Durham E-Theses

X-ray double crystal characterisation of epitaxial layers

Hill, Martin John

How to cite:

Hill, Martin John (1985) X-ray double crystal characterisation of epitaxial layers, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7232/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source
• a link is made to the metadata record in Durham E-Theses
• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.
X-RAY DOUBLE CRYSTAL CHARACTERISATION
OF
EPITAXIAL LAYERS

MARTIN JOHN HILL, B.Sc.

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived
from it should be acknowledged.

Thesis submitted to the University of
Durham in Candidature for the Degree of
Doctor of Philosophy (November, 1985).

16 MAY 1986
ABSTRACT

Double crystal x-ray diffractometry is a well established method for the measurement of the lattice parameter difference between epitaxial layers and substrates. The diffracted intensity profile versus angle, rocking curves, are highly sensitive to such variations giving rise to complex peak shapes. Consequently, computer simulation is required to enable complete interpretation of the measured data.

A detailed description of a computer simulation technique suitable for calculating rocking curves from arbitrary III-V structures, based on the Takagi-Taupin equations for dynamical diffraction from a non uniform crystal, is presented.

Radiation from synchrotron and laboratory sources has been used to measure rocking curves from single uniform and single graded layers of (Ga,In)(As,P) on (001) InP substrates and artificial superlattices of both (Ga,Al)As on (001) GaAs and (Ga,In)As on (001) InP. Excellent agreement has been obtained between computed and experimental curves for all types of structure, enabling the layer thicknesses and compositions to be determined to within 0.1μm and 10 ppm respectively. For single layers less than 0.5 μm thick highly asymmetric reflections are shown to give greatly increased diffracted intensities from the layer, enabling more accurate interpretation. There will always be doubt as to the validity of the lattice parameter profile deduced for a graded layer from a single curve. Rocking curves at various wavelengths, using synchrotron radiation, have been used to confirm the profile determined previously using a single measurement from a laboratory source. For superlattices, the dynamical theory approach permits
satellite peaks, allowing the individual layer thicknesses and compositions to be determined in addition to the repeat period. Further, this dynamical approach is particularly suitable for calculating the complete rocking curve where thick confining layers are present and is also directly applicable to multiple layers with varying layer thicknesses.
ACKNOWLEDGEMENTS

Financial support from the Science and Engineering Research Council and British Telecommunications plc through a CASE award is gratefully acknowledged. I would also like to thank the SERC for making available the facilities of the S.R.S., Daresbury Laboratory.

It is my pleasure to acknowledge the help and assistance from the following people during the course of this work.

Firstly, I would like to thank Professor A.W. Wolfendale and Professor B.H. Bransden for making available the facilities of the Department of Physics at the University of Durham.

I am grateful to Dr. B.K. Tanner for his supervision of this project and his continued enthusiasm. Thanks are also due to Mrs. M.A.G. Halliwell of British Telecom Research Laboratories for initiating this project. I am also grateful to her colleagues; Dr. M.H. Lyons for his thoughtful suggestions, Dr. M.R. Taylor and Dr. M. Hookly for the transmission electron microscopy results; Mr. D.A. Andrews for the samples provided.

I also thank the technical staff of the Department of Physics, especially Mr. D. Josling, Mr. T. Jackson, Mr. P. Armstrong and Mr. G. Teasdale for their help and advice.

I am particularly grateful to Mr. S.J. Bennett for his help in performing many of the experiments at the S.R.S., to Dr. D.Y. Parpia and Dr. M. Surowiec for their useful discussions.

Finally, I would like to thank my parents for their assistance, encouragement and support.
LIST OF PUBLICATIONS

CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>v</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 III-V OPTOELECTRONIC DEVICES AND SUPERLATTICES</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Optoelectronic Devices</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Superlattices</td>
<td>3</td>
</tr>
<tr>
<td>1.2 GROWTH TECHNIQUES FOR III-V EPITAXY</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1 Liquid Phase Epitaxy (LPE)</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2 Vapour Phase Epitaxy (VPE)</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3 Metallo Organic Chemical Vapour Deposition (MOCVD)</td>
<td>9</td>
</tr>
<tr>
<td>1.2.4 Molecular Beam Epitaxy (MBE)</td>
<td>10</td>
</tr>
<tr>
<td>1.3 LATTICE MISMATCH AND TETRAGONAL DISTORTION OF THE EPITAXIAL LAYER</td>
<td></td>
</tr>
<tr>
<td>1.3.1 Misfit stress in a single epitaxial layer - substrate composite</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2 Stress distribution</td>
<td>15</td>
</tr>
<tr>
<td>1.3.3 Parallel mismatch and interfacial dislocation density</td>
<td>18</td>
</tr>
<tr>
<td>1.3.4 Tetragonal distortion</td>
<td>19</td>
</tr>
<tr>
<td>1.4 VEGARD'S LAW AND BANDGAPS</td>
<td>21</td>
</tr>
<tr>
<td>1.5 CHARACTERISATION OF EPITAXIAL LAYERS</td>
<td>23</td>
</tr>
</tbody>
</table>

vi
CHAPTER 2: DOUBLE CRYSTAL DIFRACTOMETRY
2.1 GENERAL THEORY OF THE DOUBLE CRYSTAL CAMERA 26
2.2 THE EFFECT OF VERTICAL DIVERGENCE ON THE ROCKING CURVE 32
2.3 DOUBLE CRYSTAL X-RAY DIFFRACTION CHARACTERISATION OF EPITAXIAL AND ION IMPLANTED LAYERS AND SUPERLATTICES
 2.3.1 Diffusion and ion implanted layers 39
 2.3.2 Heteroepitaxial layers 44
 2.3.3 Superlattices 49

CHAPTER 3: CALCULATING ROCKING CURVES
3.1 DYNAMICAL DIFFRACTION THEORY 53
3.2 THE TAKAGI-TAUPIN EQUATIONS 53
3.3 SOLUTION OF THE TAKAGI-TAUPIN EQUATIONS AND CALCULATIONS OF THE ROCKING CURVE 57
3.4 THE EFFECT OF SAMPLE CURVATURE ON THE ROCKING CURVE 65
3.5 COMPUTATION OF ROCKING CURVES
 3.5.1 The Pascal Programme 69
 3.5.2 The Fortran Programme 74

CHAPTER 4: EXPERIMENTAL TECHNIQUES AND INSTRUMENTATION
4.1 THE SIX INCH CAMERA AT DURHAM
 4.1.1 Computer Control 71
 4.1.2 Design of the ICC R5232 Serial Interface 72
4.2 THE TWELVE INCH CAMERA AT DARESBURY
 4.2.1 Computer Control and Instrumentation 78
4.3 ALIGNING THE CAMERAS AND RECORDING ROCKING CURVES
 4.3.1 The six inch camera 82
 4.3.2 The twelve inch camera 88

CHAPTER 5: SINGLE UNIFORM LAYERS
5.1 SURFACE SYMMETRIC REFLECTIONS 87
5.2 THE USE OF ASYMMETRIC REFLECTIONS TO STUDY THIN LAYERS 92

CHAPTER 6: SINGLE LAYERS WITH A DEPTH DEPENDENT COMPOSITION 100
CHAPTER 7: MULTIPLE AND MULTILAYER STRUCTURES

7.1 EXPERIMENTAL RESULTS 129

7.2 THE EFFECT OF ADDING A CAPPING LAYER TO THE SUPERLATTICE 137

7.3 THE EFFECT OF DISPERSION IN THE SUPERLATTICE PERIOD AND OF INTER DIFFUSION BETWEEN THE LAYERS 138

DISCUSSION AND SUGGESTION FOR FURTHER WORK 142

APPENDIX A: COMPUTER PROGRAMMES FOR THE CALCULATION OF ROCKING CURVES 147

APPENDIX B: MINICAM ICC SOFTWARE FOR CONTROL OF THE SERIAL PARTS WITH ASCII DATA TRANSMISSION 182

APPENDIX C: LISTINGS OF THE DOUBLE CRYSTAL CONTROL PROGRAMMES FOR THE BBC MICROCOMPUTER 241

REFERENCES 284
CHAPTER 1
INTRODUCTION

1.1 III-V Optoelectronic Devices and Superlattices

1.1.1 Optoelectronic Devices

Currently the majority of fibre optic based telecommunications systems being installed are based on graded index fibre, operating with gallium arsenide lasers or light emitting diodes (L.E.D.s) as the light sources. Operation is at the near infra red, between 0.8 and 0.9 µm, with silicon based detectors. Speeds between 8 and 140 Mbit/s are possible over lengths up to about 8 km without repeaters. Recently improved manufacture has lead to fibres with superior attenuation characteristics further into the infra red, in the 1.2 to 1.6 µm region. Therefore, new materials are required to produce the optoelectronic devices operating at these wavelengths, with the most promising being based on gallium indium arsenide (GaInAs) and gallium indium arsenide phosphide (GaInAsP), epitaxially grown on indium phosphide (InP) substrates. Utilising graded index fibre, systems operating at 1.3 µm are capable of speeds between 8 and 140 Mbit/s with lengths of 10 to 20 km between repeaters.

More recently, attention has been focussed on monomode fibres, in which the central core is so small (5 - 10 µm) that only one mode of propagation is possible. This eliminates the modal spread that limits the length between repeaters of graded index, multimode fibre. Close to 1.3 µm
Fig. 1.1 Schematic diagram of a (Ga,In)(As,P) channel substrate buried heterostructure laser (c.s.b.h.)

Fig. 1.3 Schematic diagram of a GaInAs p.i.n. detector as used in fibre optic systems operating in the range 1.3-1.55 μm.
Fig. 1.2 Attenuation of silica based optical fibre as a function of wavelength in the infra-red region.
the fibre chromatic dispersion is a minimum, so that even with a source of non zero spectral width there is no first order limitation on bandwidth. Systems have been demonstrated at 140 Mbit/s over lengths of 64 km and at 650 Mbit/s over 32 km without repeaters. Launching the light into such a small region of fibre is a considerable problem, hence the need for laser light sources as opposed to l.e.d.s. The double heterostructure laser, and its close derivatives, have been developed to provide such sources. The schematic diagram of a channel substrate buried heterostructure laser (c.s.b.h.) is shown in fig. 1.1.

The attenuation of silica based optical fibres reaches an absolute minimum of about 0.15 dB/km at 1.55 µm, but chromatic dispersion is present at this wavelength (Ainslie et al, 1979). Fig. 1.2 shows this loss as a function of wavelength. Therefore, in order to develop longer lengths of fibre between repeaters the chromatic dispersion must be reduced. This can be achieved by both moving the zero dispersion point in the fibre towards 1.55 µm and limiting the spectral width of the laser sources.

Clearly, to make full use of the low attenuation of the fibre the highest possible sensitivity is required at the detector. Silicon avalanche photodiodes (a.p.d.s) are the standard at 0.85 µm, but they are insensitive in the 1.2 - 1.6 µm range. Germanium a.p.d.s have been developed but have signal to noise ratios inferior to the silicon a.p.d.s. At present the major effort is in developing GaInAs type non
avalanching detectors (p.i.n. type) and GaInAsP based avalanching detectors. The schematic diagram of a GaInAs p.i.n. detector is shown in fig. 1.3. Light is incident through the transparent InP substrate and is almost all absorbed in the i-GaInAs layer, with nearly 100% quantum efficiency.

1.1.2 Superlattices

Artificial semiconductor superlattices are composed of a periodic sequence of thin (50 - 200 Å) layers of alternating composition (e.g. AlAs/GaAs, GaAlAs/GaAs, GaInAs/InP etc). Interest in such structures originates from the work of Esaki and Tsu (1970) to produce a one dimensional periodic potential by a periodic variation of either impurities or alloy composition in semiconductors, with the period shorter than the electron mean free path. They first considered the compositional superlattice and predicted that they should exhibit unusual transport phenomena. These peculiarities originate from the splitting of the conduction and valence bands into narrow mini or sub bands. This splitting is a consequence of the reduction of the original Brillouin zone due to the strongly increased (superlattice) periodicity. Also in the early 1970's Dohler (1972a,b) analysed in great detail the electronic properties of doping superlattices. In addition to the phenomena characteristic of compositional superlattices, a number of new peculiarities which are specific to doping superlattices were predicted. These unique features arise from the unusual
indirect energy gap in real space of the layered material.

The first artificial superlattices were reported by Esaki, Chang and Tsu (1971), where they were obtained by periodic variation of the phosphorous content in layers of GaAs$_{1-x}$P$_x$ grown by vapour phase epitaxy. The first superlattices grown by molecular beam epitaxy were reported by Chang et al (1973). This prototype structure consisted of several hundred alternating layers of GaAs and Ga$_{1-x}$Al$_x$As, grown on a GaAs substrate. Periods ranging from 50 to 200 Å were grown with various compositions of GaAlAs. Early experiments on these structures were used to investigate transport anomalies (Esaki and Chang, 1974) and to demonstrate the quantum mechanical particle in a box behaviour of electrons (Dingle, 1975). The introduction of modulation doping in GaAlAs/GaAs superlattices (Dingle et al, 1978) subsequently modified the established square well concept, and it extended the underlying physics to totally new fundamental phenomena including the quantised Hall effect (von Klitzing et al, 1981), near zero resistance state (Tsui et al, 1982a) and electron localization in a two dimensional electron gas in strong magnetic fields (Tsui et al, 1982b; Ebert et al, 1982).

The so called type II compositional superlattice was conceived by Sai-Halasz et al (1977) and exemplified by the material combination of Ga$_{1-x}$In$_x$As and GaAs$_y$Sb$_{1-y}$ (Sakaki et al, 1977). The type II superlattice differs from its type I counterpart by the sign of the band edge discontinuity
between the two components of the superlattice. While in the type I superlattice the conduction and valence band edge discontinuities have opposite signs, the type II system is characterised by a band edge modulation which has the same sign for the conduction and valence bands. In the case of small x and y values (and in the pure binary system), the bottom of the conduction band of GaInAs becomes even lower in energy than the top of the valence band of GaAsSb. This coexistence of conduction and valence band states in the respective constituent layers can lead to an electron transfer from the GaAsSb to the GaInAs layers, if the layers are sufficiently thin, resulting in a semiconductor-semimetal transition (Sai-Halasz et al 1978).

Significant improvements in the spatial control of dopant incorporation during molecular beam epitaxial growth was required before the first doping superlattices could be realised (Ploog et al, 1981a). Many of the electronic peculiarities of GaAs superlattices predicted by Dohler (1972a,b) have since been demonstrated by detailed experiments on the tunability of photoluminescence (Dohler et al, 1981; Jung et al, 1982), tunability of electroluminescence (Kunzel et al, 1982) and on two dimensional carrier confinement and tunability of subband spacing (Dohler et al, 1981; Zeller et al, 1982; Maan et al, 1983). These measurements provided the experimental evidence that GaAs doping superlattices indeed formed a new class of semiconductor materials. The electronic properties
of a doping superlattice are no longer fixed material parameters but tunable quantities.

Recently, improvements in growth techniques have also enabled the growth of superlattices from constituent materials with large differences in lattice parameter (Matthews and Blakeslee, 1977). Such 'strained layer' superlattices (SLS's) were theoretically predicted to have electrical properties that depended on the state of strain of the individual layers as well as on the composition modulation (Osborn, 1982). These superlattices are grown by alternately depositing lattice mismatched materials so that strain is necessary to form a coherent interface, but where the layers are below the critical thickness for dislocation generation. A buffer layer of graded composition is also grown between the substrate and the first layer which tends to force any grown-in dislocations towards the edge of the sample, thus enabling relatively low quality substrates to be used. The metallo organic chemical vapour deposition (MOCVD) growth technique is often used to grow such structures. The intentionally built-in strain and freedom to combine lattice mismatched semiconductors has spurred interest in these structures. GaAsP/GaAs SLS's have recently been shown to possess an independently variable band gap and lattice constant (Osborn et al, 1982; Biefield et al, 1983), and have also exhibited stimulated emission (Ludowise et al, 1983). Quantum size effects observed as optical transitions in both photoluminescence and excitation
spectroscopy have also been observed (Gourley and Biefield, 1984).

1.2 Growth Techniques for III-V Epitaxy

At present there are four widely used epitaxial growth techniques, namely liquid techniques (liquid phase epitaxy), vapour transport techniques (vapour phase epitaxy, metallo organic chemical vapour deposition) and molecular transport techniques (molecular beam epitaxy). These four techniques vary considerably in operation and complexity, as well as being suited to growing layers for different applications.

1.2.1 Liquid phase epitaxy (LPE)

LPE is particularly suited to growing relatively thick layers (2 - 10 μm) of high crystalline quality. A two piece graphite sliding boat is used to hold the substrate while the liquified material for the layer is held in the top, sliding, part. This is heated in a furnace to the required temperature (about 660 °C for GaInAs layers) and the molten material slowly slid across the surface of the substrate. A step or ramp cooling technique is used to promote crystal growth, while the furnace is filled with PH₃ and H₂, the PH₃ preventing substrate degradation through loss of phosphorous.

It has been reported (Stringfellow, 1972) that lattice matched layers of GaInP were grown preferentially to lattice mismatched layers, due to the higher free energy associated with a lattice mismatched layer. However, Hseih et al (1977)
were unable to find any evidence of this effect for the growth of GaInAs on InP substrates. In particular, the lattice parameter of the layer was found to be a sensitive function of the growth solution composition, the supercooling time and the time of contact between the solution and substrate.

1.2.2 Vapour phase epitaxy (VPE)

Vapour phase epitaxy has been used extensively to grow ternary layers of (Ga,In)As, although it is also suited to the growth of quaternary and higher alloys. Binary compounds of Ga and In are transported in the vapour phase over the heated substrate along with As gas, leading to growth at the substrate surface according to the equilibrium conditions. Ga and In are transported as metal chlorides by passing hydrogen over the heated metal source, according to

\[
\text{GaAs(s)} + \text{HCl(g)} \rightarrow \text{GaCl(g)} + \frac{3}{4}\text{As}_2\text{(g)} + \frac{1}{2}\text{H}_2(g) \quad (1.1)
\]

\[
\text{InAs(s)} + \text{HCl(g)} \rightarrow \text{InCl(g)} + \frac{3}{4}\text{As}_2\text{(g)} + \frac{1}{2}\text{H}_2(g) \quad (1.2)
\]

The Ga and In are usually combined in a mixed metal alloy source. The ternary composition is then a function of the ratio of halide pressures and the ratio of equilibrium constants, which is a function of temperature only. Arsenic is introduced into the system by the decomposition of arsenic trichloride,

\[
\text{AsCl}_3 + \frac{3}{2}\text{H}_2 \rightarrow \frac{1}{4}\text{As}_2\text{(g)} + 3\text{HCl} \quad (1.3)
\]
Fig. 1.4 A typical vapour phase epitaxial growth apparatus as used for the growth of GaInAs layers on InP substrates.
Since the equilibrium constants for the interaction of In and Ga with HCl are different Ga is transported preferentially. As the required ratio of Ga to In in the metal source is only about 6% the Ga concentration is reduced as a function of growth time, leading to an increasingly In rich layer (Chaterjee et al, 1982). This effect can be minimised by using an overlarge melt. Hydrogen sulphide is used as a dopant and a diagram of a typical growth apparatus is shown in fig. 1.4. Growth temperatures are typically 630 - 660 °C giving growth rates in the range 1.5 to 2.0 µm/hour, the amount of material grown can be continuously monitored with an electrobalance.

1.2.3 Metallo organic chemical vapour deposition (MOCVD)

MOCVD is a similar technique to VPE but the gases used are of different composition. Growth of GaInAs takes place by introducing metered amounts of TEIn (triethylindium), TEGa (triethylgallium) and AsH$_3$ into a quartz reaction chamber containing the RF heated substrate, placed on a susceptor surface. The hot susceptor has a catalytic effect on the decomposition of the gaseous products, and growth primarily occurs at this surface. The growth rate is proportional to the flow rate of the group III species, but is independent of temperature and also of the partial pressure of AsH$_3$. Growth occurs according to the following scheme
Fig. 1.5 A typical MBE growth apparatus as used for the growth of (Ga,Al)As layers on GaAs substrates.
\[x \cdot \text{Ga}(\text{C}_2\text{H}_5)_3 + (1-x) \cdot \text{In}(\text{C}_2\text{H}_5)_3 + \text{AsH}_3 \]
\[\to \text{Ga}_x\text{In}_{1-x}\text{As} + 3\text{C}_2\text{H}_6 \]

Typically growth temperatures are \(\sim 550 \, ^\circ\text{C} \) and with the usual gas flow rates produces growth at the order of 300 Å/min. The growth temperature is less than that used in VPE systems which leads to an improvement in the sharpness of the interfaces due to reduced interdiffusion.

Many of the recently developed systems have computer controlled mass flow valves to control the growth rate, thus enabling the growth of superlattices, as an alternative to the MBE technique. In particular MOCVD is better suited to the growth of the (Ga,In)As alloys than is MBE.

1.2.4 Molecular beam epitaxy (MBE)

Molecular beam epitaxy is the most flexible technique available for the growth of artificial superlattices, particularly those based on (Ga,Al)As. This method is based on the reaction of thermal beams of atoms or molecules directed onto a heated substrate under ultra high vacuum conditions. This technique enables control of composition, thickness and doping level down to the atomic scale. Detailed reviews have been presented by Cho and Arthur (1975), Ploog (1980, 1981, 1982), Chang (1980a) and Foxon and Joyce (1981). Since the growth is a kinetic and not an equilibrium process abrupt changes in composition can be achieved by stopping the beam of the species required. A typical growth apparatus is shown in fig. 1.5. The effusion
cells are individually shuttered, operated by vacuum feedthroughs, and may additionally be computer controlled for the accurate growth of repeat layer sequences. Low growth rates of about 1 μm/hour are usual with growth temperatures of 530 - 630 °C for GaAs and 630 - 670 °C for GaAlAs. The use of LN₂ cooled cryopanels for pumping of the condensible residual gas species is required for the growth of high quality GaAlAs (Jung et al, 1983).

Since the growth takes place inside a UHV system it is ideal for in situ surface studies such as Auger electron spectroscopy, reflection high energy electron diffraction (RHEED) and secondary ion mass spectroscopy (SIMS), although the addition of these techniques adds significantly to the cost of the system.

1.3 Lattice Mismatch and Tetragonal Distortion of the Epitaxial Layer

Since ternary alloys of III-V elements are only lattice matched to binary III-V substrates at one composition any deviation from this matched value will lead to misfit stress occurring during growth. Clearly, any lattice parameter measurements performed will be on this final structure and it is, therefore, important to be able to relate these values to the initial compositions. This can only be performed if we understand how the lattice is deformed during growth. Since the stresses associated with the interface and the epilayer are directly related to the
generation and propagation of dislocations we must include the effect of misfit dislocations in any prediction of the misfit stress. Ternary alloys are clearly restricted in their compositional range if large values of misfit stress are not to occur, thus making the alteration of the band gap rather difficult. For this reason the extra degree of freedom provided by quaternary alloys has greatly increased their popularity. The original composition of the quaternary cannot be determined from a lattice parameter measurement alone, the measurement of the band gap is usually used to provide the additional parameters required.

Misfit stress has been quantitatively described without the inclusion of the effects of misfit dislocations by a large number of workers (Jesser and Kuhlman-Wilsdorf, 1978; Hornstra and Bartels, 1978; Bartels and Nijman, 1978; Matsui et al, 1979). Their predictions have been compared with experimental observations for dislocation free samples and found to be in good agreement.

The stress distribution inside the heteroepitaxial layer has been used to determine the radius of curvature of the crystal by a number of authors. A simple beam bending theory for single layers has been developed by Timoshenko (1925) based on the theory of a bimetallic strip. However, inconsistencies in the theory have been reported for it is not internally consistent when the two phase composite strip is reduced to a single phase strip. The bending moment for such a two phase composite strip has been derived properly
Fig. 1.6 Formation of a two layer composite (a) two single crystal plates with lattice constants a_1 and a_0, number of atoms along the edge N_1 and N_0, and thicknesses t_1 and t_0, respectively; (b) Plate 1 is stretched and plate 0 is compressed to match the macroscopic dimensions, the two plates are then bonded to form a composite; (c) the composite bends towards the side with shorter lattice constant after the removal of the external stresses.
by Davidenko (1961). Chu et al (1985) have since used this approach to analyse in detail this situation with the inclusion of the effect of interfacial misfit dislocations. The misfit stress in arbitrary multiple layer systems without the effect of misfit dislocations has been determined by Vilms and Kerps (1982) and Olsen and Ettenberg (1977), while Chu et al (1985) have extended their approach to cover these structures.

1.3.1 Misfit stress in a single epitaxial layer-substrate composite

Following Chu et al (1985) we consider the effect of bonding a thin plate of isotropic single crystal of size \(N_1 a_1 \times N_1 a_1 \times t_1 \) onto a substrate of size \(N_0 a_0 \times N_0 a_0 \times t_0 \) (\(N_1 \) is the number of unit cells along an edge, \(a_1 \) the lattice parameter and \(t_1 \) the thickness of the plate), as shown in fig. 1.6. For a coherent interface, with no misfit dislocations, \(N_1 \) must become equal to \(N_0 \) during epitaxy. We can initially assume that \(a_1 \) is less than \(a_0 \), without any loss of generality, which gives \(l_1 = N_1 a_1 \) less than \(l_0 = N_0 a_0 \). The bonding process is then achieved by applying equal and opposite forces, \(F \), to stretch plate 1 and compress plate 0, uniformly in the lateral direction, to the final dimension \(l_f \times l_f \). The two plates can then be bonded together with perfect alignment of the atomic planes. At the moment the two plates are bonded the composite experiences an applied bending moment \(F(t_0 + t_1)/2 \), which is counterbalanced by the moment resulting from the internal elastic stress. Finally
the applied forces are removed and the moments from the elastic stress bend the composite in the direction shown in fig. 1.6. This bending relaxes some of the stress with the final radius of curvature being determined by the final state of the internal stress.

In order to include the effect of a partially coherent interface (i.e., one containing misfit dislocations) we introduce an effective lattice constant. If we consider the bonding of two plates where a_1 is less than a_0, N_1 greater than N_0, and $l_1 = N_1 a_1$ smaller than $l_0 = N_0 a_0$ when the macroscopic dimensions are matched an extra number of atomic planes $N_1 - N_0$ exist in plate 1 and are terminated at the interface. These then become the interfacial misfit dislocations. If the Burgers vector along the interface is b_I the total amount of mismatch taken up by the misfit dislocations in plate 1 is $(N_1 - N_0) b_I$. This corresponds to $(N_1 - N_0) b_I / N_0$ per bonded atom. An effective lattice parameter a'_1 can then be defined as

$$a'_1 = a_1 + \frac{N_1 - N_0}{N_0} b_I$$

(1.5)

If we let ρ be the linear density of misfit dislocations given by $\rho = (N_1 - N_0) / N_0 a_0$ the effective lattice becomes

$$a'_1 = a_1 + a_0 \rho b_I$$

(1.6)
1.3.2 Stress distribution

The balance of forces acting on the sample gives

\[F_1 + F_0 = 0 \quad (1.7) \]

while balancing the moments acting on the sample gives

\[\frac{F_1 t_0 + t_1}{2} + \frac{F_0 t_0}{2} = M_0 + M_1 \quad (1.8) \]

where the forces are taken to act at the centre plane of each layer.

\[M_0 \text{ and } M_1 \text{ are given by} \]

\[M_0 = \frac{E_0}{1-\nu} \frac{1}{R} \int_{-R}^{+R} (z-\delta)^z l_f dz \quad (1.9) \]

\[M_1 = \frac{E_1}{1-\nu} \frac{1}{R} \int_{-R}^{+R} (z-\delta)^z l_f dz \quad (1.10) \]

where \(R \) is the radius of curvature, \(\nu \) is Poisson's ratio (which is assumed equal for the two plates), and \(\delta \) is the shift of the neutral axis from \(t_0/2 \), as in fig. 1.6. As given by Davidenkov (1961)

\[\delta = \frac{E_0 t_1}{E_1 t_0} \frac{(1 + t_1/t_0)}{(1 + E_0 t_1/E_1 t_0)} \quad (1.11) \]

Thus,

\[M_0 = \frac{E_0 I_f}{(1-\nu)R} \left[\frac{t_0^3}{12} + t_0 \delta^2 \right] = \frac{E_0 I_0}{(1-\nu)R} \quad (1.12) \]

\[M_1 = \frac{E_1 I_f}{(1-\nu)R} \left[\frac{t_1^3}{12} + t_1 \left(\delta - \frac{t_1 + t_0}{2} \right)^2 \right] = \frac{E_1 I_1}{(1-\nu)R} \quad (1.13) \]

where \(I_i, i=0 \text{ and } 1 \), is defined as the moment of inertia
associated with each plate of the composite. We note that for the case \(E_1/E_0 \approx 1 \) and \(t_1/t_0 \ll 1 \), and keeping only the lowest order terms in \(t_1/t_0 \) these become

\[
\delta = \frac{t_1}{2} \tag{1.14}
\]

\[
I_0 = \frac{l_f t_0^3}{12} \tag{1.15}
\]

\[
I_1 = l_f \left(\frac{t_1^3}{12} + \frac{t_1 t_0^2}{4} \right) \approx \frac{l_f t_1 t_0^2}{4} \tag{1.16}
\]

Now the strain in any layer is given by the sum of the strain due to the force \(F_i \) and the strain due to the bending, \((z - \delta t_i)/R \), where \(z \) is the distance in the \(i \)th layer from the bottom of the \(i \)th layer.

Clearly the atomic separation in each layer must match at the interface for coherency, thus

\[
a_i \left[1 + \frac{F_i (1 - \nu)}{E_i} - \frac{t_1}{l_f t_1} \right] + \rho b_i a_0 = a_i \left[1 + \frac{F_0 (1 - \nu)}{E_0} + \frac{t_0}{l_f t_0} \right] \tag{1.17}
\]

Now, since from force equilibrium we have \(F_i = -F_0 \) this becomes

\[
a_i \left[\frac{F_0 (1 - \nu)}{E_0} - \frac{t_1}{l_f t_1 E_1} \right] + \rho b_i a_0 = a_i \left[\frac{F_0 (1 - \nu)}{E_0} + \frac{t_0}{l_f t_0 E_0} \right] \tag{1.18}
\]
\[
\frac{i e}{F_0(1-\nu)} \frac{a_1}{a_0} \left[1 + \frac{a_0 E_1 t_1}{a_1 E_0 t_0} \right] = \frac{a_0 - a_1}{a_0} - \frac{\rho b_I}{2R} \frac{t_0}{a_0 t_0} + \frac{1}{2} \frac{a_1 t_1}{a_0 t_0}
\]

(1.19)

\[
F_0 = - \frac{a_0}{a_1} \frac{l_f E_1 t_1}{1-\nu} \frac{1}{1 + a_0/a_1 E_1/E_0 t_1/t_0}
\]

\[
x \left[\frac{a_0 - a_1}{a_0} - \frac{\rho b_I}{2R} \frac{t_0}{a_0 t_0} \left(1 + \frac{a_1 t_1}{a_0 t_0} \right) \right]
\]

(1.20)

The stress at any point in each layer is given by

\[
\sigma_{xx}^i = \frac{F_i}{l_f t_i} + \frac{E_i}{(1-\nu)} \frac{E_1}{R} \frac{(z_i - t_i/2)}{R}
\]

(1.21)

where \(z_i, \ i = 0 \) and 1, is measured from the bottom of the \(i \)th layer.

We then obtain

\[
\sigma_{xx}^o = - \frac{E_1}{(1-\nu)} \left[\frac{a_0 t_1}{a_1 t_0} \frac{1}{1 + a_0/a_1 E_1/E_0 t_1/t_0} \right.
\]

\[
\left. x \left\{ \frac{a_0 - a_1}{a_0} + \frac{t_0}{2R} \left(1 + \frac{a_1 t_1}{a_0 t_0} \right) - \frac{\rho b_I}{a_0 t_0} \right\} \right]
\]

\[
\frac{E_0}{E_1} \frac{(z_0 - t_0/2)}{R}
\]

(1.22)
and

\[
\sigma_{xx}^i = -\frac{E_1}{(1-\nu)} \left[\frac{a_0}{a_1} \left(\frac{1}{1 + a_0/a_1 \frac{E_1}{E_0} \frac{t_1}{t_0}} \right) \right. \\
\left. \times \left\{ \frac{a_0-a_1}{a_0} + \frac{t_0}{2R} \left(1 + \frac{a_1 t_1}{a_0 t_0} \right) - \rho b_i \right\} \right. \\
\left. + \frac{(z_0 - t_0/2)}{R} \right]
\] (1.23)

We note that the above equations differ slightly from those given by Chu et al. (1985) which are dimensionally incorrect.

Clearly the other stress components will be

\[
\sigma_{yy}^i = \sigma_{xx}^i \\
\sigma_{zz}^i = \sigma_{xy}^i = \sigma_{xz}^i = \sigma_{yz}^i = 0
\] (1.25)

for \(i = 0 \) and \(1 \).

The radius of curvature is given by

\[
\frac{1}{R} = \frac{2E_1 t_1 t_0 (1+t_1/t_0) a_0/a_1}{A} \left\{ \frac{a_0-a_1}{a_0} - \rho b_i \right\}
\] (1.26)

where

\[
A = 4 \left(1 + \frac{a_0}{a_1} \frac{E_1}{E_0} \frac{t_1}{t_0} \right) \left(\frac{E_0 I_0}{I_f} + \frac{E_1 I_1}{I_f} \right) \\
- \frac{a_0}{a_1} E_1 t_1 t_0 \left(1 + \frac{a_1 t_1}{a_0 t_0} \right)
\] (1.27)

1.3.3 Parallel mismatch and interfacial dislocation density

Since the parallel mismatch, \((\Delta a/a)_{11}\), is defined as the lattice mismatch in the plane parallel to the (001)
interface, a coherent interface will have \((\Delta a/a)_{11}=0\). The parallel mismatch can only be non zero in the presence of misfit dislocations. Now \(a_1=a_1+a_0\rho b_I\), so if we stress the lattice such that \(a_1\) and \(a_0\) match the final value \(a_f\), the lattice constant \(a_1\) is changed to \(a_{1f}\) and we have

\[
a_f = a_{1f} + a_f \rho b_I
\]

Therefore,

\[
\left(\frac{\Delta a}{a} \right)_{11} = \frac{a_f - a_{1f}}{a_f} = \rho b_I
\]

We note that with no misfit dislocations \(a_1\) and \(a_0\) must be strained to the same final value.

1.3.4 Tetragonal distortion

Tetragonal distortion occurs because the lattice is free to expand in the \(z\) direction, i.e. perpendicular to the interface. Since \(\sigma_{xx}^0\) and \(\sigma_{xx}^t\) are opposite in sign the cubic lattices will distort in the opposite sense.

The lattice constants perpendicular to the interface are given by

\[
a_{1}^t = a_1 \left(1 - 2\nu \frac{\sigma_{xx}^t}{E_1} \right)
\]

and

\[
a_{0}^t = a_0 \left(1 - 2\nu \frac{\sigma_{xx}^0}{E_0} \right)
\]

where the second terms are \(e_{zz}\) due to the Poisson
effect. Therefore,

\[\left(\frac{\Delta a}{a} \right)_{\perp} = \frac{a_0^* - a_1^*}{a_0} \] \hspace{1cm} (1.32)

and substituting the value for \(\sigma_{xx} \) and \(\sigma_{xx} \) we obtain

\[\left(\frac{\Delta a}{a} \right)_{\perp} = \left(\frac{\Delta a}{a} \right)_{\parallel} \frac{1 + \nu}{1 - \nu} - \frac{2\nu}{1 - \nu} \rho_{bI} \] \hspace{1cm} (1.33)

Replacing \(\rho_{bI} \) by the parallel mismatch we obtain

\[\left(\frac{\Delta a}{a} \right)_{\parallel} = \frac{1 - \nu}{1 + \nu} \left(\frac{\Delta a}{a} \right)_{\perp} + \frac{2\nu}{1 + \nu} \left(\frac{\Delta a}{a} \right)_{||} \] \hspace{1cm} (1.34)

We note that from equation (1.27) that \(1/R = 0 \) if the parallel mismatch is equal to the perpendicular mismatch, i.e., for a completely incoherent interface. Therefore, coherently matched layers must produce a structure that has a non-infinite radius of curvature unless the relaxed lattice mismatch is zero.

This procedure can be extended to multiple layer structures giving, after some work,

\[\left(\frac{\Delta a_i}{a} \right)_{\perp} = \frac{1 + \nu}{1 - \nu} \left(\frac{\Delta a_i}{a} \right)_{\parallel} - \frac{2\nu}{1 - \nu} \rho_{b_{II}} \] \hspace{1cm} (1.35)

for \(i=1,N \) where \(N \) is the number of layers.

We note that we have assumed isotropic elasticity in deriving the above equations and also that the layer/substrate interface is of the type (001). The reader is referred to the paper of Honstra and Bartels (1978) for results when epitaxy is not on a (001) plane, although
Fig. 1.7 Surface representing the lattice parameter of Ga$_x$In$_{1-x}$As$_y$P$_{1-y}$ as a function of x and y.
partial coherency of the interface is not included.

As already mentioned, the relaxed lattice mismatch \((\Delta a/a)_r\) can be directly related to the composition for ternary alloys, using Vegard's law, but not for quaternary or higher alloys. For quaternaries another, independent, measurement relating \(x\) and \(y\) is required.

1.4 Vegard's Law and Band Gaps

Once the relaxed lattice parameter of the layer has been determined the composition of the layer can be found. For ternary alloys the composition is given by Vegard's law, since the lattice parameter is a linear function of the composition. For example for \(\text{Ga}_x\text{In}_{1-x}\text{As}\) we have

\[
a(\text{Ga}_x\text{In}_{1-x}\text{As}) = (1-x)a(\text{InAs}) + xa(\text{GaAs}) \quad (1.36)
\]

where \(a(\text{alloy})\) is the relaxed lattice parameter of the alloy. Clearly, similar equations exist for other ternaries. Thus \(x\) can easily be determined.

For quaternaries the variation in lattice parameter is slightly more complicated. Taking \(\text{Ga}_x\text{In}_{1-x}\text{As}_y\text{P}_{1-y}\) as an example, the lattice parameter is given by the surface shown in fig. 1.7. Considering the change in lattice parameter parallel to the \(x\) and \(y\) axes we obtain

\[
\frac{\partial a}{\partial x} = ya(\text{GaAs}) + (1-y)a(\text{GaP}) - ya(\text{InAs}) - (1-y)a(\text{InP}) \quad (1.37)
\]
and

\[\frac{\partial a}{\partial y} = x a(GaAs) + (1-x)a(InAs) - x a(GaP) - (1-x)a(InP) \]

With the limit that at \(x=0, y=0 \) \(a=a(InP) \) we obtain

\[a(Ga_{x}In_{1-x}P_{y}P_{1-y}) = x y a(GaAs) + x(1-y)a(GaP) \]

\[+ (1-x)y a(InAs) \]

\[+ (1-x)(1-y)a(InP) \]

Clearly, we cannot determine \(x \) and \(y \) from this single equation. Empirical relationships between the composition and band gap have been determined by Nahory et al (1978). The variations found to best fit the experimental data are shown in Table 1.1 and the values of the lattice parameters for some of the common III-V binary alloys are shown in Table 1.2.

We note that the equation for the quaternary could be found in a similar manner to the lattice parameter by integrating the partial derivatives found from the ternary variations, with the required equation being that of a surface similar to that in Fig. 1.7. This relation would then be

\[E_g(x, y) = 1.35 + 0.668x - 1.17y + 0.758x^2 - 0.18y^2 \]

\[- 0.069xy - 0.322x^2y + 0.03xy^2 \text{ eV} \]

(1.40)

However, Nahory et al (1978) found that the relation given in Table 1.1 gave a better fit to the experimental data.
TABLE 1.1

Band gaps of some of the common III-V ternary and quaternary compounds.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Band gap (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In$_{1-x}$Ga$_x$As</td>
<td>$E_g(x) = 0.36 + 0.629x + 0.436x^2$</td>
</tr>
<tr>
<td>InAsyP${1-y}$</td>
<td>$E_g(y) = 1.35 - 1.17y + 0.18y^2$</td>
</tr>
<tr>
<td>In$_{1-x}$Ga$_x$P</td>
<td>$E_g(x) = 1.35 + 0.668x + 0.758x^2$</td>
</tr>
<tr>
<td>GaAs$_{1-y}$P$_y$</td>
<td>$E_g(y) = 2.77 - 1.56y + 0.21y^2$</td>
</tr>
<tr>
<td>In$_{1-x}$Ga$_x$AsyP${1-y}$</td>
<td>$E_g(x,y) = 1.35 - 0.72y + 0.12y^2$</td>
</tr>
</tbody>
</table>

TABLE 1.2

Lattice parameters of some of the more common binary III-V alloys.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Lattice Parameter (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
<td>5.6535</td>
</tr>
<tr>
<td>InP</td>
<td>5.8688</td>
</tr>
<tr>
<td>InAs</td>
<td>6.0590</td>
</tr>
<tr>
<td>GaP</td>
<td>5.4512</td>
</tr>
</tbody>
</table>

1.5 Characterisation of Epitaxial Layers

The main requirements of any characterisation technique are the determination of the layer composition and the layer thickness. If more than one layer is present the individual thicknesses and compositions should also be determined. Also, if a continuous variation in composition is present in a layer this needs to be determined. The crystalline quality (surface morphology and dislocation density) of the layer is also important. A number of techniques are available including transmission electron microscopy (TEM), Auger
electron spectroscopy (AES), Rutherford backscattering (RBS), secondary ion mass spectrometry (SIMS), reflection high energy electron diffraction (RHEED) plus many varied X-ray and electrical methods. In particular, the first few techniques require extensive sample preparation and extremely expensive apparatus.

Of these techniques TEM is the most widely used, but since electrons are absorbed by very small amounts of material the samples need to be considerably thinned. For layered structures these thin sections need to be taken perpendicular to the layer interfaces. Since only a small region of the sample can be studied some doubt exists as to it being representative of the bulk sample. Also since some of the strain present in the bulk sample may be relieved during the thinning process errors may be present in any lattice parameter determination. TEM is particularly useful for studying the repeat periodicity and layer thicknesses of superlattices, see for example Petroff et al (1984).

Clearly, since the lattice parameter of a mismatched layer is different from that of the substrate X-ray diffraction should be able to detect this difference through the change in Bragg angle for a given reflection. Advantages of X-ray techniques are that little or no sample preparation is required and that it is non-destructive. However, due to the magnitude of the mismatch usually found in III-V materials being of the order of parts in 10^3 (often less) difficulties arise with single crystal techniques which are
limited by the angular width of the reflection, which is determined by the collimation and hence beam divergence being used. Nevertheless, single crystal techniques have been used, but are limited to detecting mismatches down to the order of 5×10^{-4} (see for example Isherwood, Brown and Halliwell, 1981; Chang et al, 1979; Chang, 1980b). It has been well known since the 1920's that the double crystal spectrometer can overcome these problems and that the sensitivity to lattice mismatch will then be limited by the dynamical width of the reflections themselves (the order of 10 seconds of arc for the majority of reflections from III-V materials).
Fig. 2.1 The two possible settings of a double crystal spectrometer. The beam incident on crystal A is characterised by two angles of divergence: \(\alpha \) - horizontal and \(\phi \) - vertical.
CHAPTER 2
DOUBLE CRYSTAL DIFFRACTOMETRY

2.1 General Theory of the Double Crystal Camera

The double crystal spectrometer (or diffractometer) has the property of removing the effect of the X-ray linewidth and beam divergence on the reflection profile of a crystal. This effect has been well known since the 1920's, and the reader is referred to the papers of Allison and Williams (1930), Allison (1932) Compton and Allison (1935) and du Mond (1937). Double crystal diffractometers have been in existence since the early 1930's (Compton, 1931; du Mond and Marlow, 1937), but only recently has their use become more widespread with the development of highly perfect semiconductor crystals.

The designs of the double crystal spectrometer, for which the theory was developed, are based on combining two crystals with successive Bragg reflection as shown in fig. 2.1. The X-ray beam passes through two parallel horizontal and vertical slits before being incident on the monochromator crystal A. As a result it is characterised by two values of divergence: α - horizontal divergence and ψ - vertical divergence. The maximum values of these angles are then given by

$$\alpha_m = \frac{c}{z}, \quad \psi_m = \frac{h}{z} \quad (2.1)$$

where c is the width and h the height of the slits, with z
Fig. 2.2 The x-ray paths and angles for the two possible settings of the double crystal spectrometer.
the distance between them. Clearly there are two fundamentally possible settings of the spectrometer as shown in fig. 2.2, with the second crystal B in either the PP or P'P' positions.

The first crystal A is aligned so that a central ray in the incident beam makes an angle $\theta_0 = \theta + \eta_0$ with the reflecting planes, corresponding to the centre of the total reflection region. We note that the value of η_0 is dependent on the refractive index of the crystal and its value is given in the next chapter. Consequently the maximum of the reflection profile does not correspond exactly with the kinematic Bragg angle θ. Crystal B is then set up in an arbitrary initial position, close to the position of reflection. Rotating crystal B about the vertical axis and recording the reflected intensity as a function of angle gives the rocking curve. Therefore, we need to obtain the relationship between this curve and the true dynamical diffraction curve from crystal B alone. We first consider the values of the angles formed by the various rays in the incident beam with crystals A and B at various wavelengths.

Following Compton and Allison (1935) and Pinsker (1978) the deviation of an arbitrary ray in the incident beam from the central ray is (θ is the glancing angle and n_A the order of the reflection)

$$\alpha = \frac{1}{2} \omega \tan \theta (\lambda_0, n_A) - (\lambda - \lambda_0) \left(\frac{d\theta}{d\lambda} \right)_0 \tag{2.2}$$

where the central ray is characterised by the parameters θ_0.
\(\lambda_0, \alpha=0 \) and \(\phi=0 \). The second term corresponds to the deviation due to vertical divergence and the third due to non monochromaticity. The last term takes this form after assuming that within the spectral width of the incident beam the reflection angles change only slightly.

For the second crystal the deviation from the central ray is given by

\[
\pm \beta \mp \alpha - \frac{1}{2} \varphi^2 \tan \theta (\lambda_0, n_B) - (\lambda - \lambda_0) \left(\frac{d \theta}{d \lambda} \right)_0
\]

The upper signs correspond to position I and the lower to position II.

We must now account for the intensity distribution within the original beam in relation to the divergence and wavelength. We assign functions \(G(\alpha, \varphi), J(\lambda - \lambda_0) \) to represent these distributions. The functions are normalised so that the intensity within an interval \((d\alpha, d\varphi, d\lambda)\) is determined by multiplying by the interval.

The total power reflected by the second crystal is then

\[
P(\beta) = \int_{\phi_n}^{\phi_m} \int_{\lambda_{min}}^{\lambda_{max}} \int_{\alpha_n}^{\alpha_m} G(\alpha, \varphi) J(\lambda - \lambda_0) \times C_A \left[\alpha - \frac{1}{2} \varphi^2 \tan \theta_1 - (\lambda - \lambda_0) \left(\frac{d \theta}{d \lambda} \right)_0 \right] \\
\times C_B \left[\pm \beta \mp \alpha - \frac{1}{2} \varphi^2 \tan \theta_2 - (\lambda - \lambda_0) \left(\frac{d \theta}{d \lambda} \right)_0 \right] d\alpha d\varphi d\lambda
\]

where \(C_A \) and \(C_B \) are expressions corresponding to the reflection curves of crystals A and B. The rocking curve is then given by \(P(\beta) \) over the range of angles \(\beta \) required.
We can study the general properties of this equation by considering C_A and C_B to be non zero only when their arguments are zero (although this is unphysical it is a reasonable approximation). Therefore,

$$\alpha - \frac{1}{2} \varphi^2 \tan \theta(\lambda_0, n_A) - (\lambda - \lambda_0) \left(\frac{d\theta}{d\lambda_0} \right)^2 = 0 \quad (2.5)$$

and

$$\pm \beta \mp \alpha - \frac{1}{2} \varphi^2 \tan \theta(\lambda_0, n_B) - (\lambda - \lambda_0) \left(\frac{d\theta}{d\lambda_0} \right)^2 = 0 \quad (2.6)$$

Eliminating α gives

$$\beta \mp \frac{\varphi^2}{2} \left[\tan \theta(\lambda_0, n_A) \mp \tan \theta(\lambda_0, n_B) \right]$$

$$- (\lambda - \lambda_0) \left[\left(\frac{d\theta}{d\lambda_0} \right)' \mp \left(\frac{d\theta}{d\lambda_0} \right)^2 \right] = 0 \quad (2.7)$$

Now defining D as

$$D = \left(\frac{d\theta}{d\lambda_0} \right)' \mp \left(\frac{d\theta}{d\lambda_0} \right)^2 \quad (2.8)$$

which with the Bragg equation gives

$$D = \frac{n_A}{2d\cos \theta(\lambda_0, n_A)} \mp \frac{n_B}{2d\cos \theta(\lambda_0, n_B)} \quad (2.9)$$

ie

$$\beta = \frac{1}{2} \lambda_0 \varphi^2 + D(\lambda - \lambda_0) \quad (2.10)$$

Now the dispersion in the double crystal arrangement is defined as $d\beta/d\lambda$, which gives
\[\text{dispersion} = \frac{d\theta}{d\lambda} = D \quad (2.11) \]

Hence, for the type II arrangement where two identical reflections are used the dispersion is zero.

We will now consider the \((+-)\) type II arrangement. For two identical crystals we have \(C_A = C_B = C \) and \(\theta(\lambda_0, \eta_A) = \theta(\lambda_0, \eta_B) = \theta \), giving

\[P(\beta) = \int_{\phi_m}^{\phi_m} \int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} \int_{-\delta_m}^{\delta_m} G(\alpha, \phi) J(\lambda-\lambda_0) \]

\[\times C \left[a - \frac{1}{2} \sigma^2 \tan \theta - \frac{(\lambda-\lambda_0)}{2} \frac{d\theta}{d\lambda} \right] \]

\[\times C \left[-\beta + a - \frac{1}{2} \sigma^2 \tan \theta - \frac{(\lambda-\lambda_0)}{2} \frac{d\theta}{d\lambda} \right] d\alpha d\phi d\lambda \]

For nearly perfect crystals C is only non-zero over a range of a few seconds of arc \((10^{-5} \text{ radians})\), when we are within the dynamical diffraction width. The function \(G(\alpha, \phi) \) can be written as

\[G(\alpha, \phi) = G_1(\alpha) G_2(\phi) \quad (2.13) \]

Although \(G_1 \) are different from zero over the range of a few minutes of arc, when the term \(\frac{1}{2} \sigma^2 \tan \theta \) is considered the effective region of variation of \(G_2 \) is about the same as function C. It can, however, be shown that the shape of the resultant reflection curve is independent of the vertical divergence of the beam incident on the first crystal in the parallel arrangement (see the next section). For each of the
monochromatic components of the incident beam the effective range of the argument is very small as, approximately,

$$\alpha_e \approx (\lambda - \lambda_0) \left(\frac{d\theta}{d\lambda} \right)_0$$ \hspace{1cm} (2.14)

This estimate corresponds to the crystal A transforming the incident beam into a set of parallel beams for the monochromatic components.

The effective range of the wavelengths taking part in the formation of the maximum inside the reflection curve is estimated at

$$\lambda_0 \pm \left(\frac{d\lambda}{d\theta} \right)_0 \alpha_m$$ \hspace{1cm} (2.15)

Typically this amounts to a range that considerably exceeds the half width of the spectral lines.

The function $P(\beta)$ is different from zero over a very small range of the arguments. Thus in the scheme $(+n,-n)$ the half width of the reflection curve is comparable to the half width of the dynamical diffraction peak from one crystal. This value is typically exceeded by a factor of 1.3.

Comparing the narrow range of the functions C, which are taken into account during integration, and the wide ranges of the variables α, φ and λ (the functions G_1, G_2 and J change gradually over seconds of arc) we have the expression for the reflection curve as

$$P(\beta) = k \int_{-\infty}^{\infty} C(\alpha) C(\alpha - \beta) \, d\alpha$$ \hspace{1cm} (2.16)
where \(k \) represents the functions \(G_1, G_2 \) and \(J \). Conversion between this curve and the dynamical curve of the crystal has been shown to be not possible by Laue (1931).

We also note that, from inspection of this equation, that the \((+n,-n)\) rocking curve is symmetric about \(\alpha=0 \) even if the curves \(C \) are not symmetrical.

For non polarised radiation, as produced in the characteristic lines of conventional X-ray sources, we must add the contribution from \(\sigma \) and \(\pi \) polarisations. Thus

\[
P(\beta) = k \int_0^{\pi} \left[C_\sigma(\alpha)C_\sigma(\alpha-\beta) + C_\pi(\alpha)C_\pi(\alpha-\beta) \right] d\alpha \quad (2.17)
\]
gives the rocking curve for unpolarised radiation.

Often the reflecting power is required and this is defined as

\[
R(\beta) = \frac{\int_0^{\pi} [C_\sigma(\alpha)C_\sigma(\alpha-\beta) + C_\pi(\alpha)C_\pi(\alpha-\beta)] d\alpha}{\int_0^{\pi} C_\sigma(\alpha) d\alpha + \int_0^{\pi} C_\pi(\alpha) d\alpha} \quad (2.18)
\]

2.2 The effect of vertical divergence on the rocking curve

The effect of vertical divergence needs to be considered where there is a non zero angle between the plane of the normal of the second crystal and that of the first crystal, i.e. the second crystal is tilted with respect to the first crystal. This effect has been studied in detail by Schwarzschild (1928), Jager (1965, 1966) and more recently by
Fig. 2.3 The direction vectors and angles of the x-ray beams as required for the effect of vertical divergence.
Yoshimura (1984). The reader is referred to these papers for a complete description, while a summary of the results are presented here.

Following Yoshimura (1984), we can write the diffraction conditions as

\[\mathbf{p} \cdot \mathbf{n}_I = -\sin \theta_I; \quad \mathbf{p}' \cdot \mathbf{n}_I = \sin \theta'_I; \quad (2.19) \]

\[\frac{[\mathbf{p} \times \mathbf{n}_I]}{\cos \theta_I} = \frac{[\mathbf{p}' \times \mathbf{n}_I]}{\cos \theta'_I} \quad (2.20) \]

for the first crystal, and

\[\mathbf{p}' \cdot \mathbf{n}_{II} = -\sin \theta_{II}; \quad \mathbf{p}'' \cdot \mathbf{n}_{II} = \sin \theta'_{II}; \quad (2.21) \]

\[\frac{[\mathbf{p}' \times \mathbf{n}_{II}]}{\cos \theta_{II}} = \frac{[\mathbf{p}'' \times \mathbf{n}_{II}]}{\cos \theta'_{II}} \quad (2.22) \]

for the second crystal. The angles \(\theta_i \) are given by

\[\theta_I = \theta_{BI} + \eta_I; \quad \theta'_I = \theta_{BI} + \eta'_I \quad (2.23) \]

\[\theta_{II} = \theta_{BI} + \eta_{II}; \quad \theta'_{II} = \theta_{BI} + \eta'_{II} \quad (2.24) \]

where

\[\eta_I = (\Delta \lambda / \lambda) \tan \theta_{BI} + (1-1/b_I)u_I + |1/b_I|^{\frac{3}{2}}v_I w_I \quad (2.25) \]

\[\eta'_I = (\Delta \lambda / \lambda) \tan \theta_{BI} + (1-b_I)u_I + |b_I|^{\frac{3}{2}}v_I w_I \quad (2.26) \]

\[\eta_{II} = (\Delta \lambda / \lambda) \tan \theta_{BI} + (1-1/b_{II})u_{II} + |1/b_{II}|^{\frac{3}{2}}v_{II} w_{II} \quad (2.27) \]

\[\eta'_{II} = (\Delta \lambda / \lambda) \tan \theta_{BI} + (1-b_{II})u_{II} + |b_{II}|^{\frac{3}{2}}v_{II} w_{II} \quad (2.28) \]

The direction of the vectors and crystals are as shown in fig. 2.3. \(\mathbf{p}, \mathbf{p}' \) and \(\mathbf{p}'' \) represent the directions of the X-
ray beams, \(n_1 \) and \(n_{II} \) unit normals to the diffracting planes and \(\theta_1, \theta'_1, \theta_{II}, \theta'_{II} \) are the angles the X-ray beams form with the diffraction planes for the two crystals. \(b_1 \) and \(b_{II} \) are, as usual, the asymmetry factors, \(\gamma_0/\gamma_h \). \(\theta_{BI} \) and \(\theta_{BII} \) are the kinematical Bragg angles, \(u_1 \) and \(u_{II} \) the deviation due to the refraction effect and \(v_1, v_{II} \) the half widths of the diffraction peaks. \(W_1 \) and \(W_{II} \) represent the deviation from the exact Bragg angle, i.e. \(-1 < W_i < 1 \) corresponds to the total reflection range. The second crystal is tilted by an angle \(\rho \) with respect to the first crystal.

Yoshimura (1984) has shown that the relationship between the angular position of the second crystal \(\theta \), such that a beam from the first crystal with parameter \(W_1 \) is diffracted by the second crystal with parameter \(W_{II} \) in the parallel (+-) setting, is

\[
\frac{z_1}{f} = \sin(\theta - \alpha_1) \cos \theta_B \left[(\theta + \Delta \theta_u) \cos \alpha_1 \right. \\
- (\eta + \Delta \theta_u) \sin \theta_B \cos \alpha_1 + \left. (\theta + \Delta \theta_u) \sin \theta_B \cos \alpha_1 \right. \\
- (\eta + \Delta \theta_u) \cos \theta_B \sin \alpha_1 \\
x \left. \left((\theta + \Delta \theta_u)^2 + \rho^2 - (\eta + \Delta \theta_u)^2 \right)^{1/2} \right] \\
\times \left. \left[(\theta + \Delta \theta_u) \sin \theta_B \cos \alpha_1 - (\eta + \Delta \theta_u) \cos \theta_B \sin \alpha_1 \right] \right] \\
+ \rho^2 \sin(\theta_B + \alpha_1) \sin(\theta_B - \alpha_1) \right]^{-1}
\] (2.29)

Where the vertical coordinate of the incident beam on the first crystal is \(z_1 \) and the distance to the X-ray source is
f. \(\alpha_I \) is the angle between the diffraction plane and the surface of the first crystal. The \(\pm \) sign is taken according to \(\alpha_I + \theta_B > 0 \) or \(\alpha_I + \theta_B < 0 \). \(\theta_B \) is taken as \(\theta_B = \theta_{BI} = \theta_{BII} \) while \(\eta \) is defined as

\[
\eta = \eta_{II} - \eta_I + \frac{1}{2} \rho \tan \theta_B
\]

\[
= \left[(1 - 1/b_{II}^{uII})u_{II} - (1 - b_I)u_I \right]
\]

\[
+ (1/b_{II}^{1/2}v_{II}^{wII} - |b_I|^{1/2}v_{II}^{wI})
\]

\[
+ \Delta \lambda / \lambda \Delta \theta_u / \cos \theta_B + \frac{1}{2} \rho \tan \theta_B \quad (2.30)
\]

where \(\Delta \theta_u = \theta_{BII} - \theta_{BI} \) accounts for lattice deformation in the second crystal. For the non parallel (\(\pm \)) setting and the (\(++ \)) setting the above equation can be replaced by

\[
z_I / \rho = \left\{ -\rho \tan \theta_{BI} \pm (\cos \theta_{BI} \cos \theta_{BII})^{1/2} \right\}
\]

\[
x \left[2 \sin(\theta_{BII} \mp \theta_{BI})(\theta - \eta) + \rho \left(\cos \theta_{BI} / \cos \theta_{BII} \right) \right]^{1/2}
\]

\[
x \left[\sin(\theta_{BII} \mp \theta_{BI}) \right]^{-1} \quad (2.31)
\]

The upper sign is for the (\(\pm \)) setting and the lower for the (\(++ \)) setting. \(\eta \) given by

\[
\eta = \left[(1 - 1/b_{II}^{uII})u_{II} \mp (1 - b_I)u_I \right]
\]

\[
+ (1/b_{II}^{1/2}v_{II}^{wII} \mp |b_I|^{1/2}v_{II}^{wI})
\]

\[
+ \Delta \lambda / \lambda (\tan \theta_{BII} \mp \tan \theta_{BI}) + \frac{1}{2} \rho \tan \theta_{BII} \quad (2.32)
\]

(signed as before).
Fig. 2.4 The change in crystal angle (θ) required to diffract a beam with value W as a function of z/f, the position of the incident beam on the first crystal, for a parallel (+) setting with two silicon (333) reflections and CuKα₁ radiation, for varying values of ρ the tilt angle. ν = 155°.
Fig. 2.5 Curve of \(z/f \) vs \(\theta \) for a non parallel \((\pm) \) setting with \(\text{Si (111)} \) and \(\text{Si (220)} \) reflections. \(\text{CuK}_{\alpha_1} \) radiation with the abscissa scaled in units of 1.55 arc secs.
The curve of \(z/f \) vs \(\theta \) is shown in fig. 2.4 for a parallel (++) setting with two Si (333) reflections. The rocking curve at a particular height \(z/f \) is given by traversing the curve along a line with \(y=z/f \) parallel to the \(\theta \) axis. We note that for no tilt, ie \(\rho=0 \), the situation corresponds to the condition where the vertically divergent beam can be diffracted over its entire length with the same intensity. The curve for a non parallel (++) arrangement, with Si (111) and Si (220) reflections, is shown in fig. 2.5. As can be seen the wavelength and parameter \(W \) vary rapidly with \(z/f \) along the line \(\theta=0 \), while the distribution of high diffracted intensity is concentrated over a narrow vertical range.

From equation (2.29), substituting \(z/f=0 \), we can find the value of \(\theta \) at which the \(z/f \) curve crosses the \(z/f=0 \) line as a function of \(\rho \), the tilt angle. We obtain

\[
\theta_0 = \eta_0 (2.33)
\]

\[
= \left[\left(1-1/b_{II} \right) u_{II} - \left(1-b_I \right) u_I \right] + wW
\]

\[+ \Delta\lambda/\lambda_0 \Delta\theta_u/\cos^2 \theta_B + \frac{1}{2} \rho^2 \tan \theta_B, \]

where \(w \) is the half width of the integrated reflection curve obtained by integrating the reflection curves over the height of the X-ray beam incident on the first crystal. \(W \) is analogous to \(W_I \) and \(W_{II} \) for this integrated curve. Equation (2.33) is plotted in fig. 2.6. This curve has been used to aid the rapid alignment of the double crystal arrangement to
Fig. 2.6 Change in angle θ required to give the centre of Bragg reflection tilt angle ρ.
the position $\rho=0$ (see for example Fewster, 1985).

