W Durham
University

AR

Durham E-Theses

The integrity of serial data highway systems

Cowan, D.

How to cite:

Cowan, D. (1983) The integrity of serial data highway systems, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7253/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7253/
 http://etheses.dur.ac.uk/7253/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

———— o L C e e eae —— .

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information cerived

from it should be acknowledged.

The Integrity of Serial Data Highway Systems

by
D.Cowan, B.Sc.

A thesis submitted for the degree of Doctor of Philosophy

in the University of Durham, 1983,

3000 1084

lqes)om

The Integrity of Serial Data Highway Systems

D.Cowan

Abstrqct

The Admiralty Surface Weapons Establishment (ASWE) have developed
a Local Area Network System. This thesis describes the development of
a replacement for this LAN system, based around 16 bit microprocessor
hosts, as opposed to the minicomputers currently used. This change
gave a substantial reduction in size, and allowed the new system to be
installed on a ship and tested under operational conditions. Analysis
of the data collected during the tests gave performance information on
the ASWE system. The performance of this LAN is compared to that of
‘other leading types of LAN. The design of a portable network
controller/ monitor unit is presented, which may be manufactured as a

standard controller for the ASWE Serial Highway.

Acknowledgements

I wish to express my thanks primarily to Dr. C.T. Spracklen for
his assistance during the course of this project. In addition, the
advice of Mr. D.J. Dwyer and Dr. D.R. Isaac was much appreciated.
Thanks are also due to the departmental technicians who provided
valuable technical help on many occasions. The staff of XCC Division,
ASWE, assisted in many ways during the course of my research, and
they continually tolerated the disruption to their normal work which

Dr. Spracklen and myself seemed to bring to them.

I am particularly grateful to the Ministry of Defence who funded

this project.

o Contents
Glossary of Terms

Chapter 1 Introduction
1.1. Local Area Networks
1.1:1 Ring Topology
1.1:2 Linear Topology
1.2 The Choice of LAN Architecture
1.3 Conclusion

Chapter 2 The A.S.W.E. Serial Highway

2.1 Introduction

2.2 Signalling Conventions

2.3 Message Protocols

2.3:1 Control Messages’

2.3:2 Information Messages

2.3:3 Message Fields

2.3:4 The Error Recovery Scheme
2.4 Front-end Processors

2.5 Transciever

2.6 Host Interface
2.7
2.8

Microcode Cross-Assembler & ASH Simulator
ASH Terminal Unit
2.8:1 Software Tables
2.8:2 Host Control of Highway Terminal Unit
2.9 Highway Controller Unit
2.9:1 Software Tables
2.9:2 Host Control of Highway Controller Unit
2.10 ASH Configuration
2.10:1 Single Controller/ Twin Highway Cables
2.10:2 Twin Controller/ Twin Highway Cables
2.10:3 Cable Configuration
2.11 Conclusion

Chapter 3 Computer Systems

3.1 Introduction

3.2 The DEC PDP11/34 and Unix.
3,2:1 The Implementation of BCPL and Coral
3.2:2 ASH Software Packages
3.3 The Data General Nova-3 and RDOS
3.4 The Motorola MC6809 Development System
3.5 The Motorola MC68000 Single Board Computer
3.5:1 An Upgrade of the On-board Memory
3.6 Additional Peripherals and Software
3.6:1 Pro-Log Prom Programmer
3.6:2 Computer Communications Software
3.7 DMA Interface
3.8 Conclusion

Chapter 4 SIXTH
4.1 Introduction
4.2 SIXTH Design Philosophy
4.3 System Kernel
4.4 System Dictionary
4.5 Conclusion

Chapter 5 The Portable Highway Controller
5.1 Introduction
5.2 Portable Controller Hardware
5.3 Controller Software
5.3:1 Design of SIXTH Programs
5.3:2 The Use and Upgrading of Controller Software
5.4 Testing the Portable Controller
5.5 Conclusion

Chapter 6 The ASH Ship Trials
6.1 Introduction
6.2 Test Hardware
6.2:1 MC6809 Monitoring Unit
+ 6.2:2 MC68000 Highway Terminal Units
6.3 Ship Trial Software
6.3:1 Design Concept
2 Block Message Soak Test
3 Short Message Soak Test
4 -Test Control Software
5 Test Report Software
6 Test Monitoring
6.4 Test Results
6.4:1 Analysis Techniques
6.4:2 Discussion of Results
6.5 Conclusion

Chapter 7 LAN Technology
7.1 Introduction
7.2 Review of Basic LAN Technology
7.3 Improvements to the Basic LANs
7.3:1 Ring LANs
7.3:2 Decentralised Control Linear Bus LANs
7.3:3 Centralised Control Linear Bus LANs
7.4 A Second Generation ASH
7.5 Conclusion
Chapter 8 Conclusion

Bibliography

Appendix A Program listings

Appendix B An Upgrade of On-Board Memory

Appendix C DMA Interface Circuit Diagrams

Appendix D Portable Highway Controller User Commands

Appendix E Graphs of ASH Test Results

Glossary of Terms

ACIA Asynchronous Communications Interface Adaptor
ALU Arithmetic Logic Unit

ASCIHl American Standard Code for Information Interchange
ASH ASWE Serial Highway

ASWE Admiralty Surface Weapons Establishment
CMOS Complimentary Metal-on-Silicon

CcPU 'Central Processor Unit

‘ CSMA Carrier Sense Multiple Access

DMA Direct Memory Access

DS DO Stack

EPROM Erasable Programable Read-only-Memory
FEP Front End Processor

FIFO First In First Out

I/0 Input/ Output

LAN Local Area Network

LCD Liquid Crystal Display

LED Light Emitting Diode

MS Machine Stack

OS Operand Stack

PIA Parallel Interfat.;e Adaptor

PROM Programable Read-only-Memory

RAM Random Access Memory

VDU Visual Display Unit

Chapter 1
Introduction

1.1 Local Area Networks

In recent years the trend towards mainframe computers of ever
increasing complexity has been overtaken by the use of distributed
computer systems, in an attempt to provide greater speed and
flexibility of computing power. This has been aided by the greatly
reduced costs of computer hardware, and by the ease of application of
modern block structured programming lanquages to multiprocessor
systems. These systems normally fall into one of two categories,
loosely coupled and tightly coupled systems. In the former,
communications between the elements of the system take place at a very
much higher rate than in the latter.l Tightly coupled systems can have
a communication rate of up to 200Mbits/ sec, whilst most loosely
coupled systems have a maximum transmission rate of approximately
20Mbits/ sec. The difference in transmission speeds is due to the
differing. demands placed on the communication system by the elements
in the network. Normally, the elements in a tightly coupled system are
interdependant and would be unable to function satisfactorily if one
element was malfunctioning. Array processor systems and multi-ALU
systems fall into this category. Loosely coupled systems normally
consist of units which are able to function satisfactorily by
themselves, and communication between the elements is normally via
data messages rather than machine level instructions as in the tightly
coupled systems. The decrease in the transmission rate allows
different transmission media to be used, and many loosely coupled
systems use serial transmission lines. There is a large range of
possible interconnection systems for these two types of distributed
computing systems. However, they fall roughly into three categories;
point to point, interconnecting bus, and network. In addition,

combinations of the three types also occur.

In the past, point to point systems have been used to a great extent
because they were the easiest and least expensive to implement. In a
point to point system, a dedicated communication path exists between
every element in the system. This necessitates a large amount of
wiring between elements, but has the great advantage that the
receiving unit has an inherent physical address; no additional
software is required to generate the address or, in the receiver, to
decode the address. However, greater importance is now placed upon the
ability to reconfigure a communication system to incorporate new
elements, and in a point to point communications system this
necessitates expensive and complex rewiring. Thus point to point
systems have largely been replaced by some form of shared
communications system.

A communication network is a collection of shared
communications paths and devices interconnected so at least Aone pair
of devices has more than two simﬁltaneous path possibilities. The most
common of the network systems have computers as devices and telephone
landlines as communications paths. Examples of these are ARPANET [1,2]
and OCTOPUS [3]. Networks are characterised by their topology,
protocols, communications disciplines and geographical extent.
Networks which commuﬁicaté over longer distances than lkrﬁ, such as
ARPANET, are known as long-haul networks, whilst tﬁose which work over
shorter distances, such as the Xerox FIBERNET [4], are known as short-
haul networks. The most coﬁ\rﬁon topologies used are the mesh and star,
shown in Figure l.1a. The protocols implemented depend upon both the
topology and communication discipline used, however they can usually
be subdivided into transport protocols, routing and flow protocols and
user level protocols. The communications disciplines used are circuit

switching, message switching and packet switching. Our telephone

1-2

Mesh -

Star

Figure 1)4

system employs circuit switching; a complete circuit must be
established between caller and the listening station otherwise the
call.er hears an engaged- signal. Packet switching is employed by
ARPANET and most short-haul networks. Messages are segmented into
fixed length packets which are only reconstructed at the destination
node. Intermediate nodes retransmit packets as received, but certaiﬁ
systems may perform error detection and correction. The distinction

Y

between packet switching and message switching is less obvious in

N
A

certain configurations of local networks.

The pure star topology employed by FIBERNET type systems
does not strictly fit the category of a network because of the lack of
simultaneous paths.-

A data bus is a shared communication path joining many devices
with only one path between any two devices. Examples of such systems
include MIL-STD 1553B [5], the ‘Cambridge Data Ring [6], and ETHERNET
[7,8]. One of the advantages of a data bus system over a point to
point system is the ease of reconfiguration to support additional
devices. However the data bus system has the disadvantage of the
revquirement for soffware addresses for every device, and the
complicated protocols and decoding necessary to support this type of
addressing.

The term 'Local Area Network' (LAN) is now used to describe
short haul networks and data bus systems. The systems upon which most
work is currently being undertaken are data bus systems. The most used
topologies are ring, redundant ring, linear and redundant linear. The
addition of redundancy gives protection against the failure of the
transmission media.

Regardless of its topology, a data bus can be active or

passive; an active bus is one with signal regeneration at each node,

1-3

whilst a passive one has no regeneration in the system.

1.1:1 Ring Topology
The topology of a‘typical ring network is detailed in Figure

1.1:1a. Each unit acts as a repeater on the ring and the LAN normally
uses some form of token passing message handling system. A ring
network utilises an active data bus. In such a system, single or
multiple tokens are continually circulating round the ring. If a unit
wishes to transmit a message it waits uﬁtil it receives this token. It
then transmits its message and appends the token to the end of the
message. The unit to which the message is addressed takes a copy of
the message and also regenerates it and the token in the same manner
as the intermediate units. The removal of the message from the ring is
left to fhe unit which originated the message. Although the ring type
network theoretically has the advantage of completely decentralised
control, in practice there must be a master station which inserts the
tokens onto the ring and monitors its activity to ensure that there is
always a token present.

The 'Cambridge Ring' LAN is a variation of the ring network. It
uses token passing in the form of a 'Message Slot' format. The master
unit initially sets up a message structure on the ring consisting of a
number of message slots each preceded by a header to indicate whether
the slot is empty or full. A unit wishing to transmit a message merely
waits until an empty slot ar'rives, and it then fills the slot and
alters the header accordingly. Again, removal of the message is left
to the tranémitting unit. Unfortunately, this means that the master
unit in the ring must set up the message slots, and must then maintain

them against the possibility of corruption by noise. Thus the

Figure 11la Ring Topology

advantages of decentralised control presented by the ring concept have
been lost. In addition, since each unit on the ring is an active
repeater, the failure of any one of these units can cause one section
of the LAN to be isolated. This can be overcome by the use of more
than one cable, (redundant ring topology) and by transmitting messages

around each of the cables in different directions.

1.1:2 Linear Topology

The final class of LAN architecure is .the one which is currently
the most used. The topology of a linear bus LAN can be seen in Figure
1.1:2a. There are several message handling systems for such an
architecture, but they fall into one of two classes; asynchronous and
synchronous.

The ALOHA [9,10] system is an example of an early asynchronous
LAN. If a unit wis-hed- to transmit a message it traqsmitted it
immediately. It then waited for an acknowledgement of reception from
the unit to which it had addressed the message. If the acknowledgement
was not received, it assumed that the message had not been received,
possibly due to the simultaneous transmission of a message by another
unit. It then retransmitted the message after a random time interval,
to ensure that the same clash did not occur again. However,. as the
load increased, the number of clashes also increased, and this meant
that the maximum channel utilisation of a pure Aloha system was
app.roximately 18 percent [8]. The addition of rudimentary coordination
between units increased this utilisation. A series of synchronisation
pulses were transmitted on the bus and units were only allowed to
transmit messages immediately after the pulse. This increased the
possible channe! utilisation to 36 percent. An extension to the pure

Aloha technique is the Carrier Sense Multiple Access with Collision

1-5

g O

Passive
Linear Bus

b—]0—0O—0——C0—0—0

Active
Linear Bus

Figure 11:2a Linear Bus Topology

Detect (CSMA/CD) system used in such LANs as Ethernet. In this system,
all units monitor the activity on the bus before transmitting their
messages. If the channel is free, a unit may transmit its message. If
two (or more) units start transmission at the same time they can
detect this clash by monitoring the activity on the channel. They
immediately cease transmitting their message. The units then
retransmit after a random time, to protect against repeated clashes.
This system is efficient under conditions of low loading, however as
the loading increases so too does the message delivery time. Channel
utilisation in the Ethernet system can reach 98 percent [8].

Synchronous bus LANs have a controller which supervises
the transmission of messages by the units on the bus. However, the
throughput of the master unit does not determine the throughput of the
network, as in the star LAN, because the master does not perform a
'receive and repeat' function. There are sgveral type of sychronous
bus control, but two of the more common types are :- round robin and
polled systems. In the round robin system, each unit has a list of the
order in which the units are to transmit held in its memory. The bus
master transmits a message which says 'Next please' and the units
consult their list to determine whether or not they are the next one
on the list. The relevant unit then transmits a message if it wishes.
Then the cycle is repeated. Synchronisation between the units must be
achieved initially, to ensure that they are all at the same positions
in their lists.

The second type of synchronous bus control commonly used is
a polled system. In this system, the bus master explicitly polls each
unit in turn. The unit may respond either with a message, or with an
acknowledgement to show that it is still connected and functioning.

This has the advantage of rigid control over message transmission by

1-6

the master. It allows a priority system to be implemented by polling a
particular unit more often than the others.

Unfortunately, the synchronous bus LANs must have a control
unit, and to protect against failure of this unit multiple controllers
are normally used. Synchronous LANs do have the advantage of a lower
message delivery time than the asynchronous systems when under high
loading. Additionally, by using the bus con‘trollers to maintain an
error recovery scheme, they can offer guaranteed error free delivery
of messages with fewer overheads than in the asynchronous systems.

However, this type of system does include certain overheads due to
the poll messages which are not present in an asynchronous system.
Careful design.is. needed to keep these overheads as low as possible.
The major advantage of linear LANs over ring LANSs, is that by careful
choice of the si:gnalling scheme and media used for the bus, it is

possible to make it passive.

1-7

1.2 The Choice of LAN

Whilst there afe many different LANs, there is no one type which
is 'the best'. Each type has different characteristics which make it
suitable for certain applications but completely unsuitable for
others. In general, a careful assessment of the situation must be made
before the choice of LAN for a particular application can be made.
After such an assessment, the Admiralty Surface Weapons Establishment
(ASWE) set down the design for their LAN, which is known as the ASH
(ASWE Serial Highway) [11].

For many)/ears; the Royal Navy have used large mainframe
computers in their ships. These computers monitor the ships'
surroundings with the aid of the radar systems, and provide target
extraction and identification facilities to the officers in charge of
the ships' operation. In aqdition, the computer provides automatic
control over the various weapons systems used on board ship. As the
years have advanced, the complexity and number of the radar systems,
the displays, and the weaponry, have increased dramatically. This has
led to two. distinct problems in the modern naval ship. Firstly, the
performance of the ship is very seriously affected if the computer
ceases to function. Secondly, the amount of cabling necessary to route
all of the control and monitoring functions to the master computer is
immense. The adoption of distributed control using a local area
network system will solve both of these problems. Every sub-system on
board the ship, such as the radar, the gun-turrets, the missile
launchers, the status displays etc; will contain a mini or micro
computer. They will all be linked together via a local area network.
The only cabling necessary for such a system will be the local wiring

from the distributed processors to their subsystems, and the LAN

1-8

cabling, which will consist of several redundant highway cables. Each
sub-system could then be factory tested with its local processor in
full control.

The LAN used in such a system would have to have the following

characteristics.

1) A very high resilience to individual éiement failure.

2) Guaranteed error free message delivery.

3) A simple, easily available highway cable/ connector to allow simple
maintenance and repair.

4) A maximum cable length of 300 metres (due to length of ship).

5) Ease of alteration and reconfiguration.

It was decided that it would be very difficult to attain the necessary
message throughput and overall system reliability needed by using a
ring bus or star ne;work. This meant the choice of a linear bus
architecture. The need for guaranteed error free message delivery, and
the knowledge that the bus was to be operated under a fairly high
loading at all .times dictated the choice of a poll-response system.
Unfortunately, this type of system suffers from the obvious setback of
centralised control, however the ASH was designed include multiple
redundant controllers to -alleviate this problem. Ir:a addition, the use
of a passive highway, implemented using a screened twisted pair,
allows the maximum cable length of 300 metres to be achieved without
the use of repeaters. The signalling system chosen, a variant of
Manchester coding known as Bifrequency Code (sgction 2.2) allows the
' cables to be connected without the need for any checks on polarity.

The choice of NATO standard cable and connectors allowed the LAN to be

simply and easily installed.

1-9

Unfortunately for ASWE, such an LAN was not available, so it
was necessary to design their own. Great emphasis was placed on the
need for simplicity of the host computer to LAN sub-system software
interface. This led to the adoption (section 2.1) of a table driven
interface between the LAN and its host corhputer, using an area of

shared memory.

1.3 Conclusion

Local area network technology has advanced as the need has arisen
for efficient communications between units in a loosely coupled
distributed computing system. In such systems, a serial cable is
normally used as the transmission media, and by a careful choice of
signalling conventions, data rates up to 20Mbits/ sec can be achieved.
Several possible topologies exist for LANs, each one suited to a
different applic-ation. In many instances, distributed computing
systems communicating via LANs have replaced single mainframes. This
replacement was prompted by the need for greater overall system
reliability, and the greater availability of mini and micro computers
in recent years. In addition, the introduction of the software
addressing used in LANs, in preference to the implicit hardware
addressing used in earlier point to point systems, has greatly reduced
the hardware changes necessary to reconfigure the system. In order to
increase the reliability of the LANs, multiple redundancy is used for
critical components and cabling. Careful choice of highway
architecture allows a quaranteed error free message delivery, which
may be critical‘ in certain applications. ASWE have designed an LAN
system for use in a future generation of naval ships and their choice
of architecture gives the best performance in the naval environment

with which they are concerned.

1-10

Chapter 2

The AS.W.E Serial Highway
2.1 Introduction

The ASH was designed as a response to the needs of ASWE for a high
speed local area network with guarantee‘d error free message delivery
and a very high system reliability. Its specifications are laid out in
Defence Standard 00/19 [11]. The network is of the poll-response
linear bus type. In order to increase system reliability, there is a
possibility of a multiple redundant highway cable and/or highway
controller configuration. The line signalling and message protocols
are handled by dedicated bit-slice front-end processors (FEPs), using
AMD 2901 four bit wide devices. These processors are connected to the
serial highway cable via transceivers, and to the host processors by
specialised Direct Memory Access (DMA) interfaces. The host processor
controls the communications processor by means of a set of tables in
an area of shared memory.' All messages sent on the highway may be put
into one of two categories:- control and information messages. The
information messages may be further divided into two types; short

messages and block messages.
2.2 Signalling Conventions

The line signalling is performed using a variant of Manchester
Code known as Bifrequency Code. The signalling rate is 3Mbits/sec. The
valid signals are shown in Figure 2.2a. There are also two signalling
violations defined as part of the specification, one to signal End of
Message (EOM) and the other to signal End of Invalid Message (EOIM).
These violations are shown in Figure 2.2b. The signal levels are

detailed in Figure 2.2c. Since the highway is a passive linear bus,

2.1

T
~ PBit Period

. : Space (Zero)
l .
r 0 Volts
'.“—:
HE
[]
T O Volts
iy
* 1+ Mark (One)
] ' .
' : Figure 22a
Co
Lo
]
' 1 |
: | . End of Message (EOM)
' 1 .
“ 1 -]
' | _
+ 1 - 0 Volts
i
! |
) {
i
: v 0 Volts
I :

End of Invalid Message (EOIM)

Figure 22b

these signal levels are subject to considerable degradation when a
large number of units are connected, and/ or a long cable is used. The
maximum level of degradation permitted is shown in Figure 2.2c. Error

recovery is performed by the retransmission of incorrect messages.

2.3 Message Protocols

2.3:1 Control Messages

There are four types of control messages whose function is to
maintain the poll and response scheme and to manage the error recovery

system. The format of these messages may be seen in Figure 2.3:la,

1) Permission to transmit (PTT): This message is issued by the highway
controller and it gives a terminal specified by the DST field

permission to use the highway.

2) Nothing to Transmit (NTT): This message is issued by a terminal in
response to a PTT. The NAK field is used by the highway controller in

the error recovery system.

3) Repeat Message (RM): This message is issued by the highway
controller when a terminal unit indicates that a message has been
missed. It takes the format of the class of information message of

which it is a repeat, except that byte 2 is equal to byte 4.

4) Null Repeat Message (NRM): This message is issued by the highway
controller when it is unable to obtain a valid response from a
terminal, or when the controller does not have an error free copy of

' the message to retransmit.

2-2

+6.5 Volts —4: i =—50nSec

+55 Volts R
S ".rf——ZOnSec

1%

HH
1Y
Y
:i - -55Volts
AR -65Volts

- . - »
300nSec

Signal Levels at Transmitter

03 Volts /\ |
/ N

-03 Volts

Maximum Signal Degradation

Figure 22c¢

1)

2)

3)

- Permission to Transmit

.
K <

2 C

|

Tnom
{zom

R O0Jele] |
. SOM | A E C | O | Nothing to Transmit
| ' K jc ' M .
—

: '

i |

| :
--? [y plof v E|E
a SQM IM 14 |M{0]0[C|O| NulRepeat
v TV IN]ON F M

Control Message Formats

Figurg 23la

2.3:2 Information Messages

These messages are used to pass information between the highway units.

There are two classes of message, a data message and a block message.

1) Data Message: This may eitAher be directed to a particular terminal
unit, in which case it is termed a Point to Point Data Message, or it
may be a Broadcast Data Message. The format of each type of message is
shown in Figure 2.3:2a. In each case the length of the message may be

in the range 2-31 words inclusive.

2) Block Message: A Block message transmission is made up of two types
of messages, a Sub-Block Message and a Block Residue Message. The
length of the former is 33 words, whilst the latter may be in the

range 2-33 words inclusive.
2.3:3 Message Fields

The first byte of a message to be transmitted is defined to be
byte 0 and subseqﬁént bytes as byte 1, byte 2 etc. The first bit of
each byte is defined to be bit 0. As can be seen in Figures 2.3:1a and
2.3:2a, there are several different fields within the messages. The

function of each is as follows

1) Preamble: This is an optional series of ones which is used to

obtain hardware synchronisation between transmitter and receiver.

2-3

1)

2)

Broadcast Méssage

InDolvloo] 7T ElE
SOMALMEOg- cl|O

] {J .
P S
| N1OlT0O[p E

SOM |A]TIM 5 C
K|g|N|[E]T F

- Y

xom

Point to Point Mc}sqgc
1 .

' "
Block Residue Megsage

NRLOIT 111D E|E
SOM | A M S c{O
. K%NET F{M
' ! ' | '
' | ' :
' . t '
: { _ .
S =MHE c| o
K33N T|¢ F{ M

i

Preamble

Sub-Block Messc;ge I

User Data Area

Information Message Formats

Figure 2.32a

2) Start of Message: This field consists of two bytes (0 & 1) which

consist of fourteen ones and two zeros.

3) Error Check Field: The error check field occupies the last byte of
every message and in a message of length 'n' is the modulo 256 sum of

bytes 2 to n inclusive.

4) Use Message Number (UMN) |
Transmit Message Number (TMN)
Not Acknowledge (NAK)
| These fields are used in the error recovery
scheme. The UMN is issued by the highway controller as part of any
message transmittéd by it. The TMN and NAK fields are issued by the

terminal units.

5) Type Field (MTB): The type field is set by a transmitting unit, and
allows selection by the receiving unit of the types of messages to be
received. Messages. with an unwanted type are discarded by the

receiving unit.

6) Source Field (SRC): This field is set by the transmitting unit to

the units highway number (in the range 0-63).

7) Destination Field (DST): This is set by the transmitting unit in a
point to point transmission and causes the message to be discarded by
all units apart from the one whose highway number matches the DST

field.

2-4

8) Length Field : This field corresponds to the number of sixteen bit
words in ‘the message between byte 4 and the Error Check Field

(exclusive).

9) End of Message (EOM), End of Invalid Message (EOQIM) : These fields
occur after the Error Check Field. The EOM is used after an otherwise
valid message, whilst the EOIM is used after a message during the
transmission of which some error occurred (such as buffer overrun/

underrun).
2.3:4 The Error Recovery System

Error recovery is performed by a system of error detection and
retransmission of messages. All data messages are assigned a 'message
number'. This number is assigned by the highway controller when it
polls the terminals, and is held in the UMN field of the poll message.
When the terminal responds to a poll from the controller with a data
message, it inserts this number into the TMN field of the message. As
terminals receive messages, they maintain a count of the highest TMN
received in contiguous sequence. Any break in the sequence indicates
the loss of a message. In this case, when the terminal responds to a
controller poll, it responds with a 'nothing to transmit'. The
controller will then be able to determine that the TMN sent by the
terminal (contained within the NAK field) does not match its UMN, ‘and
the terminal therefore needs to have some messages repeated to it. The
controller maintains a buffer of the 256 most recent messages it has
received and is able to retransmit the message to the terminal from
this store. The terminal should then respond with the correct TMN. A

terminal unit which cannot be correctly updated will have the 'NAK

2.5

stuck' status flag set (section 2.9:2). Should the controller receive
a message in error, it will repoll the terminal up to four times
before it is locked .out of the polling sequence with the 'NR' status

bit set (section 2.9:2).

2-6

2.4 Front-End Processors

The block diagram of this circuit may be seen in Figure 2.4a. The
processor is based on two four bit wide microprocessors (AMD2901s)
[12,13]. These are very high speed bipolar microprocessors, of a type
known as 'bit-slice'. They are designed in such a manner that they may
be cascaded together in parallel to obtain the desired word length. In
this system, the use of two of these parts gives a word length of
eight bits. The block diagram of an AM2901 is shown in Figure 2.4b. It
consists of a two port RAM, a high-speed ALU and associated shifting,
decoding and multiplexing circuitry. It is controlled by means of an
externally generated instruction word, which is nine bits wide. Three
of these bits select the ALU source operands, three the desired ALU
function and the remaining three the destination register.

This instruction field of nine bit-s is obtained from a
microcode store, the full size of which is 512 words by 32 bits. The
fields in a single microcode word are shown in Figure 2.4c. Additional
fields are used to select external registers which may be either read
(Field A) or write (Field B) registers, and to supply a constant input
to the 2901s when selected (Literal Field). The microcode store is
addressed by a simple program counter which itself may be selected as
an external write register by the 290ls, allowing unconditional
branching. Conditional instruction skipping is implemented by using
four of the microcode bits which select the desired 'skip flag', the
state of which determines the subsequent state of the least
significant microcode address bit.

There is also a F'IFO buffer on the processor card. This is seen as

an external register pair by the 2901s, a write only and a read only

2-7

2901 Board

s

*[Progfam Counter

I,

o

+ 1 Skip

~Microcode Progrnm Store

Logic

-~

-

LI

l| Carry | 2901 T0 FROM|| SKIP
Control - Decoder||Decoder|{Decoder
’J"\s 4 =~
1 CLOCK —F T
| SRR I o S~
'|CONTROL FIFO
Store | |Decoder
Phase Locked J Shift 4 Decoder
Loop Rggjistcr PROM
¥ .
Sk i REE
Select :
o
|
Select :
I
' L
Rx :__-:M'_ e AM
. Host Computer
Frans.) -
7
_ .
| A==
= ~ Cables '

Figure 2.4a

ASH Communications Processor

*,/€,, PRISQWNY 91 GSW 1,,0., PEISQINY §1 G 10N

L. 1 i
i =5 -
7 i

|

=Bl E

. T2
¢ = EE s
i _
: 5 LA
sSres
—— E » 5 gs
i
K E s
&
) \
ML A
4 Ha ki
%5 F]
ifE :
i E *H &
1—1 ma
o & ., & [H
7 ‘-"__J
RE,
g:
1L
& o £

Figure 2.4b.

Block Diagram of 2901

2901 Microcode Format

PROMs -
l ! ! : | : | a 3
! H6 « G6 ! F6 D6 E E6 '> K6 L6 | M6 !
1 ! ' ' . '
') : ' ' : E '
LI N I N I O O O | B e e T
Literal FROM| TO Instruction xt" Skip
- Field Field | Field Field Field Fi'eld
] ‘ ' ' 1 E
}*—YO-?-——‘EAOG-’?E'BO-S—‘}’*—_-——! 0-8 —X 0-2-'?'-50-3-4'
! ' e | ' |
I ' ' . t

Figure 2.4c

register. The FIFO status flags are connected as skip flags to the
skip logic. Also present on the processor card is a control signal
decoder, accessed as an external write only register, which is used to
supply control signals to various parts of the system.

The input to the FIFO buffer from the transceiver card is
decoded from a bifrequency signal to a serial TTL compatible bit
stream with the use of a decoding PROM. Initial synchronisation
between the decoder and the received signal is achieved with a
tracking phase locked 'loop. The output from the FIFO to the
transciever is a bit stream which is encoded to a bifrequency signal

on the transceiver board.

Also included in the encoding/ decoding/ buffering section of the
processor board is a hardware interlock which restricts the maximum

length of continous transmission to approximately 220us.
2,5 Transceiver

The transciever board contains two sets of transmitters and
receivers to support a dual redundant highway system. It can be
expanded to a triple redundant system by adding a third transciever on
the board. Outgoing messages are transmitted on all cables, but
-messages are received on only 6ne' cable at a time. The cable to be
used is -selected from the processor board i)y the use of control
signals and external registers.

The receiver is of the zero crossing detection type, and was
designed to be tolerant of the type of signal degredation previously
mentioned (Section 2.2). The transmitter encodes the serial bit stream

from the FIFO buffers on the processor board into bifrequency code. It

2-8

should be noted that one of the control signals (C5) is used in order
to send an EOM since this is a coding violation and would therefore be
unobtainable by merely sending data to the FIFOs, as would happen

during a normal transmission.
2.6 Host Interface

This board allows the 2901 processor card to read and write to the
host computers memory. A write transfer is initiated by the 2901
writing two bytes of data, the most significant byte and then the
least significant byte, onto latches on the interface board. These
latches appear as external write only registers to the 2901s. A read
transfer is initiated by the selection of a control flag (Cl) by the
2901 board. In each case, the address has been previously set up by
the 2901 board. The address is written into counters on the interface
board (which auto-increment after each transfer). The successful
conclusion of a transfer can be detected by the 2901 board by
monitoring the relevant 'skip' flags (53 & S5).

Additional control o.ver the highway sub-system by the host
processor is obtained either by writing to a memory-mapped control
register on the interface board, or by using bus control lines
(depending upon the method most suited to the host computer's
architecture). The host computer controls the FEP with the aid of a
set of latches in the interface. The first latch either enables or
disables the FEPs ability to interrupt the host computer when it
strobes its 'té' line. The second latch sets the start/stop skip flag
to the FEP (S4). The third control from the host performs a direct

reset of the FEP by pulsing its 'RESET' line.

2-9

2.7 Microcode Cross Assembler and ASH Simulator

In order to program the front-end processors, a custom cross-
assembler was written [14]. This allowed the microcode instructions to
be written in terms of user selectable register names (allowing
greater program readability) and register operations. The output of
this cross-assembler was a file of microcode suitable for programming
the microcode store (in PROM), Sahples of this microcode may be seen
in Figure 2.7a.

Also, in order to test the correct operation of the
microcode without resorting to repeéted programming of PROMs, an ASH
simulator was written [15]. This took as its input the file of
assembled microcode previously mentioned, and by use of a
comprehensive set of monitoring instructions, either a single or
multi-step simulation of the entire ASH could be achieved. Whilst this
did not allow any .measure of the real time performance of the system,

it did allow substantial debugging of the microcode at a lower level.

2.8 ASH Terminal Unit

2.8:1 Software Tables

" Communication between the host computer and the front-end
processor is maintained via a set of software tables. A PROM s
included as a set of read only registers on the 2901 board pre-
programmed with a set of system constants. In the case of the terminal
units, only two constants are used, the terminals' Highway Number (in
the range 1-63) and the address of the start of the primary table in
the area of shared memory. The host computer must be pre-programmed

with the address of this table. The format of the primary table may be

2-10

302

366

367
368
369
X0
371

73

374
375
X766
K Jied
378
xre

aee
sel

3e2
383
X84
385
ags
397

383
“ae

390
391
392
393
394
395
Ics
397

404

408

409
410
431
A12
412

a14

415
116

8ol

R720
B21
k8o
RE1
ROC
E°1
BAO
EAl

REO
RE1
ECO
BC1
[
FIi1

RED
RE 3

KFO
KF3
[3]
Co1
cic
Ci1
c20
c21

c30
C3i
Ca0
C41
€So
cst
Cé0
Cs1

Cc70
c71
cBo
cel
ceo
c91

CAC

CrO
CER1
cco

cci1
cno
cIm
ceEo
CEa

CFO
CF1

noo
o1

3300337110

0809037010
BA00137010
QA(S037010
kA00137010
0709037011
0909037010
0084107030
0C0F137010

EB00137015
000T101020
002FP307130
0010007100
OOKC104020
O00EK101030

KEC0137013
00C0104230

0032022130
2000005130
000001313F
C000137010
C300337110
040014611F
k800137011
R900137011

200014611F
0400137011
010014611F
2100137011
0100336110
0029314130
O00E?307130
2100137011

C500037110
000F 137010
O002F204130
0002337110
CAOC3371130
AF00137010

O0F 3304130
050N237110
0400027110
OOEE320110
AB00137011

OR09137010
000C137010
OCCE137010
ER00037110

COEF 140110 -

CF00137013

000000110F
CF00127011
FFC0137010

nullel

aesss!
retmg:
centris

cntr:

cntr3:

waitl?
wait2:

waitd:

seal:?

timt:c1e

timt:c2:

timt 3¢

timt x4

rosnsltrite
orlea=908 7 receive error
branch cntrl
arlsaz§Os /7 null rerest
branch cntrl
0rlsa=807 »
orlsa=4809
nsacstart+0
contrl=$00
Severn
branch cntr2 »
l1ss=040
temrScasdod0
ox=]sdo+0+1
msrdi=04temrSeCHr
18di=0+o

sever

branch crntr3rsdnac
t0=0+rosn

/

/ wait

skir. / dats messsse
/ rerest

sdnr

ZiBERRNRNEERRIFEARERARNERARREAXKNNRREX

/this allows time sfter 2 rereat for the terminal tables to be

/handled arnd for necessary messase number urdates

/
arurr~-nackn-1
o=820+4n
ax0_o0-1 » szero
branch wait?2
rosn=lsenl .
0=404 and flasgl » sZero
branch nullr
branch rrimsg

/

/

/rereat seauence (sea)

V4383233338 3332333¢¢333424]

/ nunmber of urdates

buffer if thats why nak is stuck.

NNNNNNN

/ will be locked out.

/

Xeven
0=#20 snd flasgl
branch rtabl
0=401 and flasl
branch trttl
flag1=#401 ior fleel
onak.=0_nackn-1
rrt=triest0
branch tettl

/

/

/timt: message output (timtx)
V4313333300333 33222 2323322820384
/

/ set in sea

/this is entered from trtt when the timtx avsilcble bit is set.

/ .
a=8cS 7/ lenath

contrl=4$00
temr9=04umn
umn=000
posn=Ltimtx2
branch starl
RXeven
unn=0+temr? / reset umn
word=40%5
a=804

fladl=flagl ior o
branch chff3

/

/after time is outrut
/

lsa=#0b
nsdi=400

1s4i=400
e=$edb

/ retain umn

/ no skir if null ret

entered after » rereat from wait vis ontr
rereat secuence must not be entered sfter no resronse.
the value of *tries® should s2llow time for software to clear &

it the nm store ic

broker the rumber of tries will be used urp and the tersinal

y szero / no skir if no resronse

szero / no skir if in sea

flag3=flagl arnd @ / clear time output flag

feven

branch timt:4 » sdnac

/ delay to allow terminal to handle time msg

a=0+atl » szero
branch timtx4
branch satch?

Figure 2.7a

Samples of 2901 'Microcode

Address

In Interrupt Mask

No. of In Buffers

Input Position

Input Table Location

Out Interrupt Mask

No. of Out Buffers

Output Position |

Output Table Location

Message Type Table

Highway Number

Receive Error Counter

Data Starvation Counter

Retransmission Counter

" Buffer Overflow Counter

Jn Data Avdilable | In Transfer Fail | In Res. Length

In Block Source

In Sub-Block Total |

In Sub-Blocks Recvd.

in Block Start Address = -

lOut Data Available | Out Block Error |Out Res. Length

- Out Block Destination

Out Sub-Block Total

- Out Sub-Blocks Tx'd

Out Block Start Address

Figure 2.8:ia

SN N W N - O e

137

38
39
40
4

{2

45
46

L7
48
49
50

Terminal Primary Table

seen in Figure 2.8:1a. As can be seen, the locations and
characteristics of all the other tables and terminal unit functions

are held in the primary table. They are as follows:-

1) In Interrupt Mask: This mask is set by the host and is used by the
front-end processor to determine whether to interrupt the host at

input buffer wrap-around.

2) Number of In Buffers: This field is preset by the host (in the

range 1-64) and sets the number of buffers in the input queue.

3) Input Position: This field is used by the front-end processor to
indicate the location of the next free Input Buffer. It must not be

altered by the host during normal operation.

4) Input Table Location: This field is preset to the word address of

the start of the first Input Buffer by the host computer.

5) Out Interrupt Mask: This field is set by the host and is used by
the FEP to determine whether to interrupt the host on output buffer

wrap-around.

6) Number of Out Buffers: This field is preset by the host (in range

1-64)
7) Oufput Position: This field is maintained by the FEP and contains

the index number of the next free output buffer. It must not be

altered by the host.

2-11

8) Output Table Location: This is preset by the host to point to the

start of the first output buffer.

9) Message Type Table: This field is set by the host to indicate to
the FEP which message types it wishes to accept and which to reject.
The field is 512 bits long (64 bytes), each bit corresponding to a

particular message type.

10) Highway Number: This field is set by the FEP and corresponds to

the highway number contained in its PROM.

11) Receive Error Counter: This field is maintained by the FEP and

corresponds to the number of errors detected in incoming messages.

12) Data Starvation Counter: This field is maintained by the FEP and
is incremented every time the FEP is unable to obtain data from/
transfer data to its host sufficiently rapidly to maintain

input/output of a message.

13) Retransmission Counter: This field is maintained by the FEP and is
incremented every time the higHway controller requests a message

repeat.

14) Buffer Overflow Counter: This field is maintained by the FEP and

_ is incremented by one every time an overflow of input buffers occurs.

2-12

Fields Relating to Block Transfer

15) In/Out Block Start Address: Preset by the host.

16) In/Out Sub-Block Total: Preset by the host to the number of 32-

word sub-blocks expected to be transferred.

17) In/Out Residue Length: Preset by the host to indicate the expected

number of words in the block residue message.

18) In Block Source: Preset by the host to indicate the terminal node

from which the transfer is expected.

19) Out Block Destination: Preset by the host to indicate the

destination of the block transfer.

20) In Sub Blocks Received: Set by the FEP to the number of Sub Blocks

actually received.

21) In Transfer Fail: Set by the FEP to 127 if the transfer fails for

any reason.

22) In Data Available: This field is set to zero by the host when it
has preset all of the other fields relating to the block transfer to
indicate that the transfer may go ahead. It may not subsequently be
updated by the host until it has been set to one by the FEP to

indicate that the transfer has been completed.

2-13

23) Out Sub Blocks Transmitted: This field is maintained by the FEP to

indicate the number of sub blocks actually transmitted.

24) Out Block Error: This field is set to 127 by the FEP if the Out

Residue Length is greater than 32 (i.e. an error has occurred).

25) Out Block Available: This field is set to one by the host when it
~ has preset all of the other relevant fields. It may not susbsequently
by altered by the host until it has been set to zero by the FEP to

indicate the conclusion of the transfer.
In and Out Table

These two tables have a similar structure which can be seen in
Figure 2.8:1b. The 'Source' field has the same use and meaning as byte
5 (SRC) of an information message. The 'Destination' field has the
same meaning as byte 6 of an information message. The 'Message Type'
field is equivalent to the MTB (byte 7) together with the MTB
extension bit (byte 8 bit 0) of a broadcast message. Buffer Length'
when non-zero, indicates that; the buffer contains valid information.
When the information is either sent by the FEP (output buffer) or
processed by the host (input buffe'r) this field should be set to zero
to indicate that the buffer is free. The data area takes up the

remainder of the buffer as determined from the Buffer Length field.

?2-14

i | _Input Table Location

In Buffer Data Space

Address

|

[In Buffer Length 0

Vo :* In Source ~ |In Destination 1
"'i’/L'T In Message Type fin Source Process No.| 2
L___Y._j 3

g

In Table Format

Out Table Lotdtion

Out Buffer Data Space

/ Address

] ¢

Out Buffer Length 0

, — - Out Destination 1

!

