
Durham E-Theses

Veri�cation and Validation of JavaScript

XIONG, WEI

How to cite:

XIONG, WEI (2013) Veri�cation and Validation of JavaScript, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7326/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7326/
 http://etheses.dur.ac.uk/7326/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Verification and Validation of

JavaScript

Wei Xiong

School of Engineering and Computing Sciences

Durham University

A thesis submitted for the degree of

Doctor of Philosophy

2012

mailto:wei.xiong@dur.ac.uk
http://www.dur.ac.uk/ecs/
http://www.dur.ac.uk

I would like to dedicate this thesis to my loving parents,

for their concern and precious support.

Acknowledgements

I would like to give deep appreciation to the people who have helped me in

the years for this thesis. First of all, it is great privilege to work with my

supervisor Emeritus Professor Malcolm Munro, his invaluable guidance and

proficient knowledge on our research always benefited me.

Secondly, I’d like to thank to my former supervisor Professor Shengchao Qin

who initiated my research direction and provided technical support. This

thesis will not able to be finished without their supervision.

Thirdly, my sincere thanks to my colleagues, Chenguang Luo and Guanhua

He, their knowledge over program verification and precious discussions with

them really inspired our research. The continuous encouragement from other

colleagues gave me more confidence to constantly work hard on research, they

are Aziem Chawdhary, Chris Watson, Jamie Godwin, Granville Barnett,

Ryuta Arisaka, and the people who I have been worked with in Durham

University.

In addition, I would also need to thank Professor Zongyan Qiu and Dr Huib-

iao Zhu for sharing their knowledge and research experience on program for-

malisation and language semantics. They helped me explore my experience

on separation logic and operational semantics.

I also want to acknowledge Ander Moller for sharing his experience on JavaScript

type analysis system, a senior JavaScript architect Douglas Crockford for his

encouragement on developing a formal verification system for the JavaScript,

Dr. Sergio Maffeis for sharing his research experience on designing a program

logic for the JavaScript.

Finally, I could not thank enough to my parents. Their constant love, con-

cern, encouragement, and patience they have given me through my life kept

me staying positive and went through the course of this thesis.

Abstract

JavaScript is a prototype-based, dynamically typed language with scope

chains and higher-order functions. Third party web applications embedded

in web pages rely on JavaScript to run inside every browser. Because of its

dynamic nature, a JavaScript program is easily exploited by malicious ma-

nipulations and safety breach attacks. Therefore, it is highly desirable when

developing a JavaScript application to be able to verify that it meets its ex-

pected specification and that it is safe. One of the challenges in achieving this

objective is that it is hard to statically keep track of the heap-manipulating

JavaScript program due to the mutability of data structures. This thesis fo-

cuses on developing a verification framework for both functional correctness

and safety of JavaScript programs that involve heap-based data structures.

Two automated inference-based verification frameworks are constructed based

upon a variant of separation logic. The first framework defines a suitable sub-

set of JavaScript, together with a set of operational semantics rules, a spec-

ification language and a set of inference rules. Furthermore, an axiomatic

framework is presented to discover both pre/post-conditions of a JavaScript

program. Hoare-style specification {Pre}prog{Post}, where program prog

contains the language statements. The problem of verifying program can be

reduced to the problem of proving that the execution of the statements meets

the derived specification language.

The second framework increases the expressiveness of the subset language to

include this that can cause safety issues in JavaScript programs. It revises

the operational rules and inference rules to manipulate the newly added

feature. Furthermore, a safety verification algorithm is defined.

Both verification frameworks have been proved sound, and the results ob-

tained from evaluations validate the feasibility and precision of proposed

approaches. The outcomes of this thesis confirm that it is possible to anal-

yse heap-manipulating JavaScript programs automatically and precisely to

discover unsafe programs.

Copyright c© 2012 by WEI XIONG.

The copyright of this thesis rests with the author. No quotations from it should be

published without the authors prior written consent and information derived from it

should be acknowledged

vi

Contents

1 Introduction 1

1.1 Background . 2

1.2 Motivation . 5

1.3 Objectives . 6

1.4 Criteria for Success . 7

1.5 Thesis Organization . 9

2 Literature Review 11

2.1 Introduction . 11

2.2 JavaScript as a Scripting Language . 12

2.2.1 Main Features of JavaScript . 14

2.2.1.1 Data Type and Variable 14

2.2.1.2 Object Structure . 15

2.2.1.3 Functions . 15

2.2.1.4 Prototype and Inheritance 17

2.2.1.5 Other Conventions . 22

2.2.2 Client-Side JavaScript . 25

2.2.3 ADsafe . 30

2.2.4 Summary . 33

2.3 Formal Verification . 34

vii

CONTENTS

2.3.1 Model Checking . 36

2.3.2 Hoare Logic and Verification . 37

2.3.3 Separation Logic and Verification 39

2.3.4 JavaScript Program with Formal Framework 41

2.4 Summary . 43

3 JSsl - A Subset of JavaScript 47

3.1 Introduction . 47

3.2 The Language JSsl . 48

3.2.1 The Features and Conventions of JSsl 49

3.2.2 The Syntax of JSsl . 51

3.3 Example . 53

3.4 Semantics for JSsl . 55

3.4.1 Semantic Domain . 55

3.4.2 Operational Semantics . 59

3.5 An Axiomatic Framework for JSsl . 68

3.5.1 Specification Language for JSsl . 70

3.5.2 Inference Rules . 72

3.5.3 Soundness . 81

3.6 Summary . 83

4 JS t
sl - A safe usage of this for JSsl 84

4.1 Introduction . 84

4.2 Example Analysis . 87

4.3 Reachability Graph Analysis for JS t
sl . 95

4.4 Verification . 99

4.4.1 The Language JS t
sl . 99

4.4.2 Revised Operational Semantic Rules 101

viii

CONTENTS

4.4.3 Specification Language for JS t
sl . 102

4.4.4 Main Verification Algorithm . 105

4.4.5 Formal Property: Safety . 107

4.4.6 Revised Inference Rules . 109

4.4.7 Soundness . 114

4.5 Summary . 114

5 Case Studies and Evaluation 115

5.1 Introduction . 115

5.2 Case Studies . 115

5.2.1 Case Study A . 117

5.2.2 Case Study B . 123

5.2.3 Case Study C . 129

5.2.4 Case Study D . 134

5.3 Evaluation . 137

5.3.1 Analysis of Case Studies . 137

5.3.2 Evaluation of JS t
sl Framework . 139

5.4 Summary . 142

6 Conclusion 143

6.1 Introduction . 143

6.2 Contribution . 144

6.3 Criteria for Success . 145

6.4 Future Work . 147

6.5 Summary . 148

A Appdx A 149

B Appdx B 158

ix

CONTENTS

References 182

x

List of Figures

1.1 Thesis Structure . 10

2.1 Three Important Concepts in JavaScript 14

2.2 Variables Declaration in JavaScript . 16

2.3 Objects Structure in JavaScript . 16

2.4 Closure in JavaScript . 18

2.5 Function Declaration vs. Function Expression 18

2.6 Inheritance in JavaScript . 19

2.7 Inheritance of Function Object in JavaScript 19

2.8 Metaprogramming in JavaScript . 23

2.9 Overview of Web Browser Implementation 24

2.10 ADsafe Structure in HTML Document . 32

2.11 Frame Rule in Separation Logic . 41

3.1 JavaScript v.s. JSsl . 48

3.2 Syntax of JSsl . 54

3.3 JavaScript Example . 56

3.4 JSsl Example . 56

3.5 Operational Semantics for Variable Assignments 61

3.6 Operational Semantics for Field Statements 62

xi

LIST OF FIGURES

3.7 Operational Semantics for Function Invocation 65

3.8 Operational Semantics for Object Creation 67

3.9 Operational Semantics for Control Structures 69

3.10 The Specification Language Specsl . 72

3.11 The Semantic Model for Specsl . 73

3.12 The Semantic Model for Pure Formula in Specsl 74

3.13 Inference Rules for Variable Assignments and Field Statements 76

3.14 Inference Rules for Function Invocation 78

3.15 Inference Rules for Object Creation . 80

3.16 Inference Rules for Control Structures . 80

4.1 Example of this variable manipulation in JavaScript 86

4.2 Example of this variable manipulation in JS t
sl 88

4.3 Reachability Graph Notations . 89

4.4 Reachability graph after line 1 . 90

4.5 Reachability graph after line 6 . 90

4.6 Reachability graph after line 8 . 91

4.7 Reachability graph after line 10 . 92

4.8 Reachability graph after line 12 . 93

4.9 Reachability graph after line 14 . 94

4.10 Reachability graph after line 16 . 96

4.11 Reachability graph after line 18 . 97

4.12 Syntax of JS t
sl . 100

4.13 Revised [op-mutate-field] Rule . 101

4.14 The Specification Language Spectsl . 103

4.15 Scope and Prototype Lookup Chain . 104

4.16 The Additional Semantic Model for Spectsl 105

xii

LIST OF FIGURES

4.17 Logic Predicate Semantic Model for Spectsl 110

4.18 Updated Inference Rules for Variable Assignments and Field Statements . 111

4.19 Updated Inference Rules for Function Invocation 112

4.20 Updated Inference Rules for Object Creation 113

4.21 Updated Inference Rules for Control Structures 113

5.1 JavaScript for Case Study A . 118

5.2 JS t
sl for Case Study A (Phase 1) . 118

5.3 Program Analysis for Case Study A (Phase 2) 120

5.4 Algorithm Application for Case Study A (Phase 3) 122

5.5 JavaScript for Case Study B . 124

5.6 JS t
sl for Case Study B (Phase 1) . 124

5.7 Program Analysis for Case Study B (Phase 2) 126

5.8 Algorithm Application for Case Study B (Phase 3) 128

5.9 JavaScript for Case Study C . 129

5.10 JS t
sl for Case Study C (Phase 1) . 130

5.11 Program Analysis for Case Study C (Phase 2) 132

5.12 Algorithm Application for Case Study C (Phase 3) 133

5.13 JavaScript for Case Study D . 134

5.14 JS t
sl for Case Study D (Phase 1) . 135

5.15 Program Analysis for Case Study D (Phase 2) 136

5.16 Algorithm Application for Case Study D (Phase 3) 137

xiii

List of Tables

2.1 Overview Comparison Between JavaScript and Java 13

2.2 Dot prototype vs. Dot [[prototype]] . 21

2.3 Comparisons of Frameworks for JavaScript 46

4.1 Features Comparison of JSsl and JS t
sl . 101

4.2 Properties Comparison of Specsl and Spectsl 102

5.1 Summary of Case Studies . 139

5.2 JS t
sl vs. other frameworks . 141

xiv

List of Algorithms

1 Safe This Algorithm . 107

xv

Chapter 1

Introduction

Computers were developed in the last century and the computer revolution has grown

to have a huge impact on peoples’ daily lives, computer-based systems play an increas-

ingly significant role across all aspects of human life. People heavily rely on various web

technologies, such as social networking, online shopping, and email. Client-side web tech-

nologies allow users to participate more interactively and collaborate with each other.

For example, a scripting language like JavaScript can be used to upload and download

data from a web server without undergoing a full page reload. However, JavaScript

is double-edged sword. The greater power of the language also brings a greater risk.

JavaScript lacks the maturity of the object-oriented languages, for example, every block

of code shares the same execution priority, the private variables and methods can be ac-

cessed by an outside object, the same code can produce different output under different

browsers. Therefore, the users’ private information and the authority of the web pages

could be breached because of a malicious client-side JavaScript application.

Web applications provide the potential for malicious parties to deliver scripts to run

on a client computer via the web, so that the web registered users’ private information

can be leaked if the web page was compromised or under attack. For example, the social

networking website LinkedIn announced that 6.5 million of its members’ passwords were

1

1.1 Background

posted onto the Internet after the website was compromised on June 2012 (Lin12).

The users’ information were leaked through a breach of log in JavaScript application

that connects to database. Another example, a malicious third party advertisement

exploited The New York Times web site (Newch) in 2009. The New York Times website

included some advertisements from third party advertisers’ servers which changed the

advertisement to take over the entire window/web page (host page) and entice users into

downloading fake anti-virus software.

Since unsafe web applications can bring catastrophic results, a systematic method

is urgently needed to ensure that the developed applications are safe, robust and fulfill

the requirements of users. However, the growth of web applications in terms of size and

complexity make checking this manually almost impossible. Besides, testing is limited

in its test sets to discover latent threats (Dij72). A solution is to develop a framework

based on formal verification approach to verify software, and enhance the quality of web

applications (HM04). The aim of this thesis is to provide a formal method to enhance

the safety of web applications.

1.1 Background

There are various approaches to improve the quality of software, including program

language design, formal specification language design, program testing, model checking,

static analysis and other program analysis techniques and verification.

A design for programming language can avoid certain kinds of programming errors

(JMG+02; CHA+07). For example, the Java language adopted the design of a garbage

collector which eliminates the needs of explicit memory allocation and deallocation that

can prevent program execution from heap space memory exhaustion (Ven99). Another

example is the design of Haskell and OCaml, which eliminate type casting to prevent type

errors from occurring at run time (Jon03; LDG+10). Google developed the Dart language

2

1.1 Background

to replace JavaScript for enhancing the safety and security of scripting languages (Darge).

However, such an approach cannot guarantee the correctness of programs, and it also

cannot remove the issues that already exist in current languages.

Formal specification is another approach to enhance the quality of programs. It

involves using a specification language to specify the requirement and behaviour of a

program in a rigorous mathematical way. The specification language is usually a higher

level language than the programming language. It creates a foundation during program

analysis and verification to specify the programs for further analysis, such as correctness

analysis of the programs. For example, UML was designed to model applications (Jac99),

CSP describes patterns of interaction in concurrent system as a formal specification

language (Hoa78), CASL is a Common Algebraic Specification language based on first-

order logic with induction (BM04), and the Z specification language is based on typed

first-order predicate logic and produced to describe complex dynamic systems in a smaller

and simpler mathematical way than any programming language can provide (Spi89).

Program testing is a another widely applied and efficient approach to provide infor-

mation about the reliability and quality of software. It is a process of validating and

verifying that the software works as expected or satisfies the needs of stakeholders by

executing programs with certain sets of input values and determining whether the soft-

ware can satisfy the input-ouput specification. The challenge for software testing is in

automatically generating a test set to a high standard (Bez90; HH91). The complexity

of the software makes the completeness of the infinite test cases set impossible (Dij72).

Model-based testing (MBT) provides an approach to analyse the test results instead

of focusing on the test set generation (Liu11). This approach proposes a specification

based upon a formal model to generate expected inputs and outputs. It compares the

actual generated outputs with expected outputs, and is able to decide on further actions

such as modifying the model and generating more tests, or stopping testing and esti-

mating reliability of the software. However, verifying the completeness of the test sets

3

1.1 Background

is a challenge in software testing. The test sets may improve the degree of the precision

and efficiency of the approach, but it cannot cover certain explicit characteristic of the

program, such as functional correctness and safety.

To overcome the weaknesses of testing, formal verification is proposed to be an-

other path ensuring the qualify of software. It uses mathematical based approaches to

perform the static analysis and verification of programs. Model checking is introduced

to automatically verify the correctness of finite-state systems by an exhaustive explo-

ration of the space of the computation states according to a specification in temporal

logic (CE81; QS82). It uses abstraction techniques to calculate potentially infinite sets

of computation states to finite states. The SLAM 1 model was successfully applied

to Microsoft Static Drive Verifier (BR02; BCLR04). BLAST is a C language program

model checker that employs counterexample guided automatic abstraction refinement

(HJMS03).

Another formal verification approach is deductive logic inference verification. It uses

logic formulas to formally describe the behaviour of programs and interpret program

statements as predicate transformers to reason about program with axioms and inference

rules in axiomatic systems (Flo67; Hoa69).

Static program analysis is used to derive properties of programs in a systematic way.

In contrast to dynamic analysis, it executes program code symbolically based on an

abstract model (NNH99). The abstract model is intended to conceptually derive all

possible states that the program may reach at run time. The soundness of the analysis

then can be proved in a rigorous mathematic way. The algorithms of the analysis are

used to simulate all the possible program behaviours and inputs arising dynamically at

run time, rather than actually executing the program in a computer.

1The SLAM project originated in Microsoft Research in early 2000. Its goal was to automatically
check that a C program correctly uses the interface to an external library.

4

1.2 Motivation

1.2 Motivation

JavaScript has become the most widely used language for client-side web program-

ming (RLBV10). The dynamic features and flexible characteristics of the language make

understanding its program codes notoriously hard, and the lack of adequate static analy-

sis tools make it hard to ensure the safety and correctness of its programs. Therefore, it is

highly desirable to develop a framework to formally describe the behaviour of JavaScript

programs and reasoning about them.

The design principles within JavaScript were taken from the Self and Scheme lan-

guage and influenced by the C, Java, Python, and Perl languages. JavaScript follows

certain conventions such as shared mutable data structures which means that one data

structure could be pointed to or referred to by multiple pointers or references. These

pointers or references are alias to each other, and the data structure could be modified

after creation by any access path. This makes JavaScript programs even harder to keep

track of the properties of its data structure statically than Java programs because of

these dynamic features.

The emergence of separation logic (IO01; Rey02) promotes scalable and precise rea-

soning via explicit separation of structural properties over heap memory where recursive

data structures are dynamically allocated. It enables the automated verification and

analysis of heap manipulating programs. Being an extension of Hoare logic (Hoa69),

separation logic is used to verify the functional correctness of programs by modelling

stack and heap memory in a natural and accurate manner. A number of approaches

have been made to automatically verify programs written in mainstream imperative lan-

guages such as C, C++, and Java (CDNQ08; BCO05; NDQC07; RL10; CDNQ10). An-

other advantage of using separation logic is to verify other properties of programs, rather

than just memory safety and functional correctness. For example, the shape property 1

1In Chin et al. (2007), shape property refers to the expected forms of some linked data structures,
such as cyclic lists, doubly-linked list, height-balanced trees and sorted lists trees.

5

1.3 Objectives

of linked lists and trees, the length of list and sorted order of list, the height of a tree

and binary search property (CDNQ07; CDNQ08; CDNQ10; LHQ08; NDQC07). Using

separation logic to verify the functional correctness of JavaScript programs has been an

open research problem.

Another motivation of this thesis is to improve the quality of JavaScript client-side

programs. As the programs are executed on the client platform, not only the correctness

but also the safety of the programs are of concern to both the developers and end

users. In this case, the client-side third party applications written in JavaScript may

inject vulnerabilities into the host pages, which becomes a prominent threat. Comparing

with the main stream programming languages, there is no adequate formal system for

verifying the safety of third party JavaScript programs with respect to the host page.

Therefore, the program would be more robust if a framework could also improve the

safety of the program applications.

1.3 Objectives

The main objective of this thesis is to increase the level of automation of JavaScript

program verification. The investigated aspects of the programs are functional correct-

ness, and safety of third party application with respect to the host page. This thesis aims

to develop an axiomatic system for verifying JavaScript programs. More specifically, the

goal can be described in detail as follows:

Program Logic The first objective is to develop a program logic to automatically

reason about a broad subset of JavaScript, including challenging features such as

object field modification on the fly, function object, prototype inheritance, and

scope chain. Logical reasoning has much to offer JavaScript, such as a formal

description of program behaviour, and the ability to verify more general properties

of the program, such as safety.

6

1.4 Criteria for Success

Unsafe program Discovery The second objective is to infer the precondition and

postcondition of the program state, so that the generated specification can be pre-

cise enough for further analysis. For example, the specification can be progressed

to analyse reachability relationships among objects. After further analysis, the

objects that establish the reachability to the object window will have the ability

to visit all the objects enclosed in the web page could be abstractly defined in a

set. According to analysis of such a set, objects that directly or indirectly take on

the authority of window can be discovered.

1.4 Criteria for Success

This section defines the measures of accomplishment to be used to evaluate this

research, a series of criteria for assessing the success of the research shows as follows:

1. Definition of a suitable and a safe subset of JavaScript

This research will define a suitable subset of JavaScript that can be used in the

formal analysis for functional correctness and safety properties. An extremely

small (trivial) subset would narrow down the range of its application functionality,

whereas full JavaScript features are difficult to be verified using formal methods.

Therefore, this criterion specifies whether the language has the trade-off between

the expressiveness of the subset language and the feasibility with formal method

verification.

Generally, the safety property of a program refers to memory safety. In this thesis,

a program written in the subset of JavaScript is defined to be safe if and only if

the program does not maliciously interfere with the website host, especially the

arbitrary manipulation of global variables on the host.

2. Define Operational and Axiomatic semantics of the JavaScript subset

7

1.4 Criteria for Success

For a verification framework, the underlying operational semantics must be pre-

sented to fully describe how a valid subset language program is interpreted as

sequence of computational steps in a mathematically rigorous way. The under-

lying axiomatic semantics will be provided to prove the functional correctness of

the subset language programs. The pre-condition and post-condition assertions

written in logical statements will describe the meaning and status of statements

of the program.

3. Definition of safety verification algorithm

A verification framework must construct a specification language that is used to

define predicates to specify program safety properties. The safety property must

be formally defined in a rigorous mathematical way, and a verification algorithm

should be designed to assist users to decide whether or not programs are safe.

4. Proofs of program written in the JavaScript subset

As a verification system, the soundness property is the most fundamental property

that needs to be proved. In this thesis, the system is sound if and only if its

axiomatic inference rules prove only assertions that are valid with respect to its

operational semantics.

8

1.5 Thesis Organization

1.5 Thesis Organization

This thesis is constructed using 6 chapters including current introduction Chapter 1.

Figure 1.1 displays the interconnection relationships between the chapters. In Figure

1.1, the oval box represents the program verification topic, the diamond boxes represent

properties of the language, and the rectangle boxes represent the reviews and approaches

that have been employed.

Chapter 2 provides the state-of-the-art literature survey of the language features of

JavaScript and program verification techniques, especially focusing on separation logic

inference system, as well as the dynamic features of JavaScript.

Chapter 3 presents a subset of JavaScript, together with an axiomatic framework.

The framework is composed of the operational semantics for strong soundness proof,

the specification language describing the abstract domain, and the inference rules to

automatically deduce the specification of the program states. The aim of this chapter is

to develop a framework for verifying the correctness of the subset language.

Chapter 4 describes an upgraded axiomatic framework based on the one developed

in Chapter 3. The language targeted in this chapter has more expressiveness than the

one in Chapter 3, together with its safety issue. The system proposed in this chapter is

able to verify both functional correctness and safety properties.

Chapter 5 presents the experimental results and evaluation of the axiomatic frame-

work.

Chapter 6 concludes and summarises the contributions of the thesis and discusses

possible directions for future work.

9

1
.5

T
h

e
sis

O
rg

a
n

iz
a
tio

n

Figure 1.1: Thesis Structure

10

Chapter 2

Literature Review

2.1 Introduction

The discussion of the literature is divided into three parts. Firstly, the features of the

JavaScript language that distinguish it from other programming languages are presented.

A collection of examples are constructed to explain the features individually. Secondly,

the state-of-the-art in the solutions for solving safety problem in JavaScript programs

are introduced. JavaScript is adopted as a script language in a web environment, dif-

ferent web browsers use different JavaScript interpreters. Such diversity causes certain

difference in performance. JavaScript has been widely used to be embedded in HTML

document as third party applications to create dynamic performance. The HTML docu-

ment needs to be protected from the safety issue caused by such applications. Thirdly, a

brief survey of the related work on formal program analysis and verification is discussed.

In particular, the techniques that might be suitable for verifying certain properties of

the JavaScript language are presented.

11

2.2 JavaScript as a Scripting Language

2.2 JavaScript as a Scripting Language

In 1995, JavaScript was born for adding enhancements to the behaviour of web pages,

primarily to web forms (Whi08). With the development of the Internet, the support

for various web applications becomes extremely important. JavaScript was designed by

Brendan Eich and developed by Netscape (Fla11). The desirable properties of JavaScript

include that it was originally designed for increasing the interaction between the web

users and web pages, communicate with the browser asynchronously. For example, online

form applications, flash interactions. JavaScript has been implemented in most browsers,

including Firefox, Safari, IE. Its major implementation are KJS, Rhino, SpiderMonkey,

V8, WebKit, Carakan, Chakra. JavaScript was ranked the most popular programming

language on GitHut and StackOverflow (Git12) in 2012.

JavaScript as a web scripting language has been widely used because of its remark-

able expressive dynamic features. It is more productive and efficient to use JavaScript

to construct applications on the client side with certain libraries (AJAX, Prototype,

etc.) instead of using Java language. The comparisons between JavaScript and Java is

employed in this thesis to answer the question of ”what is JavaScript?”. Table 2.1 shows

general difference between JavaScript and Java from the aspects of execution, platform,

web integration, etc. In comparison with Java, JavaScript has weak typing, prototyping

is more concise, it is more suitable for building up small or middle-scale applications.

This section is aim to provide an overview survey of JavaScript. The language features

that are critical and distinct from other languages are chosen for discussion. The main

outcome of this discussion is that JavaScript is powerful but flawed.

12

2
.2

J
a
v
a
S

c
rip

t
a
s

a
S

c
rip

tin
g

L
a
n

g
u

a
g
e

Item JavaScript Java

Compilation
It is not complied but runs interpretively by

client.

It is compiled into bytecode (machine read-only)
downloaded from server. JVM interprets the

code to run on client.

Platform
It runs within browsers that support it. It runs as applets within browsers that support

it. It also can run as a standalone application on

most platforms (Windows, Unix, Linux, etc.).

Web Ability

It can build dynamic webpages (forms, buttons,
etc.) Its code embedded in HTML.

It can build Applet pages. For example, JSP
(Java Server Pages) can build the webpages that
contains HTML and JavaScript. Its applets dis-
tinct from HTML but can be accessed from
HTML pages.

Web Presence
It develops applications efficiently. The down-
loading times of applications in webpages is re-
duced.

Its applets still exist on the web, but costs more

time to perform.

Client Side

It does not allow direct access to a user’s hard-
drive. The source code can be viewed using
”View Source”, indirect source code also can be
viewed by specified an external JavaScript file
(using the SRC attribute).

It does not allow to access to memory or devices
outside the applet except certain action that ex-
plicitly granted by permission. When its applet
are compiled to bytecode and sent to the client

side, the source code is not human-readable.

Programming Language

It is prototype-based. No distinction between
types of objects. Inheritance is through the pro-
totype mechanism, and fields and methods can
be added to any object dynamically.

It is class-based. Objects are divided into classes
and instances with all inheritance through the
class hierarchy. Classes and instances cannot

have fields or methods added dynamically.

Table 2.1: Overview Comparison Between JavaScript and Java

13

2.2 JavaScript as a Scripting Language

2.2.1 Main Features of JavaScript

There are three important concepts in JavaScript, objects, functions and closures

(See Figure 2.1). The strong relationship among them builds up the foundations for

any type of JavaScript application development. An object is an unordered collection

of fields, each of which has a name and a value. Objects and fields can be modified at

runtime. JavaScript treats functions as objects. A function can be created at runtime,

stored in a data structure and returned as an argument for another function. In addition,

JavaScript sustains closure, which permits functions intrinsically bound to variables

outside their own scope, even when the scope is no longer visible.

Figure 2.1: Three Important Concepts in JavaScript

2.2.1.1 Data Type and Variable

JavaScript contains a group of data types. The primitive types are boolean, number,

string, null and undefined. The rest are of type object, a function is a type of object.

Type-checking mainly happens at runtime. A variable is not declared with a specific data

type, the type of a variable is determined by the latest value assigned to it. The language

provides the var keyword to declare a variable which can be assigned or have its value

modified at any point in the program. Figure 2.2 shows that variables in JavaScript have

14

2.2 JavaScript as a Scripting Language

loose typing and can be modified without any type casting. Unlike, variable declaration

in Java that must be specified with data types and initial value, and a variable cannot

change data type unless forced to by type casting.

2.2.1.2 Object Structure

In JavaScript, an object is an unordered collection of key value pairs. The keys of

objects are fields. Fields are containers for primitive type values and other objects. This

object structure can be specified in a variety of ways. In the case of object literals that

is an object declared with a set of fields and correspondent values.

Figure 2.3 shows an example of how JavaScript declares an object x with fields a, b,

and f in an object literal way. The field a has integer value 10, the filed b is a literal

object that has field c, and the field f is a method of object x. In JavaScript language,

fields are not explicitly defined, and can be added or removed at any time of program

execution. Furthermore, JavaScript allows multiple fields access, for example, x.b.c is

actually two level access. Note that access to non-existent fields in JavaScript would

not generate an error but return undefined value. Attempting to access a field on the

undefined value will result in a runtime error.

2.2.1.3 Functions

A function is a block of JavaScript code which is defined once but might be invoked

several times. A function block definition contains a function name (identifier), a list

of optional parameters, local variables and body of the function. JavaScript functions

have three important properties. First of all, functions are object, as such they have

fields and methods. JavaScript supports first-class functions, which can be assigned

to variables, passed as parameters. Note that any reference to a function allows it to

be invoked using the () operator. Secondly, JavaScript supports nested functions. A

function can define an inner function, the scope of the function includes local variables,

15

2.2 JavaScript as a Scripting Language

1 <s c r i p t type = ” text / j a v a s c r i p t ”>
2
3 var a = 10 ,
4 b = ” Hel lo World” ;
5
6 a = b ;
7 document . write (a) ; //” He l lo World”
8 </s c r i p t >

Figure 2.2: Variables Declaration in JavaScript

1 <s c r i p t type=” text / j a v a s c r i p t ”>
2 var x = {
3 a : 10 ,
4 b : { c : 20 } ,
5 f : function () {
6 return ” F i e ld f i s a method . ” ;
7 }
8 }
9 document . write (x . a) ; //10

10 document . write (x . b . c) ; //20
11 document . write (x . f ()) ; //” F i e ld f i s a method . ”
12 <\ s c r i p t >

Figure 2.3: Objects Structure in JavaScript

inner function object and parameters. Thirdly, JavaScript supports closure. Since the

creation of a nest function defines a lexical scope, this means that a function can be

executed using the variable scope that was in effect when it was defined, not the variable

scope that is in effect when it is invoked (Fla11). A closure is created when an inner

function has access to the local variables located in the outer function. It is generated

whenever the inner function is returned. For example, in Figure 2.4, the outer function

f contains an inner function g. The return of the inner function generates a closure that

is composed of the scope of function g and the local variable a. Note that, the variable

a is declared outside of the inner function g. Technically, all JavaScript functions are

closures and they have a scope chain associated with them. A function object is also

created with a V ariable Object (VO) that refers to its current execution context. A

V ariable Object can visit its local variables, function expression, and parameters that

16

2.2 JavaScript as a Scripting Language

are declared in its context. Variable identifiers are resolved against the scope chain.

The identifier resolution starts with the first V ariable Object in the scope chain. It is

checked to see whether it has a field with a name that corresponds with the requested

identifier. The scope chain is a chain of V ariable Object, if the request identifier can not

be encompassed in the first V ariable Object, the resolution traverses the scope chain to

the next V ariable Object until the identifier is encountered. Note that multiple closures

are allowed and are generated by the same nested function. The closures essentially save

programmers from the need to create global variables all the time as they can keep a

copy of the all the local variables.

In JavaScript, a function is called a method in the case of when a function is created

as a field of an object. Objects can gain methods by assigning a function definition

to a field. There are two ways to define a function in JavaScript (Ecm09), function

declaration and function expression. A function declaration can be translated to a

function expression (See Figure 2.5). The function declaration function f(){......} can

be converted into the function expression var f = function(){......}. In fact, the function

name defined by a function expression can be used only inside the function body, whereas

a function declaration creates a variable with the same name as the function name. Thus,

a function declaration can be accessed by its name in the scope it was defined in. Another

crucial difference is that function declarations are evaluated before the enclosing scope

is executed, but function expressions are evaluated as they are encountered.

2.2.1.4 Prototype and Inheritance

In JavaScript, an object contains a sequence of fields and an internal field [[prototype]]

1 linking to its ”super” object. When fields are accessed from an object by the dot

notation, it returns the value if the field can be found in the current object, otherwise

the field will be examined in ”super” object by following [[prototype]]. The ”super”

1This field is not allowed to be accessed except in certain browser environments, such as Firefox.
Firefox provides variable proto to acquire the authorisation to access [[prototype]] property.

17

2.2 JavaScript as a Scripting Language

1 <s c r i p t type=” text / j a v a s c r i p t ”>
2 var a = ”Goodbye World” ;
3 var f = function () {
4 var a = ” He l lo World” ;
5 var g = function () {
6 document . write (a) ;
7 } ;
8 re turn g () ;
9 } ;

10 f () ; // ” He l lo World”
11 <\ s c r i p t >

Figure 2.4: Closure in JavaScript

1 \\ Function Dec la ra t i on
2
3 <s c r i p t type=” text / j a v a s c r i p t ”>
4 function f () {
5 var a = ” He l lo World” ;
6 re turn a
7 } ;
8 f () ; //” He l lo World”
9 <\ s c r i p t >

1 \\ Function Express ion
2
3 <s c r i p t type=” text / j a v a s c r i p t ”>
4 var f = function () {
5 var a = ” He l lo World” ;
6 re turn a ;
7 } ;
8 f () ; //” He l lo World”
9 <\ s c r i p t >

Figure 2.5: Function Declaration vs. Function Expression

object is the prototype of the current object. If the current object does not contain

the field, the examination follows prototype chain which is linked objects, and return

undefined when the chain of link objects is exhausted. JavaScript uses the prototype

chain to provide inheritance, whereas, in Java, each class is allowed to have one direct

superclass, and each superclass may have an unlimited number of subclasses. In Figure

2.6, the example of the JavaScript shows that the object x is the prototype of the object

y, the object y has the authority to visit the fields that are contained in the object x,

18

2.2 JavaScript as a Scripting Language

such as the field a and f .

