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ABSTRACT 

The aim of this thesis is to calculate the bound state 

energies of molecular dimers~ The problem is formulated 

for a system cbnsisting of any two 
1L diatomic molecul~s, 

treated as rigid rotors. Simplifications which arise from 

symmetry ~onsiderations are fully discussed. The de 

Vogelaere and R-matrix prop~gator algorithms have been used 

to solve the resulting ~ystems of coupled ~econd order 

differential ~quations. Their numeri~al convergence prop­

erties are compared in test calculations on the Ar-HCl system. 

The above methods are used to calculate the bound state 

energies of H2-H2 , using four separate ab initio potentials. 

The cr·potential of Meyer, Schaefer and Liu (designated "M80") 

is found to give the best agreement with spectroscopic 

measurements, though a small shift in the position of the 

repulsive wall is indicated. The M80 potential is then used 

in the remai~ing calculations; these include the evaluation 

of the energies of resonances and bound states lying 

above the dissociation limit of the dimer, corresponding to 

rotationally excited H2 . The results of these calculations 

are used to assess the validity of approximations made in 

the proposed identification of H2-H2 features in the far 

infrared spectra of the Jovian atmosphere. 

The Born-Oppenheimer approximation permits the use of 

the M80 potential to calculate the bound states and res­

onances of D2-D2 . That some of these resonances have dual 

Feshbach/shape character is noted. The dimer structure, 

accompanying the observed near infrared s1 (0) and Q1 (0) 

+ S
0

(0) spectra in ortho-deuterium, is modelled by treating 

the two D2 molecules as distinguishable rigid rotors. We 

conclude that. the experiments provide evidence both for 

rotational splitting of the levels and for internal 

rotational predissociation. Alternative line assignments 

to those hitherto made are also suggested. 

We end with a general discussion in which suggestions 

-for future work are made. 
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CHAPTER ONE 

INTRODUCTION 
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.1.1 Motivation 

The complementarity of studies of low energy scattering 

of ~lectrons, e-, on positive ions, xm+, and of the 

electronic structure of the corresponding bound state 

(m-1)+ · f system, X , has been recognised or many years. 
. . 

Very sim~lar numerical techniques may be applied to 

both the bound state and scattering problems (e.g. Seaton 

and Wilson 1972, Seaton 1974). By following this approach 

information derived from spe~troscopic measurements 

(m-1)+ on X may be used to obtain accurate values of 

the cross-sections for the ex~itation process 

+ + e ( 1.1) 

near threshold. The results of these calculations find 

important applications in the studies of many types 

of astrophysical plasmas. 

In the dense molecular clouds of interstellar space, 

rotational excitation of molecules, M, occurs principally 

in .collisions with molecular hydrogen, 

M ( j) + Hz.. ( 1. 2) 

at energies close to the rotational excitation thresholds. 

The corresponding cross-sections are required to interpret 

the microwave spectra of the molecular clo~ds. 

A prerequisite in calculations of cross-sections 

for processes of type (1.2) is a knowledge of the relevant 

M-H2 electronic potential energy ?urfaces (e.g. Green 

and Thaddeus 1976, Green et al. 1978). The M-H 2 interaction 

is, for non-reactive systems, strongly repulsive at 
....... ~-P,v.· 

;;:1 ~ 

~· :A. :r-o 
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short range, where the electron charge distributions 

of M and H2 overlap 1 ~nd weakly attractive at long range, 

owing to the dispersion (van der Waals) interaction. 

The other contributions at'long range are the interaction 

between the permanent electrostatic multipole moments 

of the molecules, and that between the permanent and 

induced multipoles. The latter interaction, called 

the inductton energy, is generally unimportant in neutral 

systems. The long range permanent electrostatic energy 

is dominated by the dispersion energy except in highly 

polar systems such as H20 - H20. At some intermediate 

distance, there is a potential minimum, where the attractive 

and repulsive forces cancel. The values of rotational . 
excitation cross-sections, at low collision energies, 

are particularly sensitive to the form of the M-H2 inter­

action in the region of this potentia~ well. 

If the potential well is sufficiently deep, it 

can support bound states of the M-H2 system. It follows. 

that spectroscopy of the molecular dimer, M-H 2 , can 

yield valuable information on the M-H2 interaction in 

the region of the well. It is this part of the interaction 

which is the most difficult to determine theoretically; 

spectroscopy should thus also be helpful in assessing 

the relative merits of different approximations used 

in any such potential calculations. Given the potential, 

the bound state eigenenergies may be calculated and 

the resulting transition frequencies compared with experi-

ment. These calculations may be carried out using numerical 
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techniques similar to those empl~yed in studies of rota~ 

tional excitation. Le Roy and Carley (1980) have reviewed 

calculations on atom-diatom systems. The problem of 

a dimer consisting of two diatoms is receiving growing 

attention, and the work reported in this thesis will 

reflect that trend. 

A more direct motivation for the study of van der 

Waals molecules is the possibility of observing their 

spectra in the interstellar medium. Of the sixty or 

so molecular species observed to date, some, such as 

H2co and HCO, have low thermochemical stability (Dalgarno 

1975; MilLt;(:r and Williams 1985). Most of these molecules 

are obser~ed in the cold dark clouds of interstellar 

gas and their higher density cores. Storey and Cheung 

(1978) have cairied out a search, at radio wavelengths, 

for evidence of the HCN - HCN dimer in several interstellar 

clouds. No such evidence was found, and they were able 

to place an upper limit of around 1% for the abundance 

of the dimer relative to the monomer. A similar conclusion 

was teached by:Vanden Bout et al. (1979) regarding the 

concentration of the CO -CO dimer. They searched 11 

interstellar clouds at the frequency 1.458 GHz (0.0486 cm- 1 ), 

whith is an observed laboratory transition of the dimer. 

V~nden Bout et al. also suggested that a similar search 

for the H2 - CO dimer could well be more fruitful; however, 

they were prevent~d from carrying out such a search 

because of difficulties in obtaining either parallel 

laboratory radio-frequency measurements or accurate 
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theoretical results. 

The preponderance of Hz in the interstellar medium 

makes the associated dimer another candidate, though 

. 1 
the binding energy of Hz - Hz is only about Z.4 em-

~~ had been suggested that collision induced dipole 

radiation arising from the radiative association process 

+ -> ~ - H 
2. ~ 

+ ( 1. 3) 

cotild be important in interstellar Hydrogen gas (Schaefer 

198Za, Schaefer and Meyer 1983). Indeed it was claimed 

that radiation tram this process could account for an 

observed excess in the cosmic microwave background between 
. 1 

14 and ZO em- (Gush 1981). However, it was subsequently 

realised (e.g. Frommhold et al. 1985, and references 

the~ein) that the original calculations predicted a 

hugely inflated dimer formation rate by the process 

(1.3). Recently, a more plausible explanation for the 

observations of Gush (1981) has emerged: de Bernarais et 

~1. (1985) have proposed the existence of far infrared 

emission from extragalactic dust, heated by a near 

infrared cosmological background. 

Humphries and Horton (1977) have. argued that structure 

accompanying Lyman absorpt~on lines of Hz may be due 

to the presence of the H4 dimer in diffuse interstellar 

clouds. Even allowing for some enhancement of the formation 

process (1.3), due to the presence in these clouds of 

rotationally excited Hz, it seems unlikely that sufficiently 

high concentrations of the dimer could exist. Spitzer 
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and Morton (1976) have attributed this structure, observed 

by the Copernicus satellite, to a Doppler effect resulting 

from components of the interstellar clouds moving with 

different velocities. 

Convincing·astronomical evidence of H4 dimers has, 

however, come from another source :· the far infrared 

observations by the Voyager spacecraft of the atmospheres 

of Jupiter ~nd Saturn {Hanel et al. 1979, Gautier et 

al. 1983). These observations, which will be discussed 

else~here in this thesis, provide information on the 

6rtho-H2 to para-H2 ratio as well as on the general 

physical conditions in these planetary atmospheres. 

The questions of whether van der Waals molecules exist 

in measurable quantities in the interstellar ·medium, 

and if observations of their spectra could yield useful 

information on physical conditions there, remain open. 

1.2 Potential energy surfaces 

1.2.1 The ab initio calculation of potential energy 

surfaces. Implicit in the above reference to potential 

energy surfaces is the assumption of the Born-Oppenheimer 

approximation. This permits a separation of the motions 

of the rapidly moving electrons from those of the nuclei 

(e.g. Green 1974, Gianturco 1980). Most of this thesis 

will be concerned with the nuclear dynamics; here we 

briefly outline the solution of the electronic Schroedinger 

equation, the eigenenergies of which provide the potential 

surfaces on which the nuclei move. A large number of 

excellent revi~ws of this subject exist; the author 



6 

found the short artic~s by Green (1974), Balint-Kurti 

(1975a) and Pople (1982) particularly helpful. 

If the nuclei, ~ , are fixed at a geometry, denoted by 

the coordinates Q~ , the total Hamiltonian of the system 

reduces to an effective electronic Hamiltonian. ·The terms 

in this are the kinetic energy of the. electrons, i, and 

the Coulomb interactions, involving the electrons and nuclei: 

For a system consisting 6f· two 

closed shell molecules, spin-orbit coupling terms may be 

neglected. The Schroedinger equation·for the·motion of 

the ~lectrons in a system of two interacting molecules, 

A and B, is written as 

To map out a potential energy surface, ( 1. 4) must be s·ol ved 

for several values of the nuclear coordinates, Q o< The 

interaction energy is found by subtracting the electronic 

energies of the {solated molecules, EA and E8 , from the 

total electronic energy; EAB. Great care must be taken to 

reduce cancellation errors in this procedure. 

This cancellation problem can be avoided, for large 

intermolecular separations, by calculating the (small) 

interaction ene~gy directly using perturbation theory 

(Buckingham 1967, Leavitt 1980). The perturbation Hamiltonian, 

VAB is given by 

HAB 
VAS 

( 1. 5) 

where HA and H8 are the(el~ctronic) Hamiltonians of the 

two isolated molecules, A and B. If the wavefunctions of 

the isolated, ground state, molecules are known, we can 

write down the,first. order contribution to the interaction 

energy: 
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( 1. 6) 

The zeroth order wavefunction is just a product of those 

for the isolated systems, reflecting an assumption that 

the charge clouds do not overlap. Alternatively, a 

multipole expansion of VAB may be performed, leading 

to an expression for the long~range first-order inter­

action in terms of the permanent multipoles of A and 

.~ (Gray 1968, M~itland et al. 1981). These may be obtained 

either exp~rimentally or by quantum mechanical calculations 

on the individual molecules. We have thus obtained 

the permanent electrostatic energy contribution to the 

long range interaction. 

The induction and dispersion terms are found by 

going to second order, the Rayleigh-Schroedinger expression 

being given by 

( 1. 7) 

A. is the ith excited state of molecule A with eigenenergy 
~ 

E.A. The ground state terms and thos~ applying to molecule 
~ 

B are similarly defined. The dominant dispersion contri­

bution, which {s due to the correlation of charge density 

fluctuations in A and B, is given by the sum of the 

terms in (1.7) excluding those for which either i or 

j corresponds to .a .ground electronic state (o). As 

in the electrostatic case, an explicit form ~or the 

dispersion energy can be written, as a power series 

in 1/R, in terms of the properties of A and B~ By way 

of example, the leading term in.the dispersion interaction 

between two rare gas atoms is given by (Buckingham 1967) 



B. 

( 1. 8) 

where U and of... are respectively the ionisation potentials 

and the polarisabilities of the interacting atoms, sep-

arated by a distance R. Thi~ provides the theoretical 

basis for the attractive contribution to the well known 

Lennard-Janes 6-12 potential: 

V(R) R-12.. c . ( 1. 9) 

For a system of two interacting molecules, the coefficient 

d will be geometry dependent. No justification for 

the R- 12 behaviour exists, other than the empirical 

presence of a strong short-range repulsive barrier. 

The short-range forces arise from the overlapping 

charge distributions of the interacting molecules. 

As alluded to in equation (1.4), the system can be treated 

as a single supermolecule using the same techniques 

as for many-electron atoms and molecules (H.F. Schaefer 

1972). The inteia~t~on energy is given by the following 

expression 

where the integration~ are perfoimed over the coordinates 

of all electrons. The three terms on the right hand 

side of (1.10} should all be calculated in the same 

way so that any errors approximately cancel. Consider 

the first term, which is the energy, EAB, of the super-

molecule in its ground electronic state. We know from 
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the variational theorem that a normalised trial wavefunction 

may be used to provide an upper limit to this: 

In the Hartree-Fock ~HF) method, the compound trial 

wavefunction is taken to be a single Slater determinant 

of molecular spin-orbitals. For a closed shell super­

molecule with N electrons, this is written · 

¢, ( \l.J t 
¢, ( ,_2.)~ 

¢l. ( t~Yf' 

¢,(~)t 

¢,(t,;)~ 

¢" (i-N )'t' 

1: 
The (N!)- 2 factor is a normalisation factor arising 

(1.12) 

from the fact that the Slater determinant is an antisymmetric 

combination of all possible (N!) p~rmutations of simple 

products of N spin-orbitals. The Pauli exclusion principle 

is automatically satisfied by such a determinantal wave-

function. The arrows denote the spin functions of the 

electrons. _The (space) orbitals 0 are defined as functions 

of the coordinates of a single electron. These molecular 

orbitals are varied so as to minimise the energy, in 

keeping with the variational principle (1.11). The 

condition that this energy be a minimum leads to the 

Hartree-Fock equations, which each of the individual 

molecular orbit~ls satisfy: 
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(1.13) 

Thes~ equations describe the motion of a single 

electron, assigned to the orbital ¢i, moving in the 

averaged field of the other electrons. The Fock Hamiltonian, 

F, is itself dependent on the orbitals themselves due 

to the. presence of a direct Coulomb interaction and 

an exchange interaction; the latter term arising from 
Gl-1\\:~ 

the /symmetry of the Hartree-Fock wavefunction. The 
. . 

HF equations (1.13) must thus be solved ite~atively. 

Starting with ·an educated guess for all of the molecular 

orbitals ·¢i, F is evaluated. Equation (1.13) is then 

used to calculate a new set of ¢i, which in turn are 

used to calculate an improved F. This cycle is repeated 

until F does not change to within an acceptable tolerance. 

The orbitals thus determined can then be substituted 

in.(1.12) and thence in (1.11) to yield the self-consistent 

field (SCF) energy, a term which is self-explanatory 

given the_above procedure. _Although there is no universally 

recognised convention, the_term "Hartree-Fock energy" 

is usually reserved for the exact solution of the HF 

equations. 

It is not practicable to obtain a numerical solution 

of the HF equations for systems consisti~g of more than 

two atoms. They may, however, be solved by expressing 

the molecular orbitals as a linear combination of atomic 

orbitals (LCAO) centred on each of the nuclei (e.g. 

Bunker 1979a): 
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(1.14) 

The coefficients, Cij' of this expansion are varied 

so as to find the best sol~tions of (1.13). The ac~ur~cy 

of the final results will clearly depend on the atomic 

orbital basis. set used. Each atomic orbital, 1\j, is 

generally ~epresented by a number of either Slater 

type functions or the computationally convenient, though 

less realistic, Gaussian type. The basis set "quality" 

is determined by four factors : the type of functions, 

the level of optimisation of the parameters of these 

functions, the number of functions used to describe 

each atomic orbital, and the number of polarisation 

functions per orbital. Polarisation functions are functions 

with higher quantum numbers than the occupied atomic 

orbitals. A more systematic approach to assessing the 

b~sis set quality has been investig~ted by Burton et 

al. (1982). 

We note at this point that an incomplete basis 

set will lead to a contribution to the interaction energy 

known as the basis set superposition error (e.g. van 

der Avoird et al. 1980). This is purely an artefact 

of the calculation. The energy of the supermolecule 

i~ artificially lowered (though it is still above the 

true value) due to the admixture of bas{s functions 

c~ntred on one molecule with tho~e of the other. A 

concurrent low~ring is absent from the energies. of the 

isolated molecules, calculated with the same atomic 



orbital basis set. The result is to make V. t too low, 1n 

thus over~stimating the well depth. This problem can 

be circumvented by introducing a similar degree of basis 

flexibility in the calculation of the isolated molecule 

energies. The energy of each isolated molecule is cal-

. culated,.for every point on the potential energy surface, 

with ~a-called ghost orbitals placed at the position 

occupied by the other molecule in· the corresponding 

supermolecule calculation . The basi~ set superposition 

errors, which are then present in all three terms on 

the right hand side of (1.10}, hopefully cancel. This 

is known as the function counterpoise method (Boys and 

Bernardi 1970, Wells and Wilson 1983). 

The SCF method is reliable for computing the short 

range part of the potential as it accurately describes 

the dominant Coulomb and exchange interactions associated 

with the overlapping charge clouds~. Unfortunately, 

the situation is rather different for intermediate inter-

molecular distan.ces. This is because a single Slater 

determinant cannot account for th~ simultaneous correlation 

of two (or more) electrons. The dispersion energy, 

which is generally relatively important at int~r~ediate 

range, is the intermolecular contribution to the correlation 

energy. The correlation energy is defined in terms 

of the exact solution of (1.4), EAB, and the HF energy, 

HF · E : 

· AB 
E 

HF 
E 

(1.15) 
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This definition differs from that of Green (1974) only 

by a minus sign. Some kind of.post HF procedure is 

necessary.to obtain the inter~ction energy accurately 

in the well. region. · 

One way to improve on the HF or SCF results is 

to take a linear combination of Slater determinants, 

differing in the choice of molecular orbitals which 

the electrons are assumed to occupy. Each Slater deter-

minant therefore, corresponds to a different electronic 

configuration. If, for the sake of argument, we define 

the ground state HF·wavefunction (1.12) as our reference 

(or root) configuration, then we can form all single 

excitations (or substitutions) by replacing one occupied 

molecular orbital with an unoccupied one. The maximum 

number of such excitations that we can make will be 

determined by the available atomic orbital basis. Higher 

order excitations are similarly defined. The resulting 

trial wavefunction to use in the variational procedure 

is known as a configuration·interaction (CI) wavefunction: 

(1.16) 

The. variational parameters ak which minimise the energy 

are obtained by diagonalising the matrix of the Hamiltonian 

HAB in the basis of the functions '\f'k HF. This approach, 

which is known as the CI method, yields in principle 

an exact solution of (1.4) providing that a large enough 

number of Slater determinants are used in the expansion 

( L 16). 
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As indicated in (1.16), we have used HF. molecular 

orbitals to construct the Slater determinants. A much 

better expansion would result if the so-called natural 

orbitals (L8wdin 1955) were used instead. Unfortunately, 

to determine these requires advance knowledge of the 

exact wavefunction. Approximate natural orbitals may, 

however, be constructed either iteratively (Bender and 

Davidson 1966) or by using pseudonatural orbitals (PNO's) 

(Edmiston and Krauss 1966). The PNO's are determined 

fo~ selected electron pairs moving in the HF field of 

the remaining electrons; the method utilises the fact 

that approximate natural orbitals can be determined 

relatively straightforwardly for the simple two electron 

problem. By using such orbitals, the number of Slater 

determinants in the CI expansion can be reduced, typically 

by a factor of ten, without compromising the accuracy 

of the final results. 

· The CI method can be used for all values of the 

intermolecular distance, though it does require a large 

number of configur~tions even if approximate natural 

orbitals are used. The consequential computa~ional 

expense of th~ CI method has encouraged the development 

of approximate methods for treating electron correlation. 

Pair theories are based on estimating the energy arising 

f~o~ the correlated ~otion of two electrons at a time. 

The resulting pair correlation energies may then be 

either simply added, or coupling terms can be introduced 

(H.F. Schaefer 1972, Kutzelnigg 1977a). We may expect 

this to be a reasonable approach both because the HamiltoniaD 
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in (1.4) contains only one and two electron operators, 

and becatise the Pauli exclusion principle prevents more 

than two electrons from occupying the same point in 

space. 

Ab initio methods for calculating points on a potential 

energy surface form a large_and active field of research. 

Only some 6f the general ideas have been discussed here. 

The potenti~l may be empirically improved by comparing 

experimental observations wi~h calculations of the nuclear 

dynamics on which they depend. The relevant experimental 

observables (Maitlan~ et al. 1981) include the non-ideal 

behaviour and transport properties of gases, molecular 

beam. scattering measurements and, of course, the spectro­

scopy of van der Waals molecules. 

1.2.2 Fitting potential energy surfaces. In order 

to carry out dynamical calculations on an ab initio 

potential surface, it is necessary to fit the computed 

points to a suitable functional form. Analytic functions 

for describing the angular dependence of the interaction 

between two rigid di~toms will be presented in the following 

chapter. He~e we shall discuss the problem in general 

terms. 

The interaction potential for a system of any two 

rigid molecules is a function of the separation of their 

centres of mass, R, and of their relative orientation. 

The latter is defined by a number of angles (three are 

needed for a diatom-diatom. system), collectively denoted 

by Jl~ . For a given radial sepa~ation, the angular 
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dependence can be expanded in terms of a convenient 

set· of functions fa~ 

::: (1.17) 

If the index -~has N values, then a least squares fit 

to an n term ~~pansion (each term denoted by the index 

a) may be attempted, providing of course, that N ~ n. 

Thus, at each value of R we minimise the quantity 

( 1. 18) 

A necessary condition for D to be a minimum is that, 

for all b, ~D/'d Vb(R) = 0. This condition leads to 

a system of linear equations, which may be solved to 

obtain. the potential expansion coefficients, Va(R) (Alexander 

and De Pri~to -1976): 

(1.19) 

If (1.19) can be solved for a number of terms, n, equal 

to the number of geometries, N, then the latter may 

be said to have been "optimally chosen". In this case, 

the solution of (1.19) is equivalent to solving (1.17) 

for the Va(R) by direct inversion of the matrix fa(JL~). 

We note, in passing, that for large systems of 

such equations, computer routines for matrix inversion 

tend to be numerically less stable than those which 

solve the linear equations directly. 
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If th~ angular fDnctions, f , form a complete ortho-. a 

normal set, then the radial expansion coefficients may 

also be obtained by numerical quadrature over all angles: 

'{ (R ') . (1.20) 

The orily disadvantage of this alternative method, employed 

by Berns and van der Avoird (1980) and Tennyson (1984), is 

that the ab initio potential is needed at a large number 

of .geometries. Such large numbers (typically 100) of 

points are often unavailable. 

Once the potential expansion coefficients have 

be~n .obtained on a radial grid, using either of the 

above procedures, they may be fitted using some form 

of polynomial interpolation. Green (1977) has discussed 

the relative merits of cubic spline and 5th order Lagrange 

interpolation in t~is context. 

1.3 van der Waals ~o1ecules 

1.3.1 Experimental .The spectroscopy of van der 

Waals molecules forms a substantial part of this thesis. 

Nevertheless, it is pertinent to make a few general 

comments here. The molecular dimers discussed in later 

chapters hav~ been observed either in gas cell absorption 

or molecular beam experiments. The former method involves 

conventional spectroscopy of a bulk sample of gas con­

taining the constituent molecules of the dimer in question 

(e.g. Blaney and Ewing 1976). 

Dimer transitions are observed as fine structure 

a~companying absorption of infrared radiation due, typically 
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to vibrational .excitation of one of the monomers. The 

gas sample is cooled to enhance the dimer concentration. 

The dimers are formed mainly in 3-body collisions, a 

mechanism which is insignificant in the rarefied conditions 
. . 

of the interstellar medium. In order to reduce the 

component 6f the line widths due to pressure broadening, 

low gas densities are nevertheless required. This 

necessitates a long optical path length, generally achieved 

by multiple traversal of the sample using a system of 

mirrors. Typical experimental configurations have been 

illustrated by Watanabe and Welsh (1965) and McKellar 

and Welsh (1972). 

Molecular beam spectroscopy is a more recent development, 

using sup~rsonic nozzles to produce a much higher con-

centration of dimers than is possible with the more 

conventional approach above. A gas at high pressure 

is· allowed to expand, through a nozzle, into a vacuum. 

The resulting adiabatic expansion cools the gas, producing 

a beam of molecules with a very narrow spread of velocities. 

This· can corresporid to an effective translational temperature 

which is often less than 1K (Howard 1981) and sometimes 

as low as O.OSK (Levy 1981). As the gas emerges from 

the nozzle, 3-body collisions produce van der Waals 

molecules which are stable with respect to (the less 

frequent) collisions further downstream. Highly excited 

rotational and ~ibrational states of the monomers are 

depopulated at the low ambient temperatures leading 

to a simplification of the observed spectrum. 



19 

A variety of spectroscopic techniques may be used 

in conjunction with molecular beams. Perhaps the most 

important to date has been molecular beam electric resonance 

(MBER) spectroscopy (Klemperer 1977, Howard 1981). 

Initially, beam molecules, in a particular quantum state, 

pass through two fQcussing fields onto the entrance 

slit of a mass spectrometer detector. Microwave or 

radiofrequency radiation is then applied to the beam 

between the two focussing fields. Absorption of this 

radiation changes the quantum state, and hence the dipole 

moment, of the molecule concerned. This leads to a 

concurrent decrease in beam intensity arriving at the 

mass spectrometer. 

The complementary technique of molecular beam magnetic 

resonance spectroscopy has been used in radiofrequency 

studies of rare gas~H2 (Waaijer and Reuss 1981) and 

H2 - H2 (Verberne and Reuss 1980) complexes. MBER 

spectroscopy cannot be used in such instances as H2 

does not possess an ele~tric dipole moment. 

Other spectroscopic techniques which have been 

used with molecular beams include laser induced fluorescence 

and bolometric spectroscopy (LeRoy and Carley 1980). 

In the former, the beam molecules are electronically 

excited by a continuous wave dye laser; photodetectors 

monitor the resulting fluorescence. In the bolometric 

method, one of the constituent monomers of the dimer 

is excited using an infrared laser. The energy absorbed 

is converted ·to heat as the beam strikes the bolometer. 
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Should the dimer predissociate during transit (by trans­

ferring the monomer excitation energy to the van der 

Waals bond), the fragments are scattered out of the 

beam and a "negative signal" results. 

1.3.2 Classification. For the interpretation 

and assignment of experimental lines, a system of classifying 

van der Waals molecules is desirable. Ewing (1976) 

has devised a classif{cation scheme for van der Waals 

co~plexes of the type x2 - Y. The scheme, which can 

be extended to more complex systems, ·is based on how 

strongly the angle dependent·part of the potential couples 

the rotational states of the diatom. 

We begin by defining a quantity EV which is an 

"average effective anisotropy" (LeRoy and Carley 1980). 

A reasonable way of obtaining this would be to fix the 

intermolecular separation at some suitable average value, 

and then to sum the expansion coefficients Va(R) corresponding 

to non-isotropic ·terms fa ( .il-o() (see equation ( 1.17) 

and also equation (2.21) in the following chapter). 

Weakly coupled complexes are defined as those having 

t;.V. <<.6E(j), where~E(j) represents the rotational 

level spacing of the isolated diatom. In strongly coupled 

dimers, this spacing is of the same magnitude, or somewhat 

smalle~ than the average effective anisotropy. The 

rotor states of the dimer will then be strongly mixed, 

and j is not even approximately a good quantum number 

as it ~s in the weak coupling case. Ashton et al. (1983) 

have noted that, in the Ar - HCt dimer, there is a 
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gradual transition from strong to weak coupling for 

higher bound states. This is b~cause ~E(j).is larger 

for levels correlating with higher j. 

When 6Y >> ~E(j), a high potential barrier to 

intern~l rotation exists and the complex is said to 

be semi-rigid. ·These systems have a well defined structure~ 

and it is more appropriate to associate a bending vibration, 

rather than a rotation, with the (rigid) diatom. 

The structure of a variety of van der Waals molecules 

has been illustrated by Hobza and Zahradnik (1980). 

J. Tennyson has coined the term "floppy" to describe 

both van der Waals molecules in general, together with 

conventional (chemically bound) species undergoing large 

internal bending motion. This thesis deals with the 

former, though it should be borne in mind that similar 

techniques can be used to determine the bound state 

energies of the latter. 



CHAPTER TWO 

THEORY 
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2.1 Intrdduction 

In the previous chapter we showed how to solve the 

Schroedinger equation for the electronic energy. The 

result depends parametrically on the positions of the 

nuclei. The rest of this thesis is concerned with the 

solution of the equations·of motion of the nuclei moving 

on this electronic potential ~nergy surface. 

We shall work in a body-fixed frame of reference 

in which the intermolecular vector R, joining the centres 
"' 

of mass of the two diatoms (see Figure 2.1), is taken 

as th~ z axis. Its position relative to the space-fixed 

z axis is given by the Euler angles. C¢, ~,0). The 

third Euler angle is arbitrary and is set equal to 0. 

A more formal definition of the body-fixed frame has 

been given by Tennyson and Sutcliffe (1982). We shall 

see that the problem reduces to a set of coupled second 

order differential equations. Initially the coupled 

equations and matrix elements for a system of two dist-

I~ inguishable heteronuclear ~ diatomic molecules, 

treated as rigid rotors, will be given. The equivalence 

of the space-fixed and body-fixed basis sets and of the 

respective representations of the intermolecular 

potential will be demonstrated. Starting from this 

general system, we shall use any additional symmetries 

to reduce the number of basis states in the expansion 

of the total wave function and hence the numbe~ of coupled 

equa.tions which must be solved. The cases where one 
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:x..' 

Figure·2.1 

Definition of the reference frames used in this thesis. 

z' is the space-fixed and z the body-fixed z axis. The 

orientations of the two diatoms, referred to the body-fixed 
A A 

frame, are E1 (~1 ,~ 1 ) and Ez = (&2 ,¢2 ). £1 is the intra-

molecular vector joining the nuclei 2 and 1. A rotation 

through the Euler angles (¢,&,0) takes the space-fixed 

into the body-fixed frame. 

The nuclei are numbered according to the convention of 

Bunker (1979b) (see section 2.6). 
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or both molecules are homonuclear and where the molecules 

are identical are discussed. A number of workers have 

effected such reductions in basis dimensionality for 

specific systems by using the appropriate molecular 

symmetry group (e.g. Dyke et al. 1972, Tennyson and 

van der Avoird 1982a, 1984a). We shail illustrate 

the connection between this and the present approach, 

which is more in keeping with that adopted by Alexander 

and De Pristo (1977) and Heil et al. (1978). 

We shall ignore nuclear spin, but note that this 

determines the multiplicity of the energy states and 

can, in the case of identical molecules, lead to the 

exclusion of some such states through considerations 

of the symmetry of the entire system. Inclusion of 

nuclea~ spin in the calculations would lead to a hyperfine 

splitting of the rovibrational energy levels of the 

dimer (Verberne and Reuss 1981). Calculations involving 

molecules with nonvanishing electronic spin and orbital 

angular momentum along the intramolecular axis (i.e. 
I 

not L: ) are more complex, introducing further angular 

momenta couplings. To date, calculations of this type, 

whether scattering or bound state, appear to have been 

restricted to systems comprising a diatom and a structureless 

particle. The study by Tennyson and van der Avoird 

(1984b) of the He-0 2 van der Waals molecule, with oxygen 

. . d 3~ . 1 ~n ~ts groun LState, ~san examp e. 
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2.2 Two distinguishable diatomic molecules 

The Schroedinger equation for the system in Figure 

2.1 is written as 

0 ( 2 .1) 

In an inertial frame moving with the centre of mass of 

.the complex, the Hamiltonian is, in atomic units, 

+ V(" . A ) :;-.);t,_)l? ( 2. 2) 

In equation (2.2) h 1 and h 2 are the rotational Hamiltonians 

of the two isolated rigid rotors, and the kinetic energy 

operator can be expressed.in the following form: 

-' \Z2. ifR + ,.tz. 
( 2. 3) 

1, · · is the angular momentum operator associated with 
IV . 

the intermolecular vector R. ~ is the reduced mass 

of the system of four nuclei: 

( 2. 4) 

We start by expanding /'\]! in a rotational basis: 

~(J"Mj~;. R) = \ -lfF(j,j~.j,l..o_:rMjR)~(j,Jlj,lfl-:TMit>5JE) 
"''r.t)--- .~ 

J•jl.jil.n. . ( 2. 5) 



Here J is the total angular momentum with a projection, 

M, on the space-fixed z axis: j 12 is the coupled. value 

of the angular momenta, j 1 and j 2, of the two rotors, 

with a projection ..fL on the body-fixed z axis. The 

rotational basis function, which defines a channel, 

is given by (cf. van der Avoi rd 1982) 

( 2. 6) 

where 

( 2. 7) 

and 

( 2. 8) 

The function ~,..n..Jf,)· in equation (2.7) is a spherical 

harmonic, satisfying the eigenvalue equation 

( 2. 9) 

~1 is the reduced mass of the nuclei in the isolated 

diatom, and r 1 is a constant since we assume the rigid 

rdtor approximation to be valid (see Section 2.5). 

B1 is the rotational constant of diatom 1. 
cjJja. J·J. 

.n., .n.. ~ ..fl.. 
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J' 
is a Clebsch-Gordan coefficient .. In equation (2.8), NnA 
is a normalis~d symmetric top eigenfunction (Rose 1957) 

'f* . 
and D is a rotation matrix element. Note in equation 

1"\.ll.. 

(2.9) that the angular momentum operator behaves 

in the same way as it would in a space-fixed frame (Brocks 

et al., 1983). The form of the basis functions (2.6) 

could be justified by noting that they are eigenfunctions 

of the body-fixed Hamiltonian with all coupling terms 

removed, as Le Roi and Carley (1980) have done in the 

atom-diatom case. Had we adopted a space-fixed reference 

frame then we would have written the rotational basis 

functions in the usual way (see e.g. Alexander and De 

=L_ 
(2.10) 

where- 1 is the end-over~end angular momentum of the 

whole complex. The angular momentum projections now 

refer, of course~ to the space-fixed z axis. The wave-

functions, (2.6) and (2.10), are related through the 

(2.11) 

The effect of the parity operator, P, is to invert the 
A II 1\ i-t A; ") 

space-fixed coordinates in the origin(!;) f~J~ --" -,.. .)-f1.J- ~ ) 
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leading to the result that the parity of the space-fixed 

functions (2.10) is 

(2.12) 

Acting on the right hand side of equation (2.11) with 

P we find that the rotational functions (2.6) are not 

eigenfunctions of parity, transforming thus: 
,. ,. " ) 

p "j (j.}.jll..!). J" M I!IJ tl.) ~ 

'J"'+ j12. + jr + jl. /\.1 (· · · (-f j- R ) = (-) · J jiJl.Ju.-.n. 'J"I1 ..,1),..:1.) .... 
(2.13) 

Note that, as we only deal with integer angular momenta, 

we can set 

-:r 
(-) (- )J ( 2. 14) 

Functions with well defined parity, E are constructed 

(2.15) 

where These functions vanish when ../i: == o 

and E. (-):r+ju.+j,-t-j.t = -1. The functions (2.10) and (2.15) 

form an equivalent basis, the unitary transformation 

between them following directly from (2.11) and (2.15) 

(Launay 1977): 
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Expandin~ the total wavefunction ~ in the set 

of basis functions (2.15) we have 

Using 

(hi + J,l. 

(2.18) 

from which we may derive an infinite set of coupled 

second-order.differential equations (Arthurs and Dalgarno 

1960) for the radial functions, F(R): 

£ F(j.j1,jla..:ti J""M£1R) 
J Rl. 

( 2 • 1 9 ) 

=L . . , •/ ., _, 
J• ja. J•:a. fl. 

The close-coupling method involves truncating the above 

set of equations by restricting the values of ./ and J1 
.I 

and allowing the values of 
.I 

and -/ permitted J2, J12 ..fl-. 

by the good quantum numbers (J and E ) . The equations 

are independent of M. The coupling matrix, W, is 
. ~ 

W(j.jl.jll.-A;jUfll..A'~M~IR) ==f ·IS· ·I~ .. ·Is ') 
J•J• J:a.Jl. J•a.jll. .ii..A' "'-/" 

X [ B I j I (j' I + I) + B .i. j a.·(j ~ + I) - E J ( 2. 20) 

+ ~ (j.j,_j,l'J\: ;TM£ 1-f"l K j~ j:1,.A! "J"M£).;. f.- R 
R -•;~l.J~ 

. M J V(.; " R) I '/ ·/ ·I / + 2r<_j.j:a.J•a...:n:.. -:r £ -•Jt,_) J•Jt J•l. .Ji; ;rr·H:); ; R 
. - '..J"' 'l...).._. 
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A suitable expansion for 'the intermoletular potential 

must now be chosen to make possible the evaluation of 

. the V-matrix el~ments in equation (2.20). Gioumousis 

?nd Curtiss (1961) proposed the following .(body-fixed) 

expansion: 

(2.21) 

which is invariant under rotations about the z axis. 

The condition that the potential must be invariant under 

the parity operator implies that (Dyke et al. 1972) 

(2.22) 

Taking this inversion symmetry into account we may expand 

the potential in the following way: 

(2.23) 

where 

l (f-, f-J~411(~ ~(-f,)~a-;,-(~2.) +Y.t,-r(f,)~,_,v(h)) tl tl./' . - ) - j.}/ /, 1- I "' ') 

(2.24) 

x(1 -r ~or 1 

The index r is now restricted to the range o{~fmin 

(q1 ,q2 l, where the function min means "smallest argument". 

V (R) is the isotropic part of the potential. If 
000 

the electronic potential energy surface at a given R 
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is known for n carefully chosen orientations, V ( t, )~1.) R.).J 
we can use (2.23) to obtain a set of linear inhomogeneous 

algebraic equations for n potential expansion coefficients 

v,, t,.r ( R) . 

The intermolecular potential is frequently expanded 

in a space-fixed frame ( cf. Green 1977) thus: 

(2.25) 

where 

(2.26) 

As Flower et al. (1979) point out, the two representations 

of the potential are equivalent, related through the 

transformation 

(2.27) 

where 'l.• + '\,,_ + 'L•l..) is even. This restriction is a 

direct consequence of the invariance of the potential 

under the parity operator, and it also ensures that 

the intermolecular potential (2.23) is a real quantity 

(Green 1975). 

We are now in a position to give expressions for 

the matrix elements in equation (2.20). Using equation 

(2.23) and the normalisation properties of the symmetric 

top wavefunction (2.8) to perform the integration over 
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Using standard techniques of Racah algebra (Messiah 

X (j' ~· j() (jl. ,_,. J·~) 
ooo 0 oo (2.29) 

In equation (2.29), 

( 
J. ·v _j ~) 
0 0 () 

is a 3-j symbol, 
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is a 9-j symbol (Messiah 1962), and 

is a shorthand· for ( lJ1 t- I ) ( 2jl. + I The delta function, 

· ~_;;::a.1 , ensures diagonality of the V-matrix elements 

in the .JL index;. this is a consequence of the invariance 

of the potential under rotations about R. The summation ,...,. 

over !11• i~ such that ( t.• + t:a. + 1...•1 ) is even. Equation 

(2.29) is a special case of the expression given by 

Launay (1977), as can be shown by making use of the 

symmetry properti~s of the 6-j symbols that appear in 

the latter, and by noting the slightly different definition 

of J.: t•t1.r 
The ~1 

-matrix elements in equation (2.20) may 
"'"' 

be evaluated by setting 

(2.30) 

In the body.,...fixed frame the components of J do not obey 
""' 

the normal angular momentum commutation relations and 

Brocks et al. (1983), who study this in detail, call 

J a pseudo-angular momentum operator. This introduces 
""' 
a negative sign when the angular momentum ladder operator, 

J , acts on the body-fixed basis functions (2.15), 
+ 

leading to the following non-zero matrix elements (Launay 

19 76): 

< j I j ~ j ll. :0:. T t1 [ I ~ l. I j I jl. j ll. J;: T M [) 

( 2. 31) 
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In writing down (2.32) it has been assumed that any 

JL 0 basis function which vanishes has been excluded 

from the basis set. We note that in the body-fixed 

coordinate system the 
). . 

