
Durham E-Theses

Automating the teaching of arti�cial language using

production systems

Boldyre�, Cornelia

How to cite:

Boldyre�, Cornelia (1983) Automating the teaching of arti�cial language using production systems,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/7245/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7245/
 http://etheses.dur.ac.uk/7245/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Automating the TeaFhing of Artificial Languages Using

Production Systems

by

Cornelia Bo~dyreff, B.A. (Leeds)

of the

South West Universities Regional Computer Centre

Bath BA2 7AY

ABSTRACT

The work to be described here is an investigation into the

means whereby the learning of programming languages may be

made easier. The role of formal definitions of programming

languages is studied and a system is described which util-

ises production systems as the basis for generating an

environment in which students may test their understanding

of programming languages~

This system for automating the teaching of programming

languages provides an experimental testbed for carrying out

further investigations into programming behaviour.

I
.'

I

/
I

/
' I

'

- 2 -

Automating the Teaching of Artificial Languages Using

Production Systems

by

Cornelia Boldyreff, B.A. (~eeds)

of the

South West Universities Regional Computer Centre

Bath BA2 7AY

A Thesis submitted to the University of Durham for the

Degree of Master of Philosophy.

The research described in this thesis was conducted in the

Department of Computing at the University of Durham from

1975 to 1978.

Thesis submitted.l983.

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

19 . . ~~;::. 19B7

\
\

- 3 -

CONTENTS

CHAPTER 1 The Role of Computer-Aided Learning in the

Teaching of Programming Languages•.•........ ?

CHAPTER 2 Processing Grammars ..•......•........•... l6

CHAPTER 3 Generating Programming Environments for

Learners •••••...•..•.•.••...••......•.•.. 43

CHAPTER 4 Conclusions ..•••..••......••.•••.......•. 69

REFERENCES .•..•..•..•.•.•........•................. 73

SELECTED BIBLIOGRAPHY 78

- 4 -

DECLARATION

I hereby declare that none of the material contained in this

thesis has previously been submitted for a degree in this or

any other university, nor is any of it based on joint

research.

- 5 -

STATEMENT OF COPYRIGHT

The copyright of this thesis rests with the author. No quo

tation from it should be published without her prior written

consent and information derived from it should be ack

nowledged.

- 6 -

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. P. G. Barker, for

his help in this work, and also my colleagues at Durham, in

particular, Mahes Visvalingam and Malcolm Munro who gave me

much advice and encouragement. Tim O'Shea has made several

helpful suggestions to me concerning this work and I would

like to thank him for his continued interest.

- 7 -

CHAPTER 1 The Role of Computer-Aided Learning in the Teaching

of Programming Languages

~- Conyeotjonal Approaches t2 ~ Teaching ~ Programming

Languages

Extending a classification used by John Barnes (1981), pro

gramming languages may be classified as being suitable for

• the amateur oz professional programmer, or they may be

largely of interest to the academic programmer. These clas

sifications aze not exclusively applicable. Some programming

languages notably both BASIC (Kemeny and Kurtz, 1967) and

Pascal (Wirth, ~97~) were developed by academics for teach

ing and are now used by both amateur and professional pro

grammers. These classifications are useful when considera

tion is given to how progzamming languages are taught; the

methods of acquainting professionals with a tool they will

use in serious softwaze pzoduction vazy from those appropri

ate for the amateur or student user of a programming

language. This work is concerned primarily with the latter

groups although many of the conclusions will be generally

applicable to the professional programmer as well.

In the rest of this chapter, conventional approaches to

teaching programming languages will be examined. Emphasis

will be on methods which the student may use with a minimum

of assistance. It is difficult to compete with the tuition

supplied by a dedicated able individual teacher; however, as

individual tuition in the field of programming .languages is

- 8 -

uncommon, by considering those possibilities by which many

students actually learn programming languages - textbooks,

programmed learning material, and computer aided instruction

systems I hope to survey current approaches to teaching

programming languages.

z. Programming Language Textbooks: ~authors' approaches

tQ teaching BASIC

The two BASIC textbook that will be considered from the

pedagogical view point are:

Illustrating BASIC by D. Alcock published by Cambridge

University Press,

and

~ BASIC ~ by R. Forsyth published by Chapman and Hall.

Although both of these introductory books are written for

students without any prior knowledge of Computing, the

approaches they follow are diametrically opposed. While both

authors acknowledge the lack of standardisation in BASIC,

Alcock accordingly treats the "need for portability as

axiom" and descr.ibes the language in such a way that pro

grams may be written without dependence on any particular

version of BASIC. In contrast, Forsyth adopts the po~icy of

sticking to one representative implementation of BASIC,

namely DEC BASIC. This latter approach severely limits the

utility of the book for students. Forsyth does give them

- 9 -

some indication of those features which are specific to DEC

BASIC and unlikely to be generally available; nevertheless,

whole chapters devoted to such features are irrelevant to

students not using DEC BASIC on a DECsystem-10. To be fair

to Forsyth, he does give students some guidelines to be fol

lowed when portability is required, but these occur almost

as an afterthought in the last chapter. On the other hand,

Alcock's approach is to enumerate several possible forms a

statement may take and their associated efiects. Given the

various dialects of BASJC in use, Alcock's thoughtful

analysis should prove a source of aid to students.

Both books contain numerous examples. Alcock makes good use

of diagrams throughout. He switches between diagrammatic

description and prose freely in a manner which is eiiective.

Forsyth relies exclusively on the flow chart as his only

diagrammatic aid to program understanding. As both authors

offer an example which involves number conversion, their

styles may be compared and contrasted with respect to their

rendering of the solution. Forsyth begins with an abbrevi

ated trace through the program for a given three digit

number, and explains how this forms the basis of a more gen

eral solution. His example is concerned with converting from

digital representation to the English prose description of

the number. He makes no attempt to explain how the tech

niques used in this program may be usefully employed in

other programs. Alcock's conversion program converts Roman

numerals to their decimal equivalents .. He uses this example

- 10 -

to demonstate the use of a symbol-state table emphasising

that this technique is oi general applicability and sketch

ing a more complex extension. He also summarises the possi

bilities with respect to inputting a string oi characters

and extracting individual characters so that a capable stu

dent would be able to appreciate how the solution·given

could be modified if desired.

There is flexiblity in .Alcock's attitude missing from the

letter of Forsyth's text. Early on Alcock introduces recur

sion and gives an example illustrating the use of a stack

along with the exhortation to try "playing computers• using

a pencil, paper and a pocket calculator. Forsyth categori

cally states in his chapter on functions and subroutines

that subroutines may be nested as long as they are not

recursive. Although the spirit of Forsyth's last chapter is

less rigid; his advice generally remains unadventuresome.

There are minor errors in the program listings in both

books, students tutored in Alcock's cr.itical approach will

suffer less from these than those iollowing Forsyth.

Generally the major difference between these two textbooks

is that one attempts to illustrate BASIC in general while

the other introduces BASIC through one particular implemen

tation.

~- A Programmed Learning Textbook Approach ~ EL/~.

The idea behind programmed learning textbooks is that the

- 11 -

students working through the material presented are able to

progress through the lessons at their own individual rate.

Depending on their self- assessed understanding, they can

progress from concept to concept either directly or via

additional explanatory material. The programmed learning

textbook thus allows the more able student to work through

material without being bored by unnecessary explanations,

while the less ab~e student is assisted by having a fuller

account of the material.

The book I would like to examine here uses the programmed

learning approach to teach a subset of the programming

language PL/1 (Rope.r, 1973). This book, fl./~ .in E..a..a¥

Stages, progressive~y develops the notion of a PL/1 program

for the student. The PL/1 language was designed with the

aim of having uniformity in its syntax (Radin and Rogoway,

1967). Thus the ~anguage employs a general form for all PL/1

statel!lents, and a uniform definition of procedures. Roper's

book is good in that it emphasises this uniformity by giving

rules throughout the text. However, the rules are simply

given in English; and their use is not related to the exer

cises set. The book is also lacking in structure with

regards to the presentation of the rules. The table below

indicates the distribution of rules in the text.

- 12 -

I Chapter I Pages I Rules I

1 40 27

2 24 17

3 38 27

4 52 38

5 34 40

6 24 33

I Totals I 239 I 182

Throughout 239 pages, there are 182 separate rules. The stu

dent learning these rules would be better helped if they

were related by a conc.ise notation and more generally

related to one another. Thus a student may successfully

employ the rules given in the text and yet be left without

an over-all understanding of PL/1 programs in general.

~- Tha LEARN Program and ita Approach tQ Teaching ~

~-~- Tha .UNlX LEARN. program

The LEARN program (Kernighan & Lesk, 1978) as provided with

Version 7 UNIX is an interpreter based system which is

driven by scripts. One set of scripts provides an introduc-

tion to the c programming language and is relevant as an

automated approach to teaching a programming language. The

interpreter implements a common strategy independent of the

material being learnt. First, the LEARN program will be

described simply as a method of computer aided instruction

and then details of its approach to teaching C will be

- 13 -

given.

~.2. I£ABN'A approach tQ ~

The LEARN program is based on the assumption that the way to

teach people how to do something is to get them to do it.

The student is shown examples and then required either to

replicate the example or to produce a variant of it.

The LEARN scripts implementing lessons in a particular topic

do not attempt to deal with incorrectness. They simply offer

simpler examples on the assumption that by breaking the

material down into smaller chunks of information eventually

a point will be reached where the student can grasp the

material successfully. Able students need never enter a

remedial track, and can make speedy progress through the

lessons. The LEARN developers acknowledge that the practice

of subdividing material may be impossible and emphasise that

the LEARN program shou~d be seen as an ancilliary aid to be

used in addition to reference manuals.

~-~· LEARN'A approach tQ teaching C

Some of the lessons in the C script of the LEARN program are

loosely based on material in the book, ~ C Programming.

Language (Kernighan & Richie, 1978), and refer the student

to the relevant section on which the lesson is based. These

lessons cover material found in Sections 1.1 to 1.9 i.e. the

first chapter. The majority of the lessons are from an older

c script, and are prefaced with a warning regarding their

- 14 -

poor quality.

Some scripts simply require a straight-fozward answer, for

example:

(Lesson l.ld)

printf("\"£@\"");

Type "answer XXX", where XXX is the set of characters
that will be printed.'

Most require that the student write, compile and execute a c

progzam. The LEARN program through its C scr.ipts is able to

determine whether or not the students' progzams have pzo

duced the correct results, but .it is incapable of determin-

ing how the student has achieved these .results.

These lessons reinforce a method of programming which

achieves results by taking a program wh.ich nearly does what

is required and by slightly modifying it achieving the

required result. While this may be an expedient way of

achieving results, it can hardly be said to give students

much insight .into the c programming language.

The fact that the C scripts used in LEARN have not been

developed to cover the whole of the C language points to the

difficulty of using the LEARN method to teach a programming

language. While the LEARN program is adequate to illustrate

by examples the usage of the C language, it does not have

the potential for developing into a generalised system for

describing programming ~anguages for beginners.

- 15 -

~- Conclusion: ~ ~ ~ Inyestjgatjon ~ Scope ~ tbia

lmU

Two approaches to familiarising students with a programming

language have been isolated. One which has been character

ised above as the generalist approach aims to give the stu

dent a general form of the programming language from which

the student may deduce particular programs. The other, the

particularist approach, employs part.icular examples of pro

grams and expects the student to .form a general model of the

language by the process of induction.

