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ABSTRACT 

The work to be described here is an investigation into the 

means whereby the learning of programming languages may be 

made easier. The role of formal definitions of programming 

languages is studied and a system is described which util-

ises production systems as the basis for generating an 

environment in which students may test their understanding 

of programming languages~ 

This system for automating the teaching of programming 

languages provides an experimental testbed for carrying out 

further investigations into programming behaviour. 
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CHAPTER 1 The Role of Computer-Aided Learning in the Teaching 

of Programming Languages 

~- Conyeotjonal Approaches t2 ~ Teaching ~ Programming 

Languages 

Extending a classification used by John Barnes (1981), pro

gramming languages may be classified as being suitable for 

• the amateur oz professional programmer, or they may be 

largely of interest to the academic programmer. These clas

sifications aze not exclusively applicable. Some programming 

languages notably both BASIC (Kemeny and Kurtz, 1967) and 

Pascal (Wirth, ~97~) were developed by academics for teach

ing and are now used by both amateur and professional pro

grammers. These classifications are useful when considera

tion is given to how progzamming languages are taught; the 

methods of acquainting professionals with a tool they will 

use in serious softwaze pzoduction vazy from those appropri

ate for the amateur or student user of a programming 

language. This work is concerned primarily with the latter 

groups although many of the conclusions will be generally 

applicable to the professional programmer as well. 

In the rest of this chapter, conventional approaches to 

teaching programming languages will be examined. Emphasis 

will be on methods which the student may use with a minimum 

of assistance. It is difficult to compete with the tuition 

supplied by a dedicated able individual teacher; however, as 

individual tuition in the field of programming .languages is 
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uncommon, by considering those possibilities by which many 

students actually learn programming languages - textbooks, 

programmed learning material, and computer aided instruction 

systems I hope to survey current approaches to teaching 

programming languages. 

z. Programming Language Textbooks: ~authors' approaches 

tQ teaching BASIC 

The two BASIC textbook that will be considered from the 

pedagogical view point are: 

Illustrating BASIC by D. Alcock published by Cambridge 

University Press, 

and 

~ BASIC ~ by R. Forsyth published by Chapman and Hall. 

Although both of these introductory books are written for 

students without any prior knowledge of Computing, the 

approaches they follow are diametrically opposed. While both 

authors acknowledge the lack of standardisation in BASIC, 

Alcock accordingly treats the "need for portability as 

axiom" and descr.ibes the language in such a way that pro

grams may be written without dependence on any particular 

version of BASIC. In contrast, Forsyth adopts the po~icy of 

sticking to one representative implementation of BASIC, 

namely DEC BASIC. This latter approach severely limits the 

utility of the book for students. Forsyth does give them 
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some indication of those features which are specific to DEC 

BASIC and unlikely to be generally available; nevertheless, 

whole chapters devoted to such features are irrelevant to 

students not using DEC BASIC on a DECsystem-10. To be fair 

to Forsyth, he does give students some guidelines to be fol

lowed when portability is required, but these occur almost 

as an afterthought in the last chapter. On the other hand, 

Alcock's approach is to enumerate several possible forms a 

statement may take and their associated efiects. Given the 

various dialects of BASJC in use, Alcock's thoughtful 

analysis should prove a source of aid to students. 

Both books contain numerous examples. Alcock makes good use 

of diagrams throughout. He switches between diagrammatic 

description and prose freely in a manner which is eiiective. 

Forsyth relies exclusively on the flow chart as his only 

diagrammatic aid to program understanding. As both authors 

offer an example which involves number conversion, their 

styles may be compared and contrasted with respect to their 

rendering of the solution. Forsyth begins with an abbrevi

ated trace through the program for a given three digit 

number, and explains how this forms the basis of a more gen

eral solution. His example is concerned with converting from 

digital representation to the English prose description of 

the number. He makes no attempt to explain how the tech

niques used in this program may be usefully employed in 

other programs. Alcock's conversion program converts Roman 

numerals to their decimal equivalents .. He uses this example 
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to demonstate the use of a symbol-state table emphasising 

that this technique is oi general applicability and sketch

ing a more complex extension. He also summarises the possi

bilities with respect to inputting a string oi characters 

and extracting individual characters so that a capable stu

dent would be able to appreciate how the solution·given 

could be modified if desired. 

There is flexiblity in .Alcock's attitude missing from the 

letter of Forsyth's text. Early on Alcock introduces recur

sion and gives an example illustrating the use of a stack 

along with the exhortation to try "playing computers• using 

a pencil, paper and a pocket calculator. Forsyth categori

cally states in his chapter on functions and subroutines 

that subroutines may be nested as long as they are not 

recursive. Although the spirit of Forsyth's last chapter is 

less rigid; his advice generally remains unadventuresome. 

There are minor errors in the program listings in both 

books, students tutored in Alcock's cr.itical approach will 

suffer less from these than those iollowing Forsyth. 

Generally the major difference between these two textbooks 

is that one attempts to illustrate BASIC in general while 

the other introduces BASIC through one particular implemen

tation. 

~- A Programmed Learning Textbook Approach ~ EL/~. 

The idea behind programmed learning textbooks is that the 
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students working through the material presented are able to 

progress through the lessons at their own individual rate. 

Depending on their self- assessed understanding, they can 

progress from concept to concept either directly or via 

additional explanatory material. The programmed learning 

textbook thus allows the more able student to work through 

material without being bored by unnecessary explanations, 

while the less ab~e student is assisted by having a fuller 

account of the material. 

The book I would like to examine here uses the programmed 

learning approach to teach a subset of the programming 

language PL/1 (Rope.r, 1973). This book, fl./~ .in E..a..a¥ 

Stages, progressive~y develops the notion of a PL/1 program 

for the student. The PL/1 language was designed with the 

aim of having uniformity in its syntax (Radin and Rogoway, 

1967). Thus the ~anguage employs a general form for all PL/1 

statel!lents, and a uniform definition of procedures. Roper's 

book is good in that it emphasises this uniformity by giving 

rules throughout the text. However, the rules are simply 

given in English; and their use is not related to the exer

cises set. The book is also lacking in structure with 

regards to the presentation of the rules. The table below 

indicates the distribution of rules in the text. 
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I Chapter I Pages I Rules I 

1 40 27 

2 24 17 

3 38 27 

4 52 38 

5 34 40 

6 24 33 

I Totals I 239 I 182 

Throughout 239 pages, there are 182 separate rules. The stu

dent learning these rules would be better helped if they 

were related by a conc.ise notation and more generally 

related to one another. Thus a student may successfully 

employ the rules given in the text and yet be left without 

an over-all understanding of PL/1 programs in general. 

~- Tha LEARN Program and ita Approach tQ Teaching ~ 

~-~- Tha .UNlX LEARN. program 

The LEARN program (Kernighan & Lesk, 1978) as provided with 

Version 7 UNIX is an interpreter based system which is 

driven by scripts. One set of scripts provides an introduc-

tion to the c programming language and is relevant as an 

automated approach to teaching a programming language. The 

interpreter implements a common strategy independent of the 

material being learnt. First, the LEARN program will be 

described simply as a method of computer aided instruction 

and then details of its approach to teaching C will be 
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given. 

~.2. I£ABN'A approach tQ ~ 

The LEARN program is based on the assumption that the way to 

teach people how to do something is to get them to do it. 

The student is shown examples and then required either to 

replicate the example or to produce a variant of it. 

The LEARN scripts implementing lessons in a particular topic 

do not attempt to deal with incorrectness. They simply offer 

simpler examples on the assumption that by breaking the 

material down into smaller chunks of information eventually 

a point will be reached where the student can grasp the 

material successfully. Able students need never enter a 

remedial track, and can make speedy progress through the 

lessons. The LEARN developers acknowledge that the practice 

of subdividing material may be impossible and emphasise that 

the LEARN program shou~d be seen as an ancilliary aid to be 

used in addition to reference manuals. 

~-~· LEARN'A approach tQ teaching C 

Some of the lessons in the C script of the LEARN program are 

loosely based on material in the book, ~ C Programming. 

Language (Kernighan & Richie, 1978), and refer the student 

to the relevant section on which the lesson is based. These 

lessons cover material found in Sections 1.1 to 1.9 i.e. the 

first chapter. The majority of the lessons are from an older 

c script, and are prefaced with a warning regarding their 
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poor quality. 

Some scripts simply require a straight-fozward answer, for 

example: 

(Lesson l.ld) 

printf("\"£@\""); 

Type "answer XXX", where XXX is the set of characters 
that will be printed.' 

Most require that the student write, compile and execute a c 

progzam. The LEARN program through its C scr.ipts is able to 

determine whether or not the students' progzams have pzo

duced the correct results, but .it is incapable of determin-

ing how the student has achieved these .results. 

These lessons reinforce a method of programming which 

achieves results by taking a program wh.ich nearly does what 

is required and by slightly modifying it achieving the 

required result. While this may be an expedient way of 

achieving results, it can hardly be said to give students 

much insight .into the c programming language. 

The fact that the C scripts used in LEARN have not been 

developed to cover the whole of the C language points to the 

difficulty of using the LEARN method to teach a programming 

language. While the LEARN program is adequate to illustrate 

by examples the usage of the C language, it does not have 

the potential for developing into a generalised system for 

describing programming ~anguages for beginners. 
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~- Conclusion: ~ ~ ~ Inyestjgatjon ~ Scope ~ tbia 

lmU 

Two approaches to familiarising students with a programming 

language have been isolated. One which has been character

ised above as the generalist approach aims to give the stu

dent a general form of the programming language from which 

the student may deduce particular programs. The other, the 

particularist approach, employs part.icular examples of pro

grams and expects the student to .form a general model of the 

language by the process of induction. 

In this work, the. effi~acy of the former approach will be 

investigated. In order that the system may be used by unas

sisted students, a computer based system will be con

structed. I will show how the general form of a programming 

language given by its grammar may be analysed by computer 

programs and form the basis of a system of subprograms which 

allow students to test their understanding of it. It is not 

proposed that the system developed should be a replacement 

for a human teacher, but it is intended to show that such a 

system is of utility in that it gives students an environ

ment in which they may familiarise themselves with the gram

mar of a programming language and practice using it. 
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CHAPTER 2 Processing Grammars 

371. Essence is expressed by grammar. 

Philosophical Investigations 

L. Wittgenstein. 

~- Introduction 

~-~· Scope .Qf. ~ ii.a.I..k.. 

