve regu-

lations that apply to deferring the load from Ofgem. We put these issues under

the category of constraints that need to become part of the role of the controller.

8.3.2 Assumptions

• In the review it was pointed out that the assumption about storage state of

charge (SOC) should be considered as an operational constraint and should

be removed from the assumptions.

• While examining the flow chart, the reviewers were told that storage status

is checked first before importing or exporting energy to the grid. We had

assumed this because our network consists of renewable energy generation

sources and it was suggested that they should be fully utilised. The reason

for this is to reduce the use of brown energy and increase the use of green

energy.

From the reviewers comments we could identify that this assumption needs

be explicitly mentioned in the use case document. Because this is linked

with cost involved in using brown and green energy. This factor will become

important when we will extend our model by adding the functionality that

calculates the cost involved in using both type of energy.

• The assumption is that the network is working in normal con-

ditions but if it is not, then what indications does it have?

It was recommended that we make this assumption clearer by explaining

that the use case assumes that there are no faults present in the network.

This point was discussed in detail in previous section.

In the assumptions we have mentioned that the network is working in its

normal mode. However, it is not explained in terms of faults which is more

161

Chapter 8. Evaluation

of an engineering point of view. Further we have mentioned two situations

when network is not in a normal condition: one is an islanding mode when

the SSEZ is disconnected from grid and there is more energy in the zone.

The second situation is when wind is too high to run the wind turbines and

the extreme measure taken is to shut down the wind turbines.

8.3.3 Design

How are the demand, generation, storage and weather services iden-

tified? Further, how they are connected to each other. The purpose

is to get the big picture of the design model.

In the current design, the controller is the main component that connects all

of the services. This question was raised in the first session of the walkthrough.

The design was presented through a whiteboard. The identified services were

presented, but the reviewers were unable to relate to them. For this there was a

need to start from a more abstract level by providing a big picture of the system

components, and then discussing each component later. In the second session the

use of a Powerpoint presentation helped to represent the system with different

levels of detail and the context for each diagram.

Why network constraints are not listed in the identified services?

The network constraints are more related to the functionality of the controller.

Further there is no outside entity involved in this functionality, therefore this

information was considered as being at a second level of detail. This is useful

when controller functionality is discussed and we move towards detailed design

and realisation of the energy system. Further, this aspect is important from the

engineering perspective. As we discussed earlier, we have made the assumptions

that network is in a normal operating condition and have avoided low level details

about network assets, hence we have not collected further details about this.

As we noted, not all functionality in the application is taken from a third party

and there are services that are local to the application. In the case of technical

constraints, we consider these to be local to the application and not a service

that is owned by a third party. Also, the controller is not a service, rather it is

a functional component. If we decide to make this as service and used by other

162

Chapter 8. Evaluation

ESCOs then we have to consider how different network configurations associated

constraints and operating policies will be provided to the controller to evaluate

the power balance for these networks.

From the reviewer point of view, it would be nice to include this in the current

design, and to mention network constraints explicitly in the identified functional

components. For the software development point of view, this is a category of

constraints that become the part of functional component ‘assess level of change’.

In this module we add operating policy, priorities and constraints. So if we explain

this functionality in detail then we need to break these constraints down to a

further level of detail.

The system log is mentioned in the design, however, in the use

case document no information is specified for this.

We considered the system log to be an implicit requirement, as it is important

for the ESCO to know what decisions it has made in the past, and it can use this

later in its prediction model. This information is now explicitly mentioned in the

use case document.

Why is the weather service considered at a high level? It may not

be required at this point of functional component identification.

Design is an iterative process and it is difficult to explain each time which

functionality is identified at what level. Many functional components become

visible during requirements analysis and further are added during design process.

We considered the weather service important in terms of its use in the system.

The current weather state is included as part of system state and the forecast

state is considered important, as the control system involves a prediction model.

Further to this, the weather service is not provided internally. This service is

required from a third party and so we considered it important that this should be

made explicit in the case of service based application design. The functionality

that is required from any third parties, and its use in the system should be

considered at the early stage of the system.

In the design we also have to consider the availability of this service from

different service providers, the exceptional cases and the dependencies upon other

system functionality needed for this. For this reason we considered it appropriate

to include this from the beginning. Even if at first its only goal was to keep

163

Chapter 8. Evaluation

the weather history about the energy zone and use this further in the prediction

model.

If generation prediction and demand prediction services are pro-

vided by service providers then why is the ESCO communicating with

the weather service itself? Why is weather data coming from other

prediction services not considered enough?

We considered it important for ESCO to communicate with the weather ser-

vice because

• It uses renewable sources and needs different levels of detail from weather

services.

• It needs to use the weather forecast in its prediction model.

• The detailed weather information might not be available through the gen-

eration and demand prediction services. They will provide the information

that is necessary for their own functionality.

• As each service provider have a different type of service available, so we

might at some point need to provide information about the weather condi-

tion in our energy zone.

Why are two scenarios shown for demand and generation predic-

tion in activity diagram?

We have shown both the situation when these services are constructed by

ESCO itself and when they are taken from a third party. There is the possibility

that these services might be developed by the ESCO and offered to other ESCOs

over time at a price.

There are operational goals mentioned in the use case but it is not

clear which ones are considered by the controller.

Th operational goals are not discussed in the design. While representing

system behaviour, we have considered three situations: when to import, export

and when to remain self-sufficient. These operational goals are related to the

operations of the controller. We consider operational goals as part of the ESCO

policy and the priority that it sets. The ESCO can consider that its priority is to

164

Chapter 8. Evaluation

make money in the market as the highest priority or it wants to fulfil customer

demands first, and for that it decides to import brown energy when required

instead of deferring the loads. We consider these as details to be included when

we start to discuss the detailed design.

In the current design we have made the assumption that the ESCO will try

to be self-sufficient and fulfil its customer demands first. That is why the use of

storage is considered first before importing or exporting energy. We have made

this assumption as in the case of renewable energy, it is recommended to utilise

internal resources first. Secondly it is an important point to be considered when

it comes to calculating CO2 emissions in the zone.

8.3.4 Conclusion

In this section we sum up the evaluation on the data collected from the video

recordings and the interviews taken from participants.

Requirements: The requirements are understandable, and the concept of the

SSEZ were correctly understood and explained. The problem was captured

sufficiently. However, there were inconsistencies in the use case documents

and there were some technical features that needed to be corrected. For

example the assumption used about the storage state of charge (SOC) con-

tained different figures in different sections. The use of terms energy and

power need to be used carefully as both have different meanings. The

storage capacity mentioned in the network configuration section have in-

consistent values that need to be resolved as it is associated with storage

technology and can easily be misunderstood.

The details in the use case need to be represented in such a way that it will

become easy for experts from both domains to understand the problem.

Assumptions: The assumptions are valid apart from the decision made about

the storage SOC. That is an operating policy issue rather than an assump-

tion. More assumptions need to be specified about the network, such as

using the network at full capacity will not violate technical constraints.

165

Chapter 8. Evaluation

Further, the assumption that the demand prediction service will have knowl-

edge of the network is important. Also the demand side management (DSM)

is considered only in terms of storage, DSM on customer loads is not con-

sidered.

Design: The design decisions need to made explicit. The design and use case

contains different levels of detail, and there is a need to define the scope

that what is considered in the design. In that case the design and use case

have inconsistencies.

The two possible scenarios presented about demand and generation predic-

tion need an explanation that which is considered as final design decision.

The demand prediction service should involve weather data which is not

shown in the design. Further all identified services should be made visible

in each diagram such as data flow diagram should represent all services.

8.4 Summary

In this chapter, the evaluation process and its outcomes are discussed in de-

tail. The evaluation process consists of walkthroughs and interviews. The details

are provided about each section. Further the reviews about requirements, as-

sumptions and design are discussed. Finally the output of the review has been

summarised in the conclusion section.

166

Chapter 9

Discussion

9.1 Introduction

The chapter discusses the research described in this thesis. The research is ex-

plained through the use of narrative synthesis, a technique that can be used to

explain and summarise the findings of qualitative research (Cruzes and Dyb̊a,

2011). In the last section we discuss the threats to validity associated with the

research methods employed.

9.2 Why use a multi-method approach?

A multi-method approach is employed as this is able to provide a wider coverage

of a problem space. The purpose is to investigate the phenomena using a com-

bination of empirical research methods that increase the reliability of the study

when compared to single method studies (Wood et al., 1999). This approach is

described as method triangulation by Miller (2008), and can be used as a strategy

for knowledge discovery as well as providing a way to deal with the limitations

associated with a single empirical study.

We have used the combination of a mapping study with a case study and

walkthrough. These research methods were selected in an evolutionary manner,

since the phenomena under investigation were relatively new and little experience

was available. In Table 9.1, we briefly explain the rationale for their selection.

167

Chapter 9. Discussion

Table 9.1: Empirical Methods employed in the thesis
Research
Method

Purpose Objective in this re-
search

Mapping
study

A systematic and objective way of
identifying evidence related to the
problem area (Kitchenham et al.,
2011)

Used to investigate
the SOA concept in
the existing litera-
ture.

Case study To answer ‘how’ or ‘why’ questions
and to understand the phenomena
in depth and in a real context (Yin,
2008)

Used to develop the
use case and explore
the SOA design.

Walkthrough To evaluate the work for consis-
tency and accuracy by employing
expert knowledge.

Used to evaluate the
case study outcomes.

Interviews To get in-depth and first-hand un-
derstanding through the cycle of
plan, act and reflect (Oates, 2005;
Sjoberg et al., 2007)

Used with the walk-
through to analyse
the effectiveness of
the process.

The mapping study was performed on the topic of SOA, and the associated

synthesis was focused upon the way that an SOA is described. This was performed

qualitatively by carrying out a thematic analysis (Cruzes and Dyb̊a, 2011). For

this, the qualitative data consists of words and pictures, and the benefit of using

a qualitative method is that it requires the researcher to explore the complexity

of the problem (Seaman, 1999).

The mapping study was conducted on a non-empirical topic, making it dif-

ferent from most other such studies. While performing the mapping study, we

observed the evolution of the SOA concept through an increasing number of def-

initions starting from the year 2000. The selection of papers and the synthesis

process was also different. This is because we were looking for a description of

an SOA, and there was no clearly defined section in the papers for this, unlike

experimental results. The definition could appear anywhere in a paper, some-

times in the abstract, introduction, background or at times, in the discussion

section. This required a detailed scan of each paper. Another interesting element

involved was the analysis of definition sources that included a significant amount

of grey literature. The outcomes of the mapping study include an SOA model

168

Chapter 9. Discussion

that integrates the key elements of SOA, and also provides a classification of the

terms used in its definitions.

The second method we used was a case study. A case study provides a means

of analysing a phenomena in depth and in its real context (Yin, 2008). The

case study employed in this thesis provided the means to understand and explore

the application of SOA for a real world problem related to energy engineering.

Further, it involved constructing a design model for the selected case. Hence, the

case study has been employed for an exploratory purpose, in order to gain insight

into the application; and to explore and generate a design for this.

In an exploratory study, multiple sources can provide higher reliability than

a single data source (Bratthall and Jørgensen, 2002). We used multiple data

sources for the case study data. The extraction of information from different

sources and integration of these pieces of information into a coherent form was

quite challenging. This involved the understanding of the domain, the use of

requirement elicitation techniques, especially to identify the use of right terms

from energy engineering and to avoid vocabulary used in software engineering,

and understanding and adopting the method useful to acquire information from

engineers such as reference model of electricity network with some configuration

details. We can identify this as the issue of ‘multiple perspectives’ described in

(McLeod et al., 2011). When a reference point is not available, engineers may

well provide different information and answer the question differently, which is

usually a reflection of their own area of expertise. Also, the senior engineer usually

provides a ‘big picture’ of the problem that includes the themes of their research

plans. Therefore, to transform a big picture into a real model by integrating

information from different sources and by using interviews required significant

effort.

From their experience of conducting a case study, McLeod et al. (2011) re-

ported on the ‘relationship between research and researched’. This phenomenon

is described for ethnographic studies when field researcher has close engagement

with the research context. The researcher has dual roles of being a participant

experiencing the research context and of being a researcher, observing, analysing

and interpreting it.

In our case study, we also had close engagement with the ‘case’ we selected

169

Chapter 9. Discussion

and so we too had the dual role of participant and the observer. This added to

the complexity of the task. Being the researcher requires that we have to be vig-

ilant to ensure that the outcome should not end up as an energy thesis. During

the requirements elicitation process, the researcher was fully engaged into under-

standing the problem domain. This can raise the risk of solving the application

domain problem rather addressing our own research question. Therefore, in this

time period, the researcher had to repeatedly consult the objectives set for the

research and discuss these with supervisor. As an observer, we had to report

on the phenomena, and had to document our own experiences and the lessons

learned from the study.

McLeod et al. (2011) reported their experience of observing software develop-

ment process as ‘researching in action’. We use this to describe our own expe-

rience of generating requirements and constructing a design for these, since we

have covered the requirements and design phases as part of the case study. Being

participant and the observer, this phenomena equally applies on our case study.

We participated as designer in constructing the SOA design model, and in doing

so made use of design methods, strategies and notations. We also arranged dis-

cussion session with experts having background in cognitive sciences and notation

design. In particular, we invited Professor Thomas Green and his team to advise

on our study.

Each case study establishes its own internal logic and design principles (Perry

et al., 2004). We could not find any direct comparison in the literature with

the study discussed in this thesis. Further we wanted to evaluate case study in

terms of identifying how accurately application domain concepts were captured

and stated in the use case, and the appropriateness of existing notations in SOA

design.

The validity of the case study refers to the reliability of the results (Runeson

et al., 2012). We have evaluated the case study results by employing peer review

(in the form of a walkthrough) a form which was used to evaluate the technical

content and quality of the work (Garousi, 2010). The use case validation was

performed by involving an expert from energy domain, as the design evaluation

required both application domain knowledge and the software design. The walk-

through process itself required feedback from participants. Therefore, an element

170

Chapter 9. Discussion

of action research was introduced into the evaluation process.

The multi-method approach adopted for this thesis proved able to provide

a broad coverage of the problem area. By selecting different empirical research

methods, we were able to address the problem in significant detail. The research

methods complemented each other and compensated the weakness inherent in

the individual method (Wood et al., 1999). We have used the outcomes of one

research study as an input for the other, with each research method addressing

its own research question by making use of the results from the previous study.

9.3 Related Work

In this section we provide a brief overview of some work by others that can be

related to this study.

9.3.1 The Mapping Study

We conducted our mapping study to address the issue of the concept of an SOA.

We used 98 studies out of 701 that were examined in full. Data synthesis was

through thematic analysis, leading to a set of fifty different terms. From this,

we have produced an SOA model that provides key concepts, description and

classification of terms used in the literature. We have then made use of our

model by mapping its features with those of a real world problem.

The study by Boer and Farenhorst (2008), has raised a similar issue about the

lack of commonly accepted definition in the area of architectural knowledge. To

examine the terms employed in the published literature, and to identify different

definitions available on this topic, they conducted a systematic review. They

found 14 definitions out of 115 studies. Instead of a qualitative analysis, they

used a quantitative approach termed reciprocal translational analysis. The details

of this were not available. The study did not explain the analysis process used

and did not report any threats to validity. The outcomes and observations are

available. The study concluded that researchers should be precise and concrete in

defining the concepts that they consider are part of the architectural knowledge.

This result is similar to what we have observed from the experience of conducting

171

Chapter 9. Discussion

mapping study on SOA.

9.3.2 The Case Study

We have compared our case study with others in terms of addressing the issue

of a real world problem, by analysing similar case studies that report on their

experience.

A real world problem: The case addressed through the use case, in our case

study, is constructed on a real world problem. The information has been

collected from domain experts and composed into an operational model.

The use case discusses the problem in detail. Further it was evaluated

by application domain expert. This makes our study different from many

others, where researchers have used artificial examples and addressed them

as case studies. For example, a recent edition of (ERCIM-NEWS, 2013)

addresses the special theme of smart energy systems. There is another

study published in (Venables, 2012) about the effective use of distributed

generators in the form of smart grid at the time of ‘Hurrican Sandy’. A

similar study which is also covered in our case study is published in (Muller,

2012), however they provided it as a future picture of renewable energy

system.

Studies such as those by (Baresi et al., 2005) and (Dietrich et al., 2007)

employ examples for a case study from the vehicle control domain and the

shoe industry. The first one is a self-created case and used as laboratory

experiment. In the second one, the author describes a general case of a

supply chain. Similar studies (Gao and Tang, 2007) and (Duan, 2009) are

from the textile industry and mobile networks. The study by Bakker and

Iacob (2009) explains the case of a health care insurance company. The

paper is part of ongoing research and information is incomplete. Bosnjak

et al. (2011) have described a case study about ocean energy information

management. The study describes a preliminary investigation and reports

that no actual or functional domain-specific web services have been created.

Recently a study by Espinha et al. (2012) has discussed the issue of lack of

real case studies in the SOA literature. They conducted a short survey of

172

Chapter 9. Discussion

the case studies used by researchers. They classified many of the studies as

self-created and closed systems. Self-created case studies are the ones that

are used for laboratory experiments and consist of self-generated scenarios,

while closed system case studies are ones published by researchers working

on industrial projects and therefore do not provide internal details. To

cover this gap, Espinha et al. (2012) have suggested a case study which

is an extension of an existing application called Apache Stonehenge. The

extension is a replica of the original system and makes use of an open source

platform called Turmeric SOA.

