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Abstract

The work reported in this thesis is dedicated to the theoretical study of the certain

properties of several types of resonant and nonresonant photonic nanostructures.

Negative refraction at the side edge of a Bragg reflector is studied. Analytical theory

supported by numerical modelling using finite-difference time-domain (FDTD) simula-

tions shows that the negative refraction in this case is equivalent to −1 order diffraction.

Moreover, it is shown that a new effect, spatial oscillation of the Poynting vector of

the transmitted radiation, can be observed under certain circumstances. In a separate

study the design of a spectral filter for the terahertz frequency range based on a metallic

photonic crystal prism has been developed and refined. The theory makes use of the

complex band structure method together with FDTD simulations and shows that large

angle separation of certain frequency component can be achieved with a prism due to

the negative refraction effect. Experimental measurements on a device fabricated with

a proposed design are also presented and confirm the theoretical predictions.

An optical eigenmode analysis of two organic microcavities separated by a thin metal

layer has been carried out, both numerically and analytically. The analytical theory

shows that the sharp reflections features observed in experimental reflectivity measure-

ments are caused by the strong coupling of the Tamm plasmon modes present on both

sides of the metal film.

Analytical theory is developed explaining the experimentally measured reflectivity spec-

tra of a one-dimensional photonic crystal with quantum wells embedded in its layers. The

dispersion properties of the eigenmodes of the structure, originating from the strong cou-

pling of quantum well excitons and photonic crystal modes are calculated. It is shown,

that a new type of exciton-polariton, defined by the negative group velocity and effective

mass can be observed in the structures.

A theoretical formalism and corresponding software code have been developed to model

the kinetics of polariton lasers. The model is based on a Boltzmann equation approach

and accounts for electrical or optical pumping, polariton decay, and polariton-acoustic

phonon, polariton-free electron and polariton-polariton scattering. The software code

has been used to model the main characteristics of the specific GaN-based polariton

lasers using parameters provided by experimental collaborators. It is predicted that the

design of electrically driven polariton laser considered would have a threshold current

density of 50 Acm−2 at room temperature.
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black lines show the dispersions of the Bloch modes Û ,L̂. Right picture
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University, University of Crete, and École Politechnique Fédérale de Lausanne.

Finally, I am indebted to my wife, my parents, and friends for their help and encour-

agement.

xi



Chapter 1

Introduction

A key trend in information technology over the last fifty years has been miniaturisation.

The characteristic size of devices has been decreasing constantly as recognized by the

famous empirical Moore’s law, which states that the number of transistors on integrated

circuits doubles approximately every two years, and which has been valid with only minor

variations for the last forty years. However, it is quite evident, that the characteristic

sizes of the elements of conventional electronic integrated circuits have almost reached

their physical limit, and that further reduction is precluded not by fabrication technology

but rather by fundamental physical limitations. In order to continue the speed of growth

of computational power of modern computers, new concepts of the computation must

be employed. Such concepts include quantum computers, biological computers and,

most relevant to this thesis, optical information processing. For the physicist, the main

challenge posed by this trend is how best to describe systems and model devices operating

at the boundary of classical and quantum domains. It is in this context that this thesis

addresses some topical problems in optical structures and devices that are concerned

with the control of light and light-matter interaction.

We begin by describing in rather general terms some concepts in the electromagnetic

theory of optical structures and in the physics of the light-matter interaction that are

relevant to the research reported in the thesis. We also give a very brief introduction to

the research problems that have been addressed and describe how the thesis is structured.

A more detailed introduction to each research topic is given in the appropriate chapter.

1



Chapter 1. Introduction 2

Electromagnetic radiation obeys Maxwell equations:

∇ ·D = 4πρ,

∇ ·B = 0,

∇×E = −1

c

∂B

∂t
,

∇×H =
1

c

∂D

∂t
+

4π

c
J, (1.1)

where respectively E and H are the electric and magnetic fields; D and B are the

electric displacement field and magnetic inductance; ρ and J are the charge and current

densities, and c is the speed of light.

There are no external charges or currents in the optical structures considered in the thesis

and it is assumed that the structures do not have any magnetic response. Consequently,

Maxwell equations can be reduced to

∇×∇×E = − 1

c2
∂2D

∂t2
, (1.2)

which governs the optical properties of all the structures considered in the thesis. How-

ever, depending on the behaviour of D, two general types of structure can be distin-

guished in the work reported. In one type of structure the electric displacement is defined

only by a spatially-varying, frequency-independent dielectric permittivity through the

relationD(r, t) = ε(r)E(r, t). In this case we can look for solutions in the form E ∼ e−iωt

and equation (1.2) can be written as

∇×∇×E(r) =
ω2

c2
ε(r)E(r). (1.3)

The solutions of this equation obey a simple scaling law: if we decrease all the dimensions

of the system by a factor of α then to get the same distribution of the fields we must

increase the frequency ω by a factor of α.

The idea that periodic modulation of the dielectric permittivity can determine certain

optical properties of a structure was recognized by Bragg [1] when he explained the

resonant peaks in the X-ray reflection spectra of crystalline solids. In this work Bragg

modelled the crystal as a set of parallel planes separated by a distance d and explained

the reflection peaks by the constructive interference of X-rays reflected from those planes.

The condition for constructive interference is the well known Bragg’s law

nλ = 2d sin θ, (1.4)



Chapter 1. Introduction 3

where λ is the wavelength, θ is the incidence angle and n is an integer. In such Bragg

diffraction, the X-ray wavelength λ is comparable with the crystal interplane distance

d.

The scaling of Maxwell’s equations discussed earlier suggests that in order to obtain

Bragg diffraction in the optical and infra-red frequency range, the period of the struc-

ture should be of the order of 100 nm. Although such structures have been studied

in one form or another since 1887 [2], the term photonic crystal was only used for the

first time some 100 years later, when Eli Yablonovitch and Sajeev John published two

milestone papers on periodic dielectric structures in 1987 [3, 4]. The long delay between

the initial work and the advent of the rapid emergence of the new field of solid state

physics dedicated to photonic crystals can be explained by the fact that the fabrica-

tion of a wide range of suitable structures only became possible in the 1980s following

substantial progress in semiconductor technology. Moreover, the development of semi-

conductor optoelectronic devices such as light-emitting diodes (LEDs) and lasers, and

a growing interest in integrated optics led to the need for new ways to control light on

a microscopic scale, and photonic crystals provided such a possibility. The principal

property of photonic crystals is their ability to modify the propagation of light. The

propagating modes in photonic crystal can be described in reciprocal space in much the

same way as the electronic Bloch states of a semiconductor. The frequency dispersion of

the modes can be substantially different from a homogeneous dielectric. Furthermore,

there can be frequency gaps in the band structure for which light propagation is not

possible. Photonic crystals are now used in a wide range of optoelectronic applications

from the anti-reflection coatings for solar-cells to increasing the efficiency LEDs [5].

Chapter 2 of the thesis is dedicated to studies of the scattering of light at the interfaces

of one- and two-dimensional photonic crystals. A new effect of Poynting vector beating

of the light refracted at the side edge of one-dimensional photonic crystal is presented

and also a design for a spectral filter for the terahertz frequency range based on a two-

dimensional metallic photonic crystal prism is developed.

In deriving of equation (1.3) and the corresponding scaling laws from equation (1.2)

it was assumed that the dielectric permittivity is frequency-independent. However, if

we now introduce an additional polarization P(r, t) for which this assumption does not

hold, equation (1.2) becomes

∇×∇×E(r, t) +
ε(r)

c2
∂2E(r, t)

∂t2
= − 1

c2
∂2P(r, t)

∂t2
. (1.5)

It is clear that we cannot solve equation (1.5) without additional information on the
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behaviour of the polarization P. In the thesis only one special type of additional po-

larization is considered, namely that of a quantum well exciton. Excitons are Coulomb-

correlated electron - hole pairs that can take different forms depending on the properties

of the host medium. A broad distinction can be made based on spatial size and bind-

ing energy, and here we consider Wannier-Mott excitons, characteristic of the common

semiconductors and having relatively large size (several nanometers) and relatively small

binding energy (a few tens of meV) [6]. Excitons can be observed experimentally by

sharp peaks in the absorption spectrum of the semiconductors close to the fundamental

absorption edge. The energy spectrum of excitons in bulk semiconductors is like that

of a hydrogen atom with the following renormalization: m0 → µ, and e2 → e2/ε, where

m0 is the free electron mass, and µ is the reduced exciton mass. As a result of spatial

confinement, excitons in quantum wells, wires and dots have properties rather different

from bulk excitons, including qualitatively different energy spectra, larger binding ener-

gies and smaller effective localization lengths. The polarization induced by a quantum

well exciton can be written in the frequency domain as [7]:

P(ω, z) =

∞∫
−∞

χ(ω, z, z′)E(ω, z′)dz′. (1.6)

Here z is the direction perpendicular to the quantum well plane, and χ(ω, z, z′) is the

nonlocal susceptibility given by:

χ =
Q

ω0 − ω − iγ
Φ(z)Φ(z′) (1.7)

where Φ is the exciton wavefunction in the case when the electron and hole are at the

same position in the well plane, Q is a quantity defined by the material properties of

the quantum well, ω0 is the exciton frequency, and γ is the exciton line broadening.

Substitution of the polarization into equation (1.5) shows that the eigenfrequencies of

the structures are no longer only defined by the geometry and dimensions of the photonic

structures but also by the exciton resonance frequency ω0, precluding the simple scaling

relation described earlier for ‘non-resonant’ photonic crystals.

Placing the quantum well in the centre of an optical cavity and tuning a cavity resonant

mode to the exciton resonant frequency can lead to the formation of a new type of

eigenmode, an exciton-polariton, which in some circumstances can be considered to be

a composite light-matter quasiparticle with bosonic properties [8].

The fabrication of the structures where the exciton-polaritons can be excited is an

extremely technologically challenging process, since it requires both very high qual-

ity Bragg mirrors, providing long cavity photon lifetimes, and high quality quantum
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wells with small exciton broadening. As a result, exciton-polaritons have hitherto been

experimentally studied by only a quite limited number of scientific groups, despite their

fascinating fundamental properties and possible applications. A particular attraction

of exciton-polaritons is their bosonic nature combined with an extremely small effec-

tive mass, which makes possible their condensation at relatively high temperatures, and

the observation of related phenomena such as superfluidity. A condensate of exciton-

polaritons also emits coherent light and there are intensive efforts to develop an electri-

cally pumped ‘polariton laser’ [9] based on the effect. However there are other potential

applications based on the relatively strong nonlinear effects resulting from the strong

interactions of the excitonic component which lead to the possibility of new types of

photonic devices such as parametric amplifiers [10] and optical integrated circuits [11].

Also as a result of their composite light-matter nature, exciton-polaritons facilitate the

efficient control of quantum processes in semiconductor structures with light, including

the recently proposed possibility of light-mediated room-temperature superconductivity

[12] and quantum information processing [13].

Chapters 3 and 4 of the thesis are dedicated to the study of some optical properties of

exciton-polaritons. Chapter 3 considers the eigenmode structure and parametric ampli-

fication of exciton-polaritons in a one-dimensional photonic crystal with the quantum

wells embedded into its layers. The theory and calculations support the reflectivity mea-

surements and pump-probe experiments on these structures that have been performed

by collaborators. Moreover, it is shown that a slight change in the design of the struc-

tures can lead to the formation of a new type of exciton-polariton, defined by a negative

effective mass and group velocity.

The work reported in chapter 4 was largely motivated by our experimental collaborators

at the École Polytechnique Fédérale de Lausanne, who are working on the realization of

the first room-temperature electrically-driven polariton laser. Such a laser is expected

to have a much lower threshold compared to the current conventional vertical cavity sur-

face emitting laser diodes (VCSELs). Numerical modelling of the kinetics of prototype

polariton lasers has been performed and predictions have been made of designs providing

the best operational characteristics and of parameters such as such as threshold current

density and current modulation frequency.

Currently the study of photonic crystals and exciton-polariton physics is largely driven

by the technologists and experimentalists and most of the work reported in the thesis has

been done in collaboration with experimental groups. Where appropriate, experimental

details have been given in the relevant chapters and further information can be obtained

in the references provided. It is hoped, that the close link with experiment will give the

theory described in the thesis a good chance to benefit future technology.



Chapter 2

Negative refraction of light at the

edges of one and two-dimensional

photonic crystals.

This chapter is dedicated to the study of certain aspects of negative refraction at the

edge of photonic crystals. It begins with a general review of the negative refraction

effect and specifically negative refraction in photonic crystals. The first investigation

reported concerns the study of the scattering of light at the side edge of an infinite Bragg

reflector and is presented in section 2. A semi-analytical approach based on the method

of moments is used to calculate the scattering. It is shown that the results of the semi-

analytical model predict two new effects: spatial oscillations of the Poynting vector for

the light refracted into the photonic crystal for the case of low-contrast refractive index

and normal propagation of the refracted beam for the case of high-contrast refractive

index. The results of numerical finite-difference-time-domain (FDTD) modelling which

have been performed to verify the semi-analytical model are also presented 1.

The third section of this chapter considers the refraction of terahertz radiation by a

prism made from a metallic photonic crystal and has been published in [15]. It has

been shown that due to the negative refraction effect, this structure can be used as an

effective terahertz low-pass or high-pass filter. The theoretical results based on band

structure calculation and (FDTD) modelling have been verified experimentally 2.

1 The work described in section 2 has been published in [14] in co-authorship with a number of
colleagues. My contribution to the publication was in applying an established theory and in obtaining
the results from the semi-analytical and numerical modelling.

2 The work was carried out in collaboration with colleagues working on microfabrication and terahertz
technology who made the photonic crystal prisms and performed all the experiments. My contribution
to the work was in performing the numerical FDTD modelling in order to obtain the optimal photonic
crystal prism design.

6
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2.1 Review of negative refraction.

The systematic study of the optical properties of media with simultaneously negative

dielectric permittivity and magnetic permeability was first reported in [16]. In this paper

Veselago proposed the term left-handed medium for such materials. This is because if we

substitute the plane wave solution E,H ∼ exp[ikr− iωt] into Maxwell’s curl equations,

we get:

k×E = µ
ω

c
H, (2.1)

k×H = −εω
c
E. (2.2)

In the case of positive ε and µ, the vectors E,H, and k form a right-handed basis, and a

left-handed basis in the case of negative ε and µ. However, Poynting’s vector S = E×H

always forms a right-handed basis with the vectors E and H; the group velocity is al-

ways collinear with Poynting’s vector and the phase velocity is always collinear with the

wavevector. Thus, in the case of isotropic media, the group and phase velocities are

oppositely directed if ε and µ are negative. Such media are also usually characterized

by a negative refractive index n = −√
εµ, and as a consequence, with negative phase

velocity. It should be noted, however that Maxwell equations do not contain the refrac-

tive index per se, and thus the right choice of the sign of the refractive index could be

subject to some discussion [17]. Pendry [18] presents the following argument in favour of

choosing the negative sign: in realistic physical media losses are always present, which

means that both the dielectric permittivity and magnetic permeability have finite imag-

inary parts: ε = ε′ + iε′′; µ = µ′ + iµ′′. The refractive index in this case is given by:

n = ±
√

(ε′µ′ − ε′′µ′′)− i|ε′′µ′ + ε′µ′′|. However, in order to comply with the causality

principle, the imaginary part of the refractive index should be positive, and this condi-

tion corresponds to the negative sign of the real part of the refractive index. Thus, the

presence of losses is a necessary condition for the right choice of the sign of the refractive

index [19]. However, we should note that the arguments provided by Pendry are only

valid if we define the refractive index as n2 = εµ, and there are several alternative meth-

ods of introducing the refractive index, such as utilizing Snell’s law n = sinϕ0/ sinϕ,

where ϕ0 are ϕ are the angles between the wavevector and the normal to the interface in

vacuum and in the medium respectively. We should also be careful substituting nega-

tive refractive index into known optical relations, since many of them have been derived

within the assumption of a non-magnetic medium [20]. For example, in the well known

expression for the Brewster angle, tanϕ = n2/n1, the magnetic permeability of both

media is set to unity by default.
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Frequency dispersion of the dielectric permittivity and magnetic permeability is a neces-

sary condition for a negative refractive index [21]. Indeed, if the dielectric permittivity

and magnetic permeability were frequency-independent, the electromagnetic field energy

density W = (εE2 + µH2)/2 would be negative. However, in the presence of frequency

dispersion, W is given by [22]:

W =

(
∂(εω)

∂ω
E2 +

∂(µω)

∂ω
H2

)
/2, (2.3)

and for certain type of frequency dispersion, W can be positive even for negative dielec-

tric permittivity and magnetic permeability. For example, the dielectric permittivity of

a metal within the simplified Drude model is given by:

ε = 1−
ω2
p

ω2
, (2.4)

where ωp is the metal plasma frequency, and

∂(ωε)

∂ω
= 1 +

ω2
p

ω2
, (2.5)

which is always positive.

The above arguments are based on the presence of both losses and frequency dispersion

of the dielectric permittivity and permeability to obtain a negative refractive index.

However, we should remember that the Kramers-Kronig relations show that the presence

of losses implies frequency dispersion of the permittivity and vice versa.

Media with negative dielectric permittivity and magnetic permeability have been achieved

in metamaterials. A metamaterial is an ordered array of identical metallic elements, es-

sentially artificial atoms. Just as in a conventional material where the dielectric permit-

tivity and magnetic permeability are an averaged electromagnetic response is determined

by both the optical properties of the individual atoms and by the geometrical properties

of the lattice, ε and µ of a metamaterial are defined by the electromagnetic properties

of the individual elements and by their spatial arrangement. A key difference is that

in the case of a metamaterial we can engineer the electromagnetic properties of the

constitutive elements by changing their internal structure. In particular, the metama-

terial where both negative ε and µ were achieved for the first time [23, 24] was a three

dimensional cubic lattice of metallic split rings. The electric response of this medium

was controlled by tailoring the filling factor of the metal and as a consequence changing

the effective plasma frequency [25]. The magnetic response was engineered by using
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a resonant LC circuit in each element. In the vicinity of the resonance frequency, the

magnetic permeability of the medium was negative.

Negative refraction is the term used to describe the effect when an electromagnetic

wave, refracted at the interface between two media is transmitted on the same side of the

normal as the incident one and will occur when the refractive indices are of opposite sign.

However, a sufficient condition for negative refraction is that the Poynting’s vector and

wavevector are in opposite directions in one plane of one of the media and negative ε and

µ are not essential for negative refraction. In fact, negative refraction has been predicted

and observed in a wide variety of systems, including photonic crystals, metamaterials

and plasmonic structures [23, 24, 26–29]. It leads to, for example, the possibility of

realizing a superlens, which could overcome the diffraction limit [30], the possibility of

electromagnetic cloaking [31] and the formation of non-diffracting beams [32]. However,

negative refraction will only lead to any of the above-mentioned effects if it is present

for a wide range of angles of incidence at the relevant frequency.

As noted, negative refraction has been predicted and observed in photonic crystals [33],

but there are certain differences between negative refraction in metamaterials and pho-

tonic crystals. First of all, photonic crystals are usually strongly anisotropic media,

where it is difficult to introduce the concept of effective refractive index. This also

means that the vectors of the phase and group velocities are usually not parallel as in

the case of isotropic metamaterials. Moreover, even when a photonic crystal can be

treated as an isotropic medium (as to a good approximation in the case of a hexagonal

photonic crystal for the frequency ranges close to band edges), negative refraction is

realized not because of a negative refractive index, and thus a negative phase velocity,

but because of a negative group velocity as, for example , in the second band of a two-

dimensional photonic crystal. On the other hand, it is clear that the effect of negative

group velocity cannot be the result of simple folding of the photonic bands in the first

Brillouin zone since negative group velocity could then be observed even in a photonic

crystal with an empty elementary cell, i.e. in a homogeneous dielectric or even in vac-

uum. Thus, negative group velocity and negative refraction require the existence of a

photonic band gap. Finally we note that another mechanism for negative refraction is

the diffraction of light at a crystal interface.
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2.2 Scattering of light at the side-edge of a Bragg reflector.

Experiments demonstrating negative refraction at the side-edge of one-dimensional pho-

tonic crystals have been reported in [34] and the concept of a superlens [30] consisting

of two photonic crystals has been proposed in [35].

In this section, we provide a detailed theoretical study of negative refraction at the side

edge of a one-dimensional photonic crystal and consider whether such structures are

capable of providing useful optical effects.

2.2.1 Calculation method

The geometry of the problem under consideration is depicted in Fig. 2.1. A plane wave

in vacuum with wavevector of magnitude k0 is incident at angle ϕ on the side-edge of a

photonic crystal.

A good method of calculating the reflected and transmitted electromagnetic waves for

this geometry has been presented in [36] and here we just describe the key steps of the

approach before applying it to the specific systems of interest.

We consider the TE polarisation case, for which electric field vector is orthogonal to the

plane of incidence.

In order to obtain the field distribution of the reflected and refracted waves, we de-

compose the tangential components of the electric and magnetic fields into series of

modes both in vacuum and in the crystal and then apply the continuity conditions at

the interface.

