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Abstract 

Biocompatible and biodegradable poly(lactide)-2-methacryloyloxyethyl phosphorylcholine 

(PLA-PMPC) amphiphilic block copolymers were synthesized by a combination of Ring 

Opening Polymerization (ROP) and Reversible Addition-Fragmentation Chain Transfer 

(RAFT) polymerization techniques.  The PLA-macroRAFT agent was synthesized by the 

derivatization of PLA-OH with RAFT agent 4-cyano-4-

(phenylcarbonothioylthio)pentanoic acid (CPADB) achieving high levels of 

functionalization and narrow weight distributions (PDI range of 1.02-1.17).  PLA-PMPC 

with varied MPC block lengths were synthesized yielding polymers with a narrow 

polydispersity PDI = 1.16-1.21.  Triblock copolymers PMPC-PLA-PMPC with varying 

hydrophilic weight ratios were synthesized following an analogous method, the 

polymerizations were shown to be controlled with PDI’s of 1.24 and 1.36. 

PLA-PMPC block copolymers with varied compositions were self-assembled using several 

techniques to target different morphologies.  Nanostructures were characterised by DLS 

and TEM.  Block copolymers with a larger PLA block length were shown to generate 

smaller aggregates i.e. micelles.  The morphologies observed for the various block 

copolymers were consistent amongst different preparative techniques.  Vesicle structures 

were reproducible by the self-assembly of PMPC50-PLA51-PMPC50, however, by preparing 

nanoparticles by direct dissolution micelles formed.  The block copolymers were shown to 

encapsulate a hydrophobic dye in aqueous media thereby demonstrating its potential drug 

delivery applications. 
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Aims 

The aim of the work is to prepare amphiphilic 2-methacryloyloxyethyl phosphorylcholine 

(MPC) containing block copolymers with a biodegradable hydrophobic block using 

reversible addition-fragmentation chain transfer (RAFT) polymerization and self-assemble 

these amphiphilic block copolymers into nanostructures with potential biomedical 

applications e.g. drug delivery.  MPC provides excellent blood compatibility and is 

therefore ideal for the development of drug carriers.  The outer shell of the nanoparticle 

composed of PMPC would increase the efficiency of the drug carrier by preventing 

reticuloendothelial system (RES) recognition resulting in premature removal from the 

bloodstream.  PMPC combined with a biodegradable segment allows for the release of the 

drug under biological conditions. 
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1. Introduction 
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1.1 2-Methacryloyloxyethyl phosphorylcholine (MPC)  

Biomimicry is the discipline of designing materials by mimicking biology and nature.   It 

was born through the discovery by Zwaal et al.
1
 that “phospholipids composing the inner 

membrane of cells were thrombogenic i.e. resulted in blood clots, while lipids composing 

the outer membrane were non-thrombogenic”.
1, 2 

 Biomimicry aims to reproduce the 

properties of the outer surface of cell membranes by incorporating cell membrane 

constituents onto polymers e.g. synthetic phospholipids (a naturally occurring molecule 

containing a phosphate group) analogues or phosphorylcholine (PC) moieties.
3, 4  

PC is 

used as the polar head group for major lipid components e.g. phosphatidylcholine and 

sphinogomyelin, that compose the outer membrane of intact blood cells.
2  

Therefore 

surfaces functionalised with PC groups would be rendered non-thrombogenic.  Chapman 

was the first to synthesize a PC containing polymer via the polymerisation of diacetylenic 

phosphatidylcholine monomer, which demonstrated enhanced haemocompatibility.
5 

 

Following this development Nakabayashi
6
 et al. synthesized another PC containing 

monomer; 2-methacryloyloxyethyl phosphorylcholine (MPC), a methacrylate derivative 

with a zwitterionic PC moiety shown in Figure 1.1.
6 
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Figure 1-1. Structure of MPC. 

 

1.1.1 Controlled Polymerization of MPC  

Atom Transfer Radical Polymerization (ATRP) is the method most often used to control 

the polymerization of MPC. ATRP is effective for the polymerization of hydrophilic 

monomers in aqueous media under mild conditions and therefore would be ideal for MPC 

due to its insolubility in many organic solvents.  Armes et al. reported the first controlled 

polymerization of MPC in water at 20 
o
C achieving 90 % conversion within 5 minutes 

generating polymers with a narrow PDI range of 1.12-1.28.
7
  However, less control was 

experienced when the MPC wt% was increased from 17 to 40 (PDI=1.23-1.45).
7
  

Additionally MPC was polymerized in methanol to avoid the occurrence of 

autopolymerization of MPC which occurs in aqueous media at room temperature.
7, 8

 The 
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polymerization was shown to be highly controlled (PDI=1.12) with 70 % conversion 

reached in 4 h.
7
  

ATRP is inadequate for the synthesis of polymers intended for biomedical use due to the 

presence of metal catalyst residues which can range from 10-880 ppm depending on the 

purification procedure used and thus RAFT polymerization presents an attractive 

alternative.
9, 10

  The RAFT polymerization of MPC procedure has been development from 

its first reported use; the initial method for RAFT polymerization used 4-cyano-4-

(phenylcarbonothioylthio)pentanoic acid (CPADB) as the RAFT agent and initiator 4,4’-

azobis(4-cyanopentanoic acid) (ACVA) which was rapid reaching greater than 90 % 

conversion within 1 h.
11

  The polymerization was not as controlled as that achieved by 

ATRP which was attributed to the incomplete dissolution of RAFT agent and initiator.
11

  

The method was further altered by the addition of 5 wt% sodium hydrogen carbonate to the 

polymerization mixture which was then stirred for 4 h in an ice bath prior to the 

polymerization to give a narrow dispersed homopolymer (PDI = 1.12).
12

  Bhuchar et al.  

reported the RAFT polymerization of MPC in methanol with CPADB and CTAm, which 

avoids dissolution problems and possible hydrolysis of the RAFT agent leading to a lack of 

control over the polymerization.
13

  The polymerization of MPC was slower reaching 80% 

conversion in 10 h, however, polymerization was controlled.  Studies showed that CPADB 

demonstrated greater control over the polymerization of MPC than the trithiocarbonate 

RAFT agent with a PDI of 1.08.
13

  The copolymerization of MPC with 2-aminoethyl 

methacrylamide hydrochloride under the conditions analogous to the homopolymerization  

was shown to be controlled with a PDI  of 1.2 which is significantly less if carried out in 

aqueous media.
13

   

 

1.1.2 Blood Compatibility 

It is well-known that when biomedical materials come into contact with bodily fluids such 

as blood and plasma protein adsorption occurs which can elicit unfavourable biological 

responses e.g. formation of a blood clot, thus biocompatibility in particular blood 

compatibility is vital for biomedical devices.  Plasma proteins adsorbed on to the artificial 

surface are believed to mediate cell adhesion.  The protein undergoes conformational 

changes on the surface exposing domains which can bind to the cell surface which can lead 

to thrombus formation.  It is well-documented that PC moieties reduce protein adsorption 

and cell adhesion (Figure 1-2), the mechanism by which PC interact with proteins has not 

been elucidated, however, there have been several explanations.
2, 14
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The first mechanism was by competitive adsorption in which plasma lipids were adsorbed 

preferentially at the surface forming a self-assembled bilayer suppressing the adsorption of 

proteins attributed to the easier diffusion.
15, 16

  However, in the in vitro protein assays in 

the absence of lipids PC surface still demonstrates anti-biofouling properties thus showing 

that several mechanisms are active in resisting protein adsorption.
17

  The state of water 

molecules surrounding the protein and at the polymeric surfaces is also known to influence 

protein adsorption.  It was that reported that MPC polymers possess a large free water 

fraction surround the PC moieties forming a hydration layer which allows for the 

reversible adsorption of proteins prohibiting the binding and conformational change of 

proteins which leads to irreversible adsorption and subsequent denaturation on the 

surface.
18

  At a surface the binding of proteins is driven by the hydrophobic effect, the 

releasing of water surrounding the protein and at the solid interface results in a decrease in 

entropy as water becomes less ordered in the bulk.  A positive enthalpic contribution to the 

free energy of adsorption comes from the intermolecular forces acting between the protein 

and the surface.  Irreversible binding and denaturation of the protein occurs more 

extensively at hydrophobic surfaces. There is a greater degree of unfolding of the protein at 

a hydrophobic surface which results in stronger interfacial interactions as non polar groups 

which are hidden within the protein structure can become exposed to the surface by 

conformational changes.
19

  Proteins deposited on the surface provides cells a way of 

binding to the surface via receptors.
20

  .Another factor which influences protein adsorption 

is the flexibility and mobility of the PC moiety, it has been reported that longer PEO block 

lengths increase flexibility and effectively reduce protein adsorption.
21

 

 

 

Figure 1-2. Blood compatibility of MPC copolymer surface. 
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1.1.3 MPC Diblock Copolymer Colloids 

Nanostructures e.g. micelles, vesicles have found widespread applications in coatings and 

in nanomedicine.  The properties of PMPC makes it ideal for biomedical applications; the 

biomimcry of the phosphorylcholine moiety inhibits both protein adsorption and platelet 

adhesion increasing the stealthiness of the material.  A range of amphiphilic PMPC block 

copolymers have been synthesized and their self-assembly studied.  

PMPC amphiphilic block copolymers have been studied as potential drug carriers, the 

loading and drug release kinetics of the cancer drug Pacitaxel by PMPC-poly(butyl 

methacrylate (PBMA) prepared by RAFT polymerization has been investigated.
22

  The 

block copolymers self-assembled encapsulated the drug to form micelles with an average 

diameter of 18 nm.
22

  These nanoparticles were shown to demonstrate high loading content 

(the weight ratio of the drug encapsulated to the weight of the polymeric micelles was >13 

%) and a slow sustainable release of the drug which was influenced by the PMPC block 

length.
22

 MPC has also been copolymerised with 2-(diisopropylamino)ethyl methacrylate 

(DPA) and 2-(diethylamino)ethyl methacrylate (DEA) by ATRP to form biocompatible pH 

responsive nanoparticles for drug delivery (Figure 1-3).
23, 24

  Block copolymers of various 

compositions were shown to form micelles with micellation occurring at pH≥8 for PMPC-

PDEA and at pH ≥7.4 for PMPC-PDPA.
23

  Above these pH values the tertiary amine 

becomes deprotonated creating a hydrophobic block which induces self-assembly. The 

ability of PMPC-PDPA block copolymers to further entrap hydrophobic dyes at 

physiological pH demonstrates its potential as a drug carrier. PMPC-PDPA nanoparticles 

were shown to be less cytotoxic than PMPC-PDEA.
23

  PMPC-PDPA has therefore been the 

focus of much research in drug delivery determining drug loadings and release kinetics.
25

  

Furthermore PMPC-PDPA vesicles have been shown to be a potential vehicle for DNA 

encapsulation and intracellular delivery which can be utilised to treat diseases by altering 

gene expression within specific cells.
26, 27

 

 

 

Figure 1-3. pH induced self-assembly of PMPC-PDPA block copolymer. 
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Armes et al. reported a novel polymerization system which drives in-situ self assembly.
28

  

The target block copolymer is PMPC-P(2-hydroxypropyl methacrylate) (HPMA) (Figure 

1-4) synthesized using a PMPC macroRAFT agent to mediate the RAFT polymerization in 

aqueous solution.
28

  The increase in the HPMA block length drives the self-assembly due 

to the insolubility of the resulting polymer.
28

  A range of PMPC25-PHPMAX (x = 100-400) 

block copolymers were used to elucidate a morphological transition diagram investigating 

the effects of two parameters; the hydrophobic block length and the total solid 

concentration.
28

   

 

Figure 1-4.  Structure of PMPC-PHPMA. 

 

The range of polymers and conditions produced pure morphological phases allowing for 

the reproducible preparation of specific morphologies i.e. sphere, worm or vesicle.
28

  The 

polydispersity of these polymers were shown to broaden upon increasing the hydrophobic 

block length ranging from 1.22 to 1.73 due to the presence of a high molecular weight 

shoulder attributed to branching of the dimethacrylate impurity.
28

  Branched polymers are 

composed of a main chain with one or more substituents i.e. side chains or branches, 

branching can result in the broadening the PDI because the branched chains contribute 

more to the Mw than Mn therefore as polymers rapidly build up molecular weight the 

molecular weight distribution increases. 
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Figure 1-5. Coordination of PMPC- Poly(glycerol monomethacrylate) to iron atoms. 

 

Double hydrophilic block copolymers composed of MPC and poly(glycerol 

monomethacrylate) have been used to stabilise a dispersion of magnetite nanoparticles.
29

 

The diol moiety of glycerol monomethacrylate can form a five membered chelate with iron 

atoms as shown in Figure 1-5 and PMPC imparts steric stabilization and as a surface 

coating increases the biocompatibility of the nanoparticle .
29

  These sols can be utilised as 

contrast agents for magnetic resonance imaging.
29

  PMPC-PDMA block copolymers have 

been utilised as a surface coating for gold nanoparticles as DMA acts as a reducing agent 

for HAuCl4
-
.
30

  The resulting tertiary amine subsequently binds to the surface of the gold 

nanoparticle, these biocompatible block copolymer stabilised gold sols have applications in 

biomedicine e.g. cell imaging.
30

  

Synthesis of PCl60-PMPC37 diblock copolymers was reported by combining ROP and 

ATRP.
31

  Chain extension of the PCl-Br macroinitiator generated a diblock copolymer 

with a narrow polydispersity of 1.29.
31

  The block copolymer was shown to form vesicles 

upon self-assembly via direct dissolution at 70 
o
C with a diameter range 40-500 nm for the 

same vesicles.
31

  These nanoparticles were subsequently stabilised by aqueous sol-gel 

chemistry; solubilising tetramethyl orthosilicate in the hydrophobic membrane before 

silification to generate water soluble polymer/silica hybrid vesicles.
31

 

 

1.1.4 PMPC Triblock Copolymers 

Several MPC based triblock copolymers have been evaluated for biomedical applications 

researching thermoresponsive and pH amphiphilic triblock copolymers.  pH responsive 

PDPA-PMPC and PDEA-PMPC triblock copolymers were prepared by ATRP using the 

bifunctional initiator, diethyl-meso-2,5-dibromoadipate.
32

  Under basic conditions the 
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amine residues become deprotonated and therefore hydrophobic which induces self-

assembly.
32

  High concentrations of the copolymer result in the formation of micellar gel 

networks where longer PMPC block lengths bridge adjacent micelles whereas at low 

concentrations flower micelles are observed.
32

  These systems were evaluated for the drug 

release of the cardiovascular drug dipyridamole, at pH 7.4 a slow sustained release was 

observed but under acidic conditions release was rapid and thus demonstrates potential for 

biomedical applications.
32

 

Armes reported a range of thermo-responsive gelators based on PMPC ABA and ABC 

type triblock copolymers via ATRP.
33-35

  PNIPAM-PMPC triblock gelators formed at 37 

o
C at high concentrations of the block copolymer.

33
  The cell viability experiments proved 

gels could act as a cell medium and for 5-10 % gels cells were cultured on tissue culture 

plastic. 
33

 However, cells were not viable when cultured in 20 % gel attributed to the higher 

viscosity of the gel resulting in poor diffusion of nutrients and waste from the cells.
33

  

Theses gelators show potential for drug delivery as well as for tissue engineering.  PPO-

PMPC-PNIPAM doubly thermoresponsive triblock copolymers were synthesized and self-

assembled targeting different morphologies based on the different LCSTs leading to 

micellization or gelation.
34

  These gelators were less effective than ABA types forming 

free standing at only 20 % concentration or by increasing the temperature above 40 
o
C.

34
  

A new class of biochemically degradable thermo-responsive gelators was reported; 

PNIPAMx–PMPCy-S-S-PMPCy–PNIPAMx.
36

  The triblock copolymer was synthesized 

using the ATRP bifunctionalized initiator (bis[2-(2-bromoisobutyryloxy)ethyl] disulfide 

previously reported by Tsarevsky and Matyjaszewski (Figure 1-6).
37

  The triblock 

copolymer was shown to form a free standing gel at 10 % w/v at 37 
o
C.

36
  Glutathione was 

utilised to cleave the disulfide bonds forming amphiphilic block copolymers as evidenced 

by the GPC results and with the formation of a free flowing liquid.
36

  These triblock 

copolymers have been shown to degrade under physiological conditions using naturally 

occurring glutathione.
36

    

PHPMAx–PMPCy-S-S-PMPCy–PHPMAx was synthesized using a similar methodology to 

form biochemically degradable thermoresponsive gelators for biomedical applications.
38

  

NIPAM is unfortunately not suitable for use in the biomedical field as it is relatively 

expensive and a potent neurotoxin thus HMPA was explored as an alternative.  The HMPA 

based triblock copolymers has been shown to be biodegradable with the intermicellar 

bridges cleaved at the disulfide bond under mild conditions.
38

  The biocompatibility of 

these gels were investigated for wound dressing applications.  Cell viability tests showed 
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that the gels displayed no adverse effects when in contact with tissue engineered skin thus 

providing further scope for these materials as wound dressings.
38

 

 

 

 

Figure 1-6.  Synthesis of MPC triblock copolymer; (i)MPC, CuBr/bipyridine, methanol, 20
o
C 

(ii).NIPAM, CuBr/Me4Cyclam methanol, 0 
o
C. 

 

PDMS–PMPC triblock copolymers were used to impart biocompatibility to a PDMS 

surface reducing bio-fouling and as a result improve the performance of biomedical 

devices.  PEGylation is often employed for this purpose but has demonstrated cell adhesion 

following long term exposure as a result of the hydrolytic degradation of the 

poly(oligo(ethylene glycol) methylether methacrylate) (POEGMEMA) backbone coating, 

thus an alternative anti-biofouling surface was investigated.
39, 40

  The triblock copolymers 

were synthesized by RAFT polymerization of MPC using RAFT functionalised poly(vinyl 

methyl siloxane-co-dimethylsilane) producing polymers with a PDI range of 1.27-1.63.
40

  

The triblock copolymer was covalently bound to the surface by hydrosilation, the surface 

was shown to reduce platelet adhesion and protein adsorption and the results were 

influenced by the molecular weight and MPC density of the block copolymer.
40

  The 

biological responses on a phase separated PDMS-PMPC triblock surface was also tested 

finding protein adsorption on the hydrophobic domains and minimal cell adhesion for high 

PMPC compositions.
41

  At 45 % PMPC composition considerable cell adhesion occurred 

although the surface is regarded as a hydrophilic surface the hydrophobic domains 

determined the biological response.
41

 

 

1.1.5 Synthesis and Self Assembly of PLA-PMPC Block Copolymers 

PLA-PMPC diblock copolymers have been synthesized and their self-assembly studied due 

to their potential in drug delivery.  The combination of biocompatibility and 

biodegradability makes these amphiphilic block copolymers ideal for biomedical 

applications.  The block copolymer is prepared by a combination of ROP and ATRP; 

where the ROP of lactide is terminated by 2-bromo-2-methylpropionyl bromide forming 

the macroinitiator used for ATRP of MPC (Figure 1-7).
42-44

  The self-assembly of these 
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polymers have been studied examining various hydrophilic weight fractions (fMPC) using 

various preparation techniques.  Ji et al. reported the formation of large compounds 

micelles with an average diameter of 1.1x10
3 

nm for low molecular weight block 

copolymer PLA37-PMPC3 with fMPC of 0.23.
43

  Aggregates were prepared via an injection 

method.
43

  Giant vesicles were similarly prepared from block copolymers with fMPC of 0.48 

and 0.53 with diameters of 3.5 ± 1.6 µm and 11.0± 3.9 µm, respectively, and are of great 

interest as a cell model.
44

  PLA126-PMPC36 with fMPC of 0.54 self-assembled via dialysis to 

form vesicle morphologies.
44

  Vesicles with a diameter range of 118-156 nm were shown 

to form from the self-assembly of block copolymers composed of a significantly larger 

PMPC block length.
42

  The aggregates formed by the self-assembly of PLA-PMPC diblock 

copolymers were shown to encapsulate fluorescent dyes thus providing scope for drug 

delivery 

 

 

Figure 1-7. Synthesis of PLA-PMPC block copolymer; (i) n-butyl lithium, lactide, toluene, 70 
o
C 

(ii) 2-bromo-2-methylpropionyl bromide,(iii). MPC, CuBr/bipyridine, DMSO/methanol. 

 

PLA-PMPC micelles and polymersomes have been applied for the delivery of the potent 

anti-cancer doxorubicin (DOX) evaluating its efficacy and cytotoxicity.
45

  The micelles 

formed were less than 50 nm which is advantageous for drug delivery as small 

nanoparticles (10-100 nm) e.g. micelles, can evade uptake by the mononuclear phagocyte 

system (MPS) due prolonging circulatory time in the blood stream and suppresses 

unfavourable immuno-response.
45

  Polymeric micelles of 20-100 nm have are been shown 
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to preferentially accumulate in tumour tissue due to the enhanced permeability and 

retention effect; the increased porosity of the vascular surrounding the tumour and poor 

lymphatic drainage system.
46

  Slow drug release from the DOX loaded micelles was 

observed for lower drug loading content which is required to maintain therapeutic effect.
45

  

The cytotoxicity of LO2 cells after incubation for 24 h with PLA-PMPC nanoparticles was 

determined using MTT method showing low cytotoxicity to cells with approximately 100 

% cell viability observed over 0.05-0.5 mg/ml micelle concentration.
45

  The cytotoxic 

effects on HepG2 cells (liver carcinoma cell line) by DOX loaded micelles after 48 h was 

similar to that of the free drug with 80 % cell death observed, thus the nanoparticle had 

been successfully internalised and the drug released in to the carcinoma cells.
45

 

PLA-PMPC based polymersomes loaded with the hydrophobic drug DOX in the PLA 

membrane and the hydrophilic drug DOX.HCl in the aqueous interior showed great 

potential in pharmaceutical applications.
47

 At pH 5 the degradation of PLA chains drives 

the morphological transition of polymersomes to micelles within 90 h; pH dependent 

morphological transition is a highly desirable property of nanoparticle drug carriers 

eliciting the release of the drug at the target site.
47

  The drug loading efficiency was 

reported to be higher in the membrane (34 %) than the polymersome interior (13 %).
47

  At 

pH 5, 98 % of the DOX.HCl was released in comparison to 52 % of the hydrophobic 

drug.
41

  The difference in release kinetics was attributed to the morphological transition 

under acidic conditions to form micelles.
47

  The cytotoxic effect of PLA-PMPC 

nanoparticles was determined using LO2 (normal cells) and HepG2 cells by the MTT 

method was minimal with approximately over 90 % cells viability observed for 0.05-0.5 

mg/ml micelle concentration.
47

  The MTT assay tests for the reduction of the MTT dye by 

mitochondrial succinate dehydrogenase, the reduction process can only occur in metabolic 

active cells thus indicating the viability of the cells. The cytotoxicity of the drug loaded 

nanoparticles was studied on tumour cells using the MTT method which reported similar 

results to the free DOX.HCl with 20 % cell viability.
47

  The acid endocytic compartments 

of tumour cells can therefore elicit the degradation of these nanoparticles releasing the 

hydrophilic drug effectively with the same potency as the free drug.  PLA-PMPC 

nanoparticles show great potential in the delivery of cancer drugs.
47
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1.2  Biodegradable Synthetic Polymers 

Synthetic biodegradable polymers are extremely versatile as their properties can be tailored 

to meet the requirements for specific applications through copolymerization and blending 

.
48

  Synthetic biodegradable polymer have been utilised in the biomedical field since the 

1960’s, but only over the last twenty years has there been a real interest in developing a 

new range of these polymers.
49, 50  

During this period new biodegradable polymers have 

emerged; poly(carbonates), poly(caprolactone) (PCL), poly(anhydrides) (PA).
49, 51, 52

  The 

drive for progress coincided with the advances in biomedical technologies such as tissue 

engineering, gene therapy and controlled drug delivery.
49

At that time the properties of the 

current synthetic biodegradable polymers i.e. PLA and poly(glycolide) PGA, would not 

have met the requirements of the increasing number of applications.
51

 

 

1.2.1 Ring Opening Polymerization  

Aliphatic polyesters are synthesized via two routes; ROP and polycondensation.  There are 

several drawbacks associated with the latter route, firstly the reaction is limited by 

equilibrium and is hence carried out under extreme conditions to remove the water from 

the system.
53

  High temperatures will drive the reaction forward to achieve high conversion 

and high molecular weight polymers.  The monomer units are, however, thermally unstable 

and thus high temperatures will favour side reactions such as dehydration and 

decarboxylation.
53

  Other disadvantage of this method include the inability to prepare high 

molecular weight polymers as well as the inability to control the polymer molecular weight 

which results in a broader polydispersity index (PDI) limited by Carothers equation.
53

 

The ROP method first demonstrated by Carothers in 1932 is a more favoured route for the 

preparation of polyesters.
54

  There are several mechanisms for ROP; anionic, cationic, 

coordinative, radical and enzymatic.  ROP is a form of chain growth polymerization 

generates high molecular weight polymers under mild conditions in contrast to 

polycondensation (step growth polymerization).  The molecular weight for chain growth 

polymerization increases rapidly at the initial stages of polymerization and remains the 

same throughout the polymerization whereas during stepwise polymerization molecular 

weight increases slowly and to obtain high molecular weight polymers high conversions 

must be reached.   Furthermore, a greater control over the degree of polymerization (DP) is 

obtained by chemical ROP by using a specific monomer to initiator molar ratio which 

leads to a narrow PDI.
55, 56
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1.2.1.1 Thermodynamics 

Since the 1930’s many cyclic monomers have been successfully polymerised via the ROP 

method.  ROP of cyclic monomers is driven by the relief of ring strain, this favourable 

enthalpic contribution will overcome the unfavourable entropic contribution observed for 

all polymerizations.
53

  Generally the ring strain associated with three and four membered 

cyclic esters is greater than that for five and seven membered rings and hence there is a 

greater driving force for their ring opening.
53

  The ring strain associated with 3 and 4 

membered rings is due to bond angle distortion which is greater than both the 

conformational strain in a 5-membered ring and the transannular strain in a 7-membered 

rings.
57

   Table 1-1
58

 provides the enthalpic and entropic contributions for ROP of 4-7 

membered lactones and lactide.  The enthalpy for the ROP of γ-butyrolactone is positive, 

the monomer will therefore not undergo polymerisation unlike the 6 membered lactone δ-

valerolactone despite both having a ring strain energy of approximately 33 kJmol
-1

.
59

 
 

Houk et al.
59

 explained the difference in reactivity was attributed to the low ring strain 

associated with the five membered lactone which demonstrated little distortion around the 

ester functionality in comparison to valerolactone.
59, 60

 

 

Table 1-1. Enthalpy and entropy of the ROP of cyclic esters at 298 K. 

Cyclic Ester  

Propiolactone 

 

Butyrolactone 

 

Valerolactone 

 

Lactide 

 

Caprolactone 

 

∆Hp /kJ mol
-1

 -82.3 5.1 -27.4 -22.9 -28.8  

∆Sp /J mol
-1

 K
-1

 -74.0 -29.9 -65.0 -25.0 -53.9  

 

1.2.1.2 Transfer Processes 

There are two predominant side reactions which occur during propagation of polyester 

chains; intramolecular and intermolecular transesterification.  These transfer reactions lead 

to the broadening of the PDI.
48

 

 

 

Figure 1-8. Intramolecular tranesterification or back-biting of a propagating polymer chain. 
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Intramolecular transesterification or back-biting shown in Figure 1-8
48

 occurs through the 

nucleophilic attack of the reactive chain end upon labile ester linkages resulting in the 

formation of cyclic oligomers which lowers the molecular weight of the polymer.
48

  The 

cyclic oligomer can react further with propagating polyester chains to generate polymers of 

various chain lengths.
48  

Intermolecular transesterification (Figure 1-9
48

) involves the 

reaction of two propagating chains without losing the reactive chain ends giving rise to 

variation of the polymer sequence.
48  

The occurrence of these reactions are influenced by 

the choice and concentration of polymerization catalyst or initiator, temperature, reaction 

time and nature of monomer.
61, 62

 

 

 

Figure 1-9. Intermolecular transesterification of growing PLA chains. 

 

1.2.1.3 Coordination Ring Opening Polymerization 

Coordination polymerization has been used extensively for the synthesis of polyesters, 

using a wide variety of catalysts.  Many organometallic species have been reported for use 

in coordination insertion ROP such as various lanthanide complexes and non-toxic metal 

salts e.g. Zn.
55, 63-65

  The most common catalysts used are aluminium and tin alkoxides or 

carboxylates.
54

   

Coordinative insertion ROP is more favourable than ionic ROP due to the nature of the 

growing chain.  The propagating species is covalent in character and is therefore less 

reactive thus reducing the number of side reactions.
66

  For coordinative ROP there are two 

main reaction pathways with the organometallic reagent determining the route which is 

followed.  The organometallic reagent will act as either a catalyst or an initiator which 

gives rise to these two mechanisms.
55, 66

  The first is shown in Figure 1-10
55

 where the 

organometallic catalyst activates the monomer by complexation with the carbonyl moiety, 

enhancing the electrophilicity and thus increasing susceptibility towards nucleophilic 

attack.
55

  Nucleophiles added to the mixture e.g. alcohols, will subsequently attack the 

cyclic ester which initiates ROP.
55

  The second is a coordinative insertion mechanism 

illustrated in Figure 1-11
55

, in which the organometallic initiator coordinates to the 
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carbonyl group.
55

  The coordination increases the nucleophilicity of the ligand and the 

electrophilicity of the carbonyl moiety which leads to the O-acyl bond scission and 

simultaneous insertion of the monomer.
55

  Metal alkoxides will act as initiators whereas 

metal carboxylates take on a catalytic role as they are less nucleophilic.
66

  Both methods 

use a predetermined amount of initiator is used to control molecular weight and each have 

demonstrated controlled polymerisations with low PDIs.  The advantage of using the 

organometallic reagent as a catalyst is that these reagents are often toxic and in this method 

are utilised at lower concentrations. 

 

Figure 1-10. Coordinative ROP in which the organometallic reagent (M) acts as a catalyst. 

 

 

 

Figure 1-11. Coordinative ROP in which the organometallic reagent (M-OR) acts as an initiator. 

 

1.2.2 Aliphatic Esters 

1.2.2.1 Poly(lactide) 

Poly(lactide) (PLA) is prepared by the polymerisation of the lactide monomer.  The cyclic 

diester possesses two chiral centres giving to rise to three possible stereoisomers; LL, DD 

and LD isomers.  The polymers derived from LL and meso lactide will therefore be 

stereochemically different and thus will exhibit properties distinct from each other.   
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Figure 1-12. Polymerization of Lactide to PLA. 

 

PLLA is a semicrystalline polymer (37% crystalline) with a Tm range 170-183 
o
C and a Tg 

of 55-65 
o
C whilst PDLLA is completely amorphous with a Tg of 59

 o
C.

