
Durham E-Theses

The integrity of serial data highway systems

Cowan, D.

How to cite:

Cowan, D. (1983) The integrity of serial data highway systems, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7253/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7253/
 http://etheses.dur.ac.uk/7253/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


The copyright of this thesis rests with the author. 

No quotation from it should be published without 

his prior written consent and information derived 

from it should be acknowledged. 

The Integrity of Serial Data Highway Systems 

by 

D.Cowan, B.Sc. 

A thesis submitted for the degree of Doctor of Philosoph)' 

in the University of Durham, .1983. 





Abstract 

The Integrity of Serial Data Highway Systems 

D. Cowan 

The Admiralty Surface Weapons Establishment (ASWE) have developed 

a Local Area Network System. This thesis describes the development of 

a replacement for this LAN system, based around 16 bit microprocessor 

hosts, as opposed to the minicomputers currently used. This change 

gave a substantial reduction in size, and allowed the new system to be 

installed on a ship and tested under operational conditions. Analysis 

of the data collected during the tests gave performance information on 

the ASWE system. The performance of this LAN is compared to that of 

·other leading types of LAN. The design of a portable network 

controller/ monitor unit is presented, which may be manufactured as a 

standard controller for the ASWE Serial Highway. 



Acknowledgements 

I wish to express my thanks primarily to Dr. C. T. Spracklen for 

his assistance during the course of this project. In addition, the 

advice of Mr. D.J. Dwyer and Dr. D.R. Isaac was much appreciated. 

Thanks are also due to the departmental technicians who provided 

valuable technical help on many occasions. The staff of XCC Division, 

ASWE, assisted in many ways during the course of my research, and 

they continually tolerated the disruption to their normal work which 

Dr. Spracklen and myself seemed to bring to them. 

I am particularly grateful to the Ministry of Defence who funded 

this project. 

II 

i 
! , 



Contents 
Glossary of Terms 

Chapter 1 Introduction 
1.1. Local Area Networks 

1.1:1 Ring Topology 
1.1:2 Linear Topology 

1.2 The Choice of LAN Architecture 
1.3 Conclusion 

Chapter 2 The A.S. W.E. Serial Highway 
2.1 Introduction 
2.2 Signalling Conventions 
2.3 Message Protocols 

2.3:1 Control Messages· 
2.3:2 Information Messages 
2.3:3 Message Fields 
2.3:4 The Error Recovery Scheme 

2.4 Front-end Processors 
2.5 Transciever 
2.6 Host Interface 
2. 7 Microcode Cross-Assembler & ASH Simulator 
2.8 ASH Terminal Unit 

2.8:1 Software T abies 
2.8:2 Host Control of Highway Terminal Unit 

2.9 Highway Controller Unit 
2.9:1 Software Tables 
2.9:2 Host Control of Highway Controller Unit 

2.10 ASH Configuration 
2.10:1 Single Controller/ Twin Highway Cables 
2.10:2 Twin Controller/ Twin Highway Cables 
2.10:3 Cable Configuration 

2.11 Conclusion 

Chapter J Computer Systems 
3.1 Introduction 
3.2 The DEC PDPll/34 and Unix. 

3.2:1 The Implementation of BCPL and Coral 
3.2:2 ASH Software Packages 

3.3 The Data General Nova-3 and RODS 
3.4 The Motorola MC6809 Development System 
3.5 The Motorola MC68000 Single Board Computer 

3.5:1 An Upgrade of the On-board Memory 
3.6 Additional Peripherals and Software 

3.6:1 Pro-Log Prom Programmer 
3.6:2 Computer Communications Software 

3. 7 DMA Interface 
3.8 Conclusion 

Chapter 4 SIXTH 
4.1 Introduction 
4.2 SIXTH Design Philosophy 
4.3 System Kernel 
4.4 System Dictionary 
4.5 Conclusion 



Chapter 5 The Portable Highway Controller 
5.1 Introduction 
5.2 Portable Controller Hardware 
5.3 Controller Software 

5.3:1 Design of SIXTH Programs 
5.3:2 The Use and Upgrading of Controller Software 

5.4 Testing the Portable Controller 
5.5 Conclusion 

ChaJ,ter 6 The ASH Ship Trials 
6.1 Introduction 
6.2 Test Hardware 

6.2:1 MC6809 Monitoring Unit 
6.2:2 MC68000 Highway Terminal Units 

6.3 Ship Trial Software 
6.3:1 Design Concept 
6.3:2 Block Message Soak Test 
6.3:3 Short Message Soak Test 
6.3:4 ·Test Control Software 
6.3:5 Test Report Software 
6.3:6 Test Monitoring 

6.4 Test Results 
6.4:1 Analysis Techniques 
6.4:2 Discussion of Results 

6.5 Conclusion 

Chapter 7 LAN Technology 
7.1 Introduction 

·--· --· 

7.2 Review of Basic LAN Technology 
7.3 Improvements to the Basic LANs 

7.3:1 Ring LANs 
7.3:2 Decentralised Control Linear Bus LANs 
7.3:3 Centralised Control Linear Bus LANs 

7.4 A Second Generation ASH 
7.5 Conclusion 

Chapter 8 Conclusion 

Bibliography 

Appendix A Program listings 

Appendix B An Upgrade of On-Board Memory 

Appendix C DMA Interface Circuit Diagrams 

Appendix D Portable Highway Controller User Commands 

Appendix E Graphs of ASH Test Results 



Glossary of Terms 

ACIA Asynchronous Communications Interface Adaptor 

ALU Arithmetic Logic Unit 

ASCU American Standard Code for Information Interchange 

ASH ASWE Serial Highway 

ASWE Admiralty Surface Weapons Establishment 

CMOS Complimentary Metal-on-Silicon 

CPU Central Processor Unit 

CSMA Carrier Sense Multiple Access 

DMA Direct Memory Access 

OS DO Stack 

EPROM Erasable Programable Read-only-Memory 

FEP F rant End Processor 

FIFO First In First Out 

1/0 Input/ Output 

LAN Local Area Network 

La:l Liquid Crystal Display 

LED Light Emitting Diode 

MS Machine Stack 

OS Operand Stack 

PIA Parallel Interface Adaptor 

PROM Programable Read-only-Memory 

RAM Random Access Memory 

VDU Visual Display Unit 



Chapter 1 

Introduction 

1.1 Local Area Networks 

In recent years the trend towards mainframe computers of ever 

increasing complexity has been overtaken by the use of distributed 

computer systems, in an attempt to provide greater speed and 

flexibility of computing power. This has been aided by the greatly 

reduced costs of computer hardware, and by the ease of application of 

modern block structured programming languages to multiprocessor 

systems. These systems normally fall into one of two categories, 

loosely coupled and tightly coupled systems. In the former, 

communications between the elements of the system take place at a very 

much higher rate than in the latter. Tightly coupled systems can have 

a communication rate of up to 200Mbits/ sec, whilst most loosely 

coupled systems have a maximum transmission rate of approximately 

20Mbits/ sec. The difference in transmission speeds is due to the 

differing. demands placed on the communication system by the elements 

in the network. Normally, the elements in a tightly coupled system are 

interdependant and would be unable to function satisfactorily if one 

element was malfunctioning. Array processor systems and multi-ALU 

systems fall into this category. Loosely coupled systems normally 

consist of units which are able to function satisfactorily by 

themselves~ and communication between the elements is normally via 

data messages rather than machine level instructions as in the tightly 

coupled systems. The decrease in the transmission rate allows 

different transmission media to be used, and many loosely coupled 

systems use serial transmission lines. There is a large range of 

possible interconnection systems for these two types of distributed 

computing systems. However, they fall roughly into three categories; 

point to point, interconnecting bus, and network. In addition, 

combinations of the three types 



In the past, point to point systems have been used to a great extent 

because they were the easiest and least expensive to implement. In a 

point to point system, a dedicated communication path exists between 

every element in the system. This necessitates a large amount of 

wiring between elements, but has the great advantage that the 

receiving unit has an inherent physical address; no additional 

software is required to generate the address or, in the receiver, to 

decode the address. However, greater importance is now placed upon the 

ab iii t y to reconfigure a communication system to incorporate new 

elements, and in a point to point communications system this 

necessitates expensive and complex rewiring. Thus point to point 

systems have largely been replaced by some form of shared 

communications system. 

A communication network is a collection of shared 

communications paths and devices interconnected so at least one pair 

of devices has more than two simultaneous path possibilities. The most 

common of the network systems have computers as devices and telephone 

land lines as communications paths. Examples of these are ARPANET [ 1,2] 

and OCTOPUS [ 3 ]. Networks are characterised by their topology, 

protocols, communications disciplines and geographical extent. 

Networks which communicate over longer distances than 1km, such as 

ARPANET, are known ·as long-haul networks, whilst those which work over 

shorter distances, such as the Xerox FIBERNET [ 4], are known as short­

haul networks. The most common topologies used are the mesh and star, 

shown in Figure 1.1a. The protocols implemented depend upon both the 

topology and communication discipline used, however they can usually 

be subdivided into transport protocols, routing and flow protocols and 

user level protocols. The communications disciplines used are circuit 

switching, message switching and packet switching. Our telephone 

1-2 



Mesh·· 

Star 

Figure Ua Common Networks 



system employs circuit switching; a complete circuit must be 

established between caller and the listening station otherwise the 

caller hears an engaged. signal. Packet switching is employed by 

ARPANET and most short-haul networks. Messages are segmented into 

fixed length packets which are only reconstructed at the destination 

node. Intermediate nodes retransmit packets as received, but certain 

systems may perform error detection and correction. The distinction 

between packet switching and message switching is less obvious in r ·, 
I 

certain configurations of local networks. 

The pure star topology employed by FIBERNET type systems 

does not strictly fit' the category of a network because of the lack of 

simultaneous paths. 

A data bus is a shared communication path joining many devices 

with only one path between any two devices. Examples of such systems 

include MIL-STD 15538 [5], the Cambridge Data Ring [6], and ETHERNET 

[ 7,8]. 0 ne of the advantages of a data bus system over a point to 

point system is the ease of reconfiguration to support additional 

devices. However the data bus system has the disadvantage of the 

requirement fOr software addresses for every device, and the 

complicated protocols and decoding necessary to support this type of 

addressing. 

The term 'Local Area Network' (LAN) is now used to describe 

short haul networks and data bus systems. The systems upon which most 

work is currently being undertaken are data bus systems. The most used 

topologies are ring, redundant ring, linear and redundant linear. The 

addition of redundancy gives protection against the failure of the 

transmission media. 

Regardless of its topology, a data bus can be active or 

passive; an active bus is one with signal regeneration at each node, 

1-3 



whilst a passive one has no regeneration in the system. 

1.1:1 Ring Topology 

The topology of a · typical ring network is detailed in Figure 

l.l:la. Each unit acts as a repeater on the ring and the LAN normally 

uses some form of token passing message handling system. A ring 

network utilises an active data bus. In such a system, single or 

multiple tokens are continually circulating round the ring. If a unit 

wishes to transmit a message it waits until it receives this token. It 

then transmits its message and appends the token to the end of the 

message. The unit to which the message is addressed takes a copy of 

the message and also regenerates it and the token in the same manner 

as the intermediate units. The removal of the message from the ring is 

left to the unit which originated the message. Although the ring type 

network theoretically h'as the advantage of completely decentralised 

control, in practice there must be a master station which inserts the 

tokens onto the ring and monitors its activity to ensure that there is 

always a token present. 

The 'Cambridge Ring' LAN is a variation of the ring network. It 

uses token passing in the form of a 'Message Slot' format. The master 

unit initially sets up a message structure on the ring consisting of a 

number of message slots each preceded by a header to indicate whether 

the slot is empty or full. A unit wishing to transm"it a message merely 

waits until an empty slot arrives, and it then fills the slot and 

alters the header accordingly. Again, removal of the message is left 

to the transmitting unit. Unfortunately, this means that the master 

unit in the ring must set up the message slots, and must then maintain 

them against the possibility of corruption by noise. Thus the 

1-4 



Figure t1:1a Ring Topology 



advantages of decentralised control presented by the ring concept have 

been lost. In addition, since each unit on the ring is an active 

repeater, the failure of any one of these units can cause one section 

of the LAN to be isolated. This can be overcome by the use of more 

than one cable, (redundant ring topology) and by transmitting messages 

around each of the cables in different directions. 

1.1:2 Linear Topology 

The final class of LAN architecure is the one which is currently 

the most used. The topology of a linear bus LAN can be seen in Figure 

1.1:2a. There are several message handling systems for such an 

architecture, but they fall into one of two classes; asynchronous and 

synchronous. 

The ALOHA [9,10] system is an example of an early asynchronous 

LAN. If a unit wished to transmit a message it tra~smitted it 

immediately. It then waited for an acknowledgement of reception from 

the unit to which it had addressed the message. If the acknowledgement 

was not received, it assumed that the message had not been received, 

possibly due to the simultaneous transmission of a message by another 

unit. It then retransmitted the message after a random time interval, 

to ensure that the same clash did not occur again. However, as the 

load increased, the number of clashes also increased, and this meant 

that the maximum channel utilisation of a pure Aloha system was 

approximately 18 percent [8 ]. The addition of rudimentary coordination 

between units increased this utilisation. A series of synchronisation 

pulses were transmitted on the bus and units were only allowed to 

transmit messages immediately after the pulse. This increased the 

possible channel utilisation to 36 percent. An extension to the pure 

Aloha technique is the Carrier Sense Multiple Access with Collision 

1-5 



Passive 

Linear Bus 

Activr 
linear Bus 

Figur~ 1.1:2a linrar Bus Topology 



Detect (CSMA/CD) system used in such LANs as Ethernet. In this system, 

all units monitor the activity on · the bus before transmitting their 

messages. If the channel is free, a unit may transmit its message. If 

two (or more) units start transmission at the same time they can 

detect this clash by monitoring the activity on the channel. They 

immediately cease transmitting their message. The units then 

retransmit after a random time, to protect against repeated clashes. 

This system is efficient under conditions of low loading, however as 

the loading increases so too does the message delivery time. Channel 

utilisation in the Ethernet system can reach 98 percent [ 8 ]. 

Synchronous bus LANs have a controller which supervises 

the transmission of messages by the units on the bus. However, the 

throughput of the master unit does not determine the throughput of the 

network, as in the star LAN, because the master does not perform a 

'receive and repeat' function. There are several type of sychronous 

bus control, but two of the more common types are :- round robin and 

polled systems. In the round robin system, each unit has a list of the 

order in which the units are to transmit held in its memory. The bus 

master transmits a message which says 'Next please' and the units 

consult their list to determine whether or not they are the next one 

on the list. The relevant unit then transmits a message if it wishes. 

Then the cycle is repeated. Synchronisation between the units must be 

achieved initially, to ensure that they are all at the same positions 

in their lists. 

The second type of synchronous bus control commonly used is 

a polled system. In this system, the bus master explicitly polls each 

unit in turn. The unit may respond either with a message, or with an 

acknowledgement to show that it is still connected and functioning. 

This has the advantage of rigid control over message transmission by 

1-6 



the master. It allows a priority system to be implemented by polling a 

particular unit more often than the others. 

Unfortunately, the synchronous bus LANs must have a control 

unit, and to protect against failure of this unit multiple controllers 

are normally used. Synchronous LANs do have the advantage of a lower 

message delivery time than the asynchronous systems when under high 

loading. Additionally, by using the bus controllers to maintain an 

error recovery scheme, they can offer guaranteed error free delivery 

of messages with fewer overheads than in the asynchronous systems. 

However, this type of system does include certain overheads due to 

the poll messages which are not present in an asynchronous system. 

Careful design is needed to keep these overheads as low as possible. 

The major advantage of linear LANs over ring LANs, is that by careful 

choice of the s~gnalling scheme and media used for the bus, it is 

possible to make it passive. 

1-7 



1.2 The Choice of LAN 

Whilst there are many different LANs, there is no one type which 

is 'the best'. Each type has different characteristics which make it 

suitable for certain applications but completely unsuitable for 

others. In general, a careful assessment of the situation must be made 

before the choice of LAN for a particular application can be made. 

After such an assessment, the Admiralty Surface Weapons Establishment 

(ASWE) set down the design for their LAN, which is known as the ASH 

(ASWE Serial Highway) [11]. 

For many years, the Royal Navy have used large mainframe 

computers in their ships. These computers monitor the ships' 

surroundings with the aid of the radar systems, and provide target 

ex traction and identification facilities to the officers in charge of 

the ships'· operation. In addition, the computer provides automatic 

control over the various weapons systems used on board ship. As the 

years have advanced, the complexity and number of the radar systems, 

the displays, and the weaponry, have increased dramatically. This has 

led to two distinct problems in the modern naval ship. Firstly, the 

performance of the ship is very seriously affected if the computer 

ceases to function. Secondly, the amount of cabling necessary to route 

all of the control and monitoring functions to the master computer is 

immense. The adoption of distributed control using a local area 

network system will solve both of these problems. Every sub-S)'Stem on 

board the ship, such as the radar, the gun-turrets, the missile 

launchers, the status displays etc; will contain a mini or micro 

computer. They will all be linked together via a local area network. 

The only cabling necessary for such a system will be the local wiring 

from the distributed processors to their subsystems, and the LAN 

1-8 



cabling, which will consist of several redundant highway cables. Each 

sub-system could then be factory tested with its local processor in 

full control. 

The LAN used in such a system would have to have the following 

characteristics. 

1) A very high resilience to individual element failure. 

2) Guaranteed error free messag~ delivery. 

3) A simple, easily available highway cable/ connector to allow simple 

maintenance and repair. 

4) A maximum cable length of 300 metres (due to length of ship). 

5) Ease of alteration and reconfiguration. 

It was decided that it would be very difficult to attain the necessary 

message throughput and overall system reliability needed by using a 

ring bus or star network. This meant the choice of a linear bus 

architecture. The need for guaranteed error free message delivery, and 

the knowledge that the bus was to· be operated under a fairly high 

loading at all . times dictated the choice of a poll-response system. 

Unfortunately, this type of system suffers from the obvious setback of 

centralised control, however the ASH was designed include multiple 

redundant controllers to alleviate this problem. In addition, the use 

of a passive highway, implemented using a screened twisted pair, 

allows the maximum cable length of 300 metres to be achieved without 

the use of. repeaters. The signalling system chosen, a variant of 

Manchester coding known as Bifrequency Code (section 2.2) allows the 

cables to be connected without the need for any checks on polarity. 

The choice of NATO standard cable and connectors allowed the LAN to be 

simply and easily installed. 

1-9 



Unfortunately for ASWE, such an LAN was not available, so it 

was necessary to design their own. Great emphasis was placed on the 

need for simplicity of the host computer to LAN sub-system software 

interface. This led to the adoption (section 2.1) of a table driven 

interface between the LAN and its host computer, using an area of 

shared memory. 

1.3 Conclusion 

Local area network technology has advanced as the need has arisen 

for efficient communications between units in a loosely coupled 

distributed computing system. In such systems, a serial cable is 

normally used as the transmission media, and by a careful choice of 

signalling conventions, data rates up to 20Mbits/ sec can be achieved. 

Several possible topologies exist for LANs, each one suited to a 

different application. In many instances, distributed computing 

systems communicating via LANs have replaced single mainframes. This 

replacement was prompted by the need for greater overall system 

reliability, and the greater availability of mini and micro computers 

in recent years. In addition, the introduction of the software 

addressing used in LANs, in preference to the implicit hardware 

addressing used in earlier point to point systems, has greatly reduced 

the hardware changes necessary to reconfigure the system. In order to 

increase the reliability of the LANs, multiple redundancy is used for 

critical components and cabling. Careful choice of highway 

architecture allows a guaranteed error free message delivery, which 

may be critical in certain applications. ASWE have designed an LAN 

system for use in a future generation of naval ships and their choice 

of architecture gives the best performance in the naval environment 

with which they are concerned. 

1-10 



Chapter 2 

The A.S. W.E Serial Highway 

2.1 Introduction 

The ASH was designed as a response to the needs of ASWE for a high 

speed local area network with guaranteed error free message delivery 

and a very high system reliability. ·Its specifications are laid out in 

Defence Standard 00/19 [11]. The network is of the poll-response 

linear bus type. In order to increase system reliability, there is a 

possibility of a multiple redundant highway cable and/or highway 

controller configuration. The line signalling and message protocols 

are handled by dedicated bit-slice front-end processors (FEPs), using 

AMD 2901 four bit wide devices. These processors are connected to the 

serial highway cable via transceivers, and to the host processors by 

specialised Direct Memory Access (DMA) interfaces. The host processor 

controls the communications processor by means of a set of tables in 

an area of shared memory. All messages sent on the highway may be put 

into one of two categories:- control and information messages. The 

information messages may be further divided into two types; short 

messages and block messages. 

2.2 Signalling Conventions 

The line signalling is performed using a variant of Manchester 

Code known as Bifrequency Code. The signalling rate is 3Mbits/sec. The 

valid signals are shown in Figure 2.2a. There are also two signalling 

violations defined as part of the specification, one to signal End of 

Message (EOM) and the other to signal End of Invalid Message (EOIM). 

These violations are shown in Figure 2.2b. The signal levels are 

detailed in Figure 2.2c. Since the highway is a passive linear bus, 

?-1 



' .-, 
• 

I 

' ·. . 

I 

·lt-Bit Perioo 
• • 

I 
I . 

I 

I 
I 

Space (Zr ro) 

0 Volts 

0 Volts 

Mark (Onr) 

Fi_gur-• 2.2a 

End of Mess age (EOM) 

... 
: 0 Volts 

0 Volts 

End of lnval id Message (EOIM) 

Figure 2.2b 



these signal levels are subject to considerable degradation when a 

large number of units are connected, and/ or a long cable is used. ·The 

maximum level of degradation permitted is shown in Figure 2.2c. Error 

recovery is performed by the retransmission of incorrect messages. 

2.3 Message Protocols 

2.3:1 Control Messages 

There are four types of control messages whose function is to 

maintain the poll and response scheme and to manage the error recovery 

system. The format of these messages may be seen in Figure 2.3:la. 

1) Permission to transmit (PTT): This message is issued by the highway 

controller and it gives a terminal specified by the DST field 

permission to use the highway. 

2) Nothing to Transmit (NTT): This message is issued by a terminal in 

response to a PTT. The NAK field is used by the highway controller in 

the error recovery system. 

3) Repeat Message (RM): This message is issued by the highway 

controller when a terminal unit indicates that a message has been 

missed. It takes the format of the class of information message of 

which it is a repeat, except that byte 2 is equal to byte 4. 

4) Null Repeat Message (NRM): This message is issued by the highway 

controller when it is unable to obtain a valid response from a 

terminal, or when the controller does not have an error free copy of 

the message to retransmit. 

2-2 



+6.5 Volts 
+5.5 Volts 

.. 0.3 Volts 

-Q.3 Volts 

; r--sonsec 
I I . 
1 I 

___.wa -J'I . 20nSec 
I I 
I I 

I I 
I I 
I I 
I I 
t I 

: I 

~ I 

I I 1 I 
e· I ·I I 

300nSec 

Signal levels at Transmitter 

-5.5Volts 

- 6.5Volts 

Maximum Signal Degradation 

Figure 2.2c 



1) 

2) 

3) 

t 
I 

I 

I 

• 

I 

I 
.. ~. I 

I 
I 

I 

I 
I 
I 
I 

I 

- I 

-- i 
I 
I 

: 
I 

SQM 
I . 
I 

T 
I 
I 

S~M 
I 
I 

-- ! 
I 

S~M 
I 
I 

Ammble---

u 
M 
N 

N 
A 
K 

T 
M 
N 

ll: 11 E E 
~ c 0 
T F M 

Permission to Transmit 

OIO_ E E 

~ c 0 
F M 

Nothing to Transmit 

~I o T E EJ 

0 M 0 0 c 0 
N F M 

Null Rtprat 

.. 

Control Message Formats 



2.3:2 Information Messages 

These messages are used to pass information between the highway units. 

There are two classes of message, a data message and a block message. 

1) Data Message: This may either be directed to a particular terminal 

unit, in which case it is termed a Point to Point Data Message, or it 

may be a Broadcast Data Message. The format of each type of message is 

shown in Figure 2.3:2a. In each case the length of the message may be 

in the range 2-31 words inclusive. 

2) Block Message: A Block message transmission is made up of two types 

of messages, a Sub-Block Message and a Block Residue Message. The 

length of the former is 33 words, whilst the latter may be in the 

range 2-33 words inClusive. 

2.3:3 Message Fields 

The first byte of a message to be transmitted is defined to be 

byte 0 and subsequent bytes as byte 1, byte 2 etc. The first bit of 

each byte is defined to be bit 0. As can be seen in Figures 2.3:la and 

2.3:2a, there are several different fields within the messages. The 

function of each is as follows 

1) Preamble: This is an optional series of ones which is used to 

obtain hardware synchronisation between transmitter and receiver. 

2-3 



I I 

' ·- .. 1) I I 
I t 

• 

2) 

I J 
Preamble 

Broadcast ~M.ssagt 

SOM 
. 

SOM 

SOM 

SOM 

~ 
1 0 T K>o 

~ 
M f K N 

N 1 0 T ~0 
A I M f f( ~ N 

N ~j)_ -y 1 1 
A ~ ~ ' I< c . 

N 1 0 T D 
A 33 M s 
K N T 

0 ~ 
t 

. , , , , , , , 

· .. P J 

' 

s ! . 
T ' 

f 
I 

Mt~s~gt 
I 

• 
. 1. 
I 

Me4sage 

0 
s 
T 

11 1 ., 
c 

I 
I 
I 

• 

, 

Sub- Bl-ock Mrss~ge r 

. 
• • • • • • 

• 
I 

' 

• 

E 
c 
F 

E 
c 
F 

E 
c 
F 

E 
c 
F 

User Data Arta 

Information Message Formats 

Figure 2.3:2a 

E 
.0 
M 

~ 
M 

E 
0 
M 

E 
0 
M 



2) Start of Message: This field consists of two bytes (0 & 1) which 

consist of fourteen ones and two zeros. 

3) Error Check Field: The error check field occupies the last byte of 

every message and in a message of length 'n' is the modulo 256 sum of 

bytes 2 to n inclusive. 

4) Use Message Number (UMN) 

Transmit Message Number (TMN) 

Not Acknowledge (NAK) 

These fields are used in the error recovery 

scheme. The UMN is issued by the highway controller as part of any 

message transmitted by it. The TMN and NAK fields are issued by the 

terminal units. 

5) Type Field (MTB): The type field is set by a transmitting unit, and 

allows selection by the receiving unit of the types of messages to be 

received. Messages. with an unwanted type are discarded by the 

receiving unit. 

6) Source Field (SRC): This field is set by the transmitting unit to 

the units highway number (in the range 0-63). 

7) Destination Field (DST): This is. set by the transmitting unit in a 

point to point transmission and causes the message to be discarded by 

all units apart from the one whose highwa)' number matches the DST 

field. 

2-4 



8) Length Field : This field corresponds to the number of sixteen bit 

words in ·the message between byte 4 and the Er.ror Check Field 

(exclusive). 

9) End of Message (EOM), End of Invalid Message (EOIM) : These fields 

occur after the Error Check Field. The EOM is used after an otherwise 

valid message, whilst the EOIM is used after a message during the 

transmission of which some error occurred (such as buffer overrun/ 

underrun). 

2.3:4 The Error Recovery System 

Error recovery is performed by a system of error detection and 

retransmission of messages. All data messages are assigned a 'message 

number'. This number is assigned by the highway controller when it 

polls the terminals, and is held in the UMN field of the poll message. 

When the terminal responds to a poll from the controller with a data 

message, it inserts this number into the TMN field of the message. As 

terminals receive messages, they maintain a count of the highest TMN 

received in contiguous sequence. Any break in the sequence indicates 

the loss of a message. In this case, when the terminal responds to a 

controller poll, it responds with a 'nothing to transmit'. The 

controller will then be able to determine that the TMN sent by the 

terminal (contained within the NAK field) does not match its UMN, ·and 

the terminal therefore needs to have some messages repeated to it. The 

controller maintains a buffer of the 256 most recent messages it has 

received and is able to retransmit the message to the terminal from 

this store. The terminal should then respond with the correct TMN. A 

terminal unit which cannot be correctly updated will have the 'NAK 



stuck' status flag set (section 2.9:2). Should the controller receive 

a message in error, it will repoll the terminal up to four times 

before it is locked . out of the polling sequence with the 'NR' status 

bit set (section 2.9:2). 

2-6 



2.4 Front-End Processors 

The block diagram of this circuit may be seen in Figure 2.4a. The 

processor is based on two four bit wide microprocessors (AMD290ls) 

[12,13]. These are very high speed bipolar microprocessors, of a type 

known as 'bit-slice'. They are designed in such a manner that they may 

be cascaded together in parallel to obtain the desired word length. In 

this system, the use of two of these parts gives a word length of 

eight bits. The block diagram of an AM2901 is shown in Figure 2.4b. It 

consists of a two port RAM, a high-speed ALU and associated shifting, 

decoding and multiplexing circuitry. It is controlled by means of an 

externally generated instruction word, which is nine bits wide. Three 

of these bits select the ALU source operands, three the desired ALU 

function and the remaining three the destination register. 

This instruction field of nine bits is obtained from a 

microcode store, the full size of which is 512 words by 32 bits. The 

fields in a single microcode word are shown in Figure 2.4c. Additional 

fields are used to select external registers which may be either read 

(Field A) or write (Field B) registers, and to supply a constant input 

to the 290ls when selected (literal Field). The microcode store is 

addressed by a simple program counter which itself may be selected as 

an external write register by the 290ls, allowing unconditional 

branching. Conditional instruction skipping is implemented by using 

four of the microcode bits which select the desired 'skip flag', the 

state of which determines the subsequent state of the least 

significant microcode address bit. 

There is also a FIFO buffer on the processor card. This is seen as 

an external register pair by the 290ls, a write only and a read only 

2-7 



2901 Board · 

_:!I :..:J.. 

1Program Counter l 
.I J 

L _j Skip I Microcode Program Store Logic 
_l l. J_J_ .! l .1_ J. .! ~~ 1.-

~ 
Carry H 2901 2901 TO FROM SKIP 

Control Decoder Decode1 Decoder .. 

J ~--- to- ... ..... ,.... IJ. 
l 

' .. L..-

\. 

• CLOCK 1-i ' -l r.t 
MN WrCONTROL 

. -
I'~ - . 

' FIFO 
Store Dr coder- -~ 

.. . -

Phasr Locked Shift 

~ 
Decoder ,.... 

Loop Register PROM 
-1 ] . 

--. - ------ --- ----.---------- ~- -
Transceiver I DMA l. .A. -- ~ 

Select I Address nata 
I 
I • I""""" -~ .. - --
I 

Select I Control 
I 

\~~ ~JJ/ 
I 
I 

I .. """' -~- • .. -... ----- -- - --I 
I Host Computer 

-Trans. Trans. .J • • . - I 

./ / I - I ,. 
~ 

.J 
~ ~ Cables I ,. ,. 

Figure 2.4a ASH Communications Processor 



li 

.: 

I - j jj 
.. , 

j 
• r 

~ 
--1 ~ .. o ~ nn I ~i, I r 

i" "' i 1 
>-

~- 1--.r. 
I !i ,7 !;I--!; 

•' 

u :~1--:~ 
.! 1--.: 

rl .._ 
• 

>- fi ! !' ~i 
f---c I , 

~· ! 

-· 

J 

t-- .- •i i ·->-
,. 

i ~ ;,i .. 
,..._ ..... 

-· !i .---- I ~ f-Ir 
1-- .: .--- ~ ; ~ f- .. ; ,. ,.......- ~ i ~ !-:1 3 

,_ .. ~ f- .. - "..F ~ 1-- .! ~i '-r-

TITI 

-· 

-· 

~ 

-- ~i r .! ;;! 
~'-

""' 
1 ~ 

I ~i !},; .: 

r- '" !i 
I j 

-· ,__ 
.: , . .. 

~~ .r 
,_ 
··;-

HH Q 

I I 

!' !' !i 

m~ 
I 
~ 

~ 3 !i 

! ! ! 
" . 3 !ij-

~ 
f--. 
1----

,--'---

'--
i 

-~. 1--i!< l-t 

Figure 2.4b. 

Block Diagram of 2901 



H6 G6 

2001 Microcode Format 

I 
I 

PROMs 

F6 : 06 
J 
I 

E6 
I 
• 
} K6. 

I 

• 
L6 : M6 

Fitld 
Instruction 

Fitld 
Ext n I Skip 
Field Field ,, 

I I : . I . 

~-vo-7 :eA0-3~:·eo-a--r~ 
I I I I 
I I : I 

I . I · 
(, I I I 

I 0.!8 •'K0-2 .. :.5 0-3 .... J 1 I 
• I I 
I I 

• I I 

Figure 2.4e 



register. The FIFO status flags are connected as skip flags to the 

skip logic. Also present on the processor card is a control signal 

decoder, accessed as an external write only register, which is used to 

supply control signals to various parts of the system. 

The input to the FIFO buffer from the transceiver card is 

decoded from a bifrequency signal to a serial TTL compatible bit 

stream with the use of a decoding PROM. Initial synchronisation 

between the decoder and the received signal is achieved with a 

tracking phase locked loop. The output from the FIFO to the 

transciever is a bit stream which is encoded to a bifrequency signal 

on the transceiver board. 

Also included in the encoding/ decoding/ buffering section of the 

processor board is a hardware interlock which restricts the maximum 

length of continous transmission to approximately 220us. 

2.5 Transceiver 

The transciever board contains two sets of transmitters and 

receivers to support a dual redundant highway system. It can be 

expanded to a triple redundant system by adding a third transciever on 

the board. Outgoing messages are transmitted on all cables, but 

. messages are received on only one cable at a time. The cable to be 

used is selected from the processor board by the use of control 

signals and external registers. 

The receiver is of the zero crossing detection .type, and was 

designed to be tolerant of the type of signal degredation previously 

mentioned (Section 2.2). The transmitter encodes the serial bit stream 

from the FIFO buffers on the processor board into bifrequency code. It 

2-8 



should be noted that one of the control signals (CS) is used in order 

to send an EOM since this is a coding violation and would therefore be 

unobtainable by merely sending data to the FIFOs, as would happen 

during a normal transmission. 

2.6 Host Interface 

This board allows the 2901 processor card to read and write to the 

host computers memory. A write transfer is initiated by the 2901 

writing two bytes of data, the most significant byte and then the 

least significant byte, onto latches on the interface board. These 

latches appear as external write only registers to the 290ls. A read 

transfer is initiated by the selection of a control flag (C1) by the 

2901 board. In each case, the address has been previously set up by 

the 2901 board. The address is written into counters on the interface 

board (which auto-increment after each transfer). The successful 

conclusion of a transfer can be detected by the 2901 board by 

monitoring the relevant 'skip' flags (53 & 55). 

Additional control over the highway sub-system by the host 

processor is obtained either by writing to a memory-mapped control 

register on the interface board, or by using bus control lines 

(depending upon the method most suited to the host computer's 

architecture). The host computer controls the FEP with the aid of a 

set of latches in the interface. The first latch either enables or 

disables the FEPs ability to interrupt the host computer when it 

strobes its 't6' line. The second latch sets the start/stop skip flag 

to the FEP (54). The third control from the host performs a direct 

reset of the FEP by pulsing its 'RESET' line. 

2-9 



2. 7 Microcode Cross Assembler and ASH Simulator 

In order to program the front-end processors, a custom cross­

assembler was written [14]. This allowed the microcode instructions to 

be written in terms of user selectable register names (allowing 

greater program readability) and register operations. The output of 

this cross-assembler was a file of microcode suitable for programming 

the microcode store (in PROM). Samples of this microcode may be seen 

in Figure 2. 7a. 

Also, in order to test the correct operation of the 

microcode without resorting to repeated programming of PROMs, an ASH 

simulator was written [15]. This took as its input the file of 

assembled microcode previously mentioned, and by use of a 

comprehensive set of moni taring instructions, either a single or 

multi-step simulation of the entire ASH could be achieved. Whilst this 

did not allow any measure of the real time performance of the system, 

it did allow substantial debugging of the microcode at a lower level. 

2.8 ASH Terminal Unit 

2.8:1 Software T abies 

Communication between the host computer and the front-end 

processor is maintained via a set of software tables. A PROM is 

included as a set of read only registers on the 2901 board pre­

programmed with a set of system constants. In the case of the terminal 

units, only two constants are used, the terminals' Highway Number (in 

the range 1-63) and the address of the start of the primary table in 

the area of shared memory. The host computer must be pre-programmed 

with the address of this table. The format of the primary table may be 

2-10 



.~o;;, 1101 

366 1?0 
36? Jl?l 
368 liBO 
369 IIPl 
:~ ·o fi~O 

371 fl91 
~.:2 ftAO 

173 I<A1 

3:'4 F<I<O 
375 fll!1 
~76 £<CCI :.5..,.., fiCI 
37P f<I•O 
~70 f:ft1 

:~eo I< EO 
3E' I F<F.I 

~92 I<FO 
3133 f4fl 
.~fl41 c=·o 
385 COl 
396 ClO 
387 Cll 
JPB C20 
~no C21 

390 CJO 
391 C31 
392 C40 
393 C411 
394 C50 
395 C51 
3~6 C60 
397 C61 

398 
399 
400 
401 
ol\02 
403 

404 
-405 
106 
407 
4108 

409 
410 
4 I 1 
ill:' 
'ID 

414 

C?O 
C71 
ceo 
C81 
C90 
C91 

CAO 
CAl 
Cf40 
Cfll 
ceo 

CCI 
C[tO 
Cf•1 
CEO 
CE-1 

CFO 

;t;JOC337ll0 

0909037010 
JIA00137010 
OAC•c;'03:'0 10 
I<A0013?010 
070903i011 
0909037010 
0061<107030 
OC'CIF137010 

1<1<00137015 
OC'C"' I OJ 0:'110 
00~1<~07130 

ooJoov7100 
OOE<CJ040:!0 
000£<101030 

(1[00137013 
OOC0104C30 

00320:!2130 
20C·000'5130 
OOOC•01113F 
(('00137010 
C~OC337110 

0410014611F 
1<800137011 
11900137011 

200014611F 
OA00137011 
010014611F 
2100137011 
0100336110 
0029314130 
00[7307130 
2100137011 

C500037110 
OOOF137010 
003F304130 
00(13337110 
CAOC337110 
AF00137010 

OOF3304130 
osor•:.>:371t o 
0400037110 
OOEE330110 
A800137011 

Of409137010 
000[137010 
00(1f!l37010 
fF<00037110 
ON r :t 4 o 11 o 

CF00137013 

415 crt oooooo11or 
416 DOO CF00137011 
41~ ~01 FF00137010 

null r: 

••ss•: 
rPt8111! 
cntr1: 

cr.t r~: 

cr,tr3: 

waitl: 

wait::!! 

wlri t3: 

seo1: 

tiltt,:l: 

til>b:4: 

~o•n•[t~U• 

••lsa•tOB 1 r•c•iv• •rror 
branch crot r 1 
oolsa•tOa 1 null r•P•at 
branch cntr1 
oolsa•t07 • skiP I data ••ssa•• 
aolsa=t09 I reP•at 
•sa.,start+O 
cor.trl•tOO 

••v•r• 
branch cntr2 • sdnr 
lsa .. O+o 
t•.,P'5=•sdo+O 
o•lsdo+0+1 
I>Sr:li=-0+ten.F-5•CF­
lsdi=O+a 

tpvpr, 
~ranch cntr3osdnac 
tO=O+F-osn 

I 
I wait 

1:•··································· /this allow~ ti•e after • r•F-eat for the t•r.,inal tablPs to be 
/handled and for necesserv •essa•• nueber uPdates 
I 

o=u•n-nackn-1 I nu•~er of UPdet•s 
o•t:!O+.t 
o•O_o-1 • s::ero 
branch wait::! 
Posno:[sen1 
O=t04 a~d flas1 • s%ero I no skiP if null rPt 
brarrch null r 
branch rPtes 

I 
I 
lr•P•at sv~uence <s•o> 
1 ••••••••••••••••••••••••• 
I 
I 
I •ntered after a r•Peat fro• wait via cntr 
I rePeet s&·aue~c• eust not b• •r•ter•d aft•r no I"IPSF-Ortse. 
I the value of •tri•s• should allow ti•• for software to clear a 
I buff•r if thats whv nak is stuck. if the nil> store i~ 
I brol<.er. the ~u111~er of tries will b• used uP ar.d the ter•irral 

I will be locked out. 
I 
*•v•n 

O=t20 and flas1 • s::ero I no skiP if no r•s,..onse 
branch Ptabl 
O=t01 and flasl • szero I no skiP if in seo 
branch tr·tt.l 
flasl=t01 ior fl~sl I set in seo 
onai<.=O_r.acl<.~-1 

rPt=tries+O 
branch tPtt.l 

I 
I 
/ti•tx •essase outPut <tietx> , ..•............•.............. 
I 
/this is entered fro• tF-tt when the ti•tx avail~ble bit is s•t· 
I 

o"'tc'5 I ler.sth 
contrl=tOO 
te~~rF-9=0+u~~rn I retain uer. 
uaor.=tOO 
posn=[ti.,tx2 
brar.ch start 
teve~ 

u•r.=O+te•F-9 I reset u•r. 
word= tO'S 
o=t0-4 
fle113=flas3 ior ~ 
brerrC'h chff3 

I 
/after ti~~re is outF-ut 
I 

lsa=tOb 
esdi=tOO 
lsdi=tOO 
~=teb 
flas3=flas3 and ~ I clear ti•e outPut flas 

tever, 
branch ti~~rtx4 • sdnac 

I dela~ to allow ter~~rir.al to handle tiee es8 
o=O+o+l • szero 
~ra~C'h ti~~rtx4 

branch Patch' 

Figure 2.7a 

Samples of 2901 Microcode 



Address 
I 

In Interrupt Mask . No. of In B~ffers 0 

Input Position 1 

Input -Table Location 2 

Out Interrupt Mask No. of Out Buffers 3 . 
Output Position ' Output Table location 5 

Message Type Table ~ • . 37 . 

Highway ~umber 38 

Receive Error Counter 39 

Data Starvation Counter 40 

Retransmission -counter ,, 
~------------------------------~ 

Buffer Overflow Counter '2 
~----------~------------------~ 
~n Data Available In Transfer Fail In Res. lcAJ!h 13 

In Block Source 

In Sub-Block Total In Sub-Blo.cks Recvd. 45 

-In Block . Star.t .·Address · -- . 
: ; . 46 

. . ' 

Out Data Available Out Block Error Out Res. L£ngth 47 

· Out Block Destination 48 

Put Sub-Block Total · Out Sub.aocks Tx 'd '9 

Out Block Start Address 50 

Figure 2.8:1a Terminal Primary Td>lt 



seen in Figure 2.8:1a. As can be seen, the locations and 

characteristics of all the other tables and terminal unit functions 

are held in the primary table. They are as follows:-

1) In Interrupt Mask: This mask is set by the host and is used by the 

front-end processor to determine whether to interrupt the host at 

input buffer wrap-around. 

2) Number of In Buffers: This field is preset by the host (in the 

range 1-64) and sets the number of buffers in the input queue. 

3) Input -Position: This field is used by the front-end processor to 

indicate the location of the next free Input Buffer. It must not be 

altered by the host during normal operation. 

4) Input Table Location: This field is preset to the word address of 

the start of the first Input Buffer by the host computer. 

5) Out Interrupt Mask: This field is set by the host and is used by 

the FEP to determine whether to interrupt the host on output buffer 

wrap-around. 

6) Number of Out Buffers: This field is preset by the host (in range 

1-64) 

7) Output Position: This field is maintained by the FEP and contains 

the index number of the next free output buffer. It must not be 

altered by the host. 

2-11 



8) Output Table Location: This is preset by the host to point to the 

start of the first output buffer. 

9) Message Type Table: This field is set by the host to indicate to 

the FEP which message types it wishes to accept and which to reject. 

The field is 512 bits long (64 bytes), each bit corresponding to a 

particular message type. 

10) Highway Number: This field is set by the FEP and corresponds to 

the highway number contained in its PROM. 

11) Receive Error Counter: This field is maintained by the FEP and 

corresponds to the number of errors detected in incoming messages. 

12) Data Starvation Counter: This field is maintained by the FEP and 

is incremented every time the FEP is unable to obtain data from/ 

transfer data to its host sufficiently rapidly to maintain 

input/output of a message. 

13) Retransmission Counter: This field is maintained by the FEP and is 

incremented every time the highway controller requests a message 

repeat. 

14) Buffer Overflow Counter: This field is maintained by the FEP and 

is incremented by one every time an overflow of input buffers occurs. 

2-12 



Fields Relating to Block Transfer 

15) In/Out Block Start Address: Preset by the host. 

16) In/Out Sub-Block Total: Preset by the host to the number of 32-

word sub-blocks expected to be transferred. 

17) In/Out Residue Length: Preset by the host to indicate the expected 

number of words in the block residue message. 

18) In Block Source: Preset by the host to indicate the terminal node 

from which the transfer is expected. 

19) Out Block Destination: Preset by the host to indicate the 

destination of the· block transfer. 

20) In Sub Blocks Received: Set by the FEP to the number of Sub Blocks 

actually received. 

21) In Transfer Fail: Set by the FEP to 127 if the transfer fails for 

any reason. 

22) In Data Available: This field is set to zero by the host when it 

has preset all of the other fields relating to the block transfer to 

indicate that the transfer may go ahead. It may not subsequently be 

updated by the host until it has been set to one by the FEP to 

indicate that the transfer has been completed~ 

2-13 



23) Out Sub Blocks Transmitted: This field is maintained by the FEP to 

indicate the number of sub blocks actually transmitted. 

24) Out Block Error: This field is set to 127 by the FEP if the Out 

Residue Length is greater than 32 (i.e. an error has occurred). 

25) Out Block Available: This field is set to one by the host when it 

has preset all of the other relevant fields. It may not susbsequently 

by altered by the host until it has been set to zero by the FEP to 

indicate the conclusion of the transfer. 

In and Out Table 

These two tables have a similar structure which can be seen in 

Figure 2.8:1b. The 'Source' field has the same use and meaning as byte 

5 (SRC) of an information message. The 'Destination' field has the 

same meaning as byte 6 of an information message. The 'Message Type' 

field is equivalent to the MTB (byte 7) together with the MTB 

extension bit (byte 8 bit 0) of a broadcast message. 'Buffer Length' 

when non-zero, indicates that the buffer contains valid information. 

When the information is either sent by the FEP (output buffer) or 

processed by the host (input buffer) this field should be set to zero 

to indicate that the buffer is free. The data area takes up the 

remainder of the buffer as determined from the Buffer Length field. 

2-14 



I I ... 
I I 
I -~ !.--. - • I 

: I 
1~ I 

r 

Input Table location 
.. 

In Buffer Length 

In Source In Destination 

Add ress 

' 0 

In Mtssage TVPt ~n Source Process No. 

1 

2 

3 
In Buffer Data .space 

In Table Format 

Out Table location 

Out Buffer Length 

Out .Destination 

Out Sourc.e Process Number 

Out Buffer Data Space 

Out Table. Format 

Figure 2.8:1 b 

1 

Acttress 

' 0 

1 

2 
3 

I 



2.8:2 t-blt Control· of ASH Terminal Unit 

There are three additional controls from the host computer to 

the host processor not included in the tables. They are provided by 

using some form of programmed output instruction. These are reset, 

start/ stop and interrupt enable/disable. To perform an orderly starup 

of the ASH terminal !Jnit, the host must first reset the unit. The ASH 

will now be awaiting commands.· Next the host must tell the ASH to 

'stop'. The host computer should then set up the primary and secondary 

tables, and then start the ASH unit. Subsequently all communication is 

vi a the software tables. To send a message, the host computer must 

determine the location of the next free output buffer. It then sets up 

all of the fields in this buffer, with the buffer length field being 

set up last, as this is the indication to the FEP that the buffer is 

complete and ready to be sent. When it has been sent the FEP will 

clear the buffer length field. 

Message reception is transparent to the host computer, all it 

must do is to check the input buffers for a buffer with a non-zero 

buffer length field, indicating that a valid message has been 

received. It must then clear the message length field (after having 

copied the message elsewhere) to indicate that the buffer is again 

available. 

Block message transmission is more complex, and requires a 

higher level of intervention by the host computers. The Block Receive 

fields in the destination unit must also be correctly set up before 

the transfer can go ahead. Therefore information about the impending 

block transfer must be exchanged between the transmitting and 

receiving units before the transfer can go ahead. This exchange is 

user dependant, the only constraints being that the number of Sub 

Blocks and Block Residue Fields set up in the tables of both the 

transmitting and the receiving units are identical. 