In this work, the. effi~acy of the former approach will be

investigated. In order that the system may be used by unas

sisted students, a computer based system will be con

structed. I will show how the general form of a programming

language given by its grammar may be analysed by computer

programs and form the basis of a system of subprograms which

allow students to test their understanding of it. It is not

proposed that the system developed should be a replacement

for a human teacher, but it is intended to show that such a

system is of utility in that it gives students an environ

ment in which they may familiarise themselves with the gram

mar of a programming language and practice using it.

- 16 -

CHAPTER 2 Processing Grammars

371. Essence is expressed by grammar.

Philosophical Investigations

L. Wittgenstein.

~- Introduction

~-~· Scope .Qf. ~ ii.a.I..k..

In this chapter, the design and implementation of two sys-

terns for analysing Context .Free Grammars (CFGs) are

described. The grammars to which this study is restricted

are a subclass of Phrase Structure Grammars (PSGs) which

Chomsky has described (1956). Chomsky's work will be

reviewed briefly relat.ing it to the characterisation of for

mal languages. CFGs have been used to define programming

languages. Inadequacies of CFGs for this purpose have led to

extensions. A new grammatical form, W-Grammars, developed by

Van Wijngaarden will be discussed (1976). W-Grammars are

double level CFGs which have proved very powerful in defin

ing programming languages.

In connection with the processing of grammars, consideration

is given to the problems of representing a grammar from the

standpoint of choosing a formal representation which is

easily understood, and choosing an appropriate data struc

ture for representing the grammar wh.ich will facilitate its

analysis and use by computer programs.

- 17 -

The purpose in analysing the grammars is to check firstly

that they are well defined and secondly to check for various

properties of the grammars.

This analysis is preliminary to using the gzammars to pro

duce automatically recognisers and genezators for the pro

gramming languages described by the grammars. In the final

section of this chapter, some results of work in this area

are ~elated.

~.2. Historical Review

In John Lyons' popular book on Chomsky (1970), he says that

Chomsky drew on the branch of mathematics or logic which is

concerned with formal properties and generative capacities

of various grammars·; and he notes that Chomsky made an

independent and original contribution to the study of fozmal

systems. Chomsky's chief contribution was to pzovide a

definition and hiezarchical classification of Phrase Struc

ture Grammars (PSGs).

Informally, PSGs may be used to describe .languages consti

tuted of phrases, for example, Engl.ish. A simple PSG for

English sentences might be stated as follows:

sentence -> noun phrase + verb phrase

noun phrase -> adjective + noun phrase

noun phrase -> noun phrase + connective + noun phrase

noun phrase -> noun

verb phrase -> verb

- 18 -

adjective -> old

adjective -> young

connective -> and

noun -> women

noun -> men

verb -> laughed

verb -> sang

From this grammar, the following sentences can be derived:

old women and men laughed

young women sang

old men laughed

(Note that already ambiguity has arisen. With the use of

parentheses as phrase markers~ this could be overcome, viz.

(old women) and men laughed

Note also that the noun phrase is recursively defined. This

allows for the embedding of one noun phrase within another.)

Formally·, a PSG is a system G-1 such that

where

G=(Vn~Vt,P,S)

Vn is the nonterrninal vocabulary

vt is the terminal vocabulary

P is·a finite set V+ x V*

s is a member of Vn called the distinguished symbol

- 19 -

(Pairs from V+ x V* are written x -> y and read "the string

x is rewritten as the stringy", where x ~ V+ andy E V*:

v

(the empty set)~

Vn U Vt

Vn n Vt
oa

V*= U Vk
k=o .

V+= V* -Jl(the set containing the null string:

* is Kleen closure; a special operation which yields all

possible strings using elements of the set. {0,1}* is the

null string, 0, l, 00, 01, 10, 11,).

Chomsky defined a hierarchy of PSGs by placing restrictions

on the elements of P. (Martin, 1972)

In the most general case, there are in fact no restrictions;

the grammar is of type 0. The restr.iction that the string on

the left hand side of any production rule must be .less than

or equal in length to the string on the right hand side

gives grammars of Type l. A further restriction is to limit

the string on the left hand side to a single element of the

nonterminal vocabulary; this gives Type 2 grammars. The

stipulation that all rules must be of the form: sing~e non-

terminal goes to sing~e terminal element, or single nonter-

minal element goes to single terminal element followed by

nonterminal element gives Type 3 grammars.

The languages described by Type 3 grammars are referred to

as Regular or Finite State Languages. Chomsky has demon

strated in syntactic Structures (pp. 21-24) (1957) that Type

3 grammars are inadequate to describe the generation of

- 20 -

sentences where there are relations between nonadjacent

words, that is, where one phrase is embedded within another.

An example of such a sentence is: 'Any sentence which con

tains an embedded clause cannot be described by a Regular

grammar.'.

Context Free Languages have this property and they are

described by Type 2 grammars; the rewriting of the nontermi

nal symbols using a Type .2 grammar takes place without any

consideration of the context in which they occur.

The contextual rewriting rules OI Type 1 grammars allow Con

text Sensitive Languages to be described. Agreement in

number between parts of speech is a familiar English

language construct which we could employ a context sensitive

grammar to describe. For example, such a grammar might

include the following rules:

the noun flies -> the crow flies

the noun fly -> the crows fly

The languages described by Type 0 grammars are called recur

sively enumerable languages. Informally, this means that the

elements of the language can be generated by a recursive

procedure. The problem oi determining for a given string

whether or not it has been generated by a Type 0 grammar is

undecidable; this is only the case for Type 0 grammars. For

all other types, it is possible to decide this problem.

The relationship between languages is summarised in the

- 21 -

following diagram which also indicates the nature of the

production set in their respective grammars:
(Adapted from Cleaveland and Uzgalis, 1973)

Where

All languages

Recursively enumerable languages

Context sensitive languages

Context free languages!
-------------------- I

Regular languages! I
--------------- I I

Finite I I
Languages I I

I I
A->a I I

--------------- I I
A->aB I I
B->b I I

-------------------- I
A->v I

uAv->uwv

w->v

a,b are elements of Vt
A,B are elements of Vn

w is an element of V+
u,v are elements of V*

2... Using Grammars L.a. Describe Programming Languages

In 1959, John Backus, a designer of the programming language

Algol 60, developed a grammatical form equivalent to

Chomsky's Type 2 grammar which is still widely used to

describe the context free syntax of programming languages.

Backus notation, BNF, has been used in some Iozm for the

- 22 -

definition of every major programming language since Algol

60 (Cleaveland and Uzgalis, 1973). It has proved useful not

only as a tool for defining and teaching programming

languages but also as an aid to the machine analysis of pro

gramming languages. CPGs have been classified according to

the method of parsing they require. Ceztain classes of CFGs

may be used to automatically genezate parsing programs.

DeReemer (1969) described an early system which worked from

a BNF description of a programming language.

There are two kinds of restrictions which CFGs in general

cannot handle: static context conditions and dynamic context

conditions (Cleaveland and Uzgal.is, 1973). An example of a

static context condit.ion is the zestriction that each iden

tifier (i.e. name in a pzogram) must be unique; a dynamic

context condition is the restriction that identi£iers occur

ring in an expression to be evaluated must zefer to vari

ables which have previously been assigned values (i.e. the

reference of names must be fixed be£ore their use).

To describe the static context conditions, a context sensi

tive grammar could be employed. This would not be satisfac

tory primarily for the same zeasons which Chomsky gave when

he rejected PSGs as a descriptive model of natuzal language;

the grammars needed would be •extremely complex, ad h2k and

unrevealing". (syntactic structures quoted by Lyons)

only a formal definition of the semantics oz meaning of pro

grams . written in a particular programming language would

- 23 -

spell out the dynamic context conditions. Usually, the

semantics of a programming language are described in prose

although limitations of CPGs have ~ed to the development of

formal techniques capable of defining the semantics as well

as the syntax including any context sensitive aspects. One

such formal technique is the grammatical form, W-Grammars,

which Van Wijngaarden developed for defining Algol 68.

W-Grammars are two level CPGs. At the first level, the W

Grammar consists of what are known as gmetaproductions" and

"hyperrules" which are models for the production rules of

the language; employing a "uniform replacement rule", the

second level CPG is produced from hyperrules and metaproduc

tions.

A simp~e example of a W-Grammar (taken from Cleaveland and

Uzgalis) is the grammar which describes the language

{anbncn} which is a type 1 or context sensitive language.

The grammar is as follows:

(metaproductions) N n;N,n.

ABC .. a;b;c.

(hyper rules) s Na,Nb,Nc.

nN ABC : letter ABC symbol, N ABC.

n ABC letter ABC symbol.

By uniform replacement, the following production rules may

be derived:

na letter a symbol.

- 24 -

nb : letter b symbol.

nc : letter c symbol.

nNa letter a symbol, Na.

nNb letter b symbol, Nb.

nNe letter c symbol, Nc.

The metaproduction rule 'N n;N,n.' produces arbitrary

length strings of n. .By unifo.rm replacement in the first

.hyperrule, an infinite set of production rules may be

derived:

s na,nb,nc.

s nna,nnb,nnc.

s nnna,nnnb,nnnc.

and so on.

By convention, the typographical representation of any ele

ment ending in symbol is given by a table; these elements

are the elements of the terminal vocabulary.

This example illustrates how a W-Grammar can deal with

static context conditions. There may be a requirement to

add dynamic context conditions. This is achieved in a W

Grammar by the introduct.ion o:f predicates. Predicates are

nonterminal elements which may be .rewritten as the null

string. Predicates may be generated :from general predicates

given as metaproductions.

A predicate may be used to express the .requi.rement that

every name in a list of names is unique; for example, this

- 25 -

might be achieved by the following predicate:

name list : name; namelist,comma,name,

unless namelist contains name.

where 'unless false , i.e. 'unless ialse' is rewritten as

the null string. Further rules omitted irom this example

would be required to spell out what it is ior one notion to

contain another; the predicate 'contains' could be rewritten

in terms of the predicate 'begins with', and 'begins with'

rewritten in terms of 'coincides with' which could be

rewritten finally as either true or false, thus allowing the

above predicate to be rewritten as the null string if it has

been rewritten as 'unless false'. Note that no rule is given

for the predicate 'unless true'; it is simply a blind alley

and is a predicate which cannot be eliminated.

A full description of W-Grammars is beyond the scope of this

chapter. W-Grammars have been demonstrated to be powerful

enough to describe completely both the syntax and semantics

of the programming language, Algol 68. J.E.L. Peck, one of

the authors of the Revised Report on Algol 68 in which such

a definition is undertaken, has produced an excellent short

tutorial paper on W-Grammars which demonstrates their capa-

bilities more completely than this text does (Peck, 1974).

~- Representation Q! Grammars

These remarks are confined to the notational systems

employed to represent CFGs. The system with the arrow as the

- 26 -

production symbol and plus as the concatenation symbol is

from Chomsky. In BNF, '::=' is the production symbol; con

catenation is implicitly represented by writing elements of

the vocabulary next to one another in a rule; rules for the

same nonterminal element are condensed into one rule with

• I • as the or symbol; and nonterminals are enclosed in angle

brackets. Thus, a rule defining a number might be written in

BNF as follows:

<number)::=(digit>J<number)(digit>

BNF notation was extended to give an alternative form to

some simple recursive rules, and to distinguish more clearly

alternatives and options within a rule. The extension was

the result of marrying BNF with the metalanguage developed

to describe the programming language COBOL; it has been

praised for its "utility and cleanliness" (Cleaveland and

Uzgalis, 1973). An example of a rule in this notation is as

follows:

NUMBER::=[SIGN] DIGIT ...

where the dots mean the occurrence of the immediately

preceding element one or more times and the square brackets

indicate an optional element.

