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ABSTRACT

The aim of this thesis is to calculate the bound state
energies of molecular dimers. The problem is formulated
for a system consisting of any two |Z_diatomic moleculés,
treated as rigid rotors. Simplifications which arise from
symmetry considerations are fully discussed. The de
- Vogelaere and R—matrix—propagator algorithms have been used
to solve the resulting systems of coupled second order
differential equations. Their numerical convergence prop-

erties are compared in test calculations on the Ar-HCl system.

The above methods are used to calculate the bound state
energies of H,-H,, using four separate ab initio potentials.
The CI potential of Meyer, Schaefer and Liu (designated "M80'")
is found to give the best agreement with spectroscopic
measurements, though a small shift in the position of the
repulsive wall is indicated. The M80 potential is then used
in the remaining calculations; these include the evaluation
of . the energies of resonances and bound states lying
above the dissociation limit of the dimer, corresponding to
rotationally excited H2. The results of these calculations
are used to assess the validity of approximations made in
the proposed‘identification of Hy-Hy features in the far

infrared spectra of the Jovian atmosphere.

.'The'Born—Oppenheimer approximation permits the use of
the M80 potential to calculate the bound states and res-
onances of D2—D2. That some of these resonances have dual
Feshbach/shape character is noted. The dimer structure,
accompanying the observed near infrared S,(0) and Q(0)

+ 5,(0) spectra in ortho-deuterium, is modelled by treating
the two D, molecules as distinguishable rigid rotors. We
conclude that the experiments provide evidence both for -
rotational splitting of the levels and for internal
~rotational predissociation. Alternative line assignments

to those hitherto made are also suggested.

We end with a general discussion in which suggestions

-for future work are made.
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CHAPTER ONE

INTRODUCTION




1.1 Motivation

The complémentarity‘of studies of low energy scattering
of electrons, e, on positive ions, me, and'of the
- electronic structure of the corresponding bound state
system, Xfm_1)+,‘haé been recognised for many years.
Véry similar numerical techniques may be applied to
both,the‘boundAstate and scattering problems (e.g. Seaton
and Wilson 1972, Seaton 1974). By following this approach
information de?ived from spectroscopic measurements
(m-1)+ may be used to obtain accurate values of
the cross-sections for the excitation process
oM | om+ * _
X + € — (X ) + € (1.1)
near threshold. AThe results of these calculations find
important applications in tﬁe stﬁdies of many types
of astrophysical plésmas,

In the dense molecular clouds of interstellar space,

rotational excitation of molecules, M, occurs principally

in collisions with molecular hydrogen,

. ’ . -/
M(j) + H, — M) + Hy y (1.2)
at enefgies close to the rotational excitation thresholds.
The corresponding cross-sections are required to interpret
the microwave spectra of the molecular clouds.

A prerequisite in calculations of cross-sections
for processes of type (1.2) is a knowledge of the relevant
M-H, electronic potential energy surfaces (e.g. Green

~and Thaddeus 1976, Green et al. 1978). The M—H2 interaction

~is, for non-reactive systems, strongly repulsive at

BT
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LG ST



short range, where the electron charge distributions
of M and H, overlap, and.Weakly attractive at long range,
owing to the dispersion (van der Waals) interaction. ‘
The other contributions at long range are the interaction
between the permanent electrostatic multipole moments
of the moleculeé,.and that between the permanent and
induced.multipoles.- The latter interaction, called
the inductionbenergy, is generally unimportant in neutral
systems. The iong'range‘permanent-electrostatic energy
ié dominated‘by the dispersion energy except in highly
polaf systems such as H,0 - HZO‘ At some intermediate
distance; there is a potential minihum, where the attractive
gnd repulsive forces cancel. The valﬁés of rotational
excitation cross—seétions, at low collision energies,
are particularly sensitive to the form of the M-H, inter-
action in the region of this potential well.

if the potential well is sufficiently deep, it
can. support bound states of,the M-H, system. It follows.
that.spectroscdpy of the molecular'dimef, M-H,, can
yield valuable information on the M-H, interaction in
.the regibn of the well. It is this part of the interaction
‘which is the most difficult.to_determine theoretically;' |
spectroscopy should thus also be helpful in assessing
the.relative merits of different approximations used:
in any such potential calculations. Given the potential,
the bound state eigenenergies may be calculated and
the resultiﬁg transition frequencies compafed with egperi—

ment. These calculations may be carried out using numerical



techhiqueé similér to those employed in studies of rota-
'tional”eﬁcitation. Le Roy and Carley'(1980) have reviewed
calculations on atom-diatom systems. The problem of.

a dimer consisting of two diétoms is receiving growing
atfention,lahd the work reported in this thesis will
reflect that trend.

A more direct motivation for the study of van der
Waals moleéules is the possibility of observing their
spectra in the interstellér medium. Of the sixty or
N -Yo) mqlecular'species observed to date, some,-such as
HZCO and HCO, have low thermochemical stability (Dalgarno
1975; Millar and Williams 1985). Most of these molecules
are observed in the cold dark clouds of interstellar
gas and their higher denéity cores. Storey and Cheung
(1978) have carried out a search, at fadio wavelengths,
for evidénce,of the HCN - HCN<dimer in several interstellar
ciouds. No sgch evidence was found, and they were able
to place an uppér'limit of around 1% for the abundance
of the dimer relative to the monomer. A similar conclusion
was reached by Vanden Bout et al. (1979) regarding the

concentration of the CO -CO dimer. They searched 11

interstellar clouds at the frequenéy 1.458 GHz (0.0486 cm
which is an observed laboratory ;ransition of the dimer.
Vanden Bout et al. also suggested that a similar searcﬁ
for the Hy, - CO dimer could well be more fruitful; however,
they were prevented from carrying out such a search

beéaﬁse of difficulties in obtaining either parallel

laboratory radio-frequency measurements or accurate



theoretical results.

The‘prepondérance of H, in the interstellar medium
makes the associated dimer another candidate, though
the binding energy of H, - H, is only about 2.4 em™ L.

It- had been suggested that éollisioﬁ induced dipole
radiation arising from the radiative association process
Hz + Hy — HZ—HL + HV (1.3)
could be important in interstellar Hydrogen gas (Schaefer
1982a, Schaefer and Meyer 1983). Indeed it was claimed
that radiation from this process could account for an
observed exéeSS’in the cosmic microwave background between

14 and 20 cm_1

(Gush 1981). However, it was shbsequently
realised (e.g. Froﬁmhold et al. 1985, and references
therein) that the original calculations predicted a
hugely inflated dimer formation rate by~the'process
(1.3). Recéntly, a more plausible explanation for the
observations oﬁ Gush (1981) has emerged: de Bernardis et
al. (1985) Eave proposed the existence of far infrared
emission from extragalactic dust, heated by a near
infrared cosmological baCkground.

Humphries and Horton (1977) have argued that structure
accémpanying Lyman'absorption lines of H2 may be due
to the presence of the H, dimer in diffuse interstellar
clouds.. Even allowing for some enhancement of the formation
process (1.3), due to the presence in these clouds of -

rotationally excited H2, it seems unlikely that sufficiently

high concentrations of the dimer could exist. Spitzer



and Morton (1976) have attributed this structure, observed
by the Copernicus satellite, to a Doppler effect resulting
.from components of the interstellar cloudslmoving.with
different velocities. |

| Cpnvincing'aétronomical evidence of H4 dimers has,
however, come from another source : the far infrared
observations by the Voyager spacecraft of the atmospheres
of Jupiter ‘and Sétﬁrn (Hanel et al. 1979, Gautier et
al. 1983). These observations, which will be discussed
elsewhere in this thesis, provide information on the
drtho—H2 to para-H, ratio_as-well as on the general
physical conditions in these planetary atmospheres.
The questions of whether van der Waals molecules exist
in meésurable quantities in the iﬁterstellar‘medium,
and if obsérvations of their spectra could yield useful
information on physical conditions there, remain'open.

1.2 Potential energy surfaces

1.2.1 The ab initio calculation of potential energy
surfaces. Implicit in the above reference to potential
énergy surfaces is the assumption of the Born-Oppenheimer
'approximation. This permits a separation of the motions
bf the rapidly moving electrons from those of the nuclei
(e.g. Green 1974, Gianturco 1980). Most of this thesis
will be concerned with the nuclear dynamics; here we
briefly 6utline the sélution of the electronic Schroedinger
equation, the eigenenergies of which pfovide the potential
surfaces on which the ﬁuclei move. A large number of

excellent revieéws of this subject exist; the author



~ found the short articles by Green (1974), Balint-Kurti
(1975a) and Pople (1982) particularly helpful. |

If the nuclei, X , are fixed at a geometry, denoted by
 the coordinates Q_  , the totél Hamiltonian of the system
reduces to an effectiQe electronic Hamiltonian. 'THe terms
in tﬁis;are the kinetic energy of the electrons, i, and
tﬁe>Coulomb interactions, involving the electrons and nuclei:
Vuw. ; Vi ,and Vi, . Fér a system consisting of two
closed shell'molecules, spin-orbit coupling terms may be
neglected. The Schroedinger equation for the motion of
the electrons in a system of two interacting molecules,

A and B, is written as
[H® (30500 - £%%(@0) ] WP (3:5.09= 0a.e)

To map out a potentiai energy surface, (1.4) must be solved
for seVeral values of the nuclear coordinates, Qx . The
interaction energy is found by subtracting the electronic
energies of the isolated molecules, gA aﬁd EB, from the

total electronic energy, gAB,

Great care must be taken to
reduce cancellation errors in this procedure.

This cancellation problem can be avoided, for large
intermolecular separations, by calculating the (small)
interaction energy directly using perturbation theory
(Buckingham 1967, Leavitt 1980). The perturbation Hamiltonian,
VAB is given by . _

A
v = H® ~ (H" +H ) | o (1.5)
AB ' ‘
where H and H® are the (electronic) Hamiltonians of the
two isolated molecules, A and B. If the wavefunctions of
the isolated,'ground state, molecules are known, we can

write down the first order contribution to the interaction

~energy:
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Vig | As B, | (1.6)

(0 -
\/int - <A°»B°
The zeroth ofdef wavefunction.is just a product 6f those
for the isoléted systems, reflecting an assumption that
the charge clouds do nét overlap. Altérnatively, a
muitipole expanéion of VAB may be performed, leading
to an expression for the long-range first-order inter-
action in terms of the permanent multipoles of A and
B (Gray}i9683 Maitland et al. 1981). These may be obtained
either‘expérimentally or by quantum mechanical calculations
on the individual molecules.' We have thus obtained
tﬁe permanent électrostatic energy contribution to the
long range interaction.

The indﬁction and dispersion terms are found by
going to second order, the Rayleigh-Schroedinger expression
being given by

VB 3T KA N A er + ER el -E) .
: )J¢o o -

Ai is the ith

EiA. The ground state terms and those applying to molecule

excited state of molecule A with eigenenergy

B are similarly defined. The dominant dispersion contri-
bution, which is due to the correlation of charge density
fluctﬁations in A and B, is given by the sum of the
terms.in (1.7) excluding those for which either.i or

j corresponds to.alground,electronic state (o). As

in the electrostatic case, an explicit form for the
dispersion energy can be written, as a power series

in 1/R, in terms of the properties of A and B. By way

of example, the leading term in the dispersion interaction

between two rare gas atoims is given by (Buckingham 1967)



' X KX - :
Vi, (R) = _{iéjoufu )A B% R™" (1.8)
: P A B
where U and & are respectively the ionisation potentials
and the polarisabilities of the interécting atoms, sep-
arated by a distance R. This provides the theoretical
basis for the attractive contribution to the well known
Lennard-Jones 6-12 potential: |

Vv (R) = cR™™ - O“'RA—E | (1.9)

For a system of two interacting molecules, the coefficient
d will be geometry dependent. No justification for

the R"'12

behaviour exists, other than the empirical
présence of a strong short—fange repulsive barrier.

The short-range forces arise from the overlapping
chafge distributions of the interacting molecules.
As alluded to in equation (1.4), the system can be treated
és é single supermolecule using the same techniques
as for many;eléct;on atoms and molecules (H.F. Schaefer

1972). The intefaétion energy is given by the following

expression _ :
Vont '.:<’\VARIHAB v - ALY - (8 IHTIR) (1.10)

where the integrations are performed over the coordinates
of all electrons. The three terms 6n the right hand
side of (1.10) should all be calculated in the same

way so that any errors approximately cancel. Consider

AB

" the first term, which is the energy, E ~, of the super-

molecule in its ground electronic state. We know from



the variational theorem that a normalised trial wavefunction

may be used to provide an upper limif to this:
erial [ AR |yt AB | AR As) = AR
v A W > > (YAt v £ (1)

In the Hartree-Fock (HF) method, the compound trial
wavefunction is taken to be a single Slater determinant
of molecular spin-orbitals. - For a closed shell super-

‘molecule with N electrons, this is written
O (Nt B4t - - - B
G (v Pk - - - - pa
¢, (Wt g @ - - - - Ba (119

'

R

[}
|
]

¢N[1 (‘b\) V @, /J_(‘lz) 2 D, /ﬁ"”

The (N!)_;2 factor is a normalisation factor arising

 from the fact that the Slater determinant is an antisymmetric
combination of all possible (N!) permutations of simple

- products of N spin-orbitals. The Pauli exclusion principle
is automatically satisfied by such a determinantal wave-
function. The arrows denote the spin functions of the
electrqns."Thé (space) orbitals @ are defined as functions
of the coordinates of a single electron. These molecular
orbitals are varied so as to minimise the energy, in
keeping with the variational principle (1.11). The
condition that this energy be a minimum leads to the
Hartree-Fock equations, which each of the indiyidual

molecular orbitals satisfy:



F (1 Qu) P (1) = ‘EL P (1‘> | (1.13)

These equations deétribe the motién of a single
electron, assigned to the orbital @, moving in the
averaged field of thé other electrons. The Fock Hamiltonian,
F, is itself depeﬁdent on the orbitals themselves due
to'the.'preéence of .a direcvaoulomb interaction and
an exchangé interaction; the latter term arising from
the:x;ymmetry of the Hartree-Fock wavefunction. The
‘HF‘equatibﬁs (1.13) must thus be solved iteratively.
Starting with:an educated guess for all of the molecular
érbitals”¢i, F is evaluated. Equation (1.13) is then
used to calcuiate a new set of ¢i, which in turn are
used to calculate an improved F. This cycle is repeated

until F does not change to within an acceptable tolerance.

The orbitals thus determined can then be substituted

 in;(1.12) and thence in (1.11) to yield the self-consistent

‘fiéld (SCF) energy, a.term which is self-explanatory

given the above prdcedure. ‘Although there is no universally

recognised convention, the term '"Hartree-Fock energy"

is usually-re§e¥Ved.for the exact solution of the HF
’equations. |

It is not praéticable to obtain a numerical solution
ofAfhe'HF equations for systems consistihg of more than
- - two atoms. -Théy may; however, be solved by expressing
the moiecular orbitals as a linear combinatibn of atomic
‘ofbitals'(LCAO) centred on each of the nuclei (e.g.

Bunker 1979a):



¢L = j[_ CL‘) XJ ’ (1.14)

The éoefficien;s, Cij? of thiS'expaﬁsion are varied
so as to find the best solutions of (1.13). The accuracy
of the final results will clearly depend on the atomic
orbital basis'sét used. Each atomic orbital, 2}, is
generally represented by a number of either Slater
type functions or the computationally convenient, though
less realistic, Gaussian type. The basis set ''quality"
is determined by four factors : the type of functions,
the level of optimisation of the parameters of these
functions, the number of functions used to describe
each atomic orbital, and the number of polarisation
functions per érbital. Polarisation functions are functions
with higher'quaﬁtum numbers than the occupied atomic
orbitals. A more systematic approach to assessing the
basis set qgality,has been investigated by Burton et
ial. (1982).

We note at this point that an incomplete basis
set will lead to a conﬁribution to the interaction énergy
known as the basis set superposition error (e.g. van
der Avoird et al. 1980). This is purely an artefact
of the calculation. The energy 6f the supermolecule
ié artificially lowered (though it is still above the
true value) due to the admixture of basis functions
centred on one.molecule with those of the other. A
concﬁrrent lowering is absent from the energies of the

isolated molecules, calculated with the same atomic



orbital basis set. The result is to make V.t too low,
thqs:overéstiméting the well depth. This problem can

be éircumvénted byAintroducing a similar degree of basis
flexibility in the calculation of the isolatea molecule
energiés. ”The energy of each isolated molecule is cal-
“culated, for every point on the potential energy surface,
with so-called ghost orbitals placed at the position
occupied by the other molecule in the corresponding
'supérmoleculé calculation . The basis set superposition
errors, which are then present in all three terms on

the right hand side ofl(1.10), hopefully cancel. This
.is known as the function counterpoise method (Boys and
Bernardi 1970, Wells and Wilson 1983).

The SCF mgthod is reliable for computing the short
range part of the potential as it accurately describes
the dominant Coulomb.and exchénge interactions associated
with the overlapping charge Clouds}  Unfortunately,
the situation ié rather different for intermediate inter-
molecular distances. This is because.a singie Slater
determinant cannot account for the simultaneous correlation
of two (or more)‘electrqné. The dispersion energy,
which is generélly relatively imbortaﬁt at intermediate
range, is the ih&efmolecular_contribution to the correlation

- energy. The'correlation'energy is defined in terms

of the exact solution of (1.4), EAB, and the'HF>energy,
EHF:‘
ofrt . AR HF
R N =
: : (1.15)



This definition differs from that of Green (1974) only
by‘a'minus sign. Sbme kind of post HF procedure is |
necessary.to‘obtain the interaction energy accurately
in the well'fegion.'

One way to improve on the HF or SCF results is
to take a lineér combination of Slater determinants,
differing in the choice of.mdlecular orbitals which
"the electrons are assumed to occupy. Each Slater deter-
minaﬁt therefore, correspbndé to a different electronic

configuration. If, for the sake of argument, we define

the ground state HF ‘wavefunction (1.12) as our reference

(or root) configuration, then we can form all single

excitations (or_sﬁbstitutiqns) by replacing one occupied
moiécuiar orbital with an unoccupied one. The maximum
number of sucH excitations that we can make will be
determined by the available atémic orbital basis. Higher
order excitations are similarly defined. The resulting
trial wavefunction to use in the variational procedure

is known as a configuration interaction (CI) wavefunction:

| HF
yero = % o, N (1.16)

The.variational parametefs ay which minimise the energy

afé obtained by diagonalising the matrix of the Hamiltonian
H*B in the basis of the functions/YkHF. This approach,
which is known as the CI method, yields in principle

an exact solution of (1.4) providing that a large enough
number of Slater detérminanﬁs are used in the expansion

(1.16).



As indicated in (1.16), we have used HF. molecular
orbitals to construct the Slater determinants. A much
better éxpansion would result if the so-called natural
‘orbitals (LOwdin 1955) were used instead. Unfortunately,
to determine theée requires advance knowledge of the
exact wavefunction. Approximate natural orbitals may,
howeVer, be constructed either iteratively (Bender and
Davidsoﬁ 1966) or by using pseudonatural orbitals (PNO's)
(Edmiston and Krauss 1966). The PNO's are determined
for selected electron pairs moving in the HF field éf
the remaining electroﬁs; the method utilises the fact
that approximate natural orbitals can be determined
relatively'straightfbrwardly for the simple two electron
problem. By using such orbitals, the number of Slater
determinants in the CI expanéion can be reduced, typically
by a factor of ten, without compromising the accuracy
of the final results.

The CI method can be used for all values of the
intefmolecular_distance, though it does require a large
number of éonfigurgtions even if approximate natural
orbitals are used. - The consequential computational
expense of the CI method has encouraged the development
of approximate methods for treating electron correlation.
Pair theofies are based on estimating the energy arising
from the correlated motion of two electrons at a time.
The resulting pair correlation energies.may then be
either simply added, or coupling terms can be introduced
(H.F. Schaefer 1972, Kutzelnigg 1977a). We may expect

this to be a reasonable approach both because the Hamiltonian



in (1.4) contains only one and two electron operators,
and because the Pauli exclusion principle prevents mofe
than two electrons from occupying the same point in
sbace;

Ab inifio methods for calculating points on a potential
energy surface form a large and a&tive field of researéh.
Only some of the generai ideas have been discussed here.
The potential may be empirically improved by comparing
experimental observations with calculations of the nucleér
dynamics on which they depend. The relevant experimental
observables (Maitland'et al. 1981) includé the non-ideal
behaviour and transport properties of gases, molecular
beam_scattefing measﬁrements and, of course, the spectro-
scopy of van dér Waals molecules.

1.2.2 Fitting potential energy surfaces.  In order

to carry bout dyqamical calculations on an ab ipitio
potential surface, it is necessary to fit the computed
pointé to a suitable functional form. Analytic functions
for describing the.angular dependence of the interaction
betwéen fwo'rigid diatoms will be presented in the following
chapter.' Here-we shall discuss the problem in general
terms.

The interaction potential for a system of any two
- rigid molecules is a funcfion of the separation of their
cenfres of mass, R, and of théir relative orientation.
The latter is:defined by a number of angles (three are
needed for.a.diatom—diatom.system), collectivély denoted

b Ay . For a given radial separation, the angular
y o par g



dependence can be expanded in terms of a convenient

set' of functions faf
'V(.R)—Q(O = 2V, (R) Fov(_n;x) (1.17)

If thé'index ,K;has N values, then a least squares fit
to an n-term expansion (each term denoted by the index
a) may be atteﬁpﬁed3 providing of course, that N » n.
Thus, at each value of R we minimise the quantity

D =2 2 2 V;(@ﬁ(ﬂx) - V‘(R)f-z)%z (1.18)

X
A necessary condition for D to be a minimum is that,
for all b, Qxyﬁ;vb(R)'= 0. This condition leads to
.a system of linear equations, which may be solved to
obtain the potential expansion coefficients, V_(R) (Alexander

and De Pristo 1976):

S VR = THEINTA@I®} o)

If (1.195 can be solved_for a number of terms, n, equal
to the number of geometries, N, fhen the latter may
be séid to have been "optimally chosen'. In this case,
the solution of (1.19) is equivalent to solving (1.17)
for the Va(R) by direct inversion of the matrix f_(--4).
~ We note, in passing, that for large systems of
sﬁch equations, computer routines for matrix inversion
tend to be numerically less stasle than those which

solve the linear equations directly.



- If the angular'quctions, £ form a complete ortho-
normal set, then the radial expansion coefficients may

also be obtained by numerical quadrature over all angles:

VR = @) | VR, a0 a0

The orily disadvantage of this alternative method, employed
‘by Berns.ahd van der Avoird (1980) and Tenﬁysén (1984), is
that.the ab initio potential is needed at a large number
of;geometries. Such large numbers (typically 100) of
poiﬁts are often unavailable.

Once the.potential expansion coefficients have
beén,obfained on a radial grid, using either of the
above procedures, they may be fitted using some form
of polynomial iﬁtéfpolation. Green (1977) has discussed
the relative merits.ofAéubic spline and 5th order Lagrange
interpolatioﬁ in this context.

1.3 van der Waals molecules

1;3.1> Experimental The spectroscopy of van der

Waals molecuies forms a substantial part of this thesis.
Névertheless, it is pertinent to make a few general
comments here. The moleéuiarAdimérs discussed in later
chapters have'beeﬁ‘obsérved either in gas cell absorption
or molecular beaﬁ experiments. The former methodvinvolves
convéntionai spectroscopy of a bulk sample of gas con-
taining the constituent molecules of the dimer in question
(e.g. Blaney and Ewing 1976).

-Dimer‘tréﬁsitiohs are obserVed as fine structure

aqcompanying absorption of infrared radiation due, typically
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to vibratiohal,excifation of oné of the monomers. The

gas sampie:ié cooled to enhance the dimer concentration.

The dimers are formed mainly in 3-body collisions, a
mechanismiwhich is insignificant iﬁ the rarefied conditions
of the iﬁtefstellar medium. In order to reduée the
éomponent of the line widths due ﬁo préssure broadening,
low gas densitieé are nevertheless required. This
‘necessitates_a long optical path length, generally achieved
by mﬁitiblé traversal of_the sample using a system of

: mifrors. Tyﬁiéal‘experimental'Configurations have been
illustrated by Watanabe and Welsh (1965) and McKellar

and Welsh (1972). | ‘

| Molecular beam spectroscopy is a more recent development,

using supérsoﬁic nozzles to produce a much higher con- |
centration of dimers than is possible with the more
conventionél approach above. A gas at high pressure
is-allowed-to4expand, through a nozzle, into a vacuum.

The resulting édiabatic'expansion cools the gas, producing
a:béam of molecules with a very narrow spreéd of velocities.
This can correspohd-to an effecfive translational temperature
which is often less than 1K (Howard 1981) and sometimes
as low as 0.05K (Levy 1981). ‘As the gas emerges from
the nozzle, 3-body collisions produée van der Waals
molecules which are stable with respect to (the less
frequenf)AcOIIisions further downstream. Highly excited

‘ rotationallahd'Vibrational states of the monomers are
depppulated at the low ambient temperatures leading

to a simplificétion of the observed spectrum.



A variety_of spectroécopic techniques may be used
in'conjunction with molecular beams. Perhaps the most
important to date has been molecular beam electric resonance
(MBER) spectroscopy (Klemperer 1977, Howard 1981).
Initially, beam molecﬁles, in a particular quantum state,
pass throﬁgh two focussing fields onto the entrance
slit of a mass spectrometer detector. Microwave or
radiofrequency radiation is then applied to the beam
between the two focussing fields. Absorption of this
rédiation changes the quantum state, and hence the dipole
moment, of the molecule concerned. This leads to a
éoncurrent decrease in beam intensity arriving at the
mass spectrometer.

The complementary technique of molecular beam magnetic
resonance spectroscopy has been used in radiofrequency
studies of rare gas-H, (Waai jer and Reuss 1981) and
Hy, - H, (Verberne and Reuss 1980) complexes. MBER
spectroscopy cannot be used in such instances as‘H2
does not possess an electric dipole moment.

lOther.spectrQscopic techniqués which have been
used with'molecular beams include laser induced fluorescence
and bolometric spectroécopy (Le Roy and Carley 1980).

In the.former, the beam molecules are électronically
excited4by a continuousiwave dye laser; photodetectors
monitor the resulting fluorescence. In the bolometric
méthod, one of the constituent monomers of the dimer
is excited using an infrared laser. The energy absorbed

is converted to heat as the beam strikes the bolometer.



Should the dimer predissociate during transit (by trans-
ferring the monomer excitation energy to the van der
Waals bond), the fragments are scattered out of the
beam and a "negétivé signal" results.

1.3.2 Classification. For the interpretation

and'éséignment of experimental lines, a system of classifying
van der Waals molecules is desirable. Ewing (1976)
has devised a classification scheme for van der Waals
cqmplexes of the type Xy - Y. Tﬁe scheme, which can
be extended to more complex systems, ‘is based on how
strongly the angle dependent part of the potential couples
the rotational states of the diatom.

We begin by defining a quantity AV which is an
"average effective anisotropy' (Le Roy and Carley 1980).
A reasonable way of obtaining this would be to fix the
intefmolecular separation at some suitable average value,
and then to sum the expansion coefficients V_(R) corresponding
~ to non-isotropic terms f_(.n,) (see equafion (1.17)
énd also equation (2.21) in the following chapter).

Weakly coupled complexes are defined as those having

AV <<.AE(j), where AE(j) represents the rotational

level spacing of the isolated diatom. In strongly coupled

dimers, this spacing is Qf the same magnitude, or somewhat
smaller, than fhe average effective anisotropy. The

Arotqr statesvofbthe dimer will then be strongly mixed,
“and j is not even approximately a good quéntum number

aé it is in the weak coupling case. Ashton et al. (1983)

have noted that, in the Ar - HC! dimer, there is a



gradual transition from strong to weak coupling for
_ higher bound states. This is because AE(]j) is larger
for ieveis correlating with higher 'j.

When AV >> AE(j), a high potential barrier to
internal rotation exists and the complex is éaid to

be semi-rigid. 'These systems have a well defined structure,

and it is more appropriate to associate a bending vibration,
father than é rotation, with the (rigid) diatom.

The strﬁcture of a variety of van der Waals molecules
has been illustrated by Hobza and Zahradnik (1980).
J. Tennyson has coined the term "floppy" fo describe
both van der Waals molecules in generai, together with
conventional (chemically bound) species undergoing'large'
internal bending motion. ThiS'thesis deals with the
formef, thoﬁgh it should be borhe in mind that similar
techniques can be used to determine the bound state

energies of the latter.



CHAPTER TWO

THEORY



2.1 Introduction

In the previous chapter we showed how to solve the
Schroedinger equation for the electronic energy. The
result depends parametrically on the positions of the
nuclei. The rest of this thésis is.conéerned with the
solution.of the equations of motidn of the nuclei moving
on this electronic potential energy surface.

We shall work in a boay—fixed frame of reference
in which the intermolecular vector R, joining the centres
of mass of thevtwo diatoms (see Figure 2.1), is taken
as the z axis. Its position relative to the space-fixed
z axis is given by the Euler angles ($ ,© ,0). The
third Euler angle is arbitrary and is set equal to O.

A more formaludefinition of the Body—fixed frame has
been given by 'Tennys;o‘n and Sutcliffe (1982). We shall
see thatAthe problem reduces to a set of coupled second
" order differential equations. Initially the coupled
equations and matrix elements for a system of two dist-
.inguishable‘heteronuclear '2: diatomic molecules;
treated as rigid rotors, will be given. The‘equivalence
of tﬁe space-fixed and body-fixed basis sets and of the
respective representations of the intermolecular o
potehtiai will be demonstrated. 'Starting ffom this
generai system, we shall use any additional symmetries
to reduce the number of basis states in the expansion
of the total wave function and hence the number of coupled

equations which must be solved. The cases where one
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Figure 2.1

Definition of the reference frames used in this thesis.

z' is the space-fixed and z the body-fixed z axis. The
orientations of the two diatoms, referred to the body-fixed
frame, are gl = (64 ,¢4) and %2 = (3é,¢2). ry is the intra-
molecular vector joining the nuclei 2 and 1. A rotation
through the Euler angles (¢,6-,0) takes the space-fixed
into the body-fixed frame.

The nuclei are numbered according to the convention of

Bunker (1979b) (see section 2.6).



or both molecules are homonuclear and where the molecules
are identical are discussed. A number of workers have
effectedisuch reductions in basis dimensionality for
specific systéms by using the appropriate molecular
symmetfy group'(e;g;-Dyke'et al. 1972, Tennyson and
van der Avoird  1982a, 1984a). We shall illustrate
the connection between this and the present approach,
which-is more'in keeping with that adopted by Alexander
and De Pristo (1977) and Heil et al. (1978).

| We shall ignore nuclear spin, but note that this
determinés the multipiicity_of the energy states and
can, in the case of identical molecules, lead to the
exclusion of some'such states through considerations
of the symmetry of the entire system. Inclusion of
nuclear sbih in the calculations would lead to a hyperfine
splitting of the rovibrational energy levels of the
dimer (Verberﬁe and Reuss 1981); Calculations involving
molecules with nonQanishing electronic spin and orbital
angular momentum along the intramolecular axis (i.e.
not ‘Z: ) are more complex, introducing further angular
momenta.couplings. To date, calculations of this type,
whether scattering or bound state, appear to have been
restricted to systems comprisiﬁg a diatom and a structureless
particle. The study by Tennyson and van der Avoird
(1984b) of the He-0, van.der Waals molecule, with oxygen

3 .
in its ground 2 state, is an example.



2.2 Two distinguishable diatomic molecules

The Schroedinger equation for the system in Figure

2.1 is written as

(H Y O | (2.1)
In an inertial'frame moving with the centre of mass of
.the complex, the Hamiltonian is, in atomic units,

2

Hehoh - 2% s VELED o

In equation (2.2) hy; and h, are the rotational Hamiltonians
of the two isolated rigid rotors, and the kinetic energy

operator can be expressed in the following form:

S ve P 2R : |
— Y% = g + 4 2.
24 % 4R IR = (2.3)

2
ég‘ is the angular momentum operator associated with

‘the intermolecular vector R. /AA is the reduced mass
B ~

of the system of four nuclei:

m, + m h'\—"f-m)
(™ 2) (™ * (2.4)

m‘+M1+M3+m,+

We start by expanding "V in a rotational basis:

Pemlt £ g) =) A Fli b TR Y~ THIE 5 )

a~fga ~ N
™R JnJlJtz'“'. (2.5)



Here J is the total angular momentum;with a projection,
M, on‘the space-fixed z axis. jy, is the coupled value
of the.angular momenta, J, and jz,of the two rotors,
witha projectiQnA.nL.on the body-fixed z axis. The
rotational basis function, which defines a channel,

is given by (cf. van der Avoird 1982)

(g \)u-”-TMI‘F‘T R> Y(JJlJ-x“H ) :‘A(E) (2.6)
where

LCTRC T RS N WS
and |

Nf:_ﬂ-(é) ) (1—% ) D:‘i (2,8, (2.8)

The function ‘%lﬁ”(fﬁ' in equation (2.7) is a spherical

harmonic, satisfying the eigenvalue equation

- : .
] A __A-' A .
kl%- 5 )= ﬁL_1%mer) =B ([0 Y () (2.9)
2 T Jll~
a0l
M, 1is the reduced mass of the nuclei in the isolated
diatom, and r,; is a constant since we assume the rigid
rotor approximation to be valid (see Section 2.5){

JJJL Jl).
B, is the rotational constant of diatom 1. C:
1 : e



T
is a Clebsch-Gordan coefficient. .In equation (2.8), NMJL

-is.a normalised symmetric top eigenfunction (Rose 1957)
and 'Dﬁji is a rotation matrix element. Note in equation
(2.9) that the angular momentum oOperator g? behaves
in the same<wéy as it would in a space-fixed frame (Brocks
et él., 1983). The form of the basis functions (2.6)
coﬁld be jﬁstified byvnoting that they are eigenfunctions
of the body-fixed Hamiltonian‘with all coupling terms
removed, as Lé Roy and Carley (1980) have done in the
atom—diatomvcase.' Héd we adopted a space-fixed reference
frame theh we would have written the rotational basis

functions in the usual way (see e.g. Alexander and De

Pristo 1977):
N I\/ A/ A
" (jijajut THE lf“)fL)B)

= Z_ CJ"- LT CJ e >/ ("/)>J/Lm 2 ~)

momamom, ™ P ™ (2.10)
'where~‘4 is the end-over-end angular momentum of the
whole complex. The angular momentum pro jections now
refer, of course, to the space-fixed z axis. The wave-

functions, (2.6) and (2.10), are related through the

unitary transformation (Launay 1977)

Y(jrgn T, T2 R)
i n A T
_Z(z'{-hl)lcd A IV(JJJ“-/{TMEIT)A,;)R) (2.11)

27+

The effect of the parity operator, P, is to invert the

N
space-fixed coordinates in the or1g1n< I)B - Tfa ~t §>)



leading to the result that the parity of the space-fixed
functions (2.10) is '

' J,+ Jr ¥ 4 .
E = (=) - (2.12)

Acting on the right hand side of equation (2.11) with
P we find that the rotational functions (2.6) are not
eigenfunctions of parity, tranéforming thus:
X A A A .
P (JujtJu“ 7M[Eyts, R )
+ . + 2 A~ A A (2.13)
=y TN 7“‘*')f*)5)
Note that, as we only deal with integer angular momenta,

we can set
. B # i
(=) = (=) (2.14)

Functions with well defined parity, & , are constructed

by taking linear combinations of (2.6) and normalising:

y(J JLJIl'n‘ TME[* " R)

D)~ ] ) .
T+J‘1+J|+J1
= [’3(JJ:-JI:."’-TM{V‘ . R) + £() (2.15)
/1
X J(jrdn = 3’”‘**)*\*)’2) RIE IS )
where = | . These functions vanish when _Aa=o

and E(—)T+$1+Jﬁd‘=-ﬁ. The functions (2.10) and (2.15)
form an equivalent basis, the unitary transformation
between them following directly from (2.11) and (2.15)

(Launay 1977):



“:J(JleJ-za TM£|fu~ k)

_ U+ §2)(24+1) a7 A A, A
=2_ ( ) Cz o A H(J'JLJ'VLTMZ’[';‘)B)

AN 227 +1) (2.16)

Expanding the total wavefunction ¥ in the set

of basis functions (2.15) we have

>

R)

(J’MEL)f R) > F(J JLJ.I.mms{R)'f/(J,J,J,l,Ler[r,)~x

Jijrjn

(2.17)

Using (2.17), (2.3) and (2.2), equation (2.1) becomes

h, - 9+ 2 A A
(5| + h, LR %R—’_'R +;f;__z + V(f')fl)R> —E>
. ) z/uﬂ
A A A (2.18)
X'Z—/ , '—F(J’JiJ.Iz._}'\.’ TNEIR)’:‘j(JIIJ{ Jl,a. "’J'Me‘ﬂ)fx)5> = O
JiLdn &

from which we may derive an infinite set of coupled
second—ordér‘differential equations (Arthurs and Dalgarno
1960) for the radial functions, F(R):
45 Fljijuin = TMe(R)

N (2.19)
=2 WO anelOF (i o= 7me [R)

//I‘-

N JIJIL ‘
The close-coupling method involves truncating the above

set of equations by restricting the values of ji and

j;, and allowing the values of jiz and Al permitted

by the good quantum numbers (J and & ). The equations

are independent of M. The coupling matrix, W

W Cinja b ', = TMs R) = Sy
(e jo = 5 11 IR) =80 Skt Sjujt Same 20
X [Bl Jl(Jn"") + BiJ"{J"H) B E]

L il T Tme 4RI TME)

, 1s

(2.20)

A A
f’/‘

-~

JZ))

+2/«<JJ1J'1“7M£'V(~U R)I.I‘JzJu—fL TMED



‘Alsuitable exbansion for the intermolecular potential
must now be chosen to make possible the evaluation of
- the V-matrix elements in equation (2.20). Gioumousis
and Curtiss (1?61) proposed the following_(body—fixedi

expansion:

I

VEE R = 4wl Vyq, . (R) Xw(f.m,,(ﬁ) (2.21)

which is invariant under rotations about the z axis.
The condition that the potential must be invariant under

the parity operator implies that (Dyke et al. 1972)

. R .
vl'i‘/“([o \/‘1"1*7“( ) (2.22)
Taking this inversion symmetry into account we may expand
the potential in the following way:

)

V(+, ?L)R) =2 \/IL‘LL/A(R)%F/(f.)fL) (2.23)

~ ) 1)11/«7/0 1

where

o (i, 2 = O (B 0, ()

11/ (2.24)

(14 6.)
The index . is now restricted to the range oM ¢ min
(qy,49y), where the fuqctidn min means ”smallést argument“.
!V (R) is the isotropic part of the potential. If

000
the electronic potential energy surface at a given R



_ : AA
is known for n carefully chosen orientations, V(fufi)Rl,
‘we can use (2.23)-to obtain a set of iinear inhomogeneous
algebraic équations for n potential expansion coefficients
Viqam (R).