Case Studies in Software Development: Moe et al. (2010) describe a case

study that was conducted to analyse teamwork in agile teams. Their study

was conducted over the time period of nine months in a software develop-

ment company. The study was based on observations and data was col-

lected through semi-structured interviews and informal meetings with the

team members. The study was interpretative and results were compared

with previously constructed theory.

McLeod et al. (2011) also report on their experience of conducting a longi-

tudinal case study on software development. The study was to investigate

software development practices in its organisational settings. The study

spans over two years, and data was collected through interviews with par-

ticipants. We categorise this as an observational study as the author was

not involved in the development activity. Observational studies produce

qualitative data, and in case of this study the author has categorised it as

an interpretative case study. Therefore, no comparison is made with any

other studies.

Our case study differs from the ones summarised above. In our case study,

the author contributed by being participant and the researcher. The con-

struction of the case study includes software development phases such as

requirements and design. We can categorise our study as being exploratory.

We have used method and data triangulation to generate and collect data.

The reliability of the outcomes (Runeson and Höst, 2009) has been ad-

dressed through the evaluation of the case study.

173

Chapter 9. Discussion

9.3.3 The Walkthroughs

We have employed a walkthrough for the evaluation of the case study. In this

way, we used peer review in an academic context for the purpose of evaluation

of our case study. The current literature, includes some studies where such a

peer review technique has been used for the academic purposes. Zeid and Elswidi

(2005) have used peer reviews in teaching object oriented analysis and design

(OOAD) course, while in another study by Garousi (2010), peer reviews have

been employed for design projects in a software engineering course.

9.3.4 Use of a Multi-method Research

• The study by Wood et al. (1999) employed a multi-method approach for an

empirical investigation of object-oriented technology. For this, the study

was divided into three phases. For each phase a research method was se-

lected, such as semi-structured interviews, questionnaires and laboratory

experiments. The first two phases involved participants with a background

in industry and academia and with experience of working on object oriented

technologies. In third phase, participants, were students who carried out

experiments.

• Mingers (2003) reported the findings from performing a survey to explore

the extent to which a multi-method approach is used in the information

system (IS) literature. The study identifies little evidence of multi-method

research published in this area such as empirical papers published in IS

journals. Overall, only 20% used a combination of methods. One of the

reasons for this, as identified by author, is the time and cost factor involved

in employing different research methods.

• From our experience, we can identify that a multi-method approach does

provide an opportunity to explore the problem in depth and from different

perspectives. At the same time we agree with Wood et al. (1999) that each

research method does require proper planning and design.

174

Chapter 9. Discussion

9.4 Threats to Validity

As we have used a multi-method approach to conduct the research discussed in

this thesis, the threats associated with each research method will differ from each

other. We discuss these identified threats separately for each research method.

9.4.1 The Mapping Study

The main threat to validity to be considered for the mapping study is that of

internal validity, since this is a secondary study and does not involve human

participation. Further, we have used a mapping study for a non-empirical topic

which makes this study different. In such a situation, construct validity could

also be an issue. However, systematic review techniques are now relatively well

established, therefore we do not consider this to be a significant threat.

Internal Validity

Search Strings: It is possible that we have missed papers that discuss defini-

tions of SOA and that do not use this term explicitly. However, we did

prototype our search strings carefully, and it does seem unlikely that the

term would not appear in a paper that was using a definition, hence this

might be considered as a fairly minor threat.

Search Coverage: We have used three of the major electronic databases (IEEE,

ACM and Science Direct) for our search. Normal guidelines are to use

around four for a systematic literature review, but in this case we drew

upon experience to reduce the number of papers that had to be sifted.

However, in the later iterations, this sifting did involve following up the

references of the papers found (snowballing), and this process did not point

to any significant groupings of papers that we had missed.

Analysis of Papers: Guidelines on performing SLRs suggest that data extrac-

tion should be performed independently by two analysts, or that if one

analyst is used, a percentage should be checked. However, this relates to

175

Chapter 9. Discussion

extraction of data from papers reporting empirical studies, which can in-

volve the analyst in having to perform quite a complex task and exercise

judgement. In this case, we were solely concerned with references to def-

initions, for which true / false decisions are relatively straightforward to

make and so all data extraction was performed by one person (the author).

The analysis of definitions was, however, conducted by the author and the

supervisor. To check the agreement level between these, a Kappa test was

applied, as discussed in Chapter 5.

The search covers papers to the end of 2009, a period in which ideas about

SOA were evolving. An informal check of subsequent publications on this topic

does not suggest that there have been any significant changes over the past two

years.

9.4.2 The Case Study

For the case study we can identify two types of threat: internal validity and

external validity.

9.4.2.1 Internal Validity

• Use of method triangulation involves multiple techniques used to collect and

produce data. This was done by constructing an operational model in the

form of a use case; producing a design by using existing design techniques

and knowledge; and by performing a walkthrough to check the validity of

the use case and the SOA design model.

• Multiple data sources were used, such as formal and informal interviews

with application domain engineers, analysis of technical papers, and use of

supporting documents. Further, we held sessions with experts to discuss

the issue of notations for SOA design, and conducted an expert review to

evaluate the case study.

176

Chapter 9. Discussion

9.4.2.2 External Validity

• The case study employs a single-case design, a choice that raises the possi-

bility of bias and generalisation. We have used multiple sources of data and

evaluated it through an expert team that was not involved in any stage of

case study construction. Bratthall and Jørgensen (2002) have noted that

use of multiple data sources in an exploratory case study makes the case

study more trustworthy than the one based on single source of data.

• Being single-case, the issue of uniqueness and special access to resources

applies to this case study.

9.4.3 The Walkthrough

For the walkthrough, bias is an important issue to be considered. In the case

of systematic reviews the protocol and guidelines are well established and have

matured over time. Therefore we can find conference series (such as EASE)

addressing these issues and a continuous feedback going into this area. In the

case of the case study we do find examples of protocols and guidelines, however,

the range of ‘types’ of case studies usually employed in software engineering is

a bit limited. This may be because case studies in other disciplines are often

longitudinal studies and require significant time to observe the phenomena (Yin,

2008). However, we did not find a proactive approach towards this, in the form of

dedicated conferences and workshops, to generate literature on case studies alone.

There is a recent book by Runeson et al. (2012) on case studies and guidelines

are available at (EBSE, 2013).

The literature on walkthroughs is largely available in publications dating from

the 1970’s and 1980’s. There is a book by Yourdon (1989) on structured walk-

throughs that provides some guidelines in its appendix about the structure of a

walkthrough. There is another term ‘cognitive’ walkthrough used in the software

usability area. However, we did find a lack of empirical studies that on reported

experience of conducting walkthroughs and about their use in design evaluation.

For the walkthrough we could identify two main threats: construct validity

and internal validity.

177

Chapter 9. Discussion

9.4.3.1 Construct Validity

The guidelines available for performing a walkthrough are either quite old and

abstract or they are not supported by evidence. Therefore, we have made use

of the guidelines available at (EBSE, 2013) and those mentioned in (IEEESTD,

2008). We tailored these to write the protocol for walkthrough. This was done

in consultation with the supervisor. Further we have employed ideas from action

research by taking feedback from the participants about the walkthrough process

as suggested in (Seaman, 1999). This provides confidence that the form of the

protocol and the walkthrough process were appropriate. Further, a questionnaire

was developed to help participants provide feedback, and also to help achieve the

objectives of the walkthrough.

9.4.3.2 Internal Validity

This study involved human participation, therefore, we consider bias as an impor-

tant factor to be discussed here. The participants had backgrounds in different

domains and with different levels of knowledge about the problem under discus-

sion. The possible sources of bias were identified and listed in the protocol.

Selection of Experts: Two experts were involved in the study, one from each

domain. This could be considered a problem in terms of ignoring any major

issue during the review. However, the support of the questionnaire which

was verified by the supervisor, was provided to ensure we did not ignore

any important point.

Further, the case was constructed with the help of energy engineers and

feedback was taken during requirement gathering to verify that what is

written is understood by the author and meaningful to engineers. This

does not violate the guidelines, where it is suggested that the number of

experts involved can be restricted to two.

To get an expert from energy engineering the energy group was contacted

and they identified the experts that had experience in the control system

and also knew about the breadth and depth of renewable energy domain.

This was important as researchers, in practice, focus on a branch of a specific

178

Chapter 9. Discussion

problem and at times find it difficult to comment on related work. We

identified this problem while interacting with engineers who were involved

in different areas of renewable energy research. The selection of an expert

was done by energy group supervisor who knew about our work and we

were not involved in this. The expert from computer science was selected

on the bases of his experience in SOA in particular and in software design

in general.

Involvement of Experts during Preparation: None of the experts was in-

volved at any stage during the preparation of use case and design.

Data Consistency: There is a threat to data consistency while taking notes by

the observers, which can be controlled by assigning more than one observer

at the time of the inspection (Seaman, 1999). We have handled this issue

by keeping a record of all sessions in the form of audio and video files. This

reduces the chance of inconsistency in data collection. This also helped in

analysing the sessions and viewing the discussion in its context.

Need for two walkthroughs: The evaluation process was performed by em-

ploying two walkthroughs and following interview sessions. This structure

was constructed by focusing on the point which we mentioned earlier that

the participants were having different backgrounds, experiences and under-

standing of the problem. The documents included Chapters 6 and Chap-

ter 7, and the review protocol (Appendix E), and were made available to

the participants before the walkthrough sessions to inform them about the

background. Also the first walkthrough session mainly served the purpose

of being a preparatory session.

Analysis: The analysis of the walkthrough was done by the author alone. The

recordings were available and questionnaires were developed to aid these

sessions and interviews. The categorisation of the discussion and question

asked did not create any problem. Rather these helped in classification.

The reviewers used these classification when they wanted to mention a

point relevant to previous category. Further, the supervisor was involved in

the preparation and the process of evaluation, although he was not present

179

Chapter 9. Discussion

during the walkthrough and interview sessions. The issues were discussed

with him and the details about evaluation discussed in Chapter 8 were

reviewed by the supervisor.

9.5 Lesson Learned

Some key lessons learned from this research process are listed below.

• Lesson 1: Identify the availability of third party services and any

requirement for new services. Also consider the ownership of new

services.

The availability of third party services, any need for new services, their

ownership and associated contracts and the requirements for the registry

should be identified from the very beginning of the SBA design.

• Lesson 2: Application domain constraints need to be mapped with

the technology at the early stage of SBA design.

The application domain constraints restrict the design in certain ways.

Therefore, the SBA design process for each domain will be different. In

our case, the SBA design model was developed for a real time application,

which is different from ones that involves a purely business scenario, such

as purchase and shipment from Amazon.

• Lesson 3: Design decisions are key elements for SBA development.

For SBA development, there is a need to be very clear from the beginning

about the service model to be used. By this, we mean the understanding

of the SOA model. We have argued in this thesis that SOA is an emerging

paradigm and its concepts need a shared understanding. In the absence of

this there are different interpretation of these terms, influencing the design

of any applications. Therefore, for SBA development, decisions about the

third party services and the long term business planning for newly developed

services is essential.

180

Chapter 9. Discussion

• Lesson 4: The documentation needs to clearly specify terminol-

ogy.

This mainly stems from the problems that occur in interdisciplinary re-

search. Each domain has its own vocabulary which incorporates implicit

knowledge from the domain. Dealing with both energy engineering and

computer science disciplines requires a shared vocabulary, which we have

provided in the form of a glossary. This is also needed to make the document

clearer for both audiences.

• Lesson 5: A ‘dry run’ for the design walkthrough sessions is an ef-

fective way of dealing with the needs of interdisciplinary research.

This was undertaken by making two walkthrough sessions for the design

evaluation. Clearly, the first walkthrough session provided experience and

confidence of dealing with both domains.

9.6 Summary

In this chapter, we have discussed the research conducted throughout this thesis.

We have explained the reasons behind employing a multi-method approach and

the selection of different research methods. We have analysed studies that relate

to each research method. We have discussed the threats to validity associated

with each research method. In doing so we have provided a holistic view of the

research along with our interpretation.

181

Chapter 10

Conclusion

The chapter summarises the findings of the research discussed in this thesis. Each

research study is summarised, and used to answer the research questions posed in

Chapter 4. The contributions made by this research are also explained, togather

with some ideas for possible future research on SOA design.

10.1 Thesis Summary

This thesis describes a multi-method study based upon using a mapping study, a

case study and a walkthrough. The mapping study was performed to investigate

the use of the SOA concept in existing literature. We considered it important to

explore the concept in depth as the literature on SOA provides different inter-

pretations of this concept and the term is often used in an ad hoc manner. In

the mapping study, we identified 921 studies on SOA, after which we selected 98

studies for analysis.

We investigated the descriptions provided in the text and extracted the def-

initions. The terms in the definitions used to explain SOA characteristics were

tabulated against each definition, providing a set of fifty different terms. This

was then used to construct an SOA model that classifies the terms and groups

them against a set of more concrete identifiers. To avoid multiple interpretations,

as we found in the mapping study, we provided description to each of the key

identifiers.

182

Chapter 10. Conclusion

By analysing the definition sources, we found that many definitions are taken

from vendor-specific web sites. The most prominent were from W3C, IBM and

OASIS. Thomas Erl and M. P. Papazoglou were are also cited increasingly, how-

ever they never offered definitions in their own texts. The definition that was

found to be consistent over time and was cited without changes in the text was

the one offered by OASIS.

The case study covered the process of developing of SOA design model and

associated operational model and the evaluation of both of them through a walk-

through. We took the problem from the domain of renewable energy. The use

case provided an operational model of a control system for small scale energy zone

(SSEZ). The SOA design model was constructed by integrating design knowledge

from the software design theories, SOA and software architecture.

At the final stage we performed two walkthroughs as a part of the case study

evaluation, to evaluate the outcomes of the case study through expert knowledge.

We also investigated the effectiveness of the walkthrough process for this type of

model.

10.2 Research Outcomes

In Chapter 1 we described a set of research objectives for this thesis. The research

questions identified and addressed through each research method were then dis-

cussed in Chapter 4. Below we briefly explain how each question is answered

through the set of studies.

1. Mapping Study

What are the key characteristics of a Service Oriented Archi-

tecture?

We answered this question by employing a mapping study discussed in

Chapter 5. We identified 921 studies through the search strings we defined

to find relevant studies from electronic databases. We selected 701 of these

after applying inclusion and exclusion criteria, and thoroughly examined

these studies to find any SOA descriptions in the text. A full analysis of

SOA definition was carried out on the final selection of 98 papers.

183

Chapter 10. Conclusion

We have described analysis process in Figure 5.4.

2. Case Study

The case study was conducted according to the protocol described in Ap-

pendix B. Questions were:

“Can the characteristics of an SSEZ control system be success-

fully modelled through the construction of a use case model?”

This question was addressed by constructing an operational model of an

SSEZ control system in the form of a use case, as described in Chapter 6.

The use case was developed as part of the case study process. The use case

contains the information about the configuration of SSEZ electrical network.

It explains the operational goals and the data sources inside and outside the

control system. The use case characteristics were mapped with the SOA

model constructed through the mapping study. This demonstrates that the

selected use case, as a representative example, can successfully model the

SSEZ control system.

“How can SOA attributes be modelled using abstract diagram-

matical forms?” and “How can such abstract models be devel-

oped?”

In Chapter 7, a high level design model was successfully constructed based

on SOA features. The process of developing the design from requirements,

and presenting that through a set of notations and existing diagrams is

explained in detail. A number of scenarios from the use case were used

to explain different features of the control system. The design model was

constructed by integrating knowledge of software design, SOA and software

architecture. As such, this demonstrates one approach to developing an

abstract design model.

3. Walkthrough

A protocol was developed for the walkthrough Appendix E to evaluate the

use case and the SOA design model.

184

Chapter 10. Conclusion

“Are the design, and the notations used, appropriate for the

construction of an SOA model for the SSEZ control system?”

In Chapter 8, the evaluation process is explained. The process consists of

two walkthroughs with semi structured interviews being conducted after

each walkthrough session. We have reported our experience of organis-

ing the walkthroughs and discussed the lessons learned from this activity.

We addressed the research question by evaluating the requirements, as-

sumptions and the SOA design model, concluding that these forms were

appropriate.

10.3 Contributions

• The mapping study has been conducted on non-empirical topic. This makes

it different from previous studies, both in the evidence-based literature and

the services literature (Anjum and Budgen, 2012a).

• The mapping study identifies the need for a commonly accepted vocabulary

for SOA that can be used by researchers to explain SOA concept. This will

help limit multiple interpretations of this concept and assist designers in

communicating their ideas.

• The case study was used to develop a real world problem. The use case

can be considered a representative example for service based application

design. The use case was developed with the help of energy engineers and

is evaluated for consistency and accuracy.