1 <s c r i p t type=” text / j a v a s c r i p t ”>
2 var x = {
3 a : 10 ,
4 f : function () { re turn ” He l lo World” ;}
5 } ;
6 var y = { a : 20 }
7
8 y . p r o t o = x ;
9

10 y . a ; //20
11 y . f () ; //” He l lo World”
12
13 <\ s c r i p t >

Figure 2.6: Inheritance in JavaScript

In addition, JavaScript makes no distinction between constructors and other func-

tions. Every function gets a prototype property that is used to store all the fields that

the function’s instance can inherit from. Figure 2.7 shows that a field y can be added

to function object f by .prototype notation on the fly. This statement provides any

instance of object f an additional field y. The notion of prototype and [[prototype]] is

not well defined. Table 2.2 shows the difference between them.

1 <s c r i p t type=” text / j a v a s c r i p t ”>
2 var f = function (x) {
3 t h i s . x = x ;
4 }
5 var g = new f (” He l lo ”) ;
6 g . x ; //” He l lo ”
7 f . prototype . y = 10 ;
8 g . y ; //10
9 <\ s c r i p t >

Figure 2.7: Inheritance of Function Object in JavaScript

Moreover, prototype is one of the function object properties that can be applied for

fields inheritance, whereas [[prototype]] is an internal and hidden property pointed to

an actual prototype (as superclass in Java). Note that, in Table 2.2, getPrototypeOf()

is an object property to check whether the object owns a field, constructor is set to

19

2.2 JavaScript as a Scripting Language

the function’s prototype property at function creation. Object.prototype is the actual

prototype of the object Function.prototype, and they can be distinguished by their

dissimilar internal properties.

20

2
.2

J
a
v
a
S

c
rip

t
a
s

a
S

c
rip

tin
g

L
a
n

g
u

a
g
e

Table 2.2: Dot prototype vs. Dot [[prototype]]

21

2.2 JavaScript as a Scripting Language

2.2.1.5 Other Conventions

There are some other features of JavaScript that need explanation.

• Execution Environment

JavaScript codes rely on an execution environment to be embedded in or to be

included in HTML pages, which is able to perform interactions with the Document

Object Model (DOM) of the page (Ecm09). The code should be either stored in

public (the HTML document) or delivered as a .js external file, and they are

interpreted by an interpreter in the browser on the client-side. In addition, the

interpreters treat unassigned variables, unassigned object fields, functions that do

not have return statement as undefined. The value null is a type of object that

represents object value and the interpreters return null when a variable is set to

an empty value.

• Pass By Value or Reference

In JavaScript, functions parameters are passed either by value or reference. It

depends on the type of the parameter, passing by value if they are primitive type

and passing by reference otherwise. In the case of passing by value, the action

has no effect on the original variables, whereas if the parameters are passed by

reference, the action on them actually copies in the records referred by the reference

and also copies out when the operation of the function is finished. It means that

the modification of such kind parameters changes their records referenced (values)

by the locations.

• Metaprogramming

JavaScript allows code to be represented as strings and executed. For example,

Figure 2.8 shows that a sequence of code is assigned to variable prog as type string,

the execution of eval function cause the execution of the sequence of code. The

eval function is used to execute JavaScript expression, statement, or sequence

22

2.2 JavaScript as a Scripting Language

of statements. The variables declared in a eval function is considered as global

variables. The codes passed to the eval is executed with the privileges of the

interpreters. Thus malicious codes can be executed within the code that passed to

the eval.

1 <s c r i p t type=” text / j a v a s c r i p t ”>
2 var prog = ”x=10;y=20;document . wr i t e (x∗y) ” ;
3
4 eva l (prog) ; //200
5 <\ s c r i p t >

Figure 2.8: Metaprogramming in JavaScript

23

2
.2

J
a
v
a
S

c
rip

t
a
s

a
S

c
rip

tin
g

L
a
n

g
u

a
g
e

Figure 2.9: Overview of Web Browser Implementation

24

2.2 JavaScript as a Scripting Language

2.2.2 Client-Side JavaScript

JavaScript mainly allows programmers to write programs to perform computations

in the client side (the user’s Web browser). JavaScript is not originally designed for

interacting with a database on the serve. In Figure 2.9, the process of how a Web browser

retrieves, presents, and translates contents on web pages is shown. In the step one ([1]),

the end users give valid web address in the context of the web browser. The step two

([2]) process sends the request to the server through the firewall. Note that, the server

owns the original web content and the database. After that, the Web browser downloads

the requested web content back from the server in step three ([3]). Then the browser

scans the web content (document), and delivers the revised web content to the end user

which has been ”translated” into human readable form in step four ([4]). Inside the

Web browser, internal engines such as a rendering engine and a JavaScript interpreter

are responsible for the ”translation” process.

Each browser has its individual JavaScript interpreter. The first JavaScript inter-

preter SpiderMonkey, was created at netscape for the Navigator Web browser (KK97)

and implemented using the C language. Mozilla constructed the Rhino engine which

was developed in Java (Rhiva) for interpreting JavaScript programs. The existing in-

terpreters include TraceMonkey in Firefox (Trane), V8 in Chrome (V81ne), Carakan

in Opera (Carom), JavaScriptCore (also named Nitro) in Safari (Nitit). As these in-

terpreters were developed under different semantic model definition, they may return

different output when executing the same piece of of JavaScript program.

The primary objective of a web browser is to display HTML documents in a window.

The execution environment of the HTML document is considered as a global execution

context. In the context of the client-side JavaScript, the window object represents the

reference of the global object in the global execution context with respect to client-side

programming (Ecm09). It has the authority of manipulating arbitrary properties and

methods in the context of the HTML document (DomOM). Therefore the permission

25

2.2 JavaScript as a Scripting Language

to access the window reflects the permission to manipulate all the global variables.

In addition, JavaScript also has an influence on third party application development

in a web page (host page). A web page may host more than one piece 1 of JavaScript

code, any such piece could be used to publish advertisements or widgets 2 that are

maintained by third parties. Therefore, a malicious third party who has the authority

to access the window object is able to compromise the entire host page. In such a case,

the piece of third party code (guest code) is not safe with respect to the host page.

To solve this safety issue, several mainstream approaches have been introduced, includ-

ing developing new languages, restriction rewriting and wrapper − based isolation,

sandbox virtual machine, and statically verified containment. They are explained as

follows:

Developing New Languages JavaScript language is in full of problems, including un-

safe and insecure. An intuitive solution is developing a brand new language that

performs the same functionality and more robust than JavaScript. Google pub-

lished a DART language aiming to replace JavaScript on the Web ultimately.

The interesting features it supports are optional static typing and single inheri-

tance (Darge). Essentially, DART is intended to solve the fundamental flaws of

JavaScript including memory leak and safety breaching, whilst providing better

performance.

The problem of developing a new mature language would cause hugh barrier for

adoption.

Restriction Rewriting and Wrapper-based Isolation This approach defines safe

subsets of JavaScript which blacklists some features of the language that are con-

sidered as dangerous, rewrites the rest of the features, and wraps the guest code

1A block of JavaScript starts from the tag <script type=”text/javascript”> and end at the tag
</script>.

2A widget is a programmed HTML fragment with some script. That script can manipulate the
HTML fragment but not be able to manipulate any other part of the document.

26

2.2 JavaScript as a Scripting Language

into an enclosed function.

Caja is a project developed by Google (Cajer). It enforces the untrusted guest code

to be executed by a runtime check framework. Caja uses an object−capability security

model to allow a wide range of flexible polices that are intended to make the guest

code safer with respect to the host page. In this model, the objects can only

be changed through the references they hold, objects can only receive references

through methods calls, objects never start with references, the use of functions as

objects is forbidden and encapsulation is enforced. This model encapsulates the

JavaScript codes into a single JavaScript function with no free variables. However

the problems with Caja are that it does not guarantee any particular safe fields

and the rewriting process may cause massive workloads and the runtime cost.

Another example of using rewriting approach is that of Facebook which defines the

FBJS language to develop integrated JavaScript applications on the Facebook web

page. FBJS is subset of HTML and JavaScript (Fbjpt). Essentially, it removes

certain safety-critical constructs (such as eval, Function, constructor), rewrite

others (such as this) to permit them to be used safely, and enforce various wrapped

DOM functions to provide control to the DOM objects. The FBJS library is

applied to attach namespaces for objects in the guest code. However, a safety

issue was found by Maffeis et al. (MMT09b; MMT09a) in 2009. The issue shows

that an object with no capability to modify native objects can indirectly gain such

capability without being granted by the host page. For example, an assignment

of the reference Obj.toString to a new object which Obj was defined in advance.

The new object obviously can manipulate the function toString() that is one of the

methods of the native object Object.prototype. There are still more vulnerability

issues that need to repaired in FBJS (MMT10).

The BrowserShield (RDWD07) system was built to perform dynamic instrumenta-

27

2.2 JavaScript as a Scripting Language

tion of embedded scripts and employ the vulnerability-driven filtering policies for

customised runtime activities. It rewrites the web pages and embeds JavaScripts

into safe equivalents that contain logic for recursively applying runtime checks

to keep modifying content based on known vulnerabilities. However, this system

suffers from massive runtime overhead, and a systematic way of guaranteeing the

correctness of the enforced policies has not been provided.

Guarnieri and Livshits (GL09) stated that the GateKeeper system provides a

mostly static approach for enforcing safety and reliability policies for JavaScript

programs. However, the language they focused on is less expressive than others

work (MMT10; Fbjpt; Cajer; RDWD07).

In fact, the restriction rewriting and wrapper − based Isolation approach may

cause incompatibility problem and increase the difficulties of the connection be-

tween two different isolation systems that are built on the different versions of

JavaScript.

Sandbox Virtual Machine In comparison with Java, JavaScript does not have any

built-in sandbox mechanism 1. ADSandbox (DHF10) was introduced to execute

embedded JavaScript within an sandbox environment and record a log of crit-

ical actions. Before the web content is displayed in the browser, the browser

invokes a Browser Helper Object that can hand over the website URL to an

Dynamic Link Library (DLL). This DLL downloads the web content from the

requested web page in order to analyse it. The analysed result is recorded in a

log, and the users would be navigated to an error page if any suspect action is

detected. The sandbox virtual machine provides a technically sound approach to

permit backward compatibility with current APIs.

Statically Verified Containment To protect the host pages from malicious third

1A sandbox mechanism provides a set of resources for unverified third party programs to run in. It
is used to executed untested codes.

28

2.2 JavaScript as a Scripting Language

party applications, one promising approach is statically verifying the JavaScript

programs in terms of the properties that keep the host pages safe. ADsafe (Crong),

Dojo Secure (Dojit), and Jacaranda (Jacty) are existing JavaScript verifiers. The

verification is based on a subset of the target language. The main idea of this ap-

proach is blacklisting known dangerous fields or properties that would breach the

given policies, including accessing global variables (such as document), dangerous

internal properties (such as @constructor), and allowing unverifiable constructs

(such as eval). For example, ADsafe removes the features that cause capability

leakage, it blocks the guest code from directly or indirectly accessing any global

variables, such as the variable this. The variable this is bound to the global ob-

ject window when a method is invoked as a function. It can implicitly access the

object window. More details about ADsafe are discussed in Section 2.2.3. Note

that only untrusted guest code needs to conform to the subset ADsafe, the code

from the trusted third party has access to the entire JavaScript language. This

approach has no measurable runtime cost and no extra rewrite workloads, and it

is compatible with independent tools.

The limitation of this approach is that it can only protect host page from guest

code, but cannot protect guest code from host page. Meanwhile, the expressive-

ness of the language is reduced when certain features of the language is removed.

Furthermore, the renting portion of the host page also could be resold to another

advertisement network, which makes host page even harder to protect. In fact,

the existing safe subset containments still show that they fall short of defending

against capability leaks. In the case of adding a method to the built-in prototypes

for a certain purpose in host page, the malicious guest code which observes this

method can use its capability to breach the containment and compromise the host

page.

Finifter and Barth (MWB10) provided an improved solution. They whitelist known

29

2.2 JavaScript as a Scripting Language

safe fields using namespaces to prevent capability breach. Their solution instru-

ments the browsers to load guest code and host page in separate heaps. The

variables on these heaps are marked as vetted. The breach of the guest code can

be detected when the instrumented browsers detect a suspicious reachability edge

from the different heaps. The Blancura V erifier, an extension of ADsafe contain-

ment, whitelists all the loaded variables with two different namespaces attached

for identifying which heap a variable is from. Thus, none of the functions cre-

ated previously by the built-in objects from the host page are accessible by the

guest code. The advantage of using this approach is no extra rewriting workloads.

Adding prefix namespace to the variables does not measurably affect the runtime

performance. However, it is difficult to exploit all suspicious reachability edges,

and not all suspicious edges are intended to breach the containment. The subset

language is even more restrict than ADsafe.

2.2.3 ADsafe

ADsafe defines a subset of JavaScript which permits host page to publish guest

codes and perform valuable interactions, such as third party scripted advertising or wid-

gets. Meanwhile, it can prevent malicious attacks or intrusion from guest codes. JSLint

(Jslnt) provides the ADsafe subset language program a validation mechanism (only syn-

tax checking) to release the inspection burden off a human’s shoulder and review guest

codes for safety checking. ADsafe relies on static analysis. It does no runtime check-

ing or code rewriting, and it requires no program transformations. Essentially, it adds

capability discipline by removing features that cause capability leakage, including that

limited access to primitive type variable except null and undefined as those variables

are global variables or can be linked to them. Another deleted feature is the use of this

as when a method is invoked as a function, this is bound to the global object window.

For example:

30

2.2 JavaScript as a Scripting Language

var a = {b : function(){return this; }};

var test = a.b;

test(); //window

In the above example, this is an internal variable in every function object. When

the method b is called as a function such as a.b() in the global environment, the value

of this is bound to the global object window. Another more complicated example is

shown below:

var a = {b : function(){

var c = function(){return this; }

return c();

}};

alert(a.b()); //window

This example presents the function invocation a.b() in this program still returns this

to window. As you can see, both example explain the potential dangerous of using

variable this. Other main prohibited features in ADsafe are shown as follows:

• eval - The eval function can access the global object.

• with - The with statement can modifies the scope chain which increases the diffi-

culty of static analysis.

• Dangerous Properties - Words which cannot be used are apply, arguments, prototype,

callee, caller, constructor, stack, unwatch, valueOf , and watch. Because the use

of those variable names are able to cause capability leakage in some browsers.

31

2.2 JavaScript as a Scripting Language

• Words starting with ” ” cannot be used. Because some browsers recognise dan-

gerous properties or methods having a trailing ” ”.

Figure 2.10: ADsafe Structure in HTML Document

Furthermore, the ADsafe subset prevents guest codes from accessing the global vari-

ables or the Document Object Model (DOM) elements directly. This mechanism sim-

plifies the safety control for the host page with respect to the guest codes by enforcing

the scripts to access an ADSAFE object which is provided by host page, and offering

indirect access to the guest code’s DOM elements. Figure 2.10 shows that a widget is

32

2.2 JavaScript as a Scripting Language

generated in a HTML document with the name ”TEMPLATE ”, and the codes for the

widget is wrapped in the function ADSAFE.go(..., function(dom, lib)){...}. The guest

codes in this block can access the document through the dom parameter, permitting it

indirectly access to HTML elements and allowing it to modify content, styling and be-

haviour. The parameter lib allows it to access the library file. The library file adsafe.js

is a AJAX library that provides the widget with limit access to DOM.

In fact, ADsafe does not provide a mechanism to guarantee the program to be safe.

A malicious third party can redefine the existing adsafe.js library to breach the safety

feature of the sandbox. ADsafe can only protect host page from guest codes, but it

cannot protect guest codes from host page. This is why we need a logic proof system to

provide a more precise and accurate framework.

2.2.4 Summary

The flexibility of the JavaScript language was presented by the explanation of its

main features. The issues caused by these features contain memory leak, capability

leak, and safety beach:

• Memory leak. A memory leak issue happens when an object of the JavaScript

program that is stored in memory cannot release corresponding memory after the

execution is finished.

• Capability Leak. When a variable from guest code is able to perform the capability

of built-in objects that are located in host pages, meanwhile the host pages have

the new properties of these built-in object created in advance, this scenario may

cause a capability leak.

• Safety Breach. An untrustworthy third party JavaScript application may breach

the protections on host pages by using a malicious operation. For example, a third

party application that maliciously manipulates the this variable can gain access to

33

2.3 Formal Verification

the window object, which has the ability to access all the global variables. Even of

the third parties’ trust is established, the malicious syndicated third parties also

can breach the trust establishment and cause indirectly damage to the host page.

The approach to prevent such damage is building up a verification framework for

detecting the malicious behaviour and improving the safety of the host page.

2.3 Formal Verification

Formal verification provides a foundation for the techniques that are used to build

a mathematically rigorous model for a complex system (Har02). A complex system

requires more accurate analysis and quality guarantee. It is possible to improve reliability

of a system by verifying certain properties of the system. Formal verification has been

proposed to reason about the quality of softwares since 1960s (Hoa69; Flo67).

Perlis and Backus (PS58; BBG+60) introduced the ALGOL that was proposed to be

an universal language for describing programming languages by notations. McCarthy

(McC63) applied ALGOL to introduce meaning of programming languages based on

evaluation of recursive functions. Floyd (Flo67) proposed the way of adding assertions

to flowcharts of programs rather than by using ALGOL, in such way that a rigorous

standard is established for proofs about programs, such as proofs of functional correct-

ness. The assertions he developed can be assigned conditions at each branch and entry

point in the flowcharts of programs. The conditions referring to the value of variables

ensure that if these conditions were true upon entry, thus they can be proven true at

exit. The proof of correctness of programs is rested on the proof that a program satisfies

its specification. Hoare (Hoa69) made two additional steps upon Floyds work. Firstly,

he discarded the flowcharts and developed a axiomatic system for reasoning about pro-

grams using specifications of statement behaviour that have become known as Hoare

Triple, which is composed of three parts, P C Q, the precondition P, the statement C,

34

2.3 Formal Verification

and the postcondition Q. Secondly, he argued that the axiomatic system could be viewed

as an abstract foundation of recording the semantics of programming languages. This

has the profound effect of opening up a way of developing provable programs rather than

viewing their verification as a post hoc concern.

The process of software verification consists of numerous techniques and tools, of-

ten used in combination with one another (Col98). Program verification refers to the

process of determining whether or not the products of a given phase of a software de-

velopment process fit the requirements or purpose that established during the previous

phase (IEE83). In fact, abstract data types, operational semantics, axiomatic semantics,

specification languages all draw on formal verification(How87). There are two main as-

pects in formal verification, verification techniques and formal frameworks. A verification

technique is applied to reason about desired property in a program with a correspond-

ing implementation. The possible techniques are model checking, automata theoretic

techniques, automated theorem proving (CM99). Formal frameworks (CM99) contain

specification language that is used to describe the desired property of a program. The

language can be developed under temporal logic (BR01; Eme81; Pnu77), predicate logic

(BMMR01; CDNQ10), Hoare logic (Flo67; Hoa69), and Separation logic (GMS12). A

formal framework also consists of a set of axioms and inference rules with theorems to be

proved. The existing formal frameworks include interactive theorem prover Coq (Coqnt),

the proof assistant Isabelle (Isant), the mechanical theorem prover ALC2 (Alc50), and

a separation logic based verification framework Smallfoot (BCO05). These frameworks

allow the expression of mathematical assertions and mechanically checks proofs of these

assertion. Proof of program correctness is a technique attempting to identify program’s

faults or errors that cause failures (Col98). Floyd and Hoare had two foundational pa-

pers for program verification (Flo67; Hoa69). They introduced the concept of proof of

correctness that composed of partial and total correctness and built up the logical base

of program verification.

35

2.3 Formal Verification

2.3.1 Model Checking

The notion of performing software verification with logic model checking techniques

has evolved from intellectual curiosity to applicable technology (HJG08). Model checking

has been researched for a number of years (CGP99) and achieved great success in circuit

design and implementation in 1992 (McM92). It was originally introduced by Clarke and

Emerson (CE81), later by Sifakis (QS82). It was designed to verify finite-state systems by

exhausting the entire set of computation states according to some specification described

in temporal logic. Essentially, the verification is converted to a formulae for satisfaction

checking, µ |= φ, where µ is a finite model in an appropriate logic for representing the

system, the specification is represented by the formula φ and the verification method

refers to compute whether or not the model µ satisfies φ (µ |= φ) (HR04). The checking

procedure is completely automatic and fast, and it will either terminate with answer

true or give a counterexample execution to show why the model does not fulfils its

intended purpose. A true answer means the model satisfies the specification (CGP99).

The techniques for applying model checking are temporal logic (Pnu77), abstraction

(BMMR01) and counter example refinement (CGJ+00; CGJL03). Temporal logic was

proposed for reasoning in computer programs (Bur74; Kro77; Pnu77). Pnuili (Pnu77)

was first to use temporal logic for reasoning about program properties from a set of

axioms that described the behaviour of the statements in that program. The introduction

of a temporal logic model checking algorithm was original in the early 1980s by Clarke

(CGP99) and Emerson (Eme81).

A model checker proposed by Braghin et al. (BSB07), was introduced to formalize

and automatically verify the mobile system programmed in JavaScript. Their model

checking engine takes the abstract programs that are pre-processed by the original pro-

grams and a set of security policies as an input, and provides a configuration document

that describes whether or not the current input violates the given policies as an output.

This work enables the specification of generic security policies for JavaScript programs

36

2.3 Formal Verification

to make access control and information flow policies possible to be defined.

2.3.2 Hoare Logic and Verification

Hoare logic sets up a logic foundation framework for program verification (Flo67;

Hoa69). It uses logical formulae to depict the behaviours of the programs, and in-

troduces an axiomatic method that consists of a set of axioms and inference rules for

rigorously deductive reasoning the static functional correctness proofs of programs math-

ematically. The essence of Hoare logic is the Hoare triple {P}C{Q}. Both P and Q

are logic assertions at specific program point. P is a precondition, Q is a postcondition

and C stands for the program statement, such as assignment, function invocation and so

on. Moreover, Hoare logic used Floyd’s (Hoa69) to define axiomatic semantics for pro-

gramming language as a proof system. The axiomatic semantics mathematically define

the semantic of a statement in a program by describing its effect on assertions. When

the precondition P is met, the statement C establishes the postcondition Q. The cor-

rectness of a program reduced to reason about individual statements. Hoare logic only

support partial correctness which means that the functional correctness of programs can

be proved not including program termination. If C is executed in an assertion initially

satisfying P and it terminates, then the final assertion satisfies Q.

A later work (Bur74) integrates operational semantics into Hoare logic for assisting

on the soundness proof of a formal framework . Manna and Pnueli (Hoa69; tTCoP)

stated that soundness of a formal framework is a fundamental property expected to be

proved. Slonneger and Kurtz (SK95) declared that formal framework constructed as an

axiomatic system is sound under given semantics with respect to underlying semantics.

The operational semantics provide an underlying semantics in the form of a set of op-

erational semantic rules to describe how a valid program is interpreted as a sequence

of computational steps. The operational semantics is classified into two categories,

structure operational semantics (small-step semantics), which formally describe how

37

2.3 Formal Verification

the individual steps of a computation take place, and natural semantics (big-step se-

mantics), which describes how the overall results of the executions are obtained. More-

over, underlying semantics refers to a concrete model which indicates the validation of

the language that is to be verified. The language can be a core of Java, C or JavaScript.

Plotkin (Plo81; Plo04) firstly introduced Plotkin style structural operational semantics

(SOS) for defining the behaviour of a program in a structural approach. This approach

contains a significant amount of information details that describes the semantics of a

program in terms of transition relation in the way of a higher level understanding the

program. A set of transition rules define the valid statement transitions. For example,

< x, {x 7→ 3, y 7→ 2} > −→ < 3, {x 7→ 3, y 7→ 2} > represents the application on variable

evaluation rule. It shows that the evaluation of the variable x in the program state

{x 7→ 3, y 7→ 2} will update or remain the state with the assignment x = 3. A number of

research (Win93; Rey98; Ros98; Sch00) showed that SOS has become a popular method

for describing language semantics in program verification. Colvin and Hayes (CH11)

proposed a different method which the transition arrows are labelled by the behaviour

associated with the corresponding step. For example, x
x=2−−→ 2. Their labelled style

operational semantics are able to describe the program semantics more abstractly and

intuitively especially for concurrent programs. Middelkoop et al. (MHK04) employed

a separation logic style operational semantic to deal with the feature of dynamic func-

tion invocations and field updates in Object Oriented Languages. Their method more

accurately describes the status of stack and heap in the transactions. For example,

< x = 2, (s, h) > ((s | x → 2), h) shows that the execution of the assignment

x = 2 extends the stack with x → 2 after the transition. The objective of operational

semantics is to present the correctness of the implementation of the language in a formal

framework.

The correctness proof of program relies on given semantics in a formal framework

that refers to an abstract model which uses assertions to describe the meaning of a

38

2.3 Formal Verification

statement in a specification language. A specification language is generated to describe

the program at a higher level than a programming language. It can be constructed on

algebraic structures and Hoare logic, which consists of a collection of sets of data types

and statements. This abstract model takes the validation level to verification level which

is able to prove program properties formally.

2.3.3 Separation Logic and Verification

For modelling the complexity of program memory state, separation logic can strengthen

the applicability and scalability of program verification for imperative programs by using

shared mutable data structures (Rey00; Rey02; Rey05). Separation logic is an extension

of Hoare logic, it remains the use of Hoare tripes to describe individual program states.

Hoare triples asserts that if the program C executes from an initial state satisfying the

precondition P , then the program will not go wrong and if it terminates, then the final

state will satisfy the postcondition Q. Note that C might only access the memory loca-

tions whose existence is asserted in the precondition or that have been allocated by C

itself.

In addition to the standard rules from Hoare logic, separation logic supports sep-

aration conjunction * and spacial implication –*. The formula ∆1 * ∆2 asserts that

two heaps described by ∆1 and ∆2 are domain-disjoint, while ∆1 –* ∆2 asserts that if

the current heap is extended with a disjoint heap described by ∆1, then ∆2 holds in

the extended heap that describes the final state. Such connectives are supported by a

low-level storage model based on both stack and heap memory. In this model, four sets

are assumed: Loc of memory locations, Val of primitive values (with 0 ∈ Val denoting

null), Var of variables (program and logical variables), and ObjVal of object values

stored in the heap, with f1 7→ v1, ..., fn 7→ vn denoting an object who has fields f1, ..., fn

with values v1, ..., vn. Then a concrete memory state h, s, consisting of heap and stack,

39

2.3 Formal Verification

is from the following concrete domains:

h ∈ Heap = Loc→fin ObjVal

s ∈ Stack = Var→ Val ∪ Loc

Separation logic based model supports the basic program operations such as lookup,

update, allocation and deallocation with a series of Hoare logic style reasoning rules.

The frame rule enables local reasoning possible in a formal framework. This allows the

reasoning only follows the footprint of the program.

Figure 2.11 shows the base of local reasoning. Two domain disjointed heap P and

R, Q and R. When the execution of the program statement C does not manipulate the

state on the heap R, which means that the set of program variables modified by C do not

share elements with the program variables describes in the state R, then the program

verification refers to {P ∗R}C{Q∗R} can be concentrated on program footprint (the heap

that the program actually manipulates) verification {P}C{Q}. This rule significantly

reduces the scalability of program verification in terms of program state description.

Smallfoot (BCO05) is the first separation logic based formal framework. It is de-

signed for checking the assertions of sequential and concurrent programs that manipu-

lates dynamically allocated data structures. However, this framework concentrates on

the verification of programs written in one specification language. Tuerk (Tue09) pro-

posed a formal framework inside Higher-order logic 1 theorem prover that expresses dif-

ferent flavours of separation logic and makes it instantial for different programming lan-

guage. The implementation of this framework is similar to Smallfoot. A HIP/SLEEK

(NDQC07) formal framework was developed to automatically verify the functional cor-

1Higher-order logic refers to quantification over properties and predicates rather than just object.
For example, a higher-order sentence ∀x ∀P (x ∈ P ∨ x /∈ P) denotes that for every individual x and
every set P of individuals, either x is or is not an element of the set P. The set P is the property and x
is an object.

40

2.3 Formal Verification

{P} C {Q} modified(C) ∩ vars(R) = ∅

{P ∗ R} C {Q ∗ R}

where modified(C) denotes the program variables modified by C, and vars(R)
represents the set of free variables in R.

Figure 2.11: Frame Rule in Separation Logic

rectness of heap manipulating programmes. HIP is a separation logic based verification

system for a imperative language and able to verify the assertions of individual program

state written in a specification language. SLEEK is a fully automatic prover for taking

a set of separation logic proof in the form of formula implications as input and decides

the functional correctness of a program with a set of axioms and inference rules. A

program logic based on separation logic for JavaScript has been presented by Gardner

et al. (GMS12). Separation logic provides their work a way of modelling challenging

features of JavaScript such as prototype inheritance.

2.3.4 JavaScript Program with Formal Framework

The dynamic features of JavaScript make the JavaScript programs a challenge to be

verified. The third party applications of JavaScript on the Web indicates that there are

two essential properties of the program required to be verified: functional correctness

and safety of host codes. The definition of the functional correctness property is about

a program operating correctly in response to its input/output. For each valid input, it

produces the correct output. The definition of safety of host codes, is that the ability

of third party applications mash-up to operate without causing failure regarding to

web pages dependability. Moreover, a third party application (guest codes) cannot

maliciously interfere with the host page (host codes) where it is located.

Recent research (Cro08; Crong; Fla11) shows that JavaScript web applications can

run improperly in some circumstances and web pages suffer from attacks for years. The

41

2.3 Formal Verification

vulnerabilities of a web browser (CMS+07; RDWD07) or a runtime attack (HYH+04;

KKKJ) may directly harm a host page or registered users through certain malicious at-

tacks, such as drive-by download (MBGL06), cross-site scripting (FGH+07), web privacy

attack (BBN07).

A number of verification techniques and formal framework were developed to verify

JavaScript programs. Yue et al. (YW09) declares the demand of safety verification

in JavaScript applications. They presented a measurement study on unsafe JavaScript

applications on the Web and provided an analysis results to indicate that it is necessary

to ensure safety of these applications.

Temporal logic technique that model checking used for automatic verification hardly

model the dynamic features of JavaScript (BSB07; HJG08) and state explosion problem

(McM92) makes model checking suffer to scale to large JavaScript programs verification.

A formal framework (AB04) based on Hoare logic was proposed to model safety property

in a model checking system (TA05). They used information flow technique (GM82) and

categorised the variables in JavaScript programs into high security and low security

variables to ensure that low security variables do not flow to the critical operations that

involves high security variables. Unfortunately, these frameworks cannot be applied to

verify JavaScript programs because they highly rely on underlying type structure and

JavaScript is a weak type language.

Although ECMAScript (Ecm09) provides a 200 page standard for explaining the

syntax and semantics of JavaScript in the form of prose and pseudocode, this standard

is too informal to be a foundation of formal verification.

Maffeis et al. (MMT08) presented a 30 pages standard that conforms to the EC-

MAScript standard with an abstract syntax of core JavaScript and a set of operation

semantics rules. Guha et al. (GSS10) introduced a drastically different way to focus

on the core of JavaScript and desugar the syntax of the language into a λJS semantics.

Their semantics are more conventional and simpler than the semantics presented by

42

2.4 Summary

Maffeis et al, for example they use substitution instead of scope objects.

Yu et al. (YCIS07) proposed a framework to implement verification based on another

subset of JavaScript, CoreScript. CoreScript is an imperative subset of JavaScript

without the statements on function operations. However, the operational semantics

they provided are inappropriate for safety proofs.

In fact, there are various subset languages proposed as a foundation of JavaScript

language verification. Anderson et al. (AGD05) developed a substantial subset JS0

for building up a type inference system. But their subset does not contain prototype

and function features. Heidegger and Thiemmna (HT09; JMT09) included these two

essential features, but omit assignment statement into their new type system. For con-

structing a subset language in a formal framework, there is a notable tradeoff between

the ability to model all behaviours of a program and the need for rigour.

Since separation logic (LHQ08; CDNQ08; CDOY09; CDNQ10; DOY06; NDQC07)

has proven an effective formalism for the analysis of memory-manipulating programs,

Middelkoop et al. (MHK04) proposed a separation logic based framework for class-based

languages, such as Java . In 2012, Gardner et al. (GMS12) produced a program logic

for reasoning about a broad subset of JavaScript using separation logic. Their big-step

operational semantics follows the work from Maffeis et al. (MMT08) in 2008.

2.4 Summary

This chapter first surveys the features of JavaScript. These features show the flex-

ibility of the language in terms of dynamic features, essentially including implicit type

conversion, object field modification on the fly, function object, prototype inheritance,

and scope chain. Then it reviews the client-side applications of JavaScript, particularly

in the aspect of third party applications. Then, safety issue and possible solutions are

discussed. However, there are several problems with the existing solutions. One of the

43

2.4 Summary

common problems is that these solutions are only able to solve one particular issue. A

decent solution needs to ensure the ”quality” of a JavaScript application. Therefore,

a formal verification framework on JavaScript is in need. A discussion on a number

of existing frameworks in Table 2.3 shows that it is still an open research problem on

formally modelling the semantics of JavaScript, reasoning about behaviours of the pro-

grams, and providing a formal framework to verify the functional correctness and safety

of JavaScript programs. More detailed discussions are shown below:

• Since the safety issue is caused by maliciously manipulating this variable, most

solutions focus on eliminating the variables that are either unsafe or grant uncon-

trolled access to a host page or that contribute to poor code quality. However,

these solutions have proposed in the cost of sacrificing certain expressiveness of

the language.

• The existing JavaScript formal frameworks studies merely concentrate on mod-

elling a few features of JavaScript. Therefore, a comprehensive framework which

is not only able to model the essence of the language but also the ability of verifying

functional correctness of the programs is required.

• The research in separation logic shows the ability as a foundation of a formal frame-

work to model the essential and flexible features of JavaScript. Most studies in

separation logic based JavaScript formal framework, are focusing on verifying func-

tional correctness of JavaScript programs. Middelkoop et al. (MHK04) stated that

the main challenge lies in constructing operational and axiomatic semantics rules

for the function invocation feature. Therefore, a elegant framework for verifying

both functional correctness and safety of the programs is in needed.