' ! q

1T Out Source Process Number 2

= 3

Out Table Format

Figure

281b

2.822 Host Control - of ASH Terminal Unit

There are three additional controls from the host computer to
the host processor not included in the tables. They are provided by
using some form of programmed output instruction. These are reset,
start/ stop and interrupt enable/disable. To perform an orderly starup
of the ASH terminal unit, the host must first reset the unit. The ASH
will now be awaiting comrnands.'Ne*t the host must tell the ASH to
'stop'. The host computer should then set up the primary and secondary
tables, and then start the ASH unit. Subsequently all communication is
via the software tables. To send a message, the host computer must
determine the location of the next free output buffer. It then sets up
all of the fields in this buffer, with the buffer length field being
set up last, as this is the indication to the FEP that the buffer is
complete and ready to be sent. When it Has been sent the FEP will
clear the buffer length field.

Message reception is transparent to the host computer, all it
must do is l;o check the input buffers for a buffer with a non-zero
buffer length field, indicating that a valid message has been
received. It must then clear the message length field (after having
copied the message elsewhere) to indicate that the buffer is again
available.

Block message transmission is more complex, and requires a
higher level of intervention by the host computers. The Block Receive
fields in the destination unit must also be correctly set up before
the transfer can go ahead. Therefore information about the impending
block transfer must be exchanged between the transmitting and
receiving units before the transfer can go ahead. This exchange is
user dependant, the only constraints being that the number of Sub
Blocks and Block Residue Fields set up in the tables of both the

transmitting and the receiving units are identical.

2-15

2.9 Highway Controller Unit

2.9:1 Software Tables

In the highway controller communication between the front-end
proceésor and its host is via a set of software tables [16]. The
address of the 'primary table' is known to both, it being pre-
programmed into the FEPs.on-board PROM., In addition, there are four
secondary tables, whose addresses must be set up by the host computer.

These tables are as follows:-

1) Polling Table. This table, of length 64 bytes, is the list of
terminals which the highway controller is to poll. The 'Pointer to the
Polling Table' (primary table address two) may only be altered by the

host when the FEP is halted.

2) Buffer Store. The pointer to this table is held in primary table
address three, and is set up by the host computer prior to activation
of the FEP. Any. subsequent alteration will be ignored by the FEP. The
'‘Buffer Store' consists of 256 contiguous buffers each of length 34
words. It is used as a circular buffer which contains the last 256

transmitted information messages.

3) Size Store. The pointer to this table is held in primary table
address four. Again, it is set up by the host computer prior to
initial activation of the FEP and any subsequent alteration will be
ignored. The store consists of 256 words, and is used by the FEP as a

record of the length of the messages held in the buffer store.
4) Status Table. The pointer to this table is held in primary table

2-16

address five, and is set up by the host computer prior to activation
of the FEP. Any subsequent alteration will be ignored. The status
table is maintained by the FEP as a record of the status of each

terminal which is being polled. The table is 64 words in length.

The format of the primary table can be seen in Figure 2.9:la.
In addition to the four pointers detailed above, there are several

other fields in the primary table, whose function is as follows:-

1) Controller Terminal Unit Status Word (CTUSW). Primary table address
zero. This field contains bits which are set to indicate the current
-status of the highway controller.
a) Bit zero is set to one when the FEP has been stopped by a channel
control command (Section 2.9:2), and is cleared to zero when the

controller is restarted.

b) Bit one is set to one when the controller is active and to zero

when it is passive (Section 2.10).

c) Bit two is set to one when the controller has overridden a 'Go
Passive' command (Section 2.9:2), and cleared within 20 milliseconds
of the 'Go Passive' command being cleared, or when the unit does go

passive.

d) Bit three is set to one if the controller is active and detects
contention for control of the highway (Section 2.10). It is cleared

when the controller next assumes active status.

2-17

Controller Terminal Unit Status Word | O
Controller Terminal Unit Control Word 1
Pointer to Polling Table 2
Pointer to Buffer Store 13
Pointer to Size Store ¢
Pointer to Status Table 5
Self Test -Scratchpad 6
- 7
Receive Error Counter 8
"Repeat Counter 9
Null Repeat Counter 10
Out Time Available 11
| 12
Out Time

. | 16
In Time Available 17
18

| In Time
22

Figure - 29%a

Controller Primary Table

e) Bits eight to fifteen inclusive are set if the FEP detects a

failure of the interface to the host computer.

2) Controller Terminal Unit Control Word (CTUCW). Primary table
address one. This field is used by the host computer to control the
activities of the FEP, in addition to the channel control commands
normally used (Section 2.9).

a) When bit zero is set to one an active controller will assume the

passive state (A Go Passive command).

b) Bits two and three are used by the host to select the highway
cables oh which the controller transmits. If the field is set to
zero the controller will transmit on all cables. If the field is set
to one, two or three, the controller shall transmit on only the
selected cable.(n.b in the current implementation, onl)(cables one
and two are fitted, selection of cable three causes the controller

to cease transmission on either cable).

3) Monitoring Counters. These are contained in primary table addresses
eight to ten.
a) Receive Error Counter. Primary table address eight. This counter

is incremented when an error is detected in a received message.

.b)Repeat Counter. Primary table address nine. This field is

incremented when the controller sends a repeat message.

c)Null Repeat Counter. Primary table address ten. This field is

incremented . when the controller sends a Null Repeat Message.

2-18

4) Time Fields. These fields are held in primary table addresses
eleven to twenty-two. THe time fields are sent by the currently active
controller, and provide the complete time including year, month, day,
hour, minute, second, tenths of seconds and one hundredths of seconds
fields. The 'In Time' fields are used when the controller is passive
to store any time message received from the active highway controller,
while the 'Out Time' fields are used by the host processor to send a

time message onto the highway when the controller is active.

a)Out Time Available. Bit fifteen, primary table address eleven.
This field is set to one by the host computer of an active
controller to indicate that the contents of the Out Time Fields are
ready to be transmitted. It is cleared to zero by the FEP after the

time message has been sent.

b)Out Time. Primary table addresses eleven to sixteen. This field is
set by the host computer, the format of the complete field is shown

in Figure 2.9:1b.

c)In Time Available.Bit fifteen, primary table address seventeen.
This field is set by a passive controller after it has received a
time message, and has updated the 'In Time' fields. The host may

clear 'In Time Available' if it wishes to receive another 'In Time'.

d) In Time. Primary table address eighteen to twenty-two. The format

of this field is also shown in Figure 2.9:1b.

2-19

- Time Available Time Interrupt Mask
Minutes Seconds ~ [Tenths
Months Days | Hours
Synch. 1/100thS Years
Synch. 110ths

15 L 9 | S &

Format of In/Out . Time Fields

Figure 291b

2.9:22 Host Control of Highway Controller Unit

The host computer has control of the controller unit (and
therefore the operation of the highway) at three distinct levels.
Firstly, it may use the channel control system to start, stop and
reset the controller. Secondly, it may use the CTUCW to issue a 'Go
Passive' command, or to change the cable used. Lastly, it may alter
the tables, but this last control method must be used with caution, as
an incorrect alteration can bring the controller, and possibly the
entire highway, to a standstill.

The first type of control is used when the FEP is originally
switched on. The hardware of the interface card assures that the FEP
will be in its halted state immediately after the power is switched
on. The tables must be set up by the host computer, and then the FEP
may be started using the channel gontrolA system. The second control
method may be used by the host at any time, and affects the operation
of the highway as a whole. The last method of control may be used to
add terminals to the polling table, or take them out of the polling
table or reset terminals which have been locked out of the polling
sequence. This lockout occurs under conditions Qetailed in section
2.3:3. The status of each terminal may be determined from the relevant
status table entry. Each status table entry has several fields (Figure
2.9:2a) they are as follows:-

a) Information Message Monitor. Bits 0 to 7. This field is
incremented by one for every information message sent by the

terminal, and decremented by sixteen for each NTT message sent.

b) Error Monitor. Bits 8 to 13. This field is incremented by sixteen

for each message received which included an error and decremented by

2-20

0

13 14 15

Information

Message Monitor

78

Error
Monitor

Not Acknowlcdge Stuck

Terminal Not Responding

Controller Status Table Entry

Figure 2.9:2a

one for each error free message received.

c) Not Acknowledge Stuck. Bit 14. This bit is set if after four
attempts a terminal still does not acknowledge receipt of the

repeated message.

d) Terminal Not Responding. Bit 15. This bit is set if after four

attempts, a reponse cannot be obtained.

If either bits.fourteen or fifteen of the status word for a
particular terminal are set, the FEP will stop polling the terminal
unit. In this circumstance the terminal unit in question is said to be
'locked-out'. If a terminal has been locked out of the polling
sequence, or is to be started up initially, it will be out of
synchronisation with the rest of the highway. In order to reset a
terminal in these circumstances, the controller must send it a reset
message, and then recommence normal polling. The decision to send a
reset message must be made by the host computer, based on either the
status of a terminal as determined from the status table (i.e. locked
out, NAK stuck or running) or by external operator intervention (i.e.
adding terminals to the polling table). In order to send a reset
message, bit fifteen of the relevant polling table entry must be set,
and then cleared to return the polling sequence to normal. This
obviously involves changes to the polling table. Changes may not be
made to a polling table which is currently being used by the FEP, so

they must be made as follows:-

2-21

1) Set up a new polling table at a different ‘address to the current
one, with the necessary alterations (additional terminals, reset bits

set, etc.).
2) Set the channel control to 'Stop'.

3) Wait for the CTUSW stop bit to be set, indicating that the

controller has finished a pass of the current polling table.

4) Change the polling table pointer (primary table address two) to

point to the new polling table.
5) Set the channel control to 'Go'

In order to satisfy the timing restrictions concerned with the
takeover of an inactive highway by a preyiously passive controller
(Section 2.10:2) the time between the controller setting the CTUSW
stop bit, énd the host setting the channel control to 'go' must be no
more than fifty microseconds.

Thus to reset a terminal, this procedure must be performed twice,
once to cause the controller to issue the reset message, and again to

return polling to normal.

2-22

2.10 ASH Configuration

2.10:1 Single Controller/ Twin Highway Cables

The configuration shown in Figure 2.10:1a can include up to
sixty-four terminals and one highway controller. These units are
connected to a pair of twin screened cables which may each be up to
three hundred metres in length. The pair of cables provide dual
redundancy of the cabling where all units (apart from the controller,
see Section 2,9:1) transmit on both cables and receive on one. The
cable which is used for reception is decided by the FEP in each unit,
on the basis of the cable with the highest number of error free
messages received. The ASH was designed in an attempt to maximise the
reliability of a network system and to minimise the possibility of
overall system failure due to the failure of a single unit. Thus this
: partic;Jlar configuration is not a good design since the failure of the
highway controller can cause total system failure. The reliability of
the system may be significantly increased by the inclusion of multiple
controllers. In principle the scheme used for twin cable redundancy
can easily be extended to include a greater number of redundant

cables.
2.10:22 Twin Controller/ Twin Highway Cables

The configuration shown in Figure 2.10:2a is the one normally
used at A.S.W.E. It is similar to that detailed in section 2.10:1,
however there may only be up to sixty-three terminals and there are
two controllers. In .norrnal highway operation there will be one active

‘and one passive controller. An active controller is one which is

223

T Terminal Unit
C Controller

Single Controller -Multiple Cable

Figure 2.101a

————
C
T
ﬁ
¢
. c
—_—
T
{ L

C Controller
T Terminal

Figure 210:2a Twin Controller- Twin Cable

running as normal, while a passive controller is one which is running
but is merely performing checks on the operation of the highway so
that it is able to take over control should it become necessary.

The two controllers operate in what may be likened to a Carrier
Sense system. If the passive controller detects a lack of any activity
6n either highway for 3 milliseconds it attempts to take over control
of the highway. If an active controller detects any activity on the
highway within the five milliseconds before the start of transmission
it will assume a passive status. The active controller polls the
passive one (Highway Number zero) and the passive terminal responds
with an NTT message. The active highway controller cannot lock the
passive one out of the polling sequence for any reason. If at any time
an act_ive controller detects contention for the highway (as a result
of inspecting the highway immediately prior to outputting a message)
it will change cables and wait for approximately ten to fifteen
microseconds. If this second highway is still active, the controller
will record a contention by setting the CTUSW contention bit (Bit 3)
and assume a passive state. When a previously passive controller
assumes control of the highway system, it must first reset all of the
terminal wunits. It does this because it is almost impossible to
maintain a complete duplicate of the status and message information
held within the previously active contoller, and without this
information it is impossible to restart the polling and‘ error recovery
system where the other left off. Using this method, the only major
loss is of the message backup store which implies that should one of
the terminals have 'lost' a message and have been awaiting a

retransmixion, this message will be permananently lost.

2-24

© 2.10:3 Cable Configuration

Due to the inherent problems of obtaining a reliable 'T'
connection to a screened twisted pair, the actual conifuration of the
ASH is as detailed in Figure_Z.lO:Ba. The highway cabling is split at
each terminal unit, or highway controller, and the 'T' connection is
formed internally.

In addition to the 'T' configurations previously described, the
specifications. include details for a 'Spur Connection' which is as yet
not implemented. This will consist of an active repeater which will
act as a gateway between two serial highways, each up to 300 metres in

length. This configuration is illustrated in Figure 2.10:3b.

2.11 Conclusion

The ASH has been designed with two principle aims, firstly that
the system should be as reliable as possible and secondly that the
host processor should have as little processing to do as possible in
order to send messages on the highway. These have been satisfied by
thé provision of multiply redundant system elements such as cables and
controllers, and by the choice of a memory table driven FEP/ host
software interface. In addition, by careful choice of FEP hardware
interface design it was possible to allow the units to be interfaced

to a wide variety of computers with a minimum of hardware changes.

2-25

T

Figure 2103a Actual ASH Configuration

t ¢
4
T ¢ . T

C

r S I
¢
T
| T
\\. T Terminal Unit

C Controller

| t Terminator Unit

S Spur Transceiver Unit

Figure 210:3b Spur ASH Configuration

Chapter 3
Computer Systems

3.1 Introduction

In the course of this research it was necessary to use a selection
of different computer systems. Initially, a DEC PDP11/34 minicomputer
was used to implement some high level support software. The machine
was @ Durham Computer bepartment general purpose machine, and operated
with the UNIX operating system, which was written by Bell Laboratories
in the U.S.A. It was necessary to implement certain programs on this
machine which had previoﬁsly been in use on a Ferranti Argus 7005
minicomputer at A.S.W.E. In order to install this software it was
necessary to first implement a Coral compiler on the DEC machine,
since the great majority of Military software is written in Coral, and
these packages were no exception.

In the course of writing software support for the Motorola
MC68000 microprocessor, which was the principle microprocessor used in
this project, a cross-assembler was produced on a Data General NOVA-3
which operated under RDOS. This machine was chosen for the task, in
preference to the DEC, because it was more readily éccessible and was
used less. Also used in the development of the MC68000 software was a
‘Motorola MCé809 development system using the S5B (Smoke Signal
Broadcasting) DOS69 operating system. This was used to a greater
extent as the project progressed as all of the softWare written in
SIXTH for the MC68000s (Chapter 4) was written and edited on this

system.

z.1

3.2 The DEC PDP11/34 and UNIX

Durham University Computing Department owns a DEC PDP11/34 which
it maintains as a general service machine. It comprises a fully
expanded system with 256kbytes of memory, two 5Mbyte front loading
disk units (RKO05), a single 10Mbyte top-loader, a dual eight inch
floppy disk.unit, a lineprinter, and approximately ten VDUs. It runs
under UNIX version six [17], which was until recently the newest of
Bell Laboratories UNIX operating systems (version seven is now
available). UNIX is a user friendly operating system which has been
long favoured in universities and has recently been more widely
accepted. It offers programmers very easy software accessibility to
system devices and files, and since most of the system software is
written in a high level lanquage known as !c‘, it is considerably
easier to understand than most other operating systems (which are
normally written in asserﬁbler) making it ideal for teaching. It was
decided that this machine should be used, firstly due to the ease of
access, and secondly due to the ease of programming for file and
device input/ output, since it was known from an early stage that it

would be necessary to write such software.
3.24 The Implementation of BCPL and CORAL

As has been explained, due to the fact that the majority of
Military software is written in Coral, it was necessary to install a
Coral compiler at Durham. It was not possible to obtain a Coral
compiler to run under the Unix operating system, so a more indirect

method had to be followed.

A version of Coral [18,19], written in BCPL, and a BCPL compiler,
were available. The BCPL compiler and the Coral compiler were designed
to run under RT11 (DECs. standard single user operating system for the
PDP11 series), but ;a careful comparison of UNIX and RT1l showed that
the main differences between them lay in the input/ output (I/O)
system and in the assembler language used. However, UNIX already had
an RT11 MACRO assembler [20] installed (MACRO is~ the standard RT11
assembler language) so it was only necessary to alter the 1/O routines’
in order to transport the BCPL compiler to UNIX. This was because an
assembler version of the BCPL compiler had been obtained, comprising
the sections detailed 'in Figure 3.2:1a. The only operating system
dependant section was the I/O section which was the compiler to
operating system interface. It handled file and device I/O and memory
allocation, and was identical to the one used in the Coral compiler.
This assembler version of the BCPL compiler was a simp}e version, with
just enough complexity to allow cqmpilation of the version of BCPL
written in BCPL. When this second, more complex version had been
compiled, it was then possible to use this new compiler to compile the
Coral compiler. This process is known as bootstrapping.

The difference between the two operating systems is the
level at which the user interfaces to devices. In the case of UNIX, a
device is handled in a similar manner to a file, whilst in the case of
RT11, a device must be handled in a completely different manner,
leading to a much more complex I/O. system for the BCPL and CORAL
compilers under RT11.
In the absence of any formalised test suite for the BCPL compiler,
it was felt that a program of the complexity of the CORAL compiler
would be a sufficient operational test. Similarly, the software

packages written in CORAL and transported from the A.S.W.E. Ferranti

3-3

BCPL Compiler

T~

Syntactical Intermediate MACRO Code
and - Code Generator

Lexical - Generator
~ Checker

(COSYN) (COTAN) (COCO)

MACRO Link
Assembler Editor
(M11) (LINKR)

UNIX Operating System

Figure 3.2la BCPL Compiler

Run- Time
Support

(BLIB)

Argus running CORAL were decided to be a sufficient operational test

of the CORAL compiler.

3.2:2 ASH Software Packages

A.S.W.E. had commissioned the writing of two extensive software
support packages for the development of the ASH software. The first
was a cross-assembler for the microcode for the FEPs [14], and the
second was a simulator [15] for the entire highway which was used to
test the microcode before its installation in the actual system.

A The cross-assembler was a two pass assembler which accepted
as input a file of text and produced as output a binary file in a
format suitable to be used to program a PROM programmer for the
microcode PROMS, and a text file which contained a full assembler
listing. The input file contained lines of instructions, each one of
which corresponded to a word of microcode. Thus the maximum program
length was 512 instructions, corresponding to the full depth of the
microcode store. The hardware configuration of the FEPs, as detailed
in section 2.4, includes sixteen internal ALU registers (named rO0-F),
sixteen external read-only registers (named f0-F), and sixteen
external write-only registers (named tO0-F)., These registers may be
assigned names using the assembler. This greatly increases the source
program readability. The possible combinations of source, destination
and internal registers with ALU instructions, are defined by the
hardware design, and the program is checked against the allowable
combinations by the cross-assembler. The combinations are detailed in
Cambridge Consultants cross-assembler manual [14].

At ASWE this program was compiled in one section.

3-4

Unfortunately, owing to the inherent limitations of a DEC PDP11/34 and
UNIX, the maximum size of a user program- is limited to approximately
48kbytes of machine code. Due to the design of the CORAL compiler, the
maximum size of a CORAL program which could be compiled in a single
segment was approximately four hundred lines. This meant that the
cross-assembler had to be segmented into three parts to allow it to be
compiled. After this stage had been succesfully accomplished, the
compiled program was linked with its run-time package (the same one as
was used by the compilers) to produce the complete assembler.

The ASH simulator is a very much more complex program. It
allows complete simulation of the operation of the highway system. As
an input it accepted the file of microcode produced by the cross-
assembler, and a list of the allocation of external ALU registers
(i.e. 'FIFO read' register equals f6, 'skip if FIFO full' equals sD
etc) representing the actual \hardware configuration. Then, the
configuration of the highway, i.e the number of terminals and
controllers was input. Lastly, a set of monitor points were entered,
which governed which simulated registers were printed out during the
monitoring. Now the simulation could be started; The program simulated
the exact function of the bit slice processors and all of the
hardware, with the proviso that messages transmitted from a terminal
or controller were merely 'injected' into the simulated FIFOs at all
of the other units, i.e. the physical medium of the highway cabling
and its transceivers was not simulated. It was possible either to
simulate the highway operation in single step mode- corresponding to
the execution of a single microcode word in each unit, or in run mode,
where execution continued for a preset maximum number of microcode
instructions. Alternatively, by using a comprehensive break point

monitor, it was possible to cause a break from the run mode into

normal monitoring mode at the occurrence of any condition which had
previously been selected as a break point (or any combination of
multiple conditions). A full macro-executive allowed complicated
break, monitor and restart functions to be established.

Due to the extreme complexity of this program, and the
fact that it was simulating several highway units at the same time, it
was extremely siow when in operation (a simulation of approximately
100 microseconds of highway activity could take as much as half an
hour). Also, the program was very large, and in order to compile it
under the CORAL on the PDP11/34 it was necessary to segment it into
eleven parts. In addition, much of the monitoring section of the
program had to be rewritten to compensate for the difference between
the Ferranti single user operating system, and UNIX. This was due to
the fact that on the Ferranti machine the monitoring was performed on
a printer which was used only for that purpose, whilst this was not
possible under UNIX becéuse the printer was a shared resource. To
compensate for this, a spooling program was included which saved the
output for later printing, and the monitoring could also be performed

on the VDU.

3.6

3.3 The Data General Nova 3 and RDOS

The Department of Appliéd Physics owns a Nova-3 which runs RDOS-
the standard Data General single user operating system [21,22]. Its
configuration is as follows:- Nova-3 CPU, 64kbytes memory, 10Mbyte top
loading disk unit, VDU, printer and twin eight inch floppy disk unit.
RDOS supports a BASIC interpreter, PASCAL compiler and a Nova-3
assembler, as well as a SIXTH interpreter/compiler which was written
at Durham.

This machine was used to write a cross-assembler for the
Motorola MC68000, because it was initially impossible to obtain one
from Motorola which would be suitable for use at Durham. The cross-
asserﬁbler was written in Nova assembler, and did not include all of
the assembler language options possible with the MC68000 due to the
extreme complexity of the assembler program that would be necessary.
Instead, a simpie ‘assembler. was produced, to which additional

assembler instructions were added when needed.
3.4 The Motorola MC6809 Develobment System

The Motorola MC6809 [23] is one of the most advanced of the eight
bit microprocessors currently available. It is similar in architecture
to the earlier MC6800, however it offers the major advantage of a much
enlarged instruction set and an additional stack pointer. The
additions to the instruction set consist of several new addressing
‘modes, -including indirect addressing, which greatly increases the
programming flexibility available to the user.

. The development system used at Durham University is based

around a SWTPc (South-west Technical Products Corp.) CPU board which

is housed in an MSI (Midwest Scientific Instruments) chassis [24]. It
includes 48kbytes of RAM, a debug monitor (MONO9), three serial ports
and a triple five inch floppy disk drive unit with disk controller.
The system runs under the operating system DO0S69 [25], which is
produced by SSB (Smoke Signal Broadcasting). This operating system
offers .all of the basic disk file utilities and a resident assembler
and BASIC interpreter. It is an update of the earlier DOS68, written
by SSB for the MC6800, and most of it was merely reassembled into
MC6809 machine code from the original MC6800 assembler language
source, since the MCé6800 assembler mnemonics are a subset of those
used on the MC6809. This shortcut taken by SSB to obtain an operating
system for the MC6809 means that it is no more efficient than the
earlier MC6800 version, since it does not take advantage of the
additional facilities offered by the MC6809.

The development system has many additional unused
connectiﬁn:s, both to the main synchronous bus (S5-50C), and to a
memory mapped I/O section (SS5-30 bus). This allows the speedy addition

of user built boards to the system.
3.5 The Matarala MC68000 Single Board Computer

Motorola produces a single board computer, the MEX68KDM [26] a
diagram of which can be seen in Figure 3.5a. This microcomputer. has an
MC68000 as the processor, and many additional components enabling the
board to be used in a wide variety of applications.

The MC68000 is Motorola's sixteen bit microprocessor [27,28].
.Externally, it has twenty four address lines, sixteen data lines, and
control lines for asynchronous and synchronous bus interfaces.

Internally, it has a thirty-two bit architecture, in that it has seven

3-8

C

[1C
Memory Memory
RAM EPROM
| -
68000 Address, Data and Address
Control Decoding
Bus
Asynchronous PIA)
I.nte_rface |
Synchronous PIA
interface
f 1 [11—
PTM ACIA ACIA

Lr

Figure 3.5a

] L

MEX68KDM Block Diagram

data registers, seven address registers and two stack pointers, all of
which are thirty-two bits in length. The interrupt system is a multi-
level one, having seven' different priorities, selected by the use of
three interrupt line connections to the processor. All but the highest
priority interrupt may be masked out by the use of the appropriate
instruction. The MC68000 also includes a bus arbitration section,
which allows it to be used in multiprocessor systems with a shared
bus. The design of the component allows it to be easily interfaced to
all of the MC6800 family of peripheral chips [29], which only have an
eight bit data bus, as well as the MC68000 family of peripherals which
have a sixteen bit data bus (very few of these new peripheral chips
are yet available).

The single board com.puter also includes 32Kbytes of dynamic RAM,
two parallel ports (MC6821), two serial ports (MC6850), a programmable
timer (MC6840), a very powerful debug monitor called MACSBUG (held in
four 16kbit EPROMS) and additional sockets for a further four EPROMS
(which may be 16,32 or 64kbit devices). The monitor provides a full
trace/ debug facility for user programs, using the 'trace' mode which
is designed into the 'MC68[]00 chip. In addition it allows programs to
be loaded into RAM using 'S-record' format from an external device via
one of the serial ports. Motorola have defined the format of 'S-
records' and these are used extensively to allow the serial transfer
of data. Initially they were used in paper tape systems as they
incorporate parity checks and record length checks.

In addition, the board is provided with external connections (via
edge connectors) for the two parallel ports, the programmable timer
inputs, two sets of RS5-232 serial connections, and a full set of
synchronous bus signals designed to be compatible with the EXORCISER

devélopment system (Motorola's MC6800 development system). Lastly, the

board also has external asynchronous bus connections, allowing an
external device to gain access to the on-board memory/ peripherals, or
for the MC68000 to gain a similar access to an external devices

memory/ peripherals.
3.51 An Upgrade of the On-Board Memory

Although the MC68000 single board computer already included a
RAM area of 32kbytes, it was found (section 5.2) to be necessary to
expand this RAM area for certain applications. The normal method

advocated by Motorola was to plug the MC68000 board into an EXORCISER

chassis and plug in sé;zmdard Motorola RAM modules as needed. However,
a closer examination of the circuitry of the MC68000 board showed that
with a very few hardware alterations it was possible to upgrade the
board to.128kbytes of RAM (Appendix B). This was possible due to the
similarity between 64Kbit RAM chips and 16Kbit RAM chips. The pinout
of these chips can be seen in Figure 3.5:1a. The 64Kbit component has
an additional address line, and has only a single supply rail, in
contrast with the twin supply rails used on the 16Kbit device. This
meant that the memory could be upgraded by merely adding a two-into-
one multiplexor, and rewiring the supplies. Extensive testing of the
expanded memory, using a psuedo-random memory test routine, showed it
to function correctly.

In addition to the RAM expansion, by reprogramming the MACSBUG
monitor into two 32Kbit EPROMs, space was made available for up to
24Kbytes of user program in EPROM. This was necessary due to the
requirement (sections 5.1,6.1) that the user programs should be held
in non-volatile storage to allow an ordered program restart after a

power failure.

3-10

Vbbh

RAS
A0

Al

Vss

D, GAS

A6
A3
Al
AS

16Kbit RAM
(MCM4116)

Figure 351

RAS A6

A2 AL

1 AS
e

64Kbit RAM
(HM4864)

3.6 Additional Peripherals and Software

In addition to the computer systems already mentioned there were
many additional pieces of equipment and software used, the most

important of which are detailed below.
3.6:1 Pro-L.og PROM Programmer

Many diffeAren_t types of programmable memories were used
throughout the project. Firstly, in the FEP there were three different
types of fusible link PROMs. In addition, on the MC68000 board, three
different types of EPROM, and another type of fusible link PROM were
used. This meant that it was necessary io use a 'multi-function' PROM
programmer. This type of programmer is able to program a wide variety
of different devices either by the use of multiple driving programs
stored internally, or by the selection by the user of the correct
'pinout module' and ‘'configuration module' (this last was merely a
PROM which held the correct driving program to be able to program the
desired type of PROM). The first type of .programmer is very expensive,
and on this basis it was decided to purchase the second type. A Pro-
Log M920 programmer was purchased, along with two 'Generic Family
Modules', four 'pinout modules' and five 'configuration modules’. This
enabled any one of the seven PROMs/ EPROMs to be programmed, and many
others in addition. The programmer could either be connected to a
teletype/ VDU via a serial link, or to a computer system via a
~ parallel link.

'For reasons of speed, it was decided to connect the programmer
to the MC6809 development system via the parallel link and a parallel
port on the development system. This port was in the form of a MC6821

PIA (Parallel Interface Adaptor) plugged into the I/O area mentioned

3-11

in section 3.4.

A program was then written in assembler to control t.he programmer.
A listing can be seen in Appendix A. This could be ﬁsed to program the
PROM with a microcode program already loaded into memory (by the
operating system) and was also able to load the microcode programs
into memory itself and subsequently to program the PROMs, Lastly, it
was possible to use a 'modify' mode to perform a single location read

or write into the PROM.

3.6:22 Computer Communications Softwafe

To allow microcode which had been assembled on the DEC PDP11/34
to be programmed into the fusible link PROMs on the MC6809 system, it
was necessary to write programs to allow communication between the two
computers. They were separated by some considerable distance and the
con-nection used between them was a 25mA current loop. The
communications software composed the data to be transmitted into
bl_ocks of a preset length and included an error check.field as part of
the message to be transmitted. On reception at the MC6809 system, the
message was checked for errors '(by using the error check field) and if
any error was detected the message was retransmitted by the DEC
system.

A similar communications package was written for the transfer
of data between the NOVA-3 and the MC6809. This allowed MC68000
programs which had been written and assembled on the NOVA-3 to be
transferred to floppy disk on the MC6809, and subsequently either to
be programmed into EPROM or down line loaded into the MC68000 boards.

The program used on the MC6809 system was nearly identical in each

3.12

case, the only difference being in the commands which had to be sent
to the ‘'other end of the communication link. The function of the
programs on the PDP and NOVA was identical, however the DEC program

was written in 'c' and the NOVA program in assembler.

3.7 DMA Interface

As detailed in section 2.6 communication between the host computer
and the FEP was by means of a specialised interface. This provided for
communication on two levels. Firstly a high speed DMA interface, and
secondly an interféce by which the host could control the FEP using
some form of programmed output. At the start of this project, a
version of the interface had been designed for a Ferranti Argus, a
Locus 16 and a Konsberg S5500. It was necessary to design a new
interface for any other computer used at Durham. The first design
produced was for a Motorola MC68000 interface. The circuit diagram can
be seen in Appendix C. The new interface design differed from the
original ASWE designs because it used more LSI parts, as these were
not available at the time the ASWE interfaces were designed. This
resulted in a decreased chip count and therefore a smaller overall
size. The DMA section of this interface was designed to satisfy the
timing requirements of both the MC680d0 processor and of the FEP, as.
set down in. their relevant specifications. Unfortunately, these
specifications proved to differ from the actual physical attributes of
the processors, and considerable time was taken in attempting to debug
this interface. It makes use of the bus arbitration section of the
MC68000 pfocessor by requesting access to the asynchronous bus on the

MC68000 board when the FEP indicates that it wishes to perform a

3.13

memory transfer. This causes the MC68000 to halt at the end of the bus
cycle currently being executed, and to pass control to the interface.
The interface then completes the FEP's transfer and returns control to
the MC68000.

The program control section of the interface is accomplished
by partially decoding the address bus of the MC68000. If a write
operation by the MC68000 is. detected to an address preset by a set of
switches on the interface, then the data being written to the address
is decoded and latched to obtain the control signals for the FEP

board. The signals are specified in section 2.6.

3.8 Conclusion

Several different computer systems were used, each for the task to
which if was best suited, or most readily available. The DEC PDP11/34
was used primarily for 'high-level' program development, whilst the
Nova-3 was used because access to it was virtually without
restriction. The Nova-3 was used only to write assembler programs for
the MC68000 éystem. The MC6809 development system was used for a wide
variety of purposes:- to write SIXTH programs for the MC68000, to
drive the PROM programmer, and as a monitor station and bulk storage
unit (section 6.2:1). Lastly, the MC68000 was the workhorse of the
project, being used in all of the ASH units built at Durham. In
certain applications, its normal quota of 32Kbytes of on-board RAM was
expanded to 128Kbytes. The design of the board gave great ease of
interfacing to external sytems, either under programmed I/O via
parallel or serial ports, or under DMA control via a synchronous or
asynchronous bus. Ah asynchronous interface was designed to connect

the MC68000 boards to the ASH front end processors.

3214

Chapter 4
[}
SIXTH

4.1 Introduction

FORTH was written by C.H. Moore at Palo Alto Laboratory [30,31] to
run on a DEC PDP 8. It was designed to allow a large number of tasks
to be si‘multaneously memory resident. At the time at which it was
written, memory was very expensive and the PDP 8 had only 12k words of
RAM, FORTH optimised 'its use of memory at the expense of execution
speed, to gain maximum possible resource utilisation. The PDP 8 was
used to control and monitor a radio telescope. FORTH creates an
environment in which complex interfacé driviing software can be easily
debugged and tested and so was well suited to that application.

SIXTH is a second generation FORTH which was designed at
Durham University specifically for use with modern microcomputer
systems. In these systems, memory is readily and cheaply available,
as are a wide variety of microcomputer systems, and SIXTH has
therefore been .optimised for ease of implementation and
transportation, rather than for super-efficient memory use. The SIXTH
used on the MC68000 systems was specifically designed and written for
this research project. Similar SIXTH systems have been written for a
number of different systems, both minicomputer and microcomputer

based.

4.2 SIXTH Design Philosophy

SIXTH is a stack based language. This gives rise to a notation
throughout the system which is primarily 'backwards'. This includes
reverse Polish notation for arithmetic functions. In addition,
language constructs which are used in other languages (such as IF...
THEN... ELSE....) appear in slightly strange format (i.e IF...
ELSE.... THEN...). |

4-1

The system uses SIXTH language words, which are known as
definitions. These are held as a 'linked list' in memory. This list is
known as the dictionary. Each definition is preceded by a header whose
format is shown in Figure 4.23. It consists; the name of the
definition as a string truncated to the first four characters, the
total length of the name string and a link address to the previous
definition heading. The operating system maintains a pointer to the
last definition in the dictionary. To search for a definition in the
list, it is searched backwards by starting at the last definition (to
which the system holds a pointer). If this is not the desired
definition, the pointer to the next one is extracted from its header
and the previous definition is then checked. This will continue until
the last definition in the linked list (which is the first routine
defined in the kernel) is reached. This last definition has its link
address pointer set to zero. SIXTH recognises this as being the last
definition, and if this stage is .reached it implies that ‘the
definition was not in the dictionary. SIXTH normally operates from a
- VDU in interpretative mode. Alternatively it may operate from a file
held on some bulk storage medium to 'RELbAD‘ large sections of program
which would be too laborious to retype from the VDU,

In its interpretive mode, character entry is handled on a line-by-
line baéis by a buffer routine which also provides keyboard handling
(i.e. backspace, prompts etc.). The li‘ne is parsed into character
strings separated by spaces and terminated by a carriage return. SIXTH
then attempts to interpret these strings as either numbers or
previously defined SIXTH routines. If the string is a number, it is
placed on the operand stack, otherwise the string is checked with the
dictionary to see if it has been previously defined. If it matches a
previous definitic;n, this definitioﬁ is executed. If it does not, an
error is flagged. From this interpretive mode, new definitions may be

4-2

Precedence Length

Name String

Link Pointer

SIXTH Definition

Figure 42a SIXTH Header Format

added to the dictionary by placing SIXTH into compilé mode (using the
definition ' to start compilation and ';' to terminate it). In
compile mode, any valid keyboard entry is compiled onto the end of the
dictionary in the same format as previous definitions. After exit from
the compile mode, this new definition may be executed from the
keyboard in the same way as the old definitions. Thus any definition
may either be executed from the keyboard or from within a definition,
or may be compiled into a new definition. Additional SIXTH keywords
cause the system to accept input from an alternative source to the
keyboard. In some systems this would be a resident disk unit, but in
the MC68000 system it was the serial link with the MC6809 development
system. This allows the loading of the linked dictionary from the bulk
storage device. |

A normal SIXTH system comprises three parts; firstly the system
kernel which is written in assembler, and incorporates all of the
basic system routines such as /O routines, "‘terminal handler,
interpreter/ compiler and number handler. The second part is the
system dictionary which includes all of the high level routines such
as conditional statements, loops, string handling, system utilities,
and assembler if included in the implementation. The assembler was not
- included in the MC68000 implementation of SIXTH because of its great
complexity. The final part of SIXTH is the user program section. The
second and third sections are written in SIXTH.

The system as implemented on the MC68000 includes three stacks,
the operand stack, the 'Dd' stack and the machine stack. The first is
the primary SIXTH stack which is used for parameter passing between
routines and for keyboard interpreting. The second is only used in the
'DO..... LOOP' construct, and is used to stack loop parameters. The
final stack is used to retain the return addresses from subroutine
calls. The MC68000 processor has seven data registers and seven

4-3

address registers. The stacks are implemented using three of the

address registers.
4.3 System Kernel

As explained, the system kernel was written in assembler and
performed all of the basic SIXTH functions. A listing can be found in
Appendix A. In all of the routines apart from the first two (CHIN,
CHOUT) all parameters are passed on the operand stack, allowing all of
these routines to be used by any SIXTH programs.

In the explanations of 'the routines that follow, the
abbreviations 'DO0-7' are used to represent data registers zero to
seven, 'A0-7' for address registers zero to seven, '™S' for machine
stack, 'OS' for operand stack and 'DS' for the 'DO' stack. The current
system I/O port may be either of the two ACIAs on the MC68000 board,

and is selected by the value of the address in the location named

'PORT".
CHIN Reads one character from the system port into DO.
CHOUT Writes one character from DO to the system port.

BUFFER Used when A VDU is connected to the system port. It prompts
the operator for characters and then buffers a line which is
terminated by a carriage return. It also sets up the
parameters for WORD.

CRLF ' Sends a éarriage return/ linefeed pair to the system port.

WORD Parses the line buffer produced by BUFFER to set pointers to
the beginning and end of the next word in the buffer. Sets the

LAST flag if the end of the line has been reached.

4-4

FIND This is the dictionary search routine. It takes the word parsed
by WORD and searches the dictionary for it. The address of the
definition is placed on the OS if it was found, or zero is
placed on the stack if it was not found.

PUSH Pushes the contents of DO onto the OS.

PP Pops the top word of the OS into DO.

STK Pushes the contents of DO onto the DS.

UNST Pops the top word of the DS into DO.

NUMBER This is the number crunching routine. It attempts to assemble
the ascii word parsed by WORD into a binary number, in the
base' indicated by RDX. It then places this number on the OS.

RESTART This routine performs a system restart by resetting all of the

SIXTH system variables. .

This routine puts SIXTH into compile mode. It also puts the

new header onto the end of the linked list.

EXECUTE This routine is used after an attempt has been made to FIND
the word. If the attempt succeeded, then the word is either
executed or compiled, depending upon whether the system is in
compile or execute mode. If the attempt failed, EXECUTE calls
NUMBER in case the word is a number. If it is a number it is
either left on the OS or compiled into the dictionary
depending upon the machine state. F-inally, if the word is
neither, EXECUTE flags an error condition.

TYPE Thé length and address of a string to be output are taken from
the OS and used to output the string to the system port.

TITLE Displays the SIXTH banner.

H This routine ends compile mode and finishes the new dictionary
entry. Anything entered between : and ; is compiled into the
dictionary.

4-5

CONSTANT Assembles a number into the dictionary from the OS as a
complete new dictionary entry. When the new definition is
executed, it will put this number onto the OS.

INTEGER Assembles a number from the OS into the definition currently
being compiled. When this definition is subsequently executed,
this number will be placed on to the OS.

VARIABLE When executed it allocates space for a variable in the new
definition currently being compiled, in addition it inserts
machine code into the current definition. When the new
definition is subsequently executed, this machine code causes
the address of the variable space to be placed on the OS.

" LOAD Resets the current system port to be the second ACIA connected
to the MC6809 system and reads in one line of text into the
line buffer.

OPEN This routirje sends a command to the MC6809 system via the
second ACIA which causes the MC6809 to open the SIXTH
dictionary file.

RELOAD This routine sets the reload flag, thus putting SIXTH into
reload mode.

IMMEbIATE If this word is compiled into a new definition, it causes
the precedence bit (which is part of the header of each
definition) to be set to one. This means that when this
definition is subsequently included in a new definition, it
will be executed rather than compiled, as is normal.

TO | Sends the character on the OS to the system port using CHOUT.

DISSECT Dissects a binary number on the OS into ASCII characters, and
a which it replaces on the stack.

. Uses DISSECT to output a number in ASCII to the system port
which corresponds to the number which was on the OS, expressed
to the current base.

4-6

ASMB Puts a number from the OS into the dictionary.

@B, @W, @L These read a byte, a word or a long word from the address
held on the OS and place the result on the OS.

B, 'W,IL These write a byte, word or a long word held on the OS into
the address also held on the OS.

+, -, ® [These perform the relevant arithmetic operations on numbers
alreédy on the OS and place the result back on the OS.

LEFI’ This routine shifts the number on the OS left by the number of
places held on the OS.

SWAP This swaps the top two numbers on the stack.

The interpret loop is the master routine for the SIXTH
interpreter/ compiler. Its operation is illustrated in Figure 4.3a,
and is fairly straightforward. It calls either BUFFER or
LOAD depending upon-the state of the reload flag. It then calls WORD,
FIND, EXECUTE until such time as the end of the line is reached (which
is indicated by the LAST flag, set by WORD), when it loops back again.