The infermolécular potential is frequently expanded

ina space-fixed frame(cf. Green 1977) thus:

(A',):{") 1%;1'1 A‘L"l*‘L“(R> I‘l“l“l“( ‘PUR) (2.25)
where
}qe P
=7 AN,
1_1‘11 1 &MILCM‘MLMH [ ~ >/ M( >y 2™ (R> (2.26)

As Flower et al. (1979) point out, the two representations
of the potential are equivalent, related through the

transformation

1.1;1,;( aa g © (2.27)

yh TR
’ 29, A R)C
%‘b/‘@ (m) - ‘Ll< 1_

where ( 9 + 1;+-1J1) is even. This restriction is a
direct consequence of the invariance of the potential
under the parity oﬁerator, and it also ensures that

the intermolecular potential (2.23) is a real quantity
(Green 1975).

| We -are now in a position to give expressions for
the matrix elements in equation (2.20); Using equation
(2.23) and the normalisation properties of the symmetric

top wavefunction (2.8) to perform the integration over



A
R, we have

R>‘JJLJ|L3/TM£ » $ é

~ /~L)~

<JJ J,LATMZ \\/(fl)~

= Z X >< J:.Jn.A[ } I T )IJ J.:I.J,; ) (2. 28)
1 qam70 11-/‘ ‘l/‘ ) 4 s

Using standérd techniques of Racah algebra (Messiah

1962, Cowan 1981) we obtain
Carjn® | Yygur € ,ML)IJJ s

' 2 i T~ Y IRV R4 ‘/
— S >J +J +J <Z )gJ')J")J"')JUJHJ“)?,’)V% 2

_'r"\—_?z_ |+_§“°
o J() v Ji) .
o o © © o o (2.29)

| RRRVTRTAY G
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XZ(,-) (11111.‘)(—/“/«. o/ \-& o = Ji Jr |
T \ T 1

In equation (2.29),
gy it
(o] o] ‘0

. is a 3-j symbol,

Jod e

S, s
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1! 1,‘ 1>



is a 9-j symbol (Messiah 1962), and {J})J;).. - %

is a shofﬁhand'for (ﬁﬁ*')(2J1+ L) ... The delta function,
'&;:U, ensures diagonality of the V-matrix elements

in tHe e index;-this'is a .consequence of the invariance
of the potentiallunder rotations about R. The summation
over ' i is such that (9, + 9» + {1 ) is even. Equation
(2.29) 'is a special case of the expression given by

Launéy (1977), as can be shown by haking use of the
symmetry propertiés of the 6-j symbols that appear in

the latter,.and by noting the slightly different definition

of :
XLl Q@M
The A" -matrix elements in equation (2.20) may

be evaluated by setting

_él ~ (3_ _ :j’-lz >?. |
| x . . - (2.30)
= El + \)Tq_ - Z(Ju)z‘\]’z‘ - (Jn.).}.J—- - (Ju.>— J-t-

»

In the body-fixed fréme the compohents of J do not obey
the normal angular momentum commutation relations and
Brocks et al. (1983), who study this in detail, call

J a pseudo-angular momentum operator.- This introduces

a negative sign when the angular momentum ladder operator,

J,, acts on the body-fixed basis functions (2.15),

leading to the following non-zero matrix elements (Launay
- 1976):

<J‘J*J'l‘_" TME l’g‘JIJLJlLr‘—‘ TM€>

2

— j\l-(\j‘u'f' '> -*-- U—(U;+') -2
| | ‘ (2.31)



and » o )
<J.31\)'.L57mz|& [ rgn =% T‘Mz>

) | l i — 2 :
= 00 S‘"‘ibo)h Lju () - m(E=)) (2.32)

x [:ir(:)_”a-l) - a( ‘)3‘/1
In writing down (2.32) it has been assumed that any
=0 basis function which Qanishes has been excluded
from the bésis set. We note that in the body-fixed

. kS
coordinate system the 42 -matrix elements are not

diagonal, with coriolis terms (2.32) which can change

the value of jl . However, the potential is more
naturally exbressed in this frame, a fact exemplified
by the diagonality of the matrix elements (2.29) in

the _A  index. The overall result is that, unlike
the sbace—fixed éase (Rabitz 1975), many of the elements
of the body-fixed coupling matrix are identically zero;
this may be exploited when solving the coupled equations
(see Chapter 3).

The differential equations (2.19) may now be integrated
numerically subject to bound state (Ch&pter 3) or scattering
(Chapter 5) boundary conditions. The next two sections
are concerned with additional symmetries that arise
in special cases of this general problem, which may be
exploited to achieve substantial savings in computer
time.- |

2.3 Two identical heteronuclear diatomic molecules

The wavefunction describing two identical molecules

has a well defined symmetry under the interchange trans-



A
,“B ) (Takayanagi 1965,

- formation I(ir ,f‘:_,é—?' " f

Heil et ai. 1978).
’Applying this-operator to the space-fixed basis

functiens (2;10) we get |

TY (jjuindTrel IR

"(")J'W”Ju*‘ (2.33)

y(JLJ J,,.(TMEH ! K)
" Note that,‘ae Jq and j2 are interchanged on the right
hand side, this is ﬁot an eigenvalue equation. From
the unitary transformation (2.11) it can be shown that
the body—fixedlbasis functions (2.15) behave as follows
under interchange: _

TY(jjnjn 115,55, R)

;. 5(—)‘)1,&7(\]1 le.-" TMCL.)fL,}S> (2.34)

Functions with well defined interchange symmetry,at@:t\))
are obtained by taking linear combinations of (2.15)
and normalising:
A A A
Y(jujuin® TMeL| T FUR)
' AR
—[z(f 5ol }:“j(JJJnn:rma{r £, 8D (2.35)
Y jammelf AR ]
e Ae( )" Y(jgjum Tnelf U RD,
We effect a reduction in the basis set by excluding
those functlons (2.35) for which jp > jy» and for which
Jq = JZ and /tg(L)*‘ =~ . In this latter case the

functions (2.35) vanish.



The invariance of the potential (2.23) under the

interchange transformation leads to the conclusion that

| L TRy -
v‘l“l'/‘(R> =) 11‘ (R> (2.36)

. This can be seen by operating on equétion (2.25) with
I, and then using the relation (2.27). The fully symmetrised

potentlal may thus be written as

(l)Nx)R> z 2 Vim(R)yA (£,5) 2.

e Iy
where
+1} Y
)’ . »I'I v")+(’) : yll (ff fL) )
11;,(¢'4f E Lo tv0™ y bl J (2.38)
- X (l'\’ 81|11>

We thus have fewer terms in our potential expansion.
The derivation 6f the coupled equations (2.19) is identical
to that already given except for the restrictions on

' £hé basis set and the'botential given above. Given
tHe}relationshipAbetween the functions (2.15) and those
with well defined iﬁterchange symmetry (i.e. equation
(2.35)) it is pbssible to write the V-matrix elements
in terms of equations (2.28) and (2.29). Specifically

- the symmetry properties of the 9-j symbol (Messiah 1962)
in-(2.2§); tbgether with the restriction of (9, + 9 + 9 )

to even values, are used to deduce

<JJ s T, L1 [j ="
= (,.)J\_"‘Jx*'Ju +;J. +J" +JIL <Jx\j|le —H.{lelcl’,/ IJ:I.J{ J‘,L}:/? (2.39)



: With this and the potential expénsion (2.37) we obtain
<\) Jz\)n.-n- TME’L'\/(,\,) L)R>1J‘I/J:—J.I,L A J_M£4>
— "2 -
= ).[g(us\}.ljl)] .[2(I+SJ )] > 2 va(@ (l+£1,1l)

o | W o (2.40)
X{<J\JLJ|13"Y'11#{.]!’.)('\]'/"‘;{? + 4L£(_>J“<J.ljljuilXl.i:./*‘j:J.{J'IlE'>
| +—(- [<J JthlY Ll g SEDS
| ’Li('-)\) <J JLJ:;-‘\'IY I\}:. ] Jn.-“'>] %

where use has been made of the symmetries of the 3-j

f

z.il,u

'symbols to halve the number of terms in this expression.
‘While substantial savings in computer time are possible
. by using the basis (2.35) (because of the conéequent
reduction in‘'the number of. coupled equations), it is
usually more convenient to retain the non-symmetrised
(with respect to interchange) potential (2.23) and simply
set .
3 PPN T R '
\/‘1‘1"‘(@ ()" "V‘l",b‘/“( ) (2.36)
This gives aJleséunwieldjélexpression for the potential

matrix elements:

<J's;)i Ju,ﬁ TMed [V(f,).:ﬁ)R)IJ’J'J.'Ln TM£4'>

?2[?;('* )] [z(n*rS,J)]'/‘ \{L"L*/“(R)'

‘l‘b/*% (2.41)

X[<J jinz | ‘L:‘la/‘lJ JLJ:M>“£H <“‘J'“L Ll J'l"‘>]



The ,ﬁz—mat_rix elements for Y(jjajn- Tﬂi'fjlf.)fn)g )
can, in a similar fashion, be written in terms of those
for ’y(\jl\jl\jlt AT ME Ifn) fl)é) ' . The restrictions
plaéed on the baéis (2.35) lead to expressions for the
non-zero matfix elements which we are identical to (2.31)
and (2.32), i.e.

(rivion & THEL] L 1ojoju & T Rey
:<‘Jl;jz\jn3J'ME’&LI‘}..J'xJ:xR’TME> (2.42)
By taking account of the restrictions on the basis set,
" simpler expressions to tﬁése given by Danby (1983) and
Alexander and De Pristo (1977) are thus obtained.

Before continuing with a discﬁssion of the further
symmetry reductions possible when one or both of the
diatoms is homoﬁuclear; we give an example of the basis
reductions that have occupied usvforvmuch of this Chapter.
Table 2.1 gives the basis sets (2.6), (2.15) and (2.35)
for two identical heteronuclear rotors, each possessing
the range of possible angular momenta j = 0,1. The
corresponding space-fixed basis set (2.10) is given,
together with eigenfunctions of I, constructed in an
analogous way to their body-fixed counterparts (2.35);
relétion (2.33) would be used to achieve this. In this
example the total angular momentum, J = 1. The coupled
eq;ations are seen to separate into 4 blocks, corresponding

to the possible combinations of & and <«



Space-fixed basis

Body-fixed basis .

(v)

(iv)

(iii)

(ii)

(1)

J2 J12

I

-1

(o]

€

J2 J12

3

o -1 -1

0

Jo J12

I

Q

I12

i1

2.1

TABLE

The total

" 0,1.

The body-fixed and space-fixed basis sets for 2 identical heteronuclear diatomics, with j

angular momentum, J = 1.

Columns (iv) and (v) represent the analogous space-fixed basis sets to the body-fixed

in (ii) and (iii) respectively.



'2;4,‘HQmonuc1ear molecules

The angdlér momentum, ji, of a homonuclear diatomic
mblecule éan oﬁly take values which are either all odd
or all even. This is a consequence of the symmetry
6f the totél‘molééular wavefunction unde} the interchange
of two;identiéal nuclei. The coupled equations therefore
sepérate further into blocks corresponding to even or
odd ji'

If the rotor i is homonuclear, then the intermolecular

potential (2.25) is invariant under the transformation

A Ay
Y, — -1;

It follows.difectly from thisahd.equation (2.27) that
Athe q; indices_in the body-fixed exbansion of‘the inter-
molecular potential (2.23), (2.37) may only take even
values. This is consistent with the'restrictions on
ji as can be seen from the symmetry properties of the

3-j symbols
“ -/
Ji 10 Ji )

o O (o]
in equation (2.29).

- Two homohgclear molecules of the same species (e.g.
Hy - H2) But_with bﬁe diétom restricted'to even j (e.g.
para-H,) and the other to' odd j (e.g. ortho-H,) are
distinct, and the treatment in section 2.2 applies.
It is interesting to note that in the case of nuclei

with zero spin (e.g. 160)

16

the corresponding diatom (e.g.
02)“cannot exist in one of these j modifications (for
a fixed electronic state). This is because the nuclear

spin state can only be symmetric with respect to interchange



Qf the nuclei~(Bransden and Joachain 1983).

We summarisé the results‘obtained in sections 2.2,
2.3 and 2.4 in'Table.Q,Z, referencing.the opéimum (fullyA
—symmetrised)rbasisAsetshand pdtential expansions.

2.5 The effects of monomer vibration

All of éhe calculations reported in this thesis
tréat the_diatomic molecules in the van der Waals complex
as rigid rotors. However, the experimental spectra
With thCh we will compare our résults involve the vibrational
~excitation of one of the diatoms. It is therefore important
toAindicate-ha@ intramolecular stretch may be incorporated
into the Cloée—coupling formulation of the preceding
,sections,_and to understand the effects of its neglect.
.TheArigid rotor appfoximation involves freezing the
_bond length éf\thediatomat an equilibrium value req
-ideally defined by the equation
8= o7~ JX%@OIT) L K(oolr) AT (543
2

2
24 Tey

where-B~is‘t£¢ rotational consfant which we met in equation
(2.9), and X(oo|t) is the (normaliéed) wavefunction
of the ground vibrational staté of the diatom which
we shall return to pfesently. Classically we can think
of thisras taking an avefage value of r over the vibrational
motion, which is much faster than the rotational motion.

o

Usually, feq is set equal to r , the expectation value

of r in the ground vibrational state. Sometimes re,



bameri | qlanom
AB-CD - (2.23) (2.15) (2.28),(2.29) (2.31),(2.32) J,M, €
AB-AB (2.37) (2.35) (2.40),(2.29) . (2.42) IM,E,1
A,-AB (2.23) (2.15) (2.28),(2.29) (2.31),(2.32) | J,M,E
q,=0,2,4 ... 31=1,3,5 ... B |
) or 0,2,4 ...
A,-B, (2.23) (2.15) (2.28),(2.29) (2.31),(2.32) J.M, €
41=0,=0,2,4 ... ji=1,3;5 ... -
or 0,2;4 .o
ditto iy
Ay-Ay (2.37) (2.35) (2.40),(2.29) (2.42) J,M,E,i
q,=05=0,2,4 . J1=3,=1,3,5 ...
or 0,2,4 ...
(2.23)% (2.15) (2.28),(2.29) (2.31),(2.32) J.M, €
q1=q2=0,2,4 ‘o Jj1=1,3,5 ...
and
39=0,2,4 ...

TABLE 2.2

A summary of the results obtained in sections 2.2, 2.3 and 2.4. The optimum basis set, potential
expansion, and the corresponding matrix elements are referenced. '

The fully symmetrised rigid rotor potential expansion is in fact (2.37), but it is more convenient

, q1+99
to use expansion (2.23) and set V_ - = (-1) v

9oqqm qquﬂ'
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the position of thé minimum of the intramolecular potential
is used (Tennyson and Sutcliffe 1983a) It is usually
possible to evaluate diatomic rotational energies either
by ab initiq Calculations (e.g. WOlniewicz 1983) or
by reference to observed Spectra (Herzberg 1950, Herman
and Short 1968) so it is not necessary to assume the
_same.rotational constant for all j, and in this way
the effects pf‘centrifugal distortion méy be taken into
account (Lester and Schaefer 1973). We still neglect
the effects of any vibratioﬁally excited monomer states
and in this sense the rigid rotor approximation may
be regarded as-a basis set truncation (Green 1974).
Perturbation theory tells us that this truncation is
justified if the energy difference between the ground
and first excited vibrational state is large and the
potential coupling between them is small.

We ﬁow consider the effects of intramolecular stretch
on the intermolecular potential. As the bond length
of a diatom increases, the repulsive wall of the inter-
molecular interaction ié shifted to larger values of
R, the separation of the monomer centres of mass. This
| is because'of‘the eariier onset of éxchange repulsion
aé the molecules approach one another. If this was
the only effect then the resulting potential well would
also be shallower. However, an increase in the diatom
bond length_resulté in an increase in its polarisability

and thus an increase in the attractive dispersion interaction



(Le Roy et al. 1977i. Tﬁough these simplified arguments
neglect the effects of monomer orientation (Tennyson and
Sutcliffe 1983Q it is generally true that an increase
in r shifts the repulsive_wall»éutwards and increases
the well depth.
| In ab initio calculations of the electronic potential
eﬁérgy surface, the diatom bond length is usually fixed .
at ro, giving the-potentiaI
\/(f?)fi)R>,‘ | . C(2.44)
Evén in the case of'the Hy - H, dimer, in which the light
nuclei may be expected'to perform large amplitude vibrations,
A(2.44)Ahas been shown to be a good approximation to the
vibrationally averaged potential (Burton and Senff 1982):

Jx (oo1) X (ool) V{r, 1 R) K polm) (ooity) drd,

So far in this section we have discussed the validity
of the rigid rotor épproximation. We now outline the
modifications necessary to the ¢lose—coupling formalism
if the aiatoms are allowéd to vibrate. The total wave
function of the complex is expanded as before in a set

of diabatic (R-independent) basis states (c.f. equation

(2.17)):
“F(Imal* JR)
=> 1N F(\’IVLJJIJ'“‘T”EIR>¢ zJJzJu-&TMEI”R )(2.46)

i V:LJ'JL J'n.'--*‘_L



. where

i ~ : ,é>
® = XM X4 al) Yo Tnelfy (2.47)

’j is the rotational basis. function defined in equation
(2.15). 7((VJ‘r)is a solution of the radial Schroedinger
equation describing the nuclear motion of ‘an isolated

diatom (Le'Roy and Carley 1980):
-4 4:; f +.»’V' — — [ (i+1 :
{1/“” AT " (EVJ Ji(_\%%)}k(vﬂﬂ:o (2.48)
a2

Here, V(V) is the intramolecular potential (i.e. the
electronic energy of the diatom) and v is the vibrational
quantuﬁ number. Evj is the rotation-vibration energy
of the isolated molecule. It is worth noting that implicit
in (2.48) is the fact that a complete set of orthonormal
vibrational functions may be generated for any one value
of j. Rather than numerically solving (2.48) it is usual
to replace X by analytical functions such as Morse
oscillators (Tennyson and Sutcliffe 1982).

For identical“molecules.undergéing internal vibration,
the interchange operator, I, of section 2.3 may be generalised

as follows:

A Ay Ay A
o -R
RR = ulu ) Y RERY ) )

) lat

A/ Ay
ST, T

From equation (2.34) we see that the effect of the inter-

change operator on Qé is as follows:



I ¢<v. V jija g JMElf)f S)

. le e e o
= g(‘-—) ;z)(\a ViJaJiu TMC‘I"f‘Jf@) (2.50)

Proceeding as in section 2.3 we construct basis states

which have a well defined interchange'symmetry, i.
(VVJJlJ.I-mJ‘Mech)f)f) .

= [2(1+ Suu §j 0] 2 LR % jin ja = TME[E 5 8) s
FAEEW (WM e THElS 5, R) ]

States with different interchange symmetry are decoupled.

Linear independence among each set of basis states is

achieved by omitting those functions (2.51) for which

(i) \/| = \/l and J2'>\j‘

(11) Vo 7 Vi for all j, Ja |

(111)y, =Vy, ji= ). and LEEN? =~ (2.52)

(i) and (ii) are the 'well—ordéring' conditions of Takayanagi
(1965). States for which (iii) is satisfied vanish.
When vy = v, = 0 the conditions (2.52) are seen to reduce
to those for the case of two rigid rotors.
There are no restrictions on the vibrational - quantum
nUmber,‘v, of an isolated homonuclear diatom, analégous
to those on j discussed in section 2.4. This is because
interchanging the two identical nuclei does not affect
'the magnitude of the intramolecular vector.
The derivation of the coupled equations is similar

to the rotor-rotor case except the matrix elements now
A

X
~)

involve‘integrations over ry and ry as well as



A : .
i} and g.- The -only addditional difficulty is in
the evaluation éf the V-matrix elements. Values of the
interaction potentiél are needed not only for a range
of geometries (f},fﬁ) and intermolecular separations
(R), but also for a number of +,¥, values. Once we
have these the'potential surface must Be fitted in a
way that m;kes possible the evaluation of the V-matrix
elements. A convenient way of doing this is to describe
the intramolecular dependence of the potential using
" a power series iﬁ the diatom stretching coordinate (Le

Roy and Van Kranendonk 1974)

§(*> = (*7 -+°) /fo‘ | (2.53)

The intermolecular potential between two vibrotors could

thus be fitted to an expression of the form (c.f. equation

(2.23)).

( R) Z Z wnh11;.,u(> (1->§ (f)y 14')?;- (2.54)

mn 11,_/“>o

To date, such calculations have been restricted to atom-
diatom éYstems. Tennyson and Sutcliffe (1983a) have carried
~out two sets of calculations on the He-HF van der Waals
molecule; one treéting HF as a rigid rotor, the other

with the vibrational degree of freedom included. 1In

this way they were able to directly verify the validity

of fhe rigid rotor-aésumption which is made throughout

the present work.



2.6 Group theoretical note

A large part of the pfeceding sections of this Chapter
has been .devoted to constructing rotational baéis functions
which fully refleét all symmetries in the problem. Any
treatment of symmefry is underpinned by the mathematical
theory of groups (Hamérmesh 1962), and we end this Chapter
by outlining the methods of obtaining such symmetrised
basis functions. The relevant concepts will be introduced
as we go albhg, though most can be found in the concise
introduction'to the. subject given in Chapter 7 of Atkins
(1983).

It wili be convenient td discuss the case of two
identical heteronuclear diatoms and then to indicate
. the further steps necessary when the molecules are homonuclear.
The symmetryvof the system under rotations about a space-
fixed axis leads to the constancy of J and M, and this
has already been éccounted for in the basis funcfions
(2.6). We need therefore only consider the symmetry
under the inversion and interchange (permutation) operations.
The relevant group is thé permutation—inversion group
PI(4) (Metropoulos and Chiu 1978), which consists of
the complete set.of feasible (Ezra 1982, Bunker 1979a)
operations that leave the Hamiltonian (2.2) invariant.

The four symmetry operations {(or-elements) of PI(4)

are { E) P|3)11+ 3 E 5 Pl3)z¢,.% . E is the identity



which leaves the system unchanged. P13 24 is the simultaneous
permutation of identical nuclei 1 with 3 and 2 with 4.
E* inverts all the nuclei in the origin of a space-fixed

coordinate system which is coincident with the centre

' ' : %a
of mass of the complex. 13 24 simultaneously permutes
-ZK
identical and inverts all nuclei (ﬂalg ﬁ314~5 = ﬁ314>

E*.and P13 24 are respectively the active analogues of
the p3551ve operatlons P and I 1ntroduced in sections
2.2"and 2.3 (Bunker 1979a). The above will be clarified
by reference to Figure 2.2. Note that operations such
as P,4 are not féasible, an éssumption reflected in the
"collision complex' form of the Hamiltonian. The permu-
tation-inversion group which omits such operations (PI(4))
is the molecular symmetry group (G4) of Longuet—Higgins
(1963). |

_ Having determined the appropriate group, the next
step is to establish a matrix represeﬁtation of this
group. To do this we need the effects of the PI(4)
0perations,%., on the (unsyﬁmetrised) basis function
(2.6):

A 2R

E Ad(ju‘).ljlz-’LTlea)flj., = Y(jidad "~'“‘TM]T )E,:jl

J»+J1+T L. A A oA .'
13 1+/V(J[JLJ‘1'JLJ—M\¢')~"}~> ( ) ,J(JlJlJn. ~n Tmlf')f’-)g)g :71

A

1)!3)5 Y

< A T+jnt u"'J'-
E**J(J‘Jzauﬂwf AR)=() ITEY, Jrdn o

1)t L
w Ce ALA AN ‘j'z C. A rA
ll3/u+,v(JlJ1Ju-n- TMII')E”)E> —(—) :7(;’\}1\]114 ilg! "V:,Jf;_)g) . (2.55)

E:ZZ+
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The elements of the group PI(4) (GA) for the system (AB)Z' 0

is both the centre of mass of the system and the origin of
an inertial space-fixed reference frame. Also given are the
active (i) elements which act on the nuclei, and the

equivalent passive (ii) elements which act on the coordinates.



Because the action of symmetry operations is most easily
Visualised in thespace-fixed reference frame (Tennyson
and Sutcliffe 1984), we obtain (2.55) by operating on
the spacé—fixed basis function (2.10) and then using

the unitary transformation (2.11). If jp 1 j, and

»n. # 0, the functions Y are orthogonal and form a 4-
dimensional basis (row-) vector spanning the regular

matrix representation (Hamermesh1962) of PI(4) thus:

E(,%,%,4) = (9,9, 90%) [0 000
‘ : | ‘ © oo
© O o |
PIB)zH. (/v‘)/vl)rj3e’:7‘+> .=.(’U|)’Uz),fjg)_y4> :) cl) Z :
. : © © o |
© o | o
"0 © o
E#(/Vl)‘/vl)j3)vz+> = (/yl),yz,nj.’})v‘-f) o o ol {
Il o o o
o | o O
" .
o (0%, %, 90 =, m) (S 0 7
: . : o t 0o (2.56)
i o o ©

The matrices in (2.56), under the normal rules of matrix
multiplication, may be shown to satisfy the multiplication

table of the PI(4) group (Metropoulos and Chiu 1980).
7((RJ) of the rep-.

- We give below the tracesl(characters))

resentation matrices in (2.56) which will be needed later:



) .
X(E) =4, X(R3).1‘+)= X (e¥) = X(stzﬁ =% (.7

Note that the dimensionality of the representation is
given by 7< ().

By applying a similarity transformétion (Atkins
1983) to the four matrices in (2.56) it is possible to
reduce thgﬁ to block-diagonal form.. This set of matrices
thus forms a reducible representation, [1 , of the group.
An irreducible matrix representation is one that cannot
be so reduced. In order to determine which irreducible
representations, [l , are contained in Iﬂ it is necessary
to know the character table of the group. This is given
by Métropoulos and Chiu (1978) and Bunker (1979b) and
is reproducéd in table 2.3. The character table for
PI(4) may be simply obtained by following a set of rules
given by Boardman et al. (1973). Table 2.3 tells us
that four inequivalent (not related by a similarity trans-
formation) iffeducible representations exist in the group
PI(4). The importance of this lies in the fact that
basis functions belonging to different irreducible repres-
entations are orthogonal and cannot be coupled by the
Hamiltonian which belongs.to the coﬁpletely symmetric
irreducible representation ﬂ1 . This is the vanishing

integral rule (Bunker 1979a). We conclude that the close-

{

coupled equations for the systemA(AB)Z'will separate

into four blocks, as indicated in Table 2.1.



B P13,24 E P13,24
M 1 1 1 1
[ 1 1 -1 -1
[“3 1 -1 -1 1
I, 1 _1 1 -1

Table 2.3 The character table of the group PI(4).

The reduction of the representation, N, may be

represented by the equation

/
[N = %}. & e | (2.58)

where we take a direct sum (Boardman et al. 1973) of

the irreducible representations fﬂk. The reduction

coefficients, a,, are given by (Boardman et al. 1973).

n b M
o, = (F) Z KR (&)
k ® (2.59)
h is the order of the group (the number of elements).
k 7o\ '
X (R) is the character of f; corresponding to the
element . We thus obtain 4

M= f:- o [ 'e; f;' ® ‘FL\ | (2.60)

2



The'symbol @ means a direct sum (Boardman et al. 1973).
It is a feature of the regular representation that, on
reduction, each irreducible representation appears a

number of times equal to its dimensionality (Hamermesh

1962, Weissbluth 1978). .
We may construct basis'functions,lyh’ , of the
irreducible representations, [L , by taking linear combinations

of the functions -’vn . The formal procedure is based

on the projection operator, Pk , defined as follows:
k d ' k *'R
P =(f?) %— xH(R) | (2.61)

where'dk is the dimensionality of rz . The effect of Pk
operating on 1Zx is to produce a sum of the functions

"J"n (Atkins 1983):
di ' ‘
k Lk .
P y” - Z‘ A‘jm : (2.62)
. M=\ : _

As all of the irreducible representations are one-dimensional
it is necesséry to apply the projection operator to only

one of the functions ﬁjn . Choosing Aj|. (see equation

/

(2.55)) we obtain symmetrised basis functions spanning

each of the irreducible representations:
| ___Al. : = !
Py, = (Yt YY) S

2

oy, s B (U ) =Y
Py =L (T Y T =Y

- - - = ¥
AR AT (2.63)



The subscript m in (2.62) is redundant for one-dimensional
representations and has been omitted. By referring to

equations (2.55), (2.15), and (2.35) we see that

A

'vk' =T V(pjrje = TMEL[T, HR) (2.64)
where £ and 1 are given by the characters 7(hYE%)and
?(k<ﬁ3);*> reépectively. Projection operators do not
~in general give symmetrised functions that are normalised.
It is now timely to recall that in the derivation of"
ﬁjk-we assumed that j; # j, and o # 0. When either
or both of these conditions no longer hold, the original
basis fuﬁctions (2.6) are partly symmetrised (Tennyson
and van der Avoird 1982a) énd do not-therefore span all
of the irreducible representations of PI(4). Because
all of the irreducible representations are one-dimensional,
the characters give the effect of the corresponding operation
on the symmetfised'basis function. We could then have
shown that the functions V(Jl\jljn-ﬁ TMZ’L(fA,)fL)E>
are also eigenfunctions of E:ﬂﬁ and hence are bases
for the irreducible representagions. The above, however,
demonstrates general principles which may be used for
higher order groups.

The system (AZ)Z is particularly relevant to the
present work. Our approach, outlined in the preceding
sections,.is to use the basis functions for two identical

‘heteronuclear diatoms, restricting the values of j (see



Table 2.2). The relevant group is PI(16) (Metropoulos

1981). lThe{main complication is that two of the ten
irreducible representations are two-dimensional; reducing

the regular representétion would lead to these appearing
 twice. The éoupled equations would therefore separate

into 12 bloéks of which only 10 need be solved (Tennyson

and van der Avoird 1982 a,b). ‘The two-dimensional irreducible
reﬁréséntations are spanned by two orthogonal and'aegenerate
basis functions (Atkins 1983). To obtain these formally,

one would have to apply the projection operator (2.61)

to two of the unsymmetrised functions ﬁjn.' The resulting
symmetrised functions, Pkuvp and Pk'bw' , would not

in general be orthogonal. This problem can be surmounted

by ﬁsing'Schmidt orthogonalisation (Bunker 1979a). For

the (A,), system, however, the form of these functions
is'intuitiveiy obvious; they correspond to‘ﬂ(jdxwkiivruﬂfbf%)é>
one with (j;,j,) = (odd, even) and the other with (j;,j,)

= (éven, odd) (Metropoulos 1981).

To summarise the contents of this section: we first
‘establish a (reducible) representation of the symmetry
group of the_Hamiltonian by aﬁplying the group elements
to a set of (unsymmetfised) basis functions. With a
knowledge of the charactef tablé'we can find which in-
equivalent irreducible rebresentations are contained
in thé reducible one - all are if we set up the regular
representation. The linear combinations of basis states

that reduce the representation are then found using



projection operators. The vanishing integral rule tells
us that the coupling matrix elements (2.20) between two
basis states belonging to different irreducible rep-

resentations vanish.



CHAPTER THREE

SOLUTION OF THE CLOSE-COUPLED EQUATIONS



3.1 Introduction

" In this chapter we shall consider the solution
of the coupied differential equations (2.19) written

below .in matrix form

N :
EL_’_ ﬁ(m = W (R) E(R> : (3.1)
4R | J

Théré are two basic approachés td solving these. The
radial'functibns‘E(R) could be expanded in terms of

an appropriate set of basis functions and the resulting
secular equation solved (Le Roy and Carley 1980). This
technique has been applied to calculations of the bound
states of molecular dimers by Verberne and Reuss (1981)
and Tennyson and van der Avoird (1982a). Similar ideas
have also been applied to scattering problems by Bocchetta
and Gerratt (1985) in their implementation of the Wigner
R-matrix method. In this thesis, we shall adopt the
other,~more direct approach : numerical integration

of the differential equations.

The coupled equations are identical for the bound
state and collision problems; only the boundary conditions
differ. A lafge numbef of numerical methods have been
~developed for 'scattering problems and Thomas et al. (1981)
have carried out comparative test calculations on eleven
of these. These methodé, however, may be classified

depending on whether they approximate F(R) or W(R).



In the approkimate solution approach, the ''scattering

coordinate" R is divided into sectors and the solution
F assumed to possess some simple polynomial form in
2z :

each sector; The approximate potential (or piecewise

analytic) approach assumes that the coupling matrix
H.has a simple form such that in each sector. the differential
equatiohs may be solved aﬁéiytically. Mattson and Anderson
(1984) have studied such methods assuming the potential
.to be either constant, linear or quadratic across individual
radial sectors.

Secrest (1979) has further subdivided these two
approaches according to the way the solution 1is developed
from one sector to.the next. The first of these sub-

divisions is the common solution following approach

in which the values of F and dF/dR at one end of the
sector ére:used'to obtain those at the other. This
proéesé is continued recursively with each sector being
treated és an ' initial value problem. Because of the
expOnenﬁial behaviour of the radial wave functions in
the classically forBidden regions, solution—following
methods suffer from inherent instability. This problem

led to the developmentAof-the invafiant imbedding technique.

In a scattering context this involves setting the potential

to zero at the sector boundaries. A full scattering

problem may then be solved for each sector and the S-

matrices matched acroés the sector boundaries. The

1



S-matrix is tﬁus propagated to larée R af which point

the poﬁential vanishes. Because the equations for the
S;matrig do ﬁdt suffer from the instabilities of those

for the waveﬁunétion, the invariant imbedding method

is inherently stable. Invariant imbedding was originally
: ‘develobed for solving the differential equations which
arise in neutron transpoft and illustrations from this

and other physicai problems have been given by Scott

. (1973). 1In general terms the method involves reformulating
the problem.so that the quantity of interest is calculated
directly-at each stage of the calculation.

' In sections 3.2 and 3.3 we shall consider in turn
our implementatibn of,twd numerical methods : the de
1Vogelaeré method which is based on approximate solution/
solutioﬁ following, and the R-matrix propagator method
based on-approximate potential/invariant imbedding.
Usihgbthe results of test calculations (section 3.4)
we shall be able to indicate the relative merits of
the‘diffefént nuﬁérical approaches, much of which has
been discussed by Secrest (1979, 1983) within a collision
calculation framewotk.' |

Thomas et al. (1981) coﬁéidered the efficiency
in terms of computer time of a number of numerical methods.
Alexander (1984) has shown that significant improvements
' are pbssible'bY’adopting hybrid methods. Despite this,

computational spéed may still be an inhibiting drawback



of direct numerical methods either when very large numbers
of coupled equations must be solved or if we are interested
in inverting intermolecular potentials by least squares
fitting to experimental datg. In the latter case, repeated
calculations of the eigenenergies are needed. We could

try t§ counter this speed problem using decoupling methods
valid under special conditions. Our options, though,

are rather limited as it is in general necessary to

retain the full HamiltonianAfor bound state problems.
Methods involving the neglect of Coriolis terms in the
coupling matrix and the decoupling of angular and radial
motions have been'used. We shall discuss these and

the other alfernative methods for calculating bound

states in section 3.5.

3.2 The de Vogelaere method

3.2.1 Derivation

- We begin by outlining the derivation of the method

of de Vogelaere (1955) for a single second order differential

equation of the type

4 F(R)
dR*

I

_W(R,) F(R)

The central ideas of the method and an estimate of the
truncation error can all be illustrated by reference
to this '"single channel'" case. The extension to a system

of coupled differential equations is immediate. We



partition the radial coordinate into sectors, denoting
the boundaries of an arbitrary one by Rj and R 4
(see figure 3.1). The wavefunctions at the boundaries
are related by the Taylor series expansion:

. : ' / 2 1"
F(Rie) = FIRY + hF(RY) + h F(Ry)

: . _ 2

bR F'R) + K EYR) + O(K)
G 24
(3.3)

- Ri) is the sector length, F1 denotes the

h(= Ri + 1

i-th derivative with respect to R, and the .0(h°) term
shows that we are approximating the solution to a 4th
order polynomial. Using (3.2) we may re-write (3.3)

as

FRe) = F(R;) + hF'(R) * b{ W(R)F(R)

(3.4)

i (n [W(RC)F(QL)]I o W TWRIFRD) +0(h)
3 (% ¢

JF(R L) about

Using the Taylor expansion for W(R, P
2

i +%

Ri’ the term in curly brackets may be written as

% g - W(RHL)F(RL*-%) —W(ROF(RL) +O(h3> (3.5)

Substituting this into (3.4) and rearranging we obtain
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Figure 3.1

Definition of the integration parameters and sector labelling
conventions used in the discussion of the de Vogelaere

and R-matrix propagator algorithms. R .. and R___ are the
limits of the integration range, and Rmid is the matching

point.