• Another problem of many frameworks is that they ignored soundness proof. Huth

and Tryan (HR04) stated that a formal framework must prove soundness property.

Therefore, soundness proof of a proposed framework is in need.

44

2.4 Summary

Accordingly, this thesis will propose a comprehensive and elegant formal framework,

which focuses on verifying functional correctness and safety properties of JavaScript

programs. The framework is built on the underlying semantics of separation logic.

45

2
.4

S
u

m
m

a
ry

Frameworks and Solutions
ADSafe And05 Yu07 Jen09 Chu09 Sax10 Guh10 Dar12 Maf09 Rei07 Gua09 Dew10 Gar12 JS t

sl

Features

Obj Creation
Obj Literal 4 8 8 4 4 8 4 8 4 8 8 ? 4

Obj ”new” Crt. 4 8 8 4 4 8 4 8 4 8 8 ? 4

Function

Function Declar. 8 4 8 4 4 4 4 8 4 4 4 ? 4

Function Expre. 8 8 4 8 8 8 8 8 8 8 8 ? 4

Method Call 4 4 8 8 4 8 4 4 4 4 8 ? 4

Global Call 4 4 4 4 4 4 4 4 4 4 4 ? 4

Nested Func. 4 8 8 8 8 8 4 4 4 4 4 ? 4

Field
Field Crt. 4 4 8 4 4 4 4 4 4 4 4 ? 4

Field Lookup 4 4 8 4 4 4 4 4 4 4 4 ? 4

Field Mutation 4 4 8 4 4 8 4 4 4 4 4 ? 4

Variable
Global Assign. 8 4 4 8 8 4 4 4 4 8 8 ? 4

Local Assign. 8 4 8 8 8 8 4 4 4 8 8 ? 4

Expre. Return 4 8 8 4 4 4 4 4 4 4 4 ? 4

With 8 8 8 8 8 8 4 4 8 4 8 ? 4

Eval 8 8 8 8 4 8 8 8 8 4 8 ? 4

”this” Keyword 8 4 8 8 4 8 4 4 4 4 4 ? 4

Array 4 8 8 8 8 8 8 8 4 8 8 ? 8

Iteration 4 8 4 4 4 4 4 4 4 4 4 ? 4

Conditional 4 8 4 4 4 4 4 4 4 4 4 ? 4

Prototype Inherit. 4 8 8 4 4 4 4 4 4 4 4 ? 4

Scope Chain 8 8 8 8 8 4 4 4 4 8 8 ? 4

Alias 8 4 8 8 4 8 8 4 8 4 4 ? 8

Total No. of Features 13 10 5 11 15 10 18 16 18 15 12 ? 20

(Total No. of Features/22) % 59% 45% 23% 50% 68% 45% 82% 73% 82% 68% 56% ? 90%

Problem
Functional Correctness 8 8 4 8 8 8 8 8 8 8 8 4 4

Memory Leak 8 8 8 8 8 8 8 4 8 8 8 8 8

Capability Leak 8 8 8 8 4 8 8 4 4 4 4 8 8

Safety Breach 8 8 4 8 8 8 8 4 4 4 4 8 8

(Total No. of Problems/4) % 0% 0% 50% 0% 25% 0% 0% 75% 50% 50% 50% 25% 25%

Table 2.3: Comparisons of Frameworks for JavaScript

46

Chapter 3

JSsl - A Subset of JavaScript

Inside every large program, there is a small program trying to get out. The

job of formal methods is to elucidate the assumptions upon which formal

correctness depends. – Tony Hoare (British computer scientist)

3.1 Introduction

Recent research shows that JavaScript can run improperly (Cro08; Crong; Fla11) in

some circumstance. It indicates that the existing verification approaches (Flo67; Hoa69;

Rey05) generally do not provide an elegant way to automatically verify JavaScript pro-

grams because of its dynamic features of subset of JavaScript (RLBV10). This chapter

constructs a framework to model the dynamic features. Compared with the approaches

discussed in Section 2.3.4, this framework defines an abstract core subset of JavaScript,

JSsl and proposes a sound separation logic based static axiomatic system to verify the

functional correctness of JSsl program. Firstly, the core language JSsl (See Figure 3.1)

is defined as the language used throughout the rest of this chapter. Secondly, a reliable

formal operational semantics is presented with a stack and heap model. Thirdly, a set

47

3.2 The Language JSsl

of separation logic based axiomatic rules are constructed to support the functional cor-

rectness verification of JSsl programs.

Figure 3.1: JavaScript v.s. JSsl

3.2 The Language JSsl

In this section, the target language JSsl is defined. Being a prototype-based language,

inheritance of JSsl is performed via a process of cloning existing objects that serve as

prototypes. Its syntax is formally defined in Figure 3.2.

A program in the JSsl language consists of a sequence of Statement. Compared

with the full version JavaScript language, this language has omitted some features,

such as array, and for loop. The semantics of the language constructs follows the same

conventions as in JavaScript, except for the global variable and local variable declaration.

Other that that, the JSsl behaves like the essences of a JavaScript program which is in

Section 2.2.1, including the feature of prototype inheritance, function objects and object

amplifying on the fly.

48

3.2 The Language JSsl

3.2.1 The Features and Conventions of JSsl

The aim is to not only provide a realistic subset of JavaScript but also that it is

manageable and feasible with respect to formalization and static verification. The main

features of JSsl are described as follows:

• Object fields1 can be created dynamically on the fly.

• Support for prototype chain inheritance.

• Functions are treated as objects, a Function Declaration construct is not allowed in

the language as they can be easily and often unintentionally turned into a Function

Expression. Another reason is that it would cause significant and irreconcilable

semantic difference (See Section 2.2.1.3).

• Support for parameter manipulation by value and reference. For the primitive data

type parameters, the copy−in algorithm is used to get a copy of the value inside the

parameter and the update of the underlying parameter will not affect its original

value. The reference type parameters perform according to the copy−in−copy−out

algorithm in which the update of the underlying variable also overwrite the original

value. For example:

1In JavaScript, concept “property” is used instead of “field”. We use field in conforming to the
common terminology in OO area.

49

3.2 The Language JSsl

myNum = 10;

myObj = {name : ”David”, age : 12};

func changeV als(num, obj){

var num = 0;

var obj.name = ”changed”;

}

changeV als(myNum,myObj);

alert(myNum); // This returns integer 10

alert(myObj.name); // This returns changed

• Support distinction between global variables and local variables. A variable can be

either declared explicitly or implicitly. The var keyword explicitly declares that

the variable is a new identifier in the local scope that is the current function scope.

Implicitly define a variable by simply referring to it without using the var keyword

declares a global variable. Essentially, the explicit variable definition declares local

variables, and the implicit definition declares global variables.

The other code conventions for JSsl are based on JavaScript conventions. The object

OProto is the global object Prototype.Object in JavaScript, it can be dereferenced to

@proto that is an internal property in an execution context. FProto is the object for

the root of @proto when the underlying object is a function type. @scope refers to a

scope chain. The this variable is not supported as a statement in JSsl but as an internal

property of a function object whose value can be dereferenced to this. The statements

eval, and with are not in the language JSsl . In a literal object, more than one definition

of the same data property is forbidden. Duplication of named parameters of a function

is also not supported.

50

3.2 The Language JSsl

3.2.2 The Syntax of JSsl

In Figure 3.2, there are expression Exp for variable, primitive type value, arithmetic

or boolean operation, and function call. The ExpFunc can be either an expression or a

function expression. More details are given below:

• The arithmetic or boolean operation are p(e1, ..., en), for example:

add(x, y); // add variable x and y

times(x, y); // multiply variable x and y

ge(x, y); // compare variable x and y

• F ([x1, ..., xn]) is defined as a returned function call in a function with optional

parameters x1, ..., xn.

• func [F]([x1, ..., xn]) {c} is a function expression abstraction with optional name

F , optional parameters x1, ..., xn, and function body c.

• skip is for skip statement in the program execution process.

• x=ee is a global assignment that assigns ee to variable x. The variable x lives in

the global scope.

• var x = ee is a local variable assignment. All the local variables declared and

assigned inside of a functions scope must be after the var keyword, and they are

only visible in their defined function scopes. For example:

f = func(){ var x = 10; return x; };

alert(f()); // This returns integer 10

alert(x); // This returns undefined

The reason that the alert(x) statement returns undefined is because x only lives

in the scope of function f , and invisible from the global scope.

51

3.2 The Language JSsl

• x = x′.f is a field lookup statement, the name of the field may either be declared

initially or specified on the fly. For example:

obj = {f1 : 10, f2 : 20};

obj.f3 = func(){return 30}; // This generates field f3 to obj on the fly

x = obj.f3(); //This returns integer 30

The field lookup follows the prototype chain which searches the current object

for the field, if the field cannot be found in the scope of the current object, it

searches along the prototype chain (See Section 2.2.1) until it reaches the global

object OProto. In the case that the field cannot be retrieved from OProto, then

an undefined value undef is returned.

• For the field mutation construct, x.f=ee, the value of field f is updated to ee when

the field f is initially owned in the object record that is referred to by x or it is

inherited from its prototype. In the case where the field f does not exist in the

object record referred by x, a new value ee is added into the record dynamically.

JSsl supports arbitrary field modification of an object record on the fly.

• return e returns the value of the expression e.

• x = x′.x0([e1, ..., en]) and x = x0([e1, ..., en]) are two forms of function call that

have a subtle difference: calling a function through an object and directly calling a

function. Calling through an object x = x′.x0([e1, .., en]) implies that this1 in the

function refers to the receiver object x′; whereas when calling directly a function

x = x0([e1, .., en]), this refers to the global object OProto. The internal variable

1The special variable this denotes the current object in scope. For example, when executing a
function from a source object, this in the function refers to that enclosing object x′, but when a function
is executed independently, then variable this refers to the global object.

52

3.3 Example

this is one of the execution context components, which is used to evaluate to the

value of ThisBinding of the current execution context1.

• The object literal statement x = {f1:ee1, .., fn:een} creates a new object x that

has a series of literal fields f1, .., fn with a series of value ee1, .., een.

• The object creation statement x = new x′() creates a new object x with its proto-

type field sets that are inherited from its prototype object x′. The newly created

object x has an internal property @proto pointing to the OProto.

• The object creation function object x = new x′([e1, .., en]) creates a new object x

by invoking a function x′([e1, .., en]). It creates a new object x through function

object x′ invocation. Note that the parameter list e1, ..., en is optional for the

function. Compared with object creation statement, it has newly created object

as a type of function with internal property @proto pointing to FProto instead of

OProto.

• Statements sequence is c ; c. The program is a sequence of statements c separated

by semicolons.

• Conditional statement is if (e) {c} else {c}. If e is true then execute statement

before the else, otherwise execute the statement after the else.

• Iteration is while (e) {c}. While e is true then execute statement c.

3.3 Example

This section describes how a piece of JavaScript code transforms into JSsl code using

examples. Figure 3.3 is a piece of JavaScript program. It defines an object obj that has

1An execution context is purely a specification mechanism which is not necessary to correspond to
any particular JavaScript interpreters.

53

3.3 Example

e ∈ Exp ::= x Variable
| v Primitive Value
| p(e1, ..., en) Arithmetic or Boolean
| F ([x1, ..., xn]) Function

ee ∈ ExpFunc ::= e Exp
| func [F]([x1, ..., xn]) {c} [named] FuncExp

c ∈ Statement ::= skip Skip
| x = ee GlobalAssignment
| var x = ee LocalAssignment
| x = x′.f FieldLookup
| x.f = ee FieldMutation
| return e Return
| x = x′.x0([e1, ..., en]) FuncCall
| x = x0([e1, ..., en]) FuncCall
| x = {f1 : ee1, ..., fn : een} ObjLiteral
| x = new x′() ObjCreation
| x = new x′([e1, .., en]) ObjCrtFunc
| c; c Sequencing
| if (e) {c} else {c} Condtional
| while (e) {c} Iteration

Identifiers
F ∈ FuncID ::= F | F ′ | ...
f ∈ FieldID ::= f | f ′ | f1 | x | ...
b ∈ BooleanID ::= True | False
x ∈ V ariableID ::= x | x′ | x0 | ...
v ∈ V ariable ::= int | str | null | undef
[...] ::= optional

Figure 3.2: Syntax of JSsl

54

3.4 Semantics for JSsl

two fields, one of them (f2) is a function object. There is a conditional construct inside

of function object f3 that is nested in the function object f2. The JavaScript example

of Figure 3.3 demonstrates the following features:

• Creation of object using object literal (line2 to 11),

• Creation of function object (line 5 to 8),

• Conditional Statement (line 6 and 7)

• Output of object (line 12, 13, 15 and 17),

• Field f3 mutation on the fly (line 14),

• Object creation via function f2.

Figure 3.4 presents the JSsl program that is transformed from the JavaScript code in

Figure 3.3 and conforms to the syntax of JSsl . This transformation does not change the

program semantics. Again, such a transformation aids to formalize and verify JavaScript

in a realistic subset language. Note that the alert has no effect in the program, as it

only produces an output.

3.4 Semantics for JSsl

The structural operational semantics for JSsl is a big-step semantics which shows

transitions between machine configurations. Each machine configuration is a triple con-

sisting of current program statement c, stack s and heap h. Before we approach to

construct the operational semantics of JSsl , we firstly define the semantic domains.

3.4.1 Semantic Domain

In the semantic domain, variables include the type of primitive variables and loca-

tions. A value is either a primitive value or a location. Primitive variables are type of

55

3.4 Semantics for JSsl

1 <s c r i p t type=” text / j a v a s c r i p t ”>
2 var obj = {
3 f1 : 1 ,
4 f 2 : function (n) {
5 var fn3 = function () {
6 i f (n >= 10) { re turn 2 ;}
7 else { re turn 3 ;}
8 }
9 re turn fn3 () ;

10 }
11 } ;
12 a l e r t (obj . f 2 (1 1)) ; //2
13 a l e r t (obj . f 3) ; // undef ined
14 obj . f 3 = 5 ;
15 a l e r t (obj . f 3) ; //5
16 r e s = obj . f 2 (1) ; //3
17 a l e r t (r e s) ;
18 </s c r i p t >

Figure 3.3: JavaScript Example

1 obj = {
2 f1 : 1 ,
3 f 2 : func (n) {
4 var fn3 = func () {
5 i f (ge (n , 1 0)) { re turn 2 }
6 e l s e { re turn 3}
7 }
8 var x = fn3 () ;
9 re turn x

10 }
11 } ;
12 obj . f 3 = 5 ;
13 r e s = obj . f 2 (1)

Figure 3.4: JSsl Example

56

3.4 Semantics for JSsl

integer number, boolean value, string, and the set consisting of undefined and null. Loca-

tions correspond to object identifiers that can be partially viewed as memory addresses.

Note that, a location ` can be a nullable memory address in some context. Objects are

either a literally declared object which is a finite mapping from field identifiers to values

or function expressions.

Value = Prim ∪ Loc

Prim = Int]Bool] Str] {undef ,null}

The operation semantics for the JSsl language provides the meanings of the language

program constructs that transforms from initial state to final state in a mathematically

rigorous way. The program state δ is a pair consisting of stack s and heap h:

s, h ∈ State = Stack×Heap

• Stack s. Stacks are modelled as finite and stackable 1 mappings from variables to

values. Stack denotes a partial function from variables (object identifications) to

values or locations with a finite domain:

s ∈ Stack = Var→sfin Value ∪ Loc

The semantics for the evaluation of an expression e in the stack is defined as s(e)

where the expression e is associated with the current activated stack environment.

It is defined as below:

s(e) = Stack→ Prim ∪ Loc ∪ {error}
1Stackable mapping means a variable x might occur more than once, for example f: A →sfin B

denotes finite stackable mapping A to B, but it only updates the most recently included mapping of A
by B.

57

3.4 Semantics for JSsl

Note that the evaluation of an expression in the stack may lead to a normal value

(Prim) or a location (Loc) or an error (error). The error occurs while the

statement or expression is being executed.

• Heap h. Heaps are modelled as finite partial mapping from locations to records.

As shown below:

h ∈ Heap = Loc ⇀fin Record

Where a record is a reification 1 of an object in the heap. Records are the union

of a finite mapping from fields to values and functions. Note that the functions in

the records include parameters and function body. As shown below:

r ∈ Record = (Var→fin Value) ∪ Func

Note that a direct written-form for records as [n1 : v1, . . .] is adopted, which

describes that the record has the field n1 with the value v1, etc.

Furthermore, one of the implicit fields in a record for objects is @proto whose value

is a reference to the record representing the prototype of this object. In other words,

@proto could lead to the prototype of the underlying request object. In the prototype

chain, the location of the root object OProto is defined as locop.

In addition, ”functions as objects” are adopted in JSsl , a function Func can be

stored in objects as a field. It contains three sub-fields: body, params, and @proto, as

shown below:

Func = {[body : c,params : (x1, .., xn),@proto : locop]

| c ∈ ProcBody ∧ n ∈ N}

1The reification of an object refers to the explicit data model or other object created in the current
object context. In my thesis, record reification involves finding a more concrete representation of the
abstract object data type used in a formal specification, such as the primitive variables, functions and
other objects.

58

3.4 Semantics for JSsl

where (x1, .., xn) are parameters of the function, and c is the function body belonging to

the set ProcBody. Here the value of @proto is taken as locop for every function object

for brevity1. We use N to denote the set of natural numbers.

The semantics for the evaluation of an expression e in the heap is defined as h(`)(e)

where ` is a location that is in the range of the stack and e is associated expression in

the heap. It is defined as below:

h(`)(e) =

 Heap→ Record

Heap→ (Prim ∪ Loc) ∪ {error}

It is possible that there is more than one Stack and Heap memory cell in the Heap

pool. Thus, an expression e in the heap pool can either be evaluated to be a record that

is pointing to another heap cell or a union of a primitive value, location and error when

the e is a local variable.

3.4.2 Operational Semantics

This section develops the operational semantics of the JSsl language, which defines

the behaviour of the program in terms of a set of transition relations and inference rules.

The specification A1 A2 ... An
B means that if the expression A1, A2, ..., and An are true,

then the program configuration B will update with the transitions. The configuration B

is defined in the form of:

c, (s, h)→ (s′, h′) or

c, (s, h)→ ⊥

where c is the underlying program construct in the current context, (s, h) defines a

program state δ, the transition starts from the initial state (s, h) and terminate at state

(s′, h′) after finishing the execution of c. The ⊥ represents abortion when the execution

1In JavaScript, the @proto field of every function objects refers to Function.Prototype. This simplifi-
cation does not alter the semantics.

59

3.4 Semantics for JSsl

fails. The symbols δ and ⊥ are used to represent a program state in the concrete semantic

model.

The full set of transition rules for all program statements, including rules for variable

assignment (see Figure 3.5), rules for operations on fields(see Figure 3.6), rules for function

invocation (see Figure 3.7), rules for object creation (see Figure 3.8), and rules for control

structures (see Figure 3.9).

In the case where the evaluation of a statement reaches error, the final program state

would end at abortion (⊥). In the final state, any expression inside of the operation []

is an updated part to the initial state after an execution of a statement c. Furthermore,

the operation s[x 7→ v] ”pushes” the variable x onto s with the value v. The operation

s′ = s\χ removes a set of variables χ from the domain of s. That is dom(s\χ) = dom(s)\χ

and (s\χ)(x) = s′(x), for any x ∈ dom(s)\χ. For example, s′ = s\{x0} removes the

variable x0 from the domain of s, and (s\x0)(x) = s′(x) means that it evaluates the

variable x from the domain of s′, where x ∈ dom(s)\x0. Similarly, the operation h[` 7→ r]

extends the heap with a cell ` 7→ r. Note that, the expression h[` 7→ r[x 7→ v]] evaluates

the variable x in the record r in the heap h, and returns the value v.

In addition, there are various cases that may lead the execution of a statement to

fail such as when the evaluation of an expression gives an error or the variable to be

assigned to does not exist. The expression or else is used to combine several different

failure cases. For example, A or else B defines that A∨(¬A∧B).The or else expression

is left associative:

A or else B or else C = (A or else B) or else C .

Figure 3.5 defines the inference rules for global variable assignment and local variable

assignment. The full set of rules are described as follows:

• In [op-skip], both the stack and heap are unmodified.

60

3.4 Semantics for JSsl

skip, (s, h) → (s, h)
[op-skip]

s(e) = v

x = e, (s, h) → (s[x 7→ v], h)
[op-glob-assign1]

s(e) = error

x = e, (s, h) → ⊥
[op-glob-assign1-abt]

` ∈ dom(h) h(`)(e) = v

var x = e, (s, h) → (s, h[7̀→r[x 7→ v]])
[op-local-assign1]

` /∈ dom(h) or else ` = null or else h(`)(e) = error

var x = e, (s, h) → ⊥
[op-local-assign1-abt]

s(x) = ` ` 6= null h(`) = r
r = [body : c,params : (x1..xn),@proto : locop]

x = func[F](x1, ..., xn){c}, (s, h) → (s[x 7→`], h[`7→r])

[op-glob-assign2]

s(x) = error or else ` = null

x = func[F](x1, ..., xn){c}, (s, h) → ⊥
[op-glob-assign2-abt]

`0 ∈ dom(h) ` 6= null h(`0)(x) = `
h(`) = [body : c,params : (x1..xn),@proto : locop]

var x = func[F](x1, ..., xn){c}, (s, h) → (s, h[`0 7→r[x 7→ `]])

[op-local-assign2]

` is not in h or else ` = null or else h(`)(x) = error

var x = func[F](x1, ..., xn){c}, (s, h) → ⊥
[op-local-assign2-abt]

Figure 3.5: Operational Semantics for Variable Assignments

61

3.4 Semantics for JSsl

x′ ∈ dom(s) s(x′) ∈ dom(h) f ∈ dom(h(s(x′))) h(s(x′))(f) = v

x = x′.f, (s, h) → (s[x 7→ v], h)
[op-lookup-field]

x′ ∈ dom(s) s(x′) ∈ dom(h) f /∈ dom(h(s(x′)))
h(s(x′))(@proto) = s(x′′) x = x′′.f, (s, h) → (s′, h′)

x = x′.f, (s, h) → (s′, h′)

[op-lookup-proto]

x′ ∈ dom(s) s(x′) ∈ dom(h) h(s(x′)) = OProto
f /∈ dom(OProto)

x = x′.f, (s, h) → (s[x 7→ undef], h)

[op-lookup-undef]

x′ /∈ dom(s) or else s(x′) /∈ dom(h)

x = x′.f, (s, h) → ⊥
[op-lookup-field-abt]

x ∈ dom(s) s(x) = ` ` ∈ dom(h) h(`) = r s(ee) = v

x.f = ee, (s, h) → (s, h[` 7→ r[f 7→ v]])
[op-mutate-field]

s(ee) = error or else x /∈ dom(s)
or else s(x) /∈ dom(h) or else h(s(x)) = error

x.f = ee, (s, h) → ⊥
[op-mutate-field-abt]

` ∈ dom(h) ` 6= null h(`)(e) = v

return e, (s, h) → (s, h[` 7→ v])
[op-return]

` /∈ dom(h) or else ` = null or else h(`)(e) = error

return e, (s, h) → ⊥
[op-return-abt]

Figure 3.6: Operational Semantics for Field Statements

62

3.4 Semantics for JSsl

• In [op-glob-assign1], v is the evaluation of expression e, the heap is unmodified.

• In [op-local-assign1], the variable x is declared in the local scope of a function body

and has location ` in the heap. If ` is an existing nullable location, the local

variable x is declared in ` with value v. The evaluation of the local assignment

causes the stack to be unmodified and the heap is extended by x 7→ v.

• In [op-glob-assign2], if ` is a nullable the location of variable x in the stack with a

value of record r. A new record r is created in the heap. The heap cell stores the

details of the function F . Thus, in the stack s, ` is bound to x. In the heap, r

is allocated with a set of function body c, params x1, ..., xn and @proto with its

location locop. Note that, locop is the location of OProto. This rule implies two

cases: in the case of l ∈ dom(h), it overwrites the location `, whereas in the case

of ` /∈ dom(h), it generates a new location `.

• In [op-local-assign2], it is similar with the [op-glo-assign2] except that the statement

is declared in an existing location `0 in the heap. If the function object x had

location `, thus the stack is unmodified, but the heap is extended by the cell of

x 7→ `.

In Figure 3.6, the rules for the object field operations are defined. The language

JSsl allows that all the program transitions on field operation are located in global

scope rather than local scope except for the return statement. The full set of rules are

described as follows:

• In [op-lookup-field], x′ is in the domain of stack s and has value v in the heap. The

value v of the request field f is bound to the variable x in the stack, the heap is

unmodified.

• In [op-lookup-proto], in the case where the field f does not belong to the domain of

the heap h, then it follows the prototype chain with @proto to retrieve its prototype

63

3.4 Semantics for JSsl

object x′′ to evaluate f by [op-lookup-field] recursively.

• In [op-lookup-undef], the undefined value is bound to x when the field f does not

belong to the fields of the root object OProto that can be followed by the prototype

chain. The heap is unmodified.

• In [op-mutate-field], the existing field f of object x is updated, the stack is unmodi-

fied. In the heap, the record r that contains f mapping to the value of ee is bound

to value of x. This rule can be applied to two cases. In the case where f does not

exist in the object x, f is generated as a new field of x, and its value is set to be

the evaluation of ee. In the case where the field f does exist in the object x, hence

f will be automatically rewrote to have value v.

• In [op-return], v is the evaluation of expression e, the heap is unmodified.

In Figure 3.7, the rules for function expression and function invocation are defined.

The language JSsl allows these constructs to be only visible in global scope. In the

following, the semantic rules for function expression and function invocation are specified.

• In [op-fun-call-obj], the object x has the requested function x0. Invoking the func-

tion x0 causes the execution of function body c that includes the evaluation of

parameters e1, ..., en, and the variable this points to the object x′. After the ex-

ecution of c, in the stack, s carries the original stack s and pushes the variable x

to s with the evaluation of the variable result 1. In the heap, h1 is the heap that

h′ removes the variable this and parameters. As the local function parameters

and the variable this should be not accessible from the outside of the function but

also should be carried in the heap cell, therefore we have the heap h2 to store the

completed data after the invocation of function x0.

1”result” is the function return expression. To evaluate such expression can solve the function return
value.

64

3.4 Semantics for JSsl

x′ ∈ dom(s) s(x′) ∈ dom(h) h(s(x′)) = r
x0 ∈ dom(r) r(x0) = r′ r′ ∈ Func

r′(body) = c r′(params) = (x1, .., xn)
c, (s, h[this7→h(s(x′)), x1 7→h(e1), .., xn 7→h(en)]) → (s′, h′)

s1 = s[x 7→ s′(result)] h1 = h′\{this, x1, .., xn} h2 = h h1

x = x′.x0([e1, ..., en]), (s, h) → (s1, h2)

[op-fun-call-obj]

x′ /∈ dom(s) or else s(x′) /∈ dom(h) or else
h(s(x′)) = r x0 /∈ dom(r) or else r(x0) = r′ r′ /∈ Func

or else r′(body) = c r′(params) = (x1, .., xn)
c, (s, h[this7→h(s(x′)), x1 7→h(e1), .., xn 7→h(en)]) → ⊥

x = x′.x0([e1, ..., en]), (s, h) → ⊥

[op-fun-call-obj-abt]

x′ ∈ dom(s) s(x′) ∈ dom(h) h(s(x′)) = r x0 /∈ dom(r)
r(@proto) = s(x′′) x = x′′.x0([e1, ..., en]), (s, h) → (s′, h′)

x = x′.x0([e1, ..., en]), (s, h) → (s′, h′)

[op-fun-call-proto]

x′ ∈ dom(s) s(x′) ∈ dom(h) h(s(x′)) = OProto
x0 /∈ dom(OProto)

x = x′.x0([e1, ..., en]), (s, h) → (s[x 7→ undef], h)

[op-fun-undef]

x0 ∈ dom(s) s(x0) ∈ dom(h) h(s(x0)) = r
r ∈ Func r(body) = c r(params) = (x1, .., xn)

c, (s, h[this7→locgo, x1 7→h(e1), .., xn 7→h(en)]) → (s′, h′)
s1 = s′[x 7→ s′(result)] h1 = h′\{this, x1, .., xn} h2 = h h1

x = x0([e1, ..., en]), (s, h) → (s1, h2)

[op-fun-call-dir]

x0 /∈ dom(s) or else s(x0) /∈ dom(h)
or else h(s(x0)) = r r /∈ Func

or else r(body) = c r(params) = (x1, .., xn)
c, (s, h[this7→locgo, x1 7→h(e1), .., xn 7→h(en)]) → ⊥

x = x0([e1, ..., en]), (s, h) → ⊥

[op-fun-call-dir-abt]

Figure 3.7: Operational Semantics for Function Invocation

65

3.4 Semantics for JSsl

• In [op-fun-call-proto], the object x′ does not have such a function x0. The prototype

chain leads it to its prototype object x′′ which actually does have x0, then x0 is

evaluated by [op-fun-call-obj] recursively.

• In [op-fun-undef], all the objects (including OProto) in the prototype chain do not

have function x0 as their field. In the stack, s is directly extended to contain that

x maps to undef . The heap is unmodified.

• In [op-fun-call-dir], it is similar with [op-fun-call-obj] but the variable this is bound

to global object Globj who has location locgo, because the function invocation is

occurred in the global scope.

The Figure 3.8 describes the varies of object creations semantic rules. Note that

we exclude the scenario of creating object by function constructor, because the way of

defining a function constructor is complied with function expression, and JSsl supports

function expression:

• In [op-obj-literal], we meet a statement which asks to create the object x by giving

an object literal. In the stack, we extend it to contain the location ` of x. In the

heap, we build a record which denotes initial values for each field, including the

fields with corresponding values and @proto internal pointer points to OProto.

• In [op-obj-crt], the object x is generated by its prototype x′ by keyword new . The

location ` is not initially in the domain of the heap h but created on the fly. In the

stack, we extend it to contain `. In the heap, we extend it to include the variable

@proto pointing to `′ that is the location of the variable x′.

• In [op-obj-crt-func], the object x can be created by using function x′([e1, ..., en]) with

keyword new. The location of the resulting object x is ` which is initially not part

of the domain of heap h. The heap cell sp contains the mapping from the variable

this to ` and the mapping from formal parameters to actual parameters. After

66

3.4 Semantics for JSsl

s(ee1) = v1, ..., s(een) = vn ` 6= null
r = [f1 : v1, ..., fn : vn,@proto : locop]

x = {f1 : ee1, ..., fn : een}, (s, h)→ (s[x 7→ `], h[` 7→ r])

[op-obj-literal]

s(eei) = error for some i

x = {f1 : ee1, ..., fn : een}, (s, h)→ ⊥
[op-obj-literal-abt]

x′ ∈ dom(s) s(x′) ∈ dom(h) s(x′) = `′ ` 6= null `′ 6= null

x = new x′(), (s, h)→ (s[x 7→ `], h[` 7→ [@proto : `′]])
[op-obj-crt]

x′ /∈ dom(s) or else s(x′) /∈ dom(h) or else ` = null or else `′ = null

x = new x′(), (s, h)→ ⊥
[op-obj-crt-abt]

x′∈dom(s) s(x′)∈dom(h) ` 6= null ` is new in h
h(s(x′)) ∈ Func h(s(x′)) = r′

r′ = [body : c,params : (x1, ..., xn),@proto : locop]
hp = [this7→`, x1 7→h(e1), .., xn 7→h(en)]

c, (s, hp h[s(x) 7→[@proto : s(x′)])→ (s′, h′)
s1 = s′[x 7→ `] h2 = h′\{this, x1, .., xn} h2 = h h1

x = new x′([e1, .., en]), (s, h)→ (s1, h2)

[op-obj-crt-func]

x′ /∈ dom(s) or else s(x′) /∈ dom(h) or else ` = null

x = new x′([e1, .., en]), (s, h)→ ⊥
[op-obj-crt-func-abt]

Figure 3.8: Operational Semantics for Object Creation

67

3.5 An Axiomatic Framework for JSsl

the execution of the function body c, the resulting stack is s′ and the resulting

heap is h′. Similarly with [op-fun-call-dir], in the final state, the stack pushes the

variable x to s′ with the value of evaluation of the variable result. The heap h1

removes the variable this and the parameters from h′ to ensure that they are not

accessible from the outside of function after the function returns. To reveal the

data completion, the final heap h2 is extended to include both h and h1.

Due to the operational semantics of sequential, conditional, and iteration structures

are standard and straightforward, as given in Figure 3.9, we omit the description for

brevity.

3.5 An Axiomatic Framework for JSsl

In this section, the specification language (also called assertion language) Specsl is

defined together with a set of symbolic execution rules. The specification language is

developed based on separation logic, where the abstract program state is annotated by

predicates, each of which describes either heap-insensitive statements or heap-sensitive

statements. It is designed for reasoning about the programs that manipulate mutable

data structures. The inference rules for JSsl is also built up in the style of separation

logic in terms of separation conjunction. The rationale for adopting separation logic is

because it is designed for local reasoning about programs that manipulate heap-allocated

data structures. The advantage of this includes that it can contribute to modelling of JSsl

programs that use the heap from an abstract point of views. The specification language

explicitly captures the ownership of objects, which provides sufficient information to

perform functional correctness property verification. In addition, it also manipulates

the field modification on the fly which is another core feature of JSsl .

68

3.5 An Axiomatic Framework for JSsl

c1, (s, h)→ (s′, h′) c2, (s
′, h′)→ (s′′, h′′)

c1; c2, (s, h)→ (s′′, h′′)
[op-sequential]

c1, (s, h)→ ⊥

c1; c2, (s, h)→ ⊥
[op-sequential-abt]

s(b) = true c1, (s, h)→ (s′, h′)

if(b) {c1} else {c2}, (s, h)→ (s′, h′)
[op-conditional-true]

s(b) = false c2, (s, h)→ (s′, h′)

if(b) {c1} else {c2}, (s, h)→ (s′, h′)
[op-conditional-false]

s(b) = error

if(b) {c1} else {c2}, (s, h)→ ⊥
[op-conditional-abt]

s(b) = false

while (b) {c}, (s, h)→ (s, h)
[op-iteration-false]

s(b) = true c; while (b) {c}, (s, h)→ (s′, h′)

while (b) {c}, (s, h)→ (s′, h′)
[op-iteration-true]

s(b) = error

while (b) {c}, (s, h)→ ⊥
[op-iteration-abt]

Figure 3.9: Operational Semantics for Control Structures

69

3.5 An Axiomatic Framework for JSsl

3.5.1 Specification Language for JSsl

To capture the desired level of program correctness for JSsl programs, logical opera-

tions are taken from separation logic to specify heap-allocated objects that can be used.