The use of SIXTH is best illustrated by example.
At the simplest level, the line:-

42 %

places two numbers on the OS, takes them both off the stack,
multiplies them together and places the result back on the OS. The
line:-
: SUM 4 2 *
compiles a new definition named 'SUM'
onto the end of the dictionary, which may then be executed, by using
the line:-

SUM

RESTART
-

[ln Reload Modc?j[—n-‘

1Y
LOAD

BUFFER

, -
— worD
B
FIND

3
EXECUTE

i
LE/El’ld of Line?/

Figure 4.3a SIXTH Interpret Loop

This will perform the same
operations as above. The line:-
10 CONSTANT FRED
creates a new definition which when
executed places 10 on the OS. The line:-
10 : FRED INTEGER ;
has a similar effect. The memory manipulation commands are
straightforward, the line:-
2 100 'W 300 @W
will store the number 2 at location 100, and
will then read a word from address 300. The three operation types,
byte, word and long word correspond to the modes for memory
manipulation available on the MC68000 processor, which are 8,16 or 32
bits in length respectively. The lines:-
: THING VARIABLE ;
12 THING W
THING @W
create a new definition called THING,
stores the number twelve in the variable space thus allocated, and
reads the contents qf this variable space onto the OS.
Finally, the SIXTH dictionary may be reloaded by using the
commands:~
OPEN
RELOAD
which open the SIXTH dictionary file on the MC6809 and
reload the dictionary, by placing the system into the reload mode (the
reload flag is set). The system is returned to normal operation by the
inclusion of a 'RESTART' at the end of the dictionary file on the
MC6809, which causes all of the SIXTH system variables to be reset,
including the reload flag. SIXTH may be operated in any number base,

4-8

as defined by the contents of the location 'RDX'. The base used only
affects the ASCII representation of numbers at the VDU. The internal

representation of numbers is always in binary form.

4.4 SIXTH Dictionary

| As described, this is held on the MC6809 system in the form of an
ASCII filé which was written and edited using the standard DOS69 text
editing system. A listing of the dictionary may be found in Appendix
A. Although it was impdssible to include a full 'in-line' MC68000
" assembler in the dictionary, several assembler instructions were
needed to complete the dictionary. These may be found near the
beginning of the dictionary. It should also be noted that although a
comment construct is defined using '(" and ")' as delimiters, this new
definition occurs some way down the dictionary, so the initial section
is uncommented. Several of the main higher level SIXTH constructs are

- detailed below.

.. DO ... LOOP
This is used in the normal manner, apart from the fact that it may
used only when SIXTH is in compilé mode, and the loop limits must be
entered in reverse, due to the stack orientation of SIXTH. i.e. a
valid statement would be:-
: TEST100 DO 1. LOOP ;
the T routine Vplaces the
current value of the loop counter on the 0S. STOP may be used to abort

the loop.

BEGIN END

This is the infinite loop construct and may be aborted by the use

of QUIT.

ees IF .. ELSE ... THEN ...
This is the conditional branch construct and may be used with the
conditions =<, >=, =, >, < A valid use would be as follows:-
: TEST < F ., DROP ELSE DROP . THEN 3
4 2 TEST
the definition TEST would then print out the lesser of
two numbers on the stack, in this case it would print out '2'. Note
that the construct may be used without ELSE, but IF and THEN must
always be used together.
STRING
ARRAY allocates an array space within the current definition and
also compiles machine code into the current deinition to handle thié
array space a run time. STRING merely fills this array with the
specified string. e.g. : SAYING STRING "The quick brown fox" ;
creates an array filled with the specified string, whilst the
command:-
| SAYING TYPE
causes the size and length of this array to be
placed on the OS, and TYPE then uses these parameters to type out the
string. Several utilities are included, the more often used are:-
KEEP, which i‘s used to protect the dictionary against inadvertant
deletion,. FORGET, which is used to delete unwanted dictionary
definitions and WHAT, which is used to list out the dictionary
contents.
Finally, COMPILE is used to compile user programs from a file on
the MC6809 which is specified by the operator thus:-
COMPLE FRED
This user file, which is held on the MC6809, must be terminated with
a %ENDFILE,

4-10

4.5 Conclusion

A SIXTH interpreter/ compiler was written at Durham for the
MC68000 single board computers which was capable of handling a VDU and
accepting input, via a serial link, from the MC6809 development system
which was used as a program development station. This allowed programs
to be tested interactively from the VDU and then stored on floppy disk
on the MC6809 system for subsequent recompilation. The SIXTH system
was written in three parts, a kernel in assembler, and the dictionary
and user programs in SIXTH., The design concepts differed from the
FORTH language upon which SIXTH was based, in that memory use is no
longer minimised at the expense of program execution speed. This was
possible due to the cuvrrent low cost and easy availability of

semiconductor RAM as compared to the time at which FORTH was written.

4-11

Chapter 5
The Partable Highway Controller

5.1 Introduction

The portable highway controller was developed at Durham as part of
the Durham University version of the ASH system [32]. As explained
previously, the Ferranti Argus minicompﬁters used as hosts to the ASH
system at ASWE could not be used at Durham, and instead Motorola
MC68000 single board computers were used. Initially all software for
both the highway cpntrollers and the terminal units was stored in
volatile memory on the MCé8000 boards, and a system restart involved
reloading all of the programs from the MC6809 development system.
Subsequently, the programs were loaded into EPROM and a restart could
take place without any intervention from the MC6809.

When the complete system was demonstrated to ASWE, it became
apparent that an MC68000 hosted highway controller could perform all
of the tasks which had been previoﬁsly performed by a Ferranti Argus
700F minicomputer, at a much lower cost and in a much more compact
form.

On this basis, a draft specification for a portable highway

controller was set out whose main requirements were as follows:-

1) The unit should be entirely self-contained, should include some
form of highway status display, and a keyboard of some sort to
allow the operator to manually alter the highway controller

operation.

2) The unit should be completely failsafe i.e. it should be able to
restart automatically after a power failure, and important system

parameters should be battery backed up, such as the system clock.

3) The operator should have as much (or more) control over highway
controller operation as in the Ferranti Argus 700F system, and the
display contained in the unit should provide all of the status

information necessary for full monitoring of the network.

Several units have been developed at Durham which satisfy these
requirements, and after extensive evaluation and testing of these
units at ASWE, it has been decided to commission a commercial version

for future use.

5.2 Portable Controller Hardware

The hardware used in the portable highway controller is an upgrade
of that used in the standard Durham University terminal unit. The
basic ASH hardware is as detailed in section 2.4-2.6, with the
addition of an extra page (512 by 32) of microcode store. This is a
standard ASWE alteration for the ASH systems which include dual
controllers, as it was found to be impossible to include all of the
necessary software in only one page of microcode store. The desired
page is selected with the aid of a 'page register' which appears as a
write only register to the 2901. In order to change page, the 2901
must write the desired page number into the register. Program
execution will then continue at the same instruction address on the
newly selected page.

The other hardware included in the unit was the Motorola MC68000
board with its on-board RAM expanded to 128kbytes (section 3.5:1). A
CMOS clock chip (National Semiconductor MM58174) and 3V rechargeable
battery were included to provide a battery backed-up system clock. The

requirement for full monitoring capability was more difficult to

5-2

satisfy in the limited space available. Several different types of
display were looked into including plasma panels, LED displays and LCD
displays. The LCD display was finally chosen on the grounds of
availability, compactness, low cost and ease of connection. In
addition, LCD displays need only a single 5V power supply, and the
unit chosen, a FELTEC 128 character display (4 rows of 32 characters)
was available in a low power version which had a power consumption of
only 25mW [33]. The keyboard used in the Durham versions was a
hexadecimal keypad (Radiospares) however ASWE intend to have a custom
keypad designed for them.

Finally, the unitgs contained a fully stabilised four rail power
supply, which could run from 240,220,120,110 volts at 50/60Hz. Thé
five volt rail was protected with a crowbar unit to provide the unit
with some protection against power supply failure. The power supply
design included mains filters and sufficient 'backing voltage'
margins, to ensure that the power rails remained stable even when
‘operating with ship-borne power supplies and their occasional lack of
requlation. The external case was designed to enable the unit to be
either free standing of to be mounted in a nineteen inch rack. A
cooling fan and vents were provided at the rear so that the unit could

be mounted in the middle of a stack of equipment.

5.3 Controller Software

5.3:1 Design of SIXTH Programs

The highway controller software had to perform several separate
types of functions which were as' follows; firstly to allow the
operator to control the function of the highway controller (and
therefore of the highway system) via the keypad. Secondly, to provide
continuous monitoring of any system feature which the operator wished
to inspect (see section 5.3:2). Thirdly, the software had to provide a
'highway maintenance' function to automatically send out time
messages, attempt to restart locked-out terminals, etc. Lastly,
routines had to be included in the software to provide for orderly
power-up restart of the controller and the highway system. The
complete program listing may be seen in Appendix A. This SIXTH progrém

is compiled onto the end of a standard SIXTH kernel and dictionary.

The first function is accomplished with én interrupt driven
circular buffer routine.to allow 'type-ahead' on the keypad (Figure
5.3:1a). Each operator command is a two character code, using the 'F'
key as the equivalent of a 'carriage return' key. These commands fall
into three groups (section 5.3:2), those that alter the status
informafioh which is being displayed, those which alter the operation
of the controller, and those which alter the operation of the highway
system. The codes generated by the hex keypad and associated circuitry
are processed by the software to produce two character ascii commands
which may be handled by the SIXTH buffer routine as though they had
been originally entered in ascii. As mentioned 'F' is equivalent to

'carriage return' which is the SIXTH line terminator (section 4.3).

5-4

Interrupt Handler

Form an Ascii Char.

from Hex. No.
—y
[WP=RP? EXIT
n .
[Char="F'/-X—dincrement ALINE}—{Char=(CR)
WP= EOB?}y y EXIT
/Increment WP/ WP=0

Store Char.
I
Increment ACHAR

.p y .
EXIT JACHAR =07 —1{EXIT
s .

Read Char.
WP - Write Pointer RP=E0B?/-—JRrP=0|
RP - Read Pointer ni
EOB- End of Buffer : Increment RP
-
Decrement ACHAR

[ExiT]

Programmed Character Read
Routine

Figure 53:1a Keypad Service Routines

The first two types of commands may be carried out without any
interaction with tHe highway controller FEP, however as explained
previously (section 2.9:2), in order to alter highway operation, the
controller must first be halted, and then restarted. An optirﬁised
routine was written for this function whose overall function is to
swap the current polling table with an alternative one. The section of
the routine executed with the controller halted has been minimised to
keep within the time constraints mentioned in section 2.9:2.

The monitoring task is performed continuously, and is
halted only when the operator is using the keypad (Figure 5.3:1b). At
such times, the current monitoring cycle is completed, and then the
display is cleared and used to echo characters to the operator and to
prompt for the necessary entries. At the conclusion of that particular
command entry, normal monitoring is resumed. The monitoring is
normally in the form of a menu of controller status information takep
from the various tables (section 2.9:1). This will only change should
any of the various counters be updated by the FEP. The menu system is
also used to display the terminal status information as extracted from
the status tables, however the status information on multiple terminal
units is displayed in rotation.

The highway maintenance function is invisible to the operator,
and occurs at regular predefined intervals. The real-time clock chip
is used to provide an interrtjpt once every five seconds. This prompts
the MC68000 to set up a new time message in-the 'out-time' space. The
status of each terminal in the polling table is also checked, and
should there be any terminals locked out, the MC6B000 attempts to have
them restarted, u'sing the procedure detailed in section 2.9:2,
Additionally, when the controller is passive instead of active, the

interrupt routine will update the real-time clock, should an 'In-time'

5-5

Interface Failure [Y Display FAILURE Sign
Flagged ? :

_nk
/ ACHAR=0? J[o Process Command
y} i

Refresh Display

Figure 5.3:2b HWC Monitoring Routine

INTERRUPT

AV

Set up a New Out Time Field

—,,—[Any Terminals Locked Out?]

y—
Reset them and their Status
Table Entries

= I
Process the n Controller Active? lU——J Send the new
new In Time = Out Time
[4 EXIT | T

Figure 53:1b HWC Maintenance Routine

message have been recieved from the active controller.
The system chosen for the power-up software was as detailed in

Figure 5.3:lc. A 'map' of the contents of the RAM immediately after
loading SIXTH and compiling all of the controller programs was taken
using the MACSBUG monitor. This map was transferred onto disk on the
MC6809 system. In addition, a map of the SIXTH variable space was
made, and a small supervisory program was assembled on the NOVA-3, and
loaded onto disk on the MC6809. These various sections were programmed
into the EPROMSs as detailed in Figure 5.3:1d. At power-up, the MC68000
board generates a reset pulse. At reset, the MC68000 picks up the
reset addreés from memory locations $00000-$00004, which are decoded
into the EPROM address space. This address was set to point to the
supervisory program, which then proceeded to copy the EPROM contents
into the RAM space. After this copy was completed, control was passed
to the SIXTH reset routine. This routine reset \and halted. the
controller and set up the software tables to a predetermined default
(currently to poll terminal numbers 0-16). The controller was then
started, and control passed to the normal SIXTH program loop.
This method of restarting is very wasteful of memory space,
because there are two copies of the entire SIXTH program when the unit
is running correctly, and one copy is only ever used at reset time. An
alternative would be to run the MC68000 from SIXTH programs stored in
EPROM. This would give a great Asaving in memory, but would give rise
to two other problems. Firstly, the access time for the EPROMs was
considerably longer than for the RAM, thus programs would run slower
than from RAM. Secéndly, the SIXTH used on the MC68000 was designed to
be run from RAM, and would have had to be considerably rewri.tten to
allow it to be run frorﬁ EPROM. Also, it was not relocatable and this

would have led to addressing problems. The restart method chosen had

5-6

l

Disable Interrupts and Enable
Supervisor Mode

Copy SIXTH Variables into RAM

Copy SIXTH Code into RAM
4

Reset Machine Stack

'

Jump to SIXTH Restart Routine

l

Figure 53¢ Power-up Software

EPROM

SIXTH Kernel

Reloader

800
900

- SIXTH Variables

RAM

—1 68000 Exception Vectors

400

800 MACSBUG Stack Space

] HWC Primary Table

SIXTH Dictionary —

and
User Programs

A00

2000

900

HWC Polling Table A
A00

HWC Size Store
C00

HWC Status Table
D00

HWC Polling Table B

1000

SIXTH Variables

1100
SIXTH 1/0 Buffer

1200

SIXTH DO Stack
1300

SIXTH OP Stack
1900
; SIXTH Machine Stack
2000

— * SIXTH Kernel
2800

— SIXTH Dictionary
and

3E00 User Programs

A000

HWC Buffer Store

Figure 531d EPROM to RAM Map

the considerable advantage that to implement it, the standard MC68000
board needed only to have the restart vector changed (necessitating
the changing of one EPROM) and to have the SIXTH EPROMs plugged in. In
all other respects is was identical to the MCé68000s in the terminal
units, allowing complete interchangeability of hardware, and the great °

majority of software.
5.3:22 The Use and Upgrading of the Controller Software

The user commands are detailed in Appendix D. Unless the
operator explicitly commands the controller's FEP to start, stop or
reset (commands Cl, C2, CB) it will continue to maintain normal
highway signalling. In addition, the command 'AAA' causes termination
of the normal mode of operation of the MCé8000, and returns program
control to the SIXTH interpret loop (section 4.3). This allows a VDU
to be used as the 1/O device. éy this means, the operator may debug
the software whilst the controller FEP is still in operation.
Additional SIXTH routines may be added to those already present in RAM
by compiling them from the MC6809 system or from the VDU. When these
routines have been debugged and tested they may then be added to the
normal controller program by reprogramming the EPROMs with the

additional routines.
5.4 Testing the Portable Highway Controller

~ After the software for the controller had been written and
debugged to the stage at which it would compile, it was necessary to
devise some method of testing the many routines and the interactions

between them. The routines concerned with monitoring the software

5-7

tables and with altering the tables were tested interactively by
causing "SIXTH to respond to both the keypad and the VDU
simultaneously. Thus the VDU could be used to check that the flat-
panel display was correctly displaying the contents of the software
tables, and that the keypad was performing the correct changes.

The sections of the user program which proved most difficult
to debug were those which had to interact with the FEP and those which
performed the restart function. The former routines had to be tested
with the aid of a Logic Analyser (Hewlett-Packard 1615A) while the
controller was connected to the complete ASH system, to ensure that
‘none of the rigid time constraints were violated. The latter routines
were difficult to debug due to the fact that in their final form they
boostrap' a copy of the user program into RAM, and program control is
passed to routines within this boostrapped program. Thus if there is
any mistake in the copy section of the routines, a complete processor
crash could occur. The det;ug monitor, MACSBUG, was used to debug these
routines as far as possible, however when the stage was reached at
which the user routines were performing (or attempting to perform) the
entire restart, this was no longer possible because MACSBUG was not
initialised after the power-up, and could not function correctly. The
final debugging had to be carried out with the aid of the logic
analyser.

After performing all the tests possible on the unit's stand-
alone function, it was necessary to test it while connected to the
highway system. These tests were first carried out at Durham, with the
controller connected to a system comprising six 'terminal units, and
then at ASWE, with the controller connected to a system comprising
seven terminal units and an additional controller. The controller was

tested whilst the highway systems were performing soak tests (see

5-8

section 6.1). Terminal units were stopped and then started again, to
ensure that the controller software was capable of automatically
reseting terminal units. In the ASWE system, a second controller was
used to check the operation of the portable controller in both active
and passive modes. Exténsive testing, over weeks of continuous use,
necessitated minor alterations to the software which were mainly
concerned with the MC68000/ éperator software interfaée rather than
the MC68000/ FEP software interface.

The final test of the portable controller was the ship trial
(section 7) during which its operation in a hostile environment was

fully tested.

5.6 Conclusion

A highway t;ontroller was designed and constructed at Durham as
part of the ASH system built there. Interest was expressed by ASWE in
the concept of a self-contained portable replacement for their Argus
700F based highway controllers. A set of requirements for such a unit
was laid out, and a portable highway controller was designed at Durham
to satisfy their requirements. The unit included a keypad and flat-
panel 'liquid crystal display to allow operator control and monitoring.
The software, which was writ‘ten in SIXTH, performed all the functions
necessary to supervise th.e FEP and to maintain correct highway
operation. In addition, the unit was 'plug-in and go', in that it held
the software in EPROM and could perform an auto-restart of itself and
the highway system after a power failure. Extensive testing of the
unit both at Durham and at ASWE Has produced a proven design which may

be manufactured in quantity.

5.9

Chapter 6
ASH Ship Trials

6.1 Introduction

The ASH is a highway system which is primarily intended for use on
board ships in the late 1980s and 1990s. In addition it may be used as
a high speed office LAN within certain MOD establishments. Although it
had been extensively tested in a screened computer room environment
within ASWE, it had never been tested on board a ship. This was due to
the physical size of the ASH when based on a 'commercial' Ferranti
Argus. Later systems will be based on the military Argus, which is a
much smaller unit.

ASWE realised that it would be possible to test their LAN system
using the Durham version, based around the small MC68000 single board
computers. A test system using only the ASH for inter-system
communication was proposed, because of the restrictions on access to
several of the compartments in which the terminal units were placed.
This system was designed and tested at Durham, and a monitoring unit
based around the MC6809 qevelopment system was also included to
provide a performance record on floppy disk, rather than on
lineprinter paper, as was normal practice at ASWE,

The complete system was installed on board H.M.S,
Londonderry, and ran cointinuously for six days, collecting some
3Mbytes of data concerning the operation of the highway. After the
trials, extensive data analysis allowed a comparison between the
operation of the highway as observed over the week on board the ship,
with the operation of the highway as observed over similar periods at

Durham and ASWE.

6-1

6.2 Test Hardware

6.2:1 MC6809 Monitoring Unit

Due to the inaccessibility of several of the highway terminal
units and the difficulty in handling large amounts of computer
printout in the small available space on board ship, it was decided at
an early sfage that the performance data collected from the test
system should be in the form of records on floppy disk which could be
printed out or analysed at a later date. A suite of monitoring
programs (section 6.3:5) was incorporated into the software in each
terminal unit. This software caused the reports from every terminal
unit to be sent via the highway to one particular terminal unit, the
master unit. This unit was situated in the Fixed Trials Office
(F.T.0), and was accessible to the operators. It was connected to the
M‘.C6809 development system via a 9600 baud RS5232 serial link, and
software in the master unit and the MC6809 periodiéally updated the
MC6809 disks. The hardware involved in the MC6809 system included the
standard development system already described, with the addition of a
serial port for connection to the master terminal unit. The MC6809
system was connected to a dedicated ships supply for the F.T.O. whose
requlation was considerably better than that of the normal ships
supply. Thvis alternative supply was chosen because of the difficulty
of providing adequate protection against disk corruption in the event

of severe (but normal on standard ships supply) voltage fluctuations.

6-2

6.2:2 MC68000 Highway Terminal Units

An important consideration in the design and implementation of
the hardwgre and software for the ASH ship trials, was that the
software used in the terminal units which were not in the F.T.O.
’(slave units) should be held in non-volafile storage, and should have
no need for local operator intervention. Thus the slave unit's
hardware differed from that already described (section 3.5) only in
the addition of four EPROMs which held the test software. The units
were mounted securely to some part of the ships fittings to avoid
damage in rough weather. The only connections necessary were to the
ships standard 110volt/ 60Hz supply, and to the highway cabling. The
layout of the units and cables in the test is shown diagramatically in
Figure 6.2:2a. In addition, a small hand held battery V.D.U. (G.R.
Electronics) was used during the initial installation, to check on the
correct local operation of each unit, before they' were tested using

the ASH.

6.3 Ship Trial Software

6.3:1 Design Concept

The terminal unit software necessary for the ship trials had to
perform three specific functions. Firstly, the operator had to be able
to control the actions of the remote (slave) terminal units from the
master terminal unit. This involved the remote starting and stopping
" of test software, and the resetting of tables etc. Secondly, the
master unit- had to perform as a monitor/ information gatherer for

status and performance data being sent from all of the slave units,

6-3

Terminal Unit Terminal Unit

I

MC6809 HWC
Monitor Station
[. . Terminal Unit
vDU Disk Unit :
Terminal Unit
Terminal Unit Terminal Unit

Figure 622a Schematic of ASH Ship
| Trial

and subsequently pass this data on to the MC6809 system which was
acting as a bulk storage unit. Lastly, all of the units had to
participate in soak tests of the highway, at the same time as the
oiher two functions were being performed.

In addition to these functional requirements, the software suite
had to be capable of restarting after a power failure in any of the
slave units, and in the event of a highway signalling failure each
slave unit had to be capable of returning the status of itself and its
FEP to a level at which it could again receive messages from the
highway. Full listings for the soak test software can be found in
Appendix A.

This set of requirements necessitated some fairly complex
programming, and meant that it was necessary to construct an operating
environment in the MC68000 systems which was akin to that in a multi-
tasking system. Indeed, at one point the design of such a system was
considered as a possible solution to the programming problem, however
time restraints and a long term hardware fail.ure in the NOVA-3 (which
would have had to be used to produce the new multi-tasking kernel)
caused this approach to be abandoned. Instead, the multi-tasking
environment was emulated with the aid of the multi-level interrupt

system which is a feature of the MC68000 micro-processor.
6.3:2 Block Message Soak Test

The principle behind the Block Message Soak Test (BMST) was as
follows. One terminal unit (in the case of these trials, the master
unit) transmitted a broadcast block message of a predetermined length
onto the highway. This message was composed of words of data which

were cyclically generated from a . stored generator word (Figure

6-4

Message °'N':- GW=N

GW

GW.1|GWa2 |GW. 3|GWee 4f—

Message 'N+1' :- New GW = Previous GW plus !

low1 Jow.2]owa3Jow«s Jow-s|—

GW-Generator Word

Figure 632a Block Message Generation

6.3:2a). Thus the first word in any transmitted test block was the
generator word. This generator word was incremented by one after each.
block was transmitted. At the receiving units, in this case the slave
units, the content of each received block was compared with the
expected content, again by the use of a generator word. This allowed
the receivers to check each word of each block for correct content.
The generator word was initialised to zero at the start of the test,
in both the receivers and the transmitter. Thereafter, the generator
we:ns updated only after reception of a message(at the receivers), or
after transmission (at the transmitter). If a receiver detected a
message out of sequence (e.g every data word was a constant value
greater or less than expected) it would make a record of the fact, and
store the first word of data' in the out of sequence block as its new
generator word, to get into synchronisation with the transmitter
again. Also, if any error was detected, this was noted and a report
transmitted (section 6.3:4). This type of test had been in common use
at ASWE for a considerable length of time. However, at ASWE, the
system used to determine block message transmission frequency is
purely empirical, a transmission rate is chosen by the operator based
on past experience of rates which are suitable. The slowest piece of
processing in the test is that which occurs in the receiver when it
analyses the received block of data. Thus if a transmission rate is
chosen which is slightly too fast, an overrun will occur at the
receiver. On occasions this overrun may take several hours to occur,-
and cause a BMST to be aborted after several hours of results héve
been collected. S

As an alternative td this scheme, a system of handshaking

1
between the slave units and the master unit was adopted for the sea

trials. This system involved the use of control messages (section

T

6.3:4) issued by each slave unit after a block had been analysed, and
the unit had set up the 'In Block' (section 2.3) fields ready to
receive the next block. This system allowed the highest possible data
throughput, with no risk of overrun at the receiving units. However,
it did mean that the failure of one slave unit would cause the test to
stop because it would no longer be transmitting its handshaking
messages. The master unit waited for such a message from every slave
| before transmitting the next test block of data. Unfortunately,
although this could be overcome by operator intervention at the master
unit, the slave units would still be in the middie of a BMST and
normal control messages sent via the highway would be ignored. To
overcome 'this problem-a timed restart sequence was implemented in each
of the slave units to cause the BMST to be abandoned if there was no
highway soak test activity for more than five minutes at a time. A
flow diagram of the BMST can be seen in Figure 6.3:2b.

After extensive testing of the software, firstly in a single
MCé68000 system, and then on the complete highway system, it was
decided that the sections of SIXTH program which generated and checked
the test blocks of data could be usefully replaced by assembler
routines, in order to speed the throughput of the test. Unfortunately,
owing to the extreme complexity of the MC68000 assembler language, it
was not possible to include an in-line assembler in the SIXTH system,
(section 4.4) as is possible in other SIXTH systems. Instead, the
assembler routines were written and assembled on the NOVA-3, and
included in the SIXTH program as machine code. This alteration to the
soak test improved the test throughput by an order of magnitude. The
improvement was due to cafeful design of the assembler routines to
avoid the inefficiency inherent in the use of subroutine threaded

code.

6-6

Master Terminal Unit ~ Slave Terminal Unit

Send "START . l
4 .
Send Highway Number #|Store Masters Number
B! |
Mait for Handshakes |¢————|Send a Handshake
+ g
|Zero Generator Word Zero Generator Word
4 i
Generate a Block /' Wait for a Block
! .
Send a Block Analyse it
I . 3
Increment GW /Any Errors".gLy
of e G] /e TepaiTh—
[n/ Report Buffer Full? ' Time to Report? |
p y |) n
] Send Reports to MC6809 ~ |Send a_Report
|

| Wit forall Handshakes '\ Send an_Error Report

} -
Send a Handshake

ASH Messages

Figure 6.32b BMST Flow Diagram

6.3:3 Short Message Soak Test

The mechaﬁism used to govern the frequency of the short message
soak tests (SMST) at ASWE is again largely empirical. The operator
specifies the transmission rate of test messages at each terminal in
turn, and then instructs each unit to start the test. The latter
operation is particularly ad hoc, since it is impossible to start all
units simultaneously because the operator has to press a key on a VDU
to start each unit and normally is unable to perform this operation on
more than two units at a time. The problems encountered in the BMST
concerning overrun also occur in the SMST. It was thus decided to use
an entirely different system in the Durham SMST. |

The requirements for a SMST are that every terminal in the test
should transmit and receive messages to/ from every other terminal in
the test. There should be no 'transmitter' as in the BMST, rather
every unit should generate its own test messages. Two schemes are
possible to perform this test. In the first, each unit transmits and
receives broadcast block messages, and in the second each terminal
transmits and receives point-to-point messages. In the first scheme
handéhaking_ would have to be performed in much the same way as for the
BMST; i.e. a test message could not be transmitted unless a handshake
message had been received from all of the units expected to receive
the meséage. This could cause the same lockout problems as described
in the BMST, Alternatively, the second method allows a considerably
more elegant solution. If test message transmission is restricted to a
point-to-point exchange with the unit from which a message has just
been received then this overcomes the lockout problem. If a unit
ceases to run the test then all that will happen is that no futher

messages will be received from it by any other unit, and thus no

6-7

further messages will be transitted to it by any of the units. In
addition this solution makes more efficient use of the ASH since there
is no necessity to transmit handshake messages.

Unfortunately, as with all elegant solutions, several
difficulties were encountered ‘with the second scheme, which was the
one used in the Durham SMST. Firstly, the scheme used to maintain the
generator word in the BMST would be very difficult to use because
messages transmitted from a particular unit are no longer received by
all other units, but by one unit only. Thus if there were five units
in the test, unit 'A' would receive approximately one in four of the
messages transmitted by unit 'B', and these messages need not
necessarily be spaced apaft by regular intervals of four messages.
This meant that a different scheme was needed to inform the recipient
of a test message of the \;alue of the generator word. Fortunately, the
ASH protocols include provision for a 'message type' word of l\ength
nine bits, allowing up to 512 different message types to be specified.
The test control messages were using several of the message types
between 0 and 255 (section 6.3:4) and the message types 256-511 were
set aside to specify generator bytes, as opposed to generator words.
‘This meant that the least significant eight bits of the MTB in a short
message test message were initialised by the transmitter to the
generator byte used, and were used by the receiver to check the
content of the recieved message.

Another problem of the chosen SMST handshaking system was the
increased complexity of the initial stages of the test. The complete
block diagram of the test is illustrated in Figure 6.3:3a. Since each
unit will only transmit a message to a terminal it has first received
a message from, the startup section of test must perform two

functions. Initially, every unit in the test must broadcast a message

6-8

Master Unit ASH Messages Slave Unit

S;rfRT
Send Highway Number ' —| Record Masters Number
} .
Send "START" |- -» | START
x ' —1
Send a Broadcast Send a Broadcast
Message Message
4 4
Make a list of all ‘ Make a list of all
Messages Received Messages Received
4 i
Senda Test Message Send a Test Message
to all Units on List . to dll Units on List
a | 4 »
Wait fora Message f Wait for a Message
4 3
Analyse it Analysc it
~y7 7 Any Errors"] | é\ny Err%r]s? [
Send a Mcsage Back Send a Message Back
— X
"{Tlme to Report" '/ ~ /Time toggjortﬂﬁ———ﬂ
Store the Report | Send a Report |
1
"—'[Report Buffer Full? J Send an Error Report |
¢ send Reports 1o MCHB03
Storean Error Report
N |

Figure 6.33a SMST Flow Diagram

to inform all of the other units that it is present and ready to
participate in the test. Secondly, each unit must store a list of the
terminals which broadcast to it in this manner, and subsequently issue
one test message to each of the units in this list. After this has
been 'performed the test may proceed as previously described, since all
the terminals in the test. should now have received one message from
every other unit in the test.

A final problem with this test is that the timeout system used
in the BMST will not function correctly, since if one unit stops the
others will continue to operate. To overcome this problem an
additional control message was added (section 6.3:4) which when
transmitted by any unit". on the highway caused all the other units to

abort the SMST.
6.3:4 Test Control Software

As previously described, it was ‘necessary to provide some means
whereby a master unit could maintain control over the other slave
units in the tests via the ASH. Several methods were tested, but the
method finally chosen had the advantage of simplicity of programming
over the other possibilities.

As described in section 4.3, SIXTH makes use of a line buffer
which is normally updated from the VDU- or from the routine used to
perform a RELOAD. It was decided that the simplest possible method of
'remote’' control by a master unit over the slave units would be to
provide some mechanism in the slave's SIXTH program which would allow
the master unit to send a SIXTH command line via the ASH which would
then subsequently be interpreted in tﬁe normal (section 4.3) way by

the SIXTH kernel. This routine consists of two parts, the routines

6-9

which allow a command to be sent from the master unit and the routines
which process the comm'and in the slave unit. The former routine is
very simple and merely sets up an output buffer in the FEP buffer
space which contains a SIXTH command iine. The routine at the receiver
is much more pomplex, and uses an interrupt service routine, driven by
the Programmeable Timer Unit (PTM) at intervals of one second. This
interrupt service routine checks the state of the receiver's input
buffers. Should a message have been received in the pr'evious interval
of one second the service routine determines whether or not it is a
control message. This is determined by examination of the message
type. Types 0-255 were defined to be available as control messages.
Currently there are only three types defined. One of these types is
used in the test handshaking scheme, the second in the status and
error report scheme, and the third is used to pass control messages to
the SIXTH interpreter. The reception of any one of these three valid
control messages causes SIXTH to stack tf;e current machine state and
process the command message. Upon completion of this processing the
machine's previous state is unstacked and execution continues from the
point at which it was halted. Thus, as long as a user program does not
mask out the PTM interrupts, this scheme will operate invisibly during
execution of any program, or whilst SIXTH is awaiting commands from
the VDU, Alternatively, the section of the routine which performs the
checking and processing of the command messages may be explicitly
executed by the user at any time.

Thus to start a test running in a slave unit, the master
merely has to send a command via the ASH which is identical to the
command that an operator would use to start the test (were there a VDU
connected to the slave unit). Thus sending the command 'SSRUN' via the

ASH would start the SMST, as would typing the command 'SSRUN' onto a

6-10

VDU connected to the slave unit.

Once started, the SMST disablés interrupts and executes the
command message processing routine periodically to check whether a
relevant command has been sent. The abort command, which may be issued
by the master unit (SABORT), sets a 'halt' flag in the slave's memory
and this is also checked periodically. Should the flag be set, the

test is abandoned.

6-11

6.3:5 Test Report Software

In order to monitor the activity of the highWay during both the
BMST and the SMST, and to gather any information concerning errors
occurring during these tests, reports were issued by each terminal.
These reports were received and buffered by the master terminal. A
report buffer was maintained in the master unit's memory for each of
the slave units. When any one of the buffers was more than 75% full, a
message was sent by the master unit to the MC6809 development system,
via an RS232 link, req.uesting the use of floppy disk storage. When a
response was o’btained from the MCé6809 system the relevant buffer was
transmitted down the RS232 link. Then the MC6809 system wrote it onto
floppy' disk. During the BMSTL_".he_mggngr_\j}_ was not participating in
the soak test, thus test reports were only issued from the slave
units. However, during the SMST all of the units, including the
master, were participating in the test and test reports were issued by
all of the units. The report software was in three distinct sections;
the issueing section (in all units), the receiving section (in the
master unit) and the storage section (in the MC6809 system). Flow
diagrams for each software section may be seen in Figure 6.3:5a.

The issueing section could issue two types of reports. The
standard type, whose format may be seen in Figure 6.3:5b, and a
special error report, whose format may be seen in Figure 6.3:5c. The
standard report wés issued periodically after a preset number of soak
test cycles. It included information on the total number of errors
defected by the FEP, the total number undetected by the FEP, the total
number of messages received, and in the BMST, the number of messages
receieved out of sequence. During the SMST separate counters were
maintained for the number of messages received from each unit in the
tést, Qhereas only one such counter was used during the BMST because

only one unit was transmitting.

6-12

Issueing Section Receiving Section

| ' J

]’imc to Issue a Report? ~ | Append New Report to End
of Relevant Buffer
Send an ASH Point to Point - 1
Message toMaster Unjt | Have we Received an
:EXI_T , Acknowledgement
| from the MC68097? -
Storage Section ln
R - n |
- ﬁAnything Received : Are any of the Report y
from ;‘;058000? -[___Buffers Overflowing?
. _ n
Acknowledge It 2 n
513 ‘, ~ [Are any of them Full? /
Wait to Receive a . 1y
Record Rqucst Suiicc of MC6809
J EXIT
r—ﬂ EOB? / ' |
4N Send a Record
Store Record '] |
Await ACK. or Timeout
TF’, Disk Full"J s
Timeout? [/ —
[Other Drl\%e not Full? /- _ ‘QFEnd = R;:Jort Buffer‘?]
Swap Drives ; 4y
| Send EOB
Flag ERROR [| Flag ERROR |-

Figure 63:5a ASH Test Monitoring and Report
Software

| BMST Report Format |
Source Tin;m Undetected Errors Detected Errors Out of Sequence

o 1 2 3 4 5 6 7 8 9 A
Sc;t.irce Time Undetected Errors Ekctcd Errors Message Counters
SMST Report Format
Figure 635b
AAAA
~Source Flag Bit map. of Incorrect Test Words -

Error Report Format

Figure 6.3:5c

The second report type was issued immediately after an error was
detecl':ed by the soak test software which had not been detected by the
FEP. The ASH should be a guaranteed error free message delivery
system, thus if the soak test software found an undetected error it
implied that there had been a breakdown in the error detection system.
The error report consisted of a count of the number of errors which
were detected by the software, and a map of the bits which had been in
error in each of the incorrect bytes of received data. This bit map
could be analysed at some other time to discover in what way the error
detection scheme had broken down, and how it could be improved upon to
eliminate such errors.

The second section of the report software, the receiving
section, was part of the interrupt service routine described in
section 6.3:4, Report messages had a 'message type' of 1. If the
interrupt routine in the master unit detected a 'type 1' message it
would then check the message to determine the source, and store the
message at the end of _the relevant buffer.--A -further routine,” which
was executed periodically during the test, checked the buffers, and if
any of them were more than 75% full, initiated the section of the
program which transferred the buffer of reports to the MC6809 and
reset the buffer pointers. This section of program was very simple, it
merely sent a request to the MC6809 system to be serviced. When this
request was acknowledged, the reports in the relevant buffer were sent
to the MC6809 one report at a ti.me. After the MC6809 had processed
each report it issued an acknowledgement which caused the master unit
to transmit the next report. If the MC6809 hung up for any reason the
master unit would eventually time-out and signal a buffer overrun
error to the operator.

During the SMST, when the master unit was also issueing

6-13

reports, these were entered directly into the rélevant buffer in the
master unit, rather than being sent on the ASH. That .buffer was then
treated in a similar manner to the slaves' buffers by the sections of
program which checked for 'buffer full' and sent the reports to the
MC6809 system.

The final piece of the report software was the section running
on the MC6809 system. This program was written in assembler and
performed three_functions; Firstly it maintained the link with the
master unit, waiting for any requests for communication to be issued.
Secondly, when one of these requests was received it acknowledged it,
and then proceeded to receive the report buffer as detailed above.
During the reception of the buffgrs, they were stored in memory and
after the entire buffer had been received they were written to disk,
in order to keep the time which the master unit was 'communicating'
with the MC6809 down to a minimum. This was necessary because during
that time the mastér unit was no longer participating in the soak
test. Finally, the MC6809 program performed monitoring and maintenance
functions. The program checked the disks, and was able to swap to
another disk unit when the previous one was full. If there was not an
empty disk available, the program would flag the operator to change
the disk. A small degree of monitoring of the reports being stored was
also possible, in the form of a display of the most recently received
reports frofn each of the units in the test. This could be called up by

the operator from a VDU connected to the MC6809 system.

6-14

6.4 Test Results

6.4:1 Analysis Techniques

As previously described, the results from the sea trials were
collected onto floppy disks at the MC6809 monitoring station. This
process continued for the almost the entire week of the sea trials.
The tests were only stopped in order to change between the block
message and short message tests. This resulted in the collection of
some 3Mbytes of data which had to be processed and analysed. In order
to provide some control data for the experiment, the tests were also
run in the laboratory at Durham University. Also, in order to have
some data on the conditions in which the units were operating, the
technical staff on board ship filled in detailed logs if there was any
change in the status of electrical equipment, e.g. convertors or
generators switched on or off. It had been suggested that the units
which were operating in the more electrically 'moisy' environments,
would be subject to a greater number of receive efrors.; For the

purpose of the trials, the units were numbered as follows:-

0) FTO- Fixed Trials Office-Deck 1

1) CCR(H.P)- H.F. Transmitter- Deck 2
2) CRO- Ra'dar- Deck 2

3) OPS- Deck 1

4) CMR- Conversion Machinery Room- Deck 3

The data which was collected during the sea trials was processed in
two different ways. Firstly it was checked for the occurrence of
undetected errors, and secondly for the occurrence of detected errors.

Then ‘graphs were plotted of the log error rate against the time for

6-15

each terminal.

The task of analysis was performed by an MC6800 system which was
running BASIC, The trial records were read in off the floppy disks
with the aid of a small section of assembler code. Then the error rate
was calculated over a certain integration period, which could be
preset by the user. l;'inally, the MC6800 plotted the results on an HP

flat-bed plotter.

6.4:2 Discussion of Results

With such an enormous amount of data to be analysed, it became
immediately obvious that it would be impossible to plot graphs which
covered the reports from all of terminals for the complete trial.
Instead, graphs were plotted for a certain time period for all of the
terminals in an attempt to relate their physical environment to the
error rate which occurred at that terminal. Then it was hoped that
some of the data collected on the ship machinery logs could be used to
explain any fluctuations in error rates.

The first thing which was discovered was that no errors
occurred which were undetected by the ASH hardware during the entire
length of the trials. This meant that no further analysis of that
particular type of error was necessary. |

NeAxt the detected error rate was analysed. A selection of
graphs can be seen in Appendix E. Graphs 1-5 show an analysis of the
log error rate for the first six hours of the trials. During this
period the ship was preparing to leave port. Each point plotted on
these graphs represents one minute of data. It can be seen at this

point that there is a very close correlation between the error rates

6-16

in graphs 1,3 & 4, whereas the graph for the terminal in the CMR room
(graph 5, ‘number (4)) appears quite different. This difference implies
that the errors were induced directly into this terminal unit rather
than onto the highway cable itself, otherwise the error rates would be
identical at all of the terminal units. The physical positioning of
this unit would support this theory, since the CMR was the only
compartment on Déck 3 which had a terminal unit in it. It was
definitely the most severe environment since it contained
approximately eight high powered rotary convertors. The results
detailed in graph 6 also support this theory. These are the error
rates for the unit in the F.T.O. which was a shielded test office,
with its own stabilised A.C. supply. As can be seen, the error rates
for this unit are lower by more than an order of magnitude.