• The study provides the experience of constructing an SOA design model by

employing existing diagrammatical forms on a real world problem (Anjum

and Budgen, 2012b). This will aid in filling the gap that exist in the lit-

erature about service based application design. This also raise the issue of

new notations required for service based application design and providing

an example that is not based upon a ‘toy’ problem.

185

Chapter 10. Conclusion

10.4 Future Directions for Research

Future work is needed in the following directions.

• There is need to devise notations that can express all of the characteristics

of an SOA. For this, our integrated model of SOA can be used. Further to

this, for notations interpretation rules need to be defined (Wieringa, 1998)

instead of borrowing existing notations especially from the UML, where all

forms of diagram are not used very widely (Budgen et al., 2011)

• The research could be extended by including non functional properties at

the design level. Right now, cost and time are considered as a constraint

for service selection. However, to progress to detailed design will require

the choice of implementation technology. That will help to evaluate quality

attributes of performance and reliability.

• The design could be realised by developing the necessary web services. This

will help to analyse the real time response of such system. This can be done

in two ways. First by considering fixed service providers for each service,

to help with in realising the system as a set of services, and so that the

performance and time can be calculated.

Second by adding multiple service providers. This will involve the addi-

tion of a service registry to keep service provider information. In (Bianco

et al., 2007) this is considered as dynamic binding. In this case contacts and

interfaces are pre-negotiated by service providers. The information about

non-functional features like time and cost will be available with the infor-

mation about how to invoke the service. At runtime the services will be

selected on the bases of time and cost from the registry and then will be

invoked to get the desired functionality.

The comparison of these two realisations will help to assess the most suitable

form of solution for service based applications in this domain.

• The case study can be extended by involving multiple service providers for

energy generation that will be other ESCOs. They can offer different prices

to buy and sell energy. Instead of buying brown energy from national grid,

186

Chapter 10. Conclusion

an ESCO could decide to buy green energy from a neighbouring ESCO. In

this case an important need will be for publication of such services from an

ESCO. For this reason instead of a private registry, a broker service may

be required.

10.5 Summary

The main contribution of this thesis has been the systematic analyse of the con-

cept of service oriented architecture (SOA) and to design a real-world service

based application (SBA) for energy control system. The widely published liter-

ature on SOA represents the popularity of this concept in software community.

However, evidence for its applicability to real problems is lacking in the litera-

ture. Also, experience of developing service based applications and the processes

followed are not discussed in the literature.

The research has contributed by exploring the concept of SOA taken from

the existing literature, constructing an integrated SOA model, and exploring the

design of service based application through a real world problem. The work can

be extended by adding further detail in the case study and the design model to

develop a full functional model.

From this research we conclude that to fully exploit the benefits of the SOA,

the research community needs to share experience of developing service based

applications with evidence from real world case studies. For this, the first step

would be to develop a shared understanding of SOA concepts, introducing no-

tations that can provide semantics and syntax to represent these concepts and

finally the realisation of SOA design models in a real-time environment.

187

Appendix A

A.1 Search String

Due to the lack of standardisation of search interfaces in IEEE and ACM databases,

the following search criteria were implemented:

A.1.1 IEEE Xplore

• Search type: keywords or phrases search in all fields (titles, abstract, etc.)

• Date Range: 2000-2009

A.1.2 ACM

• Search type: Word or phrase find [any field] with all of this text (search

strings).

• Publication year: 2000-2009

• Publication Type: Journal, Proceeding, Transaction

A.1.3 Science Direct

• Search type: Search string in Abstract, Title and keywords

• Date Range: 2000-2009

• Source: All sources

188

• Subject: Computer Science

• Publication Type: Journal

189

Appendix B

B.1 Case Study Protocol

B.1.1 Change Record

Table B.1: Change Record
Version Change
1.0 initial draft
1.1 new sections
1.3 modification in different sections

B.1.2 Background

Case study methodology is an empirical flexible design study used to understand

a certain phenomena or to construct a theory. According to Yin (2008) “ a case

study is an empirical inquiry that investigates a contemporary phenomenon es-

pecially when the boundaries between phenomenon and context are not clearly

evident”. The case study has become a popular research method in empirical soft-

ware engineering and is used in the literature to understand, explain or demon-

strate the capabilities of a new technique, method, tool, process, technology or

organisational structure (Perry et al., 2004).

Studies using this methodology range from very ambitious and well organised

studies in the field, to small toy examples that claim to be case studies (Runeson

and Höst, 2009; Runeson et al., 2012). The latter form is quite prominent in the

190

area of service based applications (SBA) where artificially constructed examples

are widely used. Therefore, this research has sought to use a real world case study,

based upon an energy engineering use case, in order to address the problem of

service based system design as rigorously as possible.

The extensive literature on the service oriented architecture reflects academic

and industry interest in this area. The efforts to implement this concept can

be seen in the form of solutions devised in different domains, especially telecom-

munication, health care, and device automation. A problem with these models

is that they all claim the uniqueness of their methods. However, the process of

developing a service based solution, particularly its design and the evaluation of

proposed models is largely absent. SOA solutions are explained through “toy”

examples such as travel planning, car rental, and online purchase, without any

evidence of either how they were derived, or of their real time performance. Also,

the scope of these examples is too narrow to be used to address the research

problem discussed here. It is therefore hard to say how these methods will work

in real time and what will be their underlying strengths and weaknesses. It is

also difficult for both architects and developers to trust and adopt such solutions

without having much evidence about their run time characteristics.

To find a use case with characteristics similar to those of SOA as identified

through the mapping study (Chapter 5), we examined several different domains

such as economics, stock exchange, electronics, and some branches of engineering.

Domain experts were contacted within the University to find their views and the

possibility of using their domain knowledge. Initially, the stock exchange was

considered as a suitable domain, but without the support of a suitably interested

domain expert it was not possible to adopt this. Most responses came from the

School of Engineering & Computing Sciences and a use case from the Energy

Group was eventually selected as they are also interested in investigating the

usefulness of service-based solutions for the industry.

The overarching research question for this case study is:

“Can the characteristics of an SSEZ control system be successfully modelled

through the construction of a use case model?”

• By ‘characteristics’ we mean different aspects of the SSEZ control system

191

that include functions it performs, the processes it run to complete the

tasks, the organisation of its resources etc..

• ‘Successfully’ means we are able to capture and describe the SSEZ control

system features accurately.

• By ‘use case model’ we mean the configuration and operational details of

the SSEZ control system.

To construct a use case, the case must have following features:

• Services are available both locally and remotely with (possibly) multiple

providers being available for supplying a remote service.

• The configuration of service assembly may need to be changed at run time

(through run time discovery, selection and composition).

The next section, provides a brief outline of the main characteristics of the

energy system.

B.1.3 Energy Systems

The term renewable energy means energy derived from a broad spectrum of re-

sources, all of which are based on self-renewing energy sources such as sunlight,

wind, flowing water, the earth’s internal heat, as well as biomass such as energy

crops, agricultural and industrial waste, and municipal waste. These resources

can be used to produce electricity for all economic sectors, fuels for transporta-

tion, and heat for buildings and industrial processes (Bull, 2001).

Affordable, sustainable and reliable energy supplies are key objectives of the

U.K. government’s energy policy. Currently, the two long-term energy challenges

are to tackle climate change by reducing carbon dioxide emission both within

the UK and abroad and to ensure secure, clean and affordable energy forms to

reduce dependency on imported fuel. If CO2 emissions are to be reduced and

in particular, if they are to be reduced by around 60% by 2050 as suggested by

the Royal Commission on Environment Pollution (RCEP 2000), then most of the

192

existing electricity generation capacity in Britain have to be replaced (Soni and

Özveren, 2007).

The integration of renewable energies into the electrical power supply is of

growing relevance. Hybrid energy, which is mainly based on the contribution of

locally available renewable energy sources, represents an innovative and sustain-

able solution for decentralised and remote power supply (Soni and Özveren, 2006).

That is the reason the role of Energy Services Companies (ESCOs) is becoming

very important. These companies govern and manage small scale energy zones

(SSEZ) that supply locally generated electricity to their clients in the industrial,

commercial and domestic sectors. Bertoldi et al.,(2007) describe an ESCO as:

“a natural or legal person that delivers energy services and/or other energy

efficiency improvement measures in a user facility or premises, and accepts some

degree of financial risk in so doing. The payment for the services delivered is

based (either wholly or in part) on the achievement of energy efficiency improve-

ments and on the meeting of the other agreed performance criteria.”

In a further discussion, Bertoldi et al., (2007) describes the key characteristics

of an ESCO as:

• Guaranteeing the energy savings and/or provision of the same level of en-

ergy service at lower cost;

• Remuneration is directly tied to the energy savings achieved;

• It can either finance, or assist in arranging financing for the installation of

an energy project it implements by providing a savings guarantee.

• Provision of integrated energy services to customers (mainly large energy

users, but also utilities), which may include implementing energy-efficiency

projects (and also renewable energy projects) (Bertoldi et al., 2006).

As a result of government policy and the emergence of ESCOs, electrical

power systems have been changing from conventional electricity generation to-

wards green energy sources, which means that the structure for the management

193

of electricity that is currently in use will also need to change in order to fulfil the

new requirements that this creates.

Furthermore, the distributed renewable generation will make an increasingly

important contribution to electrical energy production in the future, and the

integration of these highly variable, widely distributed resources therefore will

need new approaches to power system operation and control. For example in the

case of solar energy, the generation varies both hourly and seasonally, ranging

between peak and zero generation, and as these are quite different patterns, the

control systems will need to anticipate the fluctuations in both in order to satisfy

consumers and compete in the energy market.

In other words, to deliver significant energy efficiency improvements, sophis-

ticated operation and management tools are required which can allow an ESCO

to process large amounts of real-time data and use this to make real-time deci-

sions regarding the optimum way to operate an SSEZ. Such tools need to be able

to model a wide range of generation sources, manipulate demand profiles, trade

energy with European markets, and trade white and green certificates1.

B.1.3.1 Small Scale Energy Zones (SSEZ)

An SSEZ is defined as a controllable low voltage distribution network (LVDN)

that consists of a number of different small scale embedded generators (SSEGs),

distributed energy storage units (ESUs) and customer demands (Cipcigan et al.,

2009).

The UK electricity market is currently using late forecasting of generation

output (one hour in advance) but it is expensive to collate this information from

many SSEGs, on an ongoing basis. If these SSEGs are integrated and their out-

1Trade White Certificate(TWC) is a new policy instrument in the field of energy efficiency.
Its basic idea is that energy suppliers or distributors must fulfil specific energy saving targets
by implementing energy efficiency measures towards their clients within a specific time frame.
Energy suppliers or distributors that save more energy than their targets can sell these surplus
energy efficiency equivalents in the form of TWC to suppliers/distributors that cannot fulfil
their targets. Trade Green Certificate (TGC) are about renewable energy. The targets of
TGC schemes are to reduce oil dependency, meet Kyoto Protocol commitments (reduction of
greenhouse gas (GHG) emissions), security of energy supply, and diversification of RE sources.
The hierarchy of these targets can vary at some extent on national energy market characteristics
and incumbent industrial structures (Oikonomou and Mundaca, 2008)

194

puts are combined within an SSEZ with controllable loads and storage devices,

then as a group of generators it will be possible to trade larger amounts of elec-

tricity. This will enable the SSEGs to command a higher price in the electricity

market that will in turn increase their value and stimulate their growth (Cipcigan

et al., 2009).

An SSEZ is a concept that is similar to, and complementary to, that of the

MicroGrid. However, while research on MicroGrids focuses on alternative future

network designs, SSEZs exclusively consider the addition of SSEGs to existing

LV networks (Trichakis et al., 2009). Both of the concepts needs to be coupled

with an appropriate active control approach in order to make them successful.

An SSEZ must be able to overcome a number of associated LVDN constraints

and meet a number of operational goals. Besides the technically driven goal of

trying to operate an SSEZ within predefined statutory regulations and equipment

ratings, an SSEZ should also have the ability to provide predictable and control-

lable demand and generation. In addition, an SSEZ could be used to provide

ancillary services to distributed network operators (DNO’s) which could include

voltage support, power quality improvements or reductions in minutes lost by

customers (Cipcigan et al., 2009).

From a management perspective, the key elements that an ESCO has to

handle in its electrical network include:

1. Power flow control

2. Electricity generation

3. Metering /Billing

4. Energy Storage

5. Energy Supply and distribution

6. Demand side management1.

1Demand side management (DSM) provides the way to plan, implement and monitor elec-
tric utility activities that are designed to influence customer usage of electricity in ways that
will produce desired changes in the utility’s load shape, i.e., changes in the time pattern and
magnitude of a network load. Utility programs falling under the umbrella of DSM include:
load management, new uses, strategic conservation, electrification, customer generation, and
adjustments in market share (Gellings, 1985)

195

7. Active network configuration

8. Islanding1

In the above list, the energy market, weather forecast services and the national

grid form a set of external bodies with which an ESCO needs to communicate.

In this case study, the distribution network operator (DNO)2 is considered as

being part of the ESCO and the revenue that the ESCO is generating is not only

coming from selling energy but also by providing ancillary services. An example

of an SSEZ is shown in Figure B.1.

Transmission System Operator

Solar Farm

Wind FarmSSEZ

LoadEnergy Storage Unit

Market / Supply Company

 132 kv

Figure B.1: Example of a Small Scale Energy Zone

The main task for the ESCO is to perform minute by minute management of

its SSEZ within its network constraints and those constraints created by energy

market conditions. The low voltage network constraints are determined by statu-

tory regulations and also by equipment rating. Therefore, depending upon the

network conditions, five operational goals that need to be met in order to run an

SSEZ have been identified in (Trichakis et al., 2008). These goals are summarised

below (but one thing to remember is that not all goals can be met at the same

time).

1Islanding refers to the situation where distributed generator(s)(DG) continues to maintain
the network voltage and frequency within regulatory limits to a location even after disconnection
from the power utility (Smith et al., 2000).

2Electricity distribution networks carry electricity from the transmission systems and some
generators that are connected to the distribution networks to industrial, commercial and do-
mestic users. Domestic and most commercial consumers buy their electricity from suppliers
who pay the DNOs for transporting their customers’ electricity along their networks. Suppliers
pass on these costs to consumers. Distribution costs account for about 20 per cent of electricity
bills (Ofgem, 2012).

196

1. Zero power export: If local generation capacity is less than peak local de-

mand, the goal could be to maintain a zero power export position to the

distribution network.

2. Zero power import: If local generation capacity exceeds peak local demand,

the SSEZ could aim for zero power import.

3. Zero power import and export (self-sufficient): If there is a close match

between peak local demand and local generation capacity, the SSEZ could

attempt to operate self-sufficiently, with no power exchange with the dis-

tribution network.

4. Constant power import: this involves operating with a fixed power demand,

by having a constant level of power import from the distribution network.

5. Dispatchable power export: involves providing dispatchable power to the

distribution network over a specified time period.

These goals are important for decision making and constrain the choices for

an ESCO at any particular time. Decisions about SSEZ management be made

at half-hourly intervals in accordance with UK and most European electricity

market procedures. All of these operational goals are concerned with provid-

ing predictable and controllable demand/generation to the distributed network

(Trichakis et al., 2008).

The goals represent different operational scenarios, and in order to maintain

the SSEZ in the intended state, some form of control needs to be exercised. This

in turn will need to draw upon information provided by the various internal and

external elements at regular intervals, in order to produce a continually revised

plan for SSEZ operation.

B.1.4 Design

In order to address the research question outlined in the previous section, it is

necessary to design the case study protocol. The design guidelines used here are

taken from the case study template available at http://www.dur.ac.uk/ebse/

templates.php.

197

http://www.dur.ac.uk/ebse/templates.php
http://www.dur.ac.uk/ebse/templates.php

This is a single-case study. The ‘case’ (or unit of analysis) is the SSEZ control

system. The selection of the case is on the basis of feasibility and access of

resources within the School.

An operational model (use case) that can provide the basis for exercising the

case within the case study through specific scenarios will be developed. The

structure of the case study design is shown in Figure B.2.

Case Study

Use Case

Scenarios

Figure B.2: Case Study Structure

The characteristics that the use case needs to meet are described below.

• Adaptability: A case needs to provide scope for employing adaptability to

handle unpredictable environment or run time changes. This means at

different points of time, different configurations of software elements will be

required, where these may be anything from needing a different combination

of services to be assembled, to just finding a replacement for a service

provider. This means that the requirements may change in different ways,

so that the axes along which adaptation occurs will differ from instance to

instance.

Apart from changes of requirements, the situation may arise whereby a

service may not be available at some specific time, and so other service

providers or sets of services will need to be used to ensure that the service

198

is delivered on time. The selection process might draw upon previous expe-

rience through mechanisms such as case based in order reasoning to handle

such a situation.

• Multiple Sources: Where appropriate, it should be possible for a particular

functionality (or service) to be delivered by different independent and re-

motely available sources. As a result the set of services selected at run-time

may differ each time that the service is required.

• Negotiation: Access to, and selection of, resources (including service com-

ponents and any data services) will be through a process of negotiation with

service providers rather than control of local resources.

B.1.5 Data Collection

Data Requirement: The data required to develop the use case consists of the

information that is considered the part of requirement specification in soft-

ware development. The data includes SSEZ network configurations, SSEZ

operational features, and network operational data. A sample dataset also

needs to be constructed in order to check the behaviour of the SSEZ.