~ -matr~x elements are not 

diagonal, with coriolis terms (2.32) which can change 

the value of However, the potential is more 

naturally expressed in this frame, a fact exemplified 

by the diagonality of the matrix elements (2.29) in 

the index. The overall result is that, unlike 

the space-fixed case (Rabitz 1975), many of the elements 

of the body-fixed coupling matrix are identically zero; 

this may be exploited when solving the coupled equations 

(see Chapter 3). 

The differential equations (2.19) may now be integrated 

numerically subject to bound state (Chapter 3) or scattering 

(Chapter 5) boundary conditions. The next two sections 

are concerned with additional symmetries that arise 

in special cases of this general problem, which may be 

exploited to achieve substantial sav~ngs in computer 

time.· 

2.3 Two identical heteronuclear diatomic molecules 

The wavefunction describing two identical molecules 

has a well defined symmetry under the interchange trans-
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A II; "I 1\ . A/ .A/ 

formation I ( { 1 , f1 '~ -7 !;. ' ;[, -R 
' "" 

(Takayanagi 1965, 

Heil et al. 197ff). 

Applying this operator to the space-fixed basis 

functions (2.10) we get 
,., ~~., II.) 

I "j ( j.jd11..{ T M t:./ f,) l1./~ 

- ( )J. I +-J:a. + j ll, '+ .( 1\.t I. . . 11 I A I ,. I A) 
- - ..J~jz.J 1J 11.'\~Mf:[~[l._;~ 

(2.33) 

Note that, as j 1 and j 2 are interchanged on the right 

hand side, this is not an eigenvalue equation. From 

the unitary transformation (2.11) it can be shown that 

the body-fixed basis functions (2.15) behave as follows 

(2.34) 

Functions with well defined interchange symmetry, i(= ± 1)) 

are obtained by taking linear combinations of (2.15) 

and normalising: 
1\ 1\ ") :J(j,j,_j,l.J=L J"'ME.~/f,;fL)B 

- [ 2.(1 -t- J"J.j)]-'h. [ ~ (j ,j3.j,1 _n J"M E /:f,.J [._.J ~) ( 2. 35) 

+ ~£(-)jll, ;J(j3.j, J,L ;n: J"'ME fi,Jf~/~ ) J 
We effect a reduction in the basis set by excluding 

those functions (2.35) for which j 2 > j
1

, and for which 
. . 

j1 = j2 and .-{_,£ (- )J•l. =-I In this latter case the 

functions (2.35) vanish. 
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The invariance of the potential {2.23) Dnder the 

interchange transfor~ation leads to the conclusion that 

(2.36) 

This can be seen by operating on equation (2.25) with 

I, and then using the relation (2.27). The fully symmetrised 

potential may thus be written as 

(2.37) 

where· 

(2.38) 

The derivation of the coupled equations (2.19) is identical 

to that alre~dy given except for the restrictions on 

the basis set and the potential given above. Given 

the relationship between the functions (2.15) and those 

with well defined interchange symmetry (i.e. equation 

(2.35)) it is possible to write the V-rnatrix elements 

in t~rms of equations (2.28) and (2.29). Specifically 

the symmetry properties of the .9~j symbol (Messiah 1962) 

in ( 2. 29), together with the restriction of ( 'J._• + 'J! + jp-

. to even values, are used to deduce 

<J·jl.j_,l. .:n I ~·'lJ.~ J J~ j~ ),~ .SL I> 
::= (-)j I-t" jl. + Jn. + j: + j: -t- j~1. < j1.j I jl). Ji:{ y

1
l_ t•/' IJ~j( j{l- :n:_') ( 2, 39) 
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With this and th~ potential expansion (2.37) we obtain 

<j.j1 j,1..n- J"Mf.-1-jV(f,J{'-JR) lj~j~j,'l. Ji.' J".M£~) 

·== 2 r2. (I+ d"J·J· )]-'11 [.z ( 11- ~j.'j~)] L L. \{, 41r (R) (I+ J",_, 1 .. )-' 
1.: ' a. . '\! ?/ '\_3 I' ~0 " , 

. . ·I . ( 2 • 40) 

X {(j,j.j,.:;;.j \ 'l•r/j[ i~j: • .n) + -i E (-i'' (Jd•j.,.Af\.tvlj:h~• .;;.' > 
)t,+tl. r< ... _

1 
x 

1
., ., ., -'> 

+(- l< J• Ja.Jn. ~ i..' i:r J• J'a:. J ,,_ .n. 

+ iE (-l'(j,j.j,.:.<./ Y,_. 11r1J:J: j:. JL) J ~ 
where use has been made of the symmetries of the 3-j 

· symbols to halve the rtumber of tetms in this expression. 

;While substantial savings in computer time are possible 

. by using the basis (2.35) (becau~e of the consequent 

reduction in·the number of coupled equations), it is 

usually more convenient to retain the non-symmetrised 

(with respect to interchange) potential (2.23) and simply 

set 

(2.36) 

This gives a less unwieldjy expression for the potential 

matrix elements: 

<j' Jl j.1 ft 'J"M t:--i I v ([.)fL.) R) 1 j~ J~J.'L .ii' J ME--t) 

-= 2. [1.(1 -r S·, ·J]-~ [z(' + ~:j~)]-~ L V, A (R) · 
. . JJ t·i:J"~O ttr (2.411· 

X r(J'· jl.jll . .7L [ Y.v,2.r I J~ j~ j;l-.n:'> +A~(-j~/j,J~j.1-A{ 't fJ•/ .,J., :rL'>:I· L . . \• !"Llf l.J· 11. J 
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l. .,,. J\ ") 

The 1:_ -matrix elements for ;J(j.jz.j•-a..Ji. J"M i-i D)f:,_J~ 

can, in a similar fashion, be written in terms of those 

for ~ ( j 1 j 1 J·~ ..ii.. J" M £ If,) f1. J ~) The restrictions 

ptaced on the basis (2.35) lead to expressions for the 

non-zero matrix elements which we are identical to (2.31) 

and (2.32), i.e. 

< j I j z. j ll. .A . J M [ -i I -f 1 

) j I j 1 j 11 

-I 
...rL 

(2.42) 

By taking account of the reitriction~ on the basis set, 

simpler expressions to those given by Danby (1983) and 

Alexander and De Pristo (1977) are thus obtained. 

Before continuing with a discussion of the further 

symmetry reductions possible when one or both of the 

diatoms is homonuclear; we give an example of the basis 

reductions that have occupied us for_ much of this Chapter. 

Table 2.1 gives the basis sets (2.6), (2.15) and (2.35) 

for two identical heteronuclear rotors, each possessing 

the range of possible angular momenta j = 0,1. The 

corresponding space-fixed basis set (2.10) is given, 

together with eigenfunctions of I, constructed in an 

~nalogous way to their body-fixed counterparts (2.35); 

relation (2~33) would be used to achieve this. In this 

example the total angular momentum, J = 1. The coupled 

equations are seen to separate into 4 blocks, corresponding 
. 

to the possible combinations of C. and --t 



Body-fixed basis Space-fixed basis 

(i) (ii) (iii) (iv) (v) 

J1 J2 J 12 S1 J1 J2 J12 IT e: J1 J2 j12 S1 e: J1 j2 J 12 £ e: J1 J2 J12 £ e: • I 
t l 

0 0 b 0 0 0 0 0 -1 0 0 0 0 -.1 -1 0 0 0 1 -1 0 0 0 1 -1 -1 

0 1 .1 -1 0 1 1 0 ·1 0 1 0 0 1 1 0 1 0 1 .o 

0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 2 1 0 1 2 

0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 

1 0 1 -1 1 0 1 1 1 1 2 0 1 0 1 2 1 1 2 1 

1 0 1 0 1 1 0 0 1 1 2 1 1 1 0 .· 1 1 1 2 3 

1 0 1 1 1 1 1 1 1 0 1 0 -1 1 1 1 1 1 1 0 1 0 -1 1 

1 1 0 0 1 1 2 0 1 0 1 1 1 1 2 1 1 0 1 2 

1 1 1 -1 1 1 2 1 1 1 1 1 1 1 2 3 1 1 1 1 

1 1 1 0 0 1 1 1 1 1 0 1 1 1 -1 0 1 1 1 1 1 0 1 1 1 -1 

1 1 1 1 1 0 1 1 1 .1 1 0 1 0 1 1 1 1 1 0 

1 1 2 -1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 2 

1 1 2 0 1 1 1 1 1. 0 1 1 1 1 1 1 1 2 1 0 1 1 1 

1 1 2 1 1 1 2 1 1 1 2 1 1 1 . 2 2 1 1 2 2 

TABLE 2.1 

The body-fixed and spac~~fixed basis sets for 2 identical heteronuclear diatomics, with j = 0,1. The total 

angular momentum, J = 1. Columns (iv) and (v) represent the analogous space-fixed basis sets to the body-fixed 

in (ii) and (iii) respectively. 

1 
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2.4 · Homonuclear molecules 

The angutar momentum, j., of a homonuclear diatomic 
~ 

molecule can only take values which are either all odd 

or all even. This is a tonsequence of the symmetry 

of the total ·molecular wavefunction under the interchange 

of two identical nuclei. The coupled equations therefore 

separate further into blocks corresponding to even or 

odd j .. 
~ 

If the rotor i is homonuclear, then the intermolecular 

potential (2.25) is invariant under the transformation 

"' ,., l· ·~ --t . 
........ c.. ,..._L 

It follows directly from this.aild equation (2.27) that 

the q. indices in the body-fixed expansion of the inter-
~ . . . 

molecular potential (2.23)~ (2.37) may only take even 

values. This is consistent with the restrictions on 

ji as can be seen from the symmetry properties of the 

3-j symbols · 

(J~ tL j[ ). 
0 0 0 

in equqtion (2.29). 

TwQ homonuclear molecules of the same species (e.g. 

H2 - H2 ) but with one diatom restricted to even j (e.g. 

para-H2 ) and the other to odd j · (e.g. ortho-H2 ) are 

distinct, and·the treatment in section 2.2 applies. 

It is interesting to note that in the case of nuclei 

with zero spin (e.g. 160) the corresponding diatom (e.g. 

16o2 ) cannot _exist in one of these j modifications (for 

a fixed electronic state). This is because the nuclear 

spin state can.only be symmetric with respect to interchange 
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of the nuclei· (Bransden and Joachain-1983). 

·We summarise the results obtained in sections 2.2, 

2.3 and 2.4 in Table .2.2, referencing the optimum (fully 

symmetrised)" basis sets and potential expansions. 

2.5 The effects of monomer vibration 

All of the calculations reported in this thesis 

treat the diatomic molecules in the van der Waals complex 

as rigid rotors. However, the experimental spectra 

with which we will compare our results involve the vibrational 

excitation of one of the diatoms. It is therefore important 

to indicate how intramolecular stretch may be incorporated 

into the close-coupling formulation of the preceding 

.sections, .and to u~derstand the effects of its neglect. 

The rigid rotor approximation involves freezing the 

bond length of the diatom at an equilibrium value r eq 

ideally defined by the equation 

B - (2.43) 

where B is the rotational constant which we met in equation 

( 2. 9) , and X(ooJ.Y) is the (normalised) wavefunction 

of the ground vibrational state of the diatom which 

we shall return to presently. Classically we can think 

of this as taking an average value of r over the vibrational 

motion, which is much faster th~n the rotational motion. 

Usually, r is set equal to r 0
, the expectation value eq 

of r in the ground vibrational state. Sometimes re, 



po.tential V-matrix t2 . . good 
System basis set -matr1.x quantum expansion elements "'elements. numbers 

AB-CD (2.23) ( 2.15) (2.28),(2.29) (2.31),(2.32) J,M,£ 

AB-AB ( 2. 37) ( 2. 35) ( 2. 40) ' ( 2. 2 9) ' (2.42) J,M,f,i 

A2-AB ( 2. 23) ( 2.15) (2.28);(2.29) (2.31)' (2.32) J,M,£. 

q1=0,2,4 .• ·. j1=1,3,5 ... 

or 0,2,4 ..• 

A2-B2 ( 2. 23) (2.15) (2.28),(2.29~ (2.31) ,(2.32) J,M,£ 

q1:"q2=0,2,4 ... j1=1,3,5 •.. 

or 0,2,4 .•. 

ditto j 2 

ArA2 ( 2. 37) ( 2. 35) (2.40),(2.29) ( 2 .42) J,M,£,i 

ql=q2=0,2,4 ... jl=j2=1,3,5 ... 

or 0,2,4 .•. 

(2.23)* (2.15) (2.28),(2.29) (2.31) ,.<2.32) J,M,( 

ql=q2=0,2,4 .... j1=1,3,5 ... 

and 

j2=0,2,4 ... 

TABLE 2.2 

A summary of the results obtained in sections 2.2, 2.3 and 2.4. The optimum basis set, potential 
expansion, and the corresponding matrix elements are referenced. 

* ' The fully symmetrised rigid rotor potential 

to use expansion (2.23) and set V · = (-1) 
q2q1~ 

expansion is in fact (2.37), but it is more convenienc 
q1+q2 v . 

q1 q2,..u 
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the position of the minimum of the intramolecular potential 

is used (Tennyson and Sutcliffe 198.33; ). It is usually 

possible to evaluate diatomic rotational energies either 

by ab initio calculations (e.g. Wolniewicz 1983) or 

by referen~e to observed spectra (Herzberg 1950, Herman 

and Short 1968) so it is not necessary to assume the 

same rotational constant for all j, and in this way 

the effects of centrifugal distortion may be taken into 

account (Lester and Schaefer 1973). We still neglect 

the effects of any vibrationally excited monomer states 

and in this sense the rigid rotor approximation may 

be regarded as a basis set truncation (Green 1974). 

Perturbation theory tells us that this truncation is 

justified if the energy difference between the ground 

and first excited vibrational state is large and the 

potential coupling between them is small. 

We now consider the effects of intramolecular stretch 

on the intermolecular potential. As the bond length 

of a diatom increases, the repulsive wall of the inter­

molecular interaction is shifted to larger val~es of 

R, the separation of the monomer centres of mass. This 

is because of the earlier onset of exchange repulsion 

as the molecules approach one another. If this was 

the only effect then the resulting potential well would 

also be shallower. However, an increase in the diatom 

bond length results in an increase in its polarisability 

and thus. an increase in the attractive dispersion interaction 
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(LeRoy et al. 1977). Though th~se simplified arguments 

neglect the effects· of monomer orientation (Tennyson and 

Sutcliffe 1983~ it is generally true that an increase 

in r .shifts the repulsive wall outwards and increases 

the well depth. 

In ab ini~io calculations of the electronic potential 

energy surface, the diatom bond length is usually fixed . 

0 at r , giving the potential 

. (Z.44) 

Even in the case of the Hz - Hz dimer, in which the light 

nuclei may be expected to perform large amplitude vibrations, 

. (Z.44) has been shown to be a good approximation to the 

vibrationally averaged potential (Burton and Senff 198Zl: 

So far in this section we have discussed the validity 

of the rigid rotor approximation. We now outline the 

modifications necessary to the close-coupling formalism 

if the diatoms are allowed to vibrate. The total wave 

function of the complex is expanded as before in a set 

of diabatic (R-independent) basis states (c.f. equation 

(Z.17)): 

:I! (J"M£ J f,Jf\ _ _,·R) 

=L_ 
v, vl. j •j2. j,l.·.;;::: 
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where 

¢ = 7( ("' j~lf1 ) X(vl JJ.If'~) ·1\j (j 1 j2j.,. Ji: :r M t If'; fl.J ~) 
(2.47) 

i1 is the rotational basis-function defined in equation 

(2.15). ?( ( V J·l.;) is a sol uti on of the radial Schroedinger 

equation describing the nuclear motion of an isolated 

diatom (Le·Roy and Carley 1980): 

(2.48) 

Here, v(..,....) is the intramolecular potential (i.e. the 

electronic energy of the diatom) and v is the vibrational 

quantum number. E . is the rotation-vibration energy VJ 
of the isolated molecule. It is worth noting that implicit 

in (2.48) is the fact that a complete set of orthonormal 

vibrational functions may be generated for any one value 

of j. Rather than numerically solving (2.48) it is usual 

to replace X by analytical functions such as Horse 

oscillators (Tennyson and Sutcliffe 1982). 

For identical ·molecules undergoing internal vibration, 

the interchange operator, I, of section 2.3 may be generalised 

as· follows: 

( 2. 49) 

From equation (2.34) we see that the effect of the inter­

change operator on ¢ is as follows: 
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. A 

I ¢ (v. V2 j.jl.jll. .n. J ME It•;~'; ~) 

•( 2. 50) 

Proceeding as in section 2.3 we construct basis states 

which have a well defined interchange symmetry, i. 

¢ (v, vl. j. jl. j,l. ..n:: J""M f: --i If,; r )._; ~) 
~ [2 (I + $~, v). J"J.j:~. )J-'l~ [ ¢ ( V, v;_ J, j:~. j,l. .:n: J"Mf./;[ ~-)~}- ~) ( 2. 51) 

t- -if..(- )j'l. ¢ (vl. v, J:z.J, ju. :n.: JM£ lt,Jrl. J ~) J 
States with different interchange symmetry are decoupled. 

Linear independence among each set of basis states is 

achieved by omitting those functions (2.51) for which 

( i) \{ = Vl. and j2 > j I 
( i i ) V 1 > V, for a 11 j 1 J j :z. 

(iii) V
1 

=v2 , J•=j1.. and -iE(-)' 1 
= -1 ( 2 . 52 ) 

(i) and (ii) are the 'well-ordering' conditions of Takayanagi 

(1965). States for which (iii) is satisfied vanish. 

When v 1 = v 2 = 0 the conditions (2.52) are seen to reduce 

to those for the case of two rigid rotors. 

There are no restrictions on the vibrational·quantum 

number, 'v, of an isolated homonuclear diatom, analogous 

to those on j discussed in section 1.4. This is because 

interchanging the two id~ntical nuclei does not affect 

the magnitude of the intramolecular vector. 

The. derivation of the coupled_equatibns is similar 

to the rot6r-rotor case except the ~atrix elements now 
t\ 

involve integrations over r1 and r2 as well as r~ 
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1\ 
and R. The only addditional difficulty is in 

the evaluation of the V-matrix elements. Values of the 

interaction potential are needed not only for a range 
1\ 1\ 

of geometr.ies (1, ,~~) and intermolecular separations 
N "' 

(R), but also for a number of ..r-,, i'1.. values. Once we 

have these the potential surface must be fitted in a 

way that makes possible the evaluation of the v~matrix 

elements. A convenient way of doing this is to describe 

the intramolecular dependence of the potential using 

a power series in the diatom stretching coordinate (Le 

Roy and Van Kranendonk 1974) 

( 2. 53) 

The intermolecular potential between two vibrators could 

thus be fitted to an expression of the form (c.f. equation 

(2.23)). 

(2.54) 

To date, such calculations have been restricted to atom-

diatom systems. Tennyson and Sutcliffe (1983~ have carried 

out two sets of calculations on the He-HF van der Waals 

molecule; one treating HF as a rigid rotor, the other 

with the vibrational degree of freedom included. In 

this way they were able to directly verify the validity 

of the rigid rotor assumption which is made throughout 

the present work. 
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2.6 Group theoretical note 

A large part of the preceding sections of this Chapter 

has been devoted io constructing rotational basis functions 

which fully reflect all symmetries in the problem. Any 

treatment of symmetry is underpinned by the mathematical 

theory of groups (Hamermesh 1962), and we end this Chapter 

by outlining the methods of obtaining such symmetrised 

basis functions. The relevant concepts will be introduced 

as we go along, though most can be found in the concise 

introduction to the. subject given in Chapter 7 of Atkins 

(1983). 

It will be convenient to discuss the case of two 

identical heteronuclear diatoms and then to indicate 

the further steps necessary when the molecules are homonuclear. 

The symmetry of the system under rotations about a space-

fixed axis leads to the constancy of J and M, and this 

has already been accounted for in the basis functions 

(2.6). We need therefore only consider the symmetry 

under the inversion and interchange (permutation) operations. 

The relevant group is the permutation-inversion group 

PI(4) (Metropoulos and Chiu 1978), which consists of 

the complete set.of feasible (Ezra 1982, Bunker 1979a) 

operations that leave the Hamiltonian (2.2) invariant. 

The four symmetry operations {or·elements) of PI(4) 

are f E) P · E* p* ~ E is the identity. 
13 ... i2.tt ) ) 13.)2.4- ) 
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which leaves the system unchanged. P13 24 is the simultaneous 
' 

permutation of identical nuclei 1 with 3 Bnd 2 with 4. 

E~ inverts all the nuclei in the origin of a space-fixed 

coordinate system which is coincident with the centre 

of mass of the complex. P~3 24 simultaneously permutes 
' . * ~ 

identical and inverts all nuclei ( ~ 3J 1 '+ == ~l.J2..1j. E* = £. ~l.)l.'+ ). 

i* E and P
13 24 are respectively the active analogues of 

' 
the passive operations P and I introduced in sections 

2.2'and 2.3 (Bunker 1979a). The above will be clarified 

by reference to Figure 2.2. Note that operations such 

as P13 are not feas1ble, aq assumption reflected in the 

"collision complex" form of .the Hamiltonian. The permu-

tation-inversion group which omits such operations (PI(4)) 

is the molecular symmetry group (G4 ) of Longuet-Higgins 

(1963). 

Having determined the appropriate group, the next 

step is to establish a matrix representation of this 

group. To do this we need the effects of the PI(4) 

operations, i?.. , on the (unsymmetrised) basis function 

(2.6): 

(2.55) 



8 l.' 

;'/A~--' -. 
0 

- ,... 
,_.l. 0 

I A 

B z.. 

R 

0 
I 

-_f,. 

3 A 

Figure 2.2 

The elements of the group PI(4) (G
4

) for the system (AB)
2

. 0 

is both the centre of mass of the syst~m and the origin of 

an inertial space-fixed reference frame. Also given are the 

active (i) elements which act on the nuclei, and the 

equivalent passive (ii) elements which act on the coordinates. 
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Because the action of symmetry operations is most easily 

~isualised in thespace-fixed reference frame (Tennyson 

and Sutcliffe 1984), we obtain (2.55) by operating on 

the spac~-fixed basis function (2.10) and then using 

the unitary transformation (2.11). If j 1 t j
2 

and 

..fl.. =/=. 0, ·the functions "'},_ are orthogonal and form a 4-

dimensional basis (row~) vector spanning the regular 

matrix representation (Hamermesh1962) of PI(4) thus: 

£ ( "jl) "::Jl.) "j)) "j't) = ( "1,) "jl.) 'j3/ ~if) (~ ~ ~ :) 
o o o I 

P,~l. .. (':!,) -:~,;:JJJ 'j,.) ~ ("J,J '·J ~]J -:;.,_) (: ~ ~ ~) 
·. o I 0 C 

· · I 0 0 ° 
(2.56) 

The matrices in (2.56~ under the normal rules of matrix 

multiplication, may be shown to satisfy the multiplication 

table of the PI(4) group (Metropoulos and Chiu 1980). 

We give below the traces (characters)) 1\(t<,)J of the rep-. 

resentation matrices in (2.56) which will be needed later: 
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(2.57) 

Note that the dimensionality of the representation is 

given by ?<(E). 

By applying a similarity transformation (Atkins 

1983) to the four matrices in (2.56) it is possible to 

reduce them to block-diagonal form. This set of matrices 

thus forms a reducible representation, ~ , of the group. 

An irreducible matrix representat{on is one that cannot 

be so reduced. In order to determine which irreducible 

re-presentations' fk, ' are contained in r it is necessary 

to know the character table of the group. This is given 

by Metropoulos and Chiu (1978) and Bunker (1979b) and 

is reproduced in table 2.3. The character table for 

PI(4) may be simply obtained by following a set of rules 

given by Boardman et al. (1973). Table 2.3 tells us 

that four inequivalent (not related by a similarity trans-

formation) irreducible representations exist in the group 

PI(4). The importance of this lies in the fact that 

basis functions belonging to different irreducible repres­

entations are orthogonal and cannot be coupled by lhe 

Hamiltonian which belongs to the completely symmetric 

irreducible representation This is the· vanishing 

integral rule (Bunker 1979a). We conclude that the close-
i 

coupled equations for the system-(AB) 2 will separate 

into four blocks, as indicated in Table 2.1. 
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_,_ 
·k 

E p13,24 E." p13,24 

r1 1 1 1 1 

r2 1 1 -1 -1 

r3 1 -1 -1 1 

r4 1 -1 1 -1 

Table 2.3 The character table of the group PI(4). 

The reduction of the representation, r , may be 

represented by the equation 

(2.58) 

~here we take a direct sum (Boardman et al. 1973) of 

the irreducible representations ~ k" The reduction 

coefficients, ak, are given by (Boardman et al. 1973). 

= ( t) 
(2.59) 

h is the order of the group (the number of elements). 

X lt-(1L) is the character of fl corresponding to the 

e l.emen t ·'{G • We thus obtain 

r r a;> 
I 

r 
3 ( 2. 60) 



so 

The· symbol & means a direct sum (Boardman et al. 1973). 

It is a feature of the regular representation that, on 

reduction, each irreducible representation appears a 

number of times equal to its dimensionality (Hamermesh 

1962, Weissbluth 1978). 
k 

We may construct basis functions, ;:1"'- , of the 

irreducible representations, ~ , by taking linear combinations 

of the functions ~ vn. The formal procedure is based 

on the projection operator, P~ defined as follows: 

( 2. 61) 

where dl is the dimensionality of fk, . The effect· of pic­

operating on "jf\. is to produce a sum of the functions 
1\Ak, . 
J (Atkins 1983): m.. . 

J_,_ 
- ~ 

£__ 

h=l 

(2.62) 

As all of the irreducible representations are one~dimensional 

it is necessary to apply the projection operator to only 

one of the functions "jlt- . Choosing 
/ 

~I (see equation 

(2.55)) we obtain symmetrised basis functions spanning 

each of the irreducible representations: 

p''J, = ~ ( '!11 + ~.2. + :13 "-+ ":14- ) =~I 

pl "j I = ~ ("JI + ":12.- "J3- ~11-J - ":12 

. p3 "j = ~ ("JI - Jl - 'ljJ +-1j'+) = -:13 
I 

p'+ttjl = L ( ~~ -:J + J3 - Jor ) - "J¥ 
.L+ . l 

(2.63) 
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The subscript m in (2.62) is redundant for one-dimensional 

representations and has been omitted. By referring to 

equations (2.55), (2.15), and (2.35) we see that 

(2.64) 

where £ and -i are given by the characters Ak-(E;:¥-) and 

Xk-(~ 3;2-'YJ re~pectively. Projection operators do not 

in general give symmetrised functions that are normalised. 

It is now timely to recall that in the derivation of· 
~t,· 

"j we assumed that j 1 'f=.j 2 and ~ :f 0. When either 

or both of these conditions no longer hold, the original 

basis functions (2.&) are partly symmetrised (Tennyson 

and van der Avoird 1982a) and do not therefore span all 

of the irreducible representations of PI(4). Because 

all of the irreducible representations are one-dimensional, 

the characters give the effect· of the corresponding operation 

6n the symmetrised basis function. We could then have 

shown that the functions "j( j~j,.jll..:n:. "J"ML.i !{~)f~...J ~) 
are also eigenfunctions of P* and hence are bases 

il,.....:z.'t 

for the irreducible representations. The above, however, 

demonstrates general principles which may·be used for 

higher order groups. 

The system (A 2 l 2 is·particularly relevant to the 

present work. Our approach, outlined in the preceding 

sections, ig to use the basis functions for two identical 

h~teronuclear diato~s, restricting the values of j (see 
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Table 2 .. 2). The relevant group is PI(16) (Metropoulos 

1981). The ·main complication is that two of the ten 

irreducible representations are two-dimensional; reducing 

the regular representation would lead to these appearing 

twice. The coupled equations would therefore separate 

into 12 blocks of which only 10 need be solved (Tennyson 

and van der Avoird 1982 ·a,b). The two-dimensional irreducible 

representations are spanned by two orthogonal and degenerate 

basis functions (Atkins 1983). To obtain these formally, 

one would have to apply the projection operator (2.61) 

to. two of the unsymmetrised functions ";}"-.. The resulting 

symmetrised functions, Plt."j.,. and pk ~"' would not 

in general be orthogonal. This problem ~an be surmounted 

by using Schmidt orthogonalisation (Bunker 1979a). For 

the (A 2 l 2 system, however, the form of these functions 

. "' ,.. ") 
is intuitively obvious; they correspond to "j U1j1j11...it. 'J"MEif•;!l.._;~ 

one with Cj 1 ,j 2 ) 9 (odd, even) and the other with (j 1 ,j 2 ) 

(even, odd) (Metropoulos 1981). 

To summarise the contents of this section: we first 

est~blish a (reducible) representation of the symmetry 

group of the Hamiltonian by applying the group elements 

to a set of (unsymmetrised) basis functions. With a 

knowledge of the character table we can find which in-

equivalent irreducible representations are contained 

in the reducible one - all are if we set up the regular 

represent~tion. The linear combinations of basis states 

that reduce the representation are then found using 
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projection operators. The vanishing integral rule tells 

us that the coupling matrix elements (2.20) between two 

basis states belonging to different irreducible rep­

resentations vanish. 



CHAPTER THREE 

SOLUTION OF THE CLOSE-COUPLED EQUATIONS 
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3.1 Introduction 

In this chapter we shall consider the solution 

of the coupied differential equations (2.19) written 

below .in matrix form 

J1. _ FJ. (R) 
o{ R2. 

( 3 .1) 

There are two basic approaches to solving these. The 

radial· functions F(R) could be expanded in terms of 
,.../ 

an appropriate set of basis functions and the resulting 

secular equation solved (LeRoy and Carley 1980). This 

technique has been applied to calculations of the bound 

states of molecular dimers by Verberne and Reuss (1981) 

and Tennyson and van der Avoird (1982a). Similar ideas 

have also been applied to scattering problems by Bocchetta 

and Gerratt (1985) in their implementation of the Wigner 

R-matrix method. In this thesis, we shall adopt the 

other, more direct approach : numerical integration 

of the differential equations. 

The coupled equations are identical for the bound 

state and collision problems; only the boundary conditions 

differ. A large number of numerical methods have been 

developed for-scattering problems and Thomas et al. (1981) 

have carried out comparative test calculations on eleven 

of these. These methods, however, may be classified 

depending on whether they approximate F(R) or W(R). 
. -..1 ,.../ 
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In the approximate solution approach, the "scattering 

coordinate" R is divided into.sectors and the solution 

F assumed to possess some simple polynomial form in ....,. 

each sec~or. The approximate potential (or piecewise 

analytit) approach assumes that the coupling matrix 

W has a sim~l~ form such that in each sector the differential 
IV 

equations may be solved a~alytically. Mattson and Anderson 

(1984) have studied such methods assuming the potential 

.to be either constant, linear or quadratic across individual 

radial sectors. 

Secrest (1979) has further subdivided these two 

approaches according to the way the solution is developed 

from one sector to the next. The first of these sub-

divisions i,s the comm·on solution following approach 

in which the values of F and dF/dR at one end of the 
AJ N 

sector are used to obtain those at the other. This 

process is continued recursively with each sector being 

treated as an initial value problem. Because of the 

exponential behaviour of the radial wave functions in 

the classically forbidden regions, solution-following 

methods suffer from inherent instability. This problem 

led to the development of the invariant imbedding technique. 

In a scattering context this involves setting the potential 

to zero at the sector boundaries. A full scattering 

problem may then be solved for each sector and the S-

matrices matched across the sector boundaries. The 
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S-matrix is thus propagated to large R at which point 

the potential vanishes. Because the equations for the 

S-matrix do not suffer from the instabilities of those 

for the wavefynction, the invariant imbedding method 

is inherently stable. Invariant imbedding was originally 

developed for solving the differential .equations which 

arise in neutron transport and illustrations from this 

and other physical problems have been given by Scott 

. (1973). tn general terms the method involves reformulating 

the problem so that the quantity of interest is calculated 

directly at each stag~ of the calculation. 

In s~ctions 3.2 and 3.3 we shall consider in turn 

our implementation of two numerical methods : the de 

. Vog~laere method which is based on ~pproximate soiution/ 

solution following, and the R-matrix propagator method 

based on approximate potential/invariant imbedding. 

Usirtg the results of test calculations (section 3.4) 

we shall be able to indicate the relative merits of 

the different nume.rical approaches, much of which has 

been discussed by Secrest (1979, 1983) within a collision 

calculation framework. 

Thomas et al. (1981) considered the efficiency 

in terms of computer time of a number of numerical methods. 

Ale~and~r (1984) has shown that significant improvements 

are possible by adopting hybrid methods. Desp~te this, 

computational speed may still be an inhibiting drawback 
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of direct numerical methods either when very large numbers 

of coupled·equations must be solved or if we are interested 

in inverting intermolecular potentials by least squares 

fitting to experimental data. In the latter case, repeated 

calculations of the eigenenergies are needed. We could 

try to counter this speed problem using decoupling methods 

valid under special conditions. Our options, though, 

are rather limited as it is in general necessary to 

retain the full Hamiltonian for bound state problems. 

Methods involving the neglect of Coriolis terms in the 

coupling matrix and the decoupling of angular and radial 

motions have been used. We shall discuss these and 

the other alternative methods for calculating bound 

states in section 3.5. 

3.2· The de Vogelaere method 

3.2.1 Derivation 

We begin by outlining the derivation of the method 

of de Vogelaere (1955) for a single second order differential 

equation of the-type 

£ F(R) 
JR"l. 

W (R) F(R) 
( 3. 2) 

The central ideas of the method and an estimate of the 

truncation error can all be illustrated by reference 

to this "single channel" case. The extension to a system 

of coupled differential equations is immediate. We 
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partition the radial coordinate into sectors, denoting 

the boundaries of an arbitrary one by Ri and R. 1 . ~ + 

(see figure 3.1). The wa~efunctions at the boundaries 

are relat~d by the Taylor series expansion: 

+ hF 1
(Ri.) + h_

1 

F
11

(RL) 
A 

( 3. 3) 

h(= R. 1- R.) is the sector length, Fi denotes the 
~ + ~ 

i-th derivative with respect toR, and the_O(h 5 ) term 

shows that we are approximating the solution to a 4th 

order polynomial. Using (3.2) we may re-write (3.3) 

as 

-t- h 2. ~(Rt) F(R) 
2. 

Using the Taylor expansion for W(R. 1 )F(R. 1) about 
~ +'2 ~ + '2 

Ri, the term in curly brackets may be written as 

Substttuting this into (3.4) and rearranging we obtain 
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Definition of the integration parameters and sector labelling 

conventions used in the discussion of the 

and R-matrix propagator algorithms. R . m1n 
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point. 
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( 3. 6) 

It is clear that we need an expression for the wavefunction 

h at the midpoint R. 1 (=R. + ~) of the sector across 
, ·~+'2 ~ L 

which we hop~ to'develop the solution. We use the Tayloi 

series for F(R. 1) to obtain an expression analogous 
~ + '2 ' ' 

to (3.4). Making use of the Taylo~ expansion about 

R. for W(R. 1 )F(R. 1) to eliminate derivatives of 
~ ~ - '2 ~ - '2 ' 

WF, we obtain the intermediate step in the de Vogelaere 

~lgorithm (Coleman and Mohamed 1978): 

F(R~+k) 
2.. 

( 3. 7) 

The O(h4 ) truncation error of this step contributes 

an error of only O(h 6 ) in propagating the solution across 

the sector because W(R. 1 )F(R. 1) is multiplied ' . ~ + '2 ~ + '2 

by an h 2 term in (3.6). 

Finally we have to find the solution derivative 

F' (Ri) which appears in the propagation equations. A 

fourth order approximation to this is obtained by applying 

Simpson's rule directly to the Schroedinger equation 

( 3. 2) . 
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~ ( lV (RJ F(RJ + 4- W'(Rli-1-) F (R~+k) + VJ(R t+,) F(Rl+,)) 
b t 4 l . ) (3.8) 

. + O(h5 ) 

Cyc~ic use of equations (3.6), (3.7) and (3.8) constitutes 

de Vogelaere's algorithm. Note that these equations 

are slightly different from those given by Launay (1976) 

because of a different sign convention for the coupling 

matrix. The· method is not self-starting as we need 

to supply F(R 1) to begin the integration at R
0

• We 
-'2 

·use an expression which is adequate provided the wavefunction 

has effectively decayed to zero at R (Lester 1968, 
0 

Coleman and Mohamed 1979). 

( 3 . 9 ) 

It can now be seen why this method is classified 

as solution following; the wavefunction and its derivative 

are·both propagated sector by sector. Because we have 

not made any approximation to W(R), the extension to 

a system of .coupled differential equations is immediate 

(Lester 1968, Mohamed 1984). For ann-channel problem, 

W becomes ann x n matrix and F,F' column vectors of 

length n. 

As we have already seen, the local (sector) trun­

cation error of this method is, as h~o, 00~ 5 ). To 

obtain the global (total) truncation error, we multiply 
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the local error by the number of sectors which is prop­

ortional to 1 /h for constant h. The global error is 

thus O(h4 ), a fact confirmed by Coleman and Mohamed 

(1978) who used more rigorous arguments. h should be 

sufficiently small to accurately represent the solution. 

For weakly bound van der Waals molecules, the radial 

wavefunction does not rapidly oscillate and this requirement 

presents no problem. 

Each step in de Vogelaere's method involves two 

matrix multiplications which take up most of the computer 

time. However, because of the diagonality of the V7 

matrix elements i-n the ..fl.. index (see equation (2.29)), 

the body-fixed coupling matrix contains many identically 

zero elements. This is in contrast to the space-fixed 

coupling matrix, a point illustrated graphically by 

Rabitz (1975). Launay (1976) pointed out that this 

resul~ in the faster integration of the body-fixed equations, 

in comparison to the space-fixed, as there are fewer 

matrix elements to multiply and add. 

3.2.2. Boundary and matching conditions 

The boundary conditions for energi.es below the · 

dissociation limit may be written as 

F(R) ,.._ 
__,0 R ~ o 

(3.10) 
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Here F is. a column vector denoting the complete set of 
IV . 

radial functions that appear in (3.1). In practice we 

take as end points of the integration range the values 

R . () 0) and R (<DO ) ' both determined empirically. 
m~n max 

Our computer programme contains an option for finding 

estimates of R in and R based on the decay of the m_._ max 

radial solution in the classically forbidden regions. 