(Rbf» ) + hF-( > |
%g (R )F() + Z\A/(RWQF(RLM/J? +O(h$)

(3.6)

It is'clear that we need an expression for the wavefunction
‘ ~ h
at the m1dP01nt Ri . é(_Ri + 7) of the sector across
which we hope to develop the solution.” We use the Taylor
series for F(Ri . L) to obtain an expression analogous
: 2 .
to (3.4). Making use of the Taylor expansion about
R. for W(R, L )JF (R, L) to eliminate derivatives of
i o i- %

. WF, we obtain. the intermediate step in the de Vogelaere

algorithm (Coleman and Mohamed 1978):
Rivy) = FRY +AFRD + W {4 wRIF(R)
2 | ¢ 2 24 ¢

(3.7)

~WR)F(R-D Y+ O)

The O(h4) truncation error of this step contributes
an error of only O(h6) in propagating the solution across
the sector because W(R, L)F(R, ) 1s multiplied
: i+ % i+ %

by an h? term in (3.6).

Finally we have to find the solution derivative
F'(Ri) which appears in the propagation equations. A
fourth order appfoximation to this is obtained by applying

Simpson's rule directly to the Schroedinger equation

(3.2).



F/R,) = F/(R) +

-‘;—{ WRIFR + 4 WR.F Rivg) + WRDFRD

| | + O(h*)
Cyclic use of equations (3.6), (3.7) and (3.8) constitutes
‘de Vogelaefe's algorithm. Note that these equations
are.slighfl? different from those given by Launay (1976)
because of a different sign convention for the coupling
matrix. . The method is not ;elf—starting as we need
to supplbe(R_%) to begin the integration at R . We
-use an éxpression which is-adequéte provided the wavefunction

has effectively decayed to zero at R, (Lester 1968,

Coleman and Mohamed 1979).

I

F(Ro,) 7% F/@d) - (3.9)

It can now be seen why this method is classified

as sélutioﬁ following; the wavefunction and its derivative -
are-both propagated sector by sectof. Because we have

not made any approximation to W(R), the extension to

a systeonf,coupled differential equations is immediate
(Lester 1968, Mohamed 1984). For an n-channel problem,
w.becomes aﬁ n x n matrix and F,F' column vectors of

length n.
| As we have already seen, the local (sector) trun-
cation error of this method is, as h—o, O(HS). To

obtain the global (total) truncation error, we multipiy



the local error by the number of sectors which is prop-
ortional to 1/H-for constant h. The global error is

thus O(h%

), a fact confirmed by Coleman and Mohamed
(1978) who used more rigorous arguments. h should be
sufficiently small to accurately represent the solution.

For weakl? bound van der Waals molecules, the radial
waQefunctibn does4not rapidly oscillate and this requirement
presents no problem.

Each step in de VQgelaere's method involves two
matrix multiplications which take up most of the computer
time. However, because of the diagonality of the V-
matrix elementé in the 7 index (see equation (2.29)),

. the body—fixed coupling matrix contains many identically
zero elements: ‘This is in contrast to the space-fixed
coupling matrix, a point illustrated graphically by
Rabitz (1975). Launay (1976) pointed out that this
results in the faster integration of the body-fixed equations,
in comparison to the space-fixed, as there are fewer
matrix elements to multiply and add.

3.2.2. Boundary and matching conditions

The boundary conditions for energies below the

dissociation limit may be written as

CFRY— o as R0t @ (3.10)



Here F is.a column vector denoting the complete set of
radial fﬁnctions that appear in (3.1). In practice we
take as end points of the integration range the values

Rmin(> 0) and R oax(<®), both determined empirically.

ax
Our computer programme contains an option for finding

estimates of R . ~and Roax based on the decay of the

n
radial‘solution in the classically forbidden regions.

A system of n coupled second order differential
equations has 2n linearly independent solutions. The
boundary conditions (3.10) eliminate the n irregular
solutions, Lester (1971). A problem arises in specifying.
the starting values of the derivative vector since the
homogeneity of the_Schroedingér equation permits only
one of the.eléments to be chosen arbitrarily. We avoid
an iterative search over the n-1 non-arbitrary com-
-ﬁonehts by making use of the fact that any n-vector in
Hilbert space may be described as é linear combination of
n 1inear1y independent n-vectors. This is the super-
position principle. Following Gordon (1969) we propagate
an (n x n) solution matrix, eéch column of which represents
a solution vector; n is the dimensionality of the basis
set. The boundary conditions appropriate to the de
Vogelaere, and other similar algorithms, may be taken as
"follows:

E(RMW\ = Q ~F|/(R'“i")

' / =
EI(RMA—X) = Q . F (RM—‘LAX) - ; (3.11)



'E is now an (n x n) solution matrix. For’g','its derivative
with respect to R, we may take any non-singular matrix

but the identity I is the one most commonly used. The
subscripts 1 and 2 serve only to distinguish between

respectively.

the solutioné started at R . and R
min max

The solutfon‘and its derivative are propagated from R in
and RmaX towards a point in the region of the potential
minimum, Rmid (Dunker and Gordon 1976a). The backward
propagatién from Rmax is siﬁply achieved by replacing

h by -h in the de Vogelaere algorithm.

At Rmid the true solution is some linear combination

of the n solution vectors propagated from R i

E(RM-M» : : ,E:( (RMLA) ,C::l

. , i ,
F'(Ru) = F (Row) &
‘ » (3.12)
: C1 ié'a'vector of n unknown coefficients. Similar ex-

pressions hold for the solutions propagated from Rmax
except that the linear combination C, is in general
different. If the total energy E corresponds to an

éigenvalue then the wavefunction and its derivative must

match at R_. ;.
mid

FRLDG = (R ¢
E\/ (R.mtol)_,%' = E:<R”\¢4) ,(\:’L

(3.13)



This may be rewritten as one matrix equation

EI(R ) ,Ez<RMu¢L> 'E‘

mid

;o : ’ : 1 .
f, '(RMLJ)‘ _ E)_ (RMCA> Ez. (3.14)

A non-trivial solution to theseihmhomogeneous linear

equations exists only if the following matching condition

at. the midpoint is satisfied:

F(Ru)  B(R.D

~ |

= O (3.15)

E((Rmii) ,L:: (EmgA>

The eigenvalue problem thus reduces to one of finding
the‘zeroesAof the determinént of é (2n x 2n) matrix.

We found our'eigenvalues using a simple search procedure,
involving repeated calculation of the determinant in

(3.15) at a number{of trial energies. Linear interpolation
between two determinants of different sign was generally.

' adequaté to obtain rapid convergence to an eigenenergy.

- Having determined the eigenenergy we may then wish
to evaluéte the radial solution vector, either to assign
QUantum numbers or as a first step towards calculating
matrix elements of operators corresponding to physical
observables. In principle this is achieved by assuming
that we have located the precise position of the zero

of the determinant in (3.15). Gauss elimination (Kreyzig



. Cy
1972) could then be used to obtain the eigenvector (:éw1>
corresponding to the zero eigenvalue of the matrix in
equation (3.14). In practice this method may sometimes
be unstable because one cannot in general locate the
precisevzero of the métching determinant. This-means
fhat none bf the matrix eigenvalues are zero, as required
by equation (3.14). Dunker and Gordon (1976a) have found
it more satisfactory to solve, instead of (3.14), the
matrix eigenvalﬁe'equation

El (Rmio{) El(RMLoL> E‘ _ 9:.
. e (3.16)

/ -—
FR B R n) e

where € is the smallest matrix eigenvalue.

| The evaluation of the wavefunction is complicated
still further by the introduction of the stabilising
transformations, to be discussed in the next section.
‘Detailed schemes fof the calculation of wavefunctions

have been developed by Dunker and Gordon (1976a) and
Rosenthal and Gordon (1976). These authors used an approx-
imate potential method for solving the close—éoupled
equations. Thié has an advantage over approximate solution
methods, such as de Vogelaere, when evaluating matrix
elements of operators between wavefunctions. If a poly-
"nomial form is assumed for the operator then the contribution

to the matrix element in each sector may be obtained



analytically (Dunker and Gordon 1976a). For highly
oscillatory radial wavefunctiéns a very fine grid would
be. required by the de Vogelaere method to represent the
wavefunction accurately. Approximate solution techniques
are unlikely to be the method of choice for evaluating
matrix elements. In this context it is interesting to
note a development by Kidd and Balint-Kurti (1985) which
pefmits the evaluation of matrix elements directly by
incorporating the relevant operator in a modified coupling
matrix. The close-coupled equations may then be integrated
without any need to evaluate the wavefunctions explicitly.
Knowledge of the wavefunction does, however, provide
a rigorous-way of determining the quantum numbers of
a state. Good quantum numbers, such as the total angular
momentum and the parity, are of course assignéd at the
outset as discussed in Chapter 2. Even without . a know-
ledge of the wavefunction it is usually possible to assign
additional approximate quantum numbers such as the end-
over-end rotation of the dimer ({) or the projection
of the total angular momentum on the iﬁtermolecular axis
(). The bésis states used in the expansion of the
total wavefunction (see equation (2.17)) are eigenfunctions
of the Hamiltonian if all coupling terms are set to zero.
These provide suitable approximate or '"asymptotic' quantum
numbers if the corresponding eigenenergies deviate only

slightly from those obtained with the full coupling matrix.



Dunker'and‘Gordon (1976b), who used space-fixed basis
functions, produced plots of the eigenenergies of Ar-

HCi versus an anithropy factor (lying between O and

1) by which they multiplied wjk, j £ k. In this way

they were éble to uniquely assign all of the energy levels.
Their pqus showed a number.of avoided crossings which
implies that the quantum numbers assigned, notably the
space-fixed L, were not a suitable choice. Kidd et al.
(1981) went on to show that‘the body-fixed quantum number,
1, is more appropriate for the lower bound states of
this system. " The vibrational quantum number of the van
der Waals bond, n, is easily assigned according to the
ordering of levels with the same asymptotic angular quantum
numbers.

It will suffice for our present purposes to assign
asymptotic quantum numbers to energy levels rather than
~give accurate cohtributions from all of the basis states.
Furthermore, as we have not concerned ourselves with
the evéluation of physical observables other than the
transition frequencies, we need‘consider the calculation

of eigenfunctions no further.

'3.2.3 Numerical stability

" The de Végelaere method, like all other solution
following techniques, is inherently unstable (Secrest
1979)..-This is due to the exponential rise of the wave-

function in the classically forbidden regions. A stabilising



transformation must ﬁeriodicallyvbe applied both to
prevent numerical round-off errors and to maintain the
linear independence of the n solution vectors (Dunker
and Gordon 1976a). During propagation thfougheanon—
classical region, the component of each solution vector
corresponding to the most locally cloéed channel will
tend to grow huch faster than the others. Due to the
finite precision of the computer, all n solution vectors
thus tend towards the same vector and linear independence
is lost;' In this eventuality the bound state matching
condition (3.15) is no longer valid. It is also important
" to ensure that all solution vectors have roughly the
same magnitude. 'Failure to do this will lead at first
to round-off error as one solution vector becomes more
important than the others, and ultimately to floating
point overflow.

A numberiof different stabilisation techniques are
in everyday use (Gordon 1969, Wagner and McKoy 1973)
but they all have in common the periodic réplacement
of the solution matrix by a linear combination of the
conétitueht column vectors. The various stabilisation
methods differ largely in theif adopted criferion for
1ineaf independence. We have used the simplest method
which is to replaée F, 5"by fg-l =1, E'E_l every 5
to 10 integration steps (Riley and Kuppermann 1968, Launay

1978). The modified solution matrix is then perfectly



linearly independent and normalised. The inverse of

the derivative matrix, E"l, may also be used to stabilise.
The drawback with such transformations is that they are
éXpensive in terms of computer time, and must be applied
across'the entire integration range when strongly closed
channels are included in the basis expansion.

3.3 The R-matrix propagator method

In this method the quantity that is propagated is
the Wigner R-matrix, related to the (n x n) solution
and derivative matrices by the expression

R = F(E)"

A~ "~ A

(3.17)

The exbonential build up of tﬁe wavefunction in the classically
forbidden regidns is, therefore, cancelled and the method
is inherently stable. Quite apart from the fact that
no.stabilising'trahsformation is needed, the R-matrix
contains the miniﬁum amount of information for the deter-
mination of bound state energies. As has already been
mentioned, the principles behind this technique are very
different from_those of the de Vogelaere method. - The
coupled equations are solved exactly for an approximate
‘coppiing matrix E. This is known as the piecewise analytic
or approximété potential approach. Dividing the radial
coordinate into sectors, we first diagonalise the "true"
coupling matrix at the centre.of each sector. This

effectively transforms the basis set into one in which



there is no coupling. The resulting set of n one-dimensional

Schroedinger equatioﬁs may then be solved analytically

if a simble fOrm.for W is assumed over the rest of the

sector (Stechel ‘et al. 1978, be Vries and George 1980).

For the present calculations we assumed a constant (and

diagonal).g within a given sector. Schneider and Walker

(1979) have expanded the radial dependence of the total

wavefunction in a basis, thereby combining ideas from

square integrable methods aﬁd direct numerical integration.
‘Secrest (1979) has classified the propagation technique

in this method as invariant imbedding, and his derivation

makes direct use of this concept. We shall show in the

following section that it is not-necessary to do so;

the R-matrix propagator method will be derived by a straight-

forward rearrangement of the propagation equations of

what is essentially the solution following method of

Light (1971).

3.3.1 Derivation

The system of n coupled differential equations (3.1)
may be rewritten as

T7'(R) EII(R) =<I_|}(R) W(R) I(RDI—'(R)E(R) (3.18)

If E is chosen such that Ifl W T is a diagonal matrix,
then we have converted the problem to a set of n single

channel  Schroedinger equations which can then be solved



individually.‘ The transformed radial functions are accordingly
I_l(R)E(R). Since W is symmetric the transformation .
matrix T is orthogonal (Boardman et al. 1973) and thus
its inverse may be replaced by'its transpose ET.

Taking an arbitréry radial sector, i + 1, we diagonalise

W at the centre of this sector, R;  , (see Figure 3.1):
~ - 2

IT_(”')\;},/(RHQI(”')- = 2}2(”0 (3.19)

%2(i + 1) is a diagonal matrix whose elements are the
eigenvalues of the matrix ﬂ‘ As indicated, the diagonalising
transformation is taken to be sector dependent but indep-

edent of R within each sector. The elements of )2 are,

inAthe present work, assumed to be constant throughout
tne sector in question, eachlborresponding‘to the local
value of the negative of the wavevector in each channel
(see equation 2.20). These approximations imply both
that the departure from diagonality and the variation
of the potential, as we move away from the centre of
the sector, are both negligible (Light et al. 1979).
Thelatter condition implies that small step lengths must
be taken at short range, where the potential is varying
rapidly, to preserve accuracy.

Although the diagonalising fransformation is com-
putationally expensivé it is energy independent. Hence,

once a calculation has been completed for one trial



energy, subsequent energies are much cheaper. In a bound
state problem, which involves complete calculations at
a nuﬁber'of "trial'" and "iterated'" energies, this is
clearly a good feature. The consequent saving in CPU
fimeAis at the expense of increased storage needed for
the matrices which diagonalise w The matrix eigenvalues
for each sector are also all stored for the first energy,
subsequent changes in the total energy AE alter all of
these by the same amount (—2//* AE) (Light 1971).

To begiﬁ with we consider the numerical solution

of the single Schroedinger equation
// — e
FO(RY = A F(R) (3.20)

As in the derivation of the de Vogelaere method, a Taylor
series is used to expand the solution and its derivative.

i

' _ ' o hl 1l ] hBF R.
FRi,) = FRY) + hF'RY + R FIR) +2 (Fo (3.21a)

FR.,) = FIR) + hF'R) + HF"R) + ... (3.210)
Using (3.20) we can write

YR = (R) FR) + A F(R) (3.22)

The approximation that ?? is constant throughout the



sector means that the first term on the right hand side
of this equation vanishes. This introduces a local error

Z)

of 0(h) in the solution derivative F' and consequently

an error of O(h3) in the solution, as can be seen by
reference to eqﬁations (3.21). We conclude that the
‘local error is O(h3) in agreemeht with Light (1971) whose
arguments were based on the Magnus exponentiation method
(Magnﬁs 1954). Using the same simple arguments as in
section 3.2.1, we arrive at-a global error of O(hz).
This result is borne out empirically as will be seen
in Section 3.4.1,

Expressions similar to (3.22) for higher derivatives
of F are readily obtained, and from (3.20) it is seen
that they may all be expressed in terms of F and F'.
Substituting these relations into the Taylor expansions

(3.21) and neglecting all derivatives of ;\2, we obtain

in matrix form:
F-(RLH3 .Fl Fz F(RL‘)
F/(RW) f’s Pu F(Re) (3.23)

The form of the sector propagators Py depends on whether

the channel is open ()8 < 0) or closed (A% > 0):

- 2
=Py =t A = cosh(hlal) , A" >0
z cos (h|%|>) A< o

(3.24a)



Py = h + _|r\_3'9\2 .0 = stnh (MAD/MI ) Ao
* e sin (h[AD/[Al, At<o
| (3.24b)
R L
-k (Sl sin (hian), At<o
o o (3.24c)

.Equation (3.23) is the core of a piecewise analytic,

solution folldWing algorithm. Given initial values of

the solution and its derivative at one end of the sector

'(Ri) we can propagate to the other end (R, ;).

By multiplying out (3.23), the resulting two equations
may be rearranged to obtain expressions for'F(Ri) and

F(R 1) in terms of F'(Ri) and F'(R ):

i+ i+1

F(R.) Ty ;F/(RL>
F(Ri) | Ty FY(RL)/ (3.25)

)

All we have done is to restate an initial value problem

as a boundary value problem, expressing the solutions

at the sector boundaries in terms of their derivatives
(Light and Walker 1976). F'(R;) has been multiplied

by -1 to‘retain the convention of Stechel et al. (1978)
in which the derivatives at the sector boundaries are
éutwardly normal. It is important to take note of this

derivative convention when implementing boundary conditions



aswe shall see in the following section. Equation (3.25)

defines the sector R-matrix r whose elements are given

by:
r oo ooy o coth (hAD)/IA} , X' 7o
b P% ] {—c,ot (WIAD/ Al A< o (3.26a)
-1 csch (hIAD/1AL ) A 7o
S > (3.26b)
—esc (RIAD/IAL ) X <O
to= ~p v 0p | cseh (hiaD/IAL, al>o e
3 v ! ~cse (hIa)/ial, A <O
coth (hIAD/IAL , A7 >0 N

T :... - =
| ‘F s g;wt(hm)/m , At <o

Note that Ty =Ty and ry = rq. To avoid ambiguity we
'shall, whenever necessary, refer to the R-matrix defined

by equation (3.17) as the global R-matrix. Combining

the definition of the global (3.17) with that of the
sector (3.25) R-matrix, the radial wavefunctions can
be eliminated to obtain two simultaneous equations relating
F'(R,) and F' (R, ). F'(R,) may then be eliminated
i i+ 1 i
to obtain the following propagation equation for the

global R-matrix (Light et . al. 1979):



| - N |
R(Rm) =T - {\3(:‘%(&) * {\'> O (3.27)

The first'step in generalising this expression to
a system of n( > 1) differential equations is trivial.
The-elements of the sector R-matrix become (n x n) diagonal
'matrices,‘the elements of which are obtained from equations
(3.26) by replaciﬁg | A | with I?\jjl. The second step
involves accounting for the ‘fact that B&Ri N 1) and B}R )
refer to the bases which diagonalise the coupling matrix
in sectors i + 1 and i respectively (Figure 3.1). .The
transformation which first takes the uncoupled basis
of sector i into the original coupled basis, and from
this into the uncoupled basis of sector i + 1 is given
by the produgtIET(i + 1{5(1). It follows that the R-
matrix propagator equation, generalised to the n-channel

problem, may be written

R(Rif\) = T “‘\3< | (L““)T()R(RL) L) L-\-I)

il
)
~V A (3.28)
The transformation which takes the global R-matrix at
the right hand boundary of sector i to that at the left
hand boundary of sector i + 1 ensures continuity of the
wavefunction and its derivative across the sector wall

(Light and Walker 1976). Equation (3.28) is a statement



of the R-matrix propagator algorithm; It is seen that
at no stage are  the wavefunction or its derivative evaluated
so the method is stable, even in the classically forbidden
regions.

Once the end of the integration range (the right

hand side of the Nth sector) is reached, the final global

R-matrix is obtained by transforming from the locally

diagonal basis back to the original

"o

RER,) = T(v) RRD T

We shall now consider the implementation of the boundary
conditions appropriate to bound state problems.

3.3.2 Boundary and matching conditions

To start the R-matrix propagation, the global R-
matrix at the right hand boundary of the first sector
must be specified. Similarly the calculation must be

initialised for the propagation from R to R The

ax mid*

boundary conditions reflect the exponential behaviour

of the wavefunction in the classicélly forbidden regions:

4 L
[EI(RM;A*‘M]JIV - SJ"[Q\JJ\ (3.30a)

Y = i (3.30b)
[E’L(Rmax k)]ka SJ&"}\JJ‘



2 T :
%jj andﬂjj are the eigenvalues of the coupling matrices
!
W(R .+ h/2) and WR . - h'/2) respectively. h and

h' are the lengths of the first sector at either end

of the integration range (refer to Figure 3.1). These
boundary conditions are less ''severe'' than the corresponding
de.Vogelaére ones (3.11) which are equivalent to assuming

an infinite wall potential at Rm.

in and Rm . The R-matrix

ax
boundary conditions only assume a constant effective
potential for R R in and R 2R and a consequence
of this is that a smaller integration range may be sufficient.
As with the-de Vogelaere method we must integrate
For the sector R-matrices

from both Rm' and Rmax to R

in mid;
given in (3.26) the inward propagation may simply be
_achievéd, as in the de Vogelaere case, by replacing h

bj -h in the R-matrix propagator algorithm. In general

one can always explicitly use the inverse of (3.28),
obtaining'EjRi) in terms of E(Ri , 1) (Baluja et al.,

1983). Because the R—matrix computer programme'available

to us was a straightforward implementation of the algorithm
of Stechel et al. (1978), where h is assumed to be positive,
an alternative but equivalent method of inward integration
was adopted. This involved making the simple transformation
R'" =R - Rwith W(R") = W(R). This converts a backward
to a forward problem.

Having obtained the final (in the original coupled

basis) global R-matrix at R ;4> an analogous matching



Acondition to. (3.15) is obtained

(e, o ) i
_Eé‘"(E§m¢A> C Egz

<R"rii) | | (3.31)

T . T
The subscript 1‘2) denotes propagation from Rmin(Rmax)

and the minus sign of Eg is a consequence of the derivative
convention of Stechel et al. (1978). The identity matrices

I may be eliminated to obtain the R-matrix matching condition

for 'an eigenenergy:

L - pf - -
l%.'(_ﬁ'““t) + B’L(RML:;{.>\ =0 (3.32)

where 'we now have to evaluate the determinant of an

(n x n) matrix. That (3.32) follows from (3.31) is immediately
appareﬁt for a single Schroedinger edﬁation. The validity

of this expression for the general n-channel case follows
from_mathematical induction. AlternatiQely, (3.32) can

be justifiéd physically by stating.that for an eigenenergy

the two R-matrices are identical at the matching point.

Note that had we uéed the same convention for the derivatives
as We‘did in‘the de Vogélaere method (always measured
with-réspect-to increésing R), then the R-matrix matching

condition would involve the difference rather than the

f

sum of.B1 andjgg. This convention was adopted in an

earlier-presehtation'(Danby 1983).



An_example of the behaviour of the determinant (3.32)
in the region of an eigenenergy is shown in Figure 3.2(a).

Also shown are the co;responding plots of the de Vogelaere
matching determinant (3.15). The matrices‘\fj_1 and zj“l
were used to stabilise in Figure‘3.2(b) and 3.2(c) respectively.
The origin of the poles in Figures 3.2(a) and 3.2(c)

is easily understood in terms of the single channel case

as occurring when either'Bi(Rmid) or:Bg(Rmid) becomes

infinite; in other words whén the derivative of the radial
wavefunction becomes zero. Thé similarity of these two
figures, as distinct from 3.2(b), should not be surprising.
Frequent stabilisation with E'_l is rather like propagating

the R-matrix. |

3.4 Tests of the numerical methods

To date, no independent calculations on the bound
states of a molecular dimer, using direct numerical inte-
gration of the close-coupled equations, have been published.
Extensive results have been repofted for the Ar-HCl dimer,
and this is, tﬁerefore, a convenient system”on which to
test the accuracy of the numerical metﬁods we employ.

" The HCL is treated as a rigid rotor and the problem is
thus a special case of the 2-rotor algebra presented

in ChapterIZ. For these tests we used the empirical
potential, I, of Dunker and Gordon (1976b). The potential
expaﬁsion coefficients Vqqu/JR) are plotted in Figure

3.3. In the atom-rotor problem q, == 0 and the potential
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Illustration of the matching condition in the region of an
eigenenergy. (a) is a plot of the R-matrix matching deter-
minant (3.32) as a function of trial energy. The
corresponding de Vogelaere determinant (3.152 is also

plotted where the matrices (b) F © and (c) F 1 vere

used to stabilise during propagation. The eigenenergy in
question is the ground rovibrational state of the Dunker
and Gordon (1976b) potential I (see Section 3.4).
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The variation with the Ar-HCl centre-of-mass separation
of the body-fixed potential expansion coefficients (cf.
equation (3.33)) for potential I of Dunker and Gordon

(1976b).



expansion (2.23) reduces to

\/(fi)R> :'%,Vi,oo(R>“21‘+l P‘Lu (COSG’J (3.33)

where P 1 is>a Legendre polynomial. All calculations
with this pdtential were carried out with five rotational
states, j = 0 - 4, on the HCl. The corresponding channel
energies were determined from the rotational constant

of HC1, 10.44019 cm_l. We illustrate the convergence
properties of the numerical methods with reference to
the ground rovibrational state of the Ar-HCl system.

3.4.1 Convergence properties

In examining the numerical convergence properties,
the -parameters of interest are the integration range,

R - R and the number of integration steps per

max min’?
"half-range', N. We took the same number of steps integrating

the equations from Rm'

in to Rmid as we did from Rmax to

Rmid’ and the step length was kept constant in each half-
range, thus:

/

RMX'"RMA = Nh ' (3.34a)

R .~ Ruin = Nh | (3.34b)

This has the desirable properties of both being easy

to programme and of having smaller sector widths, h,



in the fegion where the potential is more rapidly varying.
The 1attér‘is impoftantvin tﬁe R-matrix propagator method
and also helpful from the point of view of étabilisation
in the'de Vogelaere method. Furthermore, the global
error of‘theAresultéican be expected to behave monotonically
with decréasing step length. This is in contrast to
the erratic behavioﬁr which can result from the use of
step leﬁgth algorithﬁs (Light 1983, Mattson et al. 1983,
Mattson and-Andersonl 1984) . |
In Table 3.1, the éonvergeﬁce of the ground state
eigenenergy with respect to the number of integration
steps per half-range is illustrated. Rmin and Rmax are
~held constant at 5.5 a.u. (Bohr) and 10.0 a.u. respectiveiy.
The matchingvpéint, Rmid ='7.4266 a.u. For N = 100,
the de Vogeléere method has converged to eight significant
figures, while the R-matrix propagator has to five.
‘Given the erroré inherent in theAinteraction'potential,
these levels ofyprecision are both more than adequate.
The agreement between the two methods is good; six
éignificaht figqres for N = 400. Analysis of the results
in Table 3.1 shows that the error in the eigenenergies
obtained with the R-matrix propagator method is proportional
to.(l/N)z. .This,is seen by noting that for a (1/N)2

error,

_<E(N) ;‘.'E(lN)):/ (E(zr\/) —E‘@@‘) =y

(3.35)



-1

Eigenenergy (cm ™)

N . de Vogelaere " R-matrix propagator
50 -132.495 07 -132.480 62
100 -132.495 08 -132.491 47
200 ~132.495 08 ~132.494 18
400 —-132.495 08 ~132.494 86

TABLE 3.1

Convergenée of the gfound rovibrational state
of Ar-HC1 (Dunker and Gordon potential) as a
funqtion of the number of integration steps>
per half range, N. R_. ~='5.5 au, Riax = 10.0 au,

R ., = 7.4266 au.
mid



This ratio of eigenehergy differences 1is equél to 3.985
for N = 50 and 4.060 for N = 100. Following a suggestion
by Hutson (1983a),this error can be'eliminated using

~ Richardson 52 extrapolation (Hartree 1958). The corrected
eigenéoefgy, E, obtoined from the eigenenergies for

N = 50 and' N - 100 is given by
E = E(Nﬁoo) - 'E(E(Niso) —E(N—”—too)) (3.36)

We thus obtain E = -132.49509 cm—l, in very good agreement

with the converged de Vogelaere result. Expressions

2

analogous to (3.36) for global errors other than O(h")

may readily'be derived (Mattson and Anderson 1984).

Keeplng h flxed in each half-range and halv1ng it in
successive calculatlons ensures that the global truncation
error decreases monotonically as a simple power of ( /N),
guarantéeiﬁg‘the‘soccess of Richardson extrapolation.

In examining the convergence with respect to increasing
the integration range, we must be aware of the loss of
numerical aocuracy resulting from a corresponding increase
in the step leogth.‘ In Table 3.2 we keep Rmin constant
at 5.5 a.u; and N at 400. This large N value ensures
that changes in the de Vogelaere eigenenergies reflect

variations due solely to the position of the outer starting

point, R___. At R = 9 a.u., the de Vogelaere method
max max



_1)

Eigenenergy (cm

_Rmax(au) de Vogelaere R-matrix propagator
8.5 ~131.879 38 -132.540 51
9.0 -132.475 74 -132.495 42
9.5 —132.494 85 .- -132.494 90
10.0 -132.495 08 -132.494 86
TABLE 3.2

Convergénce of the gfound rovibrational state
of Ar-HCl (Dunker and Gordon potential) as a
function of the outer limit of the integration
range, Rmax' Rmin = 5.5 au, Rmid = 7.4266 au,
N = 400.



has converged to four significant figures, the R-matrix
propagator to six. The differences between the two methods
in convergence with respect to the inner starting point,

R are less marked, but the better convergence properties

min’
of the R-matrix propagator method are still evident (Table

3.3).

To summarise, rapid convergence with respect to
the number of sectors is attained using the de Vogelaere
method, but the R—matrix prépagator method requires smaller
penetration into the classically forbidden regions.
' This, as was indicated in section 3.3.2, is due to the
less severe Boundary conditions (3.30). In bound state
problems for weakly bound van der Waals dimers, where
there are few oscillations in the radial wévefunction,
'sqlﬁtion following techniques will have faster convergence
properties. However, the advantage of the R-matrix propagator
methéd in requiring a smaller integration range may prove
useful where reasonably accurate eigenenergies are required
fqr states lying‘close to the dissociation limit.

3.4.2 Comparison with other calculations

In the paper of Kidd et al. (1981), comparison
was made Qith the close-coupling calculations performed
by Dunker and Gordon (1976b) on Ar-HCl. Dunker and Gordon
used a piecewise analytic method, described by Gordon
(1971) and Dunker and Gordon (1976a). Kidd et al. used

the '"amplitude density'' method of Johnson and Secrest



Eigenenergy (em™ 1)

Rmiﬁ(au) _ de Vogelaere R-matrix propagator
6.5 -132.214 54 -132.526 02
6.0 _132.494 89 _132.494 92
5.5 - _132.495 08 _132.494 86
5.0 ~132.495 08 ~ -132.494 79
4.5 . ~132.495 08 -132.494 70
TABLE 3.3

Convergence of the ground'rovibrational

of Ar-HC1 (Dunker and Gordon potential)

state

as a

function of the inner limit of the integration

:,range, R . . R = 10.0 au, Rmid = 7.4266 au,

min® "“max
‘N = 400.



:(1968) to solvé the coupled equations. This is an approximate
solﬁtion appfoach and so might be expected to have convergence
properties closer-td those of the de Vogelaere than the
R-matrix propagator method. |

In Table 3.4 we give the eigenenergies of the ground
rbvibratidnél state at different values of the total
angular momentum, J. Thé only other good quantum number,
the parity &€ , is also.given. The values obtained with
.the R-matrix propagator and‘de Vogelaere methods are
compared'with the results of Kidd et al. (1981) and Dunker
and Gordon (1976b). For comparison purposes the same
integration'paraﬁeters were used in our two methods;
Rmin = 5.5 a.u., Rmax-z 10.00 a.u. and N = 200. The
matching point, R . = 7.4266 a.u. The potential energy
parameters, HCl rotational constant, and conversion factors
used were those given by Kidd et al. (1981).

The agre%ment we oBtain with Kidd et al. is very
good; to within two in the sixth significant figure.
The de Vogelaere results are in rather better agreement
than those using the R-matrix propagator method Because
of the poorer convergence properties of the latter with
respect to number of sectors. The calculations of Dunker
and Gordon weré in single precision arithmetic, and this
is a likely cause of the discrepancies with their results.
The computer time, per trial energy, fequired by our

two methods, with N = 200, is similar : about 2.5 s for



Present calculations

' Dunker and
n J € de Vogelaere R-matrix Kidd et al. Gordon

5 0 1 -132.4951 -132.4942 © -132.4954 -132.436
9 1 -1 —132.3821 =-132.3812 .-132.3824 -132.315
12 2 1 -132.1561 -132.1552 -132.1566 -132.092
14 3 -1. -131.8173 -131.8164 -131.8178 - -
15 4 1 —131,3656 -131.3647 -131.3663 -
15 5 -1 -130.8013 -131.8004  -130.8022 -
TABLE 3.4

_1)

Ground-state eigenenergies (cm at different total

angular momentum, J. The parity, & , and the dimensionality,
n, of the basis 'set which includes rotor states j = 0-4

are also given. For‘thé present calculations, the inte-
gration parameters used were: N = 200, Rmin = 5.5 au,

R = 10.0 au, R ., = 7.4266 au. Potential I of Dunker
max mid .

and Gordon (1976b) was used.’



n=251(J =0) and ‘about 35s for n = 15 (J = 4,5). The
calculations were performed on an IBM 370/168 machine.

So far all of our tests have been carried out using
the‘Dunker.and Gordoﬁ potential plotted in Figure 3.3.
This section will be concluded with the results of some
calculations on an Ar-HCl1l potential with a significantly
shallower well and more anisotropic terms. The number
and size of the anisotropic terms, together with the
relatively small HCl1l rotational constant, lead to the
basis (j) states being strongly coupled. The potential
is due to J.A. Vliegenthart and A. Rozendaal, full details
of which are given by Kidd et al. (1981). The expansion
coefficients Vqlq%AR) for this poteptial are plotted
~in Figure 3.4, which may be compared to Figure 3.3. 1In
Tabie 3.5 we present the results of calculations on
two levels using the R-matrix propagator method. The energy
levels chosen are those for which Kidd et al. carried out
detailed convergence tests, enabling them to give definite
error estimates. These calculations are for J = 0 and
a basis expansion j = 0-9. The parify, € = (o) +4
=+ 1. We took the same integration range (2 - 21 a.u.) as
Kidd et al. Eigenenergy 1 is the ground rovibrational
state of Ar,— HC1 (some 37 cm ! higher than the value
bbtained with the Dunker and Gordon potential in thié section).

Eigenenergy 2 is a state lying close to the dissociation
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The variation with the Ar-HCl centre-of-mass separation
of the body-fixed potential expansion coefficients for
the Vliegenthart and Rozendaal potential described

in Table 1 of Kidd et al. (1981).



Eigenenergy 1 Eigenenergy 2

N = 100 -95.289707 ~5.0057807
N = 200 | -95.329388 ~4.9895762
Richardson h® _95.3429 _4.9845
extrapolate
Kidd et al. -95.3429%0.001 24.9854 * 0.02
TABLE 3.5

Calculétions of two rovibrational states of the Vliegenthart
and Rozendaal Ar-HCl potential in Figure 3.4. A Richardson
h2 extrapolate was obtained ffom calculations employing

a total of 200 (N = 100) and 400 (N = 200) steps.

Also presented are the results.and error bounds of

Kidd et al.~(1981) who used a tofal of 400 integration

steps. . All energies are in em™ L.



limit; It is seen thét in both cases, our estimate

of the eigenenergy, using a Richardson h2 extrapolation
of the results for N = 100 and N = 200, lies well within
the‘error bounds quoted by Kidd et al. Their results
were obtained using a total of 400 sectors, presumably
requiring similar computational effort to our N = 200
calculation.

The high level of agreement between the R-matrix
propagator, de Vogeiaére and Johnson and Secrest algorithms
is encouraging. The results of'this section allay the
resérvations expressed by Light and Walker (1976) about .
the suitability of the R-matrix propagator method for
use in coupled channel bound state problems. It should
be emphasised that all of the calculations described
in this chapter are purely for test purposes. .Close-
coupled bound state calculations on the Ar-HCl dimer
using more realistic potentials have been performed
by Hutson and Howard (1982) and Hutson (1984).

In the following chapter we shall apply the numerical
methods of the present chapter and the algebraic methods
of Chapter 2 to the H, - Hy Aimer. Before doing so,
alterﬁative approaches to finding the bound states of

van der Waals molecules will be discussed.



3.5 Alternative methods for finding bound states

3.5.1 Matching conditions

The implementation of the bouﬁdary conditions of
the bound state problem for a single Schroedinger equation
is considerablyAsimplef than the more general n .channel
case preSénted so far. It is well established that
a shooting procedgre is a satisfactory way of finding
the eigenenergies (Eisberg 1961). A 'trial energy is
chosen and the Solution.F(Rj propagated from Rmin into
the right hand side classically forbidden region.
Unless an eigenenergy waS'fortuitously chosen, the wave-
function will eithef approach the axis before rising
exponentially in magnitude, or it will cross the axis
.ahd continue éxponentially. One eigenenergy (or some
othér odd number) lies betweén two trial energies for
which the trial Soiutions'differ in sign at large R.
The‘eigenenergy-may be located using Bolzano'smethod
'(téking the next trial energy to be midway between the
first two). For a single Schroedinger equation the
time consuming integration is, therefore, taken no further
than necessary, and therevis no need to carry out tests
‘to détgrmine éither a suitable matching point Rmid or
upper limit to the integration range R . The behaviour
of the wayefunction as thé trial energy passes through
an eigenenergy has been nicely'illustrated'by Hajj (1980).