Sources of data collection: To collect data for the case study, triangulation

will be used in order to provide the relevant evidence from multiple sources.

The sources of information to be used are:

• Interviews with domain experts: Interviews will be conducted with

domain export(s). The interviews will be recorded and notes will be

taken to verify the information and so as not to skip anything.

• Supporting documents: The supporting material provided by the do-

main expert(s) in the form of reports, research papers, and links to

relevant websites will be used to understand the domain and access

data. For example, the Met Office website can be used to get infor-

mation about a weather forecast service, and Elexon can provide data

about demand, generation and energy market balancing, and settle-

ment data for electricity distribution.

199

• Informal discussions: As the case study is taken from a domain other

than computing, to understand the terminologies and processes, re-

searchers from the same domain with different research focus will also

be contacted for informal discussions and to collect data (for example,

output of wind turbines, consumer demand data etc. with these being

obtained from individual researchers who are working on these topics).

Record Keeping: To ensure that the information and data compiled through

interviews and documents is correct, information will be processed in the

form of narratives, tabulation and diagrams. They will be discussed in

following interview sessions to get feedback and fill any gaps if exists. The

audio recording will be used in order to check data consistency.

The information collected through different resources will be maintained

through document version control. After conducting interviews and analysing

supporting documents, the document will be updated. The document will

either be sent to a domain expert or used in the next interview.

B.1.6 Analysis

Case study includes the creation of use case model and the design for SSEZ control

system. The data that will be generated and the process that will be followed is

shown in Figure B.3. The use case model will contain the details of SSEZ control

system which includes the operational aspects and the physical configuration of

the electrical network. This will help in generating different scenarios to realise

the behaviour of the SSEZ control system. The details of the use case will be

documented in the case study chapter. The case study data will further be used

to develop a design model for SSEZ control system. This design model will make

use of SOA model constructed in our earlier study on SOA discussed in Chapter

5. The design details will be discussed in the form of a chapter. A research paper

will also be produced on the case study.

The use case and design model produced from the case study will be evaluated

to answer the research question raised in this protocol. The evaluation process

will help to identify the gaps and limitations of this case study.

200

Case Study

SSEZ
Model Use Case SOA

Model

Scenarios Evaluation

Design

assessment for the
case study RQ

expertise

Figure B.3: Process of Case Study Analysis

201

B.2 Validity

Internal Validity

• Are the selected scenarios accurate enough (appropriate) to be used to

evaluate the model?

External Validity

• Are the scenarios representative enough to allow generalisation of the results

of using the model?

B.2.1 Study Limitations

Measurement and evaluation can be considered as issues. There are no prior

framework or studies available to be used for comparison. Existing approaches

have no set measurement criteria that can be used in this study. Energy domain is

new for the author and the limited knowledge of domain may cause inconsistency

in the data. There is possibility that design model might omit key aspects of

domain.

B.2.2 Reporting

The target audience is composed of software engineers and SOA community. The

data collected will be used to construct a use case that will explain the SSEZ

control system specifications. Further the characteristics of the use case will be

mapped with SOA features and a research paper will be published.

B.2.3 Schedule

The details about case study schedule are given in Table B.2.

202

Table B.2: Case Study Schedule
Task Time
Formal Meetings with Energy engineers one in two months
Data collection and document analysis 6 months
Data analysis and document generation 3 months

203

Appendix C

204

Figure C.1: Requirements figure 1

205

Figure C.2: Requirements figure 2

206

Figure C.3: Requirements figure 3

207

Figure C.4: Requirements figure 4

208

Figure C.5: Requirements figure 5

209

Figure C.6: Requirements figure 6

210

Figure C.7: Requirements figure 7

211

Figure C.8: Requirements figure 8

212

Figure C.9: Requirements figure 9

213

Figure C.10: Requirements figure 10

214

Figure C.11: Requirements figure 11

215

Figure C.12: Requirements figure 12

216

Figure C.13: Requirements figure 13

217

Appendix D

D.1 Use Case Related Details

Balancing Market: The balancing mechanism is one of the tools available to

the National Grid to enable it to balance electricity supply and demand at

close to real time levels. It is needed because electricity cannot be stored

on any large scale and so must be produced at the time of demand. Where

the National Grid predicts that there will be a discrepancy between the

amount of electricity produced and that which will be needed during a

certain time period, they may accept a bid or offer to either increase or

decrease generation (or consumption). The balancing mechanism is used to

balance supply and demand in each half hour trading period of every day1.

Distributed Generation (DG) Power Output Control: The high power flows

resulting from wind generation at high wind speeds can be accommodated

because the wind speed also has a positive effect on component cooling

mechanisms. The control system compares component real-time thermal

ratings with network power flows and produces set points that are fed back

to the DG for implementation.

Distribution network operator: The DNO is responsible for monitoring how

much current is flowing down their cable in real time.

Network Assets: Overhead lines, electric cables, power transformers.

1http://www.elexon.co.uk, accessed August 2010

218

Power system component Ratings: Static, seasonal or real-time thermal rat-

ings

Supply Company: The supply company should be able to estimate its cus-

tomer demand accurately and able to buy carefully and not lose money

in balancing market. A balance between electricity supply and demand is

needed at all times to ensure a stable and reliable market. This can be

done in two ways, either through Supply-side Management by adding sup-

ply when demand is high, or through Demand-Side Management (DSM),

which involves curtailing the system demand when supply availability is

less. For short term measures, supply-side management is not effective as

it takes a long time for generating units to start up (if these are available)

and so these cannot meet the rising demand immediately, whereas demand

side management can be implemented immediately and in more economic

ways in order to keep the balance.

System Sell Price and System Buy Price: The System Sell Price (SSP) and

the System Buy Price (SBP) are the cash-out prices or imbalance prices that

are used to settle the difference between contracted generation or consump-

tion and the amount that was actually generated or consumed in each half

hour trading period. SSP is paid to BSC Trading Parties who have a net

surplus of imbalance energy, and SBP is paid by BSC Trading Parties who

have a net deficit of imbalance energy. These prices are designed to reflect

either the prices associated with the balancing mechanism offers and bids

selected by National Grid to balance the energy flows in the Transmission

System, or to reflect the prices associated with the sale and purchase of

(short-term) energy ahead of Gate Closure (set at one hour before each half

our trading period) in the forwards and spot markets.

Retail price: The electricity retail price for different sources is as follows:

• Domestic use: 8 to 15 p/kWh

• PV output:1p/kWh + feed-in-tariff 43p/kWh = 44p/kWh

• Wind farm price: 2p/kWh + Renewable obligation 4p/kWh = 6p/kWh

219

• Battery usage charges are negotiated in advance anddepends on cur-

rent price.

• Landfill gas get wholesale price 3p/kWh only.

D.2 Network Details

The Table D.1 provides information about the change in the pitch angle according

to wind speed.

Table D.1: Pitch angle and wind speed (Zhang et al., 2008)
Wind Speed (m/s) Pitch Angle (degree)
4 - 13 0
13.5 - 15 0 - 5
15 - 16 5 - 8
16 - 17 8 - 10
17 - 18 10 - 11
18 - 19 11 - 13.5
19 - 20 13.5 - 14.5
20 - 21 14.5 - 16
21 - 22 16 - 18
21 - 23 18 - 19
23 - 24 19 - 20
24 - 25 20 - 23

Mostly 2v and 24v batteries are available. The limits required to charge and

discharge batteries are applied on the volatage state and the percentage of SOC.

The table D.3 provides the relationship between voltage and the SOC percentage.

The table D.2 provides the relationship between voltage and the SOC per-

centage along with the possible conditions that can be applied at different level.

D.3 Possible Network Extension

• Adding a local dirty generator means that a landfill gas generator can be

added in the network configurations, requires the model to consider envi-

220

Table D.2: Voltage Condition and possible current/future states
Condition Current State Future State
V ≥ 12.63 charging stop charging
V ≥ 12.63 not charging not charging
V ≥ 12.54 charging not charging
V ≥ 12.45 not charging not charging
V ≥ 12.39 charging charging
V ≥ 12.39 discharging discharging
V ≥ 12.39 not charging charging
V ≥ 12.27 discharging discharging
V ≥ 12.27 charging charging
V ≥ 12.27 not charging charging
V ≤ 12.18 charging charging
V ≤ 12.18 discharging stop discharge
V ≤ 11.97 charging charging
V ≤ 11.97 discharging stop discharge

Table D.3: Relationship between voltage and SOC
Voltage (V) SOC (%)

12.63 100
12.54 90
12.45 80
12.39 75
12.27 60
12.18 50
11.97 25
11.76 completely discharged

221

ronmental factors by calculating the trade-off between using clean and dirty

generators when the day is neither windy nor sunny.

• Batteries can be added to the houses for domestic customers to store energy

and use at period of high demand.

• Electrical vehicles (EV) can be included, requiring a slow charge of 3 kW.

The demand varies on customer use. This takes 7 hours from flat car

battery to full, with 100 mile range. EVs may be considered as active loads,

increasing the demand on the network during charging, and as generators

when operating in regeneration mode.

• The network constraints can be considered in the extended model that

include voltage rise and voltage unbalance limits determined by statutory

regulations and operating distribution network circuits above their thermal

limits and reverse power flow through distribution transformers by thermal

rating.

• Wind farms can be owned by any other third party and the ESCO then has

to negotiate with them to import power in its network.

222

Appendix E

E.1 Review Protocol

E.1.1 Change Record

Table E.1: Change Record
Version Change
1.0 initial draft
1.1 new sections with added details
1.3 details in sections, new section validity

E.1.2 Background

Review is considered an evaluation technique that is employed in order to eval-

uate the quality of the work product (such as requirement specification, design

document or source code) (Garousi, 2010). In a review, issues are raised by the

reviewers about the work product and an issue list is provided to the producers

so that they can resolve them. A review is conducted by the people who are not

involved in producing the work product in order to avoid possible bias. Fixing

the defects found at the early stages of software development involve less cost

than for those that are identified at a later stage. The statistics collected from

organizations have shown that properly conducted review can eliminate 60% to

90% of existing defects from a workproduct (Fagan, 1976). Therefore the use

of reviews is suggested for each stage of software development (Ackerman et al.,

1989).

223

Approaches to conducting a review differ from each other in certain aspects.

Weinberg and Freedman (1984) describe the main review approaches as being:

• Inspections: Focus on a set of questions and a checklist of issues /questions

prepared for the review. The list of points in the checklist determines the

flow of the review.

• Walkthrough: The author presents the work to the reviewers step by step.

The review is organised around the structure of the material being pre-

sented.

• Plain review: This depends on the flow of the meeting as it progresses.

• Round-robin: A cyclic approach is used among the participants and each

participant in turn gets to raise an issue.

There is no strict line between different review forms. They are adapted

according to the demand of the work product under review. The earliest forms of

review were focused upon finding defects in code. For this reason, inspections are

a popular way to evaluate source code. Also they are formal and focus narrowly

on the problem by employing checklists.

From the review forms described by Weinberg and Freedman (1984), a walk-

through is the one that is considered less formal than an inspection (Fagan, 1976)

and so could also be used for analysis purposes with a large audience. In a walk-

through, the preparation is done by the presenter who is very familiar with the

work product or the author. This reduces the load upon the participants, and

a large amount of material can be presented quickly to a large number of par-

ticipants. However, a walkthrough can generate a large number of diverse views

about the presented material (Weinberg and Freedman, 1984). For this reason,

an element of control is usually introduced by employing a person to act in the

role of a moderator in review sessions.

To get the maximum benefit from a review, the objectives of the review need

to be made explicit through a systematic review process. The process must ensure

that the design is covered completely and in detail by the review team (Parnas

and Weiss, 1985). In the guidelines of IEEE (IEEESTD, 2008), for a review to be

224

considered a systematic walk-through, a team of at least two members (including

the author) should be assembled. Also, the resulting review report is an important

part of the review that serves as a formal commitment by technically competent

and unbiased people that a piece of work is complete, correct and dependable

(Weinberg and Freedman, 1984).

In the literature, the use of checklists is suggested for different forms of review

and for the different phases of software development. A summary by Brykczynski

(1999) provides a categorization of 117 checklists from 24 sources. This study

suggests that tailored checklists should be developed to meet the purpose of a

review and to help the reviewers to identify the defects. Also, checklists need not

be too lengthy and should be limited to one page in length.

We have employed a mapping study to find evidence from the literature about

the attributes that constitute an SOA. Further we have developed a case study

from energy engineering about the management of an SSEZ control system. The

case study is used to construct an SOA design model through existing notations.

In order to evaluate the requirements gathered for the SSEZ control system, and

to assess the appropriateness of the design model, along with the suitability of

notations used, we propose to conduct a walkthrough. As described by (Budgen,

2003), a walkthrough is a useful techniques for assessing the structural and be-

havioural aspects of the design. A well planned review utilises the skills of the

review team who have domain and technical knowledge to estimate the future sit-

uation from the available design information. The overarching research question

for this review therefore is:

“Are the design and notations used appropriate for the construction of an SOA

model for the specified SSEZ control system?”

Further to this, the review will assess the following issues:

(a) Are the domain problem characteristics defined correctly?

(b) Are the main operations of the system covered?

(c) Are the assumptions valid?

(d) Are the functional components and processes sufficient to realise overall sys-

tem functionality?

225

(e) Is the system behaviour represented correctly?

E.1.3 Design

In order to address the research questions outlined in the previous section, it is

necessary to design the review so as to collect necessary data. The data col-

lected through the review will be used to analyse the expert views. The de-

sign principles used here are taken from the case study template available at

http://www.dur.ac.uk/ebse/templates.php. As the template was meant to be

used for case study protocol, we have tailored this to fulfil the review require-

ments (as discussed in (IEEESTD, 2008; Ackerman et al., 1989; Weinberg and

Freedman, 1984)). This was done with the consultation of the supervisor. We

set our review plan as follows:

Form of review: The purpose of the review is to collect expert views about the

design and to collect data to explain the research questions. The review is on

the topic of design which has different needs to reviews conducted for code.

Hence, a walkthrough approach has been selected for this purpose. We

have prepared a semi-structured questionnaire (Appendix F) to collect data.

This will make the session more objective and help to make the participants

concentrate on a particular aspects of the review. The questionnaire was

prepared by adapting the guidelines given in (Budgen, 2012), whenever they

apply.

Roles: The roles involved in the review are those of moderator, author (designer)

and reviewers. IEEESTD (2008) guidelines suggest that the number of

people involved should be between 2 to 7. In this review, the team will

consist of five persons. In the guidelines there is a role for a recorder to

take notes for the review. This role is replaced with the environment we

have selected to record the review.

Population: We need to find a set of reviewers who have knowledge of the

domain and also have some software design experience. Also the role of

moderator will need to be assigned.

226

Selection of team: We have a number of possible sources of experts. We can

invite energy engineers including teachers and researchers within the school.

For design experts, we can contact commercial software developers, and

teachers who have SOA experience in the market and in the universities

respectively.

Review Length: In the guidelines available for review, it is recommended that

the review time should not exceed two hours. Longer than this will make

the review less effective. Therefore we have allocated two hours for a review

session.

Review Structure: The review session is divided into two stages.

• In the first part of the review, scenarios will be used to generate re-

quirements issues.

• In the second part, the design model will be exercised by the author.

Data Requirements: We aim to collect data about the issues raised by the re-

viewers about the requirements specification of domain problem, the design

model, and the notations used.

Record Keeping: The session will be recorded to help with analysis. For

recording, we will make use of the voice and video environment available

in the school. This will provide fuller data about the discussion occurring

during the review and will capture the whiteboard activities.

E.1.4 Data Preparation and Collection

• The purpose of walkthrough is to identify gaps and issues associated with

the proposed design. For this reason, the issues that need to be identified

fall in three categories: requirements, SOA design, and notations. Further

categories could be defined or reviewers could be asked to provide these.

• For data collection, the questionnaire will provide a guideline. The ques-

tions cover requirements, assumptions, and design. The use case document

(appendix G) contains representative scenarios from the problem domain.

227

This will provide the basis for generating requirement issues. The design ac-

tivity that will be carried out using a whiteboard, will help with identifying

issues related to requirements, SOA and notations.

• For data collection, we have to ensure that the issues covered in our ques-

tionnaire are addressed. We also need to ensure that the discussion by

reviewers is not going beyond the allocated time. It is also important to

keep the flow of the review and bring the reviewers back to the main topic

if they are drifting away.

E.1.5 Analysis

The data collected from review will be used in the discussion chapter of the

thesis. The data will provide the issues raised by reviewers. These issues will be

grouped according to the categories we have defined earlier. Further, they will

be analysed to address the reserach questions. The gaps identified in the review

will also address the completeness and correctness of the proposed solution. A

walkthrough is an informal apporach for identifying issues in the workproduct.

For this reason we expect that the review session may raise some issues for that

we have not provided any specific category.

E.1.6 Threats to Validity

• The experiences of reviewers can cause conflict during review session.

• A conflict can arise due to the difference of both verbal imagery and mental

imagery between author and reviewers.

• The questionnaire, and use case document may create bias, but have been

reviewed by the supervisor.