2-15 



2.9 Highway Controller Unit 

2.9:1 Software T abies 

In the highway controller communication between the front-end 

processor and its host is via a set of software tables [16]. The 

address of the 'primary table' is known to both, it being pre­

programmed into the FEPs on-board PROM. In addition, there are four 

secondary tables, whose addresses must be set up by the host computer. 

These tables are as follows:-

1) Polling Table. This table, of length 64 bytes, is the list of 

terminals which the highway controller is to poll. The 'Pointer to the 

Polling Table' (primary table address two) may only be altered by the 

host when the FEP is hal ted. 

2) Buffer Store. The pointer to this table is held in primary table 

address three, and is set up by the host computer prior to activation 

of the FEP. Any subsequent alteration will be ignored by the FEP. The 

'Buffer Store' consists of 256 contiguous buffers each of length 34 

words. It is used as a circular buffer which contains the last 256 

transmitted information messages. 

3) Size Store. The pointer to this table is held in primary table 

address four. Again, it is set up by the host computer prior to 

initial activation of the FEP and any subsequent alteration will be 

ignored. The store consists of 256 words, and is used by the FEP as a 

record of the length of· the messages held in the buffer store. 

4) Status Table. The pointer to this table is held in primar)' table 

2-16 



address five, and is set up by the host computer prior to activation 

of the FEP. Any subsequent alteration will be ignored. The status 

table is maintained by the FEP as a record of the status of each 

terminal which is being polled. The table is 64 words in length. 

The format of the primary table can be seen in Figure 2.9:1a. 

In addition to the four pointers detailed above, there are several 

other fields in the primary table, whose function is as follows:-

1) Controller Terminal Unit Status Word (CTUSW). Primary table address 

zero. This field contains bits which are set to indicate the current 

. status of the highway controller. 

a) Bit zero is set to one when the FEP has been stopped by a channel 

control command (Section 2.9:2), and is cleared to zero when the 

controller is restarted. 

b) Bit one is set to one when the controller is active and to zero 

when it is passive (Section 2.10). 

c) Bit two is set to one when the controller has overridden a 'Go 

Passive' command (Section 2.9:2), and cleared within 20 milliseconds 

of the 'Go Passive' command being cleared, or when the unit does go 

passive. 

d) Bit three is set to one if the controller is active and detects 

contention for control of the highway (Section 2.10). It is cleared 

when the controller next assumes active status. 

2-17 



.. 

Controller Terminal Unit 

Controller Terminal Unit 

Pointer to Polling -Tabte 

Pointer to · Buffer Store 

Pointer to Size Store 

Pointer to Status Table 

Self 
.. 

!list ·;'Scratchpad 

Receive Error Counter 

· Repeat Counter 

Null Repeat Counter 

Out Time Available 

Out T1me 

.. 

In Time Available 

In Time 
I 

Status Word 

Control Word 

. 

• 
1 

2 

3 

4 

5 

& 

7 

I 
I 

10 

11 

12 

~ ,& 

17 

18 

22 

Figure 2.9:1a Controller Primary Table 



e) Bits eight to fifteen inclusive are set if the FEP detects a 

failure of the interface to the host computer. 

2) Controller Terminal Unit Control Word (CTUCW). Primary table 

address one. This field is used by the host computer to control the 

activities of the FEP, in addition to the channel control commands 

normally used (Section 2.9). 

a) When bit zero is set to one an active controller will assume the 

passive state (A Go Passive command). 

b) Bits two and three are used by the host to select the highway 

cables on which the controller transmits. If the field is set to 

zero the controller will transmit on all cables. If the field is set 

to one, two or three, the controller shall transmit on only the 

selected cable.(n.b in the current implementation, only cables one 

and two are fitted, selection of cable three causes the controller 

to cease transmission on either cable). 

3) Monitoring Counters. These are contained in primary table addresses 

eight to ten. 

a) Receive Error Counter. Primary table address eight. This counter 

is incremented when an error is detected in a received message • 

. b)Repeat Counter. Primary table address nine. This field is 

incremented when the controller sends a repeat message. 

c)Null Repeat Counter. Primary table address ten. This field is 

incremented . when the controller sends a Null Repeat Message. 

2-18 



4) Time Fields. These fields are held in primary table addresses 

eleven to twenty-two. The time fields are sent by the currently active 

control.ler, and provide the complete time including year, month, day, 

hour, minute, second, tenths of seconds and one hundredths of seconds 

fields. The 'In Time' fields are used when the controller is passive 

to store any time message received from the active highway controller, 

while the 'Out Time' fields are used by the host processor to send a 

time message onto the highway when the controller is active. 

a)Out Time Available. Bit fifteen, primary table address eleven. 

This field is set to one by the host computer of an active 

controller to indicate that the contents of the Out Time Fields are 

ready to be transmitted. It is cleared to zero by the FEP after the 

time message has been sent. 

b)Out Time. Primary table addresses eleven to sixteen. This field is 

set by the host computer, the format ·of the complete field is shown 

in Figure 2.9:lb. 

c)In Time Available.Bit fifteen, primary table address seventeen. 

This field is set by a passive controller after it has received a 

time message, and has updated the 'In Time' fields. The host may 

clear 'In Time Available' if it wishes to receive another 'In Time'. 

d) In Time. Primary table address eighteen to twenty-two. The format 

of this field is also shown in Figure 2.9:lb. 

2-19 



Time Available Time Interrupt Mask 

Minutes Seconds !Tenths 

Months Days Hours 

Synch. 1/10oths Years 

Synch. 1/K)ths 

15 11 9 
5 ' 

0 

Format cl In/Out . Tme Firlds 

Figure 2.9:1b 



2.9:2 1-tost Control of Highway ControUer Unit 

The host computer has control of the controller unit (and 

therefore the operation of the highway) at three distinct levels. 

Firstly, it may use the channel control system to start, stop and 

reset the controller. Secondly, it may use the CTUCW to issue a 'Go 

Passive' command, or to change the cable used. Lastly, it may alter 

the tables, but this last control method must be used with caution, as 

an incorrect alteration can bring the controller, and possibly the 

entire highway, to a standstill. 

The first type of control is used when the FEP is originally 

switched on. The hardware of the interface card assures that the FEP 

will be in its halted state immediately after the power is switched 

on. The tables must be set up by the host computer, and then the FEP 

may be started using the channel ~antral system. The second control 

method may be used by the host at any time, and affects the operation 

of the highway as a whole. The last method of control may be used to 

add terminals to the polling table, or take them out of the polling 

table or reset terminals which have been locked out of the polling 

sequence. This lockout occurs under conditions detailed in section 

2.3:3. The status of each terminal may be determined from the relevant 

status table entry. Each status table entry has several fields (Figure 

2.9:2a) they are as follows:-

a) Information Message Monitor. Bits 0 to 7. This field is 

incremented by one for every information message sent by the 

terminal, and decremented by sixteen for each NTT message sent. 

b) Error Monitor. Bits 8 to 13. This field is incremented by sixteen 

for each message received which included an error and decremented by 

2-20 



0 

Information 
Message Monitor 

7 8 

Ertor 
Monitor 

13 14 15 

Not Acknowledge Stuck 

Terminal Not Responding. 

Controller Status Table Entry 

Figure 2.9:2a 



one for each error free message received. 

c) Not Acknowledge Stuck. Bit 14. This bit is set if after four 

attempts a terminal still does not acknowledge receipt of the 

repeated message. 

d) Terminal Not Responding. Bit 15. This bit is set if after four 

attempts, a reponse cannot be obtained. 

If either bits fourteen or fifteen of the status word for a 

particular terminal are set, the FEP will stop polling the terminal 

unit. In this circumstance the terminal unit in question is said to be 

'locked-out'. If a terminal has been locked out of the polling 

sequence, or is to be started up initiaiJy, it wilJ be out of 

synchronisation with the rest of the highway. In order to reset a 

terminal in these circumstances, the controller must send it a reset 

message, and then recommence normal polling. The decision to send a 

reset message must be made by the host computer, based on either the 

status of a terminal as determined from the status table -(i.e. locked 

out, NAK stuck or _running) or by external operator intervention (i.e. 

adding terminals to the polling table). In order to send a reset 

message, bit fifteen of the relevant polling table entry must be set, 

and then cleared to return the polling sequence to normal. This 

obviously involves changes to the polling table. Changes may not be 

made to a polling table which is currently being used by the FEP, so 

they must be made as follows:-

2-21 



1) Set up a new polling table at a different address to the current 

one, with the necessary alterations (additional terminals, reset bits 

set, etc.). 

2) Set the channel control to 'Stop'. 

3) Wait for the CTUSW stop bit to be set, indicating that the 

controller has finished a pass of the current polling table. 

4) Change the polling table pointer (primary table address two) to 

point to the new polling table. 

5) Set the channel control to 'Go'. 

In o_rder to satisfy the timing restrictions concerned with the 

takeover of an inactive highway by a previously passive controller 

(Section 2.10:2) the time between the controller setting the CTUSW 

stop bit, and the host setting the channel control to 'go' must be no 

more than fifty· microseconds. 

Thus to reset a terminal, this procedure must be performed twice, 

once to cause the controller to issue the reset message, and again to 

return polling to normal. 

2-22 



2.10 ASH Configuration 

2.10:1. SirYJie Controller/ Twin Highway Cables 

The configuration shown in Figure 2.10:1a can include up to 

sixty-four terminals and one highway controller. These units are 

connected to a pair of twin screened cables which may each be up to 

three hundred metres in length. The pair of cables provide dual 

redundancy of the cabling where all units (apart from the controller, 

see Section 2.9:1) transmit on both cables and receive on one. The 

cable which is used for reception is decided by the FEP in each unit, 

on the basis of the cable with the highest number of error free 

messages received. The ASH was designed in an attempt to maximise the 

reliability of a network system and to minimise the possibility of 

overall system failure due to the failure of a single unit. Thus this 

particular configuration is not a good design since the failure of the 

highway controller can cause total system failure. The reliability of 

the system. may be significantly increased by the inclusion of multiple 

controllers. In principle the scheme used for twin cable redundancy 

can easily be extended to include a greater number of redundant 

cables. 

2.10:2 Twin Cmtroller/ Twin Highway Cables 

The configuration shown in Figure 2.10:2a is the one normally 

used at A.S. W.E. It is similar to that detailed in section 2.10:1, 

however there may only be up to sixty-three terminals and there are 

two controllers. In normal highway operation there will be one active 

·and one passive controller. An active controller is one which is 

2-23 



T 

-
--

T 

-

T 

c 

T 

T Term ina t Unit 

C Controttrr 

Single Controller -Multiple Cablr 

Figure .2.10:1a 



T 

-
.-

c 

---

..,_ 

T 

T 

c 

-

-

C Controller 
T Terminal 

T 

Fgure 2l0:2a Twin Controller- Twin Cable 



running as normal, while a passive controller is one which is running 

but is merely performing checks on the operation of the highway so 

that it is able to take over control should it become necessary. 

The two controllers operate in what may be likened to a Carrier 

Sense system. If the passive controller detects a lack of any activity 

on either highway for 3 milliseconds it attempts to take over control 

of the highway. If an active controller detects any activity on the 

highway within the five milliseconds before the start of transmission 

it ~ill assume a passive status. The active controller polls the 

passive one (Highway Number zero) and the passive terminal responds 

with an NTT message. The active highway controller cannot lock the 

passive one out of the polling sequence for any reason. If at any time 

an active controller detects contention for the highwa>' (as a result 

of inspecting the highway immediately prior to outputting a message) 

it will change cables and wait for approximately ten to fifteen 

microseconds. If this second highway is still active, the controller 

will record a contention by setting the CTUSW contention bit (Bit 3) 

and assume a passive state. When a previously passive controller 

assumes control of the highway system, it must first reset all of the 

terminal units. It does this because it is almost impossible to 

maintain a complete duplicate of the status and message information 

held within the previously active contoller, and without this 

information it is impossible to restart the polling and error recovery 

system where the other left off. Using this method, the only major 

loss is of the message backup store which implies that should one of 

the terminals have 'lost' a message and have been awaiting a 

retransmission, this message will be permananently lost. 

2-24 



2.10:3 Cable Configuration 

Due to the inherent problems of obtaining a reliable 'T' 

connection to a screened twisted pair, the actual conifuration of the 

ASH is as detailed in Figure 2.10:3a. The highway cabling is split at 

each terminal unit, or highway controller, and the 'T' connection is 

formed internally. 

In addition to the 'T' configurations previously described, the 

specifications include details for a 'Spur Connection' which is as yet 

not implemented. This will consist of an active repeater which will 

act as a gateway between two serial highways, each up to 300 metres in 

length. This configuration is illustrated in Figure 2.10:3b. 

2.11 Conclusion 

The ASH has been designed with two principle aims, firstly that 

the system should be as reliable as possible and secondly that the 

host processor should have as little processing to do as possible in 

order to send messages on the highway. These have been satisfied by 

the provision of multiply redundant system elements such as cables and 

controllers, and by the choice of a memory table driven FEP/ host 

·software interface. In addition, by careful choice of FEP hardware 

interface design it was possible to allow the· units to be interfaced 

to a wide variety of computers with a minimum of hardware changes. 

2-25 



Figure 2.10:3a Actual ASH Configuration 

T 
~ 

- ..._ 
c 

T -
T c 

~ s 
1 

~~ T 
·r T ..___ 

\ 
T Terminal Unit 
C Control~ 
t Terminator Unit . . 
S Spur Transctaver Un1t 

Figure 2.10:3b Spur ASH Configuration 



3.1 Introduction 

Dlapter 3 

Computer Systems 

In the course of this ~esearch it was necessary to use a selection 

of different computer systems. Initially, a DEC PDPll/34 minicomputer 

was used to implement some high level support software. The machine 

was a Durham Computer Department general purpose machine, and operated 

with the UNIX operating system, which was written by Bell Laboratories 

in the U.S.A. It was necessary to implement certain programs on this 

machine which had previously been in use on a Ferranti Argus 700S 

minicomputer at A.S.W.E. In order to install this software it was 

necessary to first implement a Coral compiler on the DEC machine, 

si nee the great majority of Military software is written in Coral, and 

these packages were no exception. 

In the course of writing software support for the Motorola 

MC68000 microprocessor, which was the principle microprocessor used in 

this project, a cross-assembler was produced on a Data General NOVA-3 

which operated under RDOS. This machine was chosen for the task, in 

preference to the DEC, because it was more readily accessible and was 

used less. Also used in the development of the MC68000 software was a 

Motorola MC6809 development system using the SSB (Smoke Signal 

Broadcasting) DOS69 operating system. This was used to a greater 

extent as the project progressed as all of the software written in 

SIXTH for the MC68000s (Chapter 4) was written and edited on this 

system. 

1-1 



3.2 The DEC PDPll/34 and UNIX 

Durham University Computing Department owns a DEC PDPll/34 which 

it maintains as a general service machine. It comprises a fully 

expanded system with 256kbytes of memory, two 5Mbyte front loading 

disk units (RK05), a single lOMbyte top-loader, a dual eight inch 

floppy disk unit, a lineprinter, and approximately ten VDUs. It runs 

under UNIX version six [17], which was until recently the newest of 

Bell Laboratories UNIX operating systems (version seven is now 

available). UNIX is a user friendly operating system which has been 

long favoured in universities and has recently been more widely 

accepted. It offers programmers very easy software accessibility to 

system devices and files, and since most of the system software is 

written in a high level language known as :c', it is considerably 

easier to understand than most other operating systems (which are 

normally written in assembler) making it ideal for teaching. It was 

decided that this machine should be used, firstly due to the ease of 

access, and secondly due to the ease of programming for file and 

device input/ output, since it was known from an early stage that it 

would be necessary to write such software. 

3.2:1 The Implementation of BCPL and CORAL 

As has been explained, due to the fact that the majority of 

Military software is written in Coral, it was necessary to install a 

Coral compiler at Durham. It was not possible to obtain a Coral 

compiler to run under the Unix operating system, so a more indirect 

method had to be followed. 

3-2 



A version of Coral [18,19], written in BCPL, and a BCPL compiler, 

were available. The BCPL compiler and the Coral compiler were designed 

to run under RTll (DECs. standard single user operating system for the 

PCPll series), but a careful comparison of UNIX and RTll showed that 

the main differences between them lay in the input/ output (1/0) 

system and in the assembler language used. However, UNIX already had 

an RTll MACRO assembler [20] installed (MACRO is the standard RTll 

assembler language) so it was only necessary to alter the I/0 routines· 

in order to transport the BCPL compiler to UNIX. This was because an 

assembler version of the BCPL compiler had been obtained, comprising 

the sections detailed in Figure 3.2:1a. The only operating system 

dependant section was the 1/0 section which was the compiler to 

·operating system interface. It handled file and device I/0 and memory 

allocation, and was identical to the one used in the Coral compiler. 

This assembler version of the BCPL compiler was a simple version, with 

just enough complexity to allow compilation of the version of BCPL 

written in BCPL. When this second, more complex version had been 

compiled, it was then possible to use this new compiler to compile the 

Coral compiler. This process is known as bootstrapping. 

The difference between the two operating systems is the 

level at which the user interfaces to devices. In the case of UNIX, a 

device is handled in a similar manner to a file, whilst in the case of 

RT 11, a device must be handled in a completely different manner, 

leading to a much more complex 1/0 system for the BCPL and CORAL 

compilers under RT1l. 

In the absence of any formalised test suite for the BCPL compiler, 

it was felt that a program of the complexity of the CORAL compiler 

would be a sufficient operational test. Similarly, the software 

packages written in CORAL and transported from the A.S.W.E. Ferranti 

3-3 



Syntactical 
and 

Lexical 
Checker 
(COSYN) 

MACRO 
Assembler 

(M11) 

BCPL Compiler 

Intermediate 
Code 

G.enerator 

(COT AN) 

MACRO Code 
Generator 

(COCO) 

Link 
Ed it or 
(LINKR) 

UNIX Operating System 

Figure 3.2:1a BCPL Compiler 

Run- Time 
Support 

(BLIB) 



Argus running CORAL were decided to be a sufficient operational test 

of the CORAL compiler. 

3.2:2 ASH Software Packages 

A.S.W.E. had commissioned the writing of two extensive software 

support packages for the development of the ASH software. The first 

was a cross-assembler for the microcode for the FEPs [14], and the 

second was a simulator [15] for the entire highway which was used to 

test the microcode before its installation in the actual system. 

The cross-assembler was a two pass assembler which accepted 

as input a file of text and produced as output a binary file in a 

format suitable to be used to program a PROM programmer for the 

microcode PROMs, and a text file which contained a full assembler 

1 i sting. The input file contained lines of instructions, each one of 

which corresponded to a word of microcode. Thus the maximum program 

length was 512 instructions, corresponding to the full depth of the 

microcode store. The hardware configuration of the FEPs, as detailed 

in section 2.4, includes sixteen internal ALU registers (named rO-F), 

sixteen external read-only registers (named fO-F), and sixteen 

external write-only registers (named tO-F). These registers may be 

assigned names using the assembler. This greatly increases the source 

program readability. The possible combinations of source, destination 

and internal registers with ALU instructions, are defined. by the 

hardware design, and the program is checked against the allowable 

combinations by the cross-assembler. The combinations are detailed in 

Cambridge Consultants cross-assembler manual [ 14 ]. 

At ASWE this program was compiled in one section. 

3-4 



Unfortunately, owing to the inherent limitations of a DEC PDPll/34 and 

UNIX, the maximum size of a user program· is limited to approximately 

48kbytes of machine code. Due· to the design of the CORAL compiler, the 

maximum size of a CORAL program which could be compiled in a single 

segment was approximately four hundred lines. This meant that the 

cross-assembler had to be segmented into three parts to allow it to be 

compiled. After this stage had been succesfully accomplished, the 

compiled program was linked with its run-time package (the same one as 

was used by the compilers) to produce the complete assembler. 

The ASH simulator is a very much more complex program. It 

allows complete simulation of the operation of the highway system. As 

an input it accepted the file of microcode produced by the cross­

assembler, and a list of the allocation of external ALU registers 

(i.e. 'FIFO read' register equals f6, 'skip if FIFO full' equals sD 

etc) representing the actual hardware configuration. Then, the 

configuration of the highway, i.e the number of terminals and 

controllers was input. Lastly, a set of monitor points were entered, 

which governed which simulated registers were printed out during the 

monitoring. Now the simulation could be started. The program simulated 

the exact . function of the bit slice processors and all of the 

hardware, with the proviso that messages transmitted from a terminal 

or controller were merely 'injected' into the simulated FIFOs at all 

of the other units, i.e. the physical medium of the highway cabling 

and its · transceivers was not simulated. It was possible either to 

simulate the highway operation in single step mode- corresponding to 

the execution of a single microcode word in each unit, or in run mode, 

where execution continued for a preset maximum number of microcode 

instructions. Alternatively, by using a comprehensive break point 

monitor, it was possible to cause a break from the run mode into 

3-5 



normal monitoring mode at the occurrence of any condition which had 

previously been selected as a break point (or any combination of 

multiple co,ndi tions). A full macro-executive allowed complicated 

break, monitor and restart functions to be established. 

Due to the extreme complexity of this program, and the 

fact that it was simulating several highway units at the same time, it 

was extremely slow when in operation (a simulation of approximately 

100- microseconds of highway activity could take as much as half an 

hour). Also, the program was very large, and in order to compile it 

under the CORAL on the PDPll/34 it was necessary to segment it into 

eleven parts. In addition, much of the monitoring section of the 

program had to be rewritten to· compensate for the difference between 

the Ferranti single user operating system, and UNIX. This was due to 

the fact that on the Ferranti machine the monitoring was performed on 

a printer which was used only for that purpose, whilst this was not 

possible under UNIX because the printer was a shared resource. To 

compensate for this, a spooling program was included which saved the 

output for later printing, and the monitoring could also be performed 

on the VDU. 

3-6 



3.3 The Data General Nova 3 Sld ROOS 

The Department of Applied Physics owns a Nova-3 which runs RODS­

the standard Data General single user operating system [ 21,22 ]. Its 

configuration is as follows:- Nova-3 CPU, 64kbytes memory, lOMbyte top 

loading disk unit, VDU, printer and twin eight inch floppy disk unit. 

RDOS supports a BASIC interpreter, PASCAL compiler and a Nova-3 

assembler, as well as a SIXTH interpreter/compiler which was written 

at Durham. 

This machine was used to write a cross-assembler for the 

Motorola MC6BOOO, because it was initially impossible to obtain one 

from Motorola which would be suitable for use at Durham. The cross­

assembler was written in Nova assembler, and did not include all of 

the assembler language options possible with the MC6BOOO due to the 

extreme complexity of the assembler program that would be necessary. 

Instead, a simple assembler was produced, to which additional 

assembler instructions were added when needed. 

3.4 The Motorola MC6809 Development System 

The Motorola MC6B09 [23] is one of the most advanced of the eight 

bit microprocessors currently available. It is similar in architecture 

to the earlier MC6BOO, however it offers the major advantage of a much 

enlarged instruction set and an additional stack pointer. The 

additions to the instruction set consist of several new addressing 

modes, ·including indirect addressing, which greatly increases the 

programming flexibility available to the user • 

. The development system used at Durham University is based 

around a SWTPc (South-west Technical Products Corp.) CPU board which 

3-7 



is housed in an MSI (Midwest Scientific Instruments) chassis [24]. It 

includes 48kbytes of RAM, a debug monitor (MON09), three serial ports 

and a triple five inch floppy disk drive unit with disk controller. 

The system runs under the operating system 00569 [25 ], which is 

produced by SSB (Smoke Signal Broadcasting). This operating system 

offers 'all of the basic disk file utilities and a resident assembler 

and BASIC interpreter. It is an update of the earlier 00568, written 

by SSB for the MC6800, and most of it was merely reassembled into 

MC6809 machine code from the original MC6800 assembler language 

source, since the MC6800 assembler mnemonics are a subset of those 

used on the MC6809. This shortcut taken by SSB to obtain an operating 

system for the MC6809 means that it is no more efficient than the 

earlier MC6800 version, since it does not take advantage of the 

additional facilities offered by the MC6809. 

The development system has many additional unused 

connections, both to the main synchronous bus (55-SOC), and to a 

memory mapped I/O section (55-30 bus). This allows the speedy addition 

of user built boards to the system. 

3.5 The Motorola l\tC6IIDJ Single Board Computer 

Motorola produces a single board computer, the MEX68KOM [26] a 

diagram of which can be seen in Figure 3.5a. This microcomputer has an 

MC68000 as the processor, and many additional components enabling the 

board to be used in a wide variety of applications. 

The MC68000 is Motorola's sixteen bit microprocessor [27 ,28 ]. 

Externally, it has twenty four address lines, sixteen data lines, and 

control lines for asynchronous and synchronous bus interfaces. 

Internally, it has a thirty-two bit architecture, in that it has seven 

3-8 



68000 

Asynchronous 
Interface 

Synchronous 
Interface 

lr 
Memory 

RAM 

-
Address, Data and 

Control 
Bus 

Memory 
EPROM 

r .-------,1 ~-----~ • 

PTM A CIA A CIA 

I 

........ __ -------

Address 
Decoding 

= 
PIA 

) 
J 

PIA 

Figure 3.5a MEX68KDM Block Diagram 



data registers, seven address registers and two stack pointers, all of 

which are thirty-two bits in length. The interrupt system is a multi­

level one, having seven' different priorities, selected by the use of 

three interrupt line connections to the processor. All but the highest 

priority interrupt may be masked out by the use of the appropriate 

instruction. The MC68000 also includes a bus arbitration section, 

which allows it to be used in multiprocessor systems with a shared 

bus. The design of the component allows it to be easily interfaced to 

all of the MC6800 family of peripheral chips [29], which only have an 

eight bit data bus, as well as the MC68000 family of peripherals which 

have a sixteen bit data bus (very few of these new peripheral chips 

are yet available).· 

The single board computer also includes 32Kbytes of dynamic RAM, 

two parallel ports (MC6821), two serial ports (MC6850), a programmable 

timer (MC6840), a very powerful debug monitor called MACSBUG (held in 

four 16kbit EPROMS) and additional sockets for a further four EPROMS 

(which may be 16,32 or 64kbit devices). The monitor provides a full 

trace/ debug facility for user programs, using the 'trace' mode which 

is designed into the MC68000 chip. In addition it allows programs to 

be loaded into RAM using '5-record' format from an external device via 

one of· the serial ports. Motorola have defined the format of '5-

records' and these are used extensively to allow the serial transfer 

of data. Initially they were used in paper tape systems as they 

incorporate parity checks and record length checks. 

In addition, the board is provided with external connections (via 

edge connectors) for the two parallel ports, the programmable timer 

inputs, two sets of RS-232 serial connections, and a full set of 

synchronous bus signals designed to be compatible with the EXORCISER 

dev~lopment system (Motorola's MC6800 development system). Lastly, the 

3-9 



board also has external asynchronous bus connections, allowing an 

external device to gain access to the on-board memory/ peripherals, or 

for the MC68000 to gain a similar access to an external devices 

memory/ peripherals. 

3.5:1. An Upgrade of the On-Board Memory 

Although the MC68000 single board computer already included a 

RAM area of 32kbytes, it was found (section 5.2) to be necessary to 

expand this RAM area for certain applications. The normal method 

advocated by Motorola was to plug the MC68000 board into an EXORCISER 

chassis and plug in standard Motorola RAM modules as needed. However, 

a closer examination of the circuitry of the MC68000 board showed that 

with a very few hardware alterations it was possible to upgrade the 

board to 128kbytes of RAM (Appendix B). This was possible due to the 

similarity between 64Kbit RAM chips and 16Kbit RAM chips. The pinout 

of these chips can be seen in Figure 3.5:1a. The 64Kbit component has 

an additional address line, and has only a single supply rail, in 

contrast with the twin supply rails used on the 16Kbit device. This 

meant that the memory could be upgraded by merely adding a two-into-

one multiplexor, and rewiring the supplies. Extensive testing of the 

expanded memory, using a psuedo-random memory test routine, showed it 

to function correctly. 

In addition to the RAM expansion, by reprogramming the MACSBUG 

monitor into two 32Kbit EPROMs, space was made available for up to 

24Kbytes of user program in EPROM. This was necessary due to the 

requirement (sections 5.1,6.1) that the user programs should be held 

in non-volatile storage to allow an ordered program restart after a 

power failure. 

3-10 



1 vbb vss 
Din CAS 
R/W Dout 
-RASA& 
AO A3 

A2 AI. 

A1 AS 

VQj Vee 

16Kbit RAM 

(MCM4116) 

1 

Figure 3.5:1a 

ref ~ 
nCAS 

RIW.Dout 
-RASA6 

- -A3 ----

A4 

AS 

~ A7 

64Kbit RAM 

CH~864) 

- - -- - -



3.6 Additional Peripherals and Software 

In addition to the computer systems already mentioned there were 

many addi tiona! pieces of equipment and software used, the most 

important of which are detailed below. 

3.6:1 Pro-Log PROM Programmer 

Many different types of programmable memories were used 

throughout the project. Firstly, in the FEP there were three different 

types of fusible link PROMs. In addition, on the MC68000 board, three 

different types of EPROM, and another type of fusible link PROM were 

used. This meant that it was necessary to use a 'multi-function' PROM 

programmer. This type of programmer is able to program a wide variety 

of different devices either by the use of multiple driving programs 

stored internally, or by the selection by the user of the correct 

'pinout module' and 'configuration module' ( this last was merely a 

PROM which held the correct driving program to be able to program the 

desired type of PROM). The first type of programmer is very expensive, 

and on this basis it w~s decided to purchase the second type. A Pro­

Lag M920 programmer was purchased, along with two 'Generic Family 

Modules', four 'pinout modules' and five 'configuration modules'. This 

enabled any one of the seven PROMs/ EPROMs to be programmed, and many 

others in addition. The programmer could either be connected to a 

teletype/ VDU via a serial link, or to a computer system via a 

parallel link. 

For reasons of speed, it was decided to connect the programmer 

to the MC6809 development system via the parallel link and a parallel 

port on the development system. This port was in the form of a MC6821 

PIA (Parallel Interface Adaptor) plugged into the 1/0 area mentioned 

3-11 



in section 3.4. 

A program was then written in assembler to control the programmer. 

A listing can be seen in Appendix A. This could be used to program the 

PROM with a microcode program already loaded into memory (by the 

operating system) and was also able to load the microcode programs 

into memory itself and subsequently to program the PROMs. Lastly, it 

was possible to use a 'modify' mode to perform a single location read 

or write into the PROM. 

3.6:2 Computer Communications Software 

To allow microcode which had been assembled on the DEC PDPll/34 

to be programmed into the fusible link PROMs on the MC6809 system, it 

was necessary to write programs to allow communication between the two 

computers. They were separated by some considerable distance and the 

connection used between them was a 25mA current loop. The 

communications software composed the data to be transmitted into 

blocks of a preset length and included an error check. field as part of 

the message to be transmitted. On reception at the MC6809 system, the 

message was checked for errors (by using the error check field) and if 

any error was detected the message was retransmitted by the DEC 

system. 

A similar communications package was written for the transfer 

of data between the NOVA-3 and the MC6809. This allowed MC68000 

programs which had been written and assembled on the NOVA-3 to be 

transferred to floppy disk on the MC6809, and subsequently either to 

be programmed into EPROM or down line loaded into the MC68000 boards. 

The program used on the MC6809 system was nearly identical in each 

3-12 



case, the only difference being in the commands which had to be sent 

to the 'other end' of the communication link. The function of the 

programs on the PDP and NOV A was identical, however the DEC program 

was written in 'c' and the NOVA program in assembler. 

3. 7 DMA Interface 

As detailed in section 2.6 communication between the host computer 

and the FEP was by means of a specialised interface. This provided for 

communication on two levels. Firstly a high speed DMA interface, and 

secondly an interface by which the host could control the FEP using 

some form of. programmed output. At the start of this project, a 

version of the interface had been designed for a Ferranti Argus, a 

Locus 16 and a Konsberg 5500. It was necessary to design a new 

interface for any other computer used at Durham. The first design 

produced was for a Motorola MC68000 interface. The circuit diagram can 

be seen in Appendix C. The new interface design differed from the 

original ASWE designs because it used more LSI parts, as these were 

not available at the time the ASWE interfaces were designed. This 

resulted in a decreased chip count and therefore a smaller overall 

size. The DMA section of this interface was designed to satisfy the 

timing requirements of both the MC68000 processor and of the FEP, as 

set down in their relevant specifications. Unfortunately, ·these 

specifications proved to differ from the actual physical attributes of 

the processors, and considerable time was taken in attempting to debug 

this interface. It makes use of the bus arbitration section of the 

MC68000 processor by requesting access to the asynchronous bus on the 

MC68000 board when the FEP indicates that it wishes to perform a 

3-13 



memory transfer. This causes the MC68000 to halt at the end of the bus 

cycle currently being executed, and to pass control to the interface. 

The interface then completes the FEP's transfer and returns control to 

the MC68000. 

The program control section of the interface is accomplished 

by partially decoding the address bus of the MC68000. If a write 

operation by the MC68000 is. detected to an address preset by a set of 

switches on the interface, then the data being written to the address 

is decoded and latched to obtain the control signals for the FEP 

board. The signals are specified in section 2.6. 

3.8 Conclusion 

Several different computer systems were used, each for the task to 

which it was best suited, or most readily available. The DEC PDPll/34 

was used primarily for 'high-level' program development, whilst the 

Nova-3 was used because access to it was virtually without 

restriction. The Nova-3· was used only to write assembler programs for 

the MC68000 system. The MC6809 development system was used for a wide 

variety of purposes:- to write SIXTH programs for the MC68000, to 

drive the PROM programmer, and as a monitor station and bulk storage 

unit (section 6.2:1). Lastly, the MC68000 was the workhorse of the 

project, being used in all of the ASH units built at Durham. In 

certain applications, its normal quota of 32Kbytes of on-board RAM was 

expanded to 128Kbytes. The design of the board gave great ease of 

interfacing to external sytems, either under programmed I/O via 

parallel or serial ports, or under DMA control via a synchronous or 

asynchronous bus. An asynchronous interface was designed to connect 

the MC68000 boards to the ASH front end processors. 

3-14 



Chapter 4 
e 

SIXTH 

4.1 Introduction 

FORTH was written by C. H. Moore at Palo Alto Laboratory [30,31] to 

run on a DEC PDP 8. It was designed to allow a large number of tasks 

to be simultaneously memory resident. At the time at which it was 

written, memory was very expensive and the PDP 8 had only 12k words of 

RAM. FORTH optimised its use of memory at the expense of execution 

speed, to gain maximum possible resource utilisation. The PDP 8 was 

used to control and monitor a radio telescope.. FORTH creates an 

environment in which complex interface driving software can be easily 

debugged and tested and so was well suited to that application. 

SIXTH is a second generation FORTH which was designed at 

Durham University specifically for use with modern microcomputer 

systems. In these systems, memory is readily and cheaply available, 

as are a wide variety of microcomputer systems, and SIXTH has 

therefore been optimised for ease of implementation and 

transportation, rather than for super-efficient memory use. The SIXTH 

used on the MC68000 systems was specifically designed and written for 

this research project. Similar SIXTH systems have been written for a 

number of different systems, both minicomputer and microcomputer 

based. 

4.2 SIXTH Design Philosophy 

SIXTH is a stack based language. This gives rise to a notation 

throughout the system which is primarily 'backwards'. This includes 

reverse Polish notation for arithmetic functions. In addition, 

language constructs which are used in other languages (such as IF ••• 

THEN... ELSE.... ) appear in slightly .strange format (i.e IF ••• 

ELSE.... THEN... ). 

4-1 



The system uses SIXTH language words, which are known as 

definitions. These are held as a 'linked list' in memory. This list is 

known as the dictionary. Each definition is preceded by a header whose 

format is shown in Figure 4.2a. It consists; the name of the 

definition as a string truncated to the first four characters, the 

total length of the name string and a link address to the previous 

definition heading. The operating system maintains a pointer to the 

last definition in the dictionary. To search for a definition in the 

list, it is searched backwards by starting at the last definition (to 

which the system holds a pointer). If this is not the desired 

definition, the pointer to the next one is extracted from its· header 

and the previous definition is then checked. This will continue until 

the last definition in the linked list (which is the first routine 

defined in· the kernel) is reached. This last definition has its link 

address pointer set to zero. SIXTH recognises this as being the last 

definition, and if this stage is reached it implies that the 

definition was not in the dictionary. SIXTH normally operates from a 

VDU in interpretative mode. Alternatively it may operate from a file 

held on some bulk storage medium to 'RELOAD' large sections of program 

which would be too laborious to retype from the VDU. 

In its interpretive mode, character entry is handled on a line-by­

line basis by a buffer routine which also provides keyboard handling 

(i.e. backspace, prompts etc.). The line is parsed into character 

strings separated by spaces and terminated by a carriage return. SIXTH 

then attempts to interpret these strings as either numbers or 

previously defined SIXTH routines. If the string is a number, it is 

placed on the operand stack, otherwise the string is checked with the 

dictionary to see if it has been previously defined. If it matches a 

previous definition, this definition is executed. If it does not, an 

error is flagged. From this interpretive mode, new definitions may be 

4-2 



Precedence length 

Name String 

link Pointer 

SIXTH Definition 

Figure L2a SIXTH Header Format 



added to the dictionary by placing SIXTH into compile mode (using the 

definition ':' to start compilation and ';' to terminate it). In 

compile mode, any valid keyboard entry is compiled onto the end of the 

dictionary in the same format as previous definitions. After exit from 

the compile mode, this new definition may be executed from the 

keyboard in the same way as the old definitions. Thus any definition 

may either be executed from the keyboard or from within a definition, 

or may be compiled into a new definition. Additional SIXTH keywords 

cause the system to accept input from an alternative source to the 

keyboard. In some systems this would be a resident disk unit, but in 

the MC68000 system it was the serial link with the MC6809 development 

system. This allows the loading of the linked dictionary from the bulk 

storage device. 

A normal SIXTH system comprises three parts; firstly the system 

kernel which is written in assembler, and incorporates all of the 

basic system routines such as 1/0 routines, ··terminal handler, 

interpreter/ compiler and number handler. The second part is the 

system dictionary which includes all of the high level routines such 

as conditional statements, loops, string handling, system utilities, 

and assembler if included in the implementation. The assembler was not 

included in the MC68000 implementation of SIXTH because of its great 

complexity. The final part of SIXTH is the user program section. The 

second and third sections are written in SIXTH. 

The system as implemented on the MC68000 includes three stacks, 

the operand stack, the '00' stack and the machine stack. The first is 

the primary SIXTH stack which is used for parameter passing between 

routines and for keyboard interpreting. The second is only used in the 

'00..... LOOP' construct, and is used to stack loop parameters. The 

final stack is used to retain the return addresses from subroutine 

calls. The MC68000 processor has seven data registers and seven 

4-3 



address registers. The stacks are implemented using three of the 

address registers. 

4.3 System Kernel 

As explained, the system kernel was written in assembler and 

performed all of the basic SIXTH functions. A listing can be found in 

Appendix A. In all of the routines apart from the first two (CHIN, 

D-fot.m all parameters are passed on the operand stack, allowing all of 

these routines to be used by any SIXTH programs. 

In the explanations of the routines that follow, the 

abbreviations 'D0-7' are used to represent data registers zero to 

seven, 'A0-7' for address registers zero to seven, 'MS' for machine 

stack, 'OS' for operand stack and 'DS' for the 'DO' stack. The current 

system 1/0 port may be either of the two ACIAs on the MC68000 board, 

and is selected by the value of the address in the location named 

'PORT'. 

CHIN 

CHOUT 

Reads one character from the system port into DO. 

Writes one character from DO to the system port. 

BlFFER Used when A VDU is connected to the system port. It prompts 

the operator for characters and then buffers a line which is 

terminated by a carriage return. It also sets up the 

parameters for WORD. 

CRLF 

WCRD 

Sends a carriage return/ linefeed pair to the system port. 

Parses the line buffer p~oduced by BUFFER to set pointers to 

the beginning and end of the next word in the buffer. Sets the 

LAST flag if the end of the line has been reached. 

4-4 



FIND This is the dictionary search routine. It takes the word parsed 

by WCR.D and searches the dictionary for it. The address of the 

definition is placed on the OS if it was found, or zero is 

placed on the stack if it was ncit found. 

PUSH Pushes the contents of DO onto the OS. 

PCP Pops the top word of the OS into DO. 

STK Pushes the contents of DO onto the DS. 

l.JIIIST Pops the top word of the DS into DO. 

NJ,,JER This is the· number crunching routine. It attempts to assemble 

the ascii word parsed by WORD into a binary number, in the 

base indicated by RDX. It then places this number on the OS. 

RESTART This routine performs a system restart by resetting all of the 

. . 
SIXTH system variables. 

This routine puts SIXTH into compile mode. It also puts the 

new header onto the end of the linked list. 

EXEaJTE This routine is used after an attempt has been made to FIND 

the word. If the attempt succeeded, then the word is either 

executed or compiled, depending upon whether the system is in 

compile or execute mode. If the attempt failed, EXECUTE calls 

I\Ltvt3ER in case the word is a number. If it is a number it is 

either left on the OS or compiled into the dictionary 

depending upon the machine state. Finally, if the word is 

neither, EXECUTE flags an error condition. 

TYPE The length and address of a string to be output are taken from 

the OS and used to output the string to the system port. 

TITLE Displays the SIXTH banner. 

; This routine ends compile mode and finishes the new dictionary 

entry. Anything entered between : and ; is compiled into the 

dictionar)'. 

4-5 



CONSTANT Assembles a number into the dictionary from the OS as a 

complete new dictionary entry. When the new definition is 

executed, it will put this number onto the OS. 

INTECIR Assembles a number from the OS into the definition currently 

being compiled. When this definition is subsequently executed, 

this number will be placed on to the OS. 

VARIABLE When executed it allocates space for a variable in the new 

definition currently being compiled, in addition it inserts 

machine code into the current definition. When the new 

definition is subsequently executed, this machine code causes 

the address of the variable space to be placed on the OS. 

LOAD Resets the current system port to be the second ACIA connected 

to the MC6809 system and reads in one line of text into the 

line buffer. 

OPEN This routine sends a command to the MC6809 system via the 

second ACIA which· .. causes the MC6809 to open the SIXTH 

dictionary file. 

RELOAD This routine sets the reload flag, thus putting SIXTH into 

reload mode. 

IMMEDIATE If this word is compiled into a new definition, it causes 

the precedence bit (which is part of the header of each 

definition) to be set to one. This means that when this 

definition is subsequently included in a new definition, it 

will be executed rather than compiled, as is normal. 

TO Sends the character on the OS to ·the system port using D-fOUT. 

DISSECT Dissects a binary number on the OS into ASCII characters, and 

a which it replaces on the stack. 

Uses DISSECT· to output a number in ASCII to the system port 

which corresponds to the number which was on the OS, expressed 

to the current base. 

4-6 



AStvB Puts a number from the OS into the dictionary. 

~ ~W, @L These read a byte, a word or a long word from the address 

held on the OS and place the result on the OS. 

!B, !W,!L These write a byte, word or a long word held on the OS into 

the address also held on the OS. 

+, -, *, I These perform the relevant arithmetic operations on numbers 

already on the OS and place the result back on the OS. 

LEFT 

SWAP 

This routine shifts the number on the OS left by the number of 

places held on the OS. 

This swaps the top two numbers on the stack. 

The interpret loop is the master routine for the SIXTH 

interpreter/ compiler. Its operation is illustrated in Figure 4.3a, 

and is fairly straightforward. It calls either BUFFER or 

LOAD depending upon··the state of the reload flag. It then calls WORD, 

F1ND, EXEa.JTE until such time as the end of the line is reached (which 

is indicated by the LAST flag, set by WORD), when it loops back again. 

The use of SIXTH is best illustrated by example. 

At the simplest level, the line:-

4 2 * 

places two numbers on the OS, takes them both off the stack, 

multiplies them together and places the result back on the OS. The 

line:-

SUM 4 2 * 

compiles a new definition named 'SUM' 

onto the end of the dictionary, which may then be executed, by using 

the line:-

SUM 

4-7 



RESTART 
_.. 
-.. 

/In Reload Mode? 1
1 n BUFFER 

1Y 

LOAD 
t. 

' J 
WORD 

1 
FIND 

j 

EXECUTE 
• nf End of Line? / 
Jy 

Figure 4.3a · SIXTH Interpret Loop 



This will perform the same 

operations as above. The line:-

10 CONSTANT FRED 

creates a new definition which when 

executed places 10 on the OS. The line:-

10 : FRED INTEGER ; 

has a similar ·effect. The memory manipulation commands are 

straightforward, the line:-

2 100 !W 300 @W 

will store the number 2 at location 100, and 

will then read a word from address 300. The three operation types, 

byte, word and long word correspond to the modes for memory 

manipulation available on the MC68000 processor, which are 8,16 or 32 

bits in length respectively. The lines:-

: THING VARIABLE 

12 THING !W 

THING @W 

create a new definition called THING, 

stores the number twelve in the variable space thus allocated, and 

reads the contents of this variable space onto the OS. 

Finally, the SIXTH dictionary may be reloaded by using the 

commands:-

OPEN 

RELOAD 

which open the SIXTH dictionary file on the MC6809 and 

reload the dictionary, by placing the system into the reload mode (the 

reload flag is set). The system is returned to normal operation by the 

inclusion of a 'RESTART' at the end of the dictionary file on the 

MC6809, which causes all of the SIXTH system variables to be reset, 

including the reload flag. SIXTH may be operated in any number base, 

4-8 



as defined by the contents of the location 'RDX'. The base used only 

affects the ASCII representation of numbers at the VDU. The internal 

representation of numbers is always in binary form. 

4.4 SIXTH Dictionary 

As described, this is held on the MC6809 system in the form of an 

ASCII file which was written and edited using the standard DOS69 text 

editing system. A listing· of the dictionary may be found in Appendix 

A. Although it was impossible to include a full 'in-line' MC68000 

assembler in the dictionary, several assembler instructions were 

needed to complete the dictionary. These may be found near the 

beginning of the dictionary. It should also be noted that although a 

comment construct is defined using '(' and ')' as delimiters, this new 

definition occurs some way down the dictionary, so the initial section 

is uncommented. Several of the main higher level SIXTH constructs are 

detailed below. 

DO ••• Loa> 

This is used in the normal manner, apart from the fact that it may 

used only when SIXTH is in compile mode, and the loop limits must be 

entered in reverse, due to the stack orientation of SIXTH. i.e. a 

valid statement would be:-

: TEST 10 0 00 I • LOOP 

the 'r routine places the 

current value of the· loop counter on the OS. STOP may be used to abort 

the loop. 

BEGIN •••• END 

This is the infinite loop construct and may be aborted by the use 

of QUIT. 

4-9 



••• IF.- ELSE ••• TI-£N ••• 

This is the conditional branch construct and may be used with the 

conditions =<, >=, =, >, <. A valid use would be as follows:-

: TEST < IF • DRCF ELSE DROP • TI-IEN ; 

4 2 TEST 

the definition TEST would then print out the lesser of 

two numbers on the stack, in this case it would print out '2'. Note 

that the construct may be used without ELSE, but IF and THEN must 

always be used together. 

STRING 

ARRAY allocates an array space within the current definition and 

also compiles machine code into the current deinition to handle this 

array space a run time. STRING merely fills this array with the 

specified string. e.g. : SAYING STRING "The quick brown fox" 

creates an array filled with the specified string, whilst the 

command:-

SAYING TYPE 

causes the size and length of this array to be 

placed on the OS, and TYPE then uses these parameters to type out the 

string. Several utilities are included, the more often used are:-
\ 

KEEP, which is used to protect the dictionary against inadvertent 

deletion, FORGET, which is used to delete unwanted dictionary 

definitions and WHAT, which is used to list out the dictionary 

contents. 

Finally, C0tv1Pll..£ is used to compile user programs from a file on 

the MC6809 which is specified by the operator thus:-

OJtvPIL.E FRED 

This user file, which is held on the MC6809, must be terminated with 

a %ENDF1LE. 

4-10 



4.5 Conclusion 

A SIXTH interpreter/ compiler was written at Durham for the 

MC68000 single board computers which was capable of handling a VDU and 

accepting input, via a serial link, from the MC6809 development system 

which was used as a program development station. This allowed programs 

to be tested interactively from the VDU and then stored on floppy disk 

on the MC6809 system for subsequent recompilation. The SIXTH system 

was written in three parts, a kernel in assembler, and the dictionary 

and user programs in SIXTH. The design concepts differed from the 

FORTH language upon which SIXTH was based, in that memory use is no 

.longer minimised at the expense of program execution speed. This was 

possible due to the current low cost and easy availability of 

semiconductor RAM as compared to the time at which FORTH was written. 