A system of n coupled second order differential 

equations has 2n linearly independent solutions. The 

boundary conditions (3.10) eliminate the n irregula! 

solutions, Lester (1971). A problem arises in specifying. 

the starting values of the derivative vector since the 

homogeneity of the. Schroedinger equation permits only 

one of the elements to be chosen arbitrarily. We avoid 

an iterative search over the n-1 non-arbitrary com-

ponents by making us~ of the fact that any n-vector in 

Hilbert space may be described as a linear combination of 

n linearly independent n-vectors. This is the super-

position principle. Following Gordon (1969) we propagate 

an (n x n) solution matrix, each column of which represents 

a solution vector; n is the dimensionality of the basis 

set. The boundary conditions appropriate to the de 

Vogelaere, and other similar algorithms, may be taken as 

· follows: 
f,' ( R ~~,J f, ( R. M.i.n-) -=. 0 - r 

,.., ""-' 

fl. ( RmA-X) 0 E: ( RM.~XJ - T (3.11) - ,..... "'-
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F is now an (n x n) solution matrix. For F' , its derivative 
IV N 

with respect to R, we may take any non-singular matrix 

but the identity I is the one most commonly used. The 
""' 

subscripts 1 and 2 serve only to distinguish between 

the solutions started at R . and R respectively. 
m~n max · 

The soluti'on and its derivative are propagated from R . 
m~n 

and R towards a point in the region of the potential max 

minimum, R "d (Dunker and Gordon 1976a). 
m~ 

The backward 

propagation from R is simply achieved by replacing max 

h by -h in the de Vogelaere algorithm. 

At R "d the true solution-is some linear combination 
m~ 

of the n solution vectors propagated from R ·n : 
m~ 

(3.12) 

£1 is a ·vector of n unknown coefficients. Similar ex­

pressions hold for the solutions propagated from R max 

except that the linear combination g2 is ~n general 

different. If the total energy E corresponds to an 

eigenvalue then the wavefunction and its derivative must 

match at R .d. 
m~ 

:::: 

(3.13) 
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This may be rewritten as one matrix equatiori 

0 
'V 

(3.14) 

A non-triviaL solution to these 2nhomogeneous linear 

equati~ns exists only if the following matching condition 

at the midpoint is satisfied: 

~ (R~~·,t) ~ ( R~l~) 
0 (3.15) 

F' ( R~Lol) 
"""'l 

F 1 (R ) 
"'-/ 2. M, i J. 

The eigenvalue problem thus reduces to one of finding 

the zeroes of the determinant of a (2n x 2n) matrix. 

We found our eigenvalues using a simple search procedure, 

involving repeated calculation of the determinant in 

(3.15) at a number of trial energies. Linear interpolation 

between two determinants of different sign was ~enerally 

adequate to obtain rapid convergence to an eigenenergy. 

Having determined the eigenenergy we may then wish 

to evaluate the radial solution vector, either to assign 

quantum numbers or as a first step towards calculating 

matrix elements of operators corresponding to physical 

observables. In principle this is achieved. by assuming 

that we.have located the precise position of the zero 

of the determinant in (3.15). Gauss elimination (Kreyzig 
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1972) could then be used to obtain the eigenvector 

corresponding to the zero eigenvalue of the matrix in 

equation (3.14). In practice this method may sometimes 

be unstable because one cannot in general locate the 

precise zero of the matching determinant. This means 

that none of the matrix eigenvalues are zero, as required 

by equation (3.14). Dunker and Gordon (1976a) have found 

it more satisfactory to solve, instead of (3.14), the 

matrix eigenvalue equation 

f, (R~~ot) f 2. ( R ~t.ot) c., c. I 

"' 1\, =t (3.16) 

f/ ( R~i-J..). F' (RM.LJ..) -c. -c 
""2. IV.z ,.._ 2. . 

where £ is the smallest matrix eigenvalue. 

The evaluation of the wavefunction is complicated 

still further by the introduction of the stabilising 

transformations, to be discussed in the next section. 

Detailed schemes for the calculation of wavefunctions 

have been developed by Dunker and Gordon (1976a) and 

Rosenthal and Gordon (1976). These authors used an approx-

imate potential method for solving the close-coupled 

equations. This has an advantage over approximate solution 

methods, such as de Vogelaeie, when evaluating matrix 

elements of operators between wavefunctions. If a poly-

nomial form is assumed for the operator then the contribution 

to the matrix element in each sector may be obtained 
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analytically (Dunker and Gordon 1976a). For highly 

oscillatory radial wavefunctions a very fine grid would 

be. required by the de Vogelaere method to represent the 

wavefunctioh accurately. Approximate solution techniques 

are unlikely to be the method of choice for evaluating 

matrix elements. In this context it is in~eresting to 

note a development by Kidd and Balint-Kurti (1985) which 

permits the evaluation of matrix elements directly by 

incorporating the relevant operator in a modified coupling 

matrix. The close-coupled equations may then be integrated 

without any need to evaluate the wavefunctions explicitly. 

·Knowledge of the wavefunction does, however, provide 

a rigorous way of determining the quantum numbers of 

a state. Good quantum numbers, such as the total angular 

momentum and the parity, are of course assigned at the 

outset as discussed in Chapter 2. Even without a know­

ledge of the wavefunction it is usually possible to assign 

additional approximate quantum numbers such as the end­

over-end rotation of the dimer (i) or the projection 

of the total angular momentum on the intermolecular axis 

(~). The basis states used in the expansion of the 

total wavefunction (see equation (2.17)) are eigenfunctions 

of the Hamiltonian if all coupling terms are set to zero. 

These provide suitable approximate or "asymptotic" quantum 

numbers if the correspond{ng eigenenergies deviate only 

slightly from those obtained with the full coupling matrix. 
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Dunker and Gordon (1976b), who used space-fixed basis 

functions, produced plots of the eigenenergies of Ar­

HCl versus an anisotropy factor (lying between 0 and 

1) by which they multiplied Wjk' j * k. In this way 

they were able to uniquely assign all of the energy levels. 

Their plots showed a number-of avoided crossings which 

implies that the quantum numbers assigned, notably the 

space-fixed l, were not a suitable choice. Kidd et al. 

(1~81) went on to show that the body-fixed quantum number, 

~ , is more appropriate for the lower bound states of 

this system. The vibrational quantum number of the van 

der Waals bond, n, is easily assigned according to the 

ordering of levels with the same asymptotic angular quantum 

numbers. 

It will suffice for our present purposes to assign 

asymptotic quantum numbers to energy levels rather than 

give accurate contributions from all of the basis states. 

Furthermore, as we have not concerned ourselves with 

the evaluation of physical observables other than the 

transition frequencies, we need consider the calculation 

of eigenfunctions no further. 

3.2.3 Numerical stability 

The de Vogelaere method, like all other solution 

following techniques, is inherently unstable (Secrest 

1979). This is due to the exponential rise of the wave­

function in the classically forbidden regi6ns. A stabilising 
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transformation must periodically be applied both to 

prevent numerical round-off errors and to maintain the 

lirtear inde~endence of the n solution vectors (Dunker 

and Gordon 1976a). During propagation through a non-

classical ~egion, the component of each solution vector 

corresponding to the most locally closed channel will 

tend to grow much faster than the others. Due to the 

finite precision of the computer, all n solution vectors 

thus tend towards the same vector and linear independence 

is lost. In this eventuality the bound state matching 

condition (3.15) is no longer valid. It is also important 

to ensure that all solution vectors have roughly the 

same magnitude. Failure to do this will lead at first 

to round-off error as one solution vector becomes more 

important than the others, and ultimately to floating 

point overflow. 

A number of different stabilisation techniques are 

in everyday use (Gordon 1969, Wagner and McKoy 1973) 

but they all have in common the periodic replacement 

of the solution matrix by a linear combination of the 

constituent column vectors. The various stabilisation 

methods differ largely in their adopted criterion for 

linear independence. We have used the simplest method 

' -1 -1 which is to replace F, F ·by FF = I, F'F every 5 
f"V ,.., ...,,..._, IV _, ~ 

to 10 integration s~eps (Riley and Kuppermann 1968, Launay 

1978). The modified solution matrix is then perfectly 
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linearly independent and normalised. The inverse of 

the derivative matrix, x·-1 , may also be used to stabilise. 

The drawback_ with such transformations is that they are 

expensive in terms of computer time, and must be applied 

across the entire integration range when strongly closed 

channels are included in the basis expansion. 

3.3 The R-matrix propagator method 

In this method the quantity that is propagated is 

the Wigner R-matrix, related to the (n x n) solution 

and derivative matrices by the expressi-on 

(3.17) 

The exponential build up of the wavefunction in the classically 

forbidden regions i~, therefore, cancelled and the method 

is inherently stable. Quit~ apart from the fact that 

no Stabilising transformation is needed, the R-matrix 

contains the minimum amount of information for the deter-

mination of bound state energies. As has already been 

mentioned, the principles behind this technique are very 

different from those of the de Vogelaere method. The 

coupled equations are solved exactly for an approximate 

coupling matrix W. Thi-s is known as the piecewise analytic 
. . ~ 

or approximate potential approach. Dividing the radial 

coordinate into sectors, we first diagonalise the "true" 

coupling matrix at the centre of each sector. This 

effectively transforms the basis set into one in which 
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there is no coupling. The resulting set of n one-dimensional 

Schroedinger equations may then be solved analytically 

if a simple f6rm for W is ass~med over the rest of the 
N 

se~tor (Stechel ·et al. 1978, De Vries and George 1980). 

For the present calculations we assumed a const"ant (and 

diagonal) W within a given sector. Schneider and Walker ....., 

(1979) have expanded the radial dependence of the total 

wavefunction in a basis, thereby combining ideas from 

square integrable methods and direct numerical integration. 

Secrest (1979) has classified the propagation technique 

in this method as invariant imbedding, and his derivation 

makes direct use of this concept. We shall show in the 

following section that it is not necessary to do so; 

the R-matrix propagator method will be derived by a straight-

forward rearrangement of the propagation equations of 

what is essentially the solution following method of . 

Light (1971) . 

. 3.3.1 D~rivation 

The system of n coupled. differential equations (3.1) 

may be rewritten as 

( 3.18) 

-1 If T is chosen such that T W T is a diagonal matrix, 
""'-/ ,_; _, -

then we have converted the problem to a set of n single 

channel Schroedinger equations which can then be solved 
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individually. The transformed radial functions are accordingly 

T- 1 (R)F(R). Since W is symmetric the transformation ..., ,..., 

matrix T is orthogonal (Boardman et al. 1973) and thus 
~ 

its inverse may be replaced by its transpose TT. 
. .., 

Taking an arbitrary radial sector, i + 1, we diagonalise 

W at the centre of this sector, R. 1 (see Figure 3.1); 
~ ~ + ~ 

(3.19) 

~2 (i + 1) is a diagonal matrix whose elements are the 
rv 

eigenvalues of the matrix ~· As indicated, the diagonalising 

trarisformation is taken to be sector dependent but indep­

edent of R within each sector. -The elements of ~ 2 are, 

in the present ~ork, assumed to be constant throughout 

II n 
the sector in question, each corresponding to the local 

value of the negative of the wavevecto~ in each channel 

(see equation 2.20). These approximations imply both 

that the departure from diagonality and the variation 

of the potential, as we move away from the centre of 

the sector, are both negliglble (Light et al. 1979). 

Thelatter condition implie5 that small step lengths must 

be taken at short range, where the potential is varying 

rapidly, to preserve accuracy. 

Although the diagonalising transformation is com-

putationally expensive it is energy independent. Hence, 

once a calculation has been completed for one trial 
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energy, subsequent energies are much cheaper. In a bound· 

state problem, which involVes complete calculations at 

a number of "trial" and "iterated" energies, this is 

clearly a good featu~e. The consequent saving in CPU 

time is at the expense of increased storage needed for 

the matri~es which diagonalise W. The matrix eigenvalues 
~ 

for each sector are also all stored for the first energy; 

subsequent changes in the total energy ~E alter all of 

these by the same amount ( -2 ~ ~E) (Light 19 71). 

To begin with we consider the numerical solution 

of the single Schroedinger equation 

= Al_ F(R) (3.20) 

As in the derivation of the de Vogelaere method, a Taylor 

series is used to expand the solution and its derivative. 

I 2. Ill( ) 
F '(R· ) = F'(R.\ -t- hF 1(R.) +.h._ F Rl +. L.+l (..) L ,2. 

(3.21b) 

Using (3.20) we can write 

(3.22) 

The approximation that ~2 is constant throughout the 
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sector means that the first term on the right hand side 

of this equation vanishes. This introduces a local error 

of O(h 2 ) in the solution derivative F~ and consequently 

an error of O(h 3 ) in the solution, as can be seen by 

reference to equations (3.21). We conclude that the 

local error is O(h 3 ) in agreement with Light (1971) whose 

arguments were based on the Magnus exponentiation method 

(Magnus 1954). Using the same simple arguments as in 

section 3.2.1, we arrive at a global error of O(h2 ). 

This result is borne out empirically as will be seen 

in Section 3.4.1. 

Expressions similar to (3.22) for higher derivatives 

of Fare readily obtained, and from (3.20) it is seen 

that they may all be expressed in terms of F and F' . 

Substituting the~e relations into the Taylor expansions 

(3.21) and neglecting all derivatives of )\2 , we obtain 

in matrix form: 

(3.23) 

The form of the sector propagators pk depends on whether 

the channel is open (},_2 < 0) .or closed (A 2 / 0): 
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2. 

+ h~ 1\ .z + ...... · 
P = h /\ 

{ SLnh (hl"l)/1~1 

\ sl.rt (hl?-.1)//?-.1 J 

.A > o 
) 

l. . 
A-2. < o 

;z. 31\4-p3 = h ~ + h /\ -:r .• 
b 

= { 1 ?-.I slnh(h JJ..I) 1 ?-.: > o 

~-I~ I s i t\ ( h I ~I ) J ~ < o 

(3.24b) 

(3.24c) 

Equation (3.23) is the core of a pi~cewise analytic, 

solution following algorithm. Given initial values of 

the solution and its derivative at one end of the sector 

(Ri) we can propagate to the other.end (Ri + 1 >. 

By multiplying out (3.23), the resulting two equations 

may be rearranged to obtain expressions for F(R. ) and 
. ~ 

F(R. 1 ) in terms of F 1 
( Ri) and F 1 

( Ri + 1): 
~ + 

( F(Rt)) 
F ( RL.;_,) 

(~ 
-r-3 

~.) (-F'(Rt)) 
-tt.t .F'(RL-t-1) (3.25) 

All we have done is to restate an initial value problem 

as a boundary value problem, expressing the solutions 

at the sector boundaries in terms of their derivatives 

(Light and Walker 1976). F 1 (R.) has been multiplied 
~ 

by -1 to retain the convention of Stechel et al. (1978) 

in which the derivatives at the sector boundaries are 

outwardly normal. It is important to take note of this 

derivative convention when implementing boundary conditions 
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aswe shall see in the following section. Equation (3.25) 

defines the sector R-matrix r whose elements are given 
------- ..J 

by: 

~ coth (hi'AI)/1?..\ ) 
A.2. 7 0 

i, 
_, 

= p3 plt = 
~c.ot (hi'A/)/1~1 A.1 < o ) 

(3.26a) 

t csch (hl?-.1)/1?-1 ) 
')..

2 
7 0 

-I 
12. - P3 :::: 

-c.sc (h\?-.l)/1?--1 
'/-.l. ~ 0 

) 

(3.26b) 

't3 + -I = i csc-h (ht?.i)/1?-1, ~' > 0 

- - rl. p, P3 Pli- 1)...1.< 0 
- C-j c ( h I j.[) I I'). I ) 

(3.26c) 

f co~h ( h\?-1)/i?-\ 'Al. )> 0 ,, -I ) 
- r~ r3 .-

4 :-cot (hl?-.1)/lj\\ ?--2.. < 0 
_) 

(3.26d) 

Note ~hat r 1 = r 4 and r 2 = r 3 . To avoid ambiguity we 

shall, whenever necessary, refer to the R-matrix defined 

by equation (~.17) as the global R-matrix. Comb~ning 

the definition of the global (3.17) with that of the 

sector (3.25) R-matrix, the radial wavefunctions can 

be eliminated to obtain two simultaneous equations relating 

F' (R.) and F' (R. 1 ). F' (R.) may then be eliminated 
1 1 + 1 

to obtain the foll6wing propagation equation for the 

globalR-matrix (Light et al. 1979): 
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(3.27) 

The first step in generalising this expression to 

a system of n( ) 1) differential equations is trivial. 

The elements of the sector R-matrix become (h x n) diagonal 

matrices, the elements of which are obtained from equations 

(3.26) by replacing I"' I with I :A jjl' The second step 

involves accounting for the ·fact that K(R. 1 ) and R(R.) 
. N ~ + ,._, ~ 

refer to the bases which diagonalise the coupling matrix 

in sectors i + 1 and i respectively (Figure 3.1). The 

transformation which first takes the uncoupled basis 

of sector i into the original coupled basis, and from 

this into the uncoupled basis of sector i + 1 is given 

by the product TT(i + 1)T(i). It follows that the R-
. N '\1 

matrix propagator equation, generalised to the n-channel 

problem, may be written 

(3.28) 

The transformation which takes the global R-matrix at 

the right hand boundary of sector i to that at the left 

hand boundary of sector i + 1 ensures continuity of the 

wavefunction and its derivative across the sector wall 

(Light and Walker 1976). Equation (3.28) is a statement 
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of the R-matrix propagator algorithm. It is seen that 

at no stage are the wavefunction or its derivative evaluated 

so the method is stable, .even in the classically forbidden 

regions. 

,Once the end of the integration range (the right 

hand side of the Nth sector) Js reached, the final global 

R-matrix is obtained by transforming from the locally 

diagonal basis back to the original 

R~ ( R~) - T (N) R,(RN) TT(N) ( 3. 29) 
'V IV' ,...., ,.._, 

We shall now consider the implementation of the boundary 

conditions appropriate to bound state problems. 

3.3.2 Boundary and matching conditions 

To start the R-matrix propagation, the global R-
-

matrix at the right hand boundary of the first sector 

must be specified. Similarly the calculation must be 

initialised for the propagation from R to R "d" The max m~ 

boundary.conditions reflect the ~xponential behaviour 

of the wavefunction in the classically forbidden regions: 

(3.30a) 

(3.30b) 
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2. ,2 
A .. and /\ .. are the eigenvalues of the coupling matrices 

JJ JJ 
h h' W(R . + /2) and W(R - /2) respectively .. h and 

~ m1n ~ max 

h' are the lengths of the first sector at either end 

of the integration range (refer to Figure 3.1). These 

boundary conditions are less "severe" than the corresponding 

de Vogelaere ones (3.11) which are equivalent to assuming 

an infinite wall potential at R ·n and R m1 max The R-matrix 

boundary conditions only assume a constant effective 

potential for R ~ Rmin and R ~Rmax' and a consequence 

of this is that a smaller integration range may be sufficient. 

As with the·de Vogelaere method we must integrate 

from both R . and R to R 'd' For the sect6r R-matrices m1n max m1 

given in (3.26) the inward propagation may simply be 

. achieved, as in the de Vogelaere case, by replacing h 

by -h in the R-matrix propagator algorithm. In general 

one can always explicitly use the inverse of (3.28), 

obtaining 'R,(R.) in terms of 'R.(R. 1 ) (Baluja et al., 
- 1 N 1 + . 

1983). Because the R-matrix computer programme available 

to us was a straightforward implementation of the algorithm 

of Stechel et al. (1978), where his assumed to be positive, 

an alternative but equivalent method of inward integration 

was adopted. This involved making the simple transformation 

R' = R - R with W(R') 
max -v 

W(R). This converts a backward 
"' 

to a forward problem. 

Having obtained the final (in the original coupled 

basis) global R-matrix at R 'd' an analogous matching 
m~ 
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.condition to (3.15) is obtained 

R~ ( R . ) - R~ ( R ) 
. rv I . M.~ol 2. Ito\. LJ. ,.., . 

. - 0 
(3.31) 

I I 
,..., IV 

The subscript 1(2) denotes propagation from R . (R ) m1n max 

and the minus sign of R~ is a consequence of the derivative 

convention of Stechel et al. (1978). The identity matrices 

I may be eliminated to obtain the R-matrix matching condition -
for an eigenenergy: 

+ 
(3.32) 

where ·we now have to evaluate the determinant of an 

·(n x n) matrix. That (3.32) follows from (3.31) is immediately 

appar~nt for a single Schroedinger equation. The validity 

of this expression for the general n-channel case follows 

from mathematical induction. Alternatively, (3.32) can 

be justified physically by stating that for an eigenenergy 

the two R-matriees are identical at the matching point. 

Note that had we used the same convention for the derivatives 

as we did in the de Vogelaere method (always measured 

with respect to ihcreasing R), then the R-matrix matching 

condition would involve the difference rather than the 

sum of "E-i and 1~. This convention was adopted in an 

earlier presentation (Danby 1983). 
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An example of the behaviour of the determinant (3.32) 

in the region of an eigenenergy is shown in Figure 3.2(a). 

Also shown are the corresponding plots of the de Vogelaere 

matching determinant (3.15). The matrices F- 1 and F'-1 
. ,.J ~ 

were used to stabilise in Figu·re 3.2(b) and 3.2(c) respectively. 

The origi~ of the ~ales in Figures 3.2(a) and 3.2(c) 

is easily understood in terms of the single channel case 

as occurring when either lf1 (R .d) or l 2f(R .d) becomes 
- m1 ,.J m1 

infinite; in other words when the derivative of the radial 

wavefunction becomes zero. The similarity of these two 

figures, as distinct from 3.2(b), should not be surprising. 

Frequent stabilisation with F'-1 is rather like propagating 
IV 

the R-matrix. 

3.4 Tests of the numerical methods 

To date, no independent calculations on the bound 

states of a molecular dimer, using direct numerical inte-

gration of the close-coupled equations, have been published. 

Extensive results have been reported for theA~HCl dimer, 

and this is, therefore, a convenient sys tern ·an which to 

test the accuracy of the numerical methods we employ. 

The HCl is treated as a rigid rotor and the problem is 

thus a special case of the 2-rotor algebra presented 

in Chapter 2. For these tests we used the empirical 

potential, I, of Dunker·and Gordon (1976b). The potential 

expansion coefficients vq 1 q 2~(R) are plotted in Figure 

3.3. In the atom-rotor problem q 2 =;A= 0 and the potential 
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of the matchirig condition in the region of an 

(a) is a plot of the R~matrix matching deter­

as a functiori of trial energy. The 

de Vogelaere determinant (3.15) is also 
. 1 '-1 

the matrices (b) F- and (c) F were ..., _, 

used to stabilise during propagation. The eigenenergy in 

question is the ground ~ovibrational state of the Dunker 

and Gordon (1976b) potential I (see Section 3.4). 
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The variation with the Ar-HCl centre-of-mass separation 

of the body-fixed potential expansion coefficients (cf. 

equation (3.33)) for potential I of Dunker and Gordon 

(1976b). 
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expansion (2.23) reduces to 

(3.33) 

where P 1 is a Legendre polynomial. All calculations q. 

with this potential were carried out with five rotational 

states, j = 0 - 4, 6n the HCl. The corresponding channel 

energies were determined from the rotational constant 

of HCl, 10.44019 cm- 1 . We illustrate the convergence 

properties of the numerical methods with reference to 

the ground rovibrational state of the Ar-HCl system. 

3.4.1 Convergence properties 

In examining the numerical convergence properties, 

the·parameters of interest are the integration range, 

R - R . , and the number of integration steps per max m~n 

"half-range", N. We took the same number of steps integrating 

the equations from R . to R .d as we did from R to 
m~n m~ max 

R "d' and the step length was kept constant in each half­
m~ 

range, thus: 

(3.34a) 

Nh (3.34b) 

This has the desirable properties of both being easy 

to programme and of having smaller sector widths, h, 
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in the region where the potential is more rapidly varying. 

The latter is important in the R-matrix propagator method 

and also helpful from the point of view of stabilisation 

in the de Vogelaere method. Furthermore, the global 

~rror of the results can be expected to behave monotonically 

with ~ecreasing step length. This is in contrast to 

the erratic behaviour which can result from the use of 

step length algorithms (Light 1983, Mattson et al. 1983, 

Mattson and Anderson. 1984). 

In Table 3.1, the convergence of the ground state 

eigenenergy with respect to the number of integration 

steps per half-range is illustrated. R ·n and R are 
m~ max 

held constant at 5.5 a.u. (Bohr) and 10.0 a.u. respectively. 

The matching point, R "d = 7.4266 a.u. Fo~ N = 100, 
m~ . 

the de Vogelaere method has converged to eight significant 

figures, while the R-matrix propagator has to five. 

Given the errors inherent in the interaction potential, 

these levels of precision are both more than adequate. 

The agreement between the two methods is good; six 

significant figures for N 400. Analysis of the results 

in Table 3.1 shows that the error in the eigenenergies 

obtained with the R-matrix propagator method is proportional 

to.{ 1 /Nl 2 .. This. is seen by noting that for a ( 1 /N) 2 

error, 

(E(N) - 4-
(3.35) 



Eigenenergy (cm-1 ) 

N de Vogelaere R-matrix propagator 

50. -132.495 07 -132.480 62 

100 -132.495 08 -132.491 47 

200. -132.495 08 -132.494 18 

400 .-132.495 08 -132.494 86 

TABLE 3.1 

Convergence of the ground rovibrational state 

of Ar-HC1 (Dunker and Gordon potential) as a 

function of the number of integration steps 

per half range, N. Rmin =·S.S au, Rmax = 10.0 au, 

R .d = 7.4266 au. 
m~ 
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This ratio of eigenenergy differences is equal to 3.985 

for N = 50 and 4.060 for N = 100. Following a suggestion 

by Hutson ( 1983a) this error can be eliminated using 

Richardson h2 extrapolation (Hartree 1958). The corrected 

eigenenergy, E, obtained from the eigenenergies for 

N = 50 and' N = 100 is given by 

E - E(I'J:::. loo) t(E(N~s-o)- E(N=IOo)) (3.36) 

We thus obtain E = -132.49509 -1 em in very good agreement 

with the converged de Vogel~e~e result. Expressions 

analogous to (3.36) for global errors other than O(h2 ) 

may readily be derived (Mattson and Anderson 1984). 

Keeping h fixed in each half-range and halving it in 

successive calculations ensures that the global truncation 

1 error decreases monotonically as a simple power of ( /N), 

guaranteeirii the success of Richardson extrapolation. 

In examining the convergence with respect to increasing 

the integration range, we must be aware nf the loss of 

numerical accuracy resulting from a corresponding increase 

in the step length. In Table 3.2 we keep R . constant 
m~n 

at 5.5 a.u. and N at 400. This large N value ensures 

that changes in the de Vogelaere eigenenergies reflect 

variations due $Olely to the position of the outer starting 

point, R . At R = 9 a.u., the de Vogelaere method max max 



R (au) max 

8.5 

9.0 

9.5 

10.0 

-1) Eigenenergy (em 

de Vogelaere R-matrix propagator 

-'131.879 38 -132.540 51 

-132.475 74 -132.495 42 

-132.494 85 .. -132.494 90 

-132.495 08 -132.494 86 

TABLE 3.2 

Convergence of the ground rovibrational state 

of Ar-HCl (Dunker and Gordon potential) as a 

function of the outer limit of the integration 

range, Rmax· R~in = 5.5 au, Rmid = 7.4266 au, 

N = 400. 
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has converged to four significant figures, the R-matrix 

propagator to six. The differences between the two methods 

in convergence with respect to the inner starting point, 

R . , are less marked, but the better convergence properties m1n 

of the R-matrix propagator method are still evident (Table 

3. 3) . 

To summarise, rapid convergence with respect to 

the number of sectors is attained usirig the de Vogelaere 

method, but the R-matrix propagator method requires smaller 

penetration into the classically forbidden regions . 

. This, as was indicated in section 3.3.2, is due to the 

less severe boundary conditions (3.30). In bound state 

problems for weakly bound van der Waals dimers, where 

there are few oscillations in the radial wavefunction, 

solution following techniques will have faster convergence 

properties. However, the advantage of the R-matrix propagator 

method in requiring a smaller integration range may prove 

useful where reasonably accurate eigenenergi-es are required 

for states lying close to the dissociation limit. 

3.4.2 Comparison with other calculations 

In the paper of Kidd et al. (1981), comparison 

was made with the close-coupling calculations performed 

by Dunker and Gordon (1976b) on Ar-HCl. Dunker and Gordon 

used a piecewise analytic method, described by Gordon 

(1971) and Dunker and Gordon (1976a). Kidd et al. used 

the "amplitude density" method of Johnson and Secrest 



R .n(au) 
m~ 

6.5 

6. 0. 

5.5 

5.0 

4.5 

-1 Eigenenergy (em ) 

de Vogelaere R-matrix propagator 

-132.214 54 -132.526 02 

-132~494 89 -132.494 92 

-132.495 08 -132.494 86 

-132.495 08 -132.494 79 

-132.495 08 -132.494 70 

TABLE 3.3 

Convergence of the ground rovibrational state 

of Ar-HCl ·(Dunker and Gordon potential) as a 

function of the inner limit of the integration 

ra.nge, Rm~n· R = 10.0 au, R "d = 7.4266 au, 
L max . m~ 

N = 400. 
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(1968) to solve the. coupled equations. This is an approximate 

solution approach and so might be expected to have convergence 

properties closer t6 those of the de Vogelaere than the 

R-matrix propagator method. 

In Table 3.4 we give the eigenenergies of the ground 

rovibrational state at different values of the total 

angular momentum, J. The only other good quantum number, 

the parity E , is also given. The ~alues obtained with 

the R-matrix propagator and de Vogelaere methods are 

compared with the results of Kidd et al. (1981) and Dunker 

and Gordon (1976b). For comparison purposes the same 

integration parameters were used in our two methods; 

R ·n = 5.5 a.u., R = 10.00 a.u. and N = 200. The 
m~ max 

matching point, R "d = 7.4266 a.u. The potential energy 
m~ 

parameters, HCl rotational constint, and conversion factors 

used were those given by Kidd et al. (1981). 

c 
The agreement we obtain with Kidd et al. is very 

good; to within two in the sixth significant figure. 

The de Vogelaere results are in rather better agreement 

than those using the R-matrix propagator method because 

of the poorer convergence properties of the latter with 

respect to number of sectors. The calculations of Dunker 

and Gordon were in single precision arithmetic, and this 

is a likely cause of the discrepancies with their results. 

The computer time, per trial energy, required by our 

two methods, with N = 200, is similar : about 2.5 s for 



Present calculations 

Dunker and 
n J E. de Vogelaere R-matrix Kidd et al. Gordon 

5 0 1 -132.4951 -132.4942 -132.4954 -132.436 

9 1 -1 -132 . .3821 ~132.3812 -132.3824 -132.315 

12 2 1 -132.1561 -132.1552 -132.1566 -132.092 

14 3 -1 -131.8173 -131.8164 -131.8178. 

15 4 1 -131.3656 -131.3647 -131.3663 

15 5 -1 -130.8013 -131.8004 -130.8022 

TABLE 3.4 

Ground-state eigenenergies (cm-1 ) at different total 

angular momentum, J. The parity,£, and the dimensionality, 

n, of the basis set which includes rotor siates j = 0-4 

are also given. For the present calculations, the inte­

gration parameters used were: N = 200, R ·n = 5.5 au, 
m~ 

R = 10.0 au, R "d = 7.4266 au. Potential I of Dunker max m~ 

and Gordon (1976b) was used. 
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n = 5 (J = 0) and ·about 35s for n = 15 (J = 4,5). The 

calculations were performed on an IBM 370/168 machine. 

So far all of our tests have been carried out using 

the Dunker and Gordon potential plotted in Figure 3.3. 

This section will be concluded with the results of some 

calculations on an Ar-HC1 potential with a significantly 

shallower well and more anisotropic terms. The number 

and size of the anisotropic terms, together with the 

relatively small HC1 rotational constant, lead to the 

basis (j) states being strongly coupled. The potential 

is due to J.A. Vliegenthart and A. Rozendaal, full details 

of which are given by Kidd et al. (1981). The expansion 

coefficients V 1 2(R) for this potential are plotted 
. q q f" 

·in Figure 3.4, which may be compared to Figure 3.3. In 

Table 3.5 we present the results of calculations on 

two levels using the R-matrix propagator method. The energy 

levels chosen are those for which Kidd et al. carried out 

detailed convergence tes~s, enablirig them to give definite 

error estimates. These calculations are for J = 0 and 

a basis expansion j = 0-9. The parity,£= (-)j +~ 

~ 1. We took the same integration range (2- 21 a.u.) as 

Kidd et al. Eigenenergy 1 is the ground rovibrational 

f ( -1 state o Ar.- HC1 some 37 em higher than the value 

obtained with the Dunker and Gordon potential in this section). 

Eigenenergy 2 is a state lying close to the dissociation 
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The variation with the Ar-HCl centre-of-mass separation 

of the body-fixed potential expansion coefficients for 

the Vliegenthart and Rozendaal potential described 

in Table 1 of Kidd et al. (1981). 



N = 100 

N 200 

Richardson h 2 

extrapolate 

Kidd et ai. 

Eigenenergy 1 

-95.289707. 

-95.329388 

-95.3429 

-95.3429.:::0.001 

TABLE 3.5 

Eigenenergy 2 

-5.0057807 

-4.9895762 

-4.9845 

.:..4.9854 + 0.02 

Calculations of two rovibrational states of the Vliegenthart 

and Rozendaal Ar-HCl potential in Figure 3.4. A Richardson 

h 2 extrapolate was obtained from calculations employing 

a total of 200 (N = 100) and 400 (N = 200) steps. 

Also presented are the results and error bounds of 

Kidd et al. (1981) who used a total of 400 integration 

steps. All . . -1 
energ~es are ~n em 
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limit. It is seen that in both cases, our estimate 

of the eigenenergy, using a Richardson h 2 extrapolation 

of the results for N = 100 and N = 200, lies well within 

the error bounds quoted by Kidd et al. Th~ir results 

were obtained using a total of 400 sectors, presumably 

requiring similar computational effort to our N = 200 

calculation. 

The high level of agreement between the R-matrix 

propagator, de Vogelaere and Johnson and Secrest algorithms 

is encouraging. The results of this section allay the 

reservations expressed by Light and Walker (1976) about 

the suitability of the R-matrix propagator method for 

use in coupled channel bound state problems. It should 

be emphasised that all of the calculations described 

in this chapter are purely for test purposes .. Close­

coupled bound state calculations on the Ar-HCl dimer 

using more realistic potentials have been performed 

by Hutson and Howard (1982) and Hutson (1984). 

In the following chapter we shall apply the numerical 

methods of the present chapter and the algebraic methods 

of Chapter 2 to the H2 - H2 dimer. Before doing so, 

alternative approaches to finding the bound states of 

van der Waals molecules will be discussed. 
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3.·5 Alternative methods for finding bound states 

3.5.1 Matching conditions 

The implementation of the boundary conditions of 

the bound state problem for a single Schroedinger equation 

is consider~bly simpler than the more general n channel 

case presented so far. It is well established that 

a shooting procedure is a satisfactory way of finding 

the eigenenergies (Eisberg 1961). A trial energy is 

chosen and the solution F(R) propagated from R . into 
m~n 

the right hand side classically forbidden region. 

Unless an eigenenergy was fortuitously chosen, the wave-

function will either approach the axis before rising 

exponentially in magnitude, ~r it will cross the axis 

and continue exponentially. One eigenenergy (or some 

other odd number) lies between two trial energies for 

which the trial iolutions differ in sign at large R. 

The ·eigenenergy may be located using Bolzano'smethod 

(taking the next trial energy to be midway between the 

first two). For a single Schroedinger equ~tion the 

time consuming integration is, therefore, taken no further 

than necessary, and there is no need to carry out tests 

·to determine either a suitable matching point R .d or 
m~ 

upper limit to the integration range R . The behaviour max 

of the wavefunction as the trial energy passes through 

an eigenenergy has been nicely illustrated by Hajj (1980). 

A number of highly automated computer programmes adopting 
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the above shooting approach for a single Schroedinger 

equation have been written and are suitable for use 

as "black boxes" (e.g. Foglia 1984). An exception is 

the work of Cooley (1961) who preferred the forward 

and backward propagation, for solving a single Schroedinger 

equation, as this enabled him to develop a particularly 

efficient method for iterating to an eigenvalue. 

It is instructive to consider the difficulties 

encountered when we try to apply the shooting technique 

to systems of coupled equations. Consider the simplest 

case of equation (3.1) with two coupled channels. 

F (R) 
J 

j = I) 2 (3.37) 

At R = Rmin we set F1 = F2 = 0 and we are free, because 

of the homogeneity of the Schroedinger equation, to 

specify an arbitrary value for one of the initial derivatives, 

say F{(Rmin)(= ~l(Rmin)). We now have to search over 

two unknowns, F2'(R . ) and E, in order to find the eigen-
m~n 

energies for which F1 (R ) = F2 (R ) = 0. In principle · max max 

the differential equations (3.37) maybe integrated for 

trial values of these unknowns and some form of inverse , 

interpolation used, guided by the form of the solutions 

in the asymptotic· region. A more systematic method 
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based on Newton's process has been described by Fox 

(1960). For the problem at hand, Newton's process gives 

rise to two simultaneous equations for the corrections, 

$Fz(Rmin)and ~E, to the trial values of F2(Rmin) 

and E: 

~ E ? Fi ( R P\~~) t- ~ Fi I d F;, ( R ~""' ') + ~ ( R n-. A )f) == 0 ( 3 . 3 8 ) 

?E -;)F./ 
.l. 

For clarity the Rmin argument has been dropped. F1 (Rmax) 

and F2 (R ) are found by numerically integrating the max . 

coupled equations. The coefficients of ~E and ~F~ 

have to be found by numerical integration of differential 

equations obtained by differentiating the Schroedinger 

' equation with respect to E and F 2 . The boundary conditions 

for these at R . are obtained directly from those for m1.n 

(3.37). Once E and F2 have been corrected using (3.38) 

the procedure is repeated until E. and F~ no longer change 

to within a specified tolerance. It is clear that this 

procedure will become very complicated for large systems 

of coupled equations, though it does avoid the need 

for propagating a matrix of solutions rather than a 

single column. If ·the iterative procedure was efficient 

then this would result in a saving of CPU time. A good 

initial estimate of the eigenenergy as well as the starting 
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solution derivatives is critical to the method's 

efficiency. In addition, Fox (1960) sometimes obtained 

false eigenvalues when he failed to choose a large enough 

value of R This occurred when one of the components max· 

of the solution happened to cross the axis, changing 

sign at R · . Fox attempted to solve a maximum of 3 max · 

coupled equations. With these problems in mind, we 

opted to follow Gordon (1969) in p~opagating a set of 

solution vectors in both the forward and backward directions, 

and matching at R .d. 
ffiL 

The backward propagation is avoided in an important 

t~chnique, devised by Shapiro (1972) and deveioped for 

bound state calculations by Shapiro and Balint-Kurti 

(1979), known as the artificial channels method. This 

involves converting the bound state problem into a scattering 

calculation by the addition of two unphysical channels 

which are open at large R. These channels, which we 

denote by ~ and 7', are. not directly coupled to each 

other but ar~ coupled to the (closed) channels of the 

bound state problem, collectively denoted by ~ . The 

augmented coupling matrix has a special asymmetric form 

which permits coupling of 1 to f via o< but not 

~ to ry. 