The half width of the rocking curve measured by rotating the second crystal is clearly the half width of this integrated curve, ie w. Yoshimura (1985) has shown that this can be related to the half width at $\rho=0$ by

$$w = \frac{w(z/f=0)}{[1 - (z/f)^2/cos^2\theta]^{1/2}} \quad (2.34)$$

if we assume Gaussian forms for the two reflection curves and that $z/f<<1$.

Ignoring the refraction and dynamical effects Schwarzschild (1928) showed that the half width of this curve due to purely geometrical effects could be related to the tilt angle, ρ, by

$$w = 2\rho z/f \quad \text{for } \rho > z/f[\tan\theta_{BI} \pm \tan\theta_{BI}^{-}] \quad (2.35)$$

and

$$w = Mz^2/f^2 + \rho z/f + \rho^2/4M \quad \text{for } \rho < 2Mz/f \quad (2.36)$$

where $M=\frac{1}{2}(\tan\theta_{BI} \pm \tan\theta_{BI}^{-})$ with the upper sign for the $(++)$ setting and the lower for the $(+-)$ setting. We note that for the parallel $(+-)$ setting $M=0$ so that the geometrical half width varies linearly with tilt angle.

2.3 Double Crystal X-ray Diffraction Characterisation of Epitaxial and Ion Implanted Layers and Superlattices

Both epitaxial layers and ion implanted layers are well suited for the application of double crystal X-ray diffractometry. In both systems a highly perfect substrate
material is present with an added distortion due to either the growth of an epitaxial layer with a slightly different lattice parameter (Δd/d < 10⁻⁴) or ion implantation into the substrate distorting the substrate lattice (again Δd/d < 10⁻⁴). Generally single crystal X-ray diffraction techniques do not have the required resolution to detect such small lattice parameter variations, although several techniques have been used for the measurement of mismatch in heteroepitaxial layers (Chang, Patel, Nannichi and de Prince, 1979; Chang, 1980b, Isherwood, Brown and Halliwell, 1981). The depth penetration of X-rays into typical semiconductor materials and for the usual reflections is the order of 10 μm, which is highly suitable as the majority of epitaxial layers are less than 10 μm.

To date there has been a considerable difference in the interpretation of rocking curves recorded from ion implanted systems and heteroepitaxial layered systems. The interpretation of rocking curves from epitaxial layered systems has been limited to measuring the perpendicular and parallel mismatch from the angular separation of the diffraction peaks, using both surface symmetric and asymmetric reflections. Little use has been made of theoretical simulations to aid the interpretation and to determine more parameters such as layer thicknesses and composition variations with depth. This is not the case, however, for diffusion and ion implanted layers where extensive use of theoretical simulations has enabled the
strain distribution as a function of depth to be accurately determined. Clearly, much can be gained by applying these simulations to the interpretation of rocking curves from heteroepitaxial systems.

Much use has been made of X-ray diffraction techniques to analyse the structure of both naturally occurring and artificial superlattices. Naturally occurring superlattices have long been known to produce additional satellite reflections in the region of the main diffraction peaks (Dehlinger, 1927), and similar observations have been made for artificial superlattices. Utilising single crystal techniques the position of these satellites can be measured and used to determine the superlattice period. However, the zeroth order satellite peak cannot be resolved from the main substrate diffraction peak from such measurements, and these peaks are essential in the determination of the composition of the superlattice. Consequently double crystal diffraction has also been used to study these structures and the use of both the kinematical and dynamical diffraction theories for simulation of the rocking curves enables complete characterisation of the superlattice.

2.3.1 Diffusion and ion implanted layers

A wide variety of ion and diffusion implanted layers have been studied using double crystal diffractometry. Rocking curves from such structures exhibit highly asymmetrical peaks with additional fine structure and
oscillations up to 500-1000 arc seconds away from the main diffraction peak. The strain distribution and hence doping as a function of depth can be obtained from the rocking curve by comparison with theoretically calculated rocking curves for varying distributions. The distribution that gives a theoretical curve that best fits the experimental curve can be taken as the actual distribution.

Alpha irradiated (111) silicon was studied by Burgeat and Colella (1969). 333 rocking curves using MoKα₁ radiation were shown to exhibit a secondary peak on the low angle side of the main peak, displaced by 5-10 arc seconds and between 20% and 50% of the intensity of the main peak. Theoretical curves were calculated using the Takagi-Taupin equations for diffraction from a distorted crystal. The irradiated region of the crystal was divided into a number of laminae of constant lattice parameter, in which the Takagi-Taupin equations could be solved analytically to give the complex amplitude ratio of the diffracted and incident beams at the top of the laminae in relation to that at the bottom of the laminae. By matching this amplitude ratio at the interface of each lamina, the reflectivity at the surface of the crystal can be calculated, using the reflectivity for an infinitely thick crystal at the bottom of the first lamina. Using a computed profile for the number of displaced Si atoms as a function of depth the theoretical rocking curves were found to agree fairly well with the experimental ones. However, no attempt was made to calculate curves with a
slightly different strain distribution.

Fukuhara and Takano (1977a, 1977b) have similarly applied the dynamical theory approach to the simulation of rocking curves from boron, phosphorous and germanium diffusion doped silicon. Rocking curves from the boron and phosphorous doped silicon showed a broad tail on the high angle side of the peak, suggesting a decrease in the lattice parameter, while the germanium doped samples exhibited considerable detail on the low angle side. By calculating rocking curves for varying strain profiles, profiles were obtained that gave rocking curves that fitted the experimental curves extremely well. Far better agreement was obtained than that obtained by Burgeat and Colella. The deduced strain profiles monotonically decreased from the surface down to 10-15 μm and were found to agree well with those obtained from resistivity measurements.

Ion implantation into silicon gives a much higher strain than that obtained by diffusion and over a much smaller region of the crystal. Consequently rocking curves exhibit non zero diffracted intensity up to the order of 1000 seconds from the main peak. Larson and Barhorst (1980) studied laser annealed boron implanted silicon. Oscillations in the tail of the rocking curves, on the low angle side of the substrate peak, were observed with intensities about 1% of that of the main peak. A similar approach to that of Burgeat and Colella and Fukuhara and Takano was used to calculate rocking curves for various
strain distributions. However, the inclusion of strain was slightly different in that a continuous distribution was used and the Takagi-Taupin equations solved numerically. The formalism of Klar and Rustichelli (1973) was used in these calculations. Excellent agreement between the rocking curves was found with the theoretical curve being highly sensitive to the strain profile. Although the magnitude of the strain differed to that obtained by SIMS measurements the shape agreed extremely well.

The effect of increasing Si implantation doses on rocking curves from GaAs, Si and Ge crystals has been studied by Speriosu et al (1982). For small doses Bragg case Pendellosung fringes were observed but the amplitude of these oscillations decreased rapidly as the dose was increased. This was expected as the Pendellosung fringes only occur in thin, perfect crystals and the increased dosage introduces large amounts of damage in the crystal. The kinematical theory of X-ray diffraction was used to calculate rocking curves, using an approach based on the previous work of Speriosu (1981). In a similar manner to the dynamical calculations of Fukuura and Takano, the strained region was divided into a number of laminae of constant strain. Dynamical interactions among the beams from each laminae were ignored. The total diffracted amplitude is then given by the sum of the coherently interfering amplitudes from each laminae, adjusted for phase lags and normal absorption. The theoretical curves were found to agree
extremely well with the experimental ones, corresponding to Gaussian strain distributions with widths of typically 5000 Å and maxima of up to 0.7%. Clearly, with strains as large as these the kinematical approach is perfectly valid.

Various types of ion implantation into magnetic bubble garnets have also been studied using double crystal diffractometry. Ion implantation into magnetic films is particularly useful for the suppression of 'hard' bubbles and the control of bubble wall states. Additionally many of the techniques for achieving high packing densities require ion implantation (Voegli et al, 1974). Komenou et al (1978) have utilised the period of the Bragg case Pendellosung oscillations to determine the thickness of the strained region. Similar results to those obtained by Speriosu et al (1982) for silicon were obtained. By removing the implanted region using a step etching technique and measuring the rocking curve at each stage the thickness predicted by the period of the oscillations was found to be directly proportional to the amount of material removed. This confirmed the applicability of the technique even when the layer is not highly perfect.

More recently Speriosu and Wilts (1983) have made a detailed analysis of He⁺, Ne⁺ and H₂⁺ implantation into magnetic bubble garnets using both rocking curves and ferromagnetic resonance spectra (FMR). A wide range of doses were studied for all three species of ions with rocking
Fig. 2.7 Typical theoretical and experimental rocking curves for a Ne⁺ implanted magnetic bubble garnet sample and the strain distributions determined.
curves similar in appearance to those obtained by Komenou et al (1978) found. The complete rocking curve was calculated using the kinematical theory in order to determine the strain distribution. Gaussian like strain distributions were again found with widths of the order of 5000 Å and maximum strains up to 3%. A typical theoretical and experimental curve are shown in fig. 2.7, along with the strain distribution determined. Agreement with the strain distribution from FMR was fairly good at low doses but considerable differences were found at higher doses.

Takeuchi et al (1983) have also studied ion implantation into bubble garnets but have used the dynamical diffraction theory to calculate the rocking curves. The approach used was that of Fukuhara and Takano. Comparison was made between the kinematical approach of Speriosu et al (1979), and considerable differences in the calculated curves were found. It appeared that some care needed to be taken in the choice of the depth included in the kinematical calculations before the dynamical intensity for the substrate is used. Comparison between the calculated and theoretical curves was again excellent.

2.3.2 Heteroepitaxial layers

Double crystal rocking curves from mismatched single layers of uniform composition are often rather more easy to interpret than those from ion or diffusion implanted layers since the epitaxial layers are usually more perfect than the implanted regions, giving rise to narrow, well resolved
peaks. The strains encountered are at least an order of magnitude smaller than those encountered in ion implanted crystals. For these types of layers measurement of the perpendicular and parallel mismatches and hence the composition is straightforward. However, this is not the case with multiple and graded composition layers.

Since GaAlAs is well matched to GaAs over a wide composition range and it is not particularly well suited for the manufacture of optoelectronic devices for fibre optic systems little work has been published on characterisation by double crystal diffractometry. Bartels and Nijman (1978) have studied the strain of Ga$_{1-x}$Al$_x$As layers grown on (001), (110), (111) and (113) oriented GaAs substrates. Double heterostructures consisting of 3.2 μm n-Ga$_{0.71}$Al$_{0.29}$As / 0.3 μm p-GaAs / 2.5 μm p-Ga$_{0.68}$Al$_{0.32}$As / 1.5 μm p-GaAs were studied with the perpendicular and parallel mismatches measured by using the (115) reflection. Bragg case Pendellosung fringes were also observed between the substrate and layer peaks.

Ternary compounds of (Ga,In)As grown on (001) InP substrates are rather more important than GaAlAs compounds due to their use in fibre optic systems. Since GaInAs is only well matched to InP over a small range of compositions, and good quality layers can only be grown when the lattice mismatch is <800ppm, the growth of high quality layers is not straightforward. Of the growth techniques currently available Goetz et al (1983) have compared layers grown by
LPE, VPE and MOCVD. Some 30 samples were studied using double crystal diffractometry to compare the mismatches and layer qualities. Lattice mismatch was measured perpendicular to the interface using the 115 reflection and the layer quality estimated from the half width of the layer peak. In all cases the parallel mismatch was found to be at least an order of magnitude smaller than the perpendicular mismatch suggesting good coherency at the interface. LPE grown layers were found to be better matched to the substrate than those grown by both VPE and MOCVD and also had the narrowest peaks. Both the VPE and MOCVD grown layers gave peaks considerably broader than the theoretical width, suggesting a change in composition with depth. However, no attempt was made to measure this variation.

Similar results have been reported by Kawamura and Okamoto (1979) and by Macrander et al (1984) for MBE grown layers. Again the parallel mismatches were found to be at least an order of magnitude smaller than the perpendicular ones.

Using an automated scanning double crystal camera, with which rocking curves can be recorded automatically at a number of points over the sample, Halliwell et al (1983) have shown that variations in layer perfection occur for MBE grown ternary layers, with a noticeable decrease in layer perfection towards the edge of the sample. This was related to a fall in growth temperature at the edges of the sample, due to a variable thermal contact afforded by the indium
solder used to attach the sample to the holder.

Quaternary compounds of (Ga,In)(As,P) offer perhaps the best possibilities for producing high quality, variable band gap layers. LPE has been the favoured growth technique with many X-ray rocking curve studies of single layers being reported. Matsui et al (1979) and Burgeat et al (1981) have both shown that the composition of the layer varies as a function of the layer thickness. Matsui et al were able to show a continuous variation while Burgeat et al asserted a stepwise variation. Both used a similar technique of step etching the sample and measuring the rocking curve at each stage. Some doubt exists as to both of these interpretations as no theoretical calculations were used for comparison. Matsui et al took only the angular separation of the maximum of the layer peak as a measure of the composition while Burgeat et al used large etch steps and associated each peak removed from the curve with the layer removed. Matsui et al showed that Auger electron spectroscopy also revealed a continuous linear variation in composition with depth.

Such variations were also reported by Tashima et al (1981) using the 006 reflection in conjunction with a modified powder goniometer. However, no effect could be observed from the thin region near to the interface expected to have a rapidly varying composition (Rezek et al, 1980).

Double heterostructure layers of GaInAsP/InP, grown by LPE, have been similarly studied by Oe et al (1978). Since the layers studied were only approximately 0.4 μm thick no
composition variations were observed. Similar results were also obtained for 1.5 \(\mu m \) GaInAsP / 8 \(\mu m \) GaInP / InP layers by Bartels (1983) using a multiple crystal spectrometer with a four reflection Ge monochromator. Using the dynamical theory to calculate the peak heights expected from such a structure the layer thicknesses were found to agree well with those expected from the growth conditions.

Halliwell et al (1983) were also able to show an increase in the layer thickness perpendicular to the push direction for LPE grown quaternary layers. Layer quality remained good over the majority of the sample and the layer thicknesses were calculated to increase by about 50% towards the edges.

In none of the above work has the complete rocking curve been calculated and compared with the experimental curves. Clearly if the rocking curve from a layer with an arbitrary composition profile was calculated, comparison with experimental curves could be used to aid interpretation in a similar manner to that used for ion and diffusion implanted layers.

Using a similar approach to that of Burgeat and Colella (1969), Halliwell, Juler and Norman (1983) were able to obtain a fairly good agreement between theoretical and experimental curves from linearly graded single layers of GaInAs. The composition profile was also measured with electron probe X-ray microanalysis on a bevelled section, and agreement between the two methods was fairly good.
Discrepancies between the theoretical and experimental curves was thought to be due to a region of different composition near to the interface, a region that the microprobe cannot accurately measure due to the proximity of the substrate. This is in agreement with the observations of Rezek et al (1980).

Very thin heteroepitaxial layers have not been extensively studied by double crystal diffractometry, primarily because the diffracted intensity from such layers is very low for the normally used reflections. Instead other X-ray techniques such as low angle interference (Segmuller, 1973) have been used. However, the use of highly asymmetric reflections, in which either the diffracted or incident beams forms a low angle with the surface can overcome this problem (Tanner, Barnett and Hill, 1985).

2.3.3 Superlattices

X-ray diffraction studies of artificial superlattices were first reported by Segmuller and Blakeslee (1973) where alternating layers of GaAs\(_{0.5}\)P\(_{0.5}\) and GaAs formed the superlattice. Vapour phase transport was used as the growth technique. Measurements were recorded with a modified single crystal camera with radiation monochromated by a double reflecting channel cut Ge crystal. Satellite peaks were observed near to the 004 GaAs reflection. A model based on a Fourier decomposition of the composition variation was used to calculate the satellite intensities in conjunction with
the kinematical diffraction theory. This model was very similar to that of Dehlinger (1927) for the study of diffraction from cold worked metals, although a second harmonic term was included by Segmuller and Blakeslee. Similar theories have been presented by Kochendorfer (1939) and Daniel and Lipson (1943, 1944), where a sinusoidal variation in lattice parameter and structure factor was considered. Hargreaves (1951) studied the case for a square wave model of the superlattice, but his results were the same as those obtained by the sinusoidal models due to the approximations used. A sinusoidal model was also used by De Fontaine (1966) for such one dimensional variations.

Using this approach Segmuller and Blakeslee were able to calculate satellite intensity ratios for different strain and composition distributions. Reasonable agreement with the first order satellite peaks was found, although not for the second order satellites which were only observed for one sample. It was also found that this model gave better agreement than a step model, suggesting that some degree of interdiffusion had occurred at the interfaces.

This approach was repeated by Segmuller, Krishna and Esaki (1977) for GaAs/AlAs superlattices grown by MBE, where a greater number of high order satellites were observable. Low angle X-ray scattering interference has also been used to determine the ratio of thicknesses of the layers forming the repeat period (Chang et al, 1976). Calculated superlattice structure factors were found to agree fairly
well with those calculated from the satellite intensities assuming a perfect stepwise composition variation. The effect of interdiffusion between the layers and compositional non-uniformity along the layers was also discussed. Both of these factors have the same effect of reducing the satellite intensities. Since the zeroth order peak, corresponding to the reflection from a layer with the average composition of the superlattice, could not be resolved from the substrate reflection their separation could not be used to determine the composition.

This kinematical approach to calculating satellite intensities has also been used by Fleming et al. (1980) and Kevarec et al. (1984). By calculating the change in the Fourier components of the strain modulation Fleming et al were able to measure the effect of interdiffusion as a function of annealing time for GaAs/AlAs superlattices, again grown by MBE. Up to eight harmonics were included in the Fourier series, although after long annealing times only the first two could be determined. The diffusion coefficients obtained were found to be in good agreement with those obtained from optical measurements (Dingle, 1977) and electron microscopy (Petroff, 1977), but were smaller than those obtained by Auger electron spectroscopy (Chang and Koma, 1976).

\(\text{Ga}_{1-x} \text{Al}_x \text{As/GaAs} \) superlattices were studied by Kevarec et al using both a double crystal technique and a modified powder goniometer to observe the high order, weak
satellites. Clearly, for these superlattices the value x must also be determined and the separation of the zeroth order and substrate peaks can be used for this. Finally a step wise calculation of the structure factor was used to calculate the satellite intensities.

More recently Speriosu and Vreeland (1984) have applied their model of X-ray diffraction from ion implanted layers to the calculation of diffracted intensities from MBE grown GaAlAs/GaAs and MOCVD grown AlSb/GaSb superlattices. A step wise model was used with the inclusion of both perpendicular and parallel mismatches. Double crystal rocking curves of various reflections were recorded with FeKα₁ radiation. Good agreement was found with the calculated curves, particularly for the GaAlAs/GaAs samples.

The dynamical diffraction theory has not been extensively used in the calculation of diffracted intensities from superlattices, due to the individual layer thicknesses being very much less than the extinction distances. However, recently Vardanyan, Manoukyan and Petrosyan (1985) have pointed out that, as the total thickness of the superlattice is the order of an extinction distance, dynamical interactions between the beams from the layers should not be ignored. They have used the well known matrix method to calculate the overall diffracted intensities from a perfect superlattice.
CHAPTER 3
CALCULATING ROCKING CURVES

As we have seen, it is necessary to calculate rocking curves in order to extract as much information as possible as to the composition and thickness of any epitaxial layers. An approach based on dynamical diffraction theory will be used to calculate the single crystal reflection profiles for the crystals, the rocking curve is then the convolution of the reflection curves of the first and second crystals, as already seen.

3.1 Dynamical Diffraction Theory

There are many excellent reviews of dynamical diffraction theory available in the literature, the reader is referred to these for a complete description (Zachariasen, 1945; James, 1948; von Laue, 1960; Batterman and Cole, 1964; Pinsker, 1978).

A solution is required to Maxwell's equations for a medium with a periodic, complex dielectric constant. The fundamental equation linking the incident and diffracted waves within the crystal is obtained,

\[\alpha_0^2 = \frac{k^2}{4} C^2 \chi_h \chi_H \]

(3.1)

where

\[\alpha_0 = \frac{k}{2} (K_0 \cdot K_0 - k^2 (1 + x_0)) \]

(3.2)
(a) Laue construction for the diffraction of an incident beam of wavevector \(k \).

(b) The dispersion surface construction showing the four possible branches. Arcs AA and BB are part of circles of radii \(k \) and \(A'A' \) and \(B'B' \) are of radii \(k(1+X/2) \).
and \[\alpha_n = \frac{k}{2} (K_n \cdot K_n - k^2 (1 + \chi_0)). \] (3.3)

C is the polarisation factor (=1 for σ and =\cos 2\theta_\parallel for π polarisations). As usual \(K_0 \), \(K_n \) are the incident and diffracted wavevectors in the crystal and \(\chi_0 \), \(\chi_n \), \(\chi_n^\parallel \) the complex susceptibilities. This equation can be usefully represented geometrically by the dispersion surface construction. Considering the Laue construction shown in fig. 3.1, surfaces on which the tails of the possible wavevectors \(K_0 \) and \(K_n \) lie can be drawn, asymptotic to spheres of radius \(k(1 + \chi_0/2) \) and \(k \) drawn about the reciprocal lattice points 0 and H. \(\alpha_0 \) and \(\alpha_n \) are then the perpendicular distances between the dispersion surface branches and these spheres. As this region is very small compared to the radius of the spheres the spheres can be approximated by planes, in which case the equation of the dispersion surface (3.1) becomes a hyperboloid of revolution. Generally there are four dispersion surface branches, two each for the two polarisation states.

Since any wave propagating within the crystal must have wavevectors lying on the dispersion surface we can determine both the amplitude and wavevector from the tie points excited on the surface. Hence this construction is extremely useful in visualising the physical processes occurring within the crystal.

The tie points excited on the dispersion surface are determined by the boundary conditions. Clearly these
conditions are extremely important as we must be able to determine the wave amplitudes outside the crystal, since it is only these that we can measure. The required condition is that the tangential components of the plane waves across the boundary must be equal. Hence the wavevectors inside the crystal can only differ from those outside by a vector perpendicular to the boundary. This condition can be used to determine the tie points excited on the dispersion surface.

For Bragg reflection no tie points can be excited in the central region of the reflection profile, thus no propagated wave can exist inside the crystal. Instead a highly damped, evanescent wave exists and the incident beam is totally externally reflected. The Bragg reflection profile, with zero absorption, will then have a flat topped central region. The actual position of the centre of this profile does not correspond to the kinematical Bragg angle due to the refractive effect. The corrected Bragg angle is given by

$$\theta_B = \theta_0 + x_0 (1 - \gamma_h/\gamma_0)/2 \sin 2\theta_0$$ \hspace{1cm} (3.4)

where θ_0 is the kinematical Bragg angle and γ_h, γ_0 the usual asymmetry factors. We note that only for symmetric Laue case diffraction does $\theta_B = \theta_0$. The full width at half maximum of the reflection peak is given by

$$\Delta \theta_B = \frac{2C(x_h x_0)\frac{3}{2}}{\sin 2\theta_B} \sqrt{\left| \frac{\gamma_h}{\gamma_0} \right|}$$ \hspace{1cm} (3.5)
For Bragg geometry, with no crystal absorption, the reflected intensity ratio is given by (Pinsker, 1978)

\[R = \frac{1 - \cos 2\theta(y^2 - 1)^{\frac{1}{2}}}{\cosh 2v - \cos 2\theta(y^2 - 1)^{\frac{1}{2}}} \]

(3.6)

where

\[y = \frac{\theta}{2C(x_h x_i)^{\frac{1}{2}}(y_h/y_0)^{\frac{1}{2}}} \]

(3.7)

and

\[\theta = 2\Delta \theta \sin \theta - \Delta (1 + |y_h/y_0|). \]

(3.8)

A is given by

\[A = \frac{xC(t y_h x_i)^{\frac{1}{2}}}{(y_0 |y_h|)^{\frac{1}{2}}} \]

(3.9)

and \(v \) by \(y = \sin hv \).

We note that equation (3.6) describes subsidiary maxima of Bragg case Pendelloesung in the lateral regions of the reflection peak. The expression vanishes to zero provided that

\[2A(y^2 - 1)^{\frac{1}{2}} = 2\pi m, \ m \text{ an integer}, \]

(3.10)

giving an angular interval of

\[\Delta \theta \approx \frac{\pi}{A} = \frac{\lambda(y_0 |y_h|)^{\frac{1}{2}}}{C(t y_h x_i)^{\frac{1}{2}}} \]

(3.11)

This interval corresponds to that for Laue case Pendelloesung, and has been used in the determination of crystal thickness as previously described. We note that the length \(\lambda(y_0 |y_h|)^{\frac{1}{2}}/C(t y_h x_i)^{\frac{1}{2}} \) is known as the extinction distance, and corresponds to the separation of the maxima of
the wavefield excited within the crystal due to the interference of the two waves propagating in the crystal. This length also gives an indication of the thickness of the crystal sampled by the X-ray beam during Bragg reflection, and is the order of 10 μm for the majority of reflections for III-V materials. If absorption is included the Bragg case Pendellosung oscillations become rapidly damped as the thickness of the crystal is increased, hence these oscillations are only observable for thin crystals.

Clearly we could use this dynamical approach to calculate the rocking curve from a layered crystal, matching the wavevectors out of one layer into the next at each interface. For multiple layers, or graded layers divided into a number of laminae, this approach would be extremely laborious. A much simpler approach, which is well suited to computation, is to use the differential equations of Takagi and Taupin (Takagi, 1962, 1969; Taupin, 1964). However, it is rather difficult to visualise the physical processes occurring within the crystal with this approach, hence it is useful to keep the dispersion surface approach in mind.

3.2 The Takagi-Taupin Equations

The derivation of Taupin (1964), which has also been presented by Pinsker (1978), is followed here. The reader is referred to these works for complete details.

The electric displacement vector in a vacuum can be described by the expression
\[D = D_0(r) \exp[i(\omega_0 t - 2\pi \phi_0(r))] \quad (3.12) \]

where \(\omega_0 \) is the cyclical frequency \((\omega_0=2\pi v_0)\). This expression describes an arbitrary wave. For a plane wave \(\phi_0(r) = K_0 r, \quad |K_0| = 1/\lambda \). In the general case \(D \) satisfies the wave equation in a vacuum

\[\frac{\nabla^2 D + \omega_0^2 D}{c^2} = 0 \quad (3.13) \]

Substituting (3.12) into (3.13) gives

\[\nabla^2 D_0 - i4\pi \sum_i \frac{\partial \phi_0}{\partial x_i} \frac{\partial D_0}{\partial x_i} - i2\pi D_0 \nabla^2 \phi_0 - 4\pi \sum_i \frac{\partial \phi_0}{\partial x_i} ^2 D_0 \]

\[+ \frac{4\pi^2}{\lambda^2} D_0 = 0 \quad (3.14) \]

Since \(D_0 \) and \(\phi_0 \) are real functions of the coordinates separation into real and imaginary parts is straightforward.

Considering waves for which the radii of curvature of the equiphase surfaces are much larger than the wavelength \(\lambda \); for example, \(\lambda/R << 1 \) can be assumed for a spherical wave thus

\[|\text{grad} \ \phi_0| \approx \lambda^{-1}[1 + O(\lambda^2/R^2)] \quad (3.15) \]

where \(O(\lambda^2/R^2) \) represents negligibly small terms of higher orders of \(\lambda/R \). For a nearly plane incident wave we have

\[\text{grad} \ \phi_0 = K_0 + \Delta K_0 \quad (3.16) \]
and $\Delta K_0 = 0$, $|\Delta K_0| \ll |K_0|$. From (3.15) we then have

$$|K_0| = \lambda^{-1}, \quad |\Delta K_0| = R^{-1}$$ \hspace{1cm} (3.17)

corresponding to an incident wave packet with an angular width of the order of $1/R$.

The function D_0 is retained for the phase when describing the wave inside the crystal. The amplitude D_0 becomes a complex function of the coordinates, which is dependent on the difference in the paths of propagation in the crystal and the vacuum. In the case of a perfect crystal we have a single pseudo periodic wave corresponding to the right hand side of

$$\sum_i D_0^{(i)} \exp 2\pi i [\omega t - (K_0^{(i)} \cdot \mathbf{r})] = \exp 2\pi i [\omega t - (K_0 \cdot \mathbf{r})] \sum_i D_0^{(i)} \exp (\pm \pi i \Delta K z)$$

and

$$\sum_i D_h^{(i)} \exp 2\pi i [\omega t -(K_h^{(i)} \cdot \mathbf{r})] = \exp 2\pi i [\omega t - (K_h \cdot \mathbf{r})] \sum_i D_h^{(i)} \exp (\pm \pi i \Delta K z)$$

for each state of polarisation. Hence the boundary condition

$$D_0^{(1)} + D_0^{(2)} = D_0^{(a)}$$ \hspace{1cm} (3.19)

amounts to regarding D_0 as a function of the coordinates on transition from the vacuum to the crystal.

The wavefield in the crystal can be described through the use of a variable amplitude Bloch function,

$$D = \sum_m D_m \exp \{ i [\omega t - 2\pi (K_m \cdot \mathbf{r})] \}. \hspace{1cm} (3.20)$$

For a perfect crystal and plane waves the following values
remain constant

\[K_m = K_0 + h_m, \quad K_0 = \text{grad} \phi_0. \quad (3.21) \]

However, generally \(K_0 \) and \(h_m \) are functions of the coordinates. For each point in the crystal the vector \(h_m \) can be determined. Additionally,

\[|h_m(r)| = d^{-1}_m(r). \quad (3.22) \]

Hence, moving from the plane \(n_m \) to the plane \(n_m+1 \) of the same system, we have \(\Delta n_m = 1 = h_m dr \), where \(dr \) is the change in the radius \(r \) in moving from the point \(r \) on the \(n_m \)-th plane to the point \(r+dr \) on the \(n_m+1 \)-th plane.

If \(n_m \) is regarded as a continuous function of the coordinates, which takes integral values on each plane \(m \), we find

\[h_m = \text{grad} \ n_m \quad (3.23) \]

\[D = \sum_{m} D_m \left[i(\omega_0 t - 2\pi \phi_m) \right] \quad (3.24) \]

where \(\phi_m(r) = \phi_0(r) + n_m(r) \).

\[(3.25) \]

The continuity of \(n_m \) breaks down in crystals containing dislocations. However, it can be shown that the results of the theory outlined can be used in the general case of an arbitrary distribution of \(n_m \) if the distortion, \(\partial u/\partial x \), is small (ie \(\partial u/\partial x << 1 \)).

The dielectric constant remains a periodic function of the coordinates, but \(\varepsilon(r) \) can be approximately assumed to be
an exponential function of n_m in each system of reflecting planes since $\partial u/\partial x \ll 1$.

$$x(r) = \sum_m x_m \exp[-2\pi i n_m(r)]$$ \hspace{1cm} (3.26)

$$x_m \equiv x_{hm} = -\frac{e^2}{mc^2} \frac{\lambda^2}{\pi V} F_{hm}$$ \hspace{1cm} (3.27)

and for the general case of an absorbing crystal

$$x_0 = x_{0r} + ix_{0i}; x_h = x_{hr} + ix_{hi}.$$ \hspace{1cm} (3.28)

The variable representing the angular departure from the Bragg condition is taken as

$$\alpha_m = 2\Delta \theta_m \sin 2\theta_m$$ \hspace{1cm} (3.29)

which is derived from the approximate value of the expressions

$$\alpha_m = K_0^{-2}[h_m^2 + 2(K_0 \cdot h_m)] = \frac{\lambda^2}{d_m^2 - 2\sin \theta_m / \lambda d_m}$$ \hspace{1cm} (3.30)

where both d_m and $\sin \theta_m$ are coordinate dependent.

The wave equation inside the crystal is derived from Maxwell's equations, which are

$$\text{curl } E = c^{-1} \partial H/\partial t, \quad \text{curl } H = c^{-1}(\partial E/\partial t + 4\pi \jmath)$$

$$\text{div } E = 4\pi \rho; \quad \text{div } H = 0.$$ \hspace{1cm} (3.31)

Taking the curl of both sides we obtain
\[\text{curl curl} \mathbf{E} = c^{-1} \text{curl} \ \frac{\partial \mathbf{H}}{\partial t} = c^{-1} \frac{\partial}{\partial t} \text{curl} \ \mathbf{H} \] (3.32)

but

\[\text{curl} \ \mathbf{H} = c^{-1} \frac{\partial \mathbf{D}}{\partial t} \] (3.33)

and from \(\mathbf{D} = \varepsilon \mathbf{E} = (1 + \chi) \mathbf{E} \), \(\mathbf{E} = (1-\chi) \mathbf{D} \) we obtain

\[\text{curl curl} \ (1-\chi) \mathbf{D} = 4\pi^2/\chi^2 \mathbf{D}. \] (3.34)

In order to calculate the left hand side of equation (3.34) the value of \((1-\chi) \mathbf{D} \) is rewritten using the solution of the wave equation and the Fourier expansion of the polarisability. We can write \(n_K + n_L = n_{K+L} \) by analogy with the reciprocal vectors in the perfect crystal ie \(h_K + h_L = h_{K+L} \). Thus

\[\mathbf{E} = (1-\chi) \mathbf{D} = \exp(i\omega t) \left[\sum_m D_m \exp(-i2\pi\varphi_m) \right. \\
- \sum_h \sum_m \chi_m D_h \exp[-i2\pi(n_m + \varphi_h)] \left. \right] = \exp(i\omega_0 t) \sum_m Q_m \exp(-i2\pi\varphi_m) \] (3.35)

\[Q_m = D_m - \sum_h \chi_{m-h} D_h \] (3.36)

Omitting the factor \(\exp(i\omega_0 t) \) and using the following relations

\[K_0 = \text{grad} \ \varphi_0, \ h_m = \text{grad} \ n_m, \ K_m = \text{grad} \ \varphi_m. \] (3.37)

and

\[(\text{curl curl} \ \mathbf{E})_i = -\frac{\partial^2 E_i}{\partial x_k^2} + \frac{\partial^2 E_k}{\partial x_i \partial x_k} \] (3.38)

where \(i \) and \(k \) take the value 1, 2 and 3, we obtain

\[\frac{\partial}{\partial x_k} (1-\chi) D_{mi} = \exp(-i2\pi\varphi_m) \left(\frac{\partial Q_{mi}}{\partial x_k} - i2\pi K_{mk} Q_{mi} \right) \] (3.39)

Taking a second differential gives, after using
\[
\frac{a}{\Delta x_i} \frac{K_{mk}}{\Delta x_i \Delta x_k} = \frac{a}{\Delta x_i} \frac{K_{mi}}{\Delta x_i} \quad (3.40)
\]

\[
curl \ curl (1-\chi)D = \sum_m \exp(-i2\pi \varphi_m) \left\{ 4\pi^2 \left[K_m^2 Q_m - (K_m Q_m)K_m \right] + i4\pi K_m^2 \frac{\partial Q_m}{\partial r} - i2\pi \frac{\partial}{\partial \varphi_m} (K_m Q_m) \\
- i2\pi K_m \ div Q_m + i2\pi Q_m \varphi_m \right\} = A \quad (3.41)
\]

With the Bloch solution we obtain

\[
4\pi^2/\lambda^2 \sum_m D_m \exp(-i2\pi \varphi_m) = A. \quad (3.42)
\]

This equation has an infinite number of unknowns. If it is assumed that the preexponential factors with number \(m \) only change over effective distances that are much larger than the wavelength each of the waves referring to different waves \(m \) can be equated. Thus

\[
4\pi^2 \left[K_m^2 Q_m^2 - K_0^2 (D_m Q_m) - (Q_m K_m)^2 \right] + i2\pi K_m \ grad Q_m^2 \\
+ i2\pi \left\{ Q_m \varphi_m - Q_m \frac{\partial}{\partial \varphi_m} (K_m Q_m) - (K_m Q_m) \ div Q_m \right\} \\
+ Q_m \ grad \ div Q_m - Q_m \varphi_m Q_m = 0 \quad (3.43)
\]

replacing \(K_m^2 \) by \(\alpha_m \) in (3.43) we obtain

\[
4\pi^2 \left[K_0^2 \alpha_m Q_m^2 - K_0^2 \sum_{\chi = h} Q_m \frac{\partial}{\partial h} Q_m - (Q_m K_m)^2 \right] \\
+ i2\pi \left\{ K_m \ grad Q_m^2 + Q_m \varphi_m Q_m - Q_m \grad (K_m Q_m) \right\} \\
- (K_m Q_m) \ div Q_m + Q_m \ grad \ div Q_m - Q_m \varphi_Q_m = 0 \quad (3.44)
\]

This system contains terms which differ considerably in their order of magnitude. Terms small compared to \(Q_m^2/\lambda^2 = \)
1 are now eliminated. We then obtain (see Pinsker (1978) for a discussion of the magnitude of each term)

\[\alpha_m D_m - \sum_h x_{m-h} D_h \cos X_{mh} + i\lambda^2/\pi (K_m \text{grad} D)_m = 0 \] \hspace{1cm} (3.45)

where \(\cos X_{mh} \) is the polarisation factor. The calculation of the solution for X-ray propagation in the perfect crystal is then the solution of this system in first order partial derivatives. The variable \(\alpha_m \) is calculated to allow for local deformations at any point in the crystal.

For the two beam case we need only consider \(m=0 \) and \(m=h \). Let \(s_0 \) and \(s_h \) be unit vectors in the direction of the incident and diffracted beams respectively, thus

\[s_0 = \lambda K_0, \hspace{0.5cm} s_h = \lambda K_h \] \hspace{1cm} (3.46)

and for any point on the reflection plane

\[r = s_0 s_0 + s_h s_h \] \hspace{1cm} (3.47)

and the system (3.35) reduces to

\[i\lambda \frac{\partial D_0}{\partial s_0} = x_0 D_0 + C x_h D_h \]

\[i\lambda \frac{\partial D_h}{\partial s_h} = (x_0 - \alpha_h) D_h + C x_h D_0. \] \hspace{1cm} (3.48)

\[C = \cos X_{0h} \]

Clearly, we can include the polarisation factor \(C \) in the
values \(x_h \) and \(x_n \) by adding the symbols \(\sigma \) and \(\pi \), ie

\[
x_h^\sigma = x_n^\pi \left(|\cos 2\theta| \right)^{-1}
\]

(3.49)

and

\[
x_n^\sigma = x_n^\pi \left(|\cos 2\theta| \right)^{-1}.
\]

3.3 Solution of the Takagi-Taupin Equations and Calculation of the Rocking Curve

The Takagi-Taupin equations (3.48) can now be used to calculate the reflectivity of a given crystal in the Bragg case. The amplitude ratio of the incident and diffracted beams is required. We will assume an incident plane wave, and that variations in diffracted intensity will be a function of depth only.

If \(\gamma_0 \) and \(\gamma_h \) are the direction cosines of the incident and diffracted beams with respect to the surface, ie

\[
z = s_0 \gamma_0 + s_h \gamma_h,
\]

(3.50)

then (3.48) becomes
\[\frac{i\lambda}{\pi} \gamma_0 \frac{\partial D_h}{\partial z} = x_0 D_0 + Cx_h D_h \]
\[\frac{i\lambda}{\pi} \gamma_h \frac{\partial D_h}{\partial z} = (x_0 - \alpha_h) D_h + Cx_h D_0 \]
(3.51)

Now the complex reflection coefficient, \(X \), is defined as

\[X = \sqrt{\frac{|\gamma_h|}{\gamma_0}} \frac{D_h}{D_0} \]
(3.52)

where the \(\gamma_h, \gamma_0 \) terms account for any beam expansion or compression. Differentiating (3.52) we obtain

\[\frac{dX}{dz} = \sqrt{\frac{|\gamma_h|}{\gamma_0}} \left\{ \frac{1}{D_0} \frac{\partial D_h}{\partial z} - \frac{D_h}{D_0} \frac{\partial D_0}{\partial z} \right\} \]
(3.53)

hence, substituting into (3.48) we arrive at

\[\frac{dX}{dz} = \sqrt{\frac{|\gamma_h|}{\gamma_0}} \left\{ \frac{C x_h}{\gamma_0} X^2 + \left(\frac{x_0 + x_0 - \alpha_h}{|\gamma_h|/|\gamma_h|} \right) X + \frac{C x_h}{|\gamma_h|} \right\} \frac{i\pi}{\lambda} \]
(3.54)

where \(|\gamma_h| = -\gamma_h \) has been assumed for Bragg reflection. The expression is similar to that given by Burgeat and Collela (1967), but includes the factors \(\gamma_h \) and \(\gamma_0 \) as required for non-surface symmetric reflections. The susceptibilities \(x_h \) and \(x_R \) are also included and are not assumed to be equal.

Clearly, in a crystal/layer structure containing compositional variations \(\alpha_h \) will be a function of the depth, \(z \), below the surface. Solution of equation (3.54) would then need to be performed numerically. However, if we divide the
crystal into a number of laminae of constant composition (these laminae will correspond to individual layers if the layers are of uniform composition), in which \(a_h(z)\) is taken to be constant, equation (3.54) can be solved analytically for each laminae. The complex amplitude ratios are then matched at each boundary in order to obtain the reflectivity at the surface.

Let us rewrite equation (3.54) as

\[
\frac{dX}{dz} = iD(AX^2 + 2BX + E) \tag{3.55}
\]

where

\[
D = \frac{\pi}{\lambda} \sqrt{\frac{\gamma_h}{\gamma_0}}, \quad A = C \frac{x_h}{\gamma_0}, \quad B = \frac{1}{2} \frac{x_0 + x_h - a_h}{\gamma_0}, \quad E = C \frac{x_h}{\gamma_h}
\]

Then

\[
\frac{dX}{dz} = iDA \left[(\frac{X+B}{A})^2 - \frac{B^2}{A^2} + \frac{E}{A} \right] \tag{3.56}
\]

With the substitution \(X = \frac{-B + \sqrt{EA - B^2}}{A} \tan Y\), the RHS of (3.56) becomes

\[
iDA \frac{(EA - B^2)}{A} (1 + \tan^2 Y)
\]

and the LHS becomes \(\sqrt{EA - B^2} \frac{(1 + \tan^2 Y)}{A} \frac{dY}{dz}\)

ie

\[
\frac{dY}{dz} = iD \sqrt{EA - B^2} \tag{3.57}
\]

We can assume that the reflectivity is known at a depth \(W\), ie \(X(W)=K\), hence we obtain
\[
\int_{Y(w)}^{y(z)} dY = \int_{w}^{Z} iD \sqrt{EA - B^2} \, dz
\]

ie \(Y(z) = iD \sqrt{EA - B^2} (z-W) + \tan^{-1} \left(\frac{AK + B}{\sqrt{EA - B^2}} \right) \)

ie \(X = \frac{1}{A} \left[-B \sqrt{EA - B^2} + B(AK + B) \tan(iD \sqrt{EA - B^2} (z-W)) + (EA - B^2) \tan(iD \sqrt{EA - B^2} (z-W)) + (AK + B) \sqrt{EA - B^2} \right] x \left[\sqrt{EA - B^2} - (AK + B) \tan(iD \sqrt{EA - B^2} (z-W)) \right]^{-1} \)

ie \(X = \frac{K \sqrt{EA - B^2} + (E + BK) \tan(iD \sqrt{EA - B^2} (z-W))}{\sqrt{EA - B^2} - (AK + B) \tan(iD \sqrt{EA - B^2} (z-W))} \) \hspace{1cm} (3.58)

Now for an infinitely thick crystal \(K \to 0 \) as \(z-W \to \infty \). Since \(\tan(a+ib) \to i \) as \(b \to \infty \) and \(\tan(a+ib) \to -i \) as \(b \to -\infty \) we can write (3.58) as

\[
X = - \frac{B + \sqrt{B^2 - EA}}{A} \times \text{sign(Imaginary } \sqrt{B^2 - EA}) \hspace{1cm} (3.59)
\]

provided that \(B^2 - EA \) is not wholly real.

Now for a centrosymmetric crystal \(E=A \), and writing \(B/A = \eta \) we obtain

\[
X = \eta \pm \sqrt{\eta^2 - 1} \hspace{1cm} (3.60)
\]

which is equivalent to the result derived for an infinitely thick crystal by Darwin (see for example Batterman and Cole, 1964).

The reflectivity which represents the Bragg reflection profile is then the modulus squared of this complex reflectivity, ie \(C = |X|^2 \).
In order to calculate the diffracted intensity from a layered crystal we use the equation for the reflectivity from an infinitely thick crystal for the reflectivity at the top of the substrate. This then provides the necessary boundary condition at the bottom of the first layer. Using equation (3.58) we can then obtain the reflectivity at the top of this layer. This process is then repeated until the reflectivity is obtained at the surface of the crystal, over the range of angles α required.

Once the reflectivity is obtained we can calculate the rocking curve using the convolution equation (2.17), which gives the total power reflected by the second crystal at an angle β. The rocking curve is calculated by performing this integration for the range of angles β required. C_A, B are the single crystal reflectivities for the first and second crystals respectively. For the first crystal the reflectivity for an infinite crystal is used.

3.4 The Effect of Sample Curvature on the Rocking Curve

As already seen, the growth of a mismatched epitaxial layer on a substrate produces overall sample curvature. This curvature will, clearly, affect the shape of the rocking curve if the misorientation introduced is of similar order to the width of the rocking curve. There are two ways in which the misorientation can be introduced.

If we consider the incident beam passing through a
Fig. 3.2 Change in glancing angle θ for an incident x-ray beam and a curved crystal of thickness Δt. R is the radius of curvature of the crystal.

Fig. 3.4 Change in Bragg angle along an incident beam of width W for a crystal of radius of curvature R.
Fig. 3.3 004 CuKα₁ single crystal reflection curves for an InP crystal with (a) a flat crystal (b) a curved crystal with radius of curvature 10m and (c) a 1m radius of curvature. The effect assumed is that of the change in angle as a function of depth.
curved sample, the angle between the beam and the reflection planes will alter as a function of depth, as shown in fig. 3.2. This misorientation is given by

\[\Delta \theta = \Delta t \cot \theta / R \] (3.61)

where \(R \) is the radius of curvature of the sample. We can calculate the reflection profile from such a crystal by dividing it into a number of laminae in which the Bragg angle is taken to be constant. Dividing a 1mm thick crystal into laminae of 1 \(\mu \)m thickness 004 CuK\(\alpha \) reflection curves for a flat crystal, a 10m curved crystal and a 1m curved crystal are shown in fig. 3.3. We note that the reflection profile is both broadened and, for the highly curved crystal, Bragg case Pendellosung fringes are visible. However, since the majority of crystals have curvatures greater than 1m this effect is not too important. Generally this effect is not so important as that reported for neutron diffraction (Klar and Rustichelli, 1973), due to the stronger absorption of X-rays by the crystal.

For X-ray diffraction the most important effect is due to the change in Bragg angle along the width of incident beam, as shown in fig. 3.4. For a particular angle at one extreme of the beam there will be an intensity contribution to the overall curve from all angles up to that subtended at the other extreme of the beam. Approximately, we find

\[\Delta \theta = W / (R \sin \theta) \] (3.62)
The effect of sample curvature, assuming the effect due to beam width, on the 001 CuKα rocking curve from a sample with a 400 ppm mismatched InP thick GaInAs layer.
where \(W \) is the width of the incident beam. For a 004 reflection with \(\text{CuK}_\alpha_1 \) radiation from a 10m radius of curvature InP crystal this change in angle is approximately 20 arc secs for a 0.5mm wide beam, clearly a large angle compared to the 9 second theoretical half width of the reflection. Fig. 3.5 shows the effect of decreasing the radius of curvature on the rocking curve for such a crystal plus a 400 ppm mismatched 1 \(\mu \)m thick GaInAs layer. Not only are the peaks broadened but the ratio of peak heights alters due to the difference in half widths of the peaks. The values of peak half widths and the ratio of peak heights are also given in Table 3.1.

TABLE 3.1

Values of the substrate and layer peak half widths and ratio of peak heights for an increasing sample curvature on a sample with a 1 \(\mu \)m, 400 ppm mismatch GaInAs layer. The 004 reflection is used with \(\text{CuK}_\alpha_1 \) radiation.

<table>
<thead>
<tr>
<th>(\Delta \theta) due to sample curvature (secs)</th>
<th>(\Delta \theta) of the substrate peak (secs) ((\pm 0.4))</th>
<th>(\Delta \theta) of the layer peak (secs) ((\pm 0.4))</th>
<th>Ratio heights of substrate:layer peaks ((\pm 0.01))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11.0</td>
<td>17.6</td>
<td>0.76</td>
</tr>
<tr>
<td>4</td>
<td>12.2</td>
<td>21.1</td>
<td>0.79</td>
</tr>
<tr>
<td>8</td>
<td>13.0</td>
<td>22.2</td>
<td>0.85</td>
</tr>
<tr>
<td>16</td>
<td>18.4</td>
<td>23.7</td>
<td>1.01</td>
</tr>
<tr>
<td>32</td>
<td>33.0</td>
<td>35.2</td>
<td>1.24</td>
</tr>
</tbody>
</table>

3.5 Computation of Rocking Curves

Since the susceptibilities \(\chi_0 \), \(\chi_h \) and \(\chi_{\bar{h}} \) and the reflectivity \(X \) are complex, Fortran was chosen as the...
programming language due to the ease of handling complex arithmetic. Unfortunately, Fortran is not well structured so Pascal was chosen to programme the interactive sections. Since Pascal also provides enumerated variables the accessing of the analytical approximation and dispersion correction data, required to calculate the structure factors for each material, was also simplified. The Fortran programme was written to calculate the reflectivities and convolution using the structure factors, Bragg angles, lattice parameters and layer thicknesses generated by the Pascal programme. This data was passed between the programmes in a data file. This technique is particularly useful as the Fortran programme requires the largest amount of CPU time and can be left to run in 'Batch' mode where large numbers of layers are present.

3.5.1 The Pascal Programme

This programme handles all the interactive sections of the overall calculation, enabling the layer parameters to be entered and easily edited. Once all the reflection and layer parameters have been entered the structure factors are calculated using the analytical approximation to provide the scattering factors (International Tables, 1974). The dispersion corrections are calculated at the required wavelength using a polynomial approximation to the tabulated values (International Tables).

Operation of the programme is outlined by the flow
Fig. 3.6 Outline flow diagram of the Pascal programme that calculates the input parameters required for the computation of rocking curves.
diagram, fig. 3.6. Appendix A contains a complete listing of the programme. The analytical and dispersion approximation data is contained within a data file to allow additions for extra elements to be easily made. The material names entered by the user are converted into sets of elements by comparing the names with those expected for the various III-V combinations. If the material name is not recognised it is asked for again. Detection of an element within the set is then easily made. Thus code numbers do not need to be used for each material, hence making altering the programme straightforward.

In order to avoid entering the individual laminae/layers for graded and multiquantum wells, routines are provided to calculate these parameters. Once this data has been generated it can still be edited to allow for any additional variations. The layer parameters can also be saved in a disc file to be reused in a future calculation.

The layer editing routine allows any of the layer parameters to be altered and additionally for layers to be deleted or extra layers inserted.

For graded composition layers with a non linear variation with depth the layer parameters are assumed to lie on a variable radius curve. The variation from non linearity is entered as a percentage value with 100% corresponding to a curve with radius equal to the layer thickness and 0% corresponding to a linear variation.

Fig. 3.7 shows complete detailed flow diagrams of the
Fig. 3.7 Detailed flow diagram of the Pascal programme.
individual routines, and their operation is fairly straightforward. In particular the editing routine operates by inputting one command string, from which the individual functions remove their required number of variables, delimited by spaces. This method allows a variable number of parameters to be entered in the command string while still retaining a single line entry system.

At all stages of the programme recognised materials are detected and the user prompted for a new material. Additionally, ternary and higher alloys cannot be selected as substrates and composition variations will not be allowed for binary alloys. The percentage composition of each element in a chosen material is determined from the mismatch, according to the equations given in chapter 1. For quaternary alloys the band gap is also used. The material structure factors are calculated by multiplying the structure factor for the elements by their percentage in the material. This will be valid only if the various elements in the material are completely randomly distributed. Finally, the parameters required by the Fortran programme are output for every layer.

3.5.2 The Fortran Programme

Operation of this programme is outlined by the flow diagrams shown in fig 3.8. Appendix A contains a complete listing of the programme.

Once the data has been read from the data file the
Fig. 3.8 Flow diagram of the Fortran programme that calculates rocking curves using the parameters provided by the Pascal programme.
reflectivities for the first and second crystals are calculated, over the range of angles required. If the first crystal is the same as the substrate of the second crystal the substrate reflectivity is used for the first crystal reflectivity. If the first crystal reflection is different from that of the second crystal, giving a non parallel arrangement, dispersion should be taken into account. However, the programme does not account for this effect making it only valid for the synchrotron source where the beam divergence is so small that dispersion can be neglected. The reflectivities are calculated using equations (3.58) and (3.59). This programme requires no knowledge of the materials being used and can therefore be used to calculate rocking curves from any material, provided that it is supplied with the appropriate structure factors and lattice parameters.

For each layer in the second crystal the deviation parameter α_h is calculated, taking into account the difference in Bragg and phi angles for the layer and substrate. This is necessary since the range of angles specified are taken relative to the substrate Bragg angle. Thus, if we take $\Delta \theta_{S,L}$ to be the angular deviation from the exact Bragg angle for the substrate and layer respectively, we have

for low angles of incidence

$$\Delta \theta_L = \Delta \theta_S + \theta_{BS} - \theta_{BL} - \phi_S + \phi_L \quad (3.62)$$
and for high angles of incidence

\[\Delta \theta_L = \Delta \theta_S + \theta_{BS} - \theta_{BL} + \varphi_S - \varphi_L. \]

(3.63)

For ease of calculation the convolution is calculated over the same range and interval as the single crystal reflectivities, although the routines can handle both a different range and interval. The convolution is calculated according to equation (2.17). For each value of \(\beta \) a multiplied curve is calculated and the area under it determined to give the reflectivity at the angle \(\beta \). To calculate the multiplied curve the first crystal reflectivity at the angle \(\alpha \) is multiplied by the second crystal reflectivity at the angle \((\alpha - \beta) \). If the angle \((\alpha - \beta) \) does not correspond to a data point on the other reflectivity curve linear interpolation between the nearest points is used. The curve is then generated by repeating this operation over the range of angles \(\alpha \). Outside this range the reflectivities are taken to be zero.

If random polarisation is selected the entire calculation is repeated and the two convoluted curves added.

Finally, the rocking curve data is written to the output file, to be plotted by another programme. This approach allows the curve to be plotted on different scales without recalculating the curve. Additionally, the effect of sample curvature is added by the plotting programme, allowing the effect of different sample curvatures to be observed without recalculating the curve.

The plotting programme is straightforward and hence
will not be described in detail. A complete listing is contained in Appendix A. Rocking curve data is read from a file and plotted using GHOST routines. The plotfile produced by these routines can be plotted either on a graphics terminal or on a hardcopy plotter.
Fig. 4.1 Photograph of the six inch double crystal camera and the GX-6 x-ray generator at Durham. The camera is rigidly mounted on a separate table while the 1m collimator is equipped with an optical light source and adjustable slits.
CHAPTER 4

EXPERIMENTAL TECHNIQUES AND INSTRUMENTATION

Two types of double crystal camera have been used to measure the rocking curves presented here. A six inch axial separation camera, similar to that described by Hart (1980) and by Meriam Abdul Gani (1982), was used at Durham in conjunction with a Marconi-Elliot GX-6 rotating anode generator and with a Philips 1010 sealed tube generator. At the SRS, Daresbury Laboratory, a twelve inch axial separation camera, as described by Bowen and Davies (1983), was used on the Port 7 station. Both of these cameras have similar axial drive mechanisms, driving the axis via a stepper motor/gearbox/micrometer combination pushing a tangential arm attached to the axis. On the larger camera several other axes are motor driven including the detector arm and the camera itself. Computer control of the cameras was implemented at Durham with a BBC microcomputer and Minicam system, and at Daresbury with a PDP11/04 minicomputer and a CAMAC system.

4.1 The Six Inch Camera at Durham

A photograph of the double axis camera, positioned to receive X-rays from the GX-6 generator, is shown in fig. 4.1. With 200 steps per revolution motors the drive system gives 0.177 and 0.121 arc seconds per motor step for the first and second axes respectively. The camera is rigidly
Fig. 4.2 Photograph showing the construction of the collimator and removable optical light source. The projector lamp and steel tube are mounted on a sliding mechanism allowing either the lamp or the steel tube to be positioned in line with the collimator tube.
mounted on a separate table to remove any vibration present in the generator. A collimator approximately 1m long is used, fixed at the optimum take-off angle with respect to the anode. In this arrangement the X-ray beam is horizontal so that an angled baseplate is not required for the camera, as it is with a vertically mounted sealed tube source.

In order to ease camera alignment a removable optical light source, consisting of a projector lamp mounted on a sliding arm, was fitted to the collimator. By placing the lamp in the centre of the collimator the light follows the same path as the X-rays, thus facilitating easy camera alignment. Additionally, where the crystals used are highly polished they can also be set close to the correct Bragg angle, for surface symmetric reflections, using this system. The construction of the light source is clear from the photograph shown in fig. 4.2. The cover has been removed, while the sliding part is slightly displaced from its 'home' position, where the steel tube mounted on the slide fits tightly between the two sections of collimator tube. This arrangement helps to reduce the amount of scattered radiation in the box.

4.1.1 Computer control

Previously this double axis camera had been controlled by a PET microcomputer and a memory mapped Minicam system (Meriam Abdul Gani, 1982). In this configuration the Minicam system appears as part of the microprocessor's
memory, being controlled by code within the microcomputer. Meriam Abdul Gani (1982) has described many of the boards available. Recently the Minicam system was improved by the addition of an intelligent controller card (ICC) based on a 6502 microprocessor. This board replaces the memory mapped interface with all the control software contained on the board. Communication to a computer is provided by an IEEE488 interface. The boards are then controlled by passing binary data along this bus, an 8 bit number selecting the operation required and additional variables being passed as two 16 bit numbers.

Unfortunately, the majority of inexpensive microcomputers are not equipped with an IEEE488 interface, notably the BBC microcomputer. Thus, even though this computer offers far greater performance, including high resolution graphics, than the PET computer communication with a Minicam system is not possible. Consequently, since the BBC computer, and many other inexpensive computers, is equipped with a serial RS232 port it was appropriate to add such a serial interface to the Minicam system. A full description of the design is given below. Since the RS232 standard is designed to transmit ASCII encoded data only 7 bits are required (although 8 bits are often available), thus making the transmission of binary data not straightforward. In order to avoid this problem the Minicam firmware was rewritten to allow ASCII transmission. Full details of the new software can be found in Appendix B.
Once the BBC microcomputer and the Minicam system can communicate with each other the actual control of the double crystal camera is easily implemented. Routines similar in outline to those described by Meriam Abdul Gani (1982) were implemented, with the addition of graphics routines to display the data collection in real time. Rocking curve data can be saved on floppy disc to be redisplayed later or plotted on a digital plotter such as the HP7470A or the PIXY3. The BBC microcomputer is also connected to the laboratory's local area network thus allowing this data to be transferred onto the University's mainframe computer for analysis and comparison with simulated rocking curves. With the addition of the Workstation Rom (available from the Computer Centre, University of Sussex) the BBC microcomputer can also act as a graphics terminal to the mainframe. A full description of the control software is given in Appendix C.

X-ray intensities were measured with a standard scintillator/photomultiplier system with a Harwell rack mounted H.T. supply and amplifier. Two of the 16 bit Minicam counters were cascaded to provide one 32 bit counter which was required when long counting times were used for the measurement of weak satellite peaks from superlattices. Since good counting statistics are required to observe such satellites long counting times are needed and the counter can overflow if a main diffraction peak is encountered.
4.1.2 Design of the ICC RS232 Serial Interface

The fundamental requirements of the serial interface were that it should conform to the RS232 standard, operate at a variable baud rate, have a variable word format and utilise hardware handshaking (CTS/DTR type). High transmission speeds were also required to provide fast communication. Since many computers are equipped with only one serial interface once this is connected to the Minicam system it is no longer possible to use a serial printer or plotter without needing a data switch. Therefore, any plotter being used to plot rocking curves cannot be used under programme control without user intervention. Consequently, a second serial port was included in the ICC interface to enable data to be passed from one serial port to the other. Baud rates and word formats need to be individually controlled especially if a slow speed peripheral device is being used.

Since the Minicam bus is not a true microprocessor bus, being controlled by two interface adaptors, it is limited in speed and has several vital signals missing (particularly the processor clock required for synchronisation and the R/W, IRQ and NMI signals). Therefore, standard 6500/6800 peripheral IC's cannot be directly attached to this bus, hence it was decided to attach the serial interface directly to the ICC board and the microprocessor bus using the expansion connector located in the centre of the board. Since the Minicam manual does not give the pin-out of this
Fig. 4.3 Pin out of the connector in the centre of the Minicam ICC board. This connector allows access to the unbuffered microprocessor signals unlike the minicam bus.
connector it is shown in fig. 4.3 for reference.

The serial interface was designed around the 6850 ACIA which provides all the features required, including hardwire handshaking, and is directly compatible with the 6502 processor. The receive and transmit clock inputs were tied together and the clock signal provided by a 2.4576 MHz crystal oscillator and a 4702B programmable divider. The 4702B is specifically designed for this use and provides a rate 16 times the majority of widely used baud rates. Therefore, the 6850 should be programmed, after reset, to divide the receive and transmit clocks by 16. Two of these combinations are included in the design to provide the two independent rates for the two 6850s. In order to provide a variable word format an 8-way dual-in-line switch, buffered by a 74LS244, is provided which can be read as a memory location. This value can then be used to programme the word selection bits of the 6850s.

The main ICC board decodes addresses within the range $8000-$803F to provide the chip enable signals for the two 6522 VIAs and the 68488 GPIA. However, only the $8000, $8010 and $8020 lines are used leaving the $8030 line free. A wire patch on the main board is used to link this signal with a spare pin on the expansion connector. This line plus the address lines A2 and A3 are connected to half of a 74LS139 dual 2 to 4 line decoder to provide the three enable lines for the two 6850s and the 74LS244. Thus the addresses of these chips are $8030, $8034 and $8038.
Fig. 4.4 Circuit diagram of the Minicam ICC board complete with the twin channel RS232 serial interface.
Fig. 4.5 Photograph of the 12 inch double crystal camera on the TOP2 station at the SRS, Daresbury Laboratory. The camera A, is mounted on a rotary table attached to a massive aluminium casting, B, which can be rotated about the x-ray beam. The black box monochromator, C, is shown as are the TV detector, D, and the scintillation detector, E. The H.T. supply and current amplifier, F, are used for the ionisation detector which is positioned behind the slits, G.
Fig. 4.6 Photograph of the 12 inch camera axial drives. The stepper motors, A, drive the tangent arm, B, via the gearbox and micrometer, C. A constant length micrometer is used.
The receive and transmit data lines plus the two hardwire handshake lines CTS and RTS are converted to RS232 levels by 1488 and 1489 line drivers and receivers. Spare drivers on the 1488 are used to provide permanently asserted RTS, DCD and DSR signals.

