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Abstract

This thesis uses an energy-based approach to develop new analytical solutions for the time-

dependent creep response of deeply embedded cavities. The new models developed here can

be used for the initial design of tunnels and for other applications such as underground storage

caverns and problems outside the field of geomechanics. The objective of using this energy-

based approach is to develop models that can provide a quick estimate of cavity closure and

that can be applied to different design situations and material behaviour.

For the first time a three-dimensional analytical solution has been developed for the time-

dependent response of a cavity embedded in a viscoelastic medium. The cavity is excavated

quasi-instantaneously from an infinite body with an initial isotropic stress field. The problem

is three-dimensional due to the effect of a tunnel face. This new solution can predict the full

interaction between the tunnel and the surrounding creeping rock and thus can be incorpo-

rated with field monitoring data in an expert system for tunnel design. The accuracy of this

model is comparable with finite element analysis.

A new class of thermodynamically consistent constitutive models have been developed, which

couple viscoplasticity and damage, describing both the secondary and tertiary stages of creep

behaviour. Models were derived for both frictionless and frictional materials within the

framework of hyperplasticity. The frictional model provided a good fit to data obtained from

the triaxial compression testing of sandstone, illustrating its capability of describing creeping

rock.

These new constitutive models were incorporated into the energy-based method for cavity

analysis, using a two-dimensional plane strain cylindrical cavity for demonstration purposes.

A parametric study was carried out and results were also compared with FE analysis. Find-

ings show that the models successfully describe the secondary and tertiary stages of creep

behaviour.

These new solutions only require a simple text file as an input and need minimal skill to

operate. The formation of an initial geometry or finite element mesh is not necessary. This

is shown through the creation of a standalone program for the three-dimensional model. The

new solutions can take into account a wide range of different material behaviour, both two-

dimensional and three-dimensional problems and due to their thermodynamic consistency are

able to simulate other time-dependent processes, such as relaxation. This shows the flexibility

of this approach and its applicability to different geomechanics problems.
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Chapter 1

Introduction

1.1 Statement of the problem

Removal of rock during the formation of an underground cavity induces changes in the local

stress state of the rock surrounding the excavation, causing a disturbance in the stability of

the rock mass. Readjustment of the rock mass towards a new equilibrium can take the form

of slow creep-like movements, which can increase for months and years after the excavation

has taken place. This involves closure of the cavity with time, which is often called ground

squeezing. Ground squeezing is mainly related to the progressive yielding, time-dependent

deformation and strength properties of the ground. It is initiated by the concentration of

shear stresses in the cavity vicinity overcoming the limiting shear stress at which creep starts

and has been described by Terzaghi [14] as displacement occurring under limited volume

change.

The magnitude of time-dependent creep deformation depends on a number of factors such as

the material properties and the loading conditions and thus is difficult to predict. Significant

time-dependent deformation is found in evaporite rocks, such as salt rock and potash when

located in a mining environment. The deformation of these weak rocks is dominated by creep

[13]. Creep has also been identified as the prime mechanism causing ground squeezing in

sheared or faulted rock masses containing mylonite or clay gouge [3, 11, 14] and has even

been identified in hard rock [5].

Excessive ground squeezing has been observed at a number of different sites, such as in road

and rail tunnels, mines, underground waste storage caverns and shafts. Kontogianni et al. [8]

analysed two road tunnels located in Greece and acknowledged that more than 50% of total

deformation of tunnels is due to the time-dependent response of the surrounding ground.

Large deformations have also been observed at Boulby Potash Mine in North Yorkshire (Fig-

ure 1.1a) where tunnels are driven in evaporite rocks, located at depths of over 1 km at which

these rocks are stressed to their limit. Other cases of squeezing behaviour include the Stillwa-

ter tunnel in USA and a number of tunnels running through the Alps, such as the Gotthard

tunnel in Switzerland, the Fréjus tunnel in France and the Lyon-Turin tunnel (Figure 1.1b).

– 1 –
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Such behaviour often leads to re-excavation of a tunnel, thus causing severe delays in the

construction program and cost overruns.

(a)

(b)

Figure 1.1: Ground squeezing: (a) Boulby Mine (Cleveland Potash Ltd [4]); (b) Saint Martin
La Porte access adit (Lyon-Turin Base Tunnel) (Barla et al. [1])

It is of great importance for the tunnel or mining engineer to obtain an understanding of this

time-dependent behaviour in order to prevent a delay in construction and to ensure the stabil-

ity and safety of an underground opening. Knowledge of the time-dependent behaviour of the

ground is essential for the design of a stable support system, which more recently consist of

ductile elements in combination with standard supports such as shotcrete or rockbolts [10] in

creeping conditions. For the design of such systems [9] the development of the expected tun-

nel displacements must be predicted. Further benefits of understanding the time-dependent

behaviour of the ground may include a more efficient design of mine workings and an increase

in the quantity of extracted ore.
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1.2 Current design practice

The efficient and accurate prediction of the time-dependent performance of cavities located in

creeping rock is a main concern in the design. However, the full three-dimensional (3D) inter-

action between a tunnel and the surrounding creeping rock is complex. It is commonplace to

conduct finite element (FE) analysis with advanced constitutive models to accurately predict

the time-dependent response of a cavity (e.g. [6], [12]), but such analyses are computation-

ally expensive for routine practice. Another approach is to use analytical solutions which

often require simplifications regarding material behavior, the geometry of the problem and

its boundary conditions and are sometimes difficult to apply to complex practical problems.

However, they are very useful in the early cavity design process, often being able to provide

solutions in a short period of time and may provide an insight into the effect of individual

parameters on the solution.

However, many existing analytical solutions are viscoelastic and fail to take into account the

failure of the rock surrounding a cavity, whilst few viscoplastic analytical solutions currently

exist [17]. There is currently no general tool which can incorporate a wide range of different

constitutive behaviour. Furthermore, current analytical solutions for tunnelling problems

are 2D, using the assumption of plane strain. These solutions cannot describe the full 3D

interaction between a tunnel and the surrounding rock in close proximity to the tunnel face.

Currently a simplified approach is used where the analysis of stresses and displacements near

the tunnel face is performed by regarding the face as providing a fictitious internal support

pressure. The magnitude of this internal pressure is related to the face position by using

empirical relations based on field measurements or 3D FE analyses. However, there are sig-

nificant uncertainties in extrapolating these empirical relations to different design situations

and rock behaviour.

Therefore there is a need for new models which are able to take into account a wide range of

material behaviour and that can be applied to both 2D and 3D problems, providing a quick

estimate of cavity closure.

1.3 Aims and objectives

The aims of this research are to develop new simple tools to aid the design of cavities located

in creeping rock. Here we seek to develop models that could be used in the early stages of the

cavity design process to conduct a parametric study or provide a validation to more complex

FE analyses. The objective is to enable tunnelling and mining engineers to design safer and

more stable cavities.

The proposed approach uses an energy-based formulation. Here we express the energy of the

cavity system in terms of an assumed displacement field which is composed of a multiplication

of 1D functions. The principle of virtual work is then used to obtain the differential equations
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governing the ground deformation and the corresponding boundary conditions. This method

is a powerful tool that can be used to obtain approximate solutions to a range of practical

problems. This approach is based on that used by Vlasov and Leontiev [15] and has been used

by a number of authors to analyse the 3D behaviour of piles (e.g. [2], [7]). Here we assume

the cavity to be unsupported and cylindrical or spherical in shape. The surrounding material

is assumed to be homogeneous, isotropic and the volumetric behaviour is time-independent

with only deviatoric creep occuring.

The specific objectives of this research are:

1. to use the proposed energy-based method to develop models for cavity analysis which are

able to accommodate a wide range of material behaviour.

2. to develop a 3D model which is able to take into account the effect of a tunnel face.

3. to develop new energy-based constitutive models which are able to describe the full range

of creep behaviour.

1.4 Thesis layout

Chapter 2 reviews the literature on the creep behaviour of deeply embedded cavities, focus-

ing on constitutive modelling and current methods for cavity analysis.

Chapter 3 introduces the energy-based method which is used throughout this thesis to de-

velop new tools for cavity analysis. Simple 2D models for cylindrical and spherical cavities are

derived here and viscoelastic and elasto-plastic material behaviour is incorporated. Results

are successfully validated with existing closed-form solutions and FE analysis. These models

are built upon throughout the remainder of the thesis where novel work is presented.

Chapter 4 presents for the first time a 3D analytical solution for the long term time-

dependent response of a deeply embedded and unsupported tunnel of circular cross-section.

This model takes into account the effect of a tunnel face. The tunnel is located in an infinite

viscoelastic medium. Results are successfully validated with FE analysis and closed-form

solutions.

Chapter 5 introduces time-dependent viscoplastic constitutive behaviour into the cavity

equations, thus developing new models that can be used to analyse cavities located in creep-

ing rock. An incremental loading procedure is adopted to enable different rates of loading

to be modelled, thus being able to take into account the rate of cavity excavation. In this

chapter we derive new viscoplastic constitutive models within the framework of hyperplastic-

ity, therefore ensuring that thermodynamic principles are adhered to. A novel contribution
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here is the development of a frictionless viscoplastic-damage constitutive model which is able

to take into account both the secondary and tertiary stages of creep behaviour. This model

is successfully incorporated into the energy-based method for cavity analysis. A parametric

study is conducted and results are compared with FE analysis.

Chapter 6 presents a novel frictional viscoplastic-damage constitutive model within the

framework of hyperplasticity. This model is compared with triaxial data obtained by Yang

and Jiang [16] during the testing of sandstone, illustrating its capability of describing creeping

rock. The model is also successfully incorporated into the energy-based method for cavity

analysis and results are compared with FE analysis.

Chapter 7 draws conclusions, summarises the achievements and contains suggestions for

future research.
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Chapter 2

Creep behaviour of deeply

embedded cavities

Synopsis

This chapter provides an overview of different material models that are commonly used to

describe time-dependent creep behaviour of geomaterials, as well as current methods for

the creep analysis of deep cavities. Section 2.1 describes creep testing in the laboratory

and alternative methods of obtaining creep behaviour, such as in situ testing. The issues

concerned with deriving a constitutive model which is representative of in situ behaviour are

discussed in Section 2.1.1. The different material models that are commonly used to describe

creep behaviour are reviewed in Section 2.2. These include rheological models, empirical laws

and laws based on physical processes. Analytical and numerical models for the creep analysis

of deep cavities are reviewed in Section 2.3. The purpose of this chapter is to identify suitable

material models for the creep analysis of deep cavities and identify areas in which new tools

can be developed for cavity design.

2.1 Creep testing in the laboratory and in situ

According to Dusseault and Fordham [17] creep is defined as continued deformation without

a stress change. Creep has been studied since about 1905, although such behaviour has been

documented as early as 1833 [29]. Most early studies focused on the creep rupture of metals

under tensile stress, however, later studies have been carried out on rocks, particularly salt

rocks as these soft rocks creep under temperature and stress conditions easily simulated in

the laboratory [61].

Determining the creep characteristics of rock is an important stage in developing a tool

which is able to predict the time-dependent deformation of an underground cavity. Cristescu

[14] states that creep tests performed in the laboratory are very significant in mining and in

improved design of underground structures, in order to ensure safety, to increase the amount

of extracted ore, etc.

– 8 –
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Creep testing of rock in the laboratory has been carried out by a number of researchers (e.g.

[29], [35], [36], [44], [50], [53], [57] and [66]), with many of these studies focusing on salt rock.

The simplest creep tests are those during which the rock specimen is uniaxially loaded in

compression. The testing procedure involves an increment of load applied quickly to the rock

specimen and the stress is held constant while the gradually increasing strain is recorded

regularly [28]. Triaxial tests have also been carried out in which the sample is confined by an

all around pressure, more closely simulating in situ conditions. The duration of an individual

creep test is generally several weeks or months. Tests lasting a number of years have also

been reported [14].

Laboratory data from creep tests are mostly displayed in the form of strain-time curves of

which the general form is displayed in Figure 2.1 (e.g. [28], [32] and [33]). An instantaneous

elastic strain, εe is followed by primary or transient creep (region 1.) in which strain oc-

curs at an ever decreasing rate. Secondary creep (region 2.) follows if the constant stress

overcomes a given limit and is characterised by a constant strain rate. For higher constant

stress levels tertiary creep (region 3.) is also observed, which is characterised by a strain rate

increasing with time and leads eventually to failure. According to Jeremic [33], laboratory

investigations have proved that removal of the applied load in region 1. at point P of Fig-

ure 2.1 caused the strain to decrease rapidly to point Q (change in strain equal to εe) and

then asymptotically back to zero at point R. Thus region 1. can be classified as viscoelas-

tic. Removal of stress in region 2. at point T will result in a permanent deformation (VO).

Thus region 2. can be classified as viscoplastic. Despite the classification of these regions as

viscoelastic and viscoplastic being an idealisation, it is reasonable to think that at low levels

of stress the material behaviour is roughly viscoelastic and at high levels the behaviour is

viscoplastic. Region 3. is due to material damage in the form of cracks developing in the rock.

o

primary secondary tertiary

Figure 2.1: Typical deformation of creep materials as a function of time (after Jeremic [33])
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Figure 2.2: Behaviours associated with different stages of creep

Laboratory testing has shown that the creep behaviour of soft rocks, particularly evaporite

rocks, is affected by many factors such as stress [31, 36, 44, 53], temperature [31, 36, 65],

confining pressure [36, 65], grain size [36], humidity [53], mineral content [16], specimen size

and loading history [55] and type of loading [50].

Le Comte [36] concluded that stress difference and temperature are the two factors that most

influence the creep behaviour of salt rock with an increase in either stress or temperature

giving rise to an increase in creep rate. Jeremic [33] states that the observed processes by

which salt rock deforms are primarily a function of stress and temperature. The magnitude

of the effect of these two parameters is shown in Figure 2.3 for an investigation by Hansen

and Carter [31] on Avery Island domal salt.

2.1.1 Important implications in creep testing

In situ creep testing

It is evident that the creep deformation of rock is a complex process depending on many

different factors. In order to determine the creep behaviour of the rock that is representative

of in situ conditions it is necessary to replicate these conditions as closely as possible. This

can be achieved by conducting in situ creep tests which overcome the problem of controlling

temperature and humidity in the laboratory and reduce the effect of specimen size. Two

commonly used field tests are the borehole dilatometer and plate loading tests [28]. The

dilatometer test is simple and economic [67], involving the application of a constant pressure

via a borehole probe to a certain borehole section. Radial displacement measurements are

recorded with time enabling the deformation characteristic of the rock in the stressed region

to be determined. The plate loading test is much more expensive, involving a constant load

being applied to the surface of a circular plate resting against the wall of an underground

opening. Deformation with time is then recorded.
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Figure 2.3: Creep curves for Avery Island domal salt deformed at a range of temperatures
and two stress differences. The initial confining pressure was 3.5 MPa (after Hansen and
Carter [31]).

However, these tests are often expensive, it is not always possible to undertake an extensive

underground measurement program and in situ stresses are often difficult to measure. In

such cases the creep properties can be estimated through laboratory creep testing on core

samples. The benefit of laboratory tests is simple and well-controlled boundary conditions

which make it easy to determine related parameters accurately. An overview of evaluating

these creep properties in the laboratory for underground openings is provided by Aiyer [2].

Aiyer [2] states that a triaxial test cannot truly duplicate the state of stress existing in the

medium surrounding a cylindrical opening as the circumferential stress, σθθ, the longitudinal

stress, σzz and the radial stress, σrr are such that σθθ 6= σzz 6= σrr. This corresponds to a

triaxial state of stress in which σ1 6= σ2 6= σ3. Therefore, neither a triaxial compression test

σ1 > σ2 = σ3 or a triaxial extension test σ1 = σ2 > σ3 can truly duplicate the stress state

surrounding a cylindrical opening. However, due to the fact that the creep closure strains

of interest are radial in the field, thus in the direction of the minor principal stress, σ3, it is

believed that the triaxial extension test represents a sufficiently close approximation to the
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stress conditions existing around a cylindrical opening. This test involves keeping a constant

axial stress on the specimen whilst the confining stress is increased. The US Army Corps

of Engineers [64] found that uniaxial creep tests were too severe for use in predicting the

time-dependent displacements around underground openings.

Testing to evaluate the creep properties of pillars may involve a different procedure. Uniaxial

compressive creep testing of model salt pillars has been carried out by Obert [44] and Mirza

[41]. Such experiments are intended to simulate the behaviour of in situ pillars by simulat-

ing the constraints provided by the roof and floor of a mine opening. These investigations

included pillars of various width to height ratios and applied loads anticipated from mining

development.

The stress pattern around an underground opening or the stress acting on a pillar continues

to change due to material creep until equilibrium is reached. It is not possible to replicate

this behaviour in the laboratory, therefore testing has to be carried out under a constant

state of stress. Obert [44] states that the load on a pillar prior to reaching a constant value

is less than that after the pillar has assumed its maximum load, therefore any design based

on constant load conditions would be on the conservative side. However, it is important that

the applied stresses in the laboratory are comparable to those existing in the field. For an

underground opening the stress level of interest is the vertical stress at the centre of the

opening which can be estimated based on unit weights of the overlying strata.

Core samples used in laboratory creep tests must be representative of the in situ material.

Due to the high complexity and inhomogeneity of the rock mass in situ it is very difficult to

determine representative material creep parameters. Cylindrical samples of length to diam-

eter ratio of 2 are often used in triaxial creep tests.

Temperature and humidity should be closely controlled. Creep tests are commonly carried

out in a climatologically controlled room [53].

Lastly, time is an important factor when carrying out creep testing. As shown in Figure

2.1 the nature of creep may change with time, from primary to secondary and even tertiary

creep. In order to develop a constitutive creep model that can be incorporated into tools to

predict opening deformation it is necessary to run creep tests for a significant period of time.

Creep tests that have been run for only days and weeks are sometimes used to predict rates

of deformation over periods of hundreds of years. This emphasises the need to run tests for

longer periods of time.

Back analysis

An alternative method of obtaining representative creep behaviour is through the method

of back analysis. This involves monitoring the displacements of an underground opening
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and using these to determine the creep properties of the rock. These properties can then

be used to predict the time-dependent closure at other underground locations. Examples of

back analysis in calculating the time-dependent properties of weak rock surrounding tunnels

are Phienwej et al. [49] and Zhifa et al. [68], amongst others. According to Sulem et

al. [61] the time-dependent parameters can only be properly determined by back analysing

the long term closure observations. Also, both the laboratory and field tests may have the

shortcomings of scale effect as well as the difficulty of obtaining the stress-dependent creep

characteristics. Zhifa et al. [69] states that it is not always necessary to establish another

measuring system for back analysis as a measuring system is usually established anyway to

ensure safety of construction. The only drawback of back analysis is the difficulty in finding

the material parameters for complex constitutive models. In fact this proves to be impossible,

thus simplifying assumptions have to be made concerning the rock mass, such as the mass

being homogeneous and isotropic and the presence of a uniform stress field [69]. Therefore

alternative, empirical methods are sometimes adopted, such as that proposed by Sulem et al.

[61]. This involves analysing the tunnel convergence measurements themselves to determine

a law for tunnel closure, rather than checking a constitutive behaviour law and determining

ground parameters.

2.2 Modelling creep behaviour

Creep data obtained from testing in either the laboratory or in situ can be fitted using an

appropriate mathematical model which will describe the relationship between strain, stress

and time for a specific rock. Model parameters are obtained through analysing each section of

the strain-time curves (e.g. [32] and [67]). This enables the practical use of creep test results

to solve geotechnical problems. Two types of models are widely used, namely rheological

models and empirical models, both of which are described here.

2.2.1 Rheological models

Rheological models consist of a combination of different components, such as springs, dash-

pots and sliders to describe the time-dependent creep behaviour of a material. The structure

of these models is not related to a particular creep test and therefore only the model parame-

ters change between tests in order to provide a fit for the strain-time data. It is important to

note that these models can be easily extended to three-dimensions (3D) and are particularly

suitable for engineering analyses carried out using the finite element (FE) method.

Viscoelastic models

It is possible to model creep associated with materials by assuming that the material in ques-

tion has viscous, or fluid properties. Viscoelastic theory is an extension of elasticity theory

with the addition of one or more viscous components thereby giving it a time-dependent na-

ture. Linear viscoelastic theory consists of various combinations of two states of deformation,

namely elastic behaviour (represented by a spring) and viscous behaviour (represented by a
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dashpot) which are used to represent complex strain-time behaviour. Many different linear

viscoelastic models have been proposed, such as the Maxwell, the Kelvin and the Burger’s

model. An overview of these viscoelastic models is provided by Jaeger et al. [32]. Each of

these models is composed of spring and dashpot elements connected in series and/or paral-

lel, which exhibit a time-dependent behaviour similar to that of the real material. Figure

2.4 shows these viscoelastic models in 1D form and the strain-time response of each when

instantaneously subjected to a constant stress σ0.
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Figure 2.4: Viscoelastic creep models and their strain-time response to an instantaneous
stress σ0 (a) Maxwell model; (b) Maxwell response (c) Kelvin model; (d) Kelvin response (e)
Burger’s model; (f) Burger’s response. (after Jaeger et al. [32]).

The spring element represents an elastic material in which stress and strain are related ac-

cording to Hooke’s law

σ = kε, (2.1)
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where k represents the Young’s modulus or shear modulus, depending on the context. The

dashpot represents a Newtonian viscous material where the strain rate is dependent on the

applied stress

σ = η

(

dε

dt

)

, (2.2)

where η is a viscous parameter controlling the dashpot response and t is the time.

The Maxwell model comprises of a spring element in series with a dashpot element. This

model represents a material flowing continuously at a constant rate when a stress is suddenly

applied and held constant [28]. Therefore, the total strain is the sum of the strain in the

spring and the dashpot, with an instantaneous elastic component and a long term viscous

component. Two parameters are required to predict the creep response. The Maxwell model

appears to be simple but proves to be insufficient at modelling creep data due to it postulating

a constant rate of creep. Creep tests show that the creep rate decreases with time (Figure 2.1).

The Kelvin model has the same elements as the Maxwell model, but connected in parallel

rather than in series. The sudden application of a stress causes strain to develop with time

at an exponentially decreasing rate which approaches zero as t grows without bound [28].

As in the Maxwell model, two parameters are required to predict creep behaviour. However,

this model fails to capture the instantaneous elastic response of a material and the secondary

component of creep.

The simplest model that can be used to trace strain up to the onset of tertiary creep is

Burger’s model comprising of a Maxwell model and Kelvin model connected in series. Its

response is a combination of the previous models and is the same as that of the general creep

curve (Figure 2.1). Upon application of a sudden and constant stress an initial instantaneous

response is followed by an exponential decay in strain (primary creep) over time eventually

becoming asymptotic to a line representing a constant rate of creep (secondary creep). Four

parameters are required to predict creep behaviour. The differential equation describing this

model is

η1
d2ε

dt2
+ k1

dε

dt
=

(

η1
k2

)

d2σ

dt2
+

[

1 +

(

k1
k2

)

+

(

η1
η2

)]

dσ

dt
+

(

k1
η2

)

σ, (2.3)

where k1 and η1 are the Kelvin parameters and k2 and η2 are the Maxwell parameters.

If a constant stress is applied at t = 0 when the model is unstrained the following closed-form

equation can be written for the strain

ε =
σ0
k2

+
σ0
k1

[1− exp(−k1t/η1)] +
σ0
η2
t. (2.4)
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According to Goodman [28] Burger’s model is preferable for many practical purposes and

Afrouz and Harvey [1] compared a number of spring-dashpot models and found that Burger’s

model gave the most consistent representation of creep data for sedimentary rocks. Also this

model has been used in numerical analyses by Swift and Reddish [62] to successfully simulate

the time-dependent deformation of a section of the Winsford salt mine located in Cheshire.

Limitations of viscoelasticity

Due to the simplicity of linear viscoelastic theory, there are many publications where it has

been used to simulate the time-dependent behaviour of rock around underground openings

(e.g. [11], [18], [27], [28], [39] and [45]). However, linear viscoelastic theory cannot simulate

the failure of rock as all time-dependent deformations experienced by a viscoelastic model

are recoverable when the applied load is removed. In reality, all time-dependent deforma-

tions are not recoverable upon unloading as shown in Figure 2.1 and the relationship between

stress and strain is not linear. Under an increment of stress, rock will tend to undergo per-

manent plastic strains which can involve brittle strains due to microcracking as networks

of cracks within the rock grow under loading. Therefore, a linear viscoelastic model should

only be applied to competent rocks in which no problems arise [52]. Linear viscoelasticity is

able to model the primary stage of creep, as for stresses below a given threshold the associ-

ated strains are often assumed to be fully reversible (Figure 2.1). However, when the stress

level overcomes this threshold, the strains assume an irreversible nature, increasing first at

a constant rate (secondary creep) and eventually leading to an increasing rate (tertiary creep).

Further limitations of viscoelasticity are that large numbers of elements are sometimes re-

quired to closely describe the creep data, thus resulting in a complex mathematical equation

which can require a great amount of programming effort [49].

Viscoplastic models

Squeezing behaviour in tunnels is mainly related to the progressive yielding and time-dependent

deformation and strength properties of the ground [56]. It takes place when a particular com-

bination of induced stresses and material properties pushes some zones around the tunnel

beyond the limiting shear stress at which creep starts [3]. Therefore it is important to take

this failure of the rock into account.

To include failure processes in rheological models, slider elements (St. Venant elements) are

added to the elastic and viscous components of viscoelasticity. Typically a slider element

is placed in parallel with a dashpot element, known collectively as a Bingham unit which is

immobilised below a specified yield strength. If the yield strength is exceeded, the slider is al-

lowed to move and the dashpot controls the strain rate. Should the applied stress be removed,

the slider fails to return to its original position, i.e. the plastic strain is not recoverable upon

unloading. This is known as viscoplasticity, proposed by Perzyna [48] and is a modification of
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classical plasticity theory by specifying the plastic strain to be time-dependent. In compar-

ison with viscoelasticity, a viscoplastic material only exhibits time-dependent behaviour in

the plastic region. This behaviour corresponds to the secondary stage of creep (Figure 2.2).

A Bingham unit in series with an elastic spring is shown in 1D form in Figure 2.5, where σy

is the yield stress of the slider.

k

y

Figure 2.5: Elasto-viscoplastic model

Many different combinations of elastic, viscous and plastic slider elements have been used

to describe the creep behaviour of rock. The slider elements are characterised by a range

of different yield functions, such as von Mises and Mohr-Coulomb. These models are often

viscoelastic-viscoplastic, therefore are able to describe both the primary and secondary stages

of creep behaviour shown in Figure 2.1. An example is the VIPLA model [37] which was used

by Barla et al. [4] to simulate the Saint Martin La Porte access adit, along the Lyon-Turin

Base Tunnel using a von Mises yield function. Gioda [24] and Gioda and Cividini [25] de-

rived a model which features a Kelvin unit in series with a Bingham unit (Figure 2.6). The

tertiary stage of creep can be considered by providing suitable laws relating the values of the

mechanical parameters to the irreversible part of the time-dependent strain. For example

Sterpi and Gioda [59] used the model developed by Gioda [24] and Gioda and Cividini [25],

taking into account tertiary creep by way of gradual mechanical damage governed by the

cumulative viscoplastic strain. This was achieved by modifying the Mohr-Coulomb param-

eters of the Bingham unit to have peak and residual values. Other models include those

developed by Fakhimi [19] and Fakhimi and Fairhurst [20], who used a viscoelastoplastic

constitutive model to simulate the time-dependent behaviour of rock. This consisted of an

elasto-plastic Mohr-Coulomb slider in series with Burger’s model (Figure 2.7). In this model

all time-dependent deformations are elastic.

Viscoplastic constitutive models have been successfully applied to real underground openings

as demonstrated by Barla et al. [4] and de Bernardi [15], amongst others.