Electric and magnetic fields in vacuum

The y−component of the electric field in vacuum can be decomposed into the incident

plane wave and a series of reflected plane waves:

Ey(x, z) =

p=∞∑
p=−∞

[exp(−iχ0x)δp0 +Rp exp(iχpx)] exp(iKpz), (2.6)

where K0 = k0 sinϕ, Kp = K0 + 2πp/D, χp =
√
k20 −K2

p , the Rp are the amplitudes

of the reflected waves, and δp0 is a Kronecker delta. We can obtain the magnetic field
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Fig. 2.1: A schematic diagram of the refraction of light at the side edge of a Bragg
reflector and the Cartesian coordinate system used in the theory. The structure has
alternate layers with thicknesses d1 and d2 and respective refractive indices n1 and
n2. Light is shown incident from vacuum at angle ϕ with wavevector K0 parallel to
the interface. Also shown is a refracted wave with wavevector components K0 and β,

respectively, parallel and normal to the interface.

component Hz(x, z) from the Maxwell equation ∇×E = −(∂H/∂t)/c = ik0H:

Hz(x, z) =
1

ik0

∂Ey

∂x
=

p=∞∑
p=−∞

χp

k0
[− exp(−iχ0x)δp0 +Rp exp(iχpx)] exp(iKpz). (2.7)

Electric and magnetic fields in the photonic crystal

The electric field inside the photonic crystal can be written as the series:

Ey(x, z) =
∑
m

Cmum(z) exp(iβmx), (2.8)

where the um satisfy the continuity condition at the interfaces of the layers of the

photonic crystals and the Bloch theorem: um(z +D) = exp[iK0D]um(z). Substitution

of Ey(x, z) into wave equation shows that the um(z) are solutions of the equation

d2um(z)

dz2
+ k20n

2(z) = β2mum(z), (2.9)

where n(z) is the refractive index. βm can then be obtained from the well known

dispersion equation for the eigenmodes of a photonic crystal:

cos kz1d1 cos kz2d2 −
1

2

(
kz1
kz2

+
kz2
kz1

)
sin kz1d1 sin kz2d2 = cos(K0D), (2.10)
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where kz1 =
√
ε1k20 − β2, kz2 =

√
ε2k20 − β2. It has been shown that these equation

has an infinite number of real solutions β2, but only a finite number are positive and

thus correspond to the propagating solutions (real β [36]). The corresponding u can be

written as:

u =
ψ(d1)

exp(iK0D)− θ(d1)
θ(x) + ψ(x), (2.11)

where the functions θ(z), ψ(z) are given by

θ =

{
cos(kz1z), 0 ≤ z ≤ d1

cos(kz1d1) cos(kz2(z − d1))− kz1
kz2

sin(kz1d1) sin(kz2(z − d1)), d1 ≤ z ≤ D

(2.12)

ψ =

{
1

kz1
sin(kz1z), 0 ≤ z ≤ d1

1
kz1

sin(kz1d1) cos(kz2(z − d1)) +
1

kz2
sin(kz1d1) sin(kz2(z − d1)), d1 ≤ z ≤ D

(2.13)

Applying the continuity conditions at the interface

The continuity of the electric field at the side edge of the structure (x = 0) requires

p=∞∑
p=−∞

[δp0 +Rp] exp iKpz =
∑
m

Cmum(z). (2.14)

Multiplying this equation by u∗n and integrating over the period of the structure, and

using the orthogonality of the um we get:

Cn =

p=∞∑
p=−∞

[δp0 +Rp] J
∗
pn, (2.15)

where

Jpn =
1√
D

D∫
0

exp(−iKpz)un(z). (2.16)

The proof of the orthogonality of the set um is presented in [36] and is based on the fact

that the differential operator governing the set um is Hermitian. Equation (2.15) can be

rewritten in the matrix form:

C = JH(R + F), (2.17)
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where C = [Cn], J = [Jpn], R = [Rp] and F = δp0, and the superscript H denotes the

Hermitian conjugate. The continuity equation for the magnetic field is

p=∞∑
p=−∞

χp [−δp0 +Rp] exp(iKpz) =
∑
m

βmCmum(z). (2.18)

Multiplying this equation by 1/
√
D exp(−iKqz) and integrating over the period gives:

χq[Rq − δq0] =
∑
m

βmCmum(z)Jqm, (2.19)

which can be written in matrix notation as

R = F− χ−1JβCm, (2.20)

where χ = diag[χq], β = diag[βm]. Then substituting R into (2.17),then gives

(
I + JHχ−1Jβ

)
C = 2JHF, (2.21)

where I - is the unit matrix. The resulting system of equations can be solved to obtain

the amplitudes of the transmitted eigenmodes. The derivation for the TM polarization

is carried out in a similar way.

The matrix equation (2.21) is an infinite system of linear equations and a numerical

solution can only be obtained by truncating it. To define the number of equations n to

be included, we first introduce the sum sn =

n∑
i=1

|Ci|2. The Ci set is ordered such that C1

corresponds to the eigenmode with the largest value of β2. We assume that sn converges

to a constant value s̃, as n→ ∞. The demonstration of the convergence of sn is shown

in Fig.2.2, where it can be seen that as the number of equations n is increased, sn

rapidly approaches some constant value. Assuming the convergence of sn, it is justified

to define the truncation error in the following way: if Ci is the vector of solutions for

n eigenmodes, and C̃i is the vector for n + 1 eigenmodes, then the truncation error

εn can be defined as εn =

n+1∑
i=1

|C̃i|2 −
n∑

i=1

|Ci|2. We then define the maximum allowed

truncation error, which in our calculations has been set to 10−6. It has been shown

that decreasing the maximum truncation error by an order of magnitude changes the

results in an essentially negligible way. The number of equations ñ to be considered was

then defined as ñ = minn(n : εn < 10−6). The same condition has been applied to the

truncation of the reflected amplitudes R.
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Fig. 2.2: Dependence of the norm of the transmitted amplitudes vector on the number
of equations.

In the numerical calculations we have considered quarter-wavelength Bragg reflectors

with a stop-band frequency centre tuned to 1 eV. The values of |Cn|2 of some of the

eigenmodes for a Bragg reflector with the refractive indices of the layers equal to 1.7

and 1.5 are shown in Fig. 2.3.

Fig. 2.3: (a) Amplitudes of the eigenmodes for the case of a photonic crystal with
refractive indices 1.5 and 1.7. The incident light frequency is 1.5 eV, and the angle of
incidence is 60 degrees. (b) C1/C2 ratio vs relative contrast of the photonic crystal.

The frequency of the incident light is 1.5 eV which corresponds to the second photonic

band of the crystal, and the angle of incidence ϕ is 60 degrees. In Fig.2.3(a) we can

see that there are two solutions which correspond to bulk waves propagating inside

the crystal (β2 > 0) and other solutions corresponding to surface waves, which decay

exponentially in the direction normal to the interface (β2 < 0). Note that the ratio

s = (
∑

i:β2
i <0

|Ci|2)/(
∑

i:β2
i >0

|Ci|2) ≪ 1, (2.22)
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which means that the contribution of the surface waves to the total energy of the trans-

mitted electromagnetic field is negligibly small. The number of the bulk waves is deter-

mined by the number of photonic band NB, which the frequency of the incident light

corresponds to and by the angle of incidence. Depending on the angle of incidence, the

number of bulk waves is either exactly equal to the number of photonic bands NB, or

to NB − 1.

It is also considering the dependence of the ratio of amplitudes of the bulk modes on

the relative contrast δn of the photonic crystal defined as |n1 − n2|/(n1 + n2), which

is illustrated in Fig. 2.3(b). As the relative contrast is increased, one of the mode

coefficients becomes dominant, so most of the energy of the electromagnetic field is

transferred to a single eigenmode. We should note, that this property depends on the

choice of the basis of the photonic crystal eigenmodes. For example, instead of using

the basis un discussed above, we could describe the field in a plane wave basis:

E(x, z) =

∞∑
p=−∞

C
′
p exp[iKpz + i

√
k20 −K2

px], (2.23)

where Kp = K0+2πp/D. However, in this case, as the relative contrast of the photonic

crystal is increased, the C ′p becomes less convergent, which means that the electromag-

netic energy exists in a large number of eigenmodes. In contrast, for the basis un most of

the electromagnetic energy is transferred into a single eigenmode as the relative refrac-

tive index contrast is increased, which facilitates the analytical study of the system. For

example, if we include only the zero-order diffraction of the reflected waves, i.e. set Rp ̸=0

to zero, we can analytically derive an expression for the ratio of bulk mode amplitudes

(see Fig.2.3(b)):

|C1|2

|C2|2
=

|J01|2

|J02|2
, (2.24)

which by the definition of the matrix J is the ratio of the overlap integrals of the incident

light and each of the two bulk modes.

To define the direction of propagation of the transmitted light, we calculate the com-

ponent of the Poynting vector tangential to the Bragg reflector side edge averaged over

the crystal period:

Sz = − 1

2D

D∫
0

Re [EyH
∗
x] dz = − 1

2k0D

D∫
0

Im

[
Ey

(
∂Ey

∂z

)∗]
dz. (2.25)

In the case of high refractive index contrast, it is a good approximation to retain only

one mode in the series, and using the expression (2.11), we can evaluate the integral
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(2.25) analytically to obtain:

Sz =
1

2k0D
|Cm|2 sinK0D

kz1 cos kz2d2 sin kz1d1 + kz2 cos kz1d1 sin kz2d2
. (2.26)

The z-component of the group velocity and energy flow of the incident light has the

same sign as K0. Therefore if we multiply Eq. (2.26) by K0, we will get a value that is

negative if the z−components of the Poynting vectors in the crystal and in the vacuum

are antiparallel, which manifests itself physically as negative refraction. In the case of

the low contrast photonic crystal we include both bulk modes in the Poynting vector

calculation. Then the final expression for the Poynting vector tangential components

will contain two terms. corresponding to (2.26) for each of the bulk modes and an

additional ’interference’ term:

− 1

2k0D
Im

exp(i(βm − βn)x)

D∫
0

dz

(
CmC

∗
num

∂u∗n
∂z

− CnC
∗
mun

∂u∗m
∂z

) . (2.27)

We note that this additional term contains a factor, which oscillates in the direction

perpendicular to the interface.

In order to illustrate the transmission through the photonic crystal interface and the

connection between negative refraction and the diffraction of modes, it is instructive to

consider the isofrequency contours of the bands of the photonic crystal. We consider

waves incident on the photonic crystal with a given frequency but varying angle of

incidence and hence tangential wavevector K0. The transmitted wave must have the

same frequency and a tangential wavevector that is either K0 or differs from it by a

reciprocal lattice vector (2πn/D, where n is an integer). In the example shown in

Fig. 2.4 the blue lines correspond to the isofrequency branches, for which the product

SzK0 is negative, and the red lines to the branches for which SzK0 is positive. The group

velocity of each mode is normal to the isofrequency contour and is shown with a green

arrow. Since the directions of the group velocities for the points 1 and 2 are parallel,

a negatively refracted beam corresponding to arrow 1 is indistinguishable from the −1

diffracted beam shown with arrow 2. The same arguments are valid for the directions 3

and 4. In the case of low contrast (Fig.2.4(a)) the wavevector is almost collinear with

the group velocity. However, in the high contrast case (Fig.2.4(b)) the wavevector and

group velocity are in markedly different directions, which is a consequence of strong

anisotropy of photonic crystal, which increases with increasing relative refractive index

contrast. However, even in the case of high contrast regime, the diffracted beams 2 and

4 are indistinguishable from the refracted beams 1 and 3, since their group velocities

are parallel. Physically this means, that there is no way to distinguish the negatively

refracted beam from the diffracted one.



Chapter 2. Negative refraction of light at the interface of one and two dimensional
photonic crystals. 17

Fig. 2.4: (a) Isofrequency contours for the photonic crystal with refractive indices
1.5 and 1.7 for a frequency of 1.6 eV. Branches which correspond to negative values
of SzK0 are depicted by blue lines and to positive values by red lines. Dashed arrows
show the directions of the negatively refracted modes, and solid arrows the directions of
the diffracted modes. (b) Isofrequency contours for the photonic crystal with refractive
indices 1.1 and 2.1 at a frequency 1.6 eV. In each case isofrequency contours for isotropic
media with the effective refractive indices of the photonic crystal are depicted by dashed
semicircles. The direction and absolute of the tangential component of the wavevector
for the incident wave is shown with red arrow for all the cases. The directions of group
velocity and energy flow are shown with green arrows for all the cases. For all the cases
the dotted lines show the value of the in-plane component of the incident wave (upper

line) and the value of the in-plane wavevector of the diffracted wave (lower line).

It is interesting to consider whether superlensing could be realized in a suitable structure.

The electromagnetic field produced by a point source placed close to the edge of the

structure can be represented as an integral of plane waves with components of wavevector

parallel to the edge of the structure varying continuously from minus infinity to plus

infinity. Each of these plane wave components will be refracted by the structure in a

distinct way. If we consider the isofrequency contours shown in Figs.2.4(a),(b) we can

see that there is always a range of incident tangential wavevectors K0 for which negative

refraction will not occur. As a result, some of the radiation from a point source will

always be refracted positively and only some will be refracted negatively, which means

that effective subwavelength imaging can not be achieved.
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2.2.2 Comparison of the analytical theory and numerical modelling

results

The analytical theory and associated results presented in the previous subsection have

been verified by numerical modelling using the finite difference-time-domain-technique

(FDTD). Figures 2.5(a) and 2.5(b) show the distribution of the square of electric field for

waves scattered at the interface of the high contrast photonic crystal (n1 = 2.1, n2 = 1.1).

Figure 2.5(a) shows negative refraction with the frequency of the incident wave lying

in the second photonic band of the photonic crystal. Figure 2.5(b) corresponds to the

case when sin(K0D) = 0, resulting in the tangential component of the Poynting vector

being equal to zero and the propagation of the wave being normal to the interface.

b(a) (b)

(c) (d)

Fig. 2.5: FDTD simulation results for waves scattered at the interface of high (n1 =
2.1, n2 = 1.1) (a,b) and low (n1 = 1.4, n2 = 1.8) (c,d) contrast photonic crystal. (a)
- Spatial distribution of the square of electric field for the case of negative refraction
(~ω = 1.6eV, angle of incidence ϕ = 55 degrees);(b) Spatial distribution of the square
of electric field for the case of normal propagation (~ω = 2.0 eV, ϕ = 55 degrees); (c)
Spatial distribution of the absolute value of the square of electric field for the case of
spatial oscillations of the Poynting vector (~ω = 2.0 eV, ϕ = 55 degrees); (d) Spatial

distribution of the real part of the electric field for the case described in (c).
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Figure 2.5(c) shows the spatial distribution of the square of the electric field in a

low contrast photonic crystal(n1 = 1.8, n2 = 1.4), when the frequency is again chosen

to make sin(K0D) = 0. In this case, in the analytical expression for the tangential

component of the Poynting vector, only the oscillating term in Eq. (2.27) is non-zero.

As predicted by the analytical theory, the numerical results show spatial oscillations of

the electromagnetic field in the direction normal to the interface. Figure 2.5(d) shows

the distribution of the real part of electric field for the same case as in Fig. 2.5(c). For

the low contrast photonic crystal, in the case when sin(K0D) ̸= 0, which is not shown

here, we observe a splitting of the incident beam into positively and negatively refracted

beams as also predicted by the analytical theory.

2.2.3 Results and conclusions

It should be noted that the analytical model presented assumes an incident plane-wave

with an infinite wave front. In an experiment, however, we would be using a light beam

of finite size. The numerical calculations show that there exists a critical source size

above which the refraction of wave at the interface can be described by the analytical

theory. We have derived an estimate of the critical source diameter which is given by

dthr ≈ D/δn, where δn is the relative contrast of the photonic crystal. That formula is

similar to the expression obtained in [37], which defines the minimum size of the Bragg

reflector for the formation of a photonic stop-band suggesting that the origin of the

critical source size is the existence of a minimum photonic crystal size for the formation

of the photonic band structure. When the source size is significantly less than the critical

value, the refraction of the wave at the side edge of the photonic crystal is determined

by the effective refractive index neff = (n1d1 + n2d2)/(n1 + n2).

The propagation of the refracted beam normal to the interface can be considered to

be the result of an excitation of an array of coupled waveguide modes, where the high

refractive index layers play the role of the waveguide core and coupling is achieved

via evanescent waves inside the lower refractive index layers that play the role of a

waveguide cladding. However, the case of normal propagation is not entirely equivalent

to the excitation of waveguide modes since in general it can occur even in the case when

the light propagates in both the high and low refractive index layers.

The spatial oscillations of the Poynting vector resemble the Bloch oscillations which

have been predicted and observed both in superlattices, for electrons in an external

electric field, and for the electromagnetic field in wedge-shaped photonic crystals[38].

In the latter case the gradient of the photonic crystal slab leads to a gradient of the

quantized lateral photon momentum which can be considered as an effective potential
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or force acting on the photon propagating in the structure. Bloch oscillations occurs

when an electron (or photon) propagates in a periodic potential with an external force

applied. The wavevector of the particle is changed by an external force, and when it

reaches the edge of the Brillouin zone, it changes its wavevector by ±2π/D, where D

is the period of the structure. The main difference of the oscillations in our case is

the that the oscillations take place in the absence of an external field. However, the

wavevector lies exactly at the edge of the Brilloin zone since the condition sin(K0D) = 0

applies. Also, the oscillations are only observed in the case of a quarter wavelength Bragg

reflector, for which the second band gap of the photonic crystal becomes degenerate. The

observed effect of the Poynting vector oscillations can thus be regarded as a result of the

interference of two degenerate Bloch modes existing at a photonic crystal band edge.

To conclude, in this section we have developed a theoretical model, which facilitates the

description of refraction of electromagnetic wave at the side edge of a one-dimensional

photonic crystal. Using the model we have predicted and verified two new effects: normal

propagation of the electromagnetic wave and spatial oscillations of the Poynting vector

inside the photonic crystal.



Chapter 2. Negative refraction of light at the interface of one and two dimensional
photonic crystals. 21

2.3 Negative refraction of THz radiation by a prism made

of a two-dimensional metallic photonic crystal

In the last few years, terahertz (THz) technology [39] has been applied to a large va-

riety of areas including art conservation [40], medicine [41] and security systems. As

a consequence, the demand for new waveguides, filters and other components for the

terahertz frequency range has emerged. In this section, the concept of a new filter for

the terahertz range is presented. The filter is a prism made from a two-dimensional

hexagonal metallic photonic crystal and operates on the basis of obtaining both positive

and negative refraction, which can lead to a large directional dispersion for incident light

of different frequencies.

2.3.1 Calculational method

We consider a two-dimensional hexagonal photonic crystal formed by a periodic array of

metallic nanorods. To calculate the eigenmodes and band structure of such a photonic

crystal, we cannot use the conventional plane-wave band structure method since the

dielectric permittivity of the metal depends on frequency. However a complex band

structure method [42] provides a suitable approach. The method has poor convergence

at frequencies close to the metal plasma frequency, but here we use it for the terahertz

frequency range, which is three orders of magnitudes less then the plasma frequencies

of the noble metals.

We consider the metallic rods to be aligned parallel to the z-axis and begin by studying

the TM modes for which the electric field is parallel to the rods. The wave equation for

the electric field is then

∇2Ez(r) =
ω2

c2
ε(r)Ez(r), (2.28)

where r = (x, y). The electric field can be written as the series:

Ez(r) =
∑
g

Ege
i(k+g)·r, (2.29)

which substituted into Eq. 2.28 gives:

∑
g

Eg(k+ g)2ei(k+g)·r =
ω2

c2
ε(r)

∑
g

Ege
i(k+g)·r. (2.30)
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The spatially-dependent dielectric permittivity ε(r) of the structure can be written as

ε(r) = εb + [ε(ω)− εb]S(r), (2.31)

where εb is the background dielectric permittivity, ε(ω) is the permittivity of the metal,

and S(r) is equal to unity inside the metallic elements and zero outside. We can write

S(r) as a series: S(r) =
∑
g′

Sg′ei(k+g′)·r and if we substitute this expression into 2.30,

we get

∑
g

Eg

[
(k+ g)2 − ω2εb

c2

]
ei(k+g)·r =

ω2(ε(ω)− εb)

c2

∑
g,g′

EgSg′ei(k+g+g′)·r. (2.32)

Multiplying this by e−i(k+g)·r, where g is a reciprocal lattice vector, and integrating over

the photonic crystal unit cell gives

Eg

[
(k+ g)2 − ω2εb

c2

]
=
ω2(ε(ω)− εb)

c2

∑
g

Sg−gEg. (2.33)

Writing the wavevector k as kû, where û is a unit vector that defines the direction of k,

equation (2.33) can be rewritten as

k2IE+ kAE = (C− B)E = DE, (2.34)

where I is the identity matrix, A is a diagonal matrix with elements: Ag,g = 2gû, C is a

matrix with elements Cg,g == (ω2(ε(ω)− εb))/c
2Sg−g, and B is a diagonal matrix with

elements: Bg,g = g2 − ω2εb/c
2. Equation 2.34 can be reformulated as the eigenvalue

problem [
0 I

D −A

](
E

kE

)
= k

(
E

kE

)
, (2.35)

from which, after choosing the frequency ω and direction û, we can calculate k, which

is generally complex. Real k corresponds to propagating solutions, and complex k to

decaying solutions.

In the case of the TE polarisation for which the magnetic field is parallel to the rods,

the wave equation is

∇×
[

1

ε(r)
∇×H(r, t)

]
=
ω2

c2
H(r, t), (2.36)
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and the inverse dielectric permittivity can be written as:

1

ε(r)
=

1

εb

(
1− ε(ω)− εb

ε(ω)
S(r)

)
. (2.37)

If we then substitute (2.37) into (2.36) and take the Fourier transform of S(r), we get

∑
g

Hg(k+ g)2ei(k+g)·r − ε(ω)− εb
ε(ω)

∑
g,g′

Sg,g′Hg(k+ g + g′)ei(k+g+g′)·r = (2.38)

=
ω2εb
c2

∑
g

HgSge
i(k+g)·r.