67  
The 

morphological and thermal property differences are attributed to the stereochemical 

outcome; stereoregularity results in the formation of the crystalline domain and will also 

raise the Tg.  It is also due to the crystallinity of PLLA that this polymer exhibits high 

mechanical strength with demonstrated tensile strength of 59 MPa.
67  

For PDLLA the 

random distribution of chiral configurations along the backbone impedes the ability of 

chains to form crystalline structures thus lowering the tensile strength of the polymer.
68

 

The morphology of the two stereoisomers also affects the rate of degradation since the 

crystalline domain is more resistant to hydrolysis than the amorphous domain.
67

  Generally 

PLLA is a slow degrading polymer due to its lipophilicity which will impact water uptake 

furthermore the degradation of PLLA is significantly slower than that of PDLLA.
49

  

PDLLA when hydrolysed loses its strength within 1-2 months whereas in comparison 

PLLA loses its strength after six months due to the resistance of crystalline regions to 

degrade .
49, 69

 

The stereoisomers are appreciably different in chemical, physical and mechanical 

properties and are thus utilised in different applications.  Due to the low strength 

mechanical properties and faster rate of degradation PDLLA for has been developed as a 

drug delivery device and as a low strength scaffold for tissue engineering.
67  

PLLA is 

predominantly used for load bearing applications such as orthopaedic fixation devices e.g. 

Phantom Suture Anchor®, but has also been investigated for use as scaffolds for ligament 

replacement.
49, 70, 71

  PLA has gained widespread use in the biomedical field due to the 

range of chemical, physical and mechanical properties demonstrated as well as the fact that 

PLA degrades to form non toxic by-product lactic acid which is a normal human metabolic 

by-product which is further broken down to carbon dioxide and water.
49
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1.2.2.2 Poly(glycolide) 

Poly(glycolide) (PGA) was one of the first synthetic biodegradable polymers to be used for 

biomedical applications.  In the 1960’s Davis and Greck developed PGA as a resorbable 

suture marketed as Dexon
®
, because of its excellent fibre forming ability.

49, 68
  PGA is a 

semi-crystalline (45-55 % crystallinity) polymer, the close packing of the ester groups 

contributes to a high Tm(224-230 
o
C) and Tg of the polymer ranges from 35-40 

o
C.

50
  This 

polymer demonstrates excellent mechanical strength, which is due to its high 

crystallinity.
49

  PGA exhibits a high tensile strength and a tensile modulus of 12.5 GPa.
49, 69

  

PGA degrades to form glycine which is non-toxic and biocompatible which is metabolised 

in the citric acid cycle to water and carbon dioxide.
49 

 

 

Figure 1-13. Polymerization of glycolide to PGA. 

 

PGA has also been developed as bone internal fixation devices (Biofix
®
) due to its 

mechanical properties which are ideal for load bearing applications.
49

  Glycolide is often 

copolymerised with monomers to improve the mechanical properties of homopolymers e.g. 

poly(trimethylene carbonate) and broaden the scope of these polymers.
49

  The most 

researched glycolide copolymer is Poly(LA-co-GA) i.e. P(LGA), using both the L, L and 

meso-isomer.  A wide variety of compositions have been developed for a wide array of 

biomedical applications.
49

  PLGA are predominantly used to form sutures which vary in 

their rate of degradation depending on the LA:GA ratio.
49, 72

  PLGA has also been used to 

develop tissue engineering applications as it demonstrates good cell adhesion and 

proliferation.
49

  Another application of PGLA is drug delivery; Lupron Depot
® 

composed 

of PLGA releases gonodotropin for prostrate cancer.
49

  

 

1.2.2.3 Poly(caprolactone) 

Poly(caprolactone) (PCL) is formed by the ROP of the seven membered lactone ε-

caprolactone.
49

 This polymer demonstrates extremely useful properties and has therefore 

been extensively studied for potential applications in the biomedical field.  PCL is a 

semicrystalline (50 % crystalline) polymer with a Tm range of 59-64 
o
C and a low Tg of 

approximately -60 
o
C, therefore will exist in a rubbery state and demonstrates low tensile 
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strength (23 MPa).
48, 49  

In addition this polymer is hydrolytically labile degrading over a 

period of 2-3 years which is slower than that of PLA, chain scission of PLA is 2.8 times 

faster than PCL.
49, 73

  PCL degrades chemically and enzymatically yielding non-toxic and 

biocompatible 6-hydroxycaproic acid which is completely metabolized in the citric acid 

cycle.
65, 74

 

 

 

Figure 1-14. Polymerization of ε-caprolactone to PCL. 

 

The slow degradation rate coupled with its permeability to small molecules makes PCL 

ideal for sustained drug delivery.
65

  Capronor® is a one year contraceptive delivery device 

composed of PCL which releases the drug levonorgestrel.
75

  Copolymerisation has been 

significant to the versatility of PCL in drug delivery, orthopaedics and tissue engineering, 

having been used to manipulate the degradation rates and improve mechanical properties.  

PCL demonstrates low mechanical strength and stiffness (0.4 GPa), copolymerisation with 

glycolide improves mechanical properties - poly(CL-co-GA) is used as a monofilament 

suture which is commercially known as Monocryl®.
68

  Caprolactone has also been 

copolymerized with D,L-lactide to accelerate the rate of degradation by disrupting 

structural regularity.
68  

It is important in tissue engineering for degradation rates of 

polymers to be adjusted to meet the new tissue formation rate e.g. bladder, liver and skin. 

 

1.2.3 Degradation via Hydrolytic Chain Scission 

1.2.3.1 Mechanism 

The mechanism and kinetics of the degradation of polyesters has been extensively 

investigated.
76-78

  The hydrolytic degradation of aliphatic polyesters and their copolymers 

are similar.
73, 79

  Initially water penetrates the amorphous domain and will cleave ester 

linkages since the crystalline domain is more resistant to hydrolysis.  The crystalline 

regions will begin to degrade when most or all of the amorphous regions have degraded.  

Chain scission is random generating shorter polymer chains with hydroxyl and carboxylic 

acid end groups.  The degradation of polyesters is an autocatalytic process therefore the 

increase of carboxylic end groups of the degradative products accelerates chain scission 

which ultimately increases the rate of degradation.
78

  The polymer degrades generating 
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lower molecular weight chains and water soluble monomers and oligomers which leads to 

a loss of polymeric material.
78

   

 

1.2.3.2 Factors Affecting Degradation 

1.2.3.2.1  Chemical Bonding 

The rate of degradation is determined primarily by the type of functionality present in the 

backbone.
80

 Generally PAs and poly(ortho ester)s are more reactive  towards hydrolysis 

with half lives of 0.1 h and 4 h, respectively, poly(ester)s degrade more slowly with a half 

life of 3.3 yr.
81, 82

  These figures are variable with the chemical environment surrounding 

labile bonds for example the degradation of PLA is relatively slow due to sterics as the 

methyl group impedes hydrolysis.
51

 

 

1.2.3.2.2 Water Uptake 

Hydrophilic polymers are able to adsorb large quantities of water, thereby increasing water 

concentration and in turn the degradation rate.  In comparison, hydrophobic polymers for 

which water uptake is minimal, display degradation rates which are much slower.
83, 84

   

 

1.2.3.2.3 The Effect of Copolymer Composition 

Copolymerization affects the rate of degradation in two ways; the first is that 

copolymerization influences polymer morphology.  A homopolymer or a polymer 

composed mainly of one type of monomer is likely to be semicrystalline and it is well 

established that the rate of degradation of semi-crystalline polymers is slower than that of 

completely amorphous polymers.
78

  The other way is that the rate of  hydrolysis for ester 

linkages are not the same; hydrolytic studies of PLGA of various compositions showed 

that by increasing the PGA content  the rate of hydrolysis also increased.
85

  There are 

several explanations for the faster hydrolysis rate; glycolide repeating units are more 

hydrophilic than lactide units thus increases water uptake, and encourages dissolution of 

higher molecular weight glycolide oligomers.
85

     

 

1.2.3.2.4 The Effect of pH   

The hydrolysis of ester linkages can either be acid or base catalysed.  The degradation of 

PLA and PLGA sutures were reported in terms of retained tensile strength it was found 

that the degradation of PLGA sutures was greatest at both pH 5 and 10 whilst for PLA 

degradation was higher in an alkaline environment.
86

  Degradation rates were high at low 
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pH due to autocatalysis; the acidic carboxylic acid end groups generated accelerate 

hydrolysis by lowering pH.
87

  Hydrolysis of PAs is also catalysed by acid or base but 

increases with an increase in pH, the rate of degradation of poly(bis-(p-

carboxyphenoxy)propane anhydride),  for example,  increases 10 fold by increasing the pH 

from 7.4 to 10.
83

 

 

1.2.4 Biomedical Applications 

1.2.4.1 Tissue Engineering  

Tissue engineering (TE) is a relatively new interdisciplinary field bringing together cell 

biology, materials science, reactor engineering and clinical research to construct new 

tissues and organs.
88

  The creation of this field was prompted by the donor shortage 

situation in the United States where only a tenth of patients waiting on a liver transplant 

proceed to surgery.
89

  The scope of TE is vast; the ability to restore and improve tissue 

function has huge therapeutic potential in diseases synonymous with aging and lifestyle 

such as diabetes, heart disease and osteoarthritis.
90

 

The concept of TE  is based on the ability of cells to form tissues and, if cultured in three 

dimensions, ultimately organs.
88, 91  

Tissue regenerated from patient cells has the advantage 

that it is free of immune rejection and unfavourable immune response.
92

  Most tissues are 

composed of cells and extracellular matrix (ECM), hence any tissue lost through damage 

or disease will result in the loss of the ECM.
92

  TE involves the incorporation of cells into a 

three dimensional framework i.e. a scaffold.  These scaffolds provide a substrate for cells 

to attach, proliferate, differentiate and subsequently form the ECM.
65, 92

   The physical and 

chemical properties of the scaffold help create a favourable environment for tissue 

formation.
88

  A wide range of materials have been investigated for use as a scaffold e.g. 

ceramics and metals, but it is the chemical and mechanical properties of polymeric material 

which have been shown to closely resemble that of most biological tissues.
88, 93 

Synthetic polymers have been investigated as possible scaffolds as their properties can be 

tailored to match that of the biological tissue in terms.
88, 94  

It is essential that scaffolds be 

biodegradable to avoid disrupting tissue regeneration or provoking a foreign body 

reaction.
92

   The rate of tissue regeneration should correspond to the rate at which the 

scaffold degrades.
92

  It is essential that a polymeric scaffold be permeable, cell adhesive 

and porous with pore sizes that match the candidate cells for the scaffold to be effective.
65

  

Polyesters; PLA, PGA and PCL and copolymers, are widely used in tissue engineering, 
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however, their shortcoming is the hydrophobicity of the polymer backbone which can lead 

to a lack of cellular attachment and interaction.
88, 95-97  

Other biodegradable polymers which 

have been investigated for use in TE include poly(carbonate)s, poly(orthoester)s and 

poly(phosphagene).
98  

Stevens and Howdle have both made significant contributions to the 

area, creating scaffolds composed of polymeric and inorganic material and composites of 

both.
99-101

  Howdle et al. has published a lot of work on the use of supercritical carbon 

dioxide to create porous polymeric scaffolds these foams have been studied for gene 

therapy and the regeneration of cartilage tissue.
99, 102

  Stevens et al. reported the use of 

hydrogel scaffolds that incorporates growth factors for cartilage TE and developed 

functionalised poly(glutamic acid) fibrous scaffolds with potential TE applications.
103, 104

 

 

1.2.4.2 Controlled Drug Delivery 

Drugs have been traditionally and more commonly been administered orally or 

intravenously as a single dose.  The disadvantages of this are that the drug is administered 

at a close to toxic concentration causing side effects, poor absorption, repetitive 

administration and the potential for overdose. The therapeutic effect of drugs is only 

achieved by administered and maintaining a long term drug concentration.
105

 Controlled 

drug delivery devices were developed to change the release of the drug in the body in order 

to eliminate possible under- and over-dosing, reduce dosages, provide site specific delivery 

and reduce drug side effects.  The challenges faced by these systems is finding a suitable 

delivery system which is biocompatible, generates non-toxic metabolites, mechanically 

strong, capable of loading high amounts of drugs and provide site specific delivery.
106

  

Drug delivery devices based on polymeric material meet the majority of these 

requirements.
106

 

The strategy is for the drug to be released by the pH triggered hydrolysis of nanoparticles 

or a degradable polymer matrix as material is lost by erosion, or by dissolution or diffusion 

of the drug.
105

  Biodegradable polymers are preferred because these polymers and their 

metabolites are biocompatible and bioresorbable and there is no need for a second 

surgery.
105

  The rate of degradation and type of erosion of these devices is important 

because it ultimately controls the rate of drug delivery and is a factor considered for the 

type of therapy and duration of release.
105, 107

 Polyesters, poly(ortho-ester)s and PAs have 

all been studied as a potential drug delivery matrix.
49, 105
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1.2.4.3 Orthopaedic Applications 

In the field of orthopaedics, biodegradable polymers have been utilised to construct 

fracture fixation devices; screws, pins, staples, clips and suture anchors.
108

  It is believed 

that biodegradable polymers will eventually replace the use of metallic implant.
65

  In 2011 

Johnson & Johnson recalled the DePuy ASR hip implant after patients reported adverse 

effects arising from metal poisoning which required medical attention and in some cases 

corrective surgery.
109

 The benefits of this are that a second surgery to remove the implant 

which poses a degree of risk to the patient is no longer required and  it avoids corrosion.
65

  

The main problem with using metallic fixation devices is that the fractured bone has a 

greater tendency to re-fracture upon removal of the implant as the load is predominantly 

carried by the implant rather than the bone during the healing process.
68

  This will, 

according to Wolff’s law, result in a stress shielding effect which increases the potential 

for re-fracture.
108

  The shielding stress effect does not occur with the use of biodegradable 

polymeric fixtures as the mechanical properties deteriorate during polymer degradation.
65, 

108
  The device can, therefore, only support a decreasing amount of stress thus allowing for 

the gradual transfer of load from the implant to the healing bone. Although advantageous 

these materials can induce an inflammatory response at the location of the implant through 

acidosis caused by polymeric degradation.
110, 111

 

 

1.2.4.4 Other Biomedical uses 

Biodegradable polymers have long been used as resorbable sutures, this was in fact one of 

the first applications of aliphatic polyesters for biomedical use.  The success of these 

polymers as sutures was due to their rapid degradation and ability to be produced as strong 

filaments.  The most widely resorbable sutures are all based on PGA and PLA copolymers.  

In addition specialty packaging composed of polymeric material has been utilised for the 

packaging of drugs and wound dressing as it acts as barrier against gas and liquid. 

 

1.3 Reversible Addition-Fragmentation Chain Transfer 

(RAFT) Polymerization  

1.3.1 History 

Radical addition fragmentation has been used in organic chemistry since the early 1970’s 

such as the Barton-McCombie deoxygenation process with xanthates.
112

  This chemistry 
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was exploited in the late 1980’s as a means of controlling polymerization reactions using 

addition fragmentation chain transfer agents including allyl sulphides,
113

 allyl bromides,
114

 

vinyl ethers
113

 and thioesters.
115

  Polymerizations exhibiting living characteristics with the 

reversible addition fragmentation transfer were reported in 1995.
116, 117

  Reversible 

addition-fragmentation chain transfer (RAFT) polymerization was first devised in 1998; 

reporting the first use of thiocarbonylthio RAFT agents mediated polymerization.
118

  

RAFT polymerization has become one of the most widely used polymerization techniques 

alongside nitroxide mediated polymerization (NMP) and atom transfer radical 

polymerization (ATRP). 

The advantages of RAFT polymerization over other controlled radical polymerization 

techniques i.e. NMP and ATRP, is that it demonstrates compatibility with a wide range of 

polymers and reaction conditions as well as a high tolerance to functional monomers.  

RAFT polymerisation has been employed to access block copolymers, stars and other 

complex architecture.  However there are several shortcomings; a particular RAFT agent is 

only suitable for a limited selection of monomers.  The synthesis of RAFT agents is 

usually a multistep procedure with further purification steps which often leads to low 

product yields.  Furthermore the C-S bond of the thiocarbony thio moiety is particularly 

labile and can therefore undergo several side reactions e.g. hydrolysis.  

 

1.3.2 Mechanism 

RAFT polymerization demonstrates living characteristics controlling the molecular weight 

and architecture through the suppression of termination processes by the reversible 

trapping of a propagating radical as a dormant species using a RAFT agent.
119

  The general 

structure for a RAFT agent is given in Figure 1-15. 

 

 

 

Figure 1-15. General structure of RAFT agent. 

 

The mechanism of RAFT polymerization is given in Figure 1-16.  The mechanism is 

similar to the conventional radical polymerization, however, the key feature of RAFT 

polymerization is the sequence of addition–fragmentation equilibria.  During the reversible 

chain transfer step the addition of the propagating radical to the thiocarbonyl moiety of the 
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RAFT agent occurs to form an intermediate carbon centered radical.
120

  The radical 

intermediate subsequently undergoes β-scission to either form the leaving group radical 

(R) or re-form the propagating radical.
120

  The chain equilibrium step involves the reaction 

of propagating radical with the macroRAFT agent.
120

  Rapid equilibrium between the 

propagating radicals (Pn and Pm) and the dormant macroRAFT agents allows for an equal 

probability for all chains to grow at equal rates thus leading to a controlled polymerization 

generating polymers with narrow polydispersities.
120

  The rapid interchange in the 

addition-fragmentation steps (reversible chain transfer and chain equilibrium) maintains a 

low concentration of propagating radicals thus limiting termination reactions via 

combination and disproportionation. 

 

Initiation 

 

 

Reversible Chain Transfer 

 

          1                          2                         3 

Reinitiation 

 

Chain equilibrium 

 

Termination via combination and disproportionation 

 

 

Figure 1-16. RAFT polymerization mechanism.
119
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1.3.2.1 Rate Transfer Constants 

The efficacy of the RAFT polymerization is evaluated by the consumption of the RAFT 

agent and monomer which depends on two transfer coefficients, Ctr=ktr/kp and C-tr=ktr/ki 

which describes the reactivity of both the propagating and expelled radical.
120, 121

  The rate 

coefficient ktr of a RAFT agent is given in equation 1, it is influenced by the rate of 

addition of the propagating radical (Pn) to the RAFT agent and a partition coefficient which 

gives the partitioning of the radical intermediate between the starting material i.e. the 

release of the propagating radical and products i.e. release of R radical leaving group.
121

 

 

          
   

        
 

The rate coefficient associated with the formation of the macroRAFT (Figure 1-16, 3) 

agent is given by equation 2 where the leaving group radical is partitioned between 

reinitiating polymerization and addition to the macroRAFT agent.
121

  Knowledge of these 

rate coefficients provides an understanding of the RAFT agent activity. 

 

          
    

        
 

 

1.3.3 RAFT Agent 

The choice of RAFT agent is significant to the success of the polymerization, a range of 

common RAFT agents are shown in Figure 1-17.  For a successful polymerization there 

are several requirements of the RAFT agent; the thiocarbonyl moiety must be reactive 

enabling high rates of addition during the reversible chain transfer step (pre-equilibrium), 

the fragmentation of the radical intermediate should occur rapidly avoiding side reactions 

and should fragment in favour of product macroRAFT agent to expel the R radical which 

should subsequently reinitiate polymerization.
119

  The efficacy of the RAFT agent depends 

on the properties of the R and Z groups which will influence the rate of addition, 

fragmentation and reinitiation.  

(1) 

(2) 
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Figure 1-17.  Selection of RAFT agents (I) 2-(dodecylthiocarbonothiolthio)-2-methylpropionic 

acid (DDMAT), (II) cyanomethyl dodecyl trithiocarbonate, (III) cyanomethyl 

methyl(phenyl)carbamodithioate, (IV) 2-cyanopropan-2-yl benzodithioate, (V) CPADB.  Z groups 

(pink) and R groups (blue) are indicated. 

 

The role of the R group is such that a balance is required between the leaving and 

reinitiating abilities.  The triphenylmethyl radical for example is a good leaving group 

however is inadequate for reinitiating polymerization and would result in retardation of 

polymerization.
120

  Factors which influence the efficiency of the R group include sterics, 

radical stability (conjugated systems) and polar effects.
119

  Increased radical stability and 

steric bulk improves the leaving group capabilities favouring the fragmentation of R 

relative to the propagating species (Pn), however, this can impede the reinitiation of 

polymerization if R is too stable.
122

  Electron withdrawing groups improves the 

fragmentation of R by increasing the electrophilicity of the resultant radical and also 

increases the rate of reinitiation due to its greater affinity for the electron rich vinyl 

moieties of the monomer.
122

  It is suggested that R should be structurally similar to the 

monomer of the propagating radical, however, this is incorrect as the strain  relieved on 

rehybridization of the active centre increases in the order tertiary > secondary > primary 

therefore the polymeric radicals are  better leaving groups than monomeric radicals.
120

  

This was evidenced by the polymerization of methyl methacrylate with a RAFT agent 

(Figure 1-18) where R is 2-ethoxycarbonylpropyl which was shown to be a poor leaving 

group w.r.t to the methyl methacrylate propagating radical.
123

 

 

 

Figure 1-18. Structure of RAFT agent 2-(ethoxycarbonyl)prop-2-yl dithiobenzoate.   

 

= R 
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The Z group influences the reactivity of the thiocarbonyl bond towards radical addition by 

the propagating species and stability of the radical intermediate.
119

  The Z group should 

impart minimal stability to the radical intermediate, enhanced stability can lead to side 

reactions can lead to polymerization retardation and inhibition.
122

  The rate of addition is 

higher when Z=aryl, alkyl dithioesters and lower when z = O-alkyl xanthates.
120

  The chain 

transfer coefficient generally follows the trend 

dithioesters>trithiocarbonates>dithiocarbonates (xanthates)>dithiocarbamates.
120

  The low 

activity of O-alkyl xanthates and N’N-dialkyldithiocarbamates towards addition is 

explained w.r.t the zwitterionic canonical forms (Figure 1-19) as a result of the interaction 

between the lone pair on the O or N and the thiocarbonyl bond.
119

  An electron 

withdrawing group on the Z group can enhance the activity of the 

xanthates/dithiocarbamates by making the lone pair on the O and N less available for 

delocalization.
120

 The low activity of these RAFT agents makes them ideal for the 

polymerization of VAc and NVP where the propagating radical is a poor homolytic leaving 

group.
119

  Electron withdrawing groups generally enhance the activity of the RAFT agent 

by increasing the electrophilicity of the thiocarbonyl bond and in turn the rate of addition 

e.g. ring substituted cyanisopropyldithiobenzoate.
120, 124

 

 

 

Figure 1-19. Canonical structures of xanthates, dithiocarbonates and trithiocarbonates.
119

 

 

1.3.3.1 Cytotoxicity of RAFT Agents 

The cytotoxicity of a selection of RAFT agents was evaluated due to the increasing 

utilization of RAFT polymerization for the generation of polymers for biomedical 

applications and availability of RAFT agents.  Biocompatible polymers; P(OEG-A), 

P(OEG-MA) and P(HPMA) bearing either a trithiocarbonate or a dithiobenzoate RAFT 
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end group were studied on different cell lines.
125

  The cells incubated with POEG based 

polymers after 24 h shows high cell viability of 99 % thus no cytotoxic effect was observed 

for CHO-K1 (hamster ovary) and NIH3T3(mouse embryonic fibroblast), however with 

respect to the murine macrophage cell line the cell viability was significantly lower for 

dithiobenzoate end-capped P(OEG-MA) and P(OEG-A) cell viability 73 % and 85 % 

respectively.
125

  The trithiocarbonate showed little toxic effects with approximately 100 % 

cell viability observed. Long term incubation i.e. 3  days, was assessed for trithiocarbonate 

and dithiobenzoate end capped P(OEG-A), for each cell line cell viability either slightly 

decreased or remained the same as that observed after 24 h incubation.
125

  The cytotoxicity 

studies of RAFT functionalized P(HPMA) showed dithiobenzoate endcapped P(HPMA) 

were highly toxic to all cell lines - it was suggested that the 

hydroxylpropylmethacrylamide side groups interact with the dithiobenzoate RAFT group 

or residual impurities in the RAFT agent leading to this toxic effect.
125

  Upon removal of 

the RAFT end group the cell viability was reported to be 100 %, in addition all cell lines 

were viable upon reducing the concentration of dithiobenzoate end capped PHPMA.
125

  

The cytotoxicity study showed that the toxicity is influenced by both the chosen RAFT 

agent and the class of polymer.  Cytotoxicity of RAFT also varies amongst different cell 

types therefore each potential polymer for biomedical applications should be assessed and 

trends cannot be derived between the polymer and toxicity. 

 

1.3.4 Synthesis of Diblock Copolymers by RAFT Polymerization and other 

Polymerization Techniques 

The combination of RAFT polymerization with other polymerization techniques e.g. ROP 

and ATRP, has enabled the synthesis of a range of block copolymers with advantageous 

properties.  There are several reported strategies for the synthesis of block copolymers 

composed of RAFT and non-RAFT polymers (Figure 1-20).  Non RAFT polymers are 

generally polyesters, PDMS and PEO.  The most widely used approach is to covalently 

attach a RAFT agent to a pre-formed functionalised polymer via either the R or the Z 

group and using the resultant polymer as a macroRAFT agent (Figure 1-20 strategy 1).  

RAFT agents or RAFT formed polymers may possess the functionality to initiate other 

polymerization techniques such as ROP generating the macroRAFT agent (Figure 1-20 – 

strategy 4) and block copolymer (Figure 1-20, strategy 3).  The least common pathways 

involve the conjunction of two preformed polymers with functionalities complementary to 
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each other (Figure 1-20, strategy 2) and a one pot synthesis for the block copolymer 

where RAFT and non-RAFT polymerization occur concurrently (Figure 1-20, strategy 5).  

     

 

Figure 1-20. Range of strategies employed for block copolymer synthesis combining a RAFT 

polymer (green sphere) with a non-RAFT polymer (blue spheres).
126

 

 

1.3.4.1 RAFT Functionalization of Non-RAFT Polymer followed by RAFT Polymerization 

Strategy 1 (Figure 1-20) is the most frequently used route for combining RAFT and non-

RAFT polymers together.  The RAFT agent can be covalently attached to the preformed 

polymer via the R group or the Z group.  Generally this involves the derivatization of 

functional end groups of the preformed polymer by esterification, amination or 

nucleophilic substitution.  The hydroxyl end groups of PLA and PCl are often coupled to 

RAFT agents with carboxyl moieties e.g. CPADB and DDMAT, via 

dicyclohexylcarbodiimide (DCC) mediated esterification to generate the macroRAFT 

agent which is subsequently chain extended.
127-129

  Barz et al. reported the synthesis of 

PLA-poly(pentafluorophenyl methacrylate) (PFMA), the PFMA acted as an activated ester 

precursor which was reacted with 2-hydroxypropylamine to form PLA-PHMPA, the 

cellular uptake of the amphiphilic block copolymer was studied.
127

  The macroRAFT agent 

was formed by esterification of the terminal hydroxyl with CPADB (Figure 1-21), 
1
H 

NMR spectroscopic analysis showed 69% functionalization of PLA was achieved.
127

  PCl-
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macroRAFT agent was prepared following an analogous methodology gaining near 100% 

functionalization, the polymer was subsequently chain extended by DEA giving a PDI 

range of 1.20-1.43.
129

  PEO based macroRAFT agents have also been synthesized by 

esterification with a RAFT agent.
130-132

 Ester bonds are, however, more susceptible to 

nucleophilic attack and thus in cases stable amide linkages are preferred.   The amination 

of amino terminated PEO with the carboxyl moiety of 4-cyano-4-

(ethylsulfanylthiocarbonyl)sulfanylpentanoic acid provided a PEO-macroRAFT agent 

demonstrating 94 % efficient end capping by 
1
H NMR spectroscopy.

133
  The macroRAFT 

agent was utilised to synthesize the triblock copolymer PEO-PAPMA-PNIPAM a potential 

drug carrier with a PDI of 1.21. 
133

 

 

 

Figure 1-21. Synthesis of PLA-PFMA; (i) dicyclohexylcarbodiimide (DCC)/4-

(dimethylamino)-pyridine (DMAP), DCM, (ii) 4,4′-Azobis(4-cyanovaleric acid (ACVA), 

PFMA, dioxane, 80 
o
C. 

 

Synthesis of xanthate based macroRAFT agents involves a halogen substitution.  PCl 

macroRAFT agent was synthesized by transforming the hydroxyl terminated PCl into 2-

bromopropionyl end capped PCl via a nucleophilic substitution which was further reacted 

with potassium O-ethyl dithiocarbonate.
134

  The PCl-macroRAFT agent was shown to 

effectively control the polymerization of N-vinylpyrrolidone.
134

  PDMS and PEG xanthate 

macroRAFT agents have been reported following an analogous procedure.
135, 136

  ATRP 

polymers and RAFT copolymers can be combined using this strategy.  The synthesis of 

p(t-butyl acrylate)-p(vinyl acetate) was reported converting the terminal bromine of the t-

butyl acrylate macroinitiator into a xanthate based macroRAFT agent which was 

subsequently chain extended.
137

 This approach was required as the chosen RAFT agent 

does not exert the same control over the polymerization of both monomers.
137
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1.3.4.2 RAFT agent utilised as an Initiator for non RAFT polymerization followed by 

RAFT polymerization 

Strategy two (Figure 1-22) produces block copolymers by using the RAFT agent to initiate 

the non-RAFT polymerization to form the macroRAFT agent.  This pathway focuses on 

the dual initiator (2-benzylsulfanylthiocarbonylsulfanyl)ethanol (BSTSE) as the RAFT 

agent Z group possesses a hydroxyl functionality.  Hale et al. reported a two step synthesis 

in which BSTSE initiates the ROP of lactide the resulting macroRAFT agent was 

subsequently chain extended by NIPAM.  The  initiator demonstrated little control over the 

polymerization with a broad PDI=2-2.2, these polymerizations have since been repeated 

reporting narrower PDIs.
138

  Poly(lactic acid-co-glycolic acid)-co-

poly(ethyleneglycolmethacrylate) was synthesized as shown by in Figure 1-22 as a 

potential drug carrier using BSTSE, similar results were reported presenting mono-modal 

curves however broad polydispersities were observed with a PDI range of 1.4-1.8.
139

  Ting 

et al. reported the synthesis of poly(lactide)-block-poly(6-O-acryloyl-R-d-galactopyranose) 

following an analogous procedure with low polydispersities.
140

  These polymers were 

cross-linked followed by the removal of the core by degradation of PLA using hexylamine 

resulting in the formation of hollow nanocages.
140

 

 

Figure 1-22. Synthesis of PLGA–PEGMA block copolymer; (i)EGMA, AIBN, THF, 80
o
c. 