The final circuit design, including the original ICC circuit, is shown in fig. 4.4.

4.2 The Twelve Inch Camera at Daresbury

A photograph of the twelve inch camera, as installed in station 7.4 on the SRS, is shown in fig. 4.5. The micrometer/tangent arm drive system can be seen in fig. 4.6, which with 48 steps per revolution gives 0.20 arc seconds per motor step on both axes. The camera is mounted on a stepper motor driven rotary table, attached to a massive aluminium casting. This casting can be rotated around the horizontal X-ray beam to alter the polarisation state used for diffraction. With the camera vertical, i.e. the axes horizontal, \(\sigma \) polarisation is selected. As can be seen from fig. 4.5 the optical bench mounted between the casting pivots can be used to hold slits, shielding and TV detectors in position. The scintillation detector is mounted on the detector arm which is also stepper motor driven. Spirit levels are attached to the majority of the movable arms to enable easy alignment. The beam available is approximately 2 cm high and 12 cm wide and the source is about 60 m away. The photon flux as a function of energy as produced by the
Fig. 4.7 The photon flux available at the SRS as a function of wavelength. The TOP2 station is on beam line 7 which is from a dipole magnet while the new TOP3 station is on the wiggler line. The dashed curves show the flux after passing through a beryllium window as on the TOP2 station.
Fig. 4.8 The beam displacement which occurs when using the black box monochromator, giving an overall \((+m,-m,+n)\) setting.
SRS is shown in fig. 4.7. This gives a minimum wavelength of about 0.6 Å while, since the station is an air station, the maximum useable at the camera is about 2.5 Å. Even if helium beam tubes were to be used the maximum wavelength is limited by the absorption of the beryllium window to approximately 5 Å.

A double reflecting 'black box' monochromator, consisting of two parallel Si (111) crystals mounted in an aluminium housing, is also available for use on this double crystal camera. The X-ray beam is doubly diffracted by two Si (111) reflections before being incident on the sample crystal. A diagram of the X-ray beam path is shown in fig. 4.8. The X-ray beam emerging from the monochromator is parallel to the incident beam, i.e. horizontal, but vertically displaced. Thus the camera has to be rotated in order to displace the second axis such that the beam passes through it. Since the Bragg angle of the silicon reflections is fairly small, of the order of 10 degrees for the wavelengths used, it does not change much with wavelength. The vertical displacement of the X-ray beam, h, is given by

$$h = 2D \cos \theta_B,$$

where D is the crystal separation and θ_B the Bragg angle. Hence, over the range of 0.5 Å to 2.0 Å this separation only changes by about 1 mm. Additionally, by rotating one of the silicon crystals with respect to the other suppression of harmonics is possible (Hart, 1980). A recent paper by Bonse
et al (1983) also outlines the design of some similar harmonic rejecting multi-reflection monochromators. Due to the low divergence of the X-ray beam on the SRS, approximately 5×10^{-6} radians for a 0.1mm entrance slit, the beam emerging from the monochromator is very nearly a plane wave. Consequently, a overall dispersive arrangement, ie (+n, -n, +m) as with a different sample reflection, can be successfully used without introducing any noticeable broadening of the rocking curve. Therefore, variable wavelength experiments can easily be performed since only the angle of the monochromator needs to be altered, any small change in the displacement of the X-ray beam being accounted for by adjusting the height of the entrance slits infront of the monochromator.

4.2.1 Computer Control and Instrumentation

This camera is controlled by a PDP11/04 minicomputer and a CAMAC system, as are the majority of cameras at Daresbury. The CAMAC system is attached directly to the PDP11 UNIBUS and provides a wide variety of plug-in interface cards. A VT100 is used as the terminal. CAMAC cards control the stepper motors and floppy disc drives as well as providing the pulse counter and TV display driver. Initially, software to control the camera was written in Catex, a language similar to Basic but with additional commands to control the CAMAC system. A comprehensive manual control system was implemented, using a pocket
terminal as a keypad to select motors and speeds. Rocking curve collection routines, similar to those used on the six inch camera, were also added. Recently these programmes have been rewritten in Fortran by Daresbury Laboratory staff.

Rocking curves can be plotted on a HP7470A plotter and the data saved on a high capacity Winchester disc. An 8 inch floppy drive can also be used to save the data and transfer it to other computers. A standard PET 5½ inch floppy drive was also interfaced to the PDP11 via a CAMAC IEEE488 interface card, allowing data to be saved on these discs and read into a Cifer 2684, with a similarly interfaced PET disc drive, for replotting in Durham. The Cifer also allowed this data to be transferred onto the University's mainframe computer.

X-ray intensity was measured with a Nuclear Enterprises scintillation detector with NIM based power supply, amplifier and discriminator. The pulses were counted with a CAMAC pulse counter with a pulse generator providing the necessary timing pulses.

4.3 Aligning the Cameras and Recording Rocking Curves

The techniques for aligning both cameras are fairly similar, although at the SRS it is rather more straightforward due to the smooth, continuous wavelength spectrum.
4.3.1 The Six Inch Camera

This camera is set in the zero position by adjusting it so that the X-ray beam passes through the centre of both axes. This is easily accomplished using the optical light source, but can be checked with X-rays using either a fluorescent screen or dental film. The camera is then rigidly secured to the table. For a particular reflection and wavelength the camera is then set at $2\theta_B$ to the X-ray beam using the rotary table.

The first crystal is then mounted on the first goniometer and set near the Bragg angle. Again, the optical light source can be used if a surface symmetric reflection is being used with a highly polished crystal. With the detector mounted to look down the axis the angle of the first crystal is adjusted to obtain a maximum count rate. Even if the adjustment of the camera to $2\theta_B$ is slightly out the wide aperture of the detector should ensure that the reflection is found. This process of finding the reflection can be greatly speeded up by rotating the goniometer with a length of wire. Dental film is then used to determine the position of the diffracted beam with respect to the second axis. If the beam does not pass through the axis the $2\theta_B$ angle of the camera should be altered to bring it into line and the angle of the first crystal readjusted.

Recently Fewster (1985) has explained a similar method using Kevlar twine to pull the first goniometer. If the twine is then securely fixed the camera can be rotated
without altering the angle of the goniometer with respect to the incident beam. With a narrow slit positioned in front of the detector the camera angle can then easily be adjusted to the optimum position.

The second crystal is then mounted, ensuring that the X-ray beam will intercept the surface. With the crystal set near the appropriate Bragg angle the reflection can be found. A computer searching technique can be used or, for broad reflections, a wire pull technique similar to that used for the first crystal. For the majority of III-V crystal reflections with CuKα₁ radiation the latter technique can usually be used.

The tilt adjustment of the second crystal is then performed to provide the narrowest possible reflection. A suitable technique based on the change in angular position of the peak as a function of the tilt angle has been described by Fewster (1985).

Once all adjustments have been made the rocking curve can be recorded. As small a beam as possible should be used to reduce the effect of sample curvature and area variations in composition or thickness.

4.3.2 The Twelve Inch Camera

Alignment with a two crystal (++) arrangement is similar to that described for the six inch camera. Instead of altering the angle of the camera to ensure that the diffracted beam from the first crystal passes through the
second axis the angle of the first crystal alone can be altered. This will change the wavelength diffracted slightly. The angle of the crystals can be set relative to the horizontal X-ray beam with a variable angle set square mounted on the horizontal optical bench. The reflection from the second crystal is easily found with a simple TV imaging detector, consisting of a fluorescent screen mounted on the front of an image intensifier tube (an obsolete Mullard model) with the back screen viewed by a closed circuit TV camera. The peak is best found with a beam roughly the same size as the sample.

When aligning the camera with the black box monochromator, a slightly different technique is required. The angle, θ, at which the camera should be set is given by

$$
\sin \theta = 2 \frac{D \cos \theta_B}{L}
$$

where L is the axis separation and D the spacing of the crystals in the monochromator. The easiest alignment process is to initially set the camera horizontal using a precision spirit level. The camera is then rotated downwards from the horizontal by the angle $\theta - \theta_B$ and the monochromator set horizontal, again using a spirit level. Rotating the camera then back to the required angle above the horizontal puts the monochromator at the required angle. Since the monochromator is not channel cut but consists of two separate crystals, they need to be aligned to allow the X-ray beam through. One of the crystals can be rotated by a
motorised screw or an electromagnet / magnet pair. The correct alignment can then be found by viewing the diffracted X-ray beam with either the TV detector or an ionisation detector. A pointer in the second axis can be used to ensure that the beam passes through this axis. The second crystal can then be mounted and the reflection found using a similar technique to that previously described with a normal (+-) arrangement.

We note that with the SRS the beam divergence is so small that the double crystal arrangement does not need to be adjusted for tilt, as with a conventional source. This greatly increases the speed at which rocking curves can be recorded and helps overcome the delays introduced in finding the reflections by not being able to rotate the crystals with the wire pull technique!
CHAPTER 5

SINGLE UNIFORM LAYERS

Rocking curves from single layers would be expected to be the easiest to interpret. It is straightforward to measure the perpendicular and parallel mismatches by measuring the layer and substrate peak separation using symmetric and asymmetric reflections. For a coherent layer/substrate interface, i.e., with no mismatch dislocations, and a surface symmetric reflection if the peak separation is \(\Delta \theta \) then, from the Bragg equation, we obtain

\[
\frac{\Delta d}{d} = \Delta \theta \cot \theta_B \tag{5.1}
\]

where \(d \) is the lattice spacing of the substrate and \(\Delta \theta = (\theta_S - \theta_L) \). The relaxed lattice mismatch is then found using equation (1.34) which gives the composition according to Vegard's Law (see section 1.4). Any angle, \(\Delta \varphi \), between the 001 planes of the layer and substrate can be measured by reversing the X-ray path and recording two rocking curves. From the two peak separations, \(\Delta \theta_1 \) and \(\Delta \theta_2 \) we find that

\[
\frac{\Delta d}{d} = \frac{1}{2}(\Delta \theta_1 + \Delta \theta_2) \cot \theta_B \tag{5.2}
\]

\[
\Delta \varphi = \frac{1}{2}(\Delta \theta_1 - \Delta \theta_2) \tag{5.3}
\]

If asymmetric reflections are used an additional peak separation will be introduced due to the difference in the angle between the reflection plane and surface for the layer and substrate. If \(\varphi_L \) and \(\varphi_S \) are these angles for the layer
Fig. 5.1 Experimental and computed 004 rocking curves from a 650 ppm mismatched, \(\lambda = 1.3 \mu m \) GaInAsP sample. The solid curve is the experimental curve and the dashed curve the theoretical best fit curve. CuK\(_\alpha_1\) radiation was used and the layer thickness is 0.45 \(\mu m \).
and substrate respectively then when the angle of incidence is \((\theta - \varphi)\) the peak separation is \((\theta_S - \theta_L - \varphi_S + \varphi_L)\) and when the angle of incidence is \((\theta + \varphi)\) it is \((\theta_S - \theta_L + \varphi_S - \varphi_L)\).

However, the layer thickness cannot be determined from these measurements. It can be determined by comparing the experimental rocking curve with computed curves for various layer thicknesses, assuming the lattice mismatch already calculated.

5.1 Surface symmetric reflections

Fig. 5.1 shows the experimental 004 rocking curve with CuKα₁ radiation for a sample with a single quaternary layer, with a band gap corresponding to radiation of wavelength 1.3 μm. The substrate is, as usual, 001 InP. The mismatch is determined to be 650 ppm from the separation of the peaks, giving the layer composition as \(\text{Ga}_{0.27}\text{In}_{0.73}\text{As}_{0.61}\text{P}_{0.39}\). We note that the substrate peak is considerably broader than the theoretical width, indicating that the sample is curved. The amount of broadening provides a measure of the curvature. The calculated curve that best fits this experimental curve is also shown in fig. 5.1, with a layer thickness of 0.45 μm. Agreement between the curves is fairly good, although the tails of the substrate peak are slightly broader than in the calculated curve. The weak Bragg case Pendellosung fringes seen in the computed curve are not visible in the experimental curve. Clearly, the presence of threading dislocations, in the layer, introducing a local lattice curvature, will blur out this
Fig. 5.2 Experimental and theoretical 004 rocking curves from a 960 ppm mismatched GaInAs sample. CuKα₁ radiation was used and the solid curve is the experimental rocking curve. The layer thickness is 0.55 μm.
Fig. 5.3 The ratio of integrated intensities from the layer and substrate as a function of layer thickness 004 refl. This curve is for CuKα radiation and a GaInAs layer of 600 ppm mismatch.
weak structure. Measurement of the rocking curve with the X-ray path reversed showed that there was no tilt angle between the 001 planes of the layer and substrate.

A similar example is shown in fig. 5.2, for another ternary layer. The relaxed lattice mismatch is determined to be 960 ppm, giving Ga$_{0.45}$In$_{0.55}$As, and the computed curve for a 0.55 μm layer thickness is also shown in fig. 5.2. The half width of the substrate peak is nearer the theoretical value than in the previous example. Agreement between the computed and experimental curves is extremely good, being slightly better than the fit in the previous example.

Instead of calculating a number of rocking curves for each sample in order to determine the layer thickness the ratio of integrated intensities of the layer and substrate peaks can be used, provided that the peaks do not overlap. The ratio of peak heights could also be used but these are affected by the sample curvature, as shown in chapter 1. A graph of the ratio of integrated intensities as a function of the layer thickness is shown in fig. 5.3, for the 004 reflection with CuKα$_1$ radiation and these values are also given in Table 5.1. These values were calculated for a GaInAs ternary layer of 600 ppm mismatch but, due to the very small effect that changing the composition has on the structure factors this curve can be used for any mismatch. Further, since the structure factors for quaternary GaInAsP alloys are only slightly different from those of the ternary
GaInAs this curve can also be used for these types of layers without introducing any large errors.

TABLE 5.1

<table>
<thead>
<tr>
<th>Layer Thickness (µm)</th>
<th>Ratio of layer/substrate integrated intensity (±0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4.0</td>
<td>3.9</td>
</tr>
<tr>
<td>5.0</td>
<td>5.1</td>
</tr>
<tr>
<td>6.0</td>
<td>6.5</td>
</tr>
<tr>
<td>7.0</td>
<td>9.4</td>
</tr>
<tr>
<td>8.0</td>
<td>13.1</td>
</tr>
<tr>
<td>9.0</td>
<td>17.1</td>
</tr>
<tr>
<td>10.0</td>
<td>19.4</td>
</tr>
</tbody>
</table>

If the layer is only slightly mismatched from the substrate the peaks will begin to overlap. Their separation can be increased by either increasing the wavelength or narrowing the peaks. Increasing the wavelength will alter the peak separation according to the Bragg equation but will also increase the half width of the peaks. Additionally, due to the increased absorption within the layer the thickness of crystal sampled will be reduced. Alternatively, reducing the wavelength will produce the opposite effect but, due to the reduced Bragg angle, the effect of sample curvature will be increased since the X-ray beam will intercept a larger area of the sample. Fig. 5.4
Fig. 5.4 004 Theoretical Rocking curves from a 400 ppm, mismatched, 1μm thick GaInAs layer as a function of wavelength.
Fig. 5.5 Experimental and calculated 004 rocking curves from a 950 ppm mismatched 0.90 μm thick layer at four wavelengths. The layer material is GaInAsP with λ = 1.55 μm.
shows the effect of altering the wavelength on the 004 rocking curve calculated for a 1 μm, 400 ppm mismatch ternary layer.

Since the X-ray parameters used in the calculation change as a function of the wavelength we need to check that the curve calculated as the best fit to the experimental curve at one wavelength still agrees with the experimental curve when the wavelength is altered. This will check that all the variable wavelength parameters, such as the dispersion corrections to the structure factors, are calculated correctly. Fig. 5.5 shows a series of experimental rocking curves for a λ=1.55 μm GaInAsP layer at 1.0, 1.2, 1.5 and 1.8 Å. These rocking curves were recorded using the double crystal camera at Daresbury in conjunction with the double reflecting monochromator. The wavelength can then be easily altered without needing to adjust the angle of the camera. From the rocking curve at 1.5 Å the mismatch was calculated to be -950 ppm, corresponding to Ga₀.₄₃In₀.₅₇As₀.₈₉P₀.₁₁, and the best fit computed curve, also shown in fig. 5.5, was found for a 0.8 μm layer thickness. Theoretical curves at the other wavelengths are also shown in fig. 5.5 for comparison with the experimental curves. There is good agreement between these curves at all the wavelengths used, both in the angular separation, peak widths and heights. This confirms that using just one rocking curve at one wavelength gives a layer thickness that is consistent with curves recorded at other wavelengths.
Fig. 5.6 (a) Theoretical and experimental 004 rocking curves from a 750 ppm mismatched, 1.15 μm thick GaInAs layer. Two computed curves are shown, one for a 0.9 μm uniform layer and one from a 1.15 μm thick layer with a region near the interface of larger mismatch, as shown on the inset. The wavelength used was 1.3 Å with σ polarisation.

(b) The computed and experimental rocking curves from the same sample at the same wavelength but with the double crystal camera rotated to give π polarisation.
Since only surface symmetric reflections have been used no measure of the interface coherency can be obtained. However, for the majority of samples studied mismatch dislocations could not be observed using Lang topography, hence the parallel mismatch must be zero and the interface coherent. Dislocations are often observed but these are usually threading dislocations existing in both the substrate and layers and are not formed due to layer mismatch. Consequently, the use of a single 004 reflection is a perfectly valid means of measuring the layer composition.

Since with a conventional laboratory generator randomly polarised radiation is produced in the characteristic lines any calculated rocking curves should include the contribution to the rocking curve from the π component as well as from the σ component. This effect is included in the calculation by adding the rocking curves for each polarisation state, according to equation (2.17). The contribution due to the π component can be examined experimentally by using the double crystal camera at the SRS with the diffraction plane rotated through 90° to the horizontal. This setting corresponds to π polarisation for an X-ray beam lying exactly in the plane of the electron orbit.

Fig. 5.6(a) shows the 004 rocking curve at 1.3 Å for a sample with a single GaInAs layer with σ polarisation. The separation of the substrate and layer peaks gives the
mismatch as 750 ppm. The computed curve for a layer thickness of 0.9 μm is also shown in fig. 5.6(a), but does not agree particularly well with the layer peak which is considerably asymmetric with an intense tail on the low angle side. This would suggest that a region of slightly larger lattice parameter was present within the layer and fig. 5.6(a) also shows the computed curve for a layer where a narrow region of larger lattice parameter is included next to the layer/substrate interface, with a total layer thickness of 1.15 μm. The relaxed lattice mismatch as a function of depth is shown in the inset in fig. 5.6(a), corresponding to a range of Indium content from 51.6% at the interface to 52.0% at the surface. It is not unexpected that such a region could exist near to the interface as many similar observations have been reported (see Chapter 2). The agreement between the computed curve and the experimental curve is now considerably improved, with the asymmetric peak being extremely well simulated by the calculated curve.

The double crystal camera was then rotated towards the horizontal, x polarisation position, in 15° steps with the rocking curve being recorded at each stage. Initially, with the black box monochromator the only effect observable was a considerable broadening of the peaks due to the increased dispersion present from the wide X-ray source. The experiment was then repeated with a good quality InP crystal as the first crystal giving an exactly parallel (++)
Fig. 5.7 (a) Rocking curves from the same sample used in fig. 5.6 but at 2.0 Å and \(\sigma \) polarisation. The composition used to give the calculated curve is that shown in the inset in fig. 5.6(a).

(b) Computed and experimental curves at the same wavelength but with \(\pi \) polarisation.
arrangement. Although the peaks no longer increased in width little other effects could be observed until complete \(\pi \) polarisation was selected. This rocking curve is shown in fig. 5.6(b). We would expect this result as the diffracted intensity with \(\pi \) polarisation will be smaller than that with \(\sigma \) polarisation thus the \(\sigma \) component will dominate the rocking curve until complete \(\pi \) polarisation is selected. Since the extinction length should be longer with \(\pi \) polarisation the diffracted intensity from the layer would be expected to be smaller than with \(\sigma \) polarisation. Additionally, the half width of the peaks should also be reduced. However, when the effect of sample curvature is included in the calculation of the rocking curve both of these effects are reduced. The experimental rocking curve does show a small reduction in the height of the layer peak, but no change in the peak half widths can be observed. The computed rocking curve, also shown in fig. 5.6(b) does agree fairly well with this experimental curve, although the calculated layer peak is slightly narrower and less intense. Clearly, any part of the X-ray beam lying slightly out of the plane of the electron orbit will not be completely polarised and can provide some \(\sigma \) polarisation contribution to the rocking curve.

This experiment was then repeated at 2.0 Å, giving a Bragg angle of 43°, where the polarisation factor \(C \) is much more significant than at 1.3 Å. The \(\sigma \) polarisation rocking curve is shown in fig. 5.7(a) along with the computed curve
assuming the composition and thickness already determined. Agreement between the curves is again particularly good. We note that the substrate peak is narrower than at 1.3 Å due to the decreased effect of sample curvature at this higher Bragg angle. Fig. 5.7(b) shows the π polarisation rocking curve plus the computed curve. There is rather more discrepancy between these two rocking curves, with the computed curve showing a much less intense layer peak, although the shapes agree fairly well. Due to the very low diffracted intensity the background of the experimental curve is very noisy. Clearly, when the polarisation term is so significant and the diffracted intensity so low any very weak σ polarisation contribution will have a marked effect on the rocking curve. It should be noted that similar experiments, as reported by Bonse, Krasnicki and Teworte (1983), are not straightforward. In their case an additional monochromator crystal was used, with a near 45° Bragg angle, to reduce the amount of the σ component present in the beam.

5.2 The Use of Highly Asymmetric Reflections to Study Thin Layers

For very thin layers, less than 0.5 μm, the diffracted intensity from the layer, using the 004 reflection, becomes very small compared to that from the substrate. Additionally, the half width of the layer peak is greatly increased when low angles of incidence are used. Typically, the extinction distance for the 004 reflection is of the
Fig. 5.8

(a) Experimental and computed 004 rocking curves from a 0.3 μm, λ = 1.31 μm, -780 ppm mismatched GaInAsP/InP sample. The wavelength is 1.5 Å and σ polarisation from the SRS.

(b) The 115 rocking curves from the same sample and with the same experimental conditions.
order of 10 μm, which is large compared to such layer thicknesses. However, by using a highly asymmetric reflection the extinction distance can be greatly reduced due to the factor \((\gamma_0|\gamma_1|)^{\frac{1}{2}} \). Specifically, by reducing the incident or exit angle to below 5° the factor \(\sin(\theta - \varphi) \) will ensure that the extinction distance approaches zero. The diffracted intensity from the layer should then be dramatically increased.

A series of rocking curves were recorded for a \(\approx 0.4 \) μm, \(\lambda = 1.31 \) μm GaInAsP layer, grown on an InP substrate, as a function of wavelength for several reflections using the Daresbury double crystal camera. Fig. 5.8(a) shows the 004 rocking curve at 1.5 Å, with the double reflecting monochromator as the 'first' crystal. From the peak separation the mismatch is determined as -780 ppm, giving the layer composition as \(\text{Ga}_{0.30}\text{In}_{0.70}\text{As}_{0.62}\text{P}_{0.38} \) and the computed rocking curve for a 0.3 μm thick layer is shown also shown in fig. 5.8(a) for comparison. The two curves again agree extremely well although, as expected, the diffracted intensity from the layer is only approximately 20% of the intensity of the substrate peak.

The 115 rocking curve was also measured at 1.5 Å and is shown in fig. 5.8(b). The diffracted intensity from the layer is less than that for the 004 reflection, at approximately 5% of the substrate peak intensity. This is expected since the 115 structure factors are smaller than those for the 004 reflection, giving a larger extinction
distance, and the asymmetry factors are not yet important since $\theta-\phi$ is still 25.8°. The theoretical curve is also shown in fig. 5.8(b) and again agrees well with the experimental curve. Since the positions of the peaks are in good agreement the parallel mismatch must be negligible. Clearly, there is no advantage in using this reflection over the 004 reflection except when the parallel mismatch is to be determined.

TABLE 5.2

Values of the peak half width and extinction distance for the 224 and 404 reflections as a function of wavelength for an (001) InP crystal.

<table>
<thead>
<tr>
<th>Wavel. (Å)</th>
<th>224 Reflection</th>
<th>404 Reflection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FWHM (secs)</td>
<td>Extin. Len. (µm)</td>
</tr>
<tr>
<td>2.00</td>
<td>14.96</td>
<td>5.99</td>
</tr>
<tr>
<td>1.80</td>
<td>14.04</td>
<td>5.30</td>
</tr>
<tr>
<td>1.60</td>
<td>15.52</td>
<td>4.17</td>
</tr>
<tr>
<td>1.58</td>
<td>15.94</td>
<td>4.01</td>
</tr>
<tr>
<td>1.56</td>
<td>16.45</td>
<td>3.84</td>
</tr>
<tr>
<td>1.54</td>
<td>17.10</td>
<td>3.65</td>
</tr>
<tr>
<td>1.52</td>
<td>17.90</td>
<td>3.44</td>
</tr>
<tr>
<td>1.50</td>
<td>18.96</td>
<td>3.21</td>
</tr>
<tr>
<td>1.48</td>
<td>20.37</td>
<td>2.96</td>
</tr>
<tr>
<td>1.47</td>
<td>21.70</td>
<td>2.75</td>
</tr>
<tr>
<td>1.46</td>
<td>22.38</td>
<td>2.66</td>
</tr>
<tr>
<td>1.44</td>
<td>25.46</td>
<td>2.31</td>
</tr>
<tr>
<td>1.42</td>
<td>30.96</td>
<td>1.88</td>
</tr>
<tr>
<td>1.40</td>
<td>44.88</td>
<td>1.28</td>
</tr>
<tr>
<td>1.39</td>
<td>70.03</td>
<td>0.82</td>
</tr>
</tbody>
</table>

The asymmetry factor becomes especially important for the 224 and 404 reflections, where below 1.6 Å the value of $\theta-\phi$ is less than 7°. Values of the extinction distance for the 224 and 404 reflections, with a low incidence angle, as a function of wavelength are shown in Table 5.2. Since the
Fig. 5.9 Series of 224 experimental and computed rocking curves from the same sample used in fig. 5.8 at various wavelengths in the range 2.0 Å to 1.40 Å.
extinction distance decreases so rapidly the peak half width must similarly be affected and values for half widths of the 224 and 404 reflections are also shown in Table 5.2. Fig. 5.9 shows a series of 224 rocking curves recorded at the SRS and using the black-box monochromator. The wavelength is easily altered with this arrangement and over the range 1.6 Å to 1.4 Å the height of the X-ray beam alters very little. A low angle of incidence was used with a 100 µm vertical slit used to limit the area of sample illuminated. Since, even with a very narrow slit, a long length of sample is illuminated due to the low incidence angle an exit slit in front of the detector was used to reduce the area of sample contributing to the rocking curve.

The 1.60 Å rocking curve shows that even at 6.6° incidence angle the diffracted intensity from the layer is already greatly increased over the 004 and 115 reflections. The layer peak is broader than the substrate peak and about 75% of its intensity. Clearly, already there is little doubt as to the usefulness of this reflection for the characterisation of layers with thicknesses less than 0.5 µm. As the wavelength is further reduced, the layer peak rapidly becomes more intense at the expense of the substrate peak. At about 1.54 Å the peaks are almost equally intense with the layer peak again being the broadest. Due to the very low angle of incidence the effect of bulk sample curvature is especially important and further increases the width of the peaks as the wavelength is decreased. At 1.52
Fig. 5.10 Theoretical 224 reflections for a 0.2 μm thick -600 ppm mismatched GaInAs layer for different values of surface misorientation. Positive angles are taken to decrease the angle between the surface and the x-ray beam for the (θ-φ) angle of incidence case. The wavelength used is 1.6 Å with σ polarisation.
A and below the substrate peak rapidly diminishes and becomes noticeably asymmetric, with a more intense tail on the low angle side. The overall diffracted intensity is also rapidly diminished as the wavelength is further reduced giving rise to considerably more noisy rocking curves. At these low incidence angles the X-ray beam will become increasingly strongly reflected from the crystal surface due to refraction and less intensity will be available in the crystal to be diffracted. From the refractive index of X-rays the critical angle for total external reflection is approximately 0.5°. At 1.40 Å, which corresponds to an incidence angle of only 0.49° only very weak diffraction from the layer can be observed with no intensity detectable from the substrate.

Since the rocking curve is, clearly, so dependent on the value of \(\theta - \Phi \) under these conditions it will be particularly sensitive to any surface misorientation. This effect is shown in fig. 5.10 where rocking curves for a 0.2µm, -600 ppm mismatched GaInAs layer for 1.6 Å radiation have been calculated including an increasing additional tilt angle. The negative sign indicates that the additional angle increases the incidence angle with respect to the crystal surface. We note how sensitive the layer peak is to this tilt angle, with a -4° tilt reducing its intensity to less than 50% of its value with no additional tilt. Substrates are often cut up to 3° off orientation in order to improve layer growth. With MBE growth the steps thus
produced on the surface are usually filled up before the layer continues to grow but this may not be the case for LPE grown layers. Consequently, this surface misorientation must be taken into account when computing rocking curves as best fits to the experimental curves. This appeared to be particularly true for this sample as the layer intensities in the calculated curves were considerably greater than those in the experimental curves at the same wavelengths. Although there could easily be an error of 0.05 Å in the wavelength used in the experiment this would not account for these discrepancies and, additionally, the peak separations would not be consistent. However, by including a surface misorientation of 2°, in a direction such as to increase the incidence angle, reasonable fits could be made at the wavelengths expected.

Fig. 5.9 shows such calculated rocking curves for comparison with the experimental curves. Agreement between these curves is reasonable, particularly at the higher wavelengths. At the lower wavelengths used the asymmetry exhibited by the experimental substrate peak is not present in the calculated curve. This is not unexpected as the calculations do not include the effect of the X-ray beam reflected from the surface. Hartwig (1977, 1978) has pointed out that for highly asymmetric reflections this reflected beam cannot be neglected and the conventional two beam approximation can no longer be used. He showed that the inclusion of this beam in the calculation of the Bragg
reflection profile does produce asymmetric peaks. Note that artificial symmetry of the rocking curve due to a parallel (+-) arrangement will not be present in rocking curves recorded with the black box monochromator. Additionally, any changes in the layer composition and thickness over the area of the sample will also increasingly affect the rocking curve as the wavelength is reduced, due to the increased area of the sample illuminated. Further, since the rocking curve is also more sensitive to thin regions of the layer any rapid changes in composition near the layer/substrate interface, as reported for LPE grown layers, will also become important.

Although the layer used was not especially thin we have seen that the use of highly asymmetric reflections does lead to a greatly increased layer intensity making characterisation rather more straightforward. The use of reflections where the totally externally reflected beam from the crystal surface cannot be neglected increases the difficulty of calculating rocking curves to best fit the experimental ones and, consequently, hinders the determination of layer thickness. Therefore, 224 reflections at approximately 1.50 Å are more useful. Ample intensity is diffracted by the layer for the peak position to be accurately determined and theoretical curves can easily be computed that agree well with the experimental curve, thus allowing a reasonably accurate determination of layer thickness.
Fig. 5.11 Experimental and computed 404 rocking curves for the same sample used in fig. 5.9 at a wavelength of 1.55 Å.
Fig. 5.12 (a) Experimental and theoretical 004 rocking curves from a 0.45 μm thick, λ = 10 μm, -1100 ppm mismatched GaInAsP layer on an InP substrate. The wavelength is 1.54 Å.

(b) The experimental and theoretical 115 rocking curves from the same sample at 1.5 Å.
Fig. 5.9(a) shows the experimental and calculated rocking curves for the same sample at 2.0 Å. Since the asymmetry factor is no longer as important the layer peak is reduced to a similar height to that observed in the 115 and 004 reflections. Consequently, there is no advantage in using this reflection at similar wavelengths over the 004 reflection. If only a non-tunable wavelength source is available, as is a conventional X-ray generator, good results can be obtained with CuKα₁ radiation.

Similar effects are observed with the 404 reflection at wavelengths in the range 1.45 Å to 1.7 Å. Fig. 5.11 shows the experimental and calculated rocking curves for this reflection with the same sample at 1.55 Å. Again the layer diffracts considerably more intensity than from the 004 and 115 reflections making its position and integrated intensity easily measured. The 404 reflection is slightly weaker than the 224 reflection and consequently has a larger extinction length at the longer wavelengths. The calculated rocking curve again agrees reasonably well with the experimental curve although both experimental peaks are considerably broader than those in the computed curve. A layer thickness of 0.3 µm again gave the best agreement.

Similar results were obtained with another sample with a 0.45 µm, λ=1.0 µm, GaInAsP layer. The 004 rocking curve at 1.54 Å is shown in fig. 5.12(a) giving the mismatch as -1100 ppm and the calculated rocking curve, assuming a layer thickness of 0.45 µm, is also shown in fig. 5.12(a). The
Fig. 5.13 224 experimental and computed rocking curves from the same sample used in fig. 5.12. Wavelengths in the range 1.6Å to 1.42Å. The computed curves are for a layer thickness of 0.2μm.
composition of the layer is determined to be Ga$_{0.09}$In$_{0.91}$As$_{0.15}$P$_{0.85}$. Once again agreement is particularly good with the effect of sample curvature included in the calculation to give equal half widths for the substrate peak. Measurement of the rocking curve with the X-ray path reversed indicated that there was no tilt angle present between the layer and substrate. The 115 reflection was also measured at 1.5 Å and the rocking curve is shown in fig. 5.12(b), again showing only small intensity from the layer. The computed rocking curve is also shown in fig. 5.12(b) and again agrees reasonably well.

Fig. 5.13 shows a number of 224 rocking curves recorded for this sample over the range 1.6 Å to 1.42 Å. The rocking curve behaves in a similar manner that of the previous sample, with the layer peak rapidly becoming more intense than the substrate peak. Good agreement between computed and these experimental curves could only be achieved for a layer thickness of 0.2 μm, suggesting that a different region of the sample was being illuminated by the X-rays. Since the layer did not extend over the entire region of the substrate it is quite possible that a thinner region near to the edge of the layer was studied. Computed rocking curves for this layer thickness are also shown in each figure for comparison and good agreement is obtained. The asymmetric peaks shown in the experimental curves from the previous sample are not observed in these rocking curves. Similar agreements obtained as with the previous sample.
In all of the above examples a low incidence angle was used, giving γ_0 less than $|\gamma_h|$. A high incidence angle could also be used which would similarly decrease the extinction length, due to the factor $(\gamma_0|\gamma_h|)^{\frac{1}{2}}$, but would decrease the half width of the peaks, due to the factor $(|\gamma_h|/\gamma_0)^{\frac{1}{2}}$. At these extremely low exit angles the exit beam would be increasingly totally internally reflected at the crystal surface (Hartwig, 1978). Consequently, the two beam approximation used in the calculation of the rocking curve would again be in error. Hartwig has shown that in this case peaks with an even higher asymmetry are produced.
Fig. 6.1 Experimental and computed 004 rocking curves from a 2.3 µm thick GaInAs graded layer grown by VPE on a (001) InP substrate. The computed curves are the best fit curves assuming a linear and non-linear composition variation. The composition variations used are shown in the inset. CuKα radiation was used.
CHAPTER 6

SINGLE LAYERS WITH A DEPTH DEPENDENT COMPOSITION

Epitaxial layers in which the composition varies continuously as a function of depth are often referred to as graded layers and are generally grown by the VPE method. For (Ga,In)As ternary layers this composition change can be attributed to a change in the concentration of the two type III species as a function of time (see Chapter 1).

The usual 004 double crystal rocking curves from such structures often appear similar to that shown in fig. 6.1. This rocking curve was recorded with CuKα radiation from a GaInAs layer grown on a 001 InP substrate by VPE. The narrow central peak visible in the curve is from the substrate while the broad, asymmetric peak extending on either side of substrate peak is from the layer. Since the layer peak extends on both sides of the substrate peak the composition must vary to give lattice parameters both larger and smaller than that of the substrate. The wedge-like shape of the layer peak, having an almost level top with only small undulations, immediately suggests that the lattice parameter decreases continuously with depth since the section of the peak on the low angle side of the substrate peak, corresponding to a larger lattice parameter, has the greatest intensity and, therefore, will be due to the region of the layer nearer to the surface. For VPE grown layers we expect that the composition change should be
Fig. 6.2 004 computed rocking curves for a 3μm thick GaInAs graded layer with a mismatch range of -200 ppm at the interface and -1000 ppm at the surface, for an increasing number of laminae: (a) 5 laminae, (b) 10 laminae, (c) 20 laminae and (d) 40 laminae.
continuous and monotonic which has been confirmed by X-ray fluorescence microanalysis on bevelled edges (Halliwell, Juler and Norman, 1983). Usually the lattice parameter increases towards the surface due to the layer becoming increasingly indium rich.

In order to calculate the rocking curve from this type of structure the layer must be divided into a number of laminae of constant composition, as already discussed in Chapter 3. It is required to determine into how many laminae the layer should be divided to produce a rocking curve that is a good approximation to one assuming a continuous variation. Clearly, in order to reduce the computation time to a minimum we require the least number that will produce an adequate approximation.

Fig. 6.2 shows a series of rocking curves calculated for an increasing number of laminae. The GaInAs ternary layer is 3μm thick and has a composition range of -2000 ppm at the substrate/layer interface to -1000 ppm at the surface. This corresponds to compositions of Ga_{49.8}In_{50.2}As at the interface and Ga_{48.4}In_{51.6}As at the surface. Rocking curves are shown for 5, 10, 20 and 40 laminae assuming a linear variation in composition with depth. For the 5 laminae curve the number of peaks is equal to the number of laminae with the individual peaks well resolved. However, for the 10 laminae curve already the number of peaks, although increased, no longer equals the number of laminae. A wedge-like peak shape has developed with only small
Fig. 6.3 Curves showing the square of the difference between computed rocking curves for an increasing number of laminae and the 40 laminae curve. Curves are shown for a number of mismatch ranges and layer thicknesses.
undulations being visible along the top of the peak. For 20 laminae the peak has fully developed to its final shape and there is no difference between this curve and the one for 40 laminae. This suggests that the peak shape rapidly converges towards that assuming a continuous variation. We note that the number of peaks in the rocking curve cannot be taken as an indication of the number of laminae in the layer.

In order to determine a suitable rule to allow the minimum number of laminae required to give an adequate approximation for a given layer thickness and composition range, curves were calculated for a number of different layer parameters. Assuming that 40 laminae gives a curve that is very close to that required the differences between this curve and those with fewer laminae were calculated. The squares of the difference in intensity at each point in the curve were calculated and are shown in fig. 6.3. Several mismatch ranges and layer thicknesses were used and these curves are also shown in fig. 6.3. From these curves we can deduce that doubling the layer thickness requires double the number of laminae but changing the mismatch range is not as important. As a general rule, for mismatch ranges of the order of 1000 ppm a laminae thickness of 0.1 μm should be perfectly adequate.

Using this approach of calculating rocking curves the curve shown in fig. 6.1 was computed as the best fit to the experimental curve, assuming a linear variation in
composition. The effect of sample curvature has been included so as to equate the half width of the central substrate peak. The composition variation used is shown in the inset in fig. 6.1. Agreement between the calculated and experimental curves is not particularly good, the calculated curve has considerably less intensity on the low angle side of the layer peak, yet has rather more intensity on the high angle side. Fine structure present in the calculated curve is somewhat reduced after including sample curvature but is still more pronounced than in the experimental curve. This discrepancy can be accounted for by the local lattice deviations introduced by the presence of a large number of threading dislocations (~ 10^7 m^{-2}) known to exist within the layer and substrate. The presence of these dislocations was determined by a TEM study at British Telecom Research Laboratories; the absence of any mismatch dislocations was also revealed. Consequently, there must be very little parallel mismatch and the layer/substrate interface can be considered coherent.

Since there is no fundamental reason for the lattice parameter to vary linearly with depth we must be able to calculate the rocking curve for any arbitrary non-linear variation. Often the composition will vary rapidly near the interface, i.e. at the start of growth, when equilibrium conditions have not yet been reached. Using such a variable non-linear change in composition the curve shown in fig. 6.1 was calculated. The mismatch variation which gave this best
Fig. 6.4 Experimental and computed rocking curves from the sample used in fig. 6.1 at wavelengths of 1.0Å, 1.2Å, 1.6Å and 1.8Å. The non linear variation given in the inset in fig. 6.1 was used for the computed curves.
fit curve is shown in the inset in fig. 6.1, showing that the composition changes more rapidly towards the interface. The agreement between this curve and the experimental curve is extremely good with the only discrepancies occurring on the high angle side of the layer peak. Here rather more fine structure is present in the computed curve. However, the central substrate peak and the low angle side of the layer peak do match very well. The total layer thickness determined is 2.3 μm which agrees well with that expected from the growth conditions.

Since only one reflection at one wavelength has been used to determine the composition variation there must be some doubt as to its uniqueness. In other words, would the variation deduced be different if another set of X-ray optical conditions had been used. Using the double crystal camera at the SRS, the wavelength can easily be altered and the rocking curve recorded as a function of wavelength. If the black-box, double reflecting, monochromator is used the vertical displacement of the beam alters very little making this experiment very straightforward, especially as all the relevant axes, including the detector arm, are motorised. Such rocking curves were recorded over the range 0.8 Å to 2.0 Å at intervals of 0.2 Å and a selection of these are shown in fig. 6.4. As the wavelength is reduced the overall width of the rocking curve decreases, as expected from the differential of the Bragg equation. The half width of the central substrate peak would be expected to decrease with
decreasing wavelength since, for a flat crystal it is directly proportional to the wavelength, but is, instead, observed to increase for the curves below 1 Å. This effect will be due to the increased effect of bulk sample curvature as the Bragg angle is decreased. When finding the reflection with the TV detector the peak can be observed to sweep across the sample due to its curvature and this displacement as a function of the rotation angle can be used to estimate the curvature. Fine detail present in the rocking curves at the longer wavelengths also becomes increasingly blurred out at the shorter wavelengths due to this effect. The ratio of integrated intensity under the layer and substrate peaks changes as a function of both the absorption coefficient and the X-ray path length within the layer, giving a maximum corresponding to the Ga absorption edge. Values of this ratio as a function of wavelength are given in Table 6.1.

Using the composition variation determined from the rocking curve at 1.54 Å computed curves were calculated at each wavelength and are also shown in fig. 6.4. Agreement between these curves and the experimental curves is reasonably good, with better matching obtained at the longer wavelengths. At the shorter wavelengths the same sized X-ray beam will intercept a larger area of the sample making the rocking curve more susceptible to area variations in both thickness and composition. However, for all the wavelengths used better fits could not be obtained by
Fig. 6.5 Theoretical 004 rocking curves for a GaInAs graded layer with a 0.4 μm region of ~300 ppm mismatch at different depths within the layer. The total layer thickness is 2.0 μm and the composition variations used are shown in the insets. The wavelength used is 1.5μA.
Fig. 6.6 Theoretical 004 rocking curves for a GaInAs graded layers with a 0.4 μm region of constant mismatch at different depths, as shown in the insets. The total layer thickness and overall mismatch range is the same as that in fig. 6.5. The wavelength used is 1.5A.
Fig. 6.7 Theoretical 004 rocking curves for a 2.0 μm thick GaInAs graded layer with a mismatch range of -1050 ppm to -300 ppm. The two curves are for the composition variation reversed, i.e. (a) is for -300 ppm at the surface and -1050 ppm at the interface and (b) for -1050 ppm at the surface and -300 ppm at the interface. A linear composition variation is used.
assuming a different composition variation or layer thickness, confirming the use of a single rocking curve to determine these parameters.

TABLE 6.1

Values for the ratio of the areas under the layer and substrate peaks for the experimental curves for a range of wavelengths.

<table>
<thead>
<tr>
<th>Wavelength (Å) (±0.02)</th>
<th>Ratio of areas under layer and substrate peaks (±0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>1.32</td>
</tr>
<tr>
<td>0.9</td>
<td>1.53</td>
</tr>
<tr>
<td>1.0</td>
<td>2.50</td>
</tr>
<tr>
<td>1.1</td>
<td>3.21</td>
</tr>
<tr>
<td>1.2</td>
<td>2.91</td>
</tr>
<tr>
<td>1.3</td>
<td>2.21</td>
</tr>
<tr>
<td>1.4</td>
<td>1.77</td>
</tr>
<tr>
<td>1.5</td>
<td>1.85</td>
</tr>
<tr>
<td>1.8</td>
<td>2.36</td>
</tr>
</tbody>
</table>

Polarisation experiments similar to those performed with a single uniform layer were also carried out. Even with a highly perfect InP crystal as the first crystal no effects could be observed that could be ascribed to the polarisation change, although significant modifications were predicted theoretically.

The rocking curve is extremely sensitive to the composition variation used as is demonstrated by the rocking curves shown in figs. 6.5, 6.6 and 6.7. In fig. 6.5 a region of constant composition, 0.4 μm thick and -300 ppm mismatched, has been positioned at different depths in a linearly graded layer in which the mismatch varies from -300 ppm at the interface to -1050 ppm at the surface. As can be
seen, the shape of the rocking curve is extremely sensitive to the position of the constant region, while the wedge shape with a nearly level top is no longer produced. Consequently, it is obvious that a smooth variation in lattice parameter does not exist in the layer. Further, if such a region was known to exist within the layer its position in the layer could be determined. It would be expected that increasing the depth of the constant layer would reduce its effect on the rocking curve just from a consideration of absorption, however, even increasing its thickness to compensate for this effect will not restore the original shape due to the phases of the beams from each laminae also being affected. Fig. 6.6 shows the effect of including a region where the composition remains constant at different depths in a graded layer. The mismatch of the layer varies from -1050 ppm mismatch at the interface and -300 ppm at the surface. Again the layer peak is particularly sensitive to the position of the constant region and the differences when this region is next to the surface or next to the interface are very marked. Further, fig. 6.7 shows the effect on the rocking curve on having the linear grading reversed. The solid curve shows the rocking curve when the mismatch at the interface is -1050 ppm and at the surface is -300 ppm while the broken curve is for -300 ppm at the interface and -1050 ppm at the surface. The curves are completely different in shape and, consequently, from the rocking curves there can be no doubt as to the sign
Fig. 6.8 Theoretical rocking curves for the same composition range as in fig. 6.7 with increasing non linearity, giving a greater range of change at the interface. The curves are for (a) linear (b) 20% (c) 40% (d) 60% (e) 80% and (f) 100% non linearity. 100% non linearity corresponds to an elliptical variation which is perpendicular at the intersection with the axes.
of the composition gradient. Some degree of mirror symmetry does exist between the two curves, as might be expected. However, differences do exist between one curve and the mirror image of the other.

Additionally, fig. 6.8 shows the affect of increasing the non linearity of the composition change. The mismatches used are -1050 ppm at the interface and -300 ppm at the surface, for a 2.0 μm layer, and in each consecutive curve the variation is further from linearity. The slope of the top of the wedge-like layer peak is rapidly increased as the rate of change of composition next to the interface is increased and, for the high non linearity curves, the shape approaches that of a single peak with an extended tail on the high angle side. Consequently, if a composition variation can be found that gives a rocking curve that agrees well with the experimental one such a variation can be taken to be a good measure of the actual variation. This same assumption has been extensively used in the characterisation of ion or diffusion implanted layers by rocking curves, as discussed in Chapter 2.

A series of closely related VPE grown GaInAs ternary layers, on (001) InP substrates, have also been studied. In addition to measuring the rocking curves these samples were electrically characterised at British Telecom Research Laboratories. Lang topographs were also recorded to determine the presence of mismatch dislocations that would indicate an incoherent interface.
Fig. 6.9 004 experimental and computed rocking curves for a number of GainAs graded layers, grown by VPE on a (001) InP substrate. The composition variations used to give the computed curves are shown in the insets. All rocking curves were recorded with CuKα1 radiation.
Fig. 6.9 shows the double crystal 004 rocking curves for these samples, recorded with CuKα₁ radiation and an InP first crystal. There is a very wide variation in the shapes of these rocking curves with two samples in particular giving very broad substrate peaks. All of the curves exhibit a very broad layer peak indicative of a graded layer. Computed rocking curves found to best fit these curves are also shown in fig. 6.9 for comparison, the mismatch variations as a function of depth are shown in the inset in each figure.

The rocking curve from sample CI452.2 shows a narrow, central substrate peak close in half width to the theoretical value. Considerable fine detail is present in the layer peak, although not as much as in the computed curve which does agree reasonably well with the experimental curve. This sample does contain mismatch dislocations which will reduce the overall sample curvature, as shown in Chapter 1, consequently reducing the broadening of the substrate peak and the blurring out of the fine detail. The mismatch variation determined shows some deviation from linearity, with an increased rate of change near to the interface. However, due to the presence of the mismatch dislocations the composition range deduced will not be accurate.

The central substrate peak in the rocking curve from sample CI454.2 is again fairly narrow and only slightly broader than the theoretical value. This sample does not
contain any mismatch dislocations which will reduce the sample curvature. However, since the composition range gives lattice parameters both larger and smaller than that of the substrate the curvature will be reduced as the two regions will produce curvature in the opposite sense. The computed curve does fairly well with the experimental curve, again giving a composition variation that changes more rapidly towards the interface. Fine detail is present in both curves due to the reduced effect of sample curvature.

In the rocking curves from both CI436.2 and CI435.2 the substrate and layer peaks are well separated, with the lattice parameter of the layer always smaller than that of the substrate. The curve from sample CI436.2 is rather unusual in shape, with a flat top on the low angle side followed by a steeply sloping tail on the high angle side. The calculated curve does not agree particularly well with the experimental one, with the flat topped region proving difficult to simulate. Also the extended high angle tail is less intense than in the experimental curve which would suggest that the layer thickness is larger than that determined by matching the heights of the maximum of the layer peak and the substrate peak. The composition variation determined is close to linear. The layer peak from sample CI435.2 is again rather unusually shaped. It is close to a wedge shape but appears to have some extra intensity in the centre and has a steeper slope on the high angle side of this 'bulge'. This would suggest that two different rates
of change of composition are present and the computed curve, which agrees fairly well with the experimental one, does confirm this. The composition variation determined can almost be divided into two regions of linear variation, with a more rapidly varying section next to the interface. This sample contains a large number of threading dislocations hindering the determination of the presence of mismatch dislocations.

Both the rocking curves from samples CI456.2 and CI454.1 show very broadened central substrate peaks and no fine detail is visible in either curve. Sample CI454.1 contains a large number of mismatch dislocations and sample CI456.2 contains so many threading dislocations that the presence of mismatch dislocations could not be determined. Consequently, we would expect fine detail in both curves to be blurred out with the broadened substrate peaks due to a small radius of curvature. Computed curves that agree fairly well with these experimental curves could be found after including this sample curvature, with both requiring a nearly linear composition variation with slightly greater rates of change near to the interface.

A summary of both the X-ray and electrical results is shown in Table 6.2. There does appear to be some correlation between the presence of mismatch dislocations and the dark current. The composition ranges given in the table are those determined from the rocking curves. Generally, the layer thicknesses found from the simulated
rocking curves were found to agree fairly well with those obtained from the electrical measurements. For all the samples composition variations close to linear were found to give computed rocking curves that agree reasonably well with the experimental ones, with many requiring a greater rate of change near to the interface, ie at the start of growth.

These results confirm that the computer simulation of rocking curves, as a best fit to the experimental ones, is an extremely valuable technique for the determination of the composition variation with depth for graded layers. No other technique can match the sensitivity to the composition achieved with this X-ray method. However, due to this high sensitivity and, additionally, sample curvature and defect density, it is not straightforward to achieve good agreement between the computed and experimental rocking curves as there are many parameters to alter.
<table>
<thead>
<tr>
<th>TABLE 6.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY OF X-RAY AND ELECTRICAL CHARACTERISATION OF VPE GROWN SAMPLES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>CI435.2</th>
<th>CI454.1</th>
<th>CI454.2</th>
<th>CI436.2</th>
<th>CI452.2</th>
<th>CI456.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mismatch Network</td>
<td>?</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>?</td>
</tr>
<tr>
<td>Electrical Comment</td>
<td>Quite good</td>
<td>Graded from 2 µm well behaved</td>
<td>pretty good</td>
<td>v. graded from 1 µm</td>
<td>v. poor</td>
<td></td>
</tr>
<tr>
<td>Dark Current (mA/cm^2)</td>
<td>0.1</td>
<td>2.0</td>
<td>0.17</td>
<td>0.06</td>
<td>0.4</td>
<td>>2</td>
</tr>
<tr>
<td>Carrier Conc. (10^{14})</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3-84</td>
</tr>
<tr>
<td>Mismatch at surface (ppm)</td>
<td>-300</td>
<td>650</td>
<td>610</td>
<td>-250</td>
<td>850</td>
<td>750</td>
</tr>
<tr>
<td>Mismatch at interface (ppm)</td>
<td>-1250</td>
<td>-300</td>
<td>-800</td>
<td>-550</td>
<td>-780</td>
<td>-800</td>
</tr>
<tr>
<td>Indium content range (%)</td>
<td>52.7 - 51.3</td>
<td>54.0 - 52.7</td>
<td>54.0 - 51.9</td>
<td>52.7 - 52.3</td>
<td>54.3 - 52.0</td>
<td>54.2 - 51.9</td>
</tr>
<tr>
<td>Layer Thickness (X-ray)</td>
<td>3.15</td>
<td>3.8</td>
<td>3.8</td>
<td>2.35</td>
<td>3.4</td>
<td>4.0</td>
</tr>
<tr>
<td>Layer Thickness (*) (Elec.)</td>
<td>4.6</td>
<td>≈ 4</td>
<td>≈ 4</td>
<td>2.8</td>
<td>≈ 4</td>
<td>≈ 4</td>
</tr>
</tbody>
</table>

1 The ? indicates that the presence of mismatch dislocations could not be determined due to the high density of threading dislocations.

2 These results were provided by British Telecom Research Laboratories."
CHAPTER 7
MULTIPLE AND MULTILAYER STRUCTURES

Multiple layer structures, especially multiquantum well structures, are probably one of the most important types of structures for device applications with the majority of devices being developed consisting of more than one layer. Clearly, there is little difference in calculating the complete rocking curve for these structures from calculating the curves for graded layers. Here the layers used in the calculation are the actual physical layers existing in the structure.

Even for a small number of layers great care needs to be taken in the interpretation of the rocking curves. The number of peaks observed will very rarely reflect the number of layers present, with both greater or smaller numbers of peaks than layers possible. This is illustrated by the 004 theoretical curves shown in fig. 7.1, for an increasing number of subdivisions of a GaInAs layer into layers of alternating composition, keeping the total layer thickness and the average mismatch constant. The radiation used is CuKα₁, with an InP first crystal. The two layer mismatches used are -500 ppm and -1000 ppm, corresponding to compositions of Ga₄₇.₆In₅₂.₄As and Ga₄₈.₄In₅₁.₆As. For curve (a), consisting of one pair of such layers each of thickness 0.5 μm, two peaks are formed as expected. In addition, low intensity Bragg case Pendellosung oscillations
Fig. 7.1 00\(^{4}\) theoretical curves with CuK\(\alpha_{1}\) radiation for an increasing number of subdivisions of a 1 \(\mu\)m GaInAs layer into alternating layers of -500 ppm and -1000 ppm mismatch. The curves are for (a) 2 layers, (b) 4 layers, (c) 6 layers and (d) 10 layers. The mismatch variations are shown in the inset.
are visible. For the second curve, (b), for a sample consisting of two such pairs of layers, with individual layer thicknesses of 0.25 μm, there are now four peaks visible in the rocking curve. This is not expected as only two compositions are present in the layer and arises because of the phase differences between the beams from each layer. The angular position of the peaks are different from those in curve (a), the peaks in each pair being on either side of the two peaks in curve (a). This suggests that some degree of destructive interference has occurred at the Bragg angle corresponding to the composition of the two layers. Again weak oscillations are present between and either side of the two pairs of peaks.

As the number of subdivisions is increased to three pairs, as in fig. 7.1(c), the peaks produced are again greatly different from those in the preceding curves. Now three main layer peaks are produced, the central peak in a position exactly midway between the peaks of curve (a). The outer two peaks correspond to the peaks in curve (a), although they are somewhat narrower. Also present in this curve are the beginnings of two satellite peaks either side of the three main peaks.

When the layer has been divided into 5 pairs, as in curve (d), the central peak has developed to be clearly the most intense of all the peaks from the layer. Two satellite peaks on either side of the main peak, equispaced from it, are clearly visible. Their separation is determined by the
thickness of the repeat unit of the pairs of layers within the layer. As the number of divisions are further increased this same pattern of peaks is continued, i.e., a central peak and satellite peaks. This is the predicted behaviour of a superlattice, as described in Chapter 2. The central peak is referred to as the zeroth order peak and its displacement from the substrate peak gives the average composition of the layer. The two satellite peaks seen in curve (d) are referred to as the +1 and -1 peaks, with positive indices being on the high angle side of the zeroth order peak. Higher order, weaker satellite peaks, again equispaced from the zeroth order peak, will also be produced.

If the superlattice period is considered as a lattice spacing, the peaks correspond to different orders of reflection from this lattice at the wavelength used. Clearly, the satellite peaks will be symmetrically spaced about the zeroth order peak, not from the substrate peak. Therefore, their separation can be used to determine the superlattice period. As more subdivisions are made, more higher order satellite peaks will become visible. The relative intensities of the satellites will depend on the particular structure of the superlattice. Additionally, since superlattices can be constructed of any combination of binary, ternary, quaternary or higher alloys, its average composition will vary not only as a function of the relative thicknesses of the layers but also as a function of the composition of the individual layers. For example, for a
\text{n}_1\text{-GaAs/}n_2\text{-AlAs superlattice, where }n_1\text{ is the number of monolayers in each layer, the separation of the substrate and zeroth order peaks will depend only on the ratio }n_1:n_2, \text{ but for a }n_1\text{-Ga}_1-x\text{Al}_x\text{As/}n_2\text{-GaAs superlattice it will also depend on the value of }x.\text{ Since the individual layers forming the superlattice are usually very thin compared to the extinction distance, the kinematical theory of X-ray diffraction has been extensively used to calculate the satellite intensities, see Chapter 2. However, many of the superlattices have relatively thick buffer layers grown either between the substrate and superlattice or as a cap on top of the superlattice or even in both positions. If this buffer is of a similar composition to that of one of the components of the superlattice the position and/or intensity of the zeroth order peak will be affected. Consequently, an approach based on the dynamical diffraction theory is required and has been used throughout the calculations presented here. For a perfectly periodic superlattice, in which all of the repeat periods are identical, the diffracted intensity calculation can be simplified according to the scheme of Vardanyan, Manoukyan and Petrosyan (1985) and the computational approach is no longer required. However, if imperfect superlattices are to be considered the computational approach must be used. If the growth of a superlattice is considered, in which the interfaces between the individual layers are perfectly}
Fig. 7.2 The macroscopic and microscopic construction of a GaAlAs/GaAs superlattice. The individual layers are an integer number of monolayers which is half a unit cell.
Fig. 7.3 Satellite intensities for the 002 reflection from an n_1GaAlAs/n_2GaAs superlattice as a function n_1 with $n_1 + n_2$ constant and \bar{x} constant.
sharp, the structure formed on an atomic scale will be similar to that shown in fig. 7.2. Each layer must be an integer number of monolayers and not necessarily an integer number of unit cells. One monolayer is half a unit cell for a III-V compound. Hence, the individual layers are considered as \(n_1 \) monolayers throughout the calculations. In the computer programme the section that allows the automatic entry of multiquantum well layer parameters works in terms of monolayers and calculates the individual layer thicknesses from this number and the lattice parameter, taking into account tetragonal distortion if required.

For a \(n_1 \)-Ga\(_1-x\)Al\(_x\)As/\(n_2 \)-GaAs superlattice, grown on a (001) GaAs substrate, the satellite intensities as a function of \(n_1 \) and \(n_2 \), with \(n_1+n_2=\text{constant} \), are shown in fig. 7.3 for the 002 reflection. From this graph we note that the \(i \)-th order satellite peak has zero intensity when

\[i=k(1+n_1/n_2), \]

where \(k \) is an integer. Thus for a superlattice where \(n_1=n_2 \) the even ordered satellites will be absent. Also the intensities of different order satellites do not change with the same function of \(n_1:n_2 \), which can be particularly important in the interpretation of rocking curves. Since defects in the periodicity of the superlattice will tend to reduce the intensity of the satellites, particularly the high order ones, the ratio of intensity of just one satellite to the zeroth order peak may give a false indication of the structure of the superlattice. However, by including the ratio of another
Fig. 7.4 Experimental and theoretical 004 rocking curves from the first n_1GaAlAs/n_2GaAs sample, at 1.54 Å. Curves (a) show the region around the 004 GaAs substrate reflection and curves (b) show the region out to +1200 secs from the substrate reflection and on an expanded vertical scale, revealing the +1 satellite peak. The computed curve is for $n_1 = 43$, $n_2 = 28$ and $x = 0.35$.
Fig. 7.5 Experimental and computed 002 rocking curves from the same sample used for fig. 7.4. Both the +1 and -1 satellite peaks are easily visible on the vertically expanded scale. The wavelength is 1.5Å.
peak, whose intensity changes as a different function of \(n_1:n_2 \), this error can be reduced.

7.1 Experimental Results

Fig. 7.4 shows the 004 rocking curve for a Ga\(_{1-x}\)Al\(_x\)As/GaAs superlattice on a (001) GaAs substrate, grown by MBE. The superlattice consists of 50 repeat units and has a GaAs cap of approximately 0.3 \(\mu m \). The rocking curve was recorded with CuK\(\alpha_1\) radiation and an InP first crystal. The zeroth order and substrate peaks are well resolved, but slightly broadened from the theoretical widths due to sample curvature. Only the +1 satellite peak, which is the most intense, could easily be observed and is visible in the expanded region of the curve. No other satellites could be observed near to the 004 GaAs reflection.

Additionally, the 002 rocking curve was recorded at 1.5 Å using the double crystal camera at the SRS and is shown in fig. 7.5. The black-box monochromator was used as the 'first' crystal. Even with the synchrotron source long counting times are needed to provide the extremely good counting statistics required. Consequently, over the recording period the beam intensity decreases due to the decay of the current in the storage ring. Therefore, the incident beam intensity was monitored with an ionisation detector in order that the rocking curve could be compensated for this effect. Because the 002 reflection is a pseudo forbidden reflection for GaAs, being only present
due to the difference in scattering factors of the Ga and As atoms, the presence of Al in the alloy provides a relatively large modulation in the structure factor of the layers. Consequently, the satellite intensities are greater than those near to the 004 reflection and the +1 and -1 satellites are easily visible in the rocking curve.