( v~" - E 
0 Vr></( 

W (R) - X 'Lj-A 
v~c~. v~~ -£ 0 "v 

0 0 v
7

ty -E 

( 3. 39) 
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Shapiro and Balint-Kurti (1979) chose exponentially 

d · f -bR f V V d ecay1 ng orms, ae , or ~~ , rr , V~ol. an Vcl.ty. They 

pointed out, however, that the bound state energies 

yielded by their method were completely insensitive 

to the values of a and b chosen. Figure 3.5 is a schematic 

representation of the diagonal elements of the augmented 

·effective p_otential matrix for the example of a single 

Schroedinger equation (Shapiro and Balint-Kurti 1977). 

Using numerical methods, such as those described in 

Sections 3.2 and 3.3, the coupled equations may be inte-

grated outwards into the asymptotic region. At this 

point, scattering boundary conditions (see Chapter 5) 

may be applied. The transition probability or T-matrix 

element, T ~~ r{ , may thus be ob.tained. It has been 

shown that this T-matrix element may be written as a 

sum of contributions from all of the bound states, 

¢b ( R), of Vo<rl. ( R). plus an integral over the continuum 

states (Shapiro .arid Balint-Kurti 1979): 

+ continuum contributions (3.40) 

?<~ and X r are the scattering states of channels 

~ and t( in the zero coupling limit. (3.40) shows that 

has a pole whenever the total energy E is 
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Figure 3. 5. 

The diagonal elements of the 3 x 3 effective potential 

matrix corresponding to a single channel ( CX. ) bound 

state problem (Shapiro and Balint-Kurti 1977). 
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equal to a bound state energy £b. The bound state 

proble~ has thus been reduced to one of calculating 

the T-matrix at a range of trial energies and locating 

the poles in T ~~ 1 . 

It may be observed that the artificial scattering 

problem constructed above bears a striking resemblance 

to the physical problem of the Raman scattering of light 

·by molecules (Weissbluth 1978). In this analogy p and 

r,( correspond to the final and initial molecular states. 

These are not directly coupled by the transition dipole 

moment induced by the incoming photon, but only indirectly 

via intermediate states ( ~ ). An expression similar 

to (3.40) is obtained for the transition matrix element 

which, if the finite widths of the intermediate states 

are unaccounted for, possesses similar poles (Bransden 

and Joachain 1983). 

In order to construct the appropriate scattering 

boundary conditions in the artificial channels method 

it is necessary, as with bound state boundary conditions, 

to propagate a matri~ of solution vectors. In this 

case each column vector represents an initial state 

of the system. Thomas (1979, 1982) has had considerable 

success with an iterative approach in which scattering 

from ~ single initial state only is considered. This 

yields a single column of the T-matrix. Though Thomas 
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solved the problem in integral form, it is equivalent 

to propagating a single solution vector and iteratively 

searching for the correct starting derivatives. The 

method gains in speed over co-nventional methods providing 

the total number of iterations is much smaller than 

the dimensionality of the problem. 510 close-coupled 

equations have been solved by the Thomas (1982) method. 

In the artificial channels approach, one .is not 

interested in the whole T-matrix; just a single element. 

The bringing together of Thomas' work on scattering 

calculations with the ~rtificial channels method, heeding 

the lessons of Fox (1960), could produce a useful method 

for ·calculating bound states. Furthermore, information 

gleaned at the first trial energy could be used to reduce 

the number of iterations needed to find the correct 

scattering solution at subsequent energies. The method 

could find application in calculating the bound states 

of systems requiring very large numbers of coupled equations. 

Examples of such systems are provided by semi-rigid 

van der Waals molecules (e.g. He-1 2 ) or conventional 

"floppy" system$ such as H; and KCN. 

3.5.2 The centrifugal decoupling method 

So far in this chapter, we have discussed the solution 

of the bound state problem using the full close-coupling 

(cc) method. We now outline an approximate method which 
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requires a body-fixed formulation for its implementation. 

In the body-fixed frame the potential matrix elements 

are diagonal in the JL quantum number; only the coriolis 

interactions couple states of different ~ (see equation 

(2.32)). The centrifugal decoupling (CD) or coupled 

states method involves neglecting these coriolis terms. 

In scattering calculations, for which this approximation 

has been widely made (e.g~ Dickinson 1979), the diagonal 

/').. 
~ matrix elements (equation (2.31)) are ~lso sometimes ,.., 

approximated. The true values should be retained when 

calculating bound states. The CD approximation thus 

leads to a coupling matrix W which is block diagonal 

in ~ (Rabitz 1975). The bound state problem may 

thus be ~olved sepaiately for each block resulting in 

a saving in CPU time. Within the CD approximation ~ 

becomes a good quantum number and may be used for bound 

state assignments. Furthermore, as can be seen from 

equation (2.15), the basis set for .:ii. I= 0 is independent 

of the parity £ In other words, for ~ I= 0, the 

coupled equations need only be solved for one parity; 

levels differing only in £ thus become degenerate 

(Tennyson and van der Avoird 1982a). 

The CD method has been applied to the Ar-HCl dimer 

by Kidd et al. (1981). This is a favourable system 

both because the strong potential coupling makes the 

coriolis terms relatively unimportant, and because the 
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dimer is a near symmetric top (for which ~ is a good 

quantum number). Kidd et al. (1981) compared CD with 

cc calculations of the ground state eigenenergy for 

a range of total angular momenta, J. The error in the 

CD results was found to increase with increasing J, 

reflecting the growing importance of the coriolis coupling. 

The range of systems which could be studied by 

the CD method could be extended.in a number of ways. 

Rabitz (1975) has suggested including only selected 

coriolis couplings, while Hutson and Howard (1980) have 

used perturbation theory to correct for neglect of these 

terms. Perturbative correction of CD results has also 

been applied to scattering problems by Secrest (1983). 

The CD method has been applied in bound state cal­

culations of the strongly coupled molecular dimers 

(HF) 2 (Barton and Howard 1982) and (N2 ) 2 (Tennyson and 

van derAvoird 1982a). In the latter example, eigenvalues 

accurate to within 0.1 cm- 1 were obtained for states 

where the full coupling matrix was too large to allow 

more accurate cc calculations to be made. Tennyson 

and van der Avoird solved these CD equations not by 

numerical integration, b0t by the secular equation method 

which we now describe. 
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3.5.3 The secular equation method 

So far we have solved the coupled equ~tions for 

the radial w~vefunctions by direct numerical integration. 

Alternatively we may use the variational principle and 

expand the radial coordinate in terms of an orthonormal 

set of states (LeRoy and van Kranendonk 1974): 

~ (R) ( 3. 41) 

n represents the stretching quantum number of the van 

der Waals bond. It is more convenient to define '\f/1\ (R.) 
as being the same for all radial channels k, though 

the radial expan~ion coefficients a k will, as indicated, . n 

generally differ. Substituting (3.41) into the close­

coupled equations (3.1), and projecting with '\f'M..(R) 

yields a set of linear equations of the following form: 

0 
( 3. 42) 

In the notation of Chapter 2, the Hamiltonian matrix 

is given by 

H 0 It, =Jv.*(R) ( {k, [-.L L + EJ + WJ ~v(R)j"f(R\iR 
~J)~ 1\'1. J .2~ d.R.l. - n. ) (3.43) 

• • 0 2_/'( 

Uniqtie solutions of (3.42) exist only if the determinant 

of the matrix in ·brackets is zero, and this condition 

yields a secular equation for E. The problem of solving 
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the close-coupled equatiorts thus reduces to one of 

diagonalising the Hamiltonian ~atrix. The eigenenergies 

E and eigenvectors a thus obtained are frequently labelled 
,.v 

with a set of quantum numbers 0( (= n j 1 j,_ j11. ..Ji. . 

representing the basis state to which they correlate 

in the isotropic limit (LeRoy and Carley 1980). Tennyson 

and van der Avoird (1982a) have coined the term LC-RAMP 

(Linear Combination of Radial and Angular Momentum 

function~ Pr6ducts) to distinguish the secular equation 

method outlined here from its implementations in other 

types of problems (e.g. in electronic structure calculations). 

In order to generate the Hamiltonian matrix it 

is necessary to perform radial integrations over d 2 /dR2, 

1/R2 and V (R). It is important to choose radial 
q1 q2AA 

basis states for which these matrix elements are straight-

forward to evaluate. The number of terms in the expansion 

(3.41) required to provide.an accurate representation 

of the wavefunction should be as small as possible, 

to avoid having to diagonalise an unwieldly Hamiltonian 

matrix. One possibility is to define "f n(R) to be 

the bound eigenstates of a single radial Schroedinger 

equation: 

+ ~00 (R) -£(tt/<.)}'\f',JR) =- 0 

(3.44) 
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This equation may be obtained from the close-coupled 

equations in the. body-fixed frame by setting J = 0 and 

neglecting the potential anisotropy. In this case 

The "basis generating potential" (Le Roy and Carley 

1980) is taken to be the isotropic part of the diatom-

diatom interaction, though other choices are possible. 

For complexes undergoing strongly hindered internal 

rotation, the radial potential obtained by fixing the 

monomer orientations at their equilibrium values may 

lead to fewer ~ n(R) being needed (Tennyson and van 

der Avoird 1982c). Numerical solution of the basis 

generating equation (3.A4) can yield a complete set 

of orthonormal states for any single value of ~ 

In the weakly coupled hydrogen-rare gas systems, where { 

is approximately conserved, a value corresponding to 

the dimer state of interest was chosen by Le Roy and 

Carley (1980). Tennyson and van der Avoird (1982c) 

chose ~ = 0 for all their calculations on the strongly 

bound floppy molecule KCN. This gave rapid convergence 

as the effective radial potential was quite insensitive 

to changes in ,.t 

In st~ongly bound conventional molecules which 

have a large number of bound states, or in weakly coupled 

van der Waals systems when ~ is approximately conserved, 

the above approach has been shown to be satisfactory. 
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For strongly coupled van der Waals molecules, ~ is 

no longer go6d and there may not exist a sufficiently 

large number of bound solutions of (3.44) to achieve 

convergence. This problem can be overcome by placing 

an infinite wall in the ·basis generating potential at 

some large· radial separation Rw. R should be beyond w 

the classical turning point Df the highest eigenstate 

of inter~st, if the radial behaviour of the dimer wave-

function 1s to be properly represented in a physically 

important region. However, if R is too large the positive w 

eigenenergies of (3.44) representing the continuum become 

more closely bunched. Relatively more terms are then 

needed to achieve a given degree of flexibility in the 

description of l(R). In general some experimentation 

is necessary to establish a suitable compromise, though 

a more formal _procedure of minimising the dimer eigen­

values with respect to Rw, for a fixed basis set size, 

could be used. L.e Roy et al. ( 1982) chos.e Rw to maximise 

the amplitude of the dimer eigenfunctiohs. Le Roy et 

al. (1977) have used the infinite wall approach to 

calculate the ground rovihrational state of the Ar-H Cl 

dimer,.using the potential of Figure 3.3. They obtained 

. -1 
a value of -132.497 em which differs from the true 

-1 ( ) value by only 0.002_cm see Tables 3.1, 3.2 and 3.3 . 

This m~thod has also been used by Tennyson (1982) in 

his study of the. very weakly bound H3 molecule. 
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The use of numer~cal radial basis states has been 

reviewed by LeRoy and Carley (1980). A final point 

is that the numerical solution for ~n(R) yields the 

matrix elements over d 2 /dR2 in (3.43) directly. This 

is because the total Hamiltonian may be written in terms 

of the basis generating Hamiltonian plus the anisotropic 

potential terms and terms in 1/R2. 

An alternative approach is to use a set of analytic 

·polynomial functions in the radial coordinate. This 

avoids having both to perform numerical integrations 

of (3.44) and the need to retain the basis states, over 

a fine grid, in storage. Tennyson and Sutcliffe (1982) 

introduced the use of Morse oscillators which are 

based on associated Laguerre polynomials, for finding 

the bound states of KCN and H2-Ne. For these functions 

the matrix elements over d 2 /dR2 are analytic while the 

others must be evaluated by numerical quadrature. Associated 

with a single complete set of oscillators are 3 parameters; 

these are related to those of the associated Morse potential, 

namely the dissociation energy (De), the fundamental 

vibration frequency (We) and the position of the potential 

minimum (Re). These may be adjusted so as to minimise 

selected dimer eigenvalues for a small radial and angular 

. basis set calculation. A larger basis, using these 

optimised parameters, may then be used for production 

runs. For the KCN molecule, Tennyson and Sutcliffe 

u 1 
~ ~ 
z ~ 
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(1982) found that a basis set of Morse oscillators, 

variationally optimised in this way, required the same 

number of terms to give converged results as earlier 

calculations using a numerically generated basis (Tennyson 

and van der Avoird 1982c). Furthermore, the 444 dimensibnal 

Hamiltonian matrix took only a tenth of the CPU time 

to construct. 

Spherical oscillator-like functions have also been 

used (Tennyson and Sutcliffe 1983b). For these fun~tions, 

which have 2 adjustable parameters, the matrix elements 
2 . 

over 1/R2 as well as d /dR2 are analytic. In their 

+ work on H3 , Tennyson and Sutcliffe (1984) compared the 

performance of these with Morse oscillators and found 

the latter to be better. This they attributed to the 

additional flexibility provided by the extra adjustable 

parameter in the Morse case. 

Two "black box" computer programmes have been produced 

to study atom-diatom (or triatomics in general) systems. 

One uses Morse oscillators (Tennyson 1983), the other 

spherical oscillators (Tennyson 1984). The latter has 

been used in studies of the CH~ molecule for which the 

line~r H-C-H configuration is important (Tennyson and 

Sutcliffe 1983b). This corresponds toR= 0, for ~hich 

Morse functions do not obey the correct (vanishing) 

boundary conditions. 
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The secular equation method has been applied to 

th~ diatom-diatom system N2-N2 (Tennyson and van der 

Avoird 1982a) using an extension of the first of the 

computer codes referred to above. They were able to 

solve up to 675 close-coupled equations with this method, 

an order of magnitude larger than the number feasible 

~i~h th~ de Vogelaere and R-matrix propagators. However, 

it should be clear from the discussion above that the 

problem of finding a suitable radial basis is non-trivial. 

Furthermore, the accuracy of the eigenenergies obtained 

tends to diminish significantly for higher states. 

For these reasons, the numerical solution of the close­

coupled equations, which is equivalent to using an infinite 

R-basis, will remain an important technique for calculating 

bound state. energfes. 

3.5.4 Angular-radial decoupling methods 

We end this chapter with a description of methods 

which incorporate most of the ideas so far discussed. 

The methods rely ori an adiabatic separation of the 

stretching motion of the van der Waals bond from internal 

motions in a way which is analogous to the Born-Oppenheimer 

(BO) separation of electronic and nuclear motion. The 

case of two rigid rotors will be considered; the extension 

to vibrators should be straightforward, though no cal­

culations including this degree of freedom have yet 

been carried out. 
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We partition the Hamiltonian (2.2) into the sum 

of a r~dial and angular part. 

H 

where 

+ 

- J_ 

~R. 

(3.45) 

(3.46) 

is the radial kinetic energy operator. The angular 

(or fixed-R) Hamiltonian, is given by 

H (R I ~I ; 2. R ) . = { ~ 
0 ,., ) "' ) - ;::.--. 

yR'-

+ h + J, + V ( f-, f,__ R) 
I ~ ,..,. ),.., '/ (3.47) 

Assuming the rotational motion is much faster than the 

stretching of the dimer bond, we fix R to obtain an 

equation analogous to the electronic wave equation in 

the BO approximation 

0 

(3.48) 

The eigenfunctions of· this angular equation depend para-

metrically on R. They may be labelled by the quantum 

numbers (j 1 ,j 2 ,j 12 i.ii.) = ex. Equation (3.48) may be 

solved by expanding f;E in terms of the set of basis . 
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functions "j(j1 j 2 j 12 ft.JMt i£ 1 ,g.~) given in (2.15). 

The resulting linear equations are solved by diagonalising 

the H
0 

matrix, the elements of which have been given 

in the preceding chapter. This procedure is repeated 

on a grid of R values to obtain the angular eigenvalues 

U~ E. ( R) . These form effective isotropic potentials 

for the radial motion. They are independent of whether 

space-fixed or body~fixed (as here) basis functions 

d · h · of ·f~~ · d d h 1 are use ~n t e expans~on ~ , prov~ e t at a comp ete 

set is used. Le Roy and Carley (1980) have given a 

detailed presentation for atom-rotor systems using space-

fixed coordinates. 

The exact total" wavefunction may now be expanded 

in terms of the f~£ , which form a complete orthonormal 

set (:lt each.R. 

(3.49) 

Inserting this in the Schroedinger equation (2.1) and 

JE. . 
projecting with f , ·yields a system of coupled equations 

o(. 

for the radial functions 1(o< 

t: -r;_ -f:o( x<>< (R) 

+ .[ Uo(, (R) - c] /(o<, (R) =::: 0 ( 3. 50) 

Because the angular eigenfunctions depend on R, the 

effect of TR is given by 
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( 3. 51) 

If the _angular eigenfunctions vary slowly with R, the 

last two terms on the ·right hand side of (3.51) can 

be neglected. The equations then decouple to yield 

a one-dimensional radial Schroedinger equation 

0 
( 3. 52) 

The association of U r><' ( R) with an effective angular 

potential for radial motion should now be clear. 

An indication of the accuracy of this approach 

can be obtained by including the adiabatic (diagonal) 

correction term 

(3.53) 

The last te~m of (3.51) contributes only to non-adiabatic 

coupling between angular states (Holmgren et al. 1977). 

The adiabatical~y corrected radial equation is thus 

given by 

(3.54) 
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Either (3.52) or .(3.54) may be taken as a statement 

of the Born Oppenheimer Angular Radial Separation (BOARS) 

method, as developed by Holmgren et al. (1977). These 

equations are analogous to the nuclear wave equation 

in the BO approximation; they may be solved by numerical 

integration using the methods described earlier in this 

chapter. In .their work on Ar-HCl, Holmgren et al. (1977) 

showed that equations (3.52) and (3.54) provide rigorous 

lower and upper bounds respectively to the ground state 

energy for each value of J. The difference between 

these bounds was typically 1.5- 4.0 cm- 1 , depending 

on the potential energy surface used. They used the 

centrifugal decoupling approximation throughout but 

included the coriolis .terms in a subsequent paper 

(Holmgren et al. 1978) also on Ar-HCl. In this later 

paper they applied the BOARS method to the determination 

of a pot~ntial energy surface by least squares fitting 

to experim~ntal data. 

The non-adiabatic coupling between different angular 

states, caused by the last two terms in (3.51) is sometimes 

significant. This fact led Hutson and Howard (1980) 

to develop the Corrected Born Oppenheimer (CBO) method 

in which these correction terms are treated using 

perturbation theory. In the only diatom-diatom system 

studied to date; (HF) 2 , Barton and Howard (1982) also 
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treated the J-dep~ndent and Coriolis parts of the Hamiltonian 

by perturbation theory. This simplified the solution 

of the. angular equation (3.48) and allowed spectroscopic 

observables, such as the rotational constant of the complex, 

to be calculated directly. 

Prov{ded the perturbation theory expansion is rapidly 

convergent, the CBO method produces eigenenergies comparable 

in accuracy with secular equation and direct numerical 

integration results (Hutson and Howard 1980). However, 

for some potential energy surfaces the angular eigenfunctions 

f J£ dl R h h h h ~ can change rapi y with ; t is can appen w en t e 

equilibrium geometry of.the dimer suddenly changes due 

to sign changes in the anisotropic terms of the inter-

molecular interaction The Reve~sed Adiabatic 

(~A) method of Hutson and Howard (1982) circumvents this 

problem by separating the angular and radial motions 

in the opposite order to the CBO and BOARS methods. 

In the case of two diatoms, this involves fixing the 

geometry of the dimer·and solving the following Schroedinger 

equation for the stretching of the van der Waals bond: 

+ V(~,) t).) R) - U J X({,)~l./~ I R) = o 
(3.55) 

This procedure is repeated on an angular grid to yield 

~ " .... effective potentials for angular motion U(E1 ,E 2 ,~l. 
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The resulting one-dimensional angular Schroedinger equation 

may be perturbatively corrected to account for non-adiabatic 

couplings between the different radial eigenfunctions 

of (3.55j. TheRA method is accurate if the radial wave­

function does not change rapidly with the geometry of 

the comple~. In the rare gas - HCl systems to which 

it has been applied (Hutson and Howard 1982) this. was 

found to be less restrictive than the conditions imposed 

on the CBO (and BOARS) method. The RA method, without 

non-adiabatic corrections, is analogous to the infinite 

order sudden approximation (IOSA) of scattering theory 

(e.g. Dickinson 1979). 



CHAPTER FOUR 

THE H2 - H2 DIMER 
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4.1 Introduction· 

Moleculai hydrogen is the most abundant molecule 

in the interstellar medium with a typical number density 
6 3 . . 

of 10 em- in dense molecular clouds. A knowledge 

of the cross sections for rotational e~citation of 

H2 by collisions with other H2 m6lecules may be used 

to glean information on the physical properties of 

these interstellar clouds. As an example, such cross 

sections are a necessary handle in models of radiative 

cooling (Draine et al. 1983)~ These collisional cal-

culations ~ay·be carried out provided an accurate inter-

molecular potential is available~ · The H2-H2 potential 

may be calculated using a variety of quantum mechanical 

methods. The purpose of this chapter is to investigate 

the usefulness of spe·c·troscopy of the corresponding 

molecular dimer in assessing calculations of the potential 

energy surface. 

In Chapters 2 and 3, the problem of calculating 

bound state energies of molecular dimers has been con-

sidered and a solution formulated. The solution is 

bas~d on numerical integration of the close-coupled 

equations derived in Chapter 2. The algebra presented 

there is applicable to van der Waals ·molecules comprising 

any pair of distinguishable or identical heteronuclear 

. or homonuclear 
1L diatomics, treated as rigid rotors. 

Results based on four independent calculations_ of the 

H2 - H2 intermolecular potential will .be discussed 
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here. 

The potential of Kochanski (1975) was computed 

using a hybrid technique in.which the dispersion (inter­

molecular correlation) energy is evaluated from second­

order perturbation theory and added to the SCF energy 

of the "supermolecule" H2 H2 . This approach is econ-

omical in terms of computer resources and, as such, 

is tractable even for heavier systems, e.g. CO-H2 

(Prissette et al. 1978, Flower et al. 1979) and OH-H2 

(Kochanski and Flower 1981). 

The three remaining potentials (Burton and Senff 

1982; Meyer and Schaefer 1985, Schaefer and Liu 1985; 

Schaefer and Meyer 1979) derive from configuration 

interaction (Ci) calculations, in which the contribution 

of the dispersion energy to the total interaction pot­

ential is already included. The Meyer-Schaefer-Liu 

potential has been used in calculations of a wide range 

of physical properties for which experimental results 

are available. Calculations of differential cross 

sections have been compared with the experimental measure­

ments of Buck (1982) and Bucket al. (1983a,b). A 

variety of transport properties, rotational relaxation 

and line broadening phenomena have also been calculated 

with this surface (Kohler and Schaefer 1983a,b). 

We compare the results of our bound state calculations 

with those of Verberne and Reuss (1981), who employed 

a potential almost identical to that of Meye~, Schaefer 

and Liu. After comparing our results with the spectra-
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scopic measurements of McKellar and Welsh (1974) we 

go on to briefly discuss the validity of using the 

rigid rotor approximation for this system. This chapte!, 

therefore·, complements and updates the pioneering work 

of Gordon and Cashion (1966) in which empirical isotropic 

potentials were uied to analyse the earlier and less 

detailed spectra of Watanabe and Welsh (1964). Con-

elusions ar~ drawn regarding the relative merits of 

all four calculations of the H2 - _H 2 potential surface, 

cited above. 

4.2 The H2 - H2 interaction potential 

As noted in Chap~er 2, the interaction potential 

between two diatomic molecules may be expanded in terms 

of space-fixed (SF) or body-fixed (BF) coordinates. 

In SF coordinates, 

( 4 .1) 

where 

rq 'h. 'Ill. ::: L_ 
V

1 
Y V . h\.l '"-.z IY\.IL 

in which Cis aClebsch-Gordan coefficient andY a qm 

h . 1 h . f . A' A' sp er~ca armon~c unct~on; E1 ,E2 denote the 
1\ 

orientations of th~ intramolecular axes and R is the ,., 

orientation of the intermolecular vector, relative 

to an SF coord{riate system. In BF coordinates, 

( 4. 3) 
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where 

~ t 11" (\,r (£,) \>? (~ J + ~ ..,.. (:f') {,) t~ V . ( 4. 4 1 
-J 

X (I+ a/"o) 
The representations (4.1) and (4.3) are related through 

a unitary transformation given in Chapter 2 (equation 

(2.27)). 

Values· of the coefficients A000 , A202 = Ao 22 , 

A220 , A222 and A224 on a radial grid between R = 3 a.u. 

and R = 11 a.u. have been published by Schaefer and 

Meyer (1979), who also give the coefficients of the 

long range (van der Waals) interaction. We shall refer 

to this potential as SM79. For each value of the inter­

molecular distance, Schaefer and Meyer carried out 

a CI calculation at six angular geometries. These 

are shown in Figure 4 .1. The energy of the 6 "geometry" 

is defined as the difference between the interactions 

calculated for the trapezoidal and parallelogram geometries. 

By substituting the five resultant energies in equation 

(4.1), a set of five linearly independent algebraic 

equations result. These may be solved by matrix inversion 

to obtain the A '\.• \ '1. '\.12. The CI calculations were 

performed with the intramolecular separations, r 1 and 

r 2 , fixed at 1.449 a.u. This corresponds to the expectation 

valu~ of r in the ground rovibrational state of the 

isolated monomer. 

It should be pointed out that the basis set super-

position error is not corrected for in the SM79 potential 

as this was found to yield better agreement with elastic 
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Figure 4.1. 

The angular geometries and corresponding interaction 

energies of H2-H2 referred to in the text. The intera~tion 

energy V(-6.) is needed to.evaluate the v221 term in the 

body-fixed expansion (4.3). 
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scattering meaiurements (Schaefer and Meyei 1979). 

For the SM79 potential ~t R > 11 a.u., the van 

der Waals coefficients o~ the asymptotic 1/R expansion 

are used. These were calculated using standard (Rayleigh­

Schroedinger) perturbation theory, in which the true 

wavefunction is expanded as a sum of products of the· 

wavefunctions of the isolated monomers. Details of 

the cal~ulation, which used a large basis set, have 

been given by Meyer (1976). 

From the SF potential expansion coefficients cal­

culated by Schaefer and Meyer we have obtained the 

corresponding BF coefficients V (R) which are plotted 
q1 q2 fA 

in Figure 4.2. The ab initio points are interpolated, 

as with all of the potential coefficients in this Chapter, 

using cubic spline polynomials (e.g. de Boor 1978). 

They are extrapolated for R < 3 a.u. by fitting 

at R ~ 3 and 3.5 a.u. to the exponential form a 

(R). This short range form has been shown to be approp~iate 

(Green 1980, Ewing et al., 1978) and is a reflection of 

the exponential tails of the electron charge clouds. 

The above CI calculations have been subsequently 

revisedc, for the same geometries and frozen bond length, 

by Meyer and Schaefer (1985). Furthermore, a finer 

radial grid was taken. The resulting potential has 

been termed M79 and is briefly di£cussed by Monchick 

and Schaefer (1980). It represents an improvement on 

the SM79 surface in that a larger electronic basis set 

is used to describe the molecular orbitals. Further-
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Figure 4.2 

The variation with intermolecular centre-of-mass separation 

of the cdefficients of the body-fixed expansion (cf. 

equation (4.3)) of the (SM79) interaction potential of 

Schaefer.and Meyer (1979). · 



115 

mor~,the basis set superposition error has been corrected 

for using the counterpoi~e method lBoys and Bernardi 

1970). · A large configuration expansion has been employed, 

including triple substitutions. The calculation of the 

dispersion interaction thus takes into account coupling 

between intra- and inter-molecular correlation (van der 

Avoird et al. 1980). The dispersion energy thus determined 

has been estimated to be accurate to within 5% at R = 

6 a.u. (Bucket al. 1981). Further details of the potential 

calculation have yet to be published, though a related 

study on He- H2 may be cited (Meyer et al. 1980). 

The short range accuracy of the five potential expansion 

coefficients has· been improved by Schaefer and Liu (1985). 

At R = 3 and 4 a.u., the CI calculations were extended 

to a total of 19 geometries, including those already 

calculated for M79. Using these additional geometries 

the five independent potential expansion coefficients 

were modif!ed at short range. The resulting potential 

is termed M80~ At larger R, the differences between 

the M79 and M80 coefficients were forced to vanish expon­

entially. The main result of these modifications~ illustrated 

by Bucket al. (1983b), is that the v200 (or A202 ) term 

is lower in the M80 potential by 16% at R = 4 a.u. The 

isotropic part of the potential, v000 , is changed by 

less than 1% at R = 4 a.u. The M79 and M80 potentials 

differ significantly only in the repulsive region. The 

effect on dimer bound states of these short range adjust­

ments should be neglig~ble. 
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Schaefe~ (1982a) has supplied us with M80 SF coefficients 

from R = 1.6 to 11 a.u., together with revised long range 

coeffi~ients which are part theoretical (Meyer 1976, 

Thakkar 1977) and part numerical. The corresponding BF 

coefficients are plotted in Figure 4.3. 

It is interesting to compare the SM79 coefficients in 

Figure 4.2 with the revised (M80) ones in Figure 4.3. 

Though the difference is small, the v000 term is more 

attractive in the SM79 potential from the minimum outwards. 

This is due to the basis set superposition error, which 

is present in the earlier calculation. Assuming that 

· higher order terms in the potential expansion (V 
q1 q2f< ) 

q1 or q2 ) 2) are negligable, then v200 may be associated, 

at large R, with the anisotropy of the dispersion inter­

action. This may be seen from the asymptotic forms of 

the BF coefficients (Floweret al. 1979, Mulder et al. 1979). 

The v200 term differs significantly for R < 7 a.u.; it is 

more negative. ("softer") in the SM79 case. 

The three remaining coefficients, v22n, asymptotically 

represent the interaction between the permanent quadrupole 

moments of the H2 molecules (Flower et al. 1979): 

v220(R) .§_ @.2. R-5. (4.5a) 
5 

v221 (R) ~QY~R-5 (4.5b) 
5 

v222(R) = }:_@2. -5 
5 H R (4.5c) 

Indeed, Gallup (1977) has shown that, even in the region 

of the potential minimum, these terms may be largely 

described by· the interaction between the quadrupole moments 
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As Figure 4.2, for the M80 potential of Meyer and 

Schaefer (1985) and Schaefer and Liu (1985). 
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of the unperturbed monomer~. There are large discrepancies 

between the v221 and v222 terms for the SM79 and M80 

potenti~ls; the fo~mer potential is incorrect asymptotically 

(see table 4.1). The ratio v220 : v221 : v222 should be 

~:4:1 (equations.(4.5)). At R 11 a.u., the SM79 potential 

gives for this ratio 6 : 9.43 3.87 while the M80 behaves 

well with the ratio 6 : 4.00 : 0.94. Given that a relaCively 

straightforward SCF calculation should be able to account 

for the interaction between permanent ·electrostatic moments, 

this discrepancy is difficult to understand. A plausible 

explanation is the absence of any correction for basis 

set superposition error in the SM79 calculation. This, 

as we shall see later, has a dramatic effect on the eigen­

energies for ortho-H2-ortho-H2 . 

The results of CI calculations for the H2 - H2 system 

have also been reported·by Burton and Senff (1982). 

In this paper it is claimed that the correlation energy 

was evaluated at two different levels of approximation, 

PNO-CI (Pair Natural Orbitals - Configuration Interaction) 

an.d CEPA2-PNO (Correlated Electron Pair Approximation 

version 2- Pair Natural Orbitals). A description of 

these techniques m~y be found in the article by Kutzelnigg 

(1977a). The CEPA2 approximation includes higher-order 

correlation effects (quadrupole excitations) than the 

PNO-CI approximation, which is restricted to single 

and double substitutions with respect to the reference 

configuration. Burton (1982) expressed some preference 

for the CEPA2 results but noted that the magnitude of 



SM79 M80 AsymEtotic 

v220 0.166(-5) 0.167(-5) 0.170(-5) 

v221 0.261(-5) 0.112(-5) 0.113(-5) 

v222 0.107(-5) 0.262(-6) 0.284(-6) 

TABLE 4.1 

Values of the potential ~xpansion coefficients, v22n(R 

11 a.u.) obtained from the SM79 and M80 ab initio cal-

culations. Also quoted are the values obtained from 

the asymptotic formulae (4.5); the quadrupole moment 

of hydrogen was taken as 0.478 a.u. We note that the 

expressions given by Floweret al. (1979) are different 

to (4.5) due to a normalisation factor in their 

definition of Y . In this table, the expansion 
q1 q2 ;« 

coefficients are in Hartree (1 Hartree = 219474.62cm-1 ). 

Notation : (-n) ~ x 10-n. 
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the correlation energy may have been overestimated in 

the CEPA2 calculations. As we shall see below, this 

suspicion is confirmed by the present studi of the molecular 

dimer. Subsequent to completion of the present calculations, 

the reason for this became apparent when Dr. P.G. Burton 

informed us that the potentials in ~urton and Senff 

(1982) had been incorrectly designated PNO-CI and CEPA2. 

The correct designation is "renormalised IEPA" and "IEPA" 

respectively (Burton and Senff 1982, Burton 1983).· 

This corrected designation will be used throughout the 

rest of this Chapter. 

The Independent Electron Pair Approximation (IEPA) 

consists of approximating the total correlation energy 

as a sum of pair contributions. These are calculated 

independently by treating each pair in the field of 

the surrounding (uncorrelated) electron distribution. 

At intermediate and small intermolecular separations 

the electron pairs increasingly overlap, leading to 

an overestimation of the combined correlation energy 

(McWeeny and Pickup 1980). At very large intermolecular 

distances, the IEPA dispersion energy should approach 

that calculated by second order perturbation theory, 

the latter consisting also of a sum of contributions 

from independent electron pairs. Kutzelnigg (1977a,b) 

has discussed the IEPA method and tts validity in some 

detail. 

In their IEPA calculations, .Burton and Senff (1982) 

used the same geometries as Meyer and Schaefer (Figure 

4.1). They also fixed the H2 internuclear distance at 
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the same value, 1.449 a.u. At each geometry, the calculated 

potential was shifted uniformly, by a small amount, to 

match the M80 potential of Meyer-Schaefer-Liu at R = 11 a.u. 

For R) 11 a.u. the accurate long range potential of 

Meyer (1976) may then be employed, as in the M80 surface. 

Burton and Senff quote values for the SF coefficients, 

A • 
q, ql.qll. However, we chose to evaluate the BF coefficients, 

V , not from these, but directly from the potential; q,qlr 
specifically, using table IV(b) and adding the shifts 

of table VI· in Burton and Senff (1982). We did this 

for two reasons. The resulting BF coefficients are more 

accurate than the quoted SF ones, some of which are only 

given to one significant figure. In addition, the potential 

was calculated on a coarser radial grid for the two geom­

etries contributing to the ~energy (Figure 4.1). This 

contributes to the three SF coefficients A220 , A222 and 

A224 but only to one BF coefficient, v221 . The relation 

of this coefficient to the "potential of the ~ geometry" 

is given by· 

v221(R) 
2 

. 15 
(V (R)-V . (R)~-
( parallelogram trapez1um j 

2 
15 V6.(R) ( 4. 6) 

The cubic spline interpolation is thus more accurate for 

the IEPA potential represented by the BF expansion, the 

coefficients of which are plotted in Figure 4.4. The 

coefficients are extrapolated at R < 3 a.u. by exponential 

forms, fitted to the ab initio points at R = 3 and 3.5 a.u. 



_.....J__ _ _._ _ ____,_ __ _,____ _ _j__-----'---_ _____Jl_____----'------'-----------'----L___-----'---_J 

- 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 

R (o.. lA.) 

Figure 4.4 

As Figure 4.2, for the IEPA potential of Burton and 

Senff (1982), referred to (incorrectly) in their paper 

as CEPA2. 
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The coefficients V AA(R) for the fourth potential 
q, qz..r 

which we have employed (Kochanski 1975) are plotted in 

Figure 4.5. As noted above, this potential was calculated 

using a hybrid technique which entails a separate cal­

culation of the intermolecular correlation energy by 

means of second order perturbation theory. The dispersion 

energy thus derived is added to the SCF energy to yield 

the total interaction potential, an approximate procedure 

whose validity should be assessed by comparison with 

experiment (see below). 

In basic (Rayleigh- Schroedinger) perturbation theory 

the Hartree-Fock dispersion energy .may be written, to 

second order, as 

EHF = L L J(AoBol~s IA~Bj)l
2

/(.z.Eo -£~ -Ej) (4 . 7) 

disp L:/=o j=t:o 

where VAB is the intermolecular electronic Hamiltonian 

and _ A
0

(B
0

) is the Hartree-Fock determinant for the 

ground electronic state of the isolated H2 molecule 1(2). 

The waVefunction A. (B.) is obtained by replacing one 
~ J 

of the o~bitals of A
0

(B
0

) with an orbital corresponding 

to an excited state i(j). _ E
0

, Ei and Ej are the cor­

responding eigenenergtes of these Hartree-Fock wave functions. 

The approach of Kochanski (1973, 1975) differs from this 

simpiified treatment in two ways. The ground state con-

figuration is constructed from a fully antisymmetrized 

product of the individual molecular Hartree-Fock wave­

functions. In other words, A
0

B
0 

is replaced by _sz\A
0

B
0

, 

where the latter has the correct symmetry under intErchange 

of electrons .belonging to different H2 molecul~s. In 
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·As Figure 4.2, for the Kochanski (1975) potential. 



addition, an energy denominator different from the one 

in (4.7) is used. This corresponds to changing the 

parti~ioning of the total electronic Hamiltonian (Kutzelnigg 

1977a, 1977b). 

This method of calculating the dispersion energy 

makes three assumptions. The effect of intramolecular 

correlation on intermolecular correlation is neglected. 

Third and ~igher drder terms in the perturbation series 

are ignored, though the modifications to the second order 

approximation introduced by Kochanski should minimise 

their importance. Finally, overlap between the molecular 

orbitals of the interacting molecules, which can lead 

to a decrease in the dispersion energy, is neglected. 

An initial evaluation of the BF coefficients V AA 
. qlq2,-

revealed a bump in the v222 term at R = 6 a.u. Kochanski 

(1983) subsequently informed us of an error in Table 

1 of her paper (Kochanski 1975). The Hartree-Fock dispersion 

· HF energy, Ed. , for the rectangular geometry at an inter­
~sp 

·molecular separation of 6 a.u. should read -2.771 and 

not -2.671 (units in 10-4 Hartree). The corresponding 

total energy, ETOT' should therefore read 0.396. 