 

1.3.4.3 Polymer prepared by RAFT Polymerization initiates Non –RAFT Polymerization 

Strategy three (Figure 1-20) involves the initiation of a non RAFT polymerization using a 

functionalised polymer prepared by RAFT polymerization; this technique is rarely used for 

block copolymer synthesis but for more complex architectures.  Barner-Kowollik reported 

the RAFT polymerization of styrene using RAFT agent dibenzyltrithiocarbonate and the 

subsequent conversion of the trithiocarbonate moiety within the polymer chain into 

terminal hydroxyl end groups thus effectively halving the Mn of the polymer (Figure 1-

23).
141

  The resultant hydroxyl terminated polystyrene (PS) initiates ROP of caprolactone.  
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The polydispersity of sulphur free polymers generated via this method were shown to be 

well-defined with PDI range of 1.1-1.3.
141

 Similarly PS and polyethylene derived from 

dibenzyltrithiocarbonate mediated RAFT polymerization can be converted into thiol 

functionalised polymers via the reduction of the central trithiocarbonate moiety by 

aminolysis.
142

  The styrylmercaptan initiated ROP of lactide produces broad polydisperse 

polymers (PDI=1.38-1.6).
142

  Polymers prepared by dithioester mediated RAFT 

polymerization have the potential to initiate non-RAFT polymerization following several 

end group transformations.  Dithioester moieties have been shown to be converted into 

hydroxyl groups via a hydroperoxide polymer which can be employed as an initiator for 

ROP.
143

  RAFT agents have been synthesized in which the R group possesses a hydroxyl 

moiety; 2-[N-(2-hydroxyethyl)-carbamoyl]prop-2-yl dithiobenzoate (HECPD), however, 

this RAFT agent is not often used due to the low yields in which it is obtained. Akimoto et 

al. utilised HECPD to polymerize lactide subsequent to the RAFT polymerization of 

NIPAM and DMAAm.
144

  The dithiobenzoate end group was reduced to form a thiol 

which reacted with maleimide - the resulting polymers were shown to self-assemble to 

form micelles and their degradation and drug encapsulation studied.
144

 

 

 

Figure 1-23. Synthesis of PS-PCl; (i)AIBN, triphenylphosphine, THF, 60 
o
C, (ii)caprolactone, 1, 5, 

7 triazabicyclo[4, 4, 0]dec-5-ene, toluene. 

 

1.3.4.4 Reaction between Complimentary Moieties on a RAFT and Non-RAFT polymer 

RAFT and non-RAFT polymers have been combined by a hetero Diels-Alder.  Barner-

Kowollik et al. reported a [4+2] cycloaddition of a diene terminated PCL with the Z group 

of a dithioester terminated PS (Figure 1-24).
145

  Electron deficient Z groups of the RAFT 

agent were phosphoryl and pyridyl moieties which are known to make excellent 

heterodienophiles. The [4+2] cycloaddition reactions were successful showing complete 

conversion.
145
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Figure 1-24. Hetero Diels-Alder cycloaddition of PS with PCl; (i) TFA, 50 
o
C. 

 

1.3.4.5 Simultaneous Polymerization 

A one pot synthesis of PS-PCl was reported in supercritical CO2 using the dual headed 

initiator BSTSE which simultaneously initiates the ROP of caprolactone and RAFT 

polymerization of PS (Figure 1-25).
146

  The PDI of the polymers generated were relatively 

high ranging from 1.5-2.1 which was attributed to the uncontrolled enzymatic catalysed 

polymerization of caprolactone.
146

   

 

 

 

Figure 1-25. Synthesis of PS-PCl. (i) Novozym-435, caprolactone, AIBN, styrene, supercritical 

CO2. 

 

1.3.5 Triblock Copolymers 

ABA and BAB type triblock copolymers based on poly(dimethylsiloxane) (PDMS), 

poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO) and PCl generating both ABA 

and BAB type triblock copolymers have been prepared and evaluated for biomedical 

applications e.g. drug delivery.  The synthesis of the macroRAFT agents generally 

involves the esterification of the preformed polymer with the carboxyl moiety of a RAFT 

agent.  

Zhu et al. reported the synthesis of PCl-poly(dimethylaminoethyl 

methacrylate)2(PDMAEMA) and application for the co-delivery of siRNA and Paclitaxel 
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drug.
147

  PCl is often utilised as the hydrophobic component of amphiphilic block 

copolymers due its biodegradability and biocompatibility.  Di-hydroxypolycaprolactone 

was synthesized via the ROP utilising ethylene glycol and subsequently coupled to a 4-

cyanopentanoicacid dithionaphthalenoate.
147

  These nanoparticles have been shown to 

effectively bind with siRNA and deliver the drug into cancer cells with increased cellular 

uptake with low cytotoxicity.
147

 

Amphiphilic triblock copolymers have often been used to form amphiphilic conetworks 

(APCN).  APCN’s are novel materials where hydrophobic and hydrophilic regions are 

interconnected in a 3D structure which can be applied to drug delivery and tissue 

engineering.  Achilleos et al. synthesized a range of well defined BAB block copolymers 

(PDI = 1.15-1.16) by the chain extension of PEG terminated by two 4-cyanopentanoicacid 

dithiobenzoate RAFT agents with styrene, methyl methacrylate and butyl acrylate with the 

inclusion of a cross-linker.
148

  An APCN was synthesized using PDMS end capped by 

DDMAT chain extended by N,N-dimethyl acrylamide and allyl methacrylate which was 

cross-linked by hydrosilation.
149

  Hydrogels based on PEO-P(NIPAM)2were reported using 

xanthate mediated RAFT polymerization, the macroRAFT agent was prepared by 

esterification and an atom transfer radical reaction giving 31 % yield.
150

  P(NIPAM) 

hydrogels can exhibit volume phase transitions in response to temperature alterations due 

to its LCST in water (32 
o
C).

150
  Amphiphilic triblock copolymer with the PEG segment 

was to increase the diffusion of water and investigate the reswelling and deswelling of the 

hydrogel.
150

 

Triblock copolymers have also been synthesized using xanthate end capped PEO 

macroRAFT agents.  The functionalization of the PEO is a five step synthesis via series of 

end group derivatisations forming a dialdehyde intermediate affording a 50 % yield of the 

macroRAFT agent.
151

  The macroRAFT agent was shown to effectively mediate the RAFT 

polymerization of poly(vinyl acetate) giving a PDI range of 1.21-1.23.
151

  Alternatively 

PEO-macroRAFT agent has been synthesized via a two step reaction involving a halogen 

intermediate with higher product yields reported (>70 %).
135

 

Another synthetic methodology for triblock copolymers is the use of a RAFT agent which 

can initiate polymerization from both the Z and R group.  ROP of caprolactone was 

initiated using the two carboxyl moieties of the RAFT agent 2-(2-

arboxyethylsulfanylthiocarbonylsulfanyl)propionic acid using an aluminium catalyst to 

generate well defined polymers (Figure 1-26).
152

  The RAFT polymerization of NIPAM  

using the PCL macroRAFT agent gave polymers with broad PDI’s of 1.38-1.71.
152

  The 
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polymers formed micelle structure with diameters of 100 nm and have demonstrated 

thermosensitive drug release behaviour.
152

 

 

 

Figure 1-26.  Synthesis of triblock copolymer PCL(PNIPAM)2; (i) Al (OCH(CH3)2)3, 120 
o
C, (ii) 

AIBN, NIPAM, THF, 70 
o
C. 

 

1.4 Self-Assembly of Amphiphilic Block Copolymers 

The development of controlled polymerization techniques has led to the synthesis of a 

range of polymer architectures e.g. linear amphiphilic block copolymers, graft copolymers 

and star-like polymers. Of these it is the self-assembly of linear block copolymers that is 

the most researched due to the wide range of potential applications.  The self-assembly of 

block copolymers in solution has generated various morphologies; micelles, cylindrical 

micelles, lamellae and vesicles.  The self-assembly of systems such as PS-PAA and PS-

PEO have been extensively studied.
153-156

 

 

1.4.1 Aggregate Preparation Techniques. 

It is well know that micellization occurs in dilute solution at a concentration above the 

critical aggregate concentration.
157

  The two main techniques used for the self-assembly of 

block copolymers are by the solvent switch method and direct dissolution.
157

  The solvent 
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switch method involves the initial dissolution of the polymer in a common solvent, self-

assembly is induced by varying conditions such as temperature or solvent composition.
157

 

The latter is more commonly referred to as the solvent switch method in which a 

precipitant is added for one of the blocks.  The common solvent is subsequently removed 

by evaporation or dialysis.
157

  Dialysis is often employed due to its compatibility with a 

wider range of water miscible solvents.  The method of preparation has been shown to 

have a morphogenic effect on the self-assembled structures.
153, 158

 

Other methods include film rehydration which is employed to target vesicle formation.
159

  

The block copolymer is dissolved in a common solvent, the solvent is allowed to evaporate 

to form a film.
160

  The polymeric film is rehydrated in aqueous media aided by heat or 

sonification.
160

  Electroformation invented by Angelova and Dimitrov, involves the 

formation of a polymeric film on the surface of an electrode e.g. platinum wire or indium 

tin oxide, the polymeric film is rehydrated in the presence of an electric field to induce 

self-assembly.
158, 159, 161, 162

  Giant vesicles (2 to 10 µm) have been generated using both 

procedures.
158, 163

  Microfluidics is also used to produce vesicles by preparing double 

emulsions in a glass microcapillary device; this method gives great control over the size of 

vesicles formed unlike the methods described above.
164

   

 

1.4.2 Self-Assembled Structures 

1.4.2.1 Micelles 

Micelles are typically sized between 10-100nm and classified as either being regular or 

reverse.
155, 165

  Block copolymers self assembled in aqueous medium form regular micelles 

which possess a hydrophobic core and hydrophilic corona.
155

  In organic solvents reverse 

micelles are formed; as the solvent is now selective for the hydrophobic segment the 

blocks reverse i.e. the hydrophilic block forms the core.
155

 

Regular and reverse micelles can be further divided into two types depending on the 

hydrophilic:hydrophobic composition of the block copolymer; star and crew-cut 

micelles.
155

  Star micelles form by the association of block copolymers composed of a 

larger hydrophilic segment whereas micelles which possess a significantly larger 

hydrophobic block exist as crew-cut micelles.
155

  Crew cut micelles have been prepared 

from the highly asymmetric  PS500-poly(acrylic acid)58 . 
155

 

Preparative techniques differ for the preparation of these two type of micelles.  Star 

micelles are formed by direct dissolution of the block copolymer in a solvent selective for 
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the larger hydrophilic block.
155

  Direct dissolution is not suitable for the formation of crew 

cut micelles due to the presence of the larger hydrophobic block which would result 

precipitate as opposed to aggregation.
155

  Crew cut micelles are prepared by adding a 

precipitant for the larger block to a solution of the polymer dissolved in a common solvent 

to induce self-assembly.
155

 

 

1.4.2.2 Rods/Worm-like Micelles 

Rods/worm-like micelles possess a cylindrical core surrounded by the corona, the diameter 

of these structures are similar to that of micelles (ca. 30nm) however the length of these 

aggregates can vary significantly.
159

  It is the flexibility of these aggregates which 

differentiates stiff rods from worm-like micelles.
166

  Rods/worm-like micelles form by the 

growth of micelles along an axis, at either end of the cylindrical structure a hemispherical 

cap is present reducing unfavourable interactions between the core and solvent.
166

  

Cylindrical micelles of dodecylpyridinium bromide have been shown to solubilise 

hydrophobic dyes and more effectively than spherical micelles of dodecylpyridinium 

bromide.
167

 

 

1.4.2.3 Polymersomes 

Polymersomes are a class of vesicles formed by the self-assembly of amphiphilic block 

copolymers.  Vesicles are hollow spheres composed of a hydrophobic wall with an internal 

external hydrophilic corona and contain a pool of the dispersing medium in their interior.  

Polymersomes have received a lot of attention due to their potential for biomedical 

applications, the aqueous core allows for the encapsulation and delivery of hydrophilic 

drugs and DNA whilst the membrane can be loaded with hydrophobic drugs.  The 

aggregates form via a two step process; first a bilayer is formed followed by its closure.
168

  

Vesicles are formed preferentially due to their higher thermodynamic stability.
159

  The two 

techniques typically used to target vesicle morphology are the solvent switching and 

polymer rehydration.
169

  Vesicle formation is also influenced by polymer concentration and 

choice of common solvent.
153, 159

  The size and membrane thickness have been shown to be 

dependent on method of preparation and molecular weight of the polymer.
156, 170
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1.5 Summary 

Progress in controlled polymerization techniques has allowed for the preparation of an 

array of amphiphilic block copolymers.  The strategies discussed in section 1.3.4, have 

enabled us to develop methods to synthesize PLA-PMPC block copolymers which are of 

biomedical interest by a combination of ROP and RAFT techniques.  These block 

copolymers have been previously synthesized by a combination of ROP and ATRP 

however the use of a copper catalyst would lead to metallic contamination. 

Many triblock copolymers based on PDMS, PCl and PEO have been prepared and 

evaluated for biomedical application.  ABA triblocks where B=PLA has not to our 

knowledge been reported therefore PMPC triblock copolymers will be synthesized and 

their self-assembly studied in addition to the diblock copolymers which has yet to be 

reported. 
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2. Synthesis of Poly(lactide) 

MacroRAFT Agents For the Synthesis 

of PLA-PMPC Block Copolymers 
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2.1 Introduction 

To synthesize PLA-b-PMPC block copolymers two polymerization techniques are 

combined; ROP and controlled radical polymerization.  The solubility of PMPC is limited 

to alcohols and aqueous solutions which are incompatible with ROP therefore, the ROP of 

lactide must precede the polymerization of MPC.  PLA-b-PMPC has been previously 

synthesized by combining ROP and ATRP but the combination of ROP and RAFT has not, 

to the best of our knowledge, been reported.
42

  There are two strategies for preparing a 

PLA-macroRAFT; utilization of a dual headed initiator and post polymerization 

modification (Figure 2-1).
42, 127, 171

   

  

 

 

 

 

 

 

Figure 2-1. Proposed synthesis of PLA-macroRAFT agents via A) a dual headed initiator method 

and B) post polymerization modification. 
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2.2 Synthesis of MacroRAFT agent via a Dual Headed Initiator 

2.2.1 Synthesis of 2-(Benzylsulfanylthiocarbonylsulfanyl)ethanol (BSTSE) 

Dual headed initiators have been utilised for the synthesis of PLA based block copolymers, 

2-(Benzylsulfanylthiocarbonylsulfanyl)ethanol (BSTSE) has been to shown to ROP lactide 

effectively and the resulting macroRAFT agent utilised for the RAFT polymerization of 

methacrylates.  BSTSE-PLA could, therefore, be used to polymerize MPC generating the 

target block copolymer.   BSTSE was first reported by Hale et al. who applied it to the 

synthesis of PLA-b-PNIPAM.
138

  The trithiocarbonate dual headed initiator BSTSE was 

prepared using a literature procedure reported by O’Reilly et al..
172

  This methodology was 

preferred as this RAFT agent was generated in high yields (>99%) under mild reaction 

conditions with a less extensive purification procedure (Figure 2-2).  BSTSE was 

synthesized by reacting the thiolate formed upon selective deprotonation of the thiol, with 

carbon disulphide (Figure 2-2).  The resulting anion reacted via nucleophilic substitution 

with benzyl bromide to generate the trithiocarbonate RAFT agent (Figure 2-2).  The 

reaction was monitored using thin layer chromatography and the RAFT agent was obtained 

at 90% yield. 

 

 

Figure 2-2. Synthesis of BSTSE RAFT agent; (i) potassium phosphate tribasic (1.0 eq.), acetone, 

RT, 35 min. 

 

2.3 Synthesis of PLA-macroRAFT Agent 

2.3.1 Tin Octanoate Catalyzed ROP of Lactide 

Tin (II) octanoate was chosen to catalyze the ROP of lactide.  It is reported to be a highly 

effective catalyst which generates high molecular weight polymers and demonstrates a 
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high catalytic activity.
173

  The polymerization of lactide proceeds via coordination-

insertion which is shown in Figure 2-3.  The polymerization is initiated by a metal 

alkoxide formed upon reacting the catalyst with an alcohol.   

 

Figure 2-3. Mechanism for tin octanoate catalyzed polymerization of lactide.
174

  

 

The PLA-macroRAFT agent lactide with a target of DP 50 was synthesized by ROP of 

which was catalysed by tin octanoate and initiated by BSTSE (Figure 2-4).  The 

polymerization reached 90 % conversion after 12 h.  The DP of the crude polymer was 

67±10% determined by the 
1
H NMR spectrum and the end group ratio 2:3:2 was observed 

which was in keeping with that expected.  Errors associated with determining the DP of the 

polymer arise from processing the 
1
H spectrum such as phasing, setting integral limits and 

using a baseline correction.  The theoretical ratio of integrals for end group signals 

iA/iB+C/iD should be 2:3:2 which corresponds to the ratio of the benzyl methylene signal 

(A):RAFT end group methylene signal (B) and PLA methylene signal (C): RAFT end 

group methylene signal (D) (Figure 2-4, 2-5). The DP of the polymer purified by 

precipitating into methanol increased to 75 and the end group ratio deviated from the target 

as shown in Figure 2-5.  GPC analysis gave Mn=5,900 gmol
-1

 (theoretical Mn=5600 gmol
-

1
) and the PDI=1.35.  The changes observed in the

 1
H NMR spectrum post precipitation 

suggest that the RAFT end group may have cleaved either pre- or post purification.  Based 

on these results alternative catalysts for the ROP of lactide were investigated.  Furthermore 

the concentration of tin present post purification (1000-2000 ppm) would exceed the 

concentration of tin in commercially used medical polymers (20-50 ppm) and therefore the 

polymer could not be used for biomedical applications.
175
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Figure 2-5. 
1
H NMR spectrum (400 MHz, CDCl3) of R-PLA50-OH prepared by tin octanoate 

catalysed ROP. 

 

2.3.2 Organocatalysts 

Organocatalysts have been widely used for the preparation of polyesters.
176

  The tertiary 

amine 1, 8-diazabicyclo[5.4.0]undec-7-ene (DBU) was chosen as an alternative to tin 

octanoate as it is highly active towards the ROP of lactide, generates well-controlled 

polymers (PDI<1.1) at a faster rate, under mild conditions and without metallic 

contamination.
177

  DBU is a weak base with a pKaH of ~12 so will not full deprotonate the 

alcohol(pKa ~15).  The mechanism by which the base catalyses the polymerization is 

depicted in Figure 2-6 - the base activates both the alcohol initiator and the chain end via 

hydrogen bonding.
174

  Hydrogen bonding enhances the nucleophilicity of the alcohol by 

attracting the proton via the nitrogen lone pair which results in an increase in the partial 

positive charge on the proton and the negative charge on oxygen.  The enhanced 

nucleophilicity of the initiating and propagating hydroxyl moieties facilitating the 

nucleophilic attack on the monomer.
174

  DBU has previously been reported  to catalyze the 

ROP of lactide with BSTSE as an initiator in DCM at room temperature to generate well-

defined polymers (PDI 1.15).
177

 

 

Figure 2-4. Tin octanoate catalyzed ROP of lactide.  (i) tin octanoate (0.025 eq.), toluene, 110 
o
C, 

24 h. 
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Figure 2-6. Mechanism for DBU catalyzed ROP of lactide
178

 

 

2.3.2.1 DBU Catalyzed ROP of Lactide 

The ROP of lactide was catalyzed by DBU, aiming for a target DP of 50 following the 

conditions described in Figure 2-7.
176

  The polymerization reached 98 % conversion after 

35 min and was subsequently quenched by the addition of benzoic acid.  Post purification 

R-PLA-OH was obtained in high yields (72-97 %) with a PDI less than 1.1 (Table 2-1).  

These results were comparable with those obtained by Hedrick for 4-pyrenebutanol 

initiated ROP of lactide which reached high conversions of ≥99 % and generated polymers 

with narrow polydispersity of 1.05 and 1.08 and when BSTSE was used as an initiator the 

PDI was given as 1.15.
176

 

 

   

Figure 2-7. DBU catalyzed ROP of lactide.  (i) DBU (0.8 eq.), chloroform, RT, 35mins. 

 

The DP of the polymer was determined by the integral ratio of the benzyl methylene signal 

at 4.62 ppm (peak 3, Figure 2-8) with respect to the PLA methine signal at 5.17 ppm (peak 

2, Figure 2-8) and was found to be DP 50.  BSTSE was shown to have successfully 

initiated and controlled the polymerization of lactide; the ratio of RAFT end group signals 

to the PLA end group is 1:1 as evidenced by the 
1
H NMR spectrum shown in Figure 2-8 

where the ratio of end group signals i3:i2’+4:i5 is shown to be 2:3:2. 

The BSTSE initiated polymerization of lactide is an effective way of generating RAFT 

agent end capped PLA chains.  The DBU catalyzed ROP was controlled and generated 

narrow polydisperse PLA (PDI = 1.03).  The Mn determined by 
1
H NMR spectroscopy was 

in agreement with the theoretical Mn and that determined by GPC with THF (Table 2-1).  

The method utilised is limited to RAFT agents that possess a hydroxyl group but the RAFT 
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agent most used for methacrylate polymerization possesses a carboxyl moiety which 

cannot initiate ROP.  Instead the RAFT agent with a carboxyl functionality must be 

coupled to the hydroxyl end group of PLA to generate the macroRAFT agent. 

 

Figure 2-8.  
1
H NMR spectrum (400 MHz, CDCl3) of R-PLA50-OH  

 

Table 2-1. Molecular Weight Data for PLA and PLA-macroRAFT agents 

PLA Polymer
a
 Conv. 

(%) 

Mn 

(Theory 100% 

Conv.) 

Mn 

(
1
H 

NMR) 

Mn
b
 

(GPC) 

Mw
b
 

(GPC) 

PDI
b
 Yield 

(%) 

PLA50-OH 
c
 98 3700 3500 3600 4100 1.14 80 

PLA200-OH 
c
 99 14500 16200 12300 12600 1.02 97 

HO-PLA50-OH 

d
 

97 3700 3800 4400 4700 1.07 72 

HO-PLA200-

OH
d
 

98 14500 12800 11100 12000 1.09 74 

HO-PLA400-

OH
d
 

95 28900 29000 17600 20500 1.16 83 

PLA50-R
 e
 100 3900 3700 3700 3800 1.02 72 

PLA200-R
e
 99 14700 16200 13600 14100 1.03 92 

R-PLA50-R
f
 99 4200 4300 4400 4500 1.02 91 

R-PLA200-R
f
 99 15100 12100 12400 13100 1.06 92 

R-PLA400-R
f
 100 29400 28700 18500 21600 1.17 91 

R-PLA50-OH
g
 99 3800 3900 3900 4100 1.03 96 

a
 Sample codes: general formula PLAx-Y and Y-PLAx-Y, where x represents the target DP of PLA and Y 

indicates the end group present where Y is either a hydroxyl group (OH) or a RAFT agent moiety (R) 

b 
data obtained by THF GPC using triple detection.  Calibrated with a single narrow molecular weight 

distribution PS standard.  Sample concentration used was ~1mg/ml except for PLA with a DP of 50 for which 

5mg/ml was used. 
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c
Synthesized by the ROP of lactide initiated by butanol 

d
 Synthesized by the ROP of lactide initiated by butanediol 

e 
Synthesized by the esterification of a mono-hydroxyl endcapped PLA with CPADB

 

f
 Synthesized by the esterification of a di-hydroxyl endcapped PLA with CPADB

 

g 
Synthesized by the ROP of lactide initiated by  BSTSE 

 

2.4  Post Polymerization Modification 

2.4.1 Synthesis of Mono-functionalized MacroRAFT agent 

2.4.1.1 Synthesis of PLA Initiated by Butanol 

PLA with a target DP of 50 was synthesized following the conditions described in Figure 

2-9 utilising butanol as the initiator.  The DP of the polymer was determined by the 

integral ratio of the methylene end group signal (Figure 2-10, peak 2) to the PLA methine 

signal (Figure 2-10, peak 1) from the
 1

H NMR spectrum shown in Figure 2-10 as DP 48.  

The intensity of the methylene end group signal (Figure 2-10, peak 2) is greater and was 

therefore was used instead of the  PLA methine end group signal (Figure 2-10, peak 1’) to 

calculate DP.  PLA with a higher molecular weight (DP 200) was also synthesized by 

altering the monomer:initiator ratio.  Both polymerizations reached conversions above 98 

% within 35 min and generated polymers in high yields (80-97%) with narrow molecular 

weight distributions (Table 2-1). 

 

 

Figure 2-9. DBU catalyzed ROP of lactide; (i) DBU (1.0 eq.), chloroform, RT, 55 min. 
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Figure 2-10. 
1
H NMR spectrum (400 MHz, CDCl3) of PLA50-OH.  

 

2.4.1.2 Post Polymerization Functionalization of PLA-OH 

The derivatisation of the PLA hydroxyl end groups by simple coupling chemistry enables 

the synthesis of macroRAFT agents.  Barz et al.
127

 reported the coupling of PLA with 

CPADB RAFT agent via an activated ester and Hillmyer et al.
179

 similarly reacted PLA 

with a trithiocarbonate RAFT agent via an acyl chloride intermediate.  The RAFT agent 

CPADB has been demonstrated to control the polymerization of methacrylates including 

MPC, giving polymers of PDI less than 1.1.
13, 180

 

The PLA macroRAFT agents with a DP of 50 and 200 were synthesized in 72 % and 92 % 

yield via a Steglich esterification; activating the carboxyl moiety of CPADB utilising 

dicyclohexylcarbodiimide to form the o-acylisourea intermediate which reacts with 

dimethylaminopyridine forming an active intermediate.
181

  The formation of this active 

intermediate suppresses intramolecular side reactions and is highly electrophilic and prone 

to attack by PLA hydroxyl end groups.    
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Figure 2-11. Synthesis of PLA50-R.  (i) DCC (1.2 eq.), DMAP (0.1 eq.), CPADB(1.5 eq.), DCM, 

RT, 16 h. 

 

The initial method for coupling CPADB to PLA is described in Figure 2-11.  A ratio of 

1.5:1 mols of CPADB to hydroxyl end groups was used, however, this proved unsuccessful 

resulting in only 38 % functionalization of PLA chains.  This method was optimised by 

employing a larger excess of CPADB to hydroxyl end groups (4.5:1), which resulted in the 

complete conversion of PLA hydroxyl end groups.  The integral ratio of the methylene end 

group signal at 4.10 ppm to the aromatic signals of the RAFT end group was given as i1-3:i5 

=5:2 which is in agreement with the target ratio.  The 
1
H NMR spectrum (Figure 2-12) of 

the macroRAFT agent showed the disappearance of the PLA methine end group signal at 

4.32 ppm (Figure 2-10, peak 1’) as a result of the formation of a carboxylate linkage. The 

high excess of CPADB is critical to gain high functionalization, Barz et al. showed that 69 

% conversion was achieved with a 3 times molar excess.
127

  The large excess of RAFT 

agent was removed by precipitating twice into methanol, a good solvent for CPADB.  The 

shortcoming of the DCC/DMAP coupling method is the use of a large excess of RAFT 

agent which could potentially be recovered using column chromatography.  The method 

described by Hillmyer only uses a twofold excess of the RAFT agent obtaining the 

polymer at 93 % yield with 100 % functionalisation.
179

  The coupling reaction via an acid 

chloride is therefore more efficient. The degree of functionalization of PLA200-OH was 

determined by 
1
H NMR spectroscopy to be 99 %.  The GPC trace for PLA200-R showed a 

small shoulder corresponding to a higher molecular weight oligomer which was not 

observed in the trace of the unfunctionalised chain Figure 2-13, which suggests the 

occurrence of side reactions during the coupling reaction. 
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Figure 2-12. 
1
H NMR spectrum (400 MHz, CDCl3) of PLA50-R.  

 

 

Figure 2-13. GPC  traces for PLA200-OH and PLA200-R. 

 

2.4.2 Synthesis of Bifunctionalized MacroRAFT agent 

2.4.2.1  ROP of Lactide Initiated by Butanediol. 

Recently the synthesis of an ABA-type triblock copolymer has been reported in which a di-

hydroxy  polycaprolactone was functionalised with cyanopentanoic acid 
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dithionaphthalenoate to form a bifunctional macroRAFT agent which was chain extended 

at both ends with 2-(N, N-dimethylaminoethyl)methacrylate.
147

  There are reports of the 

ROP of lactide initiated by polyethylene glycol to generate triblock copolymers PLA-PEG-

PLA which have two terminal hydroxyl end groups, but to our knowledge there are no 

prior reports of the post polymerization modification to generate PLA-based bifunctional 

macroRAFT agents. 
182, 183

 

Dihydroxyl-polylactide was synthesized following the conditions described in Figure 2-

14; using butanediol to initiate polymerization.  The monomer:initiator ratio was varied to 

target PLA of DP 50, 200 and 400.   The DP was determined by the integral ratio of the 

initiator methylene signal at 4.13 ppm to the PLA methine signal at 5.15 ppm from the 
1
H 

NMR spectrum (Figure 2-15). Polymerizations reached high conversions (72-83%) and 

generated polymers with narrow molecular weight distributions (1.07-1.16, Table 2-1). 

 

 

Figure 2-14. DBU catalyzed ROP of lactide.  (i) DBU (0.9 eq.), THF, RT, 55 min. 

 

 

 

Figure 2-15. 
1
H NMR spectrum (400 MHz, CDCl3) of HO-PLA50-OH  
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2.4.2.2 Post Polymerization Functionalization of HO-PLA-OH 

An analogous method to that used in the synthesis of the mono functional PLA-

macroRAFT agent was utilised to synthesize bifunctional PLA-macroRAFT agents 

(Figure 2-16). The hydroxyl end groups were successfully derivatized to obtain a 

bifunctional PLA-macroRAFT agent; this was confirmed by the 
1
H NMR spectrum 

(Figure 2-17) with the complete loss of the methine end group signal at 4.33 ppm due to 

the formation of an ester bond.  The RAFT aromatic signals integrated against the 

methylene butanediol initiator signal (4.14 ppm) corresponds to the expected ratio of 10:4.  

Similarly to the purification of R-PLA-OH, the polymer was precipitated twice into 

methanol to ensure complete removal of excess of the RAFT agent.  The sensitivity of 
1
H 

NMR spectroscopy towards quantifying the degree of functionalization diminishes with 

increasing molecular weight of the polymer (Mn>2500 gmol
-1

) due to the low 

concentration of end groups.  The end group signals (Figure 2-17, peaks 1-3 and 5) were 

discrete and better resolution of these signals was achieved with the use of a higher field 

NMR (500 MHz).  The end groups signals for R-PLA50-R (Mn = 4300 gmol
-1

) as shown in 

Figure 2-17 are strong and highly resolved facilitating the determination of the level of 

RAFT functionalization. 

 

 

Figure 2-16. Synthesis of R-PLA50-R.  (i) DCC (1.2 eq.), DMAP (0.1 eq.), DCM, RT, 16 h. 
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Figure 2-17. 
1
H NMR spectrum (400 MHz, CDCl3) of R-PLA50-R.  