Additional series of rgsults are shown in graphs 7-11, 12-16, and
17-21. These graphs all show a consistancy of error rates for the
remote units of approximately 1 part in 105, and for unit 0 of between
1 part in 106 and 1 part in 107.

The'conclusioﬁ which must be drawn from these results is that
the highway cabling is virtually unaffected by the environment in
which it,_;is placed. - Any fluctuation in the error rate between
different terminal units is caused by the environment in which that
particular unit is situated. This cﬁange may either be due to the
quality of the éupply to the unit, or to direct electromagnetic pickup
within the unit. Also, after a comparison with the machinery loés,
there appeared to be no direct correlation between changes in the
state of the machinery and the error rates. The machinery in the
C.M.R. was running continuously thus there were no changes in that
compartment which would affect the error rate of that terminal unit.

As addditional evidence to support this conclusion, graph 22

6-17

presents remote terminal tests carried out in a control experiment at
Durham. In this environment, it can be seen that the error rate is

very similar to that measured in the F.T.O. on board the ship.
6.5 Conclusion

A softwar;s environment suitable for running tests on board a shib was
designed and implemented. Hardware was constructed and installed
aboard the ship in four remote compartments, and a test office. The
highway was. tested continously for a week, and a large volume of data
was collected. After detailed analysis of the test results, two major
conclusions were reached. Firstly, the protocols implemented in the
ASH were capable of preventing any undetected errors being passed on
to the computer system to which the terminal units were connected.
Secondly, there was a level of background noise causing an error rate
of -approximately 1 part in 106, but depending upon the environment in
which the terminal unit was placed, the error rate could increase by a
factor of ten.

Based on these conclusions, it can be recommended that the
exact source of this increased error rate is determined. Since great
care had been taken in the design of the power supplies for the
terminal units, and they had been tested in the laboratory under
severe conditions of simulated supply fluctuation, it can be
reasonably assumed that the increase in error rates was due to
interference with the internal circuitry of the terminal units. If
this could be proved to be the case, possible greater attention to
screening of the unit as a whole, or certain sections of the circuitry

in particular, might. alleviate the problem.

6-18

Chapter 7
LAN Technology

7.1 Introduction

Many research centres are currently attempting to increase the
performance of the basic types of LAN by the .introduction of new
techniques and the mingling of different LAN technologies. Each basic
type of LAN has its advantages and disadvantages, and by careful
redesign it is possible to reduce the disadvantages of each type to a
minimum. The ASWE Serial Highway was designed after careful
consideration of the network technologies available at that time. It
has now reached a stage of development at which any advance in its
performance may have to be achieved by a radical change in its design.
It is possible that several of its most serious limitations may have
been overcome elsewhere in the research being performed into LANs.
Specifically; the areas which are of most interest are the necessity
for centralised control, the survivabilify of the ASH after damage,
and the system throughput under normal and abnormal loads and
constraints.

Howev.er, in the case of the ASH a necessary constraint on any
system modifications is that they should still conform as closely as
possible to the specifications [11]. For example, although system
throughput could be increased dramatically by a change in transmission
media from a twisted pair to fibre optic cables, this would mean a
radical and undesirable change to the specifications. Alternatively,
the provision of a more flexible system of redundant controllers, or
possibly the use of decentralised control, need not involve a radical
change of specification.

A review of much of the work which has been performed on
imprdving LAN performance has Been carried out, and an attempt has
been made to relate this to the current ASH. Suggestions are made for

system redesign which attempt to conform as much as possible to the

7-1

current specifications.

7.2 Review of Basic LAN Characteristics

The basic operatio.n and characteristics of the common LAN
architectures was discussed in section' 1. The architectures fall
approximately into two classes, ring and linear bus. The ring systems
theoretically have the advantage of completely decentralised control,
however their system of signal regeneration at every node, and the
single ring cable normally used, mean that the system is vulnerable to
the failure of single nodes or cables. The ring systems may be
cateqorised into three types; the Pierce Loop, the Newhall Loop, and
the Delay Insertion Loop.

A Pierce Loop consists of fixed length message time slots
circulating around a loop, which fill the loop length. Examples of
this type are the original Pierce Loop [34], and the Cambridge Ring
[6]. A ring monitor/ control node must be included in this system to
maintain the message slots. This type of system can accomodate
multiple simultaneous users.

A Newhall Loop serves only one user at a time, who passes a
'bus available' token when its message transfer is complete. Examples
of this are the original Newhall Loop [35], and the NPGS ring. Once
agian, a master node must monitor the ring to ensure that a token is
circulating.

Each node in a delay-insertion ring system contains two shift
registers. One 'is permanently connected to the incoming signal, and
the other is used to accomodate user messages. When a message has been
placed in the sebond register by the user, the node awaits a clear
space on the ring. When this occurs, the user message is clocked out

onto the ring. If an incoming message should be received during the

7-2

time the message is being clocked onto the ring, it is shifted into
fhe first register, and clocked out onto the ring at the end of the
user méssage. The nodes are responsible for the removal of their
messages when they have circuiated around the ring. A monitor/ control
unit is not necessary in this type of system. Aﬁ example of this is
the DLCN ring [37].

A comparison of the three types of basic ring system [38] shows
that although a Pierce loop allows simultaneous users, a small ring
size restricts the number of time slots available, thus restricting
the number of simultaneous users. A Newhall loop is superior to a
Pierce loop at high mean message arrival rates on small rings. A delay
insertion loop allows simultaneous users. However an elaborate
protocol may be needed to handle real-time data due to the
unpredictable message delays caused by intervening nodes transmitting
to the bus. Of the three, only the delay insertion loop has no
requirement for a master node at some point on the ring.

- -Simulations of.-. the-performance of the Cambridge ring
system [39,40] have shown it to perforﬁ well under conditions o.f low
load. However, an increase in the numbe;r of nodes on the ring can
seriously degrade its handling of real time messages due to the time
taken for the signal regenefation at each node. Under conditions of
heavy loading the message transmission delay increased towards a
guaranteed maximum value. The standard Cambridge ring system uses 38
bit backets, of which a maximum of 16 may be used for data. Thus there
is a mimimum inherent overhead of 58 percent in the system.

Linear Bus LANs may be divided into two more ge-neral classes,
synchronous and asynchronous. The former requires so-me form
centralised control function, whilst the latter uses completely

decentralised control. A system which uses decentralised control has a

very high reliability, however at high bus loading the mean message
arrival times will be significantly higher than in the céntralised
“control system, dué to the bus arbitration techniques used. As already
described, the ETHERNET [8] system is an example of a CSMA-CD LAN
(Carrier Sense Multiple Access with Collision Detect) in which bus
control is achieved by a system of collision detection and random
retransmission. In such a system .bus‘ utilisation can reach 98 percent
under heavy loading [8] using data packets of length 512 bytes or
longer. Approximately 21 percent of this traffic is ETHERNET overheads
such as packet headers, implying that under these conditions of very
high load, useful bus utilisation can exceed 75 percent. However if
the size of the packets is reduced whilst maintaining the bus loading,
channel utilisation drops dramatically due to the increased number of
collisions. If a packet length of 64 bytes is used, utilisation drops
‘to approximately 80 percent, givingAa useful bus utilisation of
approximately 63 percent. Simulation suggests [39,40] that for the
long packets, message transmission delay times can increase by a
factor of ten (as compared to low loading), whilst for short packets,
the delay can increase by factor of 50. Additionally, there is no
error recovery scheme inherent in the design of ETHERNET, thus any
additional error recovery messages included in the basic protocol
would reduce the utilisatio‘n still further.

The ASWE Serial Highway uses a centralised controller. The polling
scheme, which is in operation at all times, polls every terminal in
turn and represgnts a constant overhead. A controller poll consists of
7 bytes, as does a Nothing to Transmit 'response from a-terminal. A
typical message from a terminal with some data content has a length
in the range 12-72 inclusive, and includes 12 bytes of control

information. Under conditions of maximum loading, where every

7-4

transmission from a terminal is a maximum length information message,
the e'ffecti;/e channel utilisation is approximately 76 percent. This
decreases as the load decreases to 50 percent useful utilisation at 31
percent loading. Their are two major advantages of this system;
firstly, the message transmission delay time at high loadiné is
increased by only a factor of six as compared to the low loading
situation (for a maximal system consisting 64 terminal units).
Secondly, an error recovery scheme is included in the message
protocols, and this scheme only necessitates additional bus traffic if
an error is detected. In this system, the controller maintains the
recovery scheme, and a meésage backup store is not needed in every
transmitting node, as would be the case if a standard ETHERNET system

was to include error recovery.

7.3 Improvements to the Basic LAN Technologies
7.3:1 Ring LANSs

- -— A great- deal- of -research has been carried out- on several areas
of the ring LAN technolqu in an attempt to eradicate some of the more
obvious disadvantages. The first of these areas concerns the problems
of ring failure due to the malfunction of a ring node or interelement
cable. The Litton-DPS system [41] is designed for military
applications and inéorporates dual redundancy of the ring cabling to
decrease the systems' vulnerability. Two cables connect every node on
the ring. The primary loop is used for data, whilst the second is used
for backup. The bus controller, which may be any unit on the bus,
continually monitors bus operation for abnormal conditions. A backup
bus controller is also assigned, whose task is to monitor both the bus
and the bus controller, and to assume cantrol when it determines that

the normal controller has failed. An idle pattern is continually

transmitted on the backup ring to enable its status to be monitored.
The failure of any node is easily detected, and those nodes adjacent
to the failed node can automatically switch that node out of the ring
(Figure 7.3:1a). It is based on a Newhall ring system. The bus
controller provides clock synchronisation for the ring, and maintains
the 'Go Aheéd' token. If more than one node or cable failure occurs,
the ring can still function as two or more separate smaller rings,
'since the bus controller function may be dynamically reassigned. The
system is implemented using advanced high speed processors and the
current transmission rate of 20mbits/ sec can be increased by the
replacement of the coaxial cable bus with a fibre-optic bus, with no
change to the ring protocols.

The Litton-DPS system has approached the problems of ring
vulnerability with the addition of a more complex communications
processor at every node. As a possible aliernative, work performed at
MIT [42] suggests a much simpler alternative using a 'Star-Shaped Ring
Network'. In a normal Cambridge ring system, the electronic failure of
a node is protected against by providing a bypass relay which will
connect the input cable to the output cable should the node fail to
maintain a signal 'l am functioning correctly'. Unfortunately, should
this signal be maintained if the node is not functioning correctly,
the bypass relay cannot be activated, and the ring will be rendered
unusable. This will then necessitate the local testing of every node
to .attempt to discover the unit which is malfunctioning. The work
performed at MIT recommends the inclusion of a 'wire centre' to which
all of the cables are routed, as shown in Figure 7.3:1b. The bypass
relays are re-sited at the wire centre and the cabling to every node
consists of two ring cables (input and output) and the 'l am

functioning' signal. This signal is monitored by the wire centre, as

7-6

'LITTON-DPS System

M [

Dual Ring allows automatic reconfiguration

in the event of the failure of a
node.

Figure 731a

Star Shaped Ring LAN System

Figure 7.31b

is the activity on the ring cables. A failure of the signal, or
abnormal activity (or lack of activity) on the cables from any node
result in the bypass relay being activated. This scheme also ailows
greater ease of reconfiguration, since there‘ is no need to break the
ring to add further nodes. An additional cable need only be connected
into the wire centre, and when the node is operational, the relevant
bypass relay will be deactivated.

As mentioned, the first approach involves a far more complex
communications processor in every node. The second approach is
simpler, but more vulnerable since damage or malfunction in the wire
centre could cause complete ring failure.

An additional problerﬁ in any ring system is that it is
impossible to incorporate any type of priority access scheme. This is -
due to the round robin token paésing system which is inherent in a

ring network, and in certain applications is a serious drawback.

7322 Decentralised Control Linear Bus LANs

ETHERNET has many advantages over a ring system because of its
passive bus construction. Its overall bus utilisation and message
transmission delay degradation at high loading cannot be significantly
improved while still using the original CSMA-CD principles. However,
priority access can be included into the ETHERNET system [43]. This
allows important infor;mation to be transmitted with less delay at
times of high bus loading. This briority system functjons as follows;
each packet is preceded by a preamble signal of len.gth corresponding
to its priority. A packet of the lowest priority has no preamble
signal. When thé channel is busy, a station wanting to transmit a
packet waits uni:il the channel becomes idle. When a collision is

detected during transmission, the station does not stop transmitting

the packet if the collision is within its preamble period. When the
collision becomes undetected during its preamble, the station
continues to transmit the packet. This case means that the other
packets had priority levels lower than that of its packet. When the
station detects collision during the trénsmission of its packet, it
aborts the packet and retransmits it after sonﬁe random delay. This
. corresponds to the case when the other packets' priority was higher
than that of its packet. In a system using two priority levels, when
the ratio of the traffic of the higher level packet to the total
traffic is small (less than 20 percent) the higher level packet is
nearly always successfully transmitted after only one trial, even
under heavy loading [43].

Motorola have devised a system [44] in which the round-robin
polling scheme described in section 1.1:2 has been implemented using
completely decentralised control. In normal operation, each node
sounds-off in sequence by sending a packet which identifies it as the
current user of the channel. All other nodes hear these sound-off
packets and synchronise to them. Each node finds its place in the
sequence when it is time to sieze the channel. If a node has
information to transmit, it sends the data immediately after its
sound-off packet, up to a predefined time limit. All other nodes
monitor the channel, and can determine when it has finished occupying
the channel so that.the following user may proceed.

When a user node fails, the other users detect the failure by
sensing that the channel has been idle longer than the prescribed
waiting time. When this happens, all nodes know who .is the next
expected user, and update their 'next expected user' counters
accordingly. Although the sound-off packets contribute to the system

overheads, they do contain message source information which may

7-8

therefore be omitted from the information packet. New nodes may be
added by updating the user lists at each node.

This system does not need a centralised controller, however one
or more of the nodes must have the ability to cause the other nodes to
alter their user lists. Since this system is essentially a message
slot system, the choice of maximum information packet length will
dictate the message transmission delay. A priority scheme cannot be
implemented in this system due to the round-robin nature of the access
scheme.

In conclusion, in ETHERNET systems, although overall message
transmission delay times may be seriously degraded by high bus
loading, a great improvement may be achieved for a small percentage of
the traffic by the inclusion of a system of message priorities. A
sound-off scheme can succesfully be used to decrease this delay time
under high loading, however a priority system cannot be implemented.
ETHERNET is most efficient under light loading, when very few
collisions occur, whilst the sound-off scheme, ‘which is similar in
effect to an LAN system with a polling mechanism, is more efficient at

higher loadings.

7.3:2 Centralised Control Linear Bus LANSs

A system designed by Sperry Univac for the Canadian Government
utilises multiple bus cabling and reassignable centralised bus control
[45]). This system is part of SHINPADS (SHipboard INtegrated Processing
And Display System). The key areas of interest in the development of
this bus system were bus access time, and transmission system
reconfiguration time. There are several bus cables, of which two are
used at aﬁy time. One is the contfol channel, the other is the data

channel. The former is used solely for the purpose of system control

and reconfiguration, whilst the latter is reserved entirely for
message traffic. Bus arbitration is carried out on the control
channél, with the net result being a controlled allocation of the
other channel for the purpose of sending data. This allows 'pipeline'
levels of performance to be achieved on the data channel. Any of the
available channels may be used as a control or data channel. The
arbitration is carried out by a reassignable bus controller. Each node
includes a contro! processor which can function either as a normal bus
node, or as a bus master and bus node. The node assigned to be bus
master polls the other nodes and determines their data channel usage
requirements. It then dispatchés the éuthority to transmit on the data
channel to thé node with the highest priority. The node priorities and
the frequency of polling of nodes relative to others are under user
control. Requests for the use of the data channel fall into one of two
categoriés; immediate and normal. In the ﬁnmediate mode, the relevant
node is given immediate access to the data channel at the end of the
current transmission, providing there are no other immediate requests
in the controllers queues. In this case the new request is added to
the end of the queue. Normal requests are queued according to the
priority of the requesting node. The terminal nodes continually
monitor the control channel for activity. If no activity is detected
for more than a certain period, the activity on all other channels is
monitored for normal control activity. Should this be detected, a
systematic change of actiVe control channels will take place in the
terminal node. If no activity is detected on any channels, then the
bus controller function must be reassigned to one of the other nodes.
Currently, this reassignment is directed by l;he user, who may either
direct the node to which he is connected to assume bus control, or may

direct another node to assume bus control.

7-10

In a polled linear bus system, the overheads due to the poll-
response system cause great inefficiency under conditions of light
loading. As a possible solution to this problem, an adaptive polling
technique has recently been proposed [46,47[. The essence of this
technique; which has been designated probing, is to poll groups of
terminals rather than individual units. If a member of a group of
terminals being probed has a message to transmit, it responds in the
affirmative by transmitting on the bus. Upon receiving a positive
response to a probe, the controller splits the group into two sub-
groups and probes each in turn. This process continues until the
relevant terminal is isolated. This type of polling system is
essentially a tree search. The best system‘ performance may be obtained
by dynamically varying the size of the group being polled, according
to the probability of a terminal having a message. Thus at times of
high loading, the polling system would be similar to that in a pure
polling system, whilst in times of light loading, large groups would
be polled. Compared to the conventional pollng system, this system
will offer substantially improved message transmission delay times at
light‘ loadings, and similar delays at heavy loadings.

In conclusion, it can be said that in conditions of high
loading, the centralised control bus systems are superior in
performance to the decentralised systems. It is very easy to add a
priority polling scheme because the controllerlhas complete control
over the allocation of bus access. New terminals may be added to the
polling system by merely causing the controller to add another
terminal to its polling scheme. Unfortunately, the pure polling scheme
becomes inefficient when used on a bus with a large number of
. terminals, and the probing technique described improves the
performance of a pollr_-:d system when there is a large probability that

few of the units will have a message to transmit. Due to the fact that

7-11

a central controller is used, care must be taken in providing a
mechanism for this function to be reassigned after equipment failure.
Complete network failure will result should this function not be

reassigned.
7.4 A Second Generation ASWE Serial Highway

It has become obvious during this review of different systems that
when faced with similar criteria for the choice of LAN technology,
different research groups have made different choices of LAN
technology. In general it would appear that when a decision is made to
seek an LAN with better characteristics than available from the one
currently in use, most groups chose to upgrade their current system,
rather than to switch technologies.

In the case of the ASH, it would appear that the original aims
of the system designers cannot be fulfilled by a radical technology
change. A ring system_could.not offer_the system survivability offered
by the passive linear bus. It is interesting to note that the Litton-
DPS system [41[is being developed for the same type of military
applications as the ASH, however its designers consider that it is
suitable for this environment. The addition of the second ring cable
allows single node or cable failure, however if more failures occur
the ring will be segmenfed into several sections. This is clearly
undesirable, when in a linear bus system it would be possible to
include a higher level of cable redundancy to protéct against a
greater number of cable failures.

The CSMA-CD systems offer an attractive alternative to the
polled system currently used. However, the uncertainty in message'

transmission delay times would be a serious problem in a LAN system

7-12

primarily concerned with real time data. Additionally, a priority
system is essential for the transmission of critical data in military
applications. The priority ETHERNET system described would be a
possible alternative to the polled system currently being used. It
offers thé advantage of completely decentralised control and is the
best alternative of the asynchronous linear systems.

It is, however, a requirement that the original ASH specification
be conformed to as much as is possible. The areas of interest in a
second generation ASH are; decentralisation of control function, and
decreasing the polling scheme overheads on the bus. A paossible
‘solution to the latter is the probing scheme described. The addition
of grouping protocols related to the terminal units 'Highway Number'
would -allow this system to function and necessitate very little change
to the basic specification. However, the combination of the probing
technique and the SHINPADS serial data bus techniques would provide a
ve'ry powerful second generation technique. If a probing scheme was
used-on the control channel it would reduce the data channel access
time due to the normal polling system overheads. Also, the since the
control and data channels are being operated in parallel, a great
increase in message throughput could be achieved.

In the current ASH system, the highway controller is entirely
separate, in b'oth hardware and software, from the computers to which
the terminal units are connected. Any change in the polling list or
polling priorities must be originated by the computer which is host to
the highway controller. Adoption of the system suggested above would
allow such alterations to be originated from elsewhere in the system,
because the controller function would be incorporated into the
terminal nodes and its tables could be altered by appropriate

instructions to its co-resident terminal node. The controller function

7-13

-would be duplicated at all the nodes, however only one controller
would be active at any time. If that controller should fail, its
function could be taken over by another node, possibly on the basis of
'highway number' or possibly by contention access. The present system
of error recovel;y could still be maintained, as could the present
protocol system. The control messages would be transmitted on the
control bus and the information messages on the data bus. Without the
inclusfon of the probing scheme or any protocol changes, this would
mean that the throughput could be increased dramatically for low
loads. By the addition to the protocols of a control message from the
terminal units saying 'Yes I have something to transmit' and a message
from the controller saying 'Proceed', the throughput under all loading
conditions could be iﬁwproved, due to the fact that while the data bus
was in use, the controller could continue its polling cycle until it
found a terminal with something to transmit. It would then wait until
the current data bus user had completed its transmis;ion, and signal
to the relevant terminal node- that -it- could -proceed.

" This design change would necessitate a large change in .the
hardware of the interface. However, several of the inherent problems
in the current ASH would be i‘emoved, and the survivability of the LAN

system would be greatly increased.

7-14

7.5 Conclusion

This section has described in detail various alternative
approaches to improving' the characteristics of the basic LANSs; the
ring systems, the decentralised control linear bus systems, and the
centralised control linear bus systems. Several of the techniques used
are now implemented in working systems, whilst others are still at the
simulation stage. It has become obvious that the mingling of different
LAN technologies gives a significant improvement as compared to the
original systems. A second generation ASWE Serial Highway system has
been considered, in which the original specifications are conformed to
as closely as possible, and the original design criteria are used in
the selection of new techniques. A system based upon a twin channel
centralised control system was chosen as the most attractive
possibility. This type of system offers a greater system throughput
under all loading conditions by operating the control and data
channels in parallel. The addition of a completely reassignable
controller function, by incorporating the controller function into
each of the terminal units, would give a great increase in
survivability.. An adaptive polling technique, known as probing, is
discussed, and it is suggested that its inclusion in the second
generation ASH, while necessitating some message format changes, would
give an even greater iimprovement in the low loading message

transmission delay time.

7-15

Chapter 8

Conclusion

Distributed computing systems fall into two categories, loosely
and tightly coupled. The loosely coupled systems normally communicate
via a serial cable, and are known as Local Area Networks. These
distributed systems are used as replacements for large single
mainframes, as the distribution of hardware and software greatly
improves the systems' survivability and eases the initial testing.
Most LAN systems currently under development fall into one of two
categories, ring or linear bus.

ASWE have developed their own LAN for naval applications in the
late 1980s and 1990s. It is based on a linear bus LAN with a central
controller. The addition of redundancy of the controller function and’
the cabling gives greater system survivability. Ths system has been
used as a laboratory test bed for some time, and the basic principles
of operation have been well proved. It is implemented using high speed
bipolar bit-slice microprocessors in dedicatezi“%;or;i:-end processors.
These FEPs communicate with their minicomputer hosts via an area of
shared memory.

There are several alternative LAN technologies available. Ring
LANs are most suited to office applications using short rings, where
the delays introduced by signal regeneration at every node are not
significant, owi‘ng to the non real-time nature of the messages. Also,
the ring LANs are very vulnerable to cable or node failure, and if
they are to be used in military applications great care must be taken
over the provision of redundant signal paths to protect the integrity
of the system. Although this type of LAN theoretically has the

advantage of completely distributed control, in practice most of. the

common systems have a monitor/ control station to supervise the LANs

8-1

activity.

Linear bus LANs are more suited to military applications than
ring LANs due to thé possibility of using a passive bus (no signal
regeneration at nodes). There are two possible types of linear bus
LANs, those with decentralised control, -such as ETHERNET, and those
with centralised bontrol, such as the ASH. The former has greater
survivability, whilst the latter performs better in conditions of high
bus loading.

This thesis has descr;ibed the replacement of the minicomputer
hosts normally used with the ASH by microcomputer hosts based around
Motorola's MC6éB000 16bit microprocessor. This replacement gave an
enormous reduction in size, allowing the new system to be installed on
board a ship. Tests were performed on the integrity of this system
whilst the ship was performing normal .manoevres. Analysis of these
results has given the first performance data on the ASH system when
used in the environment for which it was designed. It performed
perfectly .at all--times, and there was no indication that any of the
error protection systems currently employed would need to be changed.

As part of this system, a portable highway controller was
developed. Thié aroused considerable interest within ASWE, as it was
able to perform all of the functions which are currently performed by
a highway controller FEP with a Ferranti Arqus host, at a fraction of
the current cost and size. Separate. trials of this unit have been
performed at ASWE, over long 'periods of time (months). These have
indicated that the unit performs to its specifications, and a new
controller unit may be manufactured based upon the highway controller
designed and built at Durham.

A review of work currently being perférmed in the LAN field has

been carried out. The shortcomings of each type of LAN system are

being reduced by mingling the different technologies. It is suggested
that a combinat_ion of two of the 'new generation' LAN systems with the
ASH, would give substantial performance increases, with the need for
minimal specification changes. This new system would have multiple
redundant linear buses, and would use two simuitaneously. One channel
would be used for control information and the other for data. This
would allow 'pipeline' levels of performance to be achieved on the
data channel.

To conclude, LAN technology has advanced alongside the ever
increasing demands for greater speed, reconfigurability and
survivability of distributed computing systems. However, as these
demands grow ever greater and more difficult to realise, it is
necessary to make modifications to the basic LAN technology. In order
to further improve the ASWE Serial Highway system, it will be
necessary to perform substantial changes in the basic system. The ASH
is now ten years old, and very few of the other LAN systems have

survived that length of time without major alterations.
Notes on publications by the author:-

"Boost uP-board memory capacity with simple hardware changes"

D. Cowan, EDL, 29th October 1981, pp 197-198.

8-3

Bibliography
[1] F.G. Heart et al "The Interface Message Processor for the ARPA

Computer Network" AFIPS Conf. Proc. SJCC 36, June 1970.

[2] H. Frank, L.T. Frisch, W.S. Chou "Topological Considerations in
the Design of the ARPA Computer Network" AFIPS-Conf. Proc. SJCC

36, June 1970.

[3] D.J. Farber "Networks: An Introduction" Datamation, April 1972, pp

36-39.

[4] E.G. Rawson, R.M. Metcalfe "FIBERNET: Multimode Optical Fibers for
Local Computer Networks" IEEE Trans. Comm. 26, 7 (July 1978) pp

983-990.

[5] MIL-STD-15538, 21 September 1978 (Aircraft Internal Time Division

Command/ Response Multiplex Data Bus, DoD, Washington, D.C.)

[6] K. Lunn, K.H. Bennett "Message Transport on the Cambridge Ring- a
Simulation", Software-bracticél and experimental (GB), Vol 11,

part 7, 1981, pp 711-716.

[7] R.M. Metcalfe, D.R. Boggs "Ethernet: Distributed Packet Switching

for Local Computer Networks", Comm. ACM, 19, 7 July 1979.

[8] J.F. Shoch, J.A. Hupp "Measured Performance of an Ethernet Local

Area Network" Comm. ACM 23, December 1980.

[9] N.Abramson "The ALOHA System- another alternative for computer
communications" Proc. 1977 Fall Joint Comp. Conf. 37, AFIPS Press

pp 281-285.

[10] N.Abramson "The Throughput of Packet Switching Braodcasting

Channels" IEEE Trans. Comm. 25, Jan 1977, pp 117-128.

[11] Defence Standard 00-19/ Issue 1, Ministry of Defence, 19th

January 1981,
[12] "The AMD2900 Family Data Book" AMD, 1979.

[13] J. Mick, J. Brick "Bit-Slice Microprocessor Design", McGraw-Hill,

1980.

[14] R.D. Weatherby "Mini Link X2901 Cross Assembler" Cambridge

Consultants Ltd. report, December. 1976.

[15] C.T. Spracklen "Durham University-ASWE Minilink Simulator" Durham

University report, August 1978.

[16] M.Stainsby "Specification of the Software Interface to the
Highway Controller (Version 6), Draft 3, 2nd May 1980, ASWE

report.

[17] D.M. Ritchie, K.Thompson "The Unix Time Sharing System" Comm. ACM

17, July 1974, pp 365-375.

[18] K.L. Hunt, R.J. Firth "Guide to Coral-66 on the PDP11-45" RMCS,

February 1976.

'[19] "Official Definition of CORAL 66" Ministry of Technology, HMSO,

1970.

[20] "RT-11 System Reference Manual" Digital Equipment Corp. 1976.
[21] "NOVA Line Computers" Data General, 1979.

[22] "Real Time Disk Operating System (RDOS) Reference Manual" Data

General, 1979.
[23] "MC6809 Preliminary Programming Manual" Motorola Inc. 1979.

[24] "The MSI 6800 Computer System" Midwest Scientific Instruments

Inc. 1977.
[25] "DOS-69" Smoke Signal Broadcasting, 1980.
[26] "MC68000 Design Module, Users Guide" Motorola Iﬁc. 1979.
[27] "MCe68000, 16-Bit Microprocessor, Users Manual" Motorola Inc. 1979

[28] G. Kane, D. Hawkins, L. Leventhal "68000 Assembly Language

Programming" OSBORNE/ McGraw-Hill, 1981.
[29] "Microcomputer Components” Motarola Inc. 1979,

[30] C.H. Moore "Forth: A New Way to Program a Minicomputer" Astron.

Astrophys. Supp. 15, pp497-511 1974.

[31] E.D. Rather "Forth: A Fresh Approach to Programming" Forth Inc.

1977.

[32] D. Cowan, C.T. Spracklen "Annual Report, 1981" Durham University,

1981.
[33] "Feltec LCD Display" Feltec, 1981.

[34] J.R. Pierce "Network for Block Switching of Data" BSTJ 51, 6,

July-August 1972.

[35] W.D. Farmer, E.E. Newhall "An Experimental Distributed Switching
System to Handle Bursty Computer Traffic" Proc. ACM Symp. on

Problems in the Organisation of Data Comms. October 1969, pp 1-34.

[36] E.R. Hafner et al "A Digital Loop Communications System" IEEE

Trans. Comm. 23 June 1974, pp 877-881.

[37] A.B. Gojko et al "A Performance Study of the Distributed Loop
Computer Network (DLCN)" Proc. Comp. Networking Symposium, NBS 15

December 1977.

[38] P.A. Willis "Data Buses and Distributed Data Processing in U.S.
Navy Ships" Naval Surface Weapons Center/ Dahlgren, Spetember

1981,

[39] G.S. Blair "A Performance Study of the Cambridge Ring" Computer

Networks, 6 (1982) pp 13-20.

[40] M.V. Wilkes, D.J. Wheeler "The Cambridge Digital Communications

Ring" Local Area Comms. Network Symp. Boston May 1979.

[41] R. Mauriello "A Distributed Processing System for Military

Applicatjons" Computer Design, Sept-Nov 1980,

[42] J.H. Slatzer, K.T. Pogan "A Star-Shaped Ring Network with High

Maintainability" Comp. Networks 4, 1980, pp 239-244,

[43] L. lida et al "Random Access Packet Switched Local Computer
Network with Priority Function" IEEE Telecomms. Conf. 30 Nov 1980,

pp 37.41-6.

[44] D.Scavezze "Nodes Sound-Off to Control Access to Local Network"

Electronics (USA) 1981, 54, 12, pp 176-181.

[45] S.C. Andersen "A Serial Data Bus Control Method" Comp. Networks

3, 1979, pp 361-372.

[46] J.F. Hayes "An Adaptive Technique for Local Distribution" IEEE

Trans. Comm. 26, Aug 1978, pp 1178-1186.

[47] J.F. Hayes "Local Distribution in Computer Communications" IEEE

Comms.

[48] A.K. Agrawal, V.V. Vadakan "Jet Propulsion Local Area Network
(JPLAN)" 2nd Conf. on Dist. Comp. Systems. Paris, 8th April 1981,

pp 360-368.

[49] M.A. Dineson "Broadband Local Area Networks Enhance Communication

Design" EDN, 1981, 26, 5, pp 77-85.

[50] D.D. Clark et al "An Introduction to Local Area Networks" Proc.

IEEE, 66, 11th November 1978, pp 1497-1517.

[51] A.K. Mok, S.A. Ward "Distributed Broadcast Channel Access" Comp.

Networks, 3, 1979, pp 327-335.

[52] w.B. Watson "Simulation Study of the Traffic Dependant
Performance of a Prioritised CSMA Braodcast Network" Comp.

Networks, 3, 1979, pp 427-434.

[53] S.S. Lam "A Carrier Sense Multiple Access Protocol for Local Area

Networks" Comp. Networks, 4, 1980, pp 21-32.

[54] F.A. Tobagi, V.B. Hunt "Performance Analysis of Carrier Sense
Multiple Access with Collision Detect"” Comp. Networks, 4, 1980, pp

245-259.

[55] J.F. Shoch "Carrying Voice Traffic Through an ETHERNET Local
Network- A General Overview" Int. Workshop on Local Area Comp.'

Networks, Zurich, Aug 1980.

[56] J.F. Shoch "An Annotated Bibliography on Local Computer Networks"

XEROX, Palo Alto, 1980.

[57] T.D. Wells, M.G. Stainsby "ADNET: An Experimental Information

Distribution System" ASWE, XCC, October 1978.

28!

APPENDIX A

Program Listings

L.

10443
D444
10443
0446
0447
0448
o449
0430
22331
o452
0453
0454
0433
O+54
0437
0438
0459
0440
0461
0462
0463
0444
D443
D4&é
D467
448
D4 &9
1470
J471
Jarz
473
Ja4T4
4TS
1474
3477
1478
4T
1480
481
482
483
484
493
+8é
487
488
+89
+90
+F1
492
493
94
195
“Fa
9T
e
Vo9

[Y1V% 4

01SE
0140
0143
0145
o147
0149
0163
014D

O14F
o171
0174
0174
o178
oLTA
017C
O17E

0180
0182
o183
0184
c188
2184

o168C
016E
0191
0193
0195

o197
0199
o190
019E
014l
OLAd
01AS

i PHULZ . IXT

PROGRAMMER ——

34

27
1A
20
ic
35

34

43
As
AT
as

as

AR
AT
33

90
25

ZE
hé&
be

: ie
S55B aH0% ASSEMPLER

XCHEKL®

SCHECK FOR FLAG IN A REGISTER LOWE

A,X

*PIA
DRB, X
CHKLR

CHKLRZ
SOFE
A,X,PC

ciLCc

% CHECKS FOR FLAG HIGH X

A,X

*PIA
DRB, X
CHKHR

CHKHRZ
SOFE
A,X,PC

THE APPROPRIATE FLAG LOWs

x
*PIA

DRB, X
DRB, X
x,PC

RSETS APPROPRIATE FLAG HIGHX

x
*PIA
DRB, X
DRE,X
X ,PC

SWRITE TG PROM PROGRAMMER ¥

12 CHEXL PSHS
FS530 LOX
oz DITA
o4 016D BEQ
o1 SEC
02 014D BRA
FE CHKLR ANDCC
92 CHKLRZ PULS
RCHEKH®
12 CHEKH PSHS
F338 : LbX
oz BITA
04 o17C BNE
01 SEC
0z O17E BRA
FE CHKHR ANDCC
vz CHKMRZ PULS
HLESETX
%® SETS
10 LSET PSHS
F338 LDX
CoOMa
0z ANDA
oz 5TA
S0 PULS
EHSET%
10 HSET PSHS
F338 LDX
oz ORA
oz 5TA
90 PULS
HAWRITEX
B2 AURITE JSR
20 Ol1BB BCS
0102 JSR
o3F7 AWRTEL CMPX
17 0o1bA BGT
ao LDA
O4AS ANDA

ADDRS
WERRL
GETTH
DTBEND
AWRTEZ

HASK

00300

00501
T oos02

00503
003504
00595
00506
00307
00308
00309
00%10
o031l
00312
00513
00514
00913
003516
00317
003518
00519
00%20
00521
00522
00524
00524
003ZS
00526

0osz27 .

QoN2Ze
ousze
0os30
00531
00532
00533
00%34
00535
00336
Q0537
00%38
00539
BON40
00541
00542
00543
Q0544
00545
0044
00547
0048
Q0549
(4103111
0055
s1e b1 14
00553
00%%4
0055%
00%%ée

o1A8
01AB
01AD
01AF
0183
01B4&
01ipg
O1BA
0188
01BF
oicz

01C3
o1C7
olCA
01CD
01D0
oipz2
o104
o107
01DE
01DE
01EQ
alEZ
O1ES
01E7
D1EA
01ED
G1lEE
01F 0
01F2
O1F'S
OiF7
OiFB
OLFE
0zo1
0204
Q20’5
0207
0Z0%?
ozoc
Q20F
oziz
0213
0oz218
0Z21A
0z21C
021E
o222
0zZZ4
0227
QzZED
0228

AWRTEZ
WERR

R*A 0ADX

»LOAD A BINARY DISK FILE INTO THE DATA TABLEN

ALOAD

LOAD1

LOADT7
LOADS

LOAD4

PROGRAMMER
BD 028%

24 - F1 019E_ -
34 10

Ao 8p omz
BD D2Aé&

as 10 -
20 Es O01%E
a9

30 ap ozpe
PD D2A&

av

30 oD oaiz
BD D2A&

PD DZBS

BD D2BB

@1 obp

27 1A O1EE
pp Dp7B3

30 8D 041E
BD D291

as 04

Y4 o4

BD D784

27 07 O1EE
B0 p2A9

BD D783

a9

66 0%

ar B4

17 FFOD D102
1IF 12

30 eD 6aiv
BD D2Aé

B0 D2BS

B0 D2AO

S0

z7 ob oziz
¥ 20

B OSFY

F3 OSF7

FD O%F7

BE O%FW

B0 D78

26 13 0z2zD
el FF

26 F7 0215
10BC OSF7

ZE 13 0237
pD D786

26 04 022D
A7 AQ

20

F1 Q21E

ISR
BCC
PSHS
LEAX
ISR
PULS
BRA
RTS
LEAX
JSR
RTS

LEAX
J&5R
JSR
JSR
CHPA
BEQ
JSHR
LEAX
JSR
LDA
S5Th
JaR
BEQ
JSR
JSH
RYS
L DA
STA
LBSR
TFR
LEAX
JSR
JSA
JSR
TSTH
BEQ
TFR
STX
ADDD
STD
LDX
J5R
BNE
CHMFA
BNE
CHMPY
BGT
JER
BHNE
SThA
BRA

-DWRITE

AWRTEL

x
STR? , PCA
ZOUTST
x

AWRTE1

STR&,PCR
ZOUTST

FHLE VY LOPHOGZ TXT-__ SGH 4809 &SSECMBLER—

P Y

STR10,PCR FILE NAME QUIZ

ZOUTST
ZLINEY
ZPEEK
#CR
LOADL
CDFM
AFCB, PCR
ZFLSPC
*Q504R

CXFC,X

DFM
LOADL
ZTYPDE
CDFHM

#QASREAD
XFC ,X
GETTER
xX,Y

LOOK AT MNEXT CHAR
CR?

IF YES JUST CONTINUE FROM OL

JUST TO BE SAFE

SET FOR READ

GO OPEN IT
OK S50 BRA

STRiZ ,PCR SIZE QUIZ

ZOuUTsT
ZLINEX
ZGETHN

LOAD7
Y,D
DTBEND
DTBEND
DTHEND
eAFCE
DEM
LOADZ
*8FF
LOADE
DTBEND
LOAD3
DEM
LOADZ
0,7+
LOADA

PUT IT
REPLY
TRANSLATE

NO REPLY S50 CONTINUE
DATA TABLE PASE

OOPS

NEW END

SAVE IT

END OF TABLE?