The intramolecular separation was fixed at r = 1.4 

a.u. (Jaszunski et al. 1977), corresponding to the position 

of the minimum rif the H-H interatomic potential. The 

rigid rotor approximation, in its simplest form, assumes 

that the intermolecular potential is insensitive to small 

changes in the intramolecular bond length. Indeed, we 

shall assume this to be true for the less favourable 
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case in which vibrational excitation of one of the monomers 

takes place. Nevertheless, this difference, compared 

with the other three ab initio potentials in our study, 

should be noted. 

Kochanski's calculations were performed for the 

first four geometries of Figure 4.1. The v221 coefficient, 

as seen in equation (4.6), is not calculable from these 

geometries~ Cubic spline interpolation of V is 
q, ql. r 

used in the range of the ab initio points, 5-10 a.u. 

For R > 10 a.u., V is fitted at R = 10 a.u. to the 
q l q l.f"' 

form C H/Rn; the integer n is chosen to represent 
. ql ql/y-

the correct asymptotic behaviour (Floweret al. 1979). 

For R < 5 a.u. simple exponential forms are again used, 

fitted to V AAat the grid point R = 5 a.u. and the 
q1 qv-

splin® interpolated point R = 5.05 a.u. 

· 4.3 Eigenenergies of the H2-H2 dimer 

The problem of calculating eigene~ergies of molecular 

dimers has been formulated earlier in this thesis, and 

the numerical methods employed to solve the problem have 

been described. In the present chapter, we shall consider 

the results obtained for the H2 - H2 dimer by means of 

both the R-matrix propagator and de Vogelaere algorithms. 

Before comparing results derived from the four different 

intermolecular potentials to which reference has been 

made in Section 4.2, we shall briefly report our studies 

of the convergence properties of the algorithms which 

we have used. We shall also consider the convergence 

of the eigenvalues with respect to basis set size. Results 
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will be illustrated for the Meyer-Schaefer-Liu (M80) 

potential. 

4.3.1 ·Convergence with re~pect ~o numerical integration 

parameters - de Vogelaere algorithm. 

In this version of the computer programme, the wave-

functions and their derivatives are propagated, starting 

in the right- and left-hand classically forbidden regions, 

and matche? near the minimum of the potential well. 

Numerical integration must start sufficiently far into 

the classically forbidden regions for the initial values 

of the wavefunctions to be negligibly small. 

At short range, the interaction potential becomes 

exponentially repulsive, and the computed eigenenergies 

converge rapidly with respect to the inner starting point, 

Rmin; this convergence is illustrated in table 4.2 for 

para-H2 - para-H2 . Results accurate to four decimal 

places are obtained with R ·n = 3.7 a.u. 
m~ 

A satisfactory value of the outer starting point, 

R is more difficult to establish. At long range, max' 

there is a van der Waals tail in the potential which 

varies as an inverse power series in R and.results in 

slower decay of the wavefunctions with respect to pene-

tration into the outer classically forbidden region. 

As the integration range is extended, the number of inte-

gration steps per "half-range", N, must be increased 

to maintain numerical accuracy. The convergence of the 

eigenenergies with respect to these two parameters, R max 

and N, is illustrated in table 4.3 for para-H2 - para-H2 . 



R min J = 0 J ·- 1 

4.0 -2.41064 -0.95930 

3.7 -2.41130 -0.95981 

3.5 -2.41132 -0.95983 

3.3 -2.41132 -0.95983 

TABLE 4.2 

Convergence of the computed eigenenergies 

of the para-H2 - para-H2 system with respect 

to the value of the inner starting point 

R ·n· (Bohr) of the de Vogelaere integration. 
m1 

The basis set consists of one rotational 

state (j = 0) on each H2 molecule. The 

number of integration points per half-range 

N = 100. Energies ar~ in cm-1 , relative 

to the dissociation energy (taken as zero 

throughout this.chapter). 



R max 

N 27 40 50 60 70 80 

100 -2.40685 -2.41117 -2.41132 -2.41148 

(-0.94005) (-0.95917) (-0.95983) (-0.95998) 

200 -2.40685 -2.41124 -2.41124 -2.41126 

(-0.94005) (-0.95921) (-0.95974) (-0.95978) 

300 -2 .. 41126 -2.41126 -2.41124 -2.41124 

(-0.95974) (-0.95978) (-0.95978) (-0.95978) 

400 -2.41126 

(-0.95978) 

TABLE 4.3 

Variation of the computed eigenenergies EJ.of the para-H2 - para-H2 system with the 

values of the outer starting point, R (Bohr), of the de Vogelaere integration and max 

with the number of integration points per half-range, N. The upper 

entries refer to J = 0, the lower entries to J = 1. The basis set employed consists 

of a single rotational state (j = 0) for each H2 molecule. The energies are in units of 

-1 em 
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Results accurate to four decimal places are obtained with 

R· = 50 a.u. and N = ZOO.· 
max 

In the de Vogelaere method the (radial) wavefunction 

vanishes at the starting points of the integration. 

This is equivalent to placing infinite walls in the pot-

ential at Rmin and Rmax Tables 4.Z and 4.3 show that 

as thes~ walls move apart, the eigenenergy decreases, 

in line with elementary quanium mechanical arguments 

based· on the infinite square well potential. This inter­

pretation is aided. both. by the relative weakness of the 

Hz - Hz interaction and by the fact that the calculations 

in tables 4.Z and 4.3 are for a single (isotropic) radial 

Schroedinger equation. 

4.3.Z · ConVergence with respect to numerical integration 

parameters - R-matrix propagator method. 

As noted in Chapter 3, propagation of the R matrix, 

rather than both the wavefunction and its derivative, 

leads to greater numerical stability and to a more rapid 

convergence of the eigenvalues with respect to penetration 

into the classically forbidden regions. In particular, 

much smaller values of R are necessary to obtain con-. max 

vergence in the right-hand classically forbidden region. 

However, as R-matrix propagation involves local approxi-

mations to the potential, more integration steps are 

required than in the equivalent de Vogelaere calculation 

(compare tables 4.3 and 4.4). 

These convergence tests are for para-H2 - para-H2 

with H2 restricted to its ground rotational state, and 

are hence uncomplicated by angular coupling. We are 



·R max 
N 27 40 

100 -2.41161 
(-0.96022) 

200 -2.41135 
( -0. 9 5981) 

300 -2.41130 -2.41152 
(-0.95972) (-0.96009) 

400 -2.41128 -2.41141 
(-0.95970) (-0.95996) 

TABLE 4.4 

As Table 4.3, but obtained using the R-matrix 

propagator method. 
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thus able to note that the eigenvalues calculated using 

the R-matrix propagator method are lower than those using 

de Vogelaere, for fixed Rmax' because of the effect of 

the infinite wall boundary conditions of the latter al-

gorithm. Compare, for example, the eigenenergies at 

N = 200, R = 27 a.u. in table 4.3 with the values max 

for N = 400, R ~ 27 a.u. in table 4.4. max 

Analogous tests, using the M80 potential, were carried 

out for the ortho-H2 - para-H2 and ortho-H2 - ortho-H2 

systems. Similar conclusions regarding the accuracy 

of the eigenenergies were drawn·. All results using the 

M80 potential, in this chapter,are accurate to three 

decimal plac~s. There may be a small error in the third 

decimal place for results using the potentials of figures 

4.2, 4.4 and 4.5 for which less detailed convergence 

tests were performed. 

4.3.3 Convergence with respect to basis set size 

Calculations. have been carried out using one, two 

and three rotational basis functions on each H2 molecule, 

i.e. a maximum of j = 0,2,4 for pa~a-H2 and j 1,3,5 

for ortho-H2 . A representative sample of the results 

obtained, using the R-matrix propagator method, is presented 

in table 4.5. 

The H2 molecule is light and has a large rotational 

constant (following Verberne and Reuss (1981), we take 

the reduced. mass fJ. = 1837.14 a.u. and the rotational 

constant in the ground vibrational state B
0 

= 59.341 cm-1 ), 

,and we expect that the correspondingly rapid motion will 



1 2 

p-p -2.41135 -2.43018 

-0.95981 -0.97471 

o-p -1.25177 -1.27627 

0-0 -2.47477 -2.49692 

-0.66455 -0.66896 

TABLE 4.5 

3 

-2.43018 

.-0.97471 

-1.2 7629 

-2.49694 

-0.66896 

f -1 f Eigenenergies, in units o em , o states J of 

para-H2 - para-H2 , ortho-H2 - para-H2 and 

ortho-H2 - ortho-H2 ; J is the total angular momentum 

and E. the parity of the state. The R-matrix 

propagator method was used. Columns 1, 2 and 3 

contain results obtained with one, two and three 

rotational states, respectively, on each H2 

molecule. 
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not be greatly hindered by the weakly anisotropic Hz-Hz 

interaction. The results in table 4.5, which illustrate 

the rapid convergence of the eigenvalues with respect 

to the size of the Hz rotational basis set, confirm this 

expectation. 

Inspection of the matrix elements of the potential 

between angular basis states (equation (Z.Z9)) shows 

that terms in th~ potential expansion (4.3) with q1 and/or 

qz ·= 4 are'required to change the Hz angular momentum 

by four units. There is thus no direct coupling of the 

bound states with states involving hydrogen molecules 

with j = 4 or 5. The similarity of columns Z and 3 of 

table 4.5 reflects the weakness of indirect coupling 

via the j Z or 3 states of Hz· We conclude that 

j = O,Z for para-Hz and j = 1, 3 for ortho-Hz are sufficient. 

When advantage is taken of the interchange symmetry of 

identical molecules, to be discussed in the next section, 

this basis set leads to a maximum of Z6 coupled equations. 

An interesting aside concerns the use of the reduced 

atomic mass, in line with Verberne and Reuss (19S1), 

rather than the ~educed nuclear mass, which is consistent 

with the Born-Oppenheimer approximation (LeRoy 1971). 

Bunker (1979a, page Z01) has suggested that more accurate 

answers may be obtained by using the reduced atomic mass 

as this allows for the mass of the electrons and partly 

compensates for the breakdown of the Born-Oppenheimer 

approximation. In support of this he cites the work 

of Oka and Morino (1961) who studied the effect of electrons 

on the moment of inertia of molecules. 
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4.3.4 Comparison with the calculations of Verberne 

and Reuss 

Verberne. and Reuss (1980, 1981) have calculated the 

hydrogen dimer spectrum by solving a secular equation, 

i.e. by dtagonalising a suitable representation of the 

total Hamiltonian matrix. The intermolecular vibrational 

basis functions were solutions of the Schroedinger equation: 

where·l is the end-over-end rotational quantum number 

and v000 (R) the isotropic part of the intermolecular 

potential~ This numerically generated basis set is truncated 

after the first term; (n,t) = (0,0) or (0,1) depending 

on the dimer states in question. Refer to the discussion 

in Section 3.5.3, especially following equation (3.44). 

As noted by Verberne. and Reuss (1981), states with 

~) 1 are dissociative. The.:angular basis set includes 

these higher l values, where allowed by the coupling 

of the angular momenta of the H2 molecules. 

Verbern~ and Reuss (1981) employ a rotational basis 

consisting of a single eigenfunction on each H2 molecule 

(j ~ 0 for para-H2 , j = 1 for ortho-H2 ). They also consider 

the hyperfine structure of the dimer, but this will not 

concern us here. lt is sufficient to say that their 

experimental measurements of the hyperfine spectra (Verberne 

and Reuss 1980) yield quantitative information on the 

leading anisotropic component of the potential v200 (R). 

Their conclusions will be briefly discussed later. 
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They employed the M79 potential of Meyer and Schaefer 

(1985). In the region of the_ potential between the classical 

turning points, which determines the bound states, the 

M79 surface is almost indistinguishable from the M80 

potential of Meyer-Schaefer-Liu (Verberne and Reuss 

1981). 

As the para-para (p-p) and ortho-ortho(0-0) systems 

consist of identical bosons, the total wavefunction must 

be symmetric under exchange of the constituent molecules. 

When the hydrogenmolecules are both in their ground rot-

ational states, this leads to the requirement that 

( l)j 12 + 1 + I 12 . 1 h . . . d I 
- ..V = + w ere 212 = 21 + ]2 an ,.., 12 

! 1 + 12 (cf. equation (2.33)). For the 0-0 system, this 

requirement leads to a separation of the total Hamiltonian 

matrix into two blocks, corresponding to I 12 = 0,2 and 

I 12 = 1 (i.e. symmetric and asymmetric functions, res­

pectively, of the nuclear spin coordinates). As shown 

in Chapter 2, a corresponding advantage accrues from 

exploiting this symmetry property when solving coupled 

differential equations; the equations separate into blocks 

of a given interchange symmetry (cf. table 2.1). 

In Table 4.6, we compare the dimer spectrum computed 

by Verberne and Reuss (1980, 1981) with the results 

of our own calculations, with one and two rotational 

states per H2 molecule. Our two-rotor state results 

for the o-p and 0-0 systems are plotted in Figure 4.6. 

Also .shown are the pure £ states to which they correlate 

in the isotropic limit. These level.s correspond to the 

one-rotor state calculations on para-H2 - para-H2 . The 



Verberne 
System J E, i and Reuss One-rotor Two-rotor 

p-p 0 1 1 -2.40 -2.41 -2.43 
p-p 1 -1 -1 -0.953 -0.960 -0.975 

o-p 1 .-1 -2.42 -2.43 -2.45 
o-p 0 1 -1.30 -1.25 -1.28 
o-p 1 ·1 -0.778 ·-0.822 -0.836 
o-p 2 1 -0.998 -0.996 -1.01 

0-0 0 1 1 -2.47 -2.47 -2.50 
0-0 1 1 -1 -2.42 -2.41 -2.43 
0-0 2 1 1 -2.54 -2.55 -2.56 
0-0 0 -1 1 -0.573 -0.665 -0.669 
0-0 1 -1 1 -1.14 -1.10 -1.12 
0-0 1 -1 -1 -1.50 -1.49 -1.51 
0-0 1 -1 -1 -0.875 -0.918 -0.932 
0-0 2 -1 1 -0.921 -0.929 -0.941 
0-0 2 -1 -1 -0.798 -0.854 -0.862 
0-0 3 -1 -1 -1.10 -1.10 -1.11 

TABLE 4.6 

Comparison of our own calculations of the hydrogen dimer 

spectrum with those of Verberne and Reuss (1980, 1981) . 

. The states are denoted by the total angular momentum, 

J, the parity,£, and the molecular interchange symmetry, 

i (where applicable). In the one-rotor calculations, 

only the j = 0 {j = 1) state is retained for para-(ortho-) 

H2 , whereas j = 0, 2 ·(·j = 1, 3) are retained in the two-

rotor calculations. -1 The eigenenergies are in units of em . 

As noted in the text, the p-~ J = 1 state does not occur 

in nature. 



~- p 0-0 (.-t.=--1) o- o fi. = +r) 

0• 

:r£ J£. T£ 

I+ 
, , o-

1.-
..{ I 

/ 

i.::. I :: , 
r --::..'":..-..... 

, 2-- 1·0 ~-=-~- -- 2.+ ~"/ '-:: ---· 
.............. / ', 

' f 
-, 

' I ,-... ... I 

o+ I 
I 

1- I 

-2·0 

{=o t=o + 
----- 1- I+ ------ '::::.":: 0 :--

l.+ 

-3·0 

ENERG-Y ( cm-1
) 

F.igure 4. 6 

The bound states of ortho-H2-para-H2 and ortho-H2-ortho-H2 

using the M80 potential of Meyer, Schaefer and Liu 

(Figure 4.3). The results were obtained with two rotational 

states on each H2 . Also shown are the one-rotor state 

para-H2-para-H2 eigenvalues, for which t is good, to which 

they correlate when the potential anisotropy is "switched 

off". 
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levels are designated by the values of the total angular 

c J1 + j2 + J., momentum, J, the total parity, c = (-1) , and 

-i- I 
the interchange symmetry, i = (-1)j12 ~ We note that 

the level J = 1 ' [. = -1, i= -1 in the p-p system, where 

112 = 0, does not occur in nature owing to the requirement 

that (-1)j12 + f.,+ 112 1 (see above). = + 

The calculations of Verberne and Reuss are seen 

to .be in better agreement with our single- than our double-

rotational state results; this was to be expected, as 

Verberne and Reuss neglect all H2 state~ higher than 

j = 0 or j = 1. The overall agreement between results 

obtained by solving the secular equation and by numerical 

integration of the coupled differential equati6ns is 

~atisfactory. Verbern~ and Reuss truncated the vibrational 

basis set, defined as the solutions of equation (4.8), 

after one term. This procedure is satisfactory owing 

to the weak anisotropy of the H2-H2 potential and the 

large value of the H2 rotational constant. 

4.3.5 Comparison of results obtained using four 

different H 2 -H~ ab initio potentials. 

In Table 4.7, we .compare the results of calculations, 

using the. R-matrix propagator method, based upon the 

four ab initio potentials discussed in Section 4.2 above. 

As pointed out there, the v221 potential coefficient 

may not be derived from the results of Kochanski (1975), 

as she considered an insufficient number of interaction 

geometries. As a consequence, we do not present results 

obtained with her p6tential for the 0-0 system, the 



SYSTEM J £ 2 3 4 

p-p 0 1 
p-p 1 :_ 1 

o-p 1 - 1 
o-p () 1 
o-p 1 1 
o-p 2 1 

o~o 0 1 
0-0 1 1 
0-0 i 1 
o-o 0 - 1 
0-0 1 - 1 
o-o 1 - 1 
o-o 1 - 1 
0-0 2 - 1 
o-o 2 - 1 
o-o 3 - 1 

1 
- 1 

1 
- 1 

.1 
1 
1 

- 1 
- 1 

1 
- 1 
- 1 

-2.430 
-0.975 

-2.447 
:-1 . 2 76 
-0.836 
-1.013 

-2.497 
-2.-4 31 
-2.561 
-0.669 
- 1. 120 
-1 . 505 
-0.931 
-0.941 
-0.862 
-1.111 

TABLE 

-6.218 -3.008 -2.732 
-4.316 -1.486 -1.235 

-6.341 -3.065 -2.776 
-5.409 -2.099 -1 . 704 
-3.799 -1.215 -1 . 035 
-4.494 -1.575 -1.307 

-6.559 -3.785 
-6.315 -2.486 
-6.632 -3.359 
-3.122 
-4.903 
-5.861 
-4.178 
-4.249 
-3.901 
-4.771 

4.7 

f -1 Eigenenergies o the Hz-Hz dimer; in units of em , as 

derived from.the potentials of : 1, Meyer, Schaefer and Liu 

(M80); Z, Burton and Senff (198Z); 3, Kochanski (1975); 

4, Scbaefer and Meyer (SM79). In these calculations, 

two rotational states (j = O,Z or j = 1,3) were retained 

on each Hz molecule._ Results are quoted to the numerical 

precision of the R-matrix propagator method. 

Note: There is a printing error in the corresponding 

Table (6) of Danby and Flower (1983). The eigenenergy 

for the M80 poten~ial for o-o, JEi = 1-- should 
-6 ) read 6.857 rather than 6.867 (units -x10 Hartree . 

1 Hartree = Z19474.6Z cm- 1 . 
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v221 coefficient intervening directly in these calculations .. 

In Section 4.2 we expressed reservations concerning 

the atcuracy of the quadrupole-quadrupole terms, v22n' 

for the SM79 potential of Schaefer and Meyer (1979). 

We quote results for the p-p and o-p systems, for which 

these terms intervene only through coupling to energetically 

distant excited rotational states of the H2 molecules. 

The three lowest eigenenergies, correlating to t = 0, 

for the o-o system are given as an illustration of a 

situation where the v22n terms appear in the diagonal 

elements of the coupling matrix. We immediately see 

that the relative order of these states differs from 

that obtained with the Meyer-Schaefer-Liu M80 and Burton­

Senff potentials. Specifically, the JEi = o++ and 2++ 

levels are interchanged. For the SM79 potential, the 

v221 coefficient is the largest anisotropic term. In 

Figure 4.7 we demonstrate the effect on the eigenvalues 

of multiplying v221 by a constant, ANIS. Both the absolute 

values and relative ordering of the three i = 0 states 

are seen to be highly sensitive to the potential anisotropy. 

Similar calculations with the v220 and v222 terms showed 

that the ordering was unaltered over a range 0.0< ANIS 

<·1.3. The eigenenergies were also less sensitive to 

these terms. We conclude that a consistent ordering of 

the levels is obtained for values of ANIS between 0.67 

and 0.8. v2 21 thus needs to be reduced in the SM79 

potential, in line, qualitatively, with the results of 

the M80 and Burton-Senff potentials. 
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Figure 4.7 

The effect nf scaling the v221 term in the SM79 potential by 

a constant. (ANIS) on the bound states of H2-H2 . The bound 

states shown are the three t = 0 levels of the ortho-ortho 

modification. These calculations were performed with only 

one rotational state (j = 1) per H
2

; the results differ 

from the cor~esponding two rotor state runs by 2-3% for 

ANIS = 1. 
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Taking Table 4.7 as a whole, the salient feature 

is the relatively good agreement between the results 

of calculations based on the Meyer-Schaefer-Liu (M80) 

and Kochanski potentials. Results for the published 

potential of Schaefer and Meyer (SM79) lie in between, 

notwithstanding the qualifications concerning the Vzzn 

terms. The eigenvalues calculated with the Burton-Senff 

potential are much larger in absolute magnitude, though 

the relative ordering of all the states agrees with the 

M80 calculations. The Burton-Senff potential predicts 

an additional bound level of the p-p system (J = Z, 

f = 1, i = 1) at an energy of-- 0.771 cm- 1 , which is 

not observed. These points will be discussed further 

in the follo~ing section. 

4.3.6 Comparison with spectroscopic measurements 

McKellar and Welsh (1974) have observed absorption 

spectra in Hz-Hz which comprise transitions within 
I I I 

th~ fundamental band (v = O~v =-1) of Hz accompanied 

·by end~over-end rotational transitions of the Hz-Hz dimer. 

The transitions are attributable to the induced dipole 

of the Hz-Hz molecule (Poll and van Kranendonk 1961, 

Watanabe and Welsh 1964) and fall in the near infrared 

part. of the spectrum. 

In the final (upper) state of the transition, the 

vibrational states of the two Hz molecules differ. It 

follows from the form of the interchange symmetrized 

vibrator basis states (2.51) that there is no restriction 

on~~, the end-over-end rotational quantum number, even 

in the p-p system. To show this, we note that for two 
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para-H2 molecules in their lowest rotational states, 

j1 = j2 = j 12 = ~ = 0. The electronic states of the 

H2 molecules are symmetric ( 'L:;) and the resultant nuclear 

spin, r 12 = 0, al~o gives a symmetric contribution to 

th~ overall wavefunction. We may thus write the basis 

states, (2.51), in th~ abbreviated form 

( 4. 9) 

where normalisation factors have been ignored and the 

(spatial) interchange symmetry i +1 for the two boson 

monomers. The parity E.= (-).[, and for the upper state 

of the fundamental band with j 1 = j 2 = 0, v 1 = 1 and 

v 2 = 0. Thus, 

+ 
·.t (-) ¢(o1) (4.10) 

which is. non-zero for both odd and even 1, . It is less 

rigorous, though convenient, to regard the monomers as 

being distinguishable when their internal states differ. 

This is fully consistent with the results of Section 

2. 5. 

We note that transitions involving ,(.', -!," = 0,1 

were observed to be sha.rp, whereas, for .(,', i," > 1, the 

f 1 -1 lines were broader than the resolution o 0. 5 em . 

The evident conclusion, drawn by McKellar and Welsh (1974), 

is that states with 1 > 1 are pseudo-bound (i.e. bound 

only by the centrifugalbarrier in the effective inter­

molecular potential). This observation conflicts with 

the prediction of a state with ,t = 2 by the Burton-Senff 

potential, ~s mentioned in the preeeding section. 
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In order to make as direct a comparison as possible 

with the calculations reported in Section 4.3.5, let 

us consider the Q branches of the observed transitions, 

in which no change occurs in the rotational states of 

the H2 molecules. Such a transition is Q1 (o) l'' 0~ 

t' = 1, the subscript 1 denoting the fundamental band 

.(~V = 1) and the 0 in brackets the initial (and for 

Q transitions the final) rotational state of one of the 

interacting H2 molecules. The other H2 molecule does 

not undergo any. transition; this· "null" transition may 

be denoted Q
0

(0). Using similar notation for the accompanying 

l transition of the dimer, this line is referred to 

as the R(O) component of the Q1 (0) branch (LeRoy and 

van Kranendonk 1974). The observed frequency may be 

expressed in the form (McKellar and Welsh 1974) 

)) = 
R. 

(4.11) 

In the absence of perturbations from surrounding molecules, 

)}KL is the vibrational frequency of an isolated H2 molecule, 

Y,f If the interaction potential is assumed to be 
H.t 

the same in the initial and final states, the experiment 

yields the separation of the 1 = 0 and .-{. .- 1 levels 

directly. This assumption has been applied to the N2-N2 

dimer by Tennyson and van der Avoird (1982a) and Brocks 

and van der Avoird (1985). H2-H2 is a less favourable 

case because of the larger amplitude of vibration of 

the lighter H2 molecules. 

An estimate of the perturbed H2 vibrational frequency, 
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~H 1 ~ may be obtained from.the mean value of the observed 

frequencies of the R(O) ( ...(." 0~_.(.' = 1) and P(1) 

( l" = 1-7 -l' 0) components of the Q1 (1) branch, see 

Figure 4.8. The P(1) line is-of course absent in the 

Q1 (0) spectrum because of the symmetry restrictions 

· dis~ussed in Section 4.3.4. McKellar and Welsh (1974) 

thus obtained values of 1.74 cm-1 and 1.&2 cm-1 for the 

~ = 0 - 1 energy separation, from observations of the 

Q1 (0) and Q1 (1) branches respectively. As the spectral 

resolution of their experiment in the region of the H2 

fundamental band (2.0< ~ < 2.4_.Mm) was 0.15 -1 em we 

shall adopt a mean value of 1.68 cm-1 for the ~ = 0 - 1 

energy difference. 

The Value Of the 'b t' 1 f h'ft )). - yf' v~ ra ~ona requency s ~ , H2. Hl. > 

deduced from the Q1 f1) spectrum, was - 0.35 cm-1 Its 

origin lies in perturbations on the vibrational motion 

of an H2_ monomer due .to its interaction, V(!1 ,r2 ,R), 

with a neighbouring molecule. The additional restoring 

force contributing to the vibration of monomer 1 is 

-dV!~r1 . For the low temperatures (~ 17K) of the McKellar 

and Welsh (1974) experiment, the attractive region of 

the intermolecular potential is dominant. The dispersion 

interaction between H2 molecules increases with r due 

to an increase in the polarisability of H2 (Le Roy et 

al. 1977, Ishiguro et al. 1952). Thus -JV/dr1 is positive, 

leading to a reduction in the restoring force and hence 

a negative frequency shift (May et al. 1961, 1964). 

In Table 4.8, we list the frequencies of the optically 

allowed transitions, as deduced from the eigenenergies 
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Figure 4.8 

Experimental R(O) and P(1) components of the Q1 (1) branch, 

schematically represented. \)H f is the frequency of 
. 2 
excitation of a free H2 molecule from V = 0 to V = 1 

(4155.26 q;- 1 ). An estimate of the{,= 0-1 separation 

is given by (\)R -))p)/2. The vibrational frequency shift, 

YH2 -VH2f, is approximated by replacing VH with 
. 2 

( V R +)} ) /2. The shift thus obtained is used to obtain p . 
the l = 0- 1 separation from the Q1 (0) spectrum for which 

only the R(O) component is observed. 



MEYE~ - SCHAEFER - BURTON - SENFF SCHAEFER - MEYER 
LIU M80 !EPA KOCHANSKI SM79 

SYSTEM J" £" i" -> J' £' i. GHz cm-1 GHz cm-1 GHz cm-1 GHz cm-1 

P-P 0 1 1 1 -1 -1 43.6 1 .46 57.0 1. 90 45.6 1 0 52 44.9 1 .50 

o-P 1 -1 0 1 35.1 1 0 17 27.9 0.93 29.0 0.97 32 01 1.07 
-1 1 1 48.3 1.61 76.2 2.54· 55.5 1 .85 52.2 1 0 74 
-1 2 1 43.0 1.43 55.4 1 .85 44.7 1 .49 44.1 1 .47 

o-o 0 1 1 1 -1 1 41.3 1 .38 49.7 1 0 66 
0 1 1 1 -1 -1 29.7 0.99 20.9 0.70 
0 1 1 1 -1 -1 46.9 1 0 57 71.4 2.38 
1 ·1 -L 0 -1 1 52.8 1 0 76 95.7 3.19 
1 1 -1 1 -1 1 39.3 1-.31 42.3 1 :41 
1 1 -1 1 -1 -1 27.8 0.93 13.6 0.45 
1 1 -1 1 -1 -1 45.0 1 .50 64.1 2 014 
1 1 -1 2 -1 1 44.7 .1 .49 61.9 2.07 
1 1 -1 2 -1 -1 47.0 1 0 57 72.4 2.41 
2 1 1 1 -1 1 43.2 1.44 51.9 10 73 
2 1 1 1 -1 -1 31 0 7 1.06 23 01 0.77 
2 1 1 1 -1 -1 48.9 1 .63 73.6 2.45 
2 1 1 2 -1 1 48.6 1 0 62 71.5 2.38 
2 1 1 2 -1 -1 50.9 10 70 81.9 2.73 
2 1 1 3 -1 -1 43.5 1 .45 55.8 1.86 

TABLE 4.8 

Frequencies of dipole transitions predicted by means of the four ab initio potential 

energy surfaces discussed 'in the text. The interchange symmetry selection rule has been 

relaxed since, in the relevant experiment, the interacting monomers have different 

vibrational quantum numbers after absorption of'a photon. Note that two different levels 

with the quantum numbers J = 1' £ = -1' i = -1 occur in the 0-0 system (cf. Table 4. 7). 
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of Table 4.7 and the electric dipole selection rules 

: 6. J = 0, ~ 1 ( 0 ~ 0) , change of parity. In order to make 

the comparison with experiment more direct, the selection 

rule, no change in i, has. been relaxed, thus treating 

the monomers as distinguishable. By considering the 

symmetry of the induced dipoie moment of the dimer under 

the operations of the molecular symmetry group, and by 

applying the vanishing integral rule (Section 2.6), Bunker 

(1979b) has shown that pure ~t transitions, where the 

internal states of the H2 molecules are unchanged, are 

only allowed for o-p (H2 ) 2 . Physically, this is because 

there is no collision induced dipole moment in ground 

state o-o and p-p systems (Brocks and van der Avoird 

1985). The far infrared Q
0

(o) and Q0 (1) spectra will 

therefore be considerably simpler than the observed Q1 (o.) 

and Q1 (1) spectra. The predicted spectrum of optically 

allowed transitions .is presented in Figure 4.9 for the 

two potentials (Meyer-Schaefer-Liu (M80); Burton-Senff) 

for which complete calculations are possible.· Each line 

represents a theoretical estimate of the experimentally 

determined l = 0 - 1 separatiori. The spread in the cal­

culated lines is due to the potential anisotropy, an 

effect not observed experimentally. 

Inspection of Figure 4.9 shows that the predictions 

of the Meyer-Schaefer-Liu potential are in distinctly 

better agreement with experiment than the predictions 

of the IEPA potential of Burton and Senff (1982). Given 

the spectral resolution of 0.15 cm- 1 in the experiment 

of McKellar and Welsh (1974), the rotational splitting 
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Predictions of the H2-H2 absorption spectrum in the 

fundamental band of H2 . Results are according to the ab 

initio potentials displayed in Figures 4.3 and 4.4. Also 

shown is the observed separation of the end-over-end 

rotational levels and the experimental res6lution (McKellar 

and Welsh 1974). In "normal" hydrogen, the absorption in 

0-0 transitions is enhanced by a factor of three relative 

to 0-p and nine relative to p-p transitions owing to 

the 3 : 1 ortho : para abundance ratio. The H2 molecules 

have been treated as being distinguishable to make a more 

direct. comparison with experiment (see the text and Table 

4. 8) . 
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of the . ~ = 0 and ~ = 1 states would probably have 

been observed if the IEPA potential were an accurate 

representation of reality. As the rotational splitting 

reflects the anisotropy of the potential, we conclude 

that the IEPA ~otential is too anisotropic in the regi6n 

of the potential well. Referring to Figures 4.3 and 

4.4, we see that the discrepancies between the potentials 

arise from .differences in the magnitude of the v200 co­

efficient of the potential expansion (4.3). Similar 

conclusions may be drawn from the more limited comparison 

with experiment of results obtained from the Kochanski 

(1975) potential and the SM79 potential of Schaefer and 

Meyer (1979). 

The separation of the ~ = 0 and ~ = 1 states is 

determined by the end-over-end rotational constant. 

Figure 4.9 shows thiB (mean) separation to be overestimated 

by the IEPA potential and probably underestimated by 

the Meyer-Scha~fer-Liu potential. In terms of the end-

over-end rotational constant, these results imply that 

the IEPA potential underestimates the H2-H2 equilibrium 

separation and hence overestimates the rotational constant. 

We conclude that the isotropic part v000 of the IEPA 

potential is too attractive. 

The di~crepancy with the Hz-Hz· equilibrium separation 

predicted by the Meyer-Schaefer-Liu potential may be 

removed by a shift of the isotropic potential minimum, 
0 

towards the origin, by about O.ZA. A simple analysis 

based on the p-p system predicts a somewhat larger shift 
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(see Figure 4.10); the fact that. a simple leftward shift 

also raises, unphysically, the potential from the minimum 

outwards may account for this. Since a shift in v000 

changes the classical turning points, and hence the relevant 

pari of the anisotropic interaction, the other terms 

in the ·potential expansion should, by implication, be 

shifted also. It is interesting that the analysis of 

differential scattering data suggests that the zero of 

the isotropic potential should be shifted (in the same 

sense), with a concomitant shift in the anisotropic terms, 
0 

by 0.1A (Buck 198Z; Bucket al .. 1981, 1983b). A similar 

shift has been deduced from the analysis of second virial 

coefficient data (Schaefer and Watts 198Z). 

As mentioned in section 4.3.4, Verberne and Reuss 

(1981) have shown that the hyperfine spectrum of the 

Hz-Hz dimer yields information on the potential anisotropy. 

Measurements on the o-p system yield an estimate of the 

quantity 

( 4 .1Z) 

where i'0 z and 'f 0 0 are the radial wavefunctions cor-
' ' 

responding to the -l= z and ~=0 states of the dimer. 

<vz) may also be calculated theoretically; the Meyer-

Schaefer-Liu potential yields a value too small compared 

to experiment (Waaijer et al. 1981). Geraedts et al. 

(1982a)and Waaijer et al. (1981) decided to constrain 

the v200 term at short and long range. The long range 

form of the potential is the result of an accurate cal-
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The effect of shifting the potential on the £ = 0 - 1 

separation for para-para (H2 ) 2 . Only one rotational 

state (j = 0) was retained on each H2 . To reproduce the 

experimental separation (1.68 cm- 1 ) would require a leftward 
0 

shift of 0.34 A, rather greater than that predicted when 

the lines from the other two dimer modifications are taken 

into account. 
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culation by Meyer (1976). At short range, the ratio 

v200 /v000 is fixed by inelastic differential cross section 

measurements (e.g. Buck et al. 198 3b) . To increase < V 2 ) 

it was therefore necessary to deepen the well in· v200 

by the addition of a "blister". The resultingbehaviour 

is closer to that of the Burton-Senff potential. Based 

on the results of our calculations, we are therefore 

unable to support the adjustments suggested by Geraedts 

et al. ( 1982a) and Waai jer et al. ( 1981) . 

4.4 The Meyer-Schaefer-Liu vibrator potential 

The M80 calculations of Meyer, Schaefer and Liu, 

described in Section 4.2, have been repeated with the 

H2 internuclear distance fixed at a new value, 1.28 a.u. 

(Kbhler and Schaefer 1983a). For para- and ortho-H2 , 

the vibrationally averaged internuclear distance, r 0
, 

i~ 1.449 a.u. and 1.451 a.u. respectively. The inter-

molecular potential for 0-p and 0-0 systems can be obtained 

by fitting to the results for the two r values, 1.28 

and 1.449 a.u. 

Schaefer (1983) has carried out rigid rotor calculations 

on the bound states of the 0-p and 0-0 dimers, taking 

into account the difference in vibrationally averaged 

d . 0 1stances, r . He assumes that j 1 , j 2 , j 12 and ,l are 

all good quantum numbers, and his calculations thus involve 

solving the bound state problem for single Schroedinger 

equations. Consider now full close coupling calculations 

with H2 restricted to one rotor state (j = 0 or 1). 

For the 0-p.and 0-0 systems, th~re are four cases where 

this basis leads to a single Schroedinger equation. 
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Our one-rotor state calculations for these levels are 

thus directly comparable with those of Schaefer (1983) 

(see table 4.9(a)). The difference between these results 

of ( 0.004 cm- 1 is not significant. It could be 

attributable to the use of a slightly different reduced 

mass (1836.12 a.u.) by Schaefer. Therefore, our use 

of the same rigid rotor surface for all three dimer modi­

fications is justified. 

In table 4.9(b), we compare ~ore one-rotor state 

results, these involving the solution· of small systems 

of coupled equations, with the single Schroedinger equation 

results of Schaefer. The agreement is still rather good, 

with typical differences of less than 0.1 cm-1 We see 

that the Schaefer results are all higher. This could 

reflect the fact that our results are variationally more 

accurate allowing, as they do, for coupling to higher l 
states. 

For the 0-0 system, there are two bound states of 

£i the same symmetry, J 1--. For this symmetry, the 

basis j 1 = j 2 =1 leads to three coupled equations, the 

channels of which are. defined by (j 12 ,~) = (0,0), (2,0) 

and (2,1). Inspection of the matrix elements given in 

chapter 2 shows that (0,0) and (2,0) are coupled by aniso­

tropic terms in the potential, while (2,0) and (2,1) 

are coupled by coriolis terms. It is not surprising, 

therefore, that there is a significant discrepancy with 

Schaefer's results; these assume that j 12 and J can 

both be rigorously defined (Table 4.9(c)). This inter-



System J £ i cc j12 t sc sc-cc 

(a) o-p 0 1. -1.252 1 1 -1.248 0.004 

o-p 1 1 -0.822 1 1 -0.819 0.003 

0-0 0 -1 1 -0.665 1 1 -0.667 -0.002 
0-0 1 -1 1 -1.103 1 1 -1.107 -0.004 

(b) o-p 1 -1 -2.425 1 0 -2.407 0.018 

o-p 2 1 -0.996. 1 1 -0.985 0.011 

0-0 0 1 1 -2.475 0 0 -2.438 0.037 

0-0 1 1 -1 -2.415 1 0 -2.403 0.012 

0-0 2 1 1 -2.550 2 0 -2.417 0.133 
0-0. 2 -1 1 -0.929 1 1 -0.924 0.005 

0-0 2 -1 -1 -0.854 2 1 -0.772 0.082 

0-0 3 -1 -1 -1.102 2 1 -1.022 0.080 

(c) 0-0 1 -1 -1 -1.492 -2 1 -1.364 0.128 

0-0 1 -1 -1 .:..0.918 0 1 -1.328 -0.41 

TABLE 4.9 

A comparison of eigenenergies (cm- 1 ) calculated using 

the close-coupling (cc) method and the M80 pot~ntial 

(r1 = r 2 = 1.449 a.u.) with the results of Schaefer (1983) 

using the vibroto~ surface. The latter results correspond 

to sfngle channel (sc) rigid rotor calculations, with 

r = 1.449 a.u. for p-H2 and r = 1.451 a.u. for o-H2 , 

for which j 12 and l are exact quantum numbers. Both 

the cc and sc calculations assume that j1 and j 2 are 

exact. In (a) the cc results involve the solution of 

a single Schroedinger equation; in (h) and (c) they involve 

coupling to states correlating with respectively higher 

and the same l 
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pretation has been confirmed by Verberne and Reuss (1981) 

who calculated admixture coefficients for the equivalent 

space-fixed channels. 