4-11 



Chapter 5 

The Portmle 1-iqlway Cmtroller 

5.1 Introduction 

The portable highway controller was developed at Durham as part of 

the Durham University version of the ASH system [32]. As explained 

previously, the Ferranti Argus minicomputers used as hosts to the ASH 

system at ASWE could not be used at Durham, and instead Motorola 

MC68000 single board computers were used. Initially all software for 

both the highway controllers and the terminal units was stored in 

volatile memory on the MC68000 boards, and a system restart involved 

reloading all of the programs from the MC6809 development system. 

Subsequently, the programs were loaded into EPROM and a restart could 

take place without any intervention from the MC6809. 

When the complete system was demonstrated to ASWE, it became 

apparent that an MC68000 hosted highway controller could perform all 

of the tasks which had been previously performed by a Ferranti Argus 

700F minicomputer, at a much lower cost and in a much more compact 

form. 

On this basis, a draft specification for a portable highway 

controller was set out whose main requirements were as follows:-

1) The unit should be entirely self-contained, should include some 

form of highway status display, and a keyboard of some sort to 

allow the operator to manually alter the highway controller 

operation. 

2) The unit should be completely failsafe i.e. it should be able to 

restart automatically after a power failure, and important system 

parameters should be battery backed up, such as the system clock. 

5-l 



3) The operator should have as much (or more) control over highway 

controller operation as in the Ferranti Argus 700F system, and the 

display contained in the unit should provide all of the status 

information necessary for full monitoring of the network. 

Several units have been developed at Durham which satisfy these 

requirements, and after extensive evaluation and testing of these 

units at ASWE, it has been decided to commission a commercial version 

for future use. 

5.2 Portable Controller Hardware 

The hardware used in the portable highway controller is an upgrade 

of that used in the standard Durham University terminal unit. The 

basic ASH hardware is as detailed in section 2.4-2.6, with the 

addition of an extra page (512 by 32) of microcode store. This is a 

standard ASWE alteration for the ASH systems which include dual 

controllers, as it was found to be impossible to include all of the 

necessary software in only one page of microcode store. The desired 

page is selected with the aid of a 'page register' which appears as a 

write only register to the 2901. In order to change page, the 2901 

must write the desired page number into the register. Program 

execution will then continue at the same instruction address on the 

newly selected page. 

The other hardware included in the unit was the Motorola MC68000 

board with its on-board RAM expanded to 128kb)'tes (section 3.5:1). A 

CMOS clock chip (National Semiconductor MM58174) and 3V rechargeable 

battery were included to provide a battery backed-up system clock. The 

requirement for full monitoring capabilit)' was more difficult to 

5-2 



satisfy in the limited space available. Several different types of 

display were looked into including plasma panels, LED displays and LCD 

displays. The LCD display was finally chosen on the grounds of 

availability, compactness, low cost and ease of connection. In 

addition, LCD displays need only a single 5V power supply, and the 

unit chosen, a FEL TEC 128 character display (4 rows of 32 characters) 

was available in a low power version which had a power consumption of 

only 25mW [33]. The keyboard used in the Durham versions was a 

hexadecimal keypad (Radiospares) however ASWE intend to have a custom 

keypad designed for them. 

Finally, the units contained a fully stabilised four rail power 

supply, which could run from 240,220,120,110 volts at 50/60Hz. The 

five volt rail was protected with a crowbar unit to provide the unit 

with some protection against power supply failure. The power supply 

design included mains filters and sufficient 'backing voltage' 

margins, to ensure that the power rails remained stable even when 

·operating with ship-borne power supplies and their occasional lack of 

regulation. The external case was designed to enable the unit to be 

either free standing or to be mounted in a nineteen inch rack. A 

cooling fan and vents were provided at the rear so that the unit could 

be mounted in the middle of a stack of equipment. 

5-3 



5.3 Controller Software 
.. 

5.3:1 Design of SIXTH Programs 

The highway controller software had to perform several separate 

types of functions which were as· foJlows; firstly to allow the 

operator to control the function of the highway controJJer (and 

therefore of the highway system) via the keypad. Secondly, to provide 

continuous monitoring of any system feature which the operator wished 

to inspect (see section 5.3:2). Thirdly, the software had to provide a 

'highway maintenance' function to automaticaJJy send out time 

messages, attempt to restart locked-out terminals, etc. Lastly, 

routines had to be included in the software to provide for order!)' 

power-up restart of the controJJer and the highway system. The 

complete program listing may be seen in Appendix A. This SIXTH program 

is compiled onto the end of a standard SIXTH kernel and dictionary. 

The first function is accomplished with an interrupt driven 

circular buffer routine to allow 'type-ahead' on the keypad (Figure 

5.3:la). Each operator command is a two character code, using the 'F' 

key as the equivalent of a 'carriage return' key. These commands faJJ 

into three groups (section 5.3:2), those that alter the status 

information which is being displayed, those which alter the operation 

of the controller, and those which alter the operation of the highway 

system. The codes generated by the hex keypad and associated circuitry 

are processed by the software to produce two character ascii commands 

which may be handled by the SIXTH buffer routine as though they had 

been originally entered in ascii. As mentioned 'F' is equivalent to 

'carriage return' which is the SIXTH Jine terminator (section 4.3). 

5-4 



Interrupt Handler 

Form an Ascii Char. 
from Hrx. No. 

,___Y -----EXIT 

y 

Storr Char. 

Increment ACHAR 

WP - Write Pointer 
RP - Read Pointer 
EOB- Eoo of Buffer 

ALINE 

Programmed Character Read 
Routine 

Figure 5.3:1a Keypad Service Routines 



The first two types of commands may be carried out without any 

interaction with the highway controller FEP, however as explained 

previously (section 2.9:2), in order to alter highway operation, the 

controller must first be halted, and then restarted. An optimised 

routine was written for this function whose overall function is to 

swap the current polling table with an alternative one. The section of 

the routine executed with the controller halted has been minimised to 

keep within the time constraints mentioned in section 2.9:2. 

The monitoring task is performed continuously, and is 

hal ted only when the operator is using the keypad (Figure 5.3:lb). At 

such times, the current monitoring cycle is completed, and then the 

display is cleared and used to echo characters to the operator and to 

prompt for the necessary entries. At the conclusion of that particular 

command entry, normal monitoring is resumed. The monitoring is 

normally in the form of a menu of controller status information taken 

from the various tables (section 2.9:1). This will only change should 

any of the various counters be updated by the FEP. The menu system is 

also used to display the terminal status information as extracted from 

the status tables, however the status information on multiple terminal 

units is displayed in rotation. 

The highway maintenance function is invisible to the operator, 

and occurs at regular predefined intervals. The real-time clock chip 

is used to provide an interrupt once every five seconds. This prompts 

the MC68000 to set up a new time message in· the 'out-time' space. The 

status of each terminal in the polling table is also checked, and 

should there be any terminals locked out, the MC68000 attempts to have 

them restarted, using the procedure detailed in section 2.9:2. 

Additionally, when the controller is passive instead of active, the 

interrupt routine will update the real-time clock, should an 'In-time' 

5-5 



I Interface Failure y Display FAILURE Sign 
Ragged? 

I n L • I ACHAR=O? /" . Process Command 
yt I 
I 

Refresh Display 

I 

Figure 5.3:2b HWC Monitoring Routine 

INTERRUPT 
v 

Sd up a New Out Time Field 

l rni Any Terminals Locked Out? J 
JY 

Reset tt~m and their Status 

Table Entries 
... 
.... 

Process the r-
n I Controller Active?/ Y Send the new L 

new fn Time .- Out Time 
L __j "EXIT L I 

l_ f 

Figure 5.3:1b HWC Maintenance Routine 



message have been recieved from the active controller. 

The system chosen for the power-up software was as detailed in 

Figure 5.3:1c. A 'map' of the contents of the RAM immediate!}' after 

loading SIXTH and compiling all of the controller programs was taken 

using the MACSBUG monitor. This map was transferred onto disk on the 

MC6809 system. In addition, a map of the SIXTH variable space was 

made, and a small supervisory program was assembled on the NOVA-3, and 

loaded onto disk on the MC6809. These various sections were programmed 

into the EPROMs as detailed in Figure 5.3:1d. At power-up, the MC68000 

board generates a reset pulse. At reset, the MC68000 picks up the 

reset address from memory locations $00000-$00004, which are decoded 

into the EPROM address space. This address was set to point to the 

supervisory program, which then proceeded to copy the EPROM contents 

into the RAM space. After this copy was completed, control was passed 

to the SIXTH reset routine. This routine reset and halted. the 

controller and set up the software tables to a predetermined default 

(currently to poll terminal numbers 0-16). The controller was then 

started, and control passed to the normal SIXTH program loop. 

This method of restarting is very wasteful of memory space, 

because there are two copies of the entire SIXTH program when the unit 

is running correctly, and one copy is only ever used at reset time. An 

alternative would be to run the MC68000 from SIXTH programs stored in 

EPROM. This would give a great saving in memory, but would give rise 

to two other problems. Firstly, the access time for the EPROMs was 

considerably longer than for the RAM, thus programs would run slower 

than from RAM. Secondly, the SIXTH used on the MC68000 was designed to 

be run from RAM, and would have had to be considerably rewritten to 

allow it to be run from EPROM. Also, it was not relocatable and this 

would have led to addressing problems. The restart method chosen had 

5-6 



! . 
D 1sable lnterr u pt s and Enable 

Super visor Mode 

Copy SIXTH Variables into RAM 

Copy SIXTH Code into RAMI 
1 

Reset Machine Stack j 
.L 

Jump ·to SIXTH Restart Routine I 
l 

Figure 5.3:1c Power-up Software 



EPROM 

--------o 
SIXTH Kernel 
--------8 00 
Reloader 
--------9 00 
SIXTH Variables 
--------A ()() 

SIXTH Diet ionar y 
and 

User Programs 

--------2 000 

RAM 

o-----------------
400 

800 

900 

AOO 

coo 
DOO 

1000 

1100 

!200 

1300 

1900 

2000 
p 

2800 

... 

68000 Exception Vee tors 

MAC SBU G Stack Space 

HWC Primary Table 

HWC Polling Table A 

HWC Size Store 

HWC Status Table 

HWC Polling Table 8 

SIXTH Variables 

51 XTH 1/0 Buffer 

SIXTH DO Stack 

51 XTH OP. Stack 

SIXTH Machine Stack 

SIXTH Kernel 

SIXTH Dictionary 
and 

3
E

00 
___ u~_r_P_r_~~r_a_m_s _____ __ 

AOOO------------------
HWC 8 uffer Store 

Figure 5.3:1d EPROM . to RAM Map 



the considerable advantage that to implement it, the standard MC68000 

board needed only to have the restart vector changed (necessitating 

the changing of one EPROM) and to have the SIXTH EPROMs plugged in. In 

all other respects is was identical to the MC68000s in the terminal 

units, allowing complete interchangeability of hardware, and the great · 

majority of software. 

5.3-.2 The Use and Upgrading of the Controller Software 

The user commands are detailed in Appendix D. Unless the 

operator explicitly commands the controller's FEP to start, stop or 

reset (commands Cl, C2, C3) it will continue to maintain normal 

highway signalling. In addition, the command 'AAA' causes termination 

of the normal mode of operation of the MC68000, and returns program 

control to the SIXTH interpret loop (section 4.3). This allows a VDU 

to be used as the 1/0 device. By this .means, ·the operator may debug 

the software whilst the controller FEP is still in operation. 

Additional SIXTH routines may be added to those already present in RAM 

by compiling them from the MC6809 system or from the VDU. When these 

routines have been debugged and tested ther may then be added to the 

normal controller program by reprogramming the EPROMs with the 

additional routines. 

5A Testing the Portable Highway Controller 

After the software for the controller had been written and 

debugged to the stage at which it would compile, it was necessar)' to 

devise some method of testing the many routines and the interactions 

between them. The routines concerned with monitoring the software 

5-7 



tables and with altering the tables were tested interactively by 

causing SIXTH to respond to both the keypad and the VDU 

simultaneously. Thus the VDU could be used to check that the flat­

panel display was correctly displaying the contents of the software 

tables, and that the keypad was performing the correct changes. 

The sections of the user program which proved most difficult 

to debug were those which had to interact with the FEP and those which 

performed the restart function. The former routines had to be tested 

with the aid of a Logic Analyser (Hewlett-Packard 1615A) while the 

controller was connected to the complete ASH system, to ensure that 

none of the rigid time constraints were violated. The latter routines 

were difficult to debug due to the fact that in their final form they 

'boostrap' a copy of the user program into RAM, and program control is 

passed to routines within this boostrapped program. Thus if there is 

any mistake in the copy section of the routines, a complete processor 

crash could occur. The debug monitor, MACSBUG, was used to debug these 

routines as far as possible, however when the stage was reached at 

which the user routines were performing (or attempting to perform) the 

entire restart, this was no longer possible because MACSBUG was not 

initialised after the power-up, and could not function correctly. The 

final debugging had to be carried out with the aid of the logic 

analyser. 

After performing all the tests possible on the unit's stand­

alone function, it was necessary to test it while connected to the 

highway system. These tests were first carried out at Durham, with the 

controller connected to a system comprising six terminal units, and 

then at ASWE, with the controller connected to a system comprising 

seven terminal units and an additional controller. The controller was 

tested whilst the highway systems were performing soak tests (see 

5-B 



section· 6.1). Terminal units were stopped and then started again, to 

ensure that the controller software was capable of automatically 

reseting terminal units. In the ASWE system, a second controller was 

used to check the operation of the portable controller in both active 

and passive modes. Extensive testing, over weeks of continuous use, 

necessitated minor alterations to the software which were mainly 

concerned with the MC68000/ operator software interface rather than 

the MC68000/ FEP software interface. 

The final test of the portable controller was the ship trial 

(section 7) during which its operation in a hostile environment was 

fully tested. 

5.6 Conclusion 

A highway controller was designed and constructed at Durham as 

part of the ASH system built there. Interest was expressed by ASWE in 

the concept of a self-contained portable replacement for their Argus 

700F based highway controllers. A set of requirements for such a unit 

was laid out, and a portable highway controller was designed at Durham 

to satisfy their requirements. The unit included a keypad and flat­

panel liquid crystal display to allow operator control and monitoring. 

The software, which was written in SIXTH, performed all the functions 

necessary · to supervise the FEP and to maintain correct highway 

operation. In addition, the unit was 'plug-in and go', in that it held 

the software in EPROM and could perform an auto-restart of itself and 

the highway system after a power failure. Extensive testing of the 

unit both at Durham and at ASWE has produced a proven design which may 

be manufactured in quantity. 

5-9 



6.1 Introduction 

Dlapter 6 

ASH Ship Trials 

The ASH is a highwa>' system which is primar.ily intended for use on 

board ships in the late 1980s and 1990s. In addition it may be used as 

a high speed office LAN within certain MOD establishments. Although it 

had been extensively tested in a screened computer room environment 

within ASWE, it had never been tested on board a ship. This was due to 

the physicai size of the ASH when based on a 'commercial' Ferranti 

Argus. Later systems will be based on the military Argus, which is a 

much smaller unit. 

ASWE realised that it would be possible to test their LAN system 

using the Durham version, based around the small MC68000 single board 

computers. A test system using only the ASH for inter-system 

communication was proposed, because of the restrictions on access to 

several of the compartments in which the terminal units were placed. 

This system was designed and tested at Durham, and a monitoring unit 

based around the MC6809 ~evelopment system was also included to 

provide a performance record on floppy disk, rather than on 

lineprinter paper, as was normal practice at ASWE. 

The complete system was installed on board H.M.S. 

Londonderry, and ran continuously for six days, collecting some 

3Mbytes of data concerning the operation of the highway. After the 

trials, extensive data analysis allowed a comparison between the 

operation of the highway as observed over the week on board the ship, 

with· the operation of the highway as observed over similar periods at 

Durham and ASWE. 

6-1 



6.2 Test Hardware 

6.2:1 MC6809 Monitoring Unit 

Due to the inaccessibility of several of the· highway terminal 

units and the difficulty in handling large amounts of computer 

printout in the small available space on board ship, it was decided at 

an early stage that the performance data collected from the test 

system should be in the form of records on floppy disk which could be 

printed out or analysed at a later date. A suite of monitoring 

programs (section 6.3:5) was incorporated into the software in each 

terminal unit. This software caused the reports from every terminal 

unit to be sent via the highway to one particular terminal unit, the 

master unit. This unit was situated in the Fixed Trials Office 

(F. T .0), and was accessible to the operators. It was connected to the 

MC6809 development system via a 9600 baud RS232 serial link, and 

software in the master unit and the MC6809 periodically updated the 

MC6809 disks. The hardware involved in the MC6809 system included the 

standard development system already described, with the addition of a 

serial port for connection to the master terminal unit. The MC6809 

system was connected to a dedicated ships supply for the F. T .0. whose 

regulation was considerably better than that of the normal ships 

supply. This alternative supply was chosen because of the difficulty 

of providing adequate protection against disk corruption in the event 

of severe (but normal on standard ships suppl>') voltage fluctuations. 

6-2 



6.2:2 MC68000 Highway Terminal Units 

An important consideration in the design and implementation of 

the hardware and software for the ASH ship trials, was that the 

software used in the terminal units which were not in the F.T.O. 

(slave units) should be held in non-volatile storage, and should have 

no need for local operator intervention. Thus the slave unit's 

hardware differed from that already described (section 3.5) only in 

the addition of four EPROMs which held the test software. The units 

were mounted securely to some part of the ships fittings to avoid 

damage in rough weather. The only connections necessary were to the 

ships standard llOvolt/ 60Hz supply, and to the highway cabling. The 

layout of the units and cables in the test is shown diagramatically in 

Figure 6.2:2a. In addition, a small hand held battery V.D.U. (G.R. 

Electronics) was used during the initial installation, to check on the 

correct local operation of each unit, before they were tested using 

the ASH. 

6.3 Ship Trial· Software 

6.3:1 Design Concept 

The terminal unit software necessary for the ship trials had to 

perform three specific functions. Firstly, the operator had to be able 

to control the actions of the remote (slave) terminal units from the 

master terminal unit. This involved the remote starting and stopping 

of test software, and the resetting of tables etc. Secondly, the 

master unit- ·had to perform as a monitor/ information gatherer for 

status and performance data being sent from all of the slave units, 

6-3 



Terminal Unit 

MC6809 

Monitor Sbtion 

VDU Disk Unit 

Terminal Unit 

·HWC 

Terminal Unit 

Terminal Unit 

Figure 6.2:2a . Schematic of ASH Ship 
Trial 



and subsequently pass this data on to the MC6809 system which was 

acting as a bulk storage unit. Lastly, all of the units had to 

participate in soak tests of the highway, at the same time as the 

other two functions were being performed. 

In addition to these functional requirements, the software suite 

had to be capable of restarting after a power failure in any of the 

slave units' and in the event of a highway signalling failure each 

slave unit had to be capable of returning the status of itself and its 

FEP to a level at which it could again receive messages from the 

highway. Full listings for the soak test software can be found in 

Appendix A. 

This set of requirements necessitated some fairly complex 

programming, and meant that it was necessary to construct an operating 

environment in the MC68000 systems which was akin to that in a multi­

tasking system. Indeed, at one point the design of such a system was 

considered as a possible solution to the programming problem, however 

time restraints and a long term hardware failure in the NOVA-3 (which 

would have had to be used to produce the nl;lw multi-tasking kernel) 

caused this approach to be abandoned. Instead, the multi-tasking 

environment was emulated with the aid of the multi-level interrupt 

system which is a feature of the MC68000 micro-processor. 

6.3:2 Block Message Soak Test 

The principle behind the Block Message Soak Test (BMST) was as 

follows. One terminal unit (in the case of these trials, the master 

unit) transmitted a broadcast block message of a predetermined length 

onto the highway. This message was composed of words of data which 

were cyclically generated from a . stored generator word (Figure 

6-4 



Message 'N' :- GW= N 

Message 'N+1' :- New GW =Previous GW plus l 

GW-Generator Word 

Figure 6.l2a Block Message Generation 



6.3:2a). Thus the first word in any transmitted test block was the 

generator word. This generator word was incremented by one after each 

block was transmitted. At the receiving units, in this case the slave 

units, the content of each received block was compared with the 

expected content, again by the use of a generator word. This allowed 

the receivers to check each word of each block for correct content. 

The generator word was initialised to zero at the start of the test, 

in both the receivers and the transmitter. Thereafter, the generator 

was updated only after reception of a message( at the receivers), or 

after transmission (at the transmitter). If a receiver detected a 

message out of sequence (e.g every data word was a constant value 

greater or less than expected) it would make a record of the fact, and 

store the first word of data in the out of sequence block as its new 

generator word, to get into synchronisation with the transmitter 

again. Also, if any error was detected, this was noted and a report 

transmitted (section 6.3:4). This type of test had been in common use 

at ASWE for a considerable length of time. However, at ASWE, the 

system used to determine block message transmission frequency is 

purely empirical, a transmission rate is chosen by the operator based 

on past experience of rates which are suitable. The slowest piece of 

processing in the test is that which occurs in the receiver when it 

analyses the received block of data. Thus if a transmission rate is 

chosen which is slightly too fast, an overrun will occur at the 

receiver. On occasions this overrun may take several hours to occur,· 

and cause a BMST to be aborted after several hours of results have 

been collected. ~--.-
,,~ 

As an alternative td this scheme, a system of handshaking 
'I 

between the slave units and the master unit was adopted for the sea 
\ 

T . . 1 \ f 1 (. trials. h1s system mvo ved ~ use o contra messages section 

) 
I 

: 6-5 



6.3:4) issued by each slave unit after a block had been analysed, and 

the unit had set up the 'In Block' (section 2.3) fields read)' to 

receive the next block. This system allowed the highest possible data 

throughput, with no risk of overrun at the receiving units. However, 

it did mean that the failure of one slave unit would cause the test to 

stop because it would no longer be transmitting its handshaking 

messages. The master unit waited for such a message from every slave 

before transmitting the next test block of data. Unfortunately, 

although this could be overcome by operator intervention at the master 

unit, the slave units would still be in the middie of a BMST and 

normal control messages sent via the highway would be ignored. To 

overcome this problem a timed restart sequence was implemented in each 

of the slave units to cause the BMST to be abandoned if there was no 

highway soak test activity for more than five minutes at a time. A 

flow diagram of the BMST can be seen in Figure 6.3:2b. 

After extensive testing of the software, firstly in a single 

MC68000 system, and then on the complete highway system, it was 

decided that the sections of SIXTH program which generated and checked 

the test blocks of data could be usefully replaced by assembler 

routines, in order to speed the throughput of the test. Unfortunately, 

owing to the extreme complexity of the MC68000 assembler language, it 

was not possible to include an in-line assembler in the SIXTH system, 

(section 4.4) as is possible in other SIXTH systems. Instead, the 

assembler routines were written and assembled on the NOVA-3, and 

included in the SIXTH program as machine code. This alteration to the 

soak test improved the test throughput by an order of magnitude. The 

improvement was due to careful design of the assembler routines to 

avoid the inefficiency inherent in the use of subroutine threaded 

code. 

6-6 



Master Terminal Unit 

Send "START· 

Zero Gr nrrator Word 

·Generate a Block 

Send a Block 

Increment GW 

Slave Terminal Unit 

START 

---... • Storr Master~ Nlll'Ocr 

..... --- Send a Handshake 

Zero Generator Word 

·. Wlitforall Handshakrs ~ Srod m Error Rrport 

· · Send a Handshake .~--

ASH Messages 
·• 

Figure 6.3:2b BMST Flow Diagram 



6.3:3 Short Message Soak Test 

The mechanism used to govern the frequency of the short message 

soak tests (SMST) at ASWE is again largely emJ?irical. The operator 

specifies the transmission rate of test messages at each terminal in 

turn, and then instructs each unit to start the test. The latter 

operation is particularly ad hoc, since it is impossible to start all 

units simultaneously because the operator has to press a key on a VDU 

to start each unit and normally is unable to perform this operation on 

more than two units at a time. The problems encountered in the BMST 

concerning overrun also occur in the SMST. It was thus decided to use 

an entirely different system in the Durham SMST. 

The requirements for a SMST are that every terminal in the test 

should transmit and receive messages to/ from every other terminal in 

the test. There should be no 'transmitter' as in the BMST, rather 

every unit should generate its own test messages. Two schemes are 

possible to perform this test. In the first, each unit transmits and 

receives broadcast block messages, and in the second each terminal 

transmits and receives point-to-point messages. In the first scheme 

handshaking would have to be performed in much the same wa>' as for the 

BMST; i.e. a test message could not be transmitted unless a handshake 

message had been received from all of the units expected to receive 

the message. This could cause the same lockout problems as described 

in the BMST. Alternatively, the second method allows a considerably 

more elegant solution. If test message transmission is restricted to a 

point-to-point exchange with the unit from which a message has just 

been received then this overcomes the lockout problem. If a unit 

ceases to run the test then all that will happen is that no futher 

messages will be received from it by any other unit, and thus no 

6-7 



further messages will be transitted to it by any of the units. In 

addition this solution makes more efficient use of the ASH since there 

is no necessity to transmit handshake messages. 

Unfortunately, as with all elegant solutions, several 

difficulties were encountered ·with the second scheme, which was the 

one used in the Durham SMST. Firstly, the scheme used to maintain the 

generator word in the BMST would be very difficult to use because 

messages transmitted from a particular unit are no longer received by 

all other units, but by one unit only. Thus if there were five units 

in the test, unit 'A' would receive approximately one in four of the 

messages transmitted by unit '8', and these messages need not 

necessarily be spaced apart by regular intervals of four messages. 

This meant that a different scheme was needed to inform the recipient 

of a test message of the value of the generator word. Fortunately, the 

ASH protocols include provision for a 'message type' word of length 

nine bits, allowing up to 512 different message types to be specified. 

The test control messages were using several of the message types 

between 0 and 255 (section 6.3:4) and the message types 256-511 were 

set aside to specify generator bytes, as opposed to generator words. 

This meant that the least significant eight bits of the MTB in a short 

message test message were initialised by the transmitter· to the 

generator byte used,. and were used by the receiver to check the 

content of the recieved message. 

Another problem of the chosen SMST handshaking system was the 

increased complexity of the initial stages of the test. The complete 

block diagram of the test is illustrated in Figure 6.3:3a. Since each 

unit will only transmit a message to a terminal it has first received 

a message from, the startup section of test must perform two 

functions. Initially, every unit in the test must broadcast a message 

6-8 



Master Unit 

START 
\ 

Send Highway Num~r 

Send a Broadcast 
Message 

Make a li-st of all 

Messages Received 

Send a Test Message 
to all Units on List 

Send Reports to MC6809 

ASH Messages Slave Unit 

-------...{Record MasteB Number J 

Send a Broadcast 
Message 

Make a list of aU 

Mess~es Received 

Send a Test Message 
to cil Units on List 

y 

Send an Error Report 

Figure 6.3:3a SMST Flow Diagram 



to inform all of the other units that it is present and ready to 

participate in the test. Secondly, each unit must store a list of the 

terminals which broadcast to it in this manner, and subsequently issue 

one test message to each of the units in this list. After this has 

been performed the test may proceed as previously described, since all 

the terminals in the test should now have received one message from 

every other unit in the test. 

A final problem with this test is that the timeout system used 

in the BMST will not function correctly, since if one unit stops the 

others will continue to operate. To overcome this problem an 

additional control message was added (section 6.3:4) which when 

transmitted by any unit on the highway caused all the other units to 

abort the SMST. 

6.3:4 Test Control Software 

As previously described, it was necessary to provide some means 

whereby a master unit could maintain control over the other slave 

units in the tests via the ASH. Several methods were tested, but the 

method finally chosen had the advantage of simplicity of programming 

over the other possibilities. 

As described in section 4.3, SIXTH makes use of a line buffer 

which is normally updated from the VDU or from the routine used to 

perform a RELOAD. It was decided that the simplest possible method of 

'remote' control by a master unit over the slave units would be to 

provide some mechanism in the slave's SIXTH program which would allow 

the master unit to send a SIXTH command line via the ASH which would 

then subsequently be interpreted in the normal (section 4.3) way by 

the SIXTH kernel. This routine consists of two parts, the routines 

6-9 



which allow a command to be sent from the master unit and the routines 

which process the command in the slave unit. The former routine is 

very simple and merely sets up an output buffer in the FEP buffer 

space which contains a SIXTH command line. The routine at the receiver 

is much more complex, and uses an interrupt service routine, driven by 

the Programmeable Timer Unit (PTM) at intervals of one second. This 

interrupt service routine checks the state of the receiver's input 

buffers. Should a message have been received in the previous interval 

of one second the service routine· determines whether or not it is a 

control message. This is determined by examination of the message 

type. Types 0-255 were defined to be available as control messages. 

Currently there are only three types defined. One of these types is 

used in the test handshaking scheme, the second in the status and 

error report scheme, and the third is used to pass control messages to 

the SIXTH interpreter. The reception of any one of these three valid 

control messages causes SIXTH to stack the current machine state and 

process the command message. Upon completion of this processing the 

machine's previous state is unstacked and execution continues from the 

point at which it was halted. Thus, as long as a user program does not 

mask out the PTM interrupts, this scheme will operate invisibly during 

execution of any program, or whilst SIXTH is awaiting commands from 

the VDU. Alternatively, the section of the routine which performs the 

checking and processing of the command messages may be explicitly 

executed by the user at any time. 

Thus to start a test running in a slave unit, the master 

merely has to send a command via the ASH which is identical to the 

command that an operator would use to start the test (were there a VDU 

connected to the slave unit). Thus sending the command 'SSRUN' via the 

ASH would start the SMST, as would typing the command 'SSRUN' onto a 

6-10 



VDU connected to the slave unit. 

Once started, the SMST disables interrupts and executes the 

command message processing routine periodically to check whether a 

relevant command has been sent. The abort command, which may be issued 

by the master unit (SABORT), sets a 'halt' flag in the slave's memory 

and this is also checked periodically. Should the flag be set, the 

test is abandoned. 

6-11 



6.3:5 Test Report Software 

In order to monitor the activity of the highway during both the 

BMST and the SMST, and to gather any information concerning errors 

occurring during these tests, reports were issued by each terminal. 

These reports were received and buffered by the master terminal. A 

report buffer was maintained in the master unit's memory for each of 

the slave units. When any one of the buffers was more than 75% full, a 

message was sent by the master unit to the MC6809 development system, 

via an RS232 link, requesting the use of floppy disk storage. When a 

response was obtained from the MC6809 system the relevant buffer was 

transmitted down the RS232 link. Then the MC6809 system wrote it onto 

floppy disk. During the BMST, the master unit w~s not participating in 
~ --- . - -------- . 

the soak test, thus test reports were only issued from the slave 

units. However, during the SMST all of the units, including the 

master, were participating in the test and test reports were issued by 

all of the units. The report software was in three distinct sections; 

the issueing _section (in all units), the receiving section (in the 

master unit) and the storage section (in tt-Je MC6809 system). Flow 

diagrams for each software section may be seen in Figure 6.3:5a. 

The issueing section could issue two types of reports. The 

standard type, whose format may be seen in Figure 6.3:5b, and a 

special error report, whose format may be seen in Figure 6.3:5c. The 

standard report was issued periodically after a preset number of soak 

test cycles. It included information on the total number of errors 

detected by the FEP, the total number undetected by the FEP, the total 

number of messages received, and in the BMST, the number of messages 

receieved out of sequence. During the SMST separate counters were 

maintained for the number of messages received from each unit in the 

test, whereas only one such counter was used during the BMST because 

only one unit was transmitting. 

6-12 



lssueing Section 

H
1
Time to Issue a Report? j 

Send an ASH Point to Point 

Message to Master Unit 
-~1-..-!:=~~:::::----

IEXIJ _j 

Storage Sect ion 

n Anything Received 
from MC68000? 

Acknovit 

Wait to Rtceive a 

Rec_exd 

Full? 

Flag ERROR 

Receiving Section 

Append New Report to End 

~of Relevant Buffer · 

Have we Received an 

Acknowledgement Y 
from the MC6809?-

n 

Are any of the Report 

Buffers Overftowin ? 
n 

--------------n 
~-+-w 

Request Service cl MC6809 

Send a Record t-------+--

Figure 6.3:5a ASH Test Monitoring and Report 
Software 



BMST Report Format 
I 

Source Tim• Undetected ErrorSt Octttttd Errors Out d ~ence 

[ I f_ - _1 ___ -_l~m:L . I 
0 1 2 

··.·-/ 
Source 

3 4 5 

/• /_ 
Undetected Errors 

SMST Repert Format 
Figure 63Sb 

6 7 8 9 A 

S -171 I 
Source Fleig Bit map. of Incorrect Test Words ----------... 

Error Report Format 

Figure 6J:Sc 



The second report type was issued immediately after an error was 

detected by the soak test software which had not been detected by the 

FEP. The ASH should be a guaranteed error free message delivery 

system, thus if the soak test software found an undetected error it 

implied that there had been a breakdown in the error detection system. 

The error report consisted of a count of the number of errors which 

were detected by the software, and a map of the bits which had been in 

error in each of the incorrect bytes of received data. This bit map 

could be analysed at some other time to discover in what way the error 

detection scheme had broken down, and how it could be improved upon to 

eliminate such errors. 

The second section of the report software, the receiving 

section, was part of the interrupt service routine described in 

section 6.3:4. Report messages had a 'message type' of 1. If the 

interrupt routine in the master unit detected a 'type 1' message it 

would then check the message to determine the source, and store the 

message at the end _ol_the _relevant buffer.- -A -further routi-n-e,- which 

was executed periodically during the test, checked the buffers, and if 

any of them were more than 75% full, initiated the section of the 

program which transferred the buffer of reports to the MC6809 and 

reset the buffer pointers. This section of program was very simple, it 

merely sent a request to the MC6809 system to be serviced. When this 

request was acknowledged, the reports in the relevant buffer were sent 

to the MC6809 one report at a time. After the MC6809 had processed 

each report it issued an acknowledgement which caused the master unit 

to transmit the next report. If the MC6809 hung up for any reason the 

master unit would eventually time-out and signal a buffer overrun 

error to the operata~ 

During the SMST, when the master unit was also issueing 

6-13 



reports, these were entered directly into the relevant buffer in the 

master unit, rather than being sent on the ASH. That buffer was then 

treated in a similar manner to the slaves' buffers by the sections of 

program which checked for 'buffer full' and sent the reports to the 

MC6809 system. 

The final piece of the report software was the section running 

on the MC6809 system. This program was written in assembler and 

performed three_ functions. Firstly it maintained the link with the 

master unit, waiting for any requests for communication to be issued. 

Secondly, when one of these requests was received it acknowledged it, 

and then proceeded to receive the report buffer as detailed above. 

During the reception of the buffers, they were stored in memory and 

after the entire buffer had been received they were written to disk, 

in order to keep the time which the master unit was 'communicating' 

with the MC6809 down to a minimum. This was necessary because during 

that time the master unit was no longer participating in the soak 

test. Finally, the MC6809 program performed monitoring and maintenance 

functions. The program checked the disks, and was able to swap to 

another disk unit when the previous one was full. If there was not an 

empty disk available, the program would flag the operator to change 

the disk. A small degree of monitoring of the reports being stored was 

also possible, in the form of a display of the most recently received 

reports from each of the units in the test. This could be called up by 

the operator from a VDU connected to the MC6809 system. 

6-14 



6.4 Test Results 

6.4:1 Analysis ··techniques 

As previ~usly described, the results from the sea trials were 

collected onto floppy disks at the MC6809 monitoring station. This 

process continued for the almost the entire week of the sea trials. 

The tests were only stopped in order to change between the block 

message and short message tests. This resulted in the collection of 

some 3Mbytes of data which had to be processed and analysed. In order 

to provide some control data for the· experiment, the tests were also 

run in the laboratory at Durham University. Also, in order to have 

some data on the conditions in which the units were operating, the 

technical staff on board ship filled in detailed logs if there was any 

change in the status of electrical equipment, e.g. convertors or 

generators switched on or off. It had been suggested that the units 

which were operating in the more electrically 'noisy' environments, 

would be subject to a greater number of receive errors._ For the 

purpose of the trials, the units were numbered as follows:-

0) FTO- Fixed Trials Office-Deck 1 

1) CCR(H.P)- H.F. Transmitter- Deck 2 

2) CRO- Radar- Deck 2 . 
3) OPS- Deck 1 

4) CMR- Conversion Machinery Room- Deck 3 

The data which was collected during the sea trials was processed in 

two different ways. Firstly it was checked for the occurrence of 

undetected errors, and secondly for the occurrence of detected errors. 

Then graphs were plotted of the log error rate against the time for 

6-15 



each terminal. 

The task of analysis was performed by an MC6800 system which was 

running BASIC. The trial records were read in off the floppy disks 

with the aid of a small section of assembler code. Then the error rate 

was calculated over a certain integration period, which could be 

preset by the user. Finally, the MC6800 plotted the results on an HP 

flat-bed plotter. 

6.4:2 Discussion of Results 

With such an enormous amount of data to be analysed, it became 

immediately obvious that it would be impossible to plot graphs which 

covered the reports from all of terminals for the complete trial. 

Instead, graphs were plotted for a certain time period for all of the 

terminals in an attempt to relate their physical environment to the 

error rate which occurred at that terminal. Then it was hoped that 

some of the data collected on the ship machinery logs could be used to 

explain any fluctuations in error rates. 

The first thing which was discovered was that no errors 

occurred which were undetected by the ASH hardware during the entire 

length of the trials. This meant that no further analysis of that 

particular type of error was necessary. 

Next the detected error rate was analysed. A selection of 

graphs can be seen in Appendix E. Graphs 1-5 show an analysis of the 

log error rate for the first six hours of the trials. During this 

period the ship was preparing to leave port. Each point plotted on 

these graphs represents one minute of data. It can be seen at this 

point that there is a very close correlation between the error rates 

6-16 



in graphs 1,3 & 4, whereas the graph for the terminal in the CMR room 

(graph 5, ·number (4)) appears quite different. This difference implies 

that the errors w~re induced directly into this terminal unit rather 

than onto the highway cable itself, otherwise the error rates would be 

identical at all of the terminal units. The physical positioning of 

this unit would support this theory, since the CMR was the only 

compartment on Deck 3 which had a terminal unit in it. It was 

definitely the most severe environment since it contained 

approximately eight high powered rotary convertors. The results 

-detailed in graph. 6 also support this theory. These are the error 

rates for the unit in the F.T.O. which was a shielded test office, 

with its own stabilised A.C. supply. As can be seen, the error rates 

for this unit are lower by more than an order of magnitude. 

Additional series of results are shown in graphs 7-11, 12-16, and 

17-21. These graphs all show a consistancy of error rates for the 

remote units of approximately 1 part in 105, and for unit 0 of between 

1 part in 106 and 1 part in 10 7• 

The conclusion which must be drawn from these results is that 

the highway cabling is virtually unaffected by the environment in 

which it ___ js placed •. Any fluctuation in the error rate between 

different· terminal units is caused by the environment in which that 

particular unit is situated. This change may either be due to the 

quality of the supply to the unit, or to direct electromagnetic pickup 

within the unit. Also, after a comparison with the machinery logs, 

there appeared to be no direct correlation between changes in the 

state of the machinery and the error rates. The machinery in the 

C.M.R. was running continuously thus there were no changes. in that 

compartment which would affect the error rate of that terminal unit. 

As addditional evidence to support this conclusion, graph 22 

6-17 



presents remote terminal tests carried out in a control experiment at 

Durham. ~-~- this environment, it can be seen that the error rate is 

very similar to that measured in the F.T.O. on board the ship. 

6.5 Conclusion 

A software environment suitable for running tests on board a ship was 

designed and implemented. Hardware was constructed and installed 

aboard the ship in four remote compartments, and a test office. The 

highway was tested continously for a week, and a large volume of data 

was collected. After detailed analysis of the test results, two major 

conclusions were reached. Firstly, the protocols implemented in the 

ASH_ were capable of preventing any undetected errors being passed on 

to the computer system to which the terminal units were connected. 

Secondly, there was a level of background noise causing an error rate 

of· approximately 1 part in 106, but depending upon the environment in 

which the terminal unit was placed, the error rate could increase by a 

factor of ten. 

Based on these conclusions, it can be recommended that the 

exact source of this increased error rate is determined. Since great 

care had been taken in the design of the power supplies for the 

terminal units, and they had been tested in the laboratory under 

severe conditions of simulated ~upply fluctuation, it can be 

reasonably assumed that the increase in error rates was due to 

interference with the internal circuitry of the terminal units. If 

this could be proved to be the case, possible greater attention to 

screening of the unit as a whole, or certain sections of the circuitry 

in particular, might alleviate the problem. 

6-18 



Dlapter 7 

LAN Technology 

7.1 Introduction 

Many research centres are currently attempting to increase the 

performance of the basic types of LAN by the . introduction of new 

techniques and the mingling of different LAN technologies. Each basic 

type of LAN has its advantages and disadvantages, and by careful 

redesign it is possible to reduce the disadvantages of each type to a 

minimum. The ASWE Serial Highway was designed after careful 

consideration of the network technologies available at that time. It 

has now reached a stage of development at which any advance in its 

performance may have to be achieved by a radical change in its design. 

It is possible that several of its most serious limitations may have 

been overcome elsewhere in the research being performed into LANs. 
·. 

Specifically, the areas which are of most interest are the necessity 

for centralised control, the survivability of the ASH after damage, 

and the system throughput under normal and abnormal loads and 

constraints. 

However, in the case of the ASH a necessary constraint on any 

system modifications is that they should still conform as closely as 

possible to the specifications [11]. For example, although system 

throughput could be increased dramatically by a change in transmission 

media from a twisted pair to fibre optic cables, this would mean a 

radical and undesirable change to the specifications. Alternatively, 

the provision of a more flexible system of redundant controllers, or 

possibly the use of decentralised control, need not involve a radical 

change of specification. 

A review of much of the work which has been performed on 

improving LAN performance has been carried out, and an attempt has 

been made to relate this to the current ASH. Suggestions are made for 

system redesign which attempt to conform as much as possible to the 

7-1 



current specifications. 

7.2 Review of Basic LAN Dlaracteristics 

The basic operation and characteristics of the common LAN 

architectures was discussed in section 1. The architectures fall 

approximately into two classes, ring and linear bus. The ring systems 

theoretically have the advantage of completely decentralised control, 

however their system of signal regeneration at every node, and the 

single ring cable normally used, mean that the system is vulnerable to 

the failure of single nodes or cables. The ring systems may be 

categorised into three types; the Pierce Loop, the Newhall Loop, and 

the Delay Insertion Loop. 

A Pierce Loop consists of fixed length message time slots 

circulating around a loop, which fill the loop length. Examples of 

this type are the original Pierce Loop [34 ], and the Cambridge Ring 

[ 6]. A ring monitor/ control node must be included in this system to 

maintain the messag-e slots. This type of system can accomodate 

multiple simultaneous users. 

A Newhall Loop serves only one user at a time, who passes a 

'bus available' token when its message transfer is complete. Examples 

of this are the original Newhall Loop [35 ], and the NPGS ring. Once 

agian, a master node must monitor the ring to ensure that a token is 

circulating. 

Each node in a delay-insertion ring system contains two shift 

registers. One ·is permanently connected to the incoming signal, and 

the other is used to accomodate user messages. When a message has been 

placed in the second register by the user, the node awaits a clear 

space on the ring. When this occurs, the user message is clocked out 

onto the ring. If an incoming message should be received during the 

7-2 



time the message is being clocked onto the ring, it is shifted into 

the first register, and clocked out onto the ring at the end of the 

user message. The nodes are responsible for the removal of their 

messages when they have circulated around the ring. A monitor/ control 

unit is riot necessary in this type of system. An example of this is 

the DLCN ring [ 37 ]. 

A comparison of the three types of basic ring system [ 38] shows 

that although a Pierce loop allows simultaneous users, a small ring 

size restricts the number of time slots available, thus restricting 

the number of simultaneous users. A Newhall loop is superior to a 

Pierce loop at high mean message arrival rates on small rings. A delay 

insertion loop allows simultaneous users. However an elaborate 

protocol may be needecJ to handle real-time data due to the 

unpredictable message delays caused by intervening nodes transmitting 

to the bus. Of the three, only the delay insertion loop has no 

requirement for a master node at some point on the ring. 

-Simulations of- the- performance of the Cambridge ring 

system [39,40] have shown it to perform well under conditions of low 

load. However, an increase in the number of nodes on the ring can 

seriously degrade its handling of real time messages due to the time 

taken for the signal regeneration at each node. Under conditions of 

heavy loading the message transmission delay increased towards a 

guaranteed maximum value. The standard Cambridge ring system uses 38 

bit packets, of which a maximum of 16 may be used for data. Thus there 

is a mimimum inherent overhead of 58 percent in the system. 

Linear Bus LANs may be divided into two more general classes, 

synchronous and asynchronous. The former requires some form 

centralised control function, whilst the latter uses completely 

decentralised control. A system which uses decentralised control has a 

7-3 



very high reliability, however at high bus loading the mean message 

arrival times will be significantly higher than in the centralised 

control system, due to the bus arbitration techniques used. As already 

described, the ETHERNET [8] system is an example of a CSMA-CD LAN 

(Carrier Sense Multiple Access with Collision Detect) in which bus 

control is achieved by a system of collision detection and random 

retransmission. In such a system bus utilisation can reach ·98 percent 

under heavy loading [8] using data packets of length 512 bytes or 

longer. Approximately 21 percent of this traffic is ETHERNET overheads 

such as packet headers, implying that under these conditions of very 

high load, useful bus utilisation can exceed 75 percent. However if 

the size of the packets is reduced whilst maintaining the bus loading, 

ch anne! utilisation drops dramatically due to the increased number of 

collisions. If a packet length of 64 bytes is used, utilisation drops 

·to approximately 80 percent,· giving a useful bus utilisation of 

approximately 63 percent. Simulation suggests [ 39,40] that for the 

long- packets, message- transmission delay times can increase by a 

factor of ten (as compared to low loading), whilst for short packets, 

the delay can increase by factor of 50. Additionally, there is no 

error recovery scheme inherent in the design of ETHERNET, thus any 

additional error recovery messages included in the basic protocol 

would reduce the utilisation still further. 

The ASWE Serial Highway uses a centralised controller. The polling 

scheme, which is in operation at all times, polls every terminal in 

turn and represents a constant overhead. A controller poll consists of 

7 bytes, as does a Nothing to Transmit response from a terminal. A 

typical message from a terminal with some data content has a length 

in the range 12-72 inclusive, and includes 12 bytes of control 

information. Under conditions of maximum loading, where every 

7-4 



transmission from a terminal is a maximum length information message, 

the effective channel utilisation is approximately 76 percent. This 

decreases as the load decreases to 50 percent useful utilisation at 31 

percent loading. Their are two major advantages of this system; 

firstly, the message transmission delay time at high loading is 

increased by only a factor of six as compared to the low loading 

situation (for a maximal system consisting 64 terminal units). 

Secondly, an error recovery scheme is included in the message 

protocols, and this scheme only necessi~ates additional bus traffic if 

an error is detected. In this system, the controller maintains the 

recovery scheme, and a message backup store is not needed in every 

transmitting node, as would be the case if a standard ETHERNET system 

was to include error recovery. 

7.3 Improvements to the Basic LAN Technologies 

7 .J:l Ring LANs 

- A great~ deal- ol~research has been carried out- on several areas 

of the ring LAN technology in an attempt to eradicate some of the more 

obvious disadvantages. The first of these areas concerns the problems 

of ring failure due to the malfunction of a ring node or interelement 

cable. The Litton-DPS system [41] is designed for military 

applications and incorporates dual redundancy of the ring cabling to 

decrease the systems' vulnerability. Two cables connect every node on 

the ring. The primary loop is used for data, whilst the second is used 

for backup. The bus controller, which may be any unit on the bus, 

continually monitors bus operation for abnormal conditions. A backup 

bus controller is also assigned, whose task is to monitor both the bus 

and the bus controller, and to assume control when it determines that 

the normal controller has failed. An idle pattern is continually 

7-5 



transmitted on the backup ring to enable its status to be monitored. 

The failure of any node is easily detected, and those nodes adjacent 

to the failed node can automatically switch that node out of the ring 

(Figure 7.3:1a). It is based on a Newhall ring system. The bus 

controller provides clock synchronisation for the ring, and maintains 

the 'Go Ahead' token. If more than one node or cable failure occurs, 

the ring can still function as two or more separate smaller rings, 

·since the bus controller function may be dynamically reassigned. The 

system is implemented using advanced high speed processors and the 

current transmission rate of 20mbits/ sec can be increased by the 

replacement of the coaxial cable bus with a fibre-optic bus, with no 

change to the ring protocols. 