In this chapter, the design and implementation of two sys-

terns for analysing Context .Free Grammars (CFGs) are 

described. The grammars to which this study is restricted 

are a subclass of Phrase Structure Grammars (PSGs) which 

Chomsky has described (1956). Chomsky's work will be 

reviewed briefly relat.ing it to the characterisation of for

mal languages. CFGs have been used to define programming 

languages. Inadequacies of CFGs for this purpose have led to 

extensions. A new grammatical form, W-Grammars, developed by 

Van Wijngaarden will be discussed (1976). W-Grammars are 

double level CFGs which have proved very powerful in defin

ing programming languages. 

In connection with the processing of grammars, consideration 

is given to the problems of representing a grammar from the 

standpoint of choosing a formal representation which is 

easily understood, and choosing an appropriate data struc

ture for representing the grammar wh.ich will facilitate its 

analysis and use by computer programs. 
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The purpose in analysing the grammars is to check firstly 

that they are well defined and secondly to check for various 

properties of the grammars. 

This analysis is preliminary to using the gzammars to pro

duce automatically recognisers and genezators for the pro

gramming languages described by the grammars. In the final 

section of this chapter, some results of work in this area 

are ~elated. 

~.2. Historical Review 

In John Lyons' popular book on Chomsky (1970), he says that 

Chomsky drew on the branch of mathematics or logic which is 

concerned with formal properties and generative capacities 

of various grammars·; and he notes that Chomsky made an 

independent and original contribution to the study of fozmal 

systems. Chomsky's chief contribution was to pzovide a 

definition and hiezarchical classification of Phrase Struc

ture Grammars (PSGs). 

Informally, PSGs may be used to describe .languages consti

tuted of phrases, for example, Engl.ish. A simple PSG for 

English sentences might be stated as follows: 

sentence -> noun phrase + verb phrase 

noun phrase -> adjective + noun phrase 

noun phrase -> noun phrase + connective + noun phrase 

noun phrase -> noun 

verb phrase -> verb 
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adjective -> old 

adjective -> young 

connective -> and 

noun -> women 

noun -> men 

verb -> laughed 

verb -> sang 

From this grammar, the following sentences can be derived: 

old women and men laughed 

young women sang 

old men laughed 

(Note that already ambiguity has arisen. With the use of 

parentheses as phrase markers~ this could be overcome, viz. 

(old women) and men laughed 

Note also that the noun phrase is recursively defined. This 

allows for the embedding of one noun phrase within another.) 

Formally·, a PSG is a system G-1 such that 

where 

G=(Vn~Vt,P,S) 

Vn is the nonterrninal vocabulary 

vt is the terminal vocabulary 

P is·a finite set V+ x V* 

s is a member of Vn called the distinguished symbol 
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(Pairs from V+ x V* are written x -> y and read "the string 

x is rewritten as the stringy", where x ~ V+ andy E V*: 

v 

(the empty set)~ 

Vn U Vt 

Vn n Vt 
oa 

V*= U Vk 
k=o . 

V+= V* -Jl(the set containing the null string: 

* is Kleen closure; a special operation which yields all 

possible strings using elements of the set. {0,1}* is the 

null string, 0, l, 00, 01, 10, 11, .... ). 

Chomsky defined a hierarchy of PSGs by placing restrictions 

on the elements of P. (Martin, 1972) 

In the most general case, there are in fact no restrictions; 

the grammar is of type 0. The restr.iction that the string on 

the left hand side of any production rule must be .less than 

or equal in length to the string on the right hand side 

gives grammars of Type l. A further restriction is to limit 

the string on the left hand side to a single element of the 

nonterminal vocabulary; this gives Type 2 grammars. The 

stipulation that all rules must be of the form: sing~e non-

terminal goes to sing~e terminal element, or single nonter-

minal element goes to single terminal element followed by 

nonterminal element gives Type 3 grammars. 

The languages described by Type 3 grammars are referred to 

as Regular or Finite State Languages. Chomsky has demon

strated in syntactic Structures (pp. 21-24) (1957) that Type 

3 grammars are inadequate to describe the generation of 
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sentences where there are relations between nonadjacent 

words, that is, where one phrase is embedded within another. 

An example of such a sentence is: 'Any sentence which con

tains an embedded clause cannot be described by a Regular 

grammar.'. 

Context Free Languages have this property and they are 

described by Type 2 grammars; the rewriting of the nontermi

nal symbols using a Type .2 grammar takes place without any 

consideration of the context in which they occur. 

The contextual rewriting rules OI Type 1 grammars allow Con

text Sensitive Languages to be described. Agreement in 

number between parts of speech is a familiar English 

language construct which we could employ a context sensitive 

grammar to describe. For example, such a grammar might 

include the following rules: 

the noun flies -> the crow flies 

the noun fly -> the crows fly 

The languages described by Type 0 grammars are called recur

sively enumerable languages. Informally, this means that the 

elements of the language can be generated by a recursive 

procedure. The problem oi determining for a given string 

whether or not it has been generated by a Type 0 grammar is 

undecidable; this is only the case for Type 0 grammars. For 

all other types, it is possible to decide this problem. 

The relationship between languages is summarised in the 
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following diagram which also indicates the nature of the 

production set in their respective grammars: 
(Adapted from Cleaveland and Uzgalis, 1973) 

Where 

All languages 

Recursively enumerable languages 

Context sensitive languages 

Context free languages! 
-------------------- I 

Regular languages! I 
--------------- I I 

Finite I I 
Languages I I 

I I 
A->a I I 

--------------- I I 
A->aB I I 
B->b I I 

-------------------- I 
A->v I 

uAv->uwv 

w->v 

a,b are elements of Vt 
A,B are elements of Vn 

w is an element of V+ 
u,v are elements of V* 

2... Using Grammars L.a. Describe Programming Languages 

In 1959, John Backus, a designer of the programming language 

Algol 60, developed a grammatical form equivalent to 

Chomsky's Type 2 grammar which is still widely used to 

describe the context free syntax of programming languages. 

Backus notation, BNF, has been used in some Iozm for the 
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definition of every major programming language since Algol 

60 (Cleaveland and Uzgalis, 1973). It has proved useful not 

only as a tool for defining and teaching programming 

languages but also as an aid to the machine analysis of pro

gramming languages. CPGs have been classified according to 

the method of parsing they require. Ceztain classes of CFGs 

may be used to automatically genezate parsing programs. 

DeReemer (1969) described an early system which worked from 

a BNF description of a programming language. 

There are two kinds of restrictions which CFGs in general 

cannot handle: static context conditions and dynamic context 

conditions (Cleaveland and Uzgal.is, 1973). An example of a 

static context condit.ion is the zestriction that each iden

tifier (i.e. name in a pzogram) must be unique; a dynamic 

context condition is the restriction that identi£iers occur

ring in an expression to be evaluated must zefer to vari

ables which have previously been assigned values (i.e. the 

reference of names must be fixed be£ore their use). 

To describe the static context conditions, a context sensi

tive grammar could be employed. This would not be satisfac

tory primarily for the same zeasons which Chomsky gave when 

he rejected PSGs as a descriptive model of natuzal language; 

the grammars needed would be •extremely complex, ad h2k and 

unrevealing". ( syntactic structures quoted by Lyons) 

only a formal definition of the semantics oz meaning of pro

grams . written in a particular programming language would 
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spell out the dynamic context conditions. Usually, the 

semantics of a programming language are described in prose 

although limitations of CPGs have ~ed to the development of 

formal techniques capable of defining the semantics as well 

as the syntax including any context sensitive aspects. One 

such formal technique is the grammatical form, W-Grammars, 

which Van Wijngaarden developed for defining Algol 68. 

W-Grammars are two level CPGs. At the first level, the W

Grammar consists of what are known as gmetaproductions" and 

"hyperrules" which are models for the production rules of 

the language; employing a "uniform replacement rule", the 

second level CPG is produced from hyperrules and metaproduc

tions. 

A simp~e example of a W-Grammar (taken from Cleaveland and 

Uzgalis) is the grammar which describes the language 

{anbncn} which is a type 1 or context sensitive language. 

The grammar is as follows: 

(metaproductions) N n;N,n. 

ABC .. a;b;c. 

(hyper rules) s Na,Nb,Nc. 

nN ABC : letter ABC symbol, N ABC. 

n ABC letter ABC symbol. 

By uniform replacement, the following production rules may 

be derived: 

na letter a symbol. 
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nb : letter b symbol. 

nc : letter c symbol. 

nNa letter a symbol, Na. 

nNb letter b symbol, Nb. 

nNe letter c symbol, Nc. 

The metaproduction rule 'N n;N,n.' produces arbitrary 

length strings of n. .By unifo.rm replacement in the first 

.hyperrule, an infinite set of production rules may be 

derived: 

s na,nb,nc. 

s nna,nnb,nnc. 

s nnna,nnnb,nnnc. 

and so on. 

By convention, the typographical representation of any ele

ment ending in symbol is given by a table; these elements 

are the elements of the terminal vocabulary. 

This example illustrates how a W-Grammar can deal with 

static context conditions. There may be a requirement to 

add dynamic context conditions. This is achieved in a W

Grammar by the introduct.ion o:f predicates. Predicates are 

nonterminal elements which may be .rewritten as the null 

string. Predicates may be generated :from general predicates 

given as metaproductions. 

A predicate may be used to express the .requi.rement that 

every name in a list of names is unique; for example, this 
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might be achieved by the following predicate: 

name list : name; namelist,comma,name, 

unless namelist contains name. 

where 'unless false . . . . , i.e. 'unless ialse' is rewritten as 

the null string. Further rules omitted irom this example 

would be required to spell out what it is ior one notion to 

contain another; the predicate 'contains' could be rewritten 

in terms of the predicate 'begins with', and 'begins with' 

rewritten in terms of 'coincides with' which could be 

rewritten finally as either true or false, thus allowing the 

above predicate to be rewritten as the null string if it has 

been rewritten as 'unless false'. Note that no rule is given 

for the predicate 'unless true'; it is simply a blind alley 

and is a predicate which cannot be eliminated. 