The CFGs of W-Grammars are notationally equivalent to BNF

grammars with the exception that a symbol to indicate the

end of a rule, a full stop, has been added. In W-Grammars, a

semicolon is used for the or symbol; a comma is the explicit

- 27 -

concatenation symbol; there are two production symbols colon

and double colon; and by convention terminals end in 'sym

bol'. Thus, in W-Grammar notation, the following rules would

define numbers:

NOTION::digit.

NOTION sequence:NOTION;NOTION sequence,NOTION.

number:digit sequence.

digit:zero symbol;one symbol; ;nine symbol.

with a table showing the particular representation of each

symbol in the language.

The notations described above for CFGs with the exception of

Chomsky's were developed by the designers of various pro

gramming languages as an aid in the specification of the

language for both future implementors and to describe the

language to future users.

Implementors of a programming language are concerned with

the implementation of the language on a machine which as

Marcotty ~ Al point out is "after all a kind of formal

definition" (~976). Unfortunately, it is sometimes the only

definition to which users may appeal. In implementing a

language, system programmers construct compilers; these are

programs which consist of recognisers for that language and

specify what actions are to result for all recognised pro

grams.

While W-Grammars have the advantage that they can be

- 28 -

employed to completely define a programming language, the

defintions resulting are somewhat incomprehensible to the

uninitiated. Cleaveland and Uzgalis have attempted an intro

duction to W-Grammars in the hope that more programmers will

come to appreciate their power. They also express the hope

that work will beg.in on "automatic parsing techniques which

could automate W-Grammar definitions and provide giant

advances in automatic compiler construction and in the

development of far more responsive and facile computer

languages" (Cleaveland and Uzgalis, 1973).

Addressing this problem of automation of iormal definition

allows the vexed area of the human engineering of the defin

ition to be left behind as consideration is given to the

problem of how best to represent a def.inition so that it may

be automatically processed w.ith ease. Here the crux of the

problem is to choose a .data structure and/or data type which

will reflect rather than obscure the form and content of the

data which in this case will be the rules themselves. Data

represented within a computer is given iorm and content by

the programming language structures and data types which

allow for the interpretation of the data in various ways.

Perhaps the most straightforward method of represention is

to process the rules as strings of characters using a linear

data structure. Analysis is facilitated by functions for

indexing and forming substrings. In my first program which

was written in the programming language PL/l to process the

- 29 -

rules of a CFG in W-Grammar notation, the data was

represented as character strings declared to have the form

of variable length character str.ings. Character strings in

PL/1 are one dimensional, and characters are distinguished

by their rank or index within a string, such that the first

character has index 1 and so on. The built-in functions,

INDEX and SUBSTR, were used for deterndning the index of one

character string within another, and £orming substrings

respectively (PL/1 (F) Language Reference Manual, 1969).

This method of representation was not found to be particu

larly satisfactory because of the effort involved in

extracting information from the rules. For instance, when

indexing the characters to the right o£ the colon in the

string, 'S:SS,A,B.', for an occurrence of 'S' indicative of

recursion, the INDEX function will return the index of the

the first 'S' in the element 'SS' which is a distinct ele

ment from 'S'. Thus, it is necessary to include delimiters

round the string being indexed for, that is to say, in the

case of a search for a generally recursive rule, index for

the string, ' , S, ' .

By rewriting the program in the LISP programming language,

it was possible to overcome these difficulties by represent

ing each rule as a list of atoms which were the elements of

the nonterminal and terminal vocabulary. In LISP (McCarthy

et al, 1965), an atom is considered to be an indivisible

item of data, so that the above problem does not arise. In

- 30 -

order to do the analysis in LISP, each rule in the W-Grammar

had to be converted into the form of a LISP list. The fol-

lowing illustrates the conversion process, which was in fact

carried out by a translation program written to transform

rules already represented as character strings for the first

PL/1 program. Cons.ider each rule .in W-Grammar as a tree

structure with the nonterminal on the left hand side as the

root and the alternative on the right hand side as branches

where a branch consists of elements of the vocabulary. Thus,

the rule,

s
/\

/\ \
SS A B

In nested parenthesis tree notation, this is the tree (S (SS

A) (B)) which coincidentally is the way this tree is

expressed as a list in LISP. The branches of the tree may

now be processed as sublists. A set of LISP functions may be

defined which allow testing for properties of the rules

directly by treating the sublists as sets of vocabulary ele-

ments. This overcomes the indexing problems mentioned

above. As many automatic parsing programs employ trees as a

data structure to represent production rules, this method is

not original •.

The notation of LISP has been criticised as consisting of

Lots of Insignificant Silly Parentheses. In this applica-

tion, the notation was straightforward to use and use of the

translation program ensured the lists were well formed. LISP

- 31 -

is a functional calculus with "programs" taking the form of

functions which are themselves lists written in the list

notation. This use of the same structure £or both "pro

grams" and "data" has an attractive simplicity.

In summary, representation of a grammaz in a notation which

facilitates its use as a source of information to program

mers is problematic although it is undoubtedly true that a

good formal definition is an important factor in determining

the ease of learning and using a programming language; the

following chapter will return to this point and give it

fuller consideration. Choosing a machine xepresentation is a

less vexed question and related to the sort of functions

which will be applied to the data when it is processed. The

processing of CFGs as linear character strings does not

exploit the tree structure inherent in the rules which a

list structure is capable of revealing.

~- Analysis ~ Grammars

The CFGs may be completely defined by the pxoduction rules

with the convention that the rule for the dist.inguished sym

bol is given first. The elements of the nonterminal vocabu

lary in the W-Grammar form of the rules will all appear only

once on the left hand side of the rules. The terminal voca

bulary is the set which is the difference between the set of

all vocabulary elements and the nonterminal elements.

As the rules are individually processed, the analysis pro-

- 32 -

gram builds up these sets. Rules are analysed branch by

branch; each branch is checked for left recursion, self-

embedding, right recursion, circularity, ambiguity and

uniqueness. These properties are all illustrated .in the fol-

lowing rule:

s S, A; A, s, A; A, S; S, A, S; S; A; A.
I I I I I I
I self-embedded I ambiguous I not unique
I I I

left recursive right recursive circular

A check must be made that there is at least one nonrecursive

branch in each rule, so as each rule is processed a count is

kept of the nonrecursive branches.

After all the .rules have been processed individually, rela-

tions between the rules may be analysed. A check is .made for

all the properties mentioned above occurring indirectly. For

example, the following might occur:

S:T,A;A. and T:S,B.

In such a case, s is said to be indirectly left recursive.

Any branches which do not ultimately end in terminal ele-

ments are marked as incomplete. Any rules for nonterminals

which do not occur on the right hand side of some rule with

the possible exception of the distinguished symbol are

marked as superf~uous. If a reduced form of the grammar is

required, all superf~uous rules and .incomplete branches

would need to be deleted (Gries, 1977).

- 33 -

The manner in which these checks are carried out is as I

have indicated in the discussion on representation partially

a function of the programming language used to write the

analysis program. 1t was in my case also a mattez of experi

mentation; at first, 1 chose the simple linear structure in

preference to a more complex nonlinear structure because it

seemed sufficient to represent the grammar for my purpose of

analysis. Later, 1 experienced difficulties extracting

information from the strings and decided to try a data

structure which allowed the structure of the rules to be

·represented directly.

To illustrate some differences resulting from the linear and

nonlinear representations, a bzief discussion on how each

program checks a rule follows. The PL/1 program relies

heavily on the use o:f the built-in functions, 1NDEX and

SUBSTR. Each rule identified by its terminating full-stop is

read in by the program which indexes the rule for a colon.

All characters preceding the colon are taken as an element

of the nonterminal vocabulary; adopting Van Wijngaarden's

terminology, this is referred to as the notion defined by

the rule. The rest of the rule following the colon is pro

cessed as follows: first, the full-stop at the end is

replaced by a semicolon and then indexing to the next semi

colon, each branch can be differentiated. Branches

representing each alternative are formed as substrings and

they are processed in turn. The checks for recursion, circu

larity and ambiguity are carried out by indexing for

- 34 -

occurrences of the notion suitably deli~ited within the sub

string.

In the LISP program, the same analysis is carried out by

rather different means. A rule in list notation is read in

by the LISP READ function which reads in complete lists. By

applying the primitive LISP function CAR to the rule, the

notion at the head of the ru~e is obtained. Application of

the function CDR to the rule results in the formation of a

list which is the list of all the branches associated with

the notion. By app~ying CAR to this list, the first branch

is obtained. By applying CAR to the first branch, the first

element of the branch is obtained, and so on. The checks for

recursion, circularity and ambiguity are carried out using

the functions MEMBER and DIFFERENCE with their usual meaning

over the lists as sets.

The analysis of re~ations between the rules was only imple

mented in the LISP version of the an~ysis program. It was

considered that the most effective way to do this in PL/1

would have been to introduce a list structure for each rule

using pointers and as this is readily available in LISP, the

switch to LISP was deemed sensible.

To complete this phase of the analysis, the LISP program

works through possible derivations starting with the rule

for the distinguished symbo~ and ensures that each nontermi

nal eventually goes to a set of terminal elements. Indirect

occurrences of the properties checked for in the branches

- 35 -

are also checked for at the same time. These properties can

be recast in terms of set relations which must hold between

various lists which are constructed from the grammar. In the

analysis, rules and branches which would be deleted to

reduce the grammar are merely .marked out; they may be indi

cative of an incomplete or tentative definition, or they may

be simply superfluous.

These analysis programs were tested on various simple gram

mars which were devised for testing the programs and on the

grammar of the programming language SEQUEL (Chamberlin and

Boyce, 1974). By analysing the SEQUEL grammar, it was poss.i

ble to identify construction patterns within the language

which enabled the grammar to be modified so that common con

struction rules after the fashion of Van Wijngaarden's

hyperrules could be employed. Further details are given in

the following chapter.

~- Production Q[Generators and Recognisers fLQm Grammars

My interest in analysing grammars grew out of programs I

developed to produce generators and recognisers from CFGs.

These programs were written for use within a tutoring system

which was designed to instruct students in the application

of grammar rules. Chapter 3 gives the background of this

work and a full description of the resulting system and its

use.

The method of generating expressions from a CFG is straight-

- 36 -

forward. Starting with the distinguished symbol, the pro-

gram must work through rewriting nonterroinal elements on the

right hand side of the rule until a string containing only

terminal elements .is generated. Problems can arise where the

language is defined in a highly recursive manner as this

allows for the generation of very long complex expressions.

To overcome this the generator may include restrictions on

the length of the expressions to be generated. In my pro

grams, usually a limit on the length of.e~pressions has been

imposed although experiments were conducted in which the

selection of the next branch to be employed in the deriva

tion was completely random .

. My program for producing generators forms functions for each

non terminal element; these functions return character

strings corresponding to a derivation for a particular non

terminal. Both the program which produces the generators

from a grammar and the generators produced are in PL/1.

I incorporate hyperrules into the generator as functions

with functions as arguments. For example, I have defined a

function, SEQUENCE, which requires as its argument a func

tion for a nonterminal and returns a character string

corresponding to a sequence of the derivations of that non

terminal.

The production of recognisers is a much more interesting

project. It is bound up with the wider area of interpreta

tion and compilation of programming languages. In discussing

- 37 -

the execution of a program by a conventional computer, Dana

Scott described a co~pi~er as something which is applied to

a prog.ram to produce by syntactical manipulation the machine

code equivalent (Scott, 1974). In order to carry out this

transformation, the compiler must possess the capacity to

recognise expressions in the language in which the program

is written; recognition is effected by parsing the program

in symbolic form. If our aim is compile the program, the

parsing given by one grammar may be more useful than that

given by another; for example, an unambiguous grammar allows

the parser to identify grammatical errors more clearly than

an ambiguous grammar.