 

2.5 Conclusion 

PLA macroRAFT agents were synthesized via two strategies; RAFT agent initiated ROP 

and derivatization of the preformed PLA hydroxyl end group by esterification.  The first 

route is preferred, the RAFT agent is generated using a high yielding facile synthetic 

method which effectively initiates ROP of lactide, however, the efficacy of this RAFT 

agent for the polymerization of MPC is unknown.  The alternative utilises CPADB which 

is an expensive starting material utilised in excess to functionalize the PLA homopolymer 

but is widely used for the effective polymerization of MPC.  An analogous method can 

generate bifunctionalized macroRAFT agents which can be used to form triblock 

copolymers.  Bifunctionalized PLA-macroRAFT agents were synthesized by ROP initiated 

by a diol followed by the functionalization of both hydroxyl end groups with a 

dithiobenzoate RAFT agent.  Polymers were obtained with a narrow PDI range of 1.02-

1.17 with near 100 % RAFT functionalization of PLA chains achieved.  
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3. Synthesis of PLA-PMPC Block 

Copolymers  
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3.1 Introduction 

Amphiphilic block copolymers are of great interest for biomedical applications e.g. drug 

delivery.  PMPC is used as the hydrophilic block as a means of increasing the 

biocompatibility of the block copolymers.
184-186

  A range of block copolymers composed of 

PMPC have been synthesized using ATRP and more recently RAFT polymerization.
13, 22, 

28, 31
  Our target copolymer PLA-PMPC has been previously synthesized by combining 

ROP with ATRP but not with RAFT to the best of our knowledge.  Furthermore PMPC-

PLA-PMPC triblocks have not been reported up to now.  The initial strategy to prepare 

PLA-PMPC block copolymers used macroRAFT agents synthesized as described in 

Chapter 2 which would be chain extended with MPC.  However, before embarking on this 

work it was decided to investigate the ability of BSTSE (as a model RAFT agent) to 

control the polymerization of methacrylates 

 

3.2 Model RAFT Polymerizations using BSTSE 

3.2.1 RAFT Polymerization of n-Butyl Methacrylate 

A model system was chosen which could be readily analysed to enable the comparison of 

RAFT agents for the polymerization of methacrylates.  Poly(n-butyl methacrylate) is 

soluble in THF and therefore the Mn and PDI of the polymer could be determined easily.  

n-Butyl methacrylate (BMA) was polymerized  using the conditions specified in Figure 3-

1 with a target DP of 50.  The polymerization was quenched after 14 h reaching 97 % 

conversion of the monomer.  The aromatic signals of the RAFT end group at 7.25-7.4 ppm 

were not observed in the 
1
H NMR spectrum of the purified polymer.   Molecular weight 

data (Table 3-1) showed that the RAFT agent lacked control over the polymerization of 

BMA generating polymers with a broad PDI and molecular weight comparable with that 

obtained by free radical polymerization.  It was concluded that BSTSE would be 

ineffective for the RAFT polymerization of MPC. 
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Figure 3-1. RAFT polymerization of BMA (i) BSTSE 0.02 eq., AIBN 5.0x10
-3 

eq, MeOH, 75
 o

C, 

14 h. 

 

Table 3-1. Molecular weight data for PBMA homopolymer. 

PBMA Mn, thr.
 a
 

 

Mn
b
 

 

PDI
b
 

Free Radical Polymerization - 30000 3.01 

RAFT Polymerization   7000 40000 1.57 

a
 Mn value for 100 % conversion of monomer  

b
 data obtained by THF GPC using triple detection.  Calibrated with a single narrow molecular weight 

distribution PS standard.  Sample concentration used was  ~ 5mg/ml. 

 

3.2.2 Choice of RAFT Agents 

The efficiency of RAFT is dependent on the choice of monomer, the properties of the 

leaving radical group R and the Z group which acts to activate or deactivate the 

thiocarbonyl double bond. In the pre-equilibrium step of the RAFT mechanism (Figure 3-

2) the RAFT agent (2) and polymeric RAFT agent (4) should possess a reactive 

thiocarbonyl bond resulting in high kadd, R (5) must be a good leaving group to allow rapid 

fragmentation of radical intermediate (3) i.e. high kβ and must be able to reinitiate 

polymerization efficiently.  The radical intermediate (3) should also partition in favour of 

the polymeric RAFT agent (4) i.e. kβ2 >k β1 in order to keep the concentration of Pn (1) low 

at all times.
119 

 The benzyl R group of BSTSE is regarded as a poor leaving group with 

respect to the propagating radical of the methacrylate monomer resulting in the radical 

intermediate partitioning in favour of reactants (1 and 2).
123

  R groups of RAFT agents 

utilised for the polymerization of methacrylates generally possess an electron-withdrawing 

group and are more sterically hindered in order to increase the rate of fragmentation of the 

S-R bond. 
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 Figure 3-2. RAFT - Pre-equilibrium mechanism. 

 

3.3 Alternative RAFT agents 

Ishihara et al. showed that RAFT agents 4-cyano-4-

[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CPAD) and CPADB are effective 

RAFT agents for the polymerization of MPC providing good control over methacrylate 

polymerization.
11-13

 A model polymerization was thus carried out to confirm the efficacy 

of the RAFT agent CPADB for the polymerization of methacrylates. 

BMA was polymerized with a target DP of 50, using the conditions described in Figure 3-

3 analogous to the BSTSE RAFT polymerization.  The polymerization was quenched after 

8 h at which point 90 % conversion of the monomer had been reached.  GPC analysis of 

the purified homopolymer gave Mn = 6400 gmol
-1

 (theoretical Mn = 8800 gmol
-1

) and a 

narrow molecular weight distribution of 1.11 which is typical of a controlled 

polymerization in comparison to the broad PDI observed for the BSTSE RAFT 

polymerization of BMA.  Therefore CPADB appeared to be more suitable for the 

polymerization of BMA than BSTSE. 

 

 

 

Figure 3-3. RAFT polymerization of BMA. (i) CPADB 0.02 eq., ACVA 5.0x10
-3 

eq., BMA 50.0 

eq., THF , 75 
o
C, 8 h. 

 

3.4 RAFT Polymerization of APC 

Stenzel et al. reported the synthesis of amphiphilic block copolymer poly(butyl acrylate)- 

poly(acryloyloxyethyl phosphorylcholine) (APC) with the RAFT agent 2-
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benzylsulfanylthiocarbonylsulfanyl propionic acid, an analogue of BSTSE.
187

  However, 

due to the difficulty in analysing these block copolymers a model experiment was designed 

in which APC was replaced by the structurally similar 2-hydroxyethyl acrylate (HEA).  

GPC results showed the formation of HEA block copolymers with narrow weight 

distributions ranging from 1.15-1.27.
187

  Therefore in this work BSTSE was used for the 

RAFT polymerization of APC as a possible route to synthesize PLA-PAPC block 

copolymers using PLA-macroRAFT agent with a BSTSE end group. 

 

 

Figure 3-4. RAFT polymerization of APC. (i) BSTSE 0.04 eq., ACVA 0.01 eq., MeOH , 75 
o
C, 17 

h. 

 

APC was polymerized following the conditions shown in Figure 3-4 with a target DP of 

25.  The polymerization was quenched after 17 h and the 
1
H NMR spectrum of the crude 

mixture showed that 94 % conversion was achieved.  The polymer was purified by dialysis 

against water to remove unreacted monomer and RAFT agent.  The DP of the 

homopolymer was determined as 34 from the 
1
H NMR spectrum (Figure 3-5) by end 

group analysis comparing the integral ratio of the aromatic signal 7.41-7.05 ppm (Figure 

3-5, peak 1), to the methylene signal of PAPC  at 3.70 ppm (Figure 3-5, peak 5). 

Molecular weight data obtained by aqueous GPC with RI detection gave Mn = 3500 gmol
-1

 

(theoretical Mn = 7700 gmol
-1

) and PDI of 1.34.  BSTSE has demonstrated control over the 

polymerization of APC and there is scope to achieve narrower molecular weight 

distributions by quenching the polymerization at lower conversions.  From the literature it 

is known that bimodal molecular weight distributions are often observed for the RAFT 

polymerization of acrylates and become more pronounced for higher molecular weights 

and at higher monomer conversions.
119

  In the case of the RAFT polymerization of 

poly(butyl acrylate) using a trithiocarbonate the source of the high molecular weight 

shoulder had been determined by end group analysis.
188

  The data supports the hypothesis 

that the high molecular weight polymer arises from the copolymerization of a polyacrylate 

macroRAFT agent formed during polymerization by a backbiting β-scission mechanism.
188

  

The PLA-macroRAFT agent could therefore be extended by APC, however, thus far 
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CPADB is the RAFT agent which has demonstrated the greatest control over the 

polymerization of methacrylates and in the literature Bhuchar et al. reported the synthesis 

of MPC homopolymer by RAFT polymerization with a PDI of 1.08 with CPADB.
13

  From 

this point forward our focus will be on the use of PLA macroRAFT agents possessing the 

CPADB end group. 

 

 

Figure 3-5. 
1
H NMR spectrum (400 MHz, MeOD-d4) of PAPC with BSTSE end group. 

 

3.5 Synthesis of PLA-PMPC 

A range of PLA46-PMPCx polymers were synthesized varying the MPC block length where 

x=50, 75 and 100.  The polymerization of MPC was carried out under the conditions 

described in Figure 3-6.  The polymerizations were quenched after 12 h at which high 

conversions were obtained, these polymers were subsequently purified by first 

precipitating into methanol to remove unreacted PLA-macroRAFT agent followed by 

dialysis to remove DMSO and residual monomer.  Triblock copolymer PMPC100-PLA51-

PMPC100 was synthesized using a bifunctionalised macroinitiator under similar conditions 

utilised for the synthesis of the diblock copolymer except the ratio of PLA-macroRAFT 

agent to initiator used was 2:1.  The DP of the MPC block was determined from the 
1
H 

NMR spectrum (Figure 3-7) using the ratio of the methine signal of PLA at 5.27 ppm 

(Figure 3-7, peak 1) to the methylene signal of PMPC at 3.81 ppm (Figure 3-7, peak 5) as 

DP 43.  The Mn value of the block copolymer was obtained by combining the Mn of the 

PMPC and the macroRAFT agent determined previously by 
1
H NMR spectroscopy (Table 

3-2). 
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Figure 3-6. Synthesis of PLA46-PMPC50. (i) ACVA 0.25 eq., MPC 50.0 eq., DMSO/MeOH (3:7), 

75 
o
C, 12 h. 

 

 

 

Figure 3-7. 
1
H NMR spectrum (400 MHz, MeOD-d4/CDCl3 (2:1)) of PLA46-PMPC50. 

 

The molecular weight data for the PLA-PMPC block copolymers are given in Table 3-2.  

The Mn values of the block copolymers determined by 
1
H NMR spectroscopy were in 

agreement with the target Mn however there is in most cases a large discrepancy between 

the Mn determined by 
1
H NMR spectroscopy and by GPC.  Block copolymers were 

analysed using GPC with a conventional calibration using a series of near monodisperse 

polymethyl methacrylate standards.  The Mn determined by 
1
H NMR spectroscopy has 

approximately a 10% error but it is absolute.  The GPC separates polymers by 

hydrodynamic volume using polymethyl methacrylate calibrants and can lead to an 

inaccurate Mn which can explain the differences with the values obtained by 
1
H NMR 
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spectroscopy.  However GPC traces in Figure 3-8 show multimodal distributions; the 

traces for the diblock copolymers are similar displaying two lower molecular weight 

shoulders whereas the triblock copolymer gives a bimodal distribution.  The presence of a 

multimodal distribution means the Mn determined by 
1
H NMR spectroscopy results is 

therefore unreliable.  It was not possible to determine the peak due to unreacted PLA-

macroRAFT agent as a GPC trace of the macroRAFT agent had not been obtained using a 

methanol/chloroform system. 

 

Table 3-2. Molecular data for PLA-PMPC block Copolymers prepared by RAFT polymerization. 

Block Copolymer Conv. 

(%) 

Mn, Thr.
 a
  Mn

b
 

(
1
H NMR) 

Mn
 c

 

(GPC) 

PDI
c
 Yield 

(%) 

PLA46-PMPC50 75 18400 16300 16000 1.30 60 

PLA46-PMPC75 83 25800 21700 12300 1.38 73 

PLA46-PMPC100 70 33200 24900 15600 1.40 65 

PMPC100-PLA51-

PMPC100 

91 63300 52700 9000 1.28 90 

a
 Mn value for 100 % conversion of monomer  

b
Molecular weight determined by 

1
H NMR in MeOD-d4/CDCl3(2:1) 

c
Molecular weight data obtained by methanol/chloroform (1:3) GPC with RI detector.  Calibrated with a 

series of near-monodisperse polymethylmethacrylate standards.  Sample concentration used was ~1mg/ml. 
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Figure 3-8. GPC traces of PLA46-PMPCx block copolymers obtained by methanol/chloroform (1:3) 

GPC. 

 

The additional peaks observed in the GPC traces do not represent unreacted macroRAFT 

agent as PLA was removed by precipitating into methanol.  To account for the multimodal 

distributions the stability of the PLA-macroRAFT agent was investigated in the 

polymerization solvent mixture.  A sample of the macroRAFT agent was heated at 70 
o
C 

for 5h and subsequently analysed by 
1
H NMR spectroscopy.  As evidenced by the 

1
H NMR 

spectrum (Figure 3-9A), the PLA-macroRAFT agent had degraded under polymerization 

conditions which explains the GPC results (Figure 3-8).  Further stability experiments 

were carried out in DMSO and THF/ethanol (1:1) mixture and in both systems PLA 

retained its structural integrity as shown by the 
1
H NMR spectra (Figure 3-9B, 3-9C)).  

Methanol/DMSO proved an effective solvent mixture for the polymerization of MPC by 

ATRP at room temperature, but PLA is not stable in the presence of methanol at high 

temperatures due to the nucleophilicity of methanol.  THF/ethanol has proved to be a 

potential alternative solvent mixture for the synthesis of PLA-PMPC block copolymers.   
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Figure 3-9. PLA-macroRAFT stability test; A)
1
H NMR spectrum of PLA-R heated in MeOH-

d4/DMSO-d6 (7:3), B) 
1
H NMR spectrum of PLA-R heated in DMSO-d6, C)

 1
H NMR spectrum of 

PLA-R heated in THF/ethanol (1:1). 
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3.6 Model System: PLA-P(HEMA)  

2-Hydroxyethyl methacrylate (HEMA) is a hydrophilic methacrylate like MPC but soluble 

in a wider range of solvents and therefore its polymer can be more readily analysed.  

Additionally, PLA-PHEMA block copolymers have not to our knowledge been 

synthesized by combining ROP and RAFT polymerization and PLA-PHEMA triblock 

copolymers have yet to be reported. The knowledge gleaned from these polymerization 

experiments will be applied to the synthesis of PLA-PMPC block copolymers in which 

both blocks are not soluble in a common solvent. 

 

3.6.1 Synthesis of PLA-PHEMA Diblock Copolymer 

HEMA was polymerized using PLAx-R where x= 46 and 219 under conditions described 

in Figure 3-10.  The target DP of PHEMA was chosen to obtain block copolymers with a 

hydrophilic weight fraction (f, Equation 1) of 0.35±0.1 which was proposed by Discher 

and Eisenberg to give vesicle morphology upon self-assembly.
189 

 PLA46-PHEMA100 was 

synthesized to examine the morphological effects of increasing the hydrophilic block 

length.  The ratio of macroRAFT agent to initiator used for the synthesis of diblocks was 

maintained at 4:1.  The initiator chosen was 4,4’-azobis(4-cyanopentanoic acid (ACVA) 

based on the work by Liu et al. who showed that better control over the polymerization of 

2-(dimethylamino)ethyl methacrylate was achieved when the CPADB was combined with 

ACVA  and not AIBN.
180

   

f= Mn of PHEMA block / Mn of PLA-PHEMA di/triblock copolymers      (1) 

The 
1
H NMR spectrum of the purified PLA46-PHEMA100 polymer is shown in Figure 3-11 

in a solvent mixture of CDCl3/MeOD-d4 to ensure the solubilisation of both blocks.  The 

Mn of the PHEMA block was determined by comparing the integral ratio of the PLA 

methine signal at 4.93ppm (Figure 3-11, peak 1) to the PHEMA methylene adjacent to the 

carboxylate moiety signal at 3.55 ppm (Figure 3-11, peak 3).  The molecular weight data 

for PLA-PHEMA diblock copolymers is provided in Table 3-3 and GPC traces are given 

in Figure 3-12.  The Mn obtained by GPC is in agreement with that determined by 
1
H 

NMR spectroscopy for PLA46-PMPCx copolymers albeit higher in the case of PLA219-

PHEMA67. The GPC trace of PLA219-PHEMA67 (Figure 3-12) shows a high molecular 

weight shoulder which suggests that the shoulder observed in the GPC trace of the 

macroRAFT agent possessed a RAFT functionality. The conditions utilised for the 
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synthesis of PLA-PHEMA generated mono-modal polymers with narrow molecular weight 

distribution (PDI = 1.1-1.2).  PLA-PHEMA block copolymers generated by the ROP-

ATRP method gave PDIs ranging from 1.18-1.32.
171 

 

 

 

Figure 3-10. Synthesis of PLA46-PHEMA100. (i) ACVA 0.25 eq., HEMA 50.0 eq., THF, 

70 
o
C, 12 h. 

 

 

 Figure 3-11. 
1
H NMR spectrum (400 MHz, MeOD-d4/CDCl3 (1:2)) of PLA46-PHEMA100. 
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Table 3-3. Molecular weight data for PLA-PHEMA/PHEMA-PLA-PHEMA block copolymers. 

PLA 

Polymer
a
 

Conv. 

(%) 

fHEMA Mn, 

Thr.
b
  

 

Mn
 c
 

 (
1
H 

NMR) 

Mn
d
 

(GPC)  

PDI
d
 Mn

e 

(GPC)  

PDI
e
 Yield 

(%) 

 

PLA46-

PHEMA15 

94 0.35 5600 6100 10000 1.15 14700 1.82 89  

PLA46-

PHEMA100 

89 0.78 16700 16300 18300 1.09 25200 1.46 97  

PLA219-

PHEMA67 

70 0.35 24800 23300 38400 1.20 36100 1.76 96  

PHEMA62-

PLA390-

PHEMA62 

67 0.36 45000 42500 36700 1.24 39900 1.41 60  

PHEMA62-

PLA390-

PHEMA62 

85 0.36 45000 44500 50700 1.29    - - 76  

PHEMA20-

PLA390-

PHEMA20 

63 0.15 33900 32900 34500 1.41 33700 1.96 74  

PHEMA53-

PLA51-

PHEMA53 

84 0.76 18100 17000 53100 1.14 27600 2.25 91  

a
RAFT polymerization performed at 70 

o
C in THF 

b
Mn

 
value for 100 % conversion of monomer 

c
Molecular weight determined by 

1
H NMR in MeOD-d4/CDCl3(1:2) 

d
Molecular weight data obtained by THF GPC using triple detection.  Calibrated with a single narrow 

molecular weight distribution PS standard.  Sample concentration used was ~1mg/ml. 

e
Molecular weight data obtained by DMF GPC using RI detector.  Calibrated with a series of narrow 

polydispersity PS standards.  Sample concentration used was ~1mg/ml. 
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Figure 3-12. GPC traces of PLA46-PMPCx and PMPCx-PLAy-PMPCx block obtained by THF GPC. 

 

3.6.2 Synthesis of PHEMA-PLA-PHEMA  

PHEMA-PLA-PHEMA triblock copolymers were synthesized utilising R-PLAx-R where 

x=51 and 390.  The compositions of the two PHEMAy-PLAx-PHEMAy triblock 

copolymers were chosen to target a fHEMA of 0.36 and 0.15.  As mentioned in section 3.6.1 

amphiphilic block copolymers with f=0.35±0.1 form vesicles, it was also proposed that 

when f<0.25 inverted microstructures will be generated upon self-assembly.
189

 PHEMA53-

PLA51-PHEMA53 with a composition ratio of 1:1:1 was synthesized to compare the self-

assembly behaviour with the diblock copolymer PLA46-PHEMA100 of the same fHEMA and 

Mn.  

The effects of the macroRAFT agent to initiator ratio and time on the PDI of PHEMA53-

PLA51-PHEMA53 were investigated.  The triblock copolymers were synthesized as 

described in Figure 3-13, under these conditions a narrow PDI of 1.13 was obtained.  

Lowering the MRA:initiator ratio to 2:1 resulted in a slight increase in PDI to 1.17.  

Additionally an increase in polymerization time from 12 h to 24 h saw little change in the 

PDI obtained.   The polymerization conditions for the triblock copolymers chosen were 

analogous to those utilised for the diblock synthesis; MRA:initiator ratio 4:1 and 12 h 

polymerization time.  Under these conditions high degrees of conversion and narrowly 

dispersed polymers were obtained.  However, the degree of conversion was lower when 

chain extending PLA with a DP of 390 due to the higher viscosity.  Increased viscosity 

leads to reduced initiator efficiency which results in a lower concentration of radicals.
190

  

An 
1
H NMR spectrum of the purified triblock copolymer is shown in Figure 3-14.  The 
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DP of PHEMA block was determined by the integral ratio of the PLA methine signal at 

4.88 ppm (Figure 3-14, peak 1) to the methylene signal at 3.77 ppm (Figure 3-14, peak 2) 

as DP 112.  The DP is usually determined using signal 3 however the solvent THF was 

often difficult to remove and the THF signals overlap with peaks 3 and 4 (Figure 3-14).    

 

 

Figure 3-13.  Synthesis of PHEMA53-PLA51-PHEMA53. (i) ACVA 0.25 eq., HEMA 106.0 eq., 

THF, 70 
o
C, 12 h. 

 

 

Figure 3-14. 
1
H NMR spectrum (400 MHz, MeOD-d4/CDCl3 (1:2)) of PHEMA53-PLA51-

PHEMA53. 
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The Mn of PHEMAy-PLA400-PHEMAy was also determined by GPC using THF as the 

solvent and this data (Table 3-3) was comparable with Mn determined by 
1
H NMR 

spectroscopy when the DP of PHEMA is small.  However, there are larger deviations as 

the length of the PHEMA blocks increase.  Interestingly, for the monomodal trace of 

PHEMA53-PLA51-PHEMA53 the Mn obtained by GPC was 53,100 gmol
-1

 which is over 

double that determined by 
1
H NMR spectroscopy.  The GPC Mn and dn/dc should be 

similar to that of the diblock copolymer PLA46-PHEMA100.  The refractive index (RI) and 

light scattering (LS) signal are both dependent on the refractive index increment (dn/dc) of 

the polymer in THF.  The dn/dc is the change of the solution refractive index with solute 

concentration.  The dn/dc of the diblock copolymer was 0.093 mg/g which was three times 

that of the triblock copolymer which was given as 0.027 mg/g.  The dn/dc is determined by 

the length of both the hydrophilic and hydrophobic block length thus the two values would 

be approximately the same since both the di- and triblock copolymer are composed of 

similar PLA and PHEMA block lengths; the dn/dc values must be incorrect.  The use of an 

inaccurate concentration or an issue with solubility would lead to differences between 

dn/dc values.    

It has been reported that PHEMA has limited solubility in THF and often the hydroxyl 

moieties of HEMA/PHEMA are protected by esterification.
191

  However, PHEMA-

P(MPS)-PHEMA was both synthesized and analyzed using THF without the use of 

protecting groups.
192

  To identify whether THF was affecting the characterization, each 

block copolymer was reanalyzed utilising GPC in which the solvent used was DMF 

(Figure 3-15).  The GPC traces obtained by DMF GPC (Figure 3-15) are multimodal and 

broader in comparison to the GPC curves observed by THF GPC (Figure 3-14).  The 

drifting of the baseline observed for the PLA46-PHEMA15 GPC trace (Figure 3-15) is due 

to the use of a low concentrated sample.  The block copolymers have a broad molecular 

weight distribution between 1.4-2.25 (Table 3-3); based on these results either the 

synthesis of the PLA-PHEMA block copolymers was not as controlled as the initial GPC 

traces portrayed or DMF is not an appropriate solvent for analysis of these block 

copolymers.  The polymerization solvent was to be changed to include a more polar 

component such as ethanol which is known to solubilise the PHEMA homopolymer. 
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Figure 3-15. GPC traces of PLA46-PMPCx and PMPCx-PLAy-PMPCx block obtained by DMF 

GPC. 

 

3.6.3 Synthesis of PLA-PHEMA- alternative method 

The synthesis of diblock and triblock copolymers was repeated in a mixture of ethanol and 

THF to investigate whether THF was affecting the polymerization of HEMA in addition to 

the characterization.  The macroRAFT agent was shown in Figure 3-9 to be stable in this 

solvent mixture at 70 
o
C and these conditions would be a more representative of model 

system for the synthesis of PLA-PMPC diblock and triblock copolymer.   

HEMA was polymerized using PLAx-R where x= 46 and 197 and R-PLAy-R where y=181 

and 390 under the same conditions described in Figure 3-10.  Polymerizations were 

carried out in a 1:1 mixture of THF/ethanol except for when R-PLA390-R was used, a 

mixture of 6:4 THF:ethanol was required to solubilise the PLA-macroRAFT agent.  Block 

copolymers were analysed using GPC with a conventional calibration using narrow 

molecular weight distribution polystyrene standard and a dn/dc value of 0.165.  The Mn 

obtained from GPC is comparable with Mn determined by 
1
H NMR spectroscopy (Table 3-

4).  There still remains a discrepancy between the GPC Mn and 
1
H NMR Mn of PHEMA50-

PLA51-PHEMA50, however, GPC separates polymer chains based on hydrodynamic 

volume which in this case is estimated using polystyrene calibrants and can lead to 

inaccurate Mn.  The polymers synthesized give narrower molecular distributions ranging 

from 1.16 to 1.28 (Table 3-4) in comparison to the previous method (PDI = 1.4-2.25).  The 

GPC traces (Figure 3-16) are narrow monomodal peaks and in the case of PHEMA50-

PLA51-PHEMA50 a high molecular weight shoulder was observed. 
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PLA-PHEMA di- and triblocks have been successfully synthesized by the chain extension 

of the PLA-macroRAFT agents with HEMA.  The polymerizations were shown to be 

controlled generating block copolymers with a low polydispersity range.  In the mixed 

solvent system of THF and ethanol, the PLA-macroRAFT is shown to be stable under 

RAFT conditions and both components of the block copolymer are solubilised which are 

important factors for the synthesis of the target PLA-PMPC block copolymers.  Therefore 

the methodology established for the PLA-PHEMA system should overcome the problems 

experienced with the initial synthetic method for PLA-PMPC block copolymers.  

 

Table 3-4. Molecular weight data for PLA-PHEMA/PHEMA-PLA-PHEMA block copolymers 

prepared by alternative method. 

PLA Polymer Conv. 

(%) 

fHEMA Mn, 

Thr.
d
  

 

Mn
e
 

(
1
H 

NMR) 

Mn
f
 

(GPC) 

PDI
e
 Yield 

(%) 

PLA46-PHEMA100
a
 77 0.78 16700 13900 18000 1.17 81 

PLA197-PHEMA60
b
 85 0.35 22300 21200 21500 1.16 71 

PHEMA50-PLA51-

PHEMA50
a
 

73 0.75 17300 14200 23800 1.28 70 

PHEMA25-PLA181-

PHEMA25
a
 

60 0.32 20200 17300 23300 1.21 73 

PHEMA25-PLA181-

PHEMA25
b
 

58 0.32 20200 17800 21300 1.22 78 

PHEMA40-PLA390-

PHEMA40
c
 

37 0.27 39100 31600 29200 1.27 79 

a
RAFT polymerization performed in THF/ethanol (1:1) at 70 

o
C for 12 h. 

b
 RAFT polymerization performed in THF/ethanol (1:1) at 70 

o
C for 24 h. 

c
RAFT polymerization performed in THF/ethanol (6:4) at 70 

o
C for 24 h. 

d
Mn

 
value for 100 % conversion of monomer 

e
Molecular weight determined by 

1
H NMR in MeOD-d4/CDCl3(1:2) 

f
Molecular weight data obtained by DMF GPC using RI detector.  Calibrated with a series of narrow 

polydispersity PS standards.  Sample concentration used was ~1mg/ml. 
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Figure 3-16.  GPC traces of PLAx-PMPCy and PMPCy-PLAx-PMPCy block copolymers prepared 

by alternative method. 

 

3.7 Synthesis of PLA-PMPC block Copolymers 

The PLA-PHEMA model system aided the derivation of a synthetic methodology for the 

synthesis of PLA-PMPC block copolymers.  PLA46-PMPCx was synthesized following 

conditions described in Figure 3-17 varying the targeted MPC block length; x=25 and 100.  

Generally the polymerization was quenched at 12 h after reaching high levels of 

conversion.  The polymer was purified by precipitation into THF to remove unreacted PLA 

macroRAFT agent, the precipitate was dissolved in methanol and dialysed to remove 

residual monomer.  The 
1
H NMR spectrum of the purified polymer is given in Figure 3-

18, the Mn of the block copolymer was determined as described in section 3.5.   

 

 

Figure 3-17. Synthesis of PLA46-PMPC100. (i) ACVA 0.25 eq., MPC 100.0 eq., 

ethanol/THF (1:1), 70 
o
C, 12 h. 
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Figure 3-18. 
1
H NMR spectrum (400 MHz, MeOD-d4/CDCl3 (2:1)) of PLA46-PMPC100. 

 

The molecular weight data for MPC based diblock copolymers (Table 3-5) was obtained 

via GPC with an RI detector using a mixture of methanol/chloroform (1:3) as the solvent.  

Table 3-5 highlights the discrepancies observed between the Mn determined by 
1
H NMR 

spectroscopy and GPC analysis.  The Mn obtained by GPC for the diblock copolymer 

PLA46-PMPC25 is approximately the same as that of PLA46-PMPC100.  Given the 

symmetric weight distribution of polymer chains (Figure 3-24) the Mn obtained by 
1
H 

NMR spectroscopy can be taken as a more reliable value.  The GPC Mn is determined by 

the hydrodynamic volume of the polymer chain which is itself partly determined by the 

conformation of the polymer.  Conventional calibration requires that the hydrodynamic 

volume of the polymer sample and standard are comparable, if they are not this results in 

an inaccurate Mn.  However, the GPC can still provide a measure of the polydispersity of 

the sample as the PDI is a ratio of Mw to Mn. The diblock copolymers synthesized possess 

narrow molecular weight distributions ranging from 1.16-1.21, these polymers prepared 

previously by a combination of ROP and ATRP have been reported with PDIs ranging 

from 1.18-1.52.
42, 44  
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Table 3-5.  Molecular weight data for PLA-PMPC/PMPC-PLA-PMPC block copolymers. 

Block Copolymer Conv. 

(%) 

fMP

C 

Mn, Thr.
d
 Mn

e 

 (
1
H NMR) 

Mn
f
(GPC) PDI

f
 

PLA46-PMPC25 
a 

93 0.6

7 

11000 13400  18000 
 

1.16 

PLA46-PMPC25 
b 

92 0.6

7 

11000 12800   18400 
 

1.15 

PLA46-PMPC100
 a
 91 0.8

9 

33200 33500 19300 1.21 

PLA46-PMPC100
 b
 83 0.8

9 

33200 29500 19400 
 

1.24 

PMPC53-PLA51-

PMPC53
 a
 

85 0.8

8 

35600 33800 24600 1.24 

PMPC55-PLA390-

PMPC55
 c
 

72 0.5

3 

61200 52900 44800 1.36 

a 
RAFT polymerization performed in THF/ethanol (1:1) 

b
RAFT polymerization performed in DMSO/IPA (3:7) 

c
 RAFT polymerization performed in THF/ethanol (6:4) 

d 
Mn value for 100 % conversion of monomer 

e
 Molecular weight determined by 

1
H NMR in MeOD-d4/CDCl3(2:1) 

f
 Molecular weight data obtained by methanol/chloroform (1:3) GPC using RI detector.  Calibrated with a 

series of narrow polydispersity polymethylmethacrylate standards.  Sample concentration used was ~1mg/ml. 