A full description of W-Grammars is beyond the scope of this 

chapter. W-Grammars have been demonstrated to be powerful 

enough to describe completely both the syntax and semantics 

of the programming language, Algol 68. J.E.L. Peck, one of 

the authors of the Revised Report on Algol 68 in which such 

a definition is undertaken, has produced an excellent short 

tutorial paper on W-Grammars which demonstrates their capa-

bilities more completely than this text does (Peck, 1974). 

~- Representation Q! Grammars 

These remarks are confined to the notational systems 

employed to represent CFGs. The system with the arrow as the 
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production symbol and plus as the concatenation symbol is 

from Chomsky. In BNF, '::=' is the production symbol; con

catenation is implicitly represented by writing elements of 

the vocabulary next to one another in a rule; rules for the 

same nonterminal element are condensed into one rule with 

• I • as the or symbol; and nonterminals are enclosed in angle 

brackets. Thus, a rule defining a number might be written in 

BNF as follows: 

<number)::=(digit>J<number)(digit> 

BNF notation was extended to give an alternative form to 

some simple recursive rules, and to distinguish more clearly 

alternatives and options within a rule. The extension was 

the result of marrying BNF with the metalanguage developed 

to describe the programming language COBOL; it has been 

praised for its "utility and cleanliness" (Cleaveland and 

Uzgalis, 1973). An example of a rule in this notation is as 

follows: 

NUMBER::=[SIGN] DIGIT ... 

where the dots mean the occurrence of the immediately 

preceding element one or more times and the square brackets 

indicate an optional element. 

The CFGs of W-Grammars are notationally equivalent to BNF 

grammars with the exception that a symbol to indicate the 

end of a rule, a full stop, has been added. In W-Grammars, a 

semicolon is used for the or symbol; a comma is the explicit 
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concatenation symbol; there are two production symbols colon 

and double colon; and by convention terminals end in 'sym

bol'. Thus, in W-Grammar notation, the following rules would 

define numbers: 

NOTION::digit. 

NOTION sequence:NOTION;NOTION sequence,NOTION. 

number:digit sequence. 

digit:zero symbol;one symbol; ..... ;nine symbol. 

with a table showing the particular representation of each 

symbol in the language. 

The notations described above for CFGs with the exception of 

Chomsky's were developed by the designers of various pro

gramming languages as an aid in the specification of the 

language for both future implementors and to describe the 

language to future users. 

Implementors of a programming language are concerned with 

the implementation of the language on a machine which as 

Marcotty ~ Al point out is "after all a kind of formal 

definition" (~976). Unfortunately, it is sometimes the only 

definition to which users may appeal. In implementing a 

language, system programmers construct compilers; these are 

programs which consist of recognisers for that language and 

specify what actions are to result for all recognised pro

grams. 

While W-Grammars have the advantage that they can be 
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employed to completely define a programming language, the 

defintions resulting are somewhat incomprehensible to the 

uninitiated. Cleaveland and Uzgalis have attempted an intro

duction to W-Grammars in the hope that more programmers will 

come to appreciate their power. They also express the hope 

that work will beg.in on "automatic parsing techniques which 

could automate W-Grammar definitions and provide giant 

advances in automatic compiler construction and in the 

development of far more responsive and facile computer 

languages" (Cleaveland and Uzgalis, 1973). 

Addressing this problem of automation of iormal definition 

allows the vexed area of the human engineering of the defin

ition to be left behind as consideration is given to the 

problem of how best to represent a def.inition so that it may 

be automatically processed w.ith ease. Here the crux of the 

problem is to choose a .data structure and/or data type which 

will reflect rather than obscure the form and content of the 

data which in this case will be the rules themselves. Data 

represented within a computer is given iorm and content by 

the programming language structures and data types which 

allow for the interpretation of the data in various ways. 

Perhaps the most straightforward method of represention is 

to process the rules as strings of characters using a linear 

data structure. Analysis is facilitated by functions for 

indexing and forming substrings. In my first program which 

was written in the programming language PL/l to process the 
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rules of a CFG in W-Grammar notation, the data was 

represented as character strings declared to have the form 

of variable length character str.ings. Character strings in 

PL/1 are one dimensional, and characters are distinguished 

by their rank or index within a string, such that the first 

character has index 1 and so on. The built-in functions, 

INDEX and SUBSTR, were used for deterndning the index of one 

character string within another, and £orming substrings 

respectively (PL/1 (F) Language Reference Manual, 1969). 

This method of representation was not found to be particu

larly satisfactory because of the effort involved in 

extracting information from the rules. For instance, when 

indexing the characters to the right o£ the colon in the 

string, 'S:SS,A,B.', for an occurrence of 'S' indicative of 

recursion, the INDEX function will return the index of the 

the first 'S' in the element 'SS' which is a distinct ele

ment from 'S'. Thus, it is necessary to include delimiters 

round the string being indexed for, that is to say, in the 

case of a search for a generally recursive rule, index for 

the string, ' , S, ' . 

By rewriting the program in the LISP programming language, 

it was possible to overcome these difficulties by represent

ing each rule as a list of atoms which were the elements of 

the nonterminal and terminal vocabulary. In LISP (McCarthy 

et al, 1965), an atom is considered to be an indivisible 

item of data, so that the above problem does not arise. In 
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order to do the analysis in LISP, each rule in the W-Grammar 

had to be converted into the form of a LISP list. The fol-

lowing illustrates the conversion process, which was in fact 

carried out by a translation program written to transform 

rules already represented as character strings for the first 

PL/1 program. Cons.ider each rule .in W-Grammar as a tree 

structure with the nonterminal on the left hand side as the 

root and the alternative on the right hand side as branches 

where a branch consists of elements of the vocabulary. Thus, 

the rule, 

s 
/\ 

/\ \ 
SS A B 

In nested parenthesis tree notation, this is the tree (S (SS 

A) (B)) which coincidentally is the way this tree is 

expressed as a list in LISP. The branches of the tree may 

now be processed as sublists. A set of LISP functions may be 

defined which allow testing for properties of the rules 

directly by treating the sublists as sets of vocabulary ele-

ments. This overcomes the indexing problems mentioned 

above. As many automatic parsing programs employ trees as a 

data structure to represent production rules, this method is 

not original •. 

The notation of LISP has been criticised as consisting of 

Lots of Insignificant Silly Parentheses. In this applica-

tion, the notation was straightforward to use and use of the 

translation program ensured the lists were well formed. LISP 
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is a functional calculus with "programs" taking the form of 

functions which are themselves lists written in the list 

notation. This use of the same structure £or both "pro

grams" and "data" has an attractive simplicity. 

In summary, representation of a grammaz in a notation which 

facilitates its use as a source of information to program

mers is problematic although it is undoubtedly true that a 

good formal definition is an important factor in determining 

the ease of learning and using a programming language; the 

following chapter will return to this point and give it 

fuller consideration. Choosing a machine xepresentation is a 

less vexed question and related to the sort of functions 

which will be applied to the data when it is processed. The 

processing of CFGs as linear character strings does not 

exploit the tree structure inherent in the rules which a 

list structure is capable of revealing. 

~- Analysis ~ Grammars 

The CFGs may be completely defined by the pxoduction rules 

with the convention that the rule for the dist.inguished sym

bol is given first. The elements of the nonterminal vocabu

lary in the W-Grammar form of the rules will all appear only 

once on the left hand side of the rules. The terminal voca

bulary is the set which is the difference between the set of 

all vocabulary elements and the nonterminal elements. 

As the rules are individually processed, the analysis pro-



- 32 -

gram builds up these sets. Rules are analysed branch by 

branch; each branch is checked for left recursion, self-

embedding, right recursion, circularity, ambiguity and 

uniqueness. These properties are all illustrated .in the fol-

lowing rule: 

s S, A; A, s, A; A, S; S, A, S; S; A; A. 
I I I I I I 
I self-embedded I ambiguous I not unique 
I I I 

left recursive right recursive circular 

A check must be made that there is at least one nonrecursive 

branch in each rule, so as each rule is processed a count is 

kept of the nonrecursive branches. 

After all the .rules have been processed individually, rela-

tions between the rules may be analysed. A check is .made for 

all the properties mentioned above occurring indirectly. For 

example, the following might occur: 

S:T,A;A. and T:S,B. 

In such a case, s is said to be indirectly left recursive. 

Any branches which do not ultimately end in terminal ele-

ments are marked as incomplete. Any rules for nonterminals 

which do not occur on the right hand side of some rule with 

the possible exception of the distinguished symbol are 

marked as superf~uous. If a reduced form of the grammar is 

required, all superf~uous rules and .incomplete branches 

would need to be deleted (Gries, 1977). 
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The manner in which these checks are carried out is as I 

have indicated in the discussion on representation partially 

a function of the programming language used to write the 

analysis program. 1t was in my case also a mattez of experi

mentation; at first, 1 chose the simple linear structure in 

preference to a more complex nonlinear structure because it 

seemed sufficient to represent the grammar for my purpose of 

analysis. Later, 1 experienced difficulties extracting 

information from the strings and decided to try a data 

structure which allowed the structure of the rules to be 

·represented directly. 

To illustrate some differences resulting from the linear and 

nonlinear representations, a bzief discussion on how each 

program checks a rule follows. The PL/1 program relies 

heavily on the use o:f the built-in functions, 1NDEX and 

SUBSTR. Each rule identified by its terminating full-stop is 

read in by the program which indexes the rule for a colon. 

All characters preceding the colon are taken as an element 

of the nonterminal vocabulary; adopting Van Wijngaarden's 

terminology, this is referred to as the notion defined by 

the rule. The rest of the rule following the colon is pro

cessed as follows: first, the full-stop at the end is 

replaced by a semicolon and then indexing to the next semi

colon, each branch can be differentiated. Branches 

representing each alternative are formed as substrings and 

they are processed in turn. The checks for recursion, circu

larity and ambiguity are carried out by indexing for 
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occurrences of the notion suitably deli~ited within the sub

string. 

In the LISP program, the same analysis is carried out by 

rather different means. A rule in list notation is read in 

by the LISP READ function which reads in complete lists. By 

applying the primitive LISP function CAR to the rule, the 

notion at the head of the ru~e is obtained. Application of 

the function CDR to the rule results in the formation of a 

list which is the list of all the branches associated with 

the notion. By app~ying CAR to this list, the first branch 

is obtained. By applying CAR to the first branch, the first 

element of the branch is obtained, and so on. The checks for 

recursion, circularity and ambiguity are carried out using 

the functions MEMBER and DIFFERENCE with their usual meaning 

over the lists as sets. 