Assuming the grammar as giyen, a choice remains as to the

method of parsing. while various methods may be used, I

shall only describe a method which I find particularly

elegant. In passing, I should mention that a more critical

defense of this method can be found in a paper by Turner

(Turner, 1975). Its relevance here is that the tutoring pro

gram described in Chapter 3 uses this technique. The method

is known as "recursive descent", and I will show how it can

be implemented automatically working from a machine readable

description of the rules.

From the following example, it should become clear why this

method is called "recursive descent•. Consider the grammar

given by the following rules:

sentence : subject, verb; not, sentence.

- 38 -

subject .. all, cats.

verb are, greedy.

Two derivations are:

all cats are greedy, not all cats are greedy

To recognise a sentence, we look for a subject. To recognise

a subect, we look for an "all" followed by "cats•. Once a

subject has been found, it must be followed by a verb. To

recognise a verb, we look for an "are• followed by "greedy".

If the search for a subject fails, we look for a •not" which

must be followed by a sentence. To recognise a sentence, we

look for for -········ as above.

To implement recursive descent, the recogniser requires a

procedure for recognising every nonterminal element of the

vocabulary. The recogniser may contain separate procedures

for recognising each nonterminal element; these procedures

will reflect in a clear way the right hand side of the rules

and if a nonterminal is recursively defined, then its

recognising procedure will be recursive. Alternatively, the

recogniser may consist of a single recognising procedure

which directly utilises the grammar rules as data. In the

method of parsing by recursive descent, recognition proceeds

strictly from left to right through the expression, looking

at one symbol at a time without having to look ahead or

back; such a recogniser is decscribed as deterministic

(Wirth, 1976). It is not possible to construct a deter-

- 39 -

ministic recogniser without look-ahead working from an ambi

guous grammar (Rifkin, 1978). Wirth has formulated the pro

perties which a CFG must have if a deterministic recogniser

is to be constructed for the language it describes. He for

mulated the properties in terms of set relations which must

hold over the elements of the vocabulary. These relations

may be checked out by an automatic analyser such as the LISP

program already described. If they do not hold, it is often

possible to transform the grammar without affecting the

language, although in some cases it may be necessary to

alter the language. With the exception of the following

example, no attempt will be made to describe in detail any

of the well known methods of transforming grammars; these

are described in Foster's Automatic syntax Analysis (1970)

and elsewhere (Gries, 1977; and Wirth, 1976).

An example of one transformation which a CFG may require is

factoring. Consider the grammar given by the following

rules:

S : A, B.

A x, A; y.

B x, B; z.

This grammar as it stands is unsuitable for direct produc

tion of a deterministic recogniser without look-ahead

because both "A" and "B" may begin with the same terminal

element, namely "x" and we cannot recognise either until the

last terminal element has been recognised. By factoring, the

- 40 -

grammar is transformed into the following equivalent form:

s c~ x, s.

c y~ z.

Using these rules, the recogniser either successfully recog

nises a "C" or recurses past •x•s until it recognises a •c•.

The program which produces recognisers does so in a method

similar to the one by which generators are produced. It

forms functions which look for elements of the vocabulary

returning true if the search is successful and false if it

is not. The functions all require one argument, the current

element under consideration from the expression to be recog

nised. this is supplied by a function common to all the

recognisers, NEXT, which returns the next element from the

input expression. All these functions and the program pro

ducing them are written in PL/1.

PL/1 was used because the core of the original tutoring pro

gram was written in PL/l and by wr.iting all the subprograms

in PL/l, many common procedures could be re-employed. This

also enabled the frame of the original tutor program to be

used in a more general way with other grammar rules.

Automating the production of recognisers from grammars is a

first step towards the fully automatic implementation of

programming languages. This modest claim can be made without

committing the •fallacy of the first step" of which Dreyfus

(l972) accused the early machine translation workers.

- 41 -

..6.. Conclusjons

I have described the role

language definition showing

represented to reflect their

of grammars

how these

structure

in programming

grammars may be

and analysed to

determine their properties. The analysed grammar already

represented as a data structure may then be transformed if

analysis indicates this is necessary and used directly to

produce generators and recognisers for the language

described by the grammar. The latter are especially impor

tant because of their use in compilers.

A system which undertakes the analysis of grammars, while

interesting in its own right, also provides a diagnostic aid

to the propounders oi grammars. It is obvious that careful

formulation of the grammar of a programming language from

the start is desirable. This avoids nonstandard implementa-

tions based

ambiguous, and

dialects.

on arbitrary decisions where the definition is

prevents the development of incompatible

The day of a universal programming language is unlikely;

however, communication about a particular programming

language is made difficult if the language is not defined in

a manner which is, "complete, clear, natural, and realis

tic", to paraphrase Marcotty ~ al (1976). I hope to have

demonstrated that the role of CFGs and in particular W

Grammars, in the definition of programming languages both

from the standpoint of describing the language for potential

- 42 -

users and with an eye to facilitating the implementation of

the language.

We may hope for the day when there is a generally accepted

formal technique for defining programming languages. I am

reminded of Leibniz's remarks On Method (in

tions, Weiner(ed), 1951); he envisaged

applying a universal method, disputes could

calculation. All that is required is

Leibniz Selec

the time when by

be settled by

the settling on a

universal language for use in formal definitions; of course,

ideally our calculations in the universal language should be

capable of computerisation.

- 43 -

CHAPTER 3 Generating Programming Environments for Learners

~- overview

In the mid-1960s, in order to study 'rule learning', Profes

sor G .. A. Miller at the Harvard Center for Cognitive studies

in a project entitled Grammarama programmed. a computer to

conduct experiments with artificial grammars. (Miller,

1970). In 1965 Donald Norman and John Schneider (referred to

by Miller, pp. 169-173) used computer programs to study the

most effective way to decompose a grammar. into rules so that

it might be learned by identifying correct and incorrect

productions. The work to be described in this chapter has

been concerned with teaching students how to apply the syn

tactic rules of the class of art.ificial languages known as

"programming languages"; it is not expressly concerned with

the problem of how they might discover these rules, although

in my work, it has been useful to draw on the methodology of

Miller's Grammarama.

The prototype system was a program to teach first year Com

puting students how to form logical expressions using a

notation for these derived from the PL/1 programming

language. The program introduced itself as a game in which

the student could opt to be either the producer of expres

sions for checking by the program or the checker of

program-generated expressions. A score was kept by the pro-

.gram; this was summarised when the student decided to fin

ish. The rules for forming logical expressions were

- 44 -

available throughout each session. The program was capable

of entering an explanatory mode in which it explained how it

generated expressions from the rules and how it recognised

or checked expressions, if the student's responses suggested

this would be helpful. At this stage, the program was simply

an extended version of Miller's Polish notation program used

in the Grammaxama Project. It was tested with first year

undergraduate Computing students, and found satisfactory

within its limited goals.

During these studies, it became apparent that such a system

could be used to teach almost any formal language syntax

provided that the sub-programs for rule presentation,

expression generation or production, and expression recogni

tion or syntax checking were slotted into the original pro

gram. To automate this process, a program has been developed

which works from a definition of the syntax of a programming

language and generates appropriate sub-programs to be used

in the framework of the original syntax game program.

The sub-program generator was tested with the SEQUEL

language as described by Chamberlain and Boyce (1973). The

resulting program to teach SEQUEL brought out the need to

clarify exactly how expressions of specified difficulty can

be produced, and from these studies I developed a use of

production systems to describe the general teaching stra

tegy. Thus the method of syntax game programs has been gen

eralised, so that both the programming language to be taught

- 45 -

and the teaching strategy to be used in the production of

examples are both expressed by sets. of production rules. The

use of production rules to describe the teaching strategy

allows the syntax· game programs to act as test-beds for dif

ferent teaching strategies.

THe production rules which form the input to the sub-program

generator are expressed in Van Wijngaarden's notation, W

Grammar, already discussed in Chapter 2. The sub-program

generated to present the rules may translate the rules if

desired into another notation, BNP or syntax diagrams; this

flexibility allows for experiments to be carried out using

different notations, for example to determine notation

preferences if any exist.

The purpose of these studies. has been to provide systems for

generating programs which can be adapted easily to indivi

dual student's needs. Some students may benefit from the

elegant richness of the full two-level W-Grammar notation

while others only require the modest economy of BNP nota

tion.

While it is not particularly worthwhile to attempt to teach

the complete syntax of a programming language in this way,

the complexity of expressions presented and checked would

not be suitable for presentation and checking in an interac

tive mode. For simple languages and for sub-sets of more

complex languages, a syntax game is a useful learning vehi

cle. It not only introduces students to the syntax of a

- 46 -

particular language, it also familiarises them with the use

of a formal definition.

2. Hjstorial Background

Miller's interest in artifical languages arose out of work

undertaken in the late 1950s with Noam Chomsky. In 1957,

they collaborated in a study of algebraic systems which

Chomsky then called "finite state grammars•. Chomsky's work

in this field is described in Chapter 2 of this work.

Miller assumed that when peop.le .learn a natural language,

they do not memorise all the· particular sentences that

comprise it; rather they .learn rules for producing and

interpreting any sentence. ln order to investigate •rule

learning", he began to experiment with artificial languages.

He described his method as inductive in that the subject

could only obtain information about which sentences were

part of the language and from this, by induction, had to

learn the rules. In Miller's case, these were PSG production

rules.

Miller was quick to see the advantages of automating his

experiments. It was found from the start, for example, that

human experimenters were simply not fast enough nor accurate

enough to run the experiments if grammars of any complexity

were used. In addition to speed, Miller noted that the sub

jects had great faith in the computer and appeared to

believe it would not trick or cheat them:

- 47 -

"1 find it remarkable that an intelligent college stu
dent will let a machine tell him repeatedly that he is
wrong without losing heart or face; if a human experi
menter told him the same thing, he would seethe with
indignation."

(Miller, 1970, p.l59)

In evaluating his. automated experiments, Miller had the

insight to distinguish between people learning a language

and pe·ople learning to make· the machine respond in a certain

way. It is, of course, possible to do the latter without a

complete understanding of the language; and it is important

to bear this distinction in mind when assessing the claims

of any automated teaching system.

As the complexity of the grammar increased to the point

where it became impossible to learn (inductively) the whole

grammar at once, Miller considered using the strategy of

teaching rules one by one and combining them later. Some

work was done along these lines by Norman and Schneider, who

used a context free grammar and found that Polish notation

was more easily learned when the rules were learned indivi-

dually. The three rules they taught were:

or in BNF:

(Pl) S-}P

(P2) S-}NS

(P3) S-}ASS

(S}::=PIN<S>IA(S}(S}

Miller postulated that decomposing the grammar to be learned

into a regular grammar with infinite rules would be of lit-

- 48 -

tle help to learners; to Miller, a grammar with infinite

rules was ridiculuous. At almost the same time, such a gram

mar, W-Grammar, was being developed and used to describe the

then new programming language, Algol 68 (Van Wijngaarden,

1976).

As indicated in Chapter 2, grammars have been used to

describe programming languages since the late 1950s. Since

their inception, context free grammars describing program

ming languages have provided a useful teaching aid. Because

of their similarity in form to dictionary definitions, most

people find the use of a context free g.rammar almost intui

tive, and so refer to it as naturally as they would to a

dictionary to settle exactly how any particular notion in

the language has been defined •

..3.. Scope .Qf. :th.i.a ~

Miller's inductive method of rule learning may be compared

with the way in which many people learn a programming

language. For the most part, beginning programmers have. no

understand.ing of explicit grammatical .rules for describing

the languages in which they are programming. Like Miller's

subjects, they submit their attempts at program production

to the compiler and it responds by identifying correct pro

ductions and signalling errors if any occur.