READ ANOTHER CHAR

AND STORE IT

FPAGE 007 Z:PROGZ. TXT

)) PROGRAMMER -
00333 0092 286 04 0098
003134 0094 BE 01C3 .
00338 0097 19
003316 0098 81 4Db
00337 009A 24 04 00AO
00338 009C BE 0360
00339 OO%F 39
00340 00AD 81 33
00341 00A2 24 o4 o0AB
10342 O00A4 BE O2FT
00343 OOAT 39
00344 O00AB 81 45
50343 00AA 26 AP 005%
10346 OOAC BD D783
30347 OOAF 7E FCS7
30348
20349
Joaso
J0a%1
10392
0353
JOIS4
O 358
J0ASS
0357
0358 0082 17 0183 0236
103359 O0O0R3 Bé 01 .
0340 o0R7 17 O0A4 O13E
0341 00BbAa Z8 FB 0087
)036Z OOBC B84 10
10363 OOBE 17 OOBF 0180
10344 OOC1 30 6D 036B
10369 0O0CS BD DZA4
i03s& 0OCB BD DZBS
10367 0OCH BD DZAO
10348 OOCE 3D
.03&% OOCF 26 03 00D4
0370 00D1 BE 0000
0ari o0D4 17 OLDE 0283
0372 00D7 AF OD 03Cé
0373 O0CGDB 30 8D 0348
0374 OO0DF BD D2AL
0ars oOo0EZ BD DZBs
0376 O0ES BD DZAO0
o037y 00EB 3D
03ra OOE9 Z2é& 03 DOEE
037y 00EBR BE 06A3
0380 OOEE 17 01C4 02BS
g3a1 00OF1 23 oc OOFF
0382 O0F 3 AF a8bh 03A8
0383 O0oF7 @6 01
EEWARNING 001—~-00000
0484 OOF% 17 0073 O01&F
0383 O0OFC 25 F9 QOF7
03184 GOFE 39
aaer OOFF 1A 01
ole@ 0101 39

S50 6807 ASSEMBLER - , S

e

.LDX
RTS
CNPA
BNE
LDX
RTS
CHPA
BNE
LDX
RTS
CHPA
BNE
JSR
JMP

COM4

COoMS

COMe

®ADDRS%

T cOoM4e
. #ALOAD

SMODIFY
cOMS
SAMOD

®SIZE
L£OMé
®ASIZE

SMONIT
GETCM
CDFM
AMONIT

RINTERPRETS START AND END ADDRESS®
HAND SETS UP PROGRAMMER ACCORDINGLYX
BCARRY SET IF ERRO QCCURS¥

ADDRS

ADDARS 1

ADDRSZ

TS7B

BNE

L DX
ADDR53 LBSR
STX
ADDRS4 LDA
LBSR
BCS
RTS
SEC
RTS

ADDER1

PRINIT INITIALISE THE PROGRAMMER
*ADD
CHEKL CHECK FOR ADDRESS LOW
ADDRS1 IF CARRY SET THEN ADDRESS HI
SMODE
LSET SET MODE LOW
STR1 ,PCR
ZOUTST SEND LOW ADDRESS QUIZ
ZLINEI AND RECEIVE IT
ZGETHN MAKE IT INTO HEX ADDRESS IN
IF ZERO NO HEX ADDRESS
ADDRS 2
#80000 50 LOAD DEFAULT
WRITEA WRITE BOGTTOM ADDRESS TO PROG
BOT ,PCH
STRZ ,PCR
ZOUTST
ZLINEI
ZGETHN TOP ADDRESS
ADDRSA
HIGH
WRITEA
ADDER1
TOP ,PCR
#ADD
CHEXH
CHECK FOR ADDRESS HIGH

ADDRS 4

BRI SRV

00389

00390 .
00391 —
00392

00393
00354

00395
00394
00397 0102
00398 0104
00399 0109
00400 010C
00401 O10F
00402 Ol10
004031 oO112
00404 0O11%
00405 0118
00404 0118
00407 OLl1E
00408 0120
0D40% 0123
00410 0124
00411

00412

00413

00414

00415

00414

00417

00418

00419

00420
KRREWARNING
00421 Q127
00422 012A
00423 oO12C
00424 O12F
EHREWARNING
00425 0131
004246 0134
00427 0Oidé
00428 01386
00429 013A
00430 013D
D0431 ©013F
00432 0142
00433 0145
00434 0147
00435 0149
00436 0Ol4C
WAKKMARN NG
00437 Ol4E
00430 01%1
00439 01%4
00440 0155
00441 Q189
00442 015%C

A

uul 6HOY ASSEMBLER

& . WL AL
PROGRAMMER
AGETTEX ey
®GET THE DATA TABLE DASEN
| ®ALS0 SETS TABLE TOP TO BASE ADDRESS PLUS 312 %
30 @D 035% GETTP LEAX STRA,PCR TABLE BSE GQUIZ
BD DZAé ISR ZOUTST
BD DZBS JSA ZLINET
BD D2A0 ISR ZGETHN
sn TSTH
26 03 oi1s BNE CETTB1
BE 0&A9 L DX #DTABLE
FC 049F GETTB1 LDB rop
B3 Oanl Susp BOT
FDO OSF7 sTD BTBEND
iF 10 TFR X.D
Fa OsF7 ADDS DTBEND
FD OSF7 STD DTBEND NOW WE HAVE THE ABSOLUTE EN
19 RTS
XAREADS

®READS IN A TABLE FULL OF DATAX
ROR LINTIL THE PROGRAMMER CLAMS UPX

001 —--003e14

17 FF88 00P2 AREAD L BSR ADDRS
25 29 0155 BCS AERR1
17 0114 0Z43 L BSR SREAD
=T 40 LDA SREADW
001--00421
17 00568 o18C LBSR HSET SELECT READ
&8s 10 LDA *MODE
80 =11 o18C BSR HSET SET MODE HIGH FOR READ
an e 0102 BSR GETTB GO GET TABLE ADDRESS
BC OSF7 AREADL CPX DTBEND
2E O 0149 BGT AREADZ
17 0196 0208 LBSR DREAD READ A BYTE
F4 0&ATS ANDB MASK
EY 214] 5TE Xt
Z0 Fi 013A BRA AREADL
17 0108 0234 AREADZ LBSR SWRITE
as 40 L DA S*READW
001---0042%
17 002F 0180 LBSR LSET
17 0100 0254 " LESR SWRITE SELECT WRITE
a9 ATS
a0 BDh 031E AERAL LEAX STR4 ,PCR
BD DZAd4 JSR ZOUTST
20 EB 0149 PRA AREADZ

P

b -
“GOZED

00221
00222

Q0223 _:

00224
00223
00226
00227
00228
00229
00Z30
00231
00232
00233
00214
00238
00236
00ZaY
00238
00239
00240
00241
00242
0024}
00244
00245
00246
00247
00248
00249
pozso
DOZ31
DO252
20Z33

0000
0000
0004
0007
000A
oooD

30254 0010

20233
10234
Jyo2S7
30258
1023%
30240
10241
Ja2a2
10243
30264
D245
I0Za6
102 AT
02zed
10249
10270
10271
0272
0273
aZT4
0273

0013
D014
o019
o018
001E
20Z0
0023
0026
Q02A
o0ZC
00Z2E
coal

F330
0001

.. 0003

0000

0002 -

OO0F B
0004
0OFF
0000
0070
0001
0002
0004
coo08
0010
00z0
0040
oo%”
00351
0032
004C
004D
0033
0043
FCS7

0324 0355 MAINZ

Fo

0023

Dr.VER FOM_PRUM FPHOLKOMER X

PIA EQU
CRA EQU
_CR® - EQU-
DRA EQu
DAB EQU
NDDR EQU
DATA EQU
AWRTZ EQU
ARD EQu
BREG EQU
ADD EQu
ERROR EQU
RES EQU
TRANS EQU
MODE EQU
INTER EQU
AEADW EQU
WRITE EQu
QUIT EQU
READ EGQU
LoaD EQuU
MODIFY EQU
GIZE EGU
MONIT EQU
AMONIT EQU
ORG
HAIN LDS
JSR
LDX
5TX
LDX
STX
5TX
§TX
LDA
STA
LDA
STA
MAIN1 JSR
LDY
PSHS
TFR
LBSA
BRA
RPIAIN =
XINITIAL ISES

SF538

1

3

]

F4
%1111101%
%00000100
®FF

00
%01111000
801

.0z

.04

.08

$10

.20

40

‘W

‘d

'R

t

M, |

'S

‘E

SFCS7

0000
#8DZ00
PIAIN
*90000
paT
®801FF
TOP

HIGH
DYTBEND
#8053
AFIELD
*80F
MASK
CETCH
FMAINZ
¥

X,PC
DELAY
HAINL

THE PIA AS FOLLOWS &

DEFAULTS

®¥A SIDE ALL OUTPUTS %
*h SIDE O:-ADDRESS

[] 1

:=~ERROR

INPUT &
INPUT »

i 00274
' 00277

ooz27e

00279

00280

0Qz281

00282

00283

00204

0ozes

00286
! ooze7r
; 00286
ooza9
Q0290
o0z91
00292
00293
aoz9o4
00295
00296
Q0297
00Z98
on299
00300
00301
00302
00303
00304
00305
003064
00307
00308
00307
00310
00311
00312
00313
00314
00 31S
00314
00317
Q0318
Q0319
00320
Q0321
o03z2
00323
[+life F.2)
Q0323
00324
00az7
0o03za
00aze
00330
00331
00332

eGR4 CPROGETIRT T G50 GD0T ABSEMBLER

+~RESPQONSE -
:—TRANSFER
; ~MORDE
INTERLOCK

[N E I S T

INPUT % _ . _.
OUPUT »

CUTPUT % i
OUTPUT &

BUFFER CONTRDL OUTPUT X
BUFFER CONTROL OUTPUT X

SPIA PIA ADDRESS
L DA *300
STA CRA, X SET FOR WRITE TO DDR
5TA CRB, X DITTD
LDB SAURT2
5TB pAA, X INITIALLY A FOR WRITE
LDB #BREG
5TH DRB X
LDA *DATA
5Th CRA X
STA CRB, X BOTH NOW DATA REGS
LDA SREADW
LBSR LSET SET FOR WRITE
LDA #%00011000 TRAN ,MODE HIGH
LBSR HSET
RTS
»

x COMMAND LINE INTERPRETER %

. PROGRAMMER
* -
”
*
»
®
> ® CAZ
0033 BE F530 PIAIN
0034 B& 00
o0ae A7 01
003A AT 03
003C C& FF
003E E7 a4
0040 C& 78
0042 E7 0z
0044 B& 04
0044 A7 01
0048 AT 03
004A 84 40
004C 17 0131 0180
004F 86 18
0051 17 0138 016C
00%4 39
KGETCM
0035 30 68D 0557 GETCM
0059 BD D2A&
oosC a0 gD 0%34
0040 BD D2As
00a63 30 8D 03CS
0047 BD D2AG
00&4A BD DZBS
006D BD nzer
0070 84 7F
0072 @1 oD
o074 27 DF 0055
0076 ©1 =z
0078 24 o4 DOTE
007Aa BE 0127
oorp 39
QO07E @1 57 cOMi
0080 24 o4 0084
00682 BE 0197
0o0a% 39
0oc8s 81 51 coMz
0088 Zé6 04 0090
008 BD D783
00ep 7E nzZes
0090 81 4C COM3

LEAX
JSH
LEAX
JER
LEAX
ISR
J&R
JSA
ANDA
CMPA
BEQ
CHMPA
BNE
1 DX
RTS
CHPA
BNE
LDX
RTS
CHPA

JSR
JTHP
cHPA

STR135,PCR
20UTSY
5TAl4 ,PCR
TOUTST
coOMST , PCR
ZOUTST
ZLINETL
ZGNCHR
*O7F

#CR

GETCM
$READ
coM1
SAREAD

SUWRITE
coMz
SAWRITE.

*QUIT
coMa
CDFHM
ZUWARMS
SLOAD

GE

587
5358
539
340
561
562
ne3
S44
BAS
L 7Y
1587
568
549
570
5Tl
IST2
=73
1574
ISTS
i1 'Y
ISTY
)s76
o579
05890
0%e1
0562
D583
0584
05685
0584
0587
0588
0389
0390
0591
03v2
0593
o%P4
0N9%
0596
0%97
o 31
DS99
D &00
34601
3602
2403
) 404
) 405
) 404
Y407
} 408
) 609
1410
&1l
412
&13

S5B 6809 ASSEMBLER

011 Z:PROGZ.TXT
PROGRAMMER — — T T
022D 30 . BD 02BP . LOADZ LEAX - STA11,PCR
0231 Bp DZAs JSR ZOUTST
0234 BD D763 JSR CDFM)
0Z37 39 : LOAD3 RTS
MPRINITX
RINITIALISES THE PROM PROGRAMMERN
$BY PULSING INTERLOCK HIGHMW
0238 @& 20 PRINIT LDA SINTER
023A 17 FF4F 018C LBSR HSET
0z3D 84 20 LDA SINTER
023F 17 FF3E 0180 LBSA LSET
0z42 39 RTS
XSREADK
WS5ET UP THE A SIDE OF THE PIA FOR READN
0Z43 108E Fs30 SREAD LDY ePIA
0247 Ba& oo LDA *800 FOR DDRS
0249 AT 4§ STA CRA,Y
0249 B84 [+]4] LDA
0Z4D AT A4 STA ;:§?v SELECT 4 FOR ReAD
024F B6 - 04 LDA *DATA
02s1 AT 21 sTA CRA Y
0zs3 a9 RTS
ASWRITEN
*SET UP THE A SIDE FOR WRITES
0Z%4 108E F338 SWRITE LDY *PIA
0258 B4 00 LDa *800
:z:; :7 2: STA CRA,Y
2 6 F LDA SAWRTZ
ozse AT b sTh DRA. v SELECT A FOR WRITE
0Z60 B6 04 LDA *DATA
02462 AT 4 STA CRA,Y
0244 39 RTS
WDWRITE %
*WRITE ONE BYTE OF DATA TO PROGRAMMERS
®CARRY SET ON RETURN INDICATES ERRORN
FFFF ESTORE EQU -1
OZAS 14 1 DWRITE PSHS AP, X, U
0267 1F 43 FFR s,u
0249 32 TE LEAS -Z.9
024Pp 84 00 LIn .‘60
026D A7 s S5TA ESTORE ,U
0Z4F BE FS38 LDX *PIA
0272 8& 10 LDA #MODE
0274 17 FEET {15E LBSR CHEKL
0277 24 ©OS 027 BCC DWR1 s:gchson FORREET wope
0279 86 10 LDA #MODE

. PAGE— 012 Z:PROGZ.TXT _ GSB_ 6609 ASSEMBLER

0064s

PROGRAMMER o
00414 02TB 17 FFOZ 0180 LBSR LSET NO S50 SET RIGHT OME
00413 OZTE E6-- G4 bwRL LDB W UNSTACK DATA, IT WAS IN A WH
o0&ls 02080 E7 84 STH DRA, X AND WRITE IT
00417 0282 86 08 LDA #TRANS
o04lB 0284 17 FEF9 0180 LBSR LSET AND INITIATE TRANSFER
00619 0267 84 04 DWRZ LDA #RES : e
00s200 0289 17 FEDZ O015E- LBSR CHEKL WAIT FRO RES
00621 026C 28 F9 0287 BCS PWR2
00622 028 B6 02 LDA SERROR
00423 0290 17 FEDC O14F LBSR CHEKXH MAKE SURE NO EROR
00424 0293 25 1A 02AF PCS DWERRZ
00625 0293 86 0@ DWR4 LDA #TRANS
00424 0297 17 FEFZ O16C LPSR HSET
006427 0Z9A B4 04 DWR3 LDA *RES
00428 029C 17 FEDO O16&F LBSR CHEKH
00429 029F 25 F9 0Z9A BCS DWR 3
00630 OZAL A& SF L DA ESTORE ,U
00631 02A3 26 O4 ~ 0ZA9 BNE DWRS ERROR
00432 02ZAS 1C FE ANDCC #FE
004633 O0ZAT7T 20 oz QZAP BRA DWR&
00434 OZA9 1A 01 DWRS SEC)
00633 O2AB 32 &2 DWR& LEAS Z,5
00&36 O0ZAD 35 Dé PULS AP, X,U,PC
00s&a7 .
00438 02AF 86 FF DWERRZ LDA *IFF
00639 02ZBL A7 SF STA ESTORE ,U
00440 0ZB3 20 EO - 0295 BRA DWR4
00441
00442
00643 HWRITEAX
eoBA4 RWRITE THE NUMBER IN X AS AFIELDX
00445 *HEX DIGITS MOST SIGNIFICANTH
00648 *FIRGTH
00 &4T NGO ERROR RETURNS FROM HEREX
00448 OZBPS 34 10 WAITEA PSHS X SAVE FOR RETURN
00449 0ZB7 B&6 0&A6 LDA AFIELD
00450 OZBA 81 02 CHFA #80Z
00851 0ZBC 27 0A oZCH PEG WRIT1
BHOKMAANING 001--00437
004%Z OZPE 17 FF93 0254 LBSR SWRITE SET UP FOR WRITE
00653 02C1L A& E4 LDA - MOST SIG BYTE '
00654 0ZC3 B84 OF ANDA @OF MASK FOR RH NIDBLE
RRIKWARNING 001--006%2
006%% 02C3 17 FF9D 0245 LBSR DWRITE AND WRITE IT
00&TE6 OZCH A4 41 WRITL LDA 1,8
0OGNT 02CA 44 LSRA
00&%EH OZCB 44 L5RA
004mP OZCC 44 LSRA
00660 OZCD 44 LSAA GET LH NIBBLE TO RIGHY
LKAWARNING 001—-006%5%
ODU&&1 O2CE 17 FF94 0245 LBSR DWRITE AND DISPOSE OF IT
. 00462 0ZD1 A& &1 LDA 1,5 RH NIPBLE, LS BYTE
W ANUWARMNING OD1L—~—00&41
00663 0203 17 FFOF 024% LB5A DWAITE AND DISPOSE OF YHAY
00644 0206 3% 90 PULS X,PC HURRAY
00665 KDREADN -

MREAD ONE BYTE FAROM PROGRAMMERE

00467

006468
60469
00470
DO&T1
004T2
00673
00&T4
004&7TS
00674
GO0&77
00678
00&7TY
00&80
boaBL
D0&B2
00683
D0o&B4
00&48%
D06&BS
00687
204886
DOLBP
JO&90
Jo&wl
10692
Jo6%a
10494
10495
10496
10697
10496
0&e99
o700
0701
oTo2
0703
0T04 -
0705
Y04
Dro7
3708
2709
Y710
3711
Y71z
1713
1714
713
Tid
717
718
719
T20
721
122
T2l

PRDGR&HHEﬁ-

MSETS UP THE BYTE MASK,TOP ADDRESS AND NUMBER OF CH

v WGUTF HIREMBLER

INITIATE THE READ

WAS CR SO DEFAULTS

USE DEFAULTS

XIN LIST MODEW
0zZD8 106E F536 DREAD LDY PIn
0zpC 84 08 LDA #TRANS
0Z2DE 17 FEF 0180 LBSR LSET
02E1 G 04 DREAD1 LDA *RES
OZE3 17 FET8® O13E LBSR CHEKL
0ZE6 23 F9 O2E1 BCS DREAD1
0ZEB E4 A4 LDB DRA,Y
’
0ZEA B& 0B LDA STRANS
0ZEC 17 FE®D 018C LBSR HSET
O02EF 86 04 DREADZ LDA SRES
G2F1 17 FE7D O16F LBSR CHEKH
0ZF4 2% F9 OZEF BCS DREADZ
0ZFs 39 RTS
WASIZEX
®ALTER DEFAULT SIZE ATTRIBUTESS

02F7 30 BD 0229 ASIZE LEAX STR13,PCR
02FB BD DZaé . JSR ZOUTST
O2FE BD DZpY% JSA ZLINEIL
0303 BD D2A0 TSR ZGETHN
0304 3D TSETH

0305 2Z2& o9 0310 BNE ASIZE1
0307 84 03 ASIZEZ LDA *003
0309 BE DIFF L DX *901FF
030C C& OF LDB *40F
030E Z0 1F 032F BRA ASIZE3
0310 8C 0003 ASIZEL CHPX #80003
0313 27 Fz 0307 bEQ ASIZEZ
0315 ec 0002 CMPX 980002
0318 26 09 0323 BNE ALSIZE4
031A B4 o2 LDA *802
031C BE OOFF LDX *800FF
031F C& OoF LDP $80F
0321 2o OC ©a2F BRA ASIZES
03z3 8C 0001 ASIZE4 CMPX #80001
0326 24 11 0339 BNE ASIZES
03z8 684 02 LDA *e02
032A BE 0O01F LDBX *B001F
032D Cé& FF LDB *OFF
032F P7 [F-T ¥ ASIZEI S5TA AFIELD
0332 BF 0&Ad STX HIGH
0335 F7 06AS STE MASK
0338 -39 RTS

033% &g 0004 ASIZES CMPX $80004
033C 24 o9 0347 BNE ASIZES
ND3AE 86 03 LDA *803
0340 6E OTFF L DX *30TFF
0343 C& FF LDB *8FF
0345 20 EB 032ZF BRA ASIZE]
0347 B8C 0005 ASIZES CHPX #9000%
034n 264 BB 0307 BNE ASIZEZ
034C B8 03 LDA #8023

paGE 014 2 PROGZ.TXT

00724
00725
0oT26
00727
00728
0072?
00730
00731
00732
00733
00734
0073%
00734
00737
00736
00739
00740
00741
00742
00743
00744
00745
DO746
00747
00748
00749
00750
Q0TS1
00752
00733
ODTSe
0O7sS
o07S6
007S?
007S8
00759
00760
o076l
00762
00743
007464
007643
00766
00767
00768
0074Y
00770
00771
00772
00773
00774
00775
00774
Q07177
A
007y
007H0

g5B 6809 ASSEMBLER

PROGRAMMER
034E BE OFFF . LDX - @SOFFF
0as1 s FF LDP WOFF)
¢as3 20 DA OJZF BRA ASIZES N e s
., WDELAYX
KDELAYS FOR-A LONG TIMEX
0ass @E FFFF DELAY LDX S8FFFF
0ase 30 1F DELAYL LEAX -1,X
03sa ©C 0000 CMPX #80000
03%sp 26 FY 0336 BNE DELAYL
0asF 39 RTS
HAHODK
REXAMINE AND PERHAPS MOBIFY A PROM ADDHRESSH
FFFE pabDs EQU -2
FFFC THP1 EQU -4
0360 1F 43 AMOD TFR s,U
0362 32 TA LEAS ~4,S GET VARIABLE SPACE
0364 BE 0000 LDX 280000
0367 AF SE S5TX PADDS ,U
0169 AF &C 5TX TMPL,U
034D B& 2A AMODZ LDA xR
0360 BD D2ZBE JSR ZoOUTCH
0370 BD D2BS JSR ZLINEI
0373 BD D2A0 ISR ZGETHN
037& 5D TSTH DID WE GET A HEX NUMBER
oa7r 26 07 0380 BNE AMOD1 YES
0379 81 0D cHPA SCR
0a7e 26 EE 03&B BME AMODZ IF NOT CARRIAGE RETURN REPE
0a7h 3z 6&& LEAS &,5
0a7F 3% RTS OTHERWISE RETURN
0380 BC 06A3 AMODL CHPX HIGH
0393 2% 03 oJee pLO AMODA
039% BE O&A3 LDX HIGH
olae aF SE AMODA STX PADDS ,U STORE ADDRESS
03ga 30 SE LEAX PADDS U
o3ac BD DZAF JSA ZOUTHA PUT 2 BYTES AS HEX
o3sr AE 3E L DX PADDS U
0ad91 8D TG O40F BSR SETUP
0393 17 FEAD 02423 LBSR SREAD
03vée Aé 40 LDA SREADW
o390 17 FbhFi 018C LBSH HSET
0398 84 10 L DA SMODE
039D .17 FDEC 018C LBSR HSET NOW ALL OK FOR A READ
03Aa0 17 FFAaS ozDe LBSA DREAD s0 DO IT
0343 F4 04AS ANDE MASK PROPER HASK
oaas €7 SC §TH TMP1 U
03A8 86 40 LDA SREADY
odaA 17 FDDJI 0180 LBSR LSET
03aD 17 FEA4 0234 LBSR SWRITE SET UP FOR A WRITE

00893
008946
00897
100890
: 00099
100900
00901
00902
00503
00904
00903
00908
00907
00908
00909
00910
00911

TOTAL
TOTAL

PROGRAMMER

03DB ZA

0SEE oD

0SFO 00

O3F L 20 STR16
0SF e oD

03F3 OA

OSF 6 00

OSF7Y 0000 DTBEND
OSF9 - O0AG RFCDH
0&9F 0000 TOP
06A1 0002 BOT
06AJ 0002 HIGH
06AS 0001 MASK
06Aé 0001 AFIELD
08A7 0002 OPBYTE
06A9 0200 DTABLE

ERROhS 00000~~-00000
WARNINGS 00006-—-00663

FCC
FCH
FCB
FCC
FCBH
FCB
FCB
FDB
RMD
FDB
RMB
RMD
RMB
RMD
RMB
RMB
END

CREEEEMEN R RER RN
80D, 80A

800

/LY,

0D

$0A

00

40000

166

80000

200

2) Computer Communications Programs.

CTXT - G5B 809 -ASSEMBLER

'AGE 015 2:.PROGZ.TXT _ S5B 6809 ASSEMBLER L PAGE 016 2 PROG

PROGRAMMER PROGRAMMER
0781 03RO B& 20 L LDA. . @820 SPACE - - 0038 042D 3% RTS
w07eZ 03B2 BD DZRE ISR ZOUTCH PUT IT ’ h o0E39 @ : .
10783 O3PS 1F an TFR u,x ona40]
07684 O03IB7 30 1c LEAX THPL , X GET ADDRESS OF BYTE coB41 ¥ ETORAGEN RN S R
107863 0389 BD D2AC J5R ZO0UTHX PUT AS TWO HEX DIGITS o 00642 042C 2D COM5Y FCC =
10786 O©03IBC 84 z0 LDA *820 o 00843 042F oo » FCB 0o
10787 O3IPE BD DZBE JSR ZOUTCH 00B44 0430 50 STR1 FCC {PROM STARY ADDRESS T /
o768 03ci B DZ2Bbs ISR ZLINEX 00845 0444 o0 FCB 00
0789 03C4 BD DZAO ISR ZEETHN 008486 0447 =0 STRZ fce /PROM END ADDRESS 7 /
10790 03CT SD TSTR ANY HEX DIGITS?T 00347 04SA oo FCB oo
0791 03cB 26 1E 03ES BNE AMODS YES %0 GO WRITE 0o0B4a 043P A4 5TR3 FCC /DATA TABLE START ADDRESS 7T /
w0792 03CA B1 2E CHPA * . NO 00349 0476 00 FCB 00
0793 03CC 27 9D 034B PEG AMODZ START AGAIN 008%0 0477 41 STH4 Foo /ADDRESS FIELD ERROR/
07%4 O03CE 81 SE CMPA .- DOHS1 0484 [1]] FCB s0D
10795 03D0 Zé 0B 03DD BNE AMODS - ocVE%2 04BP oA FcB $0A
10796 03DZ AE sE LDX PADDS ,U 006833 048C 00 FCB 00
10797 03D4 8C 2000 CHPX $90000 00854 0480 &4 STRS FCC /DATA ERROR
0798 03DT 27 A7 0380 BEG AMOD1 008%S 0496 oD FCHB »0D, s0A
10799 0309 30 1F LEAX -1,X DECREMENT LOCATION COUNTER 00856 0494 00 FCB 00
0800 03DB 20 A3 0380 BRA AMOD1 ooas7y 04TT STRé EQu STR4
10803 ©03DD AE SE AMODDG LDX PADDS U 00BSB 0498 57 STR7 FCC /WRITE DATA ERROR/
10802 O3DF BC oand CMPX HIGH 0Qa%S? O04AD ap FCB $0D, 80A
0B03 0O3EZ 27 9C 03eo BEQ AMODL . 00040 O4AD 00 FCB 0o
10804 OJIE4 30 o1 LEAX L,X INCREMENT X 00861 JO4AE 4E STRE FCC /NON ZERO FIELD ERROR/
10803 O3E& Z0 98 0380 BRA AMOD1 00B62 O4CZ oD FCh $0D,80A
10804 O3ES AF ac AMODS STX THPL . 00843 04C4 00 FCB 00
10807 O3EA AE =E LDX PADDS ,U 00844 O4ACS =0 STRY FCC /PROGRAMMING ERROR/
10808 O03EC 8D z1 040F BSR SETUP 00BaS 04D& oD FCB #0D, $0A
10809 O3EE A& =D LDA TMP1+1,U CET LS8 OF DATA TO BE WRITTE 00B&4s 04DB 00 FCB 00
:0B10 O03F0 17 FETZ 0Z24S L BSR DWRITE WRITE IT 00847 04D9 42 5TR10 FCC /BINARY FILE NAME7T /
10811 O03F3 24 oc 0401 BCC AMOD7 00RA60 O4EDR 0o FCB 00
0812 O03FSs 30 ap 01Fe LEAX &TR14,PCR 00849 O4EC 45 5TR11 FCC fEOF FOUND BEFORE END OF DATA BUFFER/
10813 O03F9 BD D2Aé JSR ZOUTST 00870 OS0F (1 }1] FCB s0D,80A
0814 O03FC AE 5E LDX PADDS U 00871 0T1d ao FCB Qo
081% O3IFE 16 FF7F 03680 LBRA AMOD1 : o0e72 0%32 44 5TR1Z FCC /DATA TABLE SIZE?7 ¢
0816 0401 AE SE AMOD7 LDX PADDS U 00E73 0523 a0 FCB 00
0817 0403 BC 0end CHPX HIGH : 00874 0524 53 STR13 FCC /SELECT NEW SIZE ATTRIBUTES/
08108 0406 1027 FF74 0380 LBEQ AMOR1 00a7s 03%3E oD FCB 20D, 80A
10819 040A 30 01 LEAX 1.% OTHERWISE INCREMENT IT 00876 0840 30 FCC /01 = 32 % B/
0820 040C 16 FFT1 0380 LBAR AMOD1 00877 0%N4AP oo FGCB $0D, 80A
0az1) 00678 054D ao fCco /02 = 256 K 4/
oaz2 HSETUPR 0087Y 0539 oD FGB *0D, 80A
0az3 XINITS PROGRAMMERM 00880 OSSH a0 FCC /03 = %12 X 4 (DEFAULT)/
0824 MSENDS ADDRESS OF BYTE TO BE READW 00881 0471 oD FCB s0D,80A
opzs HLEAVES PROGRAMMER IN A WRITE STATEX ocoBez 0573 3o FCC /0% = 205& X B /
08zs o0oe8l 056l oD FCH $0D, %04
0827 O40F 17 FEZ26 0239 SETUP LBSR PRINIT oouB4 0583 30 FCC /0% = 4096 %2 B /
0828 041Z 64 01 L DA *ADD 00883 0591 oD FCB s0D, $0A
0829 0414 17 FD47 015E SETUP1 LDSR CHEKL ooBBe 0593 oo FCB no .
0830 0417 25 Fp D414 - BCS SETUPL oo887 0594 53 S5THi4 FCC /STIZE DEFAULTS TO S12 & 4/
0831 0419 86 10 LDA SMODE ooaea oSaC oD FCB 80D, s0A
0832 041D 17 FD&Z 0180 LBSR LSET 00889 0SAE 0000 FDB 00
06833 O41E 17 FE94 0ZPS LBSR WRITEA WAITES OUT THE ADDRESS IN X 00890 0%BO 1a STR1% FCB s1A
0als 0421 17 FEVL 02BS LBSR WRITEA TWICE FOR A SINGLE BYTE 008?91 05B1 ZA FCC o 00 NI N K SRR O
0835 0424 Bé 01 LDA eADD 009z O05C4 oD FCPB 0D, $0A
0834 0426 17 FD44& 01646F SETUPZ LBSR CHEKH ’ . Q0E93 0%5Cs Z2A FCC /% PROM PROGRAMMER X/

0837 0429 23 FB 0426 BCS SETuPZ ooeP4 0509 oD FCB 0D, 80A

|

00200
01000
01002
01006
0100A
O0100E
01012

01016
0101A
'0101E
01020
101022
0102¢
101026
01028
)OL02A
10102C
)01 02E
101030
01032
101036
)01038
10103C
)01040

001042

02000
)02002
)0Z2006

02008
)0200C
02010
)02012

)0Z014
}02016
)0201A

|
)0201C

02020
tozoz4
020264

264C

0003FFO1
0003FF21
00021C2E
00021DB4
00020008

00002000
00001300
0040
1100
0000
0000
263A
0000
0000
0000
28600
0000

00001900

0000
O000J3FFO01
00000000
0000

0004
4340494E
0000

2278100E
20781030
4E®1
4ET3

0003
43404F33
2000

2278100A
20761036
4E91
4E7S

SIXTH OPERATING SYSTEM FOR 48000
AUGUST 1981

REVISION 2.1
DAVE COWAN

%% ERERSE

ORG 1000

REST DC.W INTE1
ACIAL DC.L $3IFFO1
AClAZ DC.L e3FF21
our DC.L ¢21C2E
IN DC.L 821DP4
MACS DC.L 20008
»

¥ VARIABLES USED

»

MSTCK DC.L $2000
DOSTK DC.L #1300

RESTART VECTOR
PORT1 (TERMINAL)
PORTZ (HOST)

DC.L *CHOU®
DC.w XCHIN
™
% CHARACTER OUTPUT ROUTINE
]
SOUT MOVE .L OUT,Al
MOVE .L PORT,A0
JSH (AL}
RTS

PRE? DC.P 840 PREFIX CHARACTER
STBUF DC.W #1100 BUFFER START
BWORD DC.wW #0 . START WORD POINTER
EWORD DC.W 80 END WORD POINTER
BLAST DC . W XSWAP LAST DEFINITION POINTER
LAST DC.W 80 LAST WORD FLAG .
RODX DC.W 80 CURRENT RADIX
NFLAG DC.W 80 NUMBER FLAG
Dp DC.W 62800 NEXT FREE LOCATION
STATE DC.W 80 SYSTEM STATE
vOPSTK DC.L 91900 OP STACK
RELO DC.W &0 RELOAD FLAG
PORT DC.v 83FFO1 :
CTIME DC.L 80000 SPACE FOR PTM

DC.W 80000
]
® ACTUAL PROGRAM START

ORG 2000
*
=
XCHIN DC.P o4

DC.L °“CHIN®

bC.Ww O
L
® CHARACTER INPUT ROUTINE
E
SIN MOVE . L IN,AL

MOVE .L PORT, A0

JSR (A1)

RTS
»
L
x0ouT DC.D o5

‘002028
002024
00202€E

002030
002034

002036
002038
00203C

00203E
002042
002048
00204
002052
Q02036
002035A
0020%E
002062
002066
002066
00206A
00Z06E
Qozovz
002076
002078
00207C
002080
002004
0020806
00208C
00208E

002092
002094
002099

00209A
Q009E
0020AZ
0020A6
00Z20AA

0020AC
0020AL
002082

0020b4
0020BA
00Z0BE
0020C2

0004
4D4143%53
2014

22781012
4ED1

0006
423534646
2028

4EBO209A
31FB810201024
11FC00001020
3036101E
4EBB201C
347681020
4EBB2008
0Co00000D
66000006
14CO
4E7S
0C000008
66000010
4EBBZ01LC
1222
B4F81020
&FOOFFCO
0C000020
&4DOOFF D4
4EBBZ201C
14C0
4EFB205A

0004
43324C46
2036

303C000D
4EBBZ01C
303C000A
4EBEZOLC
4ETS

0004
BT4F 5244
2092

31F810241022
34761022
0C1A0020
6TO00FFFA

K
XMAC DC. B ¢4
DC.L *MACS®
DC.W XOuT
»
® MACSBUG REENTRY POINT
L]
Hac MOVE . L MACS ,A1l
JMP (A1)
" .
-
XBUF DC.B %6
DC.L °*BUFF*
DC. W XMAC
» <
% SYSTEM--USER I0 ROUTINE
»
BUFF JSR CALF ,
MOVE .W STBUF ,EWORD SET UP PARAMS FOR WORD
MOVE #0,LAST CLEAR END OF BUFFER FLAGC
MOVE . W PREF,DO PREFIX CHARACTER
JSR S0UT SEND “PREFIX CHAR
MOVE .W STBUF A2 START OF BUFFER POINTER
NEXT JSR SIN GET A CHARACTER
CMP1 ®80D,DO CR 7
BNE BSP NO
MOVE DO, (AZ2)+ STORE IT
RYS KILL IT
BSP CMPI €$08,D0 BACKSPACE
BNE NPT NO
JSR SOUT ECHOE IT
MOVE ~(AZ),D1 BACK OFF
CMPA.W STBUF ,AZ BACK AT START 7
BLE BUFF RESTART
NPT CMPI ®° * DO LOOK AT NON PRINTING
BLT NEXT IF 90 IGNORE
JSR SOUT ECHOE THE CHARACTER
MOVE DO, (A2)+ STORE IT
ITMP NEXT AND AGAIN PLEASE 1111
x
»
XCRLF DC.B o4
DC.L °*CRLF*
DC.W XBUF
L 3
®x SIMPLE CRLF ROUTINE
n
CRLF MOVE .W @e0D,DO
JSR SouT
MOVE . W #80A,DO
JHR SOUT
RTS
»
x
XWORD DC.B s4
DC.L *WORD*®
DC.W XCRLF
»
% SETS WORD POINTERS FOR FIND
»
WORD HOVE .W EWORD, BWORD SET END = BEGINNING
MOVE .W BWORD, A2 TO SCAN
SPACE CHMPI ®° * (A2)+ SPACE PERHAPS

BEQ SPACE

2) SIXTH-' dictionary.

: : SYRES IMMEDIATE <4E70 DP{ ;)
1000 CONSTANT EQUATES : ENINT IMMEDIATE 027C DPI FOFF DPI
EQUATES 2 + CONSTANT ACI1 i : DISINT IMMEDIATE 007C DPI 0700 DP}I
ACI1 ¢ + CONSTANT ACI2
ACIZ 10 + CONSTANT MSTCK
i MSTCE 4 + CONSTANT DOSTK SINT IMMEDIATE INTEGER ;
FDOSTI 4 + CONSTANT PREFIX : CALL 4EBO DPI
'PREFIX 2 + CONSTANT ST . ¢ IMMEDIATE <4EBSB DP| WORD FIND @ + DPI

|sr 2 ¢+ CONSTANT WB : 88 IMMEDIATE WORD FIND © + ;
W8 2 + CONSTANT WE :) : =) IMMEDIATE CALL ®¢ CALL SINT DP| WORD FIND 8 + ;
.WE 2 + CONSTANT DL : (= IMMEDIATE INTEGER =) DP| SINT DP! ;
‘DL 2 + CONSTANT LAST ’ . i : <DO POP §TK POP STK POP STK ;
LAST 2 + CONSTANT RDX . ¢ "LOOP UNST UNST UNST ;
RDX Z + CONSTANT NFLAG [: DO IMMEDIATE 2D3C DPI O DPI HERE O DPI =) (DO <= HERE ;
NFLAG 2 + CONSTANT DP . : (LOOP UNST PUSH MOVE O S UNST PUSH SUB 0 S 1 + POP STK POP STKX MOVE 3 0
DP 2 ¢ CONSTANT STATE ‘ : LOOP IMMEDIATE =) <LOOP (= ¢ BGT HERE SWAP | =) °‘LOOP (= ;
STATE 2 + CONSTANT OPSTK ' : ABORT °LOOP PULS ;
OPSTK 4 + CONSTANT FRELO . . NEXT PULS UNST PSHS UNST PSHS UNST PUSH STK PULS STK PULS STX © - POP PS
FRELO 2 + CONSTANT PORT ! ;. STOP PULS UNST PUSH UNST PUSH UNST PSHS STK POP STK POP STK ;
PORT 4 + CONSTANT CTIME ‘ . QUIT PULS
0 CONSTANT O : I UNST PSHS UNST PUSH STK PULS STK
1 CONSTANT 1 . . §K IMMEDIATE WNUM HERE + ;
2 CONSTANT 2 : = POP MOVE O 1 POP SUB 1 O 5K C BEQ O SK € BRA 1 POP ;
3 CONSTANT 3 . > POP MOVE O 1 POP SUB 1 O SK C BGT O SK 8 BRa 1 POP ;
< POP MOQVE O 1 POP SUB 1 0 SK C BLT 0 SK 6 BRA 1 POP ;
-, CRLF .
OCT ® RADX W ;) " { BASE RDX @ DUP DEC , RDX | ;
HEX 10 RDX IW ; : . =m0S5KIP MOVE O 1 HERE B8 + ¢ BER <4EFO DPI O DPI ;
DEC A RDX W ; : >OSKIP MOVE O 1 HERE @ + ¢ BGT 4EF8 DP) O DPI ;
DUP POP PUSH PUSH ; : IF IMMEDIAYTE >OSKIP HERE 2 -
DROP POP ; . THEN IMMEDIATE HERE SWAP |
OVER SWAP DUP POP STK SWAP UNST PUSH ; < ELSE IMMEDIATE 4EF® DPi{ O DPl & THEN HERE 2 -~ ;
ROT SWAP POP STK SWAP UNST PUSH ; © ;. =m¢ OVER OVER ¢ IF DROP DROP ELSE = THEN ;
HERE DP OW ; ' : >w OVER OVER > IF DROP DROP ELSE = THEN ;
1- 1 - ; : : (> OVER OVER ¢ IF SWAP THEN ;
14 1 4+ ; : . BYTE DUP @B SWAP 1 + SWAP
[T : : (IMMEDIATE WB @ DUP 100 1 DO BYTE 29 = IF DROP I + WE | ABORT
e evw ; ' ’ ;) THEN LOOP DROP DROP ;
‘1L DUP @ 1+ SWAP | ‘ : ARRAY IMMEDIATE 2 % DUP DUP 2ZDiC DP! O DPI DP)
DPI DP @ | DP @ 2 + DP | ;) 2D3C DPI O DPI HERE 6 + DPI HERE 4.+ +
WNUM WORD NUMBER ; ® BRA DP @ + DP | ; (PUTS SIZE,ADDX ON STACK)
L9 7 LEFT 2 LEFT ; . CTIME & + CONSTANT GT
WNUMZ WNUM + WNUM LD + DPI ! GT 4 + CONSTANT ST2

ST2 4 + CONSTANT WIDTH
DELIM WORD WB @ DUP GT | GT *1 a@® ;

MOVE IMMEDIATE 2000 WNUM2 ; . 1 FILL O WIDTH | DP @ 10 + ST2 | DELIM 100 1 DO CT @ @a®P CY ‘1

SUB IMMEDIATE 9080 WNUMZ . OVER OVER = IF DROP DROP WIDTH @ GT @ WE | 0 STZ @ B ABORT
SUBW IMMEDIATE 9040 WNUMZ2 ;) ' THEN WIDTH *1 ST2 @ IB 8T2 1 LOOP ; (FILLS AFTER THE RTS)
AND IMHMEDIATE CO080 WNUMZ ; . : ' ;. STRING IMMEDIATE FILL 1 + 2 / & ARRAY

PSHS IMMEDIATE 2F00 DPt : : LOC WORD FIND (LOCATES A WORD IN THE DICTIONARY)

PULS IMMEDIATE 201F DPI ; - : SPACE 20 TO ; (TYPE 1 SPACES)

MASK POP MOVE O L POP AND 1 0 PUSH ; : LIST DO I @P . SPACE LOOP ; { MEMORY DUMP)

B2 6000 + DPI HERE DUP o DPI ROT POP MOVE 0 1 POP SUBW 1 0 PUSH SWaP | ; : SAY TYPE ;

BRA IMMEDIATE 0000 B2 : 5TR1 STRING STHERE ARE % ;

BEQ IMMEDIATE 0700 B2 STRZ STRING % DEFINITIONS % ;
BNE IMMEDIATE 0600 92 DEFN DUP @B . SPACE 1 + DUP @B . 1 + SPACE ;
BLE IMMEDIATE OF00 B2 NAME 3 O DO DUP I + @B TO LOOP ;
BGT IMMEDIATE OEOO B2 STR3 STRING SNOT FOUND % ;

PGE IMMEDIATE 0COO B2 STR4 STRING %XDEFINITION KEPTX ;
PPL IMMEDIATE OA0O B2 BEGIN IMMEDIATE HERE ;

BLT IMMEDIATE ODOO B2 END IMMEDIATE 4EF8 DPI DPI ;

RTE IMMEDIATE 4E73 DPI ; ’

FRAME IMMEDIATE 4©E7 DP(| FFFE DP| © LOCATE IMMEDIATE LOC ;

- .