The analysis of re~ations between the rules was only imple

mented in the LISP version of the an~ysis program. It was 

considered that the most effective way to do this in PL/1 

would have been to introduce a list structure for each rule 

using pointers and as this is readily available in LISP, the 

switch to LISP was deemed sensible. 

To complete this phase of the analysis, the LISP program 

works through possible derivations starting with the rule 

for the distinguished symbo~ and ensures that each nontermi

nal eventually goes to a set of terminal elements. Indirect 

occurrences of the properties checked for in the branches 
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are also checked for at the same time. These properties can 

be recast in terms of set relations which must hold between 

various lists which are constructed from the grammar. In the 

analysis, rules and branches which would be deleted to 

reduce the grammar are merely .marked out; they may be indi

cative of an incomplete or tentative definition, or they may 

be simply superfluous. 

These analysis programs were tested on various simple gram

mars which were devised for testing the programs and on the 

grammar of the programming language SEQUEL (Chamberlin and 

Boyce, 1974). By analysing the SEQUEL grammar, it was poss.i

ble to identify construction patterns within the language 

which enabled the grammar to be modified so that common con

struction rules after the fashion of Van Wijngaarden's 

hyperrules could be employed. Further details are given in 

the following chapter. 

~- Production Q[ Generators and Recognisers fLQm Grammars 

My interest in analysing grammars grew out of programs I 

developed to produce generators and recognisers from CFGs. 

These programs were written for use within a tutoring system 

which was designed to instruct students in the application 

of grammar rules. Chapter 3 gives the background of this 

work and a full description of the resulting system and its 

use. 

The method of generating expressions from a CFG is straight-
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forward. Starting with the distinguished symbol, the pro-

gram must work through rewriting nonterroinal elements on the 

right hand side of the rule until a string containing only 

terminal elements .is generated. Problems can arise where the 

language is defined in a highly recursive manner as this 

allows for the generation of very long complex expressions. 

To overcome this the generator may include restrictions on 

the length of the expressions to be generated. In my pro

grams, usually a limit on the length of.e~pressions has been 

imposed although experiments were conducted in which the 

selection of the next branch to be employed in the deriva

tion was completely random . 

. My program for producing generators forms functions for each 

non terminal element; these functions return character 

strings corresponding to a derivation for a particular non

terminal. Both the program which produces the generators 

from a grammar and the generators produced are in PL/1. 

I incorporate hyperrules into the generator as functions 

with functions as arguments. For example, I have defined a 

function, SEQUENCE, which requires as its argument a func

tion for a nonterminal and returns a character string 

corresponding to a sequence of the derivations of that non

terminal. 

The production of recognisers is a much more interesting 

project. It is bound up with the wider area of interpreta

tion and compilation of programming languages. In discussing 
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the execution of a program by a conventional computer, Dana 

Scott described a co~pi~er as something which is applied to 

a prog.ram to produce by syntactical manipulation the machine 

code equivalent (Scott, 1974). In order to carry out this 

transformation, the compiler must possess the capacity to 

recognise expressions in the language in which the program 

is written; recognition is effected by parsing the program 

in symbolic form. If our aim is compile the program, the 

parsing given by one grammar may be more useful than that 

given by another; for example, an unambiguous grammar allows 

the parser to identify grammatical errors more clearly than 

an ambiguous grammar. 

Assuming the grammar as giyen, a choice remains as to the 

method of parsing. while various methods may be used, I 

shall only describe a method which I find particularly 

elegant. In passing, I should mention that a more critical 

defense of this method can be found in a paper by Turner 

(Turner, 1975). Its relevance here is that the tutoring pro

gram described in Chapter 3 uses this technique. The method 

is known as "recursive descent", and I will show how it can 

be implemented automatically working from a machine readable 

description of the rules. 

From the following example, it should become clear why this 

method is called "recursive descent•. Consider the grammar 

given by the following rules: 

sentence : subject, verb; not, sentence. 
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subject .. all, cats. 

verb are, greedy. 

Two derivations are: 

all cats are greedy, not all cats are greedy 

To recognise a sentence, we look for a subject. To recognise 

a subect, we look for an "all" followed by "cats•. Once a 

subject has been found, it must be followed by a verb. To 

recognise a verb, we look for an "are• followed by "greedy". 

If the search for a subject fails, we look for a •not" which 

must be followed by a sentence. To recognise a sentence, we 

look for for -········ as above. 

To implement recursive descent, the recogniser requires a 

procedure for recognising every nonterminal element of the 

vocabulary. The recogniser may contain separate procedures 

for recognising each nonterminal element; these procedures 

will reflect in a clear way the right hand side of the rules 

and if a nonterminal is recursively defined, then its 

recognising procedure will be recursive. Alternatively, the 

recogniser may consist of a single recognising procedure 

which directly utilises the grammar rules as data. In the 

method of parsing by recursive descent, recognition proceeds 

strictly from left to right through the expression, looking 

at one symbol at a time without having to look ahead or 

back; such a recogniser is decscribed as deterministic 

(Wirth, 1976). It is not possible to construct a deter-
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ministic recogniser without look-ahead working from an ambi

guous grammar (Rifkin, 1978). Wirth has formulated the pro

perties which a CFG must have if a deterministic recogniser 

is to be constructed for the language it describes. He for

mulated the properties in terms of set relations which must 

hold over the elements of the vocabulary. These relations 

may be checked out by an automatic analyser such as the LISP 

program already described. If they do not hold, it is often 

possible to transform the grammar without affecting the 

language, although in some cases it may be necessary to 

alter the language. With the exception of the following 

example, no attempt will be made to describe in detail any 

of the well known methods of transforming grammars; these 

are described in Foster's Automatic syntax Analysis (1970) 

and elsewhere (Gries, 1977; and Wirth, 1976). 

An example of one transformation which a CFG may require is 

factoring. Consider the grammar given by the following 

rules: 

S : A, B. 

A x, A; y. 

B x, B; z. 

This grammar as it stands is unsuitable for direct produc

tion of a deterministic recogniser without look-ahead 

because both "A" and "B" may begin with the same terminal 

element, namely "x" and we cannot recognise either until the 

last terminal element has been recognised. By factoring, the 
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grammar is transformed into the following equivalent form: 

s c~ x, s. 

c y~ z. 

Using these rules, the recogniser either successfully recog

nises a "C" or recurses past •x•s until it recognises a •c•. 

The program which produces recognisers does so in a method 

similar to the one by which generators are produced. It 

forms functions which look for elements of the vocabulary 

returning true if the search is successful and false if it 

is not. The functions all require one argument, the current 

element under consideration from the expression to be recog

nised. this is supplied by a function common to all the 

recognisers, NEXT, which returns the next element from the 

input expression. All these functions and the program pro

ducing them are written in PL/1. 

PL/1 was used because the core of the original tutoring pro

gram was written in PL/l and by wr.iting all the subprograms 

in PL/l, many common procedures could be re-employed. This 

also enabled the frame of the original tutor program to be 

used in a more general way with other grammar rules. 

Automating the production of recognisers from grammars is a 

first step towards the fully automatic implementation of 

programming languages. This modest claim can be made without 

committing the •fallacy of the first step" of which Dreyfus 

(l972) accused the early machine translation workers. 
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..6.. Conclusjons 

I have described the role 

language definition showing 

represented to reflect their 

of grammars 

how these 

structure 

in programming 

grammars may be 

and analysed to 

determine their properties. The analysed grammar already 

represented as a data structure may then be transformed if 

analysis indicates this is necessary and used directly to 

produce generators and recognisers for the language 

described by the grammar. The latter are especially impor

tant because of their use in compilers. 

A system which undertakes the analysis of grammars, while 

interesting in its own right, also provides a diagnostic aid 

to the propounders oi grammars. It is obvious that careful 

formulation of the grammar of a programming language from 

the start is desirable. This avoids nonstandard implementa-

tions based 

ambiguous, and 

dialects. 

on arbitrary decisions where the definition is 

prevents the development of incompatible 

The day of a universal programming language is unlikely; 

however, communication about a particular programming 

language is made difficult if the language is not defined in 

a manner which is, "complete, clear, natural, and realis

tic", to paraphrase Marcotty ~ al (1976). I hope to have 

demonstrated that the role of CFGs and in particular W

Grammars, in the definition of programming languages both 

from the standpoint of describing the language for potential 
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users and with an eye to facilitating the implementation of 

the language. 

We may hope for the day when there is a generally accepted 

formal technique for defining programming languages. I am 

reminded of Leibniz's remarks On Method (in 

tions, Weiner(ed), 1951); he envisaged 

applying a universal method, disputes could 

calculation. All that is required is 

Leibniz Selec

the time when by 

be settled by 

the settling on a 

universal language for use in formal definitions; of course, 

ideally our calculations in the universal language should be 

capable of computerisation. 
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CHAPTER 3 Generating Programming Environments for Learners 

~- overview 

In the mid-1960s, in order to study 'rule learning', Profes

sor G .. A. Miller at the Harvard Center for Cognitive studies 

in a project entitled Grammarama programmed. a computer to 

conduct experiments with artificial grammars. (Miller, 

1970). In 1965 Donald Norman and John Schneider (referred to 

by Miller, pp. 169-173) used computer programs to study the 

most effective way to decompose a grammar. into rules so that 

it might be learned by identifying correct and incorrect 

productions. The work to be described in this chapter has 

been concerned with teaching students how to apply the syn

tactic rules of the class of art.ificial languages known as 

"programming languages"; it is not expressly concerned with 

the problem of how they might discover these rules, although 

in my work, it has been useful to draw on the methodology of 

Miller's Grammarama. 

The prototype system was a program to teach first year Com

puting students how to form logical expressions using a 

notation for these derived from the PL/1 programming 

language. The program introduced itself as a game in which 

the student could opt to be either the producer of expres

sions for checking by the program or the checker of 

program-generated expressions. A score was kept by the pro-

.gram; this was summarised when the student decided to fin

ish. The rules for forming logical expressions were 
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available throughout each session. The program was capable 

of entering an explanatory mode in which it explained how it 

generated expressions from the rules and how it recognised 

or checked expressions, if the student's responses suggested 

this would be helpful. At this stage, the program was simply 

an extended version of Miller's Polish notation program used 

in the Grammaxama Project. It was tested with first year 

undergraduate Computing students, and found satisfactory 

within its limited goals. 