Beginning programmers may be concerned only with getting

results and may not wish to gain any more of an understand-

- 49 -

ing of the language than is necessary for their immediate

goals. This attitude is acceptable for •one-off• programmers

but encourages a dangerous dependency if maintained over a

programming career of any length. The following slogan

appeared on a Christian Aid collection envelope: "Give a

hungry man a fish, and you feed him for a day. Teach him to

fish and you feed him for a life•. In the context of pro

gramming, a dist.inction might equally be made between the

benefits of imparting specific information of limited util

ity and those which accrue from imparting more general

information applicable in a wide range of cases. Where pos

sible, specific information should be derived as an instance

of a more general principle; such an approach enables stu

dents to gain a more systematic understanding of the pro

gramming language. In contrast to the beginners, experienced

programmers learning a language use the definition as an

independent source of information, deriving programs from

it. While experienced programmers may use the compiler to

check their understanding of the definition, they also make

use of the definition as an independent check on the com

piler.

THe work to be described involved setting up an environment

in which beginning programmers could be presented with a

simple programming language definition and be allowed to

test their understanding of it. The environment took the

form of a syntax game program. The production rules of the

language were first made explicit, the student then being

- 50 -

encouraged to apply them in for.ming particular statements in

the language. As in Miller's system, the fast and accurate

computer was retained to check that the student had applied

the rules correctly. Moreover, an automated system like

Miller's has the advantage that it .is trusted by students to

perform objectively. The work rests on an adapted form·of

Miller's thesis, concerning the learning of natural lan

gaugesr discussed above: when people learn a programming

langauge, they do not need to memorise all the particular

programs which comprise it; rather they need to learn rules

for producing and interpreting any program in the part.icular

programming language.

In designing the program, it has been useful to draw on the

ideas proposed by Jonathan D. Wexler in a report entitled "A

Design for Describing (Elementary) Programming Problem Gen

erators in an Automatic Teaching System• (1973). In this

report, Wexler outlined a grammar for describing programming

problems which he used in a program to teach machine-code

programming. The sub-programs in the syntax game program

operate in two modes; one in which expressions are generated

and presented to the student for checking and one in which

the student submits expressions to the appropriate sub

program for checking. In the former mode, ideas from

Wexler's system have been developed; while in the latter

mode, the work of compiler theorists in automatic syntax

analysis has been drawn upon (Gries, 1971).

- 51 -

A generative sytem was chosen because of a desire to get

away from the drill-and-practice type of computer-aided

instruction reviewed in Chapter 1. Such systems which merely

present pre-stored sequences of problems are unnecessarily

inflexible in their mode of presentation. Inflexible dril

ling is harmful because it is not adaptive to the needs of

the student and it does not provide the student with a

framework in which particular examples can be related to

general models. There is no reason why a computer should be

used to perpetuate one of the worst possible teaching tech

niques. If a computer-aided instruction program emulates a

programmed learning textbook, then the computer merely

becomes an expensive substitute for a book.

~- Prototype system

The prototype system was a program which simply gave stu

dents practice in forming logical expressions and checking

them. The program can be run interactively from a terminal,

and the way in which it functions is described below. The

rules for producing logical expressions are presented. These

may be reviewed at any time during a session if the student

wishes. The program can then either present randomly gen

erated examples of expressions to the student for checking,

or the student may input expressions to the program for

checking, in which case the program will determine whether

or not the input is well formed and reply appropriately. The

mode of operation is flexible and chosen by the student, who

- 52 -

may alter it at any point. In both modes the program is

capable of error reporting. Where the student's replies are

correct this is not strictly necessary, and the program

gives the student the option of having this information.

Because the program allows the student to enter expressions

for checking, it must be capable of doing the checking; it

also checks expressions which have been program-generated as

this enables errors to be pinpointed in context for the stu

dent.

The level of difficulty at which the program presents

material is either determined by the sort of productions

entered by the student, or in the case of program-generated

examples is started arbitrarily low and increased if the

student's responses suggest a readiness for more difficult

examples. The level of difficulty is proportional to the

complexity of the expression. The complexity of the expres

sion is determined by the number of recursive calls of the

syntax checking procedure required when checking the exam

ple. Syntax checking is accomplished using the method known

as recursive descent which has been extended in the program

to a funtional form described in Chapter 2~

In the prototype system, example formulae are generated as

follows:

(i) Start with a proposition letter.

- 53 -

(ii) Add a negation sign in half.the cases.

(iii)Add an operator and letter either on the left or the

right in half the cases.

(iv) Put brackets around the whole in half the cases.

(v) Repeat from (ii) until the formulae has the required

length (where this is simply a .measure of the number of

symbols).

The generator starts with a branch which results in the

least number of symbols. As all branches except one are

recursive, obviously the non-recursive branch must be chosen

first. The next branch chosen is the one which will result

in the next least number of symbols being added, and so on

using the remaining branches in order of their generative

power until the formula of the required complexity has been

built up.

The generative power (g.p.) is a measure of how many symbols

a branch will add to the expression under construction. In

the grammar for well-fo.rmed formulae (wffs) used by the pro

gram, the generative powers of the branches are as follows:

(Branch l)<ppn letter> has g.p. of 1;

(Branch 2)<not><wff> has g.p. of >=2; and

(Branch 3)(wff><connective><wff) has g.p. >=3.

In this grammar, simple inspection of the grammar is enough

to enable the generative power of a branch to be determined.

- 54 -

If the student continues to make mistakes in either checking

or production mode, the program enters a remedial mode and

begins to explain how it checks an example as well as indi

cating how it generates examples according to the rules. As

mentioned above, the student may request to view the rules

at any time.

The student may terminate a session at any point, and the

program will give a summary of the session so far. The pro

gram then administers a brief interview which allows the

student to give an evaluation of the effectiveness of the

program.

All input and output which takes place during a session with

the program is monitored. The information recorded includes

the date of usage, the start and iinish times of a session,

and the student's name~ These files have proved useful in

determining how effectively the program functions as a

teaching aid.

A short extract from a student's session with the program is

recorded below:

(C=program~ S=student)

C: THE DATE IS 02-12-78

C: THE TIME IS 17:53:48

C: I AM A LOGIC TUTOR PROGRAM. PLEASE TYPE IN YOUR NAME:

S: GEORGE

C:

- 55 -

C: *WELCOME TO THE FORMULA GAME*

C: ---------------------------

C: THIS GAME WILL ALLOW YOU TO PRACTICE PRODUCING AND

C: CHECKING OF FORMULAS. THE OBJECT OF THE GAME IS TO

C: PRODUCE ONLY WELL-FORMED FORMULAS IF I'M CHECKER

C: AND TO CHECK CORRECTLY EACH EXAMPLE I PRESENT IF YOU

C: ARE THE CHECKER •.

C: I'LL KEEP SCORE ON HOW WELL YOU GET ON.

C: WOULD YOU LIKE TO KNOW THE RULES OF THE GAME?

C: JUST TYPE Y FOR YES, N FOR NO:

S: y

C: WELL-FORMED FORMULAS (WFFS FOR SHORT) ARE PRODUCED

C: USING THE FOLLOWING RULE:

C: (WFF)::=(PPN LETTER>I-<WFF>I

C: . <WFF)(CONNECTIVE)(WFF>

C: (PPN LETTER)::=AIBICIDIEIFIGIH ••• ETC

C: (CONNECTIVE)::=&I I AND OR

C: N. B. ANY WFF MAY BE ENCLOSED BY BRACKETS, FOR EXAMPLE:

C: AlB IS A WFF AND SO IS (AlB)

C: WOULD YOU LIKE MORE INFORMATION?

S: y

C: THE RULES TELL YOU HOW A WFF IS PRODUCED:

C: A WFF IS EITHER A PROPOSITION LETTER WHICH IS ANY LETTER

C: OF THE ALPHABET (E.G. A) OR A WFF IS A NEGATION SIGN (-)

C: FOLLOWED BY A WFF (E.G. -A) OR A WFF IS A WFF FOLLOWED

C: BY A CONNECTIVE (& OR I) AND ANOTHER WFF (E.G. A&-A).

C: ANYTIME WE PRODUCE A WFF, WE CAN POT BRACKETS ROUND IT,

- 56 -

C: FOR EXAMPLE, (A&-A) IS A WFF.

C:

C: IF AT POINT, YOU'D LIKE TO REVIEW THE RULES,

C: JUST ENTER THE MESSAGE: RULES

C:

C: IF AT ANY POINT, YOU'D LIKE TO QUIT WHILE YOU'RE AHEAD

C: OR OTHERWISE, ENTER THE MESSAGE: QUITS

C: AND I'LL GIVE YOU A RON DOWN OF THE GAME SO FAR BEFORE

C: QUITTING.

C:

C: EITHER I CAN ACT AS CHECKER OF WFFS OR YOU CAN. YOU CAN

C: CHANGE PLACES BY ENTERING THE MESSAGE: CHANGE

C: DO YOU WANT TO BE CHECKER?

C: JUST TYPE Y FOR YES, N FOR NO:

S: y

C: AN INTERPRETATION OF THE FORMULA IN ENGLISH IS:

C: DOGS LIKE BANANAS AND PIGLETS HAVE TAILS

C: INTERPRETATION KEY:-

C: -=NOT &=AND I=OR

C: H=DOGS LIKE BANANAS

C: V=PIGLETS HAVE TAILS

C: IS THE FOLLOWING FORMULA WELL FORMED?

C: H&V ?

C:

S: y

C: THAT'S CORRECT

C: AN INTERPRETATION OF THE FORMULA IN ENGLISH IS:

C: NOT

C: INTERPRETATION KEY:

C: -=NOT &=AND J=OR

- 57 -

C: IS THE FOLLOWING FORMULA WELL FORMED?

C: - ?

S: y

C: THAT'S INCORRECT. DO YOU WISH TO KNOW WHY?

S: y

C: -

C: >

C: PPN LETTER REQUIRED AT THIS POINT.

C: AN INTERPRETATION OF THE FORMULA IN ENGLISH IS:

C: PEOPLE ARE MILK AND (NOT COWS HAVE BANANAS AND (PEOPLE

C: HATE FLEAS OR PIGS LOVE PEOPLE)) •

C: INTERPRETATION KEY:-

C: -=NOT &=AND J=OR

C: D=PEOPLE ARE MILK

C: M=COWS HAVE BANANAS

C: V=PEOPLE HATE PLEAS

C: U=PIGS LOVE PEOPLE

C: IS THE FOLLOWING FORMULA WELL FORMED?

C: D&(-M&(VIU))?

C:

S: y

C: THAT'S CORRECT.

S: CHANGE

C: ENTER A WFP FOR CHECKING:

- 58 -

S: D&---------------n
C: THAT'S CORRECT.

C: ENTER A WFF FOR CHECKING:

S: QUITS

C: FINAL STATE OF PLAY

C: I WAS CHECKER FOR

C: 4 WFFS

C: 3 OF THESE WERE CORRECT.

C: YOU WERE CHECKER FOR

C: 18 WFFS

C:

C:

C:

C:

11 OF THESE WERE CORRECT AND YOU CHECKED

9 OF THEM OUT PROPERLY. OF THE

7 DUFF WFFS, YOU LET

2 OF THEM SLIP BY.

C: THAT WASN'T A BAD GAME. BETTER LUCK NEXT TIME.