The specification language uses the pre-condition and post-condition that are illustrated

by logic formulas to describe ”states” consisting of a stack and a heap. The meaning

of the pair of pre-condition and post-condition is that if the execution of the program

statement in the context of a program state satisfies its pre-condition, and if it termi-

nates, then it terminates in another state that satisfies the corresponding post-condition.

Otherwise, if the program state does not satisfy the post-condition, the verification fails

and an error is reported.

According to the concrete heap model (see Section 3.4.1), a fixed finite collection

fields (variables), and a disjoint set of locations, variables of non-addressable values are

defined as below:

Heap = Loc ⇀fin (Var→fin Value ∪ Func)

Stack = Var→sfin Value ∪ Loc

The framework adopts the partial correctness semantics of Hoare logic with tight

interpretation. Tight interpretation is another crucial aspect of separation logic, which

defines that well-specified programs do not go wrong. According to such interpretation,

our language for reasoning about the heap model applies a certain pure (heap insensitive)

and spatial (heap sensitive) assertions to describe the symbolic heap (abstract state). A

symbolic heap ∆ is a pair Π ‖ Σ where Π is essentially a conjunction separated sequence

of pure formula, and Σ is a ∗ separated sequence of partial formula. Therefore, we have

a valid specification { ∆1 } c { ∆2 } ensure that command c should not encounter any

memory faults when it starts in a program state satisfying ∆1. The tight interpretation

also requires the pre-condition ∆1 of a statement to guarantee that all memory locations

can be accessed by the execution of the statement, except for the freshly allocated ones

70

3.5 An Axiomatic Framework for JSsl

that are allocated in advanced. A memory location x is allocated with points-to relation,

such as x 7→ represents location x points-to somewhere in a heap cell.

In Figure 3.10, we show that a specification is a triple who is composed of an ab-

stract pre-condition assertion ∆1, command c and an abstract post-condition assertion

∆2. For each symbolic heap ∆, the pure formulas include boolean values, a sequence

of ∧ and ∨ separated formulas, existential quantification variable, and expression as-

signment. The symbol ”�∼” represents the relationship of {=, >,<,≤,≥}. In the heap

sensitive formulas, it essentially contains emp that denotes an empty heap, and the

formula x7→[f1 : e1, .., fn : en] denotes a heap-allocated object referred to by reference x,

which contains fields f1, .., fn whose values are e1, .., en where e and ei (i ∈ Z) represent

expressions, and fi (i ∈ Z) denotes field names. The formula Σ1 ∗Σ2 (resp. Σ1−∗Σ2) de-

notes the separation conjunction (resp. separation implication) of two heap formula Σ1

and Σ2 that are two disjoined heap cells. For separation implication, Σ2 is the updated

heap cell with respect to Σ1.

The semantics is given by a forcing relation s, h |= M where s ∈ Stack, h ∈ Heap,

and M can be a symbolic heap, a pure assertion, a heap assertion. This satisfiability is

used to prove the soundness of a axiomatic framework in Section 3.5.3.

Furthermore, the full semantics is shown in Figure 3.11. For the pure Π, as noted in

the last line of the figure, their semantics are defined with a specific notation A, which

is preserved by the entailment prover that we use for soundness proving. Its definition

is given in Figure 3.12

In our semantics, we allow a singleton heap formula x 7→[f1 : e1, .., fn : en] to spec-

ify partial fields of object x. The definition of heap disjointness is to allow partial

objects being specified separately, we relax the usual disjointness definition as follows:

h1#h2 iff dom(h1)∩dom(h2) = ∅ or ∀ ` ∈ dom(h1)∩dom(h2)·dom(h1(`))∩dom(h2(`)) = ∅.

This allows us to represent a partial view of a heap-allocated object in our specifications.

This flexibility does not cause any practical problems as our framework always main-

71

3.5 An Axiomatic Framework for JSsl

Specification Specsl ::= { ∆1 } c { ∆2 }

Abstract state ∆ ::= Π ‖ Σ

Pure formula Π ::= b | Π1∧Π2 | Π1∨Π2 | ∃x.Π | x�∼e

Heap formula Σ ::= emp | x7→r | Σ1 ∗ Σ2 | Σ1 −∗Σ2 | ∃x.Σ

Boolean b ::= true | false | x | b1 = b2

Variable x ::= f | x′ | xi(i ∈ Z)

Fields f ::= f ′ | fi(i ∈ Z)

Expression e ::= F | v | x | const | ei(i ∈ Z)

Record r ::= [f1 : e1, .., fn : en] | e

Figure 3.10: The Specification Language Specsl

tains a more complete view of an object via normalisation: x 7→ [f1:e1..fn:en] ∗ x 7→

[fn+1:en+1..fn+m:en+m] x 7→ [f1:e1..fn+m:en+m].

3.5.2 Inference Rules

This section defines inference rules for reasoning about JSsl statements. Our inference

rules abstractly capture the symbolic execution of these statements. The full list of rules

can be found in Figure 3.13, Figure 3.14, Figure 3.15, and Figure 3.16.

The frame rule is derived from separation logic, which is shown as follows:

{P} c {Q} modified(c) ∩ vars(R) = ∅

{P ∗ R} c {Q ∗ R}
[sl-frame]

where modified(c) denotes the program variables modified by c, and vars(R) represents

the set of free variables in the assertion R. Essentially, this [sl-frame] rule allows us to

focus only in the parts of the heap that are actually manipulated by the execution of

the command when we prove a specification (so called the memory footprint).

72

3.5 An Axiomatic Framework for JSsl

s, h |= Π ‖ Σ iff s |= Π and (s, h) |= Σ

s, h |= emp iff dom(h) = ∅

s, h |= x 7→[f1:e1..fn:en] iff dom(h) = {s(x)} and
h(s(x)) = [f1 : s(e1), .., fn : s(en)]

s, h |= x 7→F iff dom(h) = {s(x)} and
h(s(x)) = [body : c,params : (...),@proto : locfp]

s, h |= x 7→const iff dom(h) = {s(x)} and
h(s(x)) = const, where const is OProto

s, h |= Σ1 ∗ Σ2 iff ∃h1, h2 · h1#h2 and
h = h1 ∗ h2 and s, h1 |= Σ1 and s, h2 |= Σ2

s, h |= Σ1 −∗Σ2 iff ∀h1 · (dom(h1)∩dom(h)=∅ and s, h1 |= Σ1)
implies s, h ∗ h1 |= Σ2

s, h |= ∃x · Σ iff ∃r, h1, h2 · h1#h2 and h = h1 ∗ h2,
h1 = [x 7→ r] and s, h |= Σ

s, h |= Σ iff h |= Σ

s |= Π iff s |=A Π

Figure 3.11: The Semantic Model for Specsl

73

3.5 An Axiomatic Framework for JSsl

s |=A true iff always

s |=A false iff never

s |=A b1 = b2 iff s(b1) = s(b2)

s |=A x iff s(x) = true

s |=A x = e iff s(x) = s(e)

s |=A x > e iff s(x) > s(e)

s |=A x < e iff s(x) < s(e)

s |=A x ≤ e iff s(x) ≤ s(e)

s |=A x ≥ e iff s(x) ≥ s(e)

s |=A Π1∧Π2 iff s |=A Π1 and s |=A Π2

s |=A Π1∨Π2 iff s |=A Π1 or s |=A Π2

s |=A ∃x.Π iff s |=A Π[v/x] for some v

Figure 3.12: The Semantic Model for Pure Formula in Specsl

74

3.5 An Axiomatic Framework for JSsl

We defined a helper function LV(Σ) to describe the relationship between a variable

and the heap formula:

LV(emp) ::= ∅

LV(x7→r) ::= {x}

LV(Σ1 ∗ Σ2) ::= LV(Σ1) ∪ LV(Σ2)

Besides, the operation (∃x · Π1) ∧ Π2 states that there is a variable x in the pure

formula Π1. Similarly, the operation (∃x·1)∗Σ2 states that there is a variable in the heap

formula Σ1. In our rules, the expression @proto is an internal property for each object

that is pointing to the prototype object of the current one. It may return the location

locfp (it has const value FProto) or locop (it has const value OProto). By following a

prototype chain, OProto is the root object at the end of the chain. The value FProto is

the root object at the end of chain when the object is a type of function.

The inference rules for the statement of variable assignment and field manipulation

are given in Figure 3.13. The explanations for the full set rules are shown as follow:

• In [sl-skip], the pre-condition and post-condition are the same.

• In [sl-glob-assign1], every variable declaration and assignment in the global scope is

located in the pure formula. Its occurrences in the pre-condition are replaced by

expression e in the post-condition.

• In [sl-local-assign1], local variables are all declared in the local scope and located

in the heap formula. Their occurrences in the pre-condition are replaced by the

expression e in the post-condition.

• In [sl-glob-assign2], x 7→ r is a heap cell that is generated by creating function F

expression.

• In [sl-local-assign2], the function expression x is declared inside of a existing function

75

3.5 An Axiomatic Framework for JSsl

{Π ‖ Σ}skip{Π ‖ Σ}
[sl-skip]

{Π[e/x] ‖ Σ}x = e{Π ‖ Σ}
[sl-glob-assign1]

{Π ‖ Σ[e/x]}var x = e{Π ‖ Σ}
[sl-local-assign1]

r = [body : c,params : (x1, ..., xn),@proto : locop]

{Π ‖ emp}x = func[F](x1, ..., xn){c}{Π ‖ ∃x · x 7→r}
[sl-glob-assign2]

Σ ≡ Σ0 ∗ x0 7→ r0 x0 ∈ Func
r = [body : c,params : (x1, ..., xn),@proto : locop] x /∈ LV(Σ)

{Π ‖ Σ}var x = func[F](x1, ..., xn){c}{Π ‖ Σ ∗ (∃x · x 7→r)}
[sl-local-assign2]

r = [..., f : v, ...]

{Π ‖ x′ 7→r}x = x′.f{(∃x ·Π) ∧ x=v ‖ x′ 7→r}
[sl-lookup-field]

x′ /∈ LV(Σ) f /∈ dom(r)
r(@proto) = x′′ {Π ‖ Σ}x = x′′.f{Π′ ‖ Σ′}
{Π ‖ x′ 7→r ∗ Σ}x = x′.f{Π′ ‖ x′ 7→r ∗ Σ′}

[sl-lookup-proto]

Σ ≡ x′ 7→ OProto
f /∈ LV(Σ)

{Π ‖ Σ}x = x′.f{∃x ·Π ∧ x=undef ‖ Σ}
[sl-lookup-undef]

r = [..., f : v, ...] or else f /∈ dom(r)

{Π ‖ x 7→r}x.f = ee{Π ‖ x 7→r[f 7→ee]}
[sl-mutate-field]

Figure 3.13: Inference Rules for Variable Assignments and Field Statements

76

3.5 An Axiomatic Framework for JSsl

scope (the scope of x0) located in the heap cell x0 7→ r0. a disjoint heap cell x 7→ r

is generated by the creation of function expression x.

• In [sl-lookup-field], the pre-condition contains the existing object x′ maps to record

r, in the record r, we have the underlying object x with the corresponding value

v. The pure formula is updated by x = v in the post-condition.

• In [sl-lookup-proto], if the requested field f is not in the record of object x′, but

in another heap cell Σ, hence the @proto leads to its prototype object x′′ and

recursively applies [sl-lookup-field] rule. In the post-condition, the heap cell Σ is

updated to Σ′.

• In [sl-lookup-undef], if the requested field f cannot be found in the record of object

OProto, the post-condition only extends with x = undef.

• In [sl-mutate-field], when the requested field f is in the record of object x or not in

that record, under both circumstances the heap formula in the post-condition is

updated by the heap cell of the variable x 7→ r.

The inference rules refer to functions invocation are given in Figure 3.14:

• In [sl-fun-call-obj], when we call a function object x0 from the object x′, and x0

can be fetched in the record of x′, then the pure formula in the post-condition is

updated by the variable x with value res that is the return value of calling the

function x0. Other certain updates in the heap formula from Σ to Σ1.

• In [sl-fun-call-proto], if the requested function object x0 is not reachable in the record

of x′, it follows @proto to its prototype object x′′ and reach x0 in somewhere by

[sl-fun-call-obj]. The post-condition updates in the both pure formula and heap

formula.

77

3.5 An Axiomatic Framework for JSsl

Σ ≡ Σ0 ∗ x′ 7→[x0:x′′, ..] ∗ x′′ 7→[body : c,params : (x1..xn), ...]
Σ1 ≡ Σ ∗ x0 7→ [this : x′, x1 : e1, ..., xn : en, ...]

{Π ‖ Σ1}c{Π1 ‖ Σ2}
{Π ‖ Σ}x = x′.x0([e1, ..., en]){(∃x ·Π1) ∧ x = res ‖ Σ2}

[sl-fun-call-obj]

x′ /∈ LV(Σ) x0 /∈ dom(r) r(@proto) = x′′

{Π ‖ Σ}x = x′′.x0([e1, ..., en]){Π′ ‖ Σ′}
{Π ‖ x′ 7→ r ∗ Σ}x = x′.x0([e1, ..., en]){Π′ ‖ Σ′}

[sl-fun-call-proto]

Σ ≡ x′ 7→ OProto
x0 /∈ LV(Σ)

{Π ‖ Σ}x = x′.x0([e1, ..., en]){(∃x ·Π) ∧ x=undef ‖ Σ}
[sl-fun-undef]

Σ ≡ (Σ1 ∗ x0 7→ [body : c,params : (x1...xn),@proto:locfp, ...])
Σ1 ≡ (Σ ∗ x′ 7→ [this : locw, x1 : e1, ..., xn : en, ...])

{Π ‖ Σ1}c{Π1 ‖ Σ2}
{Π ‖ Σ}x = x0([e1, ..., en]){(∃x ·Π1) ∧ x = res ‖ Σ2}

[sl-fun-call-dir]

Figure 3.14: Inference Rules for Function Invocation

78

3.5 An Axiomatic Framework for JSsl

• In [sl-fun-undef], if the requested function object x0 is not able to be fetched in

record of OProto, thus in the post-condition, only the pure formula is extended by

x = undef.

• In [sl-fun-call-dir], in the case of directly invoking function x0, the post-condition

updates by function return value res in the pure formula and from Σ to Σ2 in the

heap formula.

A set of inference rules relevant to object creation are given in Figure 3.15, they

cover the statements of new object creation via object literal and new keyword. Because

new operation actually creates a prototype chain for resulting new object to inheritance

fields, more explanations are shown below:

• In [sl-obj-crt-literal], the pre-condition starts from an empty heap part and allocates

a new heap cell for the record of object x in the post-condition.

• In [sl-obj-crt-new], when the object x is created by x′ via new operation, the post-

condition extends its heap part by adding a new cell that specifies x′ is the proto-

type of the object x.

• In [sl-obj-crt-fun], when the object x is created by function x′ via new operation,

the this internal property changed its value from the global variable window to

the newly generated object x after the execution of the invoked function body c.

Thus, the post-condition updates both pure formula and heap formula.

The inference rules for control structures, including sequential composition, condi-

tional and while-loops, are standard as in Hoare logic, as shown in Figure 3.16, we omit

their description for brevity:

79

3.5 An Axiomatic Framework for JSsl

r = [f1 : e1, ..., fn : en]

{Π ‖ emp} x = {f1 : e1, .., fn : en} {Π ‖ ∃x · x 7→r}
[sl-obj-crt-literal]

{Π ‖ x′ 7→r} x = new x′() {Π ‖ x′ 7→r ∗ (∃x · x 7→[@proto : x′])}
[sl-obj-crt-new]

Σ ≡ (Σ0 ∗ x′ 7→ [body : c,params : (x1..xn),@proto:locop, this:locw])
Σ1 ≡ Σ ∗ (∃x′′ · x′′ 7→ [this : x, x1 : e1, ...xn : en, ...])

{Π ‖ Σ}c{Π1 ‖ Σ2}
{Π ‖ Σ}x = new x′([e1, ..., en]){Π1 ‖ Σ2}

[sl-obj-crt-fun]

Figure 3.15: Inference Rules for Object Creation

{Π ‖ Σ}c1{Π1 ‖ Σ1} {Π1 ‖ Σ1}c2{Π2 ‖ Σ2}

{Π ‖ Σ}c1; c2{Π2 ‖ Σ2}
[sl-sequential]

{Π∧b ‖ Σ}c1{Π2 ‖ Σ2} {Π∧¬b ‖ Σ}c2{Π2 ‖ Σ2}

{Π ‖ Σ}if (b){c1}else {c2}{Π2 ‖ Σ2}
[sl-conditional]

{Π∧b ‖ Σ}c{Π ‖ Σ}

{Π ‖ Σ}while (b){c}{Π∧¬b ‖ Σ}
[sl-iteration]

Figure 3.16: Inference Rules for Control Structures

80

3.5 An Axiomatic Framework for JSsl

3.5.3 Soundness

We have defined the underlying operational semantics of our language JSsl a set

of inference rules for our axiomatic framework. We use those rules in conjunction to

logically derive theorems. Our axiomatic framework is completely described with the

soundness proof. In other words, the axiomatic framework is sound if each of its the-

orems is valid in every statements of the JSsl language. Thus we have definitions for

specification validity and soundness:

Definition 1 (Validity). A specification { ∆1 } c { ∆2 } is valid, denoted |= {P}c{Q}, if

and only if it is logically truth with respect to underlying operational semantics, denoted

as, ∀ s, h. if s, h |=∆1 and c, (s, h)→ (s′, h′) for some s′, h′, then s′, h′ |= ∆2.

Definition 2 (Soundness). Our verification framework for JSsl is sound if all prov-

able specifications under our axiomatic framework are indeed valid, denoted as, if `

{∆}c{∆2}, then |= {∆1}c{∆2}.

Based on the definition above we have a theorem for our axiomatic framework:

Theorem 1. Our axiomatic framework presented in this chapter is sound with respect

to the underlying operational semantics.

As is indicated by Definition 2 above, we need to show that, for any ∆1, c, ∆2, if

` {∆1}c{∆2}, then |= {∆1}c{∆2}. The proof can be accomplished by structural induc-

tion over c. For example, for the lookup− field statement, we have following proof:

r = [..., f : v, ...]

{Π ‖ x′ 7→r}x = x′.f{(∃x ·Π) ∧ x=v ‖ x′ 7→r}
[sl-lookup-field]

According to above definitions, the proof for rule [sl-lookup-field] can be written into:

81

3.5 An Axiomatic Framework for JSsl

∀ s,h. if s, h |= {(∃x ·Π) ‖ x′ 7→r} and (s, h)→ (s′, h′), then s′, h′ |= {(∃x ·Π) ∧ x=v ‖ x′ 7→r}

with respect to the following operational semantics:

x′ ∈ dom(s) s(x′) ∈ dom(h) f ∈ dom(h(s(x′))) h(s(x′))(f) = v

x = x′.f, (s, h)→ (s[x 7→ v], h)
[op-lookup-field]

In other words, the goal is to to prove the satisfiability of s′, h′ |= {(∃x·Π)∧x=v ‖ x′ 7→r}.

The proof details is shown as follow:

Take any program state σ such that (s, h) |= {(∃x·Π) ‖ x′ 7→r}. Under our operational

semantics, we have x = x′.f, (s, h) → (s′, h′), where (s′, h′) = (s[x 7→ v], h). The goal is

turned to prove the following satisfiability:

s[x 7→ v], h |= {(∃x ·Π) ∧ x=v ‖ x′ 7→r}

The semantic domain in Figure 3.11 shows us that the goal can be turned to prove

that:

s[x 7→ v] |= (∃x ·Π) ∧ x=v and s[x 7→ v], h |= x′ 7→r

Due to h = x′ 7→ r, thus we will always have h |= x′ 7→r. According to Figure 3.12,

to prove that s[x 7→ v] |= (∃x ·Π) ∧ x=v, we only need to prove that:

s[x 7→ v] |= Π and s[x 7→ v] |= (x = v)

Due to s |= Π, we will always have s[x 7→ v] |= Π. As we know that f ∈ dom(h(s(x′)))

and h(s(x′))(f) = v, thus we will always have s[x 7→ v] |= (x = v). Note that the value v

82

3.6 Summary

could be s a primitive value or the reference if it is a reference type value (e.g. function

type value). Therefore, we will always have (s[x 7→ v], h) |= {(∃x · Π) ∧ x=v ‖ x′ 7→r}.

The soundness proof of the axiomatic framework JSsl is done by structural induction

over program statement and the details are in Appendix A on page 149.

3.6 Summary

We have described a new approach to verify the functional correctness of the JSsl

programs that have pointer-based data structures. We give the definitions of the target

programming language, a substantial subset of JavaScript, JSsl , which captures the core

features and behaviours of JavaScript, such as prototype inheritance, function object,

and automatic object amplifying on the fly. For the purpose to prove the soundness of

our approach, we employ the operational semantics for our language and the semantic

model for the specification language. Meanwhile, the specification language is introduced

as a variant of separation logic and given a sound axiomatic framework. More detailed

proof of the feasibility of our approach can be found from the experimental results in

Chapter 5 and the appendix. This chapter is illustrated as the foundations to verify

more properties of our language. In the next chapter, we turn to verify safety property

in a more expressive subset JS t
sl program.

83

Chapter 4

JS t
sl - A safe usage of this for JSsl

Logical assertions can be used in formal verification in such a way that a rig-

orous standard is established for proofs about computer programs , including

proof of correctness, safety. – R.W. Floyd (Computer scientist in Stanford

University)

4.1 Introduction

One of the usages of JavaScript is constructing third party applications (guest codes)

that embedded in a host page (host codes). The host page, a publisher, rents a portion

of its web page to third party’s network, such as publishing advertisement or applica-

tions. These third parties provide content that the browser displays on the user’s screen.

Malicious third parties could find a way that not only exploit the trust relationship be-

tween the publisher and users, but also inject malicious JavaScript code into a honest

host page for attacking users. These attacks need to be prevented to improve the degree

of safety for users.

The design decision was taken to focus on how to ensure that guest codes are safe

84

4.1 Introduction

with respect to host page. Essentially, the unsafe interferences 1 between guest and

host are caused by directly or indirectly manipulating the global object (the window

2 object). The way of accessing the window object is through the usage of this in a

function execution context. For manipulating the use of this, JSsl is extended to JS t
sl

for rendering this expression. In JS t
sl , a function treated as a field is called a method.

This provides an interpretation for this variable as this can be bound to either the

global object or a newly created object during the execution of the functions.

Consider the example JavaScript program in Figure 4.1. The code is used to show

certain essential features of the language, including object structure, alias variable, func-

tion invocation. In Figure 4.1, an object obj is literally declared with two fields, x is a

primitive type variable who has integer value 0, setX is a function who is initiated as a

method. In line 10, window.x statement returns undefined because the field x is not

a global variable but a local variable for obj. The global object window can only reach

the variables in the global scope, such as obj itself. However, it returns 10 in line 21

because the function is invoked and x has been implicitly attached as a global variable

because of the execution of the function body statements. obj.setX(10) is applied in the

line 12, this is bound to obj at this point. In the same figure, however, in the line 15,

f(90) actually behaves that the execution makes this bound to the global object window,

because the reference obj.setX is bound to f who is a global variable and the function

invocation is under the global context. In fact, as mentioned in Section 2.2.1, this is an

implicit variable to all JavaScript functions but its value behaves differently depending

on the different type of function invocation with respect to this.

Since this could potentially point to the global object, the solution from many re-

searches is to prohibit the use of this in guest code to restrict it to access the global

object. Due to the script source codes can be arbitrary embedded within HTML file,

1An unsafe interference is about how the guest code achieves unauthorised accesses to the variables
in the host page. For example, the guest code is able to manipulate the global object window of the host
page.

2In the context of browser environment, the global object is window object.

85

4.1 Introduction

1 <html>
2
3 <s c r i p t type=” text / j a v a s c r i p t ”>
4 var obj = {
5 x : 0 ,
6 setX : function (n) { t h i s . x = n ; }
7 } ;
8
9 // window i s the name o f the g l o b a l ob j e c t in Web Browsers

10 window . x ; // undef ined
11
12 obj . setX (1 0) ;
13 obj . x ; //10
14 f = obj . setX ;
15 f (9 0) ;
16
17 // obj . x was not updated
18 obj . x ; //10
19
20 //window . x was c rea ted
21 window . x ; //90
22 </s c r i p t >
23
24 </html>

Figure 4.1: Example of this variable manipulation in JavaScript

thus any guest codes can be mashed up with the host codes without causing semantic

modification. It means that all the script codes can be semantically bound together

under the < script > ... < /script > tags. Therefore, a fragment of code may be di-

rectly or indirectly considered as malicious scripts as long as the value of this variable

is innocently or maliciously altered to point to window object.

In this chapter we aim to provide a solution that allows the guest code to accommo-

date this variable. To analyse both innocent and malicious operations on this variable,

we provide an elegant reachability graph analysis to show all the reachability relation-

ships among the object, an axiomatic framework is constructed to verify this safe prop-

erty. The reachability graph is another approach to verify programs in a visualised way.

The reason why we adopted the reachability graph is that the Hoare Triple axiomatic

system is a verification method in the mathematical and logical way, but the reachabil-

86

4.2 Example Analysis

ity graph visualises the evolution of program states by steps, which can be assisting the

readers to understand the meaning of the program status that is written by Hoare logic

style specifications.

4.2 Example Analysis

To analyse the JavaScript program in Figure 4.1, firstly we transform it to a JS t
sl

program in semantic-preserving way (see Figure 4.2). Secondly, the program is illustrated

by our reachability graph analysis. Note that, further definition and explanation about

reachability analysis are seen in Section 4.3. In this section, we present an overview of

how the reachability graph analysis is able to extract the relationships among objects

and discover the value modification of this explicitly or implicitly.

Furthermore, we view the program as a generator for data structures. And the data

structures allocated in the heap are summarised by making a reachability graph. The re-

lationships among the data structures are modelled as reachability between nodes, which

one node corresponds to possible other nodes in the heap. The major issue is how to ma-

nipulate the heap cells to associate with which nodes, and with the growth of data struc-

tures how to manage the relationships for every heap cells. Our reachability graph con-

tains nodes to represent program labels and edges to represent heap references. In Figure

4.3, we show the notations definition in our reachability graph. The circle node represents

global label node (label node) that refers to a program label defined in the global con-

text, the diamond node represents the primitive type value of variables that are located

in the global scope only, the rectangle node represents single object heap region node

who refers to a disjointed heap cell that might be referenced by an object. A heap

region node consists of its reference address and a reachability state which indicates a

set of objects that the given object can reach. The shaded summary heap region node

represents the newest state 1 of the corresponding object node. The heap region node

1A newest state is a special heap region node for a function, which contains all the reachability states

87

4.2 Example Analysis

1 obj = {
2 x : 0 ,
3 setX : func (n) { t h i s . x = n }
4 } ;
5
6 n1= window . x ; // undef ined
7
8 n2 = obj . setX (1 0) ;
9

10 n3 = obj . x ; //10
11
12 f = obj . setX ;
13
14 n4= f (9 0) ;
15
16 n5 = obj . x ; //10
17
18 n6 = window . x //90

Figure 4.2: Example of this variable manipulation in JS t
sl

with M label on the top right represents the multiple objects heap region node that

may be referenced by more than one object nodes. Note that we presume that the heap

cell for a function invocation is automatically collected by Garbage Collector when the

invocation is finished. And a new invocation operation located in the same cell where it

might be collected previously. All the above nodes can be connected by reference edge

that represents the heap references. One object can reach another object if there exists

an edge from the first object to the second object.

We analyse the example in Figure 4.2 by using reachability graph, the analysis begins

from the line one that literately create object obj with field x and setX. Figure 4.4

presents the analysis results for it. At the beginning, obj is a label node that can be

reached by window object at this point. The reference edge is established from the label

node obj to the heap region node that is composed of the heap address Addr obj and a

reachability state set. The reachability state shows that label node obj can reach the

heap region node Addr x and Addr setX respectively. The local field x is initialized by

integer value 0 and another local field setX is preprocessed as a method.

occurring in the original function

88

4.2 Example Analysis

Figure 4.3: Reachability Graph Notations

Figure 4.5 presents the reachability graph immediately after line 6. A new label

node has been created for n1 who has undefined value. Besides, the heap region node

Addr window updates its reachability state with object n1, and a new reference edge

is generated from 〈 Addr window, n1, undefined 〉.

As in Figure 4.6, it represents the analysis result after line 8, the method setX is

called by obj with certain argument, the new object n2 is established with edge reference

linked to undefined value. The function initialisation (function body and parameter)

of setX is stored in a independent part of cell, it would be activated when it is invoked.

A new shaped heap region node becomes visible in the graph since the execution of the

function invocation statement obj.setX(10). Note that heap regions are shaded only

when they are summary node. A new reference edge setX is generated and linked from

the caller node Addr obj to the callee summary node Addr setX. The reference edge

from Addr window to undefined is updated to a set {n1, n2}. Meanwhile, the value of

the node Addr x is updated to 10 after we executed the function body of setX.

Figure 4.7 shows the reachability graph after the assignment of n3 = obj.x. It creates

reference edges 〈 Addr window, n3, 10 〉. At this point, the reachability state for the

summary node Addr setX remains the latest value for primitive variable x who has

89

4.2 Example Analysis

Figure 4.4: Reachability graph after line 1

Figure 4.5: Reachability graph after line 6

90

4.2 Example Analysis

Figure 4.6: Reachability graph after line 8

integer value 10 which leads the return value for label n3 to 10.

Figure 4.8 presents the reachability graph after line 12. A new label node is created

for f and the reachability state for the node Addr window is updated to include f . It

also creates two reference edges 〈 Addr window, f , Addr setX 〉 and 〈 f , Addr setX 〉

respectively.

In Figure 4.9, it presents the reachability graph result after that the line 14, method

setX is invoked with parameter 90 in the context of global scope. Essentially, a new label

node n4 is created and the multiple object summary heap region node Addr setX() is

updated for altering the value of this to window. A few new reference edges are created,

such as 〈 Addr window, x, 90 〉, 〈 n4, undefined 〉,〈 Addr window, n4, undefined 〉.

In Figure 4.10, we have the reachability graph after line 16, it implies that the value

of x that is reachable by Addr obj remains 10, but the global variable x that is reachable

by Addr window has value 90. A label node is created for n5 pointing to 10. Meanwhile,

91

4.2 Example Analysis

Figure 4.7: Reachability graph after line 10

92

4.2 Example Analysis

Figure 4.8: Reachability graph after line 12

93

4.2 Example Analysis

Figure 4.9: Reachability graph after line 14

94

4.3 Reachability Graph Analysis for JS t
sl

references edges 〈 Addr window, n5, 10 〉 and 〈 n5, 10 〉 are also generated at this point.

Figure 4.11 presents that final reachability graph after line 18. Essentially, it creates

an additional label node n6 pointing to 90, and the reference edge 〈 Addr window, n6,

90 〉. Thus the return value for the statement n6 = window.x is 90 rather than 10.

Consider the difference of reachability graph result from Figure 4.8 to Figure 4.9, the

this variable enclosed in Addr setX multiple object node could be modified from obj

to window after the function invocation f(90) within the global scope. It is clear that

full authorisation of the webpage is accessed as long as you are able to manipulate the

global object window. Therefore, this reachability graph implies that the object n4 from

the allocation site in line 14 directs you to access full authorisation of the underlying

webpage.

4.3 Reachability Graph Analysis for JS t
sl

According to our reachability graph analysis, the relationships among JS t
sl program

objects can be discovered. We summarise the information in a heap by making a graph.

A node represents a heap cell. One node may correspond to possible many nodes. For

understanding which node is associated with which node, we view the program as a gen-

erator for information, the symbolic execution for each heap allocation statement adds

a new node to the graph. At the end of the extraction of program information, a reach-

ability graph is presented to have further analysis. In our reachability graph analysis,

program states can be described by reachability graphs according to the executions of

program statements (see Figure 4.12). Nodes and reference edges are essential elements

in the reachability graph analysis.

Label nodes ln ∈ NL represent the variables in programs. Global primitive nodes

pn ∈ NP represent the primitive type value of the variables located in global scope. Heap

region nodes n ∈ NH represent the data structures in heap cells. Their properties are

95

4.3 Reachability Graph Analysis for JS t
sl

Figure 4.10: Reachability graph after line 16

96

4.3 Reachability Graph Analysis for JS t
sl

Figure 4.11: Reachability graph after line 18

97

4.3 Reachability Graph Analysis for JS t
sl

listed below:

• Heap region nodes can bind a single object, a multiple objects heap region node.

or a summary heap region node.

• A heap region node has two parts. One part stores the address of the underlying

heap cell. The other part is a reachability state, which stores the objects that the

given object can reach. For a function or method object, it stores the function body,

parameters and this variable. Note that, the reachability could not be propagated

to involve indirect referenced objects, only the object directly referenced by a

reference edge can be reached by the given object.

• A heap region node may have more than one reference edge pointing to or pointing

from it.

• We use shade to across a heap region node for heap region node in visualised

reachability graphs associated with an allocation site, called summary node. The

most recent objects at an allocation site are assigned or updated their heap region

node. The older object allocations are firstly copied and updated later in summary

nodes.

• We use M label on the top right for multiple objects heap region node when the

function is invoked more than one time.

Reference edges re ∈ E describe the reachability from one node to another node.