From the separation of the +1 satellite and the zeroth order peak near the 004 reflection the value of \(L = n_1 + n_2 \) can be determined. If we label the zeroth order peak as \(2L \) and the +1 peak as \(2L+1 \) we have

\[
(2L+1)\lambda = 2C\sin\theta_{2L+1} \quad (7.1)
\]

and

\[
2L\lambda = 2C\sin\theta_{2L} \quad (7.2)
\]

from Bragg's Law, with \(C \) the superlattice period. Thus,

\[
\frac{\sin\theta_{2L+1}}{2L+1} = \frac{\sin\theta_{2L}}{2L} \quad (7.3)
\]

ie

\[
2L = \frac{\sin\theta_{2L}}{\sin\theta_{2L+1} - \sin\theta_{2L}} \quad (7.4)
\]

With the values of \(\theta_{2L} \) and \(\theta_{2L+1} \) determined from the displacement from the substrate peak we find that \(2L=142 \), to the nearest integer value. In fact \(L \) rarely turns out to be an exact integer due to deviations in the periodicity of the superlattice and the nearest value should be taken. With this value of \(2L \) and the absolute position of the zeroth order peak the superlattice period can be determined and is found to be \(C=200.8 \text{ Å} \). The zeroth order and +1 peaks can
Fig. 7.6 Computed 004 rocking curves for CuKα₁ radiation for values of \(n₁ = 44, 43 \) and 42 showing the variation in +1 satellite intensity. The overall parameters are as for the first GaAlAs/GaAs sample.
then be labelled as the (0, 0, 142) and (0, 0, 143) reflections from a lattice spacing of 200.8 Å. This value is confirmed from the spacing of the +1 and -1 satellites near to the 002 GaAs reflection. These peaks can be labelled as (0, 0, 70), (0, 0, 71) and (0, 0, 72) for the -1; 0 and +1 respectively.

From the separation of the zeroth order and 004 peaks the average mismatch of the superlattice can be determined. Assuming coherent interfaces this then gives the average composition, \(\bar{x} \), which is defined as \(\bar{x} = \frac{n_1 x}{n_1 + n_2} \). The value found, assuming Poisson's ratio for GaAs and GaAlAs are equal, is \(\bar{x} = 0.185 \) or 213 ppm mismatch.

Rocking curves can then be calculated for this superlattice for varying values of the ratio \(n_1 : n_2 \) with \(n_1 + n_2 \) and \(\bar{x} \) constant. A value of the sample curvature was used to give the best fit to the widths of the 004 and zeroth order peaks. The best fit 004 and 002 rocking curves are shown in figs. 7.4 and 7.5 for comparison with the experimental curves. Values of \(n_1 \) and \(n_2 \) thus determined are \(n_1 = 43 \) and \(n_2 = 28 \), giving \(x = 0.35 \). Fig. 7.6 demonstrates the sensitivity of the +1 satellite intensity to the value of the ratio \(n_1 : n_2 \) for the 004 reflection. The three curves shown are for the ratios 42:29, 43:28 and 44:27. The satellite intensity of the 42:29 curve is approximately 9% greater than that of the 43:28 curve, while that of the 44:27 curve is approximately 8% weaker. Oscillatory structure on the high angle side of the substrate peak is not changed nor are the shapes of the substrate and zeroth
Fig. 7.7 The 002 dark field transmission electron micrograph of the first GaAlAs/GaAs superlattice. The GaAlAs layers are the lighter regions due to the enhanced diffracted intensity.
order peaks. Therefore, this fitting procedure will be unaffected by any superlattice imperfections that reduce the +1 satellite intensity by less than approximately 5%. Imperfections that reduce the intensity by a greater amount would give a larger value of n_1 using this fitting procedure. The intensities of the satellites near the 002 GaAs reflection, particularly the -1 peak, also agree well with those calculated for $n_1=43$ and $n_2=28$. However, the intensity ratio of a higher order satellite, whose intensity varies as a different function of $n_1:n_2$, could not be used to improve the fitting procedure since no such peaks could be observed either near the 004 or 002 GaAs reflections. The value of x deduced agrees well with that expected from the growth conditions. Using this composition the intensity of the -1 satellite was calculated and was found to be much weaker than the +1 satellite, explaining why it could not be observed in the experimental rocking curve.

A transmission electron microscopy study of this sample was also carried out at British Telecom Research Laboratories. Taking a thin section perpendicular to the surface the micrograph shown in fig. 7.7 was obtained. This represents the 002 dark field image, with the GaAs and GaAlAs layers easily distinguished by the enhanced intensity diffracted by the GaAlAs layers. Although the exact magnification could not be accurately determined the values of the relative layer thicknesses agree extremely well with those obtained from the rocking curve. The micrograph is
extremely useful for showing any deviations in the repeat period and for showing the thickness uniformity along the layers.

Some discrepancies do exist between the calculated and experimental rocking curves, particularly in the intensity of the satellite peaks in the region of the 002 GaAs reflection. Further, satellites greater than the first order could not be observed. Both of these facts indicate that the superlattice is not perfect; either the repeat unit varies throughout the superlattice about some mean value or the interfaces are not sharp due to interdiffusion between the GaAlAs and GaAs layers. The effect of these variations on the intensity of the satellite peaks is discussed later.

Another example of a GaAlAs/GaAs superlattice was also studied. This sample consisted of 100 layers of GaAs and 99 layers of GaAlAs with an encapsulating layer of 1 μm of GaAlAs and 200 Å of GaAs, as shown schematically in fig. 7.8.

The diffracted intensity in the region of the 002 GaAs reflection was recorded in a similar manner to that used for the previous sample and is shown in fig. 7.9. Again only the +1 and -1 satellites could be observed, with considerably smaller intensities than those obtained for the previous sample. The intensities of both satellites were approximately one thousandth of the intensity of the zeroth order peak, which could not be completely resolved from the 002 GaAs peak.
Fig. 7.9 The 002 experimental and computed rocking curves from the second GaAlAs/GaAs superlattice, its construction is shown in fig. 7.8. The vertical scale is expanded to show the +1 and -1 satellite peaks. CuKα₁ radiation was used. The computed curve as for n₁ = 35, n₂ = 34 and x = 0.30.
<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
<td>200 Å</td>
</tr>
<tr>
<td>Ga\text{0.7}Al\text{0.3}As</td>
<td>1 μm</td>
</tr>
<tr>
<td>100 x GaAs</td>
<td>100 Å each</td>
</tr>
<tr>
<td>99 x Ga\text{0.7}Al\text{0.3}As</td>
<td>100 Å each</td>
</tr>
<tr>
<td>Ga\text{0.7}Al\text{0.3}As</td>
<td>1 μm</td>
</tr>
<tr>
<td>GaAs</td>
<td>0.5 μm</td>
</tr>
<tr>
<td>SI sub. GaAs</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7.8 Schematic diagram of the construction of the second GaAlAs/GaAs superlattice.

From the satellite separations the value of n_1+n_2 is found to be 69. Thus, from the position of the zeroth order peak the superlattice period is 195 Å, compared to the 200 Å expected from the growth conditions. The best fit calculated curve is shown in fig. 7.9, for $n_1=35$ and $n_2=34$. Agreement between the satellite positions is very good, although the calculated peaks are slightly more intense and narrower. Since $n_1=n_2$, we would expect the second order satellite peaks to be particularly weak which explains why they could not be observed. Since the satellite intensities are smaller than those predicted theoretically we again expect there to be some dispersion in the superlattice repeat period.

A similarly designed sample, its construction as shown in fig. 7.10, was also studied. The 002 rocking curve is shown in fig. 7.11, again revealing only satellites up to
Fig. 7.11

002 experimental and computed rocking curves from the third GaAlAs/GaAs superlattice. The CuKa radiation was used.

\[\text{SL}(0, 0, 0, 64) + \text{GaAs (002)} \]

--- Theory
- --- Experiment

\[\Delta \theta \rightarrow \text{(secs)} \]

0 400 800 1200 1600 2000

-1 +1
the first order. Satellite intensities were similar to those for the previous sample, their spacing giving \(L = n_1 + n_2 = 64 \). From the position of the zeroth order satellite peak, the \((0,0,64)\) reflection, the superlattice period is found to be \(C = 160 \text{ Å} \), which agrees reasonably well with the 175 Å expected. The best fit calculated curve for \(n_1 = 38, n_2 = 26 \) is also shown in fig. 7.11. Once again the calculated satellite intensities are slightly smaller than those in the experimental curve.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
<td>200 Å</td>
</tr>
<tr>
<td>(\text{Ga}0.7\text{Al}{0.3}\text{As})</td>
<td>1 μm</td>
</tr>
<tr>
<td>100 x GaAs</td>
<td>75 Å each</td>
</tr>
<tr>
<td>99 x (\text{Ga}0.7\text{Al}{0.3}\text{As})</td>
<td>100 Å each</td>
</tr>
<tr>
<td>(\text{Ga}0.7\text{Al}{0.3}\text{As})</td>
<td>1 μm</td>
</tr>
<tr>
<td>GaAs</td>
<td>0.5 μm</td>
</tr>
<tr>
<td>SI sub. GaAs</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7.10 Schematic diagram of the construction of the third GaAlAs/GaAs superlattice sample.

A \(n_1\)-GaInAs/\(n_2\)-InP superlattice, grown by MOCVD on an (001) InP substrate (Moss and Spurdens, 1984), has also been studied. The 002 rocking curve is shown in fig. 7.12, which reveals satellites up to the second order. The \(-1\) and \(-2\) satellites are easily visible, being approximately 10% of the intensity of the zeroth order peak, but only the \(+1\) satellite can be observed on the high angle side of the
The zeroth order peak is only partially resolved from the 002 InP substrate peak and is on the low angle side. Since for the 002 reflection the difference in structure factor between GaInAs and InP is much greater than that between GaAlAs and GaAs the satellites are much more intense. From the separation of these satellites the value of $L=n_1+n_2$ is calculated and found to be 64, giving a superlattice period of $C=188$ Å. The best fit calculated curve was found for $n_1=38$, $n_2=26$ and is also shown in fig. 7.12. Here, the ratio of intensities of the -1 and -2 satellites was used to aid the determination of n_1,n_2 and help reduce the errors introduced by superlattice imperfections. From these values and the value of \bar{x}, determined from the separation of the zeroth order peak and the substrate peak, x is found to be 0.537.

There are again some discrepancies between the computed and experimental rocking curves, with the experimental satellite peaks being both less intense and broader than the computed ones. Further, the +2 satellite could not be observed in the experimental curve yet is easily visible in the computed curve. These facts again lead to the assumption that the superlattice is imperfect with the most likely deviation being in its repeat period. This is not unexpected for this sample since the control of the growth times for each layer was performed by hand and it is known that perfect timing was not achieved. This was confirmed by a TEM study of the sample and the 002 dark field micrograph
Fig. 7.13 002 transmission electron micrograph of the $n_1\text{GaInAs}/n_2\text{InP}$ superlattice, revealing the non uniformity in both repeat unit and layer thickness along the layers.
Fig. 7.14 The effect on the 004 computed rocking curve for the first GaAlAs/GaAs superlattice of adding a GaAs capping layer. Curve (a) is for no cap, (b) for 0.3 μm cap and (c) for a 1.0 μm cap. The +1 satellites are shown in the vertically expanded regions. CuKα, radiation is used.
is shown in fig. 7.13. The individual layers are easily distinguishable by the enhanced intensity from the InP layers. There is noticeably a lack of uniformity in thickness along the layers as well as dispersion in the superlattice period.

7.2 The Effect of Adding a Capping Layer to the Superlattice

The effect of adding a relatively thick capping layer, of similar composition to one of the components of the superlattice, is demonstrated by the 004 rocking curves shown in fig. 7.14. The radiation is CuKα1 and the structure used is that of the first GaAlAs/GaAs sample but the effect of sample curvature has not been included. If the capping layer is sufficiently thick to diffract strongly it is essential that the dynamical theory is used to calculate the overall diffracted intensities and significant changes in the shape of the rocking curve do occur as seen in fig. 7.14. The substrate peak has been considerably affected by the 1 μm cap, being both broadened and with an intense 'bulge' on the high angle side. Additionally, the weak peak between the substrate and zeroth order peak is much more intense than in the curve for the sample without a cap. These main peaks are also similarly affected, although to a somewhat lesser extent, by the addition of a 0.3 μm cap. Also shown in the figures are the expanded regions revealing the +1 satellite peak. Again, for the 1 μm cap
significant modifications are observed with the oscillation on the side of the substrate peak changed as well as the satellite intensity reduced. The position of the satellite peak is not changed with respect to the substrate peak. For the 0.3 μm cap the oscillations are again heavily modified but only an extremely small change in satellite intensity occurs. Since the amplitudes of all of these oscillations on the side of the substrate peak are so small they would not be expected to be observed in any experimental rocking curves. Clearly, if an even thicker cap was to be added the modifications would be greater but these rocking curves show that the presence of a cap that is only about 10% of the extinction distance can make a significant difference to the intensity of the satellite peaks. Further, even the addition of only a 0.3 μm cap does have a significant effect on the shape of the substrate and zeroth order peaks. However, when sample curvature is included in these calculations the effects do become less noticeable.

7.3 The Effect of Dispersion in the Superlattice Period and of Interdiffusion between the layers.

The effect of dispersion in the superlattice period, i.e. the thickness of the layers forming the repeat unit varies throughout the layer, is discussed first. This effect can easily be modelled by introducing a random deviation in the number of monolayers, about a mean value, for each layer used in the calculation. The size of the random deviation can then be increased and rocking curves calculated. Note
Fig. 7.15 The effect of dispersion in the superlattice period on 002 computed curves for the GaInAs/InP superlattice. CuKα radiation is used. The individual layer thicknesses vary randomly about the perfect superlattice values within the range (mean – percentage of mean) to (mean + percentage of mean) where the percentage used is as indicated by the curves.
that the satellite intensity formulae developed for perfect superlattices by other workers (see for example Vardanyan, Manoukyan and Petrosyan, 1985) are not well suited to modelling this effect. Fig. 7.15 shows the effect of increasing the size of the random fluctuation in the 002 rocking curve from a GaInAs/InP superlattice with a construction similar to that found for the sample studied experimentally. The amount of random deviation is taken as a percentage of the mean number of monolayers forming each layer. In the curve for zero deviation satellite peaks up to the second order are easily visible with well formed, narrow peaks. However, as the size of the fluctuations are increased the second order peaks rapidly disappear, while the intensity of the first order peaks is less rapidly affected. For the 7.5% fluctuations the second order satellite peaks have already lost their well formed shape and are less intense. The +1 satellites have also lost intensity but still retain a similar shape. The intensity of the satellites is not affected equally on either side of the zeroth order peak which is particularly important and the ratio of intensities of the +1 and -1 satellites does not remain the same; the +1 satellite, which is the most intense, is reduced in intensity more rapidly than is the -1 peak. When the fluctuations are as large as 15% the second order satellites have already reduced to a very spread out peak which would not be visible in any experimental curve. Again the first order satellites have been reduced in
intensity but also have become considerably broadened in the tails. Beyond 15% the first order satellites are further reduced in intensity and broadened and by 30% have only become a very spread out, badly formed peak. This agrees well with the observations of other workers (see for example Kevarec et al, 1984).

Since we have easily observed one second order satellite peak in the experimental curve from the GaInAs/InP superlattice the fluctuations in repeat period must be less than about 10% by comparison with the above computed curves. This agrees well with the measurements taken from the TEM micrograph. Variations in layer thicknesses along the layers would also be expected to have a significant effect on the rocking curve, but this effect is not so easily modelled and would require calculating a number of rocking curves for different layer thicknesses and then adding them.

If interdiffusion has occurred between the layers (for example of Al in a GaAlAs/GaAs superlattice) the interfaces will become less sharp. If a large degree of interdiffusion has occurred the mismatch and composition variations throughout the superlattice will tend towards sinusoidal. Clearly, to model this effect with a computational procedure designed for stepwise variation would require a large number of layers, with the sinusoidal variation modelled by dividing each layer into a number of laminae of constant composition. Consequently, the number of layers required for the computation can easily be up to an order of
magnitude greater than the actual number of layers in the structure, greatly increasing the computation time. Calculations based on a Fourier expansion of the composition variation are perhaps better suited to studying this effect and have been used successfully by a number of workers (see for example Fleming et al, 1980). Kervarec et al (1984) have also calculated the satellite intensities as a function of the interface width by adding a sinusoidal variation to the stepwise variation. This showed that the satellite intensities decrease as the interface width is increased, with the higher order satellites more rapidly affected.

From the TEM results for two of the samples studied the interfaces did appear to be reasonably sharp, which agrees well with the previous observations of Dernier et al (1977) where the GaAl/GaAlAs interfaces were determined to be less than two monolayers wide. The most obvious irregularity in the superlattice was in the repeat period (particularly for the GaInAs/InP sample) and, as shown, this has a very large effect on satellite intensities explaining why those observed were less intense than the computed ones.
DISCUSSION AND SUGGESTION FOR FURTHER WORK

The computational method developed has been shown to produce rocking curves that agree extremely well with experimental ones for single uniform layers, single layers with depth dependent compositions and multiquantum well structures. Often there are discrepancies between the computed and experimental rocking curve but these can be accounted for by imperfection in the samples. The technique is particularly useful in the determination of the composition variation in graded layers and provides an accurate means of determining layer thicknesses for all types of samples. However, due to the high sensitivity of the rocking curve to composition and the large numbers of parameters that can be altered it can be extremely difficult to fit experimental rocking curves exactly, especially for graded layers. Bulk sample curvature also has a very major affect on the rocking curve and can mask much of the fine detail present in the computed curves neglecting this effect.

It has also been found that the rocking curve from samples with only a few layers of similar composition are not straightforward to interpret. The number of peaks observed in the rocking curve very rarely equal the number of layers. Further problems are encountered if the layer is thin relative to the extinction distance, making the diffracted intensity from the layer only a few percent of that of the substrate peak. Also, if thin layers are
present buried between thicker layers of a similar composition, as in many of the device structures currently being developed, their detection can be extremely difficult. For the thin, single layers the use of highly asymmetric reflections in the low angle of incidence case has been studied. Diffraeted intensities from the layer were found to increase dramatically as the angle was reduced to near grazing incidence. However, due to the high sensitivity of the layer peak to the incident angle difficulties arose in the simulation of such rocking curves. This effect could be due to surface misorientation and further experiments are required to ascertain this. For thin layers sandwiched between thicker ones this technique could also be used with angles above those of near grazing incidence so that the top, thick layer does not diffract all of the intensity. When using a synchrotron source the incident angle can be adjusted to tailor the extinction distance to that required and it would be important to assess whether similar techniques could be used with a laboratory source. Since a different first crystal reflection would have to be used in order to prevent either extreme beam compression or expansion a channel cut monochromator would be extremely useful to reduce the effect of the dispersion introduced.

The use of a high incidence angle with a grazing exit beam may also be useful for these studies but as yet no experimental results have been obtained to confirm this.

The use of gap fringes may also become extremely useful
for the study of these structures with thin, buried layers, as recently discussed by Tanner and Hill (1985). Here the thin layers produce strong gap fringes in the rocking curve which vary as a function of both their depth and thickness. To date only theoretical curves have been produced and good quality experimental data is required for comparison.

Due to the lack of perfection in the superlattices studied only a small number of satellites were observable even with the 002 forbidden reflection and the extremely good counting statistics afforded by the high intensity of the synchrotron source. The effect of dispersion in the superlattice period has been modelled and found to have a dramatic effect on the satellite intensities. However, the effect of both interdiffusion between the layers and thickness irregularities along the layers remain to be modelled. In order to study the effect of interdiffusion it may well be better to use a different computational approach based on numerically integrating the Takagi-Taupin equations with a continuous composition modulation. If the stepwise approach is used the composition variation would need to be modelled by an extremely large number of laminae, which combined with the large angular ranges required in the calculation will greatly increase the computational time. This may not be a problem with access to a large, powerful computer. However, this approach would have the advantage that the combined effect of both dispersion in the periodicity and interdiffusion could be studied.
Additionally, this technique could also be used to simulate rocking curves from ion implanted superlattices to compare with experimental results similar to those presented by Terauchi et al (1984).

Little use has been made of double crystal topography to study these materials mainly due to the effect of sample curvature. Since any good quality heteroepitaxial layer must produce sample curvature only extremely small regions of the crystal can be imaged in one topograph. Consequently, single crystal topography has been more extensively used to examine the samples for the presence of mismatch dislocations.

Finally, since the need for this technique of rocking curve simulation is becoming more widespread, particularly by the semiconductor manufacturers, ways by which the computation can be become more easily available are required. With the advent of more and more powerful microcomputers, particularly those based around the 68000 series of processors, it may well be feasible to perform the computations on these machines. If this step could be made it is certain that this technique could become more and more important. Further, it ought to be perfectly feasible to automatically analyse rocking curves from single uniform layers provided that well resolved peaks are obtained. The analysis is greatly simplified when the mismatch and areas under each peak are determined. It is unlikely that such a technique could be developed for graded layers due to the
large number of laminae required and the sensitivity of the rocking curve to small variations in the composition profile. Both sample curvature and large dislocation densities would also greatly hinder such an analysis. For multiple layered structures further problems would be encountered due to the additional interference peaks present in the rocking curves. However, even if automated analysis cannot be easily implemented there remains no doubt as to the usefulness of rocking curve simulation to provide a highly sensitive, non-destructive characterisation method.
APPENDIX A

COMPUTER PROGRAMMED FOR THE COMPUTATION OF ROCKING CURVES

This appendix contains complete listings of the computer programme required to calculate and plot rocking curves from III and IV semiconductor crystals with epitaxial layers of any composition. The programmes run on an IBM 4341/I at Durham University.
program INPUT_ROCK(input, output);

const
Pl = 3.1415927;

type
material = (Im, Ga, As, P, Al, Si);
mat_data = array [material] of real;
matset = set of material;
complex = record
 re, im: real;
end;
parameters = record
 naps: integer;
 coord: array [1..8, 1..3] of real;
end;
comstring = array [1..10] of string(25);
comnumber = array [1..10] of real;
comset = array [1..10] of set of material;
matstring = array [material] of string(25);

const
com_name = comstring('InP', 'GaAs', 'GaInAs', 'GaInAsP',
 'GaAlAs', 'AlAs', 'Si');
com_param = comnumber(5.8688E-10, 5.6535E-10, 0.0, 0.0, 0.0,
 5.6535E-10, 5.4307E-10);
com_type = comset([Im, P], [Ga, As], [Im, Ga, As],
 [Im, Ga, As, P], [Ga, As, Al], [As, Al],
 [Si]);
mat_name = matstring('In', 'Ga', 'As', 'P', 'Al', 'Si');

var
substrate: string(25);
first: string(25);
subcomp: matset;
firstcomp: matset;
layer_mat: array [1..200] of matset;
msource, msink, output_file: text;
wavelength: real;
no_layers: integer;
fh1, fh2, fo: complex;
ffh1, ffh2, ffo: complex;
lfh1, lfh2, lfo: array [1..200] of complex;
start, finish, alpha_step: real;
bstart, bfin, beta_step: real;
stheta, cphi, d_sub: real;
ftheta, fphi, d_first: real;
h, k, l: integer;
ii, jj, kk: integer;
fh, fk, fl, fii, fjj, fkk: integer;
thick, c: array [1..200] of real;
data: array [material] of parameters;
percent: mat_data;
div_diff: array [material, 1..2, 1..5] of real;
pnts: array [1..5] of real;
query: string(25);
polar: string(25);
first_diff: boolean;
approx: array [material] of record
 a: array [1..4] of real;
b: array [1..4] of real;
c: real;
end;
(* procedure to calculate lattice parameter and percentages of *)
(* each element in the composition *)

procedure lattice_param(composition: matset; mismatch: real;
 var d: real);

var
 i: integer;
 eg: real;

procedure initialise;

var
 element: material;

begin
 for element := Im to Si do begin
 percent[element] := 1.0;
 end;
end {initialise};

begin {lattice_param}
 if composition = [Im, Ga, As]
 then begin
 percent[Im] := (5.8688 * mismatch + 0.2153) / 0.405;
 percent[Ga] := 1.0 - percent[Im];
 percent[As] := 1.0;
 d := d_sub * (1.0 + 2.0 * mismatch);
 end
 else if composition = [Ga, As, Al]
 then begin
 percent[Al] := 5.6535 * mismatch / 0.0065;
 percent[Ga] := 1.0 - percent[Al];
 percent[As] := 1.0;
 d := d_sub * (1.0 + 2.0 * mismatch);
 end
 else if composition = [Im, Ga, As, P]
 then begin
 eg := 1.0E-06;
 eg := 6.6E-34*3.0E8/1.6E-19/eg;
 percent[As] := (0.72 - sqrt(sqrt(0.72)-4.0*0.12*
 (1.35-eg))) / 0.24;
 percent[Ga] := mismatch * 5.8688 - percent[As] *
 (6.0590 - 5.8688);
 percent[Ga] := percent[Ga] / (percent[As]
5.6535
+ (1 - percent[As]) * 5.4512
- percent[As] * 6.0590
- (1 - percent[As]) * 5.8688;

percent[im] := 1.0 - percent[Ga];
percent[P] := 1.0 - percent[As];
d := d_sub * (1.0 + 2.0 * mismatch);
end
else begin
 for i := 1 to 7 do begin
 if composition = com_type[i]
 then
d := com_param[i];
 initialise;
 end;
end
{lattice_param};
(* procedure to calculate structure factors for any material *)

procedure structuref(composition: matset; ds: real; ah, ak, al: integer; var ft1, ft2, fto: complex);

var
 element: material;
f1, f2, f: complex;
(* procedure to obtain the scattering factor from the *)
(* analytical approximation, table is in file ANALAPP.DAT *)

procedure scatt_fact(index: real; element: material;
 var f: real);

var
 i: integer;

begin
 f := 0.0;
 for i := 1 to 4 do begin
 f := f + approx[element].a[i] *
 exp(- approx[element].b[i] * sqr(index));
 end;
 f := f + approx[element].c;
end {scatt_fact};
(* procedure to calculate absorption and dispersion *)
(* corrections *)

procedure corrections(element: material; var df1, df2: real);

var
 lamda, mult: real;
fcorr: array [1 .. 2] of real;
i, j: integer;

begin
 lamda := wavelength * 1.0E10;
 for i := 1 to 2 do begin
 mult := 1.0;
fcorr[i] := 0.0;
 end;
for j := 1 to 5 do begin
 fcorr[i] := fcorr[i] + mult * div_diff[element, i, j];
 mult := mult * (lamba - pnts[j]);
end;
df1 := fcorr[1];
df2 := fcorr[2];
end {corrections};

(* procedure to calculate structure factors for an element *)
(* corresponding to the h, k, l; -h, -k, -l & 0, 0, 0 *)
(* reflections *)

procedure sfact(element: material; ds: real;
 var f0, f1, f2: complex);

var
 index, f: real;
 df1, df2: real;

procedure eval(hh, kk, ll: integer; var ff: complex);

var
 temp: complex;
 i: integer;
 position: real;

begin
 temp.re := 0.0;
 temp.im := 0.0;
 for i := 1 to data[element].napuc do begin
 position := hh * data[element].coord[i, 1] +
 kk * data[element].coord[i, 2] +
 ll * data[element].coord[i, 3];
 temp.re := temp.re + cos(2.0 * PI * position);
 temp.im := temp.im + sin(2.0 * PI * position);
 end;
 ff.re := temp.re * f - temp.im * df2;
 ff.im := temp.re * df2 + temp.im * f;
end {eval};

begin {sfact}
 index := sqrt(float(sqr(ah) + sqr(ak) + sqr(al))) /
 (ds * 1.0E10 * 2.0);
 scatt_fact(index, element, f);
 corrections(element, df1, df2);
 f := f + df1;
 eval(ah, ak, al, f1);
 eval(-ah, -ak, -al, f2);
 index := 0.0;
 scatt_fact(index, element, f);
 f := f + df1;
 eval(0, 0, 0, f0);
end {sfact};

begin {structuref}
 ft1.re := 0.0;
\begin{verbatim}
ft1.im := 0.0;
ft2.re := 0.0;
ft2.im := 0.0;
fto.re := 0.0;
fto.im := 0.0;
for element := Im to Si do begin
 if element IN composition then begin
 sfact(element, ds, f, f1, f2);
 ft1.re := ft1.re + f1.re * percent[element];
 ft1.im := ft1.im + f1.im * percent[element];
 ft2.re := ft2.re + f2.re * percent[element];
 ft2.im := ft2.im + f2.im * percent[element];
 fto.re := fto.re + f.re * percent[element];
 fto.im := fto.im + f.im * percent[element];
 end;
end;
end {structuref};
(* procedure to check material exists, if it doesn't rc=0, *)
(* else rc=1, code returns the number of elements in *)
(* the composition *)

procedure check(inpdat: string(25); var rc, code: integer;
var composition: matset);

var
j: integer;
 elem: material;

begin
 rc := 1;
 code := 0;
 for j := 1 to 7 do begin
 if inpdat = com_name[j] then begin
 composition := com_type[j];
 rc := 0;
 end;
 end;
 if rc = 0 then begin
 for elem := Im to Si do begin
 if elem IN composition then
 code := code + 1;
 end;
 end;
end {decomp};
(* procedure to read analytic approximation data and *)
(* dispersion and absorption correction data *)

procedure readparam;

var
element: material;
 indata: string(25);
 i, j, m: integer;
(* procedure to convert string input to element type *)
\end{verbatim}
procedure decode(inpdat: string(25); var element: material);

var
elem: material;

begin
for elem := Im to Si do begin
 if inpdat = mat_name[elem]
 then
 element := elem;
 end;
end {decode};

begin {readparam}
 reset(input, 'file=PHKO:ANALAPP.DAT');
 writeln(msink, 'Reading scattering factor data for',
 ' elements...wait');
 for i := 1 to 5 do begin
 read(input, pnts[i]);
 end;
 read(input, indata);
 repeat
 decode(indata, element);
 for i := 1 to 4 do begin
 read(input, approx[element].a[i], approx[element].b[i]);
 end;
 read(input, approx[element].c);
 for i := 1 to 2 do begin
 for j := 1 to 5 do begin
 read(input, div_diff[element, i, j]);
 end;
 end;
 read(input, data[element].napuc);
 for i := 1 to data[element].napuc do begin
 read(input, data[element].coord[i, 1],
 data[element].coord[i, 2],
 data[element].coord[i, 3]);
 end;
 read(input, indata);
 until indata = 'end';
end {readparam};

(* procedure to list material types available for InP *)
(* substrates *)

procedure IPchoice(var name: string(25));

begin
 writeln(msink, 'Please choose a layer material from the ',
 'following types');
 writeln(msink);
 writeln(msink, ' ', InP');
 writeln(msink, ' GaInAs');
 writeln(msink, ' GaInAsP');
 writeln(msink);
 writeln(msink, 'Layer material ? ');
 readln(msource, name);
end {IPchoice};
(* procedure to list material types for GaAs substrates *)

procedure GAchoice(var name: string(25));
begin
 writeln(msink, 'Please choose a layer material from the.
 following types');
 writeln(msink);
 writeln(msink, 'GaAs');
 writeln(msink, 'AlAs');
 writeln(msink, 'GaAlAs');
 writeln(msink);
 writeln(msink, 'Layer material ? ');
 readln(mssink, name);
end {GAchoice};
(* procedure to calculate layer parameters for a linear *)
(* or graded lattice parameter variation *)

procedure linear(curved : boolean);

var
total_thick: real;
curve, xcoord, ycoord, origin, radius : real;
i, rcode, mcode: integer;
mism_int, mism_sur: real;
layer_name: string(25);

begin
 page(msink);
 writeln(msink, 'GRADED LAYER PARAMETER INPUT');
 repeat
 if subcomp = [Im, P]
 then
 IPchoice(layer_name)
 else
 GAchoice(layer_name);
 check(layer_name, rcode, mcode, layer_mat[1]);
 if rcode < 0
 then
 writeln(msink, 'I don't know this material -',
 ' please choose again');
 if mcode < 2
 then
 writeln(msink, 'Can't have linear composition',
 ' variation with binary composition',
 ' - choose again');
 until (rcode = 0) AND (mcode > 2);
 repeat
 writeln(msink, 'Enter mismatch at layer/substrate',
 ' interface (ppm)');
 readln(mssink, mism_int);
 writeln(msink, 'Enter mismatch at surface of layer',
 ' (ppm)');
 readln(mssink, mism_sur);
 mism_sur := mism_sur * 1.0E-6;
 mism_int := mism_int * 1.0E-6;
 if mism_sur = mism_int
then
writeln(msink, 'No variation possible – choose again');
until mism_sur <> mism_int;
if curved
then begin
writeln(msink, 'Degree of non-linearity (0-100)');
readln(msource, curve);
end
else
curve := 0.0;
repeat
writeln(msink, 'How many laminae required');
readln(msource, no_layers);
if no_layers <= 0
then
writeln(msink, 'Impossible number of laminae – ',
 'try again');
if no_layers = 1
then
writeln(msink, 'Variation with one laminae ?',
 ' – try again');
until no_layers > 1;
writeln(msink, 'Total thickness of epitaxial layer',
 '(microns)');
readln(msource, total_thick);
total_thick := total_thick * 1.0E-6;
thick[1] := total_thick / float(no_layers);
if curve > 0.05
then begin
curve := (1.0/sqrt(2.0) - 0.5) * curve / 100.0 + 0.5;
origin := total_thick * (0.5 - sqr(curve)) /
 (1.0 - 2.0 * curve);
radius := 2.0 * sqr(curve * total_thick - origin);
for i := 1 to no_layers do begin
 xcoord := total_thick * (no_layers - i) /
 (no_layers - 1);
ycoord := sqrt(radius - sqr(xcoord - origin)) + origin;
c[i] := ycoord * (mism_sur - mism_int) / total_thick +
 mism_int;
 layer_mat[i] := layer_mat[1];
 thick[i] := thick[1];
end
end
else begin
 xcoord := (mism_sur - mism_int) / float(no_layers - 1);
c[1] := mism_int;
for i := 2 to no_layers do begin
 mism_int := mism_int + xcoord;
c[i] := mism_int;
 layer_mat[i] := layer_mat[1];
 thick[i] := total_thick / float(no_layers);
end
end;
end \{ linear \};
(* procedure to calculate multi-layer parameters *)

procedure multilayer;

var
code: array [1..2] of integer;
i, j, no_monol, no_monol2, rcode: integer;
misml, mism2: real;
cap: string(10);
layer_names: array [1..2] of string(25);

begin
page(msink);
writeln(msink, 'MULTI LAYER SYSTEM CALCULATION');
writeln(msink);
writeln(msink, 'For first layer of repeat pair');
repeat
if subcomp = [Im, P]
then
 IPchoice(layer_names[1])
else
 GAchoice(layer_names[1]);
check(layer_names[1], rcode, code[1], layer_mat[1]);
if rcode <> 0
then
 writeln(msink, 'I don''t know this material - ','
 'please choose again');
until rcode = 0;
if (code[1] > 2)
then begin
 writeln(msink);
 writeln(msink, 'Enter the mismatch for this layer',
 ' (ppm)');
 readln(msource, mism1);
 mism1 := mism1 * 1.0E-6;
end
else
mism1 := 0.0;
writeln(msink);
writeln(msink, 'and for the second layer of the repeat',
 ' pair');
repeat
repeat
if subcomp = [Im, P]
then
 IPchoice(layer_names[2])
else
 GAchoice(layer_names[2]);
check(layer_names[2], rcode, code[2], layer_mat[2]);
if rcode <> 0
then
 writeln(msink, 'I don''t know this material - ','
 'please choose again');
until rcode = 0;
if (code[2] > 2)
then begin
 writeln(msink);
 writeln(msink, 'Enter the mismatch for this ',
 'material (ppm)');
 readln(msource, mism2);
 mism2 := mism2 * 1.0E-6;
end
else
mism2 := 0.0;
if (layer_names[1] = layer_names[2]) AND (mism1 = mism2)
then begin
 writeln(msink, 'You have the same material for both ', 'layers with the same composition');
 writeln(msink, 'Please choose the second layer again');
end;
until (layer_names[1] <> layer_names[2]) OR ((layer_names[1] = layer_names[2]) AND (mism1 <> mism2));
writeln(msink, 'Enter the number of monolayers in the', 'first layer');
readln(msource, no_monol);
writeln(msink, 'and the number of monolayers in the second', 'layer');
readln(msource, no_mono2);
writeln(msink, 'Enter the total number of repeat units', 'required');
writeln(msink, 'i.e half the total number of layers');
readln(msource, no_layers);
lattice_param(layer_mat[1], mism1, c[1]);
lattice_param(layer_mat[2], mism2, c[2]);
 writeln(msink, 'Thickness of first layer = ', thick[1]);
 writeln(msink, 'Thickness of second layer = ', thick[2]);
 writeln(msink);
 writeln(msink, 'Total layer thickness = ', (thick[1] + thick[2]) * no_layers);
 writeln(msink);
 writeln(msink, 'Do you require a capping layer (Y/N)');
 readln(msource, cap);
 if (cap[1] = 'Y') OR (cap[1] = 'y') then begin
 i := no_layers * 2 + 1;
 writeln(msink, 'Enter material for capping layer');
 repeat
 if subcomp = [Im,P]
 then IPhchoice(layer_names[1])
 else GPhchoice(layer_names[1]);
 check(layer_names[1], rcode, code[1], layer_mat[i]);
 if rcode <> 0 then
 writeln(msink, 'Unknown material - choose again');
 until rcode = 0;
 writeln(msink, 'Enter thickness of capping layer', '(microns)');
 readln(msource, thick[i]);
 thick[i] := thick[i] * 1.0E-6;
 if code[1] > 2 then begin
 writeln(msink, 'Enter capping layer mismatch (ppm)');
 readln(msource, c[i]);
 c[i] := c[i] * 1.0E-6;
 end
 else
 c[i] := 0.0;
 end;
 writeln(msink, 'OK - calculating multi layer parameters');
j := 1;
for i := 1 to no_layers do begin
 thick[j] := thick[i];
thick[j + 1] := thick[2];
c[j] := mism1;
c[j + 1] := mism2;
layer_mat[j] := layer_mat[1];
layer_mat[j + 1] := layer_mat[2];
j := j + 2;
end;
no_layers := no_layers * 2;
if (cap[1] = 'Y') OR (cap[1] = 'y')
then
 no_layers := no_layers + 1;
end {multilayer};
(* procedure to input layer parameters *)

procedure single_in(num : integer);

var
 mism: real;
 rcode, mcode: integer;
 name: string(25);

begin
 repeat
 readln(msource, name);
 check(name, rcode, mcode, layer_mat[num]);
 if rcode <> 0
 then
 writeln(msink, 'Sorry don’t know this material - ',
 'choose again');
 until rcode = 0;
 if mcode > 2
 then begin
 writeln(msink, 'Enter mismatch (ppm)');
 readln(msource, mism);
 mism := mism * 1.0E-6;
 end
 else
 mism := 0.0;
 writeln(msink, 'Enter thickness of layer (microns)');
 readln(msource, thick[num]);
 thick[num] := thick[num] * 1.0E-6;
 c[num] := mism;
end {single_in};
(* procedure to input a single layer *)

procedure single:

begin
 page(msink);
 writeln(msink, 'SINGLE LAYER COMPOSITION');
 if subcomp = [Im,P]
 then begin
 writeln(msink);
 writeln(msink, 'Enter the layer material - either ',
 'GaInAs or GaInAsP');
 end
 else begin
 writeln(msink);
writeln(msink, 'Enter the layer material - either ',
'GaAlAs or AlAs');
end;
single_in(1);
no_layers := 1;
end (single);
(* procedure to input multiple arbitrary layers *)

procedure multiple;

var
 Is : integer;

begin
 page(msink);
 writeln(msink, 'MULTIPLE LAYER INPUT');
 writeln(msink);
 writeln(msink, 'Enter the number of layers required');
 readln(msource, no_layers);
 if subcomp = [Im, P]
 then begin
 writeln(msink, 'Choose the layers from GaInAs, GaInAsP ',
 'or InP only');
 writeln(msink);
 end
 else begin
 writeln(msink, 'Choose the layers from GaAlAs, GaAs or ',
 'AlAs only');
 writeln(msink);
 end;
 for Is := 1 to no_layers do begin
 writeln;
 writeln(msink, 'Enter the layer material for layer ',
 'number ', Is:3);
 single_in(Is);
 end;
end (multiple);

(* procedure to read layer parameters from a data file *)

procedure read_layer;

var
 filename : string(25);
 infile : text;
 js, ks : integer;

begin
 writeln(msink);
 writeln(msink, 'Enter file name containing layer',
 ' parameters');
 readln(msource, filename);
 filename := 'File=' || filename;
 reset(infile, filename);
 readln(infile, no_layers);
 for js := 1 to no_layers do begin
 readln(infile, thick[js], c[js], filename);
 for ks := 1 to 7 do begin
 if filename = com_name[ks]
 then layer_mat[js] := com_type[ks];
end;
end;
close(infile);
end;

(* procedure to input type of layer variation required and *)
(* call the appropriate routine *)

procedure layerin;

var
 choice: integer;
begin
 repeat
 writeln(msink, 'The following layer types are available');
 writeln(msink);
 writeln(msink, ' Single layer.......................1');
 writeln(msink, ' Linear variation....................2');
 writeln(msink, ' Non-linear variation...............3');
 writeln(msink, ' Multilayer structure.................4');
 writeln(msink, ' Other variation....................5');
 writeln(msink, ' Read variation from file............6');
 writeln(msink);
 writeln(msink, 'Please enter your choice');
 readln(msource, choice);
 until (choice > 0) AND (choice < 7);
 case choice of
 1: single;
 2: linear(false);
 3: linear(true);
 4: multilayer;
 5: multiple;
 6: read_layer;
 end;
end {layerin};

(* procedure to calculate layer structure factors *)

procedure layer_sfacts;

var
 i: integer;

begin
 page(msink);
 writeln(msink, 'Calculating layer structure factors');
 for i := 1 to no_layers do begin
 lattice_param(layer_mat[i], c[i], c[i]);
 structuref(layer_mat[i], c[i], h, k, l, \[h\]1[i], \[h\]2[i], \[o\]0[i]);
 end;
end {layer_sfacts};

(* procedure to input substrate parameters etc *)

procedure subin;

var
rcode, mcode: integer;

begin
 repeat
 writeln(msink, 'Enter material type for substrate of ',
 'the second crystal');
 readln(msource, substrate);
 check(substrate, rcode, mcode, subcomp);
 if rcode <> 0
 then
 writeln(msink, 'Sorry I don’t know of this material');
 if mcode > 2
 then
 writeln(msink, 'You have chosen either a ternary or ',
 'quaternary for the substrate!');
 if (rcode <> 0) OR (mcode > 2)
 then begin
 writeln(msink, 'Please enter the second crystal ',
 'substrate again');
 writeln(msink, '');
 end;
 until (rcode = 0) AND (mcode < 3);
 writeln(msink, 'Enter h, k, l for reflection');
 readln(msource, h, k, l);
 writeln(msink, 'Enter i, j, k for surface of crystal');
 readln(msource, ii, jj, kk);
 writeln(msink, 'Enter wavelength (A)');
 readln(msource, wavelength);
 wavelength := wavelength * 1.0E-10;
 repeat
 writeln(msink, 'Polarization state : s - sigma; p - pi; ',
 'r - random');
 readln(msource, polar);
 until (polar[1] = 's') OR (polar[1] = 'p') OR
 (polar[1] = 'r');
 if polar[1] = 's'
 then polar := 'SIGMA'
 else
 if polar[1] = 'p'
 then polar := 'PI'
 else
 polar := 'RANDOM';
 writeln(msink, 'Range of angles for reflectivity relative',
 ' to Bragg angle (secs)');
 readln(msource, start, finish);
 writeln(msink, 'Angular step between points (secs)');
 readln(msource, alpha_step);
 lattice_param(subcomp, 0, d_sub);
 structuref(subcomp, d_sub, h, k, l, fh1, fh2, fo);
 stheta := wavelength * sqrt((sqr(h) + sqr(k) + sqr(1)))
 / (d_sub * 2.0);
 cphi := sqrt((sqr(h) * ii + k * jj + l * kk))
 / float((sqr(h) + sqr(k) + sqr(1)) *
 (sqr(ii) + sqr(jj) + sqr(kk))));
end {subin};

procedure firstin;
var
 rcode, mcode: integer;

begin
 repeat
 writeln(msink, 'Enter material type for first crystal');
 readln(msourse, first);
 check(first, rcode, mcode, firstcomp);
 if rcode <> 0 then
 writeln(msink, 'Sorry I don’t know of this material');
 if mcode > 2 then
 writeln(msink, 'You have chosen either a ternary or quaternary for the first crystal');
 if (rcode <> 0) OR (mcode > 2) then begin
 writeln(msink, 'Please enter the first crystal again');
 writeln(msink);
 end;
 until (rcode = 0) AND (mcode < 3);
 writeln(msink, 'Enter h, k, l for reflection');
 readln(msourse, fh, fk, fl);
 writeln(msink, 'Enter i, j, k for the surface');
 readln(msourse, fii, fjj, fkk);
 lattice_param(firstcomp, 0, d_first);
 structuref(firstcomp, d_first, fh, fk, fl, ffh1, ffh2, ffo);
 ftheta := wavelength * sqrt(float(sqr(fh)+sqr(fk)+sqr(fl)) / (d_first * 2.0));
 fphi := sqrt(float(sqr(fh*fii + fk*fjj + fl*fkk)) / float((sqr(fh)+sqr(fk)+sqr(fl)) * (sqr(fii)+sqr(fjj)+sqr(fkk))));
 end {firstin};

(* procedure to output data to file INPDAT *)

procedure outdat;

var
 m: integer;
 date, time : alfa;

begin
 rewrite(output, 'File=PHK0:INPDAT');
 writeln(msink);
 writeln(msink, 'Writing data to file INPDAT', 'please wait');
 datatime(date, time);
 writeln(date);
 writeln(time);
 if NOT(first_diff) then first := substrate;
 writeln(substrate);
 writeln(first);
 if first_diff then
 writeln('YES')
 else
 writeln('NO');
 writeln(wavelength);
 writeln(polar);
writeln(start, finish);
writeln(alpha_step);
writeln(start, finish);
writeln(alpha_step);
writeln(stheta);
writeln(cphi);
writeln(fh1.re, ',', fh1.im);
writeln(fh2.re, ',', fh2.im);
writeln(fo.re, ',', fo.im);
writeln(d_sub);
writeln(no_layers);
writeln(h, k, l);
writeln(ii, jj, kk);
for m := 1 to no_layers do begin
 writeln(c[m]);
 writeln(thick[m]);
 writeln(1fh1[m].re, ',', 1fh1[m].im);
 writeln(1fh2[m].re, ',', 1fh2[m].im);
 writeln(1fo[m].re, ',', 1fo[m].im);
end;
if first_diff then begin
 writeln(ftheta);
 writeln(fphi);
 writeln(ffh1.re, ',', ffh1.im);
 writeln(ffh2.re, ',', ffh2.im);
 writeln(fo.re, ',', fo.im);
 writeln(d_first);
end;
end {outdat};

(* procedure to write layer parameters to a file *)

procedure write_layer;

var
 filename : string(25);
 outfile : text;
 js, ks : integer;

begin
 writeln(msink);
 writeln(msink, 'Enter file name for layer parameters');
 readln(msource, filename);
 filename := 'File=' || filename;
 rewrite(outfile, filename);
 writeln(outfile, no_layers);
 for js := 1 to no_layers do begin
 for ks := 1 to 7 do begin
 if layer_mat[js] = com_type[ks]
 then filename := com_name[ks];
 end;
 writeln(outfile, thick[js], c[js], filename);
 end;
 close(outfile);
end {write_layer};

(* procedure to edit layer parameters *)
procedure edit;
var
instring: string(25);
index, ascii: integer;
comchar: char;
number: array [1..3] of real;

procedure command(var ks: integer; stn: string(25);
var out: char);
begin {command}
repeat
 ks := ks + 1;
 out := stn[ks];
 until (out <> ' ') OR (ks = length(stn));
end;

procedure substr(var ks: integer; const stn: string(25);
var stout: string(25));

var
 ls: integer;
 out: char;

begin {substr}
repeat
 ks := ks + 1;
 out := stn[ks];
 until (out <> ' ') OR (ks = length(stn));
 ls := 1;
 stout := ' ';
repeat
 stout[ls] := out;
 ls := ls + 1;
 ks := ks + 1;
 if ks <= length(stn) then out := stn[ks];
 until (out = ' ') OR (out = ' ' OR (ks > length(stn)));
end {substr};

procedure num_in(n: integer);

var
 outstring: string(25);
 js: integer;

begin
 for js := 1 to n do begin
 if index < length(instring)
 then begin
 substr(index, instring, outstring);
 readstr(outstring, number[js]);
 end
 else number[js] := -999;
 end;
end {num_in};

procedure print(num: integer);

var
 js: integer;
 name: string(25);
begin
name := ' ';
for js := 1 to 7 do begin
 if layer_mat[num] = com_type[js]
 then name := com_name[js];
end;
writeln(',num:3, ', thick[num]*1.0E6:8:4, ', c[num]*1.0E6:8:4, ', name);
end {print};

procedure print_layers;
var
 js, n1, n2: integer;
 outstring : string(25);
begin
 num_in(2);
 n1 := trunc(number[1]); n2 := trunc(number[2]);
 if n2 > no_layers then n2 := no_layers;
 if n2 = -.999 then n2 := n1;
 if (n2 >= n1) AND (n1 <= no_layers)
 then begin
 writeln(' Layer number thickness (microns) mismatch (ppm) material');
 writeln;
 for js := n1 to n2 do begin
 print(js);
 end
 end
 else writeln(' layer number range error');
end;

procedure delete;
var
 n1, js : integer;
 outstring : string(25);
begin
 num_in(1);
 n1 := trunc(number[1]);
 if (n1 > 0) AND (n1 <= no_layers)
 then begin
 for js := n1 to (no_layers - 1) do begin
 thick[js] := thick[js+1];
 c[js] := c[js+1];
 layer_mat[js] := layer_mat[js+1];
 end;
 no_layers := no_layers - 1;
 writeln(' Layer number ', n1:3, ' deleted');
 end
 else writeln(' Layer number out of range');
end {delete};

procedure insert;
var
js, n1, rcode, mcode : integer;
mat : matset;
outstring : string(25);

begin
num_in(3);
if index < length(instring)
then begin
 substr(index, instring, outstring);
 check(outstring, rcode, mcode, mat);
end;
n1 := trunc(number[1]);
if (n1 > 0) AND (number[2] <> -999) AND (number[3] <> -999)
AND (rcode = 0) AND (n1 <= no_layers)
then begin
 if (n1 < no_layers) then begin
 for js := no_layers downto (n1+1) do begin
 thick[js+1] := thick[js];
 c[js+1] := c[js];
 layer_mat[js+1] := layer_mat[js];
 end;
 thick[n1+1] := number[2] * 1.0E-6;
 c[n1+1] := number[3] * 1.0E-6;
 layer_mat[n1+1] := mat;
 no_layers := no_layers + 1;
 print(n1+1);
 end;
end {insert};
procedure mismatch;

var
n1 : integer;

begin
num_in(2);
n1 := trunc(number[1]);
if (n1 > 0) AND (n1 <= no_layers) AND (number[2] <> -999)
then begin
 writeln;
 print(n1);
end
else
 writeln(' Input command error');
end {mismatch};

procedure thickness;

var
n1 : integer;

begin
num_in(2);
n1 := trunc(number[1]);
if (n1 > 0) AND (n1 <= no_layers) AND (number[2] <> -999)
then begin
 print(n1);
end;
end
else
 writeln(' Input command error');
end {thickness};

procedure comp_change;

var
 n1, rcode, mcode : integer;
 outstring : string(25);
 mat : matset;

begin
 num_in(1);
 n1 := trunc(number[1]);
 if index < length(instring)
 then begin
 substr(index, instring, outstring);
 check(outstring, rcode, mcode, mat);
 end;
 if rcode <> 0 then writeln(' Unknown material type - ',
 'request ignored');
 if (n1 > 0) AND (n1 <= no_layers) AND (rcode = 0)
 then begin
 layer_mat[n1] := mat;
 print(n1);
 end
 else if rcode = 0 then writeln(' Layer number error');
end {comp_change};

procedure help;

begin
 writeln;
 writeln(' The following commands are available');
 writeln;
 writeln(' P <layer no> <layer no> - Prints layer ',
 'parameters starting');
 writeln(' no. to the');
 writeln(' second no. is');
 writeln(' optional.');
 writeln(' T <layer no> <number> <layer no. to> - Changes thickness of',
 '<number>');
 writeln(' M <layer no> <number> <layer no. to> - Changes mismatch of',
 '<number>');
 writeln(' C <layer no> <material> <layer no. to> - Changes material of',
 '<material>');
 writeln(' D <layer no> <layer no. - Deletes data for ',
 'material>');
 writeln(' I <layer no> <number1> <number2> <material> - ',

'Inserts layer');
writeln;
writeln(' E - Exit from editor mode');
writeln;
writeln(' Note - all input should be separated by one or more spaces');
writeln;
end {help};

procedure illegal;
begin
 if (comchar <> 'E') AND (comchar <> 'e')
 then writeln(' command ?');
end {illegal};

begin {edit}
 reset(input, 'File=*MSOURCE*,Interactive');
 rewrite(output, 'File=*MSINK*, NOCC');
 page;
 writeln(' When prompted enter command - H for help');
 writeln;
 repeat
 writeln('&*');
 readln(instring);
 index := 0;
 command(index, instring, comchar);
 ascii := ord(comchar);
 if (ascii > 192) then ascii := ascii -64;
 case ascii of
 151 : print_layers;
 163 : thickness;
 148 : mismatch;
 131 : comp_change;
 132 : delete;
 136 : help;
 137 : insert
 otherwise illegal
 end;
 until (comchar = 'E') OR (comchar = 'e');
 end {edit};

(*) main program *)

begin {INPUT_ROCK}
 reset(msource, 'File=*MSOURCE*,Interactive');
 rewrite(msink, 'File=*MSINK*');
 page(msink);
 readparam;
 page(msink);
 subin;
 layerin;
 page(msink);
 writeln(msink, 'Do you want to edit the layer parameters ',
 '(Y/N)');
 readln(msource, query);
 if (query[1] = 'Y') OR (query[1] = 'y')
 then edit;
 writeln(msink);
 writeln(msink, 'Do you want to save the layer parameters ',

'(Y/N)');
readln(msource, query);
if (query[1] = 'Y') OR (query[1] = 'y')
 then write_layer;
layer_sfacts;
writeln(msink, 'Do you want a different first crystal (Y/N)');
readln(msource, query);
if (query[1] = 'Y') OR (query[1] = 'y')
 then begin
 first_diff := TRUE;
 firstin;
 end
 else
 first_diff := FALSE;
outdat;
writeln(msink);
end;
C ***
C * THIS PROGRAM DOES THE NUMBER CRUNCHING FOR ROCKING CURVES *
C * USING THE DATA FROM FILE INPDAT *
C * WHICH IS GENERATED BY THE PASCAL PROGRAM INPUT.ROCK.P *
C ***
C
REAL ALPHA(2000), FSUB(2000), THETA, PHI, PHIF, PI
INTEGER H, K, L, I, JJ, KK, PASS
COMPLEX FH1, FH2, FO, ZSUB(2000), FFH1, FFH2, FFO
CHARACTER*10 POLAR, SUBST, FIRST, DIFF
COMMON /AREA1/ ALPHA, ALSTEP, START, FINISH, NOPNTS, WAVE,
 1 POLAR, SUBST, FIRST, DIFF
COMMON /AREA2/ FH1, FH2, FO, DSUB, THETA, PHI
COMMON /AREA3/ FFH1, FFH2, FFO, DFIRST, THETF, PHIF
COMMON /AREA4/ BETA, BSTEP, BSTART, BFIN
COMMON /AREA5/ LFH1, LFH2, LFO, CLAYR, THICK, NOLAYS,
 1 H, K, L, IJ, JJ, KK

C Read data from file INPDAT
C
CALL READAT

C No of data points in single crystal reflectivity curves
C
NOPNTS = INT((FINISH - START)/ALSTEP + 1.5)
PASS = 1
WRITE (6,10)
 10 FORMAT ('Enter additional tilt angle (degrees) ? ')
READ(5,*), TILT
 TILT = TILT * 3.142 / 180.