C: THE TIME IS 18:16:22

C: NOW THAT THE GAME IS OVER, I HOPE YOU WON'T MIND

C: TAKING PART IN A SHORT INTERVIEW. APTER EACH QUESTION,

C: ENTER AS MANY LINES AS YOU WISH IN REPLY AND WHEN

C: YOU HAVE COMPLETED YOUR REPLY, ENTER: £P INI SH

C:

C: DO YOU THINK YOU'VE LEARNED ANYTHING BY PLAYING THIS GAME?

S: YES

S: £FINISH

C: DID YOU ENJOY PLAYING THE GAME?

S : YES THANKS

S: £FINISH

- 59 -

C: ANY COMMENTS, CRITICISMS, OR SUGGESTIONS?

S: MORE INCORRECT EXAMPLES PLEASE

S: £FINISH

The program was nicknamed the "Logictutor" and proved popu

lar among first-year students; many of whom were addicted to

interactive computing in any form. An element of novelty

was introduced by including an interpretation of the expres

sion in "English" which greatly amused the students.

Although Miller found that undergraduates could not learn

Polish notation for logical expressions by his purely induc

tive method, students using the program had little diffi

culty mastering the notation it gave for logical expres

sions.

It has been difficult to abstract any recurrent themes from

the scripts of student sessions. It was certainly very rare

for the program to enter its remedial mode; possibly because

the student needed to make three consecutive mistakes to

trigger the remedial mode of the program. Students were

more likely to make mistakes in the checking mode than in

the production mode, although checking was usually the mode

in which· the .students chose to beg.in playing and so inex

perience rather than any inherent diff.iculty in checking may

be the reason for this difference.

The Logictutor was not developed any further because it did

not provide enough complexity in either the production set

or the language described by the rules to test this method

- 60 -

of teaching. With the Logictutor, it was clear that if stu

dents failed to understand the notation of the production

rules, they could not approach the tasks set except by trial

and error. Their induction was not as crude as that employed

by Miller's subjects; they explained their strategy as

determining exactly what the rules meant. This emphasis

reinforced the view central to this work about the impor

tance of the rules in providing a general model of the

language.

~- Generalised System

In order to investigate further this method of teaching an

artificial language, it was generalised so that it could be

used to teach the syntax of any language which could be

specified using production rules. One object of this gen

eralisation was to determine how complex a language could

effectively be presented in this way, and another was to

experiment with various notations for the production rules

themselves. In particular, the generalised program was

designed to enable some ideas from Van Wijngaarden's two

level W-Grammars to be incorporated into the rules.

As the set of production rules becomes larger, it is more

difficult to grasp easily as a whole. Two-level grammars

provide a means of generalising the production rules. As

explained in Chapter 2, in a two-level grammar there is at

the top level a context free system for defining metanotions

in the language; these metanotions may be substituted for

- 61 -

hypernotions in the hyperrules which are models of the pro

duction rules, thus the rules of the lower level context

free grammar describing the language are derived.

Van Wijngaarden's notation for the context free grammar may

be used to present the rules to the student. This notation

is more compact than BNP and has the advantage of including

a rule terminator.

The following extracts from rules giv.ing a two-level defini

tion of SEQUEL illustrate the form of input to the sub

program generator:

Metanotions·

ALPHA::a;b;c;d;e;f;g;h;i;j;k;l;m;n;o;p;q;r;s;t;u;v;w;x;y;z.

NOTION::ALPHA;NOTION,ALPHA.

EMPTY::.

General Hyperrules

NOTION list:NOTION;NOTION,comma symbol,NOTION list.

NOTION sequence:NOTION;NOTION,NOTION sequence.

NOTION option:NOTION;EMPTY.

NOTION expression:NOTION term;

NOTION term,NOTION operator,NOTION expression;

left par symbol,NOTION expression,right par symbol.

Hyper rules

statement:Basic Query expression.

Basic Query term:Label option,se~ection list,

- 62 -

where clause option.

Basic Query operator:union symbol;

intersection symbol;

difference symbol.

Label:string,colon symbol.

string:letter sequence.

letter:letter ~HA symbol.

selection:select from option,table name,

group by option, dupl option.

The generation of a recursive descent syntax checker from

the rules turns out to be quite simple as explained in

Chapter 2. A function which returns "True• or "False•

according to whether or not it recognises a notion is gen

erated for each notion in the language. The general hyper

rules are dealt with by functions of functions which utilise

the simple functions and return "True• or "False" as each

hypernotion is recognised. By retaining recursive descent as

the checking method, the final program can still obtain a

measure of the comp~exity from the depth of recursion and

can pinpoint with ease the cause of errors in a production.

The programming of the sub-program generator, to p~oduce the

sub-program which presented examples to the student, brought

out the need to examine how a context free grammar (CFG) may

be used to generate expressions w.ith a specified level of

difficu~ty. In theory, a CFG is specifically a generative

grammar. A· CFG generates an expression in the ~anguage it

- 63 -

defines as follows:

(i) . Start with the string (called the "string in hand")

consisting only o{ the distinguished symbol.

(ii) Apply productions from the grammar's set of production

rules to the string in hand until it consists only of

terminal symbols (i.e. members of the terminal vocabu-

lary).

Such a string is said to be a member or expression in the

language generated by the grammar (Martin, 1972).

Depending on the replacement alternative chosen from any

particular rule when it is applied, different statements are

generated. A systematic method of application is required

for generating statements with specific properties. For any

given grammar, it may be possible to outline a strategy

which enables statements with·a desired property to be gen-

erated. Wexler (1973) brought up the problem in his report

without attempting a solution:

"There are two important dirficulties that. arise with
problem generators that are not dealt with in this
current design. One involves the need to generate prob
lems of a particular level or degree of difficulty. The
other difficulty of problem generators is more subtle:
how to generate problems that have particular kinds of
features or properties."

The next section discusses work which addresses these

issues.

- 63a -

S.A A More Detailed SEQUEL Example

The following example of text generated from the W-Grammar

for SEQUEL illustrates how explanations are automatically

dealt with during parsing and generation of examples by sub

programs. It also illustrates some of the difficulties

encountered.

The rule is

ATOM TERM:

TABLE NAME_OR_LABEL_OPTION 1 COL NAME;

SET FN;

RRB-SYMB I COL NAME I LRB SYMB.

The procedure for parsing this generated from the above rule

by the subprogram generator is as follows:

ATOM TERM : PROC RECURSIVE

RETURNS(BIT(l));

DCL R BIT(l);

IF EXPLAIN THEN CALL MM(1 ATOM_TERM? 1
);

IF OPTION(TABLE_NAME_OR_LABEL) THEN

DO; CALL READSYM;

IF COL NAME THEN

R= 1 1 1 B;

ELSE R= 1 0 1 B;

END;

ELSE

IF SET FN THEN

R='l'B;

ELSE R= I 0 I B ;

ELSE

IF RRB SYMB THEN

DO; CALL READSYM;

IF COL NAME THEN

DO; CALL READSYM;

IF LRB SYMB THEN

R='l'B;

ELSE R='O'B;

END;

ELSE R='O'B;

END;

ELSE DO; R='O'B;

- 63b -

IF EXPLAIN THEN CALL MM('ATOM TERM NOT FOUND');

END;

LEVEL=LEVEL+ 1 :

RETURN(R);

END ATOM TERM:

As a recognising procedure for each non-terminal element in

the grammar is generated, correct error messages are genera

ted for use in EXPLAIN mode. For each recognising procedure,

two statements are included at the beginning and end:

IF EXPLAIN THEN CALL MM('<element>?');

IF EXPLAIN THEN CALL MM('<element> NOT FOUND');

These also occur in the functions for the hyper-rules as the

following procedure illustrates:

- 63c -

SEQUENCE: PROC(NOTION) RECURSIVE RETURNS(BIT(l));

DCL NOTION ENTRY RETURNS(BIT(l));

.DCL (RESULT,FOUND) BIT(!);

IF EXPLAIN THEN CALL MM('SEQUENCE-');

FOUND,RESULT=NOTION;

DO WHILE(RESULT);

CALL READSYM;

RESULT=NOTION;

END;

LEVEL=LEVEL+ 1 ;

RETURN (FOUND) ;

END SEQUENCE;

Executing the recognising proc~dure in the example given

above, a successful parse of an atom term consisting of

PARTS BOLTS

would give the following explanation in EXPLAIN mode:

ATOM TERM?

OPTION-

TABLE NAME OR LABEL?

STRING?

SEQUENCE-

LETTER?

A SYMB?

A SYMB NOT FOUND

B SYMB?

B SYMB NOT FOUND

and so on •••

P SYMB?

LETTER?

A SYMB?

LETTER?

A SYMB?

A SYMB NOT FOUND

and so on •.•

- 63d -

While this explanation is correct at a low level, it is

rather long winded. It does have the advantage of reflecting

the action of the parser in che~king an example.

The problem of generating a helpful explanation for the sub

program to use when explaining the generation of correct

statements is equally difficult. These also can be automati

cally generated from the grammar by producing the following

statements at the beginning and end respectively of the gen

erating procedure for each element in the grammar:

IF EXPLAIN THEN CALL MM('ADDING <element> USING <rule>'):

IF EXPLAIN THEN CALL MM('<element> ADDED'):

Thus, from the rule for TABLE_NAME_OR_LABEL, the explanation

generated is as follows:

ADDING TABLE NAME OR LABEL USING TABLE NAME OR LABEL:STRING.

ADDING STRING USING STRING:LETTER SEQUENCE.

and so on.

- 63e -

These explanations are equally long winded, and not particu

larly illuminating.

In both cases, recognising and generating examples, EXPLAIN

mode is automatically activated by the student making

repeated errors. It may also be entered at the request of

the student to explain a particular example.

The statements incrementing the variable, LEVEL, in the pro

cedures given above illustrate the simple measure of com

plexity used in the early versions of the software to gauge

the depth of recursion and number of procedure calls. The

LEVEL variable is local to both the parser subprogram and to

the generator subprogram: in both it is initialised to zero

and incremented by each subprocedure call within the respec

tive subprograms, thus giving a measure of the number of

calls to either parse or generate an example. This measure

was improved ·by calculating an associated generative power

for each alternative within a rule.

This general system can improved by importing more appropri

ate explanatory text into the grammar. Illustrations of

this improvement and other improvements are given in the

following section.

- 63f -

S.B Illustrations of Difficulties Generating Examples

and Solutions Employed

Algorithms for generating examples are summarised in Section

6. This sections illustrates with examples some of the

specific difficulties and solutions employed.

An alternative approach which allows for the inclusion of

more appropriate explanation is to extend the grammar which

drives example generation to include a teaching strategy

with associated explanations. Importing explanatory text

and the teaching strategy into the grammar allows a finer

level of control to be exercised in the generation of exam

ples. The disadvantage of this approach is that the grammar

of the language is compromised by that addition of these

rules. The subprogram for recognising, ie checking, examples

is generated as before from the unalterated syntax.

The grammar below illustrates how lesson on SEQUEL SELEC

TIONS is generated beginning with a simple example followed

by an explanation and finally a complex example.

- 63g -

SELECTION LESSON:SIMPLE SELECTION_EXAMPLE,

SELECTl_EXPLANATION,

COMPLEX SELECTION EXAMPLE.

SIMPLE SELECTION:SELECTION.

SELECT!: 'THE PREVIOUS EXAMPLE CONSISTED OF A SINGLE SELECTION.',

'IT IS POSSIBLE TO CONSTRUCT A SELECTION WHICH IS A LIST OF',

'SINGLE SELECTIONS AS THE NEXT EXAMPLE WILL ILLUSTRATE.'.

COMPLEX SELECTION:SELECTION LIST.

An Example of a Simple Strategy.