 

It was shown in section 3.5 that the PLA-macroRAFT agent was stable in DMSO at high 

temperatures.  The polarity of DMSO is significantly higher than THF, and would be more 

effective at solubilising the PMPC block, thus another solvent mixture was utilised to 

potentially increase control over the polymerization of MPC.  A mixture of 

DMSO/isopropanol (3:7) was also utilised for the synthesis of PLA46-PMPCx diblock 

copolymers.  The polymers obtained in DMSO/IPA possessed a narrow molecular weight 

distribution with a PDI range of 1.15-1.24.  Table 3-5 shows little difference between the 

PDI of polymers synthesized in a DMSO/IPA and THF/ethanol mixture and thus MPC 

based triblock copolymers would be synthesized using a THF/ethanol mixture which can 

be more easily removed during purification of the polymer than DMSO. 

Triblock copolymers PMPC53-PLA51-PMPC53 and PMPC55-PLA390-PMPC55 were 

synthesized as described in Figure 3-20 utilizing bifunctionalized PLA-macroRAFT 

agents with a DP of 51 and 390.  The polymerization method is analogous to that utilised 
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for the synthesis of PLA-PMPC diblock copolymer, however, a solvent mixture of 

THF/ethanol (6:4) was utilised for the chain extension of R-PLA390-R.  The ratio of the 

first triblock copolymer was chosen for comparing the self-assembly behaviour with the 

diblock copolymer PLA46-PMPC100 with the same fMPC target.  The composition of the 

latter was chosen to compare the self-assembly of triblock copolymers with varying PLA 

block lengths.  The 
1
H NMR spectrum of the purified polymer PMPC53-PLA51-PMPC53 is 

given in Figure 3-21, the Mn of the block copolymer was determined as described in 

section 3.5.  The molecular weight data is given in Table 3-5, the polymerizations were 

shown to be controlled with PDI’s of 1.24 and 1.36.  The higher PDI of 1.36 is likely due 

to the increased PLA block length of the macroRAFT agent. 

 

 

Figure 3-19. Synthesis of PMPC100-PLA51-PMPC100. (i) ACVA 0.25 eq., MPC 106.0 eq., 

ethanol/THF (1:1), 70 
o
C, 24 h. 
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Figure 3-20. 
1
H NMR spectrum (400 MHz, MeOD-d4/CDCl3 (2:1)) of PMPC53-PLA51-PMPC53. 

 

 

Figure 3-21. GPC traces of PLA46-PMPCx and PMPCx-PLAy-PMPCx block copolymers prepared 

by alternative method. 
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3.8 Conclusions 

The RAFT agent BSTSE was shown not to effectively control the polymerization of 

methacrylates and therefore PLA-PMPC cannot be synthesized using the BSTSE end 

capped PLA macroRAFT agent. PLA-macroRAFT agents with CPADB end groups were 

chain extended with MPC in a solvent mixture of methanol and DMSO at elevated 

temperatures, however, the PLA macroRAFT agent was subject to hydrolysis which was 

evidenced by 
1
H NMR spectroscopy.  The synthesis of PLA-PHEMA block copolymers 

was used as a model polymerization to determine the conditions required for the synthesis 

of the target polymer, PLA-PMPC.  Chain extension of both PLA macroRAFT agents 

PLA-R and R-PLA-R with MPC was successful in a mixture of THF and ethanol 

dependent on the DP of the PLA macroRAFT agent.  A range of diblock and triblock 

copolymers of PLA-PMPC with varied compositions were synthesized with narrow 

molecular weight distributions ranging from 1.15-1.36. 
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4. Self-Assembly of PLA block 

Copolymers 
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4.1 Self-Assembly of Block Copolymers 

The morphology of self-assembled structures is predominantly determined by the critical 

packing parameter p=v/al, where v is the hydrophobic volume, a is the maximum area of 

the hydrophilic chain and l is the length of the hydrophobic block.
156, 168

  The critical 

packing parameter has proved effective at predicting various morphologies: when p is less 

than ⅓, micelles are obtained, when p falls between ½ and ⅓, cylindrical micelles are 

formed; and vesicles were observed when p is approximately 1 (Figure 4-1).
156, 193

  

Inverted structures are formed when p is greater than 1.
156 

 The morphologies of aggregates 

in solution are influenced by several factors including the stretching ability of the core 

block, the repulsive interactions between the corona forming block and the interfacial 

tension between the micelle core and the solvent outside the core.
153, 155, 156 

  These factors 

can be controlled by varying several parameters; temperature, additives, preparation 

method of aggregates, block length and concentration.
 153, 156

  

 

Figure 4-1.  Self-assembly of block copolymers, defined by the packing parameter, into spherical 

micelles, cylindrical micelles and vesicles.
168, 193 

 

4.2 Self-Assembly of PLA-PHEMA Block Copolymers 

4.2.1 Copolymer Composition 

PLA-PHEMA block copolymers possess similar properties to the target system of PLA-

PMPC being both partially biodegradable and demonstrating excellent blood compatibility 

such properties are of interest for biomedical applications e.g. drug delivery.  The self-

assembly of PLA-PHEMA has not to our knowledge been investigated.  The morphogenic 

effects of copolymer composition, the preparation method and temperature on PLA-
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PHEMA aggregates were examined. The effects of copolymer composition were 

investigated using a range of diblock and triblock copolymers.  The aggregates were 

prepared by the solvent swap method (i.e. the addition of water to the polymer solution or 

vice versa) which will now be referred to as nanoprecipitation.  The block copolymer was 

dissolved in a solvent mixture of THF/methanol (1:1) ensuring both blocks were 

solubilised before water was slowly added inducing self-assembly to give a final 

concentration of 1 mg/ml.  THF and methanol were removed gradually by evaporation.  

The morphology and size of the aggregates formed were analysed by transmission electron 

microscopy (TEM) using 1 %(w/v) aqueous uranyl acetate and dynamic light scattering 

(DLS) (Table 4-1).  The morphologies observed for the self-assembly of diblock 

copolymers have generally been shown to follow the trends proposed by Discher and 

Eisenberg in which amphiphilic molecules which possess a hydrophilic weight fraction (f) 

= 35±10% are expected to form vesicles, f>45% self-assemble into micelle structures and 

f<25% results in inverted microstructures.
189

  

PLA-PHEMA diblock copolymers of varied composition were prepared to target different 

morphologies.  Vesicles enable the delivery of both hydrophilic and hydrophobic 

compounds e.g. dyes and drugs, whereas the core of micelles can encapsulate hydrophobic 

drugs for the delivery.
194, 195  

Block copolymers with a hydrophilic weight fraction (f) of 

0.75 and 0.32 were studied and shown to self-assemble in water to form spherical 

aggregates.  PLA46-PHEMA79 yielded aggregates with a broad diameter range of 127-242 

nm determined by TEM (Figure 4-2A).  An enlarged image (Figure 4-2B) illustrates that 

the larger aggregates are composed of smaller micelles with a diameter range of 13-19 nm.  

Micelles were expected based on the higher fHEMA.  DLS revealed a dual distribution; the 

diameter range of the predominant particle size 244-275 nm, the individual micelles were 

not detected by DLS (Figure 4-4) which suggests aggregation is extensive through the 

solution.  The diameter determined by TEM is often smaller than that obtained by DLS due 

to dehydration caused by solvent evaporation, which could explain the discrepancy 

between the particle size determined by TEM (127-242 nm) of that by DLS (244-275 nm). 

Lowering fHEMA resulted in the formation of associating aggregates similar to that observed 

for PLA46-PHEMA79 (Figure 4-2C).  The smaller aggregates were identified as micelles 

by TEM, which possessed a narrow diameter range 24-32 nm.  The individual micelles 

were not detected by DLS.  DLS studies did, however, detect two size distributions 

corresponding to micellar aggregates; the predominant particle size was 121-145 nm with a 

narrow size distribution (Figure 4-4).  ‘Higher order’ morphologies were targeted by 
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increasing the hydrophobic block length, however, aggregation of micelles were formed 

exclusively.  Longer block copolymers with a higher PLA content are known to precipitate 

faster upon the addition of water leading to the formation of smaller aggregates.
196 

 Similar 

TEM images were observed for aggregates of ethylene cellulose-graft-PHEMA and 

amphiphilic chitosan based block copolymers which were explained by strong interactions 

between hydroxyl groups.
197, 198 

 Additionally Holder et al. obtained aggregating micelle 

clusters for the self assembly of PHEMA-PMPS-PHEMA triblock copolymer.
192  

 

ABA block copolymers based on PEG-PLA-PEG have demonstrated great promise as drug 

delivery vehicles due to their increased stealthiness i.e. inability to be detected by the 

immune system and higher PEG density due to their U-shaped conformation.
199, 200

  PEG-

PLA-PEG has also been shown to generate smaller particles than their BAB counterparts 

with similar LA/EG ratio; the average diameter for ABA type polymer (109±4.6 nm) was 

approximately twice that of the BAB type polymer (215±12.2 nm).
199, 200  

With respect to 

vesicle formation ABA block copolymer can adopt two possible conformations; I-shape in 

which the hydrophilic segments are at opposite sides of the membrane and U-shape in 

which a curved loop forms; the hydrophilic segments are pointed towards the outside of the 

membrane.
169

  Additionally PLA-PEG ABA polymers have been shown to have higher 

entrapment efficiencies and can repel protein adsorption more effectively than AB or BAB 

block copolymers.
200

  For these reasons several triblock copolymer were synthesized.  

ABA block copolymers are expected to self-assemble to form micelles but by changing the 

block copolymer composition we aim to observe higher order morphologies.
192, 201

   

The self-assembly of triblock copolymers PHEMA-PLA-PHEMA with fHEMA = 0.09, 0.24 

and 0.72 prepared by nanoprecipitation was thus studied.  PHEMA11-PLA390-PHEMA11 

which possesses the longest PLA block length yielded vesicles as evidenced by the TEM 

(Figure 4-2D) characterised by the darker outer ring which represents the bilayer.  

Vesicles were formed with a broad diameter range of 39-173 nm which is comparable with 

that measured by DLS, in which a dual distribution was observed; size distributions with a 

diameter range of 59-69 nm and 136-166 nm (Figure 4-5).  Vesicle formation was not 

expected, however, a reduced hydrophilic block length can lead to an increase in 

aggregation number resulting in an increase in core size and stretching of the PLA chains 

resulting in larger aggregates. The self-assembly of PHEMA16-PLA181-PHEMA16 with a 

similar fHEMA to the diblock copolymer PLA197-PHEMA51 resulted in the formation of 

associating micelles as expected (Figure 4-3C) with a diameter range of 58-118 nm 

determined by TEM which is similar to that obtained by DLS (Figure 4-5).  The broad size 



82 

 

distribution between 350-450 nm demonstrates the occurrence of aggregation in solution 

(Figure 4-5).  The range of fHEMA selected saw the formation of both micelles commonly 

associated with ABA systems and also achieved higher order structures.  No trends were 

observed based on the fHEMA; further analysis of the self-assembly of triblock copolymers 

is required investigating differences between triblocks with a constant hydrophobic block 

length.  Holder et al. showed that larger aggregates formed when the hydrophilic block 

length was increased for POEGMA-PMPS triblock copolymers.
192 

 The fHEMA was 

increased to 0.72 for PHEMA38-PLA51-PHEMA38.  TEM analysis showed the formation of 

a mixture of vesicles and aggregating micelles (Figure 4-3A).  The vesicles were small 

with a diameter range of 40-96 nm.  Aggregating micelles (Figure 4-3B) were observed 

which were also formed by the diblock copolymer with a similar fHEMA value.  The 

diameter range determined by TEM for the individual micelles was 42-102 nm which was 

in agreement with that determined by DLS (Figure 4-5).  The coexistence of different 

morphologies can arise due to the broad polydispersity of the block copolymer or can be a 

thermodynamic phenomenon whereby the free energy difference between different 

morphologies is small.
159  The PDI of this triblock copolymer was broader than the other 

block copolymers synthesized, with a PDI of 1.28 giving rise to the mixture of aggregates 

observed.  The morphologies for both di-and triblock copolymers shown by TEM are 

‘real’, these structures were observed extensively across the carbon grids and the diameters 

measured were generally in agreement with those obtained by DLS. 

 

Table 4-1. Nanoprecipitation of PLA-PHEMA block Copolymers-Aggregate Morphologies and 

Particle Size from TEM  

Block Copolymer
a
 fHEMA Diameter 

Range
b
 

(nm) 

Morphology
c
 Soln 

Appearance
d
 

PLA46—PHEMA79 0.75 13-19, 

190-354 

Micellar 

Aggregates 

Opaque 

PLA197-PHEMA51 0.32 24-32, 

213-224 

Micellar 

Aggregates 

Translucent Blue 

PHEMA11-PLA390-

PHEMA11 

0.09 39-173 Vesicles Translucent Blue 

PHEMA16-PLA181-

PHEMA16 

0.24 58-118 Spherical Translucent Blue 

PHEMA38-PLA51-

PHEMA38 

0.72 42-102, 

40-96 

Micelle/ 

Vesicle 

Translucent Blue 
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a
Self-assembled structures prepared by the slow addition of water to a solution of polymer in THF/methanol 

(1:1).  The polymer concentration of each solution was 1 mg/ml.  

b
Diameter range determined by TEM 

c 
Morphology observed by TEM 

d 
The appearance of the solution indicates particle size.  An opaque solution is a  result of increased scattering 

from larger size aggregates 

 

 

 

Figure 4-2. TEM images obtained for negatively stained spherical aggregates prepared by 

nanoprecipitation of (A) PLA46-PHEMA79 and (B) an enlarged TEM image of the spherical 

aggregates in (A), (C) PLA197-PHEMA51 (D) vesicles formed from PHEMA11-PLA390-PHEMA11, 

B 

C 

A 

D 
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Figure 4-3.  TEM images for negatively stained spherical aggregates prepared by nanoprecipitation 

(A) spherical aggregates formed from PHEMA38-PLA51-PHEMA38 (B) Micelle clusters formed 

from PHEMA38-PLA51-PHEMA38, (C) PHEMA16-PLA181-PHEMA16. 

 

A B 

C 



85 

 

 

 

Figure 4-4. DLS results for PLA-PHEMA diblock copolymers (1 mg/ml) prepared by 

nanoprecipitation. 

 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

0 50 100 150 200 250 300 

N
u

m
b

er
 

Diameter (nm) 

PLA46-PHEMA79 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

0 25 50 75 100 125 150 175 

N
u

m
b

er
 

Diameter (nm) 

PLA197-PHEMA51 



86 

 

 

 

Figure 4-5. DLS results for PLA-PHEMA triblock copolymers (1 mg/ml) prepared by 

nanoprecipitation. 
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4.2.2 Alternative Methods of Self-Assembly 

The initial self-assembly study showed that the two diblock copolymers PLA46-PHEMA79 

and PLA197-PHEMA51 and a triblock copolymer PHEMA16-PLA181-PHEMA16 were all 

shown to form micellar structures.  These three block copolymers were selected to 

investigate the morphogenic effects of alternative methods for aggregate preparation in 

order to observe different morphologies.  Aggregates were prepared via three methods: 

nanoprecipitation; the addition of water to the polymer dissolved in acetone, a common 

solvent for both blocks; and the reverse addition approach.  The order of addition with 

respect to nanoprecipitation is important, the addition of the polymer in a water miscible 

solvent to a large volume of water results in an increased rate of precipitation in 

comparison to the reverse addition leading to the formation of smaller particles.
196

 

Aggregates were also prepared by dissolving the polymer in an alternative common 

solvent, DMSO which is favourable for both segments.  The solvent was removed by 

exchange with water via dialysis over a 24 h period.  The particle size data obtained by 

DLS and TEM for the self-assembled structures are summarized in Table 4-3.    

The common solvent determines the nature of the polymer solvent interaction which 

influences the coil dimensions and as a result the degree of core stretching.
202

 The polymer 

solvent interaction is dependent on  both the solubility parameter of the polymer and 

solvent in addition to the dielectric constant of the solvent (Table 4-2).
202

  From Table 4-2 

it can be concluded that the interaction between PLA and the solvent is stronger in acetone 

than in DMSO, the closer the solubility parameter of the polymer and solvent the greater 

the dissolution of the polymer.  Due to the polarity of PHEMA, the polymer solvent 

interaction is dependent on the dielectric constant therefore the strength of the PHEMA-

solvent interaction is greater in DMSO than in acetone.
196

  At the beginning of self-

assembly the core during the water addition becomes more swollen when the solvent 

favours the core forming block.
202

  As the core becomes more swollen the degree of core 

chain stretching increases which is entropically unfavourable and the penalty for high 

stretching leads to changes in morphology in order to reduce the free energy of 

micellization.
153

  The degree of core chain stretching decreases in order of spherical to 

cylindrical to vesicle morphologies.
202 

 

 

 

 

 



88 

 

Table 4-2. Solvent and Polymer Physical Properties
203, 204

 

Solvent/Polymer Solubility Parameter(J/cm
3
)

1/2
 Dielectric Constant 

Acetone 20.1 20.7 

DMSO 29.7 46.7 

Water 47.9 80.1 

PLA 19.2-21.0  

PHEMA 27.5  

 

 

Table 4-3. Alternative Methods for the Self-Assembly of PLA-PHEMA Block copolymers-

Aggregate Morphologies and Particle Size from TEM  

Block 

Copolymer 

Method
a
 fHEMA Diameter 

Range 

(nm) 
b
 

Morphology
c
 Soln 

Appearance 

PLA46-

PHEMA79 
1 0.75 12-18 Micelles 

Translucent 

Blue 

 2  10-14, 39-125 Micelles, Vesicles Opaque 

 
3  15-23 Micelles 

Translucent 

Blue 

PLA197-

PHEMA51 
1 0.32 

90-126 

(Cluster) 

Micelles, aggregating 

clusters 

Translucent 

Blue 

 
2  34-48 

Micelles, aggregating 

clusters 

Translucent 

Blue 

 
3  ___ ___ 

Translucent 

Blue 

 
4  41-55 

Micelles, aggregating 

clusters 

Translucent 

Blue 

PHEMA16-

PLA181-

PHEMA16 

1 0.24 ___ ___ 
Translucent 

Blue 

 
2  31-43 

Micelles, aggregating 

clusters 

Translucent 

Blue 

 
3  27-45 

Micelles, aggregating 

clusters 

Translucent 

Blue 

 
4  63-139 Micelles, Vesicles 

Translucent 

Blue 

a
Aggregates of PLA-PHEMA block copolymers were prepared via several methods; (1) dialysing the block 

copolymer in DMSO against water, (2) the slow addition of water to the polymer dissolved in acetone, (3) the 
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slow addition of the polymer in acetone to water, (4) heating aggregates prepared by method (2) at 80
o
C  for 

2h before cooling rapidly.  The polymer concentration of each solution was 1 mg/ml. 

b
Diameter range determined by TEM 

c
Morphology observed by TEM 

 

The self-assembly of PLA-PHEMA via nanoprecipitation is evidenced by 
1
H NMR 

spectroscopy, Figure 4-6 shows the 
1
H spectrum of the block copolymer in CDCl3/MeOD 

and in D2O demonstrating the loss of PLA signals. The self-assembly of PLA46-PHEMA79 

by nanoprecipitation (addition of water to polymer solution) yielded vesicles the target 

morphology and structures similar to that observed in Figure 4-2B; large aggregates 

(Figure 4-7B) composed of micelles which is more apparent in the enlarged TEM image 

(Figure 4-7C).   The aggregates identified by TEM were larger than previously measured 

with a diameter range of 300-900 nm.  Vesicles (Figure 4-7A) were observed with a broad 

diameter range of 39-125 nm. DLS measured a narrowly disperse population ranging 

between 350-404 nm (Figure 4-9A).  By reversing the addition i.e. addition of polymer 

solution to water, micelles were formed exclusively with a diameter range of 15-23 nm 

measured by TEM (Figure 4-7D) which was expected under kinetic control.  The TEM 

images shown in Figure 4-7 show a layering which is a drying effect of the dye on the 

grid.  DLS detected larger aggregates with a diameter range of 151-171 nm (Figure 4-9B).  

Dialysis-induced self-assembly of PLA46-PHEMA79 was shown to have little effect on the 

morphology of the self-assembled structures.  Similarly to those observed previously the 

micelles appear to be interacting, forming larger aggregates (Figure 4-8), which are 

detected by DLS with a particle size range of 208-275 nm (Figure 4-9C).  Larger 

aggregates were expected due to the slower mixing rates of DMSO with water, however, 

the result is in keeping with the dependence on the compatibility between blocks and the 

solvents calculated by Hildebrand solubility parameters.  The self-assembly study has 

demonstrated the morphogenic effect of solvent; utilising a solvent which interacts 

strongly with the hydrophobic block had resulted in the formation of vesicles in contrast to 

DMSO which yielded micelles which is attributed to the greater mobility of PLA chains 

and swelling of the core of the micelle in acetone. 

The self-assembly of PLA197-PHEMA51 via the addition of water to the polymer solution 

yielded clustered micelles (Figure 4-10A) which are more visible in the enlarged TEM 

image (Figure 4-10B).  The clusters are detected by DLS but not the individual micelles 

(Figure 4-11A).  The diameter range of the micelle clusters formed was determined by 

TEM as 90-126 nm which is comparable with that determined by DLS (Figure 4-11A).  

With the polymer possessing a longer hydrophobic block and using acetone as the common 
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solvent; vesicles were the targeted morphology however micelles formed exclusively.  The 

overriding factor in determining the morphology of the diblock copolymers must be the 

length of the hydrophobic block; longer PLA chains are prone to faster precipitation 

leading to smaller aggregates.
196

  Reverse addition was analyzed by DLS alone, two 

particle distributions were observed with a diameter range of 105-127 nm and 224-261 nm 

(Figure 4-11B). The morphology observed does not differ from the previous method based 

on DLS results although in this case micelle structures were expected due to rapid 

precipitation.  The self-assembly of the block copolymer by dialysis resulted in the same 

morphology; aggregation of micelle clusters, with a diameter range of 87-91 nm (Figure 4-

10C, 4-10D) which was comparable with that determined by DLS (Figure 4-11C).  The 

frequency of micelle clusters is lower than that observed by nanoprecipitation due to the 

change of concentration upon dialysis.  DMSO was utilised to obtain larger aggregates, 

however, similarly to PLA46-PHEMA79 micelle structures were formed.  The aggregates 

formed from PLA197-PHEMA51 were reproducible by each method.   

The triblock copolymer PHEMA16-PLA181-PHEMA16 self-assembled via the addition of 

the. aqueous phase to the polymer solution, to form micelle clusters (Figure 4-12A, 4-12B) 

similar to that of the diblock copolymer PLA197-PHEMA51.  The diameter range was 

determined by TEM for the individual micelles as 31-43 nm and the micelle clusters as 

104-138nm which was detected by DLS (Figure 4-13A).  The self-assembly of PHEMA16-

PLA181-PHEMA16 via nanoprecipitation is further demonstrated by 
1
H NMR spectroscopy; 

Figure 4-14 shows a 
1
H NMR spectrum of the block copolymer in D2O showing the 

absence of PLA signals. Reversing the addition for nanoprecipitation resulted in the 

aggregation of micelles (Figure 4-12C, 4-12D) producing a different aggregate structure 

from the previous self-assembled structures observed for PHEMA16-PLA181-PHEMA16.  

The predominant size distribution measured by DLS was 127-221 nm (Figure 4-13B), and 

the width of these structure as measured by TEM as 27-45 nm.  The larger particle sizes (> 

400 nm) observed were a result of aggregation (Figure 4-13B).  The self-assembly of the 

triblock by dialysis was unsuccessful as mass precipitation occurred which was not 

observed during the self-assembly of the diblock copolymers.  As stated in section 4.2.1 

ABA block copolymers tend to form micelles via a U-shape structure and the self assembly 

of the triblock with fHEMA of 0.24 has been shown to be reproducible for each method used 

for aggregate preparation.  The self-assembly of the triblock copolymer has a greater 

dependency on the block copolymer composition than the methods used for the preparation 

of aggregates.  The structures of di-and triblock copolymers observed by TEM were 

present across the grid and the inability for the individual micelles to be detected by DLS 
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shows that these micellar aggregates exist and are present extensively through the solution. 

The CMC’s of the PLA-PHEMA di- and triblock copolymers have yet to be determined 

however based on the ability to form self-assembled structures at 1 mg/ml for analysis it 

can be concluded that the CMC’s of these materials must be smaller than 1 mg/ml.  

 

 

 

Figure 4-6. 
1
H NMR spectra of PLA197-PHEMA51 in CDCl3/MeOD-d4 (top) and in D2O (bottom). 
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Figure 4-7.  TEM images obtained for negatively stained spherical aggregates formed from PLA46-

PHEMA79 by various preparation methods; (A) nanoprecipitation (water added to polymer 

solution), (B) nanoprecipitation (water added to polymer soln), (C) an enlarged image of (B), (D) 

nanoprecipitation (polymer solution added to water). 

 

A B 

C D 
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Figure 4-8. TEM images for negatively stained spherical aggregates prepared by dialysis of PLA46-

PHEMA79. 
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Figure 4-9 DLS results for PLA46—PHEMA79 (1 mg/ml) prepared by A) nanoprecipitation, B) 

reverse nanoprecipitation, C) dialysis. 
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Figure 4-10.  TEM images obtained for negatively stained aggregates formed from PLA197-

PHEMA51 by various preparation methods; (A) nanoprecipitation (water added to polymer 

solution), (B) an enlarged image of (A), (C) dialysis (DMSO against water), (D) an enlarged image 

of (C). 

 

A B 

C D 
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Figure 4-11.  DLS results for PLA197-PHEMA51 (1 mg/ml) prepared by A) nanoprecipitation, B) 

reverse nanoprecipitation, C) dialysis. 
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Figure 4-12.  TEM images obtained for negatively stained spherical aggregates formed from 

PHEMA16-PLA181-PHEMA16  by various preparation methods; (A) nanoprecipitation (water added 

to polymer solution), (B) an enlarged image of (A), (C) nanoprecipitation (polymer solution added 

to water), (D) an enlarged image of (C). 

 

A B 

C D 
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Figure 4-13. DLS results for PHEMA16-PLA181-PHEMA16 (1 mg/ml) prepared by A) 

nanoprecipitation, B) reverse nanoprecipitation. 
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Figure 4-14. 
1
H NMR spectrum (400 MHz, D2O) of PHEMA16-PLA181-PHEMA16. 

 

4.2.3 Effects of Temperature on Self Assembly 

Block copolymers which possess glass transition temperatures (Tg) above ambient 

temperature have been shown to form spherical and cylindrical micelles which possess 

“glassy” cores and vesicles with glassy wall interiors.
201 

 These aggregates are considered 

more stable in water; due to the reduced molecular motion of the hydrophobic block, these 

chains are kinetically frozen therefore preventing interaggregate migration of block 

copolymer chains.
201

  The Tg of polylactide is 60 
o
C, therefore aggregates formed upon 

self-assembly at room temperature are potentially more stable than aggregates which are 

composed of a core with a Tg less than ambient temperature.  Solutions of a diblock and 

triblock copolymer of PLA-PHEMA self-assembled by nanoprecipitation were each heated 

to 75 
o
C for 2 h before rapidly cooling in ice to examine the effects of temperature on self-

assembled structures.  The nanoparticles were prepared at elevated temperatures to 

increase mobility of PLA chains at a water content whereby the aggregates are effectively 

frozen encouraging morphological transitions.  The effects of temperature upon the 

aggregates formed are given in Table 4-3.  
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Figure 4-15. TEM images obtained for negatively stained aggregates formed by heating block 

copolymers prepared by nanoprecipitation (addition of water to acetone); (A) PHEMA16-PLA181-

PHEMA16; (B) PHEMA16-PLA181-PHEMA16 , (C) PLA197-PHEMA51. 

 

C 

B A 
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Figure 4-16. DLS results for A) PLA197-PHEMA51 (1 mg/ml) and B) PHEMA16-PLA181-PHEMA16 

(1 mg/ml) after heating at 80
o
C. 

 

The self-assembly of the triblock copolymer PHEMA16-PLA181-PHEMA16 has consistently 

reproduced micelle structures.  Upon heating the  solution above the Tg  associating 

micelles (Figure 4-15A) with a broad diameter range of 63-127 nm and vesicles 

characterized by the darker outer ring (Figure 4-15B) with a diameter range of 61-139 nm 

were formed.  The particle size measured by TEM was comparable with that determined 

by DLS (Figure 4-16).  ABA block copolymers are known to form micelles, however, 

increasing the mobility of the PLA chains led to the formation of vesicles.  The 

morphology of diblock copolymer PLA197-PHEMA51 was unaffected by the rise in 

temperature as demonstrated in Figure 4-10C and Figure 4-11C forming micelle clusters 
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configuration of triblock copolymer chains present in micelles which differs to that of the 

diblock copolymer. 

 

4.3 Self-Assembly of PLA-PMPC Block Copolymers 

4.3.1 Copolymer Composition 

Nanoparticles of PLA-PMPC are of great interest as potential drug delivery devices due to 

its biodegradability and biocompatibility.  The self-assembly of PLA-PMPC diblock 

copolymers has been previously studied,  Hsiue et al. reported the effects of cosolvents on 

morphology obtaining spherical structures with diameters ranging between 249-432 nm.
42

  

PLA-PMPC block copolymers which possessed a fMPC = 0.23 have been shown to self-

assemble to form large compound micelles.
43

  Giant vesicles have also been reported for 

PLA-PMPC block copolymers with a fMPC =0.48-0.53.
44

  Several triblock copolymers were 

prepared in addition to diblock copolymers because of the increased stealthiness of ABA 

copolymers based on PLA-PEG over AB and BAB type copolymers due to the increased 

PEG density which arises from the adopted U-shaped structure.
199, 200

  In this work the fMPC 

of the diblock and triblock was varied to target different morphologies.  The aggregates 

were prepared by nanoprecipitation utilising an analogous method to that described in 

section 4.2.1.  No one solvent can solubilise both the PLA and PMPC block therefore a 

mixture of THF/methanol (1:1) was used to dissolve block copolymers.  