• A possible threat about data consistency can arise during participant ob-

servation (Seaman, 1999). In reviews a recorder is usually meant to take

notes about the review session. This could effect the accuracy of the data

and can limit the understanding of the notes to him. This threat is handled

228

through the use of a video recording of the review. This resolves the chance

of any possible conflict in data collection.

E.1.7 Study Limitations

The reviewers will be from application disciplines rather than software design

experts. Also the expertise of the author may effect the review.

E.1.8 Reporting

The target audience is composed of software engineers (largely designers), SOA

community and notation designers. We will describe the data collected in the

evaluation chapter. A “lesson learned” report will be prepared about the experi-

ence of conducting a review for design.

E.1.9 Schedule

The details about review schedule are given in TableE.2.

Table E.2: Review Schedule
Task Time
Design review questions and supporting documents 4 weeks
Review and collect data 1 day
Review Schedule:

Introduction 5 minutes
Present the design 15 minutes
Requirements questions 30 minutes
Assumptions questions 10 minutes
Design questions 60 minutes

Analyse data & generate document 4 weeks

229

Appendix F

F.1 Questionnaire

F.1.1 Version Control

Table F.1: Questionnaire version control
Version Details
1.0 initial draft
1.1 changes in different sections
1.2 change in questions

The review questions are divided into three categories: requirements, assump-

tions and design.

F.1.2 Requirements:

• Are main features of the SSEZ control system covered?

• Does the description of the application provided explain SSEZ operations

accurately?

• Is the domain analysis complete, consistent, and accurate?

• Do the scenarios represent the domain problem correctly?

230

F.1.3 Assumptions:

• Are the assumptions valid?

• Are the assumptions sufficient for the scope of the exercise?

F.1.4 Design:

• Does the design represent the main functions of the SSEZ control system?

• Are all functions described in sufficient detail?

• Are the main functional components and processes as defined sufficient to

realise overall system functionality?

• Is the system behaviour presented in design model correctly?

• Does the design provide for necessary system behaviour in different situa-

tions?

• Is the level of decomposition sufficient to identify all activities?

• Is the design consistent with the requirements?

• Are the interfaces specified to a sufficient level of detail?

231

Appendix G

G.1 Use Case Document

G.1.1 Version Control

Table G.1: Use Case version control
Version Details
1.0 initial draft
1.1 changes in different sections

G.1.2 Use case

Operational management of an SSEZ is aimed at organising its electrical network

to make maximum use of its renewable resources (e.g. wind turbines). The energy

control system required for an SSEZ should be able to check the energy balance

in the zone. In the case of surplus energy it should be able to sell energy to

the grid by getting a price from energy market; while in the case of an energy

deficit, the system should try to buy energy from the market at a low price

where possible. It also needs to communicate with external data sources such as

a weather service to get current and forecast weather data. The priorities, for

operational management are:

• Make maximum use of energy sources, and trying to avoid using brown

energy where possible.

232

• Satisfying customer demand.

• Keeping a balance between demand and generation.

• Making money by selling surplus energy.

• Stopping any wind turbines will be the last option in extreme conditions.

The information sources involved are:

• Generation output level

• Demand level

• State of storage unit

• External weather service

• External energy market service

Assumptions:

• The network is working in normal operating conditions and no faults present.

• The data coming from wind turbines is in the form of aggregate (not indi-

vidual) turbine data.

• The demand, storage unit and wind farm data is accessed through interfaces

in the form of services.

• The storage unit will remain 50% charged all the time.

• The system parameters need to be revised at half hour intervals in accor-

dance with UK and most European electricity market procedures.

Scenario 1: Consider a windy day, the demand for electricity is low and gener-

ation is more than required by consumers in the zone.

Scenario 2: Consider the situation when there is a football match in the evening

and energy demand is high. The weather is warm and wind turbines are

running on average capacity. There is an energy deficit in the zone.

233

Scenario 3: Consider the case when energy market sell price is high and there

is energy need in the zone.

Scenario 4: Market service is not available and there is energy deficit in the

zone. Consider the same if there is surplus energy in the zone.

Scenario 5: The storage is half empty; a few turbines are out of order so the

generation output level is low in the zone. Due to cold weather the demand

is high and energy buy price in the market is also high.

Scenario 6: The wind is good and demand is low in the zone. The storage is

fully charged. However, the link is down and SSEZ could not get the market

price.

234

Appendix H

H.1 Notations

H.1.1 Activity Diagram

Initial State

Activity

Condition

Fork

Join

Swimlanes

Final State

Figure H.1: Activity Diagram Notations

H.1.2 Class Diagram

<< Stereotype>>

Attributes

Operations

Class Dependency

Figure H.2: Class Diagram Notations

235

H.1.3 Component Diagram

Component Interface
<< Stereotype>>

Socket

Figure H.3: Component Diagram Notations

H.1.4 Data Flow Diagram

External Entity

Process

Data Flow

Data Store

Figure H.4: Data Flow Diagram Notations

H.1.5 Sequence Diagram

Request

(messages)

Response

(messages)

Activation

Lifeline

Class /Service

Figure H.5: Sequence Diagram Notations

236

Appendix I

I.1 Interview Questionnaire

I.1.1 Part 1: Reviewing the walkthrough process itself

• Do you think that the walkthrough was effective in terms of meeting its

aims?

• What elements do you think were lacking in the organization of the walk-

through, both in terms of the process and of the material provided?

• What things could be done to improve the walkthough process?

I.1.2 Part 2: Presentation of the design

• How well were you able to understand the design of the software system?

• What could be done to improve the design presentation, both in terms of

how it was organized and the forms used?

• Are there better ways or forms that we could use to describe and present

the design?

237

Appendix J

J.1 Summary of Responses from First Interview

Session

Table J.1: Summary of Interview responses Table 1
Questions Participant 1 Participant 2 Participant 3
(a) Yes, Useful in terms

of learning like know-
ing about SOA.

Great idea, effective
in terms of getting
feedback on your
work. Filling gaps if
any in understanding
the domains. Com-
puter science way
of looking things
and looking from
engineering view
point was different.

Interesting, we
learned from
this exercise.
Walkthrough is
effective in terms
of identifying
issues that were
overlooked.

(b) The purpose and
context need to make
clear. Keywords
used on the board
can be difficult to
understand and need
frequent consultation
from documents.

Need to mention
where to focus in
the document. The
moderator was not
involved in discus-
sion so was not sure
were to prompt us.

Not clear what
walkthrough was
about.

238

Table J.2: Summary of Interview responses Table 2
Questions Participant 1 Participant 2 Participant 3
(c) PowerPoint pre-

sentation would
be effective to
track sessions.

Power point would be
quicker. Whiteboard
was free form in the
beginning and then it
became focused.

Process was well
and moderator did
a good job. Keep
the same team. Ad-
ministration, timings
and process is fine.

(d) Avoid notes style.
Keywords need to
backed by presen-
tation.

Presentation in terms
of explaining both
application domains
was useful.

Was not very clear in
the beginning. Need
to mention particu-
lar section in the de-
sign document to fo-
cus on. Acronyms
are problem.

(e) Diagrams with fur-
ther details will be
helpful. Through
PowerPoint presenta-
tion it will be easy to
provide overall pic-
ture.

Simplicity is Impor-
tant. It is difficult to
please both domains.
Next session don’t
need background in-
formation on services
and windfarms.

(f) The diagrams need
more expressiveness
to other domains.
Computer science
diagram was difficult
to grasp for energy
engineer and the
same way for com-
puter scientist it was
difficult to under-
stand the electrical
network diagram.
Glossary would be
helpful.

PowerPoint will not
create much differ-
ence. Diagrams are
fine need more de-
scription in the doc-
ument. Reviewers
have learnt from this.

239

References

Aalst, W. V. D. (2003), ‘Dont go with the flow: Web services composition stan-

dards exposed’, IEEE Intelligent Systems 18(1), 72–76. 140

Ackerman, A. F., Buchwald, L. S. and Lewski, F. H. (1989), ‘Software inspections:

an effective verification process’, IEEE Software 6(3), 31–36. 223, 226

Adelson, B. and Soloway, E. (1985), ‘The role of domain expenence in software

design’, IEEE Transactions on Software Engineering SE-11(11), 1351–1360.

7, 29, 30

Agarwal, V., Chafle, G., Mittal, S. and Srivastava, B. (2008), Understanding

approaches for web service composition and execution, in ‘Proceedings of the

1st Bangalore Annual Compute Conference’, ACM, pp. 1:1–1:8. 23

Ali, N., Nellipaiappan, R., Chandran, R. and Babar, M. A. (2010), Model driven

support for the service oriented architecture modeling language, in ‘Proceed-

ings of the 2nd International Workshop on Principles of Engineering Service-

Oriented Systems’, ACM, pp. 8–14. 136

Allison, D. S., Yamany, H. F. E. and Capretz, M. A. M. (2009), Metamodel

for privacy policies within SOA, in ‘Proceedings of the 2009 ICSE Workshop

on Software Engineering for Secure Systems (IWSESS’09)’, IEEE Computer

Society, pp. 40–46. 65

Amir, R. and Zeid, A. (2004), A UML profile for service oriented architectures, in

‘Companion to the 19th annual ACM SIGPLAN conference on Object-oriented

programming systems, languages, and applications’, ACM, pp. 192–193. 136

240

REFERENCES

Anderson, J. R. (1981), Cognitive skills and their acquisition, Lawrence Erlbaum.

30

Anjum, M. and Budgen, D. (2012a), A mapping study of the definitions used for

service oriented architecture, in ‘16th International Conference on Evaluation

Assessment in Software Engineering (EASE’12)’, IET Press, pp. 57–61. 185

Anjum, M. and Budgen, D. (2012b), Modelling the design for an SOA system

to control a small scale energy zone, in ‘IEEE 36th Annual Computer Soft-

ware and Applications Conference Workshops, 2012 (COMPSACW’12)’, IEEE

Computer Society, pp. 538–543. 75, 185

Ardissono, L., Furnari, R., Goy, A., Petrone, G. and Segnan, M. (2006), ‘Fault

tolerant web service orchestration by means of diagnosis’, pp. 2–16. 73

Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S. and Holley,

K. (2008), ‘SOMA: A method for developing service-oriented solutions’, IBM

Systems Journal 47(3), 377–396. 37

Bakker, H. and Iacob, M. E. (2009), Web-services in the dutch healthcare in-

surance sector: expected versus achieved benefits, in ‘Proceedings of the 2009

ACM symposium on Applied Computing (SAC’09)’, ACM, pp. 1617–1618. 65,

172

Baligand, F. and Monfort, V. (2004), A concrete solution for web services adapt-

ability using policies and aspects, in ‘2nd international conference on Service

oriented computing (ICSOC ’04)’, ACM, pp. 134–142. 25

Barata, J., Ribeiro, L. and Colombo, A. (2007), Diagnosis using service oriented

architectures SOA, in ‘5th IEEE International Conference on Industrial Infor-

matics’, IEEE Computer Society, pp. 1203–1208. 65

Baresi, L., Ghezzi, C. and Guinea, S. (2004), Smart monitors for composed ser-

vices, in ‘Proceedings of the 2nd international conference on Service oriented

computing’, ACM, pp. 193–202. 73

241

REFERENCES

Baresi, L., Ghezzi, C., Miele, A., Miraz, M., Naggi, A. and Pacifici, F. (2005),

Hybrid service-oriented architectures: a case-study in the automotive domain,

in ‘Proceedings of the 5th international workshop on Software engineering and

middleware (SEM ’05)’, ACM, pp. 62–68. 65, 172

Baresi, L., Heckel, R. and Sebastian Thöne, D. V. (2003), Modeling and valida-

tion of service-oriented architectures: application vs. style, in ‘9th European

software engineering conference held jointly with 11th ACMSIGSOFT inter-

national symposium on Foundations of software engineering (ESEC/FSE-11)’,

ACM, pp. 68–77. 20, 58, 65, 66

Bertoldi, P., Boza-Kiss, B. and Rezessy, S. (2007), Latest development of en-

ergy service companies across europe, A european ESCO update, Institute for

Environment and Sustainability. 193

Bertoldi, P., Rezessy, S. and Vine, E. (2006), ‘Energy service companies in eu-

ropean countries: Current status and a strategy to foster their development’,

Energy Policy 34, 1818–1832. 193

Bianco, P., Kotermanski, R. and Merson, P. F. (2007), Evaluating a service-

oriented architecture, Technical report, CMU/SEI-2007-TR-015, Carnegie Mel-

lon University. 101, 186

Bianculli, D. and Ghezzi, C. (2007), Monitoring conversational web services, in

‘2nd international workshop on Service oriented software engineering: in con-

junction with the 6th ESEC/FSE joint meeting’, ACM, pp. 15–21. 73

Bierhoff, K., Grechanik, M. and Liongosari, E. S. (2007), Architectural mismatch

in service-oriented architectures, in ‘International Workshop on Systems De-

velopment in SOA Environments (SDSOA’07)’, IEEE Computer Society. 65

Bocchi, L. and Ciancarini, P. (2006), On the impact of formal methods in the

SOA, in ‘Electronic Notes in Theoretical Computer Science’, Vol. 160, Elsevier,

pp. 113–126. 65

242

REFERENCES

Boer, R. C. D. and Farenhorst, R. (2008), In search of ‘architectural knowledge’,

in ‘Proceedings of the 3rd international workshop on Sharing and reusing ar-

chitectural knowledge (SHARK’08)’, ACM, pp. 71–78. 6, 68, 171

Bosnjak, A., Huang, S. and Mulcahy, J. J. (2011), Leveraging service oriented

architecture: A case study for ocean energy information management, in ‘IEEE

International Conference on Information Reuse and Integration (IRI), 2011’,

pp. 108–112. 172

Bratthall, L. and Jørgensen, M. (2002), ‘Can you trust a single data source ex-

ploratory software engineering case study?’, Empirical Software Engineering

7(1), 9–26. 169, 177

Braun, C. and Winter, R. (2007), Integration of IT service management into

enterprise architecture, in ‘ACM symposium on Applied computing 2007

(SAC’07)’, ACM, pp. 1215–1219. 65

Braun, V. and Clarke, V. (2006), ‘Using thematic analysis in psychology’, Qual-

itative research in psychology 3(2), 77–101. 59

Breivold, H. P. and Larsson, M. (2007), Component-based and service-oriented

software engineering: Key concepts and principles, in ‘33rd EUROMICRO

Conference on Software Engineering and Advanced Applications, 2007’, IEEE,

pp. 13–20. 3

Brereton, P. and Budgen, D. (2000), ‘Component-based systems: a classification

of issues’, IEEE Computer 33, 54–62. 4, 5, 13, 15

Brereton, P., Budgen, D., Bennnett, K., Munro, M., Layzell, P., MaCaulay, L.,

Griffiths, D. and Stannett, C. (1999), ‘The future of software’, Communications

of the ACM 42, 78–84. 2, 18

Brereton, P., Kitchenham, B., Budgen, D. and Li, Z. (2008), Using a protocol

template for case study planning, in ‘12th International Conference on Evalu-

ation and Assessment in Software Engineering (EASE’08)’, pp. 1–8. 47

243

REFERENCES

Briscoe, G. and Wilde, P. D. (2006), Digital ecosystems: Evolving service-

orientated architectures, in ‘1st Bio-Inspired Models of Network, Information

and Computing Systems.’, IEEE, pp. 1–6. 65, 66

Brown, A. and Short, K. (1997), On components and objects: the foundations

of component-based development, in ‘Proceedings of the Fifth International

Symposium on Assessment of Software Tools and Technologies, 1997’, IEEE,

pp. 112–121. 6, 12

Brown, A. W. and Wallnau, K. C. (1998), ‘The current state of CBSE’, IEEE

Software 15(5), 37–46. 13

Brykczynski, B. (1999), ‘A survey of software inspection checklists’, ACM SIG-

SOFT Software Engineering Notes 24(1), 82–89. 225

Budgen, D. (2003), Software Design, 2nd edn, Pearson Addison Wesley. 39, 49,

67, 94, 95, 99, 225

Budgen, D. (2012), Conducting a semi-structured interview to identify issues for

evidence-informed software engineering. Internal report. 226

Budgen, D., Brereton, P. and Turner, M. (2004), Codifying a service architec-

tural style, in ‘28th Annual International Computer Software and Applications

Conference (COMPSAC’04)’, IEEE Computer Society, pp. 16–22. 2, 18

Budgen, D., Brereton, P., Turner, M. and Kitchenham, B. (2008), Using mapping

studies in software engineering, in ‘The 20th Annual Psychology of Program-

ming Interest Group Conference’, pp. 195–204. 52

Budgen, D., Burn, A., Brereton, P., Kitchenham, B. and Pretorius, R. (2011),

‘Empirical evidence about the UML: A systematic literature review’, Software

— Practice and Experience 41(4), 363–392. 40, 186

Budgen, D. and Zhang, C. (2009), Preliminary reporting guidelines for experience

papers, in ‘13th International Conference on Evaluation and Assessment in

Software Engineering (EASE’09)’. 55

244

REFERENCES

Bull, S. (2001), Renewable energy today and tomorrow, in ‘Proceedings of the

IEEE’, National Renewable Energy Laboratory, Golden, CO, IEEE, pp. 1216–

1226. 192

Candido, G., Barata, J., Colombo, A. W. and FrançoisJammes (2009), ‘SOA in

reconfigurable supply chains: A research roadmap’, Engineering Applications

of Artificial Intelligence 22(6), 939–949. 65

Canfora, G., Fasolino, A. R., Frattolillo, G. and Tramontana, P. (2008), ‘A wrap-