The strategy is quite simple: progress from an non-recursive

alternative, SIMPLE_SELECTION, to the recursive alternative

via the explanation given.

The code generated for this lesson is as follows:

CALL EXAMPLE(SIMPLE_SELECTION):

CALL EXPLANATION(SELECTl):

CALL EXAMPLE(COMPLEX_SELECTION):

A further SEQUEL example is given below to illustrate the

problem of generating examples with semantically consistent

variable names. In the general system, the subprogram for

generating examples is driven by purely syntactic rules.

Even in a simple language such as SEQUEL where a production

is essentially a single statement, randomly generated

strings while correct detract from the comprehensibility of

the example. The first of the following examples with ran

domly generated names is less comprehensible than the second

- 63h -

in which the names refer to components of a database. Both

.statements have the same correct syntactic form.

SELECT AXYD, SUM{NPEK) FROM JSLT GROUP BY IVOB

SELECT DEPT, SUM(UNITCOST) FROM PARTS GROUP BY DEPT

This problem can be overcome by introducing a consistent set

of variable names into the example grammar used for genera

ting examples. This restricting the generality of the gram

mar so that only semantically meaningful names appear in

examples need not be reflected in the rules used to generate

the recognising subprogram.

The generation of negative, that is incorrect, examples in

the earlier versions of the software was accomplished by

wrecking correct examples by randomly removing elements.

While not guaranteed to succeed, this proved adequate for

simple grammars. It has the disadvantage of producing ran

domly incorrect examples. A more satifactory solution is to

incorporate rules for generating examples which illustrate

common mistakes into the example grammar.

- 63i -

s.c Prospects of Practical Application of this Work

The ideas developed in this thesis and their implementation

discussed here could form the basis of practical applica

tions of this method for other programming languages, but

further refinement of the methods and re-implementation of

the software in a portable language is recommended. The

current implementation in the PL/1 language is restricted to

machines supporting PL/1, typically IBM or IBM compatible

mainframes; a more widely available language such as C or

Pascal would be better employed in any further development

to achieve portability.

Many of the difficulties discussed in Section S.B above are

the result of the software developed being restricted to

handling syntactic rules rather than being driven by rules

handling both syntactic and semantic aspects of programming

languages. The solution employed with SEQUEL of restricting

names to consistent database model is not generally applica-

ble with other languages. In procedural languages, the

requirement for consistency between declaration of variables

and the scope of their usage could be addressed by using W

Grammars predicates.

From an aesthetic standpoint, the formatting used by the

software is merely adequate. It would be desirable to intro

duce additional notation into the grammar for indicating how

generated expressions are to be displayed. Such developments

could benefit the results of work in information display in

the field of Graphics.

- 64 -

~- Algorithms ~ Generating Examples
-.

In the more general teaching system, a •top-down• approach

to generation was attempted. This took two forms which might

be characterised as explicitly recursive and explicitly

non-recursive; the main distinction was the way in which

recursively.defined notions were handled. Using these two

methods, generators for the SEQUEL ~anguage were produced

and an evaluation of these generators now follows.

In the SEQUEL generator (version 1), the branches are merely

chosen at random. This method of generat.ion has been reGOm-

mended by Neil Rowe (1978). It is only adequate for simple

grammars; in particular, if there are several recursively

defined notions in the language, this method cannot be

ensured to terminate in a reasonable time. Using this method

of generation with the SEQUEL grammar, it was not possible

to gene.rate SEQUEL statements. More importantly, it offered

no control over the complexity of the statements generated.

It must be concluded that if it is desired to have some

mechanism whereby statements with specified levels of diffi

culty are generated, mere random replacement is· not ade-

quate.

In a second generator, statements are generated by a random

replacement scheme only where the notion is riot recursively

defined. In this modified form, all explicit recursion dur

ing the generation of examples is removed; all recursive

notions are dealt with by iterative genera~ion of limited

- 65 -

length. If an easy example is required then all options are

omitted and the minimum number of symbols are returned from

functions generating any recursively defined notion. This

method, while resulting in productions for most grammars,

may not terminate in a reasonable time if the grammar has

several indirectly recursive notions. It does not allow for

the specification of a very exact measure of difficulty of

the individual examples either. The generation of hard and

easy expressions is adequate for some teaching systems but

is rather unsatisfactory for those where the teaching stra-

tegy requires a gradual progression from very easy to more

difficult examples.

The third generator uses a set of rules to guide generation.

These take into account the generative power of each alter-

native and allow for a finer discrimination to be made

between alternative branches.
'

The knowledge of how examp~es with the required properties

are to be generated is impozted into the production rules.

The trade-off is that the production set loses generality.

Two sets of production rules are required: one which gives a

general model of the language and which is presented to the

student for reference; and another which embodies a teaching

strategy and is used to generate examp~es for the student to

check.

The system outlined above would seem preferab~e to that of

Koffman (1972), who employed a "probabilistic grammar" to

- 66 -

generate logical expressions for use in a computer-aided

instruction program. A probabi~istic grammar is formal

language in which every rewrite ru~e is assigned a probabil

ity of being applied. The teacher must specify separately

the method for initialising and updating the probabilities,

and there is the overhead of recalcu~ating the probabi~ities

after any change in the student's ~evel of competence.

Allowing the teaching strategy to be expressed entirely in

the production rules enables the teacher in effect to pro

gram using the grammar only as an author ~anguage (Barker

and Singh, 1982), and has the advantage that no other

specification is necessary.

:z. Conclusion

A grammar only comes alive when it is used, so in further

work'on a more generalised system it must be recognised that

the language most effective~y being taught is the notation

which describes the grammar, for it is that notation which

the student must first come to understand. The syntax game

programs described here are most effective at testing a

student's understanding of the grammar or production rules

notation. The ultimate productions are in a sense disembo

died and do not have any honest employment in the syntax

game program; it is the production rules that are actually

given a sense by their use in producing exprssions in the

language. Nevertheless, this does not detract from the merit

of the programs. They provide an introduction to particular

- 67 -

languages through their syntax, while at the same time giv-

ing the student practice at understanding the notation of

the formal definition.

The advantages of defining a programming language formally

are obvious (Zemanek, 1974). A formal definition of a pro-

gramming language enables a student to grasp the language as

a whole rather than by piecemeal induction. If the notation

of the formal definition is not easily understood, these

advantages cannot be realised to their full potential.

While students should not be encouraged to neglect writing

programs when getting to grips with a programming language,

a familiarity with the syntax of the language is a helpful

preliminary which will cut down the occurrance of syntacti-

cal teething troubles and will better equip the student to

use the language to its _full power. As George W. Cherry

noted in the Preface to his textbook on Pascal:

"I have taken very seriously the careful explication of
Pascal's syntax. It's gratuitous frustration for a stu
dent to wrestle with a malfunctioning program because
his textbook failed to elucidate some syntactical
banana peel it's easy to slip on." (Cherry, 1980).

Where the production set is large, decomposing the rules for

separate presentation is of value provided the rules are

linked together in a wider context of usage, preferably in

actually writing programs.

Just as Miller distinguished between people learning to make

the machine behave in a certain way and those gaining an

understanding of the language, familiarity with the formal

- 68 -

definition of a programming language gives the programmer a

means of generally understanding a program as opposed to

understanding the particular meaning it may exhibit when it

is run. We must clearly differentiate between concrete

implementations of languages and theiz abstract definitions;

it is knowledge of the latter which enables programmers to

gain an understanding of the meaning of their programs and

to rise above the ability to simply make the machine do

things. As programming languages move further away from

their machine-code origins and become more fully abstract

(Geurts and Meertens, 1978), it is imperative for program

mers to acquire this understanding so that they may benefit

from these conceptual advances.

Ideally the grammar of a programming language should reflect

its usage, so that its application becomes transparent in

the formation of the problem solution. This implies a gram

mar of problem-solving. ln pzogzamming, analysis of the

problem is often fo~lowed by two separate steps: construc

tion of the solution and translation of the solution into a

program. We should be thinking of grammars which will bring

these two steps together.

- 69 -

CHAPTER 4 Conclusions

~. .The. Results M. .thi.a .ri.cW.t

The fundamental importance of grammar and its role in

describing programming languages has been established, and

this has been shown to be the basis of a successful method

of teaching programming languages.

This work has also demonstrated the adequacy of production

systems for specifying not only the grammar of programming

languages but also the teaching strategies to be employed in

teaching a particular programming language through its for

mal definition.

2. Applications

2.~. .The. Design QL Structured. Editors And Teaching ~

pilers

In recent years, there has been a trend in microcomputer

software for the compiling and editing modes to be linked so

that errors detected by syntax analysis can be easily

corrected. The UCSD Pascal System (Bow~es,l980) has a confi

gurable STUDENT option switch. If this switch is set to true

during compilation, the first syntax er.ror will cause the

system to enter the editor; the syntax error message will be

displayed on the top of the screen and the cursor will be

positioned at the point in the program where the error was

detected.

- 70 -

The BASIC interpreter incorporated in Sinclair microcomput

ers (Boldyreff, 1980) has a similar facilty; it will not

allow the user to enter in syntactically incorrect BASIC

statements. These are signalled by an inverse s on the line

being entered as soon as an error is detected. Economy does

not allow for any more helpful error messages.

As more and more people untrained in programming are pur

chasing personal computers and teaching themselves program

ming, these trends towards self-explanatory error detection

are becoming increasingly important. The methods used by

the UCSD Pascal System and the Sinclair BASIC interpreter

are only a beginning in the right direction. Using the

methods outlined in this thesis, it would be possible to

construct a system incorporating a full explanation of its

working. Such an explanatory mode would not necessarily be

of interest to every user of the system and would obviously

need to be optional, but it would enable the adventuresome

users attempting to teach themselves programming to gain an

insight into and a better understanding of the programming

language being used.

2.2. Studjes in Programming Behavjour

Recent empirical studies (Green, l980) have shown that cri

ticism of one syntactical form, the nested conditional, was

unfounded. Green and his colleagues investigated program

mers' understanding of programs written in both un-nested

and nested forms, and concluded that programmers found that

- 71 -

there was little to choose between the forms in straightfor

ward application and that where the application was not

straightforward, the un-nested form was much more difficult

to understand. Green speculates on the '.ideal' construct for

nested conditionals and urges readers to try out more real

life studies.

The system I have developed could be easily modified to pro

vide an experimental testbed into the suitability of various

syntactic forms, as well as understandability of various

programming styles. The experimentor would simply need to

specify the syntax of the .forms to be investigated; from

these a subprogram to generate examples could be produced.

The tutor program could be easi~y modified to administer

experiments and monitor and time the subjects responces.

~. Recommendations !QL Future ~

The above sections on applications give examples of how pro

duction rule and grammar based systems have an immediate

role in programmer education, and provide the basis for

creating an experimental testbed for carrying out investiga

tions into programming behaviour.

Programming languages are the primary vehicle used for pro

gramming today; future languages may be directed more

towards specifying the solution required rather than

describing the step-by-step method for achieving the solu

tion. The evolution of programming languages and their

- 72 -

associated grammars will present new challenges to teachers;

however, given the fundamental importance of grammar, the

results established here will remain relevant.

The adequacy of production rules for

teaching strategies outside the

the specification of

field of programming

languages and their use more generally as a specification

language remains for future investigation.

- 73 -

REFERENCES

Alcock, D. (1977). Illustrating BASIC (A Simple Programming

Language). Cambridge: Cambridge University Press.

Barker, P.G. and Singh R- (1982) .. Author

Computer-Based Learning. British Journal

Technology, No. 3, Vol. 13, 167-196.