A number of highly automated computer programmes adopting



the abo&e shooting approach for a single Schroedinger
equation have been written and are suitable for use
as '"black boxes'" (e.g. Foglia 1984). An exception is
the work'of‘Cobley (1961) who preferred the forward
~and backward propagation, for solving a single Schroedinger
equation, ésAthis enabled him to develop a particularly
efficient method for iterating to an eigenvalue.

It is instructive to consider the difficulties
encountered,When we try to'applyAthe shooting technique
to systems of coupled equations. Consider the simplest

case of equatibn (3.1) with two coupled channels.

4 FR) = Lwi(R) R (R)

dR*
j =12 and Kk =1,2 (3.37)
At R = R_. we set F; =‘F2 = 0 and we are free, because

of the homogeneity of the Schroedinger equation, to

specify an arbitrary value for one of the initial derivatives,

say F{(Rﬁin)(= g%l(Rmin)). We now have to search over
two unkﬁowns, Fé(Rmin) and E, in order to find the eigen-

energies for which Fy (R ) = Fp(R ) = 0. In principle

max
the differential equations (3.37) may be integrated for
trial values of these unknowps and some form of inverse

interpoiation used, guided by the form of the solutions

in the asymptotic region. A more systematic method



based on Newton's process has been described by Fox
(1960). For the problem at hand, Newton's process gives
rise to two simultaneous equations for the corrections, -

SFé(Rmin)'and, SE, toAthe trial values of Fé(Rm. )

in
and Ef.
: /
SE OF (R,.,) + §F 2R (Ru) + AR = o
9E - I

SE ?F;_(Rmou» + SE/QF;(RMA,\) + E(RMAX> =0 (3.38)
argument has been dropped. F;(R

For clarity the R_. nax )

in

and F, ) are found by numerically integrating the

(R
max
coupled equations. The coefficients of $E and §F)

have to be found by numerical integration of differential
equations obtained by differentiating the Schroedinger
equation with respect to E and Fé. The boundary conditions
for these at R . ~are obtained directly from those for

. (3.37). Once E and Fé have been corrected using (3.38)
the procedure is repeated until E and Eé no longer change
to withiﬁ a specified tolerance. 1t is clear that this
procedure will become very complicated for large systems
of coupled equations, though it does avoid the need

for propagating a matrix of solutions rather than a
single column. if'fhe iterative procedure was efficient
then this Qould result in a saving of CPU time.. A good

initial estimate of the eigenenergy as well as the starting



solution derivatives is critical to the method's
efficiency. In éddition, Fox (1960) sometimes obtained
falée.eigenvalues when he failed to choose a large enough
“value of RmaxA This occurred when one of the components
of the solution happened to cross the axis, changing
sign at R. . Fox attempted to solve a maximum of 3
coupled equations. With these problems in mind, we
opted to follow Gordon (1969) in propagating a set of
solution vectoré in béth the fdrward and backward directions,
and matching at Rmid'

The backward propagation is avoided in an important
technique, devised by Shapiro (1972) and developed for
bound state calculations by Shapiro and Balint-Kurti

(1979), known as the artificial channels method. This

involves converting the bound state problem into a scattering
calculation by the‘addition of two unphysical channels

which are open at large R. These channels, which we

denote by p and Y , are not directly coupled to each

other but are coupled to the (closed) channels of the

bound state problem, collectively denoted by & .- The
~augmented coupliﬁg‘matrix has a special asymmetric form
which permits coupling of 7 to F via o« but not

p to Y .

Viw —E O Vi
W(R) = X Z/LA

(3.39)

~ | V{S"‘ VPF—-E O
° o Vyy TE



Shapiro and Balint—Kurti (1979) chose exponentially
bR

decaying forms, ae ", fdr‘prs Viy, Vhd and de‘ They
pointed out, however, that the bound state energies
yielded by their method were completely insensitive

to the values of a and b chosen. Figure 3.5 is a schematic
representation of the diagonai elements of the augmented
effective potential matrix for the example of a single
Schroedinger equation (Shapiro and Balint-Kurti 1977).
Using numerical mefhods, such as those described in
Sections 3.2 and 3.3, the coupled equations may be inte-
grated outﬁérds'into the asymptotic region. At this

point, scattering boundary conditions (see Chapter 5)

may be applied. The transition probability or T-matrix
element, Tﬁé—q” may thus be obtained. It haé been

shown that this T-matrix element may be written as a

sum of contributions from all of the bound states,

QéB(R), of Vi (R) plus an integral over the continuum

states (Shapiro and Balint-Kurti 1979):

Toey v X el 90 27, il

+ continuum contributions (3.40)

7<F and 7<7<are the scattering states of channels
{5 and 9 in the zero coupling limit. (3.40) shows that

has a pole whenever the total energy E is

TF<—7’
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The diagonal elements of the 3 x 3 effective potential
matrix corresponding to a single channel (%) bound

state problem (Shapiro and Balint-Kurti 1977).



equal to a bound staee energy Eﬁf The bound state
problen has thus been reduced to one of calculating
the T-matrix at a fange of ;fial energies and-locating
the poles in Tﬁ‘-7 . |

It may be observed that the artificial scattering
problem cohétructed above bears a striking resemblance
to the physical broblem of the Raman scattering of light
by moleculeé (Weissbluth 1978). In this analogy /3 and

74 cofrespond to the final and initial molecular states.
These ére not directly céupled by the transition dipole
moment induced by the incoming photon, but only indirectly
via intermediate states ( X ). An expression similar
to (3.40) is obtained for the transition matrix element
which, if the finite widths of the intermediate states
are unaccounted for, possesses similar poles (Bransden
and Joachain 1983).

In order to construct the appropriate scattering
boundary conditions in the artificial channels method
'it_is necessary,_és-with bound state boundary conditions,
to propagate a matrix of solution vectors. In this
case each column vector represents an initial state
of the system. Thomas (1979, 1982) has had considerable
success with an iterative approach in which.scattering
. from a single initial state only is considered. This

yields a single column of the T-matrix. Though Thomas



- solved the probiemlin'integral form, it is equivalent
to propagating a single sélution vector and iteratively
-searching.for thé correct starting derivatives. The
method gains in speed over conventional methods providing
the total number of iterations is much smaller than
the dimensionaiity of the problem.‘ 510 close-coupled
equations have beén solved byvthe Thomas (1982) method.
In the artificial channels approach, one is not
-interesfed in thelwhole T-matrix; just a single element.
The bringing tdgether of Thomas' work on scattering
calculations with the artificial channels method, heeding
the lessons of Fox (1960), could produce a useful method
for calculating bound states. Furthermore, information
gleaned at the first trial energy could be used to reduce
the number of iterations needed to find the corréct
scattering solution at subsequent energies. The method
coﬁld-find application'inAcalculating the bound states
of systems reQuiring very large numbers of coupled equations.
Examplés of such systems are provided by semi-rigid
van der Waals molecules (e.g. He—Iz).or conventional
"floppy' systems such as Hg and KCN.

3.5.2 The centrifugal decoupling method

So far in this chapter, we have discussed the solution
of the bound state problem using the full close-coupling

(cc) method. We now outline an approximate method which



requires a body—fixéd formulation for its implementation.
In the body—fixed»frame the potential matrix eléments
are diagonal in ‘the jz.Aquantum number; only the coriolis
interactions couple states of differént el (seé equation
(2.32)). The centrifugal decoupling (CD) or coupled
states method involves neglecting these coriolis terms.
In scatteriﬁg calculations, for which this approximation
has been widely made (é.g; Dickinson 1979), the diagonal
éz ﬁatrix elements (equatioﬁ (2.31)) are also sometimes
approximated. The true values should be retained when
calculating Bound stétes. The CD approximation thus
leads to a coupling matrix W which is block diagonal
'in 2~ (Rabitz 1975). The bound state problem may
#hus be Solvea separately for each block resulting in
-a saving in CPU time. Within the CD approximation
becomes a good quantum number and may be used for bound
state assignments. Furthe;more, as can be seen from
equation (2.15), the basis set for A £ 0 is independent
of the parity £ . In other words, for A # 0, the
coupled equations need only be solved for one parity;
levels differing only in & thus become degenerate
(Tennyson and van der Avoird 1982a).

| The CD ﬁethod has been applied to the Ar-HCl dimer
by Kidd et al. (1981). This is a favourable sysﬁem
both because the strong pbtehtial coupling makes the

coriolis terms relatively unimportant, and because the



dimer is a near symmetric top (for which N is a good

quéntum;number). Kidd et al. (1981) compared CD with

cc calculations of the ground state eigenenergy for

a rangerf total angular momenta, J. The error in the

CD results was found to increase with increasing J,

reflecting.the growing impértance of the coriolis coupling.
The range of systems which could be studied by

the CD method could be extended.in a number of ways.

Rabitz (1975) has suggested including only selected

coriolis couplings, while Hutson and Howard (1980) have

used perturbétion theory to correct for neglect of these

terms. Perturbative correction of CD results has also

been applied to scattefing problems by Secrest (1983).
The CD method has been applied in bound state cal-

culations of the strongly coupled molecular dimers

(HF), (Barton and Howard 1982) and (N,), (Tennyson'and

vanwder'Avoird,1982a).‘ In the latter.example; eigenvalues

accurate to within O.i em™ L were obtained for states

where the full coupling matrix was too large to allow

more accurate cc calculations to be made. Tennyson

and van der Avoird solved thesé CD equations not by

numerical integration, but by the secular equation method

which we now describe.



3.5.3 The secular equation method

Sd far we have solved the coupled equations for
the radial wavefunctions by direct numerical integration.
Alternatively wevmay use the variational principle and
expaﬁd the radial coordinate in terms of an orthonormal

set of states (Le Roy and van Kranendonk 1974):

i(R> B };— Tnk %(R) (3.41)
n represents the stretching quantum number of the van
der Waals bond. ‘It.is more convenient to define ’WQ(RJ
as being the same for all radial channels k, though

the radial expanSion coefficients a_, will, as indicated,
generally differ. Substituting (3.41) into the close-
coupled equations (3.1), and projecting with "4%L(R)

yields a set of linear equations of the following form:

(Hmj)w' B E‘gmbuz>“~k - o (3.42)

In the notation of Chapter 2, the Hamiltonian matrix

is giVen by

| "
Hmj’"k JV [ M olR +EJ + —%(R) YJR)JR(:&.@)

Unique solutions of (3.42) exist only if the determinant
of the matrix in brackets is zero, and this condition

yields'é secular equation for E. The problem of solving




the closé—coupled equations thus reduces té one of

diagonalising thé Hamiltonian matrix. The eigenenergies

E and éigenveétorslg thﬁs obtained are frequently labelled

with a set of quantum numbers & (= nJ.Jz Jn. reny )

representing thé basis state to which they correlate

in the isoﬁropic limit (Le Roy and Carley 1980). Tennyson

~and van der Avoird (1982a) have ccined the term LC-RAMP

(Linear Combination of.Radial and Angular Moméntum

functions Products) to distiﬁguish the secular equation

method outlined here from its implementations in other

types of problems (e.g! in electronic structure calculations).
In order to generate the Hamiltonian matrix it

is necessary to perform radial integrations over dZ/dRZ,

1/R2 and VqlquﬁR)' It is'important to choose radial

basis states for which these matrix elements are straight-

forhafd to evaluate. The number of terms in the expansion

(3.41) requirea to provide. an accurate representation

of the wavefunctién should be as small as. possible,

to avoid having to diagonalise an unwieldly Hamiltonian

matrix. One possibility is to define ’#/H(R) to be

- the bound eigenstates of a single radial Schroedinger

equation:

'-_l_‘ T A G2 D I Voo(R) ,E(n)/{’,)§’\l/n(ﬁ) =0

(3.44)



This equation may be obtained from tﬁe close-coupled
equétions in the. body-fixed frame by setting J = 0 and
neglecting'the poténtial anisotropy. In this case
4 = i

The "basis generating potential' (Le Roy and Carley
1980) is féken to be the isotropic part of the diatom-
diatom interaction, though other choices are possible.
For complexes undergoing strongly hindered internal
fotatién, the'radial potentiél obtained by fixing the
monomer orientations at their equilibrium values may
lead to fewer qyn(R) being needed (Tennyson and van
der Avoird 1982c). Numerical-solution of the basis
generating equation (3.44) can yield é complete set
of orthonormal states for any single value of /6
In the weakiy coupled hydrogen-rare gas systems, where {
is approximately-conserved, a value corresponding to
the dimer state of interest was chosen by Le Roy and
Carley (1980). .Tennyson and van def Avoird (1982c)
chose { = 0 for all their calculations on the strongly
bound floppy molecule KCN. This gave rapid convergence
as the effe;fi&e radial potential was quite insensitive
to cﬁanges in X .

In stfongly Bound conventional molecules which
have'aAlarge ﬁumber of bound states, or in weakly coupled
van der Waals systems whén l is approximately conserved,

the above approach has been shown to be satisfactory.
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For strongly coupled van der Waals molecules, 4, is

no longer good and thére may not exist a sufficiently
large number of bound solutions of (3.44) to achieve
convergenée. This problem can be overcome by placing

an infinite wali in the ‘basis generating potential at
some large'radial separation Rw‘ Rw should be beyond
the classical turning.point~of the highest eigenstate

of intérést, if‘the'radial behaviour of the dimer wave-
function is to be properly represented in a physically
impértant region. However, if R is too large the positive
~eigenenergies of (3.44) representing the continuum become
more closely bunched. Relatively more terms are then
needed to achieve. a giQen degree of flexibility in the
description QfAE(R). In general some experimentation
is hecessary to establish a suitable compromise, though

a more formallﬁrocedure of minimising the dimer eigen-
valués wifh-résbect to R, for a fixed basis set size,
could be ﬁsed. Lé Roy et al. (1982) chose R, to maximise
the aﬁplitude of the dimer eigenfunctions. Le Roy et
al. (1977) have used the infinite wall approach to
calcuiate the ground rovibfational state of the Ar-HCl
Adimer,.using tﬁe botential of Figure 3.3. They obtained
é value of -132.497 cm™ ! which differs from the true
value by only O.OOZ»cm_1 (see Tables 3.1, 3.2 and 3.3).
This méthod has also been used by Teﬁnyson (1982) in

his study of the very weakly bound Hjy molecule.
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The use of numerical radial basis states has been
reviewed‘by Le Roy'and Carley (1980). A final point
is that the numerical solution for “VH(R) yields the
matrix.elements over dz/dRZ in (3.43)_directly. This
is because the total Hamiltonian ma§ be written in terms
of the basis genefating Hamiltonian plus the anisétropic
potential terms and terms in 1/R2;

An alternative approach is to use a set of analytic
- polynomial funcfions in the-radial coordinate. This
avoids having both to perform numerical integrations
Aof (3.44) and the need to retain the basis states, over
a fine grid, in storage. Tennyson and Sutcliffe (1982)
introduced the use of Morse oscillators which are
based on associated.Laguerre polynomiais, for finding
the boﬁnd states of KCN and H,-Ne. For these functions
the matrix elements over dz/dRZ are analytic while the
others must be evaluated by numerical quadrature. Associated
with a single complete set of oscillators are 3 parameters;
these are felated to those of the associated Morse potential,
namely the dissociation energy (D, ), the fundamental
vibration frequency (We)'and the position of the potential
minimum (R ). These may be adjusted so as to minimise
selected dimer eigenvalues for a small radial and angular
_basis set calculation. A larger basis, using these
optiﬁised parameters, may then be used for production

runs. For the KCN molecule, Tennyson and Sutcliffe

7 N
iy
EA ..I\x,rll
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(1982) found that a basis set of Morse oscillators,

variationally optimised in this way, required the same

number of terms to give converged results as earlier

calculations usiﬁg a numerically generated basis (Tenﬁyson

and van der‘Avoird 1982c). Furthefmore, the 444 dimensional
- Hamiltonian matrix took only a tenth of the CPU time

to construct.

Spherical oscillator-like functions have also been
used (Tennyson and Sutcliffe-1983b). For these functions,
which have 2 adjustable parameters, the matrix elements
over 1/p2 as well as dz/dRZ are analytic. In their
work on H;, Tennysoh and Sutcliffe (1984) compared the
performance of these with Morse oscillators and fpund
the latter to be better. This they attributed to the
additional flexibility provided by the extra adjustable
parameter in the Morse case.

Two "black box'" computer programmes have been produced
to study atom-diatom (or triatomics in general) systems.
One uses Morse oscillatofs (Tennyson 1983), the other
spherical oscillators (Tennyson 1984). The latter has
been used in studies of the CH; moleculé for which the
linear H—C—H configuration is important (Tennyson and

 Sutcliffe 1983b). .This corresponds to R = 0, for which

Morse functions do not obey the correct (vanishing)

boundary'conditions.
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The secular equation method has been applied to
the diatom-diatom system N2—N2 (Tennyson and van der
Avoird 1982a) uéing an extension of the first of the
computer codes referred to above. They were able to
solve up to 675 close—coﬁpled equations with this method,
an ofder of magnitude larger than the number feasible
with the de Vogeléefe and R-matrix propagators. However,
it should be clear from the discussion above that the
problem of finding a suitabie'radial basis is non-trivial.
Furthermore, the accuracy of the eigenenergies obtained
tendé to diminish significantly for higher states.
For these reasons, the numerical solution of the close-
coupled equations, which is equivalent to using an infinite
R—basis; will remain an important technique for calculating
bound'state.energies.

3.5.4 Angular-radial decbupling methods

We end this chapter with a description of methods
which incorporate most of the ideas so far discussed.
The methods rely on an adiabatic separation of the
stretching motion of the van der Waals bond from internal
motions in a way which is analogous to the Born-Oppenheimer
(BO) éeparation of electroﬁic and nuclear motion. The
case of fwo rigid rotors will be considered; the extension
to vibrotors should be straightforward, though no cal-
culations including this degfee of freedom have yet

been carried out.
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We partition the Hamiltonian (2.2) into the sum

of a radial and angular part.

. A A A
where
2
= -1 2___ R
TR o 2R IR (3.46)

is the radial kinetic energy operator. The angular

(or fixed-R) Hamiltonian, is given by

A A

HO(R\f‘ T B) = éz. +h +h, + \/(fl)fz)R) (3.47)
.gz/,R"

Assuming the rotational motion is much faster than the

stretching of the dimer bond, we fix R to obtain an

equation analogous to the electronic wave equation in

the BO approximation

IN

TE, n A |
(Ho B Ui£> \Cx'(R\f.)be) = 0
| | (3.48)

The eigenfunctions of this angular equation depend para-
metrically on R. They may be labelled by the quantum
numbers (jq,Jp,31p ) = & . Equation (3.48) may be

solved by expanding fis in terms of the set of basis -
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functions . }j(jl o jlziiJWIEIfl,%Zéj given in (2.15).

The resulting linear equations are solved by diagonalising
the Hj matrix, the elements of which have been given

in the preceding chapter. This procedure is repeated

on a grid of R values to obtain the angﬁlar eigenvalues
J£(R). These form effective isotropic potentials

x
for the radial motion. They are independent of whether

U

space-fixed or body-fixed (as here) basis functions
are used in the ekpaﬁsion of'fi£ , provided that a complete
set is used. Lé Roy and Carley (1980) have given a
detailed presentatioh for atom-rotor systems using space-
fixed coordinates.

The gggggvtotal'wavefunction may now be expanded

in terms of the fii , which form a complete orthonormal

set at each R.

(3.49)

GTE = 3 (R) FIERIE FLR)

Inserting this in the'Schroedinger equation (2.1) and
projecting with ?i}~yie1ds'a system of coupled equations

for the radial functions 7(K
A A A S
R.
Z AL T L xR

+'[Ud\(R) ~E X (R) = 0O

Because the angular eigenfunctions depend on R, the

(3.50)

effect of Ty is given by
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TeX =fTX, + X T L —L3fe 9%
A R X R T — 5 -o1)
RIS MR #3R R

- If the_angular eigenfunctions vary slowly with R,.the
last two terms on the'fight hand side of (3.51) can

‘be neglected. The equations then decouple to yield

a one-dimensional radial Schroedinger equation

(3.52)

[TR,+ UK/(R) - E]X/(R) = O

The association of UD</(R) with an effective angular
potential for radial motion should now be clear.

An indicatibn of the accuracy of this approach
can be obtained by including the adiabatic (diagonal)

correction term

_ . A * »
—_ R / T
.T//,(/ (R) de' AL A -F"( R ‘F"(/ (3.53)

The last term of (3.51) contributes only to non-adiabatic
coupling between angular states (Holmgren et al. 1977).

The adiabatically corrected radial equation is thus

given by

[TR + Ta(R) + Ux/_(R) N E] XoR)=0 (3.54)
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Either (3.52) or (3.54) may be taken as a statement

of the Born Oppenheimer Angular Radial Separation (BOARS)

method, as'developéd by Holmgren et al. (1977). These
equations are analogous to the nuclear wave equation
~in the BO approkimation; they may be solved by numerical
Aintegratioﬁ using the methods described earlier in this
chapter. In their work on Ar-HCl, Holmgren et al. (1977)
showed4that equations (3.52) and (3.54) provide rigorous
lower and upper bounds respeétively to the ground state
energy for each value of J. The difference between
these bounds was typically 1.5 - 4.0 cm—l, depending
on the potential energy surface used. They used the
centrifugal decoupling approximation throughout but
included the coriolis terms in a subsequent paper
(Holmgren et al. 1978) also on Ar-HCl. 1In this later
paper they applied the BOARS method to the determination
of a poténtiai energy surface by least squares fitting
to experimental data.

The non-adiabatic coupling between different angular
states, caused by the last two terms in (3.51) is sometimes
_significant. This fact led Hutson and Howard (1980)

to develop the Corrected Born Oppenheimer (CBO) method

in which these correction terms are treated using
perturbation theory. In the only diatom-diatom system

studied to date; (HF)Z,'Barton and Howard (1982) also
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treated the J-dependent and Coriolis parts of the Hamiltonian
by perturbation theory. This simplified the solution

of the angular equation (3.48) and allowed speétroscopic
'obsérvébles, such as ;he rotational constant of the complex,
‘to be éalculated airectly.

Provided the perturbation theory expansion is rapidly
convergent, the CBO method produceS‘eigenehergies comparable
in accuracy with secular equation and direct numerical
integration results.(HutsoﬁAand Howard 1980). However,

for some potential energy surfaces the angular eigenfunctions
JE
o
equilibrium geometry of the dimer suddenly changes due

f can change rapidly with R; this can happen when- the

to sign changes in the anisotropic terms of the inter-
molecular interaction V (R). The Reversed Adiabatic

q1 q2M ,
(RA) method of Hutson and Howard (1982) circumvents this

problem by separating the angular and radial motions

in the opposite order to. the CBO and BOARS methods.

Inlthe case of two diatoms, this involves fixing the
geometry of the dimer -and solving the following Schroedinger

equation for the stretching of the van der Waals bond:

: A
[ 1 2R +\/1~|r R) U])mrr RIR) =
%ﬁAR 9R ~ )~
' : . (3 55)
This procedure is repeated‘on an angular grid to yield

- E A A
effective potentials for angular motion U(%1’92’R)'
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The resulting one-dimensional angular Schroedinger equation
maylbe perturbatively corrected to account for non-adiabatic
couplings between fhe different radial eigenfunctions

of (3.55). The RA method is accurate if the radial wave-
function does not ehange rapidly with the geometry of |
the.cbmplek. In the rare gas - HCl systems to which

it has been applied (Hutson and Howard 1982) this. was

found to be less restrictive than the conditions imposed

on the CBO((and BOARS) method. The RA methed, without
non;adiabatic corrections, is analogous to the infinite
order sudden approximation (IOSA) of scattering theory

(e.g. Dickinson 1979).



CHAPTER FOUR:

THE H., - H, DIMER

2 2
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4.1 Introduction

'Moieculaf‘hydrogen is the most abundant molecule
‘in the iﬁterStellar medium with a typical number density
of 10% cm® in dense molééular clouds. A knowledge
" of the cross sections fof rotational excitation of
Ho by coliisidns-with other H, ﬁblecules may be used
to glean information on'tﬁe physical properties of
these‘interstéllar clouds. As an example, such cross
sections are a necessary handle in models of radiative
ééoling (Draine et al. 1983). These collisional cal-
culations may ‘be carried out provided an accurate inter-
mplécular pdtential_is available.  The H,-H, potential
may be calculated using a vériety of quantum mechanical
methods. The burpose‘of this chaptef is to investigate
the usefulness of speectroscopy of thé corresponding
molecular dimer in asséssing calcplations of the potential
energy surface. | |

In Chapters 2 and 3, the problem of calculating
bound state energies of molecular dimers has been con-
sidered and a solution formulated. Thelsolution is
based on numerical integration of the close-coupled
equations derived in Chapter 2. The alggbra presented
there is applicable to van der Waals molecules comprising
any bair éf distinguishable or identical héteronuclear
or homonuclear Qz,diatomics, treated as rigid rotors.

Results  based on four independent calculations of the

Hy - HZ intermolecular potential will be discussed
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here.

The potential of Kochanski (1975) was computed
using a hybrid.technique in which the dispersion (inter-
molecular correlation) energy is evaluated from second-
order perturbation theory and added to the SCF energy
of tﬁe "supermolecule" H, - H2.' This approach is econ-
omiéal in terms of computer resources and, as such,
is tréctable even for heavief systems, e.g. CO-H,
(Prissette et al. 1978, Flower et al..1979) and OH-H,
(Kochanski and Flower 1981). A |

The three reﬁaining poténtials (Burton and Senff
1982; Meyer and Schaefer 1985, Schaefer and Liu 1985;
Schaefer and Meyér 1979) derive from configuration
interaction (CI) calculations, in which the contribution
of tﬁe dispersion energy to the total interaction pot-
ential is.already included. The Meyer-Schaefer-Liu
potential has been used in calculations of a wide range
of physical properties for which experimental results‘
are available. Calculations of differential cross
sections ﬁave been compared with the experimental measure-
ments of Buck (1982) and Buck et al. (1983a,b). A
variety'of transport properties, rotational relaxation
and line broadening phenomena have also been calculated
with this surface (K8hler and Schaefer 1983a,b).

We compare the results of our bound state calculations
with those.of Verberne and Reuss (1981), who employed
a poteﬁtial almost identical to tﬁat of Meyer, Schaefer

and Liu. After comparing our results with the spectro-
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scopic measureménﬁs of McKellar and Welsh (1974) we

go on to briefly dlSCUSS the valldlty of using the

rlgld rotor approx1mat10n for thls system. This chapter,
therefore, complements and gpdates the pioneering work
of Gordon and CashionA(1966) in which empirical isotropic
potéﬁ;ials were used to'analyse the eérlier and less
detailed spectra of Watanabée and Welsh (1964). Con-
lclusions aré drawn regarding the relative merits of

all four calculationslof the H2 - Hy potential surface,
cited above. |

4.2 The H, —.H2 interaction potential

As noted in Chapter 2, the interaction potential
between two diatomic molecules may be expanded in terms
of space-fixed (SF) ot'bpdy—fixed (BF) coordinates.

In SF cdordinates,

VEER) = . Appgn® Ty, (8 )

‘)~ 1’11 Y (4.1)

where -

|‘L7~11 ’ A A, ¥ A
T )Y ENY @
e E, GO Y 0L Y
in which C is a(ﬂebsch—Gordan cqefficient and qu a

' At AL

spherical harmonic function; I I denote the
orientations of the -intramolecular axes and % is the
orientation of theAintermoiecular vectdr, relative
to an SF coordinate system. In BF coordinates,

('rl) rl} R> ‘ Z | A%)?}z/’u <R> >{.iz/ (f‘ )%1>

‘L“Lzﬂ»
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where ‘
>4/L,ol}/u - 4?()/‘#(‘{:,) Xlz‘/*(fl) +2{, -ﬂ(f!)%Z/‘(fl)) ‘~ (4.4)

.l
The representations (4.1) and (4.3) are related through

a unitary transfofmation given in Chapter 2 (equation
(2.27)). |
Values' of the coefficients AOOO’ Argr = Agoos
Aoy Ag99 and Agyy oOn a radial grid between R = 3 a.u.
and R = 11 a.u. have been published by Schaefer and
Meyer (1979), who aiso give the coefficients of the
long range (van der Waals) interaction. We shall refer

to this potential as SM79. For each value of the inter-

molecular distance, Schaefer and Meyer carried out

a CI calculation at six angular geometries. These

are shown in Figure 4.1. The energy of the /\ "geometry"
is defined as the difference between the interactions
calculated for the trapezoidal and parallelogram geometries.
By substituting the five resultant energies in equation
(4.1), a set of five linearly independent algebraic
equations result. These may Be solved by matrix inversion
to obtain'the A1)111n - The CI calculations were
performed with the intramolecular separations, r; and

T, fixed at 1.4%49 a.u. This corresponds to the expectation
value of r in the ground rbvibrational state of the
isolated monomer.

It should be pointed out that the basis set super-

_position error is not corrected for in the SM79 potential

as this was found to yield better agreement with elastic
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The angular geometries and corresponding interaction
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energies of H2—H2 referred to in the text. The interaction

: energy'V(ZS)/is needed to evaluate the Vyoq term in the

body-fixed expansion (4.3).
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scattering measurements (Schaefer and Meyéf 1979).

For the SM79 potential at R > 11 a.u., the van
der Waals coefficients of the asymptotic 1/R expansion
~are used. These were calculated using standard (Rayleighf
Schroedinger) perturbatidn theory, in which the true
wavefuncﬁion is expanded as a sum of products of the
wavefunctions of the isolated monomers. 'Detailé of
the caltulation, which used a large basis set, have
been given.by Meyer (1976). |

From the SF potential expansion coefficients cal-
culated by Schaefer and‘Meyer we have obtaiﬁed the
corresponding BF coefficientg VqlqznA(R) which are plotted
in Figure 4.2. The ab initio points are interpolated,
as with all of the potential coefficients in this Chapter,
using cubic spline polynomials (e.g. de Boor 1978).
They ére extrapolated for R < 3 a.u. by fitting V (R)

q19M

“ b
192
qrqe® 39 /w

(R). This shoft'range form has been shown to be appropriate

at R = 3 and 3.5 a.u. to the exponential form a

-:V(Greeﬁ 1980, Ewing et al}, 1978) and is a reflection of
the exponential tails of the electron charge clouds.

The above CI calculations have been subsequently
reviéed} for>the same geometries and frozen bond length,

by Meyer and Schaefer (1985). Furthermore, a finer

radial grid was taken. The resulting potential has
been termed M79 and is briefly discussed by Monchick
and Schaefer (1980). It représents an improvement on
the SM79 surface in that a larger electronic basis set

is used to describe the molecular orbitals. Further-
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Figure 4.2

The variation with intermolecular centre-of-mass separation
of the coefficients of the body-fixed expansion (cf.
equation (4.3)) of the (SM79) interaction potential of

Schaefer and Meyer (1979). -
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more, the basié set supérbosition error has been corrected
for using the counterpoise method (Boys and Bernardi
- 1970) .- A large configuration expénsion has been employed,
including triple substitutions. The calculation of the
,dispersion.interaction tﬁus takes into account coupling
_between'intra; and inter-molecular correlation (van der
Ainfd et al;A198O). The dispersion energy thus determined
has been eétimated to be accurate to within 5% at R =
6 a.u. (Buék et al. 1981). Further details of the potential
calculation have yet to be published, though é related
study on-He - H, may be cited (Meyer et al. 1980).

The short range accuracy of the five potential expansion

coefficients has been improved by Schaefer and Liu (1985).

At R:='3 and 4 a.u., the CI calculations were extended

to a total of 19 geometries, including those already
calculated for M79. Using these additional geometries
the'five independent potential exbansion'coefficients
were modified at short range. The resulting potential

is termed M80. At larger R,ithe differences between

the M79 and M80 coefficients were forced to vanish expon-
entially. The main result of these modifications, illustrated
by Buck et al. (1983b), is that the Voo (0T Agpgp) term
is lower in the M80 potential by 16% at R = 4 a.u. The
isotropic part of the potential, Vooo» s changed by

less than 1% at R = 4 a.u. The M79 and M80 potentials
differ significantly only in the repulsive region. The
effect on dimer bound statés of these short range adjust-

ments should be negligible.
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‘Schaefer (1982a) has supplied us with M80 SF coefficients
from R = 1.6 to 11 a.u., together with reviséd long range
coefficients which are part theoretical (Meyer 1976,

Thakkar 1977) and part numerical. The corresponding BF
coefficients are plotted in Figure 4.3.

It is interesting to combare the SM79 coefficients in
Figure 4.2 with the revised (M80) ones in Figure 4.3.

.Though the‘difference is small, the VOOO term is more
attractive in the SM79 potential from the minimum outwards.
This is due fo the basis set superposition error, which

'is present in the earlier calculétion. Assuming that
'highef order terms in the potential expansion (Vqqu/A )
qq or qy > 2) are negligable, then V200 may be associated,
at large R, with the anisotropy of the dispersion inter-
action. This-may be seen from the asymptotic forms of

the BF coefficients (Flower et al. 1979, Mulder et al. 1979).
The VZOO term differé'Significantly for R< 7 a.u.; it is
more negative (''softer'") in thé.SM79 case.

The three remaining coefficients, V22n’ asymptatically
represent the interaction between the permanent quadrupole

moments of the H, molecules (Flower et al. 1979):

| 6 MV o-5 .
Vyoo(R) = g@ R™°. | (4.5a)
| 4t o-5
Voo  (R) = g@ R (4.5b)
. 1 2
Vo, o(R) = = -5
222 NOR SN (4.5¢)

Indeed, Gallup (1977) has shown that, even in the region
of the potential minimum, these terms may be largely

described by the interaction between the quadrupole moments
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Figure 4.3

As Figure 4.2, for the M80 potential of Meyer and
Schaefer (1985) and Schaefer and Liu (1985).
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of the unpertﬁrbéd monomers. There are large discrepancies
between phe Vypq and V,,, terms for the SM79 and M80
potentials; the former potential is incorrect asymptotically
(see table 4.1). The ratio V22O: Vg1t Vypy should be
'6:4:1;(equations(4.5)). At R = 11 a.u., the SM79 potential
givés'for this ratio 6 : 9.43 : 3.87 while the M80 behaves
well with the ratio 6 : 4.00 : 0.94. Given that a relatively
straightforward SCF calculation should be able to account
for the inéeraction between permanent electrostatic moments,
this discrepancy is difficult to understand. A plausible
explahation is the absence of any correction for basis
set superposition error in fhe SM79 calculation. This,
. as we shall see later, has a dramatic effect on the eigen-
energies for ortho—HZ—ortho—Hz.

The results of CI calculations for the H, - H, system

have also been reported:-by Burton and Senff (1982).

In this paper it isvclaimed that the correlation energy
was evaluated at two different levels of approximation,
—PNO—CI (Pair Natural Orbitals - Configuration Interaction)
and CEPA2-PNO (Correlated Electron Pair Approximation
version 2 - Pair Natural Orbitals). A description of
these techniques may be found in the article by Kutzelnigg
(1977a). The CEPA2 approximation includes higher-order
correlation effects (quadrupole excitations) than the
PNO-CI appréximation, which is restricted to single

and double substitutions with respeét to the reference
configuration. Burton (1982) expressed some prefefence

for the CEPA2 results but noted that the magnitude of



SM79 M80 Asymptotic

Vyoo  0.166(-5) 0.167(-5)  0.170(-5)
Vooy 0.261(-5) . 0.112(-5) 0.113(-5)
Vy0s 0.107(-5) 0.262(-6) 0.284(-6)

TABLE 4.1

Values of the potential expansion coefficients, V22n(R =

11 a.u.) obtained from thé SM79 and M80 ab initio cal-
culations. Also quoted are the values obtéinéd from
the asymptotic formulée (4.5); the quadrupole moment

of hydrogen was taken as 0.478 a.u. We note that the
expressions given by Flower et al. (1979) are different
to (4.5) due to a normalisation factor in their
definition of quqzﬁlf In this table, the expansion

coefficients are in Hartree (1 Hartree = 219474.62cm_1).

Notation : (-n) = x 107",



- 118 -

the correlation energy-may_ﬁave been overestimated in

the CEPA2 calculations. As we shall see below, this
suspicion is confirmed by the present study of the molecular
dimér.. Subsequent to completion of the present calculations,
‘the reason for this became apparentrwhen Dr. P.G. Burton

informed us that the potentials in Burton and Senff

(1982) had been incorrectly designated PNO-CI and CEPA2.
The correct designation is "renormalised IEPA" and "IEPA"
respectively (Burton and Senff 1982, Burton 1983).

This corrected designation will be used througﬁout the
rest of this Chapter.

The Independent Electron Pair Approximation (IEPA)
consists of approximatiﬁg'the total correlation energy
és a sum of péir contributions. These are calcuiated
independently by treating each pair in the field of
the surrounding (uncorrelated) electron distribution.

At interﬁediate and small intermolecular separations

the electron pairs increasingly overlap, leading to

an overestimation of the combined correlation energy
(McWeeny and Pickup 1980). At very large intermolecular
distances, the IEPA dispersion energy should approach
that calculated by second order perturbation theory,

the latter consisting also of a sum of contributions
from independent electron pairs. Kutzelnigg (1977a,b)
has discussed theAIEPA method and its validity in some
detail.

In their IEPA calculations, Burton and Senff (1982)
used the same geometfies as Meyer and Schaefer (Figure

4.1). They also fixed the H, internuclear distance at
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the same value, 1.449 a.u. At each geometry, the calculated

potential was shifted uniformly, by a small amount, to

match the M80 potential of Meyer-Schaefer-Liu at R = 11 a.u.