Multiplying (2.38) by e−(k+g)·r and integrating over the unit cell gives:

Hg(k+ g)2 − ω2εb
c2

Hg =
ε(ω)− εb
ε(ω)

∑
g

Sg−gHg(k+ g)(k+ g.), (2.39)

which can be rewritten as

k2(I− P)H+ k(A−Q)H = (R− B)H, (2.40)

where the matrices A,B, I are defined in the same way as in the TE case, and matrices

P,Q, and R are given by

Pg,g =
ε(ω)− εb
ε(ω)

Sg−g, (2.41)

Qg,g =
ε(ω)− εb
ε(ω)

Sg−g ˆ⃗u(g + g), (2.42)

Rg,g =
ε(ω)− εb
ε(ω)

Sg−ggg. (2.43)

Multiplying (2.40) by (I− P)−1, gives

k2IH+ kA′H = D′H, (2.44)

where A′ = (I−P)−1(A−Q) and D′ = (I−P)−1(R−B). Equation (2.44) has the same

structure as (2.34), and can also be rewritten as a similar eigenvalue equation:[
0 I

D′ −A′

](
H

kH

)
= k

(
H

kH

)
. (2.45)

The theory presented above has been used to calculate the band structure of a hexagonal

photonic crystal with a unit cell consisting of a gold cylinder with radius equal to 80

µm and a period of 200 µm. The structure of the first two photonic bands of the
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2nd band

1st  band

Fig. 2.6: (a) Band diagram of a hexagonal photonic crystal formed by gold cylindrical
rods with diameter 80 µm. Period of the structure is 200µm. fp is an effective plasma
frequency, which is a cut-off frequency for the propagating solutions. The group velocity
is collinear with the wavevector in the first band (red), which corresponds to positive
refraction. The second band (blue), where the group velocity has opposite direction to
the wavevector is the source of negative refraction. (b) Isofrequency contours for the

frequencies close to high frequency edge of the second band.

crystal is shown in Fig.2.6(a). The cut-off frequency fp, below which no propagating

solutions exist, is equal to 0.76 THz and corresponds to the effective plasma frequency

of the photonic crystal. The first photonic band is characterized by a positive group

velocity and its upper bound is equal to fJ = 0.96 THz. The second photonic band,

lying in the frequency range from fJ to 1.45 THz, is characterized by a negative group

velocity. The isofrequency contours near the top of the second band are shown inS

Fig.2.6(b). They are essentially circular over a wide frequency range, which means an

effective dielectric permittivity ε can be introduced. The refractive index is then defined

as neff = (dω/dk)
√
ε, where ε is the effective dielectric permittivity. Therefore, the

structure is characterized by a positive refractive index for the frequencies in the first

photonic band and by a negative effective refractive index for the frequencies in the

second photonic band. Due to the fact that the refracted wave should propagate away

from the interface, a wave incident on the crystal from a homogeneous medium with

frequency lying in the first photonic band will refract positively, while a wave with

frequency lying in the second band will refract negatively.
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2.3.2 Numerical modelling results

Figure 2.7 shows numerical results from the-finite-difference-time-domain modelling of

the refraction of a plane wave by a prism made of the photonic crystal having facets

of length of 5 mm. The angle of incidence is 15 degrees with respect to the normal

to the surface of the prism. Figure 2.7(a) corresponds to a frequency f = 0.8 THz

lying in the first photonic band and positive refraction is clearly observed. Figure 2.7(b)

corresponds to a frequency f = 1.2 THz lying in the second band and shows a distinct

negative refraction effect.

PRF

NRF

IF

SOURCE

(a) (b)(a)

Fig. 2.7: Squared electric field for waves refracted on a photonic crystal prism. (a)
Wave frequency f = 0.8 THz, positive refraction. (b) f = 1.2 THz, negative refraction.

Fig. 2.8: The initial design of the photonic crystal prism. The separation of the rods
on the right-hand facet is different from that in the bulk.
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The prism shown in Fig.2.7 has the shape of an equilateral triangle. Initially, a prism

in the form of a right-angled triangle (see Fig.2.8) was used but the experiments were

unsuccessful because no refracted beam was detected in the direction predicted by the

theory. However, during the numerical modelling it was realized that a facet of the

photonic crystal which does not coincide with one of the main crystallographic axes,

acts as an effective diffraction grating for the incident light, destroying the negative

refraction effect through additional diffraction at the interface. As a result, most of the

radiation has been diffracted from this effective diffraction grating and did not reach the

receivers.

2.3.3 Comparison of theory and experiment

Experiments were performed by collaborators guided by the results of the numerical

modelling and a micrograph of the sample used is shown on Fig.2.9.

Fig. 2.9: Micrograph of the photonic crystal prism studied in the experiment. Arrows
have been added to show the directions of the negatively (blue) and positively (red)

refracted beams.

The details of the prism fabrication methods employed can be found in [43]. Briefly,

high-aspect-ratio polymer pillars were formed by backside UV exposure of SU-8 50 on a

glass substrate, before being sputtered with gold. Because the gold thickness is greater

than the electromagnetic radiation skin depth, the pillars behave in effect like solid

metallic rods.
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The refraction of the THz light by a photonic crystal can be experimentally measured

using a broadband spectrometer. The THz radiation was generated using a photocon-

ductive switch, fabricated on low-temperature-grown GaAs and was detected electro-

optically. After generation, the THz radiation was collected and focused onto the sample

by a pair of parabolic mirrors. For both the cases of negative and positive refraction,

a plane mirror placed at the THz beam focus allowed reference measurements to be

undertaken to check the system alignment and performance. Another pair of parabolic

mirrors, placed in an appropriate angular position, collected the radiation from the sam-

ple, which was then focused onto the detector. It should be noted that the parabolic

mirrors focused the broadband THz beam onto, and collected the narrowband refracted

beam from, the sample over an angular range of approximately 10 degrees which is much

smaller than the measured angular separation of the refracted beams.

Figure 2.10(a) shows the typical temporal dependence of the reference signal obtained

from the spectrometer. The Fourier transform, which is shown in the inset, indicates a

usable bandwidth of approximately 3 THz with maximum power being output around 1

THz, which corresponds to the operating frequency of the device. Figure 2.10(b) shows

the pulse that emerges from the negative refraction facet.
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Fig. 2.10: (a) Temporal dependence of the reference signal. Inset shows the Fourier
transform. (b) Temporal dependence of the negatively refracted beam.
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Even though the amplitude is much reduced in the time domain, the negatively refracted

pulse contains numerous oscillations. This pulse ringing is clear initial evidence that only

a limited range of frequency components are steered by the device to emerge from the

negative refraction facet. The THz beam emerging from the positive refraction facet is

of a similar structure. The Fourier transforms of the pulses (Fig.2.11) show the spectral

content contained in both the negatively and positively refracted components of the

original, incident THz beam, the rest being filtered away by the device.
In

te
n

si
ty

negative 

refractionpositive 

refraction

f (THz)

Fig. 2.11: (a) Fourier transforms of the refracted signals. Horizontal lines show the
widths of the first and second bands, calculated by the complex band structure method.

It is clear that while there is some overlap of the tails of the spectral peaks, there are

distinct pass-bands for the positively and negatively refracted waves, which correspond

to the photonic bands having a positive and negative group velocities respectively. The

positive refraction band extends from 0.73 to 0.91 THz, while the negatively refracted

band covers the spectral range of 0.91 to 1.24 THz, when defined by their FWHM. In

both bands, approximately 10 % of the incident beam power is refracted. The general

form of these results is consistent with our theoretical band structure analysis, which

should be recognized as being for a system consisting of an infinite array of pillars using

a finite number of plane waves, whereas in the experiment a focused beam is incident

on a finite structure. When losses are included, the value of fP is no longer clear-cut

and losses also reduce the value of fJ , and both these trends are consistent with the

experimental observations. Also, limitations on the micromachining processes used to

construct the prism mean that the pillar diameters are somewhat more narrow toward

their tops, and this will further reduce the predicted frequencies.
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In summary, we have demonstrated, for the first time to our knowledge, the ability of a

metallic photonic crystal prism to filter a broadband THz beam in such a way that two

angularly resolved beams at different frequencies emerge. Essentially, the device works

in the way predicted by our theory: by positively refracting the frequency components in

one interval and negatively refracting the frequency components in an adjacent interval

by making use of the properties of the two lowest photonic bands of the crystal. It should

also be noted that the top-hat shape of the transmission spectrum for the negatively

refracted wave makes such a device attractive for use as a spectral filter.

We believe the proposed filter is useful advance in THz technology, particularly as cur-

rently there is a lack in practical realizations of interference or absorbing terahertz

spectral filters - the approaches most commonly used in the optical range. Most of the

existing terahertz spectral filters are based on periodic or quasiperiodic metal dielectric

structures [44, 45] exhibiting resonant transmission (or absorption) due to the excita-

tion of surface plasmon polariton modes at metal-dielectric interfaces. Our approach

however is advantageous due to the fact that the field does not penetrate in the metal

significantly, thus reducing the losses as compared to the metamaterial-based filters.
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2.4 Summary of key original results

Main results obtained in Chapter 2.

• Making use of an established theoretical method to describe the scattering of

plane wave from the side edge of one-dimensional photonic crystal, two new optical

effects have been predicted analytically and also observed in numerical simulations

- propagation normal to the interface of the transmitted electromagnetic field and

spatial oscillations of the Poynting vector.

• A new type of spectral filter for the terahertz frequency range has been proposed.

The design of the filter has been developed and refined using numerical modelling

and the results compared with experimental measurements on a prototype struc-

ture.



Chapter 3

Eigenmode analysis of resonant

photonic nanostructures

This chapter is dedicated to the study of eigenmode structure and nonlinear effects in

certain resonant photonic nanostructures.

One investigation concerns the analysis of the eigenmode structure of a microcavity on

organic cavity layer adjacent to a metal film. This work was done in collaboration with

an experimental group from the University of Dresden [46]. An experimental sample was

fabricated by our collaborators and a series of the reflectivity measurement experiments

were made1

Another study is of the eigenmode structure of a periodic array of semiconductor quan-

tum wells buried in the layers of a distributed Bragg reflector [47]. This work was done

in collaboration with experimental groups from the University of Crete and the Univer-

sity of Cambridge. The sample was fabricated by the Crete group and a series of the

reflectivity spectra measurements were performed. The Cambridge group performed the

pump probe experiments revealing parametric amplification occurring in the structure2

The last section of the chapter presents unpublished results on the modelling of the para-

metric amplification that has been experimentally observed in the structure described

above 3

1 I performed the numerical modelling of the reflectivity spectra and derived analytical expressions
for the eigenfrequencies of the structure.

2 I performed the numerical modelling of the reflectivity spectra and derived the approximate ana-
lytical expressions for the structure eigenfrequencies.

3 I implemented a three-level formalism, which had been developed in [48], for the periodic quantum
well structure and show that the simulation results agree well with the experimental data obtained by
the Cambridge group.

31



Chapter 3. Eigenmode analysis of resonant photonic nanostructures 32

However, before describing the three studies in details we present some relevant theoret-

ical background material starting with a short overview of the transfer matrix method

which is extensively used throughout the chapter. It is followed by the calculation of the

eigenfrequency of a specific type of surface optical mode occurring at the interface of a

metal film and a distributed Bragg reflector, a Tamm plasmon polariton. Finally, the

derivation of the expression for the reflection coefficient from a semiconductor quantum

well is presented.
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3.1 Background theory

3.1.1 Transfer matrix method

A detailed description of the transfer matrix method can be found in [49] and we present

only the key features that are relevant to our work here. We consider an arbitrary

multilayered structure consisting of layers of isotropic material grown in the z-direction.

The electromagnetic field can be decomposed into two polarizations: the TE polarisation,

for which the electric field is orthogonal to the plane formed by the wavevector and the

normal to the layers, and the TM polarisation for which the magnetic field is orthogonal

to that plane.

In the case of the TE polarization we write the the electric field vector as E⃗ = (0, Ey, 0)

and the magnetic field vector as H⃗ = (Hx, 0,Hz). We take the fields to have the

harmonic time dependence ∼ exp[−iωt] and without the loss of generality we can set

the y component of the wavevector to zero. The spatial variation of the fields parallel to

the structure is then ∼ exp[ikxx], where kx is the same for all the layers. Then Maxwell

equations can be reduced to the Helmholtz equation for the spatial dependence of the

electric field Ey in each layer:

∂2Ey

∂z2
+ k2zEy = 0, (3.1)

where k2z = ε(ω/c)2 − k2x, and ε is the layer dielectric permittivity. The general solution

of the equation (3.1) is:

Ey = A exp[ikzz] +B exp[−ikzz], (3.2)

where A is the amplitude of the forward propagating wave and B - that of the backward

propagating wave. Now, in a homogeneous medium, if we know the amplitudes in the

plane z = z0, say, (A0, B0), the amplitudes (A1, B1) of the field in the plane z = z1 are

simply A1 = A0 exp[ikz(z1 − z0)], B1 = B0 exp[−ikz(z1 − z0)]. It is convenient to write

this result in matrix form:(
A1

B1

)
= M̂

(
A0

B0

)
; M̂ =

(
eikzd 0

0 e−ikzd

)
, (3.3)

where d = z1 − z0, and M̂ is conventionally referred to as a transfer matrix. Here M̂

is expressed in the basis of forward and backward propagating waves, but it is possible

to transform to the basis of the tangential field components Ey and Hx. The tangential
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components corresponding to Eq.(3.1) are:

Ey = A exp[ikzz] +B exp[−ikzz], (3.4)

Hx = −kz
k0
A exp[ikzz] +

kz
k0
B exp[−ikzz], (3.5)

where k0 = ω/c. In matrix form: (
Ey

Hx

)
= Ŝ

(
A

B

)
, (3.6)

where

Ŝ =

(
1 1

−kz/k0 kz/k0

)
. (3.7)

It follows that the transfer matrix in the basis of tangential components is T̂ = ŜM̂ Ŝ−1

and (
Ey1

Hx1

)
= T̂

(
Ey0

Hx0

)
, (3.8)

where

T̂ =

(
cos(kzd) i(k0/kz) sin(kzd)

i(kz/k0) sin(kzd) cos kzd

)
. (3.9)

The matrix transferring the tangential fields across the interface of two layers with

dielectric permittivities ε1 and ε2 is the unit matrix due to the electromagnetic boundary

conditions. This fact can be used to derive the transfer matrix L̂ across an interface in

the case of the forward and backward propagating basis:

L̂ = Ŝ−12 Ŝ1 =
kz2
2kz1

(
1 + kz1/kz2 1− kz1/kz2

1− kz1/kz2 1 + kz1/kz2

)
. (3.10)

The corresponding results for the TM polarization can be derived in a similar manner,

and in that case:

T̂ =

(
cos(kzd) ikz/(εk0) sin(kzd)

ik0ε/kz sin(kzd) cos kzd

)
. (3.11)
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L̂ =
ε1kz2
2ε2kz1

(
1 + (ε2kz1)/(ε1kz2) 1− (ε2kz1)/(ε1kz2)

1− (ε2kz1)/(ε1kz2) 1 + (ε2kz1)/(ε1kz2)

)
. (3.12)

Thus, we now have expressions for all the matrix components in both bases and for

both polarizations. By forming product of the appropriate layer and interface transfer

matrices, we can obtain the transfer matrix of an arbitrary multilayered structure.

If we have the transfer matrix of a structure, we can calculate its transmission and

reflection coefficients. In the basis of forward and backward propagating components, if

we assume that the amplitude of the incident light is unity we can write:(
t

0

)
= M̂

(
1

r

)
, (3.13)

where r, t are the reflection and transmission coefficients respectively and M̂ is the

transfer matrix. It then follows that:

r = −M̂21

M̂22

, (3.14)

t =
1

M̂22

, (3.15)

where the derivation of the expression for t has used the fact that all the transfer

matrices for the structures placed in the symmetric environment, i.e. if the refractive

indices of the surrounding media from the both sides of the structures are equal, since

the determinant of such structure is equal to unity [50].

We can also derive the components of the transfer matrix from the reflection and trans-

mission coefficients of the structure. Imagine an arbitrary layered structure bound with

half-space of refractive index n0 to the left and half-space of refractive index nf to the

right. We assume that we know the reflection and transmission coefficients for the light

travelling at normal incidence from the left, denoted as rl, tl, and the reflection and

transmission coefficients for the light travelling from the right, denoted as rr, tr. Our

aim is to construct the transfer matrix of the layered structure T̂ corresponding to the

transfer of the electromagnetic field from the left side of the structure to the right side.

We can write down two matrix equations:

T̂

(
1

rl

)
=

(
tl

0

)
, (3.16)
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and

T̂

(
0

tr

)
=

(
rr

1

)
, (3.17)

Since the system is not symmetric, it can be shown that the determinant of T̂ in the

case of normal incidence is equal to n0/nf . Using this relation and the four equations

obtained from equation (3.16) and (3.17) we can evaluate the components of matrix T̂ :

T̂ =
1

tr

(
(tltr − rlrr)/tr rr

−rl 1

)
. (3.18)

For the case of normal incidence the following relations holds between tl and tr: tl =

(n0/nf )tr. The picture simplifies drastically if n0 = nf . In this case rl = rr = r, tl =

tr = t and

T̂ =
1

t

(
(t2 − r2)/t r

−r 1

)
. (3.19)

Using the transfer matrix approach it is also possible to derive the eigenvalues and

eigenmodes of an infinite periodic structure. Applying Bloch’s theorem for a periodic

structure with period D:(
Ey(z = D)

Hx(z = D)

)
= M̂

(
Ey(z = 0)

Hx(z = 0)

)
= eiKD

(
Ey(z = 0)

Hx(z = 0)

)
, (3.20)

where M̂ is the transfer matrix over the period of the structure and K is the Bloch

vector. It follows that:

cos(KD) = Tr(M̂)/2. (3.21)

3.1.2 Tamm plasmon eigenfrequencies

In section 3.2 we consider the coupling of Tamm plasmon modes in the organic microcav-

ities and obtain the analytical expressions for the resulting eigenmodes. In preparation,

here we provide a definition of the Tamm plasmon polaritons and show how to obtain

the dispersion relation for a single Tamm plasmon mode.

The Tamm plasmon polariton is a special type of cavity mode that can exist in a cavity

with mirrors made of a metallic layer on one side and a Bragg reflector on the other side.

Due to the use of a metallic mirror on one side, the cavity length needed to support the



Chapter 3. Eigenmode analysis of resonant photonic nanostructures 37

eigenmode at a fixed wavelength is smaller than that of a conventional Bragg reflector

cavity for the same wavelength. At the same time, due to the fact that the mode is still a

cavity mode, it is characterized with a parabolic in-plane dispersion relation. Therefore,

a Tamm plasmon mode can be used as a realization of a spatially compact (because of

the small cavity length) and slow light (because of the parabolic dispersion and thus

small group velocity for the small in-plane wavevectors). Despite the simplicity of the

concept, Tamm plasmon polaritons were only proposed recently but have since attracted

a lot of attention. Some of the many applications of Tamm plasmon polaritons include

the realization of polariton logic devices [51], and the control of the radiative decay of

the quantum dots [52].

In order to derive the dispersion relation for a Tamm plasmon polariton, we consider

the structure shown in Fig.3.1 and look for optical modes localized close to the metal

d
1

e
2

z

x

d
2

e
1

d
0

e
M

Fig. 3.1: The simplest realization of the structure where a Tamm plasmon mode
can exist. A semi-infinite Bragg reflector (grey layers of dielectric permittivity ε1 and
ε2 ) adjacent to a semi-infinite metal layer (yellow) with dielectric permittivity εM .
The thickness of the dielectric layer adjacent to the metal may be varied to tune the

frequency of the mode.

layer. To find the eigenfrequencies of such modes, we can utilize the well known general

gcardinal condition for the eigenmodes of a general cavity:

rLrRe
2iΦ = 1, (3.22)

where rL, rR are the reflection coefficients of the left and right mirrors and Φ is the phase

change across the width of the cavity.

In the case of normal incidence the reflection coefficient of the metal layer is:

rM =

√
ε1 −

√
εM√

ε1 +
√
εM

=
n1 − nM
n1 + nM

. (3.23)
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In the simplest Drude model:

εM = 1− ω2
p/ω

2, (3.24)

where ωp is the plasma frequency of the metal. In the application considered here the

eigenfrequencies of the modes are around 1 eV and are much smaller than the plasma

frequency which for the common noble metals is about 10 eV [53]. Therefore, the

reflection coefficient of the metal half-space can be approximated as

rM ≈ exp

[
i

(
π +

2
√
ε1ω

ωp

)]
. (3.25)

The reflection coefficient of the Bragg reflector calculated at the interface of layers with

refractive indices n1 =
√
ε1 and n2 =

√
ε2 for the frequency in the vicinity of the stop

band centre depends on the relation between n1 and n2. If n1 > n2 then

rBr = exp

(
iπn2

|n1 − n2|
ω − ω0

ω0

)
, (3.26)

and if n1 < n2 then

rBr = − exp

(
iπn1

|n1 − n2|
ω − ω0

ω0

)
, (3.27)

where ω0 is the Bragg reflector stop band centre frequency. Finally, the phase change Φ

in the vicinity of the stop band centre is given by:

Φ ≈ π

2

(
1 +

ω − ω0

ω0

)
. (3.28)

For the case n1 > n2 the eigenmode condition of equation (3.22) requires:

π +
2n1ω

ωp
+ π + π

ω − ω0

ω0
+ π

n2
n1 − n2

ω − ω0

ω0
= 2π. (3.29)

which has the solution

ω =
ω0

1 + 2ω0/(πωp)|n1 − n2|
. (3.30)

Equation (3.30) refers to the case when the thickness of the layer adjacent to the metal

layer is equal to that of the other layers of the same type forming the Bragg reflector.