Spherical morphologies were observed when PLA46-PMPCx diblock copolymers with 

varied MPC block lengths were self-assembled via nanoprecipitation.  PLA46-PMPC101 

formed predominantly vesicles (Figure 4-17A) with a wide size distribution of 86-200 nm 

which was in agreement with results obtained by DLS (Figure 4-18) thus particles with 

sizes greater than 350 nm observed by DLS were due to aggregation..  Micelles were also 

identified by TEM (Figure 4-17B), with a diameter range of 31-43 nm.  Upon decreasing 

the MPC hydrophilic block length larger vesicles were formed with a diameter range of 

226-412 nm (Figure 4-17C).  Additionally, smaller aggregates were observed by TEM 

with a diameter range of 65-167 nm.  The particle size measured by TEM (Table 4-4) was 

comparable with that determined by DLS (Figure 4-18).  The morphology was 

reproducible upon reducing the MPC block length of the diblock copolymer with a larger 

particle size which is attributed to reduced repulsion between corona chains resulting in an 

increase in aggregation number.  
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Based on the reports of Disher et al. the relationship between f and morphology, micelles 

should have formed from the self-assembly for both diblock copolymers however the 

dominant morphology were vesicles.
189

  Block copolymers composed of a small PLA 

segment are known to precipitate slowly which would lead to the formation of larger 

aggregates.  Additionally Liu et al. showed that morphologies observed for PLA-PMPC 

block copolymers were not in agreement with those predicted obtaining vesicles for fMPC > 

0.45 and observing micelles with fMPC above 0.6 which was ascribed to the zwitterionic 

side chain of MPC.
44

  

ABA block copolymers generally form micelles, however, polymersomes were targeted by 

varying the hydrophobic block length.  PMPC50-PLA51-PMPC50 was self-assembled by 

nanoprecipitation yielding large spherical aggregates with a broad diameter range of 160-

406 nm and 48-106 nm (Figure 4-19A) which corresponds to the data obtained by DLS 

(Figure 4-20).  Micelles were observed from the self-assembly of the triblock copolymer 

PMPC41-PLA390-PMPC41 in which the fMPC is significantly less, Figure 4-19B, shows a 

high concentration of particles with a diameter range of 33-59 nm.  The predominant 

particle size determined by DLS was 264-412 nm, this is most likely due to the aggregation 

of micelles.  There are a few larger non spherical particles observed (Figure 4-19B) with a 

diameter range of 298-394 nm which are suspected artefacts of the grid as these were not 

observed across the grid.  Similarly to the diblock copolymer, triblock copolymers with a 

smaller PLA block resulted in larger aggregates suggesting that the length of hydrophobic 

block determines the morphology.  Further analysis of the self-assembly of triblock 

copolymers is required to examine the morphological effects of altering the fMPC of the 

PMPC-PLA51-PMPC triblock copolymer; varying the hydrophilic block length.  

Table 4-4. Nanoprecipitation of PLA-PMPC Block copolymers-Aggregate Morphologies and 

Particle Size from TEM. 

Block Copolymer
a
 fMPC Diameter Range 

(nm) 
b
 

Morphology
c
 Soln Appearance 

PLA46-PMPC33
 0.74 65-167, 226-412 Vesicles Transparent 

PLA46-PMPC101
 
 0.90 31-43, 86-200 Micelles, Vesicles Transparent 

PMPC50-PLA51-PMPC50
 
 0.89 48-106, 160-406 Micelles, Vesicles Transparent 

PMPC41-PLA390-PMPC41
  0.46 33-59 Micelles Transparent 

a
Self-assembled structures prepared by the slow addition of water to the polymer dissolved in a solvent 

mixture of THF/methanol (1:1).  The polymer concentration of each solution was 1 mg/ml. 

b
Diameter range determined by TEM 

c
Morphology observed by TEM 
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Figure 4-17. TEM images for negatively stained spherical aggregates prepared by 

nanoprecipitation (A) PLA46-PMPC101
 
(B) an enlarged image of (B), (C) PLA46-PMPC33. 
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Figure 4-18.  DLS results for PLA-PMPC diblock copolymers (1 mg/ml) prepared by 

nanoprecipitation. 
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Figure 4-19. TEM images obtained for negatively stained spherical aggregates prepared by 

nanoprecipitation of (A) PMPC50-PLA51-PMPC50 and (B) PMPC41-PLA390-PMPC41. 

 

 

Figure 4-20. DLS results for PLA-PMPC triblock copolymers (1 mg/ml) prepared by 

nanoprecipitation. 
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4.3.2 Alternative Methods for the Preparation of Self-Assembled Structures 

The self-assembly of PLA-PMPC triblock copolymers has not to our knowledge been 

investigated.  The effects of the self-assembly method on the morphology of the two 

triblock copolymers (Table 4-5) was therefore investigated.  Aggregates were prepared by 

direct dissolution and by dialysis; triblock copolymers were initially dissolved in the 

solvent mixture of THF/methanol (1:1) used for nanoprecipitation and dialysed against 

water.  

Significantly larger vesicles with a diameter of 710-1250 nm (Figure 4-21A) were 

observed when the self-assembly of PMPC53-PLA51-PMPC53 was induced by dialysis in 

addition to a small population of aggregates with a diameter of 210-406 nm (Figure 4-

21A).  Particle size data obtained by TEM was in close agreement with that determined by 

DLS (Figure 4-22A).  The morphology was reproducible by dialysis which was expected, 

however, the size of aggregates is larger than that obtained by nanoprecipitation as 

evidenced by TEM and DLS (Figure 4-21A, 4-22A).  Due to the hydrophilicity of the 

MPC block, direct dissolution can be utilised for the preparation of self-assembled 

structures.  Figure 4-23 demonstrates the self assembly of PMPC53-PLA51-PMPC53 by 

direct dissolution showing the disappearance of PLA signals from the 
1
H NMR spectrum 

of the block copolymer in deuterium oxide.  PMPC53-PLA51-PMPC53 yields small micelles 

with a narrow diameter range of 29-46 nm (Figure 4-21B) which is comparable with the 

DLS results (Figure 4-22B), showing that in this case the morphology of the aggregates is 

influenced by the method of preparation.  

The morphology of aggregates of PMPC55-PLA390-PMPC55 has been shown to be 

consistent despite changing the method by which aggregates were prepared (Figure 4-24A, 

4-24B).  It was thought that removal of the polymer solvent mixture would be slower by 

dialysis thus increasing the mobility of the chains which would lead to the formation of 

larger aggregates.  However, the size of the micelles formed by dialysis was comparable 

with that of aggregates obtained by the nanoprecipitation method with a diameter range of 

46-72 nm.  Micelles formed by direct dissolution were smaller under kinetic control with a 

diameter range of 24-48 nm.  The size of the aggregates measured by TEM is comparable 

with DLS studies (Figure 4-25A, 4-25B).  In direct dissolution the block copolymers are 

solubilised in a solvent which favours the hydrophilic block, thermodynamic equilibrium 

may not occur between unimers and aggregates which results in the formation of micelles 

as demonstrated by the self-assembly of both triblock copolymers.  The micelle 
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morphology shown by TEM was observed across the grid for both triblock copolymers 

which was supported by DLS these structures must therefore exist. 

 

Table 4-5. Alternative Methods for the Self-Assembly of PLA-PMPC Block copolymers-

Aggregate Morphologies and Particle Size from TEM and DLS Measurements. 

  Method
a
 fMPC Diameter Range 

(nm)
b
 

Morphology
c
 Soln 

Appearance 

PMPC53-PLA51-

PMPC53
 
 

1 0.89 29-46 Micelles Transparent 

 
2 0.89 210-406, 710-1250 Vesicles 

Translucent 

white 

PMPC55-PLA390-

PMPC55
 
 

1 0.46 24-48 Micelles Transparent 

 
2 0.46 46-72 Micelles 

Translucent 

White 

a
Aggregates of PMPC-PLA-PMPC block copolymers were prepared by two methods; (1) direct dissolution 

of the triblock copolymer in water, (2) dialysing the polymer in a solvent mixture of THF/methanol (1:1) 

against water.  The polymer concentration of each solution was 1 mg/ml. 

b
Diameter range determined by TEM 

c
Morphology observed by TEM 

 

  

Figure 4-21. TEM images obtained for negatively stained spherical aggregates formed from 

PMPC50-PLA51-PMPC50  by various preparation methods; (A) dialysis (THF/methanol (1:1) against 

water), (B) direct dissolution. 

A B 
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Figure 4-22. DLS results for PMPC50-PLA51-PMPC50 (1 mg/ml) prepared by A) dialysis, B) direct 

dissolution. 
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Figure 4-23. 
1
H NMR spectrum (400 MHz) of PMPC53-PLA51-PMPC53 in CDCl3/MeOD-d4 (top) 

and in D2O (bottom). 
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Figure 4-24. TEM images obtained for negatively stained spherical aggregates formed from 

PMPC41-PLA390-PMPC41 by various preparation methods; (A) dialysis (THF/methanol (1:1) against 

water), (B) direct dissolution. 

 

 

 

 

 

 

 

 

 

 

 

 

A B 
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Figure 4-25. DLS results for PMPC41-PLA390-PMPC41 (1 mg/ml ) prepared by A) dialysis, B) 

direct dissolution. 

 

4.4 Encapsulation of a Dye 

To demonstrate the ability of PLA-PMPC block copolymers as potential drug carriers a 

qualitatitve test was carried out using the fluorescent hydrophobic dye nile red.  The block 

copolymer PLA46-PMPC101 was self-assembled by nanoprecipitation with THF/methanol 

at a concentration of 3mg/ml in the presence of nile red.  The hydrophobic dye is insoluble 

in aqueous solution but can be solubilised in the hydrophobic core or membrane of the 

nanoparticle.  The successful encapsulation of the dye by PLA-PMPC diblock copolymer 

in aqueous media is shown by the presence of a light pink colour (Figure 4-26B) and 

under UV light the dye is shown to fluorescence (Figure 4-26C).  Several drops of sodium 

hydroxide (1M) was subsequently added to the dye loaded nanoparticles to demonstrate the 
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pH responsive release of the dye as PLA degrades (Figure 26D).  The qualitative tests 

show that there is scope for these amphiphilic block copolymers in biomedical 

applications.   

 

  

Figure 4-26. Encapsulation of Nile red (A) self-assembled PLA-PMPC block copolymer, (B) Nile 

red encapsulated by PLA-PMPC, (C) (B) under UV light, (D) (B) in the presence of base. 

 

4.5 Conclusion 

The self-assembly of a range of PLA-PHEMA and PLA-PMPC block copolymers was 

studied investigating the morphological effects of temperature, the common solvent, 

copolymer composition and preparation methods.  Generally the diblock copolymers of 

PLA-PHEMA which possessed a longer PLA segment self-assembled to form micelles due 

to the increased rate of precipitation.  Vesicles were only observed when the common 

solvent favoured the hydrophobic block of PLA46-PHEMA79.  ABA triblock copolymers 

were shown to self-assemble to yield micelles over a range of copolymer compositions and 

via various preparation methods as expected.  Vesicles were achieved for triblock 

copolymers with significantly low fHEMA and when temperatures were raised above the Tg 

to increase the fluidity of the core. 

A range of PLA-PMPC block copolymers with varied compositions were self-assembled 

using several techniques to target different morphologies.  Similarly to the self-assembly of 

B  

 

A  

 

C  

 

D  
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PLA-PHEMA systems diblock and triblock copolymers with larger PLA block length were 

shown to yield smaller aggregates.  The morphologies observed for the various block 

copolymers were consistent amongst different preparative techniques.  Vesicle structures 

were reproducible by the self-assembly of PMPC50-PLA51-PMPC50, however, by preparing 

nanoparticles by direct dissolution the system was no longer in thermodynamic equilibrium 

thus resulting in micelle formation. 

Based on the self-assembly study of both block copolymer systems the PLA block length 

appears to be the major factor affecting the morphology.  Usually block copolymers 

consisting of a larger hydrophobic block generate larger aggregates however, with PLA 

block copolymers smaller aggregates are formed.  Further analysis of these systems is 

required to investigate the morphological effects of higher fHEMA/MPC values. 
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5. Conclusions and Future Work 

In summary of the two initial strategies investigated for the synthesis of PLA-PMPC block 

copolymers, it was shown that the macroRAFT agent prepared by the covalent attachment 

of a RAFT agent to a pre-formed polylactide polymer via the R group was more effective 

for the chain extension of MPC.  Mono and di-functionalised PLA macroRAFT agents 

were successfully synthesized with a narrow PDI range of 1.02-1.17 with close to 100% 

RAFT functionalization of PLA chains obtained. 

The main issue with the RAFT polymerization of MPC was the selection of a solvent 

which could solubilise both MPC and PLA and the resultant block copolymer.  It was 

confirmed by 
1
H NMR spectroscopy that the PLA-macroRAFT agent was subject to 

hydrolysis when heated in the solvent mixture of DMSO/methanol used for the ATRP 

synthesis of these block copolymers which explained the multi-modal molecular weight 

distributions observed for the PLA-PMPC block copolymers.  The PLA-macroRAFT agent 

was subject to stability tests to confirm the integrity of the polymeric structure in several 

solvents and solvent mixtures by 
1
H NMR spectroscopy. The RAFT polymerization of 

MPC in a mixture of ethanol and THF proved to be effective, generating diblock and 

triblock copolymers with a narrow PDI.  A PDI range of 1.15-1.24 was observed for 

diblock copolymer and 1.24-1.36 for the novel triblock copolymers.  The discrepancy 

between the Mn determined by 
1
H NMR spectroscopic and GPC analyses demonstrates the 

difference in the hydrodynamic volume of the polymer standard and sample.  By preparing 

these block copolymers by RAFT polymerization polymers with narrower molecular 

weight distribution were obtained in comparison to the studies of Hsiue et al. and the use 

of metallic catalyst impurities was avoided.
42

 

PLA-PMPC block copolymers with a larger PLA block length generally self-assembled to 

form smaller aggregates showing the morphogenic effect of the polymer composition.  The 

morphologies observed for the triblock copolymers were consistent for different 

preparative techniques i.e. solvent switch and direct dissolution.  PMPC50-PLA51-PMPC50 

was shown to self-assemble to form vesicles however by preparing nanoparticles by direct 

dissolution micelles formed showing that the system was no longer in thermodynamic 

equilibrium.  Amphiphilic block copolymers are targeted for their potential as drug 

carriers, the ability of PLA-PMPC block copolymers to act as possible vehicles was 

demonstrated by the encapsulation of a hydrophobic fluorescent dye and shown to release 

the dye upon an increase in pH. 
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PLA-PHEMA provided an effective model for the target system which could be readily 

analyzed by GPC.  A range of diblock and triblock copolymers were synthesized with 

varied fHEMA compositions.  Polymers were shown to be prepared with controlled 

molecular weight and narrow molecular weight distributions with a PDI range of 1.16-

1.28.  PLA-PHEMA block copolymers have not been synthesized previously by RAFT and 

ROP techniques and their self-assembly has not been studied to a great extent.  The self-

assembly study showed that the majority of block copolymers formed micellar aggregates 

by nanoprecipitation except when fHEMA was significantly low resulting in the formation of 

vesicles.  Micellar aggregates are believed to form due to the lower solubility of HEMA in 

water.  Aggregates were also prepared using different methods which in certain cases had a 

morphological effect.  Further characterization of PLA-PHEMA di- and triblock 

copolymer is required in order to determine the cmc’s for the aggregates.   

Both PLA-PHEMA and PLA-PMPC block copolymers should be evaluated as potential as 

drug carriers investigating drug loading and release, cytotoxicity and degradation.  The 

PLA-PMPC diblock copolymers have previously been investigated for the delivery of 

cancer drugs thus any future work should focus on the PLA-PMPC triblock copolymer.  

Properties such as cmc’s will need to be determined by fluorescent spectroscopy to 

evaluate the stability of the aggregates.   

A methodology has been determined for the synthesis of PLA ABA based triblock 

copolymers which has not been previously reported.  A range of PLA based triblock 

copolymers could be synthesized with advantageous properties for biomedical 

applications.  Polymer drug carriers have also been widely studied for gene delivery as 

non-viral vectors.
205

  Non-viral vectors have been researched due the immunogenic 

shortcomings of viral vectors.
206

  Polymeric vectors are usually composed of a cationic 

segment to form a polyplex with the negatively charged phosphate ions of DNA.  Triblock 

vectors such as PDMAEMA-PCL-PDMAEMA and pentablock vectors PDEAEM-PEO-

PPO-PEO-PDEAEM have been previously investigated showing effective transfection 

efficiency.
147, 207

  Incorporation of a hydrophobic segment has been shown to improve 

transfection.
208

  PLA-PMPC di- and triblock copolymers could be chain-extended by 

cationic monomers e.g. DMAEMA, and evaluated for gene delivery investigating DNA 

complexation, cellular uptake and gene expression. 
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6. General Experimental 
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6.1 Materials 

All chemicals were purchased from Sigma Aldrich unless otherwise specified.  3, 6-

Dimethyl-1, 4-dioxane-2, 5-dione (>96 %), potassium phosphate tribasic (>98 %), carbon 

disulfide (99.9 %), sodium bicarbonate (>99.5 %), N,N-dicyclohexylcarbodiimide (99 %), 

4-dimethylaminopyridine (99 %),  2-propanol (anhydrous) (99.5 %), ethanol (anhydrous) 

(≥99.5 %), DMSO (anhydrous) (≥99.9 %), 4-cyano-4-(phenylcarbothioylthio)pentanoic 

acid (>97 %) were used without further purification.  n-Butyl acrylate (>99 %), n-butyl 

methacrylate (99 %) and 2-hydroxyethyl methacrylate (HEMA) (97 %) were passed 

though a basic alumina column prior to use.  1-Butanol (99.9 %) and 1, 4-butanediol (99 

%) were dried by distillation and stored over 4 Å molecular sieves under nitrogen.  DBU (9 

8%) was stirred over calcium hydride (90-95 %), vacuum distilled and stored over 4 Å 

molecular sieves under nitrogen.  DMSO-d6 (>99.8 %D), chloroform-d (99.8 %D) and 

methanol-d4 (>99.8 %) were purchased from Apollo Scientific.  Chloroform (>99 %), 

ethyl acetate (99.97 %), dichloromethane (99.99 %), methanol (99.99 %), acetone (99.99 

%), THF (>99.5 %), diethyl ether (>99 %) and hexane (95 %) were purchased from Fisher 

Scientific.  AIBN (98 %) was purchased from Acros and 4, 4’-azobis(4-cyano-pentanoic 

acid) (>98 %) was purchased from Fluka.  Mercaptoethanol (99 %) and benzyl bromide 

(99 %) were purchased from Alfa Aesar and HEMA-PC (>98 %) and HEA-PC(98 %) was 

supplied by Vertellus.  Dry solvents; DCM, chloroform, THF and methanol (>99.5 %) 

were purchased from Fisher Scientific and purified using an Innovative Technology Inc. 

solvent purification system which involves the passage of solvent though two alumina 

columns and, in the case of THF, two copper catalyst columns and storage under nitrogen. 

6.2 Analysis 

NMR spectra were recorded using a Varian Inova 500 spectrometer at 499.87 MHz (
1
H), a 

Varian VNMRS-700 spectrometer at 699.73 MHz (
1
H) and a Bruker Avance 400 

spectrometer at 400.13 MHz (
1
H) or 100.26 MHz (

13
C).  NMR spectra were analysed using 

MestRE Nova 6.2 software.  

TEM was performed on a Hitachi H-7600 operating at 100 kV.  One drop (10 µl) of 

prepared aggregate solution (1 mg/ml) was applied onto a glow discharged, carbon coated, 

400 mesh copper grid for 30 seconds, blotted with filter paper and negatively stained with 

1 w/v% aqueous uranyl acetate for 30 seconds.  The grids were glow discharged for 20 

seconds to increase the hydrophilicity which assists sample spreading.   
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All IR spectra were collected on a Nexus Nicolet FT-IR spectrometer by creating a film on 

NaCl plates from acetone or methanol and analyzed using omnic E.S.P. 5.1 software. 

Elemental analysis was carried out on an Exeter analytical E-440 elemental analyser for C, 

H and N content and Dionex DX 120 Ion chromatograph to determine S content.  Dynamic 

light scattering was conducted on Brookhaven ZetaPlus Zeta potential analyser, particle 

size of the prepared aggregate solution (1 mg/ml) was determined using BIC Particle sizing 

software.  

THF GPC was conducted on a Viscotek TDA 302 with 2 x 300 ml PLgel 5 μm mixed C 

columns, having refractive index, viscosity and light scattering detectors.  THF was used as 

the eluent at a flow rate of 1.0 ml/min and at constant temperature of 35 
o
C.  Molecular 

weights were obtained using triple detection; the detectors were calibrated with a single 

narrow molecular weight distribution polystyrene standard using a value of dn/dc of 0.185.  

Data analysis was carried out using Omnisec 4.0 software.  THF (conventional 

calibration), samples were analysed using a conventional calibration generated with a 

series of narrow polydispersity polystyrene standards (192-1,111,200 gmol
-1

) obtained 

from Polymer Laboratories.  The polymer concentration of each solution analyzed was 

approximately 1 mg/ml. 

Chloroform/methanol GPC was carried out using a Hewlett Packard HP1090Liquid 

Chromatograph and two Polymer Laboratories PL Gel 5 μm Mixed-C (7.5 x 300 mm) 

columns in series with a guard column at 40 °C connected to a Gilson Model 131 

refractive index detector.  The eluent was a 3:1 v/v % chloroform/methanol mixture 

containing 2 mM LiBr at a flow rate of 1.0 ml min
-1

. A series of near-monodisperse 

polymethylmethacrylate standards were used as calibration standards. Data analysis was 

carried out using Cirrus GPC software supplied by Polymer Laboratories (UK).  The 

polymer concentration of each solution analyzed was approximately 1 mg/ml. 

DMF GPC was performed on Viscotek 301 with refractive index, viscosity and light 

scattering detectors and 2 x 300 mm PLgel 5μm mixed C columns, DMF containing 0.1 % 

by mass of LiBr was used as the eluent with a flow rate of 1.0 ml/min and at a constant 

temperature of 70 
o
C. Molecular weights were obtained using triple detection; the detectors 

were calibrated with a single narrow molecular weight distribution polystyrene standard 

using a value of dn/dc of 0.165.  The polymer concentration of each solution analyzed was 

approximately 1 mg/ml. 
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6.3 Methods 

6.3.1 Synthesis of RAFT Agent BSTSE
172

 

Mercaptoethanol (1.05 ml, 14.98 mol., 1.0 eq.) was added to a fine suspension of 

potassium phosphate tribasic (3.18 g, 14.98 mol., 1.0 eq.) in acetone (36 ml) and stirred for 

10 min.  Carbon disulfide (2.7 ml, 44.94 mol., 3.0 eq.) was subsequently added and after 

stirring for 10 min. benzyl bromide (1.76 ml, 14.98 mol., 1.0 eq.) was added.  The solution 

was then stirred a further 15 mins before filtering the suspension, the cake was washed 

with acetone (3x15 ml).  Acetone was then removed in vacuo to yield a viscous orange oil.  

Yield 3.28 g (90 %). 

S S

S
OH

 

Figure 6-1.  Chemical structure of RAFT agent BSTSE. 

 

1
H NMR (700 MHz, CDCl3): δ 7.40-7.25 (5H, m, Ar H’s ), 4.62 (2H, s, ArCH2), 3.88 (2H, 

t, J=6.0Hz, CH2OH), 3.61 (2H, t, J=6.0Hz, SCH2), 2.37 (1H, br S, OH).   

13
C NMR (126 MHz, CDCl3): δ 223.51 (CS3), 134.85 (Ar), 129.30 (Ar), 128.77 (Ar), 

127.87 (Ar), 60.54 (CH2OH), 41.76 (PhCH2S), 39.22 (SCH2). 

Elemental (found %): C, 49.29; H, 4.96; S, 39.36; C10H12OS3 (expected %) C, 49.14; H, 

4.95; S, 39.16. 

MS (ES+):  m/z 91 PhCH2
+
, m/z 199.9 PhCH2CS2

+
, m/z 45 

+
(CH2)2OH. 

 

6.3.2 Synthesis of PLA-MacroRAFT agent 

6.3.2.1 Tin Catalyzed ROP of Lactide 

To tin octanoate (0.06 g, 0.07 mmol., 0.5 eq.) and BSTSE (0.07 g, 0.28 mmol., 1.0 eq.) 

under nitrogen, D, L-lactide (1.0 g, 6.9 mmol., 25 eq.) in dry toluene (60 ml) was added.  

The reaction was heated at reflux (110 
o
C) for 24 h.  The polymer was precipitated from 

toluene into methanol and dried in vacuo.  Yield 0.65 g (61 %). 

1
H NMR (400 MHz, CDCl3): δ 7.36 – 7.26 (4H, m, Ar H’s), 5.27 – 5.06 (74H, m, CH), 

4.60 (2 H, s, PhCH2, end group), 4.44 – 4.28 (4H, m, SCH2 + CH, end group), 3.65(2 H, t, 

J = 6.3 Hz, SCH2CH2O, end group), 1.71 – 1.36 (273H, m, CH3). 
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6.3.2.2 DBU Catalyzed ROP of Lactide 

DBU (0.18 ml, 1.2 mmol., 0.9 eq.) was added to a solution of D, L-lactide (5.09 g, 35 

mmol., 25.0 eq.), RAFT agent (0.34 g, 1.4 mmol., 1.0 eq.) in chloroform (120 ml) under 

nitrogen, the solution was stirred for 50 min. before being quenched with benzoic acid (0.2 

g, 1.6 mmol., 1.17 eq.) in chloroform.  The reaction mixture underwent an aqueous wash 

followed by a sodium hydrogen carbonate wash.  The polymer was subsequently 

precipitated from chloroform into hexane and dried in vacuo to yield a yellow crystalline 

solid.  Yield 5.21 g (96 %). 

S S

S
O

O
H

O n
 

Figure 6-2. Chemical structure of PLA macroRAFT agent with BSTSE end group. 

 

1
H NMR (400 MHz, CDCl3): δ 7.36-7.27 (5 H, m, Ar H’s), 4.67 – 4.55 (49H, m, CH), 

4.62 (2H, s, PhCH2, end group), 4.44 – 4.29 (3H, m, SCH2 + CH, end group), 3.66 (2H, t, J 

= 6.3 Hz, SCH2CH2O, end group), 1.67 – 1.49 (153H, m, CH3). 

13
C NMR (101 MHz, CDCl3): δ 169.77-169.19 (CO), 134.77 (Ar), 129.30 (Ar), 128.80 

(Ar), 127.94 (Ar), 69.47-69.05 (CH), 66.72-66.67 (CHOH, end group), 62.66 (CH2O, end 

group), 41.72 (PhCH2, end group), 34.68 (SCH2, end group), 20.56 (CH3, end group), 

16.79-16.67 (CH3). 

GPC (THF): Mn=3,900 gmol
-1

, Mw=4,100 gmol
-1

, PDI=1.03. 

IR (cm
-1

): 1755 (C=O). 

 

6.3.3 Synthesis of PLA-PMPC 

6.3.3.1 PLA50-PMPC100 

MPC (0.8 g, 2.7 mmol., 100.0 eq.), ACVA (1.9x10
-3 

g, 6.8x10
-3 

mmol., 0.25 eq.) and 

macroRAFT agent (0.12 g, 0.03 mmol., 1.0 eq.) in a solvent mixture of methanol/DMSO 

(7:3) (3.68 g) was degassed by purging with nitrogen for 30min.  The mixture was heated 

at 75 
o
C and stirred for 12 h.  The polymer was precipitated from methanol/DMSO into 

methanol. The precipitant was filtered then concentrated under reduced pressure and 

subsequently dialyzed against water over 24 h. and lyophilised.  Yield 0.6 g (65 %). 

1
H NMR (400 MHz, MeOD:CDCl3 (2:1)): δ 5.36 – 5.16 (50H, m,  CH, PLA), 4.39 (165H, 

br s, CH2CH2NMe3, PMPC), 4.30 (143H, br s, CO2CH2CH2, PMPC), 4.15 (147H, br s, 

CO2CH2, PMPC), 3.82 (156H, br s, CH2NMe3, PMPC), 3.38 (762H, s, NMe3, PMPC), 
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2.18-1.68 (125H, br s, CH2, PMPC, backbone), 1.71 – 1.58 (185H, m, CH3, PLA), 1.17, 

1.01(220H, br s, CH3, PMPC, backbone). 

GPC (MeOH/CHCl3(1:3)): Mn=15,600 gmol
-1

, Mw=21,800 gmol
-1

, PDI = 1.40. 

 

6.3.3.2 PLA50-PMPC50 

PLA50-PMPC50 was synthesized using an analogous method to 6.3.3.1 adding to a Schlenk 

tube: PLA-macroRAFT agent (0.18 g, 0.04 mmol., 1.0 eq.), MPC (0.6 g, 2.0 mmol., 50.0 

eq.) and ACVA (2.8x10
-3 

g, 1.0x10
-2

 mmol., 0.25 eq.) in DMSO/MeOH (3:7) (3.11 g).  

Yield 0.47 g (60 %). 

1
H NMR (400 MHz, MeOD:CDCl3 (2:1)): δ 5.35 – 5.15 (50H, m, CH, PLA), 4.39 (96H, 

br s, CH2CH2NMe3, PMPC), 4.29 (89H, br s, CO2CH2CH2, PMPC), 4.15 (92H, br s, 

CO2CH2, PMPC), 3.81 (93H, br s, CH2NMe3, PMPC), 3.37 (464H, s, NMe3, PMPC), 2.18 

– 1.82 (80H, m, CH2, PMPC, backbone), 1.72 – 1.55 (170H, m, CH3, PLA), 1.17, 

1.00(137H, br s, CH3, PMPC, backbone). 

GPC (MeOH/CHCl3(1:3)): Mn=16,000 gmol
-1

, Mw =20,800 gmol
-1

, PDI = 1.30. 

6.3.3.3 PLA50-PMPC75  

PLA50-PMPC75 was synthesized using an analogous method to 6.3.3.1 adding to a Schlenk 

tube: PLA-macroRAFT agent (0.16 g, 0.04 mmol., 1.0 eq.), MPC (0.8 g, 2.7 mmol., 

75.0eq.) and ACVA (2.5x10
-3 

g, 9.0x10
-3 

mmol., 0.25 eq.) in DMSO/MeOH (3:7) (3.84 g).  

Yield 0.68 g (73 %). 

1
H NMR (400 MHz, MeOD:CDCl3 (2:1)): δ 5.33 – 5.19 (50H, m, CH, PLA), 4.39 (135H, 

br s, CH2CH2NMe3, PMPC), 4.29 (121H, br s, CO2CH2CH2, PMPC), 4.15 (134H, br s, 

CO2CH2, PMPC), 3.82 (132H, br s, CH2NMe3, PMPC), 3.38 (533H, br s, NMe3, PMPC), 

2.18 – 1.83 (110H, m, CH2, PMPC, backbone), 1.74 – 1.53 (165H, m, CH3, PLA), 1.18, 

1.01(174H, br s, CH3, PMPC, backbone). 

GPC (MeOH/CHCl3(1:3)): Mn=12,300 gmol
-1

, Mw=17,000 gmol
-1

, PDI = 1.38. 

 

6.3.4 Synthesis of Triblock Copolymer PMPC-PLA-PMPC  

MPC (0.8 g, 2.7 mmol., 200.0 eq.), ACVA (1.9x10
-3 

g, 6.8x10
-3 

mmol., 0.5 eq.) and 

macroRAFT agent (0.07 g, 0.01 mmol., 1.0 eq.) in a solvent mixture of methanol/DMSO 

(7:3) (3.49 g) was degassed by purging with nitrogen for 30 min.  The mixture was heated 

at 70 
o
C and stirred for 12 h.  The polymer was precipitated from methanol/DMSO into 
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methanol. The precipitant was filtered then concentrated under reduced pressure and 

subsequently dialyzed against water over 24 h. and lyophilised.  Yield 0.78 g (90 %). 