C Calculate substrate reflectivity curve
C
20 CALL SUBREF(FH1, FH2, FO, DSUB, THETA, PHI, Fsub, ZSUB, 1
 TILT)

C Calculate layer reflectivity curve
C
CALL LAYREF(FSUB, ZSUB, FLAY, TILT)

C If first crystal <> substrate calculate its reflectivity
C
1 IF (DIFF(1:1) .EQ. 'Y') CALL SUBREF(FFH1, FFH2, FFO,
 1 DFIRST, THETF, PHIF, Fsub, ZSUB, 0.)
C
C Convolute reflectivity of first and second crystals
C
IF (PASS .EQ. 1) CALL CONVOL(Fsub, FLAY, FSIG)
IF (PASS .EQ. 2) CALL CONVOL(Fsub, FLAY, FP1)

C If random polarisation redo with pi polarisation
C
IF ((POLAR(1:1) .NE. 'R') .AND. (PASS .EQ. 1)) GO TO 50
IF (PASS .EQ. 2) GO TO 30
POLAR = 'PI'
PASS = 2
GO TO 20
C Add sigma and pi polarisations if random
C
30 DO 40 I = 1, NOPNTS
 FSIG(1) = FSIG(1) + FPI(I)
40 CONTINUE
C
C Write data to output file
C
50 WRITE (1,*) NOPNTS
 WRITE (1,*) BSTEP
 WRITE (1,*) BETA(1)
 DO 60 I = 1, NOPNTS
 WRITE (1,*) FSIG(I)
60 CONTINUE
STOP
END

C **
C * SUBREF - CALCULATES INFINITE CRYSTAL REFLECTIVITY *
C * OVER A RANGE OF ANGLES RELATIVE TO BRAGG ANGLE *
C **
C
SUBROUTINE SUBREF(FH1, FH2, FO, DS, THETA, PHI, FSUB, 1 ZSUB, TILT)
 REAL ALPHA(2000), FSUB(2000), THETA, PHI, DS, PI
 COMPLEX ZSUB(2000), FH1, FH2, FO, CH1H1, CH1H2, CHIO
 COMPLEX CSQRT, CABS, SQ, B, CH1, CH2
 CHARACTER*10 POLAR, SUBST, FIRST, DIFF
 COMMON /AREA1/ ALPHA, ALSTEP, START, FINISH, NOPNTS, WAVE, 1 POLAR, SUBST, FIRST, DIFF
 WRITE (6,10)
10 FORMAT (' CALCULATING SUBSTRATE REFLECTIVITY...')
 PI = 3.1415927
 CER = 2.817E-15
 VUC = DS ** 3
 FFACT = -(WAVE**2*CER) / (VUC*PI)
 CH1H1 = FH1 * FFACT
 CH1H2 = FH2 * FFACT
 CHIO = FO * FFACT
 GAMMAO = SIN(THETA - PHI - TILT)
 GAMMAH = SIN(THETA + PHI + TILT)
 CH1H1 = CH1H1 / GAMMAH
 CH1H2 = CH1H2 / GAMMAO
 ALPHA(1) = START
 WRITE (6,20) THETA, PHI
20 FORMAT (' THETA = ', F10.5, ' PHI = ', F10.5, ' RADIANS')
 DO 40 I = 1, NOPNTS
 THS = ALPHA(I) * PI / (3600.0*180.0)
 CH1 = CH1H1
 CH2 = CH1H2
 IF (POLAR(1:1) .NE. 'P') GO TO 30
 CH1 = CH1H1 * COS(2.0*(THETA + THS))
 CH2 = CH1H2 * COS(2.0*(THETA + THS))
30 CONTINUE
 B = (CHIO/GAMMAO + CHIO/GAMMAH + 2.0*THS*SIN(2.0*THETA))/ 1 GAMMAH) / 2.0
 SQ = CSQRT(B**2 - CH1*CH2)
 ZSUB(1) = -(B + SQ*SIGN(1.,AIMAG(SQ))) / CH2
FSUB(1) = (CABS(ZSUB(1))) ** 2
ALPHA(1 + 1) = ALPHA(1) + ALSTEP
40 CONTINUE
RETURN
END

C**
C * LAYREF - CALCULATES LAYER REFLECTIVITIES USING *
C * REFLECTIVITIES FROM SUBSTRATE AS STARTING POINT *
C**

SUBROUTINE LAYREF(FSUB, ZSUB, FLAY, TILT)
REAL ALPHA(2000), FSUB(2000), CLAYR(200), THICK(200), PHI
REAL FLAY(2000), PI
INTEGER H, K, L, I1, JJ, KK
COMPLEX ZSUB(2000), LFH1(200), LFH2(200), LFO(200)
COMPLEX FH1, FH2, FO, B, SQ, NUM, DEN, CSQRT, CCSOS, CSIN
COMPLEX CHIH1, CHIH2, CHIO, CH1, CH2, CTN
CHARACTER*10 POLAR, SUBST, FIRST, DIFF
COMMON /AREA1/ ALPHA, ALSTEP, START, FINISH, NOPNTS, WAVE, 1
POLAR, SUBST, FIRST, DIFF
COMMON /AREA2/ FH1, FH2, FO, DSUB, THETA, PHI
COMMON /AREA5/ LFH1, LFH2, LFO, CLAYR, THICK, NOLAYS,
1 H, K, L, I1, JJ, KK
PI = 3.1415927
CER = 2.817E-15
WRITE (6,10)
10 FORMAT (' CALCULATING LAYER REFLECTIVITY')
AH = FLOAT(H)
AK = FLOAT(K)
AL = FLOAT(L)
AI1 = FLOAT(I1)
AJJ = FLOAT(JJ)
AKK = FLOAT(KK)
DO 50 I = 1, NOLAYS
VUC = DSUB ** 2 * CLAYR(I)
FFACT = -(WAVE**2*CER) / (PI*VUC)
CHIH1 = LFH1(I) * FFACT
CHIH2 = LFH2(I) * FFACT
CHIO = LFO(I) * FFACT
DLAY = SQRT(1/(AH**2/DSUB**2 + AK**2/DSUB**2 + 1
AL**2/CLAYR(I)**2))
THETL = ARSIN(WAVE/(2.0*DLAY))
PHIL = (AH*AI1/DSUB**2 + AK*AJJ/DSUB**2 + 1
AL*AKK/CLAYR(I)**2) ** 2
1 CLAYR(I)**2)*(AI1**2/DSUB**2 + AJJ**2/DSUB**2 + AKK**2/ 1 CLAYR(I)**2))
PHIL = SQRT(PHIL)
PHIL = ARCOS(PHIL)
GAMMAO = SIN(THETL - PHIL - TILT)
GAMMAH = SIN(THETL + PHIL + TILT)
D = PI / WAVE * SQRT(GAMMAH/GAMMAO)
CHIH1 = CHIH1 / GAMMAH
CHIH2 = CHIH2 / GAMMAO
WRITE (6,20) I, THETL, PHIL
20 FORMAT (' LAYER NO ', I3, ' THETA = ', F10.5, ' PHI = ', 1
F10.5)
DO 40 J = 1, NOPNTS
THS = ALPHA(J) * PI / (3600.0*180.) + THETA - THETL +
PHIL - PHI

CH1 = CH1H1
CH2 = CH1H2
IF (POLAR(1:1) .NE. 'P') GO TO 30
CH1 = CH1H1 * COS(2.0*(THETL + THS))
CH2 = CH1H2 * COS(2.0*(THETL + THS))

CONTINUE

B = (CH1/GAMMAH + CH1/GAMMOA +
1 2.0*THS*SIN(2.0*THETL)/GAMMAH) / 2.0
SQ = CSQRT(B**2 - CH1*CH2)
CTN = CSIN(SQ*D*(-THICK(I))) / CCOS(SQ*D*(-THICK(I)))
NUM = ZSUB(J) * SQ + (0.0, 1.0) * (CH1 + ZSUB(J)*B) * CTN
DEN = SQ - (0.0, 1.0) * (B + ZSUB(J)*CH2) * CTN
ZSUB(J) = NUM / DEN
FLAY(J) = CABS(ZSUB(J)) ** 2

CONTINUE

RETURN
END

* CONVOL - CALCULATES CONVOLUTION OF DATA SETS FSB1 & FLAY *

SUBROUTINE CONVOL(FSUB, FLAY, FCON)
CHARACTER*10 POLAR, SUBST, FIRST, DIFF
COMMON /AREA1/ ALPH, ALSTEP, START, FINISH, NOPNTS, WAVE, 1
POLAR, SUBST, FIRST, DIFF
COMMON /AREA4/ BETA, BSTEP, BSTART, BF1N
NPNTS = INT((BF1N - BSTART)/BSTEP + 1.5)
WRITE (6,10)
10 FORMAT (' CALCULATING CONVOLUTION')
BETA(1) = BSTART
DO 20 I = 1, NPNTS
 CALL MULT(FSUB, FLAY, BETA(I), F, NDP)
 FCON(I) = A1NTG(ALPH, F, NDP)
 BETA(1 + I) = BETA(I) + BSTEP
20 CONTINUE
RETURN
END

* MULTIPLIES TWO DATA SETS, ONE OFFSET FROM THE OTHER BY BETA *

SUBROUTINE MULT(FSUB, FLAY, BETA, F, NDP)
CHARACTER*10 POLAR, SUBST, FIRST, DIFF
COMMON /AREA1/ ALPH, ALSTEP, START, FINISH, NOPNTS, WAVE, 1
POLAR, SUBST, FIRST, DIFF
NDP = 0
N = NOPNTS - 1
L = 1
IF ((ALPH(1) + BETA) .GT. ALPH(NOPNTS)) RETURN
IF ((ALPH(NOPNTS) + BETA) .LT. ALPH(1)) RETURN
DO 50 I = 1, NOPNTS
 IF ((ALPH(1) + BETA) .GT. ALPH(NOPNTS)) GO TO 60
 IF ((ALPH(1) + BETA) .LT. ALPH(1)) GO TO 40
50 CONTINUE
RETURN
END
DO 20 J = L, N
 H = ALPHA(I) + BETA - ALPHA(J)
 SH = ALPHA(J + 1) - ALPHA(J)
 IF (H .GT. SH) GO TO 10
 G = FLAY(J) * (1 - H/SH) + FLAY(J + 1) * H / SH
GO TO 30
10 CONTINUE
20 CONTINUE
30 NDP = NDP + 1
 F(NDP) = FSUB(I) * G
 L = J
40 CONTINUE
50 CONTINUE
60 CONTINUE
RETURN
END

C **
C * AINTG - CALCULATES AREA UNDER MULTIPLIED DATA SET F *
C **

FUNCTION AINTG(ALPHA, F, NDP)
N = NDP - 1
AINTG = 0.0
DO 10 I = 1, N
 H = ALPHA(I + 1) - ALPHA(I)
 AINTG = AINTG + (F(I) + F(I + 1)) * H / 2.0
10 CONTINUE
RETURN
END

C **
C * READAT - READS DATA FROM FILE INPDAT *
C **

SUBROUTINE READAT
INTEGER H, K, L, II, JJ, KK
COMPLEX ZSUB(2000), FH1, FH2, FO, FFH1, FFH2, FFO
CHARACTER*10 POLAR, SUBST, FIRST, DIFF, DATE, TIME
COMMON /AREA1/ ALPHA, ALSTEP, START, FINISH, NOPNTS, WAVE, 1
 POLAR, SUBST, FIRST, DIFF
COMMON /AREA2/ FH1, FH2, FO, DSUB, THETA, PHI
COMMON /AREA3/ FFH1, FFH2, FFO, DFIRST, THETF, PHIF
COMMON /AREA4/ BETA, BSTEP, BSTART, BFIN
COMMON /AREA5/ LHF1, LHF2, LFO, CLAYR, THICK, NOLAYS, 1
 H, K, L, II, JJ, KK

C Read data from file INPDAT
C
CALL FTNCMD('ASSIGN 3=INPDAT;')
READ (3,10) DATE
READ (3,10) TIME
READ (3,10) SUBST
READ (3,10) FIRST
READ (3,10) DIFF
READ (3,*) WAVE
READ (3,10) POLAR
READ (3,*) START, FINISH
READ (3,*) ALSTEP
READ (3,*) BSTART, BF1N
READ (3,*) BSTEP
10 FORMAT (', A10)
WRITE (6,20) TIME, DATE
20 FORMAT (', DATA GENERATED AT ', A10, ' ON ', A10)
WRITE (6,30) FIRST, SUBST
30 FORMAT (', First crystal is ', A10, ', Second crystal is ',
1
A10)
WRITE (6,40) WAVE
40 FORMAT (', Wavelength = ', E12.5)
WRITE (6,50) POLAR
50 FORMAT (', Polarization state is ', A10)
WRITE (1,*) DATE
WRITE (1,*) TIME
WRITE (1,*) SUBST
WRITE (1,*) FIRST
WRITE (1,*) WAVE
WRITE (1,*) POLAR

C
Read substrate variables
C

READ (3,*) THETA
READ (3,*) PHI
READ (3,*) FH1
READ (3,*) FH2
READ (3,*) FO
READ (3,*) DSUB
THETA = ARSIN(THETA)
PHI = ARCOS(PHI)
WRITE (1,*) THETA, PHI, DSUB

C
Read layer variables
C

READ (3,*) NOLAYS
READ (3,*) H, K, L
READ (3,*) II, JJ, KK
DO 60 I = 1, NOLAYS
 READ (3,*) CLAYR(I)
 READ (3,*) THICK(I)
 READ (3,*) LFH1(I)
 READ (3,*) LFH2(I)
 READ (3,*) LFO(I)
60 CONTINUE
WRITE (1,*) NOLAYS
WRITE (1,*) H, K, L
WRITE (1,*) II, JJ, KK
DO 70 I = 1, NOLAYS
 WRITE (1,*) CLAYR(I), THICK(I)
70 CONTINUE

C
Read first crystal variables if necessary
C

IF (DIFF(1:1) .EQ. 'N') GO TO 90
WRITE (6,80)
80 FORMAT (' Reading first crystal parameters')
READ (3,*) THETF
READ (3,*) PHIF
READ (3,*) FFH1
READ (3,*) FFH2
READ (3,*) FF0
READ (3,*) DFIRST
THETF = ARSIN(THETF)
PHIF = ARCOS(PHIF)
90 CONTINUE
RETURN
END
This programme plots the reflectivity against angle of incidence from the convoluted data. The effect of curvature can be added by smoothing over a given no. of data points.

THE *GHOST SYSTEM IS USED.

Define constants used to determine scaling of graph

WRITE (6,10)
10 FORMAT (' Please wait ... reading data from disc file')
FILE = 1
RMAX = 0.
RMIN = 1E20
MAX = 0.
MIN = 10000.
MM = 0.
TOL = 0.
MMIN = 1000.

Read data from disc file

READ (FILE,20) DATE
READ (FILE,20) TIME
20 FORMAT (3A4)
WRITE (6,30) TIME, DATE
30 FORMAT (' DATA GENERATED AT ', 3A4, ' ON ', 3A4)
READ (FILE,50) SUBST
READ (FILE,50) FIRST
READ (FILE,*) WAVE
READ (FILE,50) POLAR
READ (FILE,*) THETA, PHI, DSUB
READ (FILE,*) NOLAYS
READ (FILE,*) H, K, L
READ (FILE,*) II, JJ, KK
DO 40 I = 1, NOLAYS
 READ (FILE,*) M(I), W(I)
 M(I) = (M(I) - DSUB) / DSUB * 1.0E6
 WOL(I) = W(I) * 1.0E6
 TOL = TOL + WOL(I)
 IF (M(I) .GT. MM) MM = M(I)
 IF (M(I) .LT. MMIN) MMIN = M(I)
40 CONTINUE
50 FORMAT (3A4)
READ (FILE,*) NOPNTS
READ (FILE,*) BSTEP
READ (FILE,*) BETA(1)
DO 60 J = 1, NOPNTS
 READ (FILE,*) REFS(J)
 IF (BETA(J) .GT. MAX) MAX = BETA(J)
IF (BETA(J) .LT. MIN) MIN = BETA(J)
IF (REFS(J) .GT. RMAX) RMAX = REFS(J)
IF (REFS(J) .LT. RMIN) RMIN = REFS(J)
BETA(J + 1) = BETA(J) + BSTEP

60 CONTINUE

C Input of range of data to be plotted

WRITE (6,70) BSTEP
70 FORMAT (' The data has an angular step interval of ', F5.1,
 1 ' secs')
WRITE (6,80)
80 FORMAT (' Enter the change in angle along the incident',
 1 ' X-ray beam (secs)')
READ (5,*) ASMTH
ISMTH = INT(ASMTH/BSTEP)
IF (ISMTH .LE. 1) GO TO 110
RMAX = 0.
RMIN = 1E20
NOPNTS = NOPNTS - ISMTH
DO 100 J = 1, NOPNTS
 REFL = 0.
 DO 90 I = 1, ISMTH
 REFL = REFL + REFS(I + J - 1)
90 CONTINUE
REFS(J) = REFL
IF (REFS(J) .GT. RMAX) RMAX = REFS(J)
IF (REFS(J) .LT. RMIN) RMIN = REFS(J)
100 CONTINUE

110 WRITE (6,120)
120 FORMAT (' Do you require a logarithmic scale (Y/N)')
READ (5,130) CHOICE
130 FORMAT (4A1)
 IF (.NOT. (EQUC(CHOICE(1), 'Y'))) GO TO 150
RMAX = 1E-20
RMIN = 1E20
DO 140 I = 1, NOPNTS
 REFS(I) = ALOG10(REFS(I))
 IF (REFS(I) .GT. RMAX) RMAX = REFS(I)
 IF (REFS(I) .LT. RMIN) RMIN = REFS(I)
140 CONTINUE

150 WRITE (6,160)
160 FORMAT (' NORMALIZING DATA')
DO 170 I = 1, NOPNTS
 REFS(I) = (REFS(I) - RMIN) / (RMAX - RMIN) * 100.
170 CONTINUE

RMAX = 100.
RMIN = 0.
WRITE (6,180)
180 FORMAT (' Range of data to plot is:- ')
WRITE (6,190) MIN, MAX, RMIN, RMAX
190 FORMAT (' Xmin=', F10.4, 2X, 'Xmax=', F9.4, 2X, 'Ymin=',
 1 F5.2, 'Ymax=', F10.4)
WRITE (6,200)
200 FORMAT (' Enter range to be plotted in X direction')
WRITE (6,210)
210 FORMAT ('& from ? ')
READ (5,*) MIN
WRITE (6,220)
220 FORMAT ('& to ? ')
C Plot defined region of data using *GHOST routines
C Information box first
C
CALL PAPER(1)
CALL BLKPEN
CALL PSSPACE(0.80, 1.0, 0., 0.56)
CALL CSPACE(0.80, 1.0, 0., 0.56)
CALL MAP(0., 1., 0., 1.)
CALL CTRMAG(7)
CALL BORDER
CALL PLACE(0, 0)
CALL CRLFNS(4)
CALL TYPECS(' DATA GENERATED AT : ', 21)
CALL TYPECS('TIME, 10)
CALL CRLFND
CALL TYPECS(' ON : ', 21)
CALL TYPECS('DATE, 10)
CALL CRLFNS(3)
CALL TYPECS(' SECOND CRYSTAL : ', 19)
CALL TYPECS('SUBST, 10)
CALL CRLFNS(3)
CALL TYPECS(' FIRST CRYSTAL : ', 17)
CALL TYPECS('FIRST, 10)
CALL CRLFNS(3)
CALL TYPECS(' POLARIZATION : ', 16)
CALL TYPECS('POLAR, 10)
CALL CRLFNS(3)
CALL TYPECS(' WAVELENGTH = ', 14)
CALL TYPENE(WAVE, 5)
CALL TYPECS('M', 2)
CALL CRLFNS(3)
CALL TYPECS(' BRAGG ANGLE = ', 16)
CALL TYPENE(THETA, 5)
CALL CRLFNS(3)
CALL TYPECS(' PHI = ', 7)
CALL TYPENE(PHI, 5)
CALL CRLFNS(3)
CALL TYPECS(' REFLECTION = ', 14)
CALL TYPENI(H, 2)
CALL TYPENI(K, 2)
CALL TYPENI(L, 2)
CALL CRLFNS(3)
CALL TYPECS(' SURFACE = ', 11)
CALL TYPENI(II, 2)
CALL TYPENI(JJ, 2)
CALL TYPENI(KK, 2)
CALL CRLFNS(3)
CALL TYPECS(' LAYER THICKNESS = ', 19)
CALL TYPENF(TOL, 5)
CALL CTRSET(4)
CALL TYPECS('M', 2)
CALL CTRSET(1)
CALL TYPECS('M', 1)
CALL CRLNFS(3)
CALL TYPECS('NO OF LAYERS : ', 16)
CALL TYPENI(NOLAYS, 3)
IF (ISMTH .LE. 1) GO TO 250
CALL CRLNFS(3)
CALL TYPECS('CURVATURE ANGLE ', 17)
ASMTH = BSTEP * ISMTH
CALL TYPENF(ASMTH, 5)
CALL TYPECS('SECS', 5)
250 CONTINUE
C
C Now plot the rocking curve and axes
C
C Labels first
C
CALL PSPACE(.01, .74, 0.08, .5)
CALL CSPACE(.0, 1., .0, 1.)
CALL MAP(0., 1., 0., 1.)
CALL CTRMAG(20)
CALL CTRSET(3)
CALL PLOTCS(0.70, 0.005, 'D', 1)
CALL CTRSET(4)
CALL TYPECS('I', 1)
CALL CTRSET(2)
CALL TYPECS(' (SECS)', 8)
CALL CTRSET(1)
CALL CTORI(1.0)
CALL PLOTCS(0.02, 0.35, 'REFLECTIVITY (%)', 16)
CALL CTORI(0.0)
CALL PSPACE(.10, .74, 0.14, 0.5)
CALL CSPACE(.00, .80, 0.00, 0.6)
CALL MAP(MIN, MAX, RMIN, RMAX)
CALL CTRMAG(12)
C
C Draw axes
C
CALL MARK(MAX - MIN, SX)
CALL MARK(RMAX, SY)
CALL AXESSI(SX, SY)
C
C Plot the rocking curve
C
CALL NSCURV(BETA, REFS, 1, NOPNTS)
C
C Draw graph of layer mismatch vs depth
C
CALL PSPACE(0.80, 1.00, 0.00, 0.20)
CALL THICK(1)
CALL BLKPEN
CALL CSPACE(.80, 1.0, .00, 0.2)
CALL MAP(0., 0.2, 0., 0.4)
CALL CTRMAG(6)
CALL PLOTCS(0.05, 0.02, 'DEPTH BELOW SURFACE', 19)
CALL CTRSET(4)
CALL TYPECS('M', 2)
CALL CTRSET(1)
CALL TYPECS('M', 1)
CALL POSITN(0.01, 0.08)
CALL CTORI(1.0)
CALL TYPECS('LATTICE MISMATCH (PPM)', 22)
CALL CTROR(0.)
IF (MMIN .GT. 0.) MMIN = 0.
CALL PSPACE(.85, .95, .04, .16)
CALL MAP(0., TOL, MMIN, MM)
CALL MARK(TOL*2., SX)
CALL CTRMAG(3)
CALL MARK((MM - MMIN)*2., SY)
CALL AXESSI(SX, SY)
CALL POSITN(0., M(NOLAYS))
WW = WOL(NOLAYS)
PNOL = NOLAYS
IF (NOLAYS .EQ. 1) GO TO 270
NL = NOLAYS - 1
DO 260 L = 1, NL
 CALL JOIN(WW, M(PNOL))
 CALL JOIN(WW, M(PNOL - 1))
 WW = WW + WOL(PNOL - 1)
 PNOL = PNOL - 1
260 CONTINUE
270 CALL JOIN(WW, M(PNOL))
 CALL JOIN(WW, 0.)
C
C End plotting
C
 CALL GREN
 STOP
 END
C
C routine to calculate tick lengths along axes
C
 SUBROUTINE MARK(RANGE, STEP)
 IB = IFIX(ALOG10(RANGE))
 A = RANGE / 10.0 ** IB
 IF ((A .GE. 1.) .AND. (A .LT. 3.))
 1 STEP = 2. * 10. ** (IB - 1)
 IF ((A .GE. 3.) .AND. (A .LT. 7.))
 1 STEP = 5. * 10. ** (IB - 1)
 IF ((A .GE. 7.) .AND. (A .LT. 10.))
 1 STEP = 1 * 10. ** IB
 RETURN
 END
C
C routine to provide n crlnfds
C
 SUBROUTINE CRLNFS(N)
 DO 10 I = 1, N
 CALL CRLNFD
 10 CONTINUE
 RETURN
 END
APPENDIX B

PROGRAMMING THE MINICAM I.C.C. BOARD FOR ASCII SERIAL DATA

The software required to operate the two channel I.C.C. serial interface is described. A full 6502 disassembler and a memory dump utility are also implemented. These follow, in principle, those described in 'Beyond Games: System Software for your 6502 Personal Computer' by Ken Skier. This new software plus the original, slightly modified, 'Minicon' software occupies about 3k of code and therefore requires two of the board's 2k, 2532 type, EPROMs.

The board control software, 'Minicon', occupies the EPROM located at $F000 to $FFFF, and also contains the 6502 reset routines. The disassembler and monitor are contained in the EPROM from $E000 to $EFFF. Since the monitor uses code located within the other EPROM a jump table is provided at $F000 onwards to enable these routines to be located even if their absolute location within the other EPROM is altered during development. The jump instructions within this table are guaranteed not to be altered, thus avoiding the need to reprogramme all the EPROMs if code in one is changed. This system is similar to the operating system jump table provided on the BBC microcomputer (OSWRCH, OBYTE, OSWORD, OSFILE etc).

During RESET the stack is setup and interrupts disabled. The least significant five bits of the address switch on the main board are used to set the GPIB address register in the 68488. Once the two 6850's have been master reset, the word format switch on the serial board is read and the least significant four bits and most significant four bits used to program the second and first 6850's respectively. The clock divide ratio in both chips is set to 16, since the 4702 produces 16 times the standard baud rates. The top three bits of the address switch are then used to determine which mode of operation is required. The location of the required code is copied on to the zero page from the table RESTAB to enable an indirect jump to the code.

If interrupts are enabled by any code the 6502 is vectored to a piece of code that jumps to the location held in $00.301. This location is initially set to the remainder of the interrupt handler in the EPROM $F000-$FFFF. However, if the user wishes to provide another interrupt handler the location held in $00.301 can easily be altered.

Routines using the GPIB bus as the host interface set the flags IEEFLG, used to select the input device in the character input routine, and IEEEPR, used to select the output device during character output. Ascii modes also set the flag NEWFLG, which is used by the board control routines to determine whether the existing binary output routines or the new Ascii ones should be used. Additionally, the character output routine uses the flags HOST and PRINTR to determine whether output should go to the host or printer serial ports, and the flag IEEEPR for the GPIB port as output. Note that more than one of the flags HOST, PRINTR
and IEEEPRT can be set at once, enabling output to be sent to more than one device simultaneously.

The operating modes supported at present are:

Monitor - development mode with disassembler and memory dump options. Uses the host serial port or GPIB port.

Minicon - mode for control of modules, can be used either in binary or ascii. Ascii with host serial port or GPIB port, binary only with GPIB port.

GPIB to serial - takes data from the GPIB port and transmits it via the host serial port. Hardware handshaking can be used to control the flow of data from the serial port. At present only unidirectional.

Serial - takes data from the host serial port and transmits it via the printer serial port. No buffering is performed so the printer port should operate at baud rates greater than or equal to the host port baud rate.

Monitor

This routine is designed to operate with a dumb terminal. Once the routine is entered all variables are initialised by a jump to INIT. The 6850 is set with RTS low, to prevent input from the terminal. The state of the flag IEEPLG is checked to determine whether the GPIB port or the host serial port has been selected. For GPIB operation the flags HOST and PRMTR are cleared and IEEEPRT set, while for serial operation E_ST is set and PRINTR, IEEEPRT cleared. A start up message is then transmitted plus the prompt character, "*", which is useful to check that communication formats are correctly set. If serial control is selected the RTS line is then set high, allowing input.

Characters are received and stored in the input buffer located at $0300. If either a backspace or delete is detected action is taken to remove the last character from the buffer, provided that it is not already empty. The character received is echoed back to the terminal unless it was a delete or backspace with an empty buffer, when an ascii bell is echoed. Once a carriage return is received the input routine is exited and the first character checked for a valid command. The commands currently available are selected as below:

<table>
<thead>
<tr>
<th>Character</th>
<th>Variables</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Start, End Addresses</td>
<td>Disassemble from start address to end address</td>
</tr>
<tr>
<td>M</td>
<td>Start, End Addresses</td>
<td>Dump memory between start address and end address</td>
</tr>
<tr>
<td>E</td>
<td>none</td>
<td>Exit to Minicon</td>
</tr>
</tbody>
</table>
If a valid character is found the relevant routine is entered otherwise the message 'COMMAND' is transmitted followed by a jump back to the start of this routine. For those commands requiring input of variables, i.e. D and M, the routine STEASA is entered. Starting from the end of the input buffer each character, corresponding to a hexadecimal digit, is removed and converted to binary. If conversion to binary produces an error because the character was not a valid hexadecimal digit the message 'COMMAND ERROR' is transmitted and the routine terminated with the carry flag set. Once a valid binary value is found it is added to the start or end address value as necessary, after multiplying by the required factor of 16 (left shift four times). The two addresses should be separated by a space character. If STEASA is successful in obtaining two valid 16 bit addresses the carry flag is cleared and the routine terminated.

The disassembly and memory dump routines are then entered once valid start and end addresses have been found. Since the table driven disassembler and memory dump are similar to those described in Ken Skier's book they will not be described here. There are, however, some errors present in the tables contained within the book. Output from these routines is performed by the routine PRTCHR, which transmits output according to the previously described flags. The P command can be used to toggle the flag PRINTR on and off to enable hardcopy to be obtained on a serial printer attached to the printer port.

Minicon

Once entered this routine selects the output devices in a similar manner to the monitor routine. Characters received are placed in the same input buffer but no interpretation of backspace or delete is made. No characters are echoed back to the terminal/microcomputer. This routine is designed, primarily, to operate with a microcomputer where echoing of the input would be unnecessary. Once the currently selected input terminator byte is received the character entry routine is entered and the buffer decoded. Since the number of commands provided by this routine is far greater than those offered by the monitor a rather more sophisticated decoding process is implemented in order to save memory space. Commands are selected by a two letter code and a one number option, e.g. AD1, thus allowing up to 260 possible commands. The input data, if required, should then follow, separated from the command name by a comma with each number delimited also by a comma (e.g. ST1,32,1000,100).

The first character in the buffer is removed from the buffer
and checked to be in the range 'A' to 'Z' by subtracting 65 and testing for the byte to be in the range >=0 and <26. If the byte is out of this range the message 'BAD COMMAND' is transmitted and the input section reentered. A valid byte is then used as an index to the table of valid second characters CHTAB. This character is compared with the second character in the input buffer and if they do not agree the 'BAD COMMAND' error message is returned as above. The third character is then removed from the buffer and checked for validity by subtracting 48 to give a range of 0 to 9. If it is non valid the error message 'BAD OPTION' is returned. The table JMPTAB contains the addresses minus one of the possible routines and is accessed by the following technique. The valid first character byte is used to obtain an offset number from the table OFFSET which gives the offset of the start of the addresses for a particular command from the start of JMPTAB. The byte obtained from the option number is multiplied by two and added to this offset thus pointing to the high byte of the required address. This value is fetched and pushed onto the stack. The preceding low byte value is then also fetched and pushed onto the stack. An RTS instruction then fetches this address off the stack and sets the program counter to this address plus one which will be the start of the required code.

The majority of the routines accessed in this way then remove the required number of input parameters from the input buffer, converting from ascii decimal to binary, with commas as number delimiters. Conversion from decimal to binary is not so straightforward as from hexadecimal to binary. In order to avoid binary multiplication and increase the speed of the conversion a tabular method is used. The decimal number removed from the buffer is checked for validity, if it is not a '0' to '9' the error 'VARIABLE ERROR' is returned. A valid byte is then used to access tables of 10’s, 100’s, 1000’s, 10000’s which contain the binary value of 10.20...90; 100,200,...900 etc. The values obtained from these tables are added to the units value to give the binary number. The numbers obtained are stored consequetively from address VA ($40) which correspond to the original Minicon input values. A jump to the original module handling routines is then made. These routines, slightly modified, are contained in the $F000 EPROM.

Some of the original Minicon routines have an overlap function, returning data to complete the communication process before actually operating the module, allowing the controlling computer to perform some other tasks while, for example, a stepper motor is driving a large number of steps. This option is implemented in the new software as another option number, with the message 'OK' being returned.

When a routine has finished the software informs the controlling computer by transmitting a message or value read from a module. The value read from the module is converted to ascii before transmission if the flag NEWFLG is set. When NEWFLG is clear the original binary GPIB output routine is used. For modules that are output devices the message 'OK'
is returned, while for input modules that can generate errors, such as an overrange on an A to D module, a meaningful error message is transmitted. Possible error messages are 'OVERRANGE' for an A to D overrange or 'TIMED OUT' for either a faulty or non-present A to D or an incomplete handshake on a GPIB (general purpose input board).

If a Minicon routine generates a negative value, such as an A to D, the routine sets the flag NEGFLG, informing the output routine that the value returned is in two’s complement. The output routine REPLAN then takes the two’s complement of this value before converting to ascii and transmits a minus sign before infront of the ascii coded value. Conversion to ascii is performed by using the well known double babble method. This routine, BINASC, returns with three bytes in the output buffer representing six BCD numbers. The output bytes are then converted to ascii, 4 bits at a time, by adding 48. The flag LEADZ is used to suppress the transmission of leading zeros, but if the output routine ends with LEADZ still clear the value is zero so one zero is transmitted.

In addition to the existing Minicon routines a number of new ones have been added, particularly those enabling use of the extra serial ports. These are detailed along with the other commands available below.
<table>
<thead>
<tr>
<th>Command</th>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD1</td>
<td>address</td>
<td>reads A to D number ('<\text{address}', same as old \text{usr}(5). \</td>
</tr>
<tr>
<td>AD2</td>
<td>add., n1, n2</td>
<td>operates 16 channel autoranging A to D, same as \text{usr}(10). \</td>
</tr>
<tr>
<td>CO1</td>
<td>address, n1</td>
<td>counts for ('<\text{n1}', 100th's second using scalar module number ('<\text{address}'. Same as \text{usr}(2). \</td>
</tr>
<tr>
<td>CO2</td>
<td>address, n1</td>
<td>same as \text{CO1} but overlap option is implemented. \</td>
</tr>
<tr>
<td>DA1</td>
<td>address, n1</td>
<td>outputs value ('<\text{n1}', to two channel D to A number ('<\text{address}'. Same as \text{usr}(4) without 512 added to address. \</td>
</tr>
<tr>
<td>DA2</td>
<td>address, n1</td>
<td>outputs value ('<\text{n1}', to 4 channel D to A number ('<\text{address}'. Same as \text{usr}(4) with 512 added to address. \</td>
</tr>
<tr>
<td>GP1</td>
<td>address</td>
<td>inputs 16 bit value from general purpose input board (GPIB), same as \text{usr}(8). \</td>
</tr>
<tr>
<td>MO1</td>
<td>nothing</td>
<td>jumps to the binary version of Minicon for use via the GPIB interface. \</td>
</tr>
<tr>
<td>MO2</td>
<td>nothing</td>
<td>jumps to the new ascii monitor with the GPIB interface selected as the input and output port. \</td>
</tr>
<tr>
<td>MO3</td>
<td>nothing</td>
<td>jumps to the ascii version of Minicon with the GPIB interface selected. \</td>
</tr>
<tr>
<td>MO4</td>
<td>nothing</td>
<td>jumps to the new ascii monitor with the host serial port selected. \</td>
</tr>
<tr>
<td>MO5</td>
<td>nothing</td>
<td>jumps to the GPIB to host serial port routine. \</td>
</tr>
<tr>
<td>PR1</td>
<td>string</td>
<td>Outputs the characters in the string via the printer serial port. The carriage return is transmitted plus any other termination byte as selected by PR2 (e.g. linefeed). \</td>
</tr>
<tr>
<td>PR2</td>
<td>byte</td>
<td>the character ('<\text{byte}', is used as the terminator byte by PR1. \</td>
</tr>
<tr>
<td>RD1</td>
<td>nothing</td>
<td>returns value held in output buffer, same as \text{usr}(0). \</td>
</tr>
<tr>
<td>RD2</td>
<td>address</td>
<td>reads counts held in scalar ('<\text{address}'. Same as \text{usr}(3). \</td>
</tr>
<tr>
<td>ST1</td>
<td>add., n1, n2</td>
<td>operates the stepper motor board number ('<\text{add}.', for ('<\text{n1}', steps with ('<\text{n2}', x 0.1 milliseconds between steps. Same as \text{usr}(1) \</td>
</tr>
<tr>
<td>ST2</td>
<td>add., n1, n2</td>
<td>same as \text{ST1} but overlap option implemented. \</td>
</tr>
<tr>
<td>ST3</td>
<td>n1, n2, n3</td>
<td>sets speeds for accelerating stepper motor driver \text{ST4}. n1 is the start/stop speed (in 0.1 msecs), n2 is the top speed (in 0.1 msecs) and n3 is the change in speed per step (in 0.1 msecs). \</td>
</tr>
<tr>
<td>ST4</td>
<td>add., n1</td>
<td>drives motor ('<\text{add}.', ('<\text{n1}', number of steps. Speeds set by \text{ST3}_. \</td>
</tr>
</tbody>
</table>
VP1 add., n1, n2 vector plot option using two channel D to A board <address>, same as usr(6).
VP2 add., n1, n2 as VP1 but is the same as usr(7).

Parallel to serial conversion

This routine is entered either by the setting of the address switch at reset or by the MO5 command in Minicon. Bytes are taken from the GPIB interface and transmitted via the host serial port completely transparently. No buffering takes place as bytes are only removed from the GPIB interface when the serial port has transmitted the previous byte. Hardwire handshaking can be used to control the flow of data from the serial port, the speed at which data is taken from the GPIB interface will, therefore, also reflect this handshaking. The routine is exited by the receipt of three consecutive escape codes (ascii 27), none of which will be transmitted via the serial port. Single and double escape sequences can, therefore, be sent through the interface for control of Epson printers etc. When the routine exits it returns to the Minicon routine with the GPIB interface selected.
MAIN MINICON Routines. Occupies EPROM
$F000 to $FFFF. Contains Board Control
Routines plus binary and ASCII user
Interfaces

M. J. Hill 1985

Setup variables

0006 USRCMD EQU $06 // vector for user cmd
0010 USRNO EQU $10
0011 SAVX EQU $11
0012 TMPO EQU $12 // output bytes
0014 WKSP EQU $14 // work space for A to D
001F STATUS EQU $1F // third byte of output
0020 VLIST EQU $20 // three input variables
0020 VA EQU $20 // A%
0022 N EQU $22 // N%
0024 T EQU $24 // and T%
0026 TEMPT EQU $26 // temporary T% location
0028 TVECLO EQU $28
002A TVECHI EQU $2A
002C WELOC EQU $2C
0030 NEWFLG EQU $30 // new ascii version flg
0031 NEFGLG EQU $31 // output is negative
0032 BUFFEN EQU $32 // buffer end pointer
0034 BPOINT EQU $34 // buffer fill pointer
0036 CHAR EQU $36 // output char store
0037 HGHBIT EQU $37 // highbyte of output
0038 LOWBIT EQU $38 // lowbyte of output
0039 CREG EQU $39 // command reg of ACIA 1
003A CREG2 EQU $3A // command reg of ACIA 2
003B IEEFLG EQU $3B // IEEE488 flag
003C IEEEPTR EQU $3C // IEEE488 as printer
003D PDELIM EQU $3D // printer delimiter
003E DELIM EQU $3E // command delimiter
003F LEADZ EQU $3F // leading zero strip
0040 INCNT EQU $40
0041 TPOINT EQU $41 // table pointer
0043 SELECT EQU $43
0045 GETPTR EQU $45
0047 PRINTR EQU $47 // serial printer flag
0048 HOST EQU $48 // serial host flag
0049 RETURN EQU $49 // return address locn
0070 TOP EQU $70 // top speed of motor
0072 BOTTOM EQU $72 // bottom speed of motor
0074 INC EQU $74 // speed increment
0075 FAST EQU $75 // top speed flag
0076 SLOW EQU $76 // slow down flag
0077 DECL EQU $77 // number of steps to decelerate

Board Addresses etc

8000 VIA EQU $8000 // via's
8020 IEE EQU $8020 // GPA1 chip (68488)
801F DATAL0 EQU VIA+$1F // data bus low byte
8010 DATAHI EQU VIA+$10 data bus high byte
8025 SRQ EQU IEE+5 service request byte
8030 ACIA1 EQU $8030 ACIA 1 (host)
8038 ACIA2 EQU $8038 ACIA 2 (printer)
8034 SWITCH EQU $8034 parity switch

BUFFERS
0300 BUFF EQU $0300 input buffer
0350 OUTBUF EQU $0350 output buffer
0200 TVHBUF EQU $0200 work space for vector
0220 TVLBUF EQU $0220 generator

CONSTANTS
000D NCMDS EQU $0D number of commands
0000 APNT EQU $00
0002 NPN EQU $02
0004 TPNT EQU $04
00FF ON EQU $FF
0000 OFF EQU $0
000D CR EQU $0D
000A LP EQU $0A
007F TIX EQU $7F defines start of text
00FF ETX EQU $FF and end of text

ENTRY JUMP TABLE IN $E000 EPROM

E000 MON EQU $E000 location of monitor

FO00 ORG $FO00

JUMP TABLE FOR ROUTINES REQUIRED BY $E000 EPROM

FO00 4C 4EFC JMP RESET these routines are
FO03 4C D3F7 JMP PRTCHR required by code not
FO06 4C 20F8 JMP PRINT contained in this
FO09 4C 82F7 JMP HOSTON Eeprom
FO0C 4C 87F7 JMP HOSTOF
FO0F 4C 8CF7 JMP PRTON
FO12 4C 91F7 JMP PRTOFF
FO15 4C 96F7 JMP RTSON
FO18 4C A0F7 JMP RTSOFF
FO1B 4C AAF7 JMP RSRES
FO1E 4C 4AF8 JMP PUSHL
FO21 4C 5DF8 JMP POPS
FO24 4C 90F8 JMP GETCHR
FO27 4C 28F7 JMP RDOB
FO2A 4C 70F8 JMP GETSL
FO2D 4C 9BF8 JMP MNSTR

INITIALISE VIA'S

FO30 A9 00 INIT LDA #0 address = 0, no oper.
FO32 8D 0F80 STA VIA+$0F data lines
FO35 8D 1280 STA VIA+$12 as inputs
FO38 8D 1380 STA VIA+$13 disable special
F03E 8D 1C80 STA VIA+$1C features
F041 A9 A0 LDA #$A0 control lines
F043 8D 0280 STA VIA+2 address byte
F046 A9 FF LDA #$FF enable timers
F04B 8D 0380 STA VIA+3 strobe operation
F04D A9 E0 LDA #$E0 disable interrupts
F050 8D 0B80 STA VIA+$0B except timer 2
F052 8D 0C80 LDA #$0A timers for count
F055 A9 7F STA VIA+$0C
F057 8D 1E80 LDA #$7F
F05A 8D 0E80 STA VIA+$1E
F05D A9 AO LDA #$AO
F05F 8D 0E80 STA VIA+$0E
F062 A9 84 LDA #$84
F064 8D 0480 STA VIA+$4 except timer 2
F067 A9 13 LDA #$13
counts
F069 8D 0580 STA VIA+5
F06C A9 20 LDA #$TVLBUF
F06E 85 28 STA TVCLO
F070 A9 00 LDA #$TVBBUF
F072 85 2A STA TVECHI
F074 A9 02 LDA #$TVLBUF/256
F076 85 29 STA TVCLO+1
F077 A9 02 LDA #$TVBBUF/256
F078 85 2B STA TVECHI+1
F07C 60 RTS

:RESTART ROUTINE FOR BOARD CONTROL Routines:

F07D 60 RESTR RTS all routines pass
through here on
completion, can be
used to add code

: DUMMY USR(0)

F07E 20 4EF3 USRO JSR PRTBUF prints output bytes
F081 4C 7DPO JMP RESTR again

: MOTOR USR(1)

F084 A5 21 USR1 LDA VA+1 is overlap option on
F086 F0 03 BEQ MT1
F088 20 2DF3 JSR ZEROOUT send reply if on
F08B 18 MT1 CLC 2's complement number
F08C A5 22 LDA N of steps for ease of
F08E 49 FF EOR #$FF counting. Maximum
F090 69 01 ADC #1 steps are therefore
F092 85 22 STA N 32767
F094 A5 23 LDA N+1
F096 49 FF ADC #0
F098 69 00 EOR #$FF
F09A 85 23 STA N+1 2's complement number
F09C 18 CLC of 100 microsecond
F09D A5 24 LDA T delays per motor step
F09F 49 FF EOR #$FF
F0A1 69 01 ADC #1
FOA3 85 24 STA T
FOA5 A5 25 LDA T+1
FOA7 49 FF EOR #$FF
FOA9 69 00 ADC #0
FOAB 85 25 STA T+1
FOAD A5 20 LDA VA set board address on
FOAF 8D 0F80 STA VIA+$0F bus
FOB2 A9 62 LDA #$62 set 100 microsecond
FOB4 8D 0680 STA VIA+$06 count on timer 1
FOB7 20 CCP0 MCONT2 JSR STEP step motor
FOBA E6 22 INC N increment number of
FOBC D0 F9 BNE MCONT2 steps
FOBE E6 23 INC N+1 and loop until
FOC0 D0 F5 BNE MCONT2 non left
FOC2 A5 21 LDA VA+1 reply that finished
FOC4 D0 03 BNE MQ2
FOC6 20 2DF3 JSR ZEROUT
FOC9 4C 7DF0 MQ2 JMP RESTRT

:: STEP MOTOR AFTER WAITING T LOTS OF 0.1 MILISECS
::

FOCC A5 24 STEP LDA T copy number of delays
FOCE 85 26 STA TEMPT into temp location
FOD0 A5 25 LDA T+1
FOD2 85 27 STA TEMPT+1
FOD4 A9 00 ML1 LDA #0 start timer 1
FOD6 8D 0780 STA VIA+7 and clear timed out
FOD9 AD 0480 LDA VIA+4 flag
FODC A9 40 ML2 LDA #$40 test timed out flag
FODE 2C 0D80 BIT VIA+$0D
FOE1 F0 F9 BEQ ML2 loop until set
FOE3 E6 26 INC TEMPT increment counter
FOE5 D0 ED BNE ML1 and loop until
FOE7 E6 27 INC TEMPT+1 zero reached
FOE9 D0 E9 BNE ML1
FOEB AD 0180 LDA VIA+1 strobe to step motor
FOEE 60 RTS and return

:: STEPPER MOTOR(3) OR USR(11) - SETS MIN,MAX
:: SPEEDS AND ACCLN RATES FOR STEPPER MOTOR(4)
:: OR USR(12)
::

FOEF 18 USR11 CLC
FOFO A5 20 LDA VA 2's complement first
FOF2 49 FF EOR #$FF var is the start/stop
FOF4 69 01 ADC #1 speed
FOF6 85 72 STA BOTTOM save it as bottom
FOF8 A5 21 LDA VA+1 speed
FOFA 49 FF EOR #$FF
FOFC 69 00 ADC #0
FOFE 85 73 STA BOTTOM+1
F100 18 CLC
F101 A5 22 LDA N 2's complement of 2nd
F103 49 FF EOR #$FF var is the fast speed
F105 69 01 ADC #1
F107 85 70 STA TOP
F109 A5 23 LDA N+1
F10B 49 FF EOR #$FF
F10D 69 00 ADC #0
F10F 85 71 STA TOP+1
F111 18 CLC
F112 A5 24 LDA T 2's complement of 3rd
F114 49 FF EOR #$FF var is the change in
F116 69 01 ADC #1 speed per motor step
F118 85 74 STA INC ie the accln rate
F11A A5 25 LDA T+1
F11C 49 FF EOR #$FF
F11E 69 00 ADC #0
F120 85 75 STA INC+1
F122 20 2DF3 JSR ZEROUT reply routine
F125 4C 7DF0 JMP RESTART finished and return

; STEPPER MOTOR(4) OR USR(12) - ACCELERATING
; AND DECELERATING STEPPER MOTOR DRIVER

F128 A5 72 USR12 LDA BOTTOM start off at bottom
F12A 85 24 STA T speed
F12C A5 73 LDA BOTTOM+1
F12E 85 25 STA T+1
F130 A9 00 LDA #0
F132 85 75 STA FAST clear fast speed flag
F134 85 76 STA SLOW and start decelerating
F136 85 77 STA DECL zero number of steps
F138 85 78 STA DECL+1 needed to decelerate
F13A 18 CLC
F13B A5 22 LDA N 2's complement no. of
F13D 49 FF EOR #$FF steps i.e. maximum is
F13F 69 00 ADC #0 32767
F141 85 22 STA N
F143 A5 23 LDA N+1
F145 49 FF EOR #$FF
F147 69 00 ADC #0
F149 85 23 STA N+1
F14B D0 04 BNE OK if zero no. of steps
F14D A5 22 LDA N exit routine without
F14F F0 28 BEQ MEXIT doing anything
F151 A5 20 OK LDA VA
F153 8D OF80 STA VIA+$OF set board address
F156 A9 64 LDA #$64 100 microsec clock
F158 8D 0680 STA VIA+$06 for execution time
F15B 20 CCF0 MAINLP JSR STEP step motor after wait
F15E A5 75 LDA FAST reached top speed yet
F160 30 03 BMI JMP1 yes - don't accel
F162 20 7F1 JSR ACCL no so accelerate
F165 A5 76 JMP1 LDA SLOW decelerating yet
F167 F0 03 BEQ GO no so continue
F169 20 BDF1 JSR DECEL yes so decelerate
F16C E6 22 GO INC N
F16E D0 04 BNE TESTDC not yet zero so test
 INC N+1 if decelerate yet
F170 E6 23 INC N+1 zero steps left exit
F172 F0 05 BEQ MEXIT test if decel point
F174 20 ACFL1 TESTDC JSR TSTDCL reached yet
 BCC MAINLP continue stepping
F179 20 2DF3 MEXIT JSR ZEROUT routine has finished
F17C 4C 7DFO JMP RESTR return

F17F 18 ACCL CLC add accel increment
F180 A5 24 LDA T to 2's complement of
F182 65 74 ADC INC delay thus decreasing
F184 85 24 STA T delay time and
F186 A5 25 LDA T+1 increasing speed
F188 65 75 ADC INC+1
F18A 85 25 STA T+1
delay gone past zero
F18C B0 0B BCS PASTF - use top speed
top speed reached?
F18E 18 CLC no continue
F18F C5 71 CMP TOP+1
F191 90 12 BCC AEXIT top speed reached?
F193 A5 24 LDA T yes set speed to top
F195 C5 70 CMP TOP speed
F197 90 0C BCC AEXIT
F199 A5 70 PASTF LDA TOP increment no. of steps
F19B 85 24 STA T required to decelerate
F19D A5 71 LDA TOP+1 return
F19F 85 25 STA T+1
F1A1 A9 FF LDA #ON
F1A3 85 75 STA FAST
F1A5 E6 77 AEXIT INC DECL
F1A7 D0 02 BNE ACONT increment no. of steps
F1A9 E6 78 INC DECL+1 required to decelerate
F1AB 60 ACONT RTS return
F1AC 18 TSTDCL CLC add no. of decel steps
F1AD A5 22 LDA N to no. of motor steps
F1AF 65 77 ADC DECL
F1B1 A5 23 LDA N+1
F1B3 85 78 ADC DECL+1
F1B5 90 04 BCC NOTYET if number passed zero
F1B7 A9 FF LDA #ON set flag
F1BB 85 76 STA SLOW carry cleared before
F1BC 60 NOTYET CLC returning
F1BD 38 DECEL SEC subtract increment
F1BE A5 24 LDA T from step delay thus
F1C0 E5 74 SBC INC making speed slower
F1C2 85 24 STA T
F1C4 A5 25 LDA T+1
F1C6 E5 75 SBC INC+1
F1C8 85 25 STA T+1
F1CA 90 0B BCC UNDER
F1CC 18 CLC compare delay with
F1CD C5 73 CMP BOTTOM+1 bottom speed
F1CF B0 0E BCS DEXIT if less use bottom
F1D1 A5 24 LDA T speed
F1D3 C5 72 CMP BOTTOM
F1D5 B0 08 BCS DEXIT
F1D7 A5 72 UNDER LDA BOTTOM
F1D9 85 24 STA T
F1DB A5 73 LDA BOTTOM+1
F1DD 85 25 STA T+1
F1DF 60 DEXIT RTS

; COUNT USR(2)

F1E0 A5 21 USR2 LDA VA+1 check overlap option
F1E2 F0 03 BEQ CT1
F1E4 20 2DF3 JSR ZEROUT
F1E7 A9 A0 CT1 LDA #$A0
F1E9 8D 0E80 STA VIA+$0E
F1EC A9 00 LDA #0
F1EE 8D 0080 STA VIA
F1F1 A5 24 LDA T set timer 2 to count
down delay time
F1F3 8D 0880 STA VIA+$8
F1F6 A5 25 LDA T+1
F1F8 8D 0980 STA VIA+$9
F1FB A9 FF LDA #$FF
F1FD 8D 0080 STA VIA
F200 A9 20 LDA #$20
F202 2C 0D80 CL1 BIT VIA+$0D check if timer 2 has
counted down to zero
F205 F0 FB BEQ CL1

; READ USR(3)

F207 A5 20 USR3 LDA VA set up board address
F209 8D 0F80 STA VIA+$0F on address bus
F20C AD 1080 LDA DATAHI read data bus
F20F 49 FF EOR #$FF and invert data bits
F211 85 13 STA TMP0+1
F213 AD 1F80 LDA DATALO
F216 49 FF EOR #$FF and for low byte
F218 85 12 STA TMP0
F21A A5 21 LDA VA+1 buffer
F21C D0 03 BNE RED1
F21E 20 4EF3 JSR PRTBUF output data to user
F221 4C 7DF0 RED1 JMP RESTRT and back to start

; D TO A (MK 1)

F224 A5 20 USR4 LDA VA set up VIA's
F226 8D 0F80 STA VIA+$0F
F229 A9 FF LDA #$FF
F22B 8D 1280 STA VIA+$12
F22E 8D 1380 STA VIA+$13
F231 A9 02 LDA #$02
F233 24 21 BIT VA+1 see if 512 added to
F235 F0 03 BEQ DA1 address - 4 channel
F237 4C F7F2 JMP DAC4 board if yes
F23A A5 23 DA1 LDA N+1 put data on data bus
F23C 8D 1080 STA DATAHI
F23F A5 22 LDA N
F241 8D 1F80 STA DATALO
F244 AD 0180 LDA VIA+1 and latch it (strobe)
F247 20 2DF3 JSR ZEROUT reply to user
F24A 4C 7DF0 JMP RESTRT

; A TO D USR(5)

F24D A5 20 USR5 LDA VA set address
F24F 8D 0F80 STA VIA+$0F
F252 A9 00 LDA #$0
F254 8D 1C80 STA VIA+$1C
clear flag and
F257 AD 1080 LDA VIA+$10
F25A AD 0180 LDA VIA+1
F25D A9 FF LDA #$FF
F25F 85 26 STA TEMPT
F261 A9 FE LDA #$FE
F263 85 27 STA TEMPT+1
time out value for
F265 A9 08 AD1 LDA #$08
F267 2C 1D80 BIT VIA+$1D
F26A D0 07 BNE ST1
F26C 20 E0F2 JSR TOUTT
no see if timed out
F26F 90 F4 BCC AD1
no test bit again
F271 E0 78 BCS TIMERR
yes - error
F273 A9 40 ST1 LDA #$40
clear flag
F275 8D 1C80 STA VIA+$1C
F276 8D 1080 STA VIA+$10
F27B A9 08 LDA #$08
F27D 2C 1D80 AD2 BIT VIA+$1D
F280 F0 FB BEQ AD2
conversion complete?
F282 A9 10 LDA #$10
no - loop
F284 2C 1080 BIT DATAHI
F287 D0 4B BNE OVERR
overrange?
F289 A9 20 LDA #$20
F28B 2C 1080 BIT DATAHI
F28E D0 1E BNE PLUS
check sign bit
clear if positive
F290 A9 FF NEG LDA #$ON
set negative flag
F292 85 31 STA NEGFLG
for output routine
F294 18 CLC
F295 AD 1F80 LDA DATALO
2's complement data
F298 49 FF EOR #$FF
before returning
F29A 69 01 ADC #$01
F29C 48 PHA
F29D AD 1080 LDA DATAHI
F2A0 29 0F AND #$0F
data in output buffer
F2A2 49 FF EOR #$FF
data in output buffer
F2A4 69 00 ADC #$0
F2A6 85 13 STA TMPO+1
clear negative flag
F2A8 68 PLA
simple delay loop
F2AA 85 12 STA TMPO
F2AB 18 CLC
delay required to
F2AC 90 12 BCC ZDELY
limit access speed
F2AE AD 1F80 PLUS LDA DATALO
data in output buffer
F2B1 48 PHA
data in output buffer
F2B2 AD 1080 LDA DATAHI
F2B5 29 0F AND #$0F
F2B7 85 13 STA TMPO+1
clear negative flag
F2B9 68 PLA
F2BA 85 12 STA TMPO
F2BC A9 00 LDA #$0FF
F2BE 85 31 STA NEGFLG
F2C0 A2 0A ZDELY LDX #$0A
F2C2 A0 C8 ZD2 LDY #$C8
F2C4 88 ZD1 DEY
F2C5 D0 FD BNE ZD1
F2C7 CA DEX
F2CA 20 4EF3 BNE ZD2 print value to user
F2CD A9 00 JSR PRTBUF clear negative flag
F2CF 85 31 LDA #OFF and restart
F2D1 4C 7DF0 STA NEGFLG
F2D4 A9 08 OVERR LDA #08 set bit in status byte
F2D6 05 1F ORA STATUS output error code
F2D8 85 1F STA STATUS
F2DA 20 40F7 JMP RESTART
F2DD 4C 7DF0 JSR OVER increment time out counter
F2E0 18 TOUT CLC carry set if timed out
F2E1 E6 26 INC TEMPT
F2E3 D0 05 BNE T01 set status bit
F2E5 E6 27 INC TEMPT+1 output error code
F2E7 D0 01 BNE T01
F2E9 38 SEC
F2EA 60 TO1 RTS
F2EB A9 02 TIMERR LDA #2
F2ED 05 1F ORA STATUS
F2EF 85 1F STA STATUS
F2F1 20 49F7 JMP RESTART
F2F4 4C 7DF0 JSR TMOUT

: 4-CHANNEL DAC DRIVER
: USR(4)

; DAC4 LDA N get low data byte
; F2F7 A5 22 STA DATALO zero high byte
F2FC A9 00 LDA #0 latch lower 4 bits
F2FE 8D 1080 STA DATAHI add one to high byte
F301 AD 0180 LDA VIA+$01 put top 4 bits of
F304 EE 1080 INC DATAHI low byte into bottom
F307 4E 1F80 LSR DATALO 4 bits
F30A 4E 1F80 LSR DATALO and latch it in
F30D 4E 1F80 LSR DATALO address for top 4
F310 4E 1F80 LSR DATALO bits and fetch high
F313 AD 0180 LDA VIA+$01 byte of data
F316 EE 1080 INC DATAHI and latch it in
F319 A5 23 LDA N+1
F31B 8D 1F80 STA DATALO and latch start
F31E AD 0180 LDA VIA+$01 conversion
F321 EE 1080 INC DATAHI reply to user
F324 AD 0180 LDA VIA+$01
F327 20 2DF3 JMP RESTART
F32A 4C 7DF0 JSR ZEROUT

; ZEROUT LDA NEWFLG test if new ascii
F32D A5 30 BEQ IEEE mode - no old routine
F32F F0 03 JMP REPL0K yes - new routine
F331 4C 3EFB LDA #$20 set output ready in
F334 A9 20 IEEE STA SRQ serial poll byte
F336 8D 2580 LDA #0 output two null bytes
F339 A9 00 JSR WROB via the GPIB
F33B 20 33F7 LDA #0
F33E A9 00 JSR WROB
F340 20 33F7 JSR WROB
F343 A5 1F LDA STATUS and the status byte
F345 20 33F7 JSR WROB
LDA #0
STA SRQ
RTS

LDA NEWFLG
BEQ IEPRT
JMP REPLAN

LDA #$20
STA SRQ
LDA TMPO
JSR WROB
LDA TMPO+1
JSR WROB
LDA STATUS
JSR WROB
LDA #0
STA SRQ
RTS

LDA VA+1
AND #$FE
LSR A
STA SAVX
LDA VA
STA VIA+$0F
LDA #$FF
STA VIA+$12
STA VIA+$13
LDY #NPNT
JSR GETV
LDY #7
JSR PUT
CLC
JSR PLOT
LDY #TPNT
JSR GETV
LDY #4
JSR PUT
SEC
JSR PLOT
JSR DELAY
DELAY for plotter
output it
output it
Y into table
output it
DELAY for plotter
reply to user
get variable from
location in VLIST

LDA VLUNT,Y
TAX
INY
LDA VLUNT,Y
RTS

STA (TVECHI),Y
STA (TVECLO),Y
RTS

VECTOR GENERATOR

LDA VA+1
F3B9 85 11 STA SAVX set up speed
F3BB 46 11 LSR SAVX
F3BD 29 01 AND #01
F3BF 85 21 STA VA+1 quick reply?
F3C1 F0 03 BEQ VEC2
F3C3 20 2DF3 JSR ZEROUT
F3C6 A5 20 VEC2 set board address
F3C8 8D 0F80 STA VIA+$0F
F3CB A9 FF LDA #$FF
F3CD 8D 1280 STA VIA+$12
F3DO 8D 1380 STA VIA+$13
F3D3 A0 02 LDY #NPNT
F3D5 20 A8F3 JSR GETV
F3D8 A0 08 LDY #8
F3DA 20 B1F3 JSR PUT X2 into table
F3DD A0 04 LDY #TPNT
F3DF 20 A8F3 JSR GETV
F3E2 A0 05 LDY #5
F3E4 20 B1F3 JSR PUT Y2 into table
F3E7 20 3DF4 JSR DELTAX
F3EA 20 45F4 JSR DELTAY
F3ED A0 01 LDY #1 clear accumulator
F3EF 20 7DF4 JSR CLEAR plot X1,Y1
F3F2 A5 20 LDA VA
F3F4 A0 07 VLOP LDY #7
F3F6 18 CLC
F3F7 20 E7F4 JSR PLOT
F3FA A0 04 LDY #4
F3FC 38 SEC
F3FD 20 E7F4 JSR PLOT
F400 A0 08 LDY #8
F402 20 77F4 JSR SUBTR
F405 A5 28 LDA TEMPT+2
F407 F0 20 BEQ RETRN
F409 A0 01 TESTA LDY #1
F40B 20 9EF4 JSR TEST
F40E A5 28 LDA TEMPT+2
F410 10 06 BPL UP
F412 20 D2F4 JSR LOW
F415 4C 26F4 JMP BACK
F418 F0 06 UP BEQ GOOD
F41A 20 BDF4 JSR HIGH
F41D 4C 26F4 JMP BACK
F420 20 D2F4 GOOD JSR LOW
F423 20 BDF4 JSR HIGH
F426 4C F4F3 BACK JMP VLOP
F429 A5 21 RETRN LDA VA+1
F42B D0 03 BNE VRET
F42D 20 2DF3 JSR ZEROUT
F430 4C 7DF0 VRET JMP RESTR
F433 A0 08 DELTAX LDY #08
F435 20 77F4 JSR SUBTR
F438 88 DEY
F439 20 A9F4 JSR SIGMA
F43C A0 02 LDY #2
F43E 20 5AF4 JSR MOD
F441 20 10F5 JSR STORE
F444 60 ; RTS
F445 A0 05 DELTAY LDY #5
F447 20 77F4 JSR SUBTR
F44A 88 DEY
F44B 20 A9F4 JSR SIGMA
F44E A0 00 LDY #0
F450 20 5AF4 JSR MOD
F453 20 5FF4 JSR NEGATE
F456 20 10F5 JSR STORE
F459 60 RTS ;
F45A 18 MOD CLC
F45B A5 28 LDA TEMPT+2
F45D 10 10 BPL VRET1
F45F A9 FF NEGATE LDA #$FF
F461 45 26 EOR TEMPT
F463 69 01 ADC #1
F465 85 26 STA TEMPT
F467 A9 FF LDA #$FF
F469 45 27 EOR TEMPT+1
F46B 69 00 ADC #0
F46D 85 27 STA TEMPT+1
F46F 60 VRET1 RTS ;
F470 A9 00 CLEAR LDA #0
F472 91 28 STA (TVECLO),Y
F474 91 2A STA (TVECCHI),Y
F476 60 RTS ;
F477 38 SUBTR SEC
F478 B1 28 LDA (TVECLO),Y
F47A 88 DEY
F47B F1 28 SBC (TVECLO),Y
F47D 85 26 STA TEMPT
F47F C8 INY
F480 B1 2A LDA (TVECCHI),Y
F482 88 DEY
F483 F1 2A SBC (TVECCHI),Y
F485 85 27 STA TEMPT+1
F487 10 05 TEST2 BPL EUAL
F489 A9 FF LDA #$FF
F48B 85 28 STA TEMPT+2 sign flag
F48D 60 RTS ;
F48E D0 09 EUAL BNE POS
F490 A5 26 LDA TEMPT
F492 D0 05 BNE POS
F494 A9 00 LDA #0
F496 85 28 STA TEMPT+2
F498 60 RTS ;
F499 A9 01 POS LDA #1
F49B 85 28 STA TEMPT+2
F49D 60 RTS ;
F49E B1 28 TEST LDA (TVECLO),Y
F4A0 85 26 STA TEMPT
LDA (TVECHI),Y
STA TEMPT+1
JMP TEST2

LDA TEMPT+2 sign of delta
BPL ZER2
STA (TVECLO),Y
STA (TVECHI),Y
RTS

BNE POSIT
BEQ PUTIT
STA (TVECLO),Y
LDA #0
STA (TVECHI),Y
RTS

LDY #7
JSR ADD
LDY #7
JSR STORE
LDY #1
JSR ADD
LDY #1
JSR STORE
RTS

LDY #4
JSR ADD
LDY #4
JSR STORE
LDY #2
JSR ADD
LDY #1
JSR STORE
RTS

LDA VA output data in table
ADC #0 to D to A
STA VIA+$0F
LDA (TVECLO),Y
STA DATALO
LDA (TVECHI),Y
STA DATAHI
LDA VIA+1 latch it
JSR DELAY delay for pen speed
RTS

CLC
LDA (TVECLO),Y
DEY
ADC (TVECLO),Y
STA TEMPT
INY
LDA (TVECHI),Y
DEY
ADC (TVECHI),Y
STA TEMPT+1
F50F 60 RTS
F510 A6 26 STORE LDX TEMPT
F512 A5 27 LDA TEMPT+1
F514 4C B1F3 JMP PUT

F517 A6 11 DELAY LDX SAVX
F519 F0 08 BEQ DRET
F51B A0 64 DL2 LDY #$64
F51D 88 DL1 DEY
F51E D0 FD BNE DL1
F520 CA DEX
F521 D0 F6 BNE DL2
F523 60 DRET RTS

: GPIP MODULE DRIVER USR(8)

F524 A5 20 USR8 LDA VA board address
F526 8D 0F80 STA VIA+$0F
F529 A9 00 LDA #$0
F52B 8D 0080 STA VIA clear flag
F52E A9 FF LDA #$FF
F530 8D 0080 STA VIA
F533 AD 1080 LDA VIA+$10
F536 A9 40 LDA #$40
F538 8D 1C80 STA VIA+$1C set up handshake
F53B AD 0180 LDA VIA+1 set DRQ
F53E A9 FF LDA #$FF
F540 85 26 STA TEMPT set up time out
F542 A9 80 LDA #$80
F544 85 27 STA TEMPT+1
F546 A9 08 LDA #$8
F548 2C 1D80 GPL1 BIT VIA+$1D wait for reply
F54B D0 08 BNE GPL2
F54D 20 E0F2 JSR TOUT
F550 90 F6 BCC GPL1
F552 4C EBF2 JMP TIMERR
F555 AD 1080 GPL2 LDA DATAHI
F558 49 FF EOR #$FF
F55A 85 13 STA TMP0+1
F55C AD 1F80 LDA DATALO
F55F 49 FF EOR #$FF
F561 85 12 STA TEMPO
F563 20 4EF3 JSR PRTBUF
F566 4C 7DF0 JMP RESTRT