During these studies, it became apparent that such a system 

could be used to teach almost any formal language syntax 

provided that the sub-programs for rule presentation, 

expression generation or production, and expression recogni

tion or syntax checking were slotted into the original pro

gram. To automate this process, a program has been developed 

which works from a definition of the syntax of a programming 

language and generates appropriate sub-programs to be used 

in the framework of the original syntax game program. 

The sub-program generator was tested with the SEQUEL 

language as described by Chamberlain and Boyce (1973). The 

resulting program to teach SEQUEL brought out the need to 

clarify exactly how expressions of specified difficulty can 

be produced, and from these studies I developed a use of 

production systems to describe the general teaching stra

tegy. Thus the method of syntax game programs has been gen

eralised, so that both the programming language to be taught 
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and the teaching strategy to be used in the production of 

examples are both expressed by sets. of production rules. The 

use of production rules to describe the teaching strategy 

allows the syntax· game programs to act as test-beds for dif

ferent teaching strategies. 

THe production rules which form the input to the sub-program 

generator are expressed in Van Wijngaarden's notation, W

Grammar, already discussed in Chapter 2. The sub-program 

generated to present the rules may translate the rules if 

desired into another notation, BNP or syntax diagrams; this 

flexibility allows for experiments to be carried out using 

different notations, for example to determine notation 

preferences if any exist. 

The purpose of these studies. has been to provide systems for 

generating programs which can be adapted easily to indivi

dual student's needs. Some students may benefit from the 

elegant richness of the full two-level W-Grammar notation 

while others only require the modest economy of BNP nota

tion. 

While it is not particularly worthwhile to attempt to teach 

the complete syntax of a programming language in this way, 

the complexity of expressions presented and checked would 

not be suitable for presentation and checking in an interac

tive mode. For simple languages and for sub-sets of more 

complex languages, a syntax game is a useful learning vehi

cle. It not only introduces students to the syntax of a 
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particular language, it also familiarises them with the use 

of a formal definition. 

2. Hjstorial Background 

Miller's interest in artifical languages arose out of work 

undertaken in the late 1950s with Noam Chomsky. In 1957, 

they collaborated in a study of algebraic systems which 

Chomsky then called "finite state grammars•. Chomsky's work 

in this field is described in Chapter 2 of this work. 

Miller assumed that when peop.le .learn a natural language, 

they do not memorise all the· particular sentences that 

comprise it; rather they .learn rules for producing and 

interpreting any sentence. ln order to investigate •rule 

learning", he began to experiment with artificial languages. 

He described his method as inductive in that the subject 

could only obtain information about which sentences were 

part of the language and from this, by induction, had to 

learn the rules. In Miller's case, these were PSG production 

rules. 

Miller was quick to see the advantages of automating his 

experiments. It was found from the start, for example, that 

human experimenters were simply not fast enough nor accurate 

enough to run the experiments if grammars of any complexity 

were used. In addition to speed, Miller noted that the sub

jects had great faith in the computer and appeared to 

believe it would not trick or cheat them: 
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"1 find it remarkable that an intelligent college stu
dent will let a machine tell him repeatedly that he is 
wrong without losing heart or face; if a human experi
menter told him the same thing, he would seethe with 
indignation." 

(Miller, 1970, p.l59) 

In evaluating his. automated experiments, Miller had the 

insight to distinguish between people learning a language 

and pe·ople learning to make· the machine respond in a certain 

way. It is, of course, possible to do the latter without a 

complete understanding of the language; and it is important 

to bear this distinction in mind when assessing the claims 

of any automated teaching system. 

As the complexity of the grammar increased to the point 

where it became impossible to learn (inductively) the whole 

grammar at once, Miller considered using the strategy of 

teaching rules one by one and combining them later. Some 

work was done along these lines by Norman and Schneider, who 

used a context free grammar and found that Polish notation 

was more easily learned when the rules were learned indivi-

dually. The three rules they taught were: 

or in BNF: 

(Pl) S-}P 

(P2) S-}NS 

(P3) S-}ASS 

(S}::=PIN<S>IA(S}(S} 

Miller postulated that decomposing the grammar to be learned 

into a regular grammar with infinite rules would be of lit-
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tle help to learners; to Miller, a grammar with infinite 

rules was ridiculuous. At almost the same time, such a gram

mar, W-Grammar, was being developed and used to describe the 

then new programming language, Algol 68 (Van Wijngaarden, 

1976). 

As indicated in Chapter 2, grammars have been used to 

describe programming languages since the late 1950s. Since 

their inception, context free grammars describing program

ming languages have provided a useful teaching aid. Because 

of their similarity in form to dictionary definitions, most 

people find the use of a context free g.rammar almost intui

tive, and so refer to it as naturally as they would to a 

dictionary to settle exactly how any particular notion in 

the language has been defined • 

..3.. Scope .Qf. :th.i.a ~ 

Miller's inductive method of rule learning may be compared 

with the way in which many people learn a programming 

language. For the most part, beginning programmers have. no 

understand.ing of explicit grammatical .rules for describing 

the languages in which they are programming. Like Miller's 

subjects, they submit their attempts at program production 

to the compiler and it responds by identifying correct pro

ductions and signalling errors if any occur. 

Beginning programmers may be concerned only with getting 

results and may not wish to gain any more of an understand-
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ing of the language than is necessary for their immediate 

goals. This attitude is acceptable for •one-off• programmers 

but encourages a dangerous dependency if maintained over a 

programming career of any length. The following slogan 

appeared on a Christian Aid collection envelope: "Give a 

hungry man a fish, and you feed him for a day. Teach him to 

fish and you feed him for a life•. In the context of pro

gramming, a dist.inction might equally be made between the 

benefits of imparting specific information of limited util

ity and those which accrue from imparting more general 

information applicable in a wide range of cases. Where pos

sible, specific information should be derived as an instance 

of a more general principle; such an approach enables stu

dents to gain a more systematic understanding of the pro

gramming language. In contrast to the beginners, experienced 

programmers learning a language use the definition as an 

independent source of information, deriving programs from 

it. While experienced programmers may use the compiler to 

check their understanding of the definition, they also make 

use of the definition as an independent check on the com

piler. 

THe work to be described involved setting up an environment 

in which beginning programmers could be presented with a 

simple programming language definition and be allowed to 

test their understanding of it. The environment took the 

form of a syntax game program. The production rules of the 

language were first made explicit, the student then being 



- 50 -

encouraged to apply them in for.ming particular statements in 

the language. As in Miller's system, the fast and accurate 

computer was retained to check that the student had applied 

the rules correctly. Moreover, an automated system like 

Miller's has the advantage that it .is trusted by students to 

perform objectively. The work rests on an adapted form·of 

Miller's thesis, concerning the learning of natural lan

gaugesr discussed above: when people learn a programming 

langauge, they do not need to memorise all the particular 

programs which comprise it; rather they need to learn rules 

for producing and interpreting any program in the part.icular 

programming language. 

In designing the program, it has been useful to draw on the 

ideas proposed by Jonathan D. Wexler in a report entitled "A 

Design for Describing (Elementary) Programming Problem Gen

erators in an Automatic Teaching System• (1973). In this 

report, Wexler outlined a grammar for describing programming 

problems which he used in a program to teach machine-code 

programming. The sub-programs in the syntax game program 

operate in two modes; one in which expressions are generated 

and presented to the student for checking and one in which 

the student submits expressions to the appropriate sub

program for checking. In the former mode, ideas from 

Wexler's system have been developed; while in the latter 

mode, the work of compiler theorists in automatic syntax 

analysis has been drawn upon (Gries, 1971). 
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A generative sytem was chosen because of a desire to get 

away from the drill-and-practice type of computer-aided 

instruction reviewed in Chapter 1. Such systems which merely 

present pre-stored sequences of problems are unnecessarily 

inflexible in their mode of presentation. Inflexible dril

ling is harmful because it is not adaptive to the needs of 

the student and it does not provide the student with a 

framework in which particular examples can be related to 

general models. There is no reason why a computer should be 

used to perpetuate one of the worst possible teaching tech

niques. If a computer-aided instruction program emulates a 

programmed learning textbook, then the computer merely 

becomes an expensive substitute for a book. 

~- Prototype system 

The prototype system was a program which simply gave stu

dents practice in forming logical expressions and checking 

them. The program can be run interactively from a terminal, 

and the way in which it functions is described below. The 

rules for producing logical expressions are presented. These 

may be reviewed at any time during a session if the student 

wishes. The program can then either present randomly gen

erated examples of expressions to the student for checking, 

or the student may input expressions to the program for 

checking, in which case the program will determine whether 

or not the input is well formed and reply appropriately. The 

mode of operation is flexible and chosen by the student, who 
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may alter it at any point. In both modes the program is 

capable of error reporting. Where the student's replies are 

correct this is not strictly necessary, and the program 

gives the student the option of having this information. 

Because the program allows the student to enter expressions 

for checking, it must be capable of doing the checking; it 

also checks expressions which have been program-generated as 

this enables errors to be pinpointed in context for the stu

dent. 

The level of difficulty at which the program presents 

material is either determined by the sort of productions 

entered by the student, or in the case of program-generated 

examples is started arbitrarily low and increased if the 

student's responses suggest a readiness for more difficult 

examples. The level of difficulty is proportional to the 

complexity of the expression. The complexity of the expres

sion is determined by the number of recursive calls of the 

syntax checking procedure required when checking the exam

ple. Syntax checking is accomplished using the method known 

as recursive descent which has been extended in the program 

to a funtional form described in Chapter 2~ 

In the prototype system, example formulae are generated as 

follows: 

(i) Start with a proposition letter. 
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(ii) Add a negation sign in half.the cases. 

(iii)Add an operator and letter either on the left or the 

right in half the cases. 

(iv) Put brackets around the whole in half the cases. 

(v) Repeat from (ii) until the formulae has the required 

length (where this is simply a .measure of the number of 

symbols). 