The Litton-DPS system has approached the problems of ring 

vulnerability with the addition of a more complex communications 

processor at every node. As a possible alternative, work performed at 

MIT [ 42] suggests a much simpler alternative using a 'Star-Shaped Ring 

Network'. In a normal Cambridge ring system, the electronic failure of 

a node is protected against by providing a bypass relay which will 

connect the input cable to the output cable should the node fail to 

maintain a signal 'I am functioning correctly'. Unfortunately, should 

this signal be maintained if the node is not functioning correctly, 

the bypass relay cannot be activated, and the ring will be rendered 

unusable. This will then necessitate the local testing of every node 

to attempt to discover the unit which is malfunctioning. The work 

performed at MIT recommends the inclusion of a 'wire centre' to which 

all of the cables are routed, as shown in Figure 7.3:lb. The bypass 

relays are re-sited at the wire centre and the cabling to every node 

consists of two ring cables (input and output) and the 'I am 

functioning' signal. This signal is monitored by the wire centre, as 

7-6 



,: 

- L·IT TON·-DPS Sy~em 

~ 

... 
L 

~ 
.._ 

t 

.. . - .. 

~ X ~ t ~ 

Dual Ring aUows automatic rtconfiguration 

in the event of the fa1lure of a 
node. 

Figure 7.31a 



Wire 
Centre 

Star Shaped Ring LAN System 

Figure 7.3:1b 



is the activity on the ring cables •. A failure of the signal, or 

abnormal activity (or lack of activity) on the cables from any node 

result in the bypass relay being activated. This scheme also allows 

greater ease of reconfiguration, since there is no need to break the 

ring to add further nodes. An additional cable need only be connected 

into the wire centre, and when the node is operational, the relevant 

bypass relay will be deactivated. 

As mentioned, the first approach involves a far more complex 

communications processor in every node. The second approach is 

simpler, but more vulnerable since damage or malfunction in the wire 

centre could cause complete ring failure. 

An additional problem in any ring system is that it is 

impossible to incorporate any type of priority access scheme. This is 

due to the round robin token passing system which is inherent in a 

ring network, and in certain applications is a serious drawback. 

7.3:2 Decentralised Control Linear Bus LANs 

ETHERNET has many advantages over a ring system because of its 

passive bus construction. Its overall bus utilisation and message 

transmission delay degradation at high loading cannot be significantly 

improved while still using the original CSMA-CD principles. However, 

priority access can be included into the ETHERNET system [43]. This 

allows important information to be transmitted with less delay at 

times of high bus loading. This priority system functions as follows; 

each packet is preceded by a preamble signal of length corresponding 

to its priority. A packet of the lowest priority has no preamble 

signal. When the channel is busy, a station wanting to transmit a 

packet waits until the channel becomes idle. When a collision is 

detected during transmission, the station does not stop transmitting 

7-7 



the packet if the collision is within its preamble period. When the 

collision becomes undetected during its preamble, the station 

continues to transmit the packet. This case means that the other 

packets had priority levels lower than that of its packet. When t.he 

station detects collision during the transmission of its packet, it 

aborts the packet and retransmits it after some random delay. This 

corresponds to the case when the other packets' priority was higher 

than that of its packet. In a system using two priority levels, when 

the ratio of the traffic of the higher level packet to the total 

traffic is small ( less than 20 percent) the higher level packet is 

nearly always successfully transmitted after only one trial, even 

under heavy loading [ 43]. 

Motorola have devised a system [44] in which the round-robin 

polling scheme described in section 1.1:2 has been implemented using 

completely decentralised control. In normal operation, each node 

sounds-off in sequence by sending a packet which identifies it as the 

current user of the channel. All other nodes hear these sound-off 

packets and synchronise to them. Each node finds its place in the 

sequence when it is time to sieze the channel. If a node has 

information to transmit, it sends the data immediately after its 

sound-off packet, up to a predefined time limit. All other nodes 

monitor the channel, and can determine when it has finished occupying 

the channel so that the following user may proceed. 

When a user node fails, the other users detect the failure by 

sensing that the channel has been idle longer than the prescribed 

waiting time. When this happens, all nodes know who is the next 

expected user, and update their 'next expected user' counters 

accordingly. Although the sound-off packets contribute to the system 

overheads, they do contain message source information which may 

7-8 



therefore be omitted from the information packet. New nodes may be 

added by updating the user lists at each node. 

This system does not need a centralised controller, however one 

or more of the nodes must have the ability to cause the other nodes to 

alter their user lists. Since this system is essentially a message 

slot system, the choice of maximum information packet length will 

dictate the message transmission delay. A priority scheme cannot be 

implemented in this system due to the round-robin nature of the access 

scheme. 

In conclusion, in ETHERNET systems, although overall message 

transmission delay times may be seriously degraded by high bus 

loading, a great improvement may be achieved for a small percentage of 

the traffic by the inclusion of a system of message priorities. A 

sound-off scheme can succesfully be used to decrease this delay time 

under high loading, however a priority system cannot be implemented. 

ETHERNET is most efficient under light loading, when very few 
-

collisions occur, whilst the sound-off scheme, which is similar in 

effect to an LAN system with a polling mechanism, is more efficient at 

higher. loadings. 

7.3:2 Centralised Control Linear Bus LANs 

A system designed by Sperry Univac for the Canadian Government 

utilises multiple bus cabling and reassignable centralised bus control 

[ 45 ]. This system is part of SHINPADS (SHipboard INtegrated Processing 

And Display System). The key areas of interest in the development of 

this bus system were bus access time, and transmission system 

reconfiguration time. There are several bus cables, of which two are 

used at any time. One is the control channel, the other is the data 

channel. The former is used solely for the purpose of system control 

7-9 



and reconfiguration, whilst the latter is reserved entirely for 

message traffic. Bus arbitration is carried out on the control 

channel, with the net result being a controlled allocation of the 

other channel for the purpose of sending data. This allows 'pipeline' 

levels of performance to be achieved on the data channel. Any of the 

available channels may be used as a control or data channel. The 

arbitration is carried out by a reassignable bus controller. Each node 

includes a control processor which can function either as a normal bus 

node, or as a bus master and bus node. The node assigned to be bus 

master polls the other nodes and determines their data channel usage 

requirements. It then dispatches the authority to transmit on the data 

channel to the node with the highest priority. The node priorities and 

the frequency of polling of nodes relative to others are under user 

control. Requests for the use of the data channel fall into one of two 

categories; immediate and normal. In the immediate mode, the relevant 

node is given immediate access to the data channel at the end of the 

current transmission, providing there are no other immediate requests 

in the controllers queues. In this case the new request is added to 

the end of the queue. Normal requests are queued according to the 

priority of the requesting node. The terminal nodes continually 

monitor the control channel for activity. If no activity is detected 

for more than a certain period, the activity on all other channels is 

monitored for normal control activity. Should this be detected, a 

systematic change of active control channels will take place in the 

terminal node. If no activity is detected on any channels, then the 

bus controller function must be reassigned to one of the other nodes. 

Currently, this reassignment is directed by the user, who may either 

direct the node to which he is connected to assume bus control, or. may 

direct another node to assume bus control. 

7-10 



In a polled linear bus system, the overheads due to the poll­

response system cause great inefficiency under conditions of light 

loading. As a possible solution to this problem, an adaptive polling 

technique has recently been proposed [46,47[. The essence of this 

technique, which has been designated probing, is to poll groups of 

terminals rather than individual units. If a member of a group of 

terminals being probed has a message to transmit, it responds in the 

affirmative by transmitting on the bus. Upon receiving a· positive 

response to a probe, the controller splits the group into two sub­

groups and probes each in turn. This process continues until the 

relevant terminal is isolated. This type of polling system is 

essentially a tree search. The best system performance may be obtained 

by dynamically varying the size of the group being polled, according 

to ·the probability ·of a terminal having a message. Thus at times of 

high loading, the polling system would be similar to that in a pure 

polling system, whilst in times of light loading, large groups would 

be polled. Compared to the conventional poling system, this system 

will offer substantially improved message transmission delay times at 

light loadings, and similar delays at heavy loadings. 

In conclusion, it can be said that in conditions of high 

loading, the centralised control bus systems are superior in 

performance to the decentralised systems. It is very easy to add a 

priority polling scheme because the controller has complete control 

over the allocation of bus access. New terminals may be added to the 

polling system by merely causing the controller to add another 

terminal to its polling scheme. Unfortunately, the pure polling scheme 

becomes inefficient .when used on a bus with a large number of 

terminals, and the probing technique described improves the 

performance of a polled system when there is a large probability that 

few of the units will have a message to transmit. Due to the fact that 

7-11 



a central controller is used, care must be taken in providing a 

mechanism for this function to be reassigned after equipment failure. 

Complete network failure will result should this function not be 

reassigned. 

7 .LJ A Second Generation ASWE Serial Highway 

It has become obvious during this review of different systems that 

when faced with similar criteria for the choice of LAN technology, 

different research groups have made different choices of LAN 

technology. In general it would appear that when a decision is made to 

seek an LAN with better characteristics than available from the one 

currently in use, most groups chose to upgrade their current system, 

rather than to switch technologies. 

In the case of the ASH, it would appear that the original aims 

of the system designers cannot be fulfilled by a radical technology 

change. A ring system_ could .. not offer_ the system survivability offered 

by the passive linear bus. It is interesting to note that the Litton­

DPS system [41[ is being developed for the same type of military 

applications as the ASH, however its designers consider that it is 

sui table for this environment. The addition of the second ring cable 

allows single node or cable failure, however if more failures occur 

the ring will be segmented into several sections. This is clearly 

undesirable, when in a linear bus system it would be possible to 

include a higher level of cable redundancy to protect against a 

greater number of cable failures. 

The CSMA-CD systems offer an attractive alternative to the 

polled system currently used. However, the uncertainty in message 

transmission delay times would be a serious problem in a LAN system 

7-12 



primarily concerned with real time data. Additionally, a priority 

system is essential for the transmission of critical data in military 

applications. The priority ETHERNET system described would be a 

possible alternative to the polled system currently being used. It 

offers the advantage of completely decentralised control and is the 

best alternative of the asynchronous linear systems. 

It is, however, a requirement that the original ASH specification 

be conformed to as much as is possible. The areas of interest in a 

second generation ASH are; decentralisation of control function, and 

decreasing the polling scheme overheads on the bus. A possible 

solution to the latter is the probing scheme described. The addition 

of grouping protocols related to the terminal units 'Highway Number' 

would allow this system to function and necessitate very little change 

to the basic specification. However, the combination of the probing 

technique and the SHINPADS serial data bus techniques would provide a 

very powerful second generation technique. If a probing scheme was 

use-d--on the control channei --it would reduce the data channel access 

time due to the normal polling system overheads. Also, the since the 

control and data channels are being operated in parallel, a great 

inc~ase in message throughput could be achieved. 

In the current ASH system, the highway controller is entirely 

separate, in both hardware and software, from the computers to which 

the terminal units are connected. Any change in the polling list or 

polling priorities must be originated by the computer which is host to 

the highway controller. Adoption of the system suggested above would 

allow such alterations to be originated from elsewhere in the system, 

because the controller function would be incorporated into the 

terminal nodes and its tables could be altered by appropriate 

instructions to its co-resident terminal node. The controller function 

7-13 



·would be duplicated at all the nodes, however only one controller 

would be active at any time. If that controller should fail, its 

function could be taken over by another node, possibly on the basis of 

'highway number' or possibly by contention access. The present system 

of error recovery could still be maintained, as could ·the present 

protocol system. The control messages would be transmitted on the 

control bus and the information messages on the data bus. Without the 

inclusion of the probing scheme or any protocol changes, this would . 
mean that the throughput could be increased dramatically for low 

loads. By the addition to the protocols of a control message from the 

terminal units saying 'Yes I have something to transmit' and a message 

from the controller saying 'Proceed', the throughput under all loading 

conditions could be improved, due to the fact that while the data bus 

was in use, the controller could continue its polling cycle until it 

found a terminal with something to transmit. It would then wait until 

the current data bus user had completed its transmission, and signal 

to the relevant terminal- node that- -it- eould -proceed. 

This design change would necessitate a large change in the 

hardware of the interface. However, several of the inherent problems 

in the current ASH would be removed, and the survivability of the LAN 

system would be greatly increased. 

7-14 



7.5 Conclusion 

This section has described in detail various alternative 

approaches to improving the characteristics of the basic LANs; the 

ring systems, the decentralised control linear bus systems, and the 

centralised control linear bus systems. Several of the techniques used 

are now implemented in working systems, whilst others are still at the 

simulation stage. It has become obvious that the mingling of different 

LAN technologies gives a significant improvement as compared to the 

original systems. A second generation ASWE Serial Highway system has 

been considered, in which the original specifications are conformed to 

as closely as possible, and the original design criteria are used in 

the selection of new techniques. A system based upon a twin channel 

centralised control system was chosen as the most attractive 

possibility. This type of system offers a greater system . throughput 

under all loading conditions by operating the control and- data 

channels in parallel. The addition of a completely reassignable 

controller function, by incorporating the controller function into 

each of the terminal units, would give a great increase in 

survivability. An adaptive polling technique, known as probing, is 

discussed, and it is suggested that its inclusion in the second 

generation ASH, while necessitating some message format changes, would 

give an even greater improvement in the low loading message 

transmission delay time. 

7-15 



Chapter 8 

Conclusion 

Distributed computing systems fall into two categories, loosely 

and tightly coupled. The loosely coupled systems normally communicate 

via a serial cable, and are known as Local Area Networks. These 

distributed systems are used as replacements for large single 

mainframes, as the distribution of hardware and software greatly 

improves the systems' survivability and eases the initial testing. 

Most LAN systems currently under development fall into one of two 

categories, ring or linear bus. 

ASWE have developed their own LAN for naval applications in the 

late 1980s and 1990s. It is based on a linear bus LAN with a central 

controll~r. The addition of redundancy of the controller function and · 

the cabling gives greater system survivability. Ths system has been 

used as a laboratory test bed for some time, and the basic principles 

of operation have been well proved. It is implemented using high speed 

bipolar bit-slice microprocessors in dedicated front-end processors. 

These FEPs communicate with their minicomputer hosts via an area of 

shared memory. 

There are several alternative LAN technologies available. Ring 

LANs are most suited to office applications using short rings, where 

the delays introduced by signal regeneration at every node are not 

significant, owing to the non real-time nature of the messages. Also, 

the ring LANs are very vulnerable to cable or node failure, and if 

they are to be used in military applications great care must be taken 

over the provision of redundant signal paths to protect the integrity 

of the system. Although this type of LAN theoretically has the 

advantage of completely distributed control, in practice most of. the 

common systems have a monitor/ control station to supervise the LANs 

8-1 



activity. 

Linear bus LANs are more suited to military applications than 

ring LANs due to the possibility of using· a passive bus (no signal 

regeneration at nodes). There are two possible types of linear bus 

LANs, those with decentralised control, such as ETHERNET, and those 

with centralised control, such as the ASH. The former has greater 

survivability, whilst the latter performs better in conditions of high 

bus loading. 

This thesis has described the replacement of the minicomputer 

hosts normally used with the ASH by microcomputer hosts based around 

Motorola's MC68000 16bit microprocessor. This replacement gave an 

enormous reduction in size, allowing the new system to be installed on 

board a ship. Tests were performed on the integrity of this system 

whilst the ship was performing normal manoevres. Analysis of these 

results has given the first performance data on the ASH system when 

used in the environment for which it was designed. It performed 

perfectly- at all--times, and there was no indication that any of the 

error protection systems currently employed would need to be changed. 

As part of this system, a portable highway controller was 

developed. This aroused considerable interest within ASWE, as it was 

able to perform all of the functions which are currently performed by 

a highway controller FEP with a Ferranti Argus host, at a fraction of 

the current cost and size. Separate trials of this unit have been 

performed at ASWE, over long periods of time (months). These have 

indicated that the unit performs to its specifications, and a new 

controller unit may be manufactured based upon the highway controller 

designed and built at Durham. 

A review of work currently being performed in the LAN field has 

been carried out. The shortcomings of each type of LAN system are 

. 8-2 



being reduced by mingling the different technologies. It is suggested 

that a combination of two of the 'new generation' LAN systems with the 

ASH, would give substantial performance increases, with the need for 

minimal specification changes. This new system would have multiple 

redundant linear buses, and would use two simultaneously. One channel 

would be used for control information and the other for data. This 

would allow 'pipeline' levels of performance to be achieved on the 

data channel. 

To conclude, LAN technology has advanced alongside the ever 

increasing demands for greater speed, reconfigurability and 

survivability of distributed computing systems. However, as these 

demands grow ever greater and more difficult to realise, it is 

necessary to make modifications to the basic LAN technology. In order 

to further improve the ASWE Serial Highway system, it will be 

necessary to perform substantial changes in the basic system. The ASH 

is now ten years old, and very few of the other LAN systems have 

survived that length of time without major alterations. 

Notes on publications by the author:-

"Boost J.lP-board memory capacity with simple hardware changes" 

D. Cowan, EDI, 29th October 1981, pp 197-198. 

8-3 



Bibliography 

[ 1] F.G. Heart et al "The Interface Message Processor for the ARPA 

Computer Network" AFIPS Conf. Proc. SJCC 36, June 1970. 

[2] H. Frank, I.T. Frisch, W.S. Chou "Topological Considerations in 

the Design of the ARPA Computer Network" AFIPS ·Conf. Proc. SJCC 

36, June 1970. 

[3] D.J. Farber "Networks: An Introduction" Datamation, April 1972, pp 

36-39. 

[4] E.G. Rawson, R.M. Metcalfe ''FIBERNET: Multimode Optical Fibers for 

Local Computer Networks" IEEE Trans. Comm. 26, 7 (July 1978) pp 

983-990. 

[ 5] MIL-STD-1553B, 21 September 1978 (Aircraft Internal Time Division 

Command/ Response Multiplex Data Bus, DoD, Washington, D.C.) 

[6] K. Lunn, K.H. Bennett "Message Transport on the Cambridge Ring- a 

Simulation", Software-practical and· experimental (GB), Vol 11, 

part 7, 1981, pp 711-71~. 

[7] R.M. Metcalfe, D.R. Boggs "Ethernet: Distributed Packet Switching 

for Local Computer Networks", Comm. ACM. 19, 7 July 1979. 

[ 8] J.F. Shoch, J.A. Hupp "Measured Performance of an Ethernet Local 

Area Network" Comm. ACM 23, December 1980. 

[9] N.Abramson "The ALOHA System- another alternative for computer 

communications" Proc. 1977 Fall Joint Camp. Conf. 37, AFIPS Press 

pp 281-285. 



[ 10] N.Abramson "The Throughput of Packet Switching Braodcasting 

Channels" IEEE Trans. Comm. 25, Jan 1977, pp 117-128. 

[11] Defence Standard 00-19/ Issue 1, Ministry of Defence, 19th 

January 1981. 

[12] "The AMD2900 Family Data Book" AMD, 1979. 

[ 13] J. Mick, J. Brick "Bit-Slice Microprocessor Design", McGraw-Hill, 

1980. 

[14] R.D. Weatherby "Mini Link X2901 Cross Assembler" Cambridge 

Consultants Ltd. report, December-. 1976. 

[15] C. T. Spracklen "Durham University-ASWE Minilink Simulator" Durham 

University report, August 1978. 

[16] M.Stainsby "Specif~cation of the Software Interface to the 
., 

Highway Controller (Version 6), Draft 3, 2nd May 1980, ASWE 

report. 

[ 17] D.M. Ritchie, K. Thompson "The Unix Time Sharing System" Comm. ACM 

17, July 1974; pp 365-375. 

[ 18] K.L. Hunt, R.J. Firth "Guide to Coral-66 on the PDP11-45" RMCS, 

February 1976. 

· [19] "Official Definition of CORAL 66" Ministry of Technology, HMSO, 

1970. 



[20] "RT -11 System Reference Manual" Digital Equipment Corp. 1976. 

[21] "NOVA Line Computers" Data General, 1979. 

[ 22] "Real Time Disk Operating System (RDOS) Reference Manual" Data 

General, 1979. 

[23] "MC6809 Preliminary Programming Manual" Motorola Inc. 1979. 

[24] "The MSI 6800 Computer System" Midwest Scientific Instruments 

Inc. 1977. 

[ 25] "DOS-69" Smoke Signal Broadcasting, 198Q. 

[ 26] "MC68000 Design Module, Users Guide" Motorola Inc. 1979. 

[27] "MC68000, 16-Bit Microprocessor, Users Manual" Motorola Inc. 1979 

[ 28] G. Kane, D. Hawkins, L. Leventhal "68000 Assembly Language 

Programming" OSBORNE/ McGraw-Hill, 1981. 

[ 29] "Microcomputer Components" Motorola Inc. 1979. 

[30] C.H. Moore "Forth: A New Way to Program a Minicomputer" Astron. 

Astrophys. Supp. 15, pp497-511 1974. 

[31] E.D. Rather "Forth: A Fresh Approach to Programming" Forth Inc. 

1977. 



[32] D. Cowan, C.T. Spracklen "Annual Report, 1981" Durham University, 

1981. 

[33] "Feltec LCD Display" Feltec, 1981. 

[ 34] J.R. Pierce "Network for Block Switching of Data" BSTJ 51, 6, 

July-:August 1972. 

[ 35] W.O. Farmer, E. E. Newhall "An Experimental Distributed Switching 

System to Handle Bursty Computer Traffic" Proc. ACM Symp. on 

Problems in the Organisation of Data Comms. October 1969, pp 1-34. 

[36] E.R. Hafner et al "A Digital Loop Communications System" IEEE 

Trans. Comm. 23 June 1974, pp 877-881. 

[37] A.B. Gojko et al "A Performance Study of the Distributed Loop 

Computer Network (DLCN)" Proc. Camp. Networking Symposium, NBS 15 

December 1977. 

[ 38] P .A. Willis "Data Buses and Distributed Data Processing in U.S. 

Navy Ships" Naval Surface Weapons Center/ Dahlgren, Spetember 

1981. 

[ 39] G.S. Blair "A Performance Study of the Cambridge Ring" Computer 

Networks, 6 (1982) pp 13-20. 



[ 40] M. V. Wilkes, D.J. Wheeler "The Cambridge Digital Communications 

Ring" Local Area Comms. Network Symp. Boston May 1979. 

[ 41] R. Mauriello "A Distributed Processing System for Military 

Applications" Computer Design, Sept-Nov 1980. 

[42] J.H. Slatzer, K.T. Pagan "A Star-Shaped Ring Network with High 

Maintainability" Camp. Networks 4, 1980, pp 239-244. 

[43] I. Iida et al "Random Access Packet Switched Local Computer 

Network with Priority Function" IEEE Telecomms. Conf. 30 Nov 1980, 

pp 37.41-6. 

[ 44] D.Scavezze "Nodes ·sound-Off to Control Access to Local Network" 

Electroni.cs (USA) 1981, 54, 12, pp 176-181. 

[45] S.C. Andersen "A Serial Data Bus Control Method" Camp. Networks 

3, 1979, pp 361-372. 

[46] J.F. Hayes "An Adaptive Technique for Local Distribution" IEEE 

Trans. Comm. 26, Aug 1978, pp 1178-1186. 

[47] J.F. Hayes "Local Distribution in Computer Communications" IEEE 

Comms. 



[48] A.K. Agrawal, V.V. Vadakan "Jet Propulsion Local Area Network 

(JPLAN)" 2nd Conf. on Dist. Camp. Systems. Paris, 8th April 1981, 

pp 360-368. 

[ 49] M.A. Dineson "Broadband Local Area Networks Enhance Communication 

Design" EON, 1981, 26, 5, pp 77-85. 

[50] D.O. Clark et al "An Introduction to Local Area Networks" Proc. 

IEEE, 66, 11th November 1978, pp 1497-1517. 

[51] A.K. Mok, S.A. Ward "Distributed Broadcast Channel Access" Camp. 

Networks, 3, 1979, pp 327-335. 

[52] W.B. Watson "Simulation Study of the Traffic Dependant 

Performance of a Prioritised CSMA Braodcast Network" Camp. 

Networks, 3, 1979, pp 427-434. 

[53] S.S. Lam "A Carrier Sense Multiple Access Protocol for Local Area 

Networks" Camp. Networks, 4, 1980, pp 21-32. 

[54] F.A. Tobagi, V.B. Hunt ''Performance Analysis of Carrier Sense 

Multiple Access with Collision Detect" Camp. Networks, 4, 1980, pp 

245-259. 



[55] J.F. Shoch "Carrying Voice Traffic Through an ETHERNET Local 

Network- A General Overview" Int. Workshop on Local Area Camp. 

Networks, Zurich, Aug 1980. 

[56] J.F. Shoch "An Annotated Bibliography on Local Computer Networks" 

XEROX, Palo Alto, 1980. 

[57] T.D. Wells, M.G. Stainsby "ADNET: An Experimental Information 

Distribution System" ASWE, XCC, October 1978. 



APPENDIX A 

Program Listings 



r 
• ... .,.~ """".. ._ . ,.riULoi.O::. • i X I ~SB 6~09 A~SEMB~L~E~R~---------

PIIOCII-R 

0044.1 
30444 
:>04415 
)0446 
)0447 
)0448 
)0449 
•o4so 
10451 
10452 

OlSE .J4 
0160 8E 
016.1 ~ 
016S 27 
0167 1A 

10453 0169 zo 
•04:54 0168 lC 
·0455 0160 JS 
0456 
0457 
0458 
045"1 
0460 
0461 
046Z 
.0463 
0464 
0465 
D466 
D467 
0468 
[)469 
)470 
)471 
l47Z 
)473 
)474 
)475 

~476 

)477 
1478 
.479 
1480 
1481 
,482 
•48.1 
484 
4~ 

•a• 
487 
488 
469 
490 
491 
492 
49l 
49 .. ... ,. .... 
497 
098 ..... 

016F .J4 
0171 BE 
0174 AS 
0176 26 
0178 lA 
017A 20 
Ol7C 1C 
017£ .JS 

0180 34 
0182 BE 
OUIS 43 
0186 A4 
0188 A7 
01BA 3S 

01BC 34 
OlBE BE 
0191 AA 
019.J A7 
0195 35 

0197 90 
0199 2!5 
0198 BD 
019£: BC 
01A1 2E 
OlAl A6 
01A5 84 

1Z 
F5JI8 
oz 
04 
01 
oz 
FE 
9Z 

1Z 
FS.JB 
oz 
04 
01 
oz 
FE 
9Z 

10 
FS.JB 

oz 
oz 
90 

10 
FS.JB 
oz 
oz 
90 

BZ 
zo 
0102 
05F7 
17 
80 
O""" 

0168 

*Ct-EICLe 
*CHECK FOR FLAG IN A REGISTER LOW* 

CHEKL PSHS 
LDlC 
BITA 
BEQ 
SEC 

A,lC 
•PI Ifill 
ORB,X 
CHKLR 

0160 BRA CHKLR2 

017C 

017E 

CHKLR ANDCC .IFE 
CHILRZ PULS A,X,PC 

*CHEICH* 

CLC 

* CHECKS FOR FLAG HIGH * 

CHEIH PSHS 
LDl< 
BITA 
BNE 
SEC 

A,lC 
.PIA 
DRB,X 
CHKHR 

BRA CHKHR2 
CHKHR ANDCC •tFE 
CHIHRZ PULS A,X,PC 

*LSET* * SETS THE APPROPRIATE FlAG LOW* 

LSET 

*HSET* 

PSHS 
LDl< 
COHA 
ANDA 
STA 
PULS 

)( 

.PIA 

DRB,X 
DRB,X 
X,PC 

*SETS APPROPRIATE FLAG HIGH* 

H5ET PSHS 
LDlC 
ORA 
STA 
PULS 

*AWRITE* 

lC 
.PIA 
DRB,X 
DRB,X 
X,PC 

*WRITE TO PROH PROGR~ER * 

AWRITE JSR 
0188 BCS 

ADDRS 
WERR.1 
GETTS 
DTBENO 
AWRTEZ 
,lC+ ...... 

JSR 
AWRTEl CMPX 

018A BCT 
LDA 
AHDA 

rHuc. UJ.~ ;,(.: t-'Hltt;_L_._T x_L.:_----5._S~----M"soliEO>M~Il~ll1EERR-----------­

PROGR"AMMER 

00500 
00501 

OlAS BD 
OJAB Z4 
01AD 34 
OlAF 30 
01B3 BD 
0186 JS 
OlBB 20 
OlBA J9 
0188 .JO 
01SF 80 
01C2 JC1 

026!5 
'1:'1 0).9£-

10 ~ 

eo o.uz 
DZA6 
10 
£4 019£ 

eo ozBe 
DZA6 

.rs_R 
BCC 
PSHS 
LEAX 
JSR 
PULS 
BRA 

AWRTEZ HTS 
WERR1 LEAX 

J5R 
RTS 

*ALOAD* 

DWRITE 
AWRTEl 
X 
STR9,PCR 
ZOUTST 
lC 
AWRTEl 

STR6,PCR 
ZOUTST 

~ ·'h 

- oO~oz 
00503 
00!504 
00!50!5 
00!506 
00!507 
00!508 
00509 
00510 
00511 
00!512 
00~513 

00514 
00515 
00~516 

00517 
00!518 
00!519 
00520 
00!521 
00522 
00523 
oms24 
00!5Z5 
00526 
Q05ZM/ 
00~2.8 

*LOAD A BINARY DISK FILE INTO THE DATA TABLE* 

OlCJ 30 
OlC7 BD 
OlCA BD 
OlCD BD 
0100 81 
OlDZ 27 
0104 BD 
0107 30 
0108 80 
OlDE 96 
OlEO A7 
OlEZ SD 
01El5 27 

00529 01E7 BD 
00530 OlEA BD 
00~31 

00532 
00!533 
00534 
OO!i3!5 
00536 
00!5J7 
005JS 
00!5.19 
00!540 
00!541 
00:5-42 
00!54..S 
00!54-4 
OO!!S4!5 
00!544 
00!!547 

OlEO 3C1 
OlEE 86 
OtFO A7 
OlFZ 17 
01F!5 1F 
01F7 30 
OlFB BD 
OlFE BD 
0201 80 
0204 :SD 
020!5 27 
0207 tF 
OZ09 BF 
020C FJ 
OZOF FD 
0212 SE 
021!5 BD 

00548 0218 26 
00!5-49 OZ1A 81 
00550 
00551 
00:5!52 
00553 
00554 
005!5!5 
0()~)56 

021C 26 
OZlE lOBC 
0222 ZE 
02.24 BD 
0227 26 
0229 A7 
022.0 20 

eo OJ12 
DZA6 
028!5 
DZBB 
OD 
lA OlE£ 
0793 
eo 041E 
0291 
04 
84 
0796 
07 OlEE 
D2.A9 
0793 

OS 
84 
FFOD 0102 
12 
eo 0317 
DZA6 
0285 
DZAO 

08 0212 
zo 
05F7 
0!5F7 
05F7 
O~F9 

0"786 
1l 
FF 
n 
O~f-"7 

13 

0786 
04 
AO 
F'1 

0220 

021!5 

0237 

0220 

OZlE 

A LOAD 

L0AD1 

L.OAD7 
L.OAD6 

LOAD4 

LEAX 
JSR 
JSR 
JSR 
CHPA 
BEQ 
JSR 
LEAX 
JSR 
LDA 
STA 
JSR 
BEQ 
JSR 
JSR 
RTS 
LDA 
STA 
L85R 
TFR 
LEAX 
JSR 
JSR 
JSR 
TSTB 
DEQ 
TF"R 
Sl"X 
ADDIJ 
STD 
LOX 
JSR 
BNE 
CHPA 
BNE 
CHPY 
BGT 
JSR 
BNE 
STA 
BRA 

STR10,PCR FILE HAHE QUIZ 
ZOUTST 
ZL INEI 
ZPEEK 
•cR 
LOAD I 
COFH 
RFCB,PCR 
ZFLSPC 
•QS04R 
XFC,X 
DFH 
LOAD1 
ZTYPOE 
CDFH 

.QSREAD 
XFC,X 
GETTB 
X,Y 

LOOK AT NEXT CHAR 
CR1 
IF YES JUST CONTINUE 
JUST TO BE SAFE 

SET FOR READ 

GO OPEN IT 
OK 50 BRA 

ST·R12 ,PCR SIZE QUIZ 
ZOUTST PUT IT 
ZLINEI 
ZGETHN 

LOAD7 
Y,D 
DTBE:ND 
DTBEND 
DTBE:ND 
.RF"CB 
OFH 
LOAD2 
••FF 
LOAD6 
DTBEND 
LOAIJJ 
DFH 
LOADZ 
O,Y+ 
LOAD4 

REPLY 
TRANSLATE 

NO REPLY SO CONTINUE 
DATA TABLE BASE 
OOPS 
NEW END 
SAVE IT 

END OF TA8LE7 

READ ANOTHER CHAR 

AND STORE IT 

FRot't OL 



~~ 007 Z:PROCZ.TXT SSB 6809 ASSEMBLER 
PROGRNII'tER 

oo"z Z6 
0094 9E 
0097 .J9 
0098 81 
009A 26 
009C 8E 
009F' .J9 
OOAO 81 
oo.u. 26 
OOM BE 
OOA7 39 
OOAB 81 
OOM 26 
OOAC 80 
oow 7£ 

04 0098 
0tC3 

40 COH4 
04 OOAO 
0.160 

53 COHll 
04 OOM 
02F7 

4!5 COtt6 
A9 0055 
D78.J 
FCS7 

-----,LOX 
ATS 
CHPIIIIII 
BHE 
LDlC 
ATS 
CHPR 
BHE 
LDlC 
RTS 
CHPA 
BNE 
JSR 
JHP 

cott4 
MLOAD 

.....:JDIFY 
CDHS· 
..-HOD 

•siZE 
COI16 
MSIZE 

~NIT 

C.ETCH 
CDFH 
AHONIT 

*ADDRS* 

0033.1 
.00.1.14 
. .00335 
OO.Jl6 
00337 
OO.J.J& 
00.).)9 
00340 
00.141 
JO.l4Z 
00.343 
!)0344 
l0345 
)0346 
)0347 
)0.348 
l0349 
)0.)50 
)0351 
)0352 
)O.JS.J 
)0354 
)0355 
)0356 
)0357 
)0358 
JO.J!19 
10360 
10361 
•oJ62 
10363 
10364 
10.365 
10366 
•0367 
•0368 
·0369 
·0370 
0.171 
0.372 
0373 
0.374 
0.17~ 

*INTERPRETS START AND END ADDRESS* 
*AND SETS UP PROCRAHHER ACCORDINGLY$ 
*CARRY SET IF ERRO OCCURS* 

0082 17 
0085 86 
0087 17 
OOM 25 
ooac &6 
008£ 17 
OOC1 30 
DOCS BD 
ooca BD 
ooca BD 
OOC£ SD 
OOCF Z6 
OOD1 B£ 
0004 17 
0007 AF 
0008 30 
OODF BD 
OOE".2 BD 

OJ76 ODE~ BD 
0.]77 OOEB 50 
OJ78 OOE9 26 

OJ79 OOEB BE 
0.160 OOEE 17 
0381 OOF1 2S 

0183 0238 ADDRS LBSR 
01 LDA 
OOA4 015£ ADDR51 LBSR 
FB 0087 
to 
OOBF 0180 
BD 0368 
DZA6 
D2B5 
DZAO 

03 OOD4 
0000 
OlDE OZBS ADDRSZ 
BD 0!5C6 
BD 0368 
D2A6 
DZB!S 
DZAO 

0.3 OOEE 
06R~ 

BCS 
LOA 
LBSR 
LEAX 
JSR 
JSA 
JSR 
TSTB 
8NE 
LDlC 
L85R 
STX 
LEAX 
JSA 
oSA 
JSR 
TSTB 
BNE 
LOX 

01C4 OZB~ ADDRS3 LBSR 
OC OOF"F BC5 

0382 OOF3 AF BD 0~ STX 
0383 OOF7 86 01 ADDRS4 LDA 
***WARNIHC 001--00000 
0~84 OOFY 17 007~ 016F LBSR 
OJBS OOFC Z!S F9 OOF7 BCS 
0386 OOFE J9 RTS 
0387 DOFF 1A 
038& 0101 39 

Ot ADDER1 SEC 
ATS 

PRINJT 
.ADD 
CHEKL 
ADDR51 
.HODE 
LSET 
5TR1,PCR 
ZOUTST 
ZLINEJ 
ZGETHN 

ADDRSZ 
••oooo 
WRJTEA 
BOT ,PCR 
STRZ,PCR 
ZOUTST 
ZLINEI 
ZGETHN 

ADDRSJ 
HIGH 
WRJTEA 
ADDER! 
TOP,PCR 
.... o 

CHEKH 
ADDR54 

JNJTJALJSE THE PROGRAHHER 

CHECK FOR ADDRESS LOW 
IF CARRY SET THEN ADDRESS HI 

SET HOD£ LOW 

SEND LOW ADDRESS QUIZ 
AND RECEIVE IT 
MAKE IT INTO HEX ADDRESS IN 
IF ZERO NO HEX ADDRESS 

50 LOAD DEFAULT 
WRITE BOTTOM ADDRESS TO PROC. 

TOP ADDRESS 

CHECK FOR ADDRESS HIGH 

.................. "·· '""' ~";,)t b~OV A_SSEH~.~....B -~ 
PROGRAI1ft£"R--

*GETTB* ~ .·"\· . 
*GET THE DATA TABLE BASE* 

00389 
OOJ90 
00391 
00392 
00393 
00394 
OO..:,S9!5 
00.!94 
00397 
0039& 
00399 
00400 
00401 
00402 
00403 
00404 
0040!5 
00406 

*ALSO SETS TABLE TOP TO BASE ADDRESS PLUS !512 * 

0102 30 
0106 BD 
0109 BD 
010C BD 
OlOF SD 
0110 26 
0112 SE 
011!5 FC 
0118 Bl 
0118 FD 

00407 011E IF 
00408 0120 FJ 
00409 0123 FD 
00<410 0126 39 
00411 
00412 
00413 
00414 

eo 03SS 
DZA6 
DZ85 
D2AO 

OJ 011:5 
06A9 
069F 
06A1 
0!5F7 
10 
Ot5F7 
O!!iF7 

GETTB LEA)( 
JSR 
JSR 
JSR 
TSTB 
BNE 
LOX 

GETTBl LDD 
SUBD 
STD 
TF"R 
ADDD 
STO 
RTS 

*AREAD* 

STR.!,PCR TABLE BSE QUIZ 
ZOUTST 
ZLINEI 
ZCEl"HN 

CETTB1 
•DTABLE 
TOP 
BOT 
OTBE:ND 
)(,0 
DTBEND 
DTBEND NOW WE HAVE THE ABSOLUTE EN 

00415 
00416 
00417 
00418 

*READS IN A TABLE F"ULL OF DATA* 
*DR UNTJL THE PROGRAMMER CLAMS UP* 

00419 
00420 
****WARNING 001--00394 
00421 0127 17 FFSB OOBZ AREAD LBSR 
00422 OlZA 2!5 
004ZJ 012C 17 
00424 01ZF 86 

z~ OlS~ 

0114 OZ4J 
40 

****WARNING 001--00421 
004Z!5 o131 17 oo~a o1ec 

10 ,. 
CB 

018C 
0102 

BCS 
LBSR 
LOA 

LBSR 
LOA 
BSR 
BSR 

00426 0134 86 
00427 o136 8D 
00428 0138 80 
0042.9 OlJA BC 
004JO 0130 ZE 
004J1 013F 17 
00432 0142 F4 
00433 014!5 E7 
00434 0147 20 
0043~ 0149 17 
00436 014C 86 
****WARNING 
00437 014E 17 
00438 0131 17 
004J9 01S4 39 
00440 013~ .10 
00441 01~9 BD 
0041-2 Ol:SC 20 

O:SF7 AREAD1 CPX 
OA 0149 SGT 
0196 OZDB 
06A!5 
fJO 
F1 013A 

LBSR 
ANDB 
STB 
BRA 

0108 0234 AREADZ LBSR 
40 

001·~·-00425 

002F 0180 
0100 0234 

BD 031E 
D?.A6 
EB 0149 

LOA 

LBSR 
LBSR 
RTS 

AERR1 LEAX 
JSR 
BRA 

AODRS 
AERR1 
SREAD 
.REA OW 

HSET 
•MODE 
HSET 
CETTB 
DTBEND 
ARE".ADZ 
DREAD 
MASK 
,X+ 
Aflf:~ADl 

SWRITE 
.READW 

LSET 
SWRITE 

STR4,PCR 
ZOUTST 
AREADZ 

SELECT READ 

SET MODE HIGH FOR READ 
GO GET TABLE ADDRESS 

READ A BYTE 

SELECT WRITE 



,. . _.,. 
-a"trnzv 

00221 
oozzz 

_-_QOZ23_ 

00224 
00225 
002.26 
00227 
002'28 
00229 
OOZ.JO 
ooz.u 
OOZ.JZ 
OOZJ,J 
002.14 
OOZJS 
002.16 
002..17 
002.18 
00239 
00240 
00241 
00242 
0024.1 
00244 
00245 
00246 
00247 
00248 
00249 
002:50 
DOZSl 
DOZSZ 
DOZS.J 
lOZS4 
J0255 
)02:56 
)02:57 
>0258 
)02:59 
>OZOO 
)0261 
)0262 

)0263 

10264 
)0265 

10266 

)0267 
10268 
10269 

10270 
10271 
•0272 
1027.1 
·0274 
•OZ7S 

0000 
oooo lOCE 
0004 80 
0007 BE 
OOOA W" 
0000 8E 
0010 BF 
001.1 8F' 
0014 8F 
0019 86 
0018 87 
OOlE 86 
oozo 87 

FSJB 
000'1 
OOOJ-
0000 
0002 
OOF8 
0004 
OOFF 
0000 
0078 
0001 
0002 
0004 
oooa 
0010 
0020 
0040 
0057 
0051 
oosz 
004C 
0040 
OOS.J 
0045 
FCS7 

DZOO 
OOJ.J 
0000 
06A1 
OtFF 
069F 
06A.J 
0 .... 7 
O.J 
06A6 
OF 
06AS 

OOZ.J BD 005!5 
0026 lOBE OOZE 
OOZA 34 20 

1:S 

• Uri.t.lolt;.k HltJ_t'_riUM t"k~H____~tll;,.~ ~ ·----

PIA 
CRA 

-CR8 
DRA 
DR a 
NDDII 
DATA 
AWRTZ 
ARD 
BREG 
ADD 
ERROR 
RES 
TRANS 
MODE 
INTER 
READW 
WRITE 
QUIT 
READ 
LOAD 
MODIFY 
SIZE 
HONIT 
AMON IT 

HAIN 

HAIN1 

EQU 
EQU 

-EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

eFSJiEI 
1 
3 
0 
z 
'111111011 
'100000100 
aFF 
aoo 
'101111000 
ao1 
aoz 
ao4 
aoa 
uo 
azo 
a40 
'W 
'Q 
'R 
'L 
'H 
'5 
'E 
•FCS7 

toooo 
••Dzoo 
PlAIN 
••oooo 
BOT 
•eotFF 
TOP 
HIGH 
OTBEND 
••o.J 
AFIELD 
••oF ...... 
GETCH 
....... INZ 
y 

DEFAULTS 

ooze tF 
OOZE 17 
oo.u 20 

0.324 O.JS!S HAIN2 

ORC 
LD5 
JSR 
LD)( 
5T)( 
LD)( 
ST)( 
5TX 
5TX 
LOA 
STA 
LOA 
5TA 
JSR 
LDY 
PSHS 
TFR 
L85R 
BRA 

X,PC 
DELAY 
HAIN1 FO OOZ.J 

*PlAIN * 
*INITIALISES THE PIA AS FOLLOWS *· 
*A 5 I DE ALl OUTPU"fS * 
*B SIDE 0:-ADDRESS INPUT* 
* 1:-ERROR INPUT* 

-'1 _1-~.'.:;.';.:..- '..Y.Y-~.c:-'t'Jt'"..---- 5~6 6809 A1.iSE.H8u:R 
PROGRAMMER 

00?.76 
00277 
002.76 
00279 
OOZBO 
OQ281 
ooZ6Z 
002.8.1 
00294 
oozes 
002.86 
002.87 
00288 
002.69 
00290 
00291 
002.92 
00Z9.J 
00294 
00_2.9!5 
00296 
00297 
002.98 
00299 
00300 
00301 
00302 
00.303 
OOJ04 
OOJO!S 
00.306 
00307 
00308 
00309 
00310 
OOJlt 
OOJ12 
00313 
00314 
OOJlS 
oo:.n6 
00317 
oo:ue 
00.319 
ooazo 
00321 
OOJZZ 

003.1 BE 
00.36 B6 
0038 A7 
OOJA A7 
00.3C C6 
OOJE E7 
0040 C6 
0042 E7 
0044 66 
0046 A7 
0048 A7 
004A 86 
004C 17 
004F 86 
00!51 17 
00154 39 

00!5!5 30 
0059 BD 
oosc 30 
0060 BD 
0063 JO 
0067 BO 
006A BD 
0060 BD 
0070 84 
0072 81 
0074 z·r 
0076 Ell 
0078 26 
007A BE 

OOJ2J 0070 .39 
00.124 007E 81 
00.12.5 0080 26 
00326 0082 8E 
00.1Z7 008!5 39 
ooaze ooa6 at 
oOJZ9 ooee Z6 
OOJJO OOSA BD 
ooJJl 006D 7E 
003.12 0090 81 

F"!5J8 
00 
01 
03 
FF .... 
79 
oz 
04 
01 
03 
40 
01.31 0160 
1B 
01.38 OlSC 

80 015!57 
D2A6 
BD 0!5.34 
D2A6 
BD 03CI5 
DZA6 
02915 
DZ97 
7F 
OD 
oF ooe.:s 
eiZ 
04 007E 
01Z7 

"7 
04 0086 
0197 

* -z :--RES"PONSE · I-NPU.T -* -
* J ; -TRANSFER OUPUT * 
* 4: -HODE OUTP..UT ._ \, * !5 INTERLOCK OUTPUT * * 6 BUFFER CONTROL OUTPUT * 
* CAZ BUFFER CONTROL OUTPUT * 

PlAIN LOX 
LDA 
STA 
STA 
LDB 
STB 
LDB 
5T8 
LOA 
STA 
5TA 
LDA 
LBSR 
LOA 
LBSR 
RTS 

*GETCH * 

•PIA 
••oo 
CRA,X 
CRB,)( 
.AWRTZ 
DRA,X 
.BREG 
DRB,X 
•DATA 
CRA,X 
CRB,X 
.READW 
LSET 

PIA ADDRESS 

St:T FOR WRITE TO DDR 
DITTO 

INITIALLY A FOR WRITE 

BOTH NOW DATA REGS 

SET FOR WRITE 
·~00011000 TRAN,HODE HIGH 
HSET 

* COMMAND LINE INTERPRETER * 

GETCH LEAX 
JSR 
U·7.AX 
JSR 
LEAX 
JSR 
J"SR 
JSR 
ANDA 
CHPA 
BEQ 
CHPA 
BNE 
LOX 
RT5 

COM1 CHPA 

STR1!5, PCR 
.ZOUTST 
STR14-,PCR 
zou·rsT 
COHST,PCR 
ZOUTST 
ZLINEI 
ZGNCHR 
•e7F 
•CR 
GETCH 
.READ 
COHl 
•AREAD 

.WRITE 
COMZ 
.AWRITE 

!51 COHZ 

BNE 
LDX 
RTS 
CHPA 
liNE 
JSR 
JHP 
CHPA 

•QUIT 
COHJ 
COFH 
ZWARH5 
.LOAD 

06 0090 
D76J 
DZB.J 
4C COHJ 



GE 

!5_~7 

558 
559 
560 
561 
56Z 
S63 
564 

1 ~65 

·~66 

•567 
•!568 
1569 
~570 

1571 
157% 
1!)7 .J 

•574 
)575 
)576 
1577 
)578 
:l579 
0580 
0581 
058Z 
0583 
0584 
058S 
0586 
0587 
0588 
0"89 
0590 
0591 
059Z 
•0593 
•0594 
•0595 