: USR(9) - JUMP TO MONITOR AT $E000

F569 AD 00E0 USR9 LDA $E000 is jump instruction at
F56C C9 4C CMP #$4C $E000 present
F56E D0 03 BNE MONERR no - not there !
F570 4C 00E0 JMP MON yes - so jump to it
F573 A5 30 MONERR LDA NEWFLG error - monitor chip
F575 D0 06 BNE MNERR not installed
F577 20 2DF3 JSR ZEROUT old mode so reply
F57A 4C 00F0 JMP RESET reset routine
F57D 20 20F8 MNERR JSR PRINT print error message
DB TEX, 'MONITOR EPROM NOT PRESENT', $0D, ETX

MONITR EQU USR9

: AUTORANGING A TO D DRIVER:

F59F A5 24 USR10 LDA T
F5A1 F0 03 BEQ S1
F5A3 4C 1BF6 JMP AUTO
F5A6 A9 00 S1 LDA $0
F5A8 85 31 STA NEGPLG
F5AA 20 B0F5 JSR SCONV
F5AD 4C 08F7 JMP RET

F5B0 A5 20 SCONV LDA VA
F5B2 6D 0F80 STA VIA+$0F
F5B5 A9 FF LDA #$FF
F5B7 6D 1280 STA VIA+$12
F5BA 6D 1380 STA VIA+$13
F5BD A5 23 LDA N+1
F5BF 6D 1080 STA DATAH
F5C2 A5 22 LDA N
F5C4 6D 1F80 STA DATALO
F5C7 AD 0180 LDA VIA+1
F5CA A2 50 LDX #$50
F5CC CA DECR DEX
F5CD D0 FD BNE DECR
F5CF A9 00 LDA $0
F5D1 6D 1280 STA VIA+$12
F5D4 6D 1380 STA VIA+$13
F5D7 A9 80 LDA #$80
F5D9 6D 0F80 STA VIA+$0F
F5DC A9 00 LDA $0
F5DE 6D 0F80 STA VIA+$0F
F5E1 A9 00 LDA $0
F5E3 6D 1C80 STA VIA+$1C
F5E6 6D 1080 STA VIA+$10
F5E9 A2 FF LDX #$FF
F5EB AD 1D80 WCONV LDA VIA+$1D
F5EE 29 08 AND $08
F5F0 D0 12 BNE DONE
F5F2 CA DEX
F5F3 F0 03 BEQ ATOUT
F5F5 4C EBF5 JMP WCONV
F5F8 A9 FF ATOUT LDA #$FF
F5FA 85 13 STA TMPO+$1
F5FC 85 12 STA TMPO
F5FE 20 4EF3 JSR PRTBUF
F601 4C 7DF0 JMP RESTART
F604 A9 80 DONE LDA #$80
F606 6D 0F80 STA VIA+$0F
F609 AD 1080 LDA DATAH
F60C 29 0F AND #$0F
F60E 85 13 STA TMP0+1
F610 AD 1F80 LDA DATALO
F613 85 12 STA TMP0
F615 A9 00 LDA #$0
F617 8D 0F80 STA VIA+$0F
F61A 60 RTS

F61B 20 B0F5 AUTO JSR SCONV
F61E A5 13 LDA TMP0+1
F620 85 2D STA WKLOC+1
F622 A5 12 LDA TMP0
F624 85 2C STA WKLOC
F626 A9 00 LDA #$0
F628 85 2E STA WKLOC+2
F62A A5 22 LDA N
F62C 29 10 AND #$10
F62E D0 3E BNE BIP
F630 A9 00 UNI LDA #$0
F632 85 31 STA NEGFGLG
F634 A5 2D LDA WKLOC+1
F636 F0 10 BEQ A3
F638 29 08 A1 AND #$08
F63A D0 09 BNE A2
F63C E6 2E INC WKLOC+2
F63E 06 2D ASL WKLOC+1
F640 A5 2D LDA WKLOC+1
F642 4C 35F6 JMP A1
F645 4C 64F6 A2 JMP A7
F648 A5 2C A3 LDA WKLOC
F64A F0 15 BEQ A6
F64C 29 08 A4 AND #$08
F64E D0 09 BNE A5
F650 E6 2E INC WKLOC+2
F652 06 2C ASL WKLOC
F654 A5 2C LDA WKLOC
F656 4C 4CF6 JMP A4
F659 A2 04 A5 LDX #$04
F65B 20 12F7 JSR INCR
F65E 4C 64F6 JMP A7
F661 4C 08F7 A6 JMP RET
F664 A5 2E A7 LDA WKLOC+2
F666 85 22 STA N
F668 20 B0F5 JSR SCONV
F66B 4C 18F7 JMP WASL

F66E A5 2D BIP LDA WKLOC+1
F670 29 08 AND #$08
F672 F0 42 BEQ ANEG
F674 A9 00 APOS LDA #$0
F676 85 31 STA NEGFGLG
F678 A5 2D LDA WKLOC+1
F67A 29 07 AND #$07
F67C F0 10 BEQ P3
F67E A5 2D P1 LDA WKLOC+1
F680 29 04 AND #$04
F682 D0 07 BNE P2
F684 E6 2E INC WKLOC+2
F686 06 2D ASL WKL0C+1
F688 4C 7EF6 JMP P1
F68B 4C AAF6 P2 JMP P7
F68E A5 2C P3 LDA WKL0C
F690 F0 15 BEQ P6
F692 29 80 P4 AND #$80
F694 D0 09 BNE P5
F696 E6 2E INC WKL0C+2
F698 06 2C ASL WKL0C
F69A A5 2C LDA WKL0C
F69C 4C 92F6 JMP P4
F69F A2 03 P5 LDS #$03
F6A1 20 12F7 JSR INCR
F6A4 4C AAF6 JMP P7
F6A7 4C 08F7 P6 JMP RET
F6AA A5 2E P7 LDA WKL0C+2
F6AC 49 10 EOR #$10
F6AE 85 22 STA N
F6B0 20 B0F5 JSR SCONV
F6B3 4C 18F7 JMP WASL

F6B6 A9 FF ANEG LDA #$FF
F6B8 85 31 STA NEGFLG
F6BA A5 2D LDA WKL0C+1
F6BC 49 07 EOR #$07
F6BE 85 2D STA WKL0C+1
F6C0 A5 2C LDA WKL0C
F6C2 49 FF EOR #$FF
F6C4 85 2C STA WKL0C
F6C6 E6 2C INC WKL0C
F6C8 D0 02 BNE NO
F6CA E6 2D INC WKL0C+1
F6CE A5 2D NO LDA WKL0C+1
F6DO 29 04 N1 BEQ N3
F6D2 D0 09 BNE N2
F6D4 E6 2E INC WKL0C+2
F6D6 06 2D ASL WKL0C+1
F6D8 A5 2D LDA WKL0C+1
F6DA 4C D0F6 JMP N1
F6DD 4C FC06 N2 JMP N7
F6E0 A5 2C N3 LDA WKL0C
F6E2 F0 15 BEQ NS
F6E4 29 80 N4 AND #$80
F6E6 D0 09 BNE N5
F6E8 E6 2E INC WKL0C+2
F6EA 06 2C ASL WKL0C
F6EC A5 2C LDA WKL0C
F6EE 4C E4F6 JMP N4
F6F1 A2 03 N5 LDS #$03
F6F3 20 12F7 JSR INCR
F6F6 4C FC06 JMP N7
F6F9 4C 08F7 N6 JMP RET
F6FC A5 2E N7 LDA WKL0C+2
F6FE 49 10 EOR #$10
F700 85 22 STA N
F702 20 B0F5 JSR SCONV
F705 4C 18F7 JMP WASL
F708 20 4EF3 RET JSR RTBUF
F70B A9 00 LDA #0
F70D 85 31 STA NEGFLG
F70F 4C 7DF0 JMP RESTRT

F712 E6 2E INCR INC WLOCAL+2
F714 CA DEX
F715 D0 FB BNE INCR
F717 60 RTS

F718 A2 04 WASL LDX #$04
F71A 06 2E ASL WLOCAL+2
F71C CA DEX
F71D D0 F9 BNE WASL
F71F A5 2E LDA WLOCAL+2
F721 45 13 EOR TMPO+1
F723 85 13 STA TMPO+1
F725 4C 08F7 JMP RET

; READ BYTE USING 68488 GPIA CHIP ;

F728 A9 01 RDOB LDA #1
F72A 2C 2080 RL1 BIT IEE
F72D F0 FB BEQ RL1
F72F AD 2780 LDA IEE+7
F732 60 RTS

; WRITE OUT BYTE USING GPIA CHIP ;

F733 48 WROB PHA
F734 A9 40 WR1 LDA #$40
F736 2C 2080 BIT IEE
F739 F0 F9 BEQ WR1
F73B 68 PLA
F73C 8D 2780 STA IEE+7
F73F 60 RTS

; OVERRANGE ;

F740 A5 30 OVER LDA NEWFLG test if ascii mode
F742 F0 02 BEQ IEVOR no - binary reply
F744 D0 OD BNE RSOVER yes - send error
F746 4C 2DF3 IEVOR JMP ZEROUT binary reply

; TIME OUT ;

F749 A5 30 TMOUT LDA NEWFLG test if ascii mode
F74B F0 03 BEQ IETIM
F74D D0 14 BNE RSTIM
F74F 60 RTS
F750 4C 2DF3 IETIM JMP ZEROUT binary reply

F753 20 20F8 RSOVER JSR PRINT
F756 7F4F8645 JSR PRINT
F75A 5252414E DB TEX, 'OVERRANGE', $0D, ETX
F75E 47450DFP
F762 60 RTS
F763 20 20F8 RSTIM JSR PRINT
F766 7754494D DB TTX, 'TIMED OUT', $OD, ETX
F76A 454420DF RTS
F76E 55540DFF
F772 60

; VARIABLE INITIALISATION

F773 A9 00 VINIT LDA #$OFF
F775 85 47 STA PRINTR
F777 85 48 STA HOST
F779 85 36 STA CHAR
F77B 85 3C STA IEEPR
F77D A9 0D LDA #$OD
F77F 85 3E STA DELIM
F781 60 RTS

; PRINT ROUTINES FOR OUTPUT CONTROL

F782 A9 FF HOSTON LDA #$ON
F784 85 48 STA HOST
F786 60 RTS
F787 A9 00 HOSTOF LDA #$OFF
F789 85 48 STA HOST
F78B 60 RTS
F78C A9 FF PRTON LDA #$ON
F78E 85 47 STA PRINTR
F790 60 RTS
F791 A9 00 PRTOSF LDA #$OFF
F793 85 47 STA PRINTR
F795 60 RTS
F796 A5 39 RTSON LDA CREG
F798 29 9F AND #$9F
F79A 8D 3080 STA ACIA1
F79D 85 39 STA CREG
F79F 60 RTS
F7A0 A5 39 RTSOFF LDA CREG
F7A2 09 40 ORA #$40
F7A4 8D 3080 STA ACIA1
F7A7 85 39 STA CREG
F7A9 60 RTS
F7AA 18 RSRES CLC read parity select
F7AB AD 3480 LDA SWITCH switch
F7AE 29 70 AND #$70 mask bits for ACIA 1
F7B0 4A LSR A shift to position
F7B1 4A LSR A in command register
F7B2 09 43 ORA #$43 add master reset bit
F7B4 8D 3080 STA ACIA1 put in command reg
F7B7 29 FD AND #$FD clear reset bit
F7B9 8D 3080 STA ACIA1 store it
F7BC 85 39 STA CREG copy to CREG
F7BE 18 CLC same again for ACIA 2
F7BF AD 3480 LDA SWITCH both have /16 clock
F7C2 29 07 AND #$07 and RTS set low
F7C4 0A ASL A copy of command reg
F7C5 0A ASL A
STA ACIA2
AND #$FD
STA ACIA2
STA CREG2
RTS
CMP #0
BEQ PEXIT
STA CHAR
LDA HOST
BEQ IFPR
LDA CHAR
JSR SEND1
JSR PRINTR
BEQ IFIEE
LDA CHAR
JSR SEND2
JSR WROB
JSR WCRO
PEXIT
RTS
LDA ACIAL
AND #2
LDA CHAR
JSR SEND1
LDA CHAR
STA ACIAL+1
RTS
LDA ACIA2
AND #2
LDA CHAR
STA ACIA2+1
RTS
LDA CRC
JSR PRTCIR
LDA LF
JSR PRTCIR
RTS
LDA #$20
JSR PRTCIR
RTS
PLA
TAX
PLA
TAY
JSR PUSHSL
STX SELECT
STY SELECT+1
JSR INCSL
JSR INCSL
JSR GETSL
CMP #ETX
BEQ ENDIT
JSR PRTCIR
CLC
BCC NEXTCH
LDX SELECT
LDR SELECT+1

F842 20 5DF8 JSR POPSL
F845 98 TYA push address of ETX
F846 48 PHA onto stack
F847 8A TXA
F848 48 PHA
F849 60 RTS and return to next
F84A 68 PUSHSL PLA pull return address
F84B 85 49 STA RETURN and save it
F84D 68 PLA
F84E 85 4A STA RETURN+1
F850 A5 44 LDA SELECT+1 push select onto
F852 48 PHA stack
F853 A5 43 LDA SELECT
F855 48 PHA
F856 A5 4A LDA RETURN+1 push return address
F858 48 PHA back onto the stack
F859 A5 49 LDA RETURN
F85B 48 PLA
F85C 60 RTS
F85D 68 POPSL PLA save return address
F85E 85 49 STA RETURN from top of stack
F860 68 PLA
F861 85 4A STA RETURN+1
F863 68 PLA
F864 85 43 STA SELECT get select from stack
F866 68 PLA
F867 85 44 STA SELECT+1
F869 A5 4A LDA RETURN+1 push return back to
F86B 48 PHA the stack
F86C A5 49 LDA RETURN
F86E 48 PHA
F86F 60 RTS
F870 A5 45 GETSL LDA GETPTR fetch byte pointed
F872 48 PHA to by select
F873 A6 46 LDX GETPTR+1
F875 A5 43 LDA SELECT
F877 85 45 STA GETPTR using GETPTR if
F879 A5 44 LDA SELECT+1 select is not on
F87B 85 46 STA GETPTR+1 the zero page
F87D A0 00 LDY #0
F87F B1 45 LDA (GETPTR),Y
F881 A8 TAY
F882 68 PLA
F883 85 45 STA GETPTR
F885 86 46 STX GETPTR+1
F887 98 TYA
F888 60 RTS
F889 E6 43 INCSL INC SELECT increment select
F88B D0 02 BNE BRANCH pointer
F88D E6 44 INC SELECT+1
F88F 60 RTS
F890 AD 3080 GETCHR LDA ACIAL get character from
F893 29 01 AND #1 host serial port
F895 F0 F9 SEQ GETCHR loop until bit set
F897 AD 3180 LDA ACIAL+1 get character
F89A 60 RTS

; START OF ASCII MINICON ROUTINES
Initialise variables

Minicon routines to return ascii output

RTS high, input OK

Host port for output

Initialise VIA's buffer counter=0

Clear negative flag

Get character

Store in buffer

Is it the delimiter

Yes - process buffer

No - increment pointer and loop

Save buffer fill ptr

Get first character

Prepare to subtract

Subtract $41, 'A'=0

Char was less than $41

Is character 'Z'

Input command error

Char as index to table of second chars

Next char from buffer

Agree with 2 nd char

No

Next char as index

No. was out of range

X2 for low, high byte

Add offset from table

Use as index to jump

Table, high byte first

Form indexed jump

From vectors in

Table JUMPTB
STA T
LDA N+1
STA T+1
LDA #1
STA VA+1
JSR USR2
JMP MINCON
JSR ONEIN
BCS J5
JSR USR5
JMP MINCON
JSR THREIN
BCS J6
JSR USR10
JMP MINCON
JSR TWOIN
BCS J7
USR(5)
D to A no 1
BCS J8
requires more input
USR(4)
D to A no 2
LDA #2
for 4 channel board
JSR USR4
JSR TWOIN
JSR USR8
JSR ONEIN
JSR USR6
old monitor (IEEE)
old minicon (IEEE)
HIP ascii monitor
HIP ascii minicom
RS232 monitor
IEEE to RS232 routine
vector plot no 1
USR(8)

GPI no 1
only address required

USR(6)

USR(7)

USR(0)

USR(3)

port only

char from input buff

save it temporarily

print it
FA2E 68 PLA return character
FA2F C9 OD CMP #13 carriage return?
FA31 D0 F3 BNE OUTLP no - continue
FA33 A5 3D LDA PDELM printer delimiter
FA33 C9 OD CMP #13
FA37 F0 03 BEQ PREX if CR have printed it
FA39 20 D3F7 JSR PRTCHR else print current
PREX printer delimiter
JSR PRTOFF turn printer off
LDA IEEPLG see which port is host
BEQ PSER serial port - branch
LDA #ON IEEE488 port as host
STA IEEBPR
JMP PREX2 serial port 1 as host
PREX2 reply to user
JSR HOSTON
FA3C 20 91F7 LDA BUFF,X sets printer delimiter
PREX to 5th character in
PLA buffer
JSR REPLOK
FA3F A5 3B STA PDELM
FA41 F0 07 BEQ PSER
FA43 A9 FF LDA #ON
FA45 85 3C STA IEEBPR
FA47 4C 4DFA JR MINCON
FA4A 20 82F7 PSER sets printer delimiter
PREX2 reply to user
JSR HOSTON to 5th character in
FA4D 20 3EFB LDA BUFF,X buffer
FA50 4C 89F8 STA PDELM
FA53 A2 O4 PREX2 sets printer delimiter
PR2 to 5th character in
LDX #4 buffer
FA55 BD 0003 STA PDELM
FA56 85 3D STA PDELM
FA5A 20 3EFB STA PDELM
FA5D 4C 89F8 STA PDELM
FA60 A9 03 THREIN buffer empty pointer
FA62 85 34 STA BPOINT to 4 th character
FA64 85 40 STA INCNT three inputs required
FA66 20 9CFA JSR INNVAL input values
FA69 B0 01 BCS VERROR carry set gives error
FA6B 60 RTS error in variables
FA6C 4C C5FB VERROR two inputs required
JMP VINERR one input required
FA6F A9 03 LDA #3
FA71 85 34 STA BPOINT
FA73 A9 02 LDA #2
FA75 85 40 STA INCNT
FA77 20 9CFA JSR INNVAL
FA7A B0 F0 BCS VERROR
FA7C 60 RTS
FA7D A9 03 LDA #3 one input required
FA7F 85 34 STA BPOINT
FA81 A9 01 LDA #1
FA83 85 40 STA INCNT
FA85 20 9CFA JSR INNVAL
FA88 B0 E2 BCS VERROR
FA8A 60 RTS
FA8B A6 34 ADVAN buffer empty pointer
FA8D EB LDX BPOINT step it on one place
FA8E BD 0003 INX get character
FA91 C9 2C CMP #C', is it a comma
FA93 F0 04 BEQ ADEND yes - return
FA95 C9 0D CMP #13 is it CR
FA97 D0 F4 BNE ADLP no loop
FA99 86 34 ADEND STX BPOINT save empty pointer
FA9B 60 RTS loop counter
FA9C A0 00 INNVAL LDY #0 loop counter
FA9E 98 ILOOP save Y register
FA9F 48 TYA on stack
FAA0 20 8BFA PHA empty pointer to ,
FAA3 20 BAPA JSR ADVAN decimal ascii to bin
FAA6 68 PLA
FAA7 A8 TAY recover Y register
FAA8 A5 38 LDA LOWBIT low byte of input
FAAA 99 2000 STA VA,Y variable list+Y
FAAD A5 37 LDA HGHBIT high byte
FAAF 99 2100 STA VA+1,Y in variable list
FA82 C8 INY increment Y register
FA83 C8 INY twice
FA84 C6 40 DEC INCNT decrement counter
FA86 D0 E8 BNE ILOOP if non zero loop
FA88 18 CLC
FA89 60 RTS
FA8A A9 00 ASCBIN LDA #0 initialise low and
FA8B 85 38 STA LOWBIT high bytes
FA8C 85 37 STA HGHBIT
FA8D 85 34 LDX BPOINT get empty pointer
FA8E CA DEX to charcter to left
FACE BD 0003 LDA BUFF,X and fetch it
FACE6 20 2FFB JSR TSTEND reached end of number
FACE9 B0 43 BCS EXIT3
FACEB 85 38 STA LOWBIT -$30 gives low byte
FACD CA DEX get next character
FACE BD 0003 LDA BUFF,X test it
FAD1 20 2FFB JSR TSTEND
FAD4 B0 38 BCS EXIT3
FAD6 C9 00 CMP #0
FAD8 F0 0F BEQ B2
FA8A A8 TAY index to table
FA8B 99 31FE LDA TABLE1,Y number equiv in hex
FADE 1A CLC
FAEF 65 38 ADC LOWBIT add to low byte
FAE1 85 38 STA LOWBIT
FAE3 A5 37 LDA HGHBIT add carry to high
FAE5 69 00 ADC #0 byte
FAE7 85 37 STA HGHBIT
FAE9 A9 3B B2 LDA #TABLE2 tpointer points to
FAEB 85 41 STA TPOINT table2
FAED A9 FE STA TPOINT+1 LDA #((TABLE2/256)
FAEF 85 42 JSR ADD_IN add next character
FAP1 20 10FB BCS EXIT3 to low and high bytes
FAP4 B0 18 LDA #TABLE3 repeat with table3
FAP6 A9 4F STA TPOINT
FAP8 85 41 LDA #(TABLE3/256)
FAPA A9 FE STA TPOINT+1
FAPC 85 42 JSR ADD_IN and table4
FAPE 20 10FB BCS EXIT3
FB01 B0 OB LDA #TABLE4
FB03 A9 63 STA TPOINT
FB05 85 41 LDA #(TABLE4/256)
FB07 A9 FE STA TPOINT+1
FB09 85 42 JSR ADD_IN
FB0B 20 10FB LDA BUFF,X
FB0E 1A EXIT3 test it
FB0F 60 CLC
FB10 CA ADD_IN move to next left
FB11 BD 0003 DEX
FB14 20 2FFB LDA BUFF,X
FB17 B0 15 JSR TSTEND test it
FB19 C9 00 BCS EXIT2
FB16 60 CMP #0
FB1B FO 10 BEQ EXIT1
FB1D 0A ASL A multiply by two
FB1E A8 TAY use it as index
FB1F B1 41 LDA (TPOINT),Y equiv in hex from
FB21 18 CLC table
FB22 65 38 ADC LOWBIT add to low byte
FB24 85 38 STA LOWBIT high byte part and
FB26 C8 INY
FB27 B1 41 LDA (TPOINT),Y add to high byte
FB29 65 37 ADC HGHBIT
FB2B 85 37 STA HGHBIT
FB2D 18 EXIT1 CLC
FB2E 60 EXIT2 RTS
FB2F C9 2C TSTEND CMP #C', ' is character a ,
FB31 F0 09 BEQ COMMA yes - set carry
FB33 C9 20 CMP #$20 is it a space
FB35 F0 05 BEQ COMMA prepare to subtract
FB37 38 SEC
FB38 89 30 SBC #$30 subtract $30
FB3A 18 CLC
FB3B 60 RTS
FB3C 38 COMMA SEC
FB3D 60 RTS

; ASCII ROUTINE FOR BOARD ROUTINE COMPLETED
; OK AND ALL QUICK REPLIES

FB3E 20 20F8 REPOK JSR PRINT routine completed ok,
FB41 7F4F4B0D DB TEx,'OK',CR,ETX
FB45 FF
FB46 60.

; BINARY TO ASCII DECIMAL CONVERSION

FB47 A9 00 BINASC LDA #0 zero output buffer
FB49 8D 5003 STA OUTBUF double babble method
FB4C 8D 5103 STA OUTBUF+1
FB4F 8D 5203 STA OUTBUF+2
FB52 A2 08 LDX #8
FB54 A9 80 LDA #128
FB56 48 BLOOP PHA save acc on stack
FB57 25 37 AND HGHBIT high bit of high byte
FB59 F0 03 BEQ BNEXT if clear branch
FB5B 20 84FB JSR ADD1 else add one to
FB5E 20 A5FB BNEXT JSR TIMTWO output x 2
FB61 68 PLA return acc
FB62 4A LSR A left one place
FB63 CA DEX test loop counter
FB64 D0 F0 BNE BLOOP if non zero loop
FB66 A2 07 LDX #7 now do seven bits of
FB68 A9 80 LDA #128 low byte
FB6A 48 BLOOP2 PHA
FB6B 25 38 AND LOWBIT
FB6D F0 03 BEQ BNEXT2
FB6F 20 84FB JSR ADD1
FB72 20 A5FB BNEXT2 JSR TIMTWO
FB75 68 PLA
FB76 4A LSR A
DEX
BNE BLOOP2
LDA #1
test low bit and add
AND LOWBIT
one to output if set
BEQ BEXIT
JSR ADD1

BEXIT
SED
RTS
addition in BCD

ADD1
CLC
clear carry flag

ADL 5003
LDA OUTBUF
add one to low byte
ADC #1

ADL 5003
STA OUTBUF
carry to next byte

ADL 5003
LDA OUTBUF+1
carry to next byte
ADC #0
gives 24 bit BCD

ADL 5003
STA OUTBUF+1
number

ADL 5003
LDA OUTBUF+2

ADL 5003
STA OUTBUF+2

BEND
CLC
output buffer

BEND
CLD
by two using BCD

BEND
RTS
add it to itself

TIMTWO
SED

TIMTWO
CLC

TIMTWO
RTS

TIMTWO

VINERR
JSR PRINT
print VARIABLE ERROR

2F38 7F564152
DB TEx, 'VARIABLE ERROR', CR, ETX

2F4C 494124C

2F5D 45204552

2F64 524F520D

2F68 FF

2F69 60

RTS

2F6A 00

: OUTPUT ASCII VALUE OF OUTPUT BYTES

REPLAN
LDA NEGFLG
negative flag set

REPLAN
BEQ CONT
if number is negative

REPLAN
LDA TMP0
if negative perform

REPLAN
CLC
two's complement

REPLAN
EOR #$FF
first before

REPLAN
ADC #1
converting to ascii

REPLAN
PHA

REPLAN
LDA TMP0+1

REPLAN
EOR #$FF

REPLAN
ADC #0

REPLAN
STA TMP0+1

REPLAN

2F6D 00

RTS
FBEE 68 PLA
FBF1 18 CLC
FBF2 A9 00 CONT LDA *0 clear leading zeros
FBF4 85 3F STA LEADZ flag
FBF8 85 38 STA TMPO output bytes to
FBFA A5 13 STA LOWBIT variable LOWBIT &
FBFC 85 37 STA HGHBIT HGHBIT
FBFE 20 47FB JSR BINASC convert to decimal
FC01 A5 31 LDA NEGFLG
FC03 F0 05 BEQ CONT2
FC05 A9 2D LDA 'C' - print minus sign
FC07 20 D3F7 JSR PRTCHR if negative
FC0A 18 CONT2 LDX #3 three BCD bytes to be
FC0B A2 03 BRAN output
FC0E 18 CLC
FC0F A9 FO LDA #$FO 4 MSB's of byte
FC11 3D 5003 AND OUTBUF,X transmitted first
FC14 4A LSR A
FC15 4A LSR A
FC16 4A LSR A
FC17 4A LSR A
FC18 69 30 ADC #$30 as ascii
FC1A 20 3BFC JSR PRNUM then 4 LSB's
FC1D A9 0F LDA #$OF
FC1F 18 CLC
FC20 3D 5003 AND OUTBUF,X
FC23 69 30 ADC #$30
FC25 20 3BFC JSR PRNUM
FC28 E0 00 CPX #0 and loop for next two
FC2A D0 E1 BNE BRAN if still not printed
FC2C A5 3F LDA LEADZ anything number=0 so
FC2E D0 05 BNE END print ascii 0
FC30 A9 30 LDA #$30 end with or
FC32 20 D3F7 JSR PRTCHR
FC35 A9 0D END LDA CR
FC37 20 D3F7 JSR PRTCHR
FC3A 60 RTS
FC3B C9 30 PNUM CMP #$30 is number a zero
FC3D D0 07 BNE CONT3
FC3F A5 3F LDA LEADZ
FC41 D0 01 BNE OUT no so print it
FC43 60 RTS else don't print it
FC44 A9 30 OUT LDA #$30 have now printed char
FC46 20 D3F7 CONT3 JSR PRTCHR so zeros are no
FC49 A9 FF LDA #ON longer leading
FC4B 85 3F STA LEADZ
FC4D 60 RTS

; RESET ROUTINE ENTERED ON 6502 RESET

; FC4E 78 RESET SEI disable interrupts
FC4F D8 CLD binary addition etc
FC50 A2 FF LDX #$FF
FC52 9A TXS
: INITIALISE VIAS

FC53 20 30F0
FC56 A9 00
FC58 85 3B
FC5A 85 30
FC5C A9 0D
FC5E 85 3D
FC60 85 3E
FC62 A2 05
FC64 BD 7BFD RSLP
FC67 95 00
FC69 CA
FC6A 10 F8

JSR INIT
LDA #OFF
STA IEEFLG
STA NEWFLG
LDA #$0D
STA PDELIM
LDA #5
LDA RESTAB,X
STA 0,X
BPL RSLP

printer and input
delimiters to CR
copy reset, IRQ and
NMI vectors to RAM

: 68488 GPIO RESET

FC6C A9 80
FC6E 8D 2380
FC71 A9 00
FC73 8D 2380
FC76 8D 2080
FC79 8D 2280
FC7C AD 2480
FC7F 29 1F
FC81 8D 2480

LDA #$80
STA $8023
LDA #0
STA $8023
STA $8020
STA $8022
LDA $8024
AND #$1F
STA $8024

: 6850 ACIAS RESET

FC84 20 AAP7

JSR RSRES

determine start routine from top 3 bits
of address switch

FC87 AD 2480
FC8A 4A
FC8B 4A
FC8C 4A
FC8D 4A
FC8E 29 0D
FC90 A8
FC91 B9 81FD
FC94 85 08
FC96 C8
FC97 B9 81FD
FC9A 85 09
FC9C 6C 0800

LDA $8024
LSR A
LSR A
LSR A
AND #$0E
TAY
LDA STRTAB,Y
STA $08
INY
LDA STRTAB,Y
STA $09
JMP ($0008)
top 3 bits of address
switch as option
select number
have number x 2
clear other bits
low byte of routine
save it
high byte
jump to this routine

: SOME OF THE POSSIBLE STARTING ROUTINES

FC9F A9 FF IEEMON LDA #ON
FCA1 85 3B STA IEEFLG
FCA3 4C 69F5 JMP MONITR

: GPIB BASED ASCII MONITOR

GPIB BASED ASCII MINICON
; GPIB TO SERIAL ROUTINE

FCAD 20 82F7 IEESER JSR HOSTON data received via
FCBO A9 FF LDA #ON GPIB is transmitted
FCB2 85 3B STA IEEFLG to host serial port
FCB4 20 91F7 JSR PRTOFF until three
FCB7 20 96F7 JSR RTSON consecutive ESC’s
FCBA A9 00 LDA #OFF are received
FCBC 85 3C STA IEEEPRT
FCBE 20 28F7 IEERPT JSR RDDB character from GPIB
FCC1 C9 1B CMP #$1B is character ESC ?
FCC3 F0 06 BEQ ESCAPE yes - branch
FCC5 20 D3F7 JSR PRTOCHR no - transmit it
FCC8 4C BEFC JMP IEERPT then loop
FCCB 20 28F7 ESCAPE JSR RDDB get next character
FCCF C9 1B CMP #$1B is it an ESC
FCDD D0 0A BNE ESEXT1 no - branch
FCD2 20 28F7 JSR RDDB get next character
FCD5 C9 1B CMP #$1B is it an ESC
FCD7 D0 10 BNE ESEXT2 no branch
FCDC 4C 9BF8 JMP MNSTRT three ESC’s received

FCDC 48 ESEXT1 PHA save non ESC char
FCDD A9 1B LDA #$1B transmit ESC
FCDF 20 D3F7 JSR PRTOCHR then non ESC char
FCE2 68 PLA and back to loop
FCE3 20 D3F7 JSR PRTOCHR as above but send
FCE6 4C BEFC JMP IEERPT two ESC’s before
FCE9 48 ESEXT2 PHA character
FCEA A9 1B LDA #$1B
FCEC 20 D3F7 JSR PRTOCHR
FCEF A9 1B LDA #$1B
FCF1 20 D3F7 JSR PRTOCHR
FCF4 68 PLA
FCF5 20 D3F7 JSR PRTOCHR
FCF8 4C BEFC JMP IEERPT

; HOST SERIAL PORT TO PRINTER SERIAL PORT

FCFB 20 87F7 SERSER JSR HOSTOF
FCFE 20 8CF7 JSR PRTON
FD01 A9 00 LDA #OFF
FD03 85 3C STA IEEEPRT
FD05 20 96F7 JSR RTSON
FD08 20 90F8 SERRPT JSR GETCHR
FD0B 20 D3F7 JSR PRTOCHR
FD0E 4C 08FD JMP SERRPT

; ORIGINAL BINARY MINICON USER INTERFACE

FD11 20 30F0 OLDST JSR INIT initialise VIA’s
FD14 A9 10 LDA #$10 set serial poll byte
FD16 8D 2580 STA SRQ
FD19 20 28F7 JSR RDDB get byte from GPIB
FD1C 85 10 STA USRNO save it as the usr
FD1E A2 00 LDX #0 number - then get
FD20 20 28F7 GLP JSR RDOB six more bytes and
FD23 95 20 STA VLIST,X save in VLIST
FD25 E8 INX
FD26 E0 06 CPX #6
FD28 D0 F6 BNE GLP
FD2A 20 30FD JSR BEGIN choose the routine
FD2D 4C 11FD JMP OLDST then start again

FD30 A9 00 BEGIN LDA #0 set serial poll byte
FD32 8D 2580 STA SRQ
FD35 85 1F STA STATUS and status byte

: CHOOSE ROUTINE :

FD37 A5 10 CHOOSE LDA USRNO
FD39 A2 0C LDX *(NCMDS-1)
FD3B DD 54FD CHLP1 CMP USR,X compare first char
FD3E D0 0E BNE CHLP2 with table USR
FD40 8A TXA
FD41 0A ASL A
FD42 AA TAX
FD43 E8 INX
FD44 ED 61FD LDA ADRR,X get address low
FD47 48 PHA and high bytes
FD48 CA DEX put on the stack
FD49 ED 61FD LDA ADRR,X and jump to it with
FD4C 48 PHA an RTS instruction
FD4D 60 RTS
FD4E CA CHLP2 DEX
FD4F 10 EA BPL CHLP1 loop until agreement
FD51 6C 0600 JMP (USRCMD) no agreement - user

: TABLE OF FIRST CHARACTERS :

FD54 00010203 USR DB 0,1,2,3,4,5,6,7,8,9,10,11,12
FD58 04050607
FD5C 08090A0B
FD60 0C

: ADDRESSES OF ROUTINES :

FD61 7DF0 ADRR ADDR (USR0-1)
FD63 83F0 ADDR (USR1-1)
FD65 DFF1 ADDR (USR2-1)
FD67 06F2 ADDR (USR3-1)
FD69 23F2 ADDR (USR4-1)
FD6B 4CF2 ADDR (USR5-1)
FD6D B6F3 ADDR (USR6-1)
FD6F 69F3 ADDR (USR7-1)
FD71 23F5 ADDR (USR8-1)
FD73 68F5 ADDR (USR9-1)
FD75 9EF5 ADDR (USR10-1)
FD77 EEF0 ADDR (USR11-1)
FD79 27F1 ADDR (USR12-1)
; TABLE OF RESET, IRQ AND NMI VECTORS

FD7B 7DFE RESTAB ADDR IRQVEC
FD7D 7EFE ADDR NMIVEC
FD7F 9BF8 ADDR MNSTRT

; TABLE OF VECTORS FOR START UP IN ASCII

FD81 11FD STRTAB ADDR OLDST
FD83 11FD ADDR OLDST
FD85 9FFC ADDR IEEMON
FD87 A6FC ADDR IEECAM
FD89 69F5 ADDR MONITR
FD8B 9BF8 ADDR MNSTRT
FD8D ADFC ADDR IEESER
FD8F FBFC ADDR SERSER

; TABLE OF SECOND CHARACTERS FOR ASCII
; ROUTINES

FD91 44424F41 CHTAB DB 'DBOAEPJIKLORQDTUYPWXYZ'
FD95 45465048
FD99 494A4B4C
FD9D 4F4E4F52
FDA1 51445454
FDA5 55505758
FDA9 695A

; TABLE OF OFFSETS FROM START OF JUMPTB

FDAB 000000C18 OFFSET DB 0,0,12,24,0,0,36,0,0,0,0,0,0,48,0,0,96,0
FDAD 00002400
FDAB 00000000
FDB7 30000060
FDBB 00
FDAD 3C480000
FDAD 64000000
FDAD 00

; TABLE OF ADDRESSES OF ASCII MINICON
; ROUTINES

FDC5 A6F9 JUMPTB ADDR (ADC1-1)
FDC7 A6F9 ADDR (ADC1-1)
FDC9 B0F9 ADDR (ADC2-1)
FDCB 0000 ADDR 0
FDCD 0000 ADDR 0
FDCF 0000 ADDR 0
FDD1 7BF9 ADDR (CO1-1)
FDD3 7BF9 ADDR (CO1-1)
FDD5 8BF9 ADDR (CO2-1)
FDD7 0000 ADDR 0
FDD9 0000 ADDR 0
FDDB 0000 ADDR 0
FDDD BBF9 ADDR (DAC1-1)
FDDF BBF9 ADDR (DAC1-1)
FDE1 C6F9 ADDR (DAC2-1)
FDE3 0000 ADDR 0
FDE5 0000 ADDR 0
FDE7 0000 ADDR 0
FDE9 D5F9 ADDR (GP1-1)
FDEB D5F9 ADDR (GP1-1)
FDED D5F9 ADDR (GP1-1)
FDEF 0000 ADDR 0
FDF1 0000 ADDR 0
FDF3 0000 ADDR 0
FDF5 EOF9 ADDR (MOO-1)
FDF7 E3F9 ADDR (MO1-1)
FDF9 E6F9 ADDR (MO2-1)
FDFB E9F9 ADDR (MO3-1)
FDFD ECF9 ADDR (MO4-1)
FDFF EF99 ADDR (MO5-1)
FE01 08FA ADDR (RD1-1)
FE03 08FA ADDR (RD1-1)
FE05 0EFA ADDR (RD2-1)
FE07 0000 ADDR 0
FE09 0000 ADDR 0
FE0B 0000 ADDR 0
FE0D 4BF9 ADDR (STPM1-1)
FE0F 4BF9 ADDR (STPM1-1)
FE11 56F9 ADDR (STPM2-1)
FE13 65F9 ADDR (STPM3-1)
FE15 70F9 ADDR (STPM4-1)
FE17 0000 ADDR 0
FE19 F2F9 ADDR (VP1-1)
FE1B F2F9 ADDR (VP1-1)
FE1D FDF9 ADDR (VP2-1)
FE1F 0000 ADDR 0
FE21 0000 ADDR 0
FE23 0000 ADDR 0
FE25 19FA ADDR (PR1-1)
FE27 19FA ADDR (PR1-1)
FE29 22FA ADDR (PR2-1)
FE2B 0000 ADDR 0
FE2D 0000 ADDR 0
FE2F 0000 ADDR 0

: TABLES OF BINARY EQUIVALENTS OF DECIMAL :

FE31 000A141E TABLE1 DB 0,10,20,30,40,50,60,70,80,90
FE35 28323C46
FE39 505A
FE3B 0000 TABLE2 ADDR 0
FE3D 6400 ADDR 100
FE3F C800 ADDR 200
FE41 2C01 ADDR 300
FE43 9001 ADDR 400
FE45 F401 ADDR 500
FE47 5802 ADDR 600
FE49 BC02 ADDR 700
FE4B 2003 ADDR 800
FE4D 8403 ADDR 900
FE4F 0000 TABLE3 ADDR 0
FE51 E803 ADDR 1000
FE53 D007 ADDR 2000
FE55 B80B ADDR 3000
FE57 A00F ADDR 4000
FE59 8813 ADDR 5000
FE5B 7017 ADDR 6000
FE5D 581B ADDR 7000
FE5F 401F ADDR 8000
FE61 2823 ADDR 9000
FE63 0000 TABLE4 ADDR 0
FE65 1027 ADDR 10000
FE67 204E ADDR 20000
FE69 3075 ADDR 30000
FE6B 409C ADDR 40000
FE6D 50C3 ADDR 50000
FE6F 60EA ADDR 60000
FE71 60EA ADDR 60000
FE73 60EA ADDR 60000
FE75 60EA ADDR 60000

: IRQ AND NMI HANDLERS :

FE77 6C 0000 IRQ JMP ($00) 6502 here on interrupt
FE7A 6C 0200 NMI JMP ($02) and NMI - jump to RAM
FE7D 40 IRQVEC RTI vector
FE7E 40 NMIVEC RTI which point here

initially. User can
alter RAM vectors
MONITOR PROVIDES MEMORY DUMP AND DISASSEMBLER VIA GPIB OR RS232 INTERFACES. ASCII TRANSMISSION IS USED WITH TERMINAL ECHO

M.J. HILL 1985

VARIABLES

0043 SELECT EQU $43 select pointer
0045 GETPTR EQU $45 zero page pointer
0050 NUMBER EQU $50 temp number store
0032 BUFFEN EQU $32 buffer fill pointer
0034 BPOINT EQU $34 buffer empty pointer
0052 COUNT EQU $52 counts lines dumped
0054 NUMLIN EQU $54 number lines to dump
0056 EA EQU $56 end address
0058 SA EQU $58 start address
005A COLUMN EQU $5A data cell for dump
0047 PRINTR EQU $47 printer flag
0048 HOST EQU $48 output device flag
003B IEEFLG EQU $3B flag for GPIB as host
003C IEEEPR EQU $3C GPIB as printer flag
0036 CHAR EQU $36 char to be output
005C REPEAT EQU $5C loop counter
005D TEMPX EQU $5D temporary X register
0049 RETURN EQU $49 temp return address
005E DILSNS EQU $5E no. lines disass'ed
005F LINUM EQU $5F no. to disassemble
0060 LETTER EQU $60 letter from mem
0061 SUBPTR EQU $61 pointer to sub'tine
0063 OPBYTES EQU $63 data cell
0064 OPCHRS EQU $64 data cell
0065 ADRCOL EQU $65 start column of field

CONSTANTS

00FF ON EQU $FF
0000 OFF EQU $0
000D CR EQU $0D
000A LF EQU $0A
007F TEX EQU $7F
00FF BFX EQU $FF

BUFFERS

0300 BUFF EQU $0300 input buffer
0350 OUTBUF EQU $0350 output buffer

LOCATION OF JUMP INSTRUCTIONS FOR ROUTINES IN $F000 EPROM

F000 RESET EQU $F000
F003 PRTCHR EQU $F003
F006 PRINT EQU $F006
F009 HOSTON EQU $F009
F00C HOSTOF EQU $F00C
FOOF PRTON EQU $FOOF
FO12 PRTOFF EQU $FO12
FO15 RTSON EQU $FO15
FO18 RTSOFF EQU $FO18
FO1B RSRES EQU $FO1B
FO1E PUSHSL EQU $FO1E
FO21 POPSL EQU $FO21
FO24 GETCHR EQU $FO24
FO27 RDOB EQU $FO27
FO2A GETSL EQU $FO2A
FO2D MINCON EQU $FO2D

E000 ORG X'0000'
E000 4C 79E3 JMP START

E003 A5 44 Padr LDA SELECT+1 print high byte of pointer and low byte
E005 20 D7E0 JSR PRTBYT
E008 A5 43 LDA SELECT
E00A 20 D7E0 JSR PRTBYT
E00D 60 RTS
E00E 20 2AF0 DUMPL JSR GETSL get byte from pointer and print it
E011 20 D7E0 JSR PRTBYT
E014 60 RTS
E015 20 B4E0 PRDUMP JSR GOTOSA pointer-start address
E018 20 60E0 XHLOOK JSR PRLINE dump one line
E01B 10 FB BPL XHLOOK loop if A<0FFFF
E01D 20 C6E0 JSR CRLF print cr.lf
E020 60 RTS
E021 38 SETADS SEC
E022 A5 57 LDA EA+1 compare high byte of start & end addresses
E024 C5 59 CMP SA+1
E026 90 0A BCC TOOLOW if end start
E028 D0 06 BNE SEXIT
E02A A5 56 LDA EA compare low byte of start & end addresses
E02C C5 58 CMP SA
E02E 90 02 BCC TOOLOW if end start
E030 18 SEXIT CLC return carry clear
E031 60 RTS
E032 38 TOOLOW SEC return with carry set
E033 60 RTS
E034 A9 24 PRSA LDA #C'$' print $
E036 20 03F0 JSR PRTCHR
E039 A5 59 LDA SA+1 print high byte of start address
E03B 20 D7E0 JSR PRTBYT and low byte
E03E A5 58 LDA SA
E040 20 D7E0 JSR PRTBYT
E043 60 RTS
E044 A9 24 PREA LDA #C'$' print $
E046 20 03F0 JSR PRTCHR
E049 A5 57 LDA EA+1 print high byte of end address
E04B 20 D7E0 JSR PRTBYT and low byte
E04E A5 56 LDA EA
E050 20 D7E0 JSR PRTBYT
E053 60 RTS
E054 20 34E0 RANGE JSR PRSA print start address
E057 A9 2D LDA #C'-' hyphen
E059 20 03F0 JSR PRTCHR
E05C 20 44EO
E05F 60
E060 20 C6E0 PRLINE
E063 A5 43
E065 48
E066 29 0F
E068 85 5A
E06A 68
E06B 29 F0
E06D 85 43
E06F 20 03EO
E072 A2 03
E074 20 EAEO
E077 A5 5A
E079 F0 0C
E07B A2 03 PRLOOP
E07D 20 EAEO
E080 20 3DE1
E083 C6 5A
E085 D0 F4
E087 20 0EE0 COLOK
E08A 20 0EE0
E08D 20 9BEO
E090 30 08
E092 A5 43
E094 29 0F
E096 C9 00
E098 D0 ED
E09A 60 EXIT
E09B 38 NEXTSI
E09C A5 44
E09E C5 57
E0A0 90 09
E0A2 D0 0D
E0A4 38 SEC
E0A5 A5 43
E0A7 C5 56
E0A9 B0 06
E0AB 20 3DE1 SLOK
E0AE A9 00
E0B0 60
E0B1 A9 FF
E0B3 60
E0B4 A5 58
E0B6 85 43
E0B8 A5 59
E0BA 85 44
E0BC 60
E0BD A5 43 DECST
E0BF D0 02
E0C1 C6 44
E0C3 C6 43 ERAN2
E0C5 60
E0C6 A9 0D
E0C8 20 03FO
E0CB A9 0A
E0CD 20 03FO
E0DO 60

JSR PREA and end address
RTS
JSR CRLF print cr,lf
LDA SELECT low byte of pointer
PHA save on stack
AND #$0F mask high byte
STA COLUMN save in col counter
PLA fetch back from stack
AND #$0F make pointer multiple of 16
STA SELECT print pointer
LDX #$3 print three spaces
JSR SPACES get column counter
LDA COLUMN if zero branch
BEQ COLOK print three spaces
LDX #$3 increment pointer
JSR SPACES and decrease column
JSR INCST if not zero loop
DEC COLUMN byte from pointer
BNE PRLOOP print space
JSR DUMPSTL increment pointer
BMI EXIT loop if A<@FF
JSR NEXTSL low byte of pointer
AND #$0F mask high bits
LDA SELECT then loop
CMP #0
BNE COLOK
RTS
EXIT prepare to subtract
LDA SELECT+1 high byte of pointer
CMP EA+1 less than high byte
BCC SLOK end address continue
BNE NOINC if greater then end
SEC
LDA SELECT low byte of pointer
CMP EA > end address ?
BCC SLOK
BNE NOINC increment pointer
JSR INCSTL return with A=0
LDA #0
RTS
LDA #$FF return with A=@FF
RTS
LDA SA pointer equals
STA SELECT start address
LDA SA+1
STA SELECT+1
RTS
LDA SELECT decrease pointer
BNE BRAN2 low byte
DEC SELECT+1 and high byte if
DEC SELECT necessary
RTS
LDA #CR print CR
JSR PRTCHR and line feed
LDA *LF
JSR PRTCHR
RTS
EOD1 A9 20 SPACE LDA #$20 print a space
EOD3 20 03FO JSR PRTCCHR
EOD6 60 RTS
EOD7 48 PRTBYT PHA save acc
EOD8 4A LSR A move top 4 bits to
EOD9 4A LSR A lower 4 bits
EODA 4A LSR A
EODB 4A LSR A
EODC 20 2FE1 JSR ASCII convert to ascii
EODF 20 03FO JSR PRTCCHR and print
EOE2 68 PLA get back acc
EOE3 20 2FE1 JSR ASCII and print lower 4
EOE6 20 03FO JSR PRTCCHR bits in ascii
EOE9 60 RTS
EOEA A9 20 SPACES LDA #$20 print X number of
EOEC 86 5C CHARS STX REPEAT spaces
EOED 48 RPLOOP PHA
EOEF A6 5C LDX REPEAT
EOF1 F0 09 BEQ RPTEND
EOF3 C6 5C DEC REPEAT
EOF5 20 03FO JSR PRTCCHR
EOF8 68 PLA
EOF9 18 CLC
EOFA 90 F2 BCC RPLOOP
EOFC 68 RPTEND PLA print X number of
EOD0 60 RTS CR’s and LF’s
EOD2 86 5C CRLFS STX REPEAT
E100 A6 5C CRLOOP LDX REPEAT
E102 F0 07 BEQ ENDCR print X number of
E104 C6 5C DEC REPEAT CR’s and LF’s
E106 20 C6E0 JSR CRLF
E109 90 F5 BCC CRLOOP save X register
E10B 60 ENDCR RTS save message pointer
E10C 86 5D PRMSG STX TEMPX
E10E B5 01 LDA 1,X
E110 48 PHA
E111 B5 00 LDA 0,X
E113 48 PHA
E114 A6 5D LOOP LDX TEMPX X points to message
E116 A1 00 LDA (0,X) pointer on zero page
E118 C9 FF CMP #ETX get character, ETX ?
E11A F0 0C BEQ MSGEND yes - end routine
E11C F6 00 INC 0,X no increment pointer
E11E D0 02 BNE NEXT
E120 F6 01 INC 1,X
E122 20 03FO NEXT JSR PRTCCHR print character
E125 18 CLC and loop
E126 90 EC MSGEND BCC LOOP restore original
E128 68 PLA message pointer
E129 95 00 STA 0,X
E12B 68 PLA
E12C 95 01 STA 1,X
E12E 60 RTS
E12F 08 ASCII PHP save decimal flag
E130 D8 CLD clear decimal flag
E131 29 0F AND #$0F clear 4 MSB’s
E133 C9 0A CMP #$0A is acc<9
E135 30 02 BMI DECIML if not must be 0-9
E137 69 06 ADC #6 if so add $36, A-F
E139 69 30 DECIML ADC #$30 add $30 -> ascii
E13B 28 PEP RTS
E13C 60 RT S
E13D B6 43 INC SELECT increment select
E13F DD 02 BNE BRANCH pointer
E141 B6 44 INC SELECT+1
E143 60 BRANCH RTS
E144 A6 32 ADDRES LD X BUFFEN X with buffer pointer
E146 AO 02 LDY #$2 Y as loop counter
E148 88 ADLOOP DEY
E149 CA DEX X points to next char
E14A BD 0003 LDA BUFF,X to the left in buffer
E14D 20 95E1 JSR BINARY convert to binary
E150 C9 FF CMP #$FF if acc=FF error
E152 FO 20 BEQ ADERR save as low 4 bits
E154 99 5000 STA NUMBER,Y next character to
E157 CA DEX the left
E158 BD 0003 LDA BUFF,X convert to binary
E15B 20 95E1 JSR BINARY convert to binary
E15E C9 FF CMP #$FF if error
E160 FO 12 BEQ ADERR move 4 LSB's to
E162 0A ASL A 4 MSB's
E163 OA ASL A
E164 OA ASL A
E165 OA ASL A
E166 19 5000 ORA NUMBER,Y add to 4 LSB's
E169 99 5000 STA NUMBER,Y and save it
E16C CO 00 CPY #$0 is loop ended
E16E DD 08 BNE ADLOOP no - loop
E170 86 32 STX BUFFEN update buffer pointer
E172 18 CLC clear carry and
E173 60 RTS return
E174 38 ADERR SEC carry and
E175 60 RTS return
E176 20 44E1 STEASA JSR ADDRES 4 characters from
E179 B0 18 BCS SERR buffer to 16 bit no.
E17B A5 51 LDA NUMBER+1 and make it the end
E17D 85 56 STA EA address
E17F A5 50 LDA NUMBER
E181 85 57 STA EA+1
E183 C6 32 DEC BUFFEN jump past space
E185 20 44E1 JSR ADDRES and repeat for start
E188 B0 09 BCS SERR address
E18A A5 51 LDA NUMBER+1
E18C 85 58 STA SA
E18E A5 50 LDA NUMBER
E190 85 59 STA SA+1
E192 60 RTS
E193 38 SERR SEC if error set carry
E194 60 RTS
E195 38 BINARY SEC prepare to subtract
E196 E9 30 SBC #$30 subtract $30
E198 90 0A BCC BAD if char < $30 bad
E19A C9 0A CMP #$0A was it $30 - $39
E19C 90 08 BCC GOOD yes - now have binary
E19E E9 07 SBC #$7 subtract 7
E1A0 C9 10 CMP #$10 was it $41-$46
E1A2 90 02 BCC GOOD yes - now have binary
E1A4 A9 FF BAD LDA #$FF acc with $FF
E1A6 60 GOOD RTS
E1A7 20 B4E0 PRDIS JSR GOTOSA select pointer=start
E1AA 20 C6E0 JSR CRLF address, print cr lf
E1AD 20 B3E1 PRLP JSR DLINE disassemble one line
E1B0 10 FB BPL PRLP loop until last line
E1B2 60 RTS done then return
E1B3 20 2AF0 D LINE JSR GETSL get byte from select
E1B6 48 PHA save it
E1B7 20 C8E1 JSR MNEMON mnemonic for opcode
E1BA 20 D1E0 JSR SPACE print space
E1BD 68 PLA restore opcode
E1BE 20 E1E1 JSR OPERAN print operand
E1C1 20 31E2 JSR FINISH finish line
E1C4 20 9BE0 JSR NEXTSL increment select
E1C7 60 RTS
E1C8 A2 03 MNEMON 3 letters to print
E1CA 86 60 LDX #3 use opcode as index
E1CC AA STX LETTER get mnemonic code for
E1CD BD FAE5 TAX that opcode, as index
E1DO AA LDA MCODES,X get letter from table
E1D1 BD FAE7 MNLOOP save X register
E1D4 86 5D STX TEMPX print it
E1D6 20 C3F0 JSR PRTCHR increment table point
E1D9 A6 5D LDX TEMPX decrease counter
E1DB E8 INX if not yet zero loop
E1DC C6 60 DEC LETTER lookup addressing mode
E1DE D0 F1 BNE MNLOOP for the opcode
E1E0 60 RTS X indicates addressing
E1E1 AA OPERAN mode, handle it
E1E2 BD FAE6 LDA MODES,X low byte of X pointer
E1E5 AA TAX table of subroutines
E1E6 20 EAE1 JSR MODEX high byte
E1E9 60 RTS
E1EA BD 3AE3 MODEX LDA SUBS,X jump to chosen routine
E1ED 85 61 STA SUBPTR advance to byte after
E1EF E8 INX opcode and dump it
E1F0 BD 3AE3 LDA SUBS,X get byte after opcode
E1F3 85 62 STA SUBPTR+1 save it on stack
E1F5 6C 6100 JMP (SUBPTR) get high byte
E1F8 20 3DE1 JSR INCSL dump it
E1FB 20 0E00 JSR DUMPSL recover low byte
E1FE 60 RTS dump it
E1FF 20 3DE1 ONEBYT print left parenthesis
E202 20 2AF0 JSR GETSL print right
E205 48 PHA parenthesis
E206 20 3DE1 JSR INCSL print comma
E209 20 0E00 JSR DUMPSL
E20C 68 PLA
E20D 20 D7E0 JSR PRTBYT
E210 60 RTS
E211 A9 28 LPAREN print left parenthesis
E213 D0 02 BNE SENDIT
E215 A9 29 RPAREN print right parenthesis
E217 20 03F0 SENDIT
E21A 60 RTS
E21B A9 2C XINDEX LDA #C, ' print comma
E21D 20 C3F0 JSR PRTCHR
E220 A9 58 LDA #C'X'
E222 20 C3F0 JSR PRTCHR
E225 60 RTS
E226 A9 2C YINDEX LDA #C','
E228 20 C3F0 JSR PRTCHR
E22B A9 99 LDA #C'Y'
E22D 20 C3F0 JSR PRTCHR
E230 60 RTS
E231 85 64 FINISH STA OPCHR$E
E233 86 63 STX OPBYTE$E
E235 CA DEX
E236 30 06 BMI SELOK
E238 20 BDE0 LOOP1 JSR DECSL
E23B CA DEX
E23C 10 FA BPL LOOP1
E23E 08 SELOK PHP
E23F D8 CLD
E240 38 SEC
E241 A5 65 LDA ADRCOL
E243 E9 04 SBC #4
E245 E5 64 SBC OPCHR$E
E247 28 PLP
E248 AA TAX
E249 20 EAEO JSR SPACES
E24C 20 C3E0 JSR PRADR
E24F 20 D1E0 LOOP2 JSR SPACE
E252 20 OEE0 JSR DUMPSL
E255 20 3DE1 JSR INCN$E
E258 C6 63 DEC OPBYTE$E
E25A 10 F3 BPL LOOP2
E25C 20 BDE0 JSR DECSL
E25F 20 C6E0 FINEND JSR CRLF
E262 60 RTS
E263 20 FFE1 ABSSL JSR TWOBYT
E266 A2 02 LDX #2
E268 A9 04 LDX #4
E26A 60 RTS
E26B 20 63E2 ABSS JSR ABSLUT
E26E 20 1BE2 JSR XINDEX
E271 A2 02 LDX #2
E273 A9 06 LDA #6
E275 60 RTS
E276 20 63E2 ABSS JSR ABSLUT
E279 20 26E2 JSR YINDEX
E27C A2 02 LDX #2
E27E A9 06 LDA #6
E280 60 RTS
E281 A9 41 ACC LDA #C'A'
E283 20 C3F0 JSR PRTCHR
E286 A2 00 LDX #0
E288 A9 01 LDA #1
E28A 60 RTS
E28B A2 00 IMPLID LDX #0
E28D A9 00 LDA #0
E28F 60 RTS
E290 A9 23 IMMEDIT LDA #C'\#' print a #
E292 20 03F0 JSR PRTCHR then a $ to show hex
E295 A9 24 LDA #C $ print one byte
E297 20 03F0 JSR PRTCHR one byte
E29A 20 F8E1 JSR ONEBYTE and four characters
E29D A2 01 LDX #1
E29F A9 04 LDA #4
E2A1 60 RTS
E2A2 20 11E2 INDRCT left parenthesis
E2A5 20 03E2 JSR ABSLUT two byte operand
E2A8 20 15E2 JSR RPAREN right parenthesis
E2AB A9 06 LDA #6 six characters
E2AD A2 02 LDX #2 and two bytes
E2AF 60 RTS
E2B0 20 11E2 INDX print zero page
E2B3 20 07E3 JSR LPAREN address, comma and X
E2B6 20 15E2 JSR RPAREN right parenthesis
E2BB A9 08 LDA #8 one byte
E2BD 60 RTS eight characters
E2BE 20 11E2 INDY select next byte
E2C1 20 FAE2 JSR LPAREN save select pointer
E2C4 20 15E2 JSR RPAREN get operand byte
E2C7 20 26E2 JSR YINDEX save it on stack
E2CA A2 01 LDX #1 increment pointer
E2CC A9 08 LDA #8 restore operand byte
E2CE 60 RTS is it plus or minus
E2CF 20 3DE1 RELATV plus forward branch
E2D2 20 1EF0 JSR INCSL branching backwards
E2D5 20 2AF0 JSR GETSL is like branching
E2D8 48 PHA forwards from one
E2D9 20 3DE1 JSR INCSL page lower
E2DC 68 PLA save callers flags
E2DD C9 00 CMP #0 binary arithmetic
E2DF 10 02 BPL FORWRD prepare to add
E2E1 C6 44 DEC SELECT+1 add operand
E2E3 08 FORWRD PHP select = branch
E2E4 D8 CLD restore decimal flag
E2E5 18 CLC print address
E2E6 65 43 ADC SELECT restore select
E2E8 90 02 BCC RELEND one byte
E2EA E6 44 INC SELECT+1 and four characters
E2EC 85 43 RELEND print two ascii 'O's
E2EE 28 PLP print 1 byte operand
E2EF 20 03E0 JSR PRADR one byte
E2F2 20 21F0 JSR POPS L and four characters
E2F5 A2 01 LDX #1
E2F7 A9 04 LDA #4
E2FA A9 00 RTS
E2FC 20 D7E0 JSR PRTBYT print two ascii 'O's
E2FF 20 F8E1 JSR ONEBYTE print 1 byte operand
E302 A2 01 LDX #1
E304 A9 04 LDA #4
E306 60 RTS
E307 20 FAE2 ZEROX JSR ZEROPG zero page address
E30A 20 1BE2 JSR XINDEX comma and an X
E30D A2 01 LDX #1 one byte
E30F A9 06 LDA #6 and six characters
E311 60 RTS
E312 20 FAE2 ZEROY JSR ZEROPG
E315 20 26E2 JSR XINDEX
E318 A9 01 LDA #1
E31A A9 06 LDA #6
E31C 60 RTS
E31D 68 TXMODE PLA pop return address to
E31E 68 PLA operan
E31F 68 PLA and return address to
dsline
E320 68
E321 20 9BE0 JSR NEXTSL advance past TEX
E324 30 0D BMI TXEXIT return if reached end
E326 20 2AF0 JSR GETSL get character
E329 C9 FF CMP *ETX is it ETX
E32E F0 06 BEQ TXEXIT yes - exit
E32D 20 03F0 JSR PRTCRR print character
E330 18 CLC loop next character
E331 90 EE BCC TXMODE+4
E333 20 C6E0 TXEXIT print cr,lf
E336 20 9BE0 JSR NEXTSL advance next opcode
E339 60 RTS
E33A 8BE2 SUBS ADDR IMPLID mode zero is invalid
E33C 81E2 ADDR ACC
E33E 90E2 ADDR IMMEDT
E340 FAE2 ADDR ZEROPG
E342 07E3 ADDR ZEROX
E344 12E3 ADDR ZEROY
E346 63E2 ADDR ABSLUT
E348 6BE2 ADDR ABSX
E34A 76E2 ADDR ABSS
E34C 5BE2 ADDR IMPLID
E34E CFE2 ADDR RELATV
E350 80E2 ADDR INDX
E352 BEE2 ADDR INDY
E354 A2E2 ADDR INDRCT
E356 1DE3 ADDR TXMODE