1
H NMR (400 MHz, MeOD:CDCl3 (2:1)): δ 5.33 – 5.15 (50H, m, CH, PLA), 4.37 (340H, 

br s, CH2CH2NMe3, PMPC), 4.28 (289H, br s, CO2CH2CH2, PMPC), 4.13 (315H, br s, 

CO2CH2, PMPC), 3.80 (322H, br s, CH2NMe3, PMPC), 3.36 (1477H, s, NMe3, PMPC), 

2.20-1.78 (269H, m, CH2, PMPC, backbone), 1.74 – 1.51 (179H, m, CH3, PLA), 1.16, 1.0 

(410H, br s, CH3, PMPC, backbone). 

GPC (MeOH/CHCl3(1:3)): Mn=9,000 gmol
-1

, Mw=11,500 gmol
-1

, PDI = 1.28. 

 

6.3.5 APC 

6.3.5.1 Free Radical Polymerization  

APC (0.51 g, 1.8 mmol., 100.0 eq.) and ACVA (5x10
-3 

g, 1.8x10
-2 

mmol., 1.0 eq.) in 

methanol (2.5 ml) was degassed by several freeze pump thaw cycles before stirring at 75 

o
C for 17 h.  The polymer in methanol was dialysed against water for 24 h. and lyophilized.  

Yield 0.31 g (61 %). 

 

Figure 6-3. Chemical structure of PAPC. 

 

1
H NMR (400 MHz, MeOD): δ 4.34 (4H, br s, CH2CH2NMe3 + CO2CH2CH2), 4.09 (2H, 

br s, CO2CH2), 3.76 (2H, br s, CH2NMe3), 3.31 (9H, s, NMe3), 2.43 (1H, br s, CH, 

backbone), 1.98, 1.78, 1.62 (2H, br s, CH2, backbone). 

GPC (Aqueous): Mn=5,800 gmol
-1

, Mw=12,300 gmol
-1

, PDI=2.12. 

 

6.3.5.2 RAFT Polymerization 

APC (1.00 g, 3.6 mmol., 23.0 eq.), BSTSE RAFT agent (3.8x10
-2 

g, 0.16 mmol., 1.0 eq.) 

and ACVA (1.1x10
-2 

g, 0.04 mmol., 0.25 eq.) in methanol (5 ml) was degassed by several 
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freeze pump thaw cycles before stirring at 75 
o
C for 17 h.  The polymer was precipitated 

into diethyl ether then redissolved in methanol and dialysed against water for 24 h. and 

lyophilized.  Yield 0.65 g (65 %). 

S S
OH

S

O O

O

P

O

Me3N

O O-

+

n

 

Figure 6-4. Chemical structure of PAPC with BSTSE end group. 

 

1
H NMR (400 MHz, MeOD): δ 7.41 – 7.05 (5H, m, Ar), 4.27 (120H, br s, CH2CH2NMe3 + 

CO2CH2CH2), 4.03 (66H, br s, CO2CH2), 3.70 (68H, s, CH2NMe3), 3.25 (288H, s, NMe3), 

2.39 (35H, br s, CH, backbone), 1.94, 1.73, 1.58 (58H, br s, CH2, backbone). 

13
C NMR (101 MHz, MeOD) δ 176.09(CO), 129.64 (Ar, end group), 67.41 (CH2NMe3), 

65.71 (CH2CH2NMe3), 64.64 (CO2CH2), 60.66 (CO2CH2CH2), 54.80 (NMe3), 42.80 

(CHCO2, backbone), 36.33 (CH2, backbone). 

GPC (Aqueous): Mn=3,500 gmol
-1

, Mw=4,700 gmol
-1

, PDI=1.34. 

IR (cm
-1

): 1720 (C=O PMPC), 1232 (P-O), 968 (N-Me). 

 

6.3.6 Model System – n-Butyl Methacrylate 

6.3.6.1 RAFT Polymerization of n-Butyl Methacrylate 

6.3.6.1.1 BSTSE 

n-Butyl Methacrylate (1.1 ml, 7.0 mmol., 45.0 eq.), BSTSE agent (0.038 g, 0.16 mmol., 

1.0 eq.) and AIBN (0.0064 g, 0.04 mmol., 0.25 eq.) in THF (4.5 ml) was degassed by 

purging with nitrogen for 30 min. before stirring at 75 
o
C for 14 h.  The polymer was 

precipitated from THF into cold methanol.  The polymer was dried in vacuo.  Yield 0.47 g 

(48 %). 

 

Figure 6-5. Chemical structure of poly(n-butyl methacrylate) with BSTSE end group. 
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1
H NMR (400 MHz, CDCl3): δ 3.94 (2H, s, CO2CH2), 2.09 – 1.74 (2 H, m, CH2, 

backbone), 1.60 (2 H, s, OCH2CH2), 1.38 (2 H, s, CH2CH3), 0.94 (6H, t, J = 31.9 Hz, 

CH2CH3 + CH3, backbone). 

GPC (THF): Mn=39,800gmol
-1

, Mw=62,500 gmol
-1

, PDI = 1.57. 

 

6.3.6.1.2 4-Cyano-4-phenylcarbonothio) pentanoic acid 

n-Butyl Methacrylate (1.12 ml, 7.0 mmol., 50.0 eq.), RAFT agent (0.0393 g, 0.14 mmol., 

1.0 eq.) and ACVA (0.01 g, 0.04 mmol., 0.25 eq.) in THF (4.5 ml) was degassed by 

purging with nitrogen for 30 min. before stirring in an oil bath set at 75 
o
C for 8 h.  The 

polymer was precipitated from THF into cold methanol.  The polymer was dried in vacuo.  

Yield 0.89 g (89 %). 

OH

OO

S

S
CN

O

n
 

Figure 6-6. Chemical structure of poly(n-butyl methacrylate) with CPADB end group. 

1
H NMR (400 MHz, CDCl3): δ 7.84 (2H, d, J=7.3 Hz, Ar), 7.50 (1H, t, J=7.4 Hz, Ar), 

7.34 (2H, t,  J=7.5 Hz, Ar), 3.92 (122H, s, CO2CH2 ), 2.06-1.69 (115H, m, CH2, 

backbone), 1.60 (128H, s, OCH2CH2), 1.39 (139H, s, CH2CH3), 0.93 (360H, t, J=33.0 Hz, 

CH2CH3 + CH3, backbone). 

GPC (THF): Mn=6,200 gmol
-1

, Mw=6, 900 gmol
-1

, PDI = 1.11.  

 

6.3.6.2 Free Radical Polymerization 

n-Butyl Methacrylate (1.12 ml, 7.0 mmol., 200.0 eq.) and ACVA (0.01 g, 0.04 mmol., 1.0 

eq.) in THF (4.5 ml) was degassed by purging with nitrogen for 30 min. before stirring at 

75 
o
C for 8 h.  The polymer was precipitated from THF into cold methanol.  The polymer 

was dried in vacuo. Yield 0.76 g (76 %). 

O O
n

 

Figure 6-7. Structure of poly(n-butyl methacrylate). 
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1
H NMR (400 MHz, CDCl3): δ 3.93 (2H, s, CO2CH2), 2.08-1.73 (2 H, m, CH2, backbone), 

1.60 (2 H, s, OCH2CH2), 1.40 (2H, s, CH2CH3), 1.07-0.75 (6H, t, J=31.9 Hz CH2CH3 + 

CH3, backbone). 

GPC (THF): Mn=29,600 gmol
-1

, Mw=60,300 gmol
-1

, PDI = 2.03. 

 

6.3.7 Ring Opening Polymerization of Lactide with Butanediol Initiator 

6.3.7.1 General Procedure 

To a round bottomed flask containing D, L-lactide, dry THF was added via a cannula.  

Under nitrogen, butanediol followed by DBU were added via a syringe to the lactide 

solution.  After stirring for one hour the reaction mixture was quenched by the addition of 

benzoic acid in dry THF (10 ml).  The reaction mixture was concentrated under reduced 

pressure and precipitated twice into methanol.  The resulting white polymer was dried over 

anhydrous magnesium sulfate and in vacuo to yield a white solid.   

 

Figure 6-8. Chemical structure of HO-PLA-OH. 
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Table 6-1. ROP of lactide initiated by butanediol – quantities of each chemical and solvent utilised. 

Poly(lactide) Lactide Butanediol DBU Benzoic Acid Dry 

THF 

 Mass 

(g) 

Mols. Eq. Vol. 

(ml) 

mmols. Eq. Vol. 

(ml) 

mmols. Eq. Mass(g) mmols. Eq. Vol. 

(ml) 

HO-PLA50-OH 

 

4 0.028 25.0 0.98 1.1 1.0 0.16 1.1 1.0 0.16 1.3 1.2 80 

HO-PLA200-OH 

 

16.27 0.11 100.0 0.1 1.1 1.0 0.68 4.5 4.1 0.71 5.8 5.2 150 

HO-PLA400-OH 

 

22.06 0.15 200.0 0.06 0.77 1.0 0.22 1.5 2.0 0.25 2.0 2.7 200 
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6.3.7.1.1 HO-PLA50-OH 

HO-PLA50-OHwas synthesized following the general procedure 6.3.7.1 and the masses of 

starting materials given in Table 6-1.  Yield 2.90 g (72.5 %). 

1
H NMR (400 MHz, CDCl3): δ 5.27 – 5.06 (50H, m, CH), 4.42 – 4.25 (2H, m, CH, end 

group), 4.13 (4H, s, OCH2CH2CH2CH2O), 2.76 (2H, brs, OH), 1.68 (4H, dt, J=5.2, 2.6 Hz, 

CH2CH2CH2CH2), 1.60 – 1.40 (158H, m,CH3). 

13
C NMR(101 MHz, CDCl3): δ 170.11-169.20 (CO), 69.33-69.09 (CH), 66.78 (CHOH, 

end group), 64.85 (OCH2CH2CH2CH2O), 25.10 (CH2CH2CH2CH2), 20.58 (CH3, end 

group), 16.87-16.72 (CH3). 

GPC (THF): Mn=4,400 gmol
-1

, Mw=4,700 gmol
-1

,
 
PDI=1.07. 

IR (cm
-1

):  1755 (C=O). 

 

6.3.7.1.2 HO-PLA200-OH 

HO-PLA200-OH was synthesized following the general procedure 6.3.7.1 and the masses of 

starting materials given in Table 6-1.  Yield 12.06 g (74 %). 

1
H NMR (400 MHz, CDCl3): δ 5.25 – 5.03 (187H, m, CH), 4.39 – 4.26 (2H, m, CH, end 

group), 4.13 (4H, s, CH2CH2CH2CH2), 1.62 – 1.42 (572H, m, CH3). 

13
C NMR (101 MHz, CDCl3): δ 169.63-169.37 (CO), 69.06 (CH), 66.72 (CHOH, end 

group), 64.82 (OCH2CH2CH2CH2O), 25.07 (CH2CH2CH2CH2), 16.69 (CH3). 

GPC (THF): Mn=11,100 gmol
-1

, Mw=12,000 gmol
-1

, PDI=1.09. 

IR (cm
-1

):  1756 (C=O). 

 

6.3.7.1.3 HO-PLA400-OH 

HO-PLA400-OH was synthesized following the general procedure 6.3.7.1 and the masses of 

starting materials given in Table 6-1.  Yield 18.34 g (83 %). 

1
H NMR (400 MHz, CDCl3): δ 5.27 – 5.04 (400H, m, CH), 4.34 (1H, q, J = 7.1 Hz, CH, 

end group), 4.14 (4H, s, OCH2 CH2 CH2CH2O), 1.66 – 1.42 (1252H, m, CH3). 

13
C NMR (101 MHz, CDCl3): δ 169.72- 169.22 (CO), 69.53- 69.10 (CH), 16.85- 16.73 

(CH3). 

 GPC (THF): Mn=17,600 gmol
-1

, Mw=20,500 gmol
-1

, PDI=1.16. 

IR (cm
-1

):  1753 (C=O). 
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6.3.8 Ring Opening Polymerization of Lactide with Butanol Initiator 

6.3.8.1 General Procedure 

To a round bottomed flask containing lactide dry chloroform was added via a cannula.  

Under nitrogen, butanol followed by DBU, were added via a syringe to the lactide solution.  

After stirring for one hour the reaction mixture was quenched by the addition of benzoic 

acid in dry chloroform (10 ml).  The reaction mixture was concentrated under reduced 

pressure and precipitated twice into methanol.  The resulting white polymer was dried over 

anhydrous magnesium sulfate and in vacuo.  

 

 

Figure 6-9. Chemical structure of PLA-OH. 
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Table 6-2. ROP of lactide initiated by butanol – quantities of each chemical and solvent utilised. 

Poly(lactide) Lactide Butanol DBU Benzoic Acid Dry 

Chloroform 

 Mass 

(g) 

Mols. Eq. Vol. 

(ml) 

mmols. Eq. Vol. 

(ml) 

mmols. Eq. Mass(g) mmols. Eq. Vol. (ml) 

PLA50-OH 

 

15.0 0.1 

 

25.0 0.38 4.2 1.0 0.62 4.2 1.0 0.6 4.9 1.2 150 

PLA200-OH 

 

16.72 0.12 100.0 0.11 1.2 1.0 0.69 4.6 4.0 0.73 5.8 5.2 170 

PLA200-OH- 

Alternative 

method 

 

17.08 0.12 100.0 0.11 1.2 1.0 0.35 2.3 2.0 0.38 3.1 3.2 170 
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6.3.8.1.1 PLA50-OH 

PLA50-OH was synthesized following the general procedure 6.3.8.1 and the masses of 

starting materials given in Table 6-2.  Yield: 12.0 g (80 %). 

 
1
H NMR (400 MHz, CDCl3): δ 5.25 – 5.07 (47H, m, CH), 4.40 – 4.27 (1H, m, CH, end 

group), 4.17 – 4.05 (2H, m, CH2O, end group), 1.60 – 1.40 (155H, m, CH3), 1.39 – 1.28 

(4H, m, CH2CH3, end group), 0.90 (3H, t, J = 7.4 Hz, CH3, alkyl end group). 

13
C NMR (101 MHz, CDCl3): δ 169.74-169.20 (CO), 69.50- 69.07 (CH), 66.74 (CHOH, 

end group), 65.45 (CH2O, end group), 30.53 (CH2CH2O, group), 20.58 (CH3, PLA end 

group), 19.04 (CH2CH3, end group), 16.81-16.69 (CH3), 13.70 (CH3, alkyl end group). 

GPC (THF): Mn=3,600 gmol
-1

, Mw=4,100 gmol
-1

, PDI=1.14. 

IR (cm
-1

): 1755 (C=O PLA). 

 

6.3.8.1.2 PLA200-OH 

PLA200-OH was synthesized following the general procedure 6.3.8.1 and the masses of 

starting materials given in Table 6-2.  Yield 14.67 g (87 %). 

1
H NMR (400 MHz, CDCl3): δ 5.23 – 4.96 (230H, m, CH), 4.41 – 4.20 (1H, m, CHOH, 

end group), 4.18 – 3.98 (2H, m, CH2O, end group), 1.67 – 1.26 (713H, m, CH3), 0.94 – 

0.83 (3H, t, J=7.4 Hz, CH3, alkyl end group). 

13
C NMR (101 MHz, CDCl3): δ 169.60-169.12 (CO), 69.45-69.04 (CH), 66.70 (CHOH, 

end group), 65.38 (CH2, end group), 30.51 (CH2CH2O, end group), 20.51 (CH3, PLA end 

group), 18.99 (CH2CH3, end group), 16.77-16.65 (CH3), 13.64 (CH3, alkyl end group). 

GPC (THF): Mn=12,000 gmol
-1

, Mw=13,100 gmol
-1

, PDI=1.08. 

IR (cm
-1

):  1751 (C=O). 

 

6.3.8.1.3 PLA200-OH - Alternative Method 

PLA200-OH was synthesized following the general procedure 6.3.8.1 and the masses of 

starting materials given in Table 6-2.  Yield 16.82 g (98 %). 

1
H NMR (400 MHz, CDCl3): δ 5.27 – 5.07 (224H, m, CH), 4.41 – 4.31 (1H, m, CHOH, 

end group), 4.18 – 4.09 (2H, m, CH2O, end group), 1.69 – 1.43 (715H, m, CH3), 0.92 (3H, 

t, J = 7.4 Hz, CH3, alkyl end group). 
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13
C NMR (101 MHz, CDCl3): δ 169.70-169.21 (CO), 69.51-69.08 (CH), 65.47 (CH2, end 

group), 30.55 (CH2CH2O, end group), 20.60 (CH3, PLA end group), 19.05 (CH2CH3, end 

group), 16.83-16.70 (CH3), 13.71 (CH3, alkyl end group). 

GPC (THF): Mn=12,300 gmol
-1

, Mw=12,600 gmol
-1

, PDI=1.02. 

IR (cm
-1

):  1754 (C=O). 

 

6.3.9 Functionalization of PLAx-OH and HO- PLAx-OH 

6.3.9.1 General Procedure 

DCC and DMAP in dry DCM was added dropwise to a solution of CPADB and 

polylactide in DCM at 0 
o
C under nitrogen.  Following the addition of the reactants, the 

reaction mixture was stirred for a further 10 min. at 0 
o
C before allowing the mixture to 

warm to room temperature then stirring overnight.  The reaction mixture was subsequently 

cooled and filtered; the filtrate was concentrated under reduced pressure and precipitated 

twice into methanol.   The resulting pink polymer was dried over anhydrous magnesium 

sulfate and in vacuo.   

 

 

Figure 6-10. Chemical structure of PLA-macroRAFT agent; CPADB endcapped PLA (PLA-R). 
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Table 6-3. Functionalization of PLA-OH/HO-PLA-OH- quantities of chemicals and solvents utilised. 

Functionalized 

PLA 

PLA-OH/HO-PLA-OH CPADB DCC DMAP Dry DCM 

 Mass 

(g) 

mmols. Eq. Mass 

(g) 

mmols. Eq. Mass 

(g) 

mmols. Eq. Mass(g) mmols. Eq. Vol. (ml) 

PLA50-R 

 

1.8 0.48 

 

0.2 0.65 2.34 1.0 0.58 2.8 1.2 0.029 0.23 0.1 55 

PLA200-R 

 

3.07 0.19 0.22 0.24 0.85 1.0 0.21 1.0 1.2 0.01 8.5x10
-5

 0.1 70 

PLA200-R
a
 

 

2.5 0.15 0.22 0.19 0.67 1.0 0.19 0.67 1.2 0.008 6.7x10
-5

 0.1 60 

R-PLA50-R  

 

1.08 0.29 0.11 0.72 2.6 1.0 0.6 2.9 1.1 0.029 0.24 0.09 55 

R-PLA200-R  

 

2.5 0.18 0.11 0.46 1.6 1.0 0.41 2.0 1.2 0.02 0.16 0.1 55 

R-PLA400-R  

 

4.05 0.14 0.11 0.35 1.3 1.0 0.31 1.5 1.2 0.015 0.13 0.1 80 

a
PLA200-OH  utilised was prepared by alternative method



134 

 

6.3.9.1.1 PLA50-OH 

PLA50-R was synthesized following general procedure 6.3.9.1 and the masses of starting 

materials given in Table 6-3.  Yield: 1.3 g (67 %).  Degree of functionalization : 100 % (
1
H 

NMR). 

1
H NMR (400 MHz, CDCl3): δ 7.89 (2H, dd, J = 8.0, 3.1 Hz, Ar), 7.55 (1H, t, J = 7.4 Hz, 

Ar), 7.38 (2H, t, J = 7.7 Hz, Ar), 5.24 – 5.07 (46H, m, PLA), 4.18 – 4.06 (2H, m, OCH2, 

end group), 2.84 – 2.36 (4H, m, CH2CH2, RAFT end group), 1.92 (3H, S, CH3, RAFT end 

group), 1.64 – 1.46 (142H, m,  CH3), 1.42-1.29 (4H, m, CH2CH2, end group), 0.91 (3H, t, J 

= 7.4 Hz, CH3 ,end group). 

13
C NMR (101 MHz, CDCl3): δ 169.68-169.22 (CO), 144.60 (Ar), 133.12 (Ar), 128.67 

(Ar), 126.78 (Ar), 118.50 (CN), 69.52- 68.93 (CH), 65.48 (CH2O, end group), 45.82-45.75 

(CSR2CN, end group), 33.32-33.22 (CH2CH2, RAFT end group), 30.56 (OCH2CH2, end 

group), 29.60 (CH2CH2, RAFT end group), 24.28-24.13 (CH3, RAFT end group), 19.06 

(CH2CH3, end group), 16.92- 16.74 (CH3), 13.73 (CH2CH3, end group). 

GPC (THF): Mn=3,700 gmol
-1

, Mw=3,800 gmol
-1

, PDI=1.02. 

IR (cm
-1

): 1756 (C=O). 

 

6.3.9.1.2 PLA200-OH
a
 

PLA200-R was synthesized following general procedure 6.3.9.1 and the masses of starting 

materials given in Table 6-3.  Yield: 2.82 g (90 %).  Degree of functionalization: 99 % (
1
H 

NMR). 

1
H NMR (400 MHz, CDCl3) δ 7.89 (2H, dd, J = 7.7, 2.7 Hz, Ar), 7.55 (1H, t, J = 7.3 Hz, 

Ar), 7.38 (2H, t, J = 7.8 Hz, Ar), 5.24 – 5.06 (219H, m, CH), 4.18 – 4.04 (2H, m, OCH2, 

end group), 2.84 – 2.35 (4H, m, CH2CH2, RAFT end group), 1.91 (3H, s, CH3, RAFT end 

group), 1.60 – 1.47 (669H, m, CH3), 0.90 (3H, t, J = 7.4 Hz, CH3, end group). 

13
C NMR (101 MHz, CDCl3): δ 169.69-169.20 (CO), 133.11 (Ar), 128.65 (Ar), 126.76 

(Ar), 69.50-69.07 (CH), 65.46 (OCH2, end group), 30.54 (OCH2CH2, end group), 19.04 

(CH2CH3, end group), 16.82-16.70 (CH3), 13.71 (CH2CH3, end group). 

GPC (THF): Mn=13,600 gmol
-1

, Mw=14,100 gmol
-1

, PDI=1.03.  

IR (cm
-1

):  1756(C=O). 
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6.3.9.1.3 PLA200-OH
b
 

PLA200-R was synthesized using general procedure 6.3.9.1. with PLA200-OH prepared by 

method 6.3.9.1 and the masses of starting materials given in Table 6-3.  Yield: 2.37 g (93 

%).  Degree of functionalization: 99 % (
1
H NMR).  

1
H NMR (400 MHz, CDCl3): δ 7.91(2H, dd, J = 7.8, 2.7 Hz, Ar), 7.57 (1H, t, J = 7.7 Hz, 

Ar), 7.40 (2H, t, J = 7.7 Hz, Ar), 5.25 – 5.09 (197, m, CH), 4.18 – 4.06 (2H, m, OCH2, end 

group), 2.88 – 2.36 (4H, m, CH2CH2, RAFT end group), 1.97 – 1.88 (3H, s, CH3, RAFT 

end group), 1.68 – 1.44 (692H, m, CH3), 0.96 – 0.82 (3H,t, J = 7.4 Hz, CH3, end group). 

13
C NMR (101 MHz, CDCl3): δ 169.64-169.17 (CO), 128.64 (Ar), 126.75 (Ar), 69.48-

69.07 (CH), 30.54 (OCH2CH2, end group), 19.03 (CH2CH3, end group), 16.80-16.68 

(CH3), 13.67 (CH2CH3, end group). 

GPC (THF): Mn=10,300 gmol
-1

, Mw=11,000 gmol
-1

, PDI=1.07.  

IR (cm
-1

):  1754 (C=O). 

 

 

 

Figure 6-11. Chemical structure of difunctionalised PLA-macroRAFT agent, R-PLA-R. 

  

6.3.9.1.4 HO-PLA50-OH 

R-PLA50-R was synthesized following general procedure 6.3.9.1 and the masses of starting 

materials given in Table 6-3.  Yield: 0.98 g (79 %). Degree of functionalization:  99 % (
1
H 

NMR). 

1
H NMR (400 MHz, CDCl3): δ 7.89 (4H, dd, J = 7.6, 2.7 Hz, Ar), 7.55 (2H, t, J = 7.3 Hz, 

Ar), 7.38 (4H,t, J = 7.6 Hz, Ar), 5.25 – 5.05 (51H, m,  CH), 4.14 (4H, s, 

OCH2CH2CH2CH2O), 2.85 – 2.35 (8H, m, CH2CH2, RAFT end group), 1.91 (6H, s, CH3, 

end group), 1.68 (4H, s, CH2CH2CH2CH2), 1.64 – 1.42 (153H, m, CH3). 

13
C NMR (101 MHz, CDCl3): δ 171.08-169.21 (CO), 144.59 (Ar), 133.11 (Ar), 128.65 

(Ar), 126.76 (Ar), 118.53-118.48 (CN, end group), 69.31-68.91 (CH), 64.84 

(OCH2CH2CH2CH2O), 45.81-45.73 (CSR2CN, end group), 33.29-33.19 (CH2CH2, RAFT 

end group), 29.58 (CH2CH2, RAFT end group), 25.07 (CH2CH2CH2CH2), 24.25-24.10 

(CH3, RAFT end group),  16.86-16.71 (CH3). 

GPC (THF): Mn=4,400 gmol
-1

, Mw=4,500 gmol
-1

, PDI=1.02. 
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IR (cm
-1

): 1755 (C=O PLA). 

 

6.3.9.1.5 HO-PLA200-OH 

R-PLA200-R was synthesized following general procedure 6.3.9.1 and the masses of 

starting materials given in Table 6-3.  Yield 2.3 g (88 %).  Degree of functionalization: 100 

% (
1
H NMR). 

1
H NMR (400 MHz, CDCl3): δ 7.91 (4H, dd, J = 7.2, 3.2 Hz, Ar), 7.57 (2H, t, J = 7.4 Hz, 

Ar), 7.40 (4H, t, J = 7.7 Hz, Ar), 5.28 – 5.03 (181H, m, CH), 4.15  (4H, s, 

CH2CH2CH2CH2), 2.87 – 2.32 (8H, m, CH2CH2, raft end group), 1.93 (6H, s, CH3, end 

group), 1.66 – 1.44 (608H, m, CH3). 

13
C NMR (101 MHz, CDCl3): δ 169.70-169.23 (CO), 133.13 (Ar), 128.68 (Ar), 126.79 

(Ar), 69.10 (CH), 16.74 (CH3). 

GPC (THF): Mn=12,400 gmol
-1

, Mw=13,100 gmol
-1

, PDI=1.06. 

IR (cm
-1

):  1753 (C=O). 

 

6.3.9.1.6 HO-PLA400-OH 

R-PLA400-R was synthesized following general procedure 6.3.9.1 and the masses of 

starting materials given in Table 6-3.  Yield: 3.7 g (90 %).  Degree of functionalization: 96 

% (
1
H NMR). 

1
H NMR (400 MHz, CDCl3): δ 7.89 (4H, dd, J = 7.8, 2.5 Hz, Ar), 7.55 (2H, t, J = 7.4 Hz, 

Ar), 7.38 (4H, t, J = 7.7 Hz, Ar), 5.26 – 5.05 (390H, m, CH), 4.13 (4H, s, OCH2 

CH2CH2CH2O), 2.85 – 2.35 (8H, m, CH2CH2, RAFT end group), 1.91 (6H, s, CH3, end 

group), 1.75 – 1.34 (1227H, m, CH3). 

13
C NMR (101 MHz, CDCl3): δ 169.67-169.20 (CO), 128.66 (Ar), 126.78 (Ar), 69.51-

69.09 (CH), 16.83- 16.73 (CH3). 

GPC (THF): Mn=18,500 gmol
-1

, Mw=21,600 gmol
-1

, PDI=1.17. 

IR (cm
-1

):  1750 (C=O). 

 

6.3.10  Synthesis of PLA -PHEMA Diblock Copolymer 

6.3.10.1 PLA46-PHEMA15 

PLA-macroRAFT agent (0.46 g, 0.12 mmol., 1.0 eq.), HEMA (0.22 ml, 1.8 mmol., 15.0 

eq.) and ACVA (8.6x10
-3 

g, 0.03 mol., 0.25 eq.) in THF (3.14 ml) was degassed by purging 

with nitrogen for 25 min. and heated at 70 
o
C for 12 h.  The solution was cooled before 
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diluting with THF and precipitated twice into diethyl ether.  The polymer obtained was 

dried under reduced pressure. Yield 0.62 g (89 %). 

 

Figure 6-12. Chemical structure of PLA -PHEMA diblock copolymer. 

 

1
H NMR (400 MHz, CDCl3:MeOD (2:1)): δ ) δ 5.06 – 4.81 (47H, m, CH, PLA),, 3.84 

(42H, br s, CO2CH2, PHEMA), 3.57 (38H, br s, CH2OH, PHEMA), 1.92-1.57(42H, m, 

CH2, PHEMA backbone), 1.47 – 1.27 (148H, m, CH3, PLA), 0.87, 0.71 (53H, br s, CH3, 

PHEMA backbone). 

13
C NMR (101 MHz, CDCl3:MeOD (2:1)): δ 178.11-177.10 (CO, PHEMA), 169.41-

169.25 (CO, PLA), 69.22-68.84 (CH, PLA), 66.28 (CO2CH2, PHEMA,), 59.24 (CH2OH, 

PHEMA), 53.98-51.65 (CH2, PHEMA backbone), 44.86-44.52 (CCH3CO2, PHEMA 

backbone), 18.42 (CH3, PHEMA backbone), 16.45-16.10 (CH3, PLA). 

GPC (THF): Mn=10,000 gmol
-1

, Mw=11,400 gmol
-1

, PDI=1.15. 

GPC (DMF): Mn=14,700 gmol
-1

, Mw=26,700 gmol
-1

, PDI=1.82. 

IR (cm
-1

): 1758 (C=O PLA), 1722 (C=O PHEMA). 

 

6.3.10.2 PLA47-PHEMA100 

PLA47-PHEMA100 was synthesized using an analogous method to 6.3.10.1 adding to a 

Schlenk tube: PLA-macroRAFT agent (0.14 g, 0.04 mmol., 1.0 eq.), HEMA (0.47 ml, 3.8 

mmol., 100.0 eq.) and ACVA (2.7x10
-3 

g, 9.6x10
-3 

mmol., 0.25 eq.) in THF (2.89 ml).  

Yield 0.62 g (97 %). 

1
H NMR (400 MHz, CDCl3:MeOD (2:1)): δ 5.00 – 4.86 (47H, m, CH, PLA ), 3.82 (204H, 

br s, CO2CH2, PHEMA), 3.55 (198H, br s, CH2OH, PHEMA), 1.98-1.54 (187H, m, CH2, 

PHEMA backbone), 1.43 – 1.19 (162H, m, CH3, PLA ), 0.85, 0.69 (283H, br s, CH3, 

PHEMA backbone). 