However, by varying the thickness it is possible to tune the Tamm plasmon frequency

exactly to the Bragg frequency ω0.

It should be noted that when n2 > n1 there will be an additional contribution of π to

the overall phase at the left side of the equation (3.29) and there will be no solutions in
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the vicinity of the Bragg frequency.

3.1.3 Reflection coefficient of an exciton quantum well

In section 3.3 of this chapter we study a particular type of resonant periodic nanos-

tructures in which light couples to excitons excited in quantum wells embedded in the

layers of a Bragg reflector. To calculate the eigenfrequencies of the nanostructures using

transfer matrix theory we need to derive the reflection coefficient for a single quantum

well with a view to incorporating the effect of the quantum well excitons in the pre-

viously discussed transfer matrix theory. The detailed derivation of the quantum well

reflection coefficient can be found in [54] and only the main steps are described here.

Also, for simplicity we deal only with the normal incidence of electromagnetic waves on

the quantum well.

In the case of normal incidence the electric field of the system is governed by the equation:

∂2E

∂z2
+ εk20E = −k204πPexc, (3.31)

where ε is the background dielectric permittivity of the quantum well, k0 = ω/c, and

Pexc is the excitonic polarization given by

4πPexc = GΦ(z)

∫
Φ∗(z′′)E(z′′)dz′′. (3.32)

Here Φ(z) = Ψexc(R = 0, ρ = 0, ze = zh = z) is the exciton wavefunction taken with

electron and hole having the same position in space,

G =
Q

ω0 − ω − iΓ
, (3.33)

where

Q = πa3BωLT , (3.34)

in which aB is the exciton effective Bohr radius, ωLT is the longitudinal-transverse

splitting, ω0 is the exciton frequency and Γ is the nonradiative damping. Φ(z) can be

chosen to be real when the origin of z coincides with the centre of the quantum well.

The general solution of an equation of the type E′′(x) + k2E = −F (x) can be written

in the form:

E = E1 exp[ikx] + E2 exp[−ikx] +
i

2k

∫
dx′ exp[ik(x− x′)]F (x′). (3.35)
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Thus, when a wave with amplitude E0 is incident from z < 0 on the quantum well, the

solution to Eq. (3.31) can be written as:

E(z) = E0 exp[ikz] +
ik20
2k
G

∫
dz′ exp[ik(z − z′)]Φ(z′)

∫
Φ∗(z′′)E(z′′)dz′′. (3.36)

Multiplying this equation by Φ(z) and integrating over z gives the following algebraic

equation for Λ =
∫
E(z)Φ(z)dz:

Λ = Λ0 + i
k20
k
G(ω)Λ

∫ ∫
dzdz′ exp[ik(z − z′)]Φ(z)Φ(z′), (3.37)

where Λ0 = E0

∫
dzΦ(z)E(z). The solution for Λ is then:

Λ =

∫
E(z)Φ(z)dz =

Λ0

1− (ik20)/(k)G(ω)
∫ ∫

dzdz′ exp[ik(z − z′)]Φ(z)Φ(z′)
, (3.38)

which can be substituted into Eq. (3.36) to give:

E(z) = E0 exp[ikz] +
E0(ik

2
0)/(2k)Q

∫
dz′′ exp[ikz′′]Φ(z′′)

∫
dz′ exp[ik(z − z′)]Φ(z′)

ω0 − ω − iΓ− 1− i
k20
k Q

∫ ∫
dz′′dz′ exp[ik(z′′ − z′)]Φ(z′′)Φ(z′)

.

(3.39)

The reflection and transmission coefficients are defined as:

r =
E(z)− E0(z)e

−ikz

E0e−ikz (z→−∞)
; t =

E(z)

E0(z)eikz (z→∞)

. (3.40)

And using the fact that Φ(z) is an even function with respect to z, it follows that:

r =
iΓ0

ω̃0 − ω − i(Γ + Γ0)
; t = 1 + r, (3.41)

where

Γ0 =
Qk20
2k

[∫
Φ(z) cos(kz)dz

]2
(3.42)

is called the exciton radiative broadening and

ω̃0 = ω0 +
Qk20
2k

∫ ∫
dzdz′Φ(z)Φ(z′) sin(k|z − z′|) (3.43)

is the renormalisation of the exciton resonance frequency due to the polariton effect. As

soon as we know the reflection and transmission coefficients of the quantum well we can

easily reconstruct its transfer matrix using the expression (3.19) from section 3.1.1.
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3.2 Parabolic polarization splitting of Tamm states in a

metal-organic microcavity

In this section we study the optical properties of the structure shown in Fig.3.2 which

consists of an a metallic layer and adjacent organic cavity layer sandwiched between two

Bragg reflectors. The structure was grown and studied experimentally by our collabo-

rators in Dresden.

3.2.1 Structure and experimental set up

The sample shown in Fig.3.2 consists of a microcavity structure composed of two dis-
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Fig. 3.2: Design of the structure investigated. Two Bragg reflectors enclose the cav-
ity layer and the silver layer of variable thickness (gradient from 0 to 40 nm). The
thicknesses of the layers being most sensitive to the eigenmodes are denoted by di.

tributed Bragg reflectors (DBRs) with two embedded layers: a thin silver layer and an

organic half-λ cavity layer made of the host-guest system tris-8-hydroxyquinoline alu-

minium (Alq3) doped with 2 wt.percent of 4-dicyanomethylene-2 -methyl-6-p-imethyl-

aminostyryl-4 H-pyran (DCM). The silver layer was deposited with a thickness graded

from 0 to 40 nm on top of the first DBR (left hand side of Fig. 3.2) and then enclosed

by the organic cavity layer and the top DBR. The optical thicknesses of both the cav-

ity and the 21 alternating λ/4 layers of TiO2/SiO2 forming each DBR were chosen to

correspond to the maximum of the DCM emission at 630 nm, so the structure could
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be used in future to demonstrate direct coupling between exciton and Tamm plasmon

states. However, the current structure used in the initial experiment discussed here

was for proof-of-concept only, and the concentration of DCM was actually too small to

achieve considerable exciton absorption. Due to the wedge shape, the silver layer only

partly covers the first mirror resulting in a high quality, all dielectric microcavity as

well as two microcavities separated by a varying metal thickness up to 40 nm and each

capable of supporting Tamm plasmon polaritons that can couple through the thin silver

film. A µ-photoluminescence (µ-PL) microscope setup was utilized to investigate the

angle-resolved emission spectra of the structure at room temperature. By focusing the

beam of a 405 nm cw laser with a microscope objective (×25, NA 0.5) to a spot diameter

of less than 2 µm, areas either with or without metal could be selectively excited. Such

a small spot size was necessary in order to avoid collecting PL-signal from areas with

different thicknesses of the silver layer and resulting in different spectral features. The

high aperture of the objective (×63, NA 0.8) collecting the sample emission covered a

large angular range of around ±55o in the far field geometry. A second lens was used to

map the Fourier plane of the first collecting objective, enabling the observation of the

dependence E(k). A polarization filter installed in front of the spectrometer was utilized

to characterize the polarization properties of the sample emission. The spectrograph was

equipped with a cooled charge-coupled device to record the spectrally, angularly, and

polarization-resolved PL signal.

3.2.2 Comparison of results of numerical modelling with experiment

In Fig.3.3, the experimental angle-resolved emission spectra of the metal organic micro-

cavity are shown for different metal thicknesses (left panels of Figs.3.3(a-d). These are

compared to the results of numerical calculations based on the transfer matrix method

(right panels). In the numeric simulation the full transfer matrix has been calculated

based on the formalism presented in section 3.1.1. Transmission spectra were then calcu-

lated using (3.15) for different incidence angles resulting in the transmission coefficient

map. Due to the small concentration of the DCM, the transmission spectra was al-

most identical to the experimental emission spectra. Three phenomena are apparent:

First, because of the graded thickness of the metal layer placed inside the cavity and

the small excitation spot used, an increasing metal thickness means moving away from

metal-free areas. Thus, any scatter of the emission into metal free areas is reduced,

leading to a weaker coupling into the original cavity mode at 632 nm. This behaviour

is not accounted for in the numerical calculations, since we assume a constant metal

thickness over large areas (compare left and right panels in Figs.3.3(a-d) at 632 nm).
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Next, depending on the metal thickness, two modes arise. The spectrally broad emis-

sion above 700 nm corresponds to emission into the long wavelength sideband of the

DBRs. At silver thicknesses of ≈25 nm, an initially broad mode emerges from the long

wavelength sideband. This is a so-called Tamm plasmon-polariton, which has its origin

in the localization of the electromagnetic field next to the metal layer. In addition to

Fig. 3.3: Experimentally observed angle-resolved emission spectra (left panels) along
with numerically calculated spectra (right panels). Deviations of the shape of the
parabolae are due to imperfect refractive indices and their dispersions, on which the

simulations are based.

this, a high energy resonance is observed, which at zero metal thickness converges to the

original cavity mode. As metal is introduced, it starts shifting to the red. The reason

for this shift is the coupling of this mode to the Tamm plasmon polariton evidenced

by a clear anticrossing behaviour of the modes involved. Finally, at oblique angles and

certain thicknesses of the embedded metal layer, a splitting of each mode is observed.

Moreover, this splitting increases towards large angles of incidence. We observe that

the polarizations of both branches are orthogonal to each other, characteristic of a split-

ting between TE- (lower branch) and TM-polarization (upper branch) modes. With
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increasing metal thickness, the modes become increasingly detuned with respect to the

centre of the DBR stop bands. The most sensitive way to control these phase shifts

is by varying the thickness of the metal layer. In addition to the phase shift at the

dielectric/metal interface, the reflectance and transmittance of this layer can be varied,

which affects the coupling of the resonant modes. The observed splitting is strongly

pronounced, reaching values of 37 meV for the shifted cavity mode and 45 meV for the

Tamm plasmon polariton state at angles ±55o and a silver layer thickness of 40 nm.

3.2.3 Analytical expressions for the system eigenfrequencies

We start the analytical treatment of the system from writing down its transfer matrix:

A

(
1

rR

)
=

(
eiϕR 0

0 e−iϕR

)(
(t−t+ − r−r+)/t− r−/t−

−r+/t− 1/t−

)(
eiϕL 0

0 e−iϕL

)(
rL

1

)
, (3.44)

where A is a constant, rL, rR are respectively the reflection coefficients from the left and

the right Bragg mirrors, ϕL, ϕR are respectively the phases gained in the left and the

right parts of the cavity, and r±, t± are the reflection and transmission coefficients of

the metal layer (reflection (r) and transmission (t) from the left cavity to the right one

corresponds to a plus sign and the opposite direction to a minus sign).

Eliminating A from Eq.(3.44) gives the equation for the eigenfrequencies:(
1− 1

rLr+e−2iϕL

)(
1− 1

rRr−e−2iϕR

)
=
t−t+
r−r+

. (3.45)

Comparison with the Eq.(3.22) shows that the left side of the Eq.(3.45) contains two

factors, whose roots correspond to the individual Tamm plasmons at the left and the

right metal boundaries respectively. The right-hand side of Eq.(3.45) describes the

coupling between the two Tamm states. It is now necessary to express Eq.(3.45) in

terms of the parameters of the structure. We begin by looking at the right-hand side of

the equation.

For the TE polarization

− t−t+
r−r+

= (3.46)

4kzRkzLκ
2

cosh2(κdm)(kzLκ− kzRκ)2 + sinh2(κdm)(κ2 + kzRkzL)2
,

where kzm =
√
εmk20 − k2x, dm is the thickness of the metal layer, kzR,L =

√
εR,Lk20 − k2x,

εL = n2L, εR = n2R, εm = n2m are the dielectric permittivities of left cavity, right cavity
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and the metal layer respectively, and κ = ikzm. There is analogous formula for the TM

polarization. We assume that the transmission through the metal layer is very small,

and thus the expression at the right-hand side of Eq.(3.47) is small, which will lead to the

small splitting of the Tamm plasmon states compared to the frequencies of the Tamm

plasmons. We then neglect the frequency and incidence angle dispersion of this coupling

term, since the frequency and wavvector shift corrections would be proportional to a

higher order of a small quantity. If we set ω = ω0 and kx = 0 in Eq.(3.47), where ω0 is

the Bragg reflector stop band centre frequency, we get the expression which is the same

for both polarizations:

− t−t+
r−r+

= − 4nRnL|εm|
cosh2(|nm|ω0/cdm)(nL|nm| − |nm|nR)2 + sinh2(|nm|ω0/cdm)(|εm|+ nLnR)

.

(3.47)

We now consider the left-hand side of the Eq.(3.45), beginning with the coefficients of

reflection for the metal layer. When light is incident on the metal layer from the left

cavity in the TE polarization, the reflection coefficient is given by

rTE+ =
iκ(kzL − kzR) + tanh(κdm)(−κ2 − kzRkzL)

iκ(kzL + kzR) + tanh(κdm)(κ2 − kzRkzL)
. (3.48)

At frequencies well below the plasma frequency, κdm ≫ 1 and tanh(κdm) ≈ 1, and

rTE+ ≈ −1− ikzL/κ

1 + ikzL/κ
, (3.49)

which can be written in terms of low frequency and small angle of incidence as

rTE+ ≈ exp
(
i
[
π + 2nLω/ωp

√
εb − ω/nL/ωp/

√
εbθ

2
])
, (3.50)

where ωp is the metal plasma frequency, and εb is the metal background dielectric con-

stant. The corresponding results for the TM polarization are:

rTM+ =
iκεm(kzRnL/nR − kzLnR/nL)− tanh(κdm)(κ2nLnR − kzRkzL/nR/nLε

2
m)

iκεm(kzRnL/nR + kzLnR/nL)− tanh(κdm)(κ2nLnR − kzRkzL/nR/nLε2m)
,

(3.51)

rTM+ ≈ −1− i(εLκ)/(εmkzL)

1 + i(εLκ)/(εmkzL)
, (3.52)

rTM+ ≈ exp
(
i
[
π + 2nLω/ωp

√
εb + ω/nL/ωp/

√
εbθ

2
])
. (3.53)
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The expressions for rTE− and rTM− are obtained from Eqs. (3.50),(3.53) by changing

nL to nR.

To calculate the reflection coefficients for the Bragg reflectors, that appear on the left-

hand side of Eq.(3.45) it is instructive to recall that for a light in a medium A incident

on an interface with medium B the reflection coefficient can be expressed in terms of

the wave impedances ZA and ZB given by the ratio between the tangential components

of the magnetic and electric fields Zi = Hi/Ei at the interface:

rAB =
ZA − ZB

ZA + ZB
. (3.54)

The impedances in the cavities for both polarizations are given by simple expressions:

ZTE
L,R = −

kz(L,R)

k0
, (3.55)

ZTM
L,R =

n2L,Rk0

kz(L,R)
. (3.56)

The impedances at the internal interfaces of the Bragg reflectors can be obtained using

the Bloch theorem. We assume that z = 0 coincides with an interface of the reflector

and use the Bloch theorem:(
E(z = D)

H(z = D)

)
= T̂

(
E(z = 0)

H(z = 0)

)
= eiKD

(
E(z = 0)

H(z = 0)

)
, (3.57)

where D is the period of the structure, T̂ is the transfer matrix for the period of the

Bragg reflector, and K is the Bloch wavevector which can be obtained using Eq.(3.21).

The expression for the wave impedance then is

ZBr = H/E =
exp[iKD]− T̂11

T̂12
. (3.58)

The general expressions for rTE,TM
L,R then from Eq.(3.54):

rTE
L,R =

−kz(L,R)/k0 − ZTE
Br

−kz(L,R)/k0 + ZTE
Br

, (3.59)

rTM
L,R =

n2L,Rk0/kz(L,R) − ZTM
Br

n2L,Rk0/kz(L,R) + ZTM
Br

. (3.60)
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At frequencies in the vicinity of the Bragg reflector stop band centre and at small

incidence angle θ reflection coefficients can be approximated as:

rTE
L,R ≈ exp

[
i

(
πnL,R(ω − ω0)

|n1 − n2|ω0

(
1− θ2

2n1n2

))]
, (3.61)

rTM
L,R ≈ exp

[
i

(
πnL,R(ω − ω0)

|n1 − n2|ω0

(
1 +

θ2

2n1n2

))]
, (3.62)

where n1, n2 are the refractive indices of the Bragg reflector layers. The quantities on

the left-hand side of Eq.(3.45) that remain to be evaluated are the cavity transit phase

changes. ϕL and ϕR in the approximation of frequencies in the vicinity of the Bragg

frequency, for the small angles of incidence and for cavity optical thicknesses equal to a

quarter of the Bragg wavelength are given by:

2ϕL,R = π

(
1 +

ω − ω0

ω0
− θ2

2n2L,R

)
. (3.63)

Finally, the equation for the eigenfrequencies of the structure can be written in the form:

(ω − ωTP,L(θ))(ω − ωTP,R(θ)) = Ω2 = (3.64)

= ∆
ω2
0(n2 − n1)

2

(2nLω0/ωp + π(n2 + nL − n1)/(n2 − n1))(2nRω0/ωp + π(n2 + nR − n1)/(n2 − n1))
,

where ∆ is the expression at the right hand side of Eq.(3.47), and ωTP,(L,R) are the

angle-dependent eigenfrequencies of the Tamm plasmon polaritons in each cavity. The

eigenfrequencies of the structure for the two polarization are then given by:

ω1,2 =
ωTP,L + ωTP,R

2
±
√

(ωTP,L − ωTP,R)2

4
+ Ω2. (3.65)

.

To verify the analytical formalism we have compared it with the experimental results

and numerical results. Fig.3.4(a) shows the good agreement between the analytical ap-

proximations and the numerical results. Figure 3.4(b) illustrates large TE-TM splitting

of Tamm plasmon modes.

In summary, the photon density of states of a microcavity changes substantially when

a silver layer is embedded. The cavity mode is red-shifted due to coupling with the

Tamm plasmon-polariton, and we are able to observe the associated spectral changes by

using the emission spectrum of an organic semiconductor, which provides large oscillator

strengths over a wide spectral range.
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Fig. 3.4: (a) For the special case of a 40 nm silver layer inside the cavity, analytical
results (black solid and red dashed line) showing good agreement with the numerical
results. (b) Parabolic dependence of the splitting between the TE- and TM-modes of
the shifted cavity resonance and Tamm plasmon-polariton as a function of the angle of

incidence.

3.3 Eigenmode structure of periodic array of quantum wells

buried in layers of one-dimensional photonic crystal.

In this section we study the linear optical properties of the Bragg structure shown in

Fig.3.5(a), which comprises a periodic array of quarter-wavelength layers of GaAs with
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refractive index n1 = nGaAs = 3.5 and pseudo-layers AlAs/GaAs/InGaAs/GaAs/AlAs

with effective refractive index n2 = neff = 3.2 and effective optical length equal to

λ/4. The pseudo-layers have at their centre 10 nm wide In0.1Ga0.9As quantum wells

which can support excitons with a ground state energy of 1.418 eV. Fig.3.5(b) shows

experimental reflection spectra at 32 K which have been obtained by our collaborators

in Crete. The structure has a wedge-like form, so that the effective layer thicknesses and

hence the photonic stop-band frequency changes along the structure. In particular, the

high-frequency edge of the stop-band, which is close to the exciton energy, varies from

1.38 to 1.44 eV.

The sharp extrema in the reflection spectra correspond to the eigenmodes of the system.

It should be noted, that the exciton eigenfrequency can correspond to both the dips in

the reflection spectra when the electric field antinodes are in the vicinity of the quantum

wells and the sharp maxima in the reflection when the electric field nodes are in the

vicinity of the quantum wells.

The dispersion of the eigenmodes can be extracted from the reflection spectra. The

anticrossing behaviour of the exciton mode and a Bloch photonic mode positioned at

the band-gap edge can be observed in the spectra. Moreover, in the case of resonance

between the photonic band-gap edge and the exciton frequency, a triplet structure is

observed in the spectra. The spectra have been calculated the spectra numerically using

the transfer matrix method and are depicted in Fig.3.5(c). It can be seen, that the

numerical model agrees well with the experimental data. However it is also instructive

to derive some analytical expressions for the eigenmode frequencies.

A thorough analysis of the similar structures was performed by Ivchenko et al. in

2004 [54]. Using that theory, it is straightforward to show that in the case of the

quarter-wavelength photonic crystal with quantum wells, the mode structure is defined

by the equation

cos(KD) =

(
cos2(ϕ)− n21 + n22

2n1n2
sin2(ϕ)

)
− (3.66)

− Γ0

ωX − ω − iΓ

(n1 + n2)
2

2n1n2

(
sin(2ϕ)− 2

n1 − n2
n1 + n2

sin(ϕ)

)
for the Bloch wavevector K, where ϕ = πω/(2ωB). Here ωB is the stop-band centre fre-

quency, Γ - is the non-radiative exciton decay rate, Γ0 is the radiative exciton broadening

given by Eq.(3.42), ωX is the exciton frequency, and D is the period of the structure. In

what follows we will neglect the non-radiative exciton decay rate Γ, which is negligible

for the cryogenic temperatures considered. We note that first terms enclosed in the first

parentheses on the right hand-side coincide with the dispersion relation for the Bragg

reflector without quantum wells and thus correspond to the non-resonant contribution
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Fig. 3.5: (a) Geometry of the structure under consideration. (b) Experimental reflec-
tion spectra. (c) Reflection spectra calculated with transfer matrix method.

to the dispersion. The terms enclosed in the last parentheses correspond to the exci-

ton contribution to the dispersion. For the analysis it is convenient to rewrite equation

(3.66) in two equivalent forms:

sin2
(
KD

2

)
=

(n1 + n2)
2

4n1n2
sinϕ

(
sinϕ− Γ0

ωX − ω

(
cosϕ− n1 − n2

n1 + n2

))
, (3.67)

cos2
(
KD

2

)
=

(n1 + n2)
2

4n1n2
cosϕ

(
cosϕ+

Γ0

ωX − ω
sinϕ

)
. (3.68)

Equation (3.67) is convenient to obtain the mode frequencies of the band edge corre-

sponding to K = 0, and Eq.(3.68) for the frequencies of the band edge, corresponding

to K = π/D. We can then expand the sine and cosine functions for frequencies close
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to the stop band centre and obtain expressions for the band edges in closed form. The

details can be found in [54].