•0596 
•0597 
<0598 

•0599 
•0600 

•0601 
·060Z 
·0603 
0604 
·0605 
0606 
0607 
0608 
0609 
0610 

0611 

061Z 
0613 

011 Z:PROCZ.TXT 558 6809 ASSEHBLER 
PROGR-R - - - -- - - -----

OZZD 30 _ 
OZ.U BD 
0234 BD 
ozn 39 

BD 0211 
DZA6 
D783 

20 

LOOIID2 LEAX 
.TSR 
.T5R 

LOAD.J RTS 
*PRINIT* 

STA-11, PCR 
ZOUTST 
CDFM 

*INIT1ALISE5 ~ PROM 
*BY PUL5INQ INTERLOCK 

~ROGRAMHER* 
HIGH* 

02.38 86 
OZ.JA 17 
OZ.JD 86 
02.JF 17 
0242 39 

FF4F 018C 
zo 

PRINIT LOA 

LBSR 
LDA 
LBSR 
RT5 

.INTER 
HSET 
.INTER 
LSET FF.J£ 0180 

0243 108£ F!538 
0247 86 
02.49 A7 
0248 86 
02.40 tJt7 
024F 86 
02.!51 A7 
02!53 39 

00 
Z1 
00 
A4 
04 
Z1 

02!54 1 OSE FSJS 
02!58 96 00 
OZ~A A7 21 
OZSC B6 FF 
0Z'5E A7 A4 
02.60 96 04 
0262 A7 Zl 
0264 39 

0265 34 
0267 lF 
02.69 3Z 
026B 96 
02.60 A7 
OZ6F BE 
02.72 86 
02.74 17 
02.77 24 
0279 96 

FFFF 

S6 
43 
7E 
00 ,..,. 
FS.JB 
10 
FE£7 01SE 
OS OZ7E 
10 

*SREAD* 
*SET UP THE A SIDE OF THE PIA FOR READ* 

SREAD LOY 
LDA 
5TA 
LDA 
5TA 
LDA 
STA 
RTS 

*SWRITE* 

.PIA 
••oo 
CRA,Y 
.ARD 
DRA,Y 
.DATA 
CRA;Y 

FOR DDRS 

SELECT A FOR READ 

*SET UP THE A SIDE FOR WRITE* 

SWfUl'E LDY 
LDA 
5TA 
LDA 
STA 
LDA 
STA 
RT5 

*DWRITE* 

•PtA 
••oo 
CRA,Y 
.AWRTZ 
DRA,Y 
•DATA 
CRA,Y 

SELECT A FOR WRITE 

*WRITE ONE BYTE OF DATA TO PROGRAMMER* 
*CARRY SET ON RETURN INDICATES ERROR* 
ESTORE EQU -1 

OWRITE PSHS 
TFR 
LEAS 
LOA 
STA 
LDX 
LDA 
LBSR 
BCC 
LDA 

A,I,X,U 
5,U 
-z,s 
••oo 
ESTORE,U 
.PIA 
Hf<IDE 
CHEKL 
DWR1 
...auE 

CHECK FOR CORRECT MODE 
YES OK 

C· 

f!AGE- --0-1-Z- z · PAQGZ T>C"f SSil .,6809 ASSEHBL~-- _ 

PROGRAMMER 

00614 
OOOHS 
00616 
00617 
00619 
00619 
0062.0" 
00621 
0062.2 
0062.3 
00624 
0062~ 

00626 
00627 
00628 
00629 
00630 
006.31 
00632. 
006.33 
00634 
0063~ 

006.36 
00637 
00638 
00639 
1)0640 
00641 
00642 
00(143 
o0644 
0064!5 
00646 
00647 

02.78 17 
OZ7E E6 
0280 E7 
ozez eo 
0284 17 
0287 86 
0299 17 
ozec Z!5 
028E 86 
0290 17 
0293 2!5 
029S 86 
0297 17 
029A 86 
02'9C 17 
029F 2!5 
OZAl A6 
OZA3 26 
02A5 1C 
OZA7 20 
OZA9 1A 
OZAB 32 
OZAD 3!5 

OZAF 86 
02.81 A7 
02B3 zo 

00649 028!5 34 
00649 OZB7 86 
006!50 OZBA 81 

FFOZ 0180 
C4 
84 
08 
FEF9 0180 
04 
FEDZ 015E~ 
F9 02.87 
oz 
F'EDC 016F 
1A OZAF 
08 
FEFZ 018C 
04 
f'EDO 016F 
F9 0Z9A 
SF 
04 OZA9 
FE 
oz 
01 
6Z 
D6 

FF 
SF 
EO 

10 
06A6 
oz 

OZAB 

029!5 

006~1 OZBC 27 OA OZCB 
****WARNING 001--00437 
006~2 OZBE 17 FF93 02.!54 
00653 OZC1 A6 £4 
006!54 OZC3 94 OF 
****WARNING 001--006S2 
oo6~5 ozc~ 17 FF9D OZ65 
oo6~6 ozca A6 61 
006!S7 OZCA 44 
006!58 OZCB 44 
006!59 02CC 44 
00660 OZCD 44 
****WARNING 001--006~~ 

00661 OZCE 17 Ff'94 0265 
00662 02.01 A6 
****WARNING 
00663 OZDJ 17 
00664 02'.06 35 
0066!5 
00666 

61 
001--00661 

FFBF 026!5 
90 

OWR1 

DWR2 

DWR4 

DWR3 

DWR'5 
DWR6 

LBSR 
LDO 
5T8 
LDA 
LBSR 
LDA 
LBSR 
8C5 
LDA 
LBSR 
BC5 
LDA 
LBSR 
LDA 
LBSR 
ocs 
LDA 
BNE 
AN DCC 
BRA 
SEC 
LEAS 
PULS 

DWERRZ LOA 
5TA 
BRA 

*WRI1'EA* 

LSET 
,u 
DRA,X 
.TRAH5 
LSET 
.RES 
CHEKL 
DWRZ 
.ERROA 
CHt::KH 
DWERRZ 
.TRANS 
HSET 
•RES 
CI-IEKH 
DWRJ 
ESTORE,U 
DWR5 
••FE 
DWR6 

NO SO SET R I CHT ONE 
UNSTACM DATA, IT WAS IN A WH 
AND WRITE IT 

AND INITIATE TRANSFER 

'· 
WAIT FRO RES 

MAKE SURE NO EROR 

ERROR 

z,s 
A,B,X,U,PC 

••rF 
1::::5TORE,U 
DWR4 

*WRITE THE NUMBER IN X AS AFIELD* 
*HEX DIGITS HOST SIGNIFICANT* 
*f"IRST* 
*NO ERROR RETURNS FROM HERE* 
WRtTEA PSHS 

LOA 
CHPA 
BEQ 

LBSR 
LDA 
ANDA 

LB5R 

X 
AFIELD 
••oz 
WRIT1 

5WRITE 
,5 
•oF 

DWRITE 
WRIT1 LDA 1,5 

*DREAD* 

LSRA 
LSRA 
L5RA 
LSRA 

LBSR 
LDA 

LBSR 
PULS 

DWRITE 
1,5 

DWRITE 
X,PC 

SAVE FOR RETURN 

5E'T UP FOR WRITE 
HOST SIG BYTE 
HASK FOR RH NIBBLE 

AND WRITE IT 

GET LH NIBBLE TO RIGHT 

AND DISPOSE OF IT 
RH NIBBLE, LS BYTE 

AND DISPOSE OF THAT 
HURRAY 

*READ ONE BYTE FROM PROGRAMMER* 



00667 
00668 
00669 
00670 
00671 
00672 
00673 
00674 
0067S 
00676 
00677 
00678 
00679 
00680 
00681 
00682 
0068.1 
00684 
00685 
00686 
00687 
00688 
00689 
)0690 
)0691 
)0692 
)069.1 
)0694 
)069!5 
10696 
10697 
•0698 
,06941 
0700 
0701 
0702 
070.1 
0704 
0705 
0706 
0707 
J708 
)709 
)710 
Hll 
l71Z 
)71.J 
1714 
•71!5 
716 
717 
718 
719 
720 
721 
722 
72J 

J~U UQU~ H~~~M~l~ft 

PROGRA1111ER 

OZDB lOBE 
OZDC 84 
02DE 17 
OZEl 86 
02.£.1 17 
OZE6 2S 
OZEB £6 
02EA 86 
OZEC 17 
OZE:F 86 
OZFl 17 
OZF4 ZS 
OZF6 .19 

02F7 .JO 
02F8 BD 
OZFE 80 
O.JOt BD 
O.J04 SD 
OJOS 26 
O.J07 86 
0309 BE 
OJOC C6 
O.JO£ 20 
OliO BC 
O.Jtl 27 
O.JlS &C 
0318 26 
031A 86 
O.JtC BE 
O.JlF C6 
Ol21 20 
032.1 8C 
0326 26 
O.JZB 86 
OJZA BE 
O.JZD C6 
O.JZF 87 
O.J.JZ 8F 
OJJS F7 
O.JJ8 J9 
OJIJ9 9C 
O.J.JC 26 
O.JJIE 86 
0340 BE 
OJI4.J C6 
OJ4S 20 
0347 BC 
OJ4A 26 
Ol4C 86 

FS.J8 
08 
FE 'iF 
04 
F£78 
F9 ... 
08 
F£90 
04 
FE71 
F9 

0180 

OlSE 
02E1 

0181: 

Ol6F 
02EF 

eo 0229 
DZA6 
DZBS 
DZAO 

09 o.uo 
03 
OlFF 
OF 
IF O.JZF 
000.1 
FZ 0307 
oooz 
09 0.12.1 
02 
DOFF 
OF 
OC O.JZF 
0001 
11 Oll9 
02 
001F 
FF 
06A6 
06A3 
06AS 

0004 
09 O.J47 
OJ 
07FF 
FF 
EB O.JZF 
ooos 
88 O.J07 
03 

*IN LIST MOD£* 

DREIIID LOY 
LOA 
L85R 

DREIIIIDl LDA 
LI~Sit 
8CS 
LD8 
LDA 
LBSR 

DRI:IlliDZ LOA 
LBSR 
BCS 
RTS 

*ASIZE* 

.PIA 

.TRANS 
LSET 
•RES 
CHEtcL 
DREAD! 
DRA,Y 
.TRANS 
HSET 
eRES 
CHEKH 
DREADZ 

INITIATE THE READ 

*ALTER DEFAULT SIZE ATTRIBUTES* 
*SETS UP THE BYTE HASK,TOP ADDRESS AND NUHBER OF CH 
ASIZE L£AX STRll,PCR 

.J'SR ZOUTST 
.rsR 
.rsR 
TSTB 
BNE 

ASIZEZ LOA 
LDX 
LDB 
BRA 

ASIZEl CHPX 
BEll 
CHPX 
BNE 
LOA 
LDX 
LDB 
BRA 

ASIZ£4 CHPX 
8NE 
LDA 
LDX 
LD8 

ASIZEJ STA 
STX 
STB 
RTS 

ASIZES CHPX 
BNE 
LOA 
LOX 
LOB 
BRA 

ASIZE6 CMPX 
BNE 
LOA 

ZLINEI 
ZGETHN 

ASIZEl 
••oa 
••otFF 
••oF 
ASIZEJ 
••oooa 
ASIZEZ 
••oooz 
ASIZ£4 
••oz 
••ooFF 
••ov 
ASIZE.J 
••ooot 
ASIZES 
••oz 
e•oOlF 
e•FF 
ii\FIELD 
HIGH 
... SK 

••ooo4 
ASI:Z:E4 
•eo.J 
•t07FF 
•tFF 
ASIZE.J 
••ooo~ 
ASIZEZ 
••o.J 

WAS CR 50 DEFAULTS 

USE DEFAULTS 

PAGE 
--· -----
014 Z; PROGZ. TX'T 

PROGRAHI'1ER 

OFFF 
FF 

558 6809 ASSEMBLER 

OJ4E BE 
03!51 C6 
0353 zo DA Ol2F 

LOX 
LDB 
BRA 

•tOFFF' 
•• FF 
ASIZEJ 

OJSS BE 
OJ!SB .JO 
o.JSA ec 
O.J!5D 26 
O.J!5F 39 

FFFF 
tF 
0000 
F9 

*DELAY* 
*DELAYS FOR A LONG TIME* 
DELAY LOX etFFFF 
DELAY1 LEAX -l,X 

CMPX etoooo 
OJ~B BNE DELAY! 

RT5 

~--'"· 

OO"/Z4 
007Z!5 
00'726 
00727 
00728 
oo7':Z9 
00730 
00731 
00732. 
007JJ 
00'134 
0073!5 
00'736 
00737 
00738 
00739 
00740 
00741 
00742 
00743 
00744 
0-0,745 
00746 

*AHOD* 
*EXAMINE AND PERHAPS MODIFY A PROM ADDRESS* 

007 ... 7 
007 ... 8 
00749 
00'7!50 
007!51 
007!52. 
007!53 
00'7!54 
007!5!!5 
007!54 
00757 
00~!58 
007!59 
00760 
00761 
00762. 
00763 
00764 
0076!5 
00766 
00767 
00768 
0076Y 
007'70 
007'71 
00772 
00'773 
00774 
0077!!5 
00"176 
00777 
00"!78 
00'1'79 
007EIO 

0360 iF 
0362. JIZ 
0364 BE 
O.J67 AF 
0369 AF 
0.368 86 
0360 BD 
0370 BD 
0373 BD 
0376 !50 
031"! 26 
0379 81 
0378 Z6 
0370 32 
037F 39 

0380 BC 
0383 2!5 
038!5 BE 
0388 AF 
OleA 30 
OJSC BD 
OJSF AE 
0391 eo 
0393 17 
OJ'J6 86 
OJ9B 17 
0398 86 
0390 17 
OJAO 17 
OJA3 F4 
OJA6 E7 
OJA8 86 
OJAA 17 
OJAD 17 

FFFE 
FFFC 

PADDS EQU 
Tt1Pl EQU 

4.3 AHOD 
7A 
0000 
SE 
!SC 
2A AMODZ 
DZBE 
D28t5 
D2AO 

07 OJSO 
OD 
EE 0368 
66 

06A.3 
0.3 OJB8 
06A3 
5E 
!SE 
DZAF 
5E 
7C 040F 
FEAD 0243 
•·0 
FDFl Ol8C 
10 
FDEC OlBC 
F'Flt5 020e 
06A~ 

15C 
40 
FOOl 0180 
FEA4 OZS4 

AMOD1 

AMODA 

TFR 
LEAS 
LDX 
STX 
STX 
LOA 
.rsR 
JSR 
.rsR 
TSTB 
BNE 
CHPA 
BNE 
LEAS 
RTS 

CHPX 
BLO 
LDX 
STX 
LEAX 
.rsR 
L DX 
BSR 
LBSR 
LDA 
LBSR 
LDA 
LBSR 
LBSR 
ANDB 
STB 
LDA 

LBSR 
LBSR 

-z 
-4 

s,u 
-6,5 
••oooo 
PADDS,U 
TMPl ,U 

··* ZOUTCH 
ZLINEI 
ZCET!-1'11 

AMOD1 
•cR 
AMOD2 
6,5 

HIGH 
AHODA 
HIGH 
PADDS,U 
PADDS,U 
ZOUTHA 
PADDS,U 
SETUP 
SREAD 
.READW 
HSET 
+MODE 
HSET 
DREAD 
MASK 
THPl ,U 
.REA OW 
LSET 
SWRITE 

GET VARIABLE SPACE 

DID WE GET A HEX NUMBER 
YES 

IF NOT CARRIAGE RETURN REPE~ 

OTHERWISE RETURN 

STORE ADDRESS 

PUT 2 BYTES AS HEX 

NOW All OK FOR A READ 
50 DO IT 
PROPER MASK 

SET UP FOR A WRITE 



-·· ··---. ·--· --- --- .. -·---· ----·· 
f'ROCRA1111ER 

00895 OS08 ZA FCC ••••••••••••••••••••• 
00896 OSEE OD FC8 eoo,eoA 
00897 OSFO 00 FCB eoo 

:oo898 051'"1 zo STR16 FCC I 11 I 
~00899 051'"4 OD FCB eoD 
:00900 05FS OA FC8 •oA 
00901 OSF6 00 FCB 00 
00902 051'"7 0000 DTBEHD FDB eoooo 
00903 OSF9 ,.ooA6 RFCB Rl18 166 
0090. 069F 0000 TOP FDB eoooo 
0090S 06A1 0002 BOT Rl'tB 2. 
00906 06A.J 0002 HIGH Rl'tB 2. 
00907 06AS 0001 HAS II Rl'tB 1 
00908 06A6 0001 AFIELD Rl'tB 1 
00909 06A7 0002. OPBYTE RHB 2. 
00910 06A9 0200 DTABLE Rl18 •zoo 
00911 END 

TOTAL ERRORS 00000--00000 
TOTAL WARNINGS 00008--00663 



2) Computer Communications Programs. 



~AG~_ 01~ ~; PROGZ .. TXI__~SB 6809 AS$_~t'tl~g~ 

PROGRNVtER 

0.180 86 
0.182 ·an 
OlliS 1F 
0.187 .JO 
0.119 8D 
O.JBC 86 
O.JE BD 
O.JC1 8D 
O.JC4 8D 
O.JC7 SD 
OJCB 26 
OJCA 81 
O.JCC 27 
O.JCE 81 
0.100 26 
O.JDZ AE 
0304 BC 
0.107 Z7 
0.309 30 
OJDB ZO 
O.JDD AE 
O.JDF BC 
03£2 27 
OJIE4 .10 
03E6 20 
03EB AF 
OlEA AE 
03EC BD 
O.lEE A6 
OJFO 17 
OJFJ 24 
03F!5 30 
03F9 80 
O.JFC A£ 
O.JFE 16 
0401 A£ 
040.1 8C 
0406 102.7 
040A 30 
040C 16 

20 
DZIIE 
31 
1C 
IIZ<OC 
20 
D21E 
D211S 
DZAO 

1E O.JEB 
2E 
9D 0368 

""' 08 O.JDD 
SE 
0000 
A7 0.180 
1F 
A.l O.JBO 
SE 
06A3 
9C OJBO 

01 
98 0.180 

= 
""' Z1 040F 
SD 
FE7Z OZ65 
oc 0401 
SD 01F8 
DZA6 

""' FF7F 0380 

""' 06A3 
FP76 0.180 
01 
FF71 0380 

AI'IOD6 

AI'IOD" 

Al1007 

.LDA­
.JSR 
TFR 
LEAX 
.JSR 
LilA 
.JSR 
.JSR 
.JSR 
TST8 
BNE 
CHPA 
IEQ 
CHPA 
ONE 
LDX 
CHPX 
SEQ 
LEAl< 
IRA 
LDX 
CMPX 
IEQ 
LEAX 
BRA 
STX 
LDX 
BSR 
LOA 
L85R 
ace 
LEAX 
.JSR 
LOX 
LBRA 
LOX 
CHPX 
LIEQ 
LEAX 
LBRA 

*SETUP* 

eezo 
ZDUTCH 
u,x 
TKP1, )( 
ZOUTHX 
ee:zo 
ZOUTCH 
ZLINEI 
ZGETHN 

AHODS 

••• 
AI'UJ02 ••• 
AHOD6 
PADOS,U 
••oooo 
A110D1 
-1,)( 
AH001 
PADDS,U 
HIGH 
AHOD1 
1,X 
AHODl 
THPl,U 
PADDS,U 
SETUP 
TMP1+1,U 
DWRITE 
AHOD7 
STR16,PCR 
ZOUTST 
PADDS,U 
AHOD1 
PADD!i,U 
HIGH 
Al1001 
1,X 
AI'UJ01 

*INITS PROGRAMMER* 

SPACE 
PUT IT 

GET ADDRESS OF BYTE 
PUT AS TWO HEX DIGITS 

ANY HE:X DIQITS1 
YES 50 QO WRITE 
NO 
START fiiiiGAIN 

.·: 

DECREMENT LOCATION COUNTER 

INCREMENT X 

GET LSB OF DATA TO BE WRITTE 
WRITE IT 

OTHERWISE INCREHENT IT 

10781 
10782. 
10783 
10784 

10785 

10786 
10787 
107BB 

10789 
10790 
10791 

10792 

1079.1 
10794 
10795 
10796 
10797 

10798 
107'99 
10800 
10801 
10802 
1080.1 
10804 
1080~ 

10806 
10807 
10808 
1090'9 

·0810 
10811 

10812 
10813 
10814 
•OBH5 
•0816 
•0817 
·0818 
•0819 
•0820 
·OBZl 
OBZZ 
•0823 
0824 
oazs 
08Z6 
0827 
oaza 
OBZ9 
0830 
0831 

OB.lZ 
OB.ll 
08J4 

OBJS 
08.36 
OGl7 

*SENDS ADDRESS OF 8Yl'E TO BE READ* 
*LEAVES PROGRAHHER IN A WRITE STATE* 

040F 17 
0412 86 
0414 17 
0417 25 
041'9 86 
0418 17 

041E 17 
04Z1 17 
0424 86 
04Z6 17 

0429 2~ 

FEZ6 OZJ8 SETUP LBSR 
01 LDA 
FD47 015£ SETUP1 LBSR 
Fl 
10 
FD6Z 
FE94 
FE91 
01 
FD46 
Fa 

0414 

0180 
OZBS 
OZBS 

8CS 
LOA 
LBSfl 
LBSR 
LBSR 
LOA 

016F SETUPZ LBSR 
04Z6 BCS 

PIIINIT 
.ADD 
CHEKL 
SETUPl 
.MODE 
LSE·r 
WRITEA 
WRITEA 
eADD 
CHEKH 
SETUPZ 

WRITES OUT THE ADDRESS IN X 
l'WICE FOR A SJNc;LE BYTE 

f>/_. __ 
PAGE 0_1_6 Z: PRCjGZ--. T-XT 

PAOGAAM~ER 

00838 
00839 
00840 
00841 
00842 
ooe..u 
00844 
0084!5 
00846 
001:147 
00848 
00849 
008~0 

00f.l51 
ooesz 
008~3 

008~4 

008!5!5 
008!56 
008!57 
00858 
00659 
00060 
00861 
00862 
00863 
00844 
0086!5 
00(-166 
00867 

00868 
00869 
00870 
00871 
00872 
0087.3 
00874 
0087!5 
00876 
00877 
oo!I7B 

0428 39 

042C 
04ZF 
0430 
0446 
0447 
04SA 
04!58 
0476 
0477 

048A 
0488 
04BC 
0480 
0498 
049A 

0498 
04AB 
04AD 
04AE 
04CZ 
04C4 
04C!5 
0406 
0408 
0409 
04EB 
04EC 
OSOF 
0!511 
0!512 
0!523 
0!524 
0!53E 
0!540 
0548 
0!54D 

0087Ci' 0!5!59 
00880 0!5!58 
00881 0!!571 
ooeez 0:573 
00883 
00f:U34 
0088:5 
OOB86 
00887 
OOB88 
00889 
00890 
00891 
oot:t92 
00893 
00694 

0!581 
0:583 
0!591 
0:593 
0!594 
05AC 
O!SAE 
0:580 
0!581 
0:5C4 
05C6 
0:5D9 

ZO 
00 
.. o 
00 
so 
00 
44 
00 
41 
00 
OA 
00 
44 
00 
00 
0477 
57 
OD 
00 
4E 
OD 
00 
so 
00 
00 
42 
00 
4" 
00 
00 
44 
00 
53 
00 
30 
OD 
30 
OD 
30 
OD 
30 
OD 
30 
OD 
00 
53 
00 
0000 
1A 
2.A 
00 
2.A 
00 

-.... _-

5-S D 6809 --A.S-SEM-U-i.ER --

RT5 

*STORAGE* 
COMST FCC 

FC8 
STR1 FCC 

FC8 
STR2 FCC 

FCI 
STR3 FCC 

FCI 
STR4 FCC 

FCI 
FCB 
FCB 

STR:S FCC 
FCB 
FCB 

5TR4 EQU 
STR7 FCC 

FCB 
FCB 

STAEI FCC 
FCB 
FCB 

STR9 FCC 
FC8 
FCB 

STR10 FCC 
FCB 

STAll FCC 
FCB 
FCB 

STR12 FCC 
FC8 

STRl.J FCC 
FCB 
FCC 
FCB 
FCC 
FCB 
FCC 
FCB 
FCC 
FCB 
FCC 
FCB 
FCI 

STR14 

STR1:5 

FCC 
FCD 
FOB 
FCB 
FCC 
FCB 
FCC 
FCI 

1-> I 
00 

~ _ ...... 

/PROH START ADDRESS 7 I 
00 
/PROM END ADDRESS 7 
00 
/DATA TABLE START ADDRESS 7 I 

00 
/ADDRESS FIELD ERROR/ 
OOD 
OOA 
00 
/DATA ERROR 
*OD,*OA 
00 
STR4 
/WRITE DATA ERROR/ 
•on, •oA 
00 
/NON ZERO FIELD ERROR/ 
•oo, •oA 
00 
/PROGRAHHINC ERROR/ 
•oo,eoA 
00 
/BINARY FILE NAME? I 
00 
/EOF FOUND BEFORE END OF DATA BUFFERI' 
eoo,•oA 
00 
/DATA TABLE SIZE? I 

00 
/SELECT NEW SIZE ATTRIBUTES/ 
•.oo, •oA 
101. • 32 * 8/ 
•oD,.OA 
/02 - 2:56 * 4/ 
•oo,.oA 
/03 • 512 * 4 fDEFAULTI/ 
*OD,tOA 
/04 • 20~6 * B 
•on, toA 
/0:5 - 4096 * 8 
tOD,.OA 
00 
/SIZE DEFAULTS TO !512 * 4/ 
•oo,toA 
00 
UA 

'*******************' 
eoD,tOA 
I* PROM PROGRAMMER *' 
tOD ,eOA 



00200 
01000 264C 
OlOOZ OOO.JFFOl 
01006 0003FFZl 
0100111 00021C2E 
01 OOE 0002 l 084 
01012 00020008 

01016 
0101A 
·0101E 
010ZO 
>01022 
•01024 
•01026 
•01028 
'010ZA 
•0102C 
10102E 
•010.10 
1010.12 
•010.16 
1010.18 
IOlO.JC 
)01040 

01042 

00002000 
00001300 
0040 
1100 
0000 
0000 
26.JA 
0000 
0000 
0000 
z8oo 
0000 
00001900' 
0000 
0003FF01 
00000000 
0000 

02000 0004 
02002 4348494E 
02006 0000 

02008 2278100E 
0200C 207810.18 
02010 4E91 
02012 4E7S 

02014 ooos 
02016 4J41i14FSS 
0201A ZOOO 

OZOlC 2278100A 
OZOZO 20781038 
02024 4E9l 
OZOZ6 4E7!5 

* * SlX'fH OPERATlN(; SYSTEM FOR 68000 
* AUGUST 1981 
* REVISION 2.1 
* DAVE COWAN 

• OR(; 1000 
REST DC.W INTEl 
ACIA1 DC.L •JFF01 
ACIAZ DC.L .3FFZ1 
OUT DC.L •z1C2E 
IN 
HACS 

* 

DC. L .21084 
oc.L •zooo8 

* VARIABLES USED 

* HSTCK DC.L •2000 
DOSTK DC. L 11300 
PRE~ DC.B .40 
STBUF DC.W •1100 
BWORD 
EWOR!D 
DLAST 

DC.W 10 
oc.w 10 
DC.W XSWAP 

LAST DC.W 10 
RDX DC.W 10 
NFLAG DC.W 10 
DP DC.W 12800 
STATE DC.W 10 
~OPSTK DC.L 11900 

RELO DC.W 10 

RESTART VECTOR 
PORT1 C TE,RHINAL 
PORTZ C HOST I 

PREFIX CHARACTER 
BUFF'ER START 

START WORD POINTER 
END WORD POINTER 

LAST DEFINITION POINTER 
LAST WORD FLA(; 

CURREN'f RADIX 
NUMBER FLAG 

NEXT FREE LOCATION 
SYSTE:H STATE 

OP STACK 
RELOAD FLAG 

f'ORT' I)(;. L 13FF01 
CTIH£ DC.L 10000 

"' "' 
"' 
"' * 

oc.w •oooo 

ACTUAL PRQ(;RAH START 

OR(; ZOOO 

XCHIN DC.B 14 

"' 

DC.L "CHIN" 
DC.W 0 

* CHARACTER INPUT ROUTINE 

"' SIN KOVE.L IN,Al 

"' "' 

MOVE. L PORT, AO 
.JSR IAll 
RTS 

XOUT DC.B IS 

"' 
DC. L ."CHOU" 
DC.W XCHIN 

SPACE FOR PTH 

* CHARACTER OUTPUl' ROUTINE 

"' SOUT KOVE.L OUT,Al 
..OVE. L PORT ,AO 
.JSH CAll 
RTS 

002028 0004 
oo~·.ozA 4D41435.l 
OO:i!OZE 2014 

OOZOJO 
002034 

002036 
002038 
00203C 

22781012 
4EDl 

0006 
42!5:54646 
2028 

00203E 4E88209A 
002042 
002048 
OOZ04E 
002052 
002056 
OOZ.05A 
00205E 
002062 
002066 
002068 
00206A 
00206E 
0020"12 
002076 
002078 
00207C 
002080 
00:.?.084 

;nF810201024 
11FC00001028 
JO.l8101E 
4EBBZ01C 
34781020 
4EBBZOOB 
OCOOOOOD 
66000006 
14CO 
4E75 
ocoooooa 
66000019 
4EBB201C 
1222 
B4FB1020 
6FOOf-"FCO 
ocoooozo 
6DOOFFD4 

oozoaa 4EB8Z01C 
Oo:i.'.OiiiC 14CO 
OOZOBE 4EFB205A 

002092 0004 
002094 43~24C46 

002098 2036 

OOZ09A 303COOOD 
00<!09E 4·EEIBZ01C 
0020AZ 303COOOA 
0020Ab 4EEIOZ01C 
OOZOAA 4E7!5 

OOZOAC 0004 
OO:i.'.OAC. 574F5244 
OOZ082 2092 

0020114 
OOZOBA 
OOZOBE 
0020CZ 

31FB10241022 
3471:11022 
OC1A0020 
6700FFFA 

.. 
XHAC 

* 

DC. II 14 
DC.L "MACS" 
DC.W XOUT 

* MACSIIUG REENTRY POINT 

* HAC HOVE.L HACS,Al 

"' "' 

.JHP CAll 

XBUF DC. B ·~ 

"' 

DC. L "BUFF" 
DC.W XHAC 

* SYSTE:I'I .. ·USER IO ROUTINE 

"' BUFF 

NE~XT 

BSP 

NPT 

* 
* 

.JSR CRLF 
HOVE.W STBUF,EWORD SET UP PARAHS FOR WORD 
MOVE •o,LAST CLEAR END OF BUFFER FLAG 
HOVE.W PREF,DO PHEFIX CHARACTER 
JSR SOUT SEND"PREFIX CHAR 
HOVE.W STIIUF,A2 START OF BUFFER POINTER 

JSR SIN GET A CHARACTER 
CMPI •IOD,DO CR ? 
BNE BSP NO 
HOVE DO,IAZI+ STORE IT 
RTS KILL IT 

CHPI •eoa,DO BACKSPACE 
BNE NPT NO 
.JSR SOUT ECHOE IT 
MOVE -IAZI,Dl BACK OFF 
CHPA.W STBUF,A2 BACK AT START 7 
BLE BUFF RESTART 

CHPI •• •,DO LOOK AT NON PRINTING 
BLT NEXT IF SO IGNORE 
JSA SOUT ECHOE THE CHARACTER 
MOVE DO,IA21+ STORE IT 
JMP NEXT AND AGAIN PLEASE I I II 

XCRLF DC.B 14 

* 

DC.L "CRLF" 
DC.W XBUF 

* SIHPLE CRLF ROUTINE 

* CRLF MOVE.W •10D,DO 

* 
* 

JSR SOUT 
HfJVE.W •eOA,DO 
J!afl SOU'f 
RTS 

XWORD DC.B 14 

* 

vc:. L ·wonD• 
DC.W XCRLF 

* SETS WORD POINH1:Rs FOR FIND 

* WORD HOVt:::. W EWORD, BWORD 
HOVE.W BWORD,A2 

SPACE CMPI •• • ,IAZI+ 
BEQ SPACE 

SET END • BEGINNING 
TO SCAN 

SPACE PERHAPS 



2) SIXTH· dictionary. 



1000 CONSTNofT EQUATES 
EQ~TES 2 + CONSTANT ACI1 
ACI1 4 + CONSTANT ACIZ 
ACI2 10 + CONSTANT HSTCK 

.j H5TCK 4 + CONSTNofT DOSTK 
IDOSTK 4 + CONSTNofT ~REFIX 
1 ~REFIK 2 + CONSTNoiT ST 
!sT Z +CONSTANT WB 

, WB Z + CONSTANT WE 
\·WE Z + CONSTNofT DL 
''DL Z +CONSTANT LAST 

LAST Z + CONSTNofT RDX 
RDX 2 + CONSTANT N"LAC 
NFLAC 2 + CONSTNofT DP 
DP 2 + CONSTANT STATE 
STATE Z + CONSTANT OPSTK 
OPSTK 4 + CONSTANT FRELO 
FRELO Z + CONSTANT PORT 
PORT 4 + CONSTNofT CTI..: 
0 CONSTANT 0 
1 CONSTANT 1 
2 CONS TNoiT Z 
.J CONSTANT .J 

OCT 8 RDX IW ; 
HEK 10 RDX IW ; 
DEC A RDX IW 
DUP ~~ PUSH ~USH 
DRO~ PO~ ; 
OVER SWN' DU~ POP STK SWAP UNST PUSH 
ROT'SWA~ ~0~ STK SWAP UNST PUSH 
HERE DP ltW 
1- 1 -
1+ 1 + 
I IW 
eew 
'1 DU~ e l+ SWA~ I 
DPI D~ e I D~ fl Z + DP 
~ WORD NUI18ER ; 
L9 7 LEFT Z LEFT ; 
~ WNUH + WNUH L9 + DPI 

HOVE I~DIATE ZOOO WNUH2 ; 
SUB IMMEDIATE 9080 WNUH2 ; 
SUBW I~DlATE 9040 WNUHZ ; 
AND IMMEDIATE COSO WNUH2 ; 
PSHS IMMEDIATE 2FOO DPI ; 
PULS IMMEDIATE 201F DPI ; 
MASK POP HOVE 0 1 POP AND 1 0 PUSH ; 
82 6000 + DPI HERE DUP 0 DPI ROT POP HOVE 0 1 POP SUBW 1 0 PUSH SWAP I 
BRA IHHEDIATE 0000 82 
BEQ IMMEDIATE 0700 BZ I 
8HE IHHEDIATE 0600 82 
8LE IMMEDIATE OFOO 8Z I 
BGT IHMEDIATE OEOO 82 
8CE IHHEDIATE OCOO B2 
8PL IHHEDIATE OAOO 82 
8LT IHHEDIATE ODOO 82 
RTE IHHEDIATE 4E73 DPI ; 

FR~ IHHEDIATE 48E7 DPI FFFE D~l 

SYRES IMMEDIATE 4E70 DPI ; 
EN INT I""EDIATE: 027C DP I F'EIFF DP I 
DISIN'f IMMEDIA'fE 007C DPI 0700 DPI ; 

IIN'f I""EDIATE INTEGER ; 
CALL 4EBB DP I . ; 
I IMMEDIATE 4EBB DPI WORD FIND 8 + DPI ; 
II IMMEDIATE WORD FIND B + ; 
•> IMMEDIATE CALL II CALL liNT DPI WORD FIND B + 
< • IMHEDIA'TE INl'EGER •> DP I liNT DP I ; 
<DO POP STK POP STK POP STK 
'LOOP UNST UNST UNST ; 
DO IMMEDIATE 2D.JC DPI 0 DPI HERE 0 DPI •> <DO <• HERE ; 
<LOOP UNST PUSH MOVE 0 ~ UNST PUSH SUB 0 ~ 1 + POP STK POP STK HOVE ~ 0 
LOOP l""EDIATE •> (LOOP (• I BCT HERE SWAP I •> 'LOOP <• ; 
ABORT 'LOOP PULS ; 
NEXT PULS UNST PSHS UNST PSHS UNST PUSH Sl'K PULS STII PULS STK B - POP ~5 
STOP PULS UNST PUSH UNST PUSH UNST PSHS STK POP STK POP STK ; 
QUIT PULS ; 
I UNST PSHS UNST PUSH STK PULS STK ; 
SK IHHEDIATE WNUH HERE + 
• POP HOVE 0 1 POP SUB 1 0 SK C BEQ 0 SK B BRA 1 POP 
> POP HOVE 0 1 POP SUB 1 0 SK C BGT 0 SK B BRA 1 POP 
< POP MOVE 0 1 POP SUB 1 0 SK C BLT 0 SK B BRA 1 POP . CRLF ; 
BASE RDX IJ DUP DEC . RDX 
•OSKIP HOVE 0 1 HERE B + I BEQ 4EFB DPI 0 DPI 
>OSKIP MOVE 0 1 HERE B + I BCT 4EFB DPI 0 DPI 
IF IMMEDIATE >OSKIP HERE 2 - ; 

THEN IMMEDIATE HERE SWAP I 
ELSE IMMEDIATE 4EFB DPI 0 DPI I THEN HERE 2 -
•< OVER OVER ( IF DROP DROP ELSE • THEN 
>• OVER OVER > IF DROP DROP ELSE • THEN ; 
( > OVER OVER ( IF SWAP l'HEN 
BYTE DUP liB SWAP 1 + SWAP ; 
I IMMEDIATE WB IJ DUP 100 1 DO BYTE 29 • IF DROP I + WE I ABORT 

THEN LOOP DROP DROP ; 
ARRAY IMMEDIATE 2 * DUP DUP 2D.JC DPI 0 DPI DPI 

2D.JC DPI 0 DPI HERE 6 + DPI HERE 4:+ + 
I BRA DP IJ + DP I, ; I PUTS SIZE,ADDX ON STACK I 

CTIHE 6 + CONSTANT CT 
CT 4 + CONSTANT ST2 

STZ 4 + CONSTANT WIDTH 
: DELIM WORD WB II DUP CT I GT '1 liB ; 
: FILL 0 WIDTH I DP IJ 10 + ST2 I DELIM 100 1 DO CT IJ liB CT '1 
OVER OVER • I.F DROP DROP WIDl'H IJ CT IJ WE I 0 ST2 II I 8 ABORT 
THEN WIDTH '1 STZ f1 18 STZ '1 LOOP ; I FILLS AFTER THE RTS I 

STRING IMMEDIATE FILL 1 + Z I I ARRAY ; 
LOC WORD FIND ; I LOCATES A WORD IN THE DICTIONARY 
SPACE ZO TO ; I TYPE 1 SPACES I 

LIST DO I IJB . SPACE LOOP ; I HEHORY DUMP I 
SAY l'YPE ; 
STRl STRINC .THERE ARE • ; 
STR2 STRING • DE:FINITIONS • 
DEFN DUP fiB . SPACE 1 + DUP e& 
NAME 3 0 DO DUP I + fiB TO LOOP 
S1'R3 STRINC .NOT FOUND • ; 
STR4 STRINC •DEFINITION KEPT• 
BEGIN IMMEDIATE HERE ; 
END IMMEDIATE 4EF8 DPI DPI ; 

LOCATE IHHEDIATE LOC ; 

l + SPACE 



·l 
j 
f 

. ' 
\ 
\ 

INTER PULS EQUATES 8 POP PSHS ; I JHP TO INTERPRET LOOP I 
HACSBUC PULS Z013A POP PSHS ; I JHPS STRAIGHT TO HACS Cli 
SERROR CRLF STRING .ERROR• SAY CRLF INTER ; I TRAP ERROR I 
SA80RT CRLF STRING •ABORT• SAY 

CRLF INTER ; I ABORT .UTTON HANDLER I 
.• VARiABLE ; ; 
•EEP WORD FIND .• I ; I WRITE PROTECTS DICTIONARY-SPACE 
WHAT CRLF DL 8 1000 l DO DUP DUP . SPACE DEFN NAHE SWAP 

.• 8 • IF DROP A80RT THEN 4 + 8 CRLF DUP 0 • IF STRl SAY 
RDX 8 DEC I . RDX I STRZ SAY 

DROP A80RT THEN LOOP DROP 
FORGET WORD FIND DUP 0 • IF 

CRLF DROP STR3 SAY ELSE DUP .KG •< IF 
CRLF DROP STR4 SAY ELSE DUP DP I 6 + G Dl I 

THEN THEN ; C FORGETS All DEFNS UP TO THE SELECTED ONE I 

C INTERRUPT STUFF I 
INSTAll 4 * 60 + LOC a + SWAP ll 

STORE VARIABLE 
SETUP SYRES 

DISINT 0 STORE I LOCATE SERROR eiNT 8 + 
100 1 DO DUP STORE G 4 + DUP STORE 

ll LOOP DROP LOCATE SABORT 
eiNT a + 7C IL C LOADS UP VECTOR AREA I 

ACIA SWAPPING STUFF I 

CHECK BECIN CHIN PUSH OZ • IF ABORT THEN END 
ACL 3 OVER CB 1~ SWAP 18 
A1 ACI1 GL PORT IL ; 
AZ ACIZ 8l PORT IL ; 
STR WORD LENCTH PUSH WB 8 
T1 ACil 8l ACL ; 
TZ ACIZ Gl ACL ; 
TRANS ACil 8l ~~ OVER 18 FD SWAP Z + 18 
PZ TRANS CHEC. Tl TZ ; 

I NEW OPEN COHHAND STUFF FOR ANY FILE I 

COH_LINE STR STRINC &1:lD & AZ TYPE TYPE OD TO ; 
WAIT BECIN CHIN PUSH OD • IF ABORT THEN END ; 
REP_ TEST IIECIN CHIN PUSH DUP 41 • IF POP 1 AltORT ELSE SB • IF 0 ABORT THEN THE:I 
OPEN C~_LINE WAIT REP_TEST Al DUP 0 • IF STRINC & FAILED & SAY THEN 

• Al STRINe •EOF FOUND• SAY RESTART ; 
•ENDFILE 0 FRELO I AZ lB TO Al ; 

I RUBOUT COHHAND FOR EOF I 

COHPILE OPEN 0 • IF •ENDFILE ABORT THEN RELOAD ; 
SETUP 

RESTART 



Chapter 5 Listings 

1) Portable Controller Program. 



~ 

HIGHWAY CONTROLLER TABLES I 

PIUHARY TA8LE I 

800 CONSTANT PT 
PT CONSTANT CTUSW 
CTU.W Z + CONSTANT CTUCW 
CTUCW Z + CONSTANT PTPT 
PTPT Z + CONSTANT PTBS 
PT85 Z + CONSTANT PTS& 
PT&& Z + CONSTANT PTST 
PT5T Z + CONSTANT ST&P 
ST&P 4 + CONSTANT REC 
REC Z + CDH5TANT RC 
AC Z + CONSTANT NRC 
HAC Z + CONSTANT OTA 
OTA Z + CONSTANT OT 
PT 66 + CONSTANT ITA 
ITA Z + CONSTANT IT 

I STATUS TA8LE I 
COO · CONSTANT STT 

I SIZ£ STORE I 

AOO CONSTANT MSS 

I IIUFFER STORE 

.AOOO CON&TANT 8S 

I POLLING TABLES I 
900 CONSTANT PTA 

DOO CON&TANT PT8 

I aw..:L CONTROL WORD I 

.ICOOO CONSTANT CCW 

CONTROL WORDS I 

Z CONSTANT GO 
.I CONSTANT CSTOP 
4 CONSTANT OFFINT 
S CONSTANT ONINT 
7 CC»dTANT RIEKT 

I FELTEC LCD DRIVERS I 

PRIMARY TA8LE POINTER I 
CONTROLLER TERMINAL UNIT STATU& WORD I 
CONTROLLER TERHIHAL UNIT CONTROL WORD I 
POINTER TO POLLING TABLE I 
POINTER TO auFFER STORE I 
POINTER TO STATUS STORE 
POINTER TO STATUS STORE 
SELF TEST SCRATCHPAD I 
RECEIVE ERROR COUNTER I 
REPEAT COUNTER I 

C NULL REPEAT COHUHTER I 
C OUT TIME AVAILABLE I 

I OUT TIHE I 
C IN TIHE AVAILABLE 

I IN TIHE I 

I POLLING TA8LE A I 

I POLLING TA8LE 8 I 

I START TERMINAL UNIT I 
I STOP TERMINAL UNIT I 

I SWITCH OF~ INTERRUPTS I 
I SWITCH ON AND CLEAR INT'ERRUPTS 
I RESET AND HALT TERMINAL UNIT I 

.IFF40 CONSTANT PIA I FIRST THE RELEVANT PIA REGISTERS I 
PIA CONSTANT DRAZ 
PIA Z + CONSTANT DR8Z 
PIA 4 + CONSTANT CRAZ 
PIA 6 + CONSTANT CR8Z 

' ' 
: OIIYHi: DUP .lf--F42. Ill 3F'F4Z Iiiii OV£H '" If' DHOP EUil:: 
.lf'F4~ lit .lC .lFf''46 I B -, .lFF44 I 8 THI::N .14 CHU~ I II .lC CRUZ I It ; 

CL 'F'EL 7F 0 DO ZO OIIYTl:: LOOP ; I CL£AR ONE: ENTIRE BUf--FER I 
: lNIT 'f'EL 00 CRUZ Ill F'F·- DIUIZ I B OC CRfiZ I B C ALL OUTPUT!i I 

ee OIIYTE ez OfiYTE CL.FEL Ell OIIYTE I CLEAR BUFFl I 
lillil OIIYT'E AZ OBYn! CL •FEL 1:11 OIIYTE I CLEAR UUFFZ I 
'i'O 08YTE 00 OIIYTii: ; C RESET CURSCH I 

PT' VARIABLE ; C BUFFER POINTER FOR FELTEC I 
SCROLL 84 OBYTE OIIYTE ez OBYTE lF 0 DO ZO OBYTE LOOP 81 OIIYTE 
PT'FEL PT' DUP II 7F. HAliK DUP u- HAliK 0 • IF' DUP SCROLL THi:N tiWAP '1 
T_DIS VARIABLE ; C CURRENT DISPLAY TYPE I 
FEL'CL 8S 08Yl'E SZ 08Y'rE CL.FEL till OBYT'E 'i'O OIIYTE 0 OBYTE 0 PT' I 0 T 
OUT'FEL PUSH DUP DUP A • IF DROP I IGNORE LF I 

ELSE OUP D • IF DROP PT·, II ~0 + 60 MA~K PT' ' 
ELliE DUP OS • IF DROP PT' DUP II 1- SWAP 

90 OIIY'rE f'T • II OIIYTE 
ELSE 

PT.FEL El4 OBYTE OBYTt:: az OBYTE OBYTE till OBYTE 
PT• II 90 OBYTE OIIYTE 

1'1-ii::N 
HiEN TI-II:::N POP ; C LEAVE CHAR IN DO FOR IIIUF'F I 

C REAL TIME CLOCK I 

.lCOZO CONSTANT CLOCK C ADDRESS 0 OF REAL TIME CLOCK I 
INV -1 SWAP - ; 
.. INV F MASK . 

4INV INV F MASK ; 

C DAT f''ROI'I CLOCK IS COHPLII'IENTIO:D I 
I AND ONLY LOWER THREE BITS 16 VALID I 

CCLEAR. Z $ CLOCK + 0 INV SWAP I 
CREAD Z * CLOCK + ~ ; 
STOPCLOCK 0 lNV CLOCK E Z * + I 

I CLEARS A CLOCK LOCATION I 
C READS FROM A CLOCK LOCATION I 

GOCLOCK 0 INV Cl.OCK I 1 INV CLOCK E Z * + I ; 
CSTORE ~ * CLOCK + SWAP INV SWAP I ; C STORES DATA AT 
STCD STOPCLOCK 1 0 1.10 liUI'-FER WNUI'I C I ·· CSTOHE LOfJP 

:!i 0 DO BUFFER WNUI1 'il I - CSTOfiE LOOP GOCLOCK ; C 

41NV INV F MASK ; 

CLOCK LOCN I 

SET A HEW T II'Ui: I 

_CREAD 10 1 DO DUf' CfiEAD DUP 4INV F I'IASK F' < lF SWAP DROP ABOHT 
Tl-10•1 DROP LOOP SWAP DROI' ; 

GTOD 'il 1 DO I _.CHEAD 4INV LOOP C B DO I _C:READ 4INV LOOP ; 
TIME C.TOD :S 1 DO . . 3A TO LOOf' . 