ping approach for migrating legacy system interactive functionalities to service

oriented architectures’, Journal of Systems and Software 81(4), 463–480. 65

Card, D. N., Garry, F. E. M. and Page, G. T. (1987), ‘Evaluating software engi-

neering technologies’, IEEE Transactions on Software Engineering 13(7), 845–

851. 152

Carney, D. and Long, F. (2000), ‘What do you mean by COTS? finally, a useful

answer’, IEEE Software 17(2), 83–86. 14, 15

Casola, V., Mancini, E. P., Mazzocca, N., Rak, M. and Villano, U. (2008), ‘Self-

optimization of secure web services’, Computer Communications 31(18), 4312–

4323. 57

Cervantes, H. and Hall, R. (2005), Technical concepts of service orientation, in

‘Service-oriented software system engineering: challenges and practices’, IGI

Global, p. 1. 27

Chang, S. H. (2007), A systematic analysis and design approach to develop adapt-

able services in service oriented computing, in ‘2007 IEEE Congress on Ser-

vices’, pp. 375–378. 36

Chen, X., Cai, W., Turner, S. and Wang, Y. (2006), SOAr-DSGrid: Service-

oriented architecture for distributed simulation, in ‘20th Workshop on Prin-

ciples of Advanced and Distributed Simulation (PADS’06)’, IEEE Computer

Society, pp. 65–73. 18, 21

245

REFERENCES

Chmielewski, U., Brinkman, R. and Hoepman, J.-H. (2008), Using JASON to

secure SOA, in ‘Proceedings of the 2008 workshop on Middleware security

(MidSec’08)’, ACM, pp. 13–18. 65

Choi, S. W., Her, J. S. and Kim, S. D. (2007), Modeling QoS attributes and met-

rics for evaluating services in SOA considering consumers: Perspective as the

first class requirement, in ‘Proceedings of the The 2nd IEEE Asia-Pacific Ser-

vice Computing Conference (APSCC’07)’, IEEE Computer Society, pp. 398–

405. 57, 65

Cipcigan, L., Taylor, P. and Lyons, P. (2009), ‘A dynamic virtual power station

model comprising small-scale energy zones’, International Journal of Renewable

Energy Technology 1, 173–191. 194, 195

Cotroneo, D., Graziano, A. and Russo, S. (2004), Security requirements in service

oriented architectures for ubiquitous computing, in ‘2nd workshop on Mid-

dleware for pervasive and ad-hoc computing, ACM International Conference

Proceeding Series’, ACM, pp. 172–177. 18

Crnkovic, I. and Larsson, M. (2000), A case study: demands on component-

based development, in ‘Proceedings of the International Conference on Software

Engineering, 2000’, pp. 23–31. 4, 5, 17

Crnkovic, I. and Larsson, M. (2002), ‘Challenges of component-based develop-

ment’, Journal of Systems and Software 61(3), 201–212. 5, 16

Cruzes, D. S. and Dyb̊a, T. (2010), Synthesizing evidence in software engineering

research, in ‘Proceedings of the 2010 ACM-IEEE International Symposium on

Empirical Software Engineering and Measurement’, ACM. 60

Cruzes, D. S. and Dyb̊a, T. (2011), ‘Research synthesis in software engineering:

A tertiary study’, Information and Software Technology 53, 440–455. 45, 59,

60, 167, 168

Cusumano, M. (2010), ‘Cloud computing and SaaS as new computing platforms’,

Communications of the ACM 53(4), 27–29. 19

246

REFERENCES

Dan, X., Shi, Y., Tao, Z., Xiang-Yang, J. and Jun-Feng, L. Z.-Q. Y. (2006), An

approach for describing SOA, in ‘International Conference on Wireless Com-

munications, Networking and Mobile Computing, 2006 (WiCOM 2006)’, IEEE

Computer Society, pp. 1–4. 65

DeMarco, T. (1979), Structured analysis and system specification, Yourdon Press.

109

Demirkan, H., Kauffman, R. J., Vayghan, J. A., Hans-GeorgFill, Karagiannis, D.

and Maglio, P. P. (2008), ‘Service-oriented technology and management: Per-

spectives on research andpractice for the coming decade’, Electronic Commerce

Research and Applications 7(4), 356–376. 65

Depuru, S. S. S. R., Wang, L., Devabhaktuni, V. and Gudi, N. (2011), ‘Smart

meters for power grid: Challenges, issues, advantages and status’, Renewable

and sustainable energy reviews 15(6), 2736–2742. 88

Dietrich, A. J., Kirn, S. and Sugumaran, V. (2007), ‘A service-oriented architec-

ture for mass customization: A shoe industry case study’, IEEE Transactions

on Engineering Management 54(1), 190–204. 172

Dijkstra, E. W. (1976), A discipline of programming, Vol. 1, Prentice-Lall Engle-

wood Cliffs, NJ. 28

Dimitrov, V. (2008), Development of applications with service-oriented archi-

tecture for grid, in ‘Proceedings of the 9th International Conference on Com-

puter Systems and Technologies and Workshop for PhD Students in Computing

(CompSysTech’08)’, ACM, pp. 1–6. 65

Duan, Q. (2009), Applying the service-oriented architecture for network discovery

and selection in the next generation wireless mobile networks, in ‘International

Conference on Network-Based Information Systems (NBIS’09)’, IEEE Com-

puter Society, pp. 380–385. 65, 172

Duan, S. and Yuan, X. (2007), Software IC revised: A new approach of

component-based software design with software slots, in ‘Sixth International

247

REFERENCES

IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Sys-

tems, 2007 (ICCBSS’07)’, pp. 73–81. 17

Dyb̊a, T., Dingsyr, T. and Hanssen, G. K. (2007), Applying systematic reviews

to diverse study types: An experience report, in ‘First International Sympo-

sium on Empirical Software Engineering and Measurement, 2007 (ESEM’07)’,

pp. 225–234. 44

Dyb̊a, T., Kitchenham, B. A. and Jrgensen, M. (2005), ‘Evidence-based software

engineering for practitioners’, IEEE Software 22(1), 58–65. 44

EBSE (2013). http://www.dur.ac.uk/ebse/. 177, 178

EnergyLibrary (2011). http://theenergylibrary.com/node/3863. 83

ERCIM-NEWS (2013), ‘Special theme: Smart energy systems’, ERCIM-NEWS

92 . http://ercim-news.ercim.eu/. 172

Erl, T. (2004), Service-Oriented Architecture: A Field Guide to Integrating XML

and WebServices, Prentice Hall. 66

Erl, T. (2005), Service-Oriented Architecture (SOA): Concepts, Technology, and

Design, Prentice Hall. 66

Erl, T. (2009), SOA Design Patterns, Prentice Hall. 139

Erradi, A., Anand, S. and Kulkarni, N. (2006), Evaluation of strategies for in-

tegrating legacy applications as services in a service oriented architecture, in

‘IEEE International Conference on Services Computing (SCC’06)’, IEEE Com-

puter Society, pp. 257–260. 36, 65

Erradi, A. and Sriram Anand, N. K. (2006), SOAF: An architectural framework

for service definition and realization, in ‘IEEE International Conference on

Services Computing, 2006 (SCC’06)’, pp. 151–158. 136

Espinha, E., Chen, C., Zaidman, A. and Gross, H.-G. (2012), Maintenance re-

search in SOA - towards a standard case study, in ‘16th European Conference

on Software Maintenance and Reengineering, 2012 (CSMR’12)’, IEEE, pp. 391–

396. 72, 73, 172, 173

248

http://www.dur.ac.uk/ebse/
http://theenergylibrary.com/node/3863
http://ercim-news.ercim.eu/

REFERENCES

Expsito, A. G., Ramos, J. L. M. and Santos, J. R. (2004), ‘Slack bus selection to

minimize the system power imbalance in load-flow studies’, IEEE Transactions

on Power Systems 19(2), 987–995. 85

Fagan, M. E. (1976), ‘Design and code inspections to reduce errors in program

development’, IBM Systems Journal 38(2.3), 258–287. 48, 223, 224

Fichman, R. G. and Kemerer, C. F. (1992), ‘Object-oriented and conventional

analysis and design methodologies’, Computer 25(10), 22–39. 31, 32

Fornasa, M., Zingirian, N., Maresca, M. and Baglietto, P. (2006), VISIONS: A

service oriented architecture for remote vehicle inspection, in ‘IEEE Intelligent

Transportation Systems Conference (ITSC’06)’, IEEE, pp. 163–168. 65

Fujii, K. and Suda, T. (2005), ‘Semantics-based dynamic service composition’,

IEEE Journal on Selected Areas in Communications 23(12), 2361–2372. 23

Gao, Z. and Tang, B. (2007), Research on service oriented platform of integration

application for textile industry in China, in ‘IEEE International Conference on

e-Business Engineering (ICEBE’07)’, IEEE Computer Society., pp. 371–374.

65, 172

Garlan, D., Allen, R. and Ockerbloom, J. (1995), ‘Architectural mismatch: why

reuse is so hard’, IEEE Software 12(6), 17–26. 4, 16

Garousi, V. (2010), ‘Applying peer reviews in software engineering education: An

experiment and lessons learned’, IEEE Transactions on Education 53(2), 182–

193. 170, 174, 223

Garrison, J. B. and Webber, M. E. (2011), ‘An integrated energy storage scheme

for a dispatchable solar and wind powered energy system’, Journal of Renewable

and Sustainable Energy 3(4), 043101. 83

Gasikanti, A., Thomas, J. P. and Thomas, M. (2007), Information discovery

across organizational boundaries through local caching, in ‘IEEE Interna-

tional Conference on Services Computing (SCC’07)’, IEEE Computer Society,

pp. 522–529. 57, 65

249

REFERENCES

Geisterfer, C. M. and Ghosh, S. (2006), Software component specification: a study

in perspective of component selection and reuse, in ‘Fifth International Con-

ference on Commercial-off-the-Shelf (COTS)-Based Software Systems, 2006’,

p. 9. 4, 16

Gellings, C. (1985), ‘The concept of demand-side management for electric utili-

ties’, Proceedings of the IEEE 73(10), 1468–1470. 195

Gogouvitis, S. V., Kousiouris, G., Konstanteli, K., Polychniatis, T., Menychtas,

A., Kyriazis, D. and Varvarigou, T. (2008), Realtime-enabled workflow man-

agement in service oriented infrastructures, in ‘AREA ’08: Proceeding of the

1st ACM workshop on Analysis and retrieval ofevents/actions and workflows

in video streams’, ACM, pp. 119–124. 65

Gooneratne, N. and Tari, Z. (2008), Matching independent global constraints for

composite web services, in ‘Proceeding of the 17th international conference on

World Wide Web (WWW’08)’, ACM, pp. 765–774. 23

Green, T. and Blackwell, A. (1998), Cognitive dimensions of information arte-

facts: a tutorial, in ‘BCS HCI Conference’. 39

Griffin, D. and Pesch, D. (2007), ‘A survey on web services in telecommunica-

tions’, IEEE Communications Magazine 45, 28–35. 65

Gu, Q. and Lago, P. (2007), A stakeholder-driven service life cycle model for

soa, in ‘2nd international workshop on Service oriented software engineering:

in conjunction with the 6th ESEC/FSE joint meeting’, ACM, New York, NY,

USA, pp. 1–7. 24, 36, 136

Gu, Q. and Lago, P. (2009), ‘Exploring service-oriented system engineering chal-

lenges: a systematic literature review’, Service Oriented Computing and Appli-

cations 3(3), 171–188. 68

Gu, Q. and Lago, P. (2011), ‘Guiding the selection of service-oriented soft-

ware engineering methodologies’, Service Oriented Computing and Applications

5(4), 203–223. 35, 37

250

REFERENCES

Gu, Q. and van Vliet, H. (2009), SOA decision making - what do we need to

know, in ‘Proceedings of the 2009 ICSE Workshop on Sharing and Reusing

Architectural Knowledge (SHARK’09)’, IEEE Computer Society, pp. 25–32.

65

Guindon, R. (1990a), ‘Designing the design process: Exploiting opportunistic

thoughts’, Human-Computer Interaction 5(2), 305–344. 30

Guindon, R. (1990b), ‘Knowledge exploited by experts during software system

design’, International Journal of Man-Machine Studies 33(3), 279–304. 29, 30,

38, 95, 96

Guindon, R. and Curtis, B. (1988), Control of cognitive processes during software

design: what tools are needed?, in ‘Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems’, ACM, New York, NY, USA, pp. 263–

268. 29

Harrison, A. and Taylor, I. J. (2005), WSPeer - an interface to web service hosting

and invocation, in ‘19th IEEE International Parallel and Distributed Processing

Symposium (IPDPS’05)’, Vol. 5, IEEE Computer Society, pp. 175a–175a. 25,

51

Heineman, G. T. and Councill, W. T. (2001), Component-Based Software Engi-

neering: Putting the Pieces Together, Addison-Wesley Professional. 6, 12

Henningsson, S., Svensson, C. and Vallen, L. (2007), Mastering the integration

chaos following frequent m&as: Is integrationwith SOA technology, in ‘Pro-

ceedings of the 40th Annual Hawaii International Conference on System Sci-

ences (HICSS’07)’, IEEE Computer Society. 65

Hoel, T. (2006), Service oriented architectures without openness - a contradic-

tion of terms.reflection on the Norwegian situation, in ‘6th IEEE International

Conference on Advanced Learning Technologies (ICALT’06)’, IEEE Computer

Society, pp. 883–885. 65

Hopkins, J. (2000), ‘Component primer’, Communications of the ACM

43(10), 27–30. 13

251

REFERENCES

Hourdin, V., Tigli, J.-Y., Lavirotte, S. and Riveill, G. R. M. (2008), SLCA, com-

posite services for ubiquitous computing, in ‘Proceedings of the International

Conference on Mobile Technology, Applications,and Systems (Mobility’08)’,

ACM. 65

Howerton, J. T. (2007), ‘Service-oriented architecture and web 2.0’, IT Profes-

sional 9(3). 65

Hrastnik, P. and Winiwarter, W. (2007), Coordination in service oriented archi-

tectures using transaction processing concepts, in ‘18th International Workshop

on Database and Expert Systems Applications (DEXA’07)’, IEEE, pp. 855–

860. 65

Huang, S. and Fan, Y. (2007), Model driven and service oriented enterprise inte-

gration - the method, framework and platform, in ‘6th International Advanced

Language Processing and Web Information Technology (ALPIT’07)’, IEEE

Computer Society, pp. 504–509. 65, 66

Huhns, M. and Singh, M. P. (2005), ‘Service-oriented computing: key concepts

and principles’, IEEE Internet Computing 9(1), 75–81. xiv, 20

IEEESTD (2008), ‘IEEE standard for software reviews and audits’, IEEE STD

1028-2008 pp. 1–52. 145, 178, 224, 226

Iivari, J. (1995), ‘Object-orientation as structural, functional and behavioural

modelling: a comparison of six methods for object-oriented analysis’, Informa-

tion and Software Technology 37(3), 155–163. xvii, 33, 34

Jammes, F., Mensch, A. and Smit, H. (2005), Service-oriented device communica-

tions using the devices profile for webservices, in ‘3rd international workshop on

Middleware for pervasive and ad-hoc computing (MPAC’05)’, ACM, pp. 1–8.