- . e me e e

S SSSSSSTETERDREDEDETEEEEEEEEEE

INTER PULS EQUATES @ POP PSHS ; (JMP TO INTERPRET LOOP)

MACSBUG PULS 2013A POP PSHS ; (JMPS STRAIGHT TO MACS CLI)
SERROR CRLF STRING RERROR% SAY CALF INTER ; (TRAP ERROR)
: SABORT CRLF STRING %ABORTS SAY
! CRLF INTER ; { ABORT BUTTON HANDLER)
] i X vARZABLE ;
| : WEEP WORD FIND .K | ; ¢ WRITE PROTECTS DICTIONARY -SPACE)
!

WHAT CRLF DL @ 1000 1 DO DUP DUP . SPACE DEFN NAME SWAP
.X @ = IF DROP ABORY THEN 4 + @ CRLF DUP 0 = IF STR1 SAY
ADX @ DEC I . RDX | STRZ SAY
\ DROP ABORT THEN LOOP DROP ;
! ! FORGET WORD FIND DUP O = IF
CRLF DROP STR3 SAY ELSE DUP .K @ =< IF
CRLF DROP STR4 SAY ELSE DUP DP | 6 + @ DL |
THEN THEN ; (FORGETS ALL DEFNS UP TO THE SELECTED ONE)

{ INTERRUPT STUFF)
INSTALL 4 % 60 + LOC 6 + SWAP IL ;

STORE VARIABLE ; N
SETUP SYRES
DISINT O STORE | LOCATE SERROR OINT O +
100 1 DO DUP STORE @ 4 + DUP STORE |
IL LOOP DROP LOCATE SABORTY
OINT 8 + 7C 1L { LOADS UP VECTAR AREA)

{ ACIA SWAPPING STUFF)

CHECK BEGIN CHIN PUSH 02 = IF ABORT THEN END ;

ACL 3 OVER B 15 SWAP B ; N
Al ACI1 Gt PORT 1L ;

AZ ACI2 @L PORT 1L ;

STR WORD LENGTH PUSH WD @ ;

T1 ACI1 @L ACL ;

T2 ACIZ @L ACL ;

TRANS ACI1 @L SS OVER IB FD SWAP 2 + 1B ;

P2 TRANS CHECK T1i T2 ,;

(NEW OPEN COMMAND STUFF FOR ANY FILE)

COM_LINE STR STRING £1:LD & AZ TYPE TYPE OD TO H
WAIT BEGIN CHIN PUSH OD = IF ABORT THEN END ;
REP_TEST BEGIN CHIN PUSH DUP 41 = IF POP 1 ABORT ELGE 58 = IF O ABORT THEN THEI

OPEN COM_LINE WAIT REP_TEST A1 DUP O = IF STRING & FAILED & SAY THEN ;

8 Al STRING XEOF FOUND® SAY RESTART ; { RUBOUT COMMAND FOR EOF)

RENDFILE O FRELO | A2 1B TO A1 ;
COMPILE OPEN O = IF XENDFILE ABORT THEN RELOAD ;

SETUP

RESTART

Chapter 5 Listings

1) Portable Controller Program.

{ HIGHWAY CONTROLLER

{ PRIMARY TABLE)

800 CONSTANT PT
PT CONSTANT CTUSW

CTUSH 2 + CONSTANT CTUuCHW
CTUCKW 2 + CONSTANT PTPT

PTPY 2 + CONSTANT PTBS
PTBS 2 + CONSTANT PTSS
PTSS 2 + CONSTANT PTST
PYST 2 ¢ CONSTANT STSP
STSP 4 + CONSTANT REC
REC 2 + CONSTANT RC
RC 2 + CONSTANT NRC
NRC Z + CONSTANT OTA
OTA 2 ¢+ CONSTANT OT
PT 66 +

ITA 2 ¢+ CONSTANT IT

(STATUS TABLE)
coo - CONSTANT STT

{ SIZE STORE)

TABLES)

PRIMARY TABLE POINTER)

POINTER TO POLLING TABLE)
POINTER TO BUFFER STORE)
POINTER TO STATUS STORE)
POINTER TO STATUS STORE)
SELF TEST SCRATCHPAD)}
RECEIVE ERROR COUNTER)
REPEAT COUNTER)

NULL REPEAT CONUNTER)

(OUT TIME AVAILABLE)

t OUT TINE)

P A W . Y . . .%S

CONSTANT ITA (IN TIME AVAILABLE)

t IN TIME)

A00 CONSTANT MS$S !

(BUFFER STORE)

(POLLING TABLE A)

(POLLING TABLE B)

.A000 CONSTANT BS
{ POLLING TABLES)

900 CONSTANT PTA

ooo CONSTANT PTH

¢ CHANNEL CONTROL WORD)

3C000 CONSTANT CCw
(CONTROL WORDS)

CONSTANT GO
CONSTANT CSTOP
CONSTANT OFFINT
CONSTANT ONINT
CONSTANT RESET

wBewN

{ FELTEC LCD DRIVERS

JFFe0 CONSTANT PIA
PIA CONSTANT DRAZ

PIA 2 ¢+ CONSTANT DRB2
PIA ¢ ¢+ CONSTANT CRAZ
PIA & ¢+ CONSTANTY CRBZ

¢t START TERMINAL UNIT |}
{ STOP TERMINAL UNIT)
(SWITCH OFF INTERRUPTS)
t SWITCH ON AND CLEAR INTERRUPTS
{ RESET AND HALT TERMINAL UNIT)

t FIRST THE RELEVANTY PIA REGISTERS)

CONTROLLER TERMINAL UNIT STATUS WORD)
CONTROLLER TERMINAL UNIT CONTROL WORD)

3C020 CONSTANT CLOCK

¢ S§TATUS TABLE FIELDS L]

OBYTE. DUP 3FF42 |IB 3FF42 @B OVER w IF DROP ELSE
JFF42 1B 3C 3FF46 1B 7 3FF44 |B THEN 34 CRBZ IB 3C CRBZ Ib

CL*FEL 7F 0 DD 20 OBYTE LOOP ; t CLEAR ONE ENTIRE BUFFER)
INIT-FEL 00 CRB2 (B FF DRE2 1B OC CRBZ IB (ALL OQUTPUTS)

6860 OBYTE 82 OBYTE CL°FEL 81 OBYTE (CLEAR BUFF1)

88 UBYTE A2 UOBYTE CL°FEL 81 OBYTE { CLEAR BUFFZ)

Y0 OBYTE 00 OBYTE ; (RESET CURSOR)

PT* VARIABLE ; { BUFFER POINTER FOR FELTEC)
SCROLL ©4 OBYTE OBYTE 82 OBYTE 1F 0 DO 20 OBYTE LOOP ©1 OBYTE ;
PT°FEL PT° DUP @ 7F MASK DUP 1F MASK 0 = IF DUP SCROLL THEN SWAP °1
T_DIS VARIABLE ; (CURRENT DISPLAY TYPE)
FEL°CL 86 OBYTE 82 OBYTE CL'FEL ©1 OBYTE 90 OBYTE O OBYTE 0 PT* | 0 T
OUT*FEL PUSH DUP DUP A = IF DROP (¢ IGNORE LF)

ELSE DUP D = IF DROP PT" @ 20 + 60 MASK PT*

ELSE DUP 08 = .IF DROP PT* DUP @ 1- SWAP |

' 90 OBYTE PT*° @ OBYTE
ELSE
PT'FEL 84 UBYTE OBYTE 82 OBYTE OBYTE €1 OBYTE
PT* @ 90 OBYTE OBYTE

‘

THEN .
THEN THEN POP ; { LEAVE CHAR IN DO FOR BUFF)

(REAL TIME CLOCK)

{ ADDRESS O OF REAL TIME CLOCK)

INV -1 SWAP - , ¢ DAT FROM CLOCK 1S COMPLIMENTED)
INV F MASK . { AND ONLY LOWER THREE BITS I& VALID)

4INV INV F MASK ;

CCLEAR 2 % CLOCK + O INV SWAP | ; (CLEARS A CLOCK LOCATION)

CREAD 2 ® CLOCK + @ , { READS FROM A CLOCK LOCATION)

STOPCLOCK O INV CLOCK E 2 % + (|

GOCLOCK 0 INV CLOCK 1 1 INV CLOCK E 2 % + |+

CSTORE 2 % CLOCK + SWAP INV SWAP | ; (STORES DATA AT CLOCK LOCN)
STOD STOPCLOCK 1 0 DO BUFFER WNUM C I - CSTORE LOOP
S 0 DO BUFFER WNUM 9 I —~ CSTOHE LOOP GOCLOCK ; (SET A NEW TIME)

41INV INV F MASK ,

~CREAD 10 1 DO DUP CREAD DLUP 4INV F MASK F ¢ IF SWAP DROP ABORT
THEN DROP LOQP SWAP DROP |

GTOD 9 1 DO I _CREAD 4INV LOOP C B DO I _CREAD 4INV LOOP

TIME GTUD S 1 DO 3A TO LOOP .

i

¢ HIGHWAY CONTHOLLER DRIVERS)

ONAK Z ® STT + @ 4000 MASK 4000 /. { STACKS NAK BIT FOR A TERMINA

ENR 2 % STT + @ 8000 MALSK G000 / ; (STACKS NR BIT FOR A TERMINAL
*IMM 2 & STT + @ FF MASK (STACKSYS INFORMATION MONITOR)
®EM Z % STT + @ IF00 MASK 100 / ; (STACKS ERROR MONITOR)

{ CET ALL STATUS ON A PARTICULAR TERMINAL)

OCTSTATS DUP @IMM SWAP DUP ¢EM SWAP DUP ONR SWAF #NAK ;
« & OHRDER OFF STACK —)> NAK ,NH EM,ImM)

{ CONTROLLER STATUS)

®STOF CTUSW @ 1 MASK { STACKS START/STOP BIT)
OACTIVE CTUSW @ 2 MASK 2 / ; (STACKS ACTIVE/PASSIVE BIY)
Q0GP CTUSW @ & MABK 4 / ; (STACKS OVERRIDE GO PASSIVE BIT)

Chapter 6 Listings

-

1) Master terminal Unit Program.

NEW MASTER UNIYT SOFTWARE)

DESTINED FOR THE SHIP TRIALS)

JANUARY 1982)

INCLUDES REVISION TO ALLOW USE OF MTP EXTENSION BIY
INCLUDES BOTH BLOCK AND SHORT MESSAGE TESTS)
REVISION 2.1 10/71/82)

LONGER REPOARTS TO ALLOW DECENT STATUS |

REPORTS IN SMST)

-, e m oo .-

{ STOREIT AND DOIT INCLUDED IN THIS ONE)

"t TERMINAL UNIT PRIMARY TABLE)

.AD0 CONSTANT PR_TAP
PR_TAD CONSTANT IN_INT

IN_INT 1 + CONSTANT IN_NO

IN_NO 2. 4+ CONSTANT IN_POS

IN_POS 1 + CONSTANT IN_TAS

IN_TABP 2 + CONSTANT O_INT

O_INT 1 + CONSTANT O_NO

O_NO 2 + CONSTANT O_POS

O_POS 1 + CONSTANT O_TAB

O_TAD 2 + CONSTANT MES_TAD

MES_TAB 40 + CONSTANT HW_NO

HW_NO 2 4+ CONSTANT RE_COUNT

RE_COUNT 2 + CONSTANT DAT_STARVY

DAT_STARV 2 + CONSTANT RETR_COUNT
RETR_COUNT 2 + CONSTANT BUF_OVER

BUF_OVER 2 + CONSTANT IN_BLK_STAT
IN_BLK_STAT 2 + CONSTANT IN_BLK_SOURCE
IN_BLEK_SOURCE 2 + CONSTANT IN_BLK_TOTAL
IN_BLK_TOTAL 1 + CONSTANT IN_BLK_TOT_RECVUD
IN_BLK_TOY_RECUD 1 + CONSTANT IN_BLX_ADDRESS
IN_BLK_ADDRESS Z + CONSTANT O_BLK_STAT
O_BLK_STAT 3 + CONSTANT O_BLK_DESTIN
O_BLK_DESTIN 1 + CONSTANT O_BLK_TOV
O_BLK_TOT 1 + CONSTANT O_BLK_TOT_TXD
O_BLK_TOT_TXD 1 + CONSTANT O_BLK_START

{ END OF PRIMARY TABLE)

{ IN TABDLE)
{ MASK FOR A SINGLE BUFFER AREA)

t{ RELATIVE TO START OF BUFFER)
1 CONSTANT IN_BUF_LEN
IN_BUF_LEN 1 + CONSTANT IN_DEST
IN_DEST 1 ¢+ CONSTANT IN_SOURCE
IN_SOURCE 1 + CONSTANT IN_TYPE
IN_TYPE 2 ¢ CONSTANT IN_DAT_BUF

{ OUT TABLE)
t MASK FOR A SINGLE DUFFER AREA)

¢ RELATIVE TO START OF BUFFER)
1 CONSTANT O_BUF _LEN
O_BUF_LEN 1 + CONSTANT O_DEST
O_DEST 2 + CONSTANT O_TYPE
O_TYPE 2 + CONSTANT O_DAT_BUF

T : L - 1" DPy 2ZB3C DPL U UFyY pry
{ CHANNEL CONTROL WORD)
3C000 CONSTANT CCW

{ CONTROL WORDS)

2 CONSTANT GO (START TERMINAL UNIT)

3 CONSTANT CsTOP (STOP TERMINAL UNIT)

4 CONSTANT OFFINT (SWITCH OFF INTERRUPTS)

S CONSTANT ONINT (SWITCH ON AND CLEAR INTERRUPTS)
7 CONSTANT RESET (RESET AND HALT TERMINAL UNIT)

(BITS TO CONTROL TERMINAL UNIT)

40 S900 : IN_TABLE TABLE ;

40 SDOO : OUT_TABLE TABLE ;

¢ OUT_BUF_NO VARIABLE ;, (68K'S RECORD OF NEXT FREE BUFFER)
GET_BUF QUT_BUF_NO DUP @ 1 ¢+ F MASK SWAP 1|
CL2 DO O I B LOOP ;

{ MESSAGE SEND ROUTINE)
: SEND OUT_TABLE (OUT_BUF_NO @ O_BUF_LEN) @B
0 = IF (BUFFER IS FREE SO CARRY ON)
OUT_TABLE € OUT_BUF_NO @ S) DUP S - CLZ -
QUT_TABLE ¢ OUT_BUF_NO @ O_TYPE) | (MESSAGE YYPE)
OUT_TABLE (OUT_BUF_NO @ O_DEST) IP (DESTINATION)
OVER O DO DUP I + @B

OUT_TABLE (OUT_BUF_NO @ O_DAY_BUF I 4+) 1P LOOP DROP
1L +2 /7 3 + 3F MASK QUT_TABLE (OUT_BUF_NO @ O_BUF_LEN)

GET_BUF
ELSE POP POP POP POP
THEN

. { BLOCK RECEIVE AND TRANSMIT ROUTINES)

TOTSREM (GET SUB-BLOCK TOTAL AND REMAINDER
1 + 2 / FFFF MASK (WORD COUNT)
20 / DUP SWAP { SUB—-BLOCK TOTAL)
3F 10 LEFT MASK
80 / 200 / { REMAINDER)

BLK_SEND O_BLK_STAT @ 8000 MASK 0 = IF

O_BLK_START O_BLK_STAT CLZ (CLEAR UP TABLE)
O_BLK_DESTIN (B ¢ DESTINATION)
2 / O_BLK_START 1 (START ADDRESS)
TOT&REM

O_BLK_STAT |
O_BLK_TOT P

80 O_BLK_STAT 1B ' { GO Co co)
ELSE DROP DROP DROP (GET RID OF PARAMS)
THEN

BLK_REC IN_BLKX_STAT @ 8000 MASK O = IF
DROP DROP DROP (GET RID OF UNWANTED PARAMS)
ELSE O IN BLK STAT 2 4+ L (CLEAR UP)

l HUN A TEST) OUNITS L U_POINT [UCOUNT @ 3

{ ASSUMES ALL UNITS ALREADY SETUP CORRECTLY) UCOUNT "*1 ; { STORE ANUTHER TERMINAL NUMBER)
RUN NSET SNY (SEND THE BK.SRC NUMBER & RESET VARIABLES |
SRUN (TELL THE RECEIVERS TO STARY) M.GEN M_BYTE @ FF MASK DUP 8 LEFT + (FORM GENERATOR)
RESET*REP { SET ALL POINTERS TO ZERO) M_END M_START BK.GEN ;
PEGIN { THIS IS WHAT WE CAME FOR)
8000 0 DO BX.TX LOOP (DO A FEW TRANSMISSIONS) : M.SEND DUP M.GEN DROP M_LENGTH M_START
oD TO TEST_BYTE @ . : ROT ROT M_BYTE @ FF MASK
BUF? 100 + SEND (SET TYPE EXTENSION BIT)
END ‘ M_BYTE °1t ;
52 SETUP ; : REP*NO VARIABLE ;
SETUP S2 O WAITING (RESET'REP ACIZ GL 2 + @9 ; (P : REP ARRAY
M.SAVE E -~ 2 % C + REP SWAP DROP + *1 ; (INC MESSAGE COUNT)
¢ SHORT MESSAGE SOAK TESTS) . ¢ RX_WAIT O FLAG | 4000 0 DO RECEIVE 0 = IF STOP
{ ASWE SHIP TRIALS) ELSE I FLAG |
(REVISION 1.0 JANUARY 1982 | THEN LOOP ;
ERRORTOT VARIABLE ;
ANALYSE CODE 4
9402 SUB.L D2,D2 ' : CL_REP REP DUP 1% + SWAP DO O I |IB LOOP DROP ;
2602 MOVE .L D2,D3
2002 MOVE .L DZ,D4
265E MOVE .L (A&)+,A3 ‘
24SE MOVE.L (A61+,A2 ‘ : MSTRIP CL_REP AAAA REP C 1 13 | (FLAG ERROR RECORD)
221E MOVE.L (Aé)+,D1 o REP*NO @ REP C 0 3 |
3601 A MOVE.W D1,D3 A2 DOREP C I 3 1 LOOP
ae1p MOVE . W (A3)14, D4 REP STOREIT
B943 EOR.W D4 ,D3
670A BEQ.S B
5242 ADDQ €1 ,D2
B47C CHP @e9,D2)
0009 : M.ERRS ERRORTOT @ + ERRORTOT | MSTRIP ;
6E02 BCE.S »
2003 MOVE.L DJ3,-(A6) : M.ANALYSE FF MASK DUP B8 LEFT + SWAP
SZ41 B ADDQ €1 ,D1 PUP STK ROT SWAP
PSCB CHMP.L AJ A2 g OVER + SWAP ANALYSE
SEED BCE.S A DUP 0 > IF M.ERRS
2po2 MOVE.L D2,-(A6) ELSE DROP THEN UNST PUSH ;
4E7S RTS ‘
0000 ' .
; ¢ GTIMEL O PR_TAB 66 + | 4000 1.DO PR_TAB 64 + @ B000 = IF STOP THEN LOOP
M_DYTE VARIABLE ; { MTP, USED TO GENERATE MESSAGES) 2 0 DO PR_TAB ¢6 + 12 @ OVER IZ | LOOP DROP ;
BX . START - CONSTANT M_START (USE SAME SPACE AS BLOCK TEST)
39 CONSTANT M_LENGTH t MAXIMUM DATA MESSAGE LENGTH)
M_START M_LENGTH + CONSTANT M_END - : MREPORT (REPORT TO ITSELF)
. UCOUNT VARIABLE ; (COUNT OF UNITS IN THIS TEST) REP 2 + GTIME1 DROP
FLAG VARIABLE ;) ERRORTOT @ REP C 4 3 | { UNDETECTED ERRORS |}
RE_COUNT @ REP C S 13 | (DETECTED ERRORS)
SME* X_COM % UNITS! % ; REP'NO @ REP C 0 3 | { REPORT NUMBER)
SME SME° MW_NO @ DISSECT M_BYTE @ REP C 6 REP°NO @ + 3 | { TOTAL MESSAGES SENT)
DUP 1 = IF DROP OVER ID REP GTORELT (DO THINGS THE EAEY WAY)
ELSE 2 = IF ROT OVER 1 + 1D SWAP OVER IB THEN THEN ;
0 0 SEND
; . SETBITS { SET A FEW URGENTLY NEEDED BITS)

HW_NO @ 3F MASK E ~ REP°NO |
WAIT_A_WHILE 4000 1 DO LOOP ; CL_REP 0 ERRORTOY | 0 M_BYTE |

‘

USAY CRLF STRING RATERMINALS IN TEST.~ % SAY
' SPACE HW _NO @ . ;

. SMRUN { SAY HELLO TO EVERYONE)

i DISINT

. RESET*REP
SETBITS
UCOUNT @ 1 - (GET TOTAL NUMBER OF RESPONSES)
[VI-T.3 ¢

O DO U_POINT C I) @ DUP M.SEND
SPACE . LOOP CRLF
BEGIN
LSIZE 1 DO
RX_WAIT (WAIT TO RECEIVE ANYTHING)
FLAG @ 4000 = IF STOP THEN
DUP 100 MASK O > IF
M. ANALYSE { ANALYSE RECEIVED MESSAGE)
M. SEND (REPLY TO THE SRC TERMINAL)
M. SAVE (SAVE COUNT FOR STATUS REPORTS)
ELSE PROCESS
THEN
LOOP
MREPORT
BUF 7
FLAG @ 4000 = XIF ENINT QUIT THEN
END ;

52 SETUP
SETUP S2 1FF 100 DO I S_TYP LOOP
SETBITS

SSRUN* X_COM RSMRUN % ;

SRUN O ERRORTOT | O M_BYTE | O UCOUNT | 0 FLAG | ;
SRUNL SRUN SME ;

SSCL* X_COM %SRUN1 %

S5CL SAUN SSCL*° 0 O SEND MWAIT_A_WHILE SME

SSRUN SMY SSCL WAIT_A_WHILE
SSRUN" O O SEND
SMRUN ;

SSTOP° X_COM %SSTOP % { TELL OTHER UNITS TTO STOP SMST)
SSTOP SSYOP® 0 O SEND ;

1RESET LOCATE INTER SINT 8 + EQUATES | ;
_RES RESTART SETUP 1RESET INTER ;
ZRESET LOCATE _RES SINTY B8 + EQUATES (| ;

(ENDFILE

2) Slave Terminal Unit Program.

RX_WAIT O FLAG | 4000 0 DO RECEIVE 0 = IF STOP

COUNT2 @ 10 x\xr QUIT THEN
) ELSE I FLAG |

“END “
.\\\\\‘\ THEN LOOP ;
T M.ERRS ERRORTOT @ + ERRORTOT | MSTRIP ;
TOP VARIABLE ; { USED TO FLAG A STOP)
SETUP ; M.ANALYSE FF MASK DUP B LEFT + SWAP { USES MTB EXTRACTED FROM

POP STK ROT SWAP
OVER + SWAP ANALYSE
DUP 0 > IF M.ERRS
ELSE DROP THEN UNST PUSH ;

TBITS HW_NO @ 3F MASK E - REP°NO |
CL_REP O FSTOP |

TUP SZ SETBRITS

) SREPORT { REPORT TO MASTER TERMINAL)
REP 2 + GTIME1 DROP { TIME WORDS)
ORT MESSAGE SOAK TESTS) ERRORTOT @ REP C 4 1 | (UNDETECTED ERRORS)
WE SHIP TRIALS) RE_COUNYT @ REP C S 21 1 (DETECTED ERRORS)
VISION 1.0 JANUARY 1982) REP°NO @ REP C 0 1 | { REPORT NUMBER)
M_BYTE @ REP C 6 REP'NO @ + 1 | (TOTAL TXD MESSAGE COUNY)
REP BK.SRC @ 3F MASK 1 SEND ; (SEND TO MASTER)

.GEN CODE

26SE MOVE.L (A6&)+,A3

243E MOVE.L (AG&)+,A2 200 CONSTANT LSIZE

2216 MOVE.L (A6),D1

36C1 ONE MOVE.W Di,(A3)+ .

s241 ADDG .W ©1,D1 SSTOP 1 FSTOP | ; { FLAG A STOP TO SSRUN LOOP)

B3CH CHMPA.L A3 ,A2

6cre BGE ONE .

4E7S ATS : SMRUN (SAY HELLO TO EVERYONE)

0000 - DISINT

SETBITS
UCOUNT @ 1 - { GET TOTAL NUMBER OF RESPONSES)

BDYTE VARIADLE ; { MTP, USED TO GENERATE MESSAGES) O DO U_POINT C I 3 @ M.SEND LOOP (TRANSMIT MESSAGE TO EACH
TART CONSTANT M_START ({ USE SAME SPACE AS BLOCK TEST) BEGIN
CONSTANT M_LENGTH (MAXIMUM DATA MESSAGE LENGTH) LSIZE 1 DO
ART M_LENGTH + CONSTANT M_END . AX_WAIT { WAIT TO RECEIVE ANYTHING)
DUNT UARIABLE ; (COUNT OF UNITS IN THIS TEST) FLAG @ 4000 = IF STOP THEN

NG VARIABLE ; DUP 100 MASK O > IF

M. ANALYSE { ANALYSE RECEIVED MESSAGE)
E* X_COM % uun's.'| % M. SEND (REPLY TO THE SRC TERMINAL)
I SME° HW_NO @ DISSECT) M. SAVE
DUP 1 = IF DROP OVER P ELSE PROCESS
ELSE 2 = IF ROT OVER 1 + 1D SWAP OVER 1D THEN THEN THEN)]
3 0 SEND FSTOP @ 1 = IF 4000 FLAG | STOP THEN (STOP IF FLAGGED
LooP
SREPORT
IT_A_WHILE 4000 1 DO LOOP ; FLAG @ 4000 =~ IF ENINT QUIT THEN
END ;
52 SETUP

I_POINT ARRAY ; { ARRAY OF TERMINAL NUMBERS OF UNITS IN YEST)
SETUP 52 1FF 100 DO I S_TYP LOOQP

TSI U_POINT € UCOUNT @ D |) ‘

UCOUNT 1 { STORE ANOTHER TERMINAL NUMBER)
SSRUN® X_COM ASHRUN %

SRUN O SEQU 1 O ERRORTOT | 0 M_BYTE | 0 UCOUNT | 0 FLAG |

EN M_BYTE @ FF MASK DUP 8 LEFY + (FORM GENERATOR) SRUN1 SRUN SME

M_END M_STARY BK.GEN ; .
1RESET LOCATE INTER SINT 6 + EQUATES | ;

_RES RESTARY SETUP 1RESEY INTER ;

END DUP M.GEN DROP M_LENGTH M_START
' ¢ ZRESET LOCATE _RES OINT 8 + EQUATES {

ROT ROT M_BYTE @ FF MASK
100 + SEND (SET TYPE EXTENSION BIT)

N_BYTE °1 ; RENDFILE

AVE E — 2 8 C + REP SWAP DROP + °1 ; (INC RECEIVE COUNT)

)

3) MC6809 Monitor Unit Program.

17
21)
19
.20
121

‘23
24
‘23
‘26
t27
‘20

LR X X X & X X R R X ¥

PROCRAM TO“STORE THE INFORMATION
PRESENTED AT THE SECOND PORT

BY THE 68000

ASSUMES SECOND PORT IS AT F318

ASSUMES PRIMAAY ACIA AT F300

COMMANDS AVAILABLE ARE : -

D DISPLAY DISK STATUS

Q QUIT LOGGING ACTIVITY

A ENGAGE THE AUTO PILOT

N DISENGAGE THE AUTO-PILOT

C CHANGE DRIVES, USE INSTEAD OF GEORGE
R REPORTS LAST MESSAGE FROM EACH TERMINAL

PAGE 00%
00229

00230

00231

00232

00233 0000
00234 0003
0023% 0006
002364 0009
00237 000C
00238 OO0E
00239 0010
00240 0012
00241 0014
00242 0016
00243 0019
00244 001B
00245 001D
00244 OO1F
00247 0022
00248 002%
00249 0027
00250 0029
00231 002B
00252 o002D
00253 0031
00254 0033
00233 0033
00:%6 0037
00257 003A
00258 003C
002%9 O003E
00260 0040
00261 0042
00262 0046
00263 0048
00264 004A
0026% 004C
002664 O004F
00267 00%0
00268 0052
00269 0054
00270 0057
00271 00%A
00272 00%B
00273 005D
00274 0060
0027% 0042
00276 0064
00277 0068
00278 0067
00279

00280 0069
00281 006C
00282 006E
00283 0070
00284 0073
00283 0073

1:572.TXT
F%500
F3s18
BE 0274
bD D2Aaé
8D 00AA
8E F510
aé 03
A7 04
(-1 13
A7 84
eb S3
8E FS00
Ab a4
as 01
27 o3
BD 0146
8E F318
Ab 64
a3 01
27 ED
Eé o1
108€E 071D
Cé 40
E7 01
Cé 00
CE 0000
(.13 a4
a3 o1
26 22
33 41
1183 FFFF
26 F2
Ci [+ 1+]
27 E€E
Bé 03554
4D :
26 1)
en a7
BD O1FE
Bé 0S36
4D
27 B9
BD O0OE2
20 Be
A4 01
AT A0
SC
20 CE
BE 035357
86 o1
AT 64
BD D786
27 OE
BD - DZAY

55D 64809 ASSEMBLER

0049

0022

0016

0062

003A
003a
0057

oo8ep

0016

0016

0037

0083

ACIALl
ACIAZ

START

NINE

FIVE

SEVEN
ONE

FOUR
THREE

TEN

TWO

DKINIY

EQU
EQU

L DX
JSR
JSR
L DX
LDA
STA
LDA
STA
BSR
L DX
LDA
BITA
BEQ
JSR
LDX
LDA
BITA
BEQ
LDB
LDY
LDB
STB
LDB
LDY
L DA
BITA
BNE
LEAU
CMPU
BNE
CMPB
BEQ
L DA
TSTA
BNE
BSR
JSR
LDA
TSTA
BEQ
JSR
BRA
L DA
STA
INCB
BRA

L DX
LDA
STA
JSR
BEQ
JSR

SF500
OF318

*TMPS
ZOUTST
INIT
®ACIA2
o3
X
o913
X
DKINIT
#ACIAl
X
o1
SEVEN
SERVE
®ACIA2Z
X
o1
FIVE
1,X%
®BUFF
€040
1,x%
0
0
X
o1
TWwo
1.u
®SFFFF
THHEE
*0
THREE
ERROR

TEN
OUTPUT
SAVE
AUTO

FIVE
GEORGE
FIVE
1,%

Y4

FOUR

CFCP
Q504w
XFC, X
DF M
DKONE
ZTYPDE

OPEN THE DISK FILE

ANYTHING THERET?

NO SO TRY AGAIN
CLEAR HANDSHAKE

TELL 66K WE ARE READY

RX'D ANYTHINGT?7

YES SO GO .

COUNT OF LAPSED TIME

HAVE I WALITED LONG ENOUGHTT
NOT YET I HAVEN'T

DO WE HAVE A PROBLEM

YES I HAVE, SO GO DUMP DATA

AND RETURN TO LIVE ANOTHER D
GCET THE RELEVANT CHARACTER
BUFFER IT ’

AND GO TRY FOR ANOTHER

OPEN FILE FOR WRITE

WELL, LET THE DFM DO IT FOR
ALL IS WELL SO GO

ALL IS NOT WELL SO TELL THE

e \ .
; PAGE 007 1:572.7XT S5P 6809 ASSEMBLER

{: 1
287
4:1:]
289
90
291
92
93
9
93
47
®7
4]
99
00
1+3%
02
103
04
103
06
07
08
09
10

oora
0078
007€
0081
ooal
0084
o087
008a

0080
008D
0091
0094
0096
0096
009A
009D
O009F
00A2
O0AS
00A7
00A9

00AA
00AD
00P0o
0083
00B3
oop7
00BA
o0BD
OO0BF
00C1
ooCc3
00C3
00C7
00CY
00CD
0OCF
o0oD1
o0bse
o0Dbé
00Db9
[+1:]: o
00DE
O0EL

00E2
OO0ES
O0E7
O0E®
00EC
OOEE
00F O
00F1
O0F 4

BD
OE
8D
OE
4F
B7
87
39

36
100€

eé

BD
a1
2D
39
8D
Cci

D783
o319
D2A6
06

0332
03¢

20
071D
o337
0z
a4
A0
D706

D2A9
E4
F1
20

OUTONE

00A2

o098

0o0Cc7

ooD:

0L7E

O0F1

JSR
LDX
JSR
IMP

DKONE CLRA

RTS

OUTPUT

OUTTWO

INIT LDX

CHPD

LDA
LDB
BRA
CcHPB
LBEQ
LDA
LDP
L DX
sTa
STX
L DX
ST
STX
RTS
% GEORGE, THE

IN1

IN2

GEORGE LDX
LDA
STA
JSR
cHPA
BLT
RTS
JSR
CMPD

GRG1

CLOSE ALL FILES

CDFM
*TMP13
ZOUTST
NINE
DONE FLAG FOR GEORGE
ERROR

HURRAYYYYYYYYYYYYY
Y SAVE LAST BUFFER ADDRESS
®BUFF GET THE FIRST
cFCB
®QSWRIT .
XFC ,X WRITE TO THE FILE
v+ GET A CHAR
DEM PUT IT ON DISK
ouUTTWO
ZTYPDE .
s HAVE WE FINISHED YET
OUTONE ° NO SO GO DO ANOTHER
¥ CLEAR UP STACK
eTHMPG
ZOUTST DRIVE NUMBER QUIZ
ZINCH GET IT
0 7F STRIP PARITY
A,B
ZOUTCH
ZCRLF
®'1
IN1
o1
2
IN2
*'qQ
QurT ALLOW A QUIT IF NEEDED
2
*1
#FCB1
XUN , X
cFce FCB1 IS FIRST DRIVE
*FCB2
XUN , X AND FCBZ IS THE SECOND ONE
AFCHE ALTERNATE FCB
AUTO-PILOT
CFCB
®GF REE
XFC, X
DFM DETERMINE FREE ON CURRENT DR
®001 UPPER BYTE
GRG1

ENOUGH IS LEFT 50 WE HAVE NO
ALTF FIND THE FREE ON THE ALTERNA
010 LOWER BYTE ON CURRENT DRIVE

00343

00344
00345
00346
00347
00348
00349
00350
00351

00352
00353

00354
003ss
003%6
00as7
00358
00359
003640
00361

00362
00343
00364
00365
00366
00367
00368
00369
00a70
00371
00372
00373
00374
00a7%
003764
00377

00378’

Q0379
00380
00301
00362
00383
00364
00363
00386
00367
00368
003689
00390
00391
00392
00393
00394
0039%
00396
00397
00399
00399

O0F &
OO0F8
00FA
00FC
00FD
0100
0101
0103
0106
0109
010B
010E
O10F
0111
o113
0116
o11@
011A
o11D
0121
0124
o1iz2e
0124
012p
012E
0131
0133
0136

0137
0139
o13c
013€
0140
0143
0145

0146
0148
014A
014C
O14F
0131
0133
01356
0159
013D
018D
0160
0163
0166
0169
016
016E
0170

17
01
o1

0552

oP
0440
D2A6

03532

01
10
0357
03
a4
D786
(11134
0339
0857
69

04C1
D2A6
01

‘0534

01
4
2E
oss7
oo
a4
D706
021D

o1
D2aF
021F
D2A6
0557
02
021D
(-2}
D2aC

Q10F

O0FD

010E

0o12p

017

BLS
CMPA
BLT
RTS
LDA
TSTA.
BNE
LDX
JSR
LDA
STA
RTS
cHPA
BLY
LDX
LDA
STA
JSR
LDY
5TX
sSTY
ISR
RTS
LDX
JSR
LDA
STA
RTS

GRGA

GRGS
GRG2

GRG+4

PSHS
DX
LDA
STA
JSR
PULS
RTS

ALTF

GRG2
901
GRGJ3

DONE

GRGS
*TMP10
ZOUTST
o1
DONE

#s01
GRG4
CFCB
*QsWC
XFC, X
DF M
AFCB
AFCB
CFCB
DKINIT

*TMP11
ZOUTST
o1
ERROR

AFCB
®QF REE
XFC , X
DFM

B

UPPER BYTE ON ALTERNATE

SUFFICIENT ON BOTH DRIVES FO

.

ONLY ISSUE ONE WARNING

THIS ENSURES WE ONLY DO IT O
UPPER BYTE OF ALTERNATE DRIV

ALTERNATE DRIVE IS 0K
S0 CLOSE CURRENT DRIVE

S0 SwWaP DRIVES

AND OPEN A NEW LOGGING FILE
AND ALL IS OX

PANIC LADSI 1111111

GET FREE ON ALTERNATE DRIVE

% COMMAND SERVICE ROUTINE

SERVE LDaA
CMPA
BNE
LDX
L DA
STA
JSR
L DX
STA
STH
J4R
LDX
JSR
LDX
LDA
LDX
STA
JSR

1,%
e'D

51
CFCB
®QFREE
XFC, X
DF M
*TMPL
, X

1.x%
ZOUTHA
eTHP2
ZOUTST
CFCB
XUN , X
eTHP1

L
ZOUTHX

GET THE COMMAND CHARACTER
DISPLAY COMMAND77

YUP
FIND OUT THE FREE SPACE

HIGH ORDER COUNT
LOW ORDER COUNT
OUTPUT FOUR HEX CHARS

CURRENT DRIVE NUMBER

OUTPUT TWO HEX CHARS

. ll’ !:!TZ.TKT S§SB 6009 ASSEMBLER

W T WV T GWUNPUEOLNMOYDNO NS

0173
0176
0179
017A
017C
017K
01081
0184
0187
018A
018C
018€

‘0191

0194
0197
0198
019A
019C
019D
01A0
01A3
01A6
01A7
01A9
O01AP
O1AE
01B3
0182
o1b4

o186 .