Here we describe an alternative way to obtain the expressions for the eigenmode fre-

quencies in a closed form, which also has the advantage of illustrating the mechanism

of formation of the spectral triplet structure seen in figure 3.5. The formalism is mainly

based on the model presented in [55] for the bulk excitons in photonic crystals.

We first write down the energy density of the electromagnetic field in the photonic crystal

as

Eph =
1

2

∫
dr
[
ε(z)E2 +H2

]
. (3.69)

The dielectric permittivity ε(z) is a periodic function of z:

ε(a) = ε̃+ δεF (z), (3.70)

F (z +D) = F (z),

where ε̃ is the average dielectric permittivity and the periodic function F (z) has unit

amplitude. If the amplitude of the dielectric permittivity modulation is relatively weak,

that is δε/ε̃ ≪ 1, then we can make an approximation of only considering the first

Fourier component of the periodic function F : F = cos(Gz + φ0), where G = 2π/D is

the smallest reciprocal lattice vector, and φ0 is a modulation phase, which is zero for a

suitable choice of the coordinate system. The Fourier components of ε couple the terms

with k and k±G and if we consider only the frequencies close to the first Bragg resonance

at k ≈ G/2 = π/D, we can need only consider the first diffraction order G − k ≈ G/2.

Then the full photon Hamiltonian may be written as:

Hph =
∑
q

[
ω(q)â+→(q)â→(q) + ω(−q)â+←(−q)â←(−q)

]
+ (3.71)

+ ΩB

[
â+→(q)â←(−q) + â+←(−q)â→(q)

]
.

Here q = k−G/2, â→(q) = âk, â←(q) = âk−G, where âk is a photon annihilation operator

and ΩB is the band gap half-width which can be estimated by photonic crystal theory

to be: ΩB ≈ ωB(n1 − n2)/(n1 + n2). ω(q) can be written as ω(q) = ωB (1 + 2q/G).

The exciton kinetic energy and exciton-photon interaction Hamiltonians are

HX = ωX

∑
k

b̂+(k)b̂(k)+ (3.72)

+ ΩR

∑
k

[
b̂+(k)â(k) + â+(k)b̂(k)

]
,
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where ωX is the exciton frequency, b̂(k) and b̂+(k) are respectively exciton annihilation

and creation operators and ΩR is half the Rabi splitting, which describes the coupling

of the excitons with the electromagnetic field. We should note that in the case of a

periodic array of quantum wells, and contrary to the case considered in [55], k is not a

true wavevector for the exciton since the component of the wavevector perpendicular to

the interface is not defined for the exciton in a quantum well, being a Bloch wavevector

of the periodic quantum well array. We neglect the energy dispersion of the exciton due

to its relatively large effective mass. In the case of the excitons with the wavevectors

close to the photonic band gap, approximations similar to those used for Hph can be

employed to obtain the full system Hamiltonian:

H =
∑
q

[
ω(q)â+→(q)â→(q) + ω(−q)â+←(−q)â←(−q)

]
+ (3.73)

+
∑
q

Ωb

[
â+→(q)â←(−q) + â+←(−q)â→(q)

]
+ ωX

∑
q

[
b̂+→(q)b̂→(q) + b̂+←(−q)b̂←(−q)

]
+

+ΩR

∑
q

[
b̂+→(q)â→(q) + â+→(q)b̂→(q) + b̂+←(−q)â←(−q) + â+←(−q)b̂←(−q)

]
.

Intoducing the vector operator v̂ = [â→(q), â←(−q), b̂→(q), b̂←(−q)], the full Hamiltonian

can be written as: H = v̂+Hv̂, where the H is the matrix:

H =


ω(q) ΩB ΩR 0

ΩB ω(−q) 0 ΩR

ΩR 0 ωX 0

0 ΩR 0 ωX

 . (3.74)

The eigenvalues of H are the system eigenmode frequencies. But to obtain the eigenvalues

it is convenient to simplify H first. We first change the basis from v̂ to basis v̂′ =

[Û , L̂, X̂s, X̂a], where Û and L̂ are the annihilation operators of the lower and upper Bloch

modes, and X̂s and X̂a are the annihilation operators for symmetric and antisymmetric

exciton modes. If v̂′ = Mv̂, then:

M =



1√
1+(ω(q)−ωU )2/Ω2

B

− 1√
1+Ω2

B/(ω(q)−ωU )2
0 0

1√
1+(ω(q)−ωL)2/Ω

2
B

− 1√
1+Ω2

B/(ω(q)−ωL)2
0 0

0 0 1√
2

1√
2

0 0 1√
2

− 1√
2

 , (3.75)

where ωU,L are the eigenfrequencies of the Bloch modes, given by:

ωU,L = ωB

(
1±

√
4
q2

G2
+

Ω2
B

ω2
B

)
. (3.76)
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The Hamiltonian H′ in the new basis is H′ = M−1HM and is:

H′ =


ωU 0 0

√
2ΩR

0 ωL

√
2ΩR 0

0
√
2ωR ωX 0

ΩR 0 0 ωX

 . (3.77)

Here we should recall that the exciton frequency in the experiment is close to the upper

edge of the photonic band gap, and furthermore the Rabi frequency ΩR is much smaller

than the photonic band gap width ΩB. As a result, the lower Bloch mode is remote in

frequency from the other three modes and we can assume its dispersion is essentially

unperturbed and that it does not perturb the other modes significantly. Excluding the

column and row corresponding to L̂ from the Hamiltonian gives:

H′ =


ωU 0

√
2ΩR

0 ωX 0
√
2ΩR 0 ωX

 , (3.78)

and introducing δ = ωU − ωX , we find the system eigenfrequencies to be

ω1 = ωX ; ω2,3 = ωX +

(
δ ±

√
δ2 + 8Ω2

R

)
/2. (3.79)

In the case of a finite structure the Bloch vector K has a set of discrete values, which

correspond to discrete values of ωU and we should change ωU to ωU1 in our analysis,

where ωU1 is the frequency of the discrete Bloch mode closest to the upper band edge

as illustrated in Fig.3.6).

Figure 3.7 shows a comparison of the experimental results with the predictions of the

analytic model. It is seen that the analytic results for the mode frequencies as a func-

tion of the difference between the photonic band edge and the exciton energy generally

agree well with the experimental data. The theory does not predict any dispersion of

the middle branch ω1 = ωX as a result of excluding the lower Bloch mode from the

Hamiltonian. However, the experimental results confirmed that the dispersion is very

weak.

In the experiment the exciton frequency was tuned to the low frequency edge of the

second photonic band. However, it is also possible to tune the frequency to the high

frequency edge. In this case the Bloch wavevector is close to zero, and we can introduce

an effective mass for the Bloch mode, which will be negative close to the photonic band

edge. We have carried out numerical modelling of this case using the same refractive

indices as in the experiments and layers giving a Bragg frequency equal to 1 eV.
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Fig. 3.6: Band structure of the photonic crystal without quantum wells. Red lines show
the dispersions of the propagating photonic modes â→(q),â←(−q), black lines show the
dispersions of the Bloch modes Û ,L̂. Right picture shows the reflection spectrum from
the finite structure. Reflection coefficient minima correspond to discrete Bloch modes,

which are characterized by frequencies ωU1, ωU2, etc.

The second band gap vanishes in a quarter-wavelength Bragg reflector, so the layer

thicknesses and refractive indices have been chosen so that: n1d1 = (3/8)λB; n2d2 =

(1/8)λB, where λB is a Bragg wavelength. Transfer matrix calculation results given in

Fig.3.8 show that in the case of the exciton frequency being in resonance with the upper

edge of the second band at 1.96 eV, two polaritonic states emerge, and one of those

states is characterized by negative effective mass and group velocity in the direction

perpendicular to the layers interfaces. Thus, the effective mass tensor for this mode has

two positive and one negative components.

To conclude, in this section we have demonstrated a simplified analytical model, which

illustrates the mechanism of triplet structure formation in the reflection spectra. It has

been shown that the eigenfrequencies measured experimentally agree well with the pre-

dictions of the analytical model. It has also been demonstrated that the strong coupling
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Fig. 3.7: Dependence of the system eigenfrequencies on the detuning between the
exciton energy and photonic band edge, obtained from experiment, transfer matrix

method and with the analytical model.

e
V

Fig. 3.8: Eigenmode dispersion in the case of tuning of the exciton mode to the upper
edge of the second photonic band. Exciton frequency - 1.96 eV. Refractive indices of
the layers n1 = 3.5, n2 = 3.2, and thicknesses of the layers d1 = 133 nm, d2 = 43 nm.
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of the photonic crystal eigenmodes and excitons can lead under some circumstances to

the formation of polaritonic modes characterized with negative effective mass and group

velocity.
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3.4 Parametric amplification by a periodic array of quan-

tum wells embedded in layers of a one-dimensional

photonic crystal.

3.4.1 Parametric amplification of exciton-polaritons

The eigenmodes of the system, discussed in section 3.3 are mixed exciton-photon modes

- exciton-polaritons. Here we consider the phenomenon of parametric amplification of

exciton-polaritons which occurs due to the scattering of exciton-polaritons and is one of

the two main nonlinear effects occurring in the polaritonic systems the other being a blue

shift of the ground polaritonic state [48]. The mechanism of the parametric amplification

can be understood by looking at the lower polariton dispersion curve shown in Fig.3.9.

The non-parabolicity of the ground polaritonic branch leads to the existence of a so-

Fig. 3.9: Dispersion of the exciton-polariton. Arrows show how the two pump polari-
tons p scatter elastically into a ground state s and an idler state i.

called magic wavevector βm, where two polaritons with such a wavevector can scatter

elastically, with one scattering into the ground state and the other into the state with
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wavevector 2βm. Thus, if we pump such a system resonantly at the magic wavevector and

frequency, it is possible to observe a strong luminescence enhancement from the ground

state. Studies of polariton-polariton scattering features, which lead to the parametric

amplification have been reported in a number of theoretical and experimental papers -

see for example [56, 57].

A series of pump probe experiments have been performed by the Cambridge group

with the sample discussed in section 3.3, which have revealed parametric amplification

occurring in the structure. The main experimental results have been presented in [47].

We have been able to show by numerical simulation of these results, that the theory of

parametric amplification in conventional microcavity [48] can be successfully applied to

the case of a periodic quantum well array.

3.4.2 Experimental measurements and results

In the experiments, which were performed by the Cambridge group, the system was

pumped with pulses of 1ps length and 3.5 meV linewidth, at an angle of incidence

corresponding to the magic wavevector. A broadband 150 fs probe pulse was incident

normal to the interface of the structure and time-dependent reflection spectrum were

measured. The violet line in Fig. 3.10(a) shows the reflection spectra in the absence of

a pump pulse including dips at the frequencies corresponding to the three polaritonic

modes, which were studied in section 3.3.

If a pump pulse is applied with zero delay time relative to the probe pulse, the reflection

spectrum changes dramatically, and there is a peak in the reflection spectrum at a

frequency which is 3 meV higher than the ground polaritonic state. The peak height

corresponds to the enhancement of the probe pulse by a factor of 6.4 (see Fig. 3.10(c)).

The time dependence of the normalized reflection spectra in Fig.3.10(b) indicates a

nonlinear response with a response time of about 1.8 ps, which is close to the values

typically obtained for the microcavity polaritons [58]. However, the polariton lifetime

in this system is less than for conventional microcavity polaritons resulting in a wider

band of polaritonic states and thus a wider enhancement peak (about 2.5 meV).
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Fig. 3.10: An illustration of parametric amplification. (a) Reflection spectrum in
the case of a single probe pulse (violet line). The green line corresponds to a 50 mW
pump pulse, which is tuned to the ground polaritonic branch with wavevector equal to
the magic wavevector (corresponding to an incidence angle 20 degrees). In this case
there is strong amplification of a probe pulse (red line). (b) Colour map showing the
dependence of the reflection on the frequency and delay time. (c) Dependence of the

probe pulse enhancement on the delay time.

3.4.3 Three-level model of parametric amplification

It has been shown in [48], that the process of parametric scattering of two polaritons p

into the signal s and idler modes i is described by the Hamiltonian,

H = ~ωpâ
+
p âp + ~ωsâ

+
s âs + ~ωiâ

+
i âi + ~M

(
âpâpâ

+
s â

+
i + âsâiâ

+
p â

+
p

)
+ (3.80)

+ ~U
(
|Xs|2â+s âs + |Xp|2â+p âp + |Xi|2â+i âi

) (
|Xs|2â+s âs + |Xp|2â+p âp + |Xi|2â+i âi

)
,

where ωs, ωi, ωp are the frequencies of the signal, idle and pump modes respectively, â

are the annihilation operators, and Xα are the Hopfield coefficients [59], which define

the excitonic part of a polaritonic state α. The first three terms correspond to the

kinetic energy of the polaritons in the three state, the fourth term defines the energy of

the parametric processes, M being the matrix element of these processes, and the last

term, proportional to U , corresponds to the blue-shift of exciton polaritons caused by

the exciton-exciton interaction. In what follows we will neglect the last term to simplify

the formalism, taking advantage of the fact that the effect of blue shift was weak in the
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experiment. Reference [60] gives the following expression for M

M ≈ 12π

~
a2B
S
E2

b |Xs|2|Xi|2|Xp|4, (3.81)

where aB is an exciton effective Bohr radius, S is the sample area, and Eb is the exciton

binding energy.

To derive the equations for the dynamics of the occupation numbers of the three states

considered we first introduce the density matrix of ρ the system:

ρ =
∑

j=s,i,p

wj |ψj⟩⟨ψj |, (3.82)

where ψj is the eigenfunction of each state, and wj is the probability of the polariton to

be in one of the states. The density operator obeys the Liouville-von Neumann equation:

i~
dρ

dt
= [H, ρ]. (3.83)

The expectation value ⟨N̂j⟩ of the number operator N̂j = â+j âj can be obtained as a

trace over the density matrix:

Nj = Tr(â+j âjρ). (3.84)

To show this, it is instructive to recall that for an operator Â in a finite-dimensional

vector space with an orthonormal basis set |j⟩ the trace of operator Â is defined as

Tr(Â) =

j=n∑
j=1

⟨j|Â|j⟩ = Ajj , (3.85)

where the summation is performed over the repeated index. We can then expand Tr(ρÂ)

using equations (3.82) and (3.85) as:

Tr(ρÂ) =
∑
j

∑
k

wk⟨j|ψk⟩⟨ψk|Â|j⟩ =
∑
j

∑
k

wk⟨ψk|Â|j⟩⟨j|ψk⟩ = (3.86)

=
∑
k

wk⟨ψk|Â|ψk⟩,

since
∑

|j⟩⟨j| is an identity matrix. Therefore we can can write down the equation for

the expectation value of the occupation number of state k in the form:

dNk

dt
= − i

~
Tr(â+k âk[H, ρ]). (3.87)
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Using the commutation rules for the operators we obtain:

dNs

dt
= 2Im[MTr(â+s â

+
i âpâp)ρ], (3.88)

dNi

dt
= 2Im[MTr(â+s â

+
i âpâp)ρ], (3.89)

dNp

dt
= −4~Im[MTr(â+s â

+
i âpâp)ρ]. (3.90)

The operator â+s â
+
i âpâp = Ĉ is a fourth-order correlator denoting the correlations be-

tween different states, in the classical limit, this correlator is equal to zero since no

correlations are accounted for. To derive the dynamics of this correlator we use the

same approach taking the appropriate trace:

d⟨Ĉ⟩
dt

= − i

~
Tr(â+s â

+
i âpâp[H, ρ]) = iM

(
N2

p (Ns +Ni + 1)− 4NsNi(Np + 1)
)
. (3.91)

We should also add phenomenological terms corresponding to the polariton decay, Ns,i,p/τs,i,p

where the τs,i,p are the polariton decay times in the respective states:

τα =

(
|Xα|2

τX
+

|Cα|2

τc

)−1
, (3.92)

where τc, τX - are the photonic and excitonic decay times. The Hopfield coefficients

for the states Xα, Cα are the components of the normalized eigenvectors of the ma-

trix (3.78), corresponding to the lower polariton branch. The photon lifetime is the

inverse imaginary part of the eigenfrequency of the system in the absence of excitons

and can be calculated by the transfer matrix method. The approximate values of the

excitonic lifetime are known from the experiment and are about 1 ns [61].

We should also add the terms corresponding to the pump. In the experiment, there

are two pumping mechanisms: resonant pumping to the pump state and nonresonant

pumping with a probe pulse, which pumps all the three states. Therefore, We introduce

three different pumping terms Pp(t), Ps(t), Pi(t) corresponding to the time-dependent

pump rates in each of the states. Furthermore, initial conditions should be imposed.

Here we choose for these to be an initial absence of polaritons. As a result we get a
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system of four first-order nonlinear differential equations with zero initial conditions:

Ṅp = −Im(MC)−Np/τp + Pp(t), (3.93)

Ṅs = 2Im(MC)−Ns/τs + Ps(t),

Ṅi = 2Im(MC)−Ni/τi + Pi(t),

Ċ = iM
(
N2

p (Ns +Ni + 1)− 4NsNi(Np + 1)
)
−
(

1

2τs
+

1

2τi
+

1

τp

)
C,

S|t=0 = ns|t=0 = np|t=0 = ni|t=0 = 0.

Some Numerical modelling results are shown in Fig.3.11. Figure 3.11(a) shows the

evolution of the occupancy numbers for the pump and signal states in the case when the

both pulses arrive at the same time. We can see that the nonlinear response time δt is

about 0.75 ps, which agrees well with the experimental result (1.5 ps, see Fig.3.10(b)).

Figure 3.11(b) shows a plot of maximum amplification versus the pump-probe delay

time. We observe that the maximum amplification is 10 which is fifty percent larger

than the experimentally observed value (see Fig.3.10(c)).
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Fig. 3.11: Numerical modelling of the experiment, performed by the Cambridge group,
with the sample considered in section 3.3 demonstrating parametric amplification in the
system. (a) Time dependence of the pump state (red line) and signal state (blue line)
occupancies in the case when the pump and probe pulse arrive at the same time t = 3
ps. Blue dashed line shows the evolution of the signal state in the absence of the pump
pulse. All the values are normalized to the maximum occupancy of the signal state in
the absence of a pump pulse. δt shows the nonlinear response time of the system. (b)

Dependence of the probe pulse amplification on the pump-probe delay time.

3.5 Brief summary

We have obtained following main results in this chapter:

• We have derived analytical expressions for the optical properties of a system con-

sisting of adjacent metal and organic layers in a microcavity. It has been demon-

strated that sharp spectral features occur in the reflectivity specta of the structure
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due to the strong coupling of Tamm plasmon polariton states at each of the metal

interfaces.

• We have developed a simplified theory of the interaction of a periodic array of

quantum well excitons with photonic crystal optical eigenmodes. We have calcu-

lated theoretical reflection spectra for these structures which agree well with the

experimental data. We have also predicted a new type of polaritonic mode.

• We have shown that Bragg polaritons can be characterized by negative group

velocity and effective mass in the case when the exciton frequency is tuned to the

upper edge of the second photonic band.

• We have performed modelling of the parametric amplification of these polaritons

within a three level formalism. The values of the nonlinear response time and

maximum signal amplification obtained agree well with the experimental results.



Chapter 4

Kinetics of exciton-polariton

condensates and the modelling of

polariton lasers

4.1 Introduction

This chapter describes work on modelling of the kinetic processes in polariton laser

diodes [62], which was motivated by and performed in collaboration with an experimental

group from the École Politechnique Fédérale de Lausanne (EPFL). The work covered

the modelling of both the steady state properties of polariton lasing, including the

temperature and detuning dependence of the lasing threshold, and the small signal

response of certain polariton laser diodes, where the device transfer function has been

calculated1.

The chapter is organized as follows. In the first section the basic concepts of polariton

condensation and polariton lasing are discussed and a brief historical overview of the

field is presented. The next section is dedicated to a discussion of possible designs of

the polariton laser diode and is largely based on the original ideas of our experimental

collaborators. The third section describes the kinetic processes occurring in the laser

and presents the semi-classical Boltzmann equations formalism which is the basis of the

modelling carried out. That is followed by a presentation and discussion of the numerical

results obtained from the modelling. A brief summary of the chapter is presented in the

last section.

1My contribution to the work involved developing and performing the modelling based on semi-
classical Boltzmann equations using parameters provided by our experimental collaborators. The pre-
sentation of the work closely follows reference [62], for which I was first author.