C tUGt·IWAY C:ONTfiOLLER DfllVEfiS I 

!iTATUS TABLE F.It:::LDS 
•NAK Z * !:iTT + II 4000 MASK 4000 
.NR Z * !iTT + Cl liiOOO HA!iK &:1000 
•IHH Z * Sl"l' + Cl F'F MASK ; 
•EM Z * ST'r + Cl .lFOO MASK 100 I 

I ; C STACKS NAK BIT F'OR A Hi:RI'I1NA 
C STACKii NH 8IT I"OR A l'&HHINAL 

C S'fAC:K!:i INFOftHATlON MONITOR I 
; C STACKS EHROH MONITOR I 

C GET ALL STATUS ON A PARTICULAR TI::HHINAL I 
•GT'STATS DUP •IHH SWAP DUP •t::H SWAP DUP •NH SWAf' .NAK ; 

• C ORDER OFf-" Sl'ACK -> NAK ,NH ,EH, IHH I 

CON'rROLLER STATUS I 

•sTOP CTUSW II 1 HA~I( ; I S'fACKS ~TARTI~TOP biT I 
.ACTIVE CTUSW II Z MASK Z I ; C S'rACKS ACTIVE/PASSIVE BJ:T I 
•OGP CTUSW a 4 MA6K 4 I ; C STACK~ OVERRIDE GO PA!iSIVE 8IT 



Chapter 6 Listings 

1) Master terminal Unit Program. 



I NEW MASTER UNIT SOFTWARE I 
I DESTINED FOR THE SHIP TRIALS 
I .JANUARY 1'9BZ I 

I INCLUDES REVISION TO ALLOW USE OF HTB EXTENSION BIT I 
. I INCLUDES BOTH BLOCK AND SHORT MESSAGE TESTS 
·I· REVISION Z.l 10/liBZ I 

I LOHCER REPOIITS TO ALLOW DECENT STATUS 
: I RE .. ORTS IN SHST I . , 

I STOAEIT AND DOlT INCLUDED IN THIS ONE I 

I TERHINAL LINIT PRIMARY TABLE I 

.AOO CONSTANT PR_TAB 
PR_TAB CONSTANT IN_INT 
IH_IHT l + CONSTANT IH_NO 
IH_NO Z,+ CONSTANT IN_POS 
IN_POS l + CONSTANT IN_TAB 
IN_TAB Z + CONSTANT O_INT 
O_INT l + CONSTANT O_NO 
O_NO Z + CONSTANT O_POS 
o_POS l + CONSTANT O_TAB 
O_TAB Z + CONSTANT MES_TAB 
MES_ TAB 40 + CONSTANT HW_NO 
HW_NO Z + CONSTANT RE_COUNT 
RE_COLINT Z + CONSTANT DAT_STARV 
DAT_STARV Z + CONSTANT RETR_COUNT 
RETR_COUNT Z + CONSTANT BUF_OVER 
BUF_OVER 2 +CONSTANT IN_BLK_STAT 
IN_BLK_STAT Z + CONSTANT IN_BLK_SOURCE 
IN_BLIC_SOURCE Z + CONSTANT IN_BLK_TOTAL 
IN_BLIC_TOTAL l + CONSTANT IN_BLK_TOT_RECVD 
IN_BLK_TOT_RECVD l + CONSTANT IN_BLIC_ADDRESS 
IN_BLIC_ADDRESS Z + CONSTANT O_BLK_STAT 
O_BLK_STAT ~ + CONSTANT O_BLK_DESTIN 
O_BLK_DESTIN l + CONSTANT O_BLK_TOT 
O_BLIC_TOT l + CONSTANT O_BLK_TOT_TXD 
O_BLK_TOT_TXD 1 + CONSTANT O_BLK_START 

C END OF PRIMARY TABLE I 

IN TABLE 
C MASK FOR A SINGLE BUFFER AREA I 

I RELATIVE TO START OF BUFFER I 
1 CONSTANT IN_BUF_LEN 
IN_BUF_LEN 1 + CONSTANT IN_DEST 
lN_DEST 1 + CONSTANT IN_SOURCE 
lN_SOURCE 1 + CONSTANT IN_TYPE 
lN_TYPE Z + CONSTANT IN_DAT_BUF 

I OUT TABLE I 
I MASk FOR A SINGLE BUFFER AREA I 

I RELATIVE TO START OF BUFFER 
l CONSTANT O_BUF_LEN 
O_BUF _LEN 1 + CONSTANT O_DEST 
O_DEST Z + CONSTANT O_TYPE 
O_TYPE Z + CONSTANT O_DAT_BUF 

I ABLE 1MP1E.IJIAIE ZD03C UP I 0 DP 1· 111' I ZU3C llt' I U Ut' I Ut'l ; 
( ; 

> ROT * + + ; 

I CHANNEL CONTROL WORD 

3COOO CONSTANT CCW 

CONTROL WORDS I 

Z CONSTANT GO 
3 CONS'rANT CSTOP 
4 CONSTANT OFFINT 
~ CONSTANT ONINT 
7 CONSTANT RESET 

I START TERHINAL UNIT I 
I STOP TERHINAL UNIT I 

I SWITCH OFF INTERRUPTS 
SWITCH ON AND CLEAR INTERRUPTS 
RESET AND HALT TERHINAL UNIT I 

I BITS TO CONTROL TERHINAL UNIT I 

40 ~900 : IN_TABLE TABLE ; 
40 ~DOO : OUT_TABLE TABLE ; 

OUT_BUF_NO VARIABLE ; I 6BK'5 RECORD OF NEXT FREE BUFFER I 
GET_BUF OUT_BUF_NO DUP g l + F MASK SWAP I ; 
CLZ DO 0 I IB LOOP ; 

C HESSAGE SE:ND ROUTINE I 
SEND OUT_TABLE C OUT_BUF_NO g O_BUF_LEN ) eB 

0 • IF I BUFFER IS FREE SO CARRY ON I 
OUT_TABLE C OUT_BUF_NO aS) DUP S- CLZ· 
OUT_TABLE C OUT_BUF_NO a O_TYPE ) I I MESSAGE TYPE I 
OUT_TABLE C OUT_BUF_NO g O_DEST > IB C DESTINATION I 
OVER 0 DO DUP I + GB 

OUT_TABLE C OUT_BUF_NO a O_DAT_BUF I + > 18 LOOP DROP 
1 + Z I 3 + 3F MASK OUT_TABLE C OUT_BUF_NO g O_BUF_LEN ) 18 
GET_BUF 
ELSE POP POP POP POP 
THEN 

BLOCK RECEIVE AND TRANSHIT ROU1"INES I 

TOT&REM I GET SUB-BLOCK TOTAL AND REMAINDER I 
1 + Z I FFFF HASK I WORD COUNT I 
ZO I DUP SWAP I SUB-BLOCK TOTAL I 
3F 10 LEFT HASK 
eo 1 zoo 1 I REMAINDER I 

BLK_SEND O_BLK_STAT g 8000 HASK 0 • IF 
O_BLK_START O_BLK_STAT CLZ 
O_BLK_DESTIN 18 
Z I O_BLK_START I 
TOT&REH 
O_BLK_STAT I 
O_.BLIC_TOT IB 

I CLEAR UP TABLE I 
I DESTINATION I 

I START ADDRESS I 

BO O_BLK_STAT IB I GO GO GO I 
ELSE DROP DROP DROP C GET RID OF PARAHS I 
n•EN 

BLIC_REC IN_BLIC_STAT a 8000 HASK 0 • IF 
DROP DROP DROP I GET RID OF UNWANTED PARAHS 
ELSE 0 IN_BLIC_STAT Z + IL I CLEAR UP I 



HUN A-TEST- I 
ASSUHES ALL UNITS ALREADY SETUP CORRECTLY 

RUN NSET SHY 
SRUN 
RESET•R£p 
IIEQIN 

SEND THE BK.SRC NUHBEA & RESET VARIABLES I 
TELL THE RECEIVERS TO START 
SET ALL POINTERS TO ZERO I 
THIS IS WHAT WE CAHE FOR I 

8000 0 DO BK.TX LOOP C DO A FEW TRANSHISSIONS 
OD TO TEST_BYTE e 

BUF? 
END 

SZ SETUP 
SETUP SZ 0 WAITING I RESET.REP ACIZ IlL Z + •• 

SHORT MESSAGE SOAK TESTS I 
ASWE SHIP TRIALS I 

I REviSION 1.0 3ANUARY 198Z I 

~LYSE CODE 
94BZ SUII. L DZ,DZ 
Z60Z MOUE.L DZ,D3 
zaoz HOUE.L DZ,D4 
Z6SE MOVE.L CA61+,A3 
Z4SE MOVE.L CA61+,AZ 
ZZlE MOVE.L CA61+,D1 
3601 A HOVE.W D1,D3 
3818 MOVE.W CA.JI+,D4 
8943 EOR.W D4,D3 
670A BEQ. S B 
SZ4Z ADDQ •1, DZ 
B47C CMP •e9,DZ 
0009 
6EOZ BCE.S 8 
ZDO.J HOUE.L D3,-CA61 
SZ41 • ADDQ .1,D1 
BSCB CMP. L A3,AZ 
6EEB BCE.S A 
ZDOZ HOVE.L DZ,-IA61 
4E7S ATS 
0000 

H_BYTE VARIABLE 
BM.START·CONSTANT M_START 
39 CONSTANT H_LENCTH 

HTII, USED TO GENERATE MESSAGES I 
I USE SAME SPACE AS BLOCK TEST 

I MAXIMUM DATA MESSAGE LENGTH 
H_START H_LENCTH + CONSTANT H_END 

UCOUNT VARIABLE ; I COUNT OF UNITS IN THIS TEST I 
,.-LAG VARIAIILE 

UNJTSI 1l ; st£• x_cOH 1l 
St£ Sf'IE • HW_NO 

DUP 1 • JF 
ELSE Z • I,. 

0 0 SEND 

II DISSECT 
DROP OVER IB 
ROT OVER 1 + I 8 SWAP OVER I 8 THEN THEN 

WAJT_A_WHJLE 4000 1 DO LOOP l 

: UNITS I U_PCIINT [ UCOUNT II J I 

UCOUNT .• 1 ; I STORE ANOH£R TERMINAL NUMBER I 

: M.GEN M_BYTE II FF MASK DUP 8 LEFT + C FORM GENERATOR I 
M_END H_START BK.CEN 

M.SEND DUP M.GEN DROP H_LENGTH M_START 
ROT ROT H_BYTE II FF MASK 
100 + SEND C SET TYPE EXTENSION BIT I 
M_BYTE •1 ; 

REP.NO VARIABLE 
8 : REP ARRAY 1 

M.SAVE E - Z * C + REP SWAP DROP + •1 I INC MESSAGE COUNT I 

RX_WAIT 0 FLAG I 4000 0 DO RECEIVE 0 • IF STOP 
ELSE I FLAG I 
THEN LOOP ; 

ERRORTOT VARIABLE 

CL_REP REP DUP lS + SWAP DO 0 I 18 LOOP DROP 

MSTRIP CL_REP AAAA REP C 1 l I 
REP.NO II REP C 0 J I 

FLAG ERROR RECORD I 

A Z DO REP C I J I LOOP 
REP STOREIT 

M.ERRS ERRORTOT II + ERRORTOT I MSTRIP 

M.ANALYSE FF MASK DUP B LEFT + SWAP 
POP STK ROT SWAP 
OVER + SWAP ANALYSE 
DUP 0 ) IF M.ERRS 

ELSE DROP THEN UNST PUSH 

GTIH£1 0 PR_TAB 66 + I 4000 1. DO PR_TAB 66 + II 8000 • IF STOP TH~ LOOP 
Z 0 DO PR_TAB 68 + IZ II OVER IZ I LOOP DROP ; 

MREPORT 
REP Z + GTIMEl DROP 
ERRORTOT II REP C 4 J 
RE_COUN"f II REP [ S J 
REP.NO II REP C 0 J 

M_BYTE II REP C 6 REP.NO II + 
REP liTOREIT 

SET BITS 
HW_NO II .JF MASK E - REP.NO I 
CL_REP 0 ERRURTOT I 0 M_BYTE 

J 

REPORT TO ITSELF I 

UNDETECTED ERRORS I 
DETECTED ERRORS I 
REPORT NUMBER I 

I TOTAL M~SSACES SENT I 
I DO THINGS THE EASY WAY I 

I SET A FEW URGENTLY NEEDED BITS I 



USAY CRLF STRING ~TER"IHALS IN TEST:- • SAY 
SPM:E HW_NO II . i 

SltRUN 
DISINT 
RESET.REI" 
SETBITS 
UCOUNT II 1 
USAY 

I SAY HELLO TO EVERYONE I 

CET TOTAL HUMBER OF RESPONSES I 

0 DO U_POINT C I l II DUP ".SEND 
SPACE . LOIJP CRLF 

BEGIN 
LSIZE 1 DO 

RX_~IT I WAIT TO RECEIVE ANYTHING I 
FLAG II 4000 • IF STOP THEN 

DUP 100 ~SK 0 ) IF 
".ANALYSE I ANALYSE RECEIVED "ESSAGE I 
".SEND I REPLY TO THE SRC TER"INAL I 
".SAVE I SAVE COUNT FOR STATUS REPORTS 

ELSE PROCESS 
THEN 
LOOP 
"REPORT 
lll.F? 

FLAG II 4000 • IF ENINT QUIT THEN 
END 

SZ SETUP 
SETUP SZ 1FF 100 DO I S_TYP LOOP 

SET81TS ; 

SSRUH• X_C~ •s"RUH • ; 
SRUH 0 EAAORTOT I 0 "-BYTE I 0 UCOUHT I 0 FLAG I 
SRUN l SRUH 51'£ ; 
sscL· x_co" ~SR~1 • 
SSCL SRUH SSCL •· 0 0 SEND WAIT _A_WHILE S"E 

SSRUH S"Y SSCL WAIT_A_WHILE 
SSRUH• 0 0 SEND 
S"RUH i 

SSTOP• X_COH •sSTOP • 
SSTOI" SSTOP• 0 0 SEND 

I TELL OTHER UNITS TTO STOP S"ST I 

1RESET LOCATE INTER •INT 8 + EQUATES I i 

_RES RESTART SETUP lRESET INTER i 

ZRESET LOCATE _RES •INT 8 + EQUATES I i 

'ENDFILE 

... 



2) Slave Terminal Unit Program. 



'END -
COUtHZ • 10 \IF QUIT THEN 

.,., 

--------TOP VARIABLE ; l USED TO FLAG A STOP I 
~ SETUP ; 
n'BITS HW_NO e ~F ~SK E - REP•NO I 

CL_REP 0 FSTOP 

cTUP 52 SETBITS 

IORT l'tESSAGE SOAK TESTS I 
iWE SHIP TIUIIIIIL S I 
:VISION 1.0 .JANlMRY 198Z I 

.. CEN CODE 
26SE I'IOUE.L CA61+,A3 
24SE 110UE.L CA61+,AZ 
2216 I'IOUE.L CA61,D1 
36Cl ONE I'IOUE.W D1,CA~I+ 
5241 IIIIIDDQ.W .1,D1 
asca CHPA . L A3 , AZ 
6CF8 BCE ONE 
4£75 RTS 
0000 

BYTE VIIIIIRIIIIIIBLE ; l HTB, USED TO GENERATE HESSAQES I 
TART CONSTANT H_STIIIIIRT I USE S"'"E SPACE AS BLOCK TEST 

CONSTANT H_LENCTH l ~XI~ DATA l'tESSAGE LENGTH I 
~RT H_LEHGTH + CONSTANT H_END 
OUNT VIIIIIRIA8LE ; I COUNT OF UNITS IN THIS TEST I 
~ VARIABLE 

~· X_C~. UNITSI • ; 
• s~· HW_NO 8 DISSECT 

DUP 1 • IF DROP OVER IB 
ELSE 2 • IF ROT OVER 1 + IB SWAP OVER IB THEN THEN 

J 0 SEND 

LT_A_WHJLE 4000 1 DO LOOP 

I_POINT ARRAY ; ARRAY OF TERHINAL N~BERS OF UNITS IN TEST I 

.TSI U_POINT C UCOUNT 8 J I 
UCOUNT •1 ; I STORE ANOTHER TERHINAL N~BER I 

~N H_8YTE a FF ~SK DUP 8 LEFT + l FORH GENERATOR I 
H_EHD H_START BK.GEH 

END ~ H.QEN DROP H_LENGTH H_START 
ROT ROT H_BYTE 8 FF ""'SK 
100 + SEND l SET TYPE EXTENSION BIT I 
H_BYTE •1 

AVE E - 2 e C + REP SWAP DROP + •1 INC RECEIVE COUNT I 

RX_WAlT 0 FLAG I 4000 0 DO RECEIVE 0 • IF STOP 
ELSE I FLAG 
THEN LOOP ; 

H.ERRS ERRORTOT 8 + ERRORTOT HSTRIP 

H.ANALYSE FF' MASK DUP B LEFT + SWAP 
POP STK ROT SWAP 

C USES HTB EXTRACTED 

OVER +·swAP ANALYSE 
DUP 0 ) IF H.ERRS 

ELSE DROP THEN UHST PUSH ; 

SREPORT C 
REP Z + GTJHE1 DROP 
ERRORTOT g REP C 4 J 
RF._COUHl' a REP C S J 
REP•No 8 REP C 0 J 

M_BYTE 8 REP C 6 REP.NO 8 + J 
REP BK.SRC g 3F MASK 1 SEND 

ZOO CONSTANT LSIZE 

SSTOP 1 FSTOP I 

SHRUN 
DJSJNT 
SET BITS 

REPORT TO HASTER TERMINAL 
TIME WORDS I 
C UNDETECTED ERRORS I 
l DETECTED ERRORS I 

REPORT NUMBER I 
TOTAL TXD MESSAGE COUNT I 
SEND TO MASTER I 

I FLAG A STOP TO SSRUN LOOP I 

C SAY HELLO TO EVERYONE I 

UCOUHT 8 1 - I GET TOTAL N~~ER OF RESPONSES I 

FROH I 

0 DO U_POINT C I J 8 H.SEND LOOP C TRAHSHIT MESSAGE TO EACH I 
BEGIN 

LSIZE 1 DO 
RX_WAIT C WAIT TO RECEIVE ANYTHING I 
FLAG q 4000 • IF STOP THEN 

DUP 100 MASK 0 ) IF 
M.ANALYSE 
H. SE:ND 
M.SAVE 

C ANALYSE RECEIVED HESSAGE I 
I REPLY TO THE SRC TERMINAL I 

END 

ELSE PROCESS 
Tt·IEN 

FSTOP q 1 • IF 4000 FLAG I STOP THEN 
LOOP 

SREPORT 
F'LAG 8 4000 • IF ENINT QUIT THEN 

'.iZ ~ETUP 
SETUP 52 1FF 100 DO I S_TYP LOOP 

SSRUN• X_COH •sMRUN • ; 

I STOP IF FLAGGED I 

SRUN 0 SEQU I 0 ERRORTOT I 0 H_BYTE I 0 UCOUNT I 0 FLAG I 
5RUN1 SRUN SME ; 

1RESE'r LOCATE INTER •INT B + EQUATES I 
_RES RESTART SETUP 1RESET INTER ; 
ZRESET LOCATE _RES •INT 8 + EQUATES I ; 

.ENDFILE 



3) MC6809 Monitor Unit Program. 



~17 

!18 
~19 

:zo 
~21 

:zz 
~ZJ 

:z• 
~25 

'.Z6 
~Z7 

~za 

* PROCRAH TO.STORE THE INFORHATION 
* ~RESENTED AT THE SECOND PORT * 8Y THE 68000 * ~SSUHES SECOND ~ORT IS ~T FS18 * ~SSUKES ~RIHARY ~CI~ AT FSOO 
* ~DS ~~~~IL~8LE ARE :-
* D DISPL~Y DISK ST~TUS * Q QUIT LOGGING ACTIVITY * A ENGAGE THE AUTO PILOT * N DISENGAGE THE AUTO-PILOT 
* C CHANGE DRIUES, USE INSTEAD OF GEORGE * R REPORTS L~ST MESSAGE FROM EACH TERMINAL 

PAGE 005 1:STZ.TXT SSB 6609 ASSEMBLER 

002.29 
00230 
OOZ31 
OOZ32 
00233 
00234 
OOZJS 
00?..36 
00237 
00238 

0000 BE 
0003 BD 
0006 BD 
0009 SE 
oooc 86 
OOOE A7 

FSOO 
F518 

00239 0010 86 
00240 0012 A7 

0276 
DZA6 
OOAA 
F519 
OJ 
84 
1!5 
84 
53 
FSOO 
84 
01 
0.1 
0146 
FS18 
94 

OOZ41 
OOZ42 
00243 
00244 
002'45. 
00246 
OOZ47 
OOZ48 
00249 
00250 
00251 
00252 
00253 
00254 
002.55 
00:.".56 
0025.7 
00258 
00259 
002.60 
00261 

0014 BD 
0016 BE 
0019 A6 
OOlB 85 
0010 27 
OOlF BD 
002Z BE 
002!5 A6 
OOZ7 9!5 01 
0029 27 EB 
002B E6 01 
0020 lOBE 071D 
00.11 C6 40 
0033 E7 01 
003!5 C6 00 
0037 CE 0000 
003A A6 84 
003C 95 01 
003E Z6 2.2 
0040 33 41 
0042 1183 FF.FF 

0069 

0022 

0016 

0062 

00262 0046 26 
00263 004·8 Cl 
OOZ64 004A Z7 
0026!5 004C 86 
00266 004F 40 
00267 00!50 Z6 

FZ 003A 
00 
I.:E 003A 
05!54 

0!5 0057 
37 OOBB 
o1F·E 

ACIAl EQU 
ACIAZ EQU 

START LDX 
JSR 

NINE JSR 

IF!500 
IF.518 

.TMP5 
ZOUTST 
INIT 

LDX .ACIA2 

FI.VE 

SEVEN 
ONE 

FOUR 
THREE 

LDA •tl 
STA )( 
LDA 
STA 
BSR 
LDX 
LDA 
BITA 
BEQ 
JSR 
LD)( 
LDA 
BITA 
BEQ 
LDB 
LDY 
LDB 
STB 
LDB 
LOU 
LDA 
BITA 
BNE 
LEAU 
CHPU 
BNE 
CHPB 
BEQ 
LDA 

•• 15 
)( 

DK INIT 
.ACIAl 
,)( 

.1 
SEVEN 
SERVE 
.ACIA2 
,)( .1 
FIVE 
1 • )( 
.BUFF 
••4o 
1 • )( 

•o 
•o 
,)( 

.1 
TWO 
1 ,u 
•• F.FFF 
THREE 
•o 
THREE 
ERROR 

TEN 
ou·rPuT 00268 

00269 
00270 
00271 
002.72. 
OOZ73 
00:<'.74 
OOZ7S 
OOZ76 
OOZ77 
oozr,a 
00279 
oo2ao 
0021U 
oo2az 
00283 
OOZ94 
oozes 

oosz eo 
0054 BD 
0057 B6 
OOSA 40 
00:58 Z7 
OOSD BD 
0060 20 
0062 A6 
0064 A7 
0066 sc 
0067 zo 

05!56 TEN 

TSTA 
BNE 
BSR 
JSR 
LDA 
TSTA 
BEQ 
J·sR 
BRA 
LDA 
5TA 
INCB 
BRA 

SAVE 
AUTO 

0069 BE 
006C 86 
006E A7 
0070 BD 
007.1 Z7 
0075 BD 

89 0016 
ooe:2 
84 0016 
01 TWO 
AO 

CE oo.J7 

05!57 
01 
84 
U786 
OE 

·DZA9 
OOB.J 

DKINIT LDX 
LDA 
STA 
J'SR 
BEQ 

&IX JSR 

FIVE 
GEQRGE 
FIVE 
1,)( 
Y+ 

FOUR 

CF'CB 
.Q504W 
XFC,)( 
DF'M 
DKONE 
ZTYPDE 

OPEN THE DISK FILE 

ANYTHING THERE?? 

NO 50 TRY AGAIN 
CLEAR HANDSHAKE 

TELL 6BK WE ARE READY 

RX'D ANYTHING?? 
YES 50 GO 
COUNT OF LAPSED TIME 
HAVE I WAITED LONG ENOUQH?? 
NOT YET 1 HAVEN'T I • 

DO WE HAVE A PROBLE~ 

YES I HAVE, SO GO DUMP ~T~ 

AND RETURN TO LIVE ANOTHER D 
GET n-1£ RELEU~T CHARACTER 
BUFFER IT 

AND GO TRY FOR ANOTHER 

OPEN FILE FOR WRITE 
WELL, LET THE DF.M DO IT FOR 
ALL IS WFLL SO GO 
ALL IS NOT WELL 50 TELL THE 



86 
87 
88 
89 
90 
91 
92 
9.1 
94 
9S 
96 
97 
98 
99 
00 
01 
02 
0.1 
04 
0:5 
06 
07 
08 
09 
10 
11 
12 
1.1 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

0078 8D 
0078 8E 
007E 8D 
0081 OE 
008.1 4F 
0084 87 
0087 87 
OOM .J9 

078.1 
0:518 
DVII6 
06 

05SZ 
OSS4 

0088 .14 zo 
0080 108E 0710 
0091 BE 01557 
0094 86 oz 
0096 A7 84 

AO 
0786 

0098 A6 
009A 8D 
0090 Z7 O.J OOAZ 
009F BD DZA9 
OOAZ 10AC E4 
OOAS ZD 
OOA7 35 
OOA9 39 

OOAA 8E 
OOAD BD 
0080 BD 
OOB3 84 
0085 lF 
0087 8D 
OOBA BD 
OOBD Cl 
008F' 26 
OOCl 86 
OOC3 C6 
oocs 20 
OOC7 Cl 

Fl 
20 

02F3 
D2A6 
DZ89 
7F 
89 
D28E 
DZDC 
.:u 

0098 

06 OOC7 
01 
02 
OA 0001 
51 

OOC9 1027 0081 017E 
OOCD 86 02 

24 OOCF C6 
2:5 OODl 8E 
26 0004 A7 
27 OOD6 8F 
za ooD9 BE 
Z9 OODC E7 
.JO OOD£ 8F' 
.Jl OOEl 39 

01 
0503 
02 
01557 
0678 
02 
0559 

z 
.J3 
l4 
.J5 

6 
.17 
a 

39 
0 
I 
2 

00£2 BE 
00£5 86 
OOE7 A7 
OOE9 BD 
OOEC 81 
OOEE 2D 
OOFO 39 
001"1 BD 
001"4 Cl 

0557 
00 
84 
D786 
01 
01 OOFl 

01.17 
. 10 

.rsR 
LOX 
.J'SR 
.J'MP 

DICONE CLRA 
STA 
STA 
RTI 

OUTPUT PSHI 
LDY 
LDX 
LDA 
STA 

OUTONE LDA 
JSR 
BEQ 
JSR 

OUTTWO CMPY 
8LT 
PULS 
RTS 

JNJT LOX 
.J'SR 
JSR 
ANDA 
TFR 
JSR 
JSR 
CMPB 
BNE 
LDA 
LOB 
BAA 

JN1 CMPB 

IN2 

LBEQ 
LOA 
LDB 
LOX 
STA 
ST)( 
LD)( 
STB 
ST)( 
ATS 

CDF" 
.T"PU 
ZOUTST 
NINE 

DONE 
ERROR 

y 
.BUFF 
CFCB 
.QSWRIT 
XFC,X 
Y+ 
OF" 
OUT TWO 
ZTYPDE 
s 
OUT ONE 
y 

.T"P6 
ZOUTST 
ZINCH 
••7F 
A,B 
ZOUTCH 
ZCRLF .. , 
IN1 ., 
•2 
IN2 
··Q 
QUIT 
•z ., 
.FCB1 
XUN,X 
CFCB 
~CB2 

XUN,)( 
AFCB 

CLOSE ALL FILES 

FLAG FOR GEORGE 

HURRAYYYYYYYYYYYYY 

SAI.IE LAST BUFFE.ft IIIIDDRESS 
GET THE FIRST 

WRITE TO THE FILE 
GET A CHAR 
PUT IT ON DISIC 

HAI.IE WE FINISHED YET 
NO 50 QO DO ANOTHER 
CLEAR UP STACK 

DRIVE NUMBER QUIZ 
GET IT 
STRIP PARITY 

ALLOW A QUIT IF NEEDED 

FCB1 ~~ FIRST DRIVE 

AND FCB2 IS THE SECOND ONE 
ALTERNATE FCB 

* GEORGE, THE AUTO-PILOT 

QEORQE LDX 
LOA 
~TA 
JSR 
C"PA 
8LT 
RTS 

GRGl JSR 
CMPI 

CFCB 
.QFREE 
)(FC,X 
OF" 
••o1 
GRG1 

IIIILTF 
•no 

DETER"INE FREE ON CURRENT DR 
UPPER BYTE 

ENOUGH IS LEFT SO WE HAVE NO 
FIND THE FREE ON THE ALTERNA 
LOWER BYl'E ON CURRENT DRIVE 

PAGE 007 1:ST2.TXT SSB 6809 ASSEMBLER 

00343 
00344 
00345 
00346 
00347 
00348 
00349 
00350 
003!51 
003:52 
003:53 
003:54 
003~5 

003!56 
003~7 

00358 
003!59 
00360 
00361 
00.162 
00363 
00364 
00365 
00366 
00367 
00368 
00369 
00370 
00371 
00372 
00373 
003'74 
0037!5 
00376 
00377 
00378' 
00379 

17 010F 
01 
01 OOFD 

OOF6 23 
OOFB 81 
OOFA 2D 
OOFC 39 
OOFD 86 
0100 4D 
0101 26 
010.3 BE 
0106 8D 
0109 86 
0108 87 
010E 39 
010F 81 
0111 ZD 
0113 BE 
0116 86 
0118 A7 
011A BD 

0:5:52 QRQ3 

OB 010E 
0440 
D2A6 
01 
0:5:52 

01 
18 
0:557 
OJ 
B4 
D7B6 

OllD lOBE 0!5:59 
0121 BF 05!59 
0124 108F 0:5!57 
0128 9D 69 
01ZA l9 
0128 BE 04C1 
01ZE BD D2A6 
0131 B6 01 
0133 87 '0!5!54 
0136 39 

0137 34 
0139 BE 
013C 86 
013E A7 
0140 BD 
0143 3:5 
014!5 39 

04 
0!5:59 
00 
84 
0786 
04 

0128 

GRCS 
QRQ2 

GRG4 

ALTF 

BLS 
CMPA 
BLT 
RTS 
LDA 
TSTA. 
BNE 
LD)( 
JSR 
LOA 
STA 
RTS 
CMPA 
8LT 
LD)( 
LDA 
STA 
JSR 
LDY 
ST)( 
STY 
JSR 
RTS 
LOX 
JSR 
LOA 
STA 
RTS 

PSHS 
LU)( 
LOA 
STA 
JSR 
PULS 
RTS 

CRC2 
•• 01 
GRG3 

DONE 

GAGS 
.TMP10 
ZOUTST 
.1 
DONE 

••o1 
GRG4 
CFCB 
.QSWC 
XFC,X 
DF" 
AFCB 
AFCB 
CFCB 
DKINIT 

.TMP11 
ZOUTST .1 
ERROR 

B 
AFC8 
•QFREE 
)(FC,X 
DFM 
B 

llPPi:':R BYTE'ON ALTERNATE 

SUFFICIENT ON BOTH DRIVES FO 

ONLY ISSUE ONE WARNING 

THIS ENSURES WE ONLY DO IT 0 

UPPER BYl'E OF ALTERNATE DRIV 

ALTERNATE DRIVE IS OK 
SO CLOSE CURRENT DRIVE 

SO SWAP DRIVES 

AND OPEN A NEW LOGGING FILE 
AND ALL IS OIC 

PANIC LADSI II II I I I 

GET FREE ON ALTERNATE DRIVE 

00380 * COMMAND SERVICE ROUTINE 
00381 
00382 0146 A6 
00383 0148 Bl 
00384 014A 26 
00385 014-C BE 
00386 014F 86 
00387 0151 A7 
00388 0153 BD 
00389 01!56 BE 
00390 
00391 
oo~•9z 
00393 
00394 
003915 
00396 
00397 
00398 
00399 

01!59 A7 
0158 E'7 
01!50 BD 
0160 BE 
0163 BD 
0166 BE 
0169 A6 
0168 BE 
016E A7 
0170 BD 

01 SERVE LDA 
44 CMPA 
2E 017A BNE 
0!5!57 LDX 
00 LDA 
84 STA 
0786 JSR 
021D LD)( 
84 
01 
D2AF 
021F 
D2A6 
0!5~7 

02 
021D 
B4 
DZAC 

STA 
STB 
JSR 
LIJX 
JSR 
LD)( 
LDA 
LD)( 
STA 
JSR 

1 ,X 

•·o 
51 
CFCB 
.QFREE 
)(FC,X 
DFM 
•n1P1 
,X 
l,X 
ZOUTtiA 
.TI1PZ 
ZOUTST 
CFCB 
XIJN,)( 
.TMPl 
,)( 
ZOUTHX 

GET THE COMMAND CHARACTER 

DISPLAY CDMMAHD77 
YUP 
FIND OUT THE FREE S~ACE 

HIGH ORDER COUNT 
LOW ORDER COUNT 
OUTPUT FOUR HE)( CHARS 

CURRENT DRIVE NUMBER 

OUTPUT T~O HEX CHARS 



E 008 i:STZ.TKT 

00 017.1 BE 
01 0176 80 
02 0179 .19 
O.J OlTA 81 
D4 Ol7C 26 
Ot:l 01711: -
1)6 0181 BD 

OZ.JA 
DZA6 

151 
oc 
OZt:l~ 

DZA6 
078.1 
DZ8.J 
41 

D7 0184 80 
1)8 0187 7E 
D9 OUIA 81 
LO 018C 26 
ll 01BE 87 
l2 . 0191 BE 
l.J 0194 BD 
L4 0197 .19 
lt:l 0198 81 
L6 019A Z6 
l7 Ol9C 4F 
L8 0190 87 
L9 01AO BE 
~0 01A.J 80 

· OA 
OSS6 
0.118 
DZA6 

4E 
08 

01556 
0.143 
DZA6 

~1 

~2 

~.1 

~4 

~s 

:6 
~7 

8 
:9 
0 
11 
z 
i.J 
4 
-5 
6 
7 
8 
9 
0 
1 
z 
.J 

• 
15 

' 7 

' jJ 

~ 

01A6 .19 
01A7 81 48 
OlA9 26 07 
01A8 BE 0.166 
01M 80 DZA6 
0181 .19 
018Z 81 4.1 
0184 Z6 lE 
0186 .BE 0407 
0189 80 DZA6 
OlBC BE OSS7 
OlBF 86 0.1 
OlCl A7 84 
OlC.I BD 0786 
01C6 lOBE 0559 
01CA lOBF 0557 
OlCE 8F OSS9 
0101 90 69 
OlD.J .19 
0104 81 S2 
0106 26 2S 
0108 lOBE 05:58 
OlDC SF 
OlDD A6 
OliiF 5C 
OlEO 80 
01£.1 86 
OlES BD 
01E8 Cl 
OlEA Z6 
OlEC 86 
01EE 80 
OlFl 86 
01F.I 80 
01F6 SF 

AO 

DZAC 
20 
0281: 
18 
08 
OD 
DZIII: 
OA 
021&: 

01F7 l08C OSD.J 

SS~ 6809 ASSEI18LER 

Sl 
OleA 

QUIT 

52 
0198' 

S.J 
01A7 

54 
0182 

55 
0104 

56 
OlFD 

568 

OlF7 

56A 

LDX 
.J5R 
RT5 
CHPA -LOX 
.JSR 
.JSR 
.JHP 
CHPA 
BNE 
5TA 
LDX 
.J5R 
RT5 
CHPA 
8NE 
CLRA 
STA 
LOX 
.J5R 
RT5 
CHPA 
BNE 
LOX 
.J5R 
RT5 
CHPA 
8NE 
LOX 
.JSR 
LOX 
LOA 
STA 
.JSR 
LDY 
STY 
STX 
.JSR 
RTS 
CHPA 
BNE 
LOY 
CLRB 
LDA 
INC8 
.JSR 
LOA 
.J!iR 
CHPB 
8NE 
LOA 
.J5R 
LOA 
.JSR 
CLRB 
CHPY 

.THPJ 
ZOUT5T 

··Q 
5Z 
.THP4 
ZOUTST 
CDFH 
ZWARI15 
••A 
53 
AUTO 
•THP7 
ZOUTST 

••N 
54 

AUTO 
.THP8 
ZOUTST 

••H 
55 
.THP9 
ZOUTST 

••c 
56 
•THP12 
ZOUTST 
CFCB 
~5wc 
XFC,X 
DFH 
AFCB 
CFCB 
AFC8 
OIUNIT 

••R 
57 
•sBUF 

Y+ 

ZOUTHX 
••20 
ZOUTCH 
•u8 
S6A 

••o 
ZOUTCH .. ,. 
ZOUTCN 

•sEND 

QUIT COMMAND ?1 

YES 50 ACKNOWLEDGE 
CLOSE ALL FILES 
RETURN TO FACE THE MUSICII 

ENGAGE GEORGE, THE AUTOPILOT 

DISENGAGE GEORGE 

CLOSE CURRENT ONE 

SWAP FCB'S 
OPEN OTHER DRIVE 

SAVE BUFF START 

PAGE 009 1:ST2.TXT SSB 6809 ASSEMBLER 

004!57 
004!58 
00459 
00460 
00461 
00462 
00463 
00464 
00465 
00466 
00467 
00468 
00469 
00470 
00471 
00472 
00473 
00474 
0047:5 
00476 
00477 
00478 
00479 
00480 
00481 
00482 
0048.1 
00484 
004&!5 
00486 
00487 
00488 
00489 
00490 
00491 
0049Z 
00493 
00494 

01F8 Z6 
01FD 39 

01FE .11 
0201 EC 
OZOJ 1083 
0207 26 
OZ09 39 
OZOA A6 
020C C6 
020E 3D 
OZOF SE 
OZ1Z lA 
OZll C6 
OZ15 A6 
0Zl7 A7 
0219 SA 
OZ1A ZE 
021C 39 

OZ1D 
021F 
OZ39 
OZ:JA 
ozso 
02!5.1 
OZ7J 
0276 
029.1 
029!5 
OZBZ 
0284 
OZD1 
OZD3 
OZFO 
02.F3 
0317 
0318 

004915 .0340 
004'16 .· 0343 
00497 0363 
00498 
00499 
00!500 
00!501 
00!502 
00~03 

00!504 
00!50!5 
00!506 
00!507 
00!508 ,• 
00!509 
00!510 
00~11 

001512 

0366 
036A 
036C 
0386 
0388 
0.181 
0383 
03CD 
03CF 
03EC 
OJEE 
040F 
0411 
0430 
0440 

EO OlDD 

A8 E8 
22 
AAAA 
01 OZOA 

Zl 
18 

015158 

18 
AO 
80 

F9 021!5 

0000 
20 
00 
zo 
OD 
43 
OD 
ZA 
OD 
2.A 
OD 
ZA 
OD 
ZA 
OD 
4!5 
00 
415 
OD 
44 
OD 
48 
OD 
41 
OD 
43 
OD 
44 
OD 
4E 
OD 
!51 
OD 
152 
OD 
ZA 

57 

SAVE 

SAUl 

SAVZ 

TI1Pl 
THPZ 

l'HP3 

THP4 

THPS 

THP6 

THP7 

THPEI 

l'HP9 

THPlO 

liNE 
RTS 

LEAY 
LDD 
CHPD 
8NE 
RTS 
LDA 
LD8 
HUL 
LDX 
ABX 
LDII 
LDA 
STA 
DECB 
8GT 
RTS 

FDB 
FCC 
FCB 
FCC 
FC8 
FCC 
FCB 
FCC 
FCB 
FCC 
FC8 
FCC 
FCB 
FCC 
FCB 
FCC 
FCB 
FCC 
FCII 
FCC 
FCB 
FCC 
FC8 
FCC 
F'CB 
FCC 
FCB 
FCC 
FC8 
FCC 
FC8 
FCC 
FCB 
FCC 
FCB 
FCC 

S68 

-et8,Y 
2,Y 
•eAAAA 
SAUl 

l, y 

••ta 

•sauF 

ERROR REPORT771' 

YES SO RETURN 
GET REP' NO · 
RECOFID LENGTH 
OFFSET INTO BUFFER 
BUFFER START 
POINTER TO RECORD BUFF 

••ta 
Y+ 
X+ 

GET A CHAR FROH INCOMING REC 
STORE IN SBUF 

SAVZ 

0 SPACE FOR D COHHAND 
I FREE SECTORS ON DRIVE :- I 
0 
I CURRENT LOGGING DRIVE/ 
eoo,eoA,oo 
/CLOSE All FILES AND QUIT LOGGING/ 
eoo,eoA,oo , ............................. , 
eoo, eoA 
I* DATA LOGGING ~ROG"AH Vl.l *' 
eon, eoA 
I* DECEMBER 1981 *' eoo,eoA , ............................ ~, 
eoo,eoA,O 
/ENTER FIRST LOGGING DRIVE NUHBER 
0 
/ENGAGE GEORGE, THE FAITHFUL AUTD-PIL 
eoo,eoA,O I 
I D I SE:NGAGE GEORGE , THE POOR BEAST I -
eoo,eoA,o 
/HELP/ . 
eoD,eOA 
/A :-ENGAGE THE AUTO-PILOT/ 
eoo,eoA 
IC :-CHANGE DRIVES, USE INSTEAD~ 0 
eoD,eOA 
/D :- DISPLAY SYSTEM STATUS/ 
eoo,eoA 
/N :- DISENQAGE THE AUTO-PILOT/ 
eoD,eoA 
IQ :-CLOSE FILES AND QUIT LOGGING/ 
eoD,eoA 
/R :- DISPLAYS LAST REPORT FROH EACH 
eoo,eoA,o 

'***********WARNING************' 



010 1 :.STZ. TXT SSB 6809 ASSEHBLER 

l 04S: OD FCB •oo,•oA 
4 0460 20 FCC I CURRENT AND SECONDARY DRIVES 
5 047E 00 FCB •oo,•oA 
6 0480 zo FCC I 80TH NEARLY FULL I 
7 049£ 00 FCB •oo, •oA 
8 0411110 ZA FCC , .............................. , 
• 0481: OD f"CB •oo,.OIIII,O 
0 04C1 21111 THP'll FCC '*****ATTENTION*****' 
1 0404 OD FCB •oD,,OA, •o7 
z 0407 21111 THP12 FCC '****CHANGE DRIVES****' 
~ 04£C· OD FCB •oD,,OA,OO 
4 04EF ZA FCC '**SECONDARY FULL***' 
5 0502 OD FCB •oD,,OA,•o7 
6 0505 4.1 FCC /CHANCE IKHEDIATELY/ 
7 0517 OD FCB •oo.•oA,,07,o 
8 0518 45 THP1.1 FCC /ERROR WITH LOGGING FILE/ 
9 OS~2 OD FCB •oD, •oA' 
0 05.14 52 FCC /REPLACE A DISK AND RE-ENTER/ 
1 054F OD FCB •oD,,OA,OO 
z 0552 0002 DOH£ fU18 z A FLAG FOR GEORGE 
.J 0554 oooz ERROR RHB z FLAG FOR BOTH DISKS FULL 
4 0556 00 AUTO FCB 0 
s 0557 oooz CFCB RHB z 
6 0559 0002 MCB RHB z 
7 ossa 00,78 SBUF RHB 120 
a OSO.J SEND EQU * 
9 05D.J OOO.J FC81 85Z .J 
0 OSD6 .J6 FCC /68KDAT/ 
1 OSDC 009C BSZ 156 
z 0678 OOO.J FCBZ BSZ ~ 

.J 0678 .16 FCC /68KOAT/ 
4 OM1 009C BSZ 156 
s 071'D BUFF EQU • 6 END 

L ERRORS 00000 
L WARNINGs ooooo--ooooo 



_BLOCIC. ni:SSAGE SQIIII----'f£-6-i- -; 
tECEIIJE lltOUTitC I 
~SWE TRIALS I 
:JEcat.KR 1981 I 

lO CONSTANT 8K.START 
l CONSTANT 81 . LENGTH 
.START 81.LENGTH +CONSTANT 81.EHD 
rEST_8YTE VARIABLE ; 
~RRORTOT VARIABLE 
UC:. SRC IJMIABL£ ; 
iTARTINC V~RIAaLE 
:DI..I'IIT UARII!IBLE ; 
iEQU VMJIIIII8LE ; 
:OUNTZ UARJIIIII8LE ; 
:ACH RX HAS Ill l.N'IIIQUE REP •NO I 

' . 

C START OF TEST BLOCK I 

C START 
C ERROR 

( END OF TEST BLOCK 
OF HESSAGE TEST_BYTE I 
TOTAL I 

COUNT OF BK.R~ TRIES I 
OUT OF SEQUENCE COUNT I 

~D THE TX USES IT TO REFERENCE ITS ARRA~OF POINTERS I 
IEP•NO VARIABLE ; 

Jl£~ ARRIIIIIY ; 

:L_REP REP DUP 15 + S~P DO 0 I 18 LOOP DROP 
tSTRIP CL_REP AAAA REP C 1 l I C FLAG ERROR RECORD 

REP•NO 8 REP C 0 l I 
A 2 DO REP C I J I LOOP 
REP BK.SRC 8 JF KASK 1 SEND 

W'UIIL YSE CODE 
9482 SUB.L 02,02 
2602 HOVE. L 02, OJ 
2802 HOVE . L 02 , 04 
26!5£ HOVE.L CA61+,AJ 
Z4!5E MOVE.L CA61+,AZ 
221£ HOVE.L Cf\61+,01 
.1601 A HOVE.W D1,DJ 
3818 HOUE.W CA.JI+,D4 
8943 EOR.W D4,D.J 
670A BEQ.S 8 
~Z4Z ADDQ •1,02 
847C C"P .19,02 
0009 
6EOZ BG£.5 • 
ZDO.l ttOUE.L DJ,-CA61 
5241 8 ADDQ .1,01 
B~CB CHP.L A.l,A2 
6EE8 BCE.S A 
ZDOZ HOVE.L 02,-CA61 
4£7=5 RTS 
0000 

i£TS UP ERRORTOT OR SEQU DEPENDING ON THE NUMBER QF. ERRORS 

~K.ERRS DUP 20 ) IF SEQU ·1 BK.START 8 1 + TEST_BYTE 
DROP HSTRIP 

ELSE ERRORTOT 8 + ERRORTOT 
THEN ; 

~K.REC 81.LEHGTH 8K.START BK.SRC. 

HSTRIP 

8LI_REC C SET UP TO RECEIVE THE BLOCK I 

' 
c, I 

I 
I 

:-BK-ft-.-STAT-1-N;:.-BLK:_:S-T-A-T- CIB eo- MASK 

CHECk THAT THE RECEIVED BLOCK AGREES WITH THE ONE WE ARE EXPECTING 

Bk.ANALYSE TEST_BYTE g 
BIC.END BK.START 

' 
ANALYSE 
TEST_BYTE •1 

USE THIS COHHAND TO SET UP A COMMAND LINE 
WHICH WILL BE SENT ELSEWHERE I 
X_COH IHHEOIATE • STRING OD DP g 1 - 18 ; 

~ .--... 