Every reference edge between heap region nodes has an associated field f ∈ F,

f ∈ F = Field

The set of reference edges E in a reachability graph is defined as follow:

98

4.4 Verification

E = NL ×NH ∪ NL ×NP

= ∪ NH ×NP ∪ NH ×NP

= ∪ NH ×NH ∪ NH × F ×NH

In summary, the reachability graph analysis is to visualise the program state after

executing each statement. This analysis is so complex that is not appropriate to be

adopted for achieving our aim in this chapter, we only use it for visualising the program

status deduced in the final program state.

4.4 Verification

To adapt this analysis in our program verification, the abstract syntax of the lan-

guage is extended from JSsl to JS t
sl by employing this as a statement. We also modify

the specification language mentioned in Chapter 3 from Specsl to Spectsl . A key char-

acteristic of Spectsl is that the entire state of the language resides in the object heap.

The object heap has various data structures, the preprocessing stage creates an abstract

state ∆ (see Section 3.5.1) which consists of Π that contains all the global variables

referring to heap-insensitive information and Σ that contains the objects referring to

heap allocation information, respectively. Through this semantic-preserving program

transformation, our reachability graph is able to provide complete information of JS t
sl

programs. In this section, the syntax of JS t
sl program, the extended semantic rules and

inference rules are presented. Our aim is to mainly discover the assertions that modifies

the value of this enclosed in a function to window object.

4.4.1 The Language JS t
sl

The variable this is employed as an expression in the syntax of JS t
sl (See Figure

4.12). The new statement FiledMutation is able to manipulate this relevant statement,

99

4.4 Verification

e ∈ Exp ::= x Variable
| v Primitive Value
| p(e1, ..., en) Arithmetic or Boolean
| F ([x1, ..., xn]) Function
| this this

ee ∈ ExpFunc ::= e Exp
| func [F]([x1, ..., xn]) {c} [named] FuncExp

c ∈ Statement ::= skip Skip
| var x = ee LocalAssignment
| x = ee GlobalAssignment
| x = x′.f FieldLookup
| e.f = ee FieldMutation
| return e Return
| x = x′.x0([e1, ..., en]) FuncCall
| x = x0([e1, ..., en]) FuncCall
| x = {f1 : ee1, ..., fn : een} ObjLiteral
| x = new x′() ObjCreation
| x = new x′([e1, .., en]) ObjCrtFunc
| c; c Sequencing
| if (e) {c} else {c} Condtional, b is boolean value
| while (e) {c} Iteration

Identifiers
F ∈ FuncID ::= F | F ′ | ...
f ∈ FieldID ::= f | f ′ | f1 | x | ...
b ∈ BooleanID ::= True | False
x ∈ V ariableID ::= x | x′ | x0 | ...
v ∈ V ariable ::= int | str | null | undef
[...] ::= optional

Figure 4.12: Syntax of JS t
sl

such as ”this.x1 = x2”.

Table 4.1 summarises the different features of the language JSsl and JS t
sl . In the

features row, there are object structure, function invocation, prototype inheritance,

new statement, iteration, conditional, this statement. The symbol ”4” represents

the language supports this feature. The symbol ”8” represents the language does not

support this feature.

100

4.4 Verification

Feature JSsl JS t
sl

Object Structure 4 4

Function Invocation 4 4

Prototype Inheritance 4 4

new Statement 4 4

Iteration 4 4

Conditional 4 4

this variable 8 4

Table 4.1: Features Comparison of JSsl and JS t
sl

As you can see, each of the features from JSsl are ”inherited” to JS t
sl language.

In addition, JS t
sl program supports this expression and corresponding statements that

involve this. Therefore, JS t
sl has more expressiveness than JSsl .

4.4.2 Revised Operational Semantic Rules

As the language JS t
sl supports this expression, the operational semantics need to

be improved to adapt such feature. According to our previous semantics, the evaluation

of the new expression this returns either a location of a normal object or a location

locw where refers to window object. In contrast with the [op-mutate-field] rule in chapter

3, the modified rule [op-mutate-field] has its premises changed to evaluate the expression

e to a nullable location (See Figure 4.13), but he final state after the evaluation of the

statement e.f = ee remains the same.

s(e) = ` ` 6= null
` ∈ dom(h) h(`) = r s(ee) = v

e.f = ee, (s, h)→ (s, h[` 7→ [f 7→ v]])

[op-mutated-field]

Figure 4.13: Revised [op-mutate-field] Rule

101

4.4 Verification

The rest of the operational semantic rules remain exactly the same as in Section 3.4.2,

which we omit to explain in this chapter.

4.4.3 Specification Language for JS t
sl

Adding the use of this causes a series of chain reaction to other features of the lan-

guage, such as alias, scope chain, we provide an improved specification language Spectsl

(See Figure 4.14) to manage it. Table 4.2 summarises the difference between the language

Specsl and Spectsl from the perspective of expressiveness.

Feature Specsl Spectsl

Object Structure 4 4

Alias 8 4

Prototype Chain 4 4

Scope Chain 8 4

Local Variable 4 4

this 8 4

Table 4.2: Properties Comparison of Specsl and Spectsl

Applying the language Spectsl in this chapter, we also need to have alteration on

the corresponding semantics model that caused by the improvement of the language

(See Figure 4.14) particularly with respect to pure formula and heap formula. The

different object identifications may point to the same location in the abstract heap h,

those identifications are alias to each other, the modification of the location content

would cause the change which their identifications map to. To deal with alias analysis,

we must identify the objects who refer to the same location. In Spectsl an alias assertion

is represented by equality and inequality of two object identifiers, such as x1 = x2. We

join two alias assertion with ∧. Note that, we also consider the case where an object

identification is alias with undefined object. Each alias assertion is found as heap-

insensitive information. In order to merge with pure formula, we remain its jointness

102

4.4 Verification

Specification Specsl ::= { ∆1 } c { ∆2 }

Abstract state ∆ ::= Π ‖ Σ ‖ I

Pure formula Π ::= b | Π1∧Π2 | Π1∨Π2 | ∃x.Π | x�∼e | a ∧Π

Heap formula Σ ::= emp | x 7→r | Σ1 ∗ Σ2 | Σ1 −∗Σ2 | ∃x.Σ

Boolean b ::= true | false | x | b1 = b2

Variable x ::= f | x′ | xi(i ∈ Z) | this

Fields f ::= f ′ | fi(i ∈ Z)

Expression e ::= F | v | x | const | ei(i ∈ Z)

Record r ::= [f1 : e1, .., fn : en] | e

Alias a ::= x1 = x2 | x1 6= x2 | x = undef | x 6= undef | a1 ∧ a2

Scope Chain I ::= LS

Figure 4.14: The Specification Language Spectsl

with other pure formulas by ∧, such as a ∧Π.

At this point, the style of our reasoning is not enough for JS t
sl . We must also

assert scope chain information when a variable can not be resolved in its current scope.

As mentioned in the previous chapters, we have two kinds execution contexts in JS t
sl

program, including global context and local context. A local context normally refers to a

scope constructed by a function statement. V ariable Object (VO) is a helper object that

refers to an execution context (global or local context). A VO contains the information

of all the local variables and parameters in the current scope. The locations of variable

objects are recorded in the scope chain, we use notation ”[], LS, `s : LS, LS(x.@scope)”,

where ”[]” is null location, LS is the current scope chain, ”`s : LS” for when location `s

is in the scope chain LS, LS(x.@scope) for when the location of the object x is attached

in the LS by internal property @scope. The root of a scope chain is global scope who

has location locgo pointing to object window. Each variable object has a pointer @proto

pointing to a prototype chain, the end of the prototype chain is object OProto who has

103

4.4 Verification

location locop.

In Figure 4.15, we cater a chain mechanism for the scope and prototype lookup

feature. As you can see, the resolving object x from its current scope location `s0

follows the scope chain to the scope `s2 and eventually retrieves its value in the location

` along with the prototype chain. Note that in the process of resolving an object x, it

is resolved as a field name ”x” of the first variable object in the scope chain `s0. Then

follows the variable object’s prototype chain to its prototype object. After that, the

process moves to the next variable object who has location `s1.

Figure 4.15: Scope and Prototype Lookup Chain

To able to reason this, we extend scope list I in heap formula due to its heap-

sensitive information. The expression I is a current list of VOs, in the example of Figure

4.15, the current list of variable objects is given by I = [`s0, `s1, `s2, locgo]. Note that,

we employ LS as the current scope chain, `s ∈ LS. We distinguish a scope location `s

from a normal object location `. The newly created variable object is prepended to the

scope list I, which means I can be used to record the instant scope chain information

when it is extended by variable object.

104

4.4 Verification

Figure 4.16 presents the semantic model that caters the newly added improvement of

the language Spectsl . Note that, the semantics that does not show in this figure remain

the same as defined in Specsl (See Figure 3.11).

4.4.4 Main Verification Algorithm

The specifications must be subject to a process of refinement before they can actually

be implemented. The result of such a refinement process is an executable algorithm. In

this section, we formulate our verification algorithm for safe use of this variable with

the given specification. The algorithm for refinement is given in Algorithm 1 Safe This

algorithm. Line 1 initialises the starting point of a program with given statements, pre-

condition and postcondition information. Line 2 analysis is conducted using a set of

symbolic rules to be explained in Section 4.4.6. If the symbolic execution succeeds, the

verification moves on to the second step (line 5). However, if the symbolic execution fails

at some point, where the current program state cannot satisfy the requirement of the

next instruction, the whole verification returns fail at line 15. Along such analysis, if the

verification could successfully reach the postcondition ∆pos, otherwise it returns false

for ∆pos (line 3), the reachability relationships among objects are derived. Furthermore,

the postcondition we might approach is composed of three parts, pure formula, heap

formula and scope chain information. Line 6-10 check the heap formula in postcondition

s, h |= Π ‖ Σ ‖ I iff s, h |= Π ‖ Σ, I = LS and s, h |= LS

s, h |= I iff I = LS and s, h |= LS

s |=A a1 ./ a2 iff s(a1) ./ s(a2),where ./∈ {=, 6=}

s |=A x ./ undef iff s(x) = NaN,where ./∈ {=, 6=}

s |=A a1 ∧ a2 iff s |=A a1, s |=A a2

s |=A a ∧Π iff s |=A a, s |=A Π

Figure 4.16: The Additional Semantic Model for Spectsl

105

4.4 Verification

regarding this variable. Because this is a local and internal variable inside of a function.

The occurrence of this in the postcondition must infer that it also occurs in the pre-

condition. Therefore, if no occurrences of this in the precondition and postcondition, it

returns safe. The forward analysis deals with the case of this occurs in the specification.

It returns safe when this variable is not able to reach window object. If the reachability

was established between this and window, the algorithm returns ”not safe”.

Definition 3 (Reachibility). Give a heap formula Σ = x 7→ r ∗ Σ1, the atomic heap

x 7→ r is reachable from a variable v if and only if the following recursively defined

relation holds:

ReachV ar(v,Σ) = (ReachV ar(v, x 7→ e) ∧ (x = v)) ∨

(ReachV ar(v, x 7→ [xr : e]) ∧ (v = xr))

The function Reach is used to analyse whether this from the postcondition can

reach window object. It is shown as below:

Reach(∆) =
⋃

v∈LV(∆)

ReachVar(v,∆) where ∆ ::= Π ‖ Σ ‖ I

This Reach(∆) function returns a set of variables that are reachable from the free

variables in the abstract state ∆.

The function ReachVar(v,Π ‖ Σ ‖ I) returns the minimal set of variables which

satisfies the following relation:

106

4.4 Verification

{v} ∪ {x2 | ∃x1,Π1 · x1 ∈ ReachVar(v,Π ‖ Σ ‖ I) ∧Π = (x2 = x1 ∧Π1)}∪

{x2 | ∃x1,Σ1 · x1 ∈ ReachVar(v,Π ‖ Σ ‖ I) ∧ Σ = (x1 7→ [x2 : e] ∗ Σ1)}

⊆ ReachVar(v,∆)

Algorithm 1 Safe This Algorithm

1: procedure Safe This(c,∆pre,∆pos)
2: if {∆pre}c{∆pos} then
3: if ∆pos = false then return fail
4: else
5: ∆pos := Πpos ‖ Σpos ‖ I
6: if this /∈ LV(Σpos) then return SAFE
7: else
8: if window /∈ Reach(∆pos) then return SAFE
9: else

10: return NOT SAFE
11: end if
12: end if
13: end if
14: else
15: return fail
16: end if
17: end procedure

4.4.5 Formal Property: Safety

According to our reachability graph analysis, we are able to produce effective reacha-

bility predicates for describing data structures on the graphs of its revolution. To prevent

the malicious use of this that could be implicitly modified to bind to the global object

window, it reduced to find the reachability predicates that indicate the value of this

variable within a function or method is unexpectedly changed to point to window. Thus

we have safety definition for JS t
sl program:

Definition 4 (Safety-1).

107

4.4 Verification

A statement c is safe, if the relationship between the this variable in a given abstract

state ∆pre and its transited variable this′ in the abstract state ∆pos can be detected. That

is, this′ ∈ LV(Σpos). And the variable that are reachable from the free variable in the

state Σpos does not include the window object. That is, window /∈ Reach(∆pos).

Note that, our safety definition only consider the case when the activated statement

involves operations on functions. Because this safety issue occurs in the context of

functions. In the case of no this variable employed statement, such as postconditions

do not own this variable, it always returns safe.

Definition 5 (Safety-2). For all JS t
sl statements c, if this is safe in ci (i ∈ Z), and ci

�ci+1, then this is safe in ci+1.

The definition 4 shows the transitivity of safety. If the current activated statement

ci is safe, and ci � ci+1 indicates that statements move from the ith to (i + 1)th. The

expression � represents the movement of a sequence of statements. For example, if we

have a function statement x = func(n){c} as a field of a literal object obj, the invocation

obj.x(n) has been proved safe. At this point, this enclosed in obj.x(n) statement is also

safe in the next statement, except when the coming up statement is interfering the value

of this in the function statement x = func(n){c}, such as calling the function by a global

variable f , such as f(n) where f = obj.x. As it may be observed, this is considered to

be safe or unsafe with respect to its enclosed statement. In above example, this is safe

enclosed in the statement obj.x(n), but not safe enclosed in the statement f(n).

Theorem 2. A JS t
sl program is safe when its all statements are safe.

Our revised axiomatic framework in this chapter employs this, but we must prove

theorem 2. It is sufficient to prove the following lemmas: 1

Lemma 1 (Safety). For a JS t
sl statement ci, if the Algorithm 1 Safe This algorithm re-

turns SAFE, then ci is safe.

1Addition proof details are in the Appendix.

108

4.4 Verification

Lemma 2 (Subject Reduction). For a JS t
sl statement ci, if ci is safe, then ci+1 is safe.

Those lemmas are proved by the induction of inference rules (see Section: 4.4.6).

However, we have to ensure that our revised semantic rules do not violate the previous

semantic model in chapter 3 and safety (lemma 1).

4.4.6 Revised Inference Rules

For our reasoning rules, we employ α logic predicate to present the reasoning about

scope chain. To consider resolving a variable, walk down the variable object from the

scope chain when searching for a variable x can not be found in its current scope. What

is of interest to us is the order in which variable objects will be checked. Notice that

the variable x will be searched following by @proto pointer when it is recognised in a

variable object location. The α predicate is to precisely capture the VOs that must be

checked.

In Figure 4.17, we define the semantics for α predicate by satisfaction relation. The

predicate α([LLS], ` : LS, x, `) holds only for abstract heap h such that the variable x can

be resolved in the variable object location (or a prototype of the object) at location `.

The first argument [LLS] in our predicate ”precisely” specifies the concrete locations in

heap cells which must be visited, it determine the tracks of scope list. For example, recall

the illustration in Figure 4.15, if the prototype of the heap cell `s2 has location `′, the

predicate α([[`s0], [`s1], [`s2, `
′, `]], I, x, `s2) is satisfied by the abstract heap h possessing

the variable x and internal property @proto for the objects who have location `′, `. Note

that it is not necessary to walk down every VO, the visit stops at the point of discovering

location of the variable x.

We update the inference rules to deal with scope chain, and this features expended

in JS t
sl regarding safety property reasoning. The assertion language of the JS t

sl remains

the same as in Section 3.5.1. Figure 4.18, Figure 4.19, Figure 4.20, Figure 4.21 present

the revised inference rules. In those rules, the pure formula and heap formula of the

109

4.4 Verification

program abstract state remain the same as mentioned in Chapter3 except the scope

chain information I. The rules we mainly explain are the ones who has effect on the

revision of the current scope chain information.

In Figure 4.18, we explain rule [sl-glob-assign2], after a function object is globally

created, the Variable Object of this function object is attached at a specific location in

the scope chain list. The postcondition formula LS(x.@scope) adds location (`sx) into LS

by linking through @scope internal property. For rule [sl-local-assign2], the precondition

has OV location `sx0 is the scope chain LS. For example the function object x is declared

inside of the function x0, the `sx0 has already existed in the scope chain LS. After the

execution of the location function assignment statement, the postcondition adds the OV

location (`sx) into LS, the scope chain is updated from I to I′. For the rest of the rules in

Figure 4.18, the execution of their statements do not alter the status of the scope chain.

In Figure 4.19, the execution of their statements do not alter the status of the scope

chain because that a function need to be defined first before its invocation. Thus in each

precondition, we have the formula I
.
= `sx0 : LS that is OV location of the function object

x0 in the scope chain. The postcondition remains the same scope chain information as

in the precondition.

In Figure 4.20, the precondition of the rule [sl-obj-crt-fun] has the OV location `s′x in

the scope chain LS, its postcondition adds a new OV location (`sx) into L by the formula

I′
.
= (x.@scope).

s, h |= α([], [], ,null) iff dom(h) = ∅

s, h |= α([LLS], ` : LS, x, `) iff ∃h1, h2, `, v · h1#h2 and h = h1 ∗ h2
and ` ∈ dom(h1) and h1(`)(x) = v
and ` ∈ dom(h2) and ` : `s and `s : LS

Figure 4.17: Logic Predicate Semantic Model for Spectsl

110

4.4 Verification

{Π ‖ Σ ‖ I
.
= LS}skip{Π ‖ Σ ‖ I

.
= LS}

[sl-skip]

{Π[e/x] ‖ Σ ‖ I
.
= LS}x = e{Π ‖ Σ ‖ I

.
= LS}

[sl-glob-assign1]

{Π ‖ Σ[e/x] ‖ I
.
= LS}var x = e{Π ‖ Σ ‖ I

.
= LS}

[sl-local-assign1]

r = [body : c,params : (x1, ..., xn),@proto : locop]

{Π ‖ emp ‖ I
.
= LS}x = func[F](x1, ..., xn){c}{Π ‖ ∃x · x 7→r ‖ I′

.
= LS(x.@scope)}

[sl-glob-assign2]

Σ ≡ Σ0 ∗ x0 7→ r0 x0 ∈ Func
r = [body : c,params : (x1, ..., xn),@proto : locop]

x /∈ LV(Σ) I
.
= `sx0

:LS

{Π ‖ Σ ‖ I
.
= LS}var x = func[F](x1, ..., xn){c}{Π ‖ Σ ∗ (∃x · x 7→r) ‖ I′

.
= LS(x.@scope)}

[sl-local-assign2]

r = [..., f : v, ...]

{Π ‖ x′ 7→r ‖ I
.
= LS}x = x′.f{(∃x ·Π) ∧ x=v ‖ x′ 7→r ‖ I

.
= LS}

[sl-lookup-field]

x′ /∈ LV(Σ) f /∈ dom(r)
r(@proto) = x′′ {Π ‖ Σ}x = x′′.f{Π′ ‖ Σ′}

{Π ‖ x′ 7→r ∗ Σ ‖ I
.
= LS}x = x′.f{Π′ ‖ x′ 7→r ∗ Σ′ ‖ I

.
= LS}

[sl-lookup-proto]

Σ ≡ x′ 7→ OProto
f /∈ LV(Σ)

{Π ‖ Σ ‖ I
.
= LS}x = x′.f{∃x ·Π ∧ x=undef ‖ Σ ‖ I

.
= LS}

[sl-lookup-undef]

r = [..., f : v, ...] or else f /∈ dom(r)

{Π ‖ x 7→r ‖ I
.
= LS}x.f = ee{Π ‖ x 7→r[f 7→ee] ‖ I

.
= LS}

[sl-mutate-field]

Figure 4.18: Updated Inference Rules for Variable Assignments and Field Statements

111

4.4 Verification

Σ ≡ Σ0 ∗ x′ 7→[x0:x′′, ..] ∗ x′′ 7→[body : c,params : (x1..xn), ...]
Σ1 ≡ Σ ∗ x0 7→ [this: x′, x1 : e1, ..., xn : en, ...]

{Π ‖ Σ1}c{Π1 ‖ Σ2} I
.
= `sx0

:LS

{Π ‖ Σ ‖ I
.
= LS}x = x′.x0([e1, ..., en]){(∃x ·Π1) ∧ x = res ‖ Σ2 ‖ I′

.
= LS}

[sl-fun-call-obj]

x′ /∈ LV(Σ) x0 /∈ dom(r) r(@proto) = x′′ I
.
= `sx0

:LS
{Π ‖ Σ}x = x′′.x0([e1, ..., en]){Π′ ‖ Σ′}

{Π ‖ x′ 7→ r ∗ Σ ‖ I
.
= LS}x = x′.x0([e1, ..., en]){Π′ ‖ Σ′ ‖ I′

.
= LS}

[sl-fun-call-proto]

Σ ≡ x′ 7→ OProto
x1 /∈ LV(Σ) I

.
= `sx0

:LS

{Π ‖ Σ ‖ I
.
= LS}x = x′.x0([e1, ..., en]){(∃x ·Π) ∧ x=undef ‖ Σ ‖ I

.
= LS}

[sl-fun-undef]

Σ ≡ (Σ1 ∗ x0 7→ [body : c,params : (x1...xn),@proto:locfp, ...])
Σ1 ≡ (Σ ∗ x′ 7→ [this: locw, x1 : e1, ..., xn : en, ...])
{Π ‖ Σ1 ‖ I}c{Π1 ‖ Σ2 ‖ I1} I

.
= `sx0 :LS

{Π ‖ Σ ‖ I
.
= LS}x = x0([e1, ..., en]){(∃x ·Π1) ∧ x = res ‖ Σ2 ‖ I2

.
= LS}

[sl-fun-call-dir]

{Π[e/res] ‖ Σ ‖ I}return e{Π ‖ Σ ‖ I}
[sl-return]

Figure 4.19: Updated Inference Rules for Function Invocation

112

4.4 Verification

r = [f1 : e1, ..., fn : en]

{Π ‖ emp ‖ I
.
= LS} x = {f1 : e1, .., fn : en} {Π ‖ ∃x · x 7→r ‖ I

.
= LS}

[sl-obj-crt-literal]

{Π ‖ x′ 7→r ‖ I
.
= LS} x = new x′() {Π ‖ x′ 7→r ∗ (∃x · x 7→[@proto : x′]) ‖ I

.
= LS}

[sl-obj-crt-new]

Σ ≡ (Σ0 ∗ x′ 7→ [body : c,params : (x1..xn),@proto:locop,this:locw])

Σ1 ≡ Σ ∗ (∃x′′ · x′′ 7→ [this: x, x1 : e1, ...xn : en, ...])
{Π ‖ Σ1}c{Π1 ‖ Σ2} I

.
= `sx′ :LS

{Π ‖ Σ ‖ I
.
= LS}x = new x′([e1, ..., en]){Π1 ‖ Σ2 ‖ I′

.
= LS(x.@scope)}

[sl-obj-crt-fun]

Figure 4.20: Updated Inference Rules for Object Creation

{Π ‖ Σ ‖ I
.
= LS}c1{Π1 ‖ Σ1 ‖ I1

.
= LS}

{Π1 ‖ Σ1 ‖ I1
.
= LS}c2{Π2 ‖ Σ2 ‖ I2

.
= LS}

{Π ‖ Σ ‖ I
.
= LS}c1; c2{Π2 ‖ Σ2 ‖ I2

.
= LS}

[sl-sequential]

{Π∧b ‖ Σ ‖ I
.
= LS}c1{Π2 ‖ Σ2 ‖ I2

.
= LS}

{Π∧¬b ‖ Σ ‖ I
.
= LS}c2{Π2 ‖ Σ2 ‖ I2

.
= LS}

{Π ‖ Σ ‖ I
.
= LS}if (b){c1}else {c2}{Π2 ‖ Σ2 ‖ I2

.
= LS}

[sl-conditional]

{Π∧b ‖ Σ ‖ I
.
= LS}c{Π ‖ Σ ‖ I′

.
= LS}

{Π ‖ Σ ‖ I
.
= LS}while (b){c}{Π∧¬b ‖ Σ ‖ I′

.
= LS}

[sl-iteration]

Figure 4.21: Updated Inference Rules for Control Structures

113

4.5 Summary

4.4.7 Soundness

Based on the definition above we have a theorem for our axiomatic framework in this

chapter:

Theorem 3. Our axiomatic framework presented in Chapter 4 is sound with respect to

the underlying operational semantics.

The soundness proof of the axiomatic frameworks presented in this chapter are in

the appendixes B on page 158.

4.5 Summary

It is both practical and challenging problem to verify both function correctness and

safety of heap-manipulating JS t
sl program. In this chapter, we provide an axiomatic

framework to solving it by inferring expected specification mainly for this variable re-

lated statement from their calling contexts. The framework is proven sound and the

JS t
sl program is proven correct on condition that the function definition and invocation

statement meet the inferred specifications. We employ a forward program reachability

analysis over the inferred specification to synthesise the specifications of the this safe.

In our next chapter, we evaluate the viability of the proposed approach.

114

Chapter 5

Case Studies and Evaluation

A case study is one which investigates the scenario that can only be stud-

ied or understood in context to answer specific research questions and which

seeks a range of different kinds of evidence, evidence which is there in the

case setting, and which has to be abstracted and collated to get the best possi-

ble answers to the research questions – Bill Gillham (Computer scientist in

Glasgow University)

5.1 Introduction

This chapter contains two parts, the part one presents the case studies of JS t
sl

verification framework. Part two is the evaluation of the framework by a comparison

work between the JS t
sl framework and other frameworks.

5.2 Case Studies

There are four case studies used to evaluate the JS t
sl framework in terms of verifying

functional correctness and safety. Case study A is employed to show that the framework

115

5.2 Case Studies

is capable of processing the flexible and complex features of JavaScript language by

using the example presented in Chapter 3. Case study B and C are used to show that

the framework can detect unsafe JavaScript applications before causing catastrophic

problems. The case study D shows the scenario that cause the JS t
sl framework to be

failed.

Each case study is presented in four phases:

Phase 1: Program translation

This phase shows the translation from a JavaScript program to a JS t
sl program

in a semantic preserving approach. Each expression and statement of JavaScript

program is rewritten in JS t
sl language for further analysis. As matter as fact,

the translation of a JavaScript program to JS t
sl can be fully automated by using

syntax tree generators. Firstly, a JavaScript program can be translated into a

syntax tree, which represents an abstract syntactic structure of source code of the

program. The JS t
sl program is generated automatically by the syntax tree.

Phase 2: Program analysis

This phase contains two parts. Part one presents the given program specifications

from users which are requested to be proved functional correctness. The specifi-

cations are expressed in the form of {P}C{Q}, C is program statement, P and Q

are assertions written in Spectsl language.

Part two reveals how the inference rules can be applied to automatically analyse a

JS t
sl program. The analysis begins from an initial precondition assertion ∆pre, it

has value {true ‖ emp ‖ I} where the pure formula is true, the heap formula is

empty, and the predicate for describing scope chains is I. It produces a postcon-

dition assertion ∆pos that specifies the final status of program.

Therefore, if the postcondition assertions match the requested specification from

users, it shows that functional correctness of programs is proved, otherwise the

116

5.2 Case Studies

system fails to verify functional correctness.

Phase 3: Algorithm application

In this phase, the postcondition assertion ∆pos produced in the phase 2 will be

used as a parameter in the execution of ”Safe This” algorithm that is defined in

Section 4.4.4. The output of this phase produces the detection result of safety for

programs.

Phase 4: Result

In this phase, the result of applying verification framework JS t
sl will be directly

shown to users whether or not the given program is safe.

5.2.1 Case Study A

The case study A employs the JavaScript program example that is presented in

Chapter 3, Section 3.3 (see Figure 5.1). In this example, it shows the flexible features of

JavaScript including object literal, nested function, prototype inheritance, and dynamic

features including the generation of an object field on the fly. The analysis should indi-

cate that this is a safe program. More detailed description of this example is shown in

Section 3.3 .

Phase 1: Program translation

The input of this phase is the JavaScript program showed in Figure 5.1. The output

is a semantically equivalent JS t
sl program shown in Figure 5.2.

Phase 2: Program Analysis

According to the specification language Spectsl defined in Section 4.4.3, the given

117

5.2 Case Studies

1 <s c r i p t type=” text / j a v a s c r i p t ”>
2 var obj = {
3 f1 : 1 ,
4 f 2 : function (n) {
5 var g = function () {
6 i f (n >= 10) { re turn 2 ;}
7 else { re turn 3 ;}
8 }
9 re turn g () ;

10 }
11 } ;
12 a l e r t (obj . f 2 (1 1)) ; //2
13 a l e r t (obj . f 3) ; // undef ined
14 obj . f 3 = 5 ;
15 a l e r t (obj . f 3) ; //5
16 r e s = obj . f 2 (1) ; //3
17 a l e r t (r e s) ;
18 </s c r i p t >

Figure 5.1: JavaScript for Case Study A

1 obj = {
2 f1 : 1 ,
3 f 2 : func (n) {
4 var g = func () {
5 i f (ge (n , 1 0)) { re turn 2 }
6 e l s e { re turn 3 }
7 }
8 var x = g () ;
9 re turn x

10 }
11 } ;
12 n1 = obj . f 2 (1 1) ;
13 n2 = obj . f 3 ;
14 obj . f 3 = 5 ;
15 n3 = obj . f 3
16 r e s = obj . f 2 (1)

Figure 5.2: JS t
sl for Case Study A (Phase 1)

118

5.2 Case Studies

specifications that are requested to be proved are given as:

{true ‖ emp ‖ I}

C

{n1 = 2 ∧ n2 = undef ∧ n3 = 5 ∧ res = 3 ‖ obj 7→ [f1 : 1, f2 : Of2, f3 : 5] ‖ I′}

where C is a sequence of JS t
sl statements.

There are several definitions defined in this phase for assisting the proof in the

later phases. These definitions are:

• Of2 represents the function object referred to by f2.

Of2 = [body : {var g = func(){if (ge(n, 10)){return 2; }

else {return 3; }};

var x = g(); return x},

params : (n),@proto : OProto]

• Og represents the function object referred to g.

Og = [body : if(ge(n, 10)) {return 2; }else {return 3; }

params : (),@proto : OProto]

Figure 5.3 shows that the analysis process is in the form of ”{precondition} C

{postcondition}”. The inference rules that are applied are [sl-obj-crt-literal], [sl-fun-call-obj],

[sl-lookup-undef],[sl-mutate-filed], [sl-lookup-field], and [sl-fun-call-obj]. A summary of

output in this phase is a final postcondition assertion and is given as:

∆pos = {∃n1, n2, n3, res · true ∧ n1 = 2 ∧ n2 = undef ∧ n3 = 5 ∧ res = 3 ‖

∃obj · obj 7→ [f1 : 1, f2 : Of2, f3 : 5] ∗ f2 7→ [this : obj, x1 : 1, . . .] ‖ I′
.
=

119

5.2 Case Studies

{true ‖ emp ‖ I}

obj = {f1 : 1, f2 : . . .}; [sl-obj-crt-literal]

{true ‖ ∃obj · obj 7→ [f1 : 1, f2 : Of2] ‖ I}

n1 = obj.f2(11); [sl-fun-call-obj]

{true ‖ ∃obj · obj 7→ [f1 : 1, f2 : Of2] ∗ f2 7→ [this : obj, x1 : 11, . . .] ‖ I}
var g = func(){...};

{true ‖ ∃obj · obj 7→ [f1 : 1, f2 : Of2] ∗ f2 7→ [this : obj, x1 : 11, . . .]∗
g 7→ Og ‖ I′

.
= LS(g.@scope)}

var x = g();

{true ‖ ∃obj · obj 7→ [f1 : 1, f2 : Of2] ∗ f2 7→ [this : obj, x1 : 11, . . .]∗
g 7→ Og ‖ I′

.
= LS(g.@scope)}

if(ge(n, 10)){return 2}else {return 3};

{∃x · true ∧ x = 2 ‖ ∃obj · obj 7→ [f1 : 1, f2 : Of2]∗
f2 7→ [this : obj, x1 : 11, . . .] ∗ g 7→ Og ‖ I′

.
= LS(g.@scope)}

return x;

{∃n1 · true ∧ n1 = 2 ‖ ∃obj · obj 7→ [f1 : 1, f2 : Of2]∗
f2 7→ [this : obj, x1 : 11, . . .] ∗ g 7→ Og ‖ I′

.
= LS(g.@scope)}

[sl-glob-assign2]

[sl-fun-call-dir]

[sl-conditional]

{∃n1 · true ∧ n1 = 2 ‖ ∃obj · obj 7→ [f1 : 1, f2 : Of2]∗
f2 7→ [this : obj, x1 : 11, . . .] ∗ g 7→ Og ‖ I′

.
= LS(g.@scope)}

n2 = obj.f3; [sl-lookup-undef]

{∃n1, n2 · true ∧ n1 = 2 ∧ n2 = undef ‖ ∃obj · obj 7→ [f1 : 1, f2 : Of2]∗
f2 7→ [this : obj, x1 : 11, . . .] ‖ I′

.
= LS(g.@scope)}

obj.f3 = 5; [sl-mutate-field]

{∃n1, n2 · true ∧ n1 = 2 ∧ n2 = undef ‖ ∃obj · obj 7→ [f1 : 1, f2 : Of2, f3 : 5]∗
f2 7→ [this : obj, x1 : 11, . . .] ‖ I′

.
= LS(g.@scope)}

n3 = obj.f3; [sl-lookup-field]

{∃n1, n2, n3 · true ∧ n1 = 2 ∧ n2 = undef ∧ n3 = 5 ‖
∃obj · obj 7→ [f1 : 1, f2 : Of2, f3 : 5] ∗ f2 7→ [this : obj, x1 : 11, . . .] ‖ I′

.
= LS(g.@scope)}

res = obj.f2(1) [sl-fun-call-obj]

{∃n1, n2, n3, res · true ∧ n1 = 2 ∧ n2 = undef ∧ n3 = 5 ∧ res = 3 ‖
∃obj · obj 7→ [f1 : 1, f2 : Of2, f3 : 5] ∗ f2 7→ [this : obj, x1 : 1, . . .] ‖ I′

.
= LS(g.@scope)}

Figure 5.3: Program Analysis for Case Study A (Phase 2)
120

5.2 Case Studies

LS(g.@scope)}

As you can see, ∆pos not only matches the given specifications requested to be

proved, but also provides more information about programs, which is f2 7→ [this :

obj, x1 : 11, . . .] located in the heap. Therefore, the analysis shows that the pro-

grams are functional correct.