0199
018C
OLBF
o1C1
01C3
01Cé
01CA
01CE
0o1D1
0o1D3
01D4
o1pé6
0108
010dC
o1DD
O1DF
01E0
O1EJ
01ES
01E0
01EA
01EC
O1EE
01F1
01F3
O1Fe
01F7

8E
BD
39
a1
26
[3
2D
D
TE
- B
26
B7

023A
D2A6

S1
ocC
0233
D2A6
D703
DzZeal
41

- 0A

03356
0310
D2Aé

4E
oB

0536
0343
DZAé

07
0366
D2A6

43

04D7
DZA6
0337
o3

D706
0339
0337
0339
69

32
235
03SH

A0

016A

0198

01A7

0182

01Dse

O1IFD

O1F7

S1

QulT

53

54

S6

6B

S6A

L DX
JSR
RTS
CHMPA
BNE
LDX
JSR
JSR
JMP
CHMPA
BNE
sTA
L DX
JSR
RTS
CHMPA
BNE
CLRA
STA
LDX
JSR
RTYS
CMPA
BNE
LDX
JSR
RTS
CHMPA
BNE
LDX
JSR
LDX
LDA
STA
JSR
LDY
STY
STX
JSR
RTS
CMPA
BNE
LDY
CLRD
LDA
INCS
JSR
LDA
JH5R
CcMPD

LDA
JSR
L DA
JSR
CLRBP
CMPY

*TMPI
ZOoUTST

L 2|

s2
OTMP4
ZOUTST
CDFM
ZWARMS
*'A
s3
AUTO
eTMPTY
ZOUTST

®'N
Se

AUTO
*TMPO
ZOUTST

*'H

55
STMP9
ZOUTST

e'c

s6
eTHP12
ZOUTST
cFCB
*QsSWC
XFC,X
DFM
AFCH
CcFCB
AFCH
DRINIT

*'R
87
&5 BUF

Ye

ZOUTHX
820
ZOUTCH
816

oD
ZOUTCH
o8A
ZOUTCH

®SEND

QUIT COMMAND 77
YES 50 ACKNOWLEDGE

CLOSE ALL FILES
RETURN TO FACE THE MUSICII

ENGAGE GEORGE, THE AUTOPILOT

DISENGAGE GEORGE

CLOSE CURRENT ONE

SWAP FCB'S
OPEN OTHER DRIVE

SAVE BUFF START

PAGE 009
004%7 O01FB
004%0 O1FD
00459

004640 OIFE
00441 0201
00462 0203
00443 0207
00464 0209
00465 020A
00466 020C
004647 O020E
00468 O020F
004649 0212
00470 0213
00471 0219
00472 0217
00473 0219
00474 021A
00473 021iC
00476

00477 021D
00478 021F
00479 0239
004860 023A
00481 0250
00482 0253
004683 0273
00484 0276
00485 0293
00486 0293
00487 0282
00488 02B4
00489 02D1
00490 02D3
00491 O2FO0
00492 O02FJ3
00493 0317
00494 0318
00495 L0340
00496 0343
00497 0363
00498 03646
00499 036A
00500 036C
00%01 0386
00%02 0388
00503 03B1
00%04 03B3
00%0%5 03CD
00306 OJICF
00%07 O0J3IEC
00508 * 0JEE
0009 040F
00510 0411
00%11 043D
00512 0440

1:87T2

26
39

31
EC
1003
26
39
1]
Ccé
3b
aE
3A
cé
hé
a7
3A
2€
39

. TXT

SSB 4809 ASSEMBLER

EO 01DbD

A8 EB
22
AAAA

o1 020A

21
18

03538
18
A0
= 1]

F9

0215

57

SAVE

9AVL

SAVZ

TMP1
T™MP2

T™MP3
T™P4

T™PS

THMP6
TMPT
THMPO

TMP9

TMPL1O

BNE
RTS

LEAY
LDD
CHPD
BNE
RTS
LDA
LDB
MUL
LDX
ABX
LDB
LDA
STA
DECB
BGT
RTS

FDB
FCC
FCB
FCC
FCB
FcC
FCBH
FCC
FCB
FCC
FCB
FcC
FCB
FCC
FCh
FCC
FCP
FCcc
FCh
FCC
FCB
FCC
FCB
Fcc
FCh
FCC
FCB
FCC
FCB
FCC
FCB
Fcc
FCB
FCC
FCB
FCC

S&b
-s18,Y
z,v
®8AAAA ERROR REPORTT77
sAV1

YES SO RETURN
1.y GET REP'NO -
810 RECORD LENGTH

OFFSET INTQ BUFFER
5 BUF BUFFER START

POINTER TOQ RECORD BUFF
esie ‘
v+ GET A CHAR FROM INCOMING REC |
X+ STORE IN SBUF ' |
savz

!

o SPACE FOR D COMMAND ’
/ FREE SECTORS ON DRIVE :— /
o

/ CURRENT LOGGING DRIVE/ -

0D, %0A,00

/CLOSE ALL FILES AND QUIT LOGGING/
80D ,%0A,00

L L P T
$0D,80A

/% DATA LOGGING PROGRAM V1.1 ®/
$0D,80A :

/% DECEMBER 1961 s/
$0D,%0A l
/RERRRRKERRRR KRR EENRREERS /
$0D,$0A,0

J/ENTER FIRST LOGGING DRIVE NUMBER :—
[.
/ENGAGE GEORGE, THE FAITHFUL AUTO-PIL
80D ,80A,0

/DISENGAGE GEORGE, THE POOR BEAST/ -
$0D,%0A,0

IHELP/

$0D,80A

/A - ENGAGE THE AUTO-PILOT/

0D, 80A

/€ :~ CHANGE DRIVES, USE INSTEAD OF G
0D ,80A

/D :~ DISPLAY SYSTEM STATUS/

$0D,80A

IN :~ DISENGAGE THE AUTO-PILOT/

80D, 980A

/Q :- CLOSE FILES AND QUIT LOGGING/
$0D,80A

/R :~ DISPLAYS LAST REPORT FROM EACH
0D ,80A,0 .
/REERRRENRERWARNINGRE SRR AR IS ERE /

R =

E 010 1:S57T2.7TXT

13 04SE oD
14 0460 20
S 047E oD
16 0480 20
L7 049€E ob
18 04A0 2a
® 04BE oD
20 04C1 zA
1 04D oD
22 04DT - za
3 04EC oD
24 O4EF 2A
S 0502 oD
264 0505 43
7 0S17 oD
28 0518 43
9 0332 op
10 0534 =2
13 0SeF op
32 0s32 0002
11 0554 000z
34 0556 0o
IS 0557 0002
J& 0559 0002
17 0538 0070
30 0303
¢ 0503 0003
0 03D6 36
)1 030C 00%c
12 0476 0003
'3 067D 36
4 OsB1 ooec
L] 071D
7

\L EARRORS 00000

SS5P 6009 ASSEMBLER

T™P11

TMP1Z

TMP13

DONE
ERROR
AUTO
CFCP
AFCH

SEND
FCh1

FCB2

BUFF

AL WARNINGS 00000--00000

FCPh

FCB
FCC
FCP®
FCC

FCC
FCB
FCC
FCH®
FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB

RMB

FCB
RMB
RMB
RMB
EQuU
-1 ¥ 4
FCC
BSZ
BSZ
FCC
»8Z
EQU
END

$0D,80A
/ CURRENT AND SECONDARY DRIVES /
80D, 80A

] BOTH NEARLY FULL]
#0D, 80A
IERRRERREEREE SRR ERRR SRR AN RN /
$0D,80A,0

18R RREATTENT IONSRERK /

60D, 80A, 807

/SRERCHANGE DRIVESEENE/

60D, 80A,00

/WNSECONDARY FULLXSS/

$0D,%0A, 807

/CHANGE IMMEDIATELY/
$0D,00A,807,0

/ERROR WITH LOGGING FILE/

0D, s0A

/REPLACE A DISK AND RE-ENTER/
$0D,80A,00

2 A FLAG FOR GEORGE

FLAG FOR BOTH DISKS FULL

WE"NNON

/68KDAT/
1356

3

/ 68KDAT/
1Se

3

BLOCK HESSAGE SOAK—TEST 7
IECEIVE ROUTINE)

ASWE TRIALS)

WCEMBER 1981)

20 CONSTANT BK.START {
} CONSTANT B .LENGTH

.START BK.LENGTH + CONSTANT BX.END
TEST_BYTE VARIABLE ; ¢

IARORTOT VARIABLE ;

iK.SRC VARIABLE ;

STARTING VARIABLE ;

SOUNT VARTABLE ; _ {
IEQU VARIABLE ; {
SOUNTZ VARIABLE ;

IACH RX HAS & UNIQUE REP*NO)

START OF TEST BLOGK) ‘

{ END OF TEST BLOCK)
START OF MESSAGE TEST_BYTE)

ERROR TOTAL) : ,

COUNT OF BPK.RX TRIES)
OUT OF SEQUENCE COUNT)

WND THE TX USES IT TO REFERENCE ITS ARRAY OF POINTERS)

IEP"NO VARIABLE ;

REF ARRAY ;

SL_REF REFP DUP 135 + SWAP DO O 2
ISTRIP CL_REP AAAA REP L 1 1 |
REP"NO @ REP L 0 1 1
A 2 DO REP C I 3 ' LOOP
REP BK.SRC & 3F MASK 1 SEND

WALYSE CODE

Q482 SUB.L DZ,D2
2602 MOQUE.L DZ,D3
2802 MOVE .L D2,D4
2a5E MOVE . L (A&)+,A3
Z245E MOVE .L (A&)+,A2
221E MOVE . L (As&)+,D1
3401 A MOVE.W D1,D3
LT-17] MOVE . W (AJ)+,D4
943 EOR.W D4 ,D3
ATOA BEQ.5 D

5242 ADDQ #1,D2

B47C CMP #89,D2

0009)

&EOZ BGE.S B

2p03 MOVE.L D3,-(As)
%241 B3 ADDQ ¢1,D1

BSCH CMP.L A3, A2
&EE® BGE .S A

2poz MOVE.L D2,~(Ab)
4E7S RTS

0000

SETS UP ERARORTOT DR SEQU DEPENDING ON

I .ERRS DUP 20 > IF SEGQU "1 BK.START @
DROF MSTRI

ELSE ERRORTOT @ + ERRORTOT |

THEN ;

3K _REC BK.LENGTH BX.START BK.SRC @
BLK_REC

tp LOOP
{ FLAG ERROR RECORD)

DROP ;

THE NUMBER OF ERRORS)

1 + TEST _BYTYE |
P
MSTRIP

{ SET UP TO RECEIVE THE BLOCK)

i BER. STAT IN-BLK STAT @B BO MASK ~ —= - ~——— -

'

CHECK THAT THE RECEIVED BLOCK AGREES WITH THE ONE WE ARE EXPECTING)

BK .ANALYSE TEST_BYTE @ N .
BK.END BK.START oo T
_ . ANALYSE
s : TEST_BYYE ‘1
USE THIS COMMAND TD SET UP A COMMAND LINE
WHICH WILL BE SENT ELSEWHERE |
X_COM IMMEDIATE % STRING OD DP @ 1 ~ (B ;

OK'T 02 2000 BK.SRC @ 3F MASK 2 SEND ; (ACKNOWLEDGE BLOCK RX)

RECEIVE A BLOCK IF POSSIBLE)
EVERY WUNSUCGCESSFUL ATTEMPT IS COUNTED AND AaNOTHER)
HANDSHAKE IS SENT FOR EVERY 300 TIMES IT FAILS)

BK.RX BKR.GTAT 00 > IF
- BK . ANALYSE .
DUP ¢ » -IF BK ERRS ELSE DROP
THEN
BK .REC OK7T COUNT "1

THEN (AVOID A LOCK DUT)

SET UP A FEW VaRIADLES)
THIS COMMAND IS SENT BY THE TRANSMITTER)
AND INITIALISES BK.SRC ACCORDINGLY }

SET.TX BNK.SRC t 0 STARTING

I 0 ERRORTOT { © TEET_BYTE 1
SEQU { o0 COUNTZ 1 '

GET THE F1IRS5T THREE TIME WORDS INTD A THREE CONSECUTIVE LOCATIONS)}
GTIMEL O PR_TAB &4 + | 4000 1 DO PR_TAB &4 + @ B000 = XF STOP THEN LOOP
2 0 DO PA_TAD 468 + IZ 0 OVER IZ2 | LDOF DROP ;

'*STOREIT' TO TX)
RE_COUNT AND REF*NO)

SEND A REPORT TYPE ONE
REPORT THE TIME, ERRORTOT,

REPORT REP 2 + GTIMEl DROP ‘i GET SOME TIME INTQ THE SCENE)
ERAORTOT @ REP L 4 2 | { THE TOTAL NUMBER OF ERROHRS)
RE_COUNT @ REP L 85 3 | I RECEIVE ERROR TOQT)

REP * NO @ REP C O 23 ¥ i THE TERMINALS REPORT NUMBER)
SEQL @ REP L & 31 { MESSAGE OUT OF SEQUENCE)
TEST_BYTE @ REFP L 7 2 { NUMBER OF MESSAGES, SORY OF)

REFP 8K .SRC @ 3F MASK 1 SEND

TEST LOOP)
RUN O COUNT |
BEGIN

8000 0 DO BK.RX LOOP
COUNT @ 0 = IF OK7T COUNTZ
THEN O GOUNT |
REPORTY = .

BX.REC 0OK7 { FIRST HANDSHAKE TRANSMISSION |

1 ELSE 0 COUNTZ |

(REMATNNED [

IN_BLEK_STAT 1 + 1B~ laTNnED c o .
IN_BLK_TOTAL (B { SUB-BLOCK TATAL) ¢ USE PTH TO PROVIDE INTERRUPTS FUR 2901 SERVICE ROUTINE }
0 IN_BLK_STAT IR ' ¢ €0 GO GO) : A ' '
-THEM { SET IT TO INTERRUPT APPROXIMATELY ONCE A SECOND)
; A ;. SETPTM O WRZ2 IP 1 WR3 1B 1 WR2 D (DIVIDE BY @) N
42 WR1 |D { CONTINUOUS OPERATION) -
TF Té1 1B FF WTel 1P { AS S5L0W AS POSSIBLE)

{ MESSAGE RECEIVE ROUTINES) - .

)
LY .
THIS ROUTINE WILL PERFORM A NORMAL SIXTH)
WORD FIND EXECUTE ON THE CONTENTS OF)
A TYPE ZERO MESSAGE WHICH HAS BEEN RECEIVED)
FROM THE OUTSIDE WORLD BY THE 2901 SUBSYSTEM)

2 INV —1 SWAP - ;

: s_Typ t SELECT A CERTAIN MESAGE TYPE)
DUP F MASK 1 5WaP LEFT SWAP 10 / FFFF MASK 2 ¥
MES_TAP + DUP @ INV ROT ROT MASK OVER @ + SWaAP § ;

{ SETS THE DESIRED BIT IN THE MTT ARRAY)

- -,

CL_TvP { DESELECT A CERTAIN MESSAGE TYPE) ! ‘DOXT WE I ' { START ADDRESS)
DUP F MASK 1 SWAP LEFT INV SWAP 10 / FFFF MASK 2 % 0 LAST |
MES_TAB + DUP & ROT ROT MASK SWAP | ; 30 0 DO WORD FIND EXECUTE { NEW INTERPRET LOOP |}
{ CLEARS THE DESIRED BIT IN THE MTT ARRAY !} 0 LAST @ = IF ¢ OK IF = O)
ELSE STOP { OTHERWISE GIVE UP)
IN_BUF_NO VARIABLE ; THEN LOGP
[
REL_BUF IN_BUF_NO DUP @ L + F MASK SWAP | THEN ;
(MOVE TO NEXT INPUT BUFFER, WRAPAROUND AT ‘F' |
: [IMMEDIATE ; { I.E THROW IT AWAY)
RECEIVE { CHECKS TO SEE IF A MESSAGE IS AVAILABDLE) 3 2 % + SWAP DROP ;
IN_TABLE € IN_BUF_NO @ IN_BUF_LEN)} @B DUP IZ1zx+;
0) IF 3 -2 x { SIZE IN BYTES)
IN_TABLE € IN_BUF_NO @ IN_DAT_BUF 3 { ADDRESS)
IN_TABLE € IN_BUF_NO @& IN_SOURCE) @B { SOURCE }
IN_TABLE € IN_BUF_NO @ IN_TYPE) @ t TYPE |
0 IN_TABLE (IN_BUF_NO @ IN_BUF_LEN 3 IB {1 CLEAR IT)
REL_BUF { READY FOR NEXT TIME | TX.OK VARIABLE
) { EVERYTHING WAS OK)
ELSE DROP —1 { NOTHING WENY RIGHTI! ¢ PROCESS
THEN DUP 2 = IF TX.0K “1 POP POP POP #OP
; ELSE DUP 0 = IF { TYPE ZERO77)
) DROP DROP DOIT POP { DO AS THE MAN SAYS)
ELSE POP POP POP POP
THEN THEN

TAB_SEY RESET CCW | B0O AOO0 CL2 4800 5700 CLZ
80 IN_INT (B 10 IN_NO IB i
2980 IN_TAB |

80 O_INT 1B 10 O_ND P
Zpeo O_TAB

0 QUT_BUF_NO |

O IN_BUF_NG |

IRQS HANDLES THE PTM INTERRUPT)

IT FIRST CHECKS FOR aNY RECEIVED MESSAGES |}

IF ANY HAVE BEEN RECEIVED, IT TRIES FOR EITHER)
A TYPE ZERO, OR A TYPE ONE, OR TGNORES IT)

PN P N

8000 IN_BLK_STAT 1| ;
FINALLY IT CLEARS THE PTH INTERRUPT 1
SETUP THE TERMINAL UNIT)
52 SETUP ; ¢ THE SETUP IN THE DICTIONARY MUST BE USED TOO) ¢ XAQS FRAME WE @ WB @ LAST @ FRAME (SAVE FOR POSTERITY)
SETUP SZ TAR_SET FFFF MES_TAB | GO CCW | ; RECEIVE 0 = IF
PRUOCESS
THEN

THIS ROUTINE ALLOWS THE INSERTION OF HAND ASSEMBLED)
MACHINE CODE YO SPEED THINGS WP A BIT) UNFRAME LAST | WB | WE ¢
: WHZ B T#1 @B (CLEAR PTM INTERRUPT)

CODE IMMEDIATE 100 1 DO FRELO @ 0 = IF BUFFER ELSE LOAD THEN UNFRAME RTE
WORD NUMBER DUP O = IF ;
STOP THEN DPI LOOP ;

PTM REGISTERS) SZ2 SETUP

SETUP %2 LOCATE IRRS SINT B + 74 IL

FFé1 CONSTANT PTH { BASE) SETPTM
™ CONSTANT WR3 ENINT -
TH CONSTANT WR1 ' ' ;

TH 2 + CONSTANT WRZ '
TH 4 + CONSTANT Tel .

T 4 b MESETEHERMT O LT A

© 1 ROT % + +

DESTINED FOR THE SHIP TRIALS)} { CHANNEL CONTROL WORD)

JANUARY 1982)

REVISION 3.0 JANUARY 1982)

INCLUDES BLOCK AND SHORT MESSAGE TESTS)

INCLUDES REVISION TO ALLOW USE OF MTB EXTENSION BIT)

'
NEW SLAVE UNIT SOFTWARE——— - - . . ; ET
| 3C000 CONSTANT CCW

{ CONTROL WORDS |}

STOREIT AND DOIT INCLUDED IN THIS ONE) = 2 CONSTANT GO > { START TERMINAL UNIT)
. 3 CONSTANT CSTOP (STOP TERMINAL UNIT)
TERMINAL UNIT PRIMARY TABLE) # CONSTANT OFFINT { SWITCH OFF XINTERRUPTS)
% CONSTANT ONINT { SWITCH ON AND CLEAR INTERRUPTS)
7 CONSTANT HESET { RESET AND HALT TERMINAL UNIT)

DO CONSTANT PRA_TABD ,
I_TAD CONSTANT IN_INT
N_INT 1 + CONSTANT IN_NO
N_NO 2 + CONSTANT IN_POS
N_POS 1 + CONSTANT IN_TAB
N_TAB Z + CONSTANT O_INT
_INT 1 4+ CONSTANT O_NO
.NO 2 + CONSTANT 0O_POS
_POS 1 + CONSTANT O_TAB
_TAD Z + CONSTANT MES_TAD
ZS_TAD 40 + CONSTANT HW_NO
I_HNC 2 + CONSTANT RE_COUNT
I_COUNT Z + CONSTANT DAT_STARV
W_STARV 2 4+ CONSTANT RETR_COUNT
STR_COUNT 2 + CONSTANT BUF_OVER
W_OVER Z + CONSTANT IN_BLK_STAT
I_BLK_STAT 2 + CONSTANT IN_PLK_SOURCE
I_BLX_SOURCE 2 + CONSTANT IN_BLK_TOTAL OVER © DO DUP I + @B
OUT_TABLE { OUT_BUF_NO ® O_DAT_BUF I +) {B LOOP DROP

I_BLK_TOTAL 1 + CONSTANT IN_BLK_TOT_RECUD .
I_BLK_TOT_RECVD 1 + CONSTANT IN_BLK_ADDRESS : 1 +2 /7 3+ 3F MASK OUT_TABLE ¢ OUT_BUF_ND @ QO_PUF_LEN 3 1B

I BITS TO CONTROL TERMINAL UNIT)

40 %700 : IN_TABLE TaABLE ;

40 TBOO : OUT_TABLE TaBLE ;

D OUT_BUF _NO VARIABLE ; (&BK'S RECOAD OF NEXT FREE BUFFER)
GET_BUF OUT_BUF NG DUP @ 1 + F MAGK SWAP |
CLZ DO O I 1B LOOP

{ MESSAGE SEND ROUTINE)
: GEND OUT_TABLE { OUT_BUF_NO @ O_BUF_LEN) @B
0 = IF | BUFFER IS FREE S0 CARRY ON }
OUT_TABLE { OUT_BUF_NO @ 5) DUP 5 — CLZ
OUT_TABLE (OUT_BUF_NO @ O_TYPE) | (MESSAGE TYPE)
DUT_TADLE € OUT_BUF_NO @ O_DEST 2} IDP (DESTENATION)

i_BLK_ADDRESS Z + CONSTANT O_BLK_STAT GET_BUF

BLK_STAT 3 + CONSTANT O_BLX_DESTIN ELSE PQP POP PGP POP
BLK_DESTIN 3 + CONSTANT O_BLK_TOT THEN

BLA_TOT 1 + CONSTANT O_BLN_TOT_TXD i

ALK _TOT_TXD 1 + CONSTANT D_BLK_START
{ BLOCK RECEIVE AND TRANSMIT ROUTINES)

END OF PRIMARY TABLE }
: TOT&REM { GET SUB-BLOCK TOTAL AND REMAINDER)
IN TABLE) 1 + 2 / FFFF MASK { WORD CDUNT)
MASK FOR A SINGLE BUFFER AREA) 20 / DUP SWAP (SUB-BLOCK TOTAL I
AF 10 LEFT MASK
-

{ RELATIVE TO START OF BUFFER)
CONSTANT IN_BUF_LEN ;
_BUF_LEN 1 + CONSTANT IN_DEST
_DEST 1 4+ CONSTANT IN_SOURCE

60 / 200 ¢/ { REMAINDER)

BLEK_SEND O_BLK_STAT @ 6000 MASK 0 = IF

~SOURCE 1 + CONSTANT IN_TYPE O_BLK_STaART O_BLK_STaT LLZ { CLEAR UP TABLE)
_TYPE Z + CONSTANT IN_DAT_BUF O_BLK_DESTIN B { DESTINATION)
Z / O_BLK_START | { START ADDRESS |
TOTEREM :

O_BLX_STAT |

DUT TABLE) O_BLK_TOT i®

MASK FOR A SINGLE BUFFER AREA) 80 O_BLK_STAT B { GO GO GO)
ELSE DROP DROP DROP (GET RID OF PARAMS)
THIEN

{ RELATIVE TO TART OF BUFFER }
ZONSTANT O_BUF_LEN ' i
BUF_LEN 1 + CONSTANT D_DEST
DEST 2 + CONSTANT D_TYPE
TYPE 2 + CONMSTANT O_DAT_BUF

BLK_REE IN_BLK_STAT @ 8000 HMASK 0 = JIF
DROP DROP DROP { GET RID OF UNWANTED PARAMS 1}
ELSE O IN_BLK_STAT 2 + | { CLEAR UP)
IN_BLK_SOURCE |
2 / IN_BLK_ADDRESS |

TABLE IMMEDIATE 2D3aC DPI O DPI DPI 2D3C DPI O DPI| DPi ;
TOTEREM

(’

¢ A TYPE ZERO, OR A TYPE ONE, OR IGNORES IT)
{ FINALLY IT CLEARS THE PTM_INTERRUPT) - —

IAQS FRaME WE

RECEIVE 0 = IF
PROCESS
THEN

UNFRAME LAST | WS

WRAZ @B Te1 @9
UNFRAME RTE

@ WB @ LAST @ FRAME { SAVE FOR POSTERITY 1}

1 WE |
CLEAR PTM INTERRUPT)

52 SETUP ;
SETUP S2 LOCATE IRQS $INT 8 + 74 1IL
_SETPTH
ENINT
PERIODICAL BLOCK TRANSMIT ROUTINE)

PLOCK MESSAGE SOAK TEST FOR ASWE TRIALS)
DECEMBER 1981)
REVISION 2.0 268/12/801)

7400 CONSTANT BK.START
800 CONSTANT BK.LENGTH

BX.START BK.LENGTH + CONSTANT BK.END { END OF TEST BLOCK

P A

TEST_BYYE VARIABLE ;
RX_COUNT VARIABLE ; I TOTAL

GENERATE A& NEW BLOCK OF DATA)
FROM THE TEST BYTE)
s» =) START ,END,TEST_BYTE)

BK . GEN CODE

{ START OF TEST BLOCK)

{ USED FOR CYCLIC MESSAGE GENERATION 1}

NUMBER OF TERMINALS)

zasE MOUE.L (A&)+,A3
24SE MOVE.L (A&1+ A2
2216 MOVE.L (A&, D1
34C1 ONE MOVE.W D1,{A3)+
5241 ADDG . W #1,D1
BsSCPh CHPA.L Ad , AZ
4cre PGE. OME

4E7S RTS

0000

BKS.STAT O_BLK_STAT @p

80 MASK O = IF 0 ELSE
THEN

{ RETURNS O IF FINISHED, —1 IF NOT |
=

{ TX BLOCK STATUS BYTE)

iqiT!“CHECKS'THh? A" HANDSHAKE HAS BEEN RECEIVED)
IF S0, AND THE LAST BLOCK HAS BEEN TRANSMITTED !}
IT WILL GENERATE A NEW BLOCK,
AND UPDATE THE TEST_BYTE)

BK . TX

TX. 0K @ AX_COUNT @ >= IF
BAS . STAT 0 = IF 1 WAl

TEST BYTE @ BK.END BK.START BK. GEN

TRANSMIT IT)

T FUR THE OK FROM ABOVE)

Al

i~ o -7 -

DROP BK . LENGTH BK . START _O_ BLK _SEND. —
e e " TE&T_BYTE "1 O TX.UK |

THEN

THEN

X_COM MAKES A CR TERARMINATED STARING)
X_COM IMMEDIATE % STRING OD DP @ 1 ~ P ;

THESE TWO RQUTINES FORM THE '8100A SET.TX' COMMAND SENT)
TO AlLlL RECEIVERS)

SCOM X_COM L8000 SET.TX &
SMY SCOM HW_NO @ DISSECT DROP OQVER 1 + 1B
6 0 S5END O TEST_BYTE | 0 TX.OK {1

THESE ARE USED TO START THE TEST OFF)
SARUN* X_COM XRUN % ;
SRUN SRUN® O 0 SEND ;

REC.OK IS5 EXECUTED BY THE TRANSMITTER AS A HANDSHAKE)
REC.OK Tx . OK *1 ;

RESET ALL REP POINTERS TO ZERO)
RESET‘REP 4 0 DO O REP"POINT L I 2 | LOOP ;

DISPENSE WITH REPORTS WHICH ARE CLOGGING UP THE BUFFER)
PRINTS THEM UP AND RESETS THE POINTER 1}

WAITING VARIABLE { COUNT OF DUMP TRIES }
BUF *SEND AZ DUP Z % REP'POINT SWAP DROP + DUP @ 1 - 0 DO
OVER 300 % I 146 % +
REP ' BASE + DUP
15 + SWAF DO X @P TO LOOP
LooP
e SWaP | DROP 0 WAITING 1

ALI1 L PORT iL

E)

ACHECK ACIZ GL @P 1 MASK O) IF ACIZ @QL Z + @p DROP ©

ELSE -1
THEN
OVERRUN STRING %5LIGHT PROBLEM CHAPS, OVERRAUNIILI % SAY

WALTING | RESET"REP CRLF

DISPENSE WAITING 0 0 = IF 40 ACIZ @L 2 + IB
- THEN ACHECK © = IF BUF “SEND QUIT
ELSE WAITING “1 DROP THEN
WALTING @ 10 > IF QUERRUN GQUIT THEN

BUF7 CHECK (SEE IF ANYTHING NEEDS TO BE DONE)
DUP ~1 = IF DROP
ELSE DISPENSE
THEN ;

NSET STRAING XMUMBER OF RECEIVERS IN TEST?77 % SaY
CRLF BUFFER WORD NUMBER AX_COUNT | CRLF ;

PTM 4 + CONSTANT Te1
e PTM &+ CONSTANT WT# 1

2 / IN_BLK_ADDRESS |

TOTEREM N ————
IN_BLK_STAT 1 + IP . ¢ REMAINDER } e e,) - . . .
IN_BUK_TOTAL 1B { SUB~BLOCK ToTaL) { USE PTH TO PROVIDE INTERRUPTS FOR 2901 SERVICE ROUTINE)
T 0 IN_BLK_STAT 19 { GO GO GO) -
THEN { SET IT TO INTERARUPT APPROXIMATELY ONCE A SECOND)
. : SETPTM O WHZ 1B 1 WAR3 IB 1 WAZ !B (DIVIDE BY B)
* 42 WR1L 1B { CONTINUOUS OPERATION)
7F Te1 IB FF WTe1 B I AS SLOW AS POSSIBLE)

{ MESSAGE RECEIVE ROUTINES)

INV -1 SWaP - ;

S_TYpP { SELECT A CERTAIN MESAGE TYPE)
DUPF F MASK 1 SWAP LEFT SWAP 10 / FFFF MASK 2 %
MES_TAP + DUP @ INV ROT ROT MASK OVER @ + SWaAP | ;

{ SETS THE DESIRED BIT IN THE MTT ARAAY |

THIS ROUTINE WILL PERFORM A NORMAL SIXTH)
WORD FIND EXECUTE ON THE CONTENTS OF 1}

A TYPE ZERD MESSAGE WHMICH HAS BEEN RECEIVED)
FROM THE QUTSIDE WORLD BY THE 2901 SUBSYSTEM)

- -

CL_TYP { DESELECY A CERTAIN MESSAGE TYPE } DOIT WE | { START ADDRESS)
DUP F HASK 1 SWAP LEFT INV SWAP 10 / FFFF MASK Z & 0 LAST |
MES_TAD + DUP @ ROT ROT MASK SWAP | ; 340 0 DO WORD FIND EXECUTE { NEW INTERPRET LOOP)
t CLEARS THE DESIRED BIT IN THE MTT ARRAY 0 LAST @ = IF { OK IF = 0)
ELSE STOP { OTHERWISE GIVE UP)
THEN {0OP

IN_BUF_NO VARIABLE ;

REL_BUF IN_BUF_NO DUP @ 1 + F MASK SWAP | ;

{ MOVE TO NEXT INPUT BUFFER, WRAPAROUND AT 'F') BITS TO STORE DATA RECEIVED FROM THE OTHER TERMINALS |}

STOREXIT WILL STORE TEN BYTES OF DATA FROM A TYPE ONE)
MESSAGE IN THE REP BUFFER, AT A LOCATION AS POINTED }

P Y

RECEIVE : { CHECKS TO SEE IF A MESSAGE IS AVAILABLE)
IN_TABLE € IN_SUF_NO @ IN.BUF LEN 3 @5 DUP TO BY REP*POINT, WHICH IS ALSO UPDATED BY THIS ROUTINE)
0> IF3 -2 % { 5IZE IN BYTES)

IN_TABLE € IN_BUF_NO @ IN_DAT_BUF 3} (ADDRESS) : [IMMEDIATE ; ¢ I.E THROW IT AWAY)

IN_TABLE € IN_BUF_NO @ IN_GOURCE } @B (SOURCE) 12 % + SWAP DROP ;

IN_TABLE IN_BUF_NO @ IN_TYPE 3 @ { TYPE | 10 : RER"POINT ARRAY ;

O IN_TABLE C IN_BUF_NO @ IN_BUF_LEN)} IB (CLEAR IT) Iz 1z %+

REL_BUF { READY FDR NEXT TIME) 4400 CONSTANT. REP® BASE

° { EVERYTHING WAS OK) _

ELSE DROP -1 { NOTHING WENT RIGHTI!)

THEN : STOREIT DUP @ DUP { GET THE REP"NO FROM MESSACE)

; 2 % REP*POINT SWAP DROP + DUP @ OVER OVER 1 + SWAP |
_ SWAP DROP { UP RELEVANT S5TORE POINTER)
16 % SWAP 300 % + REP"BASE +

TAB_SET RESET CCW | BOO AOD CLZ 6800 5900 CLZ 15 0 DO OVER IZ @ OVER I2Z | LOOP (COPY OUT MESSAGE)
80 IN_INT 1B 10 IN_NG ID DROP DROP DROP
ZCAO IN_TAB 1] ¥
60 O_INT (B 10 O_NO 1B
266800 TaB | . (CHECK THAT NONE OF THE REPORT BUFFERS IS TOO FULL)
o OUT_BUF_NO | { RETURNS EITHER THE REP'NO OF A FULL ONE OR —1)
0 IN_BUF_NO |
€000 IN_BLK_STAT 1| : CHECK 4 0 DO REP°POINT L I 1 @ 12 > IF I ABORT THEN LOOP -1 ;

¢ SETUP THE TERMINAL UNIT } TX.0OK VARIABLE ;

52 SETUP ; { THE SETUP IN THE DICTIONARY MUST BE USED TOO)
SETUP $2 TAB_SET FFFF MES_TABD | GD CCW | ;
: PROCESS

THIS ROUTINE ALLOWS THE INSERTION OF HAND ASSEMBLED) . : . DUP 2 w IF TX.OK °1 POP POP POP POP
MACHINE CODE TO SPEED THINGS UP A BIT) = ELSE DUP 0 = IF { TYPE ZEROTT)
e DROP DROP DOIT POP (DO AS THE MAN SAYS)
CODE IMHEDIATE 100 1 DO FRELO @ 0 = IF BUFFER ELSE LOAD THEN Etii DUF 3 = IF DROP DROP STOREIT

' -

WORD NUMBER DUP 0 = IF
STOP THEN DPI LOOP ;
PTHM REGISTERS)

THEN THEN THEM

FF&E CONSTANT PTM { BASE)
™ CONSTANT WR3 { IRQS HANDLES THE PTH INTERRUPT)
™ CONSTANT WR1 - { IT FIRST CHECKS FOR ANY RECEIVED MESSAGES
' { XYF ANY HAVE BEEN RECEIVED, IT THRIES FOR EXTHER

TH Z + CONSTANT WRZ

e oame Bk aa b otew

' £Z CSTOP 'CCW | FEL*CL \STOPPING SAY DEL Z0 PT* | \OK SAY DEL ; R e ADCATE SADCAT _$INT— 68—+ 78 —+b——— ¢ ABORT BUTTON HANDLER '
KEYPAD HANDLER)

~-C3 BESEY COM 4 0 FAILURE | FEL-CL “AESETTING SAY DEL 20 PT* LOCATE IRG4 SINT 68 + 70 L (

G SAY DEL 1 CTUSW) LOCATE IRQ3 ®INT & + &C il (CLOCK HANDLER)
LA ETUCH @ FFFE MASK DUP 1 + CTUCW 1 LOCATE IRG2 SINT & + &€ (L { 2901 HANLLER)
FEL"CL \PASSIVE SAY DEL CRLF \OK SAY DEL CTUCW | ; : SETPER
CC FEL'GCL \SELECT SAY BUFFER WORD NUMBER L LEFT ALT
CTUCH @ FFF? MASK + CTUCW | CRLF \OK SAY DEL ; PTH 10 0 DO DUP I 2 % + I SWAP | LUOP DHROP
0 FAILURE 1
{ CHANGE SYSTEM OPERATION COMMANDS) O CONTENTIONS |
BD FEL'CL \NEMWSYNCH SAY O CTIME IL O CTIME 4 + | DEL 20 PT" | \OK SAY ; O ALINE |
- . 0 ACHAR |
: DA O WHERE O 7F 0 DO %RES LOQP ; 0 RP }
: BB PTPT @ 1 LEFT DUP PTA = IF PTD ELGE PTA THEN D WE |
OVER @ QUER | 7F 1 DO OVER I 2 % + @ DUP 0 WHERE |
O = IF DROP FEL'CL “NEWONE SAY BUFFER WOHD NUMBER A F CSTORE
8000 + OVER I 2 % + | DUP 0 SWAP I 2 » + 2.+ 1| STOP F CREAD F CREAD F CREAD
ELSE OVER { 2 % + | THEN LOQP DROP DROP DROP DROP DROP
-CPOL _CroL
DEL CRLF \OX SAY DEL ; (ADD A SINGLE TERMINAL) . ENINT
BC PTPT @ L LEFT PTA = IF PTH ELSE PTA THEN LRESET LOCATE RUN SINT 8 + EQUATES |
7F 0 DO FEL'CL \TERMINALT SAY BUFFER WORD NUMBER DUP ZRESET 264C EQUATES 1 ;
0= IF I 0= 1IF OVER I 2 % + | NEXT _RES RESTART SETUP DEC 1RESET RUN ; { RESTART VECTOR HANDLER 1
ELSE OVER I 2 # + | &TOP JRESET LOCATE _RES ®INT & + EQUATES | ; { USED ONLY FOR RESTARTING)
THEN
THEN AAA ZRESET 21C2E 100A IL { MACSBUG O/P ROUTINE)
8000 + OVER I 2 » + | LOOP DROP Z1DB4 100E IL (NACSBUG I/P ROUTINE)
_CPOL BEL INTER
RENDFILE

CRLF \OX SAaY ;

BE FEL'CL \NEWTIME SAY CHLF STOPCLOCK STOD ZTIHE DEL DEL ;
{ COMMAND LINE INTERPRETER)

CLI FRAME FEL°CL ¢ DIS| BUFFER WORD FIND EXECUTE FEL*CL UNFRAME ;
f RUN TINE SYSTEM)

RUN BEGIN FAILURE @ 0 > IF 4 DIS51 THEN
ACHAR @ 0 > IF GCLI THEN
DISPLAY @ DUP 4 = IF ZFAIL ELSE
DUP 3 = IF ZTIME ELSE
DUP 2 = IF ZTERM ELSGE
DUPF 1 = IF ZCONT ELSE
FEL"CL “\HEAD SAY O DISI DEL
THEN THEN THEN THEN DROP 38 CRE2 (B FF DRBZ 1B 3C CRBZ I8 END .

i THE FIDDLY BITS [i1t)
(. THE TRAP ERROR AND ABORT BUTTON HANDLER GUTS)
ALT LOCATE ODUTFEL SINT B8 + 100A IL (ALTERNATIVE O/P ROUTINE)
LOCATE RZ SINT 8 + L00E IL (ALTERNATIVE I/P ROUTINE)

TRAP INIT*FEL FEL'CL SET-PAD ALT 0 DUP ALINE | BUP ACHAR | DUP RP |
DUP WP | F CSTORE F CREAD A F CSTORE F CHEAD DROP DROP .
qgg!ﬂr'ccu i ONINT CCw | © FAILURE 1| RESTART DEC ;

SABORT DISINT CRLF STRING 3ASABORTH SAY TRAP ENINT INTER ,;
SERROR DISINT CRLF STRING %ERROR % SAY TRAP ENINT INTER ;
SETUP DISINT O STORE LOCATE SERROR SINT 8 +

100) DO DUP STORE @ 4 + DUP STORE |
tL LOGP DROP (SET UP FOR TRAP ERROR)

CONTENTIONS VARIABLE ;. " .
FALLURE VARIABLE , - . e o —
xnaz FRANE OCONT 1 = IF CONTENTIONS *1 (CONTENTION HAS OCCURRED)
THEN ®FAIL 0 > IF FF FAILURE 1 | STORE FAILURE)
- THEN
UNFRANE RTE ;

I WHERE VARIABLE ;
: WHERET WHERE @ 3IF MASK ;

BCD DUP 9 > IF A/ DUP F 10 LEFT MASK B0 / 200 / (GET DEC NUMBERS)
SWAP F MASK ELSE 0 THEN SWAP ;

¢ GEY TOD FROM IN-TIME FIELD, ONLY USED WHEN NUGT ACTIVE 11)
: #STOD IT 2 + @ 400 7/ F MASK BCD { MONTH)
IT 2 + @ 20 7 1F MASK BCD (DAY)

IT Z + @& IF NMASK BCD { HOUR)
IT & 400 / 3F MASK BCD (MINUTES)
STOPCLOCK
¥ 4 DO I CSTORE LOOP
€ & DO I CSTORE LOOP
GocLock
SRES SACTIVE 1 = IF #STOP O = IF WHERET Z % STT + @ C000 MASK
0 = IF

ELSE PTPY @ DUP 1 LEFT PTA = IF PTR EESE PTA THEN
7F 0 DO DUP I 2 % + DUP @ IF MASK SWAP OVER SWAP |
WHERET = IF DUP I 2 % + WHERET 8000 + SWaP |

THEN LOOP
&/
CSTOF CCW | WSTOP
PTPT
GO CCuw 1

O STY WHERE? 2 x + |
CSTOP CCW ! WSTOP
PTPT

GO CCw | .
THEN WHERE "1 THEN THEN ;

¢ INTERRUPT HANDLER FOR CLOCK)

{ WILL UPDATE QUT-TIME IF OTA IS CLEAR

WIDTH 4 + CONSTANT TOT
IRQ3 FRAME O T_DIS | F CREAD DROP
CTUSW @ 3 MASK 2 « IF OTA @ 8000 MASK O = IF
o TOT | >OD { SET UP FOR START)
A% + S5 LEFT TOT |
A%+ TOT @ + 5 LEFT TOT 1
A X + TOT @ + OT 2 + | { MONTH, BAY & HOURS)
o TOT |
AN+ 6 LEFT TOT | A % + TOT @ + 4 LEFT + OT |
{ MINUTES SECONDS TENTHS
CTIME Z + @ CTIME 4 + @ CTIME @ { GET SYNCH TIME)
1000 % 78D + OT ¢ + | (| 1/10THS AND YEAR)
oT & + |
or 8+ |
8000 OTA |
CTHEN e
- 20 0 DO XRES LOOP
ELSE ITA @ DUP 8000 MASK O = IF
ELSE WSTOD 7FFF MASK ITA |
THEN
THEN
UNFRAME RYE ;

{ MULTIPLES OF TENTHS)

F pIse |

{ IRG3 HANDLLR AND CIHCUL&R BUW#EH DRIVING RDUTINES)
{ FOR HEX KEYPAD)

10 . STZ ARRAY , { CIRCULAR BUFFER)
! ALINE VARLABLE ;
. WP VARIABLE ;

RP VARIABLE ;

ACHAR VARIABLE

1RG4 FRAME DRAZ @b LUP 9 > IF 37 + ELSE 30 + { FORM A4%CI1 CHAR
THEN WP @ 1 + RP @ = IF DROP UNFRAME RTE { BUFF FULL
THEN DUP 4é& = XF DROP OD ALINE "1 (USE 'F' AS CR)
THEN WP @ BUP 1F < IF WP -1 ¢ INC WRLTE POINTER
ELSE RP @ O > IF O WP |
ELSE DROP DBROP UNFRAME RTE
THEN

]

{ WHAPAROUND)

THEN STZ SwAP DHOP + IB (STORE IT)

ACHAR "1 { WE HAUE CHARS SO FLAG IT)
UNFRAME RTE :

{ CIRCULAH BUFFER READ ROUTINE)
{ WILL HEAD FROM HEX KEYPAD'S CIRCULAR BUFFER)

PREAD ACHAR @ 0 = IF FF QUIT { NO CHARS %0 GUIT 1t)

ELSE -

RP @ STZ2 SWAP LROP + @b { GET GCHAR FROM CIRC BUFFER)

RP @ 1F = IF 0 RP | ELSE RP "1 { FORM THE NEW POINTER)
THEN

ACHAR DUP @ 1- SWAP | { DECREMENT FLAG)

THEN

i

t A READ ROUTINE SUITABLE TO BE PATCHED IN TO THE KERNEL)
PAD_IN BEGIN PREAD DUP FF < IF QUIT ELSE DHOP THEN END ;
RZ PAD_IN POP ; | LEAVE CHAH I DO FOR BUFF ROUTINE)

[DISPLAY CQMMANDS)

ZNUMBER VARIABLE ;

DISPLAY VARIABLE ;

DISI T_DIs 1 ,

ZTEST T_DIS @& QVER » IF DROP DRGP DROP
ELSE T_DIS i FEL-CL
5AY
THEN *;

ZFAIL N\ITFAILED 4 ZTEST DEL ,

ZTIME N\TIH 3 ZTEST YIME DEL ;

ZTERM ZNUMBER @ DUP 0 = IF DROP ATDIS
s ELSE 1— TDIS DEL
: THEN ;

ZCONT (DIS DEL ;

DISPLAY | ;

DB 3 DISPI ;

DC 1 DISPI ,

Db 2 DISPI FEL'CL 0 DISt STERMINAL7? SAY BUFFER WORD NUMBER 1 +
ZNUMBER 1

DE 2 DISPI 0 ZNUMMER | |

(CHANGE CONTROLLER FUNCTION COMMANDS)

€1l GO CCW) FEL'CL O DISI \STARTING SAY DEL 20 PT" | \OK SAY DEL

- ' c @7 LIF TDIS ELSE & 0w 1F TDIS .