OK? 02 ZOOO BK.SRC g .JF HASK 2 SEND ; I ACKNOWLEDGE BLOCK RX I 

RECEIVE A BLOCK IF POSSIBLE ) 
EVERY UNSUCCESSFUL ATTEMPT IS COUNTED AND ANOTHER 
HANDSHAKE IS SENT FOR EVERY .100 TIMES IT FAILS I 

BK.RX BKR.STAT 00 ) IF 

SET UP A FEW VARIABLES , 

BK.ANALYSE 
DUP 0 ) -IF BK. ERRS ELSE DROP 

THEN 
BK.REC OK? COUNT ~1 

THEN f AVOID A LOCK OUT J 

THIS COHHANO IS SENT BY THE TRANSMITTER 
AND INITIALISES BK.SRC ACCORDINGLY , 

SET.TX BK.SRC I 0 STARTING I 0 ERRORTOT I 0 TEST_BYTE I 
0 SEQU I 0 COUNT2 I 

GET l'HE: F"IRST THREE T!HE WORDS INTO A THREE CONSECUTIVE LOCATIONS 

GTIHEl 0 PR_TAB 66 + I 4000 1 DO PR_TAB 66 + ~ 8000 
Z 0 DO PR_TAB 68 + IZ ~ OVER IZ I LOOP DROP 

IF STOP THEN LOOP 

SE:ND A REPOfH TYPE ONE 'STORE IT' ·ra ·rx , 
fiEPOfiT THE TIME, ERRORTOT, RE_COUNT AND Rl:~P·No 

REPORT REP Z + GTIHEl DROP 
ERROfiTOT Cl RE:P C 4 .J 
RE_COUNT G REP C =5 l 
RE::P•No ~REPCO.J 

SEQU (J REP [ 6 l 
TEST _BYl"E fl REP C 7 ) 

I 
I 
I 
I 

. ( GET SOHE TIME INTO THE SCENE 
TtiE TOTAL NUMBER OF ERRORS I 

I RECEIVE ERROR TOT I 
I TtiE TERMINALS REPORT NUMBER 

I MESSAGE OUT OF SEQUENCE I 
I NUMBER OF MESSAGES, SORT OF 

REP BK.SRC (I .JF MASK 1 SEND ' 
TEST LOOP ) 
RUN 0 COUNT 

BEGIN 
BK.REC OK7 FIRST HANDSHAKE TRANSMISSION I 

8000 0 DO BK.RX LOOP 

REPORT 

COUNT 8 0 • IF OK? COUNTZ •t ELSE 0 COUNTZ I 
THEN 0 COUNT I 

, 



lN_Bli_STAT 1 + IB 
rN_BLJC_TCJTAL I 8 

-~~!'!~! ~~~-- ~ 
C SUB-BLOCK TOTAL I 
CO GO GO I 0 IN_BLK_STAT 18 

THEH 

I'IESSAG£ RECEIVE ROUTINES l 

JNU -1 SWAP - ; 
s_TYP C SELECT A CERTAIN KESAGE TYPE 

DUP F MASK l SWAP LEFT SWAP 10 I FFFF MASK Z * 
MES_TAB + DUP ll JNU ROT ROT KASI OUER • + SWAP I 

C SETS THE DESIRED BIT IN THE MTT ARRAY I 

CL_TVP t DESELECT A CEftTAIN MESSAGE TYPE I 
DUP F ~SIC l SWAP LEFT INU SWAP 10 I FFFF MASK Z * 
~5_TA8 + DUP a ROT ROT MA$K SWAP I ; 

C CLEAftS THE DESIRED BIT IN THE "TT ARRAY 

IN_.uF_ND UARIABLE ; 

REL_8UF IN_BUF_NO DUP 8 l + F MASK SWAP I THEN ; 
C HOUE TO NEXT INPUT BUFFER, WRAPAROUND AT 'F' I 

ft£CEIUE C CHECKS TO SEE IF A MESSAGE IS AVAILABLE 
IN_TABL£ ( IN_BUF_NO. JN_8UF_LEN) •a·DUP 
0 ) IF 3 - Z * ( SIZE IN BYTES I 

IJr~-TABLE ( 
IN_TABLE ( 
IN_TABLE ( 

0 IN_TABLE ( 
REL_BUF 
0 
ELSE DROP 
THEH 

IN_BUF_NO a IN_DAT_BUF ) C ADDRESS 
IN_BUF _NO Cl IN_ SOURCE l llB C SOURCE 
IN_8UF_NO. IN_TYPE ) ll C TYPE I 
IN_BUF_NO ll IN_BUF_LEN ) 18 f CLEAR IT 

-1 

READY FOR NEXT TlKE I 
EVERYTHING WAS OK I 
NOTHING WENT RIGHT! I I 

TA8_5ET RESET CCW I BOO AOO CLZ 6800 S700 CLZ 
SO IN_INT 18 lO IN_NO 18 
2880 IN_ TAB I 
eo o_INT 1a 10 o_NO I& 
2DBO O_TAB I 
0 OUT _Btl _NO I 
0 IN_BUF _NO I 
8000 IN_BLK_STAT 

SETUP THE TER"INAL UNIT 
SZ SETUP ; l THE SETUP IN THE DICTIONARY MUST BE USED TOO I 
S£TUP 52 TAI_SET FFFF MES_TAB I GO CCW I ; 

THIS ROUTINE ALLOWS THE INSERTION OF HAND ASSEMBLED 
MACHINE CODE TO SPEED THINGS UP A BIT I 

CODE IMMEDIATE 100 1 DO FRELO ll 0 • IF BUFFER ELSE LOAD THEN 
WORD NUHBER DUP 0 • IF 

STOP THEN DPI LOOP ; 
PT" REGISTERS J 

FFOl CONSTANT PT" C BASE I 
lH CONSTANT WR3 
TH CONSTANT WRl 
TH 2 + CONSTANT WRZ 
TH 4 + CONSTANT T.l 
fH 6 + CONSTANT WT•l 

c.;' 

t.JSE PTH TO PROVIDE INTERRUPTS FOR 2901 _SERVICE ROUTINE 

SET IT TO INTERRUPT APPROXIMATELY 
SETPTH 0 WRZ IB 1 WR3 18 1 WRZ IB 

42 WR1 18 

ONCE A SECOND I, 

7F Tel 18 FF WTel 18 

C DIVIDE BY B I 
CONTIM.HJUS OPERA·T-1-0N 
AS SLOW AS POSSIBLE l 

THIS ROUTINE WILL PERFORM A NORMAL SIXTH I 
WORD FIND EXECUTE ON THE CONTENTS OF I 
A TYPE ZERO MESSAGE WHICH HAS BEEN RECEIVED 
FROM THE OUTSIDE WORLD BY THE 2901 SUBSYSTEM I 

/DOlT WE I 
0 l.AST 
JO 0 DO WORD FIND EXECUTE 

0 LAST Q • IF 
ELSE STOP 
THEN LOOP 

START ADDRESS 

NEW INTERPRET LOOP 
OK IF • 0 I 
OTHERWISE GlUE UP I 

C IMMEDIATE ; I.E THROW IT AWAY I 

l Z * + SWAP DROP 
IZ I 2 * + ; 

TX.OK VARIABLE 

PROCESS 
DUP 2 • IF TX.OK •1 POP POP POP POP 

ELSE DUP 0 • IF ( TYPE ZER077 
DROP DROP DOlT POP I DO AS THE HAN SAYS J 

ELSE POP POP POP POP 
THEN THEN 

IRQS HANDLES THE PTM INTERRUPT J 
IT FIRST CHECKS FOR ANY RECEIVED MESSAGES J 
IF ANY HAVE:~ BEEN ftECElVED, IT TRIES FOR EITHER 
A TYPE ZERO, OR A TYPE ONE, OR IGNORES IT ) 
FINALLY IT CLEARS THE PTH INTERRUf1 T I 

IR~:S FRAME WE IJ WB IJ LAST (f FRAME 
RE:CEIVE 0 • IF 
PRQCE~S 

THF£N 
UNFRAHE LAST I WB I WE 

I SAVE FOR POST"ERITY J 

WRZ 118 T.l 118 ( CLEAR PTH INTERRUPT I 
UNF'RAME RTE 

SZ SETUP ; 
SETUP 52 LOCATE IRQS •INT S + 74 IL 

SETPTH 
EN INT 



NEW SLAU£ UNIT SOF-l'WARE--.------· 
DESTINED FOR Ti£ SHl.P TRIALS • 
JANUARY 1982 I 
REVISION ~.0 3ANUARY 1982 I 
INCLUDES BLOCK AND SHORT l'tESSACE TESTS I 
INCLUDES REVISION TO ALLOW USE OF MTB EXTENSION BIT I 

STOREIT AND DOlT INCLUDED IN THIS ONE 

TERMINAL UNIT PRIMARY TABLE I 

00 CDNST~T PR_TAB 
~-TAB CONSTANT JN_INT 
~-INT 1 + CONSTANT JN_NO 
~-NO 2 + CONSTANT IN_POS 
~-POS 1 + CONSTANT IN_TAB 
~-TAB 2 + CONSTANT D_INT 
_INT 1 + CONSTANT O_NO 
.NO 2 + CONSTANT O_POS 
_P05 1 + CONSTANT O_TAB 
• TAB Z + CONSTANT HES_ TAB 
;:s_ TA8 40 + CONSTANT HW_NO 
I_HO 2 + CONSTANT RE_COUNT 
~_COUNT Z + CONSTANT DAT_STARU 
•T_STARU 2 + CONSTANT RETR_COUNT 
O:TR_CCJUtrfT 2 + CONSTANT BLF _OVER 
~-OVER 2 +CONSTANT IN_BLK_STAT 
I_B~K_STAT 2 + CONSTANT IN_BLK_SOURCE 
I_BLK_SDURCE 2 + CONSTANT IN_BLK_TDTAL 
I_B~K_TDTAL 1 + CONSTANT IN_BLK_TDT_RECVD 
L_BLK_TOT_RECUD 1 + CONSTANT IN_BLK_ADDRESS 
I_BLK_ADDRESS 2 + CONSTANT O_BLK_STAT 
.BLK_STAT I + CONSTANT O_BLK_DESTIN 
.BLK_DESTIN 1 + CONSTANT O_BLK_TOT 
BLK_TOT 1 + CONSTANT O_BLK_TOT_TXD 

.BLK_TOT_TXD l + CONSTANT O_BLK_START 

END OF PRIMARY TABLE I 

IN TABLE 
MASK FOR A SINGLE BUFFER AREA I 

I RELATIVE TO START OF BUFFER 
CONSTANT IN_BUF _LEN 

_8UF_LEH 1 + CONSTANT IN_DEST 
DEST 1 + CONSTANT IN_SOURCE 

_SOURCE 1 + CONSTANT IN_TYPE 
TYPE 2 + CONSTANT IN_DAT_BUF 

OUT TABLE I 
"\ASIC FOR A SINGLE BUFFER AREA I 

I RELATIVE TO START OF BUFFER 
:ON5TAHT O_BUF_LEN 
BUF_LEN 1 + CONSTANT D_DEST 
~ST Z + CONSTANT O_TYPE 
JYPE Z +CONSTANT O_DAT_BUF 

rA8LE I~DIATE ZD3C DPI 0 DPI DPI ZD3C DPI 0 DPI DPI 
( . 

2 CQ_NSTANT GO C START TERMINAL UNIT I 
C STOP TERMINAL UNIT I 

C SWITCH OFF INTERRUPTS I 

'· 

J CONSTANT CSTOP 
4 ,.CONSTANT OFFINT 
S CONSTANT ONINT 
7 CONSTANT RESET 

SWITCH ON AND CLEAR INTERRUPTS 
RESET AND HALT TERHINAL UNIT I 

I BITS 1'0 CONTROL TERMINAL UNI"r I 

40 S700 : IN_TABLE TABLE ; 
40 ~BOO : OUT_TABLE TABLE ; 

OUT_BUF_NO VARIABLE l I 6SK'S RECORD OF NEXT FREE BUFFER I 
GET_BUF OUT_BUF_NO DUP g 1 + F HASK SWAP I ; 
CLZ DO 0 I 18 LOOP l 

MESSAGE SEND ROUTINE 
SEND QUT_TABLE { OUT_BUF_NO G O_BUF_LEN_l GB 

0 • IF I BUFFER IS FREE 50 CARRY ON J 
OUT_TABLE ( Ot.JT_BUF_NO II S l DUP 5 - CLZ 
OUT_ TABLE t: OUT _BUF _NO Cl 0_ TYPE ) I I MESSAGE TYPE 
OUT_TA&LE ( OUT_BUF_NO C1 O_DEST l IB ( DESTINATION 
OVER 0 DO DUP I + CIB 

OUT_TABLE ( OUT_BUF_NO Cl O_DAT_BUF I + ) IB LOOP DROP 
1 + Z I 3 + 3F MASK OUT_TABLE ( OUT_BUF_ND Cl O_BUF_LEN l JB 
GE:T_BUF 
ELSE POP POP POP POP 
THEN 

BLOCK RECEIVE AND TRANSMIT ROUTINES J 

·roT I REM I GE"r SUB-BLOCK TOTAL AND REMAINDER I 
1 + Z I FFFF MASK I WORD COUNT I 
ZO I DUP SWAP I SUB-BLOCK TOTAL 
.:Jf" 10 LE~FT HASK 
80 I 200 I I REMAINDER I 

f)LK_Sf~ND O_BLK_S1AT Cl 8000 MASK 0 • IF 
O_BLK_START O_BLK_STAT CLZ 
O_BLK_DESTIN IB 
Z I O_BLK_START 
TilT I HEM 
O_BLK_STAT I 
O .... »Lt<_l"OT 18 

CLEAR UP TABLE J 
I DESTINATION 

I START ADDRESS 

80 O_BLK_STAT I B I CO CO CO 
ELSE DROP DROP DROP ( GET RID OF PARAHS 
l"t-IEH 

BLK_REC IN_BLK_STAT • 8000 
DROP DROP DROP 
ELSE 0 XN_BLK_STAT 
IN_BLtc_SOURCE I 
2 I IN_BLtc_ADDRESS 
TOT&REI1 

HASK 0 • IF 
C GET RID OF 
2 + IL 

UNWANTED PARAHS 
C CLEAR UP t 



._.--

A TYPE zERO, OR A TYPE ONE, OR IGNORES IT ) 
FINALLY IT CLEAR_S THE Pl'!'1- INTERRUPT 

~~Q~ FRAK[ WE • WB • LAST e FRAHE 
RECEIVE 0 • IF 
PROCESS 
THEN 

WB I WE I 

C SAVE FOR POSTER 1-TY I 

UNFRAHE LAST I 
WRZ CIB T•1 •• 
UHFRAI1E RTE 

C CLEAR PTH INTERRUPT I 

SZ SETUP ; 
SETUP 52 LOCATE IRQS .INT 8 + 74 IL 

SILT~TH 

EN INT 

PERIODICAL BLOCK TRANSHIT ROUTINE J 
BLOCK HESS~QE SOAK TEST FOR ASWE TRIALS 
DECEHBER 1981 I 
REVISION Z.O ZS/12/81 

7400 CONSTANT .k.START C START OF TEST BLOCK I 
800 CONSTANT BK.LENGTH 
8K.START 8K.LENGTH +CONSTANT BK.END C END OF TEST BLOCK 

TEST_BYTE VARIABLE 
RK_COUNT VARIABLE ; 

( USED FOR CYCLIC MESSAGE GENERATION 
I TOTAL NUMBER OF TERHINALS I 

CENER~TE A NEW BLOCK OF DATA 
FR~ THE TEST BYTE I 
S~ •) START,END,TEST_BYTE 

BK.CiEN CODE 
26!5£ HOUE. L CA6J+,AJ 
245£ HOUE.L CA61+,A2 
2216 HOUE.L CA6J,D1 
36Cl ONE HOUE.W Dl,CAJI+ 
S241 ADDQ.W .1,01 
8!5<:8 CHPA. L AJ ,AZ 
6CF8 BGE ONE 
4£75 RTS 
0000 

BKS.STAT O_BLK_STAT 88 I TX BLOCk STATUS BYTE J 
80 MASK 0 • IF 0 ELSE -1 
THEN 

C RETURNS 0 IF FINI~HED, -1 IF NOT ) 

&K:-nc····OtECICS ·THAt ,C"HANDSHAKE HAS BEEN RECEIVED I 
IF 50, ~D THE LAST BLOCK HAS BEEN TRANSMITTED I 
IT WILL GENERATE A NEW BLOCK, TRANSHIT IT I 
AND UP~TE THE TEST_BYTE I 

BK.TX 
TX.OK 8 AX_COUNT 
8K5.STAT 0 • IF 

e >• IF 
t WAIT FOR THE OK FROH ABOVE J 

TE5T_BYTE 8 BK.END BK.START 8K.GEN 

, 

-~~~ ·---
[lfiOP 81(. LENGTti Bl< S'TAfiT _0_.8LK.;;;SEND­
TE5T_BYTE "1 0 TX.OK I 
H·IEN 
THEN 

X_COH HAKES A CR TERMINATED STRING 

X_COH IMMEDIATE * STRING OD DP a 1 - 18 i 

THESE TWO ROUTINES FORH THE 'SODA SET.TX' COMMAND SENT I 

TO ALL RECEIVERS J 

SCDM X_COH &8000 SET.TX & ; 
SHY SCOH HW_NO g DISSECT DROP OVER J + 18 

0 0 SEND 0 TEST_BVTE I 0 TX.OK I 

THESE ARE USED TO START THE TEST OFF I 
SRUN• X_COH IRUN I ; 
SRUN SRUN" 0 0 SEND i 

REC.OK IS EXECUTED BY THE TRANSMITTER AS A HANDSHAKE I 
REC.OK TX.OK •1 ; 

RESET ALL REP POINTERS TO ZERO 

RESET"REP 4 0 DO 0 REP"POINT C I l I LOOP ; 

DISPENSE WITH REPORTS WHICH ARE CLOGGING UP THE BUFFER ) 
PRINTS THEH UP AND RESETS THE POINTER I 

WAITING VARIABLE ; I COUNT OF DUHP TRIES I 
BUF"SEND A2 DUP 2 * REP"POINT SWAP DROP + DUP • 1 - 0 DO 

1S + SWAP DO I .B TO LOOP 

0 SWAP I DROP 0 WAITING I 
ACI1 .L PORT IL 

OVER 300 * I 16 * + 
REP"BASE • DUP 

LOOP 

; ACHECK ACIZ RL •• 1 HASK 0 ) IF ACI2 eL 2 + RB DROP 0 
ELSE -1 
Tt-IE:~N 

OVERRUN STRING ~SLIGHT PROBLEM CHAPS, OUERRUNI I I I I SAY 
0 WAITING I RESET"REP CRLF 

DISPENSE WAITING R 0 • IF 40 ACIZ at Z + 18 
l'HE'.N ACHECK 0 • IF BUF"SEND QUIT 
ELSE WAITING "1 DROP T~:N 
WAITING g 10 ) IF OUERRUN QUIT THEN 

BUF7 CHECK 
DUP -1 

I SEE IF ANYTHING NEEDS TO BE DONE } 
IF DROP 
ELSE DISPENSE 
THEN ; 

: NSET STRING INUMBER OF RECEIVERS IN TEST77 I SAY 
CRLF BUFFER WORD NUMBER RX_COUNT I CRLF 



2 I IN_BLK_ADDR£55 
TOTIREI1 
JN~BLK_STAT 1 + 18 
n~_BL K_ TOTAL I B 
0 IN_BLK_STAT 18 
THEN 

~SSAGE RECEIUE ROUTINES I 

INU -1 SWAP - ; 

REMAINDER I 
C SUB-BLOCK TOTAL I 
GO GO GO I 

S_TYP C SELECT A CERTAIN ~SAGE TYPE 
DUP F KASK 1 SWAP LEFT SWAP 10 I FFFF MASK 2 * 
HES_TAB + DUP 8 INV ROT ROT MASK OVER G + SWAP 

C SETS THE DESIRED BIT IN THE 11TT ARRAY 

Cl_TYP C DESELECT A CERTAIN MESSAGE TYPE I 
DUP F 11ASK 1 SWAP LEFT JNV SWAP 10 I FFFF MASK 2 * 
HES_TAB + DUP 8 ROT ROT KASK SWAP I ; 

C CLEARS THE DESIRED BIT IN THE HTT ARRAY 

IN_8UF_NO VARIABLE ; 

REL_8UF IN_BUF_NO DUP a 1 + F HASK SWAP I ; 
C 110VE TO NEXT INPUT BUFFER. WRAPAROUND AT 'F' I 

: RECEIVE C CHECKS TO SEE IF A 11ESSAGE IS AVAILABLE 
IN_TABLE ( IN_BUF_NO. IN_BUF_LEH ) 88 DUP 
0 ) IF ~ - Z * C SIZE IN BYTES I 

IN_TABLE ( 
IN_TABLE ( 

IN_BUF_NO. IN_DAT_BUF ) ( ADDRESS 
IN_BUF_NO G IN_SOURCE ) GB C SOURCE 

IN_TABLE ( IN_BUF_NO. IN_TYPE ) 8 C TYPE I 
0 IN_TABLE ( IN_BUF_NO. IN_BUF_LEN l IB C CLEAR IT 

REL_BUF 
0 
ELSE DROP -1 
THEN 

TA8_5ET RESET CCW I BOO AOO 
80 IN_INT 18 10 IN_ND 1• 
2C80 IN_TAB I 
eo o_tNT 1a 10 o_NO 1a 
2£80 O_TAB I 
0 DUT_BlF_NO 
0 JN_BUF _NO I 
8000 IN_8LK_STAT 

SETUP THE TERMINAL UNIT I 

READY FOR NEXT TJHE I 
EVERYTHING WAS OK I 
NOTHING WENT RIGHTII J 

CL2 6800 5900 CL2 

52 SETUP ; « THE SETUP IN THE DICTIONARY HUST BE USED TOO J 
SETUP SZ TA._SET FFFF 11ES_TA8 I GO CCW I ; 

THIS ROUTINE ALLOWS THE INSERTION OF HAND ASSEI'IBLEP 
MACHINE CODE TO SPEED THJt~GS UP A BIT I 

··t.·-~ 

CODE •I~DIATE 100 1 DO FRELO g 0 • IF BUFFER ELSE LOAD THEN 
WORD NUMBER DUP 0 • IF 

STOP TH£H DPI LOOP ; 
PTI'1 REGISTERS 

.FF61 CONSTANT PTM l BASE I 
TH CONSTANT WR~ 
TH CONSTANT WRl 
TH Z + CONSTANT WRZ 

,---
--~-' 

PTM 4 + CONSTANT T•l 
-P~rH 6--+--GONS--'f-AN'r-:-"'""T--.-t--------------------

USE P'I'M 1·0 PROVIDE INTERRUPTS FOR Z901 SE;RVICE ROU"TINE 

SET IT TO INTERRUPT APPROXIMATELY 
-5ETPTM 0 WR2 I B 1 WR.J I B 1 WRZ I 8 

4Z WRl 18 
7F T•t IB FF WT•t 18 

ONCE A SFXOND I 
DIVIDE BY B 
CONTINUOUS OPERATION I 

·'AS SLOW AS POSSIBLE J 

THIS FIOUTINE WILL PERFORM A NORMAL SIXTH I 
WORD FIND EXECUTE ON THE CONTENTS OF I 
A TYPE ZERO MESSAGE WHICH HAS BEEN RECEIVED 
FROM THE OUTSIDE WORLD BY THE Z901 SUBSYSTEM I 

DOlT WE I 
0 LAST I 
JO 0 DO WORD FIND EXECUTE 

0 LAST g • IF 
ELSE STOP 
THEN LOOP 

START ADDRESS 

NEW INTERPRET LOOP 
OK IF • 0 I 
OTHERWISE GIVE UP I 

BITS TO STORE DATA RECEIVED FROM THE OTHER TERMINALS I 
STOREIT WILL STORE TEN BYTES OF DATA FROH A TYPE ONE J 
MESSAGE IN THE REP BUFFER, AT A LOCATION AS POINTED I 
TO BY REP.POINT, WHICH IS ALSO UPDATED BY THIS ROUTINE 

[ IMMEDIATE ; ( I.E THROW IT AWAY I 
l Z * + SWAP DROP 

10 : REP" POIN"f ARRAY ; 
: 12 I 2 * + ; 
6400 CONSTANT REP.BASE 

,. 

;_;-' 

STOREIT DUP a DUP C GET THE REP.NO FRDH MESSAGE • 
Z * REP.POINT SWAP DROP + DUP 8 OVER OVER 1 + SWAP 

15 

SWAP DAOP C UP RELEVANT STORE POINTER 
16 * SWAP 300 * + REP.BASE + 

0 DO OVER JZ • OVER 12 I LOOP C COPY OUT MESSAGE I 
DROP DROP DROP 

CHECK THAT NONE OF THE REPORT BUFFERS JS TOO FULL 
RETURNS EITHER THE REP"NO OF A F'ULL ONE OR -1 • 

CHECK 4 0 DO REP"POINT [ I l & lZ ) JF I ABORT THEN LOOP -1 ; 

TX.OK VARIABLE ; 

PROCESS 
DUP Z • IF TX.OK "1 POP POP POP POP 

ELSE DUP 0 • IF C TYPE ZER077 I 
DROP DROP DOlT POP ( DO AS THE "AN SAYS I 

ELSE DUP 1 • IF DROP DROP STOREIT 
ElSE 

THEN THEN THEN 

IRQS HANDLES THE PTH INTERRUPT I 
IT F-IRST CHECKS FOR ANY RECEIVED MESSAGES I 
IF ANY HAVE BEEN R~CEIUED, IT TRIES FOR EITHER 



,----------

CZ CStOfio- -CCW~ I FEL •cL. 'STOPPING SiAY DEL 20 py• I 'OK SAY DEL ; 
--~~ ~t CQI !. Q,. FAILURE I FEL. -cL "ft&.&TT.lNii SAY DEL 20 PT~ I 
~ SAY D£i. J, CTUSW I ; 

~ CfUcw • FFF£ MASK DUP 1 + CTUCW I 
FEL..CL 'PASSJ~E SAY PEL CRLF '01 SAY DEL CTUCW I ; 

CC FEL.CL 'SELECT SAY BUFFER WORD NUK8ER 1 LEFT 
CTUCW a FFF9 ttAS.C + CTUCW I CRLF ~~ liAY llEL ; 

Q~~ SY5TEH OPERATION C~~~DS I 
aD F~L.CL ~SYNCH SAY 0 CTIME IL 0 CTIHE 4 + I DEL 20 PT. I 'OK SAY ; 

8A 0 WHERE 0 7F 0 00 *RES LOOP ; 
88 PTPT a 1 LEFT DUP PTA • IF PT8 ELliE PTA THLN 

~Eft 8 OVER I 7F 1 DO OVER I Z * + 8 DUP 
0 • IF DROP FEL.CL ~WONE SAY 8UFFER WORD NUM8ER 

8000 +OVER I 2 * + I DUP 0 SWAP I Z * + Z·+ I &TOP 
EL~E OUER J Z * + I T~ LOOP DROP DROP 
_CPOL 
DEL CRLF '01 SAY DEL ; t ADD A SINGLE TERMINAL 

; 8C PTPT 8 1 LEFT PTA • IF PT8 EL5E PTA THEN 
7F 0 DO F£L.CL 'TERKINAL7 5AY 8UFFER WORD NUM8ER DUP 

0 • IF I 0 • IF OVER I Z * + I NEXT 
ELSE OVER I Z * + I &TOP 
THEN 

THEN 
8000 + OVER I 2 * + I LOOP DROP 
_CPDL DEL 
CRLF '01 SAY • 

8E FEL.CL 'NEWTIHE SAY CALF STOPCLDCI liTOD ZTIHE ~L DEL ; 
t ~D LINE INTERPRETER I 

CLI FRAKE FEL.CL 0 DI51 BUFFER WORD FIND EXECUTE FEL•CL UNFRAKE 

RUN TII1E 5Y5TEtt I 

RUN ~GIN FAILURE a 0 > IF 4 DISI THEN 
ACtWI .. 0 > IF CLI T~ 

DISPLAY a DUP 4 • JF ZFAJL ELSE 
DUP ~ • IF ZTIK£ ELSE 
DUP Z • IF ZTER" ELSE 
DUP 1 • IF ZCONT ELSE 
FEL.CL 'HEAD 5AY 0 0151 DEL 
THEN THEN THEN THEN DROP ~8 CRaz 18 FF DR82 18 ~C CR82 18 EHD 

( T~ FJDDLY 8JTS Ill 1 

C THE TRAP ERROH AND ABORT BUTTON HANDLER GUTS ~ 

ALT ~OCATE ouT•F£L 'INT S • lOOA IL C ALTERNATJUE OIP ROUTINE ~ 

LOCATE R2 •INT 8 + 100£ IL C ALTERNATIUE J/P ROUTINE ) 

TAAP lHIT.FEL FEL.CL SET•PAD ALT 0 DUP ALINE I pUp ACHAR I DUP RP I 

DUP WP I F C5TORE F CHEAD A F CSTORE F CREAD DROP DROP 
~lWT.CCW I ON~T CCW I 0 FAILURE I RE5TART DEC 

5A80RT DlSJNT CRLF STRING S5ABORTS SAY TRAP ENINT INTER 
5EAAOR DISINT CRLF STRING S£RROR S SAY TRAP ENJNT INTER 

~TUP DI$1NT 0 STORE I LOCATE 5ERROR 'INT 8 + 
100 1 DO DUP 5TORE Y 4 + DUP STORE I 

IL LOOP DROP C SET UP FOR TRAP ERROR ) 

.:;-· 

___ _L_OCAU;:_5AD0fH--•-l--N:r-e-+--=te---+t------ ( A80HT BUTTON- HANDLirR,--1.---­
LOCATE IRQ+ 'INT S + 70 I L I KEYPAD HANDLER • 
LOCATE lRQJ •INT f.l i· 6C I L ( CLO_CK HANDLER I 
LOCAn:: :lftQ-2 ----.-iN~r- a + 68 I L ,- -z901 HANDLER J 

SET PER 
ALT 
PTB 10 0 DQ DUP I 2. * + I SWAP I LOOP DROP 

0 FAILURE I 

0 CONTENTIONS I 
0 ALIN£ I 
0 ACHAR 
0 RP I 
0 WP I 
0 WHERE I 
A F CSTORE 
F CREAD F CREAD F CREAD 
DROP DROP' DROP 
_CPOL 

ENINT ; 

1RESET LOCATE RUN 'INT S + EQUA1"E5 I i 

2RE5El' Z64C EQUATES I ; 
_RES RESTART SETUP DCC 1RESET RUN ; I RESTART VECTOR HANDLER J 
~R~SET LOCAT~ _RES tiNT 8 + EQUATES I ; C USED ONLY FOR RESTARTING I 

AAA ZRESET ZlCZE 100A IL 
ZlDB+ 100E IL 
INTER 

IENDFll.~ 

C HACSBUG 0/P ROUTINE I 
C NACSBUG liP ROUTINE • 



CONTENTIONS VARIABLE ;-­
FAILUft~-~ARIA8LE 

IA8.Z FRN£ KaNT 1 IF CONTENTIONS 
THEH- WAIL. 0 ) 

··1 C CONTENTION HAS OCCURRED I 
IF FF FAILURE I C STORE FAILURE 
THEN 

&.»FRNtE RT£ 

WHER~ UNIIAilt.E 
-7 ...:RE 8 W ""5K 

8CD DUP 9 ) IF A I DUP F 10 LEFT M51 SO I ZOO I C Gti:T DEC HUf1»£R5 J 
SWAP F HA5K ELSIL 0 THi:N 5WIIIIIP 

C GET TOD FRDtt IN-TitlE FIELD, ONLY USED WHQI NOT ACTIVE II J 
a&TOD IT Z + 8 400 I F HASI BCD I ~TH I 

IT Z + 8 ZO I 1F MASK »CD I DAY I 
IT Z + e lF MSK BCD C HOUR I 
IT 8 400 I ~F KASI BCD C ftiNUTES 

SiTOPCL.OCI 
9 4 DO I CSTORE LOOP 
C 8 DO I CSTQRE LOOP 
G.OclOCK 
~5 ~TIUE 1 • IF •STOP 0 • IF ~R£7 Z * &TT + 8 COOO KASI 

0 • IF . 
ELSE PTPT 8 DUP 1 LEFT PTA • IF PT8 ELSE PTA THEN 

7F 0 DO IJUP I 2. * + DUP 8 .JF HA51 SWAP OUER SWAP I 
WHER£7 • IF DUP I 2 $ + WHERE? 8000 + SWAP I 

THE:N LOOP 
Z I 
CSTOP CCW I WSTOP 
PTPT I 
GO CCW I 
0 STT WHER£7 Z • + 
CSTQP CCW I WSTOP 
PTPT I 
c;Q CCW I 

THEN a.£11£ "' 1 Tt-IC:N THEN ; 

INTERRUPT HANDLER FOR CLOCK I 
WILL WMTE OUT-TI11E IF OTA IS CLEAR I 

WIDTH 4 + CONSTANT TOT 
; IAQ~ FAAHE 0 T_DIS I F CREAD DROP 

CTU5W a ~ MASK 2 • IF OTA 8 8000 KASiK 0 • IF 
0 TOT I GTOD C SET UP FOR START 
A • + 5 LEFT TOT I 
A • + TOT g + ~ LEFT TOT I 
A • + TOT 8 + OT Z + I I "ONTH, DAY & HOURS 
0 TOT I 
A a + 6 LEFT TOT ... + TOT 8 + 4 LEFT + OT I 

CTitE: Z T fl CTittE 4 + II 
1000 * 780 T OT 4 T 

DT 6 + I 
OT 8 + I 
8000 OTA 

--THEN .. ,.-~ 

ZO 0 DO *RES LOOP 
£L5E ITA 8 DUP 8000 HA51 0 • IF 

~LSE aSTOD 7FFF ~51 ITA I 
THEH 

THEN 
~-RTE 

C HINUT£5 SECONDS TENTHS t 
CTIME 8 I GET SYNCH TIME I 
I l/10TH5 AND YEAR ) 

' ~LTIPL~S OF TENTHS 

·+-; 
I 

IRQJ HANDLER AND CIRCULAR lllJf"Fi::R DRIVIN_W ROUTINES ) 
FOR Hf:X KEYPAD 

10 ; STZ ARRAY ; 
ALINE VARIABLE 
WP VARIABLE ; 
RP VARIABLE ; 
ACHAR UARIA8L£ 

CIRCULAR BUFFER J 

-~----

; IRQ4 FRAME DRAZ ga DUP 9 > IF 37 + EL~E JO + C FORM ASCII CHAR J 
THEN WP Cl 1 + RP Q • IF DROP UNF'RAME Hl't: I BUFF F'UL L ) 
THEN DUP 46 • IF DROP OD ALINE al t USE 'F' AS CR I 
THEN WP Cl DUP lf"' ( IF WP a 1 ( INC WRITE POINT.E:H I 

ACHAR a1 
UNFRN1E RTE 

CIRCULAR BUFFER READ ROUTINE J 

ELSE RP Q 0 >· IF 0 WP I t WRAPAROUND 
ELSE DROP DROP lJNFRAI'tl:: Rl'E 
THEN 

THEN STZ SWAP DROP + 18 C STORE IT I 
( WE HAVE CHARS 50 FLAG IT I 

WILL READ FROM HEX KEYPAD'S CIRCULAR BUFFER J 

PREAD ACHAR Cl 0 • IF F'F QUIT ( NO CHARS SO QUIT I I J 
£lSE 

RP g STZ SWAP DROP + fl~ I GET CHAR FROM CIRC BUFFER I 
HP Q lF • IF 0 RP I ELSE HP al I FORM THE NEW POINTER 

THEN 
ACHAR DUP (l :&.- SWAP I ( DECREMENT FLAG I 

HiEN 

A READ ROUTINE SUITABLE TO 8~:: PATCHED IN TO THE KERNEL I 
PAD_IN BEGIN PREAD DUP FF ( IF' QUIT ELSE DROP lHEN END ; 
HZ PAD_IN POP ; t LEAVE CHAR I DO FOR PUFF ROUTINE 

DISPLAY COMMANDS 

ZNUHBER VARIAtiLE 
DISPLAY VARIABLE 
DISI T_PIS I .; 
ZTEST T_DIS W OVER • IF DROP DROP DROP 

ELSE T_DIS Ft::LaCL 
SAY 
TtiE:N 

ZFAIL 
ZTIME 
ZT&:RM 

'IlF'AlLED 4 ZTE!:iT 
'TIH J ZTE:liiT l'IHE 
ZNUMBER ll DUP 0 

DEL 
DEL 
IF DROP ATDIS 

ELSE 1- TDIS DEL 
l'HE:N ; 

: ZCQNT CDlS DEL ; 

f:' DISP I DISPLAY 
D.B .1 DISPI 
DC 1 DISPI 
DD Z DISP I FE.L "CL 0 DIS I 'TERMINAL~~ SAY DUFFER WORD NUKBER 1 + 

ZNUMB£R I ; 
D~ 2 DliPI 0 ZNUM»ER I ; 

CHANGE CONTROLLER FUNCTION COHHAND5 J 

Cl GO CCW I FEL.CL 0 DlSI 'STARTING SAY DEL ZO PT" I \OJ SAY DEL ; 



: .a:JHT CTUSW 8 S HASK- Ef I ; C _5TACI5 CONTENTION a-z-y--,- --­
----1-- ------:-tWA-rL--C-TUSW -·- FFOO- MASI 100 I 6 C STACKS STORE FAIL BITS 

I ; '..:ABLE CTUCW • 6 tiA5K z I ; ' STACKS SELECTED CABLE ) 

j 

G£T COHTROLLER STATIS'riCS J 
~STATS RC a NRC g •CABLE .ACTIUE •sTOP REC a 

~ USEFUL STRINGS l 

VMIC ST&ING I.HAI STUCK '& ; 
'8LANK STRING 1. S ; 
'HR STRING S NR 1. ; 
'RES~ STRING SRESPONUJNGS 
~RA STRING ~RRORS 1. ; 
'INFO STRING SINFORMATION MONITOR a ; 
'TEAM STRING STER"INAL HUK8ER S 
'TI" STRING SSYSTEK TIME S ; 
~D STRING S***HICRDLINK*** S 
'COHT STRING SHIGHWAY CONTROLLERS 
'RC STRING SREPEATS S ; 
~C STRING SHULL REPEATS& 
~8LE STRING SCA8LE S ; 
~T STRING ~TIUE S ; 
'PASS STRING SPASSIUE S ; 
'RUNNING STRING SHUNNING S 
'STOPPED STRING SSTOPPED S ; 
'REC STRING SRECEIUE ERRORSS 
'STARTING STRING SSTART CONTROLLERS 
'STOPPING STRING SSTOP CONTROLLER S 
~WTI~ STRING SSET NEW TI~S ; 
~WSYNCH STRING SHEW SYNCH TII1E S 
'5£LECT STRING SCA8LE NO. 7 S ; 
~A551UE STRING ~ PASSIVES 
~~ STRING SDIS ; 
'HEWONE STRING UDD TERMINAL NO. S ; 
'T~INAL1 STRING STERHINAL N0.1 S ; 
~5T£R" STRING SR£5ET TERMINAL 7S ; 
'RESETTING STRING SRESET CONTROLLERS 
'ITFAILED STRING S.**INTERFACE FAILURE*** S ; 

fii'AC£:5 4 1 DO SPACE LOOP ; 

TERHI~L STATISTICS DISPLAY LOOP ) 
TDl5 T_DIS DUP & Z • IF DROP ELSE F£L•CL 

'TEf111 SAY 

-11 PT. I 
.,.;TSTATS 
20 pya f 1 
.J• pya I 1 
S4 PT"' 
74 ···;ty· ... 

SPAC£ 

40 pya I ~RR SAY 
60 py• I 'INFO SAY 
Z SWAP 
THEH 

C TERHJNAL NUMBER 

• IF 'NAI ELSE '.BLANK THEN SAY 
• IF 'NR ELSE 'RESP THEN ~y 
SPACES t ERRORS ) 
5Phs ·- ' Il'ttl J 

DEL 1000 1 DO LOOP • 

DISPLAY 5TATS FOR ALL OF THE TER"INALS ) 

ATDIS PTPT • 1 LEFT 40 0 DO DUP l 2 * + e ~F HASK DUP 
_ -~C--'---'-C\c_ 

J 

.: 

-~-) -IF TDIS ELSE I 0 • IF TDI5 

THl::N 
DEL LOOP DROP ; 

ELSE DROP STOP 
THEN 

CQNl'ROLLER STATlSTICS DISPLAY LOOP 

CUIS T_DIS DUP g 1 • IF DROP I OK CONT ALHEADY DISPLAYED J 
ELSE FEL.CL 'CONT SAY 

20 py• I 'REC SAY 
40 PT. 
60 PT. 
1 SWAP 

'NRC SAY !i7 PT" I 'CABLE SAY 
'HC SAY 

C NOW CONTROLLER STATSi. liiElNQ DISPLAYED 
THEN 

.GCSTATS 

.JO PT" I 
J7 PT. I 1 
17 pr· 1 1 
5£ PT" 

I RECEIVE EHRORS I 
IF 'STOPPED ELSE 'RUNNING THEN SAY 
IF 'ACT ELSE 'PASS THEN SAY 

SO PT" 
70 py• 

t CABLE NUMBER 
NULL REPEATS 
REPEAT COUNT 

SET.PAD 00 CRAZ 18 FO DRAZ IB 7 CRAZ IB ; C 4 liP'S 4 0/P'S ) 
SHUTDOWN SYRES 0 F CSTORE DlSlNT ; f ROUTINE TO STOP THE INT5 
CLEAHTA8 DUP FF + SWAP DO 0 I I B LOOP ; I CLEAR CO.NT. TAIILE I 
SETPER f SETUP Plii:RIPHERALS AND CLEAR TABLES I 

RESET CCW I 
PT CLEARTAB 
PTA CLEARTAB 
PTB CLEARTAB 
H~S CLEARTA.B 
BS CLEARTAII 

t NOW f'OR lHE CONTROlLER J 

ST'f CLEARTA» t CLEAR A BIT OF ALL THE TABLES I 
PTA Z I PTPT I t CIUE IT SOMETHING 'nl CHE:W ON I 
1 CTUSW I t SET STOPPED TO AVOID CONf-"U5JON 
0 0 CSTORE 
0 F CSTORE F CREAJJ F CREAL) F CR££AD DROP DROP DROP 
A F CSTOHE F CREAD F CHEAD F CHEAD DHOP DROP DROP 

f SET UP THE HEAL TIME C~.OCK ) 
INIT •FEL F'EL "CL 
SET"PAD 

t SET UP F'El. Tf~C DISPLAY 
( SET UP HEX KEYPAD I 

WSTOP BEGIN •sTOP 1 .. IF QUIT THt::N l:ND ; 
_CPOL PTPT II 1 LI::FT UUP Pl'A .. IF PTB EL~E PTA THEN OUP 

I GET SECONDARY 'fAilLE 
Z I 
CSTOP CCW I W~TOP 
PTP·r I 
GCJ CCW I 
STT CLt:~ARTAB 
7F 0 DO O~ER OVER I Z * + II 
'IFFF MSK SWAP I Z * + I 
LOOP 
DROP Z I 
CSTOP Ccw I WSTOP 

PTPT I 
GO CC:W I ONINT CCW I ; 

I INTERRUPT HANDLER FOR 2901 ) 

FLAG STOf' AND WAIT I 
( STORE SECONDARY I 
RE-START CONTROLLER I 

READ FHOH NEW TABLE 
t PUT lN OLD TABLE I 

I FLAG STOP I WAIT ) 
PUT BACK t101HFII:::D NE:W TABLE I 

I RESTART CONTROLLI.iH 





................ ~.~ I.IVU# • 

OOZS£2 28ZttZ020 
0025£6 eoz~~ 

002:5£8 ZOlE 
0025EA ZZlE 
OOZSEC DZBO 
002~ ZDOl 
OOZSFO 4£75 

oozsz 0001 
OOZSF4 ZDZOZOZO 
0025F8 2SEO 

002SFA 2ZlE 
oozsc 201£ 
OOZSFE 9081 
002600 2000 
002402 4E7S 

002604 0001 
002606 ZAZOZOZO 
OOZ60A ,.,...,. 
00260C 201£ 
00260£ ZZ1E 
002610 COC1 
002612 ZDOO 
002614 4E7S 

002616 0001 
002618 ZFZ02020 
00261C 2604 
00261£ 221£ 
002620 201E 
002622 BOC1 
002624 2000 
002626 4£7:5 

.002628 0004 
00Z62A 4C4!54654 
.lOZ4ZE 2616 

J02630 201£ 
l026lZ 221£ 
)02634 £1A9 
l026J6 2001 
>OZ6J8 4£75 

t026JA 0004 
•OZ6JC SJS74150 
•02440 2428 

XADD 

• 

DC.B •t 
DC.·L •+ 
DC.W XIL 

* BASIC ARITHMETIC OPERATIONS 

• ADD ~YE.L fA6»+,DO 

• • 

l'tDVE.L CA6J+,Dl 
ADD.L DO,Dl 
ttOUE.L Dl,-fA61 
RTS 

XSUB DC.B •1 

• 
DC. L •­
DC.W XADD 

* SUBTRACTS 32 BITS 

• SUB HOUE.L CA61+,D1 

• • 

HOUE.L CA6J+,DO 
SUB. L Dl,DO 
HOUE.L OO,-tA6J 
RTS 

* MULTIPLY 16 BY 16 TO JZ 

• XHU.I. DC. 8 •1 
DC. L •• 
DC.W XSUB 

MUL HOUE.L CA61+,DO 

• 

HOUE.L CA61+,01 
MULU 01,00 
"OUE.L DO,-(A61 
RTS 

* DIVIDE 32 BY 16 EQUALS 16, REH 16 

• XDIV 

DIV 

• 

oc;.a •1 
DC.L •1 
DC.W X"UL 

HOUE.L CA41+,Dl 
HOUE.L fA61+,D0 
DIVU 01,00 
"OU£ • .1. DO,-IA41 
RTS 

XLEFT DC.B 14 

• 
DC.L •LEFT• 
DC.W XDIV 

* MOVE LEFT BY H PLACES 

• LEFT HOUE.L CA61+,DO 

• 

MOUE. L CA61+,D1 
LSL.L 00,01 
110UE·. L D1,-CA6J 
RTS 

XSWAP DC. 8 t4 

• 
DC.L •SWAP• 
DC.W X.I.EFT 

* WILL SW~P THE TOP TWO ON THE OLD STACK 

00264·2 201£ 
OOZ644 ZZlE 
002646 znoo 
002646 2001 

00264A 4Er.5 

00264C Z£781016 
0026!50 4E'.B8?..22E 
0026!54 OCJ6000010J6 
OOZ6!5A 6700000A 
0026!5£ 4·£88240£ 
0'02662 6000000C 
002666 Z1F8100Z10l6 
OOZ66C 4E8BZOJE 
0026"70 4EB820.84 
002674 4EB8Z104 
OOZ67B 4£882.280 
OOZ67C OCJBOOOllOZB 
002682 6700FFDO 
002666 6000FFES 

Ada• Error cad• -6 

C5Y~ a.6J 

• SWAP HOUE.L CA61+,DO 

• • 

tt0UE.l- CA61+,Dl 
HOVE.l DO,-CA61 
HOUE.L D1,-CA6) 
RTS 

* THE INTERPRET LOOP 

* 
* INTEl HOVE. L HSTCK ,A7 

JSR SftE:!iiT 
INTEZ CHPI •o,RELO 

BEQ INTEO 
JSR LOAD 
BRA INTEl 

~-·"'<"· 

INT'EO MOVE. L ACIAl,PORT 

JSR BUFF 
INTEl JSR WORD 

JSR FIND 
JSR EXEC 
CHPI .1, LAST 
BEQ INTEZ 
BHA INTEl 



_, 

OOZ.48E 

OOZ-4CO 
OOZ4CZ 
OOZ4C6 
0024C8 
0024-CA 
OOZ4CC 
00Z4CE 
002400 
002404 
0024P6 
002408 
0024M 
0024DC 
OOZ4PE 
0024£4 
0024£6 
0024EA 
OOZ4EE 
OOZ4FZ 
OOZ4F6 
00Z4FA 
OOZ4FE 
OOZ!SOO 
002504 
002!508 
OOZSOA 
oozsoc 
002510 
002514 
OOZS18 
OOZ!UC 
002SZO 
OOZSZ4 
002528 
002'5ZC 
002~ZE 

OOZ~.JO 

002532 
002536 
002.538 
002!S.JC 

4E7S 

0007 
4449:i.JSJ 
2480 
241£ 
4283 
4281 
3202 
8ZF810ZA 
3801 
E089 
£089 
4280 
1001 
ZZJCOOOOOOOO 
.1204 
OC000009 
6EOOOOOA 
06000030 
60000006 
06000037 
4£882166 
5203 
OC440000 
6600FFCA 
EOBA 
E08A 
6F0000Z8 
OCOJ0004 
67000016 
10JCOO.JO 
4£882166 
06030001 
OCOJ0004 
6DOOFFEE 
4281 
JZOZ 
4282 
6000FF9C 
1003 
4E8BZ166 
4E75 

OOZSJE 0001 
002540 ZEZOZOZO 
002544 24CO 
002546 4EB824C8 
OOZ54A 4£882172 
00254£ 4283 
002550 1600 
OOZ55Z 4E8SZ4BB 
002556 04030001 
00255A 6600FFF6 
OOZSSE 4E75 

002540 0004 
002562 41534042 
002564 ZSJE 

* .. 
~!'~--

XDISS DC.B .7 
DC.L •urss• 
DC.W XTO 

DlSS ~UE.L CA6•+,D2 
CLR, L -D.J 
CLR.L Dl 
HOUE.W DZ,Dl 

XPRN.J DJUU RDX ,Dl 
I"'DUE.W 01,04 
LSR.L .8,01 
LSR.L .8,01 

DO THIS INSTEAD OF SWAP 
WHICH DOESNT WORK 

CLR. L DO 
110UE.a 01,00 
HOUE.L •00,01 
ttaUE.W D4,D1 
CHPJ .9,00 
BGT XPRNZ 
ADDI ••30,00 
BRA XPRN4 

XPRNZ ADDI •• 37,00 
XPRN4 JSR PUSH 

ADDQ •1, D.J 
CHPI.W •oo,D4 
INE XPRN3 
LSR.L 
LSR.L 
OLE 

•a,oz 
•a,o2 

XPRN6 
CHPI .4,0.3 
BEQ XPRN7 

XPRNB HOVE •• 30,00 
J'SR PUSH 
ADDI •1,0.1 
CMPI .4,03 
BL T ·xPRNB , 

XPRN7 CLR.L 01 
ttOUE.W 
CLR.L 
IRA 

DZ,Dl 
oz 

XPRN6 
XPRN.l 

HOVE D3,DO 
PUSH JSR 

RTS 
* THE REAL PRINT ROUTINE 

* X. DC.B •1 
DC. L •. 
DC.W XDJSS 

PRN JSR 0155 
JSR PDP 
CLR. L 03 
HOUE DO,D.l 

XPRNS JSR TO 

* • 

SUBI •1, 03. 
BNE XPRNS 
RTS 

XASHB DC.8 .4 

* 

DC .. L •ASH&• 
llC.W lC. 