121

5.2 Case Studies

Phase 3: Algorithm Application

The algorithm SAFE THIS(C,∆pre,∆pos) has three different inputs, C, ∆pre, and

∆pos. The parameter C is the given program as shown in Figure 5.2. The parameter

∆pre and ∆pos are:

∆pre = {true ‖ emp ‖ I}

∆pos = {∃n1, n2, n3, res · true ∧ n1 = 2 ∧ n2 = undef ∧ n3 = 5 ∧ res = 3 ‖

∃obj · obj 7→ [f1 : 1, f2 : Of2, f3 : 5] ∗ f2 7→ [this : obj, x1 : 1, . . .] ‖ I′
.
= LS(g.@scope)}

procedure Execu SAFE THIS(c,∆pre, ∆pos)
if {∆pre} c {∆pos} then [Algorithm1− line2]

if {true ‖ emp ‖ I}}c{∃n1, n2, n3, res · true ∧ n1 = 2
∧n2 = undef ∧ n3 = 5 ∧ res = 3 ‖ ∃obj · obj 7→ [f1 : 1, f2 : Of2, f3 : 5] ∗ f2
7→ [this : obj, x1 : 1, . . .] ‖ I′

.
= LS(g.@scope)}then

∆pos := Πpos ‖ Σpos ‖ I [Algorithm1− line5]

∆pos = { ∃n1, n2, n3, res · true ∧ n1 = 2
∧n2 = undef ∧ n3 = 5 ∧ res = 3 ‖ ∃obj · obj 7→ [f1 : 1, f2 : Of2, f3 : 5] ∗ f2
7→ [this : obj, x1 : 1, . . .] ‖ I′

.
= LS(g.@scope)}

if this ∈ LV(Σpos) then [Algorithm1− line7]

this ∈ LV(∃obj · obj 7→ [f1 : 1, f2 : Of2, f3 : 5]∗
f2 7→ [this : obj, x1 : 1, . . .])

if window /∈ Reach(∆pos) then return SAFE [Algorithm1− line8]

window /∈ {this} ∪ {obj, f2} ∪ {f1, f2, f3, this, x1}

Figure 5.4: Algorithm Application for Case Study A (Phase 3)

122

5.2 Case Studies

Figure 5.4 shows that the procedure Execu SAFE THIS executes the codes on line2,

line5, line7, and line8 of Safe This algorithm. It starts from the line2 ([Algorithm1-

line2]). As the ∆pos is not false, the algorithm reaches the line5 ([Algorithm1-

line5]) ∆pos := Πpos ‖ Σpos ‖ I. Since ∆pos contains the variable this in its

heap formula Σpos, the execution continues to the line7 ([Algorithm1-line7]). The

safety check leads the execution to the line8 ([Algorithm1-line8]) and produces the

results that the given program is safe as the value of this in the final assertion is

not window.

Phase 4: Result

Therefore, after the execution of these three phases, the JS t
sl framework reveals

that the given program is safe because the value of this is neither innocently nor

maliciously modified to be window.

5.2.2 Case Study B

The case study B employs the JavaScript example (see Figure 5.5) from Gardner et

al. (GMS12). This example reveals the complexity of language in terms of prototype

inheritance and scope chain. There are global variables x, y, z, f, v. The variable x, y, z

are initialised with value null. A function f declares a global variable v with integer

value 4, a local variable v. The correct output value of the variable x, y, z is undefined,

4, and 5 respectively. .

Phase 1: Program translation

The JavaScript code in Figure 5.5 transforms into a JS t
sl program in a semantic

preserving way as shown in Figure 5.6.

123

5.2 Case Studies

1 <s c r i p t type=” text / j a v a s c r i p t ”>
2 x = n u l l ;
3 y = n u l l ;
4 z = n u l l ;
5 f = function (w) {
6 x = v ;
7 v = 4 ;
8 var v ;
9 y = v ;

10 } ;
11 v = 5 ;
12 f (n u l l) ;
13 z = v ;
14 </s c r i p t >

Figure 5.5: JavaScript for Case Study B

1 x = n u l l ;
2 y = n u l l ;
3 z = n u l l ;
4 f = func (w) {
5 x = v ;
6 var v = 4 ;
7 y = v
8 } ;
9 v = 5 ;

10 g= f (n u l l) ;
11 z = v

Figure 5.6: JS t
sl for Case Study B (Phase 1)

124

5.2 Case Studies

Phase 2: Program Analysis

According to the specification language Spectsl defined in Section 4.4.3, the given

specifications that are requested to be proved are given as:

{true ‖ emp ‖ I}

C

{true ∧ x = undef ∧ y = 4 ∧ z = 5 ∧ v = 5 ∧ g = undef ‖ f 7→ Of ‖ I′}

where C is a sequence of JS t
sl programs.

The definition of Of is:

• Of represents the function object referred to by f.

Of = [body : {x = v; v = 4; varv; y = v}, params : (w),@proto : OProto]

Figure 5.7 indicates the analysis process using the set of inference rules that are

defined in section 4.4.6. The analysis begins from an initial precondition {true ‖

emp ‖ I}. The inference rules that are applied are [sl-glo-assign1], [sl-glob-assign2],

[sl-fun-call-dir],[sl-local-assign1], and [sl-lookup-undef]. A summary of output in this

phase is a final postcondition assertion and is given as:

{∃g · true ∧ x = undef ∧ y = 4 ∧ z = 5 ∧ v = 5 ∧ g = undef

‖ f 7→ Of ∗ f ′ 7→ [this: locw, w : null, ...] ‖ I′
.
= LS(f.@scope)}

Phase 3: Algorithm Application

125

5.2 Case Studies

{true ‖ emp ‖ I}

x = null; [sl-glob-assign1]

{true ∧ x = null ‖ emp ‖ I}

y = null; [sl-glob-assign1]

{true ∧ x = null ∧ y = null ‖ emp ‖ I}

z = null; [sl-glob-assign1]

{true ∧ x = null ∧ y = null ∧ z = null ‖ emp ‖ I}

f = func(w){...}; [sl-glob-assign2]

{true ∧ x = null ∧ y = null ∧ z = null ‖ f 7→ Of ‖ I′
.
= LS(f.@scope)}

v = 5; [sl-glob-assign1]

{true ∧ x = null ∧ y = null ∧ z = null ∧ v = 5 ‖ f 7→ Of ‖ I′
.
= LS(f.@scope)}

g = f(null); [sl-fun-call-dir]

{true ∧ x = null ∧ y = null ∧ z = null ∧ v = 5 ‖ f 7→ Of ∗
f ′ 7→ [this: locw, w : null, ...] ‖ I′

.
= LS(f.@scope)}

x = v; v = 4; var v; y = v

{true ∧ x = undef ∧ y = 4 ∧ z = null ∧ v = 5 ‖ f 7→ Of ∗
f ′ 7→ [this: locw, w : null, ...] ‖ I′

.
= LS(f.@scope)}

[sl-glob-assign1]

[sl-local-assign1]

[sl-lookup-undef]

{∃g · true ∧ x = undef ∧ y = 4 ∧ z = null ∧ v = 5 ∧ g = undef
‖ f 7→ Of ∗ f ′ 7→ [this: locw, w : null, ...] ‖ I′

.
= LS(f.@scope)}

z = v; [sl-glob-assign1]

{∃g · true ∧ x = undef ∧ y = 4 ∧ z = 5 ∧ v = 5 ∧ g = undef
‖ f 7→ Of ∗ f ′ 7→ [this: locw, w : null, ...] ‖ I′

.
= LS(f.@scope)}

Figure 5.7: Program Analysis for Case Study B (Phase 2)

126

5.2 Case Studies

In the algorithm application phase, the algorithm SAFE THIS(C,∆pre,∆pos) is

applied to examine and determine whether the given program is safe in terms of

execution of this variable. The inputs of algorithm are C, ∆pre, and ∆pos, The

parameter C is the given program as shown in Figure 5.6. The parameter ∆pre and

∆pos are:

∆pre = {true ‖ emp ‖ I}

∆pos = {∃g · true ∧ x = undef ∧ y = 4 ∧ z = 5 ∧ v = 5 ∧ g = undef

‖ f 7→ Of ∗ f ′ 7→ [this: locw, w : null, ...] ‖ I′
.
= LS(f.@scope)}

Figure 5.8 shows that Execu SAFE THIS executes the codes on line2, line5, line7,

and line10 of the algorithm. The result analysed at line7 ([Algorithm1-line7]) in-

dicates that ∆pos contains the variable this pointing to the location locw which is

the location for window object. Therefore, the line10 ([Algorithm1-line10]) shows

that the object window can be reached.

Phase 4: Result

Therefore, after the execution of these three phases, the JS t
sl framework has proved

that the given program is not safe because it modified the value of this pointing

to window either innocently or maliciously.

127

5.2 Case Studies

procedure Execu SAFE THIS(c,∆pre, ∆pos)
if {∆pre} c {∆pos} then [Algorithm1− line2]

if {true ‖ emp ‖ I}}c{∃g · true ∧ x = undef ∧ y = 4 ∧ z = 5∧
v = 5 ∧ g = undef ‖
f 7→ Of ∗ f ′ 7→ [this: locw, w : null, ...] ‖ I′

.
= LS(f.@scope)}then

∆pos := Πpos ‖ Σpos ‖ I [Algorithm1− line5]

∆pos = {∃g · true ∧ x = undef ∧ y = 4 ∧ z = 5 ∧ v = 5 ∧ g = undef
‖ f 7→ Of ∗ f ′ 7→ [this: locw, w : null, ...] ‖ I′

.
= LS(f.@scope)}

if this ∈ LV(Σpos) then [Algorithm1− line7]

this ∈ LV(f 7→ Of ∗ f ′ 7→ [this: locw, w : null, ...])

if window ∈ Reach(∆pos) then return NOT SAFE [Algorithm1− line10]

window ∈ {f, f ′} ∪ {this, w}

Figure 5.8: Algorithm Application for Case Study B (Phase 3)

128

5.2 Case Studies

5.2.3 Case Study C

The case study C employs the example (see Figure 5.9) in the Chapter 4. This

example shows the possibility of a host page compromised through the modification of

this value.

Phase 1: Program translation

In the translation phase, Figure 5.10 shows the translated JS t
sl program. In the

line 1-4, a literal object obj is declared to contain the fields x and setX. In

the line 5, the statement window.x returns undefined because there is no such

variable x declared in the global scope. In the line 5-7, the fields x and setX are

called through the object obj. In the line 8, it shows that a variable f and the

identification obj.setX are alias. In the line 6, it is a function invocation. After

this invocation, it changes the variable x from a local variable to a global variable.

In the line 10, the statement obj.x still returns 10. In the line 11, the statement

window.x returns 90 is because the variable x has become a global variable.

Phase 2: Program Analysis

According to the specification language Spectsl defined in Section 4.4.3, the given

1 var obj = {
2 x : 0 ,
3 setX : function (n) { t h i s . x = n ; }
4 } ;
5 window . x ;
6 obj . setX (1 0) ;
7 obj . x ;
8 f = obj . setX ;
9 f (9 0) ;

10 obj . x ;
11 window . x ;

Figure 5.9: JavaScript for Case Study C

129

5.2 Case Studies

1 obj = {
2 x : 0 ,
3 setX : func (n) { t h i s . x = n }
4 } ;
5 n1= window . x ; // undef ined
6 n2 = obj . setX (1 0) ;
7 n3 = obj . x ; //10
8 f = obj . setX ;
9 n4= f (9 0) ;

10 n5 = obj . x ; //10
11 n6 = window . x //90

Figure 5.10: JS t
sl for Case Study C (Phase 1)

specifications that are requested to be proved are given as:

{true ‖ emp ‖ I}

C

{n1 = undef ∧ n2 = undef ∧ n3 = 10 ∧ n4 = undef ∧ n5 = 10 ∧ n6 = 90 ‖

obj 7→ [x : 10, setX : OsetX ‖ I′}

where C is a sequence of JS t
sl programs.

The definition of OsetX is:

• OsetX represents the function object referred to by setX.

OsetX = [body : {this.x = n}, params : (n),@proto : OProto]

Figure 5.11 indicates the analysis process using the set of inference rules that

is described in section 4.4.6. The analysis begins from an initial precondition

{true ‖ emp ‖ I}. The inference rules that are applied contains [sl-obj-crt-literal],

[sl-lookup-undef], [sl-fun-call-obj],[sl-fun-call-dir], A summary ofoutput in this phase is

a final postcondition assertion and is given as:

130

5.2 Case Studies

{∃n1, n2,n3,n4, f, n5 · true ∧ n1 = undef ∧ n2 = undef ∧ n3 = 10 ∧ n4 = undef

∧ f = undef ∧ n5 = 10 ∧ n6 = 90 ‖ ∃obj · obj 7→ [x : 10, setX : OsetX]

∗ setX 7→ [@this : locw,n : 90, x = 90 . . .] ‖ I
.
= `sf :LS}.

Phase 3: Algorithm Application

In this phase, the parameter ∆pre and ∆pos of algorithm SAFE THIS(C,∆pre,∆pos)

are:

∆pre = {true ‖ emp ‖ I}

∆pos = {∃n1, n2,n3, n4, f,n5 · true ∧ n1 = undef ∧ n2 = undef ∧ n3 = 10∧

n4 = undef ∧ f = undef ∧ n5 = 10 ∧ n6 = 90 ‖ ∃obj · obj 7→

[x : 10, setX : OsetX] ∗ setX 7→ [@this : locw,n : 90, x = 90 . . .] ‖ I
.
= `sf :LS}

Figure 5.12 shows that the procedure Execu SAFE THIS executes the codes on line2,

line5, line7, and line10 of the algorithm. It starts from the line2 ([Algorithm1-

line2]). As the ∆pos is not false, the algorithm1 reaches the line5 ([Algorithm1-

line5]) ∆pos := Πpos ‖ Σpos ‖ I. Since ∆pos contains the variable this in its

heap formula Σpos, the execution continues to the line7 ([Algorithm1-line7]). The

safety check leads the execution to the line10 ([Algorithm1-line10]).

Phase 4: Result

Therefore, after the execution of these three phases, the JS t
sl framework shows

that the given program is not safe as the this variable in the assertion can be

pointing to window.

131

5.2 Case Studies

{true ‖ emp ‖ I}

obj = {x : 0, setX : func(n){. . .}}; [sl-obj-crt-literal]

{true ‖ ∃obj · obj 7→ [x : 0, setX : OsetX] ‖ I}

n1 = window.x; [sl-lookup-undef]

{∃n1 · true ∧ n1 = undef ‖ ∃obj · obj 7→ [x : 0, setX : OsetX] ‖ I}

n2 = obj.setX(10); [sl-fun-call-obj]

{∃n1,n2 · true ∧ n1 = undef ∧ n2 = undef ‖ ∃obj · obj 7→ [x : 10, setX : OsetX]∗
setX 7→ [@this : obj,n : 10, x = 10 . . .] ‖ I

.
= `ssetX :LS}

n3 = obj.x; [sl-lookup-field]

{∃n1,n2,n3 · true ∧ n1 = undef ∧ n2 = undef ∧ n3 = 10 ‖
∃obj · obj 7→ [x : 10, setX : OsetX] ∗ setX 7→ [@this : obj,n : 10, x = 10 . . .] ‖ I}

f = obj.setX;
n4 = f(90); [sl-fun-call-dir]

{∃n1,n2,n3 · true ∧ n1 = undef ∧ n2 = undef ∧ n3 = 10 ‖
∃obj · obj 7→ [x : 10, setX : OsetX] ∗ setX 7→ [@this : obj,n : 10, x = 10 . . .] ‖ I}

this.x = n;

{∃n1,n2,n3 · true ∧ n1 = undef ∧ n2 = undef ∧ n3 = 10 ‖
∃obj · obj 7→ [x : 10, setX : OsetX] ∗ setX 7→ [@this : locw,n : 90, x = 90 . . .] ‖ I}

[sl-mutate-field]

{∃n1,n2,n3,n4, f · true ∧ n1 = undef ∧ n2 = undef ∧ n3 = 10 ∧ n4 = undef
∧f = undef ‖ ∃obj · obj 7→ [x : 10, setX : OsetX]
∗setX 7→ [@this : locw,n : 90, x = 90 . . .] ‖ I

.
= `sf :LS}

n5 = obj.x; [sl-lookup-field]

{∃n1,n2,n3,n4, f,n5 · true ∧ n1 = undef ∧ n2 = undef ∧ n3 = 10 ∧ n4 = undef
∧f = undef ∧ n5 = 10 ‖ ∃obj · obj 7→ [x : 10, setX : OsetX]
∗setX 7→ [@this : locw,n : 90, x = 90 . . .] ‖ I

.
= `sf :LS}

n6 = window.x; [sl-lookup-field]

{∃n1,n2,n3,n4, f,n5 · true ∧ n1 = undef ∧ n2 = undef ∧ n3 = 10 ∧ n4 = undef
∧f = undef ∧ n5 = 10 ∧ n6 = 90 ‖ ∃obj · obj 7→ [x : 10, setX : OsetX]
∗setX 7→ [@this : locw,n : 90, x = 90 . . .] ‖ I

.
= `sf :LS}

Figure 5.11: Program Analysis for Case Study C (Phase 2)

132

5.2 Case Studies

procedure Execu SAFE THIS(c,∆pre, ∆pos)
if {∆pre} c {∆pos} then [Algorithm1− line2]

if {true ‖ emp ‖ I}}c{∃n1,n2,n3,n4, f,n5 · true ∧ n1 = undef ∧ n2 = undef∧
n3 = 10 ∧ n4 = undef ∧ f = undef ∧ n5 = 10 ∧ n6 = 90 ‖
∃obj · obj 7→ [x : 10, setX : OsetX] ∗ setX 7→ [@this : locw,n : 90, x = 90 . . .]
‖ I

.
= `sf :LS}then

∆pos := Πpos ‖ Σpos ‖ I [Algorithm1− line5]

∆pos = {∃n1,n2,n3,n4, f,n5 · true ∧ n1 = undef ∧ n2 = undef∧
n3 = 10 ∧ n4 = undef ∧ f = undef ∧ n5 = 10 ∧ n6 = 90 ‖
∃obj · obj 7→ [x : 10, setX : OsetX] ∗ setX 7→ [@this : locw,n : 90, x = 90 . . .]
‖ I

.
= `sf :LS}

if this ∈ LV(Σpos) then [Algorithm1− line7]

this ∈ LV(∃obj · obj 7→ [x : 10, setX : OsetX]∗
setX 7→ [@this : locw,n : 90, x = 90 . . .])

if window ∈ Reach(∆pos) then return SAFE [Algorithm1− line10]

window ∈ {obj, setX} ∪ {x, SetX} ∪ {this, n, x}

Figure 5.12: Algorithm Application for Case Study C (Phase 3)

133

5.2 Case Studies

5.2.4 Case Study D

The case study D employs an ”eval” function to perform malicious codes. The sec-

tion 2.2.1 presents the dangerous of using the eval function. Figure 5.13 shows that

a JavaScript example which contains a global variable x, name, a function f , and an

eval function. The function f is composed of a conditional statement that returns ei-

ther g(10) or the value of this. The function eval declares a global function g. Since

a function invocation f(20) returns the global object window, the attack codes can be

executed by the setT imeout 1 function after zero milliseconds.

1 <s c r i p t type=” text / j a v a s c r i p t ”>
2 var x = 10 ;
3 var name = ”David” ;
4
5 f = func t i on (n) {
6 i f (n <= 10) {
7 return g (1 0) ; }
8 e l s e {
9 return t h i s ; } ;

10 } ;
11
12 document . wr i t e (name + ’ has the number : ’+ x∗x) ”) ;
13 eva l (”g=func t i on (x) { re turn (x∗x /2) }”) ;
14 f (2 0) . setTimeout (” a l e r t (” attack code ”) ” , 0) ;
15 </s c r i p t >

Figure 5.13: JavaScript for Case Study D

Phase 1: Program translation

The input is the given JavaScript program showed in Figure 5.13. The output is a

translated JS t
sl program (see Figure 5.14) in a semantic preserving way. Because

the constructor eval is not valid in the JS t
sl , the translation is finished after the

declaration of function f .

1The function setT imeout(code,milliseconds) defines that an evaluation of code after a specified
number of milliseconds.

134

5.2 Case Studies

1 x = 10 ;
2 name = ”David” ;
3
4 f = func t i on (n) {
5 i f (n <= 10) {
6 return g (10)}
7 e l s e {
8 return t h i s }
9 } ;

Figure 5.14: JS t
sl for Case Study D (Phase 1)

Phase 2: Program Analysis

The given specifications that are requested to be proved are given as:

{true ‖ emp ‖ I}

C

{x = 10 ∧ name = ”David” ∧ res = window ‖ f 7→ Of ∗ g 7→ Og ‖ I′}

where C is a sequence of JS t
sl programs.

In order to assist the proof in the later phases, the definition of Of and Og are:

• Of represents the function object referred to by f.

Of = [body : {if(n <= 10) return g(10);

else return this; },

params : (n),@proto : OProto]

• Og represents the function object referred to g.

Og = [body : return (x ∗ x/2),

params : (x),@proto : OProto]

Figure 5.15 shows that the analysis process contains the application of inference

rule [sl-glob-assign1], [sl-glob-assign2]. Because the framework JS t
sl does not provide

135

5.2 Case Studies

inference rule for the constructor eval function, the analysis is finished after the

declaration of function f . A summary of output in this phase is a final postcon-

dition assertion and is {true ∧ x = 10 ∧ name = ”David” ‖ ∃f · f 7→ Of ‖ I′
.
=

LS(f.@scope)}.

{true ‖ emp ‖ I}

x = 10; [sl-glob-assign1]

{true ∧ x = 10 ‖ emp ‖ I}

name = ”David”; [sl-glob-assign1]

{true ∧ x = 10 ∧ name = ”David” ‖ emp ‖ I}

f = func(n){Of}; [sl-glob-assign2]

{true ∧ x = 10 ∧ name = ”David” ‖ ∃f · f 7→ Of ‖ I′
.
= LS(f.@scope)}

Figure 5.15: Program Analysis for Case Study D (Phase 2)

Phase 3: Algorithm Application

In this phase, the parameter ∆pre and ∆pos of algorithm SAFE THIS(C,∆pre,∆pos)

are shown as:

∆pre = {true ‖ emp ‖ I}

∆pos = {true ∧ x = 10 ∧ name = ”David” ‖ ∃f · f 7→ Of ‖ I′
.
= LS(f.@scope)}

Figure 5.16 shows that the procedure Execu SAFE THIS executes the codes on

line2, line3 of the algorithm. It starts from the line2 ([Algorithm1-line2]). As the

∆pos is not satisfied the given specification that is provided in the phase 1, ∆pos

136

5.3 Evaluation

returns false ([Algorithm1-line2]). The algorithm1 produces the results fail.

Phase 4: Result

Therefore, the framework is not able to deal the given program and show whether

it is safe.

procedure Execu SAFE THIS(c,∆pre, ∆pos)
if {∆pre} c {∆pos} then [Algorithm1− line2]

if {true ‖ emp ‖ I}}c{true ∧ x = 10 ∧ name = ”David” ‖
∃f · f 7→ Of ‖ I′

.
= LS(f.@scope)}then

if ∆pos = false then return fail [Algorithm1− line3]

fail

Figure 5.16: Algorithm Application for Case Study D (Phase 3)

5.3 Evaluation

This section presents analysis of results from the evaluation of case studies and an

evaluation of JS t
sl framework.

5.3.1 Analysis of Case Studies

To measure the performance of JS t
sl framework on the case studies, Table 5.1 shows

the summarised results from the evaluation. There are three significant results. First,

the program logic in the JS t
sl framework is able to model the core features including

objects, functions, fields, and the complex features such as alias, prototype inheritance,

scope chain. Table 5.1 gives a statistics on the number of functions, fields, and alias over

137

5.3 Evaluation

the the number of objects. The count of objects and fields shows how frequent is the

update of value of a field and the changing of prototype chains. The count of functions

shows how frequent is the changing of scope chains.

The second significant result is the discovery of unsafe programs. The JS t
sl frame-

work adapts to analyse the program that explicitly manipulates the this variable. There

are three testing cases (A, B, and C) that have been detected unsafe operations since the

analysis of program shows that this variable is pointing to the global object window.

For those three cases, they are proved functional correctness and safety property by at

least applying seven inference rules from the JS t
sl framework. Note that, a third party

guest code has the same priority to be executed as the host code that it is embedded

in. A third party code can be intentionally embedded in a host code to manipulate the

global object maliciously. A host code may unintentionally change the value of this to

window without the interference of a guest code. The JS t
sl framework is not only able

to discover the direct malicious codes from a third party, but also can detect the indirect

innocent codes from a host. In the row of Safety from Table 5.1, it shows that in the

Case B and C, the framework produces NOT SAFE results due to the change of this

value to window. In the Case A, it produces SAFE as the this value remains being

obj. The Case D is not applicable by the framework because the testing case contains

eval constructor that is illegal in the syntax of JS t
sl .

The third significant result is the ability of JS t
sl framework to be used to anal-

yse and detect malicious websites automatically. This can be presented by the row of

No. of Rule Applied and the Unsafe Discovered from Table 5.1. According to the rea-

soning by a set of inference rules from the JS t
sl framework, it can automatically detect

that the Case A is safe, both Case B and C are not safe, and Case C is not applicable.

However, the suggested correction for these unsafe cases are beyond the capability of

framework.

138

5.3 Evaluation

Case A Case B Case C Case D

No. of LOC 18 14 11 15

No. of Objects 11 7 10 7

No. of Functions
(Func./Obj.)

2 (18%) 2 (28%) 3 (30%) 2 (29%)

No. of F ields
(Field/Obj.)

7 (64%) 4 (57%) 6 (60%) 3 (43%)

No. of Alias
(Alias/Obj.)

1 (9%) 0 (0%) 1 (10%) 0 (0%)

No. of Prototype Chain 3 1 2 2

No. of Scope Chain 3 1 2 2

No. of Rule Applied 9 9 7 3

Algorithm Applicable Yes Yes Yes No

Functional Correctness Yes Yes Yes N/A

Safety Yes No No N/A

Unsafe Discovered Yes Yes Yes N/A

Table 5.1: Summary of Case Studies

5.3.2 Evaluation of JS t
sl Framework

To evaluate the JS t
sl framework, a comparison table is presented in Table 5.2 to

show the difference of this framework with other frameworks from the literature that

have been discussed in Chapter 2, Section 2.2.2. This section is an evaluation of the

framework JS t
sl .

The evaluation is measured by two parts, the features that the framework can deal

with and the problems it can resolve. In Table 5.2, the first part evaluation presents

which frameworks can manipulate which language features by symbols. Symbol ”4”

and ”8” indicate that a framework can manipulate and cannot manipulate a feature re-

spectively. An ambiguous result is indicated by a symbol ”?”. The table highlights the

percentage of applicable features over the total 22 features. There are four frameworks

that have more than 80% features covered, Guh10, Maf09, Gar12, and JS t
sl . The sec-

ond part evaluation presents which frameworks can solve which problems. For these four

frameworks, Guh10 covers 82% of features of the language who does not have any solu-

139

5.3 Evaluation

tions. Maf09 that covers 82% of the features of the language solves the capability leak

and safety breach problem. Although the Gar12 has the highest feature coverage 90%,

it only proves the functional correctness property. The JS t
sl framework has 82% of

feature coverage, and prove both the functional correctness and safety properties.

For all the frameworks in Table 5.2, there are three frameworks that are chosen

for further comparing evaluation, ADsafe , Dar12, and Gar12. Because ADsafe is

the most widely application, Dar12 solves the most number of problem, and Gar12

has the highest features coverage. However, JS t
sl framework produces more features

coverage than ADsafe and Dar12, and it solves more problems than Gar12. Although

Dar12 is designed to be a more robust language, but it has not been widely applied in

popular browsers. The JS t
sl framework is constructed based on JavaScript, which fits

the browsers naturally. Gar12 provides better features coverage than JS t
sl , and it uses

a program logic for verifying the functional correctness of JavaScript, but JS t
sl can be

used to verify not only the functional correctness but also the safety property.

140

5
.3

E
v
a
lu

a
tio

n

Frameworks and Solutions
ADSafe And05 Yu07 Jen09 Chu09 Sax10 Guh10 Dar12 Maf09 Rei07 Gua09 Dew10 Gar12 JS t

sl

Features

Obj Creation
Obj Literal 4 8 8 4 4 8 4 8 4 8 8 ? 4 4

Obj ”new” Crt. 4 8 8 4 4 8 4 8 4 8 8 ? 4 4

Function

Function Declar. 8 4 8 4 4 4 4 8 4 4 4 ? 4 8

Function Expre. 8 8 4 8 8 8 8 8 8 8 8 ? 4 4

Method Call 4 4 8 8 4 8 4 4 4 4 8 ? 4 4

Global Call 4 4 4 4 4 4 4 4 4 4 4 ? 4 4

Nested Func. 4 8 8 8 8 8 4 4 4 4 4 ? 4 4

Field
Field Crt. 4 4 8 4 4 4 4 4 4 4 4 ? 4 4

Field Lookup 4 4 8 4 4 4 4 4 4 4 4 ? 4 4

Field Mutation 4 4 8 4 4 8 4 4 4 4 4 ? 4 4

Variable
Global Assign. 8 4 4 8 8 4 4 4 4 8 8 ? 4 4

Local Assign. 8 4 8 8 8 8 4 4 4 8 8 ? 4 4

Expre. Return 4 8 8 4 4 4 4 4 4 4 4 ? 4 4

With 8 8 8 8 8 8 4 4 8 4 8 ? 4 8

Eval 8 8 8 8 4 8 8 8 8 4 8 ? 4 8

”this” Keyword 8 4 8 8 4 8 4 4 4 4 4 ? 4 4

Array 4 8 8 8 8 8 8 8 4 8 8 ? 8 8

Iteration 4 8 4 4 4 4 4 4 4 4 4 ? 4 4

Conditional 4 8 4 4 4 4 4 4 4 4 4 ? 4 4

Prototype Inherit. 4 8 8 4 4 4 4 4 4 4 4 ? 4 4

Scope Chain 8 8 8 8 8 4 4 4 4 8 8 ? 4 4

Alias 8 4 8 8 4 8 8 4 8 4 4 ? 8 4

Total No. of Features 13 10 5 11 15 10 18 16 18 15 12 ? 20 18

(Total No. of Features/22) % 59% 45% 23% 50% 68% 45% 82% 73% 82% 68% 56% ? 90% 82%

Problem
Functional Correctness 8 8 4 8 8 8 8 8 8 8 8 4 4 4

Memory Leak 8 8 8 8 8 8 8 4 8 8 8 8 8 8

Capability Leak 8 8 8 8 4 8 8 4 4 4 4 8 8 ?

Safety Breach 8 8 4 8 8 8 8 4 4 4 4 8 8 4

(Total No. of Problems/4) % 0% 0% 50% 0% 25% 0% 0% 75% 50% 50% 50% 25% 25% 50%

Table 5.2: JS t
sl vs. other frameworks

141

5.4 Summary

5.4 Summary

This chapter has discussed the analysis and evaluation of JS t
sl framework. The

analysis results are obtained from the case studies, they show that the program logic

designed in the JS t
sl can manipulate major features of JavaScript language, including

object, function, field, alias, prototype chain, and scope chain. The program logic can

be used to verify the functional correctness and safety property of program. They also

reveal that the framework can discover unsafe programs that have potential to inject

malicious code.

By comparing the JS t
sl with the state of art in formal frameworks for JavaScript, it

shows that the JS t
sl has rich language features coverage. The critical property functional

correctness and safety can be verified by the JS t
sl . The memory leak is not reflected be-

cause the JS t
sl only focus on the safety issue of program rather than a memory problem.

The JS t
sl only can be used to partially solve the capability leak.

In summary, the results of this analysis and evaluation show that the JS t
sl framework

is capable of verifying the functional correctness and safety for a suitable subset of

JavaScript program.

142

Chapter 6

Conclusion

6.1 Introduction

This thesis has built a framework for verifying both functional correctness and safety

of a subset of JavaScript programs. As introduced in Chapter 1, JavaScript has been

widely used to develop third party applications on websites. Research has shown that a

malicious third party application is capable of attacking host pages through JavaScript

applications, it is necessary to build up a framework to improve the safety of the program

for websites.

However, research to date has focused on analysing dynamic features of JavaScript.

For example, some work aims to define a memory model and construct operational

semantics to model JavaScript. Other research concentrates on proposing type systems

for JavaScript that are accompanied by semantics. These systems can distinguish the

implicit types of objects. However, these semantics are defined for a small subset of

JavaScript. There is work on how to create systems for solving the problem of detecting

client-side code injection vulnerability. These systems can effectively detect bugs and

vulnerabilities, but are designed with less expressive subset language. There is also

research on building up a program logic to systematically verify the functional correctness

of a much more expressive subset of JavaScript. This research utilises separation logic

to model program specification that is used to formally verify the functional correctness

143

6.2 Contribution

of program. Nevertheless, no work has constructed a framework to consistently verify

the safety property of a comprehensive subset of JavaScript.