The generator starts with a branch which results in the 

least number of symbols. As all branches except one are 

recursive, obviously the non-recursive branch must be chosen 

first. The next branch chosen is the one which will result 

in the next least number of symbols being added, and so on 

using the remaining branches in order of their generative 

power until the formula of the required complexity has been 

built up. 

The generative power (g.p.) is a measure of how many symbols 

a branch will add to the expression under construction. In 

the grammar for well-fo.rmed formulae (wffs) used by the pro

gram, the generative powers of the branches are as follows: 

(Branch l)<ppn letter> has g.p. of 1; 

(Branch 2)<not><wff> has g.p. of >=2; and 

(Branch 3)(wff><connective><wff) has g.p. >=3. 

In this grammar, simple inspection of the grammar is enough 

to enable the generative power of a branch to be determined. 
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If the student continues to make mistakes in either checking 

or production mode, the program enters a remedial mode and 

begins to explain how it checks an example as well as indi

cating how it generates examples according to the rules. As 

mentioned above, the student may request to view the rules 

at any time. 

The student may terminate a session at any point, and the 

program will give a summary of the session so far. The pro

gram then administers a brief interview which allows the 

student to give an evaluation of the effectiveness of the 

program. 

All input and output which takes place during a session with 

the program is monitored. The information recorded includes 

the date of usage, the start and iinish times of a session, 

and the student's name~ These files have proved useful in 

determining how effectively the program functions as a 

teaching aid. 

A short extract from a student's session with the program is 

recorded below: 

(C=program~ S=student) 

C: THE DATE IS 02-12-78 

C: THE TIME IS 17:53:48 

C: I AM A LOGIC TUTOR PROGRAM. PLEASE TYPE IN YOUR NAME: 

S: GEORGE 

C: 
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C: *WELCOME TO THE FORMULA GAME* 

C: ---------------------------

C: THIS GAME WILL ALLOW YOU TO PRACTICE PRODUCING AND 

C: CHECKING OF FORMULAS. THE OBJECT OF THE GAME IS TO 

C: PRODUCE ONLY WELL-FORMED FORMULAS IF I'M CHECKER 

C: AND TO CHECK CORRECTLY EACH EXAMPLE I PRESENT IF YOU 

C: ARE THE CHECKER •. 

C: I'LL KEEP SCORE ON HOW WELL YOU GET ON. 

C: WOULD YOU LIKE TO KNOW THE RULES OF THE GAME? 

C: JUST TYPE Y FOR YES, N FOR NO: 

S: y 

C: WELL-FORMED FORMULAS (WFFS FOR SHORT) ARE PRODUCED 

C: USING THE FOLLOWING RULE: 

C: (WFF)::=(PPN LETTER>I-<WFF>I 

C: . <WFF)(CONNECTIVE)(WFF> 

C: (PPN LETTER)::=AIBICIDIEIFIGIH ••• ETC 

C: (CONNECTIVE)::=&I I AND OR 

C: N. B. ANY WFF MAY BE ENCLOSED BY BRACKETS, FOR EXAMPLE: 

C: AlB IS A WFF AND SO IS (AlB) 

C: WOULD YOU LIKE MORE INFORMATION? 

S: y 

C: THE RULES TELL YOU HOW A WFF IS PRODUCED: 

C: A WFF IS EITHER A PROPOSITION LETTER WHICH IS ANY LETTER 

C: OF THE ALPHABET (E.G. A) OR A WFF IS A NEGATION SIGN (-) 

C: FOLLOWED BY A WFF (E.G. -A) OR A WFF IS A WFF FOLLOWED 

C: BY A CONNECTIVE (& OR I) AND ANOTHER WFF (E.G. A&-A). 

C: ANYTIME WE PRODUCE A WFF, WE CAN POT BRACKETS ROUND IT, 
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C: FOR EXAMPLE, (A&-A) IS A WFF. 

C: 

C: IF AT POINT, YOU'D LIKE TO REVIEW THE RULES, 

C: JUST ENTER THE MESSAGE: RULES 

C: 

C: IF AT ANY POINT, YOU'D LIKE TO QUIT WHILE YOU'RE AHEAD 

C: OR OTHERWISE, ENTER THE MESSAGE: QUITS 

C: AND I'LL GIVE YOU A RON DOWN OF THE GAME SO FAR BEFORE 

C: QUITTING. 

C: 

C: EITHER I CAN ACT AS CHECKER OF WFFS OR YOU CAN. YOU CAN 

C: CHANGE PLACES BY ENTERING THE MESSAGE: CHANGE 

C: DO YOU WANT TO BE CHECKER? 

C: JUST TYPE Y FOR YES, N FOR NO: 

S: y 

C: AN INTERPRETATION OF THE FORMULA IN ENGLISH IS: 

C: DOGS LIKE BANANAS AND PIGLETS HAVE TAILS 

C: INTERPRETATION KEY:-

C: -=NOT &=AND I=OR 

C: H=DOGS LIKE BANANAS 

C: V=PIGLETS HAVE TAILS 

C: IS THE FOLLOWING FORMULA WELL FORMED? 

C: H&V ? 

C: 

S: y 

C: THAT'S CORRECT 

C: AN INTERPRETATION OF THE FORMULA IN ENGLISH IS: 
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- 57 -

C: IS THE FOLLOWING FORMULA WELL FORMED? 

C: - ? 

S: y 

C: THAT'S INCORRECT. DO YOU WISH TO KNOW WHY? 

S: y 

C: -

C: > 

C: PPN LETTER REQUIRED AT THIS POINT. 

C: AN INTERPRETATION OF THE FORMULA IN ENGLISH IS: 

C: PEOPLE ARE MILK AND (NOT COWS HAVE BANANAS AND (PEOPLE 

C: HATE FLEAS OR PIGS LOVE PEOPLE) ) • 

C: INTERPRETATION KEY:-

C: -=NOT &=AND J=OR 

C: D=PEOPLE ARE MILK 

C: M=COWS HAVE BANANAS 

C: V=PEOPLE HATE PLEAS 

C: U=PIGS LOVE PEOPLE 

C: IS THE FOLLOWING FORMULA WELL FORMED? 

C: D&(-M&(VIU))? 

C: 

S: y 

C: THAT'S CORRECT. 

S: CHANGE 

C: ENTER A WFP FOR CHECKING: 
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S: D&---------------n 
C: THAT'S CORRECT. 

C: ENTER A WFF FOR CHECKING: 

S: QUITS 

C: FINAL STATE OF PLAY 

C: I WAS CHECKER FOR 

C: 4 WFFS 

C: 3 OF THESE WERE CORRECT. 

C: YOU WERE CHECKER FOR 

C: 18 WFFS 

C: 

C: 

C: 

C: 

11 OF THESE WERE CORRECT AND YOU CHECKED 

9 OF THEM OUT PROPERLY. OF THE 

7 DUFF WFFS, YOU LET 

2 OF THEM SLIP BY. 

C: THAT WASN'T A BAD GAME. BETTER LUCK NEXT TIME. 

C: THE TIME IS 18:16:22 

C: NOW THAT THE GAME IS OVER, I HOPE YOU WON'T MIND 

C: TAKING PART IN A SHORT INTERVIEW. APTER EACH QUESTION, 

C: ENTER AS MANY LINES AS YOU WISH IN REPLY AND WHEN 

C: YOU HAVE COMPLETED YOUR REPLY, ENTER: £P INI SH 

C: 

C: DO YOU THINK YOU'VE LEARNED ANYTHING BY PLAYING THIS GAME? 

S: YES 

S: £FINISH 

C: DID YOU ENJOY PLAYING THE GAME? 

S : YES THANKS 

S: £FINISH 
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C: ANY COMMENTS, CRITICISMS, OR SUGGESTIONS? 

S: MORE INCORRECT EXAMPLES PLEASE 

S: £FINISH 

The program was nicknamed the "Logictutor" and proved popu

lar among first-year students; many of whom were addicted to 

interactive computing in any form. An element of novelty 

was introduced by including an interpretation of the expres

sion in "English" which greatly amused the students. 

Although Miller found that undergraduates could not learn 

Polish notation for logical expressions by his purely induc

tive method, students using the program had little diffi

culty mastering the notation it gave for logical expres

sions. 

It has been difficult to abstract any recurrent themes from 

the scripts of student sessions. It was certainly very rare 

for the program to enter its remedial mode; possibly because 

the student needed to make three consecutive mistakes to 

trigger the remedial mode of the program. Students were 

more likely to make mistakes in the checking mode than in 

the production mode, although checking was usually the mode 

in which· the .students chose to beg.in playing and so inex

perience rather than any inherent diff.iculty in checking may 

be the reason for this difference. 

The Logictutor was not developed any further because it did 

not provide enough complexity in either the production set 

or the language described by the rules to test this method 
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of teaching. With the Logictutor, it was clear that if stu

dents failed to understand the notation of the production 

rules, they could not approach the tasks set except by trial 

and error. Their induction was not as crude as that employed 

by Miller's subjects; they explained their strategy as 

determining exactly what the rules meant. This emphasis 

reinforced the view central to this work about the impor

tance of the rules in providing a general model of the 

language. 

~- Generalised System 

In order to investigate further this method of teaching an 

artificial language, it was generalised so that it could be 

used to teach the syntax of any language which could be 

specified using production rules. One object of this gen

eralisation was to determine how complex a language could 

effectively be presented in this way, and another was to 

experiment with various notations for the production rules 

themselves. In particular, the generalised program was 

designed to enable some ideas from Van Wijngaarden's two 

level W-Grammars to be incorporated into the rules. 

As the set of production rules becomes larger, it is more 

difficult to grasp easily as a whole. Two-level grammars 

provide a means of generalising the production rules. As 

explained in Chapter 2, in a two-level grammar there is at 

the top level a context free system for defining metanotions 

in the language; these metanotions may be substituted for 
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hypernotions in the hyperrules which are models of the pro

duction rules, thus the rules of the lower level context 

free grammar describing the language are derived. 

Van Wijngaarden's notation for the context free grammar may 

be used to present the rules to the student. This notation 

is more compact than BNP and has the advantage of including 

a rule terminator. 

The following extracts from rules giv.ing a two-level defini

tion of SEQUEL illustrate the form of input to the sub

program generator: 

Metanotions· 

ALPHA::a;b;c;d;e;f;g;h;i;j;k;l;m;n;o;p;q;r;s;t;u;v;w;x;y;z. 