Despite the viscoplastic models presented here being able to simulate the time-dependent

failure processes in the rock, they are unable to take into account discontinuities. Therefore

they have limited application to the behaviour of problems where the creep of bedding planes

dominates. However, a discontinuum viscoplastic approach can be developed, for example
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see Bosman [8].

k

k

y

Figure 2.6: Viscoelastic-viscoplastic rheological model (Gioda [24] and Gioda and Cividini
[25])
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Figure 2.7: Viscoelastoplastic rheological model (Fakhimi [19] and Fakhimi and Fairhurst
[20])

2.2.2 Empirical models

Empirical laws are directly derived from the observed relationship of time, stress, and strain

rate of creep test results and have been successfully used to describe the observed creep

behaviour of soil and rock [49]. They are generally arbitrary functions formulated to fit

a set of experimental results. According to Gioda [24] empirical laws usually give a good

approximation of the real time-dependent behaviour for stress and strain states, boundary

conditions and time spans similar to those of the laboratory tests on which basis they are

derived. They are often simple expressions requiring only a few parameters [49]. However,

since they are strictly related to a particular type of test it is often difficult to apply them to

different conditions. Also, since they are empirical they do not have a firm physical base [17]

and cannot be used as a theory which will predict the behaviour of more complicated systems.

The complete spectrum of creep strain shown in Figure 2.1 may be expressed as follows [32]

ε = εe + ε1(t) + V t+ ε3(t) (2.5)

where εe is the instantaneous elastic strain, ε1(t) is the primary or transient creep strain, V t

is the secondary or steady state creep strain and ε3(t) is the tertiary or accelerating creep
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strain. Many empirical laws have been proposed to describe the transient creep behaviour of

rock. For example, Griggs [29] observed the creep of a range of materials in the laboratory

including rocks and represented this behaviour by the following logarithmic law

ε1(t) = A log t (2.6)

where the constant A refers to the particular conditions of the creep test such as the temper-

ature and confining pressure, and t is time.

Tests carried out by Griggs [29] on Solenhofen limestone subjected to a uniaxial compressive

stress of 1400 bars showed that the logarithmic law (equation 2.7) provides a good fit to creep

data for times of up to a single year

ε = (6.1 + 5.2 log t)× 10−5 (2.7)

In addition to this expression derived by Griggs [29], other empirical expressions which only

represent the primary stage of creep are the power law [7], the exponential law [54, 58] and

the hyperbolic law [40]. Creep behaviour of most rocks is found to be adequately described

by the power law (e.g. [7], [9], [44] and [57]). For clayey soils, weak shale, mudstone, and

faulted rocks, the exponential law and the hyperbolic law are more commonly used (e.g. [21],

[38], [40] and [54]). Perhaps the most commonly used is the power law shown below, derived

by Boresi and Deere [7] during creep tests on salt rock

ε = Kσntm (2.8)

where K, n and m are creep parameters derived from strain-time data and σ is the applied

stress.

Singh [57] showed that the power law can be used to represent the primary and secondary

phases of creep behaviour for Sicilian marble specimens subjected to uniaxial stresses greater

than the material yield strength. An investigation carried out by Obert [44] on the creep

of model pillars made out of salt rock, trona and potash also showed that a power law suc-

cessfully describes the observed deformational behaviour. Phienwej et al. [49] states that

the power law is especially used for salt rock, potash and evaporites. This is supported by

the work of Le Comte [36] on the creep in salt rock, who found excellent agreement between

experimental curves and theoretical curves using the power law.

These empirical laws have been used in developing viscoelastic models to predict tunnel clo-

sure and the ground pressure on supports. The form of the power law deduced by Boresi and

Deere [7] (equation 2.8) was used by Aiyer [2] to develop an analytical solution for the plane

strain creep deformation of a circular tunnel. The same power law was used in advanced

FE analyses carried out by Shalabi [56] and Yu et al. [68]. The former simulated the time-



20 Chapter 2. Creep behaviour of deeply embedded cavities

dependent squeezing of the Stillwater Tunnel (Utah, USA) which is located in gouge materials

(material resulting from grinding and milling when two sides of a fault zone move along each

other) of silt and shale, whilst the latter predicted the ground behaviour of a typical room

and pillar mining section of a Western Canadian potash mine. Both authors obtained results

which provided good correlation with in situ measurements. It is important to mention that

the power law is commonly used to describe the primary creep following excavation of a cav-

ity, therefore caution should be taken when applying this law to the long term cavity analysis.

Note: many empirical expressions that are derived from creep testing of rocks are only

dependent on time (e.g. equation 2.7). Such equations are generally not of use for practical

purposes, such as determining the time-dependent closure of an underground opening. This

is because the creep behaviour of rock is clearly dependent on the stress level (Figure 2.3),

which changes around an underground opening until equilibrium is reached. Therefore, these

equations must be modified for stress dependence (e.g. see equation 2.8).

2.2.3 Creep laws based on physical processes

In addition to the common approach of rheological models and empirical laws to describe

creep behaviour, creep laws have been developed which are derived from the basic physical

processes that govern rock deformation at the atomistic scale. These models start from the

analysis of the microscopic structural variation of the material observed under loading, and

incorporate a theoretical explanation of the basis of the time-dependent behaviour. Munson

and Dawson [42] proposed a multi-mechanism deformation creep model which was used to

make creep closure calculations of underground storage and repository rooms in salt rock.

This model describes the deformation of salt rock based on the deformation mechanism map

for the rock. The mechanism map defines regions of stress and temperature in which a unique

deformation mechanism controls or dominates the steady-state creep characteristics of the

material. For a repository room, the mechanisms may include (1) dislocation climb at high

temperature; (2) an undefined mechanism at low stress and temperature; and (3) dislocation

slip at high stress. The mechanisms are parallel processes and are summed up to give a total

steady-state strain rate. Details of the changes in the internal structure of the rock govern

the macroscopic observations of creep behaviour. One of the most widely used steady state

creep laws for salt rock is

ε̇ss = A(σ1 − σ3)
n exp−( Q

RT
) (2.9)

where A and n are experimental fitting parameters, Q is the activation energy of a given

mechanism, (σ1 − σ3) is the maximum deviatoric stress, R is the universal gas constant and

T is the absolute temperature. This steady state equation was used by Hansen and Carter

[31] to fit creep data obtained from triaxial compression creep testing of samples of Avery

Island salt rock and is known as the Weertman relation or Norton-Hoff model. Hansen and

Carter [31] found the power law to be inadequate at describing creep data due to the as-

sumption of an infinite primary creep, highlighting the importance of considering secondary
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creep. However, the inadequacy of the power law may have been due to the conditions under

which creep testing took place, which were appropriate to that of a buried waste repository

with temperatures reaching 200o C. Despite this Bérest et al. [5] states that it is important

to consider secondary creep as most authors have observed that when a constant mechanical

load is applied to a salt sample, a steady state rate is reached after some time; it is a non-

linear function of the applied stress, and it is sensitive to temperature.

Even though these physical laws are rigorous due to describing the creep response from

fundamental mechanics, they contain many parameters that may not be simple to determine

especially for application to creep of clayey soil and fault gouge material [49].

Deformation mechanisms

If an equation is fitted to creep data, an assumption has been made that a certain mecha-

nism dominates creep processes. Creep is caused by different mechanisms related to intrinsic

and extrinsic factors. Rates are controlled by the dominate mechanism. Extrapolation of

laboratory creep data to other situations requires the appreciation of mechanisms. These

mechanisms may include: dislocations, diffusive mass transfer, grain boundary sliding and

cataclastic flow, all of which are described below [17].

According to Goodman [28], two types of mechanism are used to explain creep in rocks,

namely mass flow (plastic strain) and cracking (brittle strain). This was found by Scott Dun-

can and Lajtai [53] during uniaxial creep tests on potash rocks. When subjected to a stress

greater than the yield stress, plastic creep was dominated by brittle creep caused by microc-

racking and all three stages of the creep curve were observed for the lateral and volumetric

strain of the rock samples. The process of creep in salt rock involves plastic strain through

the movement of dislocations [28,33]. Contributions to this plastic strain may also come from

the mechanisms of diffusive mass transfer and grain boundary sliding, with the rate of creep

being controlled by the dominant mechanism. Brittle strain is caused by cataclastic flow.

Dislocation creep

A dislocation is a crystallographic defect located within a crystal lattice. When subjected to

a differential stress, dislocations migrate through the crystal lattice (breaking and forming

of bonds) along glide planes causing plastic deformation. Dislocations can be brought to a

halt through obstacles such as crystallographic defects and grain boundaries. This causes a

hardening and an increase in strength of the material with a decrease in deformability cor-

responding to the primary stage of creep behaviour. This process known as dislocation glide

often occurs under the conditions of high stress and relatively low temperature.

Dislocations that have been blocked can become mobile again by a process known as disloca-

tion climb. This recovery process involves the reduction in dislocation density and is driven

by an increase in both temperature and the strain energy stored in the material. In order
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for dislocations to climb atomic movement must take place during which atoms jump into

neighbouring sites if a vacancy is present. An increase in temperature causes atoms to have

increased thermal energy and produces a greater number of vacancies thus allowing climb to

occur.

Grain boundary sliding

This process involves deformation by material grains sliding past one another due to shear

stresses acting at grain boundaries. With small enough grain sizes this mechanism contributes

to the creep deformation of salt rock, particularly at elevated temperatures.

Diffusion creep

At a micro scale some sites of atoms can be occupied by point defects. A point defect is

where an atom is missing or is located in an irregular place in the crystal lattice structure.

Defects can migrate through the lattice when the activation energy necessary to break inter

crystalline bonds is provided. Thus at a higher temperature it becomes easier for migration

to take place. Two types of diffusion creep are Nabarro Herring and Coble creep. The former

involves vacancies moving through the crystal, whilst the latter involves vacancies moving

along grain boundaries.

Cataclastic flow

Cataclastic flow or micro crack generation is brittle deformation, generally at grain contacts,

but also passing through crystals. It occurs when loads are applied beyond the frictional

limit, beyond the grain strength or beyond pore structure strength. It ceases when stresses

are redistributed below these limits.

2.3 Models for predicting the creep deformation of deep cav-

ities

A number of tools have been developed to predict the time-dependent closure of an under-

ground opening. Two main groups are analytical methods and numerical methods, both of

which are reviewed below.

2.3.1 Analytical models

Analytical methods tend to be those which produce closed-form solutions or pseudo-closed-

form solutions [34]. Their formation often requires simplifications regarding material be-

haviour, problem geometry and boundary conditions. They are rare in practical rock me-

chanics and are sometimes difficult to apply to complex practical problems. However, they

can often produce a solution in a short period of time with little or no computational ef-

fort. The effect of individual parameters on the solution can sometimes be seen easily, thus

providing a valuable insight into the problem of cavity design.
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2D, plane strain models have been developed for the case of singular, deeply embedded,

cylindrical openings. Such models make a number of assumptions such as neglecting gravity

stresses, an initial isotropic stress field and instantaneous excavation of the tunnel. These

are discussed by Aiyer [2]. Neglecting gravity stresses and assuming an isotropic stress field

can be justified when predicting the closure of deep openings. Gravity stresses may play

a negligible role in the time-dependent deformation when the size of the opening is small

compared to the depth. Also at great depths the materials may not be able to support large

stress differences without creeping to equalise the stress. The assumption of instantaneous

excavation of the tunnel will lead to overestimation of the creep deformation and therefore

can be considered conservative. This may also be reasonably accurate for short excavations

which take a short period of time to excavate.

Two of these models have been proposed by Aiyer [2] and Goodman [28], and adopt viscoelas-

tic material behaviour. The closed-form solution proposed by Goodman [28] uses Burger’s

creep model to describe the time-dependent behaviour of the rock and is illustrated by two

examples: (1) an unlined circular tunnel in an anisotropic stress field (horizontal stress σh

not equal to the vertical stress σv) and (2) a lined circular tunnel in an isotropic stress field

(σh = σv). An expression has also been proposed for the installation of rock bolts which can

be superimposed onto the example for the unlined opening.

Aiyer [2] also developed a solution for both unlined and lined tunnels. A method was also

produced for predicting the time-dependent behaviour of a spherical cavity. These methods

use the form of the power creep law deduced by Boresi and Deere [7] (equation 2.8) focusing

on openings located in salt rock. A non-linear incremental approach has been adopted. A

parametric investigation was carried out in order to determine the influence of various factors

on the time-dependent deformation. These factors included both elastic and creep material

parameters, the magnitude of the stress field and others. Graphs were produced to show the

variation of stress and strain with time and distance from the tunnel centre.

Aiyer’s approach assumes the immediate response of the medium is linear elastic and the

subsequent response is described using the creep law. A governing differential equation is

derived from superimposing this law onto the equilibrium and compatibility equations for

an elastic thick walled cylinder. The equation is then solved for a given boundary condi-

tion using an incremental approach. Phienwej et al. [49] adopted the method proposed by

Aiyer [2] incorporating both a hyperbolic and power creep law. The effect of tunnel support

was incorporated into the analysis. The hyperbolic law was able to take into account the

elastoplastic behaviour of the ground and was used to predict the closure of a number of

different tunnels located in poor rock masses. The predicted values were found to be in good

agreement with in situ monitoring data.

Elasto-viscoplastic analytical solutions for cavity expansion problems have been developed by
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Salamon [52], Nonaka [43] and Fritz [22], amongst others. It is important to note that such

solutions are relatively rare. Many of these solutions adopt a von Mises yield criterion for

the plastic slider element shown in Figure 2.5, thus only deviatoric viscoplastic strains occur

(deviatoric creep only). In contrast Fritz developed a model which uses a Mohr-Coulomb

yield criterion, thus dilatancy effects are described. This model takes into account both

deviatoric and volumetric viscoplastic strains. Material softening is also incorporated by

taking into account both peak and residual strengths of the material. However, a common

assumption is that only deviatoric creep occurs in rocks. This is due to rock undergoing lim-

ited time-dependent volume changes as stated in Section 1.1. Many viscoplastic constitutive

models assume that only deviatoric viscoelastic and viscoplastic strains occur. An example

is the model developed by Gioda [24] and Gioda and Cividini [25] (Figure 2.6). This model

uses a Mohr-Coulomb yield criterion which is more suitable for representing geomaterials

than a von Mises criterion, due to it taking into account frictional behaviour, but assumes

viscoelastic-viscoplastic (time-dependent) deviatoric behaviour and only elasto-plastic (time-

independent) volumetric behaviour.

A number of models have been developed for cylindrical tunnels, which attempt to take into

account the 3D interaction between the tunnels and the surrounding creeping rock. Here the

problem is idealised as a 2D plane-strain problem. In this simplified approach, the analysis

of stresses and displacements near the tunnel face is performed by regarding the face as

providing a fictitious internal support pressure. The magnitude of this internal pressure is

related to the face position by using empirical relations based on field measurements or 3D

FE analyses. Solutions derived by Sakurai [51]; Sulem et al. [60]; Ladanyi [34]; Panet [46];

and Fahimifar et al. [18] are examples of this approach. The following empirical relation was

proposed by Panet [46]

λ(x) = 0.28 + 0.72

[

1−
(

X

X + x

)2
]

(2.10)

where x is the distance from the tunnel face, X = 0.84b and b is the tunnel radius. The λ

parameter varies between 0 and 1 (λ = 1 belongs to sections located far away from the tunnel

face (x > 4R as shown in Figure 2.8)).

Figure 2.8: Model showing a section located far behind the tunnel face (Fahimifar et al. [18])
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These empirical formulas are useful for practical applications because they are often derived

directly from the real tunnel performance data. However, the parameters are often difficult

to determine and there are significant uncertainties in extrapolating these empirical relations

to different design situations and rock behaviour. This is highlighted through the derivation

of many different empirical relations (e.g. Corbetta et al. [13], Panet [46]. Carranza-Torres

and Fairhurst [10] and Unlu and Gercek [63]).

2.3.2 Numerical models

According to Gioda and Swoboda [26] tunnelling engineering is perhaps one of the areas of

applied soil and rock mechanics in which numerical methods are more frequently adopted

in practice. This is due to the complex characteristics which are encountered in tunnelling

problems. An important characteristic is the strong influence of the excavation and construc-

tion procedures on the stress/strain distribution in the rock surrounding the opening. This

construction procedure is generally not considered with sufficient accuracy in closed-form so-

lutions. Simulation of construction can be carried out in a numerical analysis with accuracy

only being limited by the required computational effort. Secondly, the complex geometrical

nature of tunnelling problems can be analysed. This not only includes the shape of excava-

tion, but also the discontinuities located in the rock. Both 2D and 3D analyses can be carried

out, only being limited by the computational time.

Numerical methods such as the FE method and finite difference (FD) method are widely

used in the analysis of real life tunnelling problems. The FE method is well suited to solving

problems involving heterogeneous or non-linear material properties, as each element explic-

itly models the response of its contained material. However, the FE method is not ideal for

modelling infinite boundary problems, such as those involving underground openings. This

can be overcome by extending the mesh boundaries beyond the zone of influence of the exca-

vation and by applying appropriate boundary conditions to the mesh edges. An alternative

is to use infinite elements of which one edge extends to infinity. There are a wide range of

commercial packages into which creep models are incorporated.

Complex numerical analyses have been carried out by a number of authors using complex

constitutive models shown in the first part of this chapter, to predict the creep deformation of

specific sites (e.g. [4], [6], [12], [23], [24], [30], [47], [56], [59], [62], [67] and [68]). For example

Yu et al. [67] carried out a plane strain FE analysis to predict the ground behaviour of a typ-

ical room and pillar mining section of a Western Canadian potash mine, thus modelling the

interaction between two tunnels and also taking into account the different geological strata.

The excavation procedure was simulated through deactivation of model elements inside the

openings over a number of steps, with creep deformation being introduced during each step.

A similar analysis was conducted by Swift and Reddish [62] for a section of the Winsford

Salt Mine located in Cheshire. Other researchers conducted axisymmetric analyses such as

Shalabi [56] who developed a model for the Stillwater Tunnel located in Utah.
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These numerical models are commonly validated using in situ closure measurements and then

future predictions of cavity deformation can be made (e.g. Swift and Reddish [62] validated

a numerical model through simulation of a 9 year time period and then made predictions of

deformation for up to 500 years). The numerical model developed by Yu [67] was validated

using model tests constructed in the laboratory due to the in situ stress being difficult to

measure.

Despite these models being very practical, they are often computationally expensive for rou-

tine practice and require a significant time to construct the initial geometry and mesh.

2.4 Summary

From reviewing the creep behaviour of deeply embedded cavities the following observations

have been made

• creep behaviour of rock is complex and depends on a wide number of factors, therefore

it is very much a site specific process.

• there are a number of difficulties in obtaining rock parameters which are representative

of in situ conditions. Therefore it is important to conduct a rigorous laboratory creep

testing program and in situ creep tests and back analysis where possible.

• many different constitutive models are used to describe creep behaviour of rock, which

are then used to obtain predictions of the creep behaviour of an underground opening.

These models consist of rheological, empirical and those based on physical processes.

It is important to select an appropriate model.

• both rheological and empirical models have been used successfully in predicting creep

closure of tunnels. The rheological models are particularly attractive as they are not

related to a particular creep test and have a firm physical base, and thus can be applied

to a wide range of problems with only the material parameters changing. Viscoplastic

models are able to describe the constitutive behaviour of geomaterials more accurately

than viscoelastic models as they are able to take into account the non-linear relationship

between stress and strain and predict non reversible time-dependent deformations.

• analytical models are useful tools for conducting parametric studies into the behaviour

of deep cavities. Solutions can often be produced in a short period of time. 2D so-

lutions exist for both lined and unlined cylindrical cavities located in viscoelastic and

viscoplastic media. However, few viscoplastic solutions exist. Empirical relations are

used to approximate the stresses and displacements occurring at a tunnel face. How-

ever, there is significant uncertainty when extrapolating these relations to different

design situations and rock behaviour.
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• numerical models are able to take into account the complex characteristics encountered

in tunelling problems, such as complex material behaviour and the excavation process.

As a result they are used frequently for practical applications to accurately predict

the time-dependent response. However, they are often computationally expensive for

routine practice.

In light of these observations it is evident that there is a need for a new tool which

can model a wide range of material behaviour, including complex material behaviour

and can be applied to both 2D and 3D problems, whilst being less computationally

expensive and more simple to use than FE analysis. This tool could be used in the

early cavity design stage. The energy-based method proposed in this thesis will be

used to derive a new tool and rheological models will be incorporated due to their

ability to describe realistic creep behaviour and their applicability to a wide range of

different materials.
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Chapter 3

Energy-based approach for the

creep analysis of cavities

Synopsis

This chapter begins by introducing the energy-based method in Section 3.1, which is used

throughout this thesis to develop new simple tools for cavity design. Here we demonstrate

how the method can be used to derive existing cavity solutions. This provides a useful

introduction to the energy-based approach and a helpful reference when developing new

models in the remaining chapters. Simple linear elastic models are derived in Section 3.2,

for cylindrical and spherical cavities located in isotropic stress fields. A linear elastic model

is then derived for a cylindrical cavity in an anisotropic stress field shown in Section 3.3.

Section 3.4 demonstrates how linear viscoelastic constitutive behaviour can be incorporated

in the Laplace domain using Burger’s viscoelastic constitutive model in order to predict

creep behaviour. Finally elasto-plastic constitutive behaviour is introduced in Section 3.5

and incorporated into the cavity equations in Section 3.6, thus non-reversible deformations

are present. This is a step towards incorporating time-dependent viscoplastic constitutive

behaviour which is developed in Chapters 5 and 6. All of the models derived in this chapter

are validated with existing closed-form solutions or finite element (FE) analysis.

3.1 Energy-based method

The phrase “energy-based method” refers to a method that makes use of the energy of a

mechanical system to obtain values of an unknown displacement or force at a specific point

in the system. Here we use a variational method which makes use of variational principles,

such as the principles of virtual work and minimum total potential energy to determine ap-

proximate solutions to the system as continuous functions of position. For example, applying

a constant pressure to a cavity located in an elastic medium will cause a displacement field

to occur surrounding the cavity. What configuration will this displacement field take? Here

we can use the principle of virtual work to minimise the energy in the system and thus derive

an equation which governs the displacement field. This displacement field is the optimum

– 33 –
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configuration which is in fact the one realised in nature.

Variational calculus was developed by many of the great mathematicians such as the Bernoulli

family, Euler and Lagrange. It is a powerful tool which can be used to obtain approximate

solutions to a range of practical problems which otherwise may be difficult to solve. Varia-

tional principles have been applied to the field of geotechnics, where several studies on piles

located in elastic continua have been carried out (e.g. [2], [13], [28]) and Einav [10] solved

the problem of a pile located in an elasto-plastic soil by introducing a dissipation function

into the energy formulation. Variational principles are independent of any constitutive law

and can be applied to elastic (linear and non-linear) and inelastic continuum problems. A

summary of variational methods is provided by Reddy [25].

3.1.1 Principle of virtual work

As stated above, the principle of virtual work is a variational principle that can be used to

obtain the equations governing the unknown displacements of a system by minimising the

energy in the system. This principle is also known as the principle of minimum total potential

energy when applied to elastic materials. From a geometric point of view a given mechanical

system can take many different configurations which are consistent with the boundary con-

ditions of the system. However, only one of these configurations corresponds to the actual

configuration which satisfies Newton’s second law (equilibrium of forces and moments). The

set of configurations which are consistent with the boundary conditions is known as the set

of admissible configurations. These are within the neighbourhood of the actual configura-

tion and are obtained from variations of the actual configuration. During these variations

the boundary conditions are not violated and all the forces are fixed at their equilibrium

values. When a mechanical system undergoes such variations, it is said to undergo virtual

displacements from its equilibrium condition. These displacements are imaginary and the

actual loads act at their fixed values. The work done by the actual forces through a virtual

displacement of the actual configuration is called virtual work.

The definition of virtual work is as follows: a continuous body is in equilibrium if the virtual

work of all the forces acting on the body is zero in a virtual displacement. Mathematically

the total virtual work for an elastic body at equilibrium can be expressed as

δΠ = δU − δW = 0, (3.1)

where δU is the virtual potential energy change when the system is displaced by a virtual

displacement δu and δW is the external virtual work due to a virtual displacement δu. The

delta operator is known as the variational operator because it is used to denote a variation

or change in a given quantity. A visual illustration of the principle of virtual work is shown

in Figure 3.1. This figure shows a sketch of the total energy of a system as a function of
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Figure 3.1: Total energy of a system as a function of displacement, where the actual displace-
ment u1 corresponds to the minimum on the curve at which point the total virtual work is
equal to zero

displacement. Equation 3.1 corresponds to the minimum point on the curve at which point

the total energy attains a stationary value corresponding to the actual displacement of the

system and the point of equilibrium.

3.1.2 Method adopted in this thesis

The method we adopt in this thesis is based on that by Vlasov and Leontiev [32] who devel-

oped a method for the analysis of beams on elastic foundations based on an elastic continuum

approach. This method has also been used more recently for three-dimensional (3D) pile

analysis (e.g. [2], [3]). In this approach each component of the displacement field (e.g. the

displacement in the x direction ux) within the elastic continuum is expressed as a product of

independent 1D functions (e.g. ux = φx(x)φy(y) if ux varies in the x and y directions). The

potential energy U of the elastic continuum can then be expressed in terms of the 1D functions

(e.g. φx and φy) using standard strain-displacement relations and stress-strain relations. An

expression can also be written for the external work W . Applying the principle of virtual

work (equation 3.1) results in an equation for δΠ containing terms featuring variations (e.g.

δφx and δφy). Collection of the terms associated with each variation (e.g. collection of the

terms associated with δφx) over the problem domain forms a governing differential equation

corresponding to the equilibrium of the system. The boundary conditions can be obtained

by collecting the terms associated with each variation at the problem boundaries. Once the

1D functions have been solved for (e.g. φx), the displacements (e.g. ux) can be evaluated for

the system. Examples of how this method has been implemented into cavity problems can

be found throughout this chapter.
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3.2 Simple cavity problems

The proposed energy-based method is now used to derive solutions for cylindrical and spher-

ical cavities located in both finite and infinite linear elastic bodies. Here the radial displace-

ment is assumed to be positive when directed out of the cavity. Compressive stresses are

assumed to be negative.

3.2.1 Cylindrical cavity

Here we develop a solution using the proposed energy-based method for an infinitely long

cylindrical cavity subjected to uniform internal and external pressures, pi and po respectively,

thus we assume the condition of plane strain.

Figure 3.2: Cavity under uniform internal and external pressures

Due to symmetry, this problem is effectively 1D and only radial displacement ur is present

which is a function of the radial distance r. The potential energy U of the system can be

written as follows in terms of stress and strain components by integrating over the problem

domain

U =
1

2

rm
∫

r0

2π
∫

0

(σrrεrr + σθθεθθ)rdθdr, (3.2)

where σrr and σθθ are the radial and circumferential stresses respectively and εrr and εθθ are

the radial and circumferential strains respectively. θ is the angular coordinate.

In a linear elastic material, the stress-strain relations in cylindrical coordinates are given by

σrr = λ(εrr + εθθ) + 2Gεrr, (3.3)

σθθ = λ(εrr + εθθ) + 2Gεθθ, (3.4)

where G and λ are the Lamé constants.
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The strains are obtained from the first derivative of displacements as follows

εrr =
dur
dr

, (3.5)

εθθ =
ur
r
. (3.6)

Using the above stress-strain relations, the strain-displacement relations and the assumed

displacement field, equation 3.2 can be evaluated as follows

U = π

rm
∫

r0

(

(λ+ 2G)

(

(

dur
dr

)2

+
(ur
r

)2
)

+ 2λ

(

ur
r

dur
dr

)

)

rdr. (3.7)

Variational principles are then used to obtain expressions for δU and δW from which the

governing differential equation of the system and appropriate boundary conditions can be

written.