For R > 11 a.u. the accurate long range potential of

Meyer (1976) may then be employed, as in the M80 surface.
Burton and-Senff quote values for the SF coefficients,

However, we chose to evaluate the BF coefficients,

A L)
49,9292
, .not from these, but directly from the potential;

| VQinF
specifically, using table IV(b) and adding the shifts

of table VI in Burton and Senff (1982). We did this

for two reasons. The resulting BF coefficients are more
accurate than the quoted SF ones, some of which are only
given to one significant figure. In addi&ion, the potential
was calculated on a coarser radial grid for the two geom-
etries contributing to the /A energy (Figure 4.1). This
contributes to the three SF éoefficients A220’ A222 and
Agou but only to one BF coefficient, Vooq- The relation
of'this coefficient to the ”potentiai of the A geometry"
is given by -

. 2 . .
Vo1 (R) = 15 ivparallelogram(R) - Vtrapezium(R)§
2
15 V[S(R) : (4.6)
The cubic spline interpolation is thus more accurate for
the IEPA potential represented by the BF expansion, the
coefficients of which are plotted in Figure 4.4. The
coefficients are extrapolated at R < 3 a.u. by exponential

forms, fitted to the ab initio points at R = 3 and 3.5 a.u.
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As Figure 4.2; for the IEPA potential of Burton and
Senff (1982), referred to (incorrectly) in their paper

as CEPA2.
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The coefficients V (R) for the fourth potential
q,q .M

which we have employed (Kochanski 1975) are plotted in

Figure 4.5. As noted above, this potential was calculated
using a hybrid technique which entails a separate cal-
culation of ﬁhe intermolecular correlation energy by

means of second order perturbation theory. The dispersion
energy thus derived is added to the SCF enefgy to yield
the total.interécpion potential, an approximate procedure
whose vali&ity should be assessed by comparison with
experiment (see below).

In basic (Rayleigh'-Schroedingeri perturbation theory
the Hartfee—Fock dispersion energy may be written, to
second order, as A
¥ =5 T KAOBOMBIALBJ->|2/(1E°—EL—EJ) (4.7)

disp  (#o0 j#o

where VAB is the intermolecular electronic Hamiltonian

and . AO(BO) is the Hartree-Fock determinant for the

ground eleétronic state of the isolated H, molecule 1(2).

The wavefunction Ai(Bj) is obtained by replacing one

of the orbitals of AO(BO) with an orbital corresponding

to an exciteq state i(j).~ ES, E; and Ej are the cor-
fesponding eigenenergies of these Hartree-Fock wave functions.
The approach of kochgnski (1973, 1975) differs from this

" simplified treatment in two ways.  The ground state con-
figuration is constructed from a fully antisymmetrized
product of the individual molecular Hartree-Fock wave-
functions. In other words, A B, is replaced by;A(AOBO,.
where the latter has the correct symmetry under interchange

of electrons belonging to different H2 molecules. In
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addition, an energy denominator different from the one

in (4.7) is used. This corresponds to changing the
partitioning of the total electronic Hamiltonian (Kutzelnigg
1977a, i977b).

This method of calculating the dispersion energy
makes_ﬁhree assumptions. The effect of intramolecular
correlation on intermolecular correlation is neglected.
‘Third and higher order terms in the perturbation series
are ignored, though the modifications to the second order
approximation introduced by Kochanski should minimise
their importance. Finally, overlap between the molecular
orbitals of thé interacting molecules, which can lead
to a decrease in the dispersion energy, is neglected.

An initiai evaluation of the BF coefficients V

' . 919 M

revealed a bump in the V222 term at R = 6 é.u. Kochanski

(1983) subsequently informed us of an error in Table

1 of her paper (Kochanski 1975). The Hartree-Fock dispersion
energy,‘Eggsp, for.the rectangular geometry at an inter-

‘molecular separation of 6 a.u. should read -2.771 and

4 Hartree). The corresponding

not -2.671 (units in 10~
total energy,vETOT, should therefore read 0.396.

The intramoleculér separation was fixed at r = 1.4
a.u. (Jaszunski et al. 1977), corresponding to the position
of the minimum ﬁf.the H-H interatomic potential. The
" rigid rotor épproximation, in its simplest form, assumes
that the intermolecular potential is insensitive to small

changes in the intramolecular bond length. Indeed, we

shall assume this to be true for the less favourable
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case in whiéh-vibrational excitation of one of the monomers
takes place. Nevertheless, this difference, compared
with the other three ab initio potentials in our study,
should be noted.

Kochanski's éalculations were performed for the
first four geometries of Figure 4.1. The V221 coefficient,
as seen in equation (4.6); is not calculable from these
geometries. Cubic spline interpolation of Vq:q;/‘is
used in the range of the ab initio points, 5-10 a.u.

For R> 10 a.u., is fitted at R = 10.a.u. to the

\Y
qi qupm

form C /R"; the integer n is chosen to represent

qi QM
the correct asymptotic behaviour (Flower et al. 1979).

For R < 5 a.u. simple exponential forms are again used,

fitted to Vq1 at the grid point R = 5 a.u. and the

QM
spline interpolated point R = 5.05 a.u.

4.3 Eigeﬁenergies‘of the HZ_H2 dimer

The problem of calculating eigenenergies of molecular
dimers has been formulated earlier in this thesis, and
the nuherical»methods employed to solve the p?oblem have
been described. In the present chapter, we shall coﬁsider
the results obtained for the Hy, - H, dimer by means of
both the R-matrix propagator and de Vogelaere algorithms.
Before comparing results derived'from the four different
intermolecular potentials to which feference has been
made in Section 4.2, we shall briefly report our studies
of the convergence properties of the algorithms which
we have used; We shall also consider the convergence

of the eigenvalues with respect to basis set size. Results
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will be illustrated for the Meyer-Schaefer-Liu (M80)

potential.

4.3.1 -Convergence with respect to numerical integration

parameters - de Vogelaere algorithm.

Iﬁ'this version of the computer programme, the wave-
functions and their'deriQatives are propagated, starting
in the right; and left-hand classically forbidden regions,
and matched near the minimum of the potential well.
Numerical integration must start sufficiently far into
the classically forbidden regions for the initial values
of the wavefunctions to be negligibly small.

At short range, the interaction potential becomes
exponentially repulsive, and the computed eigenenergies
converge rapidly with respect to the inner starting point,

R this convergence is illustrated in table 4.2 for

min5
para—sz—'para—Hz. Results accurate to four decimal
places are obtained with Rmin = 3.7 a.u.

A satisfactory value of the outer starting point,
Rmax’ is ﬁore difficult to establish. At long range,
‘there is a van der Waals tail in the potential which
varies as an inverse powervseries in R and results in
slower decay of the wavefunctions with respect to pene-
tration into the outer classically forbidden region.
As.the ihtegfation range is extended, the number of inte-
gration steps per '"half-range', N, must be increased
to maintain nuﬁerical accuracy. The convergence of the
eigenenergiés with respect to these two parameters., R

max

and N, is illustrated in table 4.3 for para—H2 - para—Hz.



4.0  _2.41064 ~0.95930

3.7 -2.41130 -0.95981

3.5 ~2.41132 ~0.95983

3.3 ~2.41132 ~0.95983
TABLE 4.2

Convergence of the computed eigenenergies
of the para-H, - para-H, system with respect
to the value of the inner starting point

R (Bohr) of the de Vogeléere integration.

milv'1
The basis set consists of one rotational
state (j = 0) on each H, molecule. The
number of integration points per half-range
N = 100. Energies are‘in cm—l, relative

to the dissociation energy (taken as zero

throughout this chapter).



max .
N 27 40 50 60 70 80

100 -2.40685 ~2.41117  -2.41132 ~2.41148
(-0.94005)  (-0.95917)  (-0.95983) (-0.95998)
200  -2.40685 -2.41124 ~2.41124 ~2.41126
(-0.94005)  (-0.95921)  (-0.95974) (-0.95978)

300  _2.41126 _2.41126 2.41124 _2.41124

| (-0.95974) (-0.95978) (-0.95978) (-0.95978)

400 | | | ~2.41126

' (-0.95978)

TABLE 4.3

Variation of the computed eigenenergies EJ.of the para—Hz - para-H, system with the

values of the outer starting point, R (Bohr), of the de Vogelaere integration and

max

with the number of integration points per half-range, N. The upper
entries refer to J = 0, the lower entries to J = 1. The basis set employed consists
of a single rotational state (j = 0) for each H, molecule. The energies are in units of

-1
cm .
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Results accurate to four decimal places ére obtained with
Rmax = 50'?ﬂU' and N = 200."

In the de Vogelaere method the (radial) wavefunction
vanishes at the starting points of the integration.
This is equivalent to placing infinite walls in the pot-
eﬁtial at Rmiﬁ and Rmax' Tables 4.2 and 4.3 show that
as theSé walls move apart, the eigenenergy decreases,
in line with eleméntary quantum mechanical arguments
based- on tﬂe infinite square well potential. This inter-
pretation is aided both by the relative weakness of the
H, - H, interaction and by the fact that the calculations
in tables 4.2 énd 4.3 are for a single (isotropic) radial
Schroedinger equation.

4.3.2 Convergence with respect to numerical integration

parameters - R—métrix'propagator method.

As noted in Chapter 3, propagation of the R matrix,
rather than both the wavefunction and its derivative,
leads to greater numerical stability and to a more rapid
convergence of the eigenvalueé with respect to penetration
into the classically forbidden regions. In particular, |

much smaller values of R___ are necessary to obtain con-

ax
vergénce'ih the right-hand classicaily forbidden region.
However; as R-matrix propagation involves local approxi-
‘mations to the potential,:more integration steps are
required'than in the.equivalent de Vogelaere calculation
(compare tables 4.3 and 4.4).

These convergence tests are for para-H, - para—H2

with H, restricted to its ground rotational state, and

are hence uncomplicated by angular coupling. We are



maxXx
N 27 40
100  _2.41161
(-0.96022)
200 N -2.41135
' (-0.95981)
300 -2.41130 -2.41152
(-0.95972) (-0.96009)
400 -2.41128 -2.41141
(-0.95970) | (-0.95996)
TABLE 4.4

As Table 4.3, but obtained using the R-matrix

propagator method.
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thus able to note that the eigenvalues calculated using
the R-matrix propagator method are lower than those using

, because of the effect of

de Vogelagre, for fixed Rmax

" the infinite wall boundary conditions of the latter al-
gorifhm. ACompare, for examplé, the eigenenergies at

N = 200, Rméx = 27 a.u. in table 4.3 with the values
for N = 400, Rmax = 27 a.u. in table 4.4,

Analogous ﬁests, using the M80 potential, were carried
out for the ortho-H, - para-H, and ortho-H, - ortho-H,
systems. Similar conclusions regarding the accuracy
of the eigenenergies were drawn. All results using the
M80 potential, fﬁ this chapter,are accurate to three
decimal places. There may be a small error in the third
"decimal place for results using the potentials of figures
4.2, 4.4 and 4.5 for which less detailed convergence
tests were performed.

4.3.3 Convergence with respect to basis set size

Caigulations‘have been carried out using one, two
and three rotational basis functions on each H, molecule,
i.e. a maximum of j = 0,2,4 for para-H, and j = 1,3,5
for.ortho—Hz. A representative sample of the results
obtained, using the R-matrix propagator method, is presented
in table 4.5.

The H, molecule is light and has a large rotational
constant (following Verberne and Reuss (1981), we take
the reduced,mass /u = 1837.14 a.u. and the rotational

1

b]

constant in the ground vibrational state B, = 59.341 cm™

.and we expect that the correspondingly rapid motion will



&1 2 3

p-p 0t -2.41135 -2.43018 _2.43018

1- ~0.95981 ~0.97471 -0.97471

o-p 0 -1.25177 ~1.27627 -1.27629

0-0 0" -2.47477 ~2.49692 ~2.49694

07 . -0.66455 ~0.66896 -0.66896
TABLE 4.5

Eigenenergies, in units of cm_l, of states J of
para—Hé - para~H2, ortho—Hz-— para-H, and
'ortho—Hz_— ortho-H,; J is the total angular momentum ‘
and € the parity of the state. The R-matrix
propagator method was used. Columns 1, 2 and 3
contain results obtained with one, two and three
rotational states, respectively, on each H,

molecule.
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not be greatly.hindered by the weakly anisotropic Hszz
interaction. The results in table 4.5, which illustrate
the rapid convefgence of the eigenvalues with respect
to the siée of the H2 rotational basis set, confirm this
expectation. |
Inspéction of the matrix elements of the potential
between angular basis states (equation (2.29)) shows
that terms in the potential expansion (4.3) with q and/or
q2<=_4 are required to change the H, angular momentum
by four units. There is thus no direct coupling of the
bound states with states iﬁvolving hydrogen molecules
with j = 4 or 5. The similafity of columns 2 and 3 of
table 4.5 refiects the weakness of indirect coupling
via the j = 2 or 3 states of Hy. We conclude that
j = 0,2 for para-Hy, and j =1, 3 for ortho-H, are sufficient.
When advantage is taken of the interchange symmetry of
identical molecules, to be discussed in the-next section,
this Basis set leads to a maximum of 26 coupled equations.
An interesting aside concerns the use of the reduced
atomic mass, in line with Verberne and Reuss (1981),
rather than the reduced nuclear mass, which is consistent
with the Born-Oppenheimer approximation (Le Roy 1971).
Bunker (1979a, page 201) has suggested that more accurate
answers may be obtained by using the reduced atomic mass
as this allows for the mass of the electrons and partly
compensates for the breakdown of the Born-Oppenheimer
approﬁimation. In support of this‘he cites the work
of Oka and Morino (1961) who studied the effect of electrons

on the moment of inertia of molecules.
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4.3.4 Comparison with the calculations of Verberne

and Reuss
Verberne. and Réuss (1980, 1981) have calculated the
hydrogen dimer spectrum by solving a secular equation,
i.e; by diagonéliéing a suitable representation of the
total Hamiltonian matrix. The intermolecular vibrational
basis functions were solutions of the Schroedinger equation:
{—.LQE FALED LV R) -E(nd) Y R)=0
W IR TR / ngtl . (4.8)
M J
where -{ is the end-over-end rotational quantum number
and-VOOO(R) the isotropic part 6f the intermolecular
potential. This numerically generated basis set is truncated
after the first term; (n,4) = (0,0) or (0,1)'depending
on the dimer states in question. Refer to the discussion
in Section 3.5.3, especially following equation (3.44).
As noted by Verberne. and Reuss (1981), states with
{ >-1 are dissociative. The. ;angular basis set includes
theseAhigher L values, where allowedAby the coupling
of thé-angular momenta of the H2 molecules.
Verberne and Reuss (1981),employ a rotational basis
‘conSisting,of a single eigeﬁfunction on each H,y molecule
(j = 0 for para-H,, j = 1 for ortho-Hz)} They also consider
the hyperfine structure of the dimer, but this will not
concern us here. It is sufficient to say that their
experimental measufements of the hyperfine spectra (Verberne
‘and Reuss 1980) yield quantitative information on the
leading anisotropic component of the potential VZOO(R)’

Their conclusions will be briefly discussed later.
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They employed the M79 potential of Meyer and Schaefer
(1985). In the region of the potential between the classical
tﬁrning points, which determines the bound states, the
M79 surface is almost indistinguishable from the M80
potential of Meyer-Schaefer-Liu (Verberne and Reuss
1981).

As the para-para (p-p) and ortho-ortho(0-0) systems
consist of identical bosons, the total wavefunction must
be symmetric under exchange of the constituent molecules.
When the hydrogenmolecules are both in their ground rot-
ationai states,Athis leads to the requirement that
(-p312 + £+ 112 =, 1 yhere J12 = 31 + Jp and 212 =
I, + I, (cf. equation (2.33)). For the 0-0 system, this
requirement leads to a separation of the total Hamiltonian
matrix into two blocks, éorresponding to Iy =0,2 and
112 =1 (i.e. symmetric and asymmetric functions, res-
pectively, of the ﬁuclear spin coordinates). As shown
in Chaptér 2, a éorresponding advantage accrues from
exploiting this symmetry property when solving coupled
differential equatibns; the eqﬁations separate into blocks
of a given interchange symmetry (cf. table 2.1).

In Table 4.6, we compare the dimer spectrum cbmputed
by‘Verberne. and Reuss (1980, 1981) with the results
~of our own calculations, with one and two rotational
states per:H2 molecﬁle. Our two-rotor state results
for the o-p and 0-0 systems are plotted in Figure 4.6.
Also shown are the pure { states to which they correlate
in the isotropic limit. These levels correspond to the

one-rotor state calculations on para-H, - para-H,. The



Verberne
System J £ i and Reuss One-rotor Two-rotor

p-p 0 1 1 -2.40 -2.41 ~2.43
p-p 1 -1 -1 -0.953 ~0.960 -0.975
-p 1 -1 ~2.42 ~2.43 -2.45
-p 0 | -1.30 -1.25 -1.28
-p 1 ~0.778 ~0.822 -0.836
-p 2 '-0.998 -0.996 -1.01
- 0 1 -2.47 ~2.47 -2.50
- 1 -1 . =2.42 -2.41 -2.43
- 2 -2.54 -2.55 -2.56
-0 0 -1 1 -0.573 -0.665 ~0.669
o 1 -1 -1.14 -1.10 ~1.12
- 1 -1 -1 -1.50 ~1.49 -1.51
- 1 -1 -1 -0.875 -0.918 -0.932
-0 2 -1 1  -0.921 -0.929 ~0.941
—0 2 -1 -1 -0.798 -0.854 -0.862
- 3 -1 -1 -1.10 -1.10 ~1.11

TABLE 4.6

Comparison of our own calculations of the‘hydrogen dimer
spectrﬁm with those of Verberne and Reuss (1980, 1981).
The states are denoted by the total angular momentum,

J, the parity;ﬁ., and the molecular interchange symmetry,
i (where applicable). In the one-rotor calculations,

only the j = 0 (j = 1) state is retained for para-(ortho-)
Hz,Awhereas j=0, 2(j =1, 3) are retained in the two-
rotor calculationé. The eigenenergies are in units of cm_l.

As noted in the text, the p-p J = 1 state does not occur

in nature.
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Figure 4.6

The bound stafes of ortho—Hz—para—Hz and ortho-H,y-ortho-H,
using the M80 potential of Meyer, Schaefer and Liu

(Figure 4.3). The results were obtained with two rotational
states on each H2. Also shown are the one-rotor state
para—Hz—para—Hé eigenvalues, for which { is good, to which
they correlate when the potential anisotropy is '"switched

of £'".
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levels are designated by the values of the total angular

momentum, J, the total parity, € = (-1)J1 * j2'+é and
the interchange symmetry, i = (—1)j12 ;i_ We note that
the level J =1, £ = -1, i= -1 in the p-p system, where
I12 =AO, doés not occur in nature owing to the requirement
that (-1)J12 * 4+ 112 _ + 1 (see above).

The calculations of Verberne and Reuss are seen
to .be in better agreement with our single- than our double-
rotatiénal'state results; this was to be expected, as
Verberne and Reuss neglect all H2 states higher than
j=0o0r j=1. The overall agreement between results
obtained by solving the secuiar equation and by numerical
integrafion of the coupied differential equations is
satisfactory. Verberne and Reuss truncated the vibrational
basis set, defined as the solutions of equation (4.8),
after one term. This procedure is satisfactory owing
. to the weak anisotropy of the H,-H, potential and the
large value of the H2 rotational constant.

4.3.5 Comparison of results obtained using four

different H,-H, ab initio potentials.

In Table 4.7, we compare the results of calculations,
using the R-matrix propagator method, based upon the
four ab initio pptenfials discussed in Section 4.2 above.
As pointed. out there, the V,,4 potential coefficient
may not be derived from the results of Kochanski (1975),
as she considered an insufficient nuﬁber of interaction
geometries. As a consequence, we do not present results

obtained with her potential for the 0-0 system, the.



SYSTEM ] £ i 1 2 3 4

P-P 0] 1 1 -2.430 -6.218 -3.008 -2.732
p-p 1 -1 -1 -0.975 -4.316 -1.486 -1.235
0o-p -1 -2.447 -6.341 -3.065 -2.776
o-p 0 1 -1.276 -5.409 -2.099 -1.704
0o-p 1 1 -0.836 -3.799 -1.215 -1.035
0-p 2 1 -1.013 -4.494 -1.575 -1.307
0-0 0 1 1 -2.497 -6.559 -3.785
0-0 1 1 -1 -2.431 -6.315 -2.486
0-0 2 1 1 -2.561 -6.632 -3.359
0-0 0 -1 1 -0.669 -3.122
0-0 1 -1 1 -1.120 -4.903
0-0 1 -1 -1 -1.505 -5.861
0-0 1 -1 -1 -0.931 -4.178
0-0 2 -1 1 -0.941 -4.249
0-0 2 -1 -1 -0.862 -3.901
0-0 3 -1 -1 -1.111 -4.7171
TABLE 4.7

Eigenenergies of the HZ_HZ dimer; in units of cm—l,as

derived from.the potentials of : 1, Meyer, Schaefer and Liu
(M80); 2, Burton and Senff (1982); 3, Kochanski (1975);

4, Schaefer and Meyer (SM79). 1In these calculations,

two rotational states (j = 0,2 or j =1,3) were retained

on each H, molecule. Results are quoted to the numerical

precision of the R-matrix propagator method.

Note: There is a printing error in the correspohding
Table (6) of Danby and Flower (1983). The eigenenergy
for the M80 potential for o-o, J81 - 177 should
read 6.857 rather than 6.867 (units -x107° Hartree).
1 Hartree = 219474.62 em™ L.
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V221 coefficient ihterveniﬁg directly in these calculations.
Ih‘Section 4.2 we expressed reservations concerning

the accﬁracy of the quadrupole-quadrupole terms, V22n,

for the SM79 potential of Schaefer and Meyer (1979).

We quote results for the p-p and o-p systems, for which
these terms'intervené only through coupling to energetically
distaﬁt.exgited rotational states of the H, molecﬁles.'

The three lowest gigeneﬁergies, correlating to L = 0,

for the o—é system are given as an illustration of a
situation where the V22n terms appear in the diagonal
~elements of the coupling matrix. We immediately see

that thelrelative Qrder of these states differs from

that obtained with the Meyer-Schaefer-Liu M80 and Burton-
Senff potentials. Specifically, the JEi = 0" and 27
le§éls are interchanged. For the SM79 potential, the

V,oq coefficient is the largest anisotropic term. In
Figure 4.7 we demonstrate theeffect on the eigenvalues
of,multiplying V221 by a constant, ANIS. Both the absolute
values and relative ordering of the three A = 0 states

are seen to be highly sensitive to the potential anisotropy.
Similar ;alculations with the V220 and V222 terms showed
‘that the ordering was unaltered over a range 0.0< ANIS
<1.3. The eigenenergies were also less sensitive to

these terms. We conclude that a consistent ordering of

the levels is obtained for values of ANIS between 0.67

and 0.8. V221 thus needs to be reduced in the SM79

potential, in line, qualitatively, with the results of

the M80 and Burton-Senff potentials.
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Figure 4.7

The effect of scaling the V,,; term in the SM79 potential by

a constant (ANIS) on the bound states of H2—H2. The bound

states shown are the three C = 0 levels of the ortho-ortho

modification. These calculations were performed with only
one rotational state (j = 1) per HZ; the results differ
from the corresponding two rotor state runs by 2-3% for

ANIS = 1.
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»Taking Table 4.7 as a whole, the salient feature
is the relatively good agreement between the results
of calculatibns.based on the Meyer-Schaefer-Liu (M80)
and Kochanski potentials. Results for the published
potentiallof Schaefer and Meyer (SM79) lie in between,
notwithstanding the-qualifications concerning the V22n
terms. The eigenvalues calculated with: the Burton-Senff
potential are much larger in absolute magnitude, though
the relatine ofdering of all the states agrees with the
M80 calculations. The Burton-Senff potential predicts

an additional bound level of the p-p system (J = 2,

=1, i = 1) at an energy of-- 0.771 cm_l, which is
not observed. These points will be discussed further

in the following section.

4.3.6 Comparison with spectroscopic measurements

McKellar and Welsh (1974) have observed absorption

spectra in H,y-H, which‘comprisé transitions within
the fundamental band (v" = O-)v' =.1) of H, accompanied
by end-over-end rotational transitions of the Hy-H, dimer.
The transitinns arenattributable to the induced dipole
of the H,-H, molecule (Poll and van Kranendonk 1961,
Watanabe and Welsh 1964) énd fall in the neat infrared
part. of the spectfum.

In the final (upper) state of the transition, the
vibrational states of the two H, molecules differ. It
follows from the form of the.interchange symmetrized
vibrotor'basis states (2.51) that there is no restriction
on ', the end-over-end rotational quantum number, even

in the p-p system. To show this, we note that for two
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para—H2 molecules in their lowest rotational states,

jp = Jp = Jqp = = 0. The electronic states of the

H, molecules are symmetric (‘2:;) and the resultant nuclear
spin, I;, = 0, also gives a symmetric contribution to

the overall wavefunction. We may thus write the basis

states, (2.51), in the abbreviated form
¢' o ¢(V,V2> + £¢(V1V|> (4.9)

where{normalisation factors have beén ignored and the
(spatial) interchange symmetry i = '1 for the two boson
monomers. The parity £=:(-)4 and for the upper state
of the fundamental band with j; = j, = 0, v; = 1 and

vy = 0. Thus,
G o< @ (1o0) t (¥)L¢(O\) ' (4.10)

which isAhon—zero for bothodd and even A . It is less
rigorous, though convenient, to regard the monomers as
being distinguishable when their internal statés differ.
This is fully consistent with the results of Section
2.5. |

We note that transitions involving (', £'" = 0,1
were observed to be sharp, whereas, for C'? Z") 1, the
1inés Were broader than the resolution of 0.15 cm—l.
The evident conclusion, drawn by McKellar and Welsh (1974),
is that states with £ > 1 are pseudo-bound (i.e. bound
boniy by the céntrifugalbarrier in the effective inter-
molecular.potential). This observation conflicts with

the prediction of a state with f = 2 by theBurton-Senff

potential, as mentioned in the preceding section.
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In order to make as direct a comparison as possible
with the calculations reported in Section 4.3.5, let
us consider thé Q branches of the observed transitions,
in which no change occurs in the rotational states of
the H2 molecules. Such a transition is Ql(o) 1" = 0—
{' = 1, the subscript 1 denoting the fundamental band
{AV = 1) and the O in brackets the initial (and for
Q transitiéns thé final) rotational state of one of the
interacting H, molecules. The other H2 molecule does
not undergo any. transition; this '"null" transition may
- be denoted QO(O). Using similar notation for the accompanying
I transition of the dimer, this liﬁe is referred to
as the R(0) component of the Qq(0) branch (Le Roy and
van Kranendonk 1974). The observed frequency may be
expreséed in the form (McKellar and Welsh 1974)
R = + v (4= 4") ~ (4.11)
In the absence of perturbations from Qurrounding molecules,

Y

yg' . If the interaction potential is assumed to be
N :

lis the vibrational frequency of an isolated H,y molecule,

the same in the initial and final states, the experiment
yields the separation of the £= 0 and A =1 levels
directly. This assumption has been applied to the N,-N,
dimer by Tennyson and van der Avoird (1982a) and Brocks
and van der Avoird (1985). H2—H2 is a less favourable
case because of the larger amplitude of vibration of

the lighter H2 molecules.

An estimate of the perturbed Hy vibrational frequency,
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X}Hz, may be obtained from.the mean value of the observed
frequencies of the R(0) (f" = 024" = 1) and P(1)
(A" =12 4" = 0) components of the.Ql(l) branch, see
Figure 4.8. The P(1) line is. of course absent in the
Q. (0) spectrﬁm because of the symmetry restrictions
"discussed in Section 4.3.4. McKellar and Welsh (1974)
thus obtained values of 1.74 cm_1 and 1.62 cm™ ! for the
{ = 0 - 1 energy separation, from observations of the
Ql(O) and'Ql(l) branches reépectively. As the spectral
resolution of their experiment in the région of the H,
fundamental band (2.0< A < 2.4 um) was 0.15 cm_l, we
shall adopt a mean value of i.68 em™ ! for the £=0-1
energy difference.

The value of fhe vibrational frequency shift,)ﬁz")ﬁf,
deduced from the Q;(1) spectrum, was - 0.35 em L. Its
'origin lies in perturbations on the vibrational motion
of an Hz'monomer due .to itS‘interactioﬁ, V(51’£2’R)’
with a neighbouring molecule. The additional restoring
force contributing to the vibration of monomer 1 is
-9V/9ry. For the low temperatures (~ 17K) of the McKellar
and Welsh (1974) experiment, the attractive region of
the intermolecular potential is dominant. The dispersion
iﬁteraction between H, molecules increases with r due
to an increase in the polarisability of Hy (Le Roy et
al. 1977, Ishiguro et al. 1952). Thus —aV/er is positive,
1eading to a reduction in the restoring force and hence
a negative frequency shift (May et al. 1961, 1964).

In Tablé 4.8, we list the frequencies of the optically

allowed transitions, as deduced from the eigenenergies



Figure 4.8

Experimental R(0) and P(1) components of the Q(1) branch,
schematically represented. \)Hzf is the frequency of
excitation of a free Hy molecule from V = 0 to V = 1
(4155.26 cm—l). An estimate of the { =0 - 1 separation
is gi&en by (\)R —)}p)/Z. The vibrational frequency shift,

\)HZ —))Hzf, is approximated by replacing \)Hz with
(\)R +))p)/2. The shift thus obtained is used to obtain
the f = 0 - 1 separation from the Ql(O) spectrum for which

only the R(0) domponent is observed.



SYSTEM

PP

o-p

0-0

MEYER — SCHAEFER -

BURTON — SENFF
LIU  M8e

1EPA

SCHAEFER — MEYER

KOCHANSK1 SM79
Jroog" it —>J' ¢’ i’ GHz cm—1 GHz cm—1 GHz cm—1 GHz cm—1
e 1 1 1 -1 -1 43.6 1.46 57.0 1.90 . 45.6 1.52 44.9 1.50
1 -1 %] 1 - 35.1 1.17 . 27.8 0.93 29.0 0.97 32.1 1.07
1 -1 i 1 : 48.3 1.61 76.2 2.54: 55.5 1.85 52.2 1.74
1 -1 2 1 43.0 1.43 . .55.4 1.85 44.7 1.49 44 .1 1.47
(%] 1 1 1 -1 1 41.3 1.38 . 49.7 1.66
7] 1 1 1 -1 -1 29.7 0.99 20.9 0.70
%] 1 1 B -1 -1 - 46.9 1.57 : 71.4 2.38
1 1 -1. o - 1 52.8 1.76 95.7 3.19
1 1 -1 1 -1 1 39.3 1. 31 42.3 1.41
1 1 -1 1 -1 -1 27.8 0.93 13.6 0.45
1 1 -1 1 -1 -1 45.0 1.50 64 .1 2.14
1 1 -1 2 - 1 44 .7 1.49 61.9 2.07
1 1 -1 2 -1 -1 47.0 1.57 72.4 2.41
2 1 1 1 -1 1 43.2 1.44 51.9 1.73
2 1 1 1 -1 -1 31.7 1.06 231 .77
2 1 1 1 -1 -1 : 48.9 1.63 73.6 2.45
2 1 1 2 - 1 48.6 1.62 71.5 2.38
2 1 1 2 - -1 50.9 1.70 81.9 2.73
2 1 1 3 - -1 43.5 1.45 55.8 1.86
TABLE 4.8

Frequencies of dipole transitions predicted by means of the four ab initio potential

energy surfaces discussed in the text. The interchange symmetry selection rule has been

relaxed since, in the relevant experiment, the interacting monomers have different

vibrational quantum numbers after absorption of 'a photon. Note that two different levels

with the quantum numbers J = 1, £ = -1, i = -1 occur in the o0-o0 system (cf. Table 4.7).



- 135 -

of Table 4.7 and the electric dipole selection rules

:AJ = O,i].(O‘+?O), change of parity. In order to make
fhe comparison with experiment more direct, the selection
rule, no change in i, has been relaxed, thus treating
the monomers as distinguishable. By considering the
Symmetfy of ﬁhe'inducéd dipole moment of the dimer under
the operations of the molecular symmetry group, and by
applying the vanishing integral rule (Section 2.6), Bunker
(1979b) ha; shown that pure A/ transitions, where the
internal states of the H, molecules are unchanged, are
only allowed for o-p (H,),. Physically, this is because
there is no collision induced dipole moment in ground
state o-o and p-p systems (Brocks and van der Avoird
1985).. Thé far infrared,Qo(o) and Qo(l) spectra will
therefore be considerably simpler than the observed Ql(o)
and Qq(1) spectra. The predicfed spectrum of optically
allowed transitions is presented in Figure 4.9 for the
two potentials (Meyer-Schaefer-Liu (M80); Burton-Senff)
for wﬁich complete calculations are possible.” Each line
represents a theoretical estimate of the experimentally
determined 4 - 0 -1 separation. The spread in the cal-
culated lines is due to the potential anisotropy, an
effect not observed experimentally.

Inspection of Figure 4.9 shows that the predictions
of the Meyer-Schaefer-Liu potential are in distinctly
better agreement with experiment than the predictions
of the IEPA potential of Bufton and Senff (1982). Given
the spectral resoluﬁion of 0.15 cm_1 in the experiment

of McKellar and Welsh (1974), the rotational splitting

—
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Figure 4.9
Predictions of. the H,-H, absorption spectrum in the

fundamental band of Hy. Results are according to the ab
initio potentials displayed in Figures 4.3 and 4.4. Also
shown is the observed separation of the end-over-end
rotational levels and the experimental resolution (McKellar
and Welsh 1974). In "normal' hydrogen, the absorption in

0-0 transitions is enhanced by a factor of three relative

to O-p and nine relative to p-p transitions owing to
the 3 : 1 ortho : para abundance ratio. The H2 molecules
have been treated as being distinguishable to make a more

direct comparison with experiment (see the text and Table

4.8).



- 136 -

of the 4 = 0and A4 =1 states would probably have
been observed if the IEPA potential .were an accurate
representation of reality. As the rotational splitting

reflects the anisotropy of the potential, we conclude

that the IEPA potential is too anisotropic in the region
of the potential well. Referring to Figures 4.3 and

4.4, we see that the discrepancies between the potentials
- arise from differences in the magnitude of the V500 co—'
efficient of the potential expansion (4.3). Similar
conclusions may be drawn from the more limited comparison
- with experiment of results obtained from the Kochanski
(1975) potential and the SM79 potential of Schaefer and
Meyer (1979). |

The separation of the £{=0 and A = 1 states is
determined by the énd—over—end rotational constant.

Figure 4.9 shows this (mean) separation to be overestimated
by the IEPA potential and probably underestimated by

.the Meyer-Schaefer-Liu potential. In terms of the end-
over-end rotational constant, these results imply that

the IEPA potential underestimates the Hz—ﬁz equilibrium
sepération énd hence overestimates the rotational constant.
We conclude that the isotropic part Vooo‘of the IEPA
potential is too attractive.

The discrepancy with the H2—H2<equilibrium separation
prédicted by the Meyer-Schaefer-Liu potential may be
removed by a shift of the isotropic potential minimum,
towards the origin, by about 0.22. A simple analysis

based on the p-p system predicts a somewhét»larger shift
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(see Figure 4.10); the fact that a simple leftward shift
also raises, unphysically, the potential from the minimum
outwards may account for this. Since a shift in Vooo
changes the classical turning poinfs, and hence the relevant.
part of the énisotropic interactioﬁ, the other terms
in the'pptenéial expansion should,’by implication, be
shifted also. It is interesting that the analysis of
differential scattering data suggests that the zero of
the isotropic potential shouid be shifted (in the same
sense), with a concomitant shift in the anisotropic terms,
by 0.12 (Buqk 1982; Buck et al. 1981, 1983b). A similar
shift has been deduced from the analysis of second virial
coefficient data (Schaefer and Watts 1982).

As mentioned in section 4.3.4, Verberne and Reuss
(1981) have shown that the hyperfine spectrum of the
Hy-H, dimér-yields information on the potential anisotropy.
Measurements on the o-p system yield an estimate of the

quantity
<v7~> o | j: /\{/o)z(R> \/200 (R> ,\VO)O (R> O(R l (4.12)

where"“VO’2 and AVO,O are the radial wavefunctions cor-
responding to the £ = 2 and A = 0 states of the dimer.
<V2>> may also be calculated theoretically; the Meyer-
Schaefer-Liu potential yields a value too small compared
to experiment (Waai jer et al. 1981.). Geraedts et al.
(1982a) and Waai jer et al. (1981) decided to constrain
the'V200 term at short and long range. The long range

form of the potential is the result of an accurate cal-
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The effect of shifting the potenfial 6n the {=0 -1
separation for para—paré (Hé)Z' Only one rotational

state (j = Q) was retained on each H,. To reproduce the
experimental separation (1.68 em™ 1) would require a leftward
shift of 0.34 X, réther'greater than that predicted when
the lines from the other two dimer modifications are taken

into account.,.



- 138 -

culation by Meyer (1976). At short range, the ratio
‘VZOO/VOOO is fixed by inglastic differential cross section
measurements (e.g. Buck et al. 1983b). To increase <:V2>
it was tﬁerefore necessary to déepen the -well in-VZOO

| by the addition of a 'blister'". The resulting. behaviour
is closer to that of the Burton-Senff potential. Based

on the results of our calculations, we are therefore
unable to éupport the adjustments suggested by Geraedts

et al. (198éa) and Waaijer et al. (1981).

4.4 The Meyer-Schaefer-Liu vibrotor potential

The M80 calculations of'Meyer, Schaefer and Liu,‘
described in Section 4.2, have been repeated with the
Hy internuclear distance fixed at a new value, 1.28 a.u.
" (K8hler and Schaefer 1983a). For para- and ortho-H,,
thé vibrationally.avéraged internuclear distance, r°,
is 1.449 a.u. and 1.451 a.u. respectively. The inter-
moleéular.potential for O-p and 0-0 systems can be obtained
by fitting to the results for the two r values, 1.28
and 1.449 a.u.