This thesis fills in the gap and aims at proposing an effective framework for verifying

the functional correctness and safety of a suitable subset of JavaScript and proving the

soundness of it.

6.2 Contribution

The research in this thesis reviewed the dynamic features of JavaScript. As discussed

in Chapter 2, all JavaScript programs have the features of loose typing, objects, func-

tions, closures, prototype inheritance and scope chain. These features take the safety

issues as the cost to enrich the interactions between websites and clients. The state-

of-the-art of detecting vulnerability on the third party JavaScript applications reviewed

the mainstream approaches, including a new language development, program rewriting

isolation, sandbox virtual machine, statically verified containment.

The JSsl framework, which was proposed in Chapter 3, defined a suitable subset

of JavaScript that has pointer-based data structures. It captures the core features of

of JavaScript, including prototype inheritance, function object, and automatic object

amplifying on the fly. The functional correctness verification of the JSsl programs was

achieved by employing the operational semantics, the specification language Specsl and

the set of inference rules. The specification language was developed based on a variant

of separation logic. The soundness of the axiomatic system that consists of the language

Specsl and the inference rules was proved with respect to the underlying operational

semantics.

Safety issues are caused by the this variable, the JS t
sl framework, which was de-

scribed in Chapter 4, enriched the subset JSsl to include the this variable. It can deal

with larger subset language with the update of corresponding operational semantics,

144

6.3 Criteria for Success

the specification language and inference rules. This framework not only can verify the

functional correctness of the JS t
sl programs, but also verify the safety property. The

impact of adding this variable to language was considered and presented in terms of

the updated operational semantics, the Spectsl specification language, and the updated

inference rules. More features that the Spectsl language can manage more than Specsl are

alias, scope chain, and this variable. The soundness of this framework was proved with

respect to the updated underlying operational semantics. The SAFE THIS algorithm

was constructed to produce the detection result of safety for programs.

The evaluation of the JS t
sl framework in Chapter 5 firstly employed four different

case studies. The results showed that the JS t
sl framework not only detect the malicious

third party applications, but also can identify the innocent applications on host websites.

Secondly, the evaluation compared the expressiveness of the subset of JavaScript with

the state-of-the-art of the frameworks which are used to analyse the dynamic features

of JavaScript or detect vulnerabilities. The results showed that the JS t
sl framework has

rich language features, and can effectively verify the functional correctness and safety of

programs.

6.3 Criteria for Success

A number of criteria for success of the research were specified in Section 1.4. This

section discusses the achievement of these criteria.

1. Definition of a suitable and a safe subset of JavaScript

The subsets of JavaScript in this thesis are called JSsl and JS t
sl . As described in

Section 3.2, JSsl was constructed based on JavaScript conventions. Section 4.4.1

showed that the JS t
sl was constructed to include more characteristics than have

been identified by the research on program safety. Both subsets languages have

the essential properties of the JavaScript programming language that can be used

145

6.3 Criteria for Success

to develop third party applications on websites.

2. Define Operational and Axiomatic semantics of the JavaScript subset

The operational semantics of JSsl and JS t
sl subset languages were defined in Sec-

tion 3.4 and Section 4.4.1 respectivelyly. To capture program correctness, the

specification language Specsl in Section 3.5.1, based on separation logic, allows

users to define predicates to specify program correctness that they would like to

verify. Another specification language Spectsl was developed in Section 4.4.3 as

an extension of Specsl , which can deal with alias, scope chain and the this vari-

able of the JS t
sl language. It allows users to define predicates to specify safety

property. Both specification languages were developed under the same semantic

domain. The underlying axiomatic semantics in Section 3.5.2 and Section 4.4.6

were constructed to automatically reason about programs with logic assertions.

3. Definition of safety verification algorithm

Section 4.4.5 formally defined safe property of programs. Section 4.4.4 showed

that the Safe This algorithm has the ability of identifying safe and unsafe programs.

Chapter 5 chose four case studies and applied the algorithm for evaluation. The

results in Section 5.2 showed that the algorithm can analyse assertions that are

produced under axiomatic semantics and produce safe or unsafe results for users.

4. Proofs of program written in the JavaScript subset

The soundness proof of the framework JSsl and JS t
sl were presented in Appendix

A and Appendix B respectively. Both frameworks were proved to be sound with

respect to the underlying operational semantics in Section 3.4.2 and Section 4.4.2.

146

6.4 Future Work

6.4 Future Work

The proposed frameworks in this thesis has achieved the intended goals, but there

are still many potential aspects that can be extended in the future to make a good use

of them as follows:

1. Integration with DOM

The JS t
sl framework can be extended and applied to a large body of programs on

client-side web programming, such as DOM objects. As the DOM originated as

a specification to allow JavaScript scripts to be portable among Web browsers, it

provides a structural representation of the document and assist users to modify

its content and visual presentation by using JavaScript. It is observed that comb-

ing JavaScript with DOM objects cannot be detected by any automated static

analysis. Therefore, in the future, the JS t
sl framework can be expanded to prevent

vulnerabilities that are derived from the cooperation between DOM and JavaScript

from attacking websites.

2. Fully implemented with JavaScript libraries

With the expanded demands for JavaScript, the development of user interfaces

for applications on websites is needed. JavaScript library including Prototype,

jQuery, and JavaScript widget libraries such as Dojo, Y UI have been constructed

to provide platforms for assisting developers. Thus, the JS t
sl framework can be

expanded to integrated with these libraries and improve the safety of programs

written by them.

3. Employ new features

Although the JS t
sl framework can deal with most of the features of JavaScript, the

challenging features such as eval and with have not been considered to be adopted

into the framework. However, the use of eval is frequent and has potential of

147

6.5 Summary

invalidating any results obtained by static analysis, and many frameworks ignore

such feature. More challenging features can be enriched in the JS t
sl in the future.

And the soundness proof results can be extended compositionally to include more

sophisticated reasoning about ”eval” and ”with” constructors.

4. Compatibility in ECMScript 5

The JS t
sl framework is developed under the ECMScript 3 conventions, but the

latest ECMScript 5 provides interesting features. It would be interesting to reason

about the new features and find the connection with ECMScript 3.

6.5 Summary

This chapter summarised the entire thesis with its achieved results and potential

aspects of improvement. The results present the solution to develop a verification frame-

work of heap-manipulating script programs with functional correctness and safety prop-

erties verification, respectively. The case studies and comparison evaluation have shown

that the JS t
sl framework has given an improvement in detecting malicious scripts that

run on websites. Evidently, the framework provides opportunity for further enhance-

ment for future research, including the integration with DOM, implementation with

JavaScript libraries, manipulation new features, compatibility in ECMScript 5. These

facets depict a roadmap for future work.

148

Appendix A

Appdx A

From the perspective of backwards reasoning, an axiomatic rule is utilised according

to the structure of c, and premises need to be verified with similar backward verifications

until all the premises are axioms or known facts. In the following cases are organised

according to the structure of c.

- Case (skip).

{Π ‖ Σ}skip{Π ‖ Σ}
[sl-skip]

Since skip, (s, h)→ (s, h), it is easy to see that rule skip is sound in JSsl framework.

-Case (glob-assign1).

{Π[e/x] ‖ Σ}x = e{Π ‖ Σ}
[sl-glob-assign1]

149

Take any σ such that s, h |= Π[e/x] ‖ Σ. We have that x = e, (s, h)→ (s[x 7→ v], h).

The goal is to prove that s[x 7→ v], h |= Π ‖ Σ.

As expression e is in the stack having value v, s(e) = v, then we have that s[e 7→ v].

Therefore, state s[e 7→ v], h |= Π[e/x] ‖ Σ. If we replace variable e with variable x, then

we will always have that that s[x 7→ v], h |= Π ‖ Σ.

-Case (local-assign1).

{Π ‖ Σ[e/x]}var x = e{Π ‖ Σ}
[sl-local-assign1]

Take any σ such that s, h |= Π ‖ Σ[e/x]. We have that var x = e, (s, h)→ (s, h[` 7→

r[x 7→ v]]). The goal is to prove that s, h[` 7→ r[x 7→ v]] |= Π ‖ Σ.

As local assignment var x = e is declared inside of a function, location ` in the

heap contains a record that contains the value v of variable x, thus s, h[` 7→ r[x 7→

v]] |= Π ‖ Σ[e/x]. In the case of x = e, we replace e with the variable x, then

s, h[` 7→ r[x 7→ v]] |= Π ‖ Σ

-Case (glob-assign2)

r = [body : c,params : (x1, ..., xn),@proto : locop]

{Π ‖ emp}x = func[F](x1, ..., xn){c}{Π ‖ ∃x · x7→r}
[sl-glob-assign2]

Take any σ such that s, h |= Π ‖ emp. Then we have that x = func[F](x1, ..., xn){c},

(s, h) → s[x 7→`], h[` 7→r]. The goal is to prove that s[x 7→`], h[7̀→r] |= Π ‖ ∃x · x 7→r.

We start from an empty heap, s, h |= emp, thus dom(h) = ∅. After we create a

global function x, the location of the function stores in the stack, the function body,

parameters and internal prototype pointer store in the record r in the heap. Thus, we

150

have that h = [x 7→ r], and s[x 7→`], h[7̀→r] |= x 7→ r. Therefore, we will always have

that s[x7→`], h[` 7→r] |= Π ‖ x7→r.

-Case (local-assign2)

Σ ≡ Σ0 ∗ x0 7→ r0 x0 ∈ Func

r = [body : c,params : (x1, ..., xn),@proto : locop] x /∈ LV(Σ)

{Π ‖ Σ}var x = func[F](x1, ..., xn){c}{Π ‖ Σ ∗ (∃x · x 7→r)}

[sl-local-assign2]

Take any σ such that s, h |= Π ‖ Σ. Then we have that var x = func[F](x1, ..., xn){c},

(s, h) → s, h[`0 7→r[x 7→ `]]). The goal is to prove that s, h[`0 7→r[x 7→ `]] |= Π ‖

Σ ∗ (∃x · x7→r).

We start from an empty heap, s, h |= emp, thus dom(h) = ∅. After we create a

global function x, the location of the function stores in the stack, the function body,

parameters and internal prototype pointer store in the record r in the heap. Thus, we

have that h = [`0 7→r], and s, h[`0 7→r[x 7→ `]] |= x 7→ r. Therefore, we will always have

that s, h[`0 7→r[x 7→ `]] |= Π ‖ Σ ∗ (∃x · x 7→r).

-Case (lookup-field)

r = [..., f : v, ...]

{Π ‖ x′ 7→r}x = x′.f{(∃x ·Π) ∧ x=v ‖ x′ 7→r}
[sl-lookup-field]

Take any σ such that s, h |= Π ‖ x′ 7→r. We have that x = x′.f, (s, h)→ (s[x 7→ v], h).

The goal is to prove that s[x 7→ v], h |= (∃x ·Π) ∧ x=v ‖ x′ 7→r.

As we know that object x′ has field f with value v stored in the record r. In the

stack, it keeps the value v or the reference v if v is a primitive value or a reference type

value respectively. Thus we have that s[x 7→ v] |= (∃x · Π) ∧ x=v. Therefore, we will

151

always have that s[x 7→ v], h |= Π ∧ x=v ‖ x′ 7→r.

-Case (lookup-proto)

x′ /∈ LV(Σ) f /∈ dom(r)

r(@proto) = x′′ {Π ‖ Σ}x = x′′.f{Π′ ‖ Σ′}

{Π ‖ x′ 7→r ∗ Σ}x = x′.f{Π′ ‖ x′ 7→r ∗ Σ′}

[sl-lookup-proto]

Take any σ such that s, h |= Π ‖ x′ 7→r ∗ Σ. We have that x = x′.f, (s, h) → (s′, h′).

The goal is to prove that s′, h′ |= Π′ ‖ x′ 7→r ∗ Σ′.

As we know that the object x′ is not a live variable in Σ′, and the record of x′ does not

own the field f , but it would follow its prototype pointer @proto to evaluate f in its pro-

totype object x′′. In the case of s, h1 |= Σ′, and s, h2 |= x′ 7→ r, it shares the similar proof

with the rule of [sl-lookup-field]. Therefore we will always have that s′, h′ |= Π′ ‖ x′ 7→r∗Σ′.

-Case (lookup-undef)

Σ ≡ x′ 7→ OProto

f /∈ LV(Σ)

{Π ‖ Σ}x = x′.f{∃x ·Π ∧ x=undef ‖ Σ}

[sl-lookup-undef]

Take any σ such that s, h |= Π ‖ Σ. We have that x = x′.f, (s, h) 7→ (s[x 7→

undef], h). The goal is to prove that (s[x 7→ undef], h) |= ∃x ·Π ∧ x=undef ‖ Σ.

Because even the object OProto does not have that the field f . The heap does not

modified but we add to the stack with [x 7→ undef]. Thus we have that s[x 7→ undef] |=

∃x·Π∧x=undef. Therefore, we will always have that s[x 7→ undef], h |= ∃x·Π∧x=undef ‖

Σ.

152

-Case (mutate-field)

r = [..., f : v, ...] or else f /∈ dom(r)

{Π ‖ x 7→r}x.f = ee{Π ‖ x 7→r[f 7→ee]}
[sl-mutate-field]

Take any σ such that s, h |= Π ‖ x7→r. We have that x.f = ee, (s, h)→ (s, h[7̀→r[f 7→v]]).

The goal is to prove that s, h |= [7̀→r[f 7→v]] |= Π ‖ x 7→r[f 7→ee].

We know that there is x 7→ ` in the stack, ` 7→ r in the heap. Thus we have that

h[` 7→ r[f 7→ s(ee)] |= x 7→ r[f 7→ ee]. The evaluation of the expression ee is the

value v, thus we update the expression s(ee) to v. Therefore we will always have that

s, h[7̀→r[f 7→v]] |= Π ‖ x 7→r[f 7→ee].

-Case (return)

{Π[e/result] ‖ Σ}return e{Π ‖ Σ}
[sl-return]

The proof for rule [sl-return] shares the same proof of the [sl-glob-assign1].

-Case (fun-call-obj)

Σ ≡ Σ0 ∗ x′ 7→[x0:x′′, ..] ∗ x′′ 7→[body : c,params : (x1..xn), ...]

Σ1 ≡ Σ ∗ x0 7→ [this : x′, x1 : e1, ..., xn : en, ...]

{Π ‖ Σ1}c{Π1 ‖ Σ2}

{Π ‖ Σ}x = x′.x0([e1, ..., en]){(∃x ·Π1) ∧ x = res ‖ Σ2}

[sl-fun-call-obj]

Take any σ such that s, h |= Π ‖ Σ. We have that x = x′.x0([e1, ..., en]), (s, h) →

(s1, h2). The goal is to prove that s1, h2 |= (∃x ·Π1) ∧ x = res ‖ Σ2.

We know that s, h |= Σ0 ∗ x′ 7→[x0:x′′, ..] ∗ x′′ 7→[body : c,params : (x1..xn), ...].

153

Thus we have that the function x0 stored in a record in the heap, and this record is

referenced by the object x′. In the case of h2 = h h1 and s1 = s[x 7→ s(́result)], af-

ter the execution of function body c, then we have that s1 |= ∃x · Π) ∧ x = res, and

h2 |= Σ ∗ x0 7→ [this : x′, x1 : e1, ..., xn : en, ...]. Therefore, we will always have that

s1, h2 |= (∃x ·Π1) ∧ x = res ‖ Σ2.

-Case (fun-call-proto)

x′ /∈ LV(Σ) x0 /∈ dom(r) r(@proto) = x′′

{Π ‖ Σ}x = x′′.x0([e1, ..., en]){Π′ ‖ Σ′}

{Π ‖ x′ 7→ r ∗ Σ}x = x′.x0([e1, ..., en]){Π′ ‖ Σ′}

[sl-fun-call-proto]

Take any σ such that s, h |= Π ‖ x′ 7→ r∗Σ. We have that x = x′.x0([e1, ..., en]), (s, h)→

(s′, h′). The goal is to prove that s′, h′ |= Π′ ‖ Σ′.

As we know that the function x0 cannot be located in the object x′, thus by follow-

ing the internal property @proto, it leads to the location of the object x′′ that is the

prototype of x′. Then, the rest proof shares the similarity with the rule of [sl-fun-call-obj].

Therefore we will always have that (s′, h′) |= Π′ ‖ Σ′.

-Case (func-undef)

Σ ≡ x′ 7→ OProto

x0 /∈ LV(Σ)

{Π ‖ Σ}x = x′.x0([e1, ..., en]){(∃x ·Π) ∧ x=undef ‖ Σ}

[sl-fun-undef]

Take any σ such that s, h |= Π ‖ Σ. We have that x = x′.x0([e1, ..., en]), (s, h) →

(s[x 7→ undef], h). The goal is to prove that s[x 7→ undef], h |= (∃x ·Π) ∧ x=undef ‖ Σ.

As we know that the function x0 cannot even be found in the object OProto, thus the

function invocation returns undef value. Then we have that s[x 7→ undef] |= (∃x · Π) ∧

154

x=undef. Therefore, we will always have that s[x 7→ undef], h |= (∃x ·Π)∧ x=undef ‖ Σ.

-Case (fun-call-dir)

Σ ≡ (Σ1 ∗ x0 7→ [body : c,params : (x1...xn),@proto:locfp, ...])

Σ1 ≡ (Σ ∗ x′ 7→ [this : locw, x1 : e1, ..., xn : en, ...])

{Π ‖ Σ1}c{Π1 ‖ Σ2}

{Π ‖ Σ}x = x0([e1, ..., en]){(∃x ·Π1) ∧ x = res ‖ Σ2}

[sl-fun-call-dir]

Take any σ such that s, h |= Π ‖ Σ. Then we have that x = f(e1, ..., en), (s, h)→ (s1, h2).

The goal is to prove that s1, h2 |= (∃x ·Π1) ∧ x = res ‖ Σ2.

We know s, h |= Σ1 ∗ x0 7→ [body : c,params : (x1..xn),@proto 7→locfp]. Thus,

s, h |= x0 7→ [body : c,params : (x1..xn),@proto 7→locfp]. As the function x0 stores in

the heap, after the function invocation, it executes the function body c, then the heap

h2 |= Σ2. As we also have that s |= Π1, and x 7→ s′(result) in s1. Thus x = result.

According to {Π ‖ Σ}c{Π1 ‖ Σ1}, we have that s1 |= (∃x · Π1) ∧ x = res and h2 |= Σ2.

Therefore we will always have that s1, h2 |= (∃x ·Π1) ∧ x = res ‖ Σ2.

-Case (obj-crt-literal)

r = [f1 : e1, ..., fn : en]

{Π ‖ emp} x = {f1 : e1, .., fn : en} {Π ‖ ∃x · x 7→r}
[sl-obj-crt-literal]

Take any σ such that s, h |= Π ‖ emp. Then we have that x = {f1 : ee1, ..., fn :

een}, (s, h) → (s[x 7→ `], h[` 7→ r]). The goal is to prove that s[x 7→ `], h[` 7→ r] |= Π ‖

∃x · x 7→r.

As we know that the object x is stored in the location ` in the heap, thus we have

that s[x 7→ `] |= Π. The record r is used to keep the literal fields and values for object x

in the heap, thus h(`) = [f1 : ee1, ..., fn = een]. Then we have that h[` 7→ r] |= ∃x ·x 7→r.

155

Therefore we will always have that (s[x 7→ `], h[` 7→ r]) |= Π ‖ ∃x · x 7→r.

-Case (obj-crt-proto)

{Π ‖ x′ 7→r} x = new x′() {Π ‖ x′ 7→r ∗ (∃x · x 7→[@proto : x′])}
[sl-obj-crt-new]

Take any σ such that s, h |= Π ‖ x′ 7→r. We have that x = new x′, (s, h) → (s[x 7→

`], h[` 7→ [@proto : `′]]). The goal is to prove that s[x 7→ `], h[` 7→ [@proto : `′] |= Π ‖

x 7→[@proto : x′] ∗ x′ 7→r.

In the case of h1 = h, h2 = (` 7→ [@proto : `′]), we only need to prove that (s, h2) |=

{x 7→ [@proto : x′]}. Because dom(h) = s(x), and h(s(x)) = [...,@proto : x′, ...], thus we

will always have that (s[x 7→ `], h[` 7→ [@proto : `′]) |= Π ‖ x 7→[@proto : x′] ∗ x′ 7→r.

-Case (obj-crt-fun-construct)

Σ ≡ (Σ0 ∗ x′ 7→ [body : c,params : (x1..xn),@proto:locop, this:locw])

Σ1 ≡ Σ ∗ (∃x′′ · x′′ 7→ [this : x, x1 : e1, ...xn : en, ...])

{Π ‖ Σ}c{Π1 ‖ Σ2}

{Π ‖ Σ}x = new x′([e1, ..., en]){Π1 ‖ Σ2}

[sl-obj-crt-fun]

Take any σ such that s, h |= Π ‖ Σ. We have that x = new x′(e1, .., en), (s, h) →

(s1, h2). The goal is to prove that s1, h2 |= Π1 ‖ Σ2.

When we create an object by function constructor, the proof can be similar com-

pleted in the similar way as that of rule [sl-fun-call-obj]. The only difference is that this

keyword points to global objet before x = new x′(e1, .., en) execution and points to newly

created object x after the execution.

156

-Case (sequential, conditional)

{Π ‖ Σ}c1{Π1 ‖ Σ1} {Π1 ‖ Σ1}c2{Π2 ‖ Σ2}

{Π ‖ Σ}c1; c2{Π2 ‖ Σ2}
[sl-sequential]

{Π∧b ‖ Σ}c1{Π2 ‖ Σ2} {Π∧¬b ‖ Σ}c2{Π2 ‖ Σ2}

{Π ‖ Σ}if (b){c1}else {c2}{Π2 ‖ Σ2}
[sl-conditional]

The proof for rule (sequential, conditional) are classical and can be simply followed

the Hoare Logic’s proof using sequencing axiom and condition axiom respectively. Thus

they are omitted here.

-Case (iteration)

{Π∧b ‖ Σ}c{Π ‖ Σ}

{Π ‖ Σ}while (b){c}{Π∧¬b ‖ Σ}
[sl-iteration]

Take any σ such that s, h |= Π ‖ Σ. When s(b) is false, then s(b) = false, we can

easily have that s, h |= Π∧¬b ‖ Σ. When s(b) is true, it keeps looping until s(b) becomes

false. Thus we will always have that s, h |= Π∧¬b ‖ Σ.

157

Appendix B

Appdx B

Compared with the semantics of Specsl specification language, Spectsl updated its

semantic model in terms of abstract state, alias, and scope Chain. The additional

semantic model and logic predicate for scope chain was shown in Figure 4.16 and Figure

4.17, respectively.

From the perspective of backwards reasoning, an axiomatic rule is utilised according

to the structure of c, and premises need to be verified with similar backward verifications

until all the premises are axioms or known facts. In the following cases are organised

according to the structure of c.

- Case (skip).

{Π ‖ Σ ‖ I
.
= LS}skip{Π ‖ Σ ‖ I

.
= LS}

[sl-skip]

Since skip, (s, h)→ (s, h), it is easy to see that rule skip is sound in JS t
sl framework.

158

-Case (glob-assign1).

{Π[e/x] ‖ Σ ‖ I
.
= LS}x = e{Π ‖ Σ ‖ I

.
= LS}

[sl-glob-assign1]

Take any σ such that s, h |= Π[e/x] ‖ Σ ‖ I, thus s, h |= Π[e/x] ‖ Σ and s, h |= LS.

We have that x = e, (s, h)→ (s[x 7→ v], h). The goal is to prove that s[x 7→ v], h |= Π ‖

Σ ‖ I.

As expression e is in the stack having value v, s(e) = v, then we have that s[e 7→ v].

Therefore, state s[e 7→ v], h |= Π[e/x] ‖ Σ. If we replace variable e with variable x, then

we will have that s[x 7→ v], h |= Π ‖ Σ. And we know s, h |= LS, therefore we will have

that s[x 7→ v], h |= Π ‖ Σ ‖ I.

-Case (local-assign1).

{Π ‖ Σ[e/x] ‖ I
.
= LS}var x = e{Π ‖ Σ ‖ I

.
= LS}

[sl-local-assign1]

Take any σ such that s, h |= Π ‖ Σ[e/x] ‖ I, then s, h |= Π ‖ Σ[e/x], and s, h |= LS.

We have that var x = e, (s, h) → (s, h[` 7→ r[x 7→ v]]). The goal is to prove that

s, h[` 7→ r[x 7→ v]] |= Π ‖ Σ ‖ I.

As local assignment var x = e is declared inside of a function, location ` in the heap

contains a record that contains the value v of variable x, thus s, h[` 7→ r[x 7→ v]] |= Π ‖

Σ[e/x]. In the case of x = e, we replace e with the variable x, and we know s, h |= LS

then we will always have that s, h[` 7→ r[x 7→ v]] |= Π ‖ Σ ‖ I

159

-Case (glob-assign2)

r = [body : c,params : (x1, ..., xn),@proto : locop]

{Π ‖ emp ‖ I
.
= LS}x = func[F](x1, ..., xn){c}{Π ‖ ∃x · x 7→r ‖ I′

.
= LS(x.@scope)}

[sl-glob-assign2]

Take any σ such that s, h |= Π ‖ emp ‖ I, thus s, h |= Π ‖ emp, and s, h |= I. We

have that x = func[F](x1, ..., xn){c}, (s, h)→ s[x 7→`], h[7̀→r]. The goal is to prove that

s[x 7→`], h[7̀→r] |= Π ‖ ∃x · x 7→r ‖ I′.

We start from an empty heap, s, h |= emp, thus dom(h) = ∅. After we create a

global function x, the location of the function stores in the stack, the function body,

parameters and internal prototype pointer store in the record r in the heap. Thus, we

have that h = [x 7→ r], and s[x 7→`], h[7̀→r] |= x 7→ r. Then I′
.
= `sx : LS, thus we have

that s[x 7→ `], h[` 7→ r] |= α([LLS′], `sx : LS, x, `s). Therefore, we will always have that

s[x 7→`], h[7̀→r] |= Π ‖ ∃x · x 7→r ‖ I′.

-Case (local-assign2)

Σ ≡ Σ0 ∗ x0 7→ r0 x0 ∈ Func

r = [body : c,params : (x1, ..., xn),@proto : locop]

x /∈ LV(Σ) I
.
= `sx0

:LS

{Π ‖ Σ ‖ I
.
= LS}var x = func[F](x1, ..., xn){c}{Π ‖ Σ ∗ (∃x · x 7→r) ‖ I′

.
= LS(x.@scope)}

[sl-local-assign2]

Take any σ such that s, h |= Π ‖ emp ‖ I, thus s, h |= Π ‖ emp, and s, h |= I. We

have that var x = func[F](x1, ..., xn){c}, (s, h)→ s, h[`0 7→r[x 7→`]]. The goal is to prove

that s, h[`0 7→r[x 7→`]] |= Π ‖ Σ ∗ (∃x · x 7→r) ‖ I′
.
= LS(x.@scope).

We start from an empty heap, s, h |= emp, thus dom(h) = ∅. As we know that in

the heap we have the location `0 that is the location of a existing function variable x0

pointing to its record r. After we create a local function x inside of the function x0,

160

it creates data structure in the record r, which is the function variable x pointing to

the location `. The location ` has the function body, parameters and internal prototype

pointer of the variable x. Thus, we have that s, h[`0 7→r[x 7→`]] |= x 7→ r.

Then I′
.
= `sx : LS, thus we have that s, h[`0 7→r[x 7→`]] |= α([LLS′], `sx : LS, x, `s).

Therefore, we will always have that s, h[`0 7→r[x 7→`]] |= Π ‖ Σ ∗ (∃x · x7→r) ‖ I′
.
=

LS(x.@scope).

-Case (lookup-field)

r = [..., f : v, ...]

{Π ‖ x′ 7→r ‖ I
.
= LS}x = x′.f{(∃x ·Π) ∧ x=v ‖ x′ 7→r ‖ I

.
= LS}

[sl-lookup-field]

Take any σ such that s, h |= Π ‖ x′ 7→r ‖ I, thus s, h |= Π ‖ x′ 7→ r and s, h |= I.

We have that x = x′.f, (s, h) → (s[x 7→ v], h). The goal is to prove that s[x 7→ v], h |=

(∃x ·Π) ∧ x=v ‖ x′ 7→r ‖ I.

As we know that object x′ has field f with value v stored in the record r. In the

stack, it keeps the value v or the reference v if v is a primitive value or a reference type

value respectively. Thus we have that s[x 7→ v] |= (∃x · Π) ∧ x=v. Then we will have

that s[x 7→ v], h |= {Π ∧ x=v ‖ x′ 7→r}. And we know s, h |= I, therefore we will always

have that s[x 7→ v], h |= (∃x ·Π) ∧ x=v ‖ x′ 7→r ‖ I.

-Case (lookup-proto)

x′ /∈ LV(Σ) f /∈ dom(r)

r(@proto) = x′′ {Π ‖ Σ}x = x′′.f{Π′ ‖ Σ′}

{Π ‖ x′ 7→r ∗ Σ ‖ I
.
= LS}x = x′.f{Π′ ‖ x′ 7→r ∗ Σ′ ‖ I

.
= LS}

[sl-lookup-proto]

161

Take any σ such that s, h |= Π ‖ x′ 7→r ∗ Σ ‖ I, then s, h |= Π ‖ x′ 7→ r ∗ Σ,

and s, h |= I. We have that x = x′.f, (s, h) → (s′, h′). The goal is to prove that

s′, h′ |= Π′ ‖ x′ 7→r ∗ Σ′ ‖ I.

As we know that the object x′ is not a live variable in Σ′, and the record of x′ does

not own the field f , but it would follow its prototype pointer @proto to evaluate f in

its prototype object x′′. In the case of s, h1 |= {Σ′}, and s, h2 |= {x′ 7→ r}, it shares the

similar proof with the rule of [sl-lookup-field]. And we always have s, h |= I. Therefore

we will always have that s′, h′ |= Π′ ‖ x′ 7→r ∗ Σ′ ‖ I.

-Case (lookup-undef)

Σ ≡ x′ 7→ OProto

f /∈ LV(Σ)

{Π ‖ Σ ‖ I
.
= LS}x = x′.f{∃x ·Π ∧ x=undef ‖ Σ ‖ I

.
= LS}

[sl-lookup-undef]

Take any σ such that (s, h) |= Π ‖ Σ ‖ I, thus s, h |= Π ‖ Σ, and s, h |= I. We have

that x = x′.f, (s, h) 7→ (s[x 7→ undef], h). The goal is to prove that (s[x 7→ undef], h) |=

∃x ·Π ∧ x=undef ‖ Σ ‖ I.

Because even the object OProto does not have that the field f . The heap does not

modified but we add to the stack with [x 7→ undef]. Thus we have that s[x 7→ undef] |=

∃x · Π ∧ x=undef. And we always have s, h |= I. Therefore, we will always have that

s[x 7→ undef], h |= ∃x ·Π ∧ x=undef ‖ Σ ‖ I.

-Case (mutate-field)

r = [..., f : v, ...] or else f /∈ dom(r)

{Π ‖ x 7→r ‖ I
.
= LS}x.f = ee{Π ‖ x 7→r[f 7→ee] ‖ I

.
= LS}

[sl-mutate-field]

162

Take any σ such that s, h |= Π ‖ x 7→r ‖ I, thus s, h |= Π ‖ x 7→ r, and s, h |= I.

We have that e.f = ee, (s, h) → (s, h[` 7→ [f 7→ v]]). The goal is to prove that s, h |=

[7̀→r[f 7→v]] |= Π ‖ x 7→r[f 7→ee] ‖ I.

We know that there is x 7→ ` in the stack, ` 7→ r in the heap. Thus we have that

h[` 7→ r[f 7→ s(ee)] |= x 7→ r[f 7→ ee]. The evaluation of the expression ee is the value

v, thus we update the expression s(ee) to v. And we always have s, h |= I. Therefore we

will always have that s, h[` 7→r[f 7→v]] |= Π ‖ x 7→r[f 7→ee] ‖ I.

-Case (fun-call-obj)

Σ ≡ Σ0 ∗ x′ 7→[x0:x′′, ..] ∗ x′′ 7→[body : c,params : (x1..xn), ...]

Σ1 ≡ Σ ∗ x0 7→ [this: x′, x1 : e1, ..., xn : en, ...]

{Π ‖ Σ1}c{Π1 ‖ Σ2} I
.
= `sx0 :LS

{Π ‖ Σ ‖ I
.
= LS}x = x′.x0([e1, ..., en]){(∃x ·Π1) ∧ x = res ‖ Σ2 ‖ I′

.
= LS}

[sl-fun-call-obj]

Take any σ such that s, h |= Π ‖ Σ ‖ I, thus s, h |= Π ‖ Σ, and s, h |= I. We have that

x = x′.x0([e1, ..., en]), (s, h)→ (s1, h2). The goal is to prove that s1, h2 |= (∃x ·Π1)∧x =

res ‖ Σ2 ‖ I.

We know that s, h |= Σ0 ∗x′ 7→[x0:x′′, ..]∗x′′ 7→[body : c,params : (x1..xn), ...]. Thus

we have that the function x0 stored in a record in the heap, and this record is referenced

by the object x′. In the case of h2 = h h1 and s1 = s[x 7→ s(́result)], after the execution

of function body c, then we have that s1 |= ∃x ·Π)∧ x = res, and h2 |= Σ ∗ x0 7→ [this :

x′, x1 : e1, ..., xn : en, ...]. And we know the location `sx0 : LS and always have s, h |= I.

Therefore, we will always have that s1, h2 |= (∃x ·Π1) ∧ x = res ‖ Σ2 ‖ I.