; USER INTERFACE SECTION

E358 A9 00 INIT LDA #0 initialise variables
E35A 85 52 STA COUNT
E35C 85 5A STA COLUMN
E35E 85 3E STA CHAR
E360 85 5C STA REPEAT
E362 85 5D STA TEMPX
E364 85 49 STA RETURN
E366 85 4A STA RETURN+1
E368 85 5F STA LINUM
E36A 85 60 STA LETTER
E36C A9 04 LDA #$4
E36E 85 54 STA NUMLIN
E370 A9 05 LDA #$5
E372 85 5E STA DESLINS
E374 A9 10 LDA #$16
E376 85 65 STA ADRCOL
E378 60 RTS
E379 20 58E3 START JSR INIT initialise variables
E37C 20 1BF0 JSR RSRES reset 6850
E37F 20 1BF0 JSR RTSOFF RTS low
E382 A5 3B LDA IEEFLG RS232 or IEEE488 ?
E384 F0 0D BEQ SERIAL
E386 A9 FF LDA #ON
E388 85 3C STA IEEEPRI IEEE as output
E38A 20 0CF0 JSR HOSTOF
E38D 20 12F0 JSR PRTOFF
E390 4C 9DE3 JMP START2
E393 20 09F0 SERIAL JSR HOSTON use host for output
E396 20 12F0 JSR PRTOFF
E399 A9 00 LDA #OFF
E39B 85 3C STA IEEEPRI
E39D 20 C6E0 START2 JSR CRLF print a couple of
E3A0 20 C6E0 JSR CRLF cr's and lf's
E3A3 20 06F0 JSR PRINT print title
E3A6 7F DB TEX
E3A7 233232320 DB '### I.C.C. RS232/IEEE MONITOR
E3AB 492E432E VS 1.0 ###'
E3AF 432E2052
E3B3 53323332
E3B7 2F494545
E3BB 45204D4F
E3BF 4E49544F
E3C3 52200565
E3C7 20312E30
E3CB 20232323
E3CF ODDA DB CR,LF
E3D1 28632920 DB '(c) M.J.HILL 1984/5'
E3D5 422E4A2E
E3DB 484944C4
E3DD 20313938
E3E1 342F35
E3E4 ODDAFF DB CR,LF,ETX
E3E7 20 C6E0 JSR CRLF
E3EA 20 06F0 VISION JSR PRINT print prompt
E3ED 7FODOAA2A DB TEX,CR,LF,'*','ETX
E3F1 FF
E3F2 A5 3B LDA IEEFLG
E3F4 F0 1A BEQ SER2 IEEE or RS232 input
E3F6 A2 0O LDX #0
E3F8 20 27F0 NXTIN JSR RDDB get byte from GPIB
E3FB 9D 0003 STA BUFF,X
E3FE C9 08 CMP #B
E400 F0 2B BEQ DELETE
E402 C9 7F CMP #$7F
E404 F0 27 BEQ DELETE
E406 20 40E4 JSR ECHO
E409 C9 0D CMP #13
E40B F0 39 BEQ PROCES
E40D E8 INX
E40E D0 E8 BNE NXTIN
E410 20 15F0 SER2 JSR RTSON RTS high
E413 A2 00 LDX #0
E415 20 24F0 NXTIN JSR GETCHR characters from 6850
E418 9D 0003	STA BUFF,X	and place in buffer
E41B C9 08	CMP +8	handle delete and
E41D F0 0E	BEQ DELETE	backspace alike
E41F C9 7F	CMP #$7F	
E421 F0 0A	BEQ DELETE	
E423 20 40E4	JSR ECHO	echo to terminal
E426 C9 0D	CMP #$13	stop when CR received
E428 F0 1C	BEQ PROCES	
E42A E8	INX	
E42B D0 E8	BNE NEXTIN	buffer pointer back
E42D E0 00	DELETE	one but not past zero
E42F D0 08	CPX #0	
E431 A9 07	BNE NONZ	
E433 20 40E4	JSR ECHO	
E436 18	CLC	
E437 90 DC	BCC NEXTIN	
E439 CA	NONZ	
E43A 20 40E4	DEX	
E43D 18	JSR ECHO	
E43E 90 D5	CLC	
E440 48	BCC NEXTIN	
E441 20 03F0	ECHO	
E444 68	PHA	
E445 60	JSR PRTCHR	
E446 86 32	PROCES	save buffer pointer
E448 A2 00	STX BUFFEN	
E44A BD 0003	LDX #0	get first character
E44D C9 0D	LDA BUFF,X	if CR back to monitor
E44F F0 99	CMP #$13	
E451 C9 44	BEQ VISONM	if D then disassemble
E453 D0 0B	CMP #$C'D'	if not test another
E455 20 76E1	JMP VISONM	decode addresses
E458 B0 4F	JMP MINCON	jump to disas
E45A 20 A7E1	JSR STEASA	carry set if error
E45D 4C EAE3	JSR PRDIS	finished
E460 C9 45	JMP VISONM	
E460 C9 45	VB1	
E462 D0 03	CMP #$C'E'	if E then exit to
E464 4C 2DF0	BNE VB2	minicon routines
E467 C9 4D	CMP #$C'M'	if M then dump
E469 D0 0B	BNE VB3	
E46B 20 76E1	JSR STEASA	
E46E B0 39	BCS ERROR	
E470 20 15E0	JSR PRDUMP	
E473 4C EAE3	JMP VISONM	
E476 C9 50	VB3	
E478 D0 10	CMP #$C'P'	if P then toggle
E47A A5 47	BNE VB3	printer on or off
E47C F0 06	LDA PRINTR	off so put on
E47E 20 12F0	BEQ PON	on so put off
E481 4C EAE3	JSR PRTOFF	
E484 20 0FF0	JMP VISONM	
E487 4C EAE3	JSR PRTON	
E48A C9 48	JMP VISONM	
E48C D0 06	VB4	
E48E 20 C4E4	CMP #$C'H'	unrecognised command
E491 4C EAE3	BNE VB5	
E494 20 06F0	JSR MENU	
E497 7F0D0A	JMP VISONM	
E497 DB TEXT,CR,LF	JSR PRINT	
E49A 3F20434F DB ' ? COMMAND'
E49E 4D4D414E
E4A2 44
E4A3 0D0AFF
E4A6 4C EAE3
E4A9 18 ERROR CLC
E4AA 20 06F0 JSR PRINT
E4AD 7F0D0A DB TEX, CR, LF
E4B0 434F4D4D DB 'COMMAND ERROR'
E4B4 414E4420
E4B8 4552524F
E4BC 52
E4BD FF
E4BE 20 06E0 JSR CRLF
E4C1 4C EA3
E4C4 20 06F0 MENU JSR PRINT
E4C7 7F0D0A DB TEX, CR, LF
E4CA 4D4F4E49 DB 'MONITOR COMMANDS : ', CR, LF, LF
E4CE 544F5220
E4D2 434F4D4D
E4DE 414E4453
E4DA 203A0D0A
E4DE 0A
E4DF 4D203C73
E4E3 74617274
E4E7 20616464
E4EB 72657373
E4EF 3E203C65
E4F3 6E642061
E4F7 64647265
E4FB 73733E20
E4FF 20204475
E503 6D707320
E507 6D656D6F
E50B 72792062
E50F 65747765
E513 656E
E515 20616464
E519 72657373
E51D 65732067
E521 6976656E
E525 2026696E
E529 20686573
E52D 290D0A
E530 44203C73
E534 74617274
E538 20616464
E53C 72657373
E540 3E203C65
E544 6E642061
E548 64647265
E54C 73733E20
E550 20204469
E554 73617373
E558 656D626C
E55C 6573206D
E560 656D6F72
E564 7920

DB 'M <start address> <end address>, Dumps memory between'

DB 'addresses given (in hex)', CR, LF

DB 'D <start address> <end address>, Disassembles memory'
DB 'between given addresses', CR, LF

DB 'P
Toggles printer port'

DB 'on or off', CR, LF

DB 'E
Exits to minicon'

DB CR, LF, LF, ETX
JMP VISMON

back to monitor

TABLES FOR DISASSEMBLER

MCODES

DB $22, $6A, $01, $01, $01, $6A, $0A, $01, $70, $6A

DB $0A, $01, $01, $6A, $0A, $01, $1F, $6A, $01, $01

DB $01, $6A, $0A, $01, $2B, $6A, $01, $01, $01, $64, $0A

DB $01, $58, $07, $01, $01, $16, $07, $79, $01, $76

DB $07, $79, $01, $16, $07, $79, $01, $19, $07, $01

DB $01, $01, $01, $79, $01, $88, $07.
E631 01880701
E635 01
E636 01077901
E63A 7F490101
E63E 0149
E640 64016D49
E644 64015549
E648 6401
E64A 25490101
E64E 01496401
E652 3149
E654 01010149
E658 64018204
E65C 0101
E65E 01047C01
E662 73047C01
E666 5504
E668 7C012804
E66C 01010104
E670 7C01
E672 8E040101
E676 01047CAC
E67A 0191
E67C 01019791
E680 94014601
E684 A501
E686 97919401
E68A 0D910101
E68E 9791
E690 9401A991
E694 A6010191
E698 0101
E69A 615B5E01
E69E 615B5E01
E6A2 9D5B
E6A4 9A01615B
E6A8 5E01105B
E6AC 0101
E6AE 615B5E01
E6B2 345B9E01
E6B6 615B
E6B8 5E013D37
E6BC 01013D37
E6C0 4001
E6C2 52374301
E6C6 3D374001
E6CA 1C37
E6CC 01010137
E6DO 40012E37
E6D4 0101
E6D6 01374001
E6DA 3A850101
E6DE 3A85
E6E0 4C014F85
E6E4 67013A85
E6E8 4C01
E6EA 13850101
E6EE 01854C01

$01, $01

DB $01, $07, $79, $01, $7F, $49, $01, $01, $49

DB $64, $01, $6D, $49, $64, $01, $55, $49, $64, $01

DB $25, $49, $01, $01, $01, $49, $64, $01, $31, $49

DB $01, $01, $01, $49, $64, $01, $82, $04, $01, $01

DB $01, $04, $7C, $01, $73, $04, $7C, $01, $55, $04

DB $7C, $01, $28, $04, $01, $01, $01, $01, $04, $7C, $01

DB $8E, $04, $01, $01, $01, $01, $04, $7C, $01, $91

DB $01, $01, $97, $91, $94, $01, $46, $01, $A3, $01

DB $97, $91, $94, $01, $0D, $91, $01, $01, $97, $91

DB $94, $01, $A9, $91, $A6, $01, $01, $91, $01, $01

DB $61, $5B, $5E, $01, $61, $5B, $5E, $01, $9D, $5B

DB $9A, $01, $61, $5B, $5E, $01, $10, $5B, $01, $01

DB $61, $5B, $5E, $01, $34, $5B, $9E, $01, $61, $5B

DB $5E, $01, $3D, $37, $01, $01, $3D, $37, $40, $01

DB $52, $37, $43, $01, $3D, $37, $40, $01, $1C, $37

DB $01, $01, $01, $37, $40, $01, $2E, $37, $01, $01

DB $01, $37, $40, $01, $3A, $85, $01, $01, $3A, $85

DB $4C, $01, $4F, $85, $67, $01, $3A, $85, $4C, $01

DB $13, $85, $01, $01, $01, $85, $4C, $01, $6B, $85
<table>
<thead>
<tr>
<th>E6F2</th>
<th>8B85</th>
</tr>
</thead>
<tbody>
<tr>
<td>E6F4</td>
<td>01010185</td>
</tr>
<tr>
<td>E6F8</td>
<td>4001</td>
</tr>
<tr>
<td>E6FA</td>
<td>12160000 MODES</td>
</tr>
<tr>
<td>E6FE</td>
<td>00050600</td>
</tr>
<tr>
<td>E702</td>
<td>120402</td>
</tr>
<tr>
<td>E705</td>
<td>0000000C</td>
</tr>
<tr>
<td>E709</td>
<td>00141800</td>
</tr>
<tr>
<td>E70D</td>
<td>0000</td>
</tr>
<tr>
<td>E70F</td>
<td>0E0B0012</td>
</tr>
<tr>
<td>E713</td>
<td>10000000</td>
</tr>
<tr>
<td>E717</td>
<td>1616</td>
</tr>
<tr>
<td>E719</td>
<td>000C1600</td>
</tr>
<tr>
<td>E71D</td>
<td>000E0606</td>
</tr>
<tr>
<td>E721</td>
<td>0012</td>
</tr>
<tr>
<td>E723</td>
<td>04020000C</td>
</tr>
<tr>
<td>E727</td>
<td>0C0C0014</td>
</tr>
<tr>
<td>E72B</td>
<td>1800</td>
</tr>
<tr>
<td>E72D</td>
<td>00000808</td>
</tr>
<tr>
<td>E731</td>
<td>00121000</td>
</tr>
<tr>
<td>E733</td>
<td>0000</td>
</tr>
<tr>
<td>E737</td>
<td>0E0B0012</td>
</tr>
<tr>
<td>E73B</td>
<td>16000000</td>
</tr>
<tr>
<td>E73F</td>
<td>0606</td>
</tr>
<tr>
<td>E741</td>
<td>00120402</td>
</tr>
<tr>
<td>E745</td>
<td>000C0CC0</td>
</tr>
<tr>
<td>E749</td>
<td>0014</td>
</tr>
<tr>
<td>E74B</td>
<td>18000000</td>
</tr>
<tr>
<td>E74F</td>
<td>08080012</td>
</tr>
<tr>
<td>E753</td>
<td>1000</td>
</tr>
<tr>
<td>E755</td>
<td>00000E0E</td>
</tr>
<tr>
<td>E759</td>
<td>00121600</td>
</tr>
<tr>
<td>E75D</td>
<td>0000</td>
</tr>
<tr>
<td>E75F</td>
<td>06060012</td>
</tr>
<tr>
<td>E763</td>
<td>0402001A</td>
</tr>
<tr>
<td>E767</td>
<td>0CC0</td>
</tr>
<tr>
<td>E769</td>
<td>0141800</td>
</tr>
<tr>
<td>E76D</td>
<td>00000808</td>
</tr>
<tr>
<td>E771</td>
<td>0012</td>
</tr>
<tr>
<td>E773</td>
<td>10000000</td>
</tr>
<tr>
<td>E777</td>
<td>0E0E1C00</td>
</tr>
<tr>
<td>E77B</td>
<td>1600</td>
</tr>
<tr>
<td>E77D</td>
<td>00060606</td>
</tr>
<tr>
<td>E781</td>
<td>00120012</td>
</tr>
<tr>
<td>E785</td>
<td>000C0C</td>
</tr>
<tr>
<td>E788</td>
<td>0C001418</td>
</tr>
<tr>
<td>E78C</td>
<td>00000808</td>
</tr>
<tr>
<td>E790</td>
<td>0A00</td>
</tr>
<tr>
<td>E792</td>
<td>12101200</td>
</tr>
<tr>
<td>E796</td>
<td>00000000</td>
</tr>
<tr>
<td>E79A</td>
<td>0416</td>
</tr>
<tr>
<td>E79C</td>
<td>04000606</td>
</tr>
<tr>
<td>E7A0</td>
<td>06001204</td>
</tr>
<tr>
<td>E7A4</td>
<td>1200</td>
</tr>
<tr>
<td>E7A6</td>
<td>0C0C0C00</td>
</tr>
<tr>
<td>E7AA</td>
<td>14180000</td>
</tr>
<tr>
<td>E7AE</td>
<td>0608</td>
</tr>
<tr>
<td>E7BO</td>
<td>0A001410</td>
</tr>
</tbody>
</table>

```
DB $01,$01,$01,$85,$4C,$01
DB 18,22,00,00,00,06,06,00,18,04,02
DB 00,00,12,12,00,20,24,00,00,00
DB 14,14,00,18,16,00,00,00,22,22
DB 00,12,22,00,00,06,06,00,18
DB 04,02,00,12,12,12,00,20,24,00
DB 00,00,08,08,00,18,16,00,00,00
DB 14,14,00,18,22,00,00,00,06,06
DB 00,18,04,02,00,12,12,12,00,20
DB 24,00,00,00,08,08,00,18,16,00
DB 00,00,14,14,00,18,22,00,00,00
DB 06,06,00,18,04,02,00,26,12,12
DB 00,20,24,00,00,00,08,08,00,18
DB 16,00,00,00,14,14,28,00,22,00
DB 00,06,06,06,00,18,00,18,00,12,12
DB 12,00,20,24,00,00,08,08,10,00
DB 18,16,18,00,00,14,00,00,04,22
DB 04,00,06,06,06,00,18,04,18,00
DB 12,12,12,00,20,24,00,00,08,08
DB 10,00,20,16,18,00,14,14,16,00
```
<table>
<thead>
<tr>
<th>Address</th>
<th>Code/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E7B4</td>
<td>12000EOE</td>
</tr>
<tr>
<td>E7B8</td>
<td>1000</td>
</tr>
<tr>
<td>E7BA</td>
<td>04160000</td>
</tr>
<tr>
<td>E7BE</td>
<td>06060600</td>
</tr>
<tr>
<td>E7C2</td>
<td>1204</td>
</tr>
<tr>
<td>E7C4</td>
<td>12000C0C</td>
</tr>
<tr>
<td>E7C8</td>
<td>0C001418</td>
</tr>
<tr>
<td>E7CC</td>
<td>0000</td>
</tr>
<tr>
<td>E7CE</td>
<td>00080800</td>
</tr>
<tr>
<td>E7D2</td>
<td>12100000</td>
</tr>
<tr>
<td>E7D6</td>
<td>000E</td>
</tr>
<tr>
<td>E7D8</td>
<td>0E000416</td>
</tr>
<tr>
<td>E7DC</td>
<td>00000606</td>
</tr>
<tr>
<td>E7E0</td>
<td>0600</td>
</tr>
<tr>
<td>E7E2</td>
<td>12041200</td>
</tr>
<tr>
<td>E7E6</td>
<td>0C0C0C00</td>
</tr>
<tr>
<td>E7EA</td>
<td>1418</td>
</tr>
<tr>
<td>E7EC</td>
<td>00000008</td>
</tr>
<tr>
<td>E7FO</td>
<td>08000C10</td>
</tr>
<tr>
<td>E7F4</td>
<td>0000</td>
</tr>
<tr>
<td>E7F6</td>
<td>000EOE00</td>
</tr>
<tr>
<td>E7FA</td>
<td>7F</td>
</tr>
<tr>
<td>E7FB</td>
<td>42414441</td>
</tr>
<tr>
<td>E7FF</td>
<td>4443414E</td>
</tr>
<tr>
<td>E803</td>
<td>4441534C</td>
</tr>
<tr>
<td>E807</td>
<td>42434342</td>
</tr>
<tr>
<td>E80B</td>
<td>43534245</td>
</tr>
<tr>
<td>E80F</td>
<td>51</td>
</tr>
<tr>
<td>E810</td>
<td>42495442</td>
</tr>
<tr>
<td>E814</td>
<td>4D49424E</td>
</tr>
<tr>
<td>E818</td>
<td>4542504C</td>
</tr>
<tr>
<td>E81C</td>
<td>42524B42</td>
</tr>
<tr>
<td>E820</td>
<td>56434256</td>
</tr>
<tr>
<td>E824</td>
<td>53</td>
</tr>
<tr>
<td>E825</td>
<td>434C4343</td>
</tr>
<tr>
<td>E829</td>
<td>4C44434C</td>
</tr>
<tr>
<td>E82D</td>
<td>49434C56</td>
</tr>
<tr>
<td>E831</td>
<td>434D5043</td>
</tr>
<tr>
<td>E835</td>
<td>50584550</td>
</tr>
<tr>
<td>E839</td>
<td>59</td>
</tr>
<tr>
<td>E83A</td>
<td>44454344</td>
</tr>
<tr>
<td>E83E</td>
<td>45584445</td>
</tr>
<tr>
<td>E842</td>
<td>59454F52</td>
</tr>
<tr>
<td>E846</td>
<td>494E4349</td>
</tr>
<tr>
<td>E84A</td>
<td>4E5E494E</td>
</tr>
<tr>
<td>E84E</td>
<td>59</td>
</tr>
<tr>
<td>E84F</td>
<td>4A4D504A</td>
</tr>
<tr>
<td>E853</td>
<td>53524C44</td>
</tr>
<tr>
<td>E857</td>
<td>414C4458</td>
</tr>
<tr>
<td>E85B</td>
<td>4C44594C</td>
</tr>
<tr>
<td>E85F</td>
<td>53524E4F</td>
</tr>
<tr>
<td>E863</td>
<td>50</td>
</tr>
<tr>
<td>E864</td>
<td>4F524150</td>
</tr>
<tr>
<td>E868</td>
<td>48415048</td>
</tr>
<tr>
<td>E86C</td>
<td>50504C41</td>
</tr>
<tr>
<td>E870</td>
<td>504C5052</td>
</tr>
<tr>
<td>E874</td>
<td>4F4C524F</td>
</tr>
<tr>
<td>E878</td>
<td>52</td>
</tr>
</tbody>
</table>

MNAMEs

<table>
<thead>
<tr>
<th>Address</th>
<th>Code/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB 04, 22, 00, 00, 06, 06, 06, 00, 18, 04</td>
<td></td>
</tr>
<tr>
<td>DB 18, 00, 12, 12, 12, 00, 20, 24, 00, 00</td>
<td></td>
</tr>
<tr>
<td>DB 00, 08, 08, 00, 18, 16, 00, 00, 00, 14</td>
<td></td>
</tr>
<tr>
<td>DB 14, 00, 04, 22, 00, 00, 06, 06, 06, 00</td>
<td></td>
</tr>
<tr>
<td>DB 18, 04, 18, 00, 12, 12, 12, 00, 20, 24</td>
<td></td>
</tr>
<tr>
<td>DB 00, 00, 00, 08, 08, 00, 12, 16, 00, 00</td>
<td></td>
</tr>
<tr>
<td>DB 00, 14, 14, 00</td>
<td>DB 'BAD', 'ADC', 'AND', 'ASL', 'BCC', 'BCS', 'BEQ'</td>
</tr>
<tr>
<td>DB 'BIT', 'BMI', 'BNE', 'BPL', 'BRK', 'BVC', 'BVS'</td>
<td></td>
</tr>
<tr>
<td>DB 'CLC', 'CLD', 'CLI', 'CLV', 'CMP', 'CPX', 'CPY'</td>
<td></td>
</tr>
<tr>
<td>DB 'DEC', 'DEX', 'DEY', 'EOR', 'INC', 'INX', 'INY'</td>
<td></td>
</tr>
<tr>
<td>DB 'JMP', 'JSR', 'LDA', 'LDX', 'LDY', 'LSR', 'NOP'</td>
<td></td>
</tr>
<tr>
<td>DB 'ORA', 'PHA', 'PHP', 'PLA', 'PLP', 'ROL', 'ROR'</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>Value</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>E879</td>
<td>52544952</td>
</tr>
<tr>
<td>E87D</td>
<td>54535342</td>
</tr>
<tr>
<td>E881</td>
<td>43534543</td>
</tr>
<tr>
<td>E885</td>
<td>53454453</td>
</tr>
<tr>
<td>E889</td>
<td>45495354</td>
</tr>
<tr>
<td>E88D</td>
<td>41</td>
</tr>
<tr>
<td>E88E</td>
<td>53545853</td>
</tr>
<tr>
<td>E892</td>
<td>54595441</td>
</tr>
<tr>
<td>E896</td>
<td>58544159</td>
</tr>
<tr>
<td>E89A</td>
<td>54535854</td>
</tr>
<tr>
<td>E89E</td>
<td>58415458</td>
</tr>
<tr>
<td>E8A2</td>
<td>53</td>
</tr>
<tr>
<td>E8A3</td>
<td>54594154</td>
</tr>
<tr>
<td>E8A7</td>
<td>4558</td>
</tr>
<tr>
<td>E8A9</td>
<td>FF</td>
</tr>
<tr>
<td>C000</td>
<td></td>
</tr>
</tbody>
</table>
DOUBLE CRYSTAL CONTROL PROGRAMS FOR THE BBC MICROCOMPUTER

INTRODUCTION

The double crystal control programs are all written in standard BBC Basic and employ no machine code, thus making them easily altered. Since the programs are designed to run in the high resolution mode (Mode 0) only a small amount of RAM is available for program use (about 10K). The control system is, therefore, segmented into a number of small programs which are individually run as required by a menu program. This makes it necessary to keep the 'system' disc permanently in one drive, with data being stored on a second drive. A considerable amount of code is, therefore, common to all of the programs, particularly the device handling routines. In order to exchange data between programs use is made of the resident integer variables A% to Z%, which keep their values all the time the machine is powered. Data from the rocking curve measuring routine is stored in a temporary file on the system disc for access from the replottting routines. In order to permanently save this data on the second drive the SAVE routine should be used.

The individual programs required to form the complete system are described below with the common sections of code described afterwards. The programs required are:

START - initialisation routines
MENU - main menu routine which executes programs below
COUNT - counts the photomultiplier pulses
SCAN - repeatedly steps an axis and counts the PM pulses
STEP - moves an axis
PLOT - steps an axis through given range recording PM counts
TILT - tilts a goniometer by specified angle
REPLLOT - reads disc data and plots it on the screen
HPLLOT - reads disc data and plots it on hardcopy device
AUTO - automatically optimises the sample tilt
TABLE - moves the XY scanning table
PEAK - monitors the counts and drives the axis to remain on peak
UTILITY - utilities package, calculates Bragg angles etc
EPSPLLOT - reads disc data and plots it on an Epson printer
SAVE - makes a permanent copy of the temporary data file
HELP - help package, instructions on the use of each routine
CALIB - resets the positions of the axes etc as held in memory
FIND - moves an axis and counts PM pulses until peak is found
DESCRIPTION OF PROGRAMS

Start

This program is run by the autoboot file $HOME/BOOT. The display is partitioned so that the positions of the axes, the time and date, the user's name and the count rate can be continuously displayed. The time and date plus the positions of the two tilt micrometers are entered by the user. The positions of the axes are stored in the variables S%, T%, U% and V% for the two axes and goniometers and K% and L% for the position of the XY table. These values are converted to the appropriate units by the variables step(1) to step(6). The communication protocol to the minicam interface is set to 4800 baud, 8 data bits and no parity. The MENU program is loaded and run when finished.

Procedures used are PROCupdate, PROctime and PROctitle.

Menu

The main system menu is displayed on the screen and the user requested to input a two letter code corresponding to each option. While the program idles, waiting for keys to be pressed, the time is updated in the display at the top of the screen using the procedure PROctime. Once a valid two letter code is entered the corresponding program is loaded and run. This program also contains the code for altering the sample description file maintained on the system disc which is added to a data file during permanent saving, although this code is not a procedure due to the restraints of the error handling mechanism it is described in the procedures section for clarity.

Procedures used are PROCdirectory, PROctime and PROctitle.

Count

The scalar module defined by the variable scalar1% is used to count the PM pulses for a given number of 100th's of a second. The counts are then displayed on the screen and in the partitioned section. This process is repeated indefinitely until a key is pressed. The user is then able to repeat this operation or return to the menu.

Procedures used are PROctitle, PROCcommand, PROctime and FNminicam.

Scan

Once the user enters the required axis to be scanned its previous direction of motion is displayed according to whether the relevant bit is set in the variable E%. The angle step and counting time are then entered and the routine performs the step and count operation the required number of times. After each step the counts are displayed and the position of the axis held in memory updated and displayed in the partitioned section of the screen. The
step-count repeat operation can be stopped prematurely by pressing any key. Once finished the routine can be rerun or return to the menu.

Procedures used are PROCtitle, PROCcommand, FNmotor, PROCstep_scan, PROCstep_count, PROCprint, PROCprint, PROctime and FNminicam.

Step

Similar to SCAN but only drives an axis by a given angle after which it updates the postions held in memory.

Procedures used are PROCtitle, PROCcommand, PROCupdate, FNmotor, PROCstep_scan, PROctime, PROCprint and FNminicam.

Plot

The chosen axis is repeatedly stepped and the PM pulses counted for a given number of times. The counts are displayed graphically while they are being collected with automatic scaling to display from the minimum count to the maximum count. If a new count is collected that is either greater than the previous maximum or smaller than the previous minimum the graph is erased and redrawn with a new scale. The repeated step_count operation can be stopped early by pressing any key, the graph is the redrawn with a new x-axis. The temporary data file is emptied and then filled with the counts collected and the angular step length. Once completed the axis is driven back to the starting point. Again the routine can be repeated or the user returned to the menu.

Procedures used are PROCaxes, FNminicam, PROCplot, PROCpoint, PROCerase, PROCredraw, PROCsave, PROCtitle, PROCcommand and PROctime.

Replot

The filename containing the data is requested and if return is entered it is defaulted to the temporary file. If no drive number is given a default of 2 is added to the file name. The file is opened and if unsuccessful the error is trapped and the user requested for a new file name if the previously entered one does not exist or the name was too long. Data is read to determine the range of angles and counts and the user asked for which range to be plotted. Data is then read again from the disc to avoid entering it into memory and plotted on the screen. Again the routine can be repeated or the user returned to the menu.

Procedures used are PROCplot, PROCaxes, PROCpaper, PROCpspace, PROCmspace, PROCmove, PROCpoint, PROCreaw rel, PROCnnotch, PROClabel_x, PROClabel_y, PROCmark, PROClplotos, PROCtitle, PROctime and PROCcommand.
Hplot

This routine is identical to the REPLOT routine but plots the graph on the hardcopy device attached to the printer port of the minicom interface. Devices catered for are the PIXY3 and HP7470A plotters. If the data is read from a permanent file the data consisting of the sample name, date, time and generator conditions is also read and added to the plot.

Procedures used are PROCplot, PROCaxes, PROCpaper, PROCpspace, PROCmspace, PROCMove, PROCPpoint, PROCdraw_rel, PROCHotch, PROCLabel_x, PROCLabel_y, PROCMark, PROCplotcs, PROCTitle, PROCTime, PROCminicam and PROCcommand.

Epsplot

Again this routine is identical to the REPLOT routine and plots the disc data on the screen. Once the data has been plotted on the screen the screen is dumped onto an Epson compatible printer. A standard screen dump routine is used.

Calib

Allows positions of the axes, tilt goniometers and scanning table to be altered. If return is pressed when a new position is requested the value is unaltered. If a position is altered the new value is displayed in the partitioned screen and the appropriate resident integer variable updated.

Procedure used is PROCTitle.

Find

Similar in operation to the scan routine but instead of performing a given number of repeat step-counts it continues to step-count until either a count equal to a given limit is recorded or a given maximum angular scan range is exceeded. If a count greater than the limit is encountered the count is repeated to check that it was not due to spurious noise, if it is less than the limit the scan is recommenced. If the maximum scan range is reached and a scan in both directions from the start position was requested the axis is driven back to the start and step-counted in the opposite direction. The counts measured and the position of the axis are updated after each step-count. The routine can again be stopped before either of the stop conditions are encountered by pressing any key.

Procedures used are FMotor, PROCstep_scan, PROCstep_count, PROCtitle, PROCcommand, PROCprint, FNminicam, PROCupdate and PROCtime.

Tilt

Once a goniometer is chosen the previous direction is
displayed according to the state of the relevant bit in the variable G%. The goniometer is tilted by driving the micrometer a given number of millimetres. If the given number would take the micrometer past either of its limits it is driven only to this limit and the user warned.

Procedures used are FNmotor, PROCstep_scan, PROCtitle, PROCcommand, FNminicam, PROCprint and PROCtime.

Save

This routine reads the data stored in the temporary file and stores it in the given file. If temporary file cannot be opened the error is trapped and the user returned to the main menu. The sample description file is also read and the data added to the given file allowing a record of the x-ray, generator and sample conditions to be kept. The current date and time are also added to the file. If the file cannot be opened the error is trapped and the user prompted for another name. However, an existing file will be overwritten as the filing system does not detect this as an error.

Procedures used are PROCtitle and PROCcommand.

Peak

This routine will keep the axis positioned either on top or on the flanks of a peak and is suitable for recording topographs over a long time period. The axis should be positioned as required before the routine is used. The count rate is measured at this position and the standard error calculated. The count rate is then measured every 5 seconds and if it lies outside the error bar the axis is moved until the count rate lies within the error bar. If the count rate drops to below the background rate the routine stops and reports an error. Axis positions are updated as required on the screen so that the drift can be measured.

Procedures used are FNmotor, PROCtitle, PROCcommand, FNminicam, PROCprint, PROCflank, PROCtop, PROCincrease, PROCdecrease, PROCdelay, PROCintensity.

Auto

This routine only drives the second axis. The axis is scanned with steps and counting time as specified by the user until the peak is found. The criterion for finding a peak is that the count should be twice the background count. Once the peak is found the axis is stepped until background is again reached. The peak is then scanned to find the maximum count. The goniometer is then tilted by the user supplied number of millimetres and the process of finding the peak maximum repeated. This process is repeated so that the peak height is measured with the tilt on either side of the starting position. The optimum setting is determined and the axis and goniometer moved to this position. The whole process is then repeated with the tilt step length halved. During the process of finding the peak the axis is scanned
in one direction up to a maximum range specified by the user and then scanned in the other direction. If no peak can be found the routine stops and informs the user.

Procedures used are FNmotor, PROCtitle, PROCcommand, FNminicam, PROCprint, PROCtilt_opt, PROCtilt, PROCmove, PROCfind, PROCupdate and PROCtime.

Help

The help menu is displayed and the user requested for a two letter code corresponding to each of the choices. If a valid choice is made the data file on the system disc containing the relevant help text is opened and the data displayed on the screen as it is read. Pressing any key once this is done returns the user to the help menu. The option QUIT returns the user to the main system menu.

Procedures used are PROCtitle, PROCcommand and PROCdisplay.

Utilit

The utilities menu is displayed and a two letter code requested. If a valid choice is entered the relevant program is loaded from disc and run. This routine is, therefore, similar in operation to MENU but provides access to some of the less often used routines. Routines available at present are:

Bragg - calculates the Bragg angle for a given reflection, wavelength and lattice parameter.
Refl - calculates the single crystal reflectivity curve for a given material and structure factors assuming the crystal to be infinitely thick.
Spdata - produces a text file of rocking curve data as stored in another disc file. Is useful for data transfer to another computer.

Table

The XY scanning table is moved to the user requested position. The distance required to drive the micrometers is calculated by subtracting the requested position from the present position as held in memory. It is therefore important that the position in memory is correct. The position is maintained in millimetres in the partitioned screen.

Procedures used are PROCupdate, PROCtitle, PROCcommand, PROCtime, FNminicam and PROCprint.

COMMON PROCEDURES

PROCdirectory

The drive number is requested and if it lies between 0 and 3
the disc operating system command *CAT 'Drive number' is called using the OSCLI (Operating System Command Line Interpreter) vector at $FFF7. Pressing any key exits the procedure.

PROCUpdate no parameters

The screen window corresponding to the partitioned region at the top of the screen is set using the VDU 28 command and inverse video selected. The number output format is set to 10 figures and 5 decimal places with the @% variable. The resident integer variables corresponding to the positions of the axes, goniometers and XY table are multiplied by their scaling factors held in step(1 .. 6) and printed in the relevant positions.

PROCtime no parameters

The number of seconds, minutes and hours are calculated from the TIME variable and printed in standard format in the partitioned region of the screen. Leading zeros are used if the values are less than 10. Note that TIME = ((hours*60 + minutes)*60 + seconds)*100.

PROCTitle (xcoord, ycoord, string)

Sets current screen to the partitioned region and selects inverse video then prints the string at the position xcoord, ycoord. Xcoord and ycoord are in text units. Screen is reset to main area minus top partition and bottom line.

PROCcommand (string)

Sets current screen to the bottom line only of the display. Selects inverse video and clears the screen. String is then printed centred on this line. Screen is then reset to main area minus the top partition and bottom line.

FNminicam (string, address, time, number) returns integer

Calls the procedure PROCtime to update the time display. Sets print output to the RS423 serial port and prints the following:

string;address;time;number;carriage_return

Print output is then set to dummy, i.e. no output, and input is selected as the serial port. One string is then input and the input is selected as the keyboard. The value of the string is then returned.

FNmotor (string) returns one integer

If the string is "I" the relevent bit in the variable E% is set (bit 0 is axis 1 and bit 1 is axis 2) otherwise the bit is cleared. According to which axis is selected (held in the variable M%) a stepper motor number is selected from the variables held in AX%(1..4). Allowance is made in the
selection for the fact that driving the motor on both axes in the same direction drives the axes in opposite senses of theta. The variable P% is set to the number of motor steps (M0%) with the sign according to whether increasing or decreasing theta. P% can then be used to update the position counters S%, T%, U% and V%.

PROCstep_scan no parameters

PNmotor is called to get the address of the stepper motor. The position of the first count value to be printed is set in the variables X% and Y%. PROCcommand is called to display the 'Press any key to stop' message. A tight loop is then executed in which PROCstep_count is called to step the axis and count the PM pulses and the count returned printed at the position X%, Y% on the main screen. X% and Y% are increased to the next position, if the bottom of the screen is reached two linefeeds are printed and Y% kept at this line number. The number of step-counts is counted and the loop stops if this count equals the number selected by the user or if a key has been pressed. The procedure then terminates.

PROCstep_count (address, number, time)

The minicam controlled stepper motor with address address is moved number of steps with speed given by speed%. The position of the axis is then updated and displayed on the screen by calling the procedure PROCprint. The minicam scalar is then used to count for time 100th's of a second and the count returned displayed on the screen by calling the procedure PROCtitle. The variable R% is returned containing the count.

PROCprint (xcoord, ycoord, number)

Similar in operation to PROCtitle but the value of number number is printed at the position xcoord, ycoord in the partitioned screen.

PROCaxes no parameters

Routine to draw axes on the currently selected output device. Since this routine is independent of the output device being used it can be used for either the screen or hardcopy devices. The x and y ranges are determined from the maximum and minimum coordinates of the plotter space currently being used. Once the range is calculated the tick spacing is determined by the procedure PROCmark. The axes are then drawn using the procedures PROCdraw_rel and PROCnotch which respectively draw a line relative to the present cursor position and draw a tick. The axes are then labelled using the procedures PROClabel_x and PROClabel_y.

PROCpspace (xmin, xmax, ymin, ymax)

This routine sets the scaling factors required to produce output on the plotter device. The plotting space is defined
assuming the total area runs from 0.0 to 1.1. The users coordinates should then be mapped onto this area by calling PROCmspace. The variables xscale and yscale are the actual ranges of numbers possible for the graphic device.

PROCmspace (xmin, xmax, ymin, ymax)

This routine scales the plotter space being used, as defined by calling PROCpspace, to the user units. Consequent calls to draw lines etc can then be called with variables in the user units - the scaling factors produced by this procedure are then used to convert the user units into the device units.

PROCmove (xcoord, ycoord)

Routine to move the cursor or pen to the coordinates xcoord, ycoord. Xcoord and ycoord are in user units and are converted to the device coordinates using the scaling factors determined by a previous call to PROCpspace and PROCmspace. This routine is device dependent, the particular device command for moving the cursor/pen is used.

PROCpoint (xcoord, ycoord)

PROCmove is called to move the cursor/pen to the position xcoord, ycoord and a dot is then made. This routine is device dependent, the command to produce a dot depends on the device.

PROCdraw_rel (xinc, yinc)

This routine calls the device's relative drawing command after scaling the variables xinc and yinc.

PROCnotch (switch)

If switch is 1 a tick in the y direction is drawn and if switch is 2 a tick in the x direction is drawn. This routine is device dependent, the device's relative drawing command is used.

PROClabel_x (xcoord)

The cursor/pen is moved to the xcoord position along the x axis and the value of xcoord is written below the position. The device's printing commands are used so it is not device independent.

PROClabel_y (ycoord)

Similar to the above routine but writes the value of ycoord to the left of the position.

PROCmark (range)

According to the magnitude of range a suitable value of tick spacing is chosen and returned in the variable SX (which is
in user units). Logarithms to the base ten are used to convert range into a variable in the range 1-10.

PROCplotcs (xcoord, ycoord, string)

PROCmove is called to move the cursor/pen to the position xcoord, ycoord and the string is then printed using the device’s printing command. It is, therefore, device dependent.

PROCdraw (xcoord, ycoord)

Draws a line from the present position to the position xcoord, ycoord after scaling to the device units. Calls the device’s absolute drawing routine so it is device dependent.

PROCpen (pen)

Selects the plotter pen by calling the device’s pen select command for choosing pen number ‘pen’.

PROCminicam (string)

This is very similar to the function FNminicam but only the string is printed followed by a carriage return. It is used by the hardcopy plotting routines to pass the string to the minicam interface which then passes the string to the device via the serial printer port. This enables the plotters to be used without unplugging the minicam from the BBC and also converts to the plotter’s baud rate and word format.

PROCflank no parameters

Routine that adjusts the position of an axis to keep on the flank of a peak. The count rate at the starting position is determined by calling FNntensity which counts the PM pulses for 5 seconds. The standard error is then determined and if the count rate strays more than three standard errors from the start position PROCincrease or PROCdecrease are called to move the motor. If the count rate is in the required range a five second delay is used to prevent needless hunting.

PROCtop no parameters

Similar to PROCflank but adjusts the axis so as to remain on the top of a peak. A slightly tighter adjustment loop is used as the direction required to move to refine the peak is not known, for PROCflank it is known which direction will increase or decrease the count rate depending on which side of the peak is being used.

PROCincrease no parameters

Moves the stepper motor determined by calling FNmotor a given number of steps with speed given by speed%. Display and resident variables are updated as required.
PROCdecrease no parameters

Similar to PROCincrease but moves the motor in the opposite direction.

PROCfind no parameters

The present position of the second axis is saved as now%. The stepper motor address is determined for increasing theta by calling FNmotor and the command ‘looking for peak’ displayed on the bottom line of the display. PROCstep_count is then called repeatedly until a count greater than twice the background is found or the maximum scan range reached. If the maximum scan range is reached the motor is driven back to the start position and step scanned in the opposite direction. If a peak is not found the variable fault is set to true and the routine exited. If a peak is found stepping is continued in the decreasing theta direction until background is found again. The peak is then scanned in the increasing theta direction until a maximum is found. The maximum count and the axis position of the maximum are returned in the variables maxcount% and maxpos% respectively.

PROCsave no parameters

The temporary data file on the system disc (D:RTTEMP) is deleted by calling the disc operating system’s delete file function. This is called by setting up a file descriptor block in memory containing the file name. X% and Y% are then set to the low and high bytes of a memory address that contains the address of the file descriptor block. A% is set to 6 and the disc operating system called via the vector OSFILE at 8FFDD. The temporary data file is then opened and the data consisting of the number of counts, the angular step between the counts, and the counts is then stored in the file. This process prevents the ‘Can’t extend’ error which occurs if an existing file is opened for output and more data stored in it than when it was first created.

Sample descriptor file updating

This routine updates the sample descriptor file maintained on the system disc. It is not a procedure since it needs to trap the ‘file doesn’t exist’ error when it is first run and no file exists. The file is opened and the contents displayed on the screen so that they can be altered. Once the user has finished updating the descriptions entering return to the command prompt writes the data back to the disc file. Data that is maintained consists of seven strings: the experimental site, the sample name, the generator voltage, the generator current, the first crystal, the wavelength and the reflection being used.
DATA FORMAT USED FOR THE STORAGE OF ROCKING CURVES

Rocking curve data is stored in disc files in the following format:

1. Number of counts in the file (integer).
2. Angular step between each count in arc seconds (real).
3. The actual counts stored sequentially as integers.
4. The date (string).
5. The time (integer).
6. Experimental site name (string).
7. Sample name (string).
8. Generator voltage (string).
9. Generator current (string).
10. First crystal (string).
11. Wavelength (string).
12. Reflection (string).

Since BBC Basic stores numbers and strings in internal format these files cannot be typed or transferred to another computer without first converting to a text file. This operation is easily performed using the SPOOL DATA option available in the utilities package.
REM ------ THIS IS THE STARTING PROGRAM ------

MOD0
DIM step(6): step(1)=0.1776: step(2)=0.121: step(3)=1.0/(96.0*50): step(4)=1.0/(96.0*5)
step(5)=1.0/96.0: step(6)=1.0/96.0

PRINT: "This is the new double crystal control program - welcome"
PRINT: "Please enter your name "name$"
PRINTTAB(0,7): : INPUT" and your group "group$"
PRINTTAB(0,9): : INPUT" and the date (dd/mm/yy) "date$
PRINTTAB(0,11): : INPUT" and the time ho,mi,se "ho%,mi%,se%
TIME=((ho%*60+mi%)*60+se%)*100

PRINTTAB(0,13): : INPUT" Enter the micrometer reading for the 1st
goniometer "a
U%=a/step(3)
PRINTTAB(0,15): : INPUT" and the reading for the 2nd goniometer "a
V%=a/step(4)

PRINTTAB(0,17): : INPUT" Enter the generator H.T. (kV) "kV
PRINTTAB(0,19): : INPUT" and the generator current (mA) "mA
PRINTTAB(64,4,STR$)(kV))
PRINTTAB(64,5,STR$(mA))

CHAIN"P.MENU"

REM init procedure - produces table of axes etc

DEFPROCinit
DEFPROCUpdate
VDU28.0,6.79.0: REM text window at top of screen
COLOUR: COLOUR129: CLS
PRINT TAB(3,1): "USER": TAB(3,2): "GROUP": TAB(3,3): "DATE":
TAB(3,4): "TIME": TAB(3,5): "OPTION"
TAB(25,4): "Gon 2": TAB(25,5): "Slit 1"
PRINT TAB(44,1):"Scan-Table (mm)": TAB(44,2):"X": TAB(44,3):"Y";
PRINT TAB(61,1): "Scint.": TAB(61,2): "Ionis.": TAB(61,4): "kV":
TAB(61,5): "mA":

PROCUpdate
VDU28.0,31.79.7: COLOUR1: COLOUR128: CLS
*FX8,6
*FX7,6

ENDPROC

DEFPROCUpdate
VDU28.0,6.79.0: COLOUR0: COLOUR129
@%=&2050A
PRINTTAB(34,1): S%*step(1)/3600: TAB(34,2): T%*step(2)/3600:
TAB(34,3): U%*step(3): TAB(34,4): V%*step(4)
@%=10
VDU28.0,31.79.7: COLOUR1: COLOUR128

ENDPROC

This program prints the menu, asks for input —— then chains the relevant program.

DIM C 20

PROCtitle(12,5,"MENU")

CLS

X%=20

PRINT

"Calibrate axis positions.......................CA"
"Count...CO"
"Scan axis and count.........................SC"
"Step axis without count.....................SS"
"Tilt goniometer..............................TI"
"Find peak.....................................FI"
"Plot rocking curve and collect data.........PL"
"Replot data from disc.......................RP"
"Epson printer plot of disc data.............EP"
"Automatic tilt optimise.......................AU"
"Peak hold.....................................PK"
"Move scanning table..........................MT"
"Disc directory of data.......................DI"
"Save temporary data file......................SA"
"Update your data header file.................UP"
"Run the utilities package....................UT"
"Help..HE"

PRINT

"Enter command >> ";

COLOUR: COLOUR129: PRINTTAB(0,20); "Enter command >> ";

COLOUR1: COLOUR128

choice$=""

REPEAT

AS=INKEY$(50)

PROCtime

IF AS<"" choice$=choice$+AS: PRINTTAB(18,20); choice$;

IF ASC(AS$)=127 AND LEN(choice$)=1 choice$="" ELSE IF ASC(AS$)=127
choice$=LEFT$(choice$,LEN(choice$)-2)

UNTIL LEN(choice$)=3

choice$=LEFT$(choice$,2)

IF choice$="CA" CHAIN"P.CALIB"

IF choice$="CO" CHAIN"P.COUNT"

IF choice$="SC" CHAIN"P.SCAN"

IF choice$="SS" CHAIN"P.STEP"
DEFPROC title(X%, Y%, string$)
VDU28, 0, 6, 79, 0: COLOUR0: COLOUR129: PRINTTAB(X%, Y%); string$;
FOR I%=1TO(10-LEN(string$)): VDU32: NEXT
VDU28, 0, 31, 79, 7: COLOUR1: COLOUR128
ENDPROC

CLS

INPUT"Which drive's directory do you require "drive%
PRINT"Illegal drive number - try again"; GOTO670

CLS

AS$="CAT"+STR$(drive%): SC=A$: X%=C MOD 256: Y%=C DIV 256: CALL &FFF7
VDU28, 0, 31, 79, 31: COLOUR0: COLOUR129: CLS: AS$="Press any key for menu"

PRINTTAB(INT(40-LEN(A$)/2)); A$;
VDU28, 0, 31, 79, 7: COLOUR1: COLOUR128

CLS

PROCTitle(12, 5, "UPDATE")

CLS

PRINT"Reading your header file from disc"

ON ERROR GOTO 1220

X%=OPENIN("D.HEADER")

INPUT#X%, place$
INPUT#X%, sname$
INPUT#X%, volts$
INPUT#X%, current$
INPUT#X%, first_crystals$
INPUT#X%, waves$
INPUT#X%, refl$
CLOSE#X%

CLS

PRINTTAB(2, 2); "Your current header file contains the following information"

PRINTTAB(5, 4); "1. Experiment running at "; TAB(30, 4); place$
PRINTTAB(5, 6); "2. Sample name sname$
PRINTTAB(5, 8); "3. Generator voltage "; TAB(26, 8); volt$
PRINTTAB(5, 10); "4. Generator current "; TAB(26, 10);
current$
970 PRINTTAB(5,12); "5. First crystal
first_crystals$
980 PRINTTAB(5,14); "6. Wavelength
wave$
990 PRINTTAB(5,16); "7. Reflection being used
TAB(31,16); refl$
1000 PRINTTAB(1,20); "
1010 COLOURO: COLOUR129: PRINTTAB(1,18); " Enter choice to update or <CR>
for menu "
1020 COLOUR1: COLOUR128: choice=GET
1030 IF choice=13 GOTO 1120
1040 IF choice=&31 INPUT"" Enter experimental site "place$: GOTO920
1050 IF choice=&32 INPUT"" Enter sample name "sname$: GOTO920
1060 IF choice=&33 INPUT"" Enter generator voltage "volt$: GOTO920
1070 IF choice=&34 INPUT"" Enter generator current "current$: GOTO920
1080 IF choice=&35 INPUT"" Enter first crystal "first_crystals$: GOTO920
1090 IF choice=&36 INPUT"" Enter wavelength "wave$: GOTO920
1100 IF choice=&37 INPUT"" Enter reflection being used "refl$: GOTO920
1110 VDU7: GOTO920
1120 X%=OPENOUT("D.HEADER")
1130 PRINT#X%, place$
1140 PRINT#X%, sname$
1150 PRINT#X%, volt$
1160 PRINT#X%, current$
1170 PRINT#X%, first_crystals$
1180 PRINT#X%, wave$
1190 PRINT#X%, refl$
1200 CLOSE#X%
1210 GOTO1250
1220 IF ERR=222 CLS: PRINTTAB(5,2): "You have no header file as yet"
1230 place$="": sname$="": volt$="": current$="": first_crystals$="":
wave$="": refl$=""
1240 IF ERR=222 GOTO 930 ELSE REPORT: END
1250 GOTO10
1260 :
1270 DEFPROC time
1280 seq=(TIME DIV 100)MOD 60: mi=(TIME DIV 6000)MOD 60: ho=(TIME DIV
3600000)MOD 24
1290 VDU28,0,6,79,0: COLOURO: COLOUR129: PRINTTAB(12,4);
1300 IF ho<10 PRINT"0": ho: ELSE PRINT: ho%;
1310 IF mi<10 PRINT"0": mi: ELSE PRINT":": mi;
1320 IF se<10 PRINT"0": se: ELSE PRINT":": se;
1330 VDU28,0,30,79,7: COLOUR1: COLOUR128
1340 ENDPROC

10 REM ------------------------ COUNTING ROUTINE ------------------------
20 REM ------------------------
30 REM ------------------------
40 :
50 scaler1%=56: scaler2%=55
60 PROCltitle(12,5, "COUNT")
70 CLS: INPUT"" Enter counting time, in 100th's secs "TT%
80 PROCordinate("Press any key to stop")
90 X%=5: Y%=5
100 REPEAT
110 R%=FNminicam("CO1", scaler1%, TT%, 0) + 256*256*FNminicam("RD2",
scaler2%, 0, 0)
120 R$=STR$(R%): PROCltitle(68,1,R$)
130 PRINT TAB(X%, Y%); R%;
140 X%=X%+15: IF X%=80 X%=5: Y%=Y%+1
150 IF (Y%=23 AND X%=5) VDU10,10: Y%=22
160 UNTIL INKEY(0)<>-1
170 PROCCommand("Press <CR> for repeat, any other key for menu")
180 A=GET
190 IF A=13 PROCCommand(" "): GOTO 70
200 CHAIN"P.MENU"
210 :
220 DEFPROCtitle(X%, Y%, string$)
230 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%); " ";
240 PRINTTAB(X%,Y%); string$;
250 VDU28,0,30,79,7
260 COLOUR1: COLOUR128
270 ENDPROC:
280 :
290 DEFPROCGoCommand(string$)
300 VDU28,0,31,79,31: COLOUR0: COLOUR129: CLS
310 PRINTTAB(INT(40-LEN(string$)/2)); string$;
320 VDU28,0,30,79,7: COLOUR1: COLOUR128
330 ENDPROC:
340 :
350 DEFFNminicam(usr$, AD%,NN%,TT%)
360 PROCtime
370 "FX3,7
380 PRINTusr$; "); AD%; " "; NN%; " "; TT%; CHR$(13);
390 "FX3,6
400 "FX2,1
410 INPUT""return$
420 "FX2,2
430 "FX3,0
440 =VAL(return$)
450 :
460 DEFPROCGoTime
470 se%=(TIME DIV 100)MOD 60: mi%=(TIME DIV 6000)MOD 60: ho%=(TIME DIV 360000)MOD 24
480 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(12,4);
490 IF ho%<10 PRINT"0"; ho%; ELSE PRINT; ho%;
500 IF mi%<10 PRINT"0"; mi%; ELSE PRINT"0"; mi%;
510 IF se%<10 PRINT"0"; se%; ELSE PRINT"0"; se%;
520 VDU28,0,30,79,7: COLOUR1: COLOUR128
530 ENDPROC:

10 REM --------------- STEP SCAN ROUTINE; SCANS AXIS AND COUNTS ---------------
20 REM ---------------
30 REM ---------------
40 DIM AX%(8)
50 AX%(1)=34: AX%(2)=35: AX%(3)=36: AX%(4)=37
60 AX%(5)=33: AX%(6)=32: AX%(7)=33: AX%(8)=32
70 scaler1%=56: scaler2%=55: speed%=20
80 DIM step(2)
90 step(1)=0.1776: step(2)=0.121
100 PROCtitle(12,5,"SCAN-COUNT")
110 CLS
120 INPUT"" Which axis to scan (1 or 2) "M%
130 IF M%<>1 AND M%<>2 THEN 110
140 P%=EANDM%
150 IF P% increasing=TRUE ELSE increasing=FALSE
160 PRINT"" Previous motion was ";
170 IF increasing PRINT"increasing"; ELSE PRINT "decreasing";
180 PRINT "theta"
190 INPUT" Counting time, in 100th's secs "TT%
200 INPUT" Step length per cycle (secs) "step_length
210 M% = INT(step_length/step(M%))
220 INPUT" Number of cycles "NU%
230 INPUT" Increasing or decreasing theta (I/D) "inc$
240 PROCstep_scan
250 PROC command("Press <CR> for repeat, any other key for menu")
260 A=GET; IF A=13 PROC command(" "); GOTO 100
270 CHAIN"P.MENU"
280 :
290 DEFFNmotor(dir$)
300 IF dir$="1" E%=(E% OR M%) ELSE E%=(E% AND(&FF EOR M%))
310 IF dir$="1" THEN P%=1 ELSE P%=0
320 IF M%=1 THEN stepper%=AX%(M%-1-F%)
330 IF M%=2 THEN stepper%=AX%(M%+1+F%)
340 I%=0: IF dir$="1" P%=MO% ELSE P%=-MO%
350 =stepper%
360 :
370 DEFPROCstep_scan
380 IF NU%=0 ENDPROC
390 stepper%=FNmotor/inc$
400 X%=5: Y%=15
410 PROC command("Press any key to stop")
420 REPEAT
430 I%=I%+1
440 PROCstep_count(stepper%,MO%,TT%)
450 PRINTTAB(X%,Y%); R%;
460 X%=X%+15: IF X%=80 X%=5: Y%=Y%+1
470 IF (Y%=23 AND X%=5) VDU10,10: Y%=22
480 Z%=INKEY(0)
490 UNTIL I%=NU% OR Z%<>-1
500 ENDPROC
510 :
520 DEFPROCtitle(X%,Y%,string$)
530 VDU28,0,6,79,0: COLOURO: COLOUR129: PRINTTAB(X%,Y%); ";
540 PRINTTAB(X%,Y%); string$;
550 VDU28,0,30,79,7
560 COLOUR1: COLOUR128
570 ENDPROC
580 :
590 DEFPROCMcommand(string$)
600 VDU28,0,31,79,31: COLOURO: COLOUR129: CLS
610 PRINTTAB(INT(40-LEN(string$)/2)); string$;
620 VDU28,0,30,79,7: COLOUR1: COLOUR128
630 ENDPROC
640 :
650 DEFPROCstep_count(stepper%,MO%,TT%)
660 A%=FNminicam("ST1",stepper%,MO%,speed%)
670 @%=2050A
680 IF M%=1 S%=S%+P%: R=S%*step(1)/3600: PROCprint(34,1,R)
690 IF M%=2 T%=T%+P%: R=T%*step(2)/3600: PROCprint(34,2,R)
700 @%=10
710 R%=FNminicam("CO1",scaler1%,TT%,0)+256*256*FNminicam("RD2", scaler2%,0,0)
720 R$=STRS(R%): PROCTitle(68,1,R$)
730 ENDPROC
740 :
750 DEFFNminicam(usr$,AD%,NN%,TT%)
PROCtime
760 *FX2,2
780 *FX3,7
790 PRINTuser$ ";", AD%; ";", NN%; ";", TT%; CHR$(13);
800 *FX3,6
810 *FX2,1
820 INPUT"reply$
830 *FX2,2
840 *FX3,0
850 =VAL(reply$)
860
870 DEFPROCprint(X%,Y%,R)
880 VDU28,0,6,79,0:COLOUR0:COLOUR129:PRINTTAB(X%,Y%);"
890 PRINTTAB(X%,Y%);R;
900 VDU28,0,30,79,7
910 COLOUR:COLOUR128
920 ENDPROC
930
940 DEFPROCtime
950 se%=((TIME DIV 100)MOD 60: mi%=(TIME DIV 60000)MOD 60: ho%=(TIME DIV 360000)MOD 24
960 VDU28,0,6,79,0:COLOUR0:COLOUR129:PRINTTAB(12,4);
970 IF ho%<10 PRINT"0": ho%; ELSE PRINT; ho%;
980 IF mi%<10 PRINT"0": mi%; ELSE PRINT"": mi%;
990 IF se%<10 PRINT"0": se%; ELSE PRINT"": se%;
1000 VDU28,0,30,79,7:COLOUR1:COLOUR128
1010 ENDPROC