65
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4.2 Background theory

4.2.1 Bose-Einstein condensation of exciton-polaritons

Consider N non-interacting bosons in a system of linear dimensions L and volume Ld,

where d is the dimensionality of the system. If the system is in thermal equilibrium

at temperature T , the bosons are distributed in energy according to a Bose-Einstein

distribution:

f(k, T, µ) =
1

exp
[
E(k)−µ
kBT

]
− 1

, (4.1)

where k is the boson wavevector, E(k) is the energy of state k, and kB is the Boltzmann

constant. In what follows we assume that the ground state k = 0 corresponds to the

zero energy. µ is a chemical potential, which denotes the energy needed to add a particle

to the system, and for bosons is always less than or equal to zero. The total number of

the particles in the system can be written as

N(T, µ) =
∑
k

f(k, T, µ). (4.2)

To proceed it is instructive to split the above sum into the number of particles in the

ground state k = 0 and in all the excited states:

N(T, µ) =
1

exp [−µ/kBT ]− 1
+
∑
k ̸=0

f(k, T, µ). (4.3)

Moving to the thermodynamic limit,(increasing the number of the particles and the

system size indefinitely in such a way, that the density of the particles n = N/Ld

remains constant) the particles density is:

n(T, µ) = lim
L→+∞

1

Ld

1

exp [−µ/kBT ]− 1
+

1

(2π)d

∞∫
0

f(k, T, µ)dk. (4.4)

If µ is nonzero, then the first term vanishes. On the other hand, the second term, which

denotes the density of bosons in the excited states, is an increasing function of µ, and

we can define the maximum possible density of bosons in the excited states nc as:

nc(T ) = lim
µ→0

1

(2π)d

∞∫
0

f(k, T, µ)dk. (4.5)
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If this integral converges, it means that there exists a maximum density of bosons nc

that can be accommodated in the excited states and if the total density n is larger than

nc then µ is zero and there is a density n0 = n − nc in the ground state resulting in a

macroscopic occupation of a single quantum state.

It has been shown that the integral (4.5) converges for d > 2. For the case of three

dimensional system and parabolic dispersion the integral can be evaluated analytically

as:

nc =
1√
2π
ζ

(
3

2

)(
mkBT

~2

)3/2

, (4.6)

where ζ(x) is the Riemann zeta function. Note, that the critical concentration of the

particles is proportional to (mT )3/2, and thus increases with temperature and boson

mass. Let us consider the fixed total concentration of bosons n and consider the system in

thermal equilibrium at temperature T . If for this temperature the critical concentration

nc given by (4.6) is larger than n, there is no condensation in the system. If we start to

decrease the temperature adiabatically, at some finite temperature Tc, nc becomes equal

to n. For temperatures lower then Tc, the macroscopic occupation of the ground state

would be observed. Tc is called the Bose-condensation temperature, and is inversely

proportional to the boson mass.

The first clear experimental verification of Bose condensation in a weekly interacting

system was achieved by Anderson et al. in 1995 using a very dilute gas of alkali atoms

at a temperature of hundreds nanokelvin and was rewarded by the Nobel Prize for

Physics in 2001.

There are some specific features about the condensation of exciton-polaritons to consider.

The first is the fact that the exciton-polaritons are 2-dimensional particles, and the

integral for nc in equation (4.6) does not converge for n = 2, suggesting that there can

be no thermodynamic Bose condensation. However, this restriction can be overcome

if we recall that the polariton condensation usually takes place in a finite area and

that the polaritons have finite lifetime. It means, that there can be no thermodynamic

equilibrium for the polaritonic system. Another issue is that the exciton is actually a

composite particle, an electron-hole pair, which can be considered as a boson only in

the low-density regime. It is easy to estimate an upper limit for the concentration for

which the approximation of a boson gas is valid. It is required that the average distance

between the excitons a in the gas is much larger then the exciton Bohr radius aB:

a ≈ n−1/2 ≫ aB. (4.7)
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The corresponding condition for the exciton concentration n is n ≪ 1/(aB)
2. The

condition for the exciton-polaritons can be written down as:
∑

nk|X|2k ≪ 1/(aB)
2,

where nk is the concentration of polaritons in state k and Xk is the Hopfield coefficient

showing the exciton fraction in the polariton state k.

Another important feature of the polariton condensation is the very high temperatures

at which the condensation can take place which is due to the very small effective mass

of polaritons close to the ground state. This property makes possible the observation of

Bose-condensation and related phenomena in semiconductor systems at relatively high

temperatures and even up to room temperature in certain systems. As a consequence,

the physics of polariton condensates has become one of the most rapidly expanding and

exciting fields of condensed matter physics. The observation of the Bose-condensation

of polaritons occurring in CdTe-based planar microcavities at cryogenic temperatures

was first reported in [63] and triggered the further research on the phenomenon. Bose-

condensation was later reported at room temperature in wide bandgap organic and

inorganic semiconductors which exhibit highly stable excitons [64–66]. Some of the

exotic phenomena occurring in polariton condensates include hints of superfluidity such

as integer and half-quantized vortices [67, 68] and the ballistic motion of condensates

[69, 70]; and also spontaneous coherent oscillations between adjacent condensates that

share similarities with the ac Josephson effect [71].

4.2.2 Polariton lasing

Our work has been dedicated to the study of one of the most attractive of polariton

condensation phenomena with regard to potential applications - namely polariton lasing

[9]. A schematic diagram of the polariton laser is shown in fig.4.1(a). To understand

the basic concept of polariton lasing, consider a polaritonic system which is being con-

tinuously pumped nonresonantly, as shown in fig.4.1(b), creating polaritons in high k

states. Polaritons then either relax into the ground state or decay either radiatively

or non-radiatively. If we assume that all the polaritons excited have infinite lifetime,

then according to the theory presented previously, after some certain density of the

excited states is reached, all other polaritons would fall into the ground state, where

they would decay radiatively producing coherent emission of light (laser-like light) from

the microcavity. This coherent emission needs no carrier population inversion since the

emission is spontaneous, not stimulated, and therefore should have a significantly lower

threshold pumping requirement than in a conventional laser. In reality polaritons have

a finite lifetime and it is essential that the relaxation time of the excited polaritons to

the ground state is less then the polariton lifetime. However, due to the bosonic nature
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of the polaritons, the relaxation rates are proportional to both the initial state occupa-

tion and the final state occupation, the condition on the relaxation time is equivalent to

the condition of the critical polariton density in the system, and thus to a fixed finite

threshold pump power.

Polaritonic

     QWs

DBR

DBR

 p contact  p contact

 n contact n contact

coherent 

emission

k

0

pumppump

coherent emission

relaxation to

the ground 

state

depletion of

the ground

state

(a) (b)

Fig. 4.1: (a) Schematic diagram of a polariton laser. (b) Schematic illustration of the
kinetic processes in the system: pump to the excited states, relaxation to and from the
ground state, and coherent emission from the ground state due to the finite polariton

lifetime.

Electrically pumped polariton light emitting diodes (LEDs) have been reported in [72]

to operate in a wide range between cryogenic and room temperatures. These structures,

obviously operating in the strong coupling regime (SCR), have a design relatively close

to that of their near-infrared vertical cavity surface emitting laser (VCSEL) counterparts

(which are based on the same material system) operating in the weak coupling regime.

However, the realization of room-temperature (RT) GaAs-based polariton laser diodes

(LDs) is probably precluded by the value of the exciton binding energy (EB
X) in this

material system (usually less than 10 meV for the quantum wells (QWs) of interest)

[73], which is small compared to the thermal energy at 300 K. Indeed, it has been pre-

viously shown that the value of EB
X is the main limiting factor for the high-temperature

observation of optical nonlinearities of polaritonic origin under resonant excitation [74].

In the search of the material systems defined by the larger values of the exciton binding

energy, a strong interested has been directed to the III-nitride compounds [75], which

have a number of advantages compared to the other wide bandgap semiconductor sys-

tems such as organic compounds or ZnO. It is suggested that III-nitride systems could

have threshold current densities (Jthr) as low as ∼ 10Acm−2 at room temperature,

which is two orders of magnitude less than state of the art GaN based edge-emitting

diodes. The reason for such a low threshold is because that the condensation process is

expected to occur at medium polariton densities - lower then those causing significant

screening and phase space filling effects that would lead to the transition of polaritons
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and excitons toward an electron-hole plasma - because of the low effective density of

states of polaritons resulting from their very light mass near the center of the Brillouin

zone.

4.3 Designs of the polariton lasers considered

To begin, it is useful to consider some aspects of III-nitride structures relevant to the

implementation of an electrical injection scheme suitable for polariton LDs [75] 2. A

recent theoretical study of the characteristics of a bulk GaN polariton light emitting

diode LDs predicted a Jthr value of ∼ 50Acm−2 at room temperature (RT), thereby

indicating the potential of such devices as low-threshold coherent light emitters [76].

Although such a structure has the advantage of simplicity it should be noted that a

realistic design for RT operation will most likely rely on a multiple QW (MQW) active

region because of the improved carrier confinement and the higher exciton binding energy

over bulk in such two-dimensional heterostructures.

The number of quantum wells (NQW ) should be large enough to achieve a well defined

strong coupling regime signature at room temperature i.e. to get a sufficiently large Rabi

splitting (ΩV RS) to polariton linewidth ratio [77]. The latter is due to the detrimental

impact of the inhomogeneous linewidth broadening of III-nitride QWs, which can blur

the signature of polaritons if it is too large for a small NQW value (note also that the ho-

mogeneous broadening is usually non-negligible at 300 K) [78]. To get efficient electrical

injection, the most appropriate choice of active region would be obtained by switching

from the usual GaN/AlGaN MQW system to InGaN/GaN MQWs [65, 79] since good

p-type conductivity becomes progressively more difficult to obtain when increasing the

Al content of the AlGaN layers due to the significant rise of the activation energy of

the deep Mg acceptor level [80]. At first sight, InGaN/GaN MQWs might seem an un-

promising choice to achieve strong coupling because of their large inhomogeneous QW

linewidth. But low indium content (7% < x < 10%) InxGa1−xN/GaN MQW microcav-

ity structures with a design close to that of GaN/AlGaN MQW microcavity samples

[65, 77] are expected to exhibit clear strong coupling features and polariton lasing under

optical pumping at RT. Such an approach is also motivated by the recent development

of crack-free, lattice-matched AlInN/GaN distributed Bragg reflectors (DBRs) grown on

freestanding GaN substrates that combine low dislocation density (≤ 106 cm−2), smooth

rms surface roughness (∼ 0.26 nm for a 4 × 4 µm2 area) and high peak reflectivity (R ∼
2 like much of this chapter the presentation in this subsection closely follows reference [62], of which

I am first author. However, the discussion in this subsection is mainly based on work carried out largely
by the authors of [62] at EPFL and is very similar to work previously published by them in [75]. It does,
however, provide important practical background information to theory provided here and is included
for that purpose.
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99.6 %) [81]. Microcavity structures grown on such a DBR would certainly exhibit a

much improved optical quality, i.e., a reduced in-plane cavity disorder compared with

similar structures grown on c-plane sapphire substrates [82].

With such microcavity samples, another matter to be addressed is the achievement of

a uniform injection of electrons and holes into the active region, which is known to be

an issue in III-nitride optoelectronic devices [83]. A way to circumvent the conflicting

requirements presented by a structure where NQW should be large for the realization of

strong coupling and small for electrical injection would be to use an intracavity pumping

geometry as illustrated in Fig.4.2 [84]. Within such a pumping scheme, a small number

of QWs (QWs-1) sandwiched in the intrinsic region of a p-i-n diode would be electrically

pumped. Polaritons would not be formed in these QWs but they would emit photons at

an energy greater than the absorption edge of a MQW region (second QW subset, QWs-

2) located underneath, which would be in the strong coupling regime when pumped by

the emission from QWs-1. Other specific constraints regarding the design of polariton

LDs have been described in Ref. [75] and are included in the three-dimensional (3D)

cross-section of the InGaN/GaN MQW polariton LD displayed in Fig.4.2 An intracavity

contact scheme is used, as described in the case of III-nitride VCSEL structures [85].

To compensate for the relatively poor lateral hole spreading into the p-type GaN layer

that is mainly due to current crowding - a detrimental effect whose impact is enhanced

by the annular contact geometry - and thus to get light emission from the active region

sandwiched between the DBRs, various approaches can be implemented. First a buried,

oxidized AlInN interlayer can be inserted on the n-side underneath QWs-1 in a similar

fashion to that implemented for micro-LEDs [86] to confine the electron current flow in

the central part of the device. A transparent conductive oxide (TCO), like indium tin

oxide or ZnO, sandwiched between the p-type GaN layer and the top dielectric DBR [87]

( Fig.4.2) also might be used to improve the lateral spreading of the hole current. Then

the use of an electron-blocking layer (EBL), located on top of the electrically-pumped

region can act to avoid an excess of electrons on the p-type side and thus limit unwanted

electron-hole recombination.[88]

Beyond issues related to electrical pumping, another critical parameter when considering

the above-mentioned geometry is the significant increase in the effective cavity length

(Leff ). Indeed, it is known that as a first approximation ΩV RS scales like 1/
√
Leff

[89]. However, Leff also includes a contribution associated with the penetration depth

of the electromagnetic field into the DBRs and one way to mitigate this effect is to use

a top dielectric DBR with a short penetration depth. This can be achieved by adopting

the SiO2/TiO2 bilayer system since it exhibits a very large refractive index contrast

(nTiO2(λ = 415 nm) = 2.6 vs nSiO2(λ = 415 nm) = 1.495) [75]. As an illustration, the

penetration depth obtained at λ= 415 nm only amounts to 0.83λ/2 for a SiO2/TiO2 DBR
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against 2.47λ/2 for the more conventional SiO2/Si3N4 structure, where nSi3N4(λ = 415

nm) = 1.83 [90]. Note, however, that the SiO2/TiO2 DBR is not suited to a nonresonant

optical pumping due to the strong rise in the absorption in TiO2 layers for wavelengths

shorter than 375 nm. However, we have used this structure in the simulations. The

electric field profile at λ= 415 nm of the complete structure shown in Fig.4.2, derived

from a transfer matrix simulation, along with the corresponding refractive index profile

are displayed in Fig.4.3. The refractive indices for the III-nitride compounds were taken

from the work of Brunner et al.[91] (AlGaN alloys), Carlin et al.[92, 93] (AlInN alloys)

and Bergmann and Casey [94] (InGaN alloys), respectively, and the refractive index

value for ZnO was taken from the work of Schmidt et al. [95].

top dielectric DBR

p-type annular contact

bottom AlInN/GaN DBR

InGaN/GaN MQWs (QWs-2)

n-type annular contact

InGaN/GaN QWs (QWs-1)

p-type GaN interlayer

TCO hole spreading layer

c-plane sapphire or FS-GaN substrate

nid-GaN template

n-type GaN interlayer

nid-GaN interlayer

SiO2 insulating layer

p-type AlGaN EBL

oxidized AlInN

current aperture

Fig. 4.2: Schematic 3D cross-section of an InGaN/GaN MQW polariton LD based
on an intracavity pumping geometry. The structure is sandwiched between bottom
(shown in dark blue/light blue) and top (shown in green/white) DBRs. The polaritons
are formed in the QWs-2 region (shown in orange/light blue). In the case of intracavity
pumping, the QWs-2 are pumped with the optical emission from the electrically pumped

QWs-1.

We have considered two types of pumping for the polariton laser illustrated in Fig.4.2:

• Electrons and holes are injected into QWs-2 and QWs-1 are ignored. This pumping

scheme is further referred to as electrical pumping.

• QWs-1 are electrically pumped and their optical emission pumps QWs-2. This

pumping scheme is further referred to as intracavity pumping.

The two schemes are discussed in more details in section 4.4.2
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Fig. 4.3: Results of a transfer matrix simulation of the field intensity profile of a
polariton LD shown in Fig.4.2 centred at λ= 415 nm along with the corresponding

refractive index profile.

4.4 Modelling formalism

4.4.1 Semiclassical Boltzmann equations

Semiclassical Boltzmann equations have been used to describe the polariton laser ki-

netics. Here we briefly outline how those equation can be derived from the quantum

mechanical density matrix formalism by a series of successive approximations.

Let |Ψ⟩ be the field operator for all the quasiparticles in the system, specifically polari-

tons, photons, phonons and electrons, which obeys the Schrodinger equation:

i~
∂

∂t
|Ψ⟩ = Ĥ|Ψ⟩, (4.8)

where Ĥ is the full Hamiltonian of the system. The holes are not considered in the

simulation since we assume that the active region is n − doped and most of the free

carriers are electrons. Now if we introduce the density operator ρ̂ = |Ψ⟩⟨Ψ|, then from

the Schrödinger equation we can derive the so called Liouville equation for ρ̂

i~
∂ρ̂

∂t
= [Ĥ, ρ̂]. (4.9)
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To proceed further it is necessary to make approximations. We first apply the Born

approximation, which neglects the correlations between the polariton, phonon, electron

and photon fields in the system. In this case we express the full density operator as a

direct product of density operators of the subsystems:

ρ̂(t) = ρ̂pol(t)⊗ ρ̂phon ⊗ ρ̂el ⊗ ρ̂γ (4.10)

Where ρ̂phon, ρ̂el, ρ̂γ correspond to the density operators of the phonon, free electron and

photon subsystems, and ρ̂pol(t) is the operator for the polariton subsystem. Moreover,

we assume that only the polaritons are described by a time-dependent density operator

and all the other operators correspond to thermal equilibrium. In order to eliminate

the phonon, electron and photon density operators we take the trace over all except

the polariton subsystem, which gives us the following equation for the polariton density

operator which will in what follows be denoted by ρ̂.

˙̂ρ = Lpolρ̂+ Lphonρ̂+ Lelρ̂+ Llifetimeρ̂+ Lpumpρ̂. (4.11)

Here each Lα denotes a so called Liouvillian describing the interaction of the polaritonic

system with subsystem α. Each Liouvillian contains only the annihilation (â(k)) and

creation (â†(k)) operators of the polaritons. In order to obtain the semiclassical Boltz-

mann equation we should apply the Born approximation for the polariton system itself,

i.e. assume that there is no coherence between polariton states with different momenta,

and that the polariton density operator can be decomposed into a direct product:

ρ̂(t) = ρ̂0(t)⊗ ρ̂k1(t) . . . ρ̂k(t) . . . . (4.12)

If we now take the trace over the polariton states, to get the equations for the polariton

numbers in different states Nk = ⟨â†(k)â(k)⟩, they contain fourth order correlators of the

form ⟨â†(k)â(k)â†(k′)â(k′)⟩ and eighth order correlators of a similar form, like the fourth

order correlator Ĉ which was considered in subsection 3.4.3. However using the Born-

Markov approximation we can decompose these operators as ⟨â†(k)â(k)â†(k′)â(k′)⟩ =

⟨â†(k)â(k)⟩⟨â†(k′)â(k′)⟩ = NkNk′ . As a result, the equations contain only the occupation

numbers of different states, resulting in a set of semiclassical Boltzmann equations for

the polariton occupation numbers Nk

dNk

dt
= Pk −

Nk

τk
−
∑
k′
Wk→k′Nk(1 +Nk′) +

∑
k′

Wk′→kNk′(1 +Nk), (4.13)

where for each state k, Pk denotes the pumping rate and τk, and the W terms describe

the scattering rates between different polariton states. Each scattering rate contains
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three contributions:

W =Wpol−phon +Wpol−el +Wpol, (4.14)

relating to the polariton-phonon, polariton-electron and polariton-polariton interactions.

The derivation of the scattering rates can be found in [96, 97] and the relevant formulae

are presented in the next subsection.

The values of wavevector allowed in (4.13) should be considered. To solve the system of

equations (4.13) numerically it is necessary to set up a grid of discrete values of wavevec-

tor, and the finite size of the device suggests a natural quantization step δk = 2π/L,

where L is the characteristic size of polariton excitation spot. The upper limit of the

allowed values of k should be chosen as kmax = 2π/aB since excitons with wavevectors

larger than the inverse Bohr radius cannot be treated as bosons because of the uncer-

tainty principle. Furthermore, we should account for the two-dimensional nature of the

polaritons with states described by k = [kx, ky], so the quantization should be performed

for both wavevector components. Hence, the estimated number of wavevector values and

equations N represented by equation (4.13) is:

N =

(
L

aB

)2

. (4.15)

4.4.2 Scattering rates in polariton relaxation processes

Pumping schemes

In the simulations two different pumping schemes have been considered. In the first

scheme, it is assumed that electrically-pumped electrons and holes are uniformly injected

into the set of strongly-coupled QWs, emitting at ∼ 415 nm (i.e., the QW subset QWs-

1 described in section 4.3 is ignored). Such a scheme is not well suited to III-nitride

structures with a large NQW but it is adopted as a simplified approach, and one that

is potentially applicable to low temperature GaAs-based polariton LDs. After some

time, charge carriers are either removed due to nonradiative recombination occurring at

dislocations, trapping or Auger recombination, or they bind into pairs forming excitons.

Those excitons may be characterized by various energies and in-plane wavevectors (k)

and their ensemble is considered as an incoherent reservoir pumped from the electron-

hole plasma. This exciton reservoir then feeds the condensate of exciton-polaritons,

which is a coherent multiparticle state responsible for polariton lasing.

The second scheme concerns the design shown in Fig.4.2, where the region QWs-1, ideally

emitting in the 390-400 nm range, is uniformly electrically-pumped by charge carriers
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and high energy photons subsequently emitted by those QWs are then absorbed by

QWs-2, [75] which is the set of strongly-coupled QWs, that will lead to the formation of

an incoherent exciton reservoir. This intracavity optical pumping geometry essentially

differs from the first one by (i) the fact that overall, for a given current density, the

population of excitons in the reservoir feeding the condensate will be smaller due to

the internal quantum efficiency (IQE), which is less than 100%. This latter quantity is

taken to be 90%, which which is typical of state of the art LEDs. (ii) The density of free

carriers in the region QWs-2 is constant since they are located in the n−type region (cf.