The variation in the external work W is given by

δW = 2πpir0δur − 2πpormδur. (3.8)

The governing equations for deformation are derived using the principle of virtual work

(equation 3.1). Setting the first variation of the total energy δΠ equal to zero produces an

equation of the form δΠ = [C(ur)δur] = 0 as shown below

δΠ = 2π(λ + 2G)





[

r
dur
dr

]rm

r0

δur −
rm
∫

r0

(

r
d2ur
dr2

+
dur
dr

)

δurdr +

rm
∫

r0

ur
r
δurdr





+2πλ





rm
∫

r0

dur
dr

δurdr + [ur]
rm
r0 δur −

rm
∫

r0

dur
dr

δurdr



− 2πpir0δur + 2πpormδur = 0. (3.9)

Collection of the terms associated with each variation (δur) over the problem domain r0 ≤
r ≤ rm forms the differential equation which governs the displacements of the system. Since

the variation of displacement is non-zero over the domain (δur 6= 0), the coefficients of the

terms (the integrand) must be equal to zero in order to satisfy equation 3.9. Expressions for

the boundary conditions can be formed by collecting the terms associated with each variation

at the problem boundaries (collection of the δur terms at r = r0 and at r = rm) and setting

these expressions equal to zero in order to satisfy equation 3.9. The governing equation and

boundary conditions are expressed in the following section.
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Governing differential equation and boundary conditions

Collecting the coefficients of δur for r0 ≤ r ≤ rm forms the differential equation governing

the displacements of the system

2π(λ+ 2G)

(

r
d2ur
dr2

+
dur
dr

− ur
r

)

= 0. (3.10)

Collecting the δur terms at r = r0 gives

[

2π
(

(λ+ 2G)r
dur
dr

+ λur + pir0

)

]

δur = 0, (3.11)

and collecting the δur terms at r = rm gives

[

2π
(

(λ+ 2G)r
dur
dr

+ λur + porm

)

]

δur = 0. (3.12)

To satisfy these boundary conditions we can assume that the bracketed terms are equal to

zero. These correspond to the stresses at the cavity boundaries which are known as the nat-

ural boundary conditions as they are derived straight from the energy-based method and are

not enforced. An alternative boundary condition for a cavity under internal pressure only

would be ur = 0 at r = rm, corresponding to zero displacement at the far field boundary,

which satisfies the boundary conditions.

The general solution to equation 3.10 is

ur = Ar +
B

r
, (3.13)

where A and B are constants which are found using the boundary conditions.

Implementing the natural boundary conditions we can derive a closed-form solution which is

identical to that derived by Jaeger et al. [19]. It is important to note here that there is a

change in sign of the displacement between the proposed solution and that derived by Jaeger

et al. [19] (radial displacement assumed to be positive when directed into the cavity in Jaeger

et al. [19]).

2Gur = −(1− 2ν)
(r0

2pi − rm
2po)r

(r02 − rm2)
− r0

2rm
2(pi − po)

(r02 − rm2)r
. (3.14)

As rm → ∞ the following solution can be written

2Gur = −(1− 2ν)por + (pi − po)(r0
2/r), (3.15)
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for a cavity located in an infinite elastic medium.

Assuming that po = 0, the following equation can be written for a cavity expansion problem

2Gur = −(1− 2ν)
(r0

2pi)r

(r02 − rm2)
− r0

2rm
2pi

(r02 − rm2)r
. (3.16)

As rm → ∞ we can write

2Gur = pi(r0
2/r). (3.17)

Thus the displacements are largest at the cavity wall and decay with radial distance away

from the cavity.

Expressions for the stresses can be formed by substituting the strain-displacement relations

(equations 3.5 and 3.6) into the stress-strain relations (equations 3.3 and 3.4)

σrr = λ

(

∂ur
∂r

+
ur
r

)

+ 2G
dur
dr

, (3.18)

σθθ = λ

(

∂ur
∂r

+
ur
r

)

+ 2G
ur
r
. (3.19)

Here we can validate the stress components with existing closed-form solutions through sub-

stituting the displacement into the stress expressions. For a cavity under internal pressure

and located in an infinite medium (substituting equation 3.17 into equations 3.18 and 3.19),

we find that the stresses are identical to those derived by Kirsch [20]

σrr = −pi
(r0
r

)2
, (3.20)

σθθ = pi

(r0
r

)2
. (3.21)

Here we observe that at the cavity wall the radial and circumferential stresses are equal in

magnitude to the internal cavity pressure and decay with increasing radial distance.

3.2.2 Spherical cavity

Here we demonstrate how the proposed method can be used to derive solutions for a spherical

cavity problem. Analogous to the cylindrical cavity only radial displacement is present which

is a function of the radial distance r. The potential energy of the system can be written as

follows by integrating over the volume of the sphere (an element of the volume of a sphere

is dV = r2 sin(Φ)dΦdθdr where θ is the azimuthal angle, identical to that defined earlier for

the cylindrical cavity and Φ is the zenith angle)

U =
1

2

rm
∫

r0

2π
∫

0

π
∫

0

(σrrεrr + σΦΦεΦΦ + σθθεθθ)r
2 sin(Φ)dΦdθdr. (3.22)
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In a linear elastic material, the stress-strain relations in spherical coordinates are given by

σrr = λ(εrr + εθθ + εΦΦ) + 2Gεrr, (3.23)

σθθ = λ(εrr + εθθ + εΦΦ) + 2Gεθθ, (3.24)

σΦΦ = λ(εrr + εθθ + εΦΦ) + 2GεΦΦ. (3.25)

The strains are obtained from the first derivative of displacements as follows

εrr =
dur
dr

, (3.26)

εΦΦ =
ur
r
, (3.27)

εθθ =
ur
r
. (3.28)

Using the above stress-strain relations, the strain-displacement relations and the assumed

displacement field, equation 3.22 can be evaluated as follows

U = 2π

rm
∫

r0

(

(λ+ 2G)r2
(

dur
dr

)2

+ 4λ

(

rur
dur
dr

)

+ 2(2λ + 2G)ur
2

)

dr. (3.29)

The variation in external work is given by

δW = 4πpir0
2δur − 4πporm

2δur. (3.30)

Again using the principle of virtual work the following equation can be formed

δΠ =4π

(

(λ+ 2G)

(

[

r2
dur
dr

]rm

r0
δur −

rm
∫

r0

(

r2
d2ur
dr2

+ 2r
dur
dr

)

δurdr

)

δurdr

+ 2λ

(

[rur]
rm
r0 δur −

rm
∫

r0

(

r
dur
dr

+ ur

)

δurdr +

rm
∫

r0

r
dur
dr

δurdr

)

+ (2λ+ 2G)

rm
∫

r0

urδurdr

)

− 4πpir0
2δur + 4πporm

2δur = 0. (3.31)
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Governing differential equation and boundary conditions

Collecting the coefficients of δur for r0 ≤ r ≤ rm forms the differential equation governing

the displacements of the system

4π(λ+ 2G)

(

r2
d2ur
dr2

+ 2r
dur
dr

− 2ur

)

= 0. (3.32)

Collecting the δur terms at r = r0 gives

[

4π
(

(λ+ 2G)r2
dur
dr

+ 2λrur + pir0
2
)

]

δur = 0, (3.33)

and collecting the δur terms at r = rm gives

[

4π
(

(λ+ 2G)r2
dur
dr

+ 2λrur + porm
2
)

]

δur = 0. (3.34)

The general solution to equation 3.32 is

ur = Ar +
B

r2
. (3.35)

As for the cylindrical cavity we can implement the natural boundary conditions and derive

a closed-form solution which is identical to that derived by Jaeger et al. [19]

4Gur = −(1− 2ν)(r0
3pi − rm

3po)r

(1 + ν)(r03 − rm3)
− r0

3rm
3(pi − po)

(r03 − rm3)r2
. (3.36)

As rm → ∞ the following solution can be written

4Gur = −(1− 2ν)por

(1 + ν)
+
r0

3(pi − po)

r2
, (3.37)

for a cavity located in an infinite elastic medium.

Here we can set po = 0 and arrive at the following cavity expansion equation

4Gur = − (1− 2ν)(r0
3pi)r

(1 + ν)(r03 − rm3)
− r0

3rm
3pi

(r03 − rm3)r2
. (3.38)

As rm → ∞ the following solution can be written

4Gur = pi

(

r0
3

r2

)

. (3.39)
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Expressions for the stresses can be formed by substituting the strain-displacement relations

(equations 3.26-3.28) into the stress-strain relations (equations 3.23-3.25)

σrr = λ

(

dur
dr

+ 2
ur
r

)

+ 2G
dur
dr

, (3.40)

σθθ = λ

(

dur
dr

+ 2
ur
r

)

+ 2G
ur
r
, (3.41)

σΦΦ = λ

(

dur
dr

+ 2
ur
r

)

+ 2G
ur
r
. (3.42)

These expressions can then be validated by substituting the displacement and comparing

with the existing closed-form solutions derived by Kirsch [20]. For a cavity under internal

pressure in an infinite medium we find that the equations are identical

σrr = −pi
(r0
r

)3
, (3.43)

σθθ =
pi
2

(r0
r

)3
, (3.44)

σΦΦ =
pi
2

(r0
r

)3
. (3.45)

3.3 Cylindrical cavity located in an anisotropic stress field

We now derive a solution for a cylindrical cavity subjected to an anisotropic stress field as

shown in Figure 3.3. Here we apply the change in stress due to excavation at the cavity

wall, thus modelling a cavity expansion problem. Derivation of such a solution highlights the

flexibility of the proposed energy-based method.

Figure 3.3: A cavity subjected to an anisotropic stress field
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Here we assume the radial and tangential displacements to be of the following form

ur = φ1 + φ2 cos(2θ), (3.46)

uθ = φ3 sin(2θ), (3.47)

where φ1, φ2 and φ3 are functions which govern the attenuation of rock displacements away

from the cavity wall in the r direction. φ1 corresponds to the isotropic component of stress,

whilst φ2 and φ3 correspond to the anisotropic component of stress. Forrest and Hunt [11]

used a displacement field of the same form for the anisotropic components when developing

a tunnel model for train-induced ground vibration. cos(nθ) and sin(nθ) were used for the

radial and circumferential displacements respectively. n = 2 was found to represent the case

of a squashed tunnel section, which is the problem that we are modelling here.

The potential energy of the system can be written as follows by integrating over the problem

domain

U =
1

2

∞
∫

r0

2π
∫

0

(σrrεrr + σθθεθθ + τrθ2εrθ)rdθdr. (3.48)

The stress-strain relations in cylindrical coordinates are given by

σrr = λ(εrr + εθθ) + 2Gεrr, (3.49)

σθθ = λ(εrr + εθθ) + 2Gεθθ, (3.50)

τrθ = 2Gεrθ, (3.51)

where τrθ is the shear stress and εrθ the shear strain. The strains are obtained from the first

derivative of the displacements as follows

εrr =
∂ur
∂r

, (3.52)

εθθ =
1

r
(ur +

∂uθ
∂θ

), (3.53)

εrθ =
1

2
(
1

r

∂ur
∂θ

+
∂uθ
∂r

− uθ
r
). (3.54)

Using the stress-strain relations, the strain displacement relations and the assumed displace-

ment field, equation 3.48 can be evaluated as follows

U =
1

2

∞
∫

r0

(λ+ 2G)
(

2πr
(dφ1
dr

)2
+ πr

(dφ2
dr

)2
+ 2π

φ1
2

r
+ π

φ2
2

r
+ 4π

φ3
2

r
+ 4π

φ2φ3
r

)

+ 2λ
(

2πφ1
dφ1
dr

+ πφ2
dφ2
dr

+ 2πφ3
dφ2
dr

)

+G
(

4π
φ2

2

r
+ πr

(dφ3
dr

)2
+ π

φ3
2

r
− 4π

(

φ2
dφ3
dr

)

+ 4π
φ2φ3
r

− 2π
dφ3
dr

φ3

)

dr. (3.55)
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The variation in external work is given by

δW =

2π
∫

0

σrrr0δurdθ −
2π
∫

0

τrθr0δuθdθ. (3.56)

The in situ stresses, when expressed in cylindrical coordinates give the following stresses

acting on a circular boundary [21]

σrr =
1

2
(pvo + pho)−

1

2
(pvo − pho) cos(2θ), (3.57)

σθθ =
1

2
(pvo + pho) +

1

2
(pvo − pho) cos(2θ), (3.58)

τrθ =
1

2
(pvo − pho) sin(2θ). (3.59)

Thus these equations give the stresses which act at the periphery of the cavity before it is

bored and are independent of the cavity radius. When the cavity is bored the radial stress

given by equation 3.57 and shear stress given by equation 3.59 is relieved at the cavity pe-

riphery. This incremental change in stress fades out with the distance from the cavity wall.

It is this incremental change in stress which causes the displacements and which we apply at

the cavity wall to expand the cavity.

Thus δW can be expressed as

δW =

2π
∫

0

(

1

2
(pvo + pho)−

1

2
(pvo − pho) cos(2θ)

)

r0(δφ1 + δφ2 cos(2θ))dθ

+

2π
∫

0

(

1

2
(pvo − pho) sin(2θ)

)

r0(δφ3 sin(2θ))dθ

=
(

π(pvo + pho)δφ1 −
π

2
(pvo − pho)δφ2

)

r0 −
(π

2
(pvo − pho)δφ3

)

r0. (3.60)
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Using the principle of virtual work produces an equation of the following form

δΠ = [A(φ1)δφ1] + [B(φ2)δφ2] + [C(φ3)δφ3] = 0, (3.61)

as shown below

δΠ = (λ+ 2G)

(

2π
([

r
dφ1
dr

]rm

r0
δφ1 −

∞
∫

r0

(dφ1
dr

+ r
d2φ1
dr2

)

δφ1dr
)

+ π
([

r
dφ2
dr

]rm

r0
δφ2

−
∞
∫

r0

(dφ2
dr

+ r
d2φ2
dr2

)

δφ2dr
)

+ 2π

∞
∫

r0

φ1
r
δφ1dr + π

∞
∫

r0

φ2
r
δφ2dr + 4π

∞
∫

r0

φ3
r
δφ3dr

+ 2π

∞
∫

r0

φ2
r
δφ3dr + 2π

∞
∫

r0

φ3
r
δφ2dr

)

+λ

(

2π
(

[φ1]
rm
r0 δφ1 +

∞
∫

r0

(

− dφ1
dr

+
dφ1
dr

)

δφ1dr
)

+ π
(

[φ2]
rm
r0 δφ2

+

∞
∫

r0

(

− dφ2
dr

+
dφ2
dr

)

δφ2dr
)

+ 2π
(

[φ3]
rm
r0 δφ2 +

∞
∫

r0

(

− dφ3
dr

δφ2 +
dφ2
dr

δφ3

)

dr
)

)

+G

(

4π

∞
∫

r0

φ2
r
δφ2 + π

([

r
dφ3
dr

]rm

r0
δφ3 −

∞
∫

r0

(dφ3
dr

+ r
d2φ3
dr2

)

δφ3dr +

∞
∫

r0

φ3
r
δφ3dr

)

− 2π
(

[φ2]
rm
r0 δφ3 +

∞
∫

r0

(

− dφ2
dr

δφ3 +
dφ3
dr

δφ2

)

dr
)

+ 2π

∞
∫

r0

φ2
r
δφ3dr + 2π

∞
∫

r0

φ3
r
δφ2dr

− π
(

[φ3]
rm
r0 δφ3 +

∞
∫

r0

(

− dφ3
dr

+
dφ3
dr

)

δφ3dr
)

)

−
(

π(pvo + pho)δφ1 −
π

2
(pvo − pho)δφ2

)

r0 −
(π

2
(pvo − pho)δφ3

)

r0 = 0.

(3.62)

Since the variations δφ1, δφ2 and δφ3 are independent the terms associated with each vari-

ation must be equal to zero (e.g. A(φ1)δφ1 = 0) in order to satisfy equation 3.62. We now

use the same procedure of forming the differential equations and boundary conditions as de-

scribed for the cylindrical cavity in Section 3.2.1. However, here we have three independent

functions, thus we derive three governing equations and three sets of boundary conditions as

shown in the following section.

Governing differential equations and boundary conditions

Collecting the coefficients of δφ1 for r0 ≤ r ≤ rm forms the governing differential equation

for the displacement of a cavity subjected to a uniform pressure (equation 3.10)
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2π(λ+ 2G)

(

dφ1
dr

+ r
d2φ1
dr2

− φ1
r

)

= 0. (3.63)

Collecting the δφ1 terms at r = r0 gives

[

2π

(

(λ+ 2G)r
dφ1
dr

+ λφ1 +
1

2
(pvo + pho)r0

)]

δφ1 = 0, (3.64)

and collecting the δφ1 terms at r = rm gives

[

2π

(

(λ+ 2G)r
dφ1
dr

+ λφ1

)]

δφ1 = 0. (3.65)

Collecting the coefficients of δφ2 for r0 ≤ r ≤ rm forms the following governing differential

equation

π

(

(λ+ 2G)

(

−dφ2
dr

− r
d2φ2
dr2

)

+ (λ+ 6G)
φ2
r

+ 2(λ+ 3G)
φ3
r

− 2(λ+G)
dφ3
dr

)

= 0. (3.66)

Collecting the δφ2 terms at r = r0 gives

[

π

(

(λ+ 2G)r
dφ2
dr

+ λ(φ2 + 2φ3)−
1

2
(pvo − pho)r0

)]

δφ2 = 0, (3.67)

and collecting the δφ2 terms at r = rm gives

[

π

(

(λ+ 2G)r
dφ2
dr

+ λ(φ2 + 2φ3)

)]

δφ2 = 0. (3.68)

Collecting the coefficients of δφ3 for r0 ≤ r ≤ rm forms the following governing differential

equation

π

(

G

(

−dφ3
dr

− r
d2φ3
dr2

)

+ 2(λ+ 3G)
φ2
r

+ (4λ+ 9G)
φ3
r

+ 2(λ+G)
dφ2
dr

)

= 0. (3.69)

Collecting the δφ3 terms at r = r0 gives

[

π

(

G

(

r
dφ3
dr

− 2φ2 − φ3

)

+
1

2
(pvo − pho)r0

)]

δφ3 = 0, (3.70)
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and collecting the δφ3 terms at r = rm gives

[

π

(

G

(

r
dφ3
dr

− 2φ2 − φ3

))]

δφ3 = 0. (3.71)

Here we adopt the natural boundary conditions at r = r0 and for simplification we set φ1 = 0,

φ2 = 0 and φ3 = 0 at r = rm (zero displacement).

A closed-form solution can be found for equation 3.63 to obtain φ1, whilst equations 3.66 and

3.69 are simultaneous and require the use of a 1D finite difference (FD) method to solve for

φ2 and φ3. Once solved for a selected value of θ, these functions are substituted back into

equations 3.46 and 3.47 to obtain the displacement field surrounding the cavity.

The displacements are validated using the closed-form solutions (equations 3.72 and 3.73)

derived by Kirsch [20] and shown in Goodman [12] for a cavity embedded in an infinite rock

body. Here we use a horizontal pressure pho of 100 MPa and a vertical pressure pvo of 50 MPa

unless otherwise stated. Other parameters are a cavity radius r0 of 10 m, a shear modulus G

of 1000 MPa and a Poisson’s ratio ν of 0.2. Figures 3.4 and 3.5 show that there is excellent

agreement between the displacements of the proposed solution and that of Goodman [12].

Slight discrepancies are present at large radial distances due to the fact that the numerical

results of the proposed method are achieved by truncating all the integrations at 50r0 from

the cavity centre (i.e. by assuming zero displacements at r = 50r0).

ur =
pho + pvo

4G

r0
2

r
+
pho − pvo

4G

r0
2

r

[

4(1− ν)− r0
2

r2

]

cos(2θ) (3.72)

uθ = −pho − pvo
4G

r0
2

r

[

2(1 − 2ν) +
r0

2

r2

]

sin(2θ). (3.73)

The stresses are validated through applying the cavity pressure to the external boundary (as

shown in Figure 3.3). This will produce the correct stress field for an underground cavity

and enable validation with closed-form solutions. The stresses can be expressed as follows

by substituting the strain-displacement relations (equations 3.52-3.54) into the stress-strain

relations (equations 3.49-3.51)

σrr = λ(
dφ1
dr

+
dφ2
dr

cos(2θ) +
1

r
(φ1 + φ2 cos(2θ) + 2φ3 cos(2θ))) + 2G(

dφ1
dr

+
dφ2
dr

cos(2θ)),

(3.74)

σθθ = λ(
dφ1
dr

+
dφ2
dr

cos(2θ) +
1

r
(φ1 + φ2 cos(2θ) + 2φ3 cos(2θ)))

+ 2G(
1

r
(φ1 + φ2 cos(2θ) + 2φ3 cos(2θ))), (3.75)

τrθ = G(
1

r
(−2φ2 sin(2θ)) +

dφ3
dr

sin(2θ)− 1

r
(φ3 sin(2θ))). (3.76)
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Figure 3.4: Deformed shape of one quarter of the cavity (two lines of symmetry are shown
in the figure) under different loading conditions (G = 500 MPa used here to emphasise
deformation of cavity in the figure)

(a) (b)

Figure 3.5: Variation of cavity displacement with radial distance for different angles of θ: (a)
radial displacement; (b) circumferential displacement

The closed-form equations for the stresses shown by Goodman [12] are as follows

σrr = −pho + pvo
2

(

1− r0
2

r2

)

− pho − pvo
2

(

1− 4r0
2

r2
+

3r0
4

r4

)

cos(2θ), (3.77)

σθθ = −pho + pvo
2

(

1 +
r0

2

r2

)

+
pho − pvo

2

(

1 +
3r0

4

r4

)

cos(2θ), (3.78)

τrθ =
pho − pvo

2

(

1 +
2r0

2

r2
− 3r0

4

r4

)

sin(2θ). (3.79)

Here we use the same parameters as for validating the displacements. The stresses ob-

tained using the proposed method show excellent agreement with the closed-form solutions

as demonstrated in Figure 3.6.
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(a) (b)

(c)

Figure 3.6: Variation of stress with radial distance for different angles of θ: (a) radial stress;
(b) circumferential stress; (c) shear stress

3.4 Incorporating viscoelastic constitutive behaviour

Here we demonstrate how viscoelastic constitutive behaviour can be incorporated into the

simple cavity expansion solutions derived in the previous section. This is achieved through

transforming the viscoelastic cavity problem into the Laplace domain, where it becomes a

quasi-elastic problem. A viscoelastic solution can then be found by inverting the Laplace

transform. Figure 3.7 provides a summary of this procedure.

Here we use Burger’s viscoelastic constitutive model to derive the viscoelastic displacements

for the cavity problem shown in Section 3.3; a cylindrical cavity located in an anisotropic

stress field. We then provide a validation using Goodman’s [12] closed-form solution. For an

overview of Burger’s model see Section 2.2.1.

Burger’s model can be characterized by linear elastic volumetric behaviour and viscoelastic

deviatoric behaviour. The deviatoric behavior is schematically illustrated in Figure 3.8, where

a Kelvin unit is characterized by its shear modulus G1 and viscosity η1, and a Maxwell unit

is characterized by its shear modulus G2 and viscosity η2. The deviatoric behaviour can be



50 Chapter 3. Energy-based approach for the creep analysis of cavities

Figure 3.7: Solution procedure for viscoelastic problem based on elastic analogy

G1

Kelvin unit Maxwell unit

G2

η
2

η
1

Figure 3.8: A schematic representation of Burger’s model

expressed by the following constitutive laws

eij = eij
(K) + eij

(M), (3.80)

sij = 2η1ė
(K)
ij + 2G1eij

(K), (3.81)

ė
(M)
ij =

ṡij
2η2

+
sij
2G2

. (3.82)

where the superscripts (K) and (M) denote the Kelvin and Maxwell components, (̇) denotes

the differentiation with respect to time and sij and eij are the deviatoric stress and strain

components derived from the stress tensor σij and the strain tensor εij , respectively, given

by

sij = σij − δij
σkk
3
, (3.83)

eij = εij − δij
εkk
3
. (3.84)

where δij is the Kronecker delta.
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The volumetric behaviour is taken to be linear elastic and independent of time. The corre-

sponding constitutive law is given by

σkk = 3Kεkk, (3.85)

where K is the bulk modulus which can be expressed as

K =
2G2(1 + υ)

3(1 − 2υ)
, (3.86)

where υ is the Poisson’s ratio.

The deviatoric behaviour in the Laplace domain is derived from equation 2.3 which is the 1D

differential equation describing Burger’s model. By taking the Laplace transform of equation

2.3 we obtain the following

η1ε̂s
2 + k1ε̂s =

(

η1
k2

)

σ̂s2 +

[

1 +

(

k1
k2

)

+

(

η1
η2

)]

σ̂s+

(

k1
η2

)

σ̂, (3.87)

where

f̂(s) =

∫

∞

0
f(t)e−stdt, (3.88)

and where t is the time and f̂(s) is the Laplace transform of f(t).

Thus from equation 3.87 we can write the following constitutive relationship between the 1D

stress and strain in the Laplace domain

σ̂ =





(η1s
2 + k1s)

(

η1
k2

)

s2 +
[

1 +
(

k1
k2

)

+
(

η1
η2

)]

s+
(

k1
η2

)



 ε̂. (3.89)

As we assume that the deviatoric behaviour is viscoelastic we can use the constitutive rela-

tionship in equation 3.89 to write the relationship between the deviatoric stress and deviatoric

strain components in the Laplace domain as follows

ŝij = 2





(η1s
2 + k1s)

(

η1
G2

)

s2 +
[

1 +
(

G1

G2

)

+
(

η1
η2

)]

s+
(

G1

η2

)



 êij , (3.90)

The solution for the cavity problem is obtained first in the Laplace domain by replacing the

Lamé constants G and λ in the governing differential equations and boundary conditions in

Section 3.3, with the quantities G∗ and λ∗. From the relationship between the deviatoric

stress and strain components shown in equation 3.90, G∗ is given by

G∗ =
(η1s

2 + k1s)
(

η1
G2

)

s2 +
[

1 +
(

G1

G2

)

+
(

η1
η2

)]

s+
(

G1

η2

) , (3.91)
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and λ∗ is given by

λ∗ = K − 2G∗

3
, (3.92)

The Heaviside function is used to describe the instantaneous application of the cavity pres-

sures at t = 0. The horizontal and vertical pressures in the Laplace domain are given by

p̂ho =
pho
s
, (3.93)

p̂vo =
pvo
s

(3.94)

3.4.1 Inversion of the Laplace transform

The inversion of the Laplace transform to obtain the cavity displacements is carried out by

numerical integration using the efficient scheme devised by de Hoog et al. [16]. This scheme

was programmed in MATLAB by Hollenbeck [15] and it is this program that we use here.

For further information on how this algorithm is used to solve the viscoelastic cavity problem

described here, see Chapter 3 of the MATLAB code located on a CD at the end of this thesis.

For each value of time t, we can obtain a solution for a set of points in the s-coordinates. Like

most numerical methods, the de Hoog algorithm employs the Fourier series in the polyno-

mial approximation of the Laplace inverse. This algorithm accelerates the convergence of the

series, thus increasing accuracy by reducing errors due to discretisation and rounding. The

de Hoog algorithm applies the quotient-difference algorithm of Rutishauser [26] to the series

to obtain an approximation in the form of a continued fraction. Compared to the epsilon

algorithm derived by Wynn [33], application of the quotient-difference algorithm increases

the efficiency for obtaining solutions for many points in time [16]. The de Hoog algorithm

accelerates the continued fraction that results from the quotient-difference algorithm, thus

minimising the rounding error which is often the major source of error for methods requiring

a large number of iterations.