Languages for

of Educational

Barnes, J.G.P. (1980). An Overview o£ Ada. Software-Practice

and Experience, Vol. 10, 85~-887.

Boldyreff, C. (1980). An Evaluation of the ZX80. Micropro

cessor Software Unit Report No. 7, South West Universities

Regional Computer Centre, Bath.

Bowles, K. (1980). BEGINNER'S GU1DE TO THE UCSD PASCAL SYS

TEM. Peterborough, NH: BYTE BOOKS (Subsidiary of McGraw

Hill).

Chamberlin, D.D. and Boyce, R.F. (1973). SEQUEL: A struc

tured English Language Query Language. Research Report, IBM

Research Laboratory, San Jose, California.

Cherry, G.W. (1980). Pascil Programming Structures: an

introduction to systematic programming. Reston, Virginia:

Reston Publishing Company (A Prentice-Hall Company).

Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.

Cleaveland, J.C. and Uzgalis, R.C. (1973). What Every Pro

grammer Sh'ould Know About Grammar. Research Report,

- 74 -

University of California at Los Angles.

Cleaveland, J.C. and Uzgalis, R.C. (1978). Grammars for Pro

gramming Languages. New York: Elsevier North-Holland.

De Reemer, F.L. (1969). Generating Parsers for BNF Grammars.

Spring Joint Computer Conference.

Dreyfus, H.L. (1972). What Computers Can't Do: A Critique of

Artificial Intelligence. New York: Harper & Row.

Forsyth, R. (1977). The Basic Idea. London: Chapman and

Hall.

Foster, J .M. (1970) . .Automatic Syntax Analysis. New York:

MacDonald/Elsevier.

Geurts, L. and Meertens, L.G. (1978). Remarks on Abstracto.

Algol Bulletin, 42, 56-63. Gries, D. (1971). Compiler Con

struction for Digital Computers. New York: Wiley.

Green, T.R.G. (1980). Ifs and Thens: Is Nesting just for the

Birds? Software-Practice and Experience, Vol. 10, 373-381.

Kemeny, J.G. and Kurtz, T.E. (1967). BASIC Programming. New

York: Wiley.

Kernighan B. and Lesk M.E. (1979). LEARN Computer-Aided

Instruction on UNIX. UNIX .PROGRAMMER'S MANUAL. Seventh Edi

tion, Volume 2A. Murray Hill, New Jersey: Bell Telephone

Laboratories, Inc.

- 75 -

Kernighan B. and Ritchie D. M. (l978). The C Programming

Language. Englewood Cliffs, New Jersey: Prentice-Hall.

Koffman, E.B. (~972). A Generative CAI

Science Concepts. P~oceedings of

Computer Conference, 40, 379-389.

Tutor for Computer

the AFIPS Spring Joint

Leibniz, G.W.F. (l674). On Method. In P.P. Weiner (ed.)

Leibniz Selections (l95l). New York: Scribner's.

Lyons, J. (1970). Chomsky. Fontana Modern Masters Series.

London: Fontana.

Marcotty, M., Ledgard, H.F., and Bochmann, G.V. (1976). A

Sampler of Formal Definitions. ACM Computing Surveys, Vol.

8, No. 2.

Martin, D .F. (l972).

automata. In A.F.

Formal languages and their related

Cardenas (ed.) Computer Science. New

York: Wiley-Interscience.

McCarthy J., Abrahams, P.W., Edwards, D.J., Hart, T. and

Levin M.I. (1965). LISP 1.5 Programmer's Manual. Cambridge,

Massachusetts: The M.I.T. Press.

Miller, G.A. (l970). The Psychology of Communication. Lon

don: Pelican Books.

Peck J.E.L. (l974). Two-level Grammars in Action. Proc. IFIP

Congress, 317-32l.

PL/l (F) Language Reference Manual (~969). File No. S360-29.

- 76 -

Form C28-8201-2. Third Edition. International Business

Machines Corporation.

Radin, G. and Rogoway, H.P. (1967). Highlights of a New Pro

gramming Language. InS. Rosen (ed.) Programming Systems and

Languages. McGraw-Hill Computer Science Series. New York:

McGraw-Hill.

Rifkin, s. (l975). CERN Lecture Notes, Meeting 2, CERN,

Geneva.

Roper, J.S. (1973). PL/1 in Easy Stages. London: Paul Elek

(Scientific Books).

Rowe, N. (1978). Grammars as ~rogramming Languages. Creative

Computing, 4, 80-86.

Scott, D. (l974). Mathematical Semantics. In B. Shaw (ed.)

Formal Aspects of Computer Science. Newcastle: University of

Newcastle.

Turner, D. (1975). An Implementation of SASL. TR/75/4,

University of St. Andrews, Scotland.

Van Wijngaarden, .A., Mailloux, B.J., Peck, J.E.L., Koster,

c.H.A., Sintzoff, M., Lindsey, C.H., Meertens, L.G. and

Fisker, R.G. (1976). Revised Report on the Algorithmic

Language Algol 68. Berlin: Springer-Verlag.

Wexler, J.D. (1973). A design for describing (elementary)

programming problem generators in an automatic teaching sys-

- 77 -

tern. Technical Report No. 66, Dept. of Computer Science,

State University of New York, Buffalo, New York.

Wirth, N. (1971). The programming language PASCAL. Acta

Informatica, 1, 35-63.

Wirth, N. (1976). Algorithms +Data Structures

Englewood Cliffs, New Jersey: Prentice-Hall.

Programs.

Zemanek, H. (1974). Formalization: Past, Present, and

Future. In B. Shaw (ed.) Formal Aspects of Computing Sci

ence. Newcastle: University of Newcastle.

- 78 -

BIBLIOGRAPHY

Aho, A.V. and Ullman, J.D. (l972, l973). The Theory of Pars

ing, Translation, and Compiling. Volumes I and II.

Prentice-Hall Series in Automatic Computation. Englewood

Cliffs, New Jersey: Prentice-Hall.

Brown, J.S, Burton, R.R. and Zdybel, P. (1973). A Model

Driven Question-Answering System for Mixed-Initiative

Computer-Assisted Construction. IEEE Transactions on Sys

tems, Man, and Cybernetics, Vol SMC-3, No. 3, 248-257.

Carbonell, J.R. (1970a). Mixed-Initiative Man-Computer

Instructional Dialogues. BBN Report No. 1971, Job No. ll399.

Cambridge, Massachusetts: Bolt Beranek and Newman Inc.

Carbonell, J .R. (1970b). AI in CAl: An Artificial

Intelligence Approach to Computer-ABsisted Instruction. IEEE

Transactions on Man-Machine Systems, Vol. MMS-11, No. 4,

l90-202.

Coombs, M.J. and Alty, J.L. (editors) (1981). Computing

Skills and the User Interface. London: Academic Press.

Davis, R. and King, J. (1975). An Overview of Production

Systems. Stanford Aitificial Intelligence Laboratory Memo

AIM-27l/ Computer Science Department Report No. STAN-CS-75-

524.

Dewar, R. and Schwartz, J. (1977). 'Abstracto' Project for

an Algorithm Specification Language. Algol Bulletin, No. 42,

- 79 -

64-73.

Fenchel, R.S. (1981). Self-Describing Systems Using Integral

Help. Paper from the author at the University of Califor

nia, Los Angeles.

Green, T.R.G. (1977). The Necessity of Syntax Markers: Two

Experiments with Artificial Languages. MRC Memo No. 145, MRC

Social and Applied Psychology Unit, Department of Psychol

ogy, The University, Sheffield.

Hartley, J.R. (1976). Computer Assisted Learning in the Sci

ences: some progress and some prospects. Studies in Science

Education, 3 (1976), 69-96.

Holt, R.C., Wortman, D.B., Barnard, D.T. and Cordy, J.R.

(1977). SP/k: A System for Teaching Computer Programming.

Communications of the ACM, Vol. 20, No. 5, 301-309.

Kettle-Williams, J.M. (1975). Computer Aided Learning Pro

gram: The Reverse Polish Program. CSP/Cl/1, Departemt of

Computer Science, Prtsmouth Polytechnic.

Krueger, M. (1977). Responsive Environments. Proceedings of

the National Computer Conference, 1977, 423-433.

Koffman, E.B. and Blount, S~E~ (1973). Artificial Intelli

gence and Automatic Programming in CAl. Proceedings of the

Third International Joint Conference on Artificial Intelli

gence, 86-94.

- 80 -

Kramer B. and Schmidt, H.W. (1977). On the Implementation of

van Wijngaarden Grammars. Institut fur Software-Technologie

Internal Report 3/77. Gesellschaft fur Mathematik und Daten

verarbeitung MBH Bonn.

Kurki-Suonio, R. (1971). Computability and Formal Languages:

A Programmer's Introduction to Computability and Formal

Languages. Sweden: Studentlitteratur, Auerbach.

Lauer, P.E. (1975). An Automated Programming and Certifica

tion Aid for the Systems Programmer. MRM/90. Computing

Laboratory, University of Newcastle upon Tyne.

Lauer, P.E. (1976). Abstract Tree Processors with Networks

of State Machines as Control:

Language Definition. University

Technical Report Series No. 87.

Their use in Programming

of Newcastle upon Tyne

Ledgard, H.F. (1977). Production Systems: A Notation for

Defining Syntax and Translation. IEEE Transactions on

Software Engineering, Vol. SE-3, No. 2, 105-~24.

Martin, J. (1973). Design of Man-Computer Dialogues. Espe

cially Chapter 24: Computer-Assisted Instruction. Englewood

Cliffs, New Jersey: Prentice-Hall.

Oettinger A.G. and Marks s. (1969). Run, Computer, Run: The

Mythology of Educational Innovation. Cambridge, Mas

sachusetts: Harvard University Press.

O'Shea, T. and S~eeman, D.H. (1973). A Design for an

- 81 -

Adaptive Self-Improving Teaching System. In J. Rose (ed.)

Advances in Cybernetics and Systems. London: Gordon and

Breach.

Papert, S. (1972). Teaching Children Thinking. Programmed

Learning and Educational Technology, Vol. 9, No. 5, 245-255.

Pask, G. and Scott, C.E. (l972). Learning Strategies and

Individual Competence. Int. J. Man-Machine Studies (1972) 4,

217-253.

Rumelhart, D.E. (1977). Introduction to Human Information

Processing. New York: Wiley.

Self, J .A. (1974). Student Models in Computer-aided Instruc

tion. Int. J. Man-Machine Studies (1974) 6, 261-276.

Sime, M.E. and Green, T.R.G. (1974). Psychology and the

Syntax

Applied

of Programming.

Psychology Unit,

MRC Memo No. 52, MCR Social and

Department of Psychology, The

University, Sheffield (Private Circulation).

Sime, M.E., Arblaster, A.T. and Green, T.R.G. (1977).

Structuring the Programmer's Task. J. occup. Psychol. 1977,

50, 205-216.

Sussman, G.J. (1975). A Computer Model of Skill Acquisition.

London: American Elsevier Publishing Company.

Taylor, E.P. (1968). Automated Tutor~~g and Its Discontents.

American Journal of Physics, Vol. 36, No. 6.

- 82 -

Turski, W.M. (ed.) (1973). Programming Teaching Techniques:

Proceedings of the IF.IP TC-2 Wo.rking Conference on Program

ming Teaching Techniques, Zakapane, Poland, September 18-22,

l97.2. Amsterdam: North-Holland Publishing Company.

Weinberg, G.M. (197l). The Psychology of

ming. Computer Science Series. New

Reinhold Company.

Wittgenstein, L. (l953). Philosophical

Oxford: Basil Blackwe11 & Mott, Ltd.

Computer Program

York: Van Nostrand

Investigations.

\