Schaefer (1983) has carried out rigid rotor calculations
on the bound states of the O0-p and‘O—O dimers, taking
into account the difference in vibrationally averaged
'distances, r®. He assumes that j;, jy, Jqp and { are
all good quantum numbefs; and his calculatioﬁs thus involve
solving the bound state problem for single Schroedinger
eduations. Consider now full close coupling calculations
with H, restricted to one rotor state (j = 0 or 1). |
For the O—p.and 0-0 systems, thére are four cases where

this basis leads to a single Schroedinger equation.
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Our one-rotor state calculations for these levels afe
thus directly comparéble with those of Schaefer (1983)
(see table 4.9(a)). The difference between these results
of <:0.004 cm_1 is not significant. It could be
attfibutable to the use of a slightly different reduced
mass (1836.12 a.u.) by Schaefer. Therefore, our usé
of the samé rigid rotor surface for all three dimer modi-
fications is'justified.- |

In table 4.9(b), we compare more one-rotor state
results, these involving the solution of small systems
of coupled equations, with the single Schroedinger equation
results of Schaefer. lThe agreement is still rather good,
1

with typical differences of less than 0.1 cm™ We see

that the Schaefer results are all higher. This could
reflect the fact that our results are variationally more
accurate .allowing, as they do, for coupling to higher L

states.

‘For the 0-0 system, there are two bound states of

the same symmetry, g8t - 17"

For this symmetry, the
basis j1 = ]y =1 leads to three coupled equations, the
channels of which are . defined by (jlz,Ji) = (0,0), (2,0)
and (2,1). Inspection of the matrix elements given in
chépter 2 shows that (0,0) and (2;0) are coupled by aniso-
tropic terms in the potential, while (2,0) and (2,1)

are coupled by coriolis terms. It is not surprising,
therefore, that taere is a significant diécrepancy with

Schaefer's results; these assume that J12 and £ can’

both be rigorously defined (Table 4.9(c)). This inter-



System J & i cc j1g | sc sc-cc
(a) o-p 0o 1. ~1.252 1 1 -1.248 0.004
o-p 1 1 ~0.822 1 1 -0.819 0.003
0-0 0 -1 1 |-0.665 1 1  -0.667 | -0.002
0-0 1 -1 1 |-1.103 1 1  -1.107 | -0.004
(b) o-p 1 -1 ~2.425 1 0 =2.407 0.018
_ 2 | ~0.996 | 1 1 -0.985 0.011 °
- 0 1 | =2.475 0 0 -2.438 0.037
0 1 -1 | -2.415 1 0 -2.403 0.012
- 2 ~2.550 2 0 -2.417 0.133
—o- 2 -1 1 [-0.929 1 1  -0.924 0.005
- 2 -1 -1 |-0.854 2 1 -0.772 0.082
- 3 -1 -1 |-1.102 2 1  -1.022 0.080
(¢c) o-o0 1 -1 -1 | -1.492 2 ~1.364 0.128
0-0 1 -1 -1 |=0.918 0 1 -1.328 | -0.41
TABLE 4.9

A comparison of eigenenergies (em™ 1) calculated using

the close-coupling (cc) method and the M80 potential

(rl =1, = 1.449 a.u.) with the results of Schaefer (1983)
using the vibrotor surface. The latter results correspond
to single channel (sc) rigid rotor calculations, with

r = 1.449 a.u. for p—H2 and r = 1.451 a.u. for o—HZ,

for which j;, and K are exact quantum numbers. Both
the cc and sc calculations assume that ji and jp are
exact. In (a) the cc results involve the solution of

a single Schroedinger equation; in (b) and (c) they involve
coupling to states correlating with respectively higher '

and the same L
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pretation has been confirmed by Verberne and Reuss (1981)
who calculated admixture coefficients for the equivalent
space-fixed channels.

With vibrational excitation of an H, monomer comes
a much larger increase in the mean bond length. For
V = 1,-ro = 1.545 a.u. (Le Roy and van Kranendonk 1974).
In the preceding section, we have assumed that this increase
does not affect the pbtential. An extension of the ab
initio potential calculations, togethér with further
close coﬁpling calculations of the nuclear dynamics,
are needed to assess the accuracy of this approximation.

4.5 Conclusions

The results of this chapter illustrate the impofténce
of spectroscopic measuremenfs of van der Waals molecules
in determining intermolecular potentials. Information
may be defivéd from these measurements on the behaviour
of botﬁ the isotropic and anisotropic terms in the potential
in the fegion of the well. Studies of the molecular
dimer complement the analysis. of low-energy scattering
data, which tend to be sensitive to the repulsive part
of the‘iﬁteréction, from the miﬁimum upwards.

Our specific conclusions regarding the H,-H, dimer
are:

(i) That the IEPA potential of Burton and Senff
(1982) is too strongly attractive and overestimates the
magnitude of the VZOO coefficient in the BF expansion
of the potential. Electron correlation makes too large

a contribution to the IEPA potential, as suspected by
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Burton and Senff.

(ii) The poténtial of Kochanski (1975), in which
the-dispersion energy is evaluated using second-order
perturbation theory, satisfactorily predicts the isotropic
part of the interaction, VOOO,'but again overestimates
the magnitude of the V200 coefficient. This reflects
errors in descfibing the anisotropy of the dispersion
interaction. Taking into account other criteria, such
as computer time requirements, this method remains attractive,
particularly for applications to heavier systems.

(iii) In calculations on ﬁhe p-p and O-p systems,
the published potential of Schaefer and Meyer (1979)
yields. better results than both the Burton-Senff and
Kochanski potentials. The quadrupole-quadrupole coefficients,
V,94> which intervene directly only'in the 0-0 system,
are in error; this potential should not be used in cal-
culations involving this modification of the dimer.

(iv) The CI potential of Meyer and Schaefer (1985)
and Schaefer and Liu (1985) is undoubtedly the best of
the four ab initio potentials studied. The anisotropy
is found to concord with the failure to resolve rotational
splitting of the dimer energy ievels. The agreement
with the observed separatidn of the [ =.O and .l =1
end-over-end rotational levels would be improved by a
small negative shift of the isotropic potentiél minimum.

The physical,significance of this empirical modification
is open té question. As Schaefer (1982a) has pointed

out, such a shift requires an increase in the correlation
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énergy of 30% in the region of the zero of Vooo- This
is difficult to justify given the 1arge‘ﬁumber of con-
figurations employed. in this calculation. A possible
explanation may be that the bond length of the H2 molecules
may decrease at shorter intermolecular Séparations, leading
to an effective softening of the repulsive wall of the
_botential. 7 | |

The biister in the V500 coefficient, postulated
by ‘Geraedts et al. (1982a) and Waai jer et al. (1981),
conflicts with our findings. The short range‘constraints
on the potential which forced its introduction may be
-invalid. These issues can only be-resolved by fully
variational bound state calculations, treating the H,
molecules.as vibrotors, in conjunction with near infrared

spectroscopic measurements at improved resolution.
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THE D, - D, DIMER
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V 5.1 Introduction

In the'presenﬁ chaptér we report the results of
our calculations on the D2 - DZ dimer. The motiQation
for studying this system derives from the result of
the Born-Oppenheimer approximation that the electronic
: potentiél energy sufface is unchanged by isotopic
sUbstifution. Furthermore, since the diatom centre
of méés'is’unshifted, unlike HD, we may use the same
po?enﬁial expansidn coefficiéﬁts, Vchx/ﬁ(R)’ as we
did for H2 - H2 (Kreek and Le pr 1975, Liu et al.
1978). The D, molecule has a smaller vibrationally
averaged internuclear separation than HZ; for D, and
Hy, in their j = 0 states,“ro = 1.435 a.u. and 1.449 a.u.
respectively (Le Roy and van Kranendonk 1974). The
results of Section 4.4 lead us to expect that this
difference will be‘unimportanﬁ. This assumption has
also been made in scattering calculations on Hy, - H,
and D, - D, (Rémaswamy et al.-1977). We use the rigid
rotor potential which was found in Chapter 4 to give.
thé best agreement with spectroscopic measurements,
namely the M80 surface of Meyer and Schaefer (1985)
and Schaefer and Liu (1985).

'The reduced mass of D, - D, is approximately twice
that of H2‘— HZ. This results in a lower zero point
energy of the complex, and hence more bound states.

The rotational constant of the dimer is also consequently
smaller leading to a stronger interaction between the

bound states. The smaller rotational constant of the
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D, molecule should increase the effect of including
excited rotational states in the close cdupling calculations.
The overall result of the mass difference is to increase
the relative importance of the potential anisotropy.
In the scheme of Ewing (1976), D, - D, is a more strongly
coupled complex than Hy - H2.

In Section 5.2 we present results for the bound
states of D, -D, lying below the dissociation limit
of the dimer. We shall see in the section that follows

that bound states correlating to rotationally excited

DZ are also possible. These calculations were performed
using the R-matrix propagator method, in conjunction

with Richardson h2—extrapolation. Results for dimers
comprising D, in either of its two distinct modifications,
ortho (j = 0,2...) and para (j = 1,3...), will be given.
The measurements of McKellar and Welsh (1974) yield

more de#ailed spectra for D, - D, than for H, - Hy,

the results fqr dimers of ortho-D, showing the most
structure. Thrdughout the rest of the chapter we shall
concentrate on the experiméntally more interesting ortho-
ortho (O—Oi system. In Section 5.3 we calculate the
‘bound states and resénances correlating to one of the
(indistinguishable) monomers being in its first rotation-
ally excited state (j = 2). The resonance energies

and widths have been obtained using the method of Ashton
et al. (1983) in conjuncfion with the molecular scattering
code of Launay (1977, 1978). The effect of tunnelling
between equivalent étates will be seen to be marked

in many instances. Furthermore, we shall attempt to
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rationalise this behaviour in terms of simple two-level

degenerate perturbation theory. These calculations

will allow us to predict the, as yet unobserved, far infra-
red SO(O) spectrum'of the dimer.

We go on, in Section 5.4, to consider the overlapping

$4(0) and Qi(O) + 5,(0) spectra-of 0-0 (D,),, observed

by McKellar and Welsh (1974). Full close coﬁpling cal-
culations on the upper stafes of these transitions would
involve taking into account the dependence of the potential
on the stretching of the monomer bond. We shall attempt
to model reality by using a rigid rotor calculation with
appfopfiatevadjustments to the channel energies, enabling
us to take into account'the.interaction between the upper
levels of the single and double transitions cited above.
- The emphasis will be on interpretation of the spectra,
rather than assessment of the potential as in Chapter
4. This is justified given that we use an ab initio
potential surface which is widely regarded (e.g.'Verberne
| and Reuss 1980, Buck et al.1983b,.K5hler and Schaefer
1983b) to be the beét available. The chapter ends with
a summary of our conclusions both on the interaction
potential and on tﬁe spectroscopic assignments.

5.2 Bound States

Methods for calculating the bound state energies
bf molecular dimers have been discussed in Chapter 3.
In the present work we integrate the close coupled equations
using the R-matrix propagator method. Richardson extrapolation
is used to accelerate the convergence of the eigenenergies
with respect to the number of integration steps. -By

way of example we give, in Table 5.1, results for the



Roin’ Rnax 2,27 2,40 1,80
(a) N = 50 ~6.019871 ~6.025452 ~6.030053
100 ~6.022423 ~6.023029 ~6.029809
200 ~6.023217 ~6.023388 ~6.024178
400 ~6.023403 ~6.023444 ~6.023656
800 ~6.023450 ~6.023461- ~6.023511
extrapolation : 50-100  —6.023274 -6.022222 ~6.029728
100-200  -6.023481 ~6.023507 ~6.022301
200-400 -6.023465 -6.023463 ~6.023482
400-800  -6.023466 -6.023466 -6.023463
(b) N = 50 -0.457799 ~0.470535 ~0.541119
| 100 -0.455748  -0.458302 ~0.476370
200 ~0.455327 ~0.455992 -0.459731
400 ~0.455215 ~0.455397 ~0.456343

800 -0.455187  -0.455251 -0.455485
extrapolation : 50-100  -0.455064 ~0.454224 ~0.454787
100-200  -0.455187 ~0.455222 ~0.454184
200-400  -0.455178 ~0.455199 -0.455214
400-800  -0.455178 ~0.455202 ~0.455199

TABLE 5.

Convergence of the computed eigenenergies (ecm™1) of the

ortho—Dz—ortho—D2 system with respect to integration

parameters.

R and R
max

min

The limits of the integration range are
(Bohr); 2N is the total number of sectors.

The improved convergence attainable using Richardson

extrapolation (equation (3.36)) is demonstrated.

basis set consists of one rotational state (j

each DZ' " The total angular momentum is (a) J

(b) J = 3.

The
0) on
0 and
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lowest and highest of the bound states of ortho—Dz—ortho—

D, measured relative to the dissociation limit of the

dimer. This table illustrates the convergence with respect
max

to the integration parameters: integration range, R -

R and the number of steps per half range, N. We

min’
‘conclude that applying Richardson extrapolation to the

eigenenergies obtained with (Rmin2 Rmax"N) = (2,27,50)

and (2,27,100), yields results converged to within 0.0002 cm~1.
Following Bishop and Shih (1976) the reduced mass in
thesevcalculatioﬁs is taken to be M = 3670.48 a.u.

The rotational constant of D, is half ﬁhat of H,
and it is of more interest to examine the effect of this
on convergence with respect to basis set size. In Table
5.2 we present results using a maximum of three rotational
states on each D, molecule : j = 0,2,4 for ortho-D, and
j=1,3,5 for para—Dz} .The sample of results quoted
corresponds to that obtained for H, - H, (Table 4.5),
with which it may be tompared.‘ The channel energies
~were obtaiﬁed from the results of Bishop and Shih (1976).
The addition of a second rotor state (j = 2 or 3) shifts
the levels dOwnwardsg as expected from the variational
principle,inz.é 0.08 cm_l. This shift is larger than
the cOfrespohding one obtained for H2 - H,, reflecting
the smaller separation between the monomer energy levels.
The>addition of a third (j = 4 or 5) rotor state does
not alter the results which are quoted with a precision
consistent with the numerical accuracy. This is partly
because these rotor states are energetically more disfant,

but largely because the expansion of the potential,



0-0 o** -6.0233  -6.0819 -6.0819
17" ~5.0467 ~5.1026 -5.1026
p-0 ot -5.5831 ~5.6672 ~5.6672
p-p ot* ~6.1732 6.2459 ~6.2459
o+ ~4.4711 _4.4903 —4.4903

TABLE 5.2

Eigenenergies (cm™ 1) of states JEL

of ortho—Dz—ortho-Dz,
para-D,-ortho-D, and para-D,-para-D,; J is the total
angular momentum, € the parity and i the interchange
symmetry (for ideﬁticai molecules). Columns 1, 2 and 3

contain results obtained with one, two and three

rotational states respectively on each Dé molecule.
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equation (4.3), is truncated at q = g, =m = 2. This
means that dimer levels correlating tovjl, Jp = 0 or

!
1 do not couple directly to excited monomer states j

where j1'— ji> 2. on the basis of energy separation alone,
second order perﬁurbation theory would predict any shift
due to'a third rotor state to be three times smaller
than the two rotor state shift. We conclude that the
two:rotor‘state results are accurate to within 0.02 cm—1
and that basis set size, rather than numerical convergence,
is the limiting factor. |

In Table 5.3 we give two rotor state results for
the bound states of 0 -0 (Dzjz, obtained from the M80
potential using the numerical parameters determined above.
Following Bishop and Shih (1976), the energy of the j
= 2 level of D, is taken as 179.078 cm—l. For completeness,
the energy and width of the J(L) = 4 shape resonance
is also given. This was calculated using the methods
to be discussed in more detail in the following section.
The mélecular‘scattering code of Launay (1977, 1978)
was used to calculate the eigenphase sum, which in this
single open channel case corresponds to the scattering
phase shift. This is fitted to a Breit-Wigner form,
assuming a linear background phase shift.

The deuteron is a boson of unit nuclear spin. ‘Under
interchange of déutérons, the deuterium molecule may
thus either have a symmetric spin function with I = 0,2

or an antisymmetric spin function with I = 1. The former

molecule is the ortho modification, the latter the para



-1 Mem™ 1)

0 1 1 0 ~6.082 0.0

1 1 -1 1 -5.103 0.0

2 1 1 .2 _3.194 0.0

3 1 L1 3 _0.495 0.0

4 11 4 2.601 0.55
TABLE 5.3

The eigenenergies of 0-0 (D2)2. Also given is the energy
and (FWHM) width;rﬂ; of the J = 4 shape resonance.

The calculations were performed with two rotor states

on each D,. E(j = 2) = 179.078 em™ L. The energies are
measured relative to the dissociation limit of the dimer.
The'good_quantum numbers of fhe levels are given : viz.
the total angular ﬁomentum (J), parity (€ ) and inter-

change symmetry (i). Also quoted is the value of the end-

over-end rotation, (.
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(Rose 1957). For two D, molecules in the same rotational
state, .the symmetry of the total nuclear spin - rovibrational

I
wavefunction -under molecular exchange is given by i(-) 12

(—)jlz ok 112 = + 1. For two ortho molecules, the total
nucleaf épin may take even or odd values, 112 = 0,1,2,3,4.
| All of the levéls intable 5.3 aré therefore ailowed, |
: ¢ontréry'to the statement madeAby Gordon and Cashion
(1966). The results of these pedestrian arguments have
been confirmed by Bunker (1979b) who calculated the stat-
istical weighté for all symmetries of (D,), and found
none of them to be zero.

Because the bound states in Table 5.3 correspond
veryvclosely to both molecules in their isotropic j = 0
states, .they should behave according to a simple nonrigid

" rotor model of the form (McKellar and Welsh 1972 , Kudian

and Welsh 1971): |
E =E_ + %L(C+O_-H(4M+O> (5.1)

E,-is the zero point (£= 0) energy; BL and DL respectively
the rotational and centrifugal distortion constants of

the dimer. Performing a least squares fit to the bound

states of Table 5.3, we arrive at the values, BL = 0.495 cm—1

= 2.4 xlO"3 Cm_l. These may be compared with the

4'
values obtained by McKellar and Welsh (1974) from their

aﬁd D

observations of the dimer spectrum in the Qq(0) region

of -pure orth0~D2. . The experimental results are BL =

0.525 em ! and Dy - 3.5 x 107 em™!. This confirms the

conclusion of Chapter 4, that the Meyer-Schaefer-Liu
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potential underestimates the dimer rotational constant.
' The effective intermolecular separation, implied by the
theoretical and experimental values of the rotational
coﬁstant, is 4.11 X and 3.99 % respectively. This suggests
a negative shift of the Meyer-Schaefer-Liu potential
of 0.12'2 is required, iﬁ broad agreement with<the results
of Chapter 4. |
In Table 5.4, the transition frequencies deduced

from Table 5.3 are compared with the values obtained
by McKellar and Welsh (1974) from the Q;(0) spectrum
of 0-0 (Dz)z. The experimental esfimate of the

.z = 0-3 energy separation is based on observations
of the Sl(O) spectrum where anisotropy effects are important
(see Section 5.4). No 0€>3 transitions (N and T branches)
are observed in the Ql(O) spectrum as these would violate
the electric dipole selection rules. The Z”‘= 3= 4" =4
and [ = 4— ' = 3 lines were only partly resolved
due to broadening. MeKellar and Welsh (1974) conclude
that the A= 4 etate is pseudobound. The 0€1, 1«2
and 2¢>3 lines are ail.sharp, consisfent with our conclusion
that the (D2)2 dimer has 4 (L = 0,1,2,3) bound states.
The stafement in McKellar and Welsh (1974) that £ = 3
is also pseudobound should be disregarded, though McKellar
(1983).pointsiout that pseudobound levels just above
the dissociation limit in H2A— rare gas complexes can
give rise to sharp lines. In passing we add that no
‘experimental evidenee exists for the presence of levels

involving excited VibrationsAof the van. der Waals bond.



" Transition

Theory Experiment
QAR AL
1 -0 . 0.98 1.04
2 -1 1.91 - 2.00
3 -2 2.70 2.85
4 - 3 3.10 3.50
3 -0 5.59 (6.94)
TABLE 5.4

The separation (in cm—l) between end-over-end rotational
states of ortho-ortho D4. The theoretical results are
obtained from the bound state energies of Table 5.3.

The expefimental result for the 3-0 separation was
estimated from measurements of the Sl(O) spectrum

for which angular anisotropy may be expected to be
important. The remaining_éxperimental values were
obtained from the unambiguously assignedAR aﬁd ?

components of the Q, (o) spectrum in pure ortho-D,.
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This is not surprising given that the lowest bound state

1

is 16 cm ~ above the minimum of the isotropic potential

Vooo*

Two rotor.étate calculations have also been performed
on the p - 0 and p - p sySﬁems of (DZ)Z. The energies
of all bound states lying below the dissociation limit
are given in Tables 5.5 and 5.6. The energy of the
j = 3 rotor state of para-D, is taken as 297.546_cm“{ measured
relative to E(j = 1) (Bishop and Shih 1976). For complete-
ness, the energies and widthS‘of-two shape resonances
of p-p (Dy), are also given in Table 5.6 so that all
states'correlating with l= 0,1,2,3 are calculated. The
Aresﬁlts of these tables are plotted in Figure 5.1. Comparison
with the analogous diagram for (Hz)z, viz Figure 4.6,
shows that rotational sﬁlitting is more marked in (D2)2.
Thelf—correlations_are'also illustrated; though all of
these are self-evident from considerations of parity
and angular momentum coupling, they were all checked
by carrying out (1 - rotor state) calculations allowing
the potential anisotropy to decrease linearly. The magni-
tude of the splitting for sohe of the p - p levels indicates
that [ is not a good quantum number in these cases.
This space—fixéd quanfum nﬁmber is still a convenient
one to use for labelling purposes and it is the one employed
by McKellar and Welsh (1974) for their experimental line
assignménts. We note, however, that the body-fixed quantum

number & could in principle have been used; the correlations



J £ 1 ENERGY (CM-1) WIDTH (CM-1)

1. -1 0 - -6.149 0.0
0. 1 1 -5.667 0.0
1 1 1 -4.839 0.0
2 1 1 25,201 0.0
1 -1 2 -3.415 0.0
2 -1 2 -2.942 0.0
3 -1 2 -3.300 0.0
2 1 3 ~0.664 0.0
3 1 3 -0.274 0.0
4 1 3 -0.593 0.0
" TABLE 5.5

The eigenenergies of p-o (D2)2. ‘The calculations
were performed with two rotor states on each

D,. The corresponding channel energies were
taken as 0.0, 297.546 for para-D, and 0.0,
179.078 for ortho—Dz. All energies are quoted
inicm_l. All states correlating with the end-
over-end rotation,£=0ﬁ, are bound, as is evident

from the zero widths.



] £ i 1 ENERGY ((M-1) WIDTH (CM-1)

0 1 1 0 -6.246 0.0
1 1 -1 0 -6.114 0.0
2 1 1 0 -6.545 0.0

) -1 1 1 -4.490 0.0
1 -1 1 1 -5.379 0.0
1 -1 -1 1 -6.321 0.0
1 -1 -1 1 -5.169 0.0
2 -1 1 1 -5.058 0.0
2 -1 -1 1 -5.191 0.0
3 -1 -1 1 -5.521 0.0
0 1 1 2 -1.242 0.0
1 1 1 2 . -5.327 0.0
1 1 -1 2 -2.843 0.0
2 1 1 2 -3.335 0.0
2 1 1 2 -2.389 0.0
2 1 -1 2 -3.458 0.0
3 1 1 2 -3.409 0.0
3 1 -1 2 -3.118 0.0
4 1 1 2 -3.545 0.0
1 -1 -1 3 0.212 0.1174
2 -1 1 3 -0.255 0.0
2 -1 -1 3 -1.415 0.0
3 -1 1 3 -0.728 0.0
3 -1 -1 3 -0.623 0.0
3 -1 -1 3 0.360 0.0126 *
4 -1 1 3 -0.412 0.0
4 -1 -1 3 --0.725 0.0
5 -1 -1 3 -0.768 0.0

TABLE 5.6

‘The eigenenergies of p-p (D2)2. The calculations were
performed with two fotational states on each D,. All
levels correlating to l = 0,1,2,3 were calculated. Two
of the .l - 3 states are pseudo—bound; their energies
and widths were calculated using the methods of section
5;3-

x At the time of writing, a 2-rotor state result wés
unavailable for this resonance. The energy quoted

here was obtained with Qﬁe rotational state (j = 1)

on each D2.
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Figure 5.1 .

The bound states of paré—Dz-—ortho—D2 and para—Dz—para—DZ.

Also shown are the four end-over-end rotational states to
The two shape resonances

{ = 3 are not shown.

which these levels correlate.
in the p-p system which correlate to
comparison with the analogous figure for H2—H2 (Figure

4.6) demonstrates the greater role played by rotational

énisotropy'in the heavier dimer.
A brief discussion of these two strongly split levels

ot
W

appears in the text.



- 151 -

would then be obtainéd by multiplying the coriolis couﬁling
terms as weil as the potential coupling terms by a factor
between 0.-and 1. The Vopo term in the potential expansion
is responsible for the rotational splitting of thé p-0
levels, the higher order V22n terms contributing only via
coupling to excited rotational monomer states. All of
the terms in the potential expansion can directly contribute
to rotational splitting in the p~p system.

The iﬁterpretation of the splitting is simplified
if we note that one rotor state results differ from the
two rotor state results quoted hefe by §: 0.08 cm_l.
With the restriction j1 = j2-= 1, the basis set for the
strongly split p-p level Jii =1, correlating with
A = 2, consists of only one term: (j1p,) = (2,1)..
For this example, the interpretation is the same whether
we consider this basis or the equivalent space-fixed
one, (jlz,l ) = (2,2). Evaluation of the potential matrix

eléments,equation (2.28), allows us to define an "effective

radial potential'':

<J" jl J"' A 1\/ (f‘) f")R> \ ‘): ‘);' ‘J‘ll i/>fufl
' (5.2)

= Vooo R) + 044V (R) ~on0V (R) ~ 042V, (R)
The anisotropic terms in the potential expansion all
brovide, in the region of the.well, negative contributions,
reéulting in the marked downward shift. In the language
of perturbation theory (Le Roy and van Kranendonk 1974)
this is a first-order splitting. Unlike the case 6f

two ortho—Dzﬂmolecules, whére all parts of the potential

surface have an equal weighting, we can think of the two
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: rotatiﬁg para molecules as sampling a more restricted
region of the surface detérmined by vector coupling a%gu-
ments. A‘similar interpretation of the rotational splitting
of the JE L_ ot level, correlating with A = 2, may

also be given; in this example two channels are involved

in a one rotor state calculation, namely (jlz,fi) = (0,0)
and (2,0). Potential coupling bétween these leads to

an additional (second-order) shift. . The absence of coriolis
coupling bétweén fhese two channels avoids any ambiguity

in the interpretation.of the space-fixed shift as illustrated
in Figure 5.1. '

McKellar and Welsh (1974) have observed the absorption
spectrum of the (bz)2 dimer in normal deuterium in the
region of the Ql(l) and Q,(0) tranmsitions. All three
dimer modifications contribute, though the intensity
of any p-p lines will be reduced due to the 2:1 ratio
of ortho to para deuterium. This could partly explain
why McKellar.and Welsh were able to inferpret their speétrum
in terms oprure‘ZXL transifions, given that rotational
splitting ih the p-0 system is relatively small. Some
pertufbatioﬁ-of the line frequencies was observed, however.
This could be due either to rotational splitting effects,
or to the interaction of the upper states corresponding
to the Q;(1) and Q;(0) transitions of the p-o dimer as
suggested by McKellar and Welsh. These upper states
are only coupled by the dependence of the potential on
intramolecular stretch. The bound state; of table 5.5
could be used to predict the p-o contribution to the

spectrum by neglecting this coupling and evaluating the
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transition frequencies to two identical sets of upper
1eve1s, separated by the difference between the Ql(l)
and Q;(0) band origins (5.914 cm™'). Additionally, the
Ql(l)'and Q. (0) contributions from réspectively the p-p

and 0-0 systems .could be superimposed. In the absence of
line intensity infofmation,vthe resulting densely packed
stick spectrum is of limited use, and we do not plot

it heré. For the rest of this chapter we shall concentrate

/

on the dimer absorption spectra found in pure ortho-

deuterium.

" 5.3 The SO(O)’spéctrum of orthO—Dz—ortho~D2.

The channel potentials, for two rotor state calculations
on 0-0 (D2)2, are schematically illustrated in Figure
5.2. The lower states of the SO(O)_absorption spectrum,
which lie near to the dimer dissociation limit, were
calculated in the preceding section. In this. section
we are interested in calculating the upper states which
correlate to (Vl’jl’VZ’jZ) = (0,2,0,0) or (0,0,0,2).
Such states, lying below threshold, may either be internal-

rotationally predissociating Feshbach resonances (Le

Roy et al. 1982) or bound states. The latter occur when
there are no open channels present in the calculations.
To show the conditions under which this occurs, we first
ﬁote that theAfully symmetrized body-fixed (equation
2.35) and spacé—fixed basis functions may both be written

in the abbreviated form:

o> oe 1iiy A€ 10D
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Figure 5.2
Details of the basis set and channel energies used in

calculations of the SO(O) spectrum of o-o (D2)2. ET is
the S_(0) threshold energy and Ej the dissociation limit
of the dimer. Only one of the four ( { = 0,1,2,3)
effective potential energy curves, for eqch set of D,
quantum numbers, is shown in this schematic representation.
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The open channels are states correlating with (Vl,jl,Vz,jz)
= (0,0,0,0) -and for these the parity is given by

Jl'*Jz +4 _ A T

£ = (-) (=) = (- (5.4)

The final resdl& of (5.4) is true for both the space-
fixed and body—fixed‘versions-of (5.3). Substituting
(5.4) into (5.3) we deduce that i = (=)J for non-vanishing
open Qhannéls; When j; and j, differ, as they do for
the upper states of the SO(O) transition, both interchange
symmetries exist. There is no. coupling to the lower

J+1 J+1. Such states

states either if £ = (-) or i = (=)
cannot predissociate by transferring their internal rotational
energy to the van der Waals bond and are thus bound.
Their energies have been calculated using the methods
described in the preceding section, with the same numerical
integration parameters. |

States which do not couple to the lower levels but
“ which lie above the SO(O) threshold, behind a centrifugal
barrier, are sﬁape'(or orbiting) resonances. These pre-
dissociate by tunnelling through the barrier. All of
the resonances were found by using the molecular scattering
code of Léunay (1977, 1978) to obtain the (real) reactance
matrix, K. This is defined by the behaviour of the radial
édlution:matrix in the aéympfotic region (e.g. Balint-
Kurti 1975, Dickinson 1979):

PRI LN (k%)

(7Y . .

+Kper (%)’l{ kR 1, (803

(5.5)
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Here, j and n are the spherical Bessel functions (Abramowitz
and Stegun 1965) and &Pt A7) is the. end-over-end angular
momentum quantum number in the channel denoted by £ (7);
k is a wavevector."The Launay programme integrates the
coupled equations in the body-fixed frame, fqr reasons

of numerical effiéiency. At large.R the solutions are

then converted into space-fixed form, using the inverse

of the ﬁnitarjftransformation.given in equation (2.11);

a space-fixed K matrix, as defined above, may thus be
obtained (Launay-1976, Heil and Kburil976). This procedure
is preferable to obtaining a body-fixed K matrix since

the equations in tﬁis frame dgcouple more slowly at large

R due to Coriolis terms which decay as R™2 (Lester 1976).
The boundary éonditioné in equation (5.5) can be restated

in terms of the S and T matrices, related to the K matrix

in the following way:
A . -
= + K I '—L5>
,SM | (E ~~>(” : (5.6a)
T =T - 5§ (5.6b)

Having solved the scattering equations at some trial

energy, the K matrix is diagonalised (gp) and the eigenphase

sum, /\ , obtained:
; s 1Dy
A(t') = % b = %c"“"l (KKM (5.7)

This is the multi-channel analogue of the elastic scattering
phase‘shift (Lester 1976, Hazi 1979). The eigenphase

sum is obtained at a number of trial energies in the
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region of a resonance and fitted to a Breit-Wigner form,
assuming a linear background, to obtain the resonance

energy, E_, and the full width at half—maximum,‘rj

A(E)-:V“ *bE_"“* ban” L g (5.8)

2(e, ~E)

This method, which is due to Ashton et al. (1983), is
a convenient way to calculate resonance energies and widths
as only.a ;traightforward modification of standard scattering
codes is necessary'to.implement it (Hutson 1983b). A
number of packages exist for_performing least squares
fits to non-linear functions of the form (5.8); we chose
‘the NAG routine EO4FDF (NAG 1984). An automatic programme
for locating and fitting Breit-Wigner resonances from
tables of eigenphase sums, which also uses EO4FDF, has
been written by Tennyson and Noble (1984). This code
was used to fit ﬁany of’thé resonanées.discussed in this
chapter. 1In a few cases, generally when the.resonance
was eithér just aBove a threshold or overlapped with
another, a more manual approach waé necessary to get
a good fit. Any éuch problems were overcome by appropriate
ad justments to the energy range over which the fit was
madé; the energy should also always be scaled by a constant
factor to give it the same order of magnitude as the
eigenphase sum. |

For répeated calculation of the K matrix over a
range.of energies, a pieéewise analytic method such as
the R—mafrix propagator is generally reckoned to be the

most efficient approach. The Launay scattering code
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uses the approximate solution de Vogelaere method. However,
this code is a particularly efficient implementation,
taking advantage of the presence of zero elements in

the body-fixed coupling matrix.(Launay 1976). Furthermore
the results of chapters fhree and four show that there

is no inéonsistency in using the R-matrix propagator

fof bound states and the de Vogelaere for scattering cal-
culations;.the two methods can be made to agree to any

desired accuracy.

5.3.1 Convergence tests

We outline the results of numerical convergence
tests for the Feshbach resonance J €i _ ot correlating
with [ = 2. The behaviour of the eigenphase sum for
this resonance is illustrated in Figure 5.3. Two rotor
states are retained on eacthz. The relevant parameters
for the de Vogelaere method are the integration range
and, in Launay's implementation, FPT which is the number
of integration steps per half;waveléngth. Here the de
Broglie waveléngth is determined from.the sum of the
well depth and the collision energy relative to the
lowest channel. In Tables 5.7 and 5.8 we show respectively
. the variation of tﬁe resonance énergy and width with
respect to these integfation parameters. We conclude

R FPT) = (2,27,10) is sufficient to obtain

that'(Rmin5‘ max’

a resonance energy and width accurate to five significant
figures. Similar convergence tests were carried out
on the eigenphase sum in the vicinity of the resonance

(0.04 " from the resonance energy); the error in A
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 Figure 5.3

The behaviour of. the éigenphase sum,zﬁ , in the region of

the JEi = ot

Feshbach resonance correlating with (jl,jz,ﬂ)
= (2,0,2) or (0,2,2). - The energy is measured relative

to the'SO(O) threshold.



Resonance energy (em™ 1) relative to Ep

(a) FPT = 10

RDB .
' RFN 1 2 3
20 . -1.52878
27 -1.52881
40 © _1.52881  -1.52881 ~1.52881
(b) FPT = 20
RDB
1 2 3
RFN
20 : -1.52880
27 | -1.52882
40 -1.52882 - -1.52882 -1.52882
| TABLE 5.7
The energy of the Jii = 0% resonance, correlating with

(jl’j2>£) = (0,2,2) or (2,0,2), for different values

of the dengelaereintegrétion parameters. RDB.(ERmin)

and RFN (ERmaX) determineAthe integration range, in

a.u., in the Launay (1977, 1978) scattering programme.
Twice as many steps are taken in (b) than in (a) (parameter
FPT}. Energies are quoted in cm—l, relative to threshold

179.078 cm_l. - The calculations were performed with two

rotational states on each D2.



(a) FPT

RDB
- RFN

20

27

40

(b) FPT

RDB

RFN

20
27
40

10

0.0153723

20

0.0153724

Resonance width (cmfl).

0.0153732
0.0153726
0.0153725

0.0153728
0.0153724
0.0153725

" TABLE 5.8

0.0153722

0.0153724

The full width at half maximum of the Jei =0t resonance,

correlating with (jl,jz,l) =‘(O,2,2) or (2,0,2), for

different values of the de Vogelaere integration parameters.

Refer to the analogous resonance energy results (Table

5.7).
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was found to be 0.003 for the chosen parameters. The
overall accufacy of the results, for the given potential
surface, will be determined by basis set truncation which
we now briefly illustrate.

In Table 5.9,-resu1ts are given for 2—rotor and
3—rotof state calculations of resonances and bound states
correlating with (j;,j,) = (0,2) or (2,0). Coupling
to the j; = j, = O state is responsible for predissociation.
This channel is not presenﬁ in the calculations which
yield the bound states. The addition of a third rotor
state (j = 4)_t6 each D, shifts the bound state/ resonance

energy downwards by Q: 0.02 cm L.

For resonances lying

below threshold (negative energies) the widths' given

by the two-rotor runs are accurate to 2 significant figures.
The error in the width is somewhat greater for the

J‘Ei,= 17" reépnance lying just above threshold. The

increased erfor is due to fitting difficulties arising

" from a change in the background eigenphase sum on crossing

the Sé(O) threshold. In a multi-channel analogue of

Levinson's theorem (e.g. Child 1974) the eigenphase sum

is continuous across a_threshold, though its derivative

with reépecf to energy is in general not. The eigenphase

sum for this resonance is illustrated in Figure 5.4.