With a suitable numerical inversion algorithm it is not necessary to directly solve the differen-

tial equations or to analytically invert the Laplace transform. This is significant as a reliance

on the direct analytical inversion can severely limit the adaptability of the proposed method.

Thus by incorporating a numerical scheme into this analysis a general tool is produced to

determine time-dependent cavity displacements using a wide range of constitutive models.

3.4.2 Validation of viscoelastic response

Goodman [12] derived a closed-form equation for an unlined circular cavity in an infinite

viscoelastic Burger’s medium subjected to an anisotropic stress field. This equation is for the
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radial displacement ur for a point at coordinates r, θ

ur(t) =

(

A1 − C1 +B1
d2
d4

)

m

q1
+

[

B1(d2/G1 − d1)

G1d3 − d4
− (A1 − C1)

G1

]

e−(G1t/η1)

+ (B1)

[

d2(1−m/α) + d1(m− α)

G2(G1d3 − d4)

]

e−(αt/η1) +
(A1 − C1 +B1/2)

η2
t, (3.95)

where

A1 =
pho + pvo

4

r0
2

r
,

B1 =(pho − pvo)
r0

2

r
cos 2θ,

C1 =
pho − pvo

4

r0
4

r3
cos 2θ,

m =G1 +G2,

q1 =G1G2,

d1 =3K + 4G2,

d2 =3Km+ 4q,

d3 =6K + 2G2,

d4 =6Km+ 2q,

α =
3Km+ q

3K +G2
.

Here we use Goodman’s [12] solution to validate the response of the proposed method. Anal-

yses were carried out using creep parameters shown in Table 3.1, with a Poisson’s ratio of 0.2.

We assume that the horizontal stress is twice the vertical stress, 13.794 MPa and 6.897 MPa

respectively, and we use a cavity radius of 4.57 m. Figure 3.9 shows that there is excellent

agreement between the two solutions for the time-dependent displacement of the cavity wall.

Figure 3.9: Variation of displacement with time for different points on the cavity wall
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η1[MPa Day] η2[MPa Day] G1[MPa] G2[MPa]

239486.1 47897222.2 344.86 3448.6

Table 3.1: Creep parameters used in the analysis (Goodman [12])

3.5 Incorporation of elasto-plastic constitutive behaviour

Thus far we have only considered linear elastic and linear viscoelastic constitutive behaviour

when developing models for cavity design. In these material models there exists a linear

relationship between stress and strain and all deformations are reversible upon unloading. In

order to more accurately represent the constitutive behaviour of geomaterials, such as soil

and rock, non-linear constitutive models need to be used.

The theory of plasticity is concerned with solid materials that undergo permanent plastic

deformations when stressed. The early applications of plasticity theory were to metals [14],

but now an equally important area of application is to soils, rocks and concrete, termed ge-

omaterials. In contrast to metals, these materials commonly show frictional behaviour and

undergo volumetric plastic strains. The application of plasticity concepts to soil mechanics

is traced back to Coulomb [8] who published a theory of evaluating the earth pressure on

retaining structures in 1773.

There are several approaches to the theory of plasticity. Here we use a hyperplastic approach

which ensures that we are consistent with the laws of thermodynamics. This approach is

outlined in Section 3.5.2.

Stresses and strains are generally referred to in vector notation throughout this section on

elasto-plasticity. These vectors take the same form, each with six independent values. The

stress vector can be expressed as follows

{σ} = {σxx σyy σzz σxy σyz σzx}T , (3.96)

or alternatively in matrix form

[σ] =







σxx σxy σxz

σyx σyy σyz

σzx σzy σzz






=

3
∑

i=1

σi{vi}{vi}T , (3.97)

where σi are the principal stress components and the eigenvalues of [σ] and {vi} are the

eigenvectors of [σ]. In principal stress space all the shear components of stress are equal to

zero and only the normal components σi may be non-zero. The principal stresses allow any

state of stress to be visualized in 3D space and are used to formulate isotropic constitutive

relations, as the principal directions of stress and strain are coincident.



3.5. Incorporation of elasto-plastic constitutive behaviour 55

3.5.1 A general elasto-plastic constitutive model

A general elasto-plastic constitutive model requires an elastic law, the specification of a scalar

yield function f , a plastic flow rule defining the evolution of plastic strain and a hardening

law characterising the evolution of the yield function [30].

The yield function defines a boundary or surface in stress space and at this boundary f = 0.

Stress states cannot lie outside this boundary when considering time-independent plasticity.

Note that this is not true for viscoplasticity, but this will be covered in Chapter 5. Thus a

state of stress must either lie inside the yield surface (f < 0) or on the yield surface (f = 0).

Being inside the yield surface corresponds to an elastic state of stress, whilst being on the

yield surface corresponds to an elasto-plastic state of stress, therefore f ≤ 0.

A fundamental assumption in the small strain theory of plasticity is the decomposition of the

total strain {ε} into the sum of an elastic (or reversible) component {εe} and a plastic (or

permanent) component {εp}
{ε} = {εe}+ {εp}. (3.98)

The elastic constitutive law can be written as follows

{σ̇} = [De]{ε̇e}. (3.99)

where {σ} is the stress and [De] is the elastic stiffness matrix defined below

[De] =
E

(1 + ν)(1− 2ν)

[

(1− 2ν)[I] + ν{1}{1}T
]

, where {1} = {1 1 1 0 0 0}T ,
(3.100)

E is the Young’s modulus, ν is the Poisson’s ratio and [I] is the six by six identity matrix.

The plastic strains are calculated using a plastic flow rule which can be expressed as follows

{ε̇p} = γ̇{g,σ}, (3.101)

where {g,σ} is the direction of plastic flow (the derivative of a plastic potential g with re-

spect to stress) and γ̇ is the plastic consistency parameter which controls the magnitude of

the plastic strains. The plastic flow is called associated if the plastic potential function is

equal to the yield function (g = f), otherwise the plastic flow is non-associated (g 6= f). For

the associated case, the direction of plastic flow is the outward normal of the yield surface,

whereas for non-associated flow it is the gradient of the plastic potential surface.

Similarly to the evolution of plastic strains, the hardening law is given by

{β̇} = γ̇{H}, (3.102)
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where {H} is the hardening modulus which defines the evolution of the hardening variables.

The Kuhn-Tucker-Karush (KTK) consistency conditions are enforced which establish when

plastic flow may occur

γ̇ ≥ 0, f({σ}, {β}) ≤ 0, γ̇f({σ}, {β}) = 0 (3.103)

where f is a function of stress {σ}, and the hardening variables {β} which characterise the

evolution of the yield surface.

3.5.2 Hyperplasticity

This is an approach to plasticity theory based on thermodynamic principles. The first and

second laws of thermodynamics are enforced in this approach, so that any model defined

within the framework of hyperplasticity will automatically obey these laws. In this approach

the entire constitutive behaviour can be derived from two scalar potentials; a free energy

potential which provides the elasticity law, and a dissipation potential which provides the

yield function and the direction of plastic flow. No additional assumptions are required. This

approach has its roots in the work of Ziegler [35], who applied this technique to modelling a

wide range of dissipative materials. The theory of hyperplasticity has since been developed

by Houlsby [17], Collins and Houlsby [6], Houlsby and Puzrin [18] and Einav [9].

We now present the mathematical formulation of the theory of hyperplasticity. In this for-

mulation and throughout the remainder of the thesis we assume that no kinematic hardening

takes place, therefore no translation of the yield surface. Any isotropic hardening (uniform

expansion of the yield surface) is controlled by the dissipation potential, Ḋ.

For isothermal deformation of a material the first and second laws of thermodynamics can

be written as

{σ}T {ε̇} = ψ̇ + Ḋ, where Ḋ ≥ 0. (3.104)

where the transpose of the stress vector {σ} multiplied by the total strain rate vector {ε̇} is

the mechanical work input, ψ is the free energy potential or the elastic energy stored in the

material and Ḋ is the dissipation potential describing the rate at which energy is dissipated

from the material. When plastic deformation occurs the dissipation potential must be posi-

tive, which is the statement of the second law of thermodynamics for isothermal deformations.

The state of a material is assumed to be completely defined by knowledge of the total strains

{ε} and a set of internal variables. For elasto-plasticity a single internal variable can be

defined as the plastic strain vector {εp}. The free energy potential is a function of the total

strains and the plastic strains, ψ({ε}, {εp}) = ψ({εe}) and thus the rate of the free energy

potential can be defined as follows
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ψ̇ = {ψ,εe}T {ε̇e}, (3.105)

where {ψ,εe} is the partial derivative of the free energy potential with respect to the elastic

strain vector.

The dissipation potential is taken to be Ḋ({ε}, {εp}, {ε̇p}). For rate-independent elasto-

plasticity models, the dissipation potential is a homogeneous first-order function of the inter-

nal variable rate (the plastic strain rate vector {ε̇p}). Mathematically this can be expressed

through Euler’s equation as

Ḋ = {Ḋ,ε̇p}T {ε̇p}. (3.106)

Substitution of equations 3.105 and 3.106 into equation 3.104 produces the following

{σ}T {ε̇} = {ψ,εe}T {ε̇e}+ {Ḋ,ε̇p}T {ε̇p}. (3.107)

It follows from this equation that

{σ} = {ψ,εe}, (3.108)

which defines the elasticity law derived from the free energy potential and

{χ} = {Ḋ,ε̇p}, (3.109)

which is the dissipative stress vector derived from the dissipation potential.

Thus by substituting equations 3.108 and 3.109 into 3.107 and noting that {ε̇e} = {ε̇}−{ε̇p}
we find that

{σ}T {ε̇} = {σ}T {ε̇} − {σ}T {ε̇p}+ {χ}T {ε̇p}. (3.110)

Thus from equation 3.110 we can write

({σ} − {χ})T {ε̇p} = 0. (3.111)

The theory of hyperplasticity adopts Ziegler’s orthogonality condition [35] and according to

this condition we can write ({σ}−{χ}) = 0 from equation 3.111. This implies that ({σ}−{χ})
is always orthogonal to {ε̇p} and allows us to derive a range of constitutive models. According

to Houlsby and Puzrin [18] there is debate over whether Ziegler’s hypothesis is proven or not,

but this will not be regarded as important here. Thus following Ziegler’s condition we can

state that the true stress is equal to the dissipative stress when there is no kinematic hardening

of the yield surface

{σ} = {χ}. (3.112)
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When developing an elasto-plastic constitutive model using the theory of hyperplasticity,

the elasticity law can be derived from the free energy potential using equation 3.108 and the

yield function and direction of plastic flow can be derived from the dissipation potential using

equations 3.109 and 3.112. All that is required to begin with is a free energy potential and a

dissipation potential.

3.5.3 Hyperplastic derivation of simple elasto-plastic models

We now use the hyperplastic approach to derive the constitutive behaviour for elasto-plastic

von Mises and Drucker-Prager models. These classical models are widely used during elasto-

plastic analyses and can be found in a large number of text books (e.g. [1], [23], [29] and

[30]). Although the hyperplastic derivation of these models is found in the literature (e.g. [6])

we have chosen to show the derivation here as these particular models are developed further

in Chapters 5 and 6 to incorporate viscoplastic-damage behaviour, thus describing the full

range of creep behaviour shown in Figure 2.1.

The von Mises model is pressure insensitive and thus is used to model materials that do not

yield under hydrostatic pressure (when the principal stresses are equal, σ1 = σ2 = σ3) as

shown in Figure 3.10. This model assumes that there is no volumetric component of plastic

strain and also behaviour in tension and compression is identical. Common applications are

the modelling of undrained soils, metals and crystalline rocks. It has been found experi-

mentally that hydrostatic pressure does not cause yield in metals and crystalline rocks [19]

suggesting that only stress deviation should enter into a criterion for yield. Crystalline rocks

are of particular interest in this research, as these include salt rock and potash which exhibit

ductile behaviour when highly stressed.

In contrast the Drucker-Prager model is pressure sensitive, meaning that hydrostatic pressure

can cause yield as shown in Figure 3.12, and volumetric plastic strains do occur. Different

behaviour is observed in tension and compression. This model is widely applied to geomate-

rials, which exhibit a property called friction.

A free energy potential can be written for an elastic material as follows

ψ =
1

2
{εe}T [De]{εe}. (3.113)

Differentiating the free energy potential with respect to the elastic strain vector produces the

elasticity law (equation 3.108)

{σ} = {ψ,εe} = [De]{εe}. (3.114)
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We now derive the yield criteria and expressions for the plastic strain vectors for each of the

constitutive models. Here we make use of the following invariants, the mean stress p and the

equivalent deviatoric or von Mises stress q, which are expressed as

p =
I1
3
, (3.115)

q =
√

3J2, (3.116)

where

I1 = tr([σ]), (3.117)

J2 =
1

2
tr([s][s]), (3.118)

where the deviatoric stress is [s] = [σ]− I1[1]/3 and [1] is the three by three identity matrix.

von Mises elasto-plasticity

The von Mises yield criterion plots as a cylinder in principal stress space (Figure 3.10) and

as a circle in deviatoric stress space (Figure 3.11). This yield function can be used to ap-

proximate that of Tresca and different approximations can be made. Figure 3.11 shows the

von Mises yield criterion circumscribing and inscribing the Tresca yield surface. The circum-

scribed yield surface matches Tresca in a state of triaxial compression, whilst the inscribed

yield surface matches Tresca in pure shear. The cavity problems modelled in this thesis are

neither triaxial compression or pure shear. Therefore here and for the Drucker-Prager con-

stitutive model derived later in this section, we decide to use the circumscribed yield surface.

This is justified as the cavity problems into which we implement these elasto-plastic consti-

tutive models and the viscoplastic-damage constitutive models shown in Chapters 5 and 6

do not feature shear stresses.

The dissipation potential Ḋ can be defined as follows after [6]

Ḋ = σyα̇s (3.119)

where σy is the uniaxial yield strength and α̇s is an internal variable representing the equiv-

alent plastic strain rate

α̇s =

√

2

3
tr([ėp][ėp]), (3.120)

where [ėp] is the deviatoric plastic strain rate. The deviatoric plastic strain rate can be de-

fined as [ėp] = [ε̇p]− α̇v[1]/3, where the volumetric plastic strain rate is α̇v = tr([ε̇p]). As we

are deriving a von Mises model αv = 0.

Differentiation of the dissipation potential with respect to the equivalent plastic strain rate
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Figure 3.10: The von Mises yield criterion in principal stress space
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Figure 3.11: Comparison of Tresca and von Mises failure criteria in the deviatoric plane

gives the dissipative stress (equation 3.109)

χq =
∂Ḋ

∂α̇s
= σy, (3.121)

Since we assume that there is no kinematic hardening, the true stress and the dissipative

stress are identical (equation 3.112)

χq = q. (3.122)
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Thus substituting equation 3.122 into 3.121 produces the equation for the yield criterion f

f = q − σy. (3.123)

The general expression for the yield surface in the deviatoric plane can be written as follows

[30]

f =
√

3J2 − σy, (3.124)

which is the same as equation 3.123, when considering equation 3.116.

The plastic strain components can be expressed from equation 3.101 using an associated flow

rule (g = f)

{ε̇p} = γ̇{f,σ}, (3.125)

where γ̇ is equal to the equivalent plastic strain α̇s for the von Mises model and the direction

of plastic flow {f,σ} is expressed as follows using equation 3.123

{f,σ} =
3

2

{s}
q
. (3.126)

Drucker-Prager elasto-plasticity

The Drucker-Prager yield criterion plots as a cone in principal stress space (Figure 3.12)

and as a circle in the deviatoric plane (Figure 3.13). This yield function can be used to

approximate that of Mohr-Coulomb and different approximations can be made. Figure 3.13

shows the Drucker-Prager yield criterion circumscribing and inscribing the Mohr-Coulomb

yield surface. The yield surface in q − p space plots as a line with gradient greater than zero

(Figure 3.14).

The dissipation potential Ḋ can be defined as follows after [6]. Note that here we also include

cohesion in the model, rather than just friction as shown in [6].

Ḋ = µpα̇s + dα̇s (3.127)

where µ is a constant related to the friction angle, p is the mean stress and d is a constant

related to the cohesion.

As a side condition we will impose a linear relationship between the volumetric and shear

strain rates, α̇v and α̇s respectively. This constraint is a device used to introduce dilation

into the model (e.g [17]).

α̇v + βα̇s = 0, (3.128)

where β is a constant related to the dilation angle. A modified dissipation potential can now
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be formed

Ḋ∗ = (µp+ d+ Λβ)α̇s + Λα̇v (3.129)

with Λ as a Lagrange multiplier. Differentiation of the modified dissipation potential with

respect to the plastic strain rates gives the dissipative stresses (equation 3.109), due to the

volumetric plastic strain rate and due to the deviatoric plastic strain rate respectively

χp =
∂Ḋ∗

∂α̇v
= Λ (3.130)
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Figure 3.14: Yield surface and plastic potential for the Drucker-Prager model

and

χq =
∂Ḋ∗

∂α̇s
= µp+ d+ βΛ. (3.131)

Substituting equation 3.130 into equation 3.131 gives an equation for the yield function in

dissipative stress space

χq = (µp+ d) + βχp. (3.132)

The plastic strain-rate vector is orthogonal to this yield surface from equations 3.128 and

3.132, shown in Figure 3.14. Thus equation 3.132 represents the plastic potential function g.

Since we assume that there is no kinematic hardening, the true stresses and the dissipative

stresses are identical (equation 3.112)

χq = q χp = p. (3.133)

Thus by substituting equation 3.133 into equation 3.132 we can write the following expression

for the yield criterion f

f = q − µ∗p− d, (3.134)

where µ∗ = µ+ β. This yield function is shown in Figure 3.14. We now only have associated

flow if µ = 0 and µ∗ = β. The material is incompressible when β = 0.

The general expression for the yield surface in the deviatoric plane is defined as follows [30]

f = ηI1 +
√

J2 − k (3.135)
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and the plastic potential function [30]

g = η̄I1 +
√

J2, (3.136)

where η and k are constants and are chosen according to the required approximation to the

Mohr-Coulomb criterion, and η̄ depends on the dilatancy angle. Comparing equations 3.134

and 3.135, and 3.132 and 3.136 we can write the following expressions for µ∗, d and β

µ∗ = −3
√
3η, (3.137)

d =
√
3k, (3.138)

β = −3
√
3η̄. (3.139)

The plastic strain components can be expressed from equation 3.101 using a non-associated

flow rule. The plastic strain can be divided into deviatoric and volumetric components as

follows {ε̇p} = {ėp}+ α̇v{1}/3. By applying the constraint of equation 3.128 and noting that

γ̇ = α̇s, it can be shown that

{g,σ} =
3

2

{s}
q

− β

3
{1}. (3.140)

If we assume that the Drucker-Prager yield surface circumscribes the Mohr-Coulomb yield

surface as shown in Figure 3.13 in deviatoric stress space, then the Drucker-Prager parameters

η, k and η̄ are expressed as follows

η =
2 sinφ√

3(3− sinφ)
, (3.141)

k =
6c cos φ√
3(3− sinφ)

, (3.142)

η̄ =
2 sinψ√

3(3− sinψ)
(3.143)

where φ is the friction angle and ψ the dilation angle. Note that when φ = ψ = 0 the

Drucker-Prager model reduces to the von Mises model.

3.5.4 Stress integration

As seen in Section 3.5.1 elasto-plastic constitutive models are developed in rate form, as one

can relate the current stress to the current increment in strain. In order for a model to be

used practically for boundary value problems or for a single material point, it is necessary

to integrate the constitutive equations 3.99, 3.101 and 3.102 subject to the KTK contraints

(equation 3.103). Starting from an initial state with a known elastic strain {εen} and hard-

ening variables {βn}, when subjected to a strain increment {∆ε}, what is the updated stress

{σn+1}, the corresponding elastic strain {εen+1} and the hardening variables {βn+1}?
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When the trial stress σt which corresponds to the trial elastic strain ({εet} = {εen}+{∆ε}) lies
inside the yield surface (f < 0) there is no need to integrate the constitutive equations as the

material remains elastic. However, if the trial stress lies outside the yield surface (f > 0), an

integration algorithm is required to update the stress (return the stress to the yield surface)

and hardening variables. A large amount of research has focused on these algorithms and as

a result many different types of algorithms currently exist. A useful overview of these dif-

ferent integration procedures is provided by Coombs [7]. These consist of explicit methods,

implicit methods and exact methods, as well as several alternative methods. In this thesis

we use a fully implicit backward Euler (bE) stress integration scheme as this can be applied

to many different constitutive models and it is now used as the benchmark when assessing

other integration methods [4]. In this method the stress integration problem is split into two

parts as follows

(1) an elastic predictor where we assume that the material is purely linear elastic after a

strain increment {∆ε} has been applied as shown below

{σt} = [De]{{εen}+ {∆ε}}, (3.144)

(2) and a plastic corrector which accounts for the occurrence of plastic strains.

{σn+1} = [De]{{εet} − {∆εp}}, (3.145)

where {∆εp} are the incremental plastic strains and {εen+1} = {{εet} − {∆εp}} are the up-

dated elastic strains.

The elastic predictor (part (1)) shown in equation 3.144 is used to calculate the trial stress.

This trial stress is then used to calculate a value for f . If f > 0 the material shows plastic

behaviour and the plastic corrector (part (2)) needs to be used. This is used to obtain the

updated stress {σn+1} in equation 3.145. In order to do this we must solve for two unknowns

(three unknowns if hardening is considered). These unknowns are commonly solved for using

an iterative procedure until the residuals associated with the unknowns fall within a specified

tolerance. An overview of this stress integration scheme is explained in the following subsec-

tion.

It is important to note that some simple elasto-plastic models allow for analytical integration

based on the implicit bE method. These include the von Mises, Tresca, Mohr-Coulomb and

Drucker-Prager models, amongst others. The main advantages of analytical integration over

iterative methods are robustness and speed. In this thesis we use the general iterative implicit

bE method, and use the Newton-Raphson method during the plastic corrector stage. This is

due to complex constitutive models being developed in Chapters 5 and 6. The development of
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analytical integration algorithms for these complex models is beyond the scope of this thesis.

We use the Newton-Raphson scheme here due to the quadratic rates of convergence achieved

by this method which generally results in very computationally efficient return mapping pro-

cedures [30].

Implicit backward Euler stress integration

This section describes the iterative implicit bE method for a general elasto-plastic constitutive

model. Note that here we use the stresses {σ} as unknowns, shown below, as used by de

Borst et al. [5]. An alternative approach is to use the elastic strains {εe} as unknowns

(e.g. [30]). Since there is a linear relationship between the stress and strain, either of these

approaches could be used. Substitution of the elastic constitutive law ({σ} = [De]{εe}) into
the expression for the residual {b1} in equation 3.149, produces

[De]{εe} − [De]{εet}+ [De]∆γ{g,σ}, (3.146)

and since [De] is a constant {b1} could be written as

{εe} − {εet}+∆γ{g,σ}, (3.147)

if the elastic strains are used as the unknowns.

Starting with the following unknowns

{x} = {{σ} {β} ∆γ}T , (3.148)

where ∆γ is the increment in the plastic consistency parameter. The residuals associated

with the unknowns are written as follows

{

b
}

=











{σ} − [De]{εet}+ [De]∆γ{g,σ}
{β} − {βt} − {∆β}

f











=











{b1}
{b2}
b3











, (3.149)

where {∆β} and {βt} are the incremental and trial values respectively, for the hardening

variables. The Hessian matrix is defined as follows from the derivatives of the residuals with

respect to the unknowns

[

A
]

=







[b1,σ] [b1,β] {b1,∆γ}
[b2,σ] [b2,β] {b2,∆γ}

{b3,σ}T {b3,β}T b3,∆γ






. (3.150)

Using equations 3.149 and 3.150, this matrix can then be written as follows
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[

A
]

=







[I] + ∆γ[g,σσ][D
e] [De]∆γ[g,σβ ] [De]{g,σ}

−[∆β,σ] [I]− [∆β,β] −{∆β,∆γ}
{f,σ}T {f,β}T 0






(3.151)

The increment in the unknowns is given by

{δx} = −[A]−1{b}, (3.152)

with the starting conditions for the algorithm

{σ} = {σt}, {β} = {βt} ∆γ = 0, {b} = {{0} {0} f}T (3.153)

After calculation of the Hessian matrix from equation 3.151, the unknowns are updated us-

ing equation 3.152 and the residuals determined from equation 3.149. If these residuals are

greater than a specified tolerance, we recalculate the Hessian matrix using equation 3.151

and solve equation 3.152 again to update the unknowns. We continue to iterate until the

residuals fall within a specified tolerance.

von Mises model with linear isotropic hardening

We now apply the implicit bE stress integration algorithm to an isotropically hardening von

Mises constitutive model (for the von Mises yield function and plastic flow rule see the ear-

lier part of this chapter). This provides a clearer idea of how we integrate the constitutive

equations. Here we assume the hardening to be linear for simplification, with {β} equal to

the yield stress σy, where σy is a function of the equivalent plastic strain γ.

The residuals are written as follows using equation 3.149

{

b
}

=











{σ} − [De]{εet}+ [De]∆γ{f,σ}
σy − σyt −∆γH

f











=











{b1}
b2

b3











, (3.154)

where H is a constant hardening modulus. H = 0 corresponds to perfect plasticity.

Using equation 3.150 we can express the Hessian matrix as follows

[

A
]

=







[I] + ∆γ[f,σσ][D
e] {0} [De]{f,σ}

{0}T 1 −H
{f,σ}T −1 0






(3.155)

We can then follow the same iterative solution procedure as described for the general elasto-
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plastic model.

von Mises analytical solution

Here we show how an analytical solution based on the implicit bE method can be derived

for the von Mises model with linear isotropic hardening. Here we can obtain closed-form

solutions for the unknowns. Analytical solutions are not investigated in this research, but

can play an extremely important role due to their computational efficiency.

Here we seek to simplify the system of equations (the residuals) shown in equation 3.154.

Firstly it should be noted that the von Mises flow vector {f,σ} is purely deviatoric, therefore

we can write the following equation for the unknown deviatoric stress from residual {b1}

{sn+1} = {st} −∆γ2G

(

√

3

2

{sn+1}
||{sn+1}||

)

, (3.156)

meaning that only the deviatoric stress component is updated in the plastic corrector stage,

while the hydrostatic stress has the value computed in the elastic predictor stage. Equation

3.156 can be rearranged to form

{st} =

(

1 +

√

3

2

∆γ2G

||{sn+1}||

)

{sn+1}, (3.157)

implying that
{sn+1}

||{sn+1}||
=

{st}
||{st}||

. (3.158)

Substitution of equation 3.158 into equation 3.156 leads to the following equation for the

updated deviatoric stress

{sn+1} =

(

1− ∆γ3G

qt

)

{st}. (3.159)

Finally, substitution of equation 3.159 and the expression for the residual b2 (from equation

3.154) into the expression for the residual b3 (from equation 3.154), reduces the system of

equations shown in equation 3.154 to a single equation

f = qt − 3G∆γ − (σyt +∆γH) = 0. (3.160)

The change of the plastic consistency parameter ∆γ can be expressed as follows

∆γ =
ft

3G+H
, (3.161)

where the trial yield function ft = qt − σyt.
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3.6 Modelling cavity in an elasto-plastic medium

Here we develop a solution using the proposed energy-based method for a infinitely long

cylindrical cavity subjected to a uniform internal pressure pi (same cavity expansion problem

as shown in Figure 3.2, but with po = 0). The purpose here is to demonstrate how elasto-

plastic constitutive behaviour can be incorporated into the energy-based method for cavity

analysis.