56

Jardim-Goncalves, R., Grilo, A. and Steiger-Garcao, A. (2006), ‘Challenging the

interoperability between computers in industry with MDA and SOA’, Comput-

ers in Industry 57(8-9), 679–689. 65

252

REFERENCES

Jørstad, I., Dustdar, S. and Thanh, D. V. (2005), A service oriented architecture

framework for collaborative services, in ‘14th IEEE International Workshops

on Enabling Technologies: Infrastructurefor Collaborative Enterprise (WET-

ICE05)’, IEEE Computer Society, pp. 121–125. 65

Karhunen, H., Jantti, M. and Eerola, A. (2005), Service-oriented software en-

gineering (SOSE) framework, in ‘Proceedings of the International Conference

on Services Systems and Services Management, 2005 (ICSSSM’05)’, Vol. 2,

pp. 1199–1204. 35, 136

Kemerer, C. F. and Paulk, M. C. (2009), ‘The impact of design and dode reviews

on software quality: An empirical study based on PSP data’, IEEE Transac-

tions on Software Engineering 35(4), 534–550. 48

Khoshnevis, S., Aliee, F. S. and Jamshidi, P. (2009), Model driven approach to

service oriented enterprise architecture, in ‘IEEE Asia-Pacific Services Com-

puting Conference (APSCC 2009)’, IEEE, pp. 279–286. 65

Kim, J. and Lerch, F. J. (1992), Towards a model of cognitive process in logical

design: comparing object-oriented and traditional functional decomposition

software methodologies, in ‘Proceedings of the SIGCHI conference on Human

factors in computing systems’, ACM, pp. 489–498. 29, 94

Kim, T., Lee, H. and Cheon, H. (2007), Implementation of a service oriented

architecture based on JXTA for new business models, in ‘International Confer-

ence on Control, Automation and Systems, 2007 (ICCAS’07)’, IEEE, pp. 2402–

2406. 65

Kitchenham, B. A., Budgen, D. and Brereton, O. P. (2011), ‘Using mapping

studies as the basis for further research—a participant-observer case study’,

Information and Software Technology 53(4), 638–651. Special section from

EASE 2010. 45, 168

Kitchenham, B., Brereton, P., Budgen, D., Turner, M., Bailey, J. and Linkman,

S. (2009), ‘Systematic literature reviews in software engineering — a systematic

literature review’, Information and Software Technology 51(1), 7–15. 70

253

REFERENCES

Kitchenham, B. and Charters, S. (2007), Guidelines for performing systematic

literature reviews in software engineering, Technical Report EBSE 2007-001,

Keele University and Durham University Joint Report. 44, 45, 52, 53

Komoda, N. (2006), Service oriented architecture (SOA) in industrial systems, in

‘IEEE International Conference on Industrial Informatics’, IEEE, pp. 1–5. 56

Kontogiannis, K., Lewis, G. A. and Smith, D. B. (2008), A research agenda for

service-oriented architecture, in ‘Proceedings of the 2nd international workshop

on Systems developmentin SOA environments (SDSOA’08)’, ACM, pp. 1–6. 26,

27

Korotkiy, M. and Top, J. (2006), Onto-SOA: From ontology-enabled SOA to

service-enabled ontologies, in ‘International Conference on Internet and Web

Applications and Services/Advanced International Conference on Telecommu-

nications 2006 (AICT-ICIW’06)’, IEEE Computer Society. 25

Kumar, S., Dakshinamoorthy, V. and Krishnan, M. S. (2007), Does SOA improve

the supply chain? an empirical analysis of the impact of SOA adoption on

electronic supply chain performance, in ‘Proceedings of the 40th Annual Hawaii

International Conference on System Sciences (HICSS’07)’, IEEE Computer

Society. 65

Kumaran, S., Chao, T., Bhattacharya, K. and Dhoolia, P. (2007), A model driven

framework for it transformnation, in ‘2nd IEEE/IFIP International Workshop

on Business-Driven IT Management (BDIM’07)’, pp. 55–64. 65

Lane, S. and Richardson, I. (2011), ‘Process models for service-based applica-

tions: A systematic literature review’, Information and Software Technology

53(5), 424–439. 8

Laplante, P. A., Zhang, J. and Voas, J. (2008), ‘What’s in a name? distinguishing

between SaaS and SOA’, IT Professional 10(3), 46–50. 2, 3, 19

Lewis, G. (2010), Getting started with service-oriented architecture (SOA) ter-

minology, Technical report, Software Engineering Institute. 69

254

REFERENCES

Lewis, G. and Smith, D. (2008), Service-oriented architecture and its implications

for software maintenance and evolution, in ‘Frontiers of Software Maintenance,

2008 (FoSM’08)’, pp. 1–10. xvii, 18, 21, 25, 26, 27

Liang, Q. and Chung, J. Y. (2007), Analyzing service usage patterns: Methodol-

ogy and simulation, in ‘Proceedings of the IEEE International Conference on

e-Business Engineering (ICEBE’07)’, IEEE, pp. 359–362. 65

Liu, X. and Deters, R. (2007), An efficient dual caching strategy for web service-

enabled PDAs, in ‘ACM symposium on Applied computing (SAC’07)’, ACM,

pp. 788–794. 65

Locola, P. (2007), When legacy meets SOA: Achieving business agility by in-

tegrating new technology with existing software asset, in ‘1st Annual IEEE

Systems Conference’, IEEE, pp. 1–8. 65

López-Sanz, M., Acuña, C. J., Cuesta, C. E. and Marcos, E. (2008), ‘Modelling

of service-oriented architectures with UML’, Electronic Notes in Theoretical

Computer Science 194(4), 23–37. 136

Loy, P. H. (1990), ‘A comparison of object-oriented and structured development

methods’, ACM SIGSOFT Software Engineering Notes 15(1), 44–48. 3, 29,

137

Luthria, H., Rabhi, F. and Briers, M. (2007), Investigating the potential of service

oriented architectures to realize dynamic capabilities, in ‘The 2nd IEEE Asia-

Pacific Service Computing Conference’, IEEE, pp. 390–397. 65

Mahmood, S., Lai, R. and Kim, Y. (2007), ‘Survey of component-based software

development’, IET Software 1(2), 57–66. 17

Mandić, V., Markkula, J. and Oivo, M. (2009), ‘Towards multi-method research

approach in empirical software engineering’, Product-Focused Software Process

Improvement 32, 96–110. 41

Massuthe, P. and Schmidt, K. (2005), Operating guidelines - an automata-

theoretic foundation for the service-oriented architecture, in ‘5th International

255

REFERENCES

Conference on Quality Software (QSIC05)’, IEEE Computer Society, pp. 452–

457. 58, 65

Mayrhauser, A. V. and Vans, A. M. (1995), ‘Program comprehension during

software maintenance and evolution’, Computer 28(8), 44–55. 30

McLeod, L., MacDonell, S. G. and Doolin, B. (2011), ‘Qualitative research on

software development: a longitudinal case study methodology’, Empirical Soft-

ware Engineering 16(4), 430–459. 169, 170, 173

Mendes, J. M., Leitão, P., Colombo, A. W. and Restivo, F. (2008), Service-

oriented control architecture for reconfigurable production systems, in ‘6th

IEEE International Conference on Industrial Informatics (INDIN’08)’, IEEE,

pp. 744–749. 65

Michiorri, A. and Taylor, P. (2009), Forecasting real-time ratings for electricity

distribution networks using weather forecast data, in ‘20th International Con-

ference and Exhibition on Electricity Distribution - Part 1, 2009 (CIRED’09)’,

pp. 1–4. 85

Miller, J. (2008), ‘Triangulation as a basis for knowledge discovery in software

engineering’, Empirical Software Engineering 13(2), 223–228. 167

Mingers, J. (2001), ‘Combining is research methods: towards a pluralist method-

ology’, Information systems research 12(3), 240–259. 41

Mingers, J. (2003), ‘The paucity of multimethod research: a review of the infor-

mation systems literature’, Information Systems Journal 13(3), 233–249. 41,

174

Moe, N. B., Dingsøyr, T. and Dyb̊a, T. (2010), ‘A teamwork model for under-

standing an agile team: A case study of a scrum project’, Information and

Software Technology 52(5), 480–491. 173

Moody, D. L. (2009), ‘The “physics” of notations: Toward a scientific basis for

constructing visual notations in software engineering’, IEEE Transactions on

Software Engineering 35(6), 756–779. 39, 40, 109

256

REFERENCES

Muller, B. (2012), ‘Energy from everywhere’, Pictures of the Future, the Magazine

for Research an Innovation pp. 68–69. 74, 172

Mykkanen, J., Riekkinen, A., Sormunen, M., Karhunen, H. and Laitinen, P.

(2007), ‘Designing web services in health information systems: From process

to application level’, International Journal of Medical Informatics 76(2-3), 89–

95. 57

Nakamura, M., Igaki, H., Tamada, H. and Kenichi (2004), Implementing inte-

grated services of networked home appliances using service oriented architec-

ture, in ‘Proceedings of the 2nd international conference on Service oriented

computing (ICSOC’04)’, ACM, pp. 269–278. 65

Nestler, T. (2008), Towards a mashup-driven end-user programming of SOA-

based applications, in ‘Proceedings of the 10th International Conference on

Information Integration and Web-based Applications and Services (IIWAS’08)’,

ACM, pp. 551–554. 65

Niemann, M., Janiesch, C., Repp, N. and Steinmetz, R. (2009), Challenges of

governance approaches for service-oriented architectures, in ‘3rd IEEE In-

ternational Conference on Digital Ecosystems and Technologies (DEST’09)’,

pp. 600–605. 26

Oates, B. J. (2005), Researching information systems and computing, Sage Pub-

lications Limited. 49, 77, 142, 168

O’Brien, L., Brebner, P. and Gray, J. (2008), Business transformation to SOA:

aspects of the migration and performance and QoS issues, in ‘Proceedings of

the 2nd international workshop on Systems development in SOA environments

(SDSOA’08)’, ACM, pp. 35–40. 26

O’Brien Lero, L., Merson, P. and Bass, L. (2007), Quality attributes for service-

oriented architectures, in ‘International Workshop on Systems Development in

SOA Environments, 2007 (SDSOA’07): ICSE Workshops 2007’, p. 3. 25

257

REFERENCES

Offermann, P. and Bub, U. (2009), Empirical comparison of methods for informa-

tion systems development according to SOA, in ‘Proceedings of 17th European

Conference on Information Systems (ECIS’09)’. 37, 136

Ofgem (2012). http://www.ofgem.gov.uk/Networks/ElecDist/Pages/

ElecDist.aspx. 196

Oikonomou, V. and Mundaca, L. (2008), ‘Tradable white certificate schemes:

what can we learn from tradable greencertificate schemes?’, Energy Efficiency

1, 211–232. 194

Oliveira, L. B. R. D., Felizardo, K. R. and Nakagawa, D. F. E. Y. (2010), ‘Refer-

ence models and reference architectures based on service-oriented architecture:

A systematic review’, Software Architecture - Lecture Notes in Computer Sci-

ence 6285/2010, 360–367. 8, 68

Panahi, M., Nie, W. and Lin, K.-J. (2009), A framework for real-time service-

oriented architecture, in ‘IEEE Conference on Commerce and Enterprise Com-

puting (CEC’09)’, IEEE Computer Society, pp. 460–467. 57

Papagianni, C., Karagiannis, G., Tselikas, N. D., andI.P. Chochliouros, E. S.,

Kabilafkas, D., Cinkler, T., andP. Sjödin, L. W., Hidell, M., de Groot, S. H.,

Kontos, T., Pappas, C. C., Antonakopoulou, A. and Venieris, I. S. (2008),

Supporting end-to-end resource virtualization for web 2.0 applications using

service oriented architecture, in ‘IEEE GLOBECOM Workshops’, IEEE, pp. 1–

7. 65

Papazoglou, M. P. (2003), Service-oriented computing: Concepts, characteristics

and directions, in ‘4th International Conference on Web Information Systems

Engineering (WISE’03)’, IEEE Computer Society. 56

Papazoglou, M. P. and Heuvel, W.-J. (2007), ‘Service oriented architectures: ap-

proaches, technologies and research issues’, 16, 389–415. 3, 25, 138

Papazoglou, M. P. and Heuvel, W.-J. V. D. (2006), ‘Service-oriented design

and development methodology’, International Journal of Web Engineering and

Technology 2(4), 412–442. 36, 136

258

http://www.ofgem.gov.uk/Networks/ElecDist/Pages/ElecDist.aspx
http://www.ofgem.gov.uk/Networks/ElecDist/Pages/ElecDist.aspx

REFERENCES

Parnas, D. L. (1972), ‘On the criteria to be used in decomposing systems into

modules’, Communications of the ACM 15(12), 1053–1058. 3, 28

Parnas, D. L. and Weiss, D. M. (1985), Active design reviews: principles and

practices, in ‘Proceedings of the 8th International Conference on Software en-

gineering (ICSE’85)’, IEEE Computer Society Press, pp. 132–136. 224

Pautasso, C., Zimmermann, O. and Leymann, F. (2008), Restful web services vs.

“big” web services: making the right architectural decision, in ‘Proceedings of

the 17th International Conference on World Wide Web’, ACM, New York, NY,

USA, pp. 805–814. 26

Perry, D. E., Sim, S. E. and Easterbrook, S. M. (2004), Case studies for software

engineers, in ‘Proceedings of the 26th International Conference on Software

engineering (ICSE’04)’, IEEE, pp. 736–738. 170, 190

Petre, M. (2009), Insights from expert software design practice, in ‘Proceedings

of the the 7th joint meeting of the European software engineering conference

and the ACM SIGSOFT symposium on the foundations of software engineering

(ESEC/FSE’09)’, ACM, pp. 233–242. 29, 31, 38

Petter, S. C. and Gallivan, M. J. (2004), Toward a framework for classifying and

guiding mixed method research in information systems, in ‘Proceedings of the

37th Annual Hawaii International Conference on System Sciences, 2004’. 41

Petticrew, M. and Roberts, H. (2006), Systematic Reviews in the Social Sciences:

A Practical Guide, Wiley-Blackwell. 45, 52

Pichitlamken, J., Uthayopas, P., Kajkamhaeng, S. and Tippayawannakorn, N.

(2007), Service-oriented architecture on a windows cluster for spreadsheet sim-

ulation, in ‘IEEE International Conference on Industrial Engineering and En-

gineeringManagement’, IEEE, pp. 1757–1761. 65

Pohthong, A. and Budgen, D. (2001), ‘Reuse strategies in software development:

an empirical study’, Information and Software Technology 43(9), 561–575. 29

259

REFERENCES

Prinsloo, J. M., Schulz, C. L., Kourie, D. G., Theunissen, W. H., Strauss, T.,

Heever, R. V. D. and Grobbelaar, S. (2006), A service oriented architecture

for wireless sensor and actor network applications, in ‘Annual research con-

ference of the South African institute of computer scientists and information

technologists on IT research in developing countries (SAICSIT’06)’, Vol. 204,

ACM International Conference Proceeding Series, South African Institute for

Computer Scientists and Information Technologists, pp. 145–154. 18, 65

Qing-Ming, W., Yong, T. and Zan-Bo, Z. (2009), Research in enterprise appli-

cations of dynamic web service composition methods and models, in ‘Second

International Symposium on Electronic Commerce and Security, 2009 (ISECS

’09)’, Vol. 1, pp. 146–150. 22

Rao, J. and Su, X. (2004), A survey of automated web service composition meth-

ods, in ‘Proceedings of the First International Workshop on Semantic Web

Services and Web Process Composition, 2004’, Springer, pp. 43–54. 23

Reeves, A., Marashi, M. and Budgen, D. (1995), ‘A software design framework or

how to support real designers’, Software Engineering Journal 10(4), 141–155.

29

Ricci, A., Buda, C. and Zaghini, N. (2007), An agent-oriented programming

model for SOA & web services, in ‘5th IEEE International Conference on In-

dustrial Informatics’, IEEE, pp. 1059–1064. 65

Roach, T., Low, G. and D’Ambra, J. (2008), CAPSICUM - a conceptual model

for service oriented architecture, in ‘Proceedings of the 2008 IEEE Congress on

Services (SERVICES’08)- Part I’, IEEE Computer Society, pp. 415–422. 65

Roberts, D., Taylor, P. and Michiorri, A. (2008), Dynamic thermal rating for

increasing network capacity and delaying network reinforcements, in ‘Smart

Grids for Distribution, 2008. IET-CIRED. CIRED Seminar’, pp. 1–4. 85

Runeson, P. and Höst, M. (2009), ‘Guidelines for conducting and reporting

case study research in software engineering’, Empirical Software Engineering

14, 131–164. 46, 72, 173, 190

260

REFERENCES

Runeson, P., Host, M., Rainer, A. and Regnell, B. (2012), Case Study Research

in Software Engineering: Guidelines and Examples, Wiley. 46, 170, 177, 190

Sabucedo, L. M. Á., Rifón, L. E. A. and Gago, R. M. P. J. M. S. (2009), ‘Pro-

viding standard-oriented data models and interfaces to eGovernment services

a semantic-driven approach’, Computer Standards and Interfaces 31(5), 1014–

1027. 65

Schepers, T. G. J., Iacob, M. E. and Eck, P. A. T. V. (2008), A lifecycle approach

to SOA governance, in ‘Proceedings of the 2008 ACM symposium on Applied

computing (SAC ’08)’, ACM, pp. 1055–1061. 65

Schroeter, J., Cech, S., Gtz, S., Wilke, C. and Amann, U. (2012), Towards mod-

eling a variable architecture for multi-tenant SaaS-applications, in ‘Proceed-

ings of the Sixth International Workshop on Variability Modeling of Software-

Intensive Systems (VaMoS’12)’, ACM, pp. 111–120. 19

Schroh, D., Bozowsky, N., Savigny, M. and Wright, W. (2009), nCompass service

oriented architecture for tacit collaboration services, in ‘13th International Con-

ference Information Visualisation (IV’09)’, IEEE Computer Society, pp. 434–

442. 57, 65

Schuschel, H. and Weske, M. (2004), Automated planning in a service-oriented

architecture, in ‘13th IEEE International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises (WETICE ’04)’, IEEE Computer

Society, pp. 75–80. 20

Seaman, C. B. (1999), ‘Qualitative methods in empirical studies of software en-

gineering’, IEEE Transactions on Software Engineering 25(4), 557–572. 142,

151, 168, 178, 179, 228

Sharp, J. H. and Ryan, S. D. (2010), ‘A theoretical framework of component-

based software development phases’, SIGMIS Database 41(1), 56–75. 12, 27

Shaw, M. and Clements, P. C. (1997), A field guide to boxology: Preliminary

classification of architectural styles for software systems, in ‘Proceedings of the