The fitting error was investigated by carrying out a

number of fitsvfor’which the energy range and grid were

varied. Chaﬁgéé in E_ and [ of up to0.0007 and 0.001 em

respectively were found. The values quoted in Table

5.9 are those which gave the lowest mean residue (Tennyson



2-rotor states (cm_l) 3-rotor states (cm_l)

'Jgi energy width energy width

ott ~1.5288 0.0154 ~1.5421 0.0156

S 17T -5.9127 - 0.00419 -5.9332 0.00423

17~ : 0.1040 0.0374 . 0.0942 0.0336
0t~ ~5.9359 0.0 -5.9607 0.0
177 ~-6.2359 0.0 -6.2594 0.0
17t ~0.8051 0.0 -0.8181 0.0
277 -5.1426 0.0 . -5.1579 0.0

2= ~1.3403 0.0 ~1.3531 0.0

TABLE 5.9

Convergence with respect to basis set size for resonances
and bound states correlating to ( ji,J,) = (0,2) or (2,0).
Energies are quoted relative to the first excited rotational
state of Dy, viz. E(j = 2) = 179.078 em™ 1, For the bound
states, which have zero width, ( j;,j,) = (0,0) is not

present in the close-coupled equations.
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The behaviour of the eigenphase sum, N\ (radians), in the region
of the in - 177 resonance correlating with (jl’jZ") =
(2,0,3) or (0,2,3). Since the resonance lies just above

the SO(O) threshold (zero on our energ§ scale) it has dual
Feshbach/Shape character. Note also the change in the

background A on crossing threshold.
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Noble 1984). It is interesting to note that this resonance
has dual Feshbach/SHape character. It éan predissociate
either by trénsferring D2 rotational energy to the van
der Waals bond, or by tunnelling through the centrifugal
barrier of the effective channel potential. We consider
only the total width here, but this dual character could
be quantified by calculating the partial widths; these
méy be found from the energy dependence of the individual
eigenphases; Sx (Hazi 1979).

Close coupling calculations with two rotor states
per D, will be adequate, though we note that direct potential
coupling to j = 4 states is thus neglected. Inclusion
of j =4 on éach D, would involve integrating up to 64
(for J EF = 6"%).coupled equations even when interchange
blocking is taken into account.

5.3.2 Results ‘

Results for all levels correlating with f= 0 - &4
and (jq, jp) = (0,2) or (2,0) are given iﬁ table 5.10. These
levels form the upper states of the Sé(O) absorption
spectrum; they are separated from the lower states, given
in Table 5.3, by 179.078 cm™'. The levels are all split
into interchange doublets. Below threshold, one or both
members of each doublet are bound, according to the rules
discﬁssed above. All of the states correlating with

A = 4 are resonances. For these the separation of

iﬁdividual dQublet members is less than the predissociation
width. The Launay scattering code, which does not symmetrize
with respeét to interchange, does not resolve these.

An estimate of Er and [ can be obtained by treating



] £ i ] ENERGY (CM-1) WIDTH (CM-1)

2 1 1 0 -6.36581 0.00459
2 1 -1 0 -6.42676 0.0

1 -1 1 1 T -6.23589 0.0

1 -1 11 -5.91269 0.00419
2 -1 1 1 -4.82906 ' 0.0

2 -1 -1 1 .5.14265 0.0

30 -1 11 -5.43477 0.0

3 -1 - 1 ‘ -5.36931 0.00564
0 1 1 2 -1.52881 . 0.01537
0 1 -1 2 -5.93589 0.0 ’
1 1 1 2 -4.89587 : 0.0

1 1 1 2 -1.97800 0.0

2 1 1 2 ’ -2.63566 0.00285
2 1 -1 2 -3.83546 0.0
31 12 -3.36465 0.0

3 1 - 2 -2.82761 0.0

4 1 1 2 -3.41717 ©0.00579
4 1 -1 2 ©-3.49852 _ 0.0

1 -1 1 3 - -0.80507 0.0

1 -1 -1 3 . 0.10467 0.03638
2 -1 1 3 0.32812 0.01503
2 -1 -1 3 -1.34028 0.0

30 -1 1 3 -1.02916 0.0

30 -1 -1 3 0.11618 0.00323
4 1 1 3 -0.12884 0.0

4 -1 -1 3 ' -0.69098 0.0

5 -1 1 3 -0.75170 0.0

5 -1 -1 3 -0.66645 0.00490
2 1 | 4 2.51540 0.41700
3 1 *1 4 2.20813 0.85595
4 1 %1 4 2.36177 0.76816
5 1. %1 4 2.58124 0.61453
6 1 *1 4 2.40566 0.37311

TABLE 5.10

Two-rotor state results of resonance and bound state cal-
culations on the upper states of the So(o) absorption
spectrum. . Level energies are quoted relative to E(j = 2)
= 179.078 cm_l. Note that the levels are split into
doublets, differing only in the interchange quantum
number, i. Where i = ¥ 1 is listed this splitting is

much smaller than the predissociation width.
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these doubletsAas single resonances.

Iﬁ addition to the scattering calculations on the
[ -0-3 resonances, we attempted to calculate the energies
using our bound state programme. These resonance energies
could all be found to within 0.008 cm™' in this way. |
The bound state code also yields additional levels due
to the continuum, made discrete by the bound state boundary
conditions imposed on the wavefunction at short and long
range. Probably the easiest way to distinguish resonance
from continuum states. would be to repeat the calculations
with the j; = j, = 0 channel removed. Another possible
application of the.bound state approach is in the extra-
polation to zero of the matchiﬁg determinant (equation
3.32) to obtain the position of shape resonances.

Returning to the results of Table 5.10, we note
that the width of the.]_ei = 0"", f= 2 resonance is
at least 2.7 times greater than any of the other Feshbach
resonances lying below.threshold. A similar result was
found by Le Roy et al. (1982) in an analogous study of
the Ar - H, dimer.- The J = 0, A = 2 resonance for that
system was over twice as broad as any other correlating
with j = 2 (and V = 1). the reason for this may be found
in the angular potential‘matrix elements between rotational
basis functions (Hutson and Le Rey 1983). Inspection
'of the potential matrix elements given in Chapter two
showe that only the VZOOY%OO term in the potential_expansion
(equation 2.37).is responsible for internal-rotational

predissociation of the SO(O)'levels in D,. Measurements
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of line widths, though currently notfeasible for these
narrow resonances, may therefore, be expected to‘yield
useful information on the potential anisotropy.

Consider now the tunnélling doubling of states which
differ only in their interchange symmetfy. This splitting
can be rationalised in terms of first order degenerate
pertufbation theory. To illustrate this, we shall make
a number of simplifications. All levels, including the
fesonances,.are treated as discrete states. In addition
we assume that the total wavefunction of any member of
a J multiplet may be represented by |W) ljljzj J> , where
this is shorfhand fo? }le(jl‘jlj12 yi JME‘I()“j(jljzjlzlrJMii

ﬁ&,%a,g)'(see eduation:Z.lO for further details). In
other words J1sJ95319 and [ are treated as good quantum
numbers and space-fixed basis functions are appropriate.
The degeneracy of the |'n> 1204 J) and .|n> 10243 states
is removed by potential coupling, which we treat as the

perturbation. The Hamiltonian for nuclear motion is

partitioned thus:

where

2 : |
Ho = h‘ + hz —2—l/;VR + AoooIooo t Azoz I202 + A°22 IOZZ
| (5.10)

and

C “+ .
Vo o= ‘/A\lzoI)_zo +A212,I211' }A“‘+I2“+ (5.11)
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The functions A represent respectively

and I

9192942 qiqaqgix

the radial and geometric dependence of the potential,
'expanded in the space-fixed frame. Further details on

the terms in the equations above may be found in Chapter

two.. For £ =2 and A = 3, all three A22n terms contribute

to the interchange splitting (for 4 = 0 only Ag9p contributes,

and for £ =1 only AZZO and A222). The dominant term

is A224, being over thirty times larger in magnitude

than A220 and Ajgoy mear the potential minimum. Indeed,

in a recent modification of the Meyer-Schaefer-Liu potential,

Asop and Argo have been léft out of the expansion altogether

(Norman et al. 1984). We label the states [n |204 J)

and [nY |024J) by 1 and 2; matrix elements of the perturb-

ation Hamiltonian between these are given by

vc = \/C O

- 2z o | (5.12a)

\4: = sz z<“‘A114(R)).“><"°‘T\Izm(f.’)f{)é)louT) (5.12b)

It may be shown (Bransden and Joachain 1983) that the

(1), and the corresponding

first order energy correction, E
wavefunction, a|n) l20£.J> + bfn>>|02&.J> , are obtained
by solving the linear equationé

(D) \/© =
a(-E > 7 Ev"“ 0 (5.13a)

c

aV, + b(-£9) =0 | | (5.13b)

1

With the normalisation of the wavefunctions an additional

condition, two solutioi¢ are obtained:
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M -_—\/”C_)' Y = _'d_<|n>|2013‘> + I'\>'°“T>> (5.14a)

E'm "f‘vnzc A)'\I/_ = \r'—z(lnﬂlblv._’@loz{ﬁ) (5.14b)

The space-fixed, interchange-symmetrized wavefunction

is, by analogy to equation (2.35):
| oL -
= 4 _[In>]2oLT) + (=) |n 02£T>)
P = (12047 + AT s

By cdmparing (5.15) with (5.14) we can predict the dependence
~of the interchange splitting, AEY = E(i = 1) - E(1 = -1),
on the dimer angular momentum, f

. c v
AE* = {i%z\/,l for {:‘4:”% g (5.16)
In Téble 5.11, the value of‘AEi, deduced from the

full close coupiing results, is compared with

2 x<20»{J|I224|02{ J> for L = 2 and 3. These-quantities

have been scaled such that for one member of each J multiplet

“(constant £ ) they agree in magnitude. This is tantamount

to assuming that the radial matrix element, <nlA224|n>,

is constant for states correlating to the same [ .

Noting that A,,, is always positive (Schaefer 1982b),

we see that perturbation theory correctly predicts the

sign and gives broad agreement with the relative magnitude

of the interchange splitting. The angular matrix elements

were evaluated from the expression given by Green (1975),

which is the space-fixed analogue of the body-fixed expression

given earlier in this thesis (equation 2.29). We mention

in passing that if the radial matrix element is approximated



J€ AE? 2x(204J11,,,10243)

(a) 4 =2
o* 1 (4.407)7 1 (0.09659)"
1* ~0.66  -0.67
2% 0.27 . 0.29
3* -0.12 : -0.07
4 0.02 0.008
(b) A =3
1 1 (-0.910)" 1 (0.03220)"
2- 1.83 . ~1.50
37 ~1.26 ~1.00
4= 0.62 | ~0.33
57 -0.09 0.05
TABLE 5.11

A comparison of the interchange splitting, ASEi, of

the levels in Table 5.10 with (twice) the angular

- matrix element, (:20,£J|1224|021J>. Perturbation theory
predicts that these quantities should be proportional,
differing in sign for odd A (éee text). The quantities
have been scaled to agree in magnifude for the lowest

J member of each multiplet corresponding to (a) L= 2

and (b) 4 = 3.

Actual . (i.e. unscaled) values are given in brackets.
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by the value of A224 at the effective radial separation,
o :

Rogg = 4.1A, determined from the rotational constant

in the preceding section, then the absolute value of

£

the splitting of the J = 0" level is correctly predicted
to within 10%. While this is far from rigorous (choosing.
A224 near the potential minimum, R 3'3.52, reéults in
a splitting twice as large) it does at least indicate
that the size of the tunnelling doubling is reasonable.
'To summarise, the interchange splitting discussed
here is due to the interaction between the electrostatic
quadrupole moments of the D2‘molecu1es. Experimental
measurements of transitions involving these levels would
yield information mainly on the A,,, coefficient in the
space-fixed potenfial expansion or the V220 and V221
_ terms in the body-fixed. Choosing the two most widely
split states as examples, V220 breaks the'degeneracy

of the J8 - 0" (4L = 2) level and V221 that of J'E =

To déduce the SO(O) absorption spectrum, we need
to know the electric‘dipole selection rules for transitions
between the upper levels bf table 5.10 and the lower
levels df Table 5.3. Allowed transitions occur between
states whose irreducible representations are connected
by that of the dipole moment. The selection rules derived
by Brocks and van der Avoird (1985), using group theoretical
arguments, are consistent with the standard electric
'dipole selection £u1es, namely: change in parity, no
change in interchange symmetry, and AJ = 0, R}

(0 éﬁ—% 0). The latter rule comes from vector coupling
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arguments.

In Table 5.12 we give the transition frequencies
for the dimer spectrum accompanying the far infrared

SO(O).transition of the free D, molecule:

(Vll/) J'/_/) V)_”) JJ/_/) =<o)o)0)o) —9(\/‘/)‘5()‘,2/)‘,':) =<o)2)°)°) OT(O)D)O)Q)

The transifion frequencies are given relative to the
unperturbed SO(O) quadrupole frequency of a D, molecule.
The linewidth is the sum of the widths of the two levels.
pafticipating in the transition. The table labels the
'initiai and fiﬁal states by fhe good quantum numbers

J, £ and i together with the value of A to which they
correlate. The results are plotted in Figure 5.5. The
band origin is taken as the zero of frequency. Lines

of finiteAwidth are represented By Lorentzian profiles

of unit normalisation, i.e.

/"'1

= T ‘ )
L(}’) T2 vy Yl (5.17)
‘and
jL(V)OW = | (5.18)

Here,'yg is the line frequency and [1 the linewidth

as given in Table 5.12. The constant normalisation of

the Lorentzians means that we are assuming, in the absence
of quanfitative intensity information, that the total

energy abéorbed in each line is equal. See, for example,
the discussion on the absorption cross-section in Merzbacher

(1961). Contributions from overlapping lines are simply



Y-S L S Y- L I FREQUENCY WIDTH

(QM-1) (QM-1)

0 1 ] 0 1. -1 - 1 1 -0.1538 0.0

0 1 1 0 1 -1 1 3 5.2770 0.0

1 -1 -1 1 0 1 -1 2 -0.8331 0.0

S 1 1 1 -1 2 3.1248 0.0

S 1 2 1 -1 0 -1.3240 . 0.0

1 -1 -1 1 2 1 -1 2 1.2673 0.0

S 2 1 0 4 7.6182 0.4170

2 1 1 2 1 -1 1 1 -3.0415 0.0

2 1 1 2 1 -1 1 3 2.3893 0.0

2 1 1 2 2 -1 1 1 -1.6347 0.0
2 1 1 2 2 -1 1 3 3.5225 0.0150

2 1 1 2 3 -1 1 1 - -2.2404 0.0

2 1 1 2 3 -1 1 3 2.1652 0.0

3 -1 -1 3 2 1 -1 0 . -5.9317 0.0

3 -1 -1 3 2 1 -1 2 -3.3404 0.0

3 -1 -1 3 3 1 -1 2 -2.3325 0.0

30 -1 . -1 3 4 1 -1 2 -3.0035 0.0

3 -1 -1 3 2 1 0 4 3.0105 0.4170

3 -1 -1 3 3 1 0 4 2.7032 0.8560

3 -1 -1 3 4 1 0 4 2.8568 0.7682

4 1 4 3 -1 1 1 -8.0361 0.5495

4 1 1 4 3 -7 1 3 -3.6305 0.5495

4 1 1 4 4 -1 1 3 -2.7302 0.5495

4 1 1 4 5 -1 1 3 -3.3531 0.5495

- TABLE 5.12

Transition frequencies and line widths of the Sy (o)

dimer spectrum in pure ortho-deuterium. Frequencies are
quoted relative to the j" = 0 =5 j' = 2 quadrupole

transition of a free D2 molecule.
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The dimer structure accompanying the far infrared SO(O)
monomer transition in pure ortho-deuterium. (A) shows
the results obtained using a purely isotropic intéeraction
Vooo: These lines are labelled by the phre £" > {'
transitions to which they correspond. These serve as
markers for the full close coupling results, shown in
(B), which are labelled according to the {  states
to which the initial and final levels correlate. The

units of the vertical scale are arbitrary.
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summed. For transitions between bound states, the plotting
cdnvéntiOn leads to delta functions (radiative lifetimes
are assuhed to be infinite); these we represent by sticks
of equal height. We also do this for any lines with

widths, [ < 0.007 em™ 1

, for ease of plotting.

In the upper part of Figure 5.5 are plotted theoretical
pure A transitions, deduced from l-rotor state calculatioﬁs
on 0-0 (DZ?Z' Compafison of the predicted spectrum with
these pure { lines illustrates the departure of the
system from potential isotropy. Note the random pattern
of tﬁe spectrum, particularly with regard to the labelling
of the transitions\based on the 4 correlations of Table
5.12. The importance of the potential anisotropy is
such that two 1ines‘( 4”= 1= 4/= 2 and 47 - O—*‘&/= 1)
are shifted across the band origin; £ alone is clearly
insufficient to label the transitions.

No observations of dimer structure in the far infrared
spectrum have been reported. It is pertinent, however,

to consider what information on the intermolecular potential

could be gleaned from any such spectra. One line of

interest, as has already been méntioned, is J€1T = 17
— 0%” (£ ='1—2) which lies about 0.83 cm ® below the band
origin. The intercﬁange splitting of the final state

is large, yielding'informatioh either on the space-fixed
Ayoy coefficient or the body-fixed Vogge This line is
flanked by two transitions between { = 0 and 1 states;

it is therefore wuseful to consider the relative intensity
of these three lines to determine whether the one of

interest is likely to be observed or '"swamped' by those
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ad jacent to it. Detailed information on line intensities
requires a knowledge of both the wavefunctions of the
initial and final states and the dipqle moment function.
The collision-induced dipole M of the dimer can be
expanded in éither the space-fixed (Poll and van Kranendonk
1961) or:body—fixed (Brocks and van der Avoifd 1985)
frame in.much the same way as the potential, though a
difference arises in that /4 is a vector and the pot-
ential é scalar. As. we employ the end-over-end rotation:
{ in our aﬁalysis, we consider the space-fixed expansion.
For the two rigid rotors, the-dipole is 'a function
of -the dimer’geometry.and the intermolecular separation.
The spherical components ( V = 0, * 1) of A aré given
by an expression of the form (Poll and Hunt 1976, 1981;

Moraldi et al. 1984)

I A, oA
' A'A'R)" “r) E B;\ALR) (F £1R
iyt )T Mt Z/a Al (5.19)

2f+|)
XA L

The function Y is a vector contréction of tensors (Rose

1957) similar in form to equation (2.10). For a dipole

field, the rank r = 1.. Frommhold et al. (1984) have

shown that in the H2 - H2 dimer the most important components

of M , accounting for 98% of the total intensity in

the SO(O) region, are By,,5 and B,,,5. The same conclusion

should hold for D, - Dy which has a similar electronic
structure. These coefficients are due to the dipole

induced in one molecule by the permanent quadrupole of

its neighbour:

_ - ~ X R*
Boy23(R) = Bléﬁ(g) ¥ {3 .®/ (5.20)
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X and (:) are respectively the spherically averaged
polarisability and quadrupole moment of the identical
molecules. The transition strength of a spectral line

is found from ﬁhe matrix element of the dipole operator
between the initial and final states (Geraedts et al.
1982b, Nicholls and Stewart 1962). The angular contribution
to the matrix element consists essentially of a product

of 3—jbsymbols, together with some weighting factors
(Frommhold et al. 1984). The properties of these 3-j
symbols-lead to selection rules for the individual terms
in the dipole expansion. The presence of the 3-j symbol
(ﬁf 2 'ﬁ/ leads to the conclusion that { = 0<>1
transitions cannot be driven by the dominant quadrupole-
induced dipole for which L= 3 (equation 5.20). These
trahsitidns will be allowed by weaker components of the
dipole function, subject to-the general dipole selection
rules.. |

It should be stresséd that the intensity arguments

above do not account for the mixing of different values

of ‘[ caused by. the potential anisotropy. Nevertheless,
we expect that the é«; 1— 162:2 line under consideration
shéuld be relatively prominent, being flanked by two

lines of much weaker intensity. There should therefore,
be little difficulty in identifying this line if sufficiently
sensitive experiménts were to be performed. A combination
of longer path lengths, lower.temperatures and lower

gas densities, than thoée hitherto employed in gas cell

absorption experiments, is needed.
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5.4 The Si(O) and Ql(O) + SO(O) spectra of ortho-DZ_

ortho—D2

While no observations of dimer structure at far -
infrared wavelengths have yet been obtained, McKellar
and Welsh (1974) have reported a detailéd absorption
spectrum in the neaf infrared accompanying the single
Si(O) and dquble Ql(O) + SO(O) transitions of ortho-
D2. The upper states of the dimer in this region can
bé calculated using the rigid rotor formalism of Chapter
two, if a number of assumptions are made. All coupling
of monomer vibrational states is neglected. Thus we
ignofe vibrational predissociation from (V,,V,) = (1,0)
or (0,1) to (Vl’VZ) = (0,0); Work on complexes of Ar
~with D, or H2 suggests that this assumption is valid;
the widths for vibrational predissociation are much
smaller than those for rotational (Hutson et al. 1983,
Kidd and Balint-Kurti 1985). Furthermore, the sets
of states with (Vl’VZ) = (1,0) and (0,1) are assumed
to be decoupled. All dimer levels correlating to one
vibrationally excited monomer will be split into (we
assume) unresolvable interchange doublets. This assumption
" has also been made by Brocks and van der Avoird (1985)
in their study of the NZ—N2 dimer. Its validity rests
upon the relative insensitivity of the infermolécular
potential to monomer vibration, though qualifications
to this statement will have to be made when we come
to discuss the resonance widths. The approximation

that the potential remains unchanged under rotational
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as well as vibrational excitation of the interacting
monomers continues to be made. Under the above conditions,

the problem reduces to that of two distinguishable rigid

rotors aﬁd the treatment of Section 2.2. applies. Within
these constraints, rotational splitting in the J multiplets
is the only cause of any departure of the calculated

level energies from.the isotropic ,L states.

- The chénnel energies used in the calculations are
given in Figure 5.6. The monomer vibrational quantum
numbers given there are for labelling purposes only;
they do ndt enter explicitly into the close coupling
calculations . The zero of energy is, in actuality,
shifted upwafds relative to that of the initial states
in table 5.3 by the fundamental frequency of D,, viz
2993.962 cm™ ! (Bishop and Shih 1976). Note also that
the states, In} |204 J) and |n> |OZLJ> , are no longer
degenerate when the potential coupling is removed. As
indicated in Figure 5.6, the calculations were carried
oﬁt with two rotor states (j = 0,2) on each monomer.
Inclusion of j = 4 would involve solving systems of up
to 114 (for J = 67) close coupled equations. The numerical
integration parameters employed are those determined
earlier in this chapter. Pafity conservation results
in a few bound states, though it should be noted that
the§e.will in reality bévibrationallypredissociative.

The remaining states can decay by rotational predissociation.
The éaléulated energies and widths, together with
the monomer states and A 1levels to which they correlate,

- are given in Table 5.13. The levels correlating to the
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'The basis set and channel energies used in our modelling
of the 5,(0) and Q. (0) + SO(O) spectra of o-o (Dy),."
The fundamental frequency of D, (2993.962 em™ 1)
taken as the zero of energy in the close-coupling cal-
culations. As indicated (schematically) the final 4

was

levels of the single and double monomer transitions
"are closely spaced and will interact strongly. The lower
: . N "
{ " states, corresponding to the channel with (vl,jz,v;,j;)
= (0,0,0,0), do not participate because vibrational coupling

is neglected in our model.



(o) 5, () STATES. ' (b)  Q,(@)+S,(@) STATES

J £ | ENERGY (CM—1) WIDTH (CM-1) ENERGY (CM-1) WIDTH (CM—1)
2 1 0 ~6.28325 0.00295 ~0.49536 0.00126
1 -1 1 . -5.72214 0.00372 ©1.74747 0.30487
2 1 -4.90821. 0.0 . 1.63318 0.06446
3 1 -5.33292 0.00333 0.81693 0.00774
o 1 2 -4.37193 0.00454 3.27660 0.73509
1 1 2 -3.72840 0.0 3.19176 0.32173
2 1 2 -3.24786 0.00142 3.81358 0.70219
3 1 2 -3.05703 0.0 3.65990 0.39297
4 1 2 ~3.41411 ©.00325 © 2.92680 0.31260
R 3 ~1.96870 2.00020 5.87366 0.35816
2 -1 3 -0.91053 0.0 5.93074 0.20677
3 - 3 -8.53010 0.00068 5.70968 9.32700
4 13 -0.39061 0.0 5.71137 0.30362
5 -1 3 —0.68249 0.00266 5.53068 0.04425
2 1 4 2.37408 0.21109 8.90568 0.70289
3 1 4 2.17542 0.22770 8.98279 0.73221
4 1 4 2.49895 0.26460 8.97057 0.71819
5 1 4 2.67862 0.59765 8.93221 0.62089
6 1 4 2.46589 0.45394 8.73831 0.43298

TABLE 5.13
Two-rotor state results for the (interacting) upper states of the (a) S (o)

and (b) Qq (o) «+ S,(0) absorption spectra. All levels correlating to the first
five [ states are listed, the energies measured relative to the Sq (o)
threshold (3166.722 cm™1).

level is a rigorously degenerate interchange doublet (i = ¥ 1) and purely

With the approximations made (see text), each

71t hRvatrtArnallyry mnvedT cenrtatrisyvie ectatoe are khoatimnA
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singiy and doubly excited dimer are mixed by the same
terms in the potentiallexpansion responsible for tunnelling
doubling in the SO(O) spectruﬁ. -With only two exceptions,
the widths of the Q (0) + SO(O) upper states are greater
than tﬁeir Sl(O) counterparts. This is due to additional
predissociation pathways for the former set of levels;

the rotationalAenérgy of one monomer can transfer to

the other, Qibrationally'excited, ﬁolecule. One of the
two exceptions is the J€ - 2*, £ = 0 pair, where both
states lie below the asymptote of the effective channel
potential for (Vl’jl’VZ’jZ) ; (1,2,0,0).

As before, we may use the electric dipole selection
rules to predict the near infréred absorption spectrum
for which these levels ére ﬁhe final states. Each of
the upper levels will be finely split into a doublet,
the members of which differ only in the interchange quantum
number, i. One member of the doublet will contribute
to any particular line providing the ﬁransition.satisfies
the selection rules: change of parity and AJ = 0, ¥ 1
(0«}> 0). What can be thought of as a relaxation of
the '"mo change in i'" rule is consistent with the results
of Brocks and van der Avoifd who used symmetry arguments
and the vanishing integral rule (Bunker 1979a). Thus
we predict, in Table 5.14(a), the S,(0) near infrared
absorption spectrum of D, - D2, using the results of
Tables 5.13 and 5.3:

(V'//);j‘//) Vl//) J;/“) = (o}o)%o) - (v'/}j'/)v;){};) =(l)2)o/ 0)



(a) Sl(O) TRANSITIONS (b) Q,(0)+5,(8) TRANSITIONS

N N L e T L A A FREQUENCY WIDTH . FREQUENCY WIDTH
_ (CM-1) (CM-1) (CM=1) (CM=1)
o 1 1 @ 1= 1 1 0.3599 2.0037 7.8295 0.3049
0 11 0 1 4 1 3 4.1134 - 9.0002 11.9557 0.3582
1 -1 1 ) 1 -1 2 2.7309 0.0045 8.3794 0.7351
R T, R 1 1 1 -1 2 1.3744 0.0 8.2946 0.3217
1 =1 - 1 2 1. -1 ) -1.1804 0.0030 4.6074 0.0013
1 -1 1 2 1 -1 2 1.8549 2.0014 - 8.9164 9.7022
1 -1 - 1 2 1 -1 4 7.4769 0.2111 14.0085 0.7029
2 1 1 2. PR 1 1 -2.5278 0.0037 4.9418 0.3049
2 1 12 -1 1 3 1.2257 0.0002 9.0680 0.3582
2 1 1 2 2 1 1 -1.7139 0.0 4.8275 0.0645
2 1 1 2 2 -1 1 3 2.2838 0.0 9.1251 @.2068
2.1 1 2 3 - 1 1 -2.1386 0.0033 4.0113 0.0077
2 1 1 2 3 - 1 3 2.6643. ©.0007 8.9040 0.3270
3 -1 - 3 o2 1 = e -5.7882 0.0030 -0.0003 0.0013 -
3 =1 - 3 2 1 -1 2. -2.7528 0.0014 4.3086 0.7022
3 -1 -1 3 2 1 = 4 2.8691 2.2111 9.4007 9.7029
3 -1 - 3 3 1 =1 2 -2.5620 2.0 - 4,.1550 0.3930
3 -1 -1 3 3 1 -1 . 4 2.6705 0.2277 9.4779 0.7322
3 -1 - 3 4 1 =1 2 -2.9190  9.0032 3.4219 ©.3126
S 3 4 1 =1 4 2.9940 0.2646 9.4656 0.7182
4 1 1 4 3 1 1 -7.9343 0.5528 ~1.7844 0.5572
4 1 1 4 3 -1 1 3 -3.1315 0.5502 3.1083 0.8765
4 1 1 4 4 -1 1 3 -2.9920 0.5495 3.1100 @.8531
4 1 1 4 5 -1 1 3 -3.2839 0.5522 2.9293 0.5937

_ TABLE 5.14
Transition frequencies and line widths of the near infrared dimer absorption spectrum
'in pure ortho-deuterium. Frequencies are quoted relative to the V', j" ='O;
0—>V', j' = 1,2 transition of a free D2 molecule; this quadrupole transition was
not observed in the experiments of McKellar and Welsh (1974). - For convenience only,
the lines are additionally classified according to whether the final state corresponds
to an (a) Sy(o) or (b) Q (o) + So(o) transition. The interchange of the final state,
i', is assigned according to the electric dipole selection rules.
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Similarly, we give in Table 5.14(b) the dimer spectrum
for the case where ene Dz'molecule undergoes a vibrational
transition (Q,(0)) while the other is simultaneously

excited rotationally (S_(0)):

I
(vl) l) 1)j1> ( OOO> ——’( J') )J") (l) l)
All transition frequencies are quoted relative to the

unperturbed S, (0) frequeney.of D,.
5.4.1 ° The S,(0) region

The predicted spectrum in the region of the 5,(0)
_transition of D, is iilustrated in the lower part of
Figure 5.7. As with the SO(O) spectrum, represented earlier,
Lorentzians normalised to unity are used to plot all
- lines of width }> 0.007 cm™ L. The lines are labelled
according to the values of f to which the initial and
final states correlate. Overlapping Ql(O) + SO(O) lines
are also pldtted. The importance of the potential anisotropy
is illUstrafedAby the departure of phis computed spectrum
from the pure [/ markers whieh are plotted above; these
are obtained from the solution of single isotropic.Schroedinger
equetions.

At the toplof Figure 5.7 are given tﬁe experimental
line positions obtained by McKellar and Welsh (1974).
These are plotted relative to the free quadrupole frequency
of Dy. It should be ﬁbted; however, that there will
be a,shall negative vibrational frequeney shift. An
estimate of this is brovided by EEe value deduced by
McKellar end.Welsh from the Ql(O) spectrum, viz - 0.15 cm_1
We could (but don't) simulate the effect of perturbations

on the free D, frequency by negatively shifting all
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The dimer structure in the region of the near infrared S, (0)
monomer transition in pure ortho-deuterium. (A): Line positions
and aésignments derived from the measurements of McKellar and
Welsh (1974). The brackets around the {" =3 =4 =0

line denote that this is a Ql(O) + SO(O) feature. The experi-
mental resolution was 0.25 cm_l. (B) : Theoretical results
obtained assuming an isotropic potential. The labelling quantum
number_£ is good in this approximation. Q;(0) + S_(0) lines

are shorter with assignments in brackets (C) : Theoretical

spectrum obtained from Table 5.14.
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experimental lines by this amount; this approximation
- would ignoreAany z (McKellar and Welsh 1971) or j (May
et al. 1961) depéndence of the shift. The actual spectrum
shows marked differences in intensity between lines;
this will be due partly to different individual transition
stfeng;hs, and partly to the net contribution of lines
too closely spaced to be'résolved. The experimental
fesolution was 0.25 cm-1 in the D, fundamental region,
3.1 ¢ A< 3.3 um.

The A, quantum number is plearly insufficient to
uniquély label the lines in the theoretical spectrum.
The same conclusion holds also for the experimental
spectrum, as can be seen from the need of McKellar and
Welsh to assign doublets to the A transitions 0<>1
and 1 «> 2, Even withbut direct reference to the theoretical
spectrum, we can deduce, from considerations of angular
momentum coupling énd the dipole selection rules, that

neither of the O€«>1 transitions can be a doublet. The

initial £ 1levels are, for the 0 - 0 system, all singlets.

The final state of the " = 1-> [f' = 0 transition is

also a sinélet with.good quantum numbers denoted by JE - 2%,
The ' = 1 upper state is a triplet but only J& -1 can
contribute to the (" = 0—> (' = 1 transition due to

the selection rule on J. .

Furthermore, an intensity problem arises when we
try to match these lines to our results. Reference to
Figure 3 of McKellar and Welsh (1974) shows that each

experimental 0 «>1 '"doublet" consists of one strong and
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bne weak line, the strong members being immediately on

eifher side of an intense Ql(O) + SO(Oj A" =34 =0

feature. This feature is near to the band origin, and

is close to the corfesponding theoretical position (refer

to Figure 5.7). Assuming this ''reference' assignment

to be correct, our results indicate that the genuine

0¢—1 transitions should be assigned in both cases to

the strong members of the experimental ''doublets'. However,

arguments based on the strength of the collision induced

dipole components, similar to those presented for the

SO(O) spectrum, imply that the S;(0) 021 lines should

be very weak (Watanabe and Welsh 1964). These arguments

assume 4 is a good quantum number, and mixing of upper

levels with states of the same symmetry, but different [ ,

could partly account for the discrepancy. Another possible

explanation for this conflict is that, déspife the dearth

of neighbouring lines, there is still some scope for

overlap, particularly of the (theoretical) [J=0—1

line with an adjacent { = 1-—3 2 transition. There is

a need to test the sensitivity of the relative position

of the lines in the region of the band origin to variations

in the potential energy surface. A recently modified

version of the M80 potential (Norman et al. 1984) could

provide a starting point. | |
Reservations about the 021 lines apart, the remaining

assignments of Mckellar and Welsh are reasonable, though

more'than.one A transition is likely to contribute to

some of the observed lines. An example of this behaviour

is provided by two closely spaced lines, £ = 2—>1 and { =



- 175 -

3——?2,Vcalcﬁlated to lie near - 2.5 cm L. When the experi-
mental resolution and the approximations inherent in
our calculations are taken into account, there is reasonable
accord between the theoretical and observed spectra.
Increased resolution should yield more structure, and
when this is achieved A4 could be used, in conjunction
with J (and in somevcases one would also need j12)’ to
.make unique assignments. This has already been done
for dimers of D, with rare gas atoms (McKellar 1982).
Finally, if we ignore the Ql(O) + SO(O) lines thaf
appear in the S;(0) region of the spectrum, and compare
with the SO(O) far infrafed spectrum of figure 5.5, we
see that the results are very different. The figures
extend over the same frequency range rélative to the
respective band origins. There are two reasons for the
difference : firstly tﬁere is no double transition in
the far infrared analogous to that in the near infrared,
the upper states of which can perturb the spectrum.
Secondly, tuhﬁeiling in the SO(O) upper states is relatively
easy since it involves an exchange of rotational quantum
numbers; we neglect.it in the S,(0) spectrum as vibrational
quantum numbers would have to be exchanged, and the dep-
endence of the potential on intramolecular stretch is
smaller than that on the relative orientation of the
interacting monomers.

5.4.2 The'Ql(O) + SO(O) region

The near infrared spectrum results of Table 5.14
are plotted for higher frequencies in Figure 5.8. As

in Figure 5.7, the frequencies are plotted relative to
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The dimer structure‘centred on the near infrared Ql(O)

+ SO(O) double transition in pure ortho-deuterium. This
figure is an extension of Figure 5.7, a fact emphasised
by the same horizontal scale (measured relative to the
Sl(O) frequency). (A) : Experimental line positions and
assignments of McKellar and Welsh (1974). Here, brackets
indicate Si(O) transitions. (B) : Pure 6 markers, the
5;(0) lines being longer with assignments in brackets.

(C) : Theoretical spectrum obtained from Table 5.14.
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the S;(0) band origin and the two plots overlap. = The
spectrum in FigUre 5.8 is centred on the Q;(0) + SO(O)_
band origin which, on this scale, lies at 6.318 em™ L.

.~ There is good qualitative agreement betwegn the theoretical
and experimental épectra, though it again appears likely
that different-,L transitions will contribute to most

of the experimenfal lines.

We now.comment‘on.the assignments of McKellar and
Welsh (1974), taking each of the six observed lines in
turn from left to right. We thus compare the top and
bottom parts of Figure‘5.8. The experimental 4 = 3—2
assignment is confirmed by theory. There is-also agreement
for the f = 2-—1 line, though we note that theory predicts
an adjacent Sl(O),',C = 0— 3 line, separated by less
1

than the eXperimehtal resolution of 0.25 cm The observed

line marked 1™ 0 probably consists of contributions
from 2— 1 and 1— 0 transitions; the latter, as has
already been argued, should be weak. To the right of

the band origin, McKellar and Welsh observed three lines,
assigning two transitions to one of them. Theory predicts
four lines. If we neglect the [ = 0— 1 transition,
which should be relatively weak, an alternative inter-
pretation is reached. The experimental A= 0-—1 line
would thus be reassigned S,(0), A4 = 1—4. There

is a second réason for thinking this could be so; a com-
parison of the theoretiéal A{ markers with the predicted
spectrum shows that the ordering of the 1—4 and 0 =1
lines is reversed from what is exﬁected on the basis

of a simple nonrigid rotor model. With this interpretation,
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the line doubly assigned by McKellar and Welsh should
only be labelled A = 1—2. Finally, experimentland
theory agree on the A= 2-493 assignment though this
probably also contains some 1—*2 character. While our
corrections to the ofiginal assignments may be tentative,
they do at least show that consistent assignments can,

be made without invoking 4 = 0¢>1 transitions. Some
of the'"inténsity‘anqmalies” to which McKellar and Welsh
(1974) refer are presumably due to incorrect attribution
of two lines to 01 transitions.