Figure 3.15: Cavity under uniform internal pressure with a plastic radius rc

The potential energy U of the system can be written similar to the simple elastic cylindrical

cavity problem shown in Section 3.2.1 in terms of stress and strain components by integrating

over the problem domain. Note that here we take into account energy dissipation using the

dissipative stresses χrr, χθθ and χzz with the corresponding plastic strain components.

U =
1

2

rm
∫

r0

2π
∫

0

(σrrε
e
rr + σθθε

e
θθ + σzzε

e
zz)rdθdr +

rm
∫

r0

2π
∫

0

(χrrε
p
rr + χθθε

p
θθ + χzzε

p
zz)rdθdr. (3.162)

According to Ziegler’s condition (see Section 3.5.2) the dissipative stresses are equal to the

true stresses (equation 3.112 obtained from equation 3.110). Therefore from observing equa-

tion 3.110 the variation of the potential energy can be expressed in terms of the stress com-

ponents multiplied by the variation of the total strains. For the cavity problem, this can be

expressed as follows

δU =

rm
∫

r0

2π
∫

0

(σrrδεrr + σθθδεθθ + σzzδεzz)rdθdr. (3.163)
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The stress components are a function of the elastic strain components shown below

σrr = λ(εerr + εeθθ + εezz) + 2Gεerr, (3.164)

σθθ = λ(εerr + εeθθ + εezz) + 2Gεeθθ, (3.165)

σzz = λ(εerr + εeθθ + εezz) + 2Gεezz. (3.166)

The total strains can be divided into elastic and plastic components as follows

εrr = εerr + εprr, (3.167)

εθθ = εeθθ + εpθθ, (3.168)

εzz = εezz + εpzz. (3.169)

Thus the elastic strains are expressed as follows using the expressions for the total strains

shown in equations 3.5 and 3.6

εerr =

(

dur
dr

− εprr

)

, (3.170)

εeθθ =
(ur
r

− εpθθ

)

, (3.171)

εezz = −εpzz. (3.172)

Substituting these elastic strain expressions into equations 3.164-3.166 and using the expres-

sions for the total strains in terms of the displacements we can write an expression for δU

using equation 3.163. The principal of virtual work (equation 3.1) can then be used to write

an equation for the variation of the total energy Π. The variation in the external work W is

given by

δW = 2πpir0δur. (3.173)

Thus the variation of the total energy can be expressed as follows

δΠ = π

(

(λ+ 2G)

(

2
(

[

r
dur
dr

]rm

r0

δur −
rm
∫

r0

(

r
d2ur
dr2

+
dur
dr

)

δurdr
)

− 2
(

[εprrr]
rm
r0 δur −

rm
∫

r0

(

dεprr
dr

r + εprr

)

δurdr
)

+

rm
∫

r0

2ur
r
δurdr −

rm
∫

r0

2εpθθδurdr

)

+ 2λ

(

(

rm
∫

r0

dur
dr

δurdr +
(

[ur]
rm
r0 δur −

rm
∫

r0

dur
dr

δurdr
))

−
rm
∫

r0

εprrδurdr

−
(

[rεpθθ]
rm
r0 δur −

rm
∫

r0

(

r
dεpθθ
dr

+ εpθθ

)

δurdr
)

−
(

[rεpzz]
rm
r0 δur −

rm
∫

r0

(

r
dεpzz
dr

+ εpzz

)

δurdr
)

−
rm
∫

r0

εpzzδurdr

))

− 2πpir0δur (3.174)
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We now use the same method described in Section 3.2.1 to form the governing differential

equation and boundary conditions, shown in the following section.

3.6.1 Governing differential equation and boundary conditions

Collecting the coefficients of δur for r0 ≤ r ≤ rm forms the differential equation governing

the displacements of the system. It is important to note that this equation is the same as

that derived for the elastic case in Section 3.2.1, but here the righthand side of this equation

is a function of the plastic strain components

r
d2ur
dr2

+
dur
dr

− ur
r

= F
(

εprr; ε
p
θθ; ε

p
zz

)

(3.175)

F
(

εprr; ε
p
θθ; ε

p
zz

)

= r
dεprr
dr

+
λ

(λ+ 2G)

(

r
dεpθθ
dr

+ r
dεpzz
dr

)

+
2G

(λ+ 2G)
(εprr − εpθθ) (3.176)

Collecting the δur terms at r = r0 gives

[

2π

(

λ

(

dur
dr

− εprr +
ur
r

− εpθθ − εpzz

)

+ 2G

(

dur
dr

− εprr

)

+ pi

)]

δur = 0 (3.177)

and collecting the δur terms at r = rm gives

[

2π

(

λ

(

dur
dr

− εprr +
ur
r

− εpθθ − εpzz

)

+ 2G

(

dur
dr

− εprr

))]

δur = 0 (3.178)

It is important to note that when no plastic strain is present these boundary conditions are

the same as for the elastic case in Section 3.2.1. Here we use the stresses as the boundary

conditions (terms in square brackets are equal to zero).

3.6.2 Solution procedure

We now implement the two constitutive models derived in Section 3.5.3 into the energy-based

method for cavity analysis. A summary of the solution procedure is shown in Figure 3.16.

Initially the design pressure pi is applied to the cavity wall and assuming that the plastic

strain components are equal to zero we solve the governing equation (equation 3.175) using

a 1D FD technique, analogous to Perry and Aboudi [22]. We can then obtain the stress

components in the medium from the calculated displacements and calculate a yield criterion

f , whose expression depends on the chosen elasto-plastic constitutive model. If the medium

surrounding the cavity remains elastic, the solution is found. If plasticity occurs, we use the

implicit bE stress integration scheme to calculate the unknowns for each plastic point. Thus,

the plastic strain components in equations 3.175, 3.177 and 3.178 can be updated. We repeat

this procedure until the relative error between the cavity wall displacements in successive
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iterations (iterations denoted by i) is less than a specified tolerance. This iterative procedure

was solved using a program written in MATLAB 7.9.0.

Figure 3.16: Flowchart of solution procedure when yield criterion f > 0

3.6.3 Validating the elasto-plastic response of the cavity

In this section we validate the elasto-plastic response of the cavity for the von Mises and

Drucker-Prager constitutive models. Here we validate both the displacements and stresses.

In the proposed method, the stresses can be calculated from the strains by either using

the stress-strain relations in cylindrical coordinates presented earlier (equations 3.164-3.166),

or by using the elastic law (equation 3.114). Expressions for the stresses using equations

3.164-3.166 are presented below

σrr =λ

((

dur
dr

− εprr

)

+
(ur
r

− εpθθ

)

− εpzz

)

+ 2G

(

dur
dr

− εprr

)

(3.179)

σθθ =λ

((

dur
dr

− εprr

)

+
(ur
r

− εpθθ

)

− εpzz

)

+ 2G
(ur
r

− εpθθ

)

(3.180)

σzz =λ

((

dur
dr

− εprr

)

+
(ur
r

− εpθθ

)

− εpzz

)

+ 2G (−εpzz) (3.181)

The response of the cavity in von Mises and Drucker-Prager materials is validated using

ABAQUS 6.8-1 FE software. Here we assume perfect plasticity for simplification (hardening
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modulus {H} = 0). Three different cavity pressures were used (pi = 20, 25 and 40 MPa) and

a cavity radius r0 of 10 m, along with the following elastic material parameters, ν = 0.2 and

G = 1000MPa. A cohesion c of 15 MPa was used, which equates to a yield stress σy of 30 MPa

in the von Mises model. For the Drucker-Prager model we assume non-associated flow. The

following parameters were used in the analyses, φ = 150 and ψ = 7.5o unless otherwise stated.

Figures 3.17 and 3.18 show that there is good agreement between the proposed solution and

FE analysis. It is important to note that the accuracy of the proposed solution could be

improved through a greater number of integration points (1000 integration points used here),

however the run time of the program increases. Note that for the von Mises model it was

found that both the iterative stress integration algorithm and the analytical stress integration

produced identical results when analysing the cavity.
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Figure 3.17: Cavity response under different pressures for a von Mises constitutive model:
(a) radial displacement; (b) circumferential stress; (c) radial stress; (d) von Mises equivalent
stress
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Figure 3.18: Cavity response under different pressures for a Drucker-Prager non-associated
flow constitutive model: (a) radial displacement; (b) circumferential stress; (c) radial stress
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3.7 Summary

• the proposed energy-based method uses the variational method of virtual work to derive

governing equations and boundary conditions for a system. Variational methods are

powerful tools that can be used to obtain approximate solutions to a range of practical

problems. A number of authors have used the variational method of virtual work to

analyse the 3D behaviour of piles.

• variational methods can be used to solve problems in both elastic and inelastic media.

• this chapter demonstrates that the principle of virtual work can be used to derive closed

form energy-based solutions for the displacements and stresses of simple elastic cavity

problems, e.g. a cylindrical cavity and a spherical cavity shown in this chapter. Cavity

expansion solutions can be applied to the area of geomechanics.

• more complex solutions for cavities can be derived through knowledge of the form of

the displacement field, e.g. a cylindrical cavity located in an anisotropic stress field

shown in this chapter. Both closed-form solutions and the 1D FD method can be used

to solve for the cavity displacements and stresses. The displacements and stresses show

excellent agreement with existing closed-form solutions.

• viscoelastic material behaviour can be incorporated in the Laplace domain. Results

were obtained for the viscoelastic Burger’s response of a cylindrical cavity located in

an anisotropic stress field. Displacements were successfully validated using an existing

closed-form solution.

• hyperplasticity is an approach to plasticity theory that is consistent with the laws of

thermodynamics. The entire constitutive behaviour can be derived from two scalar

potentials; a free energy potential which provides the elasticity law, and a dissipation

potential which provides the yield function and the direction of plastic flow. No ad-

ditional assumptions are required. Simple elasto-plastic constitutive models have been

derived using the theory of hyperplasticity in this chapter.

• the energy-based approach can be used to derive elasto-plastic cavity models. Both the

von Mises and Drucker-Prager constitutive models were incorporated into a cylindrical

cavity model and the results match well with FE analysis.

• the results of the models derived in this chapter are a reliable building block for the

development of more advanced models in the following chapters.
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Chapter 4

Response of a tunnel in a

viscoelastic medium

Synopsis

This chapter uses the proposed energy-based method presented in Chapter 3 to derive a

three-dimensional (3D) approximate solution for the time-dependent response of a deeply

embedded and unsupported tunnel, of circular cross-section. The solution takes into account

the effect of a tunnel face. The tunnel is excavated quasi-instantaneously from an infinite

viscoelastic rock body which is modelled by means of Burger’s model in the Laplace domain

and exhibits an initial isotropic stress state. Validation is carried out using closed-form solu-

tions and finite element (FE) analysis.

Unlike previous analytical solutions that are based on a 2D idealisation [4,11,13,15,19] and

use empirical relations to take into account the affect of the tunnel face (see Section 2.3.1),

our new 3D solution can predict the full interaction between a tunnel and the surrounding

creeping rock. In this respect, the new solution can be incorporated together with field mon-

itoring data in an expert system for tunnel design similar to that illustrated by Schubert et

al. [17].

This new solution has been developed into a stand alone design tool, which is presented in

Section 4.4. The development of such a tool enables practical use of the model. The work

presented in this chapter has been published in the International Journal of Numerical and

Analytical Methods in Geomechanics [2].

4.1 Analysis

We consider a tunnel of circular cross-section and radius r0 (Figure 4.1). A cylindrical

coordinate system is adopted (r − θ − z) with its origin coinciding with the centre of the

tunnel face. We focus here on the prediction of creep behaviour after the creation of the

cylindrical cavity, thus the excavation of the tunnel is assumed to take place instantaneously.

– 79 –
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The rock surrounding the tunnel is divided into three zones as shown in Figure 4.1. The

displacement field around the cylindrical cavity is expressed as the product of two separate

variables r and z as shown in Table 4.1, where ur and uz are the radial and the longitudinal

displacements, respectively. ψr1(z), ψr2(z) and ψz1(z), ψz2(z) are functions describing the

variation of the radial and the longitudinal displacement, respectively, in the z-direction.

φ1(r), φ2(r) and φ3(r) are functions describing the attenuation of rock displacement away

from the tunnel axis. It is assumed that the tunnel face remains plane at all times in order

to simplify the assumed displacement field.

III

III

II

II

I

I

Tunnel face

r
r 0

z

q1

q
2

Figure 4.1: Model geometry, location of zones in which energy is dissipated and applied
pressure

zone bounds ur(r, z) uz(r, z)

I r0 ≤ r ≤ ∞ φ1(r)ψr1(z) φ2(r)ψz1(z)
−∞ ≤ z ≤ 0

II r0 ≤ r ≤ ∞ φ1(r)ψr2(z) φ2(r)ψz2(z)
0 ≤ z ≤ ∞

III 0 ≤ r ≤ r0 φ3(r)ψr2(z) ψz2(z)
0 ≤ z ≤ ∞

Table 4.1: Displacements ur and uz for each of the rock zones

As z → −∞ the plane-strain condition can be assumed, therefore dψr1

dz = 0 and ψz1(z) = 0.
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At a far distance ahead of the face the displacement reduces to zero, therefore ψr2(z) = 0 and

ψz2(z) = 0 as z → ∞. It is assumed that φ1(r) = 1 and φ2(r) = 1 at r = r0 and φ1(r) = 0

and φ2(r) = 0 as r → ∞ (this ensures that rock displacements decrease with increasing radial

distance from the tunnel wall). Thus φ1 and φ2 vary between 1 at the tunnel wall and 0 at

an infinite radial distance from the wall. Finally, it is assumed that φ3(r) = 0 at r = 0 and

φ3(r) = 1 at r = r0 (this ensures compatibility in the region ahead of the tunnel face). Thus

φ3 varies between 0 at the tunnel axis and 1 at the tunnel wall.

4.1.1 Linear elastic formulation

In order to derive a solution for the time-dependent response of the tunnel, first we need to

derive the governing differential equations, boundary conditions and a solution algorithm for

the linear elastic, time-independent case.

The potential energy U of the tunnel-rock system for a linear elastic rock is given by

U =
1

2

∞
∫

r0

2π
∫

0

∞
∫

−∞

(σrrεrr + σθθεθθ + σzzεzz + 2τzrεzr)rdzdθdr

+
1

2

r0
∫

0

2π
∫

0

∞
∫

0

(σrrεrr + σθθεθθ + σzzεzz + 2τzrεzr)rdzdθdr, (4.1)

where the first integral term represents the internal potential energy of the rock in zones I

and II and the second term represents the energy in zone III.

In a linear elastic material, the stress-strain relations in cylindrical coordinates are given by

σrr = λ(εrr + εθθ + εzz) + 2Gεrr, (4.2)

σθθ = λ(εrr + εθθ + εzz) + 2Gεθθ, (4.3)

σzz = λ(εrr + εθθ + εzz) + 2Gεzz, (4.4)

τzr = 2Gεzr. (4.5)

The strains are obtained from the first derivative of displacements as follows

εrr =
∂ur
∂r

, (4.6)

εθθ =
1

r

(

ur +
∂uθ
∂θ

)

, (4.7)

εzz =
∂uz
∂z

, (4.8)

εzr =
1

2

(

∂ur
∂z

+
∂uz
∂r

)

. (4.9)
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Using the above stress-strain relations, the strain-displacement relations and the assumed

displacement field, equation 4.1 can be evaluated as detailed in Appendix A.

Variational principles are then used to obtain expressions for δU and δW from which the

governing differential equations of the system and appropriate boundary conditions can be

written.

The variation in the external work W is given by

δW =

2π
∫

0

0
∫

−∞

q1r0δψr1dzdθ + q2πr0
2δψz2. (4.10)

The governing equations for deformation can be derived using the principle of virtual work

by minimising the energy in the tunnel-rock system

δΠ = δU − δW = 0. (4.11)

Setting the first variable of the total energy δΠ equal to zero produces an equation of the

form (see details in Appendix A)

δΠ =[A(φ1)δφ1] + [B(φ2)δφ2] + [C(φ3)δφ3] + [D(ψr1)δψr1] + [E(ψz1)δψz1]

+ [F (ψr2)δψr2] + [G(ψz2)δψz2] = 0. (4.12)

We use the same method described in Chapter 3 to form the governing equations and bound-

ary conditions. Here we describe the method again for the purpose of clarity.

Since the variations δφ1, δφ2, δφ3, δψr1, δψz1, δψr2, δψz2 are independent, the terms as-

sociated with each variation must be equal to zero (e.g.A(φ1)δφ1 = 0) in order to satisfy

δΠ = 0. Collection of these terms over the corresponding rock domain (e.g. collecting the

δφ1 terms for r0 ≤ r < ∞) forms the differential equations which govern the displacements

of the tunnel-rock system. Since the variations are non-zero over the rock domains (e.g.

δφ1 6= 0), the coefficients of the terms (e.g. integrand associated with δφ1) must be equal

to zero in order to satisfy δΠ = 0. Expressions for the boundary conditions can be formed

by collecting the terms associated with each variation at the appropriate boundaries (e.g.

collection of the δφ1 terms at r = r0 and as r → ∞) and setting these equal to zero in order

to satisfy δΠ = 0. The governing equations and boundary conditions are expressed in the

following section.

Governing differential equations and boundary conditions

Firstly we consider the variation of φ1(r). Collecting the coefficients of δφ1 for r0 ≤ r < ∞
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produces

r
d2φ1
dr2

+
dφ1
dr

− φ1
r

− γ1rφ1 + γ2r
dφ2
dr

= 0, (4.13)

where

γ1 =

G
0
∫

−∞

(

dψr1

dz

)2
dz +G

∞
∫

0

(

dψr2

dz

)2
dz

(λ+ 2G)
0
∫

−∞

ψr1
2dz + (λ+ 2G)

∞
∫

0

ψr2
2dz

, (4.14)

γ2 =

λ
0
∫

−∞

ψr1
dψz1

dz dz −G
0
∫

−∞

ψz1
dψr1

dz dz + λ
∞
∫

0

ψr2
dψz2

dz dz −G
∞
∫

0

ψz2
dψr2

dz dz

(λ+ 2G)
0
∫

−∞

ψr1
2dz + (λ+ 2G)

∞
∫

0

ψr2
2dz

. (4.15)

and collecting the coefficients of δφ2 for r0 ≤ r <∞ produces

r
d2φ2
dr2

+
dφ2
dr

− γ3rφ2 + γ4

(

r
dφ1
dr

+ φ1

)

= 0, (4.16)

where

γ3 =

(λ+ 2G)
0
∫

−∞

(

dψz1

dz

)2
dz + (λ+ 2G)

∞
∫

0

(

dψz2

dz

)2
dz

G
0
∫

−∞

ψz1
2dz +G

∞
∫

0

ψz2
2dz

, (4.17)

γ4 =

G
0
∫

−∞

ψz1
dψr1

dz dz − λ
0
∫

−∞

ψr1
dψz1

dz dz +G
∞
∫

0

ψz2
dψr2

dz dz − λ
∞
∫

0

ψr2
dψz2

dz dz

G
0
∫

−∞

ψz1
2dz +G

∞
∫

0

ψz2
2dz

. (4.18)

Collecting the δφ1 terms at r = r0 or as r → ∞ for −∞ < z ≤ 0 gives



−2π

0
∫

−∞

ψr1

(

λφ1ψr1 + r

(

(λ+ 2G)ψr1
dφ1
dr

+ λφ2
dψz1
dz

))

dz



 δφ1 = 0. (4.19)

Collecting the δφ2 terms at r = r0 or as r → ∞ for −∞ < z ≤ 0 gives



−2πrG

0
∫

−∞

ψz1

(

ψz1
dφ2
dr

+ φ1
dψr1
dz

)

dz



 δφ2 = 0. (4.20)
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Collecting the δφ1 terms at r = r0 or as r → ∞ for 0 ≤ z <∞ gives



−2π

∞
∫

0

ψr2

(

λφ1ψr2 + r

(

(λ+ 2G)ψr2
dφ1
dr

+ λφ2
dψz2
dz

))

dz



 δφ1 = 0. (4.21)

Collecting the δφ2 terms at r = r0 or as r → ∞ for 0 ≤ z <∞ gives



−2πrG

∞
∫

0

ψz2

(

ψz2
dφ2
dr

+ φ1
dψr2
dz

)

dz



 δφ2 = 0. (4.22)

As the displacements decay to zero as r → ∞, equations 4.19-4.22 can be satisfied by

φ1(∞) = 0, (4.23)

φ2(∞) = 0. (4.24)

At the tunnel wall the displacements reach a maximum, therefore the attenuation functions

can be taken to be fixed at r = r0 and have a value of 1

φ1(r0) = 1, (4.25)

φ2(r0) = 1. (4.26)

Therefore, φ1 and φ2 are governed by equations 4.13 and 4.16 together with the boundary

conditions given by equations 4.23-4.26.

Collecting the coefficients of δφ3 for 0 ≤ r ≤ r0 produces the following governing equa-

tion

r
d2φ3
dr2

− γ5rφ3 +
dφ3
dr

− φ3
r

= 0, (4.27)

where

γ5 =

G
∞
∫

0

(

dψr2

dz

)2
dz

(λ+ 2G)
∞
∫

0

ψr2
2dz

. (4.28)
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The solution for φ3 requires that φ3 = 0 at r = 0. It also requires that φ3 = 1 at r = r0

so that a compatible displacement field can be obtained. Therefore, the solution of equation

4.27 takes the form of

φ3(r) =
I1(

√
γ5r)

I1(
√
γ5r0)

, (4.29)

where I1(x) is a modified Bessel function of the first kind of order one.

Collecting the coefficients of δψr1 for −∞ < z ≤ 0 produces

m1
d2ψr1
dz2

+m2ψr1 +m3
dψz1
dz

+ 2πq1r0 = 0, (4.30)

where

m1 = 2πG

∞
∫

r0

rφ1
2dr, (4.31)

m2 = −2π



(λ+ 2G)

∞
∫

r0

φ1
2

r
dr + 2λ

∞
∫

r0

φ1
dφ1
dr

dr + (λ+ 2G)

∞
∫

r0

r

(

dφ1
dr

)2

dr



 , (4.32)

m3 = 2π



G

∞
∫

r0

rφ1
dφ2
dr

dr − λ

∞
∫

r0

φ1φ2dr − λ

∞
∫

r0

rφ2
dφ1
dr

dr



 . (4.33)

and collecting the coefficients of δψz1 for −∞ < z ≤ 0 produces

m4
d2ψz1
dz2

+m5ψz1 −m3
dψr1
dz

= 0, (4.34)

where

m4 = 2π(λ+ 2G)

∞
∫

r0

rφ2
2dr, (4.35)

m5 = −2πG

∞
∫

r0

r

(

dφ2
dr

)2

dr. (4.36)

Collecting the δψr1 terms as z → −∞ for r0 ≤ r <∞ gives



−2πG

∞
∫

r0

rφ1

(

ψz1
dφ2
dr

+ φ1
dψr1
dz

)

dr



 δψr1 = 0. (4.37)
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Collecting the δψz1 terms as z → −∞ for r0 ≤ r <∞ gives



−2π

∞
∫

r0

φ2

(

λφ1ψr1 + r

(

λψr1
dφ1
dr

+ (λ+ 2G)φ2
dψz1
dz

))

dr



 δψz1 = 0. (4.38)

It should be noted that away from the tunnel face (as z → −∞), the displacement in the

longitudinal direction reduces to zero and there will be no variation in the radial displacement

along the tunnel axis and the plane strain condition can be assumed. Therefore equations

4.37 and 4.38 can be satisfied if

ψz1(−∞) = 0, (4.39)

dψr1
dz

|z→−∞= 0. (4.40)

Collecting the coefficients of δψr2 for 0 ≤ z <∞ produces

a1
d2ψr2
dz2

+ a2ψr2 + a3
dψz2
dz

= 0, (4.41)

where

a1 =2π



G

∞
∫

r0

rφ1
2dr +G

r0
∫

0

rφ3
2dr



 , (4.42)

a2 =− 2π

(

(λ+ 2G)

∞
∫

r0

φ1
2

r
dr + 2λ

∞
∫

r0

φ1
dφ1
dr

dr + (λ+ 2G)

∞
∫

r0

r

(

dφ1
dr

)2

dr + (λ+ 2G)

r0
∫

0

φ3
2

r
dr

+ 2λ

r0
∫

0

φ3
dφ3
dr

dr + (λ+ 2G)

r0
∫

0

r

(

dφ3
dr

)2

dr

)

, (4.43)

a3 =− 2π



−G
∞
∫

r0

rφ1
dφ2
dr

dr + λ

∞
∫

r0

φ1φ2dr + λ

∞
∫

r0

rφ2
dφ1
dr

dr + λ

r0
∫

0

φ3dr + λ

r0
∫

0

r
dφ3
dr

dr



 .

(4.44)

and collecting the coefficients of δψz2 for 0 ≤ z <∞ produces

a4
d2ψz2
dz2

+ a5ψz2 − a3
dψr2
dz

= 0, (4.45)
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where

a4 = π(λ+ 2G)



2

∞
∫

r0

rφ2
2dr + r0

2



 , (4.46)

a5 = −2πG

∞
∫

r0

r

(

dφ2
dr

)2

dr. (4.47)

Collecting the δψr2 terms as z → ∞ for r0 ≤ r <∞ gives



−2πG

∞
∫

r0

rφ1

(

ψz2
dφ2
dr

+ φ1
dψr2
dz

)

dr



 δψr2 = 0. (4.48)

Collecting the δψz2 terms as z → ∞ for r0 ≤ r <∞ gives



−2π

∞
∫

r0

φ2

(

λφ1ψr2 + r

(

λψr2
dφ1
dr

+ (λ+ 2G)φ2
dψz2
dz

))

dr



 δψz2 = 0. (4.49)

Collecting the δψr2 terms as z → ∞ for 0 ≤ r ≤ r0 gives



−2πG

r0
∫

0

rφ3
2dψr2
dz

dr



 δψr2 = 0. (4.50)

Collecting the δψz2 terms as z → ∞ for 0 ≤ r ≤ r0 gives



−2π

r0
∫

0

(

λφ3ψr2 + r

(

λψr2
dφ3
dr

+ (λ+ 2G)
r0

2

2

dψz2
dz

))

dr



 δψz2 = 0. (4.51)

At a large distance ahead of the tunnel face, the displacements in both the radial and longi-

tudinal directions vanish, therefore

ψr2(∞) = 0, (4.52)

ψz2(∞) = 0. (4.53)

By collecting the coefficients of δψr1 and δψr2 at z = 0 and noting that δψr1 and δψr2 are not

equal to zero at the tunnel face, the deformation of the tunnel can be shown to be governed
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by the following boundary condition at z = 0

c1ψz1 + c2
dψr1
dz

+ c3
dψr2
dz

+ c4ψz2 |z=0= 0, (4.54)

where

c1 = −2πG

∞
∫

r0

rφ1
dφ2
dr

dr, (4.55)

c2 = −2πG

∞
∫

r0

rφ1
2dr, (4.56)

c3 = 2πG





∞
∫

r0

rφ1
2dr +

r0
∫

0

rφ3
2dr



 , (4.57)

c4 = 2πG

∞
∫

r0

rφ1
dφ2
dr

dr. (4.58)

Similarly by collecting the coefficients of δψz1 and δψz2 at z=0, it can be shown that

c5ψr1 + c6
dψz2
dz

+ c7
dψz1
dz

+ c8ψr2 + q2πr0
2 |z=0= 0, (4.59)

where

c5 = −2πλ





∞
∫

r0

φ1φ2dr +

∞
∫

r0

rφ2
dφ1
dr

dr



 , (4.60)

c6 = 2π(λ+ 2G)

∞
∫

r0

rφ2
2dr + πr0

2(λ+ 2G), (4.61)

c7 = −2π(λ+ 2G)

∞
∫

r0

rφ2
2dr, (4.62)

c8 = 2πλ





∞
∫

r0

φ1φ2dr +

∞
∫

r0

rφ2
dφ1
dr

+

r0
∫

0

φ3dr +

r0
∫

0

r
dφ3
dr

dr



 . (4.63)

Combining equations 4.41 and 4.45 and eliminating ψz2 leads to

d4ψr2
dz4

+ d1
d2ψr2
dz2

+ d2ψr2 = 0, (4.64)
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where

d1 =
a3

2 + a2a4 + a1a5
a1a4

, (4.65)

d2 =
a2a5
a1a4

. (4.66)

A closed-form solution can then be obtained for ψr2. This solution requires that ψr2 should

remain finite and reduces to zero as z → ∞ (equation 4.52). Therefore

ψr2 = b1e
−x1z + b2e

−x2z, (4.67)

where b1 and b2 are constants and

x1 =

√

−d1
2

+
1

2

√

d1
2 − 4d2, (4.68)

x2 =

√

−d1
2

− 1

2

√

d1
2 − 4d2. (4.69)

By substituting equation 4.67 into equation 4.41, an expression of the following form can

then be derived for ψz2

ψz2 =
1

a3x1x2
e−z(x1+x2)(a1x1x2(b1e

zx2x1 + b2e
zx1x2) + a2(b2e

zx1x1 + b1e
zx2x2)). (4.70)

Since there is no displacement discontinunity at the boundary between zones I and II (at

z = 0), the following conditions must hold at the tunnel face

ψr1(0) = ψr2(0), (4.71)

ψz1(0) = ψz2(0). (4.72)

Therefore, using equations 4.67 and 4.70 with equations 4.71 and 4.72, the constants b1 and

b2 can be written as follows

b1 =
x1(a2ψr1(0) + x2(a1x2ψr1(0)− a3ψz1(0)))

(x1 − x2)(a2 − a1x1x2)
, (4.73)

b2 =
x2(a2ψr1(0) + x1(a1x1ψr1(0)− a3ψz1(0)))

(x1 − x2)(−a2 + a1x1x2)
. (4.74)

Solutions for ψr1 and ψz1 can then be obtained by solving equations 4.30 and 4.34 simulta-

neously together with the boundary conditions given by equations 4.39, 4.40, 4.54 and 4.59.