NOTION::ALPHA;NOTION,ALPHA. 

EMPTY::. 

General Hyperrules 

NOTION list:NOTION;NOTION,comma symbol,NOTION list. 

NOTION sequence:NOTION;NOTION,NOTION sequence. 

NOTION option:NOTION;EMPTY. 

NOTION expression:NOTION term; 

NOTION term,NOTION operator,NOTION expression; 

left par symbol,NOTION expression,right par symbol. 

Hyper rules 

statement:Basic Query expression. 

Basic Query term:Label option,se~ection list, 
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where clause option. 

Basic Query operator:union symbol; 

intersection symbol; 

difference symbol. 

Label:string,colon symbol. 

string:letter sequence. 

letter:letter ~HA symbol. 

selection:select from option,table name, 

group by option, dupl option. 

The generation of a recursive descent syntax checker from 

the rules turns out to be quite simple as explained in 

Chapter 2. A function which returns "True• or "False• 

according to whether or not it recognises a notion is gen

erated for each notion in the language. The general hyper

rules are dealt with by functions of functions which utilise 

the simple functions and return "True• or "False" as each 

hypernotion is recognised. By retaining recursive descent as 

the checking method, the final program can still obtain a 

measure of the comp~exity from the depth of recursion and 

can pinpoint with ease the cause of errors in a production. 

The programming of the sub-program generator, to p~oduce the 

sub-program which presented examples to the student, brought 

out the need to examine how a context free grammar (CFG) may 

be used to generate expressions w.ith a specified level of 

difficu~ty. In theory, a CFG is specifically a generative 

grammar. A· CFG generates an expression in the ~anguage it 
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defines as follows: 

(i) . Start with the string (called the "string in hand") 

consisting only o{ the distinguished symbol. 

(ii) Apply productions from the grammar's set of production 

rules to the string in hand until it consists only of 

terminal symbols (i.e. members of the terminal vocabu-

lary). 

Such a string is said to be a member or expression in the 

language generated by the grammar (Martin, 1972). 

Depending on the replacement alternative chosen from any 

particular rule when it is applied, different statements are 

generated. A systematic method of application is required 

for generating statements with specific properties. For any 

given grammar, it may be possible to outline a strategy 

which enables statements with·a desired property to be gen-

erated. Wexler (1973) brought up the problem in his report 

without attempting a solution: 

"There are two important dirficulties that. arise with 
problem generators that are not dealt with in this 
current design. One involves the need to generate prob
lems of a particular level or degree of difficulty. The 
other difficulty of problem generators is more subtle: 
how to generate problems that have particular kinds of 
features or properties." 

The next section discusses work which addresses these 

issues. 
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S.A A More Detailed SEQUEL Example 

The following example of text generated from the W-Grammar 

for SEQUEL illustrates how explanations are automatically 

dealt with during parsing and generation of examples by sub

programs. It also illustrates some of the difficulties 

encountered. 

The rule is 

ATOM TERM: 

TABLE NAME_OR_LABEL_OPTION 1 COL NAME; 

SET FN; 

RRB-SYMB I COL NAME I LRB SYMB. 

The procedure for parsing this generated from the above rule 

by the subprogram generator is as follows: 

ATOM TERM : PROC RECURSIVE 

RETURNS(BIT(l)); 

DCL R BIT(l); 

IF EXPLAIN THEN CALL MM( 1 ATOM_TERM? 1
); 

IF OPTION(TABLE_NAME_OR_LABEL) THEN 

DO; CALL READSYM; 

IF COL NAME THEN 

R= 1 1 1 B; 

ELSE R= 1 0 1 B; 

END; 

ELSE 

IF SET FN THEN 



R='l'B; 

ELSE R= I 0 I B ; 

ELSE 

IF RRB SYMB THEN 

DO; CALL READSYM; 

IF COL NAME THEN 

DO; CALL READSYM; 

IF LRB SYMB THEN 

R='l'B; 

ELSE R='O'B; 

END; 

ELSE R='O'B; 

END; 

ELSE DO; R='O'B; 
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IF EXPLAIN THEN CALL MM( 'ATOM TERM NOT FOUND'); 

END; 

LEVEL=LEVEL+ 1 : 

RETURN(R); 

END ATOM TERM: 

As a recognising procedure for each non-terminal element in 

the grammar is generated, correct error messages are genera

ted for use in EXPLAIN mode. For each recognising procedure, 

two statements are included at the beginning and end: 

IF EXPLAIN THEN CALL MM('<element>?'); 

IF EXPLAIN THEN CALL MM( '<element> NOT FOUND'); 

These also occur in the functions for the hyper-rules as the 

following procedure illustrates: 
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SEQUENCE: PROC(NOTION) RECURSIVE RETURNS(BIT(l)); 

DCL NOTION ENTRY RETURNS(BIT(l)); 

.DCL (RESULT,FOUND) BIT(!); 

IF EXPLAIN THEN CALL MM('SEQUENCE-'); 

FOUND,RESULT=NOTION; 

DO WHILE(RESULT); 

CALL READSYM; 

RESULT=NOTION; 

END; 

LEVEL=LEVEL+ 1 ; 

RETURN (FOUND) ; 

END SEQUENCE; 

Executing the recognising proc~dure in the example given 

above, a successful parse of an atom term consisting of 

PARTS BOLTS 

would give the following explanation in EXPLAIN mode: 

ATOM TERM? 

OPTION-

TABLE NAME OR LABEL? 

STRING? 

SEQUENCE-

LETTER? 

A SYMB? 

A SYMB NOT FOUND 

B SYMB? 

B SYMB NOT FOUND 



and so on ••• 

P SYMB? 

LETTER? 

A SYMB? 

LETTER? 

A SYMB? 

A SYMB NOT FOUND 

and so on •.• 
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While this explanation is correct at a low level, it is 

rather long winded. It does have the advantage of reflecting 

the action of the parser in che~king an example. 

The problem of generating a helpful explanation for the sub

program to use when explaining the generation of correct 

statements is equally difficult. These also can be automati

cally generated from the grammar by producing the following 

statements at the beginning and end respectively of the gen

erating procedure for each element in the grammar: 

IF EXPLAIN THEN CALL MM( 'ADDING <element> USING <rule>'): 

IF EXPLAIN THEN CALL MM( '<element> ADDED'): 

Thus, from the rule for TABLE_NAME_OR_LABEL, the explanation 

generated is as follows: 

ADDING TABLE NAME OR LABEL USING TABLE NAME OR LABEL:STRING. 

ADDING STRING USING STRING:LETTER SEQUENCE. 

and so on. 
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These explanations are equally long winded, and not particu

larly illuminating. 

In both cases, recognising and generating examples, EXPLAIN 

mode is automatically activated by the student making 

repeated errors. It may also be entered at the request of 

the student to explain a particular example. 

The statements incrementing the variable, LEVEL, in the pro

cedures given above illustrate the simple measure of com

plexity used in the early versions of the software to gauge 

the depth of recursion and number of procedure calls. The 

LEVEL variable is local to both the parser subprogram and to 

the generator subprogram: in both it is initialised to zero 

and incremented by each subprocedure call within the respec

tive subprograms, thus giving a measure of the number of 

calls to either parse or generate an example. This measure 

was improved ·by calculating an associated generative power 

for each alternative within a rule. 

This general system can improved by importing more appropri

ate explanatory text into the grammar. Illustrations of 

this improvement and other improvements are given in the 

following section. 
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S.B Illustrations of Difficulties Generating Examples 

and Solutions Employed 

Algorithms for generating examples are summarised in Section 

6. This sections illustrates with examples some of the 

specific difficulties and solutions employed. 

An alternative approach which allows for the inclusion of 

more appropriate explanation is to extend the grammar which 

drives example generation to include a teaching strategy 

with associated explanations. Importing explanatory text 

and the teaching strategy into the grammar allows a finer 

level of control to be exercised in the generation of exam

ples. The disadvantage of this approach is that the grammar 

of the language is compromised by that addition of these 

rules. The subprogram for recognising, ie checking, examples 

is generated as before from the unalterated syntax. 

The grammar below illustrates how lesson on SEQUEL SELEC

TIONS is generated beginning with a simple example followed 

by an explanation and finally a complex example. 
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SELECTION LESSON:SIMPLE SELECTION_EXAMPLE, 

SELECTl_EXPLANATION, 

COMPLEX SELECTION EXAMPLE. 

SIMPLE SELECTION:SELECTION. 

SELECT!: 'THE PREVIOUS EXAMPLE CONSISTED OF A SINGLE SELECTION.', 

'IT IS POSSIBLE TO CONSTRUCT A SELECTION WHICH IS A LIST OF', 

'SINGLE SELECTIONS AS THE NEXT EXAMPLE WILL ILLUSTRATE.'. 

COMPLEX SELECTION:SELECTION LIST. 

An Example of a Simple Strategy. 

The strategy is quite simple: progress from an non-recursive 

alternative, SIMPLE_SELECTION, to the recursive alternative 

via the explanation given. 

The code generated for this lesson is as follows: 

CALL EXAMPLE(SIMPLE_SELECTION): 

CALL EXPLANATION(SELECTl): 

CALL EXAMPLE(COMPLEX_SELECTION): 

A further SEQUEL example is given below to illustrate the 

problem of generating examples with semantically consistent 

variable names. In the general system, the subprogram for 

generating examples is driven by purely syntactic rules. 

Even in a simple language such as SEQUEL where a production 

is essentially a single statement, randomly generated 

strings while correct detract from the comprehensibility of 

the example. The first of the following examples with ran

domly generated names is less comprehensible than the second 
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in which the names refer to components of a database. Both 

.statements have the same correct syntactic form. 

SELECT AXYD, SUM{NPEK) FROM JSLT GROUP BY IVOB 

SELECT DEPT, SUM(UNITCOST) FROM PARTS GROUP BY DEPT 

This problem can be overcome by introducing a consistent set 

of variable names into the example grammar used for genera

ting examples. This restricting the generality of the gram

mar so that only semantically meaningful names appear in 

examples need not be reflected in the rules used to generate 

the recognising subprogram. 

The generation of negative, that is incorrect, examples in 

the earlier versions of the software was accomplished by 

wrecking correct examples by randomly removing elements. 