Fig. 4.2), whereas this density is current-dependent in the first scheme and will have an

impact on the injection-dependence of the exciton-free carrier scattering term. (iii) While

one can assume that in the intracavity optical pumping scheme, free electrons in the n-

doped region are thermalized and obey Fermi statistics with an effective temperature

(Teff ) close to the lattice temperature (Tlatt), in the direct electrical pumping schem,e

electrons are not thermalized with the lattice. In this latter situation, we consider a

Boltzmann carrier distribution with Teff > Tlatt.

We now present the expressions for the rates of all the kinetic processes in the system

pointing out the differences between the two pumping schemes.

Pumping of the polariton laser

In order to evaluate the pumping term in the case of electrical pumping we can write

down a simplified rate equation for the number of electron-hole pairs neh injected in the

microcavity:

dneh
dt

=
J

e
− neh
τeh

−Wneh, (4.16)

where J is the electrical pumping rate, e is the elementary charge, τeh is the decay rate

of the electron-hole plasma, and W is the exciton formation rate from the electron-hole

plasma.

Eq. ((4.16)) can be solved analytically to yield the time dependence of neh(t):

neh (t) =
J

e

τeh
1 +Wτeh

[
1− exp

(
−Wt− t

τeh

)]
, (4.17)

assuming an electron-hole plasma density equal to zero at t = 0. We then assume that

the excitons that are formed from the electron-hole plasma, have an additional energy ∆

compared to the ground state exciton energy Ex, which is equal to the exciton binding

energy and thus the excitons occupy only the relatively high k exciton states with energy
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E(k) which are not coupled to the microcavity optical mode. Moreover, we assume that

those states are all pumped at an equal rate. Thus, we can write down the expression

for the pump term in a simple form:

Pk = 0, Ek − Ex < ∆, (4.18)

and,

Pk =
Wneh

Ñ
, Ek − Ex > ∆. (4.19)

Here Ñ is the number of states in our quantization lattice which have the energy E(k)

satisfying the condition (4.19).

For the intracavity optical pumping geometry we consider that the strongly-coupled

quantum wells are indirectly electrically pumped with an energy-dependent optical pump

intensity given by:

Pk =
ηintJ(∆Ek)√

2π(eδE)
exp

(
−(Ek − Epump)

2

2(δE)2

)
. (4.20)

Here J is the electrical current in QWs-1, ηint is the internal quantum efficiency of the

pumping LED, Epump is the central photon emission energy of the LED which is set

equal to the exciton energy of QWs-1, δE is the linewidth of the LED, which is set to 90

meV and is considered temperature-independent as a first approximation, and ∆Ek is

the energy range associated with state k, which is the area of the grid cell of the state on

the energy grid. Note here that for the sake of illustration we consider the limiting case

where the pumping QW set (QWs-1) is resonant with the exciton energy of the second

QW set (QWs-2) that leads to the formation of polaritons, to make a clear distinction

between the performance of the two possible pumping geometries. However, in practice,

a nonresonant intracavity pumping scheme would probably apply.

Polariton lifetime decay

The polariton lifetime τk is calculated in the same way for both pumping schemes and

can be obtained by relation:

τk =

(
|Xk|
τx

+
|Ck|
τc(k)

)−1
, (4.21)

where τx and τc are the lifetimes of the exciton and cavity mode respectively and Xk

and Ck are the Hopfield coefficients which define the polariton components. While the



Chapter 4. Kinetics of exciton-polariton condensates 78

exciton lifetime is assumed wavevector-independent and has been chosen on the basis of

the experimental results provided by our collaborators, the cavity mode lifetime depends

on the in-plane wavevector and can be calculated exactly in the approximation of the

laterally unbound microcavity by the transfer matrix method, and is just the imaginary

part of the eigenfrequency of the structure. The Hopfield coefficients can be calculated

using the coupled-oscillator approach in the following way. The Hamiltonian of the

system can be expressed in matrix form in the basis of the cavity and exciton modes:

Ĥ =

(
Ex(k) ΩV RS

ΩV RS Ec(k)

)
(4.22)

The eigenvalues of this matrix are the energies of the lower and upper polariton states:

Eup(k) =
Ex(k) + Ec(k) +

√
(Ex(k)− Ec(k))2 + 4Ω2

V RS

2
, (4.23)

Elow(k) =
Ex(k) + Ec(k)−

√
(Ex(k)− Ec(k))2 + 4Ω2

V RS

2
. (4.24)

The Hopfield coefficients for the lower polariton branch are the components of the nor-

malized eigenvector corresponding to the lower polariton eigenvalue and are given by:

Xk =
1√

1 +
[
(Elow(k)− Ec(k))/(ΩV RS)

]2 , (4.25)

Ck =
1√

1 + [ΩV RS/(Elow(k)− Ec(k))]
2
. (4.26)

Polariton-phonon scattering

The expressions for the scattering process involving acoustic phonons are equivalent for

both pumping schemes. Two opposite processes take place in the system: absorption

of an acoustic phonon by a polariton with scattering to a higher k state, and emission

of a phonon with relaxation of the polariton to a lower k state. The exciton-phonon

interaction matrix element has been calculated in [98] as:

W exc−ph
k→k′ =

Θ2(q)

~ρ0csS2

(
Nphon(q) +

1± 1

2

)
q2

qz
θ(q − qz), (4.27)

where the plus sign correponds to the emission of a phonon, and minus to the absorption

of a phonon. q is the magnitude of the phonon wavevector and can be obtained from

energy conservation and the phonon dispersion to give q = |Ep(k) − Ep(k′)|/cs, where
cs is the speed of sound in the material, and Ep(k) is the energy of a polariton with

wavevector k. Since the excitons are two-dimensional quasiparticles and the phonons
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are three dimensional, only the in-plane component of the phonon wavevector q∥ must

meet the momentum conservation law: q∥ = |k− k′|. The orthogonal component of the

phonon wavevector is qz =
√
q2 − q2∥. ρ0 is the mass density of the material and S is

the area of the cavity. Nphon is a Bose-Einstein distribution, since we assume that the

phonon subsystem remains in the thermal equilibrium. θ is a Heaviside step function

and the function Θ can be written as:

Θ =
DeZe(qz)[

1 +mhq∥aB/(2mx)
]3/2 +

DhZh(qz)[
1 +mhq∥aB/(2mx)

]3/2 , (4.28)

where De, Dh are the deformation potentials for electrons and holes, and me,mh,mx are

the electron, hole and exciton effective masses. Ze,h are the overlap integrals between

the phonon and electron (hole) wavefunctions:

Ze,h(qz) =

z=+∞∫
z=−∞

dzϕ2e,h(z)e
iqzz, (4.29)

where ϕe,h are the normalized one-dimensional wavefunctions for electrons and holes.

In order to obtain the polariton-phonon scattering rate, we should multiply the exciton

phonon scattering rate by the Hopfield coefficients for the initial and final states:

W pol−ph
k→k′ =W exc−ph|Xk||Xk′ |. (4.30)

The interaction with acoustic phonons is one of the main mechanisms of relaxation for

the excitons. However, it becomes inefficient for polaritons because of the region of

very large group velocity, the so called bottleneck region, which is situated close to the

inflection point point of the lower polariton band. The polariton-phonon relaxation

is suppressed in this region, because there is a lack of phonons with the appropriate

momentum and energy. Thus, when only the polariton-phonon relaxation exists, the

polaritons tend to accumulate in the bottleneck region. However, the accumulation

of the polaritons in this region is reduced by the other relaxation processes that occur,

such as polariton-polariton and polariton-free electron scattering, which will be discussed

later in this section. Polariton-phonon scattering also affects the depletion of the ground

state, since the polaritons absorb phonons and are scattered to the higher energy states

[99, 100].

Polariton-optical phonon scattering has not been considered in the modelling, because

optical phonons in the III-nitride semiconductors have an almost flat dispersion through-

out the Brilloin zone and have the energy of the order of 130 meV, which is larger then

the energy mismatch between the ground polariton state and the highest polariton state

considered in the simulation. Thus, optical phonons cannot provide the scattering from
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one polariton state to another. However, optical phonon scattering has been accounted

for by the modification to the exciton lifetime, a value for which was provided by our

experimental collaborators.

Polariton-polariton scattering

The polariton-polariton scattering rate is the same for the both pumping schemes and

can be calculated in the following way. A derivation of the formula for the rate can be

found in [97] (and references therein) which gives:

Wk→k′ =
2π

~
∑
q

|M ex|2|Xk||Xk′ ||Xq||Xk+q−k′ |nq(1 + nk+q−k′)× F (k,k′,q), (4.31)

where

M ex = 6
a2B
S
EB

X (4.32)

and the function F (k,k′,q) corresponds to the energy conservation condition taking

into account the finite polariton lifetime:

F (k,k′,q) =
~/τk′

(E(k) + E(q)− E(k′)− E(|k+ q− k′|))2 (~/τk′)2
. (4.33)

A few computational considerations should be mentioned here. The first one is the

fact that the polariton-polariton scattering rate contains the a priori unknown polari-

ton occupation numbers. Thus, in order to calculate the polarion-polariton scattering

dynamics, the scattering rates should be recalculated at each time step, which makes

the computation extremely time-consuming. It is also worth mentioning that due to

the uniform wavevector quantization lattice it is always possible to find a lattice node

corresponding to the state k+q−k′, which means that we can also fulfil the momentum

quantization rule. However, we could consider another quantization scheme for which

the energies of the quantized states are uniformly distributed as in [96]. In this case,

we could automatically fulfil the energy conservation condition , but we would also be

obliged to introduce an additional function describing the momentum mismatch. Unlike

the energy broadening, which occurs due to the finite polariton lifetime, the broadening

of the momentum is due to the finite area of the sample and is related to the inverse

length of the sample for all the states. It is clear that in a real experimental set up there

would be broadening both in energy and in momentum, which cannot be accounted for

in the simulation due to the computational difficulty. The final comment that should be

made is that in order to simplify the computation it is instructive to set the terms of the

sum in the Eq.(4.31) to zero in the case of large energy mismatch. If we do this, the final
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Jacobian, which is calculated during the numerical solution of the system of differential

equations, becomes sparse and makes the computation far more time-efficient.

Polariton-free electron scattering

This mechanism has been shown to play a key role in polariton condensation in the case

of non-resonant pumping [101]. The expression for the polariton-free electron scattering

rate has been derived in [102]. Two process may occur during the exciton-electron

scattering: elastic scattering of the exciton from a free electron and the dissociation of

the exciton into an electron and hole. In our simulations we account explicitly only for

the elastic process. The inelastic dissociation process has been accounted for implicitly

by the corrections to the exciton non-radiative lifetime. The general expression for the

polariton-electron scattering rate is given by:

W pol−el
k→k′ = |Xk||Xk′ |

S

2π~

∫
d2ke

|Vexc + Vdir|2δ(ke − k∗e)[
d(Ee(ke)−Ee(|ke+k−k′|))

dke

]
ke=k∗e

(4.34)

×f(ke)× (1− f(|ke + k− k′|)).

Here k∗e is the electron wavevector which satisfies the energy conservation condition:

Epol(k) + Ee(ke) = Epol(k
′) + Ee(|ke + k− k′|). (4.35)

The function f is the electron momentum distribution function, which differs signifi-

cantly for the two pumping schemes. In the case of intracavity pumping we assume

that the electrons are in thermal equilibrium with the system and are described by a

Fermi-Dirac distribution: f = [exp((Ee − µ)/kT ) + 1]−1 with temperature equal to the

lattice temperature and chemical potential µ:

µ = kT log

(
exp

[
π~2ne
mekT

]
− 1

)
, (4.36)

where ne is the concentration of the free electrons in the system. For the case of the

electrical pumping we also assume a Fermi Dirac distribution of the electrons, but in this

case the temperature of the electron gas is much higher than the lattice temperature

and does not depend on it, and the total concentration of the electrons depends on

the pumping current and is proportional to the total number of electrons obtained

from equation Eq.(4.17). Vexc and Vdir are the matrix elements of the exchange and

direct scattering mechanisms respectively. The matrix element of the direct Coulomb
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interaction is given by:

Vdir(q) =
4πe2a3b
ε0SDqw

h(aBq) (g(βabq/2)− g(αabq/2)) , (4.37)

where q = |k− k′|, α = me/mx, β = mh/mx, and functions g, h have the forms:

g(aBq) = [1 + (aBq)
2]−3/2, (4.38)

h(aBq) ≈
D2

QW q
2

2(aBq)3
. (4.39)

The exchange interaction term is:

Vexc(∆k, q) = −
8e2a5B
ε0SD2

QW

∫
d2k1h(aBk1)g(α|k1 + αq−∆k|) (4.40)

×(g(α|k1 + q−∆k|)− g(α|q−∆k|)),

where ∆k = ke − αk. This integral should be calculated numerically. Despite the

considerable difficulty which arise in the calculation of the exchange term, it cannot be

omitted in the modelling since it is dominant in the polariton-free electron scattering.
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4.5 Numerical results and discussion

In the numerical calculations we have used the parameters, presented in table 4.1 with

the right column showing the source in the literature for the value quoted. When no

source is shown the value was provided by our experimental collaborators.

Table 4.1: Parameters of the modelling of polariton laser

Parameter Value Source

cavity photon lifetime τc 1 [ps]

exciton lifetime τx 1 [ns] [61]

lateral size of the system L 50 [µm] [61]

electron-hole pair lifetime τeh 5 [ns] [103]

exciton formation rate W 0.01 [ps−1] [103]

exciton binding energy Eb 45 [meV]

Rabi-splitting ΩR 45 [meV]

number of quantum wells NQW (QWs-2) 65 device design

exciton inhomogeneous broadening γex 35 [meV]

effective electron mass me 0.2 free electron mass [104]

effective hole mass mh 1.1 free electron mass [104]

deformation potential D 11.1 [eV] [104]

mass density ρ0 6150 [kg/m3]

speed of sound cs 7960 [m/s] [105]

internal quantum efficiency ηint 0.9

effective electron temperature 800 K

Values of the parameters used in the modelling. Right column shows the source in the

literature for the value quoted. When no source is shown the value was provided by our

experimental collaborators.

Figure 4.4 shows the evolution of the ground state polariton occupation number vs pump

current density for different temperatures and detunings for the two pumping geometries.

In a realistic set up, changing the cavity mode frequency would inevitably change other

parameters such as Rabi-splitting for example. However, in the modelling we assume

the detuning to be decoupled from the other parameters of the system, so that it can

be changed independently. The threshold current density for condensation (Jthr) can be

clearly identified in each case. The detuning is defined as difference between the ground

exciton and cavity mode energy, which is in its turn defined by the cavity length and

the refractive index.

We have also calculated the Jthr dependence as a function of temperature and detuning

which is shown in Fig. 4.5. In this way one obtains the polariton condensation phase
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Fig. 4.4: (a)-(c) Occupancy of the polariton ground state vs pump current density
calculated for the two pumping geometries at various temperatures and detunings (see

text for details).

Fig. 4.5: Plots of Jthr vs detuning and temperature for (a) the direct electrical and
(b) the intracavity optical pumping schemes. The red dashed line on each plot cor-
responds to the evolution of Jthr,min as a function of temperature. (c) Evolution of
the optimum detuning (black solid and black dashed lines) and condensation threshold
current density (red solid and red dashed lines) at the optimum detuning as a function
of lattice temperature for the direct electrical (solid lines) and the intracavity (dashed

lines) pumping schemes.
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diagram under electrical pumping, which is analogous to that derived under optical

pumping for GaN/AlGaN MQW microcavities [79, 100]. One can see that at room

temperature the lowest threshold current density (Jthr,min) is obtained for a negative

detuning of −19 meV and amounts to ∼ 5 Acm−2 for the direct electrical pumping

geometry while a Jthr,min value of ∼ 6 Acm−2 at a detuning of −32 meV is derived for the

intracavity pumping geometry. The values are in good agreement with those predicted in

previous work [75]. The optimum detuning (δopt) corresponds to the case where the mean

polariton relaxation time equals the mean polariton lifetime [100, 106]. The system then

switches from the kinetic to the thermodynamic regime. In other words, it undergoes a

crossover from a regime where Jthr decreases with increasing detuning (decreasing of δ

absolute value), because of the enhancement of the total scattering rate to the ground

state, to a regime where Jthr increases concomitantly with δ due to the combined effects

of the increasing polariton effective mass (which leads to a larger value of the critical

density for polariton condensation, n2D,crit) and thermal detrapping from the ground

state [100]. It is also noticeable that the temperature dependence of δopt significantly

differs from one geometry to the other (Figs. 4.5(a) to 4.5(c)). This is attributed to

the difference in the efficiency of the free electron scattering mechanism as a function of

temperature [101]. For the direct electrical pumping geometry, the electron distribution

does not depend on Tlatt, since electrons are not thermalized, thus leading only to slight

changes in the free electron scattering rate with temperature and thereby explaining the

weak δopt(T ) variation displayed in Figs. 4.5(a) and 4.5(c). While for the intracavity

optical pumping geometry, electrons are thermalized to Tlatt, which leads to a behaviour

closer to that reported for GaN/AlGaN MQW microcavities under nonresonant optical

pumping (Figs. 4.5(b) and 4.5(c)) [100]. However, it should be recognized that assuming

an electron temperature equal to Tlatt is a crude approximation. We should also point

out that, for the sake of simplicity, we did not account for the large activation energy

of the Mg acceptor in GaN compounds, which would probably degrade the electrical

characteristics and thus lead to an increase in Jthr at low temperatures.

The low threshold values reported for the intracavity pumping geometry can probably

be explained by the broad spectral distribution of the pump Pk. In the direct electri-

cal injection geometry, excitons characterized by high energies and large in-plane wave

vectors are created from the electron-hole plasma, which requires a comparatively long

time to relax to the k = 0 state. However, in the case of intracavity optical pumping a

broad distribution of excitons centered on the QW-1 exciton energy, but also covering

lower energy states, is created. Those excitons which occupy lower energy and lower k

states compared with the direct electrical pumping geometry quickly relax to the lower

polariton branch ground state and enhance polariton relaxation, which results in the

lower threshold for this geometry. However, if the intracavity emission line is strongly



Chapter 4. Kinetics of exciton-polariton condensates 86

blueshifted from the polariton modes, the ratio between the polariton lasing thresholds

for the two pumping configurations is expected to be modified. One would then expect a

higher threshold for the intracavity pumping geometry owing to the IQE of the internal

pump, which is less than 100%.

4.5.1 Simplified rate equation modeling: steady-state solutions

In order to obtain a qualitative understanding of the functionality of polariton laser

diodes we compare the modelling results obtained with the full set of semi-classical

Boltzmann equations with a simplified quasi-analytical model. For the direct electrical

pumping geometry, the model is based on three rate equations describing the electron-

hole plasma (namely Eq. (4) introduced in section III.A), the exciton reservoir and

ground state polaritons, respectively:

dnx
dt

= −nx
τx

+Wneh − anx (np + 1) + ae−β∆escnpnx − bn2x (np + 1)− cnehnx (np + 1) ,

(4.41)

dnp
dt

= −np
τp

+ anx (np + 1)− ae−β∆escnpnx + bn2x (np + 1) + cnehnx (np + 1) , (4.42)

where nx, and np are the concentrations of excitons and exciton-polaritons, respectively.

τp is the lifetime of exciton-polaritons in the ground state, a accounts for the acoustic

phonon relaxation rates, β = 1/kBT , and ∆esc is the characteristic energy splitting

between the bottom of the LPB and states beyond the inflection point of the LPB

where zero in-plane wavevector polaritons are scattered, which is a quantity sensitive to

the detuning [79, 99, 100]. b is the exciton-exciton scattering rate and c is the rate of

exciton relaxation mediated by free carriers. The solid line curves in Fig. 4.6 show the

detuning dependence of the fitting parameters a, b, and c (for different temperatures)

for them to yield the same threshold pumping current density for the direct electrical

pumping scheme as the full semi-classical Boltzmann model predicts.

If now the more realistic intracavity optical pumping geometry is considered, the previous

quasi-analytical three-level model can be simplified further to a two-level model since

the free carrier dynamics does not have to be accounted for explicitly. Then:
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Fig. 4.6: Averaged scattering rates a, b, and c as a function of detuning obtained by
fitting the full semi-classical Boltzmann system of equations at various temperatures
for the two pumping schemes: electrical (solid lines) and intracavity (dashed lines)

pumping.

dnx
dt

= Px −
nx
τx

− anx (np + 1) + ae−β∆escnpnx − bn2x (np + 1)− cndnx (np + 1) , (4.43)

dnp
dt

= −np
τp

+ anx (np + 1)− ae−β∆escnpnx + bn2x (np + 1) + cndnx (np + 1) , (4.44)

where nd is the concentration of free-carriers obtained from the doping level in the

region QWs-2, and taken equal to 2 × 1012 cm−2. In the simplest approximation Px

can be taken to be Px = ηintJ/q, where ηint is the internal quantum efficiency of the

electrically-pumped region QWs-1. The dashed lines in Fig. 4.6 show the values of the

fitting parameters a, b, and c which yield the same threshold pumping current density

for the intracavity optical pumping scheme as the full semi-classical Boltzmann model

for different temperatures and detunings.