With vibrational excitation of an H2 monomer comes 

a much larger inCrease in the mean bond length. For 

V = 1, r 0 = 1.545 a.u. (LeRoy and van Kranendonk 1974). 

In the preceding section, we have assumed that this increase 

does not affect the potential. An extension of the ab 

initio potential calculations, together with further 

close coupling calculations of the nuclear .dynamics, 

are needed to assess the accuracy of this approximation. 

4.5 Conclusions 

The results of this chapter illustrate the importance 

of spectroscopic measurements of van der Waals molecules 

in determining intermolecular potentials. Information 

may be derived from these measurements on the behaviour 

of both the isotropic and anisotropic terms in the potential 

in the region of the well. Studies of the molecular 

dimer complement the analysis of low-energy scattering 

data, which tend to be sensitive to the repulsive part 

of the ·interaction, from the minimum upwards. 

Our specific conclusions regarding the H2-H2 dimer 

are: 

(i) That the IEPA potential of Burton and Senff 

(1982) is too strongly attractive and overestimates the 

magnitude of the v206 coefficient in the BF expansion 

of the potential. Electron correlation makes too large 

a contribution to the IEPA potential, as suspected by 
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Burton and Senff. 

(ii) The potential of Kochanski (1975), in which 

the dispersion energy is evaluated using second-order 

perturbation theory, satisfactorily predicts the isotropic 

part of the inteiaction, v000 , but again overestimates 

the magnitude of the v200 coefficient. This reflects 

errors in describing the anisotropy of the dispersion 

interaction. Taking into account other criteria, such 

as computer time requirements, this method remains attractive, 

particularly for applications to heavier systems. 

(iii) I~ calculations on the p-p and 0-p systems, 

the published potential of Schaefer and Meyer (1979) 

~ields better results than both the Burton-Senff and 

Kochanski pot~ntials. The quadrupole-quadrupole coefficients, 

v22n, which intervene ~irectly only in the 0-0 system, 

are in error; this potential should not be used in cal-

culations involving this modification of the dimer. 

(iv) The CI potential of Meyer and Schaefer (1985) 

and Schaefer and Liu -(1985) is undoubtedly the best of 

the four ab initio potentials studied. The anisotropy 

is found to concord with the failure to resolve rotational 

splitting of the dimer energy levels. The agreement 

with the observed separation of the £ = 0 and l = 1 

end-over-end rotational levels would be improved by a 

small negative shift of the isotropic potential minimum. 

The physical significance of this empirical modification 

is open to question. As Schaefer (1982a) has pointed 

out, such a shift requ~res an increase in the ~orrelation 
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energy of 30% in the.region of the zero of v000 . This 

is difficult to justify given the large number of con­

figurations employed in this calculation. A possible 

explanation may be that the bond length of the H2 molecules 

may decrease at shorter intermolecular se~arations, leading 

to an effective softening of the repulsive wall of the 

potential. 

The blister in the v200 coeffi~ient, postulated 

by Geraedts et al. C1982a) and Waai jer et al. ( 1981), 

conflicts with our findings. The short range constraints 

on the potential which forced its introduction may be 

invalid. These issues can only be resolved by fully 

variational bound state calculations, treating the H2 

molecules as vibrotors, in conjunction with near infrared 

spectroscopic measurements at improved resolution. 



CHAPTER FIVE 

THE D2 D2 DIMER 
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5.1 Introduction 

In the present chapter we report the results of 

our calculations on the Dz - Dz dimer. The motivation 

for studying this system derives from the result of 

the Born-Oppenheimer approximation that the electronic 

potential energy surface is unchanged by isotopic 

substitution. Furthermore, since the diatom centre 

of mass is'unshifted, unlike HD, we may use the same 

potential expansion coefficients, V/ (R), as we 
q,ql.f.A 

did for Hz - Hz (Kreek and Le Roy 1975, Liu et al. 

1978). The Dz molecule has a smaller vibrationally 

averaged internuclear separation than Hz; for Dz and 

Hz in their j = 0 states, r 0 = 1.435 a.u. and 1.449 a.u. 

re~pectively (LeRoy and van Kranendonk 1974). The 

results of Section 4.4 lead us to expect that this 

difference will be unimportant. This assumption has 

also. been made in scattering calculations on Hz - Hz 

·and Dz- Dz (Ramaswamy et al. 1977). We use the rigid 

rotor potential which was found in Chapter 4 to give 

the best agreement with spectroscopic measurements, 

namely the M80 surface of Meyer and Schaefer (1985) 

and Schaefer and Liu (1985). 

The reduced mass of Dz - Dz is approximately twice 

that of Hz - Hz. This results in a lower zero point 

energy of the complex, and hence more bound states. 

The rotational constant of the dimer is also consequently 

smaller leading to a stronger interaction between the 

bound· states. The s.maller rotational constant of the 
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n2 molecule should .increase the effect of including 

excited rotational states in the close coupling calculations. 

The overall result of the mass difference is to increase 

the relative importance of the potential anisotropy. 

In the scheme of Ewing (1976), n2 - D2 is a more strongly 

coupled complex than H2 - H2 . 

In Section 5.2· we present results for the bound 

states of D2 -D2 l~ing below the dissociation limit 

of the dimer. We shall see in the section that follows 

that bound states correlating to rotationally ex~ited 

D2 are also·possible. These calculations were performed 

using the R-matrix propagator method, in conjunction 

with Richardson h 2-extrapolation. Results for dimers 

comprising n2 in either of its two distinct modifications, 

ortho (j = 0,2 ... ) and para (j = 1,3 ... ), will be given. 

The measurements of McKellar and Welsh (1974) yield 

more detailed spectra for n2 - D2 than for H2 - H2 , 

the results for dimers of ortho-D2 showing the most 

structure. Throughout the rest of the chapter we shall 

concentrate on the experimentally more interesting ortho-

ortho (0-0) system. In Section 5.3 we calculate the 

·bound states and resonances correlating to one of the 

(indistinguishable) monomers being in its first rotation­

ally excited state (j = 2). The resonance energies 

and widths have been obtained using the method of Ashton 

et al. (1983) in conjunction with the molecular scattering 

code of Launay (1977, 1978). The effect of tunnelling 

between equivalent states will be seen to be marked 

in many instances. Furthermore, we shall attempt to 
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rationalise this behaviour in terms of simple two-level 

degenerate perturbation theory. These calculations 

will allow us to predict the, as yet unobserved, far infra-

red S (0) spectrum of the dimer. 
0 

We go on, in Section 5.4, to consider the overlapping 

s1 (0) and Q1 (0) + S
0

(0) spectra of 0-0 (D2 ) 2 , observed 

by McKellar and Welsh (1974). Full close coupling cal-

culations on the upper states of these transitions would 

involve tak.ing into account the dependence of the potential 

on the stretching of the monomer bond. We shall attempt 

to model reality by using a rigid rotor calculation with 

appropriate adjustments to the channel energies, enabling 

us to take into account the interaction between the upper 

levels of the single and double transitions cited. above. 

The emphasis will be on interpretation of the spectra, 

rather than assessment of the potential as in Chapter 

4. This is justified given that we use an ab initio 

potential surface which is widely regarded (e.g. Verbe~ne 

and Reuss 1980, Bucket al.1983b, Kohler and Schaefer 

1983b) to be the best available. -The chapter ends with 

a summar.y of our conclusions both on the interaction 

potential and on the spectroscopic assignments. 

5.2 Bound States 

Methods for calculating the bound state energies 

of molecular dimers have been discussed in Chapter 3. 

In the present work we integrate the close~ coupled equations 

using the R-matrix propagator method. Richardson extrapolation 

is used to accelerate the convergence of the eigenenergies 

with respect to the number of integration steps. -By 

way of example we give, in Table 5.1, results for the 



R . ' R 2,27 2,40 1", BO 
m~n max 

(a)' N = 50 -6.019B71 -6.025452 -6.030053 
100 -6.022423 -6.023029 -6.029B09 

200 -6.023217 -6.0233BB -6.02417B 

400 -6.023403 -6.023444 -6.023656 
BOO -6.023450 -6.023461· -6.023511 

extrapolation 50-100 -6.023274 -6.022222 -6.02972B 
100-200 -6.0234B1 -6.023507 -6.022301 

200-400 -6.023465 -6.023463 -6.0234B2 

400-BOO -6.023466 -6.023466 -6.023463 

(b) N = 50 -0 .. 457799 -0.470535 -0.541119 
100 -0.45574B -0.45B302 -0.476370 
200 -0.455327 -0.455992 -0.459731 

400 -0.455215 -0.455397 -0.456343 
.BOO -0.4551B7 -0.455251 -0.4554B5 

extrapolation 50-100 -0.455064 -0.454224 -0.4547B7 
100-200 -0.4551B7 -0.455222 -0.4541B4 
200-400 -0.45517B -0.455199 -0.455214 

400-BOO -0.45517B -0.455202 . -0.455199 

TABLE 5.1 

Convergence of the computed eigenenergies (cm- 1 ) of the 

ortho-D2-ortho-D2 system with respect to integration 
parameters. The limits of the integration range are 

R . and R (Bohr); 2N is the total number of sectors. 
m~n max · 

The improved convergence attainable using Richardson 
extrapolation (equation (3.36)) is demonstrated. The 

basis set consists of one rotational state (j = 0) on 

each D2 . The total angular momentum is (a) J = 0 and 
(b) J = 3. 
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lowest and highest of the bound states of ortho-D2-ortho­

o2 measured relative to the dissociation limit of the 

dimer. This table illustrates the convergence with respect 

to the integration parameters: integration range, R max 

R . , and the number of steps per half range, N. We m1n 

conclude that applying Richardson ~xtrapolation to the 

eigenenergies obtained with (R ·n' R , .N) = (2,27,50) m1 : max 
-1 and (2,27,100), yields results converged to within 0.0002 em 

Following Bishop and Shih (1976) the reduced mass in 

these calculations .is taken to be jJ. = 3670.48 a.u. 

The rotational Constant of D2 is half that of H2 

and it is of more interest to examine the effect of this 

on convergence with respect to basis set size. In Table 

5.2 we present results using a maximum of three rotational 

states on each D2 molecule : j = 0,2,4 for ortho-D2 and 

j = 1, 3, 5 for para-D2 . . The sample of results quoted 

corresponds to that obtained for H2 - H2 (Table 4.5), 

with which it may be compared. The channel energies 

were obtained from the results of Bishop and Shih (1976). 

The addition of a second rotor state (j = 2 or 3) shifts 

the levels downwards, as expected from· the variational 

principle, by ~ 0.08 -1 em This shift is larger than 

the correspohding one obtained for H
2 

- H2 , reflecting 

the smaller separation between the monomer energy levels. 

The addition of a third (j ~ 4 or 5) rotor state does 

not alter the results which are quoted with a precision 

consistent.with the numerical accuracy. This is partly 

because these rotor states are energetically more distant, 

but largely because the expansion of the potential, 



System. J£i 1 2 3 

0 - 0 o++ -6.0233 -6.0819 -6.0819 

1-- -5.0467 -5.1026 -5.102p 

p - 0 o+ -5.5831 -5.6672 -5.6672 

p - p .o++ -6.1732 -6.2459 -6.2459 

o-+ -4.4711 -4.4903 -4.4903 

TABLE 5.2 

Eigenenergies (cm- 1 ) of states J€i of ortho-D2-ortho-D2 , 

para~D2-ortho-D2 and para-D2-para-D2 ; J is the total 

angular momentum, e the parity and i the interchange 

symmetry (for identical molecules). Columns 1, 2 and 3 

contain results obtained ~ith one, two and three 

rotational states respectively on each D2 molecul~. 



147 

equation (4.3), is truncated at q1 = q 2 =# = 2. This 

means that dimer levels correlating to j 1 , j 2 = 0 or 

1 do not couple directly to.excited monomer states j 
1 

where· j - j) 2. On the basis of energy separation alone, 

second order perturbation theory would predict any shift 

due to a third rotor state to be three times smaller 

than the two rotor state shift. We conclude that the 

. 1 2 - 1 two rotor state resu ts are accurate to within 0.0 em 

and that basis set size, rather than nu~erical convergence, 

is the limiting factor. 

In Table 5.3 we give two rotor state results for 

the bound states of 0- 0 (D2 ) 2 , obtained from the M80 

potential using the numerical parameters determined above. 

Following Bishop and Shih (1976), the energy of the j 

= 2 level of D2 is taken as 179.078 cm- 1 . For completeness, 

the energy and width of the J(l) = 4 shape resonance 

is also given. This was calculated using the methods 

to be discussed in more detail ·in the following section. 

The molecular scattering code of Launay (1977, 1978) 

was used to calculate the eigenphase sum, which in this 

single open channel case corresponds to the scattering 

phase shift. This is fitted to a Breit-Wigner form, 

assuming a. linear background phase shift. 

The deuteron is a boson of unit nuclear spin. Under 

interchange of deuterons, the deuterium molecule may 

thus either have a symmetric spin function with I = 0,2 

or an antisymmetric spin function with I = 1. The former 

molecule. is the o~tho modification, the latter the para 



J E. 1, E(cm- 1 ) 

0 1 1 0 -6.082 

1 -1 -1 1 -5.103 

2 1 1 2 -3.194 

3 -1 -1 3 -0.495 

4 1 1 4 2.601 

TABLE 

The eigenenergies of 0-0 ( D2) 2. 

and (FWHM) width, r' of the J = 

The calculations were performed 

on each D2 . E(j = 2) = 119.078 

r -1 · (em ) 

0.0 

0.0 

0.0 

0.0 

0.55 

5.3 

Also given is the energy 

4 shape resonance. 

with two rotor states 

-1 em The energies are 

measured relative to the dissociation limit of the dimer. 

The good quantum numbers of the levels are given : viz. 

the total angular momentum (J), parity (£) and inter­

change symmetry (i). Also quoted is the value of the end­

over-end rotation, l. 
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(Rose 1957). For two D2 molecules in the same rotational 

state, .the symmetry of the total nuclear spin - rovibrational 
I 

wavefunction.under molecular exchange is giveri by i(-) 12 

j12 + J., + 112 
(-) + 1. For two ortho m·olecules, the total 

nuclear spin may take even or odd values, r12 = 0,1,2,3,4. 

All of the levels in table 5. 3 are therefore allowed, 

contrary to the statement made by Gordon and Cashion 

(1966). The results of these pedestrian arguments have 

been confirmed by Bunker (1979b) who calculated the stat­

istical weights for all symmetries of (D2 ) 2 and found 

none of them to be zero. 

Because the bound states in Table 5.3 correspond 

very closely to both molecules in their isotropic j = 0 

states, .they should behave according to a simple nonrigid 

.iotor model of the form (McKellar and Welsh 1972 Kudian 

and Welsh 1971): 

E = Eo + B.t -t (t + 1) - D.t ({ ( -t + 1) r ( 5. 1 ) 

E
0

. is the zero point ( ..(. = 0) energy; B .t and D {, respectively 

the r6tational and centrifugal distortion constants of 

the dimer. Performing a least squares fit to the bound 

states of Table 5.3, we arrive at the values, Bt = 0.495 cm- 1 

. -3 . -1 
and Dt = 2.4 x 10 em . These may be compared with the 

valties obtained by McKellar and Welsh (1974) from their 

ob~ervations of the dimer spectrum in the Q1 (0) region 

of pure ortho-D2 . The experimental results are BL ~ 

0 ·
5 

-1 · . 0-3 -1 . 
. 25 em and Dt = 3.5 x 1 em . This confirms the 

conclusion of Chapter 4, that the Meyer-Schaefer-Liu 
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potential underestimates the dimer rotational constant. 

The effect·i ve intermolecular separation, implied _by the 

theoretical and experimental values of the rotational 

constant, is 4.11 A and 3.99 ~ respectively. This suggests 

a negative shift of the Meyer-Schaefer-Liu potential 
0 

of 0.12 A is required, in broad agreement with the results 

of Chapter 4. 

In Table 5.4,. the transition frequencies deduced 

from Table 5.3 are compared with the values obtained 

by McKellar and Welsh (1974) from the Q1 (0) spectrum 

of 0-0 ( D2 ) 2 . The experimental estimate of, the 

l = 0-3 energy separation is based on observations 

of the s1 (0) spectrum where anisotropy effects are important 

(see Section 5. 4). No 0 ~ 3 transitions ( N and T branches) 

are observed in the Q1 (0) spectrum as these would violate 

the electric dipole selection rules. The t II = 3--t t' = 4 

and ,f}! = 4~ ..t' = 3 lines were only partly resolved 

due to broadening. McKellar and Welsh (1974) conclude 

that the 1= 4 state is pseudobound. The 0H1, 1~2 

and 2~3 lines are all sharp, consistent with our conclusion 

that the (D2 l 2 dimer has 4 (! = 0,1,2,3) bound states. 

The state~ent in McKellar and Welsh (1974) that l = 3 

is also pseudobound should be disregarded, though McKellar 

(1983) points out that pseudobound levels just above 

the dissociation limit in H2 - rare gas complexes can 

give rise to sharp lines. In passing we add that no 

experimental evidence exists for the presence of lev~ls 

involving excited vibrations of the van. der Waals bond. 



Transition Theory Experiment 

~· - ~ II) 

1 - 0 0.98 1.04 

2 - t 1. 91 2.00 

3 - 2 2.70 2.85 

4 - 3 3.10 3.50 

3 - 0 5.59 ( 6. 94) 

TABLE 5.4 

( -1) The separation in em between end-over-end rotational 

states of ortho-ortho n4 . The theoretical results are 

obtained from the bound state energies of Table 5.3. 

The experimental result for the 3-0 separation was 

estimated from measurements of the S1 (0) spectrum 

f6r which angular anisotropy may be expected=td ·be 

important. The remaining experimental values were 

obtained from the unambiguously assigned R and P 

components of the Q1 (o) spectrum in pure ortho-D2 . 
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This is not surprising given that the lowest bound state 

-1 f is 16 c~ above the minimum o the isotropic potential 

vooo· 
Two rotor state calculations have also been performed· 

on th~ p - 0 and p - p systems of (D2 l 2 . The energies 

of all bound states lying below the dissociation limit 

are given in Tables 5.5 and 5.6. The energy of the 

j = 3 rotor state of para-D2 is taken as 297.546.cm-\ measured 

relative to E(j = 1) (Bishop and Shih 1976). For complete-

ness, the energies and widths of two shape resonances 

of p- p (D2 ) 2 are also given in Table 5.6 so that all 

states correlating with~= 0,1,2,3 are calculated. The 

results of these tables are plotted in Figure 5.1. Comparison 

with the analogous diagram for (H2 ) 2 , viz Figure 4.6, 

shows that rotational splitting is more marked in (D2 ) 2 . 

The £-correlations are also illustrated; though all of 

these are self-evid~nt from considerations of parity 

and angular momentum coupling, they were all checked 

by carrying out (1 - rQtor state) calculations allowing 

the potential anisotropy to decrease linearly. The magni­

tude of the ~plitting for some of the p - p levels indicates 

that l is not a good quantum number in these cases. 

This space-fixed quantum number is still a convenient 

one to use for labelling purposes and it is the one employed 

by McKellar and Welsh (1974) for their experimental line 

assignments. We note, however, that the body-fixed quantum 

number ..f'l.. could in principle have been used; the correlations 



J E. ENERGY ( CM- 1 ) W1DTII ( CM- 1 ) 

1 . -] 0 -6.149 0.0 

0 1 1 -5.667 0.0 
1 1 1 -4.839 0.0 
2 1 1 .:5.201 0.0 

1 - 1 2 -3.415 0.0 
2 - 1 2 -2.942 0.0 
3 - 1 2 -3.300 0.0 

2 1 3 -0.664 0.0 
3 .1 3 -0.274 0.0 
4 1 3 -0.593 0.0 

TABLE 5.5 

The eigenenergies of p-o (D2 l 2 . The c~lculations 

were performed with two rotor states on each 

n2 . The corresponding channel energies were 

taken .as 0.0, 297.546 for para-D2 and 0.0, 

179.078 for ortho-D2 . All energies are quoted 

in cm-1 All states correlating with the end­

over-end rotation,!=o-3, are bound, as is evident 

from the zero widths. 



J £ 1 ENERGY ( CM- 1 ) WJDTI-I ( CM- 1 ) 

0 1 1 0 -6.246 0.0 
1 1 - 1 0 -6.114 0.0 
2 1 1 0 -6.545 0.0 

0 - 1 1 1 -4.490 0.0 
1 - 1 1 1 -5.379 0·.0 
1 - 1 - 1 1 -6.321 0.0 
1 - 1 - 1 1 -5.169 0.0 
2 - 1 1 1 -5.058 0.0 
2 - 1 - 1 1 -5.191 0.0 
3 - 1 - 1 1 -5.521 0.0 

0 1 1 2 -1.242 0.0 
1 1 1 2 -5.327 0.0 
1 1 - 1 2 -2.843 0.0 
2 1 1 2 -3.335" 0.0 
2 1 1 2 -2.389 0.0 
2 1 - 1 2 -3.458 0.0 
3 1 1 2 -3.409 0.0 
3 1 - 1 2 -3.118 0.0 
4 1 1 2 -3.545 0.0 

1 - 1 - 1 3 0.212 0.1174 
2 - 1 1 3 -0.255 0.0 
2 - 1 - 1 3 -1.415 0.0 
3 - 1 1 3 -0.728 0.0 
3 - 1 - 1 3 -0.623 0.0 
3 - 1 - 1 3 0.360 0.0126 
4 - 1 1 3 -0.412 0.0 
4 - 1 - 1 3 ·-0.725 0.0 
5 - 1 - 1 3 -0.768 0.0 

TABLE 5.6 

The eigenenergies of p-p (D2 ) 2 . The calculations were 

performed with two rotational states on each n2 . All 

levels correlating to J., = 0,1,2,3 were calculated. Two 

of the ~ = 3 states are pseudo-bound; their energies 

and widths were calculated using the methods of section 

5~3 

* At the time of writini, a 2-rotor state result was 

unavailable for this resonance. The energy quoted 

here was obtained. with one rotational state (j = 1) 

on each n2 . 

* 
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Figure 5.1 

The bound states of par~-D2-ortho-D2 and para-D2-para-D2 . 

Also shown are the four end-over-end rotational state$ to 

which these levels correlate. The two shape resonances 

in the p-p system ~hich correlate to t = 3 are not shown. A 

comparison with the analogous figure_ for H2-H 2 (Figure 

4.6) demonstrates the greater role played by rotational 

anisotropy in the heavier dimer. 

* A b~ief discussion of these two strongly split levels 

appears in the text. 

* 
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would then be obtained by multiplying the coriolis coupling 

terms as well as the potential coupling terms by a factor 

between Oand 1. The v200 term in the potential expansion 

is responsible for the rotational splitting of the p~O 

levels, the higher order v22n terms contributing only via 

couplirig to excited rotational monomer states. All of 

the terms in the potential expansion can directly contribute 

to rotational splitting in the p-p system. 

The interpretation of the splitting is simplified 

if we note that one rotor state results differ from the 

./ -1 two rotor state results quoted here by ~ 0.08 em 

With the restriction j 1 = j 2 = 1, the basis set for the 

strongly split p-p level J£i 1++, correlating with 

·l = 2, consists of only one term: (j 12 ,.Jl..) = (2,1) .. 

For this example, the interpretation is the same whether 

we consider this basis or the equivalent space-fixed 

one, (j 12 , l) = (2,2). Evaluation of the potential matrix 

element9, equation (2.28), allows us to define an "effective 

radiai potential": 

<j d,_ J,,_ ji \ v ct '> i\) R) \ J: j~ j~,_ Ji.' > i- f-l. 
. ,.... I)"' 

( 5. 2) 

= v (R) T 0·4-4 v. . (R) - 0·4-0 v. (R.) - O·if.( \1. (R) 
ooo 2oo 2.4o .Zll 

The anisotropic terms in the potential expansion all 

provide, in the region of the well, negative contributions, 

resulting in the marked downward shift. In the language 

of perturbation theory (Le Roy and van Kranendonk 1974) 

this is a first-order splitting. Unlike the case of 

two ortho-Dl molecules, where all parts of the potential 

surface have an equal weighting, we can think of the two 
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rotating para molecules as sampling a more restricted 

region of the surface determined by vector coupling argu-

ments. A similar interpretation of the rotation~l splitting 

of the J £ i = o++ level, correlating with ,-l = 2, may 

also be given; in this example two channels are involved 

in a one rotor state calculation, namely (j 12 ,JL) = (0,0) 

and (2,0). Potential coupling between these leads to 

an additional ~econd-orde~ shift.·. The absence of coriolis 

coupling between these two channels avoids any ambiguity 

in the interpretation of the space-fixed shift as illustrated 

in Figure 5 .1. 

McKellar and Welsh (1974) have observed the absorption 

spectrum of the (D2 ) 2 dimer in normal deuterium in the 

region of the Q1 (1) and Q1 (0) transitions. All three 

dimer modifications contribute, though the intensity 

of any p-p lines will be reduced due to the 2:1 ratio 

of ortho to para deuterium. This could partly explain 

why McKellar and Welsh were able to interpret their spectrum 

in terms of pure lll transitions, given that rotational 

splitting in the p-0 sy~tem is relatively small. Some 

perturbation of the line frequencies was observed, however. 

This could be due either to rotational splitting effects, 

or to the interaction of the upper states corresponding 

to the Q1 (1) and Q1 (0) transitions of the p-o dimer as 

suggested by McKellar and Welsh. These upper states 

are only coupled by the dependence of the potential on 

intramolecular stretch. The bound states of table 5.5 

could be used to predict the p-o contribution to the 

spectrum by neglecting this_coupling and.evaluating the 
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transition frequencies to two identical sets of upper 

levels, separated by the difference between the Q1 (1) 

-1 and Q1 (0) band origins (5.914 em ). Additionally, the 

Q1 (1) and Q1 (0) contributions from respectively the p-p 

and 0-0 systems .could be superimposed. In the absence of 

line intensity information, the resulting densely packed 

stick spectrum is of limited use, and we do not plot 

it here. For the rest of this chapter we shall concentrate 

on the dimer absorption spectra found in pure ortho-

deuterium. 

5.3 The S
0

(0) spectrum of orth6-D2-ortho-D2 . 

The channel potentials, for two rotor state calculations 

on 0-0 (D2 ) 2 , are schematically illustrated in Figure 

5.2. The lower states of the S
0

(0) absorption spectrum, 

which lie near to the dimer dissociation limit, were 

calculated in the preceding section. In this. section 

we are interested in calculating the upper states which 

correlate to (V1 ,j 1 ,v2 ,j 2 ) = (0,2,0,0) or (0,0,0,2). 

Such states, lying below threshold, may either be internal­

rotationally predissociating Feshbach resonances (Le 

Roy et al. 1982) or bound states. The latter occur when 

there are no open channels· present in the calculations. 

To show the conditions under which this occurs, we first 

note that the fully symmetrized body-fixed (equation 

2.35) and space-fixed basis functions may both be written 

in the abbreviated form: 

( 5. 3) 



3r-------._.,./ 
So(o): {.t t 

Figure 5.2 

0 

3 r--------~----
1, II .t t----------,o/ 

0 

CHANNEL 
V, J; 'lz J 1 t: N 1: R G 7 

(crrv:... 1) 

0 l. 0 l. 358· 15t, 

0 2.. 0 0 

0 0 0 l. 

0 0 0 0 O·O 

Details of the basis set and channel energies used in 

calculations of the S
0

(0) spectrum of o-o (D2 l 2 . ET is 

the S
0

(0) threshold energy and ED the dissociation limit 

of the dimer. Only one of the four ( l = 0,1,2,3) 

effective potential energy curves, for each set of D2 
quantum numbers, is shown in this schematic representation. 



154 

The open channels are states correlating with (V1 ,j 1 ,v2 ,j 2 ) 

= (0,0,0,0) and for these the parity is given by 

; (-)"' T 
~ (-) ( 5. 4) 

The final result of (5.4) is true for both the space­

fixed and body-fixed versions of (5.3). Substituting 

(5.4) into (5.3) we deduce that i = (-)J for non-vanishing 

open chann~ls. When j 1 and j 2 differ, as they do for 

the upper states of the S
0

(0) transition, both interchange 

symmetries exist. There is no coupling to the lower 

states either ·if E ~ (-)J+l or i = (-)J+l. Such states 

cannot predissociate by transferring their internal rotational 

energy to the van der Waals bond and are thus bound. 

Their energies have been calculated using the methods 

described in the preteding section, with the same numerical 

integration parameters. 

States which do not couple to the lower levels but 

which lie above the S (0) threshold, behind a centrifugal 
0 

barrier, are shape (or orbiting) resonances. These pre-

dissociat~ by tunnelling through the barrier. All of 

the resonances were found by using the molecular scattering 

code of Launay (1977, 1978) to obtain the (real) reactance 

mat~ix~ K. This is defined by the behaviour of the radial ,..., 

sol uti on matrix in the asympto-tic region (e.g. Balint-

Kurti 1975, Dickinson 1979): 

b~q' (k- fl R j{p (Jr./) ~ ~?' (R) 
( 5. 5) 
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Here, j and n are the spherical Bessel functions (Abramowitz 

and Stegun 1965) and ~~ ( Ar) is the. end-over-end angular 

momentum quantum number in the channel denoted by r ( 1'); 

k is a wavevector.· The Launay programme integrates the 

coupled equations in the body-fixed frame, for reasons 

of numerical efficiency. At large R the solutions are 

then converted into space-fixed form, using the inverse 

of ·the unitarytransformationgiven in equation (2.11); 

a space-fixed K matrix, as defined above, may thus be 

obtained (Launay 1976, Heiland Kouri1976). This procedure 

is preferable to obtaining a body-fixed K matrix since 
/ 

the equations in this frame decouple more slowly at large 

R due to Coriolis terms which decay as R- 2 (Lester 1976). 

The boundary conditions in equation ( 5. 5) can be restated 

in terms of the S and T matrices, related to the K matrix 

in the following way: 

5 ("£ + L K) (I - L k )- 1 

""" _,._ ,..., 
(5.6a) /'V . 

T T s (5.6b) 

Having solved the scattering equations at some trial 

energy, the K matrix is diagonalised (K
0

) and the eigenphase 
,v 

sum, 6 , obtained: 

~ -I ( D.) 
L_ to...n. K D(o( 
o< . ( 5. 7) 

This is the multi-channel analogue of the elastic scattering 

phase shift (Lester 1976, Hazi 1979). The eigenphase 

sum is obtained at a number of trial energies in the 
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region of a resonance and fitted to a Breit-Wigner form, 

assuming a linear background, to obtain the resonance 

energy, E , and the full .width at half-maximum, f' 
r 

6(E) ~ + bE ·.-r ( 5. 8) 

This method, which is due to Ashton et al. (1983), is 

a convenient way to calculate reson-ance energies and widths 

as only a straightforward modification of standard scattering 

codes i~ necessary to implement it (Hutson 1983b). A 

number of packages exist for performing least squares 

fits to non-linear functions of the form (5.8); we chose 

the NAG routine E04FDF (NAG 1984). An automatic programme 

for locating and fitting Breit-Wigner resonances from 

tables of eigenphase sums, which also uses E04FDF, has 

been written-by Tennyson and Noble (1984). This code 

was used to fit many of the resonances discussed in this 

chapter. In ~ few ca~es, generally when the resonance 

was either just above a threshold or overlapped with 

another, a more manual approach was necessary to get 

a good _fit. Any such problems were overcome by appropriate 

adjustments to the energy range over which the fit was 

made; the energy should also always be scaled by a constant 

factor to give it the same order of magnitude as the 

eigenphase sum. 

For repeated calculation of the K matrix over a 

range.of energies, a piecewise analytic method such as 

the R-matrix propagator is generally reckoned to be the 

most efficient approach. The Launay scattering code 
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uses the approximate solution de VogelafB method. However, 

this code is a-particularly efficient implementation, 

taking advantage of the presence of zero elements in 

the body~fixed coupling matrix (Launay 1976). Furthermore 

the results of chapters three and four show that there 

is no inconsistency in using the R-matrix propagator 

for bound states and the deVogelaere for scattering cal­

culations; the two methods can be made to agree to any 

desired accuracy. 

5.3.1 Convergence tests 

We outline the results of numerical convergence 

tests for the Feshbach resonance J €i = o++ correlating 

with l = 2. The behaviour of the eigenphase sum for 

this resonance is illustrated in Figure 5.3. Two rotor 

states are retained on each D2 . The relevant parameters 

for the de Vogelaere method are the integration range 

and, in Launay's implementation, FPT which is the number 
. . 

of integration steps per half-wavelength. Here the de 

Broglie wavelength is determined from the sum of the 

well depth and the collision energy relative to the 

lowest channel. In Tables 5.7 and 5.8 we show respectively 

the variation of the resonance energy and width with 

respect to these integration parameters. We conclude 

that (Rmin' Rmax' FPT) ~ (2,27,10) is sufficient to bbtain 

a resonance energy and width accurate to five significant 

figures. Similar convergence tests were carried out 

on the eigenphase sum in the vicinity of the resonance 

. (0.04 r from the resonance energy); the error in ~ 
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Figure 5.3 

The behaviour of the eigenphase sum, ~ , in the region of 

the J£i = o++ Feshbach resonance correlating with (j 1 ,j 21~) 
= (2,0,2) or (0,2,2). ·The energy is measured relative 

to the S
0

(0) threshold. 



Resonance energy (cm- 1 ) relative to ET 

(a) FPT 10 

·~ RFN 
1 2 3 

20 -1.52878 

27 -1.52881 

40 -1.52881 -1. 52881 -1.52881 

(b) FPT == 20 

~ 1 2 3 
N 

20 -1.52880 

27 -1.52882 

40 -1.52882 -1.52882 -1.52882 

TABLE 5.7 

£i The energy of the J 0++ . resonance, correlating with 

(j 1 ,j 2 ,t) == (0,2,2) or (2,0,2), for different values 

of the de Vogelaere integration parameters. 

and RFN (=R ) determine the integration range, in max . 

a.u., in the Launay (1977, 1978) scattering programme. 

Twice as many steps are taken in (b) than in (a) (parameter 

FPT). Energies are quoted in cm- 1 , relative to threshold 

179.078 cm-1 . The calculations were performed with two 

rotational states on each D2 . 



Resonance width (cm- 1 ). 

(a) FPT 10 

~ 1 2 3 
. R . 

20 0.0153732 

27 0.0153726 

40 0.0153723 0.0153725 0.0153722 

(b) FPT 20 

~ 1 2 3 
R 

20 0.0153728 

27 0.0153724 

40 0.0153724 0.0153725 0.0153724 

TABLE 5.8 

Ei ++ The full width at half maximum of the J = 0 resonance, 

correlating with (j 1 ,j 2 ,t) = (0,2,2) or (2,0,2), for 

different values of the de Vogelaere integration parameters. 

Refer to the analogous resonance energy results (Table 

5. 7). 
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was found to be 0.003 for the chosen parameters. The 

overall accuracy of the results, for the given potential 

surface, will be determined by basis set truncation which 

we now briefly illustrate. 

In Table 5.9, results ar~ given for 2-rotor and 

3-rotor state calculations of resonances and bound states 

(0,2) or (2,0): Coupling 

to the j 1 ~ j 2 = 0 ~t~te is responsible for predissociation. 

This channel is not present in the calculations which 

yield the bound states. The addition of a third rotor 

state (j = 4) to each D2 shifts the bound state/ resonance 

energy downwards by ( 0. 02 cm- 1 . For resonances lying 

below threshold (negative energies) the widths given 

by the two-rotor runs are accurate to 2 significant figures. 

The error in the width is somewhat greater for the 

J £i .= 1-- resonance lying just above threshold. The 

increased error is due to fitting difficulties arising 

from a change in the background eigenphase sum on crossing 

the S (0) threshold. In a multi-channel analogue of 
0 

Levinson's theorem (e.g. Child 1974) the eigenphase sum 

is continuous across a threshold, though its derivative 

with respect to energy is in general not. The eigenphase 

sum for this resonance is illustrated in Figure 5.4. 

The fitting error was investigated by carrying out a 

number of fits for which the energy range and grid were 

varied. Changes in Er and r of up to 0. 0007 and 0. 001 

respectively were found. The values quoted in Table 

-1 em 

5.9 are those which gave the lowest mean residue (Tennyson 



2-rotor states (crn- 1 ) 3-rotor states (crn- 1 ) 

JE.i energy width energy width 

o++ -1.5288 0.0154 -1.5421 0.0156 

1-- -5.9127 0.00419 -5.9332 0.00423 

1-- 0.1040 0.0374 0.0942 0.0336 

o+- -5.9359 0.0 -5.9607 0.0 

1-+ -6.2359 0.0 -6.2594 0.0 

1-+ -0.8051 0.0 -0.8181 0.0 

2--. -5.1426 0.0 -5.1579 0.0 

2=- -1.3403 0.0 -1. 3531 0.0 

TABLE 5.9 

Convergence with respect to basis set size for resonances 

and bound states correlating to ( j 1 ,j 2 ) = (0,2) or (2,0). 

Energies are quoted relative to the first excited rotational 

state of n2 , viz. E(j = 2) = 179.078 crn- 1 . For the bound 

states, which have zero width, ( j 1 ,j 2 ) = (0,0) is not 

present in the close-coupled equations. 
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The behaviour of the eigenphase sum,~(radians), in the region 

of the J'i = 1-- resonance correlating with (j 1 ,j 2 ,') = 

(2,0,3) or (0,2,3). Since the resonance lies just above 

the S
0

(0) threshold (zero on our energy scale) it has dual 

Feshbach/Shape character. Note also the change in the 

background ~ on crossing threshold. 
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Noble 1984). It is interesting to note that this resonance 

h~s dual Feshbach/Shape character. It can predissociate 

either by transferring D2 rotational energy to the van 

der Waals bond, or by tunnelling through the centrifugal 

barrier of the effective channel potential. We consider 

only the total width here, but this dual character could 

be quantified by calculating the partial widths; these 

may be found from the energy dependence of the individual 

eigenphases, S~ (Hazi 1979). 

Close coupling calculations with two rotor states 

per n2 will be adequate, though we note that direct potential 

coupling to j = 4 states is thus neglected. Inclusion 

of j 4 on each D2 would involve integrating up to 64 

( f J E i 6++) 1 . . h . h or =. .coup ed equat1ons even wen 1nterc ange 

blocking is taken into account. 