The boundary conditions given by equations 4.54 and 4.59 can be rewritten in terms of ψr1

and ψz1 only, using the expressions given by equations 4.67, 4.70, 4.73 and 4.74.
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4.2 Solution Procedure

It should be noted that from the above derivations, the solutions for ψr1, ψz1, ψr2 and ψz2

depend on φ1, φ2 and φ3. However, in order to evaluate φ1, φ2 and φ2, the values of γ1 to

γ5 are needed. It can be seen from equations 4.14, 4.15, 4.17, 4.18 and 4.28 that these values

depend on ψr1, ψz1, ψr2 and ψz2, therefore an iterative technique is required.

The iterative procedure employed here is illustrated in Figure 4.2. Initial values of the pa-

rameters γ1 to γ5 are guessed first, then φ1 and φ2 are evaluated by solving equations 4.13

and 4.16 together with the boundary conditions given by equations 4.23-4.26. The solution

is obtained numerically using the finite difference (FD) method [3]. φ3 is calculated from

equation 4.29.

Once φ1, φ2 and φ3 are evaluated, the FD method is used to obtain solutions for ψr1 and

ψz1 by solving equations 4.30 and 4.34 simultaneously together with the boundary conditions

given by equations 4.39, 4.40, 4.54 and 4.59. The values of ψr1 and ψz1 at z = 0 are then

used to evaluate ψr2 and ψz2 using equations 4.67 and 4.70. New values of γ1 to γ5 can then

be evaluated from equations 4.14, 4.15, 4.17, 4.18 and 4.28. These new values are then used

to repeat the calculations until the difference between the ith and (i + 1)th values of γ1 to

γ5 is less than a specific tolerance. A computer program was written using MATLAB 7.9.0

to carry out these calculations.

Here we use the γ terms for the convergence criterion as this produces quick convergence.

Very similar algorithms have been used by a number of authors when developing 3D models

for pile analysis using the energy-based method, producing accurate results in a short period

of time (e.g. [20]). An alternative approach to ensure correct solutions are obtained would

be to use the φ and ψ terms which are the solutions which are sought. However, using these

terms for the criterion would involve checking against a greater number of parameters. Care

must be taken when using the type of approach adopted here as convergence of the γ terms

does not necessarily indicate convergence of the φ and ψ terms. However, the results ob-

tained using the model developed in this chapter match well with closed form solutions and

FE analysis, therefore using the γ terms provides an efficient and accurate algorithm for this

model.

4.2.1 Time-dependent response

For the time-dependent response, the solution is obtained first in the Laplace domain and the

Lamé constants G and λ are replaced with the quantities G∗ and λ∗ as described in Chapter

3. The only difference here is that the two pressures applied are a wall pressure and a face

pressure, q1 and q2 respectively. Thus the applied pressures in the Laplace domain are given
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by

q̂1 =
q1
s
, (4.75)

q̂2 =
q2
s
. (4.76)

See Section 3.4.1 for inversion of the Laplace transform.

Obtain coefficients of equations 4.30, 4.34, 4.41 and

4.45 using equations 4.31-4.33, 4.35, 4.36, 4.42-

4.44, 4.46 and 4.47.

Calculate φ1, φ2 using equations 4.13 and 4.16 

with boundary conditions 4.23-4.26. Calculate

φ3 using equation 4.29.  

Calculate ψr1 and ψz1 by solving equations  4.30 and 4.34 

with boundary conditions 4.39, 4.40, 4.54 and 4.59. 

Calculate ψr2 and ψz2 using equations 4.67 and 4.70.

Obtain new values of γ1to γ5 using equations

4.14, 4.15, 4.17, 4.18 and 4.28.

Assume γ1 to γ5=1.0 

Solution reached

NO YES|γi+1-γi|

γi
0.001≤

Figure 4.2: Flowchart of solution procedure for each value of time t

4.3 Results and Discussion

4.3.1 Comparison with cavity expansion theory

The proposed solution is validated by considering a tunnel cross-section located at a large

distance behind the face so that comparisons can be made with plane strain cavity expansion

solutions derived for the cylindrical cavity in Section 3.2.1. The closed-form cavity expansion

equation (equation 3.17) is used to validate the linear elastic instantaneous displacement,

whilst the stress distribution around the tunnel is validated using the Kirsch solution [10]
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(equations 3.20 and 3.21). These equations are written below in terms of the pressure applied

to the tunnel wall q1

ur =
q1r0

2

2Gr
, (4.77)

σrr = −q1
(r0
r

)2
, (4.78)

σθθ = q1

(r0
r

)2
. (4.79)

Figure 4.3a shows the variation of displacements in the radial direction for a cross-section

located at a distance of 25r0 behind the tunnel face. This figure shows that the results of

the proposed solution are consistent with cavity expansion theory. The slight discrepan-

cies at large radial distances are due to the fact that the numerical results of the proposed

method are achieved by truncating all the integrations at 50r0 from the tunnel centre (i.e.

by assuming zero displacements at r = 50r0). Figure 4.3b shows the variation of the radial

and circumferential stresses in the radial direction. This figure shows that there is excellent

agreement between the proposed energy-based solution and cavity expansion theory.
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Figure 4.3: Comparison between the proposed solution and cavity expansion theory at section
A-A: (a) radial displacement; (b) radial and circumferential stress
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4.3.2 Comparison with plane-strain closed-form viscoelastic solution

At a large distance behind the tunnel face, the time-dependent response of the proposed

solution can be compared with the plane strain solution of Fahimifar et al. [4]. Both solutions

use Burger’s model to describe the creep response. The radial displacement in Fahimifar et

al. [4] is given by

ur(t) =
q1r0

2

2r

(

1

G2
+

t

η2
+

1

G1

[

1− exp

(

−G1t

η1

)])

(4.80)

Analyses were carried out with the creep parameters shown in Table 3.1, together with a

Poisson’s ratio of 0.2. The tunnel radius is taken to be 4.57 m and the initial stress in the

rock considered to be equal to 6.897 MPa. Figure 4.4a shows the radial creep deformation

of the tunnel wall at a distance of 25r0 behind the tunnel face and Figure 4.4b shows the

variation of this deformation in the radial direction at different time periods. These figures

clearly demonstrate that there is consistent agreement between the proposed solution and

the plane strain solution of Fahimifar et al. [4].

(a)

(b)

Figure 4.4: Comparison between the proposed energy-based solution and the plane strain
solution of Fahimifar et al. [4] at section A-A: (a) radial displacement with time; (b) radial
displacement with radial distance for different time periods
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4.3.3 Displacement profile along the tunnel axis

An axisymmetric FE analysis using ABAQUS 6.8-1 software was carried out in order to plot

the radial displacement ur and the longitudinal displacement uz along the tunnel axis. The

FE mesh consists of 2285 axisymmetric eight-node elements with a total of 7024 nodes. The

mesh domain is sufficiently large so that changes in stresses and displacements at the bound-

ary are negligible. Smaller elements are located near the tunnel where the changes of stresses

and strains are significant. The vertical and horizontal boundaries are constrained in the

normal direction. Details of the FE mesh are shown in Figure 4.5.

Figure 4.5: FE mesh

Figure 4.6 shows the instantaneous radial displacement ur at r = r0 (i.e. at the tunnel wall

and in front of the tunnel face). This figure shows that the current FE analysis is consistent

with the previous FE analysis of Panet [12]. Figure 4.6 shows that the radial displacement

profile (t = 0) predicted by the energy-based solution is in good agreement with the FE

results. The slight inconsistency could be attributed to the simplified displacement field
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(particularly in zone III) in the proposed solution.

Figure 4.6: Comparison of energy-based solution with FE analyses for the instantaneous
radial displacement of the tunnel wall along the tunnel axis

Figure 4.7 compares the longitudinal displacement uz predicted by the energy-based solution

with that calculated using the FE analysis at t = 0. Figure 4.7 shows that the energy-based

solution gives a reasonable approximation of the longitudinal displacements. It should be

noted that in this solution it is assumed there is no variation of the longitudinal displacement

uz in the radial direction in zone III (in front of the tunnel face). However, the displacements

in front of deeply embedded tunnels are localised as illustrated from the FE results shown in

Figures 4.6 and 4.7. The magnitude of the longitudinal displacement is small relative to the

radial displacement, so the contribution to the potential energy (equation 4.1) is negligible.

Therefore, the assumed simplified displacement field shown in Table 4.1 can be justified.
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Figure 4.7: Comparison of energy-based solution and FE analysis for the instantaneous lon-
gitudinal displacement of the tunnel wall along the tunnel axis

The effect of the tunnel face on the time-dependent deformation is shown in Figure 4.8.

As time increases the tunnel face has a greater effect on the deformational shape. It is

noticeable that the radial displacement appears to level off at a greater distance behind the
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face for t = 10 years than t = 0. For example, for t = 10 years the displacement only starts

to level off at approximately 6r0 behind the face as opposed to 4r0 when t = 0. This remark

is also drawn by Shalabi [16] from FE analysis.
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Figure 4.8: The effect of time on the radial displacement of the tunnel wall along the tunnel
axis

4.4 Stand alone program

The model presented in this chapter has been developed into a stand alone application using

MATLAB 7.9.0. This application is able to run on any machine and does not require MAT-

LAB software to operate, thus is convenient for a company to use. The user can adhere to

any model and material parameter units that they wish. The screen displays shown in Figure

4.9 demonstrate the ease of use of the program. The user simply enters the model parameters

(Figure 4.9a), clicks Next to move to the following screen (Figure 4.9b), and clicks Calculate,

after which a short period of time the radial displacement of the tunnel wall is plotted along

the tunnel axis. The user can then select a distance behind the tunnel face at which they

wish to observe the tunnel displacement with radial distance and the displacement of the

tunnel wall with time, without carrying out any further calculations. Note that the program

could be modified to show the stresses surrounding the tunnel.

4.5 Limitations and possible extension of the proposed solu-

tion

It is well known that a complete solution for any deformable body needs satisfaction of three

requirements: equilibrium, compatibility and constitutive relationship. The proposed solu-

tion is derived by considering compatibility and constitutive laws; therefore it is not an exact

solution. However, it gives good approximation of the time-dependent creep behaviour due to

tunnelling as demonstrated through comparison with FE analyses and closed-form solutions.

As shown in Appendix B, equilibrium is found to be satisfied everywhere apart from at the

tunnel face, where stress singularity is expected, i.e. the stress tends towards infinity. In
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(a)

(b)

Figure 4.9: Screen displays of design tool: (a) entering model parameters; (b) calculating
and plotting results

this respect, the new approach is analogous to the upper bound limit theorems of plasticity

which are widely used to estimate collapse loads in engineering practice. Our new approach

is much more efficient, from a practical point of view, than FE analysis. In addition to being

faster, the input to our analysis (the dimensions, loading and material properties) is accom-

plished through a simple text file, while the geometry (domain) and optimal meshing for an

FE analysis requires considerable time.
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In this chapter, an energy-based solution for creep behaviour is developed by assuming that

the rock is a viscoelastic material which is modelled by the classical Burger’s model. The

energy-based solution is not restricted to viscoelastic materials. Different constitutive mod-

els can be implemented. Plastic response can be incorporated as shown in Chapter 3 by

considering a function describing the mechanical dissipation (which is strictly non-negative).

Discussion on mechanical dissipation functions can be found in [8].

4.6 Summary

• the energy-based method presented in Chapter 3 has been used successfully to develop

a 3D approximate solution for the time-dependent convergence of a deeply embedded,

unsupported, circular tunnel, subjected to an isotropic stress field and embedded in a

linear viscoelastic medium. This viscoelastic problem was transformed into the Laplace

domain where it represents a quasi-elastic problem. The approximations in this analysis

concern the assumption of a rock displacement field composed of separable variables.

The differential equations governing the displacements of the tunnel-rock system and

appropriate boundary conditions were obtained using the principle of virtual work.

Both closed-form solutions and the 1D FD method were used to solve for the rock

displacements in the Laplace domain. Transformation to the time domain was evaluated

numerically.

• the predicted response of the tunnel away from the face is consistent with closed-form

solutions and the predicted tunnel displacement profile was found to be consistent with

FE analysis.

• the proposed energy-based method represents an efficient tool to predict the time-

dependent response around tunnels. This approximate solution is more efficient, from

a practical point of view, than FE analysis. In addition to being faster, the input to the

proposed analysis is accomplished through a simple text file. In this chapter, we mod-

elled the creep response using Burger’s model. However, a wide range of constitutive

models can easily be incorporated into this analysis.
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4.8 Appendix A

Expanded expressions for the potential energy U and the first variation of the total energy Π
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4.9 Appendix B

The equilibrium conditions in the analysis are assessed in order to obtain an indicator of the

reliability of the solution. Both the equilibrium in the radial direction and in the longitudinal

direction are calculated using the following

∂σrr
∂r

+
∂τzr
∂r

+
1

r
(σrr − σθθ) = 0 (4.83)

∂τzr
∂r

+
∂σzz
∂z

+
1

r
τzr = 0 (4.84)



104 Chapter 4. Response of a tunnel in a viscoelastic medium

Figures 4.10a and 4.10b are normalised plots of the equilibrium in the radial and longitudinal

directions respectively. Figure 4.10a shows the equilibrium in the radial direction along the

longitudinal axis of the tunnel at r = r0 (at the tunnel wall) and r = 2r0. The unbalanced

stresses appear to attain maxima in close proximity to the tunnel face as the error for r = 2r0

is less significant than that at r = r0. Figure 4.10b shows the equilibrium in the longitudinal

direction at the tunnel face. Equilibrium is found to be satisfied everywhere apart from near

the tunnel face, where stress singularity is expected.
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Figure 4.10: Equilibrium: (a) radial direction; (b) longitudinal direction



Chapter 5

Incorporation of viscoplastic

constitutive behaviour

Synopsis

This chapter builds on the tools developed in Chapter 3, through the incorporation of time-

dependent viscoplastic constitutive behaviour into the cavity equations, thus developing new

models that can be used to analyse cavities located in creeping rock. The cavity pressure

is applied incrementally to enable different rates of loading to be modelled, thus being able

to approximate the rate of excavation of a cavity. Here we develop viscoplastic constitutive

models within the framework of hyperplasticity, therefore ensuring that thermodynamic prin-

ciples are adhered to. A novel contribution in this chapter is the development of a frictionless

viscoplastic-damage constitutive model which is able to describe both the secondary and ter-

tiary stages of creep behaviour (see Figure 2.1).

The first section of this chapter (5.1) focuses on the theory of viscoplasticity. Within this

section the theory of rate-dependent hyperplasticity is described. Section 5.2 shows the

derivation of the constitutive equations for a von Mises viscoplastic model using this thermo-

dynamically consistent approach. The stress integration procedure for this model is described,

followed by incorporation of the model into the cavity equations and validation using the von

Mises rate-independent finite element (FE) results shown in Chapter 3. Section 5.3 focuses

on a von Mises viscoplastic-damage model, stress integration of the model and incorporation

into the cavity equations.

5.1 Viscoplasticity

The theory of viscoplasticity is similar to rate-independent plasticity in that we define an

identical elastic law, yield function, hardening law and form of the flow rule (see Section

3.5.1). However, the crucial difference lies in the definition of the plastic consistency param-

eter γ̇. When considering rate-independent plasticity in Chapter 3, γ̇ was an unknown and

therefore had to be solved for when determining the plastic strains. However when consider-

– 105 –
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ing viscoplasticity an explicit function for γ̇ can be derived. This function controls how the

magnitude of plastic strain varies with the level of stress. Many forms have been proposed

for γ̇, with each form defining a different model of viscoplasticity [16].

An overview of viscoplasticity is provided in Section 2.2.1. Schematically viscoplastic be-

haviour can be represented by a plastic slider element placed in parallel with a viscous dash-

pot element (Figure 2.5). This is known collectively as a Bingham unit which is immobilised

below a specified failure strength. If the slider is loaded above the failure strength plastic

strain occurs and the rate of strain is controlled by the viscous element. Stresses outside

the yield envelope are permissable, as the stress is shared by both the slider and the viscous

element.

5.1.1 Rate-dependent hyperplasticity

In Chapter 3 Section 3.5.2 we introduced the theory of hyperplasticity for rate-independent

materials. Here we present the theory for rate-dependent materials as shown in Houlsby and

Puzrin [5]. The theory builds on that presented for rate-independent materials where the

material response is the same irrespective of the strain rate and the dissipation potential

Ḋ can be written as a homogeneous first-order function of the internal variable rate {ε̇p},
expressed through Euler’s equation as

Ḋ = {Ḋ,ε̇p}T {ε̇p}. (5.1)

Now when considering a rate-dependent material, the following can be defined

ν =
Ḋ

{Ḋ,ε̇p}T {ε̇p}
. (5.2)

By comparing equations 5.1 and 5.2 we can see that for a rate-independent material ν = 1.

For any dissipation potential Ḋ which is a homogeneous function of degree n in {ε̇p}, it

follows from Euler’s theorem that ν is a constant equal to 1
n . Therefore equation 5.1 can be

rewritten as

Ḋ =
1

n
{Ḋ,ε̇p}T {ε̇p}. (5.3)

A dissipative stress vector can then be defined from the dissipation potential as follows

{χ} =
1

n
{Ḋ,ε̇p}. (5.4)
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5.2 von Mises viscoplastic model

Here we derive the equations for a viscoplastic constitutive model within the hyperplastic

framework, thus developing a model which is thermodynamically consistent. We assume that

the plastic behaviour is governed by the von Mises yield criterion (deviatoric creep only),

which is applicable to ductile rocks as stated in Chapter 3 [6] and has been used by Barla et

al. [1] in the VIPLA viscoplastic model [9] to simulate the Saint Martin La Porte access adit,

along the Lyon-Turin Base Tunnel. However, later in the chapter and in Chapter 6 more

complex constitutive models will be developed using the hyperplastic framework.

For this derivation we will use the same free energy potential and elastic law as used for the

rate-independent models in Chapter 3 (equations 3.113 and 3.114). The dissipation potential

Ḋ can be defined as follows

Ḋ = σy(α̇s + ηn−1α̇ns ), (5.5)

where σy is the yield stress, η is the viscous coefficient which controls the extent of plastic

strain, n is a material constant and α̇s is an internal variable representing the equivalent

plastic strain rate defined by equation 3.120. This dissipation potential can be schematically

represented by the Bingham unit (Figure 2.5) and is composed of two terms, the first term in

the bracket representing the plastic slider element and the second term the viscous dashpot

element. Note here that as η → 0 the dissipation potential reduces to the rate-independent

von Mises dissipation potential shown in equation 3.119.

We can write equation 5.5 in the following form

Ḋ = σy(α̇s1 + ηn−1α̇ns2). (5.6)

where α̇s1 is the plastic strain rate in the plastic slider element and α̇s2 is the plastic strain

rate in the viscous dashpot element.

Differentiation of the dissipation potential with respect to the plastic strain rates gives the

dissipative stress

χq =
∂Ḋ

∂α̇s1
+

1

n

∂Ḋ

∂α̇s2
, (5.7)

where the first term is the stress dissipated in the plastic slider element as seen previously for

the rate-independent von Mises model in Chapter 3 (equation 3.121) and the second term is

the stress dissipated in the viscous dashpot element which introduces rate-dependency into

this new model as derived in equation 5.4. Since the plastic slider element and the viscous

dashpot element are in parallel the plastic strain rates in each must be equal and therefore

α̇s1 = α̇s2 = α̇s, therefore

χq = σy(1 + (ηα̇s)
n−1). (5.8)



108 Chapter 5. Incorporation of viscoplastic constitutive behaviour

Since there is no kinematic hardening, the true stress and the dissipative stress are identical

as shown for the rate-independent model (equation 3.122)

χq = q. (5.9)

Manipulating the above stress expressions (equations 5.8 and 5.9) leads to the following equa-

tion

(

q

σy(1 + (ηα̇s)n−1)

)2

= 1. (5.10)

Rearranging equation 5.10 we obtain

α̇s =
1

η

(

q

σy
− 1

) 1

n−1

, (5.11)

which is the explicit expression for the plastic consistency parameter and is the same as that

derived by Perzyna [12] and [13], which is widely used in computational mechanics [16].

From equation 5.11 we can derive an equation which governs plastic behaviour. The plastic

strain rate α̇s is a non negative quantity, therefore the expression inside the bracket in equa-

tion 5.11 must be greater than or equal to zero. Therefore the yield criterion is given by

f =
q

σy
− 1. (5.12)

As for the rate-independent von Mises model the plastic strain components can be expressed

as follows using an associated flow rule

{ε̇p} = γ̇{f,σ}, (5.13)

where γ̇ is equal to the equivalent plastic strain rate α̇s defined by equation 5.11 and where

{f,σ} =
3

2

{s}
q
. (5.14)

5.2.1 Stress integration and response of the constitutive model

Here we adopt an implicit backward Euler (bE) stress integration scheme as outlined in

Section 3.5.4. As for the von Mises constitutive model shown in Chapter 3, here we assume

linear isotropic hardening of the yield surface. For a strain and time increment, {∆ε} and ∆t,

over [tn, tn+1] and the state variables at tn ({εen} and σyn), we can obtain the updated stress

vector {σn+1} and yield stress σyn+1 when the yield criterion f is greater than zero by solving

the following system of non linear equations (equation 5.15). Note that these equations are

the same as those for the rate-independent case (equation 3.154), but here ∆γ is no longer
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an unknown, as we have an explicit expression for this parameter, therefore this system only

contains two equations. Note that ∆γ = ∆tγ̇.

{

b
}

=

{

{σ} − [De]{εet}+ [De]∆γ{f,σ}
σy − σyt −∆γH

}

=

{

{b1}
b2

}

. (5.15)

We can express the Hessian matrix (equation 3.150) as follows from the derivative of the

residuals with respect to the unknowns

[

A
]

=

[

[I] + ∆γ[f,σσ][D
e] + {f,σ}{∆γ,σ}T [De] [De]{f,σ}∆γ,σy

−H{∆γ,σ}T 1−H∆γ,σy

]

. (5.16)

We can then follow the same iterative solution procedure as described in Section 3.5.4 for the

general elasto-plastic model. The starting conditions for the algorithm are

{σ} = {σt}, {σy} = {σyt} ∆γ = ∆γt. (5.17)

where ∆γt is a trial value of the plastic consistency parameter.

This constitutive model was programmed using MATLAB 7.9.0 for a single material point.

Three types of simulation were carried out; a creep test (stress held constant with time), a

relaxation test (strain held constant with time) and a test in which different rates of loading

are applied (constant increase of strain with time). Here we assume for simplification that

no hardening of the yield surface takes place (H = 0). An investigation was carried out into

the effect of the material parameters n and η and the results are shown in Figures 5.1-5.3.

The material parameters used in these analyses are G = 1000MPa, ν = 0.2, σy = 15MPa,

n = 1.5 and η = 1000MPa, unless otherwise stated. A time step ∆t of 0.05 was also used.

Note that the results of these simulations are shown in terms of equivalent stress q and

equivalent strain εq. The equivalent strain can be defined as

εq =

√

2

3
tr([e][e]), (5.18)

where [e] = [ε]− εv[1]/3 is the deviatoric strain, where the volumetric strain is εv = tr([ε]).

The results of the creep test are shown in Figure 5.1. Here we applied increments of strain

(total strain ε = {−0.1, 0.1, 0} applied over 100 load steps) until the yield function f was

greater than zero. We then held the stress constant with time, shown in Figure 5.1a. It

is important to note here that the shape of the strain-time response shown in Figures 5.1b

and 5.1c is the same as the secondary stage of the typical three stage creep curve commonly

observed in laboratory creep testing (Figure 2.1). Figure 5.1b shows that when n is increased,

the strain rate increases, while Figure 5.1c shows that an increase in η causes a decrease in
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strain rate.
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Figure 5.1: Creep simulation: (a) stress held constant with time; (b) effect of n on strain-time
response; (c) effect of η on strain-time response

The results of the relaxation test are shown in Figure 5.2. Here we applied a total strain

ε = {−0.01, 0.01, 0} over 200 load steps. We then held the strain constant with time, shown

in Figure 5.2a. Figures 5.2b and 5.2c show that as time passes, the stress relaxes and tends

towards the yield stress σy of 15 MPa. Figure 5.2b shows that the larger the value of n, the

more quickly the stresses relax, whilst Figure 5.2c shows that an increase in η causes the

stresses to relax more slowly.
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Figure 5.2: Relaxation simulation: (a) strain held constant with time; (b) effect of n on
stress-time response; (c) effect of η on stress-time response

The results for a constant rate of loading are shown in Figure 5.3. As for the relaxation

simulation we applied a total strain ε = {−0.01, 0.01, 0} over different periods of time, thus

simulating different rates of loading. The rate of loading used in the analyses shown here is

ε̇ =1.7x10−4days−1, unless otherwise stated. Figure 5.3a shows that an increase in the rate of

loading results in a larger stress. Figure 5.3b shows that an increase in n causes an increase

in stress, whilst Figure 5.3c shows that an increase in η causes an increase in stress.
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Figure 5.3: Constant rate of loading: (a) effect of rate of loading on stress-strain response;
(b) effect of n on stress-strain response; (c) effect of η on stress-strain response

5.2.2 Modelling cavity in a viscoplastic medium

We now demonstrate how this viscoplastic model can be incorporated into the energy-based

method for an internally pressurised two-dimensional (2D) cylindrical cavity. The same cav-

ity problem is used here as in Chapter 3 (Figure 3.15). In fact the same governing equation

and boundary conditions derived in Chapter 3 are used here. The only difference is the

method of loading the cavity. Whilst in Chapter 3 we applied the full load to the cavity wall

instantaneously, here we produce a model where the total load is applied in increments over

time, to the cavity wall. This allows us to simulate different rates of loading, thus provid-

ing an approximation to the excavation of an underground cavity. The governing equation

(equation 5.19) is expressed in terms of increments of displacement ∆ur and the boundary

conditions (equations 5.21 and 5.22) expressed in terms of the cumulative stress increments

as follows
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r
d2∆ur
dr2

+
d∆ur
dr

− ∆ur
r

= F
(

∆εprr;∆ε
p
θθ;∆ε

p
zz

)

(5.19)

F
(

∆εprr;∆ε
p
θθ;∆ε

p
zz

)

= r
d∆εprr
dr

+
λ

(λ+ 2G)

(

r
d∆εpθθ
dr

+ r
d∆εpzz
dr

)

+
2G

(λ+ 2G)
(∆εprr −∆εpθθ)

(5.20)

Boundary condition at r = r0

λ

(

εerrj +
d∆ur
dr

−∆εprr + εeθθj +
∆ur
r

−∆εpθθ + εezzj −∆εpzz

)

+ 2G

(

εerrj +
d∆ur
dr

−∆εprr

)

(5.21)

+
pi(j + 1)

totj
= 0

and at r = rm

λ

(

εerrj +
d∆ur
dr

−∆εprr + εeθθj +
∆ur
r

−∆εpθθ + εezzj −∆εpzz

)

+2G

(

εerrj +
d∆ur
dr

−∆εprr

)

= 0

(5.22)

where j refers to the previous load step, the elastic strain terms (e.g. εerrj) refer to the elastic

strains at the end of the previous load step and the ∆ terms (e.g. ∆ur, ∆ε
p
rr) refer to the

increment of displacement and increment of plastic strain respectively during the current load

step. totj is the total number of load steps.