While not guaranteed to succeed, this proved adequate for 

simple grammars. It has the disadvantage of producing ran

domly incorrect examples. A more satifactory solution is to 

incorporate rules for generating examples which illustrate 

common mistakes into the example grammar. 
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s.c Prospects of Practical Application of this Work 

The ideas developed in this thesis and their implementation 

discussed here could form the basis of practical applica

tions of this method for other programming languages, but 

further refinement of the methods and re-implementation of 

the software in a portable language is recommended. The 

current implementation in the PL/1 language is restricted to 

machines supporting PL/1, typically IBM or IBM compatible 

mainframes; a more widely available language such as C or 

Pascal would be better employed in any further development 

to achieve portability. 

Many of the difficulties discussed in Section S.B above are 

the result of the software developed being restricted to 

handling syntactic rules rather than being driven by rules 

handling both syntactic and semantic aspects of programming 

languages. The solution employed with SEQUEL of restricting 

names to consistent database model is not generally applica-

ble with other languages. In procedural languages, the 

requirement for consistency between declaration of variables 

and the scope of their usage could be addressed by using W

Grammars predicates. 

From an aesthetic standpoint, the formatting used by the 

software is merely adequate. It would be desirable to intro

duce additional notation into the grammar for indicating how 

generated expressions are to be displayed. Such developments 

could benefit the results of work in information display in 

the field of Graphics. 
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~- Algorithms ~ Generating Examples 
-. 

In the more general teaching system, a •top-down• approach 

to generation was attempted. This took two forms which might 

be characterised as explicitly recursive and explicitly 

non-recursive; the main distinction was the way in which 

recursively.defined notions were handled. Using these two 

methods, generators for the SEQUEL ~anguage were produced 

and an evaluation of these generators now follows. 

In the SEQUEL generator (version 1), the branches are merely 

chosen at random. This method of generat.ion has been reGOm-

mended by Neil Rowe (1978). It is only adequate for simple 

grammars; in particular, if there are several recursively 

defined notions in the language, this method cannot be 

ensured to terminate in a reasonable time. Using this method 

of generation with the SEQUEL grammar, it was not possible 

to gene.rate SEQUEL statements. More importantly, it offered 

no control over the complexity of the statements generated. 

It must be concluded that if it is desired to have some 

mechanism whereby statements with specified levels of diffi

culty are generated, mere random replacement is· not ade-

quate. 

In a second generator, statements are generated by a random 

replacement scheme only where the notion is riot recursively 

defined. In this modified form, all explicit recursion dur

ing the generation of examples is removed; all recursive 

notions are dealt with by iterative genera~ion of limited 
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length. If an easy example is required then all options are 

omitted and the minimum number of symbols are returned from 

functions generating any recursively defined notion. This 

method, while resulting in productions for most grammars, 

may not terminate in a reasonable time if the grammar has 

several indirectly recursive notions. It does not allow for 

the specification of a very exact measure of difficulty of 

the individual examples either. The generation of hard and 

easy expressions is adequate for some teaching systems but 

is rather unsatisfactory for those where the teaching stra-

tegy requires a gradual progression from very easy to more 

difficult examples. 

The third generator uses a set of rules to guide generation. 

These take into account the generative power of each alter-

native and allow for a finer discrimination to be made 

between alternative branches. 
' 

The knowledge of how examp~es with the required properties 

are to be generated is impozted into the production rules. 

The trade-off is that the production set loses generality. 

Two sets of production rules are required: one which gives a 

general model of the language and which is presented to the 

student for reference; and another which embodies a teaching 

strategy and is used to generate examp~es for the student to 

check. 

The system outlined above would seem preferab~e to that of 

Koffman (1972), who employed a "probabilistic grammar" to 
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generate logical expressions for use in a computer-aided 

instruction program. A probabi~istic grammar is formal 

language in which every rewrite ru~e is assigned a probabil

ity of being applied. The teacher must specify separately 

the method for initialising and updating the probabilities, 

and there is the overhead of recalcu~ating the probabi~ities 

after any change in the student's ~evel of competence. 

Allowing the teaching strategy to be expressed entirely in 

the production rules enables the teacher in effect to pro

gram using the grammar only as an author ~anguage (Barker 

and Singh, 1982), and has the advantage that no other 

specification is necessary. 

:z. Conclusion 

A grammar only comes alive when it is used, so in further 

work'on a more generalised system it must be recognised that 

the language most effective~y being taught is the notation 

which describes the grammar, for it is that notation which 

the student must first come to understand. The syntax game 

programs described here are most effective at testing a 

student's understanding of the grammar or production rules 

notation. The ultimate productions are in a sense disembo

died and do not have any honest employment in the syntax 

game program; it is the production rules that are actually 

given a sense by their use in producing exprssions in the 

language. Nevertheless, this does not detract from the merit 

of the programs. They provide an introduction to particular 
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languages through their syntax, while at the same time giv-

ing the student practice at understanding the notation of 

the formal definition. 

The advantages of defining a programming language formally 

are obvious (Zemanek, 1974). A formal definition of a pro-

gramming language enables a student to grasp the language as 

a whole rather than by piecemeal induction. If the notation 

of the formal definition is not easily understood, these 

advantages cannot be realised to their full potential. 

While students should not be encouraged to neglect writing 

programs when getting to grips with a programming language, 

a familiarity with the syntax of the language is a helpful 

preliminary which will cut down the occurrance of syntacti-

cal teething troubles and will better equip the student to 

use the language to its _full power. As George W. Cherry 

noted in the Preface to his textbook on Pascal: 

"I have taken very seriously the careful explication of 
Pascal's syntax. It's gratuitous frustration for a stu
dent to wrestle with a malfunctioning program because 
his textbook failed to elucidate some syntactical 
banana peel it's easy to slip on." (Cherry, 1980). 

Where the production set is large, decomposing the rules for 

separate presentation is of value provided the rules are 

linked together in a wider context of usage, preferably in 

actually writing programs. 

Just as Miller distinguished between people learning to make 

the machine behave in a certain way and those gaining an 

understanding of the language, familiarity with the formal 
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definition of a programming language gives the programmer a 

means of generally understanding a program as opposed to 

understanding the particular meaning it may exhibit when it 

is run. We must clearly differentiate between concrete 

implementations of languages and theiz abstract definitions; 

it is knowledge of the latter which enables programmers to 

gain an understanding of the meaning of their programs and 

to rise above the ability to simply make the machine do 

things. As programming languages move further away from 

their machine-code origins and become more fully abstract 

(Geurts and Meertens, 1978), it is imperative for program

mers to acquire this understanding so that they may benefit 

from these conceptual advances. 

Ideally the grammar of a programming language should reflect 

its usage, so that its application becomes transparent in 

the formation of the problem solution. This implies a gram

mar of problem-solving. ln pzogzamming, analysis of the 

problem is often fo~lowed by two separate steps: construc

tion of the solution and translation of the solution into a 

program. We should be thinking of grammars which will bring 

these two steps together. 
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CHAPTER 4 Conclusions 

~. .The. Results M. .thi.a .ri.cW.t 

The fundamental importance of grammar and its role in 

describing programming languages has been established, and 

this has been shown to be the basis of a successful method 

of teaching programming languages. 

This work has also demonstrated the adequacy of production 

systems for specifying not only the grammar of programming 

languages but also the teaching strategies to be employed in 

teaching a particular programming language through its for

mal definition. 

2. Applications 

2.~. .The. Design QL Structured. Editors And Teaching ~ 

pilers 

In recent years, there has been a trend in microcomputer 

software for the compiling and editing modes to be linked so 

that errors detected by syntax analysis can be easily 

corrected. The UCSD Pascal System (Bow~es,l980) has a confi

gurable STUDENT option switch. If this switch is set to true 

during compilation, the first syntax er.ror will cause the 

system to enter the editor; the syntax error message will be 

displayed on the top of the screen and the cursor will be 

positioned at the point in the program where the error was 

detected. 
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The BASIC interpreter incorporated in Sinclair microcomput

ers (Boldyreff, 1980) has a similar facilty; it will not 

allow the user to enter in syntactically incorrect BASIC 

statements. These are signalled by an inverse s on the line 

being entered as soon as an error is detected. Economy does 

not allow for any more helpful error messages. 

As more and more people untrained in programming are pur

chasing personal computers and teaching themselves program

ming, these trends towards self-explanatory error detection 

are becoming increasingly important. The methods used by 

the UCSD Pascal System and the Sinclair BASIC interpreter 

are only a beginning in the right direction. Using the 

methods outlined in this thesis, it would be possible to 

construct a system incorporating a full explanation of its 

working. Such an explanatory mode would not necessarily be 

of interest to every user of the system and would obviously 

need to be optional, but it would enable the adventuresome 

users attempting to teach themselves programming to gain an 

insight into and a better understanding of the programming 

language being used. 

2.2. Studjes in Programming Behavjour 

Recent empirical studies (Green, l980) have shown that cri

ticism of one syntactical form, the nested conditional, was 

unfounded. Green and his colleagues investigated program

mers' understanding of programs written in both un-nested 

and nested forms, and concluded that programmers found that 
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there was little to choose between the forms in straightfor

ward application and that where the application was not 

straightforward, the un-nested form was much more difficult 

to understand. Green speculates on the '.ideal' construct for 

nested conditionals and urges readers to try out more real

life studies. 

The system I have developed could be easily modified to pro

vide an experimental testbed into the suitability of various 

syntactic forms, as well as understandability of various 

programming styles. The experimentor would simply need to 

specify the syntax of the .forms to be investigated; from 

these a subprogram to generate examples could be produced. 

The tutor program could be easi~y modified to administer 

experiments and monitor and time the subjects responces. 

~. Recommendations !QL Future ~ 

The above sections on applications give examples of how pro

duction rule and grammar based systems have an immediate 

role in programmer education, and provide the basis for 

creating an experimental testbed for carrying out investiga

tions into programming behaviour. 

Programming languages are the primary vehicle used for pro

gramming today; future languages may be directed more 

towards specifying the solution required rather than 

describing the step-by-step method for achieving the solu

tion. The evolution of programming languages and their 
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associated grammars will present new challenges to teachers; 

however, given the fundamental importance of grammar, the 

results established here will remain relevant. 

The adequacy of production rules for 

teaching strategies outside the 

the specification of 

field of programming 

languages and their use more generally as a specification 

language remains for future investigation. 
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