One can see in this latter figure that - overall - all the scattering mechanisms that

contribute to populate the polariton lasing mode become more efficient with decreasing

negative detuning (in absolute value). It could be explained by the reduction of the

exciton fraction of the polariton states at large negative detuning, so that all interactions

involving polaritons become weaker than at zero or positive detuning. In some cases,

the detuning dependence of the scattering rates is non-monotonic and it is also sensitive

to the pumping scheme. This is due to the complexity of the lower polariton branch
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dispersion. The average scattering rates are therefore sensitive to both the shape of the

polariton dispersion and the excitation spectrum profile.

Above threshold the (1+np) and (1+nx) terms appearing in the rate equations can be

approximated as np and nx, respectively. After some algebra the steady-state solutions

(t = +∞) for the electron-hole pair, exciton and polariton populations for the direct

electrical pumping geometry are obtained as:

neh∞ =
Jτeh

q(1 + τehW )
, (4.45)

nx∞ =
−cneh∞ + a(e−β∆esc − 1) +

√
(−cneh∞ + a(e−β∆esc − 1))2 + 4b

τp

2b
, (4.46)

np∞ = τp(Wneh∞ − nx∞

τx
). (4.47)

Note that for the intracavity optical pumping geometry, slight changes occur since neh∞

in Eq. (4.46) has to be replaced by nd, and Wneh∞ in Eq. (4.47) has to be replaced

by Px. We should emphasize that for this latter geometry the carrier population, which

acts as a reservoir for the stimulated relaxation process (here the excitons), gets clamped

once it crosses the condensation threshold, which is expected owing to the similarities

of the above-mentioned rate equations with those describing conventional laser diodes

[107]. A similar treatment can be used for the direct electrical pumping geometry since

4b/τp ≫ (−cneh∞ + a(e−β∆esc − 1))2. Thus, for both cases, we obtain nx∞ ≈ 1/
√
bτp.

The evolution of nx∞ as a function of temperature at the optimum detuning is shown

in Fig.4.7 using both the exact expression and the approximate one for the two pump-

ing geometries. The validity of the approximation for nx∞ is confirmed by the close

correspondence between the two quantities whatever the temperature. Considering its

approximate expression, the increase with temperature of nx∞ can be directly inferred

from the results displayed in Fig. 4.6, which show a decrease in the exciton-exciton scat-

tering rate b with increasing Tlatt, and is also fully consistent with the overall temperature

dependence of the analytical expression for b derived by Tassone and Yamamoto [96].

Note that one also expects a decrease in nx∞ with increasing detuning probably due to

the concomitant increase in the relaxation process from the excitonic reservoir (which

coincides with the decrease or even the disappearance of the relaxation bottleneck) and

that of τp [96]. Because low Jthr values in the condensation phase diagram are essentially

reported for negative δ values (cf. Figs. 4.5(a) and 4.5(b)), one should keep in mind

that the present situation corresponds to a decrease of δ in absolute value.
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Fig. 4.7: Left-hand side vertical scale: evolution of nx∞ as a function of temperature
calculated at the optimum detuning using the exact expressions for the electrical (con-
nected black dots) and the intracavity (connected black circles) pumping geometries
(see text for details). Right-hand side vertical scale: relative deviation between the
exact and the approximated expressions for the electrical (connected red dots) and the

intracavity (connected red circles) pumping geometries.

4.5.2 Simplified rate equation modelling: high-speed current modula-

tion treatment

In this section, the dynamical response of polariton laser diodes (LDs) to a small pertur-

bation, such as a modulation of the current above threshold, is investigated. Since exact

analytical solutions to the full rate equations cannot be obtained, a differential analysis of

the simplified rate equations given in the previous section using the approach described

by Coldren and Corzine for the case of conventional diodes is considered [107]. The re-

sulting small-signal responses are derived by taking the differential of the rate equations

which can be written in compact matrix form for the two pumping geometries as follows:

Electrical pumping geometry

d

dt

[
dnx

dnp

]
=


−γxx −γxp
γpx −γpp


[

dnx

dnp

]
+

[
dneh(W − cnx∞np∞)

0

]
(4.48)
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where

γxx =
1

τx
+ anp∞ + 2bnx∞np∞ + cneh∞np∞ − anp∞e

−β∆esc , (4.49)

γpp =
1

τp
− anx∞ − bn2x∞ − cneh∞nx∞ + anx∞e

−β∆esc , (4.50)

γxp = anx∞ + bn2x∞ + cneh∞nx∞ − anx∞e
−β∆esc , (4.51)

γpx = anp∞ + 2bnx∞np∞ + cneh∞np∞ − anp∞e
−β∆esc . (4.52)

Intracavity pumping geometry

d

dt

[
dnx

dnp

]
=


−γxx −γxp
γpx −γpp


[

dnx

dnp

]
+

[
ηint

q dJ

0

]
(4.53)

where

γxx =
1

τx
+ anp∞ + 2bnx∞np∞ + cndnp∞ − anp∞e

−β∆esc , (4.54)

γpp =
1

τp
− anx∞ − bn2x∞ − cndnx∞ + anx∞e

−β∆esc , (4.55)

γxp = anx∞ + bn2x∞ + cndnx∞ − anx∞e
−β∆esc , (4.56)

γpx = anp∞ + 2bnx∞np∞ + cndnp∞ − anp∞e
−β∆esc . (4.57)

To obtain the small-signal response of the exciton (dnx) and the polariton (dnp) pop-

ulations to a sinusoidal current modulation dJ , we assume solutions of the form dJ =

J1 exp(iωt), dneh = neh1 exp(iωt), dnx = nx1 exp(iωt), and dnp = np1 exp(iωt). The

linear systems ((4.48)) and ((4.53)) can then be solved for the small-signal polariton

population by simply applying Cramer’s rule. The small-signal solutions after expan-

sion of the determinants can be written as:

Electrical pumping geometry

np1(ω) =
γpx[W − cnx∞np∞ ] + (iω + γxx)cnx∞np∞

(γpx/τp − ω2 + iωγxx)

J1/q

iω +W + 1/τeh
= np1(0)H(ω),

(4.58)
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where H(ω) is the modulation transfer function given by:

H(ω) =
γpx/τp(W + 1/τeh)

γpx[W − cnx∞np∞ ] + γxxcnx∞np∞

γpx[W − cnx∞np∞ ] + (iω + γxx)cnx∞np∞
(γpx/τp − ω2 + iωγxx)(iω + 1/τeh +W )

.

(4.59)

Intracavity pumping geometry

np1(ω) =
γpxηintJ1/q

(γpx/τp − ω2 + iωγxx)
= np1(0)H(ω) (4.60)

where H(ω) is the modulation transfer function given by:

H(ω) =
γpx/τp

(γpx/τp − ω2 + iωγxx)
. (4.61)
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For both pumping geometries a relaxation resonance frequency equal to ωR,polLD =√
γpx/τp can be defined while the γxx term can be readily identified with a damping

factor.

The expression for γpx derived for the two geometries (Eqs. (4.52) and (4.57)) can

be greatly simplified since the term describing the exciton-exciton interaction (∝ b)

dominates over the phonon-exciton and the free carrier-exciton scattering terms (∝ a

and c, respectively) whatever the exciton-photon detuning and the temperature (cf. Fig.

4.7). Consequently, the square of the resonance frequency reduces to:

ω2
R,polLD ≈ 2bnx∞np∞

τp
≈ 2np∞

√
b

τ3p
. (4.62)

Therefore, within this theoretical framework, the resonance frequency for polariton LDs

is directly proportional to the square root of the polariton population in the condensate

and inversely proportional to the square root of the polariton lifetime (keeping in mind

that the exciton population of the reservoir nx∞ is clamped above threshold). In this

respect, such a dependence is similar to the dependence of ωR in conventional LDs above

threshold, since in this latter case:

ω2
R ≈

vgadiffNp

τcav
, (4.63)

where vg is the group velocity, adiff is the differential gain, Np is the average photon

density in the cavity, and τcav is the cavity photon lifetime already defined in section

III.A [107].

From Eqs. (4.49) and (4.54), the damping factor can be rewritten as:

γxx =
1

τx
+ γpx =

1

τx
+ ω2

Rτp. (4.64)

It is thus seen that for large resonance frequencies, the damping of the response is ruled

by the polariton lifetime. On the other hand, the inverse of the exciton lifetime acts as

a damping factor offset, which is important for small polariton condensate populations

where the resonance frequency is small.

At this stage, we should point out that the validity of the previous treatment for the

intracavity pumping scheme might be limited by the actual response of the pumping

LED. Therefore it is necessary to determine the LED cutoff frequency ω3dB,LED, i.e.,
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the frequency at which the electrical power response drops to half its dc value, and

compare it to ωR,polLD.

Following the theoretical approach described in previous sections, the rate equation

governing the emission of the LED is given by:

dnx
dt

= −nx
τx

+Wneh, (4.65)

from which one can deduce the modulation transfer function HLED(ω) using harmonic

analysis:

HLED(ω) =
1/τx (1/τeh +W )

(iω + 1/τx) (iω + 1/τeh +W )
. (4.66)

The corresponding relaxation resonance frequency ωR,LED and the damping factor γLED

can be written as:

ωR,LED =

√
1

τx

(
1

τeh
+W

)
≈ 20.1 ns−1, (4.67)

which corresponds to 3.2 GHz, and

γLED =
1

τx
+

1

τeh
+W = 70.4 ns−1, (4.68)

which corresponds to 11.2 GHz, respectively. Additional features of the LED response

can be derived from the frequency dependence of the square modulus of HLED(ω). On

a general basis, such a response is characterized by a second-order, low-pass-band filter

behaviour with a damped resonance appearing near the cutoff frequency ωLED,3dB. For

|HLED(ω)|2, the expression for the peak frequency of the resonance ωP,LED is given by:

ω2
P,LED = ω2

R,LED

[
1− 1

2

(
γLED

ωR,LED

)2
]
, (4.69)

and that of the cut-off frequency ωLED,3dB by:

ω2
3dB,LED = ω2

P,LED +
√
ω4
P,LED + ω4

R,LED. (4.70)
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In the present case, since γLED > ωR,LED, the two previous equations reduce to:

ωP,LED = 0, (4.71)

and

ω3dB,LED = ωR,LED ≈ 20.1 ns−1. (4.72)

To evaluate the impact of the LED response on the intracavity pumping geometry, one

should first consider the evolution of |H(ω)|2 at room temperature and at the optimum

detuning δopt for different values of the input current J using Eqs. (4.59) and (4.61)

(Figs. 4.8(a) and 4.8(b)). Hence it is seen that for the electrical pumping case (Eq.

(4.59)) with current densities in the range 10 to 20 Acm−2, the peak frequency ωP lies

in the range 6–12 GHz and the cutoff frequency ω3dB is expected to be ∼ 19 GHz (Fig.

4.8(b)). Much larger values are predicted for the intracavity pumping geometry when

using Eq. (4.61) (ω3dB ≫ 400 GHz). However, in this regime the modulation transfer

function of the device is limited by the frequency response of the pumping LED, which

has a cutoff frequency given by Eq. (4.69). Finally, we have to point out that the above-

mentioned values are upper bounds since they do not account for example, for possible

electrical parasitic effects that could potentially affect the transmission line impedance.
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4.6 Conclusions

In summary, we have theoretically investigated some relevant electrical features of re-

alistic III-nitride polariton diodes. First a formalism relying on coupled semi-classical

Boltzmann equations adapted for an electrically-driven exciton-polariton device was

used to derive the evolution of the occupation number of the polariton ground state vs

pump current density for two pumping geometries: namely the direct electrical and the

intracavity optical pumping schemes. The corresponding condensation phase diagrams

under electrical injection, i.e., plots of Jthr vs detuning and temperature, were also ex-

tracted. It led to the determination of the minimum threshold current density Jthr,min

as a function of lattice temperature for the two pumping schemes. Jthr,min values of ∼
5 Acm−2 and 6 Acm−2 at room temperature has been derived for the direct electrical

and the intracavity optical pumping geometries, respectively, which are close to previ-

ous estimates. Then a simplified rate equation modeling treatment was introduced to

derive both steady-state and high-speed current modulation solutions. This simplified

analysis made it possible to show that the carrier population which, acts as a reservoir

for the stimulated relaxation process, namely that of the excitons, gets clamped once

it crosses the condensation threshold, which is a direct consequence of the similarities

of the simplified rate equations with those describing conventional laser diodes. The

analysis of the modulation transfer function, derived from the dynamical response of

polariton LDs to a small modulation of the current above threshold, demonstrates the

interesting potential of the direct electrical pumping scheme, since a cutoff frequency

ω3dB up to ∼ 19 GHz is predicted, whereas for the intracavity optical pumping scheme,

the cutoff frequency is shown to be limited by the frequency response of the pumping

LED, for which ω3dB ≈ 3.2 GHz.



Chapter 5

Summary, conclusions and

further work

The thesis is concerned with three general areas of study: (i) the negative refraction of

certain dielectric and metallic photonic crystals, (ii) the optical properties of periodic

dielectric structures with resonant inclusions such as semiconductor quantum wells, (iii)

the kinetics of two types of microcavity-based polariton laser.

Negative refraction by photonic crystals is considered in Chapter 2. Negative refraction

has been attracting considerable interest in recent years due to the possibility of using the

effect to realize optical components such as superlenses and invisibility cloaks. Section

2.2 is concerned with negative refraction at the side-edge of a one-dimensional dielectric

photonic crystal. It has been shown that the effect of negative refraction in this case

is equivalent to −1 order diffraction and is very dependent on the angle of incidence

and thus cannot be used to produce a practical superlens. However, a new effect -

spatial oscillations of the Poynting vector of the refracted radiation - has been predicted

analytically and observed in finite-difference time-domain numerical simulations.

Section 2.3 is dedicated to the modelling of a new type of spectral filter for terahertz

radiation using a metallic photonic crystal prism. The filtering is based on the negative

refraction of electromagnetic waves with frequencies lying in the second photonic band

of the metallic photonic crystal. Thus, compared to a conventional prism, there is a

large angular dispersion between the frequency components lying in the second photonic

band and other frequencies. The optimal design of the prism was obtained using finite-

difference time-domain simulations. Subsequently colleagues fabricated a prism, based

on the proposed design, and their experimental measurements have shown that the

proposed device can indeed act as an efficient spectral filter for the terahertz frequency

range.

96
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Chapter 3 reported studies of the optical properties of the dielectric photonic struc-

tures with resonant inclusions such as optical cavities adjacent to thin metal films or

quantum wells the can support excitons. Section 3.2 describes theoretical calculations

of the eigenmode structure of a metal layer sandwiched between two Bragg reflectors.

It is shown that Tamm plasmon polariton states exist on both sides of the metal layer

and are coupled via the evanescent waves inside the metal film. The coupling of the

Tamm plasmon modes leads to eigenfrequency splitting and thus to distinctive features

in the band structure of the system. Analytical formulae for the system eigefrequen-

cies have been derived and are shown to agree well with numerical modelling and with

measurements on the structures studied by collaborators.

Section 3.3 is concerned with the eigenmodes of a periodic array of quantum wells

embedded in the layers of a dielectric Bragg mirror. Analytical expressions for the mode

eigenfrequencies have been derived and used to explain the origin of the triplet structure

seen in the experimental reflection spectra. Section 3.4 describes the modelling of the

parametric amplification which has also been experimentally observed in the system.

Modelling results, which have been obtained using a three-level formalism, are shown to

agree well with the experimental results.

Chapter 4 concerns modelling of the kinetics of GaN-based polariton lasers. The mod-

elling was performed using a semiclassical Boltzmann equation approach. It is shown

that a threshold pump of the order of 50 Acm−2 can be reached at room temperature

if the optimal detuning between the exciton and cavity mode is chosen. Studies of the

small signal response of the polariton laser are also presented. It has been shown that

the polariton laser operates as a low-pass-band filter with a cut-off frequency about 3

GHz. The relatively low threshold pump powers and high cut-off frequencies are very

promising for the realization of new types of optoelectronic devices based on polariton

lasers.

We now comment on the impact of the work presented in the thesis and possible future

work on the structures considered. We believe that the work on negative refraction

at the side-edge of one-dimensional photonic crystals has been taken as far as it is

reasonable to do so, particularly since it has been shown recently that layered metal-

dielectric nanostructures can exhibit all-angle negative refraction in a wide frequency

range [108], making them a far more promising basis for the realization of superlenses

and invisibility cloaks. However, the work on the terahertz spectral filter based on

a metallic photonic crystal prism, while lacking opportunities for the further original

theoretical investigations could play a significant role in modern terahertz technology,

since effective spectral band pass filters for the terahertz range are not commonplace,
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and the device proposed has the additional advantage that it could be deposited on a

chip.

The impact of the work on Tamm states in metal-organic cavities is illustrated by the

fact, that the subsequent work by our experimental collaborators dedicated to the same

topic was published in Nature Photonics [109]. The authors produced a lateral pattern-

ing of the metal-organic microcavity, introducing a set of metallic stripes rather than a

uniform metal film inside the cavity. Moreover, they have shown that the introduction

of the metal inside the cavity does not significantly degrade the coherence properties of

the optical cavity mode. Such structures could be used to organize exciton-polariton

condensates in a periodic potential and to do so at room-temperature due to the large

binding energy of the excitons in the organic systems.

We believe, the work on exciton-polaritons in photonic crystals with embedded quan-

tum wells is important because it showed both theoretically and experimentally that it

is possible to realize strong coupling between the photonic crystal modes and the exci-

tons. The resulting exciton-polaritons exhibit strong nonlinear dynamics, such as the

parametric amplification that is typical for the exciton-polaritons in conventional mi-

crocavities. However, photonic crystal modes provide larger flexibility of the dispersion

properties of the exciton-polaritons. In particular, it has been predicted that for certain

structures, exciton-polaritons with negative group velocity and effective mass could be

observed. Such polaritons would have peculiar nonlinear dynamics since their ground

state, defined by the zero in-plane wavevector, would at the same time have the largest

energy. This property should also lead to an unusual characteristics of polariton-phonon

and polariton-electron scattering.

With regard to further work, the theoretical formalism, such as the transfer matrix

method and other theory used to describe the optical properties of periodic dielectric

nanostructures presented in chapter 3, can also be applied to the case of the periodic

layered structures containing metal layers. Consider a periodic layered metal-dielectric

nanostructure comprising alternating metal and dielectric layers with dielectric permit-

tivitties εm, εd and thicknesses dm, dd, respectively. If the period of the structure is

much less than the electromagnetic wavelength then the effective medium [110] approx-

imation can be used and the structure treated as a uniaxial, anisotropic medium with

components of dielectric permittivity tensor given by:

ε∥ =
εmdm + εddd
dd + dm

; ε⊥ =

(
dd
εd

+
dm
εm

)−1
, (5.1)

where the symbols ∥ and ⊥ correspond to the in-plane and axial components of the di-

electric permittivity tensor respectively. It follows that the dispersion relation between
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frequency ω and the wavevector components k∥, k⊥ is ω2/c2 = k2∥/ε⊥ + k2⊥/ε∥. It is

clear that if the dielectric permittivity tensor components have different signs as occurs

in this case due to the negative permittivity of the metal layers, the isofrequency con-

tours obtained from the dispersion relations will have a hyperbolic shape, in contrast

to the elliptical shape of conventional anisotropic media. The characteristic shape of

the isofrequency contours of such hyperbolic media leads to the possibility of realizing a

number of useful effects, including all-angle negative refraction [111], and superlensing

[112]. However, one of the most intriguing properties of the hyperbolic media is the

divergent density of states caused by the unbound isofrequency contours [113]. The

divergent density of states directly leads to a great enhancement in the spontaneous

emission rate (so called Purcell factor) for point-like emitters placed inside such media.

The decease of the spontaneous emission lifetime of sources placed inside hyperbolic

media has been extensively studied both theoretically [114] and experimentally [115] in

recent years. However, I propose to study the Forster resonant energy transfer (FRET)

between two point emitters placed inside hyperbolic media. FRET is a non-radiative

resonant process of energy transfer between two two-level systems, which can be con-

sidered to be carried out by virtual photons [116]. The efficiency of the FRET process

can be calculated using second-order perturbation theory and is inversely proportional

to the sixth power of the distance between the two systems, which makes it a powerful

tool for precise measurement of the distance between the chromophores in the biological

systems, for example. The picture is expected to change dramatically when the emitters

are placed inside a hyperbolic medium due to the huge density of the photonic states

[117]. Furthermore, I am also planning to study the optical properties of hyperbolic

media when the components of the dielectric permittivity tensors are characterized by a

nonlinear (Kerr) dielectric permittivity. In particular, it is planned to study the modifi-

cation to the spontaneous emission lifetime of point sources placed inside such nonlinear

hyperbolic media.

Finally, the formalism for modelling GaN-based polariton laser, described in the chap-

ter 4 together with the associated software developed constitute a powerful tool for

modelling the dynamics of polariton lasers in general. To enhance its performance, the

software should be merged with a finite element simulation code, which would calculate

the dispersion of the eigenfrequencies of device with realistic 3D geometries. Further-

more, this work could be extended to the case when a strong magnetic field of about

1 T is applied to the microcavity. A series of recent experiments have shown that the

polariton lasing threshold can be significantly decreased by the application of magnetic

field. The modelling could be undertaken in the similar way to that presented in chapter

4. The magnetic field would affect the dispersion of the low polaritonic branch (there
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would actually be 4 separate polaritonic branches in this case) and the density of po-

laritonic states. Therefore the additional mechanism of spin-flipping resulting in the

scattering of the polaritons between different branches would have to be considered in

the modelling. Nevertheless, these effects can be accounted for by a relatively small

changes to the modelling software.
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