The following flowchart (Figure 5.4) provides an overview of the solution procedure. In box 1

of Figure 5.4 we apply an increment of pressure ∆pi over an increment of time ∆t to the cavity

wall. We then calculate the incremental cavity displacements ∆ur by solving the governing

equation (equation 5.19) with the boundary conditions (equations 5.21 and 5.22) using a 1D

finite difference (FD) technique (box 2). The change in displacements is then converted to a

change in elastic strains, and the elastic trial strains {εet} are calculated by adding the change

in elastic strains to the total elastic strains found at the end of the previous load increment

(box 3). The trial strains are then converted to trial stresses {σt} using the elastic law (box

3). Here we assume the material is yielding (f > 0), therefore we must use the bE stress

integration procedure outlined earlier in this chapter to update the stresses, plastic strains

and yield stress for each plastic material point (box 4). The parameters in equations 5.19-5.22

are then updated and we return to box 2. We must iterate within each load step (boxes 2-5)

until the relative error in displacements at the cavity wall between two consecutive iterations

is within a specified tolerance (0.001) (box 5). Once this tolerance is met the elastic strains

in equations 5.21 and 5.22 are updated and the next load step is applied in box 1. When
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the full load has been applied to the cavity wall, we continue looping through boxes 2 to 5,

but the load at the cavity wall remains constant as time increases. This procedure continues

until the total desired time is reached.

Figure 5.4: Flowchart of solution procedure when yield criterion f > 0

5.2.3 Validating the viscoplastic response of the cavity

The model parameters used in the analyses presented here are the same as those used for

the von Mises model in Section 3.6.3, with additional parameters n = 1.5 and ∆t = 0.05. A

pressure pi of 25 MPa is used here. The proposed solution is validated by comparing the dis-

placements and stresses of the cavity with the FE time-independent perfectly plastic solution

as seen in Section 3.6.3. This solution is a limit for the viscoplastic model as t → ∞ or as

η → 0. This same limit was used in Fritz’s viscoplastic analytical solution [3] for a cylindrical

cavity, shown in Yu [20]. Figures 5.5 and 5.6 show that the time-independent displacement

and stresses of the FE solution are approached as t increases and as η decreases. It has been

found that the relative error between the time-dependent and time-independent displacement

as t → ∞ or as η → 0 is no greater than a few percent. Figure 5.5 also shows two different

rates of cavity loading. We see that the higher the rate of the loading, the smaller the cavity

response once the full load has been applied.
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Figure 5.5: Variation of cavity wall displacement with time
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Figure 5.6: Variation of stresses with radial distance at different values of time: (a) q at end
of loading stage (t = 1); (b) σrr and σθθ at end of loading stage (t = 1); (c) q at t = 50; (d)
σrr and σθθ at t = 50

5.3 von Mises viscoplastic-damage model

Here we extend the viscoplastic constitutive model derived in the previous section to take

into account material damage. This allows us to model the tertiary stage of creep behaviour



116 Chapter 5. Incorporation of viscoplastic constitutive behaviour

(Figure 2.1) which appears due to progressive micro cracking of the material. This results

in a loss of strength and stiffness, which may eventually lead to failure corresponding to a

complete loss of load carrying capability of the material. Here we use the theory of continuum

damage mechanics (CDM) which was pioneered by Kachanov [7], who introduced a scalar

internal variable to model the creep failure of metals under uniaxial loads. Other significant

contributions to this theory were made by Lemaitre and Chaboche [8], amongst others. Here

we express CDM within the framework of hyperplasticity, thus encompassing viscoplasticity

and damage within a single theory. The evolution of the damage variable is derived from

a dissipation potential, thus no separate evolution law is required. For simplification we

assume that the damage is isotropic, and thus is defined using a scalar damage parameter.

We also assume that the viscoplasticity and damage are coupled, thus they always occur

simultaneously.

5.3.1 Material damage using the theory of hyperplasticity

In this section we demonstrate how material damage can be modelled using the hyperplastic

framework. In Section 3.5.2 the free energy potential for an elasto-plastic model is a function

of the total strains and plastic strains. Now when considering damage the free energy potential

is also a function of αd, the internal variable representing the damage parameter such that

ψ({ε}, {εp}, αd) = ψ({εe}, αd). This damage parameter was given physical significance by

Rabotnov [14] who proposed the reduction of the undamaged cross-sectional area of the

material as a suitable measure of the state of internal damage. This can be expressed as

follows [2]

αd =
A−As
A

(5.23)

where A is the total cross-sectional area of a surface within a unit cell in one of the three

perpendicular directions and As is the solid matrix area within A. αd = 0 corresponds to the

undamaged virgin material and αd = 1 represents a total loss of load bearing capacity. A

schematic illustration of material damage is shown in Figure 5.7. This figure shows a sample

of material in which cracks have developed due to material damage.

Figure 5.7: Schematic illustration of damage

Given the free energy potential stated above the rate of the free energy potential can now be
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defined as follows

ψ̇ = {ψ,εe}T {ε̇e}+ ψ,αd
α̇d. (5.24)

The dissipation potential is taken to be Ḋ({ε}, {εp}, {ε̇p}, αd, α̇d) which is now a function

of the damage parameter and the rate of the damage parameter. For a rate-independent

elasto-plastic-damage model we can write the dissipation potential as follows

Ḋ = {Ḋ,ε̇p}T {ε̇p}+ Ḋ,α̇d
α̇d. (5.25)

Substitution of equations 5.24 and 5.25 into the expression for the first and second laws of

thermodynamics (equation 3.104) produces the following

{σ}T {ε̇} = {ψ,εe}T {ε̇e}+ ψ,αd
α̇d + {Ḋ,ε̇p}T {ε̇p}+ Ḋ,α̇d

α̇d. (5.26)

From this equation we can define the elasticity law, which is identical to equation 3.108 and

a dissipative stress vector identical to equation 3.109. Therefore

{σ}T {ε̇} = {σ}T {ε̇e}+ ψ,αd
α̇d + {χ}T {ε̇p}+ Ḋ,α̇d

α̇d. (5.27)

Substituting {ε̇e} = {ε̇} − {ε̇p} into equation 5.27 produces the following

{σ}T {ε̇} = {σ}T {ε̇} − {σ}T {ε̇p}+ ψ,αd
α̇d + {χ}T {ε̇p}+ Ḋ,α̇d

α̇d. (5.28)

Thus from equation 5.28 we can write

({σ} − {χ})T {ε̇p} = 0, (5.29)

(χ̄d − χd)α̇d = 0, (5.30)

where

χ̄d = −ψ,αd
and χd = Ḋ,α̇d

, (5.31)

where χ̄d is a generalised damage stress and χd is the dissipative stress due to damage.

Following Ziegler’s orthogonality condition [21]

χ̄d = χd, (5.32)

and the true stress is equal to the dissipative stress when there is no kinematic hardening of

the yield surface (equation 3.112)

{σ} = {χ}. (5.33)
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As shown in Section 3.5.2 the elasticity law and the dissipative stress can be used as the

building blocks for the development of a constitutive model using the theory of hyperplasticity.

In a similar way we will now use the elasticity law (equation 3.108), the dissipative stress

due to plasticity (equation 3.109), the dissipative stress due to damage and the generalised

damage stress (equation 5.31) as the building blocks for a new constitutive model which

incorporates damage. We will now show the development of this constitutive model in the

following section.

5.3.2 Viscoplastic-damage constitutive equations

A free energy potential can be written for a damaged material as follows

ψ =
1

2
{εe}T (1− αd)[D

e]{εe}. (5.34)

Differentiating the free energy potential with respect to the elastic strain vector produces the

elasticity law (equation 3.108)

{σ} = {ψ,εe} = (1− αd)[D
e]{εe}. (5.35)

The free energy potential (equation 5.34) can be expressed as follows in terms of deviatoric

and mean stresses

ψ =
q2

6G(1 − αd)
+

p2

2K(1 − αd)
. (5.36)

The generalised damage stress can be derived from the free energy potential as follows using

equation 5.31

χ̄d = − ∂ψ

∂αd
=

q2

6G(1 − αd)2
+

p2

2K(1− αd)2
. (5.37)

The dissipation potential we use here is based on a coupled elasto-plastic-damage model

proposed by Einav et al. [2]. His work included the development of rate-independent elasto-

plastic-damage models. Einav et al. [2] stated that a decoupled form of the dissipation

potential could be used as shown in equation 5.25. As noted by Einav et al. [2] adopting

decoupled dissipation for elasto-plastic-damage models may result in damage prior to plastic

straining, or plastic straining prior to damage. Coupling plasticity and damage ensures that

they occur simultaneously. Einav et al. [2] proposed the following equation for a general

coupled dissipation potential

Ḋ = n̄

√

√

√

√

N
∑

i=1

[ci({ε}, Ā)Φi(α̇i)]n̄, (5.38)

where ci({ε}, Ā) is a positive definite function, Φi(αi) is a homogeneous first order function
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operator returning a positive scalar, Ā is a function of a set of internal variables, Ā(α1, ..., αN )

and n̄ is a parameter which controls the coupling intensity.

For a viscoplastic-damage constitutive model we have two internal variables, the damage

parameter αd and the equivalent plastic strain αs. Thus N = 2 in equation 5.38 and the

coupled dissipation potential is the sum of two components, one describing the viscoplastic

behaviour and the other describing the damage behaviour. Einav et al. [2] developed cou-

pled elasto-plastic-damage models within the framework of hyperplasticity and the form of

the dissipation potential we propose below reduces to the form given by Einav et al. [2] when

modelling a rate-independent von Mises material.

For a coupled viscoplastic-damage material the dissipation potential Ḋ is similar to equation

5.5 but now includes an additional damage term.

Ḋ = σy

√

(rpα̇s + rpηn−1α̇ns )
2 + (rdρα̇d)2 (5.39)

where rp and rd are constants governing the ratio of viscoplasticity and damage, σy =

σy0Π(αd), where σy0 is the initial yield stress and Π(αd) = (1− ααd), where α is the soften-

ing/hardening parameter. ρ = χ̄d

q and thus using equation 5.37 can be written as

ρ =
q

6G(1 − αd)2
+

p2

2qK(1− αd)2
. (5.40)

α produces a more flexible model and allows hardening to be incorporated when a negative

value of α is used. This parameter was also used by Shao et al. [15] to describe material

damage when modelling creeping rocks. The effect of α on the stress-strain curve is shown

below in Figure 5.8.

Figure 5.8: Effect of the softening/hardening parameter α on the stress-strain response
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Having now defined the dissipation potential for a viscoplastic-damage material we can now

follow a similar method to that used to develop the viscoplastic constitutive model in Section

5.2.

We can write equation 5.39 in the following form

Ḋ = σy

√

(rpα̇s1 + rpηn−1α̇ns2)
2 + (rdρα̇d)2 (5.41)

Differentiation of the dissipation potential with respect to the plastic strain rates gives the

dissipative stress, due to plasticity

χq =
∂Ḋ

∂α̇s1
+

1

n

∂Ḋ

∂α̇s2
. (5.42)

However, α̇s1 = α̇s2 = α̇s, therefore

χq =
σy(rpα̇s + rpη

n−1α̇ns )rp(1 + (ηα̇s)
n−1)

√

(rpα̇s + rpηn−1α̇ns )
2 + (rdρα̇d)2

. (5.43)

Differentiating with respect to α̇d gives the dissipative stress due to damage (equation 5.31)

χd =
∂Ḋ

∂α̇d
=

σyα̇d(rdρ)
2

√

(rpα̇s + rpηn−1α̇ns )
2 + (rdρα̇d)2

. (5.44)

Since there is no kinematic hardening, the true stress and the dissipative stress are identical

as shown in equation 5.9.

Manipulating the above stress expressions (equations 5.43 and 5.44), leads to the following

equation
(

χq
σyrp(1 + (ηα̇s)n−1)

)2

+

(

χd
rdσyρ

)2

= 1. (5.45)

Substitution of ρ = χ̄d

q into this equation and using equations 5.9 and 5.32 produces the

following
(

q

σyrp(1 + (ηα̇s)n−1)

)2

+

(

q

rdσy

)2

= 1. (5.46)

Rearranging equation 5.46 we obtain

α̇s =
1

η









1
√

(

σyrp
q

)2
−
(

rp
rd

)2
− 1









1

n−1

, (5.47)
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which is equal to the plastic consistency parameter γ̇.

From equation 5.47 we can derive an equation which governs plastic behaviour. The plastic

strain rate α̇s is a non negative quantity, therefore the expression inside the bracket in equa-

tion 5.47 must be greater than or equal to zero. Therefore the yield criterion is given by

f =

(

q

σy

)2( 1

r2p
+

1

r2d

)

− 1. (5.48)

From this equation we can find that the constants rp and rd are related by the following

expression

1

r2p
+

1

r2d
= 1, (5.49)

from which it follows that rp ≥ 1 and rd ≥ 1. In the limiting case when rp = 1, rd → ∞ and

the constitutive model simplifies to the viscoplastic model derived in Section 5.2.

An expression for the rate of the damage internal variable can be found from equations 5.43

and 5.44 using ρ = χ̄d

q , along with equations 5.9 and 5.32

α̇d =
α̇s(1 + (ηα̇s)

n−1)2

ρ

(

rp
rd

)2

. (5.50)

The plastic strain components can then be expressed as follows using an associated flow rule

{ε̇p} = γ̇{f,σ}, (5.51)

where {f,σ} is defined in equation 5.14.

5.3.3 Stress integration and response of the constitutive model

For a strain and time increment, {∆ε} and ∆t, over [tn, tn+1] and the state variables at tn

({εen} and αdn), we can obtain the updated stress vector {σn+1} and damage parameter αdn+1

when the yield criterion f is greater than zero by solving the following system of non linear

equations (equation 5.52).

{

b
}

=

{

{σ} − (1− αd)[D
e]{εet}+ (1− αd)[D

e]∆γ{f,σ}
αd − αdt −∆αd

}

=

{

{b1}
b2

}

. (5.52)
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We can express the Hessian matrix as follows

[

A
]

=

















[I] + (1− αd)∆γ[f,σσ][D
e] + (1− αd){f,σ}{∆γ,σ}T [De] (1− αd)[D

e]∆γ{f,σαd
}

+(1− αd)[D
e]{f,σ}∆γ,αd

+[De]{εet} −∆γ[De]{f,σ}

−{∆αd,σ}T 1−∆αd,αd

















.

(5.53)

The starting conditions for the algorithm are

{σ} = {σt}, {αd} = {αdt} ∆γ = ∆γt. (5.54)

where αdt is a trial value of the damage parameter.

This constitutive model was programmed in MATLAB 7.9.0 for a single material point and

the same simulations carried out as for the viscoplastic constitutive model shown in Section

5.2. An investigation was carried out into the effect of the material parameters rp, n and η

and the results are shown in Figures 5.9-5.11. The same material parameters, total strain,

number of load steps and time step are used here as for the viscoplastic constitutive model.

The only difference here is the presence of damage which requires two additional material

parameters, rp and α. We take rp = 1.1 and α = 0.2 unless otherwise stated.

The results of the creep test are shown in Figure 5.9. It is important to note here that

the shape of the strain-time response shown in Figures 5.9b-5.9d is the same as the tertiary

stage of the typical three stage creep curve commonly observed in laboratory creep testing,

shown in Figure 2.1. Figure 5.9b shows that an increase in damage (increase in rp) causes

an increase in strain, particularly when rp = 1.2. When rp = 1.0 we see that the response

is identical to that of the viscoplastic constitutive model shown in Figure 5.1. Comparing

Figures 5.9c and 5.9d to Figures 5.1b and 5.1c we can see the effect of material damage on

the strain-time response. A significant difference is observed when η = 100MPa day.
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Figure 5.9: Creep simulation: (a) stress held constant with time; (b) effect of rp on strain-time
response; (c) effect of n on strain-time response; (d) effect of η on strain-time response

The results of the relaxation test are shown in Figure 5.10. Figure 5.10b shows that as damage

increases the smaller the magnitude of peak stress. When rp = 1.0 we see that the response

is identical to that of the viscoplastic constitutive model shown in Figure 5.2. Comparing

Figures 5.10c and 5.10d to Figures 5.2b and 5.2c we can see the effect of material damage on

the stress-time response. We observe that an increase in damage causes a reduction in the

value of peak stress.
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Figure 5.10: Relaxation simulation: (a) strain held constant with time; (b) effect of rp on
stress-time response; (c) effect of n on stress-time response; (d) effect of η on stress-time
response

The results for a constant rate of loading are shown in Figure 5.11. Figure 5.11b shows that

as damage increases, the peak stress reduces and we observe softening behaviour. When

rp = 1.0 we see that the response is identical to that of the viscoplastic constitutive model

shown in Figure 5.3. Comparing Figures 5.11a, 5.11c and 5.11d to Figures 5.3a, 5.3b and

5.3c we can see the effect of material damage on the stress-time response. We observe that

an increase in damage causes a reduction in the value of peak stress and material softening

is present.
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Figure 5.11: Constant rate of loading: (a) effect of rate of loading on stress-strain response;
(b) effect of rp on stress-strain response; (c) effect of n on stress-strain response; (d) effect of
η on stress-strain response

5.3.4 Modelling cavity in a viscoplastic-damage medium

Here we follow the same procedure as for the viscoplastic constitutive model (Section 5.2.2).

Since we are modelling a damage material, the stresses are dependent on the damage param-

eter αd. Therefore the boundary conditions for the cavity are dependent on material damage.

The boundary conditions can be written as follows, at r = r0

(1− αdj −∆αd)

(

λ

(

εerrj +
d∆ur
dr

−∆εprr + εeθθj +
∆ur
r

−∆εpθθ + εezzj −∆εpzz

)

+2G

(

εerrj +
d∆ur
dr

−∆εprr

))

+
pi(j + 1)

totj
= 0 (5.55)

and at r = rm

(1− αdj −∆αd)

(

λ

(

εerrj +
d∆ur
dr

−∆εprr + εeθθj +
∆ur
r

−∆εpθθ + εezzj −∆εpzz

)

+2G

(

εerrj +
d∆ur
dr

−∆εprr

))

= 0 (5.56)
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The flowchart shown in Figure 5.12 is used here. The solution procedure is very similar to

that explained earlier for the viscoplastic model (Figure 5.4). The only difference here is

that the increment in the damage parameter ∆αd must also be updated in addition to the

increment in plastic strain (box 4). Note also that the elastic law depends on the damage

parameter αd (box 3). Once the tolerance is met in box 5, the damage parameter and the

elastic strains in equations 5.55 and 5.56 are updated and the next load step is applied in

box 1.

Figure 5.12: Flowchart of solution procedure when yield criterion f > 0

5.3.5 Viscoplastic-damage response of the cavity

The model parameters used in the analyses presented here are the same as those used for

the viscoplastic model (Section 5.2.3), with the additional softening/hardening parameter

α = 0.2. Here we investigate the effect of rp and η on the response of the cavity. Figures

5.13 and 5.14 show the effect of rp when η = 50 MPa day and Figures 5.15 and 5.16 show

the effect of rp when η = 500 MPa day. In Figures 5.14 and 5.16 we observe that the radial

stress σrr is equal to 25 MPa at the cavity wall which is equal to the applied pressure. We

observe that when rp = 1.0 we obtain the same response as the viscoplastic model (Figures

5.5 and 5.6).

An increase in rp (increase in damage) causes the displacement of the cavity wall to increase

(Figures 5.13 and 5.15) and the plastic radius of the cavity to increase (Figures 5.14 and 5.16).

We observe softening behaviour resulting in a reduction in the equivalent stress q in close
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proximity to the cavity wall. The displacement reaches a stable condition at a much higher

value of convergence than for the viscoplastic model. This is expected due to a reduction in

material stiffness due to cracking and was observed by Sterpi and Gioda [17] when carrying

out an FE analysis of a tunnel. We also observe tertiary creep in Figure 5.13 when rp = 1.07,

where the rate of displacement of the cavity wall increases with time. The stresses associated

with the tertiary creep (Figure 5.14) are only shown up to 10 days as at shortly after this

time the material lost all load bearing capacity and the damage parameter αd = 1.

As t increases the cavity wall displacement increases and the plastic radius increases. This is

due to the plastic strains developing with time. For a lower value of η (Figures 5.13 and 5.14)

the material is more viscous and larger plastic strains are present, and thus the material is

more sensitive to an increase in rp. This results in both a larger displacement and plastic

radius. These results highlight the importance of considering damage when estimating the

convergence of an underground cavity.
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Figure 5.13: Variation of cavity wall displacement with time for η = 50MPa
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Figure 5.14: Variation of stresses with radial distance at different values of time for η =
50MPa: (a) q at end of loading stage (t = 1); (b) σrr and σθθ at end of loading stage (t = 1);
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500MPa: (a) q at end of loading stage (t = 1); (b) σrr and σθθ at end of loading stage (t = 1);
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5.4 Summary

• both thermodynamically consistent viscoplastic and viscoplastic-damage constitutive

models have been developed within the framework of hyperplasticity in this chapter.

The former describes secondary creep behaviour, whilst the latter describes both sec-

ondary and tertiary creep behaviour (see Figure 2.1). Both of these models use a von

Mises yield criterion. The theory of CDM has been used to develop the viscoplastic-

damage constitutive model. Both of the models have been used to conduct creep,

relaxation and constant rate of loading tests for a single material point.

• the viscoplastic constitutive models have been incorporated into the energy-based method

for cavity problems. Here we adopt an incremental loading approach in order to simu-

late different rates of loading of the cavity and thus approximate cavity excavation.

• the cavity displacements and stresses obtained for the perfectly viscoplastic von Mises

model have been successfully validated when t → ∞ or when η → 0 using the FE

time-independent cavity solutions obtained in Chapter 3. The response of the cavity in

a viscoplastic-damage material is identical to the perfectly viscoplastic response when

the parameter rp = 1.0 (no damage).

• the results from the cavity highlight the importance of taking into account material

damage due to its notable affect on the displacements.
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Chapter 6

Frictional viscoplastic constitutive

behaviour

Synopsis

In this chapter we derive a novel viscoplastic-damage constitutive model within the frame-

work of hyperplasticity. This model is applicable to geomaterials due to it taking into account

frictional behaviour. The model is compared with experimental data obtained by Yang and

Jiang [16] during the triaxial compression testing of sandstone.

Section 6.1 introduces the constitutive model and the key constitutive equations are derived.

Comparison with experimental data is carried out in Section 6.2, and finally the model is

incorporated into the energy-based method for cavity analysis in Section 6.3.

6.1 Drucker-Prager viscoplastic-damage model

Here we derive a viscoplastic-damage constitutive model for a frictional material. We derive a

Drucker-Prager model, whose constitutive behaviour was derived in Section 3.5.3 for the sim-

ple elasto-plastic case. This model builds on the von Mises viscoplastic-damage model shown

in Section 5.3.2 and is derived in a similar way. As for the von Mises viscoplastic-damage

model, here we assume that the damage is isotropic and that viscoplasticity and damage are

coupled and therefore occur simultaneously.

For this derivation we will use the same free energy potential and elastic law as used for the

von Mises viscoplastic-damage model in Chapter 5 (equations 5.34 and 5.35). We also use

the same expression for the generalised damage stress (equation 5.37).

The dissipation potential Ḋ can be defined below. It takes the same general form as that

used to derive the von Mises viscoplastic-damage model (equation 5.39). Note that this

dissipation potential reduces to the elasto-plastic Drucker-Prager dissipation potential in

– 133 –
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Chapter 3 (equation 3.127) when there is no viscoplasticity (η → 0) and no damage (αd = 0).

Ḋ =
√

(rp(c2p+ c1)α̇s + rpηn−1α̇ns )
2 + (rdρ(c2p+ c1)α̇d)2, (6.1)

where rp and rd are constants governing the ratio of viscoplasticity and damage, p is the

mean stress, η is the viscous coefficient which controls the extent of plastic strain, n is a

material constant, α̇s is an internal variable representing the equivalent deviatoric plastic

strain rate, αd is the damage parameter, c1 = dΠ(αd) and c2 = µΠ(αd), where d is a constant

related to the cohesion, µ is a constant related to the frictional angle and Π(αd) is the

softening/hardening function defined for the von Mises viscoplastic-damage model in Section

5.3.2. ρ = χ̄d

(q−c3p)
and thus using equation 5.37 can be written as

ρ =
q2

6G(1 − αd)2(q − c3p)
+

p2

2K(1− αd)2(q − c3p)
, (6.2)

where c3 = βΠ(αd) and where β is a constant, related to the dilation angle. d, µ and β

can be calculated from material parameters (c, φ and ψ) using equations 3.141-3.143. As for

the elasto-plastic model we assume that the Drucker-Prager yield surface circumscribes the

Mohr-Coulomb yield surface, which matches the Mohr-Coulomb yield criterion for triaxial

compression.

As a side condition we will impose a linear relationship between the volumetric and shear

strain rates as shown for the elasto-plastic Drucker-Prager model (equation 3.128)

α̇v + c3α̇s = 0 (6.3)

A modified dissipation potential can now be formed

Ḋ∗ =
√

(rp(c2p+ c1)α̇s + rpηn−1α̇ns )
2 + (rdρ(c2p+ c1)α̇d)2 + Λα̇v + c3Λα̇s, (6.4)

with Λ as a Lagrange multiplier.

Having now defined the dissipation potential together with the constraint given by equation

6.3, we can follow the same method used to derive the constitutive equations for the von

Mises viscoplastic-damage model in Section 5.3.2.