DITTO HERE 

CHAR COUNT,ALWAYS )•1 
ANYTHING LEFT11 

YES SO TRY AGAIN 
NOW TRY TO SEE FOR .32 Bl 

* WILL PUT A NUMBER ON THE STACK AS IS INTO THE DIC 

* 

002':568 
002!56C 
002.~70 

002~72 

002:~74 

002578 
OOZ!57C 
QOZS7E 

002!580 
/002l58Z 
002586 
002!588 
ooz~8A 

oo2!58C 
oo2..58E:: 
002!590 

002592 
002594 
002!598 
00259A 
OOZ59C 
OOZ!!59E 
OOZSAO 
0025AZ 

0025A4 
00Z5A6 
OO:Z:5AA 
,OOZ5AC 
OOZ:5AE 
002!580 

00Z5B2 
002584 
002!588 
002.5BA 
00Z5BC 
0025BE 
oozsco 

3478102£ 
.!4.3C0004 
140£ 
!5302 
6600f."FFA 
JlCAlOZE 
4£75. 
4E7S 

0002 
4042.2020 
2540 
2.2!5E 
42EJO 
1011 
2000 
4£75 

0002 
40572020 
2!580 
225E 
42.80 
3011 
2000 
4£75 

0002 
404C2020 
2592 
225£ 
2011 
4£75 

0002 
21422020 
25A4 
225!:': 
201£ 
1280 
4E7S 

OOZ5CZ 0002 
00Z5C4J 21572020 
002!5CS 2.582 
002!5CA 2Z5E 
OOZ5CC Z01E 
002eiCE 3290 
002.500 4£7:5 

002~02 

002~04 

OOZ5D8 
0025DA 
OOZ!!iDC 
OOZSDE 

0002 
214C20ZO 
25CZ 
225E 
229£ 
4£75 

·> 

AllJHB 
-; 

BK3 

• 
* 

. H_OVE' .. W DP , A2 
HOIJE.W •• 4,02 

HOVE IA6J+, IA2)+ 
SUBQ •t, 02 
BNE Bk.l 
HOVE W A2 ,DP 
RTS 
RTS 

XllB DC. B •z 
DC.L •CJB 
DC.W XASHB 

118 MOVE.L CA6J+,Al 
CLR-L DO 
HOVE.B CAll ,DO 
HOVE.L DO,-IA6) 
RTS 

*WORD GET 
XCIW DC. 8 •2 

DC.L •aw 
DC.W XCIB 

CIW HOUE.L IA6)+,A1 
CLR.L DO 
HOVE.W IAl) ,DO 
HOVE. L DO I -IA6f 
RTS 

*LONG WORD 
XCIL DC. B •z 

• 

DC.L •~tL 

DC.W XfJW 
HOVE.L CA~d+,Al 

HOVE.l IA11,-IA6f 
RTS 

XIB DC.B •z 
DC.l •tB 
DC.W XIJL 

18 HOVE.L IA61+,Al 

* • 

HOVE.L IA6H,DO 
MOVE. B DO, I Al I 
RTS 

* STORE A WORD 
XIW DC.B •z 

DC.L•1w 
DC.W XIB 

IW HOVE.l IA61+,A1 

* 
* 

HOVE.L IA61+,DO 
HOVE .W DO, CAl) 
RTS 

* STORE A LONG WORD 
XIL DC.B •2 

DC.l •tL 
DC.W XIW 

IL HOVE.l IA6)+,Al 

• 
* * 

HOUE.L IA6J+,CA1. 
RTS 

~ _.,._, 



OOZJ72 ZA4U414~ 

C!-0-Z.-3-1-6-------532.04-940 
OOZJ7A 5~4020~6 

OOZJ7E 

OOZJBZ 
-DOZJ84 
002.188 

002l&A 
JOZJ90 
002394 
JOZJ98 
002J9C 
JOZJAO 
OOZJA4 

JZZE.JlZA 

0101 
311202020 
U52 

04.3800011030 
6C000006 
4E88ZZZE: 
.J47B10ZE 
.J4FC4E7:5 
.JlCAlOZE 
l1FC0040101E 

lOZJAA 4£7!!5 

;002JAC OOOB 
JOZJAE 434F4£5J 
002382 Z.lBZ 

~02384 4EBB2272 
JOZJ8B J47B10ZE 
OOZ.JBC 34FCZDJC 
JOZJCO 4E88Z56C 
JOZJC4 4£882398 
JOZJCB 4£7:5 

JOZJCA 0007 
~OZJDC 494£5445 
JOZ.JDO ZJAC 
~OZJDZ .J47B10ZE 
JOZJD6 .J4FCZD.JC 
JOZJDA 4EBBZ56C 
lOZJDE 4£75 

JOZ.lEO 
:>OZ.JEZ 
JOZJE6 
lOZJE& 
lOZ.JEC 
JOZ.lFO 
JOZ.JF4 
JOZ.lFA 
JOZJFE 
:l02400 
lOZ40Z 
JOZ404 
JOZ406 
JOZ40B 
J0240C 

0108 
56415249 
ZJCA 
347B10ZE 
34FC4EB9 
.J4FCZ400 
Z4FC00000000 
.J1CA102E 
4£75 
2D17 
5897 
4£7'5 
0004 
4C4F4144 
ZJEO 

• • 

DC.L ••MAC• 
---DC--;-\.;-_.-'S I.Mi~------­

DC •. L ~J.Jt1 u• 
DC. L •2~--1.-e 

X SEMI DC.8 1101 

• 
DC.L •; 
DC.W XTITL 

0 

* ENDS C~PILE MODE 

• SEMI 5U8J •t,STATE 
BCE AUTO 

l 

t 
l 

ISR SREST FORCE A RESTART SINCE STATE IS NOW 
AUTO f10UE.W DP,AZ , 

• • 

HOVE.W .4E7S,IAZt+ 
HOUE.W AZ,DP 
f10UE.W •• 40,PREF 
RTS 

XCONS DC , 8 IB 

• 
DC.L •CONs• 
DC.W XSEMI 

* WILL INTERPRET COMPILATION NUMBERS 

• CONS JSR COLON+6 

• • 

HOUE.W DP,A2 
HOUE.W ••ZDJC,tAZ)+ 
.JSR ASMB+4 
.JSR SEMI+OE 
RTS 

*INTEGER ROUTINE 
XINTE DC.B 107 

DC.L •JNTE• 
DC.W XCONS 

JNTE HOUE.W DP,AZ 
HDUE.W ••zD~C,CAZ•+ 
JSR ASH8+4 

EQU KOVE.L •xxxx,-tA6l 

RTS 
*VARIABLE 
XUAR DC.B 1108 

DC.L •uARI• 
DC. W XINTE 

UAR HDUE.W DP,AZ 
HOUE.W ••+EBS,tA21+ 
HOUE.W •uARZ,CAZ)+ 
MOUE:.L •oo, IAZ)+ 
HDUE.W AZ,DP 
RTS 

UAR2 MOUE: L fA71,-tA6) 
ADDQ. L ..... (A7. 
RTS 

XLOAD DC. 8 •4 

• 
DC.L •LOAD• 
DC.W XUAR 

JSR •xxxx 

SPACE FOR VAR 
GET DP BACK 

GETS ADORES OF UA~ 

* WILL LOAD SOURCE TEXT FROM HOST 
* PROGRAM 6SKLOAD MUST 8£ RUNNING * AND 68KDIC PRESENT IN THE SYSTEM 

• 

00240E .H7810ZO 
002412 _ 21F810_0.4.1Q.l:El--­
OOZ419 10JC0018 

c --!~!~~ -- ·-~~~:1:~~--
002424 OCOOOOOD 
00?.42.8 66000009 
0924ZC 14CO 

_Q0242E 60000010 
00~432 ocoooozo 
002436 6DOOF'FE8 
OOZ4JA 14CO 
0024JC 6000F'FE2 
002440 .J1FB10Z010Z4 
002446 JlFCOOOOlOZB 
OOZ44C 4£7!5 

OOZ44E 0004 
002450 4FS04S4E 
002454 2406 
0024!56 Z1FS10061038 
OOZ4SC Z67C000024BZ 
002462 263COOOOOOOD 
002468 1018 
OOZ46A 4E8SZ01C 
00246E SJO.J 
002470 6600FFF6 
002474 4EDB2008 
002.478 OCOOOOOD 
OOZ47C 6600FFF6 
002480 4£75 

002482 52554EZC 
002486 J1JA4C44 
OOZ48A 2.EJ6JB4B 
00248£ ODOO 

002490 0006 
0()2492 SZ4~4C4F 

002496 244£ 

002.498 
OOZ49E 

OOZ4AO 
OOZ4AZ 
0024A6 
OOZ4AB 
002'.4AC 
OOZ4AE 

00Z480 
002482 
002486 
002489 
0024BA 

11FC00011036 
4E75 

0109 
4940404!5 
2490 
34781026 
:5212 
4£75 

0002 
S44FZ0ZO 
24AO 
ZOlE 
4E8ezou: 

LOAD HOUE.W STDUF,A2 
- -M\:N·E-:-t--AC1111.1-:--;--PtiP.T 

HOVE ••tB,DO 
.JSR SOUT 

Gf.:TCH JSR 5 IN 
CMPI ••oo,oo 
BNE LOADZ 
MOUE DO,tAZJ+ 
BRA LOADJ 

LOAD2 CMPI •• • ,DO 
BLT GETCH 
MOUE DO, CAZ I+ 
BftA GETCH 

-·--< 

-'it-. 

LOAD3 MOVE.W STBUF,EWORD FOR WORD ROUTINES 
HOVE.W •o,LAST 
RTS 

• *STARTS THE DOS TRANSFER PROGRAM RUNNING 
*l'HIS PROGRAM TERMINATES ITSELF ON 
*EOF AND RESPONDS TO ESC PROMPTS 
XOPEN UC.B 14 

DC. L •OPEN• 
DC.W XLOAD 

OPEN MOUE.L. ACIAZ,PORT 
MOVE. L •coHH. A.l 
HOVE.L ••oo,D.J 

OPENl MOUE.B IA3J+~DO 

JSR sour 
SUBQ .1,D3 
BNE OPEN! 

QPENZ JSR SIN 

• 

cHPI ••oo,oo 
BNE OPENZ 
RTS 

* COMMAND LINE FOR DOS 
COHH DC.L •RUN,• 

• 
* 

DC.L •t:LD• 
DC.L •.6SK• 
oc.w 10000 

XRELD DC.B 16 

• 
DC.L •RELO• 
DC.W XOPEN 

* All THIS DOES IS SET THE RELOAD FLAG 

• RELD HOVE .l.,RElO 
RTS IS IT WORl"H IT I 

* *IMMEDIATE MODE 
XIHH 

* 
* 

DC.B 1109 
DC. L • IHHE• 
DC.W XRELD 
HOVE.W DLAST ,A2 
AUDQ.B •t,CAZ) 
RTS 

XTO DC. B 12 
oc.L •ro 
DC.W )(lHH 

TO HOVE.L tA6)+,DO 
,J~~ SOUT 



APPENDIX 8 

An Upgrade of On-Board Memory 



·Ideas For Design 
Boost ~P-board memory capacity 

with simple hardware changes 

Some minor rewiring and the addition of an 
inexpensive data selector chip tailors Motorola's 
MC68000 evaluation board, the MEX68KDM, for a 
fourfold increase in oil-board memory capacity. The 
board's complement of sixteen MCM4116 RAMs (16-
kbit devices) Can be replaced with 64-kbit types, such 
as the 4164. The procedure costs less than one tenth 
the expense of an EXORciser chassis and additional 
memory modules. 

. Top ¥lew 7 • ~- •• .,..., :. • • 

., .. :: 

c., c;. -'::C.. ·c.. c.. !"--.--:~~ ': . o o o c o o o o o o o ·c e> -o ·o . 

BB6'DB66D 
•. ~:Winlll*. . . ". .. .~· ' . -. -. 

Etdl cuts 

1. Several etch cuts and wire jumpers help reconfigure the 
MEX68KDM evaluation board for operation with 64-kbyte 
RAMs. The greater-capacity memory chips boost on-board 
storage from 32 to 128 kbytes. 

Key to the modification is in the design of the 64-
kbit RAMs. The pinout of these devices is almost 
identical to that of the 16-kbit devices used in the 
board. In 1Uidition, such 64-kbit devices as the 
MCM4664 or HM4864 have the same refresh require­
ments as the MCM4116 used on the evaluation board. 

Both sizes of RAM chip require a 128 row-address . 
count with a 2-ms time interval. The board's existing 
multiplexer/refresh counter (MC3242) and memory 
controller (MC3480) ean be used for the 64-kbit 
devices since the additional address line to the chip 
(pin 9 on the 64-k RAMs) is not used during the 
refresh cycle. Only an SN74LS157 two-to-one data 
selector is needed to multiplex the extra two address 
lines onto the .64-k chips . 

To accomplish the changeover, the 5-V supply line 
to pin 1 of the RAMs must be disconn_ected. All 
64-k parts are single-supply types. Etch cuts can be 
made betWeen the memory chips and the controller 
so that only one wire must be added to connect 
together each RAM's pin 1. To allow pin-1 refresh, 
this rail must be tied high via a 1-kn resistor. 

The + 12-V connection to pin 8 must be discon­
nected and replaced by a connection to +5 V. A single 
etch cut and the addition of a single wire ac-

. .complishes this change. As shown in Fig. 1, the +5-
V connection to pin 9 must be disconnected to allow 
connection of an additional address line to this pin 
on the 64-k devices. Four decoupling capacitors must 
be removed, nine tracks cut, and six wires added. 
· The address lines to pins 17 and 18 of the MC3480 

·ROWEN 

"*' 9, MC3480 

A,.. A. -A7 
-....,­
"PnMausly 

~-·,--=-:~·--· 
1D ..• · 

MC3480 
(JIIns 11 a 1Bl 

15 

74LS157 

"Strobe 
GND "="a.L.--o Y 

Yoc ...,
16
..,.---+5 V 

(pin 9 On 841< RAMs) 

2. An Inexpensive data selector chip, the 
74LS157, Is the only additional hardware required 
for modification of the evaluation board. 

Electronic Design • October 29, 1981 197 



ldeasForDeslgn 
must be disconnected and reconnected to the data 
selector (Fig. 2). The controller's pins 17 and 18 must 
be grounded so that RAS1 and CAS are selected. The 
remainder of the data selector's pins are connected 
as shown. The+ 12 and -5-V connections to the ROM 
jumper area must be reconnected directly to the 
supply rails. The board's PROM, an N82Sl29, must 
be reprogrammed to the pattern shown in Fig. 8. A 
74LS287 may be substituted .. 

In operation, line A1a or Au of the board is 
multiplexed onto pin 9 of the 64-k RAMs, depending 
on the state of ROWEN (the line used by the MC8242 
for multiplexing of the other 14 address lines). 
During a refresh cycle, the state of the additional 
addres~ line is not important. 

David Cowan, Research Assistant, Department of 
Applied Physics & El£ctronics; Durham University, 
South Rd., Durham DHl aLE, United Kingdom. 

. .. '·-~. -·-: >: -:. 
too 'OC OC OC OC OC OC OC OC OC .DC DC OC OC OC OC DC 
10 oc oc oc oc oc oc oc oc "DC oc oc oc oc oc oc oc 
·20 OC OC OC OC OC OC OC OC iiC DC OC OC OC OC OC OC 
'30 oc oc oc oc oc oc oc oc oc oc oc oc oc oc oc oc 
40 oc oc oc oc oc oc oc oc oc oc oc oc oc oc oc oc 
60 oc oc oc oc oc oc oc oc oc oc oc oc oc oc oc oc 

160 "OC oc oc oc oc oc oc oc .oc oc oc oc oc oc oc oc 
30 oc oc oc oc oc oc oc oc oc oc oc oc oc oc oc oc 
.80 00 08 00 08 00 08 00 08 00 00 00 00 00 00 00 ~ = :-:~::::::·=·~~=-:::::: 
81· -bo 0o «~·oo ·oo ·oo oo liD .-~•·••~ oo oo., 
~~~•oooooooo~·~-~~~aoo 
~~OOOOOOOOOOGOGO~~~~OOOOOOOO 
.£0 :00 00 00 00 00 00 00 .00 ....,_ 00 -~ 00 00 00 00 00 
t=O .oo oo oo oo oo oo oo oo ·oo oo .oo oo oo oo 02 02 -. - . 
3. The evaluation board' a blpoblrPROM, an N82S129, muat 
be reprogrammed as above. ~n SN74LS287 can be uaed H 
• Texaslnatrumenta' programmer Ia more readily available. 



APPENDIX C 

DMA Interface Circuit Diagrams 



" ~ 
"" \) 

..., 
t 

"' 
~ - '[ 

1-
I 

:J 
~ 

"" 
>' .. 

"' l ~ <:C 
0 s .... Q 

o:l 
"' 

~ -
~ ..,j -

0 .. :::. 
rO 

~ ~ s cS 
u 
r::l 

~ ~ 0 
II" - ~ 

':1 .. 
0 .. ~ 

i i ~ 0 

"' .r 

r 
I~ -<:( 

\U 

-r<"" q" ll' ~ ,... oo<T 'i>- o:! '!:! :r ~ere: < ct .. c c <t C: i c ... 
" 

\ ) 



I~ 

':t -4 
0 I! !: 

~ ~ 

" 0' .. 
Q 

) "' 
'2 
~ 
~ 

~ 
V> 

C1 
a. 

1? \1\ 

"' 
0 ..s ,... 

"' l ,., 
Ill .,. 

I<) 

"' ~--T--r----------~ 
<[ 

0 
<I 
c .,. 
.J 

., . 
0 
<I 

Ill ~ 
~ 0 

\,) .. 
(If 

~ -0 
00 - n 

:> 
Q 

', 

... 
~· 



l 
Q 

~ 
"" 

0 t CJ( 
c 

I \,) 

Q. 

~ 

Ill 

~ 
d. 

d 

... Ill 
Ill 

g ~ 
!i 
¢ 
~ 

;::, 

E 
0 

~ 

"' I~ 

I~ I~ 

ll 



(NF';. 
--· TC. 

C. I.. 
l)N'TiiL~ 

143 
f.'llb GD 0 Y1 

o·.s- &1 {,..Cf\ "7 ·'fl AoS o, (. yb 
- ,., 
014 "" Yl.. 

01~ BS" AS 'It; 

od 
At-1 

&'1 ,<'\51 M Y.q 

--- B 
AM~SL';) 

:l,A4 

'I A 

At4 

A•l 

yf 
Yt>, 

r,. 
()II B A3 · Y> ---A•l 'Y-; -
Di¢ &:l A'2 y~ "" --- y~ 

D<1 01 AI Yl '"'' y, 
~ e. f) A¢ --Y, 

~ C-1'~ 

OOL _j l 
-

o:;T 

- ~ c.PR 
P7--- @.1 A"1 Yl 

-
IGr .<4 

SN7<~LS 

t43 

c..O 

'- 8 

'\>1"7'1L~ 

Q~l\J D 

Qc. 

A'l 

AoL 

AI 

A "I 

Y., 

'~·~ a.fw - Al'f2.SLC:, 
A'i>• 2.4~ 

A~ 

~.li . Vo!> 
~ 

11•-a A 
y F<.¢ 

FGI y, 
F"::t 

y~ 

Db Sl. AI. Yb 
OS' 

A~ '1<; Ss ~qs1 w; 

11<1 ~ M YA 

AM'l...,.L'i> 618 

:l.A"' 

f.\ 

AI> 

A<; 

Yo; I~ u.. 
y.lf 

Tq 

03 (1,3 A1 '13 

Di 8~ /11. 'f2. 

1.. c. G 
lilo p 

Ill c.. c.. 
""' 
Al 

yl 
COL 

y'J. 
Oi So At 'II A'l. Gle ~ Y, 
l>p B;(;R A, --Y¢ 

c.e. OiA;G~ 
GA A 

~N7AL~ 

Ar y~ 

<J-TS f/v' t=l 

..:... 1'1'3 

(,v tO 

/ 

Eoc.v 

¢V 
Vcc. 

0. U I#JTE~C:AC.E C.AilD 

l_q o 1 ~ G.I!OOO 8vFFE A~ f AOOll&~~ cov,.,r£ R~ 



g 1:-
0 .. 
00 Co 
..., Q. 

i 
-e. 

~ 
... "" c '> .. .. " -e. ... ... Q. ... .., ' 

I 
<1. ... ~ C) cl 

I~ !H 0 0 Q ~' ~ Cl C) .. 0 oc ("( 
> {j .. ..., 0 

~ r-

~~ ~ ; ~ .;.. ... .,. J ... ,. ,.. !!" ,.. 

8~ ..,o 
.SQ. 

l 
r- ~ IJ' ~ 

.... ~ ... 
d) <I) co ... .... ~ ... 
Q. 0. ~ ~ ... _ ... ... ... 

I I I I I I I I 
- <'( ... .... "' .. ,.. .... ,.. ... "' g .. "' Q 

... 
Q 0 0 Q. .. .. .. .. 

:l .. 
ol' ,.. 

<: 
.t ~ ... ... > 

0 
') d 0 

I ... - ,.. .. 
<f "' 0 
... ::1 ... .. ,. 
1: ~ 

r 0 Q 
~ 

Q > .., 
\,) 

J 

-j 

'> 



Appendix D 

Portable Highway Controller Commands 



Portable Highway Controller Guide 

Portable ASH Controller 

User Instructions 

The instructions which may be used by the operator are normally 

two character commands, terminated by an 'F'. The commands fall into 

three groups, as follows:-

Controller Operation 

Cl Start Controller, clear and enable interrupts to the MC68000 host. 

C2 Stop Controller. 

CJ Reset Controller and disable interrupts. 

CA Direct Controller to 'Go Passive'. 

a:: Change cable, prompts for desired cable number. 

General Highway Operation 

BA Reset a single terminal unit. Prompts for relevant terminal unit. 

88 Add a single terminal to the polling scheme. 

BC Set up a complete new polling table. 

BD Reset the system sync. time to zero. 

BE Set up a new time of day. Enter a single character per line, as 

follows:- months*lO, months, days*lO, days, hours*lO, hours, 

minutes*lO, minutes. 

-1- De t. of Aoolied Phvsics. 



Portable Highway Controller Guide 

Monitoring. Display 

DB Display system time. 

DC Display controller status. 

DD Display statistics for a particular terminal unit. 

DE Display the statistsics of all terminal units. 

Executive Systems 

AAA Return executive control to the VDU. 

Durham lliversity -2- Dept. of Applied Physics.. 



Portable Highway Controller Guide 

On power-up, the portable highway controller unit performs a 

reboot of the operating system for the MC68000. It then resets the ASH 

controller tables to their normal default conditions, including a 

polling table which consists of terminal units 0-16 inclusive. The 

MC68000 will then start the controller, which can then assume control 

of the ASH system, should it be the only active controller. The 

polling table may then be reset by the use of the BB or BC commands. 

After using the AAA command to redirect executive control to the VDU, 

control may be returned to the keypad/ front-panel display, by typing 

RES. 

Documented Bugs 

1) Display Corruption. Due to a fault in the address decoding for the 

PIAs on the MEX68KDM board, occasional corruption of their control and 

data register contents can occur. To protect against this, the 

registers of the PIA which drive the keypad and display are checked 

and updated more often than necessary. This gives rise to the 

periodically flashing display unit. It will be possible to remove 

these additional checks in the next controller, which will not use the 

MEX68KDM boards. 

2) Time of Day. A software fault in the version 1.2 controller 

software causes the time of day to be updated incorrectly in passive 

highway controller units. This fault is characterised by a time of day 

which appears to be stationary. 

Durham uuversity -3- Dept. of Applied Physics. 



Appendix E 

Graphs of ASH Test Results 

-1 -



t 
.... 
I 

-8 ASH SEA TRIAL RESULTS- I SMS.T 

-7 
START DATE I 
18/1/81 

I 
-6 • • START TIME 

• 0/17/7 
• •• • • • • • • • • •• • • • • • • 

INTEGRATION 

. 1 . . . . .. . . . . - - ... . . . .. . . .. . . .. . . . . ··- .. - . 
- •. • ':. -:1' - • •. I • • • • •. I • • • • • • • • .• • • • •. • • • -:. • •:- • • •• 5 •.'f{ • • J v. -. • • "-" ·\- • I ., '"'· ••• •:-. ~ .J. •'- .,.,... • • - •• ••,. 

• • • ,-. !it~ .... • v •• ~..,. • • :" • • .: • • < . .. · . . . . . .. . -. • • • 

PERIOD 
-4 60 SECS 

TERMINAL· 
-3 NUMBER 

1 
VERTICAL SCALE1-

-2~~----~---~--~--~---~- LOG ERROR RATE 
HORIZONTAL SCALE1-

1 2 3 4 5 6 TIME CGMT) 



t 
N 
I 

-8 ASH SEA TRIAL RESULTS 

-7 

-6 

• 

-4 

-3 

-2 - T---

SMST 
START DATE 
18/1/81 

START TIME 
0/17/7 

INTEGRATION 
PERIOD 

300 SECS 
TERMINAL 

NUMBER 
1 

VERTICAL SCALE•­
LOG ERROR RATE 
HORIZONTAL SCALE•-

1 2 3 4 5 6 I TIME <GMT) 



t 
'r 

I sr --AsH SEA TR r AL RESULTS I SMST 
7+ 

61 • . 

i 
1 

. 
• • • • • • ••• • • • • • • • •• • • • • • • • • •• • • • • • • • •• . . ·- . -. . .. . . .. . . . . .. - . . . - .. . .. ·.· . ·.~· ··. ·. : . . .. · . . ... -. .. . .. . . . . ·.-:-:.•.,. 5 "'· . # ,/' .. J- • ."_';• -· , --~ .... ••• •••• ")- .... .1> ,_,., •••• rl"" •• 

I 
. ,._ ,., . . -~· ....... ). ~... - . . .:' . . . rN • • • 

I -4+ 

-3+ 

. . . . . .. .. . - .. .. . . • • • • • • • 

,-2 - I 

1 2 3 4 5 6 

START DATE 
18/1/81 

I 

0~1-7//~ 
INTEGRATION 

PERIOD 

60 SECS 
TERMINAL 

NUMBER 
2 

VERTICAL SCALEa­
LOG ERROR RATE 
HORIZONTAL SCALEa­
TIME <GMT> 



t 
t 

-8.,. ASH SEA TRIAL RESULTS 

-7 

-6_ • • 

• 
~ . . . . . . ... . 

• • • • • • •• • • • • • • . . .. . . . . . . . . -
5 ~ 

.. • ·- . -.. .. . . .. . . . . .. - • • . - - ····· .·· .·.:· ·· ... : . ·. .. . ·· .. -. .. . ........ .,,. .. -:. n.J" • .a.. • '\.':I- • • ..__'; ._- • I -J P. •• • •.•. )-~ ~ I .1 Y • • •• J- • • 
• • .r- • • .......... ·> ~.. - • • .:' • • • rN' • • • . . . . . . . .. . .. . - .. ., . . . 

• • 

-4_ 

-3+ 

-21 I I 

SMSTI 
START DA-TE I 
18/1/81 

START TIME . 

01 1 717 1 

INTEGRATION 
PERIOD l 

6fZJ SECS 
TERMINAL 

NUMBER 
3 

VERTICAL SCALE•-

! 

1 2 

LOG ERROR RAT~· 
HORIZONTAL SCALE•-

4 ·5 6 I TIME CGMT) 



t 
"" I 

-8-P ASH SEA TRIAL ·RES.UL TS 

-7 ... 

-6+ • 

• • 
~ . .. . . . . . 

• • • • • • • • • • • • . . . . . . . . .. --... 
51.. . .. .. - . . . . ·~ .. - . - -·- •• • •.. ... •• •• •r•·-, .rP. J_,r . .F-;,• ,.,._-r/,Ja•v .-. •!.. -· • ~ ~ • \.~ •A• _.,_._ • •• , 

~ ,- . . . . .. . "' . . ... . ., ,. , -~ ,.-: ... . . .. . . . ·. , . . ... ·. .- . .. .. ... . .. . 
" . 

'-4 

-3-f-

SMST 
START DATE 
18/1/81 

START TIME 
0/17/7 

INTEGRATION 
PERIOD 

60 SECS 
TERMINAL 

NUMBER 
4 

VERTICAL SCALE.- . 
-2 1 JJOG ERROR RATE I 1 

HORIZONTAL SCALE•-
1 2 4 5 _ 6 _ TIM_~~MT~-----·----~ 



t 
0\ 
I 

r--·-- ---·-·-------~--···--------·--·····------·---·----·~~----·--·--·-,--·-· ·-------~ 
1-BT. ASH. SEA TRI_AL RESULTS I s M s T I 
I h : I ___ ,_ .. --------. ·-·--·-· ---~ 
! I • I START DATE l ,-7+ i i 
I i' • • • • • • I 18/1/81 I 

. I • • r 
I' • i 

! • • I . 
I t t-----·-···--------.... ·---.. ------~ 
1-6+ 1 START TIME l 
·

1 

I i 01 1 717 ' 
I I 

~-st rrNT.EGRA Ti . 
I I I PERIOD : 

l-4t I 1200 SECSi 
I i I TERMTNAL l 
1-3 I NUM~ER . 

! VERTICAL--seAL..=-~, I 2 ·-·--+-·---- f -1-------- -··+-- LOG ERROR RATE I 

______ ]__ ______ 2 --~---~----··_4___ -~--.. 9..... ---- ----~~~~~~-~~~ sc~~~~J 



t 
..... 
I 

,.s .. -- --------·AsH---s-EA~- r R r A L REs u·cT·s---------·-r·-
5
··~··- .. -·M--·· -'··-·

5
·--·---.. ··T--!, 

1
.- T • • • •• • • ••• • • l I 

I · 1 I I ! I ' ~·---... -........ -........... __ ........ --·;----1 

I I 1 START DATE· ! I I. . ! ! -
!-7 + ! 1 9 I 1 I 8 1 ! 
f ~ I t 
I : • • • • • • I . : i • • • • • • I 

, . . . I • 

I • 

f 
i 
I 
' 

-6l . . 
I 

I • • I 

; 
I 

I I 
! I ( 5: . . :- ~ 

i [ 

• 

• • • • 
• ••• • 

• • 
• • 

• • 

• 
• • 

• 

• 

I 
I I 

[ st-ARr -~n tv1 E-l 
i 14/21/36 l 
t i 
! • 

I ' t . -----. ~, ____ -··--~--___, 
l INTEGRATION i 

•• 
• 

• 

I • 

. . j PERIOD ' 

i-4~ I 3121121 SECS : 

! 

' ' I 
I . 
i 

I I I ·-·-·-·--------------- -J ; I I TERMI~~AL ! 
l-31 i NUMBER ! 
( T I f2l i I ! I : 1 

~~ hERT"icAL-SCALE. - , 
; ' LOG ERROR RATE ; i-2 L---+·---·-.. -· .. ·----•-· .. ·-·--·-4~····--·---·-.. --·~+-- .. --.--.. --+---.·-~-------- 1 HORIZONTAL SCALEa-

L_·····-·- .. ........ 1.~- ... _ .. ____ , __ .l._Q_.,_. ___ .. , __ .. l_'! _________ ~ .. l.e._ .. _._ ... _ ... J .. ~- --·-··· ....... 2J?J.... -·----- ·- --· .... -... JI~~-. ~GMT?·- ......... ·- ____ _j 



t 
f' 

-8 ... ASH SEA TRIAL RESULTS 
• 

-7+ 

-6+ • • • • • • 

• • • • .. .. .. .. . ·- . . . . . -.. .. .. . . . . . . . . . .. . . . -.. . . . . -- . . ·-- . . . -· . .. -. . -
t 

. . . . . ·- . . .. ·- . . .. . . ·- .. . . . ... ·-.... -. ··-· ............. . 
5 . . ... . . . - . . ... . - . .. . . . ·- .. - • • 'I' • • ·- • • • • • • •• • • • • • -• • • • ••• 'It ... • • • • • • • • • • • • • • • 

• • • 
• • 

• 
• 

-4+ 

-3+ 

-2~~--~--~----~--~--~-

SMST 
START DATE 
19/1/81 

START TIME 
14/22/1 

INTEGRATION 
PERIOD 

60 SECS 
TERMINAL 

NUMBER 
1 

VERTICAL SCALE•­
LOG ERROR RATE 
HORIZONTAL SCALE. -

L--__ 1=-.;5 16 1 7 18 1 g _20 I TIME CGMT) I 



-8 ASH SEA TRIAL RESULTS 
• • • 

-7 

-61 • • • • • • 

. . -· • • .. .. .. . -. - . • ··- . • • • • • • • • •• - -t t - --. - . . . --. . . . -· . . -. . . .. . ... -· . .. - . . ... - . -.. . -· . -. . ... . ... -· ....• - .. - . . - ·- . . ... 5 .... . ····-· . ... .. . - .. - • ,_. • • • • • • • • .• I • • •• •. • • • • •. •. • • • • • • • •• • •• • • • • • • • 
"' • I 

-4~ 

-31 

-2 -I 

15 16 17 18 19 20 

I 

SMST 
START DATE 
19/1/81 

START TIME 
14/21/36 

INTEGRATION I 
PERIOD 

I 60 SECS 
TERMINAL 

I·. NUMBER 
2 -VERTICAL SCALEa-

LOG ERROR RATE 
HORIZONTAL SCALEa-
TIME <GMT> 



t 
.... 
cp 

r----------------------------------------------------------------- ---- ,--------------------------------~ 

-8,. 

-74-

-6_ 

ASH SEA TRIAL RESULTS 
• • • 

• • • • • • 

.. -· • . .. .. .. . -. - . . .. . . . ··- . . . . . . . . . . . - -.. -. . -- . . . - . . . . . -· . . . -
l. . . .. . ·- . -· . .. - . . ... - .. -· . -· . . --. . ... . ... -· ..... - ... - . . . ·- . . ·-

5 .... .. ····-· . ... . .. -. - • •• • • • • • • I • • ... • • • • .. • • •• •• • ••• • • •• • •• • • • •••• 
• • • 

• 

-4+ 

-3..., 

-2 i · - I ---+1-

SMST 
START DATE 
19/1/81 

START TIME 
14/21/36 

~E:GRA-r rONl 
1 PERIOD I 
I 60 SECS I 

TERMINAL 
NUMBER I 

I ~ I 
1 VERTICAL SCALEa­

LOG ERROR RATE 
HORIZONTAL SCALEa-

' 1 5 1 6 1 7 ' 1 8 1 9 21ZJ I TIME (GMT) 





t 
~ 
~ 
I 

-8 

I 
-7+ 

ASH~s~A TR r AL R~suL Is--r 5 MS Tl 
r--srARf--DA-tE~ 

••• 

I I • • • ' t • •• -6 . ·.. . .. 
I • • 

-5: 
T 
• 

i ! 
I . I 
'-4' 

• • • 

•• 
• 

• 

• • • • 
• • • • • • 

• • 
• • 

• • 

• • • • •• • • • 
• • • 

• 
• • 

• 

I 

19/1/81 l 
I i 
I 1 
• I 
~-----------· ==i 

START TIME ~ 
I 

23/15/56 I 

INTEGRATION 
PERIOD 

' I 

3121121 SECS 1 
~------------ ~ 
I TERMINAL I 

1-31 I . NUMBER I 
I L __ JZJ i 

, I ~~ 

----~--------~-==-~------~~=~-:=~-;_:==~. ~~---- ___ L ~~~~z~~~~ -~~~~-~ -



t 
.... 
'r 

-8-r 

-7+ 

-6+ 

ASH SEA .TRIAL RESULTS 
• • 

• • • • 

• • • • • • • • • . . - . . . . . . . . . . .. .. . . . - . . .. ·- . . .. - .. - - . . . . . . - .. . . . .. - . ... . . . . .. ··- .. . . . . -- . . . -··. -·- -- -.. . ··-··· 
5~

. .. . • . . -. . ... -· . . . .. . .. - . . . .. .. . ··-···-- ........ -· ·-. - II. • -· •\ • • I -.,. • • ,:; • • , •• A. • • 'V' - " • -'· . . . . ... . . . . . . 

-4+ 

-3+ 

-2~~----~--~--~--~----~ 
fZJ 1 3 4 5 

SMS-T 
START DATE 

19/1/81 

START TI-ME 

23/16/1 

INTEGRATION 
PERIOD 

60 SECS 
TERMINAL 

NUMBER 
1 

VERTICAL SCALE. -
LOG ERROR RATE 
HORIZONTAL SCALEt -
TIME <GMT> 



t 
"""' f' 

-8 ASH SEA TRIAL RESULTS 
• • 

1
------ -

I SMSTl 
.-7 

START DATE· 

19/1/81 
f 

I 
. , 
-6 • • • • • • 

• • • • • • • • • . .. -. . . . ·- . . . . . . . . . . . •.. . . . . . . . . . - . . . - . . .... . ·­- ... .. . ... . . . .. ···- . ·-·· ·• . . . . - . . . . .. -· . .. . . . . . ... -·- -- -.. . ... .. . 
5 r .. . . . ··-· . .. . . . . . . .. . .. - . . ... ··-

- • •• • • • I \ •. • • • • • • • • • • •.:. • .• • • .• • • ••• • •. • • • ... . . . .., . . . . .. . . ... .. . -,. . ' . . 
• • • • • • • • • • • 

-4 

i 
START TIME I 
23/15/56 

r-INTEGRA T-i ON l 
I PERIOD I l ' 60 SECS 

TERMINAL I 
-3+ NUMBER 

2 I 
VERTICAL SCALE1 - 1 

L 
+- LOG ERROR RATE I 

IZJ 1 . 3 4 S HORIZONTAL SCALE1 -
-- _ _ TIME <GMT> 



t 
.... 
Vt 
I 

r---------------- ----~ --------------------------------------
ASH SEA TRIAL RESULTS 

• • -81 
1-7 1 

I j 
I . 
I I ·-6

1
r • • • • • • 

• • • • • • • • • .. -. . . . ·- . . . . . . . . . . . .. . .. . . . . . . - . . .. - . . .... . -
f - ••• •• • ••• • • • •• ···- • ·- • • • • • • - • I • • • •• -· • • • • • • • ••• -·- -- - •• • ... •• • 5tl. .. • • • .... • •• • • • • • • •• • •• - • • ••• ··-. . . -~. . . -.. . . . . . . . . . ... . . . - . -··· .. -... · . . . . . - .. ·-· .. ,. ,. . . . ,. . . . . . . .. : . . . - . . . - . .. . . . 

• • 

I 

,-41 

-3 

-2 i-----+-----+-----+----~-

ISMs.Tl 
I 
I 

START tfAfEl 
19/1/81 1 

i 
START TIME I 
23/15/56 I 

I 
INTEGRATION 

PERIOD 

60 SECS 
TERMINAL 

NUMBER 
3 

VERTICAL SCALE•­
LOG ERROR RATE 
HORIZONTAL SCALE•-

I 

IZJ 1 2 _3 4 5 i TIME <GMT> 



i 
..... r 

.-----~---------·----

ASH SEA TRIAL RESULTS 
• -~ s~STl 

~·- ____ _J 
START DATE 

I 19111a1 

-8 

I 
I 

-71 
I 

I I • 
i I l-6,1 

• • •• I .. . . . . . . . 
I 

. - . . . . .. . ... . . . . . . . . . .. - . . .. . . . -- .. . ... . -· .. -. .. . . .. . . . .. . . . . . . . -· . . -. .. . 
5 1: ·- - • •• --· •. -· - •• • - •• - l· ··.z • •• 'I. ,.-·. .•: ~ :- ~ ~ -·.::.· ~ ...... 

~··· . . . . . . .. . . . 

-4+ 
I 

' 4 
- 21 JVERr iCAL.-SCALE, -

-~----~------12··----·--·-13--·-~--·-·1 4. ----···--+-5 l ~~~I~~~~~L R~~~LE•-
·-------· -----·----·----- -· ____ __j__j]ME <GMT) ....... -----·-----

-3 

I 
....,.._._ ---·· ·-·- ······--·-·----·~ 

START TIME i 
23/15/56 I 

I 
' 

r--mTEGRAT I ON 
: PERIOD 

I 60 SECS I r ··--~·-··-···-··-~--- I 
1 TERMINAL I 

. NUMBER I 
l 



t 
.... ..... 
I 

r-:---~-·~-~A s H ~s-E_A_T R--rA~L 
~-oT · · · · · · · REs~-cy-s -·---T-s-·Ms T ! . 
I 

I 

'-7 r 
I 

t 
• ST AR_f __ .. DA r·E· ' 

I 
I 

21/1/81 
I . . . . . . . .. . . . .. 
I 

••• •• • • • • •• ••••••••• • • • 
I 6 .. • • •• 

I I t== -·-·····-·· --··--~--·--··"- ~-··-~=----1 
. i START TIME / ~- t . . . . • • • • 

' ' 

-51 I . 
I 
I I 
_-4f 

I 

I 

-31 
I 

1

-2 L-+-----1-------i- -+-· --·-+ 

21 __ ~--~~ 2_~ ___ r2!_ __ _L ____ _2 

••• 
I 

2fZJ/ 42/39 \ . 
I !· 

h-NTEGRAT ToN 
I PERIOD I 

1 300 SECS I 
I. TERM I NAtj 
I NUMBER I 

IZJ. I 
VERTICAL SCALE.- I 
LOG ERROR RATE I 

----------~~~z~~~-~CALEa-J 



t 
.... 
CZI 
I 

-8 

i I START--DATE" 1 
,-

7 t . 2 1 I 1 I 81 I 
1-61. ~TART TIM~ 
' I I : ~ I 

I i : 1 20142144 i 
~ .· .. .. ·.: .. .. . I ,' 

5 . . . . . . . -· -
- •• • • - • • • • •• • I • •• • • • • . 

-"': ... • • ....... :.-·' .I \. :': : • • • -..,: .... •• ~- , , ' •• • •• ~ ..... :- •• -. . _____ .....,. 
I•': • .:' ............. ,. • ...--.... ~. -· • • ----.:· "II ., • .;'ti., I INTEGRATION I . I • • ••• • ···•" • • , • • --. • ":" "• _.,.. •• •• •• ~.· , .. . . . .. . -. . . ...,.. . 

! ! . • . PER I 00 I 

l-4 60 SECS I 
I I I TERMINAL I 

~-3 t 1 NUMBER 
i . I 1 
I I VERTICALS-CA-LE-.-_ ----t 

I-2L- 1 -·-·-··--r---·--l· -+---- LOG ERROR RATE 

L~_l___ 22 __ 2~_, __ .f?J __________ 1 ----~------·----·---···-- --~~~~~~~~~~C~L~ 

--- --~ - - - - --- ---- -l 

ASH SEA TRIAL RESULTS -r sMsT 
1 
' 



t 
ta 
I 

. -
-8 ASH SEA TRIAL RESUL 

I 
! 

-7 

-6 

• 
• • 

• • • • • • • • •• •• • • • • • • • •• • • • • • • • • 5 ~ • • • • 'II. I • • • • - • I ._ •'-• •• • • - • • ~·"' • • • r.-. • • ., .~~. ,., ••• • ~· •.• • •• • ·~•, - • - . - . . . ~ . .. . . -·. ,. •' -' r:Y. •• J..: 7,. ':.I! •, ....... ~ _,, II llrl' ... • ., •• ' ••a • • • .. - ... . . ... - . . . ., .· . .. . 
• • • • 

··-4 

-3 

-2..1.. I .,_- I -f. ·----f-------t--·---+-

...___2 1 2 ~--· 2 3 JZl 1 __ __2 -

-
TS SMST 

START DATE 
21/1/81 

- . 
START TIME 
2121142139 I 

~-- ·-. , 
INTEGRATION I ' . , . 

I 

PERIOD 

60 SECS 
TERMINAL 

NUMBER 
2 

VERTICAL SCALE•-
LOG ERROR RATE 
HORIZONTAL SCALE,-

. 

TIME~- <GMTt.-.. -~--



t 
~ 

-8 

1 
I -7; 

ASH .~SEA TRIAL RESULTS --T s M s Tl 
----- -. T~ 

i . I 

l-6 
I 

• 
• • • • • • • 5r. . ~ . . . .. -:. . . . : . -· .. 

- • , • • .•,:- • :., I • • • • • - • • .• • -

I -- .•JI'. rl' • _..., .l'r • I -"• ,-M ••• • ..._. -· • : • ._ ..._. ••.• ._., • 
.- • .-,;. J ... '-... •• • !;...... ·-·· •• -, •. • .. _.. ... • - • ., .. ~ ... . ~" ·---: -- ~.. .. .. ·----·· ... - - .... - .... . - . -- .. ..,. .......... " .. . . 

I 
• • • ... • • • •• • •• "'. 

I e • a e • • 

I ,-41 ~ 

l-3· 

-2 • 1 1 I - 1- I --t 

21/1/81 
i 
l 

START TIMEl 
! 

20/42/39 i 
J 

INTEGRATION l 
PERIOD 

60 SECS 
TERMINAL 

NUMBER 
3 

21 22 23 fZJ L._ 2 

VERT I CAL SCALEa - -~ 
LOG ERROR RATE I 
HORIZONTAL SCALE•J 
TIME <GMT> ·--- ..L-..------·-



f 
·~ .... 
I 

~-----AsH--s E A--··r RIAL-R E ~ u LT s --·---- s ·M--S-il 
I I jsrARf-DA TE! 
1-7 I . i 2 1 I 1 I 8 1 ! . t I i 

--6~ 
I 

• 

! 1 . . . . . . . .· . . . 
I 5 • • • • • • • •• • •- • ••. • • -,. • .• • • • \;:'• • I \ • :• • _,. • •. • • • -- • • 

J • ... • • • • ••' rl \ • • • •...& ·· ..... • ~ , ,1 • I • • ""- • • .A.• • .... -~· ....... , . .. ..•. --~. . .. .. .. . ... , . . .,-. .. , . . .. . .. , .. ' --, -~ .... .,..,.~. .. ., ... "" ~ .. .- . . . . .. . .. . ' . . .. . -. . . . • • • • 

1-41 
I 

-3{ 
L , - ---f ----~·- -;-----

1 21 ~_2~ 23 -~~ 1 2 __ _ 

~ ARt-l1ME j 

.120142144 ! 
' : ~-----·---~-----t 

I INTEGRATION l 
I PERIOD ; 

I 61ZJ SECS 
~ TERM··rN=--=A:;:_L-

NUMBER 
_4 

~VERTICAL-SCALE•- l 
LOG ERROR RATE J 
HORIZONTAL SCALE•­

~TIM~GMT_> __ 



~ 
t•. 
~ 
I 

-8_ ASH CONTROL. RESULTS SMST 
-7 +· • 

• • • • • • . . .. . - . . . . 
I . . . . -. . . . . . . . .. . . . . -... -·· . . ·- . ··- . . -·- ... . - .. . ·-. -.. .. . ..\ . . . --···. • ... 6 ·---.- . . -... - -- .. - .. . --- . . . , . . . . '-· . ._ --. ~ - ~ . • • • 

-5. 

-4. 

I 
.-3+ 
I 
I 
-2 

9 10 1 1 12 13 
-i 

START DATE. 

1/2/81 

START TIME 

8/50/56 

INTEGRATION 
PERIOD 

60 SECS 
TERMINAL 

NUMBER 
1 

VERTICAL SCALE. -
LOG ERROR RATE 
HORIZONTAL SCALE. -

_ _14 I" I TIME CGMT> ___ ____, 