5.3.2 Results 

Results for all levels correlating with f, = 0 - 4 

and (j 1 , j 2 ) = (0,2) or (2,0) are given in table 5.10. These 

levels form the upper states of the S
0

(0) absorption 

spectrum; ihey are separated from the lower states, given 

9 -1 in Table 5.3, by 17 .078 em . The levels are all split 

into interchange doublets. Below threshold, one or both 

members of each doublet are bound, according to the rules 

discussed above. All of the states correlating with 

1 = 4 are resonances. For these the separation of 

individual doublet members is less than the predissociation 

width. The Launay scattering code, which does not symmetrize 

with respect to interchange, does not resolve these. 

An estimate ~f E and r can be obtained by treating 
r 
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1 
- 1 

1 
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1 
- 1 

1 
- 1 

1 
- 1 

1 
- 1 

1 
- 1 

1 
- 1 

:t 1 
:!: 1 
t1 
±1 
±1 

0 
0 

1 
1 

1 
1 

1 
1 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

3 
3 

3 
3 

3 
3 

3 
3 

3 
3 

4 
4 
4 
4 
4 

ENERGY (CM-1) 

-6.36581 
-6.42676 

-6.23589 
-5.91269 

-4.82906 
-5.14265 

-5.43477 
-5.36931 

-1.52881 
-5.93589 

-4.89587 
-1.97800 

-2.63566 
-3.83546 

-3.36465 
-2.82761 

-3.41717 
-3.49852 

-0.80507 
0.10467 

0.32812 
- 1 . 3402 8 

-1.02916 
0.11618 

-.0.12884 
-0.69098 

-0.75170 
-0.66645 

2.51540 
2.20813 
2.36177 

. 2.58124 
2.40566 

TABLE 5.10 

W1Dlli (CM-1) 

0.00459 
0.0 

0.0 
0.00419 

0.0 
0.0 

0.0 
0.00564 

0.01537 
0.0 

0.0 
0.0 

0.00285 
0.0 

0.0 
0.0 

0.00579 
0.0 

0.0 
0.03638 

0.01503 
0.0 

0.0 
0.00323 

0.0 
0.0 

0.0 
0.00490 

0.41700 
0.85595 
0.76816 
0.61453 
0.37311 

Two-rotor state results of resonance and bound state cal­

culations on the upper states of the S
0

(o) absorption 

spectrum. Level energies are quoted relative to E(j 2) 

= 179.078 cm- 1 Note that the levels are split into 

doublets, differing only in the interchange quantum 

number, i. Where i = 2: 1 is listed this splittin·g is 

much smaller than the predissociation width. 
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these doublets as single resonances. 

In addition to the scattering calculations on the 

l = 0 - 3 resonances, we attempted to calculate the energies 

using our bound state programme. These resonance energies 

could all be found to within 0.008 cm- 1 in this way. 

The bouhd state cbde also yields additional levels due 

to the continuum, made discrete by the bound state boundary 

conditions·imposed on the wavefunction at short and long 

range. Probably the easiest way to distinguish resonance 

from continuum states. would be to repeat the calculations 

with the j 1 = j 2 = 0 channel removed. Another possible 

application of the bound state approach is in the extra­

polation to ~ero of the matching determinant (equation 

3.32) to obtain the position of shape resonances. 

Returning to the results of Table 5.10, we note 

that the width of the J e: i = o++, .(, = 2 resonance is 

at least 2.7 times greater than any of the other Feshbach 

resonances lying below threshold. A similar result was 

found by Le Roy et al. (1982) in an analogous study of 

the Ar H2 dimer .. The J = 0, 1, 2 resonance for that 

system was over twice as broad as any other correlating 

with j = 2 (and V = 1). the reason fo.r this may be found 

in the angular potential matrix elements between rotational 

basis functions (Hutson and LeRoy 1983). Inspection 

of the potential matrix elements given in Chapter two 

shows that only the v200Y~ 00 term in the potential expansion 

(equation 2.37) is responsible for internal-rotational 

predissociation of the S
0

(0) levels in o4 . Measurements 
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of line widths, though currently notfeasible for these 

narrow resonances, may therefore, be expected to yield 

useful information on the potential anisotropy. 

Consider now the tunnelling doubling of states which 

differ only in th~ir interchange symmetry. This splitting 

can be rationalised in terms of first order degenerate 

perturbation theory. To illustrate this, we shall make 

a number of simplifications. All levels, including the 

resonances, are treated as discrete states. In addition 

we assume that the total wavefunction of any member of 

a J multiplet may be represented by I~) lj 1 j 2 1 J), where 

this is shorthand for iF( j 1 j 1 j 12 ~ JM£ I R) "j( j 1 j 2 j 12 .(.. JM £ 

j ;€~ ,£2 ,g) · (see equation 2.10 for further details). In 

other words j 1 ,j 2 ,j12 and t are treated as good quantum 

numbers and space-fixed basis functions are appropriate. 

The degeneracy.of the In) 120..{ J) and In> 102 ..{J> states 

is removed by potential coupling, which we treat as the 

perturbation. The Hamiltonian for nuclear motion is 

partitioned thus: 

H + ( 5 . 9 ) 

where 

H0 
= h, + h2 - :2'r."R2. + Aooo Io~o + A2.02 I.zo.z + Ao.u Io.zz 

( 5. 10) 

and 

(5.11) 
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The functions A q 
q,q2 12. 

represent respectively 

the radial and geometric dependence of the potential, 

expanded in the space-fixed frame. Further details on 

the terms in the equations above may be found in Chapter 

two .. For t = 2 and ,l = 3, all three A22n terms contribute 

to the interchange splitting (for ~ = 0 only A220 contributes, 

and for ~ = 1 only A2·2Q and A222 ). The dominant term 

is A224 , b~ing over thirty times larger in magnitude 

than A220 and A222 near the potential minimum. Indeed, 

in a recent modification of the Meyer-Schaefer-Liu potential, 

A220 and A222 have been left out of the expansion altogether 

(Norman et al. 198~d . We label the states In) l20..t. J) 

and In) lo2~J/ by 1 and 2; matrix elements of the perturb-

ation Hamiltonian between these are given by 

0 
(5.12a) 

Vc. = V..c. ~/n.jA (R)\n)<lo-t;r\I (~,';-; R)joz.(,J\ (5.12b) 
l.t 2 I ~ l2.Lf. . 12.4- - ) .... )"- I 

It may be shown (Bransden and Joachain 1983) that the 

first order energy correction, E(l), and the corresponding 

wavefunction, aln) I20..tJ> + bln>I02-tJ>, are obtained 

by solving the linear equations 

. c 
+ 6 ~1. 0 

(5.13a) 

0 ( 5. 13b) 

With the normalisation of the wavefunctions an additional 

condition, two soluttons, are obtained: 
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E
(l) v c 1'\TJ = 12. ) J_ (5.14a) 

(5.14b) 

The space-fixed, interchange-symmetrized wavefunction 

is, by analogy to equation (2.35): 

(5.15) 

By comparing (5.15) with (5.14) we can predict the dependence 

. of the interchange splitting, ~Ei = E(i = 1) - E(i = -1), 

on the dimer angular momentum, ·1, : 

.6. E-< {+~2.Vc tor- [ e v~~ ~ { - (5.16) - - 1.(. 0~ tA 

In Table 5.11, the value of .1Ei, deduced from the 

full close coupling results, is compared with 

2 x<20.{Jir 224 I02{J> for..(= 2 and 3. These quantities 

have been scaled such that for one member of each J multiplet 

(constant~ ) they agree in magnitude. This is tantamount 

to assuming that the radiai matrix element, (n I A224 1 n) , 

is constant for states correlating to the same 1 . 

Noting that A224 is always positive (Schaefer 1982b), 

we see that perturbation theory correctly predicts the 

sign and gives broad agreement with the relative magnitude 

of the interchange splitting. The angular matrix elements 

were evaluated from the expression given by Green (1975), 

which is the space-fixed analogue of the body-fixed expression 

given earlier in this thesis (equation 2.29). We mention 

in passing that if the radial matrix element is approximated 



J£ ~Ei 2x(20lJir 224 I02tJ> 

(a) t = 2 
o+ ( 4. 407) 

"'k "'k 
1 1 (0.09659) 

1+ -0.66 -0.67 
2+ 0.27 0.29 
3+ -0.12 -0.07 
4+ 0.02 0.008 

(b) l = 3 
;'( 

1- -1 (-0.910) 
·k 

1 (0.03220) 
2- 1. 83 -1.50 
3- -1.26 1.00 
4- 0.62 -0.33 
s- -0.09 0.05 

TABLE 5.11 

A comparison of the interchange splitting, 

the levels in Table 5.10 with (twice) the angular 

· matrix element, < 20 J, J I r 224 1 02./J>. Perturbation theory 

predicts that these quantities should be proportional, 

differing in sign for odd L (see text). The quantities 

have been scaled to agree in magnitude for the lowest 

J member of each multiplet corresponding to (a) L = 2 

and (b) fv = 3. 

"'"k 
Actual (i.e. unsealed) values are given in brackets. 
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by the value of A224 at the effective radial separation, 
0 

Reff = 4.1A, determined from the rotational constant 

in the preceding section, then the absolute value of 

the splitting of the Jt o+ level is correctly predicted 

to within 10%. While this is far from rigorous (choosing 
0 

A224 near the potential minimum, R ~ 3.5A, results in 

a splitting twice as large) it does at least indicate 

that the size of the tunnelling doubling is reasonable. 

To summarise, the interchange splitting discussed 

here is due to the interaction between the electrostatic 

quadrupole moments of the D2 molecules. Experimental 

measurements of transitions involving these levels would 

yield information mainly on the A224 coefficient in the 

space-fixed potential expansion or the v220 and v221 

terms in the bo?y-fixed. Choosing the two most widely 

split states as examples, v 220 

of the Je o+ ( 1, = 2) level 

1+( A.= 2). 

breaks the degeneracy 

( 
and v221 that of J = 

To deduce the S (0) absorption spectrum, we need 
0 

to know the electric dipole selection rules for transitions 

between the upper levels of table 5.10 and the lower 

levels of Table 5.3. Allowed transitions occur between 

states whose irreducible representations are connected 

by that of the dipole moment. The selection rules derived 

by B-rocks and van der Avoird ( 1985), using group theoretical 

arguments, are consistent with the standard electric 

dipole selection rules, namely: change in parity, no 

change in interchange symmetry, and ~J = 0, ~ 1 

(0 ~ 0). The latter rule comes from vector coupling 
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arguments. 

In Table 5.12 we give the transition frequencies 

for the dimer spectrum accompanying the far infrared 

S (0) transition of the free n2 molecule: 
o· 

( 
tl · II vl/ ·II) = (o O O o) v,) j ') l ) Jl } ) ) 

The transition frequencies are given relative to the 

unperturbed S
0

(0) quadrupole frequency of a n2 molecule. 

The linewidth is the sum of the widths of the two levels. 

participating in the transition. Th~ table labels the 

initial and final states by the good quantum numbers 

J, E and i together with the value of ~ to which they 

correlate. The results are plotted in Figure 5.5. The 

band origin is taken as the zero of frequency. Lines 

of finite width are represented by Lorentzian profiles 

of unit normalisation, i.e. 

L(v) 

and 

J L(v) J.v 

.L 
2ft 

r 
2. r2. ( v -)} o) + /Lf.. (5.17) 

(5.18) 

Here, )J is the line frequency and r the linewidth 
0 

as given in Table 5.12. The constant normalisation of 

the Lorentzians means that we are assuming, in the absence 

of quantitative intensity information, that the total 

energy absorbed in each line is equal. See, for example, 

the discussion on the absorption cross-section in Merzbacher 

(1961). Contributions from overlapping lines are simply 



J " £." i " I " --> J •. e· i • I • FREQUENCY WJDTII 
( CM-1 ) ( CM- 1 ) 

0 1 1 0 1 . - 1 1 1 -0.1538 0.0 

0 ] 0 ] - ] 1 3 5.2770 0.0 

- 1 . - 1 0 - 1 2 -0.8331 0.0 

l - 1 -. 1 . 1 - 1 2 3.1248 0.0 

1 - 1 - 1 2 - 1 0 -1 . 3240 0.0 

1 - 1 - 1 2 1 - 1 2 1.2673 0.0 

- 1 - 1 2 1 0 4 7.6182 0.4170 

2 1 1 2 1 - 1 . 1 1 -3.0415 0.0 

2 ] 1 2 1 - 1 1 3 2.3893 0.0 

2 1 1 2 2 - 1 1 1 -1.6347 0.0 

·2 ] 1 2 2 - ] 1 3 3.5225 0.0150 

2 ] ] 2 3 - ] 1 1 -2.2404 0.0 

2 1 1 2 3 -. 1 1 3 2. 1652 0.0 

3 - ] -] 3 2 - 1 0 -5.9317 0.0 

3 - ] - 1 3 2 - 1 2 -3.3404 0.0 

3 - 1 - 1 3 3 1 - 1 2 -2.3325 0.0 

3 - ] - 1 3 4 ] - 1 2 -3.0035 0.0 

3 - ] - 1 3 2 ] 0 4 3.0105 0.4170 

3 - ] - 1 3 3 1 0 4 2.7032 0.8560 

3 - 1 - 1 3 4 ] 0 4 2.8568 0.7682 

4 4 3 - 1 -8.0361 0.5495 

4 ] 1 4 3 - 1 3 -3.6305 0.5495 

4 ] 4 4 - ] 3 -2.7302 0.5495 

4 ] ] 4 5 - 1 3 -3.3531 0.5495 

TABLE 5.12 

Transition frequencies and line widths of the S
0

(o) 

dimer spectrum in pure ortho-deuterium. Frequencies are 

quoted relative to the j" = 0 ~j' = 2 quadrupole 

transition of a free D2 molecule. 
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Figure 5.5 

The dimer structure accompanying the far infrared S (0) 
0 

monomer transition in pure ortho-deuterium. (A) shows 

the results obtained using a purely isotropic interaction 

V
000 

These lines are labelled by the pure ~" ~ ~' 

transitions to which they ~orrespond. These serve as 

markers for the full close coupling results, shown in 

(B), which are labelled according to the f states 

to which the initial and final levels correlate. The 

units of the vertical scale are arbitrary. 
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iummed. For transitions between bound states, the plotting 

convention leads to delta functions (radiative lifetimes 

are assumed to be infinite); these we represent by sticks 

of equal height. We also do this for any lines with 

widths, r< 0.007 -1 for ease of plotting. em 
' 

In the upper part of Figure 5.5 are plotted theoretical 

pure transitions, deduced from 1-rotor state calculations 

on 0-0 (D2 ~ 2 . Comparison of the predicted spectrum with 

these pure 1 lines illustrates the departure of the 

system from potential isotropy. Note the random pattern 

of the spectrum, particularly with regard to the labelling 

of the transitions based on the ~ correlations of Table 

5.12. The importance of the potential anisotropy is 

d / u / 
such that two lines ( ..(, = 1~ ~ = 2 and ..t = 0--+ .(, = 1) 

are shifted across the band origin; h alone is clearly 

insufficient to label the transitions. 

No observations of dimer structure in the far infrared 

spectrum have been reported. It is pertinent, however, 

to consider what information on the intermolecular potential 

could be gleaned from any such spectra. One line of 

interest, as has already been mentioned, is J £i = 1--

~ o+- ( .(. = '1----t 2) which lies about 0.83 cm- 1 below the band 

origin. The interchange splitting of the final state 

is large, yieldini information either on the space-fixed 

A224 coefficient or the body-fixed v220 . This line is 

flanked by two transitions between l = 0 and 1 states; 

it is therefor~ useful to consider the relative intensity 

of these three lines to determine whether the one of 

interest is likely to be observed or "swamped" by those 
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adjacent to it. Detailed information on line intensities 

requires a knowledge of both the wavefunctions of the 

initial and final states and the dipole moment function. 

The collision-induced· dipole ~ of the dimer can be 

expanded in either the space-fixed (Poll and van Kranendonk 

1961) or body-fixed (Brocks and van der Avoird 1985) 

frame in much the same way as the potential, though a 

difference arises in that /1t is a vector and the pot­

ential a scalar. As we employ the end-over-end rotation· 

~ ih our analysis, we consider. the space~fixed expansion. 

For the two rigid rotors, the dipole is ·a function 

of the dimer geometry and the intermolecular separation. 

The spherical components ( v = 0, ~ 1) of ~ are given 

by an expression of the form (Poll and Hunt 1976, 1981; 

Moraldi et al. 1984): 

~" w :r-: R) = (4-Tr)'h L BA ?.?- L (R) /" (f,IJ~JE) 
/-·v '"'.J'" J.tV ( )'h... . ':2. u. "1\ 1\ L 

l -t + I "'I "z. "'l. 
. AI '>-.z. ').11. L 

(5.19) 

The function Y is a vector contraction of tensors (Rose 

1957) similar in form to equation (2.10). For a dipole 

field, the rank r = 1. Frommhold et al. (1984) have 

shown that in the H2 - H2 dimer the most important components 

of-~ , accounting for 98% of the total intensity in 

the S
0

(0) region, are B0223 and B2023 . The same conclusion 

should hold for D2 - D2 which has a similar electronic 

structure. These coefficients are due to .the dipole 

induced in one molecule by the permanent quadrupole of 

its neighbour: 

B (R) ~ IT ()( ®I R4 

B (R) = - 2.023 
0223 (5.20) 
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CX and @ are respe cti ve·ly the spherically averaged 

polarisability and quadrupole moment of the identical 

molecules. The transition strength of a spectral line 

is found from the matrix element of the dipole op~rator 

between the initial and final states (Geraedts et al. 

1982b, Nicholls and Stewart 1962). The angular contribution 

to the matrix element consists essentially of a product 

of 3-j symbols, together with some weighting factors 

(Frommhold et al. 1984). The properties of these 3-j 

symbols lead to selection rules for the individual terms 

in the dipole expansion. The presence of the 3-j symbol 

(
(I L ~~) 

leads to the conclusion that .{ = 0 -E-71 
0 0 0 

transitions cannot be driven by the dominant qu~drupole-

induced dipole for which L = 3 (equation 5. 20). These 

transitions willbe allowed by ~eaker components of the 

dipole function, subject to the general dipole selection 

rules .. 

It should ·be stressed that the intensity arguments 

above do riot account for the mixing of different values 

of 1 caused by the potential anisotropy. Nevertheless, 
II I 

we expect that the {, = 1 ~ ..{, = 2 line. under consideration 

should be relatively prominent, being flanked by two 

lines of much weaker intensity. There should therefore, 

be little difficulty in identifying this line if sufficiently 

sensitive experiments were to be performed. A combination 

of longer path lengths, lower temperatures and lower 

gas densities, than those hitherto employed in gas cell 

absorption experiments, is needed. 
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5.4 The s1 (0) and Q1 1D) + S
0

(0} spectra of ortho-D2-

ortho-D2 

While no observations of dimer structure at far 

infrared wavelengths have yet been obtained, McKellar 

and Welsh (1974) have reported a detailed absorption 

spectrum in the near infrared accompanying the single 

s1 (0) and d~uble Q1 IO) + S
0

(0) transitions of ortho­

n2. The upper states of the dimer in this region can 

be calculated using the rigid rotor formalism of Chapter 

two, if a number of assumptions are made. A~l coupling 

of monomer vibrational states is neglected. Thus we 

ignore vibrational predissociation from !V1 ,y2 ) (1,0) 

or (D·,1) to !V1 ,V2 ) = (0,0). Work on complexes of Ar 

with n2 or H2 suggests that this assumption is valid; 

the widths for vibrational predissociation are much 

smaller than those for rotational (Hutson et al. 1983, 

Kidd and Balint-Kurti 1985). Furthermore, the sets 

of states with !V1 ,v2 ) = (1,0) and (0,1) are assumed 

to be decoupled. All dimer levels correlating to one 

vibrationally excited monomer will be split into (we 

assume) unresolvable interchange doublets. This assumption 

has also been made by Brocks and van der Avoird (1985) 

in their study of the N2-N2 dimer. Its validity rests 

upon the relative insensitivity of the intermolecular 

potential to monomer vibration, though qualifications 

to this statement will have to be made when we come 

to discuss the resonance widths. The approximation 

that the potential remains unchanged under rotational 
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as well as vibrational excitation of the interacting · 

monomers continues to be made. Under the above conditions, 

the problem reduces to that of two distinguishable rigid 

rotors and the treatment of Section 2.2. applies. Within 

.these constraints, rotational splitting in the J multiplets 

is the only cause of any departure of the calculated 

level energies from the isotropic l states. 

The channel energies used in the calculations are 

given in Figure 5.6. The monomer vibrational quantum 

numbers given there are for labelling purposes only; 

they do not enter explicitly into the close coupling 

calculatipns . The zero of energy is, in actuality, 

shifted upwards relative to that of the initial states 

in table 5.3 by the fundamental frequency of D2 , viz 

2993.962 cm- 1 {Bishop and Shih 1976). Note also that 

the states, In) I20..C J/ and In) I 02 ..t J) , are no longer 

degenerate when the potential coupling is removed. As 

indicated in. Figure 5.6, the calculations were carried 

out with two rotor states {j = 0,2) on each monomer. 

Inclusion of j = 4 would involve solving systems of up 

to 114 (for J 6+) close coupled equations. The numerical 

integration parameters employed are those determined 

earlier in this chapter. Parity conservation results 

in a few bound states, though it should be noted that 

these will in reality be vibrationally predissociative. 

The remaining states can decay by rotational predissociation. 

The calculated en~rgies and widths, together with 

the monomer states and 1 levels to which they correlate, 

are given in Table 5.13. The levels correlating to the 
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Figure 5.6 

The basis set and channel energies used in our modelling 

of the s1 (0) and Q1 (0) + S
0

(0) spectra of o-~ 1 (D 2 ) 2 . 

The fundamental frequency of D2 (2993.962 em ) was 

takeh as the zero of energy in the close-coupling cal­

culations. As indicated (schematically) the final {' 

levels of the single and double monomer transitions 

·are closely spaced and will interact strongly. The lower 
.. II II II II 

t 11 states, corresponding to the channel with (v1 ,j 1 ,v
2
,j 2 ) 

= (0,0,0,0), do not participate because vibrational coupling 

is neglected in our model. 
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(o} s, (0) 

ENERGY (CM-1} 

-6.28325 

-5.72214 

-4.90821 

-5.33292 

-4.37193 

-3.72840 

-3.24786 

-3.05703 

-3.41411 

-1.96870 

-0.91053 

-0.53010 

-0.39061 

-0.68249 

2.37408 

2. 17542 

2.49895 

2.67862 

2.46589 

STATES 

WIDTH (CM-1} 

0.00295 

0.00372 

0.0 

0.00333 

0.00454 

0.0 

0.00142 

0.0 

0.00325 

0.00020 

0.0 

0.00068 

0.0 

0.00266 

0.21109 

0.22770 

0.26460 

0.59765 

0.45394 

TABLE 5.13 

(b) 0 1(0)+S0 (0) STATES 

ENERGY (CM-1} WIDTH (CM-1} 

-0.49536 

1. 74747 

1. 63318 

0.8169.:5 

3.27660 

3.19176 

3.81358 

3.65990 

2.92680 

5.87366 

5.93074 

5.70968 

5.71137 

5.53068 

8.90568 

8.98279 

8.97057 

8.93221 

8.73831 

0.00126 

0.30487 

0.06446 

0.00774 

0.73509 

0.32173 

0.70219 

0.39297 

0.31260 

0.35816 

0.20677 

0.32700 

0.30362 

0.04425 

0.70289 

0.73221 

0.71819 

0.62089 

0.43298 

Two-rotor state results for the (inter~cting) upper states of the (a) s1 (o) 

and (b) Q1 (o) + S
0

(o) absorption spectra. All levels correlating to the first 

five l states are listed, the· energies measured relative to the s1 (o) 

threshold (3166.722 cm- 1 ). With the approximations made (see text), each 

level is a rigorously degenerate interchange doublet (i = ~ 1) and purely 
ui hr!'!t-i nn!'!ll" nrPrli c::c::nri !Olt"i UP c::t-!Olt"Pc:: !'lYe> hn11nrl 
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singly and doubly excited dimer are mixed by the same 

terms in the potential expansion responsible for tunnelling 

doubling in the S (0) spectrum. With only two exceptions, 
0 

the widths of the Q1 (0) + S
0

(0) upper states are g~eater 

than their s1 (0) counterparts. This is due to additional 

predissociation pathways for the former set of levels; 

the rotational energy of one monomer can transfer to 

the other, vibrationally·excited, molecule. One of the 

two exceptions is the J£ = 2+, t = 0 pair, where both 

states lie below the asymptote of the effective channel 

potential for (V1 ,j 1 ,v2 ,j 2 ) = (1,2,0,0). 

As before, we may use the electric dipole selection 

rules to predict the near infrared absorption spectrum 

for which these levels are the final states. Each of 

the upper l~vels will be finely split into a doublet, 

the m~mbers of which differ only in the interchange quantum 

number, i. One member of the doublet will contribute 

to any particular line providing the transition.satisfies 

the selection rules: change of parity and ~ J = 0, ~ 1 

( 0 + 0). What can be thought of as ·a relaxation of 

the "no change in i" rule is consistent with the results 

of Brocks and van der Avoird who used symmetry arguments 

and the vanishing integral rule (Bunker 1979a). Thus 

we predict, in Table 5.14(a), the S1 (0) near infrared 

absorption spectrum of n2 - D2 , using the results of 

Tables 5.13 and 5.3: 
. I/ I/ ) ( I ·I I · I ) ( ) (~I/) j I } V

2 
J j ~ ) .=. ( 0 ..J 0/ 0 _..1 0 ..----:,. V,) j 1) V2 J j 2. ::::: l.J 2 ...J 0__..., 0 
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0 1 
0 1 
1 -1 
1 -:-1 
1 -1 
1 -1 
1 -1 
2 1 
2 1 
2 1 
2 1 
2. 1 
2 1 
3 -1 
3 :...1 
3 -1 
3 -1 
3 -1 
3 -1 
3 -1 
4 1 
4 1 
4 1 
4 1 

iII I"--> J' £' i. 

1 0 
1 0 

-1 1 
-1 1 
-1 1 
-1 .1 
-1 1 

1 2 
'1 2 
1. 2 
1 2 
1 2 
1 2 

-1 3 
-1 3 
-1 3 
-1 3 
-1 3 
-1 3 
-1 3 

1 4 
1 4 
1 4 
1 4 

1 -1 1 
1 ..:.1 1 
0 1 -1 
1 1 -1 
2 1 -1 
2 1 -1 
2 1 -1 
1 -1 1 
1 -1 1 
2 -1 1 
2 -1 1 
3 -1 1 
3 -1 1 
2 1 -1 
2 1 -1 
2 1 -1 
3 1 -1 
3 1 -1 
4 1 -1 
4 1 -1 
3 -1 1 
3 -1 1 
4 -1 1 
5 -1 1 

(a) s 1(0) TRANSITIONS 

I, 

1 
3 
2 
2 
0 
2 
4 
1 
3 
1 
3 
l 
3 
0 
2-
4 
2 
4 
2 
4 
1 
3 
3 
3 

FREQUENCY 
(CM-1) 

0.3599 
4.1134 
0.7309 
1. 3744 

-1.1804 
1. 8549 
7.4769 

-2.5278 
1. 2257 

-1.7139 
2.2838 

-2.1386 
2.6643, 

-5.7882 
-2.7528 

2.8691 
-2.5620 

2.6705 
-2.9190 

2.9940 
-7.9343 
-3.1315 
-2.9920 
-3.2839 

TABLE 5.14 

WIDTH 
(CM-1) 

0.0037 
0.0002 
0.0045 
0.0 
0.0030 
0.0014 
0.2111 
0.0037 
0.0002 
0.0 
0.0 
0 .. 0033 
0.'0007 
0.0030 
0.0014 
0.2111 
0.0 
0.2277 
0.0032 
0.2646 
0.5528 
0.5502 
0.5495 
0.5522 

(b) Q1(0)+S0 (0) TRANSITIONS 

FREQUENCY 
(CM-1) 

7.8295 
11.9.557 
8.3794 
8.2946 
4.6074 
8.9164 

14.0085 
4.9418 
9.0680 
4.8275 
9.1251 
4.0113 
8.9040 

-.0. 0003 
4.3086 
9.4007 
4.1550 
9 ·. 4779 
3.4219 
9.4656 

-1 . 7844 
3.1083 
3.1100 
2.9293 

WIDTH 
(CM-1) 

0.3049 
0.3582 
0.7351 
0.3217 
0.0013 
0.7022 
0.7029 
0.3049 
0.3582 
0·.0645 
0.2068 
0.0077 
0.3270 
0.0013 . 

.0.7022 
0.7029 
0.3930 
0.7322 
0.3126 
0.7182 
0.5572 
0.8765 
0.8531 
0.5937 

Transition frequencies and line widths of thenearinfrared dimer absorption spectrum 

·in pure ortho-deuterium. Frequencies·are quoted relative to the V", j" =·o, 
0----} V 1 

, j 1 = 1, 2 transition of a free n2 molecule; this quadrupole transition was 

not observed in the experiment~ of McKellar and Welsh (1974). For convenience only, 

the lines are additionally classified according to whether the final state corresponds 

to an (a) s1 (o) or (b) Q1 (o) + S
0

(o) transition. The interchange of the final state, 

i', is assigned according to the electric dipole selection rules. 
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Similarly, we give in Table 5.14(b) the dimer spectrum 

for the case where one D2 molecule undergoes a Vibrational 

trans~tion (Q1 (0)) while the other is simultaneously 

excited rotationally (S
0

(0)): 

(v/~-j;1JV;'JJ:') = (oJoJo)o) ~ ("'~J~Jv,_'JJ:) = (tJo)PJ~) 

All transition frequencies are quoted relative to the 

unperturbed s1 (0) frequency of n2 . 

5.4.1 · The ~ 1 (0) region 

The predicted spectrum in the region of the s1 (0) 

transition of D2 is illustrated in the lower part of 

Figure 5.7. As with the S
0

(0) spectrum, represented earlier, 

Lorentzians normalised to unity are used to plot all 

lines of width "> 0. 007 -1 em The lines are labelled 

according to the values of t to which the initial and 

final states correlate. Overlapping Q1 (0) + S
0

(0) lines 

are also plotted. The importance of the potential anisotropy 

is illustrated by the departure of this computed spectrum 

from the pure l markers which are plotted above; these 

are obtained from the solution of single isotropic.Schroedinger 

equations. 

At the top'of Figure 5.7 are given the experimental 

line positions obtained by McKellar and Welsh (1974). 

These are plotted relative to the free quadrupole frequency 

of D2 . It should be noted, howeve~, that there will 

be a .small negative vibrational frequency shift. An 

estimate of this is provided by the value deduced by 

McKellar and Welsh from the Q1 (0) spectrum, viz - 0.15 cm- 1 

We could (but don't) simulate the effect of perturbations 

on the free D2 frequency by negatively shifting all 
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Figure 5.7 

The dimer structure in the region of the near infrared s
1 

(0) 

mondmer transition in pure ortho-deuterium. (A): Line positions 

and assignments derived from the measurements of ~cKellar and 

Welsh (1974). The brackets around the {," = 3 -t .(,' = 0 

line denote that this is a Q1 (0) + S
0

(0) feature. The experi­

mental resolution was 0.25 cm- 1 (B) : Theoretical results 

obtained assuming an isotropic potential. The labelling quantum 

number lis good in this approximation. Q1 (0) + S
0

(0) lines 

are shorter with assignments in brackets (C) : Theoretical 

spectrum obtained from Table 5.14. 
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experimental lines by this amount; this a~proximation 

. would ignore any i (McKellar and Welsh 1971) or j (May 

et al. 1961) dependence of the shift. Th~ actual spectrum 

shows marked differences in intensity between lines; 

this will be due partly to different individual transition 

strengths, and partly to the net contribution of lines 

too closely spaced to be resolved. The experimental 

-1 resolution was 0.25 em in the D2 fundamental region, 

3.1 (A< 3.3 ;Urn. 

The ~ quantum number is clearly insufficient to 

uniquely label the lines in the theoretical spectrum. 

The same conclusion holds also for the experimental 

spectrum, as can be seen from the need of McKellar and 

Welsh to assign doublets to the 1 transitions 0 +-'11 

and 1 ~ 2. Even without direct reference to the theoretical 

spectrum, we can deduce, from considerations of angular 

momentum coupling and the dipole selection rules, that 

neither of the 0 ~ 1 transitions can be a doublet. The 

initial l levels are, for the 0 - 0 system, all singlets. 

The final state of the ..(." = 1 ~ {.' = 0 transition is 

also a singlet with good quantum numbers denoted by JE = 2+. 

The E. l' = 1 upper state is a triplet but only J 

contribute to the l" o~ ~' = 1 transition due to 

the selection rule on J. 

Furthermore, an intensity problem arises when we 

try to match these lines to our results. Reference to 

Figure 3 of McKellar and Welsh (1974) shows that each 

experimental 0 ~ 1 "doublet" consists of one strong and 
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one weak line, the strong members being immediately on 

either side of an intense Q1 (0) + S
0

(0) {" = 3--7..[.' = 0 

feature. This feature is near to the band origin, and 

is close to the corresponding theoretical position (refer 

to Figure 5.7). Assuming this "reference" assignment 

to be correct, our results indicate that the genuine . 

0~1 transitions should be assigned in both cases to 

the strong members of the experimental "doublets". However, 

arguments based on the strength of the collision induced 

dipole components, similar to those presented for the 

S
0

(0) spectrum, imply that the s1 (0) 0~1 lines should 

be very weak (Watanabe and Welsh 1964). These arguments 

assume l is a good quantum number, and mixing of upper 

levels with states of the same symmetry, but different ~ 

could partly account for the discrepancy. Another possible 

explanation for this conflict is that, despite the dearth 

of neighbouring lines, there is still some scope for 

overlap, particularly of the (theoretical) ~ = 04 1 

line with an adjacent ~ = 1~ 2 transition. There is 

a need to test the sensitivity of the relative position 

of the lines in the region of· the band origin to variations 

in the potential energy surface. A recently modified 

version of the M80 potential (Norman et al. 1984) could 

provide a starting point. 

Reservations about the 0~ 1 lines apart, the remaining 

assignments of McKellar and Welsh are reasonable, though 

more than one l transition is likely to contribute to 

some of the observed lines. An example of this behaviour 

is provided by two closely spaced lines, ~ = 2 -71 and ,(, = 
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-1 
3~2, calculated to lie near - 2.5 em When the experi-

mental resolution and the approximations inherent in 

our calculations are taken into account, there is reasonable 

accord between the theoretical and observed spectra. 

Increased r~solution should yield more structure, and 

when this is achieved ~ could be used, in conjunction 

with J (and in some cases one would also need j 12 l, to 

.make unique assignments. This has already been done 

for dimers of D2 with rare gas atoms (McKellar 1982). 

Finally, if we ignore the Q1 (0) + S
0

(0) lines that 

appear in the s1 (0) region of the spectrum, and compare 

with the S
0

(0) far infrared spectrum of figure 5.5~ we 

see that the results are very different. The figures 

extend over the same frequency range relative to the 

resp.ecti ve band origins. There are two reasons for the 

difference : firstly there is no double transition in 

the far infrared analogous to that in the near infrared, 

the upper states of which can perturb the spectrum. 

Secondly, tunnelling in the S
0

(0) upper states is relatively 

easy since it involves an exchange of rotational quantum 

numbers; we neglect.it in the s1 (0) spectrum as vibrational 

quantum numbers would have to be exchanged, and the dep­

endence of the potential on intramolecular stretch is 

smaller than that on the relative orientation of the 

interacting monomers. 

5.4.2 The Q1 (0) + S
0

(0) region 

The near infrared spectrum r~sults of Table 5.14 

are pl6tted for higher frequencies in Figure 5.8. As 

in Figure 5.7, the frequencies are plotted relative to 
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The dimer structure centred on the near infrared Q1 (0) 

+ S (0) double transition in pure ortho-deuterium. This 0 . 

figure is an extension of Figure 5.7, a fact emphasised 

by the same horizontal scale (measured relative to the 

s1 (0) frequency). ~A) : Experimental line positions ~nd 

assignments of McKellar and Welsh (1974). Here, brackets 

indicate s1 (0) transitions. '(B) : Pure l markers, the 

s1 (0) lines being longer with assignmenti in brackets. 

(C) : Theoretical spectrum obtained from Table 5.14. 
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the s1 (0) band origin and the two plots overlap. .·The 

spectrum in Figure 5.8 is centred on the Q1 (0) + s ( 0 ) 
0 

band origin which, this scale, lies at 6.318 -1 on em 

There is good qualitative agreement between the theoretical 

and experimental spectra, though it again appears likely 

that different ~ transitions will contribute to most 

of the experimental lines. 

We now comment. on the assignments of McKellar and 

Welsh (1974), taking each of the six observed lines in 

turn from left to right. We thus compare the top and 

bottom parts of Figure ·5. 8. The experimental ~ = 3----t 2 

assignment is confirmed by theory. There is· also agreement 

for the .-(, = 2 ___... 1 line, though we note that theory predicts 

an adjacent s1 ( 0)' .-! = 0 ~ 3 line' separated by less 

-1 than the experimental resolution of 0.25 em . The observed 

line marked 1~ 0 probably consists of contributions 

from 2-? 1 and 1~ 0 transitions; the latter, as has 

already been ~rgued, should be weak. To the right of 

the band origin, McKellar and Welsh observed three lines, 

assigning two transitions to one of them. Theo~y predicts 

four lines. If we neglect the 1. = 0~ 1 transition, 

which should be relatively weak, an alternative inter­

pretation is reached. The experimental ), = 0 ~ 1 line 

would thus be reassigned s1 (0), 4 = 1-4 4. There 

is a second reason for thinking this could be so; a com­

pari son of the theoretical /11., markers with the predicted 

spectrum shows that the ordering of the 1 ---7 4 and 0 ~ 1 

lines is reversed from what is expected on the basis 

of a simple nonrigid rotor model. With this interpretation, 
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the line doubly assigned by McKellar and Welsh should 

only be labelled )., = 1--7 2. Finally, experiment and 

theory agree on the ,(, = 2~ 3 assignment though this 

probably also contains some 1 ____,. Z character. While our 

corrections to the original assignments may be tentative, 

they do at least show that consistent assignments can 

be made without invoking ..t = 0~ 1 transitions. Some 

of the· "intensfty anomalies" to which McKellar and Welsh 

(1974) refer are presumably due to incorrect attribution 

of two lines to Ol---}1 transitions. 

In contrast to the s1 (0) case, this region of the 

spectrum is governed.more by predissociation than experi-

mental resolution. An improvement in the latter may, 

however, still yield further structure than hitherto 

observed. The calculated linewidths for the transitions 

above the Q1 (0) + S
0

(0) band origin range from about 

O.Z to 0.4 cm- 1 This may be compared with estimates 

of between O.Z and 0.6 cm- 1 for the analogous lines observed 

by McKellar and Welsh. This agreement is encouraging, 

particularly in the light of work conducted by Le Roy 

et al. (198Z) on the Hz - Ar dimer. They carried out 

similar close coupling calculations to the ones described 

here, using the rigid rotor approximation. The level 

widths were found to be highly sensitive' to vibrational 

averaging over the Hz intramolecular motion; this is 

attributable to the sensitivity of the potential anisotropy 

to intramolecular stretch. The isotropic part of the 

potential was.found to be relatively insensitive to changes 

in the Hz bond length. Nevertheless, increasing the 
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bond length to a value appropriate to vibrationally excited 

Hz did have a significant effect on the Hz - Ar level 

energies. It should be noted, however, that for the 

discussion in this section, the important measure is 

the relative positions of the levels. 