We can write equation 6.4 in the following form

Ḋ∗ =
√

(rp(c2p+ c1)α̇s1 + rpηn−1α̇ns2)
2 + (rdρ(c2p+ c1)α̇d)2 + Λα̇v + c3Λα̇s1. (6.5)
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Differentiation of the dissipation potential with respect to the plastic strain rates gives the

dissipative stresses, due to the volumetric plastic strain

χp =
∂Ḋ∗

∂α̇v
= Λ, (6.6)

and due to the deviatoric plastic strain

χq =
∂Ḋ∗

∂α̇s1
+

1

n

∂Ḋ∗

∂α̇s2
. (6.7)

Noting that α̇s1 = α̇s2 = α̇s, we can show that

χq =
(rp(c2p+ c1)α̇s + rpη

n−1α̇ns )rp((c2p+ c1) + (ηα̇s)
n−1)

√

(rp(c2p+ c1)α̇s + rpηn−1α̇ns )
2 + (rdρ(c2p+ c1)α̇d)2

+ c3Λ. (6.8)

Differentiating with respect to α̇d gives the dissipative stress due to damage

χd =
∂Ḋ∗

∂α̇d
=

α̇d(rdρ(c2p+ c1))
2

√

(rp(c2p+ c1)α̇s + rpηn−1α̇ns )
2 + (rdρ(c2p+ c1)α̇d)2

. (6.9)

Since there is no kinematic hardening, the true stresses and the dissipative stresses are iden-

tical

χq = q χp = p, (6.10)

as shown for the elasto-plastic model (equation 3.133).

Manipulating the above stress expressions (equations 6.8 and 6.9), leads to the following

equation
(

χq − c3Λ

rp((c2p+ c1) + (ηα̇s)n−1)

)2

+

(

χd
rd(c2p+ c1)ρ

)2

= 1. (6.11)

Substitution of ρ = χ̄d

(q−c3p)
into this equation and using equations 6.6, 6.10 and 5.32 produces

the following
(

q − c3p

rp((c2p+ c1) + (ηα̇s)n−1)

)2

+

(

q − c3p

rd(c2p+ c1)

)2

= 1. (6.12)

Rearranging equation 6.12 we obtain

α̇s =
1

η









(c2p+ c1)









1
√

(

rp
ck

)2
−
(

rp
rd

)2
− 1

















1

n−1

(6.13)
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which is equal to the plastic consistency parameter γ̇, where

ck =
(q − c3p)

(c2p+ c1)
. (6.14)

From equation 6.13 we can derive the yield criterion given α̇s ≥ 0

f = ck
2

(

1

rp2
+

1

rd2

)

− 1. (6.15)

An expression for the rate of the damage internal variable can be found from equations 6.8

and 6.9 using ρ = χ̄d

(q−c3p)
, along with equations 6.6, 6.10 and 5.32

α̇d =
α̇s

(

1 + (α̇sη)n−1

(c2p+c1)

)2

ρ

(

rp
rd

)2

. (6.16)

As for the elasto-plastic Drucker-Prager model the plastic strain components can be expressed

as follows using a non-associated flow rule

{ε̇p} = γ̇{g,σ}, (6.17)

where

{g,σ} =
3

2

{s}
q

− c3
3
{1}. (6.18)

6.1.1 Stress integration and response of the constitutive model

In order to use this constitutive model for practical application we must use a stress inte-

gration procedure. Here we use the iterative implicit backward Euler (bE) stress integration

scheme as used in Chapters 3 and 5. The stress integration procedure for this constitutive

model is the same as that described for the von Mises viscoplastic-damage model in Section

5.3.3. The form of the Hessian matrix [A] is identical to that shown in equation 5.53.

This constitutive model was programmed in MATLAB 7.9.0 for a single material point and

identical simulations to those shown in Chapter 5 were carried out; creep, relaxation and

constant rate of loading. An investigation was carried out into the effect of the different ma-

terial parameters φ, ψ, rp, n and η and the results are shown in Figures 6.1-6.3. We use the

same material parameters as used for the von Mises model, but with the viscous parameter

η = 100000 MPa day and the additional strength parameters; a friction angle φ = 30o, a

dilation angle ψ = 7.5o and a cohesion c=7.5 MPa, unless otherwise stated. Note that here

we apply different strains than those used in Chapter 5, which are stated in the following

discussions. This is to ensure that the mean stress p is greater than zero and therefore φ and

ψ have a noticeable effect on the response of the model.
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The results of the creep test are shown in Figure 6.1. The total strain used in this test was

ε = {−0.1, 0.1,−0.05}. Figure 6.1b shows that an increase in damage (increase in rp) causes

an increase in strain rate and tertiary creep behaviour is more pronounced. We also observe

that an increase in n or η causes a decrease in strain rate (Figures 6.1c and 6.1d respectively).
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Figure 6.1: Creep simulation: (a) stress held constant with time; (b) effect of rp; (c) effect of
n; (d) effect of η

The results of the relaxation test are shown in Figure 6.2. In this test we applied a total strain

ε = {−0.01, 0.01,−0.005}. An increase in φ or ψ causes the strength to increase and thus the

peak stress increases (Figures 6.2b and 6.2c respectively). An increase in rp causes the peak

stress to reduce due to material softening (Figure 6.2d). Increasing n or η causes the peak

stress to increase and the stresses to relax more slowly (Figures 6.2e and 6.2f respectively).
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Figure 6.2: Relaxation simulation: (a) strain held constant with time; (b) effect of φ; (c)
effect of ψ; (d) effect of rp; (e) effect of n; (f) effect of η

The results for a constant rate of loading are shown in Figure 6.3. A total strain ε =

{−0.01, 0.01,−0.005} was applied. The rate of loading applied in this test was ε̇ = 1.8x10−4days−1

unless otherwise stated. From Figure 6.3a we observe that an increase in the rate of loading

causes an increase in the peak stress. As in the relaxation simulations we observe that an in-

crease in either φ or ψ causes the peak stress to increase (Figures 6.3b and 6.3c respectively),

an increase in rp causes the peak stress to reduce (Figure 6.3d) and an increase in either n

or η causes the peak stress to increase (Figures 6.3e and 6.3f respectively).
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Figure 6.3: Constant rate of loading: (a) effect of rate of loading on stress-strain response;
(b) effect of φ; (c) effect of ψ; (d) effect of rp; (e) effect of n; (f) effect of η

6.2 Comparison of constitutive model with experimental data

Here we compare the Drucker-Prager viscoplastic-damage model with data from triaxial com-

pression testing of sandstone by Yang and Jiang [16]. The experimental data was obtained

from short-term loading tests and long-term creep tests. Note that here we use a soften-

ing/hardening function Π(αd) equal to (1 − ααd)
2, which fits well with the experimental

data.
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6.2.1 Short-term loading tests

The short-term loading tests were conducted by Yang and Jiang [16] under three different

confining pressures (σ3 = 3, 5 and 7 MPa). We simulated these triaxial tests by using a single

material point in MATLAB 7.9.0. We apply the initial confining pressure in the first time

step and then apply an increment of strain over each subsequent time step, ensuring that

the rate of applied strain corresponds to a rate of applied stress of 0.127 MPa/s, which is

the value used in the triaxial experiments. Within each time step we must ensure that the

confining pressure remains equal to the initial confinement, e.g. if the initial confinement is

equal to 3 MPa, then σ2 and σ3 must remain equal to 3 MPa throughout the analysis. This

is achieved in the elastic stage through applying increments of strain which do not affect

the values of σ2 and σ3. The increments of strain {dε} are calculated using an approach by

Bardet and Choucair [1] as follows

{dε} = ([Smat][De] + [Emat])−1{dY }, (6.19)

where

[Smat] =







0 1 0

0 0 1

0 0 0






, [Emat] =







0 0 0

0 0 0

1 0 0






and {dY } =







0

0

dX






, (6.20)

where dX controls the evolution of the loading process.

The elastic parameters used in the simulation are the same as those calculated by Yang and

Jiang [16]. We use the average Young’s modulus (Es +E50)/2, where E50 is the slope of the

line connecting the origin and half the peak strength of the stress-strain curve, and where

Es is the slope of the approximately linear part of the stress-strain curve, whose values are

shown in Table 6.1. We also use a Poisson’s ratio ν of 0.22.

σ3[MPa] Es[MPa] E50[MPa] (Es +E50)/2[MPa]

3 25770 21410 23590

5 27730 22680 25205

7 32630 30910 31770

Table 6.1: Values of Young’s moduli of the sandstone under different confining pressures
(Yang and Jiang [16])

6.2.2 Long-term creep tests

Yang and Jiang [16] conducted a creep test under multi levels of stress. The applied rate of

stress was the same as that used in the short-term tests (σ1 − σ3 = 0.127 MPa/s), with a

confinement σ3 of 5 MPa. When a required level of stress was obtained it was held constant
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and the sandstone was allowed to creep for 48 hours. The final and highest level of stress

used was σ1 − σ3 = 160 MPa. Under this constant level of stress, the three typical stages of

creep were observed (see Figure 2.1). This stress was below the peak strength of the material,

but corresponded to the point where yield was initiated. In order to simulate a creep test,

we modified the program used for the short-term tests by keeping σ1 − σ3 constant when

yield begins. Here we do not simulate a multi-stage creep test, but rather use a single level

of stress similar to the final level of stress used by Yang and Jiang [16]. This is justified from

the results of triaxial tests carried out by Yang and Jiang [16]. Their findings showed that

very little creep occurred below the yield stress of the sandstone.

6.2.3 Selection of model parameters

In this section we explain how the model parameters were selected to fit the experimental

data. Here we use the short-term loading test data to obtain the model parameters. The

purpose here is to simply show that the constitutive model is able to describe the experi-

mental data. A complete validation is not provided here and in order to carry this out an

experimental program would need to be conducted.

Selection of strength parameters

First we must determine the model strength parameters; the cohesion c, the friction angle φ

and the dilation angle ψ, which correspond to the initiation of yield of the sandstone. These

parameters have not been calculated by Yang and Jiang [16] and only the peak strength

parameters were calculated by fitting a Mohr-Coulomb failure criterion to the peak stresses

of the sandstone obtained from the short-term loading tests. This produced a value of c equal

to 17.97 MPa and a value of φ equal to 58.4o. Yang and Jiang [16] did state values for the

yield stresses under the three different confining pressures, however these yield stresses are

approximate as they were obtained by applying steps in stress σ1−σ3 of 5 MPa to the mate-

rial for a confining pressure of 3 MPa and steps of 10 MPa under confining pressures of 5 and

7 MPa until yield occurred. This produced the yield stresses shown in column two of Table

6.2. We substituted these yield stresses and the corresponding values of confining pressure

into the Mohr-Coulomb failure criterion, resulting in three equations with the unknowns c

and φ, and thus three possible sets of simultaneous equations. Solving these equations for c

and φ resulted in a wide variation, with c ranging from 16.6 to 27.6 MPa and φ ranging from

45.6o to 56.4o.

Therefore it was decided to simply adjust the peak strength parameters calculated by Yang

and Jiang [16] to obtain the strength parameters corresponding to the yield stresses. c was

adjusted from 17.97 MPa to 15 MPa and φ was kept constant at 58.4o. The yield stresses

corresponding to these new strength parameters for the three confining pressures are shown

in Table 6.2 alongside the approximate yield stresses stated by Yang and Jiang [16]. We can

see that the new yield stresses are reasonably close to those stated by Yang and Jiang [16],

with a maximum difference of 8 MPa when the confining pressure is equal to 3 MPa.
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Note that more experimental data is required to determine the strength parameters more

accurately. Triaxial tests under different rates of loading are required, as the magnitude of

the peaks of the short-term stress strain curves obtained by Yang and Jiang [16] is dependent

on the rate of loading. A higher rate of loading could produce higher peaks, whilst a slower

rate of loading could produce lower peaks (e.g. see Figure 6.3a). In order to obtain the

strength parameters c and φ more accurately it is necessary to conduct triaxial tests under

low rates of loading.

σ3[MPa] yield stresses (Yang and Jiang [16]) [MPa] yield stresses predicted by model [MPa]

3 150 142

5 160 165

7 180 187

Table 6.2: Yield stresses for the sandstone under different confining pressures

Selection of parameters describing the viscoplastic-damage response

Here we use the short-term loading test data for a confining pressure of 5 MPa to obtain the

remaining model parameters. For simplification we assume an associated flow rule (φ = ψ

and thus µ = 0). The effect of using a non-associated flow rule is shown in Section 6.2.5.

For simplification we assume that n = 1.5 and rp = 1.05 and thus in this section we report

on how η and α were selected to best fit the experimental data. Note that an increase in n

causes the peak stress to increase (Figure 6.3e) and an increase in rp causes the peak stress

to decrease (Figure 6.3d).

Figure 6.4 shows the response of the model for different values of η and α. Three values of η

were used; 1500, 1000 and 500 MPa, shown in Figures 6.4a, 6.4b and 6.4c respectively, whilst

α was varied between 0.3 and 0.4. Figure 6.4 shows that the peak of the stress-strain curve

increases as η increases. This is because the material is less viscous and this behaviour was

also seen in Figure 6.3f. We also see that an increase in α causes greater material softening.

The red lines in Figure 6.4 represent the value of α which best fits the experimental data for

each value of η. Here we observe that the experimental data is best represented by η = 1000

MPa h and α = 0.375 (Figure 6.4b) or η = 500 MPa h and α = 0.4 (Figure 6.4c). However

when using these parameters in the long-term creep test we find that tertiary creep occurs

after a much shorter period of time than shown by the experimental data. We therefore use

η = 1500MPa h and α = 0.375 (Figure 6.4a), which provides a better fit to the creep data

and also provides a good fit to the short-term data.

All of the selected model parameters are shown in Table 6.3 and provide a good fit to the

experimental data obtained by Yang and Jiang [16] during triaxial compression testing of
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Figure 6.4: Selecting model parameters to fit experimental data (confining pressure=5 MPa):
(a) η = 1500MPa h; (b) η = 1000MPa h; (c) η = 500MPa h

sandstone. Note that the strength parameters d, µ and β are calculated from c, φ and ψ as

explained in the derivation of the model in Section 6.1.

d[MPa] µ β η[MPa h] n α rp

21.95 0 −2.38 1500 1.5 0.375 1.05

Table 6.3: Values of constitutive model parameters used to fit both the short and long-term
triaxial data

6.2.4 Model results using the newly selected parameters

Figure 6.5 compares the short-term stress-strain curves obtained by Yang and Jiang [16] and

those obtained using the new constitutive model. Results for the three different confining

pressures are shown. We observe that the constitutive model provides a good prediction of

the experimental data for all three confining pressures, at both peak stress and in the region

of material softening. The experimental data obtained from the long-term tests is shown in

Figure 6.6, along with the response of the new constitutive model. Here we observe that

the constitutive model generally underestimates the strain shown in the experimental data.

However the overall shape of the curves is very similar, therefore the constitutive model
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provides a useful approximation.
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Figure 6.5: Validating constitutive model using short-term stress-strain triaxial data: (a)
σ3 = 3MPa; (b) σ3 = 5MPa; (c) σ3 = 7MPa
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Figure 6.6: Creep response of model under yield stress

Figure 6.7 shows the Mohr’s circles corresponding to the peak stresses of the constitutive
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model for the three different confining pressures (peak stresses obtained from Figure 6.5).

From Figure 6.7 we calculated c and φ corresponding to these peak stresses. These values

were then compared to those calculated by Yang and Jiang [16]. From Table 6.4 we observe

that the peak strength parameters obtained for the new constitutive model are close to those

calculated from the experimental data.

c[MPa] φ[o]

Yang and Jiang [16] 17.97 58.4

Constitutive model 20.1 58.1

Table 6.4: Peak strength parameters obtained from experimental data and the new constitu-
tive model (see Figure 6.5)
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Figure 6.7: Calculating peak strength parameters

6.2.5 Non-associated flow

Figure 6.8 shows the effect of ψ on the short-term stress-strain response of the model for

all three confining pressures using the model parameters selected earlier in the chapter (see

Table 6.3, however note that both µ and β require recalculation due to the effect of ψ). Three

values of ψ are shown; 20o, 40o and 58.4o (associated flow). Here we observe that a smaller

value of ψ causes the strength of the material to be reduced, as expected, and the peaks of

the stress-strain curves are lower than when using associated flow. Therefore a new set of

model parameters would need to be determined when using non-associated flow.
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Figure 6.8: Effect of dilation angle on the model response: (a) σ3 = 3MPa; (b) σ3 = 5MPa;
(c) σ3 = 7MPa

6.3 Modelling cavity in a frictional viscoplastic-damage medium

We now implement the constitutive model into the energy-based method for cavity analysis

analogous to the von Mises viscoplastic-damage model shown in Chapter 5. Figure 5.12

provides an overview of the incremental loading procedure. The model parameters used here

are the same as for the elastoplastic Drucker-Prager model in Section 3.6.3, with additional

parameters ∆t = 0.05, n = 1.5, η = 50000 MPa day, rp = 1.05 and α = 0.2. The cavity

pressure pi is 25 MPa. As for the von Mises viscoplastic-damage model we find that for

the selected parameters the cavity reaches a stable condition. This is shown in Figure 6.9

through the displacement of the cavity wall reaching a constant value. From Figure 6.11 we

can see the effect of damage on the cavity stresses. Figure 6.10 shows the variation of the

cavity wall displacement with time for a greater level of damage (rp = 1.15). Here we clearly

observe both secondary and tertiary creep behaviour (see Figure 2.1). When rp = 1.0 the

model reduces to a perfectly viscoplastic model with no damage. As t→ ∞ we can see from

Figure 6.9 and 6.11 that the displacements and stresses match well with the rate-independent

finite element (FE) results obtained in Chapter 3 for the Drucker-Prager model.
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6.4 Summary

• a novel frictional viscoplastic-damage constitutive model has been derived within the

framework of hyperplasticity. This model is able to describe both secondary and tertiary

creep behaviour (see Figure 2.1).

• both short-term and long-term triaxial tests have been simulated using MATLAB 7.9.0

in order to compare the model with experimental data obtained by Yang and Jiang [16].

The model provides a good fit to short-term stress-strain curves obtained for different

confining pressures, and a reasonable fit to the long-term creep data.

• this new constitutive model has been successfully implemented into the energy-based

method for cavity analysis.
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Figure 6.11: Variation of stresses with radial distance at different values of time: (a) σrr and
σθθ at end of loading stage (t = 1); (b) σrr and σθθ at t = 50
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Chapter 7

Conclusions and suggestions for

further work

In this thesis it has been shown that an energy-based method can be used to develop new

analytical solutions for the time-dependent creep closure of deeply embedded cavities, where

the method of cavity analysis and the constitutive behaviour are consistent with the laws of

thermodynamics. An objective for this work was to produce models which could be used in

the early stages of the cavity design process. This has been achieved as both two-dimensional

(2D) and 3D cavity models have been developed using the energy-based method, and a wide

range of different constitutive behaviour has been incorporated.

The novel work in this thesis can be found in Chapters 4, 5 and 6. We will now summarise the

key conclusions drawn from this thesis by looking at how each of the three specific objectives

stated in Section 1.3 has been achieved. As we do this the novel work will be highlighted.

7.1 Achievement of specific objectives

7.1.1 Development of cavity models which can incorporate different ma-

terial behaviour

This thesis has shown that both linear and non-linear material behaviour can be incorpo-

rated into models for cavity analysis developed using the energy-based method, showing that

the first aim of Section 1.3 has been achieved. Chapter 3 provides background information

describing how the energy-based method can be used to derive existing cavity solutions for

elastic, viscoelastic and elasto-plastic constitutive behaviour. Chapters 5 and 6 build on this

work and present novel viscoplastic-damage constitutive models.

Initially, simple plane strain elastic solutions are presented in Chapter 3 for 2D cylindrical

and spherical cavities located in an isotropic stress field. Closed-form solutions for the dis-

placements and stresses were derived, which were shown to be identical to those found by

other authors using an alternative approach of system equilibrium. A more complex solution

– 151 –
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was then derived for the cylindrical cavity located in an anisotropic stress field. This solution

required use of a 1D finite difference (FD) technique to solve the governing equations for

the displacements. The displacements and stresses showed excellent agreement with existing

closed-form solutions.

Creep behaviour was first introduced into the energy-based method in Chapter 3 in the form

of linear viscoelasticity in the Laplace domain. The inversion of the Laplace transform was

carried out numerically in order to obtain the time-dependent displacements. Both the cavity

displacements and stresses showed excellent agreement with existing closed-form solutions.

The use of a numerical inversion of the transform produces a general solution into which

different viscoelastic constitutive models can be incorporated with ease and we do not have

to rely on an analytical inversion scheme.

Plastic material behaviour was introduced in Chapter 3 using the theory of hyperplasticity

and two simple elasto-plastic constitutive models were derived using this approach; von Mises

and Drucker-Prager. These models were successfully incorporated into the energy-based ap-

proach for cavity analysis. The displacements and stresses surrounding the cavity showed

good agreement with finite element (FE) analysis.

Viscoplastic material behaviour was introduced in Chapter 5 and a thermodynamically consis-

tent von Mises viscoplastic constitutive model was derived using the theory of hyperplasticity.

This model was incorporated into the energy-based method for cavity analysis, using an in-

cremental loading procedure in order to provide an approximation to the excavation of an

underground cavity. The time-independent displacements and stresses obtained in Chapter

3 for the elasto-plastic model were used as a limit for the time-dependent solution. As time

tended towards infinity or as the viscous material parameter tended towards zero, the dis-

placements and stresses corresponded well. This close match gives us confidence that the

viscoplastic model provides sensible results.

New viscoplastic-damage constitutive models developed in Chapters 5 and 6 (for which con-

clusions are drawn in Section 7.1.3) describe both the secondary and tertiary stages of creep

and were successfully incorporated into the energy-based method for cavity analysis. Find-

ings showed that damage increases the displacement of the cavity significantly, highlighting

the importance of designing for such behaviour and the usefulness of these new models for

the design of deeply embedded cavities. When no damage was present we found that the

displacements and stresses surrounding the cavity were identical to the time-independent val-

ues obtained for the elasto-plastic models, as time tended towards infinity or as the viscous

material parameter tended towards zero. This finding and the results from the parametric

study carried out in Section 5.3.5 suggests that the models successfully describe both the

secondary and tertiary stages of creep behaviour.
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The adopted approach of using the energy-based method has shown itself to be flexible

through allowing a wide range of material behaviour to be incorporated, including the new

viscoplastic-damage constitutive models to analyse deeply embedded cavities.

7.1.2 Development of a 3D model

In Chapter 4 a 3D solution for a cavity deeply embedded in a viscoelastic medium has been

developed for the first time. This model was developed using the concepts introduced in

Chapter 3; the energy-based method for cavity analysis and the incorporation of viscoelas-

ticity in the Laplace domain. The problem is 3D due to the effect of a tunnel face. The

development of this model satisfies the second specific objective of this research stated in

Section 1.3. The displacements and stresses showed excellent agreement with closed-form

solutions away from the tunnel face in the plane strain condition, and the displacements

showed good agreement with finite element (FE) analysis at the tunnel face. Previous ana-

lytical solutions are based on a 2D idealisation (e.g. [5], [8], [9], [10], [12]) and the analysis

of stresses and displacements near the tunnel face is performed by regarding the face as pro-

viding a fictitious support pressure. The magnitude of the internal pressure is related to the

face position using empirical relations based on field measurements or 3D FE analyses. How-

ever, there are significant uncertainties in extrapolating these empirical relations to different

design situations and rock behaviour. Our new 3D solution can predict the full interaction

between the tunnel and the surrounding creeping rock. In this respect, the new solution can

be incorporated together with field monitoring data in an expert system for tunnel design

similar to that illustrated by Schubert [11].

7.1.3 Development of new energy-based constitutive models

To fulfil the requirement of the last objective proposed in Section 1.3 a new class of ther-

modynamically consistent constitutive models was developed in Chapters 5 and 6. These

models couple viscoplasticity and damage and they successfully describe both the secondary

and tertiary stages of creep behaviour, proving it is possible to model the full range of creep

behaviour using the framework of hyperplasticity. Models were derived for both frictionless

and frictional materials. The frictionless model presented in Chapter 5 uses a von Mises yield

function, whilst the frictional model shown in Chapter 6 uses a Drucker-Prager yield func-

tion. Material damage was incorporated using the theory of continuum damage mechanics

(CDM). In Chapter 6 it was shown that the model can provide a good fit to the experimen-

tal data obtained by Yang and Jiang [14] during short-term and long-term triaxial testing

of sandstone, suggesting that these models could be used to realistically describe the creep

behaviour of rock.

7.2 Practical application

It is common place to conduct complex FE (e.g. [6]) or FD (e.g. [1]) analyses to accurately

predict the time-dependent response during the excavation process of a cavity. However, such
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analyses are computationally expensive for routine practice. The design tools developed in

this thesis could be used in addition to FE analysis, but in the early cavity design process

to carry out a parametric study on the long term behaviour to determine whether additional

support or a change in the excavation procedure is required. It is important to note that the

tools developed here only require a simple text file as an input (e.g. material parameters,

geometry, pressure) and do not require the construction of an initial geometry or FE mesh.

These tools are user friendly and require minimal skill to operate. This has been shown

through the development of a simple standalone program for the 3D model in Chapter 4.

The flexibility of this energy-based approach for solving cavity problems has successfully

met the aims of this research by demonstrating it can be used for 3D problems as well as

incorporating a wide range of material behaviour. Therefore these tools could be applied

to a wide range of cavity problems, such as tunnelling problems, the design of underground

storage caverns to hold hydrocarbons and nuclear waste (e.g. [3]), as well as problems outside

the field of geomechanics.

7.3 Suggestions for further work

The tools developed in this thesis for cavity analysis have been programmed using MATLAB

7.9.0, but the performance could be improved greatly using a code such as FORTRAN. The

current code could be investigated to see whether it could be written more efficiently so as to

enable speed up. The run times of the models could then be compared with FE analysis in

order to evaluate the performance. For example Basu et al. [2] developed a 3D model for piles

using the energy-based method adopted in this thesis and compared run times of their model

which used a FORTRAN code, with FE analysis. They found that their model required much

less computation time. In particular the viscoplastic-damage constitutive models developed

in Chapters 5 and 6 could be incorporated into a commercial FE code such as ABAQUS,

used in this thesis, by writing user subroutines. The run times of the energy-based cavity

models in Chapters 5 and 6 could then be compared with those obtained using FE analysis.

Conducting these tests would also allow the viscoplastic-damage cavity displacements and

stresses shown in Figures 5.13-5.16 and Figures 6.9-6.11 to be compared with FE analysis,

thus providing a rigorous validation, rather than just a parametric study conducted in this

thesis.

The 3D model developed in Chapter 4 currently uses viscoelastic material behaviour. This

model could be extended to incorporate the viscoplastic-damage constitutive models devel-

oped in this thesis, and thus more accurately predict the response of creeping rock.

The frictional viscoplastic-damage constitutive model developed in Chapter 6 could be com-

pared with a greater amount of experimental data in order to obtain the material parameters

more accurately. Ideally an experimental program would be conducted in the laboratory
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on samples of rock. Both short-term and long-term triaxial tests could be conducted under

different levels of confining pressure and rates of loading in order to determine more accurate

strength parameters.

It would be useful to investigate the effects of temperature on the response of the viscoplastic-

damage constitutive models developed in Chapters 5 and 6. Significant temperatures can be

present in deep cavities which may increase the creep deformation as shown in Figure 2.3.

Temperature dependency could be easily incorporated within the theory of hyperplasticity

as explained by Houlsby and Puzrin [7]. This involves modifying the dissipation potential

which is used to derive a new constitutive model. These models could also be generalised

by incorporating an appropriate Lode angle dependency function such as that suggested by

Eekelen [4].

Finally, the models developed for cavity analysis could be compared to time-dependent field

data to investigate their practical use. Many publications exist where models for cavities or

tunnels are validated using in situ closure measurements (e.g. [1], [13]). This would provide

an idea of how realistic the models developed in this thesis are and how useful they are

to practically help the design of deeply embedded cavities in the early stages of the design

process. Such a comparison could be used to evaluate the 3D viscoelastic cavity model

developed in Chapter 4 and the 2D viscoplastic-damage models shown in Chapters 5 and 6.
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MATLAB code

The MATLAB code written during this research is included on a CD below. The CD has a
separate folder for each chapter, which contains the main programs, associated functions and
a text file providing a description of each program.
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