163

-Case (fun-call-proto)

x′ /∈ LV(Σ) x0 /∈ dom(r) r(@proto) = x′′ I
.
= `sx0

:LS

{Π ‖ Σ}x = x′′.x0([e1, ..., en]){Π′ ‖ Σ′}

{Π ‖ x′ 7→ r ∗ Σ ‖ I
.
= LS}x = x′.x0([e1, ..., en]){Π′ ‖ Σ′ ‖ I

.
= LS}

[sl-fun-call-proto]

Take any σ such that s, h |= Π ‖ x′ 7→ r ∗ Σ ‖ I, thus s, h |= Π ‖ x′ 7→ r ∗ Σ, and

s, h |= I. We have that x = x′.x0([e1, ..., en]), (s, h)→ (s′, h′). The goal is to prove that

s′, h′ |= Π′ ‖ Σ′ ‖ I.

As we know that the function x0 cannot be located in the object x′, thus by follow-

ing the internal property @proto, it leads to the location of the object x′′ that is the

prototype of x′. Then, the rest proof shares the similarity with the rule of [sl-fun-call-obj].

And we know `sx0 : LSandalwayshaves, h |= I. Therefore we will always have that

(s′, h′) |= Π′ ‖ Σ′ ‖ I.

-Case (func-undef)

Σ ≡ x′ 7→ OProto

x1 /∈ LV(Σ) I
.
= `sx0

:LS

{Π ‖ Σ ‖ I
.
= LS}x = x′.x0([e1, ..., en]){(∃x ·Π) ∧ x=undef ‖ Σ ‖ I

.
= LS}

[sl-fun-undef]

Take any σ such that s, h |= Π ‖ Σ ‖ I,thus s, h |= Π ‖ Σ, and s, h |= I. We

have that x = x′.x0([e1, ..., en]), (s, h) → (s[x 7→ undef], h). The goal is to prove that

s[x 7→ undef], h |= {(∃x ·Π) ∧ x=undef ‖ Σ}.

As we know that the function x0 cannot even be found in the object OProto, thus

the function invocation returns undef value. Then we have that s[x 7→ undef] |=

(∃x · Π) ∧ x=undef. And we always have s, h |= I. Therefore, we will always have

that s[x 7→ undef], h |= (∃x ·Π) ∧ x=undef ‖ Σ ‖ I.

164

-Case (fun-call-dir)

Σ ≡ (Σ1 ∗ x0 7→ [body : c,params : (x1...xn),@proto:locfp, ...])

Σ1 ≡ (Σ ∗ x′ 7→ [this: locw, x1 : e1, ..., xn : en, ...])

{Π ‖ Σ1 ‖ I}c{Π1 ‖ Σ2 ‖ I1} I
.
= `sx0

:LS

{Π ‖ Σ ‖ I
.
= LS}x = x0([e1, ..., en]){(∃x ·Π1) ∧ x = res ‖ Σ2 ‖ I

.
= LS}

[sl-fun-call-dir]

Take any σ such that s, h |= Π ‖ Σ ‖ I, thus s, h |= Π ‖ Σ, and s, h |= I. Then we have

that x = f(e1, ..., en), (s, h)→ (s1, h2). The goal is to prove that s1, h2 |= {(∃x·Π1)∧x =

res ‖ Σ2}.

We know s, h |= Σ1 ∗ x0 7→ [body : c,params : (x1..xn),@proto 7→locfp]. Thus,

s, h |= x0 7→ [body : c,params : (x1..xn),@proto 7→locfp]. As the function x0 stores in

the heap, after the function invocation, it executes the function body c, then the heap

h2 |= Σ2. As we also have that s |= Π1, and x 7→ s′(result) in s1. Thus x = result.

According to {Π ‖ Σ}c{Π1 ‖ Σ1}, we have that s1 |= (∃x · Π1) ∧ x = res and h2 |= Σ2.

And we know that `sx0 : LS and always have s, h |= I. Therefore we will always have

that s1, h2 |= (∃x ·Π1) ∧ x = res ‖ Σ2 ‖ I.

-Case (obj-crt-literal)

r = [f1 : e1, ..., fn : en]

{Π ‖ emp ‖ I
.
= LS} x = {f1 : e1, .., fn : en} {Π ‖ ∃x · x 7→r ‖ I

.
= LS}

[sl-obj-crt-literal]

Take any σ such that s, h |= Π ‖ emp ‖ I, thus s, h |= Π ‖ emp and s, h |= I. We

have that x = {f1 : ee1, ..., fn : een}, (s, h) → (s[x 7→ `], h[` 7→ r]). The goal is to prove

that s[x 7→ `], h[` 7→ r] |= {Π ‖ ∃x · x 7→r}.

As we know that the object x is stored in the location ` in the heap, thus we

have that s[x 7→ `] |= Π. The record r is used to keep the literal fields and values

165

for object x in the heap, thus h(`) = [f1 : ee1, ..., fn = een]. Then we have that

h[` 7→ r] |= ∃x · x7→r. And we always have s, h |= I. Therefore we will always have that

(s[x 7→ `], h[` 7→ r]) |= Π ‖ ∃x · x 7→r ‖ I.

-Case (obj-crt-proto)

{Π ‖ x′ 7→r ‖ I
.
= LS} x = new x′() {Π ‖ x′ 7→r ∗ (∃x · x 7→[@proto : x′]) ‖ I

.
= LS}

[sl-obj-crt-new]

Take any σ such that s, h |= Π ‖ x′ 7→r ‖ I, thus s, h |= Π ‖ x′ 7→ r, and s, h |= I. We

have that x = new x′, (s, h)→ (s[x 7→ `], h[` 7→ [@proto : `′]]). The goal is to prove that

s[x 7→ `], h[` 7→ [@proto : `′] |= {Π ‖ x7→[@proto : x′] ∗ x′ 7→r}.

In the case of h1 = h, h2 = (` 7→ [@proto : `′]), we only need to prove that

(s, h2) |= {x 7→ [@proto : x′]}. Because dom(h) = s(x), and h(s(x)) = [...,@proto : x′, ...],

and we always have s, h |= I, thuswewillalwayshavethat(s[x 7→ `], h[` 7→ [@proto : `′]) |=

Π ‖ x 7→[@proto : x′] ∗ x′ 7→r ‖ I.

-Case (obj-crt-fun-construct)

Σ ≡ (Σ0 ∗ x′ 7→ [body : c,params : (x1..xn),@proto:locop,this:locw])

Σ1 ≡ Σ ∗ (∃x′′ · x′′ 7→ [this: x, x1 : e1, ...xn : en, ...])

{Π ‖ Σ1}c{Π1 ‖ Σ2} I
.
= `sx′ :LS

{Π ‖ Σ ‖ I
.
= LS}x = new x′([e1, ..., en]){Π1 ‖ Σ2 ‖ I′

.
= LS(x.@scope)}

[sl-obj-crt-fun]

Take any σ such that s, h |= Π ‖ Σ ‖ I, thus s, h |= Π ‖ Σ, and s, h |= I. We have that

x = new x′(e1, .., en), (s, h)→ (s1, h2). The goal is to prove that s1, h2 |= Π1 ‖ Σ2 ‖ I.

When we create an object by function constructor, the proof can be similar com-

pleted in the similar way as that of rule [sl-fun-call-obj]. The only difference is that this

166

keyword points to global objet before x = new x′(e1, .., en) execution and points to newly

created object x after the execution. Because we always have s, h |= I, and the location

`sx′ : LS, therefore we will always have s1, h2 |= Π1 ‖ Σ2 ‖ I′.

-Case (sequential, conditional)

{Π ‖ Σ ‖ I
.
= LS}c1{Π1 ‖ Σ1 ‖ I1

.
= LS}

{Π1 ‖ Σ1 ‖ I1
.
= LS}c2{Π2 ‖ Σ2 ‖ I2

.
= LS}

{Π ‖ Σ ‖ I
.
= LS}c1; c2{Π2 ‖ Σ2 ‖ I2

.
= LS}

[sl-sequential]

{Π∧b ‖ Σ ‖ I
.
= LS}c1{Π2 ‖ Σ2 ‖ I2

.
= LS}

{Π∧¬b ‖ Σ ‖ I
.
= LS}c2{Π2 ‖ Σ2 ‖ I2

.
= LS}

{Π ‖ Σ ‖ I
.
= LS}if (b){c1}else {c2}{Π2 ‖ Σ2 ‖ I2

.
= LS}

[sl-conditional]

The proof for rule (sequential, conditional) are classical and can be simply followed

the Hoare Logic’s proof using sequencing axiom and condition axiom respectively. Thus

they are omitted here.

-Case (iteration)

{Π∧b ‖ Σ ‖ I
.
= LS}c{Π ‖ Σ ‖ I′

.
= LS}

{Π ‖ Σ ‖ I
.
= LS}while (b){c}{Π∧¬b ‖ Σ ‖ I′

.
= LS}

[sl-iteration]

Take any σ such that s, h |= Π ‖ Σ ‖ I. When s(b) is false, then s(b) = false, we

can easily have that s, h |= Π∧¬b ‖ ΣI. When s(b) is true, it keeps looping until s(b)

167

becomes false. Thus we will always have that s, h |= Π∧¬b ‖ Σ ‖ I′.

168

References

[AB04] T. Amtoft and A. Banerjee. Information flow analysis in logical form.

11th International Symposium on Static Analysis, 3148(ISBN: 3-540-22791-

1):100–115, 2004. 42

[AGD05] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference

for javascript. 19th European Conference on Object-Oriented Programming,

ECOOP, 3586(ISBN: 3-540-27992-X):428–452, July 2005. 43

[Alc50] [online]ACL2 Version 5.0. Available from: http://www.cs.utexas.edu/

users/moore/acl2/ [cited May 2012]. 35

[BBG+60] J.W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A.J. Perlis,

H. Rutishauser, K. Samelson, B. Vauquois, J.H. Wegsein, A.V. Wijngaar-

den, and M. Woodger. Report on the algorithmic language algol 60. In

Communications of the ACM, volume 3, pages 299–314, May 1960. 34

[BBN07] A. Bortz, D. Boneh, and P. Nandy. Exposing private information by tim-

ing web applicaitons. 16th International Conference on World Wide Web,

(ISBN: 978-1-59593-654-7):621–628, 2007. 42

[BCLR04] T. Ball, B. Cook, V. Levin, and S.K. Rajamani. Slam and static driver

verifier: Technology transfer of formal methods inside microsoft. 4th In-

169

http://www.cs.utexas.edu/users/ moore/acl2/
http://www.cs.utexas.edu/users/ moore/acl2/

REFERENCES

ternational Conference on Integrated Formal Methods, 2999(ISBN: 3-540-

21377-5):1–20, 2004. 4

[BCO05] J. Berdine, C. Calacagno, and P.W. O’Hearn. Smallfoot: Modular automatic

assertion checking with separation logic. Symposium on Formal Methods for

Components and Objects, 4111(ISBN: 3-540-36749-7):115–137, 2005. 5, 35,

40

[Bez90] B. Bezier. Software Testing Techniques. Van Nostrand Rheinhold Company,

New York, USA, second edition edition, 1990. 3

[BM04] M. Bidoit and P.D. Mosses. CASL User Manual. Springer, 2004. 3

[BMMR01] T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani. Automatic predi-

cate abstraction of C programs. ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, (ISBN: 1-58113-414-2):203–213,

2001. 35, 36

[BR01] T. Ball and S.K. Rajamani. Automatically validating temporal safety prop-

erties of interfaces. 8th International SPIN Workshop Model Checking Soft-

ware, 2057(ISBN: 3-540-42124-6):103–122, 2001. 35

[BR02] T. Ball and S.K. Rajamani. The slam project: Debugging system software

via static analysis. 29th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, (ISBN: 1-58113-450-9):1–3, 2002. 4

[BSB07] C. Braghin, N. Sharygina, and K. BaroneAdesi. A model checking-based

approach for security policy verification of mobile systems. Formal Aspects

of Computing, 4591:37–53, 2007. 36, 42

[Bur74] R.M. Burstall. Program proving as hand simulation with a little induction.

170

REFERENCES

Internaitonal Federation for Information Processing Congress, pages 308–

312, 1974. 36, 37

[Cajer] [online]The Caja JavaScript Compiler. Available from: http://code.

google.com/p/google-caja/ [cited 23rd May 2012]. 27, 28

[Carom] [online]J. Lindström. Available from: http://my.opera.com/core/blog/

2009/02/04/carakan [cited 18th May 2012]. 25

[CDNQ07] W.N. Chin, C. David, H.H. Nguyue, and S. Qin. Automated verification

of shape, size and bag properties. 12th IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS), pages 307–320, July

2007. 6

[CDNQ08] W. Chin, C. David, H.H. Nguyen, and S. Qin. Enhancing modular oo ver-

ification with separation logic. 35th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL), (ISBN: 978-1-59593-689-

9):87–99, January 2008. 5, 6, 43

[CDNQ10] W.N. Chin, C. David, H.H. Nguyen, and S. Qin. Automated verification

of shape, size and bag properties via user-defined predicates in separation

logic. Science of Computer Programming, 77(9):1006–1036, 2010. 5, 6, 35,

43

[CDOY09] C. Calcagno, D. Distefano, P.W. O’Heearn, and H. Yang. Compositional

shape analysis by means of BI-abduction. Principles of Programming Lan-

guages, 58:26, 2009. 43

[CE81] E.M. Clarke and E.A. Emerson. Synthesis of synchronization skeletons for

branching time temproal logic. In Workshop of Logic of Programs, 131,

1981. 4, 36

171

http://code.google.com/p/google-caja/
http://code.google.com/p/google-caja/
http://my.opera.com/core/blog/2009/02/04/carakan
http://my.opera.com/core/blog/2009/02/04/carakan

REFERENCES

[CGJ+00] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-

guided abstraction refinement. 12th Computer Aided Verification Interna-

tional Conference, 1855(ISBN: 3-540-67770-4):154–169, 2000. 36

[CGJL03] E.M. Clarke, O. Grumberg, S. Jha, and Y. Lu. Counterexample-guided

abstraction refinement for symbolic model checking. ACM, 50(5):752–794,

2003. 36

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT

Press, 1999. 36

[CH11] R.J. Colvin and I.J. Hayes. Structual operational semantics through

contex-dependent behaviour. Journal of Logic and Algebraic Programming,

80(7):392–426, 2011. 38

[CHA+07] J. Condit, M. Harren, Z. Anderson, D. Gay, and G.C. Necula. Depen-

dent types for low-level programming. 16th European Symposium on Pro-

gramming Languages and Systems, 4421(ISBN: 978-3-540-71314-2):520–535,

2007. 2

[CM99] C.Kern and M.R.Grenstreet. Formal verification in hardware design: A

survey. ACM Transactions on Design Automation of Electronic Systems,

4(2):123–193, April 1999. 35

[CMS+07] S. Chen, J. Meseguer, R. Sasse, H.J. Wang, and Y.M. Wang. A systematic

approach to uncover security flaws in GUI logic. IEEE Security and Privacy,

pages 71–85, 2007. 42

[Col98] J.S. Collofello. Introduction to software verification and validation. Software

Engineering Institute Curriculum Module (SEICM), 1998. 35

172

REFERENCES

[Coqnt] [online]The Coq Proof Assistant. Available from: http://coq.inria.fr/

[cited May 2012]. 35

[Cro08] Douglas Crockford. JavaScript: The Good Parts. O’Reilly Media, Inc., 2008.

41, 47

[Crong] [online]Making JavaScript Safe for Advertising. Available from: http://

www.adsafe.org. [cited May 2010]. 29, 41, 47

[Darge] [online]Dart Language. Available from: http://www.dartlang.org/ [cited

21st May 2012]. 3, 26

[DHF10] A. Dewald, T. Holz, and F.C. Freiling. Adsandbox: Sandboxing javascript to

fight malicious webstes. SAS (Static Analysis of International Symposium),

pages ISBN:978–1–60558–639–7, March 22-26 2010. 28

[Dij72] E.W. Dijkstra. The humble programmer. Communications of the ACM,

15(10):859–866, 1972. 2, 3

[Dojit] [online]The Dojo JavaScript Toolkit. Available from: http://

dojotoolkit.org/ [cited 21st May 2012]. 29

[DomOM] [online]Document Object Model (DOM). Available from: www.w3.org/DOM

[cited 18th May 2012]. 25

[DOY06] D. Distefano, P.W. O’Hearn, and H. Yang. A local shape analysis based on

separation logic. 12th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, 3920:287–302, April 2006. 43

[Ecm09] Final Draft Of Standard ECMA-262 5th Edition ECMAScript Language,

2009. Available from: http://www.ecma-international.org. 17, 22, 25,

42

173

http://coq.inria.fr/
http://www.adsafe.org.
http://www.adsafe.org.
http://www.dartlang.org/
http://dojotoolkit.org/
http://dojotoolkit.org/
www.w3.org/DOM
http://www.ecma-international.org

REFERENCES

[Eme81] E.A. Emerson. Branching Time Temporal Logic and the Design of Correct

Cocurrent Programs. PhD thesis, Division of Applied Sciences, Harvard

Unviersity, 1981. 35, 36

[Fbjpt] [online]FBJS(Facebook JavaScript). Available from: http://developers.

facebook.com/docs/fbjs/ [cited 23rd May 2012]. 27, 28

[FGH+07] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P.D. Petkov. XSS Exploits:

Cross Site Scripting Attacks and Defense. Syngress, 2007. 42

[Fla11] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly, 6th edition, 2011.

12, 16, 41, 47

[Flo67] R.W. Floyd. Assigning meanings to programs. Symposium in Applied Math-

ematics, 1967. 4, 34, 35, 37, 47

[Git12] [online]2012. Available from:]http://news.softpedia.com/news/

JavaScript-Still-the-Most-Popular-Language-Java-Gaining-292027.

shtml [cited 21st May 2012]. 12

[GL09] S. Guarnieri and B. Livshits. Gatekeeper: Mostly static enforcement of

security and reliability policies for Javascript code. 18th USENIX Security

Symposium, (ISBN: 978-1-931971-69-0):151–168, 2009. 28

[GM82] J.A. Goguen and J. Meseguer. Security policies and security models. IEEE

Symposium on Security and Privacy, pages 11–20, 1982. 42

[GMS12] P. Gardner, S. Maffeis, and G. Smith. Towards a program logic for

Javascript. In 39th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, number ISBN: 978-1-4503-1083-3, pages 31–44,

2012. 35, 41, 43, 123

174

http://developers.facebook.com/docs/fbjs/
http://developers.facebook.com/docs/fbjs/
]http://news.softpedia.com/news/JavaScript-Still-the-Most-Popular-Language-Java-Gaining-292027.shtml
]http://news.softpedia.com/news/JavaScript-Still-the-Most-Popular-Language-Java-Gaining-292027.shtml
]http://news.softpedia.com/news/JavaScript-Still-the-Most-Popular-Language-Java-Gaining-292027.shtml

REFERENCES

[GSS10] A. Guha, C. Saftoiu, and S. Shnamurthi. The essence of Javascript. 24th Eu-

ropean Conference on Object-Oriented Programming (ECOOP), 6183(ISBN:

978-3-642-14106-5):126–150, 2010. 42

[Har02] J. Harrison. Formal Verification in Industry. Logic and Automated Rea-

soning Summer School, Australian National University, 2002. 34

[HH91] W.C. Hetzel and B. Hetzel. The Complete Guide to Software Testing. Wiley,

New York, USA, second edition, 1991. 3

[HJG08] G.J. Holzmann, R. Joshi, and A. Groce. New challenges in model checking.

Springer Berlin, 5000/2008, 2008. 36, 42

[HJMS03] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification

with blast. 10th International Model Checking Software SPIN Workshop,

2648(ISBN: 3-540-40117-2):235–239, 2003. 4

[HM04] C.A.R. Hoare and R. Milner. Grand challenge in computing research. The

British Computer Society, 2004. 2

[Hoa69] C.A.R. Hoare. An axiomatic basis of computer programing. Communica-

tions of the ACM, 12(576-583), 1969. 4, 5, 34, 35, 37, 47

[Hoa78] C.A.R. Hoare. Communicating sequential processes. ACM, 21(8):666–667,

1978. 3

[How87] William E. Howden. Functional Program Testing and Analysis. McGraw-

Hill, New York, USA, 1987. 35

[HR04] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning

about Systems. Cambridge University Press, New York, USA, 2004. 36, 44

175

REFERENCES

[HT09] P. Heidegger and P. Thiemann. Recency types for dynamically-typed

object-based languages. International Workshops on Foundations of Object-

Oriented Languages, FOOL, January 2009. 43

[HYH+04] Y.W. Huang, F. Yu, C. Hang, C.H. Tsai, D.T. Lee, and S.Y. Kuo. Securing

web application code by static analysis and runtime protection. 13th in-

ternational conference on World Wide Web, (ISBN: 1-58113-844-X):40–52,

2004. 42

[IEE83] IEEE. Standard glossary of software engineering terminology. AN-

SI/IEEEStd729, 1983. 35

[IO01] S.S. Ishtiaq and P.W. O’Hearn. BI as an assertion language for mutable

data structures. 28th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, 36(ISBN: 1-58113-336-7):14–26, 2001. Avail-

able from: http://dx.doi.org/10.1145/373243.375719, doi:10.1145/

373243.375719. 5

[Isant] [online]The Isabelle Proof assistant. Available from: http://isabelle.in.

tum.de/ [cited May 2012]. 35

[Jac99] I. Jacobson. The Unified Software Development Process: The Complete

Guide to the Unifed Process form the Original Designers. Addison-Wesley,

1999. 3

[Jacty] [online]Jacaranda: a subset of JavaScript designed to support object-

capability security. Available from: http://jacaranda.org/ [cited 21st

May 2012]. 29

[JMG+02] T. Jim, G. Morrisett, D. Grossman, M. Hicksand J. Cheney, and Y. Wang. A

safe dialect of C. USENIX: The Advanced Computing Systems Association

Annual Technical Conference, 2002. 2

176

http://dx.doi.org/10.1145/373243.375719
http://dx.doi.org/10.1145/373243.375719
http://dx.doi.org/10.1145/373243.375719
http://isabelle.in.tum.de/
http://isabelle.in.tum.de/
http://jacaranda.org/

REFERENCES

[JMT09] S.H. Jensen, A. Moller, and P. Thiemann. Type analysis for Javascript.

In 16th International Symposium on Static Analysis, volume 5673, pages

238–255, Los Angeles, August 2009. 43

[Jon03] S.P. Jones. Haskell 98 Language and Libraries: The Revised Report. Cam-

bridge University Press, 2003. 2

[Jslnt] [online]The JavaScript Code Quality Tool: JSLint. Available from: http:

//www.jslint.com/ [cited 21st June 2012]. 30

[KK97] P. Kent and J. Kent. Official Netscape JavaScript 1.2 Book: The Nonpro-

grammer’s Guide to Creating Interactive Web Pages. Number 1566046750.

Ventana, 2nd edition edition, 1997. 25

[KKKJ] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. Secubat: a web vulnera-

bility scanner. International World Wide Web Conferences, pages 247–256.

42

[Kro77] F. Kroger. Lar: A logic of algorithmic reasoning. Acta Informatica, 8(3):243–

266, 1977. 36

[LDG+10] X. Leroy, D. Doligez, J. Garrigue, D. Rmy, and J. Vouillon. The objective

Caml system, documentation and user’s manual. INRIA, 2010. 2

[LHQ08] C. Luo, G. He, and S. Qin. A heap model for Java bytecode to support sep-

aration logic. 15th Asia-Pacific Software Engineering Conference(APSEC),

December 2008. 6, 43

[Lin12] [online]LinkedIn passwords leaked by hackers, (7 June 2012). Avail-

able from: http://www.bbc.co.uk/news/technology-18338956 [cited 8th

June 2012]. 2

177

http://www.jslint.com/
http://www.jslint.com/
http://www.bbc.co.uk/news/technology-18338956

REFERENCES

[Liu11] S. Liu. Automatic specification-based testing: Challenges and possibili-

ties. 5th IEEE International Symposium on Theoretical Aspects of Soft-

ware Engineering, (ISBN: 978-1-4577-1487-0):5–8, 2011. doi:http://doi.

ieeecomputersociety.org/10.1109/TASE.2011.36. 3

[MBGL06] A. Moshchuk, T. Bragin, S.D. Gribble, and H.M. Levy. A crawler-based

study of spyware on the web. Network and Distributed System Security

Symposium (NDSS), 2006. 42

[McC63] J. McCarthy. A basis for a mathematical theory of computation. In Com-

puter programming and formal systems, pages 33–70, North-Holland, Ams-

terdam, 1963. 34

[McM92] K.L. McMillan. Symbolic model checking: an approach to the state explosion

problem. Phd thesis, Carnegie Mellon University, 1992. 36, 42

[MHK04] R. Middelkoop, K. Huizing, and R. Kuiper. A separation logic proof system

for a class-based language. In Workshop on Logics for Resources, Processes

and Programs (LRPP), 2004. 38, 43, 44

[MMT08] S. Maffeis, J.C. Mitchell, and A. Taly. An operational semantics for

Javascript. 6th Asian Symposium on Programming Languages and Sys-

tems, 5356:307–325, 2008. Available from: http://www.doc.ic.ac.uk/

~{}maffeis/aplas08.pdf. 42, 43

[MMT09a] S. Maffeis, J.C. Mitchell, and A. Taly. Isolating Javascript with filters,

rewriting, and wrappers. In ESORICS, volume 5789, pages 505–522. LNCS,

2009. 27

[MMT09b] S. Maffeis, J.C. Mitchell, and A. Taly. Language-based isolation of untrusted

Javascript. In 22nd IEEE Computer Security Foundations Symposium, num-

ber ISBN: 978-0-7695-3712-2, pages 77–91, 2009. 27

178

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TASE.2011.36
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TASE.2011.36
http://www.doc.ic.ac.uk/~{}maffeis/aplas08.pdf
http://www.doc.ic.ac.uk/~{}maffeis/aplas08.pdf

REFERENCES

[MMT10] S. Maffeis, J.C. Mitchell, and A. Taly. Object capabilities and isolation

of untrusted web applications. In 31st IEEE Symposium on Security and

Privacy, number ISBN: 978-0-7695-4035-1, pages 125–140, 2010. 27, 28

[MWB10] M.Finifter, J. Weinberger, and A. Barth. Preventing capability leaks in

secure Javascript subsets. 17th Annual Network and Distributed System

Security Symposium (NDSS), March 2010. 29

[NDQC07] H.H. Nguyen, C. David, S. Qin, and W.N. Chin. Automated verification of

shape and size properties via separation logic. 8th international conference

on Verification, model checking, and abstract interpretation, 4349(ISBN:

978-3-540-69735-0):251–266, 2007. 5, 6, 40, 43

[Newch] [online]A. Vance, Times Web Ads Show Security Breach. Available from:

http://www.nytimes.com/2009/09/15/technology/internet/15adco.

html [cited 8th June 2012]. 2

[Nitit] [online]WebKit. Available from: http://trac.webkit.org/wiki [cited

18th May 2012]. 25

[NNH99] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.

Springer, 1999. 4

[Plo81] G.D. Plotkin. A structual approach to operational semantics. Technical

report, Computer Science Department, Aarhus University, 1981. 38

[Plo04] G.D. Plotkin. A structual approach to operational semantics. Logic and

Algebraic Programming, 17(139):60–61, 2004. 38

[Pnu77] A. Pnueli. The temporal logic of programs. 18th IEEE Symposium on

Foundation of Computer Science, pages 46–57, 1977. 35, 36

179

http://www.nytimes.com/2009/09/15/technology/internet/15adco.html
http://www.nytimes.com/2009/09/15/technology/internet/15adco.html
http://trac.webkit.org/wiki

REFERENCES

[PS58] A.J. Perlis and K. Samelson. Preliminary report: international algebraic

language. In Communications of the ACM, volume 1, 1958. 34

[QS82] J. Quelle and J. Sifakis. Specification and verification of concurrent systems

in CESAR. In Symposium proceedings, LNCS 137, pages 337–351, 1982. 4,

36

[RDWD07] C. Reis, J. Dunagan, H.J. Wang, and O. Dubrovsky. Browsershield:

Vulnerability-driven filtering of dynamic HTML. In ACM Transactions on

the Web, volume 1, 2007. 27, 28, 42

[Rey98] J. Reynolds. Theoreis of Programming Languages. Cambridge University

Press, 1998. 38

[Rey00] J. Reynolds. Intuitionistic reasoning about shared mutable data struc-

ture, 2000. Available from: http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.11.5999. 39

[Rey02] J.C. Reynolds. Separation logic: A logic for shared mutable data structures.

In 17th IEEE Symposium on Logic in Computer Science, number ISBN: 0-

7695-1483-9, pages 55–74. IEEE, July 2002. 5, 39

[Rey05] J.C. Reynolds. An overview of separation logic. In Verified Software:

Theories, Tools, Experiments, pages 460–469. Springer, isbn: 978-3-540-

69147-1 edition, 2005. Available from: http://dx.doi.org/10.1007/

978-3-540-69149-5_49, doi:10.1007/978-3-540-69149-5_49. 39, 47

[Rhiva] [online]The Rhino open-source implementation of JavaScript written entirely

in Java. Available from: http://www.mozilla.org/rhino/ [cited 18th May

2012]. 25

180

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.5999
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.5999
http://dx.doi.org/10.1007/978-3-540-69149-5_49
http://dx.doi.org/10.1007/978-3-540-69149-5_49
http://dx.doi.org/10.1007/978-3-540-69149-5_49
http://www.mozilla.org/rhino/

REFERENCES

[RL10] K. Rustan and M. Leino. Dafny: An automatic program verifier for func-

tional correctness. 16th Logic for Programming, Artificial Intelligence, and

Reasoning International Conference, 6355(ISBN: 978-3-642-17510-7):348–

370, 2010. 5

[RLBV10] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the dynamic

behavior of Javascript programs. PLDI (SIGPLAN Conference on Program-

ming Language Design and Implementation), June 2010. Available from:

http://sss.cs.purdue.edu/projects/dynjs/pldi275-richards.pdf. 5,

47

[Ros98] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1998.

38

[Sch00] S. Schneider. Concurrent and Real-time Systems: The CSP Approach. Wi-

ley, 2000. 38

[SK95] K. Slonneger and B.L. Kurtz. Formal syntax and semantics of programming

languages: a laboratory based approach. Addison-Wesley, 1995. 37

[Spi89] J. M. Spivey. The Z notation: A Reference Manual. Prentice-Hall, 1989. 3

[TA05] T. Terauchi and A. Aiken. Secure information flow as a safety problem.

12th International Symposium on Static Analysis, 3672(ISBN: 3-540-28584-

9):352–367, 2005. 42

[Trane] [online]The TraceMonkey Mozilla’s JavaScript engine. Available from:

https://wiki.mozilla.org/JavaScript:TraceMonkey [cited 18th May

2012]. 25

[tTCoP] Axiomatic Approach to Totoal Correctness of Programs. Z. Manna and A.

Pnueli. Acta Informatic, 3 edition. 37

181

http://sss.cs.purdue.edu/projects/dynjs/pldi275-richards.pdf
https://wiki.mozilla.org/JavaScript:TraceMonkey

REFERENCES

[Tue09] T. Tuerk. A Formalisation of Smallfoot in HOL. Springer, 2009. 40

[V81ne] [online]V8 JavaScript Engine. Available from: http://code.google.com/

p/v8/ [cited 18th May 2012]. 25

[Ven99] B. Venners. Inside the Java Virtual Machine. McGraw-Hill, 1999. 2

[Whi08] A. White. JavaScript Programmer’s Reference. Wiley, 2008. 12

[Win93] G. Winskel. The Formal Semantics of Programming Languages: An Intro-

duction. MIT Press, 1993. 38

[YCIS07] D. Yu, A. Chander, N. Islam, and I. Serikov. Javascript instrumentation for

browser secruity. 34th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, (ISBN: 1-59593-575-4):237–249, January 2007.

43

[YW09] C. Yue and H. Wang. Characterizing insecure Javascript practices on the

web. 18th International World Wide Web Conference, (ISBN: 978-1-60558-

487-4):961–970, April 2009. 42

182

http://code.google.com/p/v8/
http://code.google.com/p/v8/

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Objectives
	1.4 Criteria for Success
	1.5 Thesis Organization

	2 Literature Review
	2.1 Introduction
	2.2 JavaScript as a Scripting Language
	2.2.1 Main Features of JavaScript
	2.2.1.1 Data Type and Variable
	2.2.1.2 Object Structure
	2.2.1.3 Functions
	2.2.1.4 Prototype and Inheritance
	2.2.1.5 Other Conventions

	2.2.2 Client-Side JavaScript
	2.2.3 ADsafe
	2.2.4 Summary

	2.3 Formal Verification
	2.3.1 Model Checking
	2.3.2 Hoare Logic and Verification
	2.3.3 Separation Logic and Verification
	2.3.4 JavaScript Program with Formal Framework

	2.4 Summary

	3 JSsl - A Subset of JavaScript
	3.1 Introduction
	3.2 The Language JSsl
	3.2.1 The Features and Conventions of JSsl
	3.2.2 The Syntax of JSsl

	3.3 Example
	3.4 Semantics for JSsl
	3.4.1 Semantic Domain
	3.4.2 Operational Semantics

	3.5 An Axiomatic Framework for JSsl
	3.5.1 Specification Language for JSsl
	3.5.2 Inference Rules
	3.5.3 Soundness

	3.6 Summary

	4 JStsl - A safe usage of this for JSsl
	4.1 Introduction
	4.2 Example Analysis
	4.3 Reachability Graph Analysis for JStsl
	4.4 Verification
	4.4.1 The Language JStsl
	4.4.2 Revised Operational Semantic Rules
	4.4.3 Specification Language for JStsl
	4.4.4 Main Verification Algorithm
	4.4.5 Formal Property: Safety
	4.4.6 Revised Inference Rules
	4.4.7 Soundness

	4.5 Summary

	5 Case Studies and Evaluation
	5.1 Introduction
	5.2 Case Studies
	5.2.1 Case Study A
	5.2.2 Case Study B
	5.2.3 Case Study C
	5.2.4 Case Study D

	5.3 Evaluation
	5.3.1 Analysis of Case Studies
	5.3.2 Evaluation of JStsl Framework

	5.4 Summary

	6 Conclusion
	6.1 Introduction
	6.2 Contribution
	6.3 Criteria for Success
	6.4 Future Work
	6.5 Summary

	A Appdx A
	B Appdx B
	References