13
C NMR (101 MHz, CDCl3:MeOD (2:1)): δ 178.16-177.18 (CO, PHEMA), 169.48-

169.31 (CO, PLA), 69.03-68.87 (CH, PLA), 66.32 (CO2CH2, PHEMA), 59.43-59.28 

(CH2OH, PHEMA), 54.02-51.62 (CH2, PHEMA backbone), 44.87-44.54 (CCH3CO2), 

18.47 (CH3, PHEMA backbone), 16.52- 16.16 (CH3, PLA). 

GPC (THF): Mn=18,300 gmol
-1

, Mw=19,800 gmol
-1

 PDI=1.09. 
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GPC (DMF): Mn=25,200 gmol
-1

, Mw=36,800 gmol
-1

 PDI=1.46. 

IR (cm
-1

):  1758 (C=O PLA), 1722 (C=O PHEMA). 

 

6.3.10.3 PLA219-PHEMA67 

PLA219-PHEMA67 was synthesized using an analogous method to 6.3.10.1 adding to a 

Schlenk tube: PLA-macroRAFT agent (0.46 g, 0.03 mmol., 1.0 eq.), HEMA (0.23 ml, 1.9 

mmol., 67.0 eq.) and ACVA (2.0x10
-3 

g, 7.2x10
-3 

mmol., 0.25 eq.) in THF (3.21 ml).  

Yield 0.68 g (96 %). 

1
H NMR (400 MHz, CDCl3:MeOD (2:1)):

 
δ 5.04 – 4.84 (219H, m, CH, PLA), 3.82 (114H, 

br s, CO2CH2, PHEMA), 3.55 (110H, br s, CH2OH, PHEMA), 1.88 – 1.57 (115H, m CH2, 

PHEMA backbone), 1.40 – 1.24 (672H, m, CH3, PLA), 0.85, 0.69 (165H, br s, CH3, 

PHEMA backbone). 

13
C NMR (101 MHz, CDCl3:MeOD (2:1)) δ 178.17-177.19 (CO, PHEMA), 169.47-169.29 

(CO, PLA), 68.86 (CH, PLA), 66.32 (CO2CH2, PHEMA), 59.41-59.26 (CH2OH, 

PHEMA), 54.00-51.71 (CH2, PHEMA, backbone), 44.85-44.52 (CCH3CO2, PHEMA), 

18.43 (CH3, PHEMA, backbone), 16.17(CH3, PLA). 

GPC (THF):  Mn=38,400 gmol
-1

, Mw=46,100 gmol
-1

, PDI=1.20. 

GPC (DMF): Mn=36,100 gmol
-1

, Mw=63,600 gmol
-1

, PDI=1.76. 

 

6.3.10.4 PLA46-PHEMA100 

PLA46-PHEMA100 was synthesized using an analogous method to 6.3.10.1 adding to a 

Schlenk tube: PLA-macroRAFT agent (0.13 g, 0.03 mmol., 1.0 eq.), HEMA (0.41 ml, 3.4 

mmol., 100.0 eq.) and ACVA (2.4x10
-3 

g, 8.5x10
-3 

mmol., 0.25 eq.) in ethanol/THF (1:1) 

(2.28 g).  Yield 0.46 g (81 %). 

1
H NMR (400 MHz, CDCl3:MeOD (2:1)): δ 4.98 – 4.77 (47H, m CH, PLA), 3.78 (162H, 

br s, CO2CH2, PHEMA), 3.50 (163H, br s, CH2OH, PHEMA), 1.88 – 1.48 (136H, m, CH2, 

PHEMA backbone), 1.39 – 1.18 (140H, m, CH3, PLA), 0.81, 0.64 (226H, br s, CH3, 

PHEMA backbone). 

13
C NMR (101 MHz, CDCl3:MeOD (2:1)): δ 178.10-177.10 (CO, PHEMA), 169.40-

169.19 (CO, PLA), 68.95-68.79 (CH, PLA), 66.22 (CO2CH2, PHEMA), 59.30-59.16 

(CH2OH, PHEMA), 53.93-51.59 (CH2, PHEMA, backbone), 44.78-44.45 (CCH3CO2, 

PHEMA), 18.35 (CH3, PHEMA, backbone), 16.36-16.03 (CH3, PLA). 

GPC (DMF): Mn=18,800 gmol
-1

, Mw=22,100 gmol
-1

, PDI=1.17. 
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IR (cm
-1

): 1759 (C=O PLA), 1722 (C=O PHEMA). 

 

6.3.10.5 PLA197-PHEMA60 

PLA197-PHEMA60 was synthesized using an analogous method to 6.3.10.1 adding to a 

Schlenk tube: PLA-macroRAFT agent (0.34 g, 0.02 mmol., 1.0 eq.), HEMA (0.17 ml, 1.4 

mmol., 60.0 eq.) and ACVA (1.6x10
-3 

g, 5.8.x10
-3 

mmol., 0.25 eq.) in ethanol/THF (1:1) 

(2.08 g) and heated for 24 h.  Yield 0.37 g (71 %). 

1
H NMR (400 MHz, CDCl3:MeOD (2:1)): δ 5.02 – 4.81 (197H, m, CH, PLA), 3.82 

(103H, br s, CO2CH2, PHEMA), 3.55 (101H, br s, CH2OH, PHEMA), 1.87 – 1.55 (103H, 

m, CH2, PHEMA backbone), 1.45 – 1.25 (610H, m, CH3, PLA), 0.85, 0.69 (133H, br s, 

CH3, PHEMA backbone). 

13
C NMR (101 MHz, CDCl3:MeOD (2:1)): δ 178.15-177.16 (CO, PHEMA), 169.46-

169.20 (CO, PLA), 69.24-68.84 (CH, PLA), 66.31 (CO2CH2, PHEMA), 59.39-59.24 

(CH2OH, PHEMA), 53.99-51.62 (CH2, PHEMA, backbone), 44.84-44.51 (CCH3CO2, 

PHEMA), 18.42 (CH3, PHEMA, backbone), 16.22-16.11 (CH3, PLA). 

GPC (DMF): Mn=21,500 gmol
-1

, Mw=24,900 gmol
-1

, PDI=1.16. 

IR (cm
-1

): 1756 (C=O PLA), 1726 (C=O PHEMA). 

 

6.3.11 Synthesis of PHEMA-PLA-PHEMA Triblock Copolymer 

6.3.11.1 PHEMA62-PLA390-PHEMA62 

PLA-macroRAFT agent (0.53 g, 0.02 mol., 1.0 eq.), HEMA (0.28 ml, 2.3 mol., 125.0 eq.) 

and  ACVA (1.3x10
-3 

g, 4.6x10
-3 

mmol., 0.25 eq.) in THF (3.73 ml) was degassed by 

purging with nitrogen for 25 min. and heated at 70 
o
C for 12 h.  The solution was cooled 

before diluting with THF and precipitated twice into diethyl ether.  The polymer obtained 

was dried under reduced pressure.  Yield 0.5 g (60 %). 

 

 

Figure 6-13. Chemical structure of PHEMA-PLA-PHEMA triblock copolymer. 
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1
H NMR (400 MHz, CDCl3:MeOD (2:1)): δ 5.02 – 4.87 (390H, m CH PLA), 3.82 (217H, 

br s, CO2CH2, PHEMA), 3.55 (258H, br s, CH2OH, PHEMA), 1.94-1.55 (248H, br s, CH2, 

PHEMA backbone), 1.40 – 1.27 (1217H, m, CH3, PLA), 0.85, 0.69 (300H, br s, CH3, 

PHEMA backbone). 

13
C NMR (101 MHz, CDCl3:MeOD (2:1)): δ 178.09-177.10 (CO, PHEMA), 169.39-

169.17 (CO, PLA), 68.95-68.79 (CH, PLA), 66.22 (CO2CH2, PHEMA), 59.15 (CH2OH, 

PHEMA), 53.89-52.92 (CH2, PHEMA backbone), 44.79-44.45 (CCH3CO2, PHEMA 

backbone), 18.33 (CH3, PHEMA backbone),  16.06 (CH3, PLA). 

GPC (THF): Mn=36,700 gmol
-1

, Mw=45,300 gmol
-1

, PDI=1.24. 

GPC (DMF): Mn=39,900 gmol
-1

, Mw=56,100 gmol
-1

, PDI=1.41. 

IR (cm
-1

): 1757 (C=O PLA), 1720 (C=O HEMA). 

6.3.11.2 PHEMA62-PLA390-PHEMA62 

PHEMA62-PLA390-PHEMA62 was synthesized using an analogous method to 6.3.11.1 

adding to a Schlenk tube an additional 0.5 eq of initiator and repeating the polymerization 

for a further 12 h.  

1
H NMR (400 MHz CDCl3:MeOD (2:1)): δ 5.09-4.70 (390H, m, CH, PLA), 3.79 (239H, 

br s, O2CH2, PHEMA), 3.52 (237H, br s, CH2OH, PHEMA), 1.85-1.51 (240H, m, CH2, 

PHEMA backbone), 1.44-1.13 (1227H, m, CH3, PLA), 0.82, 0.66 (287H, br s, CH3, 

PHEMA backbone). 

13
C NMR (101 MHz, CDCl3:MeOD (2:1)): δ 178.12-177.11 (CO, PHEMA), 169.41-

169.20 (CO, PLA), 68.80 (CH, PLA), 66.24 (CO2CH2, PHEMA), 59.17 (CH2OH, 

PHEMA), 54.59-51.72 (CH2, PHEMA backbone), 44.79-44.44 (CCH3CO2, PHEMA 

backbone), 18.35 (CH3, PHEMA backbone), 16.09(CH3, PLA). 

GPC (THF): Mn=50,700 gmol
-1

, Mw=65,200 gmol
-1

, PDI=1.29. 

 

6.3.11.3 PHEMA20-PLA390-PHEMA20 

PHEMA20-PLA390-PHEMA20 was synthesized using an analogous method to 6.3.11.1 

adding to a Schlenk tube: PLA-macroRAFT agent (0.61 g, 0.02 mmol., 1.0 eq.), HEMA 

(0.1 ml, 8.5 mmol., 40.0 eq.) and ACVA (3.0x10
-3 

g, 1.0x10
-2 

mmol., 0.5 eq.) in THF (4.0 

ml). The polymerization mixture was charged with an additional 0.5 eq. of initiator and 

heated for a further 12 h.  Yield 0.53 g (74 %). 

1
H NMR (400 MHz CDCl3:MeOD (2:1)): δ 5.02 – 4.89 (390H, m, CH, PLA), 3.82 (63H, 

br s, CO2CH2, PHEMA), 3.54 (109H, br s, CH2OH, PHEMA), 1.90-1.56 (113H, m, CH2, 
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PHEMA backbone), 1.46 – 1.22 (1187H, m, CH3, PLA), 0.86, 0.69 (89H, br s, CH3, 

PHEMA backbone). 

 
13

C NMR(101 MHz, CDCl3:MeOD (2:1)): δ 178.15-176.71 (CO, PHEMA), 169.41-

169.23 (CO, PLA), 68.83 (CH, PLA), 66.24 (CO2CH2, PHEMA), 59.23 (CH2OH, 

PHEMA), 54.01- 53.42 (CH2, PHEMA backbone), 44.85-44.51 (CCH3CO2, PHEMA 

backbone), 18.45 (CH3, PHEMA backbone), 16.10 (CH3, PLA). 

GPC (THF): Mn=34,500 gmol
-1

, Mw=48,600 gmol
-1

, PDI=1.41. 

GPC (DMF): Mn=33,700 gmol
-1

, Mw=65,900 gmol
-1

, PDI=1.96. 

 

6.3.11.4 PHEMA53-PLA51-PHEMA53 

PHEMA53-PLA51-PHEMA53 was synthesized using an analogous method to 6.3.11.1 

adding to a Schlenk tube: PLA-macroRAFT agent (0.16 g, 0.04 mmol., 1.0 eq.), HEMA 

(0.47 ml, 3.8 mmol., 106.0 eq.) and ACVA (2.5x10
-3 

g, 9.1x10
-3 

mmol., 0.25 eq.) in THF 

(2.98 ml).  Yield 0.6 g (91 %). 

1
H NMR (400 MHz, CDCl3:MeOD (2:1)): δ 4.95-4.77 (51H, m, CH, PLA), 3.77 (196H, br 

s, CO2CH2, PHEMA), 3.50 (224H, br s, CH2OH, PHEMA), 1.87-1.68 (203H, m, CH2, 

PHEMA backbone), 1.35 – 1.18 (190H, m, CH3, PLA), 0.80, 0.64 (281H, br s, CH3, 

PHEMA backbone). 

13
C NMR (101 MHz, CDCl3:MeOD (2:1)): δ 178.11-177.10 (CO, PHEMA), 169.99-

169.18 (CO, PLA), 68.95-68.79 (CH, PLA), 66.22 (CO2CH2, PHEMA), 59.30- 59.15 

(CH2OH, PHEMA), 53.88-51.58 (CH2, PHEMA backbone), 44.79-44.45 (CCH3CO2, 

PHEMA backbone), 18.34 (CH3, PHEMA backbone), 16.38-16.03 (CH3, PLA). 

GPC (THF): Mn=53,100 gmol
-1

, Mw=60,700 gmol
-1

 PDI=1.14.   

GPC (DMF): Mn=27,600 gmol
-1

, Mw=61,900 gmol
-1

, PDI=2.25. 

 

6.3.11.5 PHEMA40-PLA390—PHEMA40 

PHEMA40-PLA390-PHEMA40 was synthesized using an analogous method to 6.3.11.1 

adding to a Schlenk tube: PLA-macroRAFT agent (0.31 g, 0.01 mmol., 1.0 eq.), HEMA 

(0.11 ml, 0.87 mmol., 80.0 eq.) and ACVA (8.0x10
-4 

g, 2.7x10
-3 

mmol., 0.25 eq.) in 

ethanol/THF (4:6) (1.71 g) and heated for 24 h.  Yield 0.34 g (79 %). 

1
H NMR (400 MHz, CDCl3:MeOD (2:1)): δ 5.01 – 4.80 (390H, m, CH, PLA), 3.79 (53H, 

br s, CO2CH2, PHEMA), 3.52 (47H, br s, CH2OH, PHEMA), 1.73 – 1.63 (43H, m, CH2, 
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PHEMA backbone), 1.39 – 1.19 (1189H, m,  CH3, PLA), 0.83, 0.66 (61H, br s, CH3, 

PHEMA backbone). 

13
C NMR (101 MHz, CDCl3:MeOD (2:1)): δ 177.87-176.46 (CO, PHEMA), 169.42-

169.28 (CO, PLA), 68.81 (CH, PLA), 66.26 (CO2CH2, PHEMA), 59.18 (CH2OH, 

PHEMA), 54.26-52.51 (CH2, PHEMA backbone), 44.82-44.45 (CCH3CO2, PHEMA 

backbone), 18.36 (CH3, PHEMA backbone), 16.08(CH3, PLA). 

GPC (DMF): Mn=29,200 gmol
-1

, Mw=37,100 gmol
-1

, PDI=1.27. 

IR (cm
-1

): 1757 (C=O PLA), 1714 (C=O PHEMA). 

 

6.3.11.6 PHEMA25-PLA181—PHEMA25 

PHEMA25-PLA181-PHEMA25 was synthesized using an analogous method to 6.3.11.1 

adding to a Schlenk tube: PLA-macroRAFT agent (0.41 g, 0.03 mmol., 1.0 eq.), HEMA 

(0.20 ml, 1.7 mmol., 50.0 eq.) and ACVA (2.3x10
-3 

g, 8.4x10
-3 

mmol., 0.25 eq.) in 

ethanol/THF (1:1) (2.49 g).  Yield 0.45 g (73 %). 

1
H NMR (400 MHz, CDCl3:MeOD (2:1)): δ 5.01 – 4.79 (181H, CH, PLA), 3.79 (63H, br 

s, CO2CH2, PHEMA), 3.51 (58H, br s, CH2OH, PHEMA), 1.79 – 1.56 (44H, m, CH2, 

PHEMA backbone), 1.41 – 1.17 (558H, m, CH3, PLA), 0.82, 0.65 (81H, br s, CH3, 

PHEMA backbone). 

13
C NMR (101 MHz, CDCl3:MeOD (2:1)): δ 178.10-176.10 (CO, PHEMA), 169.38- 

169.16 (CO, PLA),  68.97-68.82 (CH, PLA), 66.25 (CO2CH2, PHEMA), 59.20 (CH2OH, 

PHEMA), 53.78-51.62 (CCH3CO2, PHEMA backbone), 44.84-44.50 (CCH3CO2, PHEMA 

backbone), 18.40 (CH3, PHEMA backbone), 16.10 (CH3, PLA). 

GPC (DMF): Mn=23,300 gmol
-1

, Mw=28,200 gmol
-1

, PDI=1.21. 

IR (cm
-1

): 1756 (C=O PLA) 

 

6.3.11.7 PHEMA25-PLA181-PHEMA25 

PHEMA25-PLA181-PHEMA25 was synthesized using an analogous method to 6.3.11.1 

adding to a Schlenk tube: PLA-macroRAFT agent (0.33 g, 0.03 mmol., 1.0 eq.), HEMA 

(0.16 ml, 1.4 mmol., 50.0 eq.) and ACVA (1.9x10
-3 

g, 6.7x10
-3 

mmol., 0.25 eq.) in 

ethanol/THF (1:1) (2.03 g) and heated for 24 h.  Yield 0.4 g (78 %). 

1
H NMR (400 MHz, CDCl3): δ 5.05 – 4.89 (181H, m, CH, PLA), 3.85 (68H, br s, 

CO2CH2, PHEMA), 3.58 (65H, br s, CH2OH, PHEMA ), 1.91-1.64 (54H, m, CH2, 
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PHEMA backbone), 1.43 – 1.28 (564H, m, CH3, PLA), 0.88, 0.72 (93H, br s, CH3, 

PHEMA backbone). 

13
C NMR (101 MHz, CDCl3:MeOD (2:1)): δ 178.18-176.86 (CO, PHEMA), 169.48-

169.21 (CO, PLA), 69.02-68.87 (CH, PLA), 66.33 (CO2CH2, PHEMA), 59.40-59.26 

(CH2OH, PHEMA), 54.04-52.00 (CCH3CO2, PHEMA backbone), 44.86-44.52 (CCH3CO2, 

PHEMA backbone), 18.44 (CH3, PHEMA backbone), 16.23-16.18 (CH3, PLA). 

GPC (DMF): Mn=21,300 gmol
-1

, Mw=25,900 gmol
-1

, PDI=1.22. 

IR (cm
-1

): 1757(C=O PLA) 

 

6.3.11.8 PHEMA50-PLA51—PHEMA50 

PHEMA50-PLA51-PHEMA50 was synthesized using an analogous method to 6.3.11. adding 

to a Schlenk tube: PLA-macroRAFT agent (0.15 g, 0.03 mmol., 1.0 eq.), HEMA (0.42  ml, 

3.4 mmol., 100.0 eq.) and ACVA (2.4x10
-3 

g, 8.6x10
-3 

mmol., 0.25 eq.) in ethanol/THF 

(1:1) (2.40 g).  Yield 0.42 g (70 %). 

1
H NMR (400 MHz, CDCl3:MeOD (2:1)): δ 5.06 – 4.84 (51H, m, CH, PLA), 3.85 (153H, 

br s, CO2CH2, PHEMA), 3.58 (152H, br s, CH2OH, PHEMA), 1.98-1.60 (137H, m, CH2, 

PHEMA backbone), 1.48– 1.26 (169H, m, CH3, PLA), 0.88, 0.72 (218H, br s, CH3, 

PHEMA backbone). 

13
C NMR (101 MHz, CDCl3:MeOD (2:1)): δ 178.16- 177.18 (CO, PHEMA), 169.48-

169.26 (CO, PLA), 69.17-68.86 (CH, PLA), 66.32 (CO2CH2, PHEMA), 59.42-59.28 

(CH2OH, PHEMA), 53.99-51.72 (CCH3CO2, PHEMA backbone), 44.86-44.53 (CCH3CO2, 

PHEMA backbone), 18.46 (CH3, PHEMA backbone), 16.23-16.15 (CH3, PLA). 

GPC (DMF): Mn=23,800 gmol
-1

, Mw=30, 500 gmol
-1

, PDI=1.28. 

IR (cm
-1

): 1756 (C=O PLA), 1726 (C=O PHEMA). 

 

6.3.12  Synthesis of PLA-PMPC Diblock Copolymer 

6.3.12.1 PLA46-PMPC100 Diblock Copolymer 

PLA-macroRAFT agent (0.08 g, 0.02 mmol., 1.0 eq.), MPC (0.6 g, 2.02 mmol., 100.0 eq.) 

and ACVA (1.4x10
-3 

g, 5.1x10
-3 

mmol., 0.25 eq.) and DMSO/IPA (3:7) (2.71 g) was 

degassed by purging with nitrogen for 25min. and heated at 70 
o
C for 12 h.  The solution 

was cooled before diluting with methanol and precipitated into THF. The resulting solid 

was dissolved in methanol and dialyzed against water over 24 h. and lyophilised.  Yield 0.5 

g (74 %).  
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Figure 6-14.  Chemical structure of PLA-PMPC Diblock Copolymer. 

 

1
H NMR (400 MHz, MeOD/CDCl3 (2:1)): δ 5.3 – 5.16 (46H, m, CH, PLA), 4.40 (188H, 

br s, CH2CH2NMe3, PMPC), 4.30 (167H, br s, CO2CH2CH2, PMPC), 4.16 (169H, br s, 

CO2CH2), 3.83 (175H, br s, CH2NMe3), 3.39 (776H, s, 6H, NMe3), 2.27-1.76 (125H, br S, 

CH2 MPC backbone), 1.71 – 1.58 (148H, m, CH3 PLA backbone), 1.18, 1.01 (257H, br s, 

CH3 MPC backbone). 

13
C NMR (101 MHz, MeOD/CDCl3 (2:1)): δ 178.79-177.66 (CO MPC), 170.52 (CO 

PLA), 69.99(CH PLA), 67.01 (CO2CH2), 65.76 (CH2PO4), 63.82 (PO4CH2), 60.17 

(CH2NMe3), 54.61 (NMe3), 46.01-45.68 (CCH3COO2), 19.58 (CH3 MPC), 17.83-17.01 

(CH3 PLA). 

GPC (methanol/chloroform(1:3)): Mn=19,400 gmol
-1

, Mw=24,000 gmol
-1

, PDI=1.24. 

IR (cm
-1

): 1756 (C=O PLA), 1720 (C=O PMPC), 1232 (P-O), 968 (N-Me). 

 

6.3.12.2 PLA50-PMPC100 Diblock Copolymer 

The synthesis of the block copolymer was repeated in ethanol/THF(1:1).  Yield 0.47 g (69 

%). 

1
H NMR (400 MHz, MeOD/CDCl3 (2:1)): δ 5.34 – 5.17 (46H, m, CH, PLA), 4.39 (221H, 

br s, CH2CH2NMe3, PMPC), 4.29 (188H, br s, CO2CH2CH2, PMPC), 4.14 (200H, br s, 

CO2CH2, PMPC), 3.82 (203H, s, CH2NMe3, PMPC), 3.38 (869H, s, NMe3, PMPC), 2.26 – 

1.77 (153H, m, CH2, PMPC backbone), 1.71 – 1.55 (152H, m, CH3, PLA), 1.17, 1.01 

(275H, br s, CH3, PMPC backbone). 

GPC (methanol/chloroform(1:3)): Mn=19,300 gmol
-1

, Mw=23,300 gmol
-1

, PDI=1.21. 

IR (cm
-1

): 1756 (C=O PLA), 1723 (C=O PMPC), 1241 (P-O), 967 (N-Me). 
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6.3.12.3 PLA46-PMPC25 Diblock Copolymer 

PLA46-PMPC25 was synthesized using an analogous method to 6.3.12.1 adding to a 

Schlenk tube: PLA-macroRAFT agent (0.24 g, 0.06 mmol., 1.0 eq.), MPC (0.45 g, 1.5 

mmol., 25.0 eq.) and ACVA (4.3x10
-3 

g, 1.5x10
-2 

mmol., 0.25 eq.) in THF:ethanol (1:1) 

(2.75 g).  Yield 0.39 g (57 %). 

1
H NMR (400 MHz, MeOD/CDCl3 (2:1)): δ 5.35-5.17 (46H, m, CH, PLA), 4.42 (70H, br 

s, CH2CH2NMe3, PMPC), 4.31 (67H, br s, CO2CH2CH2, PMPC), 4.17 (70H, br s, 

CO2CH2, PMPC), 3.83 (65H, br s, CH2NMe3, PMPC), 3.39 (291H, s, NMe3, PMPC), 2.27 

– 1.80 (58H, m, CH2, PMPC, backbone), 1.73 – 1.55 (144H, m, CH3, PLA), 1.19, 1.02 

(94H, br s, CH3, PMPC, backbone). 

13
C NMR (101 MHz, MeOD/CDCl3 (2:1)): δ 178.85-177.71 (CO, PMPC), 170.55-170.39 

(CO, PLA),  70.17-70.00 (CH, PLA), 66.97 (CH2NMe3, PMPC),  65.73 (CH2CH2NMe3, 

PMPC),  63.92 (CO2CH2, PMPC),  60.23 (CO2CH2CH2, PMPC),  54.58 (NMe3, PMPC),  

45.94, 45.61 (CCH3CO2, PMPC, backbone), 19.47 (CH3, PMPC, backbone), 17.58-17.00 

(CH3, PLA). 

GPC (methanol/chloroform(1:3)): Mn=18,000 gmol
-1

, Mw=20,900 gmol
-1

, PDI=1.16. 

IR (cm
-1

): 1757 (C=O PLA), 1723 (C=O PMPC), 1240 (P-O), 968 (N-Me). 

 

6.3.12.4 PLA46-PMPC25 Diblock Copolymer 

The synthesis of the block copolymer was repeated in DMSO/IPA (3:7) (2.75 g).  Yield 0.5 

g (72 %). 

1
H NMR (400 MHz, MeOD/CDCl3 (2:1)): δ 5.35 – 5.17 (46H, m, CH, PLA), 4.42 (65H, 

br s, CH2CH2NMe3, PMPC), 4.31 (64H, br s, CO2CH2CH2, PMPC), 4.18 (64H, br s, 

CO2CH2, PMPC), 3.83 (61H, br  s, CH2NMe3, PMPC), 3.39 (287H, s, NMe3, PMPC), 2.26 

– 1.80 (49H, m, CH2, PMPC, backbone), 2.05-1.78(143H, m, CH3 PLA backbone), 1.18, 

1.02 (90H, br s, CH3, PMPC, backbone). 

GPC (methanol/chloroform (1:3)): Mn=18,400 gmol
-1

, Mw=21,200 gmol
-1

, PDI=1.15. 

IR (cm
-1

): 1756 (C=O PLA), 1723 (C=O PMPC), 1241 (P-O), 967 (N-Me). 
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6.3.13  Synthesis of PMPC-PLA-PMPC Triblock Copolymer 

6.3.13.1 PMPC55-PLA390-PMPC55  

PLA-macroRAFT agent (0.29 g, 0.01 mmol., 1.0 eq.), MPC (0.33 g, 1.11 mmol., 110.0 

eq.) and ACVA (1.4x10
-3 

g, 5.1x10
-3 

mmol., 0.5 eq.) and THF:ethanol (6:4) (2.74 g) was 

degassed by purging with nitrogen for 25 min. and heated at 70 
o
C for 12 h.  The solution 

was cooled before diluting with methanol and precipitated into THF. The resulting solid 

was dissolved in methanol and dialyzed against water over 24 h and lyophilised.  Yield 

0.55 g, (89 %). 

 

Figure 6-15. Chemical structure of PMPC-PLA-PMPC triblock copolymer. 

 

1
H NMR (400 MHz, MeOD:CDCl3(2:1)):

 
 δ  5.34-5.16 (390H, m, CH, PLA), 4.39 (178H, 

br s, CH2CH2NMe3, PMPC), 4.29 (146H, br s, CO2CH2CH2, PMPC), 4.14 (159H, br s, 

CO2CH2, PMPC), 3.81 (126H, br s, CH2NMe3, PMPC), 3.37 (769H, s,NMe3, PMPC), 

2.23-1.83 (113H, m, CH2, PMPC, backbone), 1.73-1.53 (1167H, m, CH3, PLA),  1.17, 1.01 

(240H, br s, CH3, PMPC, backbone). 

13
C NMR (101 MHz, MeOD:CDCl3(2:1)): δ 178.88-177.71 (CO, PMPC), 170.57 (CO, 

PLA), 70.01 (CH, PLA), 66.99 (CH2NMe3, PMPC), 65.82 (CH2CH2NMe3, PMPC), 63.87 

(CO2CH2, PMPC), 60.20 (CO2CH2CH2, PMPC), 54.58 (NMe3, PMPC), 46.02-45.67 

(CCH3CO2, PMPC, backbone), 19.58 (CH3, PMPC, backbone), 17.07 (CH3, PLA). 

GPC (methanol/chloroform(1:3)): Mn=44,800 gmol
-1

, Mw=60,900 gmol
-1

, PDI=1.36. 

IR (cm
-1

): 1756 (C=O PLA), 1723 (C=O PMPC), 1218 (P-O), 969 (N-Me). 
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6.3.13.2 PMPC53-PLA51-PMPC53 Triblock Copolymer 

PLA53-PMPC51-PLA53was synthesized using an analogous method to 6.3.13.1 adding to a 

Schlenk tube: PLA-macroRAFT agent (0.089 g, 0.02 mmol., 1.0 eq.), MPC (0.63 g, 2.1 

mmol., 106.0 eq.) and ACVA (1.4x10
-3 

g, 5.0x10
-3 

mmol, 0.25 eq.) in THF:ethanol (1:1) 

(2.88 g) and heated for 24 h.  Yield 0.48 g (67 %).  

1
H NMR (400 MHz, MeOD CDCl3 (2:1)): δ 5.34 – 5.15 (51H, m, CH, PLA), 4.39 (215H, 

br s, CH2CH2NMe3, PMPC), 4.29 (187H, br s, CO2CH2CH2, PMPC), 4.15 (206H, br s, 

CO2CH2, PMPC), 3.82 (201H,br s, CH2NMe3, PMPC), 3.38 (908H, s, NMe3, PMPC), 

2.18-1.80 (174H, m, CH2, PMPC, backbone), 1.71 – 1.57 (186H, m, CH3, PLA), 1.17, 

1.01(266H, br s, CH3, PMPC, backbone). 

13
C NMR (101 MHz, MeOD:CDCl3(2:1)): δ 178.81-177.66 (CO, PMPC), 171.17-170.43 

(CO, PLA), 70.35-69.96 (CH, PLA), 66.94 (CH2NMe3, PMPC), 65.74 (CH2CH2NMe3, 

PMPC), 63.79 (CO2CH2, PMPC), 60.13 (CO2CH2CH2, PMPC), 54.56 (NMe3, PMPC), 

45.94-45.61 (CCH3CO2, PMPC, backbone), 19.47 (CH3, PMPC, backbone), 17.70-17.01 

(CH3, PLA) 

GPC (methanol/chloroform(1:3)): Mn=24,600 gmol
-1

, Mw=30,600 gmol
-1

, PDI=1.24. 

IR (cm
-1

): 1758 (C=O PLA), 1722 (C=O PMPC), 1236 (P-O), 966 (N-Me). 
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