5.5 Conclusions 

Close coupling rigid rotor calculations on the bound 

and rotatidnally predissociating states of the molecular 

dimer, Dz - Dz, have been performed and the results presented 

in this Chapter. The interaction potential was assumed 

to be the same as that for Hz - Hz; the M80 potential 

of Meyer, Schaefer and Liu being chosen. The larger 

reduced mass of the deuterated · dimer leads to four 

( l = 0, 1, Z, _3) bound states in the ortho-ortho system, 

twice as many as the analogous para-para (Hz~ dimer. 

Analysis of these results lead us to conclude that the 

rotational constant of the dimer is underestimated by 

the M80 potential, confirming the result of Chapter 4. 

The predicted centrifugal distortion constant is also 

too small. The bound state calculations on the para­

ortho and para-para systems demonstrated the increased 

importance of potential anisotropy in the heavier (Dzlz 

dimer. 

The rest of the Chapter was devoted to ortho-ortho 

(Dzlz· The results of calculations on the bound states 

and resonances corresponding to one of the monomers in 

its first,rotationally excited state were given. It 

was pointed out that some of the resonances have dual 

Feshbach and Shap~ character, a consequence of the weakness 
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of the D2 - D2 interaction. These results enabled us 

to predict the far infrared S (0) absorption spectrum. 
0 

Observation of this would yield information mainly on 

the quadrupole - quadrupole interaction as this is res-

ponsible for the significant interchange doubling of 

the final states. The magnitude and sign of this splitting 

were shown to be consistent with first order degenerate 

perturbation theory. 

The near infrared spectrum, in the region of the 

s1 (0) and Q1 (0) + S
0

(0) transitions of ortho-D2 , has 

been observed and was modelled theoretically by treating 

the monomers as distinguishable rigid rotors. In making 

assignments to the observed lines McKellar and Welsh 

(1974) treated the dimer as a pseudodiatomic molecule. 

We have demonstrated that this fails in the s1 (0) region 

because of rotational splitting of the pure t levels. 

The increased role.of the rotational anisotropy in D4 

is illustrated by the fact that no such rotational splitting 

effects have been observed in the analogous s1 (0) spectrum 

of H2 - H2 . Some differences between the observed and 

theoretical spectral patterns are evident and will in 

part be due to errors in the anisotropic interaction. 

However, no clear information on this can be deduced 

until either-further experiments have been performed 

at higher resolution, or quantitative line intensities 

have been calculated. The latter requires a knowledge 

of the collision induced dipole moment function, details 

of which have been published by Moraldi et al. ~1984). 
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The absorption spectrum in the overlapping Q1 (0) 

+ S
0

(0) region is simpler. Comparison of observed linewidths 

with those calculated in this chapter, lead us to conclude 

that this is due to the spectrum being predissociation 

limited. It has proved possible to offer alternative 

line a~signments to those given by McKellar and Welsh 

(1974) which may explain some of the "intensity anomalies" 

reported by these authors. Taking the near infrared 

spectrum as a whole, it is clear that more than one transition 

contributes to many of the observed lines. 

Finally, we note that the S
0

(0) and s1 (0) spectra 

are significantly different and the former cannot be 

inferred from observations of the latter. The source 

of this difference lies in the shift of channel energy 

on interchanging therotational quantum numbers of monomers 

in different vibrational states. 



CHAPTER SIX 

THE S0 (0) AND S1 (0) SPECTRA OF THE Hz - Hz DIMER 
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6.1 Introduction 

The near-infrared s1 (0) and s1 (1) spectra of the 

H2-H2 dimer have been observed in absorption in the lab­

oratory by McKellar and Welsh (1974). On the basis of 

these spectral measurements, McKellar (1984) subsequently 

suggested that spectral features in the far-infrared 

spectra of Jupiter and Saturn (Gautier et al. 1983) might 

be attributable to s0 (0) and s0 (1) transitions in the 

H2-H2 dimer. Iri the -preceding chapter we showed that 

the s0 (0) spectrum of D2-D2 is expected to be quite different 

in appearance from the observed s1 (0) spectrum. This is 

partly due to interchange splitting of the upper states 

in the s0 (0) spectrum by the angular dependence of the 

potential. In the s1 (0) spectrum the uppe~ states can 

interact, via the same angular dependence, with the upper 

states of the double transition Q1 (0) + s0 (0). Though 

the latter of these ~wo effects is much less important 

in the H2-H2 case, due to the greater energy separation 

of the interacting upper states, we decided to test the 

validity of inferring the Hydrogen far-infrared spectrum 

from the near-infrared. 

Frommhold et al. (1984) have computed the s0 (0) 

and s0 (1) absorption spectra of the H2-H2 dimer and compared 

their results with the observations of Jupiter and Saturn. 

Though their calculations provided information on line 

intensities, they completely neglected the effects of 
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potential anisotropy. In the light of our experience 

with D2-D2 it was judg~d useful to investigate this further. 

In the present chapter, we present results of cal­

culations of the frequencies of the s0 (0) transitions 

of the para-H2 -- para-H2 dimer. These computations 

take into account the rotational splitting of both the 

bound and pseudo-bound (predissociating) levels of the 

dimer. The interchang~ symmetry of the para-H2 molecules 

is also taken into account in order to assess the importance 

of interchange splitting of the dimer energy levels. 

The analogous s1 (0) spectrum has also been calculated 

in prder to make direct comparison with the laboratory 

measurement$ of McKellar and Welsh (1974). 

6.2 The lower states 

The s0 (0) and s1 (0) absorption spectra have in common 

the same lower states. These are calculated by the theoretical 

and numerical methods discussed in chapters 2 and 3. 

The coupled radial equations are integrated by means 

of the R-matrix propagator method, and the technique 

of Richardson extrapolation is used to accelerate con-

vergence of the computed eigenenergies (Chapter 3). 

In the calculations reported here, a two-rotor basis 

(j = 0,2) was used to represent each para-H 2 molecule. 

As noted in Chapter 4, the para-para system consists 

of ideniical bosons and the total wavefunction must be 

symmetric under exchange of the constituent molecules, 
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. 
i.e. the interchange symmetry ~ = + 1. It follows 

j12 + t + I12 
that (-1) = + 1 when j 1 = j 2 , where 

j12 = l1 + .~h and ! 12 = 21 + } 2 are the resultant rotational -
and (nuclear) spin angular momenta of the dimer and ~ 

is the relative angular momentum of the two molecules. 

In the para-para system, where I1 = I2 = I12 = 0, we 

(-1) j12 
+,.(, 

require that = + 1 when j1 j2. 

In Table 6 . 1 ' we present the calculated eigenenergies 

of the para-para states correlating with v 1 = v 2 = 0 

j 2 = 0. Details of these calculations have been 

given in Chapter 4. Following Bishop and Shih (1976) 

we use fA =· 1836.15 a.u. for the reduced mass of the 

dimer and E(j = 2) ~ 354.397 -1 em These small changes 

in the constants of motion do not affect our results, 

compared with Chapter 4, to the accuracy quoted here. 

All computed energies are given, although, as noted above, 

levels with .-1. = - 1, for which ), is odd, do not occur 

in nature. The interaction potential employed is that 

found in Chapter 4 to give the best representation of 

the H2-H 2 interaction, namely the M80 potential of Meyer, 

Schaefer and Liu. Our results are compared with those 

of Frommhold et al. (1984), who used the isotropic, 

semi-empirical potential of McConville (1981). There 

is reasonable agreement in the absolute magnitudes of 

the bound state eigenenergies and better agreement in 

their separations. 



Present work Frommhold et al. 

J E. i E r E r 

0 1 1 0 -2.43 0 -2.91 0 

1 -1 -1 1 -0.97 0 -1.35 0 

2 1 1 2 1.3 0.9 1.2 0.6 

3 -1 -1 3 5.0 5 5 6 

4 1 1 4 10.6 13 

TABLE 6.1 

Computed eigenenergies of states of para-H2-para-H2 

correlating with v1 = v2 = 0, j 1 = j 2 = 0. The total 

angular momentum (J), parity (£), interchange (i), 

and relative angular momentum (L) quantum numbers are 

listed. Also given are the positions and full widths 

at half-maximum intensity, r' of the shape resonances. 

Results of the present work are compared with those 

obtained by Frommhold et al. (1984). As noted in the 

text, states of negative interchange symmetry, i = -1, 

do not occur in nature for the para-para system. Units 

-1 are em 
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Also listed in Table 6.1 are the positions and widths 

of the predissociating states, which were determined 

using the molecular scattering code of Launay (1976, 

1977). The eigenphase sums (Ashton et al. 1983) were 

fitted to Breit-Wigner forms using the algorithm of 

Tennyson and Noble (1984). The computed positions and 

widths of the resonances agree well with the calculations 

of Frommhold et al~ (1984). 

6.3 The upper states 

Table 6.2 contains results of calculations on those 

states, correlating with v 1 = v 2 = 0 and j 1 = 0, j 2 = 

2 or j 1 = 2, j 2 = 0, which form the upper states of the 

s0 (0) spectrum. These eigenenergies are shifted compared 

with those in Table 6.1 by the energy separation of 

j = 0 and j = 2 levels of H2 , namely 354.397 cm- 1 . 

Coupling of the relative angular momentum, f 
with the resultant rotational angular momentum, j 12 , 

~ 

~· ~ne 

gives rise to the _splitting into J multiplets shown in 

the table. The magnitude of this splitting, neglected 

by Frommhold et al. (1984), is a few tenths of a wave-

number. Of further interest is the interchange splitting 
. 

of levels which differ only in the value of ~ This 

splitting was also neglected by Frommhold et al. on the 

grounds that the molecules are distinguishable when in 

different rotational states. Evidently, this statement 

is only an approximation to reality, as the 



J 

1 

1 

3 

3 

2 

2 

5 

2 

1 

4 

3 

i 

-1 1 

--=1 -1 

-1 -1 

-1 1 

-1 -1 

-1 1 

-1 

-1 

-1 

-1 

-1 

l 

1 

3 

E (cm-1 ) 

- 1. 33 

- 1. 27 

- 1. 06 

- 1.06 

- 0.90 

- 0.82 

5.1 

5.1 

5.1 

5.2 

5.3 

TABLE 6.2 

r< cm-1 ) 

0 

0.0034 

0.0031 

0 

0 

0 

2.8 

3.6 

3.8 

3.1 

3.6 

Computed ~igenenergies of states of para - H2-para - H2 

correlating with v1 = v 2 = 0, and j 1 = 0, j 2 = 2 or 

j 1 = 2, j 2 = 0. Only the states of odd parity, E = - 1 

~hich are associated with odd values of l , are listed, 

as only these states contribute to the so (0) spectrum 

( c f. Tab 1 e 6 . 4 ) . 

States of negative energy and finite width, r , are 

Feshbach resonances. Note that states of negative inter-

change symmetry, i = - 1, do not occur in nature but 

are tabulated to illustrate the magnitude of the inter-

change splitting; where i + 1 is listed the interchange 

splitting is much smaller than the predissociation width. 
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indistinguishability of the two molecules is attributable 

to their being identical boson systems, regardless of 

their internal rotational angular momentum states. States 
. 

differing in the value of· 1- are split into an "interchange 

doublet", of which only the -1., = + ~ component occurs 

in nature. As may be seen from Table 6.2, the magnitude 

of this splitting is small for those levels contributing 

to the s0 (0) spectrum of the para-H2 para-H2 dimer, 

but it should not be concluded that the effect is always 

negiig~ble. Indeed, for other levels of the H2-H2 dimer 

the interchange splitting is significant. By way of 

example, the state JE = o+, correlating with 

(v1 , v 2 ; j 1 , j 2 ; .,{ ) = (0, 0; 2, 0; 2) or (0, 0; 0, 2; 2), 

. -1 . 
is split by 1.6 em However, the ~ = + 1 member of 

this interchang·e doublet does not contribute to the 

dipole s0 (0) spectrum because the spin statistics of 

H2-H2 forbid lower states of negative parity (odd l ) . 

For other systems such as D2-n2 , HF-HF (Barton and Howard 

1982) and N2-N2 (Tennyson and van der Avoird 1982a, Brocks 

and van der Avoird 1985), the interchange splitting 

measurably affects the predicted spectra. 

The upper states of the s1 (0) spectrum correlate 

with (v1 , .v2 ; j 1 , j 2 ) = (1, 0; 2, 0) or (0, 1; 0, 2). 

In precise·analogy to Chapter 5 we neglect the vibrational 

dependence of the interaction potential and hence the 

coupling between these equivalent states. The system 
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is thus treated as two distinguishable rigid rotors. 

The resulting basis set expansion is the same as in the 

s0 (0) calculations except that v 1 = 0 is replaced by 

v 1 = 1. The channel energies are altered accordingly, 

measured relative to (v1 , v 2 ; j 1 , j 2 ) = (1, 0; 0, 0). 

Note that ~e include (rotational) coupling to the higher 

levels (v1 , v 2 ; j 1 , j 2 ) = (1, 0; 0, 2), which correspond 

to the upper states of the double Q1 (0) + s0 (0) transition. 

The eigenenergies of upper states contributing to the 

s1 (0) spectrum are shown in Table 6.3. The energies 

are qtioted relative to the s1 (0) threshold, E(v,j = 1,2) 

4498.739· cm- 1 (Bishop and Shih 1976). 

In Table 6.4, we list the computed frequencies and 

widths of the optically allowed transitions in the s0 (0) 

spectrum of the para-H2 - para-H2 dimer, expressed relative 

to the frequency .of the {. = 1~ -(' = 0 transition. 

Our results are arithmetic means of allowed transitions 

to the computed energy multiplets in Table 6.2. The 

level of agreement with the calculations of Frommhold 

et al. (1984) is satisfactory, bearing in mind that different 

interaction potentials have been used. 

In Table 6.4, we also compare our computations of 

the s1 (0) spectrum, analogously obtained from Tables 

6.1 and 6.3, with the laboratory measurements of McKellar 

and Welsh (1974). The agreement between theory and experiment 

is seen to be satisfactory. The two lines originating 



J 

1 

3 

2 

1 

2 

3 

-1 

-1 

-1 

-1 

-1 

-1 

1 

3 

- 1.19 

- 1.04 

- 0.84 

5.09 

5.26 

5.43 

TABLE 6.3 

0.0024 

0.0018 

0 

4.7 

4.9 

4.9 

Computed eigenenergies of states of para­

H2-para-H2 correlating with v1 = 1, v2 = n, 

and j 1 = 2, j 2 = 0. We list only those states 

which contribute to the s1 (o) spectrum. The 

two· levels J = 4 and J = 5, associated with 

t = 3, have not been calculated as the 

dipole moment operator will couple these 

only to the very broad l = 4 shape 

resonance (Table 6.1). 



S
0

(o) s1 (o) 

{,'~ ,(;' PW FSB PW MW 

1 2 -3.47+0.7 -4.11+0.3 -3.56+0.6 -4.25+0.6 

1 0 0 + 0 0 + 0 0.000+0.002 0.00+0.15 

3 2 2.8 +2.0 2.2 +3.0 2.7 +3.0 2.9 +1.0 

3 0 6.5 +2.0 6.4 + 3.0 6.3 +2.0 7.3 +2.0 -

TABLE 6.4 

A comparison of the computed positions and half-widths 

(cm-1 ) of lines in the S
0

(o) spectrum of para-H2 - para­

H2; PW: present work; FSB: Frommhold et al. (1984). 
. 1 

Frequencies (em- ) are expressed relative to the 

{' = t~ ..(.." = 0 transition. Our computed results for the 

corresponding transitions in the s1 (o) spectrum are 

also given and compared with the laboratory measurements 

of McKellar and Welsh (1974) (MW). Half-widths attributed 

to MW have been estimated from their published spectrum, 

which had a resolution of 0.15 cm-1 
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I" from the lower ~ = 2 state are triplets, but the separation 

is smaller than the individual line widths due to pre-

dissociation. This explains why the experiment failed 

to resolve rotational fine structure. Furthermore, the 

positions and widths of the corresponding transitions 

in the· s0 (0) and s1 (0) spectra are very similar, justifying 

McKellar's use of his near-infrared s1 (0) spectrum to 

identify s0 (0) features in the far-infrared spectra of 

Jupiter and Saturn. 

6.4 Conclusions 

In this Chapter, computed frequencies of the s0 (0) 

transitions between bound and pseudo-bound levels of 

the para-H2 - para-H2 dimer have been presented. The 

calculations accounted for the interchange symmetry 

of the H2 molecules. Analogous calculations of the s1 (0) 

spectrum were found to be in satisfactory agreement with 

the laboratory measure~ents of McKellar and Welsh (1974). 

Further experiments at increased resolution are unlikely 

to observe the small rotational splitting due to intrinsic 

predissociation effects. 

The s0 (0) and S1 (0) spectra have been shown to be 

very similar, in marked contrast to the case of the D2-D2 

dimer. There are three reasons for this. Firstly, the 

rotational splitting is smaller in H2-H 2 than in D2-D2 . 

Secondly, the interchange, or tunnelling, doubling is 

also smaller for H
2

-H2 ; where it is large the affected 
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levels do not contribute to the spectrum. This latter 

effect is du~ to the different spin statistics 6f the 

two isotopic systems, there being no restriction on the 

spatial interchange symmetry of D2-D2 states. Thirdly, 

the perturbation on the upper states of the s1 (0) spectrum, 

due to interactions with the corresponding Q1 (0) + S
0

(0) 

levels, is much less important in H2-H2 due to the greater 

. -1 
energy separation (17.7 em ) between them, a fact noted 

by McKellar and Welsh (1974). 

The results of this chapter lend support to the 

proposed identification . of features in the far infra-

red spectra of Jupiter and Saturn with S
0

(0) transitions 

of the H2-H2 dimer. 



CHAPTER SEVEN 

DISCUSSION AND FUTURE WORK 
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7.1 Methods 

The main purpose of this thesis has been to develop 

methods of calculating the bound state energies of molecular 

dimers. The energies and widths of internal-rotationally 

predissociating resonances have also been obtained, 

using the method of Ashton et al. (1983). The results 

of these calculations can be used in conjunction with 

spectroscopic measurements to discriminate between different 

potential energy surfaces. We have been able, as a 

consequence, to interpret the experimental near infrared 

spectra of the hydrogen and deuterium dimers in more 

detail than was hitherto possible. In Chapter two, 

a quantum mechanical close coupling formalism was presented 

and the symmetrization of the basis functions discussed 

in some detail. This symmetrization was also cast explicitly 

into the language of group theory, which provides a 

powerful tool for the extension of these methods to 

more complex systems. The problem. reduces to the solution 

of sets of coupled second order differential equations, 

the boundary conditions depending on whether the individual 

channels are open or closed at large values of the inter­

~olecular separation. We have opted to solve these 

equations using numerical integration which we showed, 

in Chapter three, to be an easy and accurate way of 

determining bound state energies. This is not to say 

that other techniques such as the secular equation and 

BOARS methods do not have their place. Indeed, maximum 

physical insight will be achieved by using a diverse 
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range of methods. Those which have been used in bound 

state calculations of van der Waals molecules were discussed 

in Chapter three. There we noted that perturbation 

theory" has been used to improve on the BOARS approxima.tion; 

more recently the shortcomings of the secular equation 

approach have been similarly overcome (Hut~on and Le 

Roy 1985). 

While the de Vogelaere and R-matrix propagator 

methods agree to very high accuracy (up to 7 significant 

figures), the latter has proved to be particularly suitable 

for adaptation to bound state problems. The R-matrix 

propagator method is numerically stable in the classically 

forbidden regions and a smaller integration range, than· 

that dictated by the "infinite wall" boundary conditions 

of the de Vogelaere method, is required. Furthermore, 

since the R-matrix propagator method is based on the 

piecewise analytic principle, much of the work done 

for the first trial energy may be saved for subsequent 

energies. Its one major drawback, slow convergence 

with respect to the number of integration steps, can 

be overcome using Richardson extrapolation. Further 

improvement could be achieved by using propagators 

corresponding to a linear, rather than a constant, coupling 

matrix W(R) in the individual sectors. These propagators 

are more complex, involving the evaluation of the Airy 

functions. Step length algorithms of the type discussed 

by Ste~hel et al. (1978) could also be used. These 

att~mpt to maximise the step length within constraints 
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i~posed by input tolerances. For a constant reference 

potential in each sector, these tolerances are related 

to the derivative of the coupling matrix elements, and 

to the departure from constancy of the transformation 

which diagonalises W~R) in each sector. The problem 
f'V 

with such algorithms is that, while they may give reasonably 

accurate answers with a relatively small number of steps, 

the error does not in general vary monotonically with 

.respect to changes in the input tolerances. This precludes 

the use of Richardson extrapolation. As pointed out 

in Chapter three, we divide the integration range into 

two parts which meet near the potential minimum. An 

equal number of sectors is used in each of these parts; 

longer steps are therefore taken in the wider region 

beyond the minimum where the potential is more slowly 

varying. An additional problem may afflict the more 

complex step length algorithms in any future calculations 

of predissociation using the R-matrix propagator method. 

If one or more of the variable step lengths become equal 

to a multiple of half the de Broglie wavelength in any 

channel, a large round-off error can result, leading 

to a greatly increased global error. this was called 

the "magic 11 instability" by its discoverers, Mattson 

et al. (1983). 

Despite the obvious utility of the numerical, int~-
. ··" 

gration approach to bound state problems, it s.hould 

be worthwhile to explore ways of improving efficiency 

so that it can be conveniently applied to a greater 
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variety of systems. Calculating the eigenenergies 

corresponds to finding the zeroes of a matching determinant, 

and it would be desirable to improve the efficiency 

of this search. In the simplest version of the computer 

programme, the matching determinant is evaluated on 

a grid of tri~l energies. An iteration is started when 

the determinants for two adjacent points on this grid 

differ in sign. It is straightforward to distinguish 

a sign change due to _an eigenenergy from one caused 

by a pole, for which the determinant becomes infinitely 

large. Nevertheless, it would be worthwhile to investigate 

ways of eliminating such poles altogether from the energy 

dependence of the determinant. Berrington and Seaton 

(1985) have succeeded in doing this for calculations 

of the electronic bound states of atomic ions using 

an L2 R-matrix method. It is worth noting here that 

the choice of stabilisation matrix determines the positions 

of poles in the de Vogelaere method. Performing duplicate 

sets of preliminary (small ba~is set) de Vogelaere cal­

culations, differing-only in stabilisation method, should 

minimi~e the risk of missing any energy levels due to 

the presence of poles. 

In the early stages of this work, some exploratory 

model calculations, based on the oxygen dimer (Cashion 

1966), were constructed to yield evenly degenerate 

eigenvalues. In such cases the matching determinant 

is zero at the eigenenergy but has the same sign on either 

side. Evenly degenerate eigenvalues also sometimes occur 
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in correlation tests. For th~se eigenvalues, iteration 

was found to be much more rapid using the logarithm 

of the matching determinant, log10 idetl. The speed 

of iteration to an eigenenergy in the general case could 

also be easily improved by using this function, multi­

plied by ± 1 depending on the sign of det. 

A more radical way of improving the efficiency 

of the numerical integration method is suggested by 

the success in scattering calculations of the method 

of Thomas (1979, 1982). Computer time is saved by prop­

agating only one solution vector, instead of the usual 

matrix, and iteratively matching this to the.correct 

boundary conditions. It was suggested in Chapter three 

that Thomas's method may most naturally be extended 

to bound state calculations using the artificial channels 

approach. Thus, larger sets of coupled equations, needed 

fo~ the extension of our work to strongly coupled dimers, 

could be integrated in this way. 

An alternative to integrating increasing numbers 

of equations is to choose a more realistic basis expansion. 

For the weakly coupl~d: hydro~en and d~uterium dimers 

studied in this thesis, an angular basis consisting 

of vector coupled spherical harmonics rapidly converged 

with respect to the addition of more terms. In scattering 

calculations on strongly coupled atom-molecule systems, 

Clary (1983, 1984) has shown that by multiplying the · 

spherical harmonic basis by an exponential ''localisation 

. function'', an improvement over the conventional expansion 
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can.be obtained. With such bases, the expressions for 

the coupling matrix elements are different from those 

given in Chapter two. The extension of this technique 

to heavier diatom-diatom systems should nevertheless 

be relatively straightforward, especially in cases where 

the centrifugal decoupling approximation is valid. 

For s~mi-rigid complexes, a hindered rotor basis, of 

the kind applied by Kidd et al. (1981) to the water 

molecule~ may be preferable. Starting with a large 

number of conventional angular functions, a Hamiltonian 

matrix is obtained with all radial coordinates fixed 

at values corresponding to the equilibrium geometry. 

The hindered rotor basis is defined by the combinations 

of the original functions which diagonalise this Hamiltonian. 

This new basis set may be truncated significantly without 

prejudicing the accuracy of the calculated eigenenergies .. 

We end our discussion on methods with brief comments 

on the fitting and location of Breit-Wigner resonances. 

The fitting procedure for resonances just above threshold 

could be improved by assuming two different, smoothly 

connected, background eigenphase sums on either side 

of the threshold. The fact that the resonances just 

above threshold were generally found to be quite narrow 

meant that a single (linear) background could be assumed 

provided the fit was performed over an energy range 

no wider than a few resonance widths. 

Resonance calculations, like those for bound states, 

require a search for characteristic behaviour over an 
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energy grid. Since the eigenphase sum is only defined 

modulo fr , this grid must be at least equal to the 

width of the narrowest resonance to ensure all are found. 

Truhlar and Schwenke (1983) have shown how to define 

an absolute eigenphase sum, which allows resonances 

to be located using a much broader grid. Their approach, 

which involves calculating a K-matrix at the end of 

each integration step, should not be difficult to implement 

with standard scattering codes. 

7.Z Assessment of interaction potentials using spectroscopy 

The methods discussed above have been applied to 

the bound and resonance states of the lightest molecular 

dirner, Hz - Hz, and its isotopic sister Dz - Dz. In 

Chapter four, the bound states of H4 were calculated 

using four different ab initio calculations of the potential 

energy surface. In the ortho-para and ortho-ortho modi­

fications, rotational splitting of the levels, denoted 

by the end-over-end rotation l , leads to a spread 

of values for the ~ 0 - 1 energy separation. The 

results are sensitive to the po~ential used. Only one 

~ = 0 - 1 line has been observed in the experiments 

of McKellar and Welsh (1974) due to limited resolution. 

We deduced that the best potential was the M80 surface 

of Meyer, Schaefer and Liu. For this potential, the 

spread of the ~ = 0 - 1 frequencies is sufficiently 

small to be consistent with the failure of experiment 

to find any ·~nisotropy effects. The main fault with 

the M80 potential is that it predicts .too small a value 
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for the end-over-end rotational· constant, .B,, a fact 

confirmed by bound state calculations on the n4 system 

in Chapter five. The potential could be empirically 

improved by negatively shifting the isotropic part·, 

and by implication the anisotropic terms alsq by 0.1 

- 0.2R. We can assert that this is a potential effect 

with some confidence, rather than a consequence of our 

assumption· that the potential is insensitive to the 

stretching of the monomer bonds. Strictly speaking, 

the experiment yields information on the average of 

two potentials: one corresponding to both monomers in 

their ground vibrational (V = 0) states, the other to 

one H2 in its V = 1 state. Bt for the latter surface 

should be somewhat smaller since the repulsive wall 

is pushed outwards from the considerations of Chapter 

two. Bound state calculations based on a perfect ground 

state potential would thus give a larger Bt than that 

deduced from experiment. 

A further alteration to the M80 potential has been 

suggested by Waiijer et al. (1981) based on measurements 

of the hyperfine spectrum of H4 . Their modification 

to the v200 term in the potential expansion brings it 

closer to that of the Burton-Senff potential· which we 

have shown is too anisotropic. Future work on H4 should 

include bound state calculations on the shifted M80 

potential, with and vlithout the "blister" in v200 , the 

form of which has been given by Walijer et al. (1981). 
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The purpose of these runs will be to check our preliminary 

conclusion that the blister leads "to results in.consistent 

with near infrared measurements. 

7.3 Simulation of absorption spectra 

In addition to the bound levels of D4 we have also 

reported calculations on rotationally predissociating 

states. The upper states of the S (0) absorption spectrum . 0 

are split due to tunnelling doubling, involving the 

exchange of the rotational quantum numbers of identical 

monomers. This splitting was found to be consistent 

with Rayleigh~Schroedinger perturbation theory, which 

treats the levels as·being discrete. This assumption 

appears to be justified since we were able to accurately 

reproduce the energies of the S
0

(0) resonances using 

our bound state code. 

The spectroscopic measurements so far carried out on 

n4 have been in the (near infrared) region of the funda­

mental band of deuterium. By neglecting vibrational 

predissociation, we attempted to model the dimer structure 

accompanying the s1 (0) and Q1 (0) + S
0

(0) transitions 

in pure ortho-D2 . McKellar and Welsh (1974) have listed 

three shortcomings in their theoretical analysis of 

this spectrum. They ignored both the effects of potential 

anisotropy and the perturbation it causes between the 

upper states corresponding to the single and double 

transitions cited above. We have included both of thes~ 

factors·in our analysis~ the latter one by treating 

the interacting monomers as distinguishable rigid rotors 
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and altering the channel energies accordingly. The third 

shortcoming mentioned by McKellar and Welsh is also present 

in our analysis; this is the treatment of the vibrational 

frequency shift. Like McKellar and Welsh, we still have to 

either i&nore this shift or rely on a simple elimination by 

treating its effect on all levels as being equivalent to a 

change in the asymptotic energy of the relevant channel 

(refer to Figure 4.8). Even with a knowledge of the varia-

tion of the potential with monomer stretch, upon which it 

depends, there are considerable theoretical difficulties in 

modelling this shift (Hutson and McCourt 1984). Further 

experiments with lower gas_pressure and longer path lengths 

should help to minimise this problem. 

Calculations of both the near and far infrared spectra 

of para-H2 , completely analogous to those on ortho-D2 , 

have also been repoited. The results were presented in 

Chapter six. The Q1 (0) + S
0

(0) channels were present 

in the calculations of the s1 (0) spectrum, but the energies 

and widths of the corresponding states were not evaluated. 

Of current astrophysical interest is the far infrared 

S (0) spectrum of the hydrogen dimer. Results were 
0 

presented for the para-para modification. We have shown 

that the isotropic model of the dimer, used by Frommhold 

et al. (1984) in their interpretation of the Jovian 

S (0) spectrum, is reliable. This is despite the presence 
0 

of interchange splitting, because of the weak coupling 

and the zero statistical weights of some of the levels. 

It is desirable to extend our calculations to include 

the S (0) spectrum for the ortho-para modification, 
0 
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as ortho~H2 is also present in the Jovian atmosphere. 

These calculations differ from the para-para case in 

that many more resonances have to be located and fitted; 

this is due to the angular momentum coupling of j 1 = 1 

and j 2 = 2 to giVe three possible values of j 12 . Furthermore, 

interchange symmetry effe~ts will be absent in this 

modificatiqn. This means, for example, that initial 

states of the S
0 

(0) spectrum with odd values of ,.(, are 

allowed only in the ortho-para modification. The relative 

intensity of lines in the S (0) spectrum could thus 
0 

in principle prbvide information on the ratio of ortho 

to para hydrogen in the Jovian atmosphere. Frommhold 

et al. (1984) have been able to obtain some indication 

of the value of this ratio. Precise information is 

difficult to obtain, both because they have neglected 

the effects of potential anisotropy and because the 

spectrum is not well resolved. 

In addition to information on statistical weights, 

the production of simulated spectra relies on the cal-

culation of three properties of each spectral line : 

its frequency, width and intensity. The analysis of 

the far infrared H4 spectrum of Jupiter and that of 

the near infrared H4 and n4 laboratory spectra both 

provide motivation for the extension of our calculations 

to take the intensity factor into account. The simulation 

of the spectra of anisotropic van der Waals molecules 

has already been considered by va.rious authors. Brocks 

and van der Avoird (1985) and Dunker and Gordon (1978) . 
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have calculated line intensities for the spectra of 

N
2

-N2 and Ar-H2 respectiv~ly. these calculations ignored 

predissociation, however, and assumptions were made 

regarding the linewidths. In the oniy examples of fully 

simulated spectra of which the author is aware, Kidd 

and Balint-Kurti (1984) and Beswick and Shapiro (1982) 

both used the artificial channels method. The systems 

studied by these authors were respectively Ar-HD and 

Ar-N 2 . 

Future work could involve investigating the extension 

of our methods. to include intensity information and 

hence simulate the spectra of H4 and n4 . The problems 

involved in calculating the needed eigenfunctions were 

briefly addressed in Chapter three. The relevant collision 

induced dipole moment is already available (Moraldi 

et al. 1984). We could also try using the secular equation 

method; this produces the bound state eigenfunctions 

easily, though continuum wavefunctions are difficult 

to reproduce well. It may prove possible to combine 

the information we a1ready have oh the linewidths with 

intensities calculated using a secular equation approach 

in which open channels are omitted. Finally we note 

that the width of each line may be increased by a suitable 

amount to take pressure broadening into account. Doppler 

broadening is includ~d by convoluting the resulting 

Lorentziari with a Gaussian profile (e.g. Pine et al. 

1984, Minguzzi and Di Lieto 1985). 
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7.4 Vibrator calculations 

All of the calculations in this thesis could usefully 

be repeated treating the molecules as vibrators, using 

the formalism presented in Chapter two. However, given 

the large number of coupled equations, which arise due 

to the monomer rotational levels which must be included 

with each vibrational state, it is best to be selective. 

There is widespread motivation for such calculations, 

most apparently to improve the accuracy of the calculated 

dimer spettrum. Of particular interest are the line 

position~ near the s1 (0) band origin of ortho-ortho 

(D2 l 2 . Since linewidths are expected to be highly sensitive 

to variations of the potential anisotropi with monomer 

excitation, it would also be useful.to confirm that 

the observed spectrum in the Q1 (0) + S
0

(0) region of 

ortho-D2 is predissociation limited. 

The close coupling scattering calculations, used 

in the interpretation of measurements of the total differ­

ential cross-sections of . D2-H2 (Buck: et al. 1981), made 

the rigid rotor approximation. However, as pointed 

out in Chapter four, there may be a significant change 

in monomer bond length during the course of the collision. 

A vibrator analysis may provide an explanation for the 

proposed .negative shift of the repulsive wall of the 

M80 potential.· The need to postulate a 30% increase 

in the dispersion interaction, in the region of the 

potential.zero, would thus be ~voided. Further~ore, 
• 

the hyperfine spectra measured by Verberne and Reuss 

(1980) probe the repulsive region less sensitively than 
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the relatively high energy scattering experiments of 

Bucket al. If the short range constraint imposed on 

~he rigid rotor surface by the latter experiments is 

relaxed, th~ need for Waaijer et al. (1981) to introduce 

a blister in the well region of the Vzoo coefficient 

could be avoided. In short, the motivation for vibrator 

calculations on H4 and n4 is to isolate the error intrinsic 

in the. ab ~nitio deter~ination of the potential from 

the effects of monomer stretch. 

There probably already exists sufficient information 

on the potential to begin.the calculations just suggested. 

We have already mentioned, in section 4.4, that M80 

potential calculations have been performed for two values 

of the H2 internuclear separation. Taking into account 

the latest improvements to the M80 surface (Norman et 

al. 1984), this provides the basic information needed. 

A fit to this data over the whole coordinate space (i.e. 

A A · 
including r 1 and rz as well as E1 , Ez and R) could be 

attempted by assuming a suitable model for the potential 

(Raich et al. 1976). This kind of approach has produced 

satisfactory results for the Hz-CO system, even though 

only the potential for equilibrium monomer bond lengths 

was available (Poulsen 198Z). 

Qualitative checks on any such complete Hz-Hz vibr6tor 

potential could be performed in a number of ways. Ree 

and Bender (1979) have reported CI and SCF calculations 

of the r ( 1. 3 < r < 1. 5 a. u. ) dependence of the Hz - HZ 
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interaction for small intermolecular separations 

(1.5( R( 5.0 a.u.). In addition, we know from measurements 

of Raman frequency shifts (May et al. 1961) that the 

behaviour of the H2-H2 interaction, with respect to 

changes in the H2 bond lengths, is intermediate between 

that of He~H2 and Ar-H2 . Detailed information on the 

r dependence of the potentials for these systems is 

already available (Senff and Burton 1985, Schaefer and 

K8hler 1985, LeRoy et al. 1982). Finally, we note 

that some qualitative information on the r dependence 

of the isotropic potential, v000 , may be deduced from 

the unambiguously assigned Q1 (0) spectrum of n4 . This 

yields the energy separation between the ~states: 

1-0, 2-1, 3-2 and 4-3 (see Table 5.4). A simultaneous 

least squares fit to the briund states calculated for 

two. potentials~ v000 (V1 = 1, v2 = 0) and v000 (V1 = v2 Ol, 

could be performed. A wide range of isotropic model 

potentials is available (Maitland et al. 1981). However, 

since we can only have a maximum of 4 adjustable para­

meters we would be restricted,for the sake of argument, 

to using two Lennard-Jones type potentials. Initial 

guesses for the four parameters could be obtained by 

a fit to the ab initio M80 potential. 

7.5 The H2 - CO dimer 

A most obvious area for future work is in the study 

of different molecular dimers. H2-co is an astrophysically 

significant system amenable both to calculations and 

experiment. La~ge differences exist between the available 



204 

ab initio potentials ( e.g. Flower et al. 1979~ Poulsen 

1982, van Hemert 1983 and Schinke et al. 1984). This 

highlights the difficulties in electronic structure 

calculations, which lie far behind the methods for nuclear 

dynamics from the point of view of accuracy. Differences 

between the H2-co potentials will allow some discrimination 

even with the low resolution gas cell absorption measure­

ments that have been made to date. Kudian et al. (1967) 

have noted the similarity of the H2-co and H2-N2 spectra. 

Measure~ents of the latter were subsequently repeated 

at improved resolution, yielding evidence for.7 or 8 

end-over-end rotational bound states (McKellar and Welsh 

1971). The situation should improve with the molecular 

beam measurements currently being made by N. Halberstadt 

and Ph. Brechignac. 

The rotational constant of CO (1.9cm- 1 ) is thirty 

times smaller than that of H2 . The H2-co potential 

is also more anisotropic than that of H2-H2 . The. H2-

CO dimer is thus by far' the more strongly coupled of 

the two. It will be interesting to see how the methods 

used in this thesis will fare with this heavier system. 

The relative importance of the potential anisotropy 

makes it worthwh.ile to consider using the centrifugal 

decoupling (CD) approximation. Though the reverse is 

true, it does not follow that the success of the CD 

approximation in scattering calculations (e.g. Schinke 

et al. 1984) will lead to it being valid for bound states. 

· A theoretical study of the H2-co dimer should provide 
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an opportunity to implement many of the other alternative 

methods, and improvements to the existing ones, discussed 

in this chapter. 
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