10 REM ----------------------------- STEP ROUTINE; SCANS AXIS ONLY -----
20 REM -----------------------------
30 REM -----------------------------
40 DIM AX%(8)
50 AX%(1)=34:AX%(2)=35:AX%(3)=36:AX%(4)=37
60 AX%(5)=33:AX%(6)=32:AX%(7)=33:AX%(8)=32
70 scaler1%=56:scaler2%=55:speed%=20
80 DIM step(2)
90 step(1)=0.1776:step(2)=0.121
100 PROCtitle(12,5,"SCAN-AXIS")
110 CLS
120 INPUT"Which axis to scan (1 or 2) "M%
130 IF M%<>1 AND M%<>2 THEN 110
140 F%=(E%ANDM%)
150 IF F% increasing=TRUE ELSE increasing=FALSE
160 PRINT"Previous motion was ";
170 IF increasing PRINT"increasing"; ELSE PRINT "decreasing";
180 PRINT"theta"
190 INPUT"Scan length required (secs) "step_length
200 M%=INT(step_length/step(M%))
210 INPUT"Increasing or decreasing theta (I/D) "inc$
220 PRINT"Driving axis number ";M%
230 PROCstep_scan
240 VDU7
250 PROCcommand("Press <CR> for repeat, any other key for menu")
260 A=GET: IF A=13 PROCcommand(" "):GOTO 100
270 CHAIN"P.MENU"
280
290 DEFNmotor(dir$)
300 IF dir$="I" E%=(E% OR M%) ELSE E%=(E% AND(&FF EOR M%))
310 IF dir$="I" THEN F%=1 ELSE F%=0
320 IF M%=1 THEN stepper% = AX%(M%+1-F%)
330 IF M%=2 THEN stepper% = AX%(M%+1+F%)
340 IF dir$="I" THEN p%=MO% ELSE p%=-MO%
350 = stepper%
360 :
370 DEFFPROC step_scan
380 stepper% = FNmotor(inc$)
390 IF MO%>7FFFF A=FNminicam("ST1",stepper%,7FFF,speed%): MO%=MO%-7FFF: GOTO390
400 PROC update
410 A=FNminicam("ST1",stepper%,MO%,speed%)
420 PROC update
430 ENDPROC
440 :
450 DEFFPROC title(X%,Y%,string$)
460 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%); "
470 PRINTTAB(X%,Y%); string$;
480 VDU28,0,30,79,7
490 COLOUR1: COLOUR128
500 ENDPROC
510 :
520 DEFFPROC command(string$)
530 VDU28,0,31,79,31: COLOUR0: COLOUR129: CLS
540 PRINTTAB(INT(40-LEN(string$)/2)); string$;
550 VDU28,0,30,79,7: COLOUR1: COLOUR128
560 ENDPROC
570 :
580 DEFFPROC update
590 @%=&2050A
600 IF M%=1 THEN S%=S%+P%: R=S%*step(1)/3600: PROC print(34,1,R)
610 IF M%=2 THEN T%=T%+P%: R=T%*step(2)/3600: PROC print(34,2,R)
620 @%=10
630 ENDPROC
640 :
650 DEFFNminicam(usrs$,AD%,NN%,TT%)
660 PROC time
670 *FX2,2
680 *FX3,7
690 PRINT usrs$: ";", AD%; ";", NN%; ";", TT%; CHR$(13); 700 *FX3,6
710 *FX2,1
720 INPUT"reply$"
730 *FX2,2
740 *FX3,0
750 =VAL(reply$)
760 :
770 DEFFPROC print(X%,Y%,R)
780 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%); "
790 PRINTTAB(X%,Y%): R;
800 VDU28,0,30,79,7
810 COLOUR1: COLOUR128
820 ENDPROC
830 :
840 DEFFPROC time
850 se%= TIME DIV 100)MOD 60: mi%= TIME DIV 60000)MOD 60: ho%= TIME DIV 360000)MOD 24
860 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(12,4);
870 IF ho%<10 PRINT"0": ho%; ELSE PRINT: ho%;
880 IF mi%<10 PRINT":0": mi%; ELSE PRINT":": mi%;
890 IF se%<10 PRINT":0": se%; ELSE PRINT":": se%;
1 REM ------------------- PLOT; COLLECTS DATA AND DISPLAYS IN REAL TIME ---
2 REM -----------------------------------
3 REM -----------------------------------
10 DIM AX%(4), step(2), CO%(400), C% 20: scaler1%=56: scaler2%=55:
speed%=50
20 AX%(1)=34: AX%(2)=35: AX%(3)=36: AX%(4)=37
30 step(1)=0.1776: step(2)=0.121
40 max%=&7FFFFFFF: min%=0: min_count%=&7FFFFFFF: max_count%=0.
50 xorig%=100: yorig%=100
60 PROC title(12,5,"PLOT")
70 CLS
80 INPUT """" Which axis to scan """"
90 PRINT"Recording data can only be performed with increasing theta"
100 INPUT"Counting time, in 100th's secs "TT%
110 INPUT"Step length per cycle (secs) "step_length
120 MIN=step_length/step(M%)
130 INPUT"Number of data points required "NU%
140 xstep=(1200-xorig%)/NU%; ystep=(700-yorig%)/(max%-min%)
150 CLS
160 PROCsetup
170 PROCaxes: VDU5: MOVE100.85: PRINT"0": MOVE1100.85: PRINT NU%*MO%*step(M%)
180 MOVE0,725: PRINT"": max%: MOVE0,yorig%: PRINT"": min%: VDU4
190 PROCcommand("Press any key to stop")
200 PROCplot
210 PROCerase: xstep=(1200-xorig%)/1%: PROCr edraw
220 PROCs ave
230 VDU7
240 PROCcommand("Press <CR> to repeat, any other key for menu")
250 REPEAT: A=INKEY(50): PROCtime: UNTIL A<>-1
260 IF A=13 PROCcommand(" "): RUN
270 CHAIN"P.MENU"
280 DEFPROCtitle(X%,Y%,string$)
290 VDU28,0,6,79,0; COLOUR0: COLOUR129: PRINTTAB(X%,Y%); ""
300 PRINTTAB(X%,Y%); string$;
310 VDU28,0,30,79,7: COLOUR1: COLOUR128
320 ENDPROC
330 DEFPROCcommand(string$)
340 VDU28,0,31,79,31: COLOUR0: COLOUR129: CLS
350 PRINTTAB(INT(40-LEN(string$)/2)); string$;
360 VDU28,0,30,79,7: COLOUR1: COLOUR128
370 ENDPROC
380 DEFPROCPrint(X%,Y%,R)
390 VDU28,0,6,79,0; COLOUR0: COLOUR129: PRINTTAB(X%,Y%); ""
400 PRINTTAB(X%,Y%); R;
410 VDU28,0,30,79,7: COLOUR1: COLOUR128
420 ENDPROC
430 DEFPROCaxes
440 MOVExorig%,yorig%: DRAW1200.85,yorig%: MOVExorig%,yorig%: DRAW xorig%,675
450 FOR 1%=1 TO 9: J%=((1200-xorig%)*1%/10: MOVE J%+xorig%,yorig%
460 DRAW J%+xorig%,yorig%+10: NEXT
470 FOR 1%=1 TO9: J%=((700-yorig%)*1%/10: MOVExorig%,J%+yorig%
480 DRAW xorig%+10,J%+yorig%: NEXT
490 MOVEx600,80: VDU5: PRINT"Seconds": VDU4
500 ENDPROC
510 :
520 DEFFNminicam(usr$,AD%,NN%,TT%
530 PROCtime
540 *FX3,7
550 PRINTusr$: "."; AD%; "."; NN%; "."; TT%; CHR$(13);
560 *FX3,6
570 *FX2,1
580 INPUT""reply$
590 *FX2,2
600 *FX3,0
610 =VAL(reply$)
620 :
630 DEFPROCp lot
640 IF M%=1 stepper%=AX%(1) ELSE stepper%=AX%(4)
650 MOVExorig%,yorig%
660 I%=0
REPEAT
1% = 1% + 1: A = FNminicam("ST1", stepper%, MO%, speed%)
@% = &2050A
IF M% = 1 S% = S% + MO%: R = S% * step(1) / 3600: PROCprint(34, 1, R)
IF M% = 2 T% = T% + MO%: R = T% * step(2) / 3600: PROCprint(34, 2, R)
@% = 10
R% = FNminicam("CO1", scaler1%, TT%, 0) + 256 * 256 * FNminicam("RD2", scaler2%, 0, 0)
CO%(1%) = R%
IF R% > max_count% max_count% = R%
IF R% < min_count% min_count% = R%
PROCtitle(68, 1, STR$(R%))
PROCpoint(1%, R%)
UNTIL 1% = NU% OR INKEY(0) <> -1
PROCcommand("Stopped...reworking axis to start position")
IF M% = 1 stepper% = AX%(2) ELSE stepper% = AX%(3)
A = FNminicam("ST1", stepper%, MO% * 1%, speed%)
@% = &2050A
IF M% = 1 S% = S% - MO% * 1%: R = S% * step(1) / 3600: PROCprint(34, 1, R)
IF M% = 2 T% = T% - MO% * 1%: R = T% * step(2) / 3600: PROCprint(34, 2, R)
@% = 10
ENDPROC

DEFPORCpoint(1%, R%)
PLOT69, 1% * xstep + xorig%, (R% - min%) * ystep + yorig%
IF 1% < 5 ENDPROC
PROCerase: ystep = (700 - yorig%) / (max_count% - min_count%):
max_count% = max_count% - min_count%: PROCredraw: ENDPROC
IF max_count% <= = max% AND min_count% <= = min% ENDPROC
PROCerase: ystep = (700 - yorig%) / (max_count% - min_count%):
max_count% = max_count% - min_count%: PROCredraw
ENDPROC

DEFPORCsetup
VDU24, 0: 0; 1279: 740;
ENDPROC

DEFPORCerase
FOR J% = 1 TO 1%: PLOT70, J% * xstep + xorig%, (CO%(1%) - min%) * ystep + yorig%:
NEXT
MOVE0, yorig%: VDU5: PRINT" "; FORK% = 1 TO 6: VDU127: NEXT: VDU4
MOVE0, 725: VDU5: PRINT" "; FORK% = 1 TO 15: VDU127: NEXT: VDU4
ENDPROC

DEFPORCredraw
MOVE0, yorig%: VDU5: PRINT""; min_count% = MOVE0, 725: PRINT"";
max_count% = VDU4
FOR J% = 1 TO 1%: PLOT69, J% * xstep + xorig%, (CO%(1%) - min%) * ystep + yorig%:
NEXT
ENDPROC

DEFPORCsave
$C% = "D.RTEMP": ?(C%+19)=C% MOD 256: ?(C%+20)=C% DIV 256: X% = (C%+19)
MOD 256: Y% = (C%+19) DIV 256: A%= 6: CALL &FFDD
X% = OPENOUT("D.RTEMP")
PRINT#X%, 1%; PRINT#X%, step(M%) * MO%: FOR J% = 1 TO 1%: PRINT#X%, CO%(1%):
NEXT
CLOSE#X%
ENDPROC

DEFPORCtime
% = (TIME DIV 100) MOD 60: P% = (TIME DIV 6000) MOD 60: Q% = (TIME DIV 360000) MOD 24
VDU28, 0, 6, 79, 0: COLOUR0: COLOUR129: PRINTTAB(12, 4);
1170 IF Q<10 PRINT"0"; Q; ELSE PRINT: Q;
1180 IF P<10 PRINT"0"; P; ELSE PRINT: ; P;
1190 IF O<10 PRINT"0"; O; ELSE PRINT: ; O;
1200 VDU28,0,30,79,7: COLOUR1: COLOUR128
1210 ENDP

10 REM ------------ FIND ROUTINE - SCANS AXIS AND COUNTS UNTIL PEAK FOUND ------------
30 REM

40 DIM AX%(8)
50 AX%(1)=34: AX%(2)=35: AX%(3)=36: AX%(4)=37
60 AX%(5)=33: AX%(6)=32: AX%(7)=33: AX%(8)=32
70 scaler1%=56: scaler2%=55: speed%=50
80 DIM step(2): step(1)=0.1776: step(2)=0.121
90 PROCtitle(12.5,"FIND PEAK")
100 CLS
110 INPUT"Which axis to scan (1 or 2) "M%
120 IF M%<>1 AND M%<>2 THEN 100
130 F%=(E%ANDM%)
140 IF F% increasing=TRUE ELSE increasing=FALSE
150 PRINT"Previous motion was ";
160 IF increasing PRINT"increasing"; ELSE PRINT "decreasing";
170 PRINT"theta"
180 INPUT"Counting time, in 100th's secs "TT%
190 INPUT"Step length per cycle (secs) "step_length
200 MO%=INT(step_length/step(M%))
210 INPUT"Counts required to assume peak found "LT%
220 INPUT"Increasing or decreasing theta (1/D) or both (B) "inc$
230 both=FALSE: rewind=FALSE
240 IF inc$="B" both=TRUE: INPUT"" Which direction first (1/D) "inc$
250 INPUT"Maximum scan range (degrees) "max_scan
260 max_scan=max_scan*3600/step(M%)
270 PROCstep_scan
280 IF end_scan THEN 310
290 IF both AND inc$="1" inc$="D": rewind=TRUE: PROCstep_scan: GOTO 310
300 IF both AND inc$="D" inc$="1": rewind=TRUE: PROCstep_scan
310 PROCcommand("Press <CR> for repeat, any other key for menu")
320 A=GET: IF A=13 PROCcommand(" "): GOTO 90
330 CHAIN"P.MENU"
340 :
350 DEFFNmotor(dir$)
360 IF dir$="I" E%=(E% OR M%) ELSE E%=(E% AND(&FF EOR M%))
370 IF M%=2 THEN IF dir$="I" F%=1 ELSE F%=0
380 IF M%=1 THEN stepper%=AX%(M%+1-F%)
390 IF M%=2 THEN stepper%=AX%(M%+1+F%)
400 IF=0: IF dir$="1" P%=M0% ELSE P%=-M0%
410 =stepper%
420 :
430 DEFFPROstep_scan
440 stepper%=FNmotor(inc$)
450 IF rewind THEN A%=FNminicam("ST1",stepper%,MO%*JJ%,speed%):
PROCUPLICATE(M%,P%*JJ%)
460 X%=5: Y%=20
470 PROCcommand("Press any key to stop")
480 I%=0
490 REPEAT
500 I%=I%+1
510 CO%=FNstep_count(stepper%,MO%,TT%)
520 PRINTTAB(X%,Y%); CO%;
DEFPROC X% = X% + 15: IF X% = 80 THEN X% = 5: Y% = Y% + 1
IF (Y% = 23 AND X% = 5) THEN VDU10, 10: Y% = 22
Z% = INKEY(0)
UNTIL CO% >= LT% OR Z% = -1 OR 1% * MO% = max_scan
IF CO% = LT% THEN CO% = FNminicam("CO1", scaler1%, TT%, 0) + 256 * FNminicam("RD2", scaler2%, 0, 0):
IF CO% < LT% THEN 490
IF 1% * MO% >= max_scan THEN end_scan = FALSE ELSE end_scan = TRUE
JJ% = 1%
ENDPROC

DEFPROC title(X%, Y%, string$)
VDU28, 0, 6, 79, 0: COLOUR0: COLOUR129: PRINTTAB(X%, Y%); " ";
PRINTTAB(X%, Y%); string$;
VDU28, 0, 30, 79, 7
COLOUR1: COLOUR128
ENDPROC

DEFPROC command(string$)
VDU28, 0, 31, 79, 31: COLOUR0: COLOUR129: CLS
PRINTTAB(INT(40 - LEN(string$) / 2)); string$;
VDU28, 0, 30, 79, 7: COLOUR1: COLOUR128
ENDPROC

DEFN step_count(stepper%, MO%, TT%)
A% = FNminicam("ST1", stepper%, MO%, speed%)
PROCupdate(M%, P%)
R% = FNminicam("CO1", scaler1%, TT%, 0) + 256 * 256 * FNminicam("RD2", scaler2%, 0, 0)
RS$ = STR$(R%): PROCtitle(55, 1, RS$)
R% = R%

DEFN minicam(usr$, AD%, NN%, TT%)
*FX3, 7
PRINTusr$: ", "; AD%; ", "; NN%; ", "; TT%; CHR$(13);
*FX3, 6
*FX2, 1
INPUT""""reply$
*FX2, 2
*FX3, 0
VAL(reply$)
DEFPROC update(M%, P%)
%% = &2050A
IF M% = 1 THEN S% = S% + P%: R% = S% * step(1) / 3600: PROCprint(34, 1, R)
IF M% = 2 THEN T% = T% + P%: R% = T% * step(2) / 3600: PROCprint(34, 2, R)
%e = 10
ENDPROC
DEFPROC print(X%, Y%, R)
VDU28, 0, 6, 79, 0: COLOUR0: COLOUR129: PRINTTAB(X%, Y%); " ";
PRINTTAB(X%, Y%): R;
VDU28, 0, 30, 79, 7: COLOUR1: COLOUR128
ENDPROC

REM -------------------------
REM ---- GONIOMETER TILT ROUTINE ----
REM -------------------------
DIM AX%(8)
AX%(1) = 34: AX%(2) = 35: AX%(3) = 36: AX%(4) = 37
AX%(5)=33: AX%(6)=32: AX%(7)=33: AX%(8)=32
70 scalar1%=56: scalar2%=55: speed%=100
80 DIM step(2): step(1)=1.0/(96.0*50): step(2)=1.0/(96.0*50)
90 PROCtitle(12,5,""TILT"")
100 CLS
110 INPUT'''' Which goniometer to tilt (1 or 2) "M%"
120 IF M%<1 AND M%<2 THEN 100
130 F%=((G%ANDM%)
140 IF F% increasing=TRUE ELSE increasing=FALSE
150 PRINT'''' Previous motion was ";
160 IF increasing PRINT"compressing"; ELSE PRINT "expanding";
170 PRINT"spring"
180 INPUT'''' Distance to drive micrometer (mm) "step_length"
190 MO%=step_length/step(M%)
200 INPUT'''' Compressing or expanding spring (C/E) "inc$
210 PROCstep_scan
220 VDU7: PROCcommand("Press <CR> for repeat, any other key for menu")
230 A=GET IF A=13 PROCcommand(" "); GOTO 100
240 CHAIN"P.MENU"
250 :
260 DEFFNmotor(dir$)
270 IFdir$="C" G%=(G% OR M%) ELSE G%=(G% AND(&FF EOR M%))
280 IF dir$="C" F%=1 ELSE F%=0
290 IF M%=1 THEN stepper%=AX%(M%+4+F%)
300 IF M%=2 THEN stepper%=AX%(M%+5+F%)
310 IF=0: IF dir$="C" P%=MO% ELSE P%=-MO%
320 =stepper%
330 :
340 DEFPROCstep_scan
350 stepper%=FNmotor(inc$)
360 IF (V%+P%)<0 OR (V%+P%)>(25/step(M%)) PRINT'''' Limit will be passed by this scan - driving to limit"
370 IF (V%+P%)<0 MO%=V%
380 IF (V%+P%)>(25/step(M%)) MO%=25/step(M%)-V%
390 stepper%=FNmotor(inc$)
400 PRINT'''' OK - tilting goniometer "; M%" "; "; MO%; " steps"
410 IF MO%<&FFFF A%=FNminicam("ST1",stepper%,&7FFF,speed%): MO%=MO%-
420 &7FFF: GOTO410
430 A=FNminicam("ST1",stepper%,MO%,speed%)
440 @%=&2050A
450 IF M%=1 U%=U%+P%: R=U%*step(1): PROCprint(34,3,R)
460 IF M%=2 V%=V%+P%: R=V%*step(2): PROCprint(34,4,R)
470 ENDPROC
480 :
490 DEFPROCtitle(X%,Y%,string$)
500 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%); "
510 PRINTTAB(X%,Y%); string$;
520 VDU28,0,30,79,7
530 COLOUR1: COLOUR128
540 ENDPROC
550 :
560 DEFPROCcommand(string$)
570 VDU28,0,31,79,31: COLOUR0: COLOUR129: CLS
580 PRINTTAB(INT(40-LEN(string$)/2)); string$;
590 VDU28,0,30,79,7: COLOUR1: COLOUR128
600 ENDPROC
610 :
620 DEFFNminicam(usr$,$AD%,NN%,TT%)
630 PROCtime
640 *FX2, 2
650 *FX3, 7
660 PRINTusr$: "; "; AD%; "; "; NN%; "; "; TT%; CHR$(13);
670 *FX3, 6
680 *FX2, 1
690 INPUT” ’ ” reply$
700 *FX2, 2
710 *FX3, 0
720 =VAL(reply$)
730 :
740 DEFPROC print(X%, Y%, R)
750 VDU28, 0, 6, 79, 0: COLOUR0: COLOUR129: PRINTTAB(X%, Y%); ” ”
760 PRINTTAB(X%, Y%); R;
770 VDU28, 0, 30, 79, 7
780 COLOUR1: COLOUR128
790 ENDPROC
800 :
810 DEFPROCTime
820 se%=(TIME DIV 100)MOD 60: mi%=(TIME DIV 6000)MOD 60: ho%=(TIME DIV 360000)MOD 24
830 VDU28, 0, 6, 79, 0: COLOUR0: COLOUR129: PRINTTAB(12, 4);
840 IF ho%<10 PRINT”0”: ho%; ELSE PRINT: ho%;
850 IF mi%<10 PRINT”0”: mi%; ELSE PRINT””: mi%;
860 IF se%<10 PRINT”0”: se%; ELSE PRINT””: se%;
870 VDU28, 0, 30, 79, 7: COLOUR1: COLOUR128
880 ENDPROC

10 REM --------------------- REPLOT ROUTINE --plots data from disc file -----
20 REM ---------------------
30 REM ---------------------
40 DIM PS(4), MS(4), map(4)
50 PROCTitle(12, 5, "REPLOT")
60 max_count%=0: min_count%=&7FFFFFFF
70 CLS
80 PRINT” ’ ” When prompted you can enter the name of a data file”:
90 PRINT” or press RETURN to plot the last recorded curve”
100 INPUT” Enter the data file to be plotted ” file$
110 IF file$="": file$="":O.D.RTEMP"
120 IF INSTR(file$, ".")=0 file$="":2.D."+file$
130 DER%=0
140 ON ERROR GOTO 380
150 X%=OPENIN(file$)
160 IF DER%<0 AND ERR=214 INPUT” File does not exist - choose another”
170 IF DER%<0 AND ERR=204 INPUT” File name too long - choose another”
180 IF DER%<0 AND ERR=222 INPUT” File does not exist - choose another”
190 INPUT X%, step
200 FOR J%=1 TO NU%
210 INPUT X%, A%
220 IF A%>max_count% THEN max_count%=A%
230 IF A%<min_count% THEN min_count%=A%
240 NEXT
250 CLOSE X%
260 IF max_count%=0 THEN max_count%=100
270 CLS: PRINT” X-range of data is 0 to ”; step*NU%; ” secs”
280 INPUT” Enter X-range to be plotted ” xmin, xmax
PRINT"Y-range of data is "; min_count%; " to "; max_count%; "
counts"
INPUT"Enter range to be plotted ", min_count%, max_count%
CLS
PROCplot
PROCcommand("Press <CR> for repeat, any other key for menu")
FX21,0
REPEAT: A=INKEY(50); PROCTime: UNTIL A<>-1
IF A=13 PROCcommand("""); GOTO 60
CHAIN"P.MENU"
DER%=DER%+1
IF ERR=204 OR ERR=199 THEN 150
IF ERR=222 THEN 180 ELSE REPORT: END
DEFPROCplot
DEFPROCpaper
PROCspacex=0.1,0.05,1): PROCspacey=0.1,1,1)
A$="EXPERIMENTAL ROCKING CURVE ": PROCplotscs(0.2,0.96,AS)
PROCplotcs(0.6,0.96, file$)
A$="RELATIVE BRAGG ANGLE (secs)": PROCplotcs(0.5,0.03,AS)
PROCspacey=0.1,0.9,0.15,0.92)
PROCspacey=xmin,xmax,min_count%,max_count%

DEFCaxes
PROCmove(map(1),map(3))
X%=OPENIN(file$): INPUT*X%,NU%: INPUT*X%,step
FOR J%=1 TO NU%
INPUT*X%,A%
IF J%*step>xmin THEN 580
IF J%*step>xmax THEN 600
IF A%>max_count% THEN 580
IF A%<min_count% THEN 580
PROCpoint(J%*step,A%)
NEXT
CLOSE#X%
ENDPROC
DEFPROCpaper
xscale%=1279: yscale%=800
VDU24,0; 0; 1279; 800;
CLG
ENDPROC
DEFPROCs pace(PS(1),PS(2),PS(3),PS(4))
ZX%=xscale%*PS(1): ZY%=yscale%*PS(3)
VX%=yscale%*PS(2)-ZX%: VY%=yscale%*PS(4)-ZY%
ENDPROC
DEFPROCs pacey=MS(1),MS(2),MS(3),MS(4))
map(1)=MS(1): map(2)=MS(2): map(3)=MS(3): map(4)=MS(4)
IF map(1)<0 AND map(2)>0 THEN xorig=0 ELSE xorig=map(1)
IF map(3)<0 AND map(4)>0 THEN yorig=0 ELSE yorig=map(3)
ENDPROC
DEFPROCmove(x,y)
A%=(x-map(1))*VX%/v(map(2)-map(1))+ZX%
B%=(y-map(3))*VY%/v(map(4)-map(3))+ZY%
PLOT4,A%,B%
ENDPROC
DEFPROCpoint(x,y)
PROCmove(x,y)
PLOT65,0,0
ENDPROC
DEFPROCa xes
xrange=map(2)-map(1): yrange=map(4)-map(3)
PROCmark(xrange)
870 PROCmove(map(1),yorig): PROCnotch(1)
880 step%=xrange/SX
890 FOR J%=1 TO step%
900 PROCdraw_re1(SX,0)
910 PROCnotch(1)
920 NEXT
930 PROCdraw(map(2),yorig)
940 FOR J%=step% TO 0 STEP -1
950 x=J%*SX+map(1)
960 PROClabe1_x(x)
970 NEXT
980 PROCmark(yrange)
990 PROCmove(xorig,map(3)): PROCnotch(2)
1000 step%=yrange/SX
1010 FOR J%=1 TO step%
1020 PROCdraw_re1(0,SX)
1030 PROCnotch(2)
1040 NEXT
1050 PROCdraw(xorig,map(4))
1060 FOR J%=step% TO 0 STEP -1
1070 x=J%*SX+map(3)
1080 PROClabe1_y(x)
1090 NEXT
1100 ENDPROC
1110 DEFPROCdraw_re1(x,y)
1120 A%=x*VX%//(map(2)-map(1))
1130 B%=y*VY%//(map(4)-map(3))
1140 PLOT1,A%,B%
1150 DEFPROCnotch(C%)
1160 IF C%=1 THEN PLOT1,0,10: PLOT1,0,-10
1170 IF C%=2 THEN PLOT1,10,0: PLOT1,-10,0
1180 ENDPROC
1190 DEFPROClabel_x(x)
1200 A%=(x-map(1))*VX%//(map(2)-map(1))+ZX%-8*LEN(STR$(x))
1210 B%=(yorig-map(3))*VY%//(map(4)-map(3))+ZY%-22
1220 PLOT4,A%,B%: VDU5: PRINTSTR$(x): VDU4
1230 ENDPROC
1240 DEFPROClabel_y(x)
1250 A%=(yorig-map(1))*VX%//(map(2)-map(1))+ZX%-16*LEN(STR$(x))-20
1260 B%=(x-map(3))*VY%//(map(4)-map(3))+ZY%
1270 PLOT4,A%,B%: VDU5: PRINTSTR$(x): VDU4
1280 ENDPROC
1290 DEFPROCmark(range)
1300 B%=LOG(range)
1310 A%=range/10.*B%
1320 IF A%>=1 AND A<3 THEN SX=2*10^-8(B%-1)
1330 IF A%>=3 AND A<7 THEN SX=5*10^-8(B%-1)
1340 IF A%>=7 AND A<10 THEN SX=1*10^-8*B%
1350 ENDPROC
1360 DEFPROCPplotcs(x,y,A$)
1370 PROCmove(x,y): VDU5: PRINTA$: VDU4: ENDPROC
1380 DEFPROCtitle(X,Y,string$)
1390 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%): "\"
1400 PRINTTAB(X%,Y%): string$:
1410 VDU28,0,30,79,7: COLOUR1: COLOUR128
1420 ENDPROC
1430 DEFPROConmand(string$)
1440 VDU28,0,31,79,31: COLOUR0: COLOUR129: CLS
1450 PRINTTAB(40-INT(LEN(string$)/2)): string$:
1460 VDU28,0,30,79,7: COLOUR1: COLOUR128
1470 ENDPROC
1480 DEFPROC DRAW(x,y)
1490 A% = (x-map(1))*(VX%/ (map(2)-map(1)))+ZX%; B% = (y-map(3))*(VY%/ (map(4)-map(3)))+ZY%
1500 PLOTS,A%,B%; ENDPROC
1510 :
1520 DEFPROC TIME
1530 se% = (TIME DIV 100)MOD 60; mi% = (TIME DIV 60000)MOD 60; ho% = (TIME DIV 3600000)MOD 24
1540 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(12,4);
1550 IF ho%<10 PRINT"0"; ho%; ELSE PRINT ho%;
1560 IF mi%<10 PRINT"0"; mi%; ELSE PRINT""; mi%;
1570 IF se%<10 PRINT"0"; se%; ELSE PRINT""; se%;
1580 VDU28,0,30,79,7: COLOUR1: COLOUR128
1590 ENDPROC

10 REM -----------------------------
20 REM -------- HARDCOPY PLOT ROUTINE- PLOTS DATA FROM DISC --------
30 REM -------------------
40 DIM PS(4),MS(4),map(4)
50 PROC TITLE(12.5,"HARDCOPY")
60 MAX_COUNT%=0; MIN_COUNT%=?FFFFFFF
70 CLS
80 PRINT"""" When prompted you can enter the name of a data file"": PRINT"" or press RETURN to plot the last recorded curve"
90 INPUT"""" Enter the data file to be plotted ""file$"
100 IF file$=""-file$="#0.D.RTEMP"
110 IF INSTR(file$,".")=0 file$="#2.D."+file$
120 DER%=0
130 ON ERROR GOTO 370
140 X%=OPENIN(file$)
150 IF DER%<>0 AND ERR=214 INPUT"" File does not exist - choose another"" file$: DER%=0: GOTO100
160 IF DER%<>0 AND ERR=204 INPUT"" File name too long - choose another"" file$: DER%=0: GOTO 100
170 INPUT#X%,NU%
180 IF DER%<>0 AND ERR=222 INPUT"" File does not exist - choose another"" files: CLOSE#X%: DER%=0: GOTO100
190 INPUT#X%,STEP
200 FOR J%=1 TO NU%
210 INPUT#X%,A%
220 IF A%>MAX_COUNT% THEN MAX_COUNT%=A%
230 IF A%<MIN_COUNT% THEN MIN_COUNT%=A%
240 NEXT
250 CLOSE#X%
260 IF MAX_COUNT%=0 THEN MAX_COUNT%=100
270 CLS; PRINT"" X-range of data is 0 to "": STEP*NU%;"" secs"
280 INPUT"" Enter X-range to be plotted "": xmin,xmax
290 PRINT"" Y-range of data is "": MIN_COUNT%;"" to "": MAX_COUNT%;"" counts"
300 INPUT"" Enter range to be plotted "": MIN_COUNT%,MAX_COUNT%
310 PRINT"""""": COLOUR0: COLOUR129: PRINT""Plotting data from disc file "": file$: COLOUR1: COLOUR128
320 PROC PLOT
330 PROC COMMAND("Press <CR> for repeat, any other key for menu")
340 *FX21,0
350 A=GET: IF A=13 PROC COMMAND(" "): GOTO 60
360 CHAIN"P.MENU"
370 DER%=DER%+1
380 IF ERR=204 OR ERR=199 THEN 150
390 IF ERR=222 THEN 180 ELSE REPORT: END
400 DEFPROCplot
410 PROCpaper: PROCpen(1)
420 PROCspace(0,1,0,1): PROCmspace(0,1,0,1)
430 PROCctrmag(6): PROCplotcs(0.1,0.92,"EXPERIMENTAL ROCKING CURVE")
440 PROCplotcs(0.7,0.92,file$)
450 PROCctrmag(4): PROCplotcs(0.5,0.03,"RELATIVE BRAGG ANGLE (secs)")
460 PROCctrorti(1): PROCplotcs(0.025,0.3,"COUNTS (unit time)"):
470 PROCctrorti(0)
480 PROCspace(0.1,0.9,0.1,0.9):
490 PROCmspace(xmin,xmax,min_count%,max_count%)
500 PROCaxes
510 X%=OPENIN(file$): INPUT#X%,NU%= INPUT#X%,step
520 FOR J%=1 TO NU%
530 IF J%*step<xmin THEN 580
540 IF J%*step>xmax THEN 590
550 IF CO%>max_count% THEN 580
560 IF CO%<min_count% THEN 580
570 PROCdraw((J%-1)*step,CO%): PROCdraw(J%*step,CO%)
580 NEXT
590 PROCpen(0)
600 ENDPROC
610 DEFPROCPaper
620 xscale%=2400: yscale%=1800
630 PROCminicam("PR2","+CHR$(10))
640 ENDPROC
650 DEFPROCPSpace(PS(1),PS(2),PS(3),PS(4))
660 ZX%=xscale%*PS(1): ZY%=yscale%*PS(3)
670 VX%=xscale%*PS(2)-ZX%: VY%=yscale%*PS(4)-ZY%
680 ENDPROC
690 DEFPROCMSpace(MS(1),MS(2),MS(3),MS(4))
700 map(1)=MS(1): map(2)=MS(2): map(3)=MS(3): map(4)=MS(4)
710 IF map(1)<0 AND map(2)>0 THEN xorig=0 ELSE xorig=map(1)
720 IF map(3)<0 AND map(4)>0 THEN yorig=0 ELSE yorig=map(3)
730 ENDPROC
740 DEFPROCmove(x,y)
750 A%=((x-map(1))*VX%/(map(2)-map(1))+ZX%)
760 B%=((y-map(3))*VY%/(map(4)-map(3))+ZY%)
770 PROCminicam("PR1","+"M"+STR$(A%)+","+STR$(B%))
780 ENDPROC
790 DEFPROCaxes
800 xrange=map(2)-map(1): yrange=map(4)-map(3)
810 PROCMARK(xrange)
820 PROCMove(map(1),yorig): PROCONotch(1)
830 step%=xrange/SX
840 FOR J%=1 TO step%
850 PROCdraw reli(SX,0)
860 PROCONotch(1)
870 NEXT
880 PROCDRAW(map(2),yorig)
890 FOR J%=step% TO 0 STEP -1
900 x=J%*SX+map(1)
910 PROCLabel_x(x)
920 NEXT
930 PROCMARK(yrange)
940 PROCMove(xorig,map(3)): PROCONotch(2)
950 step%=yrange/SX
FOR J%=1 TO step%
PROCdraw_re1(0, SX)
PROCnotch(2)
NEXT
PROCdraw(xorig, map(4))
FOR J%=step% TO 0 STEP -1
x=J%*SX+map(3)
PROClabel_y(x)
NEXT
ENDPROC
DEFPROCdraw_re1(x, y)
A%=x*VX%/ (map(2)-map(1))
B%=y*VY%/ (map(4)-map(3))
PROCminicam("PR1","+"I"+STRS(A%)+","+STRS(B%))
IF C%=1 THEN PROCminicam("PR1,10,25,0,-25")
IF C%=2 THEN PROCminicam("PR1,125,0,-25")
ENDPROC
DEFPROClabel_x(x)
A%= (x-map(1))*VX%/(map(2)-map(1))+ZX%-8*LEN(STRS(x))
B%= (x-map(3))*VY%/(map(4)-map(3))+ZY%-65
PROCminicam("PR1","+"M"+STRS(A%)+","+STRS(B%))
PROCminicam("PR1","+"P"+STRS(x))
ENDPROC
DEFPROClabel_y(x)
A%= (xorig-map(1))*VX%/(map(2)-map(1))+ZX%-16*LEN(STRS(x))-100
B%= (x-map(3))*VY%/(map(4)-map(3))+ZY%
PROCminicam("PR1","+"M"+STRS(A%)+","+STRS(B%))
PROCminicam("PR1","+"P"+STRS(x))
ENDPROC
DEFPROCmark(range)
B%=LOG(range)
A=range/10. "B"
IF A>1 AND A<3 THEN SX=2*10^"("B%-1)
IF A>3 AND A<7 THEN SX=5*10^"("B%-1)
IF A>7 AND A<10 THEN SX=1*10^"B"
ENDPROC
DEFPROCplots(x, y, CS)
PROCmove(x, y): CS="PR1","+"P"+CS: PROCminicam(CS)
PROCpoint(x, X%, Y%, string$)
VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%, Y%); "; "
PRINTTAB(X%, Y%): string$;
VDU28,0,30,79,7: COLOUR1: COLOUR128
ENDPROC
DEFPROCcommand(string$)
VDU28,0,31,79,31: COLOUR0: COLOUR129: CLS
PRINTTAB(40-INT(LEN(string$)/2)): string$;
VDU28,0,30,79,7: COLOUR1: COLOUR128
ENDPROC
DEFPROCdraw(x, y)
A%= (x-map(1))*VX%/(map(2)-map(1))+ZX%: B%= (y-map(3))*VY%/(map(4)-map(3))+ZY%
A$="PR1","+"D"+STRS(A%)+","+STRS(B%): PROCminicam(A$)
ENDPROC
DEFPROCPen(C%)
A$="PR1","+"J"+STRS(C%): PROCminicam(A$)
ENDPROC
DEFPROCMtrmag(C%)
ctrsize%=-C%+1: A$="PR1","+"S"+STRS(C%): PROCminicam(A$)
ENDPROC
1550 DEFPROCctori(C%)
1560 AS="PR1."+"Q"+STR$(C%): PROCminicam(A$): ENDPROC
1570 DEFPROCminicam(A$)
1580 *FX3.7
1590 *FX2.2
1600 PRINTA$; CHR$(13);
1610 *FX3.6
1620 *FX2.1
1630 INPUT""A$
1640 *FX2.2
1650 *FX3.0
1660 ENDPROC

10 REM ---------------- AUTOMATIC TILT OPTIMISE ROUTINE --------
20 REM -------------------------
30 REM -------------------------
40 DIM AX%(8)
50 AX%(1)=34: AX%(2)=35: AX%(3)=36: AX%(4)=37
60 AX%(5)=33: AX%(6)=32: AX%(7)=33: AX%(8)=32
70 scalar%=56: scalar2%=55: speed%=20: gspeed%=100
80 DIM step(4),max%(9),position%(9)
90 step(1)=0.1776: step(2)=0.121: step(3)=1.0/(96.0*50):
91 step(4)=1.0/(96.0*50)
100 here%=T%; tilt_here%=V%
110 PROCtitle(12.5,"AUTO TILT")
120 CLS
130 PRINT""Second axis only is driven by this routine"
140 M%=2
150 F%=(E%ANDM%)
160 IF F% increasing=TRUE ELSE increasing=FALSE
170 PRINT""Previous motion of this axis was ";
180 IF increasing PRINT"increasing"; ELSE PRINT "decreasing";
190 PRINT"theta"
200 INPUT""Counting time for peak scanning, in 100th's secs "T%
210 INPUT""Step length for peak scanning (secs) "step_length
220 IF C%=1 TO 3
230 INPUT""Maximum range to be scanned when looking for peaks (secs) "range
240 limit%=range/step(M%)
250 INPUT""Tilt step length for tilt optimisation "tilt_step
260 INPUT""Enter the background count rate (counts/sec) "background
270 tstep%=tilt_step/step(M%+2)
280 FOR C%=1 TO 3
290 PROCtilt_opt
300 tstep%=tstep%/2
310 NEXT C%
320 PROCcommand("Press <CR> for repeat, any other key for menu")
330 A=GET: IF A=13 PROCcommand(" "): GOTO 110
340 CHAIN"P.MENU"
350
360 DEFFNmotor(dir$)
370 IF dir$="1" E%=(E% OR M%) ELSE E%=(E% AND(&F F% OR M%))
380 IF dir$="1" THEN F%=1 ELSE F%=0
390 IF M%=1 THEN stepper%=AX%(M%+1-F%)
400 IF M%=2 THEN stepper%=AX%(M%+1+F%)
410 IF M%=0: IF dir$="1" P%=M% ELSE P%=-M%
420 =stepper%
430
440 DEFFPROCtitle(X%,Y%,string$)
450 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%): " ":
460 PRINTTAB(X%,Y%): string$;
470 VDU28,0,30,79,7
480 COLOUR1: COLOUR128
490 ENDPROC
500 :
510 DEFPPECTRUM(string$)
520 VDU28,0,31,79,31: COLOUR0: COLOUR129: CLS
530 PRINTTAB(INT(40-LEN(string$)/2)); string$;
540 VDU28,0,30,79,7: COLOUR1: COLOUR128
550 ENDPROC
560 :
570 DEFPPLICSTEP(count(stepper%,MO%,TT%)
580 A%=FNminicam("ST1",stepper%,MO%,speed%)
590 @%=&2050A
600 IF M%=1 S%=5+P%: R=S%*step(1)/3600: PROCPrint(34,1,R)
610 IF M%=2 T%=T%+P%: R=T%*step(2)/3600: PROCPrint(34,2,R)
620 @%=10
630 R%=FNminicam("CO1",scaler1%,TT%,0)+256*256*FNminicam("RD2",scaler2%,0,0)
640 R$=STR$(R%): PROCtitle(68,1,R$)
650 ENDPROC
660 :
670 DEFFNminicam(usr$,AD%,NN%,TT%)
680 *FX2,2
690 *FX3,7
700 PRINTusr$; ";", AD%; ";", NN%; ";", TT%; CHR$(13);
710 *FX3,6
720 *FX2,1
730 INPUT""reply$)
740 *FX2,2
750 *FX3,0
760 =VAL(reply$)
770 :
780 DEFPPECTRUM(X%,Y%,R)
790 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%): " ":
800 PRINTTAB(X%,Y%): R;
810 VDU28,0,30,79,7
820 COLOUR1: COLOUR128
830 ENDPROC
840 :
850 DEFPACKETilt_opt
860 CLS: PRINTTAB(8); "Tilt (mm)"; TAB(18); "Maximum count"; TAB(28); "Axis position of max"
870 FOR I%=1 TO 5
880 PROCfind
890 PRINT'TAB(10); V%*step(4); TAB(20); maximum%; TAB(30);
900 maxpos%=step(2)/3600
910 IF I%<=5 PROCtilt("I",tstep%)
920 NEXT
930 PROCtilt("D",5*tstep%)
940 IF (T%-here%)>0 PROCmove("D",T%-here% ELSE PROCmove("I",here%-T%)
950 FOR I%=6 TO 9
960 PROCfind
970 max%(1%)=%maximum%; position%(1%)=maxpos%
980 PRINT'TAB(10); V%*step(4); TAB(20); maximum%; TAB(30);
990 maxpos%=step(2)/3600
1000 IF I%<=9 PROCtilt("D",tstep%)
1000 NEXT
1010 maximum% = 0: FOR I% = 1 TO 9: IF max%(I%) > maximum%: maximum% = max%(I%): J% = position%(I%): Z% = I%: NEXT
1020 IF Z% <= S PROCtlt("1", (Z%+3)*step%): ELSE PROCtlt("1", (9-Z%)*step%)
1030 IF (T% - J%) > 0 PROCmove("D", T% - J%): ELSE PROCmove("1", J% - T%)
1040 ENDPROC
1050 :
1060 DEFPROCtlt(dir$, step%)
1070 IF dir$ = "1": stepper% = AX%(9); P% = step%: ELSE stepper% = AX%(8): P% = - step%
1080 IF step% & 7FFF A% = FNminicam("ST1", stepper%, &7FFF, gspeed%):
 step% = step% & 7FFF: GOTO 1080
1090 A% = FNminicam("ST1", stepper%, step%, gspeed%)
1100 @% = &2050A: %v% = %v% + P%: R=%v%*step(4): PROCprint(34, 4, R)
1110 @% = 10
1120 ENDPROC
1130 :
1140 DEFPROCmove(dir$, step%)
1150 stepper% = FNmotor(dir$)
1160 IF step% & 7FFF A% = FNminicam("ST1", stepper%, &7FFF, speed%):
 step% = step% & 7FFF: GOTO 1160
1170 A% = FNminicam("ST1", stepper%, step%, speed%)
1180 ENDPROC
1190 :
1200 DEFPROCfind
1210 now% = T%
1220 stepper% = FNmotor("1")
1230 step_count
1240 REPEAT
1250 PROCstep_count(stepper%, MO%, 100)
1260 UNTIL (R% <= 2*background): OR (T% = now% + limit%)
1270 IF R% <= 2*background THEN stepper% = FNmotor("D"): GOTO 1350
1280 PROCmove("D", T% - now%)
1290 stepper% = FNmotor("D")
1300 REPEAT
1310 PROCstep_count(stepper%, MO%, 100)
1320 UNTIL (R% <= 2*background): OR (T% <= now% - limit%)
1330 IF R% <= 2*background THEN 1350
1340 fault = TRUE: ENDPROC
1350 REPEAT: PROCstep_count(stepper%, MO%, 100): UNTIL R% <= (1.5*background): maximum% = 0: stepper% = FNmotor("1")
1360 REPEAT
1370 PROCstep_count(stepper%, MO%, 100): IF R% <= maximum%: maximum% = R%: maxpos% = T%
1380 UNTIL R% <= (1.5*background) AND maximum% <= (1.5*background)
1390 ENDPROC

10 REM -------- MOVE SCANNING TABLE --------
30 REM --------
40 DIM AX%(12)
50 AX%(1) = 34: AX%(2) = 35: AX%(3) = 36: AX%(4) = 37
60 AX%(5) = 33: AX%(6) = 32: AX%(7) = 33: AX%(8) = 32
70 AX%(9) = 32: AX%(10) = 33: AX%(11) = 34: AX%(12) = 35
80 speed% = 50
90 DIM step(2)
100 step(1) = 1.0/96.0: step(2) = 1.0/96.0
110 PROCtitle(12,5,"SCAN TABLE")
120 CLS
130 PRINT: "The present position of the scanning table is"
140 PRINT: " " X = " ; K%*step(1); " mm"
PRINT" Y = "; L%*step(2); " mm"
160 INPUT" Enter the X coord and Y coord of desired position (mm) "
" new_x,new_y
170 PRINT" OK - moving to desired position"
180 PROCmove
190 PROCcommand("Press <CR> for repeat, any other key for menu")
200 A=GET: IF A=13 PROCcommand(" "): GOTO 120
210 CHAIN"P.MENU"
220 :
230 DEFPROCmove
240 steps%= (new_x/step(1)-K%)
250 IF steps%>=0 THEN A%=FNminicam("ST1",AX%(9),steps%,speed%) ELSE
A%=FNminicam("ST1",AX%(10),-steps%,speed%)
260 PROCupdate(1,steps%)
270 steps%= (new_y/step(2)-L%)
280 IF steps%>=0 THEN A%=FNminicam("ST1",AX%(11),steps%,speed%) ELSE
A%=FNminicam("ST1",AX%(12),-steps%,speed%)
290 PROCupdate(2,steps%)
300 ENDPROC
310 :
320 DEFPROCupdate(motor%,steps%)
330 @%=&2050A
340 IF motor%=1 K%=K%+steps%: R=R%*step(1): PROCprint(47,2,R)
350 IF motor%=2 L%=L%+steps%: R=R%*step(2): PROCprint(47,3,R)
360 @%=10
370 ENDPROC
380 :
390 DEFPROCtitle(X%,Y%,string$)
400 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%): " ";
410 PRINTTAB(X%,Y%): string$;
420 VDU28,0,30,79,7
430 COLOUR1: COLOUR128
440 ENDPROC
450 :
460 DEFPROCcommand(string$)
470 VDU28,0,31,79,31: COLOUR0: COLOUR129: CLS
480 PRINTTAB(INT(40-LEN(string$)/2)): string$;
490 VDU28,0,30,79,7: COLOUR1: COLOUR128
500 ENDPROC
510 :
520 DEFFNminicam(usr$,AD%,NN%,TT%)
530 PROCtime
540 *FX2.2
550 *FX3.7
560 PRINTusr$: "; "; AD%; "; "; NN%; "; "; TT%; CHR$(13);
570 *FX3.6
580 *FX2.1
590 INPUT" reply$"
600 *FX2.2
610 *FX3.0
620 =VAL(reply$)
630 :
640 DEFPROCprint(X%,Y%,R)
650 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%): " ";
660 PRINTTAB(X%,Y%): R;
670 VDU28,0,30,79,7: COLOUR1: COLOUR128
680 ENDPROC
690 :
700 DEFPROCtime
710 set%= (TIME DIV 100)MOD 60: mi%= (TIME DIV 6000)MOD 60: ho%= (TIME DIV
10 REM --------- PEAK HOLD ROUTINE - FOR TOPOGRAPHS -------
20 DIM AX%(8)
30 REM
40 AX%(1)=34: AX%(2)=35: AX%(3)=36: AX%(4)=37
50 AX%(5)=33: AX%(6)=32: AX%(7)=33: AX%(8)=32
60 scaler1%=56: scaler2%=55: speed%=20
70 DIM step(2)
80 step(1)=0.1776: step(2)=0.121
90 decr$="": incr$="": fault=FALSE: end=FALSE
100 PROC title(12.5,"PEAK HOLD")
110 CLS
120 PRINT"""" Only the second axis is driven by this routine"
130 M%=2
140 F%=(E%ANDM%)%TRUE ELSE increasing=FALSE
150 IF F% increasing=TRUE ELSE increasing=FALSE
160 IF increase PRINT"increasing": ELSE PRINT "decreasing");
170 PRINT" theta"
180 PRINT"""" Are you positioned at"
190 PRINT"""" 1. Top of peak"
200 PRINT"""" 2. High angle side"
210 PRINT"""" 3. Low angle side"
220 INPUT"" Enter which one (1,2 or 3) "position"
230 INPUT"" Step size required for adjustments (secs) "step_length
240 M%=INT(step_length/step(M%))
250 INPUT"" Enter the background count rate (counts/sec) "background
260 CLS: PRINT"""" Holding peak position": PROC command("Press any key
270 to stop")
280 IF position%=1 PROC top ELSE PROC flank
290 IF fault=TRUE A=13 PROC command(" "): GOTO 110
300 IF A=GET: IF A=13 PROC command(" "): GOTO 110
310 CHAIN"P.MENU"
320 :
330 :
340 :
350 DEFF motor(dir$)
360 IF dir$="1" E%= (E% OR M%) ELSE E%= (E% AND (&FF EOR M%))
370 IF dir$="1" THEN F%=1 ELSE F%=0
380 IF M%=1 THEN stepper%=AX%(M%+1-F%)
390 IF M%=2 THEN stepper%=AX%(M%+1+F%)
400 I%=0: IF dir$="1" P%=M% ELSE P%=-M%
410 =stepper%
420 :
430 :
440 DEFP R O C title(X%,Y%,string$)
450 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%); ""
460 PRINTTAB(X%,Y%); string$;
470 VDU28,0,30,79,7
480 COLOUR1: COLOUR128
490 ENDPROC
DEFPROC command(string$)
VDU28,0,31,79,31: COLOUR0: COLOUR129: CLS
PRINTTAB(INT(40-LEN(string$)/2)); string$;
VDU28,0,30,79,7: COLOUR1: COLOUR128
ENDPROC

DEFFNminicam(usr$,AD%,NN%,TT%)
*FX2,2
*FX3,7
PRINTusr$; ";"; AD%; ";"; NN%; ";"; TT%; CHR$(13);
*FX3,6
*FX2,1
INPUT""reply$
*FX2,2
*FX3,0
=VAL(reply$)

DEFFPROCprint(X%,Y%,R)
VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%); ""
PRINTTAB(X%,Y%); R;
VDU28,0,30,79,7
COLOUR1: COLOUR128
ENDPROC

DEFPROCflank
rate=FNFminicam("CO1",scalar1%,500,0)+256*256*FNFminicam("RD2",scalar2%,0,0)
error=SQR(rate)*3/5: rate=rate/5
if position%=2 decr$="I": incr$="D" ELSE decr$="D": incr$="I"
IF end=TRUE ENDPROC ELSE count=FNintensity
IF count<(background-SQR(background)) fault=TRUE: ENDPROC
IF (count<(rate+error)) AND (count>(rate-error)) PROCdelay(500): GOTO
790
780 IF count<(rate-error) PROCincrease: GOTO790
790 IF count>(rate+error) PROCdecrease: GOTO790
800 ENDPROC

DEFPROCincrease
step% = FNMotor(incr$)
A% = FNFminicam("ST1",stepper%,MO%,speed%)
@% &= &2050A
900 IF M%=1 S%=S%+P%: R=S%*step(1)/3600: PROCprint(34,1,R)
910 IF M%=2 T%=T%+P%: R=T%*step(2)/3600: PROCprint(34,2,R)
920 @% &= 10
930 ENDPROC

940 LEFPROCdecrease
step% = FNMotor(decr$)
A% = FNFminicam("ST1",stepper%,MO%,speed%)
@% &= &2050A
990 IF M%=1 S%=S%+P%: R=S%*step(1)/3600: PROCprint(34,1,R)
990 IF M%=2 T%=T%+P%: R=T%*step(2)/3600: PROCprint(34,2,R)
990 @% &= 10
1000 ENDPROC

1090 PROCdelay(time%)
1090 A=INKEY(time%)
1090 IF A=-1 end=TRUE
1090 ENDPROC
1080: 1090 DEFPROCtop 1100 rate = FNminicam("CO1", scalar1%, 500, 0) + 256 * 256 * FNminicam("RD2", scalar2%, 0, 0) 1110 error = SQRT(rate) * 3/5; rate = rate / 5 1120 decr$ = "D"; incr$ = "I" 1130 IF end = TRUE ENDPROC ELSE count = FNintensity 1140 IF count < (background - SQRT(background)) fault = TRUE: ENDPROC 1150 IF (count < (rate + error)) AND (count > (rate - error)) PROCdelay(500): GOTO1130 1160 last_count = count; PROCdecrease: count = FNintensity: IF count < last_count GOTO 1180 1170 IF count > (rate - error) GOTO 1130 ELSE GOTO 1160 1180 last_count = count; PROCincrease: count = FNintensity: IF count < last_count GOTO 1160 1190 IF count > (rate - error) GOTO 1130 ELSE GOTO 1180 1200: 1210 DEFFNintensity 1220 A% = FNminicam("CO1", scalar1%, 500, 0) + 256 * 256 * FNminicam("RD2", scalar2%, 0, 0) 1230 = A% / 5

10 REM ---------------- UTILITIES PROGRAM ----- 20 REM -- 30 REM ------------------ ------------------- 40 : 50 PROCtitle(12, 5,"UTILITIES"): CLS: PROCcommand(" ") 60 PROCmenu 70 PRINTTAB(0, 19); " ";: COLOUR0: COLOUR129: PRINT"Enter utilities subject >> ";: COLOUR1: COLOUR128: PRINT" "; 80 INPUT""choice$" 90 IF LEN(choice$) > 2 VDU7: GOTO70 100 IF choice$="BR" CHAIN"P.BRAGG" 110 IF choice$="RE" CHAIN"P.REFL" 120 IF choice$="SP" CHAIN"P.SDATA" 130 IF choice$="QU" CHAIN"P.MENU" 140 VDU7: GOTO70 150 : 160 DEFFPROCtitle(X%, Y%, string$) 170 VDU28, 0, 6, 79, 0: COLOUR0: COLOUR129: PRINTTAB(X%, Y%); " "; 180 PRINTTAB(X%, Y%); string$; 190 VDU28, 0, 30, 79, 7: COLOUR1: COLOUR128 200 ENDPROC 210: 220 DEFFPROCcommand(string$) 230 VDU28, 0, 31, 79, 31: COLOUR0: COLOUR129: CLS 240 PRINTTAB(INT(40-LEN(string$)/2)); string$; 250 VDU28, 0, 30, 79, 7: COLOUR1: COLOUR128 260 ENDPROC 270 DEFFPROCmenu 280 PRINT" " 290 PRINT" Bragg angle - calculate Bragg angle for a material" 300 PRINT" REFlectivity - calculates single crystal relfectivity curve" 310 PRINT" SPool data - spools a data file to an ascii file" 320 PRINT" Quit - leave help, return to main menu" 330 PRINT" Select choice by keying in the two letters in capitals shown above" 340 ENDPROC
10 REM -----------------------------
20 REM ------ SAVE ROUTINE - COPIES TEMPORARY FILE ------
30 REM -----------------------------
40 :
50 DIM CO%(600)
60 PROC(title(12.5,"SAVE DATA"): CLS
70 PRINT" " When prompted enter the file name for data storage, ":
80 INPUT" Enter file name " file$,
90 IF INSTR(file$,".")=0 file$="D."+file$
100 IF INSTR(file$,".")=0 file$="2."+file$
110 PRINT" Reading data from file :0.D.RETEMP, writing data to file "; file$
120 ON ERROR GOTO 510
130 DER%=0
140 X%=OPENIN(".:0.D.RETEMP")
150 INPUT#X%,NU%
160 IF DER%=0 AND ERR=222 PRINT" There is no temporary data file - press any key for menu": A=GET: CLOSE#X%: CHAIN"P.MENU"
170 INPUT#X%,step
180 FOR 1%=1 TO NU%: INPUT#X%,CO%(1%): NEXT
190 CLOSE#X%
200 DER%=0
210 X%=OPENIN(".:0.D.HEADER")
220 INPUT#X%,places$
230 IF DER%=0 AND ERR=222 PRINT" There is no header file - press key for menu and use UPDATE": A=GET: CLOSE#X%: CHAIN"P.MENU"
240 INPUT#X%,sname$
250 INPUT#X%,volt$
260 INPUT#X%,current$
270 INPUT#X%,first_crystals$
280 INPUT#X%,wave$
290 INPUT#X%,refi$
300 CLOSE#X%
310 DER%=0
320 X%=OPENOUT(file$)
330 IF DER%=0 AND ERR=204 PRINT" Chosen file name too long - choose another ": INPUTfile$: GOTO 90
340 PRINT#X%,NU%
350 PRINT#X%,step
360 FOR1%=1 TO NU%
370 PRINT#X%,CO%(1%)
380 NEXT
390 PRINT#X%,place$
400 PRINT#X%,sname$
410 PRINT#X%,volt$
420 PRINT#X%,current$
430 PRINT#X%,first_crystals$
440 PRINT#X%,wave$
450 PRINT#X%,refi$
460 CLOSE#X%
470 :
480 PROCcommand("Press <CR> for repeat, any other key for menu")
490 A=GET: IF A=13 PROCcommand("":) CLS: GOTO70
500 CHAIN"P.MENU"
510 REM ERROR TRAP FOR ILLEGAL DISC ACCESS
520 DER%=DER%+1
530 IF ERR=214 PRINT" File does not exist"
540 IF ERR=204 PRINT" File name too long"
550 IF ERR=224 PRINT" File does not exist"
560 IF ERR<>214 AND ERR<>204 AND ERR<>222 REPORT: END
570 IF ERL<=190 GOTO 160
580 IF ERL>190 AND ERL<=300 GOTO 230
590 IF ERL>300 GOTO 330
600 :
610 DEFPROCTitle(X%,Y%,string$)
620 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%); " ";
630 PRINTTAB(X%,Y%); string$;
640 VDU28,0,30,79,7: COLOUR1: COLOUR128
650 ENDPROC
660 :
670 DEFPROCcommand(string$)
680 VDU28,0,31,79,31: COLOUR0: COLOUR129: CLS
690 PRINTTAB(INT(40-LEN(string$)/2)); string$;
700 VDU28,0,30,79,7: COLOUR1: COLOUR128
710 ENDPROC

10 REM ------------
20 REM HELP PROGRAM ----
30 REM ------------
40 :
50 PROCTitle(12,5,"HELP"): CLS: PROCcommand(" ")
60 PROCmenu
70 PRINTTAB(0,19); " "; COLOUR0: COLOUR129: PRINT"Enter help subject >> "; COLOUR1: COLOUR128: PRINT" ";
80 INPUT" choice$"
90 IF LEN(choice$)>2 VDU7: GOTO70
100 IF choice$="IN" PROCintro: CLS: GOTO60
110 IF choice$="MM" PROCMove: CLS: GOTO60
120 IF choice$="PL" PROCplot: CLS: GOTO60
130 IF choice$="DA" PROCsave: CLS: GOTO60
140 IF choice$="TR" PROCtransfer: CLS: GOTO60
150 IF choice$="QU" CHAIN"P.MENU"
160 VDU7: GOTO70
170 :
180 DEFPROCTitle(X%,Y%,string$)
190 VDU28,0,6,79,0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%); " ";
200 PRINTTAB(X%,Y%); string$;
210 VDU28,0,30,79,7: COLOUR1: COLOUR128
220 ENDPROC
230 :
240 DEFPROCcommand(string$)
250 VDU28,0,31,79,31: COLOUR0: COLOUR129: CLS
260 PRINTTAB(INT(40-LEN(string$)/2)); string$;
270 VDU28,0,30,79,7: COLOUR1: COLOUR128
280 ENDPROC
290 DEFPROCmenu
300 PRINT"
310 PRINT" INTro - gives a brief introduction to the use of these programs"
320 PRINT" Moving Motors - info on driving the axes and updating of poistions"
330 PRINT" PLoting - how to record a rocking curve and obtain hard copy etc"
340 PRINT" DAta storage - how to save data and its format on disc"
350 PRINT" Transfer - how to transfer data to a remote host etc"
360 PRINT" QUit - leave help, return to main menu"
370 PRINT "Select choice by keying in the two letters in capitals shown above"
380 ENDPROC
390 :
400 DEFPROCintro
410 CLS: PRINT'
420 X%=OPENIN("T.INTRO")
430 PROCdisplay
440 ENDPROC
450 :
460 DEFPROCmove
470 CLS: PRINT'
480 X%=OPENIN("T.MOTORS")
490 PROCdisplay
500 ENDPROC
510 :
520 DEFPROCdisplay
530 REPEAT: A%=BGET#X%; VDUA%: IF A%=13: VDU10
540 UNTIL EOF#X%
550 CLOSE#X%
560 PROCcommand("Press any key for menu")
570 A=GET
580 PROCcommand(" ")
590 ENDPROC
600 :
610 DEFPROCplot
620 CLS
630 X%=OPENIN("T.PLOTS")
640 PROCdisplay
650 ENDPROC
660 :
670 DEFPROCsave
680 CLS: PRINT'
690 X%=OPENIN("T.SAVE")
700 PROCdisplay
710 ENDPROC
720 :
730 DEFPROCtransfer
740 CLS: PRINT'
750 X%=OPENIN("T.TRANS")
760 PROCdisplay
770 ENDPROC

10 REM -----------------------------
20 REM ----- RESET POSITIONS ROUTINE -----
30 REM -----------------------------
40 :
50 DIM step(6): step(1)=0.1776: step(2)=0.121: step(3)=1.0/(96.0*50):
51 step(4)=1.0/(96.0*50): step(5)=1.0/96.0: step(6)=1.0/96.0
60 PROCtitle(12,5,"RESET")
70 CLS
80 PRINT "The current positions of the axes are as shown above"
90 PRINT "When prompted enter the new position or <CR> to leave unaltered"
100 INPUT "Enter the position of axis 1 (deg) "valS
110 IF valS<>"": S%=VAL(valS)*3600/step(1): PROCtitle(34,1,valS)
120 PRINTTAB(0,6)"
130 INPUT "Enter the position of axis 2 (deg) "valS
140 IF valS<>"": T%=VAL(valS)*3600/step(2): PROCtitle(34,2,valS)
PRINTTAB(0,8)"

INPUT" Enter the position of goniometer 1 (mm) "val$
170 IF val$<>"" U%=VAL(val$)/step(3): PROCtitle(34,3,val$)
180 PRINTTAB(0,10)"

INPUT" Enter the position of goniometer 2 (mm) "val$
200 IF val$<>"" V%=VAL(val$)/step(4): PROCtitle(34,4,val$)
210 PRINTTAB(0,12)"

INPUT" Enter the position of X-table micrometer (mm) "val$
230 IF val$<>"" K%=VAL(val$)/step(5): PROCtitle(47,2,val$)
240 PRINTTAB(0,14)"

INPUT" Enter the position of Y-table micrometer (mm) "val$
260 IF val$<>"" L%=VAL(val$)/step(6): PROCtitle(47,3,val$)
270 CHAIN"P.MENU"
280 :
290 DEFPROCtitle(X%,Y%,string$)
300 VDU28,0,6,79.0: COLOUR0: COLOUR129: PRINTTAB(X%,Y%); " "
310 PRINTTAB(X%,Y%); string$;
320 VDU28,0,30,79,7
330 COLOUR1: COLOUR128
340 ENDPROC
REFERENCES

MOTOROLA MCU/MPU APPLICATIONS MANUAL VOL. 2 (1985), (Motorola).

MOTOROLA MCU/MPU INTERFACE COMPONENTS (1984), (Motorola).