In contrast to the Sl(O).case, this region of the
spectrum is governed more by predissociation than experi-
mental pesolution. An improvement in the latter may,
however, still yield further structure than hitherto
observed. The calculated 1inéwidths for the transitions
above the Q(0) + SO(O) band origin range from about
0.2 to 0.4 cm™ L. This may be compared with estimates
of between 0.2 and 0.6 cm™* for the analogous lines observed
by McKellar and Welsh. This agreement is encouraging,
particularly in the iight of work conducted by Le Roy
et al. (1982) on the'H2 - Ar aimer. They carried out
similar close coupling calculations to the ones described
here, using the rigid rotor approximation. The level
widths were found to be highiy sensitive to vibrational
averagihg over the H2 intramolecular motion; this is
attributable to the sensitivity of the potential anisotropy
to intramolecular gtretch. The isotropic part of the
potential was . found to be relativelyiinsensitive to changes

in the H, bond length. Nevertheless, increasing the
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bond length to.a value appropriate to vibrationally excited
H, did have a significant effect on the Hy - Ar level
energies. It should be noted, however, that for the
discussion in this section, the important measure is

the relative positions of the levels.

5.5 Conclusions

' Close coupling rigid rotor célculations on the bound
ana rofatidnally predissociating states of the molecular
dimer, Dzi— D,, have been performed and the results presented
in this-Cﬁapter. The interaction potential was assumed
to be the same as that for H2 - H,; the M80 potential
of Meyer, Schaefer_and Liu being chosen. The larger
reduced mass of the deuterated  dimer leads to four
( Z = 0, 1, 2, 3) bound states in ‘the ortho-ortho system,
twice as many as the analqgous para-para (sz dimer.
Analysis of these results lead us to conclude that the
| rotational constant of the dimer is underestimated by
the M80 potential, confirming the result of Chapter 4.
The predicted centrifugal distortion constant is also
too small. The bound state calculations on the para-
ortho and para-para systems demonstrated the increased
importance of poteptial anisotropy in the heavier (D2)2
dimer.

" The rest of the Chapter was devoted to ortho-ortho
(Dy),. The results of calculations on the bound states
and resonances corresponding to one of the monomers in
its first ,rotationally excited state were given. It
was pointed out that some of the resonances have dual

Feshbach and Shape character, a consequence of the weakness
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of the.Dé - D, interaction. These results enabled~us
to predict the far infrared SO(O) absorption spectrum.
Observation of this woﬁld yield information mainly on
the quadfupole - qﬁadrupole interaction as this is res-
ponsiblé for the significant interchange doubling of
the final states. The magnitude and sign of this splitting
were shown‘to be consistent with first order degenerate
perturbation theory. .

The near infrared.spectrum, in the region of the
S4(0) and Qq(0) + SO(O) transitions of ortho-D,, has
| been observed and was modelled fheoretically by treating
the monomers as distinguishable rigid rotors. In making
assignments to the observed lines McKellar and Welsh
(1974) treated the dimer as a pseudodiatomic molecule.
We have demonstrated that this fails in the Sl(O) region
' because of rotational splitting of the pure £ levels.
The increased role.of the rotational anisotropy in D4
is illustrated by the fact that no such rotational splitting
effects-have been observed in the analogous S;(0) spectrum
of Hy - Hy. Some differences between the observed and
theoretical spectral patterns are evident and will in
part be due to errors iﬁ'the anisotropic interaction.
However, no clear information on this can be deduced
until either'furthef experiments have been pefformed
at higher resolufion, or quantitative line inténsities
have been calculated. The latter requires a knowledge
of thé collision induced dipole moment function, details

of which have been published by Moraldi et al. (1984).



- 180 -

The absorption spectrum in the_overlapping Q (0)
+ §,(0) region is simpler. Comparison of observed linewidths
with those calculated in this chapter, lead us to conclude
that this is due to the spectrum being predissociation_
limited. "It has ﬁroved possible to. offer alternative
line assignments to those given by McKellar and Welsh
K1974) which may explain some of the "intensity anomalies"
reported by these authors. Taking the near infrared
spectrum as a'whole, it is clear that more than one transition
contributes to many of the observed lines.

Finally,lwe note that the SO(O) and S,(0) spectra
are significantly different and the former cannot be
inferred from observations of the latter. The source
of this difference lies in the shift of channel energy
on interchanging the rotational quantum numbers of monomers

in different vibrational states.



CHAPTER SIX

THE S~(0) AND S, (0) SPECTRA OF THE H

- H, DIMER

0 1 2 2
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6.1 Introduction

- The near-infrared S,(0) and S;(1) spectra of the
H2—H2 dimer have been observed in absorption in the lab-
oratory by McKellar and Weléh (1974). On the basis of
these épectral measurements, McKellar (1984) subsequently
suggested that spectral.features in the far-infrared
' specﬁré of Jupiter and Saturn_(Géutier et al. 1983) might
- be attributable to S,(0) and So(1) transitions in the
Hy-H, dimer. In the preceding chapter we showed that
the S4,(0) spectrum of D,-D, is expected to be quite different
in appearance ffom the observed S,(0) spectrum. This is
partiy due to interchange splitting of the upper states
in the SO(O) spectrum by the angular dependence of the
potential. In the S;(0) spectrum the upper states caﬁ
interact,'Via'the same angular dependence, with the upper
states of the double transition Q1 (0) + S,5(0). Though
the latter of fhese two effects is much less important
in the Hy,-Hy case, due to the greater energy separation
of the interactinglupper states, we decided to test the
validity of inferring the Hydrogen far-infrared spectrum
from the néar—infrared.

Frommhold et al. (1984) have computed the S;(0)
and So(l)-absorption spectra of the H,-H, dimer and compared
their results with the observations of Jupiter and Saturn.
Though their calculations provided information on line

intensities, they completely neglected the effects of
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potential anisotropy. In the light of our experience

with’szD2 it was judged useful to investigate«this further.
In thé present chapter, we present resﬁlts of cal-

cglations of the frequencies of the 5,(0) transitions

of .the para-H, -- para-H, dimer. These computations

take into account the rotational splitting of both the

bound and pseudo—bbund (predissociating) levels of the

dimer. The interchange symhetry_of the para—H2 molecules

is also taken into account in order to assess the importance

of interchange splitting of the dimer energy levels.

The analogous SI(O) spectrum has also been calculated

in order to make direct comparison with the laboraﬁory

measurements of McKellar and Welsh (1974).

6.2 The lower states

The S4(0) and 5,(0) absorption spectra have in common
the same lowér states. These are calculated by the theoretical
and numerical methods discussed in chapters 2 and 3.

The coupled radial equations are integrated by means
of the R-matrix propagator method, and the technique
of Richardson extrapolation is used to accelerate con-
vergeﬁce of the computed eigenenergies (Chapter 3).
In the calculations reported here, a two-rotor basis
(j = 0,2) was used to represent each para—H2 molecule.

As noted in Chapter &4, the para-para system consists
of identical bosons and the total wavefunction must be

symmetric under exchange of the constituent molecules,
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i.e. the interchange symmetry 4 =+ 1. It follows
that (—1)J12 At = + 1 when j; = j,, where
J12 = d1 + 3o and Iip=1 +.I2 are the resultant rotational
and (nuclear) spin angular momenta of the dimer and 4
is the relatlve angular momentum of the two molecules.
In the para para system, where I, = I, =14y = 0, we
requ1re that (-1 ) 12 A = + 1 when j; = j,.

In Table 6.1, we present the calculated eigenenergies
of the para-para states corralating with v, = Vo = 0
and jq =.j2 = 0. Details of these calculations have been
given in Chapter 4. Following Bishop and Shih (1976)
we use M = 1836.15 a.u. for the reduced mass of the
dimer and E(j = 2) = 354.397 em™ Y. These small changes
in the constants of motion do not affect our results,
compared with Chaptar 4, to the accuracy quoted here.
All computed energies are given, although, as noted above,
levels with 4 = - 1, for which ,{ is odd, do not occur
in nature. The interaction potential employed is that
found in Chapter 4 to give the best representation of
the H,-H, interaction, namely the M80 potential of Meyer,
Schaefer and Liu. Our results are aompared with those
of Frommhold et al. (1984), who used the isotropic,
semi-empirical potential of McConville (1981). There
is reasonable agreement in the absolute magnitudes of

the bound state eigenenergies and better agreement in

their separations.



Present work Frommhold et al.

J £ i [ E P E r
0 1 1 0 -2.43 0 _2.91 0
1 -1 -1 1 -0.97 0 ~1.35 0
2 1 1 2 1.3 0.9 1.2 0.6
3 -1 -1 3 5.0 5 5 6
4 1 1 4 10.6 13

TABLE 6.1

Computed eigenenergies of states of para-H,-para-H,
correlating with vy = v, = d, jg = jp = 0. The total
angular momentum (J), parity (€), interchange (i),

and relative angular momentum () quantum numbers are
listed. Also given are the positions and full widths
at half-maximum intensity,rﬂ, of ﬁhe shape resonances;
Results of the present work aré compared with those
obtained by Fromﬁhold et al. (1984). As noted in the
text, states of negétive interchange symmetry, i = -1,
do not occur in nature for the para-para system. Units

-1
are cm
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Alsé listed in Table 6.1 are the positions and widths
of the predissociating states, which were determined
using the molecular-scattering code of Launay (1976,
1977). The eigenphase sums (Ashton et al. 1983) were
fitted to Breit-Wigner forms using the algorithm of
Tennyson and Noble (1984). The computed positions and
widths'of the resénances agree well with the calculations
of Frommhold et al. (1984).

€.3 The upper states

Table 6.2 contains results of calculations on those
states, correlating with Vi = Vg = 0 and Jj1 =0, jp =
2 or ji = 2, jp = 0, which form the upper states of the
So(0) spectrum. These eigenenergies are shifted compared
with those in Table 6.1 by the energy separation of the
j=0and j =2 levels of Hy,, namely 354.397 em L.
Coupling of the relative angular momentum, é
with the resultant rotational angular momentum, 912,
gives rise to the‘splitting into J multiplets shown in
the table. The magnitude of this splitting, neglected
by Fromﬁhold et al. (1984), is a few tenths of a wave-
number. Of further interest is the interchange splitting
of levels which differ only in the value of 4 . This
splitting was also neglected by Frommhold et al. on the
grounds that the molecules are distinguishable when in
different rotational states. Evidently, this statement

is only an approximation to reality, as the



1 -1 1 - 1.33 0
1 -1 -1 - 1.27 0.0034
3 -1 -1 1 -~ 1.06 0.0031
3 -1 1 - 1.06 0

2 -1 -1 - 0.90 0

2 -1 1 - 0.82 0

5 | 5.1 2.8

2 14 5.1 3.6

1 -1 4 3 5.1 3.8

A | 5.2 3.1

3 -1 41 5.3 3.6

TABLE 6.2

Computed eigenenergies of states of para - Hyp-para - H,
correlating with Vi = Vg = 0, and jg = 0, Jg = 2 or

jp = 2, Jp = 0. Only the states of odd parity, £€=-1
which are associated with odd values of {, are listed,
as only these states contribute to the S, (0) spectrum
(cf. Table 6.4).

States of negative energy and finite width, I" , are
Feshbach resonances. Noﬁe that states of negative inter-
change symmetry, i = —'1, do not occur in nature but

are tabulated to illustrate the magnitude of the inter-
change splitting; where i = + 1 is listed the interchange

splitting is much smaller than the predissociation width.
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indistinguishability of the two moleculeé is attributable
to their being identical boson systems, regardless of
their internal rotational angular momentum states. States
differing in the value of 4 are split into an "interchange
doublet'", of which only the A4 =+ 1 component occurs
in nature,‘ Aé may be seen from Table 6.2, the magnitude
of this splitting is small for those levels contributing
to the S45(0) spectrum of the para-H, -- para-H, dimer,
but it should not be concluded that the effect is always
negligible. Indeed, for other levels of the Ho-H, dimer
the interchange splitting is sighificant. By way of |
example, the state J€ = 0%, correlating with
(Vl, Vos J1s o A ) =1(0, 0; 2, 0; 2) or (0, 0; 0, 2; 2),
is split by-1.6 em™ L. Howejer, the - =+ 1 member of
this interchange doublet dpes not contribute to the
dipole SO(O) spectrum.because the spin statistics of
Hy-H, forbid lower states of negative parity (odd L.
For other systems such as DZ—D2,>HF—HF (Barton and Howard
1982) and N,-N, (Tennyson and van der Avoird 1982a, Brocks
“and van der Avoird 1985), the interchange splitting
measurably affects the predicted spectra.

‘The upper states of the Sl(O) spectrum correlate

with’(vl,.vz; i1s jp) = (1, 05 2, 0) or (0, 1; 0, 2).
In precise analogy to Chapter 5 we neglect the vibrational
dependence of. the interaction potential and hence the

coupling between these equivalent states. The system
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is thus treated as two distinguishable rigid rotors.
The resulting basis set expansion is the same as in the
SO(O) calculations except that v, = 0 is replaced by
vy = 1. The channel energies are altered accordingly,
measured relative to (vy, Vo3 Jps Jp) = (1, 05 0, 0).

Note that we include (rotational) coupling to the higher
levels (V1, Vos Jqs j2) = (1, 0; 0, 2), which correspond
to the upper states of the double Q,(0) + SO(O) transition.
The eigenenergies of upper states contributing to thé

Sl(O) sPectrum are shown in Table 6.3. The energies

are quoted relative to the Sl(O) threshold, E(v,j = 1,2)

= 4498.739 cm™ ' (Bishop and Shih 1976).

In Table 6.4, we list the computed frequencies and
widths of the optically allowed transitions in the SO(O)
spectrum of the para-H, - para-H, dimer, expressed relative
to the frequency of.the {i = 16—-*(” = 0 transition.

Our results are arithmetic means of allowed transitions

to the computed energy multiplets in Table 6.2. The

level of agreement with the célculations of Frommhold

et al. (1984) is satisfactory,-bearing in mind that different
interaction potentials have been used.

In Table 6.4, we also compare our computations of
the §,(0) spectrum, analogously obtained from Tables
6.1 and 6.3, with the 1aboratory measurements of McKellar
and Welsh (1974). Thé agreement between theory and experiment

is seen to be satisfactdry. The two lines originating



J 4& £ E (cm_l) ,ﬂ(cm_l)

1 -1 -1.19 0.0024

3 . -1 1 ~ 1.04 0.0018
2 -1 - 0.84 0

1 -1 5.09 4.7
2 -1 3 5.26 4.9
3 1 5.43 4.9

TABLE 6.3

Computed eigenenergies of states of para-
Hz—para—H2 correlating with vy =1, v2_=‘0,
and jq1 = 2, jg = 0. We list only those states
which contribute to the Sl(o) spectrum. The
two levels J = 4 and J = 5, associated with

L = 3, have not been calculated as the
dipole moment operator will couple these

only to the very broad L = 4 shape

resonance (Table 6.1).



(o]
<=L pu FSB PW MW
12 -3.4740.7  -4.11:0.3 3.5640.6  -4.254+0.6
10 0+ 0 0+ 0 0.000+0.002 0.00+0.15
3 2 2.8 42.0 2.2 +3.0 2.7 +3.0 2.9 +1.0
30 .6.542.0 6.4 + 3.0 6.3 +2.0 7.3 +2.0
TABLE 6.4

A comparison of the computed positions and half-widths
(cm™1) of lines in the S,(0) spectrum of para-H, - para-
Hy; PW: present work; FSB: Frommhold et al. (1984).
Frequencies (em™ 1) are expressed relative to the

é' =,1e—-4” =0 transition. Our computed results for the
corresponding transitions in the Sl(o) spectrum are

also given and compared with the laboratory measurements
of McKellar and Welsh (1974) (MW). Half-widths attributed
to MW have been estimated from their published spectrum;

which had a resolution of 0.15 cm—l.
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from the lower l” = 2 state are triplets, but the separation
is smaller than the individual line widths due to pre-
dissociation. This explains why the experiment failed

to resolve rotational fine structure. Furtﬁermore, the
positions and widths of the corresponding transitions

in the-SO(O) and S;(0) spectra are very similar, justifying
McKellar's use of his near-infrared S,(0) spectrum to
identify S;(0) features in the far-infrared spectra of
Jupiter and Saturn.

6.4 Conclusions

In this Chapter, computed frequeﬁcies of the 5,(0)
transitions between bbund and pseudo-bound levels of
the para-H, - para-H, dimer have been presented. The
| calculations accounted for the interchangeAsymmetry
of the Hy molecules. Analogous calculations of the S;(0)
spectrum were found to be in satisfactory agreement with
the 1aboratory‘measurements of McKellar and Welsh (1974).
Further experiments at increased resolution are unlikely
to observe the small rotational splitting due to intrinsic
predissociation effects.

The SO(O) and Sl(O)_spectra have been shown to be
very similar, in marked contrast to the case of the D2—D2
dimer. There are three reasons for this. Firstly, the
rotatiqnal splitting is smallef in H,-H, than in D,-D,.
Secondly, the interchange, or tunnelling, doubling is

also smaller for H2—H2; where it is large the affected
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levels do not contribute to the spectrum. This latter
effect is}due~to the different spin statistics of the

two isotopic systems, there being no restriction on the
spatial interchange symmetry of D,-D, states. Thirdly,

the perturbation on the upper states of the Sl(O) spectfum,
due to interactions with the corresponding Q(0) + SO(O)
levels, is much less important in Hy-H, due to the greater
L

energy separation (17.7 cm ~) between them, a fact noted

by McKellar and Welsh (1974).
The results of this chapter lend support to the
proposed identification of features in the far infra-

red spectra of Jupiter and Saturn with SO(O) transitions

of the HZ—H2 dimer.



CHAPTER SEVEN

DISCUSSION AND FUTURE WORK
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7.1 Methods

The main purpose of this thesis has been to develop
methods of calculating the bound state energies of molecular
dimers. The -energies and widths of internal—roﬁationally
predissociating resonances have also been obtained,
using the method of Ashton et al. k1983). The results
of these calculations can be used in conjunction with
spectroscdpic‘measurements to discriminate between different
potential energy,surfacés. We have been able, as a
consequence, to interpret the experimental near infrared
spectra of the hydrogen and deuterium dimers in more
detail than was hitherto possible. In Chapter two,

a qdantum mechanical close coupling formalism was presented
and the symmetrization of the basis functions discussed

in some detail. This symmetrization was also cast explicitly
into the language of group theory, which provides a
powerfuivtoél for the extension of these methods to

more complex systems; The problem reduces to the solution
of sets of coupled second order differential equations,

the boundary conditions depending on whether the individual
channels are open or closed at large values of the inter-
molecular separation. We have opted to solve these
eéuations using numerical integration which we showed,

in Chapter three, to be an easy and accurate way of
determining bound state energies. This is not to say

that other techniques such as the secular equation and
BOARS méthods do not have their place. Indeed, maximuﬁ

physical insight will be achieved by using a diverse
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range of methods. - Thosevwhich have been used in bound

state calculations of van der Waals molecules were discussed
in Chapter three. There we noted that perturbation
théory'has been used to improve on the BOARS approximation;
more recently the shortcomings of the seculaf’equation
approach have been similarly overcome (Hutson and Le

Roy 1985).

While the de Vogelaere and R—matrixApropégator
methods agree to very high accuracy (up to 7 significant
figures), the latter has proved to be particularly suitable
for édaptation to bound state problems. The R-matrix
propagator method is numerically stable in the classically
forbidden regions and a smaller integration range, than’
that dictated by the "infinite wall' boundary conditions
of the de Vogelaere method, is required. Furthermore,
since the R-matrix propagator method is based on the
piécewise analytic principle, much of the work done
for the first trial eﬁergy may be saved for subsequent
energies. Its one major drawbéék, slow convergence
with respect to the number of integration steps, can
be overcome using Richardson extrapolation. Further
improvemént could Be achieved by using propagators
corresponding to a linear, rather than a constant, coupling
matrix W(R) in the individual sectors. These propagators
are more complex, involving the evaluation of the Airy
functions. Step length algorithms of the type distussed
by Stechel et al. (1978) could also be used. These

attempt to maximise the step length within constraints
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imposed by input tolerances. For a constant reference
potential in eaéh sector, these tolerances are related
to the derivative of the coubling matrix elements, and
to’ﬁhe departure from constancy of the transformation
which diagonalises E(R) in each sector. The problem
with such algorithms is that, while they may give reasonably
accurate answers with a relatiQely small number of steps,
the error does not in geﬁeral-vary monotonically with
.respect to changes in the input tolerances. This precludes
the use of Richardson extfapolation. As pointed out
in Chapter three, we divide the integration range into
two parts which meet near the potential minimum. An
equal number of sectors is used in each of these parts;
longer steps are therefore taken in the wider region
beyond the minimum where the potential is more slowly
varying. An additional problem may afflict the'more
complex_stepvlength algorithms in any future calculations
of predissociation using the R-matrix propagator method.
If one or more of the variable step lengths become equal
to a multiple of half the de Broglie wavelength in any
channel, a large round—off error can result, leading
4to.a greatly increased global error. This was called
the "magic T instability" by its discoverers, Mattson
et al. (1983).

Despite the obvious utility of the numerigalainﬁe—
gration épproach to bound state problems, it should
be worthwhile to explofe ways of improving efficiency

so that it can be conveniently applied to a greater
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Variety of systems. Calculating the eigenenergies
corresponds to finding the zeroes of a matching determinant,
and it would be desirable to improve the efficiency

of this search. In the simp1est version of the computer
programme, the matching determinant is evaluated on

a grid of trial energies. An iteration is started when
the determinants for two adjacent‘points on this grid
differ in éign. It is-straightforward to distinguish

a sign change due to an eigenenergy from one caused

by a pole, for which the determinant becomes infinitely
large. Nevertheless, it wouid be worthwhile to investigate
ways of eliminating such poles altogether from the energy
dependence of the determinant. Berrington and Seaton
(1985) have succeeded in doing this for calculations

of the electronic bound states of atomic ions using

an Lz R-matrix method. It is worth noting here that

the choice of stabilisation matrix determines the positions
of poles in the de Vogelaere method. Performing duplicate
sets of preliminary (small basis set) de Vogelaere cal-
culations, differing only in stabilisation method, should
minimise the risk of missing any energy levels due to

the presence of poles.

In the early stages of this work, some exploratory
model calculations, Based on the oxygen dimer (Cashion
1966), were constructed to yield evenly degenerate
eigenvaldes. In such cases the matching determinant
is zero at the eigenenergy but has the same sign on either

side. Evenly degenerate eigenvalues also sometimes occur
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in correlation tests. For these eigenvalueé, iteration
was found to be much more rapid using the logarithm
of the matching determiqant, 1og10|det|. The speed
of iteration to an eigenenergy in the general case could
also be easily improved by ﬁsiﬁg this function, multi-
plied by I 1 depending on the sign of det.

'A more radical way of improving the efficiency
of the numerical iﬁtegration method is suggested by
the success in scattering calculations of the method
of Thomas (1979, 1982). Computef time is saved by prop-
agating only one solution Vectof, instead of the usual
"matrix, and iteratively matching this to the.correct
bouhdary conditions. It was suggested in Chapter three
that Thomas's method may most naturally be extended
to bound sté;e calculations using the artificial channels
approach. Thus, larger sets of coupled equations, needed
for the extension of our work to strongly coupled dimers,
could be integrated in this way.

An alternafive to integrating increasing numbers
of equations is to choose a more realistic basis expansion.
For the weakly c0up1éd:hydrogen and deuterium dimers
studied in this thesis, an angular basis consisting ‘
of vector coupled sphefical harmonics rapidly converged
with respect to the addition of more terms. In scattering
calculations on strongly coupled atom-molecule systems,
Clary (1983, 1984) has shown that by multiplying the
spherical harmonic basis by an exponential ''localisation

function', an improvement over the conventional expansion
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can be obtained. With such bases, the expressions for
the 50upling matrix elements are different from those
given in Chapter two. The extension of this technique
to heavier diatom-diatom systems should nevertheless
be relatively straightforward, especially in cases where
the centrifugal decoupling approximation is valid.
For semi-rigid complexes, a hindered rotor basis, of-
the kind applied by Kidd et al. (1981) to the water
molecule, may be preferable. Starting with a large
number of conventional angular functions, a Hamiltonian
matrix is obtained with all radial coordinates fixed
at values correspbnding to the equilibrium geometry.
The hindered rotor basis is defined by the combinations
of the original functions which diagonalise this Hamiltonian.
This new basis set may be truncated significantly without
prejudicing the accuracy of the calculated eigenenergies..

" We end our discussion on methods with brief comments
on thé fitting and locati§n of Breit-Wigner resonances.
. The fittihg procedure for resonances just above threshold
could be improved by assuming two different, smoothly
connected, background eigenphase sums on either side
of the threshold. The fact that the resonances just
abo&e threshold were generally found to be quite narrow
meant that a single (linear) background could be assumed
provided the fit was performed over an energy range
no wider than a few resonance widths.

Resonance caiculations, like those for bound states,

require a search for characteristic behaviour over an
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energy grid. Since the eigenphase sum is only definéd
modulo T¥ , this grid must be at least equal to the

Qidth of the narrowest resonance to ensure all are found.
Truhlar and Schwenke (1983) have shown how to define

an absolute eigenphaée sum, which allows resonances

to be located using a much broader grid. Their approach,
which involves calculating a K-matrix at the end of

each integration step, should not be difficult to implement

with standard scattering codes.

7.2 Assessment of interaction potentials using spectroscopy
The methods discussed abové have been applied to

the bound and resonance states of the lightest molecular

dimer, H, - H,, and its isotopic sister Dy, - D2. In

Chapter four, the bound states of H, were calculated

using . four different ab initio calculations of the potential

energy gurface. In the ortho-para and ortho-ortho modi-

fications, rotational splitting of the levels, denoted

by thé end-over-end rotation l , leads to a spread

of values for the { = 0 - 1 energy separation. The

results are sensitive to the potential used. Only one

A -=0-1 iine has been observed in the experiments

of McKellar and Welsh (1974) due to limited resolution.

We deduced that the best potential was the M80 surface

of Meyer, Schaefer and Liu. For this potential, the

spread of the f=0-1 frequencies is sufficiently

small to be consistent with the failure of experiment

to find any ‘anisotropy effects. The main fault with

the M80 potential is that it predicts.tdo small a value
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for the end-over-end rotational-constant,iBL, a fact
confirmed by bound state calculations on the D, system
in Chapter five. The potential could be empirically
improved by negatively shifting the isotropic part.,
and by implication the anisotropic terms also by 0.1
—_0.28. We can assert that this is a potential effect
with some confidence, rather than a consequence of our
assumption. that the potential is insensitive to the
stretching of the monomer bonds. Strictly speaking,
the experiment yields information on the averagerf
two potentials: one correspondiﬁg to both monomers iﬁ
their ground vibrational (V = 0) states, the other to
one H, in its V = 1 state. BL for the latter surface
should be somewhat smaller since the repulsive wall

is pushed outwards from the considerations of Chapter
two. Bound state calculationé based on a perfect ground
state potential would thus give a larger BL than that
deduced from experiment.

A further alteration to the M80 potential has been
suggested by Waiijer et al. (1981) based on measurements
of the hyperfine spectrum of H,. Their modification
to the VQOO term in the potential expansion brings it
closer to that of the Burton-Senff potential- which we
have shown is too anisotropic. Future work on H4 should
include bound state calculations on the shifted M80
potential,.with‘and without the '"blister'" in V5003 the

form of which has been given by Waiijer et al. (1981).
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The purpose of these runs will be to check our preliminary
" conclusion that the blister leads to results inconsistent
with near infrared measurements.

7.3 Simulation of absorption spectra

In addition to the bound levels of D, we have also
reported calculations on rotationally predissociating
states. The upper states of the SO(O) absorption spectrum
are split due to tunnelling doubling, involving the
exchange of the rotational quantum numbers of identical
monomers. This splitting was found to be consistent
.with Rayleigh+Schroedinger perturbation theory, which
treats the levels as being discrete. This assumption
appears to be justified since we were able to accurately
reproduce the energies of the SO(O) resonances using
our béund state code.

The spectroscobic measurements so far carried out on
D, have been in the (near infrared) région of the'funda—
mental band of deuterium. By neglecting vibrational
predissociation, we attempted to model the dimer structure
accompanying the S4(0) and Q,(0) + SO(O) transitions
in puré Qrtho—Dz.' McKellar and Welsh (1974) have listed
three shortcoﬁings in their theoretical analysis of
this spectrum. They ignored both the effects of potential
anisotropy and the perturbation it causes between the
upper states corresponding to the single and double
transitions cited above. We have included both of these
factors-in our analysis, the latter one by treating

the interacting monomers as distinguishable rigid rotors
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and altering the channel energies accordingly. The third
shortcoming mentioned by McKellar and Welsh is also present
in our analysis; this is the tréatment of the vibrational
frequency shift. Like McKellar and Welsh, we still have to
either ignbre this shift or rely on a simple elimination by
treating its effect on all levels as being equivalent to a
change in the'asymptotic energy of the relevant channel
(refer to Figure 4.8). Even with a knowledge of the varia-
tion of the.potential with monomer stretch, upon which it
depends, there are considefable theoretical difficulties in
modelling this shift (Hutson and McCourt 1984). Further
experiments with lower gas_préssure and longer path lengths
should help to minimise this problem.
Calculations of both the near and far infrared spectra
of.para—Hz, completely analogous to those on ortho—Dz,
have also been reported. The results were presented in
Chapter six. The Qq(0) + SO(O) channels were present
in the calculations. of the S;(0) spectrum, but the energies
and widths of the corresponding states were not evaluated.
Of current astrophysical interest is the far infrared
SO(O) spectrum of the hydrogen dimer. Results were
presented for the para-para modification. We have shown
that the isotropic model of the dimer, used by Frommhold
et al. (1984) in their interpretation of the Jovian
SO(O) spectrum, is reliable. This is despite the presence
of interchange splitting, because of the weak coupling
and the zero statistical weights of some of the levels.

It is desirable to extend our calculations to include

the SO(O) spectrum for the ortho-para modification,
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as thh§4H2 is also present in the Jovién.atmosphere.
Thesé caiculations differ from the para-para case in

>that many more resonances havé fo be located and fitted;
this is due to the-éngular momentum coupling of ji =1
and‘j2 = 2 to give three possible values of jlz.‘_Furthermore,
interchange syﬁmetry effects will be absent in this
modification. This means, for example, that initial
states of the SO(O) épectrum with odd values of 4 are
allowed only in the ortho-para modification. The relative
‘intensity of lines in the'So(O) spectrum could thus

in principlevproVide information on the ratio of ortho

to para hydrogen in the Jovian atmosphere. Frommhold

et al. (1984) have been able to obtain some indication

of the value of this ratio. Precise information is
difficult to,obtain,‘both because they have neglected

the effects of potential anisotropy and'because the
spectrum is not well resolved.

In addition to information on statistical weights,
the production of siﬁulated spectra relies on the cal-
culation of three properties of each spectral line
its frequency,. width and intensity. The analysis of
tﬁe far infrared H4 spectrum of Jupiter and that of
the near infrared H4 and D, laborétory spectra both
. provide motivation for the extensionAof our calculations
to take the intensity factor into account. The simulation
of the spectra of énisotropic van der Waals molecules
has already been Consideréd by various authors. Brocks

and van der Avoird (1985) and Dunker and Gordon (1978)
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have calculated line intensities for the spectra of
N2—N2:and Ar—H2 respectively. These calculations ignored
predissociation,'however, and assumptions were made
regarding the linewidths. In the only examples of fully
simulated spectra of which the author is awafe, Kidd
“and Balint-Kurti (1984) and Beswick and Shapiro (1982)
both used the artificial channels method. The systems
studied by these authors were respectively Ar-HD and
Ar-N,. | | |

Future work could involve investigating the extension
of our methods. to include intéﬁsity information and
hence simulate the spectra of H, and D,. The problems
involved in calculating the needed eigenfunctions were
briefly addressed in Chapter three. The relevant collision
induced dipole moment is already available (Moraldi
et al. 1984). We could also try using the secular equation
method; this produces the bound state eigenfunctions
easily, though continuum wavefunctions are difficult
to reproduce wéll! ‘It may prove possible to combine
the information we.already have on the linewidths with
inteﬁsities calculated usihg a secular equation approach
in which open channels are omitted. Finally we note
that the width of each line may be increased by a suitable
amount to take preséure broadening into account. Doppler
broadening is included by convolutiﬁg the resulting
Lorentzian with a Gaussian profile (e.g. Pine et al.

1984; Minguzzi and Di Lieto 1985).
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,7;4 Vibrotor calculations

Ail of the calculations in this thesis could usefully
be repeated treating the molecules ae vibrotors, using
the formalism,pfesented in Chapter two. However, given
the 1erge number of cbupled.equatiOns, which arise due
to the monomer rotational levels which must be included
with each vibrational state, it ie beet to be selective.
There 1is widespread motivation for such calculations,
most apparently‘to improve the accuracy of the calculated
dimer epeCtrum. Of particular interest are the line
positions near the $,(0) band origin of ortho-ortho
(D2)2. Since linewidths are expected to be highly sensitive
- to variations of the potential anisotropy with monomer
excitation, it woula also be useful to confirm that
the observed spectrum in tne-Ql(O) + SO(O) region of
ortho-D, is predissociationAlimited.

The close coupling scattering calculations, used
in the interpretation of measurements of the total differ-
‘ential cross-sections of»Dz—H2 (Buckfet al. 1981), made
© the rigid rotor apprdximation. Howevef, as pointed
out in Chapter four, there may be a significant change
~in monomer bond length dnring the course of the collision.
A vibrotor analysis may provide an enplanation for the
proposed negative shift of the repulsive wall of the
"M80 potential.: The need to postulate a 30% increase
in the dispersion interaction, in the region of the
potentialqzefo;'would thus Be avoided. Furthermore,
tne hyperfine spectra measured by Verberne and Reuss

(1980) pfobe the repulsive region less sensitively than
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the relatively high energy scattering experiments of

Buck et al. If tﬁe short range constraint imposed on

the rigid rotor surface by the-latter éxperiments is
felaxéd, the need for Waaijer et al. (1981) to introduce

a blister in the well region of the V00 coefficient
could be avoided. In short, the motivation for vibrotor
calcﬁlatiohs on H, and D, is to isolate the error intrinsic
in the ab initio determination of the potential from

the effects of monomer stretch.

.-There probably already exists sufficient information
on the potential to begin.the calculations just suggested.
We have already mentioned; in section 4.4, that M80
poteﬁtial calculations have been performed‘for two values
of the Hy internuclear separation. Taking into account
the latest improvements to the M80 surface (Norman et
al. 1984), this provides the basic information needed. .

A fit to this data over the whole coordinate space (i.e.
including rqy and r, as well as 21, fz and R) could be
attempted by assuming a spitablé model for the potential
(Raich et al. 1976). This kind of approach has produced
satisfactory results for the HZ—CO'system, even though
only the potential for equilibrium monomer bond lengths
was available (Poulsen 1982).

Quélitative checké on any such éomplete HZ—HZ vibrotor
potential could be performed in é number of ways. Ree
and Bender (1979) have reported CI and SCF calculations

of the r (1ﬁ3<§7<1.5 a.u.) dependence of the Hy - H2
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inferactioh for small intermolecuiar separations. ' .
(1.5¢R<5.0 a.u.), In addition, we know froﬁ meésurements
of Raman fréquency‘shifts'(May et al. 19615 that the
behaviour of the HZ;H2 interaction, with respect to
changes in the Hz‘boﬁd_lengths} is intermediate between
that ofAHe—‘»H2 and Ar—Hé. Detailed information on the

r dependence of the potentials fof these systems is
already availabie (Senff and Burton 1985, Schaefer and
Kohler 1985, Le Roy et al. 1982). Finally, we note

that some qualitative information on the r dependence

of the isotropic potential,'VOdO, may be deduced from

the unambiguously assigned Q,(0) spectrum df D,. This
yields thé energy separation.between the L states:

i—O, 2-1, 3-2 and 4-3 (see Table 5.4). A simultaneous
least squares fit to the bound states calculated for
two.potentia1$5 V000 (Vy = 1,.V2 = 0) and VOOO (Vy =V, =0,
could be performed. A wide range of isotropic model
potentials is available (Maitland et al. 1981). However,
since we can only have a maximum of 4'adjustable para-
meters we would be restricted,for the sake of argument,

' to using two Lennard-Jones type potentials. Initial
guesses for the four parameters could be obtained by

a fit to the ab initio M80.potential.

7.5 The Hz'_ CO dimer

"A most obvious area for future work is in the study
of different molecular dimers. HZ—CO is an astrophysically
significant system amenable both to calculations and

experiment. Large differences exist between the available
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ab initio potentials ( e.g. Flower et al. 1979, Poulsen

1982, van Hemert 1983 and Schinke et al. 1984). This

highlights the difficulties in electronic structure

calculations, which lie far behind the methods for nuclear

dynamics from the point of view of accuracy. Differences
~ between the HZ—CO potentials will allow some discrimination
~even with the low resolution gas cell absorption measure-

ments that.have been made to date. Kudian et al. (1967)

have noted the similarity of the Hp-CO and'Hz—N2 spectra.
~Measﬁrements of the latter were subsequently repeated

at improved resolution, yielding evidence for 7 or 8

end-over-end rotational bound states (McKellar and Welsh

i971). The situation should improve with the molecular

beam measurements currently being made by N. Halberstadt

and Ph. Brechignac.

The rotational constant of CO (1.9cm—1) is thirty

times smaller than>that of Hy. The.Hz—CO potential

is also more anisotropic than that of Hy-H,. The.HZ—

CO dimer is thus by far'the more strongly coupled of

the two. It will be interesting to see how the methods

used in this thesis‘will fare with this heavier system.

The relative imporfange,of the potential anisotropy

makes it worthwhile tb‘bonsider using the centrifugal

decoupling (CD) appfoximation. Though the reverse is

trﬁe, it.does not follow that the success of the CD

approximation in scattering calculations (e.g. Schinke

et al. 1984) will lead to it being valid for bound states.

" A theoretical study of the H,-CO dimer should provide
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an opportunity to implement many of the other alternative
methods, and improvements to the existing ones, discussed

in this chapter.
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