’ : @CONT CTUSW @ 8 MASK @ / ; (_STACKS CONTENTION BIT+ — — : —
T GFAILTCTUSW @ FFOO MASK 100 / ; (STACKS STORE FAIL BITS } e . E st DROP STOR
' -- ‘ THEN

I i GCABLE CTUCW @ & HASK 2 / ; {(STACKS SELECTED CABLE)
i . S THEEN
; t GET CONTROLLER STATISTICS) DEL LOOP DROP ;
SGCSTATS RC @ NRC @ #CABLE #ACTIVE #5TOP REC @ ; '

{ CONTROLLER STATISTICS DISPLAY LODOP)

{ SOME USEFUL STRINGS) . CDIS T_DIS DUP @ 1 = IF DRUP (QX CONT ALREADY DISPLAYED)

1
1 ELSE FEL*CL N\CONT SAY
: o WNAK STAING INAK STUCK % ; 20 PT® | NREC sAY
T i NBLANK STRING % | S 40 PT"® | NNRC SAY S7 PT" 1 \UABLE SAY
NNR STRING % NA) I &0 PT* | \RC SAY
\RESP STHING XRESPONDINGY: ; 1 SWAP | { NOW CONTROLLER STATS. BEING DISPLAYED

i MERR STRING RERRORS % ; THEN
SLCSTATS

I NINFO STRING WINFORMATION MONITOR % ; '
N\TERM STRING ATERMINAL NUMBER % ; 30 PT" 1 t RECEIVE ERRAORS)
\TIM STRING ASYSTEM TIME LI - 37 PT* | 1 = IF \STOPPED ELSE “NRUNNING THEN SAY
17 PT* | 1 = IF NACT ELSE \PASS THEN SAY

: \MEAD STRING RSM¥HICROLINKS®E % ;

: \CONT STRING SHIGHWAY CONTROLLERY ; SE PT* 1 . { CABLE NUMBER)

: “RC STRING MREPEATS % ; ‘ , 50 PT- 1 { NULL REPEATS |

i \MRC STRING WNULL REPEATSN ; 70 PT* { REPEAT COUNT)

\CABLE STRING LCABLE % ; ‘ ;

: \ACT STRING BACTIVE X% ; ! SETPAD 00 CRAZ ID FO DRAZ 1B 7 GRAZ IB ; (4 I/P'S 4 O/P'S)

i \PASS STRING TPASSIVE % ; . . : SHUTDOWN SYRES O F CSTORE DISINT ; { ROUTINE TO STOP THE INTS)
NAUNNING STRING XRUNNING % ’ : i CLEARTAD DUP FF + SWAP DO O I 1B LOOP { CLEAR CONT. TABLE)
\STOPPED STRING XSTOPPED % , . SETPER { SETUP PERIPHEAALS AND CLEAR TABLES)

RESET CCW | { NDW FOR THE CONTROLLER)

i MREC STRING ZRECEIVE ERRORSE
ASTARTING STRING %START CONTROLLERY
\STOPPING STRING XSTOP CONTROLLER % ;
NNEWTIME STRING KSET NEW TIMEY ;
MNEWSYNCH STRING %NEW SYNCH TIME % ;
NSELECT STRING XCABL.E NO. 7 % ;

PT CLEARTAD
PTA CLEAATAB
PTB CLEARTAB
HiGS CLEARTAB
B CLEARTAD

NPASSIVE STRING 2L0 PASSIVEX STT CLEARTAD { CLEAR A BIT OF ALL THE TABLES)
NOK STRING %0K% : PTA 2 / PTPT | { GIVE IT SOMETHING TO CHEW OGN)
: 1 CTUuSW | { SET STOPPED TO AVOID CONFUSION)

\NEWONE STRING %ADD TERMINAL NO.% ; . “t
\TERMINALT STRING LATERMINAL NO.7 % ; :

\RESTERM STRING SRESET TERMINAL 7% ;

MRESETTING STRING %XRESET CONTROLLERY ;

NITFAILED STRING RssINTERFACE FAILURE®EE % ;

0 0 CSTORE
0 F CSTORE F CREAD F CREAD F CREAD DROP DROP DROP

A F CSTORE & CREAD F CREAD F CREAD DROP DRUP DROP
{ SET UP THE REAL TIME CLOCK

INIT“FEL FEL'GCL { SET UP FELTEC DISPLAY)
SPACES ¢ 1 DO SPALCE LDOP ; SET " PAD t SET UP HEX KEYPAD)
‘
{ TERMINAL STATISTICS DISPLAY LOOP)
© TDIS T_DIS DUP @ 2 = IF DROP ELSE FEL-CL
I D WESTOP BEGIN #5TUP 1 w» IF QUIT THEN END ;

“TERM SAY

40 PT* | \ERR SAY

&40 PT* | NINFD SAY

Z SuaP | -

~CPOL PTPT @ 1 LEFT DUP PTA « IF PTH ELSE PTA THEN DUP
(GET SECONDARY TABLE)
z / :
CHTOP CCW | WSTOP { FLAG STOP AND WAIT }

THEN
DuP PTPT { STORE SECONDARY)
11 PT* | . SPACE { TERMINAL NUMBER) GO CCw "{ RESTARY CONTROLLER 1
SLGTSTATS STT CLEARTAB
20 PYT* |1 1 = IF “\NAK ELSE \BLANK THEN SAY S 7F O DO OVER QUER I 2 % + @ { READ FROM NEW TABLE)
34 PT* | 1 = IF \NR ELSE “\RESP THEN SAY N i TFFF MASK SWAP I 2 % + | { PUT IN OLD TABLE)
S4 PY* | . SPACES _ (ERRORS) LOOP
T4 PTY | . SPACES T (Imm) DROP 2 /
H CSTOP CCW | WSTOP { FLALG STOP & WAILT |
. PTPT 1 { PUT BACK MODIFIED NEW TAPLE |}
GO CCW | ONINT CCW 1 { RESTARY CONTROULLER)

DEL 1000 1 DO LOOP ;
{ DISPLAY STATS FOR ALL OF THE TERMINALS)

ATDIS PTPT @ 1 LEFT 40 0 DO DUP I 2 & + @ 3F MASK DUP i -4 INTERRUPT HANDLER FOR 2901)

[.

o o b e
Q023EZ
D0ZSES

0025ES
00ZIEA
002TBEC
Q0ZSEE
0025F0

0025F2
0025F4
cO02%5F6

Q02%5FA
00Z3FC
0025FE
002400
oo0zZ&02

002404
002606
002 60A
00Z40C
CD2A0E
002410
002612
00Z4&14

002616
002418
oDz é&1E
00261E
00Z620
002422
002624
002426

o0z&zZe
002624
JOZALZE

02630
WZa32
10Z&34
1WZ24I6
10246308

102430
0263C
02440

UI._'U IA
28202020
Zsp2

201E
ZZ1E
pz2ao
ZD01
4ETS

0001
20202020
23E0

221E
201E
9001
2boo
4ETS

0001
2AZ020Z0
25F2
201E
2Z21E
coci
2D00
4ETS

0001
ZF202020
2404
221E
201K
8ol
Zpoo
4ET3

0004
4C454 654
2616

201E
ZZ1E
E1A9
ZDo1
4E7S

Q00+
53374130
2628

v DR B el
oL 4+ ’
oW XiL-
] .
BASIC ARITHMETIC OPERATIONS
]
ADD

‘XADD

HMOVE .L (A6)+,DO

MOVE.L (A&)+,D1 -,

ADD.L DO,.D1
MOVE.L D1,-(A&)

RTS

»

XSUB DC.B 81
pC.L -

DC.W XABD

| 4

* SUBTRACTS 32 BITS

»

SUB MOVE.L (A&)+,D1
MOVE.L (A&)+,DO
SUB.L D1,DO
MOUE.L DO,-tA&)
RTS

b

- .

* MULTIPLY 36 BY 16 TO 32

n

XMUL pc.e 1
pC.t, w "

BC.W XSUB

MUL MOVE.L (A&}+,D0
MOVE.L tA&i+,D1
MULL D1,DO
MOVE.L DO,-{A&}
RTS

x

% DIVIDE 32 BY 16 EUUALS 14, REM 14

]

XDIV DC.B %1
[LY .

DC.W XMUL

DIV MOVE.L (A&)+,D1
MOVE .L (A&)+,D0
GIVU D1,DO
MOVE.L DO ,~(A&)
RTS

»

XLEFT BC.B %4
DC.L “LEFT*

DC.W XDIV

|

X MOVE LEFT BY N PLACES

x

LEFT MOVE .L (A6)4,D0
MOVE.L (A&)+,D1
LSL.L Do,Di
MOVE.L D1,-(A&}
RTS

*

XSWAP DC.B 4
DC.L *SWAP*®
DC.W XLEFT

.

®x WILL SWAP THE TOP TWo ON THE OLD STACK

00z&42. Z01E
002644 Z221E
0024644 ZDOO
0024648 2DO1
002&4R 4E7S
5
00244C RZETB1014
002450 4EPE2Z2E
002654 0C3800001036
o0Z65Sa ATO0000A
0024&5E 4EBOZ240E
02642 &O00000C
- ppZe6s 21F9100621030
002660 4EBEZ0OIE
00Z&70 4EPHZOB4
0024674 4EBOBZ2104
002678 4EBB2ZEO
002&7C . OC3IH0O00110Z6
002482 &TOOFFDO
002604 &000FFED

Rdos Error code -4

£sYS @.63

MOVE . L
MOVE.L (A&)+,D1
HQUE.L DO,-(AS)
MOVE .L D1 ,-1A&)
RTS

SWAP

=
*
* THE INTERPRET LOOP
X
L]
I

JSR SREST

PEQ INTEO
JSR LOAD
BRA INTE3
MOVE . L
JSR BUFF
JSR WORD
ISR FIND
ISR EXEC
CMPI #1,LAST
BEQ INTEZ
BRA INTE3

iae)+,D0

R

MOVE . L MSTCX AT

CMPI #0,RELOD

ACIAL ,PORT

00Z4BE

0024C0
002Z4C2
00Z4Ca
0024CH
002 4CA
0024CC
Q00Z4CE
0024D0
00Z24D4
0024D6
002408
00Z4DaA
0oZT4DC
00Z4DE
00Z4E4
00Z4E6
00Z4ER
O0Z4EE
00Z4F2
0024F &
CGOZ4FA
QO2Z4FE
002300
002504
002308
00250A
ooz30C
002310
002314
0023518
00Z51C
o02%20
002324
0023528
0o2'52C
0025ZE
002330
002332
002334
0023538
Q02%3C

DD0Z253E
002540
002544
002544
00254
QOZ34E
002530
002332
002354
002354
Q0233E

002340
002562
002566

4ETS — .

0007
44495353
Z4P0
Z241E
4263
4281
320z
8zFP10ZA
3801
EOoB%
EOB%
4280
1001
223C00000000
3204
0Co00009
4EQ00900A
04000030
60000004
04000037
4EB821 646
3203

0C 440000
&600FFCA
EOBA
E08A
&FO000Z8
0C030004
47000016
103C0030
4EBBZ146é
06030001
0C030004
&DOQFFEE
4281
3zo0z
4202
&000FF9C
1003
4EBBZ166
4E7S

0001
ZEZ202020
Z24C0
4EBRZ4CH
4EPO2172
4283
1400
4EB8Z4BB
04030001
4400FFF 6
4ETS

G004
41534042
Z233E

[lekiaTc]

. [T 7" e

* e . 002%6C

M | 6OZSTO

XDISS DC.B o7 ! ooza72
DC.L “DISS® | o02N74
pC.W XTO 002578

D1sS MOVE.L (A&}+,D2 i oozsvc
CLR.L D3) QoZs7E
CLR.L Pl
MOVE.W D2,D1

XPAN3 DIVU RDX,D1 002580
MOVE.W D1 ,D4 DO THI5 INSTEAD OF SWAP S0025B82
LSR.L eB8,p1 WHICH DOESNT WORK T 0pRBOE
LSR.L #8,D1 002588
CLA.L DO " QO2=BA
MOVE. B D1,D0 ooz=ec
MOVE.L #00,D1 002%8E
MOVE .W D4 ,D1 DITTO HERE 002590
CHFPI #9,D0
BGT XPRNZ 002592
ADDI #830,D0 002594
BRA XPRN4 002596

XPRNZ ADDI #837,D0C 002%57A

XPRN4 TSR PUSH 002%%C
ADDG #1,D3 CHAR COUNT ,ALWAYS >=1 002S9E
CMPI.W #00,D4 ANYTHING LEFT?7 002340
BNE XPRNJ YES 50 TRY AGAIN DOZBAZ
LSR.L *8,0Z NOW TRY TO SEE FOR 32 Bl
LSR.L 8, D2 0025 A4
BLE XPRNS 00Z2TA4
CMPI ®4,D3 002Z5AA
BER XPRN7 00ZSAC

XPRNO MOVE #830,D0 DOZSAE
JSR PUSH Q025%5B0
ADDI #1,D3
CHPE #4,03 0025B2
BLT XPRNG 002584

XPRNT CLR.L D1 oozTPe
MOVE . W pz,p1 002SBA
CLR.L pz 002SBC
BRA XPRNI D02SBE

XPRNA MOVE D3,D0 00230
JSR PUSH
RTS .

% THE REAL PRINT ROUTINE

x ooSC2

x. DC.B »1 0025C4
pc.. *. ¢ oozsce
DC.Ww XDISS 0025CA

PRN J5R DISS pozsce
ISR POP 002%CE
GLR.L D3 | 002%D0
HOVE DO, D3

XPRNS JSR TO
SUBI 3,03
BNE XPRNS o0z%D2
RTS 00ZSD4

» 002508

x 0025DA

XASHB OC.P »4 0023DC
DC.L *ASHMB* 0025DE
bC.wW X.

x

* WILL PUT A NUMBER ON THE STACK AS IS INTO THE BIC

3478102E

343C0004
14DE
5302
6400FFFA
31CA102E
4ETS
4E7S

0002
40422020
2340
Z2A%E
4260
1011
ZDo0
4ETS

0002
40572020
23580
225E
4280
3011
2noo
4E7S

o002
404C2020
2392
225%5E
2bi11
4ETS

Qooz
21422020
2%5A4
225E
Z01E
1280
4E7S

09002z
Z1572020
2382
2235E
201E
3280
4ETS

0002
214C2020
25C2
225E
Z229E
4E7S

AGMB . HOVE . W DP A2

S F HMOVE.W we4 D2

BK3 HOUE (A&)+, (AZI+
SUBQ #1,DZ
BNE BK3 o a
MOVE .W AZ ,DP
RTS
ATs

x

*

X@B T

pc.L *ap
DC W XASMB

(13 MOVE.L (A&)+, A1
CLR.L Do
MOVE. B {Al), DO
HOVE.L DO,—(A&)

ATS
XWORD GET
Xow DC.B 82
DC.L *@W
pc.W xX@B
(i 1N MOVE .L (A&)+, Al
CLR.L DO

MOVE . W (AL}, DO
MOVE.L DO, ~{A&)

RTS

HLONG WORD

X@L. DC.B o2
pC.L ‘el *
DC.w XoW
MOVE.L (A&)+, AL
MOVE.L (A1) ,—(A&)
RTS

x

Xi8 UC.EB 82
DC.L *“iB *
DC.W XoL

I MOVE . L (Ad1+,41
MOVE.L (AG)+,D0
MOVE.B DO, (A1)
RTS

%

»

* STORE A WORD

X1 DC.B #2
pC.L "W *
0C.W XIB

"] MOVE . L {A&)+, AL
MOVE.L {A&)+,D0
MOVE .W DO, {AL)
RTS

*

' .

X STORE A LONG WORD

xiL DC.B 2
DC.L il *
BE. W XtW

I MOVE .L (Aé)+,A1
MOVE.L (R&1+,(AL)
RTS

% NN

JOZITZ ZA4D4143
102374 [AZ204240
N0Z3TA S34D20S6
)OZIATE JI2ZE312A
pO23BZ 0101
DOZ2384 AR202020
DOZ2368 2352
DOZIBA 043800011030
102390 &4C000004
CD2394 4EBBZZZE
102398 347810ZE
DO2I9C I4FCEETS
2023A0 J1CALO2E
0D2Z3A4 JIFCOO40101E
JO2ZIAA 4ETS
DOZIAC 0008
JOZIAE 4J4F4ESI
o0zZap2 2302
0234 4EBB2272
102388 3470102ZE
DOZABC 34FC2DAC
3023C0 4EBEZI&C
3023C4 4EBD23%8
J0ZACE 4E£7S
J023CA 0007
J0Z3CC 494ES5443
2023D0 Z3AC
J023D2 3478102E
3023D& - J4FC2DAC
2023DA 4EBB2T4C
JOZIDE 4E7S
J023E0 0108
J023E2 S6415Z249
J023E4 23CA
30Z3E6 347T8102E
J0Z23EC J4FC4EBEG
3023F0 J34FCZ2400
J0ZIF4 24FC00000000
J023FA 31CAL0ZE
JI02IFE 4ETS
102400 2D17
302402 SBPT
202404 4ETS
J0Z406 0004
J0Z408 4C4F 4144
10240C 23E0

DC.L "#MAC* 002412
Bk IN—— - 1 002418
DC.L UM V* i .00241C
DC.L 2.1k - | - —-pozezo
x - ! 002424
| 1 002428
XSEMI DC.B $101 00242C
DC.L *; - f 00242E
DC.W XTEITL 0Q?432
» 002434
®x ENDS COMPILE MODE 00Z243A
» 002430
SEMI SUBI #1 ,5TATE 002440
. BCE AUTO 00DZ44¢
JSR SREST FORCE A RESTART SINCE STATE IS NOQW 002440C
AUTO MOVE.W DP AZ
MOVE . W B4ETS, (AZ)+
MOVE . W AZ ,DP
MOVE .W #840,PREF
ATS D0244E
x 002450
n 002454
XCONS pC.B %6 002454
DC.L °"CONS® 00245C
DC . W XSEMI 002462
* 002448
2 WILL INTERPREY COMPILATION NUMBERS 00Z46A
x 00246
CONS JSR COLDN+6 002470
MOVE.W DP,AZ 002474
MOUE . W $82D3C, (AZ)+ 002478
JSR ASHMD+4 00247C
JSR SEMI+0E 002480
RTS
b 3
x 002482
RINTEGER ROUTINE DOZA84
XINTE DC.D 807 00Z46A
DC.L “INTE*" QOZ48E
DL . W XCOMS
ENTE MOVE . W P _AZ
., MOVE.W #$ZD3C,{AZ)+ EQU MOVE.L ®XXXX,-{A6} COZ490
JSAR ASMB+4 002497
RTS 002496
XVARIABLE
XVAR DC.P %108
DC.L "VARI®
DC.wWw XINTE oD2498
VAR HOVE . W DP ,AZ QOZ4FE
MOVE . W #84EBG,{AZ1+ JER $XXXX
HMOVE . W SVARZ , (AZ}+
MOVE.L €00, (AZ)+ SPACE FOR VAR 0OZ4A0
MOVE . W AZ,DP GET DPF BACK 0024A2
RYS 0024A4
VARZ HOVE : L {AT),~{Ad) CETS ADDRES OF VAR gpz4ag
ADDQ.L ¢4, {AT) ; 0DZ4AC
RTS 0024AE
XLOAD DC. B ¢4 .
DC.L *LOAD® 1
DC.W XVAR T 00Z4BO
* Q02482
¥ WILL LOAD SOURCE TEXY FROM HOST 002486
& PROGRAM SBKLOAD MUST BE RUNNING 60Z4DE
X AND 68KDIC PRESENT IN THE SYSTEM

00240E

i 0024BA

34701020

_Z1FB10061030. .

103C001PB

4EPEZOIC .- T

“4EBBZ008
0C00000D
64000008
14C0
40000010
oc000020
4DOOFFED
14C0
&000FFEZ
31FB10201024
JIFC0O00010208
4ETS

0004
4AFSO4S4E
Z404
Z21Feidosioln
Z57C00002482
Z263C0000000D
101B
4EBB201C
3303
6600FFF&
4E£Pp82006
0Co0000D
&&D0FFF &
4ETS

S2WB4E2C
J13ALC44
ZE3&364B
0Doo

0004
BZ4AB4C4F
Z244E

11FC00011036
4ETS

0109
494D4D45
2490
J47010Z26
S212
4E7S

0002
S44FZ020
Z4A0
201E
4EROZOIC

LOAD = MOVE .W STBUF A2
—MRAVE CATIAY TPORT
MOVE #¥13,5H¢ SR -
- ISR S50UT T '
GETCH JSR SIN
CHPI #80D, DO
BNE LOADZ ,
MOVE DO, (AZ)+ A CoTme
BRA 1LOAD3
CHMPI ¢* *,DO
BLT GETCH
HOVE DO, (AZ}1+
BRA CETCH
MOVE . W STBUF ,EWORD
MOVE . W #0,LAST
ATS

LOADZ

LOADY FOR WAORD ROUTINES

]
*5TARTS THE DOS TRANSFER PROGRAM RUNNING
*THIS PROGRAM TERMINATES ITSELF ON
*EOF AND RESPONDS TO ESC PROMPTS
XOPEN DC.B »4
DC.L *OPEN®"
DC.W XLOAD
QPEN MOVE . L. ACIAZ,PORT
MOVE . L #COMM, A3
MOVE.L #80D,D3
MOVE.B (A3)+,DO
ISR SOUT
SUBQ ¢1,D3
BNE OPEN1
JSR SIN
GMPI #%0D,D0
BNE OPENZ
ATS
x .
% COMMAND LINE FOR DOS
coMM DC.L *RUN,"
pC.L *1:LD"
DC.L . 50K*"
DC.W 80DOO

UPFEN1

OPENZ2

XRELD DC. B &
DC.L *RELO"
DC.W XOPEN
*
* ALL THIS DOES IS SET THE RELOAD FLAG
»
RELD MOVE #1,RELO
RTS IS IT WORTH IT |
W
HKIMMEDIATE MODE
XIHM DGC.B 4109
DC.L "IMME"
DC . W XRELD
MOVE . W DLAST ,AZ
ADDQ. D #1,(A2)

RTS
»*
E]
XTO 0C.n 2
pc.L “Tro ¢
DC.W XIMM
TO MOVE.L {A&)+,D0

ISR sOUT

APPENDIX B

An Upgrade of On-Board Memory

' 'IdeasForDesIgn

Boost xP-board memory capacity
with simple hardware changes

Some minor rewiring and the addition of an
inexpensive data selector chip tailors Motorola’s
MC68000 evaluation board, the MEX68KDM, for a
fourfold increase in on-board memory capacity. The
board’s complement of sixteen MCM4116 RAMs (16-
kbit devices) can be replaced with 64-kbit types, such
as the 4164. The procedure costs less than one tenth
the expense of an EXORciser chassis and additional
memory modules. '

1. Several etch cuts and wire jumpers help reconfigure the
MEX68KDM evaluation board for operation with 64-kbyte
RAMs. The greater-capacity memory chips booston-board
storage from 32 to 128 kbytes.

Key to the modification is in the design of the 64-
kbit RAMs. The pinout of these devices is almost
identical to that of the 16-kbit devices used in the
board. In addition, such 64-kbit devices as the
MCM4664 or HM 4864 have the same refresh require-
ments as the MCM4116 used on the evaluation board.

Both sizes of RAM chip require a 128 row-address
count with a 2-ms time interval. The board’s existing
multiplexer/refresh counter (MC3242) and memory
controller (MC3480) can be used for the 64-kbit
devices since the additional address line to the chip
(pin 9 on the 64-k RAMSs) is not used during the
refresh cycle. Only an SN74LS157 two-to-one data
selector is needed to multiplex the extra two address

lines onto the 64-k chips.

To accomplish the changeover, the 5-V supply line
to pin 1 of the RAMs must be disconnected. All
64-k parts are single-supply types. Etch cuts can be
made between the memory chips and the controller
8o that only one wire must be added to connect
together each RAM'’s pin 1. To allow pin-1 refresh,
this rail must be tied high via a 1-kQ resistor.

The +12-V connection to pin 8 must be discon-
nected and replaced by a connectionto +5V. A single
etch cut and the addition of a single wire ac-

. complishes this change. As shown in Fig. 1, the +5-

V connection to pin 9 must be disconnected to allow
connection of an additional address line to this pin
on the 64-k devices. Four decoupling capacitors must
be removed, nine tracks cut, and six wires added.

The address lines to pins 17 and 18 of the MC3480

“ROWEN
| @in 9. MC3480
1

1 select
ov

15
“Strobe
GND
74LS157
b Ve

+5V
1A 1B 1Y - ®

2 sl 4 ‘
A. A. A, (inSonBa&RAMS) .
‘v—r "

- - -gonnected - -
[” y ‘~.

MC3480 L
178 18)

2. Aninexpensive data selector chip, the
74LS157, is the only additional hardware required
for modification of the evaluation board.

Electronic Design « October 29, 1881 197

IdeasForDesign

must be disconnected and reconnected to the data [

selector (Fig. 2). The controller’s pins 17 and 18 must
be grounded so that RAS, and CAS are selected. The
remainder of the data selector’s pins are connected
as shown. The +12 and —5-V connections to the ROM
jumper area must be reconnected directly to the
supply rails. The board’s PROM, an N82S129, must
be reprogrammed to the pattern shown in Fig. 8. A
T41.S287 may be substituted. .

In operation, line A;s or A)s of the board is
multiplexed onto pin 9 of the 64-k RAMs, depending
on the state of ROWEN (the line used by the MC3242
for multiplexing of the other 14 address lines).

During a refresh cycle, the state of the additional

address line is not important.

David Cowan, Research Assistant, Department of

Applied Physics & Electronics; Durham University,
South Rd., Durham DH1 SLE, United Kingdom.

c e e s BT
E@mwwwwwwwwmwwwwww
10 0C 0C 0C 0C 0C 0C 0C OC OC 0C OC 0C 0C 0C 0C 0C
0C 0C 0C 0C 0C 0C 0C 9C 0C 0C 0C 0C 0C 0C 0C 0C
0C OC 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C
0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C
0C 0C 0C 0C 0C 0C 0C 0C OC OC 0C 0C 0C 0C 0C 0C
0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C
0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C
00 08 00 08 00 08 00 08 00 00 00 00 00 00 00 00
- 00 00 00 00 00 00 00 00 DO 00 00 00 00 00 00 0O
00’ 00 0000 00 00 00 0000000 0O 00 00 DO 0O
'hmwwmeWWWMmmwmm
%00 00 DO 00 00 00 00 BO B0 0000 80 00 00.00 00
D0 00 00 00 DO 00 00 00 00 ::00 00 DO DO 00 00 00 00
/E£0 -00 00 00 00 00 00 00 00 ~0O_ 00 GO 00 0O 00 00 00
0 00 00 00 00 00 00 00 00 00 00 0O 00 00 00 02 02

20
30
40

50
|60
70
80
80
AD
B0

3. The evaluation board’s bipolar PROM, an N825129, must
be reprogrammed as above. An SN74L8287 canbe used if
aTexas Inltr_umenu' programmer is more readily avallable.

R4

APPENDIX C

DMA Interface Circuit Diagrams

092 Fwii-W3Y B ST0vN0D 00089

~

A

' YA
0vv? Wwagunl N

I)

Y wew w
F I11]
70 190 130 €90

IF PLISSLN

(] SQMAN

by ———— fov

BV ——— v .

Y ———— 1oy SaYN ’Am

Iy ~———— poy |
oS

R e o S

| o W
_ : . ' o>
OMIN A9 .
2 1w

—Com—Com T
oo — Com

v
wy
éw

by
v

Ly

9 jo——m/y

w
v
by

11
(4}
K-

n

$I0v4v0D 108
ovv?> adwapnt 0 Q0

dIN o]

g

NOLN] o9 $1 UU

cwwl_. » wl._ 1 s m.@

230181 —ﬂw 4045 . €S 'omag ss'™y

72

rnOILTRS TOVINGD DAY

YYD IWaw3Nt n'(Q

150
PR +20

bL) wWNas oY pel: B

2 T

vgnN

wNLY

. . -
200059 IloAa_F 4 20
YN A ‘ _
. _ 70 10y ,A < .

Lw B

S

ER4

| 3p
3p—

¥ 1203 H
r

| 3p—¢

— LS A

YISl LI LSTPL veiswy, ¢ wesror ,
&\. J\. J\. 3_ 3\.
[>
. YO

Jom3S

Al

—_— L_'Es___m e
-3 p7 CER AT fomee- y7
O—‘4 — bb ALY
03 —— o5 a5 Y5
— Ar
o2 B4 nagy A4 Y4
D1t e g3 A3l Y3
DT¢ —{82 A2 2
D4 81 ALy
R —leg Ag ——Yp
' PYaTY che
ooL b— 05T
_ OEBR R
07— &1 A7 2]
6 — 86) % —o00Yo
= M
05 ——1% 2a51 * e
B M Y
07 ——463 A f——y3
2 — &2 A Y2
o ——e Al i
of o a9
s Ceas CR

TC

AL
as
Al

A3

A2

‘Arg

A4

Ao

AR
AT

Ab

as

fAa

A3

A2

A

1

AM25LS
244

|

L

(7%
~JTALS
8 a3
@b 0 l—— Y
Q. < — Yo
Qg e ‘/f
[¢] A
L v D pr——— y4
Ht——
0:; [80 u_.—_\/3
. 2 Y2
QB 4 Yl
Qa A Yo
S W TALS
143
cv 0
1
c 8
(IR
SNTIALS
Q"m; O] bA)
Qe c Yo
Qa [Ys
oA A
LevceDd Ya
Ht+——Ta
L. c0
Q@ © Y3
Qe ¢ f————Y,
Qp B | Y,
Ga A \/¢
SN 7aLs
e 193
v P
EocV

SEMDL -—
—] AM2SLS —— Q/W
hot 4 | — A
O —E L Gos
{(————v o5
ﬂV A y R Y-
s
Fe2
& G
coL
D.U INTEREACE caARD

2001 > 68000 eurceqslnooks”

COUNTE RS

AUIgs\Q O71 3 OVaARN

quvd

AWAPILNI

00

1994
00039 t——

r

v

twy

Tud-

1ud

$vo

Avod
00089 t———

=

|

20439

N3

TTLIVL

ATyonvay
viNQ

009
200
900

vooQ

)
B N
us

%A

TA
1A
143

LN

#od
190
T94
£99°
ved
594
29
L9d

el

92 NS~ A A

[

s MA- ow9 np
pa
e
w0
10
v
tWwoA
50
w0 AYigsia @9
La
3
L
9
K
v CUWOD ADN
£3n
t AlgLYW
4

Appendix D

Portable Highway Controller Commands

Portable Highway Controller Guide

Portable ASH Controller

User Instructions

The instructions which may be used by the operator are normally
two character commands, terminated by an 'F'. The commands fall into

three groups, as follows:-
Controller Operation

C1 Start Controller, clear and enable interrupts to the MC68000 host.
C2 Stop Controller.

C3 Reset Controller and disable interrupts.

CA Direct Controller to 'Go Passi\)e'.

CC Change cable, prompts for desired cable number.
General Highway Operation

BA Reset a single terminal unit. Prompts for relevant terminal unit.

BB Add a single terminal to the polling scheme.

BC Set up a complete new polling table.

BD Reset the system sync. time to zero.

BE Set up a new time of day. Enter a single character per line, as
follows:- months*10, months, days*10, days, hours*10, hours,

minutes*10, minutes.

Durham University -1- Dept. of Applied Phvsics.

Portable Highway Controller Guide

Monitoring Display

DB Display system time.

DC Display controller status.

DD Display statistics for a particular terminal unit.
DE Display the statistsics of all terminal units.

Executive Systems

AAA Return executive control to the VDU,

Durham University -2- Dept. of Applied Physics.

Portable Highway Contrqller Guide

On power-up, the portable higﬁway ‘controller unit performs a
reboot of the operating system for the MC68000. It then resets the ASH
controller tables to their normal default conditions, including a
polling table which consists of terminal units 0-16 inclusive. The
MC68000 will then start the controller, which can then assume control
of the ASH system, should it be the only active controller. The
polling table may then be reset by the use of the BB or BC commands.
After using the AAA command to redirect executive control to the VDU,
control may be returned to the keypad/ front-panel display, by typing

7

RES.

Documented Bugs

1) Display Corruption. Due to a fault in the address decoding for the
PIAs on the MEX68KDM board, occasional corruption of their control and
data register contents can occur. To protect against this, the
registers of the PIA which drive the keypad and display are checked
and updated more often than necessary. This gives rise to the
periodically flashing display unit. It will be possible to remove
these additional checks in the next controller, which will not use the

ME X68KDM boards.

'2) Time of Day. A software fault in the version 1.2 controller
software causes the time of day to be updated incorrectly in passive
highway controller units. This fault is characterised by a time of day

which appears to be stationary.

Durham University -3- Dept. of Applied Physics.

Appendix E

Graphs of ASH Test Results

-T yderg-

ASH SEA TRIAL RESULTS

oMo |

START DATE
18/1/81

START TIME
B/17/7

INTEGRATION
PERIOD

6 SECS

TERMINAL

NUMBER
1

VERTICAL SCALE: -
LOG ERROR RATE
HORIZONTAL SCALE: -
TIME (GMT)

-2 yder)-

ASH SEA TRIAL RESULTS

oMo |

START DATE
18/1/81

START TIME
271777

INTEGRATION
PERIOD

300 SECS

TERMINAL

- NUMBER

1

VERTICAL SCALE:s -
LOG ERROR RATE
HORIZONTAL SCALEs -
TIME (GMT)

~¢ yder)-

ASH SEA TRIAL RESULTS

oM& |

START DATE |

18/1/81

START TIME
B/17/7

INTEGRATION
PERIQOD

60 SECS

TERMINAL

NUMBER
2

'v:'\"-o" "'-“- .
2 3

VERTICAL SCALE: -
LOG ERROR RATE
HORIZONTAL SCALE: -
TIME (GMT)

-t ydern-

ASH SEA TRIAL RESULTS

oMo |

START DATE
18/71/81

START TIME
B/17/77

|

INTEGRATION
PERICD

60 SECS

TERMINAL

NUMBER
3

VERTICAL SCALE: -
LOG ERROR RATE
HORIZONTAL SCALEs -
TIME (GMT)

-¢ yder-

e ASH SEA TRIAL RESULTS
5 I SMST
. START DATE
T 18/1/8]1
-6 | . [START TIME
| B/17/7
=S LR P L S R TN e E _
A A R AR A N INTEGRATION
PERIOD
4 60 SECS
TERMINAL
-3] NUMBER
VERTICAL §CALE| -
-2 + 4 + | , N LOG ERROR RATE
' HORIZONTAL SCALE;s -
| e 4 S 6 TIME @MY |

-9 yder-

s ASH SEA TRIAL RESULTS N
3 | ' SMST%
| ; START DATE]
T - 18/1/81
-6, START TIME
j 2/17/7
-5 A
INTEGRATION |
PERIQD i
~4 12008 SECS
TERMINAL |
-3] NUMBER
N
VERTICAL SCALEs - ;
-2 A o . \ LOG ERROR RATE |
HORIZONTAL SCALE: -
1 2 3 4 5 @) | TIME_ MDY

-1 yder)-

e e
= ASH SEA TRIAL RESULTS {ESPAESff‘
f S——

|

—~——1

TSTART DATE
%19/1/81

6L e o TSTART TIME
A o 14721736
5—5_;. | ._ __u_"
L | INTEGRATION |

‘ PERIOD |

i ; | :
4 3PP SECS |
| TERMINAL

-3, NUMBER
! : @ i

; PV, e

VERTICAL SCALE: ~

e) LOG ERROR RATE |
HORIZONTAL SCALEs- |

L ools 16 17 18 19 20 i TIME GMD]

-g yder)-

ASH SEA TRIAL RESULTS

15

16 17 18 18 2l

SMST

START DATE
18/1/81

START TIME
1472271

INTEGRATION
PERIOD

60 SECS

TERMINAL

NUMBER
1

VERTICAL SCALEs -
LOG ERROR RATE
HORIZONTAL SCALE:s -
TIME (GMT)

-6 ydein-

ASH SEA TRIAL RESULTS

15 16 17 18 13 20

oMS |

START DATE
19/1/81

START TIME
14/21/36

INTEGRATION
PERIOD

6l SECS

TERMINAL

- NUMBER
2

VERTICAL SCALE:s -
LOG ERROR RATE
HORIZONTAL SCALE: -
TIME (GMT)

-01 yderg-

ASH SEA TRIAL RESULTS - '
ST EER T ' SMS T

START DATE
18/1/81

|- .. I [TSTART TIME |
T e LTI L | 14/21/36

INTEGRATION
PERIOD

60 SECS
TERMINAL

NUMBER
3

VERTICAL SCALE: -
. . — ey LOG ERROR RATE

’ K HORIZONTAL SCALE: -
15 16 17 18 19 20 TIME (GMT)

-11 ydery-

ASH SEA TRIAL RESULTS

oMS |

START DATE
19/1/81

START TIME
14/21/36

INTEGRATION
PERIGD

60 _SECS

TERMINAL

NUMBER
4

17

18-

18

20

VERTICAL SCALE: -
LOG ERROR RATE
HORIZONTAL SCALEs -
TIME (GMT)

15

=el WSO

ASH SEA TRIAL RESULTS

- im g

oMol

START DATE
19/1/81

e

START TIME

!

23/15/56 |

PERIOD
300 SECS

INTEGRATION

!
{
i
{

TERMINAL
- NUMBER
U

!

VERTICAL SCALE;s -
LOG ERROR RATE
HORIZONTAL SCALE: -

A TIME GMD)]

¢ 1 yder)-

ASH SEA TRIAL RESULTS

oMS T

START DATE
189/1/81

START TIME
23/16/1

INTEGRATION

PERIOD
60 SECS

TERMINAL

NUMBER
1

VERTICAL SCALEs ~
LOG ERROR RATE
HORIZONTAL SCALEs ~
TIME (GMT)

91T Ydex)-

ASH SEA TRIAL RESULTS

SMST

START DATE
18/1/81

START TIVME
23/15/56

INTEGRATION
PERIOD

68 SECS

TERMINAL

- NUMBER

2

VERTICAL SCALE:s -
LOG ERROR RATE
HORIZONTAL SCALE: -
TIME GMT)

-¢T yder)-

ASH SEA TRIAL RESULTS

oMS T

START DATE
19/1/81

START TIME
23/123/236

INTEGRATION
PERIQGD

64 SECS

“TERMINAL

NUMBER
3

VERTICAL SCALEs -
LOG ERROR RATE
HORIZONTAL SCALE: -
TIME (GMT)

=917 ydern~

ASH SEA TRIAL RESULTS

SMST

| START TIME |
23/15/26

START DATE
19/1/81

- TERMINAL |

INTEGRATION
PERIOD

68 SELS |

-~ NUMBER
4

-

LOG ERROR RATE
HORIZONTAL SCALE: -
TIME_(GMT)

L T -

=L1 yderg-

ASH SEA TRIAL RESULTS | —~y4
1 SEA_TF L CMS T |

—— L-vm.

START DATE
21/1/81

o}
.
]

i

TSTART TIME

°0/42/39 |
INTEGRATION |
PERIOD

30@ SECS
TERMINAL |

NUMBER |
7

. VERTICAL SCALE: -
+— ; ' N 4 LOG ERROR RATE

HORIZONTAL SCALE: -

-8T yder-

ASH SEA TRIAL RESULTS 1
. L SMS T

START GATE"
21/1/81

START TIME
2A/42/44 §

it INTEGRATION
PERICOD

' 60 SECS
TERMINAL

NUMBER
1

VERTICAL SCALE: -
LOG ERROR RATE

' ' | HORIZONTAL SCALE: -
22 23 g .1 2L TIME @MDY

-61 yder)-

ASH SEA TRIAL RESULTS

oMo

START DBATE

21/1/81

START TIME
2B/ 42738

INTEGRATION |
 PERIOD

60 SECS

TERMINAL

NUMBER
2

21

22

VERTICAL SCALE: -
LOG ERROR RATE
HORIZONTAL SCALE: -

_TIME GMT)

ASH SEA TRIAL RESULTS

oMS |

START DATE ‘
21/1/81

START TIME
2d/42/39

INTEGRATION
PERIGD

60 SECS

TERMINAL

NUMBER
3

21

22

23

T

VERTICAL SCALE: -
LOG ERROR RATE
HORIZONTAL SCALE: -
TIME (GMT)

~T¢

. —

ASH SEA TRIAL RESULTS

SMST

START DATE
21/1/81

START TIME

2B/42/44

INTEGRATION
PERIGD

B0 _SELCS

TERMINAL

NUMBER
4

(SRR S S S

._8T
_7-L.
' _6-0-
_5 -:’.-.:.- :-..'.' :-.: -‘ ‘ \ ‘ -“ .-ﬁ: q '..’- :-...- '1.. :-.:.-..'-.
- ."%:.‘ .\‘. ﬁ' - ! ‘\ w‘. -| 0....'. ‘m, "::l‘
{ .
_3*
-2l —+— + + ~+
21 23 % 1 2

VERTICAL SCALEs -
LOG ERROR RATE
HORIZONTAL SCALE: -
TIME (GMT)

ASH CDNT?DL:RESULTS 4
T ' oMS [

START DATE
172781

L _..", SN START TIME
' 8/250/56

INTEGRATION
PERIOGO

60 SECS

TERMINAL

~ NUMBER
]

VERTICAL SCALE: -
- s ; + LOG ERROR RATE

HORIZONTAL SCALE: -
10 11 12 13 14 TIME (GMT)