261

REFERENCES

21st International Computer Software andApplications Conference (COMP-

SAC’97)’, pp. 6–13. 2, 6, 68

Sinden, G. (2007), ‘Characteristics of the UK wind resource: long-term patterns

and relationship to electricity demand’, Energy Policy 35(1), 112–127. 83

Sjoberg, D. I. K., Dyba, T. and Jorgensen, M. (2007), The future of empirical

methods in software engineering research, in ‘Future of Software Engineering,

2007. FOSE ’07’, pp. 358 –378. 168

Skogan, D., Grnmo, R. and Solheim, I. (2004), Web service composition in UML,

in ‘Proceedings of the Eighth IEEE International Enterprise Distributed Object

Computing Conference, 2004 (EDOC’04)’, pp. 47 – 57. 140

Smith, G., Onions, P. and Infield, D. (2000), ‘Predicting islanding operation of

grid connected pv inverters’, IEE Proceedings - Electric Power Applications

147(1), 1–6. 196

Sommerville, I. and Kotonya, G. (1998), Requirements Engineering: Processes

and Techniques, John Wiley & Sons, Inc. 15

Soni, A. and Özveren, C. (2006), Improved control of isolated power system by the

use of feeding technique, in ‘Proceedings of the 41st International Universities

Power Engineering Conference’, University of Abertay, Dundee, IEEE, pp. 974–

977. 193

Soni, A. and Özveren, C. (2007), Renewable energy market potential in U.K., in

‘42nd International Universities Power Engineering Conference, 2007’, Univer-

sity of Abertay, Dundee, pp. 717–720. 193

Stojanovic, Z., Dahanayake, A. and Sol, H. (2004), Modeling and design of

service-oriented architecture, in ‘IEEE International Conference on Systems,

Man and Cybernetics, 2004’, Vol. 5, IEEE, pp. 4147–4152. 136, 138

Sun, J. and Chen, Y. (2008), Intelligent enterprise information security archi-

tecture based on serviceoriented architecture, in ‘International Seminar on

Future Information Technology and Management Engineering (FITME’08)’,

IEEE Computer Society, pp. 196–200. 65

262

REFERENCES

Sward, R. E. (2007), Using Ada in a service-oriented architecture, in ‘ACM In-

ternational Conference on SIGAda (SIGAda’07)’, ACM, pp. 63–67. 65

Szyperski, C., Gruntz, D. and Murer, S. (2002), Component Software: Beyond

Object-Oriented Programming, 2nd edn, Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA. 4, 6, 12, 13, 15, 17

Talaei-Khoei, A., Sheriffian, A. H. and andJavad Farzaneh Verdom, M. K. A.

(2005), A new approach for service-oriented architecture, in ‘Enabling Tech-

nologies for the New Knowledge Society: ITI 3rd International Conference on

Information and Communications Technology’, IEEE, pp. 459–470. 56

Taylor, R. N. and der Hoek, A. V. (2007), Software design and architecture the

once and future focus of software engineering, in ‘2007 Future of Software

Engineering’, IEEE Computer Society, pp. 226–243. 39

Teiniker, E., Schmoelzer, G., Faschingbauer, J., Kreiner, C. and Weiss, R. (2005),

A hybrid component-based system development process, in ‘31st EUROMI-

CRO Conference on Software Engineering and Advanced Applications, 2005’,

pp. 152–159. 16

Tewoldeberhan, T. and Janssen, M. (2008), ‘Simulation-based experimentation

for designing reliable and efficient webservice orchestrations in supply chains’,

Electronic Commerce Research and Applications 7(1), 82–92. 65

Trichakis, P., Taylor, P. C., Lyons, P. and RichardHair (2009), Transforming

low-voltage networks into small-scale energy zones, in ‘Proceedings of the ICE

- Energy’, Vol. 162, Proceedings of the Institution of Civil Engineers, pp. 37–46.

195

Trichakis, P., Taylor, P., Coates, G. and Cipcigan, L. M. (2008), ‘Distributed

control approach for small-scale energy zones’, Journal of Power and Energy

222(2), 137–147. 83, 85, 86, 196, 197

Tsai, W. T. (2005), Service-oriented system engineering: a new paradigm, in

‘IEEE International on WorkshopService-Oriented System Engineering, 2005

(SOSE’05)’, pp. 3–6. 35

263

REFERENCES

Tsai, W.-T., Shao, Q., Huang, Y. and Ba, X. (2010), Towards a scalable and

robust multi-tenancy SaaS, in ‘Proceedings of the Second Asia-Pacific Sympo-

sium on Internetware’, ACM, pp. 1–15. 19

Turner, M., Budgen, D. and Brereton, P. (2003), ‘Turning software into a service’,

IEEE Computer 36(10), 33–44. 2, 19

Valipour, M. H., Amirzafari, B., Maleki, K. N. and Daneshpour, N. (2009), A

brief survey of software architecture concepts and service oriented architecture,

in ‘2nd IEEE International Conference on Computer Science and Information

Technology (ICCSIT’09)’, IEEE, pp. 34–38. 65

Van der Hoek, A. and Lopez, N. (2011), A design perspective on modularity, in

‘Proceedings of the tenth international conference on Aspect-oriented software

development’, ACM, New York, NY, USA, pp. 265–280. 28, 31

Venables, M. (2012), ‘Surviving Sandy-smart technologies help the recovery’, En-

gineering & Technology (E&T) 7, 20–21. 74, 172

Visser, W. and Hoc, J.-M. (1990), Expert software design strategies, in ‘Psychol-

ogy of programming’, New York, NY: Harcourt Brace Jovanovich, pp. 235–249.

7, 29, 30, 95

Vitharana, P. (2003), ‘Risks and challenges of component-based software devel-

opment’, Communications of the ACM 46(8), 67–72. 16

Vitharana, P., Zahedi, F. M. and hemant Jain (2003), ‘Design, retrieval, and

assembly in component-based software development’, Communications of the

ACM 46(11), 97–102. 17

Wada, H., Suzuki, J. and Oba, K. (2006), Modeling non-functional aspects in

service oriented architecture, in ‘IEEE International Conference on Services

Computing, 2006 (SCC’06)’, IEEE, pp. 222–229. 136

Wagner, S. and Deissenboeck, F. (2008), Abstractness, specificity, and complexity

in software design, in ‘Proceedings of the 2nd international workshop on The

role of abstraction in software engineering’, ACM, New York, NY, USA, pp. 35–

42. 28

264

REFERENCES

Waguespack, L. and Schiano, W. (2004), ‘Component-based is architecture’, In-

formation Systems Management 21(3), 53–60. 13

Wang, X., Hu, S. X., Haq, E. and Garton, H. (2007), Integrating legacy systems

within the service-oriented architecture, in ‘IEEE Power Engineering Society

General Meeting.’, IEEE, pp. 1–7. 65, 66

Weinberg, G. and Freedman, D. (1984), ‘Reviews, walkthroughs, and inspections’,

IEEE Transactions on Software Engineering 10(1), 68–72. 49, 144, 152, 224,

225, 226

Wieringa, R. (1998), ‘A survey of structured and object-oriented software speci-

fication methods and techniques’, ACM Computing Surveys 30(4), 459–527. 6,

31, 33, 39, 96, 137, 139, 186

Wong-Bushby, Egan, R. and Isaacson, C. (2006), A case study in SOA and re-

architecture at company ABC, in ‘39th Annual Hawaii International Con-

ference on System Sciences (HICSS ’06)’, Vol. 8, IEEE Computer Society,

pp. 179b–179b. 65

Wood, M., Daly, J., Miller, J. and Roper, M. (1999), ‘Multi-method research: an

empirical investigation of object-oriented technology’, Journal of Systems and

Software 48(1), 13–26. 41, 167, 171, 174

Yau, S. S. and Liu, J. (2007a), Functionality-based service matchmaking for

service-oriented architecture, in ‘8th International Symposium on Autonomous

Decentralized Systems (ISADS’07)’, IEEE Computer Society, pp. 147–154. 65

Yau, S. S. and Liu, J. (2007b), A situation-aware access control based privacy-

preserving service matchmaking approach for service-oriented architecture, in

‘IEEE International Conference on Web Services (ICWS’07)’, IEEE Computer

Society, pp. 1056–1063. 65

Yin, R. K. (2008), Case Study Research: Design and Methods, Vol. 5, 4 edn, Sage

Publications, Inc. 42, 46, 72, 77, 168, 169, 177, 190

Yourdon, E. (1989), Structured walkthroughs, 4 edn, Yourdon Press. 177

265

REFERENCES

Yourdon, E. and Constantine, L. L. (1979), Structured Design: Fundamentals of

a Discipline of Computer Program and System Design, Prentice-Hall. 97

Yue, P., Dia, L., Yanga, W., Yua, G. and Zhaoa, P. (2007), ‘Semantics-based

automatic composition of geospatial web service chains’, Computers and Geo-

sciences 33(5), 649–665. 65

Zeid, A. and Elswidi, M. (2005), A peer-review based approach to teaching object-

oriented framework development, in ‘18th Conference on Software Engineering

Education and Training’, pp. 51–58. 174

Zhang, J., Cheng, M., Chen, Z. and Fu, X. (2008), Pitch angle control for variable

speed wind turbines, in ‘Third International Conference on Electric Utility

Deregulation and Restructuring and Power Technologies, 2008 (DRPT’08)’,

IEEE, pp. 2691–2696. xviii, 220

Zhang, T., Ying, S., Cao, S. and Jia, X. (2006a), A modeling framework for

service-oriented architecture, in ‘Proceedings of the Sixth International Con-

ference on Quality Software (QSIC’06)’, IEEE Computer Society. 57, 65

Zhang, T., Ying, S., Cao, S. and Jia, X. (2006b), A modeling framework for

service-oriented architecture, in ‘Sixth International Conference on Quality

Software, 2006 (QSIC’06)’, IEEE, pp. 219–226. 136

Zhang, X. and Gracanin, D. (2008), Streaming web services for 3D portal appli-

cations, in ‘Web3D ’08: Proceedings of the 13th international symposium on

3D web technology’, ACM, pp. 23–26. 65

Zhao, H. and Tong, H. (2007), A dynamic service composition model based on

constraints, in ‘Sixth International Conference on Grid and Cooperative Com-

puting (GCC’07)’, IEEE Computer Society, pp. 659–662. 23

Zhu, F., Turner, M., Kotsiopoulos, I., Bennett, K., Russell, M., Budgen, D.,

Brereton, P., Keane, J., Layzell, P., Rigby, M. and Xu, J. (2004), Dynamic

data integration using web services, in ‘Proceedings of the IEEE International

Conference on Web Services (ICWS’04)’, IEEE Computer Society, pp. 262–269.

18

266

REFERENCES

Zhu, X. and Zheng, X. (2005), A template-based approach for mass customization

of service-oriented e-business applications, in ‘7th international conference on

Electronic commerce (ICEC’05)’, ACM, pp. 706–710. 65

267

	1 Introduction
	1.1 Context
	1.1.1 Architectural Style and SOA
	1.1.2 Component Based Development (CBD) and SOA
	1.1.3 SOA as a New Paradigm
	1.1.4 Software Design and SOA

	1.2 Research Objectives
	1.3 Thesis Structure

	2 Literature Review - SOA Models
	2.1 Introduction
	2.2 Component based Development (CBD)
	2.3 Service Oriented Architecture (SOA)
	2.3.1 Software Service Model
	2.3.2 SOA Model
	2.3.3 Service Composition Process
	2.3.4 Technical Perspective
	2.3.5 Business Perspective

	2.4 Summary

	3 Literature Review - SOA Design
	3.1 Introduction
	3.2 Software Design Strategies
	3.3 Software Design Methods
	3.3.1 OO and Structured Design
	3.3.2 Service Oriented Software Engineering (SOSE)

	3.4 Notations and Diagrammatical Representations
	3.5 Summary

	4 Research Method
	4.1 Introduction
	4.2 The Mapping Study
	4.3 The Case Study
	4.4 Expert Review / Walkthrough
	4.5 Summary

	5 The Mapping Study
	5.1 Introduction
	5.2 The form of a Mapping Study
	5.2.1 Identification of Relevant Studies
	5.2.1.1 Search String:
	5.2.1.2 Selection of Time Period:
	5.2.1.3 Choice of Electronic Databases:

	5.2.2 Selection of Primary Studies
	5.2.2.1 Step 1: Searching:
	5.2.2.2 Step 2: Exclusion on title / abstract:
	5.2.2.3 Step 3: Exclusion on full text:
	5.2.2.4 Step 4: Inclusion on definitions:

	5.2.3 Data Extraction

	5.3 Analysis
	5.3.1 Definition Terms and their Classification
	5.3.2 Definition Sources

	5.4 Findings
	5.5 Discussion
	5.5.1 Related Work
	5.5.2 Answering the Research Question

	5.6 Conclusions
	5.7 Summary

	6 Use Case - A Control System for a Small Scale Energy Zone
	6.1 Introduction
	6.2 Case Study
	6.3 Use Case
	6.4 The SSEZ Network
	6.4.1 Network Configuration
	6.4.2 Network Operational Goals
	6.4.3 Network Considerations
	6.4.4 Key Factors
	6.4.5 Assumptions

	6.5 SSEZ Network Data
	6.6 Summary of Functional and Non-Functional Requirements
	6.7 Summary

	7 SOA Design
	7.1 Introduction
	7.2 Design Process
	7.3 Service-based Control System (SBCS) Design
	7.3.1 Identification of functional components
	7.3.2 Identification of potential services
	7.3.3 Functional traceability
	7.3.4 Service Interactions
	7.3.5 Modelling static and dynamic behaviour through design representations
	7.3.6 Data flow diagram (DFD)
	7.3.7 Class Diagram
	7.3.8 Component Diagram
	7.3.9 Activity Diagram
	7.3.10 Sequence Diagram
	7.3.11 Flow Chart
	7.3.11.1 Scenario for assessing the current energy balance in the SSEZ
	7.3.11.2 Scenario for predicted energy deficit in the SSEZ
	7.3.11.3 Scenario for predicted energy condition in the SSEZ (Figure 7.25)

	7.3.12 Design Decisions

	7.4 Discussion
	7.4.1 Evolution of existing Paradigms and SOA
	7.4.2 Design and Notations

	7.5 Summary

	8 Evaluation
	8.1 Introduction
	8.2 The Evaluation Process
	8.2.1 Walkthrough Sessions
	8.2.2 Interview Sessions
	8.2.3 Data coding and Analysis
	8.2.4 Outcomes of the Interviews
	8.2.5 Discussion on the use of Walkthroughs

	8.3 Discussion on the outcomes of the Review
	8.3.1 Requirements
	8.3.2 Assumptions
	8.3.3 Design
	8.3.4 Conclusion

	8.4 Summary

	9 Discussion
	9.1 Introduction
	9.2 Why use a multi-method approach?
	9.3 Related Work
	9.3.1 The Mapping Study
	9.3.2 The Case Study
	9.3.3 The Walkthroughs
	9.3.4 Use of a Multi-method Research

	9.4 Threats to Validity
	9.4.1 The Mapping Study
	9.4.2 The Case Study
	9.4.2.1 Internal Validity
	9.4.2.2 External Validity

	9.4.3 The Walkthrough
	9.4.3.1 Construct Validity
	9.4.3.2 Internal Validity

	9.5 Lesson Learned
	9.6 Summary

	10 Conclusion
	10.1 Thesis Summary
	10.2 Research Outcomes
	10.3 Contributions
	10.4 Future Directions for Research
	10.5 Summary

	A
	A.1 Search String
	A.1.1 IEEE Xplore
	A.1.2 ACM
	A.1.3 Science Direct

	B
	B.1 Case Study Protocol
	B.1.1 Change Record
	B.1.2 Background
	B.1.3 Energy Systems
	B.1.3.1 Small Scale Energy Zones (SSEZ)

	B.1.4 Design
	B.1.5 Data Collection
	B.1.6 Analysis

	B.2 Validity
	B.2.1 Study Limitations
	B.2.2 Reporting
	B.2.3 Schedule

	C
	D
	D.1 Use Case Related Details
	D.2 Network Details
	D.3 Possible Network Extension

	E
	E.1 Review Protocol
	E.1.1 Change Record
	E.1.2 Background
	E.1.3 Design
	E.1.4 Data Preparation and Collection
	E.1.5 Analysis
	E.1.6 Threats to Validity
	E.1.7 Study Limitations
	E.1.8 Reporting
	E.1.9 Schedule

	F
	F.1 Questionnaire
	F.1.1 Version Control
	F.1.2 Requirements:
	F.1.3 Assumptions:
	F.1.4 Design:

	G
	G.1 Use Case Document
	G.1.1 Version Control
	G.1.2 Use case

	H
	H.1 Notations
	H.1.1 Activity Diagram
	H.1.2 Class Diagram
	H.1.3 Component Diagram
	H.1.4 Data Flow Diagram
	H.1.5 Sequence Diagram

	I
	I.1 Interview Questionnaire
	I.1.1 Part 1: Reviewing the walkthrough process itself
	I.1.2 Part 2: Presentation of the design

	J
	J.1 Summary of Responses from First Interview Session

